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Preface
The	field	of	partial	differential	equations	(PDE	for	short)	has	a	long	history	going
back	several	hundred	years,	beginning	with	the	development	of	calculus.	In	this
regard,	the	field	is	a	traditional	area	of	mathematics,	although	more	recent	than
such	classical	fields	as	number	theory,	algebra,	and	geometry.	As	in	many	areas
of	mathematics,	the	theory	of	PDE	has	undergone	a	radical	transformation	in	the
past	 hundred	 years,	 fueled	 by	 the	 development	 of	 powerful	 analytical	 tools,
notably,	 the	 theory	 of	 functional	 analysis	 and	 more	 specifically	 of	 function
spaces.	The	discipline	has	also	been	driven	by	rapid	developments	in	science	and
engineering,	 which	 present	 new	 challenges	 of	 modeling	 and	 simulation	 and
promote	broader	investigations	of	properties	of	PDE	models	and	their	solutions.

As	the	theory	and	application	of	PDE	have	developed,	profound	unanswered
questions	 and	 unresolved	 problems	 have	 been	 identified.	 Arguably	 the	 most
visible	 is	 one	 of	 the	 Clay	 Mathematics	 Institute	 Millennium	 Prize	 problems1
concerning	 the	 Euler	 and	Navier-Stokes	 systems	 of	 PDE	 that	model	 fluid	 flow.
The	 Millennium	 problem	 has	 generated	 a	 vast	 amount	 of	 activity	 around	 the
world	 in	an	attempt	to	establish	well-posedness,	regularity	and	global	existence
results,	 not	 only	 for	 the	 Navier-Stokes	 and	 Euler	 systems	 but	 also	 for	 related
systems	of	PDE	modeling	complex	fluids	(such	as	fluids	with	memory,	polymeric
fluids,	 and	plasmas).	This	 activity	 generates	 a	 substantial	 literature,	much	of	 it
highly	 specialized	 and	 technical.	 Meanwhile,	 mathematicians	 use	 analysis	 to
probe	new	applications	and	to	develop	numerical	simulation	algorithms	that	are
provably	 accurate	 and	 efficient.	 Such	 capability	 is	 of	 considerable	 importance,
given	 the	explosion	of	experimental	and	observational	data	and	 the	spectacular
acceleration	of	computing	power.

Our	text	provides	a	gateway	to	the	field	of	PDE.	We	introduce	the	reader	to	a
variety	of	PDE	and	related	techniques	to	give	a	sense	of	the	breadth	and	depth	of
the	field.	We	assume	that	students	have	been	exposed	to	elementary	ideas	from
ordinary	differential	equations	(ODE)	and	analysis;	thus,	the	book	is	appropriate
for	advanced	undergraduate	or	beginning	graduate	mathematics	students.	For	the
student	preparing	for	research,	we	provide	a	gentle	introduction	to	some	current
theoretical	 approaches	 to	 PDE.	 For	 the	 applied	 mathematics	 student	 more
interested	 in	 specific	 applications	 and	 models,	 we	 present	 tools	 of	 applied
mathematics	 in	the	setting	of	PDE.	Science	and	engineering	students	will	 find	a
range	of	topics	in	the	mathematics	of	PDE,	with	examples	that	provide	physical
intuition.

Our	 aim	 is	 to	 familiarize	 the	 reader	 with	 modern	 techniques	 of	 PDE,



introducing	 abstract	 ideas	 straightforwardly	 in	 special	 cases.	 For	 example,
struggling	with	the	details	and	significance	of	Sobolev	embedding	theorems	and
estimates	 is	 more	 easily	 appreciated	 after	 a	 first	 introduction	 to	 the	 utility	 of
specific	 spaces.	Many	 students	who	will	 encounter	 PDE	 only	 in	 applications	 to
science	and	engineering	or	who	want	to	study	PDE	for	just	a	year	will	appreciate
this	 focused,	 direct	 treatment	 of	 the	 subject.	 Finally,	 many	 students	 who	 are
interested	 in	 PDE	 have	 limited	 experience	 with	 analysis	 and	 ODE.	 For	 these
students,	 this	 text	provides	a	means	to	delve	 into	the	analysis	of	PDE	before	or
while	 taking	 first	 courses	 in	 functional	 analysis,	 measure	 theory,	 or	 advanced
ODE.	Basic	background	on	functions	and	ODE	is	provided	in	Appendices	A–C.

To	keep	 the	 text	 focused	on	 the	analysis	 of	PDE,	we	have	not	 attempted	 to
include	 an	 account	 of	 numerical	 methods.	 The	 formulation	 and	 analysis	 of
numerical	 algorithms	 is	 now	 a	 separate	 and	 mature	 field	 that	 includes	 major
developments	in	treating	nonlinear	PDE.	However,	the	theoretical	understanding
gained	 from	 this	 text	 will	 provide	 a	 solid	 basis	 for	 confronting	 the	 issues	 and
challenges	in	numerical	simulation	of	PDE.

A	 student	 who	 has	 completed	 a	 course	 organized	 around	 this	 text	 will	 be
prepared	 to	study	such	advanced	topics	as	 the	 theory	of	elliptic	PDE,	 including
regularity,	spectral	properties,	the	rigorous	treatment	of	boundary	conditions;	the
theory	of	parabolic	PDE,	building	on	the	setting	of	elliptic	theory	and	motivating
the	abstract	ideas	in	linear	and	nonlinear	semigroup	theory;	existence	theory	for
hyperbolic	equations	and	systems;	and	the	analysis	of	fully	nonlinear	PDE.

We	 hope	 that	 you,	 the	 reader,	 find	 that	 our	 text	 opens	 up	 this	 fascinating,
important,	 and	 challenging	 area	 of	 mathematics.	 It	 will	 inform	 you	 to	 a	 level
where	 you	 can	 appreciate	 general	 lectures	 on	 PDE	 research,	 and	 it	 will	 be	 a
foundation	for	further	study	of	PDE	in	whatever	direction	you	wish.

We	are	grateful	to	our	students	and	colleagues	who	have	helped	make	this	book
possible,	notably	David	G.	Schaeffer,	David	Uminsky,	and	Mark	Hoefer	for	their
candid	 and	 insightful	 suggestions.	 We	 are	 grateful	 for	 the	 support	 we	 have
received	 from	the	 fantastic	 staff	at	Princeton	University	Press,	especially	Vickie
Kern,	who	has	believed	in	this	project	from	the	start.

Rachel	 Levy	 thanks	 her	 parents	 Jack	 and	Dodi,	 husband	 Sam,	 and	 children
Tula	and	Mimi,	who	have	lovingly	encouraged	her	work.

Michael	 Shearer	 thanks	 the	 many	 students	 who	 provided	 feedback	 on	 the
course	notes	from	which	this	book	is	derived.

1.	www.claymath.org/millennium/.
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CHAPTER	ONE

Introduction
Partial	differential	equations	(PDE)	describe	physical	systems,	such	as	solid	and
fluid	 mechanics,	 the	 evolution	 of	 populations	 and	 disease,	 and	 mathematical
physics.	The	many	different	kinds	of	PDE	each	can	exhibit	different	properties.
For	example,	 the	heat	equation	describes	 the	spreading	of	heat	 in	a	conducting
medium,	smoothing	the	spatial	distribution	of	temperature	as	it	evolves	in	time;
it	 also	 models	 the	 molecular	 diffusion	 of	 a	 solute	 in	 its	 solvent	 as	 the
concentration	varies	in	both	space	and	time.	The	wave	equation	is	at	the	heart	of
the	description	of	time-dependent	displacements	in	an	elastic	material,	with	wave
solutions	 that	 propagate	 disturbances.	 It	 describes	 the	 propagation	 of	 p-waves
and	s-waves	from	the	epicenter	of	an	earthquake,	the	ripples	on	the	surface	of	a
pond	from	the	drop	of	a	stone,	the	vibrations	of	a	guitar	string,	and	the	resulting
sound	 waves.	 Laplace’s	 equation	 lies	 at	 the	 heart	 of	 potential	 theory,	 with
applications	to	electrostatics	and	fluid	flow	as	well	as	other	areas	of	mathematics,
such	as	geometry	and	the	theory	of	harmonic	functions.	The	mathematics	of	PDE
includes	 the	 formulation	 of	 techniques	 to	 find	 solutions,	 together	 with	 the
development	 of	 theoretical	 tools	 and	 results	 that	 address	 the	 properties	 of
solutions,	such	as	existence	and	uniqueness.

This	 text	 provides	 an	 introduction	 to	 a	 fascinating,	 intricate,	 and	 useful
branch	of	mathematics.	In	addition	to	covering	specific	solution	techniques	that
provide	an	insight	into	how	PDE	work,	the	text	is	a	gateway	to	theoretical	studies
of	PDE,	involving	the	full	power	of	real,	complex	and	functional	analysis.	Often
we	will	 refer	 to	applications	 to	provide	 further	 intuition	 into	 specific	equations
and	their	solutions,	as	well	as	to	show	the	modeling	of	real	problems	by	PDE.

The	study	of	PDE	takes	many	forms.	Very	broadly,	we	take	two	approaches	in
this	book.	One	approach	is	to	describe	methods	of	constructing	solutions,	leading
to	 formulas.	 The	 second	 approach	 is	 more	 theoretical,	 involving	 aspects	 of
analysis,	such	as	the	theory	of	distributions	and	the	theory	of	function	spaces.

1.1.	Linear	PDE
To	introduce	PDE,	we	begin	with	four	linear	equations.	These	equations	are	basic
to	 the	 study	 of	 PDE,	 and	 are	 prototypes	 of	 classes	 of	 equations,	 each	 with
different	properties.	The	primary	elementary	methods	of	 solution	are	related	 to
the	techniques	we	develop	for	these	four	equations.

For	 each	 of	 the	 four	 equations,	 we	 consider	 an	 unknown	 (real-valued)



function	u	on	an	open	set	U	⊂	Rn.	We	refer	to	u	as	the	dependent	variable,	and	x
=	(x1,	x2,	…,	xn)	∈	U	as	the	vector	of	 independent	variables.	A	partial	differential
equation	 is	 an	 equation	 that	 involves	 x,	 u,	 and	 partial	 derivatives	 of	 u.	 Quite
often,	 x	 represents	 only	 spatial	 variables.	 However,	 many	 equations	 are
evolutionary,	meaning	 that	u	=	u(x,	 t)	depends	also	on	 time	 t	 and	 the	PDE	has
time	 derivatives.	 The	 order	 of	 a	 PDE	 is	 defined	 as	 the	 order	 of	 the	 highest
derivative	that	appears	in	the	equation.

The	Linear	Transport	Equation:

This	simple	first-order	 linear	PDE	describes	the	motion	at	constant	speed	c	of	a
quantity	u	depending	on	a	single	spatial	variable	x	and	time	t.	Each	solution	is	a
traveling	wave	that	moves	with	the	speed	c.	If	c	>	0,	the	wave	moves	to	the	right;
if	c	<	0,	the	wave	moves	left.	The	solutions	are	all	given	by	a	formula	u(x,	t)	=
f(x	−	ct).	The	function	f	=	f(ξ),	depending	on	a	single	variable	ξ	=	x	−	ct,	 is
determined	from	side	conditions,	such	as	boundary	or	initial	conditions.

The	next	three	equations	are	prototypical	second-order	linear	PDE.

The	Heat	Equation:

In	 this	 equation,	 u(x,	 t)	 is	 the	 temperature	 in	 a	 homogeneous	 heat-conducting
material,	the	parameter	k	>	0	is	constant,	and	the	Laplacian	Δ	is	defined	by

in	 Cartesian	 coordinates.	 The	 heat	 equation,	 also	 known	 as	 the	 diffusion
equation,	models	diffusion	in	other	contexts,	such	as	the	diffusion	of	a	dye	in	a
clear	 liquid.	 In	 such	 cases,	 u	 represents	 the	 concentration	 of	 the	 diffusing
quantity.

The	Wave	Equation:

As	 the	 name	 suggests,	 the	 wave	 equation	 models	 wave	 propagation.	 The
parameter	 c	 is	 the	 wave	 speed.	 The	 dependent	 variable	 u	 =	 u(x,	 t)	 is	 a
displacement,	 such	 as	 the	 displacement	 at	 each	 point	 of	 a	 guitar	 string	 as	 the
string	 vibrates,	 if	x	∈	R,	 or	 of	 a	 drum	membrane,	 in	which	 case	x	∈	R2.	 The
acceleration	utt,	 being	 a	 second	 time	 derivative,	 gives	 the	wave	 equation	 quite
different	properties	from	those	of	the	heat	equation.



Laplace’s	Equation:

Laplace’s	 equation	models	 equilibria	 or	 steady	 states	 in	 diffusion	 processes,	 in
which	u(x,	t)	is	independent	of	time	t,1	and	appears	in	many	other	contexts,	such
as	the	motion	of	fluids,	and	the	equilibrium	distribution	of	heat.

These	 three	 second-order	 equations	 arise	 often	 in	 applications,	 so	 it	 is	 very
useful	to	understand	their	properties.	Moreover,	their	study	turns	out	to	be	useful
theoretically	 as	 well,	 since	 the	 three	 equations	 are	 prototypes	 of	 second-order
linear	equations,	namely,	elliptic,	parabolic,	and	hyperbolic	PDE.

1.2.	Solutions;	Initial	and	Boundary	Conditions
A	solution	of	a	PDE	such	as	any	of	(1.1)–(1.4)	is	a	real-valued	function	u	satisfying
the	equation.	Often	this	means	that	u	is	as	differentiable	as	the	PDE	requires,	and
the	 PDE	 is	 satisfied	 at	 each	 point	 of	 the	 domain	 of	 u.	 However,	 it	 can	 be
appropriate	or	even	necessary	to	consider	a	more	general	notion	of	solution,	 in
which	u	is	not	required	to	have	all	the	derivatives	appearing	in	the	equation,	at
least	not	in	the	usual	sense	of	calculus.	We	will	consider	this	kind	of	weak	solution
later	(see	Chapter	11).

As	 with	 ordinary	 differential	 equations	 (ODE),	 solutions	 of	 PDE	 are	 not
unique;	identifying	a	unique	solution	relies	on	side	conditions,	such	as	initial	and
boundary	 conditions.	 For	 example,	 the	 heat	 equation	 typically	 comes	 with	 an
initial	condition	of	the	form

in	which	u0	:	U	→	R	is	a	given	function.

Example	1.	(Simple	initial	condition)	The	functions	u(x,	t)	=	ae−t	sin	x	+	be−4t
sin(2x)	 are	 solutions	 of	 the	 heat	 equation	 ut	=	 uxx	 for	 any	 real	 numbers	 a,	 b.
However,	a	=	3,	b	=	−7	would	be	uniquely	determined	by	the	initial	condition
u(x,	0)	=	3	sin	x	−	7	sin(2x).	Then	u(x,	t)	=	3e−t	sin	x	−	7e−4t	sin(2x).

Boundary	 conditions	 are	 specified	 on	 the	 boundary	 ∂U	 of	 the	 (spatial)
domain.	Dirichlet	boundary	conditions	take	the	following	form,	for	a	given	function
f	:	∂U	→	R:

Neumann	boundary	conditions	specify	the	normal	derivative	of	u	on	the	boundary:



where	ν(x)	 is	 the	 unit	 outward	 normal	 to	 the	 boundary	 at	 x.	 These	 boundary
conditions	 are	 called	 homogeneous	 if	 f	 ≡	 0.	 Similarly,	 a	 linear	 PDE	 is	 called
homogeneous	if	u	=	0	is	a	solution.	If	it	is	not	homogeneous,	then	the	equation	or
boundary	condition	is	called	inhomogeneous.

Equations	and	boundary	conditions	that	are	linear	and	homogeneous	have	the
property	that	any	linear	combination	u	=	av	+	bw	of	solutions	v,	w,	with	a,	b	∈
R,	 is	 also	 a	 solution.	 This	 special	 property,	 sometimes	 called	 the	 principle	 of
superposition,	is	crucial	to	constructive	methods	of	solution	for	linear	equations.

1.3.	Nonlinear	PDE

We	 introduce	 a	 selection	 of	 nonlinear	 PDE	 that	 are	 significant	 by	 virtue	 of
specific	properties,	special	solutions,	or	their	importance	in	applications.

The	Inviscid	Burgers	Equation:

is	 an	 example	 of	 a	 nonlinear	 first-order	 equation.	 Notice	 that	 this	 equation	 is
nonlinear	due	to	the	uux	term.	It	is	related	to	the	linear	transport	equation	(1.1),
but	 the	 wave	 speed	 c	 is	 now	 u	 and	 depends	 on	 the	 solution.	 We	 shall	 see	 in
Chapter	 3	 that	 this	 equation	 and	 other	 first-order	 equations	 can	 be	 solved
systematically	using	a	procedure	called	the	method	of	characteristics.	However,	the
method	 of	 characteristics	 only	 gets	 you	 so	 far;	 solutions	 typically	 develop	 a
singularity,	in	which	the	graph	of	u	as	a	function	of	x	steepens	in	places	until	at
some	 finite	 time	 the	 slope	 becomes	 infinite	 at	 some	 x.	 The	 solution	 then
continues	with	a	shock	wave.	The	solution	is	not	even	continuous	at	the	shock,
but	the	solution	still	makes	sense,	because	the	PDE	expresses	a	conservation	 law
and	the	shock	preserves	conservation.

For	higher-order	nonlinear	 equations,	 there	 are	no	methods	of	 solution	 that
work	 in	 as	 much	 generality	 as	 the	 method	 of	 characteristics	 for	 first-order
equations.	Here	is	a	sample	of	higher-order	nonlinear	equations	with	interesting
and	accessible	solutions.

Fisher’s	Equation:

with	 f(u)	=	u(1	−	u).	This	 equation	 is	 a	model	 for	population	dynamics	when
the	 spatial	 distribution	 of	 the	 population	 is	 taken	 into	 account.	 Notice	 the
resemblance	 to	 the	heat	 equation;	 also	note	 that	 the	ODE	u′(t)	=	 f(u(t))	 is	 the
logistic	equation,	describing	population	growth	limited	by	a	maximum	population
normalized	 to	u	=	1.	 In	Chapter	12,	we	 shall	 construct	 traveling	waves,	 special



solutions	 in	which	 the	 population	 distribution	moves	with	 a	 constant	 speed	 in
one	direction.	Recall	that	all	solutions	of	the	linear	transport	equation	(1.1)	are
traveling	waves,	 but	 they	 all	 have	 the	 same	 speed	 c.	 For	 Fisher’s	 equation,	we
have	to	determine	the	speeds	of	traveling	waves	as	part	of	the	problem,	and	the
traveling	waves	are	special	solutions,	not	the	general	solution.

The	Porous	Medium	Equation:

In	this	equation,	m	>	0	is	constant.	The	porous	medium	equation	models	flow	in
porous	rock	or	compacted	soil.	The	variable	u(x,	t)	≥	0	measures	the	density	of	a
compressible	gas	in	a	given	location	x	at	time	t.	The	value	of	m	depends	on	the
equation	 of	 state	 relating	 pressure	 in	 the	 gas	 to	 its	 density.	 For	 m	 =	 1,	 we
recover	the	heat	equation,	but	for	m	≠	1,	the	equation	is	nonlinear.	In	fact,	m	≥
2	for	gas	flow.

The	Korteweg-deVries	(KdV)	Equation:

This	third-order	equation	is	a	model	for	water	waves	in	which	the	height	of	the
wave	 is	 u(x,	 t).	 The	 KdV	 equation	 has	 particularly	 interesting	 traveling	 wave
solutions	called	 solitary	waves,	 in	which	 the	 height	 is	 symmetric	 about	 a	 single
crest.	The	equation	is	a	model	in	the	sense	that	it	relies	on	an	approximation	of
the	 equations	 of	 fluid	 mechanics	 in	 which	 the	 length	 of	 the	 wave	 is	 large
compared	to	the	depth	of	the	water.

Burgers’	Equation:

The	 parameter	 ν	 >	 0	 represents	 viscosity,	 hence	 the	 name	 inviscid	 Burgers
equation	for	the	first-order	equation	(1.6)	having	ν	=	0.	Burgers’	equation	 is	a
combination	 of	 the	 heat	 equation	 with	 a	 nonlinear	 term	 that	 convects	 the
solution	in	a	way	typical	of	fluid	flow.	(See	the	Navier-Stokes	system	later	in	this
list.)	This	important	equation	can	be	reduced	to	the	heat	equation	with	a	clever
change	 of	 dependent	 variable,	 called	 the	Cole-Hopf	 transformation	 (see	 Chapter
13,	Section	13.5).

Finally,	we	mention	two	systems	of	nonlinear	PDE.

The	Shallow	Water	Equations:

in	which	 g	>	0	 is	 the	 gravitational	 acceleration.	 The	 dependent	 variables	h,	 v



represent	the	height	and	velocity,	respectively,	of	a	shallow	layer	of	water.	The
variable	x	is	the	horizontal	spatial	variable,	along	a	flat	bottom,	and	it	is	assumed
that	 there	 is	 no	 dependence	 or	 motion	 in	 the	 orthogonal	 horizontal	 direction.
Moreover,	the	velocity	v	is	taken	to	be	independent	of	depth.

The	Navier-Stokes	Equations:

describe	 the	 velocity	u	∈	R3	 and	 pressure	 p	 in	 the	 flow	 of	 an	 incompressible
viscous	 fluid.	 In	 this	 system	 of	 four	 equations,	 the	 parameter	 ν	 >	 0	 is	 the
viscosity,	the	first	 three	equations	(for	u)	represent	conservation	of	momentum,
and	the	final	equation	is	a	constraint	that	expresses	the	incompressibility	of	the
fluid.	 In	 an	 incompressible	 fluid,	 local	 volumes	 are	 unchanged	 in	 time	 as	 they
follow	 the	 flow.	Apart	 from	special	 types	of	 flow	(such	as	 in	a	 stratified	 fluid),
incompressibility	also	means	that	the	density	is	constant	(and	is	incorporated	into
ν,	the	kinematic	viscosity).

Interestingly,	the	momentum	equation,	regarded	as	an	evolution	equation	for
u,	resembles	Burgers’	equation	in	structure.	The	pressure	p	does	not	have	its	own
evolution	equation;	it	serves	merely	to	maintain	incompressibility.	In	the	limit	ν
→	0,	we	recover	the	incompressible	Euler	equations	for	an	inviscid	fluid.	This	is	a
singular	limit	in	the	sense	that	the	order	of	the	momentum	equation	is	reduced.	It
is	also	a	singular	limit	for	Burgers’	equation.

1.4.	Beginning	Examples	with	Explicit	Wave-like	Solutions
The	linear	and	nonlinear	first	order	equations	described	in	Sections	1.1	and	1.3
nicely	 illustrate	 mathematical	 properties	 and	 representation	 of	 wave-like
solutions.	We	discuss	 these	equations	and	 their	 solutions	as	a	 starting	point	 for
more	general	considerations.

1.4.1.	The	Linear	Transport	Equation

Solutions	of	the	linear	transport	equation,

where	c	∈	R	is	a	constant	(the	wave	speed),	are	traveling	waves	u(x,	t)	=	f(x	−
ct).	We	 can	 determine	 a	 unique	 solution	 by	 specifying	 the	 function	 f	 :	R	→	R
from	an	initial	condition



Figure	1.1.	Linear	transport	equation:	traveling	wave	solution.	(a)	t	=	0;	(b)	t	>
0.

in	which	u0	:	R	→	R	 is	a	given	function.	Then	the	unique	solution	of	the	 initial
value	problem	 (1.8),	 (1.9)	 is	 the	 traveling	wave	u(x,	 t)	=	u0(x	−	 ct).	 A	 typical
traveling	wave	is	shown	in	Figure	1.1.

Instead	of	initial	conditions,	we	can	also	specify	a	boundary	condition	 for	this
PDE.	Here	is	an	example	of	how	this	would	look,	for	functions	ϕ,	ψ	given	on	the
interval	[0,	∞):

The	solution	u	of	(1.8),	(1.10)	will	be	a	function	defined	on	the	first	quadrant	Q1
=	{(x,	t)	:	x	≥	0,	t	≥	0}	in	the	x-t	plane.	The	general	solution	of	the	PDE	is	u(x,
t)	=	 f(x	−	ct);	 the	 initial	 condition	 specifies	 f(y)	 for	y	>	0,	 and	 the	boundary
condition	gives	f(y)	for	y	<	0.	Both	are	needed	to	determine	the	solution	u(x,	 t)
on	Q1.

1.4.2.	The	Inviscid	Burgers	Equation

This	equation,

has	wave	speed	u	that	depends	on	the	solution,	in	contrast	to	the	linear	transport
equation	(1.8)	in	which	the	wave	speed	c	is	constant.	If	we	use	the	wave	speed	to
track	 the	 solution,	we	 can	 sketch	 its	 evolution.	 In	 Figure	1.2	we	 show	how	 an
initial	 condition	 (1.9)	 evolves	 for	 small	 t	 >	 0.	 Points	 nearer	 the	 crest	 travel
faster,	since	u	is	larger	there,	so	the	front	of	the	wave	tends	to	steepen,	while	the
back	spreads	out.	Notice	how	Figure	1.2	differs	from	Figure	1.1.	The	solution	u	=
u(x,	t)	can	be	specified	implicitly	in	an	equation	without	derivatives:



Figure	1.2.	Inviscid	Burgers	equation:	nonlinear	wave	propagation.	(a)	t	=	0;	(b)
t	>	0.

Eventually,	the	graph	becomes	infinitely	steep,	and	the	implicit	solution	in	(1.12)
is	no	longer	valid.	The	solution	is	continued	to	larger	time	by	including	a	shock
wave,	defined	in	Chapter	13.

PROBLEMS
1.	Show	that	the	traveling	wave	u(x,	t)	=	f(x	−	3t)	satisfies	the	linear	transport
equation	ut	+	3ux	=	0	for	any	differentiable	function	f	:	R	→	R.

2.	Find	an	equation	relating	the	parameters	k,	m,	n	so	that	the	function	u(x,	t)	=
emt	sin(nx)	satisfies	the	heat	equation	ut	=	kuxx.

3.	Find	an	equation	relating	the	parameters	c,	m,	n	so	that	the	function	u(x,	t)	=
sin(mt)	sin(nx)	satisfies	the	wave	equation	utt	=	c2uxx.

4.	Find	all	 functions	a,	b,	c	 :	R	→	R	such	that	u(x,	 t)	=	a(t)e2x	+	b(t)ex	+	c(t)
satisfies	the	heat	equation	ut	=	uxx	for	all	x,	t.

5.	 For	m	 >	 1,	 define	 the	 conductivity	 k	 =	 k(u)	 so	 that	 the	 porous	 medium
equation	(1.7)	can	be	written	as	the	(quasilinear)	heat	equation

6.	Solve	the	initial	value	problem

7.	Solve	the	initial	boundary	value	problem

Explain	why	there	is	no	solution	if	the	PDE	is	changed	to	ut	−	4ux	=	0.



8.	 Consider	 the	 linear	 transport	 equation	 (1.8)	 with	 initial	 and	 boundary
conditions	(1.10).

(a)	Suppose	the	data	ϕ,	ψ	are	differentiable	functions.	Show	that	the	function
u	:	Q1	→	R	given	by

satisfies	 the	 PDE	 away	 from	 the	 line	 x	 =	 ct,	 the	 boundary	 condition,	 and
initial	 condition.	 To	 see	 where	 (1.13)	 comes	 from,	 start	 from	 the	 general
solution	u(x,	t)	=	f(x	−	ct)	of	the	PDE	and	substitute	into	the	side	conditions
(1.10).

(b)	In	solution	(1.13),	the	line	x	=	ct,	which	emerges	from	the	origin	x	=	t	=
0,	 separates	 the	quadrant	Q1	 into	 two	 regions.	On	 the	 line,	 the	 solution	has
one-sided	limits	given	by	ϕ,	ψ.	Consequently,	the	solution	will	in	general	have
singularities	on	the	line.

(i)	 Find	 conditions	 on	 the	 data	ϕ,	 ψ	 so	 that	 the	 solution	 is	 continuous
across	the	line	x	=	ct.

(ii)	Find	conditions	on	the	data	ϕ,	ψ	so	that	the	solution	is	differentiable
across	the	line	x	=	ct.

9.	 Let	 f	 :	R	 →	R	 be	 differentiable.	 Verify	 that	 if	 u(x,	 t)	 is	 differentiable	 and
satisfies	(1.12),	that	is,	u	=	f(x	−	ut),	then	u(x,	t)	is	a	solution	of	the	initial	value
problem

10.	Let	u0(x)	=	1	−	x2	if	−1	≤	x	≤	1,	and	u0(x)	=	0	otherwise.

(a)	Use	 (1.12)	 to	 find	 a	 formula	 for	 the	 solution	u	=	u(x,	 t)	 of	 the	 inviscid
Burgers	equation	(1.11),	(1.9)	with	−1	<	x	<	1,	 .

(b)	Verify	that	u(1,	t)	=	0,	 .

(c)	Differentiate	your	 formula	 to	 find	ux(1−,	 t),	 and	deduce	 that	ux(1−,	 t)	→
−∞	as	 .

Note:	ux(x,	 t)	 is	discontinuous	at	x	=	±1;	 the	notation	u	(1−,	 t)	means	 the
one-sided	limit:	 .	Similarly,	 	means,	 ,	with	 .

1.	However,	there	are	time-dependent	solutions,	for	example	u(x,	t)	linear	in	x	or	independent	of	x.



CHAPTER	TWO

Beginnings
In	 the	 previous	 chapter	 we	 constructed	 solutions	 for	 example	 equations.
However,	 much	 of	 the	 study	 of	 PDE	 is	 theoretical,	 revolving	 around	 issues	 of
existence	and	uniqueness	of	solutions,	and	properties	of	solutions	derived	without
writing	formulas	for	the	solutions.	Of	course,	existence	and	uniqueness	issues	are
resolved	if	it	is	possible	to	construct	all	solutions	of	a	given	PDE,	but	commonly
this	constructive	approach	is	not	available,	and	more	abstract	methods	of	analysis
are	required.	In	this	chapter	we	outline	theoretical	considerations	that	will	come
up	from	time	to	time,	give	a	somewhat	general	classification	of	single	equations,
and	 then	 give	 a	 flavor	 of	 theoretical	 approaches	 by	 presenting	 the	 Cauchy-
Kovalevskaya	theorem	and	discussing	some	of	its	ramifications.	Finally,	we	show
how	PDE	 can	 be	 derived	 from	balance	 laws	 (otherwise	 known	 as	 conservation
laws)	 that	 come	 from	 fundamental	 considerations	 underlying	 the	 modeling	 of
most	applications.

2.1.	Four	Fundamental	Issues	in	PDE	Theory
Generally,	 the	 theoretical	 study	 of	 PDE	 focuses	 on	 four	 basic	 issues,	 three	 of
which	are	lumped	together	as	well-posedness	in	the	sense	of	Hadamard.1

1.	Existence:	Is	there	a	solution	of	the	PDE	satisfying	a	specific	set	of	boundary
and	initial	conditions?

2.	Uniqueness:	Is	there	only	one	solution	for	a	specific	set	of	boundary	and	initial
conditions?

3.	Continuous	dependence	on	data:	Do	small	changes	in	initial	conditions,
boundary	conditions,	and	parameters	create	only	small	changes	in	the
solution?	We	might	say	the	solution	is	robust	to	changes	in	the	data.
Sometimes,	this	property	is	called	structural	stability,	or	more	loosely,	stability.

The	fourth	property	is	generally	separated	from	considerations	of	well-posedness:

4.	Regularity:	How	many	derivatives	does	the	solution	have?	We	sometimes	refer
to	this	property	as	the	smoothness	of	the	solution.

Well-posedness	 is	 a	 desirable	 property	 if	 the	 goal	 is	 to	 model	 a	 repeatable
experiment,	 for	example.	Of	 the	 four	properties,	one	could	argue	 that	 the	most
important	property	is	existence.	After	all,	what	use	is	a	PDE	model	if	it	does	not
have	 a	 solution?	 In	 the	 theory	 of	 ODE,	 showing	 the	 existence	 of	 solutions	 is
generally	 straightforward,	 at	 least	 locally,	 based	 on	 the	 classical	 existence	 and



uniqueness	 theorem	 for	 initial	 value	 problems.	 In	 the	 previous	 chapter	 we
established	existence	by	constructing	solutions.	However,	in	general	the	theory	of
existence	of	solutions	for	PDE	is	a	complex	and	highly	technical	subject.

Existence.	The	approach	of	this	book	is	to	study	existence	issues	only	for	classes
of	equations	(and	classes	of	solutions)	for	which	the	theory	is	elementary,	such	as
classical	 (i.e.,	 continuously	differentiable)	 solutions	of	 first-order	equations.	For
second-order	 equations,	 we	 begin	 by	 choosing	 problems	 for	 which	 we	 can
construct	 explicit	 solutions,	 thus	 avoiding	 the	 technicalities	 of	 proving	 general
existence	theorems.	Toward	the	end	of	the	book	(see	Chaps.	9–11),	we	introduce
some	of	 the	theoretical	underpinnings	of	more	general	 theories	of	PDE,	such	as
the	theory	of	distributions,	the	use	of	Sobolev	spaces,	and	maximum	principles.

Uniqueness.	Uniqueness	 is	often	 the	easiest	property	 to	establish.	Moreover,	 it
does	not	require	the	existence	of	solutions,	as	we	can	state:	“There	exists	at	most
one	solution.”

Continuous	 dependence.	 Continuous	 dependence	 can	 be	 established	 using
techniques	 from	 analysis	 that	 estimate	 the	 closeness	 of	 distinct	 solutions	 with
different	data,	in	terms	of	the	closeness	of	the	data.	Closeness	of	course	involves
defining	 a	 suitable	 notion	 of	 distance—a	 metric—on	 both	 the	 space	 in	 which
solutions	 reside	 and	 on	 the	 space	 of	 data.	 These	 notions	 will	 be	 formally
introduced	as	needed.

Regularity.	 Regularity	 is	 generally	 the	 hardest	 property	 to	 characterize,
requiring	 the	 most	 delicate	 analysis.	 In	 this	 text	 we	 make	 observations	 about
regularity	 from	 explicit	 solutions;	 regularity	 more	 generally	 and	 theoretically
involves	more	technical	machinery.

2.2.	Classification	of	Second-Order	PDE

When	 studying	ODE,	 it	 is	 convenient	 to	be	 able	 to	distinguish	 among	different
kinds	of	equations	based	on	such	criteria	as	linear	vs.	nonlinear	and	separable	vs.
nonseparable.	 For	 PDE,	 there	 are	 also	 multiple	 ways	 to	 distinguish	 among
equations,	 some	 similar	 to	 the	 criteria	 for	ODE.	 In	 the	next	 chapter	we	discuss
first-order	PDE	in	detail,	showing	that	the	theory	is	linked	closely	to	systems	of
first-order	ODE.

For	 second-order	 equations,	 there	 are	 distinct	 families	 of	 equations,
distinguished	 by	 typical	 properties	 of	 their	 solutions.	 We	 identify	 the	 class	 of
hyperbolic	 equations,	 with	 wave-like	 solutions,	 and	 elliptic	 equations,
representing	 steady-state	 or	 equilibrium	 solutions.	 Between	 these	 two	 general
classes	 are	 the	 parabolic	 equations,	 which,	 like	 hyperbolic	 equations,	 have	 a



time-like	 independent	variable	but	also	have	properties	akin	 to	 those	of	elliptic
equations.	 The	 heat	 equation,	 the	 wave	 equation,	 and	 Laplace’s	 equation	 are
second-order	 linear	constant-coefficient	prototypes	of	parabolic,	hyperbolic,	and
elliptic	 PDE,	 respectively.	 Although	 this	 chapter	 is	 primarily	 about	 linear
equations	in	two	variables,	we	include	some	remarks	about	equations	with	more
independent	variables	and	nonlinear	equations.

2.2.1.	Constant	Coefficients

To	explain	how	the	terms	hyperbolic,	elliptic,	and	parabolic	come	to	be	associated
with	PDE,	it	is	simplest	to	consider	a	second-order	equation	of	the	form

where	the	coefficients	a,	b,	c	are	real	numbers,	and	the	right-hand	side	f	=	f(x,	y,
u,	ux,	uy)	is	a	given	function	containing	any	lower-order	derivatives	of	u.	The	type
of	the	equation	is	determined	by	the	nature	of	the	quadratic	form	obtained	from
the	left-hand	side	of	(2.1)	by	replacing	each	partial	derivative	by	a	real	variable.
More	 formally,	we	 define	 the	 principal	 part	 of	 the	 PDE	 as	 the	 left-hand	 side	 of
(2.1).	Then	the	corresponding	differential	operator	with	principal	indicated	by	the
superscript	(p)	is

Associated	 with	 this	 differential	 operator	 is	 the	 quadratic	 form,	 known	 as	 the
principal	symbol,

in	which	ξ	=	(ξ1,	ξ2)	∈R2.	The	connection	between	principal	part	and	principal
symbol	is	the	observation

This	conversion	 from	differential	operators	∂x,	∂y	 to	multiplication	by	 iξ1,	 iξ2	 is
typical	 of	 integral	 transforms;	 in	 this	 case,	 the	 connection	 is	 to	 Fourier
transforms.	The	vector	(ξ1,	ξ2)	is	the	Fourier	transform	variable,	or	wave	number.
Fourier	transforms	and	their	importance	for	the	analysis	of	PDE	are	discussed	in
Chapter	7.

The	quadratic	form	(2.2)	is	associated	with	either	a	hyperbola	(if	b2	>	ac),	an
ellipse	 (if	b2	<	ac),	 or	 is	 degenerate	 (if	b2	=	ac).	 Correspondingly,	we	 say	 the
PDE	 (2.1)	 is	hyperbolic	 if	 b2	>	ac,	 elliptic	 if	 b2	<	ac,	 and	 parabolic	 if	 b2	=	 ac,
provided	the	equation	is	second	order	(i.e.,	not	all	of	a,	b,	c	are	zero).

Example	1.	(Classification)	The	partial	differential	operator	L	=	∂2x	+	α∂2y,	 is



elliptic	for	α	>	0,	hyperbolic	for	α	<	0,	and	parabolic	for	α	=	0.

2.2.2.	More	General	Second-Order	Equations

A	 similar	 classification	 applies	 to	 second-order	 equations	 in	 any	 number	 of
variables.	As	usual,	write	x	=	(x1,	x2,	…,	xn)	∈	Rn.	Consider	the	equation

where	f	=	f(x,	u,	ux1,	…,	uxn).	We	assume	the	real	coefficients	aij	in	the	principal
part	L(p)u	(given	by	the	left-hand	side)	are	constant	and	symmetric	in	i,	j:	aij	=	aji.
(If	 they	were	not	 symmetric,	we	could	 rearrange	 the	PDE	using	 the	equality	of
mixed	partial	derivatives	to	achieve	symmetry.)	The	principal	symbol	is	then

The	 type	of	 the	PDE	depends	on	 the	nature	of	 this	quadratic	expression,	which
we	can	write	in	matrix	form:

where	A	=	 (aij)	 is	 a	 real	 symmetric	 n	×	 n	 matrix.	 If	 we	 change	 independent
variables	with	an	invertible	linear	transformation	B,

then	 the	 chain	 rule	 changes	 the	 PDE	 (2.3).	 It	 is	 instructive	 (see	 Problem	2)	 to
work	out	 that	 the	principal	 symbol	now	has	coefficient	matrix	BABT.	 If	B	 is	 an
orthogonal	 matrix,	 then	 B−1	 =	 BT,	 so	 that	 the	 linear	 change	 of	 independent
variables	corresponds	to	a	similarity	transformation	of	A.	Now	let’s	choose	B	 to
diagonalize	A,	so	that	BABT	has	the	n	eigenvalues	of	A	on	the	diagonal	and	zeroes
elsewhere.	 This	 is	 achieved	 by	 letting	 the	 columns	 of	 B	 be	 the	 orthonormal
eigenvectors	of	A.	The	effect	on	 the	PDE	 is	 to	convert	 the	principal	part	 into	a
linear	combination	of	pure	second-order	derivatives,	in	which	the	coefficients	are
the	eigenvalues	of	A.

We	say	the	PDE	is	elliptic	if	the	eigenvalues	of	A	are	all	nonzero,	and	all	have
the	same	sign.	The	PDE	is	called	hyperbolic	if	all	eigenvalues	are	nonzero,	and	all
but	one	of	them	have	the	same	sign.	(There	is	the	third	possibility	that,	for	n	≥
4,	 all	 but	k	 eigenvalues,	with	 2	≤	 k	≤	n/2,	 have	 the	 same	 sign.	 This	 case	 is
called	ultrahyperbolic,	 but	 it	 does	 not	 occur	 much,	 so	 we	 ignore	 it.)	 Finally,	 if
there	 is	 at	 least	 one	 zero	 eigenvalue,	 then	 we	 could	 consider	 the	 PDE	 to	 be
parabolic.	 In	 practice,	 parabolic	 equations	 occur	 most	 commonly	 as	 time-



dependent	 PDE	 like	 the	 heat	 equation,	 with	 a	 single	 zero	 eigenvalue.	 Such
parabolic	equations	typically	have	the	form

where	 u	 =	 u(x,	 t),	 L	 is	 a	 linear	 elliptic	 operator	 with	 respect	 to	 the	 spatial
variables,	and	f	=	f(x,	t,	u,	ux1,	…,	uxn).	In	this	equation,	only	one	eigenvalue	of
the	coefficient	matrix	A	is	zero.

For	 each	 type	 of	 linear	 second-order	 PDE,	 we	 can	 find	 a	 change	 of
independent	variables	to	transform	the	equation	into	a	canonical	form,	in	which
the	 corresponding	 matrix	 A	 is	 diagonal,	 so	 that	 only	 pure	 second-order
derivatives	occur	(i.e.,	no	cross	derivatives).	In	fact,	the	change	of	variables	can
be	done	 in	 general	 by	observing	how	a	 linear	 change	of	 independent	 variables
corresponds	to	a	similarity	transformation	of	A.	Then	we	can	reverse	the	process
to	find	the	appropriate	change	of	variables	from	a	diagonalization	of	A.

Let	x	∈	Rn	 be	 the	 independent	 variable,	 and	 suppose	we	 introduce	 a	 linear
change	of	variables	to	y,	through	the	orthogonal	matrix	B	defined	above,	so	that
BABT	is	diagonal:

In	 coordinates,	 this	 reads	 .	 If	 u	=	 u(x),	 we	 define	w(y)	=	 u(Cy),
where	C	=	B−1.	Then	a	careful	calculation	gives

where	λ1,	…,	λn	are	the	eigenvalues	of	A.

Example	2.	(Sample	PDE	operators)	Let’s	adopt	the	notation	∂j	interchangeably
with	∂/∂xj.	Here	we	display	a	PDE	operator,	the	corresponding	matrix	A,	and	the
type	of	the	operator:

1.	 ;	elliptic.

2.	 ;	x1	=	t,	x2	=	x,	x3	=	y;	 ;	hyperbolic.

Notice	that	for	a	hyperbolic	equation,	the	one	eigenvalue	with	a	different	sign
suggests	a	time-like	direction	(associated	with	the	corresponding	eigenvalue).
After	diagonalizing	A,	we	can	scale	each	independent	variable	so	that	in	the
new	variables,	we	have



Variable	 coefficients	 and	 nonlinear	 equations.	 When	 the	 coefficients	 aij	 in
(2.3)	are	functions	of	x,	u,	ux1,	…,	uxn,	then	the	classification	can	vary	with	x	and
can	also	depend	on	the	solution.	Here	are	some	examples:

1.	The	Tricomi	Equation	(related	to	steady	transonic	flow):	uyy	=	yuxx.	This	linear
equation	is	hyperbolic	for	y	>	0,	elliptic	for	y	<	0,	and	the	x-axis	y	=	0	is
called	the	parabolic	line.	We	say	the	equation	changes	type.

2.	The	Nonlinear	Small	Disturbance	Equation:	 .	This	equation
changes	type	on	the	line	φx	=	1.

3.	The	Quasilinear	Wave	Equation:	utt	=	F(ux)x	is	hyperbolic	when	F′(ux)	>	0.	To
see	that	it	is	hyperbolic,	we	write	the	equation	as

However,	when	F′(ux)	<	0,	the	equation	is	elliptic.	For	a	given	solution,	the
change	from	hyperbolic	to	elliptic	occurs	on	a	curve	F′(ux(x,	t))	=	0,	where	the
equation	is	parabolic.

4.	The	Semilinear	Wave	Equation:	utt	=	Δu	+	f(u,	∇u,	ut).	For	u	=	u(x,	t),	x	∈	Rn,
the	principal	part	is	linear	and	hyperbolic,	but	the	equation	is	nonlinear	if	f	:
Rn+2	→	R	is	nonlinear,	for	example	f	=	f(u)	=	u2.

2.2.3.	Dispersion	Relations

For	time-dependent	linear	PDE	with	constant	coefficients,	we	can	sometimes	get
more	information	about	solutions	from	a	dispersion	relation,	which	is	connected	to
the	Fourier	transform	in	the	same	way	as	the	principal	symbol	(2.4).	It	is	easiest
to	see	how	this	works	in	one	space	dimension	and	time,	where	u	=	u(x,	t).	The
basic	idea	is	to	consider	a	Fourier	mode	u0(x)	=	eiξx	as	an	initial	condition.	The
parameter	 ξ	 ≥	 0	 is	 the	 wave	 number;	 it	 is	 the	 spatial	 frequency	 of	 u0.	 It	 is
convenient	 to	 use	 the	 complex	 form,	 because	 then	 derivatives	 are	 also
exponentials.	 Solutions	 will	 be	 of	 the	 form	 u(x,	 t)	=	 eiξx+σt	 for	 some	 complex
number	σ.	But	σ	=	σ(ξ)	depends	on	the	wave	number.	This	dependence	is	called
the	dispersion	relation.	In	general,	σ(ξ)	is	not	a	homogeneous	function,	unlike	L(p)
[ξ],	because	σ(ξ)	involves	the	entire	PDE,	not	just	the	principal	part.

For	 the	 linear	 transport	 equation	 ut	 +	 cux	 =	 0,	 we	 find	 σ	 =	 −icξ.
Corresponding	solutions	u(x,	t)	=	eiξ(x−ct)	of	the	PDE	are	traveling	waves	(which	is
no	surprise,	 since	all	 solutions	of	 this	equation	are	 traveling	waves).	The	 linear



wave	equation	utt	=	c2uxx	has	σ(ξ)	=	±icξ,	corresponding	to	the	traveling	waves
u(x,	t)	=	eiξ(x±ct).

For	the	heat	equation	ut	=	kuxx,	we	have	σ	=	−kξ2.	Therefore,	every	Fourier
mode	 decays	 exponentially,	 provided	 k	 >	 0,	 and	 the	 rate	 of	 decay	 increases
quadratically	with	 frequency.	However,	 if	 k	<	 0,	 then	 each	 Fourier	mode	 has
exponential	growth	in	time,	and	the	growth	σ(ξ)	 is	unbounded	as	a	 function	of
wave	 number	ξ.	 This	 corresponds	 to	 ill-posedness,	 as	 it	 implies	 that	 a	 general
initial	 condition	 (which	 involves	 arbitrarily	 high	 wave	 numbers)	 will	 blow	 up
immediately.	 The	 same	 issue	 arises	 for	 initial	 value	 problems	 for	 elliptic
equations,	such	as	Laplace’s	equation.	(See	Section	2.3.3.)

The	 linearized	 KdV	 equation	 ut	 +	 cux	 +	 βuxxx	 =	 0	 is	 an	 example	 of	 a
dispersive	equation.	We	find	that	σ	=	−iω	 is	 imaginary	 for	all	wave	numbers,
and	 ω	 =	 cξ	 −	 βξ3.	 The	 corresponding	 solutions	 u(x,	 t)	 =	 eiξ(x−(c−βξ2)t)	 are
traveling	 waves,	 but	 the	 speed	 c	 −	 βξ2	 depends	 quadratically	 on	 the	 wave
number.	 From	 another	 point	 of	 view,	 ω	 is	 the	 temporal	 frequency,	 so	 that
different	 Fourier	 modes	 oscillate	 in	 time	 at	 different	 frequencies.	 This	 is
dispersion	 in	 the	mathematical	 sense	 of	 different	 spatial	 wave	 numbers	 giving
rise	 to	 traveling	 waves	 with	 different	 speeds	 and	 to	 oscillations	 at	 different
frequencies.

The	linear	Benjamin-Bona-Mahoney	(BBM)	equation	ut	+	cux	+	βuxxt	=	0	is
also	 dispersive,	 but	 the	 dispersion	 relation	 involves	 a	 bounded	 function	 ω.
Another	example	of	a	dispersive	equation	is	the	beam	equation	utt	+	k2uxxxx	=	0.

For	 dispersive	 equations	 the	 traveling	 wave	 speed	ω	 =	ω(ξ)	 is	 called	 the
phase	 speed	 or	 phase	 velocity.	 Another	 speed	 of	 interest	 is	 the	 group	 velocity,
defined	 as	 .	 The	 group	 velocity	 of	 dispersive	 equations	 is	 different
from	the	phase	velocity.	For	nondispersive	equations,	such	as	the	linear	transport
and	wave	 equations,	 both	 velocities	 are	 the	 same	 as	 the	 single	 traveling	wave
speed	 or	 transport	 velocity.	 The	 roles	 of	 group	 velocity	 and	 phase	 velocity	 in
linear	 and	nonlinear	wave	equations	 are	discussed	 in	detail	 by	Whitham	 in	his
classic	text	[46].

2.3.	Initial	Value	Problems	and	the	Cauchy-Kovalevskaya
Theorem

Up	to	this	point	we	have	only	constructed	solutions	with	explicit	formulas.	In	this
section	we	outline	an	approach	that	constructs	solutions	as	power	series,	leading
to	a	version	of	the	celebrated	Cauchy-Kovalevskaya2	Theorem.	We	consider	initial
value	problems	in	a	fairly	general	context,	that	of	the	second-order	equation	(2.1):



An	initial	value	problem	consists	of	the	PDE,	together	with	initial	conditions:

We	assume	that	all	functions	a,	b,	c,	f,	g,	h	are	all	C∞.

In	this	problem,	y	is	time-like,	in	the	sense	that	y	=	0	is	an	initial	time,	and
we	want	to	solve	the	initial	value	problem	at	least	for	a	short	time	interval.	The
analysis	of	this	section	applies	to	both	positive	and	negative	y.	In	this	section	we
discuss	the	existence	of	solutions	that	can	be	represented	as	a	formal	power	series
about	y	=	0.	Such	a	series	would	take	the	form

Remark.	If	(2.7)	is	a	convergent	series,	then	u	has	y	derivatives	of	all	orders,	and

Here	the	superscript	indicates	repeated	derivatives:	 .	Let’s	make	the	key
assumption	in	(2.5)	that	c(x,	y)	is	nonzero	for	all	x	in	some	interval	I	(and	all	y
near	zero).3	Then	(2.7)	can	be	written	(by	dividing	by	c):

where	 .

Claim	 2.1.	 For	 any	 g,	 h	 ∈	 C∞(I),	 (2.9)	 plus	 initial	 conditions	 (2.6)	 uniquely
determine	the	C∞	functions	uk(x),	k	=	0,	1,	….

Remarks.	While	the	claim	seems	to	be	a	uniqueness	result,	it	is	also	an	existence
result,	because	it	asserts	that	the	functions	uk(x)	exist.

We	are	not	going	to	prove	the	claim,	but	it	is	instructive	to	consider	why	it	is
true.	The	terms	in	(2.8)	with	k	=	0	and	k	=	1	are	given	by	the	initial	conditions
(2.6).	Differentiating	these	m	≥	1	times	with	respect	to	x	gives	 	g(m)(x),
and	 .	In	particular,	this	gives	us	G	on	the	right-hand	side	of	(2.9)
when	y	=	0.	Hence	we	have	found	∂yyu(x,	0),	which	is	u2(x).

To	get	uk(x)	for	k	≥	3,	we	differentiate	the	PDE	(2.9)	with	respect	to	x	and	y,
successively	 calculating	 derivatives	 of	 higher	 and	 higher	 order	 in	 terms	 of
derivatives	 of	 the	 functions	 a,	 b,	 c,	 f,	 g,	 h,	 and	G.	 For	 example,	 to	 calculate	

,	we	 differentiate	 the	 PDE	with	 respect	 to	 y	 and	 set	 y	=	 0.	 Then



(from	 the	 chain	 rule)	 the	 right-hand	 side	 has	 a	 term	 with	 ∂yuxx(x,	 0).	 But	 we
already	know	this	from	(2.6):	 .

2.3.1.	Limitations	of	the	Power	Series	Representation	of	Functions

To	examine	the	issue	of	convergence	of	the	series	(2.7)	to	a	solution,	we	focus	on
some	 properties	 of	 power	 series.	 Taylor’s	 Theorem	 with	 remainder	 (in	 one
variable)	is	the	formula

A	stringent	condition	(see	(2.11))	is	needed	to	be	able	to	pass	to	the	limit	N	→	∞
and	ensure	that	the	infinite	series	converges.

Example	3.	 (A	function	ζ(x)	 that	 is	C∞,	but	 the	Taylor	 series	 for	ζ	 fails	 to
converge	to	ζ(x)	except	at	x	=	0)	Let

Note	that

so	the	power	series

converges	to	zero	for	all	x,	but	not	to	the	function	ζ(x),	which	is	nonzero	for	x	>
0.

The	 term	 real	 analytic	 is	 reserved	 for	 C∞	 functions	 with	 convergent	 Taylor
series:	A	function	f	∈	C∞(I)	is	called	real	analytic	on	the	interval	I	if,	for	every	x0
∈	I,	the	power	series

converges	to	f(x)	for	all	x	in	some	neighborhood	of	x0.

Proposition	2.2.	Let	f	∈	C∞(I).	If	there	exist	positive	constants	C	and	ϵ	such	that	(for
all	x	∈	I)



then	f	is	real	analytic	on	I.

This	result	makes	sense	if	you	are	familiar	with	the	root	test	for	convergence
of	series	of	numbers.	The	converse	of	the	proposition	is	true	with	a	restriction:	if	f
is	real	analytic	on	I,	then	the	estimate	(2.11)	is	uniform	for	x	(C	independent	of
x)	in	compact	subintervals	of	I.

We	can	extend	the	concept	of	real	analytic	to	functions	of	two	variables	in	an
open	set	Ω	⊂	R2,	which	will	be	relevant	for	the	theorem	below.

Definition.	 If	u	∈	C∞(Ω),	u	 is	 real	 analytic	 if	 for	 every	 (x0,	y0)	∈	Ω,	 there	 is	 a
neighborhood	N(x0,y0)	of	(x0,	y0)	such	that	for	all	(x,	y)	∈	N(x0,y0),	the	double	series

converges	to	u(x,	y).

2.3.2.	The	Cauchy-Kovalevskaya	and	Holmgren	Theorems

These	 two	 theorems	 are	 part	 of	 the	 classical	 culture	 of	 the	 study	 of	 PDE.	 The
Cauchy-Kovalevskaya	Theorem	establishes	the	existence	of	real	analytic	solutions
of	initial	value	problems	for	PDE	(or	systems	of	PDE)	with	analytic	coefficients.
The	 Holmgren	 Theorem	 states	 that,	 under	 the	 conditions	 of	 the	 Cauchy-
Kovalevskaya	 Theorem,	 the	 real	 analytic	 solution	 is	 the	 unique	 C2	 solution
locally.

Theorem	2.3.	(Cauchy-Kovalevskaya)	Suppose	that	the	functions	a,	b,	c	in	(2.5)	are
real	analytic	in	I	×	(−δ,	δ),	f	is	real	analytic,	and	g,	h	are	real	analytic	in	I.	Assume
(as	 before)	 that	 c(x,	 0)	≠	 0	 for	 x	∈	 I.	 Then	 the	 series	 (2.7)	 converges	 to	 a	 real
analytic	solution	of	the	initial	value	problem,	for	(x,	y)	in	some	neighborhood	Ω	of	I	×
{0}.

Remark.	The	real	analytic	solution	of	the	theorem	is	the	sum	of	the	series	(2.7),
but	it	also	has	a	double	series	expansion	(2.12),	since	it	is	real	analytic	in	a	two-
dimensional	open	set.

There	 is	 only	 one	 real	 analytic	 solution,	 since	 a	 real	 analytic	 function	 is
determined	by	 its	 derivatives	 at	 one	point,	 and	by	Claim	2.1,	 these	derivatives
are	 uniquely	 determined.	 The	 next	 result	 shows	 that	 even	 if	 the	 analyticity
assumption	on	solutions	is	relaxed,	the	solution	is	still	unique.

Theorem	2.4.	(Holmgren)	Under	the	above	hypotheses,	there	is	a	neighborhood	Ω	of
I	×	{0}	in	R2	with	the	property	that	if	v	∈	C2(Ω)	satisfies	(2.5)	and	(2.6),	then	v(x,
y)	is	the	solution	Theorem	2.3.



These	theorems	are	proved	elegantly	in	the	classic	text	of	Garabedian	[16].

2.3.3.	An	Important	Cautionary	Example

Despite	 its	generality,	 the	Cauchy-Kovalevskaya	Theorem	is	of	 limited	utility	 in
the	theory	of	PDE,	because	the	assumption	of	real	analyticity	of	 the	data	 is	 too
restrictive.	For	 example,	we	cannot	 find	a	power	 series	 solution	 to	 solve	 initial
value	problems	with	 the	 function	 (2.10)	as	 initial	data,	because	 the	 function	 is
not	real	analytic.

However,	initial	value	problems	raise	other	significant	issues,	connected	with
Hadamard’s	 notion	 of	 a	 well-posed	 problem,	 as	 discussed	 in	 Section	 2.1.	 The
following	classic	example	illustrates	Hadamard	ill-posedness	for	the	initial	value
problem	for	Laplace’s	equation:

Let	k	>	 0	 be	 a	 parameter	 that	 is	 fixed	 for	 now.	 The	 parameter	 k	 is	 a	 spatial
frequency,	 and	 in	 this	 context	 is	 referred	 to	 as	 the	 wave	 number.	 The
corresponding	wavelength	(of	the	periodic	function	cos	kx)	is	2π/k.	The	Cauchy-
Kovalevskaya	 Theorem	 implies	 there	 is	 a	 unique	 solution	 of	 this	 initial	 value
problem,	and	indeed	we	can	find	it	using	the	important	technique	of	separation
of	variables.	For	each	k	>	0,	we	have	the	explicit	solution

Now	consider	the	solutions	as	k	→	∞.	We	observe	that:

1.	The	initial	condition:	 	(along	with	all	x-derivatives).

2.	For	any	y	≠	0,

These	 two	 observations	 mean	 that	 there	 is	 not	 continuous	 dependence	 of	 the
solution	 on	 the	 initial	 data.	 Moreover,	 these	 are	 the	 analytic	 solutions	 of	 the
Cauchy-Kovalevskaya	 Theorem,	 which	 guarantees	 a	 solution	 even	 when	 the
initial	 value	 problem	 is	 not	 well-posed.	 It	 is	 also	 interesting	 to	 note	 that	 the
solutions	 grow	 exponentially	 in	 y	 for	 each	 k	 >	 0,	 and	 the	 rate	 of	 growth
increases	 exponentially	 with	 k.	 In	 this	 sense,	 the	 general	 solution	 is	 not	 just
unstable	 (growing	 exponentially),	 but	 is	 catastrophically	 unstable,	 a
manifestation	of	ill-posedness.



2.4.	PDE	from	Balance	Laws
The	 theory	 describing	 the	 mechanics	 of	 continuous	 materials,	 such	 as	 solids,
fluids,	and	gases,	is	called	continuum	mechanics.	It	is	based	on	conservation	laws
of	mass,	momentum,	and	energy.	The	independent	variables	are	x,	representing	a
point	 in	 the	 material,	 and	 time	 t.	 Typical	 dependent	 variables	 are	 density,
velocity,	stress,	and	internal	energy.	They	are	defined	at	each	point	and	at	each
time	in	a	specified	region	of	space-time.

A	balance	 law	 is	 an	 equation	 expressing	 a	 conservation	 principle;	 it	 equates
the	rate	of	change	of	a	quantity	in	a	region	with	the	sum	of	two	effects:	the	rate
at	 which	 the	 quantity	 is	 entering	 or	 leaving	 through	 the	 boundary	 (the	 flux
through	 the	 boundary),	 and	 the	 rate	 at	 which	 the	 quantity	 is	 being	 created	 or
destroyed	 in	 the	 region.	 The	 derivation	 of	 a	 PDE	 from	 a	 balance	 law	 typically
involves	the	following	steps:

1.	Write	the	balance	law	in	an	arbitrary	bounded	region	V	with	smooth	boundary
∂V.

2.	Use	the	Divergence	Theorem	to	relate	the	flux	through	the	boundary	∂V	to	an
integral	over	V,	and	deduce	that	the	sum	of	the	integrands	in	the	integrals	over
V	must	balance.	This	gives	an	equation	or	a	system	of	equations.	However,
both	the	quantity	and	the	flux	are	unknowns;	consequently,	there	are	more
variables	than	equations.

3.	Close	the	system	by	relating	the	variables	through	additional	equations	(not
necessarily	PDE)	called	constitutive	laws,	resulting	in	the	same	number	of
equations	as	variables.

Let’s	 consider	 a	 region	U	⊂	Rn	 (n	=	 1,	 2,	 or	 3,	 generally),	 and	 a	 quantity
(such	as	mass,	momentum,	or	energy)	that	 is	to	be	conserved,	represented	by	a
density	 function	 u.	 That	 is,	 the	 quantity	 is	 represented	 by	 u(x,	 t)	measured	 at
each	point	x	in	U	at	each	time	t.	For	example,	the	material	density	u	=	ρ	is	the
density	 function	 for	mass	 (since	 it	 is	 the	mass	per	unit	volume),	u	=	ρv	 is	 the
density	function	for	momentum	(where	v	is	a	velocity),	and	the	temperature	u	=
θ	is	the	density	function	for	heat	energy.

Let	V	be	an	open	subset	of	U,	with	smooth	boundary	∂V	having	unit	outward
normal	ν	=	ν(x).	The	amount	of	u	in	V	is	a	quantity	that	depends	on	time:

The	time	rate	of	change	of	A	is	then



Suppose	the	quantity	u	can	flow	in	or	out	of	V,	and	can	be	created	or	destroyed
within	V.	Then	the	rate	of	change	of	u	in	V	is	balanced	by	the	flux	of	u	across	the
boundary	∂V	plus	the	creation	(due	to	a	source)	or	the	destruction	(a	sink)	of	u	in
V.

The	net	flux	through	the	boundary	is	represented	by	an	integral	∫∂V	Q(x,	t)	·	ν
dS,	where	 the	vector-valued	 function	Q(x,	 t),	x	∈	U,	 is	 called	 the	 flux	 function.
Note	 that	 ∫∂V	Q(x,	 t).	ν	 dS	 >	 0	 if	 Q	 points	 out	 of	 V;	 this	 has	 the	 effect	 of
decreasing	 the	 amount	A(t).	 The	 creation	 or	 destruction	 of	 u	 in	V	 is	 likewise
specified	 by	 a	 function,	 this	 time	 a	 scalar	 function	 f(x,	 t);	 the	 net	 rate	 of
creation/destruction	is	given	by	∫V	f	(x,	t)	dx.

Step	1.	Now	we	can	write	a	balance	law:

Step	2.	Next	we	apply	the	Divergence	Theorem	to	convert	the	surface	integral
into	a	volume	integral	and	combine	terms	(since	they	are	all	integrals	over	V):

If	we	assume	the	integrand	is	continuous,	then	(2.13)	implies	that	it	is	zero
everywhere	in	U.	Thus,	we	have	the	PDE

In	this	equation,	we	regard	u	=	u(x,	t)	as	the	unknown,	but	there	are
additional	functions	Q(x,	t)	and	f(x,	t).	These	must	be	determined	from
additional	equations	that	could	specify	Q	and	f	as	functions	of	x	and	t.
However,	Q	in	particular	is	more	often	related	to	u	and	derivatives	of	u,	or	to
additional	dependent	variables.	This	leads	to	the	final	step.

Step	3.	Specify	constitutive	laws	to	close	the	system,	as	in	the	following
examples.

Example	4.	 (Balance	 laws	and	 the	heat	and	wave	equations)	The	heat	 and
wave	equations	are	examples	of	PDE	derived	from	balance	laws.	Conservation	of
heat	energy	e	=	ρcu	relates	the	temperature	u(x,	t)	to	the	heat	flux	Q	and	source
terms	F(x,	t).	Here,	the	density	ρ	of	the	material,	and	its	specific	heat	c	are	taken
to	be	constant.	The	balance	law	leads	to	the	equation



Fourier’s	Law	of	heat	conduction	expresses	the	thermodynamic	property	that	heat
energy	 flows	 from	 higher	 temperatures	 to	 lower.	 Specifically,	 this	 constitutive
law	links	the	heat	flux	linearly	to	the	temperature	gradient:

When	the	thermal	conductivity	κ	>	0	is	constant,	we	obtain	from	(2.14)	the	heat
equation	with	source	term	f	:

The	same	equation	also	models	the	diffusion	of	a	solute	in	solution,	with	solute
concentration	u.	In	this	context,	the	heat	equation	is	called	the	diffusion	equation.
The	proportionality	between	flux	and	concentration	gradient	is	then	termed	Fick’s
Law.

We	will	 derive	 the	 one-dimensional	wave	 equation	 carefully	 in	 Section	 4.1,
but	 here	 is	 the	 idea	 of	 how	 the	 wave	 equation	 arises	 from	 conservation	 of
momentum.

Figure	2.1.	Traffic	flow:	cars	traveling	on	a	section	of	highway.

The	balance	law	equates	the	rate	of	change	of	momentum	with	the	divergence	of
the	momentum	flux:

Here	ρ	>	0	is	the	density,	which	we	take	to	be	constant,	and	 	is	a	velocity,
the	time	derivative	of	displacement	u.	In	some	applications,	such	as	elasticity,	a
reasonable	constitutive	 law	specifies	 that	 the	momentum	flux	 is	proportional	 to
the	gradient	of	 the	displacement:	Q	=	−k	∇u,	where	k	>	0	 is	 the	constant	of
proportionality.	This	leads	directly	to	the	wave	equation:

with	c2	=	k/ρ.

Example5.	 (Traffic	 flow)	 Traffic	 flow	 models	 help	 to	 illustrate	 how	 the
conservation	law	and	constitutive	equation	are	formulated	separately.	Since	these
models	are	one	dimensional,	the	Fundamental	Theorem	of	Calculus	replaces	the
Divergence	Theorem	in	step	2.	Consider	a	single	lane	highway	and	let	u(x,	 t)	be



the	density	of	cars	at	location	x	∈	R	on	the	highway	at	time	t:

That	is,	each	time	t	and	every	point	x	on	the	highway	is	associated	with	a	traffic
density	u(x,	t).	Suppose	the	cars	are	moving	to	the	right,	as	shown	in	Figure	2.1.

To	formulate	the	balance	law,	we	consider	the	number	of	cars	in	a	section	of
highway	between	fixed	locations	x	=	a	and	x	=	b	at	time	t:

The	time	rate	of	change	of	N	should	be	equal	to	the	net	rate	at	which	cars	enter
at	 x	 =	 a	 and	 leave	 from	 x	 =	 b.	 (We	 assume	 no	 cars	 are	 manufactured	 or
scrapped	in	the	middle	of	the	highway,	so	there	are	no	source	or	sink	terms:	f	≡
0.)	Let	Q(x,	t)	denote	the	flux	of	cars	past	a	particular	point	x	at	time	t:

Then,	 since	cars	enter	 the	section	[a,	b]	at	a	 rate	Q(a,	 t),	 and	 leave	at	 the	 rate
Q(b,	t),	we	have

That	 is,	 the	 rate	 of	 change	 of	 the	 number	 of	 cars	 in	 the	 region	 (section	 of	 the
highway)	is	balanced	by	the	flux	of	cars	through	the	boundary.

Now	use	the	Fundamental	Theorem	of	Calculus	to	obtain

If	we	assume	continuity	of	the	integrand,	then

Equation	(2.16)	has	two	unknowns,	Q	and	u,	and	we	need	an	additional	equation.
In	traffic	flow	models,	typically	we	add	a	constitutive	law	that	relates	the	flux	Q
to	the	density	u.	First,	it	makes	sense	that	Q	should	be	the	product	of	speed	and
density,	the	number	of	cars	per	unit	time	across	a	fixed	location:

To	 complete	 the	 description	 of	Q	 as	 a	 function	 of	 density	 alone,	 we	 need	 to
specify	the	speed	v	as	a	function	of	density.	We	can	attempt	to	fit	data	from	real
observations	of	traffic,	or,	as	is	often	done	when	first	formulating	a	mathematical



model,	we	introduce	a	functional	form	that	is	consistent	with	natural	qualitative
or	 physical	 properties.	 In	 the	 current	 context	 a	 simple	 model	 takes	 the	 traffic
speed	v	to	be	a	linear	and	decreasing	function	of	traffic	density:

(see	 Fig.	 2.2).	 Here	 the	 parameters	 α,	 β	 have	 the	 interpretation	 of	 maximum
density	and	maximum	speed.	The	equation	ut	+	Qx	=	0	is	now	a	single	equation
for	the	unknown	u(x,	t):

Equation	(2.17)	is	known	as	the	Lighthill-Whitham-Richards	model.	Whitham
[46]	 identifies	 various	 scenarios,	 such	 as	 the	 timing	 of	 traffic	 lights,	 in	 which
solutions	of	 the	 equation	describe	 the	behavior	of	 traffic.	Modeling	 traffic	 flow
with	 PDE	 is	 of	 considerable	 interest,	 as	 the	 equations	 are	 easy	 to	 work	 with
numerically.	 However,	 there	 are	 significant	 challenges	 in	 devising	 realistic
models	 that	 incorporate	 important	 behavior,	 such	 as	multilane	 traffic	 and	 how
traffic	divides	at	intersections	or	entrances	and	exits	to	freeways.

Equation	(2.17)	is	related	to	the	inviscid	Burgers	equation

Figure	2.2.	Traffic	flow:	speed	v	vs.	density	u.

in	that	both	have	a	quadratic	flux,	but	the	convexity	is	different.	This	difference
in	 convexity	 is	 relevant	 when	 considering	 blow-up	 of	 ux	 (i.e.,	 the	 steepening
observed	in	Fig.	1.2).	In	traffic	flow,	in	which	the	flux	is	convex	down,	there	will
be	a	jam	(indicated	by	blow-up	of	ux	to	infinity—the	cars	get	really	scrunched!)	if
the	 traffic	 density	 u	 increases	 ahead	 (i.e.,	 is	 an	 increasing	 function	 of	 x).
However,	in	the	inviscid	Burgers	equation,	for	which	the	flux	u2/2	is	convex	up,



we	 saw	 in	 Section	 1.4.2	 that	 there	 is	 blow-up	 of	 ux	 (to	 −∞)	 when	 u	 is	 a
decreasing	function	of	x	(see	Fig.	1.2).

PROBLEMS

1.	(a)	Determine	the	type	of	the	equation	uxx	+	uxy	+	ux	=	0.

(b)	Determine	 the	 type	of	 the	equation	uxx	+	uxy	+	αuyy	+	ux	+	u	=	0	 for
each	real	value	of	the	parameter	α.

(c)	Determine	the	type	of	the	equation	utt	+	2uxt	+	uxx	=	0.	Verify	that	there
are	 solutions	 u(x,	 t)	 =	 f(x	 −	 t)	 +	 tg(x	 −	 t)	 for	 any	 twice	 differentiable
functions	f,	g.

(d)	The	equation	 (1	+	y)uxx	−	x2uxy	+	xuyy	=	0	 is	hyperbolic	or	 elliptic	or
parabolic,	depending	on	the	location	of	(x,	y)	in	the	plane.	Find	a	formula	to
describe	 where	 in	 the	 x-y	 plane	 the	 equation	 is	 hyperbolic.	 Sketch	 the	 x-y
plane	 and	 label	 where	 the	 equation	 is	 hyperbolic,	 where	 it	 is	 elliptic,	 and
where	it	is	parabolic.

2.	Show	that	with	the	change	of	variables	y	=	Bx,	the	principal	symbol	of	(2.4)
corresponding	 to	 (2.3)	has	 coefficients	 cij	 given	by	C	=	BABT,	where	C	=	 (cij).
One	 approach	 to	 this	 is	 to	 write	 everything	 in	 coordinate	 form,	 such	 as	

,	 BA	 =	 (bakj),	 ,	 and	 use	 the	 chain	 rule	 to
convert	xj	derivatives	to	sums	of	yk	derivatives.

3.	For	the	series	(2.7),	write	formulas	for	u3(x)	and	u4(x)	in	terms	of	derivatives
of	the	functions	a,	b,	c,	f,	g,	h,	and	G.

4.	Show	that	ζ	∈	C∞(R),	where	ζ	is	given	by	(2.10).

5.	Find	the	dispersion	relation	σ	=	σ(ξ)	for	the	following	dispersive	equations.

(a)	The	beam	equation	utt	=	−uxxxx.	Why	 is	 the	equation	dispersive	and	not
dissipative?	What	makes	this	equation	dispersive,	whereas	the	wave	equation
is	not	dispersive?

(b)	The	linear	Benjamin-Bona-Mahoney	(BBM)	equation	ut	+	cux	+	βuxxt	=	0.
Deduce	 that	 the	 equation	 is	 dispersive,	 and	 show	 that	 the	 corresponding
solutions	u	=	eiξx+σ(ξ)t	are	traveling	waves.	Write	a	formula	for	their	speed	as	a
function	 of	 wave	 number	 ξ.	 Identify	 a	 significant	 difference	 between	 this
formula	and	the	wave	speeds	of	KdV	traveling	waves.

6.	Suppose	in	the	traffic	flow	model	discussed	in	Section	2.4	that	the	speed	v	of
cars	is	taken	to	be	a	positive	monotonic	differentiable	function	of	density:
v	=	v(u).



(a)	Should	v	be	increasing	or	decreasing?

(b)	How	would	you	characterize	the	maximum	velocity	vmax	and	the	maximum
density	umax?

(c)	Let	Q(u)	=	uv(u).	Prove	that	Q	has	a	maximum	at	some	density	u∗	in	the
interval	(0,	umax).

(d)	Can	there	be	two	local	maxima	of	the	flux?	(Hint:	Make	Q(u)	quartic.)

1.	 Jacques	 S.	 Hadamard	 (1865–1963)	 is	 well	 known	 for	 contributions	 to	 number	 theory,	 matrices,
differential	equations,	geometry,	elasticity,	geometrical	optics,	and	hydrodynamics.	His	papers	of	1901	and
1902	discuss	ill-posed	and	well-posed	problems,	respectively.
2.	Augustin-Louis	Cauchy	(1789–1857)	made	many	contributions	to	mathematics,	including	fundamental

developments	 in	real	and	complex	analysis,	modern	algebra,	and	the	theory	of	elasticity.	Sofia	Vasilyevna
Kovalevskaya	(1850–1891)	made	important	contributions	to	analysis,	differential	equations,	and	mechanics.

3.	Since	we	shall	be	discussing	solutions	only	locally	in	(x,	y)	we	could	simply	assume	c(0,	0)	≠	0.



CHAPTER	THREE

First-Order	PDE
First-order	equations	enjoy	a	special	place	in	theory	of	PDE,	as	they	can	generally
be	 solved	 explicitly	 using	 the	method	 of	 characteristics.	 Although	 this	method
applies	 more	 generally	 to	 fully	 nonlinear	 equations,	 such	 as	 Hamilton-Jacobi
equations,	we	will	restrict	attention	to	linear	and	quasilinear	equations,	in	which
the	 first-order	 derivatives	 of	 the	 dependent	 variable	 u	 occur	 linearly,	 with
coefficients	 that	 may	 depend	 on	 u.	 The	 method	 of	 characteristics	 reduces	 the
determination	 of	 explicit	 solutions	 to	 solving	 ODE.	 We	 develop	 the	 theory	 in
several	stages,	with	increasing	sophistication,	but	really	the	idea	is	the	same	all
along:	 first-order	 PDE	 become	 ODE	 when	 the	 PDE	 are	 regarded	 as	 specifying
directional	derivatives	in	several	dimensions.

3.1.	The	Method	of	Characteristics	for	Initial	Value	Problems
Initial	value	problems	in	one	space	variable	x	and	time	t	take	the	form

Let’s	assume	that	c	and	r	are	given	C1(continuously	differentiable)	functions,	and
the	 initial	condition	 f	 :	R	→	R	 is	 a	given	C1	 function.	The	coefficient	c	will	be
established	as	a	wave	speed,	and	the	notation	r	simply	stands	for	the	right-hand
side	of	the	PDE.

We	can	solve	(3.1)	at	least	for	a	short	time	interval	(and	perhaps	only	locally
in	 space)	 using	 the	 method	 of	 characteristics,	 which	 reduces	 the	 initial	 value
problem	(3.1)	to	an	initial	value	problem	for	a	system	of	ODE.	In	this	method,	we
depend	on	the	observation	that	if	{(x(t),	t)	:	t	≥	0}	is	a	smooth	curve,	then	along
the	curve,	u(x(t),	t)	has	rate	of	change

given	by	the	chain	rule.	Comparing	(3.2)	with	the	PDE	in	(3.1),	it	looks	as	though
we	 can	make	progress	 by	 setting	 	 and	 interpreting	 c	 as	 a	 speed.	 The	 left-
hand	side	of	 the	PDE	can	also	be	 interpreted	as	 the	derivative	of	u(x,	 t),	 in	 the
direction	(c,	1)	in	x-t	space.1

Now	the	PDE	(3.1)	can	be	replaced	by	the	ODE	system

These	 ODE	 are	 called	 the	 characteristic	 equations.	 Note	 that	 the	 characteristic



equations	are	autonomous	only	if	c	and	r	are	independent	of	t.

Initial	 conditions	 for	 the	ODE	 system	 are	 derived	 from	 the	 initial	 condition
u(x,	0)	=	f(x)	for	the	PDE	problem	(3.1).	To	see	what	the	ODE	initial	conditions
should	be,	 let’s	write	x(0)	=	x0,	 and	u(t)	 in	place	of	u(x(t),	 t).	 Then	 the	 initial
conditions	for	(3.3)	are

From	the	theory	of	ODE,	we	know	that	the	initial	value	problem	(3.3),	(3.4)	has	a
unique	solution	(x(t),	u(t)),	at	least	locally	in	time	for	each	x0.	To	emphasize	that
we	have	a	solution	for	each	x0,	let’s	write	the	solution	as	 .	The
semicolon	 indicates	 that	x0	 is	 regarded	as	a	parameter	 in	 the	ODE	 initial	 value
problem,	but	now	we	are	going	to	treat	x0	as	a	second	variable,	so	that	x	and	u
are	functions	of	the	two	variables	t,	x0.

The	parameter	x0	 specifies	 the	curve	 in	 the	x-t	plane	 ,	which
we	refer	to	as	the	characteristic	through	x	=	x0,	 t	=	0.	As	 long	as	curves	with
different	values	of	x0	do	not	cross,	 the	 family	of	characteristics	 fills	a	 region	of
the	upper	half-plane	{(x,	t)	:	t	≥	0},	thereby	parameterizing	points	in	the	region
with	x0,	t.	At	each	point	P	 :	 (x,	 t)	of	this	region,	we	know	the	solution	u,	since	

	 on	 each	 characteristic.	 Figure	 3.1	 illustrates	 the	 characteristic
originating	at	x0	that	passes	through	point	P.	Once	we	have	identified	the	value
of	x0,	then	 .

There	is	a	nice	physical	interpretation	of	this	construction.	The	parameter	x0,
called	 the	 Lagrangian	 variable,	 labels	 a	 material	 point.	 Then	 	 is	 the
Eulerian	variable	describing	the	location	at	time	t	of	that	material	point.	The	value
u	 of	 the	 variable	 can	 be	 thought	 of	 either	 in	 Lagrangian	 variables,	 for	 which	

,	or	in	Eulerian	variables,	for	which	u	is	observed	at	a	fixed	location:	u
=	u(x,	t),	the	solution	we	seek.

Mathematically,	to	get	the	solution	u	explicitly	at	each	point	(x,	t),	we	need	to
invert	 the	 change	 of	 variables	 .	 To	 do	 so,	 we	 eliminate	 x0	 and
write	 	as	the	solution	of	the	equation	 .	Then	
is	the	solution	of	(3.1).



Figure	3.1.	Characteristic	 :	t	≥	0},	along	which	 ,	for	the
initial	value	problem	(3.1).

For	 this	 kind	 of	 initial	 value	 problem,	 the	 method	 of	 characteristics	 is
summarized	as:

1.	Rewrite	the	initial	value	problem	(3.1)	as	a	system	of	ODE	consisting	of	the
characteristic	equations	(3.3)	with	initial	conditions	(3.4).

2.	Solve	the	ODE	and	initial	conditions	for	x(t),	u(t),	with	parameter	x0	=	x(0)	to
get	the	solution	along	each	characteristic.

3.	Solve	for	x0	as	a	function	of	x,	t.	This	effectively	changes	variables	from	t,	x0	to
x,	t.

4.	Write	the	solution	u	=	u(x,	t).

Example	1.	(Initial	value	problem)	Solve

In	this	example,	y	is	time-like	in	the	sense	that	the	initial	condition	is	posed	at	y
=	0.	 The	 PDE	written	 as	∇u.	 (1,	 1)	=	 u	 shows	 that	 the	 left-hand	 side	 is	 the
directional	derivative	of	u	 in	the	direction	(1,	1).	Consider	the	lines	x	=	y	+	k
parallel	to	(1,	1),	where	the	parameter	k	plays	the	same	role	as	x0	above.	The	rate
of	change	of	u	along	each	line	is

Therefore,

where	A(k)	is	an	arbitrary	function.	Thus,	since	k	=	x	−	y,

is	the	general	solution	of	the	PDE,	depending	on	the	arbitrary	function	A(k)	of	a



single	variable.

To	 complete	 the	 solution,	 we	 use	 the	 initial	 condition	 to	 determine	 A(k).
Setting	y	=	0	in	(3.6)	gives

Thus,	the	solution	of	the	problem	is

Since	 the	 left-hand	 side	 of	 (3.5)	 is	 a	 directional	 derivative,	 it	 is	 an	 ordinary
derivative	 in	 that	 direction.	 Thus,	 u′	 =	 u	 in	 this	 direction,	 explaining	 the
exponential	growth	of	the	solution	along	each	characteristic	x	=	y	+	k.	Likewise,
the	solution	would	be	u(x,	y)	=	cos(x	−	y)	if	the	right-hand	side	of	the	PDE	were
zero.

In	this	example,	we	found	the	characteristics	before	determining	the	behavior
of	u	along	them.	Generally,	 the	characteristics	for	(3.1)	will	also	depend	on	the
solution,	if	c	depends	on	u.

3.2.	The	Method	of	Characteristics	for	Cauchy	Problems	in	Two
Variables

In	this	section	we	present	a	more	general	version	of	the	method	of	characteristics
for	 first-order	 quasilinear	 PDE	 in	 two	 independent	 variables.	 First-order
quasilinear	PDE	in	two	independent	variables	take	the	form

where	a,	b,	c	are	given	C1	functions	from	R2	×	R	to	R.	In	this	equation,	neither
of	 the	 variables	 necessarily	 has	 a	 special	 role,	 such	 as	 time.	 Consequently,	 the
notation	is	somewhat	different	from	the	previous	section.

Rather	than	posing	an	initial	condition,	we	pose	a	more	general	side	condition
for	(3.7)	in	the	form

where	x0,	y0,	z0	are	given	C1	functions	on	an	interval	I.	This	is	sometimes	referred
to	as	the	initial	curve	Γ.	Problem	(3.7),	(3.8)	is	referred	to	as	the	Cauchy	problem.

We	shall	show	that	for	C1	solutions,	the	PDE	is	really	an	ODE	in	disguise	(as
we	saw	in	Example	1).	Suppose	u(x,	y)	is	a	solution	of	the	Cauchy	problem.	Then
the	graph	z	=	u(x,	y)	is	a	two-dimensional	surface	in	x-y-z	space	that	includes	the
curve	Γ.	Equation	(3.7)	states	that	the	vector	field	(a(x,	y,	z),	b(x,	y,	z),	c(x,	y,	z))
is	 tangent	 to	 the	 solution	 surface	 z	 =	 u(x,	 y),	 since	 the	 solution	 surface	 has
normal



Figure	3.2.	Initial	curve	Γ,	the	characteristic	curve	tangent	to	(a,	b,	c),	and	the
solution	surface.

The	solution	surface	can	therefore	be	generated	by	 integrating	along	the	vector
field,	starting	at	each	point	of	the	curve	Γ	=	{(x,	y,	z)	:	x	=	x0(s)	…,	s	∈	I}.	(See
Fig.	3.2.)	If	τ	 is	the	variable	of	integration	along	these	integral	curves,	then	the
surface	generated	is	parameterized	by	(s,	τ)	:	x	=	x(s,	τ),	y	=	y(s,	τ),	z	=	z(s,	τ).
To	recover	u(x,	y),	we	transform	from	(s,	τ)	back	to	(x,	y)	in	z	and	set	u(x,	y)	=
z(s,	 τ),	 establishing	 the	 existence	 of	 the	 inverse	 using	 the	 Inverse	 Function
Theorem	(see	Appendix	A).

This	procedure	to	solve	the	Cauchy	problem	(3.7),	(3.8)	is	divided	into	three
steps:

1.	Generate	the	solution	surface	from	integral	curves.	In	this	step	we	solve	the	one-
parameter	family	of	initial	value	problems

for	each	s	∈	I.	Denote	the	solution	(x,	y,	z)(s,	τ).	From	ODE	theory,	the
solution	exists,	is	C1,	and	is	unique,	at	least	in	a	neighborhood	of	Γ.	The
solution	curves	in	R3	are	known	as	characteristic	curves.	We	reserve	the	term
characteristics	to	mean	the	projection	of	the	characteristic	curves	onto	the	x-y



plane.

2.	Apply	the	Inverse	Function	Theorem.	In	this	step	we	solve	the	equations

for	(s,	τ)	as	a	function	of	(x,	y)	:	(s,	τ)	=	(s,	τ)(x,	y).	The	solution	is
guaranteed	by	the	Inverse	Function	Theorem.

3.	Write	the	solution	surface	as	a	graph	z	=	u(x,	y).

Now	we	are	able	to	write	the	solution	as	a	function	of	x,	y:

This	procedure	will	work	as	 long	as	 the	 transformation	 (3.10)	 is	 invertible.	We
can	 guarantee	 this	 locally	 by	 appealing	 to	 the	 Inverse	 Function	 Theorem.
Specifically,	 let	 P	 =	 (x0(s0),	 y0(s0),	 z0(s0))	 be	 a	 point	 on	 Γ.	 For	 (3.10)	 to	 be
invertible	near	(x,	y)	=	(x0(s0),	y0(s0)),	we	require	the	Jacobian	matrix	∂(x,	y)/∂(s,
τ)	to	be	invertible	at	this	point.	That	is,	at	P	we	require

where	we	have	used	(3.8),	(3.9).	This	condition	means	that	the	tangent	(a,	b)	to
the	characteristic	at	(x0(s0),	y0(s0))	is	not	parallel	to	the	tangent	 	of	the
projection	γ	of	Γ	at	P	onto	 the	x-y	plane.	Consequently,	when	 (3.11)	holds,	we
say	that	the	curve	Γ	is	noncharacteristic	at	P.	Thus,	provided	the	 initial	data	are
noncharacteristic	in	the	sense	of	(3.11),	we	have	a	unique	C1	solution	u(x,	y)	of
(3.7),	(3.8)	for	(x,	y)	near	(x0(s0),	y0(s0)).

Example	2.	(A	Cauchy	problem)	Solve	the	Cauchy	problem

Here	a	=	z,	b	=	1,	c	=	1,	and	the	initial	condition	is	u	=	0	on	the	line	y	=	x.
We	parameterize	the	initial	condition	as	follows:

Characteristic	equations	are

with	corresponding	initial	conditions	x(0)	=	s,	y(0)	=	s,	z(0)	=	0.	Thus,	z	=	τ,
so	that	x′	=	z	=	τ.	Now	we	can	solve	for	x	and	y:



Eliminating	s,	we	get	a	quadratic	equation	for	 .	Thus,

But	τ	=	 z	=	u(x,	 y),	 and	 to	 satisfy	 the	 initial	 condition,	we	 have	 to	 take	 the
negative	square	root:

The	solution	is	valid	only	for	 .	In	fact,	the	solution	surface	z
=	u(x,	y)	is	the	lower	half	of	the	smooth	parabolic	surface	(z	−	1)2	1	+	2x	−	2y,
which	has	a	fold	along	the	line	 .	Since	the	surface	becomes	vertical
at	the	fold,	the	solution	u(x,	y)	has	a	singularity	on	the	line	 ,	where	the
derivative	ux	−	uy	blows	up.

3.3.	The	Method	of	Characteristics	in	Rn

In	 this	 section	we	 repeat	 the	method	 of	 characteristics	 for	 a	 single	 quasilinear
first-order	 equation	 to	 show	 how	 the	 method	 works	 for	 any	 number	 of
independent	variables.	Characteristic	curves	are	of	course	one	dimensional,	and
thus	 contribute	 one	 dimension	 to	 the	 solution	 surface,	 which	 is	 n	 −	 1
dimensional.	The	remaining	dimensions	in	the	surface	are	provided	by	the	initial
conditions.

Consider	x	∈	Rn;	u	=	u(x)	∈	R.	The	first-order	equation	we	consider	has	the
general	form

where	a	:	Rn	×	R	→	Rn,	a	vector	of	coefficients,	and	c	:	Rn	×	R	→	R,	a	scalar,
are	given	C1	functions.

The	Cauchy	 problem	 involves	 an	 (n	−	1)-dimensional	 hypersurface	 γ	⊂	Rn

that	provides	initial	conditions	for	characteristic	curves:

Characteristic	curves	in	(x,	z)	space	(Rn+1)	are	solution	curves	of	the	system

Note	that	for	each	s,	we	have	existence	and	uniqueness	of	solutions	of	(3.14)	for	|



τ|	small,	since	a	and	c	are	C1.	Moreover,	since	the	data	are	C1,	the	solutions	are
C1	in	s	also.

As	before,	we	write	the	solutions	in	the	form

The	solution	u(x)	=	z(s,	τ)	is	expressed	in	physical	variables	x	 if	we	can	invert
(3.15a)	 to	get	 s	=	s(x),	τ	=	τ(x).	 This	 is	 guaranteed	 by	 the	 Inverse	 Function
Theorem,	at	least	locally,	if	we	assume	the	hypersurface	is	noncharacteristic,	i.e.,
∂x/∂(s,	τ)	is	invertible	on	γ	(where	τ	=	0),	with	z	=	u0(s),	and	recall	that	∂x/∂τ
=	a:

In	components:

Then	we	have	the	solution

More	precisely,	the	method	of	characteristics	and	the	Inverse	Function	Theorem
have	been	used	to	prove	the	following	result.

Theorem	3.1.	Suppose	 the	data	x0,	u0	are	C1	 in	a	neighborhood	of	s	=	0	and	are
noncharacteristic	in	the	sense	of	(3.16)	at	s	=	0.	Then	there	exists	a	neighborhood	N
of	x0(0)	and	a	C1	function	u	:	N	→	R	that	solves	the	Cauchy	problem	(3.12),	(3.13)
in	N.

Example	3.	(Particle	size	segregation	in	an	avalanche)	Avalanches	and	rock
slides	 are	 examples	 of	 granular	 flow,	 typically	 involving	 particles	 of	 different
sizes.	In	this	example,	we	write	a	PDE	for	the	transport	of	two	sizes	of	particles	(a



bidisperse	mixture)	that	have	the	same	density.	We	assume	that	as	the	avalanche
flows	 down	 the	 hillside,	 it	 establishes	 a	 constant	 depth,	 and	 that	 the	 velocity
varies	 linearly	with	depth.	We	 ignore	 all	 but	 the	 component	of	 velocity	 that	 is
parallel	 to	 the	 hillside.	 In	 these	 circumstances,	 Gray	 and	 Thornton	 [20]
formulated	a	model	that	describes	the	distribution	of	particles	in	the	avalanche.

Let	 x,	 y	 denote	 the	 spatial	 variables,	 and	 let	 v(y)	=	 y	 denote	 the	 parallel
velocity.	These	are	shown	in	Figure	3.3.	The	dependent	variable	u	=	u(x,	y,	t)	is
the	volume	fraction	of	small	particles.	In	the	flow,	large	particles	tend	to	rise,	and
small	particles	tend	to	fall.	Gray	and	Thornton	argued	that	small	particles	fall	at	a
speed	 proportional	 to	 the	 volume	 fraction	 1	−	 u	 of	 large	 particles,	 essentially
because	they	depend	on	space	opened	up	by	the	motion	of	large	particles.	Then
large	particles	have	to	move	upward	to	balance	the	motion	of	the	small	particles.
With	these	assumptions,	the	PDE	is

Figure	3.3.	Coordinates	and	velocity	profile	v(y)	for	avalanche	flow	model.

where	S	>	 0	 is	 a	 constant	 of	 proportionality.	 Let’s	 suppose	 there	 is	 an	 initial
distribution	of	small	particles	given	by

Characteristic	equations	for	this	equation	can	be	written



Thus,	u	=	u0(x0,	y0)	is	constant	on	the	characteristic	curve	through	(x0,	y0)	at	t	=
0.	Consequently,

At	t	=	0,	we	have	x	=	x0,	y	=	y0,	so	that

Thus,	 characteristics	 are	 parabolas	 in	 the	x-t	 plane.	Now	we	 solve	 for	x0,	 y0	 in
terms	of	u,	x,	y,	t:

Finally,	we	have	a	formula	for	the	solution	u	=	u(x,	y,	 t),	defined	implicitly	by
the	equation

This	solution	technique	can	be	used	to	study	the	dynamics	of	avalanche	flow	with
various	initial	and	boundary	conditions.

3.4.	Scalar	Conservation	Laws	and	the	Formation	of	Shocks

In	 this	 section	 we	 consider	 the	 initial	 value	 problem	 for	 the	 inviscid	 Burgers
equation.	 We	 show	 that	 solutions	 generated	 by	 the	 method	 of	 characteristics
typically	break	down	in	finite	time.	This	nonlinear	wave	behavior	occurs	in	such
applications	 as	 gas	 dynamics,	 combustion	 and	 detonation,	 and	 nonlinear
elasticity.	 The	 breakdown	 of	 solutions	 signals	 the	 formation	 of	 a	 shock	 wave,
across	which	the	solution	is	discontinuous.

Consider	the	initial	value	problem

with	initial	condition

The	method	of	characteristics	of	Section	3.1	is	applicable	here:

Thus,	 u	 is	 constant	 on	 each	 characteristic,	 and	 characteristics	 are	 therefore
straight	lines	with	speed	u:



The	solution	u	=	u(x,	t)	is	then	given	implicitly	by	the	equation

Let	F(u,	x,	t)	=	u	−	u0(x	−	ut).	Generally,	we	cannot	solve	for	u	explicitly,	but
we	can	use	the	equation	to	prove	local	existence	near	any	initial	point	x	=	x0,	by
applying	 the	 Implicit	 Function	 Theorem	 to	 the	 equation	 F(u,	 x,	 t)	 =	 0.	 (See
problem	11.)

3.4.1.	Breakdown	of	Smooth	Solutions

As	we	saw	in	Section	1.4.2,	the	graph	of	the	solution	u(x,	t)	steepens	where	it	has
negative	 slope,	 because	 larger	 positive	 values	 of	 u	 travel	 faster	 than	 smaller
values.	For	negative	values	of	u,	the	characteristics	travel	to	the	left,	but	the	same
is	true:	the	graph	steepens	where	the	slope	is	negative.	Mathematically,	we	find
ux	→	−∞	at	some	x	as	t	increases	to	a	time	t∗.	The	notion	that	some	values	of	u
travel	faster	than	others,	leading	to	steepening,	may	be	expressed	in	the	following
statement:

Characteristics	x	=	ut	+	x0	that	originate	at	points	x0	in	an	interval

where	 	cross	one	another	in	finite	time.

Figure	3.4.	Inviscid	Burgers’	equation:	crossing	characteristics	associated	with
the	breakdown	of	a	smooth	solution.

In	Figure	3.4	we	show	the	characteristics	for	the	solution	shown	in	Figure	1.2
and	see	that	characteristics	ahead	of	 the	crest	of	 the	wave	eventually	cross	one
another.	 If	 this	 first	occurs	at	a	 time	 t	=	 t∗,	 then	 the	method	of	 characteristics
gives	 a	 multivalued	 function	 of	 (x,	 t),	 for	 t	 >	 t∗	 in	 the	 region	 where	 the
characteristics	cross.	We	say	the	solution	breaks	down	at	t	=	t∗.

Our	 goal	 is	 to	 make	 this	 argument	 rigorous	 and	 to	 find	 a	 formula	 for	 the
breakdown	 time	 t∗.	To	do	 so,	we	derive	an	equation	 for	ux	 by	 taking	 	of	 the
PDE,	thus	deriving	an	ODE	for	the	evolution	of	ux	along	characteristics.	First	we



differentiate	(3.21):

Let	v	=	ux.	Then	we	have

Along	characteristics	x	=	ut	+	x0	we	get	the	ODE

This	equation	(known	as	a	Riccati	equation	due	to	 the	quadratic	nonlinearity)	 is
solved	easily.	Notice	that	it	states	that	v	decreases	in	t,	and	the	more	it	decreases
through	negative	values,	the	more	rapidly	it	continues	to	decrease.

Now	 we	 differentiate	 the	 initial	 condition	 u(x,	 0)	 =	 u0(x)	 to	 obtain	 a
corresponding	initial	condition	for	v:

We	solve	(3.24),	(3.25)	to	find	v	along	the	characteristic	x	=	ut	+	x0:

We	distinguish	two	cases:

1.	If	 ,	then	v	stays	finite	for	all	t	>	0.	Consequently,	if	u0	is	monotonically
increasing,	then	u(x,	t)	is	defined	for	all	x,	t.	Note	from	(3.23)	that	u(x,	t)	only
takes	on	values	of	u0(x0),	x0	∈	R.	Therefore,	if	u0	is	bounded	by	m,	M,	m	≤
u0(x)	≤	M,	x	∈	R,	then	m	≤	u(x,	t)	≤	M	for	all	x	∈	R,	t	>	0.

2.	If	u0	is	not	monotonically	increasing,	so	that	 	for	some	values	of	x0,
then

in	(3.26).	Thus,	the	solution	breaks	down	(ux	→	−∞)	at	different	times	t	on
each	characteristic	(depending	on	x0).	Consequently,	the	solution	u(x,	t)	of	the
initial	value	problem	breaks	down	at	the	earliest	such	time	t	=	t∗:

Note	that	the	minimum	is	achieved	where	u0	has	minimum	slope,	which	will



be	at	an	inflection	point	if	u0	is	C2.

To	continue	the	solution	beyond	t	=	t∗,	we	define	weak	solutions,	in	which	the
function	u(x,	 t)	 is	allowed	to	be	discontinuous.	We	pursue	this	 topic	 in	Chapter
13,	 after	 first	 considering	 solution	 and	 analysis	 techniques	 for	 second-order
equations.

PROBLEMS

1.	Use	the	substitution	v	=	uy	to	solve	for	u	=	u(x,	y):

2.	Solve	for	u	=	u(x,	t):

3.	Solve	for	u	=	u(x,	t):

4.	Solve	(3.5)	using	the	general	method	of	characteristics.	You	will	need	to	set	up
the	 initial	 condition	 with	 a	 parameter	 s.	 Show	 that	 the	 initial	 curve	 Γ	 is
noncharacteristic.

5.	Verify	that	u(x,	t)	constructed	in	general	in	Section	3.1	is	indeed	a	solution	of
(3.1).	 Start	 by	working	 out	 what	 calculation	 you	 have	 to	 do	 to	 carry	 out	 this
check.	You	will	have	to	use	the	chain	rule	repeatedly	to	check	carefully.

6.	Take	an	alternative	direct	approach	to	Example	1,	reversing	the	roles	of	x	and
y,	by	setting	y	=	x	+	k.	The	PDE	then	becomes	the	ODE	 	u	 along
characteristics.	Solve	and	 incorporate	 the	 initial	condition,	 finally	obtaining	 the
solution	u(x,	y).

7.	 For	 the	 avalanche	 flow	 equation	 (3.17),	 suppose	 an	 initial	 distribution	 of
particles	is	given	by

and	an	inlet	boundary	condition	is	specified	by

Find	 the	 solution	 u(x,	 y,	 t),	 0	 <	 x,	 0	 <	 y	 <	 1,	 t	 >	 0	 by	 the	 method	 of
characteristics.	 (The	 side	 conditions	 and	 hence	 the	 solution	 do	 not	 obey	 the
physical	 constraint	 0	≤	 u	 ≤	 1,	 and	 hence	 are	 not	 intended	 to	 be	 physically
significant.	This	problem	is	an	exercise	in	using	the	method	of	characteristics.)

8.	(a)	Use	the	method	of	characteristics	to	solve	the	initial	value	problem



(b)	Show	that	the	solution	blows	up	as	t	→	1:

9.	Sketch	the	graph	of	the	traffic	flow	flux	Q	(see	(2.16),	(2.17)	in	Chapter	2)	as	a
function	of	density	u.	Explain	each	zero	of	Q	in	terms	of	the	physical	model.

10.	Formulate	constitutive	laws	for	the	traffic	flux	Q	(see	Example	2	in	Chapter
2)	 as	 a	 function	 of	 density	 assuming	 that	 traffic	 speed	 v(ρ)	 is	 a	 quadratic
decreasing	function	of	density	ρ.	How	many	parameters	are	there	in	the	model?
Is	it	possible	to	make	the	flux	nonconcave	as	a	function	of	density?

11.	Write	the	details	of	how	to	use	the	Implicit	Function	Theorem	on	(3.23)	to
prove:	If	u0	is	smooth	and	bounded	on	(−∞,	∞)	then	for	each	x0	∈	R,	there	is	an
interval	I	⊂	an	interval	I	⊂	R	containing	x0	such	that	the	solution	u(x,	t)	exists,	is
C1,	and	is	unique	for	all	x	∈	I	and	all	small	enough	t.

12.	Let	u0(x)	=	H(x)x2,	where	H(x)	=	0	for	x	<	0	and	H(x)	=	1	for	x	≥	0	is	the
Heaviside	 function.	 Write	 the	 solution	 u(x,	 t)	 of	 (3.21),	 (3.22)	 as	 an	 explicit
formula	for	t	>	0.

13.	Get	the	answer	(3.26)	by	differentiating	the	implicit	solution	(3.23):

(This	simpler	approach	depends	on	having	the	implicit	equation	for	u	available,
which	is	not	the	case	for	systems	of	equations.)

14.	Use	the	method	of	characteristics	to	prove	global	(for	all	t	>	0)	existence	of	a
smooth	 solution	 of	 (3.21),	 (3.22)	 when	 the	 initial	 data	 are	 given	 by	 a	 strictly
increasing	but	bounded	C1	function	u0.

15.	 Carry	 through	 the	 analysis	 presented	 in	 Section	 3.4	 for	 a	 general	 scalar
conservation	law

where	 f	 :	R	 →	R	 is	 a	 given	 C2	 function.	 Derive	 an	 implicit	 equation	 for	 the
solution	u(x,	t)	of	the	Cauchy	problem,	and	formulate	a	condition	for	the	solution
to	 remain	 smooth	 for	 all	 time.	 Likewise,	 if	 the	 condition	 is	 violated,	 find	 an
expression	for	the	time	at	which	the	solution	first	breaks	down.



1.	Strictly	speaking,	the	direction	is	 ;	the	magnitude	 	sets	the	parameterization	to	be
by	t	rather	than	by	arclength.



CHAPTER	FOUR

The	Wave	Equation
The	wave	equation

is	 the	prototype	 for	 second-order	hyperbolic	 PDE,	modeling	 the	propagation	of
sound	waves;	 electromagnetic	waves,	 such	as	 light;	 and	waves	 in	elastic	 solids.
We	 show	 in	 detail	 how	 the	 wave	 equation	 describes	 the	 deformation	 of	 one-
dimensional	elastic	solids,	specifically,	thin	rods	and	elastic	strings.

Central	to	the	study	of	the	one-dimensional	equation	is	d’Alembert’s	solution,
an	 explicit	 formula	 for	 solutions	 of	 initial	 value	 problems.	 The	 method	 of
spherical	 means	 provides	 a	 corresponding	 explicit	 formula	 in	 two	 and	 three
dimensions.	 In	 three	 dimensions,	 this	 formula	 embodies	 Huygens’	 principle	 of
light	 propagation.	 From	 the	 wave	 equation	 we	 derive	 an	 energy	 principle	 in
which	the	total	energy	(the	sum	of	kinetic	and	potential	energy)	is	conserved.

4.1.	The	Wave	Equation	in	Elasticity

We	introduce	the	wave	equation	with	a	simple	derivation	from	one-dimensional
elasticity	theory.	The	derivation	illustrates	the	basic	notions	of	conservation	laws
and	 constitutive	 equations	 introduced	 in	 Chapter	 2.	 Then	 we	 discuss	 a	 second
application,	to	an	elastic	string	vibrating	in	a	plane.	Conservation	of	momentum
leads	to	a	system	of	nonlinear	PDE.	Considering	small-amplitude	vibrations	near
a	 stationary	 string,	 we	 linearize	 the	 equations,	 thereby	 deriving	 two	 wave
equations	 with	 different	 wave	 speeds.	 One	 equation	 represents	 longitudinal
motion	 along	 the	 string,	 and	 the	 other	 represents	 transverse	 motion—the
vibrations	seen	in	a	guitar	or	violin	string.

4.1.1.	Longitudinal	Motion	of	a	Thin	Elastic	Rod

Consider	a	thin	elastic	rod	undergoing	only	longitudinal	deformation	(extension
or	compression),	with	no	bending.

We	 label	 locations	of	cross	sections	 in	 the	rod	by	using	points	 in	a	reference
configuration,	an	interval,	say	0	≤	x	≤	1.	(See	Fig.	4.1.)	The	physical	configuration
is	also	an	interval	0	≤	u	≤	L,	depending	on	the	deformation.	The	cross	section
labeled	x	 in	 the	 reference	 configuration	 has	 coordinate	 u(x,	 t)	 in	 the	 physical
configuration	 at	 time	 t.	 It	 is	 convenient,	 but	 not	 essential,	 to	 think	 of	 the
reference	configuration	as	being	the	rod	in	equilibrium,	with	no	forces	acting	on
it.	 The	 function	 u	 is	 called	 the	 displacement;	 it	 is	 the	 unknown,	 or	 dependent



variable.	 We	 assume	 the	 density	 ρ	 (mass	 per	 unit	 volume	 in	 the	 reference
configuration)	 is	 constant,	 and	 that	 the	 cross-sectional	 area	 A	 of	 the	 rod	 is
constant	along	its	length.

Figure	4.1.	Deformation	u	in	a	one-dimensional	rod.	(a)	Reference	configuration
(Lagrangian	variables);	(b)	physical	configuration	(Eulerian	variables).

Figure	4.2.	Forces	on	a	small	section	of	the	rod.	(a)	Reference	configuration
(Lagrangian	variables);	(b)	physical	configuration	(Eulerian	variables).

Consider	 forces	on	a	cross	section	 labeled	x0	 in	 the	rod,	at	a	specific	 time	 t.
The	part	of	the	rod	with	x	>	x0	exerts	a	force	F(x0,	 t)	on	the	part	with	x	<	x0,
and	the	part	with	x	<	x0	exerts	an	equal	and	opposite	force	−F(x0,	t)	on	the	part
with	x	>	x0,	so	that	across	each	cross	section,	forces	are	balanced	(see	Fig.	4.2).
However,	 the	 variation	 of	 these	 forces	 along	 the	 rod	means	 that	 the	 net	 force
acting	on	a	segment	of	rod	may	be	nonzero	and	induces	a	change	in	momentum.

In	our	formulation	of	the	equation	of	motion,	it	is	convenient	to	express	the
force	 distribution	 as	 a	 function	 of	 Lagrangian	 variable	 x	 rather	 than	 Eulerian
variable	 u,	 even	 though	 we	 think	 of	 the	 force	 acting	 in	 the	 physical	 domain
rather	than	the	reference	configuration.	In	fact,	if	we	were	to	label	forces	in	the
physical	domain	as	f(u,	t),	then	F(x,	t)	=	f(u(x,	t),	t).	Moreover,	it	is	convenient	to
consider	 the	 stress	 σ,	 which	 is	 force	 per	 unit	 area,	 rather	 than	 force	 F.	 In	 the
present	context	F	=	Aσ.

Since	 ut	 is	 the	 velocity	 of	 a	 point	 (i.e.,	 cross	 section)	 in	 the	 rod,	 the
momentum	density	 (meaning	momentum	per	unit	volume)	 is	 the	quantity	ρ	ut.
Now	 consider	 a	 short	 segment	 of	 the	 rod	 a	<	x	<	 b.	 The	momentum	 of	 this
section	 is	 .	 The	 balance	 law	 states	 that	 the	 rate	 of	 change	 of
momentum	is	equal	to	the	net	force:



Notice	that	if	ut(x,	t)	is	constant	in	x,	then	this	is	precisely	Newton’s	law:

where	mass	means	the	mass	of	the	little	section	of	rod.

As	in	Chapter	2,	we	can	now	derive	a	PDE	from	the	balance	 law	by	writing
both	sides	of	the	equation	as	integrals	over	a	<	x	<	b:

Thus,	provided	utt,	σx	are	continuous,	we	have	the	PDE

which	expresses	conservation	of	momentum.

To	this	equation	we	add	a	constitutive	law,	an	equation	that	relates	σ	to	u	in	a
different	 way.	 In	 elasticity,	 this	 constitutive	 law	 states	 that	 the	 stress	 σ	 is	 a
function	 of	 the	 strain.	 The	 strain	 is	 the	 deformation	 gradient;	 in	 the	 one-
dimensional	context	of	the	rod,	we	have

In	 engineering,	 it	 is	 common	 to	define	 strain	 to	 be	ux	−	1,	 so	 that	 zero	 strain
corresponds	to	no	deformation:	u(x,	t)	=	x.	In	both	cases,	elasticity	is	expressed
by	a	functional	relationship	between	σ	and	ux:

Substituting	into	the	PDE	(4.1),	we	obtain

As	we	observed	earlier,	this	equation	is	hyperbolic	if	σ′(ux)	>	0,	 in	which	case,
stress	 increases	with	 strain,	 but	 it	 is	 elliptic	 if	σ′(ux)	<	0.	The	hyperbolic	 case	 is
more	 significant,	 especially	 for	 small	 deformations	 (more	 precisely,	 for	 small
strains),	 but	 the	 elliptic	 case	 is	 also	 important	 for	 large	 deformations;	 it	 is
associated	with	an	effect	called	strain	softening.

Perhaps	the	most	important	form	of	the	constitutive	law	is	Hooke’s	law,	which
states	 that	 increases	 in	 stress	 are	 proportional	 to	 increases	 in	 strain.	 This	 is
expressed	in	the	formula

Note	that	this	can	also	be	stated	as	stress	is	proportional	to	strain	if	we	define	the
strain	to	be	ux	−	1.

Substituting	(4.2)	into	(4.1),	we	obtain	the	one-dimensional	wave	equation



in	which	 .

Remarks	on	Hooke’s	law.	The	constant	k	>	0	is	a	constitutive	parameter	called
the	elastic	modulus	that	depends	on	the	elastic	properties	of	the	material;	it	can	be
measured	 in	 experiments.	 The	 same	 experiments	 assess	 the	 range	 of	 strains	 in
which	Hooke’s	law	is	reasonable.

The	parameter	c	has	dimensions	of	a	speed,	that	is,	L/T,	where	L	and	T	are	a
typical	reference	length	(perhaps	the	length	of	the	rod)	and	a	typical	time	scale,
respectively.	 Correspondingly,	 density	 (mass	 per	 unit	 volume)	 has	 dimensions
M/L3,	where	M	 is	 the	mass	of	 the	 rod.	 It	 follows	 that	k	 has	dimensions	LM/T2,
that	 is,	 the	 dimensions	 of	mass	×	 acceleration,	 the	 same	 dimensions	 as	 force.
Note	 that	 this	 is	 consistent	with	 (4.2),	 since	 both	 u	 and	x	 have	 dimensions	 of
length,	so	that	ux	is	dimensionless.

Hooke’s	 law	 is	 familiar	 from	 elementary	mechanics	 or	 the	 study	 of	ODE.	 It
arises	in	relating	the	extension	of	a	spring	to	the	tension	in	the	spring.	To	see	the
connection	with	 the	 rod,	 consider	 a	 uniform	 deformation	 given	 by	 u(x)	=	 Lx.
Then	σ(ux)	=	k(L	−	1).	But	L	−	1	 is	 the	 extension	 (if	L	>	1);	 the	 stress	σ	 is
constant	 and	 corresponds	 to	 the	 tension	 in	 the	 spring.	 Thus,	 the	 tension	 is
proportional	 to	 the	 extension.	 Indeed,	 just	 as	 for	 springs,	 the	 constant	 k	 in
Hooke’s	law	can	be	found	by	performing	simple	extension	experiments.

4.1.2.	The	Vibrating	String

Consider	a	 thin	elastic	string,	 such	as	a	guitar	string	or	bungee	cord,	which	we
treat	as	a	one-dimensional	curve.	For	simplicity,	we	assume	that	the	string	moves
only	in	two	dimensions,	and	that	the	tension	in	the	string	is	high	enough	that	we
can	 ignore	 gravity.	 Another	 scenario	 with	 no	 effect	 of	 gravity	 would	 be	 an
experiment	 with	 a	 string	 constrained	 to	 a	 horizontal	 frictionless	 table.	 The
effectively	one-dimensional	elastic	body	is	called	a	string	when	we	assume	that	it
can	be	bent	with	no	resulting	force.	Then	we	say	there	is	no	resistance	to	bending.
Let’s	consider	the	motion	of	a	point	on	the	string	labeled	by	x	∈	[0,	1].	At	each
time	t,	 this	point	will	be	located	in	the	plane	at	(r1,	r2)	=	r(x,	 t)	∈	R2	(see	Fig.
4.3).	 Then	 the	 tangent	 to	 the	 string	 is	 rx(x,	 t).	 Since	 there	 is	 no	 resistance	 to
bending	 and	 no	 gravity,	 the	 only	 force	 on	 the	 string	 is	 due	 to	 the	 tension	 ,
which	acts	 tangentially	and	 is	 the	only	nonzero	component	of	 the	 stress.	 If	 the
string	has	a	uniform	cross-sectional	area	A	and	constant	density	ρ	(gm/cm3),	then
the	 equations	 of	motion	 (Newton’s	 second	 law,	 or	 conservation	 of	momentum)
are



Figure	4.3.	The	elastic	string;	one-dimensional	string	deforming	in	two
dimensions.

Now	we	make	 the	 constitutive	 assumption	 that	 the	 tension	 	 depends	 only	 on
the	strain	|rx|	and	write	 .	Thus,	the	string	equations	are

Suitable	boundary	conditions,	in	which	the	string	is	fixed	at	two	locations,	are

With	these	boundary	conditions,	there	is	an	equilibrium	solution	r0	=	(xL,	0)	in
which	 the	 string	 is	 stretched	 between	 the	 two	 fixed	 ends,	 as	 in	 a	 guitar	 string
before	 it	 is	plucked	or	 strummed.	We	assume	that	 the	 tension	at	equilibrium	is
positive:	T	(L)	>	0,	and	also	that	it	is	increasing	with	strain:	T′(L)	>	0.

Now	consider	small	deviations	(u,	v)	from	the	equilibrium	solution,	and	write
r	=	(xL	+	u,	v).	We	aim	to	find	equations	for	the	new	variables	u,	v	as	functions
of	 x,	 t.	 Of	 course,	 we	 can	 simply	 substitute	 this	 expressi	 on	 into	 the	 string
equations	and	get	exact	equations	for	u,	v.	However,	we	want	to	take	advantage
of	the	smallness	of	u,	v.	To	do	this,	we	substitute	into	the	PDE	system	(4.4)	and
then	use	a	Taylor	expansion	about	the	equilibrium	solution,	which	is	now	u	=	v
=	0.

When	we	substitute	into	(4.4)	and	expand	each	term	as	a	Taylor	series	in	u,	v
retaining	only	constant	and	first-order	terms	(linear	in	u,	v),	we	get	a	lot	of	terms.
For	example,	we	need

where	 h.o.t.	 represents	 the	 remaining	 higher-order	 terms	 in	 the	 Taylor	 series;
specifically,	 .	Similarly,



Thus,

Finally,	the	equation	(4.4)	becomes	a	pair	of	wave	equations	if	we	retain	only
terms	linear	in	u	and	v;	that	is,	drop	the	h.o.t.	terms	in	(4.6):

In	 these	 linear	 wave	 equations,	 	 is	 the	 longitudinal	 wave	 speed,	 and	
	 is	 the	 transverse	 wave	 speed.	 It	 can	 be	 argued	 that	 the	 longitudinal

motion	 represented	 by	 u	 is	 smaller	 than	 the	 transverse	motion	 if	 the	 string	 is
displaced	laterally.	Thus,	a	good	approximation	is	to	take	the	equation	for	v	alone
and	represent	the	string	simply	by	the	transverse	displacement	v(x,	t),	0	<	x	<
1.

This	is	a	useful	way	to	think	of	solutions	of	the	wave	equation;	for	each	fixed
time	t	the	graph	of	v(x,	t)	represents	the	string.	As	time	varies,	the	graph	evolves
as	a	string	in	motion.

4.2.	D’Alembert’s	Solution
In	 1747,	 d’Alembert1	 published	 a	 paper	 on	 vibrating	 strings	 that	 included	 his
famous	solution	of	the	wave	equation	in	one	space	variable	x	and	time	t:

The	first,	and	fundamental,	step	in	deriving	d’Alembert’s	solution	is	to	show	that
the	general	solution	of	(4.8)	is

where	F	and	G	are	arbitrary	C2	 functions.	The	lines	x	−	ct	=	const.,	x	+	ct	=
const.,	 where	 F(x	 −	 ct),	 G(x	 +	 ct)	 (respectively)	 are	 constant,	 are	 called
characteristics.

Since	c	>	0	is	constant,	we	can	factor	the	partial	differential	operator	
and	write	the	PDE	as



Then	since	(∂t	+	c∂x)	F(x	−	ct)	=	0,	and	(∂t	−	c∂x)G(x	+	ct)	=	0,	we	see	that
(4.9)	is	a	solution.

It	will	be	useful	when	discussing	solutions	of	the	wave	equation	to	interpret
(4.9)	as	the	superposition	of	two	waves:	the	graph	of	F(x	−	ct)	as	a	function	of	x
for	various	times	 t	 is	a	wave	traveling	with	speed	c	 to	the	right,	and	G(x	+	ct)
represents	a	wave	moving	to	the	left	with	speed	c.	Thus,	the	wave	equation	(4.8)
models	waves	of	speed	c	moving	in	both	directions,	to	the	left	and	right,	just	as
the	linear	transport	equation	models	waves	of	speed	c	>	0	moving	to	the	right
only.	We	 can	 add	 the	 two	waves	 in	 (4.9),	 because	 the	 PDE	 (4.8)	 is	 linear	 and
homogeneous.

To	 see	 that	 every	 solution	 can	 be	 represented	 in	 the	 form	 (4.9)	 for	 some
choice	of	 functions	F,	G,	we	 introduce	characteristic	variables	 suggested	by	 the
factorized	equation	(4.10):

and	write	z(ξ,	η)	=	u(x,	t).	Then	we	have

Adding	and	subtracting	as	in	(4.10),	the	equation	becomes

Integrating	over	η,	we	find

for	some	function	g	(which	is	constant	with	respect	to	η).

Thus,	 z(ξ,	 η)	=	G(ξ)	+	 F(η),	 where	G(ξ)	=	 ∫	 g(ξ)	 dξ,	 and	 F	 is	 another
arbitrary	function.	Back	in	the	original	variables,	we	arrive	at

4.2.1.	Initial	Value	Problem	(Cauchy	Problem)

We	 use	 the	 general	 solution	 (4.9)	 of	 the	 wave	 equation	 to	 solve	 the	 Cauchy
problem



Just	as	for	ODE,	since	the	PDE	is	second	order	in	t,	to	have	a	well-posed	problem
(cf.	Section	2.1)	we	have	to	specify	both	the	initial	displacement	u	and	the	initial
velocity	ut.

Theorem	4.1.	If	ϕ	is	C2	and	ψ	is	C1,	then	the	unique	C2	solution	of	(4.11)	is	given	by

Proof.	The	general	solution	of	the	PDE	is

Then	the	initial	conditions	give

Integrating	the	second	equation	yields	 .

Now	we	can	solve	for	F	and	G,	leading	to	(4.12).	We	leave	it	as	an	exercise	to
verify	that	the	initial	conditions	are	satisfied.

It	 is	 clear	 from	 (4.12)	 that	 u(x,	 t)	 is	 a	 C2	 function.	 Uniqueness	 is	 a
consequence	of	the	fact	that	F	and	G	 in	 the	general	 solution	are	determined	by
the	initial	condition.

Formula	(4.12)	is	known	as	d’Alembert’s	solution.	Note	that	since	ψ	specifies	ut
at	 t	 =	 0,	 it	 is	 consistent	 that	 it	 should	 be	 integrated	 in	 a	 formula	 for	 u.	 In
integrating	ψ,	we	gain	a	derivative.	Thus,	we	have	the	following	regularity	of	the
solution:

In	other	words,	the	solution	inherits	regularity	from	the	initial	data.	There	is	no
gain	 or	 loss	 of	 regularity,	 a	 property	 typical	 of	 hyperbolic	 PDE.	 In	 fact,	 (4.12)
makes	 sense	 even	 if	 ϕ	 or	 ψ	 are	 less	 regular	 than	 in	 the	 theorem;	 the
corresponding	function	u(x,	t)	is	then	known	as	a	weak	solution,	even	though	the
derivatives	of	the	solution	seemingly	required	by	the	PDE	may	not	exist.

D’Alembert’s	 solution	 allows	 us	 to	 establish	 another	 part	 of	well-posedness,
namely,	continuous	dependence	on	the	data.

Proof	of	continuous	dependence.	Let	u	=	u1,	u	=	u2	be	solutions	of	problem
(4.11)	with	initial	data	ϕk,	ψk,	k	=	1,	2,	that	are	bounded	and	uniformly	close	in
the	sense	of	continuous	functions:



where	ϵ	>	0	is	small.	From	(4.12),	we	have

In	this	calculation,	we	have	used	the	triangle	inequality	and	the	integral	estimate
|∫	f(x)dx|	≤	∫	|f(x)|dx.

It	follows	that	if	|ϕ1	−	ϕ2|	and	|ψ1	−	ψ2|	are	uniformly	small,	then	|u1(x,	t)	−
u2(x,	 t)|	 is	 small	 at	 each	 x,	 t	 <	 ∞.	 Note	 that	 the	 estimate	 gets	 worse	 with
increasing	time,	so	that	to	make	u1	−	u2	uniformly	small	in	x	and	t,	we	have	to
take	a	finite	time	interval,	unless	we	include	 	in	the	smallness
condition.

Figure	4.4.	Initial	displacement	ϕ(x).

Example	1.	 (Representing	d’Alembert’s	 solution	graphically)	For	 simplicity,
let’s	 take	 the	 initial	velocity	 to	be	zero,	ψ(x)	≡	0,	 choose	c	=	2,	and	 take	 the
support	of	ϕ	to	be	the	interval	[1,	3].	The	support	of	a	function	ϕ	is	defined	to	be
the	closure	(including	boundary	points)	of	the	set	where	ϕ	is	nonzero.	Thus,	supp

.

The	solution	of	(4.11)	in	this	example	is

The	initial	data	are	piecewise	linear,	with	changes	in	slope	at	x	=	1,	2,	3	(Fig.
4.4).	 Correspondingly,	 the	 solution	 (at	 a	 fixed	 t)	will	 be	 piecewise	 linear,	with
changes	in	slope	expected	at	values	of	x	for	which



The	graph	of	ϕ(x	+	2t)	as	a	function	of	x	has	the	shape	of	a	triangle	moving	to
the	left	with	speed	2,	and	ϕ(x	−	2t)	has	the	same	shape	and	speed,	but	moving
to	the	right.	The	solution	(4.14)	is	the	average	of	these	two	graphs.

We	can	 represent	 the	 solution	 in	 the	x-t	 plane,	 as	 shown	 in	Figure	4.5.	 The
leading	edge	of	the	left-moving	triangular	wave	lies	on	the	characteristic	x	+	2t
=	1;	it	gets	to	x	=	0	when	 .	Starting	at	x	=	1,	and	moving	left	with	speed	2,
the	wave	takes	until	 	to	reach	0.

Domain	 of	 dependence	 and	 region	 of	 influence.	 The	 structure	 of	 the
characteristics	 in	 the	 x-t	 plane	 in	 Figure	 4.5	 suggests	 how	 the	 initial	 data
propagate	and	influence	the	solution.	Likewise,	we	can	consider	the	dependence
on	the	initial	data	of	the	solution	at	a	point	(x,	t).

The	backward	characteristics	through	a	point	a	point	(x0,	t0)	with	t0	>	0	are	the
lines

The	backward	characteristics	intersect	the	x-axis	at	x	=	x0	±	ct0;	the	solution	of
the	Cauchy	 problem	 at	 (x0,	 t0)	 depends	 only	 on	 the	 initial	 data	 in	 the	 interval
between	these	points.	The	interval	 is	referred	to	as	 the	 interval	of	dependence	 of
the	point	(x0,	t0).	More	common	terminology	is	to	refer	to	the	triangle	with	base
given	 by	 the	 interval	 of	 dependence	 and	 sides	 given	 by	 the	 backward
characteristics	as	the	domain	of	dependence	of	the	point	(x0,	t0).

Figure	4.5.	The	x-t	plane	for	Example	1.	Note	that	the	slope	of	the	characteristics
is	the	reciprocal	of	the	wave	speed.



Figure	4.6.	(a)	Domain	of	dependence	(x0,	t0)	and	(b)	region	of	influence	of	[a,
b]for	the	wave	equation.

The	 region	 of	 influence	 of	 a	 point	 (x0,	 t0)	 is	 the	 set	 bounded	 by	 the	 forward
characteristics:

We	can	also	speak	of	the	region	of	influence	of	a	subset	of	the	x-t	plane,	but	more
commonly	we	refer	to	the	region	of	influence	of	an	initial	interval	a	≤	x0	≤	b,
with	t	=	0.	The	region	of	influence	of	the	interval	[a,	b]	on	the	x-axis	is	the	set
bounded	by	characteristics	x	+	ct	=	a,	x	−	ct	=	b.

These	 notions	 give	 us	 a	 graphical	means	 of	 understanding	 how	 initial	 data
propagate	forward	in	time,	as	shown	in	Figure	4.6.	In	particular,	if	the	data	have
compact	 (i.e.,	 bounded)	 support	 in	 an	 interval	 [a,	 b],	 then	 the	 solution	 is
necessarily	 zero	outside	 the	 region	of	 influence	of	 the	 initial	 interval	 [a,	 b],	 as
can	 be	 seen	 by	 drawing	 backward	 characteristics	 from	 any	 point	 outside	 this
region	of	influence.	We	say	that	initial	disturbances	(meaning	where	ϕ	or	ψ	are
nonzero)	propagate	with	finite	speed	c.

4.2.2.	The	Wave	Equation	on	a	Semi-Infinite	Domain

The	Cauchy	problem	shows	how	initial	disturbances	propagate	as	waves	in	free
space.	 To	describe	how	 these	waves	 are	 reflected	 at	 a	 boundary,	we	 formulate
and	solve	an	initial	boundary	value	problem	on	the	quarter-plane	{(x,	t)	:	x	>	0,
t	>	0}	with	a	single	boundary.

Consider	the	initial	boundary	value	problem

The	boundary	condition	specifying	u(0,	t)	means	that	the	end	of	the	string	is	held



in	place.	We	could	instead	specify	the	slope	ux(0,	t),	which	would	mean	the	stress
is	specified.	In	particular,	the	boundary	condition	ux(0,	t)	=	0	is	referred	to	as	a
stress-free	boundary	condition.

For	x	>	ct,	we	have	d’Alembert’s	solution	(4.12)

with	ϕ,	ψ	evaluated	only	for	positive	values	of	their	arguments.

To	obtain	an	expression	for	the	solution	in	the	region	0	<	x	<	ct,	we	have	to
use	the	boundary	condition,	since	(4.16)	does	not	apply	for	x	−	ct	<	0.	Notice
that	 characteristics	 with	 positive	 speed	 c	 propagate	 into	 the	 domain	 from	 the
boundary	 x	 =	 0	 as	 t	 increases	 (see	 Fig.	 4.7).	 These	 characteristics	 carry
information	 from	 the	boundary	condition.	Moreover,	 each	point	 in	 the	quarter-
plane	 also	 has	 a	 characteristic	moving	 left	with	 speed	 c	 that	 originated	 on	 the
initial	line	x	>	0,	t	=	0.	Therefore,	the	solution	for	x	<	ct	will	involve	both	the
initial	condition	and	the	boundary	condition.

The	 solution	 can	 be	 found	 from	 the	 general	 solution	 (4.13),	 obtaining
expressions	for	the	functions	F,	G	from	the	initial	and	boundary	conditions,	much
as	was	done	in	the	proof	of	Theorem	4.1.	The	result	of	this	calculation	is

Observe	that	this	formula	satisfies	the	boundary	condition	u(0,	t)	=	0.	Formula
(4.17)	can	be	interpreted	as	the	solution	of	the	Cauchy	problem	with	initial	data
on	the	entire	real	line	obtained	by	extending	both	ϕ	and	ψ	to	be	odd	functions,	so
that	ϕ(−x)	=	−ϕ(x),	ψ(−x)	=	−ψ(x),	x	>	0.	Then	(4.17)	uses	the	oddness	of
the	extension	 to	express	 the	 solution	entirely	 in	 terms	of	 the	given	data	on	 the
positive	x-axis.

Moreover,	there	is	another	interpretation	of	this	construction.	The	solution	of
the	Cauchy	problem	with	odd	initial	data	involves	waves	moving	left	and	right	in
the	upper	half-plane.	Those	with	x	<	0	and	moving	right	have	the	property	that
along	 the	 line	 x	=	 0	 (the	 t-axis),	 they	 exactly	 cancel	 waves	moving	 left.	 This
cancellation	explains	how	the	boundary	condition	u(0,	t)	=	0	is	satisfied.



Figure	4.7.	Characteristics	for	the	quarter-plane	problem.

Example	2.	(Representing	a	quarter-plane	solution	graphically)	Let’s	suppose
supp	ϕ	⊂	[a,	b]and	supp	ψ	⊂	[a,	b].	The	solution	is	represented	in	the	x-t	plane	in
Figure	4.7,	where	we	have	drawn	forward	characteristics	 from	the	boundary	of
the	support	of	the	initial	data,	including	their	reflections	from	the	boundary	x	=
0.	The	 reflected	characteristics	 record	 the	 switch	 from	x	−	ct	 to	ct	−	x	 in	 the
solution;	equally,	we	can	think	of	the	reflected	characteristics	as	originating	from
the	x-axis	 and	 carrying	 information	 from	 the	 extended	 initial	 data.	 Finally,	 the
reflected	 characteristics	 carry	 information	 from	 the	 boundary	 (specifically,	 the
boundary	 condition)	 into	 the	 interior	 of	 the	 domain.	 This	 last	 point	 of	 view	 is
helpful	 when	 considering	 nonzero	 boundary	 data.	 In	 Figure	 4.7	 the	 domain	 is
divided	 into	 sectors	 in	 which	 we	 can	 write	 the	 solution	 in	 more	 detail.	 For
example,	the	solution	is	zero	in	three	of	the	regions.	In	each	of	the	other	regions,
we	use	 backward	 characteristics	 to	 see	which	part	 of	 the	 support	 of	 the	 initial
data	is	used	in	calculating	the	solution.

For	 (x,	 t)	 in	 the	 triangular	 region	 labeled	 Δ	 in	 Figure	 4.7,	 the	 backward
characteristics	 hit	 the	 x-axis	 at	 x	 −	 ct	 and	 x	 +	 ct,	 both	 of	 which	 lie	 in	 the
interval	 [a,	 b]	 Thus,	 there	 is	 no	 simplification,	 and	 u	 is	 given	 by	 d’Alembert’s
formula	(4.16).

In	region	I,	x	−	ct	<	a,	and	ct	−	x	<	a,	while	a	<	x	+	ct	<	b,	so	that	both
(4.16)	and	(4.17)	reduce	to



which	is	a	wave	traveling	to	left,	a	function	of	x	+	ct.

In	 region	 II,	 u(x,	 t)	 is	 likewise	 a	 function	 of	 x	 −	 ct;	 the	 graph	 is	 a	 wave
traveling	to	the	right.

In	region	III,	part	of	the	wave	is	reflected	by	the	boundary	and	interacts	with
the	wave	traveling	toward	the	boundary.	In	fact	there	is	just	enough	cancellation
so	that	the	boundary	condition	is	satisfied	at	x	=	0.	The	reflected	wave	emerges
as	a	 function	of	 (x	−	 t)	 in	region	 IV.	Thus	 in	region	 III,	where	both	waves	are
present,	and	a	<	ct	−	x	<	x	+	ct	<	b,	u(x,	t)	is	given	by	the	full	formula	(4.17).

In	region	 IV,	after	 the	 left-moving	wave	has	been	 fully	 reflected	and	 is	now
moving	to	the	right,	we	have	x	+	ct	>	b,	and	thus

In	region	V,	x	−	ct	and	ct	−	x	are	less	than	a,	while	x	+	ct	>	b.	(This	case	is
also	 shown	 in	 Fig.	 4.7.)	 Therefore,	 there	 is	 no	 contribution	 from	 the	 initial
displacement	ϕ,	and	the	contribution	from	the	initial	velocity	is	constant:

Similarly,	in	the	region	between	IV	and	the	t-axis,	we	find	u	≡	0.	We	see	this	by
noting	that	both	x	+	ct	and	ct	−	x	are	larger	than	b.	Equivalently,	since	x	−	ct
<	−b	<	b	<	x	+	ct,	we	find	that	u	is	the	integral	of	the	odd	extension	of	ψ	from
−b	to	b	and	hence	is	zero.

It	is	instructive	to	graph	the	solution	carefully	for	various	values	of	t,	say,	for
Example	2,	with	ϕ	triangular	(see	Fig.	4.4)	and	ψ	zero.

Example	3.	(Nonzero	boundary	condition)	Consider	the	initial	boundary	value
problem	with	nonzero	boundary	condition

The	 solution	 is	 similar	 to	 (4.16),	 except	 there	 is	 an	 additional	 term	 that
propagates	 the	boundary	data	 into	 the	domain	x	>	0.	To	derive	 the	additional
term,	first	observe	that	if	ϕ	and	ψ	are	zero,	then	the	string	is	initially	horizontal
and	at	rest.	The	displacement	h(t),	specified	at	the	boundary,	propagates	into	the
interior,	 and	 induces	 motion	 of	 the	 string.	 Consequently,	 this	 disturbance



propagates	 as	 a	wave	u(x,	 t)	=	F(x	−	 ct)	with	 speed	 c.	 Setting	x	=	 0	 in	 this
solution,	we	match	the	boundary	condition:	F(−ct)	=	h(t).	Consequently,	F(ξ)	=
h(−ξ/c),	for	ξ	<	0,	and	the	solution

follows	 immediately.	The	 full	 solution	 is	obtained	by	 simply	 superimposing	 the
solution	with	h	≡	0.	Note	 that	 right-moving	 characteristics	 carry	only	half	 the
information	 of	 the	 solution	 for	 the	 Cauchy	 problem,	 but	 they	 carry	 all	 the
boundary	 information,	 since	 the	 boundary	 data	 travel	 only	 to	 the	 right	 in	 the
physical	domain	x	>	0.

4.3.	The	Energy	E(t)	and	Uniqueness	of	Solutions
In	 this	 section	we	 define	 an	 energy	 function	 for	 the	wave	 equation,	 show	 that
energy	 is	 conserved	 for	 the	 Cauchy	 problem	 (4.11),	 and	 use	 this	 property	 to
establish	uniqueness	of	solutions	of	the	Cauchy	problem.

Let’s	assume	that	u	=	u(x,	t)	is	a	smooth	solution	of	the	Cauchy	problem	and
the	derivatives	ut(x,	t),	ux(x,	t)	are	square	integrable	(i.e.,	in	L2(R))	for	each	t	≥	0.
Then	the	total	energy	defined	by

is	finite.2

Note	that	E(t)	 is	 the	sum	of	the	kinetic	and	potential	energies.	The	potential
energy	 	is	the	energy	stored	in	the	string	due	to	tension,	and	the
kinetic	 energy	 	 is	 akin	 to	 the	 quantity	 	 in	 classical
mechanics	of	a	rigid	body	with	mass	m	and	velocity	v.

To	see	how	E(t)	is	connected	to	the	one-dimensional	wave	equation	(4.8),	we
multiply	the	PDE	by	ut	and	integrate	by	parts:

Thus,	we	have



That	is,

Therefore,	we	have	conservation	of	total	energy:	E(t)	=	constant,	from	which	we
deduce

This	 identity	 is	 an	 important	 tool	 for	 existence	 and	 regularity	 of	 solutions,	 but
also	for	uniqueness	of	solutions,	as	we	now	discuss.

Uniqueness	of	solutions.	Consider	the	Cauchy	problem

in	which	 the	 inhomogeneity	 f(x,	 t)	 is	 a	 specified	 function	 representing	 a	 time-
dependent	 distribution	 of	 force	 along	 the	 one-dimensional	 elastic	 body.	 For
example,	 if	 the	PDE	represents	 small	 transverse	vertical	vibrations	of	an	elastic
string,	then	f(x,	t)	=	−g	could	be	the	force	distribution	due	to	gravity.	(Note	that
the	density	ρ	has	been	absorbed	into	c2.)

We	 can	 use	 the	 energy	 calculation	 to	 prove	 uniqueness	 of	 C2	 solutions	 of
(4.19).	 Consider	 two	C2	 solutions	 u1,	u2	 with	 the	 same	 data	ϕ,	ψ,	 f.	 To	 prove
uniqueness,	we	show	u1	=	u2.	Define	u(x,	t)	=	u1(x,	t)	−	u2(x,	t).	Then	u	satisfies
the	homogeneous	version	of	(4.19),	with	zero	initial	data:

Since	E(t)	=	E(0)	=	0	for	this	problem,	we	have

Therefore,

Thus,	u	is	constant	in	x	and	t.	But	u(x,	0)	=	0,	so	the	constant	is	zero.	Hence	u	=
u1	−	u2	≡	0.

4.4.	Duhamel’s	Principle	for	the	Inhomogeneous	Wave	Equation

Duhamel’s	 principle	 is	 used	 to	 solve	 inhomogeneous	 initial	 boundary	 value
problems	 when	 we	 have	 the	 solution	 of	 the	 homogeneous	 problem	 in	 hand.



Consider	the	initial	value	problem

To	solve	(4.20)	using	Duhamel’s	principle,	let	 	be	the	solution	(for	each	s
>	0)	of

To	understand	why	 	might	be	helpful,	consider	the	special	case	in	which	f(x,	t)
=	F(t)	is	independent	of	x,	and	we	seek	a	solution	v(t)	independent	of	x.	Then	we
have

Integrating	twice	and	reversing	the	order	of	integration,	we	see	that

But	 for	 each	 s	>	0,	w(s,	 t)	=	(t	−	 s)	F(s)	 solves	 the	x-independent	 version	 of
(4.21),	namely,

and	 .

This	 calculation	 suggests	 that	 	 solves	 (4.20).	 To	 complete

the	 solution,	 it	 remains	 to	 find	 .	 But	 	 satisfies	 a	 Cauchy	 problem	 for	 the
homogenous	wave	equation	with	 initial	 condition	at	 time	 t	=	 s.	We	 can	adapt
d’Alembert’s	solution	by	translating	t	by	s	 in	d’Alembert’s	formula,	with	ϕ(x)	=
0;	ψ(x)	=	f(x,	s).	This	gives	a	formula	for	 :

Now	let	 .	That	is,

The	 double	 integral	 is	 an	 integration	 of	 f	 over	 the	 triangular	 domain	 of
dependence	of	(x,	t)	shown	in	Figure	4.6.



Claim	4.2.	The	function	u(x,	t)	satisfies	(4.20).

Proof.	Let	(x0,	 t0)	be	 fixed	with	 t0	>	0.	The	proof	 involves	 integrating	 the	PDE
(4.20)	over	the	domain	of	dependence	Δ	=	{(x,	t)	:	x0	−	c(t	−	t0)	<	x	<	x0	+
c(t	−	t0),	0	<	t	<	t0}	and	using	Green’s	theorem	in	the	plane	(see	Appendix	A).
With	 the	 exact	 differential	 du	=	 uxdx	+	 utdt,	 the	 integral	 on	 the	 boundary	 is
reduced	to	u(x0,	t0).

It	 is	 straightforward	 to	 use	 this	 procedure	 to	 solve	 the	more	 general	 initial
value	problem	in	which	the	initial	data	can	be	nonzero:

We	solve	this	problem	by	considering	each	of	f,	ϕ,	ψ	separately,	setting	the	others
to	zero;	the	solution	is	then	the	sum	of	the	corresponding	solutions:

4.5.	The	Wave	Equation	on	R2	and	R3

The	method	of	spherical	means	uses	the	rotational	and	translational	invariance	of
the	 wave	 equation	 to	 find	 solutions	 that	 are	 the	 analog	 in	 Rn,	 n	 ≥	 2,	 of
d’Alembert’s	 solution	 in	 one	 dimension.	 The	 resulting	 formulas	 allow	 us	 to
understand	 the	 Huygens	 principle	 of	 wave	 propagation.	 Huygens	 originally
expressed	 his	 principle	 geometrically,	 using	 spheres	 centered	 at	 points	 of	 a
wavefront	 with	 radius	 given	 by	 an	 incremental	 time	 and	 arguing	 that	 the
intensities	 would	 cancel	 except	 along	 the	 expanding	 surface	 formed	 as	 the
envelope	of	the	overlapping	spheres.

Here	we	 show	briefly	 how	 to	 derive	 an	 explicit	 formula	 for	 the	 solution	 of
initial	value	problems	in	R2	and	R3.	It	is	in	fact	easier	to	start	with	R3.	Suppose
u(x,	t)	is	a	solution	of	the	wave	equation

with	Cauchy	data	u(x,	0)	=	ϕ(x),	ut(x,	0)	=	ψ(x).	For	r	>	0,	define	the	spherical
means	 ,	where	S(x,	r)	denotes	the	sphere	with	center
x	and	radius	r.	 (See	Appendix	A	 for	 the	 integral	average	notation	 .)	 If	we	 can
find	v(r,	t),	then	we	recover	u(0,	t)	=	limr	→	0	v(r,	t)	But	this	will	give	a	formula



for	u(x,	t)	for	any	x,	t,	by	centering	the	spheres	at	a	general	point	x	∈	R3	instead
of	at	x	=	0.	Here	are	the	main	steps	in	constructing	the	formula.

1.	Observe	that	v(r,	t)	is	a	rotationally	invariant	solution	of	the	wave	equation

with	initial	data	given	by	the	averages	of	the	data	for	 ,	 .
Notice	that	v(r,	t)	is	symmetric	about	the	origin,	but	we	could	equally	well	have
centered	 the	 spheres	 at	 any	point	x	 in	 space,	 taking	 integral	 averages	over	 the
resulting	spheres	S(x,	r),	leading	to	the	same	statement	of	the	Cauchy	problem	for
v,	but	with	different	 .

2.	Let	w(r,	t)	=	rv(r,	t).	Then	w	satisfies	the	one-dimensional	wave	equation

with	initial	data	 ,	and	boundary	condition	w(0,	 t)	=	0.
Consequently,	 d’Alembert’s	 solution	 can	 be	 used	 to	 solve	 this	 quarter-plane
problem,	 effectively	 using	 the	 even	 extensions	 of	 	 or	 equivalently,	 the
odd	extensions	of	 .

3.	Since	we	are	interested	only	in	u(0,	t)	=	limr	→	0	v(r,	t)	=	limr	→	0	w(r,	t)/r,	we
write	the	solution	with	r	<	ct:

Notice	that	we	write	the	final	ϕ	term	as	the	derivative	of	an	integral,	which
turns	out	to	be	more	convenient	than	the	equivalent	form	used	in	Section
4.2.1.

4.	Now	we	compute	the	limit	as	r	→	0:

since	w(0,	t)	=	0.	Computing	this	derivative	using	(4.22)	and	including	the
formulas	for	the	integral	averages	(see	Appendix	A),	we	find

5.	Finally,	we	observe	that	by	translation	invariance,	the	corresponding	formula
applies	by	centering	the	spheres	at	any	point	x	∈	R3:



Solution	in	the	plane	(n	=	2).	The	formula	(4.23)	can	be	adapted	to	find	the
solution	of	 the	wave	equation	 in	 two	space	dimensions.	The	 idea	 is	 to	consider
solutions	v(x1,	x2,	t)	=	u(x1,	x2,	x3,	 t)	that	are	independent	of	x3	Then	v	satisfies
the	wave	equation	in	two	dimensions	and	in	three	dimensions.	Since	initial	data
ϕ,	 ψ	 are	 in	 two	 dimensions,	 we	 consider	 them	 as	 functions	 of	 x1,	 x2,	 x3	 but
independent	of	x3.	Then	we	calculate	the	integrals	in	(4.23)	by	representing	the
spheres	over	the	projections	onto	the	x1	−	x2	plane,	which	are	disks.	This	process
gives	the	formula

Everything	here	is	to	be	interpreted	in	two	dimensions.	Thus,	x	=	(x1,	x2),	y	=
(y1,	y2),	B(x,	ct)	is	the	two-dimensional	disk	centered	at	x,	and	with	radius	ct,	and
dy	=	dy1dy2.

Because	 of	 the	 way	 (4.24)	 in	 two	 dimensions	 is	 related	 to	 (4.23)	 in	 three
dimensions,	 it	 is	 not	 surprising	 that	 the	 integrals	 are	 over	 the	 disks	 B(x,	 ct).
However,	this	has	a	profound	consequence,	because	now	the	solution	depends	on
values	of	ϕ	 and	ψ	 inside	 the	disk	B(x,	ct),	 in	 contrast	 to	 the	 three-dimensional
case,	 in	which	 the	 dependence	 is	 only	 on	 values	 of	 the	 data	 on	 the	 expanding
sphere	S(x,	ct).	Thus,	the	Huygens	principle	does	not	hold	in	two	dimensions.	For
example,	waves	generated	by	dropping	a	stone	into	the	flat	surface	of	a	body	of
water	 generates	 not	 just	 a	 circular	 expanding	wave,	 but	 also	 lots	 of	 concentric
ripples	behind	the	leading	wave.

PROBLEMS
1.	Consider	the	initial	value	problem

Let	ϕ(x)	be	the	function	with	graph	shown	in	Figure	4.4,	and	ψ(x)	≡	0.	In	the	x-t
plane	representation	of	the	solution	in	Figure	4.5,	we	find	u	≡	0	in	the	middle
section,	with	 .	Show	that	 if	we	keep	the	same	ϕ	but	make	ψ	nonzero,	with



supp	 ψ	 =	 [1,	 3],	 then	 u	 will	 still	 be	 constant	 in	 this	 middle	 section.	 Find	 a
condition	on	ψ	that	is	necessary	and	sufficient	to	make	this	constant	zero.

2.	Consider	C3	solutions	of	the	wave	equation

For	 c	 =	 1,	 define	 the	 energy	 density	 ,	 and	 let	 p	 =	 utux	 (the
momentum	density).

(a)	Show	that	et	=	px,	pt	=	ex.

(b)	Conclude	that	both	e	and	p	satisfy	the	wave	equation.

3.	Suppose	u(x,	t)	satisfies	the	wave	equation	(4.25).	Show	that:

(a)	For	each	y	∈	R,	the	function	u(x	−	y,	t)	also	satisfies	(4.25).

(b)	Both	ux	and	ut	satisfy	(4.25).

(c)	 For	 any	 a	 >	 0,	 the	 function	 u(ax,	 at)	 satisfies	 (4.25).	 Note	 that	 the
restriction	a	>	0	is	not	necessary.

4.	(a)	Let	u(x,	t)	be	a	solution	of	the	wave	equation	(4.25)	with	c	=	1,	valid	for
all	x,	t.	Prove	that	for	all	x,	t,	h,	k,

(b)	Write	a	corresponding	identity	if	u	satisfies	(4.25)	with	c	=	2.

5.	Consider	the	quarter-plane	problem

Let	 ϕ(x)	 be	 the	 function	 with	 graph	 shown	 in	 Figure	 4.4,	 and	 let	 ψ(x)	≡	 0.
Sketch	the	solution	u(x,	t)	as	a	function	of	x	for	 .

6.	Consider	the	quarter-plane	problem	with	a	homogeneous	Neumann	boundary
condition

Suppose	supp	ϕ	=	[1,	2]=	supp	ψ.



(a)	Solve	for	u(x,	t),	x	≥	0,	t	>	0.

(b)	Where	can	you	guarantee	u	=	0	in	the	first	quadrant	of	the	x-t	plane?

(c)	Consider	ϕ	≡	0;	write	a	formula	for	u.

(d)	If	0	is	in	the	support	of	ϕ	or	ψ	(e.g.,	if	limx	→	0+	ϕ(x)	≠	0),	write	conditions
that	guarantee	u	is	(a)	continuous	and	(b)	C1.	Explain	your	answers	in	terms	of
the	 behavior	 of	 the	 data	 around	 the	 boundary	 of	 the	 domain.	 (Any
compatibility	condition	will	be	effectively	at	the	origin,	but	you	will	need	to
match	u,	ux,	and	ut	across	x	=	t.)

7.	Consider	problem	6,	but	 in	the	more	general	case	in	which	ux(0,	 t)	=	h(t)	 is
not	 identically	 zero.	 Here,	 the	 general	 solution	 can	 be	 employed	 with	 the
boundary	condition	to	find	F(ξ)	 for	ξ	<	0	in	terms	of	G(−ξ)	and	h.	Using	this
approach,	derive	the	solution

for	x	<	t.	Derive	a	suitable	compatibility	condition	at	the	origin	that	ensures	the
solution	 is	 continuous	 when	 the	 data	 are	 continuous.	 What	 about	 the	 first
derivatives	across	x	=	t?

8.	Consider	the	wave	equation	that	includes	frictional	damping:

in	which	μ	>	0	is	a	damping	constant.	Show	that	if	u(x,	t)	is	a	C2	solution	with	ux
→	 0	 as	 x	 →	 ∞,	 then	 the	 total	 energy	 	 is	 a	 decreasing
function.

Incidentally,	 can	 you	 devise	 a	 C2	 function	 f(x)	 with	 the	 property	 f(x)
approaches	a	constant	as	x	→	±∞,	but	f′(x)	does	not	approach	zero?

9.	Consider	the	quarter-plane	problem	(4.15).

(a)	 Formulate	 the	mechanical	 energy	 E(t)	 for	 solutions,	 and	 show	 that	 it	 is
conserved.	Specify	any	assumptions	you	need	on	the	initial	data.

(b)	For	the	nonzero	boundary	conditions	(4.18)	of	Example	3	evaluate	E′(t)	in
terms	of	the	data	ϕ,	ψ,	h.

10.	 Let	 f(x,	 t)	 be	 a	 continuous	 function,	 and	 let	 Δ(x,	 t)	 denote	 the	 domain	 of
dependence	 of	 the	 point	 (x,	 t)	 for	 (4.25).	 Use	 the	 Fundamental	 Theorem	 of
Calculus	to	show	directly	that	 	satisfies



11.	 Consider	 the	wave	 equation	 in	 three	 dimensions,	with	 initial	 conditions	 in
which	ϕ(x)	=	f(|x|)	is	rotationally	symmetric,	the	function	f	satisfies	f(r)	=	0,	r
≥	ϵ,	and	ψ	≡	0.	Show	that	the	solution	u(x,	t)	is	(a)	rotationally	symmetric,	and
(b)	zero	outside	a	circular	strip	centered	at	the	origin	and	having	width	ϵ.

1.	Jean	le	Rond	d’Alembert	(1717–1783).

2.	Since	the	constant	density	ρ	has	been	absorbed	into	c2,	the	physical	energy	is	actually	ρE(t).



CHAPTER	FIVE

The	Heat	Equation
The	heat	equation

is	the	prototype	of	parabolic	PDE	and	models	diffusion	processes,	including	heat
flow	 and	 the	 spread	 of	 a	 solute	 in	 a	 fluid.	 The	 heat	 equation	 also	 plays	 a
significant	role	in	models	of	combustion,	fluid	flow	with	temperature	dependence
(for	example,	when	density	depends	on	temperature),	and	population	dynamics.
In	chemical	and	biological	systems,	diffusive	processes	are	commonly	modeled	by
random	 walks	 and	 Brownian	 motion,	 which	 are	 closely	 related	 to	 the	 heat
equation.

The	 heat	 equation	 has	 the	 remarkable	 property	 that	 even	 for	 rough	 initial
data,	 solutions	 are	 immediately	 smoothed.	 This	 property	 is	 in	 contrast	 to
hyperbolic	 equations,	 such	 as	 the	 wave	 equation,	 for	 which	 rough	 initial	 data
remains	 just	as	rough	through	its	evolution.	Solutions	of	 the	heat	equation	also
exhibit	infinite	propagation	speed,	meaning	that	a	change	in	temperature	in	one
location	is	immediately	detected	everywhere.	(But	the	effect	decays	exponentially
with	 distance	 from	 the	 source	 of	 the	 change.)	 Since	 characteristics	 are	 defined
only	for	hyperbolic	equations,	the	method	of	characteristics	does	not	apply	to	the
heat	 equation.	 Instead,	 we	 introduce	 several	 new	 PDE	 techniques	 that	 are
applicable	in	general	to	linear	PDE.

The	 fundamental	 solution	 lies	 at	 the	 heart	 of	 the	 theory	 of	 infinite	 domain
problems.	 On	 bounded	 domains,	 the	 fundamental	 solution	 is	 adapted	 to	 take
account	 of	 boundary	 conditions.	 The	 adapted	 functions	 are	 called	 Green’s
functions.

The	maximum	principle	 applies	 to	 the	 heat	 equation	 on	domains	 bounded	 in
space	and	time.	This	important	property	of	parabolic	equations	is	used	to	prove	a
variety	of	results,	such	as	uniqueness	of	solutions	and	comparison	principles.

The	 energy	method	 for	 the	 heat	 equation	 has	 a	 few	 key	 differences	 from	 the
method	for	the	wave	equation.	For	example,	the	physical	heat	energy	is	not	very
useful,	and	instead	we	introduce	a	mathematical	energy	function.	Typically,	this
energy	 is	 not	 conserved	 and	 decays	 in	 time.	 The	 decay	 of	 the	 energy	 leads	 to
straightforward	 uniqueness	 results,	 just	 as	 for	 the	 wave	 equation.	 The	 energy
decay	 is	 also	 useful	 for	 obtaining	 estimates	 that	 are	 part	 of	 the	 existence	 and
regularity	theory	for	solutions	of	parabolic	equations.



Separation	of	variables	is	a	procedure	for	solving	certain	initial	boundary	value
problems.	The	procedure	is	straightforward	for	the	heat	equation,	and	with	small
modifications	 it	 also	 applies	 to	 the	wave	 equation	 and	 Laplace’s	 equation.	 The
method	yields	solutions	represented	as	infinite	series	of	eigenfunctions	associated
with	 the	 PDE	 and	boundary	 conditions.	We	 first	 demonstrate	 the	 technique	 on
specific	 examples.	 More	 generally,	 in	 the	 next	 chapter	 we	 analyze	 eigenvalue
problems	for	ODE	and	PDE,	and	the	convergence	of	Fourier	series.

5.1.	The	Fundamental	Solution

The	fundamental	solution	is	important	for	problems	on	infinite	domains.	In	this
section	we	define	 the	 fundamental	 solution	Φ(x,	 t)	 and	 show	how	 it	 is	 used	 to
solve	the	Cauchy	problem:

To	derive	the	fundamental	solution,	we	use	the	scale	invariance	property	of	the
heat	 equation.	 Let	a	>	0	be	 a	 constant	 and	 introduce	 the	 change	of	 variables	

.	Then	 the	heat	 equation	 is	unchanged	but	 is	 expressed	 in	 the	new
variables:

This	scale	invariance	suggests	that	we	seek	solutions	of	the	self-similar	form

for	 some	α	∈	R.	 Substituting	 into	 the	heat	 equation,	we	 see	 that	whatever	 the
value	of	α,	the	function	v	satisfies	an	ODE	with	nonconstant	coefficients:

To	select	α,	we	introduce	the	property	of	conservation	of	heat	energy,	which
we	wish	 to	 have	 satisfied	 by	 our	 solution.	 Suppose	 u	 is	 a	 solution	 of	 the	 heat
equation	with	the	property	that	 ,	and	ux(x,	t)	→	0	as	x	→	±∞.
Then,	integrating	the	PDE,	we	find

so	that	the	total	heat	energy	is	conserved:



However,

which	suggests	we	should	scale	the	function	v	by	 :

that	is,	choose	 .	With	this	scaling,	heat	is	conserved	in	the	sense	of	(5.2).

Now	we	 solve	 (5.1).	 Since	 it	 is	 a	 second-order	 equation,	 there	 will	 be	 two
independent	solutions.	First	rewrite	the	ODE	as

Thus,

Since	we	are	really	only	seeking	one	solution,	it	is	convenient	to	set	the	constant
to	zero,	resulting	in	a	homogeneous	first-order	equation	that	has	general	solution

Converting	back	to	(x,	t),	with	 ,	we	obtain	the	similarity	solution

Usually,	we	choose	a	particular	value	of	A	so	that	the	constant	in	(5.2)	is	one;
for	this	choice	of	constant,	we	have	the	fundamental	solution	of	the	heat	equation:

(see	 Fig.	 5.1).	 In	 higher	 dimensions,	x	∈	Rn,	 the	 fundamental	 solution	 takes	 a
similar	form:

Then	u(x,	t)	=	Φ(x,	t)	satisfies	ut	=	kΔu.

Properties	of	the	fundamental	solution	Φ(x,	t).
1.	Φ(x,	t)	>	0	for	all	x	∈	Rn,	t	>	0.



2.	Φ	is	C∞	in	(x,	t),	t	>	0.

3.	∫Rn	Φ(x,	t)	dx	=	1	for	all	t	>	0.

Figure	5.1.	Graph	of	the	fundamental	solution	Φ(x,	t)	for	the	heat	equation,	with
t	>	0.

Properties	1	and	2	follow	directly	from	the	formula	for	the	fundamental	solution.
For	n	=	1,	property	3	is	verified	by	direct	calculation:

For	n	>	1,	property	3	follows	from	 .

From	properties	1	and	3,	we	see	that	Φ(x,	 t)	 is	a	probability	distribution.	In
fact	Φ	is	a	normal	distribution	for	each	t	>	0	with	interesting	dependence	on	t	in
the	limits	t	→	∞	and	t	→	0.	The	area	under	the	graph	is	1	for	all	t	>	0,	yet	as	t
→	∞,	maxx	Φ(x,	t)	→	0;	the	tail	spreads	out	to	maintain	∫	Φ	=	1.	As	t	→	0	the
maximum	(at	x	=	0)	blows	up	like	 ,	but	the	integral	remains	constant.	We	also
observe	Φ(x,	t)	→	0	for	x	≠	0,	as	t	→	0+.

5.2.	The	Cauchy	Problem	for	the	Heat	Equation
We	are	now	ready	to	solve	the	Cauchy	problem

using	the	fundamental	solution



which	satisfies	(5.5a)	for	t	>	0.

By	translation	invariance,	Φ(x	−	y,	t)	is	a	solution	of	(5.5a)	for	all	y.	Thus,

is	also	a	solution	of	(5.5a).

By	linearity	and	homogeneity	of	the	PDE,	we	can	take	linear	combinations	of
solutions,	which	suggests	that

should	be	a	solution.	Moreover,	properties	of	Φ	suggest	that	as	t	→	0+,	u(x,	t)	→
g(x),	since	Φ(x	−	y,	t)	collapses	to	zero	away	from	y	=	x	and	blows	up	at	y	=	x
while	preserving	∫	Φ	=	1.

Because	of	the	exponential	 in	Φ(x,	 t),	 the	integrals	for	u,	ut,	uxx	 all	 converge
for	t	>	0	provided	g	∈	C(R)	is	bounded.	Then

so	that	u	satisfies	the	PDE	for	t	>	0.

It	is	more	complicated	to	prove	rigorously	that	the	initial	condition	(5.5b)	is
satisfied,	since	t	=	0	is	a	singular	point	for	Φ	(in	that	Φ(x,	t)	is	not	defined	at	t	=
0).	To	get	a	rough	idea	of	how	(5.5b)	holds	as	a	limit	as	t	→	0+,	let’s	fix	x.	Then,
for	δ	>	0,

The	 second	 line	has	 two	 integrals.	 In	 the	 first	 integral,	 g(y)	≈	g(x)	 for	 small	δ
since	g	is	continuous.	The	second	integral	approaches	zero	as	t	→	0+,	because	Φ
→	0	uniformly	and	exponentially	away	from	y	=	x	as	t	→	0+.	 In	the	following
theorem	we	state	this	limit	carefully	and	prove	it	by	estimating	the	integrals.	The
final	integral	gives	g(x),	since	it	is	independent	of	y,	and	the	integral	of	Φ	over	a
small	interval	around	y	=	x	becomes	unity	as	 t	→	0+,	since	Φ	approaches	zero



sufficiently	fast	elsewhere.

Theorem	5.1.	Let	g	∈	C(R)	be	bounded,	and	let	u(x,	t)	be	given	by	(5.6).	Then

1.	u	is	C∞	in	(x,	t)	for	t	>	0;	and

2.	u	satisfies	the	heat	equation	ut	=	kuxx,	x	∈R,	t	>	0;	and

3	 	for	all	x0	∈	R.

Proof.	Property	1	follows	because	Φ	is	C∞	for	t	>	0,	and	since	derivatives	of	Φ
all	 decay	 exponentially	 as	 |x|	→	∞,	 the	 integrals	 converge.	Property	2	 follows
from	Φt	=	kΦxx,	t	>	0.

To	prove	property	3,	we	consider	the	difference	|u(x,	t)	−	g(x0)|,	and	estimate
the	 integrals,	 guided	 by	 the	 discussion	 above.	 This	 is	 the	 first	 time	 we	 have
encountered	these	kinds	of	estimates,	so	we	provide	the	details.

Let	ϵ	>	0.	We	wish	to	show	|u(x,	 t)	−	g(x0)|	<	ϵ	 for	(x,	 t)	 close	 to	 (x0,	 0).
Since	∫	Φ	dx	=	1,	we	can	express	the	number	g(x0)	as	an	integral,	so	that

Let	δ	>	 0	 (we	 choose	 δ	 below),	 break	 up	 the	 integrals	 in	 (5.7),	 and	 use	 the
triangle	inequality:

Now	we	use	δ	in	two	ways	to	show	the	two	integrals	are	small.

In	the	first	integral,	by	continuity	of	g	we	can	choose	δ	>	0	small	enough	that
|g(y)	−	g(x0)|	<	ϵ	for	|x0	−	y|	<	δ,	which	is	the	domain	of	the	integral.	We	are
left	 with	 an	 integral	 of	Φ(x	 −	 y,	 t),	 which	 is	 bounded	 uniformly	 by	 1,	 even
though	Φ(x	−	y,	t)	blows	up	as	t	→	0.

In	the	second	integral	we	observe	that	 ,	provided	
,	 while	 g(y)	 is	 bounded.	 To	 make	 this	 observation	 more	 precise,	 we

write	the	right-hand	side	of	(5.8)	as	Iδ	+	Jδ.	Choose	δ	>	0	so	that	|g(y)	−	g(x0)|
<	ϵ	for	|y	−	x0|	<	δ.	Then



The	integral	Jδ	is	somewhat	trickier.	Since	g	is	bounded,	there	is	K	>	0	such	that
|g(y)|	≤	K,	for	all	y.	Thus,

Consider	x	satisfying	 .	(Recall	that	we	are	considering	the	limit	as	x	→
x0.)	Then	 	in	the	range	of	integration	|x0	−	y|	>	δ.	However,	this	is	not
a	good	enough	estimate	of	the	exponential,	because	we	would	still	be	left	with	an
integral	over	an	infinite	interval	of	a	small	but	positive	quantity.	To	get	a	more
useful	 estimate,	we	 observe	 (see	 Problem	1)	 that	 in	 the	 region	 of	 integration,	

.	Then

for	 t	>	 0	 sufficiently	 small.	 Here	 we	 have	 used	 the	 change	 of	 variables	 z	 =	
	and	the	constant	 .	Now	it	follows	that	|u(x,	t)	−	g(x0)|	<

2ϵ	for	 	sufficiently	small.	This	proves	property	3	and	completes	the
proof	of	the	theorem.

The	 solution	 (5.6)	 is	 a	 convolution	 (Φ(·,	 t)	 ∗	 g)(x)	 for	 each	 t	 >	 0.	 For
integrable	functions	ϕ,	ψ	on	R	the	convolution	product	of	ϕ	and	ψ	is	a	function	ϕ
∗	ψ	defined	by

The	 convolution	 product	 provides	 a	 useful	 construction	 of	 the	 product	 of	 two
integrable	functions.	 It	 is	used	widely	 in	signal	processing	and	Fourier	analysis.
Property	3	of	the	theorem	shows	that	Φ(·,	t)	∗	g	→	g	as	t	→	0.	In	this	sense,	the
functions	Φ(·,	t)	converge	as	t	→	0	to	a	generalized	function	δ	defined	informally



by

We	make	this	precise	in	Chapter	9,	where	δ	is	defined	as	the	Dirac	delta	function,	a
distribution.

Recall	 that	 for	 first-order	 equations	 and	 for	 the	 wave	 equation,	 solutions
propagate	with	finite	speed,	meaning	that	the	region	of	influence	of	any	point	is
bounded	over	finite	time.	However,	the	heat	equation	has	the	property,	typical	of
parabolic	 equations,	 that	 solutions	 propagate	with	 infinite	 speed:	 the	 region	 of
influence	of	a	point	is	immediately	all	of	space.

To	 make	 this	 concept	 a	 bit	 more	 precise,	 consider	 an	 initial	 temperature
distribution	 u(x,	 0)	=	 g(x)	 that	 is	 nonnegative	 and	 has	 compact	 support	 (see
Appendix	 A).	 An	 example	 is	 the	 function	 g(x)	 =	 ϕ(x)	 in	 Figure	 4.4	 that	 we
considered	 for	 the	 wave	 equation.	 For	 the	 wave	 equation,	 such	 an	 initial
disturbance	 propagates	 with	 finite	 speed,	 the	 wave	 speed.	 But	 for	 the	 heat
equation,	 the	solution	u(x,	 t)	 is	 immediately	positive	everywhere,	meaning	 that
for	all	 t	>	0,	no	matter	how	small,	u(x,	 t)	>	0	 for	all	x	∈	R.	You	can	see	 this
directly	from	the	solution	(5.6).	Thus,	the	initial	data,	confined	to	a	bounded	set,
has	 induced	 a	 positive	 temperature	 everywhere	 immediately.	 Of	 course,	 the
temperature	drops	off	 exponentially	with	distance	 from	 the	 support	of	g	 and	 is
tiny	 outside	 the	 support	 for	 small	 t,	 but	 nonetheless,	 the	 initial	 temperature
distribution	has	propagated	with	infinite	speed.

This	is	pretty	clearly	not	physical	(we	cannot	have	signals	propagating	faster
than	the	speed	of	light!)	and	is	a	limitation	of	the	heat	equation,	and	in	particular
of	 Fourier’s	 law	 of	 heat	 transfer.	 From	 a	 different	 point	 of	 view,	 it	 is	 a
consequence	 of	 taking	 a	 finite	 speed	 effect,	 namely,	 the	 exchange	 of	 thermal
energy	 between	 molecules,	 and	 describing	 the	 process	 in	 a	 continuum	 in	 a
seemingly	 natural	 way	 that	 introduces	 this	 anomaly.	 Nonetheless,	 the	 heat
equation	 is	 an	 extremely	 useful	 PDE	 that	 describes	 heat	 transfer	 accurately	 in
many	situations.

5.2.1.	Using	the	Fundamental	Solution	to	Solve	Quarter-Plane	Problems

To	introduce	a	boundary	condition,	consider	the	quarter-plane	problem



As	 in	 the	 strategy	 for	 the	 wave	 equation,	 we	 reflect	 the	 initial	 data,	 so	 the
solution	satisfies	the	boundary	condition.	Let	 	be	the	odd	extension	of	g(x):

and	define

Then

since	Φ(y,	t)	is	an	even	function	of	y,	and	 	is	an	odd	function.	Note	that	u(x,	t)	is
an	 odd	 function	 of	 x	∈	R.	 That	 is,	 the	 symmetry	 in	 the	 initial	 data	 is	 carried
through	to	the	same	symmetry	in	the	solution.

Now	replace	 	with	g(y)	using	 	for	y	<	0.	Then

For	 a	 quarter-plane	 problem	 with	 a	 homogeneous	 Neumann	 boundary
condition,	corresponding	to	an	 insulated	end	at	x	=	0,	 the	calculation	 involves
the	even	extension	of	the	initial	data:

The	solution	 is	obtained	by	extending	g	using	 the	even	extension	 ,	 so	 that	 the
first	derivative	is	zero	at	x	=	0.	Then

satisfies	 the	 heat	 equation.	 To	 check	 the	 boundary	 condition,	 we	 calculate	
.	Now	Φ(y,	 t)	 is	 even	 in	y,	 so	Φx(y,	 t)	 is	 odd.

Thus,	ux(0,	t)	=	0,	as	required.



5.3.	The	Energy	Method
In	 this	 section	 we	 show	 the	 sense	 in	 which	 heat	 energy	 is	 conserved	 on	 both
bounded	 and	 unbounded	 domains.	 The	 function	 H(t)	 =	 ∫	 u(x,	 t)	 dx	 is
proportional	 to	 the	 physical	 heat	 energy	 when	 u(x,	 t)	 is	 the	 temperature
distribution.	We	also	consider	a	mathematical	energy	integral	E(t)	=	∫	u2(x,	t)	dx,
which	is	useful	for	the	heat	equation,	just	as	the	mechanical	energy	was	for	the
wave	equation.	The	treatment	of	energy	integrals	is	very	significant	for	the	study
of	PDE,	especially	nonlinear	PDE,	where	estimates	of	mathematical	energies	help
establish	existence	and	uniqueness.

Consider	a	C2	solution	u(x,	t)	of	the	heat	equation	on	a	bounded	interval:

The	heat	energy	 	satisfies

Thus,	 the	evolution	of	heat	energy	 is	 controlled	by	 the	heat	 flux	−kux	 through
the	 ends	x	=	a,	 b.	 If	 the	 ends	 are	 insulated,	 then	ux	=	 0	 there,	 and	 the	 heat
energy	is	constant.

On	an	unbounded	domain,	the	calculation	works	similarly,	except	it	is	natural
to	 assume	 there	 is	 no	 heat	 loss	 at	 infinity	 and	 that	 the	 temperature	 u(x,	 t)	 is
integrable	 as	well	 as	 smooth.	 Suppose	 ut	=	kuxx,	−∞	<	 x	<	∞,	 t	>	 0.	 Let	

.	Then

To	analyze	the	mathematical	energy	 ,	we	multiply	(5.11)	by
u	and	integrate	over	[a,	b]:

Therefore,

Thus,	the	energy	integral	 	is	decreasing	in	time	t	if	 .	For
example,	if	either	u	or	ux	is	zero	at	each	end	point	x	=	a,	x	=	b,	then	the	energy
integral	E(t)	decreases	in	t.	In	this	case,	we	have	the	important	comparison	to	the



initial	data:

That	is,

On	an	infinite	domain,	we	assume	the	solution	u(x,	t)	is	square	integrable,	so
that	 	is	defined.	Then,	since	it	is	reasonable	to	assume	u(x,	t)	→
0	 as	 x	→	±∞,	 and	 ux	 is	 bounded	 in	 x,	 we	 obtain	 E′(t)	≤	 0.	 Once	 again	 the
energy	is	decreasing,	and	we	have	the	comparison	(5.12)	to	the	initial	energy.

5.3.1.	Using	the	Energy	Method	to	Prove	Uniqueness

Decay	of	the	mathematical	energy	allows	us	to	prove	uniqueness	of	solutions	of
the	initial	boundary	value	problem

where	 f,	g,	h,	ϕ	are	given	 functions.	Because	 the	 following	result	and	proof	are
very	similar	to	the	uniqueness	argument	for	the	wave	equation,	we	demonstrate
the	method	 for	 the	 initial	 boundary	 value	 problem	 rather	 than	 for	 the	 Cauchy
problem.

Theorem	5.2.	If	u1,	u2	solve	(5.14)	and	are	C2	functions,	then	u1	=	u2	everywhere.

Proof.	Let	u	=	u1	−	u2.	Then	u	satisfies	(5.14)	with	zero	data:	f	≡	g	≡	h	≡	ϕ	≡
0.	Thus,	from	(5.13),

Therefore,	u	≡	0,	so	that	u1	≡	u2.

5.3.2.	The	Energy	Principle	in	Higher	Dimensions

The	same	argument	works	in	the	more	realistic	context	of	higher	dimensions	but
uses	 multivariable	 calculus.	 Consider	 a	 bounded	 open	 subset	U	 of	Rn	 and	 the
initial	boundary	value	problem



We	begin	by	defining	the	energy	integral	as	in	one	dimension:

Then

In	 conclusion,	 the	 mathematical	 energy	 E(t)	 decreases	 in	 time	 unless	 the
boundary	conditions	inject	energy	into	U.	In	particular,	with	either	homogeneous
Dirichlet	or	Neumann	boundary	conditions,	E(t)	is	decreasing	in	time.

5.4.	The	Maximum	Principle

Maximum	 principles	 provide	 a	 powerful	 alternative	 to	 the	 energy	 method	 for
analyzing	 parabolic	 equations.	 We	 prove	 the	 maximum	 principle	 for	 the	 heat
equation,	 noting	 that	 similar	 ideas	 apply	 to	more	 general	 linear	 and	 nonlinear
second-order	parabolic	equations,	but	not	in	general	to	systems	of	equations,	nor
to	higher-order	equations.

The	maximum	principle	states	that	the	maximum	of	any	(smooth)	solution	of
the	 heat	 equation	 occurs	 either	 initially	 (at	 t	=	 0)	 or	 on	 the	 boundary	 of	 the
domain.	For	a	time	interval	[0,	T]	with	T	>	0	and	a	spatial	domain	U	⊂	Rn,	we
use	the	notation	UT	=	U	×	(0,	T],	shown	schematically	in	Figure	5.2.	Note	that
UT	includes	both	the	interior	and	the	top	portion	of	the	boundary	U	×	{t	=	T}.
The	part	of	the	boundary	of	UT	defined	by



Figure	5.2.	Domain	UT	for	the	maximum	principle.

is	 known	 as	 the	 parabolic	 boundary.	 Here,	 ∂U	 denotes	 the	 boundary	 of	 U.
Solutions	of	the	heat	equation	should	have	two	spatial	derivatives	and	one	time
derivative,	so	we	define	the	appropriate	space	of	functions	on	UT:

To	 compare	 values	 of	 u	 in	UT	 with	 values	 on	 the	 boundary,	 in	 the	 following
theorem	we	require	that	u	should	be	continuous	on	 .

Theorem	5.3.	(The	Maximum	Principle)	Let	 	satisfy

Then	 .

Remarks.	 Suppose	 u	 has	 a	 local	 maximum	 at	 (x,	 t)	∈	U	 ×	 (0,	 T).	 Then	 (by
calculus)	ut	=	0,	∇xu	=	0	and	Δu	≤	0.	If	we	knew	Δu	<	0	at	(x,	t),	then	the	PDE
would	immediately	give	us	a	contradiction:

Although	 this	 is	 not	 a	 proof,	 since	 we	 have	 to	 handle	 the	 degenerate	 case	 in
which	 Δu	 =	 0,	 it	 has	 the	 main	 idea.	 The	 actual	 proof	 merely	 perturbs	 u	 to
remove	a	possibly	degenerate	maximum.

	is	closed	and	bounded,	so	the	continuous	function	u	achieves	its	maximum
somewhere	in	 .	That	is,	there	is	an	(x0,	t0)	such	that	u(x0,	t0)	=	 .

Proof	of	Theorem	5.3.	Let	 .	Our	goal	 is	to	prove	that	u(x,	 t)	≤	M
for	all	(x,	t)	∈	UT.	To	deal	with	the	possibility	Δu	=	0	at	a	maximum,	we	perturb
u	a	bit.	Let	v(x,	t)	=	u(x,	t)	+	ϵ|x|2,	ϵ	>	0.	Then	(recalling	that	x	∈	Rn),



since	ut	−	kΔu	=	0.

Suppose	v	has	a	local	maximum	in	UT,	at	P0	=	(x0,	t0)	with	t0	<	T.	Then	vt	=
0,	∇v	=	0,	 and	Δv	≤	0	 at	P0.	 But	 this	 contradicts	 (5.15),	 so	 v	 cannot	 have	 a
maximum	in	the	interior	of	UT.

Now	suppose	v	has	a	maximum	on	the	line	t	=	T,	at	P1	=	(x1,	t	=	T).	Then
∇v	 =	 0,	 Δv	 ≤	 0,	 and	 vt	 ≥	 0	 at	 P1.1	 Now	 we	 have	 vt	 −	 kΔv	 ≥	 0,	 again
contradicting	(5.15).

Therefore	 the	maximum	of	 v	 on	 	 occurs	 on	 	 for	 all	

.	We	have	proved

where	 .	Thus,

Since	ϵ	>	0	is	arbitrary,	we	have	u(x,	t)	≤	M	for	all	 .

Remarks.	 The	 weak	 maximum	 principle	 is	 easy	 to	 prove.	 The	 related	 strong
maximum	principle	 is	 somewhat	harder	 to	prove.	The	strong	maximum	principle
states	that,	provided	U	 is	connected,	the	maximum	of	u	 is	achieved	only	on	the
parabolic	boundary,	unless	u	is	constant	throughout	 	[12].

By	applying	the	maximum	principle	to	−u,	which	also	satisfies	the	conditions
of	Theorem	5.3,	we	see	that	there	is	a	corresponding	minimum	principle:

5.5.	Duhamel’s	Principle	for	the	Inhomogeneous	Heat	Equation
Duhamel’s	principle	gives	a	 formula	 for	 the	 solution	of	an	 inhomogeneous	PDE
using	solutions	of	the	homogeneous	equation.	For	the	heat	equation	on	the	whole
real	line,	Duhamel’s	principle	utilizes	the	fundamental	solution.

Let	f(x,	t)	be	a	given	function	representing	a	heat	source	or	sink,	and	consider
the	initial	value	problem

The	fundamental	solution	Φ(x,	t)	of	the	homogeneous	heat	equation	satisfies	ut	=



kuxx	for	t	>	0.	But	then	for	any	y	∈	R	and	s	>	0,	the	shifted	function	Φ(x	−	y,	t
−	s)	satisfies	the	equation	for	t	>	s.	We	can	multiply	by	an	amplitude	f	(y,	s),	so
that	we	have	a	collection	of	solutions	Φ(x	−	y,	t	−	s)	f(y,	s)	of	the	heat	equation,
with	y	∈R	and	t	>	s.	Summing	(i.e.,	integrating)	these	solutions	over	y	∈	R	with
s	fixed,	we	have	that

is	a	solution	for	all	t	>	s,	satisfying	 .

Now	 the	 idea	 is	 to	 integrate	 	 with	 respect	 to	 s	 from	 0	 to	 t.	 Define	
.	Then

In	 this	 calculation	 we	 differentiated	 under	 the	 integral	 sign,	 ignoring	 the
singularity	of	Φ(x	−	y,	t	−	s)	at	x	=	y,	t	=	s	on	the	boundary	of	the	domain	of
integration.	However,	this	singularity	can	be	handled	with	the	appropriate	limit,
and	the	result	is	the	same.	(See	Evans	[12],	p.	50	for	the	details.)

Finally,	we	observe

In	summary,	the	formula

solves	 the	 initial	 value	 problem	 (5.16).	 General	 initial	 conditions	 can	 be
incorporated	easily,	just	as	for	the	wave	equation.

In	 this	 chapter,	we	have	 constructed	 solutions	of	 initial	 value	problems	 for	 the
heat	equation;	derived	some	basic	principles,	such	as	the	maximum	principle;	and
examined	 certain	 properties,	 such	 as	 uniqueness	 of	 solutions.	 The	 solution	 of
initial	 value	 problems	 is	 described	 using	 the	 fundamental	 solution	 of	 the	 heat
equation,	whereas	for	the	wave	equation,	the	solutions	are	given	by	propagating
disturbances	with	waves,	expressed	through	d’Alembert’s	solution.	Using	the	two
formulas,	 we	 can	 make	 some	 comparisons,	 which	 are	 a	 good	 guide	 to	 the
differences	 between	 solutions	 of	 hyperbolic	 equations	 and	 those	 of	 parabolic
equations.

Solutions	 of	 hyperbolic	 equations	preserve	 the	 regularity	 of	 the	 initial	 data,



propagating	 disturbances	 and	 singularities	 along	 characteristics,	 which	 have
finite	 speed.	 By	 contrast,	 solutions	 of	 the	 heat	 equation	 and	 other	 parabolic
equations	 immediately	 smooth	 initial	 data,	 and	 information	 is	 propagated	with
infinite	speed.

Nonlinear	equations	may	have	different	properties.	For	example,	 the	porous
medium	equation	ut	=	Δ(um)	 is	degenerate	at	u	=	0	for	m	>	1,	a	consequence
being	 that	 initial	 data	 with	 compact	 support	 spread	 but	 with	 finite	 speed;	 the
solution	u(x,	t)	continues	to	have	compact	support	for	each	time	t	>	0.

PROBLEMS

1.	Fill	in	the	following	details	used	in	the	proof	of	Theorem	5.1,	property	3.

(a)	Use	the	triangle	inequality	to	prove	that	if	δ	>	0,	and	x,	x0,	y	∈	Rn	satisfy	
,	 then	 .	 (Hint:	 Draw	 a	 picture	 in	 the	 one-

dimensional	case,	n	=	1,	to	visualize	how	the	argument	works.)

(b)	Prove	that	 .

2.	Show	that	 .	Consequently,	the	heat	equation	for	rotationally
symmetric	functions	u(x,	t)	=	ϕ(r,	t),	r	=	|x|,	is

3.	(a)	Let	g	:	[0,	∞)	→	R	be	a	bounded	integrable	function.	Prove	directly	that

is	an	odd	function	of	x	∈	R	for	each	t	>	0.

(b)	Let	h	:	R	→	R	be	an	odd	bounded	integrable	function.	Prove	that

is	an	odd	function	of	x	∈R	for	each	t	>	0.	That	is,	the	symmetry	in	the	initial
data	is	carried	through	to	the	same	symmetry	in	the	solution.

4.	Write	the	solution	of	the	Cauchy	problem	for	the	heat	equation

with	initial	condition	 	in	terms	of	the	error	function



5.	Solve	the	heat	equation	(5.17)	with	initial	condition	u(x,	0)	=	epx,	where	p	>
0	is	a	constant.	You	can	use	the	identity	 .

6.	Solve	the	heat	equation	(5.17)	with	initial	condition	u(x,	0)	=	H(x)e−x.

7.	Prove	the	energy	inequality	for	ut	=	∇	·	(k(x,	u)∇u),	where	k	=	k(x,	u)	∈	R	is
a	given	positive	function.

8.	Consider	the	Cauchy	problem	for	(5.17),	with	initial	condition	u(x,	0)	=	x2.

(a)	Show	that	if	u(x,	t)	is	the	solution,	then	v(x,	t)	=	uxxx(x,	t)	satisfies	the	heat
equation	with	v(x,	0)	=	0.

(b)	Find	u(x,	t)	as	an	explicit	formula.

9.	Consider	the	initial	value	problem

with	constant	d,	and	given	integrable	function	g.

(a)	 Use	 the	 change	 of	 variable	 u(x,	 t)	 =	 e−dtv(x,	 t)	 to	 find	 u	 using	 the
fundamental	solution.

(b)	What	is	the	effect	of	the	constant	d?

(c)	Suppose	d	=	d(t)	is	a	given	continuous	function.	What	would	be	a	suitable
change	of	variable	to	solve	the	problem?

10.	Devise	a	change	of	variable	corresponding	to	a	moving	frame	of	reference	to
solve	 the	 initial	 value	 problem	 for	 the	 convection-diffusion	 equation	 with
constant	speed	c

11.	 Formulate	 and	 prove	 a	 statement	 regarding	 conservation	 of	 energy	 for	 the
wave	equation	on	a	bounded	domain	in	Rn:

under	homogeneous	Dirichlet	or	Neumann	boundary	conditions.

1.	The	final	inequality	is	easily	proved	by	contradiction:	if	vt	<	0	at	P1,	then	v(x1,	t)	>	v(x1,	T)	for	t	<	T
close	to	t	=	T,	contradicting	the	assumption	that	v	has	a	maximum	at	P1.



CHAPTER	SIX

Separation	of	Variables	and	Fourier
Series
In	this	chapter	we	find	explicit	solutions	of	the	heat	equation	and	wave	equation
on	bounded	domains	using	the	powerful	method	of	separation	of	variables.	The
method	allows	us	to	express	solutions	of	constant-coefficient	equations	as	infinite
series	 of	 functions.	 Recall	 that	 infinite	 series	 of	 functions	 were	 used	 for	 the
Cauchy-Kovalevskaya	Theorem	of	Section	2.3,	where	solutions	were	expressed	as
power	series.	In	this	chapter	the	solutions	are	series	of	trigonometric	functions	of
the	 spatial	 variable	 x	 with	 coefficients	 that	 depend	 on	 time	 t.	 Such	 series	 are
called	 Fourier	 series.	 We	 introduce	 them	 here,	 show	 how	 they	 relate	 to	 the
method	of	separation	of	variables,	and	study	them	more	extensively	in	the	next
chapter.

Fourier	 series	 solutions	 have	 several	 advantages	 over	 power	 series.	 Fourier
series	 can	 be	 used	 to	 represent	 functions	 that	 are	 not	 analytic,	 for	 example,
continuous	 functions.	 Moreover,	 solutions	 expressed	 as	 Fourier	 series	 are
typically	designed	to	have	each	term	in	 the	series	satisfy	both	the	PDE	and	the
boundary	 conditions,	 provided	 the	 boundary	 conditions	 are	 homogeneous.
Consequently,	 the	only	 issues	with	 such	an	 approach	are:	 (1)	how	 to	 construct
the	series	and	(2)	convergence.	We	deal	with	the	construction	in	this	chapter,	and
give	rigorous	convergence	results	in	the	next	chapter.

6.1.	Fourier	Series
In	 this	 section	we	 introduce	 the	notation	and	basic	 formulas	 for	Fourier	 series.
Consider	a	continuous	function	f	:	R	→	R	that	is	periodic	with	period	2L.	Then	f
can	be	represented	by	a	Fourier	series,	which	takes	the	form:

An	 important	property	of	 the	 trigonometric	 functions	 in	 this	 series	 is	 that	 they
are	orthogonal	on	the	interval	x	∈	[−L,	L].	Thus,	for	all	j,	k	=	0,	1,	2,	…,

and



where	

is	the	Kronecker	delta.	By	multiplying	(6.1)	by	one	of	the	sine	or	cosine	functions
and	 integrating,	 the	 coefficients	an,	 bn	 are	 readily	 obtained	 from	 f,	 in	 the	Euler
formulas:

with	n	=	0,	1,	2,	….	The	coefficients	an	are	called	Fourier	cosine	coefficients,	and
the	bn	are	Fourier	sine	coefficients.

For	 an	 odd	 function	 f,	 all	 the	 cosine	 coefficients	 are	 zero,	 and	 the	 sine
coefficients	are

The	resulting	series	of	sine	functions	is	called	the	Fourier	sine	series	of	f.	Note	that
the	coefficients	(6.5)	are	defined	even	if	f	is	specified	only	on	the	interval	[0,	L].
Then	the	Fourier	sine	series	is	the	Fourier	series	of	the	odd	periodic	extension	of	f,
wherein	f	is	extended	to	be	an	odd	function	 	that	is	2L	periodic	and	such	that	
(x)	=	f(x),	0	<	x	<	L.

Similarly,	if	f	is	an	even	function,	then	it	has	a	Fourier	cosine	series,	in	which
all	the	sine	coefficients	are	zero,	and	the	cosine	coefficients	are	given	by	integrals
over	the	interval	[0,	L]:

If	f	is	an	integrable	function	on	[−L,	L],	then	the	Fourier	coefficients	are	well
defined,	and	we	say	that	f	has	a	Fourier	series.	The	series	may	converge	to	f	only
in	 a	weak	 sense	 that	we	make	precise	 in	Chapter	7,	where	 the	 convergence	 of
Fourier	series	is	discussed	in	detail.

6.2.	Separation	of	Variables	for	the	Heat	Equation
The	method	of	separation	of	variables	works	most	simply	for	the	heat	equation	in
one	 space	 dimension	 with	 homogeneous	 Dirichlet	 boundary	 conditions.	 If	 you
follow	 the	 method	 in	 this	 case,	 then	 using	 separation	 of	 variables	 in	 other



circumstances	becomes	a	matter	of	changing	some	details.

Consider	 the	 initial	 boundary	 value	 problem	 with	 homogeneous	 Dirichlet
boundary	conditions	and	initial	data	given	by	a	continuous	function	f	:	[0,	L]	→
R,

We	summarize	the	method	in	two	steps.	In	the	first	step,	we	seek	solutions	in
the	special	separated	form

a	function	of	x	times	a	function	of	t.	Substituting	into	the	PDE	and	the	boundary
conditions,	we	obtain	ODE	 for	 the	 functions	v,	w	with	 corresponding	boundary
conditions.	This	step	leads	to	a	family	of	solutions	{un(x,	t),	n	=	1,	2,	…}.

In	 the	 second	 step,	 we	 write	 a	 linear	 combination	 of	 the	 un	 (actually,	 an
infinite	series):

This	 series	 is	a	 representation	of	 the	general	 solution	of	 the	PDE	and	boundary
conditions.	It	remains	to	choose	the	coefficients	bn	∈	R,	n	=	1,	2,	…	to	satisfy	the
initial	condition.

Claim	6.1.	This	process	leads	to	the	series	solution	of	(6.7):

Proof.	 As	 indicated	 above,	 the	 proof	 is	 organized	 around	 constructing	 the
solution	in	two	steps.

Step	1.	Substitute	u(x,	t)	=	v(x)w(t)	into	the	PDE:

Dividing	by	kv(x)w(t)	and	simplifying,	we	get



a	constant.	Note	that	physical	constants	such	as	k	are	always	included	with	the
time	portion,	so	that	the	spatial	piece	becomes	a	standard	equation.	Also,	the
minus	sign	on	the	right-hand	side	of	(6.9)	is	included	so	that	values	of	λ	all
turn	out	to	be	real	and	positive.

From	(6.9)	we	have	two	ODE	for	v(x),	w(t),	with	an	additional	unknown,
the	parameter	λ:

To	summarize,	u(x,	t)	=	v(x)w(t)	satisfies	the	PDE	if	and	only	if	v(x),	w(t)
satisfy	(6.10)	for	some	λ	∈	R.

Now	we	substitute	into	the	boundary	conditions	for	u,	and	note	that	to	get
solutions	u	that	are	not	identically	zero,	we	must	have	corresponding	boundary
conditions	on	v.	For	example,	u(0,	t)	=	0	=	v(0)w(t),	so	that	either	w(t)	=	0
for	 all	 t	 (implying	 that	 u(x,	 t)	 ≡	 0)	 or	 v(0)	 =	 0.	 Incorporating	 boundary
conditions	 at	both	x	=	0	 and	x	=	L	 completes	 the	 eigenvalue	 problem	 to	 be
solved	for	v(x):

The	eigenvalue/eigenfunction	pairs	for	(6.11)	are

With	these	eigenvalues,	we	turn	to	(6.10a)	for	w(t),	setting	λ	=	λn.	The	general
solution	of	this	simple	first-order	ODE	is	an	arbitrary	multiple	of

Note	the	important	property	that	all	the	wn	decay	in	time,	because	the
eigenvalues	are	real	and	positive.

Now	we	complete	step	1	by	setting	u	=	un(x,	t)	=	vn(x)wn(t),	n	=	1,	2,	….

Step	2.	To	satisfy	the	initial	condition,	we	form	the	series

Substituting	t	=	0	into	the	series	and	using	the	initial	condition	in	(6.7),	we
get



Now	we	can	extract	the	formula	for	bn	from	the	Euler	formulas	(6.4).

Having	 completed	 a	 procedure	 to	 generate	 a	 formula,	 it	 is	 natural	 to	 ask
whether	 the	 formula	 in	 the	 claim	 really	 solves	 the	 initial	 boundary	 value
problem.	In	particular,	we	have	not	proved	that	the	series	converges,	or	 indeed
whether	all	initial	functions	f	can	be	represented	by	a	Fourier	sine	series.	Even	if
the	series	for	u(x,	t)	converges,	we	need	to	know	whether	the	limit	is	sufficiently
differentiable	to	be	a	solution	of	the	heat	equation.	We	postpone	these	important
considerations	for	now,	with	the	remark	that	the	rapid	decay	of	the	coefficients
bne−kλnt	of	 	for	t	>	0	implies	that	the	series	converges	uniformly	to
a	C∞	function,	and	differentiation	term-by-term	can	be	used	to	verify	that	u(x,	t)
does	indeed	solve	the	problem.

It	 is	worth	noting	that	the	boundary	conditions	are	satisfied	for	 t	>	0,	even
though	they	may	not	be	satisfied	by	the	initial	data.	For	the	wave	equation	such	a
discontinuity	 is	 propagated	 along	 characteristics,	 but	 for	 the	 heat	 equation	 the
discontinuity	 is	 immediately	smoothed	and	does	not	propagate	 into	 the	 interior
of	the	domain.

We	 next	 illustrate	 the	 method	 of	 separation	 of	 variables	 with	 two	 worked
problems.	In	the	first	problem	we	set	the	constants	k,	L	and	choose	the	initial	f	to
show	that	the	infinite	series	may	have	only	a	finite	number	of	nonzero	terms.

Example	 1.	 (Homogeneous	Dirichlet	 boundary	 conditions)	 Solve	 the	 initial
boundary	value	problem

Separation	 of	 variables	with	 these	 homogeneous	 Dirichlet	 boundary	 conditions
and	L	=	1	gives	eigenfunctions	sin	nπx.	Therefore,	since	k	=	7,

Now	we	choose	the	coefficients	bn	so	the	series	agrees	with	the	initial	condition
when	 t	 =	 0.	 Since	 the	 initial	 condition	 is	 a	 Fourier	 sine	 series	 with	 just	 two
terms,	the	series	for	u(x,	t)	also	has	only	two	terms.	Let



Then

is	the	solution.

Example2.	 (Homogeneous	 Neumann	 boundary	 conditions)	 In	 this	 example
we	change	the	boundary	condition	and	consequently	get	different	eigenfunctions.
Consider	the	initial	boundary	value	problem,	in	which	we	have	L	=	π,	k	=	4:

Recall	 that	 in	 the	 first	 step	 of	 separation	 of	 variables,	we	 consider	 the	PDE
and	 boundary	 conditions	 only;	 then	 in	 step	 2	 we	 form	 a	 series	 of	 separated
solutions	to	satisfy	the	initial	condition.	Neumann	boundary	conditions	support	a
constant	solution,	which	differs	from	the	Dirichlet	case:	a	nonzero	constant	does
not	satisfy	the	homogeneous	Dirichlet	boundary	conditions.

Let	u(x,	t)	=	v(x)w(t).	The	ODE	for	v,	w	with	boundary	conditions	are	now

We	solve	the	eigenvalue	problem	for	λ	=	λn,	v	=	vn.	First	note	that	λ0	=	0	gives
v″(x)	=	0,	so	that	v	is	linear.	But	v′(0)	=	0	=	v′(π)	implies	that	v	 is	 flat	at	the
ends,	so	it	must	be	flat	everywhere.	That	is,	v	is	constant:

For	λ	>	0,	the	general	solution	of	the	ODE	is	a	combination	of	sines	and	cosines.
Using	the	boundary	conditions,	we	arrive	at

The	 time-dependent	 part	 of	 the	 solution	 is	 the	 same	 as	 for	 Dirichlet	 boundary
conditions,	since	the	eigenvalues	are	the	same,	except	that	the	constant	solution
is	included	here	as	well:

To	complete	the	separation	of	variables	step,	we	form	the	solutions

Now	we	can	form	the	series	solution	of	the	PDE	and	boundary	conditions:



Finally,	we	 satisfy	 the	 initial	 condition	by	determining	 the	coefficients	an	 using
orthogonality	 of	 the	 eigenfunctions.	 Setting	 t	 =	 0	 in	 the	 series,	 the	 initial
condition	becomes

Multiplying	 by	 cos	mx	 and	 integrating	 both	 sides	 from	 0	 to	π,	 we	 see	 that	 all
terms	become	zero,	except	where	m	=	n.	Consequently,	integrating	by	parts	and
using	cos	nπ	=	(−1)n,	we	have

Thus,	the	solution	is

in	which	we	have	written	n	=	2k	−	1,	k	≥	1.	We	discuss	convergence	of	Fourier
series	comprehensively	in	Chapter	7,	but	it	is	easy	to	show	that	the	specific	series
(6.14)	converges.

Claim	6.2.	The	series	(6.14)	converges	uniformly	for	t	≥	0.

Proof.	To	prove	the	claim,	we	estimate	the	kth	term	of	the	series:

Since	 	 is	a	convergent	series	of	constants,	 the	Weierstrass	M-test	(see

Appendix	B)	implies	the	series	(6.14)	converges	uniformly	in	x	for	each	t	≥	0.

To	 examine	 whether	 the	 series	 satisfies	 the	 PDE,	 we	 need	 to	 be	 able	 to
differentiate	term	by	term.	For	t	>	0,	the	coefficient	of	the	kth	term	in	the	series
decays	exponentially	in	k,	since	the	exponential	e−4(2k−1)2t	is	multiplied	only	by	a
rational	 function	 (a	 ratio	 of	 polynomials).	 The	 same	 is	 true	 of	 the	 coefficients
after	 differentiating	 any	 number	 of	 times	 in	 x	 and	 t.	 Consequently,	 from	 the
standard	 result	 on	 uniform	 convergence	 and	 differentiating	 series	 of
differentiable	 functions	 term	 by	 term,	 the	 series	 converges	 uniformly	 to	 a	 C∞
function.



The	situation	at	t	=	0	is	rather	different.	While	the	Fourier	series	converges
uniformly	for	each	x	∈	R	to	the	continuous	even	periodic	extension	of	f(x)	=	x,
this	function	has	jump	discontinuities	in	the	derivative.	Consequently,	the	series
differentiated	with	 respect	 to	x	does	not	 converge	uniformly	 at	 t	=	0,	 and	 the
twice	differentiated	series	converges	only	in	a	much	weaker	sense,	specifically,	in
the	sense	of	distributions	(see	Section	9.2).

Because	 Neumann	 boundary	 conditions	 correspond	 to	 insulated	 ends,	 heat
energy	is	conserved,	which	we	can	see	explicitly	in	the	series	solution.	The	heat
energy	at	time	t	is	proportional	to

Then	we	have

from	the	boundary	conditions.	Therefore,

Now,	as	t	→	∞,	the	series	converges	to	a	constant:	 .	From	conservation	of

energy,	we	calculate

Therefore,

This	conclusion	agrees	with	the	calculation	of	a0	from	orthogonality.

6.2.1.	Robin	Boundary	Conditions

Robin-type	boundary	conditions	 relate	 the	normal	derivative	of	 the	 function	on
the	 boundary	 to	 the	 function	 itself.	 We	 relate	 the	 analysis	 of	 these	 boundary
conditions	to	physical	considerations,	such	as	the	direction	in	which	heat	is	being
transported	across	the	boundary.	Consider	the	following	problem:



The	physical	 interpretation	of	 the	boundary	conditions	depends	on	 the	 signs	of
the	coefficients:

Since	 heat	 energy	 flows	 from	 warm	 to	 cool,	 at	 x	 =	 L	 if	 u	 >	 0,	 a	 radiating
boundary	condition	will	give	ux	>	0,	so	that	heat	will	flow	out	of	the	boundary
(the	heat	flux	is	negative),	whereas	for	an	absorbing	boundary	condition,	ux	<	0,
and	heat	will	flow	into	the	domain	through	the	boundary	at	x	=	L.	Consequently,
for	 radiating	 boundary	 conditions,	 all	 eigenvalues	 are	 positive,	 because	 heat	 is
transported	out	of	the	domain.	For	absorbing	boundary	conditions,	there	may	be
one	or	more	negative	eigenvalues.

Separation	of	variables	leads	to	the	eigenvalue	problem

We	 consider	 the	 implications	 of	 radiating	 and	 absorbing	 boundary	 conditions
separately.

Radiating	boundary	conditions	a0	>	0,	aL	>	0.	For	positive	eigenvalues	λ	=
β2	>	0,	the	general	solution	of	the	ODE	is

Now	we	use	the	boundary	conditions	to	find	equations	for	A,	B,	and	β:



Figure	6.1.	Plots	of	tan	βL	(solid	curves)	and	β(a0	+	aL)/(β2	−	a0aL)	(dashed
curves)	with	L	=	π,	a0	=	1,	aL	=	2.

Dividing	by	cos	βL	and	substituting	in	for	A,	we	find	either	B	=	0	or

which	is	an	equation	for	β,	since	all	the	other	constants	are	given.	We	reject	B	=
0,	because	it	leads	only	to	the	trivial	solution	u	≡	0.

From	Figure	6.1,	we	observe	that	there	are	solutions	β1	<	β2	<	…	:

As	n	→	∞	the	βns	are	approaching	the	lower	limit	to	leading	order:

Thus,	as	n	→	∞	the	eigenvalues	 	approach	the	eigenvalues	 	that

we	found	for	either	Neumann	or	Dirichlet	boundary	conditions.

The	corresponding	eigenfunctions	are	given	by

Absorbing	boundary	conditions.	In	the	case	of	absorbing	boundary	conditions,



a0	<	0,	aL	<	0,	heat	energy	is	absorbed	through	the	boundaries.	Consequently,
we	might	 expect	 the	 temperature	 to	 rise	when	 both	 boundaries	 are	 absorbing.
Correspondingly,	at	least	one	eigenvalue	should	be	negative.	Positive	eigenvalues
λ	=	β2	satisfy	(6.16)	and	can	be	represented	as	intersections	of	the	graphs	of	tan
βL	and	the	right-hand	side	of	the	equation,	similar	to	Figure	6.1.

The	issue	is	less	clear	when	one	boundary	is	absorbing	and	one	is	radiating,	a
situation	explored	in	the	exercises.

6.2.2.	Inhomogeneous	Boundary	Conditions

Up	 to	now	 the	method	of	 separation	of	variables	has	 relied	on	homogeneity	 in
boundary	conditions	and	in	the	PDE.	Here	we	consider	a	sample	initial	boundary
value	 problem	 showing	 how	 to	 handle	 inhomogeneous	 problems.	 Consider	 the
initial	boundary	value	problem

The	strategy	is	to	first	ignore	the	inhomogeneities	f,	u0,	uπ	so	that	we	can	identify
suitable	 eigenfunctions	 vn(x).	 Then	 we	 form	 a	 series	 	 with	 time-
dependent	coefficients	wn(t)	 that	are	determined	in	a	new	way	to	accommodate
the	inhomogeneities.

From	 the	 homogeneous	 version	 of	 problem	 (6.17),	 we	 know	 that	 the
eigenfunctions	are	sines,	due	to	the	boundary	conditions.	Thus,	we	consider	the
Fourier	sine	series	for	u:

To	satisfy	the	PDE,	we	also	expand	f(x,	t)	as	a	Fourier	sine	series:

where	the	coefficients	are	defined	by

The	 series	 (6.18)	 apparently	 does	 not	 satisfy	 the	 inhomogeneous	 boundary
conditions,	because	when	evaluated	at	x	=	0	or	x	=	π	the	series	gives	the	value
zero.	However,	we	shall	see	in	the	next	chapter	that	Fourier	series	can	converge
to	a	function	that	is	discontinuous.	Where	the	boundary	condition	is	nonzero,	it	is



satisfied	 by	 the	 series	 (6.18)	 in	 the	 sense	 that	 u(x,	 t)	 approaches	 the	 specified
value	(u0(t)	or	uπ(t))	as	x	approaches	the	boundary:

To	find	the	coefficients	wn(t),	we	could	substitute	the	series	(6.18)	into	the	PDE
and	equate	terms.	However,	this	procedure	would	omit	the	effect	of	the	boundary
conditions,	so	instead,	we	use	the	Euler	formulas	for	the	coefficients	wn(t):

Guided	by	the	expectation	of	an	ODE	for	wn(t),	we	differentiate	and	then	use	the
PDE:

integrating	by	parts	twice.	We	can	rewrite	this	as	an	inhomogeneous	ODE,

where	 .	Setting	 t	=	0	 in	 (6.19),	we	 obtain	 the

initial	condition

The	solution	of	the	initial	boundary	value	problem	(6.17)	is	given	by	the	series
(6.18),	where	the	coefficients	wn(t)	are	obtained	by	solving	the	ODE	initial	value
problem	(6.20),	(6.21).

6.3.	Separation	of	Variables	for	the	Wave	Equation
Separation	 of	 variables	 works	 for	 the	 wave	 equation	 on	 bounded	 domains	 in
much	the	same	way	it	works	for	the	heat	equation.	Differences	arise	because	the
wave	equation	has	two	time	derivatives,	rather	than	the	one	time	derivative	that
appears	 in	 the	 heat	 equation.	 Previously	 we	 emphasized	 the	 traveling	 wave
structure	 of	 solutions	 of	 the	 wave	 equation	 through	 d’Alembert’s	 solution,
whereas	separation	of	variables	highlights	the	role	of	vibrations,	which	are	time-
periodic	solutions.	The	typical	physical	context	for	these	solutions	is	a	vibrating
string	of	finite	length,	where	the	eigenfunctions	for	the	wave	equation	are	modes
of	vibration	for	different	frequencies.



Consider	the	initial	value	problem	for	the	wave	equation

We	 solve	 this	 problem	 by	 following	 the	 separation-of-variables	 procedure	 used
for	the	corresponding	initial	boundary	value	problem	(6.7)	for	the	heat	equation.
Because	 there	 are	 two	 t	 derivatives	 in	 the	PDE,	we	need	 two	 initial	 conditions
instead	of	one.	Also,	the	constant	k	>	0	in	the	heat	equation	is	replaced	by	the
constant	c2	>	0	in	the	wave	equation.

Claim	6.3.	The	solution	of	(6.22)	is	the	series

with

Proof.	We	 substitute	u(x,	 t)	=	v(x)w(t)	 into	 the	PDE	and	boundary	 conditions,
and	divide	by	c2w(t).	This	leads	to

which	 is	 a	 constant.	 Now	we	 have	 two	ODE	 for	 v(x),	w(t),	 with	 an	 additional
unknown,	the	parameter	λ:

Just	 as	 for	 the	 heat	 equation,	 the	 PDE	 boundary	 conditions	 become	 boundary
conditions	for	v(x):

We	already	know	the	eigenvalues	λ	and	eigenfunctions	v	for	this	problem:

The	difference	between	the	heat	equation	and	the	wave	equation	solutions	is	in
the	 time-dependent	 part	w(t).	 The	 ODE	 (6.25a),	 with	 λ	=	 λn,	 has	 the	 general
solution



Now	we	let	un(x,	t)	=	vn(x)wn(t),	n	=	1,	2,	…,	which	is	a	family	of	solutions	of
the	PDE	and	boundary	conditions.	Next	we	form	the	infinite	series

and	it	remains	to	show	how	the	coefficients	an,	bn	are	determined	from	the	initial
conditions.

The	initial	condition	u(x,	0)	=	ϕ(x)	is

leading	to	the	expression	for	an	in	the	claim.

Similarly,	 the	 initial	 condition	 ut(x,	 0)	=	ψ(x)	 leads	 to	 the	 formula	 for	 bn,
since	(differentiating	the	series	with	respect	to	t),

Thus,

from	which	the	formula	in	the	claim	follows.

The	 form	 of	 these	 solutions	 of	 the	 wave	 equation	 leads	 us	 to	 note	 several
differences	 between	 solutions	 of	 the	 wave	 equation	 and	 those	 of	 the	 heat
equation:

1.	The	individual	terms	in	the	series	for	the	wave	equation	oscillate	in	time.
Indeed,	this	is	the	behavior	of	the	solution	as	a	whole;	it	is	periodic	in	time,
with	period	2πL/c.

2.	Using	trigonometric	identities,	you	can	write	(6.23)	in	the	form	u(x,	t)	=	F(x
+	ct)	+	G(x	−	ct).	After	all,	we	know	that	every	solution	of	the	wave
equation	in	one	dimension	is	of	this	form.	It	is	a	good	exercise	to	find	F	and	G
in	terms	of	ϕ	and	ψ,	and	their	periodic	extensions.

6.4.	Separation	of	Variables	for	a	Nonlinear	Heat	Equation



Separation	of	variables	is	very	useful	for	linear	equations.	However,	for	nonlinear
equations,	 it	 is	 not	 nearly	 as	 useful,	 partly	 because	 the	 technique	 depends	 on
linear	 combinations	 of	 solutions	 also	 being	 solutions,	which	 is	 not	 the	 case	 for
nonlinear	equations.	Although	there	generally	will	not	be	solutions	in	which	the
independent	variables	are	separated,	the	porous	medium	equation	has	a	structure
that	 admits	 separated	 solutions	 (See	 Evans	 [12],	 p.	 170.).	 This	 equation	 is	 a
simplified	model	of	 fluid	 flow	 in	a	porous	medium,	 such	as	compacted	sand	or
soil.

Let	m	>	1	be	a	given	constant,	and	consider	the	porous	medium	equation	for
the	unknown	function	u	=	u(x,	t)	>	0,	x	∈	Rn,	t	>	0:

Let	u(x,	t)	=	v(x)w(t).	Then

and	therefore,

Note	 that	 the	 function	F(u)	=	um	 is	homogeneous	of	degree	m,	meaning	F(αu)	=
αmF	 (u),	 for	α	>	0.	 The	 homogeneity	 allows	 us	 to	 separate	 variables.	We	 thus
obtain	the	pair	of	equations

To	solve	(6.27),	we	integrate	once	to	get	 .	Hence,

in	which	λ,	μ	are	constants;	we	need	λ	>	0	to	ensure	that	w(0)	is	defined.

Next,	 we	 find	 spherically	 symmetric	 solutions	 of	 the	 v	 equation	 (6.28).
Consider	v(x)	=	rα,	r	=	|x|,	with	α	a	constant	to	be	determined.	Then

(where	ϕ(r)	=	rmα).	Equating	powers	of	r	yields



Equating	coefficients	results	in

Finally,	combining	v	and	w	gives

where	 α,	 μ	 are	 given	 by	 (6.29),	 (6.30),	 but	 λ	 >	 0	 is	 a	 free	 parameter.	 The
solution	u(x,	t)	is	well	defined	as	t	→	0+.	However,	as	t	increases,	the	negative
fractional	power	means	that	u	blows	up	as	t	increases	to	 ,	since	m	>	1.

6.5.	The	Beam	Equation
The	beam	equation

is	a	fourth-order	PDE	for	the	deflection	of	a	homogeneous	beam	under	an	applied
external	 load	 distribution	 q(x,	 t).	 The	 beam	 equation	 is	 written	 here	 in
nondimensional	 form,	 in	which	 the	 dimensionless	 parameter	G	=	EI/ρ	>	0	 is
related	 to	 the	elastic	modulus	E,	 the	bending	modulus	 I,	 and	 the	density	 (mass
per	unit	length)	ρ.	This	equation	models	small	deflections	from	a	straight	beam
and	 is	 based	 on	 assuming	 that	 cross	 sections	 bend	 around	 the	 center	 line	 and
exert	forces	on	one	another	due	to	bending,	leading	to	compression	on	one	side
of	the	center	line	and	stretching	on	the	opposite	side.

The	dispersion	relation	is	obtained	by	seeking	solutions	related	to	the	Fourier
transform	of	(6.31).	Let	q	≡	0	and	u	=	exp(iωt	+	iξx).	Then

gives	 the	 temporal	 frequency	 ω	 as	 a	 function	 of	 the	 spatial	 frequency	 ξ.
However,	 it	 is	 somewhat	 more	 informative	 to	 consider	 the	 full	 separated
equations,	as	we	did	in	Sections	6.2	and	6.3	for	second-order	equations.

Let	u(x,	t)	=	v(x)w(t).	Substituting	into	the	beam	equation	(6.31)	and	dividing
by	vw,	we	get	two	ODE:

where	ω2	>	0	is	constant,	and	 .	Thus	w(t)	=	A	cos	ωt	+	B	sin	ωt,	and
the	general	solution	for	v(x)	is



with	arbitrary	constants	a,	b,	c,	d.

Since	the	equation	is	fourth	order	in	space,	we	need	four	boundary	conditions,
and	two	initial	conditions	are	also	needed,	since	the	equation	is	second	order	in
time.	For	example,	 for	a	beam	fixed	at	both	ends	x	=	0,	x	=	L,	 the	boundary
conditions	are

These	clamped-beam	boundary	conditions	translate	to	the	four	boundary	conditions
on	 v(x)	 that	 require	 v	 and	 v′	 to	 be	 zero	 at	 each	 end.	 Then	 by	 processing	 the
conditions	on	v	given	by	(6.32),	we	find	the	spatial	wave	numbers	μ	=	μn,	n	=
1,	2,	…,	are	determined	from	the	equation

It	is	easy	to	see	that	μn	∈	((n	−	1)π/L,	nπ/L),	and	(since	sech	ξ	→	0	as	ξ	→	∞),
μn	∼	nπ	as	n	→	∞.

A	cantilevered	beam	is	taken	to	be	clamped	at	one	end	x	=	0,	and	free	at	the
other.	The	boundary	conditions	are

In	this	case,	we	also	find	(see	problem	8)	μn	∈	((n	−	1)π/L,	nπ/L).

In	this	chapter	we	have	seen	how	to	implement	the	method	of	separation	of
variables	in	several	example	problems.	In	the	next	chapter	we	place	the	method
in	 a	 rigorous	 theoretical	 framework.	 In	 particular,	 we	 explore	 eigenvalue
problems	 and	 prove	 results	 on	 the	 convergence	 of	 infinite	 series	 of
eigenfunctions,	including	Fourier	series.

PROBLEMS
1.	Solve	the	initial	boundary	value	problem

2.	Solve	the	initial	boundary	value	problem



3.	 Consider	 the	 eigenvalue	 problem	 (6.15)	 with	 Robin	 boundary	 conditions.
Suppose	λ	=	0	is	an	eigenvalue.

(a)	Find	the	eigenfunction.

(b)	Find	a	necessary	condition	on	the	coefficients	a0,	aL.

(c)	Prove	 that	 this	condition	 is	also	 sufficient	 to	guarantee	 that	λ	=	0	 is	an
eigenvalue.

4.	Consider	the	eigenvalue	problem	(6.15)	with	Robin	boundary	conditions.

(a)	Prove	that	there	is	at	least	one	negative	eigenvalue	in	the	absorbing	case	a0
<	0,	aL	<	0.

(b)	 Find	 a	 condition	 on	 a0,	aL	 that	 is	 necessary	 and	 sufficient	 to	 have	 two
negative	eigenvalues.

5.	 Consider	 the	 eigenvalue	problem	 (6.15)	with	Robin	 boundary	 conditions.	 In
the	 radiating	 case	 a0	>	 0,	 aL	>	 0,	 prove	 the	 properties	 shown	 graphically	 in
Figure	6.1.	(Hint:	As	in	the	text,	it	is	easier	to	let	λ	=	β2.	You	can	also	use	tan(nπ
+	θ)	=	tan	θ.)

(a)	There	are	an	infinite	number	of	eigenvalues	λn,	n	≥	1.

(b)	 .

(c)	 .

(d)	If	βn	=	(n	−	1)π/L	+	θn,	with	θn	→	0	as	n	→	∞,	find	the	leading-order
behavior	of	θn	:	θn	=	A/n	+	O(1/n2).

6.	This	problem	is	a	graphical	summary	of	problems	3–5.	Sketch	the	hyperbola
a0aLL	+	a0	+	aL	=	0	in	the	a0,	aL	plane,	showing	the	asymptotes.	In	your	sketch,
label	 the	(three)	regions	corresponding	 to	values	of	 (a0,	aL)	 for	which	 there	are
two,	 one,	 or	 zero	 negative	 eigenvalues.	 Label	 the	 point	 corresponding	 to
Neumann	 boundary	 conditions.	 Where	 in	 the	 plane	 are	 Dirichlet	 boundary
conditions	represented?

7.	For	constants	0	<	m	<	L,	let

where	 pj,	 rj,	 j	=	1,	 2,	 are	 positive	 constants.	 Assuming	 that	 eigenfunctions	 are
continuously	 differentiable,	 find	 an	 equation	 for	 the	 eigenvalues	 λ	 for	 the
eigenvalue	problem



You	may	assume	that	the	eigenvalues	are	real	and	positive.

8.	The	beam	equation	is	associated	with	eigenvalue	problems	for	the	fourth-order
ODE

Using	the	general	solution	(6.32),	find	an	equation	for	the	positive	eigenvalues	λ
=	μ4	for	the	cantilevered	beam,	with	boundary	conditions

From	this	equation,	or	using	a	graph,	show	that	there	are	an	infinite	number	of
positive	eigenvalues	λn,	corresponding	to

State	the	leading-order	dependence	of	λn	on	n	as	n	→	∞.

9.	(a)	Calculate	the	Fourier	series	of	the	function	f(x)	that	is	odd	and	2π	periodic,
with	f(x)	=	1,	0	<	x	<	π.

(b)	Assuming	the	series	converges	to	f(x)	=	1	at	x	=	π/4,	calculate	the	sum	of
the	series



CHAPTER	SEVEN

Eigenfunctions	and	Convergence	of
Fourier	Series
In	the	previous	chapter	we	used	the	technique	of	separation	of	variables	to	solve
a	variety	of	initial	boundary	value	problems	for	the	heat	and	wave	equations.	We
showed	how	the	technique	leads	naturally	to	eigenvalue	problems	for	the	spatial
dependence	 of	 the	 solutions.	 The	 resulting	 eigenfunctions	 (sines	 and	 cosines	 in
the	previous	chapter)	are	then	combined	into	infinite	series	with	time-dependent
coefficients	to	represent	the	solution	of	the	PDE	and	its	initial	conditions.

In	this	chapter	we	show	that	the	technique	can	also	be	used	for	nonconstant-
coefficient	equations,	such	as

in	which	 the	coefficients	p,	q	 are	 specified	 functions.	However,	 the	eigenvalues
and	 eigenfunctions	 are	 generally	 not	 available	 explicitly	 for	 such	 equations.
Nonetheless,	with	the	aid	of	 the	Sturm-Liouville	Theory	of	eigenvalue	problems
in	Section	7.1,	we	place	on	a	firm	footing	the	method	of	separation	of	variables
to	construct	infinite	series	of	functions	representing	solutions	of	the	PDE	and	its
boundary	 conditions.	 There	 remains	 the	 issue	 of	 convergence	 of	 the	 infinite
series,	even	for	the	explicit	series	of	the	previous	chapter.	For	example,	so	far	we
have	examined	convergence	of	such	a	series	in	just	one	example.	In	Section	7.2,
we	introduce	notions	of	pointwise,	uniform,	and	L2	convergence,	proving	typical
convergence	results	 in	subsequent	sections.	Finally	 in	Section	7.6,	we	 introduce
the	 Fourier	 transform,	 and	 show	 how	 it	 is	 related	 to	 Fourier	 series	 before
demonstrating	 the	 use	 of	 the	 transform	 in	 PDE,	 and	 discussing	 its	 utility	 in	 a
range	of	areas.

7.1.	Eigenfunctions	for	ODE

Consider	 the	 following	 ODE	 eigenvalue	 problem,	 known	 as	 a	 Sturm-Liouville
problem.	Let	p,	q,	r	be	given	real	C2	functions	on	the	bounded	interval	[a,	b].	We
assume	p(x)	>	0,	r(x)	>	0,	a	≤	x	≤	b.	The	eigenvalue	problem	consists	of	the
ODE

in	which	λ	∈	C	is	a	parameter,	together	with	linear	and	homogeneous	boundary
conditions.	 The	 treatment	 of	 eigenvalue	 problems	 in	 the	 previous	 chapter



corresponds	 to	 the	special	case	p	≡	1,	q	≡	0,	 r	≡	1.	 In	 this	 section	we	derive
properties	of	the	eigenvalues	λ	and	eigenfunctions	v	that	help	make	the	method
of	 separation	 of	 variables	 work	 for	 linear	 PDE	 with	 variable	 coefficients.	 In
particular,	we	show	that	the	orthogonality	of	the	sine	and	cosine	eigenfunctions
in	the	previous	chapter	was	not	an	accident	and	can	be	established	easily	in	the
more	general	context	of	(7.1).

We	define	a	differential	operator	L	by	 .	Then	for	any

v	∈	C2[a,	b],	Lv	 is	a	new	function	(in	C[a,	b]).	To	write	(7.1)	as	an	eigenvalue
problem

we	restrict	the	domain	of	L	to	functions	that	satisfy	the	boundary	conditions.

We	 consider	 complex-valued	 functions,	 so	 as	 to	 include	 the	 possibility	 of
complex	eigenvalues	λ.	In	this	context,	we	need	the	weighted	L2	space	of	square-
integrable	complex-valued	functions,	with	weight	r(x)	and	inner	product	defined
by

The	corresponding	norm	(see	Appendix	B)	is

For	simplicity,	we	assume	r	≡	1and	leave	to	problem	2	the	consideration	of	more
general	functions	r(x)	>	0.

Notice	 that	 L	 has	 a	 special	 form,	 in	 which	 the	 first-	 and	 second-order
derivatives	are	combined	into	a	single	term	that	can	be	integrated.	This	allows	us
to	use	integration	by	parts	as	follows.	For	u,	v	∈	C2[a,	b],

If	the	boundary	conditions	are	such	that	the	boundary	term	vanishes:

then	we	have	the	identity



In	this	case,	we	say	L	 is	symmetric.	Notice	 that	 this	depends	on	 two	properties,
namely,	the	special	form	of	the	second-order	differential	operator	and	condition
(7.4)	on	the	boundary	conditions.

Theorem	7.1.	Let	L	be	symmetric.	Then

1.	all	eigenvalues	of	L	are	real,	and

2.	eigenfunctions	of	different	eigenvalues	are	orthogonal.

Proof.	 The	proof	 is	 the	 same	as	 the	proof	 of	 the	 corresponding	properties	 of	 a
symmetric	 matrix.	 It	 depends	 on	 the	 calculation	 (7.3)	 formalized	 in	 (7.5)	 and
elementary	properties	of	the	complex	inner	product.

1.	Suppose	Lu	=	λu,	u	≠	0,	and	suppose	u	satisfies	the	boundary	conditions.
Then

But	‖u‖	≠	0,	since	u	≠	0,	so	we	must	have	 .	Therefore.	λ	is	real.

2.	Let	u,	v	be	eigenvectors	for	different	eigenvalues	λ	≠	μ:	Lu	=	λu,	Lv	=	μv.
Then

Therefore,	(λ	−	μ)(u,	v)	=	0,	so	that	(u,	v)	=	0.

Remarks.	 For	 the	 eigenvalue	 problem	 to	make	 sense,	 the	 boundary	 conditions
have	 to	 be	 linear	 and	 homogeneous.	 Clearly,	 both	 homogeneous	 Dirichlet	 or
Neumann	 boundary	 conditions	 are	 symmetric.	 We	 leave	 as	 an	 exercise	 the
property	that	Robin	boundary	conditions	of	the	form

are	also	symmetric.

As	 we	 noted	 earlier,	 an	 important	 property	 of	 eigenvalues	 for	 the	 heat
equation	is	that	they	are	positive,	except	possibly	for	a	finite	number	of	them.	For
symmetric	Sturm-Liouville	problems	we	can	find	a	sufficient	condition	for	all	the
eigenvalues	to	be	nonnegative.



Suppose	Lu	=	λu.	Then

if

For	 Dirichlet	 or	 Neumann	 boundary	 conditions,	 the	 first	 of	 these	 conditions	 is
satisfied,	 but	 it	 need	 not	 be	 for	 Robin	 boundary	 conditions	 (7.6)	 without
restrictions	on	 the	coefficients	a0,	a1.	However,	 if	 both	 coefficients	 are	positive,
then	 the	 boundary	 term	 in	 (7.7)	 is	 nonnegative,	 so	 the	 eigenvalues	 are
nonnegative	(providing	the	second	condition	q(x)	≥	0	is	satisfied.)

In	Chapter	6,	Claim	6.2,	we	proved	uniform	convergence	of	the	Fourier	series
solving	an	initial	boundary	value	problem	for	the	heat	equation.	In	the	next	three
sections	 we	 prove	 more	 general	 convergence	 results	 for	 series:	 pointwise
convergence,	uniform	convergence,	and	mean-square	convergence.

7.2.	Convergence	and	Completeness

Before	 proving	 results	 on	 the	 convergence	 of	 Fourier	 series	 and	 other	 series	 of
functions,	we	introduce	some	general	concepts	of	convergence	and	completeness,
and	discuss	their	significance	for	PDE.	The	convergence	of	a	sequence	 	in	Rn

to	a	limit	v	means	that	||vk	−	v||	→	0	as	k	→	∞.	Here,	||x||	denotes	the	usual
Euclidean	norm	of	the	distance	of	x	∈	Rn	to	the	origin.	The	idea	of	convergence
of	 a	 sequence	 of	 numbers	 carries	 over	 naturally	 to	 functions.	 If	 	 is	 a
sequence	of	functions	defined	on	a	set	S,	then	the	sequence	converges	pointwise	on
S	to	a	function	f	if	the	sequence	of	numbers	 	converges	to	f(x)	for	each	x	∈
S.	In	this	definition,	the	functions	can	be	vector	valued,	so	that	fk	:	S	→	Rn,	and
they	can	be	defined	on	a	multidimensional	set	S	⊂	Rm.

We	also	need	to	introduce	convergence	in	norm	in	the	sense	that	||fk	−	f	||	→	0
as	k	→	∞,	where	||f	||	denotes	an	appropriate	norm	on	a	space	of	functions.	For
example,	if	C[a,	b]	denotes	the	space	of	continuous	functions	f	:	[a,	b]	→	R	on	a
bounded	interval	[a,	b]	⊂	R,	then	one	norm	on	C[a,	b]	is	the	sup	norm	||f	||max	=
maxa≤x≤b	 |f(x)|.	This	 is	also	called	 the	uniform	norm,	because	||fk	−	 f	 ||max	→	0
means	 fk	 →	 f	 uniformly,	 in	 which	 case	 f	 ∈	 C[a,	 b],	 a	 fundamental	 result	 in
analysis.	 More	 generally,	 a	 sequence	 	 in	 a	 normed	 space	 X	 is	 a	 Cauchy
sequence	if	||fj	−	fk||	→	0	as	j	>	k	→	∞	(uniformly	in	j),	so	that	for	every	ϵ	>	0,
there	is	N	>	0	such	that	if	||fj	−	fk||	<	ϵ	for	all	j,	k	>	N.	If	X	has	the	property



that	 Cauchy	 sequences	 converge	 to	 a	 limit	 in	X,	 then	X	 is	 complete.	 Complete
normed	 vector	 spaces	 (such	 as	Rn,	 and	 C[a,	 b]with	 the	 sup	 norm)	 are	 called
Banach	 spaces.	 In	 a	 Banach	 space,	 a	 sequence	 converges	 if	 and	 only	 if	 it	 is	 a
Cauchy	sequence.

Another	norm	on	C[a,	b]	is	the	L2	norm	 .	This	norm	is	more

closely	 analogous	 to	 the	Euclidean	norm,	 if	 you	 think	of	 f(x),	a	≤	x	≤	 b	 as	 a
vector	in	an	infinite-dimensional	space,	and	the	norm	as	the	square	root	of	a	sum
of	 values	 f(x)2,	 thus	 measuring	 the	 distance	 of	 f	 from	 the	 origin	 f	 ≡	 0.
Incidentally,	the	analog	of	the	sup	norm	in	Rn	is	the	norm	||x||max	=	max{|xj|,	j
=	1,	2,	…,	n}.	Interestingly,	all	norms	in	Rn	are	equivalent,	so	that	convergence
in	the	Euclidean	norm	and	in	||	 ·	||max	are	equivalent.	In	contrast,	the	sup	norm
and	the	L2	norm	on	C[a,	b]are	not	equivalent.	The	following	example	shows	how
convergence	in	these	two	norms	is	different	and	moreover	that	the	space	C[a,	b]
with	the	L2	norm	is	not	complete.

Example1.	(Pointwise	and	L2	convergence	but	not	uniform)	Let	fk	:	[0,	1]	→
R	be	the	sequence	of	continuous	functions	defined	by

Then,	as	k	→	∞,

pointwise,	and	||fk	−	f	||2	→	0.	However,	fk	does	not	converge	to	f	in	the	uniform
(sup)	norm,	since	sup0≤x≤1	|fk(x)	−	f(x)|	=	1	for	all	k.

Example	 2.	 (Pointwise	 but	 not	 uniform	 convergence)	 The	 sequence	 of
continuous	 functions	 gn(x)	 =	 xn	 on	 [0,	 1]	 converges	 pointwise	 to	 the
discontinuous	function

Consequently,	gn	cannot	converge	uniformly	on	[0,	1].	In	fact,	 	S(x)|
=	1	does	not	go	to	zero	as	n	→	∞.	For	the	same	reason,	 the	convergence	also
fails	 to	 be	 uniform	 on	 the	 open	 interval	 0	<	x	<	1,	 even	 though	 the	 limit	 is
continuous	there.	However,	the	convergence	is	uniform	on	the	interval	[0,	a],	for
any	a	∈	(0,	1),	since	|xn|	≤	an	→	0	as	n	→	∞.

When	 dealing	with	 PDE,	we	 often	work	 in	 spaces	 of	 functions	 that	 are	 not



necessarily	 continuous,	 such	 as	 L2	 spaces.	 Since	 spaces	 of	 continuous	 or
continuously	differentiable	functions	are	surely	better	suited	to	finding	solutions
of	differential	equations,	it	is	natural	to	ask	“Why	bother?”	Moreover,	for	elliptic
and	parabolic	equations,	the	solutions	tend	to	be	very	smooth,	having	even	more
derivatives	than	the	equation	would	seem	to	require.

The	short	answer	to	this	question	is	that	existence	of	solutions	is	much	easier
to	prove	 in	 the	weaker	L2	 spaces.	A	 longer	 explanation	 is	 that,	 at	 least	 for	 the
beginning	 theory,	 existence	 results	 and	 proofs	 rely	 on	 having	 a	 space	 that	 is
complete	in	a	norm	with	a	corresponding	inner	product.	Such	a	space	is	called	a
Hilbert	space.	Spaces	of	continuous	functions	on	bounded	closed	sets	are	complete
in	the	sup	norm,	but	this	norm	does	not	have	a	corresponding	inner	product.	In
contrast,	L2(U)	is	a	Hilbert	space	with	inner	product	(7.2).	Having	established	the
existence	 and	 uniqueness	 of	 weak	 solutions	 in	 such	 a	 space,	 then	 regularity
results	for	the	weak	solution	are	established	separately.

The	 precise	 definition	 of	 L2(U)	 as	 a	 Hilbert	 space	 requires	 some	 measure
theory.	In	particular,	the	Riemann	integral	is	not	sufficiently	general,	and	a	more
sophisticated	theory	of	integration,	based	on	Lebesgue	measure,	is	most	suitable.
In	 this	 theory,	 the	 Riemann	 integral	 is	 generalized	 to	 enable	 some	 irregular
functions	 to	 be	 integrable	 in	 the	 Lebesgue	 sense.	 Functions	 that	 are	 Lebesgue
integrable	 are	 called	 measurable.	 More	 precisely,	 all	 measurable	 functions	 are
Lebesgue	integrable	(see	Appendix	B).

For	the	L2(a,	b)	norm	to	make	sense,	we	need	to	clarify	how	the	property	||f	||
=	0	⇒	f	=	0	is	to	be	understood.	This	relies	on	the	notation	of	sets	of	measure
zero.	A	 set	S	⊂	R	 has	measure	 zero	 if	 for	 every	 ϵ	>	0,	S	 can	 be	 covered	 by	 a
countable	family	{Ij	:	j	=	1,	2,	…}	of	open	intervals	with	lengths	(i.e.,	measures)
mj,	j	=	1,	2,	…,	such	that	 	and	 .	For	a	measurable	function	f	:
[a,	 b]	→	C,	 we	 say	 f(x)	=	 0	 almost	 everywhere	 if	 there	 is	 a	 set	 S	⊂	 [a,	 b]	 of
measure	zero	such	that	f(x)	=	0	for	all	x	∈	[a,	b]	with	x	∉S.

A	key	property	of	the	Lebesgue	integral	applies	to	L2	functions:	If	f	∈	L2(a,	b),
then	||f	||	=	0	implies	that	f(x)	=	0	almost	everywhere	in	[a,	b].	The	space	of	L2
functions	 is	 then	 defined	 by	 identifying	 functions	 that	 are	 equal	 almost
everywhere	(meaning	that	 their	difference	 is	zero	almost	everywhere).	This	can
be	 formalized	 by	 making	 this	 identification	 into	 an	 equivalence	 relation	 and
defining	L2	to	be	the	set	of	equivalence	classes.	Then	the	norm	is	defined	on	an
equivalence	class	by	defining	it	on	any	function	in	the	equivalence	class.	Similar
considerations	apply	 to	 the	Lp	 spaces	and	Sobolev	spaces	 introduced	 in	Chapter
10.



The	properties	of	L2(a,	b)	 that	we	need	can	be	 summarized	 in	 the	 following
theorem,	which	we	 state	without	 proof.	 The	 theorem	 is	 proved	 in	Rudin’s	 text
[38],	 where	 a	 more	 extensive	 treatment	 of	 Lebesgue	 integration	 can	 also	 be
found.

Theorem	7.2.	The	following	properties	hold	for	the	L2(a,	b)	norm:

1.	L2(a,	b)	is	complete	in	the	L2	norm,	and

2.	every	L2(a,	b)	function	f	can	be	approximated	in	norm	by	continuous	functions.
That	is,	there	is	a	sequence	{fk}	of	continuous	functions	on	[a,	b]	such	that	||f	−
fk||	→	0	as	k	→	∞.

A	series	 	of	functions	converges	pointwise	in	an	interval	I	 if	 the	partial

sums	 	converge	as	a	sequence	of	numbers,

for	each	x	∈	I.	The	convergence	is	uniform	on	I	if

that	is,	||SN	−	S||max	→	0	as	N	→	∞.	Note	that	if	SN	→	S	uniformly,	then	SN	→	S
pointwise.

The	series	converges	 in	L2	 if	 ||SN	−	S||2	→	0	as	N	→	∞.	This	 is	also	called
mean-square	convergence.

7.3.	Pointwise	Convergence	of	Fourier	Series

A	classic	result	in	Fourier	analysis	is	the	proof	of	pointwise	convergence	for	the
full	Fourier	series	(Chapter	6)	of	a	2π-periodic	function	f.	To	start,	let’s	assume	f
is	C1	on	R.	Then	we	want	to	show

in	which	the	coefficients	are	given	by	the	Euler	formulas	(Chapter	6):

To	 prove	 pointwise	 convergence	 of	 the	 series,	 we	 fix	 x	 ∈	 [−π,	 π],	 and
consider	the	partial	sums:



We	insert	the	Euler	formulas	for	the	coefficients	and	manipulate	the	finite	sum:

To	make	progress	with	the	integral,	consider	the	sum

It	is	convenient	to	use	complex	exponentials	(recall	that	e±iξ	=	cos	ξ	±	i	sin	ξ):

This	is	a	partial	sum	of	a	geometric	series	with	ratio	eiθ,	so	that

The	Dirichlet	kernel	is	defined	to	be	 .	Considering	the	form	(7.8)
for	PN(θ),	we	deduce	the	following	properties:

1.	DN(θ)	is	even	and	2π	periodic,

2.	 ,	and

3.	 .

From	these	properties,	as	N	→	∞,	DN(0)	→	∞	while	the	area	 	remains

constant.	We	found	similar	behavior	in	Section	5.1	for	the	heat	kernel	Φ(x,	t)	as	t
→	0+.	Consequently,	as	N	→	∞,	we	might	expect	that	DN(θ)	approaches	the	Dirac
delta	function.	If	so,	then	for	a	continuous	function	f,



However,	in	contrast	to	the	heat	kernel,	DN(θ)	does	not	approach	zero	for	θ	≠	0,
as	N	→	∞.	Instead,	to	take	the	limit,	we	appeal	to	the	Riemann-Lebesgue	Lemma.

Lemma	7.3.	(The	Riemann-Lebesgue	Lemma)	If	f	∈	L2(a,	b),	then

When	f	is	C1	on	[a,	b],	the	result	follows	easily	by	integration	by	parts,	since
both	|f|	and	|f′|	are	bounded,	and	 integrating	sin	βx	 introduces	a	 factor	of	1/β.
The	proof	 is	completed	by	approximating	 f	by	smooth	functions,	as	 in	Theorem
7.2.	Details	can	be	found	in	many	analysis	texts	[38].

Proof	of	convergence	of	SN(x)	to	f(x).	Returning	to	the	partial	sums	SN(x),	we
use	property	(2)	of	DN(θ)	to	write

where

from	L’Hôpital’s	rule	at	θ	=	0.	Since	g	is	continuous,	we	can	apply	the	Riemann-
Lebesgue	Lemma	7.3,	which	establishes	that	|SN(x)	−	f(x)|	→	0	as	N	→	∞.

With	 a	 bit	 more	 care,	 we	 can	 prove	 pointwise	 convergence	 for	 piecewise
smooth	periodic	functions.	These	are	periodic	functions	f	that,	in	every	bounded
interval,	 are	 continuously	 differentiable	 apart	 from	 a	 finite	 number	 of	 points
where	either	the	function	or	its	derivative	has	a	jump	discontinuity	(meaning	the
left	and	right	limits	exist	but	are	not	equal).

Theorem	7.4.	Let	f	be	piecewise	smooth	and	2π	periodic.	Then	the	Fourier	series	for	f
converges	at	each	x	to	the	average	of	the	left	and	right	limits	of	f:



where

Note	 that	 at	 points	 x	 of	 continuity,	 the	 theorem	 guarantees	 that	 the	 series
converges	to	f(x).

Proof.	Using	the	notation	defined	in	the	theorem,	we	estimate	the	error	made	by
the	Nth	partial	sum.	Let	x	be	a	specific	point,	−π	<	x	≤	π.	Then

In	this	calculation,	we	have	split	the	integral,	and	used	the	fact	that	PN(θ)	is	even
in	θ,	followed	by	the	triangle	inequality.	Note	that	the	integrand	in	each	integral
is	continuous	at	θ	=	0.

To	 show	 that	 each	 integral	 approaches	 zero,	we	 use	 the	 Riemann-Lebesgue
Lemma	7.3.	Mimicking	 the	development	of	 (7.9)	and	 (7.10),	we	have	 to	 check
that	the	corresponding	g(θ)	here	satisfies	the	conditions	of	the	lemma.	Consider
the	first	integral.	Paralleling	the	f	∈	C1	case,	we	let

Then	g	is	piecewise	continuous,	and	hence	integrable,	on	−π	≤	θ	≤	0.	A	similar
construction	applies	to	the	second	integral,	I+.

7.4.	Uniform	Convergence	of	Fourier	Series
Theorem	 7.4	 shows	 that	 a	 Fourier	 series	 can	 converge	 pointwise	 even	 if	 the
function	 it	 represents	 is	not	 smooth	everywhere.	This	 can	be	 important	 for	 the
study	 of	 PDE.	 For	 example,	 solutions	 of	 the	 wave	 equation	 describing	 the
vibrations	of	a	violin	string	that	has	been	plucked	at	one	point	are	continuous	but



not	 differentiable.	 Discontinuities	 in	 the	 derivative	 propagate	 along
characteristics	and	are	reflected	at	the	ends	of	the	string.	Such	a	solution	can	also
be	represented	by	a	Fourier	series	that	converges	pointwise.

In	this	section	we	prove	in	Theorem	7.5	that	the	pointwise	convergence	of	the
previous	 section	 is	 in	 fact	 uniform	 if	 f	 is	 sufficiently	 smooth.	 This	 result	 uses
Bessel’s	 inequality,	which	will	 also	 arise	 in	 the	 context	 of	L2	 convergence.	 Let	

	be	a	set	of	orthonormal	functions,	meaning	that	(vj,	vk)	=	δjk,	j,	k
=	1,	2,	….

For	 	a	sequence	of	real	numbers,	the	mean-square	error	EN
obtained	from	approximating	 f	by	 the	 linear	combination	 	 is	defined	to
be

Then

Completing	the	square,	we	find

Consequently,	EN	 is	minimized	by	 choosing	 the	 coefficients	 cn	 to	 be	 the	Fourier
coefficients,	defined	in	this	general	context	by

With	this	choice,	and	since	EN	≥	0,	we	also	conclude:

which	is	known	as	Bessel’s	inequality.	In	terms	of	the	coefficients	of	(7.11),



Thus,	the	infinite	series	 	is	convergent	and	the	limit	is	no	larger	than	||f	||2.
In	particular,	we	have	the	important	result	that

a	result	closely	related	to	the	Riemann-Lebesgue	Lemma	7.3.

We	 are	 ready	 to	 prove	 the	 following	 theorem	 on	 uniform	 convergence	 of
Fourier	series	for	smooth	functions	f.	The	essence	of	the	proof	is	to	apply	Bessel’s
inequality	to	get	a	bound	on	the	Fourier	coefficients	for	the	derivative	f′.	This	is
enough	to	give	a	strong	uniform	estimate	on	the	Fourier	series	for	f.

Theorem	7.5.	Let	f	:	R	→	R	be	a	C12π-periodic	function.	Then	the	Fourier	series	of	f
converges	uniformly.

Proof.	 Since	 f′	 is	 continuous,	 it	 is	 integrable	 on	 [−π,	 π].	 Therefore,	 f′	 has	 a
Fourier	series.	Moreover,	since	f	is	periodic,	the	constant	term	in	the	series	for	f′
is	zero.	Thus,

and	we	have	Bessel’s	inequality	(7.12):

Therefore,	 .

Not	 surprisingly,	 the	 Fourier	 coefficients	 an,	 bn	 of	 f	 are	 related	 to	 the
coefficients	An,	Bn	of	f′	by	integration:

so	that

and	similarly,



To	show	uniform	convergence,	we	verify	the	Cauchy	criterion,	for	which	we
estimate	how	close	the	partial	sums	become:

Using	the	Schwarz	inequality,	we	can	make	this	sum	small	as	p,	q	→	∞:

Remark.	The	 integration	by	parts	 in	 (7.14)	 to	 relate	Fourier	 coefficients	of	 the
function	 to	 those	of	derivatives	generalizes	 to	higher	derivatives	when	they	are
available.	 Since	 each	 integration	 pulls	 down	 another	 factor	 ,	 we	 see	 that	 the
regularity	 of	 the	 function	 is	 closely	 linked	 to	 the	 rate	 of	 convergence	 of	 the
Fourier	coefficients.

7.5.	Convergence	in	L2

For	PDE,	it	is	often	natural	to	work	in	L2	spaces,	using	both	the	inner	product	and
completeness.

Lemma	7.6.	Let	 f	∈	L2(a,	b),	and	suppose	 	 is	an	orthonormal	 set	 in	L2(a,	b).
Then	the	series	 	is	convergent	in	L2	and

Proof.	From	Bessel’s	inequality,	we	see	that	the	series	of	coefficients

is	convergent.	Thus,	the	series	satisfies	the	Cauchy	condition	for	convergence,	so
that	using	orthogonality,	we	have

That	 is,	 	 is	 a	 Cauchy	 sequence	 in	L2(a,	 b).	 Completeness	 of	 the



space	means	that	the	series	converges	to	an	L2(a,	b)	function.	Moreover,	applying
orthogonality	and	Bessel’s	inequality	again,	we	have

Now	that	we	know	the	infinite	series	 	is	convergent,	we	would	like
to	know	whether	it	converges	to	f	in	L2(a,	b).	A	necessary	condition	is	that	if	f	 is
orthogonal	to	all	the	vn,	then	f	=	0.	That	is,	(f,	vn)	=	0	for	all	n	implies	f	=	0.	In
fact,	we	can	now	provide	a	simple	proof	that	not	only	is	this	condition	necessary
and	sufficient,	but	it	is	equivalent	to	having	equality	in	Bessel’s	inequality.

Theorem7.7.	 If	 	 is	 an	 orthonormal	 set	 in	 L2(a,	 b),	 then	 the	 following	 three
conditions	are	equivalent:

1.	If	(f,	vn)	=	0	for	all	n,	then	f	=	0.

2.	For	each	f	∈	L2(a,	b),	 .

3.	Parseval’s	identity	holds	for	every	f	∈	L2(a,	b):

Proof.	We	write	the	proof	in	three	parts,	showing	condition	1	⇒	2	⇒	3	⇒	1.

Condition	1	⇒	2:	Let	f	∈	L2(a,	b).	Then	Lemma	7.6	shows	that

converges.	To	see	that	it	converges	to	f,	consider	the	function

Then	g	is	orthogonal	to	every	vk:

Thus,	by	condition	1,	we	have	g	=	0.

Condition	2	⇒	3:	Suppose	 .	Then	orthogonality	of	{vn}	implies



Condition	3	⇒	1:	Suppose	Parseval’s	identity	holds	for	f	∈	L2(a,	b).	If	(f,	vN)	=
0	for	all	n,	then	||f	||	=	0,	which	implies	f	=	0.

A	 given	 orthonormal	 set	 of	 functions	 	 is	 complete	 if	 any	 of	 the	 three
conditions	of	the	theorem	hold.	In	this	case,	condition	2	means	that	the	set	is	an
orthonormal	basis	for	L2(a,	b).

Example	 3.	 (An	 orthonormal	 basis)	 The	 set	 	 is	 an
orthonormal	 basis	 for	 L2(−π,	 π).	 This	 can	 be	 proved	 by	 approximating	 f	 ∈
L2(−π,	 π)	 by	 a	 continuous	 function	 h	 on	 [−π,	 π].	 Then	 h	 is	 approximated
uniformly	 by	 the	 partial	 sums	 of	 its	 Fourier	 series,	 hence	 also	 in	 L2.	 Using
orthogonality	and	the	triangle	inequality,	we	can	show	that	f	is	approximated	by
the	partial	sums	of	its	Fourier	series.

7.5.1.	More	General	Result	for	Sturm-Liouville	Problems

It	is	convenient	to	state	(without	proof)	two	further	properties	of	the	eigenvalue
problem,	 in	 addition	 to	 those	 of	 Theorem	7.1.	 Recall	 that	L	 is	 the	 differential
operator	associated	with	the	Sturm-Liouville	problem	of	Section	7.1.

Theorem	7.8.	Let	L	be	symmetric.	Then

1.	The	eigenvalues	form	a	countable	set	that	is	bounded	below	but	not	above:

Each	eigenvalue	has	finite	multiplicity,	λ1	is	a	simple	eigenvalue,	and	λn	→	∞	as	n
→	∞.

2.	The	eigenfunctions	vn	can	be	chosen	to	form	a	complete	orthonormal	set	on	L2(a,	b).

For	a	proof	of	 this	 result,	 see	Strauss	 [45].	Note	 that	part	2	of	 the	 theorem
tells	us	that	Fourier	series	of	L2(a,	b)	functions	converge	in	L2.

Parseval’s	 identity	 establishes	 that	 the	 correspondence	 between	 the	 L2
function	f	and	its	sequence	of	Fourier	coefficients	{cn},	is	an	isometry,	in	the	sense
that	the	mapping	f	→	{cn}	preserves	the	norm.

7.5.2.	Gibbs	Phenomenon

The	Fourier	series	of	a	discontinuous	function	does	not	converge	uniformly,	even
though	it	converges	pointwise.	The	Gibbs	phenomenon1	is	the	observation	that	at
each	discontinuity,	the	Fourier	series	overshoots	the	function	by	roughly	9%.	The
overshoot	appears	as	a	persistently	excessive	maximum	in	the	oscillating	partial
sums	of	the	Fourier	series.



Without	loss	of	generality,	we	can	look	at	this	phenomenon	by	considering	a
simple	discontinuous	function,	namely,	a	step	function.	Although	this	seems	like
a	special	example,	it	in	fact	embodies	the	essence	of	how	the	Gibbs	phenomenon
is	manifested.	This	is	because	a	piecewise	continuous	function	can	be	written	as
the	sum	of	a	smooth	function	and	a	weighted	sum	of	a	finite	number	of	Heaviside
functions.

Let	f	be	the	2π-periodic	extension	of	the	function

Since	f	is	odd,	it	has	a	Fourier	sine	series,	which	we	easily	calculate,	and	by	the
pointwise	convergence	theorem,	we	have

where	bn	=	(2/nπ)(1	−	(−1)n),	n	=	1,	2,	….	Thus,

We	get	a	good	idea	of	the	Gibbs	phenomenon	by	graphing	the	partial	sums	SN(x)
for	moderately	large	N.	(See	Figure	7.1.)	Note	that	the	graph	y	=	SN(x)	(N	odd)
crosses	 the	 line	 y	 =	 1	 exactly	 N	 +	 1	 times	 in	 the	 interval	 (0,	 π),	 and	 the
maximum	appears	to	be	at	approximately	 	(and	at	π	−	xN.)	In	fact



Figure	7.1.	The	Gibbs	phenomenon.	The	partial	sum	S21(x)	of	Fourier	series
(7.16)	is	shown.

(see	Strauss	[45]).	Thus,	SN(x)	overshoots	f(x)	=	1	by	0.18,	or	approximately	9%
of	the	jump	in	f(x)	across	x	=	0.	Incidentally,	this	example	shows	the	danger	in
reversing	the	order	of	two	limits:

7.6.	Fourier	Transform
Fourier	 transforms	 and	 other	 transforms,	 such	 as	 the	 Laplace	 transform,	 are
useful	tools	to	transform	equations	or	data	into	forms	that	are	easier	to	analyze
or	 solve.	 In	 this	 section	 we	 explore	 some	 of	 the	 properties	 of	 the	 Fourier
transform,	drawing	comparisons	 to	Fourier	 series	and	showing	how	the	Fourier
transform	is	used	to	solve	certain	PDE.

The	Fourier	 series	 of	 a	 periodic	 function,	 say	of	 period	2π,	 decomposes	 the
function	 into	pieces	each	with	a	different	 integer	 frequency	k,	with	 the	Fourier
coefficients	being	the	amplitude	at	that	frequency.	This	point	of	view	is	clearest
in	the	complex	form

with	the	(complex)	amplitudes	ck	given	by



Of	 course,	 for	 a	 real-valued	 function	 f,	 .	We	 can	 regard	 ck	 as	 a	 function
from	the	set	Z	of	integers	to	C,	the	complex	numbers.	The	periodic	function	f	has
been	transformed	 into	 the	sequence	 .	Then	the	series	 (7.17)	 is	 the	 inverse
transform;	it	gets	us	from	the	sequence	 	back	to	 f.	We	have	seen	how	this
transform	to	Fourier	coefficients	and	back	again	 is	useful	when	solving	PDE	on
bounded	domains.	The	Fourier	transform	is	a	similar	technique	for	functions	on
unbounded	domains.

The	Fourier	transform	of	a	function	f	:	R	→	R	that	is	absolutely	integrable,

is	a	function	 	that	looks	a	bit	like	(7.18):

Thus,	 	is	the	complex	amplitude	contribution	to	the	function	f	at	frequency	ω.
We	reconstruct	the	function	f	from	these	amplitudes	with	the	inverse	transform:

Notice	 that	 the	 infinite	 sum	 in	 (7.17)	 has	 been	 replaced	 by	 an	 integral.	 In	 the
Fourier	transform,	the	frequency	is	a	continuous	variable	ω,	and	there	is	a	sign
change	in	the	exponential	between	the	transform	and	the	inverse	transform.

We	have	also	placed	the	factor	1/(2π)	in	the	inverse	transform	rather	than	in
the	transform.	A	more	symmetric	placement	commonly	used	is	to	have	a	factor	of

	 in	 both	 the	 transform	 and	 its	 inverse.	 It	 is	 also	 consistent	 to	 have	 the
1/(2π)	 in	 only	 the	 transform.	Of	 course,	 just	 as	 for	 the	 convergence	of	 Fourier
series	 to	 the	 periodic	 function	 f(x),	 the	 identity	 (7.20)	 requires	 proof.	 You	 can
find	the	proof	in	standard	texts	on	Fourier	analysis	(for	example,	see	Stade	[44]);
our	purpose	 in	this	section	 is	 to	 illustrate	how	the	transform	is	used.	Along	the
way,	we	find	some	interesting	properties.

One	 more	 bit	 of	 intuition	 about	 the	 Fourier	 transform.	 Consider	 an
experiment	that	is	performed	over	a	long	time,	and	the	result	is	a	measurement
f(t),	t0	<	t	<	t1	(known	as	a	time	series)	that	is	very	noisy.	The	measurement	will
be	 at	 discrete	 values	 of	 time	 t,	 but	 for	 the	 purpose	 of	 discussion	 (and	 you	 can
imagine	how	to	make	sense	of	this),	we	regard	f	as	a	function	of	t,	and	extend	f	to



the	whole	real	 line.	Now	take	the	Fourier	transform	to	get	a	new	function	 ,
and	plot	the	graph	of	 .	Recall	 that	the	transform	records	the	amplitude	of	 f	at
each	 frequency,	 so	 if	 the	graph	of	 	 shows	clear	maxima	at	a	 finite	number	of
frequencies	ωn,	n	=	1,	…,	N,	 then	 the	 function	 is	dominated	a	combination	of
periodic	 functions	 at	 those	 frequencies,	 with	 the	 amplitudes	 given	 by	

.	This	is	a	central	idea	in	signal	processing,	where	some	sense	can
be	 made	 out	 of	 a	 noisy	 signal—the	 time	 series—by	 investigating	 the	 Fourier
transform.

Another	transform	you	may	be	familiar	with	is	the	Laplace	transform,	which
is	most	useful	in	the	context	of	initial	value	problems	for	ODE	and	PDE,	because
it	is	defined	for	integrable	functions	on	the	half-line	[0,	∞).	Other	transforms	are
useful	 for	 different	 contexts.	 For	 example,	 the	Radon	 transform	of	 functions	 in
two	or	three	dimensions	is	used	in	tomography	to	express	the	function	(typically
a	density)	in	terms	of	scattering	data	that	might	come	from	a	scan,	such	as	an	x-
ray,	ultrasound,	or	magnetic	resonance	imaging.

Example	4.	(Computing	a	transform)	To	show	how	the	transform	is	computed
in	a	simple	example,	let	f	:	R	→	R	be	defined	by

Then

To	 apply	 the	 transform	 to	 differential	 equations,	 we	 transform	 derivatives
using	integration	by	parts	and	observing	that	f(±∞)	=	0	(since	|f	|	is	integrable
on	R),	to	eliminate	the	boundary	terms:

Example	5.	(The	Cauchy	problem	for	the	heat	equation)	Consider	the	Cauchy
problem	for	the	heat	equation

The	solution	u	=	u(x,	t)	was	obtained	from	the	fundamental	solution	in	Section
5.2.	 Here	 we	 show	 how	 the	 same	 formula	 can	 be	 obtained	 using	 Fourier
transform	in	x	for	each	t.

The	 solution	 of	 (7.21)	 by	 Fourier	 transform	 depends	 on	 some	 further



properties	of	the	transform.	If	f,	g	are	in	L2(R),	then

The	compactness	of	this	formula	is	the	reason	for	putting	the	1/(2π)	normalizing
factor	in	the	inverse	rather	than	in	the	transform.	The	proof	of	(7.22)	involves	a
simple	change	of	variables	z	=	x	−	y:

We	also	have

We	 transform	 everything	 in	 (7.21)	 with	 respect	 to	 x,	 using	 	 to
transform	ut:

Thus,	 .	Let	a	=	1/(4kt)	in	(7.23).	Then	(7.22)	and	(7.23)	imply
that

This	is	exactly	the	formula	that	we	found	in	Section	5.2.

PROBLEMS
1.	 Let	Lu(x)	=	 a(x)u″(x)	+	 b(x)u′(x)	+	 c(x)u(x),	 where	 a,	 b,	 c	 are	 given	 C2

functions	 on	 the	 interval	 0	 ≤	 x	 ≤	 1.	 Consider	 C2	 functions	 u,	 v	 on	 [0,	 1]
satisfying	 Dirichlet	 conditions	 u	 =	 v	 =	 0	 at	 x	 =	 0,	 1.	 Find	 an	 ordinary
differential	operator	L∗	such	that

2.	Let	r	:	[a,	b]	→	(0,	∞)	be	C2,	and	consider	the	eigenvalue	problem	(7.1).	Using
the	weighted	L2	 space	with	 inner	product	(7.2),	prove	 that	eigenvalues	are	 real
and	the	corresponding	eigenfunctions	are	orthogonal.

3.	Let	the	piecewise	continuous	function	f	:	R	→	R	be	defined	by



Write	 f(x)	 as	 a	 sum	 of	 a	 continuous	 function	 and	 a	 linear	 combination	 of
Heaviside	functions.

4.	 Fill	 in	 the	 details	 of	 Example	 3	 in	 Section	 7.5:	 prove	L2	 convergence	 of	 the
Fourier	series	of	an	L2	function,	using	approximation	and	uniform	convergence.

5.	Let	 f,	g	 :	R	→	R	be	differentiable	and	have	 the	property	 that	 they	and	 their
first	derivatives	are	absolutely	integrable	over	R.	Prove	that

6.	 Consider	 the	 Fourier	 transform	 of	 a	 band-limited	 function	 f(x),	 in	 which	
.

(a)	Show	that	 	for	|ω|	≤	π.

(b)	Hence	deduce	 that	 f(x)	 only	depends	 on	 the	 sequence	 {f(n)}	of	 sampled
values	of	f	:

7.	The	pointwise	convergence	of	Fourier	series	can	be	used	to	deduce	the	sums	of
certain	kinds	of	infinite	sequences.

(a)	Start	with	calculating	 the	Fourier	 series	of	 the	even	2π-periodic	function
f(x)	=	|	sin	x|.	Use	the	Fourier	series	to	calculate	the	sums

(b)	Choose	a	suitable	even	2-periodic	function	f(x)	whose	Fourier	series	allows
you	to	determine	the	sums

1.	Josiah	Willard	Gibbs	(1839–1903)	made	many	contributions	to	thermodynamics,	statistical	mechanics,
and	 other	 areas	 of	 science	 and	 mathematics,	 including	 vector	 analysis.	 The	 Gibbs	 phenomenon	 was
discovered	and	explained	by	the	English	mathematician	Henry	Wilbraham	in	1848;	nearly	50	years	later	it
was	found	independently	by	Gibbs.



CHAPTER	EIGHT

Laplace’s	Equation	and	Poisson’s
Equation
In	 this	 chapter	 we	 consider	 Laplace’s	 equation	 and	 its	 inhomogeneous
counterpart,	Poisson’s	equation,	which	are	prototypical	elliptic	equations.1	They
may	be	thought	of	as	 time-independent	versions	of	 the	heat	equation,	with	and
without	source	terms:

We	consider	these	equations	in	a	domain	U	⊂	Rn,	n	≥	2,	but	also	on	all	of	Rn.
Applications	of	these	equations	include	the	classical	field	of	potential	theory,	of
importance	 in	 electrostatics	 and	 steady	 incompressible	 fluid	 flow.	 In
electrostatics,	f(x)	in	Poisson’s	equation	represents	a	charge	density	distribution,
inducing	the	electric	potential	u(x).	In	two-dimensional	steady	fluid	flow,	u	is	the
velocity	potential	or	stream	function,	both	of	which	satisfy	Laplace’s	equation.

Several	properties	of	solutions	of	Laplace’s	equation	parallel	those	of	the	heat
equation:	maximum	principles,	 solutions	obtained	 from	 separation	of	 variables,
and	the	fundamental	solution	to	solve	Poisson’s	equation	in	Rn.

8.1.	The	Fundamental	Solution

To	solve	Poisson’s	equation,	we	begin	by	deriving	the	 fundamental	solution	Φ(x)
for	the	Laplacian.	This	fundamental	solution	is	rather	different	from	the	one	for
the	 heat	 equation,	 which	 is	 designed	 to	 solve	 initial	 value	 problems,	 and
consequently	has	a	singularity	at	the	initial	time	t	=	0.	The	fundamental	solution
for	the	Laplacian,	being	time	independent,	is	used	to	represent	solutions	in	space
alone.	To	do	this,	Φ(x)	is	chosen	to	have	a	singularity	at	a	point	x0	in	the	domain;
since	 the	Laplacian	 is	 translation	 invariant,	we	can	 take	x0	=	0.	Moreover,	 the
Laplacian	 is	 invariant	 under	 rotations,	 so	 we	 can	 seek	 a	 rotationally	 invariant
fundamental	solution.

Motivated	by	this	discussion,	we	seek	rotationally	symmetric	solutions	u(x)	=
v(r),	r	=	|x|,	of	Laplace’s	equation.	Then	we	have

Therefore,



Integrating,	we	obtain	log	v′	=	−(n	−	1)	log	r	+	C.	That	is,	 ,	where	A	=
log	C	 is	 the	 constant	 of	 integration.	 Integrating	 again,	we	 get	 a	 two-parameter
family	of	solutions

The	fundamental	solution	Φ(x)	is	defined	by	setting	b	=	0	and	choosing	the
constant	a	to	normalize	Φ(x)	depending	on	the	volume	α(n)	of	the	unit	ball:

The	 purpose	 of	 the	 normalization	 is	 to	 make	 the	 formula	 for	 the	 solution	 of
Poisson’s	equation	on	Rn	as	simple	as	possible.	(See	(8.1).)	Note	that	although	Φ
has	an	integrable	singularity	at	the	origin	(Φ	is	integrable	on	bounded	sets,	even
though	it	is	not	defined	at	x	=	0),	we	will	see	that	the	singularity	of	−ΔΦ	is	not
integrable,	and	is	in	fact	the	singular	distribution	δ,	which	we	define	carefully	in
Section	9.2.

We	say	a	function	u	is	harmonic	in	an	open	set	U	⊂	Rn	if	u	∈	C2(U)	and	Δu(x)
=	0	 for	 each	x	∈	U.	 By	 construction,	Φ(x)	 is	 harmonic	 in	 every	 open	 set	 not
containing	the	origin.

8.2.	Solving	Poisson’s	Equation	in	Rn

In	this	section	we	establish	a	formula	for	the	solution	of	Poisson’s	equation	in	all
space	Rn	 using	 the	 fundamental	 solution,	much	 as	we	 used	 the	 heat	 kernel	 to
solve	the	Cauchy	problem	for	the	heat	equation.

Let	f	∈	C2(Rn)	have	compact	support	and	define

the	convolution	product	of	Φ	with	f.

Remark.	 Note	 that	 ΔΦ(x)	 has	 a	 nonintegrable	 singularity	 at	 the	 origin.
Therefore,	we	cannot	differentiate	under	the	integral	sign	in	this	formula.	If	we
could,	we	would	 have	 Δu(x)	=	 0,	 since	Φ	 is	 harmonic	 away	 from	 the	 origin.



However,	as	we	now	show,	the	nonintegrable	singularity	makes	the	convolution
product	work	to	solve	Poisson’s	equation.

Theorem	8.1.	If	f	∈	C2(Rn)	has	compact	support	and	u(x)	is	given	by	(8.1),	then

Proof.	Changing	variables	in	(8.1),	we	have

Therefore,

In	this	integral,	and	in	subsequent	calculations,	we	use	subscripts	to	indicate	the
variable	of	differentiation	or	integration.	Thus,	Δy	indicates	that	the	Laplacian	is
taken	with	respect	to	the	y	variables.	We	would	like	to	integrate	by	parts	to	put	Δ
back	on	Φ(y).	However,	Φ(y)	has	a	singularity	at	y	=	0,	so	we	have	to	treat	the
integral	 as	 an	 improper	 integral.	 For	 ϵ	>	 0,	 let	 ,	 where	B(x,	 r)
denotes	the	open	ball	of	radius	r	centered	at	x	∈	Rn.	Then

The	first	integral	approaches	zero	as	ϵ	→	0,	since	Φ	is	integrable	at	the	origin.	We
use	Green’s	 second	 identity	 on	 the	 second	 integral,	 observing	 that	 (since	 f	 has
compact	 support)	 the	 integrand	 is	 identically	 zero	 outside	 a	 large	 enough	 ball
centered	at	x.	Thus,

Incidentally,	there	is	no	contribution	from	the	boundary	of	the	support	of	f,	since
the	integrand	is	zero	there.	The	final	 integral	is	zero	since	Φ	 is	harmonic	in	Uϵ.
The	integral	on	the	boundary	has	two	terms.	The	first	term	converges	to	zero	as	ϵ
→	 0,	 since	 Φ	 is	 integrable	 at	 the	 origin.	 We	 need	 to	 prove	 that	 the	 second
integral	converges	to	f(x).



Since	the	unit	normal	ν	is	outward	with	respect	to	Uϵ,	on	the	sphere	∂B(0,	ϵ)
we	have	ν	=	−y/ϵ.	Therefore,	since	Φ(y)	is	a	function	of	r	=	|y|,

Figure	8.1.	A	bounded	region	U.

Note	that	this	formula	holds	for	n	≥	2	even	though	the	formula	for	Φ	is	different
for	n	=	2.	Thus,

where	 |∂B(0,	 ϵ)|	 =	 nα(n)ϵn−1	 denotes	 the	 measure	 of	 the	 sphere	 in	 Rn.	 This
integral	converges	to	f(x),	because	f	is	continuous.

8.3.	Properties	of	Harmonic	Functions
In	 this	 section	 we	 state	 and	 prove	 the	 mean-value	 property	 of	 harmonic
functions,	 and	use	 it	 to	 prove	 the	maximum	principle,	 leading	 to	 a	 uniqueness
result	 for	 boundary	 value	 problems	 for	 Poisson’s	 equation.	We	 state	 the	mean-
value	property	in	terms	of	integral	averages.

Theorem	8.2.	(Mean-Value	Property)	Suppose	u	∈	C2(U).	Then	u	is	harmonic	in	U	if
and	only	if	it	has	the	mean-value	property:

for	every	ball	B(x,	r)	⊂	U.

Proof.	Suppose	u	is	harmonic.	Then,	for	B(x,	r)	⊂	U	(see	Fig.	8.1),



Now	let

Since	limr	→	0	ϕ(r)	=	u(x),	we	complete	the	proof	by	using	(8.2)	to	show	that	ϕ(r)
is	constant.	To	do	so,	we	calculate	directly	that	ϕ′(r)	=	0.	Let	y	=	x	+	rz,	z	∈
B(0,	1),	to	facilitate	differentiating	the	integral.	Then

by	(8.2).	Thus,	ϕ(r)	is	constant,	so	that	ϕ(r)	=	lims	→	0	ϕ(s)	=	u(x).

We	use	this	result	to	obtain	the	integral	average	over	the	ball	B(x,	r):

Conversely,	suppose	u	has	the	mean-value	property.	Then,	as	above,	we	get

since	ϕ(r)	=	u(x)	is	constant.	Thus,	 ,	and	letting	r	→	0,	we	obtain
Δu(x)	=	0,	since	Δu	is	continuous	in	U.

The	 mean-value	 property	 of	 harmonic	 functions	 is	 peculiar	 to	 solutions	 of
Laplace’s	 equation	 and	 has	 no	 counterpart	 for	more	 general	 elliptic	 equations.
However,	 it	 simplifies	 the	proofs	of	key	results	 that	do	generalize,	 in	particular
the	maximum	principle,	which	we	now	state	in	both	weak	and	strong	forms.

Theorem	 8.3.	 (The	 maximum	 principle)	 Let	 U	⊂	Rn	 be	 open	 and	 bounded,	 and
suppose	 	is	harmonic	in	U.	Then

1.	Weak	form:	 .



2.	Strong	form:	If	U	is	connected,	then	either	u	=	constant	in	 ,	or

Proof.	 We	 prove	 the	 strong	 form	 first.	 The	 weak	 form	 then	 follows	 easily.
Suppose	U	is	connected	and	there	is	a	point	x0	∈	U	such	that

Choose	r	so	that	B(x,	r)	⊂	U.	Then	by	the	mean-value	property,

But	u(y)	≤	M	everywhere,	so	equality	implies	that	u(y)	=	M	throughout	B(x0,	r).
Thus,	the	set	S	=	{x	∈	U	:	u(x)	=	M}	is	nonempty	and	open.	However,	S	is	also
relatively	 closed	 in	 U:	 Let	 xn	 ∈	 S	 converge	 to	 x	 ∈	 U	 as	 n	 →	 ∞.	 Then,	 by
continuity	 of	 u,	 we	 have	 u(x)	=	 limn	→	 ∞	u(xn)	=	M,	 so	 x	∈	 S.	 But	 the	 only
nonempty	open	and	closed	set	in	U	is	U	itself,	so	we	have	S	=	U,	implying	that	u
is	constant	in	 .	The	weak	form	1	follows	from	2.

Remarks.	 The	 corresponding	 minimum	 principle	 follows	 by	 applying	 the
maximum	principle	to	−u.

If	U	is	not	connected	(i.e.,	U	=	U1	∪	U2	with	U1,	U2	disjoint	open	sets	in	Rn),
then	 the	 weak	 maximum	 principle	 holds,	 but	 the	 strong	 maximum	 principle
breaks	down.	To	 see	 this,	 define	u(x)	=	k,	 for	x	∈	Uk,	 k	=	1,	 2.	 Then	u(x)	 is
harmonic	but	fails	to	satisfy	either	conclusion	of	part	2	of	Theorem	8.3.

We	 can	 apply	 the	maximum	principle	 to	 the	Dirichlet	 problem,	 which	 is	 the
following	boundary	value	problem	on	a	bounded	open	set	U	⊂	Rn:

Theorem	 8.4.	 Suppose	 g	 is	 continuous	 and	 	 is	 a	 solution	 of	 the
Dirichlet	problem.	If	U	is	connected	and	g	satisfies	g(x)	≥	0	for	all	x	∈	∂U,	and	g(x)
>	0,	for	some	x	∈	∂U,	then

Proof.	From	the	weak	minimum	principle,	we	have	 .	But	the	strong
version	gives	either	u(x)	>	min∂U	g,	for	all	x	∈	U,	or	u(x)	=	constant.	 In	either
case,	the	conclusion	follows.



8.3.1.	Uniqueness	of	Solutions	of	Boundary	Value	Problems

As	with	 the	 heat	 equation,	 we	 can	 prove	 uniqueness	 of	 solutions	 of	 boundary
value	problems	from	the	maximum	principle	or	from	energy	considerations.	Let	U
⊂	Rn	be	open	and	bounded.	Consider	the	boundary	value	problem	with	Dirichlet
boundary	conditions:

where	f	∈	C(U),	g	∈	C(∂U).

Theorem	8.5.	There	 is	 at	most	 one	 solution	 	of	 the	 boundary	 value
problem	(8.3).

Proof.	Let	u1,	u2	both	be	solutions.	Applying	the	weak	maximum	principle	to	u1
−	u2	and	to	u2	−	u1,	both	of	which	satisfy	(8.3)	with	f	=	0,	g	=	0,	we	deduce
that	u1	=	u2.

Alternatively,	the	energy	approach	sets	u	=	u1	−	u2	and	applies	a	version	of
Green’s	identity:

Thus,	∇u	=	0	in	U,	so	that	u	is	constant.	Since	u	=	0	on	∂U,	we	conclude	that	u
=	0	in	 ,	so	that	u1	=	u2.

8.4.	Separation	of	Variables	for	Laplace’s	Equation

If	the	domain	U	⊂	Rn	has	special	geometry,	then	separation	of	variables	can	work
on	 Laplace’s	 equation.	 Examples	 include	 rectangular,	 spherical,	 and	 cylindrical
domains.	Here	we	treat	two	examples	to	illustrate	the	differences	from	the	heat
and	wave	equations.	We	then	make	some	remarks	about	other	domains.

Of	 course,	 if	 the	 boundary	 conditions	 are	 homogeneous,	 then	 u	 =	 0	 is	 a
solution,	 generally	 the	 only	 solution.	 So	 it	 is	 more	 natural	 to	 consider	 linear
boundary	conditions	 	on	∂U	that	are	inhomogeneous	over	at	least	part

of	the	boundary.	If	α	≠	0,	then	the	energy	method	discussed	in	Section	8.3	above
can	be	used	to	prove	that	this	problem	has	at	most	one	solution.

8.4.1.	Laplace’s	Equation	in	a	Rectangle

We	consider	Laplace’s	equation	Δu	=	0	in	a	rectangular	domain	U	=	(0,	a)	×	(0,
b)	 ⊂	 R2	 with	 a	 mixture	 of	 Dirichlet	 and	 Neumann	 boundary	 conditions,
representing	parts	of	the	boundary	where	we	specify	either	the	temperature	u	or



the	heat	flux,	which	is	proportional	to	the	normal	derivative.

In	 this	 problem	 we	 can	 formulate	 an	 eigenvalue	 problem	 if	 boundary
conditions	on	opposite	sides	of	 the	rectangular	boundary	are	homogeneous.	We
use	 this	 observation	 to	 implement	 a	 solution	 strategy.	 We	 split	 the	 boundary
value	 problem	 into	 four	 problems,	 setting	 the	 boundary	 condition	 to	 zero	 on
three	 sides	 in	 each	 problem.	 To	 illustrate	 the	 process,	 consider	 the	 example	 in
Figure	8.2.	For	j	=	1,	2,	3,	4,	let	(Pj)	be	the	problem	with	fk	=	0,	k	≠	j,	and	let	uj
be	the	solution	of	(Pj)	Then	by	linearity,	the	solution	of	the	full	problem	is

We	solve	(P4)	in	detail	to	illustrate	this	approach.

Figure	8.2.	Example	of	a	boundary	value	problem	for	Laplace’s	equation.

Let	u	=	u4	=	v(x)w(y).	From	the	boundary	conditions,	we	guess	v(x)	=	sin
nπx/a,	so	that	u4(x,	y)	=	sin(nπx/a)	w(y).	Then	Δu(x,	y)	=	0	leads	to	an	ODE	for
w(y):

with	general	solution

We	need	to	satisfy	a	homogeneous	boundary	condition	at	y	=	b,

Thus,



Now	we	can	form	a	series	to	satisfy	the	nonzero	boundary	condition	at	y	=	0:

On	y	=	0,

from	which	we	get	formulas	for	the	coefficients	An:

The	solution	u4	is	then	given	by	the	series	(8.4).	Similarly,	we	can	obtain	u1,	u2,
u3,	 and	 finally	 put	 these	 series	 together	 to	 get	 the	 solution	 u	 of	 the	 original
problem.	Note	that	the	series	for	u2	is	a	sine	series	like	(8.4),	but	the	series	for	u1
and	u3	have	the	form

because	of	the	combination	of	homogeneous	boundary	conditions	at	y	=	0,	b.

8.4.2.	Laplace’s	Equation	on	Spherical	and	Cylindrical	Domains

In	spherical	and	cylindrical	domains,	 it	 is	natural	to	use	curvilinear	coordinates
(i.e.,	 polar	 coordinates	 and	 cylindrical	 coordinates,	 respectively).	 Since	 the
Laplacian	in	these	coordinates	has	nonconstant	coefficients,	 the	ODE	that	result
will	 also	 have	 nonconstant	 coefficients.	 Moreover,	 the	 dimension	 of	 the	 space
makes	a	difference	to	the	type	of	equation	that	results.	This	leads	to	the	study	of
special	 functions,	 specifically,	 Legendre	 functions	 (solutions	 of	 Legendre’s
equation)	 and	 Bessel	 functions	 (solutions	 of	 Bessel’s	 equation).	 These	 special
functions	are	typically	expressed	as	series	solutions	of	ODE,	using	the	method	of
Frobenius.	 Some	 details	 may	 be	 found	 in	 the	 PDE	 book	 of	 Strauss	 [45],	 in
engineering	mathematics	books,	 such	as	Jeffery	 [26]	and	Kreyszig	[30],	and	 in
texts	that	typically	have	“PDE”	and	“Boundary	Value	Problems”	in	their	titles.

Here	we	give	the	detailed	solution	of	Laplace’s	equation	in	a	disk,	leading	to
Poison’s	 formula,	 a	 representation	 of	 the	 solution	 as	 an	 integral,	 which	 we
eventually	 interpret	 in	 terms	 of	 Green’s	 functions.	 The	 disk	 has	 the	 advantage
that	we	do	not	need	special	functions	to	solve	the	eigenvalue	problem.

Consider	the	Dirichlet	problem	in	a	disk	of	radius	a	>	0:



In	plane	polar	coordinates,

we	have	the	following	problem	for	u	=	u(r,	θ):

The	boundary	∂U	is	the	circle	r	=	a,	whereas	the	boundaries	for	the	variables	r,	θ
also	include	r	=	0,	θ	=	0,	2π.	At	the	disk	center,	r	=	0,	we	exclude	nonphysical
solutions	by	insisting	that	solutions	remain	bounded	as	r	→	0+.	The	boundaries	θ
=	0,	2π	represent	the	same	line	in	the	disk,	across	which	the	solution	should	be
as	smooth	as	elsewhere	 in	the	domain.	These	boundaries	are	accommodated	by
making	the	solution	2π	periodic	in	θ.	Similarly,	the	boundary	function	f	is	treated
as	a	2π-periodic	function	of	θ.

Let

Substituting	into	the	PDE	(8.5),	we	obtain

whence,	separating	r	from	θ,

We	then	have	an	eigenvalue	problem	for	H,	 in	which	the	boundary	condition	is
that	H(θ)	is	2π	periodic:

The	corresponding	equation	for	R(r)	is

We	can	solve	 the	eigenvalue	problem	(8.6),	with	 the	result	H	=	H0	=	A0/2	=
const.,	for	λ	=	0,	and

Note	that	each	eigenvalue	λn,	n	≥	1,	has	two	independent	eigenfunctions.	Setting
λ	=	n2	in	(8.7),	we	get



For	n	=	0,	the	general	solution	of	(8.8)	is

However,	we	 seek	 solutions	 that	 are	 bounded	 as	 r	→	0	 so	we	 set	D0	=	0	 and
consider	only	the	solution

The	arbitrary	multiple	C0	will	be	incorporated	into	A0.

For	n	≥	1,	we	seek	solutions	R(r)	=	rα.	Substituting	into	(8.8),	we	find	α	=
±n.	However,	r−n	is	unbounded	at	the	origin,	so	we	retain	only

Again,	the	arbitrary	coefficient	multiplying	this	solution	will	be	incorporated	into
Hn(θ).

So	far,	we	have	solutions

These	functions	are	harmonic	in	the	ball	B(0,	a),	and	they	reduce	to	functions	of
θ	alone	for	r	=	a.

We	form	a	series	 :

and	set	r	=	a	to	satisfy	the	boundary	condition	u(a,	θ)	=	f(θ).	Thus,

Consequently,	anAn,	anBn	are	Fourier	coefficients	of	the	2π-periodic	function	f	:

If	we	substitute	the	coefficients	given	by	(8.10)	back	into	the	series	(8.9),	we	get
the	solution	u	in	terms	of	the	data,	and	we	can	sum	the	series,	just	as	we	summed
the	series	to	get	the	Dirichlet	kernel	in	proving	pointwise	convergence.	Thus,



After	some	manipulation	of	the	sum	of	the	geometric	series

we	obtain	Poisson’s	formula	for	the	solution	of	the	Dirichlet	problem	in	a	disk:

This	integral	has	the	form	of	a	convolution	product	of	the	Poisson	kernel

with	the	boundary	data	 f(ψ)	=	u(a,	ψ).	The	formula	reduces	to	the	mean-value
property	of	harmonic	functions	when	r	=	0.	In	the	special	case	f	≡	1,	we	have
the	solution	u	=	1,	from	which	we	conclude	that

Note	that	you	could	also	have	guessed	this	by	integrating	the	series	term	by	term.

Just	 as	 for	 fundamental	 solutions,	 which	 are	 singular	 integral	 kernels,	 the
Poisson	kernel,	P	(r,	θ	−	ϕ)	is	singular	at	the	very	place	the	function	u(r,	θ)	is	to
be	evaluated	on	the	boundary:	r	=	a,	θ	=	ϕ.	The	singularity	 is	needed	 for	 the
convolution	to	converge	to	the	boundary	data:	for	f	continuous,



Figure	8.3.	Geometric	interpretation	of	Poisson’s	formula.

A	 more	 geometric	 interpretation	 of	 Poisson’s	 formula	 generalizes	 to	 higher
dimensions.	Consider	polar	coordinates	for

Then	we	have	a2	−	r2	=	|x′|2	−	|x|2,	and	|x′	−	x|2	=	r2	+	a2	−	2ar	cos(θ	−
ϕ)	(see	Fig.	8.3).	Thus,

The	Poisson	 kernel	 is	 an	 example	 of	 a	Green’s	 function,	which	we	 study	 in
detail	in	the	next	chapter.

PROBLEMS
1.	Prove	the	weak	maximum	principle	(Theorem	8.3,	part	1)	using	an	argument
similar	to	the	proof	used	for	this	principle	for	the	heat	equation	(Theorem	5.2).

2.	 Prove	 the	 weak	maximum	 principle	 (Theorem	8.3,	 part	 2)	 from	 the	 strong
form.

3.	 Consider	 Poisson’s	 equation	 on	 a	 bounded	 open	 set	 U	 ∈	 Rn	 with	 Robin
boundary	conditions



(a)	 Prove	 that	 if	 α	 >	 0,	 then	 the	 energy	 method	 can	 be	 used	 to	 show
uniqueness	of	solutions	 .

(b)	For	α	=	0,	show	that	solutions	are	unique	up	to	a	constant.

(c)	 Design	 an	 example	 to	 show	 that	 uniqueness	 can	 fail	 if	 α	 <	 0.	 (Hint:
Choose	n	=	1.)

4.	Derive	Poisson’s	formula	(8.11)	by	summing	the	series	for	u(r,	θ).	Provide	the
details.

5.	In	Rn	let	Vr	=	|B(0,	r)|	=	α(n)rn,	Sr	=	|∂B(0,	r)|.	Explain	why

6.	Suppose	u	∈	C2(U)	has	the	mean-value	property:

For	 all	x	∈	U,	 	 for	 all	 r	>	 0	 such	 that	B(x,	 r)	⊂	U.	Write	 a

careful	proof	by	contradiction	that	Δu	=	0	in	U.

7.	Suppose	U	⊂	Rn	is	open,	bounded,	and	connected,	and	 	satisfies

Prove	that	if	g	∈	C(∂U),	g(x)	≥	0	for	all	x,	and	g(x)	>	0	for	some	x	∈	∂U,	then

1.	Pierre-Simon	Laplace,	1749–1827,	made	many	contributions	to	mathematics,	physics,	and	astronomy.
Simeon	Denis	Poisson,	1781–1840,	was	a	mathematician	and	physicist	known	 for	his	 contributions	 to	 the
theory	of	electricity	and	magnetism.



CHAPTER	NINE

Green’s	Functions	and	Distributions
Green’s	functions,	integral	kernels	that	allow	linear	boundary	value	problems	to
be	 expressed	 as	 integral	 equations,	 appear	 in	 many	 contexts.1	 The	 theory	 and
construction	 of	 solutions	 for	 the	 basic	 linear	 PDE	 of	mathematical	 physics	 use
Green’s	 functions	 or	 fundamental	 solutions.	 For	 example,	 in	 linear	 elasticity,	 a
Green’s	function	is	the	displacement	of	the	elastic	material	(such	as	rubber)	due
to	a	point	force,	whereas	in	electrostatics,	the	Green’s	function	relates	an	electric
field	to	a	point	charge.	Numerical	analysts	use	Green’s	functions	as	a	convenient
way	 to	 convert	 PDE	 into	 integral	 equations	 that	 can	 be	 solved	with	 numerical
integration.

In	this	chapter	we	show	how	the	Green’s	function	is	a	solution	of	a	PDE	only
in	a	generalized	sense.	This	sense	is	elegantly	expressed	in	terms	of	the	theory	of
distributions,	 which	 we	 introduce	 in	 this	 chapter	 as	 a	 separate	 topic,	 before
returning	 to	 the	 construction	 and	 properties	 of	 Green’s	 functions	 for	 the
Laplacian	and	other	linear	differential	operators.

9.1.	Boundary	Value	Problems
We	would	like	to	study	boundary	value	problems,	such	as	the	following:

where	U	⊂	Rn	is	open	and	bounded	with	smooth	boundary	∂U.

From	 Section	 8.2	 we	 see	 how	 to	 solve	 Poisson’s	 equation	 on	 all	 space	 by
writing	 the	 solution	 as	 a	 convolution	 with	 the	 fundamental	 solution	 Φ	 (see
Theorem	8.1):

The	 purpose	 of	 Green’s	 functions	 is	 to	 find	 a	 similar	 formula	 that	 takes	 the
boundary	 conditions	 into	 account.	 An	 immediate	 difficulty	 is	 that	 we	 have	 no
reason	to	suppose	that	(9.2)	will	satisfy	the	boundary	condition	u	=	g	on	∂U.	The
idea	is	to	first	modify	the	fundamental	solution	so	that	a	formula	similar	to	(9.2)
yields	a	solution	of	the	inhomogeneous	PDE	that	satisfies	homogeneous	boundary
conditions	 (i.e.,	 with	 g	 ≡	 0),	 a	 construction	 we	 explain	 in	 Section	 9.3.	 As	 a
second	step,	we	find	a	smooth	solution	of	the	homogeneous	PDE	(i.e.,	with	f	≡	0)
that	satisfies	the	inhomogeneous	boundary	condition	u	=	g	on	∂U.	Finally,	we	put



the	two	pieces	together,	relying	on	linearity,	to	give	a	solution	of	the	boundary
value	problem	(9.1).

Figure	9.1.	Area	of	integration.	The	diagonal	line	is	z	=	y.

Let’s	start	with	problem	(9.1)	 in	one	dimension	with	homogeneous	Dirichlet
boundary	conditions:

We	solve	this	problem	by	integrating	twice:

where	C,	D	are	constants	of	integration.

The	boundary	condition	u(0)	=	0	leads	immediately	to	D	=	0.	The	boundary
condition	u(1)	=	0	then	gives	an	equation	for	C.	It	is	convenient	to	simplify	the
double	 integral	 by	 reversing	 the	 order	 of	 integration	 in	 the	 shaded	 region	 of
Figure	9.1.

Then



Figure	9.2.	The	integral	kernel	G(x,	y).

The	boundary	condition	at	x	=	1	becomes

Substituting	back	into	(9.4)	and	rearranging	terms,	we	arrive	at

We	can	write	this	formula	in	the	compact	form

using	the	integral	kernel

The	graph	of	G(x,	y)	for	fixed	x	∈	(0,	1)	is	shown	in	Figure	9.2.

Equation	(9.5)	defines	an	integral	operator	G:

The	differential	operator	 	operates	on	functions	u	in	the	space
X	of	C2	functions	that	satisfy	the	homogeneous	boundary	conditions.	The	integral
operator	G	:	C[0,	1]	→	X	goes	the	other	way;	it	acts	on	continuous	functions	and
gives	 twice-differentiable	 functions	 that	 satisfy	 (9.3).	 In	 this	 sense,	 the	 integral
operator	 is	 the	 inverse	 of	 the	 differential	 operator.	 In	 fact,	 G	 is	 the	 Green’s



function	 for	 the	 boundary	 value	 problem,	 because	 (9.4)	 satisfies	 (9.3).	 Observe
that	(9.5)	has	some	similarity	to	(9.2).

Here	are	some	properties	of	G	:	[0,	1]×	[0,	1]	→	R:

1.	G	is	nonnegative:	G(x,	y)	≥	0;

2.	G	is	symmetric:	G(x,	y)	=	G(y,	x);

3.	G	is	continuous;	and

4.	G	is	differentiable,	except	on	the	diagonal	x	=	y.	On	the	diagonal, 	has	a
jump	discontinuity:

where	the	bracket	notation	[F]	means	the	jump	in	a	function	F,	or	difference
between	the	right	limit	and	left	limit.	While	these	properties	are	specific	to	the
Green’s	function	(9.6)	for	problem	(9.3),	they	have	their	counterparts	for
different	differential	operators	L.

Now	 	except	on	the	diagonal,	where	 	may	be	thought	to	have	infinite
negative	slope.	We	write

where	δ(x)	is	the	Dirac	delta	function.	The	function	δ(x)	is	a	measure	that	assigns
mass	one	at	x	=	0	and	zero	mass	elsewhere.	We	shall	treat	δ	as	a	distribution,	or
generalized	 function,	 which	 leads	 us	 to	 the	 theory	 of	 distributions,	 a	 useful
framework	for	considering	PDE	and	Green’s	functions,	such	as	G(x,	y).

It	 is	 also	 useful	 to	 relate	 the	 Green’s	 function	 to	 the	 fundamental	 solution	
.	In	fact,	if	we	write

then	 	for	each	y	∈	[0,	1].	We	write	the	superscript	y	in	the	function	ϕ
(x)	 to	 indicate	 that	 y	 is	 a	 parameter.	Moreover,	 since	G	 satisfies	 homogeneous
boundary	conditions,	ϕy	satisfies	the	boundary	conditions	(for	each	y	∈	[0,	1]):

Thus,	 to	 modify	 the	 fundamental	 solution	 to	 obtain	 the	 Green’s	 function,	 we
construct	for	each	y	a	solution	u	=	ϕy	of	the	homogeneous	equation	u″(x)	=	0
that	satisfies	the	boundary	conditions	(9.7).



9.2.	Test	Functions	and	Distributions
In	 the	 previous	 section	 we	 constructed	 a	 Green’s	 function	 that	 is	 not	 twice
differentiable	in	the	classical	sense	but	has	a	generalized	second	derivative	that	is
a	delta	function,	an	example	of	a	distribution.	The	space	of	distributions,	defined
in	this	section,	is	used	to	broaden	the	notion	of	solutions	of	PDE,	especially	linear
PDE.	 We	 discuss	 distributions	 in	 a	 variety	 of	 contexts	 in	 the	 next	 couple	 of
chapters,	but	this	narrative	begins	with	a	space	of	smooth	functions	known	as	test
functions.	Test	 functions	are	 instrumental	 in	defining	distributional	 solutions	of
PDE	by	using	integration	by	parts	to	transfer	derivatives	from	distributions	onto
the	test	functions.

9.2.1.	Test	Functions

To	 study	 test	 functions,	we	 introduce	 some	new	notation	 and	 terminology.	 For
simplicity,	we	start	by	considering	smooth	functions	on	R.	Let	 	denote
the	space	of	C∞	functions	ϕ	with	compact	support,	supp	ϕ.	Then	D	is	the	space	of
test	functions,	with	a	specific	notion	of	convergence	defined	as	follows.

We	denote	the	jth	derivative	of	ϕ	by	ϕ(j).	A	sequence	{ϕn}	converges	to	ϕ	in	D
as	n	→	∞	if

1.	there	is	a	compact	(closed	and	bounded)	subset	K	of	R	such	that	supp	ϕn	⊂	K
for	all	n,	and	supp	ϕ	⊂	K;	and

2.	 	as	n	→	∞,	uniformly	on	K,	for	each	j	≥	0:

Similarly,	the	space	D(Rn)	of	test	functions	on	Rn	is	defined	by	replacing	ordinary
derivatives	by	partial	derivatives	in	the	definition	of	convergence.

Example	1.	(A	test	function)	Let’s	consider	an	example	of	a	test	function	in	Rn

that	we	will	refer	to	repeatedly.

Let

where	 	dx	is	chosen	so	that



To	see	that	η	is	a	test	function,	we	note	that	it	has	compact	support	{x	:	|x|	≤	1},
and	it	has	continuous	derivatives	of	all	orders,	even	where	the	definition	is	split
at	|x|	=	1.	For	example,	with	n	=	1,	the	derivatives	approach	zero	at	x	=	1.	To
see	 this,	observe	 that	every	derivative	 is	 the	product	of	a	 rational	 function	and
the	exponential	 ;	the	exponential	dominates	the	rational	function	as	x	→
1,	sending	the	derivatives	to	zero.

It	is	sometimes	useful	to	rescale	η	using	a	parameter	ϵ	>	0:

Then	the	support	is	scaled	by	ϵ,	while	leaving	the	integral	unchanged:	supp	ηϵ	=
{x	:	|x|	≤	ϵ},	and	 .	The	function	ηϵ	is	called	a	mollifier,	because	it	can
be	 used	 to	 smooth	 rough	 functions.	 The	 next	 lemma	 shows	 us	 how	 this	works
using	the	convolution	product.

Lemma	9.1.	Let	f	∈	C(Rn),	and	define,	for	ϵ	>	0,	fϵ(x)	=	ηϵ	fϵ	∗	f(x).	Then	fϵ	∈	C∞,
and	fϵ(x)	→	f(x)	for	all	x,	as	ϵ	→	0.

Let	 	denote	the	space	of	locally	integrable	functions	on	Rn:

Then	 fϵ	 is	 defined	 and	 is	C∞	 for	 .	 In	 that	 case,	 it	 takes	 a	 little	 measure
theory	 (the	 Lebesgue-dominated	 convergence	 theorem)	 to	 prove	 that	 fϵ	 →	 f
almost	 everywhere	 (see	 Evans	 [12],	 Appendix).	 Thus,	 the	 convolution	 of	 the
mollifier	ηϵ	with	the	only-once-differentiable	function	 f(x)	provides	an	infinitely
smooth	function	fϵ(x).

9.2.2.	Distributions

Now	that	we	have	established	properties	of	the	space	D	of	test	functions,	we	are
ready	to	define	distributions.	Each	distribution	f	is	a	function	on	D,	meaning	that
f(ϕ)	is	a	number	for	each	test	function	ϕ.

Specifically,	 the	 space	 of	 distributions	 D′	 is	 defined	 to	 be	 the	 space	 of
continuous	 linear	 functionals	 on	 the	 space	D	 of	 test	 functions.	 That	 is,	 f	∈	D′
means	f	:	D	→	R,	and	f	has	the	following	properties:

1.	f	is	linear:	f	(aϕ1	+	bϕ2)	=	af	(ϕ1)	+	bf	(ϕ2)	for	each	a,	b	∈	R,	ϕ1,	ϕ2	∈	D;	and

2.	f	is	continuous:	ϕn	→	ϕ	in	D	implies	f(ϕn)	→	f(ϕ)	(as	a	sequence	of	numbers).



The	 space	 of	 continuous	 linear	 functionals	 on	 a	 given	 topological	 space	 X	 is
called	the	dual	space	of	X	and	is	typically	denoted	X′.	Thus,	D′	is	the	dual	space
of	D.	Following	the	usual	custom,	we	denote	f(ϕ)	by	(f,	ϕ).	The	notation	should
not	be	confused	with	the	L2	inner	product	of	integrable	functions.

Not	every	functional	 is	a	distribution.	For	example,	 if	we	define	 f	 :	D	→	by
f(ϕ)	=	ϕ(0)2,	then	f	is	a	continuous	functional,	but	since	it	is	nonlinear,	it	is	not	a
distribution.

Example	 2.	 (Four	 distributions)	 Here	 we	 provide	 four	 examples	 of
distributions.	For	each	j	in	D′,	j	=	1,	…,	4,	test	functions	ϕ	∈	D	are	assigned	to
numbers	(j,	ϕ):

1.	(f1,	ϕ)	=	fR	ϕ(x)	dx.

2.	

3.	(f3,	ϕ)	=	(δ,	ϕ)	≡	ϕ(0).

4.	(f4,	ϕ)	=	ϕ′(0).

We	 leave	 to	 the	 problems	 verification	 that	 these	 examples	 are	 well	 defined,
linear,	and	continuous.

Many	distributions	are	associated	with	 locally	 integrable	 functions.	The	 first
distribution	 f1	 is	 associated	with	 ,	 which	 is	 not	 integrable	 on	R,	 but	 it	 is	 in	

.	Then	 .

The	second	distribution	f2	is	associated	with	the	Heaviside	function:

which	is	in	 	and	 .

More	generally,	we	have	the	following	lemma.

Lemma	9.2.	If	 ,	then	 	defines	a	distribution	g	∈	D′	by

Proof.	Linearity	of	g	 follows	from	the	formula	in	the	lemma;	continuity	follows
from	the	formula	and	an	estimate:



as	n	→	∞,	where	supp	ϕ,	supp	ϕn	⊂	K.

We	say	a	distribution	f	is	regular	if	it	has	an	 	representative	 :

Thus,	 regular	 distributions	 can	be	 thought	 of	 as	 functions.	 For	 example,	 f2	 is	 a
regular	distribution;	it	can	be	identified	with	the	Heaviside	function.

However,	 not	 every	 distribution	 defines	 an	 	 function.	 A	 distribution	 f	 is
called	singular	if	it	is	not	regular.	There	are	many	singular	distributions;	even	the
delta	function	 f3	=	δ	 is	singular,	as	we	now	show.	It	will	 then	follow	that	 f4	 in
Example	2	is	also	singular.

Lemma	9.3.	The	delta	function	is	a	singular	distribution.

Proof.	Suppose	δ	is	regular,	so	that	there	is	 	such	that

Now	 define	 a	 one-parameter	 family	 of	 test	 functions	 with	 parameter	 ϵ,
specifically,	ϕϵ(x)	=	η(x/ϵ):

We	calculate	the	effect	of	δ	on	ϕϵ	in	two	ways.	First,	from	the	definition	of	δ:

Second,	using	the	assumption	(9.9):

However,	then

Since	 the	 latter	 integral	approaches	zero	as	ϵ	→	0,	we	can	choose	ϵ	>	0	 small
enough	that	the	integral	on	the	right	is	less	than	e−1,	contradicting	the	inequality.

We	next	discuss	 several	general	properties	of	distributions	 that	are	useful	 in
the	 analysis	 of	 PDE,	 both	 specific	 ones	 (such	 as	 Laplace’s	 equation)	 and	 in	 the



general	theory	of	PDE,	including	both	linear	and	nonlinear	equations.

Convergence	of	Distributions

We	observed	in	Chapter	5	that	the	heat	kernel	Φ(x,	 t)	converges	to	δ(x)	as	 t	→
0+.	 Here	 we	 make	 this	 convergence	 precise	 by	 defining	 what	 it	 means	 for	 a
sequence	of	distributions	to	converge	to	a	limiting	distribution.

Let	 	be	a	sequence	of	distributions,	and	let	f	∈	D′(Rn).	We	say	fk
→	 f	 in	D′	 in	 the	 sense	 of	 distributions	 if	 (fk,	ϕ)	→	 (f,	ϕ)	 as	k	→	∞,	 for	 all	ϕ	∈
D(Rn).

Example	3.	(Sequence	of	distributions)	Let	n	=	1,	and	define,	for	k	=	1,	2,	…:

Then,	for	ϕ	∈	D(R),

Thus,	fk	→	δ	in	the	sense	of	distributions	as	k	→	∞.

Example	 4.	 (Convergence	 of	 heat	 kernel	Φ(x,	 t)	 as	 t	 →	 0)	 Let	Φ(x,	 t)	=	
.	Then	Φ(x,	t)	→	δ(x)	as	t	→	0+	means	(Φ(x,	t),	ϕ(x))	→	ϕ(0)

as	t	→	0+.

Distributional	Derivatives

Let	 f	 ∈	 C1(Rn).	 Then	 f	 is	 differentiable,	 and	 each	 partial	 derivative	 is	 locally
integrable	and	therefore	defines	a	distribution.	We	have

This	 calculation	 suggests	 that	 for	 any	 distribution	 f	 we	 define	 its	 distributional
derivative	∂f/∂xi	to	be	a	distribution	given	by



Then	every	distribution	is	differentiable	in	the	sense	of	distributions,	and	hence	has
derivatives	of	all	orders.	It	is	not	hard	to	show	that	∂f/∂xi	is	indeed	a	distribution
by	checking	directly	that	it	is	continuous	and	linear.

Example	 5.	 (Distributional	 derivative	 with	 n	 =	 1)	 Consider	 the	 Heaviside
function	H(x).	 As	we	 saw	 earlier,	H	 is	 in	 ,	 and	 it	 acts	 on	 test	 functions	 by	

.	Thus,	for	any	test	function	ϕ,

Therefore,

We	 can	 also	 differentiate	 the	 δ	 function	 directly	 from	 the	 definition	 of
distributional	derivative:

In	fact,	this	is	related	to	example	f4	in	Example	2.

As	another	example,	let	f(x)	=	|x|.	Then	because

is	an	 	function,	it	defines	a	distribution.	In	fact,	f′	=	2H	−	1;	consequently,	f″
=	2δ.	Here	we	 have	 used	 the	 fact	 that	 differentiation	 is	 a	 linear	 operation	 on
distributions,	just	as	it	is	on	differentiable	functions.

Translation	by	y	∈	Rn	The	delta	function	δ(x)	is	a	distribution	that	places	unit
mass	at	x	=	0.	To	place	the	mass	at	a	point	y,	we	define	a	new	distribution	with
the	 notation	 δ(x	 −	 y).	 In	 general,	 we	 can	 translate	 any	 distribution	 f	 by	 a
constant	y	as	follows.	We	define	the	translation	of	 f	∈	D′,	by	y	∈	Rn,	as	a	new
distribution	g	∈	D′,	for	which

where	ϕ(−y)	∈	D	is	the	test	function	defined	by	ϕ(−y)(x)	=	ϕ(x	−	y).	To	see	that
this	makes	sense,	we	simply	check	that	it	is	consistent	for	any	 :



Then	we	can	associate	the	distribution	g	with	the	translation	f(x	+	y)	of	the	
function	f(x)	by	y.

An	example	where	this	translation	is	useful	is	the	δ	function.	We	often	write
δ(x	−	y)	to	mean	the	distribution	δ,	translated	by	−y,	and	it	is	common	to	leave
x	in	the	arguments	of	both	the	distribution	and	the	test	function:

To	multiply	a	distribution	f	∈	D′	by	a	function	c	∈	C∞,	we	define	cf	∈	D′	by

noting	that	cϕ	is	a	test	function.	Again,	this	definition	is	motivated	by	the	case	of
a	 regular	 distribution	 f,	 in	 which	 case	 the	 formula	makes	 sense	 interpreted	 as
integrals.

The	 next	 two	 examples	 illustrate	 the	 connection	 between	 properties	 of
distributions	and	differential	equations.

Example	6.	(Multiplication	by	a	C∞	function)	Consider	c(x)	=	x,	f	=	δ	 in	R.
Then

so	that	xδ	=	0.	Since	δ	=	H′,	we	can	interpret	xδ	=	0	as	saying	that	y(x)	=	H(x)
is	a	distribution	solution	of	the	differential	equation

In	fact,	the	general	distribution	solution	of	this	equation	(which	is	singular	at	x	=
0)	is

for	 arbitrary	 constants	 a,	 b.	 Thus,	 we	 have	 a	 two-parameter	 family	 of
distributional	 solutions	 for	 the	 first-order	 equation.	 This	 highlights	 a	 danger	 in
enlarging	 the	 space	 of	 functions	 in	 which	 to	 define	 solutions,	 namely,	 that
uniqueness	 of	 solutions	 may	 be	 lost	 in	 the	 larger	 space.	 Uniqueness	 can	 be
restored	by	adding	suitable	boundary	or	initial	conditions.

Example	 7.	 (Application	 to	 shock	 wave	 solutions	 of	 conservation	 laws)
Shock	waves,	introduced	in	Chapter	2,	are	in	fact	distributional	solutions	of	PDE,
which	we	illustrate	in	this	example	for	the	scalar	conservation	law

in	which	f	:	R	→	R	is	a	given	C1	function.	When	we	interpret	(9.10)	in	the	sense



of	distributions,	it	allows	us	to	give	meaning	to	shock	wave	solutions,	which	are
discontinuous.	 The	 equation	 simply	 states	 that	 if	 u	∈	D′(R2)	 and	 f(u)	 can	 be
interpreted	 as	 a	 distribution,	 then	 the	 combination	 of	 distributional	 derivatives
on	the	left-hand	side	of	the	equation	should	be	zero	on	every	test	function.	Thus,
for	a	test	function	ϕ(x,	t):

In	 this	way,	we	can	define	distribution	 solutions	of	differential	 equations,	 even
nonlinear	equations.	To	see	that	this	interpretation	has	some	substance,	consider
a	jump	discontinuity

where	u±	and	s	are	constants.	Then

We	rewrite	these	functions	using	the	Heaviside	function:

Thus,

and	H′	=	δ.	Equation	(9.10)	becomes

in	the	sense	of	distributions.	But	then	the	constant	−s(u+	−	u−)	+	f(u+)	−	f(u−)
must	be	zero:

This	 equation	 is	 the	 Rankine-Hugoniot	 condition	 for	 shock	 wave	 solutions	 of
(9.10).	It	is	useful	because	it	relates	the	shock	speed	s	to	the	one-sided	limits	u±
of	 the	 solution	 on	 either	 side	 of	 the	 discontinuity.	We	 will	 derive	 it	 for	 more
general	discontinuities	in	Chapter	13	on	scalar	conservation	laws.

Distributions	on	Open	Subsets	of	Rn

It	is	straightforward	to	formulate	the	above	ideas	for	distributions	on	subsets	of
Rn.	The	key	step	is	to	define	test	functions	appropriately	and	to	use	integration	by



parts.	 Let	U	⊂	Rn	 be	 open.	 Then	we	 can	 define	 the	 space	 	 of	 test
functions	on	U	(i.e.,	the	C∞	functions	on	U	that	have	compact	support	in	U).	Then
D′(U)	is	the	space	of	continuous	linear	functionals	on	D(U).	Now	let	u	:	U	→	R
be	 in	 .	 Then	 u	 defines	 a	 distribution	 in	 D′(U).	 In	 particular,	 u	 is
differentiable	in	the	sense	of	distributions:

We	 say	 u	 has	 a	weak	 derivative	 	 if	 the	 distributional	 derivative	 is	 a	 regular
distribution.	 Recall	 that	 this	 means	 it	 is	 represented	 by	 a	 locally	 integrable
function:	 .	 In	 this	 way,	 we	 distinguish	 between	 the	 weak	 derivative
and	a	distributional	derivative.

9.3.	Green’s	Functions
In	 this	 section	we	 return	 to	Green’s	 functions,	 first	 giving	a	general	 framework
within	 the	 theory	 of	 distributions	 and	 then	 showing	 how	 this	 applies	 to	 the
Laplacian.	The	primary	use	of	distributions	here	 is	 related	to	 the	delta	 function
and	 the	 notion	 of	 fundamental	 solution	 for	 a	 differential	 operator.	 Green’s
functions	provide	a	means	to	invert	the	differential	operator	for	boundary	value
problems.

9.3.1.	General	Framework

Consider	a	linear	partial	differential	operator	L	(L	=	−Δ	for	example),	that	acts
on	 functions	u	 :	Rn	→	R.	 As	 we	 introduced	 for	 one	 dimension	 in	 Section	 9.1,
Green’s	functions	enable	us	to	provide	an	integral	representation	for	solutions	of
boundary	value	problems

Here	f	is	a	given	function	on	U,	and	g	is	a	given	function	on	∂U,	but	note	that	U	⊂
Rn	may	 be	 unbounded.	 The	 term	Bu	 represents	 a	 linear	 combination	 of	 u	 and
derivatives	of	u	of	lower	order	than	the	order	of	the	partial	differential	operator
L.	 Associated	 with	 L	 we	 have	 the	 fundamental	 solution	 Φ(x,	 y),	 which	 is
required	to	satisfy

in	the	sense	of	distributions.	To	see	why	this	is	helpful,	consider	Φ	to	be	locally
integrable	 in	 y	 for	 each	 x	∈	Rn,	 and	 let	 f	∈	D(Rn).	 Then	 (using	 the	 L2	 inner



product	notation,	since	Φ	and	f	are	integrable)

satisfies	Lv	=	f	in	Rn	because

That	is,	the	fundamental	solution	is	the	key	to	solving	the	inhomogeneous	PDE.

However,	(9.12)	does	not	generally	satisfy	the	boundary	condition	Bv	=	g.	To
satisfy	the	boundary	condition,	we	add	a	solution	w	of	the	homogeneous	equation
Lw	=	0	so	that	u(x)	=	v(x)	+	w(x)	satisfies	the	boundary	condition	Bu	=	g.	But
then	w	must	 satisfy	 the	 boundary	 condition	Bw	=	 g	−	Bv.	 Thus,	 provided	we
have	 the	 fundamental	 solution	Φ(x,	 y),	 the	 boundary	 value	 problem	 (9.11)	 is
reduced	to	solving	the	problem

The	boundary	condition	for	w	is	a	bit	clumsy;	it	relies	on	applying	the	boundary
operator	 to	 the	 integral	 (9.12)	 and	 restricting	 it	 to	 the	 boundary.	 The	 way	 to
express	 this	 more	 smoothly	 is	 to	 introduce	 the	 Green’s	 function	 for	 the
differential	operator	L	with	boundary	operator	B.	For	clarity,	we	consider	L	and
B	to	have	independent	variable	 ,	and	we	let	 	be	a	second	independent
variable,	which	is	treated	as	a	parameter	for	now.

The	Green’s	function	G	=	G(x,	y)	is	defined	as	the	solution	of	the	problem

for	each	 .

We	construct	G	using	the	fundamental	solution,	by	defining	a	function	ϕy(x):

Then	ϕy(x)	satisfies

Now	we	can	express	the	solution	of	(9.11)	as	a	sum	u	=	v	+	w,	where	v(x)	=	∫U
G(x,	y)	f(y)	dy,	and	w(x)	satisfies

This	 formulation	 is	 useful	 even	 when	 we	 do	 not	 have	 the	 Green’s	 function



explicitly,	since	estimates	on	the	Green’s	function	can	be	used	to	obtain	estimates
on	 the	solution	u.	 In	 special	 cases,	we	 can	 complete	 the	 solution	as	 an	 explicit
formula	 by	 finding	 the	 Green’s	 function	 and	 solving	 (9.15)	 for	w(x).	 We	 next
demonstrate	this	for	Poisson’s	equation,	where	L	=	−Δ.

9.3.2.	Green’s	Functions	for	the	Laplacian

We	apply	 the	 ideas	 just	developed	 to	 the	Dirichlet	boundary	value	problem	 for
Poisson’s	equation:

Here	U	 is	open	and	bounded,	with	piecewise	smooth	boundary	∂U;	and	 f,	g	are
continuous	on	U,	∂U,	respectively.	In	terms	of	the	previous	section,	L	=	−Δ,	and
the	boundary	operator	B	is	the	identity:	Bu	=	u.

The	fundamental	solution	for	−Δ	is	a	function	Φ(x	−	y)	of	x	−	y,	since	the
Laplacian	 Δ	 is	 translation	 invariant.	 (More	 generally,	 the	 fundamental	 solution
for	 any	 constant-coefficient	PDE	operator	L	will	 be	 a	 function	 of	x	−	y.)	 The
Green’s	function	G(x,	y)	=	Φ(x	−	y)	−	ϕy(x)	 is	 then	expressed	in	terms	of	the
solution	of	the	boundary	value	problem

In	 particular,	 ϕy	 is	 a	 harmonic	 function	 in	 U.	 In	 the	 proof	 of	 the	 following
theorem,	we	use	the	symmetry	property	ϕy(x)	=	ϕx(y),	which	follows	since	Φ(z)
is	an	even	function	of	z.	With	this	construction,	we	can	write	a	formula	for	the
solution	of	the	boundary	value	problem	(9.16).

Theorem	9.4.	If	 	solves	(9.16),	then

Proof.	As	explained	above,	the	first	integral	in	(9.17)	solves	the	inhomogeneous
PDE,	 with	 homogeneous	 boundary	 condition,	 so	 it	 remains	 to	 prove	 that	 the
second	 integral	 is	 harmonic	 and	 satisfies	 the	 given	 boundary	 condition.	 The
second	integral	is	harmonic	in	x,	since	G(x,	y)	is	harmonic	in	x	∈	U	for	each	y	∈
∂U,	 and	 the	 second	 term	 involves	 differentiating	 and	 integrating	 only	 with
respect	to	the	parameter	y	∈	∂U.	To	verify	the	boundary	condition,	we	effectively
show	 that	 the	 normal	 derivative	 acts	 like	 a	 delta	 function	 as	x	 approaches	 the
boundary.	 To	 do	 this,	 the	 proof	 uses	 the	 Divergence	 Theorem	 to	 recover	 the



boundary	data.

Recall	that	G(x,	y)	has	the	same	singularity	at	y	=	x	as	does	the	fundamental
solution.	In	the	verification	of	the	solution	of	Poisson’s	equation	on	all	of	space
(Section	8.2),	using	the	fundamental	solution,	we	excluded	a	small	ball	around	x
∈	U	and	integrated	on	the	domain

We	do	the	same	thing	here	to	accommodate	the	singularity	in	G(x,	y).	To	start,
we	work	with	Φ	and	a	function	 	(not	necessarily	a	solution).	Then,	using
Green’s	identity,	we	have

Since	Φ(x	−	y)	is	harmonic	away	from	y	=	x,	the	first	term	on	the	left-hand	side
is	zero.	On	the	right-hand	side	there	are	two	terms,	but	there	are	also	two	parts
of	the	boundary,	namely,	∂U	and	∂B(x,	ϵ).	We	now	show	that	the	contributions
from	∂B(x,	ϵ)	approach	zero	as	ϵ	→	0.	Let

As	with	the	solution	of	Poisson’s	equation,	Iϵ	→	u(x)	as	ϵ	→	0	(see	Section	8.2).

Similarly,	let

We	assume	in	the	theorem	that	u	is	continuously	differentiable.	Since	Φ(x	−	y)	is
constant	on	∂B(x,	ϵ),	proportional	to	ln	ϵ	for	n	=	2,	and	to	ϵ−(n−2)	for	n	>	2,	we
conclude	that	|Jϵ|	→	0	as	ϵ	→	0.

Letting	ϵ	→	0,	we	now	obtain

The	next	step	is	to	use	a	similar	argument,	in	which	we	replace	Φ(x	−	y)	by



the	harmonic	function	ϕx(y)	in	the	calculation.	Since	ϕx	has	no	singularity	at	x	=
y,	and	ϕx(y)	=	Φ(x	−	y)	for	y	∈	∂U,	we	have

Rearranging,	and	using	G(x,	y)	=	Φ(x	−	y)	−	ϕx(y),	we	obtain

Finally,	 when	 u	 is	 a	 solution	 of	 (9.16)	 we	 obtain	 (9.17),	 and	 the	 proof	 is
complete.

9.3.3.	The	Method	of	Images

Theorem	 9.4	 gives	 a	 formula	 for	 the	 solution	 of	 (9.11)	 that	 relies	 on	 Green’s
functions.	 Here	 we	 show	 how	 the	 Green’s	 function	 for	 the	 Laplacian	 can	 be
calculated	from	the	fundamental	solution	in	special	cases	when	the	domain	U	has
symmetry.	The	general	idea	is	to	construct	image	points	 	outside	U	for	each	x	∈
U	such	that	the	function	 	exactly	cancels	Φ(x	−	y)	on	the	boundary	∂U,
for	 some	 scale	 factor	 C,	 possibly	 depending	 on	 x.	 Then	 the	 new	 function	 is
harmonic	with	 respect	 to	y	∈	U	 (since	 the	Laplacian	 is	 invariant	under	 scaling
and	translation	by	a	constant),	so	we	can	set	 .

Figure	9.3.	Method	of	images	to	derive	Green’s	function	for	a	half-plane.

We	demonstrate	this	construction,	which	is	known	as	the	method	of	images,
in	 two	 examples.	 In	 the	 first	 example	 U	 is	 a	 half-space,	 and	 in	 the	 second
example	U	is	a	ball.



Example	8.	(Method	of	images	(half-space))	Let	U	=	{x	∈	Rn	:	xn	>	0}.	For	x
=	(x1,	…,	xn)	∈	U,	define	the	image	 	(see	Fig.	9.3),	and	let

Since	 ,	it	follows	that	 	is	harmonic	with	respect	to	y	∈	U	(for	x	∈	U).
Then	G(x,	y)	will	be	established	as	the	Green’s	function	if	we	can	show	G(x,	y)	=
0	for	yn	=	0,	xn	>	0.	For	yn	=	0,	we	have

Therefore,	 ,	as	needed.

Example	9.	(Method	of	images	(unit	ball))	Consider	U	=	B(0,	1),	the	unit	ball
in	Rn.	Here,	the	image	 	includes	a	scaling,	in	addition	to	reflection	through	the
boundary.	(See	Fig.	9.4.)	We	define	 ,	and	let

(Note	that	 .)	To	prove	that	G(x,	y)	=	0	for	x	∈	U,	y	∈	∂U,	we	need	 to
show	that	if	0	<	|x|	<	1,	 ,	and	|y|	=	1,	then

Figure	9.4.	Method	of	images	to	derive	Green’s	function	for	the	unit	ball.

But	this	follows	because

Consequently,	G(x,	 y)	 given	 by	 (9.18)	 is	 the	 Green’s	 function	 for	 the	 unit	 ball
with	Dirichlet	boundary	conditions.



In	 Chapters	 4–9	 we	 have	 considered	 all	 three	 canonical	 second-order	 linear
constant-coefficient	 PDE,	 emphasizing	 explicit	 solutions.	 In	 the	 next	 two
chapters,	 we	 introduce	 more	 theoretical	 approaches	 to	 general	 linear	 elliptic
equations.

PROBLEMS

1.	Consider	the	boundary	value	problem

in	which	f	:	[0,	1]	→	R	is	a	given	continuous	function.

(a)	Prove	that	there	is	no	solution	unless

(b)	Assuming	(9.19),	prove	that	solutions	are	unique	up	to	a	constant.	In	other
words,	if	u,	v	are	two	solutions,	then

for	some	constant	C.

(c)	Write	the	solution	u(x)	in	the	form

write	a	formula	for	the	Neumann	function	N(x,	y).

2.	 Write	 an	 explicit	 formula	 for	 ϕy(x)	 for	 ,	 where	 G	 is
given	by	(9.6),	to	verify	that	ϕy(x)	is	linear	for	each	y.

3.	 Calculate	 the	 fundamental	 solution	 u	∈	D′(R)	 for	 the	 differential	 operator	
,	where	c	∈	R	and	c	≠	0,	satisfying	lim|x|	→	∞	u(x)	=	0.	That	 is,	 solve	
.	(Note:	The	sign	of	c	will	affect	your	solution.)

4.	Compute	g	∗	f	for	the	functions

and	graph	the	convolution	product	g	∗	f.

5.	Verify	 that	 the	examples	of	distributions	 f1,	 f2,	 f3,	 f4	 in	Example	2	 satisfy	 the
conditions	that	define	a	distribution.



6.	Prove	that	ηϵ	→	δ	in	the	sense	of	distributions,	as	ϵ	→	0.	(See	(9.8).)

7.	(a)	Let	 .	Define	the	distributional	derivative	 .

(b)	 Let	H	 :	R	 →	R	 be	 the	 Heaviside	 function.	 Prove	 that	 u(x,	 y)	 =	 H(y)
satisfies	 	in	the	sense	of	distributions.

8.	Let	k	>	0.

(a)	Prove	that	Gk(x,	y)	=	Cke−k|x−y|	is	a	fundamental	solution	for	the	equation

for	some	Ck.	Find	a	formula	for	Ck.

(b)	Find	the	Green’s	function	for	the	boundary	value	problem

9.	Find	a	fundamental	solution	Φ(x)	depending	only	on	r	=	|x|,	x	∈	R3,	 for	the
equation

satisfying	limx	→	∞	Φ(x)	=	0.	Instead	of	having	a	delta	function	(on	the	right-hand
side	of	the	equation	defining	Φ),	use	the	source	condition

(Hint:	Use	a	change	of	variable	u	=	rv.)

10.	 Let	 ,	x	=	 (x1,	x2)	∈	R2.	 For	what	 values	 of	α	 is	u	 in	 L2(B),
where	B	=	{x	:	|x|	<	1}?	Explain	your	answer.

11.	Consider	f	∈	D′(R),	g	∈	C∞(R).

(a)	Derive	the	formula	(gf)′	=	gf′	+	g′f	in	the	sense	of	distributions.

(b)	Hence	prove	that

12.	Let	u	∈	C(U)	satisfy	the	mean-value	property	in	a	domain	U	⊂	Rn:

provided	B(x,	r)	⊂	U.	Let	uϵ	=	ηϵ	∗	u	in	Uϵ	=	{x	∈	U	:	dist(x,	∂U)	>	ϵ},	where
dist(x,	S)	denotes	the	shortest	distance	between	a	point	x	and	a	set	S.	Then	uϵ	∈



C∞(Uϵ).	Prove	the	surprising	result	 that	uϵ	=	u	on	Uϵ.	Consequently,	u	∈	C∞(U)
and	is	harmonic	in	U.	 In	particular,	harmonic	 functions	are	C∞!	(Hint:	You	will
need	a	change	of	variables	in	the	formula	for	uϵ	to	write	the	integral	over	B(x,	ϵ)
in	 polar	 coordinates	 (dx	 =	 rn−1drdS)	 to	 take	 advantage	 of	 this	 version	 of	 the
mean-value	property.)

1.	 George	 Green,	 1793–1841,	 was	 a	 self-taught	 British	 mathematician	 and	 physicist	 who	 made
fundamental	 contributions	 to	 the	 theory	 of	 electricity	 and	 magnetism.	 Several	 theorems	 and	 functions
related	to	these	topics	now	carry	his	name.



CHAPTER	TEN

Function	Spaces
In	 this	 short	chapter,	we	 introduce	 function	 spaces	 that	are	used	extensively	 in
the	analysis	of	partial	differential	equations.

10.1.	Basic	Inequalities	and	Definitions
Much	 of	 the	 theory	 of	 PDE	 relies	 on	 a	 variety	 of	 estimates,	 like	 the	 energy
estimates	we	encountered	in	Chapter	5	for	the	heat	equation.	Estimates	are	used
to	establish	all	aspects	of	well-posedness	and	regularity.	PDE	estimates	routinely
use	the	inequalities	that	we	introduce	and	prove	in	this	section,	including	some
basic	inequalities	for	function	spaces,	in	particular,	Lp	spaces	and	Sobolev	spaces.

10.1.1.	Inequalities	on	R

We	 begin	 with	 several	 inequalities	 between	 numbers,	 which	 form	 a	 basis	 for
inequalities	and	estimates	of	functions.

Cauchy	inequality.	By	rearranging	(a	−	b)2	≥	0,	we	arrive	at	the	inequality

Sometimes	it	is	useful	to	weight	the	terms	differently,	as	in	the	ϵ	>	0	version	of
the	Cauchy	inequality:

Proof	of	(10.1).	Apply	Cauchy’s	inequality	to	 .

Young’s	 inequality.	 This	 relation	 is	 a	 different	 generalization	 of	 the	 Cauchy
inequality.	For	p	>	1,	define	q	by	 ;	we	say	q	is	dual	to	p.	Then

This	inequality	is	the	Cauchy	inequality	when	p	=	q	=	2.

Proof.	Minimize	 .	We	leave	the	details	to	Problem	2.

10.1.2.	Function	Spaces	and	Inequalities	on	Functions

Now	we	are	prepared	to	define	the	function	spaces	we	shall	use.	For	each	space,



we	define	a	norm,	and	an	inner	product	where	possible.

For	1≤	p	<	∞,	define	Lp(U)	to	be	the	space	of	(measurable)	functions	whose
pth	power	is	integrable	over	U	⊂	∫U	Rn	:	|u|p	dx	<	∞.	We	define	a	norm	on	Lp	by

As	discussed	for	L2	spaces	in	Section	7.2,	this	defines	a	norm	only	if	functions	that
are	equal	almost	everywhere	are	considered	equivalent.	Then	Lp	is	defined	to	be
the	space	of	equivalence	classes,	with	the	norm	of	an	equivalence	class	defined	as
here,	 in	 which	 u	 is	 any	 element	 in	 the	 equivalence	 class.	 Sometimes	 we
abbreviate	the	subscript	and	write	||u||p	for	the	Lp	norm.

The	 space	L∞(U)	 is	 defined	 as	 the	 space	 of	 (measurable)	 functions	 that	 are
essentially	 bounded	 over	 U,	 with	 norm	 given	 by	 the	 essential	 supremum	 (see
Appendix	B):

Of	 the	 following	 three	 defining	 properties	 of	 a	 norm,	 only	 the	 triangle
inequality	 requires	proof,	 as	 the	 first	 two	 follow	directly	 from	 the	definition	of
norm	in	Lp:

1.	||u||	≥	0,	with	equality	only	for	u	=	0;

2.	||αu||	=	|α|	||u||	for	all	α	∈	R;	and

3.	||u	+	v||	≤	||u||	+	||v||	(the	triangle	inequality).

The	 proof	 of	 the	 triangle	 inequality	 employs	 a	 further	 inequality	 involving
integrals	of	functions.

Lemma	10.1.	(Hölder’s	inequality)	Let	u	∈	Lp(U),	v	∈	Lq(U),	where	1	<	p,	q	<	∞
are	dual:	 .	Then

Proof.	 Since	 Hölder’s	 inequality	 is	 homogeneous,	 it	 is	 enough	 (and	 simpler	 to
write)	if	we	take	||u||p	=	1=	||v||q.	Then	we	apply	Young’s	inequality	to	u(x)v(x)
and	integrate	over	U:



The	following	case	p	=	q	=	2	is	important	enough	to	have	its	own	name.

Theorem	10.2.	(The	Cauchy-Schwartz	inequality)	Let	u,	v	∈	L2(U).	Then

Now	we	can	prove	the	triangle	inequality	for	the	Lp	norm.

Proof	of	the	triangle	inequality.	Let	u,	v	∈	Lp(U).	Then

The	triangle	inequality	now	follows	by	dividing	by	||u	+	v||p−1.

Recall	that	L2	is	special	because	it	has	an	inner	product

consistent	with	 the	 L2	 norm	 ||f	 ||L2(U)	=	 (f,	 f)1/2.	 For	 the	 inner	 product	 (as	 for
Hölder’s	 inequality),	 we	 allow	 for	 the	 possibility	 of	 complex-valued	 functions.
However,	from	now	on	unless	otherwise	stated,	functions	will	be	real	valued.

It	 is	sometimes	helpful	 to	 think	of	Lp	 functions	 in	 terms	of	Fourier	 series.	 In
the	specific	case	of	L2[0,	π],	we	can	explicitly	and	easily	make	the	connection	to
the	space	ℓ2	of	sequences	that	are	square-summable:

with	inner	product	and	norm	defined	by:



respectively,	where	x	=	{xj},	y	=	{yj}.	In	fact,	Cauchy	sequences	in	ℓ2	converge,
and	 their	 limits	 are	 in	 ℓ2.	 Thus,	 the	 linear	 inner	 product	 space	 ℓ2	 is	 complete,
making	it	a	Hilbert	space.

To	establish	the	connection	between	L2[0,	π]	and	ℓ2,	let	u	∈	L2[0,	π].	Then

where	(.,.)	is	the	L2	inner	product,	and	the	sine	functions	 	sin	jx,	j	=	1,	2,
…	form	a	complete	orthonormal	set.	Now	let	bj	=	(u,	uj).	Then	Bessel’s	inequality
(7.12)	implies	that	the	sequence	{bj}	is	in	ℓ2,	and	moreover,	Parseval’s	identity	is	

.	More	concisely,

A	fancy	way	to	say	this	is	that	the	mapping	J	:	L2[0,	π]	→	ℓ2	given	by	J	(u)	=	{bj}
is	an	isometric	isomorphism.

Integrable	 functions	 are	not	necessarily	 continuous	or	 even	bounded.	 In	 the
following	 examples,	 we	 examine	 the	 constraints	 between	 the	 nature	 of	 a
singularity	and	 the	dimension	of	 the	 space	and	 the	exponent	p	 in	order	 for	 the
function	to	be	in	Lp.	The	first	example	examines	the	kind	of	singularity	allowed	in
Lp	functions.	The	second	example	is	more	sophisticated	and	shows	that	integrable
functions	can	be	very	singular.

Example	1.	(A	singular	function)	Let	U	=	B(0,	1)	⊂	Rn.	Consider	the	function

in	which	β	>	0	is	some	constant,	and	u(0)	=	0	(In	fact,	u(0)	does	not	have	to	be
specified,	since	Lp	functions	need	only	be	defined	almost	everywhere.)

To	work	out	 the	values	of	n,	β,	p	 for	which	we	have	u	∈	Lp(U),	we	need	 to
understand	when	 up	 is	 integrable.	 Note	 that	 u	 has	 a	 singularity	 at	 x	 =	 0.	 To
resolve	this	issue,	we	calculate	 ,	and	find	precisely	when	it	is	finite.	For
example,	for	n	=	1,	 	if	and	only	if	βp	<	1.	Now	we	have	to
work	out	the	effect	of	changing	n	on	this	condition.	But	in	Rn	we	have



and	this	is	finite	precisely	when	the	inner	integral	is	finite,	namely,	when	(as	in
the	n	=	1	case)	the	power	of	1/r	is	less	than	unity:	βp	−	n	+	1	<	1	:

Example2.	(A	very	singular	integrable	function)	Let	 	be	an	enumeration
of	the	(countable)	set	of	rationals	in	the	interval	[0,	1].	Define

where	 0	 <	 β	 <	 1.	 Then	 the	 Monotone	 Convergence	 Theorem	 (Appendix	 B)
implies	 that	 the	 series	 converges	 in	 L1[0,	 1],	 but	 u	 is	 unbounded	 in	 every
neighborhood	of	every	point.	Hence,	although	u	is	Lebesgue	integrable,	not	only
is	it	not	Riemann	integrable,	it	is	chronically	unbounded!

10.2.	Multi-Index	Notation
To	further	discuss	function	spaces,	we	use	multi-index	notation.	This	notation	is
also	a	convenient	way	to	represent	PDE	of	arbitrary	order	and	with	unspecified
coefficients.	A	multi-index,	α	=	α1	…	αn,	 is	 a	 sequence	of	nonnegative	 integers.
We	write	the	multi-index	length	as	|α|	=	α1	+	…	+	αn.	If	x	=	(x1,	…,	xn)	∈	Rn,
we	write	 ,	and

a	differential	operator	of	order	|α|.	Be	aware	that	for	x	∈	Rn,	the	notation	|x|	=	
	 is	 still	 the	Euclidean	norm.	The	multi-index	 length	|α|	 is	 reserved	 for

multi-indices.

Multi-index	 notation	 is	 useful	 for	 writing	 a	 polynomial	 of	 degree	 k	 in	 n
variables	x	as	∑|α|≤k	aαxα	=	0,	with	constant	coefficients	aα	∈	R.	Correspondingly,
the	notation	allows	us	to	write	a	general	quasilinear	PDE	of	order	k	as

for	 theoretical	 purposes,	 where	 the	 coefficients	 aα	 and	 right-hand	 side	 f	 are
functions	of	u,	 derivatives	of	u,	 and	of	x	∈	Rn.	 In	 this	 form	 it	 is	 convenient	 to
place	assumptions	on	the	coefficients	(such	as	ellipticity	of	 the	PDE)	to	capture



whole	classes	of	equations.

If	u	has	a	weak	derivative	Dαu,	then

for	all	ϕ	∈	D(U),	the	space	of	test	functions.

Although	multi-index	notation	 is	useful	 in	some	general	contexts,	 such	as	 in
the	next	section,	it	is	often	simpler	to	use	more	conventional	notation,	such	as	
in	place	of	D010	in	R3.	Even	a	simple	PDE	like	the	wave	equation	uxx	−	uyy	−	uzz
=	0	looks	ugly	in	multi-index	notation:

10.3.	Sobolev	Spaces	Wk,p(U)
When	studying	solutions	u	of	kth-order	PDE,	we	need	derivatives	of	u	of	order	up
to	k.	Sobolev	spaces	Wk,p(U)	consist	of	functions	with	weak	derivatives	up	to	order
k,	but	with	the	additional	requirement	that	the	derivatives	are	in	Lp;	that	is,	their
pth	powers	are	integrable.	Thus,	Wk,p(U)	is	defined	to	be	the	space	of	functions	u
such	that	Dαu	∈	Lp(U)	for	all	α	such	that	|α|	≤	k.	Sobolev	spaces	are	used	in	the
theory	of	PDE,	for	example,	elliptic	PDE	in	Chapter	11.

The	norm	in	Wk,p(U)	is	defined	for	1	≤	p	<	∞	by

For	p	=	∞,	we	define

Just	 as	 we	 did	 for	 Lp	 spaces,	 we	 can	 ask	 when	 a	 function	 with	 an	 algebraic
singularity	is	in	Wk,p.

Example	3.	(Another	singular	function)	Consider	the	example	u(x)	=	|x|−β,	x
∈	U	=	B(0,	1),	x	≠	0	(see	Example	1).	Then

which	has	a	singularity	like	 .	Referring	back	to	Example	1,	in	Lp,	we	deduce

that	 	if	and	only	if	(β	+	1)p	<	n.	Thus,	u	∈	W1,p(U)	if	and	only	if



When	 we	 study	 elliptic	 equations	 with	 homogeneous	 Dirichlet	 boundary
conditions	in	the	next	chapter,	the	boundary	conditions	are	built	into	the	Sobolev
spaces	 as	 follows.	 The	 space	 	 is	 the	 completion	 of	 	 in	 the	Wk,p(U)
norm.	 That	 is,	 every	 element	 of	 	 is	 the	 limit	 of	 a	 Cauchy	 sequence	 of
smooth	functions	with	compact	support	in	U.	In	this	sense	we	can	think	of	
as	 the	space	of	Wk,p	 functions	 that	are	zero	on	 the	boundary	∂U.	This	notion	 is
made	precise	with	trace	theorems,	which	are	developed	in	Evans	[12].

In	 the	 important	 case	 of	p	=	2,	we	write	Hk(U)	=	Wk,2(U).	 This	 space	 is	 a
Hilbert	space,	in	that	it	has	an	inner	product	and	is	complete	(with	respect	to	the
norm	defined	by	 the	 inner	product;	 see	Appendix	B).	The	 inner	product	 (·,·)	on
Hk(U)	is	given	by

and	the	norm	is	 .	We	generally	work	with	H1(U),	for	which	the

inner	product	is

Moreover,	we	use	the	space	 	with	the	same	H1	norm.

Sobolev	spaces	are	the	natural	environment	in	which	to	study	general	elliptic
and	parabolic	PDE.	In	the	next	chapter	we	give	a	flavor	of	the	theory	of	elliptic
equations.	A	more	extensive	introduction	to	the	subject	is	given	in	Evans	[12].

PROBLEMS
1.	Let	X	be	a	vector	space	with	norm	||	·	||.

(a)	Prove	that	for	all	u,	v	∈	X,

(b)	Show	that	the	function	f	:	X	→	R	given	by	f(u)	=	||u||	is	continuous	but
not	linear.

2.	Prove	Young’s	inequality.

3.	Use	Hölder’s	inequality	to	prove	the	following.

(a)	The	generalization	of	Hölder’s	inequality	to	three	functions	u	∈	Lp(U),	v	∈
Lq(U),	w	∈	Lr(U),	with	p−1	+	q−1	+	r−1	=	1:



(b)	If	p	≤	q	≤	r	and	1/q	=	λ/p	+	(1	−	λ)/r,	then	for	u	∈	Lr(U),

4.	The	partial	derivative	in	(10.4)	is	not	a	function	of	r	alone,	so	the	calculation
we	did	in	Example	1	does	not	apply	directly.	Using	coordinates	x	=	rω,	|ω|	=	1,
do	the	integral	that	completes	the	argument	to	characterize	when	u	∈	W1,p(U).

5.	Let	u(α)(x)	=	|x|(sin	|x|)α,	x	∈	R3.	Find	the	precise	range	of	α	∈	R	in	which	u(α)

∈	H1(B),	where	B	=	{x	∈	R3,	|x|	<	1}.



CHAPTER	ELEVEN

Elliptic	Theory	with	Sobolev	Spaces
We	use	Poisson’s	equation	as	a	starting	point	to	prove	the	existence	of	solutions
of	 a	 boundary	 value	 problem	 in	 an	 appropriate	 Sobolev	 space.	 Then	we	 show
how	a	similar	approach	can	be	used	for	general	linear	second-order	elliptic	PDE.
The	structure	of	 the	more	general	 results	and	 their	proofs	provides	 insight	 into
the	techniques	at	the	heart	of	the	modern	theory	of	elliptic	PDE	[12].

11.1.	Poisson’s	Equation
Our	 previous	 approach	 to	 Poisson’s	 equation	 involved	 finding	 the	 Green’s
function.	Again	we	let	U	⊂	Rn	be	open	and	bounded,	let	f	∈	L2(U),	and	consider
the	boundary	value	problem

The	 approach	 of	 finding	 the	 Green’s	 function	 explicitly	 works	 only	 for	 special
choices	of	U.	Instead	of	relying	on	the	shape	of	U,	we	can	use	functional	analysis
to	establish	the	existence	of	a	solution	indirectly.	The	remainder	of	this	section	is
devoted	to	using	this	approach	to	prove	the	following	existence	and	uniqueness
theorem.

Theorem	11.1.	For	each	f	∈	L2(U)	there	is	a	unique	weak	solution	of	(11.1).

In	 this	 statement,	 note	 that	 f	 ∈	 L2	 is	 no	 longer	 required	 to	 be	 smooth.
Moreover,	the	theorem	refers	to	weak	solutions	rather	than	classical	solutions.	A
weak	solution	of	(11.1)	is	a	function	 	such	that

for	all	 	satisfies	(11.1),	we	say	that	u	is	a	classical	solution
of	(11.1).	In	this	case,	u	satisfies	(11.2)	for	every	 ,	as	is	easily	checked	by
integration	by	parts.	Since	functions	in	 	are	approximated	in	the	H1	norm	by
smooth	 functions	 (see	 Section	 10.3),	 so	 (11.2)	 makes	 sense	 as	 a	 definition	 of
weak	solution.

Weak	solutions	have	the	advantage	that	they	require	less	regularity	(one	weak
derivative	 rather	 than	 two	classical	derivatives),	 and	moreover,	we	 can	 look	at
weak	solutions	in	a	space	of	functions	that	has	an	inner	product	and	is	complete,
which	is	not	possible	with	smooth	functions.



Since	 the	 proof	 of	 Theorem	 11.1	 involves	 several	 subsidiary	 results,	 we
outline	the	steps	that	make	up	the	proof.	The	theorem	establishes	both	existence
and	uniqueness	of	weak	solutions	of	 (11.1)	 satisfying	 (11.2).	 In	 this	 section	we
prove	 this	 result	 using	 the	Riesz	Representation	Theorem.	We	 first	 identify	 the
left-hand	 side	 of	 (11.2)	 as	 an	 inner	 product	 in	 ,	 thereby	 defining	 an
equivalent	norm	 for	 .	 Second	we	 verify	 that	 the	 right-hand	 side	 defines	 a
bounded	 linear	 functional	 on	 .	 We	 accomplish	 both	 using	 the	 Poincaré
inequality.	 Then	 the	 conclusion	 of	 the	 Riesz	 Representation	 theorem	 is	 the
existence	and	uniqueness	of	 	satisfying	(11.2).	This	completes	the	proof
of	the	theorem.

11.1.1.	The	Poincaré	Inequality

The	 Poincaré	 inequality	 is	 an	 example	 of	 an	 estimate	 in	 a	 function	 space	 that
allows	a	norm	of	a	 function	to	be	estimated	by	the	norm	of	a	derivative	of	 the
function.	The	specific	estimate	in	the	Poincaré	inequality	bounds	the	L2	norm	of
an	 	function	by	the	L2	norm	of	its	derivative,	a	crucial	step	in	establishing	the
left-hand	side	of	(11.2)	as	an	inner	product.

Lemma	11.2.	 (The	 Poincaré	 inequality)	 Let	 U	⊂	Rn	 be	 open	 and	 bounded.	 There
exists	a	constant	C,	depending	only	on	U,	such	that

for	all	 .

Proof.	 We	 use	 the	 approximation	 idea	 here	 for	 the	 first	 time.	 We	 prove	 the
lemma	for	 	and	then	argue	by	taking	limits	of	sequences	that	it	holds	for	

.	The	proof	is	simple	in	one	dimension	and	is	very	similar	in	Rn.	Let	U	=
(a,	b)	⊂	R,	and	suppose	 .	Then	u(a)	=	0	=	u(b).	Now	we	calculate

Dividing	by	||u||L2(a,b)	completes	the	proof	in	one	dimension.



Figure	11.1.	The	domain	U	bounded	by	two	hyperplanes.

In	 higher	 dimensions,	we	 simply	 integrate	 by	 parts	 in	 one	 of	 the	 variables,
say,	x1.	So,	suppose	U	lies	between	the	hyperplanes	{x1	=	±M},	for	some	M	>	0,
as	 illustrated	 in	 Figure	 11.1.	 (This	 suggests	 that	 U	 could	 be	 unbounded,	 and
indeed	 the	 Poincaré	 inequality	 is	 often	 stated	 for	 domains	 bounded	 in	 some
direction,	but	not	necessarily	bounded	in	Rn.)	Mimicking	 the	calculation	above,
let	 .	Then

The	 second	 inequality	 relies	 on	 the	Cauchy-Schwartz	 inequality	with	C	=	2M.
This	proves	the	inequality	for	 .

Now	let	 .	(Such	a	sequence	exists	from	the	definition
of	 	as	the	completion	of	 	in	the	H1	norm.)	Then	||um||L2(U)	→	||u||L2(U),
and	||Dum||L2(U)	→	||Du||L2(U),	from	which	the	lemma	follows.

11.1.2.	An	Equivalent	Norm	on	

We	define	the	new	norm



where	the	subscript	1,	2	refers	to	one	derivative	of	u	in	Lp	with	p	=	2.	The	new
norm	is	useful	because	the	weak	formulation	(11.2)	only	involves	the	gradient	on
the	 left-hand	 side,	 which	will	 now	 be	 the	 inner	 product	 corresponding	 to	 this
norm.	For	bounded	U	and	 ,	the	Poincaré	inequality	implies	the	new	norm
is	equivalent	to	the	 	norm:

The	latter	inequality	involves	a	small	amount	of	manipulation:

Because	the	norms	are	equivalent,	we	conclude	that	 	is	a	Hilbert	space	with
the	new	inner	product	given	by	the	left-hand	side	of	(11.2).

To	apply	the	Riesz	Representation	Theorem	(Section	11.1.3),	we	need	to	show
that	 f	∈	 L2(U)	 defines	 a	 bounded	 linear	 functional	 on	 .	 This	 allows	 us	 to
equate	the	right-hand	side	of	the	weak	formulation	(11.2)	with	a	bounded	linear
functional.

Lemma	11.3.	Let	U	⊂	Rn	be	open	and	bounded,	and	 let	 f	∈	L2(U).	Then	the	 linear
functional	 ,	defined	by

is	bounded,	meaning	there	is	a	constant	K	>	0	such	that

Proof.	Let	 .	Then

Hence	F	is	bounded.

11.1.3.	The	Riesz	Representation	Theorem



To	complete	the	proof	of	Theorem	11.1,	we	show	that	for	each	f	∈	L2(U)	there	is
a	 unique	 	 such	 that	 (11.2)	 holds;	 that	 is,	 (u,	 v)1,2	 =	 F(v)	 for	 every	

.	 This	 follows	 from	 the	 following	 Riesz	 Representation	 Theorem	 for	 a
general	Hilbert	space	X	with	inner	product	(·,	·).	We	only	consider	Hilbert	spaces
over	the	reals,	but	the	result	can	also	be	stated	for	complex	Hilbert	spaces.

Theorem	11.4.	(Riesz	Representation	Theorem)	Let	X	be	a	Hilbert	space,	and	let	F	:
X	→	R	be	a	bounded	 linear	functional	on	X.	Then	there	exists	a	unique	u	∈	X	such
that

for	all	v	∈	X.

Proof.	The	proof	involves	the	null	space	N	of	F	:

First,	 let’s	 dispense	 with	 the	 trivial	 case,	 in	 which	N	 =	 X.	 Then	 only	 u	 =	 0
satisfies	(11.3).

Now	 we	 consider	N	 ≠	 X.	 In	 this	 case,	 (11.3)	 implies	 u	∉	N.	 To	 see	 this,
suppose	u	∈	N,	and	let	v	=	u	in	(11.3).	Then	0	=	F(u)	=	(u,	u),	which	implies	u
=	0.	But	then	(11.3)	fails	for	any	v	∉N.	Thus,	we	seek	u	∉	N.

We	 complete	 the	 proof	 in	 essentially	 three	 steps.	 First,	 we	 show	 there	 is	 a
nonzero	z	∈	X	that	is	orthogonal	to	N:	(z,	v)	=	0	for	all	v	∈	N.	Put	another	way,
F(v)	=	(z,	v)	for	all	v	∈	N,	so	z	is	the	correct	choice	for	u,	except	that	if	u	=	z,
then	(11.3)	will	not	be	satisfied	in	general	for	v	 in	the	complement	of	N.	 In	the
second	step,	we	adjust	z	to	get	the	correct	u	by	noting	that	the	complement	of	N
is	one	dimensional	(so	N	has	codimension	one).	This	follows	since	the	range	of	F
is	one	dimensional.	Thus,	the	orthogonal	complement	N⊥	of	N	is	one	dimensional
and	 hence	 is	 spanned	 by	 z.	 Therefore,	F(αz)	must	 range	 through	 all	 of	R	 as	 α
ranges	through	R,	since	F(z)	≠	0.	So,	we	should	be	able	to	find	u	to	satisfy	(11.3)
by	scaling	z:	u	=	αz,	for	some	α	∈	R.	In	fact,	setting	v	=	u	=	αz	 in	(11.3),	we
can	calculate	what	α	must	be	for	this	special	case,	leading	to

Then	F(u)	=	||u||2.	In	the	third	step	of	the	proof,	we	show	that	(11.3)	holds	for
this	choice	of	u.

To	find	z	∈	N⊥,	we	use	standard	functional	analysis	arguments.	First	we	show
that	N	is	closed.	Suppose	{un}	⊂	N	and	un	→	u	as	n	→	∞.	N	is	closed	if	u	∈	N.	But



as	 n	 →	 ∞,	 using	 linearity	 and	 then	 boundedness	 of	 F.	 Therefore,	 F(u)	 =	 0,
meaning	u	∈	N.

Since	N	is	not	the	entire	space,	there	is	x	∈	X	such	that	x	∉	N.	But	N	is	closed,
so	the	distance	from	x	to	N	(defined	in	problem	12,	Chapter	9)	is	positive:

We	now	prove	that	there	is	w	∈	N	such	that	dist(x,	N)	=	||x	−	w||.	Indeed,	there
is	 a	 sequence	 {wn}	⊂	N	 such	 that	 ||x	 −	 wn||	 →	 dist(x,	 N).	 It	 takes	 a	 tricky
calculation	 to	 show	 that	 {wn}	 is	 a	 Cauchy	 sequence.	 First,	 we	 appeal	 to	 the
parallelogram	law

which	is	verified	by	expressing	the	norms	in	terms	of	the	inner	product.	Now	we
set	 	in	the	parallelogram	law:

As	m,	n	→	∞,	 the	 left-hand	 side	 of	 this	 identity	 approaches	2d2.	However,	 the
first	 term	 on	 the	 right	 is	 no	 smaller	 than	 2d2,	 and	 so	 the	 second	 term	 must
approach	zero:	||wn	−	wm||	→	0	as	m,	n	→	∞.	Hence	{wn}	is	a	Cauchy	sequence,
and	 is	 therefore	convergent	 to	an	element	w	∈	N,	since	X	 is	 complete	and	N	 is
closed.	Moreover,	||x	−	w||	≤	||x	−	wn||	+	||wn	−	w||	→	d	as	n	→	∞.	Thus,	||x
−	w||	≤	d,	which	implies	||x	−	w||	=	d,	since	w	∈	N,	and	d	=	infy∈N	||x	−	y||.

Now	let	z	=	x	−	w.	We	show	that	z	∈	N⊥.	Let	y	∈	N.	Then	for	any	λ	∈	R,	w
+	λy	∈	N,	so

If	we	choose	λ	=	(z,	y)/||y||2,	then	the	inequality	becomes

which	implies	(z,	y)	=	0.	Since	y	∈	N	is	arbitrary,	we	have	z	∈	N⊥.

Next	we	prove	 that	u	given	by	(11.4)	satisfies	(11.3).	Since	u	∉	N,	we	have
F(u)	≠	0.	Moreover,	using	linearity	of	F,	we	observe	that

Thus,	since	u	∈	N⊥,



But	 this	 leads	 immediately	 to	 (11.3),	 since	u	was	 constructed	 to	 satisfy	F(u)	=
||u||2.

It	remains	to	prove	uniqueness	of	u	∈	X	satisfying	(11.3).	Suppose	there	are
two	values	of	u,	say	u	=	uk,	k	=	1,	2,	both	of	which	satisfy	(11.3).	Then	(uk,	v)	=
F(v),	k	=	1,	2,	from	which	we	get	(u1	−	u2,	v)	=	0	for	all	v	∈	X.	Hence	u1	=	u2.

This	completes	the	proof	of	the	Riesz	Representation	Theorem.

The	proof	of	Theorem	11.1	is	now	complete.

11.2.	Linear	Second-Order	Elliptic	Equations
In	 this	 section	 we	 prove	 Theorem	 11.1	 for	 more	 general	 second-order	 linear
elliptic	partial	differential	equations.	First	we	frame	the	boundary	value	problems
that	we	will	consider.	Let	U	⊂	Rn	be	open	and	bounded,	and	let	 .	Define

Note	 that	 we	 suppress	 the	 independent	 variable	 in	 u,	 but	 retain	 it	 in	 the
coefficients	 to	 emphasize	 that	 they	 are	 functions	 of	 x.	 We	 will	 see	 that	 L	 is
associated	 with	 a	 symmetric	 operator	 in	 which	 the	 leading-order	 (i.e.,	 second-
order)	 terms	 are	 written	 in	 divergence	 form.	 A	 more	 general	 form	 of	 a	 linear
second-order	linear	differential	operator	(with	leading-order	terms	in	divergence
form),	is	given	by

which	is	nonsymmetric	when	the	coefficients	bi	are	not	all	zero.

The	coefficients	aij,	c	are	given	L∞	functions	on	U.	Without	loss	of	generality,
we	 can	 assume	 that	 the	 aijs	 are	 symmetric	 in	 ij:	aij	=	 aji.	 We	 place	 additional
conditions	on	the	coefficients	as	we	go	along.	Generalizing	problem	(11.1),	we	let
f	∈	L2(U)	and	consider	the	boundary	value	problem

To	define	weak	solutions,	we	multiply	Lu	=	f	by	a	test	function	and	integrate	by
parts	over	U.	Thus,	a	weak	solution	of	(11.7)	is	a	function	 	such	that



where

As	in	Poisson’s	equation,	boundary	terms	from	integration	by	parts	are	all	zero,
due	to	the	choice	of	u	=	0	as	the	boundary	condition.	Note	that	in	the	symmetric
case	 bi(x)	≡	0,	 i	=	 1,	…,	 n,	 the	middle	 term	 is	 absent,	 and	 indeed	 then	B	 is
symmetric:

In	the	symmetric	case,	treated	in	Section	11.2.1,	we	relate	B[u,	v]to	the	inner
product	 on	 ,	 and	 to	 do	 so,	 we	 require	 L	 to	 be	 elliptic.	 In	 fact,	 we	 shall
require	L	to	be	uniformly	elliptic,	meaning	that	there	is	θ	>	0	such	that

for	all	x	∈	U,	ξ	∈	Rn.

11.2.1.	Existence	and	Uniqueness	of	Solutions	in	the	Symmetric	Case

Here	 we	 give	 the	 existence	 and	 uniqueness	 theorem	 for	 solutions	 of	 problem
(11.7)	when	L	is	symmetric.	An	immediate	difficulty	is	that	the	zeroth-order	term
c(x)u	is	not	controlled,	in	the	sense	that	unless	we	make	assumptions	about	c(x),
the	 corresponding	 term	 in	 the	 bilinear	 functional	 (11.9)	 is	 not	 bounded.	 An
analogous	 issue	 arises	 in	 the	 finite-dimensional	 case,	 where	 the	 operators	 are
square	matrices.	Consider	a	symmetric	matrix	A	with	positive	eigenvalues,	say,	λ
≥	θ	>	0,	and	a	given	c	∈	R.	Then	we	consider	the	equation

for	 a	 given	vector	F,	where	L	=	A	+	cI.	 (I	 is	 the	 indentity	matrix.)	 To	 obtain
existence	 and	 uniqueness,	we	 require	 that	 c	 not	 be	 an	 eigenvalue	 of	−A.	 This
would	be	guaranteed	if	we	know	c	>	0.	For	the	PDE	case,	we	state	this	slightly
differently,	to	accommodate	the	dependence	of	coefficients	on	x	∈	U.	In	terms	of
the	matrix	problem,	we	require	that	there	exists	a	γ	>	0	such	that	for	all	μ	>	γ
and	any	F,	there	is	a	unique	solution	of	the	equation

Of	 course,	 this	 is	 merely	 the	 condition	 that	 c	 +	 γ	 be	 larger	 than	 the	 largest
eigenvalue	of	−A.



In	the	PDE	version,	to	make	the	bilinear	functional	nonnegative	when	v	=	u,
we	 add	 a	 large	 enough	 number	 μ	 to	 c(x)	 so	 that	 the	 final	 term	 in	 (11.9)
resembles	a	weighted	L2	norm	when	v	=	u.	Effectively	this	guarantees	that	μ	 is
away	from	eigenvalues	of	the	PDE	operator	L.

Theorem	11.5.	Let	L	be	the	symmetric	operator	given	by	(11.5).	There	exists	γ	∈	R
such	that	for	all	μ	>	γ	and	any	f	∈	L2(U),	there	is	a	unique	weak	solution	 	of
the	problem

To	prove	this	theorem,	we	will	use	the	Riesz	Representation	Theorem,	but	to
establish	a	suitable	inner	product	in	terms	of	B[u,	v],	we	need	two	key	estimates
provided	 by	 the	 following	 lemma.	One	 estimate	 establishes	 that	B	 is	 bounded,
and	the	second	estimate	allows	us	to	modify	B[u,	v]	in	order	to	define	a	norm.

Lemma	11.6.	There	are	constants	α	>	0,	β	>	0,	γ	≥	0	 such	 that	 for	all	u,	v	 in	
,

1.	 ,	and

2.	 .

Proof	of	Lemma	11.6.	To	prove	estimate	1,	we	work	directly	with	B:

For	 estimate	 2,	we	 use	 ellipticity,	 replacing	ξi	 by	 uxi	 in	 the	 definition	 (11.10).
First	note	that	the	Poincaré	inequality	(Lemma	11.2)	implies

with	K	=	1	+	C.	Then	we	have



This	proves	the	lemma,	with	γ	=	||c||L∞(U),	β	=	θ/K.

Proof	of	Theorem	11.5.	We	modify	B[u,	v]	in	Lemma	11.6	to	be

Then	Bμ	is	symmetric	and	satisfies

Thus,	 for	μ	>	γ,	Bμ[u,	u]≥	0,	and	Bμ[u,	u]=	0	only	 for	u	=	0.	Consequently,
Bμ[u,	 v]defines	 an	 inner	 product	 on	 .	 The	 Riesz	 Representation	 Theorem
(Theorem	11.4)	completes	the	proof.

11.2.2.	The	Nonsymmetric	Case

When	L	is	nonsymmetric,	B[u,	v]	cannot	define	an	inner	product,	because	it	is	not
symmetric	 in	 u,	 v.	 Nonetheless,	 a	 natural	 generalization	 of	 the	 Riesz
Representation	 Theorem	 can	 be	 formulated	 to	 cover	 the	 situation.	 That	 is,	 the
functional	 F	 is	 represented	 by	 an	 element	 	 as	 before,	 and	 there	 is	 a
unique	 u	 satisfying	 (11.8).	 The	 proof	 of	 this	 generalization,	 the	 Lax-Milgram
Theorem,	uses	the	Riesz	Representation	Theorem	in	a	different,	more	subtle	way.
To	overcome	the	lack	of	symmetry	in	B[u,	v],	we	start	by	fixing	u	so	that	B[u,	v]
defines	 a	 bounded	 linear	 functional,	 as	 a	 function	 of	 v.	 Then	 the	 Riesz
Representation	Theorem	gives	an	element	w	depending	linearly	on	u	so	that	B[u,
v]	=	(w,	v)	for	all	v.	The	subtle	part	of	the	proof	involves	showing	that	u	can	be
varied	 so	 that	 w	 =	 f,	 the	 representative	 of	 the	 functional	 F(v)	 used	 in	 the
symmetric	case.	That	is,	we	need	to	show	that	the	linear	mapping	u	→	w	is	onto;
uniqueness	follows	by	showing	it	is	one-to-one.

Theorem	11.7.	(Lax-Milgram	Theorem)	Let	H	be	a	Hilbert	space	with	inner	product
(·,	 ·)	and	 norm	 ||	 ·	 ||.	Let	 B	 :	H	×	H	→	R	 be	 a	 bilinear	 functional	 such	 that	 the
following	properties	hold

1.	B	is	bounded,	meaning	|B[u,	v]|	≤	α||u||||v||	for	all	u,	v	∈	H	(for	some	constant	α
>	0);	and



2.	there	exists	β	>	0	such	that	B[u,	u]≥	β||u||2	for	all	u	∈	H.

Then	for	any	bounded	linear	functional	F	:	H	→	R,	there	exists	a	unique	u	∈	H	such
that

Proof.	Let	u	∈	H.	Then	v	↦	B[u,	v]defines	a	bounded	linear	functional	on	H,	by
property	1	of	the	theorem.	Therefore,	by	the	Riesz	Representation	Theorem,	there
exists	a	unique	w	∈	H	such	that

Let’s	define	the	mapping	A	:	H	→	H	by	Au	=	w.	Then

Here	is	how	the	rest	of	the	argument	goes.	Since	F	is	a	bounded	linear	functional,
the	Riesz	Representation	Theorem	implies	there	is	a	representative	w	∈	H	for	F	:

Suppose	we	can	show	that	w	is	in	the	range	of	A.	Then	there	is	a	u	∈	H	such	that
Au	=	w.	But	this	implies	F(v)	=	(w,	v)	=	(Au,	v)	=	B[u,	v]for	all	v	∈	H,	which
completes	the	proof	of	existence.	Uniqueness	follows	if	we	show	that	A	is	one-to-
one.	Of	course,	we	have	no	control	over	w,	so	to	show	it	is	in	the	range	of	A,	we
must	show	that	the	range	of	A	is	all	of	H.	We	do	this	in	several	steps.

First,	note	that	A	is	linear.	It	is	also	easy	to	see	that	property	1	implies	that	A
is	bounded:

Dividing	by	||Aw||,	we	obtain	||Aw||	≤	α||w||	for	all	w	∈	H.

Next	we	prove	that	A	is	one-to-one.	From	property	2,	we	have

Now	divide	by	||u||	to	obtain	||Au||	≥	β||u||.	Suppose	Au1	=	Au2.	Then	A(u1	−
u2)	=	0.	Thus,

Hence,	u1	−	u2	=	0.	This	proves	that	A	is	one-to-one.

Next	we	show	that	A	is	onto	H.	The	key	is	to	show	that	the	range	R(A)	of	A	is
closed:	it	contains	the	limits	of	all	Cauchy	sequences	in	R(A).

Let	 {un}	 be	 a	 Cauchy	 sequence	 in	R(A).	 Since	H	 is	 complete,	 the	 sequence
converges	to	some	u	∈	H.	Now	un	=	Awn	for	some	wn	∈	H,	for	each	n.	We	need	to



show	that	{wn}	 is	a	Cauchy	 sequence,	 since	 then	 it	 converges	 to	an	element	w,
and	we	use	boundedness	of	A	to	show	that	Aw	=	u.	But	we	have	||un	−	um||	=
||A(wn	−	wm)||	≥	||wn	−	wm||.	Since	{un}	is	a	Cauchy	sequence,	so	is	{wn}.	Let	w
=	limn	→	∞	wn.	Then

Thus,	u	∈	R(A),	proving	that	R(A)	is	closed.

Now	we	 know	 from	 the	 proof	 of	 the	 Riesz	 Representation	 Theorem	 that	 if
R(A)	≠	H,	then	since	R(A)	is	closed,	there	is	u	∈	R(A)⊥	with	u	≠	0.	But	then

which	implies	u	=	0.	Thus,	R(A)	=	H.

We	use	the	construction	and	properties	of	A	to	prove	the	existence	of	u	∈	H
satisfying	(11.11).	Let	F	 :	H	→	R	 be	 a	 bounded	 linear	 functional.	 By	 the	Riesz
Representation	Theorem,	there	exists	a	unique	w	∈	H	such	that	F(v)	=	(w,	v)	for
all	v	∈	H.	But	we	have	just	gone	to	a	lot	of	trouble	to	prove	that	every	element	of
H	is	also	in	R(A).	In	particular,	there	is	a	unique	u	∈	H	such	that	Au	=	w.	Putting
this	all	together,	for	any	v	∈	H,

as	required.

Uniqueness	of	u	satisfying	(11.11)	follows	naturally.	Let	u1,	u2	be	two	values
of	u	satisfying	(11.11).	Then

for	all	v	∈	H.	In	particular,	letting	v	=	u1	−	u2,	we	obtain	0	=	B[v,	v]≥	β||v||2.
Thus,	v	=	u1	−	u2	=	0.	This	completes	the	proof	of	the	Lax-Milgram	Theorem.

Now,	 to	 turn	 the	 Lax-Milgram	 Theorem	 into	 an	 existence	 and	 uniqueness
theorem	for	elliptic	equations,	we	have	to	verify	the	hypotheses	of	the	theorem
when	B	 is	 the	bilinear	 functional	associated	with	 the	elliptic	partial	differential
operator.	 This	 is	 only	 interesting	 in	 the	 nonsymmetric	 case,	 since	 the	 Riesz
Representation	 Theorem	 covers	 the	 symmetric	 case.	 But	 in	 the	 nonsymmetric
case,	 we	 have	 to	 work	 a	 bit	 harder	 to	 prove	 property	 2	 of	 the	 Lax-Milgram
Theorem.	 Specifically,	 we	wish	 to	 prove	 the	 two	 estimates	 1	 and	 2	 of	 Lemma
11.6,	but	this	time	for	B	given	by	(11.9)	with	bi	not	identically	zero.	Estimate	1	is
straightforward;	we	 leave	 it	 as	 an	 exercise.	Estimate	2,	however,	 requires	 a	bit
more	ingenuity.	Let’s	proceed	much	as	we	did	in	Lemma	11.6,	using	ellipticity	to
establish



The	difference	is	that	now	we	need	to	estimate	the	middle	term.	This	is	achieved
with	Young’s	inequality:

Now	 the	 first	 term	 is	 incorporated	 into	 the	 left-hand	 side	 of	 (11.12);	 this	 will
change	θ	>	 0,	 but	 keep	 θ	 positive	 provided	 we	 choose	 ϵ	>	 0	 small	 enough.
Similarly,	 the	 second	 term	 in	 (11.13)	 is	 incorporated	 into	 the	 final	 term	 in
(11.12).	After	some	manipulation	of	the	constants,	estimate	2	of	Lemma	11.6	is
proved.	 These	 properties	 are	 the	 key	 to	 proving	 Theorem	11.5	 for	 the	 general
case,	which	we	now	state.

Theorem	11.8.	Let	L	be	the	PDE	operator	given	by	(11.6).	There	exists	γ	∈	R	such
that	for	all	μ	>	γ	and	any	f	∈	L2(U),	there	is	a	unique	weak	solution	 	of	the
problem

PROBLEMS

1.	Let	U	⊂	Rn	be	a	bounded	open	set,	and	let	u(x)	=	1,	x	∈	U.	Prove	that	u	∈
H1(U),	but	 .	(Hint:	Use	proof	by	contradiction	and	Poincaré’s	inequality.)

2.	Let	A(x)	=	(aij(x))	be	the	matrix	of	coefficients	of	the	principal	part	of	a	linear
second-order	 elliptic	partial	differential	operator	L.	Prove	 that	 if	L	 is	 uniformly
elliptic	 on	 U,	 with	 parameter	 θ	 given	 in	 (11.10),	 then	 for	 each	 x	 ∈	 U,	 the
eigenvalues	λ	of	A(x)	are	bounded	below	by	θ:	λ	≥	θ.

3.	Consider	the	ordinary	differential	operator	Lu(x)	=	u″(x)	+	cu(x).	Then,	with
U	=	(0,	1),	we	should	be	able	to	solve

for	large	enough	μ.	Find	γ	>	0	for	which	Theorem	11.8	holds	true	by	finding	the



eigenvalues	of	 .

4.	Let	u	=	u(x,	y),	Lu	=	−xuxx	+	(2	+	y)uxy	−	2uyy.	Characterize	the	region	in
R2	in	which	L	is	uniformly	elliptic.

5.	Find	 the	 smallest	c	∈	R	 for	which	L	 given	by	Lu	=	−(xuxx	+	uxy	+	uyy)	 is
uniformly	elliptic	on	the	set	{(x,	y)	∈	R2	:	x	>	c	+	ϵ}	for	every	ϵ	>	0.

6.	 Expand	 the	 identity	 ||u	 +	 v||2	 =	 (u	 +	 v,	 u	 +	 v).	 Then	 use	 the	 triangle
inequality	to	prove	the	Cauchy-Schwarz	inequality	(u,	v)	≤	||u||||v||.



CHAPTER	TWELVE

Traveling	Wave	Solutions	of	PDE
We	have	seen	in	earlier	chapters	how	the	method	of	separation	of	variables	can
reduce	PDE	to	ODE.	This	technique	works	most	effectively	on	linear	PDE.	In	this
chapter	we	describe	 the	 analysis	 of	 traveling	wave	 solutions	 of	 nonlinear	 PDE,
which	involves	ODE.

There	is	an	overall	pattern	to	the	technique	of	this	chapter.	For	each	PDE	with
an	 unknown	 function	 u(x,	 t),	 −∞	 <	 x	 <	 ∞,	 we	 consider	 traveling	 wave
solutions	 ,	 in	 which	 the	 parameter	 s	 is	 the	 wave	 speed,	 to	 be
determined	in	the	course	of	the	analysis.	Substituting	 	into	the	PDE	yields	an
autonomous	 ODE	 for	 ,	 ξ	 =	 x	 −	 st.	 The	 ODE	 will	 have	 equilibria,	 and
traveling	waves	 correspond	 to	 solutions	 that	 connect	 those	 equilibria,	 either	 to
one	another	or	to	themselves,	because	the	solutions	 	that	we	seek	approach	an
equilibrium	as	ξ	→	±∞.

Each	section	of	the	chapter	is	devoted	to	the	analysis	of	traveling	waves	for	a
different	 equation.	We	begin	 in	Section	12.1	with	 Burgers’	 equation,	 for	which
the	 nonlinear	 analysis	 is	 simplest.	 Burgers’	 equation	 is	 central	 to	 the	 study	 of
nonlinear	 convection-diffusion	 equations.	 In	 Section	 12.2	 we	 consider	 the	 KdV
equation,	a	third-order	equation	famous	for	having	solitary	wave	solutions,	which
are	 traveling	 waves	 that	 we	 calculate	 explicitly.	 Section	 12.3	 is	 devoted	 to
Fisher’s	 equation,	 a	model	 for	 population	 growth	 and	dispersal,	 and	 in	 Section
12.4	 we	 consider	 special	 traveling	 waves	 for	 the	 bistable	 equation,	 which	 has
connections	to	binary	mixtures	in	material	science	and	complex	fluids.

12.1.	Burgers’	Equation
Burgers’	equation

where	ϵ	>	0	 is	a	constant,	 is	a	prototypical	equation	 that	 includes	a	nonlinear
transport	term,	and	small	dissipation.	Later	we	solve	the	initial	value	problem	for
Burgers’	 equation	 using	 a	 special	 change	 of	 variable	 known	 as	 the	 Cole-Hopf
transformation,	 but	 here	 we	 consider	 only	 traveling	 wave	 solutions	 u(x,	 t)	=	

	with	 speed	 s	 (to	 be	 determined)	 that	 connect	 constants	 u+	 and	 u−.
Dropping	 the	 tilde,	 the	 function	 u(ξ),	ξ	=	 (x	−	 st)/ϵ	 should	 satisfy	 boundary
conditions	at	infinity:



Substituting	u	=	u(ξ),	ξ	=	(x	−	st)/ϵ,	 into	(12.1),	we	inevitably	reduce	the
PDE	to	a	second-order	ODE,	but	also	the	parameter	ϵ	cancels,	which	is	why	we
scaled	x	and	t	by	ϵ.	Integrating	the	ODE	from	ξ	=	−∞	(note	that	 ),	we
obtain	the	first-order	autonomous	ODE

From	(12.2),	(12.3),	we	see	that	u±	are	equilibria	of	(12.3).	Thus,	 	s(u+
−	u−)	=	0,	from	which	we	deduce	that	either	u+	=	u−	or	the	parameters	s,	u±
are	related	by

Of	 course,	u	≡	u−	 solves	 (12.3)	 for	 all	 s	 but	 satisfies	 the	 boundary	 conditions
only	 if	u+	=	u−.	This	would	be	a	very	uninteresting	 traveling	wave!	However,
the	 constant	 solution	 u	 ≡	 u−	 is	 the	 only	 solution	 satisfying	 the	 ODE	 and
boundary	conditions	if	u−	=	u+.	 (See	problem	1.)	 For	 the	KdV	equation	of	 the
next	section,	the	corresponding	statement	would	be	incorrect.

Equation	 (12.3)	 and	 its	 solutions	 can	 be	 represented	 on	 the	 u-axis	 (a	 one-
dimensional	phase	portrait)	or	using	direction	fields	in	the	(ξ,	u)	plane.	As	ϵ	→
0+,	 the	traveling	wave	solutions	converge	to	a	discontinuous	function	that	 is	 in
fact	 a	 shock	 wave	 solution	 of	 the	 inviscid	 Burgers	 equation.	 Moreover,	 as	 is
immediately	 evident	 from	 the	one-dimensional	 phase	portrait,	 solutions	 exist	 if
and	only	if

which	 relates	 the	wave	 speed	 s	 to	 the	 characteristic	 speed	u+	 and	u−	 ahead	 of
and	 behind	 the	 shock	 wave,	 respectively.	 We	 leave	 the	 derivation	 of	 this
condition	as	a	part	of	Problem	1.

12.2.	The	Korteweg-deVries	Equation
The	KdV	equation

is	famous	because	of	the	existence	of	solitary	waves,	which	are	special	traveling
wave	 solutions	 with	 a	 remarkable	 property.	 As	 a	 faster	 wave	 catches	 up	 to	 a
slower	 one,	 the	 waves	merge,	 and	 then	 the	 faster	 wave	 emerges	 ahead	 of	 the
slower	wave,	unchanged	except	that	it	is	shifted	forward	in	space	from	where	it
might	 have	 been	 if	 the	 interaction	 had	 been	 through	 linear	 superposition.	 The



slower	 wave	 is	 shifted	 backward.	 This	 property	 is	 remarkable	 because	 the
equation	is	nonlinear,	so	you	might	expect	an	even	more	complicated	interaction
between	colliding	waves.

The	 KdV	 equation	 also	 has	 the	 special	 property	 of	 possessing	 an	 infinite
number	of	invariants.	These	are	spatial	integrals	that	depend	on	the	solution	and
are	constant	in	time.	The	first	two	invariants	for	the	KdV	equation	are	associated
with	momentum	and	kinetic	energy,	in	which	u	is	interpreted	as	a	velocity:

We	leave	it	to	problem	2	to	verify	that	these	quantities	are	invariants	in	the	sense
that	 they	 are	 constant	 in	 time	 if	 u(x,	 t)	 is	 a	 solution	 that	 decays	 sufficiently
rapidly	as	x	→	±∞.	This	property	of	the	KdV	equation	is	related	to	the	inverse
scattering	transform	in	which	the	solution	u(x,	t)	serves	to	scatter	waves	through
a	 linear	 equation	 with	 coefficients	 depending	 on	 u(x,	 t).	 An	 accessible
introduction	to	this	topic	can	be	found	in	the	classic	text	by	Whitham	[46].

In	this	section	we	find	the	solitary	waves	and	other	periodic	traveling	waves,
but	first	let’s	briefly	discuss	the	dispersive	nature	of	the	equation.	If	we	linearize
(12.5)	about	a	constant,	say,	u	=	1,	we	get	the	linearized	KdV	equation

This	 is	achieved	by	setting	u(x,	 t)	=	1	+	ϵv(x,	 t)	and	retaining	only	terms	that
are	 linear	 in	ϵ.	Solutions	of	 (12.7)	can	be	 found	by	separation	of	variables.	We
seek	 solutions	 with	 a	 single	 spatial	 Fourier	 mode	 eiζx	 and	 time-dependent
coefficient	φ(t):	 v(x,	 t)	=	φ(t)eiζx.	 The	 parameter	ζ	 is	 the	wave	 number	 and	 is
related	to	the	period	L	by	ζ	=	2π/L,	since	eiθ	is	2π	periodic	in	θ.	Substituting	into
(12.7),	we	get	the	ODE	φ′	+	iζφ	−	γ	iζ3φ	=	0.	Consequently,	 .
Thus,	we	can	write	v(x,	t)	in	the	form

where	λ	=	λ(ζ)	measures	 the	 time-dependent	 response	 at	 the	wave	number	ζ;
λ(ζ)	is	given	by	the	dispersion	relation

The	 first	 term	 (−iζ)	 corresponds	 to	 a	 traveling	 wave	 solution	 of	 the	 linear
transport	equation	(with	speed	c	=	1)	of	Chapter	1,	in	which	γ	=	0.	The	second
term	 is	 dispersive	 in	 the	 sense	 that	 the	 solution	 	 is	 a
traveling	wave,	 but	 it	 has	 speed	 1	−	 γ	ζ2	 that	 depends	 on	 the	wave	 number.
Thus,	waves	with	different	spatial	frequency	travel	with	different	speeds.



To	characterize	solitary	waves,	we	consider	traveling	wave	solutions	of	(12.5)
of	the	form	u(x,	t)	=	v(x	−	st),	where	s	is	the	wave	speed,	and	we	suppose	that
v(ξ),	ξ	=	x	−	st	approaches	zero	at	ξ	=	±∞:

Figure	12.1.	The	phase	plane	for	(12.8).

Substituting	 into	 the	 PDE	 and	 integrating	 once	 (assuming	 that	 derivatives	 of	 v
also	approach	zero	as	z	→	±∞),	we	obtain	the	second-order	ODE

If	we	multiply	this	equation	by	v′	and	integrate,	we	find	that	the	quantity

is	 constant	 on	 solutions	 v(ξ).	 Moreover,	 if	 we	 define	 this	 quantity	 to	 be	 the
Hamiltonian:

then,	writing	H	=	H(p,	q),	p	=	v′,	q	=	v,	we	have	p′	=	−Hq,	q′	=	Hp,	which	is
the	 Hamiltonian	 structure	 of	 (12.8).	 As	 observed	 above,	 the	 Hamiltonian	 is
conserved	along	trajectories:

The	reader	should	verify	these	statements	using	(12.8)	and	(12.9).	It	follows	that
trajectories	in	the	phase	plane	are	level	curves	of	H(v′,	v),	shown	in	Figure	12.1
for	s	>	0.	In	this	figure,	the	closed	curves	in	the	right	half-plane	correspond	to



periodic	solutions,	called	cnoidal	waves.	These	are	periodic	 traveling	waves	 that
are	 important	 in	 the	 study	of	dispersive	equations	 like	 the	KdV	equation.	They
are	 named	 after	 the	 cnoidal	 function,	 a	 special	 elliptic	 function	 that	 gives	 the
shape	of	the	solutions	as	functions	of	ξ	=	x	−	st.

The	 trajectory	 in	 Figure	 12.1	 joining	 the	 origin	 to	 itself	 and	 enclosing	 the
periodic	trajectories	is	called	a	homoclinic	orbit.	The	corresponding	traveling	wave
is	the	solitary	wave.	We	can	derive	the	formula	for	this	solution	by	integrating	the
equation,	but	since	the	solution	is	known,	let’s	simply	write	it	down:

Because	the	speed	s	is	proportional	to	the	amplitude	a,	solitary	waves	with	larger
amplitude	move	faster.	Thus,	if	a	large	solitary	wave	is	behind	a	smaller	one,	the
large	 one	will	 catch	 up.	 This	 leads	 to	 the	 nonlinear	 interaction	 of	 two	 solitary
waves	 mentioned	 earlier	 in	 this	 section.	 Solitary	 waves	 and	 the	 connection	 to
integral	 invariants	and	 inverse	 scattering	are	discussed	 in	papers	by	Gardner	et
al.	[17]	and	by	Miura	[36].

12.3.	Fisher’s	Equation
Fisher’s	equation	[14]	is	a	version	of	the	logistic	equation	that	includes	diffusion
(see	 Section	 1.3).	 While	 population	 growth	 can	 be	 modeled	 by	 the	 logistic
equation	(either	the	ODE	or	a	difference	equation),	populations	in	many	contexts
tend	 to	 spread	out	 or	 even	 invade	nearby	 territory.	 This	 spatial	 dependence	 of
population	 is	modeled	 simply	 in	Fisher’s	 equation	by	diffusion.	 In	 this	 context,
diffusion	arises	because	of	the	tendency	of	a	population	u	=	u(x,	y,	t),	to	migrate.
According	to	Fick’s	 law,	the	population	flux	is	proportional	to	−∇u.	 (Note	that
Fick’s	law	is	similar	to	Fourier’s	law	of	heat	flow.)	Combining	diffusion	with	the
logistic	population	model,	we	obtain	the	PDE

in	which	the	constants	d,	α,	umax	are	all	positive.	Here,	the	Laplacian	Δ	=	 ,
and	the	population	u	=	u(x,	y,	t)	is	nonnegative.

We	seek	traveling	wave	solutions	u	=	u(x	−	st).	These	are	plane	waves	in	the
sense	 that	 u	 depends	 spatially	 only	 on	 x	 and	 is	 independent	 of	 the	 transverse
variable	y.	Thus,	level	curves	of	u	at	each	time	t	are	 lines	parallel	 to	the	y-axis,
propagating	 (in	 the	direction	of	 the	x-axis)	with	 speed	 s.	 Since	u	 is	 typically	 a
population	or	concentration,	we	want	u	≥	0,	but	we	pursue	the	analysis	initially
without	this	restriction.



Let	d	=	α	=	umax	=	1	in	Fisher’s	equation.	(This	covers	 the	general	case	as
shown	in	problem	3	as	an	exercise	in	rescaling	the	variables.)	Then	taking	u	=
u(x,	t)	to	be	independent	of	y,	we	have	the	semilinear	parabolic	equation	in	one
space	variable	x	and	time	t:

For	traveling	wave	solutions,	we	substitute	u	=	u(x	−	st),	resulting	in	the	ODE

This	time,	we	cannot	integrate	the	equation	to	reduce	the	order.	However,	just	as
for	traveling	wave	solutions	of	the	KdV	equation,	this	second-order	ODE	can	be
studied	as	a	first-order	system

If	we	 set	 s	=	 0,	 the	 traveling	 wave	 does	 not	 travel	 at	 all,	 and	 ξ	=	 x.	 These
stationary	solutions	are	oscillations	in	a	potential	well	 	(the	integral
of	u(1	−	u))	with	 a	minimum	 at	 u	=	 0.	 The	 corresponding	 spatially	 periodic
solutions	of	(12.11)	are	cnoidal	waves,	just	as	for	the	KdV	equation.	Notice	how
similar	 the	 Hamiltonian	 	 is	 to	 the	 Hamiltonian	 for	 the	 KdV
traveling	waves.	The	phase	portrait	for	s	=	0	is	likewise	a	mirror	image	of	Figure
12.1.	The	saddle	point	is	at	(u,	u′)	=	(1,	0),	and	the	limit	of	the	periodic	solutions
around	 the	center	at	 the	origin	 is	a	wave	 that	approaches	u	=	1	as	x	→	±∞,
with	a	single	negative	minimum.	Of	course,	none	of	these	solutions	is	physical	if
u	represents	a	population,	since	they	all	have	u	<	0	in	an	interval.

To	find	traveling	waves	with	u	>	0,	we	are	led	to	investigate	nonzero	values
of	s.	Equilibria	(for	which	u′	=	v′	=	0)	are	(u,	v)	=	(0,	0)	and	(u,	v)	=	(1,	0),
and	are	thus	independent	of	s.	Their	nature	is	determined	from	the	linearization,
in	which	we	take	the	Jacobian	of	the	vector	field	G(u,	v)	=	(v,	−sv	−	u(1	−	u))
and	calculate	eigenvalues.	For	s	>	0,	this	calculation	shows	that	(u,	v)	=	(1,	0)	is
a	saddle	point	(i.e.,	having	real	eigenvalues	of	opposite	sign).	The	origin	(u,	v)	=
(0,	 0)	 is	 a	 stable	 spiral	 for	 0	 <	 s	 <	 2	 (complex	 conjugate	 eigenvalues	

	with	 negative	 real	 part),	 and	 a	 stable	 node	 for	 s	>	 2	 (both
eigenvalues	negative).

The	speed	s,	when	positive,	acts	as	a	damping	parameter.	From	(12.12)	we	see
that	d/dξ	H(u′,	u)	≤	 0,	 so	 that	 the	 energy	H	 decreases	 along	 trajectories.	 By
analogy	 with	 damped	 simple	 harmonic	 motion,	 for	 small	 s	 >	 0,	 we	 expect
oscillations	 to	 be	 underdamped.	 Correspondingly,	 traveling	 waves	 oscillate
around	u	=	0	and	are	therefore	unphysical,	but	they	decay	to	u	=	0.	Values	of	s



>	0	sufficiently	large	give	overdamping.	In	fact,	for	s	≥	2	the	eigenvalues	of	the
equilibrium	at	u	=	u′	=	0	are	real	and	negative.	Traveling	wave	solutions	that
are	monotonic	from	u	=	0	to	u	=	1	exist	for	all	s	≥	2.	These	are	the	physically
relevant	traveling	wave	solutions	of	Fisher’s	equation.	For	s	>	2,	this	was	proved
by	Aronson	and	Weinberger	 [5].	 The	 proof	 is	 quite	 technical	 in	 order	 to	 show
that	 the	 solution	 curve	 leaving	 the	 saddle	 point	 at	 (1,	 0)	 does	 not	 cross	 the
vertical	axis	u	=	0	when	s	>	2.	Stability	of	the	traveling	wave	as	a	solution	of
the	PDE	(12.11)	was	analyzed	by	Fife	and	McLeod	[13].

12.4.	The	Bistable	Equation

The	bistable	equation

in	which	f	has	the	graph	shown	in	Figure	12.2,	is	a	simple	model	for	transitions
between	two	stable	states.	This	kind	of	model	has	become	common	in	studies	of
phase	transitions	in	solids,	with	applications	in	materials	science.

The	 space-independent	 equation	u′(t)	=	 f(u)	 has	 stable	 equilibria	 at	u	=	 0
and	u	=	1;	the	equilibrium	u	=	a	 is	unstable.	Traveling	waves	between	u	=	0
and	u	=	1	are	somewhat	easier	 to	analyze	than	for	Fisher’s	equation,	since	the
equilibria	 correspond	 to	 saddle	 points	 and	 the	 issue	 of	 keeping	 the	 solution
positive	 does	 not	 arise.	 However,	 the	 traveling	 waves	 occur	 only	 at	 isolated
speeds	 s.	 Traveling	 wave	 solutions	 u(x,	 t)	 =	 v(x	 −	 st)	 of	 (12.13)	 satisfy	 the
second-order	equation

As	in	the	previous	sections,	we	analyze	this	second-order	equation	by	writing	it
as	a	first-order	system:

The	three	zeroes	0	<	a	<	1	of	f	are	equilibria	of	the	ODE;	the	outside	equilibria
at	u	=	0,	u	=	1	are	saddle	points,	and	the	middle	equilibrium	at	u	=	a	is	a	node
for	s	≠	0,	as	is	seen	from	the	eigenvalues	of	the	linearization,	calculated	below.
For	s	=	0,	the	middle	zero	is	a	center,	as	shown	in	Figure	12.3a.

Let	G(v,	w)	=	(w,	−sw	−	f(v)).	The	vector	field	G	has	Jacobian	(see	Appendix
C	for	the	definition)



Figure	12.2.	The	bistable	function	(12.13).

Figure	12.3.	The	phase	plane	for	traveling	wave	solutions	of	the	bistable
equation,	assuming	(12.16).	(a)	s	=	0;	(b)	s	<	0	near	0;	(c)	smaller	s	<	0.

At	the	outside	equilibria,	f′(v)	<	0,	and	the	eigenvalues	of	dG	are	real,	given	by



The	corresponding	eigenvectors	are

The	unstable	manifold	MU	 is	 the	 solution	curve	 leaving	 the	 saddle	point,	 and
the	 stable	 manifold	 MS	 is	 the	 solution	 curve	 entering	 the	 saddle	 point.	 The
portions	of	these	curves	that	we	consider	are	labeled	in	Figure	12.3.	Note	that	in
Figure	12.3a,	just	as	for	the	KdV	equation	traveling	waves,	the	saddle	point	at	the
origin	has	coincident	stable	and	unstable	manifolds,	giving	the	homoclinic	orbit
shown.	In	Figures	12.3b,c	there	are	orbits	from	the	middle	equilibrium	at	v	=	a
to	 the	 origin	 and	 to	 the	 equilibrium	 at	 v	 =	 1.	 These	 orbits	 correspond	 to
traveling	waves	approximating	Lax	shocks,	for	which	the	Lax	entropy	condition	is
satisfied;	see	Chapter	13,	Section	13.1.4.

The	tangents	to	the	invariant	manifolds	at	the	equilibria	are	the	eigenvectors	r
±	of	the	linearization	of	(12.15).	(See	Appendix	C.)	The	solutions	represented	by
the	 invariant	 manifolds	 are	 asymptotic	 to	 eλ±ξ	 r±	 as	 ξ	 →	 ∓∞,	 so	 that	 the
eigenvectors	are	 tangent	 to	 the	 invariant	manifolds	at	 the	equilibria.	Therefore,
each	 invariant	 manifold	 has	 the	 same	 slope	 as	 its	 associated	 eigenvector,
specifically,	λ±.

Our	objective	is	to	find	a	value	of	the	speed	s	for	which	a	trajectory	joins	the
two	saddle	points.	Such	a	trajectory	will	correspond	to	a	traveling	wave	from	u
=	0	 to	 u	=	 1	 and	 is	 called	 a	 heteroclinic	 orbit	 (as	 opposed	 to	 the	 homoclinic
orbits	we	 found	 for	 solitary	wave	 solutions	of	 the	KdV	equation).	 Since	we	are
joining	saddle	points	 in	 the	phase	portrait,	we	can	expect	heteroclinic	orbits	 to
occur	only	for	isolated	values	of	s.	We	prove	an	existence	result	for	heteroclinic
orbits,	showing	that	there	is	a	value	of	s	 for	which	there	is	a	heteroclinic	orbit.
When	f(u)	is	given	by	a	cubic	function	f(u)	=	u(1	−	u)(u	−	a),	the	value	of	s	and
the	heteroclinic	orbit	can	be	calculated	explicitly.

Multiplying	(12.14)	by	v′,	we	obtain	the	identity

where	 ,	 and	 .	 Thus,	 E(v,	 v′)	 increases	 along
trajectories	if	s	<	0,	decreases	if	s	>	0,	and	is	constant	for	stationary	waves	(s	=
0).	The	phase	portrait	for	s	=	0	is	the	starting	point	for	our	analysis;	trajectories
are	level	curves	of	E(v,	v′),	shown	in	Figure	12.3.	In	this	figure	we	assume



to	ensure	that	the	curve	E(v,	v′)	=	0	crosses	the	v-axis	at	a	point	(v0,	0)	with	a	<
v0	 <	 1,	 as	 shown	 in	 the	 figure.	 Consequently,	 there	 is	 a	 homoclinic	 orbit
connecting	the	origin	to	itself,	as	shown	in	Figure	12.3a.

The	 heteroclinic	 orbits	 we	 seek	 join	 the	 saddle	 point	 at	 the	 origin	 to	 the
saddle	point	at	 (1,	0).	We	prove	 the	existence	of	 such	an	orbit	 for	 some	 s	<	0
using	a	shooting	argument	on	the	stable	and	unstable	manifolds	shown	in	Figure
12.3.

Theorem	12.1.	Suppose	f	satisfies	(12.16).	Then	there	is	a	speed	s	<	0	for	which	the
bistable	 equation	 (12.13)	 has	 a	 traveling	 wave	 solution	 u	 =	 u(x	 −	 st)	 satisfying
u(−∞)	=	0,	u(∞)	=	1.

Proof.	 As	 we	 vary	 s	≤	 0	 in	 the	 ODE	 system	 (12.15),	 the	 stable	 and	 unstable
manifolds	move,	and	we	wish	to	show	that	for	some	s	<	0,	the	unstable	manifold
from	the	origin	coincides	with	the	stable	manifold	entering	(1,	0).	To	do	so,	we
employ	a	kind	of	shooting	argument,	in	which	the	stable	and	unstable	manifolds
shoot	 inward	 toward	 the	 line	 L	 :	 v	=	a,	 and	we	measure	 the	 height	w	 of	 the
intersections.	As	shown	in	Figure	12.3bc,	 let	point	P	 :	 (v,	w)	=	(a,	p(s))	 denote
the	 intersection	 of	MU	 with	 L,	 and	 let	 point	Q	 :	 (v,	w)	=	 (a,	 q(s))	 denote	 the
intersection	of	MS	with	L.	It	is	straightforward	to	argue	that	the	intersections	with
L	are	defined	for	all	s	<	0,	for	example,	by	considering	the	curve	w	=	−f(v)/s,
on	 which	 w′	 =	 0	 (see	 (12.15)),	 so	 that	 the	 trajectories	 have	 a	 maximum	 or
minimum	where	they	intersect	this	curve.

For	 s	 =	 0	 (see	 Fig.	 12.3a),	 P	 is	 below	 Q	 :	 p(0)	 <	 q(0),	 due	 to	 (12.16).
Therefore,	by	continuity,	for	s	<	0	near	s	=	0,	P	is	still	below	Q:	p(s)	<	q(s)	(see
Fig.	12.3b),	and	we	seek	a	smaller	value	of	s	<	0	for	which	P	lies	above	Q:

as	 shown	 in	Figure	 12.3c.	 Then	 by	 continuity,	 an	 intermediate	 value	 of	 s	<	0
exists	 for	which	 the	 two	points	coincide,	and	there	 is	a	heteroclinic	orbit	along
the	coinciding	manifolds.	This	will	complete	the	proof.

We	show	(12.17)	for	small	enough	s	<	0	in	three	steps:	(1)	We	establish	that
q(s)	<	q(0)	for	all	s	<	0.	(2)	We	choose	β	>	0	so	that	βa	>	q(0).	(3)	Finally	we
show	that	for	this	value	of	β,	we	can	choose	s	<	0	small	enough	so	that	p(s)	>
βa.	These	inequalities	together	prove	(12.17)	for	some	small	enough	s	<	0.

Let’s	show	that	MS	for	s	<	0	lies	below	the	curve	MS	for	s	=	0.	This	will	imply



To	prove	(12.18),	we	consider	the	portion	of	the	curve	MS	with	its	graph	denoted
w	=	ws(v),	a	≤	v	≤	1,	for	each	s	≤	0.	Then	q(s)	=	ws(a),	and	from	the	earlier
discussion,

Consequently,	since	 ,	 the	 slopes	of	 the	 tangent	 to	MS	 at	 the	 equilibrium
satisfy

Thus,	ws(v)	<	w0(v),	 for	v	<	1	near	v	=	1.	Next	we	 show	 that	 this	 inequality
holds	all	the	way	to	the	vertical	line	L	:	v	=	a.

From	the	chain	rule	and	(12.15),	we	have

Suppose	as	v	decreases	from	v	=	1,	there	is	a	first	value	of	v	=	v∗	<	1at	which
the	 stable	manifold	MS	with	 s	<	0	 crosses	 the	 stable	manifold	MS	with	 s	=	0.
Then

the	latter	inequality	following	from	ws(v)	<	w0(v),	v∗	<	v	<	1.

Subtracting	(12.19)	with	s	=	0	from	(12.19)	with	s	<	0,	we	then	have	at	v	=
v∗,

However,	 the	 two	 sides	 of	 this	 equality	 have	 opposite	 signs,	 providing	 a
contradiction.	Thus,	MS	with	s	<	0	lies	below	MS	with	s	=	0,	at	least	down	to	v
=	a.

Now	we	 consider	 the	 unstable	manifold	MU	 emanating	 from	 the	 origin.	We
use	the	notation	 ,	0	≤	v	≤	a	for	the	values	of	w	along	MU.	Then	 .
Let	β	>	0	be	chosen	so	that

Then,	from	(12.18),	we	have



for	all	s	<	0.

The	vector	field	defined	by	(12.15)	has	slope	w′/v′	at	each	point	in	v-w	plane.
Specifically,	at	each	point	on	the	line	w	=	βv,	the	slope	of	the	vector	field	is

Thus,	since	f(v)/v	is	bounded	for	0	≤	v	≤	a,	we	can	choose	s	<	0	small	enough
that	this	slope	is	greater	than	β.	Then	the	trajectories	cross	the	line	w	=	βv	from
below	to	above.	In	particular,	the	unstable	manifold	MU	must	lie	above	this	line,
at	least	until	it	crosses	the	vertical	line	L,	where	v	=	a,	w	=	p(s).	Consequently,
p(s)	>	βa	>	q(s).	This	verifies	(12.17)	for	sufficiently	negative	s	and	establishes
the	existence	of	a	heteroclinic	orbit,	as	claimed.	A	similar	argument	can	be	used
to	show	there	is	a	trajectory	for	some	s	>	0	that	joins	u	=	1	to	u	=	0.

Example	 1.	 (Traveling	 waves)	 Consider	 traveling	 waves	 for	 (12.13)	 with	 a
cubic	function	f(u)	=	u(1	−	u)(u	−	a),	with	0	<	a	<	1.	For	this	special	case	we
can	seek	s	∈	R	 for	which	there	is	an	invariant	parabola	w	=	kv(1	−	v)	 for	the
ODE	system	(12.15)	that	passes	through	the	two	saddle	points	at	v	=	0,	1.	Then
the	 traveling	 wave	 solution	 will	 have	 speed	 s	 and	 corresponds	 to	 a	 trajectory
lying	on	the	parabola.

To	obtain	the	invariant	parabola,	let	w	=	kv(1	−	v).	Then	from	(12.15),

implies

Therefore,

Thus,	−2k2	=	−1,	which	leads	to	 ,	since	we	want	the	parabola	to	lie	in	the
upper	half-plane	when	0	<	v	<	1.	Equating	the	constant	terms	leads	to

Consequently,	 s	 <	 0	 for	 ,	 and	 s	 >	 0	 for	 .	 The	 traveling	 wave	 is
stationary	when	 	and	s	=	0.	In	this	case,	the	ODE	system	is	Hamiltonian	(see
(12.14)	with	s	=	0,	which	kills	the	damping	term),	with	heteroclinic	orbits	from
(0,	0)	to	(1,	0)	in	the	upper	half-plane	and	from	(1,	0)	to	(0,	0)	in	the	lower	half-
plane,	corresponding	to	the	parabola	 .



In	 this	 chapter	we	have	 seen	how	 to	use	 phase	 plane	 techniques	 of	 systems	of
ODE	to	study	smooth	traveling	wave	solutions	of	several	 important	PDE.	 In	the
next	 chapter	we	 study	 shock	wave	 solutions	of	 scalar	 conservation	 laws.	 Shock
waves	are	discontinuous	traveling	waves,	requiring	new	tools	for	their	analysis.

PROBLEMS

1.	(a)	Sketch	the	one-dimensional	phase	portrait	for	(12.2)–(12.4).	This	should	be
the	u-axis,	with	equilibria	u±	marked,	and	arrows	indicating	the	sign	of	u′.

(b)	Show	that	there	is	a	nonconstant	solution	of	(12.3)	satisfying	(12.2)	if	and
only	if	u+	<	u−.

(c)	In	fact,	the	solution	in	part	(b)	can	be	found	explicitly,	since	the	right-hand
side	of	(12.3)	is	quadratic,	so	that	separating	variables	u,	ξ	and	using	partial
fractions	yields	the	solution.	Find	the	solution	in	the	form

by	finding	constants	a,	b,	c	as	functions	of	u±.

(d)	Plot	or	sketch	the	solution	as	a	graph	u	=	u(ξ)	when	u−	=	2	and	u+	=
−1.	What	is	the	wave	speed?

2.	 Prove	 that	 the	 two	 integrals	 of	 (12.6)	 are	 invariants	 of	 the	 KdV	 equation
(12.5),	and	find	η	(depending	on	γ)	so	that	the	integral

is	also	an	invariant.

3.	Scale	x,	t,	u	in	(12.10)	so	that	the	three	constants	d,	umax,	α	can	be	set	to	unity.

4.	Use	a	 computer	program	 to	 sketch	phase	portraits	 for	 the	ODE	 for	 traveling
wave	solutions	of	Fisher’s	equation,	 for	 speeds	 s	=	0,	1,	3.	The	phase	portraits
can	also	be	drawn	by	hand	with	the	aid	of	the	nullcline	curves,	where	u′	=	0	(i.e.,
the	u-axis,	where	the	vector	field	is	vertical,	and	hence	trajectories	crossing	it	are
too),	or	v′	=	0	(where	the	vector	field	is	horizontal).

5.	 In	 the	example	of	 the	bistable	equation	(12.13)	with	cubic	 f(u),	determine	a
formula	 for	 the	 traveling	 wave	 u	 =	 v(x	 −	 st),	 using	 the	 invariant	 parabolic
manifold	w	=	kv(v	−	1)	found	in	Example	1.	(Note	that	w	=	v′.)

6.	Consider	the	KdV-Burgers	equation



where	α,	β	are	positive	constants.

(a)	Formulate	an	ODE	for	traveling	wave	solutions	u(x,	t)	=	v(η),	η	=	x	−	st,
with	boundary	conditions

(b)	Prove	that	there	is	such	a	solution	if	and	only	if

(c)	 Find	 all	 values	 of	 the	 parameters	 α,	 β	 for	 which	 the	 traveling	 wave	 is
monotonic	 (i.e.,	 find	 a	 necessary	 and	 sufficient	 condition	 for	 v(η)	 to	 be	 a
decreasing	function	of	η).

7.	Let	f	:	R	→	R	be	a	given	C1	function.	Show	that	traveling	wave	solutions	u	=
u(x	−	st)	of	the	PDE

are	given	implicitly	by	the	equation

where	a,	b	are	real	constants.



CHAPTER	THIRTEEN

Scalar	Conservation	Laws
The	 theory	 of	 scalar	 conservation	 laws	 was	 developed	 in	 the	 1950s	 by	 many
people,	including	Kruzkov	[31],	Lax	[32],	and	Oleinik	[37].	The	starting	point	is
the	method	 of	 characteristics,	 treated	 in	 detail	 in	 Chapter	 3.	 Recall	 that	 for	 a
scalar	equation

the	 characteristic	 speed	 is	 f′(u),	 and	 characteristics	 are	 curves	 in	 the	 x-t	 plane
defined	by	the	ODE

if	u	is	a	solution	of	the	PDE.	However,	as	we	saw	in	Chapter	3,	smooth	solutions
of	nonlinear	equations	 typically	develop	singularities	after	a	 finite	 time.	This	 is
the	motivation	for	considering	weak	solutions.

We	 begin	 this	 chapter	 with	 a	 detailed	 analysis	 of	 the	 inviscid	 Burgers
equation,	which	has	a	quadratic	flux	function—the	simplest	convex	flux.	We	then
sketch	how	the	theory	is	generalized	to	scalar	equations	in	one	space	dimension
with	 general	 convex	 flux	 functions.	 Finally,	 we	 analyze	 examples	 of	 equations
with	nonconvex	fluxes	and	equations	with	two	space	variables.

13.1.	The	Inviscid	Burgers	Equation
In	this	section	we	discuss	the	inviscid	Burgers	equation	in	some	detail,	motivating
the	theory	of	scalar	conservation	laws,	including	the	definition	of	weak	solutions
of	initial	value	problems	and	the	analysis	of	shocks	and	rarefactions.

13.1.1.	Scale	Invariance	and	Rarefaction	Waves

In	the	following	initial	value	problem	for	the	inviscid	Burgers	equation,	the	initial
condition	has	a	jump	discontinuity	separating	two	constant	values:

This	kind	of	initial	value	problem,	with	a	step	function	initial	condition,	is	called
a	Riemann	problem.	Riemann	problems	play	a	central	role	in	the	theory	of	weak



solutions,	 partly	 because	 they	 have	 the	 property	 of	 scale	 invariance	 in	 the
following	sense.	If	we	scale	x	and	t	by	a	constant	a	>	0	and	define	new	variables

then

so	 the	 PDE	 is	 unchanged	 by	 the	 change	 of	 variables.	 The	 initial	 condition
depends	only	on	the	sign	of	x,	so	it	does	not	change	either.	Thus,	problem	(13.1)
is	said	to	be	scale	invariant.

An	immediate	consequence	of	scale	invariance	is	the	risk	of	multiple	solutions
of	problem	(13.1).	Let	u(x,	t)	be	a	solution	of	(13.1).	Then	v(x,	t;	a)	=	u(ax,	at)	is
also	a	solution	of	(13.1)	for	any	a	>	0.	Since	we	want	uniqueness	of	solutions	of
(13.1)	(part	of	the	well-posedness	condition	for	initial	value	problems),	we	need
v(x,	t;	a)	=	u(x,	t).	It	follows	(see	Problem	1)	that	 	for	some	function

.	 Then	u(x,	 t)	 is	 constant	 on	 rays	 x	=	 ct	 through	 the	 origin	 in	 the	 x-t
plane.	When	 	is	continuous,	this	type	of	solution	is	called	a	centered	rarefaction
wave.	Later	we	also	consider	shock	wave	solutions	of	(13.1),	which	correspond	to
discontinuous	functions	 .

13.1.2.	Centered	Rarefaction	Waves

Continuous,	piecewise	smooth	(nonconstant)	scale-invariant	solutions	u(x,	 t)	=	
	of	the	PDE	in	(13.1)	are	centered	rarefaction	waves.	Then

implies	 .	One	possibility	 for	 this	equation	would	be	 ,	but	this
leads	only	 to	 the	constant	 solution.	The	other	alternative	gives	 the	 solution	we
seek:

Since	the	PDE	is	translation	invariant	(i.e.,	it	does	not	change	if	x	or	t	is	translated
by	a	constant),	rarefaction	waves	can	be	translated	so	that	they	are	centered	on
points	(x0,	t0)	other	than	the	origin:

In	Figure	13.1	we	show	the	solution	of	 the	Riemann	problem	(13.1)	with	uL	=
−1,	 uR	 =	 1,	 in	 which	 the	 solution	 is	 constant	 to	 the	 left	 and	 right	 of	 the



rarefaction	 wave.	 Continuity	 of	 the	 solution	 implies	 that	 the	 derivative	 ux	 is
discontinuous	 at	 the	 leading	 and	 trailing	 edges	 of	 the	 rarefaction,	 but	 this	 is
consistent	with	the	PDE,	since	these	points	travel	with	characteristic	speed	u.	A
general	 result	 concerning	 the	 propagation	 of	 discontinuities	 in	 derivatives	 of
solutions	is	provided	in	the	next	chapter	(see	Section	14.2.5).

Figure	13.1.	A	rarefaction	wave	solution	of	the	inviscid	Burgers	equation.

13.1.3.	Shock	Waves

In	 Section	 9.2.2,	 Example	 7,	 we	 discussed	 discontinuous	 solutions	 of	 a	 scalar
conservation	law	as	an	application	of	distributions,	including	a	derivation	of	the
Rankine-Hugoniot	 condition	 for	 constant-speed	 shock	 waves.	 Here	 we	 give	 a
more	general	derivation	of	the	Rankine-Hugoniot	condition.	However,	if	all	shock
waves	were	allowed	in	weak	solutions,	then	some	Riemann	problems	would	have
multiple	weak	solutions	for	the	same	constants	uL,	uR.	To	rectify	this	lack	of	well-
posedness,	we	introduce	the	notion	of	the	admissibility	of	shocks.

Consider	 a	 solution	 u(x,	 t)	 of	 Burgers’	 equation	 (13.1)	 with	 a	 jump
discontinuity	on	a	curve	x	=	γ	(t)	with	γ	a	C1	 function.	We	assume	that	u	 is	C1
and	 satisfies	 the	 PDE	 (13.1),	 except	 on	 x	 =	 γ	 (t).	 Since	 u	 has	 a	 jump
discontinuity,	it	has	one-sided	limits	u±(t)	=	limx	→	γ	(t)±	u(x,	t)	=	u(γ	(t)±,	t).

In	Chapter	9,	Example	7,	we	 showed	how	 to	 treat	 a	 discontinuous	 function
with	a	jump	discontinuity	as	a	distributional	solution	of	a	conservation	law.	We
take	this	up	again	in	the	next	chapter	on	systems	of	conservation	laws.	Here	we
give	a	more	direct	 treatment	going	back	 to	 the	balance	 law	 formulation	 to	 see
what	it	takes	for	u	to	satisfy	the	integral	form	of	the	equation.

Consider	 points	x	=	a,	 x	=	 b	with	a	<	 γ	 (t)	<	 b,	 for	 t	 in	 an	 interval,	 as
shown	in	Figure	13.2.	The	balance	law	expresses	the	PDE	in	the	form



This	 equation	 can	 be	 derived	 much	 as	 was	 done	 for	 the	 traffic	 flow	 equation
(2.16)	of	Chapter	2.	To	evaluate	the	left-hand	side,	we	break	up	the	integral:

Figure	13.2.	A	shock	wave	x	=	γ	(t).

Now	we	can	carry	out	the	differentiation	to	get

Next	we	use	the	PDE	in	the	integrals:

The	calculation	now	reduces	to

Since	x	=	γ	(t)	is	a	discontinuity	for	u,	we	have	u+(t)	≠	u−(t),	so

which	is	the	Rankine-Hugoniot	jump	condition.	The	left-hand	side	is	the	speed	of



the	discontinuity,	or	shock	wave;	the	condition	states	that	the	shock	speed	γ′(t)	is
the	average	of	u	 across	 the	 shock	 (i.e.,	γ′(t)	 is	 the	average	of	 the	 characteristic
speeds	on	each	side	of	the	shock).

Since	the	class	of	possible	solutions	now	includes	piecewise	smooth	functions,
we	 lose	 uniqueness	 of	 solutions	 for	 some	 initial	 value	 problems.	 This	 issue	 is
familiar	from	simpler	contexts.	For	example,	if	we	consider	only	real	solutions	of
x3	=	1,	 then	 there	 is	 a	 unique	 solution	x	=	 1.	However,	when	we	widen	 the
admissible	 class	 of	 numbers	 to	 include	 complex	 numbers,	 then	 there	 are	 three
solutions.

In	 the	next	 example	we	 show	a	one-parameter	 family	of	weak	 solutions	 for
the	same	initial	value	problem.	The	example	is	suggestive	of	how	uniqueness	can
be	recovered.

Example	1.	(Nonunique	weak	solutions)	Consider	the	Riemann	problem	(13.1)
with	uL	=	−1,	uR	=	1:

The	rarefaction	wave	solution	is	shown	in	Figure	13.1.	However,	there	is	also	a
one-parameter	family	of	weak	solutions.	In	Figure	13.3	we	represent	one	member
of	this	family,	with	a	particular	value	of	the	parameter	α	∈	(0,	1].	The	formula
for	the	solution	is

In	these	solutions	notice	that	for	α	>	0,	there	is	a	stationary	shock	on	the	t-axis,
and	 characteristics	 leave	 the	 shock	 on	 both	 sides.	 Since	 u	 is	 constant	 on
characteristics,	 the	 solution	 adjacent	 to	 the	 shock	 is	 not	 determined	 from	 the
initial	data.	We	say	that	causality	fails	to	hold.	To	avoid	this	lack	of	causality,	we
select	the	solution	with	α	=	0,	for	which	the	solution	is	continuous,	consisting	of
the	centered	rarefaction	wave	whose	graph	appears	in	Figure	13.1,	but	no	shock
forms.



Figure	13.3.	One-parameter	family	of	solutions	of	problem	(13.3).

13.1.4.	The	Lax	Entropy	Condition

Example	 1	 shows	 that	 to	 have	 unique	 solutions	 of	 initial	 value	 problems,	 we
cannot	 allow	 all	 solutions	 with	 shocks	 that	 only	 satisfy	 the	 Rankine-Hugoniot
condition	 (13.2).	 In	 many	 circumstances	 a	 unique	 solution	 is	 selected	 if	 we
impose	 the	 additional	 condition	 that	 characteristics	 must	 impinge	 on	 a
discontinuity	 from	 both	 sides.	 This	 is	 consistent	 with	 causality,	 as	 the
characteristics	carry	information	about	the	solution	forward	in	time	from	initial
and	 boundary	 conditions.	 The	 condition	 on	 characteristics	 is	 known	 as	 the	 Lax
entropy	condition.	Formulated	in	this	way,	it	applies	to	discontinuous	solutions	of
any	 scalar	 conservation	 law	 ut	 +	 f(u)x	 =	 0,	 and	 it	 also	 generalizes	 to
discontinuities	in	higher	dimensions.

We	can	write	the	Lax	condition	as	a	pair	of	inequalities.	Consider	a	shock	x	=
γ	 (t),	 represented	 in	 Figure	 13.3,	 with	 left	 and	 right	 limits	 u−(t)	 and	 u+(t),
respectively.	Then	the	Lax	entropy	condition	states	that

In	particular,	the	solution	must	jump	down	from	u−	to	u+.

By	 contrast,	 in	 Example	 1	 the	 solutions	 u	 with	 α	 >	 0	 jump	 up	 at	 the
discontinuity.	Thus,	the	only	acceptable	solution	is	the	continuous	one,	for	which
α	=	0;	 the	others	have	 shocks	 that	 satisfy	 the	Rankine-Hugoniot	 condition	but
not	the	Lax	entropy	condition.

Example	2.	(Solution	of	the	Riemann	problem	(13.1))	We	can	now	solve	the
Riemann	 problem	 (13.1)	 for	 Burgers’	 equation	 for	 all	 choices	 of	 uL,	 uR.	 The
solution	 consists	 of	 a	 single	wave	with	 the	 constants	u	=	uL	 to	 the	 left	 of	 the
wave	and	u	=	uR	to	the	right.	If	uL	<	uR,	the	single	wave	is	a	centered	rarefaction
wave,	whereas	if	uL	>	uR,	then	the	single	wave	is	a	shock	x	=	st,	s	=	 (uL	+	uR).



In	the	next	example,	we	compute	a	shock	wave	as	a	free	boundary,	showing
how	 information	 from	 the	 left	 and	 right	 determines	 the	 location	 of	 the	 shock.
This	 property	 of	 locating	 the	 shock	 based	 on	 information	 from	 both	 sides	 is
another	reason	for	the	Lax	condition—information	flows	into	the	shock	from	the
left	 and	 the	 right.	 Since	 the	 information	 (carried	 by	 characteristics)	 varies
continuously	with	the	initial	data,	the	Lax	condition	ensures	that	solutions	vary
continuously	 with	 the	 data.	 In	 this	 sense,	 shocks	 satisfying	 the	 Lax	 entropy
condition	are	said	to	be	stable.

Example	 3.	 (Piecewise-constant	 initital	 data)	 We	 can	 use	 rarefactions	 and
shocks	 to	 solve	 initial	 value	 problems	 with	 piecewise-constant	 initial	 data	 by
solving	 the	 Riemann	 problem	 and	 then	 solving	 interaction	 problems	 when
individual	waves	collide.	As	an	example,	we	consider	the	initial	value	problem

The	solution	structure	is	shown	in	Figure	13.4.	To	construct	the	solution	step	by
step,	first	consider	t	>	0	small.	There	will	be	a	rarefaction	centered	at	x	=	t	=	0
joining	regions	x	<	0	where	u	=	0	and	x	>	t	where	u	=	1.	The	constants	u	=
1to	the	left	of	u	=	0	are	joined	by	a	shock	wave	originating	at	x	=	1,	t	=	0	and
having	constant	speed	 .	The	shock	wave	therefore	lies	on	the	curve	 .

Now	the	leading	edge	of	the	rarefaction	wave,	specifically,	the	characteristic	x
=	t,	collides	with	the	shock	wave	 ,	for	which	x	=	2.	The	solution
is	continued	with	a	curved	shock	x	=	γ	(t),	 since	the	 limit	 from	the	 left	comes
from	the	rarefaction	wave	and	is	not	constant,	whereas	the	limit	from	the	right
continues	 to	be	u	=	0.	 The	 speed	 is	 related	 to	 the	 left	 and	 right	 limits	 by	 the
Rankine-Hugoniot	condition,	which	takes	the	form

The	shock	wave	is	attached	to	the	collision	point,	so	we	have	the	initial	condition

The	solution	of	the	initial	value	problem	for	γ	(t)	is	 .	This	is	the	curved
portion	of	 the	 shock	 shown	 in	Figure	13.4.	Notice	 that	γ	(t)	has	 speed	γ′(t)	=	

,	 which	 approaches	 zero	 as	 t	 →	 ∞.	 Consequently,	 the	 shock	 strength



decreases,	but	the	shock	persists	for	all	time.

Figure	13.4.	Solution	of	the	Riemann	problem	(13.4).

13.2.	Scalar	Conservation	Laws
Much	of	what	we	have	analyzed	for	the	inviscid	Burgers	equation	applies	to	the
general	scalar	equation	in	one	space	variable	and	time

in	which	the	flux	f	:	R	→	R	is	C2.	We	consider	the	Cauchy	problem,	with	initial
data

For	 some	 properties,	 it	 is	 convenient	 to	 write	 the	 equation	 as	 a	 nonlinear
transport	equation

where	c(u)	=	f′(u)	is	the	characteristic	speed.	We	show	how	the	construction	of
rarefaction	waves	and	shocks	generalizes	to	(13.5).

First	observe	that	u	is	constant	on	characteristics	 ,	since	 	=	0,
and	 that	 therefore	characteristics	x	=	x(t)	 are	 straight	 lines.	Consequently,	 the
solution	of	the	Cauchy	problem	is	expressed	implicitly	by	the	equation

Using	 the	 balance-law	 version	 of	 (13.5),	 the	 Rankine-Hugoniot	 jump
condition	for	a	discontinuous	solution,	such	as	that	shown	in	Figure	13.2,	is



where	 	 is	 the	 shock	speed.	Notice	 that	 the	shock	speed	 is	 the	 slope	of	 the
chord	in	the	graph	of	f	joining	the	points	(u±,	f(u±)),	as	in	Figure	13.5.	The	figure
provides	 a	 useful	 interpretation	 when	 considering	 the	 Lax	 entropy	 condition,
because	this	slope	is	easily	compared	to	the	characteristic	speeds	c(u±)	=	f′(u±),
which	are	slopes	of	the	tangents	to	the	graph	of	f	at	these	same	points.	The	Lax
entropy	 condition	 states	 that	 characteristics	 should	 enter	 the	 shock	 from	 each
side.	(See	γ	(t)	in	Fig.	13.4	for	an	example.)	This	means

Shocks	that	satisfy	this	condition	are	said	to	be	admissible.

Centered	rarefaction	waves	 	are	constant	on	characteristics	and	thus
are	specified	by	the	implicit	equation

Since	x/t	is	increasing	from	left	to	right	in	the	x-t	plane,	this	formula	makes	sense
only	 in	 intervals	 of	 	 in	 which	 	 is	 increasing	 as	 a	 function	 of	 x/t.
Therefore,	 	in	an	interval,	which	is	the	range	of	 .

Figure	13.5.	Shock	speed	s	as	the	slope	of	a	chord	for	a	convex	flux	f.

13.2.1.	Traffic	Flow	Model

The	model	for	traffic	flow	introduced	in	Chapter	2	has	the	form

In	 this	equation,	ρ(x,	 t)	≥	0	 represents	 the	 traffic	density	 at	 a	 location	x	 on	 a
highway	 at	 time	 t,	 and	 the	 traffic	 flux	 is	 given	 by	 a	 function	 f(ρ)	=	ρv(ρ)	 in
which	 v	 =	 v(ρ)	 models	 how	 velocity	 v	 changes	 with	 traffic	 density	 ρ.	 The



simplest	v(ρ)	is	linear:	v(ρ)	=	vm(1	−	ρ/ρm),	where	vm,	ρm	denote	the	maximum
speed	and	maximum	traffic	density,	respectively.	Then	(13.9)	has	a	quadratic	flux

and	can	be	converted	into	the	inviscid	Burgers	equation	with	a	simple	change	of
variables.

More	generally,	forms	for	v(ρ)	can	be	based	on	real	traffic	data,	and	the	result
need	not	be	linear.	However,	v′(ρ)	≤	0	is	a	reasonable	assumption,	and	f(ρ)	=
ρv(ρ)	is	typically	a	concave	function:	f″(ρ)	<	0,	implying	that	the	characteristic
speed	is	a	decreasing	function	of	density	ρ.

Note	that	the	characteristic	speed	f′(ρ)	=	ρv′(ρ)	+	v(ρ)	is	positive	for	ρ	near
zero,	but	it	is	negative	near	maximum	density,	where	v(ρ)	=	0.	Thus,	according
to	 the	 model	 (13.9),	 information	 about	 the	 traffic	 may	 flow	 forward,	 in	 the
direction	of	 the	 traffic	motion	at	 low	density,	or	backward	at	high	density.	We
can	 illustrate	 both	 cases	with	 a	 classic	 example,	 in	which	 vehicles	 approach	 a
traffic	light.

Example	4.	(Traffic	light	problem	in	the	traffic	flow	model)	A	line	of	traffic
with	uniform	density	 	approaches	a	traffic	light	located	at	x	=	0.	Suppose	you
are	a	traffic	engineer,	and	your	job	is	to	design	the	traffic	light	sequence	to	make
the	light	work	efficiently.

Let’s	suppose	the	light	needs	to	stay	red	for	a	time	t1	>	0,	to	release	traffic	on
the	other	roads	at	the	intersection.	Then	you	need	to	find	the	length	of	time	T	>
0	for	the	green	light.	As	we	shall	see,	the	traffic	builds	up	behind	the	red	light,
and	then	gradually	releases	when	the	light	turns	green.	The	challenge	is	to	find
an	expression	for	shortest	time	T	at	which	the	traffic	density	returns	to	 .	We
find	T	as	a	function	of	the	parameters	in	the	model:	 ,	ρm,	vm,	t1.

First	note	that	when	the	light	turns	red,	the	density	immediately	to	the	right
of	x	=	0	is	ρ	=	0,	and	behind,	 .	Subsequently,	since	cars	are	stopped	at	the
red	 light,	 the	 density	 immediately	 to	 the	 left	 of	 x	 =	 0	 is	 maximal,	 ρ	 =	 ρm.
Correspondingly,	there	is	a	stationary	shock	at	the	light,	that	is,	one	with	speed
zero.	Note	that	this	makes	sense,	since	the	light	presumably	does	not	move,	and
but	also	because	it	is	consistent	with	the	Rankine-Hugoniot	condition.

Since	there	is	nothing	in	the	model	that	allows	cars	to	slow	as	they	approach
the	line	of	stationary	cars,	a	shock	forms	between	the	moving	cars	(which	have
density	 )	and	the	stationary	cars	(with	density	ρ	=	ρm).	Consequently,	 the
shock	forms	and	propagates	backward	as	more	cars	join	the	queue	waiting	at	the
light.	The	speed	is	given	by	the	Rankine-Hugoniot	condition



since	f(ρm)	=	0.

Now	suppose	the	light	turns	green	at	time	t1.	This	releases	cars	at	the	head	of
the	 queue	 to	 start	 moving.	 Since	 there	 are	 no	 cars	 ahead	 of	 the	 lead	 car,	 the
model	 dictates	 that	 it	 immediately	 travels	 with	 maximum	 speed	 vm,
corresponding	to	ρ	=	0.	In	fact,	at	t	=	t1,	the	solution	near	x	=	0	constitutes	a
Riemann	 initial	 value	problem,	with	ρ	=	ρm,	x	<	0,	 and	ρ	=	0,	x	>	0.	 This
jump	down	gives	 rise	 to	a	 centered	 rarefaction	wave,	as	 shown	 in	Figure	 13.6.
The	rarefaction	 interacts	with	 the	backwards-propagating	shock	at	some	time	 t2
>	 t1,	 increasing	 its	 speed.	 Finally	 at	 time	 t3	>	 t2,	 the	 shock,	 labeled	 γ	 in	 the
figure,	 crosses	x	=	0,	 after	which	 the	 traffic	 density	 is	 back	 to	 	 crossing	 the
traffic	light	at	x	=	0.	The	interval	T	=	t3	−	t1	is	the	minimum	time	that	should
be	set	for	the	green	light	to	release	all	the	vehicles	that	were	held	up	by	the	red
light.	Notice	that,	as	in	Example	3,	the	shock	persists	for	all	time,	but	the	strength
decays	as	t	gets	larger.

13.2.2.	Nonconvex	Flux

The	classic	scalar	conservation	law	with	a	nonconvex	flux	is	the	Buckley-Leverett
equation,	formulated	in	the	1940s	as	a	simple	model	for	the	flow	of	oil	and	water
in	an	oil	 reservoir.	 It	 is	based	on	Darcy’s	 law	relating	pressure	gradients	 in	 the
fluids	to	their	velocities.	After	some	simplification,	the	equation	takes	the	form

In	 this	 equation,	 u	 =	 u(x,	 t)	 is	 the	 saturation	 of	 oil	 at	 a	 location	 x	 in	 the
reservoir,	meaning	 the	 fraction	of	volume	of	pore	 space	occupied	by	oil.	Then,
assuming	all	the	pore	space	is	occupied	by	either	water	or	oil,	the	saturation	of
water	is	1	−	u.	The	functions	λo,	λw	are	relative	permeabilities	of	oil	and	water,
respectively,	depending	on	their	saturations;	they	are	both	typically	taken	to	be
positive,	 increasing,	 and	 convex	 functions.	 The	 positive	 constant	 vT	 is	 the	 total
velocity	(i.e.,	the	sum)	of	the	two	fluids.	We	leave	it	as	an	exercise	(see	Problem
3)	to	show	that	f(u)	in	(13.10)	is	positive,	increasing,	but	nonconvex	with	a	single
inflection	 point,	when	λo(u)	=	kou2	 and	λw(1	−	u)	=	kw(1	−	u)2,	 for	 positive
constants	ko,	kw.



Figure	13.6.	Solution	of	the	traffic	light	problem.

Rarefaction	wave	solutions	 	of	(13.5)	with	a	nonconvex	flux	f(u)	are	a
little	tricky,	because	the	characteristic	speed	 	has	to	increase	with	x/t.
Moreover,	 because	 	 is	 obtained	 from	 the	 equation	 x/t	 =	 f′(u),	 f′	 must	 be
invertible.	Consequently,	f″	≠	0	throughout	the	rarefaction	wave.

To	 show	 the	 role	 of	 nonconvex	 flux	 functions,	 we	 choose	 the	 simpler
nonconvex	function	f(u)	=	u3,	for	which	we	can	make	explicit	calculations.	Thus,
we	consider	shocks	and	rarefaction	waves	for	the	equation

ut	+	(u3)x	=	0.

In	 the	 specific	 case	 f(u)	=	 u3,	 the	 characteristic	 speed	 is	 f′(u)	=	 3u2,	 so	 that
rarefaction	waves	u(x,	 t)	=	 (x/t)	 centered	 at	x	=	 t	=	 0	 are	 given	 by	

.	Thus,	rarefaction	waves	have	positive	speed	and	join	constant	values
u	=	u±,	provided	u+	<	u−	≤	0	or	0	≤	u−	<	u+	(where	as	usual	u−	is	to	the	left
of	the	wave	and	u+	is	to	the	right).

For	constant	u−	>	0,	the	values	of	u+	<	u−	for	which	the	piecewise-constant
function

is	an	admissible	 shock	 for	 some	speed	 s	 require	 the	chord	 from	u−	 to	u+	 to	 lie
above	the	graph	of	f.	The	chord	has	slope	s	=	u2+	+	u+u−	+	u2−	and	becomes
tangent	to	f	 in	two	ways,	corresponding	to	two	different	values	of	u+.	When	u+
=	−u−/2,	the	chord	is	tangent	at	u+;	when	u+	=	−2u−,	the	chord	is	tangent	at
u−.	 By	 comparing	 the	 slopes	 	 of	 the	 tangents	 at	 u±	 to	 the	 shock	 speed,	we



observe	that	the	Lax	entropy	condition	(13.8)	becomes	−u−/2	<	u+	<	u−	when
u−	>	0.

Having	described	rarefaction	waves	and	admissible	shock	waves,	we	can	solve
the	Riemann	problem

Since	the	PDE	is	unchanged	by	changing	the	sign	of	u,	we	can	take	uL	>	0	and
solve	 (13.11)	 for	 different	 values	 of	 uR.	 From	 the	 discussion	 of	 shocks	 and
rarefactions	in	Example	2,	we	see	that	the	solution	will	be	a	single	shock	wave	if
−uL/2	<	uR	<	uL	and	a	rarefaction	wave	if	uR	>	uL.	However,	for	uR	<	−uL/2,	a
single	wave	cannot	solve	the	problem,	and	we	need	a	new	construction,	a	shock-
rarefaction.	 This	 solution	 includes	 a	 shock	wave	 from	uL	 to	−uL/2,	with	 speed	

,	the	characteristic	speed	at	u	=	−uL/2.	But	then	we	can	join	−uL/2	to	uR	by
a	rarefaction	wave,	since	uR	<	−uL/2.	The	solution	then	is	a	shock	connected	to
the	 rarefaction	 wave,	 hence	 the	 name	 shock-rarefaction.	 We	 illustrate	 the
solutions	in	Figure	13.7.

Figure	13.7.	Solution	of	the	Riemann	problem	(13.11).	S:	shock;	R:	rarefaction;
SR:	shock-rarefaction.



13.3.	The	Lax	Entropy	Condition	Revisited
The	Lax	entropy	condition	can	be	motivated	by	considering	changes	 in	entropy
across	shock	waves	in	gas	dynamics.	But	we	can	also	treat	entropy	as	an	abstract
quantity,	 a	 significant	 notion	 in	 the	 modern	 theory	 of	 conservation	 laws,
including	the	existence	and	properties	of	solutions	of	systems	of	equations.	In	this
section	 we	 relate	 the	 Lax	 entropy	 condition	 to	 this	 mathematical	 notion	 of
entropy.

Consider	the	conservation	law

in	which	f	:	R	→	R	is	a	C2	strictly	convex	function:	f″(u)	>	0	for	all	u	∈	R.	Let	η	:
R	→	R	be	a	C2	strictly	convex	function:	η″(u)	>	0	for	all	u	∈	R,	called	a	convex
entropy	function.	We	define	an	entropy	flux	q	:	R	→	R	by

These	pairs	of	functions	are	associated	with	an	additional	conservation	law	that	is
satisfied	 by	 smooth	 solutions.	We	 verify	 that	ηt	+	 qx	=	 0,	 using	 (13.12)	 and
(13.13):

Note	 that	 (13.13)	 also	makes	 sense	when	η	 is	 only	 piecewise	 smooth,	 that	 is,
continuous	and	piecewise	C1	(for	example,	piecewise	linear).	In	that	case,	we	say
η	is	a	convex	entropy	function	if	it	is	a	convex	function	in	the	weaker	sense:

for	all	x	<	y,	0	≤	θ	≤	1.

The	objective	of	this	section	is	to	relate	the	Lax	entropy	condition	(13.8)	for
shock	waves	to	the	inequality

To	 simplify	 the	 calculation	 of	 the	 inequality	 (13.14),	we	 consider	 a	 piecewise-
constant	shock	wave	solution	of	(13.12):

Here	the	speed



and	the	solution	on	each	side	of	the	shock	are	constant.

Recall	that	for	a	convex	flux	f(u),	the	Lax	entropy	condition

is	equivalent	to	requiring	that	the	shock	jump	down:

Inequality	(13.14)	is	to	be	interpreted	in	the	sense	of	distributions:

for	all	test	functions	ϕ	∈	C∞(R	×	R)	with	compact	support,	satisfying	ϕ(x,	 t)	≥
0.	For	the	shock	wave	(13.15),	let	η±	=	η(u±),	q±	=	q(u±).	We	find

To	 verify	 this	 inequality	 from	 (13.17),	 write	 η(u)	 and	 q(u)	 in	 terms	 of	 the
Heaviside	function	H(x),	and	use	the	fact	that	the	distributional	derivative	H′	=
δ,	the	Dirac	delta	function,	a	nonnegative	distribution.	Then

if	and	only	if	(13.18)	holds.

We	 say	 the	 shock	 satisfies	 the	 entropy	 inequality	 if	we	get	 strict	 inequality	 in
(13.18):

The	point	of	 the	next	 theorem	is	 to	 show	that	 if	 the	shock	(13.15)	 satisfies	 the
Lax	 entropy	 condition,	 then	not	 only	 is	 the	 inequality	 (13.18)	 satisfied	 for	 any
convex	entropy	η,	but	in	fact	the	sharper	strict	inequality	(13.19)	holds.

Theorem	13.1.	Let	 f	be	a	C2	strictly	convex	 flux,	and	 let	η	be	a	C2	strictly	convex
entropy	 with	 entropy	 flux	 q.	 If	 the	 shock	 wave	 (13.15)	 satisfies	 the	 Lax	 entropy
condition,	then	it	satisfies	the	entropy	inequality	(13.19).

Proof.	Suppose	the	shock	wave	(13.15)	satisfies	the	Lax	entropy	condition.	Then
u−	>	u+.	Let	η	:	R	→	R	be	C2,	with	η″	>	0.	We	define	functions

Then	E(u−)	=	0.	The	proof	will	be	complete	when	we	show	that	E(u+)	<	0.	To
do	so,	we	differentiate	the	Rankine-Hugoniot	condition

as	well	as	E(u).	Differentiating	(13.20),	we	have



Hence,	for	u	<	u−,	and	using	(13.13),

since	 	 and	 	 (by	 convexity	 of	 η)	 for	 u	 <	 u−.
Moreover,	E′(u−)	=	0.	Consequently,	E(u+)	<	0	for	u−	>	u+.

We	 state	 the	 converse	 to	 Theorem	 13.1	 slightly	 differently,	 as	 we	 use
piecewise	linear	convex	entropies	in	the	proof,	whereas	in	the	previous	theorem
the	entropy	was	assumed	to	be	C2.

Theorem	13.2.	Let	f	:	R	→	R	be	a	C2	strictly	convex	flux.	If	the	shock	wave	(13.15)
satisfies	 the	 entropy	 inequality	 for	 all	 convex	 entropies	 η,	 then	 it	 satisfies	 the	 Lax
entropy	condition	(13.16).

Proof.	Since	the	shock	is	assumed	to	satisfy	the	entropy	inequality	for	all	convex
entropies,	 we	 can	 choose	 an	 entropy	 to	 give	 us	 the	 result.	 Suppose	 for	 a
contradiction	that	u−	<	u+.	Let	k	∈	(u−,	u+),	and	define

Then	from	(13.13),	we	have

Therefore,	since	u−	<	k	<	u+,

Substituting	into	the	entropy	inequality	(13.19)	gives

This	 is	an	inequality	between	chords	connected	to	(u−,	 f(u−))	 in	 the	graph	of	 f.
But	since	u−	<	k	<	u+,	the	inequality	contradicts	the	assumption	that	f	is	strictly
convex.	Therefore,	u−	>	u+,	 since	 in	 the	case	u−	=	u+,	 the	entropy	 inequality
(13.19)	fails	also.

It	 is	 helpful	 to	 sketch	 the	 graph	 of	 the	 convex	 function	 f	 and	 the	 various



chords	 referred	 to	 in	 the	 proofs	 above,	 to	 understand	 how	 the	 proofs	 work.
Incidentally,	a	similar	calculation	(essentially	exchanging	u+	and	u−)	shows	that
if	u−	>	u+,	then

for	u+	<	k	<	u−,	which	is	consistent	with	the	convexity	of	f.

It	is	worth	noting	that	the	specific	entropies	(13.21)	are	a	crucial	construct	in
the	 existence	 theory	 of	 Kruzkov	 [31]	 for	 the	 Cauchy	 problem	 for	 scalar
conservation	laws.	Rather	than	going	more	deeply	into	the	existence	theory,	we
return	 in	 the	 next	 section	 to	 some	 other	 issues	 relating	 to	 nonconvex	 flux
functions.

13.4.	Undercompressive	Shocks
In	this	section	we	return	to	the	example

of	 a	 scalar	 conservation	 law	with	 concave-convex	 flux	 f(u)	=	u3.	 Shock	waves
(13.15)	satisfy	the	Lax	entropy	condition	only	for	 ,	if	u−	>	0.	For	a
convex	 flux	 function,	 all	 other	 shock	 waves	 are	 expansive	 in	 the	 sense	 that
characteristics	 leave	 the	 shock	on	both	 sides.	 In	contrast,	 for	a	nonconvex	 flux,
there	are	shock	waves	for	which	the	characteristics	enter	the	shock	on	one	side
and	 leave	 on	 the	 other	 side.	 For	 (13.22),	 we	 found	 earlier	 (by	 comparing	 the
shock	 speed	 to	 characteristic	 speeds)	 that	 these	 shocks	 have	
when	u−	>	0.

In	the	mid-1990s	[24]	it	was	realized	that	such	shock	waves	can	be	limits	of
traveling	wave	solutions	of	equations	that	include	higher-order	derivatives.	This
was	 after	 a	 decade	 of	 research	 on	 such	 undercompressive	 shocks	 in	 systems	 of
equations,	occuring	as	dynamic	phase	transitions	[1,	25,	40,	42]	in	elastic	solids
and	 gases,	 as	 transition	 waves	 in	 oil	 recovery	 models	 [41,	 23]	 and	 in
magnetohydrodynamics	[47].

To	 justify	 the	 shocks	 that	 fail	 the	 Lax	 entropy	 condition,	we	 seek	 traveling
wave	solutions	of	the	modified	KdV-Burgers	equation,

The	term	modified	is	used	because	the	u2	nonlinearity	of	Burgers’	equation,	and	of
the	KdV	 equation,	 is	modified	 to	u3.	 The	 names	 Burgers	 and	 Korteweg-deVries
(KdV)	are	associated	with	the	dissipative	and	dispersive	terms	on	the	right-hand



side,	 respectively.	 The	 parameters	 ϵ	 and	 γ	 are	 positive	 constants.	We	 choose	 a
positive	 coefficient	 for	 the	 dispersive	 (third-order)	 term;	 the	 consequences	 of
reversing	the	sign	of	the	dispersive	term	are	left	as	problem	12.

The	traveling	waves	we	seek	have	the	same	form	as	in	the	previous	chapter:	
,	 ξ	 =	 (x	 −	 st)/ϵ,	 satisfying	 far-field	 boundary	 conditions	 	 u±.

Since	the	equation	is	unchanged	by	the	transformation	u	→	−u,	we	can	restrict
attention	to	traveling	waves	with	u−	>	0.

As	in	Chapter	12,	we	convert	the	PDE	into	an	ODE	and	integrate	once,	with
the	result	(in	which	we	have	dropped	the	bars	on	u)

Recall	that	we	analyzed	a	similar	equation	when	seeking	traveling	waves	for	the
bistable	 equation	 (12.13).	 As	 in	 the	 analysis	 of	 that	 equation,	 we	 write	 the
second-order	ODE	as	a	first-order	system:

Let	 F(u,	 v)	=	 (v,	 −γ	 v	 +	 (u3	 −	 u3−)	−	 s(u	 −	 u−)).	 The	 vector	 field	 F	 has
Jacobian

For	u−	>	 0,	 and	−2u−	<	 u+	<	−u−/2,	 let	 .	 Then	 there	 are
three	equilibria	(u,	v)	=	(u,	0),	with	u	=	u±	and	u	=	u0	satisfying	u+	<	u0	<	u−,
and

At	the	outside	equilibria,	u	=	u±,	we	observe	that	s	<	3u2;	the	eigenvalues	of	dF
are	real	and	of	opposite	signs,	given	by

That	is,	 the	equilibria	are	saddle	points.	The	middle	equilibrium	at	u	=	u0	 has	
,	 so	 that	 it	 is	 a	 stable	 spiral	 (if	 the	 eigenvalues	 are	 complex)	 or	 a	 stable

node.

Much	as	we	did	 for	 the	bistable	 equation,	we	 seek	heteroclinic	orbits	 (u(ξ),
v(ξ))	 that	 are	 saddle-saddle	 connections	 from	 (u−,	 0)	 to	 (u+,	 0)	 by	 finding
parameter	values	for	which	there	is	an	invariant	parabolic	manifold



through	 these	 two	 equilibria.	 Since	 u+	 <	 u−,	 we	 must	 have	 k	 >	 0	 to	 get	 a
traveling	wave	that	follows	the	parabola	from	u−	to	u+	and	hence	is	decreasing:	v
=	u′	<	0.

Writing	 	 and	 rewriting	 the	 system
(13.24)	using	v	=	v(u),

we	see	that	(after	canceling	factors	(u	−	u−)(u	−	u+))

Equating	coefficients	gives

Using	(13.25),	we	get

In	particular,	the	middle	equilibrium	depends	only	on	γ,	so	that	the	chord	with
slope	 s	 pivots	 on	 this	 point	 as	 u−	 is	 varied.	 But	 then	 for	 u0	 to	 be	 the	 middle
equilibrium,	 we	 must	 have	 .	 At	 the	 threshold,	 u+	 =	 u0.	 In
summary,	we	have	the	following	theorem.

Theorem	13.3.	[24]	For	 each	 γ	>	0,	 ϵ	>	0	and	 for	 each	 	 there	 is	 a
traveling	 wave	 	 of	 (13.23)	 satisfying	 	 and	

,	with	speed	 .

As	ϵ	→	0+,	 the	 traveling	wave	u(x,	 t)	 of	 the	 theorem	 approaches	 the	 shock
wave	 solution	 (13.15)	of	 (13.22).	This	 solution	 is	undercompressive	 in	 the	 sense
that	 characteristics	pass	 through	 the	 shock	 from	 left	 to	 right,	meaning	 that	 the
shock	is	subsonic	on	both	sides.	As	 ,	we	have	 ,	and	the	chord
becomes	tangent	at	u+	=	u0	=	−u−/2.

Undercompressive	 shocks	 have	 considerable	 influence	 on	 the	 structure	 of
solutions	of	the	scalar	equation	(13.22).	The	Riemann	initial	value	problem

has	weak	solutions	that	are	monotonic	for	all	choices	of	uL,	uR	if	only	Lax	shocks
are	used,	but	it	can	be	nonmonotonic	if	undercompressive	shocks	are	considered.
For	example,	consider	γ	>	0	to	be	set,	let	uL	=	1,	and	 	 .



Then	the	solution	of	the	Riemann	problem	(13.26)	consists	of	two	shocks,	each	of
which	has	a	traveling	wave	solution	of	(13.23):

Here	 ,	 .	 The	 slower	 shock	 is
undercompressive,	and	the	faster	one	is	a	Lax	shock.	Because	of	the	structure	of
characteristics	 in	 this	solution,	we	observe	that	small	disturbances	ahead	of	 the
faster	 wave	 are	 overtaken	 and	 absorbed	 by	 that	 wave,	 whereas	 small
disturbances	behind	the	slower	wave	pass	through	the	wave	and	are	absorbed	by
the	faster	wave.	Details	of	this	two-shock	solution	and	others	can	be	found	in	the
article	by	Jacobs	et	al.	[24]	and	in	the	book	by	LeFloch	[34].

13.5.	The	(Viscous)	Burgers	Equation
In	this	section	we	consider	the	viscous	Burgers	equation

in	 which	 the	 viscosity	 ϵ	 >	 0	 is	 a	 constant.	 The	 equation	 couples	 nonlinear
transport	 to	 linear	 diffusion.	 To	 solve	 the	 Cauchy	 problem	 (13.28)	 with	 initial
data	u0	∈	L1(R),

we	 convert	 the	 PDE	 into	 the	 heat	 equation	with	 a	 clever	 change	 of	 dependent
variable	 known	 as	 the	 Cole-Hopf	 transformation	 [9,	 21].	 To	 motivate	 the
transformation,	let

and	integrate	the	resulting	equation

with	respect	to	x,	taking	the	constant	of	integration	to	be	zero:

Now	u	=	wx,	so	the	terms	with	spatial	derivatives	can	be	combined	and	written
as

suggesting	an	integrating	factor



Now	multiply	(13.30)	by	 	to	get

Thus,	since	 ,	we	have	the	heat	equation	for	z:

and	the	initial	condition	(13.29)	becomes	an	initial	condition	for	z:

We	can	solve	this	initial	value	problem	for	z(x,	t),	using	the	fundamental	solution
for	the	heat	equation	(see	Section	5.1).	To	exploit	 the	exponential	 in	 the	 initial
condition	(13.32),	let	 .	Then

solves	(13.31),	(13.32).

To	recover	the	corresponding	solution	of	Burgers’	equation,	we	have

which	is	the	Cole-Hopf	transformation.

Of	 course,	 we	 could	 have	 started	 with	 the	 transformation	 (13.33)	 and
substituted	into	Burgers’	equation	(13.28),	 leading	 to	 the	heat	equation	 (13.31)
after	some	tedious	calculation,	but	it	would	not	have	been	so	much	fun.

Finally,	we	have	the	solution	of	the	initial	value	problem	(13.28),	(13.29):

This	 explicit	 formula	 for	 the	 solution	 of	 the	Cauchy	 problem	 is	 explored	 in
various	ways	in	Whitham’s	classic	book	on	waves	[46].	In	particular,	with	some
careful	 asymptotic	 analysis	 it	 is	 possible	 to	 take	 the	 singular	 limit	 ϵ	→	 0+,	 to
recover	 Lax’s	 solution	of	 the	Cauchy	problem	 for	 the	 inviscid	Burgers	 equation
[12].

13.6.	Multidimensional	Conservation	Laws



In	this	short	section	we	consider	scalar	conservation	laws	in	two	dimensions:

The	method	of	characteristics	gives	lines

thus,	x	=	f′(u)t	+	x0,	y	=	g′(u)t	+	y0,	on	which	u(x,	y,	t)	is	constant.	Thus,	the
Cauchy	problem,	with	initial	condition

has	the	solution	u(x,	y,	t)	given	implicitly	by

A	calculation	due	to	Conway	[10]	and	reported	by	Majda	[35]	shows	that	shock
formation	is	easily	described	as	a	criterion	on	the	initial	data.	If	we	differentiate
(13.35)	with	respect	to	x	and	y,	we	get	equations	for	the	evolution	of	∇u	=	(ux,
uy).	Let	(v,	w)	≡	∇u.	Then	along	a	characteristic,

where	 	is	differentiation	along	the	characteristic.

Now	let	q(t)	=	f″(u)v(t)	+	g″(u)w(t).	Note	that	q(t)	=	∇.	(f′(u),	g′(u)).	Since	u
is	 constant	 along	 the	 characteristic,	 we	 have	 .	 But	 using
(13.36),	we	find

The	initial	condition	for	this	ODE	is

The	solution	is

Consequently,	q(t)	blows	up	in	finite	time	 t∗	=	−1/q0	 if	q0	<	0.	That	 is,	shock
formation	takes	place	in	finite	time	from	smooth	initial	data	if

at	some	point	(x,	y).

Example	 5.	 (Shock	 formation	 in	 the	 avalanche	 model)	 The	 avalanche



example	(3.17)	gives	an	interesting	twist	on	this	calculation.	The	PDE	(having	set
S	=	1	for	simplicity)	is	of	the	form	(13.35),	except	that	f	=	yu	depends	explicitly
on	y:

Differentiating	with	respect	to	x,	y	leads	to	the	system

for	the	gradient	(v,	w)	=	∇u.	Notice	that	this	system	resembles	(13.36),	but	the
linear	 term	makes	 the	dynamics	work	rather	differently.	Trajectories	 for	system
(13.37)	are	represented	by	curves	in	the	v-w	plane	that	we	find	by	writing	system
(13.37)	as

This	is	an	equation	for	w2	as	a	function	of	v,	which	can	be	solved	with	the	result
that	the	trajectories	are	all	conic	sections

where	 c	 ∈	 R	 is	 a	 parameter,	 the	 constant	 of	 integration.	 Equation	 (13.38)
represents	ellipses	 if	c	>	0,	hyperbolas	 if	c	<	0,	and	a	parabola	 if	c	=	0.	The
trajectories	are	shown	in	Figure	13.8.	A	remarkable	property	of	system	(13.37)	is
that	the	solutions	can	be	written	explicitly:

Consequently,	 ∇u	 =	 (v,	 w)	 becomes	 unbounded	 in	 finite	 time	 if	 q(t)	 has	 a
positive	zero.	This	is	a	condition	on	the	initial	gradient	(v0,	w0).	The	result	is	that
all	 the	 unbounded	 trajectories	 shown	 in	 the	 figure	 correspond	 to	 initial
conditions	that	result	in	finite-time	shock	formation.

The	solution	(13.39)	is	obtained	using	ODE	tricks.	Let	v	=	zw.	Then	v′	=	z′w
+	zw′.	Using	(13.37)	to	eliminate	v′	and	w′,	we	find	z′	−	z2	=	0.	Thus,	z	=	v/w
=	(c	−	t)−1,	where	c	=	w0/v0	from	the	initial	condition	t	=	0.	Therefore,	w	=	(c
−	t)v,	and	the	first	equation	in	(13.37)	becomes	v′	=	2v2(t	−	c),	which	can	be
solved	by	separating	variables,	leading	to	the	expression	for	v(t)	in	(13.39).	The
expression	for	w(t)	is	then	given	by	w(t)	=	(c	−	t)v(t).



Figure	13.8.	Phase	portrait	and	trajectories	for	system	(13.37).

13.6.1.	Shocks	in	Two	Dimensions

The	 Rankine-Hugoniot	 jump	 condition	 in	multiple	 dimensions	 is	 derived	 using
the	Divergence	Theorem.	In	one	space	dimension	a	shock	curve	is	a	point	at	each
time,	across	which	the	solution	jumps,	but	we	used	a	direct	calculation	to	derive
the	 jump	condition.	 In	 two	space	dimensions	a	 shock	 is	a	 space-time	surface,	a
curve	at	each	time,	across	which	the	solution	jumps,	and	which	evolves	in	time.

Equation	(13.35)	is	in	conservation	form,	so	that	we	can	apply	the	Divergence
Theorem	 in	x-y-t	 space.	 Suppose	 a	weak	 solution	 is	 piecewise	C1,	with	 a	 jump
discontinuity	across	a	surface	ϕ(x,	y,	t)	=	0.	The	normal	to	the	surface	is	∇ϕ	=
(ϕx,	ϕy,	ϕt).	Since	we	want	the	surface	to	intersect	each	constant-time	plane	in	a
curve,	 we	 assume	 that	 the	 surface	 can	 be	 parameterized	 in	 terms	 of	 t	 and	 a
combination	 of	 the	 spatial	 variables.	 Rotating	 if	 necessary,	 we	 can	 assume	

,	 so	 that	 ,	 and	 the	 normal	 is	 .	 Now
consider	that	(13.35)	can	be	written	as

Then	the	jump	condition	states	that	the	normal	component	of	the	vector	field	(u,



f	(u),	g(u))	is	continuous	across	the	surface,	and	hence	has	no	jump:

where	 .	Specifically,	this	becomes

Correspondingly,	 the	 Lax	 entropy	 condition	 is	 formulated	 just	 as	 for	 the	 one-
dimensional	case,	where	the	single	space	variable	is	normal	to	the	shock	curve	at
each	time.	The	details	of	the	following	calculation	are	covered	in	some	generality
in	 Serre’s	monograph	 [39].	 Let	 u±	 be	 the	 limits	 from	 the	 right	 and	 left	 in	 x:	

.	 The	 characteristic	 speeds	 in	 the	 normal	 direction	 at	 the
shock	are	given	by

The	 Lax	 entropy	 condition	 compares	 the	 characteristic	 speeds	 with	 the	 shock
speed	in	(13.40):

This	 condition	 can	 be	 used	 to	 show	 stability	 of	 Lax	 shocks,	 meaning	 that	 for
nearby	 initial	 conditions,	 the	 Cauchy	 problem	 is	 well	 posed	 [39].	 Stability	 of
shock	waves	 for	scalar	equations	and	systems	 is	a	 topic	of	ongoing	research.	 In
the	next	 chapter	we	discuss	 shocks,	 rarefactions,	 and	 the	Riemann	problem	 for
systems	of	equations	in	one	space	dimension	and	time.

PROBLEMS

1.	Differentiate	u(ax,	at)	=	C	with	respect	 to	a.	 Solve	 the	 resulting	 linear	 first-
order	PDE	by	the	method	of	characteristics	to	prove	that	u	is	a	function	of	x/t.

2.	Show	that	if	u(x,	t)	is	continuous;	is	C1	on	either	side	of	a	curve	C;	satisfies	the
PDE	at	each	point	not	on	C;	and	ux,	ut	are	continuous	up	to	C	but	have	a	 jump
discontinuity	across	C	then	the	curve	C	is	a	characteristic.

3.	Suppose	λo(u)	=	kou2	and	λw(1	−	u)	=	kw(1	−	u)2,	with	positive	constants	ko,
kw	 in	 (13.10).	 Show	 that	 f(u)	 in	 (13.10)	 is	 positive,	 increasing	 but	 nonconvex,
with	a	single	inflection	point.

4.	Show	that	if

for	all	u,	v,	 then	 f(u)	 is	 a	 quadratic	 polynomial.	 (Hint:	 Take	 v	 to	 be	 fixed,	 and
solve	the	ODE	for	f(u).)	Explain	the	significance	of	this	result.



5.	For	the	solution	of	Example	3,	Figure	13.4,	do	the	following.

(a)	Sketch	graphs	of	the	solution	u(x,	 t)	as	a	function	of	x	 for	various	 times,
such	as	t	=	0,	t	=	1,	t	=	3.

(b)	Write	the	solution	out	as	a	formula,	and	describe	how	u(x,	 t)	approaches
zero	as	t	→	∞.

(c)	Is	the	convergence	to	zero	as	t	→	∞	uniform?	Explain	with	a	proof.

6.	Find	all	values	of	the	positive	constants	a,	b,	c,	d	for	which	the	function

is	a	weak	solution	of	the	inviscid	Burgers	equation	for	−∞	<	x	<	∞,	t	≥	0,	and
satisfies	the	Lax	entropy	condition	at	the	shock.	(Hint:	The	PDE	and	the	Rankine-
Hugoniot	condition	give	three	equations	for	a,	b,	c,	d.)

7.	Consider	the	PDE

(a)	Write	the	Rankine-Hugoniot	condition	for	a	shock	wave

(b)	 Find	 all	 the	 shocks	 (13.41)	 with	 u−	 =	 1	 that	 satisfy	 the	 Lax	 entropy
condition.

(c)	Let	u−	=	1.	Find	all	values	of	u+	for	which	there	is	a	rarefaction	wave

and	write	a	formula	for	the	function	 .

8.	Use	 the	 implicit	equation	(13.7)	or	differentiate	 (13.5)	 to	derive	an	ODE	 for
the	evolution	of	v	=	ux	along	characteristics.	By	solving	the	ODE,	find	conditions
under	which	the	following	are	true.

(a)	The	solution	remains	smooth	for	all	t	>	0.

(b)	 The	 solution	 develops	 a	 singularity	 in	 finite	 time,	 due	 to	 |v|	 →	 ∞.
Characterize	the	time	at	which	this	singularity	forms.



9.	 Complete	 the	 solution	 of	 the	 traffic	 light	 problem	 (Example	 4),	 shown	 in
Figure	13.6,	by	doing	the	following.

(a)	Find	a	formula	for	the	shock	curve	γ.

(b)	Determine	the	time	t3	as	a	function	of	the	other	parameters.

10.	Traffic	of	uniform	density	is	proceeding	along	a	straight	single-lane	highway
at	speed	v0.	At	time	t	=	0,	the	car	at	location	x	=	0	slows	suddenly	to	half	speed
v0/2.	Determine	what	happens	subsequently,	writing	formulas	and	sketching	the
x-t	plane	to	show	the	structure	of	the	solution.

11.	Consider	the	modified	KdV-Burgers	equation	(13.23)	with	ϵ	=	1	but	with	the
sign	of	the	dispersive	term	reversed:

(a)	Explain	why	this	equation	cannot	be	reduced	to	(13.23)	with	a	change	of
variables,	whereas	for	the	quadratic	nonlinearity	of	the	KdV-Burgers	equation,
the	sign	of	the	dispersive	term	can	be	changed	(without	changing	γ	>	0).

(b)	Write	the	ODE	for	traveling	wave	solutions	u	=	u(x	−	st)	as	a	first-order
system.	Consider	values	of	u±	for	which	there	are	three	equilibria	u+	<	u0	<	u
−.	 Show	 that	 the	 only	 heteroclinic	 orbits	 join	 equilibria	 u±	 to	 u0,	 and	 the
corresponding	shock	waves	(13.15)	satisfy	the	Lax	entropy	condition.

(c)	 Summarize	what	 is	different	about	 this	 example	 from	 the	modified	KdV-
Burgers	equation	in	Section	13.4.

12.	Let	γ	>	0.	Solve	the	Riemann	problem	(13.26)	with	uL	=	1,	in	the	following
two	cases.

(a)	When	 .	Your	solution	should	have	a	rarefaction	wave	and	an
undercompressive	shock.

(b)	When	 .	In	this	case,	the	solution	is	a	single	shock.	Show	that
it	is	a	Lax	shock	and	has	a	corresponding	traveling	wave	solution	of	(13.23).
Show	 that	 for	 ,	 the	 solution	 consists	 of	 two	 shocks
traveling	 at	 different	 speeds,	 an	 undercompressive	 shock	 and	 a	 faster	 Lax
shock.

13.	Find	the	curve	Γ	shown	as	the	heavy	solid	curve	in	Figure	13.8.	Show	that,
together	with	the	positive	half	of	the	w-axis,	Γ	separates	initial	conditions	v0,	w0,
for	 which	 a	 shock	 forms,	 from	 initial	 conditions	 that	 do	 not	 lead	 to	 shock
formation.	 (Hint:	You	can	solve	 this	problem	by	examining	when	 the	quadratic
equation	q(t)	=	0	has	a	positive	solution.)



CHAPTER	FOURTEEN

Systems	of	First-Order	Hyperbolic	PDE
Systems	 of	 hyperbolic	 conservation	 laws	 are	 fundamental	 to	 the	 study	 of
continuum	 mechanics:	 the	 dynamics	 of	 fluids	 and	 solids.	 Nonlinear	 systems
possess	 a	 richer	 structure	 than	 scalar	 equations	or	 linear	 systems,	because	 they
have	more	than	one	characteristic	speed,	and	waves	with	different	speeds	interact
nonlinearly.

We	 begin	 the	 chapter	 with	 linear	 equations,	 for	 which	 the	 method	 of
characteristics	can	be	generalized	from	the	scalar	equations	of	Chapters	3	and	13,
leading	 to	a	short-time	existence	 theorem	for	classical	 solutions.	Then	we	show
how	weak	solutions	of	nonlinear	systems	of	conservation	laws	can	be	constructed
from	shocks	and	rarefaction	waves.	Along	the	way	we	show	applications	to	the	p-
system,	to	the	elastic	string,	and	to	shallow	water	waves.

14.1.	Linear	Systems	of	First-Order	PDE
We	consider	linear	systems	of	equations	in	one	space	variable	x	∈	R	and	time	t	>
0	of	the	form

where	U	=	U(x,	t)	∈	Rn	is	the	dependent	variable,	and	A	=	A(x,	t)	is	an	n	×	n
matrix	 depending	 smoothly	 on	 its	 arguments.	 We	 shall	 consider	 the	 Cauchy
problem,	for	which	we	pose	initial	conditions

System	 (14.1)	 is	 hyperbolic	 if	 A	 has	 n	 real	 eigenvalues	 λk,	 with	 n	 linearly
independent	 (right)	 eigenvectors	 rk,	 k	 =	 1,	 2,	 …,	 n.	 The	 system	 is	 strictly
hyperbolic	if	the	n	eigenvalues	λk,	k	=	1,	2	…	n	are	all	distinct.	The	eigenvalues	of
A	are	called	characteristic	speeds,	as	in	the	scalar	case.	We	will	also	need	the	left
eigenvectors	 lk,	 which	 are	 row	 vectors.	 We	 can	 assume	 the	 eigenvectors	 have
been	chosen	to	satisfy

14.1.1.	Linear	Constant-Coefficient	Systems

We	 begin	 by	 considering	 linear	 constant-coefficient	 systems,	 in	 which	 A	 is	 a
constant	matrix.	In	this	case,	the	system	admits	solutions	in	traveling	wave	form
(much	like	the	linear	transport	equation):



Substituting	U	into	system	(14.1),	we	have

so	that	λ	=	λk	 is	an	eigenvalue	of	A,	and	v	=	rk	 is	a	right	eigenvector.	Such	a
solution	is	a	traveling	wave	with	speed	λk.

To	solve	the	system	(14.1)	when	A	is	a	constant	matrix,	we	simply	diagonalize
the	matrix,	or	equivalently,	decompose	U	using	the	eigenvectors:

where	uk	 :	R	×	R+	→	R.	Substituting	into	(14.1)	and	using	Ark	=	λkrk,	we	get
decoupled	equations	for	the	unknown	coefficients	uk:

Thus,	uk(x,	t)	=	φk(x	−	λkt)	for	scalar	functions	φk,	k	=	1,	…,	n,	and	we	have	the
general	solution	of	the	system

The	 initial	 condition	 (14.2)	 is	 satisfied	 by	 setting	 t	 =	 0	 and	 using	 the	 left
eigenvectors:

Example	1.	(The	wave	equation	as	a	system)	A	simple	example	of	a	constant-
coefficient	 first-order	 system	 is	 provided	 by	 the	 wave	 equation	 in	 one	 space
dimension	and	time

We	write	the	PDE	as	a	system	by	letting

Then	we	have

and	the	initial	conditions	w(x,	0)	=	f(x),	wt(x,	0)	=	g(x)	become



Thus,	in	terms	of	system	(14.1),	we	have

The	characteristic	speeds	are	±c,	with	eigenvectors

The	solution	of	the	initial	value	problem	is	thus

in	which	φ±	are	related	to	f′,	g	by	φ+	+	φ−	=	f′;	φ+	−	φ−	=	g/c.

14.1.2.	Method	of	Characteristics	for	Variable	Coefficients

Now	 let’s	 consider	 how	 the	 method	 of	 characteristics,	 which	 we	 used	 so
successfully	for	scalar	equations,	can	be	applied	to	linear	systems	when	A	=	A(x,
t)	 is	not	a	constant	matrix.	For	this	purpose,	we	again	diagonalize	the	matrix	A
using	the	eigenvectors.	That	is,	we	substitute	(14.4)	into	system	(14.1),	but	now
the	eigenvectors	ri	depend	on	x,	t	as	well	as	on	the	coefficients	ui:

Taking	 the	 scalar	 product	 of	 this	 equation	 with	 the	 left	 eigenvectors	 lj	 (see
(14.3)),	we	obtain	a	system	of	the	form

in	 which	 the	 coefficients	 dij	 are	 continuous	 functions	 of	 x,	 t.	 Similarly,
decomposing	the	initial	conditions	(14.2)	into	eigenvectors	of	A(x,	0),	we	obtain
initial	conditions	for	the	coefficients	ui:

Characteristics	are	defined,	as	for	scalar	equations,	by

In	particular,	through	each	point	(x,	t),	with	t	>	0,	there	are	n	characteristics	x
=	xi(τ),	i	=	1,	2,	…,	n,	passing	through	(x,	t),	each	with	a	different	speed.	Each
intersects	the	x-axis	at	a	different	point	 .	We	recognize	the	left-hand	side



of	 the	 ith	 equation	 in	 (14.5)	 as	 dui/dτ	 (i.e.,	 differentiation	 along	 the	 ith
characteristic).	 This	 enables	 us	 to	 convert	 equations	 (14.5)	 into	 integral
equations,	by	integrating	along	the	ith	characteristic	from	 	to	(x,	t):

Next	we	write	this	system	in	vector	form:

where	 ,	and	K(u)(x,	 t)	denotes	 the	vector	of	 integrals	on	the	right-
hand	side	of	(14.6).

Solving	 the	 Cauchy	 problem	 is	 equivalent	 to	 finding	 a	 fixed	 point	 of	 the
mapping	B	 :	u	→	φ	+	K(u)	 in	 a	 suitable	 space	 of	 functions.	 The	 appropriate
setting	is	the	contraction	mapping	principle	(see	Appendix	A)	in	the	Banach	space	X
=	CB(R	×	[0,	T],	Rn)	of	continuous	bounded	functions	from	R	×	[0,	T]	to	Rn,
with	T	>	0	to	be	chosen.	This	principle	is	used	to	prove	existence	of	solutions	of
initial	value	problems	for	systems	of	ODE.	The	context	here	is	not	much	different,
as	we	have	reduced	the	Cauchy	problem	to	a	system	of	 integral	equations.	The
norm	in	X	is	the	supremum	norm	on	bounded	continuous	functions:

We	 assume	 that	 the	 entries	 in	 the	matrix	A(x,	 t)	 are	 in	X,	 and	 so	 are	 their
derivatives.	Then	the	coefficients	dij	are	all	in	X,	since	they	depend	on	derivatives
of	the	eigenvectors	ri(x,	t),	which	by	standard	matrix	analysis	have	derivatives	in
X	[28].	Since	for	linear	equations	the	characteristic	speeds	do	not	depend	on	the
solution	u,	the	function	φ	is	also	independent	of	u.	(For	nonlinear	equations,	the
dependence	on	u	would	be	through	the	points	 .)

For	u,	v	∈	X,	we	have	that	for	0	≤	t	≤	T,

Therefore,	for	T	>	0	sufficiently	small,	K	is	a	contraction;	hence	the	mapping	B	is



also.	By	the	Banach	fixed-point	theorem	(see	Appendix	A),	B	has	a	unique	fixed
point	 in	 X.	 Thus,	 we	 have	 proved	 the	 following	 theorem	 for	 the	 initial	 value
problem

Theorem	14.1.	Let	U0	∈	CB(R),	and	suppose	the	matrix	A	=	A(x,	 t)	 in	(14.7)	has
entries	 in	 CB(R),	 together	with	 their	 derivatives.	 Then	 there	 is	 T	>	0	 such	 that	 the
initial	value	problem	(14.7)	has	a	unique	solution	u	∈	CB(R	×	[0,	T],	Rn).

14.2.	Systems	of	Hyperbolic	Conservation	Laws
In	this	section	we	consider	nonlinear	systems	of	conservation	laws

in	which	F	 :	Rn	→	Rn	 is	 a	C2	 function.	 For	 nonlinear	 systems	we	 can	 obtain	 a
short-time	 existence	 and	 uniqueness	 theorem	 similar	 to	 Theorem	 14.1	 under
suitable	assumptions.	However,	in	this	section	we	focus	on	issues	arising	because
of	 nonlinearity—notably,	 shock	 waves	 and	 rarefaction	 waves—and	 show	 how
these	waves	appear	in	applications.

We	 refer	 to	 (14.8)	 as	 an	n	×	n	 system.	We	 shall	 assume	 strict	 hyperbolicity,
meaning	that	the	Jacobian	dF(U),	an	n	×	n	matrix	for	each	U	∈	Rn,	has	distinct
real	eigenvalues,	namely,	the	characteristic	speeds

with	corresponding	left	and	right	eigenvectors	lj(U),	rj(U),	j	=	1,	…,	n	satisfying
(14.3)	at	each	U:

Strict	 hyperbolicity	 allows	 us	 to	 discuss	 unambiguously	 the	 kth	 characteristic
field	by	referring	to	the	characteristic	speed	λk.

The	notion	of	genuine	nonlinearity	for	scalar	equations	has	a	counterpart	for
systems	by	considering	the	characteristic	fields	separately.	The	kth	characteristic
field	is	genuinely	nonlinear	in	a	set	Ω	⊂	Rn	if

The	field	is	linearly	degenerate	in	Ω	if

A	function	ψ	:	Rn	→	R	is	a	k-Riemann	invariant	if



Then	 for	 each	 k,	 there	 are,	 locally	 in	U,	n	−	 1	 Riemann	 invariants	 whose
gradients	 are	 linearly	 independent	 at	 each	U.	 This	 follows	 because	 (14.9)	 is	 a
scalar	equation	for	ψ(U).	The	equation	says	that	w	is	constant	on	characteristics,
which	are	parallel	to	rk(U).	Consequently,	each	Riemann	invariant	is	constant	on
rarefaction	curves,	which	are	integral	curves	of	the	vector	field	rk(U):	U′	=	rk(U).
As	for	scalar	equations,	the	construction	of	rarefaction	waves	is	closely	related	to
the	property	of	genuine	nonlinearity.

A	Riemann	invariant	ψ	can	be	specified	locally	near	a	given	point	U0	∈	Rn	by
defining	 its	values	on	an	n	−	1	dimensional	manifold	M	orthogonal	 to	rk(U0),
say,	 	on	M.	Then	 	 is	tangent	to	M	at	U0,	where	∇M	 is	 the	gradient

operator	 along	 the	 linear	 space	 tangent	 to	M	 at	U0.	We	 define	ψ	 near	U0	 by
solving	rk	·	∇ψ	=	0	by	the	method	of	characteristics.	A	set	of	n	−	1independent
Riemann	 invariants	 is	 given	 by	 choosing	 n	 −	 1	 functions	 	 on	M	 with	 the
property	that	the	n	−	1gradients	 	are	linearly	independent	at	U0.	Then	the
gradients	∇ψ(U)	are	linearly	independent	for	all	U	near	U0	and	are	orthogonal	to
rk(U).

For	a	2	×	2	system	(of	n	=	2	equations	 in	2	unknowns	u,	v),	 the	Riemann
invariants	can	be	used	as	an	alternative	pair	of	variables,	with	the	advantage	that
they	partially	diagonalize	 the	system.	To	be	specific,	 let	λ±(ψ−,	ψ+)	denote	 the
two	 characteristic	 speeds,	 written	 as	 functions	 of	 the	 Riemann	 invariants	 ψ±.
Then	the	following	holds:

We	 leave	 verification	 of	 this	 property	 to	 Problem	7.	 This	 property	means	 that
each	Riemann	invariant	ψ±	is	constant	on	characteristics	x′	=	λ∓	of	the	opposite
family!

It	is	worth	comparing	the	notation	and	constructions	for	systems	of	hyperbolic
conservation	laws	with	the	corresponding	development	in	Sections	13.1	and	13.2
on	 scalar	 conservation	 laws	 from	 the	 previous	 chapter.	 We	 shall	 use	 three
examples	of	 systems	of	conservation	 laws	 to	 illustrate	 the	 ideas	 in	 this	chapter,
beginning	with	the	issue	of	hyperbolicity.

14.2.1.	The	p-System

This	2	×	2	system	is	derived	from	the	quasilinear	wave	equation:

in	which	σ	:	R	→	R	is	a	given	smooth	function.	The	equation,	derived	in	Section



4.1.1,	is	a	model	of	nonlinear	one-dimensional	elasticity,	in	which	w	=	w(x,	t)	is
the	displacement,	and	wx	is	the	strain	(or	displacement	gradient),	and	σ	=	σ(wx)
is	the	stress	(a	given	function	of	the	strain).

A	typical	stress-strain	curve	is	shown	in	Figure	14.1.	The	vertical	asymptote	at
wx	=	0	 corresponds	 to	 the	 infinite	 force	 needed	 to	 compress	 the	material	 to	 a
point,	 and	 σ(1)	 =	 0	 corresponds	 to	 a	 uniform	 unstressed	 material	 with
displacement	w(x,	t)	=	x.

To	write	(14.11)	as	a	system,	we	set	(as	for	the	linear	wave	equation)	u	=	wx
and	v	=	wt,	namely	the	strain	and	velocity,	respectively:

Figure	14.1.	A	typical	nonlinear	stress-strain	law.

This	is	an	example	of	system	(14.8)	in	which

To	check	hyperbolicity,	we	calculate

which	has	eigenvalues	and	eigenvectors

Thus,	the	system	is	strictly	hyperbolic	if	and	only	if	σ′(u)	>	0;	in	words,	stress	is
a	strictly	increasing	function	of	strain.	In	most	circumstances	it	is	appropriate	to
consider	 such	monotonic	 stress-strain	 laws,	 although	 strain-softening	materials,



which	have	some	range	of	strains	over	which	the	stress	decreases,	are	important
in	materials	science.	Examples	include	certain	plastics	(try	stretching	a	thin	strip
of	 soft	 plastic	 to	 feel	 its	 strain	 softening)	 and	 some	metal	 alloys	 used	 to	make
smart	materials	that	change	their	stress-strain	properties	in	controlled	ways.

The	system	is	genuinely	nonlinear	in	both	characteristic	fields	provided	σ″(u)
≠	0.	It	is	linearly	degenerate	in	both	fields	if	σ″(u)	≡	0,	in	which	case	σ(u)	is	an
affine	function	of	u,	corresponding	to	Hooke’s	law.	The	Riemann	invariants	are	

	 satisfying	 ∇ψ±	 ·	 r±	 =	 0	 and	 corresponding	 to	
,	 respectively.	 Recall	 that	 the	 Riemann	 invariants	 allow	 us	 to

diagonalize	the	system	of	equations.	(See	(14.10).)

System	 (14.12)	 also	 describes	 one-dimensional	 isentropic	 gas	 dynamics	 in
Lagrangian	variables,	in	which	u	represents	the	specific	volume	(the	reciprocal	of
density),	v	is	once	again	velocity,	and	−σ	=	p	is	the	pressure.	The	name	p-system
derives	from	this	context	of	gas	dynamics.	Further	properties	of	the	p-system	are
discussed	later	in	this	chapter	and	in	the	book	by	Smoller	[43].

Figure	14.2.	Shallow	water	flow.

14.2.2.	The	Shallow	Water	Equations

For	a	body	of	water	on	a	flat	horizontal	surface,	we	wish	to	describe	the	motion
of	 the	 free	 surface	 as	 the	water	 flows.	 The	 full	 equations	 of	 flow	 for	 a	 viscous
incompressible	fluid	(such	as	water)	are	the	Navier-Stokes	equations,	discussed	in
the	next	chapter.	The	 shallow	water	equations	can	be	derived	by	a	 scaling	and
approximation	argument	from	the	full	equations,	but	here	we	give	an	abbreviated
and	more	direct	route.

Let’s	restrict	to	fluid	motion	in	a	vertical	plane	(for	example,	we	assume	the
fluid	is	moving	parallel	to	side	walls,	like	a	river	flowing	parallel	to	its	banks),	so
that	the	velocity	and	height	of	the	fluid	depend	only	on	one	horizontal	variable	x
and	a	vertical	variable	y,	as	in	Figure	14.2.

As	 shown	 in	 the	 figure,	 let	y	=	h(x,	 t)	be	 the	height	of	 the	 fluid	 surface	at



time	t,	and	let	u(x,	 t)	denote	the	horizontal	velocity	of	the	layer	of	fluid,	which
we	take	to	be	independent	of	depth.	More	precisely,	u(x,	t)	represents	the	depth-
averaged	 horizontal	 velocity.	 Note	 that	 we	 are	 using	 Eulerian	 coordinates	 to
describe	 the	 flow,	 since	 (x,	 y)	 is	 a	 fixed	 physical	 location.	 In	 a	 Lagrangian
formulation,	 using	 a	 reference	 configuration,	 individual	 fluid	 particles	 are
labeled,	and	velocity	is	determined	from	the	particle	trajectories.

Conservation	of	mass	is	expressed	by	the	equation:

The	 pressure	 p	 in	 the	 fluid	 layer	 depends	 on	 depth,	 and	 we	 assume	 it	 is
hydrostatic,	 meaning	 that	 pressure	 increases	 linearly	 with	 depth	 and	 is
atmospheric	pressure	pa	at	the	free	surface:

Neglecting	 viscous	 forces,	 we	 can	 write	 the	 conservation	 of	 horizontal
momentum	(an	expression	of	Newton’s	second	law	F	=	ma)	as

Substituting	for	p,	we	obtain

Equations	(14.13),	(14.14)	constitute	a	2	×	2	system	of	the	form	(14.8),	with

To	check	hyperbolicity,	we	calculate

which	has	eigenvalues	and	eigenvectors

respectively.	Thus,	the	system	is	strictly	hyperbolic	for	h	>	0,	and	one	family	of
characteristics	travels	faster	than	the	fluid	velocity,	while	the	other	family	moves
more	 slowly.	 The	 Riemann	 invariants	 	 satisfy	∇ψ±	 ·	 r±	 =	 0.
These	Riemann	invariants	for	the	shallow	water	equations	will	be	useful	when	we
solve	the	classic	dam-break	problem,	which	we	treat	later	in	Section	14.3.

There	 is	 an	 extensive	 literature	 on	 shallow	 water	 waves	 and	 the	 related
equations	of	shallow	flow	[2,	15,	22,	46]	used	to	model	tsunamis	and	avalanches.



The	hyperbolic	structure	of	the	equations	is	important	when	finding	solutions	in
these	applications.

14.2.3.	The	Elastic	String	Equations

The	equations	for	motion	of	an	elastic	string	in	two	dimensions	form	a	system	of
two	 quasilinear	wave	 equations,	which	we	 rewrite	 as	 a	 4	×	4	 system	 of	 first-
order	conservation	laws.

As	 with	 one-dimensional	 elasticity,	 leading	 to	 the	 p-system,	 the	 reference
configuration	 is	 one	 dimensional,	 but	 now	 we	 allow	 deformations	 in	 two
dimensions.	The	displacement	or	position	vector,	which	we	write	here	as	r	=	(r1,
r2)	∈	R2,	is	a	function	of	x,	t,	with	x	in	an	interval	I	representing	material	points
in	the	string	(see	Fig.	14.3).	Forces	in	the	string	are	represented	by	the	tension	T,
a	function	of	x,	t	that	measures	the	magnitude	of	the	internal	force	of	the	string.
We	 assume	 the	 direction	 of	 this	 force	 is	 tangential	 to	 the	 string,	 based	 on	 the
simplifying	assumption	that	the	string	exerts	no	resistance	to	bending.	Modeling
the	force	by	elasticity	means	that	T	is	a	function	of	the	strain,	here	given	by	the
scalar	|rx|.

The	equations	of	motion	are	then

The	 density	 and	 cross-sectional	 area	 of	 the	 string,	 both	 taken	 to	 be	 constant
functions	 of	 x	 and	 t,	 are	 incorporated	 into	 the	 tension	 T.	 On	 the	 left	 of	 this
equation	is	the	acceleration,	and	on	the	right,	the	tension	T	is	the	magnitude	of	a
force	 whose	 direction	 is	 that	 of	 the	 unit	 tangent.	 The	 equation	 expresses
conservation	of	linear	momentum,	Newton’s	second	law	F	=	ma.

Figure	14.3.	The	elastic	string.	(a)	Reference	configuration,	interval	I;	(b)
physical	string.

The	function	T	 is	 typically	 increasing	and	 takes	 the	 form	of	 the	 stress-strain
law	 shown	 in	 Figure	 14.1.	 This	 makes	 sense,	 because	 for	 purely	 longitudinal



motion	(along	the	length	of	a	straight	string),	the	string	equations	(14.15)	reduce
to	 the	 single	wave	equation	(14.11),	with	T	=	σ.	However,	 even	 if	we	 assume
linear	elasticity	given	by	Hooke’s	law,

with	elastic	constant	E	>	1,	the	equations	are	still	nonlinear,	unless	the	motion	is
purely	longitudinal.

To	write	(14.15)	as	a	system	of	first-order	equations,	we	define	variables	p,	q,
u,	v	by

Then	(14.15)	is	equivalent	to

which	has	the	form	(14.8)	when	we	write

To	check	hyperbolicity,	we	compute	dF(U):

in	which



The	block	structure	of	the	matrix

implies	that	the	eigenvalues	of	dF(U)	are	square	roots	of	the	two	eigenvalues	of
B.	Calculating	the	latter	eigenvalues,	we	find	that	the	characteristic	speeds	are

Consequently,	the	elastic	string	equations	are	strictly	hyperbolic	if	and	only	if

In	 particular,	 if	 we	 assume	 the	 stress-free	 equilibrium	 state	 corresponds	 to	 the
normalization	T	(1)	=	0,	then	T	(ξ)	<	0	for	ξ	<	1,	so	that	(14.18)	does	not	hold
for	ξ	<	1.	This	 is	 related	 to	 the	 fact	 that	 since	 the	 string	has	 no	 resistance	 to
bending,	 its	motion	 under	 compression	 is	 not	well	 behaved	 (the	 equations	 are
linearly	ill	posed).	Consequently,	we	consider	the	elastic	string	equations	only	for
strings	under	tension	(i.e.,	with	ξ	>	1).

Hooke’s	 law	 (14.16)	 leads	 to	 a	 strictly	 hyperbolic	 system	 for	 ξ	>	 1.	More
generally,	we	see	that	if

then	(14.18)	is	satisfied	for	ξ	∈	(1,	ξmax),	where	either	ξmax	=	∞	or	ξmax	<	∞	is
the	first	value	of	ξ	>	1	for	which

Then	we	have

As	 we	 saw	 in	 Section	 14.1.2,	 the	 characteristic	 speeds	 	 are	 associated	 with
transverse	 waves,	 whereas	 	 are	 associated	 with	 longitudinal	 waves



(corresponding	 to	 solutions	 of	 the	 p-system,	 a	 connection	 with	 longitudinal
motion	suggested	above).	Thus,	 longitudinal	waves	travel	 faster	 than	transverse
waves	for	1	<	ξ	<	ξmax.

The	notions	of	longitudinal	and	transverse	waves	have	counterparts	in	three-
dimensional	elasticity,	for	example,	in	modeling	subterranian	earthquake	waves.
Longitudinal	waves	are	pressure	waves,	whereas	transverse	waves	correspond	to
shear	waves,	in	which	material	is	sliding	over	itself	transverse	to	the	direction	of
propagation	of	the	wave.

We	 include	 Problems	 2	 and	 6	 at	 the	 end	 of	 the	 chapter	 to	 explore	 further
properties	 of	 the	 elastic	 string	 equations,	 and	 there	 is	 a	 nice	 paper	 on	 the
equations	by	Antman	[4].	Having	established	three	representative	examples,	we
return	 to	 a	 general	 strictly	 hyperbolic	 system	 to	 discuss	 rarefaction	waves	 and
then	shocks.

14.2.4.	Rarefaction	Waves

We	return	to	the	general	system

in	which	F	:	Rn	→	Rn	is	a	C2	function.	Our	standing	assumption	is	that	the	system
is	strictly	hyperbolic,	meaning	that	there	are	n	distinct	real	characteristic	speeds,
the	 eigenvalues	 λk(U),	 k	 =	 1,	 …,	 n	 of	 dF(U),	 with	 associated	 right/left
eigenvectors	rk/lk	satisfying

For	 rarefaction	 waves,	 we	 consider	 characteristic	 fields	 that	 are	 genuinely
nonlinear,	meaning	values	of	k	and	ranges	for	U	for	which

Genuine	nonlinearity	 is	 essential	 for	 the	 existence	 of	 centered	 rarefaction	waves,
continuous	scale-invariant	solutions	 ,	where	V	:	R	→	Rn.	Substituting
this	form	into	(14.19),	we	find

Multiplying	by	t	and	letting	 ,	we	then	have

Hence,	ξ	is	an	eigenvalue	of	dF(V),	and	V′	is	an	eigenvector:



for	 some	 k	 =	 1,	 …,	 n.	 Thus,	 V(ξ)	 lies	 on	 an	 integral	 curve	 of	 rk(U).	 (See
Appendix	 C.)	 Moreover,	 ξ	 and	 λk	 increase	 together,	 so	 the	 integral	 curve	 is
oriented	so	that	λk(U)	increases	as	U	moves	along	the	curve.

Figure	14.4.	Centered	rarefaction	wave	for	the	kth	characteristic	field.

The	corresponding	rays	 	in	the	x-t	plane	are	k-characteristics:	 	
.	 If	we	differentiate	 the	 first	 equation	 in	 (14.21)	with	 respect	 to	ξ	 and	 use	 the
second	equation,	we	find	a	directional	derivative:

We	can	interpret	(14.22)	as	determining	the	magnitude	of	the	eigenvector	rk;	 it
also	 includes	 the	 choice	 of	 sign	 so	 that	 rk	 points	 in	 the	 direction	 of	 increasing
characteristic	speed.

We	 next	 relate	 the	 oriented	 integral	 curve	 to	 the	 rarefaction	 wave	 that
continuously	connects	a	constant	U−	to	a	constant	U+,	as	shown	in	Figure	14.4.
In	 the	 figure,	 the	 straight	 lines	 are	 k-characteristics,	 and	 the	 curved	 line	 is	 a
characteristic	of	a	different	field.	The	solution	is	continuous	even	at	the	edges	of
the	fan,	since	the	trailing	edge	of	the	wave	is	constructed	to	have	speed	λk(U−),
and	the	leading	edge	has	speed	λk(U+).	The	characteristic	speed	has	to	increase
through	 the	 rarefaction	 wave.	 (In	 the	 figure,	 the	 slopes	 of	 the	 characteristics
decrease).	We	define	the	rarefaction	curve	Rk(U−)	through	U−	to	be	the	half	of	the
integral	curve	through	U−	on	which	the	characteristic	speed	increases	from	λk(U
−).	Then	U−	can	be	connected	to	any	U+	∈	Rk(U−)	with	a	 rarefaction	wave.	 In
particular,	we	have

Note	 that	 characteristics	 of	 the	 other	 eigenvalues	 are	 not	 straight	 as	 they	 pass
through	 the	 rarefaction	 wave,	 as	 illustrated	 in	 the	 figure	 with	 a	 characteristic



moving	left,	accelerating	as	it	passes	through	the	wave.

Example	2.	(Rarefaction	waves	for	the	p-system)	Let’s	work	out	the	details	for
the	p-system.	Here	we	have

Thus,	 the	 p-system	 is	 genuinely	 nonlinear	 (in	 both	 characteristic	 fields)	 if	 and
only	if	σ″(u)	≠	0.	In	this	case,	we	normalize	r±(u)	by	choosing	a	=	 ,
so	that	(14.22)	is	satisfied.	For	a	rarefaction	wave,	we	have	from	(14.21),

which	is	more	conveniently	written	as

Thus,

In	particular,	for	a	rarefaction	from	(u−,	v−)	to	(u+,	v+),	we	must	have

For	 the	 characteristic	 speed	 to	 increase	 through	 the	 rarefaction	wave	 (see	 Fig.
14.4),	we	must	satisfy	(14.23),	which	for	the	p-system	becomes

for	u	between	u−,	u+.

We	 get	 more	 information	 about	 the	 slope	 and	 curvature	 of	 the	 rarefaction
curves	by	differentiating	(14.24):	 .	For	example,
if	σ″(u)	>	0,	then	for	a	forward	rarefaction	wave	(i.e.,	with	positive	speed),	we
must	 have	u+	>	u−,	 whereas	 for	 a	 backward	wave	 (with	 negative	 speed),	 we
have	u−	>	u+.	The	corresponding	values	of	u+,	v+	lie	on	the	rarefaction	curves	R
±(u−,	v−),	shown	in	the	u-v	plane	in	Figure	14.5a.	If	σ″(u)	<	0,	for	example,	as
shown	 in	 Figure	 14.1	 near	 u	 =	 1,	 then	 the	 configuration	 changes	 to	 that	 in
Figure	14.5b.	We	shall	use	the	rarefaction	curves	shown	in	Figure	14.5	to	solve
the	Riemann	problem	after	we	have	discussed	shock	waves	and	shock	curves	in
Section	14.2.7.



14.2.5.	Propagation	of	Singularities

The	 edges	 of	 a	 rarefaction	 wave	 have	 discontinuities	 in	 the	 derivative	 of	 the
solution,	 even	 though	 the	 function	 itself	 is	 continuous.	 By	 construction,	 these
singularities	 propagate	 along	 characteristics.	 Here	 we	 prove	 the	 more	 general
result	 for	 continuous	 solutions	 of	 (14.19)	 that	 jumps	 in	 the	 derivative	 lie	 on
characteristics.

Figure	14.5.	Rarefaction	curves	for	the	p-system.	(a)	σ″(u)	>	0;	(b)	σ″(u)	<	0.

Theorem	14.2.	Consider	a	function	U	:	R	×	(0,	∞)	→	Rn	that	is	continuous	and	is
C1	except	on	a	C1	curve	Γ	:	x	=	γ	(t).	Suppose	that	derivatives	∂xU,	∂tU	have	left	and
right	limits	∂xU(γ	(t)±,	t),	∂tU(γ	(t)±,	t)	that	vary	continuously	on	Γ,	and	that	U(x,	 t)
satisfies	the	PDE	(14.19)	for	(x,	t)	not	on	Γ.	Then

1.	the	curve	Γ	is	a	characteristic:	 	for	some	k	=	1,	…,	n,	and

2.	the	jump	[∂xU](t)	=	∂xU(γ	(t)+,	t)	−	∂xU(γ	(t)−,	t)	is	parallel	to	the	corresponding
right	eigenvector:	[∂xU](t)	=	η(t)rk(U(γ	(t),	t))	for	some	η(t)	∈	R.

Proof.	From	(14.19)	we	have

and	by	continuity,	(14.25)	holds	with	Ut	=	Ut(γ	(t)±,	t),	Ux	=	Ux(γ	(t)±,	t).	Thus,

Moreover,	differentiating	the	identity

we	have

where	 ,	and	 .	It	follows	that



Substituting	for	[∂tU](t)	from	(14.26),	we	find

Thus,	 	is	an	eigenvalue	of	dF(U),	and	[∂xU]	is	a	corresponding	eigenvector.	The
theorem	now	follows.

We	 now	 discuss	 shock	 waves	 for	 hyperbolic	 systems,	 beginning	 with	 the
formation	of	shocks	for	2	×	2	systems.

14.2.6.	Shock	Formation

For	scalar	conservation	laws,	it	is	a	simple	calculation	to	identify	the	mechanism
for	 formation	 of	 shocks,	 in	which	 a	 spatial	 derivative	 blows	 up	 in	 finite	 time.
There	are	many	derivatives	for	systems,	and	the	analysis	is	not	so	simple	as	it	was
for	scalar	equations.	Here	we	show	the	calculation	by	Lax	[33]	for	systems	of	two
conservation	laws	with	smooth	initial	data	that	are	constant	outside	an	interval.
Lax’s	 calculation	was	 generalized	 to	 systems	 of	n	≥	3	 equations	 by	 John	 [27]
under	similar	conditions	on	the	 initial	data.	Lax’s	calculation	relies	on	uniquely
defined	Riemann	 invariants,	but	 for	n	≥	3,	each	characteristic	 field	has	n	−	1
independent	 Riemann	 invariants.	 John’s	 analysis	 instead	 relies	 on	 a
decomposition	 of	 Ux	 into	 characteristic	 fields,	 thereby	 defining	 generalized
Riemann	invariants,	whose	propagation	and	interaction	can	be	tracked	much	as
Lax	does	with	the	calculation	in	this	section.

For	n	=	2,	we	let	U	=	(u,	v),	and	write	system	(14.19)	as

Let	λ(r,	s),	μ(r,	s)	be	the	characteristic	speeds,	in	terms	of	the	Riemann	invariants
r,	s.	Then	system	(14.27)	is	partially	diagonalized:

Here	we	have	∇r(u,	v).	rμ	=	0	and	∇s(u,	v)	·	rλ	=	0.	Mimicking	the	scalar	case,
we	differentiate	(14.28)	with	respect	to	x	and	define	p	=	rx,	q	=	sx:

The	difficulty	lies	in	the	pq	term	in	each	equation,	representing	the	interaction	of
waves.	Let’s	focus	on	the	equation	for	p.



Define	differentiation	along	the	λ	characteristic	by	 .	Then	 	and	
.	This	last	equation	yields

Then	we	can	rewrite	the	first	equation	in	(14.29)	as

Now	we	use	an	integrating	factor	to	collapse	the	left-hand	side.	Define	a	function
h(r,	s)	so	that	 .	Then	 ,	since	 .	Consequently,	 if	we	 let
z(t)	=	ehp,	(14.30)	becomes

If	the	coefficient	λre−h	were	constant,	we	could	write	the	solution	of	the	Riccati
equation	(14.31)	explicitly.	However,	in	general	we	have	little	information	about
the	 dependence	 of	 this	 coefficient	 on	 the	 solution.	 Nonetheless,	 we	 can	 use	 a
comparison	argument	 to	 show	 that	 solutions	of	 (14.31)	blow	up	 in	 finite	 time,
provided	the	coefficient	is	bounded	and	we	assume	genuine	nonlinearity.

Consider	bounded	smooth	C1	initial	conditions	for	(14.27).	Then	the	Riemann
invariants	 remain	 bounded,	 and	 as	 long	 as	 their	 derivatives	 stay	 bounded,	 the
solution	 of	 the	 initial	 value	 problem	 is	 defined	 and	 smooth,	 and	 h(r,	 s)	 is
bounded.

We	assume	that	the	λ	characteristic	field	is	genuinely	nonlinear,	so	that	λr	≠
0.	 Then	 the	 coefficient	λre−h	 is	 bounded	 above	 and	 below	 on	 the	 same	 side	 of
zero.	Let’s	take	λr	>	0.	Then	there	are	constants	A,	B	such	that	0	<	A	<	λre−h	<
B.	Consider	a	specific	λ-characteristic	originating	from	x	=	x0	at	t	=	0.	Then	z(0)
=	z0	 is	 a	 specific	 number	 given	 by	 the	 initial	 data	 at	x0.	We	 can	 compare	 the
solution	z(t)	of	(14.31)	with	solutions	of	the	initial	value	problems

Since	A,	B	are	constants,	we	have	solutions

Now	 suppose	 z0	<	 0.	 Then	Y′(t)	<	 z′(t)	<	 X′(t)	 for	 t	 ≥	 0.	 To	 see	 this,	 first
observe	that	it	is	true	at	t	=	0,	so	by	continuity	it	remains	true	for	a	short	time.
But	then	Y	(t)	<	z(t)	<	X(t)	<	0,	so	the	inequality	on	derivatives	persists,	and	so
does	 the	 comparison	 of	 the	 solutions.	 Since	X(t)	→	−∞	as	 t	→	−1/(Az0),	 we



conclude	that	z(t)	→	−∞	also,	as	t	→	t∗,	for	some	t∗	≤	−1/(Az0).	Let	zm	=	min
z0	<	0,	where	the	minimum	is	taken	over	the	initial	points	x0.	Then	the	solution
of	the	system	(14.27)	has	derivatives	that	blow	up	in	finite	time	tm	≤	−1/(Azm).
In	contrast,	we	also	have	conditions	under	which	the	derivatives	of	the	solution
stay	bounded.	If	λrz0	>	0,	then	z(t)	stays	bounded	and	decays	to	zero	as	t	→	∞.

Just	as	 for	 scalar	 conservation	 laws,	we	presume	 that	as	a	derivative	of	 the
solution	becomes	infinite,	 the	weak	solution	continues	with	a	shock	wave.	Next
we	analyze	shock	waves	explicitly.

14.2.7.	Weak	Solutions	and	Shock	Waves

Here	we	formalize	the	definition	of	weak	solution	of	the	system	of	conservation
laws.	The	definition	resembles	that	of	weak	solutions	of	linear	elliptic	equations
in	 that	 it	 is	 based	 on	 integration	 by	 parts,	 or	 equivalently,	 by	 distribution
solutions	that	are	integrable.

It	is	convenient	to	define	weak	solutions	of	the	Cauchy	problem,	consisting	of
(14.19)	with	initial	condition

To	derive	 the	appropriate	weak	 formulation	of	 the	Cauchy	problem,	consider	a
smooth	 solution	U(x,	 t),	with	 smooth	 initial	 data	U0.	 To	 incorporate	 the	 initial
condition	 into	 the	 weak	 formulation,	 we	 define	 test	 functions	 φ	 ∈	

	to	have	compact	support	in	the	upper	half-plane,	including	the
x-axis.	That	is,	φ	can	be	nonzero	in	a	bounded	subset	of	the	x-axis.	Note	that	here
we	only	require	the	test	functions	to	be	C1,	but	we	could	just	as	well	consider	C∞
test	functions.

Multiply	(14.19)	by	φ	and	integrate	by	parts,	observing	that	Ut	+	Fx	=	div(F,
U),	and	the	operation	applies	to	each	component	of	the	vector-valued	functions.
This	calculation	leads	to	the	relation

in	which	the	final	 integral	 is	zero	unless	the	support	of	φ(x,	0)	 includes	part	of
the	x-axis.

Motivated	by	this	calculation,	we	define	a	function	U	∈	L∞(R	×	[0,	∞)	→	Rn)
to	be	a	weak	solution	of	the	Cauchy	problem	(14.19),	(14.32)	if	(14.33)	holds	for
all	



Note	 that	 the	 idea	 of	 integrating	 by	 parts	 to	 obtain	 an	 integral	 identity	 for
weak	 solutions,	 using	 test	 functions,	was	previously	used	 for	 elliptic	 equations.
(See	(11.8)	in	Chapter	11.)	However,	for	second-order	equations	we	assumed	that
the	weak	solution	had	a	derivative	 in	L2,	whereas	here	we	want	 to	allow	 jump
discontinuities,	whose	derivatives	 are	distributions	but	not	 in	L2.	 Consequently,
we	 consider	 functions	 in	 L∞.	 This	 definition	 of	 weak	 solution	 of	 systems	 of
conservation	laws	applies	to	scalar	equations,	but	we	did	not	use	the	generality	of
the	definition	in	the	previous	chapter.

Next	we	use	the	definition	to	characterize	weak	solutions	of	(14.19)	that	have
jump	discontinuities	across	a	curve	Γ.

Theorem	14.3.	Suppose	 that	U	 :	R	×	 (0,	∞)	→	Rn	 is	 a	weak	 solution	 that	 is	C1

except	on	a	C1	curve	Γ	:	x	=	γ	(t).	Suppose	the	left	and	right	limits	U±(t)	=	U(γ	(t)
±,	 t)	 vary	 continuously	 on	 Γ.	 Then	 these	 limits	 satisfy	 the	 Rankine-Hugoniot
conditions

Figure	14.6.	Domain	of	integration	for	a	shock.

Proof.	Let	φ	be	a	test	function	with	support	Ω	in	t	>	0	that	is	divided	into	two
disjoint	 sets	Ω±	by	 the	curve	Γ,	as	 indicated	 in	Figure	14.6.	Since	U	 is	 a	weak
solution,	it	satisfies	(14.33),	which	we	rewrite	as

Now	 integrate	by	parts	 in	Ω±	 separately,	 to	put	 the	derivatives	back	on	U	 and
F(U).	In	this	process,	we	are	left	with	only	boundary	terms,	since	Ut	+	F(U)x	=	0



in	 each	of	Ω±.	 Since	φ	 vanishes	 on	 the	 boundary	 of	Ω±	 except	 on	 Γ,	 the	 only
contribution	 remaining	 comes	 from	 the	 integrals	 on	 Γ	∩	 Ω.	We	 need	 the	 unit
outward	normals	on	x	=	γ	(t),	which	are	given	by

on	∂Ω±,	respectively,	where	 .	As	a	result,	we	obtain	n	equations,	one
equation	from	each	component	of	(14.35):

That	is,	if	Γ	∩	Ω	=	{x	=	γ	(t)	:	a	<	t	<	b},	then	we	have

Consequently,	since	φ	is	arbitrary	and	the	integrand	is	continuous,	we	obtain	the
Rankine-Hugoniot	conditions	(14.34).

14.2.8.	 Analysis	 of	 the	 Rankine-Hugoniot	 Conditions	 Using	 Bifurcation
Theory

To	 understand	 the	 jump	 conditions	 more	 thoroughly,	 it	 is	 useful	 to	 consider
piecewise-constant	solutions,	or	shock	waves

in	which	s	is	the	shock	speed.	We	say	U	given	by	(14.36)	is	a	shock	from	U−	 to
U+	if	s,	U±	are	related	by	the	Rankine-Hugoniot	conditions	(14.34):

This	system	of	n	equations	in	2n	+	1	unknowns	has	one	easy	family	of	solutions,
the	 trivial	 solution:	 U+	 =	 U−,	 s	 arbitrary.	 But	 this	 corresponds	 to	 constant
solutions	 of	 the	 PDE.	We	 seek	 nontrivial	 solutions,	 for	 which	 there	 really	 is	 a
discontinuity.

Our	approach	to	this	problem	derives	from	bifurcation	theory,	 the	analysis	of
the	branching	of	 curves	of	 solutions	of	nonlinear	equations	 [8,	19].	 To	 set	 this
approach	 up,	we	 fix	U−	 and	 let	G(U+,	 s)	 denote	 the	 left-hand	 side	 of	 (14.37).
That	is,	G	:	Rn	×	R	→	Rn	is	defined	by



Then	we	have

Here	are	two	basic	results	of	the	theory,	stated	informally:

1.	Bifurcation	points	are	eigenvalues	of	the	linearized	problem.	Nontrivial	solutions
can	only	branch	off	the	curve	{(U−,	s)	:	s	∈	R}	of	trivial	solutions	at
eigenvalues	s	=	λk(U−)	of	the	linearization	dF(U−).

2.	Bifurcation	from	a	simple	eigenvalue	gives	a	curve	of	solutions.	If	the	eigenvalue	s
=	λk(U−)	is	simple,	then	there	is	a	curve	of	nontrivial	solutions	passing
through	(U,	s)	=	(U−,	λk(U−)).

The	 first	 result	 is	 a	 simple	 consequence	 of	 the	 Implicit	 Function	 Theorem.
Suppose	s0	is	not	an	eigenvalue.	Then	dUG(U−,	s0)	=	−s0I	−	dF(U−)	is	invertible.
By	 the	 Implicit	Function	Theorem,	 there	 is	a	curve	of	 solutions	U	=	U(s)	 for	 s
near	s0.	Moreover,	no	other	solutions	exist	in	a	neighborhood	of	(U−,	s0).	But	U	=
U−	is	a	solution	for	all	s,	so	we	must	have	U(s)	≡	U−.

The	second	result	is	also	a	consequence	of	the	Implicit	Function	Theorem,	but
it	 requires	much	more	careful	analysis.	 It	appeared	 in	various	 forms	 in	 the	 late
1960s	 and	 early	 1970s,	 culminating	 in	 the	 1971	 paper	 of	 Crandall	 and
Rabinowitz	[11].	The	basic	idea	of	the	proof	is	to	solve	for	n	−	1components	of
U	as	a	function	of	s	and	a	small	variable	ϵ	representing	the	remaining	component
ϵrk(U−).	 This	 construction	 uses	 the	 Implicit	 Function	 Theorem	 in	 a
straightforward	way	on	a	system	of	n	−	1	equations	obtained	by	projecting	the
original	 system	 onto	 the	 range	 of	 dUG(U−,	 λk(U−)).	 The	 problem	 is	 thereby
reduced	 to	 a	 single	 equation	 f(s,	 ϵ)	 =	 0,	 called	 the	 bifurcation	 equation.	 This
reduction	process	to	arrive	at	the	bifurcation	equation	is	known	as	the	Lyapunov-
Schmidt	 reduction.	 Locally,	 there	 are	 two	 curves	 of	 solutions	 of	 the	 bifurcation
equation.	Zeroes	of	f	are	{(s,	ϵ)	=	(s,	0)},	forming	the	curve	of	trivial	solutions,
and	a	function	s	=	ŝ(ϵ),	giving	the	curve	of	nontrivial	solutions	corresponding	to
shock	wave	solutions.

Here	is	the	precise	result,	which	we	state	without	proof.

Theorem	14.4.	Suppose	F	is	Cm,	m	≥	2,	and	the	PDE	(14.19)	is	strictly	hyperbolic	in
a	 neighborhood	 of	U−.	Then	 for	 each	 k	=	 1,	…,	 n,	 there	 exist	 δ	>	 0	 and	 Cm−1

functions	 	that	are	Cm	away	from	zero	and	are	such	that

1.	the	property	 	holds;

2.	the	identity	 	|ξ|	<	δ	holds;	and



3.	there	is	a	neighborhood	N	⊂	Rn	×	R	of	(U−,	λk(U−))	such	that	if	(U,	s)	∈	N
satisfies	(14.37),	then	either	U	=	U−,	or	 	and	 	for	some	ξ	∈	(−δ,
δ).

We	 use	 the	 theorem	 to	 establish	 some	 properties	 of	 weak	 shock	 waves,	 in
which	 the	 jump	 in	 U	 is	 small.	 Following	 the	 calculation	 of	 Lax	 [32],	 we
differentiate	identity	2	twice	and	set	ξ	=	0.	Differentiating	once,	we	have

so	that,	setting	ξ	=	0	and	using	property	1,	we	get

We	deduce	that	 ,	where	we	have	rescaled	the	parameter	ξ	so	that	the
scalar	multiple	of	rk(U−)	 is	unity.	(Recall	 that	rk(U−)	 is	normalized	by	(14.22).)
Differentiating	(14.38)	again,	and	setting	ξ	=	0,	we	get

where	 d2F(U−)	 :	 Rn	 ×	 Rn	 →	 Rn	 is	 the	 bilinear	 operator	 involving	 second
derivatives	of	F	that	appears	in	the	Taylor	series	expansion	of	F(U)	about	U	=	U
−.	(See	Appendix	A	for	the	Taylor	series	of	a	scalar	function	of	several	variables;
the	bilinear	operator	puts	these	terms	into	a	vector-valued	function.)

Now	we	 can	 eliminate	 the	 second	 derivatives	 of	 by	 projecting	 onto	 the	
complement	of	the	range	of	 ).	This	is	most	easily	accomplished	by
taking	the	inner	product	(scalar	product)	of	the	equation	with	the	left	eigenvector
ℓk(U−):

Thus,	we	have

To	verify	the	final	equality,	we	differentiate	the	identity

with	respect	to	ξ	and	let	ξ	=	0.

From	(14.39),	we	deduce	that



Now	 suppose	 the	 kth	 characteristic	 field	 is	 genuinely	 nonlinear	 at	 U−,	 and
normalize	rk(U−)	as	for	rarefaction	waves	(see	(14.22)).	Then,	 and	for	ξ
near	zero,	we	have

if	 and	 only	 if	 ξ	<	 0.	 This	 inequality	 is	 highly	 significant	 in	 terms	 of	 the	 Lax
entropy	 condition	 that	 we	 arrive	 at	 in	 the	 next	 section,	 where	 we	 state	 the
condition	 for	 systems	 of	 conservation	 laws.	 The	 consequence	 is	 that	 for	 weak
shocks	 (in	which	 |U+	−	U−|	 is	 small)	only	half	of	 the	branch	of	 solutions,	 the
half	with	s	<	λk(U−),	corresponds	to	shocks	that	are	admissible	according	to	the
Lax	entropy	condition.

14.2.9.	Admissibility	of	Shock	Waves	and	the	Riemann	Problem

Much	of	 the	 theory	of	weak	solutions	of	hyperbolic	conservation	 laws,	 for	both
scalar	 equations	 and	 systems,	 is	 centered	 on	 understanding	 solutions	 of	 the
Riemann	problem.	This	is	the	initial	value	problem

where	UL,	UR	are	given	constants	(in	Rn).	We	will	build	scale-invariant	solutions	
	 of	 the	 Riemann	 problem	 from	 centered	 rarefaction	 waves	 and	 shock

waves,	separated	by	regions	where	U(x,	 t)	 is	constant.	For	now,	let’s	 focus	on	a
single	shock	wave,	joining	constants	U−	on	the	left	and	U+	on	the	right.

Just	 as	 for	 the	 inviscid	 Burgers	 equation,	 if	 we	 allow	 all	 shock	 waves
(satisfying	 the	 Rankine-Hugoniot	 conditions	 (14.34)),	 then	 solutions	 are	 not
unique.	We	correct	 this	 lack	of	uniqueness	by	 imposing	an	additional	condition
on	 shock	waves,	 just	 as	 was	 done	 for	 scalar	 equations.	 The	most	 fundamental
such	admissibility	condition	is	the	Lax	entropy	condition.



Figure	14.7.	A	k-shock	with	representative	characteristics	satisfying	the	Lax
entropy	condition.

We	say	the	shock	wave	from	U−	to	U+	with	speed	s	(see	(14.36))	is	admissible
according	to	the	Lax	entropy	condition	if	the	following	inequalities	hold	for	some	k
=	1,	…,	n:

Here	we	define	λ0	=	−∞	and	λn+1	=	∞,	so	that	these	inequalities	make	sense
for	 k	 =	 1and	 k	 =	 n.	 The	 Lax	 entropy	 inequalities	 require	 that	 the	 kth
characteristics	 enter	 the	 shock	 from	 both	 sides,	 while	 all	 other	 characteristics
pass	through,	either	from	left	to	right	(the	faster	characteristics),	or	from	left	to
right	(the	slower	characteristics).	This	behavior	is	illustrated	in	Figure	14.7.	We
say	 that	 a	 shock	 satisfying	 (14.43)	 is	 a	k-shock.	 Note	 that	 by	 continuity	 of	 the
characteristic	speeds,	condition	(14.43b)	is	redundant	for	weak	shocks.	Moreover,
from	(14.41),	half	of	the	shock	curve	of	Theorem	14.4	consists	of	k-shocks,	and
the	other	half	violates	the	Lax	entropy	condition.

Example	3.	(Shock	waves	for	the	p-system)	The	Rankine-Hugoniot	conditions
for	the	p-system	(see	Section	14.2.1),	are



Figure	14.8.	Wave	curves	W±(u−,	v−)	for	the	p-system.

Thus,	we	have

Note	 that	 the	 latter	 formula	 states	 that	 s2	 is	 the	 slope	 of	 the	 chord	 joining	 the
points	 (u±,	 σ(u±))	 in	 the	 graph	 of	 σ.	 Now	 let’s	 interpret	 the	 Lax	 entropy
inequalities	 (14.43).	 As	 for	 rarefaction	 waves,	 the	 sign	 of	 σ″	 will	 make	 a
difference.	We	first	assume	σ″	>	0.	Then	for	forward	shock	waves,	with	s	>	0,
and	k	=	2	in	(14.43a):

which	 implies	 u+	 <	 u−	 for	 s	 >	 0.	 Note	 that	 the	 other	 condition	 (14.43b),	
,	 is	 automatically	 satisfied,	 since	 s	 >	 0.	 For	 s	 <	 0,	 we	 similarly

conclude	u+	>	u−.

Now	let’s	look	at	the	shock	curves,	which	are	curves	of	values	of	(u+,	v+)	 for
which	there	is	an	admissible	shock	for	some	speed.	We	again	take	the	case	σ″	>
0.	For	s	>	0,	eliminating	s	from	(14.44),	we	obtain	a	curve	S+(u−,	v−):

For	s	<	0,	we	get	the	same	formula,	but	now	we	have	u+	>	u−.	This	defines	the
shock	curve	S−(u−,	v−)	of	backward	(left-moving)	shock	waves.	The	shock	curves
meet	the	rarefaction	curves	of	Figure	14.5	at	(u−,	v−),	forming	a	wave	curve	W±
(u−,	v−)	for	each	characteristic	family,	defined	by

Finally,	we	can	solve	the	Riemann	problem	(14.42)	for	the	p-system	using	the
wave	 curves	 shown	 in	 Figure	 14.8.	 The	 solution	 of	 the	 Riemann	 problem	 is



represented	in	Figure	14.9.	In	this	figure	(uL,	vL)	is	fixed,	and	we	show	the	specific
combination	of	waves	for	(uR,	vR)	in	each	of	the	quadrants	separated	by	the	wave
curves	W±(uL,	 vL).	 For	 example,	 as	 shown	 in	 the	 figure,	 the	 combination	S−R+
indicates	a	backward	shock	(with	negative	speed)	from	(uL,	vL)	to	a	point	(uM,	vM)
∈	S−(uL,	vL),	and	a	forward	rarefaction	from	(uM,	vM)	to	(uR,	vR)	∈	R+(uM,	vM).	The
corresponding	graphs	of	u	and	v	are	shown	in	Figure	14.10.

Figure	14.9.	Riemann	problem	solution	for	the	p-system.	Four	regions
corresponding	to	different	wave	combinations	are	labeled	in	blue.

Figure	14.10.	Graphs	of	u,	v,	the	solution	of	the	Riemann	problem	for	(uR,	vR)	in
the	region	S−R+	of	Figure	14.9.

14.3.	The	Dam-Break	Problem	Using	Shallow	Water	Equations

In	 this	 short	 section	 we	 solve	 an	 initial	 value	 problem	 for	 the	 shallow	 water
equations.	Consider	a	body	of	water	of	constant	depth	above	a	horizontal	valley
floor	and	to	one	side	of	a	dam.	We	are	concerned	with	what	happens	when	the
dam	 collapses	 instantaneously.	 We	 idealize	 the	 problem	 in	 a	 couple	 of	 ways.



First,	the	body	of	water	has	infinite	extent,	and	we	assume	that	the	behavior	after
the	 dam	 breaks	 depends	 primarily	 on	 a	 single	 spatial	 variable	 x,	 along	 the
horizontal	direction	perpendicular	 to	 the	dam.	This	scenario	 is	shown	in	Figure
14.11.	 This	 is	 an	 example	 of	 a	 Riemann	 problem	 (14.42),	 but	 the	 system	 has
coincident	characteristic	speeds	when	h	=	0,	to	the	right	of	the	dam.	When	the
dam	breaks,	water	rushes	to	the	right,	drawing	water	from	the	reservoir.	Hence,
even	though	the	water	moves	only	to	the	right,	the	disturbance	is	felt	at	a	point
labeled	 x	 =	 x1(t)	 that	 travels	 backward	 into	 the	 reservoir	 (Fig.	 14.11c).	 Of
primary	interest	in	this	problem	is	the	location	of	the	leading	edge	x	=	x0(t)	of
the	water	flood,	where	h	goes	to	zero.

Figure	14.11.	The	dam-break	problem.	(a)	The	rarefaction	wave;	(b)	the
reservoir	before	the	dam	break	(t	=	0);	(c)	the	water	after	the	dam	breaks	(t	>
0).

In	Figure	14.11	we	show	 the	 rarefaction	wave	 solution	 in	 the	x-t	plane,	 the
graph	of	h(x,	t)	before	the	dam	breaks	(at	 t	=	0),	and	the	graph	of	h(x,	 t)	after
the	 dam	 breaks	 (for	 t	 >	 0).	 To	 analyze	 the	 problem	 fully,	 we	 start	 with	 the



equations	and	initial	condition:

It	 is	 convenient	 to	 introduce	 the	 relative	 speed	 	 (see	 Section	 14.2.2),	 so
that	the	characteristics	λ±	=	u	±	c	have	speed	c	relative	to	the	fluid	velocity	u.
As	predicted	by	 (14.10),	 the	Riemann	 invariants	w±	=	u	∓	 2c	 diagonalize	 the
system

The	 curved	 characteristic	 shown	 in	 Figure	 14.11a	 is	 associated	 with	 the	 faster
speed	λ+.	The	Riemann	invariant	u	+	2c	is	constant	on	this	characteristic.

The	rarefaction	wave	is	associated	with	the	slower	speed	λ−,	so	that	u	−	2c	is
constant	 on	 each	 characteristic,	 but	w−	=	 u	+	 2c	 is	 constant	 throughout	 the
wave.	To	the	left	of	the	wave,	h	=	h0	and	u	=	0.	Thus,	the	slowest	characteristic
is	x	=	x1(t)	=	−c0t,	 .	Since	u	+	2c	is	constant,	we	have	u	+	2c	=	2c0.
Therefore,	at	the	leading	edge	of	the	rarefaction	wave,	where	h	=	0	(so	that	c	=
0),	we	have	u	+	2c	=	u	=	2c0.	But	the	leading	edge	travels	with	characteristic
speed	λ−	=	u	−	c	=	2c0.	We	conclude	that	the	leading	edge	of	the	flood	waters
is	located	at	 .

14.4.	Discussion

The	theory	of	systems	of	hyperbolic	conservation	laws	is	now	quite	extensive.	In
this	chapter	we	have	focused	on	the	construction	of	shocks	and	rarefactions,	and
we	 have	 shown	 how	 these	 can	 be	 combined	 to	 solve	 Riemann	 problems.	 This
suggests	an	effective	approximation	to	solutions	of	the	Cauchy	problem,	in	which
an	initial	condition

is	posed,	with	U0	an	integrable	and	bounded	function.	If	U0	is	approximated	by	a
piecewise-constant	function,	then	wherever	there	is	a	jump	between	constants,	a
Riemann	 problem	 can	 be	 solved	 to	 get	 the	 exact	 solution	 for	 some	 short	 time
interval,	 until	 adjacent	 waves	 meet.	 If	 these	 waves	 are	 shocks,	 then	 the
interaction	 can	 be	 resolved	 by	 solving	 another	 Riemann	 problem.	 However,	 if
one	or	both	waves	 is	a	 rarefaction,	 then	 these	can	be	approximated	by	a	 small
jump,	 or	 a	 staircase	 of	 small	 jumps,	 in	which	 each	 jump	 satisfies	 the	Rankine-
Hugoniot	condition	but	not	 the	Lax	entropy	condition.	These	 jumps	 travel	with



approximately	 characteristic	 speed	 (as	 in	 the	 rarefaction	 they	 replace),	 and	 on
meeting	other	jumps,	they	generate	further	Riemann	problems.	Continuing	in	this
way,	an	approximate	piecewise-constant	solution	of	the	Cauchy	problem	can	be
generated.	Justifying	 the	continuation	and	proving	that	 this	method—known	as
wave	 front	 tracking—converges	 requires	 detailed	 estimates	 of	 the	 interaction	 of
waves	 and	 the	 use	 of	 suitable	 spaces	 (such	 as	 BV,	 the	 space	 of	 functions	 of
bounded	variation).	Details	of	this	approach	are	given	in	the	book	by	Bressan	[6].

A	 related	method,	 involving	 approximations	 in	 a	 lattice	 of	 grid	 points	 and
using	 randomness	 to	 capture	wave	 speeds	 approximately,	 is	 known	 as	Glimm’s
random	 choice	 method.	 It	 is	 outlined	 in	 Glimm’s	 classic	 1965	 paper	 [18],	 in
which	he	proves	the	existence	of	solutions	of	the	Cauchy	problem	using	a	series
of	 profound	 insights	 into	 wave	 interactions	 and	 convergence	 of	 approximate
solutions.

In	 the	 next	 chapter,	 after	 a	 discussion	 of	 the	 equations	 of	 fluid	mechanics,	we
examine	 the	 structure	 of	 the	 one-dimensional	 Euler	 equations.	 The	 Euler
equations	 of	 inviscid	 compressible	 fluid	 motion	 form	 a	 system	 of	 hyperbolic
conservation	laws	possessing	shocks	and	rarefactions.

PROBLEMS

1.	Check	whether	the	shallow	water	equations	are	genuinely	nonlinear.

2.	Prove	that	system	(14.17)	is	strictly	hyperbolic	for	all	ξ	>	1	if	T	(1)	=	0,	T′(1)
>	0,	and	T	(ξ)	is	a	convex	function:	T″(ξ)	≥	0	for	ξ	≥	1.	Discuss	the	possibilities
if	T	(1)	=	0,	T′(1)	>	0,	and	T	is	concave:	T″(ξ)	≤	0	for	ξ	≥	1.

3.	Let	σ(u)	=	u2,	u	>	0	in	the	p-system.	Find	explicit	formulas	for	the	rarefaction
curves.	Hence	derive	formulas	 	for	rarefaction	waves	joining	(u−,	v
−)	=	(1,	0)	to	(u+,	v+).	Graph	the	functions	u,	v	against	x	for	t	=	1.

4.	Consider	the	system	of	PDE

(a)	Show	that	the	system	(14.47)	with	ϵ	=	0	is	strictly	hyperbolic	for	u	≠	0,	v
≠	0	if	α	=	−1,	but	it	fails	to	be	hyperbolic	everywhere	in	u,	v	if	α	=	1.

(b)	 Assume	 that	 α	 =	 −1.	 For	 ϵ	 =	 0,	 write	 the	 Rankine-Hugoniot	 jump
conditions	for	a	shock	wave	solution



(c)	Assume	that	α	=	−1.	For	ϵ	=	0,	 let	(u−,	v−)	=	(1,	0).	Find	all	possible
values	 of	 (u+,	 v+)	 for	which	 (14.48)	 satisfies	 the	 jump	 conditions	 for	 some
speed	s.	(Hint:	The	answer	should	be	the	union	of	a	line	and	a	hyperbola.)

(d)	 Assume	 that	 α	=	−1.	 For	 ϵ	>	 0,	 show	 that	 there	 is	 a	 traveling	 wave
solution	(u,	v)	=	(U,	V)((x	−	st)/ϵ)	of	system	(14.47)	satisfying

for	 some	 value	 of	 s	 (which	 you	 need	 to	 calculate),	 but	 that	 the	 corresponding
shock	 (ϵ	 →	 0+)	 fails	 to	 satisfy	 the	 Lax	 entropy	 condition	 because	 only	 one
characteristic	 enters	 the	 shock	 from	 each	 side	 in	 the	 x-t	 plane,	 and	 one
characteristic	leaves	on	each	side.

5.	Write	the	equation

in	which	z	=	u	+	iv	is	a	complex	variable,	as	a	system	of	two	conservation	laws
for	real	variables	u,	v.

(a)	 Find	 conditions	 on	 the	 function	 f	 :	R	 →	R	 under	 which	 the	 system	 is
strictly	hyperbolic.	Calculate	 the	characteristic	 speeds	and	 the	corresponding
right	eigenvectors.

(b)	Show	that	one	characteristic	 field	 is	 linearly	degenerate	and	 the	other	 is
genuinely	nonlinear	provided	f″(r)	>	0,	r	∈	R.

(c)	Observe	that	the	complex	form	of	the	equation	is	rotationally	invariant,	by
changing	variables:	ζ	=	eiθz,	where	θ	is	constant,	and	writing	the	PDE	for	ζ(x,
t).	How	does	this	property	relate	to	parts	a,	b?

(d)	Let	 f(r)	=	 r2.	 For	 (u−,	v−)	=	(1,	0),	 find	all	values	of	 (u+,	v+)	∈	R2	 for
which	 there	 is	 a	 shock	 satisfying	 the	 Lax	 entropy	 condition,	 a	 contact
discontinuity,	 or	 centered	 rarefaction	wave	 connecting	 (u−,	 v−)	 to	 (u+,	 v+).
This	pair	of	equations	is	known	as	the	Keyfitz-Kranzer	system	[29].

6.	For	the	elastic	string	equations	(14.17),	show	the	following.

(a)	Transverse	waves	are	linearly	degenerate.

(b)	Longitudinal	waves	are	genuinely	nonlinear	provided	T″	≠	0.

7.	(a)	Prove	the	property	(14.10)	that	for	2	×	2	systems,	the	Riemann	invariants
diagonalize	the	system	(for	smooth	solutions).

(b)	 Verify	 this	 property	 for	 the	 p-system.	 (Hint:	 Begin	 by	 deducing	 from
(14.24)	formulas	for	the	Riemann	invariants.)



8.	Write	out	 the	details	 of	 the	argument	 that	 gets	 you	 from	 (14.40)	 to	 (14.41)
and	 thence	 to	 the	 statement	 about	 the	 admissibility	 of	 weak	 shocks	 following
(14.41).



CHAPTER	FIFTEEN

The	Equations	of	Fluid	Mechanics
An	 abundance	 of	 interesting	 and	 important	 PDE	 exists,	 many	 of	 which	 are
systems	of	equations,	because	physical	systems	often	relate	different	quantities	as
dependent	variables.	Examples	of	physical	systems	are	given	in	Serre’s	text	[39],
including	the	equations	of	electromagnetism	(Maxwell’s	equations),	equations	of
three-dimensional	elasticity,	and	those	of	magnetohydrodynamics.	In	this	chapter
we	 focus	 on	 the	 equations	 of	 fluid	 mechanics,	 specifically,	 the	 Navier-Stokes,
Stokes,	 and	 Euler	 equations.	 We	 discuss	 how	 these	 equations	 are	 related,	 the
contexts	in	which	they	are	used,	and	some	elementary	properties.

15.1.	The	Navier-Stokes	and	Stokes	Equations
The	motion	of	a	fluid	is	described	by	the	evolution	of	physical	quantities,	such	as
density	 ρ,	 velocity	 u	 ∈	 R3,	 pressure	 p,	 and	 temperature	 θ.	 We	 shall	 assume
constant	temperature,	even	though	variable	temperature	can	be	very	significant,
for	example,	in	understanding	patterns	that	are	visible	when	heating	water	in	a
pot.	 Assuming	 constant	 temperature	 simplifies	 the	 equations	 quite	 a	 bit.	 The
equations	of	motion	can	be	derived	from	conservation	laws	of	mass,	momentum,
and	energy,	coupled	to	constitutive	laws.	Details	can	be	found	in	fluid	mechanics
texts,	such	as	the	one	by	Acheson	[2].

Let’s	 start	 with	 dimensional	 independent	 variables	 	 and	 dimensional
dependent	variables	 .	For	an	incompressible	fluid	such	as	water,	the	density	ρ
is	taken	to	be	constant,	although	for	stratified	incompressible	fluids,	variations	in
density	can	be	important.	The	Navier-Stokes	equations	of	incompressible	flow	are
a	balance	between	inertial	terms	and	forces:

where	 	 is	 the	 acceleration	 due	 to	 gravity	 expressed	 as	 a	 vector	 in	 the
vertical	direction.	Thus,	the	term	ρg	is	mass	per	unit	volume	times	acceleration.
In	 fact,	 the	 first	 equation	 in	 (15.1)	 expresses	 Newton’s	 law,	 force	 =	 mass	 ×
acceleration	 in	 each	 small	 volume	of	 fluid,	 so	 that	mass	 is	 replaced	by	density
(i.e.,	mass	per	unit	volume).	The	second	equation,	known	as	the	incompressibility
condition,	 expresses	 conservation	 of	mass	 for	 an	 incompressible	 fluid	 in	which
the	density	does	not	change.	From	this	equation,	the	Divergence	Theorem	implies
that	volumes	of	fluid	are	preserved	by	the	flow:	if	a	fluid	volume	expands	in	one



direction	then	it	contracts	in	other	directions	to	compensate.

We	 now	 introduce	 a	 typical	 length	 scale	 L	 and	 time	 scale	T,	 together	 with
velocity	scale	U	and	pressure	scale	P.	These	scales	allow	us	to	nondimensionalize
the	 variables	 and	 express	 the	 equations	 in	 nondimensional	 form.	 The
nondimensional	variables	do	not	have	the	tildes:

Substituting	into	(15.1),	we	arrive	at

Next,	divide	the	first	vector	equation	by	ρU2/L	and	choose	scales	for	T	and	P	:

Then	T	is	a	typical	time	for	a	fluid	particle	traveling	at	the	typical	velocity	U	to
travel	 a	 typical	 length	 L,	 and	 the	 pressure	 scale	 P	 is	 chosen	 to	 simplify	 the
equation	as	follows.	We	define	the	Reynolds	number	Re	by

and	arrive	at	the	nondimensional	system

where	 .	The	Reynolds	number	measures	the	relative	importance	of	inertial
terms,	with	dimension	ρU2/L,	and	viscous	forces,	with	dimension	μU/L2.

Since	 the	 velocity	 u	 has	 three	 components,	 the	 first	 equation	 of	 (15.2)	 is
really	three	scalar	equations.	They	express	conservation	of	linear	momentum.	The
terms	on	the	left-hand	side	are	the	inertial	or	acceleration	terms,	and	the	right-
hand	 side	 represents	 the	 divergence	 of	 the	 forces,	 due	 to	 pressure,	 internal
friction	 (i.e.,	 viscous	 forces)	 and	 the	 body	 force	 due	 to	 gravity.	 The
incompressibility	condition	∇.	u	=	0	is	unchanged	by	the	scaling.

The	nondimensional	form	of	the	equations	is	a	powerful	tool.	If	an	experiment
is	done	on	a	fluid,	such	as	water,	in	a	laboratory,	the	results	can	apply	in	a	much
larger	 context,	 such	 as	 a	 river	 or	 an	 ocean,	 by	 calculating	 the	 appropriate
Reynolds	number	from	typical	length	and	velocity	scales.	The	results	with	water



would	also	apply	to	a	much	more	viscous	fluid,	such	as	honey,	again	by	using	the
Reynolds	 number	 to	 relate	 the	 two	 scenarios.	Moreover,	 the	 Reynolds	 number
controls	 the	 relative	 importance	 of	 the	 various	 terms	 in	 the	 equations,	 so	 it	 is
important	to	understand	two	limits,	Re	→	0,	and	Re	→	∞.

In	the	limit	Re	→	0,	corresponding	to	very	slow	flow	(U	small)	or	very	viscous
flow	(μ	large),	is	somewhat	tricky.	If	we	were	to	simply	multiply	by	Re	and	set	Re
=	0,	we	would	 recover	Laplace’s	 equation.	However,	 this	 is	misleading,	 as	 the
flow	 should	 be	 driven	 by	 pressure	 gradients.	 If	we	 rescale	 the	 pressure	 by	 the
Reynolds	number	and	define	a	new	appropriate	time	scale	(in	effect,	we	are	using
a	different	nondimensionalization),	we	recover	the	Stokes	equations	in	the	limit	Re
→	0:

which	have	the	virtue	of	being	linear.	 In	this	derivation,	we	have	assumed	that
the	gravitational	terms	are	significantly	smaller	than	the	terms	retained.	In	some
contexts,	 the	 effect	 of	 gravity	 can	 be	 significant,	 even	 for	 slow	 flow.	 Stokes
equations	 are	 an	 important	 tool	 for	 studying	 the	motion	 of	 small	 organisms	 in
viscous	fluids,	and	for	very	slow	flows,	such	as	lava	and	glacier	flows.

15.2.	The	Euler	Equations
At	 the	 other	 extreme,	 letting	Re	→	∞,	we	 immediately	 get	 the	 incompressible
version	of	the	Euler	equations:

in	 which	 viscosity	 is	 negligible.	 These	 equations	 model	 the	 flow	 of	 slightly
viscous	fluids,	such	as	air,	provided	that	the	pressure	gradients	are	not	so	large	as
to	make	compressibility	significant.

The	compressible	Euler	equations	take	the	form



In	 these	equations,	 the	density	ρ	 is	variable	 (as	 it	 is	 in	a	gas,	 for	example).
The	variable	 	 is	 the	 total	energy	 (per	unit	volume)	 in	 terms	of	 the
kinetic	 energy	 	 and	 the	 potential	 (or	 stored	 or	 internal)	 energy	 e.	 The
variables	are	generally	considered	to	be	ρ,	u,	and	e,	with	p	=	p(ρ,	e)	being	given
by	an	equation	of	state,	another	term	for	a	constitutive	law.	Both	ρ	and	e	must	be
nonnegative,	 and	 the	 case	 ρ	 =	 0	 is	 known	 as	 the	 vacuum	 state.	 The	 tensor
product	u	⊗	u	gives	a	matrix	with	the	(i,	 j)	entry	being	uiuj.	The	corresponding
quadratic	 term	 in	 the	 Navier-Stokes	 equations	 (where	 ρ	 is	 constant)	 looks
different,	because	u	is	divergence	free.

Let’s	consider	the	one-dimensional	equations

in	which	u	 is	now	a	scalar	velocity	(the	component	of	u	parallel	 to	 the	x-axis).
Notice	 that	 these	 equations	 (and	 in	 fact	 system	 (15.4))	 are	 in	 the	 form	 of	 a
system	 of	 conservation	 laws	 in	 which	 the	 conserved	 quantities	 are	 mass	 ρ,
momentum	 ρu,	 and	 energy	 E.	 There	 is	 a	 natural	 symmetry	 in	 this	 system
between	 left	 and	 right.	 Specifically,	 the	 equations	 are	 unchanged	 by	 the
transformations	 x	 →	 −x,	 u	 →	 −u.	 A	 similar	 symmetry	 holds	 for	 the	 wave
equation,	both	linear	and	quasilinear.

If	 we	 carry	 out	 the	 differentiations	 (assuming	 for	 the	 moment	 that	 the
variables	are	 smooth	 functions	of	x,	 t),	we	can	write	 the	 system	 in	 the	 form	of
nonlinear	 transport	 equations,	 with	 the	 abbreviation	 dt	 =	 ∂t	 +	 u∂x	 for	 the
convective	derivative:

As	 in	 the	 previous	 chapter,	 hyperbolicity	 of	 this	 system	 depends	 on	 the
eigenvalues	of	the	coefficient	matrix,	which	in	this	case	is

Note	that	in	calculating	this	coefficient	matrix,	we	use	px	=	pρρx	+	peex,	and	the
spatial	part	u∂x	of	the	convective	derivative.



To	calculate	the	characteristic	speeds,	we	find	eigenvalues	of	A(ρ,	u,	e)	 from
the	characteristic	equation:

Thus,	λ	=	 u,	 or	 λ	=	 u	 ±	 (pρ	 +	 ρ−2ppe)1/2,	 provided	 pρ	 +	 ρ−2ppe	 ≥	 0.	 The
vacuum	state	ρ	=	0	is	therefore	singular	since	ρ−2	→	∞,	and	hyperbolicity	for	ρ
>	0	requires	pρ	+	ρ−2ppe	>	0.

If	we	write	the	three	characteristic	speeds	as

where	c	=	(pρ	+	ρ−2ppe)1/2,	we	observe	that	c	 is	 the	sound	speed,	meaning	the
speed	of	small	disturbances,	relative	to	the	fluid	speed	u.	The	characteristic	speed
λ0	is	the	same	as	the	fluid	speed	and	does	not	propagate	small	disturbances.	Not
surprisingly,	the	λ0	characteristic	field	is	linearly	degenerate,	as	we	show	below.
Since	 λ−	 <	 λ0	 <	 λ+,	 1,2,3-characteristics	 are	 associated	 with	 λ−,	 λ0,	 λ+
respectively.	The	corresponding	eigenvectors	are

respectively,	 and	we	 can	 check	genuine	nonlinearity	 by	 calculating	∇λ	 ·	r.	 For
the	λ±	waves,	we	have

Thus,	genuine	nonlinearity	of	these	characteristic	fields	depends	on	the	equation
of	 state	p	=	p(ρ,	 e).	 In	 the	 isentropic	 case,	 p	=	 p(ρ)	 is	 independent	 of	 e,	 and
genuine	 nonlinearity	 reduces	 to	 the	 condition	 p″(ρ)	≠	0.	 The	λ0	 characteristic
field	is	indeed	linearly	degenerate,	since	∇λ0	·	r0	≡	0.

The	characterization	of	shock	waves	and	rarefaction	waves	for	system	(15.5)
is	complicated	and	is	explained	carefully	and	in	detail	in	Serre’s	text	[39],	vol.	1,
Section	 4.8.	 Here	 we	 sketch	 the	 steps	 involved	 in	 processing	 the	 Rankine-
Hugoniot	jump	conditions	for	shock	waves.	We	consider	a	shock	with	speed	s	and
left	and	right	limits	given	by	subscripts:	v±,	ρ±,	e±.	With	the	bracket	notation	[v]
=	v+	−	v−	for	jumps,	the	Rankine-Hugoniot	conditions	for	(15.5)	are



If	we	let	z	=	v	−	s,	then	[ρz]=	0	from	(15.7a),	and	we	can	let	m	=	ρ±z±	be	the
common	 value	 on	 each	 side	 of	 the	 shock.	 Then	 we	 are	 left	 with	 the	 two
conditions:

With	some	algebra,	these	conditions	can	be	combined	into	the	equation

so	that

Thus,	either	m	=	0,	or	 .

If	m	=	0,	and	assuming	that	ρ±	>	0,	we	have	z±	=	0,	so	that	v±	=	s.	Then
(15.8a)	 implies	 p+	 =	 p−,	 and	 the	 Rankine-Hugoniot	 conditions	 are	 satisfied.
These	shocks,	moving	with	characteristic	speed,	that	is,	the	fluid	particle	speed	v,
are	 contact	 discontinuities.	 Across	 such	 a	wave,	 density	 jumps,	 but	 velocity	 and
pressure	are	continuous.

If	m	≠	0,	then	we	have

From	(15.9)	and	 ,	it	follows	that

Thus,	if	ρ±,	e±,	p±	=	p(ρ±,	e±)	satisfy	(15.10),	then	there	are	two	real	solutions
of	(15.11)	provided	[p]/[ρ−1]<	0.	If	we	label	these	two	solutions	m1	and	m3,	they
correspond	 to	1-shocks	 (m1	>	0	associated	with	1-characteristics)	and	3-shocks
(m3	<	0	associated	with	3-characteristics).	Then	the	velocities	are	given	by	v±	=
z±	+	s,	with	the	speed	s	being	chosen.

It	is	then	possible	(but	intricate)	to	give	a	parameterization	of	1-shocks	and	3-
shocks	satisfying	the	Lax	entropy	condition.	The	entropy	condition	 is	 related	to
the	thermodynamic	entropy	S	=	S(ρ,	e),	which	satisfies	the	PDE	ρ2Sρ	+	pSe	=	0.
This	entropy	has	to	satisfy	m[S]>	0	across	 the	shock,	with	the	result	 that	 fluid
particles	gain	entropy	(S	increases)	as	they	pass	through	the	shock.

In	 this	chapter	we	have	summarized	some	basic	mathematical	properties	of	 the
key	equations	of	fluid	mechanics.	The	mathematical	theory	of	these	equations	is
vast	and	 is	 a	very	 lively	 topic	of	 current	 research.	Moreover,	 the	equations	are
used	to	explain	all	sorts	of	phenomena	involving	fluid	flow,	from	the	swimming



of	small	organisms	to	the	prediction	of	weather	patterns	and	the	aerodynamics	of
airplanes.	The	 interested	 reader	will	 find	 the	books	of	Chorin	and	Marsden	[7]
and	 of	 Serre	 [39]	 useful	 introductions	 to	 some	 more	 of	 the	 mathematical
properties	 of	 these	 equations,	 whereas	 the	 text	 of	 Acheson	 [2]	 is	 an	 intuitive
treatment	of	 the	equations,	 including	 informal	discussions	of	many	applications
and	the	calculation	of	physically	meaningful	solutions.

PROBLEMS

1.	 Show	 that	 if	 ρ	 is	 constant	 in	 the	 Euler	 equations,	 then	 the	 equation	 for
conservation	 of	 momentum	 collapses	 to	 the	 corresponding	 equation	 in	 the
incompressible	Euler	equations.	For	smooth	solutions	of	the	incompressible	Euler
equations,	derive	an	energy	equality	and	relate	it	to	the	energy	equation	for	the
compressible	case.

2.	 Let	u	=	 (u,	 v,	 w),	x	=	 (x,	 y,	 z).	 Write	 the	 Navier-Stokes	 system	 (15.2)	 in
components	(so	that	there	are	four	scalar	equations,	and	∇	is	replaced	by	partial
derivatives	with	respect	to	x,	y,	z).

3.	Consider	 flow	between	 two	parallel	 horizontal	 plates	held	 a	distance	h	>	0
apart.	 Suppose	 the	 bottom	 plate	 is	 stationary	 and	 the	 top	 plate	 is	 moving
horizontally	at	speed	U.	Use	the	Navier-Stokes	system,	neglecting	gravity,	to	find
a	 simple	 steady	 flow	 (independent	 of	 time	 t)	 in	 which	 fluid	 particles	 move
parallel	to	the	plates.	Assume	the	plates	are	at	z	=	0,	h,	there	is	no	dependence
on	y,	 and	 the	 top	 plate	 is	moving	 to	 the	 right,	 parallel	 to	 the	x-axis.	 Begin	 by
sketching	the	plates	and	how	you	think	the	flow	might	look.	Then	consider	which
components	of	the	velocity	u	=	(u,	v,	w)	can	be	set	to	zero.	You	can	then	solve
the	reduced	set	of	equations	for	the	velocity	and	pressure.



APPENDIX	A	Multivariable	Calculus
When	the	distinction	between	scalars	(real	or	complex)	and	vectors	(n-tuples)	 is
needed,	we	use	boldface	for	vectors.	Thus,	x	=	(x1,	…	xn)	∈	Rn.

We	generally	use	the	notation	U	to	denote	an	open	subset	of	Rn.	Then	∂U	 is
the	boundary	of	U,	and	 	is	the	closure	of	U.	If	U	is	bounded,	then	 	 is
closed	and	bounded,	hence	it	is	compact.	For	example,	if	f	:	Rn	→	R	is	a	function,
then	f	has	support	defined	as	supp	 ;	thus,	f	has	compact	support
if	the	function	is	zero	outside	a	bounded	set.

If	U	has	a	C1	boundary	∂U,	then	the	unit	normal	ν	=	ν(x)	varies	continuously
with	x	∈	 ∂U.	 For	 example,	 the	 unit	 ball	U	 =	 {x	∈	Rn	 :	 |x|	 <	 1}	 has	 as	 its
boundary	the	unit	sphere	∂U	=	{x	∈	Rn	:	|x|	=	1},	and	unit	outward	normal	ν(x)
=	x.

The	open	ball	with	center	at	x	and	radius	r	>	0	is	B(x,	r)	=	{y	∈	Rn	:	|y	−	x|
<	r}.	To	calculate	ωn,	the	surface	area	of	the	unit	sphere	∂B(0,	1)	in	Rn,	we	begin
by	integrating	e−π|x|2	over	Rn:

Using	the	fact	that	the	surface	area	of	∂B(0,	r)	is	rn−1ωn,	we	have

(The	gamma	 function	Γ	 is	defined	below.)	Thus	 .	This	expression
leads	to	the	familiar	circumference	of	the	unit	circle:	ω2	=	2π,	and	area	of	the
unit	sphere	in	R3:	ω3	=	4π.

Let	αn	denote	the	volume	of	the	unit	ball	B(0,	1)	in	Rn.	It	follows	that



In	particular,	α2	=	π	is	the	area	of	the	unit	disk,	and	α3	=	4π/3	is	the	volume	of
the	unit	ball	in	R3.

The	integral	averages	of	a	function	f	over	B(x,	r)	and	∂B(x,	r)	are	defined	by

The	 chain	 rule	 gives	 formulas	 for	 differentiating	 the	 composition	 of	 two
functions.	 It	 takes	 various	 useful	 forms,	 depending	 on	 the	 number	 of	 variables
involved.	Consider	x	∈	Rn	and	two	functions	f	:	Rn	→	R	and	y	:	Rn	→	Rn,	so	that	f
=	f(y)	and	y	=	y(x).	Then	we	have

Now	consider	a	function	with	an	extra	variable	t	∈	R	:	F	=	F(t,	y),	and	suppose	y
=	y(t).	Then	it	follows	that

If	g	 :	R	→	R	 and	ξ	 :	Rn	→	R	with	g	=	g(ξ)	and	ξ	=	ξ(x),	 then	 the	 following
holds:

For	example,	for	a	traveling	wave	u(x,	t)	=	f(x	−	ct)	with	wave	speed	c,	we	have

Let	F	:	Rn	→	R	be	C1.	Then	(away	from	points	where	∇F(x)	=	0)	the	equation
F(x)	 =	 const	 defines	 a	 manifold	M	 of	 dimension	 n	 −	 1,	 sometimes	 called	 a
hypersurface	or	a	level	surface	of	F.	For	example,	if	n	=	3,	then	the	manifold	is	a
two-dimensional	surface.	Let	x0	∈	M.	If	∇F(x0)	≠	0	then	the	unit	normal	ν(x0)	 is
given	by



Let	f	:	Rn	→	R	be	C∞.	The	Taylor	series	of	f	about	x0	∈	Rn	is	given	by

where	 .	 This	 expression	 uses	 multi-index	 notation,	 which	 is

explained	in	Section	10.2.

The	gamma	function	is	the	function	 .	Then	Γ(1)	=	1,	
,	and	the	recurrence	Γ(s	+	1)	=	sΓ(s)	implies	that	for	integers	n	≥	0,	Γ(n	+	1)
=	n!,	which	uses	0!	=	1,	a	convention	also	implicit	in	the	Taylor	series.

The	Inverse	Function	Theorem	states	that	if	a	differentiable	function	f	from	Rn

to	Rn	 has	 an	 invertible	 Jacobian	matrix	df	(x0)	 at	 a	point	x0,	 then	 the	 function
itself	 is	 invertible	 in	 a	 neighborhood	 of	 that	 point,	 and	 the	 inverse	 is	 as
differentiable	as	f.

Theorem	A.1.	(Inverse	Function	Theorem)	Let	U	⊂	Rn	be	open,	and	suppose	f	:	U	→
Rn	is	Ck	for	some	k	≥	1.	Let	x0	∈	U,	and	y0	=	f(x0).	Suppose	the	Jacobian	J	=	det(df
(x0))	is	nonzero.	Then	there	are	open	sets	V	⊂	U	and	W	⊂	Rn,	with	x0	∈	V,	y0	∈	W,
such	that:

1.	f	:	V	→	W	is	one-to-one	and	onto,	and

2.	the	inverse	f−1	:	W	→	V	is	Ck.

The	 Implicit	 Function	 Theorem	 relates	 to	 solving	 simultaneous	 nonlinear
equations

near	 a	 known	 solution	 (x0,	 y0),	 where	 F	 :	 Rn	 ×	 Rm	 →	 Rn	 is	 differentiable.
Similarly	to	the	Inverse	Function	Theorem,	the	function	is	assumed	to	be	linearly
nondegenerate	at	this	solution	in	the	sense	that	the	Jacobian	with	respect	to	x	is
nonzero.	The	conclusion	is	that	the	equations	can	be	solved	uniquely	locally	for	x
as	 a	 function	 of	 y	 for	 y	 close	 to	 y0,	 with	 x(y0)	 =	 x0,	 and	 with	 x(y)	 as
differentiable	as	F.

Theorem	A.2.	(Implicit	Function	Theorem)	Let	U	⊂	Rn	×	Rm	be	open,	and	suppose	f
:	U	→	Rn	is	Ck	for	some	k	≥	1.	Suppose	that

Then	there	are	open	sets	V	⊂	U	and	W	⊂	Rm,	with	(x0,	y0)	∈	V,	y0	∈	W,	and	a	Ck

function	 such	that:



1.	 ;

2.	 	for	all	y	∈	W;	and

3.	if	(x,	y)	∈	V	and	F	(x,	y)	=	0,	then	 .

The	contraction	mapping	principle	can	be	used	to	prove	the	Inverse	Function
Theorem.	The	principle	is	stated	here	in	the	broader	setting	of	a	complete	metric
space	X	with	metric	d.	 A	mapping	T	 :	X	→	X	 is	 a	 contraction	 if	 there	 exists	 a
constant	L	∈	(0,	1)	such	that

The	 contraction	 mapping	 principle,	 also	 known	 as	 the	 Banach	 Fixed-Point
Theorem,	states	that	if	(X,	d)	is	a	nonempty	complete	metric	space	with	metric	d,
and	T	:	X	→	X	is	a	contraction	mapping,	then	T	has	a	unique	fixed	point	x∗	∈	X.
That	 is,	T	(x∗)	=	x∗.	Furthermore,	x∗	=	limn	→	∞	xn,	where	x0	∈	X	 is	 arbitrary,
and	xn+1	=	T	(xn),	n	≥	0.

Green’s	Theorem	in	the	plane	relates	a	double	integral	over	a	bounded	open	set
U	⊂	R2	to	a	line	integral	along	the	curve	∂U.

Theorem	 A.3.	 (Green’s	 Theorem	 in	 the	 plane)	 Suppose	 	 is
continuous	and	is	C1	in	U,	and	the	boundary	curve	is	piecewise	C1.	Then

where	τ	is	the	unit	tangent	in	the	counterclockwise	direction,	s	denotes	arc	length,	and
dA	=	dxdy	in	Cartesian	coordinates	is	the	area	metric	in	the	plane.

Stokes’	Theorem	 is	similar	to	Green’s	Theorem	in	the	plane,	but	 it	relates	the
line	integral	over	the	closed	boundary	curve	∂S	of	a	two-dimensional	surface	S	⊂
R3	to	the	surface	integral	over	S:

where	F	 :	R3	→	R3.	Here,	ν	 is	 the	normal	 to	S	consistent	with	τ	and	 the	 right-
hand	rule.

Green’s	Theorem	in	the	plane	is	the	two-dimensional	version	of	the	Divergence
Theorem	for	a	vector	field	 ,	where	U	⊂	Rn.	The	theorem	relates	the
net	flux	of	F	through	the	boundary	∂U	to	the	total	divergence	of	F	over	the	entire
region	U:



Here,	ν	is	the	unit	outward	normal.

A	more	fundamental	 integration	is	the	component	version	of	the	Divergence
Theorem.	Let	 	be	a	function	in	 .	Then	for	each	j	=	1,	…,	n,

Note	 that	 the	Divergence	Theorem	and	this	 result	are	equivalent.	However,	 the
latter	result	is	a	direct	consequence	of	the	Fundamental	Theorem	of	Calculus.

The	 Leibniz	 integral	 rule	 describes	 how	 to	 bring	 a	 partial	 derivative	 with
respect	 to	 one	 variable	 into	 the	 integral	 of	 a	 multivariable	 function	 when	 the
integral	is	taken	with	respect	to	the	other	variable:

To	 reverse	 the	 order	 of	 integration	 in	 a	 double	 integral,	 we	 use	 Fubini’s
Theorem.

Theorem	A.4.	(Fubini’s	Theorem)	f	=	f(x,	y)	be	continuous	over	the	rectangle	R	=
{(x,	y)	:	a	≤	x	≤	b,	c	≤	y	≤	d}.	Then

Two	 elements	x	 and	 y	 of	 a	 vector	 space	X	 with	 an	 inner	 product	 (·,	 ·)	 are
orthogonal	 if	(x,	y)	=	0.	A	set	S	⊂	X	 is	called	orthonormal	 if	all	x	≠	y	 in	S	are
orthogonal	and	(x,	x)	=	1.

A	function	f	:	Rn	→	R	is	convex	on	Rn	if	for	all	x,	y	in	Rn	t	∈	(0,	1),

f	is	strictly	convex	if	the	inequality	is	strict.



APPENDIX	B	Analysis
The	Lebesgue	measure	|	·	|	:	M	→	[0,	∞]is	a	function	defined	on	the	family	M	of
Lebesgue	measurable	subsets	of	Rn,	which	includes	all	open	subsets.	The	family	M
is	a	σ-algebra,	meaning	that	0	and	Rn	are	in	M;	complements,	countable	unions,
and	 intersections	of	members	of	M	 are	also	 in	M.	The	Lebesgue	measure	has
properties	 consistent	 with	 being	 a	 generalization	 of	 the	 idea	 of	 volume.	 The
measure	of	any	ball	is	the	volume	of	the	ball;	the	measure	of	disjoint	unions	of
countable	 families	of	measurable	 sets	 is	 the	 sum	of	 their	measures;	measurable
subsets	of	sets	of	measure	zero	also	have	measure	zero.	A	property	is	said	to	hold
almost	 everywhere,	 abbreviated	 as	 a.e.,	 if	 the	 property	 holds	 except	 on	 a	 set	 of
measure	zero.

A	function	f	:	Rn	→	R	is	measurable	if	for	every	open	S	⊂	R,	the	inverse	image
f−1(S)	∈	M.	Thus,	continuous	functions	are	measurable.	Nonnegative	measurable
functions	 are	 integrable,	 the	 integral	 being	 defined	 using	 approximation	 by
simple	functions.	More	generally,	if	f	is	measurable,	then	f	is	integrable	as	long	as
the	positive	f+	and	negative	f−	parts	of	f	can	comprise	the	integral:

where	one	of	the	integrals	on	the	right-hand	side	is	finite.

The	essential	supremum	of	a	measurable	function	f	is	defined	by

Among	many	properties	of	measurable	functions,	the	following	two	theorems
are	especially	important	for	PDE.

Theorem	B.1.	(Monotone	Convergence	Theorem)	 If	a	 sequence	 	of	 integrable
functions	is	monotonically	increasing:

then

Theorem	B.2.	(Dominated	Convergence	Theorem)	For	a	sequence	 	of	integrable
functions	with	fk	→	f	a.e.,	as	k	→	∞,	and	|fk|	≤	g	a.e.,	and	for	a	positive	measurable
function	g	with	∫Rn	g	dx	<	∞,	the	following	limit	holds:



Further	details	on	Lebesgue	measure	and	integrable	functions	can	be	found	in
summary	 in	 the	 Appendix	 in	 Evans	 [12],	 and	 in	many	 books	 on	measure	 and
integration,	 for	 example,	 Ambrosia	 et	 al.	 [3].	 A	 major	 advantage	 of	 using
Lebesgue	measure	to	generalize	the	notion	of	integral	is	that	spaces	Lp,	p	≥	1	of
measurable	functions	are	complete.

Consider	 a	 real	 or	 complex	 vector	 space	 X	 over	 the	 scalar	 field	 R	 or	 C
(respectively).	A	norm	||	 ·	||	 :	X	→	[0,	∞)	is	a	function	that	is	required	to	have
these	properties:

1.	||x||	=	0	if	and	only	if	x	=	0;

2.	||αx||	=	|α|||x||,	for	all	x	∈	X,	and	scalar	α;	and

3.	||x	+	y||	≤	||x||	+	||y||	for	all	x,	y	in	X	(the	triangle	inequality).

A	norm	defines	a	metric	ρ,	expressing	the	distance	between	elements	x,	y	∈	X:
ρ(x,	y)	=	||x	−	y||.

Let	X	 be	a	vector	 space	with	norm	 ||	 ·	 ||.	A	 sequence	 	 is	 a	Cauchy
sequence	if	for	every	ϵ	>	0,	there	is	N	=	Nϵ	>	0	such	that

That	is,	||xj	−	xk||	→	0	as	j,	k	→	∞.

X	is	complete	if	every	Cauchy	sequence	in	X	converges	to	a	limit	in	X:	||xk	−
x||	→	0	for	some	x	∈	X.	A	Banach	space	is	a	complete	normed	vector	space.	Thus,
Rn	and	Cn	are	Banach	spaces,	and	so	is	C([a,	b])	with	the	norm	||f	||	=	maxa≤x≤b
|f(x)|.

An	inner	product	(·,	·)	:	X	×	X	→	R	is	a	function	satisfying

1.	 	for	all	x,	y	∈	X;

2.	(x,	x)	≥	0	for	all	x	∈	X;

3.	(x,	x)	=	0	if	and	only	if	x	=	0;	and

4.	(αx,	y)	=	α(x,	y),	for	all	x,	y	∈	X,	and	scalar	α.

An	inner	product	defines	a	norm	by	 .	A	Banach	space	X	 that	has	an
inner	 product	 defining	 its	 norm	 is	 a	 Hilbert	 space.	 Thus,	 a	 Hilbert	 space	 is	 a
complete	inner	product	space.

Spaces	of	 infinite	sequences	of	numbers	are	convenient	examples	of	 infinite-



dimensional	vector	spaces.	The	space	ℓp	(“little	ell	p”),	with	p	≥	1,	consists	of	all
sequences	 	satisfying	 	with	norm	||x||p	=	 .	The
space	ℓp	 is	 a	Banach	 space.	The	 space	 ℓ2	 is	 a	Hilbert	 space	with	 inner	 product	

,	the	infinite-dimensional	version	of	the	Euclidean	inner	product.

When	p	=	∞,	 ℓ∞	 is	 the	 Banach	 space	 of	 all	 bounded	 sequences	with	 norm
||x||∞	=	supk	|xk|.

The	space	c	of	convergent	sequences	x	of	real	or	complex	numbers	with	the	ℓ∞
norm	||x||∞	=	supk	 |xk|	 is	a	 closed	 subspace	of	 ℓ∞	 and	 is	 thus	a	Banach	 space.
The	 subspace	 c0	 consisting	 of	 sequences	 	 with	 limk	→	 ∞	 xk	 =	 0	 is	 also	 a
Banach	space.

The	Weierstrass	M-test	 states	 that	 if	 {fk}	 is	 a	 sequence	 of	 real-	 or	 complex-
valued	 functions	 defined	 on	 a	 set	U	⊂	Rn,	 and	 there	 is	 a	 sequence	 of	 positive
numbers	Mk	such	that	for	all	k	≥	1	and	all	x	∈	U,

then	the	series	 	converges	uniformly	on	U.



APPENDIX	C	Systems	of	Ordinary	Differential	Equations
Let	F	 :	Rn	→	Rn	 be	 continuous.	We	 say	 that	 a	C1	 curve	C	=	{x	=	x(t),	 t	∈	 I}
(where	 I	 is	an	 interval	and	x	 :	 I	→	Rn	 is	C1)	 is	an	 integral	curve	of	 the	vector
field	F	if

Integral	 curves	 are	 sometimes	 called	 trajectories.	 Since	 the	 ODE	 system	 is
autonomous,	 integral	 curves	are	 translation	 invariant:	 for	any	 t0	∈	R,	x(t	+	 t0)
traces	the	same	curve	C	in	Rn	as	t	varies.

Consider	the	nonlinear	autonomous	system	of	two	ODE:

Equilibria	are	points	(u0,	v0)	∈	R2	satisfying	F(u0,	v0)	=	0.	Behavior	of	the	system
(C.1)	near	an	equilibrium	(u0,	v0)	is	related	to	the	linearized	system

where

is	the	Jacobian.	Let’s	assume	the	eigenvalues	λ1,	λ2	of	dF(u0,	v0)	are	distinct	(λ1	≠
λ2)	and	have	eigenvectors	v1,	v2,	respectively.	The	eigenvalues	and	eigenvectors
may	be	complex.	The	general	real	solution	of	the	linear	system	(C.2)	is

where	C1,	C2	are	arbitrary	constants.	 If	 the	eigenvalues	are	complex,	 then	these
constants	are	complex,	and	it	is	understood	that	solutions	are	the	real	part	of	this
formula.	The	equilibrium	is	classified	as	stable	if	Re	λj	<	0,	j	=	1,	2,	unstable	if	Re
λj	>	0,	 j	=	 1,	 2.	 Stable	 and	 unstable	 spirals	 correspond	 to	 complex	 conjugate
eigenvalues;	 the	 integral	 curves	 of	 F(u,	 v)	 spiral	 into	 or	 out	 of	 (u0,	 v0).	 If	 the
eigenvalues	 are	 real	 and	 of	 the	 same	 sign,	 then	 the	 equilibrium	 is	 a	 stable	 or
unstable	node.	If	λ1,	λ2	are	real	and	have	opposite	signs,	then	the	equilibrium	is	a



saddle,	and	there	are	integral	curves	that	are	tangent	to	the	eigenvectors	v1,	v2	at
(u0,	v0).	These	curves	are	the	stable	and	unstable	manifolds	MS,	MU	of	(u0,	v0).
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