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Preface

Cellular networks are witnessing an unprecedented evolution from classical, cen-
tralized, and homogenous architectures into an extreme complex network structure,
in which a large number of network devices are densely deployed in an irregular,
decentralized, and heterogenous fashion. This shift in network architecture requires
network devices to become more flexible, autonomous and cooperative, so as to
meet the various performance requirements of different wireless services.

In this book, we focus on communication systems in which network devices
need to coordinate with each other so as to increase the overall performance. Such
coordination can, for example, take place between small access points that seek to
coordinate their radio resource allocation in the same spectrum, ultradense small
cells with massive MIMO that share the same limited pilot sequences, mobile users
with nonorthogonal multiple access (NOMA) that share the same subchannels,
nearby single-antenna users that can cooperatively perform virtual MIMO com-
munications, or even unlicensed users that wish to cooperatively sense the spectrum
of the licensed users.

Conventionally, the solutions of these cooperative scenarios have been based on
either centralized optimization algorithms that require a large amount of compu-
tational resources (e.g., subchannel allocation in NOMA), or decentralized heuristic
methods with suboptimal performances (e.g., pilot reuse in Massive MIMO). More
recently, there has been a surge in models that adopt the framework of cooperative
games, in which the coordination among network devices is formulated by the
coalition formation process performed by self-interested players. These game the-
oretical methods typically seek to establish distributed solutions that are stable, in
the sense that no device has an incentive to change its coalition membership. Their
outcome can achieve a balance between the computational complexity and
the network performance. Indeed, cooperative games, in general, and coalition
formation games (CF games), in particular, have become a popular tool for ana-
lyzing wireless networks.

Most of the existing body of work focuses on coalition formation models in
which the players form separate coalitions and achieve performance gain from the
single coalition they join. However, in many cooperative scenarios of future
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wireless systems, a network device may need to join multiple groups of cooperative
devices, and thus, these cooperative groups may overlap with each other. For
example, in the subchannel allocation problem in NOMA, the mobile users share
the same subchannel form a coalition, and thus, each mobile user join multiple
coalitions as they access multiple subchannels. In this book, we introduce a
mathematical framework from cooperative games, known as overlapping coalition
formation games (OCF games), which provides the necessary analytical tools for
analyzing how network devices in a wireless network can cooperate by joining,
simultaneously, multiple overlapping coalitions. Therefore, the readers can utilize
this book as a tool to address the cooperative scenarios in future wireless networks.

First, in Chap. 1, we introduce the basic concepts of CF games and OCF games
in general, and develop two polynomial algorithms for two classes of OCF games,
i.e., K-coalition OCF games and K-task OCF games, respectively. Then, in Chaps.
2 and 3, we present two emerging applications of OCF games in small cell-based
heterogeneous networks (HetNets) and cognitive radio networks, in order to show
the advantages of forming overlapping coalitions compared with the traditional
nonoverlapping CF games. Finally, in Chap. 4, we discuss the potential challenges
of using OCF games in future wireless networks and briefly present some other
potential applications.
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Chapter 1
Introduction

In this chapter, we formally introduce the notions of coalition formation games (CF
games) and the extended overlapping coalition formation games (OCF games). In
particular, we present the basic game models and stability notions. For OCF games,
we show that computation of stable outcomes can generally be intractable, and thus,
we identify several constraints that lead to tractable subclasses of OCF games, and
provide efficient algorithms for solving games that fall under these subclasses.

1.1 Coalition Formation Games

1.1.1 Game Models

Game theory is a mathematical framework that can be used to analyze systems that
involve multiple decision makers having interdependent objectives and actions. The
decision makers, which are usually referred to as players, will interact and obtain
individual profits from the resulting outcome. In cooperative games, the players can
form cooperative groups, or coalitions, to jointly increase their profits in a game. In
this section, we present an important type of cooperative games, coalition formation
games (CF games), in which the players are typically assumed to form multiple,
disjoint, and nonoverlapping coalitions, and a player only cooperates with players
within the same coalition. In CF games, if the cooperative value generated by a coali-
tion can be quantified by a real number, and this gain can be divided in any manner
among the coalition members, these games are referred to games with transferable
utility (TU) [1]. If there exists some rigid restrictions on the distribution of coalition
value, e.g., the payoff of a coalition member is determined by the action profile of
all the coalition members, these games are referred to as games with nontransferable
utility (NTU) [2, 3]. We formally give the definitions of games with TU and NTU
as follows.

© The Author(s) 2017
T. Wang et al., Overlapping Coalition Formation Games
in Wireless Communication Networks, SpringerBriefs in Electrical
and Computer Engineering, DOI 10.1007/978-3-319-25700-6_1
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2 1 Introduction

Definition 1 A coalition formation game with a transferable utility is defined by a
pair (N , v), whereN is the set of all N players and v : 2N → R is a value function,
such that for every coalition S ⊆ N , v(S) is the amount of value that coalition S
receives from their cooperation, which can be distributed in any arbitrary manner
among the members of S. We denote by xi as the payoff of player i ∈ S, and thus,
we have

∑
i∈S xi = v(S).

Definition 2 A coalition formation game with a nontransferable utility is defined by
a tuple (N , {xi }i ), where N is the set of all N players and xi : 2N → R is a payoff
function, such that for every coalition S ⊆ N , xi (S) is the amount of payoff that
player i ∈ S receives from its coalition S.

We note that there are some other game models that are related to CF games.
If the value function satisfies the superadditive property, the players always form a
grand coalition that involves all N players, and the games are referred to as canonical
coalitional games. If the value function is determined by a graph structure within the
coalition, the games are referred to as coalitional graph games. For readers interested
these concepts, we refer to the survey [4] and the book [5].

1.1.2 Core of Coalition Formation Games

In CF games, the outcome is represented by a partition of the set of playersN , which
is referred to as coalition structureCS, and the payoff allocation x = (x1, . . . , xN ) of
all the players. There exist several notions of stability for CF games, which includes
the core [6], the Shapley value [2], and nucleolus [7]. In this book, we adopt the most
well-studied core notion to study the stability of an CF game. Specifically, the core
is a set of payoff allocations that guarantees that no group of players has an incentive
to leave the current coalition structure CS and form another coalition S /∈ CS. For
CF games with TU, it is defined as

CTU =
{

x :
∑

i∈S
xi = v(S),∀S ∈ CS and

∑

i∈S
xi ≥ v(S),∀S /∈ CS

}

(1.1)

For CF games with NTU, it is defined as

CNTU = {x : xi = xi (S),∀i ∈ S, S ∈ CS and

∃i ∈ S, xi > xi (S),∀S /∈ CS} (1.2)

In otherwords, if an outcome lies in the core, then for any set of players S ⊆ N that
intend to reject the proposed payoff allocation x, deviate from the current coalition
structure CS and form a new coalition S /∈ CS, there must be at least one player
i whose new payoff x ′

i is decreased, i.e., x
′
i < xi . In general, finding an coalition

structure CS and an associated stable payoff allocation x in the core, is NP-hard, as
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the number of partitions of a setN grows exponentially with the number of players
N , which is given by a value known as the Bell number [8]. However, there exist
several distributed approaches that aim to solve the coalition formation problem by
using weaker stability notions [8–12].

Themost popular approach is themerge-and-split algorithm [10, 12], in which the
players form coalition structures by following two simple rules, the merge rule and
the split rule. Specifically, given a collection of disjoint coalitions {S1, S2, . . . , SL},
the players in S = �L

l=1Sl agree to merge into a single coalition S, if the new
coalition is preferred by all the players in S, i.e.,

∑L
l=1 v(Sl) ≤ v(S) for TU and

xi (Sl) ≤ xi (S),∀i ∈ Sl for NTU. Similarly, a coalition S splits into multiple disjoint
coalitions {S1, S2, . . . , SL}, if the resulting collection is preferred by all the players
in S. It has been proved that the merge-and-split algorithm can converge [10, 12],
and the resulting outcome satisfies a weak equilibrium-like stability, known as Dhp

stability, which simply implies that no group of players has an interest in performing
a merge or a split operation. Clearly, if the outcome is in the core, it must also satisfy
Dhp stability, but the inverse is not true, i.e., core ⊂ Dhp.

1.2 Overlapping Coalition Formation Games

1.2.1 Game Models

In many practical cooperative scenarios, the players may be involved in multi-
ple coalitions simultaneously. In such cases, these players may need to split their
resources among the coalitions in which they are participating. Consequently, some
of the coalitions may involve some of the same players thereby overlapping with one
another. Next, we formally introduce the mathematical tool to model these “overlap-
ping” situations, cooperative games with overlapping coalitions, orOCFgames [13].

In OCF games, each player possesses a certain amount of resources, such as time,
power, or money. In order to obtain individual profits, the players form coalitions
by contributing a portion of their resources and receive payoffs from the devoted
coalitions. A coalition can be represented by the resource vector contributed by its
coalition members, i.e., r = (r1, r2, . . . , rN ), where 0 < ri < R represents player
i’s resources that are contributed to this coalition. For each coalition r , the coalition
value is decided by a function v : [0, R]N → R

+, which represents the total payoff
that the players can get from a cooperative coalition. The coalition value can be
divided to the coalitionmembers based on specific rules, e.g., the value can be equally
divided among coalition members, or it can be divided based on the contribution of
each member. We denote by x as the payoff allocation rule, and accordingly, the
individual payoff that player i receives from coalition r is denoted by xi (r). The
players may decide to devote different amount of resources into different coalitions,
so as to maximize its individual payoff pi (π , x) = ∑

r∈π xi (r), where π represents
the set of all coalitions π = {r1, r2, . . . , rK } formed by the players. Note that these
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(a) (b)

Fig. 1.1 An example to show the differences between OCF games and traditional CF games

coalitions may have commonmembers, and thus, they form an overlapping coalition
structure. Compared with the traditional CF games, OCF games allow the players
to form an overlapping coalition structure and get payoffs from multiple coalitions.
Therefore, the overlapping structure may provide more flexibility for the players
to utilize their resources, which enables the coalitions to be better organized and
potentially leads to outcomes with higher payoffs. The following example clearly
shows the potential advantage of OCF games.

Example: Consider a software company with three developers A, B, and C .
Each developer works 8h a day. There are two types of projects in the company,
big projects and small projects. A big project requires 12 man-hours per day and
provides a 2400 bonus, and a small project requires 8 man-hours per day and pro-
vides a 1000 bonus. We assume the bonus is divided to the participating developers
according to their devoted time. In a traditional CF game, the players can only form
disjoint coalitions, and the optimal coalition structure is {{A, B}, {C}}, as seen in
Fig. 1.1a, i.e., developers A and B work together to accomplish a big project and
developer C work alone for a small project. The total payoffs of A, B, and C are
then given by (1200, 1200, 1000). In an OCF game, the players can split their time
into different coalitions, and the optimal coalition structure is {(8, 4, 0), (0, 4, 8)},
as seen in Fig. 1.1b, i.e., developers A and B devote 8 and 4h to accomplish a big
project, and developers B and C devote 4 and 8h to accomplish another big project.
The payoffs of A, B, and C are then given by (1600, 1600, 1600).

1.2.2 A-core of Overlapping Coalition Formation Games

In cooperative games, one must seek a stable outcome, i.e., a coalition structure in
which no set of players can deviate and obtain a new structure that increases all
their payoffs. In traditional CF games, the deviating players, or deviators, leave their
original coalitions and form a new coalition, the value of which is the total payoff
that the deviators can get from their deviation. If there exists a payoff division that
makes all the deviators achieve a higher payoff compared with the original coalition
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structure, we say the deviation is profitable. If there exists no profitable deviation, we
say the structure is stable. Particularly, if the players have an incentive to form the
grand coalition that includes all players, the cooperative game is called a canonical
game and the set of all stable payoff divisions, corresponding the grand coalition, is
called the core of such a game.

Compared with CF games, defining notions for stability in OCF games is more
complicated due to the overlapping property. In OCF games, instead of forming a
single coalition, the deviators may form multiple coalitions that overlap one another
thus complicating the computation of themaximal total payoff of such an overlapping
coalition structure. Also, the deviators in OCF games may partially deviate from the
original coalitions bywithdrawing a portion of their resourceswhilemaintaining their
other resources in their original coalitions. Therefore, one must precisely define how
the nondeviators in the original coalitions will react to such a deviation and how
much payoff the deviators can get from those partially deviated coalitions. To this
end, we now present theA-core, a stability notion suitable for OCF games, which is
an extension of the core notion from traditional CF games.

We begin by defining a deviation in OCF games. Given a coalition structure π

and a set of players S that attempts to deviate the structure, the coalitions in π can
be divided into two groups: the coalitions that only involve players in S, denoted
by π |S , and the coalitions that involves players other than S, given by π\π |S .
Since coalitions π |S are fully controlled by the deviators, they should be seen as
pure resources withdrawn by the deviators. While coalitions π\π |S , which include
both deviators and nondeviators, should be considered as coalitions that are partially
deviated by the deviators. We define D(π) = {d(r)|r ∈ π\π |S} as the resources
withdrawn from π\π |S , where d(r) is the resources for coalition r .

The deviators S can form an overlapping coalition structure using both the with-
drawn resources D(π), and the resources of their own π |S . We denote by WS as
the sum available resources of the deviators S, and �(WS) as the set of all possible
coalition structures that can be formed using WS . The optimal coalition structure
formed by S is then given by π(WS) = argmaxπ∈�(WS )

{∑
r∈π v(r)

}
. Note that

the deviators may also receive payoffs from the coalitions that they partially deviate,
i.e., π\π |S . We formally define the arbitration function Ar(π , x, D(π),S), which
represents the total payoff that the deviatorsS will receive from coalition r ∈ π\π |S .
Definition 3 A deviation on a player set S is said to be A-profitable if and only if

∑

i∈S
pi (π , x) <

∑

r∈π(WS )

v(r) +
∑

r∈π\π |S
Ar(π , x, D(π),S). (1.3)

If there exists noA-profitable deviation for any player set, then the coalition structure
π is said to be in the A-core, or A-stable.

The coalition structures in A-core represent the stable structures in which no set
of players have the motivation to deviate from the current structure. We note that
the definition of A-core depends on the specific form of the arbitration function.
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According to different assumptions on players and different applicable scenarios
[13–15], three of the mostly used arbitration functions are described as follows:

1. c-core: if the players are very conservative in cooperating with deviators, the
deviators may receive no payoffs from any original coalitions in π\π |S , even
if they still contribute to these coalitions, i.e., Ar(π , x, D(π),S) ≡ 0. This is
called the conservative arbitration function, and the stability notion is referred to
as c-core.

2. r-core: if the players are more lenient, the deviators can still get their origi-
nal payoffs from the coalitions that are not influenced by their deviation, i.e.,
Ar(π , x, D(π),S) = ∑

i∈S xi (r) for all coalition r with d(r) = 0. This is
called the refined arbitration function, and the stability notion is referred to as
r-core.

3. o-core: the players can be highly generous that they allow the deviators to keep
all the “leftover” payoff as long as the nondeviators’ original payoffs are ensured
to be unchanged, i.e., Ar(π , x, D(π),S) = v(r − d(r)) − ∑

i∈N \S xi (r). This
is called the optimistic arbitration function, and the stability notion is referred to
as o-core.

Hereinafter, we adopt the o-core as the stability notion due to its computational
advantage that we will explain in the following section.

1.3 Computing o-Stable Outcomes for OCF games

1.3.1 o-Stable Outcomes

To avoid the difficulty in representing the value function v and the arbitration function
A, we assume that the resources are given by integers such that R ∈ Z

+ and the
players can only divide their resources in a discrete manner. Such games are referred
to as discrete OCF games and they apply to practical systems. Also, due to the cost
of information exchange between deviators, we assume the number of deviators in a
deviation is bounded.We denote by S the upper bound of deviation size, i.e., |S| ≤ S
for any deviation on any player set S. It has been shown that computing anA-stable
outcome of an OCF game is generally a challenging problem [15]. However, if we
only consider the o-core notion and identify several constraints on the game, there
exist efficient algorithms that lead to o-stable outcomes of such games.

Proposition 1 Any o-profitable deviation on any player set S ⊆ N will increase
the social welfare, which is defined as the total value of all coalitions in the outcome,
i.e.,

∑
r∈π v(r).

The proof of the above proposition can be found in [16]. In most practical prob-
lems, the social welfare is bounded due to the limited resources. For such games,
Proposition1 implies that the game must converge to an o-stable outcome after finite
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o-profitable deviations. Therefore, we can compute an o-stable outcome by itera-
tively computing an o-profitable deviation to the current outcome. However, finding
an o-profitable deviation is a challenging problem. First, without further restrictions
on deviations, the number of potential deviations can be extremely large. Second,
deciding whether a deviation is o-profitable requires solving the optimal coalition
structure problem, which is not a straightforward problem. Now, we define two sub-
classes of OCF games, namely K -coalition OCF games and K -task OCF games,
and we provide efficient algorithms to compute o-stable outcomes in such games,
respectively.

1.3.2 K-coalition OCF Games

In a K -coalition OCF game, we assume each player can contribute to at most K
coalitions. This assumption is reasonable in many practical systems due to geo-
graphical constraints, communication cost, or lack of information. For example, a
mobile user can only connect to limited base stations that are close to it. Therefore,
for a group of deviators S in a K -coalition game, the number of possible devia-
tions is bounded by (R + 1)SK . Since there are CS

N groups of possible deviators, the
total number of possible deviations is then bounded by CS

N (R + 1)SK = O(NS),
which is polynomial in N . For any deviation on S, the deviators need to calculate the
optimal coalition structure π(WS) to decide whether the deviation is o-profitable.
We define the superadditive cover of v to be the function v∗ : [0, R]N → R

+,
such that v∗(W) = maxπ∈�(W)

{∑
r∈π v(r)

}
for any resource vector W . Briefly,

v∗(W) is the maximal total value that the players can generate by forming over-
lapping coalitions when their total resources are given by W . We observe that
v∗(W) = max {v∗(W − r) + v(r)|r � W}, which is a recurrence relation for a
discrete-timedynamic system.Thus,we canuse the dynamic programming algorithm
to calculate v∗(W). Given the values of v∗(W ′) for all W ′ � W , the computation of
v∗(W) requires (R + 1)S times of computing v. Therefore, the entire computation
of v∗(W) requires at most (R + 1)S(R + 1)S = (R + 1)2S times of computing v.
When v∗(W) is calculated, we can trace backward the optimal path and achieve every
coalition in the optimal coalition structure π(W). Therefore, the optimal coalition
structure π(WS) can be calculated in time (R+1)2S . Therefore, we can calculate an
o-profitable deviation in timeCS

N (R+1)SK (R+1)2S = CS
N (R+1)S(K+2) = O(NS),

which is polynomial in N . The algorithm for K -coalition games is shown inTable1.1.

1.3.3 K-task OCF Games

In a K -task OCF game, each coalition in the game corresponds to a specific task and
each player can only contribute to K tasks. Being different from K -coalition OCF
games, the number of coalitions in a K -task OCF game is strictly limited by the
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Table 1.1 Algorithm for K -coalition games

Input an initial outcome (π0, x0).
1: π ← π0 % initial coalition structure
2: x ← x0 % initial payoffs
3: while there exists an o-profitable deviation on a player set S do
4: (r − d(r)) ← r for all r ∈ π\π |S
5: π(WS) ← π |S
6: decide new payoffs x
7: end while
8: π f ← π % final coalitional structure
9: x f ← x % final payoffs

Output an o-stable outcome (π f , x f ).

Table 1.2 Algorithm for K -task games

Input an initial outcome (π0, x0).
1: π ← π0 % initial coalition structure
2: x ← x0 % initial payoffs
3: while there exists an o-profitable transfer on a player set S do
4: (r − d(r)) ← r for all r ∈ π

5: decide new payoffs x
6: end while
7: π f ← π % final coalitional structure
8: x f ← x % final payoffs

Output an o-stable outcome (π f , x f ).

number of tasks, which are predetermined by the considered problem. For example,
in a software company, the available projects are predetermined and the developers
cannot form coalitions to generate new projects but only divide his time among the
existing ones. Since the number of coalitions is fixed in a K -task OCF game, a
deviation will not form new coalition structures but only move resources among the
existing coalitions, and thus, we refer to deviation as transfer in K -task OCF games.
The number of possible transfers is now given byCS

N [K 2(R+1)]S = O(NS), which
is polynomial in N . Since the deviators do not formanoverlapping coalition structure,
their payoffs can be easily calculated using the arbitration function. Therefore, an
o-profitable deviation of a K -task OCF game can be calculated in timeO(NS). The
algorithm for K -task games is shown in Table1.2.

Given the polynomial algorithms that can be used to solve K -coalition games
and K -task games, we then provide some applications to show how the concepts
and algorithms of OCF games can be utilized in wireless networks. Note that we
restrict our model to single-resource scenarios in which the players only have one
type of resources. However, this model can be extended to the multiresource setting,
by using a vector rather than a scalar to describe the contribution of a player, and all
the concepts and algorithms can also be extended to such a case.
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Chapter 2
Interference Management in Heterogenous
Networks

2.1 Introduction

Small cell networks are seen as one of the most promising solutions for boosting the
capacity and coverage ofwireless networks. The basic idea of small cell networks is to
deploy small cells, that are serviced by plug-and-play, low-cost, low-power small cell
base stations (SBSs) able to connect to existing backhaul technologies (e.g., digital
subscription line (DSL), cable modem, or a wireless backhaul) [1]. Types of small
cells include operator-deployed picocells as well as femtocells that can be installed
by end users at home or at the office. Recently, small cell networks have received
significant attention from a number of standardization bodies including 3GPP [1, 2].
The deployment of SBSs is expected to deliver high capacity wireless access and
enable new services for the mobile users while reducing the cost of deployment on
the operators. Moreover, small cell networks are seen as a key enabler for offloading
data traffic from the main, macrocellular network [3].

The successful introduction of small cell networks is contingent on meeting sev-
eral key technical challenges, particularly, in terms of efficient interference manage-
ment and distributed resource allocation [3–5]. For instance, underlying SBSs over
the existing macrocellular networks leads to both cross-tier interference between the
macrocell base stations and the SBSs and co-tier interference between small cells. If
not properly managed, this increased interference can consequently affect the overall
capacity of the two-tier network. There are two types of spectrum allocation for the
network operator to select. The first type is orthogonal spectrum allocation, in which
the spectrum in the network is shared in an orthogonal way between the macrocell
and the small cell tiers. Although cross-tier interference can be totally eliminated
using orthogonal spectrum allocation, the associated spectrum utilization is often
inefficient [3]. The second type is co-channel assignment, in which both the macro-
cell and the small cell tiers share the same spectrum [4]. As the spectrum in the
network is reused through co-channel assignment, the spectrum efficiency can be
improved compared to the case of orthogonal spectrum allocation. However, both
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cross-tier interference and co-tier interference should be considered in this case. A
lot of recent work has studied the problem of distributed resource allocation and
interference management in small cells. These existing approaches include power
control [6], fractional frequency reuse [7], interference alignment [8], interference
coordination [9], the use of cognitive base stations [10], and interference cancella-
tion [11].

Most existing works have focused on distributed interference management
schemes in which the SBSs act noncooperatively. In such a noncooperative case,
each SBS accounts only for its own quality of service while ignoring the co-tier
interference it generates at other SBSs. Here, the co-tier interference between small
cells becomes a serious problem that can significantly reduce the system through-
put, particularly in outdoor picocell deployments. To overcome this issue, we enable
cooperation between SBSs so as to perform cooperative interference management.
The idea of cooperation in small cell networks has only been studied in a limited
number of existing work [12–16]. In [12], the authors propose a cooperative resource
allocation algorithm on intercell fairness in OFDMA femtocell networks. In [13], an
opportunistic cooperation approach that allows femtocell users and macrocell users
to cooperate is investigated. In [14], the authors introduce a game-theoretic approach
to deal with the resource allocation problem of the femtocell users. In [15], a col-
laborative inter-site carrier aggregation mechanism is proposed to improve spectrum
efficiency in a LTE-Advanced heterogeneous network with orthogonal spectrum al-
location between the macrocell and the small cell tiers. The work in [16] propose
a cooperative model for femtocell spectrum sharing using a cooperative game with
transferable utility in partition form. However, the authors assume that the formed
coalitions are disjoint and not allowed to overlap, which implies that each SBS can
only join one coalition at most. This restriction on the cooperative abilities of the
SBSs limits the rate gains from cooperation that can be achieved by the SBSs. More-
over, the authors in [16] adopt the approach of orthogonal spectrum allocation that
is inefficient on spectrum occupation for the two-tier small cell networks.

The goal of this chapter is to develop a cooperative interference management
model for small cell networks in which the SBSs are able to participate and coop-
erate with multiple coalitions depending on the associated benefit-cost tradeoff. We
adopt the approach of co-channel assignment that improves the spectrum efficiency
compared to the approach of orthogonal spectrum allocation used in [16]. We for-
mulate the SBSs cooperation problem as an overlapping coalitional game and we
present a distributed, self-organizing algorithm for performing overlapping coalition
formation. Using the presented algorithm, the SBSs can interact and individually
decide on which coalitions to participate in and on how much resources to use for
cooperation. We show that, as opposed to existing coalitional game models that as-
sume disjoint coalitions, this approach enables a higher flexibility in cooperation.
We study the properties of this algorithm, and we show that it enables the SBSs to
cooperate and self-organizing into the most beneficial and stable coalitional struc-
ture with overlapping coalitions. Simulation results show that this approach yields
performance gains relative to both the noncooperative case and the classical case of
coalitional games with nonoverlapping coalitions such as in [16].
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2.2 System Model

Consider the downlink transmission of an orthogonal frequency division multiple
access (OFDMA) small cell network composed of N SBSs and a macrocellular
network having a single macro base station (MBS). The access method of all small
cells and the macrocell is closed access. Let N = {1, . . . , N } denote the set of all
SBSs in the network. The MBS serves W macrocell user equipments (MUEs), and
each SBS i ∈ N serves Li small cell user equipments (SUEs). Let Li = {1, . . . , Li }
denote the set of SUEs served by an SBS i ∈ N . Here, SBSs are connected with each
other via awireless backhaul. EachSBS i ∈ N chooses a subchannel setTi containing
|Ti | = M orthogonal frequency subchannels from a total set of subchannels T in a
frequency division duplexing (FDD) access mode. The subchannel set Ti serves as
the initial frequency resource of SBS i ∈ N . TheMBS also transmits its signal on the
subchannel set T , thus causing cross-tier interference fromMBS to the SUEs served
by the SBSs. Moreover, the SBSs are deployed in hot spot indoor large areas such as
enterprises where there are no walls not only between each SBS and its associated
SUEs, but also between all the SBSs. Meanwhile, the MBS is located outdoor, so
there exist walls between the MBS and the SBSs.

In a traditional noncooperative scenario, each SBS i ∈ N transmits on its own
subchannels. The set of the subchannels that SBS i owns is denoted as Ti , where Ti ⊆
T . SBS i occupies the whole time duration of any subchannel k ∈ Ti . Meanwhile, the
MBS transmits its signal to theMUEson several subchannels fromT , with eachMUE
occupying one subchannel at each time slot. When the SBSs act noncooperatively,
each SBS uses all the subchannels from Ti to serve its SUEsLi . For each subchannel
k ∈ Ti , only one SUE u ∈ Li is served on subchannel k. SUE u has access to the full
time duration of subchannel k. We denote the channel gain between transmitter j and
the receiver u that owns subchannel k in SBS i by gkj,iu and the downlink transmit
power from transmitter j and the receiver u that occupies subchannel k in SBS i by
Pk
j,iu

. The rate of SBS i ∈ N in the noncooperative case is thus given by

ϒi =
∑

k∈Ti

∑

u∈Li

log2

(

1 + Pk
j,iu

gkj,iu
σ2 + IMN + ISN

)

, (2.1)

where σ2 is the variance of the Gaussian noise, IMN = Pk
w,iu

gkw,iu
is the cross-tier

interference from the MBS w to a SUE served by SBS i on subchannel k, and
ISN = ∑

j∈N , j �=i P
k
j,iu

gkj,iu is the overall co-tier interference suffered by SUE u that
is served by SBS i on subchannel k.

We note that, in dense small cell deployments, the co-tier interference between
small cells can be extremely severe which can significantly reduce the rates achieved
by the SBSs. Nevertheless, due to the wall loss and the long distance between MBS
and SUEs, the downlink cross-tier interference is rather weak compared to the co-
tier interference between small cells. Thus, in this work, we mainly deal with the
downlink co-tier interference suffered by the SUEs from the neighboring SBSs. In
order to deal with this interference problem, we allow the SBSs are to cooperate with
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Fig. 2.1 An illustrative
example of the cooperative
model in small cell networks

one another as illustrated in Fig. 2.1. In such a cooperative network, the SBSs can
cooperate to improve their performance and reduce co-tier interference.

2.3 Interference Management as OCF Games

2.3.1 K-Coalition OCF Game Model

Depending on signal-to-noise-plus-interference-ratio (SINR) feedbacks from their
SUEs, the SBSs can decide to form cooperative groups called coalitions so as to
mitigate the co-tier interference between neighboring SBSs within a coalition. The
SBSs can be modeled as the players in a coalitional game. Due to the fact that an
SBS may participate in multiple coalitions simultaneously as shown in Fig. 2.1, we
consider an OCF game model [17].

The SBSs in the network act as players joining coalitions. A coalition R =
(R1, . . . ,RN ) is a vector inwhichRi is the subset of player i s resource set distributed
to this coalition. The support of a coalitionR is defined as C(R) = {i ∈ N |Ri �= ∅}.
After joining a coalition R, SBS i ∈ C(R) allocates part of its frequency resource
into this coalitionR. Within each coalitionR, the SBSs can jointly coordinate their
transmission so as to avoid the collisions. The resource pool of coalitionR is defined
as TR = ∪i∈C(R)Ri .

Without loss of generality, we consider that, whenever a coalitionR successfully
forms, the transmissions inside R will be managed by a local scheduler using the
time division multiple access (TDMA) approach. The subchannels in TR are divided
into several time-slots. Each SBS can access only a fraction of all the time-slots when
transmitting on a specific subchannel. By doing so, the whole superframe duration
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of each subchannel can be shared by more than one SBS. Hence, the downlink
transmissions fromeachSBS in the coalition to its SUEs are separated. Consequently,
no more than one SBS will be using the same subchannel on the same time-slot
within a coalition, thus efficiently mitigating the interference inside the coalitionR.
However, as the resource pools of different coalitions may not be disjoint, the system
can still suffer from inter-coalition interference. Here, we note that this approach is
still applicable under any other coalition-level interference mitigation scheme.

Specifically, we assume the resource pool TR of a coalition R is divided among
the SBSs inR using a popular criterion named proportional fairness, i.e., each SBS
i ∈ C(R) gets an share fi ∈ [0, 1] of the frequency resources from the coalition R
through the TDMA scheduling process of the local scheduler, and the share satisfies
that

∑
i∈C(R) fi = 1 and fi/ f j = |Ri |/|R j |. The proportional fairness criterion

guarantees that the SBSs that dedicate more of its own frequency resources, i.e.,
subchannels to the coalition deservemore frequency resources back from the resource
pool of the coalition. The gain of any coalition R ∈ CS, which corresponds to the
sum rate achieved by R, is dependent on not only the members of R but also the
coalitional structure CS due to inter-coalition interference. Formally, we define

U (R,CS) =
∑

i∈C(R)

∑

k∈Ti

∑

u∈Li

γk
i,iu log2

(

1 + Pk
i,iu

gki,iu
σ2 + IMO + ISO

)

, (2.2)

where γk
i,iu

denotes the fraction of the time duration during which SBS i trans-
mits on channel k to serve SUE u, IMO = Pk

w,iu
gkw,iu

denotes the cross-tier in-
terference from the MBS w to SUE u served by SBS i on subchannel k and
ISO = ∑

R′∈CS,R′ �=R
∑

j∈C(R), j �=i P
k
j,iu

g j
w,iu

denotes the overall co-tier interference
suffered by SUE u that is served by SBS i on subchannel k.

While cooperation can lead to significant performance benefits, it is also often
accompanied by inherent coordination costs. In particular, for the considered SBS
cooperation model, we capture the cost of forming coalitions via the amount of
transmit power needed to exchange information. In each coalition R, each SBS
i ∈ C(R) broadcasts its data to the other SBSs in the coalition. Here, each SBS
needs to transmit the information to the farthest SBS in the same coalition.We assume
that, during information exchange, no transmission errors occur. So the power cost
incurred for forming a coalition R is PR = ∑

i∈C(R) Pi, j∗ , where where Pi, j∗ is the
power spent by SBS i to broadcast the information to the farthest SBS j in a coalition
R. Meanwhile, for every coalition R, we define a maximum tolerable power cost
Plim . Therefore, we define the value function of a coalition R as follows:

v(R,CS) =
{
U (R,CS), if PR ≤ Plim,

0, otherwise,
(2.3)

Therefore, the payoff that each SBS i achieves from coalition R is pi (R,CS) =
fiv(R,CS), and the total payoff of SBS i is then xi (CS) = ∑

R∈CS pi (R,CS).
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Table 2.1 Algorithm for Interference Management in HetNets

Initial State: The network consists of noncooperative SBSs, and the initial coalitional structure
is denoted as CS = {{T1}, . . . , {TN }}.
∗ repeat
1. Each SBS i discovers its nearby coalitions in the current coalition structure CS, the set of
which is denoted by Ni
2. SBS i finds a feasible transformation from the current coalition structure CS to a new coalition
structure CS′ by reallocating its resources among coalitions in Ni , such that xi (CS) < xi (CS′)
3. SBS i reallocate its resources and the network transforms to a new coalition structure CS′
∗ until the network converges to a stable coalition structure CS∗

2.3.2 Coalition Formation Algorithm

We note that the interference management in heterogenous networks is modeled as a
K -coalition OCF game, where K is limited by the number of SBSs and the network
topology. Based on the framework in Table1.2, we give a distributed OCF algorithm
to achieve a stable outcome of the K -coalition OCF game.

Definition 4 Given a set of player S ⊆ N , we define a complete, reflexive, and
transitive binary relation 
S on S over the set of all coalition structures, such that
CSP 
S CSQ , if and only if, we have xi (CSP) ≤ xi (CSQ) for any player i ∈ S.

Therefore,CSQ is preferred toCSP for the set of players S if no player’s payoff is
decreased by transforming CSP to CSQ . Based on these relationship, we can define
a transform operation for the network. Formally, if the set of players S can transform
the coalition structure from CSP to CSQ by reallocating their resources, and CSQ is
preferred to CSP by the same set of players S, then, there exists a feasible transform
from CSP to CSQ . Due to the communication cost, we restrict the set S as a single
SBS and give a coalition formation algorithm as in Table2.1.

This iterative algorithm starts from an initial state where each SBS forms a single
coalition by devoting its own resources. Then, at each iteration, SBS i discovers
the nearby coalitions through environment sensing [18], finds a feasible and prof-
itable transform by using the defined relationship 
{i} and reallocates its resources
to perform the transformation. The network converges when there is no feasible and
profitable transform for any SBS, and outputs a stable coalition structureCS∗. Given
the stable coalition structure CS∗, each SBS i devotes the corresponding resources
Ri to each coalition R ∈ CS∗. For each coalition R ∈ CS∗, the coalition members
C(R) coordinate with each other by rescheduling their transmissions with TDMA
using the resource pool TR.

http://dx.doi.org/10.1007/978-3-319-25700-6_1
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2.3.3 Simulation Results

For simulations, we consider an MBS that is located at the chosen coordinate of (1
km, 1 km). The radius of the coverage area of the MBS is 0.75 km. The number
of MUEs is 10. N SBSs are deployed randomly and uniformly within a circular
area around the MBS with a radius of 0.1 km. There is a wall loss attenuation of
20 dB between the MBS and the SUEs, and no wall loss between the SBSs and the
SUEs. Each SBS has a circular coverage area with a radius of 20 m. Each SBS has 4
subchannels to use and serves 4 users as is typical for small cells. The total number
of subchannels in the considered OFDMA small cell network is 20. The bandwidth
of each subchannel is 180 kHz. The total number of time-slots in each transmission
in TDMA mode is 4. The transmit power of each SBS is set at 20 dBm, while the
transmit power of the MBS is 35 dBm. The maximum tolerable power to form a
coalition Plim = 100 dBm. The noise variance is −104 dBm.

In Fig. 2.2, we present a snapshot of an OFDMA small cell network resulting
from the given algorithm with N = 7 SBSs. The radius of the distribution area of
SBSs is 0.7 km. The cooperative network shown in this figure is a stable coalitional
structure CS∗. Initially, all the SBSs schedule their transmissions noncooperatively.
After using the OCF algorithm, they self-organize into the structure in Fig. 2.2. This
coalitional structure consists of 5 overlapping coalitions namedCoalition 1, Coalition
2, Coalition 3, Coalition 4, and Coalition 5. The support of Coalition 1 consists of
SBS 3 and SBS 6. The support of Coalition 2 includes SBS 2 and SBS 5. The support
of Coalition 3 includes SBS 1 and SBS 6. The support of Coalition 4 includes SBS

Fig. 2.2 A snapshot of an overlapping coalitional structure resulting from the considered approach
in a small cell network
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7. The support of Coalition 5 includes SBS 4. SBS 4 and SBS 7 have no incentive
to cooperate with other SBSs as their spectral occupation is orthogonal to all nearby
coalitions. Meanwhile, SBS 6 is an overlapping player because its resource units are
divided into twoparts assigned to different coalitions. The interference is significantly
reduced in CS∗ as compared to that in the noncooperative case, as the interference
between the members of the same coalition is eliminated using proper scheduling.
Clearly, Fig. 2.2 shows that by adopting the OCF algorithm, the SBSs can self-
organize to reach the final network structure.

Figure2.3 shows the overall system utility in terms of the total rate achieved by
the OCF algorithm as a function of the number of SBSs N compared with two other
cases: the nonoverlapping coalition formation (CF) algorithm and the noncooperative
case. Figure2.3 shows that for small networks (N < 4), due to the limited choice
for cooperation, the OCF algorithm and the CF algorithm have a performance that is
only slightly better than that of the noncooperative case. This indicates that the SBSs
have no incentive to cooperate in a small-sized network as the co-tier interference
remains tolerable and the cooperation possibilities are small. As the number of SBS
N increases, the possibility of cooperation for mitigating interference increases.
Figure2.3 shows that, as N increases, the OCF algorithm exhibits improved system
performances compared to both the traditional coalition formation game and that
of the noncooperative case. The performance advantage reaches up to 32 and 9%
at N = 10 SBSs relative to the noncooperative case and the classical CF case,
respectively.

Fig. 2.3 Performance evaluation in terms of the overall system payoff as the number of SBSs N
varies
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Fig. 2.4 System payoff versus number of iterations

Figure2.4 shows the convergence process under different scenarios using the
OCF algorithm and the CF algorithm. We observe that, although the OCF algorithm
requires a few additional iterations to reach the convergence as opposed to the CF
case when both N = 7 and N = 8, this number of iterations for OCF remains
reasonable. Moreover, Fig. 2.4 shows that the OCF algorithm clearly yields a higher
systempayoff than theCF case, with only little extra overhead, in terms of the number
of iterations. Hence, the simulation results in Fig. 2.4 clearly corroborate our earlier
analysis.

Figure2.5 shows the cumulative density function (CDF) of the individual SBS
payoff resulting from the OCF algorithm and the CF algorithm when the number of
SBSs is set to N = 10. From Fig. 2.5, we can clearly see that the OCF algorithm
performs better than the CF algorithm in terms of the individual payoff per SBS. For
example, the expected value of the individual payoff for a network formed from the
OCF algorithm is 36, while for a network formed from the CF algorithm the expected
value is 33. This is due to that the OCF algorithm allowsmore flexibility for the SBSs
to cooperate and form coalitions. Each SBS is able to join multiple coalitions in a
distributed. way by adopting our OCF algorithm, while it can only join one coalition
at most in the CF case. Moreover, during each reallocation, the SBSs improve their
own payoff without being detrimental to the other SBSs in the new coalition. This
also contribute to a growth of the individual payoff of each SBS. In a nutshell, Fig. 2.5
shows that the OCF algorithm yields an advantage on individual payoff per SBS over
the CF algorithm.

Figure2.6 shows the growth of the system payoff of the network as the number of
SBSs increases, under different maximum tolerable power costs of a coalition Plim .
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Fig. 2.5 Cumulative density function of the individual payoff for a network with N = 10 SBSs

Fig. 2.6 System payoff as a function of number of SBSs N , for different maximum tolerable power
costs
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Both the OCF algorithm and the CF case are considered in Fig. 2.6. We observe that,
as the number of SBSs increases, the system payoff under two conditions both grows.
Moreover, the OCF algorithm has a small advantage on the system payoff compared
to the CF case when Plim = 20 dBm, while the advantage of the OCF algorithm
over the CF case is more significant when Plim = 100 dBm. This is due to the fact
that when Plim is low, the SBSs can hardly cooperate with other neighboring SBSs.
Most SBSs choose to stay alone as the power cost of possible coalitions exceeds the
maximum tolerable power cost. Thus, the system payoff of the OCF algorithm and
of the CF algorithm are close. Furthermore, when Plim is high, each SBS is able to
reallocate its SBS units to join neighboring coalitions and improve both the system
payoff and its own payoff using the OCF algorithm. Meanwhile, the cooperation
possibility of the SBSs under the CF case is also increased when Plim increases.
Consequently, Fig. 2.6 shows that the OCF algorithm incurs a higher probability for
the SBSs to cooperate than the CF case, especially when the maximum tolerable
power cost of forming a coalition is high. Thus, our OCF algorithm achieves better
system performances in terms of sum rate than the CF algorithm.

Figure2.7 shows the relationship between the number of coalitions that each SBS
joins and the number of SBSs under the OCF case and the CF case. As the number
of SBSs increases, both the maximum and the average number of coalitions that
each SBS joins also grows under the OCF case. While in the CF case, each SBS
is only allowed to join one coalition at most no matter how the number of SBSs
changes, thus causing the maximum number and the average number of coalitions
that eachSBS joins to remain the samewhen the number of SBSs increases. Figure2.7
shows that the incentive toward cooperation for the SBSs is more significant for the

Fig. 2.7 Number of coalitions per SBS as a function of number of SBSs N
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Fig. 2.8 System payoff versus radius of the distribution area of SBSs for a network with N = 10
SBSs

OCF algorithm than for the CF case. Thus, The cooperative gain can be achieved
more efficiently by using our OCF algorithm than the CF case when the SBSs are
densely deployed in the network. The cooperative probability of the OCF algorithm
represented by the maximum number of coalitions that each SBS joins is 325.75%
larger than that of the CF case when N = 10 SBSs are deployed in the network.

In Fig. 2.8, we show the system payoff in terms of sumrate as the radius of the
distribution area of SBSs varies. The number of SBSs in the network is set to N = 10.
We compare the system payoff of the OCF algorithm, CF case and noncooperative
case. Figure2.8 shows that as the radius of the distribution area of SBSs increases,
the system payoff also increases. This is because both the co-tier interference and
the cross-tier interference are mitigated when the SBSs are deployed in a larger area.
Thus, the system payoff is improved for the OCF algorithm, the CF case as well as
the noncooperative case. From Fig. 2.8, we can also observe that as the radius of the
distribution area of SBSs varies, our OCF algorithm yields a higher system payoff
than the CF case and the noncooperative case.

In Fig. 2.9, we continue to compare our OCF approach to the CF case and the
noncooperative case in terms of system payoff as the total number of the available
subchannels in the network changes.Here, N = 10SBSs are deployed in the network.
Note that, we adopt the approach of co-channel assignment, i.e., the SBSs reuse the
spectrum allocated to the macrocell. Figure2.9 shows that the system payoff of
the OCF algorithm, the CF case, and the noncooperative case are improved when
the total number of available subchannels increases. This is due to the fact that
when the number of available subchannels increases, the probability of conflicts on
subchannels is greatly decreased. Thus, the interference in the two-tier small cell
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Fig. 2.9 System payoff versus total number of subchannels for a network with N = 10 SBSs

Fig. 2.10 Performance evaluation in terms of the overall system payoff with wall loss in the small
cell tier as the number of SBSs N varies

network is mitigated, causing the improvement of the system payoff in terms of sum
rate. Moreover, Fig. 2.9 shows that the OCF algorithm outperforms the CF case and
the noncooperative case in terms of system payoff when the total number of available
subchannels increases.
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In Fig. 2.10, we modify the scenario by considering the wall loss between the
MBS and the SUEs and the wall loss between the SBSs and the SUEs, both of which
are set at 20 dB. In this scenario, the downlink cross-tier interference has a much
greater impact on system performance than in the scenario where no wall exists
between the SBSs and the SUEs such as in Fig. 2.3. As shown in Figs. 2.3 and 2.10,
the advantage on system payoff of our OCF algorithm over the CF algorithm and
the noncooperative case when no wall loss is considered between the SBSs and the
SUEs is more significant than that when wall loss is involved.

2.4 Summary

In this chapter, we have investigated the problem of cooperative interference man-
agement in small cell networks. We have formulated this problem as an overlapping
coalition formation game between the small cell base stations. Then, we have shown
that the game has a transferable utility and exhibits negative externality due to the
co-tier interference between small cell base stations. To solve this game, we have pre-
sented a distributed overlapping coalition formation algorithm that allows the small
cell base stations to interact and individually decide on their cooperative decisions.
By adopting this algorithm, each small cell base station can decide on the number
of coalitions that it wishes to join as well as on the resources that it allocates to
each such coalition, while optimizing the tradeoff between its overall rate and the
associated cooperative costs. We have shown that the OCF algorithm is guaranteed
to converge to a stable coalition structure in which no small cell base station has
an incentive to reallocate its cooperative resources. Simulation results have shown
that the overlapping coalitional game approach allows the small cell base stations
to self-organize into cooperative coalitional structures while yielding notable rate
gains relative to both the noncooperative case and the classical coalition formation
algorithm with nonoverlapping coalitions.
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Chapter 3
Cooperative Spectrum Sensing
in Cognitive Radio

3.1 Introduction

Cognitive radio (CR) has been proposed to increase spectrum efficiency, in which
unlicensed, secondary users (SUs), can sense the environment and change their para-
meters to access the spectrum of licensed, primary users (PUs), while maintaining
the interference to the PUs below a tolerable threshold [1]. In order to exploit the
spectrum holes, the SUs must be able to smartly sense the spectrum so as to decide
which portion can be exploited [2]. Depending on the features of different signals,
different spectrum sensing detectors have been designed, such as energy detectors,
waveform-based detectors, and matched-filtering detectors [3]. However, the perfor-
mance of these detectors is highly susceptible to the noise, small-scale fading, and
shadowing over wireless channels. To overcome this problem, cooperative spectrum
sensing (CSS) was proposed, in which the SUs utilize the natural space diversity by
sharing sensing results among each other and making collaborative decision on the
detection of PUs [4–25]. It has been shown that CSS can significantly improve the
sensing accuracy, in comparison with the conventional, noncooperative case which
relies solely on local detectors.

According to [4], the CSS schemes can be classified into three categories based
on how the sensing data is shared in the network: centralized [5–10], relay-assisted
[11, 12], and distributed [13–17]. In centralized CSS, a common fusion center (FC)
collects sensing data from all the SUs in the network via a reporting channel, then
combines the received local sensing data to determine the presence or absence of PUs,
and at last diffuses the decision back to the SUs. In relay-assisted CSS, there is also
a common FC, but the local sensing data, instead of being transmitted directly to the
FC, is relayed by the SUs so as to reduce transmission errors. Unlike the centralized
or relay-assisted CSS, distributed cooperative sensing (DCS) does not rely on an FC
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for making the cooperative decision. In this case, each SU simultaneously sends and
receives sensing data via the reporting channel, and then combines the received data
using a local fusion rule. Therefore, the SUs in DCS can make individual decisions
on whether to access the spectrum, and thus, can adapt to the situation in which the
SUs belong to different authorities or operators and distributed decisions must be
made. Hereinafter, we focus on DCS.

In [13], the authors propose a coalition-basedDCS, inwhich the SUs self-organize
into disjoint coalitions, and apply centralizedCSS inside each coalition. The coalition
formation process is based on a coalition formation game (CF game) with nontrans-
ferable utility [26, 27], which jointly considers the associated benefit and cost for
forming coalitions. This coalition-based DCS, in which the signaling overhead is
shared by the coalition heads that are much closer to the SUs, can largely decrease
the bandwidth requirement for reporting local sensing results. Other approaches that
studied DCS are found in [14–17]. However, in [13–17], the network structure is
restricted to disjoint, nonoverlapping coalitions, which implies that the local sens-
ing results of an SU can only be shared within a single coalition, although, for the
coalition-edge SUs, their local sensing results can be efficiently transmitted to the
nearby coalitions for further improving the cooperative sensing performance. Hence,
this disjoint coalitional structure of SUs may limit the gains from DCS and, thus,
to reap the gains of DCS, information sharing among multiple coalitions should be
considered.

Traditionally, the SUs are assumed to share the same occupancy of PUs, i.e.,
whether the PU is present for all SUs or it is absent for all SUs. However, in practical
systems, due to location and time diversities, the SUs may experience different spec-
trum occupancies. Some recent studies have noticed this problem and algorithms
for spectrum-heterogeneous cognitive radio systems have been proposed [18–21].
Besides the diversity of SUs, other issues that greatly influence the sensing per-
formance of SUs have also been studied, e.g., the spatial correlation between SUs
[22, 23], the mobility of PUs [24], the nonidealness of the report channel [25].

The goal of this is to develop a DCS approach in which SUs can share their sens-
ing information with a multitude of coalitions [28, 29]. In particular, we consider
two criteria to evaluate the sensing performance, and for each criterion, we formu-
late the general DCS problem as an optimization with strict power and bandwidth
constraints. In order to solve the DCS problem distributively, we introduce a new
overlapping coalition formation (OCF) approach,which significantly differs from the
existing nonoverlapping DCS such as in [13] as it allows each SU to cooperate with
multiple, overlapping coalitions by allocating each coalition a portion of its local
power and bandwidth resources. In particular, we introduce overlapping coalition
formation games [30–32], to model the DCS problem, and we present a distributed
algorithm that is shown to converge to a stable coalitional structure with overlapping
coalitions. Simulation results show that the overlapping algorithm yields significant
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performance improvements compared with the state-of-the-art nonoverlapping algo-
rithm for all network scenarios while also reducing the required overhead and system
complexity.

3.2 System Model

Consider a cognitive radio network with N SUs equipped with energy detectors [7],
the set of which is denoted by N = {1, 2, . . . , N }, and a single PU far away from
them [7, 8]. The distance between SU i and SU j is denoted by di, j . The distance
between the PU and any SU is denoted by D, and we have D � di, j for any SU i and
j . In this network, the SUs individually and locally decide on the presence or absence
of the PU via their own local information. We assume that the SUs can cooperate
with one another by exchanging their sensing data via a reporting channel, and the
overall DCS phase consists of three successive periods: the local sensing period, the
data reporting period and the data fusion period. In the local sensing period, each SU
locally detects the presence of the PU on the sensing channel. In the data reporting
period, each SU sends its own sensing data to other SUs via the reporting channel
with power and bandwidth constraints. In the data fusion period, each SU combines
its local sensing data with the received sensing data and decides whether or not the
PU is present. Once the DCS phase is completed, each SU locally decides whether
to access the spectrum based on its decision of the PU’ state as well as the particular
distributed protocol used at the MAC layer, such as the distributed MAC protocols
in [33, 34]. Figure3.1 illustrates the DCS process described above in a CR network
with 3 SUs.

3.2.1 Local Sensing

We denote by H1 and H0 the hypotheses of the presence and absence of the PU,
respectively. The sampled signal at SU i ∈ N is given by:

yi (n) =
{
hi (n)s(n) + ui (n), H1,

ui (n), H0,
(3.1)

where hi (n) denotes the channel between the PU and SU i , s(n) denotes the signal
from the PU and ui (n) denotes the noise at SU i . In accordance with [7], we assume
s(n) is an independent identically distributed (i.i.d.) random process with zero mean
and variance σ2

s , ui (n) is i.i.d. Gaussian with zero mean and variance σ2
u , |hi (n)| is

Rayleigh distributed. Since the distances between any SUs are negligible compared
with the distance from the PU to any SU, |hi (n)|, i ∈ N are assumed to have the
same variance σ2

h = κD−μ, where κ and μ are path loss parameters. For any SU
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Fig. 3.1 Illustration of distributed cooperative sensing in a cognitive radio network with 3 SUs

i ∈ N , the energy detector’s probabilities of missed detection and false alarm are,
respectively, given by [7]:

Pm,i (λi ) = 1 − Q
((

λi

1 + γ
− 1

) √
Ns

)

, (3.2)

Pf,i (λi ) = Q
(
(λi − 1)

√
Ns

)
, (3.3)

where Q(·) denotes the right-tail probability of a normalized Gaussian distribution,
γ = σ2

hσ
2
s /σ

2
u is the average received SNR at each SU, λiσ

2
u is the threshold of the

energy detector at SU i , and Ns is the product of the sensing time and sampling
frequency. We assume γ and Ns are constant parameters.

3.2.2 Data Reporting

In order to reduce the bandwidth for reporting, the local sensing data is quantized to
1 bit (hard decisions) in [6]. In addition, we assume that each SU has limited transmit
power PSU and time-frequency resource θSU during the data reporting period. For
the reporting between any two SUs, the minimum average received SNR is assumed
to be γ0 and the minimum time-frequency resource for transmitting 1 bit is assumed



3.2 System Model 31

to be θ0. Therefore, the power and bandwidth constraints for any SU i ∈ N are given
by:

∑

j∈Si

γ0σ
2
u

κd−μ
i, j

≤ PSU , (3.4)

|Si |θ0 ≤ θSU , (3.5)

where Si is the “report-to” set of SU i consisting of the SUs that SU i reports to.

3.2.3 Data Fusion

After every SU sends the sensing data to its designated receivers, each SU combines
all the received sensing data (including its local sensing data) using a local fusion
rule. Suppose that the ki -out-of-all fusion rule is adopted by SU i [7, 8], i.e., SU i
decides the presence of the PU if at least ki reports declare that the PU is detected, and
vice versa. Consequently, SU i’s probabilities of missed detection and false alarm
are, respectively, given by:

Qm,i (ki ) =
∑

|R1
i |<ki

⎡

⎣
∏

j∈R1
i

(1 − Pm, j )
∏

j∈R0
i

Pm, j

⎤

⎦, (3.6)

Q f,i (ki ) =
∑

|R1
i |≥ki

⎡

⎣
∏

j∈R1
i

P f, j

∏

j∈R0
i

(1 − Pf, j )

⎤

⎦, (3.7)

where R1
i ∪ R0

i = Ri is the “report-from” set of SU i which consists of SU i it as
well as the SUs that report to SU i , andR1

i ,R0
i denote the set of SUs whose reports

declare the presence and absence of the PU, respectively. Note that ki is an integer
between 1 and |Ri |.

3.3 DCS as an Optimization Problem

From the system model, we can see that the DCS process is determined by local
parameters as well as by the reporting structure of the network, i.e., the local sensing
thresholds λi , i ∈ N , the local fusion rules ki , i ∈ N , and the report-to sets Si , i ∈
N , or equally, the report-from sets Ri , i ∈ N . We consider a 1 × N vector � =
(λ1,λ2, . . . ,λN ) as the local threshold vector, a 1× N vector K = (k1, k2, . . . , kN )

as the fusion rule vector, and an N × N binary matrix � = {ωi, j },ωi, j = {0, 1} as
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the reporting matrix where ωi, j = 1 implies that SU i’s report is received by SU j .
Note that the “report-to” sets Si , i ∈ N and the “report-from” sets Ri , i ∈ N are
given by the rows and columns of �, respectively. To evaluate the performance of
DCS, we consider two criteria that are commonly used in the literature, the Qm +Q f

criterion [8] and Qm/Q f criterion [13].

3.3.1 Qm + Q f Criterion

In the Qm + Q f criterion, we consider the probability that the cooperative sensing
decision is incorrect, which is referred to as the “total error rate” in [8]. Strictly
speaking, the total error rate of an SU i ∈ N is given by P1Qm,i+(1−P1)Q f,i , where
P1 is the probability that the PU is present. For conciseness, we assume P1 = 0.5,
and thus, the total error rate is given by (Qm,i + Q f,i )/2. Moreover, we consider the
average sensing performance of all SUs in the network, i.e., (1/2N )

∑
i∈N (Qm,i +

Q f,i ). By omitting the factor 1/2N from the objective function, we have the DCS
problem is formulated as:

min
�,K,�

∑

i∈N

(
Qm,i + Q f,i

)
, (3.8a)

s.t.
∑

j �=i,ωi, j=1

γ0σ
2
u

κd−μ
i, j

≤ PSU , i = 1, 2, . . . , N , (3.8b)

∑

j �=i,ωi, j=1

θ0 ≤ θSU , i = 1, 2, . . . , N , (3.8c)

where Qm,i and Q f,i are given by (3.6) and (3.7), respectively. We note that our
model and analysis can be extended to the more general setting with any P1, in a
straightforward manner, and our results still hold.

Problem (3.8) is a mixed integer nonlinear programming problem that is known
to be intractable in the general case [35]. Moreover, due to the lack of a fusion or
control center in the considered network, any possible centralized algorithm that
gives an optimal solution will not be applicable for the DCS process. Therefore, we
consider suboptimal solutions with distributed algorithms. Note that the constraints
(3.8b) and (3.8c) are only related to �; we consider a suboptimal solution with two
separate steps:

(a) Find a feasible reporting matrix � that satisfies the constraints in (3.8b) and
(3.8c).

(b) Compute the optimal � and K for the objective function (3.8a) with � given in
step a.
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To simplify the problem, we assume that the AND rule is adopted by all SUs, i.e.,
ki = |Ri |, i ∈ N , and thus, step b is reduced to the computation of the optimal �

for the objective function with the given � and K = (|R1|, |R2|, . . . , |RN |), where
|Ri | = ∑

j∈N ω j,i , i ∈ N . By substituting �,K and (3.2), (3.3) into (3.6), (3.7),
and further substituting (3.6) and (3.7) into (3.8a), step b is formally written as:

min
�

∑

i∈N

⎡

⎣1 −
∏

j∈N ,ω j,i=1

Q
((

λ j

1 + γ
− 1

) √
Ns

)

+
∏

j∈N ,ω j,i=1

Q
((

λ j − 1
) √

Ns

)
⎤

⎦ . (3.9)

3.3.2 Qm/Q f Criterion

In the Qm/Q f criterion, the network sensing performance is evaluated via the average
value of one error probability while the other probability is maintained below a
certain threshold α. Here, we consider the average value of the missed detection
probability while the false alarm probabilities are such that Q f,i ≤ α, i ∈ N . This
criterion indicates the interference to the PU while we guarantee a usability rate of
the spectrum holes. Mathematically, the DCS problem is formulated as:

min
�,K,�

∑

i∈N
Qm,i , (3.10a)

s.t.
∑

j �=i,ωi, j=1

γ0σ
2
u

κd−μ
i, j

≤ PSU , i = 1, 2, . . . , N , (3.10b)

∑

j �=i,ωi, j=1

θ0 ≤ θSU , i = 1, 2, . . . , N , (3.10c)

Q f,i ≤ α, i = 1, 2, . . . , N , (3.10d)

where Qm,i and Q f,i are given by (3.6) and (3.7), respectively.
Problem (3.10) is also a mixed integer nonlinear programming problem. For sim-

ilar reasons as in the Qm +Q f criterion, we consider a suboptimal solution with two
separate steps:

(a) Find a feasible reporting matrix � that satisfies the constraints in (3.10b) and
(3.10c).

(b) Compute the optimal�,K for (3.10a) with� given in step (a) and the constrains
in (3.10d).
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Note that step (a) is exactly the same as in the Qm + Q f criterion. For step (b),
we also assume the AND rule is adopted by all SUs and, thus, it reduces to:

min
�

∑

i∈N

⎡

⎣1 −
∏

j∈N ,ω j,i=1

Q
((

λ j

1 + γ
− 1

) √
Ns

)
⎤

⎦ (3.11a)

s.t.
∏

j∈N ,ω j,i=1

Q
((

λ j − 1
) √

Ns

)
≤ α, i = 1, . . . , N . (3.11b)

3.4 DCS Based on Overlapping Coalition Formation Games

In the previous section, the DCS problem is divided into two separate subproblems.
The first subproblem aims to find a feasible reporting matrix �. The second sub-
problem aims at computing the optimal sensing threshold vector � with the given
�. In this section, we consider the DCS problem as an OCF game, in which the
first subproblem is strictly modeled as the local resource limitation, and the second
subproblem is captured by an adequately designed utility function for each coalition
of SUs. Based on the OCF-game model, we present a distributed coalition forma-
tion algorithm that allows to form overlapping coalitions, and a threshold decision
algorithm that locally decides the sensing threshold of each SU. Note that the DCS
problems in both the Qm + Q f and Qm/Q f criteria are uniformly modeled by the
OCF game. These algorithms apply to both criteria.

3.4.1 OCF-Game Model

In essence, coalitional games involve a set of players who seek to form cooperative
groups, i.e., coalitions, to strengthen their positions in a given game scenario [26]. In
particular, in an OCF game [30], the players can joinmultiple coalitions by contribut-
ing parts of their limited resources to different coalitions. Each coalition constitutes
a group of players who are working together and whose utility is captured by both
a coalition-level value and an individual user payoff. In a coalition formation game,
each player individually decides which coalitions it wishes to join, so as to maximize
its total payoff with the limited resources. Note that the coalitions can, in general, be
overlapping, such that a player can participate in multiple coalitions simultaneously.

For the DCS problem, the players are the SUs N = {1, 2, . . . , N } with power
resource PSU and bandwidth resource θSU . Here, a coalition Ri ⊆ N denotes a
cooperative group of SUs in which the coalition members report their sensing results
to a given SU i ∈ N , i ∈ Ri . The power and bandwidth resources contributed by
player j �= i, j ∈ Ri to coalition Ri are (γ0σ

2
u)/(κd

−μ
i, j ) and θ0, respectively. Also,
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player i ∈ N naturally belongs to coalition Ri without contributing any power or
bandwidth resource. Note that coalitionsRi andR j , j �= i can be exactly the same
when SUs i and j receive the sensing results from the same SUs. However, we still
treat them as two different coalitions and differentiate themwith different subscripts,
because:

(1) Coalitions Ri and R j represent the received sensing results at different SUs,
i.e., SU i and SU j .

(2) For any SU k belonging to both coalitions, coalitionsRi andR j require different
power resource contributions, i.e., (γ0σ2

u)/(κd
−μ
i,k ) and (γ0σ

2
u)/(κd

−μ
j,k ).

For all N SUs in the network, there are exactly N coalitions that correspond to them.
For the completeness of the game model, we define a coalitional structure as the set
of all coalitions, denoted by CS = {R1,R2, . . . ,RN }. Note that CS is just another
expression of the reporting matrix �.

To capture the performance of a given coalitionRi , we use a utility function that
captures the best sensing performance of SU i , given by:

U (Ri ) =
⎧
⎨

⎩

2 − min
�(Ri )

(
Qm,i + Q f,i

)
, Qm + Q f ,

1 − min
�(Ri ),Q f,i≤α

Qm,i , Qm/Q f ,
(3.12)

where Qm,i and Q f,i are given by (3.6) and (3.7) with ki = |Ri |, and �(Ri ) is the
local sensing threshold vector for the players inRi . Note that we use “2−” and “1−”
to maintain the utility to be positive, since all the probabilities Qm,i and Q f,i are
between 0 and 1. Due to the symmetry of U (Ri ) to the members in Ri , we point
out that the optimal value is obtained when all the coalition members have the same
local sensing threshold, i.e., �(Ri ) = (λ,λ, . . . ,λ)1×|Ri |.

For the Qm + Q f criterion, by substituting (3.2), (3.3) and ki = |Ri | into (3.6)
and (3.7), and then substituting (3.6), (3.7) and �(Ri ) = (λ,λ, . . . ,λ)1×|Ri | into
(3.12), the utility function of the Qm + Q f criterion is given as:

U (Ri ) = 1 − min
λ

{[
Q

(
(λ − 1)

√
Ns

)]|Ri | −
[

Q
((

λ

1 + γ
− 1

) √
Ns

)]|Ri |}

. (3.13)

The optimal λa is the zero point of the first first-order derivative, and thus, it satisfies:

∂

∂λa

[

Q
((

λa

1 + γ
− 1

) √
Ns

)]|Ri |
=

∂

∂λa

[
Q

(
(λa − 1)

√
Ns

)]|Ri |
. (3.14)
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By substituting Q′(x) = exp
(−x2/2

)
/
√
2π, we have:

⎡

⎣
Q (

(λa − 1)
√
Ns

)

Q
((

λa
1+γ

− 1
) √

Ns

)

⎤

⎦

|Ri |−1

−

1

1 + γ
exp

{
Ns

2

[

(λa − 1)2 −
(

λa

1 + γ
− 1

)2
]}

= 0. (3.15)

Using (3.15), the optimal threshold of the Qm + Q f criterion can be evaluated
numerically, denoted by λa(|Ri |). Note that the solution is only decided by the
coalition size |Ri |.

By substituting λ = λa(|Ri |) into (3.13), the utility function in (3.12) for the
Qm + Q f criterion is also only determined by the coalition size |Ri |, given by:

fa(|Ri |) = 1 −
[
Q

(
(λa(|Ri |) − 1)

√
Ns

)]|Ri |

+
[

Q
((

λa(|Ri |)
1 + γ

− 1

) √
Ns

)]|Ri |
. (3.16)

For the Qm/Q f criterion, by substituting (3.2), (3.3) and ki = |Ri | into (3.6) and
(3.7), and then substituting (3.6), (3.7) and �(Ri ) = (λ,λ, . . . ,λ)1×|Ri | into (3.12),
the utility function of the Qm/Q f criterion is given as:

U (Ri ) = max
λ

[

Q
((

λ

1 + γ
− 1

) √
Ns

)]|Ri |
(3.17a)

s.t.
[
Q

(
(λ − 1)

√
Ns

)]|Ri | ≤ α. (3.17b)

Note thatQ(x) is a decreasing function with its value between 0 and 1. We can solve
the constraint inequality as:

λ ≥ λmin = 1 + Q−1
(
α1/|Ri |)

√
Ns

. (3.18)

Also, since Q(x) is a decreasing function, the optimal threshold λb is the minimal
value λmin , given by:

λb(|Ri |) = 1 + Q−1
(
α1/|Ri |)

√
Ns

. (3.19)

By substituting λ = λb(|Ri |) into the objective function, we have the utility
function in (3.12) for the Qm/Q f criterion:
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fb(|Ri |)=
[

Q
(

1

1 + γ

(
Q−1

(
α1/|Ri |)−γ

√
Ns

))]|Ri |
. (3.20)

Given the optimal threshold λa(|Ri |) and the value of (3.12) fa(|Ri |) for the
Qm + Q f criterion, as well as the optimal threshold λb(|Ri |) and the value of (3.12)
fb(|Ri |) for the Qm/Q f criterion, we have

�(Ri )=
{

(λa(|Ri |), . . . ,λa(|Ri |))1×|Ri |, Qm + Q f ,

(λb(|Ri |), . . . ,λb(|Ri |))1×|Ri |, Qm/Q f ,
(3.21)

and

U (Ri ) = U (|Ri |) =
{
fa(|Ri |), Qm + Q f ,

fb(|Ri |), Qm/Q f .
(3.22)

Note that U (Ri ) is only determined by the coalition size, and its value is limited
and discrete. The numerical results in Fig. 3.2 show that U (|Ri |) is an increasing
concave function in both criteria, i.e.,

U (|Ri |) > U (|R j |), with |Ri | > |R j |, (3.23)

and

U (|Ri |) −U (|Ri | − 1) < U (|R j |) −U (|R j | − 1),

with |Ri | > |R j |. (3.24)

The utility function (3.12) captures the sensing performance of SU i when all
members in Ri report to SU i by using the corresponding power and bandwidth
resources. The network sensing performance, which is the average value of the SUs’
sensing performance, therefore, is captured by the social welfare, defined as the sum
utility of all the coalitions, given by:

ϒ(CS) =
∑

Ri∈CS
U (Ri ). (3.25)

Considering the monotone-increasing property of U (·), as given by (3.23), we can
expect a larger social welfare, or equally, a better network sensing performance, as
the average coalition size increases. However, the power cost for a SU joining a
coalition increases with the distance between the SU and the coalition. Thus, due
to the limited power of each SU, the grand coalition that includes all SUs seldom
forms.

For any player j �= i, j ∈ Ri , the payoff from coalition Ri is defined by the
marginal utility due to player j’s joining, given by:

φ j (Ri )=U (Ri ) −U (Ri \ { j})=U (|Ri |)−U (|Ri | − 1), (3.26)
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Fig. 3.2 Coalition utility as
a function of coalition size
for both the Qm + Q f and
Qm/Q f criteria. a The
Qm + Q f criterion. b The
Qm/Q f criterion
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the payoff of player i is the remaining utility after coalition Ri pays all the other
members, i.e.,

φi (Ri )=U (|Ri |)−(|Ri | − 1) [U (|Ri |) −U (|Ri | − 1)] . (3.27)

Due to the monotone-increasing property and the concavity of the utility function,
as given by (3.23) and (3.24), all the payoffs are positive, and only determined by
the coalition size |Ri |. The numerical results in Fig. 3.3 show that φ j (|Ri |), j �= i
is a decreasing convex function in both criteria, i.e.,

φ j (|Rx |) < φ j (|Ry|),
with |Rx | > |Ry|, (3.28)
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Fig. 3.3 Coalition payoff as
a function of coalition size
for both the Qm + Q f and
Qm/Q f criteria. a The
Qm + Q f criterion. b The
Qm/Q f criterion
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and

φ j (|Rx | − 1) − φ j (|Rx |) < φ j (|Ry| − 1) − φ j (|Ry|),
with |Rx | > |Ry|. (3.29)

For any given coalitional structure CS, the total payoff of player i ∈ N is then given
by:

�i (CS) =
∑

i∈R j ,R j∈CS
φi (R j ). (3.30)

Note that �i (CS) is only determined by the sizes of the coalitions that player i
participates in and the total payoff of all players is equal to the social welfare.

Definition 5 The OCF game is defined by the pair (N ,U ), where N is the set
of players, and U : 2N → R, given by (3.22), is the utility function. For any
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given coalitional structure CS, the individual payoff of SU i ∈ N is �i (CS), given
by (3.30).

In theOCF-gamemodel, thefirst step of the suboptimal solution is strictly captured
by the local resource limitations, and the second steps (3.9) and (3.11) are captured
by the utility function (3.12). Therefore, the centralized optimization problems (3.8)
and (3.10) can be cast as the OCF game where the players choose their strategies in
a distributed manner so as to maximize their own payoffs. As the individual payoffs
increase, the social welfare also increases, and, in this case, the objective functions
in (3.8) and (3.10) approach closer to their optimal values.

3.4.2 Algorithm Based on Overlapping Coalition Formation

We present a DCS algorithm that consists of three stages: (1) the neighbor discovery
(ND) stage, (2) the coalition formation (CF) stage, and (3) the threshold decision
(TD) stage. In the ND stage, each SU discovers nearby SUs as well as the distance
to each of its neighbors. In the CF stage, the SUs communicate with each other via
the control channel (reporting channel) and decide which SUs to report, or equally,
which coalitions to join. In the TD stage, each SU decides its local sensing threshold
using a local method. After the completeness of all the three stages, the SUs can
perform DCS as described in the system model, with the reporting matrix and the
local sensing thresholds given by the DCS algorithm. This DCS algorithm based on
overlapping coalition formation is shown in Table3.1.

In the ND stage, a number of existing ND algorithms can be applied over the
control channel [36, 37].We assume the neighbors within distance μ

√
(κPSU )/(γ0σ2

u)

are discovered, so that the received power at any SU is above κ0 when its neighbor
transmits at full power PSU . The set of SU i’s neighbors is denoted byNi . Note that
the concept of neighbor is reciprocal. The distance di, j between any two neighboring
SU i and SU j is known by both ends.

In the CF stage, we give a coalition formation algorithm based on the OCF-game
model. First, each SU initializes its state by joining as many coalitions as possible,
i.e., each SU joins coalitions from the nearest to the farthest as long as its resource
is sufficient. Formally, for SU i ∈ N with neighbors n1, n2, . . . , nL , L = |Ni |,
we assume di,n j ≤ di,n j+1 ,∀1 ≤ j < L . Then, SU i sequentially joins coalitions
Rn1 ,Rn2 , . . . ,Rnl until the remaining power or bandwidth resource is insufficient
for the next coalition Rnl+1 , or it already joins all the nearby coalitions (l = L).
Note that SU i naturally belongs to coalitionRi in all cases without contributing any
power or bandwidth resource.

After the initialization, the SUs iteratively adjust their report-to sets Si , i ∈ N in
a random order, so as to maximize their individual total payoff. Given the current
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coalitional structure CS = {R1,R2, . . . ,RN }, the best strategy of SU i is formulated
as:

max
Si⊆Ni

∑

j∈Si

φi (R j ∪ {i}), (3.31a)

s.t.
∑

j∈Si

γ0σ
2
u

κd−μ
i, j

≤ PSU , (3.31b)

|Si |θ0 ≤ θSU . (3.31c)

Problem (3.31) is a knapsack problem with an extra constraint on the number of
objects, which in most general cases is NP-complete [35]. Here, we use a “switch”
operation for SUs to adjust their report-to sets, after which the total payoff of the
considered SU is guaranteed to increase. The main idea of switch operation is to
leave one low-paying coalition and join another high-paying coalition, as long as
the remaining power can cover the possible extra consumption. The convergence of
switch operations is proved in the next subsection.

Definition 6 For any given coalitional structure CS = {R1,R2, . . . ,RN }, a switch
operation of player i ∈ N with remaining power Pi is defined by a pair (Rx ,Ry)

that satisfies:
γ0σ

2
u

κd−μ
i,y

− γ0σ
2
u

κd−μ
i,x

≤ Pi , (3.32)

and
φi (Ry ∪ {i}) > φi (Rx ), (3.33)

where x, y ∈ Ni and i ∈ Rx , i /∈ Ry . For any SU i ∈ N , a switch operation
(Rx ,Ry) implies that SU i leaves coalition Rx and joins coalition Ry .

In the TD stage, each coalition Ri seeks to find the optimal threshold vector
�(Ri ) in (3.21), so as to achieve the coalition utility as defined in (3.12). However,
an SU may belong to multiple coalitions and the optimal threshold of one coalition
is not necessarily the optimal threshold of the other coalitions. Therefore, we need a
threshold decision algorithm for each SU to determine its practical sensing threshold.
Generally speaking, this local threshold should be a function of the optimal thresholds
λ(R j ) for all R j including i . In the Qm/Q f criterion, in order to guarantee the
false alarm probability, the SU should choose the maximum value of all the expected
thresholds, i.e.,max j |i∈R j λb(|R j |). In the Qm+Q f criterion, there are no constraints
for false alarm or missed detection probabilities. Considering that each coalition
represents the sensing performance of an SU, for fairness, the SU should choose the
average value of all the expected thresholds, i.e., [∑ j |i∈R j

λa(|R j |)][∑ j |i∈R j
1]−1,
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Table 3.1 DCS Algorithm based on Overlapping Coalition Formation

Neighbor Discovery Stage
For any SU i ∈ N , it discovers its neighboring SUs within distance μ

√
(κPSU )/(γ0σ2

u), the set of
which is denoted by Ni , and the distance di, j for any neighbor j ∈ Ni .

Coalition Formation Stage
Each SU joins as many coalitions as possible by informing the corresponding SUs about its
joning and the initial coalitional structure is given by CS0.

1: CS ← CS0 % initial coalitional structure
2: while SU i has a switch operation (Rx ,Ry) as defined in Definition 6 do
3: SU i informs SU x that it leaves coalition Rx .
4: SU x informs SUs j �= x, j ∈ Rx\{i} that SU i leaves coalition Rx .
5: The corresponding SUs update their information about coalition Rx ← Rx\{i}.
6: SU i informs SU y that it joins coalition Ry .
7: SU y informs SUs j �= y, j ∈ Ry that SU i joins coalition Ry .
8: The corresponding SUs update their information about coalition Ry ← Ry ∪ {i}.
9: end while
10: CS f ← CS % final coalitional structure

Threshold Decision Stage
For each SU i ∈ N , the local sensing threshold λi is given by (3.34) with the current coalitional
structure CS f .

where [∑ j |i∈R j
1] is the number of coalitions that SU i joins. Thus, for any final

coalitional structure CS f = {R1,R2, . . . ,RN }, the local sensing threshold of SU
i ∈ N is formally given by:

λi =

⎧
⎪⎪⎨

⎪⎪⎩

[
∑

j |i∈R j

λa(|R j |)
] [

∑

j |i∈R j

1

]−1

, Qm + Q f

max
j |i∈R j

λb(|R j |), Qm/Q f

(3.34)

where λa(·) and λb(·) are given in (3.15) and (3.19), respectively.

3.4.3 Convergence and Overhead

Theorem 1 In the OCF game with any initial coalitional structure CS0, the network
converges to a final coalitional structure CS f within �E/ε� switch operations, where
E = ∑

i∈N U (|Ni |)−∑
Ri∈CS0

U (|Ri |) and ε = 2U (N −1)−U (N )−U (N −2).

Proof For any current coalitional structure CS, the utilities of coalitions Rx and
Ry are changed after switch operation (Rx ,Ry) of SU i , while the utilities of the
other coalitions remain the same. For coalition Rx , its size decreases from |Rx | to
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|Rx | − 1 and its utility decreases from U (|Rx |) to U (|Rx | − 1). For coalition Ry ,
its size increases from |Ry| to |Ry| + 1 and its utility increases from U (|Ry|) to
U (|Ry| + 1). Thus, the social welfare of the new coalitional structure CS ′ is given
by:

ϒ(CS ′) =ϒ(CS) − [
U (|Rx |) +U (|Ry|)

]

+ [
U (|Rx | − 1) +U (|Ry| + 1)

]

=ϒ(CS) + [
U (|Ry| + 1) −U (|Ry|)

]

− [U (|Rx |) −U (|Rx | − 1)]

=ϒ(CS) + φi (|Ry ∪ {i}|) − φi (|Rx |)
>ϒ(CS) (3.35)

Inequality (3.35) shows that a switch operation always increases the social welfare.
Since the payoff function is a convex decreasing function, as given in (3.28) and
(3.29),wehaveϒ(CS ′)−ϒ(CS) = φi (|Ry∪{i}|)−φi (|Rx |) ≥ φi (N−1)−φi (N ) =
2U (N−1)−U (N )−U (N−2). Thus,we have a lower bound of themarginal increase
of social welfare due to a single switch operation ε = 2U (N−1)−U (N )−U (N−2).
Also, the coalition utility is an increasing function, as given in (3.23), we have an
upper bound of social welfare when each coalition Ri ⊆ Ni reaches its largest size
|Ni |, given by∑

i∈N U (|Ni |). Thus, the gap of social welfare between CS0 and CS f

is limited by the upper bound E = ∑
i∈N U (|Ni |) − ∑

Ri∈CS0
U (|Ri |). Therefore,

the network must converge within �E/ε� switch operations. �

Traditionally, the stability of OCSs is studied by the notion of c-core, in which an
OCS is stable if no subset of players has the motivation to deviate from the current
OCS and form new coalitions among themselves [30]. However, the notion c-core is
based on the assumption that the deviators (players who remove their contribution
from some of their coalitions) are untrustworthy and all coalitions should punish
them by giving no payoff to them. In the OCF game, the players do not exhibit this
property. In contrast, for our game, the deviators will not suffer any punishment.
Thus, we need to define new notions to characterize the stability of the final OCS in
the given algorithm.

Definition 7 In the OCF game, OCS CS is switch-stable if there does not exist a
switch operation (Rx ,Ry) for any SU i ∈ N as defined in Definition 6.

For the algorithm given in Table3.1, we directly have:

Lemma 1 The final coalitional structure CS f resulting from the algorithm in
Table3.1 is switch-stable.

In general, the final coalitional structure CS f is not the optimal solution. Also,
the specific form of CS f greatly depends on the sequence that the SUs perform
switch operations and it is generally not unique. However, we still have the following
proposition.



44 3 Cooperative Spectrum Sensing in Cognitive Radio

Proposition 2 For any given CR network, let CSopt denote the optimal coalitional
structure with the highest social welfare ϒ(CSopt ), and let CS0 and CS f denote the
initial and final coalitional structures in the overlapping algorithm. We have:

ϒ(CS f )

ϒ(CSopt )
≥

∑
Ri∈CS0

U (|Ri |)
NU (�∑Ri∈CS0

|Ri |/N�) . (3.36)

Proof Since the utility function U (·) is an increasing concave function, as given in
(3.23) and (3.24), the optimal social welfare satisfies:

ϒ(CSopt ) =
∑

Ri∈CSopt

U (|Ri |) ≤ NU (�
∑

Ri∈CSopt

|Ri |/N�). (3.37)

In the overlapping algorithm, as we noted, each SU joins as many coalitions as
possible in the initialization period of the CF stage. Therefore, the initial coalitional
structure CS0 has the largest sum coalition size among all the feasible coalitional
structures. Note that a switch operation does not change the sum size of the involved
coalitions. We have:

∑

Ri∈CS f

|Ri | =
∑

Ri∈CS0

|Ri | ≥
∑

Ri∈CSopt

|Ri |. (3.38)

SinceU (·) is an increasing function, as given in (3.23), by substituting (3.38) into
(3.37), we have:

ϒ(CSopt ) ≤ NU (�
∑

Ri∈CS0

|Ri |/N�). (3.39)

Note that after a switch operation, the social welfare strictly increases. We have:

ϒ(CS f ) ≥ ϒ(CS0) =
∑

Ri∈CS0

U (|Ri |). (3.40)

Combining (3.39) and (3.40), we have:

ϒ(CS f )

ϒ(CSopt )
≥

∑
Ri∈CS0

U (|Ri |)
NU (�∑Ri∈CS0

|Ri |/N�) . (3.41)

�

Proposition 2 shows that, in the given algorithm, the relative performance of the
final coalitional structure CS f , compared with the optimal coalitional structure, is
guaranteed to be above a certain threshold. This threshold only depends on the initial
coalitional structure CS0 given by the initialization process in the coalition formation
stage. For a given CR network, the initialization process generates a unique coali-
tional structure CS0. Thus, the threshold is only determined by the network parame-



3.4 DCS Based on Overlapping Coalition Formation Games 45

ters, and therefore, the relative performance, compared with the optimal solution, is
guaranteed.

The overhead required for practically implementing the algorithm in Table I
mainly relates to the stage in which the SUs initialize their states as well as when a
switch operation is performed. We assume an SU’s identity can be represented by
τ bits. Note that each coalition corresponds to a particular SU. A coalition’s iden-
tity also requires τ bits. For the message that SU i leaves or joins coalition R j , by
ignoring the 1 bit to distinguish “leave” and “join,” we can transmit this message in
a packet of 2τ bits.

In the initialization of coalitional structure CS0, each SU i ∈ N receives the
information from SU j �= i, j ∈ Ri that SU j joins coalitionRi . Thus, the overhead
for initialization is given by:

Tinit (CS0) =
∑

Ri∈CS0

2(|Ri | − 1)τ . (3.42)

For performing a switch operation (Rx ,Ry), SU i informsSU x that SU i it wishes
to leave coalition Rx , and informs SU y that it will join coalition Ry . Then, SU x
and SU y update their coalition information by informing their coalition members
about SU i’s joining or leaving coalition Rx or Ry . Thus, the overhead of switch
operation (Rx ,Ry) is given by:

Tswi tch(Rx ,Ry) =4τ + 2τ (|Rx | − 2) + 2τ (|Ry | − 1)

=2τ (|Rx | + |Ry| − 1). (3.43)

The coalition size is approximatelyO(N ). Thus, the overhead of the initialization
period is O(N 2), and the overhead of a single switch operation is O(N ). Note that
the network converges within �E/ε� switch operations, as given by Theorem 1. The
worst-case overhead is approximately O(N 2) + �E/ε�O(N ).

3.5 DCS Based on Nonoverlapping Coalition Formation
Games

In this section, we extend the popular nonoverlapping CF-game model for cooper-
ative sensing that is proposed in [27] while considering the power and bandwidth
constraints and allowing the utility to reflect the Qm/Q f criterion as well as the
Qm + Q f criterion. Here, we reconsider the CF-game model with the newly defined
coalition utility, and then, we point out its limitations when compared to the more
general OCF-game model of Section IV.
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3.5.1 Nonoverlapping CF-Game Model

In the nonoverlapping CF game, the players are also the SUs N = {1, 2, . . . , N }
with power resource PSU and bandwidth resource θSU . The players form disjoint
nonoverlapping coalitions and the coalitional structure CS is a partition ofN . Each
player i ∈ N that belongs to coalition C ⊆ N reports to the players in the same
coalition by contributing power

∑
j �=i, j∈C(κ0σ

2
u)/(Ad

−μ
i, j ) and bandwidth (|C|−1)θ0.

Thus, each SU in C can receive the sensing data of all SUs in C, and the utility of
coalition C is thus:

V (C) =
∑

i∈C
U (C) = |C| U (|C|), (3.44)

where U (|C|) is given by (3.22). Unlike the OCF game, the coalition in nonover-
lapping CF game represents the sum performance of all its coalition members. To
achieve the utility defined in (3.44), we have the optimal threshold vector given by:

�(C) =
{

(λa(|C|), . . . ,λa(|C|))1×|C|, Qm + Q f

(λb(|C|), . . . ,λb(|C|))1×|C|, Qm/Q f
(3.45)

where λa(·) and λb(·) are given in (3.15) and (3.19), respectively.
The social welfare is also defined as the sum utility of all the coalitions, given by

�(CS) =
∑

C∈CS
|C|U (|C|) =

∑

j∈N | j∈C
U (|C|). (3.46)

Since U (|C|) reflects the sensing performance of each SU in C, then, the defined
social welfare also reflects the network sensing performance. As similar as the OCF-
gamemodel, due to the monotone-increasing property ofU (·), the network performs
better as the average coalition size increases. Also, due to the increasing power cost
for joining a larger coalition, the grand coalition may not always form.

We assume that the utility of each coalition is equally distributed to each coalition
member, and the individual payoff of any player i ∈ N is then given by:

�i (CS) = ψi (C) = U (|C|), (3.47)

where i ∈ C and C ∈ CS. Note that the coalitions are completely disjoint and each
SU belongs to only one coalition. The total payoff of an SU is the payoff from the
coalition it belongs to. Naturally, the total payoff of all SUs is equal to the defined
social welfare.

Definition 8 TheCF game is defined by the pair (N , V ), whereN is the set of play-
ers, and V : 2N → R, given by (3.44), is the utility function. For any given coalitional
structure CS, the individual payoff of SU i ∈ N is �i (CS), given by (3.47).
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Compared with the OCF-game model defined in Definition 5, the nonoverlap-
ping CF-game model also captures the suboptimal solution by the local resource
limitations and its newly defined utility function (3.44). Moreover, the optimal sens-
ing threshold given by (3.45) is more practical since the coalitions are disjoint and
each SU belongs to only one coalition. Therefore, the increase of individual payoff,
or equally the increase of social welfare, means an equal increase of the objective
functions in (3.8) and (3.10).

However, the nonoverlapping CF-game model imposes extra limitations on the
reporting structure due to the nonoverlapping assumption. From the perspective of
an OCF game, any coalition C in the nonoverlapping CF-game model represents |C|
identical coalitions in the OCF-game model Ri , i ∈ C. Thus, the nonoverlapping
CF-game model can be seen as a special case of the OCF-game model, in which the
N overlapping coalitions are classified into groups, and in each group, the coalitions
are identical to a coalition consisting of the SUs that these coalitions correspond to.
Next, we show the limitation of the CF-game model via a special case. In Fig. 3.1,
there are three nearby SUs {1, 2, 3} and we assume each SU can only report to one
SU due to the power and bandwidth constraints. In the OCF-game model, we can
expect the coalitional structure R1 = {1, 3},R2 = {2, 1},R3 = {3, 2} to form.
Thus, the sensing performance of the SUs are respectively given by U (2),U (2),
and U (2). In the nonoverlapping CF-game model, the network forms a structure
with a two-SU coalition and a singleton, and, thus, the sensing performance will be
given by U (1),U (2) and U (2). Clearly, the result of the OCF-game model strictly
outperforms the nonoverlapping CF-game model.

3.5.2 Algorithm Based on Nonoverlapping Coalition
Formation

In CF games, the merge-and-split algorithm is often used to achieve a stable coali-
tional structure [26, 27]. In this algorithm, multiple coalitions merge into one larger
coalition and a single coalition split into multiple smaller coalitions, as long as the
payoffs of all the involved players are increased. In the considered CF game, each
player’s payoff increases with the coalition size, as seen in (3.47). Thus, the players
always prefer larger coalitions and the merge-and-split algorithm degrades to the
merge algorithm where the coalitions keep merging until the bandwidth or power
resource is completely used for some players. The DCS algorithm based on nonover-
lapping coalition formation is formally given in Table3.2.

In the ND stage, we use the same method as in the overlapping case, where the
SUs within distance μ

√
(κPSU )/(γ0σ2

u) are discovered as the neighbors, the neighbor
set of SU i ∈ N is also denoted by Ni .

In the CF stage, we define the merge operation as follows:

Definition 9 Given the coalitional structure CS, a merge operation in CS is defined
by a pair (C1, C2) of two disjoint coalitions that satisfies:
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∑

j �=i, j∈C1∪C2

γ0σ
2
u

κd−μ
i, j

≤ PSU , i ∈ C1 ∪ C2, (3.48)

(|C1 ∪ C2| − 1)θ0 ≤ θSU , (3.49)

where any two SUs in C1 and C2 are neighbors, i.e., i ∈ N j ,∀i, j ∈ C1 ∪ C2.
Suppose each coalition C ⊂ N has a coalition head that has the complete informa-

tion of all the coalition members, i.e., Ni , i ∈ C and di, j , i ∈ C, j ∈ Ni . Therefore,
the merge operation between two coalitions is actually performed by the two coali-
tions heads that represent them. Note that any feasible merge operation require all the
involved players to be neighbors. Any coalition member can be chosen as the coali-
tion head without missing any feasible merge operations. For the coalition formed
by a merge operation, the coalition head is randomly chosen from the two original
coalitions heads. For practical reasons, each coalition headmaintains a tag parameter
for each of its neighboring coalition heads. Formally, for any two neighboring heads
i and j of coalitions C1 and C2, tags ti, j = 0 and t j,i = 0 represents that a merge
operation (C1, C2) is not feasible. A coalition head only tries the merge operations
with nonzero tags. If an SU is no longer a coalition head, the corresponding tags are
deleted.

In the TD stage, the optimal threshold vector �(C) for any coalition C ∈ CS f

is given by (3.45), where CS f is the final coalition structure given by the CF stage.
Thus, the local sensing threshold of SU i ∈ C, C ∈ CS f is formally given by:

λi =
{

λa(|C|), Qm + Q f

λb(|C|). Qm/Q f
(3.50)

where λa(·) and λb(·) are given in (3.15) and (3.19), respectively.

3.5.3 Convergence and Overhead

The convergence of the nonoverlapping coalition formation algorithm is a direct
result of the defined merge rule, and follows directly from known results such as
[13, 26, 27]. Actually, we can expect the algorithm to converge within N merge
operations, since each merge operation will decrease the number of coalitions by
1. In the algorithm in Table3.2, the main source of overhead pertains to the case
when a coalition tries to merge with another coalition and transmits the complete
coalition information. If the merge operation is feasible and actually executed, the
new coalition head updates coalition information with additional overhead, and the
“retired” coalition head informs its original members about its “retirement” with 1
bit information. If the merge operation is not feasible, only the 1 bit fail information
is transmitted. Here, we also assume an SU’s identity requires τ bits and ignore the
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Table 3.2 DCS Algorithm based on Nonoverlapping Coalition Formation

Neighbor Discovery Stage
For each SU i ∈ N , it discovers its neighboring SUs within distance μ

√
(κPSU )/(γ0σ2

u), the set
of which is denoted by Ni , and the distance di, j for any neighbor j ∈ Ni .

Coalition Formation Stage

1: CS ← {{1}, {2}, . . . , {N }} % each SU forms a singleton
2: ti, j ← 1, i ∈ N , j ∈ Ni % each SU maintains a tag corresponding to a neighbor coalition

head
3: while SU i ∈ C has a tag ti, j = 1 do
4: SU i sends SU j the complete information of coalition C.
5: SU j ∈ C′ computes if (C, C′) is a merge operation as defined in Definition 9.
6: if (C, C′) is a merge operation then
7: % C and C′ merge into C ∪ C′ with coalition head j .
8: SU j informs SUs k ∈ C that SUs in C′ join their coalition C, and sets tags t j,k ← 0.
9: SUs k ∈ C update their coalition information and set all their tags to zero.
10: SU j informs SUs k �= j, k ∈ C′ that SUs in C join their coalition C′, and sets tags

t j,k ← 0.
11: SUs k �= j, k ∈ C′ update their coalition information and set all their tags to zero.
12: else
13: SU j informs SU i that the trying (C, C′) fails, and sets tag t j,i ← 0.
14: SU i sets its tag ti, j ← 0.
15: end if
16: end while
17: CS f ← CS % final coalitional structure

Threshold Decision Stage
For any SU i ∈ N , the local sensing threshold λi is determined by (3.50) with the current
coalitional structure CS f .

1 bit information. Note that in the CF-game model, each SU belongs to one and only
one coalition. The information that SU i joins coalition C received by SU j ∈ C can
be represented by the identity of SU i without causing any ambiguity.

The complete information of coalition C includes the information of each coali-
tion member i ∈ C, which consists of SU i itself, all its neighbors in Ni and the
corresponding distances di, j , j ∈ Ni . We simply assume a distance requires τ bits.
Thus, the complete information of coalition C is given by:

Ttry(C) =
∑

i∈C
(2|Ni | + 1). (3.51)

In merge operation (C, C ′), coalition head j ∈ C ′ becomes the head of the merged
coalition C ∪ C ′, and then, it informs the SUs in C about the joining of the SUs in C ′,
as well as the SUs in C ′ (except for itself) about the joining of the SUs in C. Thus,
the overhead of merge operation (C, C ′) is given by:
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Tmerge(C, C ′) =|C| × |C ′| + (|C ′| − 1) × |C|
=(2|C ′| − 1)|C|τ . (3.52)

where SU i and SU j are coalition heads of coalitions C and C ′, respectively.
Ttry(C) is O(N 2), and Tmerge(C, C ′) is O(N 2). In Table3.2, in each attempt for

a merge operation, at least one tag parameter is set to zero. Thus, the network con-
verges within N 2 attempts, and the total overhead of trying is less thanO(N 4). Also,
the network converges within N merge operations. Thus, the overhead of merge
operations is O(N 3). Therefore, the total overhead is less than O(N 4).

3.6 Practical Issues

In the considered DCS problem, in order to simplify our discussion and calculation,
some of the practical issues are not considered. In this section, we discuss how these
practical issues may effect our proposal and how we can extend our model to involve
these factors.

The utility function is the fundamental characterization of an OCF game. In the
considered OCF game, the utility function U (Ri ) precisely represents the sensing
performance of SU i in both the Qm+Q f and Qm/Q f criteria, as seen in (3.22). Due
to the increasing monotony and concavity ofU (Ri ), the social welfare is guaranteed
to be increased by each switch operation, and thus, the system sensing performance
is always increasing until the network converges to a switch-stable outcome. In fact,
as long asU (Ri ) is defined as the best sensing performance we can achieve from this
coalition, we can easily understand that any extra data only increases the coalition
utility and the marginal improvement only decreases with the coalition size, i.e.,
U (Ri ) is monotone increasing and concave.

In the system model, we assume that the PU is far away from the SUs, so that
the received SNRs are the same for all SUs. However, we can replace the common
received SNR γ with γi for each SU i , so as to consider small-scale scenarios inwhich
the SUs have different distances to the PU. As we noted, U (Ri ) is still monotone
increasing and concave, and thus, the OCF algorithm can still work effectively, only
that the calculation becomes more complex. For similar reasons, we can also extend
ourmodel to involvemore practical concerns, such asmore sophisticated fusion rules
as in consensus-based algorithms [4], the spatial correlation between SUs [22, 23],
the mobility of PUs [24], the nonidealness of the report channel [25], and even the
location and time diversities of SUs in spectrum-heterogeneous systems [18–21]. For
each practical issue, the utility function U (Ri ) should be redefined to reflect such
concern, but still should present the best sensing performance we can achieve for SU
i . Note that these practical issues may complicate the expression of U (Ri ), and we
may need to simplify U (Ri ) to reduce the computational complexity. However, no
matter how we define U (Ri ), the properties of increasing monotony and concavity
should always be guaranteed.
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3.7 Simulation Results and Analysis

For our simulations,we consider a network inwhich the SUs are randomly distributed
within a 10km×10km square area and the PU is D = 150km away from the square
center. The path loss parameters are κ = 1 and μ = 3, and the noise power is
σ2
u = −90dBm. The PU transmit power σ2

s is set in such a way that the average
received SNR at the SUs is γ = −15dB, and the number of samples at each SU is
set to Ns = 10,000. For the power and bandwidth constraints, the minimum received
SNR and minimum time-frequency resource for transmitting 1 bit are set to γ0 =
0dB and θ0 = 1, respectively. In the Qm/Q f criterion, the maximum false alarm
constraint is set to α = 0.1, as recommended by the IEEE 802.22 standard [38]. The
remaining parameters are variedwithin given ranges so as to evaluate the performance
of different algorithms under different conditions. All statistical results are averaged
over the random locations of the SUs via a large number of independent runs.

3.7.1 Comparison of DCS Algorithms

In Fig. 3.4,we show the snapshots of coalitional structures of both the nonoverlapping
and overlapping algorithms in a 5-SU network. The power and bandwidth constraints
are set to PSU = 100mWand θSU = 10. Aswe see, in the nonoverlapping algorithm,
the SUs form a 3-coalition nonoverlapping structure C1 = {2}, C2 = {1, 4}, C3 =
{3, 5}, and each SU reports to the SUs in the same coalition.While, in the overlapping
algorithm, the SUs form a 5-coalition overlapping structure R1 = {1, 2},R2 =
{1, 2, 4},R3 = {3, 5},R4 = {2, 4},R5 = {3, 5}, and in each coalition, all the
members report to the particular SU that the coalition corresponds to.

In Fig. 3.5, we show the network sensing performance as a function of the net-
work size N in both the Qm + Q f and Qm/Q f criteria. The power and bandwidth
constraints are set as PSU = 100mW and θSU = 10. It shows that, for both criteria,
the cooperative algorithms outperform the local spectrum sensing, and their cooper-
ative gains increase with the network size. Also, the overlapping DCS outperforms
the nonoverlapping DCS in all cases, and the gap between them increases with the
network size. When the network is sparse, both cooperative algorithms have similar
performance. While, when the network is dense (N = 50), the total error probability
(Qm + Q f criterion) is reduced from 0.04 to 0.01, which is 25%, and the missed
detection probability (Qm/Q f criterion) is reduced from 0.005 to 0.001, which is
20%. As the network becomes denser, each SU can cooperate with more neighbors
with the same power and bandwidth resources, and thus, the average coalition size
increases. In both Sections IV and V, the network sensing performance is represented
by the social welfare, which increases with the average coalition size. Therefore, the
increasing network size can improve the network sensing performance by increasing
the average coalition size, as seen in Fig. 3.5.
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Fig. 3.4 Snapshots of the
coalitional structures
resulting from both the
nonoverlapping and
overlapping algorithms in a
5-SU network with power
constraint PSU = 100mW
and bandwidth constraint
θSU = 10. a
Non-overlapping algorithm.
b Overlapping algorithm

(a)

(b)

In Fig. 3.6, we show the average coalition size as a function of network size N
resulting from both cooperative algorithms. It clearly shows that the overlapping
DCS achieves a much larger coalition size than the nonoverlapping DCS, which
explains the performance gap as seen in Fig. 3.5. In general, the overlapping structure
provides the SUs with more flexibility on the distribution of their local resources,
which encourages them to cooperate with more neighbors, and thus, increases the
average coalitions size and improves the network sensing performance. Figure3.6
shows that the average coalition size for the overlapping case reaches a maximum
of 11 for a network with N = 50 SUs, while that for the nonoverlapping case does
not exceed 4.

In Fig. 3.7, we show the probability density functions of coalition size per SU
for both cooperative algorithms. It shows that in the nonoverlapping algorithm, the
coalitions with sizes 2, 3, 4 occupy about 80% of all coalitions, while in the over-
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Fig. 3.5 Network sensing
performance as a function of
the number of SUs N with
power constraint
PSU = 100mW and
bandwidth constraint
θSU = 10 in both criteria.
The false alarm constraint in
the Qm/Q f criterion is
α = 0.1. a The Qm + Q f
criterion. b The Qm/Q f
criterion
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Fig. 3.6 Average coalition
size as a function of the
number of SUs N with power
constraint PSU = 100mW
and bandwidth constraint
θSU = 10 in either criteria
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Fig. 3.7 Probability density
function of coalition size per
SU for networks with
N = 30 SUs, power
constraint PSU = 100mW
and bandwidth constraint
θSU = 10 in either criteria. a
Non-overlapping algorithm.
b Overlapping algorithm
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lapping algorithm, coalitions with sizes 6, 7, 8, 9, 10 occupy the same percentage.
This is in line with the result in Fig. 3.6 which shows that the overlapping algorithm
forms larger coalitions. In addition, this also implies that the variance of the sizes of
the coalitions resulting from the overlapping algorithm exceeds those resulting from
the nonoverlapping algorithm. Thus, the SUs in the overlapping algorithm have a
wider range of sensing performance.

3.7.2 Power and Bandwidth Constraints

Figures3.8 and 3.9 show the network sensing performance as a function of the band-
width θSU and the power PSU , respectively. In Fig. 3.8, we show the curves of infinite
power (PSU = ∞) and limited power (PSU = 60mW) for each algorithm in each
criterion. The gap between the two curves represents the corresponding performance
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Fig. 3.8 Network sensing
performance as a function of
the total bandwidth of each
SU θSU with network size
N = 30. The false alarm
constraint in the Qm/Q f
criterion is α = 0.1. a The
Qm + Q f criterion. b The
Qm/Q f criterion

0 1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

Total bandwidth of each SU

A
ve

ra
ge

 Q
m

+
Q

f

Non−overlapping DCS P
SU

 = ∞
Non−overlapping DCS  P

SU
 = 60mW

Overlapping DCS P
SU

 = ∞
Overlapping DCS P

SU
 = 60mW

Power constraint of
non−overlapping DCS

Power constraint of
overlapping DCS

0 1 2 3 4 5 6 7 8 9 10
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Total bandwidth of each SU

A
ve

ra
ge

 Q
m
 (

Q
f <

 α  
)

Non−overlapping DCS P
SU

 = ∞
Non−overlapping DCS P

SU
 = 60mW

Overlapping DCS P
SU

 = ∞
Overlapping DCS P

SU
 = 60mW

Power constraint of
non−overlapping DCS

Power constraint of
overlapping DCS

(a)

(b)

decrease due to the power constraint. As similar to Fig. 3.8, we show performance
decrease due to the bandwidth constraint in Fig. 3.9, by showing the curves of infi-
nite bandwidth (θSU = ∞) and limited bandwidth (θSU = 2). Figure3.8 (Fig. 3.9)
clearly shows that the curves of infinite power (bandwidth) decrease as the bandwidth
(power) resource increases, while the curves of limited power (bandwidth) flatten out
once the bandwidth (power) resource exceeds a certain threshold. Thus, the gap due
to the power (bandwidth) constraint increases with the bandwidth (power) resource.
In the Qm + Q f criterion, when the bandwidth (power) is sufficient θSU = 10
(PSU = 100mW), the power (bandwidth) constraint increases the total error proba-
bility from 0.01 (0.044) to 0.05 (0.052) of the nonoverlapping algorithm, and from
0.008 (0.02) to 0.02 (0.04) of the overlapping algorithm. In the Qm/Q f criterion,
when the bandwidth (power) is sufficient θSU = 10 (PSU = 100mW), the power
(bandwidth) constraint increases themissed detection probability from 0.001 (0.006)
to 0.007 (0.008) of the nonoverlapping algorithm, and from 0.001 (0.002) to 0.003
(0.005) of the overlapping algorithm.
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Fig. 3.9 Network sensing
performance as a function of
the total power of each SU
PSU with network size
N = 30. The false alarm
constraint in the Qm/Q f
criterion is α = 0.1. a The
Qm + Q f criterion. b The
Qm/Q f criterion
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The behavior of the curves shown in Figs. 3.8 and 3.9 can be explained as follows.
As previously noted, the network sensing performance is mainly determined by the
average coalition size, which in general is limited by both power and bandwidth
constraints. If the power (bandwidth) is infinite, the bandwidth (power) becomes
the only limitation and the performance monotonously improves with the increasing
bandwidth (power), as seen in the curves of infinite power (bandwidth) in Fig. 3.8
(Fig. 3.9). If the power (bandwidth) is limited, it will become the major limitation
when the bandwidth (power) is sufficiently large, and even if we keep increasing
the bandwidth (power) resource, the performance keeps stationary, as we see in the
curves of limited power (bandwidth) in Fig. 3.8 (Fig. 3.9). Therefore, the gap due to
the power (bandwidth) constraint increases with the bandwidth (power) resource, as
seen in Fig. 3.8 (Fig. 3.9).

In Fig. 3.10, we show the average resource utilization as a function of the number
of SUs N for both bandwidth and power resources. When the network is dense (N =
50), 90%power and 90%bandwidth are utilized by the overlapping algorithm,while
only 50% power and 25% bandwidth are utilized by the nonoverlapping algorithm.
As we noted, the overlapping structure provides the SUs with more flexibility on the
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Fig. 3.10 Average resource
utilization as a function of
the number of SUs N with
power constraint
PSU = 100mW and
bandwidth constraint
θSU = 10 in either criteria.
The false alarm constraint in
the Qm/Q f criterion is
α = 0.1. a Power utilization.
b Bandwidth utilization
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distribution of local resources, which enables them to contribute more resources, and
thus, increases the power and bandwidth utilizations, as seen in Fig. 3.10. The higher
resource utilization of the overlapping algorithm increases the average coalition size,
and thus, improves the network sensing performance, as seen in Figs. 3.5 and 3.6.

3.7.3 Convergence, Overhead, and Complexity

In Fig. 3.11, we show the network sensing performance as a function of the maxi-
mum overhead for each algorithm in each criterion for networks with N = 30 SUs.
For both the cooperative algorithms, we can see that the network sensing perfor-
mance improves fast as the SUs begin to exchange information, and then converges
steadily to a final value. For the overlapping algorithm, 90% improvement of the



58 3 Cooperative Spectrum Sensing in Cognitive Radio

0 500 1000 1500
0

0.02

0.04

0.06

0.08

0.1

0.12

Algorithm overhead ( τ )

A
ve

ra
ge

 Q
m

+
Q

f
Overlapping DCS

0 2000 4000 6000 8000 10000
0

0.02

0.04

0.06

0.08

0.1

0.12

Algorithm overhead ( τ )

A
ve

ra
ge

 Q
m

+
Q

f

Non−overlapping DCS

0 500 1000 1500
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Algorithm overhead ( τ )

A
ve

ra
ge

 Q
m

Overlapping DCS

0 2000 4000 6000 8000 10000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Algorithm overhead ( τ )

A
ve

ra
ge

 Q
m

Non−overlapping DCS

(a) (b)

(c) (d)

Fig. 3.11 Network sensing performance as a function of the algorithm overhead with network size
N = 30, power constraint PSU = 100mW and bandwidth constraint θSU = 10 in both criteria.
The false alarm constraint in the Qm/Q f criterion is α = 0.1

Fig. 3.12 Average overhead
as a function of the number
of SUs N with power
constraint PSU = 100mW
and bandwidth constraint
θSU = 10
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network sensing performance is obtained within the first 300 τ bits, while for the
nonoverlapping algorithm, it takes 4000 τ bits to achieve the same percentage.

In Fig. 3.12, we show the overhead as a function of the number of SUs N for each
algorithm. In this figure, we can see that the overhead of the overlapping algorithm is
only about 20% of the nonoverlapping algorithm, though the overlapping algorithm
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Fig. 3.13 Number of
sensing reports as a function
of the number of SUs N with
power constraint
PSU = 100mW and
bandwidth constraint
θSU = 10
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outperforms the nonoverlapping algorithm in terms of network sensing performance
as previously shown. In the nonoverlapping algorithm, the basic operation involves
the complete information of two coalitions, and the overhead is produced to check the
feasibility of merge operations, as seen in (3.51), even if the operation is not feasible.
In the overlapping DCS, the feasibility of switch operation can be locally checked
by the SU performing it, and no overhead is produced if the operation is not feasible.
Therefore, the overlapping DCS needs less overhead than the nonoverlapping DCS.

In Fig. 3.13, we show the number of sensing reports as a function of the number
of SUs N for each algorithm. We see that the overlapping algorithm only needs
90% sensing reports compared to the nonoverlapping algorithm, which implies a
lower system complexity for the cooperative sensing process. In the nonoverlapping
approach, an SU joins only one coalition, but it must report to all the members in this
coalition. In the overlapping approach, although an SU may join multiple coalitions,
it only needs to report to one SU for each coalition it joins, i.e., report to i ∈ N for
joining coalition Ri . Therefore, the overlapping approach, in which some SUs join
multiple coalitions, does not necessarily imply an increase in system complexity.

3.8 Summary

In this chapter, we have discussed a game theoretical approach for distributed coop-
erative sensing (DCS) with strict power and bandwidth constraints, in which the
secondary users can form overlapping coalitions to optimize their spectrum sensing
performance. In each coalition, a particular secondary combines the local sensing
data from other coalition members and make a cooperative decision. The presented
algorithm is proved to converge to a stable outcome within finite iterations. Sim-
ulation results show that the overlapping algorithm yields significant performance
improvements, decreasing the total error probability up to 25% in the Qm + Q f
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criterion, the missed detection probability up to 20% in the Qm/Q f criterion, the
overhead up to 80%, and the total report number up to 10%, compared with the
nonoverlapping algorithm.
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Chapter 4
Challenges and Future Works

4.1 Challenges of OCF Games

In the previous chapters, we have shown how to use OCF game approaches to solve
complex resource allocation problems in modern cellular networks. Specifically, we
consider the interference management problem in heterogenous networks and the
cooperative spectrum sensing problem in cognitive radio. However, we point out that
there may exists some technical challenges when applying OCF game approaches to
other resource allocation problems.

• The cooperative behavior of each coalition member within each coalition must
be clarified, e.g., the TDMA coordination for the interference management in
heterogeneous networks, so that the coalition value can be well formulated by a
specific value function.

• The mutual influence between coalitions must be quantified and restricted, e.g.,
the inter-coalition interference is restricted between nearby coalitions, so that the
computational complexity can be restricted and the coalition-based method can
approach the optimal result.

• Practical issues must be considered when applying coalition-based methods, as
the corresponding algorithm always require communication between players and
coalitions.

4.2 Other Applications

OCF game are quite suitable for modeling the future wireless networks, in which
the wireless nodes are dense, self-organizing, and cooperative. In this section, we
briefly discuss other potential applications of OCF games and then summarize the
applications in Table 4.1.

© The Author(s) 2017
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Table 4.1 Applications of OCF games

Application Coalition Coalition Value Type

Radio resource allocation
in Hetnets

RBs from different SBSs Total throughput of the
coalition considering all
the interference

K -coalition

Cooperative spectrum
sensing in CR

Signaling bits of different
SUs to report to an SU

Cooperative sensing
performance of the
specific SU

K -task

Traffic offloading in
multiradio networks

Load traffic of different
users distributed to a BS

User performance of the
specific BS

K -task

CoMP The downlink resources
of nearby BSs for a
cell-edge user

The throughput of the
cell-edge user

K -task

Virtual MIMO Cooperative users
forming a virtual MIMO
group

The MIMO link
throughput

K -coalition

Smartphone sensing The energy contributed
by different smartphones
for a task

The task utility K -task

Subchannel Allocation in
NOMA

The power of different
subchannels for an end
user

The throughput of the end
user

K -task

Pilot reuse in Massive
MIMO

The users with the same
pilot

The total throughput of
all users in the coalition

K -coalition

4.2.1 Multiradio Traffic Offloading

Cellular networks are constantly evolving into their next generation. However, the
former systems are not entirely replaced by the new systems. In fact, it is expected
that different networks will coexist for a long time, and, thus, mobile phones will be
multimode terminals that enable communications over different radio access tech-
nologies (RATs). In order to fully explore their network investments, the operators
must intelligently offload their network traffic over different RATs [1]. Developing
such offloading schemes, which must consider the demands and access authorities
of different users, the transmitting rates of different technologies, and the deploy-
ment and load of different base stations, is quite challenging for a large number of
users and base stations. However, one can use the K -task OCF game to model this
problem.

In the OCF game model, the mobile users can distribute their traffic into different
base stations in different networks. A coalition here represents a base station as
well as the traffic devoted from different mobile users. The coalition value can be
simply defined as the total throughput of this base stationwith channel and technology
limitations, or a sophisticated function reflecting the user experience,which considers
the delay and rate experienced by the users, and the cost and energy efficiency of
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the network. Using the developed algorithm in Table 1.2, the user traffic can be
intelligently distributed among different networks with high network performance
in the sense of the defined value function.

4.2.2 Cooperative Communications

In order to increase the performance of cell-edge users, coordinated multipoint
(CoMP) transmission has been proposed, in which the signals of multiple base sta-
tions are coordinated to serve a cell-edge user [2]. Since there are multiple cell-edge
users, the base stations should allocate their radio resources among these users. It is
a challenging optimization problem, since the channel conditions, traffic demands,
and radio resources are different for different users and base stations. However, we
can model this problem using a K -task OCF game. In the OCF game model, the
base stations can freely allocate their radio resources to different users, including
bandwidth, power, and antenna resources. A coalition represents a cell-edge user as
well as the radio resources devoted from different base stations. The coalition value is
defined as the throughput of this cell-edge user. Thus, using the developed algorithm
in Table 1.2, the radio resources of base stations can be efficiently distributed among
different cell-edge users.

Another related application is the cooperation between user devices [3]. In order
to increase their transmission rate, nearby users may group together to use virtual
MIMO transmissions. The MIMO link rate is generally increasing with the number
of cooperated users, while the marginal increase is decreasing due to the increasing
distance between different users. Thus, a user maywant to allocate its radio resources
among different cooperative groups, so as to maximize its individual throughput.
This problem can be modeled via a K -coalition OCF game, in which a coalition
represents a virtual MIMO group and the coalition value is the MIMO link rate.
Using the developed algorithm in Table 1.1, the radio resources of users can be
efficiently distributed among different virtual MIMO groups.

4.2.3 Smartphone Sensing

In recent years, smartphones are equipped with more and more sensors. These pow-
erful sensors allow public departments or commercial companies to accomplish
large-area sensing tasks via individual smartphones [4]. These tasks often require
collecting data in a large area, and thus, a huge number of smartphones may be
involved. Based on the task itself and the geographic locations of smartphones, dif-
ferent tasks may require different amount of energy and provide different payoffs
for different smartphones. A smartphone user must decide to which tasks he should
devote the limited energy. Therefore, we can model this problem with the studied
K -task OCF game, in which each coalition represents a task and the energy devoted

http://dx.doi.org/10.1007/978-3-319-25700-6_1
http://dx.doi.org/10.1007/978-3-319-25700-6_1
http://dx.doi.org/10.1007/978-3-319-25700-6_1
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from different smartphones, and the coalition value is given by the task utility. Using
the developed algorithm in Table 1.2, the smartphone users can efficiently allocate
their energy into different sensing tasks.

4.2.4 Subchannel Allocation in NOMA

In non-orthogonal multiple access networks, the end users are assigned with over-
lapping uplink subchannels by using sparse coding at the user side. Due to the
dynamics capacity of different subchannels and different code books, the network
performance can be severely influenced by the subchannel allocation policy, which
has been proved to be anNP-hard problem [5, 6]. This problem can be formulated as a
K -task OCF game, in which the transmission of each user is considered as a task, and
each subchannel contributes a part of its available power to multiple tasks. By using
the algorithm in Table 1.2, the base station can efficiently allocate its subchannels to
different NOMA users.

4.2.5 Pilot Reuse in Massive MIMO

InMassiveMIMOsystems, the network capacity is limited by the number of available
pilot sequences, which is usually insufficient for the future dense networks. Various
methods have been proposed to improve the efficiency of pilot sequence reuse via
low-intensity BS coordination [7, 8]. This pilot reuse problem can be formulated as
a K -coalition OCF game, in which the BSs form cooperative coalitions by devoting
the available pilot sequences. Within each coalition, the pilot sequences cannot be
reused, and thus, the inner-coalition pilot contamination is eliminated, while the
inter-coalition pilot contamination still exists. We can use the algorithm in Table 1.1
to achieve a stable and efficient coalition structure, which indicates how the BSs can
coordinate with each other in a large area.
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