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I am delighted to be invited to give a few remarks at this workshop
honouring Suresh Sethi. He was one of the most hardworking and pro-
lific of any of my (45 or so PhD) students during the course of 42 years
of teaching at GSIA. I would like to discuss our interactions both during
and after the completion of his doctoral thesis. Suresh entered the PhD
program in the fall of 1969 just after I had published a paper on the
application of a new mathematical model called Optimal Control The-
ory which originated in Russia. The paper was called: ”The Optimal
Maintenance and Sale Date of a Machine”. Suresh quickly absorbed
the mathematics on which optimal control theory is base. We wrote a
joint paper called ”Applications of Mathematical Control Theory to Fi-
nance: Modeling Simple Dynamic Cash Balance Problems,” which was
published before the end of 1970. At the same time Suresh wrote nine
additional papers by himself (on topics which I have forgotten). He put
these nine papers together with the dynamic cash balance paper above to
complete his thesis in record time. His PhD was awarded before the end
of 1970. The nine additional chapters in his thesis were also published
by him in subsequent years.

In 1970 it was uncommon for professors to write joint papers with
either their colleagues or with their PhD students. In GSIA we encour-
aged such joint work and other schools have since imitated this practice.
In order to analyze how Suresh has thrived in this environment, I did a
quick count of the number of authors in each of the papers listed in the
Professional Journal Articles section of his vita, obtaining the following
amazing distribution: single author, 37; 2 authors, 96; 3 authors, 113;
4 authors, 46; and 5 authors, 6. Note that three times as many papers
having a single author is about the same as the number of papers having
3 authors; half of the 2 authored papers is about the same as the number
of 4 authored papers, etc. In order to explain how Suresh could have
created an environment in which made these results possible I would like
to discuss some of his personal attributes as follows: (a) his congeniality;
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(b) his generosity; (c) his breadth of interest; (d) his originality; (e) his
creation of new mathematical applications; and (f) his visibility.

1 Congeniality. As you know, Suresh is very easy to talk to. One of
his favorite questions is, ”What are you working on?” When you
tell him he will respond by giving you hints and suggestions for
directions which you might want to follow in your research on the
paper. If you ask him what he is working on, be prepared to listen
for a couple of hours.

2 Generosity. If you show interest in one of the papers he talks about
and you make a suggestion for furthering it, he may invite you to
become a coauthor, and assign you a promising direction in which
to look for additional results. On the other hand, if he likes what
your problem is, he may suggest that he become a coauthor of
your paper. If you say yes to either of these suggestions, then be
prepared to have him knock on your door a few months later and
ask, ”How you are getting along with our joint problem.”

3 Breadth of Interest. In 1970 mathematicians maintained strict con-
trol over the kinds of applications which were favourably received
in their journals: only mathematical models employing ordinary
differential equations or partial differential equations, and applied
only to applications involving either physics or engineering prob-
lems. What would they say to paper number 5 in Part (ii) Finance
and Economics by M. Gordon and S. Sethi, ”Consumption and In-
vestment When Bankruptcy is Not a Fate Worse Than Death.”
Also what would they say to paper 6 in Part(iii) Marketing by E.
Haruvey, A. Prasad, and S. Sethi, ”Harvesting Altruism in Open
Source Software Development.” By skimming through his vita, you
can see that Suresh knows no bounds on the use of various kinds of
theoretical areas such as mathematics, statistics, economics, etc.
to analyze a wide range of new application areas.

4 Originality. Let me list a few of the new applications areas that
appear in his papers: optimal cattle ranching; stochastic manufac-
turing systems; choosing robot moves in a robotic cell; risk aversion
behavior in consumption/investment problems; scheduling of the
injection process for golf club head fabrication lines; peeling layers
of an onion, an inventory model with multiple delivery modes and
forecast horizons; etc. Obviously he enjoys choosing humorous ti-
tles for his papers, but each paper contains a serious analysis of an
actual real life application.
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5 Visibility. Besides looking at his publications and working papers,
it is possible to measure the extent of the influence of Suresh’s work
on the fields of Operations Research, Engineering, Economic, etc,
by looking at his professional activities which include talks pre-
sented at various meeting, invited talks at universities, member-
ship meeting locations in societies, etc. Let S be the set of all
these locations that Suresh has attended together with all of the
possible such locations that he has not yet attended. If we plotted
each of his travels over the years on a globe of the earth they might
resemble what is called ergodic (random) motion. A theorem in
ergodic theory states that if you let ergodic motion continue long
enough, each of the locations in S will be visited with probability
one. I propose the following Suresh Ergodic Theorem: If you go to
any location in S and wait long enough at that location, you will
meet Suresh with probability one.

I would like to wish Suresh Sethi a very happy sixtieth birthday, and I
look forward to keeping up with his future publications.

Gerald L. Thompson
Professor of Systems and Operations Research Emeritus
Tepper School of Business at Carnegie Mellon, Pittsburgh
gt04@andrew.cmu.edu
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Introduction

This volume is proudly dedicated by its editors and contributors to Professor

Suresh P. Sethi, in recognition of his achievements as a scholar and of his

role as a public and private personality. 

 Since more than thirty years, Professor Sethi has consistently proved 

one of the foremost personalities in applied control theory. His seminal 

contributions, which are described in more detail in another chapter, cover

such diverse fields as operations management, marketing, finance and 

economics, forecasting and rolling horizons, sequencing and scheduling, 

flexible manufacturing systems, hierarchical decision making in stochastic

manufacturing systems, and complex inventory problems, among others. 

This intense research activity has led to the publication of more than one

hundred and ninety journal articles, ninety contributions in proceedings and 

edited books, and nine monographs. Among the latter, the Sethi-Thompson 

book on Optimal Control Theory can be univocally distinguished for having 

introduced this at the time still largely unknown subject matter to business 

schools worldwide.

 The nineteen chapters in this volume are closely related to a

workshop held in honor of Professor Sethi in Aix en Provence, France, 2-6 

June 2005. All chapters are written by internationally recognized specialists

in the subject matter, and represent the state of the art in their particular

direction, witnessing the importance and popularity of Suresh Sethi in the

covered disciplines.

The book is thematically divided in five parts. The first, which is

concerned with advertising problems, consists of two chapters.

In their contribution Advertising Directed Towards Existing and 

New Customers, Richard Hartl and Peter Kort start from the classical 

advertising surveys by Sethi. They propose a specific marketing problem 

from the class of advertising capital or diffusion models. The extension to

the classical models is that they consider two kinds of advertising directed 

towards new customers and existing customers, respectively. They found 

that history dependent behavior occurs: if initial goodwill is small then

convergence to a saddle point with low goodwill prevails where there is only

advertising with the aim to attract new customers. On the other hand, for

larger initial goodwill, eventually a steady state with a high goodwill level is 

reached where both types of advertising are used. In Advertising and 

Advertising Claims over Time, Charles Tapiero considers a stochastic



do not entice first time purchasers to try the product, but insure that buyers

will typically not be disappointed by the discrepancy between the advertised 

and the real characteristics of their purchase. Overly optimistic advertising

messages entice first time purchases but may generate dissatisfaction and 

induce a switch to competing brands. The chapter provides a theoretical

approach to deal with this issue.

 The second part of the book is concerned with environmental

problems and includes five chapters. In Capital Resource Substitution, 

Overshooting, and Sustainable Development, Hassan Benchekroun, Seiichi

Katayama, and Ngo Van Long study, under the utilitarian criterion, the

optimal path for an economy that produces a final good using capital and an 

input extracted from a natural resource. Capital and resource are

substitutable inputs in the production of the final good but, contrary to the 

reference work in the domain, the resource stock is assumed renewable. The

authors show that there exists a unique steady state with positive

consumption and that, starting from low levels of capital stock and resource

stock, the optimal policy consists of three phases. Initially, it is optimal to 

build up the stock of capital above its steady state level, and to keep the

resource stock below its steady state level. That is, there is overshooting. In a 

second phase, the optimal capital stock declines steadily, while the optimal 

resource stock continues to grow, until the steady state is reached. In the

third and final phase, the economy stays at the steady state. The next chapter

Common Property Resource and Private Capital Accumulation with Random

Jump, by Masatoshi Fujisaki, Seiichi Katayama, and Hiroshi Ohta, studies 

the existence of a control solution in a model of optimal exploitation of a

non-renewable common property resource under the new and natural

hypothesis that the process of extraction can be affected by sudden shocks, 

such as technological problems or social hazards. These shocks are modeled 

as random jumps in the stock of the resource. The economic agents can

invest in private and productive capital. This capital is a substitute to the

natural resource. Thus, its accumulation can be steered in order to optimally

mitigate the welfare impacts of the resource shocks.  In Hierarchical and

Asymptotic Optimal Control Models for Economic Sustainable Development,

Alain Haurie investigates the relevance of asymptotic control theory to the

study of economic sustainable development and proposes a modeling

framework where sustainable economic development is represented through

a paradigm of optimal stochastic control with two time scales. The chapter

conclusively shows that several contributions of Sethi in the domain of 

essentially defined by two factors: the advertising budget and the content of 

reflect the true characteristics of the product, leading to the following 

dilemma. Advertising claims that underestimate the product’s characteristics 

advertising-repeat purchase model in which the advertising policy is

a statement on the product characteristics. The statement may not necessarily

IntroductionXX



Stackelberg differential game played over an infinite horizon between a

group of developed countries as the leader and a forestry country as the

follower. In that game, the developed countries use financial transfers to

improve forest conservation. The chapter investigates the impact of 

alternative transfer schemes on the optimal deforestation rate paths and 

forest stocks, and on the countries’ revenues, thus allowing policy

conclusion on the most efficient transfer modalities. The last chapter of this

part, Characterizing Dynamic Irrigation Policies via Green's Theorem by 

Uri Shani, Yacov Tsur, and Amos Zemel,  addresses another important 

policy-making problem: How to derive irrigation management schemes

accounting for the dynamic response of biomass yield to salinity and soil

moisture as well as for the cost of irrigation water? To that purpose, the

authors carry out an original extension the standard Green's Theorem 

analysis (that, interestingly, was used by Sethi to solve for optimal 

advertising expenditures in a much cited early paper) to more complex 

situations with arbitrary end conditions. A numerical application to a

concrete problem shows that significant savings on the use of freshwater can

be achieved with negligible loss of income. 

 The book’s third part is devoted to economics and finance. In

Volatility Forecasts and the Profitability of Automated Trading Strategies,

Engelbert J. Dockner and Günter Strobl take up the approach proposed in

1994 by Noh et al., that is, predict the volatility of asset return with the help 

of a GARCH model and use the volatility forecasts together with an option 

pricing formula to calculate future option prices. They apply it to Bund 

future options, first presenting several volatility models theoretically and 

then using these specifications to empirically evaluate the efficiency of the

Bund future options market at LIFFE. It turns out that their option strategy

can outperform the market if there is sufficient volatility clustering, so that a

GARCH model accurately predicts conditional variance. In Two-Part Tariff 

Pricing in a Dynamic Environment, Gila E. Fruchter considers non-linear

pricing techniques in a dynamic and competitive environment in the case 

when, as it is often the case in telecommunication services, the price of a

product or service is composed of two parts: An entrance fee and a charge 

per unit of consumption. Managerial guidelines are suggested, which imply

that a firm with a small network should focus on acquiring new customers

through a low membership fee. As its network grows, the firm should turn 

more attention to customer retention by offering a higher network-based 

price discount. The author also shows that the dynamic network-based prices

finance, manufacturing and resource management can also serve to better

understand the stakes of sustainability in economic growth and to assess long

term environmental policies. A further chapter Transfer Mechanisms 

Inducing a Sustainable Forest Exploitation by Guiomar Martín-Herrán and 

Mabel Tidball is concerned with the important and topical problem of 

deforestation as a global environmental issue. The authors consider a 
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cases the pension fund problems, where a profit-maximizing manager

receives an initial amount of money against the obligation to repay an agreed 

upon sum at a later date, typically do not admit analytical solutions. The 

author converts the problems into Markov decision chains solvable through

approximation, thus obtaining computable solution schemes for more 

general and more realistic performance criteria than usually studied. In 

particular, a couple of problems with a non-differentiable asymmetric utility

function are solved, for which left-skewed fund-return distributions are

reported. Such distributions give more probability to higher payoffs than the

right-skewed ones that are common among analytical solutions. In

Differentiated Capital and the Distribution of Wealth, Gerhard Sorger

investigates, for the case where the number of patient households is small,

the Ramsey conjuncture that in a stationary equilibrium of the standard 

neoclassical growth model only the most patient households would own 

capital. Using a one-sector growth model with finitely many households who

differ from each other with respect to their endowments, their preferences, 

and the type of capital supplied to firms, and assuming monopolistic 

competition à la Dixit on the capital market and perfect competition on all

other markets, the author shows that there exists a unique stationary

equilibrium where, contrary to the Ramsey conjuncture, all households have

strictly positive wealth. The impact of diverse parameter variations on this

equilibrium and its stability are analyzed. In Optimal Firm Contributions to 

Open Source Software, finally, Rong Zhang, Ernan Haruvy, Ashutosh

Prasad, and Suresh P. Sethi use a differential game framework to tackle an

enduring puzzle: Why do firms increasingly support open source software

development, although in many cases this also profits to their direct 

competitors? The analysis focuses on some important aspects previously

neglected in the literature, namely the competitivity aspect already 

mentioned; the complementarity of the efforts of developers and users, that 

may result in strong externalities; and the fact that the firm’s contributions to

open source development may be steered to generate advances that are more

compatible with one’s own products than with products from the 

competition. The authors find that both the degree of user involvement and 

the lack of compatibility with a rival's product positively affect profits.

However, free-riding may result in reduced incentives for smaller firms to 

invest and in reluctance by larger firms to share their technologies.

 The fourth part of the volume is devoted to production and 

maintenance. In the first chapter The Impact of Dynamic Demand and 

are lower than their static counterparts. Consequently, the network-based 

price discount is smaller in the dynamic case than in the static one.  Jacek B.

Krawczyk, in Numerical Solutions to Lump-Sum Pension Fund Problems 

that Can Yield Left-Skewed Fund Return Distributions, proposes

approximately optimal solutions to pension funds problems when the 

underlying performance measure is asymmetric with respect to risk. In such 

IntroductionXXII



of older products, and (iv) organizational constraints limiting the pace of 

new product development, thus offering managerial insights concerning the 

dynamics of new product development activities on the firm level. In

Hibernation Durations for Chain of Machines with Maintenance under 

Uncertainty, Ali Dogramaci  considers the classic problem of the 

maintenance of a single machine and of its possible replacement over time at 

given regeneration points, when the probability distribution of machine 

failure can be improved by predictive or preventive maintenance, adding in 

the analysis an important but previously neglected aspect:  If e.g. the

retirement date of a machine is not constrained to be equal to the installment 

date of its successor, hibernation (i.e., selling the machine or stopping using 

it) may be profit increasing. In addition to proposing a solution procedure for

the optimal hibernation scheduling, the paper has deep reaching implications 

for the realignment of the calendar for the regeneration points, for company

policies on borrowing versus use of internal funds, and for the possible 

modification of machine replacement time windows. The paper Self-

Organized Control of Irregular or Perturbed Network Traffic by Dirk

Helbing, Stefan Lämmer, and Jean-Patrick Lebacque presents a fluid-

dynamic model for the simulation of urban traffic networks with road 

sections of different lengths and capacities. By simulating the transitions

between free and congested traffic, taking into account adaptive traffic

control, the authors observe dynamic traffic patterns which significantly

depend on the respective network topology. In this connection, they discuss

adaptive strategies of traffic light control which can considerably improve 

throughputs and travel times, using self-organization principles based on

local interactions between vehicles and traffic lights. Potential applications 

of this principle to other queuing networks such as production systems are

outlined. The fourth chapter A Stochastic Optimal Control Policy for a 

Manufacturing System on a Finite Time Horizon by Eugene Khmelnitsky

and Gonen Singer considers a continuous-time problem of optimal

production control of a single reliable machine when the demand is given by

a discrete-time stochastic process. The objective is to minimize the linear

inventory/backlog costs over a finite time horizon.  The paper focuses on

using the optimality conditions of stochastic optimal control to develop a

computational procedure for finding the optimal control policy over each

interval between demand realizations. The procedure is implemented both in 

the case when the demand distribution is stationary and when it changes over

Dynamic Net Revenues on Firm Clockspeed, Janice E. Carrillo considers a

firm's new product development clockspeed, defined as the frequency of new

product introductions to the marketplace. Using a simple analytic model, the 

author derives the optimal firm clockspeed which is driven by several 

external market factors and internal organizational related factors: (i) average

demand forecasts, (ii) dynamic profits earned over time, (iii) cannibalization
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preventive maintenance can be used to counteract this tendency. A recently

developed second order sufficiency test is applied to prove the optimality of 

the computed controls, for which no analytical sufficiency conditions are 

known in the literature. This test enables the authors to calculate the

sensitivity derivatives of switching times with respect to perturbation 

parameters. Numerical results are also given for the case when there is an 

additional constraint on number of units produced.

 The fifth and final part of the book is methodologically oriented. In 

Reliability Index, Alain Bensoussan considers a method originally 

introduced by B.M. Ayyub to compute the failure probability of an element 

subject to several random inputs. Contrary to most of the related literature,

the approach is analytical and a rigorous treatment of the main results is

provided, offering a potentially more powerful way of addressing reliability 

problems.  In The Direct Method for a Class of Infinite Horizon Dynamic

Games, Dean Carlson and George Leitmann extend their recent work on the 

use of Leitmann’s direct method to efficiently solve open-loop variational

games to the case of an infinite horizon. The basic idea of the direct method, 

which has been successfully applied to a variety of problems, is to use a

coordinate transformation to transform the original problem of interest into

another, equivalent problem that is (hopefully) simple to solve. The 

extension presented here should distinctly increase its interest for such fields

as economics, where the standard analyses are regularly carried out over an 

infinite horizon.

The editors would like to thank the authors for their contributions,

Verena Schmid and Martin Romauch for their help in producing the camera 

ready draft of this book, and Herma Drees from Springer/Kluwer for her

kind, patient, and effective nurturing of the manuscript.
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Aix en Provence University of Vienna 

GREQAM and Université richard.hartl@univie.ac.at

de la Méditerranée

deissenb@univ-aix.fr

time. Numerical examples are given. The last chapter of this part, On a

State-Constrained Control Problem in Optimal Production and Maintenance

by Helmut Maurer, Jang-Ho Robert Kim, and Georg Vossen, is concerned 

with the advanced numerical study of a dynamic production/maintenance 

control problem originally investigated by Cho et al. In the model 

investigated, the performance of the production process, measured in terms 

of non-defective units produced, normally declines over time. However,
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Chapter 1

ADVERTISING DIRECTED TOWARDS
EXISTING AND NEW CUSTOMERS

Richard F. Hartl
University of Vienna, Department of Business Studies, Vienna, Austria
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Peter M. Kort
Tilburg University, Department of Econometrics and Operations Research & CentER,
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University of Antwerp, Department of Economics, Antwerp, Belgium
kort@uvt.nl

Abstract This paper considers a specific marketing problem based on a model by
Gould (1970). The extension is that we have two kinds of advertising
directed towards new customers and existing customers, respectively.
We found that history dependent behavior occurs: if initial goodwill is
small then it does not pay to spend a lot of money on advertising towards
existing customers. Consequently convergence to a saddle point with
low goodwill prevails where there is only advertising with the aim to
attract new customers. On the other hand, for larger initial goodwill,
eventually a steady state with a high goodwill level is reached where
both types of advertising are used.

1. Introduction
Dynamic advertising models are among the first applications of Pon-

tryagin’s maximum principle in the economics and management area.
The first comprehensive survey of the dynamic advertising literature was
given by Sethi (1977a). It was devoted to determining optimal advertis-
ing expenditures over time subject to some dynamics that defines how
advertising expenditures translate into sales and in turn into profits for
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a firm or a group of firms under consideration. More than fifteen years
later, this survey was updated by Feichtinger, Hartl and Sethi (1994).

The surveys by Sethi (1977a) and Feichtinger, Hartl and Sethi (1994)
were organized in four and five model categories, respectively, the first
two of which were advertising capital models and sales-advertising re-
sponse models. Advertising capital models considered advertising as an
investment in the stock of goodwill as in the model of Nerlove and Arrow
(1962). Sales-advertising response models are characterized by a direct
relation between the rate of change in sales and advertising and repre-
sent various generalizations of the descriptive model due to Vidale and
Wolfe (1957).

Advertising capital models typically are extensions and/or modifica-
tions of the early seminal dynamic advertising model due to Nerlove and
Arrow (1962). They consider a stock of advertising goodwill, which sum-
marizes the effects of current and past advertising expenditures by a firm
on the demand for its products. The advertising capital changes over
time according to “investments” by current advertising and by a con-
stant proportional depreciation rate. The objective of the monopolistic
firm is to maximize the present value of net revenue stream discounted
at a fixed interest rate. Since the price does not enter the system dy-
namics in these models, it can be determined by static maximization of
the profit function so that the resulting optimal control model has only
advertising as a single control variable. In case revenue is proportional
to goodwill, the optimal advertising policy in this linear problem is char-
acterized by a most rapid approach to a singular goodwill level; see e.g.
Sethi (1977b), and Hartl and Feichtinger (1987). Several nonlinear and
other extensions have been proposed. In the model by Gould (1970)
revenue is a concave function of goodwill which leads to a smooth opti-
mal advertising policy and an asymptotic convergence to an equilibrium
advertising capital stock.

The second class of models are sales-advertising response models.
These models are characterized by a direct relation between the rate of
change in sales and advertising in the form of a differential equation. The
basic advertising model by Vidale-Wolfe (1957) assumes that increases
in sales are proportional to advertising expenditure, u, the captured
fraction of the market potential, x, and the remaining market potential,
1 − x. As in the goodwill models, a constant decay rate is assumed.
The dynamics are fundamentally different from the advertising capital
dynamics because of the presence of the terms u(1 − x) and ux(1 − x)
in place of the term u. While Gould (1970) had analyzed the problems
both with diffusion dynamics in the presence of convex advertising cost,
his treatment was not exhaustive. More specifically, he obtained a single
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long run optimal sales level in each of the problems, which the system
would converge to from some initial sales level. As it turns out, the
second diffusion model with the word of mouth term ux(1 − x) admits
multiple stable equilibria and convergence to a particular equilibrium de-
pending on the initial level of sales. In the linear objective function case
this was shown by Sethi (1979a) while the nonlinear case was treated
by Feichtinger and Hartl (1986, Section 11.1.2). The consequences of
having multiple equilibria are important to the firm. It means that the
advertising policy depends critically on the initial sales level. Moreover,
a firm with sufficiently small initial sales level would never reach a high
sales level in the long run.

Our contribution is to extend the bulk of literature mentioned, by
distinguishing between two types of advertising controls: towards exist-
ing customers and towards new customers. Advertising towards existing
customers tries to prevent that these existing customers forget about
the product and move to other brands. Advertising towards new cus-
tomers is different in the sense that it provides more information about
the underlying product in order to convince new customers. We focus
only on the advertising capital or goodwill models but of course this idea
can be applied to the other stream, the diffusion models, as well.

We should mention that our model is not the first to consider different
types of advertising in one model. The advertising models mentioned
above consider the flow from potential adopters to current adopters.
Some attempts have been made to extend these two-stage models to
incorporate a possible multistage nature of the diffusion process. For
instance, Muller (1983) presents a dynamic model of a new product in-
troduction based on a diffusion process, which makes the distinction
between two types of advertising objectives: increasing awareness and
changing predisposition to buy. Our “advertising towards new cus-
tomers” is related to his “awareness advertising”, which informs prospec-
tive customers about the product and thus transfers them from the “un-
aware group“ to the “potential group“ . His second control instrument
“trial advertising” persuades potential customers to purchase the prod-
uct. Our model is different here since we do not distinguish between
“potential group” and buyers. Consequently, our second control instru-
ment “advertising towards existing customers” is aimed at preventing
existing customers or buyers to become non-buyers.

We obtain two long run equilibria and it depends on the initial level
of goodwill which one of them will be reached. In the lower steady
state only one type of advertising is employed, namely the one which is
directed towards new customers. In the larger steady state, i.e. the one
with higher goodwill level, also the other type of advertising is applied
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on order to keep the existing customers. As usual, the two long run
equilibria are separated by an unstable steady state which appears to be
a focus for most of the parameter values. It should be noted, that we do
not need the more complicated diffusion dynamics to identify multiple
equilibria. Rather, we observe this interesting phenomenon already in
the simpler goodwill model.

The structure of the paper is as follows. The model is presented in
Section 1.2. Section 1.3 contains a general mathematical analysis while
Section 1.4 specifies the functional forms to achieve more detailed results.

2. The Model
Consider a firm that has to decide about its advertising policy. The

firm’s sales R (G) are completely dependent on the stock of goodwill (G).
Goodwill can be controlled by two types of advertising. We have N which
is advertising that aims to attract new customers. Its effectiveness η (N)
is independent of the current goodwill stock. Furthermore the firm can
also choose towards keeping existing customers in the house by reducing
the decay rate δ (A). This type of advertising is thus denoted by A.

The model of the case flow maximizing firm now follows directly:

max
N,A

∫ ∞

0

∫∫
e−rt (R (G) − aN − vA) dt (1.1)

s.t.

Ġ = η(N) − δ(A)G (1.2)
A ≥ 0 (1.3)
N ≥ 0 (1.4)

Sales are increasing in goodwill with diminishing returns:

R′ > 0, R′′ < 0. (1.5)
The effectiveness of advertising towards new customers is a concavely

increasing function of N, so that

η′ > 0, η′′ < 0. (1.6)

Finally, the decay rate δ (A) is decreasing in A in a convex way:

δ′ < 0, δ′′ > 0. (1.7)

3. General Analysis
We first employ the maximum principle to derive the necessary op-

timality conditions. Then we investigate the stability of the canonical
system.
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3.1 Maximum Principle
The Hamiltonian (see e.g. Sethi and Thompson, 2000, or Feichtinger

and Hartl, 1986) is

H = R (G) − aN − vA + λ (η (N) − δ (A)G) ,

where λ is the shadow price of goodwill
Advertising directed towards existing customers, A = A (λ, G) , is

determined by
∂H

∂A
= −v − λδ′ (A) G = 0,

from which it is obtained that

∂A

∂G
= − λδ′(A)

λδ′′(A)G
= − δ′(A)

δ′′(A)G
> 0, (1.8)

∂A

∂λ
= − δ′(A)G

λδ′′(A)G
= − δ′(A)

λδ′′(A)
> 0.

So this type of advertising increases with goodwill which makes sense
because its effectiveness is proportional to this stock.

Advertising directed towards new customers, N = N (λ) , is deter-
mined by

∂H

∂N
= −a + λη′ (N) = 0.

This first order condition implies that advertising towards new customers
does not depend on goodwill, but only on its shadow price:

∂N

∂λ
= − η′ (N)

λη′′ (N)
> 0.

The adjoint equation is

λ̇ = (r + δ (A (λ, G)))λ − R′ (G) , (1.9)

which, together with the state equation

Ġ = η (N (λ)) − δ (A (λ, G))G (1.10)

form the canonical system to be analyzed.
We investigate whether the necessary optimality conditions are also

sufficient. To do so we check whether the maximized Hamiltonian

Ho (G, λ) = R (G) − aN (λ) − vA (λ, G) + λ (η (N (λ)) − δ (A (λ, G))G)
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is concave in G for all possible values of λ that can occur along the
costate trajectory λ (t); see Seierstad and Sydsaeter (1977).

Proposition 1.1 The maximized Hamiltonian is strictly concave iff

R′′ (G) + λ
(δ′ (A))2

δ′′ (A) G
< 0.

Proof. It is straightforwardly obtained that

∂H0

∂G
= R′ (G)−v

∂A (λ, G)
∂G

−λGδ′ (A (λ, G))
∂A (λ, G)

∂G
−λδ (A (λ, G)) .

Because of the envelope theorem (see Derzko, Sethi and Thompson,
1984) this can be rewritten into

∂H0

∂G
= R′ (G) − λδ (A (λ, G)) , (1.11)

so that
∂2H0

∂G2
= R′′ (G) − λδ′ (A (λ, G))

∂A (λ, G)
∂G

.

Employing (1.8), we obtain that

∂2H0

∂G2
= R′′ (G) + λ

(δ′ (A))2

δ′′ (A) G
< 0.

We separately investigate the case where the control A is at its lower
boundary, i.e., A = 0. We have

Ho (G, λ) = R (G) − aN (λ) + λ (η (N (λ)) − δ (0) G) ,

which implies that
∂H0

∂G
= R′ (G) − λδ (0) . (1.12)

This gives
∂2H0

∂G2
= R′′ (G) < 0,

so that H0 (G, λ) is strictly concave in G.
Furthermore, by comparing (1.11) and (1.12) it is clear that H0 (G, λ)

does not exhibit a kink in G when the A = 0 boundary is reached.
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3.2 Stability Analysis
The Jacobian of the canonical system (1.9) and (1.10) is

J =
[ −δ (A) − δ′ (A) G∂A

∂G η′ (N) ∂N
∂λ − δ′ (A) G∂A

∂λ
δ′ (A) λ∂A

∂G − R′′ (G) r + δ (A) + δ′ (A) λ∂A
∂λ∂λ

∂λ

]
.

The determinant of this matrix is

det J =
(
−δ − δ′G

∂A

∂G

)(
r + δ + δ′λ

∂A

∂λ

)
−
(

η′
∂N

∂λ
− δ′G

∂A

∂λ

)(
δ′λ

∂A

∂G
− R′′

)
= −δ (r + δ) − δ′

((
δλ + GR′′) ∂A

∂λ
+ (r + δ)G

∂A

∂G

)
−η′

∂N

∂λ
δ′λ

∂A

∂G
+ η′

∂N

∂λ
R′′.

This can further be simplified by inserting the expressions for ∂N
∂λ , ∂A

∂G , ∂A
∂λ :

det J = −δ (r + δ) + δ′
((

δλ + GR′′) δ′

λδ′′
+ (r + δ)

δ′

δ′′

)
−δ′λ

δ′

δ′′G
(η′)2

λη′′
− R′′ (η′)

2

λη′′
(1.13)

= −δ (r + δ)︸ ︷︷︷ ︸︸
<0

+
(δ′)2

δ′′
>0

⎛⎝⎛⎛(r + 2δ)
>0

+
GR′′

λ
<0

⎞⎠⎞⎞ (1.14)

−(δ′)2 (η′)2

δ′′η′′G︸ ︷︷︷ ︸︸
>0

−(η′)2 R′′

λη′′︸︸︸ ︷︷︷ ︸︸
<0

(1.15)

Since there are conflicting terms, both stable and unstable equilibria
can occur.

4. Analysis with specified functions
In the first two subsections we concentrate on the implications of

different specifications of our new function δ (A). In Subsection 1.4.3
we specify the other functional forms as well in order to perform the
complete analysis.

4.1 Exponential decay function δ (A)

As a first specification consider the following exponential function:
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δ (A) = e−γA with γ > 0 (1.16)

which gives δ′ (A) = −γe−γA and δ′′ (A) = γ2e−γA. This leads to the
following proposition.

Proposition 1.2 Consider the case where δ (A) = e−γA with γ > 0.
Then, a steady state is a saddle point (det(( J < 0) if and only if the
maximized Hamiltonian is locally concave in this steady state. Instability
(det(( J > 0) is equivalent to the maximized Hamiltonian being convex
there.

Proof. Specification (1.16) implies that

(δ′)2

δ′′
= δ. (1.17)

By Proposition 1.1 and equation (1.17), concavity of the maximized
Hamiltonian is equivalent to

R′′ (G) +
δλ

G
< 0.

From (1.14) and equation (1.17) we obtain that

det J = − δ (r + δ) + δ (r + 2δ) + δ
GR′′

λ
− δ (η′)2

η′′G
− (η′)2 R′′

λη′′
(1.18)

= δ2 + δ
GR′′

λ
− δ (η′)2

η′′G
− (η′)2 R′′

λη′′
(1.19)

=
(

δλ

G
+ R′′

)(
δG

λ
− (η′)2

λη′′

)
. (1.20)

Since the second term is always positive, it is clear that local concavity
(convexity) of H0 is equivalent to det J < 0 (and detJ > 0, respectively).

In order to investigate whether instability can go along with the max-
imized Hamiltonian being concave, in which case the unstable steady
state would be a node with continuous policy function (see Hartl, Kort,
Feichtinger, and Wirl, 2004) we consider another specification for δ (A) .

4.2 Decay function δ (A) specified as power
function

Here we specify

δ (A) = (1 + A)−γ with γ > 0 (1.21)
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which implies that δ′ (A) = −γ (1 + A)−γ−1 and δ′′ (A) = γ (1 + γ)
(1 + A)−γ−2 . This gives the following result.

Proposition 1.3 Consider the case where δ (A) = (1 + A)−γ with γ >
0. Then, (local) concavity of the maximized Hamiltonian implies that the
steady state is a saddle point.

Proof. Specification (1.21) implies that

(δ′)2

δ′′
=

γ

γ + 1
δ. (1.22)

By Proposition 1.1 and equation (1.17), concavity of the maximized
Hamiltonian is equivalent to

R′′ (G) +
γ

γ + 1
δλ

G
< 0.

From (1.14) and equation (1.17) we have that

det J = − δ (r + δ) +
γ

γ + 1
δ (r + 2δ)

+
γ

γ + 1
δ
GR′′

λ
− γ

γ + 1
δ (η′)2

η′′G
− (η′)2 R′′

λη′′

=
δ2 (γ − 1) − rδ

γ + 1
+

γ

γ + 1
δ
GR′′

λ
− γ

γ + 1
δ (η′)2

η′′G
− (η′)2 R′′

λη′′

=
(

γ

γ + 1
δλ

G
+ R′′

)(
−(η′)2

λη′′

)
+

δ

γ + 1

(
δ (γ − 1) − r + γ

GR′′

λ

)

=
(

γ

γ + 1
δλ

G
+ R′′

)(
−(η′)2

λη′′

)

+
δGγ

(γ + 1)λ

(
δ (γ − 1)λ

Gγ
− γ

γ + 1
δλ

G
− rλ

Gγ
+

γ

γ + 1
δλ

G
+ R′′

)
=

(
γ

γ + 1
δλ

G
+ R′′

)(
δGγ

(γ + 1)λ
− (η′)2

λη′′

)
− δ

γ + 1

(
δ

γ + 1
+ r

)
It is clear that local concavity of H0 implies that det J < 0.
So this specification does not help to identify instability while H0 is

concave.

4.3 Analysis with all functions specified
Again, let δ be specified as (1.16). In order to complete the analysis,

we specify
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R (G) = Gα with α < 1 (1.23)

R′ (G) = αGα−1

R′′ (G) = α (α − 1) Gα−2

η (N) = Nβ with β < 1 (1.24)

η′ (N) = βNβ−1

η′′ (N) = β (β − 1) Nβ−2

The maximum principle conditions now can be solved explicitly as

−a + λβNβ−1 = 0 =⇒== N =
(

λβ

a

) 1
1−β

(1.25)

and

−v + λγe−γAG = 0 =⇒== A =
1
γ

ln
λγG

v
. (1.26)

The latter equation implies that

A ≥ 0 iff λ >
v

γG
. (1.27)

It is clear that we have to distinguish between positive and zero A.

4.3.1 Analysis for A > 0. Let us first check concavity:

H0
GGHH = α (α − 1)Gα−2 + λ

e−γA

G

= α (α − 1)Gα−2 +
v

γG2

=
1

G2

(
α (α − 1) Gα +

v

γ

)
< 0,

which is equivalent to

α (α − 1) Gα +
v

γ
< 0

G >

(
v

γα (1 − α)

) 1
α

. (1.28)
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We proceed by presenting the canonical system:

Ġ =
(

λβ

a

) β
1−β

− v

λγ
, (1.29)

λ̇ = rλ +
v

γG
− αGα−1. (1.30)

The isocline λ̇ = 0 is given by

λ =
αGα − v

γ

rG
, (1.31)

which achieves its maximum value for

G =
(

v

αγ (1 − α)

) 1
α

=⇒== λ =
vα

γr (1 − α)

(
α (1 − α) γ

v

) 1
α

The isocline Ġ = 0 is given by(
λβ

a

) β
1−β

− v

λγ
= 0

λ =
(

v

γ

)1−β (a

β

)β

. (1.32)

Equations (1.31) and (1.32) imply that an equilibrium must satisfy

αGα − v

γ
= rG

(
v

γ

)1−β (a

β

)β

. (1.33)

This cannot be solved analytically except for α = 0.5, which leads to

G1,2 =
1

2
(

v
γ

)2(1−β) (
a
β

)2β
r2γ2

⎛⎝⎛⎛αγ ±
√

α2γ2 − 4
(

v

γ

)1−β (a

β

)β

rvγ

⎞⎠⎞⎞2

.

(1.34)
Returning to the general case, the Jacobian determinant reduces to

det J = − v

λγG

(
r +

v

λγG

)
+

v

λγG

(
r + 2

v

λγG
+

α (α − 1)
λG1−α

)

−
βv
(

λβ
a

) β
1−β

λγ (β − 1) G2
−

βα (α − 1)
(

λβ
a

) β
1−β

(β − 1) λG2−α

det J =

(
v

γ
−
(

β

a

) β
1−β β

β − 1
λ

1
1−β

)
v
γ + α (α − 1) Gα

G2λ2
.
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After inserting the value λ =
(

v
γ

)1−β (
a
β

)β
of the Ġ = 0 isocline from

(1.32) we get that

det J =
1

1 − β

v
γ + α (α − 1) Gα

G2
(

a
β

)2β (
v
γ

)1−2β
. (1.35)

This implies that the steady state is a saddle point iff
v

γ
< α (1 − α) Gα

G >

(
v

α (1 − α) γ

) 1
α

. (1.36)

In case of instability, either a focus or a node is possible. A focus
occurs when (see Feichtinger and Hartl, 1986, p. 105):

r2 < 4 det J.

We return to this issue later.

4.3.2 Analysis for A = 0. We already know from Sec-
tion 1.3.1 that the maximized Hamiltonian H0 is strictly concave here.
We proceed by presenting the canonical system:

Ġ =
(

λβ

a

) β
1−β

− G

λ̇ = (r + 1) λ − αGα−1.

The λ̇ = 0 isocline is given by

λ = α
Gα−1

r + 1
, (1.37)

while the Ġ = 0 isocline is given by

λ =
a

β
G

1−β
β . (1.38)

Hence, a steady state in this region satisfies
αβ

(r + 1) a
= G

1−αβ
β .

For A = 0, the Jacobian (1.14) reduces considerably to

det J = −δ (r + δ) + η′
∂N

∂λ
R′′ < 0.

The conclusion is that the steady state is always a saddle point in this
region, provided that it exists.
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4.3.3 Numerical example. To perform the numerical analysis
we specify the parameters as:

β = 0.9, γ = 3, a = 3, v = 1, r = 0.03.

In Figure 1.1 we check whether the occurrence of an unstable node
is possible. For α = 0.5 we vary r between 0.01 and 0.07 and plot
the values of the stable steady state (dotted upper curve), the unstable
steady state (bold curve), the determinant of the Jacobian in the unsta-
ble steady state (dashed, positive) and r2−4 det J (dashed-dotted) which
is negative in the plotted region showing that always a focus occurs.

Stable and unstable steady state as a function of the discount rate r.

We are now in a position to plot the phase diagram. We choose
the above parameter values. Figure 1.2 shows the state-costate phase
diagram from which the region A > 0 can be seen clearly. There is a
saddle point stable ”large” equilibrium with goodwill Gl = 30.66 and an
unstable focus at Gu = 0.59. From the orientation of the vector fields it
is clear that the saddle point path converging to the larger equilibrium
is downward sloping. Also, it lies in the region A > 0 so that both types
of advertising are used to reach this large value of goodwill.

In order to see the region to the left of the A = 0 curve more clearly,
we zoom into Figure 1.2 for small goodwill levels. This yields Figure 1.3
which shows the unstable (focus) Gu and a ”small” equilibrium with
goodwill level Gs = 0.043. This equilibrium lies in the region A = 0, so
that only some moderate advertising towards new customers is applied
which is sufficient to approach or maintain this small goodwill stock.
Also here the saddle point path is downward sloping.
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Figure 1.2. The phase diagram.

Figure 1.3. The phase diagram.
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Somewhere in between Gs and Gl there must be a Skiba point. It
is not necessarily close to the unstable steady state Gu but it must be
in the overlap region of the two saddle point paths emerging from the
unstable focus at Gu and converging to Gs and Gl, respectively.
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Chapter 2

ADVERTISING AND ADVERTISING
CLAIMS OVER TIME
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Abstract Advertising budget allocation with carryover effects over time is a prob-
lem that was treated extensively by economists. Additional develop-
ments were carried out by Sethi who has also provided some outstanding
review papers. The model treated by Sethi were essentially defined in
terms of optimal control problems using deterministic advertising mod-
els while my own were essentially sales response stochastic models with
advertising budget determined by stochastic control problems. These
problems continue to be of academic and practical interest. Issues re-
lating to the “advertising message” such as truthful claims advertising
directed to first time buyers has not attracted much attention however.

The purpose of this paper is to address issues relating to advertising
and their messages by suggesting a stochastic advertising-repeat pur-
chase model. In this model, advertising directed to first time buyers is
essentially defined by two factors: the advertising budget and the ad-
vertising message (such as statement regarding the characteristics of a
product, its lifetime etc.). Consumers experience in case they buy the
product will define the advertising message “reliability”, namely that
the probability that advertised message are confirmed or not. Repeat
purchasers, however, are influenced by two factors, on the one hand the
advertising messages that are directed to experienced consumers and of
course the effects of their own experience (where past advertising claims
whether truthful, or not, interact with customers’ personal experience).
Advertising claims that underestimate products characteristics might
be “reliable” but then they might not entice first time purchasers, while
overly optimistic advertising messages might entice first time purchasers
but be perceived as unreliable by repeat purchasers who might switch
to other competing brands. In this sense, the decision to advertise is
necessarily appended by the decision to “what to advertise”, which may
turn out to be far more important for a firm. This paper provides a
theoretical approach to deal with this issue.
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1. Introduction
Advertising budget allocation with carryover effects over time is a

problem treated extensively by economists (Dorfman and Steiner (1954);
Nerlove and Arrow (1962); Gould (1970); Nelson (1970); Nelson (1974);
Schmalensee (1972); Katowitz and Mathewson (1979)), marketers (Vi-
dale and Wolfe (1957); Ehrenberg (1972); Feichtinger (1982); Feichtinger
et al. (1988); Schmittlein et al. (1985)). Additional developments were
carried by both Sethi (Sethi (1973); Sethi (1974); Sethi (1975); Sethi
(1977a); Sethi (1981); Sethi (1983a); Sethi (1983b)), who has also pro-
vided some outstanding review papers, Sethi (1977b), Feichtinger, Hartl
and Sethi (1994) and myself (Tapiero (1975a); Tapiero (1975b); Tapiero
(1977); Tapiero (1978); Tapiero (1979); Tapiero (1981); Tapiero (1982a);
Tapiero (1982b); Tapiero (1982c); Tapiero (1982d)) as well as Farley
and Tapiero (1981); Farley and Tapiero (1982) and Tapiero, Elyashberg
and Wind (1987). As the Sethi, Feichtinger and Hartl papers attest,
the number of references related to these problems is indeed extremely
large. The models treated by Sethi are essentially defined in terms of
deterministic optimal control problems while my own were essentially
sales response stochastic models defining the optimal advertising policy
in terms of stochastic control problems. A number of such studies value
advertising expenses in terms of their contribution to the firm profit
objectives or their effects on competitive posture and market structure
such as the market response, the effects of memory, competition and
other important topics that differentiate advertising models by the hy-
potheses they make about the sales response to advertising (through
goodwill-capital accumulation, word of mouth and their like).

These problems continue to be of academic and practical interest both
by raising new hypotheses regarding the effects of carry-over (mem-
ory) effects of advertising and the market competition structure (leading
thereby to differential games for example, Tapiero (1978)). Issues relat-
ing to advertising claims (such as truthfulness in advertising) and the
effects of experience and advertising efficiency on repeat purchasers has
attracted relatively little attention however. This is in contradiction to
strong empirical evidence that advertising weights (quantities) do not
always matter while advertising copy may have a greater effect on sales
response (Lodish et al. (1995)). Explicitly, Lodish et al. (1995), using
extensive and shared data on advertising on TV claim that increasing
advertising budgets in relation to competitors does not increase sales in
general. However, changing brand, copy and media strategies in cate-
gories can in many cases lead to a sales response to advertising. Fur-
thermore, they conclude that “New brands or line extensions tend to be
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more responsive to alternative T.V. advertising plans than established
products”. Such a claim supports the hypothesis that advertising acts
essentially on “first time purchasers” and less on purchasers of well es-
tablished brands that derive their essential sales from repeat purchasers.

The purpose of this paper is to address issues relating to the rela-
tionships between advertising budgets and advertising claims based on
a stochastic model of advertising-quality and quantity (see also Tapiero
(2000)). We clearly distinguish between first time purchasers and re-
peat purchasers, the former determined in terms of a stochastic “Capital
Goodwill Model” (Nerlove and Arrow (1962); Tapiero (1978)) while the
latter is based on a probability response to ex-post product consump-
tion and satisfaction. Further, unlike previous optimal and stochastic
control models of advertising, we recognize that in many products a
firm derives benefits not only from product sales to customers but also
from the services they sell to these customers. Such an assumption is
increasingly realistic and emphasizes as well the importance of repeat
purchasing management in firms’ marketing and advertising strategies.

Consumers experience compared to advertising claims defines the ad-
vertising claim “reliability”, namely the probability that an advertised
claim is confirmed or not by the experienced purchaser. Of course, “con-
firmation” of an advertising claim by an experienced client contributes
to repeat purchase while, “disappointment” contributes (in probability)
to a consumer switching to some other firms. Since true products charac-
teristics are necessarily random (due to the production process, use and
misuse of the product) advertising claims truthfulness is inherently ran-
dom as well. Thus, there is always a probability that advertising claims
are not met. Advertising claims that underestimate product character-
istics might be “reliable”, namely mostly true, but then they might not
entice first time purchasers, while overly optimistic advertising claims
might entice first time purchasers but be perceived as unreliable by re-
peat purchasers who might switch to other competing products. In this
sense, the decision to advertise is necessarily concurrent to the decision
to “what to advertise”. Such decisions are compounded by the fact that
in prevalent marketing philosophy, a consumer is also a consumer of ser-
vices (such as warranties, product servicing, etc.) and a firm profits not
only from the revenues generated at the time of sale but also in derived
revenues maintained as long as the customer remains a client of the firm.
This paper provides some preliminary approaches to dealing with these
issue by developing a sales/repeat purchase response stochastic model
that defines these characteristics and by considering a decision model
that raises a number of issues such as “how much to advertise” con-
jointly with “what to advertise”. We begin by considering a long run
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(average based) decision model and continue with a dynamic (optimal
control) model.

2. Advertising Quantity and Advertising
Reliability: Stationary Model

Let first time purchasers’ sales S(p, x), be determined by the price p(t)
and a “Goodwill-Capital” {x, t ≥ 0}. “Goodwill” is a random function,
expressed by a non-homogenous non-stationary Poisson Process with
mean λ(t) and generated by advertising efforts a(t) carried over time
with an exponential memory and a forgetting rate parameter m (Nerlove
and Arrow (1962); Tapiero (1975a); Tapiero (1977); Tapiero (1978)):

P (x(t) = i) =

[
λ(t)ie−λ(t)

]
i!

(2.1)

dλ(t)/dt = −mλ + qa(t), λ(0) = λ0, q > 0

where q is a parameter expressing the advertising efficiency. For sim-
plicity we set S(p, x) = x. Now let there be an advertising claim α.
The “better” this claim, the larger the effects of advertising on new pur-
chasers. This means that q = q (α) , q′ (α) > 0, thereby generalizing the
stochastic goodwill model in (2.1). In addition, an advertising claim
confirmed by consumption experience will induce a repurchase and vice
versa, non confirmation will induce disloyalty. Over the long run, assum-
ing stationary policies (which are starred), we have: λ∗ = q (α∗) a∗/m.
Thus, in a stationary state, the rate of incoming first time purchasers
has a Poisson distribution whose mean is λ∗, a function of both the
advertising rate and the advertised claim.

An experienced unsatisfied customer may be a lost customer while
a satisfied one may repeat purchase. Let α∗ be the advertising claim
and let α̃ be the true product characteristic, a random variable, with
cumulative distribution F (α̃). If α̃ ≥ α∗, the probability of a repeat
purchase after a unit consumption is 1 − F (α∗), meaning that the cus-
tomer experience is better than the advertised claim. If a client remains
loyal for k̃1 units, till a unit is found to be non-conforming, then the
total number of units purchased is 1 + k̃1. This can be specified by a
geometric distribution, or:

g1(k̃1 : 1) = [1 − FαFF (α∗)]k̃−1 FαFF (α∗) (2.2)

If the customer remains loyal until r units are found to be non-conforming,
the number of units acquired by a customer is 1 + k̃r , given by the neg-
ative binomial distribution:

gr(k̃r : r) = C k̃r−1
rCC −1 [1 − FαFF (α∗)]k̃r−r FαFF (α∗)r (2.3)
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with mean and variance:

E (kr) = rθ∗

var (kr) =
rθ∗

1 − FαFF (α∗)

θ∗ =
FαFF (α∗)

1 − FαFF (α∗)

(2.4)

where θ∗ is the odd that the advertising claim turns out to be false.
Estimate for these parameters can be determined based on historical
data of the number of units bought by individual customers while they
were loyal customers. Such data also reveals customers’ “impatience”.
For example, “an impatient customer” will not repeat purchase as soon
as a non-conforming unit is experienced. In this case, the total number
of units bought by the customer would be only 1 + k̃1 as stated earlier.
A patient customer “might give a second a chance” to the firm and
remain loyal if the quantity k̃1 consumed thus far is greater than some
parameter k∗

1 etc. Therefore, customers impatience can be denoted in
terms of probability parameters χj , expressing the proportion willing to
accept j non-conforming claims before resigning and not repeat purchase.
In this case, the probability distribution for the number of units bought
by a customer is given by the mixture distribution:

k̃ = k̃i wp χi, k̃i = gi(. : i), i = 1, 2, ..., n (2.5)

where k̃i, i = 1, 2, ... are denoted by the negative binomial distribution
(2.2). For example, say that in a heterogeneous population a proportion
χ1 is impatient while the remaining is “patient” willing to give a sec-
ond chance to non-conforming experienced units. Then, the probability
distribution of the number units sold in repeat purchase is:

k̃ = k̃i wp χi, k̃i = gi(. : i), i = 1, 2 (2.6)

where χ2 = 1 − χ1. As a result, the mean number of units that are
repeat purchased and their variance are given by:

E
(
k̃
)

=
∞∑

j=1

E
(
k̃j

)
χj

var
(
k̃
)

=
∞∑

j=1

E
(
k̃2

j

)
χj −

⎛⎝⎛⎛ ∞∑
j=1

E
(
k̃j

)
χj

⎞⎠⎞⎞2 (2.7)

If the underlying characteristic of the product advertised is its lifetime, a
random variable τ̃iττ , identically and independently distributed, and if the
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customer repeat purchases
(
k̃
)

units, then the time a customer remains

loyal to the firm is given by the Compound random variable T̃

T̃ =
1+k̃∑
i=1

τ̃iττ (2.8)

whose mean and variance can be calculated explicitly by:

E
(
T̃
)

= E
(
1 + k̃

)
E (τ̃iττ ) ;

var
(
T̃
)

= E
(
1 + k̃

)
var (τ̃iττ ) + var

(
1 + k̃

)
E (τ̃iττ )2

(2.9)

In this sense, equations (2.7) and (2.9) provide an estimate for the num-
ber of units bought by an individual customer and the amount of time
the customer remains loyal (and thereby, consuming the firm services
associated to the product).

Further, since the number of first time purchasers over a given period
of time has a Poisson distribution with mean rate λ∗ while “loyalty time”
is a random variable T̃ whose mean and variance are given by (2.9), we
recognize this type of model as an M/G/Infinity queue (Gross and Harris
(1985)). Thus, in a stationary state, the number of customers, paying a
service fee of w per unit time has also a Poisson distribution with mean:

ρ = λ∗E
(
T̃
)

=
q (α∗) a∗

m
E
(
1 + k̃

)
E (τ̃iττ ) (2.10)

The expected number of sales per unit time is given by ψ, which is
equated here to the total number of units bought in a time interval
by customers arriving at a specific instant of time divided by this time
interval, or

ψ = λ∗E
(
1 + k̃

)
E(T̃ )

=
λ∗

E (τ̃iττ )
(2.11)

Setting to C(a∗) the advertising cost per unit time, the firm profit per
unit time is:

Max
α∗,a∗ π = wρ + pψ − C(a∗)

=
q (α∗) a∗

m

(
wE
(
1 + k̃

)
E (τ̃iττ ) +

p

E (τ̃iττ )

)
− C(a∗)

(2.12)

An optimization of (2.12) with respect to the advertising budget and the
advertising claim will provide a solution to this problem. Explicitly, a
partial derivative with respect to advertising yields:
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πa =
q (α∗)

m

(
wE
(
1 + k̃

)
E (τ̃iττ ) + p

1
E (τ̃iττ )

)
− C ′(a∗) (2.13)

At the optimum however, πa=0 and therefore:

C ′(a∗ =
q (α∗)

m

(
wE
(
1 + k̃

)
E (τ̃iττ ) + p

1
E (τ̃iττ )

)
(2.13a)

And the marginal cost of advertising equals the marginal profit from
both sales and derived profits as given by (2.13a). Similarly, a partial
derivative with respect to the advertising claim yields:

πα∗ = ( π + C(a∗))
qα (α∗)
q (α∗)

+
q (α∗) a∗

m

(
wE (τ̃iττ )

(
E(1 + k̃)

)
α

)
(2.14)

At optimality πα∗=0 we have:

m ( π + C(a∗))
a∗wE (τ̃iττ )

=

((
E(1 + k̃)

)
α

)
(1/q (α∗))α

(2.15)

However, at optimality, πaa+aC ′(a∗) = π+C(a∗), πa = 0 and therefore,

mC ′(a∗)
wE (τ̃iττ )

=

((
E(1 + k̃)

)
α

)
(1/q (α∗))α

(2.16)

Inserting, (2.13) in (2.16), we obtain at last an expression in the adver-
tising claim only:

1 +
p

w (E (τ̃iττ ))2
(ln (q (α∗)))α = −

(
E(k̃)

)
α
− E

(
k̃
)

(2.17)

Explicitly, if we let q (α∗) = eεα∗
, then we have qα = εq,and:

1 +
pε

w (E (τ̃iττ ))2
= −

(
E(k̃)

)
α
− E

(
k̃
)

(2.18)

Where
(
E(1 + k̃)

)
α

<0 (since the more we claim, the smaller the num-

ber of units repurchased), and the optimal advertising claim is ob-
tained by a solution of (2.18). Assume again for simplicity that a con-
sumer remains loyal until a unit consumed does not conform to adver-
tised claims, then the number of units repeat purchased is a geomet-
ric random variable given by: g1(k̃1 : 1) = [1 − FαFF (α∗)]k̃−1 FαFF (α∗) and
E(k̃1) = θ∗ where θ∗ is the odd that an advertised claim is not met, or
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θ∗ = FαFF (α∗)/ [1 − FαFF (α∗)] . As a result,
(
E(1 + k̃)

)
α

= θα and there-
fore,

1 +
pε

w (E (τ̃iττ ))2
= −θα − θ > 0 (2.19)

which can be solved for the advertised claim. For simplicity say that the
odds of an advertised claim is met is given by a logistic regression of the
type ln θ∗ = a0 − a1α, then θα = −a1θ, a1 > 1 and therefore:

1 +
pε

w (E (τ̃iττ ))2
= (a1 − 1) ea0−a1α (2.20)

We note in particular:

dϑ

dα
=

ε

a1 (a1 − 1) θ (E (τ̃iττ ))2

1 + ϑ
ε

(E (τ̃iττ ))2
− (a1 − 1) ea0−a1α = 0

ϑ = p/w

(2.21)

Thus, the larger the advertising efficiency, the greater the claim and the
greater the relative price p/w. And vice versa, when the odds that an
advertised claim is not met by a consumption experience the price p/w
is smaller. Interestingly, the larger the product expected life, the smaller
the relative price p/w. The optimal claim, in this particular case is then
specified by (2.20), or:

α∗ = ln

(
(a1 − 1)w (E (τ̃iττ ))2

w (E (τ̃iττ ))2 + pε

)a0
a1

(2.22)

The corresponding advertising budget is then determined by equation
(2.16). If an advertising claim is set to a conservative low figure, q (α∗)
will be smaller reducing the advertising efficiency but maintaining cus-
tomers as repeat purchasers. Further, the higher the advertising claim,
the higher the advertising budget (i.e. the firm has an essentially first
purchaser dominant strategy). We can also note that the larger the ad-
vertising forgetting rate and the smaller the service payment fee, the
more we advertise and as a result, the more we shall claim. Our conclu-
sions, based on a simple and theoretical analysis confirms some hypothe-
ses set by Lodish et al. (1995) stating that in well established brands
(where a major part of sales are generated by loyal repeat purchasers),
the tendency will be to advertise less.
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3. The Non-stationary Advertising-Claims
Model

Let y(t) be the number of first purchasers at time t with y(s) = x.
Now assume that at new purchase events occur at the random (Poisson)
times τiττ , s < τ1ττ < τ2ττ < ... < τiττ < ..., with a non-stationary Poisson
process given by:

dλ(t)
dt

= −mλ(t) + q (α) a(t), λ(0) = λ0 (2.23)

For generality, we let ξi be the number of new first purchasers, a random
quantity. This means that at timeτiττ , at which time new purchasers come,
we have:

y(t + dt) = y(t) at t ∈ (τiττ , τiττ +1)

y(τ +
i ) = y(τ −

i ) + ξi at t = τiττ

i = 1, 2, 3, ........

(2.24)

Or,

y(t) = y(0) +

t∫
0

∫
�

∫∫
n

zµ(dx, dz) (2.25)

where µ (dx, dz)is a function denoting the number of jumps of first pur-
chases process y(t) in the time interval (0, t] defined as follows:

µ (∆, A) = µ (t + ∆t, A) − µ (t, A) (2.26)

and A is a Borel subset on �n. The measure µ(∆, A) is called the jump
measure of the process {y(t), t ≥ 0}. If first time events occur one at a
time, then we have a simple nonstationary Poisson process with,

Prob [τiττ +1 ≥ s |τiττ ] = exp

⎡⎣⎡− ∫
τiττ ∧s

λ(x)dx

⎤⎦⎤and

µ(dx, dz) = µ(dx)δ(z − 1)

(2.27)

as indicated in this paper where µ(t) is a point process whose jumps
equals one or such that:

P (µ(dt) = 1) = λ(t)dt + 0(dt)
P (µ(dt) = 0) = 1 − λ(t)dt + 0(dt)

P (µ(dt) ≥ 2) = 0(dt)
(2.28)
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Hence, µ(t) is a random variable distributed according to a Poisson law
whose mean (parameter) is:

Λ(t) =

t∫
0

λ(x)dx;
dΛ(t)

dt
= λ(t); Λ(0) = 0 (2.29)

In summary, first time purchases are generated by a non-homogenous
Poisson process with mean λ(t) –the goodwill equation, a function of
advertising a(t) at time t and the advertising claim α. The implications
of this observation is that at time t, the total number of cumulative first
purchases is given by N(t) which has a Poisson distribution with para-
meter Λ(t) given by equation (2.29). If the amount of time a customer
remains loyal to the firm (namely remains a repeat purchaser) has a prob-
ability density function b

(
T̃
)
, then the total number of customers that

have experienced the firm’s product and are no longer customers is given
by the event (M(t)|N(t)=n). Thus, the current number of customers the
firm has (and paying for derived services and charges associated to the
product consumption) is n-(M(t)|N(t)=n). First, note the probability
distribution of the conditional event is given by the binomial distribution
which is specified as follows:

P [M(t)|N(t) = n] =
(

n

M(t)

)
π(t)M(t) [1 − π(t)]n−M(t) ,

π(t) =
∫ t

0

∫∫
λ(u)b(t − u)

Λ(t)
du

(2.30)

Since n has a Poisson distribution, M(t) has also a Poisson distribution
with mean Φ(t) = Λ(t)π(t), explicitly given by equation (2.31),

P (M(t) = j) =
Φ(t)j exp(−Φ(t))

j!

Φ(t) =
∫ t

0

∫∫
λ(u)b(t − u)du)

(2.31)

As a result, the number of clients that have left the firm is given by
the difference of two non-homogenous Poisson processes, one with mean
given by equation (2.29) and the other by (2.31). Of course, when the
first purchase rate is constant, and for t large, the amount of time a
customer remains loyal is independent of time with M(t) a Poisson dis-
tribution with mean:

Λ∞ = λ

∫ ∞

0

∫∫
b(t − u)du =λ

∫ ∞

0

∫∫
dB(u) = λE(T̃ ) (2.32)
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where E(T̃ ) is the mean loyalty time. From a modeling point of view,
it is seen that a(t), the advertising budget, determines the mean rate of
new sales while the density function B(.) is defined by the advertising
claim. First note that revenues derived from current customers has a
mean given by w (Λ(t) − Φ(t)). Product sales revenues from both first
and repeat purchasers are calculated as follows. Consider a new client
arriving at time u and buying at price p. Such a client will repeat

purchase k̃ units at times u + τ̃1ττ , u + τ̃1ττ + τ̃2ττ , ,. . . . u +
k̃∑

i=1
τ̃iττ and since

the arrival rate is Poisson and given by λ(u) at this time, the discounted
value of all future purchases (to time u) by the client arriving at time u
and discounted at the discount rate r is:

E

⎧⎨⎧⎧⎩⎨⎨pλ(u)E

⎛⎝⎛⎛1 +
k̃∑

j=1

e
−r

j∑
i=1

τiττ

⎞⎠⎞⎞⎫⎬⎫⎫⎭⎬⎬ (2.33)

Let E
(
e−rτ̃

)
= L∗

τ (r) be the Laplace Transform of an individual unit
life time. Note that if the client repeats purchase one unit only (k = 1),
then E

(
e−rτ̃

)
= L∗

τ (r). For two units (k=2), with independent product
lifetimes, E

(
e−rτ̃

)
+ E

(
e−r(τ̃1+τ̃2ττ )

)
= L∗

τ (r) + (L∗
τ (r))

2 etc. for a larger
number of units. As a result, if the customer buys j units in repeat
purchase, we have:

L∗
τ (r) + (L∗

τ (r))
2 + ... + (L∗

τ (r))
j =

=
j∑

i=0
(L∗

τ (r))
i − 1

= 1−(L∗
τ (r))j

1−L∗
τ (r) − 1

=
L∗

τ (r)(
ττ

1−(L∗
τ (r))j−1)

1−L∗
τ (r)
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As a result, the expected discounted value of all repeat purchases by
clients that have had their first purchases at time u is:

pλ(u)E

⎛⎝⎛⎛ k̃∑
j=1

e
−r

j∑
i=1

τiττ

⎞⎠⎞⎞ = pλ(u)
∞∑

j=1

PjPP
L∗

τ (r)
(
1 − (L∗

τ (r))
j−1
)

1 − L∗
τ (r)

= pλ(u)
L∗

τ (r)
1 − L∗

τ (r)

∞∑
j=1

PjPP
(
1 − (L∗

τ (r))
j−1
)

= pλ(u)
L∗

τ (r)
1 − L∗

τ (r)

×
⎛⎝⎛⎛ ∞∑

j=1

P − 1
L∗

τ (r)

∞∑
k=1

PjPP (L∗
τ (r))

j

⎞⎠⎞⎞

= pλ(u)
L∗

τ (r)
1 − L∗

τ (r)

(
1 −

∏
P (L∗

τ (r))
L∗

τ (r)

)
(2.34)

where PjPP is the probability that there are j such repeat purchases and∏
P is the probability generating function of the number of units repeat

purchased, then equation (2.34) can be summarized by:

pλ(u)E

⎛⎝⎛⎛ k̃∑
j=1

e
−r

j∑
i=1

τiττ

⎞⎠⎞⎞ = pλ(u)
L∗

τ (r)
1 − L∗

τ (r)

(
1 −

∏
P (L∗

τ (r))
L∗

τ (r)

)
(2.35)

For example if a customer does not repeat purchase as soon as consump-
tion experience does not conform to advertising claim, we have:

PkPP = g1(k1 : 1) = [1 − FαFF (α∗)]k−1 FαFF (α∗) (2.36)

whose probability generating function is:

∏
P

=
∞∑

k=1

PkPP zk =

= zFαFF (α∗)
∞∑

k=1

[1 − FαFF (α∗)]k−1 zk−1 =

=
zFαFF (α∗)

1 − z [1 − FαFF (α∗)]

(2.37)
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and therefore,

pλ(u)E

⎛⎝⎛⎛ k̃∑
j=1

e
−r

j∑
i=1

τiττ

⎞⎠⎞⎞ =

= pλ(u)
L∗

τ (r)
1 − L∗

τ (r)

(
1 − L∗

τ (r) [1 − FαFF (α∗)] − FαFF (α∗)
1 − L∗

τ (r) [1 − FαFF (α∗)]

) (2.38)

If for simplicity we keep this expression to calculate the discounted value
of a customer’s repeat purchases, we have the following optimal control
problem:

Max
a1(t)≥0,α

∞∫
0

e−ru [pλ[[ (u)G (α) + w (Λ(u) − Φ(u)) − C(a)]du

Subject to:
dλ(u)/dt = −mλ + q (α) a(u), λ(0) = λ0

dΛ(u)/dt = λ(u), Λ(t) = Λ0

Φ(u) =
∫ u

0

∫∫
λ(v)b(u − ν)dv

G (α) = 1 +
L∗

τ (r)
1 − L∗

τ (r)

(
1 −

∏
P (L∗

τ (r))
L∗

τ (r)

)
(2.39)

The solution of this problem, a three states variables control problem,
can be solved by an application of Pontryagin Maximum Principle. For
discussion purposes, if we set the advertising claim constant and let the
advertising policy be defined a-priori in terms of some function of time
such as C(a) = C(ā, t¯ ) (or as a feedback function of the means of first
time purchasers, repeat purchasers and lost clients for example), we have
by simple Laplace transform techniques that:

sλ∗(s) − λ(0) = −mλ∗(s) + q (α) a∗(s) (2.40)
, sΛ∗(s) − Λ(0) = λ∗(s), Φ∗(s) = λ∗(s)b∗(s) (2.41)
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where

λ∗(s) =

∞∫
0

e−sλ(t)dt,

Λ∗(s) =

∞∫
0

e−sΛ(t)dt,

Φ∗(s) =

∞∫
0

e−sΦ(t)dt

(2.42)

As a result,

λ∗(s) =
q (α) a∗(s) + λ(0)

(s + m)
,

Λ∗(s) =
q (α) a∗(s) + λ(0)

s (s + m)
+

Λ(0)
s

,

Φ∗(s) =
q (α) a∗(s) + λ(0)

(s + m)
b∗(s).

(2.43)

where b(t) =
k̃∑

i=1
τiττ and therefore b∗(s) =

∏
P (Lτ (s)) where Lτ (s) is the

transform of an individual unit life time while
∏

P (.) is the probability
generating function of the number of units bought by a customer (and
thereby a function of the advertising claim). Inserting in our objective
function, we have:

J =

∞∫
0

e−ruΠdu =

= pλ∗(r)G (α) + w (Λ∗(r) − Φ∗(r)) − C∗ (ā, r)

(2.44)

For a linear advertising cost, this is reduced to:

J =
a∗(r)

(r + m)

{
pq(α)G(α∗) + wq(α)(

1
r
−
∏
P

(Lτ (r))) − 1

}

+p
λ(0)

(r + m)
G(α∗) + w

(
λ(0)

r (r + m)
+

Λ(0)
r

− λ(0)
(r + m)

b∗(r)
) (2.45)

which is linear in the advertising policy transform. For example, if the
advertising policy consists of a fixed quantity ā, then a∗(r) = ā/r¯ and the
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optimal advertising allocation and claim policy if given by maximizing
(2.44) with respect to (ā, α).

∂J

∂α
=

a∗(r)
(r + m)

⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪
+pq′ (α) G(α∗)+
+p
(
q (α) + λ(0)

(r+m)

)
G′(α∗)

+wq′ (α)
(

1
r −∏P (Lτ (r))

)
−w
(

λ(0)
(r+m) + q (α)

)
∂
∏

P (Lτ (r))
∂α

⎫⎪⎫⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎬⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎪⎪ (2.46)

For an optimal advertising claim ∂J
∂α=0, leading to:

p

w
=

A

B

A =
(

λ(0)
(r + m)

+ q (α)
)

∂
∏

P (Lτ (r))
∂α

−q′ (α)

(
1
r
−
∏
P

(Lτ (r))

)

B = q′ (α) G(α∗) +
(

q (α) +
λ(0)

(r + m)

)
G′(α∗)

(2.47)

while optimization with the parameter 0 ≤ ā ≤ amax yields

ā =

{
amax if p > w

(∏
P (Lτ (r))− 1

r
G(α∗)

)
0 else

(2.48)

If we consider a nonlinear advertising cost, while maintaining the con-
stant advertising rate, we have an optimal marginal cost of advertising
given by:

C ′ (ā) =
q (α) a∗(r)G (α)

(r + m)

[
p

[[
+ w

1/r −∏P (Lτ (r))
G (α)

]
(2.49)

Similarly, if we assume that the advertising policy is proportional to the
current means of new purchases and the number of clients lost by the
firm, then we have:

a(t) = ā + a1λ(t) + a2 (Λ(t) − Φ(t)) (2.50)

Or,

a∗(r) =
ā

r
+ a1λ

∗(r) + a2 (Λ∗(r) − Φ∗(r)) (2.51)
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and (after some elementary manipulations), we have:

a∗(r) =
A(r)
B(r)

A(r) =ā (r + m) +

+ (a1r + a2 − a2r
∏
P

(Lτ (r)))λ(0)

+ a2 (r + m) Λ(0)
B(r) =r (r + m)−

− q(α)(a1r + a2 − a2

∏
P

(Lτ (r))r)

(2.52)

which is optimized with respect to its parameters, a function of the
advertising claims.

4. Conclusion and Discussion
Advertising claims once experienced by consumers may determine the

propensity to repeat purchase. This paper has focused attention on the
design of claims and advertising policies simultaneously based on a sto-
chastic model of advertising efficiency and repeat purchase of experi-
enced clients. First, we have considered a stationary stochastic model
on the basis of which a number conclusions were drawn regarding the ef-
fects of advertising claims on advertising policies. Subsequently, we have
considered an intertemporal for advertising and repeat purchase based
on claims verification. The model thus constructed was reduced to a
deterministic optimal control model which we have solved under specific
assumptions. Explicitly, for infinite and discounted horizon problems,
we have shown that the problem can be treated analytically if we assume
that the optimal advertising policy is a linear function of the problem’s
state variables. The results we have obtained have established a clear re-
lationship between optimal claims and optimal advertising policies a s a
function of the advertising efficiency, first purchasers response to adver-
tising and the future benefits of derived consumption (such as associated
service contracts, products warranties and their like). The simultaneous
considerations of these issues in the context of advertising optimization
model have not been considered previously.
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Abstract We study an optimal control problem with a man-made capital stock, and a stock
of renewable natural resource. They are substitutable inputs in the production
of the final good. Starting from low levels of both stocks, the optimal policy
consists of three phases. In phase I, the planner builds up the stock of resource
above its steady state level, while the man-made capital stock is kept below its
steady state level. In phase II, the resource stock declines steadily, while the
man-made capital stock continues to grow, until the steady state is reached, and
the economy stays thereafter. The model exhibits “overshooting” property.

1. Introduction
Since man-made capital and natural resources are substitutable inputs in the

aggregate production function, a natural question that arises is how to opti-
mally accumulate capital and manage the resource stock. The case where the
natural resource stock is non-renewable has been studied by Solow under the
the maximin criterion, and Dasgupta and Heal (1979) and Pezzy and Withagen
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(1998) under the utilitarian criterion. Solow assumed a Cobb-Douglas produc-
tion function, and showed that if the share of capital is greater than the share
of natural resource, then a constant path of consumption is feasible, and along
such a path, the man-made capital stock increases without bound. Dasgupta
and Heal (1979) and Pezzy and Withagen (1998) showed that, under the utili-
tarian criterion, the man-made capital stock will reach a peak, and afterwards
both stocks fall to zero asymptotically.

In this paper, we study the optimal path for an economy that produces an
output using a stock of capital and a resource input extracted from a stock
of renewable natural resource. We retain the Solow-Dasgupta-Heal assump-
tion that capital and resource are substitutable inputs in the production of the
final good, but our model differs from theirs because the resource stock is re-
newable. We wish to find the optimal growth path of the economy under the
utilitarian criterion. We show that there exists a unique steady state with posi-
tive consumption. We ask the following questions: (i) Can it be optimal to get
to the steady state in finite time under the assumption that the utility function
is strictly concave? (ii) Can finite-time approach paths to the steady state be
smooth, in the sense that there are no jumps in the control variables? (iii) Are
there non-smooth paths to the steady state?

The answers to the above questions are as follows.
There exists a set of initial conditions (which forms a one-dimensional man-

ifold, i.e., a curve, in the state space) such that the approach path to the steady
state takes a finite time, and is smooth. The path along the manifold toward the
steady state involves a steady accumulation of the capital stock, and a steady
running down of the resource stock toward its steady state level.

If the initial conditions are not on that one-dimensional manifold, then it
may be optimal to get to some point on that manifold first, and then move
along the manifold to get to the steady state. The path that gets to a point on
the manifold is not smooth at the time it meets the manifold.

We show that starting from low levels of capital stock and resource stock,
the optimal policy consists of three phases. In phase I, the planner builds up
the stock of resource above its steady state level, while the capital stock is kept
below its steady state level. In phase II, the resource stock declines steadily,
while the capital stock continues to grow, until the steady state is reached. In
phase III, the economy stays at the steady state. Thus, our model exhibits the
“overshooting” property.

Before proceeding, we would like to note that there are a number of articles
that are somewhat related to our paper, where the authors discussed thr opti-
mal use patterns for renewable resources and the sustainability of economies.
Clark et.al. (1979) provided a general formulation with irreversible investment.
They focussed on irreversibility, and did not obtain an “overshooting” result.
Among the relatively recent papers, Bertratti et.al.(1998) addressed the prob-
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lem of optimal use of renewable resources under a variety of assumptions about
the objective of that economy (with the different types of the utility function.)
They constructed a model in which a man-made capital stock and a renewable
resource are used for production, and give a very general characterization of
the paths which are optimal in various senses. Their basic model is similar to
ours, however they focused on different issues. We are not aware of any paper
which examines the precise characteristics of steady state and of the approach
paths to the steady state in a model with man-made capital and renewable re-
source.

2. The Model
We consider a continuous-time model. Let K and S denote the stock of man-

made capital, and the stock of a renewable natural resource. Let R denote the
resource input. The output of the final good is

Y = F(K,R) =
√

KR
√√

Output can be consumed, or invested. Let C denote consumption and I denote
investment. Then

C = F(K,R)− I (3.1)

Assume there is no depreciation of capital. Then

K̇ = I (3.2)

Let θ(S) be the natural growth function of the resource stock. We assume it
has the shape of a tent. Specifically, we assume that there exists a stock level
Ŝ > 0 such that θ(S) = ωS if S < Ŝ , and θ(S) = ωŜ−δ(S− Ŝ) for S > Ŝ, where
ω > 0, δ > 0. The net rate of growth of the resource stock is

Ṡ = θ(S)−R (3.3)

Remark 1: The function θ(S) has a kink at Ŝ, so the derivative θ′(S) is not
defined at Ŝ. At that point, we define the generalised gradient of θ(S), denoted
by ∂θ, as the real interval [−δ,ω], where −δ is the right-hand derivative, and
ω is the left-hand derivative. When applying optimal control theory, we must
modify the equation for the shadow price of S when S is at Ŝ. (This will be
discussed in detail later.)

The consumption C yields the utility

U(C) =
√

C
√√

The objective of the planner is to maximize the integral of the discounted
stream of utility:

max
∫ ∞

0

∫∫ √
Ce

√√ −ρtdt
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where we assume
0 < ρ ≤ ω

The maximization is subject to

K̇ =
√

KR
√√

−C (3.4)

Ṡ = θ(S)−R (3.5)

with boundary conditions K(0) = K0KK > 0, S(0) = S0 > 0, and

lim
t→∞

K(t) > 0, li m
t→∞

S(t) ≥ 0

We focus on the set of initial conditions with S0 < Ŝ.
The set of positive stock levels is partitioned into two regions. Region I is

the set of points (S,K) such that 0 < S < Ŝ, and K > 0. Region II is the set of
points (S,K) such that S ≥ Ŝ, and K > 0.

In what follows we will focus on the optimal paths starting from points in
Region I.

CONJECTURES:
There is unique possible steady state.
The set of initial stocks (K0KK ,S0) such that the system reaches the steady state

smoothly is given by a curve C in the state space (K,S).
The optimal extraction path and the optimal consumption path can then be

shown to reach the steady state.
We show that these paths are optimal by showing that they satisfy the nec-

essary conditions of Regions I and II.

3. Region I

3.1 Necessary conditions in Region I
We define the current value Hamiltonian

H =
√

C
√√

+ψ1

[√
KR

√√
−C
]
+ψ2 [θ(S)−R]

where ψ1 is the shadow price of man-made capital and ψ2 is the shadow price
of the renewable resource.

The necessary conditions are

∂H
∂C

=
1

2
√

C
√√ −ψ1 = 0 (3.6)

∂H
∂R

=
1
2

ψ1

√
K
R
−ψ2 = 0 (3.7)

ψ̇1 = ψ1(ρ− 1
2

√
R
K

) (3.8)

ψ̇2 = ψ2 (ρ−ω) (3.9)
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Notice that ψ1 > 0 by (3.6). It follows that ψ2 > 0 by (3.7). So, in region I,
ψ̇2 can be zero only if ρ = ω.

From equations (3.7), (3.8) and (3.9) we get

(ρ−ω)− (ρ−FKFF ) =
ψ̇2

ψ2
− ψ̇1

ψ1
=

1
FRFF

d(FRFF )
dt

Hence

FKFF = ω+
1

FRFF
d(FRFF )

dt
(3.10)

We may call equation (3.10) th e Modified Hotelling Rule: the rate of capital
gain (rate of increase in the price of the extracted resource) plus the biological
growth rate must be equated to the rate of interest on the capital good, FKFF .

From (3.6) and (3.8), we get

Ċ
2C

= FKFF −ρ (3.11)

which is the Ramsey-Euler Rule: the proportional rate of consumption growth,
multiplied by the elasticity of marginal utility, must be equated to the difference
between the rate of interest FKFF and the utility-discount rate, ρ.

It is convenient to define a new variable x:

x(t) =
K(t)
R(t)

This variable is the capital/resource-input ratio, and is a measure of the capital
intensity of the production process at time t.

3.2 Steady States in Region I

Can there be a steady state (Sss,KssKK ) with 0 < Sss < Ŝ? At any steady state,
Ċ/C = 0, t hus we must have, from (3.14)

xss =
(

1
2ρ

)2

Substituting this value into (3.17), and noting that ψ2 > 0 always, we con-
clude that the steady state requirement Ċ/C = 0 implies that at the steady state,
ψ̇2/ψ2 = 0. But t his is possible only if ρ = ω. Thus we have proved:

FACT 1: There is no steady state with 0 < Sss < Ŝ, unless ρ = ω.
In what follows, we will focus on the case where ρ < ω. Then steady states

do not exist in Region I.
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3.3 Dynamics in Region I
3.3.1 The time path of capital/resource-input ratio in Re-
gion I. Step 1:

We first show that x satisfies the following differential equation

−1
2

x−
1
2 +

1
2

ẋ
x

= −ω (3.12)

This is shown from the necessary condition (3.6),

− Ċ
2C

=
ψ̇1

ψ1
(3.13)

but we know from (3.8)
ψ̇1

ψ1
= ρ− 1

2
x−

1
2 (3.14)

so we have

− Ċ
2C

=
ψ̇1

ψ1
= ρ− 1

2
x−

1
2 (3.15)

From (3.7) we get the relationship between ψ1 and x

∂H
∂R

=
1
2

ψ1

√
K
R
−ψ2 =

1
2

ψ1
√

x
√√ −ψ2 = 0 (3.16)

so that
ψ̇2

ψ2
=

ψ̇1

ψ1
+

1
2

ẋ
x

(3.17)

and using (3.8) yields

−ω = −1
2

x−
1
2 +

1
2

ẋ
x

(3.18)

Step 2: Solving for x(t):
By multiplying each side of (3.18) by

√
x

√√
gives

−1
2

+
1
2

ẋ√
x

√√ = −ωxωω
1
2 (3.19)

Let y ≡√
x

√√

−1
2

+ ẏ = −ωyω (3.20)

the solution can be written in two forms:

y(t) =
(

y0 − 1
2

)
e−ωt +

1
2ω
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or

y(t) =
(

yT − 1
2ω

)
e−ω(t−T ) +

1
2ω

where y0 = y(0) or yT = y(T ) and therefore we have

x(t) =
((√

x
√√

T − 1
2ω

)
e−ω(t−T ) +

1
2ω

)2

(3.21)

or

x(t) =
((√

x
√√

0 − 1
2ω

)
e−ωt +

1
2ω

)2

This ends Step 2.
Remark 2: If we impose the condition that at some time T the variable x(T )

takes the following value (which is its steady state value):

xT = (
1

2ρ
)2 (3.22)

For a given T there is one unique x0 such that

x0 = x(0) =
((√

x
√√

T − 1
2

)
eωT +

1
2

)2

and we can use the computed path to note that

ẋ(t) = −2ω
(√

x
√√

T − 1
2ω

)
e−ω(t−T )

((√
x

√√
T − 1

2ω

)
e−ω(t−T ) +

1
2ω

)
since

√
x

√√
T − 1

2ω = 1
2ρ − 1

2ω > 0 we have the following lemma.

Lemma 3.1 The capital intensity x(t) is decreasing over time.

It could be useful to compute ẋ(t)
x(t)

ẋ(t)
x(t)

= −2ω
(√

x
√√

T − 1
2ω
)

e−ω(t−T )((√
x

√√
T − 1

2ω
)

e−ω(t−T ) + 1
2ω
)

= −2ω

⎛⎝⎛⎛1− 1((
ω
ρ −1

)
e−ω(t−T ) +1

)
⎞⎠⎞⎞

so since
(

ω
ρ −1

)
> 0 then ẋ(t)

x(t) < 0.
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3.3.2 The path of ψ1. We can solve for ψ1 from (3.17) and (3.9)

ψ̇2

ψ2
=

ψ̇1

ψ1
+

1
2

ẋ
x

(3.23)

with
ψ̇2 = ψ2 (ρ−ω) (3.24)

so
ψ̇1

ψ1
= ρ−ω− 1

2
ẋ
x

The integration gives

ln
ψ1 (t)
ψ1 (T )

= (ρ−ω)(t −T )− ln

√
x(t)
x(T )

or

ψ1 (t) = ψ1T

√
x

√√
T√

x
√√

(t)
e(ρ−ω)(t−T )

ψ1 (t) = ψ1T

√
x

√√
T((√

x
√√

T − 1
2ω
)

e−ρ(t−T ) + 1
2ω e−(ρ−ω)(t−T )

) (3.25)

The denominator is D(t) =
(√

x
√√

T − 1
2ω
)

e−ρ(t−T ) + 1
2ω e−(ρ−ω)(t−T ) is such that

D′ (t) = −ρ
(√

x
√√

T − 1
2ω

)
e−ρ(t−T )− (ρ−ω)

1
2ω

e−(ρ−ω)(t−T )

D′ (t) =
1

2ω
(ρ−ω)e−ρ(t−T )

(
1− eω(t−T )

)
< 0

since ρ < ω. So
ψ̇1 (t) > 0 (3.26)

3.3.3 The time path of consumption in Region I. The
consumption path is (

1
2ψ1

)2

= C

that is

C (t) =
1(

2ψ1T

√
x

√√
T

((√x
√√

T− 1
2ω)e−ω(t−T )+ 1

2ω)e(ρ−ω)(t−T )

)2

C (t) = CTCC

((√
x

√√
T − 1

2ω
)

e−ω(t−T ) + 1
2ω
)2

xT
e−2(ρ−ω)(t−T ) (3.27)
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The evolution of the consumption path is given by

Ċ
C

= −2
ψ̇1

ψ1
< 0 (3.28)

Lemma 3.2 In region I, Ċ(t)/C(t) is negative.

3.3.4 The time path of extraction in Region I. From the
definition of x = K/R, we have

K̇ = Ṙx+RẋRR

and
K̇ =

√
KR

√√
−C = R

√
x

√√ −C

so
Ṙx+RẋRR = R

√
x

√√ −C (3.29)

or

Ṙ = R

(
1√
x

√√ − ẋ
x

)
− C

x
(3.30)

using (3.12) yields

−ω = −1
2

x−
1
2 +

1
2

ẋ
x

so

Ṙ = 2ωRωω − C
x

(3.31)

where C(t) is given by (3.27) and x(t) is given by (3.21) and so

Ṙ = 2ωRωω − CTCC
((√x

√√
T− 1

2ω)e−ω(t−T )+ 1
2ω)2

xT
e−2(ρ−ω)(t−T )((√

x
√√

T − 1
2ω
)

e−ω(t−T ) + 1
2ω
)2 (3.32)

Hence

Ṙ = 2ωRωω − CTCC e−2(ρ−ω)(t−T )

xT
(3.33)

The exact solution is:

R(t) =
1
2

CTCC
xT ρ

exp(2ωt −2ωT −2ρt +2ρT )+ e2ωtE

and R(T ) = RT so

RT =
CTCC

xT 2ρ
+ e2ωT E
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with

xT =
KssKK
Rss

=
[

1
2ρ

]2

CTCC = ωŜ

[
1

2ρ

]
(3.34)

and

RT = ωŜ (3.35)

so

E =
(

RT − CTCC
xT 2ρ

)
e−2ωT = 0

and

R(t) = ωŜe2(ω−ρ)(t−T ) (3.36)

Ṙ(t) = 2(ω−ρ)ωŜe2(ω−ρ)(t−T ) > 0

3.3.5 The path of capital in region I. We now turn to the
capital, we have

K = xR

K̇
K

=
ẋ
x

+
Ṙ
R

=
ẋ
x

+2(ω−ρ)

using (3.36) and (3.12) yields

K̇
K

= −2ω+ x−
1
2 +2(ω−ρ) = x−

1
2 −2ρ

since ẋ < 0 we have dx−
1
2

dt > 0 with (x(T ))−
1
2 = 2ρ and therefore x−

1
2 −2ρ < 0

for all t < T and thus

K̇
K

= x−
1
2 −2ρ < 0

Substituting x and R from (3.36) and (3.21) gives

K = xR = ωŜe2(ω−ρ)(t−T )
((√

x
√√

T − 1
2ω

)
e−ω(t−T ) +

1
2ω

)2



Capital Resource Substitution and Overshooting 51

at time t = 0 we have

K0KK = K (0) = ωŜe−2(ω−ρ)T
((

1
2ρ

− 1
2ω

)
eωT +

1
2ω

)2

dK0KK
dT

= ωŜe−2(ω−ρ)T
((

1
2ρ

− 1
2ω

)
eωT +

1
2ω

)2

dK0KK
dT

= ωŜ
d

((
e−(ω−ρ)T

((
1

2ρ − 1
2ω

)
eωT + 1

2ω

))2
)

dT

Let f (T ) = e−(ω−ρ)T
((

1
2ρ − 1

2ω

)
eωT + 1

2ω

)
we have

f (T ) =
(

1
2ρ

− 1
2ω

)
eρT +

1
2ω

e−(ω−ρ)T

f ′ (T ) =
1

2ω
(ω−ρ)eρT (1− e−ωT )> 0

So
dK0KK
dT

= ωŜ2 f ′ (T ) f (T ) > 0 (3.37)

3.3.6 The path of the resource stock. The stock follows

Ṡ = ωS−R

substituting R from (3.36)

Ṡ = ωS−ωŜe2(ω−ρ)(t−T )

S(T ) = Ŝ

Exact solution is:

S (t) = Ŝ

(
ω

−ω+2ρ
e2(ω−ρ)(t−T ) +2eω(t−T ) −ω+ρ

(−ω+2ρ)

)
Ṡ (t) = 2ω(ω−ρ)eω(t−T )Ŝ

(
e(ω−2ρ)(t−T )−1

(−ω+2ρ)

)
> 0 (3.38)

The initial stock must be

S0 = S (0) = Ŝ

(
ω

−ω+2ρ
e−2(ω−ρ)T +2e−ωT −ω+ρ

(−ω+2ρ)

)
(3.39)

So we have

dS0

dT
= 2(ω−ρ)ωŜe−ωT

(
1− e−(ω−2ρ)T

−ω+2ρ

)
< 0 (3.40)
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and
dK0KK
dT

> 0 (3.41)

and therefore in Region I:
dK0KK
dS0

< 0 (3.42)

4. Region II

4.1 The necessary conditions in Region II
The necessary conditions for Region II are a bit more complicated, because

at the point Ŝ the function θ(S) is not differentiable. Thus we must deal with a
“non-smooth” problem. For a general treatment of non-smooth optimal control
problem see Clarke and Winter (1983), or Clarke (1983); here we follow the
exposition in Docker et al (2000, pages 74-79).

Since θ(S) has a kink at Ŝ, with left-hand derivative equal to ω > 0 and
right-hand derivative equal −δ, the generalized gradient of θ(.) at Ŝ is defined
as

∂θ(Ŝ) = [−δ,ω]

The necessary conditions are

∂H
∂C

=
1

2
√

C
√√ −ψ1 = 0 (3.43)

∂H
∂R

=
1
2

ψ1

√
K
R
−ψ2 = 0 (3.44)

K̇ =
√

KR
√√

−C (3.45)

Ṡ = ωŜ−δ(S− Ŝ)−R if S > Ŝ (3.46)

ψ̇1 = ψ1(ρ− 1
2

√
R
K

) (3.47)

and, from Docker et al (2000, pages 74-79),

−(ψ̇2 −ρψ2) ∈ [−δψ2,ωψ2] if S = Ŝ (3.48)

−(ψ̇2 −ρψ2) = −δψ2 if S > Ŝ (3.49)

4.2 Steady State in Region II
Sss,KssKK ) in Region II. We will show that it

is necessary that Sss=Ŝ.
For suppose Sss > Ŝ. Then, from (3.49)

ψ̇2 = ψ2(δ+ρ) > 0 for ψ2 > 0

the fu

Consider a possible steady state (

0 (3
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which is in contradiction with

ψ̇2

ψ2
=

ψ̇1

ψ1
+

1
2

ẋ
x

= 0

Thus we have proved:
FACT 2: In Region II, the only possible steady state resource stock level is

Sss=Ŝ.
Let us find the corresponding steady state values of other variables. ¿From

(3.46), at the steady state,
Rss = ωŜ. (3.50)

¿From (3.47), at the steady state,

1
2

(
K
R

)− 1
2

= ρ (3.51)

Thus

KssKK = ωŜ

[
1

2ρ

]2

(3.52)

xss =
KssKK
Rss

=
[

1
2ρ

]2

Using (3.45), at the steady state

CssC = ωŜ

(
1

2ρ

)
(3.53)

Thus, from (3.43) and (3.53)

ψssψψ 1 =
1
2

(
ωŜ
2ρ

)− 1
2

and, from (3.44)

ψssψψ 2 =
1
4

(
ωŜ
2ρ

)− 1
2

which is consistent with (3.48) because ρ ∈ [−δ,ω].

5. Convergence to the steady state
We must now solve the following problem: starting from an initial point

(S0,K0KK ), we must determine if there exists a solution (S(t),K(t)) that con-

verges to (Ŝ,ωŜ
[

1
2ρ

]2
), possibly at some finite time T̂ , where, in general,

T̂ = T̂ (K0KK ,S0).
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The path that converges to the steady state may be smooth (in the sense that
there are no jumps in the control variables R and C), or it may exhibit jumps in
C and R (say at time T ).

5.1 Smooth paths
5.1.1 The time path of capital/resource-input ratio in Re-
gion II. Step 1:

We first show that x satisfies the following differential equation

−1
2

x−
1
2 +

1
2

ẋ
x

= δ (3.54)

This is shown from the necessary conditions (3.7), (3.6) and (??),

∂H
∂C

=
1

2
√

C
√√ −ψ1 = 0 (3.55)

− Ċ
2C

=
ψ̇1

ψ1
(3.56)

but we know from the necessary conditions

ψ̇1

ψ1
= ρ− 1

2
x−

1
2 (3.57)

so we have

− Ċ
2C

=
ψ̇1

ψ1
= ρ− 1

2
x−

1
2 (3.58)

The relationship between ψ1 and x is from

∂H
∂R

=
1
2

ψ1

√
K
R
−ψ2 = 0 (3.59)

so that
ψ̇2

ψ2
=

ψ̇1

ψ1
+

1
2

ẋ
x

(3.60)

and from the necessary conditions we have

ψ̇2 = ψ2(δ+ρ) (3.61)

so we have

δ+ρ = ρ− 1
2

x−
1
2 +

1
2

ẋ
x

(3.62)

or

δ = −1
2

x−
1
2 +

1
2

ẋ
x

(3.63)
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Step 2: Solving for x(t) :
Multiplying each side of by

√
x

√√
gives

−1
2

+
1
2

ẋ√
x

√√ = δxδδ
1
2 (3.64)

This solution is given as1

x(t) =
((√

x
√√

T +
1
2δ

)
eδ(t−T )− 1

2δ

)2

or

x(t) =
((√

x
√√

0 +
1
2δ

)
eδt − 1

2δ

)2

(3.65)

This ends Step 2.
Remark 3: We retrieve the results of Region I if we substitute δ by −ω.
Remark 4: If we impose the condition that at some time T the variable x(T )

takes the following value (which is its steady state value):

xT = (
1

2ρ
)2 (3.66)

For a given T there is one unique x0 such that

x(t) =
((√

x
√√

0 +
1
2δ

)
eδt − 1

2δ

)2

and we can use the computed path to note that

ẋ(t) = 2δ
(√

x
√√

T +
1
2δ

)
eδ(t−T )

((√
x

√√
T +

1
2δ

)
eδ(t−T )− 1

2δ

)
We have

ẋ(T ) = 2δ
(√

x
√√

T +
1
2δ

)
(
√

x
√√

T ) > 0

but can we have ẋ(t) < 0 for t ∈ [0,τ)? We must have

−1
2

+
1
2

ẋ√
x

√√ = δxδδ
1
2 (3.67)

so ẋ must be positive.

Lemma 3.3 The capital intensity x(t) is increasing over time.

1The precise solution will be made available upon request.
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5.1.2 The path of ψ1 in region II. We have

ψ̇2

ψ2
= δ+ρ =

ψ̇1

ψ1
+

1
2

ẋ
x

δ+ρ =
ψ̇1

ψ1
+

δ
(√

x
√√

T + 1
2δ
)

eδ(t−T )((√
x

√√
T + 1

2δ
)

eδ(t−T )− 1
2δ
) (3.68)

The solution is given as2

ψ1 (t) =
ψ1 (T )e(δ+ρ)(t−T )((
1+ ρ

δ
)

eδ(t−T )− ρ
δ
) (3.69)

From

C =
(

1
2ψ1

)2

C = CTCC
((

1+
ρ
δ

)
e−ρ(t−T )− ρ

δ
e−(δ+ρ)(t−T )

)2

Ċ = ρ
(

1+
ρ
δ

)
e−2ρ(t−T )CTCC

(
−1+ e−δ(t−T )

)(
1+

ρ
δ

(
1− e−δ(t−T )

))
Ċ < 0

since
1+

ρ
δ

(
1− e−δ(t−T )

)
> 0

5.1.3 The path of extraction in region II. We now turn to
the time path of extraction.

We still have

Ṙ = R

(
1√
x

√√ − ẋ
x

)
− C

x
(3.70)

but now

δ = −1
2

x−
1
2 +

1
2

ẋ
x

(3.71)

so

Ṙ = −2δR− C
x

< 0 (3.72)

Ṙ = −2δR− CTCC e−2(δ+ρ)(t−T )

xT
(3.73)

2The precise solution will be made available upon request.
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with

x(t) → xT ≡ KssKK
Rss

=
[

1
2ρ

]2

(3.74)

C(t) →CTCC = ωŜ

[
α
ρ

]
(3.75)

Ṙ = −2δRδ −2ρωŜe−2(δ+ρ)(t−T ) (3.76)

The exact solution is given as3

R(t) = ωŜe−2(δ+ρ)(t−T )

Ṙ(t)
R

= −2(δ+ρ) < 0 (3.77)

5.1.4 The path of capital in region II. Concerning the stock
of capital we have

K = xR

so

δ+
1
2

x−
1
2 =

1
2

ẋ
x

(3.78)

K̇
K

=
ẋ
x

+
Ṙ
R

=
ẋ
x
−2(δ+ρ)

K̇
K

=
1√
x

√√ −2ρ (3.79)

Since ẋ
x > 0 then d

dt

(
1√
x

√√
)

< 0 so 1√
x

√√
(t)

> 1√
x

√√
(T )

= 2ρ for all t < T and therefore

K̇
K

> 0. (3.80)

Moreover substituting x and R yields

K (t) = x(t)R(t)

K (t) =
((√

x
√√

T +
1
2δ

)
eδ(t−T )− 1

2δ

)2

ωŜe−2(δ+ρ)(t−T ) (3.81)

there exist a smooth path reaching KssKK at T has K0KK that satisfies

K0KK = K (0) = ωŜ

(((√
x

√√
T +

1
2δ

)
e−δT − 1

2δ

)
e(δ+ρ)T

)2

(3.82)

3The precise solution will be made available upon request.
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Let g(T ) =
((√

x
√√

T + 1
2δ
)

e−δT − 1
2δ
)

e(δ+ρ)T

g′ (T ) =
1
2δ

eρT (δ+ρ)
(

1− eδT
)

< 0

dK0KK
dT

= ωŜg(T )g′ (T ) < 0 (3.83)

5.1.5 The path of the resource stock in region II. In region
II we have

Ṡ = ωŜ−δ(S− Ŝ)−R (3.84)

Substituting R gives

Ṡ +δS = Ŝ
(

ω+δ−ωe−2(δ+ρ)(t−T )
)

Note that
Ṡ (T )+δŜ = δŜ

and thus
Ṡ (T ) = 0

We now solve for the path of the resource stock

S′ = A
(

ω+δ−ωe−2(δ+ρ)(t−T )
)
−δS

S (T ) = A

The exact solution is:

S (t) = ω
Ŝ
δ

+ Ŝ +ω
Ŝ

δ+2ρ
e−2(δ+ρ)(t−T )−2e−δ(t−T )ωŜ

δ+ρ
δ(δ+2ρ)

(3.85)

we check that S (T ) = ω Ŝ
δ + Ŝ +ω Ŝ

δ+2ρ −2ωŜ δ+ρ
δ(δ+2ρ) = Ŝ

Moreover

Ṡ (t) = 2ωŜ2e−δ(t−T ) δ+ρ
(δ+2ρ)

(
−e−(δ+2ρ)(t−T ) +1

)
< 0 (3.86)

and there exists a smooth path reaching Ŝ at T if S0 satisfies

S0 = S (0) = ω
Ŝ
δ

+ Ŝ +ω
Ŝ

δ+2ρ
e2(δ+ρ)T −2eδT ωŜ

δ+ρ
δ(δ+2ρ)

(3.87)

dS0

dT
= ω

2(δ+ρ) Ŝ
δ+2ρ

e2(δ+ρ)T −2eδT ωŜ
δ+ρ

(δ+2ρ)
dS0

dT
= 2eδT ωŜ

δ+ρ
(δ+2ρ)

(
e(δ+2ρ)T −1

)
> 0 (3.88)
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In Region II we also have
dS0

dT
> 0 (3.89)

and
dK0KK
dT

< 0 (3.90)

so
dK0KK
dS0

< 0 (3.91)

In Both region I and region II we have

dK0KK
dS0

< 0 (3.92)

This implies either overshooting or jump in the control paths.
There exists a set of initial pair of stock levels (K0KK ,S0) for which we can

find a smooth path that leads to the steady state pair (Ŝ, K̂). This set is a one-
dimensional manifold which has a negative slope for 0 < S < Ŝ. Or the path
converging to the steady state may exhibit jumps in C and R.

This policy implication is that the planner will want to build up the stock of
resource before runnig it down to its steady state level. This is an “overshoot-
ing” result.

Acknowledgments
We thank to Akio Matsumoto for useful comments at 8th Viennese Work-

shop. Usual disclaimer applies.

References
Bertratti, A., Chichilnisky, G., and Heal, G. Sustainable use of renewable re-

sources. In: G. Chichilnisky et al. (eds), Sustainability: Dynamics and Un-
certainty, 49-76, Kluwer Academic Publishers, Netherlands, 1998.

Clark, C.W., F.K. Clarke, and Munro, G. The optimal exploitation of renew-
able resource stocks: problems of irreversible investment. Econometrica,
47(1):25-48, 1979.

Clarke, F.H. Optimization and Nonsmooth Analysis. Wiley, New York, 1983.
Clarke, F.H., and Winter, R.B. Local optimality conditions and Lipschitzen

solutions to Hamilton-Jacobi equation. SIAM Journal of Control and Opti-
mization, 21. 856-870, 1983.

Dasgupta, P.S., and Heal, G. Economic Theory and Exhaustible Resources.
Cambridge University Press, Cambridge, 1979.

Dockner, E., Jorgensen, S., Long, N.V., and Soger, G. Differential Games in
Economics and Management Science. Cambridge University Press, Cam-
bridge, 2000.



60

Pezzy, J., and Withhagen, C.A. The rise, fall and substitutability of capital-
resource economies. Scandinavian Journal of Economics, (2): 513-527,
1998.

100



Chapter 4

HIERARCHICAL AND ASYMPTOTIC
OPTIMAL CONTROL MODELS FOR
ECONOMIC SUSTAINABLE
DEVELOPMENT ∗

Alain B. Haurie
Logilab-HEC, University of Geneva, Switzerland.
alain.haurie@hec.unige.ch

Abstract In this brief paper one shows the relevance of asymptotic control theory
to the study of economic sustainable development. One also proposes
a modeling framework where sustainable economic development is rep-
resented through a paradigm of optimal stochastic control with two
time-scales. This shows that several contributions of rof. Sethi, in
the domain of hierarchical and multi-level control models in manufac-
turing and resource management can also serve to better understand
the stakes of sustainability in economic growth and to assess long term
environmental policies.

1. Introduction
The theory of economic growth has been using a lot of control theory

(and calculus of variations) to attain in the late seventies a remarkable
scientific status in the domain of economics and social sciences. In par-
ticular the theory of Hamiltonian systems has been used to explain the
asymptotic behavior of a growing economy, the key feature being that the
economic growth models were likely to exhibit global attractors, both
for the state and costate variables. This attractor was called ”turn-
pike”, following the work by Cass (1995), McKenzie (1976), Brock &
Scheinkman (1976), Rockafellar (1973) and many others. An optimally
growing economy in a stationary environment is prone to converge to an
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extremal1 steady-state which would then characterize a sustainable op-
timal economic state. The turnpike property has also been an important
feature in the study of existence, sufficiency conditions and asymptotic
behavior of optimal control problems with zero-discount and overtaking
optimality criterion. (see Brock and Haurie (1976) and Carlson, Hau-
rie and Leizarowitz (1994)). In stochastic decision models the turnpike
property has been associated with the existence of stationary or invari-
ant state probability measures that are defined by optimal policies (see
e.g. Puterman (1994), Veinott (1964)).

An interesting feature of this theory was the result showing that when
the pure time preference discount rate ρ > 0 was increasing, the suffi-
cient conditions for observing the turnpike property were more stringent.
In brief, high discounting could jeopardize sustainability. The economics
of the environment and, more precisely, cost-benefit analysis for global
climate change mitigation has generated a renewed interest for low dis-
counting or even zero discounting in economic growth models. For ex-
ample, in Weitzman (1998) Weitzman explained why one should use
the lowest rate to discount distant futures. In an interesting monograph
edited by Portney and Weyant (1999) several leading authors discuss the
proper discount rate to use when dealing with environmental problems
that will affect several generations down in the future.

In this note one intends to show that the turnpike theory has an
important potential to contribute to a better understanding of the long
term economic growth under a global environmental threat and, more
generally, of the elusive concept of economic sustainability. Considering
the purpose of this essay, most technical developments have deliberately
been avoided and the interested reader is referred to the sources given
in reference. The paper is organized as follows: Section 4.2 shows the
relevance of turnpike theory for sustainable development analysis. One
illustrates this property by showing how it would appear in the most
popular cost-benefit-analysis (CBA) models, in particular the Nordhaus
and Nordhaus-Boyer models DICE-94 or DICE-99 (Nordhaus (1992),
Nordhaus (1994), Nordhaus and Boyer (2000)). Section 4.3 shows how
the climate change and climate damage uncertainty can be introduced in
this class of models, using a two time-scale, hierarchical control scheme.
A limit climate control problem is formulated in the slow time-scale which
serves to determine the optimal long term GHG emissions cap. An
auxiliary optimal economic growth problem is then formulated, in the
fast time-scale with incentives based on the potential function associated
with the solution of the limit climate control problem. The solution of
this transient optimal economic growth problem will drive the economy
toward the long term sustainability goal.
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2. Turnpikes for economy-environment models
In this section one considers an archetypal economic growth model

with global climate change damage that uses an infinite horizon contin-
uous time optimal control paradigm. The model is directly inspired from
the DICE-94 model developed by W. Nordhaus (Nordhaus (1992), Nord-
haus (1994), Nordhaus and Boyer (2000)). Using that model one can
explore the asymptotic steady-state attractors associated with different
possible discount rates and give interpretation of the turnpike property
in terms of economic sustainability. Recall first the list of variables
used in the DICE model, as given in Table 4.1 The optimal economic

List of endogenous state variables

K(t) = capital stock
M(t) = mass of GHG in the atmosphere
T (t) = atmospheric temperature relative to base period
T ∗(t) = deep-ocean temperature relative to base period

List of control variables

I(t) = gross investment
µ(t) = rate of GHG emissions reduction

List of exogenous dynamic variables

A(t) = level of technology
L(t) = labor input (=population)
O(t) = forcing exogenous GHG

List of auxiliary variables

C(t) = total consumption
c(t) = per capita consumption
D(t) = damage from GH warming
E(t) = emissions of GHGs
F (t) = radiative forcing from GHGs
Ω(t) = output scaling factor due to emissions control

and to damages from climate change
Q(t) = gross world product

Table 4.1. List of variables in the DICE94 model

growth model represents an economy producing a single malleable good
which can be consumed or invested in physical production capital. The
production process generates emissions of greenhouse gases (GHG) that
accumulate in the atmosphere and trigger, through a radiative forcing
effect a surface atmospheric temperature (AST) increase. This global
temperature change has an impact on the economy measured by the
fraction of lost economic output. Emissions abatement can be realised,
at a cost also measured in terms of output loss. The formulation of
DICE-94 as a control model with infinite time horizon and discounting
is given below in Eqs (4.1)-(4.18):
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max
c(·)

∫ ∞

0

∫∫
e−ρtU(c(t), L(t)) dt (4.1)

s.t.

U(c(t), L(t)) = L(t)
c(t)1−α − 1

1 − α
(4.2)

L̇(t) = gL(t)L(t) (4.3)
ġL(t) = −δLgL(t) (4.4)

Q(t) = Ω(t)A(t)K(t)γL(t)1−γ (4.5)

Ȧ(t) = gA(t)A(t) (4.6)
ġA(t) = −δAgA(t) (4.7)
Q(t) = C(t) + I(t) (4.8)

c(t) =
C(t)
L(t)

(4.9)

K̇(t) = I(t) − δK(t) (4.10)
E(t) = (1 − µ(t))σ(t)Q(t) (4.11)

Ṁ(t) = β0E(t) − δM (M(t) − 590) (4.12)

F (t) = 4.1
log[M(t)] − log[590]]

log[2]
+ O(t) (4.13)

Ṫ (t) =
1

R1
{F (t) − λT (t) − R2

τ12ττ
{T (t) − T ∗(t)}} (4.14)

Ṫ ∗(t) =
1

τ12ττ
{T (t) − T ∗(t)} (4.15)

D(t) = Q(t)θ1(T (t) + θ2T (t)2) (4.16)

TC(t) = Q(t)b1µ(t)b2 (4.17)

Ω(t) =
1 − b1µ

b2

1 + θ1(T + θ2T 2)
. (4.18)

The principal parameter values are listed in Table (4.2).
For a precise meaning of these parameters, equations and variables,

one refers the reader to the two books where DICE-94 and DICE-99 are
explained and calibrated Nordhaus (1994), Nordhaus and Boyer (2000).
For our purpose it suffices to say that this model captures the funda-
mental coupling between climate and economics growth that can be also
summarized by the diagram shown in Figure 4.1 borrowed from Drouet,
Edwards and Hauriex. In this control model the state of the economy
evolves through the capital accumulation process, whereas the state of
the environment evolves according to the carbon cycle which defines the
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α = 1
b1 = 0.045
b2 = 2.15
β0 = 0.64
γ = 0.25
δK = 0.10 (per year)
δM = 0.0833 (per decade)
λ = 1.41
θ1 = 0.0007
θ2 = 3.57
σ = 0.033

Table 4.2. Parameter values

Climate Oracle

Economic

Dynamics

Carbon-

Cycle

SAT Dynamics

Damage

Function

������

������

������

������

Economy Oracle

Carbon

AtmosphericcA

TemperatureT r

Production

Loss of

Carbon

Emissions

ConcentrationsnCC

Figure 4.1. GOLDICE framework

concentration of CO2 in the atmosphere and as a consequence the tem-
perature increase due to the greenhouse effect. The feedback from the
climate to the economy is represented by the damage function which
determines the loss of economic output due to climate change.

Indeed the first DICE-94 model is very well adapted to the study
of an asymptotic behavior2. To obtain an asymptotic steady state of
the DICE-94 model one pushes the population growth and productiv-
ity factor to their asymptotic limits and after equilibrium in the two
reservoirs, atmosphere and ocean, one obtains a steady-state path with
constant levels of capital, GHG concentration and temperature increase.
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It is worthwhile to recall here the definition of turnpikes for optimal
control models. For that we use a general formulation of an infinite
horizon control model.

max ρ

∫ ∞

0

∫∫
e−ρtL(x(t), u(t)) dt (4.19)

s.t.
ẋ(t) = f(x(t), u(t)) (4.20)
u(t) ∈ U(x(t)). (4.21)

Here x is the state vector (x = (K, M, T ) in the DICE-94 model), u
is the control vector (u = (I, C, µ) in the DICE-94 model) and U(x) is
the constraint set linking control and state variables. When the popula-
tion and the exogenous technological progress have stabilized, the model
(4.1)-(4.18) can be put in the form (4.19)-(4.21) of a stationary infinite
horizon control problem. When ρ = 0 one can define the turnpike as the
solution to the steady-state optimization problem

max L(x, u) (4.22)
s.t.

0 = f(x, u) (4.23)
u ∈ U(x), (4.24)

whereas, when ρ > 0, the turnpike is solution to the implicit program-
ming problem

max L(x, u) (4.25)
s.t.

0 = f(x, u) − ρ(x − x̄) (4.26)
u ∈ U(x), (4.27)

where x̄ is precisely the turnpike value (hence the name implicit program-
ming proposed in Feinstein and Luenberger (1981)). These turnpikes are
attractors for all the possible optimal trajectories, emanating from all
different admissible initial state, when the control system has enough
convexity3.

The solution of (4.22)-(4.24) is an easy mathematical programming
problem. The solution of (4.25)-(4.27) involves the computation of a
fixed point through a sequence of optimizations where the x̄ value is
updated. Both problems can be easily solved for the model (4.1)-(4.18),
using for example the solver tool of excel. Table 4.3 below, borrowed
from Haurie (2003), gives the asymptotic steady state of any optimal
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State variables

K̄ = 943
M̄ = 911
T̄ = 2.64

Control variables

Ī = 94.3
µ̄ = 0.68

Exogenous variables

Ā = 0.063
L̄ = 12000
Ō = 1.15

Auxiliary variables

C̄ = 291
Ē = 41.83
F̄ = 3.72
Q̄ = 400

ρ = 0%

State variables

K̄ = 506
M̄ = 1170
T̄ = 3.69

Control variables

Ī = 50.6
µ̄ = 0.36

Exogenous variables

Ā = 0.063
L̄ = 12000
Ō = 1.15

Auxiliary variables

C̄ = 278
Ē = 75.47
F̄ = 5.20
Q̄ = 342

ρ = 6%

Table 4.3. Turnpike values when ρ=0 % and ρ=6%,respectively

trajectory of the model (4.1)-(4.18) starting from any initial admissible
state, for ρ = 0% and ρ = 6%, respectively.

We notice the important effect of the pure rate of time preference on
the asymptotic environmental state, represented by the variables T and
M . Also, discounting implies a lower level of asymptotic consumption4.
We see very well, on this simple numerical example, why Ramsey de-
clared that a zero discount rate is justified on ethical grounds for a multi-
generation economic growth model. In the long term a zero discount rate
yields a better environment and a higher sustainable utility level. Indeed,
using a zero discount rate would impose a high burden and adjustment
cost to the present generation whereas climate change will impact future
generations more. To cope with this long term cost without imposing
too much a toll to the present generations several authors, including
Nordhaus and Boyer in their DICE-99 model, have proposed to use a
time dependent hyperbolic discount rate ρ(t) → 0. If one introduces
such a discounting scheme in the model described above, the asymptotic
steady-state will still be the one associated with 0-discounting (see Hau-
rie (2002) for a discussion of the turnpikes for models with uncertain or
time varying discount rates).

To conclude this first section one can say that the consideration of sus-
tainable economic development justifies the use of zero discount rates in
the assessment of the optimal steady states that characterize economic
sustainability. Now, representing the climate dynamics by a couple of
differential equations might be considered too simplistic, when one con-



68

siders the very high level of uncertainty that is still characterizing climate
science. In the next section this concept of low or zero-discounting asso-
ciated with turnpikes is used to build a hierarchical two time-scale model
of stochastic interaction between the economy and the environment.

3. Turnpikes for a two time-scale model with
stochastic climate change

This section intends to show how the turnpike theory can be used to
analyze very long term climate policies when the climate change obeys
a stochastic evolution at a time pace which is much slower than the
speed of economic adjustment. The new feature of this modeling ap-
proach is the introduction of a distinction between the climate variables
and a climate change indicator, also called climate mode which is the
main determinant of the impact and economic damages due to climate
change. In this paper one presents uniquely the general idea of the mod-
eling approach, leaving for a more developed paper the task to establish
rigorously the conjectures that are introduced here.

3.1 Climate variables and climate modes
The atmospheric concentration of carbon M(t) and the average sur-

face temperature (AST) T (t) are the climate state variables. To repre-
sent the uncertainty that concerns the dynamics of these variables, one
introduces noise in the carbon cycle and temperature forcing equations
that are driving the temperature change. In the DICE models, as well
as in most of the integrated assessment models that have been recently
proposed to study climate change policies, a damage function is pro-
posed as a function of the AST, for example D(t) = β1T

β2 , where D(T )
measures the loss of output due to global warming. This description
of the impact of climate change to the economy is probably inaccurate
as the most important consequences will be associated to phenomena
described as abrupt climate changes or threshold events. Such events
are recognized by climatologists, one knows that many have occurred at
the Earth system time scale, including the collapse of large ice shield
in the Antarctic, that could trigger a sea-level rise of the order of 6
meters5; another such event would be the interruption of the North-
Atlantic thermo-haline circulation which could disrupt the Gulf-stream
path.

One may therefore introduce the concept of climate mode which cor-
responds to a specific organization of the climate system leading to sub-
stantial changes in the distribution of temperature and precipitations.
Indeed the switch from the current mode to a different one is a slow
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paced stochastic process. One can therefore represent the dynamics of
the climate-economy systems in two time-scales, a slow one correspond-
ing to the climate mode changes and a fast one corresponding to the
economy and GHG concentrations or SAT evolutions.

3.2 Slow dynamics
The slow dynamics of this system represents the evolution of the cli-

mate mode which is modeled as a jump process taking values in a finite
set of discrete modal states. Let I denote the finite set of possible cli-
mate modes and {ξ(t) : t ≥ 0} a jump process taking values in I, with
transition rates

εqk,	(M, T ) = lim
dt→0

P[ξ(t + dt) = �|ξ(t) = k and M(t) = M, T (t) = T ]
dt

.

(4.28)
The coefficient ε, which will eventually tend to 0, is the ratio between
the slow and the fast time scales. One shall also use a shrinked time-
scale τ = t

ε . In the shrinked time-scale the transition rates are given by
qk,	(M, T ). Typically, when e.g. ε = 0.01, in the time-scale t one counts
in years whereas in the time-scale τ one counts in centuries.

3.3 Fast dynamics
The fast dynamics represents the evolution of economic state vari-

ables and the evolution of GHG concentrations and SAT according to
the different possible climate modes. One can thus model the climate
variable dynamics as a set of controlled diffusion processes indexed over
the finite modal set I

dM(t) = ϕi(M(t), E(t))dt + σi
Mdυ1(t) (4.29)

dT (t) = φi(M(t), T (t))dt + σi
Mdυ2(t) (4.30)

i ∈ I.

The economy dynamics is still described by the capital accumulation
processes, which is still represented as an ODE:

K̇(t) = f i(K(t), E(t), C(t)) (4.31)
i ∈ I.

In the shrinked time-scale τ = t
ε the equations (4.29-4.34) will write

εdM(τ) = ϕi(M(τ), E(τ))dt +
√

εσi
Mdυ1(τ) (4.32)

εdT (τ) = φi(M(τ), T (τ))dt +
√

εσi
Mdυ2(τ) (4.33)

i ∈ I.
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and

εK̇(τ) = f i(K(τ), E(τ), C(τ)) (4.34)
i ∈ I.

respectively. In a perspective of centuries or millennia, the economy
will be seen as a fast process and the climate variables will tend to be
distributed according to some state probability measure, induced by the
emission forcing term E(t).

By indexing over I the capital accumulation process in Eq. (4.34) one
is able to represent the damage (e.g. the loss of output) due to the
change of climate mode.

3.4 The limit climate control problem
One is in the perspective of the shrinked time-scale τ (i.e. one adopts

the slow dynamics time-scale). The limit climate control problem serves
to delineate the global long term emission levels that achieve the best
compromise between economic consumption and climate change preven-
tion.

Assume the climate is in mode k. Let Ēk, be some constant emission
levels and assume that there corresponds to Ēk a joint steady state
(invariant) measures m̄k

M×T (Ēk; ·), obtained from the diffusion equations
(4.32)-(4.33). Then consider the controlled Markov chain with state set
I and transition probability rates

Q̃k,	(Ēk) =
∫

M

∫∫
×T

qk,	(µ, θ)dm̄k
M×T (Ēk; µ, θ), k, � ∈ I. (4.35)

While in mode climate k one also considers a reward rate which is defined
by

L̃k(Ēk) = Uk(C̄k) (4.36)
where Uk(C̄k) is the utility of consumption when climate is in mode k,
with C̄k defined by

C̄k = max{C : ∃K, 0 = fk(K, Ēk, C)}. (4.37)

The parameter C̄k is thus defined as the highest sustainable consumption
rate in the economy, under climate mode k and emissions cap Ēk. Notice
that the utility function is indexed over the climate modes (k ∈ I);
therefore one can represent the desutility of changing from the current
climate mode to a deteriorated one.

The limit climate control problem consists in finding a policy �∗ :
I → E which maximizes the infinite horizon criterion

J i(�) = E
[
∫ ∞

0

∫∫
e−�τ L̃ξ(τ)(Ēξ(τ)) dτ |ξ(0) = i] (4.38)
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where � > 0 is a (possibly very low) discount rate in the shrinked time-
scale6 and (ξ(τ) : t ≥ 0) is the Markov chain with transition rates
Q̃k,	(Ēk) while Ēi = �(i), i, k, � ∈ I. The choice of the proper discount
rate � > 0 is still a delicate problem7 that one assumes to be solved.

Call J∗i, i ∈ I the optimal potential function associated with the
optimal policy �∗, according to (4.38). This potential function satisfies
the following dynamic programming equation

�J∗i = max
Ēi

{L̃i(Ēi) +
∑
k∈I

Q̃i,k(Ēi)J∗k}; i ∈ I. (4.39)

Remark 1 The limit climate control problem is thus defined as a con-
trolled Markov chain which serves to determine what should be the long
term emissions levels that would keep at their optimal level the probabil-
ities of climate modal changes. This problem is defined in the climate
change time-scale, corresponding to the slow modes of the system.

3.5 Transient control problem
One considers now the problem of defining the optimal economic pol-

icy in the time-scale corresponding to the usual economic dynamics. As-
sume that at time t = 0 one is in climate mode i. Consider the economic
system, with state equation

K̇(t) = f i(K(t), E(t), C(t)) (4.40)
i ∈ I,

and the climate dynamics

dM(t) = ϕi(M(t), E(t))dt + σi
Mdυ1(t) (4.41)

dT (t) = φi(M(t), T (t))dt + σi
Mdυ2(t) (4.42)

i ∈ I.

Let xo = (Mo, T o, Ko) be the initial climate and economic state values.
In the long term perspective, described in the slow (shrinked) time-

scale τ = t
ε , the optimal climate-economy policy is defined as the solution
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of the following problem:

max = E(E(·),C(·))

[∫ ∞

0

∫∫
e−ρτU ξ(τ)(C(τ)) dτ |i, xo

]
(4.43)

s.t.

εdM(τ) = ϕξ(τ)(M(τ), E(τ))dt +
√

εσ
ξ(τ)
M dυ1(τ) (4.44)

εdT (τ) = φξ(τ)(M(τ), T (τ))dt +
√

εσ
ξ(τ)
M dυ2(τ) (4.45)

εK̇(τ) = f ξ(τ)(K(τ), E(τ), C(τ)) (4.46)

qk,	(M, T ) = lim
dt→0

1
dτ

P[ξ(τ + dτ) = �|
ξ(τ) = k and M(τ) = M, T (τ) = T ]. (4.47)

Remark 2 The stochastic control problem (4.43)-(4.47) is defining the
climate-economy policy problem where a tradeoff between economic growth
and climate risk has to be defined. This problem involves the two time-
scales. It falls in the domain of control for singularly perturbed systems.
In Filar, Gaitsgory and Haurie the reader will find the theoretical devel-
opment that justifies the approximation technique proposed in the rest of
this section.

Adapting the results established in Filar, Gaitsgory and Haurie one
can show that the solution of the problem can be approximated by con-
sidering the following class of deterministic control problems, defined
in the fast time scale t (obtained by stretching out the time scale τ):
Introduce the auxiliary reward function

U(C(t)) +
∑
k∈I

qi,k(M(t), T (t))J∗k (4.48)

and consider the average payoff over a long time interval

g̃i(xo; Θ) =
1
Θ

E(C(·), E(·))[
∫ Θ

0

∫∫
(U(C(t)) +

∑
k∈I

qi,k(M(t), T (t))J∗k)dt|xo].

(4.49)
One looks for the open-loop controls (C(·), E(·)) that optimize (4.49)
subject to the climate and economic dynamics (4.40)-(4.33)8.

An optimal steady state for the control problem (4.49), (4.40)-(4.33)
is a vector (K̄i, C̄i, Ēi) which maximizes

U i(C̄) +
∑
k∈I

Q̃i,k(Ē)J∗k (4.50)
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where Q̃i,k(Ē) is a transition rate defined according to (4.35), subject to
the steady-state constraints

0 = f i(K̄, Ē, C̄) (4.51)
i ∈ I.

It is not hard to recognize in the solution to this problem the expression
of the RHS of the DP equation of the limit climate control problem
(4.39), that is

max
Ēi

{L̃i(Ēi) +
∑
k∈I

Q̃i,k(Ēi)J∗k}. (4.52)

If the turnpike property holds, when Θ → ∞ the optimal accumulation
path will spend most of the time in the vicinity of the optimal steady
state and

lim
Θ→∞

g̃∗i(xo; Θ) = �J∗i. (4.53)

But, what is important, and the reader is referred to Filar, Gaitsgory
and Haurie for a precise proof of this result, is the fact that, when
ε → 0, the control defined by the solution of these auxiliary infinite
horizon problems converges to the solution of the original two time-scale
stochastic control problem (4.43)-(4.47).

By the way, the auxiliary control problem with reward (4.49) defines
an incentive scheme where the climate variables enter into the term∑

k∈I qi,k(M(t), T (t))J∗k. This corresponds to a valuation of the envi-
ronmental state variables which is induced by the solution of the limit
climate control problem. By imposing a taxing scheme corresponding
to this term in the reward function, one drives the economy toward the
correct long term sustainable state. The following remark summarizes
this decomposition result.

Remark 3 By valuing the climate modes in accordance with the poten-
tial function that comes out of the solution of the limit climate control
problem, one introduces incentives that are asymptotically correct for
the economy to be driven, in the fast time scale, toward the appropriate
optimal steady state.

4. Conclusion
In this brief paper one has shown how the concept of turnpike can be

used in the study of economic sustainable development, in the presence
of long term climate change threats. The focus has also been placed
on the difference of time scales between the economic and the climate
subsystems that are in interaction.
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In summary the following remarks can be drawn from the story told
in this short paper:

The concept of economic sustainability is very close to the concept
of turnpike in economic growth models with environmental cost
and a stationary context (when typically population and technical
progress stabilize)

Discounting has an important effect on the asymptotic extremal
(optimal) steady-state, and hence on the sustainable optimal eco-
nomic state. The concern for climate change which will impose
a toll on future generations speaks for the use of a very low, and
ultimately zero, discount-rate in the design of climate/economy
policies.

As the climate change will probably take place in the form of a
modal change, including threshold phenomena, with a low proba-
bility influenced by the climate variables that are the GHG con-
centrations and the SAT, it would make sense to design the long
term climate policies by solving first a limit climate control problem
that is posed in the very long term and which serves to define the
optimal cap on emissions level that should be ultimately imposed
in order to optimally control the climate switches. One may ob-
tain from the solution of this slow paced controlled Markov process
problem, a tax scheme (or possibly an emissions trading scheme)
that will tend to drive the economic system toward the appropriate
long term steady (sustainable) state.

The idea of designing approximate optimal control for multi time-scale
systems has been exploited by Prof. Sethi in many important books and
papers in the context of manufacturing systems (see Sethi and Zhang
(1995a)-Sethi for a short sample). This paper shows that similar ideas
could contribute to a better understanding of the coupling between cli-
mate and economic dynamics, in the context of economic sustainable
development.

Notes
1. It would be an optimal steady-state in the case of zero-discounting.

2. This is less apparent in DICE-99 where a 3-reservoir carbon cycle model, showing no
carbon absorption even in the very long term, does not permit to stabilize the concentration
of GHG for any emissions level that are higher than the pre-industrial level.

3. The reader is referred to Carlson, Haurie and Leizarowitz (1994) for a more precise
formulation of these asymptotic attraction conditions.

4. When assessing sustainable economic development the turnpikes give important infor-
mation and it is surprising that very little attention has been paid yet to the asymptotic
behavior of integrated assessment models.
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5. An illustration of the possible (although highly unrealistic) climate modal changes has
been given in the movie The Day after Tomorrow where a new ice age is triggered by a
threshold event.

6. Remind that we positioned ourselves in the slow (or shrinked) time-scale; therefore the
nominal discount rate is not yearly but based e.g. on a century or even larger time step.

7. At this slow time-scale the choice of a zero discount rate is still possible, although
this would imply a durability of the human species at geological times which contradicts the
current knowledge on evolution, paleontology and earth science.

8. Alternatively one may look for an overtaking optimal solution with respect to the
criterion

lim inf
Θ→∞

E(C(·), E(·))[
∫ Θ

0

∫∫
(U(C(t)) +

∑
k∈I

qi,k(M(t), T (t))J∗k)dt|xo].

References
Brock W.and J. Scheinkman, Global asymptotic stability of optimal con-

trol systems with application to the theory of economic growth, Jour-
nal of Economic Theory Vol. 12, pp. 164-190, 1976.

Brock W.and A. Haurie, On existence of overtaking optimal trajectories
over an infinite time horizon, Mathematics of Operations Research
Vol. 1, pp. 337-346, 1976.

Carlson D., A. Haurie and A. Leizarowitz, Infinite Horizon Optimal Con-
trol: Deterministic and stochastic Systems, Springer Verlag, 1994.

Cass D., Optimum growth in aggregative model of capital accumulation,
Review of Economic Studies Vol. 32, pp. 233-240, 1965.

Drouet L., N. Edwards and A. Haurie, Coupling Climate and Economic
Models in a Cost-Benefit Framework: A Convex Optimization Ap-
proach, Environmental Modeling and Assesment, to appear.

Feinstein C.D and D.G. Luenberger, Analysis of the asymptotic behavior
of optimal control trajectories, SIAM Journal on Control and Opti-
mization, Vol. 19, pp. 561-585, 1981.

Filar J.A., V. Gaitsgory and A. Haurie, Control of Singularly Perturbed
Hybrid Stochastic Systems, IEEE Transactions on Automatic Con-
trol, Vol. 46, no. 2, pp 179-190, 2001.

Filar J.A. and A. Haurie, Singularly perturbed hybrid stochastic Sys-
tems, in G. Yin and Qing Zhang Eds. Mathematics of Stochastic
Manufacturing Systems, Lectures in Applied Mathematics, American
Mathematical Society, Vol. 33, pp. 101-126, 1997.

Haurie A., Integrated assessment modeling for global climate change: an
infinite horizon viewpoint, Environmental Modeling and Assesment,
2003.

Haurie A., Turnpikes in multi-discount rate environments and GCC pol-
icy evaluation, in G. Zaccour ed. Optimal Control and Differential



76

Games: Essays in Honor of Steffen Jørgensen, Kluwer Academic Pub-
lisher, 2002.

McKenzie L., Turnpike theory, Econometrica, Vol. 44, pp. 841-866, Nov.
1976.

Nordhaus W.D., An optimal transition path for controlling greenhouse
gases, Science, Vol. 258, pp. 1315-1319, Nov. 1992.

Nordhaus W.D., Managing the Global Commons: The Economics of Cli-
mate Change, MIT Press, Cambridge, Mass., 1994.

Nordhaus W.D. and J. Boyer, Warming the World: Economic Models of
Global Warming, MIT Press, Cambridge, Mass., 2000.

Portney P.R. and Weyant J., eds., Discounting and Intergenerational
Effects, Resources for the Future, Washington, DC, 1999.

Puterman M., eds., Markov Decision Processes, Wiley Interscience, 1994.
Ramsey F., A mathematic theory of saving, Economic Journal : Vol. 38,

pp. 543-549, 1928.
Rockafellar T., Saddle points of hamiltonian systems in convex prob-

lems of Lagrange, Journal of Optimization Theory and Applications,
Vol. 12, pp 367-399, 1973.

Sethi J.P. and Q. Zhang., Hierarchical Decision Making in Stochastic
Manufacturing Systems, Birkhaauser Boston, Cambridge MA,1995.¨

Sethi J.P. and Q. Zhang., Multilevel hierarchical decision making in sto-
chastic marketing-production systems, SIAM Journal on Control and
Optimizations, Vol. 33, 1995.

Sethi J.P., Some insights into near-optimal plans for stochastic manu-
facturing systems, in G. Yin and Qing Zhang Eds. Mathematics of
Stochastic Manufacturing Systems, Lectures in Applied Mathematics,
American Mathematical Society, Vol. 33, pp. 287-316, 1997.

Veinott A.F., Production planning with convex costs: a parametric study,
Management Science, Vol. 10, pp 441-460, 1964.

Weitzman, M.L., Why the Far-Distant Future Should Be Discounted at
Its Lowest Possible Rate, Journal of Environmental Economics and
Management : pp. 201-208, 1998.



Chapter 5

COMMON PROPERTY RESOURCE AND
PRIVATE CAPITAL ACCUMULATION
WITH RANDOM JUMP

Masatoshi Fujisaki
University of Hyogo, Japan
fujisaki@biz.u-hyogo.ac.jp

Seiichi Katayama
Kobe University, RIEB, Japan
katayama@rieb.kobe-u.ac.jp

Hiroshi Ohta
Kobe University, GSICS, Japan
Corresponding author
ohta@kobe-u.ac.jp

Abstract We present a model of exploitation of a common property resource when
agents can also invest in private and productive capital. The resource ex-
tracted from a common pool is non-renewable, but the resource stock is
under uncertainty in the sense that the stock might follow jump process.
We show that there exists an optimal solution in the model.

1. Introduction
In Long and Katayama (2002) they presented a model of exploitation

of a common property resource, when agents can also invest in private
and productive capital. The resource extracted from a common pool is
non-renewable in the model. We try to extend their result to the case
where a common pool is under uncertainty in the sense that it could
have a sudden increase or decrease in the process of extraction.
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The extension is quite natural when we see the present state of inter-
national crude oil market. Some producing countries encountered the
technological difficulties of extraction and/or social hazards. Also the
past history showed the unexpected discovery of new oil reserves. Yet
the total reserve in the earth planet is limited, and it is expected that
the resource is finally exhausted. However, people can accumulate man-
made capital for substituting the exhaustible resource and extend the
period in which the resource is utilized before it is completely depleted.

Considering these intrinsic aspects of resource economy, we present
a model of uncertainty in the process of extraction of the resource and
build the capital to substitute for the exhaustible resource. To incor-
porate it we build a model with a random jump in the stock of the
resource.

The main issue is to see whether there is an optimal solution to this
model.

2. The model
There are n identical agents having common access to a stock of non-

renewable natural resource, denoted by S(t). Each agent i also owns
a private capital stock KiKK (t). Agent i extracts the amount Ri(t) of
the common resource stock (i = 1, ..., n). Extraction is costless. Total
extraction in the economy at time t is R(t) =

∑n
i=1 Ri(t), and the reserve

depletes according to
Ṡ(t) = −R(t)

if it is not subject to any uncertainty.
First assume that each individual extracts equal amount, and so it

follows that
Ṡ(t) = −nRi

However, the reserve may be augmented or damaged several times
in the finite horizon and the reserve size is affected by those jumps in
magnitude.

The jump process takes the form dJ(t), and the resource stock is
governed by

dS(t) = dJ(t) − nRidt (5.1)
The stock level at time t is

S(t) = S0SS + J(t) −
∫ t

0

∫∫
nRi(s)ds

where J(t) is a pure jump process given by

J(t) ∆=
∫ t

0

∫∫ ∫
R

∫∫
\{0}

S(s−) · zN(ds, dz)
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N(ds, dz) = λds · N(dz) : Poisson random measure

E [N(A)] = λ

∫
A

∫∫
n(z)dtdz, A ∈ B(R+ × R), a Borel set

Here n(z)dz is Levy measure such that∫
|

∫∫
z

∫∫
|≤1

z2n(z)dz < ∞,

∫
|

∫∫
z

∫∫
|>1

n(z)dz < ∞

The Levy measure expresses the possible jump size. λ is the average
number of jumps to occur during unit time interval.

Assume that the extracted resource cannot be directly consumed. In-
stead, agent i uses Ri as an input, which, in combination with his labor
input and his privately owned capital stock KiKK yields an output YiYY of
final good. For simplicity we choose a measurement unit by fixing the
labor input to unity. Therefore, agent i’s production function is

YiYY = R1−β
i Kα

iKK

where 0 < α < 1, 0 < β < 1. Agent i consumes CiCC (t), and the remaining
quantity is invested to accumulate his physical capital. The rate of
accumulation of the privately owned capital stock is thus

dKiKK (t) =
(
R1−β

i Kα
iKK − CiCC

)
dt (5.2)

Each individual utility is increasing in consumption CiCC (t):

UiUU = (1 − γ)−1C1−γ
iC

where 0 < γ < 1. Each agent wishes to maximize the integral of the
stream of discounted utility

max
∫ ∞

0

∫∫
(1 − γ)−1C1−γ

iC e−ρtdt

subject to (5.1) and (5.2), and the initial conditions

S(0) = S0SS ,

KiKK (0) = KiKK 0 > 0.

γ is the elasticity of marginal utility, and for mathematical simplicity as
in Long and Katayama (p. 196, 2002) assume that γ = α.
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3. The cooperative outcome
If the agents cooperate each other, they will collectively seek to max-

imize the same level of their welfare. They will choose the rate of ex-
traction per agent Rh and consumption per agent ChC to maximize

max
∫ ∞

0

∫∫
(1 − γ)−1C1−γ

hC e−ρtdt

subject to K̇h = R1−β
h Kα

h − C and dS(t) = dJ(t) − nRh(t), and the
boundary conditions

S(0) = S0SS ,

Kh(0) = K0KK > 0.

Define the value function for this maximization problem by

V (S, Kh) = max
Ch,Rh>0

E

[∫ τ

0

∫∫
(1 − α)−1C1−α

hC e−ρtdt + g (SτSS , Khτ )
]

where g(·, ·) is a given function, and

τ = inf {t > 0 : (StSS , Kht) ∈ D}
D = {(S, K) : S > 0, Kh > 0}

∂D = {(S, Kh) : S = 0} ∪ {(S, Kh) : Kh = 0}
and 0 < α, β < 1 and ρ > 0.

It is known from Kushner and Dupuis (1992) that this optimization
problem is equivalent to the following Hamilton-Jacobi-Bellman equa-
tion;

ρV (S, Kh) = max
Ch,Rh>0

⎧⎪⎧⎧⎨⎪⎪⎪⎨⎨⎩⎪⎪
(1 − α)−1C1−α

hC + ∂V
∂K

(
R1−β

h Kα
h − ChC

)
+λ
∫
R

∫∫ {V (S + Sz, Kh) − V (S, Kh)}n(z)dz

+∂V
∂S (−nR)

⎫⎪⎫⎫⎬⎪⎪⎪⎬⎬⎭⎪⎪
for (S, Kh) ∈ D

V (S, Kh) = g(S, Kh) for (S, Kh) ∈ ∂D

The first order conditions for maximization are

C−α
hC − VKVV

h
= 0

(1 − β)R−βKα
h VKVV

h
− nVSVV = 0

They turn to be
ChC = (VKVV )−1/α (5.3)
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and

Rh =
[

nVSVV

(1 − β)VKVV
h
Kα

h

]−1/β

Substituting these conditions into H-B-J equation, we obtain the partial
differential equation for V (S, Kh). As Long and Katyayama (2002) have
indicated, the solution to the differential equation is not simple. Instead
of solving it directly we take the same solution process as the one used
by them. As they prove it the partial differential equation has a simple
solution

V (S, Kh) = AK1−α
h + BS1−β (5.4)

where A and B are to be determined. Then H-B-J equation becomes

ρV (S, Kh) = max
Ch,Rh

⎧⎨⎧⎧⎩⎨⎨ (1 − α)−1C1−α
hC + VKVV

h
(R1−β

h Kα
h − ChC )

+λBS1−β
∫
R

∫∫
h

{
(1 + z)1−β − z1−β

}
−n(z)dz − nRhVSVV

⎫⎬⎫⎫⎭⎬⎬ (5.5)

d(β, λ) ≡
∫ ∞

−∞

∫∫ {
(1 + z)1−β − z1−β

}
n(z)dz ≥ 0

We first obtain from (5.4) that

VKVV
h

= (1 − α)AK−α
h (5.6)

and

VSVV = (1 − β)BS−β
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Substituting these derivatives and (5.4) into (5.5) yields

ρV = ρ
(
AK1−α

h + BS1−β
)

= (1 − α)−1C1−α
hC + (1 − α)AK−α

h (R1−β
h Kα

h − ChC )

+ BS1−βd (β) − nRh(1 − β)BS−β

= (1 − α)−1 {A (1 − α)}−(1−α)/α

+ A (1 − α) R1−β
h − A (1 − α) K−α

h C

+ Bd(β)S1−β − nB(1 − β)S1−β

(
nB

A(1 − α)

)−1/β

= (1 − α)−1 {A (1 − α)}−(1−α)/α K1−α
h

− A (1 − α) {A(1 − α}−1/α K1−α
h

+ A(1 − α)
{

nB

A(1 − α)

}−(1−β)/β

S1−β

+ Bd(β)S1−β − nB(1 − β)
{

nB

A(1 − α)

}−/1β

S1−β

= K1−α
h {A(1 − α}−1−1/α · α

1 − α

+ S1−β

[
(nB)−(1−β)/β

{A(1 − α}−1/β
+ Bd(β) − (1 − β)

(nB)1−1/β

{A(1 − α}−1/β

]
= K1−α

h A1−1/αα (1 − α)−1/α

+ S1−β
[
β (nB)1−1/β {A(1 − α}1/β + Bd(β)

]
For this equation to hold for any Kh > 0 and S > 0, it is necessary that
the following conditions are satisfied:

ρ = A−1/αα(1 − α)−1/α

and

ρ =
[
βn1−1/ββ−1/β · {A(1 − α)}1/β + d(β)

]
if ρ − d(β) > 0

Therefore,

A =
(

α

ρ

)α

(1 − α)−1 (5.7)
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From the necessary condition δ ≡ ρ − d(β, λ) > 0,

δ � ρ − d(β, λ) = βn1−1/ββ−1/β · {A(1 − α)}1/β

= βn1−1/β

(
α

ρ

)α/β

∴ δB1/β = βn1−1/β

(
α

ρ

)α/β

or

B =
(

β

δ

)
nβ−1

(
α

ρ

)
if δ > 0 (5.8)

Therefore by (5.7) and (5.8)

R−β
h =

n

1 − β

(1 − β)S−βB

(1 − α)A
=

nB

(1 − α)A
S−β

= nβ

(
β

δ

)β

S−β

∴ (nRh)−β =
(

β

δ

)β

S−βor

Rh =
[

δ

β

] [
S

n

]
(5.9)

(5.9) gives the optimal resource extraction rule.
It is natural to see that the optimal extraction by each agent increases

as the reserve size per agent becomes larger and the productivity of
natural resource in final good production is higher.

Then, using (5.3), (5.5) and (5.7), we obtain the optimal consumption
rule:

ChC =
( ρ

α

)
Kh (5.10)

The optimal consumption rule (5.10) is independent of the stock of the
resource, and as (5.9) shows, the extraction by agent h depends only on
the resource stock per head, S

n . Notice that Long and Katayama (2002)

have derived the optimal extraction function as Rh =
[

ρ
β

] [
S
n

]
in the

absence of jumps in resource size. Our result is obtained by replacing ρ
with δ = ρ−d(β, λ). Since d(β, λ) ≥ 0, the optimal extraction is revealed
to be less under jumps than without them for the same level of resource
stock. Moreover as d(β, λ) is increasing in λ, the optimal extraction de-
creases as the resource jumps more frequently. It is the way for economic
agents to react more cautiously to cope with the uncertainty. However,
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the more cautious behavior is not applied to consumption, since the
optimal level Ch is shown to be the same as in Long and Katayama
(2002).

Even if agents behave cautiously to cope with uncertainty expressed
by Poisson process in this model, it should be noted that the natural re-
source will eventually be depleted with probability one. It is the intrinsic
nature of exhaustible resource.
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Abstract In this paper our concern is with deforestation as a global environ-
mental issue. Foreign transfers from developed countries to forestry
countries have been proposed for this goal. The problem is formulated
as a Stackelberg differential game played over an infinite horizon, with
the donor community as the leader and the aid recipient country as
the follower. We consider different transfer mechanisms through which
the donor community subsidizes the forestry country. We compare the
results both from the environmental and economic points of view.

1. Introduction
The problem of deforestation in developing countries has received a

great attention in the international community due to its important
global environmental effect both on biodiversity conservation and on
climate change.

The main causes of tropical deforestation seem to be the conversion
of forested land to agricultural use and, to a lower level, the forestry
activities (see, for example, Southgate (1990), Southgate et al. (1991),
Amelung and Diehl (1992), Kaimowitz and Angelsen (1999)). Various
models of allocation between forest uses and agricultural uses in devel-
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oping countries have been developed (see, for example, Barbier et al.
(1991), Barbier and Burgess (1997)).

Scientists and politicians point out that the problem of deforesta-
tion in developing countries requires coordination at an international
level. The international externality dimension of the deforestation in
developing countries makes of the forest conservation a global environ-
mental issue. Different mechanisms have been proposed in the literature
to coordinate the efforts of the developed and developing countries to
tackle deforestation (see, for example, Perrings et al. (1995), Pearce and
Moran (1994), Panayotou (1994)). In this paper we are interested in
the mechanism called financial transfers, which considers aid donation
and transfers as a solution for some global environmental issues such as
deforestation in developing countries.

The use of financial transfers flowing from developed to (forestry) de-
veloping countries to improve forest conservation has received recently
some attention in the economic literature. Optimal control theory and
differential games are the methodological tools used to show that finan-
cial transfers from developed to developing countries may improve both
the forest conservation and the welfare of the domestic and/or of the
foreign country.

The literature has proposed initially lump-sum aid donations (see,
for example, Barbier and Rauscher (1994)). Authors as Stäler (1996)¨
and Mohr (1996) criticized this type of donations as being a passive
instrument to prevent deforestation and proposed to make the amount
of transfers conditional to the recipient country’s effort to improve forest
conservation. Later on Van Soest and Lensink (2000) and Fredj et al.
(2004) propose a compensation function which makes the amount of
transfers also dependent on the deforestation rate. In Mart́ n-Herr´´ an et´
al. (2004) the authors compare the effect of a compensation function
from the developed countries to the developing ones which depends only
on the forest stock with one compensation function dependent both on
the forest stock and the deforestation rate.

The present paper is also concerned with the design of different aid
programs by developed countries to help developing ones keeping their
forest. The comparison is made both from the environmental and eco-
nomic points of view. By environmental point of view we mean the size
of the forest both in the short and long runs, which can be viewed as
a measure of the conservation of the forest area. By economic point of
view we focus on both the aid recipient’s and the donor’s welfare. As
in most of the papers cited in the previous paragraph (except Barbier
and Rauscher (1994) and Stäler (1996)) we use differential games as the¨
methodological framework. The game is played à la Stackelberg, where`
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the donor community is the leader and the aid recipient is the follower,
since the donor community plays a leadership role in the implementa-
tion of the aid program. We use an approach which solves a game with
Markovian strategies for the follower and open-loop strategies for the
leader. Using this approach the Stackelberg equilibrium has the prop-
erty of being time-consistent.

The main differences with the papers by Van Soest and Lensink
(2000), Fredj et al. (2004) and Mart́ n-Herr´ an et al. (2004) are as´
follows:

All these papers assume a particular specification of the forestry
country’s revenue function, while in this paper some results are
obtained for a general one.

On one hand, Van Soest and Lensink (2000) and Mart́ n-Herr´´ an
et al. (2004) consider utility function for the donor community
which are difficult to assess in practice. On the other hand, Fredj
et al. (2004) consider a finite time horizon and assume that the
objective from the donor’s perspective is to maximize the size of
the forest at the final date of the aid program. In the present paper
we assume an infinite planning period and the donor’s objective is
to minimize the amount of subsidy flowing to the forestry country
but which guarantees the participation constraint of the forestry
country in the aid program.

In this paper we propose specifications for the compensation func-
tion which, as far as we know, had not be used before in the liter-
ature.

The paper is organized as follows. Section 2 presents the different
models we are dealing with. Firstly, we study the basic model where the
forestry country exploits the forest without foreign aid. Secondly, we
state two different specifications for the compensation function that the
donor community can use with the aim of inducing the forestry country
to follow a deforestation policy which better preserves the forest. Section
2 also collects the conditions which characterize the optimal paths of the
forest stock and the deforestation rate of the different models proposed.
Section 3 is devoted to the comparison of the optimal forest stock and
deforestation rate paths both in the short and long runs. In Section 4
the donor community’s optimization problem is stated and the optimal
amount of subsidy flowing to the forestry country is characterized and
compared for the different specifications of the subsidy function. Section
5 collects our conclusions.
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2. The different models

2.1 The basic model
In this model, the developed country does not provide any aid to the

forestry country and the problem becomes an optimal control one, where
the forestry country is the unique agent. Let consider that the forestry
country has to decide about the optimal allocation of land between forest
and agricultural uses. Authors as Ehui et al. (1990), Van Soest and
Lensink (2000), Fredj et al. (2004), Mart́ n-Herr´ an et al. (2004) have´
previously stated models in which the forestry country’s optimization
problem can be written as follows:

W 1 = max
D

∫ ∞

0

∫∫
e−rtR(D(t), F (t)) dt

s.t. Ḟ (t) = −D(t), F (0) = F0FF ,

D(t) ≥ 0.

The forestry country choosing the rate of deforestation at time t, D(t),
aims at maximizing its stream of discounted revenues, R(D(t), F (t)) ∈
C2(R, R) from agriculture and forest exploitation, e.g. timber produc-
tion, over an infinite horizon, subject to the time evolution of the forest
stock, F . Let us note that the forest is considered as a non-renewable
natural resource, and therefore, the dynamics of the forest stock only
depends on the rate of deforestation. Parameter F0FF denotes the initial
size of the forest.

Next proposition characterizes the optimal paths, solutions of the pre-
vious optimal control problem.

Proposition 6.1 Assuming interior solutions, the optimal forest stock,
deforestation rate and shadow-price paths satisfy the following expres-
sions1:

λ1 =
∂R

∂D
(D, F ),

Ḟ = −D, F (0) = F0FF ,

λ̇1 = rλ1 − ∂R

∂F
(D, F ),

where λ1 denotes the costate variable associated with the forest stock.

Proof. We define the current-value Hamiltonian:

H1(F, D, λ1) = R(F, D) − λ1D.

1From now on the time argument is omitted when no confusion can arise.
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The costate variable λ1 measures the marginal value of an additional
unit of forest stock or equivalently, the costs of deforesting an extra-unit
of forested land now rather than in the future, and thus will present a
positive sign. For this reason this variable is also called the shadow-price
of the forest stock.

Assuming interior solutions, the necessary conditions for optimality
derived from Pontryagin’s maximum principle are the following:

∂H1

∂D
(F, D, λ1) =

∂R

∂D
(F, D) − λ1 = 0,

Ḟ = −D, F (0) = F0FF ,

λ̇1 = rλ1 − ∂H1

∂F
(F, D, λ1) = rλ1 − ∂R

∂F
(F, D).

The results in the above proposition are intuitive. Indeed, it is readily
seen from the optimality conditions that the deforestation policy satisfies
the familiar rule of marginal revenue from deforestation ( ∂R

∂D ) must equal
its marginal cost, given here by the costate variable λ1.

Let denote by F 1(t), D1(t) the optimal paths of the forest stock and
the deforestation rate, respectively.

Corollary 6.2 The steady-state equilibrium of the forest stock denoted
by F 1∗ satisfies the following equation:

∂R

∂D
(0, F 1∗) =

1
r

∂R

∂F
(0, F 1∗). (6.1)

Proof. At the steady-state Ḟ = 0, λ̇1 = 0 and then equation (6.1) can
be derived straightforwardly.

We consider now the scenario where the donor community partic-
ipates into the conservation effort of the rainforest by compensating
the forestry country for its loss of revenues through a subsidy program.
The donor community can be viewed as a group of developed coun-
tries, which is more concerned about the sustainable management of the
forest. This scenario is formulated as a Stackelberg differential game
where the donor community is the leader and the forestry country is
the follower. We assume that the players adopt a mixed information
structure: the leader plays open-loop strategies and the follower adopts
a Markovian response (see, for example, Dockner et al. (2000)). Under
this assumption the donor community restricts the space of functions
from which it can choose its strategy. The donor community as the
leader in the Stackelberg game moves first and proposes to the forestry
country a financial transfer given by a subsidy function. The forestry
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country (follower) optimizes its objective taken into account the leader’s
announcement and determines its deforestation rate. Once the donor
community knows the forestry country’s best response to the financial
transfer proposed, it chooses the parameter’s values which appear in its
compensation function to minimize the amount of subsidy flowing to the
forestry country. The use of this type of information structure guaran-
tees the time-consistency of the Stackelberg equilibrium if the model is
stationary (the leader’s objective functional and the system dynamics
do not depend explicitly on time) and the time horizon is infinite (see,

Dockner et al. (2000), page 137). Our formulation fits exactly these
requirements.

2.2 The second model
We consider, now, that the donor community proposes and the forestry

country obtains a subsidy at each time proportional to the size of the
forest area as a reward for a better environmental conservation. Let us
note that this formulation is equivalent to that appearing in the envi-
ronmental economics literature which assumes that the forestry country
becomes more concerned about the sustainable management of the for-
est. In the sense it takes into account a preservation value, given by
V (F ) = aF , in its utility function, where a is a positive constant. This
kind of hypothesis has been previously considered in problems of forest
management (see, for example, Stäler (1996)) and fishing problems (see,¨
for example, Clark (1990)).
The forestry country’s optimization problem under this assumption can
be rewritten as follows:

W 2 = max
D

∫ ∞

0

∫∫
e−rt[R(D, F ) + aF ] dt

s.t. Ḟ = −D, F (0) = F0FF ,

D ≥ 0.

Next proposition characterizes the optimal paths of the forest stock
and the deforestation rate:

Proposition 6.3 Assuming interior solutions, the optimal forest stock,
deforestation rate and shadow-price paths satisfy the following expres-
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sions:

λ2 =
∂R

∂D
(D, F ),

Ḟ = −D, F (0) = F0FF ,

λ̇2 = rλ2 − ∂R

∂F
(D, F ) − a.

Proof. It suffices to apply Pontryagin’s maximum principle as in Propo-
sition 6.1, taking into account that now the hamiltonian associated with
the optimization problem is given by:

H2(F, D, λ2) = R(F, D) + aF − λ2D,

where λ2 denotes the costate variable associated with the forest stock.

Let denote by F 2(t), D2(t) the optimal paths of the forest stock and
the deforestation rate, respectively.

Remark 6.4 It is easy to prove that the optimality conditions estab-
lished in Proposition 6.3 are the same when the follower uses either an
open-loop or a Markovian information structure.

Corollary 6.5 The steady-state equilibrium of the forest stock denoted
by F 2∗ satisfies the following equation:

∂R

∂D
(0, F 2∗) =

1
r

[
∂R

∂F
(0, F 2∗) + a

]
. (6.2)

Remark 6.6 A constant b can be added in the subsidy expression and
state aF + b rather than aF with aF + b > 0. The optimal forest stock
and deforestation paths are the same for both specifications and only the
optimal payoff functions will differ in the quantity b/r. Later on when
the donor community’s optimization problem is studied, the subsidy is
assumed to be given by aF + b.

2.3 The third model
We focus now on another type of subsidy function. Let consider the

following specification:

S(t) =
{

S if F (t) ≥ F ∀t ≥ 0,
0 otherwise, (6.3)

where F is a threshold for the forest stock. The donor community gives
a constant subsidy equal to S/r if the deforestation policy applied by



92

the aid recipient country is such that the forest stock is greater than the
threshold F along the whole infinite planning period. Otherwise, the
donor community penalizes the forestry country applying a zero subsidy.
Let consider, for example, F = F 2∗. That is, the donor community is
willing to give a constant subsidy whenever the forest country applies a
deforestation policy which gives rise to a forest stock that is greater than
the steady-state equilibrium associated with the subsidy which depends
linearly on the forest stock.

The forestry country’s maximization problem is given by:

W 3 = max
D

∫ ∞

0

∫∫
e−rt[R(D, F ) + S] dt

s.t. Ḟ = −D, F (0) = F0FF ,

D ≥ 0,

S given in (6.3).

Next proposition characterizes the optimal paths of the forest stock
and the deforestation rate when the forest stock remains above the
threshold level, F 2∗, and therefore the forestry country receives the sub-
sidy S/r.

Proposition 6.7 Assuming interior solutions, the optimal forest stock,
deforestation rate and shadow-price paths satisfy the following expres-
sions:

λ3 =
∂R

∂D
(D, F ),

Ḟ = −D, F (0) = F0FF ,

λ̇3 = rλ3 − ∂R

∂F
(D, F ) − µ,

µ ≥ 0, F ≥ F 2∗, µ(F − F 2∗) = 0,

where λ3 denotes the costate variable associated with the forest stock and
µ denotes the Lagrange multiplier associated with the inequality F (t) ≥
F 2∗, ∀t ≥ 0.

Let denote by F 3(t), D3(t) the optimal paths of the forest stock and
the deforestation rate, respectively.

The following three situations can arise:

1 If µ(t) = 0 ∀t ≥ 0, then F 3(t) = F 1(t)∀t ≥ 0 and D3(t) =
D1(t) ∀t ≥ 0.

2 If at the initial time t = 0, µ(0) �= 0�� , then µ(t) �= 0�� ∀t ≥ 0 and
F 3(t) = F 2∗ ∀t ≥ 0.
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3 If µ(0) = 0, then there exists a time interval [0, t̃] in which µ
remains null and F 3(t) = F 1(t) ∀t ∈ [0, t̃]. Time t̃ can be infinite
(Case 1 above) or finite if there exists t̃ such that F 1(t̃) = F 2∗.

Therefore, the optimal paths of the forest stock and the deforestation rate
can be written as follows:

F 3(t) =
{

F 1(t) if t ∈ [0, t̃] such that F 1(t̃) = F 2∗,
F 2∗ if t ≥ t̃,

(6.4)

D3(t) =
{

D1(t) if t ∈ [0, t̃] such that F 1(t̃) = F 2∗,
0 if t ≥ t̃.

Proof. The hamiltonian associated with the optimization problem is
given by:

H3(F, D, λ3, µ) = R(F, D) + S − λ3D + µ(F − F 2∗).

Applying Pontryagin’s Maximum Principle, taking into account the in-
equality F (t) ≥ F 2∗, the optimality conditions above can be easily de-
rived.

In the first case of the three situations listed before the optimality
conditions in Proposition 6.7 reduce to those in Proposition 6.1 corre-
sponding to the basic model.

Let us note that the second case can only apply if the initial size of
the forest, F0FF , equals F 2∗. If µ(0) �= 0, then�� F0FF = F 2∗ and since Ḟ = −D
and D ≥ 0, we can deduce that F 3(t) ≤ F 2∗ for all t ≥ 0. Since the
constraint F 3(t) ≥ F 2∗ has to be satisfied, the only possibility is to have
F 3(t) = F 2∗ ∀t ≥ 0.

In the third case µ(0) = 0, implies F0FF ≥ F 2∗. Therefore, by a conti-
nuity argument, it can be ensured that the forest stock remains above
F 2∗ during a time interval along which µ = 0 and F 3 = F 1. Since F 3 is
a decreasing function of time we have two possibilities. First, F 3∗ > F 2∗
and therefore, F 3(t) = F 1(t) for all t ≥ 0. Second, there exists a time
t̃ for which F 3(t̃) = F 2∗. Then, µ(t) = 0, F 3(t) = F 1(t)∀t ∈ [0, t̃) and
F 3(t) = F 2∗, ∀t ≥ t̃.

Figure 6.1 shows one possible optimal path of the forest stock for
model 3. In this case the initial size of the forest F0FF = 2 is greater
than F 2∗ = 1, which at the same time is greater than F 1∗ = 1/2 and
therefore, F 3(t) attains F 2∗ at time t̃ = 0.5493. The optimal path of the
forest stock corresponding to the basic model is denoted by a continuous
line, while that of model 3 is denoted by stars.

Remark 6.8 It is easy to prove that the optimality conditions estab-
lished in Proposition 6.7 are the same when the follower uses either an
open-loop or a Markovian information structure.
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Figure 6.1. Optimal time path of the forest stock: third model

Corollary 6.9 The steady-state equilibrium of the forest stock denoted
by F 3∗ satisfies the following equation:

∂R

∂D
(0, F 3∗) =

1
r

[
∂R

∂F
(0, F 3∗) + µ

]
. (6.5)

From the previous proposition we have:

F 3∗ =
{

F 2∗ if F 2∗ ≥ F 1∗,
F 1∗ if F 2∗ ≤ F 1∗.

Therefore, the solution F 3 coincides with F 1 when F 2∗ ≤ F 1∗ or is
given by (6.4) if F 2∗ ≥ F 1∗.

3. Comparison of forest exploitation in short
and long runs

In this section we focus, firstly, on the comparison of the forest stock
steady-state equilibria of the different models we are dealing with. Sec-
ondly, we compare the optimal paths of the forest stock and the defor-
estation rate.

Corollary 6.9 shows how the steady-state of the forest stock for the
third model compares with the steady-states of the other two models.
Next proposition establishes necessary and sufficient conditions to guar-
antee that the steady-state of the forest stock in the basic model is lower
than the forest stock in the second model.

Proposition 6.10 The steady-state of the forest stock of the basic model
and the second model compares as follows:

F 2∗ > F 1∗ ⇔ ∂2R

∂D∂F
(0, F ) − 1

r

∂2R

∂F 2
(0, F ) > 0. (6.6)
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Proof. Let define the auxiliary function

f(F ) =
∂R

∂D
(0, F ) − 1

r

∂R

∂F
(0, F ).

From the expressions characterizing the steady-state equilibria of the
forest stock for the basic and the second models given in Corollaries 6.2
and 6.5, respectively, we have:

f(F 1∗) = 0, f(F 2∗) =
a

r
> 0.

Therefore, F 2∗ > F 1∗ if and only if f is an increasing function in F ,
which is equivalent to the right-hand-side in (6.6).

Figure 6.2 shows the two possible scenarios. If f is increasing in F
(function f1 in the figure), then F 2∗ > F 1∗. On the contrary, if f is
decreasing in F (function f2ff in the figure), then F 1∗ > F 2∗.

0 0.5 1 1.5 2 2.5 3
−6
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−2
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f2(F)

a/r

Figure 6.2. Comparison steady-state forest stock: basic and second models

Proposition 6.10 establishes that the donor community attains its ob-
jective of a better forest preservation in the long run by subsidizing the
forestry country only if condition in (6.6) applies.

Remark 6.11 The Hamiltonians H1, H2 associated with the basic and
second models, respectively are concave in variables (F, D) jointly if and
only if the following conditions apply:

∂2R

∂D2
(F, D) < 0,

∂2R

∂F 2
(F, D) < 0,

∂2R

∂D2
(F, D)

∂2R

∂F 2
(F, D) −

(
∂2R

∂D∂F
(F, D)

)2

> 0.

(6.7)

If these conditions together with the transversality conditions are satis-
fied, then the necessary conditions for optimality are also sufficient.
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Under conditions in (6.7), we have the following sufficient condition:

If
∂2R

∂D∂F
(F, D) > 0, then F 2∗ > F 1∗.

We can deduce that if sufficient conditions for the existence of optimal
solution hold, complementarity between D and F implies F 2∗ > F 1∗.
Let note that this is only a sufficient condition.

In the particular case of the Van Soest & Lensink’s model (2000) (an-
alyzed also in Mart́ın-Herr´ an et al. (2004)) where goods are substitutes,´
the forestry country’s revenue function can be written as:

R(F, D) = −a1F
2 − a2FD − a3D

2 + a4F + a5D + a6, (6.8)

where ai > 0, i ∈ {1, . . . , 6}. With this specification all the second-order
partial derivatives are negative. The hamiltonian associated with the
forestry country’s dynamic optimization problem is concave in (F, D)
jointly if and only if 4a3a1 − a2

2 > 0.
The forest stock for the basic model with the Van Soest & Lensink’s

specification can be written as follows:

F p∗ =
a4 − ra5

2a1 − ra2
,

where the superscript p denotes particular specification. Conditions a4−
ra5 > 0, 2a1 − ra2 > 0 guarantee that the optimal trajectory of the forest
stock converges towards the positive steady-state F p∗.

Let us note that condition (6.6) ensuring F 2∗ > F 1∗ in this case reads
2a1 − ra2 > 0. For this quadratic formulation of the forestry country’s
revenue function and if goods are substitutes, a discount rate r small
enough implies F 2∗ > F 1∗.

We center now on the comparison of the optimal paths of the for-
est stock for the different models. Unfortunately we are not able to do
this comparison for a general specification of the forestry country’s rev-
enue function, as we have previously done when ranking the steady-state
equilibria. For that reason, we focus on a quadratic formulation. Next
proposition collects the result derived from this comparison.

Proposition 6.12 In the case of a quadratic specification for the forestry
country’s revenue function the optimal time paths of the forest stock are
given by

F i(t) = (F0FF − F i∗)e−ρt + F i∗, i = 1, 2,
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where ρ is the positive solution of the characteristic equation associated
with the system of linear ordinary differential equations describing the
time evolution of the forest stock and its shadow price, and

F 3(t) =

⎧⎨⎧⎧⎩⎨⎨ (F0FF − F 1∗)e−ρt + F 1∗ if t ∈ [0, t̃] such that F 1(t̃) = F 2∗,

F 2∗ if t ≥ t̃.

Moreover, the optimal paths of the deforestation rate are

Di(t) = ρ(F0FF − F i∗)e−ρt, i = 1, 2,

and

D3(t) =

⎧⎨⎧⎧⎩⎨⎨ ρ(F0FF − F 1∗)e−ρt if t ∈ [0, t̃] such that F 1(t̃) = F 2∗,

0 if t ≥ t̃.

The following equivalence applies:

F 1∗ < F 2∗ ⇔ F 3(t) ≤ F 2(t) for all t ≥ 0.

Proof. The expressions of the optimal forest paths can be easily de-
rived solving the linear system of two ordinary differential equations
corresponding to the dynamics of the forest stock and its shadow price.
The expressions of the deforestation paths are straightforwardly deduced
from the dynamics of the forest stock. The equivalence stated at the
end of the proposition can be easily proved taking into account that
F 1∗ < F 2∗ is equivalent to D1(0) > D2(0). Therefore, F 3(t) is lower or
greater than F 2(t) along the whole time horizon depending on whether
the slope of function F 2 at zero (−D2(0)) is greater or lower than that
of function F 1 (−D1(0)).

Figure 6.3 shows the optimal paths of F 1, F 2 and F 3 when F 1∗ < F 2∗.
In this figure the optimal paths of F 1, F 2 are denoted by continuous and
discontinuous lines, respectively, and F 3 by stars.

4. The donor’s optimization problem
Now we turn to the leader’s problem and consider the donor commu-

nity’s optimization problem: it aims to minimize the total amount of
subsidy flowing to the forestry country but which guarantees the partic-
ipation constraint of the forestry country in the aid program. In other
words, under an open-loop information structure, the donor’s objective
is to choose the value of a and b in the second model (where the subsidy
is given by S = aF + b) or S in the third model in order to minimize the
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Figure 6.3. Comparison of the optimal time paths of the forest stock in the second
and third models when F 2∗ > F 1∗.

total subsidy to be paid to the forestry country, but which ensures at
the same time that the aid recipient attains a revenue at least as greater
as that it gets in the basic model. As we have previously established
the leader make its optimal choices once it knows the optimal paths of
forest stock and deforestation rate. Therefore, the donor’s optimization
problem reads:

V 2 = min
a,b

∫ ∞

0

∫∫
e−rt(aF 2(t) + b) dt (6.9)

s.t. W 2 ≥ W 1, (6.10)

or

V 3 = min
S

∫ ∞

0

∫∫
e−rtS dt = min

S

S

r
(6.11)

s.t. W 3 ≥ W 1. (6.12)

The following two propositions characterize implicitly the optimal ex-
pressions of the parameters under the donor’s control.

Proposition 6.13 The donor chooses a, b in problem (6.9)-(6.10) such
that the following expression is satisfied:∫ ∞

0

∫∫
e−rt(aF 2(t)+b) dt =

∫ ∞

0

∫∫
e−rt

[
R(D1(t), F 1(t)) − R(D2(t), F 2(t))

]
dt.

Proof. Since the donor in fact wants to minimize the amount of subsidy
it gives to the forestry country

∫∞
0

∫∫
e−rt(aF 2(t)+b) dt, it is easy to deduce
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that it is going to choose a, b such that W 2 = W 1. That is,

W 2 =
∫ ∞

0

∫∫
e−rtR(D2(t), F 2(t)) dt +

∫ ∞

0

∫∫
e−rt(aF 2(t) + b) dt =

W 1 =
∫ ∞

0

∫∫
e−rtR(D1(t), F 1(t)) dt.

Therefore, the total amount of subsidy in this case flowing from the
donor community to the forestry country is given by:∫ ∞

0

∫∫
e−rt

[
R(D1(t), F 1(t)) − R(D2(t), F 2(t))

]
dt.

Proposition 6.14 The optimal expression of S, solution of the problem
(6.11)-(6.12), satisfies the following equation:

S

r
=
∫ ∞

0

∫∫
e−rt

[
R(D1(t), F 1(t)) − R(D3(t), F 3(t))

]
dt.

Proof. Following the same argument than in the previous proposition
the donor is going to choose S such that W 3 = W 1. In other terms, S
satisfies the following expression:

W 3 =
∫ ∞

0

∫∫
e−rtR(D3(t), F 3(t)) dt+

S

r
= W 1 =

∫ ∞

0

∫∫
e−rtR(D1(t), F 1(t)) dt.

4.1 Comparison of the subsidy schemes from the
donor’s point of view

From the previous two propositions it can be established which one of
the two proposed compensation functions the donor will choose in order
to minimize the amount of transfers flowing to the forestry country. Next
corollary shows this result.

Corollary 6.15 The donor community offers the subsidy in (6.3) if
and only if∫ ∞

0

∫∫
e−rt

[
R(D2(t), F 2(t)) − R(D3(t), F 3(t))

]
dt < 0. (6.13)

Proof. It suffices to compare the amount of the total subsidy that the
donor gives to the forestry country under the hypotheses of the models
2 and 3 (see Propositions 6.13 and 6.14).
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Remark 6.16 From the aid recipient’s point of view it is clear that
W 2 = W 3. Moreover, when a quadratic forestry country’s revenue func-
tion is considered and if F 2∗ > F 1∗ we have previously established (see
Proposition 6.12) that the affine subsidy in the forest (second model)
gives a greater stock of the forest both in the short and long runs than
the subsidy scheme proposed in the third model, in fact, F 2(t) ≥ F 3(t)
for all t.

Unfortunately, it cannot be established whether condition (6.13) in
Corollary 6.15 is satisfied or not for a general specification of the forestry
country’s revenue function. However, for a quadratic specification next
proposition collects this result.

Proposition 6.17 If the forestry country’s revenue function is described
by the quadratic function (6.8), then the donor community offers always
the subsidy given by (6.3).

Proof. Let denote by a∗ the value of a such that F0FF = F 2∗ and define
the following function: H : [0, a∗] → R,

H(a) =
∫ ∞

0

∫∫
e−rt

[
R(D2(t, a), F 2(t, a)) − R(D3(t), F 3(t))

]
dt.

Function H has the following properties:

H is a continuous function in [0, a∗].

H(0) = 0. This result is obvious since in this case F 2(t) =
F 3(t) = F 1(t), D2(t) = D3(t) = D1(t) for all t ≥ 0 and there-
fore R(D2(t), F 2(t)) − R(D3(t), F 3(t)) = 0 for all t ≥ 0.

H(a∗) = 0. This result is also straightforward because in this case
F 2(t) = F 3(t) = F 2∗ for all t ≥ 0.

Moreover it can be proved that equation H(a) = 0 has two solu-
tions, which are given by a = 0 and a = eθa∗ with θ satisfying the
following equation

Ae
θ r+ρ

ρ + Beθ = 0,

where A + B = 0. The only solution of this equation is θ = 0 and
then a = a∗.

The following properties of H ′(a) can also be proved:

H ′ is a continuous function in (0, a∗).

H ′(0) = 0.
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Since F0FF ra2 − 2 a1 F0FF − ra5 + a4 ≤ 0 because F0FF ≥ F 1∗ and ra2 −
2a1 < 0, we have that

H ′(a∗) =
(F0FF ra2 − 2 a1 F0FF − ra5 + a4)a3

(ra3 +
√

a3(r2a3 − 2ra2 + 4a1)(ra2 − 2a1)
> 0.

The properties on H and H ′ allow us to conclude that H(a) ≤ 0 if
0 ≤ a ≤ a∗. Therefore, the total subsidy given in the third model is
lower than the one given in the second model.

Propositions 6.12 and 6.17 show that if the forestry country’s revenue
function is quadratic there exists a trade-off between minimizing the
donor’s community budget and maximizing the short and long run size
of the forest.

5. Conclusions
In this paper we propose a differential game played à la Stackelberg`

between the donor community (the leader) and the aid recipient (the
follower) to analyze the effect of foreign aid donation on forest conserva-
tion both in the short and long runs. In the different scenarios analyzed,
we assume that the leader plays open-loop strategies while the follower
adopts feedback strategies. This information structure leads to time-
consistent optimal solutions. The donor community chooses the amount
of transfers to send to the aid recipient or forestry country. The latter
decides the rate of deforestation.

The Stackelberg game between the donor community and the aid re-
cipient is analyzed under different specifications for the compensation or
subsidy function. Our aim is to study the impacts on environmental and
economic issues when the players agree on different specifications for the
subsidy flowing from the donor community to the forestry country.

We establish necessary and sufficient conditions under which the steady-
state of the forest stock is greater when a subsidy mechanism is imple-
mented than when the forestry country does not receive any foreign
aid. From the environmental point of view we also compare the optimal
paths of the forest stock for the different scenarios, when a quadratic
specification for the forestry country’s revenue function is considered.

From the economic point of view, we show that for the aid recipient,
revenues are the same for both specifications of the subsidy function. We
also determine a necessary and sufficient condition that establishes which
one of the two proposed compensation functions the donor will choose in
order to minimize the amount of transfers flowing to the forestry country.
For a quadratic specification of the forestry country’s revenue function
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it is shown that there is a trade-off between minimize the amount of
subsidy and maximize the forest stock.
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Abstract We derive irrigation management schemes accounting for the dynamic response
of biomass yield to salinity and soil moisture as well as for the cost of irrigation
water. The simple turnpike structure of the optimal policy is characterized using
Green’s Theorem. The analysis applies to systems of arbitrary end conditions.
A numerical application of the turnpike solution to sunflower growth under arid
conditions reveals that by selecting the proper mix of fresh and saline water
for irrigation, significant savings on the use of freshwater can be achieved with
negligible loss of income.

1. Intr n
Increasing water scarcity and the alarming deterioration in the quality of

many freshwater resources call for improved irrigation efficiency to sustain vi-
able agriculture over vast areas around the globe. Using water of lesser quality
and continuously adjusting irrigation rates to the varying needs of the growing
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plants can save a significant fraction of freshwater used in traditional irrigation
practices. The trade-offs between the cost of water and the essential contri-
bution of suitable soil moisture to biomass growth give rise to optimization
problems that are both theoretically interesting and practically relevant.

An Optimal Control analysis of a dynamic irrigation problem accounting for
soil moisture and biomass growth dynamics as well as for the associated cost
of irrigation water is presented in Shani, Tsur and Zemel (2004), where the en-
suing optimal policy is shown to take a particularly simple form. The policy is
defined in terms of two parameters: a turnpike soil moisture θ̂ and a stopping
date, such that the optimal moisture process, θ(t), must be brought from its
initial level to the turnpike θ̂ as rapidly as possible and maintained at that level
until the stopping date, at which time irrigation ceases and the plants are left
to grow on the remaining soil moisture until the time of harvest. This simple
turnpike behavior is neither unique to the irrigation problem nor is it rare in the
dynamic optimization literature. Similar characterizations have been derived
for a large variety of economic and management problems (see e.g. Vidale and
Wolfe (1957), Sethi (1974), Haruvy, Prasad and Sethi (2003)) and explained
by geometrical considerations using Green’s Theorem (see Miele (1962), Sethi
(1973), Sethi (1977), Sethi and Thompson (2000)). In this method, one elim-
inates the control, replaces the line integral in the objective functional by an
area integral, and compares the values obtained from any two feasible policies
by analyzing the sign of the integrand over the area encircled by the trajecto-
ries corresponding to these policies. The similar characteristics of the optimal
irrigation policy suggest that this problem can also be analyzed in terms of
Green’s theorem. It turns out that certain features of the irrigation problem
render the application of Green’s Theorem non trivial in this case, and novel
considerations must extend the method to derive the optimal policy.

The purpose of the present work is twofold. First, we adapt the standard
Green’s Theorem analysis to more complex situations of arbitrary end con-
ditions. Applying the method to the irrigation problem, we explain the sim-
ple structure of the optimal policy and provide new links relating the method
and Optimal Control theory. Second, we extend the original model of Shani,
Tsur and Zemel (2004) by incorporating salinity effects. In many arid regions,
brackish water is available to replace scarce freshwater resources for irriga-
tion purposes. The growers, however, must also account for the reduction in
yield implied by increased salinity in the root zone. We find that by care-
fully adjusting the salinity of the irrigation water mix and the parameters of the
turnpike policy, the growers can increase the net income from their crop and,
more importantly, mitigate freshwater scarcity (manifest in terms of exogenous
freshwater quota imposed for each growing season) with only minor income
loss.
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2. The irrigation management problem
Let m(t) represent the plant biomass at time t ∈ [0,T ], where T denotes

the time from emergence to harvest. Marketable yield is derived from the
biomass according to the increasing yield function y(m) If yield and biomass
are the same, then y(m) = m. Often, however, y(m) vanishes for m below some
threshold level, but above this level it increases at a rate that exceeds that of the
biomass. At each point of time the biomass grows at a rate that depends on the
current biomass state as well as on a host of factors including availability of
water, salinity, sunlight intensity, day length and ambient temperature. Some
of these factors (e.g. soil water content and salinity) can be controlled by
the growers who derive irrigation water from two alternative sources: a costly
supply of freshwater, and a cheaper supply of saline water from a local aquifer
or a wastewater recycling plant. We assume that the mix of water from the two
sources is determined at the beginning of the growing season and this fixes the
salinity of irrigation water for the entire growing season.

Using the fraction s of saline water as a proxy for the salinity of the irrigation
water mix, denoting by θ(t) the water content in the root zone, and taking all
factors that are beyond the growers’ control as given, the plant biomass rate of
growth depends on θ(t) and m(t) according to

dm(t)
dt

≡ ṁ(t) = q(s)g(θ(t))h(m(t)) (7.1)

Implicit in (7.1) is the assumption that the biomass growth rate can be
factored to terms depending on s, θ and m separately. For fresh water, the
function q is normalized at q(0) = 1. Since low salinity bears minor effects
while excessive salinity hampers growth, we assume that q is decreasing, with
q′(0) = 0. The functions g and h are assumed to be strictly concave in their
respective arguments, with g vanishing at the wilting point θmin and obtaining
a maximum at some value θmax (too much moisture harms growth). Thus,
g(θmin) = 0, g′(θmax) = 0, g′(θ) > 0 for θ ∈ (θmin,θmax) and g′′(θ) < 0 for all
θ. Since it is never optimal to increase moisture above the maximum level, we
restrict attention to processes with θ ≤ θmax.

The dynamics of water content in the root zone is determined by mass con-
servation, implying that the change in θ(t) at each point of time must equal
water input through irrigation, x(t), minus losses due to evapotranspiration,
(ET ) and drainage (D). (Rainfall can also be incorporated in this framework,
but to focus on irrigation management we assume no rainfall.)

Evapotranspiration rate is specified as

ET (θ,m) = βq(s)g(θ) f (m) (7.2)
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where the coefficient β depends only on climatic conditions and is independent
of s, m and θ and 0 ≤ f (m)≤ 1 is a crop scale factor representing the degree of
leaves exposure to solar radiation (Hanks (1985)). The use of the same factor
q(s)g(θ) in (7.1) and (7.2) is based on the linear relation between biomass
production and evapotranspiration (see deWit (1958)).

The rate of water drainage D(θ) is assumed to be positive, increasing and
convex for the relevant soil moisture range. When all the flow rates are mea-
sured in mm day−1and θ is a dimensionless water concentration, the soil water
balance can be specified as

Zθ̇(t) = x(t)−βq(s)g(θ(t)) f (m(t))−D(θ(t)) (7.3)

where Z is the root depth and Zθ(t) measures the total amount of water in the
root zone (mm).

Let WfW and WsWW denote unit prices of fresh and saline water, respectively,
assumed fixed throughout the growing season. For the chosen fraction s of
saline water, the growers pay the price W = (1− s)WfW + sWsWW . At harvest time
T they also receive the revenue py(m(T )), where p is the output price. For
a growing season that lasts a few months we can ignore discounting, and the
return to water (excluding expenses on inputs other than water) is py(m(T ))−
W

T∫
0

x(t)dt.

Given the salinity s, we define the relative cost of water w = W/p and
formulate the irrigation management problem as finding the irrigation policy
{x(t),0 ≤ t ≤ T} that maximizes

V (m0,θ0) = Max{x(t)}

{∫ T

0

∫∫
−wx(t)dt + y(m(T ))

}
(7.4)

subject to (7.1), (7.3), m(0) = m0, θ(0) = θ0 and 0 ≤ x(t) ≤ x̄, where m0 > 0
and θmin ≤ θ0 ≤ θmax are the initial biomass and soil moisture levels and ¯ is
an upper bound on the feasible irrigation rate, reflecting physical constraints
on irrigation equipment or on soil water absorption capacity. The upper bound
x̄ exceeds the water loss terms of (7.3) throughout the relevant ranges of m
and θ so θ(t) increases when x = x̄ (violations of equivalent assumptions in
related contexts are discussed in Sethi (1977)). In the following section we
characterize the optimal irrigation policy corresponding to (7.4), with one con-
trol variable (the irrigation rate x) and two state variables (the biomass m and
the moisture θ). The optimal water mix and the corresponding salinity are
considered in a later section.
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3. Solution by Green’s Theorem
An Optimal Control analysis of the optimization problem (7.4) is presented

in Shani, Tsur and Zemel (2004), where the optimal turnpike policy is de-
rived and explained in terms of the linear dependence of the objective and state
equations on the control variable x, which gives rise to the typical Most Rapid
Approach Path (Spence and Starrett (1975)). The similarity of this policy to
the characteristic behavior derived by Sethi and coworkers for a large variety
of optimization problems using Green’s Theorem suggests that the irrigation
problem can also be analyzed by means of this method. We note, however,
that certain features of the irrigation problem require proceeding beyond the
standard application of Green’s Theorem in order to derive the optimal policy.

First, the problem involves two state variables m and θ hence the relevant
(state-time) space is three-dimensional. In the standard approach, one would
employ Stokes’ Theorem instead of Green’s, as in Sethi (1976). Here, however,
we observe in (7.1) that the biomass process m(t) evolves monotonically in
time, hence m can serve as an effective time index, reducing the analysis to the
two-dimensional (m,θ) state-space.

Second, the final values of the state variables are free in this problem. Thus,
two arbitrary feasible trajectories need not end at the same point and joining
them may not give rise to the closed trajectory that the method requires. More-
over, the determination of the turnpike moisture state is further complicated
by its dependence on the transversality conditions corresponding to the free
endpoints. Finally, fixing the endpoint of the trajectories in the (m,θ) space
does not determine the time it takes the processes to get there. Comparing
the values derived from trajectories of different durations does not provide the
required information, and one must impose the correct duration T to obtain a
feasible plan. As we shall see, this constraint introduces an additional term
to the effective objective function, which turns out to be instrumental in the
determination of the turnpike.

We proceed now to characterize the optimal irrigation policy using Green’s
Theorem while accounting for the new features listed above. Although the
derivation is carried out for the specific irrigation problem presented above,
we note that the considerations apply to a large class of optimization prob-
lems that are linear in the control or, more generally, satisfy the conditions
of Corollary 2.1 of Sethi (1977) and have arbitrary end conditions (free or
fixed duration, free or fixed final states, time or state dependent salvage func-
tions etc.). In particular, we study the properties of the family of trajectories
which consist of at most three distinct segments: (i) a ”nearest approach” seg-
ment, leading from the initial state (m0,θ0) to some arbitrary turnpike moisture
state θ̂ with x(t) = 0 if θ0 > θ̂ and x(t) = x̄ if θ0 < θ̂; (ii) a singular segment,
which maintains the moisture process fixed at the turnpike state θ̂ by setting
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x(t) = βq(s)g(θ̂) f (m(t)) + D(θ̂); and (iii) a ”nearest exit” segment leading
from the turnpike to some final state with x = 0 or x = x̄. This family, which
includes also trajectories in which one or two segments are skipped (e.g. when
the turnpike state coincides with the initial or final moisture levels), is termed
the family of turnpike processes. It turns out that turnpike processes include
the optimal policy as well as the processes of extreme duration leading to any
given final state. Since the analysis involves processes of arbitrary duration,
we shall refer to trajectories consistent with all the constraints of problem (7.4)
except for the duration T , as dynamically feasible. Evidently, all turnpike
processes are dynamically feasible.

We omit, for brevity, the salinity argument from q and the time index from
all functions. We use (7.1) and (7.3) to eliminate the control and write the
value obtained from any dynamically feasible trajectory Γ initiated at (m0,θ0)
and ending at some arbitrary final state (mF ,θF) with mF ≥ m0 and θF ≤ θmax

as:

VΓVV =
∫

Γ

∫∫
−{[ wD(θ)

qg(θ)h(m)
+

wβ f (m)
h(m)

]dm+wZdθ}+ y(mF) (7.5)

(cf. Hermes and Haynes (1963)). It follows that the difference between the
values obtained from any two dynamically feasible trajectories with the same
initial and final states (but not necessarily of the same duration) can be evalu-
ated, using Green’s Theorem, by

∆V =
∫ ∫

σ

∫∫
g′(θ)

qh(m)g2(θ)
wξ(θ)dσ (7.6)

where σ is the area encircled by the graphs of the two trajectories and

ξ(θ) = g(θ)D′(θ)/g′(θ)−D(θ) (7.7)

is an increasing function.
Searching for the roots of the integrand of (7.6) will not yield the correct

turnpike state because the trajectories may be, as noted above, of different
durations. We can, however, follow the same procedure to obtain the time
difference. Recalling (7.1), we write

T =
∫ T

0

∫∫
dt =

∫
Γ

∫∫
dm

qg(θ)h(m)
(7.8)

Using Green’s Theorem again, we find

∆T =
∫ ∫

σ

∫∫
g′(θ)

qh(m)g2(θ)
dσ (7.9)

Hence, for any given constant H
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∆V −H∆T =
∫ ∫

σ

∫∫
g′(θ)

qh(m)g2(θ)
[wξ(θ)−H]dσ (7.10)

Since the integrand of (7.9) is positive for all θ < θmax it follows that the
minimal duration of a dynamically feasible process leading to (mF ,θF) must
correspond to a turnpike process. To see this, extend the increasing nearest
approach segment all the way to θmax. Consider now the decreasing nearest
exit segment ending at (mF ,θF). If the two segments cross below θmax the
trajectory comprising these segments is the dynamically feasible process of
shortest duration connecting the initial and final states, since any other dynam-
ically feasible process with the same endpoints must lie below its graph. If the
two segments do not cross below θmax the minimum duration is obtained by
the three-segment turnpike process comprising them and the singular segment
connecting them at θmax.

Similar considerations involving the decreasing nearest approach segment
and the increasing nearest exit segment ending at (mF ,θF), imply that the max-
imum dynamically feasible duration is also obtained by a turnpike process.
Moreover, the durations of turnpike processes ending at (mF ,θF) vary contin-
uously with the turnpike level of their corresponding singular segments. We
have, therefore established

Proposition 7.1 For any dynamically feasible process ending at (mF ,θF)
there exists a corresponding turnpike process of the same duration and the
same final state.

The values obtained from the two processes of Proposition 7.1 can now be
compared:

Proposition 7.2 The corresponding turnpike process of any dynamically
feasible process yields higher (or equal, if the latter process is itself a turnpike
process) value than the original process.

PROOF: Choose the constant H of (7.10) as H = wξ(θ̂), where θ̂ is the turn-
pike state associated with the singular segment of the turnpike process. With
∆T = 0, (7.10) reduces to ∆V =

∫ ∫
σ

∫∫ g′(θ)
qh(m)g2(θ) [wξ(θ)−H]dσ. Recalling that

ξ is increasing, we see that the integrand is positive for all states above the
singular segment and negative below it (Figure 7.1). With the counterclock-
wise convention for closed line integrals, we see that for each of the closed
sub-areas encircled by the two trajectories, the turnpike process yields a larger
value. Thus, the result follows for the entire trajectories as well. �

The characterization of the optimal policy follows immediately from Propo-
sition 7.2:

Proposition 7.3 The optimal policy must be a turnpike process.
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Figure 7.1. Comparing the values obtained from an arbitrary dynamically feasible process
(dashed line) and the corresponding turnpike process (solid line). The ”+” and ”−” symbols
indicate the sign of the integrand, and the arrows indicate the direction of the line integration in
each of the closed sub-areas. The constant H is adjusted so that the integrand vanishes on the
singular segment.

The role of the constant H ought to be explained. In Shani, Tsur and Zemel
(2004) we show that the value of H corresponding to the optimal policy equals
the constant value of the Hamiltonian under this policy. From Optimal Control
theory we know that the Hamiltonian can be regarded as the shadow price
associated with a marginal increase in T . In the context of (7.10), this shadow
price assumes the role of the Lagrange multiplier associated with the constraint
that the duration must be fixed at the given time T . Indeed, with ∆T = 0 the
term including H in the right-hand-side of (7.10) gives a vanishing contribution
for any value of this constant (see (7.9)). Nevertheless, the particular choice of
the Hamiltonian value for H ensures that the integrand has a definite sign for
each sub-area, as required by Green’s Theorem method.

While Proposition 7.3 characterizes the optimal policy as a turnpike process,
it does not provide specific information on the nearest exit segment. In Shani,
Tsur and Zemel (2004) we establish that this segment must be decreasing, so it
is optimal to cease irrigation prior to T and reduce the moisture level towards
the end of the growing season. This is indeed a common practice among grow-
ers. The property is most easily demonstrated via the transversality condition
associated with the free final moisture state; it will not be further considered
here.

Unlike previous work based on Green’s Theorem, the turnpike state is not
explicitly specified in this problem, because neither the final state nor the
Hamiltonian are a priori given. In fact, the full dynamics of the state and
costate variables, as well as the relevant transversality conditions must be in-
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voked to derive the turnpike and the final states. Nevertheless, the power of
the method to derive and explain the simple structure of the optimal policy is
evident also for the more complicated problem considered here.

4. Salinity and scarcity
We turn now to study the effects of salinity on the optimal policy. Since

q′(0) = 0, mixing a small amount of saline water must have a negligible effect
on plant growth, yet it helps to reduce the cost of irrigation water. Higher
salinity levels hamper growth and reduce yields. These trade-offs suggest an
internal solution for the optimal salinity. We illustrate these trade-offs by ap-
plying the model to the growth of Ornamental sunflower (Helianthus annuus
var dwarf yellow) in the Arava Valley in Israel. Lack of precipitation through-
out the growing period and deep groundwater (120 m below soil surface) en-
sure that irrigation is the only source of water. The biomass and moisture
dynamics are modeled using the functional specifications of Shani, Tsur and
Zemel (2004):

ṁ = q(s)(1.21Θ−1.71Θ2)m(1−m/491) (7.11)

and

θ̇ = [x[[ −0.19q(s)(1.21Θ−1.71Θ2)m(1−m/785.6)−3600Θ5.73
d ]/600 (7.12)

where Θ = (θ−0.09)/0.31,Θd = (θ−0.04)/0.36 and q(s) = 1/
[
1+(4s/3)3

]
(Dudley and Shani (2003)).

Marketable yield for sunflowers is obtained only at biomass levels above
350 g ·m−2. At the maximal biomass (m = 491 g ·m−2) the yield comprises
80% of the biomass. Assuming a linear increase gives rise to the following
yield function:

y(m) =
{

0 if m < 350 g ·m−2

2.79(m−350) if m ≥ 350 g ·m−2 (7.13)

The initial soil water and biomass levels were taken at θ0 = 0.1 (just above
water content at the wilting point θmin = 0.09, where Θ and the growth rate
vanish) and m0 = 10 g ·m−2 (about 2% of the maximal obtainable biomass).
The maximal feasible irrigation rate is ¯ = 41.8 mm · day−1 and the growing
period lasts 45 days. Sunflower seeds are sold at about $1 kg−1, yielding
the relative water prices of w f = WfW /p = 0.3 kg ·m−3 (freshwater) and ws =
WsWW /p = 0.1 kg ·m−3 (saline water).

Using fresh water only, a numerical implementation of the optimal policy
based on the above specifications gave rise to the turnpike level θ̂ = 0.148. Irri-
gating at the maximal rate brings soil moisture to the turnpike at t1 = 0.7 day, at
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which time irrigation rate is tuned so as to maintain the soil water content fixed
at θ̂ for the major part of the growing period of T = 45 days. However, during
the last 2.8 days irrigation is avoided because the gain in yield due to contin-
ued irrigation is not sufficient to cover the cost of the water needed to maintain
the high soil water content. The corresponding harvested yield is 350 g ·m−2

for the optimal policy—about 10% below the maximal attainable yield. With
irrigation costs of $1020 ha−1 (about half of which is due to drainage), the net
income (excluding labor and other inputs) from the optimal policy amounts to
$2480 ha−1.

With the option to use saline water, we find that the optimal water mix is
s = 0.21. The lower unit cost of water allows increasing slightly the turnpike
moisture (to θ̂ = 0.15) and the total amount of irrigation water so that the
harvested yield increases marginally (to 351.3 g ·m−2). However, this yield is
obtained with a smaller irrigation bill of $934 ha−1, leaving a net income of
$2579 ha−1 to the growers.

The saving on freshwater may be even more important. Under the optimal
mix, the saving on this precious resource amounts to 16%. Indeed, in arid
regions such as the Arava valley, freshwater scarcity might dominate its nom-
inal cost in determining the total quantity of applied irrigation. Scarcity turns
into a binding constraint when growers are allocated an exogenous quota of
freshwater below their use under the optimal (nonbinding) policy. The effect
of the binding freshwater quota takes the form of a fixed shadow price to be
added to the relative cost of water. Shani, Tsur and Zemel (2004) show that
the shadow price should be adjusted so that the effective unit cost implies irri-
gation using exactly the allocated freshwater quota. As an example, assume
that the quota amounts to only 75% of freshwater used for irrigation under the
mixed-water policy discussed above. The constraint corresponds to adding a
shadow price of $0.42 m−3 to the nominal freshwater cost WfW = $0.3 m−3. The
increased effective cost implies an increase in salinity to s = 0.282 and an 18%
decrease in the total amount of irrigation water, reducing the yield by 9% (to
318.6 g ·m−2). Accounting for the smaller water bill, however, we find that
the net income loss is a mere 5% (to $2458 ha−1).

It is instructive to compare this quota-bound policy with the outcome of the
unbound policy based on freshwater only. Although the net incomes differ
by less than 1%, the bound, mixed-water policy uses only 63% of freshwater
required by the unbound policy. Indeed, if the same freshwater quota were im-
posed on growers without access to the saline resource, the net income would
drop to $1998 ha−1, representing an income loss of nearly 20%. We see, there-
fore, that by carefully adjusting the turnpike policy, the growers can exploit the
saline water resource to mitigate the significant losses implied by freshwater
scarcity.
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Finally, we remark that the same methodology can incorporate other effects
of salinity. Assume, for example, that saline irrigation water is eventually
drained to an underlying freshwater aquifer, or that it increases soil salinity
for the following seasons, and the environmental damage is proportional to the
cumulative amount of salt applied. The damage in such cases can be modeled
as an additional fixed component of the unit cost of saline water. Except for
changes in the numerical values of the optimal parameters, the characteristic
turnpike policy and the solution methodology will not be affected.

5. Concluding comments
In a recent publication, Shani, Tsur and Zemel (2004) used Optimal Con-

trol theory to derive dynamic irrigation schemes that account for soil moisture
and biomass growth dynamics as well as for the associated cost of irrigation
water. The results reveal two important features: (i) Although the biomass
and soil moisture dynamics are quite complex, the optimal policy displays an
extremely simple turnpike behavior, and (ii) The turnpike policy is robust to a
wide range of variations and extensions which, in spite of adding significant
new considerations to the optimization tradeoffs, can modify the numerical val-
ues of the optimal parameters but not the characteristic behavior of the optimal
policy.

The analysis applied here, based on Green’s Theorem, provides a simple
and elegant explanation to both features. The turnpike behavior follows from
simple geometric considerations with little recourse to the complexities of the
dynamic system. Evidently, the original method requires some modifications
to cope with the new properties of the optimization problem considered here.
In particular, we exploit the observation that turnpike trajectories not only pro-
vide the maximum for the objective, but also give rise to the minimal and
maximal dynamically feasible process durations, as well as to the continuum
of durations between these extremes. In fact, this observation follows from the
same geometric considerations used to compare the objectives of competing
trajectories.

We also note the simple relation between the Hamiltonian and the optimal
turnpike state. The Hamiltonian function, which is the key element of Optimal
Control theory, is typically absent in Green’s Theorem analysis. Its role in
the present formulation, thus, provides an interesting link between these two
complementary methodologies of deriving optimal dynamic solutions.

It has been suggested (Haynes (1966), Sethi (1976)) that simple turnpike be-
havior can characterize the solutions of a variety of complex multi-dimensional
dynamic optimization problems. Indeed, recent economic studies of optimal
R&D strategies in the context of resource scarcity and economic growth (see
Tsur and Zemel (2000), Tsur and Zemel (2002), Tsur and Zemel (2003), Tsur
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and Zemel (2004)) reveal interesting examples of such behavior for multi-
dimensional infinite horizon problems with discounted utilities. Analyzing
such problems in terms of Green or Stokes’ Theorems (as in Haynes (1966)
or Sethi (1976)) remains a challenge for future research.
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Abstract Traditional approaches to forecast option prices and implement trading
strategies make use of implied volatilities. Noh, Engle, and Kane (1994)
propose a different approach. Based on conditional variance models of
the GARCH type they forecast volatility and use these forecasts to
predict future option prices. In combination with simple trading rules
Noh et al. evaluate the profitability of these forecasts for the S&P 500
index. In this paper we take up their approach and apply it to Bund
future options. We show that volatility forecasts together with simple
option trading strategies create value. The profits can be significant
even when transaction costs are taken into account.

1. Introduction
Traditional models of option price forecasts use implied volatilities to

predict future prices. The theoretical basis for this approach is rooted
in option pricing theory. In efficient capital markets volatility must be
reflected in option prices. While there is a large body of literature to
test this proposition empirically (see e.g. Schmalensee and Trippi (1978))
Noh, Engle, and Kane (1994) take a different approach to forecast option
prices. They make use of a GARCH model to predict the volatility of
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asset returns and use the forecasts to predict option prices. ARCH and
GARCH models as proposed by Engle (1982) and Bollerslev (1986) are
asset return models which capture the dynamic behavior of conditional
volatility without presupposing any option price formula. ARCH and
GARCH volatilities can, however, be used to predict future option prices.
This is done by taking a GARCH volatility forecast together with an
option pricing formula to calculate future option prices.1 Applying a
GARCH model in such a way is equivalent to an efficiency test of the
option market.

Noh, Engle, and Kane (1994) analyze the efficiency of the market for
the S&P 500 index option. Their analysis is set up as follows. First, his-
torical asset returns of the S&P 500 are used to estimate a GARCH(1,1)
model which in turn is used to predict daily volatilities. Second, the
Black and Scholes (1973) option price formula is used together with the
volatility forecasts to predict future option prices. The option price fore-
casts, and hence the efficiency of the option market, are analyzed on the
basis of simple trading rules. Noh, Engle, and Kane (1994) take at-the-
money straddles to benefit from the accuracy of the volatility forecasts.
Since a straddle is a delta-neutral strategy, mainly changes in volatility
cause a shift in the straddle price and therefore they make use of the
following strategy. If the forecast of the future straddle price is above
today’s closing price, the straddle is bought (long position) and if it is
below, it is sold (short position). Rates of returns for this strategy are
calculated on a daily basis. It turns out that GARCH volatility fore-
casts and corresponding price forecasts for near-the-money straddles can
result in significant profits even after transaction costs are taken into
account. As a consequence the market for the S&P 500 index option
is inefficient in such a way that historical information as exploited in a
GARCH model generates value.

In this paper we take up the approach proposed by Noh, Engle, and
Kane (1994) and apply it to Bund future options as traded at LIFFE.2

Hence, our objective is twofold. Firstly, we need to analyze whether or
not GARCH models are appropriate to capture the dynamics of con-
ditional variances for interest rate futures markets. Secondly, we are
interested in the efficiency of the option market on the Bund future.
The trading rules applied in this paper are the same as proposed by
Noh, Engle, and Kane (1994). We use near-the-money straddles and

1It should be noted, however, that it is not theoretically sound to use any possible option pric-
ing model together with GARCH volatilities. A theoretically sound approach must guarantee
that the option pricing formula is consistent with the returns generating process.
2For a similar analysis with DAX data see Schmitt and Kaehler (1996).
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take a long position whenever price forecasts are above the latest avail-
able option (straddle) price and take a short positions otherwise. As
mentioned above, trading straddles as compared to trading single calls
or puts results from the property that at-the-money straddles are delta
neutral, and that straddle prices are insensitive with respect to dividend
payments (see Hull (2003)). Delta neutrality, however, can only work
if the distortions caused by positive or negative gamma is small. Given
the number of contracts and the limited time span (one day) over which
the position is held this assumption seems to be justified.

It turns out that a GARCH(1,1) model of the Glosten, Jagannathan,
and Runkle (1993) (GJR) type is capable of capturing all the dynamic
structure of conditional variances. In particular, volatility clustering and
the leverage effect are identified for the returns of the Bund future and
are properly taken care by the GJR model. Implementing volatility fore-
casts together with at-the-money straddles, we find that continuous daily
trading does not result in abnormal returns since empirically observable
bid-ask spreads impose too high transaction costs.3 Hence we optimize
our trading strategies with respect to a simple filter rule. We concen-
trate on the empirical fact of volatility clustering and use the GARCH
model to identify such periods with high clustering. Applying such a
filter we find that our trading strategy results in significant profits even
when transaction costs (bid-ask spreads) are taken into account. When-
ever a trading rule shows a profit potential actual profits can arbitrarily
be increased by the number of contracts bought (sold). This approach
neglects any sensible risk measure. Therefore we introduce an additional
trading rule for which we determine the number of contracts based on a
Value at Risk (VaR) measure. We then compare the performance of our
trading rule by means of the Sharpe ratio to that of the DAX which we
identify as a well diversified portfolio. We find that the performance of
our option strategy clearly dominates that of the market portfolio (mea-
sured by the DAX). Finally we calculate the efficient frontier based on
a bond futures portfolio and the straddle strategy derived in the paper
and show that significant risk/return improvements are possible.

Our paper is organized as follows. In Section 8.2 we present differ-
ent volatility models, discuss their theoretical structure together with
the empirical estimation and show how these estimates can be used in
option trading. As for the volatility models, we will focus on several
GARCH specifications and the exponentially weighted moving average
(EWMA) model. Section 8.3 presents the estimation results of the dif-

3During the period that comprises our sample actual transaction costs at LIFFE were small
so that the profitability of the trading strategy largely depended on the bid ask spread.
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ferent return models and their corresponding volatilities for the Bund
future. In Section 8.4 we quantify the performance of our trading strat-
egy. Finally, Section 8.5 summarizes our main findings and concludes
the paper.

2. Measuring Volatility of Asset Returns
The literature on the econometric modelling of financial time series

does not contain a standard and well accepted definition for volatility.
Geyer (1992) surveys the literature on volatility measures and distin-
guishes nine different approaches for computing volatility. Their differ-
ences are based on the choice of frequency (i.e. whether daily or monthly
data are used), the treatment of the mean, and the use of overlapping or
non overlapping observations. Bollerslev, Chou, and Kroner (1992) pro-
vide an overview of empirical applications of GARCH models to financial
time series, Bollerslev, Engle, and Nelson (1994) focus on theoretical as-
pects of GARCH models, and Gourieroux (1997) discusses in detail how
GARCH models can be incorporated in financial decision problems such
as asset pricing and portfolio management. Here we do not want to
give a literature survey on volatility models. We rather concentrate on
those specifications that are employed in the present study. Hence, our
selection of volatility specifications is driven by their forecasting abilities.

The basic idea behind many parametric volatility models is the as-
sumption that asset returns can be broken up into a predictable part,
ct = EtEE (rt+1) (i.e. the conditional mean EtEE reflecting the information
available at time t) and an unexplained portion, εt+1,

rt+1 = ct + εt+1. (8.1)

Based on this specification, the conditional variance,σ2
t+1, can be calcu-

lated as
σ2

t+1 = EtEE (r2
t+1) − c2

t ≡ EtEE (ε2t+1). (8.2)

In case the conditional mean is close to zero, ct = 0, the most common
approach to estimate the conditional variance, σ2

t+1, is to make use of a
weighted sum of past squared returns,

σ2
t+1 =

k−1∑
i=0

ωi(t)r2
t−i (8.3)

where ωi(t) are the weights on past squared returns, which can depend
on the information available at time t. Different specifications of the
weights lead to different volatility models.
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2.1 Naive Model
The updated sample variance puts constant weights, ωi(t) = 1/k, on

past observations, and hence ignores the dynamic structure of volatili-
ties. It simply calculates the estimate on historical volatilities over some
pre-specified time window.

σ2
t+1 =

1
k

k−1∑
i=0

r2
t−i (8.4)

with rt as compounded return on day t, i.e., rt = ln(StSS /StSS −1) and k as
the length of the time window.

2.2 Exponentially Weighted Moving Average
Model

The main disadvantage of the naive model is that it gives equal weight
to all observations in the sample, thus neglecting the stronger impact of
recent innovations. This is the reason why the naive model is not ca-
pable of mimicking volatility clustering present in financial time series.
This has led to the introduction of alternative moving average models
for computing stock return volatilities (see e. g.Taylor (1994)). Compar-
ing several specifications, Taylor found that the Exponentially Weighted
Moving Average (EWMA) did best in terms of empirical performance.
The idea behind the EWMA moel is the following. The conditional
volatility of the current period t + 1 is calculated as an MA(∞) process
of weighted squared returns where the weights decay exponentially, i.e.,

σ2
t+1 = (1 − λ)

∞∑
i=0

λir2
t−i = λσ2

t + (1 − λ)r2
t , (8.5)

with λ as a constant decay factor.
The definition of the EWMA model shows that it is a generalization

of the standard naive variance estimator with decaying weights. While
the definition of the EWMA is rather straight forward, its use depends
on the estimation of the weight λ. It can be estimated by minimizing an
appropriate error measure. Moreover, with specification (8.5) an initial
value for σ2

0 is needed in empirical estimation. Usually the unconditional
sample variance is chosen.

2.3 GARCH Model
The most successful model for describing nonlinear dynamics and

non-normality of stock returns is the Generalized Autoregressive Con-
ditional Heteroscedasticity (GARCH) model, introduced by Bollerslev
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(1986) based on the ARCH model of Engle (1982). It is a model that
builds on time-varying second order moments. Applications of GARCH
models in finance are surveyed in Gourieroux (1997) and the theoreti-
cal foundation in Bollerslev, Engle, and Nelson (1994). While the class
of GARCH models is rather flexible and admits a large variety of dif-
ferent specifications, we concentrate on the GARCH(1,1) model. In the
GARCH(p,q) specification the estimate of the volatility is not only given
by a function of past returns but also by a function of past volatilities.
The latter capture volatility clustering present in many asset return data.
A full specification of the GARCH(1,1) model with a nonzero mean is
given by

rt = c + εt with εt = utσt and ut ∼ N(0,1)

σ2
t = ω + αε2t−1 + βσ2

t−1 (8.6)

This specification implies that the conditional variance follows an au-
toregressive process for which stationarity is satisfied when the sum of α
and β is less than unity. If this condition is violated there is a unit root
in the conditional variance process and the corresponding model is re-
ferred to as an Integrated GARCH (IGARCH) model. The introduction
of conditional time-dependent second moments is capable of generating
volatility clustering as well as leptokurtic unconditional returns. This
holds true even when a Gaussian distribution is specified for the stan-
dardized residuals ut.

Comparing the GARCH model for quantifying market volatilities with
the EWMA specification introduced above, we observe that the two are
closely related. The major differences, however, stem from the way the
model parameters are estimated and from their stationarity assumptions.

The most popular extensions to the standard GARCH model are the
Exponential-GARCH (E-GARCH) model, proposed by Nelson (1991),
and the model proposed by Glosten, Jagannathan, and Runkle (1993)
(GJR-model). These modifications offer improved fits relative to the
standard GARCH-model. Since we will make use of both the EGARCH
and GJR-model, we present their analytical structures.

While the traditional GARCH model can successfully be applied to
capture fat tailed returns and volatility clustering, the EGARCH model
is capable of capturing the leverage effect present in stock returns. The
specification of the EGARCH(1,1) model is given by

rt = c + εt with εt = utσt and ut ∼ N(0,1)

log σ2
t = ω + α

( | ε2t−1 |
σ2

t−1

−
√

2/π

)
+ β log σ2

t−1 + θ
εt−1

σt−1
(8.7)
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Finally, the GJR-model allows for a quadratic response of volatility to
news with different coefficients for good and bad news, and hence incor-
porates asymmetries in the model. Its specification is given by

rt = c + εt with εt = utσt and ut ∼ N(0,1)

σ2
t = ω + αε2t−1 + βσ2

t−1 + θS−
tSS −1ε

2
t−1, (8.8)

with S−
tSS = 1 if ε < 0 and S−

tSS = 0 otherwise. Each of the above models
can be used to derive volatility forecasts and hence can be applied to
evaluate the profitability of trading strategies. As was pointed out in
the introduction, we will take a long position in a straddle whenever
the forecasted volatility is larger than the present one and take a short
position otherwise. This strategy is based on the relationship that an
increase in the GARCH volatility forecast corresponds to an increase in
the option price forecast, so that the forecasted price is above the latest
available closing price. In the next sections we apply these techniques
to Bund future options traded at LIFFE during the period of 1988 and
1995. First, we present the volatility forecasts and then evaluate the
profitability of option trading strategies based on these forecasts.

3. Estimation of Alternative Volatility Models
As pointed out above, we will analyze the Bund future options market.

Our data set of daily closing prices for the Bund future starts at the
beginning of 1988 and runs through August 1995. We follow standard
procedures and take futures prices for those series only for which the
time to maturity is larger than one month. This gives us a consistent
series, that is, however, not stationary. Hence, instead of using the prices
we employ returns series.

The daily returns are calculated as the differences in the logarithms of
the prices and hence constitute continuously compounded rates. They
exhibit much the same characteristics than stock returns. They are
characterized by volatility clustering and fat tailed distributions as can
be seen from the summary statistics reported in Table 8.1. In this table
we present descriptive statistics not only for the returns based on closing
prices but also for returns calculated from opening to closing and closing
to opening prices. These statistics show the following results: the mean
is very close to zero so that it can be neglected if necessary and all series
have excess kurtosis.

As a final first step we analyze the return series for possible autocorre-
lations. Looking at the autocorrelation functions of the returns and the
squared returns suggests that there are no significant linearities in the
data but strong nonlinearities that can be the result of heteroscedastic-
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Table 8.1. Descriptive statistics of daily returns

Close to Close Opening to Close Close to Opening
(Active Period) (Passive Period)

Mean -4.7E-5 % -0.014 % 0.014 %
Standard Dev. 0.360 % 0.326 % 0.196 %
Skewness -0.163 0.066 0.034
Kurtosis 7.137 7.081 12.734

ity. This again points to the use of a GARCH model. In what follows we
estimate three alternative GARCH models. A standard GARCH(1,1),
an EGARCH(1,1) and a GJR(1,1) specification. Tables 8.2, 8.3 and 8.4
report the estimation results.

Table 8.2. GARCH (1,1) estimates

Variable Coefficient t-Statistic Probability

c 8.29E-5 1.17 0.241
ω 1.4E-7 5.15 0.000
α 0.0646 8.74 0.000
β 0.9249 136.13 0.000

Table 8.3. EGARCH (1,1) estimates

Variable Coefficient t-Statistic Probability

c 4.62E-5 0.66 0.509
ω -0.1707 -5.42 0.000
α 0.1314 9.10 0.000
β 0.9847 359.00 0.000
θ -0.0348 -4.63 0.000

These results imply the following. First, there is a strong persis-
tence in conditional variances as expressed by values for β above 0.9 for
all three specifications. Second, for both the GARCH(1,1) and for the
GJR(1,1) model the sum of the estimated parameters is close to unity
suggesting an integrated process for the conditional variance. Finally,
returns show significant leverage effects. In order to select one of the
models as the appropriate one, we performed several diagnostic checks
which are reported in the following tables. Table 8.5 reports some de-
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Table 8.4. GJR(1,1) estimates

Variable Coefficient t-Statistic Probability

c 4.59E-5 0.64 0.524
ω 1.56E-7 5.54 0.000
α 0.0318 4.09 0.000
β 0.9330 139.39 0.000
θ 0.0441 4.42 0.000

scriptive statistics of the normalized residuals for the three models. From
these we see that the kurtosis is substantially reduced which is in ac-
cord with international evidence on stock returns. Table 8.6 reports
the test statistic of the Box-Ljung autocorrelation test, which indicates
that both the residuals and the squared residuals are not autocorrelated.
Finally, the BDS test reported in Table 8.7 supports consistency with
i.i.d. residuals for all three specifications. Hence, to decide on one of the
alternative models we make use of the estimated likelihood as shown in
Table 8.8. On the basis of these results we will mainly use the GJR(1,1)
model for the following analysis.

Table 8.5. Descriptive statistics of normalized residuals

Model Mean Std. Dev. Skewness Kurtosis

GARCH(1,1) -0.0165 0.9981 -0.1435 4.653
EGARCH(1,1) -0.0016 0.9984 -0.0341 4.801
GJR(1,1) -0.0027 0.9980 -0.0906 4.667

Table 8.6. Autocorrelation test (Box-Ljung test with lag = 20)

Normalized Residuals Squared Normalized Residuals

Model χ2-Statistic Probability χ2-Statistic Probability

GARCH(1,1) 21.35 0.377 14.00 0.830
EGARCH(1,1) 23.79 0.252 15.83 0.727
GJR(1,1) 21.27 0.381 12.84 0.884

As pointed out in Section 8.2 the exponentially weighted moving av-
erage exhibits many characteristics of a GARCH model. The two impor-
tant differences are that the EWMA does violate the strict stationarity
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Table 8.7. BDS test of daily returns and normalized returns

Embedding Dimension = 2 Embedding Dimension = 5

Model BDS-Statistic Probability BDS-Statistic Probability

Daily Returns 8.08 0.000 13.12 0.000
GARCH(1,1) -1.23 0.220 -1.41 0.160
EGARCH(1,1) -1.36 0.173 -1.17 0.241
GJR(1,1) -1.19 0.235 -1.01 0.312

Table 8.8. Estimated likelihood of GARCH models

Model Number of Parameters Log-Likelihood

GARCH(1,1) 4 9276.29
EGARCH(1,1) 5 9273.31
GJR(1,1) 5 9282.18

assumption and that it does not include any constant. Since the GARCH
estimates demonstrate that the data are consistent with stationary vari-
ances the EWMA model does not seem to be a correct specification.
Nevertheless we make use of this volatility model and estimate its para-
meters via least squares methods. The corresponding estimated dynamic
equation is given by

σ̂2
t+1 = 0, 0704mt + 0, 9296σ̂2

t (8.9)

with mt = (rt − c) and c as the sample mean and σ0 as the sample
variance. Since our primary objective is to use the five different mod-
els for volatility forecasts, we need to evaluate their relative forecasting
performance. This is not a trivial exercise, since volatility is not di-
rectly observable. Hence, we need to identify some benchmark. Here
we choose the sample standard deviation as a reference. Based on this
measure, Table 8.9 presents the in-sample and out-of-sample forecast-
ing performance evaluated along the lines of two different measures, the
mean squared error (MSE) and the mean absolute error (MAE). Based
on these results, again the GJR model dominates the others. Hence, for
the remainder of the paper we mainly use this specification.

4. Profitability of Option Trading Strategies
Our objective in this paper is to study the efficiency of the option mar-

ket. For that reason, we analyze whether or not volatility forecasts based
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Table 8.9. Forecasting performance in-sample and out-of-sample

In-Sample Out-of-Sample

Model MSE (10−6) MAE (10−3) MSE (10−6) MAE (10−3)

Sample Std. Dev. 6.289 1.733 6.903 1.903
Naive Model 5.470 1.625 6.566 1.929
EWMA 5.341 1.607 6.511 1.924
GARCH(1,1) 5.307 1.640 6.416 1.902
EGARCH(1,1) 5.272 1.634 6.408 1.911
GJR(1,1) 5.238 1.631 6.378 1.884

on historical returns can be used to derive profitable trading strategies.
We proceed as follows: From the volatility forecast we get information as
to whether volatility in the next period is going to increase or decrease.
We use this information as buying or selling signal for a straddle. If
the forecasted volatility is lower than the current one (i.e. volatility de-
creases) we go short and if volatility increases we take a long position.
Figure 8.1 below depicts the profits resulting from this trading rule over a
three years trading period starting in August 1992 and ending in August
1995. In this experiment the sample period is divided into an in-sample
and an out-of-sample period. The in-sample period is used to estimate
the volatility model and the out-of-sample period is used to evaluate the
return performance of the trading strategy.

Based on the volatility forecasts a single straddle is bought or sold
every day during the out-of-sample period starting on August 1, 1992.
These profits are accumulated. The results allow for the following in-
terpretation: First, using historical information in returns series and
predicting future volatilities on the basis of a GARCH-model generates
substantial gross-profits. They are highest for the GJR model and low-
est for the GARCH(1,1) specification. It is also interesting to note that
the EWMA model does very well relative to the more flexible GARCH
approach. Second, these profits vary significantly over different years.
While during the period of August 1992 to August 1993 losses occurred,
for the remaining two years substantial profits can be observed. These
results, however, do not imply that the strategies generate value since
transaction costs are not taken into account.

As a second experiment we look at a strategy that we call strategy with
constant trades. In this case we buy or sell straddles with a constant
value equal to 100. Figures 8.2 and 8.3 show the cumulative profits
for two alternative scenarios: the case where only long positions are
feasible and the case where both long and short positions are possible.



132

Annual Trading Profits
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Figure 8.1. Annual trading profits.
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Figure 8.2. Cumulative profits from straddles trading (long positions).

But again we ignore transaction costs, and assume a risk free rate of
zero. Again, the results are very impressive and show the enormous
potential for excess profits. Although the performance of the automated
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Figure 8.3. Cumulative profits from straddles trading (long and short positions).

trading strategy is rather poor during the period of August 1992 to the
end of 1993, there are substantial gains during early 1994 and smooth
increases over the rest of the out-of-sample-period. To understand this
development we plot in Figure 8.4 the implied volatilities based on an
appropriate option pricing model and observe that during the initial
period until the beginning of 1994 the market has been very stable,
whereas volatilities increased substantially during 1994 up until 1995
with strong volatility clustering effects. During this period the predictive
power of the GARCH model is very good and results in large increases
in profits.

Although the above results are quite impressive, they suffer from two
shortcomings. Transaction costs are not taken into account and every
trading (forecasting) signal is used to execute a trade. But as Figure 8.4
suggests, big increases in profits can be earned when there are substantial
changes in volatilities combined with strong volatility clustering. Led by
this empirical observation, we introduce a filter and take into account
transaction costs to arrive at more realistic scenarios. For a filter rule
we initiate trades only during that periods for which volatility clustering
is to be expected. These are the periods following a large change in
volatility. When applying an ex-post optimized filter and taking into
account a bid-ask spread of 0.04 DEM and a flat rate of 25 DEM as
transaction costs, we arrive at profits shown in Figures 8.5 and 8.6.
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Figure 8.4. Implied volatility.

Again we distinguish two scenarios. One in which only long positions,
and one in which both long and short positions are possible. Moreover
we relax the assumption of constant trades and calculate the number
of contracts simply by investing all the money available in every period
in straddles. Under this regime it turns out that an initial value of 100
(August 1992) can be turned into a terminal value at the end of July
1995 of more than 300.

Although these strategies already take into account transaction costs,
some criticism of the approach is still valid. Our analysis ignores any
risk considerations. To overcome this problem we make use of a Value
at Risk (VaR) approach to calculate the number of contracts traded.
In particular we use a historical simulation to calculate the maximum
possible loss due to a straddle price change that occurs in 5 % of all
cases. We then calculate the number of straddle contracts in such a way
that this maximum possible loss (given the pre-specified confidence level
of 5 %) is covered by our existing capital. Figures 8.7 and 8.8 present
the corresponding cumulative profits for the case of long positions only
and the case where long and short positions are possible, respectively.

To underline the profits suggested in the diagrams we additionally re-
port different performance measures for the trading strategies using the
VaR approach in Table 8.10. It turns out that our strategies together
with the refinements generate substantial value. As Figures 8.7 and 8.8,
however, show the automated trading strategies only generate value in
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Cumulative Profits from Straddles Trading with Filter Rule
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Figure 8.5. Cumulative profits from straddles trading with filter rule (long positions).
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(Long and Short Positions)

0

50

100

150

200

250

   8/3/92    8/2/93    8/1/94   7/31/95

C
um

ul
at

iv
e 

P
ro

fi
t

Figure 8.6. Cumulative profits from straddles trading with filter rule (long and short
positions).

periods with large volatility clustering, i.e., during turbulent times. For
our out-of-sample-period this only occurred during 1994 when in Feb-
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Cumulative Profits from Straddles Trading using the VaR Approach
(Long Positions)
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Figure 8.7. Cumulative profits from straddles trading using the VaR approach (long
positions).

Cumulative Profits from Straddles Trading using the VaR Approach
(Long and Short Positions)
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Figure 8.8. Cumulative profits from straddles trading using the VaR approach (long
and short positions).
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ruary an unexpected increase in the Fed-rate triggered a very turbulent
year for interest rate securities.

This observation suggests that an automated trading strategy like the
one analyzed here should not be applied in isolation but should be part
of a general portfolio strategy. Therefore we now look at the portfolio
(diversification) effects of our strategy when used jointly with a portfolio
of Bund futures. In Figure 8.9 we present a risk and expected return
diagram for a portfolio consisting of the underlying Bund future and the
straddle portfolio derived through our trading strategy. The resulting
efficient frontier suggests that the automated trading strategy not only
generates value but significantly improves the diversification effects in a
portfolio that holds the straddle strategy as an additional asset.

Table 8.10. Strategy characteristics

Long Positions Only Long and Short Positions

Average Return p.a. 59.5 % 44.5 %
Volatility (SD) p.a. 73.4 % 46.7 %
Avg. Number of Trades p.a. 26.67 12.33
Sharpe Ratio 0.76 0.87

Efficient Frontier for the BUND Future and the
Straddles Portfolio
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Figure 8.9. Efficient frontier for Bund future and straddles portfolio.
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5. Conclusions
In this paper we employ volatility forecasts to evaluate the profitabil-

ity of option trading strategies. We first present several volatility models
theoretically and then use these specifications to empirically evaluate the
efficiency of the Bund future options market. It turns out that volatility
forecasts based on historical returns are capable of adding value when
used together with simple trading rules. We derive profits for several
different variations of the trading rule and find in all cases abnormal
returns.

Our results need some qualifications, however. Firstly, our analysis
is based on closing prices, at which actual trades cannot be executed.
Therefore the profitability of the simple trading rules critically depends
on how far the closing prices come to those price at which the last trades
of a day are carried out. Secondly, our results clearly indicate that during
periods of low volatility the forecasting model does not perform very well.
Only if there is sufficient volatility clustering, so that a GARCH model
is very accurate in predicting conditional variances, our trading rule can
outperform the market.
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Chapter 9

TWO-PART TARIFF PRICING IN A
DYNAMIC ENVIRONMENT

Gila E. Fruchter
Bar-Ilan University, Israel
fruchtg@mail.biu.ac.il

Abstract A two-part tariff is a non-linear pricing technique in which the price
of a product or service is composed of two parts: an entrance fee and
a charge per unit of consumption. Compared to linear pricing, this
methodology leads to higher profits by allowing a firm more freedom in
extracting the consumer surplus. It is widely used in telecommunication
services.

This chapter documents recent developments on non-linear pricing in
a dynamic and competitive environment. The developments can also be
viewed as extensions of the linear dynamic pricing literature by allowing
a two-part tariff scheme.

1. Introduction
Two-part tariffs are widely practiced in the Internet and telecommu-

nication networks. With the growth of these industries, the pricing of
services that take into account the growth of subscribers, as well as the
demand for services by members of the service, poses a challenge to
managers. There are several key issues associated with this. The first
has to do with the fact that services typically offer a two-part price that
consists of a membership fee and a usage price. The membership fee is
a fee to join the network while the usage price is variable. This raises
an immediate question of what should be the optimal two-part tariff for
a firm serving a growing network of subscribers. Appealing to Opti-
mal Control, Fruchter and Rao (2001) offer an answer to this question.
The paper deals with a situation, which is similar to that of a durable
product in the sense that a customer becomes a member of the network
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only once, just as a customer buys only one unit of a durable product.
In other words, the customer adopts the service. However, the situa-
tion described in the paper is also similar to a non-durable product in
the sense that the customer pays an ongoing fee and a usage price that
could be thought of as a repeat purchase price. Durable goods pricing
has been analyzed by Dolan and Jeuland (1981) and Kalish (1983) for
a monopolist, and by Bass and Rao (1985) and Dockner and Jorgensen
(1988) under competition. However, past work has not explicitly con-
sidered a two-part pricing policy that changes over time with the growth
of a network. In a recent paper on the pricing of cellular phones, Jain,
Muller and Vilcassim (1999) examined the question of how the pricing
of a complementary product, such as the handset, influences the pricing
of the metered service, phone calls. They conclude that under certain
cost conditions and competition in a two-period world, the price of the
telephones decreases over time while that of the calls is non-decreasing.
In developing the model, they assume that the average demand per cus-
tomer, in minutes of phone calls, decreases over time as the network size
grows. The assumption is consistent with data and has also been ob-
served by Manova et al. (1998). Fruchter and Rao (2001) make a similar
assumption. However, instead of focusing on complementary products,
they focus on network membership and usage by network members.

Another issue I want to address is that in reality the consumers, while
belonging to the network of one company, communicate with some who
belong to the same network and others, who belong to competing net-
works. In the latter case, consumers are using both networks. From
the point of view of one of the networks, it incurs a greater cost to con-
nect “its” customer with a user of the competing network than what it
would incur if both users were on the same network. We can expect that
this difference in the marginal cost of serving a customer (depending on
whether they connect to a user on one’s own network or a rival net-
work) would have pricing implications. Laffont, Rey and Tirole (1998b)
examined pricing in such situations and showed that this could lead to
network-based price discrimination. Network-based price discrimination
in their model has a user connecting to another customer on the same
network paying a lower price than she would if she were connecting to
a customer of a rival network. There are several examples of network-
based pricing strategies. One is MCI’s Friends-and-Family Program that
offers better discounts to calls by MCI’s customers made to other MCI
customers than to calls across other networks. Similarly, Orange—a
wireless service operator in Hong Kong—provides a basic service plan
that charges HK$1 for each minute of calls between Orange and other
networks but only HK$0.2 for each minute of calls within its own net-
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work. A discount of 80% is rather large relative to cost differentials.
Also, while charging for interconnection costs has been a long-standing
norm in the telecommunication industry, the use of network-based price
discounts is a relatively new practice and its prevalence varies across
situations. Naturally, the question arises whether network-based pricing
strategies would arise from other strategic reasons that may exist in ad-
dition to differences in cost. To address this question, Fruchter, Shi and
Rao (2004) depart from Laffont, Rey and Tirole (1998b), by extending
the two-part pricing policy of Fruchter and Rao (2001) to a competitive
network situation. Like Laffont, Rey and Tirole (1998b), they study a
duopoly in which each competing firm follows a two-part pricing scheme
consisting of an access (or membership) fee and a usage fee. They dif-
ferentiate between the usage fee for communications within a network,
and across networks. The difference between the two usage fees, if any,
they call a network-based price discount. Thus, Fruchter, Shi and Rao
(2004) innovate by studying pricing strategies in a dynamic duopoly
with each firm being concerned not only with current revenues but also
with future revenues that depend, in turn, on the growth of network
size. It is a well-established proposition in marketing that the adoption
of a service follows a diffusion process similar to the one captured by
the Bass model (Bass (1969)). Since the diffusion process is affected by
price, it becomes necessary to capture the dynamic competition in the
duopoly. Therefore, unlike Laffont, Rey and Tirole (1998b), who cast
the pricing problem as a static game, they investigate the firms’ optimal
network-based pricing strategies using a differential game framework to
accommodate dynamic pricing. They derive the optimal pricing policy
as a Nash equilibrium feedback strategy with prices depending on the
network sizes, i.e., on the number of subscribers. The equilibrium prices
that they obtain are characterized by a network-based price discount,
even if there are no interconnection costs. The solution offers a strate-
gic rationale based on customer acquisition for network-based discounts,
especially in situations where the observed magnitude of the discount
is significantly at variance with cost differences due to interconnection
costs. Fruchter, Shi and Rao (2004) is firmly rooted in the literature
on dynamic pricing strategies, and may therefore be seen as a general-
ization of some previous models. Like Dockner and Jorgensen (1988)
and Bass and Rao (1985), it uses a differential game to study the op-
timal dynamic pricing strategies for oligopoly. Like Dolan and Jeuland
(1981), Kalish (1983), Dockner and Jorgensen (1988), and Fruchter and
Rao (2001), it takes into account the diffusion effect on market demand.
Unlike the previous work, it takes into account the interdependence of
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demand across networks, a phenomenon that has assumed importance
in recent years.

Next we present the dynamic two-part tariff-pricing problem in a com-
petitive network.

2. The two-part tariff dynamic and competitive
pricing problem

We consider a market with two competing networks, each of which
offers network telecommunication service, either through a fixed line or
wireless technology. A consumer has to be a subscriber of one of the two
networks in order to use the service. The two networks are intercon-
nected so that users at one network can communicate with users at the
other network. Each firm adopts a pricing policy that consists of an on-
going membership fee and usage-based fees for the metered service. We
distinguish between two communication services based on the location
of users: (1) communication within the same network and (2) commu-
nication across the two competing networks. Following Laffont, Rey
and Tirole (1998a), we will refer to communications that are initiated
and terminated within the same network as “on-net” calls; we use the
term “off-net” calls to refer to communications initiated at one network
but terminated at the other network. Networks are allowed to adopt
network-based price discrimination by providing discounts to the on-net
communications. Let ki(t) denote the ongoing membership fee charged
by firm i at time t. Denote pii(t) and pij(t) to be firm i’s unit price for on-
and off-net calls, respectively, where the first subscript denotes the origi-
nating network and the second subscript denotes the ending network. We
denote NiNN (t) to be the number of subscribers to firm i’s service at time
t. Consumers of network i have an average demand for communication
of Di(t) at time t, which consists of both on-net communication Dii(t)
and off-net communication Dij(t), where Di(t) = Dii(t)+Dij(t). We as-
sume that average on-net communications Dii(t) depends on the size of
one’s own network NiNN (t) and on-net price pii(t), i.e. Dii(t) = Dii(NiNN , pii)
and Dij(t) = Dij(NiNN , NjNN , pij). As standard, we assume that consumer
communication demand decreases with price. However, the effect of
network size NiNN (t) on average demand Dii(t) is not as straightforward.
Average demand Dii(t) may increase with the growth of network size.
For the growth of the network we assume the following general speci-
fication, ṄiNN (t) = f i(NiNN , NjNN , ki, kj , pii, pij , pjj , pji). The network size in-
creases with competing network’s prices but decreases with one’s own
network’s prices. Also, as network size increases, the growth increases,
thus having more value as more customers are in the network. However,
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with time, there are less people left to join the network, so there are
saturation effects.

The duopolist’s problem of determining a two-part pricing policy,
{ki, [p[[ ii, pij ]}, to maximize the present value of its profit stream over
the planning period, can be formulated as a differential game⎧⎪⎧⎧⎨⎪⎪⎪⎨⎨⎩⎪⎪

max
ki,pii,pij

∏
i

s.t. Ṅ1NN = f1(N1NN , N2NN , k1, k2, p11, p22, p12, p21), N1NN (0) = 0
and Ṅ2NN = f2(N1NN , N2NN , k1, k2, p11, p22, p12, p21), N2NN (0) = 0

(9.1)

where ∏
i =
∫ ∞

0

∫∫
NiNN [(ki − ck

i ) + (pii − cii)Dii(NiNN , pii) + (pij − cij)

Dij(N1NN , N2NN , pij)]e−rtdt

denotes the sum of the discounted profits of firm i over an infinite hori-
zon. There are three cost parameters related to

∏
i. The first, ck

i , is the
cost per subscriber that would correspond, for example, to the billing
and customer service provided by firm i to each customer. The second,
cii is the cost of providing on-net metered service that would correspond,
for example, to the minutes of telephone calls between two of the firm i’s
customers. The third factor, cij , is the cost of providing off-net metered
service of telephone calls originated from firm i and ended at firm j.
When networks are connected for off-net communication, the originat-
ing network often has to incur the interconnection costs. As a result,
variable cost for off-net communication is typically higher than that for
on-net communication. In other words, cii ≤ cij . We are looking for a
feedback Nash equilibrium strategy that solves this differential game.

3. The equilibrium pricing policies
Using dynamic optimization techniques (for example, Kamien and

Schwartz (1991)), the two-part feedback Nash equilibrium {k∗
i , [p[[

∗
ii, p

∗
ij ]},

satisfies the following conditions (for proof see Fruchter, Shi and Rao
(2004))

p∗ii =
ηpii

Dii

ηpii

Dii − 1

(
cii − λi

i

f i
pff

ii

Dii
pii

NiNN
− λi

j

f j
pff ii

Dii
pii

NiNN

)
(9.2)

p∗ij =
η

pij

Dij

η
pij

Dij − 1

[
cij − λi

i

f i
pff

ij

Dij
pijNiNN

(
1 − f i

pff
ii

f i
pff

ij

)
− λi

j

f j
pff ij

Dij
pijNiNN

(
1 − f j

pff ii

f j
pff ij

)]
(9.3)

NiNN + λi
if

i
kff

i
+ λi

jf
j
kf

i
= 0 . (9.4)
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In (9.2)–(9.4), λi
i and λi

j represent the on- and off-net shadow prices;
they take into account the dynamic effects, in our context, the value
of subscription to the firm’s network and rival’s network, respectively.
The behavior of the {k∗

i , [p[[
∗
ii, p

∗
ij ]}, over time depends on these shadow

prices and the additional factors as it is reflected by these relationships.
A more extensive analysis is presented in the sequel. We now present
special cases.

3.1 Special cases
The results in (9.2)–(9.4) contain a number of special cases that have

already been studied in the literature.

By setting, λi
i = λi

j = 0 we get the static-pricing rule.

By setting f i = DiiNiNN means that firm i’s profit is only derived
from new demand f i instead of DiiNiNN . As in the case of durable
goods, we can replicate the studies of Dockner and Jorgensen
(1988) for duopoly dynamic pricing for durable goods.

A more special case is on monopoly durable good pricing policy.
In this case, the off-net shadow price is zero and is obtained by
using the well-known monopoly durable goods pricing rule derived
in Kalish (1983).

By setting the off-net shadow price equal to zero, we obtain the
solution for the monopoly case (Fruchter and Rao (2001)). Next
we want to further analyse this special case.

3.2 Analysing the monopoly policy
By setting λi

j = 0 in (9.2) and (9.4) and removing the indices, we
replicate the results by Fruchter and Rao (2001) for the membership
fee1 and usage price of the monopoly network. Thus,

p∗ =
ηp

D

ηp
D − 1

(
c − λ

fpff

DpN

)
(9.5)

and
N + λfkff = 0 . (9.6)

Considering (9.6), since N(0) = 0 and fkff < 0 we have λ(0) = 0 and
λ(t) > 0, for t > 0. This is a formalization of the intuition that an

1For a positive membership fee.
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additional subscriber to a network results in an increase in the firm’s
future profit. It is easy to show that the sufficient condition for opti-
mality implies that the membership fee k increases with network size N .
Thus, the optimal membership fee constitutes a penetration strategy:
At the beginning it is low, and when the number of customers increases,
the membership fee increases. To understand this, first note that a low
membership fee implies that if the firm could, it would even pay to ac-
quire customers. The reason for this is that once a person becomes a
customer, i.e., a member of the network, they continue to buy from the
service provider. It therefore pays to “acquire” these customers by of-
fering them a low membership fee. However, at some point, when N is
sufficiently large, the value to adding a customer is less than it was in
the beginning. At this point, it no longer makes sense to pay to acquire
customers. Indeed, it may become optimal to make the customers pay
for being a part of the network. And so k increases.

Of course, we could imagine that customer acquisition could also be
accomplished by setting the usage price low. Considering (9.5), it turns
out (cf. Fruchter and Rao (2001)) that this is not necessarily part of
the optimal policy. Indeed, if demand is not too sensitive to usage price,
i.e., for sufficient low DN , the optimal usage price could constitute a
skimming strategy. The policy on the usage price is driven by the fact
that early adopters are also heavy users in this model. This, in turn,
means that customer acquisition is better accomplished through a lower
membership fee rather than a low usage price. And so, the usage price
can be held relatively high.

3.3 Analysing the competitive policy
¿From (9.4) and considering the sufficient conditions for optimality

(cf. Fruchter, Shi and Rao (2004)), it is easy to see under some additional
assumptions that f i

kff
i

< 0, f i
kff

j
> 0, and f i

kff
iki

< 0 and f j
kff

iki
≤ 0, that

the on-net shadow price should be positive for any positive time, i.e.
λi

i(t) > 0, for t > 0; thus the value of subscription to the firm’s network
results in an increase in the firm’s future profit. This result is consistent
with the intuition that a firm’s long-run profit increases with its customer
base. Furthermore, there is a neighbourhood of t = 0, 0 < t < t1, where
λi

j should be positive too. This shows that at least for some of the
time, increase in a competitor’s network size is good for business! Of
course, this makes sense because consumers in a firm’s network can make
calls to more users (those in a competitor’s network), and so revenue
increases. In particular, it shows that in the early stages of the game, a
network’s future profit may increase with additional subscribers to the
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other network. When networks provide network-based discounts, the
extra subscribers to network j increases a subscriber’s chance to enjoy
the on-net discounts within network j. Consequently, the subscription to
network i becomes less attractive. However, with a larger rival network
(j), a firm can increase its profit as its subscribers demand more off-net
communications. Such a benefit is likely to be bigger in the early stage
of the game (t ≤ t1) because in the beginning, the total network size
is small and hence a new subscriber is expected to further increase the
communication demand.

Considering again (9.4) and the sufficient condition for optimality,
it is easy to show that the optimal membership fee increases with the
size of the network. Thus, ki increases with NiNN (for a formal proof see
Fruchter, Shi and Rao (2004)). This implies that in competition, as in
monopoly, the optimal membership fee follows a penetration strategy.

Rewriting (9.2), it is easy to show that if

λi
if

i
pff

ii
+ λi

jf
j
pff

ii
< 0 (9.7)

then the dynamic on-net price is lower than the static (when λi
i = λi

j = 0)
on-net price. The condition (9.7) is necessary for a unit decrease of a
firm’s on-net price pii to have a positive effect on the firm’s future profit,
in addition to the increase of the firm’s immediate profit. Specifically, a
unit decrease of pii can increase the firm’s network size by (−f i

pff
ii
). The

increased network size will lead to an increase of the firm’s profits in
the subsequent periods by (−λi

if
i
pff

ii
). In addition, a unit decrease of pii

can decrease the other firm’s network size by f j
pff ii , which will also lead

to a gain of the firm’s profits from the subsequent periods by (−λj
if

j
pff ii).

Overall, a unit decrease of a firm’s on-net price would increase the firm’s
future profits by −(λi

if
i
pff

ii
+λi

jf
j
pff ii). Thus, the condition λi

if
i
pff

ii
+λi

jf
j
pff ii < 0

captures the long-term effect of a firm’s current price change. Since
f i

pff
ii

< 0, f j
pff ii > 0, λi

i(t) > 0 and λi
j(t) > 0 only for some t < t1, the

condition λi
if

i
pff

ii
+ λi

jf
j
pff ii < 0 should hold as we move away from t = t1.

Therefore, we can offer the managerial guideline that after some time the
equilibrium dynamic on-net price should be below the static (myopic)
on-net price.

A similar result is true for the off-net price (see Fruchter, Shi and
Rao (2004)). Furthermore, if we compare the dynamic network-based
discount with the static, we conclude (see Fruchter, Shi and Rao (2004))
that if (
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λi
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>
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m=i,j
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(9.8)
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then the dynamic discount is lower than the static. This result shows
that the network discount should not be as high in the dynamic case as
in the static case. This points to why the network-based price discount
would depend on strategic reasons in addition to the cost reasons that
occur in static models as well. In other words, managers can gain by an
understanding of the effect of their decisions on network dynamics and
following the optimal network-based pricing strategy as obtained from an
analysis of the appropriate dynamic game. Since λi

i > 0, condition (9.8)
is more likely to hold with a decreased ratio of f i

pff
ii
/f i

pff
ij
. A decreased

ratio of f i
pff

ii
/f i

pff
ij

implies a smaller effect of a firm’s on-net price (relative
to its off-net price) on consumers’ network choice decisions. Therefore,
with a smaller f i

pff
ii
/f i

pff
ij
, firms have more incentive to lower the off-net

price, leading to a smaller network-based price discount. This is the key
intuition here.

A special case—when customers are equally likely to call any person
on their network and the persons on a competing network (termed as
uniform calling pattern) show that the firm’s dynamic network-based
discount increases with the membership fee thus with the network size.
The combination of the penetration strategy for the membership fee and
the “penetration strategy for the discount” uncovers an interesting prop-
erty of the dynamic two-part tariff. Unlike the static setting where the
network-based discount is a result of interconnection costs (Laffont, Rey
and Tirole (1998b)), in the dynamic setting the firms focus on customer
acquisition at the beginning through a low membership fee, and then,
when the customer base is large enough, the firm can effectively retain
customers by offering a higher discount for on-net usage.

4. Symmetric competition: The feedback Nash
equilibrium strategy

To be able to get an explicit solution and a further characterization,
in this section we assume a symmetric competition. More precisely, we
suppose that both firms are symmetric, and so have the same cost pa-
rameters and the same parameters in the demand functions and growth
of their networks. We look for a symmetric equilibrium, that is,

k∗
i = k∗

j = k∗, p∗ii = p∗jj = p∗on, p∗ij = p∗ji = p∗off . (9.9)

This implies

NiNN = NjNN = N and λi
i = λj

j = λon and λj
i = λi

j = λoff . (9.10)

Also

f i = f j = f and Dii = Djj = Don, Dij = Dji = Doff . (9.11)
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The following theorem on feedback equilibrium will prove useful in
providing a solution for the optimal policy.

The Main Theorem: Consider the differential game stated in (9.1)
and assume that the sufficient condition2 holds in some neighborhood
of (k∗, p∗

on, p∗
off ). Then the necessary conditions (3.2)–(3.4) define a

unique local time-invariant feedback Nash equilibrium of the form,

k∗ = k∗(N, Φ(N), ϕ(N))
p∗on = p∗on(N, Φ(N), ϕ(N))
p∗off = p∗off (N, Φ(N), ϕ(N)) ,

⎫⎬⎫⎫⎭⎬⎬ (9.12)

where Φ(N) and ϕ(N) satisfy the following system of backward differen-
tial equations,

Φ′(N)f(N, k∗, p∗on, p∗off ) = rΦ(N) − (k∗ − ck)
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−(p∗off − coff )
[
Doff (p∗on, N) + NDoff

N (p∗offN)
]

−[Φ(N) + ϕ(N)]fNff (N, k∗, p∗on, p∗off )

−[Φ(N)f i
kff

j
(N, k∗, p∗on, p∗off ) + ϕ(N)f j

kf
j
(N, k∗, p∗on, p∗off )]

∂kj

∂NiNN
(N, Φ(N), ϕ(N), k∗, p∗on, p∗off )

−[Φ(N)f i
pff

jj
(N, k∗, p∗on, p∗off ) + ϕ(N)f j

pff
jj

(N, k∗, p∗on, p∗off )]

∂pjj

∂NiNN
(N, Φ(N), ϕ(N), k∗, p∗on, p∗off )

−[Φ(N)f i
pff

ji
(N, k∗, p∗on, p∗off ) + ϕ(N)f j

pff
ji
(N, k∗, p∗on, p∗off )]

∂pji

∂NiNN
(N, Φ(N), ϕ(N), k∗, p∗on, p∗off )

lim
t→∞Φ(N(t))e−rt = 0 (9.13)

2See condition (B1) in Appendix B of Fruchter, Shi and Rao (2004).
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and

ϕ′(N)f(N, k∗, p∗onf∗
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lim
t→∞ϕ(N(t))e−rt = 0 (9.14)

where i, j = 1, 2, i �=�� j

Proof: See Fruchter, Shi and Rao (2004).
A numerical analysis of the symmetric equilibrium (see Fruchter, Shi

and Rao (2004)) offers insights into the role of competition in dynamic
network-based pricing. In the early stage of the diffusion process, when
competition for new customers is high, price discrimination through the
use of a network-based discount is not critical. But as the network
size grows, and the diffusion process enters a low growth phase, focus
turns to price discrimination and so the network-based discount is higher.
Indeed, equilibrium dynamic prices in later stages approach the static,
or myopic, prices characterized by Laffont, Rey and Tirole (1998b).

5. Conclusions
The dynamic two-part tariff competitive pricing policy presented here

extends the existing dynamic pricing research, e.g. Kalish (1983), Dock-
ner and Jorgensen (1988), and Fruchter and Rao (2001). For the dy-
namic network-based pricing, we can recommend the following manage-
rial guidelines. As in the case of monopoly, the membership fee follows
a penetration strategy being low at the beginning and increasing as
the customer base increases. The network-based discount, under cer-
tain conditions, for instance, when customers are equally likely to call
any person on their network and the persons on a competing network,
also follows a penetration strategy. The combination of the penetra-
tion strategy for the membership fee and the “penetration strategy for
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the network-based discount” leads to the following managerial guideline:
when a firm has a small network, the firm should focus on acquiring new
customers through a low membership fee. As its network grows, the firm
should turn more attention to customer retention by offering a higher
network-based price discount.

The results from the numerical example of symmetric equilibrium
show that the dynamic network-based prices are lower than the static
counterparts. Consequently, the network-based price discount is also
smaller in the dynamic game than in the static game. An interesting
pattern emerges that a firm’s dynamic network-based price discount in-
creases with the firm’s network size. Since the firms’ networks expand
over time, the result suggests a small (or none at all) network-based price
discount in the early stage of the diffusion process, but a large network-
based price discount in the late stage of the diffusion process. From the
numerical analysis of symmetric equilibrium, we find that firms compete
intensively for valuable new customers in the early stage of the diffusion
process. As a result, despite the interconnection cost, the difference be-
tween the on-net and off-net prices is very small. In contrast, since the
new adopters arriving in the later stage of the diffusion process are less
valuable, we observe much softer price competition and the equilibrium
prices approach the static prices that Laffont, Rey and Tirole (1998b)
characterized. A valuable direction for future research would be to em-
pirically investigate the network-based price discounts over the diffusion
process and test the predictions of this model.
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Chapter 10

NUMERICAL SOLUTIONS TO LUMP-SUM
PENSION FUND PROBLEMS THAT CAN
YIELD LEFT-SKEWED FUND RETURN
DISTRIBUTIONS

Jacek B. Krawczyk
Victoria University of Wellington, New Zealand
Jacek.Krawczyk@vuw.ac.nz

Abstract The paper is about pension fund problems where an agent pays an
amount x0 to the fund manager and is repaid, after time T , a lump sum
x(T ). Such problems admit an analytical solution for specific, rather un-
realistic formulations. Several practical pension fund problems are con-
verted in the paper into Markov decision chains solvable through approx-
imations. In particular, a couple of problems with a non-differentiable
asymmetric (with respect to risk) utility function are solved, for which
left-skewed fund-return distributions are reported. Such distributions
ascribe more probability to higher payoffs than the right-skewed ones
that are common among analytical solutions.

1. Introduction
This paper1 is about lump-sum pension fund problems i.e., such where

an amount x0 is paid to the fund manager by an agent who is repaid,
after time T , a lump sum x(T ). The latter is called here the pension.

The purpose of this paper is to propose approximately optimal solu-
tions to several such pension fund problems where performance measures
are asymmetric with respect to risk. We will show that the fund return
distributions obtained for those measures can be left skewed (negatively).
Such distributions ascribe more probability to higher payoffs than the
right-skewed ones that are common among analytical solutions to prob-

1This paper draws from Krawczyk (2003).
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lems characterised by the HARA (Hyperbolic Absolute Risk-Aversion)
family of utility functions. If most utility realisations (mode) are low
then a policy which leads to that result might not be acceptable for a
realistic fund manager.

The problem of how to produce an acceptable portfolio-performance
strategy is well recognised in the static context. Markowitz (1952) is
credited with pioneering the classical mean-variance portfolio selection
problem whose solution balances a good average yield with a certainty of
achieving it. Since Markowitz (1959) seminal book, many authors have
worked on extensions and other methods for portfolio optimisation that
would allow for hedging against uncertainties and/or assure an accept-
able level of payoff; see Bertsimas et al. (2004), de Athayde & Flôres Jr.ˆ
(2004), Rockafellar & Uryasev (2000) or Krawczyk (1990).

On the other hand, the mainstream research onto dynamic portfolio
management has been following the seminal works by Samuelson (1969)
and Merton (1969) (also Merton (1971)) and concentrated on solutions
to the HARA problems. Such solutions typically provide an optimal
strategy in closed form. The solutions are generically risk-sensitive but
leave aside the utility distribution issues; see e.g., Brennan et al. (1997),
Fleming & Sheu (2000), Morck et al. (1989).

Recently, problems of hedging and/or assurance of attainment of a
desired payoff (thus “realistic”) have been investigated in the context
of dynamic portfolio management. For example, Howe et al. (1996)
discuss multiperiod minimax hedging strategies, Gülpinal¨ et al. (2004)
apply mean-variance analysis to multistage portfolio management and
Frey & Runggaldier (1999) apply risk-minimising hedging approach to
dynamic strategy determination. Most importantly for “certainty” of
payoff achievement, Value-at-Risk and Conditional Value-at-Risk con-
straints have been used in Yiu (2004) and Bogentoft et al. (2001), re-
spectively, to produce acceptable management policies in the dynamic
context.

Basak & Shapiro (2001) consider two types of “realistic” portfolio
managers: “VaR-RM” — that incorporate a Value-at-Risk constraint
in their optimisation problem formulation and “LEL-RM” — that limit
their expected losses, and who appear very much like the Conditional
Value-at-Risk managers from Bogentoft et al. (2001). Basak & Shapiro
(2001) obtain closed form solutions for a CRRA utility function for ei-
ther manager and compare performance of their portfolios. The problem
with a Value-at-Risk constraint yields a solution in which while (as ex-
pected) the Value-at-Risk is limited, larger losses will be incurred “in the
most adverse states of the world” than under no VaR constraint. The
authors show that this is because a VaR risk manager minimises the
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probability of the loss regardless of the magnitude. A limit on expected
losses (LEL) can produce strategies that lead to much smaller expected
losses than under the VaR constraint. Overall, the provided distribution
plots indicate that an introduction of a VaR constraint and of a LEL
limit “improve” the wealth distribution in that the difference between
the mean and median reduces vis-a-vis an unconstrained solution. How-
ever, the plots are still such that the mean dominates the median, which
signifies a low mode.

With the exception of Basak & Shapiro (2001) who added constraints
to a CRRA utility function, explicit solutions to “realistic” dynamic
portfolio management problems are usually beyond the simple quadra-
tures. Consequently, the authors have used stochastic programming
and/or discretisation techniques to solve their problems.

The pension fund problems solved in this paper will be with “realistic”
preferences and they will be solved numerically. Attention will be paid
to the utility realisations’ distributions rather than to moments and
parameters which were of prime interest in most of the above papers.
Notwithstanding, a Value-at-Risk will be gauged for each solution.

Numerical solutions will be obtained in this paper through a discreti-
sation scheme inspired by the Kushner (1990) approach2. His approach
consists of a discretisation method, capable of producing solutions to sto-
chastic optimal control problems. There have been successful implemen-
tations of this approach to infinite-horizon decision problems e.g., Munk
(2000) and stochastic differential games Haurie et al. (1994). However,
in Krawczyk (2001) (also see Krawczyk & Windsor (1997) and Kraw-
czyk (1999)) a similar but simpler approach that produced numerical
solutions to a few finite-horizon stochastic optimal control problems was
used. Instead of looking for a solution to the Hamilton-Jacobi-Bellman
(HJB) equation, as in the Kushner approach, a Markov decision chain,
discrete in time and space, was solved. This is a more elementary exer-
cise: instead of looking for a numerical solution to a second-order partial
differential equation (HJB), a first order difference equation (Bellman’s)
needs to be solved. This approach will be used in this paper to the
pension fund problems’ solution.

Following is a brief outline of what the paper contains. A pension
fund problem is outlined in Section 10.2 as one of stochastic optimal
control. A Markovian approximation method suitable for the solution of
such a problem is applied in Section 10.3 to several optimal investment
problems with asymmetric utility functions. Concluding remarks are

2For an up-to-date and complete treatment of Kushner’s Markov chain approximation method
in stochastic control, see Kushner & Dupuis (2001).
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contained in Section 10.4. The approximation method appears original
and is explained in Appendix 10.A.

2. Pension fund problems

2.1 General considerations
A plausible situation in financial management is one, in which an

agent pays an amount x0 to a fund manager at time 0, to be repaid, at
time T , a lump sum x(T ) - called here the pension. The latter is a result
of an investment policy3 µ(xt, t), t ∈ [0, T ] adopted by the fund manager,
and also of the market conditions. The latter are deterministically non
predictable and usually modelled with the help of stochastic processes.
This causes the pension problem to be also stochastic.

There are several practical questions both agent and manager need to
answer before x0 can be accepted. Among them:

what lump sum x̄T can the manager “promise” for a given x0 or,
alternatively, what x0 should be paid in for a promised x̄T ?

how should the “promise” be formulated: deterministically or in
some probabilistic terms?

seem to be crucial for the fund management. We shall try to answer
them in the sequel.

The manager’s policy of administering a fund depends obviously on
their objective function. The latter can be maximisation of the fund
expected value, maximisation of probability to obtain a target amount,
shortfall minimisation etc. Once the objective function is revealed, the
manager’s policy can be computed as a solution to a stochastic optimal
control problem associated with the objective function. The problem
solution should routinely comprise an optimal decision rule µ(xt, t) and
also a distribution of xT . Knowing the former is crucial for the manager
to control the portfolio. The latter is “practical” in that it tells the
pension buyer what they can, or should, expect as xT .

Knowing the distribution of xT also helps the manager. It gives them
an idea of what probabilities, or risks, are associated with obtaining a
particular realisation of the objective function. For example, the distri-
bution may suggest that, for a given x0 there is a “probable” terminal
value x̄T , which the manager may choose to advertise as the pension
target (subject to some legislative constraints on financial advertising).

3If appropriate, the rule will be multidimensional, comprising a consumption rule, adminis-
tration fee etc.
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2.2 A stochastic optimal control problem
We can model a pension fund problem as above using a simplified ver-

sion of Merton (1971)’s model of optimal portfolio selection (cf. Fleming
& Rishel (1975), pp. 160-161; also Tapiero (1998)).

As usual, the stock portfolio consists of two assets, one “risky” and
the other “risk free”. If the price per share of the risky asset p(t) changes
according to

dp(t) = α p(t)dt + σ p(t)dw (10.1)

where w is a one-dimensional standard Brownian motion, while the price
q(t) per share for the risk free asset changes according to

dq(t) = rq(t)dt

then the wealth x(t) at time t ∈ [0, T ] changes according to the following
stochastic differential equation

dx(t) = (1 − u(t))rx(t)dt + u(t)x(t)(αdt + σdw) − U(t)dt. (10.2)

Here, r, α, σ are constants with r < α and σ > 0. The symbol u(t)
(respectively, 1−u(t)) denotes the fraction of the wealth invested in the
risky (respectively, risk free) asset at t and U(t) is the “consumption”
rate (which could also model a management fee intensity).

In Fleming & Rishel (1975), U(t) is the consumption rate and the
agent’s objective is to find an optimal two-dimensional strategy µ =
[u(x, t), U(x, t)], such that4

0 ≤ u(t) ≤ 1, and U(t) ≥ 0, (10.3)

and which maximises the expected discounted total utility

J(0, x(0);µ) = IE
(∫ T

0

∫∫
e−�tg(U(t))dt

∣∣∣∣∣∣∣x(0) = x0

)
(10.4)

given the discount rate � > 0 and assuming that g(U(t)) is the manager’s
utility function (e.g., g(U(t)) = [U(t)]γ , with 0 < γ < 1). In Fleming &
Rishel (1975) there is no value assigned to wealth at T while x0 is the
wealth at the initial time 0. However, utility (10.4) can be augmented
to

J(0, x(0);µ) = IE
(∫ T

0

∫∫
e−�tg(U(t))dt + e−�T s(xT )

∣∣∣∣∣∣∣x(0) = x0

)
(10.5)

4Constraints (10.3) mean no borrowing or short selling. These restrictions have been weak-
ened in the literature; however, they may be reasonable in some situations and they make
the problem “strictly” constrained, which is a feature that the optimisation algorithm needs
to be tested on.
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where s(xT ) is a function of final wealth. The problem “maximise (10.5)
subject to (10.2) and other relevant constraints” (like e.g., x(t) ≥0) can
now model a pension fund problem. Indeed, making U = const and
maximising (10.5) in u only (with g(·) ≡ 0 or not), defines a problem
that captures the task of a pension fund manager. On the other hand,
max (10.5) s.t. (10.2) (plus constraints) defines a stochastic optimal
control problem. It is this problem that lacks a closed from solution
for some “realistic” utility functions and therefore needs to be solved
numerically.

3. Pension fund models and solutions

3.1 The yield’s expected utility maximisation
Maximisation of concave utility functions is a rather popular method

to establish an optimal policy for portfolio management (see e.g., Morck
et al. (1989), the classical Merton (1971) and many more). Perhaps
the functions are so popular because they frequently produce analyti-
cal solutions. Sadly, some of them deliver policies that generate rather
unacceptable utility realisation distributions.

Suppose an initial outlay x0 is be managed for T years. An academi-
cally learned fund director may choose to manage this outlay according
to a policy that maximises a concave, risk-averse utility function. Let
us investigate what policy maximises a terminal fund utility defined as

s(xT ) =
[
x(T )

]δ
, 0 < δ < 1. (10.6)

The optimal policy is analytically obtainable. Set g
(
U(t)

)
= 0 and

follow one of classical Merton’s references5 to obtain

u(t) =
(α − r)

(1 − δ)σ2

∣∣∣∣∣∣∣∣∣∣
δ=.5

=
2(α − r)

σ2
. (10.7)

The optimal strategies are risk sensitive. However, for a given value of
parameter δ, which reflects an agent’s degree of risk aversion, they are
constant in time and independent of state. (To focus attention we will
assume δ = .5.)

Let us look at Figure 10.1 to see what the utility realisation distri-
bution for this policy is. The distribution was obtained using optimal
strategy (10.7) for wealth equation (10.2) and the following model para-

5Also, Fleming & Rishel (1975), Tapiero (1998), Korn & Korn (2001) and many more.
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meters6:

x0 = 40 000 , T = 10, r = .05, α = .11, σ = .4, � = .11 .

These parameters seem rather plausible (e.g., 5% p.a. return on the
secure asset, α = �, ten years until retirement, etc.) hence, the numerical
experiments conducted below should be readily interpretable. What we
can see first, is that the distribution is rather strongly skewed to the
right. This means that most utility realisation for the optimal policy
(10.7) are low.
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Figure 10.1. Final utility distribution.

Observe the final fund yield distribution in Figure 10.2. The figure
informs the fund manager about the actual fund payoffs and is probably
more relevant for their decision of whether policy (10.7) is acceptable.

6As only some distribution shapes could be computed analytically, all distributions in this
paper have been obtained experimentally to ensure some comparability of the results. This
and the following distributions were obtained as histograms of 1200 fund realisations.
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Figure 10.2. Fund yield distribution for the yield’s expected utility maximisation.

This figure7 also helps to (approximately) compute a value at risk,
which will be useful to compare performance of various strategies. Two
risk measures, Value-at-Risk (VaR) and Conditional Value-at-Risk
(CVaR) will be calculated. The measures explanation can be found
in e.g., Rockafellar & Uryasev (2000) or Basak & Shapiro (2001); here,
we notice briefly that for a specified probability level β, the βVaR of a
policy is the lowest amount of loss α whose probability does not exceed
β. For the same probability level β, the βCVaR is the mean loss above
the amount α. We well define any final fund yield below $ 40 000 as loss.

For the policy maximising the risk averse utility function (10.6) with
an initial outlay x0 = 40 000, β = .9 and the loss defined as above we can
see that the mean payoff is as large as 80 662; however, there is also a lot
to be lost: .9VaR = ᾱ.9 ≈ 28 000 and .9CVaR ≈ 34 000. Moreover, we
can see that the probability of earning less than the “secure” revenue,
which one would receive by investing in the risk-free asset only:

40 000 exp {(r − “management fee”)10} = 53,994 ,

for a 2% management fee, is more than .5.8 With probability >.4, the
final payoff will be less than the initial outlay x0 = 40 000 . Evidently,
using a policy that maximises the expected final yield utility (10.6) is
a very risky strategy of managing a portfolio. We conclude that the

7Acutually, this histogram looks almost indistinguishable from one that shows a fund yield
distribution obtained for a risk neutral utility function, see Krawczyk (2003).
8To see this and also prove the next claim normalise the area under the histogram to 1 and
integrate from zero to 53,994 and 40 000 , respectively.
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maximisation of the final payoff utility cannot be a realistic pension
fund target.

3.2 Shortfall risk minimisation
Given a fairly disperse distribution of x(T ) when a policy of yield’s

expected utility maximisation is applied, a realistic portfolio manager
might target a specific amount x̄T as one to be repaid to an agent who
has deposited x0. (Should x(T ) be deliverable with a high probabil-
ity, the manager could used it e.g. for advertising and thus beat the
vague promises by the competition.) Hence, x(T ) might be viewed as the
manager’s liability HTHH at a given future time T . (See e.g. Frey & Rung-
galdier (1999) for an optimisation model that computes risk-minimizing
hedging strategies.)

We will use a numerical method9 to compute a policy that minimises
the risk of not delivering x̄T . We will examine the distribution of x(T )
to assess how likely receiving x̄T is.

In “real life”, x̄T = HTHH may be measurable with respect to the
σ−algebra generated by a stochastic process related, or not, to the
wealth dynamics (10.2). For example, the price process p(t) -see (10.1)-
of the risky asset could be the process, which generates the algebra. This
would be a realistic feature of the model, which would help adjusting
x(T ) to different market situations. There may be situations in which
an investment policy realisation might appear profitable but in fact be a
result of high inflation. In that case, the “pension” x̄T the agent would
like to secure, would need to be higher than if inflation was low. Con-
versely, with a less expanding process p(t), the pension or liability HTHH
could be lower.

Thus HTHH may be a random variable, contingent upon the prices of
the risky asset. We say that a liability is (perfectly) hedged, respectively
super-hedged, if

xu(T ) = HTHH almost surely (10.8)
or

xu(T ) ≥ HTHH almost surely, (10.9)

respectively, where u is an investment strategy. There may not exist a
strategy that achieves a perfect hedge and, to achieve a superhedging,
it may be necessary to start from a rather large initial outlay x0.

9Explained in Appendix 10.A. Briefly, the policy will be determined as an optimal solution
to a Markov decision chain approximating the underlying stochastic optimal control problem.
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A reasonable criterion of a portfolio selection is then that of shortfall
risk minimisation where, given an admissible set A of strategies u (e.g.,
A contains u constrained as in Section 10.2.2) and an initial outlay x0,
one looks for a strategy u∗ ∈ A for which

IE {max (0, HTHH − xu∗(T ))} = inf
u∈A

IE {max (0, HTHH − xu(T ))} (10.10)

where max (0, HTHH − xu(T )) represents the shortfall i.e., the amount by
which the final value xu(T ) of the portfolio falls short of the goal HTHH .

Now, we will solve numerically10 the above shortfall minimisation
problems. Let T=10, x0=40 000 , etc. as before and let H10 = π p(10)x0

where π = 83% is some inflation “relaxation” coefficient. Bearing in
mind that such IEpE (10) ≈ 3, H10 will on average equal $100 000 (so,
these results are somehow comparable across the many examples solved
in this paper).
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Figure 10.3. Shortfall minimising policies.

Figure 10.3 shows the policy11 graphs u(x, p)|p=1. The horizontal
axis is wealth (xt) and the vertical axis is the corresponding investment
ut. Each curve in the figure corresponds to a strategy for a different
time. The times represented are: the beginning of the investment period
(t = 0), the middle time (t = 5) and a final time (t = 9.9).

The shortfall minimising policies are state dependent. This is in sharp
contrast to flat policies (10.7). Here, when you are far from the “target”
you invest a lot. However, as times goes by you become less aggressive.
For example, assuming the price level p = 1 ∀t, the same level of wealth

10For the ease of computations max (0, HT − xu(T ))2 was minimised.
11An updated version of Windsor & Krawczyk (1997) was used for numerical solutions ob-
tained here and in the rest of this paper.
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of 40 000 implies an investment of (approximately) 0.6, 0.45 and 0.1 at
times 0, 5 and 9.9 respectively.
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Figure 10.4. A sample of time profiles for the shortfall minimisation problem.

Figure 10.4 presents a sample of policy realisations (bottom panel) and
the corresponding wealth and prices time profiles. The profiles comprise
probably quite extreme cases of superhedging (one) and of substantial
underhedging (three). We can see that “anything” is possible with policy
u∗ that minimises shortfall (10.10). However, much more useful for the
policy assessment is to examine Figure 10.5, which shows the fund yield
distribution.
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Figure 10.5. Fund yield distribution for the shortfall minimisation problem.
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Here, both the median and mean appear on the right hand side of the
initial outlay value of 40 000. Also, .9VaR ≈ 16 000 (for loss=40 000) is
smaller than before. Clearly, the shortfall minimising policies generate
a more desirable type of skewness than that in Figure 10.2.

3.3 Cautious policies
Notwithstanding a better yield distribution for a shortfall minimisa-

tion policy than for yield’s utility maximisation, the spread of possible
realisations of xu∗(T ) might still appear too wide for the manager to im-
plement u∗. We would argue that this might be because of no “reward”
for superhedging xT in problem (10.10). In real life, pension fund man-
agers will want to strongly avoid any yield below xT (as in (10.10)) but
they will also enjoy yields above xT . We will want to capture this “re-
alistic” feature of portfolio management though a non-symmetric (with
respect to risk) utility function. Consider

J(0, x0; u∗) = max
u∈A

IE
(
s(xu(T ))

∣∣∣∣∣∣∣x(0) = x0

)
(10.11)

where A contains u constrained as in Section 10.2.2 and

s(xu(T )) =
{

(xu(T ) − x̄T )κ if xu(T ) ≥ x̄T ,
−(x̄T − xu(T ))a otherwise (10.12)

0 < κ < 1, a > 1 .

This criterion12 reflects the client’s (and manager’s) wish to dispose of
sufficient funds to meet x̄T , which could be advertised as a likely payoff.
The reward for exceeding x̄T is moderate (0 < κ < 1) while the punish-
ment for not reaching it might be made substantial (a > 1). The policies
will be computed for two different combinations of κ and a. We will call
these policies cautious because the manager is “cautious” in enjoying
wealth above x̄T .

Suppose that the desired value of the pension is x̄10 = 100 000. The
rest of the problem parameters are as before i.e., x0 = 40 000 , T =
10, r = .05, etc. Also notice that x̄10 = 100 000 will be reached with
certainty if x0 =74,082 is invested at time 0 in the secure asset (man-
agement fee = 2%) and also if 100 000 exp(−.03t) is invested at time
t.

Optimal investment policies resulting from the solution to (10.11),
(10.12) are shown in Figure 10.6 for two different pairs of κ and a.

In the top panel, the three curves represent a cautious policy obtained
for a client whose preferences are reflected by κ = 1

2 and a = 2. Here,

12The expectation will be well defined under the implicit integrability assumption.
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Figure 10.6. Cautious policies.

the preferences tell us about a client’s “quadratic” fear of not reaching
x̄10 and a “square-root” enjoyment from exceeding it.

The lower panel shows two strategy lines for t = 5. The dash-dotted
line is as in the top panel. The solid line corresponds to a client’s pref-
erences reflected by κ = 9

10 and a = 3
2 . Here, the client’s attitude is also

cautious but more relaxed about not meeting x̄10 = 100 000; moreover
he (or she) enjoys exceeding it more than the previous client does.

The top-panel policy lines get higher as the time-to-maturity shortens
and steeper as wealth xt decreases. This is an interesting solution: if
wealth is far from desired or there is not enough time for the pension
fund to grow, the manager invests in the risky investment more than if
he (or she) has higher wealth and/or longer time to grow it. In other
words, the further the investor is from the state, from which meeting
x̄10 is certain (e.g., x0=74,082 at t = 0), the higher the investment in
the risky asset is.

The lower panel of Figure 10.6 shows that the optimal policies of the
“cautiously relaxed” customer are bolder than those of their “cautious”
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counterpart. This means that at a given state (xt, t) the relaxed will be
happy to commit more funds to the risky investment than the cautious.

Figure 10.7 shows a sample of (five, as in Figure 10.4) state and control
realisations corresponding to the cautious policy. A difference between
the large spread of the final states in Figure 10.4 and this figure’s rather
concentrated distribution of the state variable is clearly visible.
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Figure 10.7. Time profiles for the cautious policy.

The usefulness of the strategies obtained as solutions to the utility
maximisation problem (10.11), (10.12) for pension fund management
can be assessed with the help of the histograms presented in Figure
10.8.

The two strategies (cautious and relaxed-cautious) were used to man-
age an initial outlay of x0 = $40 000. See Figure 10.8 top panel for
the yeld distributions. The lower panel of this figure shows the yield
distribution of when the expected yield maximisation policy was used
(in Krawczyk (2003)) to generate Ex10 ≈ 100 000 = x̄10. One can see
that the type of skewness, which the cautious policies generate, helps
the manager to form a strong expectation of a satisfactory final payoff.
For example, for the current set of data, we can say that x10 ≥ 70 000
has the probability of about .75 , for the cautiously relaxed policy. Un-
der the expected yield maximisation policy, the probability of achieving
this result is less than .3 and less .4 for the yield’s utility maximisation
(Figure 10.2) and shorfall minimisation (Figure 10.5). It is also easy to
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Figure 10.8. Policy comparisons.

see that the risk measures VaR and CVaR for the cautious policies are
very small.

A further analysis of the final yield distributions, calculated in Kraw-
czyk (2001) for several initial deposits x0 ∈ [40 000 , 74 082], would help
the manager to make up their mind which particular x0 to accept, in
return for a ten year “bond” or pension x̄10.

Notice that the portfolio problems with a HARA utility function con-
sidered in the Merton problem ((10.5) or (10.4) subject to (10.2) and
other relevant constraints) is homogeneous and its “classical” optimal
investment solution does not depend on the initial outlay x0, see (10.7).
Our solution does not have this homogeneity property. It advocates dif-
ferent strategies for different clients depending on their wealth. These
strategies appear satisfactory as judged by the distribution skewness and
the risk measures VaR and CVaR.

4. Conclusion
We have analysed some fund yield distributions generated by policies

that optimise classical risk averse utility functions and concluded that
the distributions ascribe high probability to low payoffs. This makes
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them not applicable for pension fund management. Their high proba-
bility of low payoffs might be a result of the optimised utility functions
being insufficiently risk averse to guarantee an acceptable fund perfor-
mance. As an alternative to these utility functions an asymmetric and
non differentiable utility function was proposed in this paper. That
function captures the investor’s different feelings about exceeding versus
failing the target (see (10.12)). Policy rules that optimise this function
can generate left-skewed utility distributions that promise pension fund
high yields realised with high probability.

As to the bullet point questions asked in Section 10.2 (page 158), the
following answers may be suggested.

1 A relationship between x̄T and x0 can be read from the fund yield
histograms. The manager can advertise x̄T such that its realisa-
tion is 90% probable (or 95%, etc.) and/or whose VaR/CVaR is
acceptable.

2 Any “promised” x̄T is stochastic in nature; however, it can be
formulated deterministically if the manager is comfortable with its
distribution.
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Appendix: A Simple Markovian Approximation
The stochastic optimal control problem from Section 10.2.2 can be formulated in more
general terms. The state process is

X = {X(t) ∈ X IRn, t ≥ 0, X(0) = x0 − given}

that satisfies the following stochastic differential equation

dX(t) = f
(
X(t),u(t), t

)
dt + b

(
X(t),u(t), t

)
dW(t) (10.A.1)

where u(t) ∈ U ⊂ IRm is the control, W(t) is a Wiener process, f
(
X(t),u(t), t

)
is a

drift, and b
(
X(t),u(t), t

)
is diffusion13. The optimal control rule µ that determines

the control u is admissible14 and Markovian

u(t) = µ(t,X(t)) (10.A.2)

and chosen so as to maximise a functional J

max
u

J(0, x0;u) (10.A.3)

where furthermore

J(τ, x;u) = IE

(∫ T

τ

∫∫
g
(
X(t),u(t), t

)
dt + s

(
X(T )

) ∣∣∣∣∣∣∣X(τ) = x

)
(10.A.4)

is the profit-to-go function. We have observed in Section 10.3 that for a “realistic”
choice of g and s in (10.A.4) a closed-form solution to the stochastic optimal control
problem thus defined becomes difficult if not impossible. On the other hand, finite
Markov decision chains are solvable through the dynamic programming technique
albeit the solution time can rise exponentially in the number of the chain states. We
will now discretise (10.A.4), (10.A.1) in three steps to produce a solvable Markov
decision chain15. First, the state equation (10.A.1) is discretised in time using the
Euler-Maruyama approximation (cf. Kloeden & Platen (1992)). Then, the state
space is restricted to a finite dimensional discrete state grid and, finally, the transition
probabilities and rewards for these discrete states are specified.
Euler-Maruyama Approximation. An Euler-Maruyama approximation16 of a
process X ⊂ IR1 that satisfies equation (10.A.1) is a stochastic process

Y = {Y� ∈ X, � = 0, 1, . . . , N}

satisfying the equation (called the iterative scheme)

Y�+1 = Y� + f
(
Y�,u�, τ�ττ

)(
τ�ττ +1 − τ�ττ

)
+ b
(
Y�,u�, τ�ττ

)(
W(τ�ττ +1) − W(τ�ττ )

)
(10.A.5)

13For the formal treatment of the optimally controlled diffusion process refer to Fleming &
Rishel (1975).
14E.g., constrained as in Section 10.2.2.
15See Krawczyk (2001) (also see Krawczyk & Windsor (1997) and Krawczyk (1999)) for the
discretisation details.
16The approximation scheme is introduced here for a one dimensional process. The extension
of the scheme to IRn is obvious.
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τ ∈ {0 = τ0ττ < τ1 < · · · < τNτ = T} where {τ0ττ , τ1, . . . τNτ } is a partition of the the time
interval [0, T ].

The the initial and subsequent values are, respectively

Y0 = X(0) = x0, Y� = Y(τ�ττ ). (10.A.6)

The discretisation does not have to be equidistant. However, for a N -step time
discretisation using a constant time step δ

τ�ττ = � δ where δ = τ�ττ +1 − τ�ττ =
T

N
. (10.A.7)

Discrete State Space. The discrete state space for stage � is denoted by X� ⊂ IR1.
Let the upper and lower bounds of the state grid be

U � = max X� and L� = min X� ,

respectively. A point x ∈ X is defined to be within the grid X� if L� ≤ x ≤ U �. The
collection of the discrete state spaces for all the stages, {X�}N

�=0, is denoted X and
called the discrete state space. We can say the scheme approximates a point of X at
stage � by the points of X� which are “adjacent” to it17.
Transition Probabilities. Consider the stochastic process Y = {Y�, � = 0, 1, 2, . . . N}
where Y� is defined through (10.A.5). For a given control sequence u� and equidistant
discretisation times, the iterative scheme (10.A.5) can be replaced by a weak Taylor
approximation of an Ito diffusion process (10.A.1) (see Kloeden & Platen (1992)) asˆ
follows

Y�+1 = Y� + δf�ff + b�∆̃W�. (10.A.8)

where ∆̃W� is a convenient approximation of the random increments

∆W� = W(τ�ττ +1) − W(τ�ττ ), for � = 0, 1, 2, . . . N − 1

of the Wiener process W = {W(t), t ≥ 0} where ∆W� are known (ibid.) to
be independent Gaussian random variables with mean IE(∆W�) = 0 and variance

IE((∆W�)
2) = τ�ττ +1 − τ�ττ . Process ∆̃W� needs to have similar moment properties to

those of ∆W�. In the pension fund model, we will use an easily generated two-point
random variable taking values ±√

δ i.e.,

P
(
∆̃W� = ±

√
δ
)

=
1

2
. (10.A.9)

This approximation of the continuously distributed perturbation ∆W� by a two-value
noise is of course arbitrary18

17In IRn two states are adjacent if their projections onto each of the n coordinate axes are
adjacent cf. Krawczyk & Windsor (1997) or Krawczyk (2001).
18One can obviously use other more realistic discrete representations of ˜∆W� e.g., it can be
modelled as a three-point distributed random variable T�TT with

P
(
T�TT = ±

√
3δ
)

=
1

6
P (T�TT = 0) =

2

3
.

However, (10.A.9) appears sufficient for the approximating solutions’ convergence. No matter
how simple or complex the approximations are, they should preserve the original distribution’s
first and second moments and depend on the partition interval’s length. The latter feature
guarantees that, for all such approximations, the smaller δ the less diffuse the states become,
to which the process transits.
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Now, suppose that at some time τ�ττ , Y� = Y� ∈ X�. The noise discretisation
method implies that for δ > 0 the process reaches (in R1), at � + 1:

Y−
�+1 = Y� + δf�ff − b�

√
δ with probability

1

2
(10.A.10)

Y+
�+1 = Y� + δf�ff + b�

√
δ with probability

1

2
. (10.A.11)

Suppose there are two adjacent states to each Y−
�+1 and Y+

�+1: the “lower” adjacent

states Y
−�
�+1,Y

+�
�+1 and the “upper” adjacent states Y

−⊕
�+1,Y

+⊕
�+1. We assign the prob-

abilities for the process transition from Y� to each of the adjacent states as follows:

p(Y�,Y
−⊕
�+1|u�) =

1

2

Y−
�+1 − Y

−�
�+1

h−
�

, p(Y�,Y
−�
�+1|u�) =

1

2

Y
−⊕
�+1 − Y−

�+1

h−
�

, (10.A.12)

p(Y�,Y
+⊕
�+1|u�) =

1

2

Y+
�+1 − Y

+�
�+1

h+
�

p(Y�,Y
+�
�+1|u�) =

1

2

Y
+⊕
�+1 − Y+

�+1

h+
�

(10.A.13)

where h−
� = Y

−⊕
�+1−Y

−�
�+1 and h+

� = Y
+⊕
�+1−Y

+�
�+1. So, the probabilities are calculated

using an inverse distance method, see Krawczyk (2001), and multiplying (or “weight-
ing”) the (relative) distances by 1

2
. If any of the states Y−�,Y+�, etc. overlap one

another, the respective probabilities have to be summed up.
The above discretisation method is very simple and intuitive (despite complex

notation) yet, as noted, preserves the first two moments of the original distribution
so that the overall discretisation scheme is weakly consistent.19

Constraints. It has to be borne in mind that discretisation of a constraint is sensitive
to the choice of the discretisation steps and has to be dealt with “carefully”. E.g., a
state constraint x(t) > 0 for t ∈ [t1, t2] cannot be automatically translated to x� > 0
and needs to allow for the values of δ and h. 20

Transition Rewards. Let the control strategy be Markovian (10.A.2) and action
at state � computed as

u� = µ(�,Y�), Y� ∈ X�, � = 0, 1, ..N − 1. (10.A.15)

19Kushner lists in Kushner (1990), page 1002, three conditions for consistency of an approx-
imation scheme. Conditions “1” and “2” (about continuity of the Markov chain expected
value and variance) are easily satisfied:

1 IE(yh
�+1 − yh

� ) = δf�ff ;

2 IE[(yh
�+1 − yh

� ) − IE(yh
�+1 − yh

� )]2 = δ b2� ;

condition “3” can be satisfied if the time discretisation interval is allowed to become
“shorter” i.e.,

3 |yh
�+1 − yh

� | = O(
√

δ).

Moreover, consistency fails along the boundary of the discrete state space so the scheme is
locally weakly consistent. This is not surprising since it would be impossible for a system
constrained to lie within a finite space to follow the behaviour of a system which is not
similarly constrained at the points where the constraints become active. However, this feature
is common to all approximation schemes of this kind.
20It appears (from Merton (1971)) that the best discrete-time counterpart of continuous time
constraint x(t) ≥ 0 is

x�

(
1 + δ(r + u1,�(α − r))

) − δU2UU ,� ≥ 0 (10.A.14)

where δ is the time discretisation step.
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Recalling (10.A.4), note that for the approximating problem, the decision maker re-
ceives a reward that depends on the state at stage � and on the action u�

γ(Y�,u�, �) = δ g(Y�,u�, �), (10.A.16)

� = 0, 1, 2, . . . N − 1. The overall reward for the Markov decision chain Y, starting
from Y0 = x0 ∈ X0 and controlled by u = {u0,u1, . . .uN−1} can be determined as

J(0, x0;u) = IE
(∑N−1

�=0 γ(Y�,u�, �) + s(YN )
∣∣∣∣∣∣∣Y0 = x0

)
(10.A.17)

Finally, the problem: ⎧⎨⎧⎧⎩⎨⎨
maxu J(0, x0;u)

subject to

Y�+1 = Y� + δf�ff + b�∆̃W�,

(10.A.18)

with the transition probabilities defined as above is the Markov decision chain approx-
imating the original continuous-time optimisation problem (10.A.1)-(10.A.4). Now we
can use value iteration for the solution of the above Markov decision chain.

There are two crucial parameters for the solution method outlined above: the
number of states and the number of time steps. One expects that increasing these
numbers would improve the solution’s accuracy. However, the value-iteration compu-
tation times also increase. Relatively recent papers Rust (1997), Rust (1997)a report
results mitigating the curse of dimensionality for a certain subclass of Markov deci-
sion chains through use of randomisation. The Markovian approximation described
above leads to a similar conclusion. Notice that the time required to compute the
optimal decision for the current state is largely independent of both the number of
time steps and the number of states. Its independence of the number of states is a
consequence of the approximation scheme scanning only the adjacent states in the
next stage. Doubling the number of states means that twice the time is taken for
each stage and the computation time doubles. Doubling the number of time steps
leaves the computation time for each stage fixed but doubles the number of stages
and hence the computation time doubles (see Krawczyk (2001)).
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Chapter 11

DIFFERENTIATED CAPITAL AND THE
DISTRIBUTION OF WEALTH

Gerhard Sorger
University of Vienna
gerhard.sorger@univie.ac.at

Abstract We present a one-sector growth model with finitely many households
who differ from each other with respect to their endowments, their pref-
erences, and the type of capital supplied to firms. There is monopolistic
competition on the capital market and perfect competition on all other
markets. We show that there exists a unique stationary equilibrium and
that all households have strictly positive wealth in this equilibrium. We
study how the stationary equilibrium depends on the time-preference
rates of the households and on the elasticity of substitution between
different types of capital. We also analyze the stability of the station-
ary equilibrium.

1. Introduction
In his seminal contribution, Ramsey (1928) conjectured that, in a

stationary equilibrium of what is now considered as the standard neo-
classical growth model, only the most patient household(s) would own
capital while all other households would consume their entire income
without possessing any capital at all. A formal proof of this so-called
‘Ramsey conjecture’ was first given by Becker (1980).1

If the number of households who share the smallest time-preference
rate is large, the Ramsey conjecture makes sense. However, if there
are only a few most patient households (or even a single most patient
household), then the result is conceptually inconsistent with one of the
most fundamental assumptions under which it is derived, namely with

1Becker (1980) assumes that households cannot borrow. Bewley (1982) analyzes the model
without the no-borrowing constraint.
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the assumption that the households act as price takers. More specifi-
cally, if all the capital is owned by only a few households, as predicted
by the Ramsey conjecture, then these households must realize that they
have market power on the capital market. Consequently, they will not
take the interest rate as exogenously given. To address this issue, Sorger
(2002) has studied a model in which the households take the inverse
capital demand function rather than the interest rate as given. The
capital market is therefore an oligopoly, on which the households inter-
act strategically. Using this framework, Sorger has shown by means of
examples that the Ramsey conjecture may fail to hold. Becker (2003)
has extended Sorger’s examples to the case of a general Cobb-Douglas
production function and has derived a necessary and sufficient condition
for the Ramsey conjecture to be true. He has also derived a number of
comparative statics results for stationary strategic Ramsey equilibria.

The analysis of the dynamic oligopoly model from Sorger (2002) and
Becker (2003) becomes cumbersome when the number of households is
large. For this reason, both Sorger and Becker have restricted their
studies to the case of two households and a Cobb-Douglas technology.
In the present paper we extend the analysis to the case of an arbitrary
number of households and a general production technology. In order
to avoid the messy algebra that arises in the oligopolistic framework,
we assume that each household supplies a different type of capital and
that there is monopolistic competition on the capital market. As in the
oligopolistic model from Sorger (2002) and Becker (2003), households
face elastic capital demand functions and can therefore influence the
rate of return on their capital holdings. At the same time, however, the
monopolistically competitive model retains a convenient feature from
the perfectly competitive one in Becker (1980), namely that households
take the evolution of aggregate variables other than the interest rate
(e.g., aggregate output) as given.

We model monopolistic competition using the formal approach pio-
neered by Dixit and Stiglitz (1977) and Ethier (1982). The Dixit/Stiglitz
model has figured prominently in many modern endogenous growth the-
ories, notably in Aghion and Howitt (1992), Grossman and Helpman
(1991), and Romer (1990). Contrary to most applications of this ap-
proach, the model of the present paper does not feature a symmetry
property with respect to the differentiated goods. This is due to the
heterogeneity of the households, especially to the heterogeneity with re-
spect to their time-preference rates.

The paper is organized as follows. The model is formulated in sec-
tion 11.2, where we describe the behavior of households, the behavior
of firms, and the market clearing conditions. In section 11.3 we prove
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the existence and uniqueness of a stationary equilibrium and character-
ize some of its properties. Our most important observation is that the
Ramsey conjecture does not hold, because all households own strictly
positive amounts of capital. We also show that the perfectly competi-
tive model (in which the Ramsey conjecture is true) emerges as a limiting
case of our model when the elasticity of substitution between different
types of capital approaches +∞. Finally, we show that a mean preserv-
ing spread of the distribution of time-preference rates across households
leads to a reduction of the marginal productivity of capital and to an
increase of aggregate output and the real wage.

The most important parameter in the Dixit/Stiglitz model of mo-
nopolistic competition is the elasticity of substitution between different
types of capital. Section 11.4 presents a detailed analysis of the effects
caused by changes of this parameter. We first show that an increase of
the elasticity of substitution has positive effects on output, the capital
holdings of the most patient household(s), and the mean capital stock.2

Individual capital holdings of all households other than the most patient
one(s), however, depend non-monotonically on the elasticity of substitu-
tion: their steady state capital holdings increase for small values of this
parameter and decrease for large values. Similar monotonicity proper-
ties hold also for the capital income of individual households. Finally, we
show that an increase of the elasticity of substitution increases wealth
inequality as well as the inequality of capital income. In other words,
whereas higher competition leads to higher aggregate output it reduces
equality.

The paper concludes with section 11.5 in which we analyze the sta-
bility of the stationary equilibrium. In the case where the heterogeneity
across households is sufficiently weak we can prove that the stationary
equilibrium is saddlepoint stable and that equilibria converging to the
stationary one are locally monotonic. For the general case we have to
resort to numerical calculations. They seem to confirm that saddlepoint
stability holds true also for strongly heterogeneous households but that
equilibria can exhibit damped oscillations when they converge to the
stationary equilibrium.

2. Model formulation
We consider a dynamic general equilibrium model in continuous time.

There exists a finite number of infinitely-lived households who own the

2The mean capital stock will be formally defined in subsection 11.2.2 below. In general, it is
different from the aggregate capital stock or the per-capita capital stock.
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production inputs labor and capital. Labor supply is homogeneous
across households but capital supply is not: each household provides
a different type of capital. This implies that there is monopolistic com-
petition on the capital market and that households face elastic capital
demand functions. Taking these demand functions and the evolution
of the wage rate as given, the households maximize their life-time util-
ity of consumption subject to non-negativity constraints on capital and
consumption.

Firms produce a single homogeneous output which the households
can either consume or convert one-for-one into their individual type of
capital.3 We choose output as the numeraire. Firms rent the factor
inputs from the households and take the wage rate and the rental rate
of capital as given. All markets are assumed to clear at all times.

2.1 Households
There exist H ≥ 2 infinitely-lived households which will be indexed by

h. Households are heterogeneous with respect to their preferences and
their endowments. Household h is characterized by its time-preference
rate ρh, its labor endowment of �h units per time-period, its initial capital
endowment kh0, and its instantaneous utility function uh.

The household perfectly anticipates the wage rate w(t) at all future
dates t ≥ 0 and supplies labor inelastically. Labor is homogeneous across
households. Capital, on the other hand, is heterogeneous. Each house-
hold supplies a different type of capital and has therefore monopoly
power on the capital market. We denote the inverse demand function
for capital of type h at time t by Rh(·, t).4 The household takes this
function as given for all future dates t ≥ 0. For simplicity we assume
that capital does not depreciate.5

The household chooses a consumption path ch(·) and a capital path
kh(·) in order to maximize lifetime utility. Instantaneous utility depends
only on consumption. The economic life of household h is therefore

3The assumption that the rate at which the output good can be converted into capital is
the same for all types of capital could be relaxed at the expense of a more complicated
exposition. More specifically, if one unit of output could be converted in τhτ units of type-h
capital, then one would have to replace the left-hand side of the differential equation (11.1)
below by k̇h(t)/τhτ . The transformation rates τhτ would then of course also show up in the
equilibrium conditions. We assume τhτ = 1 for all h.
4The function Rh(·, t) will be derived from the firms’ optimization problem in subsection
11.2.3 below. It will turn out that the inverse demand function is the same for all types of
capital so that we could drop the household index h from Rh(·, t). For clarity of exposition,
however, we will keep the notation Rh(·, t).
5It would be straightforward to introduce capital depreciation into the model. The rates of
capital depreciation could also be household-specific.
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described by the solution of the following optimal control problem PhPP :

maximize
∫ +∞

0

∫∫
e−ρhtuh(ch(t)) dt

subject to k̇h(t) = Rh(kh(t), t)kh(t) + w(t)�h − ch(t) (11.1)
and ch(t) ≥ 0 , kh(t) ≥ 0 , kh(0) = kh0.

The following standard assumptions are imposed on the preferences
and endowments of households.

H1: For all h it holds that ρh > 0, �h > 0, and kh0 > 0. The function
uh : R+ �→�� R is continuous, strictly increasing, and strictly concave.
Moreover, it is twice continuously differentiable on the interior of its
domain and satisfies limch→0 u′

h(ch) = +∞ and limch→+∞ u′
h(ch) = 0.

It will be shown below that the return on capital, Rh(kh, t)kh, is a
strictly increasing function of kh which is infinitely steep at kh = 0. This
property ensures that it is always optimal for a household to maintain
a strictly positive capital stock at all times. In other words, the non-
negativity constraint kh(t) ≥ 0 will never be binding. From the Inada-
type conditions in H1 it follows furthermore that the non-negativity
constraint ch(t) ≥ 0 cannot be binding. An optimal solution to problem
PhPP must therefore be an interior one and, consequently, it must satisfy
the Euler equation

ċh(t) =
u′

h(ch(t))
u′′

h(ch(t))
[
ρh − Rh(kh(t), t) − R′

h(kh(t), t)kh(t)
]

(11.2)

where R′
h(kh(t), t) = ∂Rh(kh(t), t)/∂kh. Conversely, any pair of func-

tions (ch(·), kh(·)) which is feasible for PhPP and which satisfies equation
(11.2) plus the transversality condition

lim
t→+∞ e−ρhtu′

h(ch(t))kh(t) ≤ 0 (11.3)

qualifies as an optimal solution of problem PhPP provided that Rh(kh, t)kh

is concave with respect to kh for all t ≥ 0. The latter property will also
be verified below.

Having described the behavior of every single household, we now make
an assumption on the entire set of households.

H2: It holds that ρh ≤ ρh′ whenever h ≤ h′. Furthermore, it holds
that

∑H
h=1 �h = 1.

The first part of H2 simply says that households are ordered according
to increasing time-preference. If we define h∗ = max{h | ρh = ρ1}, then it
follows that the set of most patient households is given by {1, 2, . . . , h∗}.
The second part of H2 normalizes the aggregate labor supply to 1. As-
sumption H2 does not present any loss of generality.
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2.2 Firms
There is a single, perfectly competitive production sector which trans-

forms capital and labor into output. Labor is homogeneous but capital
comes in H different types corresponding to the different households. At
each point in time the firms rent labor and capital from the households
and maximize profits. Firms solve a static profit maximization problem
at each point in time and act as price takers on the output market and
on all factor markets.

Let us denote the labor input at time t by L(t) and the input of type-h
capital by Kh(t). It is assumed that output is given by

Y (t) = F (K(t), L(t)),

where K(t) is an ordinary mean value of the H individual capital input
levels Kh(t). More specifically, we assume that

K(t) = Mσ(K1(t), K2KK (t), . . . , KHK (t))

where

Mσ(K1, K2KK , . . . , KHK ) =

(
H−1

H∑
h=1

Kσ
h

)1/σ

.

The mathematical properties of ordinary means are well understood; see,
e.g., Hardy, Littlewood, and Polya (1952), chapter 2. For example, it
holds that Mσ(K1, K2KK , . . . , KHK ) is homogeneous of degree 1 with respect
to K1, K2KK , . . . , KHK and non-decreasing with respect to σ.6 Furthermore,
it holds that

lim
σ→0

Mσ(K1, K2KK , . . . , KHK ) =

(
H∏

h=1

Kh

)1/H

,

lim
σ→−∞Mσ(K1, K2KK , . . . , KHK ) = min{Kh |h = 1, 2, . . . ,H},
lim

σ→+∞Mσ(K1, K2KK , . . . , KHK ) = max{Kh |h = 1, 2, . . . ,H}.

The parameter σ measures the substitution possibilities between differ-
ent types of capital, with σ = 1 corresponding to perfect substitutability.
Formally, the elasticity of substitution between two different types of
capital is given by 1/(1−σ). We shall refer to K(t) as the mean capital
stock.

6The ordinary mean Mσ(K1, K2, . . . , KH) is in fact strictly increasing with respect to σ if
σ > 0 and if not all arguments Kh are equal.
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We impose the following assumptions on the production technology.
F1: The production function F : R2

+ �→�� R+ is homogeneous of degree
1. The intensive production function f : R+ �→�� R+ defined by f(K) =
F (K, 1) is continuous, strictly increasing, and strictly concave. More-
over, f is twice continuously differentiable on the interior of its domain
and satisfies f(0) = 0, limK→0 f ′(K) = +∞, and limK→+∞ f ′(K) = 0.

F2: It holds that σ ∈ (0, 1).
Assumption F1 says that F is a neoclassical production function sat-

isfying the usual properties. Assumption F2 restricts attention to the
case of substitution elasticity greater than 1. This is a standard as-
sumption in models of monopolistic competition which ensures that the
capital demand functions (which will be derived below) have rental rate
elasticities greater than 1 in absolute value.

As before, we denote the wage rate at time t by w(t). Furthermore,
the rental rate of type-h capital is denoted by rh(t). The representative
firm takes these factor prices as given and seeks to maximize its profit

Y (t) −
H∑

h=1

rh(t)Kh(t) − w(t)L(t)

subject to the technological constraints and to non-negativity constraints
for all input factors. The first-order conditions for an interior profit
maximum are

rh(t) = H−1F1FF (K(t), L(t))[K(t)/Kh(t)]1−σ, (11.4)
w(t) = F2FF (K(t), L(t)), (11.5)

where F1FF and F2FF denote the partial derivatives of F with respect to the
first and second argument, respectively.

Note that, for any fixed mean capital stock K(t) > 0, the right-hand
side of (11.4) is a strictly decreasing function of Kh(t) with limits +∞
and 0 as Kh(t) approaches 0 and +∞, respectively. This shows that
output Y (t) as a function of the individual capital stock Kh(t) satisfies
the Inada conditions. This implies that the non-negativity constraints
on capital inputs will never be binding. As a consequence of the In-
ada conditions on the production function F stated in assumption F1,
it follows furthermore that the non-negativity constraint on labor input
cannot be binding. Together with the convexity assumptions stated in
F1 these properties imply that conditions (11.4)-(11.5) provide a com-
plete characterization of the firms’ behavior.
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2.3 Equilibrium
We are now ready to close the model by imposing clearing conditions

for all markets. According to assumption H2, the aggregate labor supply
equals 1 such that labor market clearing requires L(t) = 1. Substituting
this into equation (11.5) and using the well-known fact that F2FF (K, L) =
f(K/L) − (K/L)f ′(K/L) we obtain

w(t) = f(K(t)) − K(t)f ′(K(t)). (11.6)

Equilibrium on the market for type-h capital requires kh(t) = Kh(t).
Substituting this along with L(t) = 1 and F1FF (K, L) = f ′(K/L) into
(11.4) we get

rh(t) = H−1f ′(K(t))[K(t)/kh(t)]1−σ.

We assume that the households perfectly anticipate aggregate output
f(K(t)) and the mean capital stock K(t) at all dates t ≥ 0. The above
equation represents therefore the inverse demand function for type-h
capital. In other words, the function Rh appearing in the capital accu-
mulation equation (11.1) and the corresponding Euler equation (11.2) is
given by

Rh(kh, t) = H−1f ′(K(t))[K(t)/kh]1−σ. (11.7)

Note that this implies that the return on type-h capital is given by
Rh(kh, t)kh = H−1f ′(K(t))K(t)1−σkσ

h , which is a strictly increasing and
strictly concave function of kh and that this function is infinitely steep
at kh = 0. These properties have been used in subsection 11.2.1 to show
that the non-negativity constraints on capital holdings are not binding
and that the Euler equation and the transversality condition form a set of
sufficient optimality conditions for household h’s optimization problem
PhPP .

We summarize the equilibrium conditions in the following proposition.

Proposition 11.1 A family of functions
{
K(·), (ch(·), kh(·))H

h=1

}
is an

equilibrium if and only if the following conditions hold for all h and all
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t ≥ 0:

k̇h(t) = H−1f ′(K(t))K(t)1−σkh(t)σ

+ [f(K(t)) − K(t)f ′(K(t))]�h − ch(t), (11.8)

ċh(t) =
u′

h(ch(t))
u′′

h(ch(t))
(
ρh − σH−1f ′(K(t))[K(t)/kh(t)]1−σ

)
, (11.9)

K(t) =

[
H−1

H∑
h=1

kh(t)σ

]1/σ

, (11.10)

lim
t→+∞ e−ρhtu′

h(ch(t))kh(t) ≤ 0, (11.11)

ch(t) ≥ 0 , kh(t) ≥ 0. (11.12)

Proof: The proposition is easily proved by substituting the expres-
sions for w(t) and Rh(kh(t), t) from (11.6) and (11.7), respectively, into
the households’ feasibility and optimality conditions (11.1), (11.2), and
(11.3). �

3. The stationary equilibrium
An equilibrium is called stationary if it consists of constant functions.

We start the present section by proving the existence and uniqueness
of a stationary equilibrium. To this end let us define K̄ as the unique
positive number satisfying

f ′(K̄) = (H/σ)

(
1
H

H∑
h=1

ρ
−σ/(1−σ)
h

)−(1−σ)/σ

. (11.13)

Existence and uniqueness of K̄ follows from assumption F1.

Theorem 11.2 There exists a unique stationary equilibrium given by

K(t) = K̄ (11.14)

kh(t) = k̄h := K̄
[
σf ′(K̄)/(Hρh)

]1/(1−σ)
, (11.15)

ch(t) = h̄ := [f(K̄) − K̄f ′(K̄)]�h + ρhk̄h/σ. (11.16)

Proof: Imposing the stationarity condition ċh(t) = 0 in (11.9) implies
that

kh(t) = K(t)
[
σf ′(K(t))/(Hρh)

]1/(1−σ)
.

This proves (11.15) and, after substituting the latter into (11.10), one
obtains (11.13) and (11.14) by straightforward algebra. Equation (11.16)
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is now easily obtained by substituting the results into (11.8) and using
k̇h(t) = 0. This shows that (11.13)-(11.16) must hold in a stationary
equilibrium. Conversely, it is easy to see that the constant solution
specified by (11.13)-(11.16) satisfies the equilibrium conditions (11.8)-
(11.12). This completes the proof of the theorem. �

Note that the stationary equilibrium values K̄, k̄h, and h̄ do not
depend on the utility functions of the households. The only preference
parameters that affect these values are the time-preference rates. This is
a property that holds also in the competitive setting from Becker (1980)
and the oligopolistic setting from Sorger (2002) and Becker (2003). Note
furthermore that (11.13) can be rewritten in the form

f ′(K̄) = (H/σ)M−σ/(1−σ)(ρ1, ρ2, . . . , ρH), (11.17)

which shows that the marginal productivity of the mean capital stock
in the stationary equilibrium is proportional to an ordinary mean of
the time-preference rates. It is therefore possible to use results about
ordinary means to study how the time-preference rates of the households
and the elasticity of substitution between different types of capital affect
the stationary equilibrium. As an example, let us characterize the limits
of the stationary equilibrium as σ approaches its extreme values 0 and
1, respectively.

It follows from (11.17) and the properties of ordinary means that

lim
σ→0

[σf ′(K̄)] = H

(
H∏

h=1

ρh

)1/H

.

Since the right-hand side of this equation is a finite positive number, we
obtain limσ→0 f ′(K̄) = +∞. Together with assumption F1 this implies
that limσ→0 K̄ = 0. Substituting these results back into (11.15) and
(11.16), we see that limσ→0 k̄h = limσ→0 c̄h = 0 for all h. The interpre-
tation of this result is as follows. As σ approaches 0, the inverse capital
demand functions become unit-elastic and the profit that each house-
hold earns from holding capital, Rh(kh(t), t)kh(t), becomes flat. Thus,
in the extreme case σ = 0, the households do not have any incentive to
hold capital and, therefore, k̄h = 0 must be true for all h in the station-
ary equilibrium. As a consequence, the mean capital stock, aggregate
output, and aggregate consumption must be equal to 0 as well.

Now let us turn to the other extreme case. As σ converges to 1,
the elasticity of substitution between different types of capital becomes
infinitely large. This means that different types of capital are hardly con-
sidered to be different by final goods producers and the capital market
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approaches a perfectly competitive one. We therefore call the limiting
case σ = 1 the competitive limit. The stationary equilibrium in the
competitive limit is characterized in the following lemma.

Lemma 11.3 Consider the stationary equilibrium from theorem 11.2. It
holds that7

lim
σ→1

k̄h =
{ ¯̄KH/h∗ if h ≤ h∗,

0 if h > h∗,
(11.18)

lim
σ→1

c̄h =
{

[f( ¯̄K) − ¯̄Kf ′( ¯̄K)]�h + ρh
¯̄KH/h∗ if h ≤ h∗,

[f( ¯̄K) − ¯̄Kf ′( ¯̄K)]�h if h > h∗,
(11.19)

where ¯̄K is the unique positive number satisfying f ′( ¯̄K) = Hρ1.

Proof: It follows from (11.17), from assumption H2, and from the
properties of ordinary means that limσ→1 f ′(K̄) = Hρ1. This, in turn,
implies that K̄ approaches the finite and positive value ¯̄K as σ con-
verges to 1. Using these properties, it follows from equation (11.15)
that limσ→1 k̄h = 0 for all h > h∗. Equation (11.15) also implies that
k̄h = k̄h′ whenever both h and h′ are elements of {1, 2, . . . , h∗}. Using
these results together with (11.10), it follows that limσ→1 k̄h = ¯̄KH/h∗
for all h ≤ h∗. The remaining statements of the lemma are now simple
consequences of theorem 11.2. �

The above lemma shows that the boundary case σ = 1 corresponds
to the competitive Ramsey equilibrium studied in Becker (1980).

A simple consequence of theorem 11.2 is that, in the stationary equi-
librium, all households own positive amounts of capital; see (11.15). It
follows that the Ramsey conjecture, according to which in a stationary
equilibrium only the most patient household(s) own capital, does not
hold in the case of a monopolistically competitive capital market. Only
in the competitive limit σ = 1 does the Ramsey conjecture hold, as can
be seen from lemma 11.3. However, even for values of σ strictly smaller
than 1, it is true that more patient households own more capital. This
can be easily seen from the following equation, which is an implication
of (11.15):

k̄h/k̄h′ = (ρh′/ρh)1/(1−σ). (11.20)

As in the case of an oligopolistic capital market, which is studied in
Sorger (2002) and Becker (2003), it holds that the ranking of households

7Recall that h∗ = max{h | ρh = ρ1} such that {1, 2, . . . , h∗} is the set of most patient
households.
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according to their wealth coincides with the ranking according to their
patience.

To conclude the present section, let us study the dependence of the sta-
tionary equilibrium allocation on the distribution of the time-preference
rates. Because ρ−σ/(1−σ) is a strictly convex function of ρ, it follows
from (11.13) that a mean-reserving spread of the distribution of the
time-preference rates across households would lead to a reduction of
f ′(K̄) and, hence, to an increase of the mean capital stock K̄, aggregate
output f(K̄), and the real wage w̄ = f(K̄) − K̄f ′(K̄). A similar result
has already been found by Becker (2003) in the case of two households
acting as duopolists on the market for (non-differentiated) capital.

4. Changes in substitutability
In the previous section we have characterized the stationary equilib-

rium for any given value of the elasticity of substitution between different
types of capital. In particular, we have discussed the two limiting cases
σ → 0 and σ → 1. The present section discusses in more detail how the
stationary equilibrium is affected by changes of the parameter σ.

Let us begin by analyzing the effects of σ on the mean capital stock
and aggregate output. Since −σ/(1 − σ) is a decreasing function of σ,
it follows from the properties of ordinary means mentioned in subsec-
tion 11.2.2 that M−σ/(1−σ)(ρ1, ρ2, . . . , ρH) is a decreasing function of
σ. Because of (11.17) this implies that f ′(K̄) is strictly decreasing with
respect to σ. Together with assumption F1 this shows that the mean
capital stock K̄ and aggregate output f(K̄) are strictly increasing with
respect to σ. We conclude that stronger competition has a positive level
effect on mean capital and aggregate output.

Individual capital holdings, however, are in general non-monotonic
functions of σ. To see this, recall from the previous section that, for
σ → 0, all individual capital stocks k̄h converge to 0. For σ → 1, on
the other hand, these capital stocks approach positive values if h ≤ h∗
and they approach 0 for h > h∗. In the latter case we would therefore
expect that k̄h is increasing for small values of σ and decreasing for large
σ. Instead of trying to verify these properties analytically for general
production functions f , we restrict ourselves to illustrating them by
means of numerical examples.

Example 11.4 Our first model economy consists of 3 households only.
We assume that differences in time-preference rates are the only source
of heterogeneity. More specifically, we set �1 = �2 = �3 = 1/3, ρ1 = 3%,
ρ2 = 4%, and ρ3 = 5%. As for the production technology we assume
f(K) = K1/3.
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Using these specifications, figure 11.1 shows the capital holdings k̄1

of the (unique) most patient household 1 and the mean capital stock
K̄ in the stationary equilibrium. We see that both of these variables
are increasing functions of σ. The capital holdings of the two other
households, k̄2 and k̄3, are shown in figure 11.2. As expected, they are
hump-shaped with the more patient household 2 attaining its maximal
wealth level at a higher value of σ than the most impatient household 3.

0.2 0.4 0.6 0.8 1
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5

10

15

20

K, k1

K

k1

Figure 11.1. Type-1 capital and mean capital as functions of σ.
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Figure 11.2. Type-2 capital and type-3 capital as functions of σ.

Let us now turn to income. Since there is no capital depreciation,
consumption and income must coincide in a stationary equilibrium. The
first term on the right-hand side of (11.16) is labor income, whereas the
second one describes capital income. Let us denote capital income of
household h in the stationary equilibrium by h̄. Using (11.20), it is
easily seen that

ȳh/ȳh′ = (ρh′/ρh)σ/(1−σ). (11.21)

This shows that more patient households receive higher capital income
than less patient ones. The capital income of the three households from
example 11.4 are shown in figure 11.3.

Since all households face a common competitive wage rate, it follows
that households with higher labor endowment have also higher labor
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Figure 11.3. Capital income as a function of σ.

income. The ranking of households according to their total income (or,
equivalently, according to their consumption levels) depends therefore
both on the labor endowments and on the time-preference rates of the
households.

We conclude this section by a brief analysis of the effect of σ on
wealth and income inequality. It is evident from (11.20) that k̄h/k̄h′ is a
strictly increasing function of σ whenever ρh < ρh′ . As the elasticity of
substitution increases, the wealth of a more patient household relative
to that of a more impatient one increases. It is easy to see that this
property implies also that the Gini coefficient of the wealth distribution
in the unique stationary equilibrium is a strictly increasing function of
σ. A completely analogous argument (using (11.21) instead of (11.20))
shows that the Gini coefficient of the distribution of capital income is also
a strictly increasing function of σ. Stronger competition leads therefore
to higher wealth inequality and capital income inequality. We illustrate
this finding again by means of a numerical example.

Example 11.5 Consider an economy consisting of H = 26 households.
As in example 11.4 we assume that differences in time-preference rates
are the only source of heterogeneity. Each household has a labor en-
dowment of 1/26 units per time period. The time-preference rate of
household h is assumed to be 0.03 + 0.0008(h − 1). In other words, the
time-preference rates depend linearly on the household number h with
the most patient household having ρ1 = 3% and the most impatient one
having ρ26 = 5%. As for the production technology we assume again
f(K) = K1/3.

The Gini coefficient of the stationary wealth distribution of this econ-
omy is shown in figure 11.4. It starts at a value of roughly 10% when
σ = 0 and increases monotonically towards 100% as σ approaches the
competitive limit, where all capital is held by a single household. The
Gini coefficient of the distribution of capital income ȳh = ρhk̄h/σ is de-
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picted in figure 11.5. It looks similar to the Gini coefficient of the wealth
distribution, except that it starts out at 0 when σ = 0. The Gini coeffi-
cients of total income will obviously depend on the distribution of labor
endowments and are not shown here.
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Figure 11.4. Gini coefficient of the wealth distribution as a function of σ.
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Figure 11.5. Gini coefficient of the distribution of capital income as a function of σ.

5. Stability analysis
So far our analysis was restricted to the unique stationary equilibrium.

The dynamics of the economy are described by the differential equations
(11.8)-(11.9). In the present section we present a few results regarding
the stability of the stationary equilibrium and the transition dynamics
towards it.

It will be convenient to introduce the following notation:

φ = (1 − σ)f ′(K̄) + K̄f ′′(K̄),
θh = −c̄hu′′

h( h̄)/u′
h( h̄),

zh = ρh/[σf ′(K̄)],
ψh = −K̄f ′′(K̄)�h.

Note that θh is the relative risk aversion of the utility function uh eval-
uated at the consumption level of household h in the stationary equilib-
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rium. Straightforward algebra shows that the elements of the Jacobian
matrix of the (2H)-dimensional system (11.8)-(11.9) evaluated at the
stationary equilibrium are given by

∂k̇h(t)
∂kh(t)

= ρh +
[
φH−1/(1−σ)z

−σ/(1−σ)
h + ψh

]
zh,

∂k̇h(t)
∂kh′(t)

=
[
φH−1/(1−σ)z

−σ/(1−σ)
h + ψh

]
zh′ ,

∂k̇h(t)
∂ch(t)

= −1,

∂ċh(t)
∂kh(t)

=
c̄hz2

h

θhK̄

[
σφ − (1 − σ)ρhH1/(1−σ)z

−(1−2σ)/(1−σ)
h

]
,

∂ċh(t)
∂kh′(t)

=
σc̄hzhzh′φ

θhK̄
,

∂k̇h(t)
∂ch′(t)

=
∂ċh(t)
∂ch(t)

=
∂ċh(t)
∂ch′(t)

= 0,

where h and h′ are arbitrary but mutually different households.
Let us start the stability analysis by assuming that the households

are homogeneous. In this case, there exist real numbers ρ, ,̄ and θ such
that ρh = ρ, h̄ = c̄, and θh = θ hold for all h. Furthermore, assumption
H2 implies �h = 1/H and equation (11.13) implies f ′(K̄) = Hρ/σ. It
follows that zh = 1/H and ψh = −Kf ′′(K̄)/H for all h. If we define

α = (1 − σ)f ′(K̄)/H2,

β =
c̄

θK̄

[
σφ/H2 − (1 − σ)ρ

]
,

γ =
σcφ¯

H2θK̄
,

then it follows that the Jacobian matrix of (11.8)-(11.9) evaluated at the
stationary equilibrium has the form⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

ρ + α α . . . α −1 0 . . . 0
α ρ + α . . . α 0 −1 . . . 0
...

...
. . .

...
...

...
. . .

...
α α . . . ρ + α 0 0 . . . −1
β γ . . . γ 0 0 . . . 0
γ β . . . γ 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
γ γ . . . β 0 0 . . . 0

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
. (11.22)
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We can now prove the following result.

Theorem 11.6 The eigenvalues of the Jacobian matrix (11.22) are given
by

λ1,2 = ρ/2 ±
√

ρ2/4 − β + γ,

λ3,4 = (ρ + αH)/2 ±
√

(ρ + αH)2/4 − β − γ(H − 1),

whereby both λ1 and λ2 have multiplicity H − 1 and both λ3 and λ4

have multiplicity 1. All eigenvalues are real. Exactly H eigenvalues are
negative (namely λ1 and λ3) and exactly H are positive (namely λ2 and
λ4).

Proof: See appendix. �

Theorem 11.6 demonstrates that, in the case of homogeneous house-
holds, the stationary equilibrium is locally saddlepoint stable. This im-
plies that, for every vector of initial capital endowments that is suffi-
ciently close to the vector (k̄1, k̄2, . . . , k̄H), there exists a unique equilib-
rium that converges towards the stationary equilibrium. Note that theo-
rem 11.6 allows us to conclude that the same property remains true also
for the case of heterogeneous households as long as the heterogeneity is
not too strong. Formally, this follows from the fact that the eigenvalues
of a matrix are continuous functions of the matrix. Another implication
of theorem 11.6 is that, in the case of homogeneous households, conver-
gence towards the stationary equilibrium is locally monotonic. This is
implied by the fact that the eigenvalues are real. It is worth emphasizing
that these results hold true for arbitrary utility functions and production
functions satisfying assumptions H1, F1, and F2.

The computation of the eigenvalues of the Jacobian matrix in the
general case of heterogeneous households is analytically intractable. We
have therefore computed them numerically for a number of examples. In
all these examples we found saddlepoint stability, i.e, there were exactly
H stable eigenvalues and H unstable eigenvalues. However, it was easy
to come up with examples in which the stable eigenvalues were complex
numbers. One of these examples is reported below. If the stable eigen-
values are complex it follows that the equilibria which converge towards
the stationary equilibrium exhibit damped oscillations.

Example 11.7 Consider an economy consisting of H = 2 households.
The time-preference rates are 1.2% for household 1 and 4.8% for house-
hold 2. We assume that σ = 4/5 and that the intensive production
function satisfies f(1) = 1 and f ′(1) = 3Q/25, where Q = (2/257)1/4.
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Both households are endowed with half a unit of labor per period. It fol-
lows from theorem 11.2 that the unique stationary equilibrium is given
by K̄ = 1, k̄1 = 2048Q/257, k̄2 = 2Q/257, 1̄ = 1/2 + 153Q/2570,
and 2̄ = 1/2 − 153Q/2570. Now assume that the utility functions are
such that θ1 = 1 and θ2 = 2 and that the production function is such
that f ′′(1) = −3. Using these specifications, we find that the eigenval-
ues of the Jacobian matrix evaluated at the stationary equilibrium are
−0.604686± 0.179266i, 0.187691, and 2.96384. The two stable eigenval-
ues are conjugate complex numbers and the equilibria that converge to
the stationary equilibrium exhibit damped oscillations.

Appendix
This appendix presents the proof of theorem 11.6. We need two technical lemmas.

Let I be the H ×H unit matrix and let E the H ×H matrix in which all entries are
equal to 1.

Lemma A.1 Let A, B, C, and D be real H × H matrices and assume that B is
non-singular. Then it follows that λ ∈ C is an eigenvalue of(

A B
C D

)
if and only if λ is a solution of the equation

Det
[
C − (D − λI)B−1(A − λI)

]
= 0.

Proof: The number λ is an eigenvalue if and only if there exists a non-zero vector
(x y) with x ∈ C

H and y ∈ C
H such that the equations

Ax + By = λx,

Cx + Dy = λy

hold. Because B is non-singular, the first equation implies y = −B−1(A − λI)x.
Substituting this result into the second equation we get[

C − (D − λI)B−1(A − λI)
]
x = 0.

If x were equal to 0 then it would follow that y is also equal to 0, which is a contra-
diction to the requirement that (x y) is non-zero. Thus x must be non-zero and the
above equation can only hold if the determinant of C − (D−λI)B−1(A−λI) is equal
to 0. This completes the proof of the lemma. �

Lemma A.2 Let p and q be arbitrary complex numbers and define the H×H matrix
M by M = pI + qE. Then it follows that the eigenvalues of M are given by p (with
multiplicity H − 1) and p + Hq (with multiplicity 1).
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Proof: It is easily seen that the vector x1 = (1, 1, . . . , 1) is an eigenvector of M with
eigenvalue p + Hq and that the vectors

x2 = (1,−1, 0, . . . , 0),

x3 = (1, 0,−1, . . . , 0),

...

xH = (1, 0, 0, . . . ,−1)

are eigenvectors of M corresponding to the eigenvalue p. Since the vectors x1, x2,
. . . , xH are linearly independent, the result follows. �

Proof of Theorem 11.6: We can write the Jacobian matrix in (11.22) as

J =

(
ρI + αE −I

(β − γ)I + γE 0

)
.

According to lemma A.1 it follows that λ is an eigenvalue of J if and only if it satisfies
the equation

Det
[
(β − γ − ρλ + λ2)I + (γ − αλ)E

]
= 0.

The determinant of a matrix is equal to the product of its eigenvalues. Using
lemma A.2 we can therefore rewrite the above equation as

(β − γ − ρλ + λ2)H−1[β + γ(H − 1) − (ρ + αH)λ + λ2] = 0.

Solving this equation yields the stated values for the eigenvalues λ1,2,3,4. The eigen-
values λ1,2 satisfy g(λ) := β − γ − ρλ + λ2 = 0. Because of

g(0) = β − γ = − (1 − σ)ρc̄

θK̄
< 0

it follows that the solutions of g(λ) = 0 must be real and of opposite sign. The
eigenvalues λ3,4 satisfy G(λ) := β + γ(H − 1) − (ρ + αH)λ + λ2 = 0. It holds that

G(0) = β + γ(H − 1) =
c̄

θK̄

[
σφ

H
− (1 − σ)ρ

]
=

σcf̄ ′′(K̄)

θH
,

where we have used ρ = σf ′(K̄)/H for the last step. Therefore, it holds that G(0) < 0
and it follows that the solutions of G(λ) = 0 must be real and of opposite sign. This
completes the proof of the theorem. �
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Abstract This paper examines open source software development in a competi-
tive environment. The quality of open source software improves over
time based upon contributions by firms and users. A firm’s decision to
contribute is interesting because it also augments competitors’ software
quality in future periods subject to compatibility considerations with
their existing software. A differential game model is developed to un-
derstand why firms are increasingly involved in open source software
development by determining the optimal contributions and software
quality over time. We obtain a closed-loop Nash equilibrium solution.
Examples are given to derive insights from this model.
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1. Introduction
Open source (OS) software is software that is licensed for free use,

Together with the
compiled software, the source code is made available to users, so that
they can examine and modify the code if they should choose to do so.
In particular, a volunteer group may be set up to oversee the collection
of code modifications and improvements, and to bring out new versions
of the software that incorporate these changes. The users thus become
partners in the development of the software.

While OS software development in the past has been characterized
as unstructured and temporary collaborations by individual hackers,
the new reality is that successful open source development has become
structured, and oftentimes funded by interested commercial firms. Some
commercial firms have kept open source programmers on their payroll,
while others have contributed source code. A case in point is the billion
dollars that IBM, HP, Novell, Intel and others have invested in Linux
and OS Development Labs. 1

One of the benefits obtained from revealing the source code is that
many programmers are able to examine it for defects, or bugs. Even
highly internally tested software is prone to bugs that might trigger
under particular settings that have not been tested. In a method akin
to the peer review system and open publications of academic research,
OS software tends to be more reliable and less buggy. Thus, user testing
and contributions explains why firms might consider opening their code
in monopoly markets.

What is surprising, however, is that even in competitive markets,
firms should contribute to open source. For example, Red Hat and Nov-
ell compete for the same business clients, and IBM and HP both offer
servers running Linux software. In such a context, the competitors are
also able to examine and incorporate the contributed software into their
own bundle of software programs. The contributing firm thus helps its

1Thus, IBM hosts, coordinates, and provides support for several open source projects. It
has several dedicated teams of in-house developers in charge of major projects. For example,
IBM’s journaled file system technology, currently used in IBM enterprise servers, is an in-
house development project managed by a small, core group of contributors known as the JFS
core team. HP is hosting a number of open source software projects that run on various
HP systems, including Handhelds.org, HP OfficeJet Linux Driver, and OpenSSI Clusters for
Linux. Motorola’s Metrowerks subsidiary acquired the assets of Linux tools and solutions
vendor Embedix. Metrowerks draws on the Embedix assets to provide Linux-based app
development tools and platforms for PDAs, smart handheld devices, residential gateways,
and digital TVs. Nokia recently released the Nokia Developers Suite for J2ME which runs
over Linux. Open Office is the best known open source project of Sun Microsystems. Darwin
is the best known open source project by Apple Computer.

modification and redistribution (Raymond (2001)).
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Optimal Firm Contributions to Open Source Software

competitors. In this paper, we shall examine why this is optimal. One
reason may be that the user contributions are high. Thus, by partici-
pating in open source, the firm benefits from the high externality from
users. Second, the firm may be able to contribute in a manner that
its competitor cannot take full advantage of its contributions due to
compatibility issues. For example, software firms may provide an OS
interface to access their proprietary software, which helps them tap into
the OS software market, but only indirectly benefits others. Finally, the
competition may not be too intense.

Past research into open source has focused on the behavioral and eco-
nomic incentives of open source programmers to freely contribute their
work to the public (e.g., Hertel, Niedner and Hermann (2003); Kogut
and Metiu (2001); Lakhani and von Hippel (2003)). A few works have
focused on profit maximizing firms, optimizing investment and prices.
Among those works, Haruvy, Prasad and Sethi (2003) evaluate a model
where the open source code is sold as part of a commercial product.
Haruvy, Sethi and Zhou (2004) examine a monopolist developing open
source with a complementary commercial product and Haruvy, Prasad,
Sethi and Zhang (2004) study open source as a public good. The present
paper complements the existing literature by examining three compo-
nents hitherto understudied-competition, compatibility and user contri-
butions.

2. Model and Analysis
There are two firms indexed i = 1, 2. Each firm i has a commercial

product, HiHH , which it sells for a profit. The quality of the commercial
product of firm i is determined by its investment, ui. Each firm i can
also contribute code, ai, to an open source. The open source product, by
virtue of being open, cannot be sold and is distributed freely. However,
the commercial and open source products are complementary, meaning
that their sales will go hand in hand.

Each firm derives quality SiSS from the open source. Note that even
though the open source code is public and freely available, the two firms
may derive different qualities from it. That is, S1 and S2, are not nec-
essarily identical. That is because the firms’ complementary commer-
cial product may not be 100% compatible. As such, each firm’s open
source contributions are geared towards its own complementary prod-
uct’s unique needs and so its open source contributions may not be
as useful to the competitor. If the two firms’ complementary products
were exactly compatible, then the two open source qualities would be the
same and S1 = S2. The open source and commercial product qualities
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are determined over time according to the two firms’ investment levels
according to the equations below.

ṠiSS = η1ai + η2a3−i + η3(D1 + D2), SiSS (0) = SiSS 0 (12.1)

Ḣ1 = u1, H1(0) = H10 (12.2)

Ḣ2HH = u2, H2HH (0) = H20HH (12.3)

Consumer demand for each commercial product depends on the qual-
ity and price of that commercial product relative to the competition, as
well as the quality of the complementary software (which is open source).
Accordingly, the demand functions are given by

D1 = γ1S1 + γ2H1 − γ3H2HH − γ4γγ p1 + γ5p2 (12.4)

D2 = γ1S2 + γ2H2HH − γ3H1 − γ4γγ p2 + γ5p1 (12.5)

Each firm maximizes its profit with respect to commercial product
and open source investments and price, taking costs of investment into
consideration. Their objective functions are:

J1JJ (a1, u1, p1) =

T∫
0

(p1D1 − cs1a
2
1 − ch1u

2
1)dt (12.6)

J2JJ (a2, u2, p2) =

T∫
0

(p2D2 − cs2a
2
2 − ch2u

2
2)dt (12.7)

We summarize the notation and delineate the state and control vari-
ables for convenience.

SiSS Quality of open source software. State variable
HiHH Quality of proprietary software for firm i. State variable
ai(t) Investment in open source software by firm i. Control var.
ui(t) Investment in proprietary software by firm i. Control var.
pi(t) Price of software charged by firm i. Control var.
η1, η2 Compatibility parameters
η3 Parameters for user contribution
γjγγ Demand parameters, j = 1 to 5
cS1, cS2 Cost parameters for the common component software
cH1, cH2 Cost parameter for the private component software
T Duration of the game
SiSS 0, HiHH 0 Initial values
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Then our problem becomes a standard differential game problem which
is given by (12.1)-(12.7). For differential games, there are different equi-
librium solution concepts depending on different information assump-
tions (see, e.g. Basar and Olsder (1982); Mehlmann (1988); Fudenberg
and Tirole (1991)). Among them, open-loop and closed-loop Nash equi-
librium solutions are used most frequently. When the players adopt the
open-loop Nash equilibrium solution concept, they design the time path
concerning the control variable(s) at the initial time and then stick to
it forever. When players adopt the closed-loop Nash equilibrium solu-
tion, they do not precommit control variable(s) and their strategies at
any time may depend on the history of the game up to that time, and,
in particular, on the states. Further, closed-loop solutions can be di-
vided into some more detailed classes according to different information
structures (see, e.g., Dockner, Jorgensen, Long and Sorger (2000)).

As is well known, the closed-loop solution concept is more reasonable
than the open-loop solution concept for general differential game prob-
lems, but it often needs to solve partial differential equations if, further,
the Hamilton-Jacobi-Bellman (HJB) equation is introduced, which has
to recur to numerical approaches in most cases. However, due to the
special structure of our problem, the necessary conditions for the closed-
loop Nash equilibrium solution will be given by a linear two-point bound-
ary value problem (TPBVP) with constant coefficient matrix. It has a
unique analytical solution under certain conditions. The characteristics
implied in our model are helpful to identify a more general class of differ-
ential game models which admit analytical closed-loop Nash equilibrium
solution.

Now, we use Pontryagin’s maximum principle to analyze possible
closed-loop solutions. The Hamiltonians for the two firms are:

L1 = p1D1 − cs1a
2
1 − ch1u

2
1 + λ0Ṡ1 + λ1Ṡ2 + λ2Ḣ1 + λ3Ḣ2HH

= p1(γ1S1 + γ2H1 − γ3H2HH − γ4γγ p1 + γ5p2) − cs1a
2
1 − ch1u

2
1

+λ0{η1a1 + η2a2 + η3[(γ1S1 + γ2H1 − γ3H2HH − γ4γγ p1 + γ5p2)
+(γ1S2 + γ2H2HH − γ3H1 − γ4γγ p2 + γ5p1)]}
+λ1{η1a2 + η2a1 + η3[(γ1S1 + γ2H1 − γ3H2HH − γ4γγ p1 + γ5p2)
+(γ1S2 + γ2H2HH − γ3H1 − γ4γγ p2 + γ5p1)]} + λ2u1 + λ3u2

(12.8)
L2 = p2D2 − cs2a

2
2 − ch2u

2
2 + µ0Ṡ1 + µ1Ṡ2 + µ2Ḣ1 + µ3Ḣ2HH

= p2(γ1S2 + γ2H2HH − γ3H1 − γ4γγ p2 + γ5p1) − cs2a
2
2 − ch2u

2
2

+µ0{η1a1 + η2a2 + η3[(γ1S1 + γ2H1 − γ3H2HH − γ4γγ p1 + γ5p2)
+(γ1S2 + γ2H2HH − γ3H1 − γ4γγ p2 + γ5p1)]}
+µ1{η1a2 + η2a1 + η3[(γ1S1 + γ2H1 − γ3H2HH − γ4γγ p1 + γ5p2)
+(γ1S2 + γ2H2HH − γ3H1 − γ4γγ p2 + γ5p1)]} + µ2u1 + µ3u2

(12.9)
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The first order conditions for optimal control are:⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪

∂L1
∂a1

= −2cs1a1 + η1λ0 + η2λ1 = 0
∂L1
∂u1

= −2ch1u1 + λ2 = 0
∂L1
∂p1

= γ1S1 + γ2H1 − γ3H2HH − 2γ4γγ p1 + γ5p2 + η3(γ5 − γ4γγ )λ0

+η3(γ5 − γ4γγ )λ1 = 0
∂L2
∂a2

= −2cs2a2 + η2µ0 + η1µ1 = 0
∂L2
∂u2

= −2ch2u2 + µ3 = 0
∂L2
∂p2

= γ1S1 + γ2H2HH − γ3H1 − 2γ4γγ p2 + γ5p1 + η3(γ5 − γ4γγ )µ0

+η3(γ5 − γ4γγ )µ1 = 0

(12.10)
As can be seen from the equations, (12.10) is a system which is linear

in controls. Under the condition γ4γγ > γ5, we have:

⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪

a1 = η1

2cs1
λ0 + η2

2cs1
λ1

u1 = λ
s
2

2ch1

p1 = 1
11

4γ2
4−γ2

5
[2γ1γ4γγ S1 + γ1γ5S2 + (2γ4γγ γ2 − γ3γ5)H1

+(γ2γ5 − 2γ3γ4γγ )H2HH + (2η3γ4γγ γ5 − 2γ3γ
2
4γγ )λ0 + (2η3γ4γγ γ5 − 2γ3γ

2
4γγ )λ1

+(η3γ
2
5 − η3γ4γγ γ5)µ0 + (η3γ

2
5 − η3γ4γγ γ5)µ1]

a2 = η2

2cs2
µ0 + η1

2cs2
µ1

u2 = µ3

2ch2

p2 = 1
22

4γ2
4−γ2

5
[γ1γ5S1 + 2γ1γ4γγ S2 + (γ2γ5 − 2γ3γ4γγ )H1

+(2γ2γ4γγ − γ3γ5)H2HH + (η3γ
2
5 − η3γ4γγ γ5)λ0 + (η3γ

2
5 − η3γ4γγ γ5)λ1

+(2η3γ4γγ γ5 − 2η3γ
2
4γγ )µ0 + (2η3γ4γγ γ5 − 2η3γ

2
4γγ )µ1]

(12.11)
In fact, γ4γγ > γ5 is a very weak condition. It says that the consumer

demand is more sensitive to the price of a commercial product itself than
to the other related commercial products’ prices.

From (12.11), all controls are linear combinations of states and co-
states. They can be rewritten as

U = AX (12.12)

where
U = [a1, u1, p1, a2, u2, p2]T ,

X = [S1, S2, H1, H2HH , λ0, λ1, λ2, λ3, µ0, µ1, µ2, µ3]T

and A is a 6 by 12 coefficient matrix whose elements are functions of
parameters γ1, γ2, γ3, γ4γγ , γ5, η1, η2, η3, cs1, ch1, cs2, ch2.
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From the necessary condition for closed-loop Nash optimality, the
costate variables should satisfy the following ordinary differential equa-
tions with all terminal values equal to zero:⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪

λ̇0 = −∂L1
∂S1

− (∂L1
∂a2

∂a2
∂S1

+ ∂L1
∂u2

∂u2
∂S1

+ ∂L1
∂p2

∂p2

∂S1
)

λ̇1 = −∂L1
∂S2

− (∂L1
∂a2

∂a2
∂S2

+ ∂L1
∂u2

∂u2
∂S2

+ ∂L1
∂p2

∂p2

∂S2
)

λ̇2 = − ∂L1
∂H1

− (∂L1
∂a2

∂a2
∂H1

+ ∂L1
∂u2

∂u2
∂H1

+ ∂L1
∂p2

∂p2

∂H1
)

λ̇3 = − ∂L1
∂H2

− (∂L1
∂a2

∂a2
∂H2

+ ∂L1
∂u2

∂u2
∂H2

+ ∂L1
∂p2

∂p2

∂H2
)

µ̇0 = −∂L2
∂S1

− (∂L2
∂a1

∂a1
∂S1

+ ∂L2
∂u1

∂u1
∂S1

+ ∂L2
∂p1

∂p1

∂S1
)

µ̇1 = −∂L2
∂S2

− (∂L2
∂a1

∂a1
∂S2

+ ∂L2
∂u1

∂u1
∂S2

+ ∂L2
∂p1

∂p1

∂S2
)

µ̇2 = − ∂L2
∂H1

− (∂L2
∂a1

∂a1
∂H1

+ ∂L2
∂u1

∂u1
∂H1

+ ∂L2
∂p1

∂p1

∂H1
)

µ̇3 = − ∂L2
∂H2

− (∂L2
∂a1

∂a1
∂H2

+ ∂L2
∂u1

∂u1
∂H2

+ ∂L2
∂p1

∂p1

∂H2
)

(12.13)

where the terms included in the brackets describe the feedback effects
from the rival’s control variables. It is easy to see from (12.8) and (12.9)
that ⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪

∂L1
∂S1

= γ1p1 + η3γ1λ0 + η3γ1λ1
∂L1
∂S2

= η3γ1λ0 + η3γ1λ1
∂L

2
1

∂H1
= γ2p1 + η3(γ2 − γ3)λ0 + η3(γ2 − γ3)λ1

∂L1
∂H2

= −γ3p1 + η3(γ2 − γ3)λ0 + η3(γ2 − γ3)λ1
∂L2
∂S1

= η3γ1µ0 + η3γ1µ1
∂L2
∂S2

= γ1p2 + η3γ1µ0 + η3γ1µ1
∂L

2
2

∂H1
= −γ3p2 + η3(γ2 − γ3)µ0 + η3(γ2 − γ3)µ1

∂L2
∂H2

= γ2p2 + η3(γ2 − γ3)µ0 + η3(γ2 − γ3)µ1

(12.14)

By substituting p1 and p2 from (12.11) into (12.14), it becomes a
system which is linear in the states and costates. In other words, all
the first terms outside the brackets of the RHS of (12.13) are linear
with states and costates. Second, note that all ∂ai

∂Y and ∂ui
∂Y ( i = 1, 2;

Y ∈ {S1, S2, H1, H2HH } ) are zero by (12.11). Then all the first two terms
included in the brackets must be zero. This means that the terms left
at work in the brackets are only ∂Li

∂pj

∂pj

∂Y . Using (12.11), we have that all
∂pj

∂YiYY are constants. By (12.8) and (12.9), we get{
∂L1
∂p2

= γ5p1 + η3(γ5 − γ4γγ )λ0 + η3(γ5 − γ4γγ )λ1
∂L

p
2

∂p1
= γ5p2 + η3(γ5 − γ4γγ )µ0 + η3(γ5 − γ4γγ )µ1

(12.15)

Substituting again p1 and p2 from (12.11) into (12.15), it becomes a
system which is linear in states and costates. Then all the third terms
included in the brackets are linear in states and costates. Hence, the
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entire RHS of (12.13) is linear in states and costates. Namely, (12.13)
is a system of linear ordinary differential equations with terminal values
equal to zero.

Therefore the necessary conditions for closed-loop Nash equilibrium
are given by the four linear system equations (12.1)-(12.3) with four
initial boundary conditions, and the eight linear differential equations
(12.13) with eight terminal conditions. In other words, it becomes a
linear TPBVP problem with constant coefficients. For convenience in
later description, we denote this TPBVP problem by

Ẋ = BX (12.16)

where X = [S1, S2, H1, H2HH , λ0, λ1, λ2, λ3, µ0, µ1, µ2, µ3]T , B is a constant
12 × 12 coefficient matrix. The boundary conditions are given by⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪

X(1)t=0 = S10

X(2)t=0 = S20

X(3)t=0 = H10

X(4)t=0 = H20HH
X(5)t=T = 0
X(6)t=T = 0
X(7)t=T = 0
X(8)t=T = 0
X(9)t=T = 0
X(10)t=T = 0
X(11)t=T = 0
X(12)t=T = 0

(12.17)

While the necessary conditions are given by a linear TPBVP problem
with constant coefficient matrix which is mathematically tractable, and
well-known algorithms are available for it (see, e.g., Agrawal and Fabien
(1999)), it is hard to derive sufficient conditions for the optimality, since
there are too many parameters and the relationships between parame-
ters involved are extremely complicated. However, a large number of
simulations for a very wide range of parameters have demonstrated the
optimality of solutions obtained in this way.

3. Solution
As mentioned above, there are many numerical methods available for

general TPBVP problems, some of which are fixed in the toolboxes of
mathematical software. For example, one can immediately give a nu-
merical solution to such problems by writing a short program including
bvp4c.m in Matlab. However, for the above linear TPBVP problem with
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constant coefficients, we are able to get its analytical solution under cer-
tain conditions (e.g., Dockner, Jorgensen, Long and Sorger (2000); Sethi
and Thompson (2000)), which can yield more theoretical insight. We
shall adopt such a method in the following examples.

It is well known that there are two major steps in solving the TPBVP
problem consisting of (12.16) and (12.17). The first is to find the gen-
eral solution by computing the matrix exponential function of exp(tB);
the second is to determine a particular solution by using the boundary
conditions (12.17). The second step is relatively simple. It only needs to
substitute the boundary conditions into the general solution obtained by
the first step. Then a system of 12 algebraic equations with 12 unknown
variables is given. Under appropriate conditions, it has a unique solu-
tion and the particular solution to the TPBVP problem is determined
accordingly. However, one may encounter some practical problems in
the first step. At the first glance, the idea of calculating the matrix
exponential function of exp(tB) might be to see if it can be obtained
directly by V diag(exp(diag(λi)))V −1, where V is a full set of eigenvec-
tors V with corresponding eigenvalues λi( i = 1, . . .12). But eigenvalue
multiplicity of coefficient matrix B makes this approach invalid for our
problem. As we know, a great deal of numerical methods have been
developed to calculate exp(tB) (e.g. Moler and Loan (1978); Moler and
Loan (2003)). However, high-accuracy algorithms are often at the price
of a longer computation time and a larger storage memory.

Our following examples are based on a very straightforward method-
Taylor series expansion. One important reason for using such a method
is that it enables us to see quite clearly which and how factors affect
the results by an oversimplified method, and it allows us not to spend
additional time studying the numerical errors introduced by a particular

algorithm. Theoretically, etB =
∞∑

k=0

(tB)k

k! . We may use the sum of the

first N + 1 terms for the approximation of the matrix exponential func-
tion. Then the theoretical error is the sum of the later left infinite terms∞∑
k=N+1

(tB)k

k! . Of course, the larger the number N is, the more precise the

approximation is. But for numerical computation, N is always limited.
If N is given, then the error is mainly affected by two factors–t and B.
Their effects on the convergence rate of Taylor series are directly re-
flected in the final results. Recognizing the potential effect of these two
factors on the solution is very necessary, since it is helpful to understand
why we may observe some counter-intuitive even strange results some-
times in numerical examples. They are, as expected here, most likely
either from a longer time horizon leading to a slower convergence rate,
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relationship between parameters leading to a slow convergence rate of
Bk

k! , or relationship between the length of time horizon and coefficient

matrix B leading to a slow convergence rate of (tB)k

k! . With all these in
mind, one can identify the precise reason for the possible “bad” results
immediately. From the special structure of coefficient matrix B and ex-
pressions of the elements in B, 2 we can see that (tB)k

k! converges very
quickly for a given t if the cost parameters are large enough.

In the following examples, we set N = 10. This N is sufficient to
give a quite precise result for a very wide range of parameters. Compar-
ison between the results obtained by this way and those by bvp4c.m or
Laplace transformation in Matlab indicates that differences are usually
less than 10−3. Yet, one thing we should pay more attention to is that,
if we adopt the approach of Laplace and inverse Laplace transformation
functions in Matlab, we should include some phrases in the program
to ignore the imaginary parts of the matrix exponential function, since
they are introduced by numerical error and should strictly be zero in
theory. In fact, we can observe that they are often less than 10−15 in
our examples. So they can be ignored safely.

4. Simulations
To derive insights from this model, we examined the sensitivity re-

sponse to the parameters. Whereas several parameter values were con-
sidered, only some representative ones are presented here.

The first parameter we examine is user contribution. In many in-
stances, users are the main contributors to the software. This is par-
ticularly true with statistical open source software such as R (www.r-
project.org) where the users are uniquely qualified to contribute their
own routines. On the other end of the spectrum, server applications are
supported mainly by the companies that manufacture the servers (IBM,
HP) and these companies have full-time dedicated staff to these projects.
Users contribute mostly bug reports and patches, which are useful but
make less than 3% of all contribution. We look at the extreme end of
the spectrum where user contribution is non-existent (η3 = 0) as well as
a more reasonable user contribution level at η3 = 0.02.

The second parameter we examine is compatibility. As explained
in the introduction, the two firms derive different qualities from the
software due to potential incompatibility. The two extreme points of
this spectrum are η2 = 0 and η2 = 1. In the first, the firms have zero

2Here, we omit the general expression for the coefficient matrix B because of space limitation.
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compatibility, whereas in the latter, they enjoy full compatibility and
S1 = S2. The four cases are shown in the table below:

Table 12.1. The four cases.

User Contribution No User Contribution

Full compatibility Case 1 (η2 = 1, η3 > 0) Case 2 (η2 = 1, η3 = 0)
No compatibility Case 3 (η2 = 0, η3 > 0) Case 4 (η2 = 0, η3 = 0)

Case1: Compatible Open Source with User Contribution: η1 = η2

and η3 > 0
Case2: Compatible Open Source without user contribution: η1 = η2

and η3 = 0
Case3: Incompatible Open Source with user contribution: η2 = 0 and

η3 > 0
Case4: Closed source: η2 = 0 and η3 = 0.
Our benchmark model is case 1 with η1 = 1.0; η2 = 1.0; η3 = 0.02;

γ1 = 1.0; γ2 = 1.0; γ3 = 0.5; γ4γγ = 1.0; γ5 = 0.5; cs1 = 100; ch1 = 100;
cs2 = 100; ch2 = 100; T = 10. Case 2 has the same parameters as case 1,
except η3 = 0. Case 3 is the same as case 1 except η2 = 0. Case 4 is the
same as case 1 except η2 = 0 and η3 = 0. Appendix 1 gives a particular
solution of case 1.

As expected and as shown by figure 1, open source investment and
quality, as well as the commercial product’s price, are the highest in case
1, where both compatibility and externality from user contribution are
positive. They are lowest in case 4, where both are zero. Profits closely
follow the rankings of investment quality.

Next, we examine whether compatibility and externality from user
contributions can result in free-riding. Public goods (to which open
source belongs) are susceptible to free-riding, where firms would enjoy
the benefits of open source without contributing. To isolate the two
effects, we examine cases 2 and 3 for asymmetric firms.

As an illustration for case 2 with asymmetric firms, consider η1 =
η2 = 1, η3 = 0, γ1 = 1.0, γ2 = 1.0, γ3 = 0.5, γ4γγ = 1.0, γ5 = 0.5,
cs1 = ch1 = ch2 = 50, cs2 = 500, T = 10. The initial values are
S1 = S2 = 2.5, H1 = 5, and H2HH = 5. In this parameterization, the cost
of investment in open source for firm 2 is ten times the cost for firm
1. As it turns out, firm 2 invests less and reaps a higher profit. In the
above example, total profit (the integral of profit over t) to firm 1 is
209.8, whereas total profit to firm 2 is 336.7. The combined total profit
is 546.5. A similar picture emerges when the firms have asymmetric
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productivity in open source such that η1 > η2. Figure 2 shows open
source investment and profits for the above parameterization.

Figur 1.1. Comparison of the four cases– An illustrativ example

Figure 1.2. An Asymmetric Scenario for Case 2
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Observation 1.When the main open source externality comes from
compatibility, the firm with the higher cost of investment in the open
source will invest less in open source and make a higher profit than the
firm with the lower cost of investment.

The above observation is a classical free-riding scenario. The seem-
ingly advantaged firm, which has the lower cost, ends up at a disad-
vantage as the weaker firm free-rides its investment in the public good.
This finding is due to the fact that the marginal benefit of investment
in the public good exceeds marginal cost for the firm with the lower
cost / higher impact. As such it will invest more. The benefit, however,
accrues equally to both firms.

With case 3, however, no such parallel exists and no free-riding occurs.
Consider the following parameterization: η1 = 1,η2 = 0, η3 = 0.02,
γ1 = 1.0, γ2 = 1.0, γ3 = 0.5, γ4γγ = 1.0, γ5 = 0.5, ch1 = ch2 = 50, cs1 = 5,
cs2 = 500, T = 10. As we see below, firm 1 invests more than firm 2 and
outperforms firm 2 in terms of profit.

This result leads us to the following observation.

Observation 2.When the main open source externality comes from user
ontributions, the firm with the higher cost of investment in the open

source will invest less in open source and make a lower profit than the
firm with the lower cost of investment.

5. Conclusion
Open source has long been an enigma in the academic and business

communities. To succeed, a firm pursuing open source development

Figure 1.3. An Asymmetric Scenario for Case 3
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must rely on seemingly selfless contributions by a community of users as
well as on contributions by competitors, whose interests are seemingly
opposite the firm’s.

Each open source project is unique. Some generate a great deal of
excitement and goodwill in the user community. Others, like specialized
server modules, are drier and less exciting to the community at large
but are nevertheless important to the firm. The firm must be able to
design its software development strategy to accommodate the degree of
public interest and subsequent public contribution. However, even in
cases where the public is not actively involved in development, the firm
may nevertheless engage in co-opetition with its rivals. That is, the
two may find themselves competing in one market and yet cooperatively
contributing to the development of the open source product. This will
happen when the two open source applications share a great deal of
overlap. Since the open source is a public good, a degree of free riding
may be inevitable but the outcome is still beneficial to both firms.

Our aim in the present work is to tackle both of these aspects of open
source development– namely, user and competitor involvement– within
a competitive environment. Since development is a dynamic rather than
static process, we apply the theory of differential games to gain insight
into this environment. Due to the special structure of this problem,
the closed-loop Nash equilibrium solution is given by a linear two-point
boundary problem with constant coefficients, which admits analytical
solution under certain conditions.

We find that both the degree of user involvement and compatibility
with a rival’s product positively affect profits. However, only the former
does so without the caveat of free-riding. Free-riding is not necessarily
a problem for the firm that ends up bearing the bulk of the invest-
ment burden. However, free-riding may result in reduced incentives for
smaller firms to invest and in reluctance by larger firms to share their
technologies.

Note that in the present work, community goodwill towards the com-
pany, as measured by the user contribution parameter η3 was assumed
exogenous and proportional to demand. Increasingly, there is evidence
that company actions may influence the degree of user contributions.
Haruvy, Prasad and Sethi (2003) study a model where open source con-
tributors respond negatively to excessive profit taking on the part of
the company. As survey evidence accumulates on the motives of open
source contributors, future extensions should enhance the user contri-
bution function to include such motives. Another shortcoming of the
present model, and a task for future extensions, is that it deals with only
two firms. Open source in many cases benefits from the contributions of
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many firms. We believe the insights gained here are generalizable to the
many-firm scenario, but the mathematical derivation of that proof is at
this stage intractable. Generalizing this conclusion for n firms is needed
for a more complete characterization of open source development.
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Appendix:
This Appendix lists the solution of case 1 corresponding to the parameters: η1 =

1.0, η2 = 1.0, η3 = 0.02, γ1 = 1.0, γ2 = 1.0, γ3 = 0.5, γ4 = 1.0, γ5 = 0.5, cs1 = ch1 =
cs2 = ch2 = 100, S1 = S2 = H1 = H2 = 1, T = 10.

S1= 1. + .3829t − .5126 × 10−2t2−.6241 × 10−3t3+.3461 × 10−5t4+.3131 × 10−6t5

−.8888 × 10−9t6−.7460 × 10−10t7+.1117 × 10−12t8+.1034 × 10−13t9−.7243 × 10−17t10

S2= 1. + .3829t − .5126 × 10−2t2−.6241 × 10−3t3+.3461 × 10−5t4+.3131 × 10−6t5

−.8888 × 10−9t6−.7460 × 10−10t7+.1117 × 10−12t8+.1034 × 10−13t9−.7243 × 10−17t10

H1= 1. + .1073t − .2766 × 10−2t2−.2172 × 10−3t3+.2044 × 10−5t4+.1098 × 10−6t5

−.5865 × 10−9t6−.2635 × 10−10t7+.8777 × 10−13t8+.3680 × 10−14t9−.7872 × 10−17t10

H2= 1. + .1073t − .2766 × 10−2t2−.2172 × 10−3t3+.2044 × 10−5t4+.1098 × 10−6t5

−.5865 × 10−9t6−.2635 × 10−10t7+.8777 × 10−13t8+.3680 × 10−14t9−.7872 × 10−17t10

λ0= 25.59 − 1.458t − .1428t2+.2189 × 10−2t3+.1207 × 10−3t4−.9674 × 10−6t5

−.4073 × 10−7t6+.2000 × 10−9t7+.7341 × 10−11t8−.2357 × 10−13t9−.8211 × 10−15t10

λ1= +8.251 − .7029t − .2489 × 10−1t2+.1106 × 10−2t3+.2195 × 10−4t4−.5272 × 10−6t5

−.7692 × 10−8t6+.1192 × 10−9t7+.1436 × 10−11t8−.1565 × 10−13t9−.1661 × 10−15t10

λ2= 21.47 − 1.106t − .1303t2+.1636 × 10−2t3+.1098 × 10−3t4−.7038 × 10−6t5

−.3689 × 10−7t6+.1404 × 10−9t7+.6623 × 10−11t8−.1574 × 10−13t9−.7381 × 10−15t10

λ3= −4.545 + .2601 × 10−1t + .4649 × 10−1t2+.1167 × 10−4t3−.3842 × 10−4t4−.4352 × 10−7t5

+.1267 × 10−7t6+.1917 × 10−10t7−.2234 × 10−11t8−.3862 × 10−14t9+.2445 × 10−15t10

µ0= 8.251 − .7029t − .2489 × 10−1t2+.1106 × 10−2t3+.2195 × 10−4t4−.5272 × 10−6t5

−.7692 × 10−8t6+.1192 × 10−9t7+.1436 × 10−11t8−.1565 × 10−13t9−.1661 × 10−15t10

µ1= 25.59 − 1.458t − .1428t2+.2189 × 10−2t3+.1207 × 10−3t4−.9674 × 10−6t5

−.4073 × 10−7t6+.2000 × 10−9t7+.7341 × 10−11t8−.2357 × 10−13t9−.8211 × 10−15t10

µ2= −4.545 + .2601 × 10−1t + .4649 × 10−1t2+.1167 × 10−4t3−.3842 × 10−4t4−.4352 × 10−7t5

+.1267 × 10−7t6+.1917 × 10−10t7−.2234 × 10−11t8−.3862 × 10−14t9+.2445 × 10−15t10

µ3= 21.47 − 1.106t − .1303t2+.1636 × 10−2t3+.1098 × 10−3t4−.7038 × 10−6t5

−.3689 × 10−7t6+.1404 × 10−9t7+.6623 × 10−11t8−.1574 × 10−13t9−.7381 × 10−15t10
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Chapter 13

THE IMPACT OF DYNAMIC DEMAND
AND DYNAMIC NET REVENUES
ON FIRM CLOCKSPEED

Janice E. Carrillo
University of Florida, USA
carrilje@ufl.edu

Abstract A firm’s new product development clockspeed is determined by the fre-
quency of new product introductions to the marketplace. Using a simple
analytic model, we derive an optimal firm NPD clockspeed that is driven
by several external market and internal organizational related factors.
Specifically, we analyze the impact of dynamic sales/demand curves and
dynamic net revenues on the optimal pace of new product introductions.

1. Introduction
Recent empirical literature defines an industry’s clockspeed as a mea-

sure of the evolutionary life cycle capturing the dynamic nature of the
industry. Among other factors, the rate of new product development
is one of the primary drivers of clockspeed. For example, Fine (1998)
suggests that one metric which can be used to measure an industry
clockspeed is the rate of new product introduction or intervals between
new product generations. In their study of the electronics industry,
Mendelson and Pillai (1999) also show that higher industry clockspeed
is associated with faster execution in product development activities.
Furthermore, these authors find that firms operating in faster-moving
business environments tend to accelerate their own internal operations
such that their own individual clockspeed is synchronized with the cor-
responding industry clockspeed.

A variety of other mechanisms driving the speed of new product de-
velopment for individual firms are also discussed in the literature. Eisen-
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hardt and Brown (1998) recommend that in rapidly shifting industries,
“time pacing” new product development efforts relative to the calendar
can help managers to better manage transitions between new product
development projects, and to build organizational momentum towards
achieving ambitious new product development goals. Moreover, these
authors advocate that firms should synchronize the pace of change with
their own marketplace and internal capabilities. In contrast, they posit
that “event pacing”, (i.e. timing your internal new product develop-
ment efforts relative to competitors, shifts in technology, etc.) may be
an erratic and ineffective strategy in fast paced industries. For example,
Bayus (1998) also names key factors that are expected to significantly
influence a firm’s decision regarding new product introductions, includ-
ing competitive pressure, market opportunity, and internal pressure such
as market share and time since last product introduction.

An issue related to new product introduction is the importance of
“product rollovers,” or the simultaneous management of new product
introduction and displacement of old products. Billington, Lee and Tang
(1998) discuss problems associated with product rollovers. In particu-
lar, they analyze two primary strategies: the solo product roll (where
one product completely replaces the previous generation) and the dual
product roll (where both products remain in the market). These authors
find that a firm’s choice of an appropriate rollover strategy depends on
factors such as the inventory related rollover costs, customer service, and
the firm’s market position.

We introduce a simple analytic model which identifies an optimal firm
level clockspeed. First, we determine the optimal number of generations
of new products that should be introduced for a given planning horizon.
The optimal firm clockspeed is driven by the following forces: (i) average
demand forecasts, (ii) dynamic profits earned over time, (iii) cannibal-
ization of older products, and (iv) organizational constraints limiting the
pace of new product development. Thus, this model offers managerial
insights concerning the dynamics of new product development activities
on the firm level.

A key factor influencing firm clockspeed is the anticipated shape of the
demand/sales curve for each generation of a new product. For example,
the product life cycle curve is often associated with the introduction,
growth and decline of a product in the marketplace via some kind of
diffusion process. Conversely, a common assumption in the literature
addressing the optimal time-to-market for new product introductions is
that sales are constant for both old and new generations of products.
Finally, certain types of products experience the highest levels of sales
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immediately following their introduction to the market, with declining
sales throughout the remainder of the planning horizon.

In addition, we characterize the impact of dynamic net revenues on
firm clockspeed. For instance, consider the PC industry that exhibits
extreme price competition exemplified by prices that decrease rapidly
throughout the product life cycle. For this type of industry, we derive
analytical results showing that rapidly decreasing prices are associated
with an accelerating firm clockspeed, (i.e. new products are introduced
at a faster pace.) In contrast, consider industries where learning curves
effectively decrease unit costs such that net revenues are increasing over
the life cycle. Indeed, we find that firm clockspeed is actually decelerated
(i.e. new products are introduced at a slower pace) due to the decreasing
unit costs associated with the learning effects. Therefore, the dynamic
nature of the net revenue stream has a significant impact on the pace of
new product development and introduction at the firm level.

The primary focus of this paper is to develop analytic insights into
factors driving firm level clockspeed. Specifically, structural results con-
cerning the impact of dynamic net revenues and dynamic demand are
developed. Carrillo (2004) also addresses firm level clockspeed and its
relationship to industry level trends utilizing numerical examples. How-
ever, because the model in Carrillo (2004) is a discrete model with com-
plex development cost, demand and marketshare functions, no analytic
results are derived. For a comprehensive review of the literature in this
area, see Carrillo (2004).

The remainder of the paper is organized as follows. In Section 2, a
firm level model of clockspeed is introduced, while Section 3 contains
the subsequent analysis for this model. Finally, Section 4 contains a
summary of conclusions and future directions for research.

2. Model
In this section, we introduce a simple analytic model which explains

key factors influencing the optimal pacing of new product introductions.
First, we begin this section by introducing appropriate notation and
motivating key assumptions necessary for further analysis. After intro-
ducing the model, we analyze optimal solutions and discuss the corre-
sponding managerial insights.

2.1 Notation and Assumptions
Each of the generations of new products introduced into the market

has the following characteristics: (a) a net profit earned for each unit
produced and sold, (b) a corresponding sales/demand rate, and (c) de-
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velopment costs incurred to bring the new generation to the market. The
following paragraphs describe these particular parameters for a firm.

First, let n represent the primary decision variable denoting the num-
ber of generations of new products to be introduced during a given plan-
ning horizon of length T for a particular firm. Because this decision
variable effectively determines the pace of new product development for
a given planning horizon, we refer to it simply as the firm’s NPD clock-
speed. An alternate measure of firm clockspeed can be captured by
dividing the number of generations of new products introduced by the
length of the planning horizon, (i.e. n/T). However, to simplify nota-
tion, we simply refer to n as the firm NPD clockspeed and t’ (= T/n) as
the firm’s average life cycle length per generation. Also, to gain analytic
insights into the various factors driving firm clockspeed, we assume that
n is a continuous variable.

Second, let Q̇(t)denote the anticipated sales rate at time t for each
generation of new products introduced into the market at time t=0.
Therefore, the cumulative demand for a product through time t of the
product life cycle is denoted by Q(t). Initially, we make no specific
assumptions concerning the shape of the sales/demand curve. Later, we
investigate the impact of specific types of demand curves on the firm’s
pacing of new product introduction.

Third, another key assumption concerns the issue of “product rollovers,”
or the simultaneous management of new product introduction and dis-
placement of old products. Furthermore, we assume that the introduc-
tion of a new product completely replaces all sales of the older product
currently in the market. Billington, Lee and Tang (1998) refer to this
strategy as the solo product rollover (whereby one product completely
replaces the previous generation).

Fourth, the firm’s internal development costs are a crucial factor. As
such, we now consider the impact on overall profit explicitly as a separate
function which is independent of the firm’s average net revenues. For
simplicity, we assume that the development costs are fixed for each new
generation of products introduced to the market. Specifically, let cD

denote the firm development costs per each new generation new products
introduced to the market.

Fifth, a key piece of the model describes the net revenue earned from
sales of the new product throughout its lifetime. Let π(t) represent the
net revenue earned from sale of a unit of for each generation of new
products at time t during a product life cycle, (i.e. revenue - unit cost).
Note that time t=0 reflects the time at which each generation is intro-
duced to the market. Factors influencing the net revenue include both
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demand side influences (i.e. revenues earned) and supply side influences
(i.e. unit costs).

Furthermore, we assume that net revenue derived during each prod-
uct life cycle is dynamic and can be described by a time varying pattern
following the introduction of a new product. To capture the effects of
dynamic revenue, π(t) can be expressed as a continuous function of a
simple average multiplied by a time varying agent, as shown in Equa-
tion (13.1). By definition, π0 represents the average net revenue earned
during the planning horizon, while α(t) represents the time-varying in-
fluence due to the dynamic net revenue changes over the product’s life
cycle.

π(t) = π0 α(t);

T∫
0

α(t) dt = T. (13.1)

Next, we assume that the firm’s potential to introduce new generations
of products into the marketplace is limited by its own internal and/or
technological capabilities. Specifically, let no reflect the maximal number
of new product generations that the organization can introduce during
a planning horizon of length T. Furthermore, no should be set to reflect
the lesser of the firm’s production, design, or supply capabilities. For
example, the firm may not have adequate production flexibility to meet
demand for the multiple generations of new products, (see Gaimon and
Morton (2004)). The firm’s internal design capacity may be limited
either in the magnitude of manpower needed, or in the requisite skill
mix. Alternatively, the constraint may reflect design limitations relating
to the actual physical technology of the components embedded in the
new product. Lastly, suppliers may not have the necessary capacity to
meet demand for the multiple generations of new products.

2.2 The Objective
The objective is to maximize profit associated with sales of new prod-

ucts over the total planning horizon. Because we assume that (a) average
net revenues earned during a product life cycle are similar throughout
the planning horizon, and (b) each new product completely cannibal-
izes sales of older products, then the average profit earned during each
product life cycle is essentially the same. The problem reduces to one
of determining how many generations of new products (n) to introduce
during a planning horizon of length T, given that each new generation
earns revenues for an average life cycle length t’ = T/n. The objective
function and the constraint limiting the maximal pace of new product
introductions are shown below. To simplify subsequent analysis, the



220

dynamic sales and net revenue effects have both been combined. Specif-
ically, let Qa(t) represent the adjusted cumulative sales which reflect the
cumulative sales at time t as adjusted for the time varying effects from
the dynamic net revenues.

Max

n

T/n∫
0

π0α(t)Q̇(t) dt − n cD = n π0 Qa(T/n) − n cD (13.2)

where

Qa(T/n) =

T/n∫
0

α(t)Q̇a(t)dt (13.3)

St:
0 ≤ n ≤ no. (13.4)

3. Analysis
To obtain a solution for the constrained optimization problem, we

formulate a Lagrangian as shown in Equation (13.5). Let λ denote the
Lagrange multiplier associated with the organizational barrier, (i.e., λ
represents the marginal value to the firm’s profit derived from an ad-
ditional new product generation made available through the firm’s or-
ganizational capabilities). In Equations (13.6) and (13.7) we state the
Karush-Kuhn-Tucker (KKT) necessary conditions for optimality of n
and λ. Note that in general, strict concavity of the objective function
with the linear constraint ensures that the KKT conditions are both
necessary and sufficient. However, if the objective function is indeed
convex, then a boundary solution occurs. We consider both possibilities
later in the analysis.

L = nπ0 Qa(T/n) − ncD + λ (no − n) (13.5)

n∗ : π0 Qa(T/n) = T/nπ0 Q̇a(T/n) + cD + λ (13.6)

λ∗ : λ (no − n) = 0 (13.7)

The first order condition in Equation (13.6) states that the optimal
number of new product introductions is that value for which the marginal
gain in profit equals the marginal costs. Specifically, the marginal gain
in profit is derived from the sales of an additional new product life cycle
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introduced during the planning horizon. The marginal cost is due to (i)
the truncation of the length of time during which all products introduced
during the planning horizon remain in the market, (ii) the additional
development costs, and (iii) the marginal value of the organizational
pace constraint. Therefore, the optimal number of generations of the
new product for an industry must balance the extra revenues earned
from an additional product life cycle with the truncation of the sales of
its older product lines during the current planning horizon.

Equation (13.7) is simply the complementary slackness constraint,
which assures that the pace of new product introduction does not exceed
the organizational barrier. From these optimality constraints, we can
derive two different cases depending on whether or not the constraint is
tight. Specifically, Case 1 occurs when the constraint is not tight (i.e.
λ = 0), whereas Case 2 occurs when the constraint is tight, (i.e. λ > 0).
In the following paragraphs, we discuss the managerial implications for
each situation.

First, we consider the situation where the organizational constraint
is not tight, (i.e. Case 1 occurs). In this case, the optimal clockspeed
which maximizes firm profits actually lags the maximal pace allowed by
the firm’s organizational capabilities. In other words, it is more prof-
itable to slow the pace of new product introductions relative to the maxi-
mal pace dictated by firm’s organizational capabilities. Furthermore, by
speeding the industry clockspeed beyond the optimal value n*, the costs
of limiting the length of all of the new product life cycles during a give
planning horizon outweigh the benefits of one additional new product
introduction.

Next, we consider the situation where the organizational constraint
is tight, (i.e. Case 2 occurs). In this case, the speed of new product
introduction is dictated by the organizational and/or technological bar-
riers. Moreover, an incentive exists for firms to invest in organizational
capabilities to speed new product introduction. Furthermore, we can
calculate the additional profits for the firm from breaking the organiza-
tional barrier, which can be weighed against the costs of achieving that
goal. In particular, this information is captured by λ*, which represents
the marginal value to the firm’s profit derived from an additional product
introduction made available through enhancing the firms organizational
capabilities.

To investigate the existence of both Case 1 and Case 2 solutions,
we first analyze the shape of the diffusion curve. In particular, the
objective function must be a concave function of n for a non-boundary
point solution to exist (i.e. Case 1). Furthermore, concavity of the
objective function ensures that second order conditions of optimality
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are fulfilled. The following sections investigate the impact of alternative
forms of the adjusted diffusion curve on the optimal firm clockspeed.

3.1 Constant Adjusted Sales Curve
Consider first the situation where the adjusted sales curve remains

flat for the total length of the planning horizon, due to a constant sales
level and constant net revenues earned for each unit. Specifically, let
Q̇(t) = K and α(t) = 1 where K represents a constant. Theorem 13.1
summarizes the consequences of this combination of sales and net rev-
enues on the optimal firm clockspeed.

Theorem 13.1 Suppose the adjusted diffusion curve is concave over the
planning horizon. Then, the optimal clockspeed n*=0.

Proof: From Equation (13.6), π0 KT/n = T/nπ0 K + cD + λ.

Essentially, the marginal benefits from an additional generation are al-
ways exactly equal to the marginal costs from truncating all other gen-
erations of new products. However, because the additional development
costs, the total marginal costs will always exceed the marginal benefits
in this scenario. To interpret this situation, consider a firm that already
has a generation of products on the market. If the sales curve and net
revenues are flat, then the firm can always earn that consistent revenue
stream without introducing any new products to the market. Basically,
the firm foregoes any development costs and continues offering the orig-
inal product on the market.

The assumption of constant sales is a common one used in the time-
to-market literature. In reality, there are limits to the assumption of
constant sales and net revenues. For most products, it’s likely that sales
and net revenues will likely decline at some point in the product life
cycle, necessitating the introduction of new products. Similarly, firms
may introduce new generations of enhanced products to the market in
an attempt to gain overall marketshare. Therefore, the sales curve may
actually be increasing for each new generation of products introduced to
the market.

3.2 Peaking Adjusted Sales Curve
Next, we consider the situation where the firm’s demand curve for

each new generation of products reflects a classic life cycle pattern which
peaks at some time during the planning horizon. As the basis for our
analysis, we use a variation of the simple Bass diffusion model (1969).
The Bass diffusion model usually describes the pattern of demand for a
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new product at the industry level including the influence of both innova-
tors and imitators buying the product. Specifically, innovators will buy
the new product upon its introduction to the market, while imitators
are more cautious and wait until the product has been on the market
before making an initial purchase. This model has been shown to be
fairly robust, and has been empirically validated for a wide variety of
industries. In addition, empirical evidence exists which supports the
utilization of such diffusion models at the individual firm and/or brand
level of analysis.

Here, we consider a version of the basic Bass diffusion model which
explicitly incorporates a time varying influence agent. From the “time
adjusted” Bass model shown in Bass et al (1994), commonly known as
the “Generalized Bass Model (GBM),” we have Equation (13.8)-(13.10).
The cumulative demand for a product through time t of the product life
cycle is denoted by Qa(t), while the number of adopters at time t is
denoted by Q̇a(t). Also, m is the scale parameter corresponding to the
ultimate number of adopters for a particular type of product. The shape
parameters denoted by p and q represent the coefficients of innovation
and imitation respectively. Finally, α(t) represents the time-varying
influence from the dynamic net revenues.

Q̇a(t) = (p + qQa(t)/m)(m − Qa(t))α(t) (13.8)

Qa(t) = m
(
1 − e−(p+q)u(t)

)/(
1 − (q/p)e−(p+q)u(t)

)
(13.9)

u(t) =

t∫
0

α(τ) dτ (13.10)

Next, we analyze the impact of a peaking adjusted diffusion curve
on the optimal firm clockspeed. Several basic relationships necessary to
complete our analysis are given in Equations (13.11) - (13.13).

∂ Qa(T/n)/∂n = −T/n2Q̇a(T/n) (13.11)

∂ Q̇a(T/n)
/

∂n = −T/n2Q̈a(T/n) (13.12)

Q̈a(T/n) = Q̇a(T/n) [(q − p − 2 q/mQa(T/n)) α(T/n) +
1/α(T/n)α̇(T/n)]

(13.13)
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Theorem 13.2 Suppose the adjusted diffusion curve is concave and
peaks at time tPt such that the following holds:

Q̈a(t) > 0for t < tPt
Q̈a(t) = 0for t = tPt
Q̈a(t) < 0for t > tPt
Also, define nP such that nP = T/ tPt . Then, n* < nP , (i.e. t’* >

tPt .)

Proof: The proof can be seen graphically in Figure 1 at the end of
the chapter by considering the area under the adjusted diffusion curve.
Note that if nO ≥ nP (tO ≤ tP ), then n* < nP (t’* > tP ). Else if nO <
nP (tO > tP ), then n* ≤ nO < nP , (t’* ≥ tO > tP ).

The implications of Theorem 13.2 are illustrated in Figure 1. Note
that the marginal benefits (i.e. Qa(T/n)) are represented by the area
under the diffusion curve to the left of t’, whereas the marginal costs
(i.e. T/nQ̇a(T/n)) are represented by the area inside the square region.
Hence, the optimal clockspeed (n*) for the unconstrained problem corre-
sponds to the average life cycle length (t’) where the difference between
the area representing the marginal benefits and the area representing the
marginal costs are exactly equal to the development costs. Furthermore,
from Figure 1, it is apparent that the optimal life cycle length (t’) occurs
after the peak diffusion time (tP ). Now we consider the impact of the
organizational constraint on this result.

Suppose the adjusted diffusion curve of a particular firm peaks at
some point in time, and the organizational barrier for this firm exceeds
the pace of peak sales (i.e. nO >nP and tO <tP ). Then the optimal
industry clockspeed is such that all products introduced will remain
in the market longer than the time necessary to achieve peak sales.
Furthermore, a Case 1 solution is optimal and the industry clockspeed
lags the organizational capabilities. However, if the pace afforded by the
firm’s capabilities lags the pace of peak sales (i.e. nO <nP and tO >tP ),
then a Case 2 solution may be optimal and the industry clockspeed will
be determined by the organizational capabilities. In either situation,
the optimal industry clockspeed lags that value which allows each new
product generation to remain in the market long enough to meet peak
demand. Moreover, the optimal firm clockspeed allows new products to
reach the decline stage of the life cycle prior to replacing them in the
market.

To illustrate, consider the following example. Suppose a firm has a
constant net revenue stream, (i.e. α̇(t) = 0) and a classic growth curve
is appropriate such that the rate of change in the number of adopters for
the new products increases then decreases over time. Specifically, the
coefficient of innovation is less than the coefficient of imitation for the
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Bass model, (i.e. p<q). Furthermore, suppose that the organizational
constraint for this type of industry is such that it allows new products to
be introduced to the market at a rate which exceeds the peak diffusion
for each new generation, (i.e. nO >nP ). Then, the optimal clockspeed
for this type of firm is slower than that which allows all new product to
reach the peak level of sales prior to the introduction of the next

3.3 Declining Adjusted Sales Curve
In contrast to Theorem 13.2 which assumes that the diffusion curve is

concave, Theorem 13.3 addresses the situation where the adjusted dif-
fusion curve is actually decreasing over time. In addition, to derive the
results in Theorem 13.3, we first consider the case where development
costs are negligible. Under these conditions, the second order condi-
tions of optimality are violated, and a boundary solution will always be
optimal.

Theorem 13.3 If the rate of change in the number of adopters for the
new products is decreasing over time, (i.e. Q̈a(t) ≤ 0 ∀t) and if the
development costs are negligible (i.e. cD=0), then a Case 2 solution will
be optimal and n* = nO.

Proof: The proof can be seen graphically in Figure 2 by considering
the area under the adjusted diffusion curve. Note that for Q̈a(t) ≤ 0, the
total area under the diffusion curve (i.e. Qa(t)) is always greater than
the rectangular area representing the average diffusion rate (i.e. tQ̇a(t) )
at any point in time. Therefore, Qa(t) ≥ tQ̇a(t)∀t.

To illustrate, consider the following example. Suppose an industry is
fiercely competitive and characterized by decreasing net revenue stream,
(i.e. α̇(T/n) ≤ 0). Such an industry may offer the greatest premium
revenue to the industry “pioneers” that are first to market. For this
industry, the coefficient of innovation exceeds the coefficient of imita-
tion for the Bass model, (i.e. p > q). From Equation (13.6), we have
Q̈a(T/n) < 0, since Q̇a(T/n) ≥ 0. That is, if the rate of change in the
number of adopters for the new products is decreasing, and the develop-
ment costs are very small, the firm’s clockspeed will always match the
pace of the organizational capabilities.

While the assumption of negligible development costs may be unrea-
sonable, the results of Theorem 13.3 can be interpreted as the limit of
the optimal clockspeed as development costs become smaller. When
development costs are significant, however, a Case 1 solution may be
optimal even when the adjusted sales curve is decreasing.
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3.4 Declining Net Revenues
In Theorem 13.4, we characterize the impact of the change in net

revenue over time on the peak diffusion time, assuming that the demand
for the firm follows a classic product life cycle which peaks then declines.

Theorem 13.4 Suppose the diffusion curve is represented by the Bass
model in Equation (13.8) , with p < q. Compare three alternate scenarios
each with similar diffusion parameters but differing dynamic revenue
streams earned over time. Specifically, in scenario 1, the net revenue is
increasing over time (i.e. α̇(t) > 0) and the diffusion curve peaks at tPt 1.
In scenario 2, the net revenue is constant over time (i.e. α̇(t) = 0) and
the diffusion curve peaks at tPt 2. In scenario 3, net revenue is decreasing
over time (i.e. α̇(t) < 0) and the diffusion curve peaks at tPt 2. Then,
tPt 1 > tPt 2 > tPt 3.

Proof: To find tP , let Q̈a(tP ) = 0 such that 2q/mQa(t)−α̇(t)/[α(t)]2 =
q − p. The proof follows from the fact that Qa(t) ≥ 0 and q - p >0.

¿From Theorem 13.4, the dynamic nature of the net revenue stream
over the product life cycle has a significant impact on the adjusted dif-
fusion curve. In particular, for firms encountering extreme price com-
petition such that net revenue is decreasing throughout the product life
cycle, the peak demand occurs earlier in the planning horizon. Further-
more, it’s more likely that the organizational barrier will be tight, and
the industry will exhibit characteristics of a Case 2 solution. For a Case
1 industry which is unconstrained by organizational barriers, the effect
of decreasing net revenue is to increase the firm clockspeed. Moreover, as
price competition in the industry increases (i.e. the net revenue exhibits
a faster rate of decline), the firm’s clockspeed necessarily increases. To
illustrate, consider the personal computer (PC) industry that is charac-
terized by rapidly decreasing prices (∼ 50% per year). The effect of the
decreasing net revenue is that PC makers are introducing new models
at a faster rate every year, confirming the empirical evidence found by
Mendelson and Pillai (1999).

In contrast, when significant learning effects associated with decreas-
ing cost structures dominate any price reductions, net revenue is actually
increasing over time, (i.e. α̇(t) > 0). In this type of industry, the im-
pact of learning effects on the firm’s internal costs actually causes the
peak demand to occur later in the planning horizon. Intuitively, firms in
this type of industry can earn more profit per unit later in the planning
horizon, then the new products should remain in the market longer to
reap these benefits prior to replacement by newer generations. Therefore,
strong learning curve effects in an industry are associated with a slower
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pace of new product introduction. To illustrate, consider the aircraft
industry which is traditionally associated with strong learning effects.
In his recent book, Fine (1998) reports that the product clockspeed for
this industry is between ten and twenty years.

4. Conclusions
Using a simple analytic model, an optimal firm “clockspeed” can easily

be derived. The derived clockspeed is mostly dependent on marketing,
technology, and operations related factors such as (i) average demand
forecasts, (ii) dynamic profits earned over time, (iii) cannibalization of
older products, and (iv) technology and/or production constraints lim-
iting the pace of new product development. Implicitly, there exists some
optimal firm related rate of new product introductions, whereby exceed-
ing this optimal level decreases firm profits.

Two different cases exist and may be appropriate for different types of
firms. In the first type, the optimal clockspeed which maximizes profits
for the firm actually lags the maximal pace that the firm could achieve.
This situation results when dynamic demand follows a traditional life
cycle growth curve with both growth and decline stages. Furthermore,
the optimal firm clockspeed in this case advocates introducing new gen-
erations of products such that each generation is allowed to reach the
decline stage before replacing it with a new generation. Therefore, mar-
ket related demand factors are crucial drivers of the firm’s clockspeed in
this situation.

In contrast, the second case depicts the situation where the speed of
new product introduction is dictated by the firm’s organizational capa-
bilities. Factors which contribute directly to this phenomena include
a competitive environment with declining sales/demand curves along
with declining net revenues for the firm’s new product. In this case,
an incentive exists for firms to invest in enhancing its production, de-
sign, and/or supply related capabilities to increase the frequency of new
product introductions. Therefore, firm’s operating in this type of en-
vironment should carefully assess the trade-off between the additional
revenues that could be earned by speeding up its pace of new product
introduction and the costs of enhancing these internal capabilities.

A key factor influencing firm clockspeed is the anticipated shape of
the demand/sales curve for each generation of a new product. In gen-
eral, when demand curves are relatively flat, there is little incentive for
the firm to introduce multiple generations of new products, particularly
if development costs are formidable. In contrast, when demand curves
are declining and development costs are low, the firm should introduce
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new products at the maximal pace possible with its current organiza-
tional capabilities. Finally, when the demand curves follow a traditional
growth and decline pattern typically associated with the classical dif-
fusion process, the firm optimally introduces each new generation of
products after the old product has reached the declining phase of the
product life cycle.

While this paper addresses the impact of dynamic net revenues and
demand on firm clockspeed via an analytic framework, a more careful
examination of some of the model assumptions is warranted. The as-
sumption of a “single product rollover” whereby the introduction of a
new product completely replaces the sales of the older product currently
in the market is fairly common in the literature. However, the relax-
ation of this assumption to allow for the sales of multiple generations
of products simultaneously can be further investigated. In addition, a
more sophisticated linkage of the potential marketshare between multiple
generations of a product may yield further insights into firm level NPD
clockspeed. Finally, a more detailed analysis of alternate development
cost structures is appropriate.
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Chapter 14

HIBERNATION DURATIONS FOR CHAIN
OF MACHINES WITH MAINTENANCE
UNDER UNCERTAINTY

Ali Dogramaci
Department of Industrial Engineering
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Abstract Maintenance of a machine and its replacements by newer ones in the
course of a predetermined planning horizon with fixed intermediate
dates for potential replacement opportunities is considered. Using the
Kamien-Schwartz optimal control model for maintenance, allowance for
ceasing of production until installation of a new machine is studied with
respect to regeneration points.

1. Introduction
We consider a single machine and its possible replacements (allowed

on a calendar of potential regeneration points) over time. The proba-
bility distribution of machine failure can be improved by predictive or
preventive maintenance. The natural hazard rate for which the ma-
chine was designed for, can thus be reduced to a more favorable effective
hazard rate.

If the retirement date of a machine is not required to be equal to the
installment date of its successor, then the length of the hibernation dura-
tion for the production operations need to be determined. When capital
expenditures of an organization are made at fixed points on a calendar
(such as release of funds in first week of each quarter, or semi annually
on first weeks of March and September), then new machine purchases
may have to wait for these dates for the availability of the acquisition
funds. In the meantime it is possible that the machine waiting for re-
placement may operate under potentially unprofitable circumstances.
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Selling the machine on hand and waiting idle may be more attractive
than suffering unfavorable production costs, or a rapid deterioration in
its resale/salvage value. In addition to such factors, constraints on de-
livery dates of the machine supplier can possibly prevent installation of
a replacement at the retirement time of its predecessor. Hibernation can
also be considered when buying the currently available machine yields
negative expected net present value of cash flow, making it preferable to
wait idle until the availability of profitable technologies.

We use the term hibernation to indicate such deliberate non-production
periods where the system waits for the arrival of a new and profitable
machine. If hibernation is allowed, when should they be scheduled? An-
swers to such questions may also put pressure for realignment of the
calendar for the regeneration points, as well as company policies on
borrowing versus use of internal funds. These in turn may raise consid-
erations for the modification of machine replacement time windows.

2. The Model
The main model to be used is that of Kamien and Schwartz (1971)

which was recently imbedded into a dynamic programming model by
Dogramaci and Fraiman (2004) (in short D-F), for potential machine
replacements at fixed intermediate dates over the planning horizon.

Notation:
T : Length of planning horizon consisting of T equal length periods.

Starting point of each period constitutes a potential for the acquisition of
a machine ( a replacement opportunity), i.e. a regeneration point. Gen-
eralization of the model for periods of unequal lengths is straightforward
and will not be addressed here.

j : Integer indicating a specific regeneration point in the planning
horizon. Chronologically the one at the start of the terminal period of
the planning horizon is set as j = 1, and earlier ones have higher values
(in order to serve as index for computational backsweep operations.)

FjFF (t): Probability that a machine of vintage j (bought when there
were j periods to go until the end of the planning horizon) fails at or
before t units of time from its purchase date.

hj(t) = [dFjFF (t)/dt]/[1 − FjFF (t)]: Natural hazard rate of a machine (of
vintage j).

u(t): intensity of maintenance effort at time t. u(t) ∈ [UjUU , UjUU ], 0 ≤
UjUU < UjU ≤ 1 where UjU and UjU denote minimum and maximum allowable
intensities on a machine of vintage j.

hj(t)[1 − u(t)]: Effective hazard rate of the machine.
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MjM (u(t))hj(t): Cost of maintenance effort at time t. MjM (u(t)) is
continuously differentiable with respect to u(t) , with M

′
jM > 0, M

′′
jM > 0,

and MjM (0) = 0.
r: Discount rate indicating time value of money.
Dj : Cost of acquiring and installing a machine of vintage j.
RjR : Revenue net of all costs except maintenance u(t) generated by a

machine of vintage j.
SjS (t): Resale value at time t, of a working machine of vintage j.

0 ≤ SjS (t) ≤ RjR /r.
Lj : Junk value of a failed machine costs due to in-service failure .

Lj < SjS (t).
f(j): Optimal dynamic programming value function at stage j of back-

ward sweep. This is the net present value (with respect to node j) of an
optimal regeneration and maintenance policy when there are j periods
to go until the end of the planning horizon. It will be computed for
j = 1, 2, ..., T in that order. Subscripts in parentheses indicate stage
number of dynamic programming calculations, rather than equipment
vintage. f(0) = 0.

V (j, K): Optimal expected net present value for a vintage j machine
acquired at time T − j, in other words at node j, at cost of Dj dollars
with the intention of keeping it for K periods (K ≤ j) and subsequent
replacements (if any). Present value is computed with respect to the
time when the machine is introduced to the production system (T − j.
Maximum value of K is j. However, managerial considerations can
dictate it to be shorter.

ZjZ : Hibernation time (measured in terms of machine age): Planned
retirement age of machine of chosen at node j. If hibernation is not
allowed, ZjZ = K. Otherwise, 0 ≤ ZjZ ≤ K.

KZjZ : Closest regeneration point downstream of ZjZ . (0 ≤ ZjZ ≤ KZjZ ≤
K). KZjZ is the smallest integer larger than or equal to ZjZ .

V (j, K) shall be determined after f(j−1),,f(0) are obtained, and will in
turn feed into the computation of f(j) as follows:

f(j) = max
K=1,..,jK

[V (j, K)] , j = 1, 2, ...., T ; jK ≤ j. (14.1)

jK is the upper bound on intended machine life for vintage j, as dictated
by technical, safety, and managerial considerations. If there is no such
limit, then one can set jK = j. At node j different types of machines may
be available, (and hibernation times of each of these alternatives may be
different.) If there are alternative models, i.e. a variety of technologies
available at time T − j, then V (j, K) can be solved for each and the
alternative with largest expected net present value may be chosen.
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Consider any point in time t, during the time span addressed by any
V (j, K). With probability 1 − FjFF (t) the machine has not yet failed
implying a cash flow rate of RjR − MjM (u(t))hj(t). On the other hand
failure of the machine at time t is associated with probability density
dFjFF (t)/dt = [1 − u(t)]hj(t)[1 − FjFF (t)] and cash flow of Lj right away, as
well as f(j−τ−1) which with respect to time t, is the nearest downstream
optimal dynamic programming value function. The index number of the
nearest downstream regeneration point is j−τ −1. In case machine fails
at time t a new one is bought at this node. (Values of τ , τ + 1, · · · are
chosen to target such nodes.) Thus V (j, K) is obtained by solving the
following problem.

V (j,K) =

= max
u(t),ZjZ

KZj
−1∑

τ=0

min[(τ+1),ZjZ ]∫
τ

{e−rt{[RjR − MjM (u(t))hj(t)][1 − FjFF (t)]

+ Lj [1 − u(t)]hj(t)[1 − FjFF (t)]}
+ e−r(τ+1) f(j−τ−1)[1 − u(t)]hj(t)[1 − FjFF (t)]}dt

+ [1 − FjFF (ZjZ )] [e−rZjZ SjS (ZjZ ) + e
−rKZj f(j−KZj

)] − Dj (14.2)

subject to
dFjFF (t)

dt
= [1 − u(t)]hj(t)[1 − FjFF (t)] (14.3)

with

0 ≤ UjU ≤ u(t) ≤ U j ≤ 1, FjFF (0) = 0, t ∈ [0, ZjZ ] and 0 ≤ ZjZ ≤ KZjZ ≤ K.

If solution of (14.2)-(14.3) above yields V (j, K) < 0, then managerial
policies allowing, we can set V (j, K) = 0 (implying that an imaginary
machine of zero costs and revenues) and stay idle from time T − j until
T − j + K.

In the objective function (14.2), jumps from f(j−1) to f(j−2) to f(j− 3)···
are addressed by breaking the problem into K unit period segments and
imbedding each into the adjacent upstream one.

3. A Solution Procedure
The procedure proposed here builds upon the D-F approach with

the added complexity of checking for hibernation possibilities. We first
investigate the (potentially) last period of usage to check whether KZjZ =
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K. Hence, the machine of vintage j , to be used for K periods is studied
from t = K − 1 to K.

Jj,KJJ −1,FjFF (K−1) =

= max
u(t)

K∫
t=K−1

{e−rt{[RjR − MjM (u(t))hj(t)][1 − FjFF (t)]

+ Lj [1 − u(t)]hj(t)[1 − FjFF (t)]

+ e−rKf(j−K)[1 − u(t)]hj(t)[1 − FjFF (t)]}dt

+ e−rK [SjS (K) + f(j−K)][1 − FjFF (K)] (14.4)

subject to

dFjFF (t)
dt

= [1 − u(t)]hj(t)[1 − FjFF (t)] (14.5)

with 0 ≤ UjUU ≤ u(t) ≤ U j ≤ 1, FjFF (K − 1) given, and FjFF (K) free.
The probability that the machine would still be up and running is

reflected in the value of the state variable at time (in this context,
time=age) K − 1 : FjFF (K − 1). The optimal value of this problem,
J∗

j,KJ −1,FjFF (K−1), feeds in as a salvage value to the adjacent optimal con-
trol problem from K − 2 to K − 1. D-F showed that for τ = 1, ...,K,
J∗

j,τJ −1,FjFF (τ−1) is a linear function of the starting value of the state vari-
able FjFF (τ − 1). Thus the problem starting at τ − 1 needs only to be
solved for a starting state variable value of FjFF (τ − 1) = 0. Its optimal
value will be imbedded into the adjacent earlier problem on the left (i.e.
into the model that starts at time τ − 2) as salvage value term, in the
form: [1 − FjFF (τ − 1) ] J∗

j,τJ −1,0. Thus the objective function in (14.4) can
be stated for FjFF (K − 1) = 0 as:



236

Jj,KJJ −1,0 =

= max
u(t)

K∫
t=K−1

{e−rt{[RjR − MjM (u(t))hj(t)][1 − FjFF (t)]

+ Lj [1 − u(t)]hj(t)[1 − FjFF (t)]}
+ e−rKf(j−K)[1 − u(t)]hj(t)[1 − FjFF (t)]}dt

+ e−rK [SjS (K) + f(j−K)][1 − FjFF (K)]

= max
u(t)

K∫
t=K−1

{e−rt{[RjR − MjM (u(t))hj(t)][1 − FjFF (t)]

+ Lj [1 − u(t)]hj(t)[1 − FjFF (t)]}dt

+

K∫
t=K−1

{e−rKf(j−K)
dFjFF (t)

dt
}dt

+ e−rK [SjS (K) + f(j−K)][1 − FjFF (K)]

= max
u(t)

K∫
t=K−1

{e−rt{[RjR − MjM (u(t))hj(t)][1 − FjFF (t)]

+ Lj [1 − u(t)]hj(t)[1 − FjFF (t)]}}dt

+ e−rKf(j−K)[FjFF (K) − FjFF (K − 1)]

+ e−rK [SjS (K) + f(j−K)][1 − FjFF (K)]

Since FjFF (K − 1) = 0, the objective function of the problem becomes,

Jj,KJJ −1,0 =

= max
u(t)

K∫
t=K−1

{e−rt{[RjR − MjM (u(t))hj(t)][1 − FjFF (t)]

+ Lj [1 − u(t)]hj(t)[1 − FjFF (t)]}}dt

+ e−rK [SjS (K)][1 − FjFF (K)] + e−rKf(j−K) (14.6)

Since 14.6 subject to 14.5 is structurally a standard K-S model, any
hibernation possibility in this period can be studied in the context of a
free terminal time problem. Keeping j and K − 1 fixed, and calling the
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terminal time ZjZ , the terminal condition for

Jj,K,JJ 0(ZjZ ) =

= max
u(t)

ZjZ∫
t=K−1

{e−rt{[RjR − MjM (u(t))hj(t)][1 − FjFF (t)]

+ Lj [1 − u(t)]hj(t)[1 − FjFF (t)]}}dt

+ e−rZjZ [SjS (ZjZ )][1 − FjFF (ZjZ )] + e−rKf(j−K) (14.7)

involves the evaluation of

e−rZjZ (1 − FjFF (ZjZ )) [RjR − MjM (u∗(ZjZ )) hj(ZjZ ) + Lj (1 − u∗(ZjZ )) hj(ZjZ )
− (r + (1 − u∗(ZjZ )) h(ZjZ )) SjS (ZjZ ) + dSjS (ZjZ )/dZjZ ] (14.8)

where u∗(ZjZ ) denotes the optimal value of the control at the optimal
hibernation time. (See for example Kamien and Schwartz (1971) or
Sethi and Thompson (2000) ch. 9.)

u∗(ZjZ ) is chosen so as to maximize the following:

max
0≤ u(ZjZ ) ≤ 1

{(SjS (ZjZ ) − Lj) u(ZjZ ) − MjM [u(ZjZ )]} (14.9)

The expression in square brackets in (14.8) determines sign of the mar-
ginal benefit (negative if cost) of an infinitesimal increase in terminal
time and shall be denoted by B(ZjZ ).

B (ZjZ ) = RjR − MjM (u∗(ZjZ ))hj(ZjZ ) + Lj (1 − u∗(ZjZ )) hj(ZjZ )

− (r + (1 − u∗(ZjZ )) h(ZjZ )) SjS (ZjZ ) +
dSjS (ZjZ )

dZjZ
(14.10)

and can be numerically evaluated for any candidate terminal time. It is
clear that at optimal ZjZ , we must have B (ZjZ ) ≥ 0. Otherwise for some
ε > 0, ZjZ − ε (which may be less than K − 1) may be more profitable.

Since all the expressions can now be numerically evaluated, the pro-
cedure involves the following:

1 If B(ZjZ ) ≥ 0 for all ZjZ ∈ [K − 1, K] then we can set ZjZ := K,
implying no hibernation.

2 If B(ZjZ ) ≤ 0 for all ZjZ ∈ [K − 1, K] then one can set K := K − 1
and if the new K ≥ 1, solve this one-period-shorter problem for
hibernation possibility.

3 Otherwise, using numerical search, find the values of ZjZ for which
B(ZjZ ) = 0 and compute the corresponding values of Jj,ZJJ jZ ,0 as well
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as for ZjZ = K − 1, and ZjZ = K. Pick the ZjZ for which Jj,ZJJ jZ ,0

is largest. (If this Jj,ZJJ jZ ,0 ≤ 0 then set K := K − 1 and if the
new K ≥ 1, solve this one-period-shorter problem for hibernation
possibility.)

4. Implications for Realigning the Calendar for
Regeneration Points.

Allowance for hibernation relaxes the D-F model to ensure non- nega-
tive expected net present values for a machine and in particular, for the
cash flow towards the end of its life.

If optimal value of hibernation time does not turn out to be an integer,
the management may be advised to evaluate the allowance of shorter
periods between regeneration points. Numerical experiments of D-F had
indicated that reduction of such granularity increases the computational
time as a polynomial function of the number of regeneration points. This
evaluation also needs to take into account other considerations including
whether acquisitions (or deliveries) of machines at the newly proposed
times are feasible. While the optimal control model cannot comprise
the non-quantifiable factors of managerial decisions, it nevertheless can
serve as a useful tool for providing some of the basic building blocks that
feed into the final decision.
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Abstract We present a fluid-dynamic model for the simulation of urban traffic
networks with road sections of different lengths and capacities. The
model allows one to efficiently simulate the transitions between free
and congested traffic, taking into account congestion-responsive traffic
assignment and adaptive traffic control. We observe dynamic traffic
patterns which significantly depend on the respective network topol-
ogy. Synchronization is only one interesting example and implies the
emergence of green waves. In this connection, we will discuss adap-
tive strategies of traffic light control which can considerably improve
throughputs and travel times, using self-organization principles based
on local interactions between vehicles and traffic lights. Similar adap-
tive control principles can be applied to other queueing networks such as
production systems. In fact, we suggest to turn push operation of traf-
fic systems into pull operation: By removing vehicles as fast as possible
from the network, queuing effects can be most efficiently avoided. The
proposed control concept can utilize the cheap sensor technologies avail-

239

(eds.), Optimal Control and Dynamic Games, 239–274.

©c Springer. Printed in the Netherlands.
R.F. HartlandC. Deissenberg



240

able in the future and leads to reasonable operation modes. It is flexible,
adaptive, robust, and decentralized rather than based on precalculated
signal plans and a vulnerable traffic control center.

1. Introduction
Traffic control in networks has a long history. Early efforts have aimed

at synchronizing traffic signals along a one-way, then a two-way arter-
ial. There is still potential for improvement in this direction, as is at-
tested by some recent research efforts [Stamatiadis and Gartner (1999)]
or prompted by the development of new theoretical tools [Lotito et al.
(2002), Mancinelli et al. (2001)]. Synchronization of traffic along ar-
terials results in so-called green-waves, the aim of which is simply to
ensure that traffic flows smoothly along main streets. Expected benefits
of green waves are reduced fuel consumption and travel times.

The green-wave approach can be generalized to networks, yielding
pre-calculated signal control schemes, such as TRANSYT [Robertson
(1997)]. In principle such schemes are completely coercive: they force
the traffic flow to comply with pre-calculated patterns, optimizing such
criteria as the total travel time spent. Since traffic demand varies, the
need for some responsiveness of the signal control was felt very soon.
The SCOOT system [Robertson and Bretherton (1991)], an outgrowth
of TRANSYT, allows for smooth change in the signal settings in response
to changes in the traffic demand.

Among the strategies making use of precalculated controls, let us men-
tion SCATS [Sims and Dobinson (1979), Lin and Chen (2004)], which
relies on a library of controls (green durations, offsets, ...) according
to traffic conditions. Even the optimization criterion depends on the
traffic state. The system might, at night, minimize the number of stops,
maximize throughput at day time under normal conditions, and aim at
postponing the onset of congestion under heavy traffic conditions.

More recent developments stress greater adaptability. For instance
UTOPIA [Mauro and Di Taranto (1989)] combines a regional control
based on prediction of traffic flow through the main network arteries
with the action of local intersection controllers. The regional control
simply serves as a reference for local control.

OPAC [Gartner (1990)] optimizes queues in accordance with the
“store-and-forward” concept [Papageorgiou (1991)], based on dynamic
programming, with a rolling horizon. OPAC is fundamentally designed
to manage intersections but extends to networks.

Even more decentralized and demand-responsive at a very local level,
PRODYN [Henry and Farges (1989)] optimizes traffic at intersections by
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switching traffic lights on a traffic-actuated basis. Optimality is achieved
through the dynamic programming technique. PRODYN also tries to
coordinate neighboring intersections.

A further development includes dynamic assignment into the calcula-
tion of optimal traffic light settings as well as non-mandatory manage-
ment schemes (user information). METACOR [Elloumi et al. (1994)],
based on an optimal control strategy with a rolling horizon, is a good
example of this approach. In the same line of approach, TUC [Diakaki
et al. (2003)] displays two innovative features:

1. a reference strategy is calculated for the network (for a given sit-
uation),

2. a filter is included into the algorithm which calculates the com-
mands. The aim of the filter is to detect and adjust deviations
from the nominal traffic situation, and also to detect in real time
deviations in parameter values.

A notable trend in recent research on demand-responsive traffic man-
agement systems is greater reliance on artificial intelligence (AI) meth-
ods, prompted by an ever growing complexity of algorithms, models and
data. Let us cite some examples of this trend: [Li et al. (2004), Sayers
et al. (1998), Niittymäki (2002)] and CLAIRE [Sc´¨ emama (1994)].´

Overall, no matter how sophisticated these classical approaches,

either their responsiveness is limited and they appear as tools both
coercive and normative (imposing a traffic situation rather than
responding to it),

or they are completely demand-responsive (CLAIRE or PRODYN
for instance) and lack a global coordination. The TUC strategy
might be viewed as a nice compromise.

All classical approaches require vast amounts of data collection and
processing, as well as huge processing power. Further, global coordi-
nation notoriously requires data difficult to obtain or elaborate such as
dynamic origin-destination matrices or dynamic assignment data. Fi-
nally, the systems described so far have a difficult time responding to
exceptional events, accidents, temporary building sites or other changes
in the road network, natural or industrial disasters, catastrophes, ter-
rorist attacks etc.

Hence the usefulness of the decentralized and self-organized approach
advocated in this paper is its greater degree of flexibility, its indepen-
dence of a central traffic control center, and its greater robustness with
respect to local perturbations or failures. As shown in Sec. 15.4 and
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summarized in Sec. 15.5, our autonomous adaptive control based on a
traffic-responsive self-organization of traffic lights leads to reasonable
operations, including synchronization patterns such as green waves. In
particular, our principle of self-control is suited for irregular (i.e. non-
Manhattan type) road networks with counterflows, with main roads (ar-
terials) and side roads, with varying inflows, and with changing turning
or assignment fractions. This distinguishes our approach from simpli-
fied scenarios investigated elsewhere [Brockfeld et al. (2001), Fouladvand
and Nematollahi (2001), Huang and Huang (2003)]. Another interest-
ing feature is that our approach considers not only “pressures” on the
traffic lights related to delay times. It also takes into account “counter-
pressures” when subsequent road sections are full, i.e. when green times
cannot be effectively used.

2. Modeling traffic flow in urban road networks
In our model of urban road traffic, road networks are composed of

nodes (intersections, plazas, dead ends, or cross sections of the road),
which are connected by directed links i, representing homogeneous road
sections without changes in capacity.

2.1 Traffic flow on network links

Figure 15.1. A road network (a) can be considered as a directed graph (b). The
directed links represent homogeneous road sections, while the nodes correspond to
junctions. (c) The road sections may or may not be controlled by traffic lights.

2.1.1 Homogeneous road sections. Our road sections i are
characterized by a constant number IiII of lanes, over which traffic is as-
sumed to be equally distributed. Different lanes turning into different
directions may be treated as separate road sections, depending on the
respective design of the infrastructure. Road sections can have a very
large length Li, which is in favor of numerical efficiency. The dynam-
ics within a link of the road network is described by the section-based
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queueing-theoretical traffic model by Helbing (2003b). It is directly re-
lated to the equation of vehicle conservation [Lighthill and Whitham
(1955)] and briefly introduced, here. The average velocity of vehicles on
link i around place x at time t is denoted by ViVV (x, t), the spatial density
per lane by ρi(x, t), and the flow per lane by Qi(x, t) = ρi(x, t)ViVV (x, t).
The flow is approximated by a triangular flow-density relationship

Qi(x, t) =
{

ρi(x, t)V 0
iVV if 1/ρi(x, t) >

(
1/ρjamρρ + TV 0

iVV
)

1
T

[
1 − ρi(x, t)/ρjamρρ

]
otherwise (in congested traffic).

(15.1)
While the increasing line ρiV

0
iVV describes free traffic moving with speed

V 0
iVV , the falling “jam line” describes congested traffic, in which the

average vehicle distance 1/ρi is given by an effective vehicle length
leff = 1/ρjamρρ (= vehicle length plus minimum front-bumper-to-back-
bumper distance) plus a safety distance TViVV which grows linearly with
the speed ViVV . The proportionality factor is the (safe) time gap T kept in
congested traffic. Therefore, our model is based on only three intuitive
parameters: the maximum jam density ρjamρρ , the free velocity V 0

iVV (speed
limit) on link i, and the time gap in congested traffic T . In our paper, we
have chosen V 0

iVV = 14 m/s = 50 km/h, ρjamρρ = 150 vehicles per kilometer
and lane, and T = 1.8 s.

We should note that there are other macroscopic traffic models such
as the non-local, gas-kinetic-based traffic (GKT) model [Treiber at al.
(1999)], which can describe the aggregate dynamics of traffic flows more
accurately than this model. The “GKT model” has even been suc-
cessfully implemented to simulate traffic flows on all German freeways,
taking into account information by local detectors and floating car data.
However, the dynamics of urban traffic is dominated by the dynamics
of the traffic lights, which justifies simplifications in favor of numeri-
cal efficiency and analytical treatment. The section-based traffic model
covers the most essential features of traffic flow in urban road networks,
e.g. the transition between free and congested traffic, the spreading and
interaction of vehicle queues, etc. Its particular strengths are its trans-
parency, numerical stability, and computational efficiency. Compared to
microsimulation models of urban traffic such as cellular automata mod-
els [Cremer and Ludwig (1986), Esser and Schreckenberg (1997), Nagel
et al. (2000)], the treatment of lane changes, intersections, and turning
operations is much easier, and analytical investigations are possible.

2.1.2 Propagation of perturbations. The particular sim-
plicity of the section-based traffic model results from its two constant
characteristic velocities: While perturbations of free traffic propagate to-
gether with the cars at the speed V 0

iVV , in congested traffic perturbations
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travel upstream with the constant velocity

c = −1/(Tρjamρρ ) , (15.2)

which has the typical value of −3.7 m/s or −13.3 km/h.
A favorable property of the section-based traffic model is that all

relevant quantities can be determined from the boundary flows, which
makes the model very efficient. For example, the dynamics inside a
road section i can be easily derived from the arrival flow Qarr

i (t) and the
departure flow Qdep

i (t) per lane with the two characteristic velocities V 0
iVV

and c, see Fig. 15.2.

Figure 15.2. A road section i of length Li with an area li of congested traffic at
the downstream end (right). Due to the constant propagation speeds V 0

iVV and c of
perturbations in free and congested traffic, respectively (see big arrows), the internal
dynamics can be easily calculated based on the boundary flows Qarr

i (t) and Qdep
i (t)

only.

The interior flow per lane is given by

Qi(x, t) =

⎧⎨⎧⎧⎩⎨⎨ Qarr
i

(
t − x

V 0
iVV

)
if x < Li − li(t) (in free traffic) ,

Qdep
i

(
t − Li−x

|c|
)

if Li − li(t) ≤ x ≤ Li.

(15.3)
That is, the flow is determined by the downstream boundary in the area
of congested traffic of length li(t) ≥ 0, while it is given by the arrival
flow in the area x < Li− li(t) of free traffic. The density can be obtained
via

ρi(x, t) =
{

Qi(x, t)/V 0
iVV if x < Li − li(t) (in free traffic) ,

[1 − TQi(x, t)]ρjamρρ if Li − li(t) ≤ x ≤ Li.
(15.4)

The average velocity is calculated via the formula ViVV (x, t) =
Qi(x, t)/ρi(x, t), if ρi(x, t) > 0.

The temporal change of the number NiNN (t) of vehicles per lane on road
section i can be also determined from the arrival and departure flows:

dNiNN

dt
= Qarr

i (t) − Qdep
i (t) . (15.5)
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The time-dependent change of the congested area of length li(t) will be
discussed in the next paragraph.

2.1.3 Movement of congestion fronts. Since our road sec-
tions are homogeneous by definition, congestion can only be triggered
at their downstream ends. While the congested area might eventually
expand over the entire road section, the downstream end remains at
x = Li. The upstream end lies at x = Li − li(t), where jumps ∆ρi and
∆Qi occur in the density and in the flow, respectively. In order to ensure
the conservation of vehicles, the condition ∆Qi = −∆ρi · dli/dt must be
fulfilled. Therefore, the border line between free and congested traffic
moves with the following velocity [Helbing (2003b)]:

dli
dt

= − Qarr
i

(
t − [Li − li(t)]/V 0

iVV
)− Qdep

i

(
t − li(t)/|c|

)
ρarr

i

(
t − [Li − li(t)]/V 0

iVV
)− ρdep

i

(
t − li(t)/|c|

) . (15.6)

Note that, within the congested area of length li(t), one might find areas
of quasi-free traffic, where the vehicles reach the maximum free velocity
V 0

iVV and the maximum flow Qmax
i per lane that is possible according to

the flow-density relationship (15.1):

Qmax
i =

(
T +

1
V 0

iVV ρjamρρ

)−1

. (15.7)

This value corresponds to vehicles accelerating out of a traffic jam every
T = 1.8 seconds. Nevertheless, the value 1/T is not completely reached,
as each subsequent vehicle has to drive an additional distance leff =
1/ρjamρρ in order to reach the respective measurement cross section. This
requires an additional time interval of leff/V 0

iVV as in the formula above
(see Fig. 15.3).

Let us shortly discuss two special cases of formula (15.6): If the de-
parture flow is stopped due to a red traffic light, we obtain the simplified
relationship

dli
dt

=

[
ρjamρρ

Qarr
i

(
t − [Li − li(t)]/V 0

iVV
) − 1

V 0
iVV

]−1

≈ Qarr
i

(
t − [Li − li(t)]/V 0

iVV
)

ρjamρρ
.

(15.8)
If the traffic light turns green at time t′0, the end of the traffic jam
still propagates upstream at the speed (15.8) with new arriving vehicles.
However, at the same time, an area of quasi-free traffic with maximum
flow Qmax

i propagates upstream with velocity c from the downstream
boundary. Therefore, the effective length leffi (t) of the vehicle queue is

leffi (t) = li(t) − |c|(t − t′0) . (15.9)
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Figure 15.3. Illustration of queued vehicles (triangles in the lower left corner) and
freely moving vehicles after a traffic light turns green (triangles in the upper right
part). The characteristic speeds V 0 and c are indicated by diagonal lines.

If this effective queue has been fully resolved at time t∗, i.e. leffi (t∗) = 0,
it takes an additional time li(t∗)/V 0

iVV until the last vehicle of that queue
has left the road section i. Therefore, we reach li(t) = 0 and, thereby,
free traffic on the whole road section i, at time t∗ + li(t∗)/V 0

iVV . Before
this point in time, vehicles that have moved out of the queue may still
be trapped again by a red traffic light at the end of road section i.

2.1.4 Travel time. Let the travel time TiTT (t) be the time a
vehicle needs to pass through the road section i when entering it at time
t. Then, the actual number NiNN (t) of vehicles inside the road section is
given by

NiNN (t) =

t+TiTT (t)∫
t

dt′ Qdep
i (t′) . (15.10)

This formula implies the following delay-differential equation describing
how the travel time TiTT depends on the boundary flows [Helbing (2003b)]:

dTiTT

dt
=

Qarr
i (t)

Qdep
i

(
t + TiTT (t)

) − 1 . (15.11)

According to this, the travel time can be predicted based on the antici-
pated departure flow, e.g. when a certain traffic light control is assumed
(see Secs. 15.2.1.5 and 15.4.3).
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2.1.5 Delay time. Since the travel time would exactly be
Li/V 0

iVV without congestion, any deviation from that can be understood
as the time a vehicle has been delayed due to congestion. Therefore, we
may introduce the delay time

T del
iTT (t) = TiTT − Li

V 0
iVV

. (15.12)

Since Li/V 0
iVV is time-independent, the right hand side of equation (15.11)

applies to dT del
iTT /dt as well.

Consider a road section with a constant arrival flow Qarr
i (t) and a

departure flow Qdep
i (t) = γiγγ (t)Qmax

i being controlled by a traffic light.
As the buffer size is given by the maximum number Liρ

jamρρ of vehicles
per lane on road section i, from Eq. (15.5) we can derive

1
t

t∫
0

dt′ Qarr
i (t′) ≤ Liρ

jamρρ

t
+

1
t

t∫
0

dt′ Qdep
i (t′)

≤ Liρ
jamρρ

t
+

Qmax
i

t

t∫
0

dt′ γiγγ (t′)

=
Liρ

jamρρ

t
+ uiQ

max
i (15.13)

with the average green time fraction

ui =
1
t

t∫
0

dt′ γiγγ (t′) . (15.14)

For t → ∞ we can see that the average arrival rate per lane on road
section i should not exceed the maximum flow times the green time
fraction ui. Otherwise, we will have a growing queue, until the maximum
storage capacity IiII Liρ

jamρρ for vehicles on road section i has been reached.
The throughput is reduced if a downstream road section j is sometimes

fully congested, as this limits the departure flow. Moreover, the delay
time can temporarily increase, if the arrival of vehicles at the upstream
boundary of road section i is not synchronized with the green phase
of the traffic light at the downstream end. Such a synchronization of
arrivals in i with the desired departure times is hard to reach in an
irregular road network. As a consequence, vehicles tend to queue up at
a red light before they can leave a road section i (see Fig. 15.4). Note,
however, that a green light reaches maximum efficiency when it serves
vehicles which have queued up before.
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Figure 15.4. Trajectories of freely moving vehicles (diagonal lines) and queued ve-
hicles (horizontal lines) in dependence of the traffic light control at two subsequent
intersections 1 and 2. In all four displayed scenarios, vehicles arrive with identical
time headways (i.e. constant arrival rate) at traffic light 1, which operates periodi-
cally. Traffic light 2 is operated in different modes: (a) The frequency and time offset
are adapted to the first traffic light, as required by a green wave. (b) The frequency
is the same as for the first traffic light, but has a non-optimal time offset. (c) The
frequency (and cycle time) differs from the one of the first traffic light. (d) The green
time varies stochastically, but the average green time fraction is the same. When
the frequencies are the same, but the time offset is not properly adjusted, a certain
fraction of vehicles is stopped, see (b). If the frequencies are different, it is most likely
that vehicles will be stopped by a red light, potentially even for several times, see (c).
In such cases, a stochastic variation of green time periods can be favorable, see (d).
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Let us now study the case where the waiting queues cannot be cleared
completely within one green phase. How long is a vehicle delayed, if it
joins a queue of length li(t0) at time t0? The totally required green time
needed until the vehicle can leave the road section i is given by

T req
iTT (t0) =

li(t0)ρjamρρ

Qmax
i

, (15.15)

since li(t0)ρjamρρ is the number of vehicles per lane to be served and Qmax
i

the service rate. Let us now estimate the overall time passed until the
downstream boundary of road section i is reached. It is given by the
formula

T pass
iTT (t0) = T req

iTT (t0) + overall red and yellow times in between. (15.16)

The time delay of vehicle i by queuing, red and yellow times is the
overall time passed minus the travel time li(t0)/V 0

iVV in free traffic:

T del
iTT (t0) = T pass

iTT − li(t0)
V 0

iVV
(15.17)

= li(t0)
(

ρjamρρ

Qmax
i

− 1
V 0

iVV

)
+ overall red and yellow times.

Generally, this formula is difficult to express, as its result depends sen-
sitively on the respective red and green phases. However, the formula
for the average delay time becomes quite simple. Just remember that
the average green time fraction is ui and the average fraction of red and
yellow times must be 1 − ui. Therefore, the average delay T del

iTT as a
function of the average queue length li and the green time fraction ui is
estimated by the formula

T del
iTT ≈ li

(
ρjamρρ

Qmax
i

− 1
V 0

iVV

)
+

1 − ui

ui
× totally required green time T req

iTT

= li

(
ρjamρρ

uiQmax
i

− 1
V 0

iVV

)
. (15.18)

According to this, the average delay time T del
iTT is proportional to the

average queue length li, but a large green time fraction ui is helpful. Note
that the formulas of this section are not only applicable to situations
with fixed cycle times and signal programs. They are also applicable to
situations where the red and green phases are varying.
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2.1.6 Potential flows and traffic states. The in- and outflow
of a road section is not only limited by capacity constraints such as
Qmax

i , but also by the actual state of traffic. We will, therefore, denote
the potential arrival and departure flows per lane by Qarr,pot

i (t) and
Qdep,pot

i (t), respectively. Congestion is triggered if Qdep
i (t) > Qdep,pot

i (t),
and resolved if li(t) = 0. In the case where the road section is entirely
congested, i.e. li(t) = Li, this state remains until Qarr

i (t) < Qarr,pot
i (t).

The potential flows are determined as follows: As long as there is no
congestion, the potential departure flow is given by the former arrival
flow Qarr

i (t − Li/V 0
iVV ). When the downstream end of road section i is

congested, vehicles are queued up and can depart with the maximum
possible flow Qmax

i . Altogether, we have

Qdep,pot
i (t) =

{
Qarr

i (t − Li/V 0
iVV ) if li(t) = 0 ,

Qmax
i if li(t) > 0 .

(15.19)

At the upstream end, the maximum possible flow Qmax
i can enter road

section i as long as it is not entirely congested. Otherwise, the arrival
flow is limited by the former departure flow Qdep

i (t−Li/|c|). This implies

Qarr,pot
i (t) =

{
Qmax

i if li(t) < Li ,

Qdep
i (t − Li/|c|) if li(t) = Li .

(15.20)

In cases, where the outflow of the road section is to be controlled by a
traffic light, the potential departure flow Qdep,pot

i (t) must be multiplied
with a prefactor γiγγ (t). A green light corresponds to γiγγ (t) = 1, a red
light to γiγγ (t) = 0. Note that it is also possible to vary γiγγ (t) gradually to
account for drivers passing the signal during yellow phases.

2.2 Traffic flows through network nodes
A node of the road network connects one or several incoming road

sections i with one or several outgoing road sections j, see figure 15.5(a).
It may represent a junction or a link of two subsequent homogeneous
road sections i and i+1 with different speed limits V 0

iVV , V 0
iVV +1 or numbers

IiII , IiII +1 of lanes. Since nodes are assumed to have no storage capacity,
the total in- and outflow have to be the same (Kirchhoff’s law):∑

i
Qdep

i (t)︸ ︷︷︷ ︸︸
inflow

=
∑

j
Qarr

j (t)︸ ︷︷︷ ︸︸
outflow

. (15.21)

Furthermore, the flows have to be non-negative and must not exceed the
potential flows specified in Sec. 15.2.1.6.

0 ≤ Qdep
i (t) ≤ Qdep,pot

i (t) , 0 ≤ Qarr
j (t) ≤ Qarr,pot

j (t) . (15.22)
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The fraction of the inflow Qdep
i that diverges from road section i to road

section j is denoted by αij(t). Due to normalization we have∑
j

αij(t) = 1 . (15.23)

The turning or assignment coefficients αij may depend on the driver des-
tinations d as well as on the actual traffic situation, see Daganzo (1995)
and Sec. 15.3. Finally, note that the arrival flow Qarr

j (t) is composed of
all turning flows Qdep

i (t)αij(t) entering road section j:

Qarr
j (t) =

∑
i

Qdep
i (t)αij(t) . (15.24)

For a more detailed treatment of network nodes see Lebacque (2005).

Figure 15.5. (a) A node of the road network distributes the vehicular flows between
the road sections that are connected to it. It makes sense to distinguish two special
cases: (b) merges into a single road section and (c) diverges from one road section
into several others.

2.2.1 Merges. In the case where traffic flows from several
incoming road sections i merge into one outgoing road section j, as shown
in Fig. 15.5(b), two cases can be distinguished: As long as the subsequent
road section j has sufficient capacity to admit the potential flows of
all incoming road sections i, i.e. Qarr,pot

j (t) ≥ ∑i Q
dep,pot
i (t), the flow

through the node is given by the upstream traffic conditions in the road
sections i. Otherwise, some of the upstream departure flows Qdep

i (t) have
to be restricted. But which ones? According to practical experience,
small traffic flows Qdep

i (t) can almost always squeeze in, while flows from
equivalent roads tend to share the capacity Qarr,pot

j equally. Note that in
scenarios with main roads having a right of way, the corresponding flow
is to be served first. The remaining capacity is subsequently distributed
among the side roads.



252

2.2.2 Diverges. Figure 15.5(c) shows the case where traffic di-
verges from one road section into several others. This is, for example, the
case when a road splits up into lanes for turning left, continuing straight
ahead, or turning right. For diverges, the throughput is determined by
a cascaded minimum-function:

Qdep
i (t) = min

{
Qdep,pot

i (t), min
j

Qarr,pot
j (t)
αij(t)

}
. (15.25)

The first term on the right-hand side is obvious, as any restriction of
the potential departure flow Qdep,pot

i (t) of road section i limits the flows
to all outgoing road sections j. The second term on the right-hand side
follows from the fact that the fraction αij of the departure flow Qdep

i (t)
to any subsequent road section j is limited by its potential arrival flow
Qarr,pot

j (t), i.e.

Qdep
i (t)αij ≤ Qarr,pot

j (t) ∀j .∀ (15.26)
In the special case of a node connecting only two subsequent road sec-
tions i and j = i+1, we have αij = 1 and the throughput is just limited
by the minimum of both potential flows:

Qdep
i (t) = min

{
Qdep,pot

i (t), Qarr,pot
i+1 (t)

}
= Qarr

i+1(t) . (15.27)

The last equality follows from Eq. (15.24).

3. Traffic assignment
The simplest way to model turning at intersections is by turning coeffi-

cients αij(t), which assume that a certain fraction αij(t) of the departure
flow Qdep

i (t) turns into road section j. In many theoretical studies, the
coefficients αij are kept constant. However, it is well-known that the
turning fractions vary in the course of the day, which is often taken into
account by using historical, time-dependent turning coefficients αij(t)
from a database [Chrobok et al. (2000)]. Moreover, even if the same
origin-destination flows would repeat each week, delays due to pertur-
bations in the traffic flow (e.g. due to an accident) would cause different
time-dependent turning fractions. Therefore, a better treatment is based
on dynamic traffic assignment.

In order to integrate dynamic traffic assignment in our model, let
us denote the destination node of vehicles by d. Moreover, let NidNN (t)
represent the number of driver-vehicle units on the directed link i, which
finally want to arrive at d. This implies

NiNN (t) =
∑

d

NidNN (t) . (15.28)
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The quantity Qarr
id (t) shall denote the flow of vehicles with destination d

entering the link i, and Qdep
id (t) the flow of vehicles leaving it. We have

Qarr
i (t) =

∑
d

Qarr
id (t) and Qdep

i (t) =
∑

d

Qdep
id (t) . (15.29)

Finally, let j be the starting node of link j and j = k its ending node.
Moreover, let TjkT (t) be the travel time on link j and T̂kdTT (t) the mini-
mum travel time between two nodes k and d (as can, for example, be
determined by the Dijkstra algorithm). Then, the minimum travel time
to note d via link j (i.e. node k) is given by TjkT (t) + T̂kdTT (t), and the
minimum travel time T̂jdT (t) from node j to destination d at time t is
determined via

T̂jdT (t) = min
k

[TjkT (t) + T̂kdTT (t)] , (15.30)

where the minimum function extends over all successors k of node j.
Instead of this, we may use the following approximate relationship:

T̂jdT (t) = min
k

[TjkT (t) + T̂kdTT (t − ∆t)] . (15.31)

The advantage of (15.31) over (15.30) is that the information about
travel times gradually propagates to the present location of the car
(namely by one link each time step ∆t). A delayed evaluation of Dijk-
stra’s shortest path algorithm saves computer time and models this infor-
mation flow, the speed of which is controlled by ∆t. Another advantage
is the determination of travel times based on a local algorithm.

Based on this travel time information, we may distribute the departure
flows Qd,dep

i (t) over neighboring links according to a multinomial logit
model [Ben-Akiva, McFadden et al. (1999)]. Accordingly, we specify the
turning probabilities of cars with destination d at node j = i as

pd
jk

(t) =
exp{−β[TjkT (t) + T̂kdTT (t − ∆t)]/T̂ 0

jd
T }∑

k′ exp{−β[TjkT ′(t) + T̂kTT ′d(t − ∆t)]/T̂ 0
jd

T } , (15.32)

where T̂ 0
jd

T is the minimum travel time from j to d during free traffic (at
three o’clock during the night). The coefficient β describes the sensitivity
with respect to changes in the relative travel time and is also a measure
for the reliability of travel time estimates. Finally, the time-dependent
assignment coefficients can be calculated as

αij(t) =
∑

d

Qdep
id (t)

Qdep
i (t)

pd
ijj(t) , (15.33)
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where i = j and j = k. This assumes individual route choice decisions
without central coordination, i.e. selfish routing.

We must still decide how to determine travel times. On the one hand,
one may use the expected travel times TjkT (t) = TjjT (t) = TjTT (t) according
to Eq. (15.11) (or, as a second best alternative, the instantanous link
travel times). On the other hand, one may use travel time information
T ∗

jk
T (t) of comparable days from a database [Chrobok et al. (2000)].
While for close links, the expected travel time may be a good (and the
instantaneous travel time a reasonable) estimate of the actual travel
time, it becomes less reliable the more remote the respective link is. For
remote links, a travel time estimate based on measurements of similar
previous days may be more reliable. Therefore, we propose to use a
weighted mean value generalizing formula (15.31):

T̂jdT (t) = min
k

[TjkT (t) + e−λ TjkT (t)T̂kdTT (t − ∆t) + (1 − e−λ TjkT (t))T ∗
kdTT (t)] .

(15.34)
In this formula, the travel time T ∗

kdTT (t) from node k to d is taken from a
database, the weights are exponentially decaying with increasing travel
times, and λ > 0 is a suitably chosen calibration parameter.

Right now it is not clear what happens if traffic lights adapt to the
traffic situation and drivers try to adjust to the traffic lights at the
same time. Driver adaptation is a reasonable strategy for signal plans
that are fixed or determined by the time of the day. However, it may
perturb attempts to optimize traffic by self-organized control. Therefore,
the study of route choice behavior in the context of adaptive traffic
light control requires careful study. A method to stabilize the system
dynamics, if needed, would be road pricing (see Sec. 15.5.1.1).

4. Self-organized traffic light control

4.1 Why traffic lights?
For the illustration of the advantages of oscillatory traffic control, let

us assume a conventional four-armed intersection with identical capac-
ities Qmax

i = Qmax. The arrival time of vehicles shall be stochastic.
Vehicles are assumed to obstruct the intersection area (i.e. the node)
for a time period of 1/Qmax in case of compatible flow directions. For
incompatible, e.g. crossing flows, the blockage time shall be τ = sT with
s > 1. The maximum average throughput Qcap of the intersection is,
therefore, bounded by the following inequality:

1
T

> Qmax ≥ Qcap ≥ 1
τ

=
1

sT
. (15.35)
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The exact value of Qcap depends on the fractions of compatible and
incompatible flows. For compatible flows only, we have Qcap = Qmax.
If the vehicle flows were always incompatible, one would have Qcap =
1/τ = 1/(sT ).

Let us now cluster vehicles into platoons of n vehicles by the use of
suitable adaptive traffic lights. Moreover, let the green phases last for
the time periods ∆τiττ . Between the green periods, we will need yellow
lights for a time period of τ to prevent accidents. An estimate of the
capacity Qcap of the signalized intersection is then

Qcap =
∑k

i=1 Qmax
i ∆τiττ∑k

i=1(∆τiττ + τ)
= Qmax

∑k
i=1 ∆τiττ

T cyc
, (15.36)

where T cyc = kτ +
∑

i ∆τiττ is the average cycle time. Of course, there
are different possible schemes to control the intersection, but we can
show that for n-vehicle platoons with ∆τiττ = n/Qmax, the capacity of
the signalized intersection is

Qcap
(n) =

kn/Qmax

kn/Qmax + ksT
=
(

1
Qmax

+
sT

n

)−1

. (15.37)

This is greater than the capacity 1/(sT ) of an uncontrolled intersection
with incompatible flows, if

sT

(
1 − 1

n

)
>

1
Qmax

≥ T , (15.38)

i.e. if s or n are large enough. In other words: Forming vehicle pla-
toons (clusters) by oscillatory traffic lights can increase the intersection
capacity. This, however, requires that the green times are fully used.
Otherwise, at small arrival rates, traffic lights would potentially delay
vehicles.

Despite of the simplifications made in the above considerations, the
following conclusions are quite general: It is most efficient if vehicles
can pass the intersection immediately one by one, if the arrival rates are
small. Above a certain threshold, however, it is more efficient to form
vehicle platoons by means of traffic lights. This is certainly the case, if
the sum of arrival flows exceeds the capacity of an unsignalized intersec-
tion with incompatible flows. According to formula (15.36), the capacity
of a signalized intersection can be increased by increasing the green time
fractions ∆τiττ /T cyc. This can be done by increasing the cycle time T cyc

in cases of high arrival flows Qarr
i . Thereby, the relative blockage time

by yellow lights is reduced.
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4.2 Self-induced oscillations
In pedestrian counterflows at bottlenecks, one can often observe os-

cillatory changes of the passing direction, as if the pedestrian flows were
controlled by a traffic light. Inspired by this, we have suggested to
generalize this principle to the self-organized control of intersecting ve-
hicle flows [see the newspaper article by Stirn (2003)]. This idea was
described in 2003 in the DFG proposal He 2789/5-1 entitled “Self-
organized traffic signal control based on synchronization phenomena
in driven many-particle systems and supply networks”. The control
concept elaborated in the meantime has been submitted for a patent.
For visualizations of some traffic scenarios see the videos available at
www.trafficforum.org trafficlig

Figure 15.6. Alternating pedestrian flows at a bottleneck. These oscillations are
self-organized and occur due to a pressure difference between the waiting crowd on
one side and the crowd on the other side passing the bottleneck [after Helbing and
Molnar (1995), Helbing (1997)].´

Oscillations are a organization pattern of conflicting flows which al-
lows to optimize the overall throughput under certain conditions (see
Sec. 15.4.1). In pedestrian flows (see Fig. 15.6), the mechanism behind
the self-induced oscillations is as follows: Pressure builds up on that side
of the bottleneck where more and more pedestrians have to wait, while
it is reduced on the side where pedestrians can move ahead and pass the
bottleneck. If the pressure on one side exceeds the pressure on the other
side by a certain amount, the passing direction is changed.

Transferring this self-organization principle to urban vehicle traffic,
we define red and green phases in a way that considers “pressures” on
the traffic light by road sections waiting to be served and “counter-
pressures” from the subsequent road sections depending on the degree
of congestion on them. Generally speaking, these pressures depend on
delay times, queue lengths, or potentially other quantities as well. The

hts/.
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proposed control principle is self-organized, autonomous, and adaptive
to the respective local traffic situation, as will be shown below.

4.3 Basic switching rules for traffic lights
Our switching rules for traffic lights will have to solve the following

control problems:

The number of vehicles on a road section served by a green time
period should be proportional to the average arrival flows Qarr

i , at
least if these are small.

In order to avoid time losses due to yellow lights, switching of traf-
fic lights should be minimized under saturated traffic conditions.
However, single vehicles and small queues need to be served as well
after some maximum cycle time Tmax.

Despite of the desire to maintain green lights as long as possible,
signal control should be able to react to changing traffic conditions
in a flexible way. Unfortunately, the change of traffic conditions
depends on traffic light control itself, so that a reliable forecast is
only possible over short time periods.

Under suitable conditions, traffic lights should synchronize them-
selves to establish green waves.

The synchronization of traffic lights is not only a matter of the ad-
justment of green and red time periods, i.e. of the frequency of control
cycles: The adaptation of the time offset is also crucial for the establish-
ment of green waves. While the adaptation problem is easily solvable
for Manhattan-like road networks, the situation for irregular road net-
works is much more complex. Green waves may, in fact, cause major
obstructions of crossing flows. Therefore, it is a great difficulty to find
suitable rules which flows to prioritize. While addressing these points
in the next paragraphs, we will develop a suitable control approach step
by step. The resulting control principles may be also used to resolve
conflicts between competing flows in other complex systems like produc-
tion networks [Helbing (2003a, 2004, 2005), Helbing et al. (2004)], see
Sec. 15.5.1.2.

The philosophy of our traffic light control is the minimization of the
cumulative or average travel time and, therefore, of the cumulative delay
time. Minimizing the overall delay time means to serve as many vehicles
by the traffic lights as possible, i.e. to maximize the average departure
rate (the average throughput). Let us explain this principle in more
detail: If the traffic light is red or yellow, we have γiγγ (t) = 0 and the
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overall departure rate is IiII Qdep
i (t) = 0. Otherwise, if the traffic light is

green (γiγγ (t) = 1), we find

IiII Qdep
i (t) =

⎧⎨⎧⎧⎩⎨⎨
IiII Qarr

i (t − Li/V 0
iVV ) if li(t) = 0 ,

minj [IjI Qdep
j (t − Li/|c|)/αij ] if lj(t) = Lj ,

IiII Qmax
i otherwise.

(15.39)

A green light should be provided for the road section whose vehicle flow
during a certain future time period is expected to be highest, taking into
account any yellow-light related time losses. This principle tends to serve
the road with the largest outflow, i.e. the largest number IiII of lanes (see
the third condition). However, it matters how long the maximum flow
can be maintained, i.e. how large the number number IiII liρ

jamρρ of queued
vehicles is. Moreover, vehicles in road section i will be hardly able to
depart (see the second condition), if one of the subsequent road sections
j is completely congested by the expected number IiII Qmax

i αij(t − t′0) of
vehicles arriving between time t′0 and t. That is, a green light starting
at time t′0 would usually end when the condition

IiII Qmax
i (t − t′0)αij = IjI [Lj − lj(t′0)]ρ

jamρρ (15.40)

is valid for the first time. Freely moving vehicles (see the first condi-
tions) will have an impact comparable to the reduction of a queue (third
condition) only, if

1
t − t0

t∫
t0

dt′ Qarr
i (t − Li/V 0

iVV ) =
Narr

iNN (t − Li/V 0
iVV ) − Narr

iNN (t0 − Li/V 0
iVV )

t − t0

(15.41)
is of the order Qmax

i , where

Narr
iNN (t − Li/V 0

iVV ) =

t∫
0

dt′ Qarr
i (t′ − Li/V 0

iVV ) . (15.42)

Summarizing this, the expected number ∆N exp
iNN of vehicles served be-

fore interruption by a red light at time t1 can be often estimated by the
cascaded minimum function

∆N exp
iNN = IiII Qmax

i (t1 − t′0)

= ρjamρρ min
[
IiII li(t′0)︸
[[
︷︷︷ ︸︸

pressure

, min
j

(
IjI [Lj − lj(t′0)]

αij

)
︸ ︷︷︷ ︸︸

counter−pressure

]
, (15.43)
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where t1 − t′0 denotes the expected green time. However, generalizations
of this formula are needed for the treatment of low traffic (see Sec. 15.4.5)
and green waves (see Sec. 15.4.6).

As our control philosophy requires to reduce queues as fast as possible,
the decision to serve a certain road section i should be based on the
greatest value of

∑
∆N exp

iNN /(t1−t′0), where the sum extends over all flows
compatible with Qdep

i . If a switching time τ is necessary, the relevant
formula is

∑
∆N exp

iNN /(t1−t′0+τ), instead. The switching decision should
be regularly revised (e.g. every time period τ), as the traffic situation
may change.

Note that formula (15.43) implies that, given an equal number of
lanes, green times are more likely for long queues, which could be said
to exert some “pressure” on the traffic light. However, if road sections
j demanded by turning flows are congested, this exerts some “counter-
pressure”. This will suppress green lights in cases where they would
not allow to serve vehicles, i.e. where they would not make sense. As
a consequence, while cycle times increase with growing arrival rates as
long as these can be served, they may go down again when the road
network is too congested.

4.4 Oscillations at a merge bottleneck
For the purpose of illustration, let us discuss a merge bottleneck (see

Fig. 15.8). The two merging road sections i ∈ {1, 2} shall have the overall
capacities IiII Qmax with I1 ≥ I2II , while the subsequent section j shall have
the capacity IjI Qmax ≥ I1Q

max, so that no congestion will occur in the
subsequent road section. Let us assume that the arrival flows Qarr

i are
constant in time. Furthermore, let us assume that the traffic light for
road section 2 turns red at times t0, t2, etc., while the red lights for road
section 1 start at t1, t3, etc. The green times for road section 1 begin
after an yellow time period of τ , i.e. at times t′2k = t2k + τ and last for
the time periods t2k+1 − t′2k.

We can distinguish the following cases:

1. Equivalent road sections: If I1 = I2II , the queues on both road
sections will be completely cleared in an alternating way, see
Fig. 15.7(a). In case of growing vehicle queues, the green times
grow accordingly.

2. One main and one side road (I1 > I2II ):

(i) If the arrival flow Qarr
2 of road section 2 (the side road) is low,

both roads are completely cleared.
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(ii) In many cases, however, the queue length in the side road
grows in the course of time, while the queue in the main road
(road section 1) is completely cleared, see Fig. 15.7(b). As a
consequence, road section 2 will be fully congested after some
time period, which limits a further growth of the queue and
discourages drivers to use this road section according to our
traffic assignment rule. In extreme cases, when no maximum
cycle time is implemented (see Sec. 15.4.4.3), the main road
may have a green light all the time, while road section 2 (the
side road) is never served, see Fig. 15.7(c).

(iii) If the sum
∑

i IiII Qarr
i of overall arrival flows exceeds the ca-

pacity IjI Qmax of the subsequent road section j, the queue on
both road sections will grow, see Fig. 15.7(d).

We will now discuss these cases in more detail.

Figure 15.7. Different cases of the self-organized control of a merge bottleneck: (a)
The vehicle queue in each road section is completely cleared, before the traffic light
turns red. (b) The traffic light in the side road turns red, before the vehicle queue
has fully disappeared, but the main road is fully cleared. (c) In extreme cases, if a
maximum cycle time is not enforced, the side road would never get a green light and
the main road would always be served. (d) When the sum of arrival rates is higher
than the capacity of the subsequent road section, the vehicle queues in both road
sections may grow under certain conditions (see text).
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4.4.1 Equivalent road sections. Let us assume the queue
length on road section 2 is zero at time t0 and the traffic light switches
to red in order to offer a green light to road section 1 at time t′0 = t0 +τ .
The queue length at time t is given by

l1(t) = l1(t′0) + C1(t − t′0) , (15.44)

where

CiCC =
(

ρjamρρ

Qarr
i

− 1
V 0

iVV

)−1

=
Qarr

i

ρjamρρ − Qarr
i /V 0

iVV
(15.45)

according to Eq. (15.8). Note that, in the limit of small arrival rates Qarr
i ,

this queue expansion velocity is proportional to Qarr
i . The reduction of

the queue starts with the green phase and is proportional to c. We,
therefore, have the following equation for the length of the effective queue
(= queue length minus area of quasi-free traffic):

leff1 (t) = l1(t) + c(t − t′0) = l1(t′0) + C1(t − t′0) − |c|(t − t′0) . (15.46)

The effective queue length disappears at time

t∗0 = t′0 +
l1(t′0)

|c| − C1
. (15.47)

However, the last vehicle of the queue needs an additional time period
of l1(t∗0)/V 0

1VV to leave the road section, so that the queue length l1(t) in
road section 1 becomes zero at time t = t1 with

t1 = t∗0 +
l1(t∗0)
V 0

1VV
= · · · = t′0 + l1(t′0)

1 + |c|/V 0
1VV

|c| − C1
. (15.48)

At that time, the traffic light for road section 1 switches to red and road
section 2 is served by a green light starting at t′1 = t1 + τ . Analogous
considerations show that the queue in road section 2 is cleared at time

t2 = t′1 + l2(t′1)
1 + |c|/V 0

2VV

|c| − C2CC
. (15.49)

The next green time for road section 1 starts at time t′2 = t2 + τ and
ends at

t3 = t′2 + l1(t′2)
1 + |c|/V 0

1VV

|c| − C1
. (15.50)

We can determine the queue length l1(t′2) at the beginning of the green
phase as the queue length that has built up during the previous red
phase of length t2 − t′1 and two yellow phases of duration τ each. As a
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consequence, we find l1(t′2) = C1(t2 − t′1 + 2τ). In the stationary case
we have l1(t′2) = l1(t′0) and l1(t1) = 0, as the queue on road section
1 is completely cleared at time t1. This eventually leads to a rather
complicated formula for t2 − t′1, which is proportional to the respective
queue length. For small values of the arrival rates Qarr

i , one can show that
the green times are proportional to CiCC and Qarr

i . That is, the duration
of the green phases is proportional to the arrival rates, as expected, if
the arrival rates are small enough. The cycle time grows linearly with
Qarr

1 + Qarr
2 .

4.4.2 One main and one side road. If both road sections
are completely cleared as in case (i) above, the mathematical treatment
is analogous to the previous section. More interesting is case (ii), in
which the traffic light for road section 2 switches to red already before
the queue is cleared completely, see Fig. 15.7(b). While Eqs. (15.48)
and (15.50) are still valid, we have to find other expressions for t2 and
l1(t′2) = l1(t′0). Let t+2 be the time point in which the queue of length
l1(t2) in road section 1 at time t2 would be completely resolved, if the
traffic light would turn green for road section 1 at time t2. Road section
1 could for sure deliver an overall flow of I1Q

max between t′2 = t2 +τ and
t+2 , while the departure flow from road section 1 could be much smaller
than I1Q

max afterwards. In order to switch to green in favor of road
section 1, it is, therefore, reasonable to demand

I1Q
max[t+2 − (t2 + τ)] ≥ I2II Qmax(t+2 − t2) . (15.51)

This formula considers the time loss τ by switching due to the intermedi-
ate yellow period, and it presupposes that Qmax(t+2 −t2) ≥ l2(t2)ρjamρρ , i.e.
road section 2 can maintain the maximum flow Qmax until t+2 . Our phi-
losophy is to give a green light to the road section which can serve most
vehicles during the next time period t+2 − t2. The equation to determine
t+2 = t−2 + l1(t2)/V 0

1VV is l1(t2) = |c|[t−2 − (t2 + τ)] with l1(t2) = C1(t2 − t1).
This leads to t−2 = t2 + τ + C1(t2 − t1)/|c| and

t+2 = (t2 + τ) +
(

C1

|c| +
C1

V 0
1VV

)
(t2 − t1) , (15.52)

while Eq. (15.51) implies

t+2 − t2 ≥ τ

1 − I2II /I1
. (15.53)

Together with Eq. (15.52) we find

t2 − t1 =
τ

I1/I2II − 1

/(
C1

|c| +
C1

V 0
1VV

)
. (15.54)
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For I1 = I2II , one can immediately see that the traffic light would never
switch before the queue in road section 2 is fully resolved. However,
early switching could occur for I1 > I2II .

Once the traffic light is turned green at time t2, the vehicles which
have queued up until time t+2 will be served with the overall rate I1Q

max

as well, until the departure flow is given by the lower arrival flow Qarr
1 at

time t3 and later. The time point t∗2 at which the effective queue resolves
is given by l1(t∗2) = |c|[t∗2 − (t2 + τ)], which results in

t∗2 − t2 =
t−2 − t2

1 − C1/|c| =
τ + C1(t2 − t1)/|c|

1 − C1/|c| . (15.55)

The last vehicle of the queue has left road section 1 at time t3 with

t3 − t2 =
t+2 − t2

1 − C1/|c| =
τ

(1 − I2II /I1)(1 − C1/|c|) . (15.56)

Afterwards, the overall departure flow drops indeed to I1Q
arr
1 , and the

traffic light tends to turn red if I1Q
arr
1 < I2II Qmax. Otherwise, it will

continue to stay green during the whole rush hour. Considering l1(t3) =
0 = l1(t1) and l1(t′2) = C1(t′2 − t1), one can determine all quantities.
One can show that the green time fraction for road section 1 grows
proportionally to Qarr

1 , if τ is small. Moreover, one can derive that
the green time fractions of both road sections and the cycle time T cyc =
t3−t1 are proportional to C1, i.e. the main road dominates the dynamics.
The queue length on road section 2 tends to grow, as it is never fully
cleared.

If I1Q
arr
1 + I2II Qarr

2 > IjI Qmax, it can also happen that the queues grow
in both road sections. This is actually the case, if I1Q

arr
1 > IjI Qmax,

see Fig. 15.7(d). Moreover, in the case I2II Qmax < I1Q
arr
1 , road section

2 would never be served, see Fig. 15.7(c). This calls for one of several
possible solutions: 1. Allow turning on red. 2. Decide to transform
the side road into a dead end. 3. Build a bridge or tunnel. 4. Use
roundabouts or other road network designs which do not require traffic
lights. 5. Treat main and side roads equivalently, i.e. set I1 = I2II = 1 in
the above formulas, or specify suitable parameter values for IiII , although
it will increase the overall delay times. 6. Restrict the red times to a
maximum value at the cost of increased overall delay times and reduced
intersection throughput.

4.4.3 Restricting red times. In order to avoid excessive cycle
times, one has to set upper bounds. This may be done as follows: Let
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Tmax be the maximum allowed cycle time,

γiγγ =
1

Tmax

t∫
t−Tmax

dt′ γiγγ (t′) (15.57)

the green time fraction within this time interval, and

Qarr
i =

1
Tmax

t∫
t−Tmax

dt′ Qarr
i (t′) (15.58)

the average arrival rate. If γiγγ exceeds a specified green time fraction u0
i ,

the green light will be switched to red. This approach also solves the
problem that even small vehicle queues or single vehicles must be served
within some maximum time period.

The green time fractions u0
i may slowly vary in time and could be

specified proportionally to the relative arrival rate Qarr
i /
∑

i′ Q
arr
i′ , with

some correction for the yellow time periods. However, it is better to
determine the green time fractions u0

i in a way that helps to optimize
the system performance (see Sec. 15.5.1.1).

4.4.4 Intersection capacity and throughput. Let us fi-
nally calculate the average throughput Qall of the signalized intersection.
When the traffic volume is low, it is determined by the sum

∑
i IiII Qarr

i
of average arrival flows, while at high traffic volumes, it is given by the
intersection capacity

Qcap = Qmax I1(t3 − t′2) + I2II (t2 − t′1)
t3 − t1

= Qmax I1(t3 − t′2) + I2II (t2 − t′1)
T cyc

.

(15.59)
This implies

Qall = min

(∑
i

IiII Qarr
i , Qcap

)
. (15.60)

According to these formulas, the losses in throughput and capacity by
the yellow times 2τ are reduced by longer green times t3− t′2 and t2− t′1.
Our calculations indicate that our switching rule automatically increases
the cycle time T cyc = t3 − t1 and the intersection capacity Qcap, when
the arrival rates Qarr

i of equivalent roads with I1 = I2II or the arrival rate
Qarr

1 of a main road are increased. Figure 15.8 shows the cycle time T cyc,
throughput Qall, and green time fraction u1 as a function of Qarr

i = Qarr

for different values of I1/I2II .
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Figure 15.8. (a) Illustration of the traffic control of a merge bottleneck for constant
arrival rates and a non-congested outflow. The characteristic behavior of the proposed
self-organized traffic light control depends on the number IiII of lanes of the entering
road sections i and on the arrival rates Qarr

i : (b) Actual green time fraction u1 for
Qarr

2 = const. and variable Qarr
1 , (c) cycle time T cyc as compared to the yellow time

period τ for Qarr
2 = Qarr

1 , and (d) actual throughput Qall of the signalized intersection
in comparison with the maximum uninterrupted flow Qmax per lane for Qarr

2 = Qarr
1 .

4.5 Serving single vehicles at low traffic volumes
While traffic lights have been invented to efficiently coordinate and

serve vehicle flows at high traffic volumes, they should ideally provide a
green light for every arriving vehicle at low average arrival rates Q

arr
i .

According to formula (15.39), the departure flow Qdep
i (t) will, in fact, be

0 most of the time on all road sections. Only during short time periods,
single vehicles will randomly cause positive values of Qarr

i (t − Li/V 0
iVV )

on one of the road sections i. The traffic light should be turned green
shortly before the arrival of the vehicle at the downstream boundary of
this road section. If switching requires a time period of τ , the arrival
flow Qarr

i (t−Li/V 0
iVV + τ) would need to trigger a switching of the traffic

light in favor of road section i. Considering this and formula (15.39),
it is essential to take a switching decision based on the departure flow
Qdep

i (t + τ) expected at time t + τ . The departure flow Qdep
i (t) can,

in fact, be forecasted for a certain time period based on available flow
data and assumed states of neighboring signals. In order to minimize
the time period τ , it makes sense to switch any traffic light to red, if
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no other vehicle is following. That is, at low traffic volumes, all traffic
lights would be red most of the time. However, any single vehicle would
trigger an anticipative green light upon arrival, so that vehicles would
basically never have to wait at a red light.

4.6 Emergence of green waves through
self-organized synchronization

In order to let green waves emerge in a self-organized way, the control
strategy must show a tendency to form vehicle groups, i.e. convoys, and
to serve them just as they approach an intersection. For this to happen,
small vehicle clusters must potentially be delayed, which gives them a
chance to grow. When they are released, the corresponding “convoys”
may themselves trigger a green wave.

In fact, the ideal situation would be that traffic flow from road section
i arrives at location Lj − lj(t) in a subsequent road section j just when
the effective queue leffj (t) has resolved. This is equivalent with the need
to arrive at location Lj just at the moment when the queue length lj(t)
becomes zero. Under such conditions, free arrival flows Qarr

j (t−Lj/V 0
jVV )

with values around Qmax
i would immediately follow the high outflow

Qdep
j = Qmax

j from the (resolving) congested area in road section j (here,
we assume IiII = IjI ). As a consequence, the green light at the end of road
section j would be likely to continue. This mechanism could establish
a synchronization among traffic lights, i.e. a green wave by suitable ad-
justment of the time offsets, triggered by vehicle flows. As it requires a
time period ∆tj = [Lj−lj(t)]/V 0

jVV to reach the upstream congestion front
in section j, it will be required to turn the signal of the previous road
section i green a time period ∆tj before the effective queue is expected
to resolve. This time period defines the necessary forecast time interval.

When the effective queue of length leffj (t) is resolved, the related sud-
den increase in Lj − lj(t) can cause a sudden increase in ∆Npot

iNN and,
thereby, possibly trigger a switching of the traffic light. The emergence
of green waves obviously requires that the green light at the end of road
section j should stay long enough to resolve the queue. This is likely,
if road section j is a main road (arterial), see our considerations in
Sec. 15.4.4.2.

In a more abstract sense, the intersections in the road network can be
understood as self-sustained oscillators which are coupled by the vehicle
flows between them. Therefore, one might expect them to synchronize
like many natural systems do [Pikovsky et al. (2001)]. Interestingly, even
if the intersections are not coupled artificially with some communication
feedback, the weak coupling via vehicle flows is sufficient to let larger
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areas of the road network synchronize. The serving direction percolates
through the network, stabilizes itself for a while and is then taken over
by another serving direction. In other words, neighboring intersections
affect each other by interactions via vehicle flows, which favors a mutual
adjustment of their rhythms. This intrinsic mechanism introduces order,
so that vehicle flows are coordinated.

5. Summary and outlook
In this contribution, we have presented a section-based traffic model

for the simulation and analysis of network traffic. Moreover, we have pro-
posed a decentralized control strategy for traffic flows, which has certain
interesting features: Single arriving vehicles always get a green light.
When the intersection is busy, vehicles are clustered, resulting in an
oscillatory and efficient service (even of intersecting main flows). If pos-
sible, vehicles are kept going in order to avoid capacity losses produced
by stopped vehicles. This principle bundles flows, thereby generating
main flows (arterials) and subordinate flows (side roads and residential
areas). If a road section cannot be used due to a building site or an
accident, traffic flexibly re-organizes itself. The same applies to different
demand patterns in cases of mass events, evacuation scenarios, etc. Fi-
nally, a local dysfunction of sensors or control elements can be handled
and does not affect the overall system. A large-scale harmonization of
traffic lights is reached by a feedback between neighboring traffic lights
based on the vehicle flows themselves, which can synchronize traffic sig-
nals and organize green waves. In summary, the system is self-organized
based on local information, local interactions, and local processing, i.e.
decentralized control. However, a multi-hierarchical feedback may fur-
ther enhance system performance by increasing the speed of large-scale
information exchange and the speed of synchronization in the system.

We should point out some interesting differences compared to conven-
tional traffic control:

The green phases of a traffic light depend on the respective traffic
situation on the previous and the subsequent road sections. They
are basically determined by actual and expected queue lengths and
delay times. If no more vehicles need to be served or one of the
subsequent road sections is full, green times for one direction will
be terminated in favor of green times for other directions. The
default setting corresponds to red lights, as this enables one to
respond quickly to approaching traffic. Therefore, during light
traffic conditions, single vehicles can trigger a green light upon
arrival at the traffic signal.
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Our approach does not use precalculated or predetermined signal
plans. It is rather based on self-organized red and green phases.
In particularly, there is no fixed cycle time or a given order of
green phases. Some roads may be even served more frequently
than others. For example, at very low traffic volumes it can make
sense to serve the same road again before all other road sections
have been served. In other words, traffic optimization is not just
a matter of green times and their permutation.

Instead of a traffic control center, we suggest a distributed, local
control in favor of greater flexibility and robustness. The required
information can be gathered by optical or infrared sensors, which
will be cheaply available in the future. Complementary informa-
tion can be obtained by a coupling with simulation models. Apart
from the section-based model proposed in this paper, one can also
use other (e.g. microsimulation) models with or without stochastic-
ity, as our control approach does not depend on the traffic model.
Travel time information to enhance route choice decisions may be
transmitted by mobile communication.

Pedestrians could be detected by modern sensors as well and han-
dled as additional traffic streams. Alternatively, they may get
green times during compatible green phases for vehicles or after
the maximum cycle time Tmax. Public transport (e.g. busses or
trams) may be treated as vehicles with a higher weight. A natural
choice for the weight would be the average number of passengers.
This would tend to prioritize public transport and to give it a
green light upon arrival at an intersection. In fact, a prioritization
of public transport harmonizes much better with our self-organized
traffic control concept than with precalculated signal plans.

5.1 Future research directions
5.1.1 Towards the system optimum. Traffic flow optimiza-
tion in networks is not just a matter of durations, frequencies, time
offsets and the order of green times, which may be adjusted in the way
described above. Conflicts of flows and related inefficiencies can also be
a result of the following problems:

Space which is urgently required for certain origin-destination flows
may be blocked by other flows, causing a spill-over and blockage of
upstream road sections. One of the reasons for this is the cascaded
minimum function (15.25). It may, therefore, be helpful to restrict
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turning only to subsequent road sections that are normally not
fully congested (i.e. wide and/or long road sections).

Giving green times to compatible vehicle flows may cause the
over-proportional service of certain road sections. These over-
proportional flows may be called parasitic. They may cause the
blockage of space in subsequent road sections which would be
needed for other flow directions. In order to avoid parasitic flows,
it may be useful to restrict the green times of compatible flow
directions.

Due to the selfish route choice behavior, drivers tend to distrib-
ute over alternative routes in a way that establishes a Wardrop
equilibrium (also called a Nash or user equilibrium) [Papageorgiou
(1991)]. This reflects the tendency of humans to balance travel
times [Helbing et al. (2002)]. That is, all subsequent road sections
j of i used to reach a destination d are characterized by (more
or less) equal travel times. If the travel time on one path was
less than on alternative ones, more vehicles would choose it, which
would cause more congestion and a corresponding increase in travel
times.

In order to reach the system optimum, which is typically defined by the
minimum of the overall travel times, the drivers have to be coordinated.
This would be able to further enhance the capacity of the traffic network,
but it would require the local adaptation of signal control parameters.
For example, the enforcement of optimal green time fractions u0

i based
on the method described in Sec. 15.4.4.3 would be one step into this
direction, as it is not necessarily the best, when green time fractions are
specified proportionally to the arrival rates Qarr

i .
Unfortunately, green time fractions u0

i do not allow to differentiate
between different origin-destination flows using the same road section.
Such a differentiation would allow one to reserve certain capacities (i.e.
certain fractions of road sections) for specific flows. This could be
reached by advanced traveller information systems (ATIS) [Hu and Mah-
massani (1997), Mahmassani and Jou (2000), Schreckenberg and Selten
(2004)] together with suitable pricing schemes, which would increase the
attractiveness of some routes compared to others.

Different road pricing schemes have been proposed, each of which
has its own advantages and disadvantages or side effects. Congestion
charges, for example, could discourage to take congested routes required
to reach minimum average travel times, while conventional tolls and
road pricing may reduce the trip frequency due to budget constraints
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(which potentially interferes with economic growth and fair chances for
everyone’s mobility).

In order to activate capacity reserves, we therefore propose an au-
tomated route guidance system based on the following principles: Af-
ter specification of their destination, drivers should get individual route
choice recommendations in agreement with the traffic situation and the
route choice proportions required to reach the system optimum. If an in-
dividual selects a faster route instead of the recommeded route it should,
on the one hand, have to pay an amount proportional to the increase
in the overall travel time compared to the system optimum. On the
other hand, drivers not in a hurry should be encouraged to take the
slower route i by receiving the amount of money corresponding to the
related decrease in travel times. Altogether, such an ATIS could support
the system optimum while allowing for some flexibility in route choice.
Moreover, the fair usage pattern would be cost-neutral for everyone, i.e.
traffic flows of potential economic relevance would not be suppressed by
extra costs.

5.1.2 On-line production scheduling. Our approach to
self-organized traffic light control could be also transfered to a flexible
production scheduling, in order to cope with problems of multi-goal opti-
mization, with machine breakdowns, and variations in the consumption
rate. This could, for example, help to optimize the difficult problem of
re-entrant production in the semiconductor industry [Beaumariage and
Kempf (1994), Diaz-Rivera et al. (2000), Helbing (2005)].

In fact, the control of network traffic flows shares many features with
the optimization of production processes. For example, travel times cor-
respond to cycle times, cars with different origins and destinations to
different products, traffic lights to production machines, road sections
to buffers. Moreover, variations in traffic flows correspond to variations
in the consumption rate, congested roads to full buffers, accidents to
machine breakdowns, and conflicting flows at intersections to conflict-
ing goals in production management. Finally, the cascaded minimum
function (15.25) reflects the fact that the scarcest resource governs the
maximum production speed: If a specific required part is missing, a
product cannot be completed. All of this underlines the large degree of
similarity between traffic and production networks [Helbing (2005)]. As
a consequence, one can apply similar methods of description and similar
control approaches.
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Abstract We consider a problem of optimal production control of a single reliable
machine. Demand is described as a discrete-time stochastic process.
The objective is to minimize linear inventory/backlog costs over a finite
time horizon. Using the necessary conditions of optimality, which are
expressed in terms of co-state dynamics, we develop an optimal control
policy. The policy is parameterized and its parameters are calculated
from a computational procedure. Numerical examples show the conver-
gence or divergence of the policy when the expected demand is greater
or smaller than the production capacity. A non-stationary case is also
presented.

1. Introduction
Uncertainty of demand is one of the major factors affecting decision-

making in production planning and control (Nahmias, 2001). The prob-
lem of finding optimal control policies even for simple manufacturing
systems under uncertainty has proved to be challenging both at the
modeling stage and in analysis. In continuous time, hedging point poli-
cies have proved to be optimal for a class of stochastic systems. For such
policies, a machine produces: a) at full capacity if the inventory level is
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lower than the hedging point; b) nothing if the inventory level is higher
than the hedging point; and c) as much as the demand if the inventory
level is equal to the hedging point.

The value of the optimum hedging point for systems with one un-
reliable machine and one part-type was first obtained by Akella and
Kumar (1986), for the discounted cost problem and by Bielecki and
Kumar (1988) for the average cost problem. These works assumed ex-
ponential distribution of the machine’s work and repair time, constant
deterministic demand rate, and linear surplus/backlog cost structure.
Other researchers such as El-Ferik et al. (1998), Feng and Yan (2000),
and Gershwin (1994) considered more general production environments
and achieve only partial characterization of optimal policies. A compre-
hensive survey of research in optimal control of stochastic manufactur-
ing systems can be found in Sethi et al. (2002). Perkins and Srikant
(1997), extended the problem of Akella and Kumar to the case of two-
part type and obtained an optimal policy. Perkins and Srikant (1998),
subsequently enlarging upon their previous research into the problem
of multiple part type, presented new results about the structure of the
optimal policy and provided bounds on the optimal hedging points.

In this paper, we formulate a continuous-time optimal control pol-
icy when demand is discrete-time. The policy is not stationary, since
the system is considered on a finite horizon. Within the intervals be-
tween demand realizations, the policy takes a specific form, different
from hedging. It is proved to be optimal with the aid of the optimal-
ity conditions. We focus on developing a computation procedure for
finding the control policy at each interval between demand realizations
and on implementing the procedure for both the cases when demand
distribution is stationary and with changes in time.

The paper is organized as follows: Section 16.2 introduces the system
model and notation. An optimality condition is also provided at the
end of the section. In Section 16.3 an optimal solution is characterized
and parameterized. An algorithm for calculating the exact characteris-
tics and parameters of the solution is presented. Section 16.4 provides
numerical examples. Finally, we conclude the paper in Section 16.5.

2. Problem formulation and optimality
conditions

Consider a machine whose production is intended to track an un-
certain demand over a finite time horizon, τ ∈ [0, T ]. The machine is
assumed reliable and no other source of uncertainty (except for demand
realizations) is relevant. Let ω be a scenario of demand realizations,
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ω = (ξ0, ξ1, ..., ξT−1), where ξt is a realization of random demand dt at
t. Without loss of generality, we assume that the time horizon, T , is
integer and the demand period is 1, t=0,1,. . . ,T -1. The cumulative de-

mand process, Dτ (ω) =
T−1∑
t=0

ξtθ(τ − t) is assumed right-continuous; θ(τ)

is the unit step function, θ(τ) = 1 if τ ≥ 0 and θ(τ) = 0 if τ < 0.
Such a process can be defined by a joint distribution of dt. As usual, we
assume that dt are independent random variables with bounded distribu-
tion density πt(s). Note that dt are allowed to be distributed differently.
An admissible control U = {uτ (ω)} defines the intensity of production
at time τ so that

0 ≤ uτ (ω) ≤ V, (16.1)
where V is the maximal production rate. We assume that U is a pre-
dictable process over �τ , the σ-algebra generated by the values of the
demand process on the interval [0, τ). The process X = {xτ (ω)} de-
scribes the inventory or surplus/backlog level at time τ . If control U is
given, then the process X satisfies the equation

xτ (ω) = x0 +

τ∫
0

us(ω)ds − Dτ (ω). (16.2)

The total expected cost is defined as

J(x, U) = E

⎡⎣ T∫
0

Cost(xτ (ω))dτ |x0 = x

⎤⎦ , (16.3)

where E denotes the expectation, Cost(x) is a continuous and piece-
wise continuously differentiable convex cost function. Our goal is to
find an admissible control U , which satisfies (16.1) and minimizes the
performance measure (16.3). The derivation of the necessary optimality
conditions for the problem stated here is done similarly to that of the
problem of optimal control of an unreliable machine with constant de-
terministic demand, as presented in Khmelnitsky et al. (2004), and can
be written as

uτ =

⎧⎨⎧⎧⎩⎨⎨ V, E[ψτ (ω)| �τ ] > 0
0, E[ψτ (ω)| �τ ] < 0
∈ [0, V ], E[ψτ (ω)| �τ ] = 0

(16.4)

where the co-state variable ψt(ω) is defined as

ψτ (ω) = −
T∫

τ

∂Cost(xs(ω))
∂x

ds. (16.5)
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In what follows, we omit dependence of uτ (ω) and xτ (ω) on ω.

3. Solution method
In this section we assume linear cost function Cost(x), i.e., Cost(x) =

xsig(x), where sig(x) =

⎧⎨⎧⎧⎩⎨⎨ c+, if x > 0
0, if x = 0
−c−, if x < 0

, and ∂Cost(x)
∂x = sig(x).

From (16.5) it follows that ψT = 0 for all ω. Therefore, E [ψT |xT = x] =
0 for every x and the costate dynamics can be determined recursively,
starting from t = T , as described below.

Suppose E [ψt+1|xt+1 = x] is known as a function of x for some
t=0,. . . ,T -1. Then, just before the demand realization at t+1

E[ψt+1−|xt+1− = x] =

∞∫
0

πt+1(s)E[ψt+1|xt+1 = x − s]ds. (16.6)

We denote this function as

At+1(x) = E[ψt+1−|xt+1− = x].

Since no demand occurs within the interval τ ∈ (t, t + 1), the function
E [ψt|xt = x] unambiguously depends on the function At+1(x). There-
fore, by taking into account (16.6), it also depends on the function
E [ψt+1|xt+1 = x]. That is, the costate variable moves from right to left.
At the same time, the state variable moves from left to right and the
dependence of xt+1− on xt will be denoted as Bt(x), xt+1− = Bt(xt).
Section 16.3.1 below further clarifies these dependencies.

Lemma 16.1 The function At(x) =
∞∫
0

πt(s)E [ψt|xt = x − s] ds is non-

increasing.

Proof: Consider a specific scenario starting at t, ω = (..., ξt, ξt+1, ..., ξT−1)
and two trajectories that correspond to this scenario, x

(1)
τ and x

(2)
τ ,

t ≤ τ ≤ T . The first trajectory starts with a lower inventory level
than the other, x

(1)
t− = x1 < x

(2)
t− = x2. Therefore, x

(1)
t = x1 − ξt <

x
(2)
t = x2 − ξt . In the sequel, the two trajectories retain the order,

i.e., x
(1)
τ < x

(2)
τ for t ≤ τ ≤ T . Now, from (16.5) and the convexity

of the Cost(x) function it follows that ψ
(1)
t ≥ ψ

(2)
t . Since the last in-

equality is true for each scenario, it is true also for the expected values,
E [ψt|xt = x1 − s] ≥ E [ψt|xt = x2 − s] for all s. This proves the lemma.
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3.1 State-costate dynamics
Consider a time interval τ ∈ [t, t + 1). Let xt = x be given at the

left boundary of the interval and the function At+1(·) be given at the
right limit of the interval. That is, the state variable is given from left
and the costate variable is given from right. Then, the state-costate
dynamics within the interval can be calculated. In particular, the state
value at the end of the interval, Bt(x), and the costate variable at the
beginning of the interval, E [ψt|xt = x], can also be calculated. We will
show that E [ψt|xt = x] depends solely on x and on At+1(Bt(x)), i.e.,
E [ψt|xt = x] = C (x, At+1(Bt(x))).

The calculation of the functions C(·, ·) and Bt(·) given At+1(·) differs
for six cases, n = 1, ..., 6 as presented below. Consider the first case,
n=1, which corresponds to large values of x. For sufficiently large x,
the costate variable must be negative in order not to produce waste
inventory. This follows from the optimality conditions (16.4). From the
costate dynamic equation (16.5), we have ψ̇τ = c+, that is, within the
interval τ ∈ [t, t+1),ψτ increases with the constant rate c+, as shown in
Figure 16.1a). During the interval, the state variable does not change,
Bt(x) = x, and the costate value increases by c+, C(x, z) = z − c+.
The first case works as far as the costate value at the right limit of the
interval is negative. Therefore, the marginal x for this case is such that
At+1(B(x)) = At+1(x) = 0. Thus, the first case is true for A−1

t+1(0) <
x < ∞. The other five cases, n=2,. . . ,6 are analyzed similarly.

The six cases are:
n=1, if A−1

t+1(0) < x < ∞, then Bt(x) = x and C(x, z) = z − c+. See
Figure 1a).
n=2, if max{0, A−1

t+1(c
+) − V } < x ≤ A−1

t+1(0), then Bt(x) = y, where
y is the root of the equation y−x

V = At+1(y)
c+

, and C(x, z) = z − c+. See
Figure 1b).
n=3, if 0 < x ≤ max{0, A−1

t+1(c
+)−V }, then Bt(x) = x+V and C(x, z) =

z − c+. See Figure 1c).
n=4, if min{0, y − V } < x ≤ 0, then Bt(x) = y, where y is the root of
the equation y

V = At+1(y)
c+

, and C(x, z) = −c− x
V . See Figure 1d).

n=5, if −V < x ≤ min{0, y − V }, where y is the root of the equation
y
V = At+1(y)

c+
, then Bt(x) = x + V , and C(x, z) = z + c+ + (c+ − c−) x

V .
See Figure 1e).
n=6, if −∞ < x ≤ −V , then Bt(x) = x + V , and C(x, z) = z + c−. See
Figure 1f).
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Figure 16.1. State-costate behavior for the six control regimes
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3.2 Feedback control rule
In the previous section we showed that over the time interval τ ∈

[t, t + 1), t=0,. . . ,T -1, the state-costate dynamics takes one of the six
possible types, depending on xt, t, and the parameters of the problem.
Therefore, the control uτ , τ ∈ [t, t + 1) is a function of xt and t, too, as
follows: For n=1, uτ = 0, τ ∈ [t, t + 1).
For n = 2,

uτ =

{
0, τ ∈ [t, t + 1 − Bt(xt)−xt

V )
V, τ ∈ [t + 1 − Bt(xt)−xt

V , t + 1)
(16.7)

For n=3, 5 and 6, uτ = V , τ ∈ [t, t + 1).

For n=4, uτ =

⎧⎨⎧⎧⎩⎨⎨
V, τ ∈ [t, t + −xt

V )
0, τ ∈ [t + −xt

V , t + 1 − Bt(xt)
V )

V, τ ∈ [t + 1 − Bt(xt)
V , t + 1)

.

The presented control rule satisfies the optimality condition 16.4. There-
fore, it is optimal, since the problem 16.1-16.3 is convex.

3.3 Algorithm for calculating the optimal
feedback control rule

Step 1. Set t = T -1 and At+1(x) = E [ψt+1−|xt+1− = x] =
E [ψT−|xT− = x] = 0 for all x.

Step 2. Calculate C(x, 0) and Bt(x) for all x as discussed in Section 16.3.1

Step 3. Set t = t−1 and determine the optimal feedback control rule
from (1.7), uτ = uτ (t, xt, τ), τ ∈ [t, t + 1).

Step 4. If t=0, stop, otherwise go to step 5.

Step 5. Calculate the function At+1(x), as

At+1(x) =

∞∫
0

πt(s)C(x − s, At+2(Bt(x − s)))ds. (16.8)

Step 6. Calculate Bt(x) and C(x, At+1(Bt(x))) as discussed in
Section 16.3.1 Go to step 3.

4. Numerical results
The complexity of the algorithm in Section 16.3.3 is defined by the

accuracy with which the function At+1(x) is calculated from 16.8. If
for each t, At+1(x) is calculated at N points and the integral in 16.8)is
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Figure 16.2. Probability density function of demand

calculated by the trapeze method with K mesh intervals, (πt(s) is perti-
nent in K+1 mesh points), the complexity of each loop of the algorithm
is O(KN ). The total complexity is O(KNT ).

We implemented the algorithm of the previous section for the following
parameters of the problem: T=40, V =1, c+ = 0.4, c− = 1.

4.1 Convergence and divergence
For a stationary demand, πt(·) = π(·) for all t, with the production

capacity being greater than the expected demand, E[dt] = E[d] < V ,
the control policy converges. That is, there exists a limit function B(x),
such that

lim
T→∞

Bt(x) = B(x)

for each t and x.
We used the probability density function of demand, π(s), as follows

(see Figure 16.2)

π(s) =

⎧⎪⎧⎧⎨⎪⎪⎪⎨⎨⎩⎪⎪
0, if s < a or s ≥ b
4(s−a)
(b−a)2

, if a ≤ s < a+b
2

4(
(

b−s)
(b−a)2

, if a+b
2 ≤ s < b

with the parameters a=0.1 and b=1.7.
Figures 16.3 and 16.4 present the function At(x) calculated by the

developed algorithm. The function does not converge over the whole
axis. For a very large positive x, the costate function increases by c+ at
each time period (see case n=1 in Section 16.3.1), and for a very large
negative x, the costate function decreases by c− at each time period (see
case n=6 in Section 16.3.1). Therefore,

lim
x→∞At(x) = −c+(T − t), lim

x→−∞At(x) = c−(T − t).
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.

However, the control strategy depends on the function At(x) only within
the area between A−1

t (c+) and A−1
t (0). Therefore, if the function At(x)

converges within the area between A−1
t (c+) and A−1

t (0), the control
strategy converges as well. Figure 16.5 shows the convergence of the last
two values as t approaches zero. Figure 16.6 shows how much inventory
is to be stored at the end of period t, Bt(x), if inventory at the beginning
of period t is x. The value of production within the period is Bt(x)− x.

The next experiment shows the divergence of the control strategy.
Here we used the parameters a=0.5 and b=1.9 , i.e. E[d] > V . The rest
of the parameters are same. Figures 16.7-16.10 are similar to Figures
16.3-16.6 of the previous experiment.

4.2 Changing in time demand
The developed algorithm works for a non-stationary demand distri-

bution as well. We used the demand distribution from the previous
experiments with the parameters a=0.1 and b=0.8 for t=1,3,5, . . . ,39,
and a=1.1 and b=1.8 for t=0,2,4, . . . ,38. The control policy converges
to two different forms, one for even time periods and the other for the
odd periods. Figure 16.11 shows the limit policy approximated at t=0
and at t=1.
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5. Conclusions
In this paper we have shown how the optimality conditions of a sto-

chastic optimal control problem can be used to construct a solution
method. The constructed method uses both the state and costate dy-
namics of the problem and converges (when possible) to a limit strategy
optimal far from the end of the planning horizon. In particular, the
method can be used to approximate the limit strategy. The approach
and the method can be generalized to more complex cases that would
include stochastic and non-stationary machine capacity, as well as non-
linear cost structure.
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ent final times. The maintenance control is either composed by bang-
bang and singular arcs or is purely bang-bang. In the case of a linear
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number of good items is added to the control problem.
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1. Introduction
Cho, Abad and Parlar (1993) have considered a production process

whose performance declines over time in the absence of maintenance.
Preventive maintenance may be applied to the process to slow down
the rate of decline of (or improve) the process performance which is
measured in terms of good (non-defective) units of items produced. The
authors restrict the analysis of optimal control solutions to a quadratic
production cost function while the maintenance cost function is assumed
to be linear. Using an algorithm that is tailored to the specific control
problem, they compute a maintenance control which is composed of
bang-bang and singular arcs while the production control is a continuous
function.

The present paper pursues three objectives which are discussed in Sec-
tions 17.3-17.5. The first objective (Section 17.3) is to present numerical
results that improve on those in Cho, Abad and Parlar (1993). We apply
recently developed optimization techniques to obtain feasible controls
that satisfy the necessary optimality conditions in Pontryagin’s maxi-
mum principle with high accuracy. For a variety of finite time horizons,
different control structures are elaborated. Surprisingly, no sufficient
conditions are available in the literature which would bear upon the
type of controls encountered in the model.

The second objective (Section 17.4) is the computation of optimal
controls in the case where both the maintenance and production cost
functions are linear. It is shown that the production and maintenance
controls are purely bang-bang. In addition, we are able to verify nu-
merically that the computed bang-bang controls provide a strict strong
minimum. This is achieved by applying a new sufficiency test devel-
oped in Agrachev, Stefani and Zezza (2002), Maurer and Osmolovskii
(2003,2004), Maurer, Büskens, Kim and Kaya (2004) and Osmolovskii¨
and Maurer (2005).

The third goal is discussed in Section 17.5 where an additional state
constraint, a lower bound for the number of good items, is imposed. We
show that the optimal control solution contains one boundary arc and
is bang-bang on interior arcs. To prove sufficient optimality conditions,
we extend the second order test in Section 17.4 to handle a boundary
arc.
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Table 17.1. Notation

variable description

x(t) inventory level at time t ∈ [0, T ] (state), fixed final time T > 0

y(t) proportion of ‘good’ units of end items produced at time t :
process performance (state)

u(t) scheduled production rate (control )

m(t) preventive maintenance rate to reduce the proportion of defective
units produced (control )

α(t) obsolescence rate of the process performance in the absence
of maintenance

s(t) demand rate

ρ > 0 discount rate

2. The control model for optimal production
and maintenance

The notations for the optimal control problem are displayed in Ta-
ble 17.1. The dynamics of the process is described as

ẋ(t) = y(t)u(t) − s , x(0) = x0 > 0 ,

ẏ(t) = −(α + m(t))y(t) + m(t) , y(0) = y0 > 0 .
(17.1)

Bounds on the control variables are given by

0 ≤ u(t) ≤ U, 0 ≤ m(t) ≤ M for 0 ≤ t ≤ T . (17.2)

Since all demands must be satisfied, the following state constraint is
imposed:

0 ≤ x(t) for 0 ≤ t ≤ T . (17.3)

Later, we shall consider an additional state constraint, a lower bound
on the number of good items,

S(y(t)) := y(t) − ymin ≥ 0 for 0 ≤ t ≤ T . (17.4)

The optimal control problem then is to maximize the total discounted
profit plus the salvage value of y(T ),

J(x, y, u, m) =
∫ T
0

∫∫
[ws − hx(t) − Φ(u(t)) − cm(t)]e−ρt dt

+ by(T )e−ρT ,
(17.5)
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under the constraints (17.1)–(17.3), resp., (17.1)–(17.4). Here, w, h,
c, ρ, b are positive constants and Φ(u) denotes the production cost
function that will be chosen either as the quadratic function

Φ(u) = ru2, r > 0 , (17.6)

or linear function
Φ(u) = qu, q > 0 . (17.7)

Note that the maintenance cost in (17.5) is taken as the linear function
c · m. Computations will reveal that the optimal inventory x(t) always
satisfies x(t) > 0 for 0 ≤ t < T and x(T ) = 0 for both types of
production cost functions. Hence, we shall replace the state constraint
(17.3) by the terminal condition

x(T ) = 0 . (17.8)

We choose constants that are identical to those in Cho, Abad and Parlar
(1993) and specify the linear function in (17.7):

Table 17.2. Control problem data

in eq. (17.1) : s ≡ 4, α ≡ 2, x0 = 3, y0 = 1
in eq. (17.2) : U = 3, M = 4
in eq. (17.5) : ρ = 0.1, w = 8, h = 1, c = 2.5, b = 10
in eq. (17.6), (17.7) : r = 2, q = 4

First, we discuss the basic set of necessary optimality conditions in
Pontryagin’s maximum principle; cf., Feichtinger and Hartl (1986), Sethi
and Thompson (2004). The current value Hamiltonian in normal form
is given by

H(x, y, u, m, λx, λy) = (ws − hx − Φ(u) − cm)
+λx(yu − s) + λy(−(α + m)y + m), (17.9)

where λx, λy are the adjoint variables. The adjoint equations and trans-
versality conditions yield in view of x(T ) = 0 and the salvage term in
the cost functional:

λ̇x = ρλx − ∂H

∂x
= ρλx + h, λx(T ) = ν,

λ̇y = ρλy − ∂H

∂y
= λy(ρ + α + m) − λxu, λy(T ) = b.

(17.10)
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The multiplier ν is not known a priori and will be determined later.
The maximization of the Hamiltonian with respect to the control vari-
able u is equivalent to the maximization problem

max 0≤u≤U (−Φ(u) + λx(t)y(t)u) . (17.11)

In the next two sections, this maximization will be evaluated separately
for the quadratic, resp., linear production cost function (17.6), resp.,
(17.7). Since the maintenance control m enters the Hamiltonian linearly,
the control m is determined by the sign of the switching function

σm(t) =
∂H

∂m
= −c + λy(t)(1 − y(t)) (17.12)

as the policy

m(t) =

⎧⎨⎧⎧⎩⎨⎨ M , if σm(t) > 0
0 , if σm(t) < 0
singular , if σm(t) ≡ 0 for t ∈ IsingII ⊂ [0, T ]

⎫⎬⎫⎫⎭⎬⎬ . (17.13)

Cho, Abad and Parlar (1993) have shown that a singular arc occurs
indeed for a quadratic production cost function. In the next section, we
shall give a more detailed account of the singular case.

3. Quadratic production cost function:
bang-bang and singular maintenance control

In this section, we omit the state constraint (17.4). Assuming the
quadratic production cost Φ(u) = ru2 with r = 2, our computations
for time horizons T > 0.75 indicate that the control constraint 0 ≤
u(t) ≤ U = 3 never becomes active. Upon deleting this constraint, the
maximization in (17.11) with respect to the control u immediately yields
the relation

u(t) =
λx(t)y(t)

2r
. (17.14)

A singular maintenance control msing(t) in (17.13) is characterized by
the equations dkσm/dtk = 0 for t ∈ IsingII ⊂ [0, T ], k = 0, 1, 2. Using
the control policy (17.14) we find after some lengthy computations that
the second derivative of the switching function is given by

d2σm

dt2
= A + B · msing = 0,

A = −(h + ρλx)u(1 − y) − αλxu(1 + y) + α2λy

+ αρλy − λx(1 − y)/(2r)(y(h + ρλx) − αyλx),

B = λxu(1 − y) + αλy − λ2
x(1 − y)2/(2r).

(17.15)
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Hence, the singular arc is of order one (cf. Bell and Jacobson (1975),
Krener (1977)) and the singular maintenance control is determined by
the formula

msing(t) = −A(t)/B(t) . (17.16)

We only mention that it is even possible to derive a feedback expression
msing = msing(x, y) for the singular control. Namely, one can use the
relations σ = σ̇ = 0 to obtain the adjoints λx and λy as functions of x
and y. The evaluation of formula (17.16) requires that the generalized
Legendre-Clebsch condition

B(t) =
∂

∂m

(
d2

dt2
∂H

∂m

)
(t) > 0

holds along the singular arc, cf. McDanell and Powers (1971), Krener
(1977). We shall verify this condition a posteriori.

The numerical approach in Cho, Abad and Parlar (1993) is tailored to
the specific problem under consideration. It is based on a decentralized
approach in which the process is divided into two subproblems which
are linked via an interaction variable. Moreover, it is assumed that the
maintenance control has the following three stages for the final time
T = 1 :

m(t) =

⎧⎨⎧⎧⎩⎨⎨ 0 , for 0 ≤ t ≤ t1
singular , for t1 < t ≤ t2
M = 4 , for t2 < t ≤ T

⎫⎬⎫⎫⎭⎬⎬ . (17.17)

We can confirm this control structure but choose an entirely different
approach. We optimize a discretized version of the control problem for
a high number N of grid points τiττ = i · T/N, i = 0, 1, ..., N ; cf. Betts
(2001), Büskens (1998), B¨¨ uskens and Maurer (2000). The integration¨
method for the ODE system (17.1) and (17.5) is Heun’s method. Fur-
thermore, we implement the discretized control problem in the program-
ming language AMPL of Fourer, Gay and Kernighan (1993) and use the
interior point optimization code LOQO of Vanderbei and Shanno (1999).
For N = 5000 grid points, the computed state, control and adjoint func-
tions are displayed in Figs. 17.1-17.3. Table 17.3 shows the solution
data for different values of T which illustrate different control policies
(17.17)–(17.19).

The optimization approach AMPL/LOQO determines the switching
times ti only with a precision of up to 3 decimals. The precise values of
the switching times in Table 17.3 are obtained with a direct optimization
approach which is similar to that in Maurer, Buskens, Kim and Kaya¨
(2004) used for bang-bang controls.
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Table 17.3. Solution data for the quadratic cost function, control policies (17.17)–
(17.19).

Values for T = 1 T = 0.99 T = 0.8

J 25.36401 25.54044 26.41073
λx(0) 10.72807 10.59144 2.689152
λy(0) 7.910491 7.743679 1.439564
λx(T ) 12.90783 12.73409 3.745814

t1 0.517947 0.567540 0.621544
t2 0.701577 0.591157
t3 0.684511

Fig. 17.2 indicates that the maintenance control is discontinuous at the
junction points: the computed values for T = 1 are msing(t1) = 3.1324
and msing(t2) = 2.0998. Hence, the necessary junction conditions in
Theorem 1 in McDanell and Powers (1971) are fulfilled. The switching
function σm(t) matches precisely the control policy (17.13) and (17.17).
It is worth noting that the singular control obtained via discretization
and optimization methods coincides precisely with the singular control
(17.15) and (17.16) when the computed adjoints are inserted. Thus, we
have computed a solution candidate that satisfies the first order neces-
sary conditions in Pontryagin’s maximum principle with high accuracy.

Note that the singular maintenance rate differs considerably from that
depicted in Fig. 17.3 in Cho, Abad and Parlar (1993). The adjoint
function λx(t) corresponds to the adjoint function λ1(t) + η(t), λ1(T ) =
0, for which Cho, Abad and Parlar (1993) determine the value η ≡ 12.5.
Both adjoint functions agree only qualitatively.
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Figure 17.1. State variables x(t) and y(t).
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Figure 17.2. Control variables u(t) and m(t).
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Figure 17.3. Adjoint variables λx(t) and λy(t).

Now the question arises whether sufficient conditions exist that bear
upon the computed candidate solution. The well known sufficiency the-
orem in Feichtinger and Hartl (1986), p. 36, Satz 2.2, requires the maxi-
mized Hamiltonian Hmax to be concave in the variables (x, y) when the
adjoint functions λx(t), λy(t) are inserted. However, using the maximi-
zing control u(t) = λx(t)y(t)/2r, we obtain

Hmax(x, y, λx(t), λy(t)) =
y2λx(t)2

4r
+ lin(x, y),

where lin(x, y) denotes a linear function in the variables (x, y). Since
λx(t) = 0 holds in [0�� , T ], the maximized Hamiltonian is strictly convex in
the variable y. This means that the above mentioned sufficiency theorem
is not applicable here.

Other types of sufficient conditions that could be eventually applied
to the present problem belong to the class of second-order sufficient
conditions (SSC) for local optimality. SSC for optimal control problems
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Figure 17.4. Optimal maintenance control for T = 0.99.

where the strict Legendre condition holds with respect to all control
components (regular control) may be found in Malanowski and Maurer
(1996), Maurer and Pickenhain (1995), Milyutin and Osmolovskii (1998)
and Zeidan (1994). SSC for purely bang-bang controls have recently been
derived in Agrachev, Stefani and Zezza (2002), Maurer and Osmolovskii
(2003,2004) and Osmolovskii and Maurer (2005). However, the control
problem studied in this paper exhibits a mixture of a regular control and
a bang-singular control. Thus we are faced with the surprising fact that
the literature does not provide SSC which are applicable to the control
problem considered here. This poses a theoretical challenge which is
currently under investigation.

Now we briefly study optimal controls for time horizons T �= 1. It��
turns out that the structure (17.17) of the maintenance control does not
prevail for all T �= 1. E.g., for the final time�� T = 0.99, the maintenance
control has an additional bang-bang arc preceding the singular arc:

m(t) =

⎧⎪⎧⎧⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎩⎪⎪
0 , for 0 ≤ t ≤ t1
M = 4 , for t1 < t ≤ t2
singular , for t2 < t ≤ t3
M = 4 , for t3 < t ≤ T

⎫⎪⎫⎫⎪⎪⎪⎬⎪⎪⎪⎬⎬⎪⎪⎪⎭⎪⎪ . (17.18)

The control is displayed in Fig. 17.4 while the solution data are given in
Table 17.3.

For final times T ∈ [0.15, 0.9819], the singular arc amidst the two
upper bang-bang arcs disappears and the maintenance control takes the
simple bang-bang form with one switching time

m(t) =
{

0 , for 0 ≤ t ≤ t1
M = 4 , for t1 < t ≤ T

}
. (17.19)
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Table 17.3 contains the solution data for T = 0.8. For time horizons
T ≤ 0.75 the production rate u(t) is zero for all t ∈ [0, T ].

For values T > 1 one observes that the singular arc in (17.17) remains
part of the control in the range T ∈ [0.9975, 1.4695]. For values of
T ∈ [1.4696, 1.583], the simple bang-bang policy (17.19) is optimal.

4. Linear production and maintenance cost
functions: bang-bang controls

In this section, we assume that the production cost function is linear,

Φ(u) = q · u, q = 4 .

Hence, we can expect that the control constraint 0 ≤ u(t) ≤ U, U = 3,
in (17.2) becomes active. The production control u is determined by the
sign of the associated switching function

σu(t) =
∂H

∂u
= −q + λx(t)y(t) (17.20)

according to

u(t) =
{

0 , if σu(t) < 0
U = 3 , if σu(t) > 0

}
. (17.21)

We refrain from giving a theoretical discussion of singular production
and maintenance controls, since numerical computations indicate that
both control components are purely bang-bang for a certain range of
time horizons T .

To determine the optimal solution for the final time T = 1, we im-
plement again the optimization package AMPL/LOQO in Fourer, Gay
and Kernighan (1993), Vanderbei and Shanno (1999). Using Heun’s in-
tegration method and N = 5000 grid points, we obtain the following
bang-bang production and maintenance control:

(u(t), m(t)) =

⎧⎪⎧⎧⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎩⎪⎪
(U, 0) , for 0 ≤ t ≤ t1
(0, 0) , for t1 < t ≤ t2
(0, M) , for t2 < t ≤ t3
(U, M) , for t3 < t ≤ T = 1

⎫⎪⎫⎫⎪⎪⎪⎬⎪⎪⎪⎬⎬⎪⎪⎪⎭⎪⎪ . (17.22)

The computed state, control and switching functions are shown in Figs.
17.5-17.7. The solution data are given in Table 17.4.--

The switching of the maintenance rate from zero to the upper bound
M = 3 is plausible. The production policy where one switches from full
to zero production and back to full production was not clear from the
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Table 17.4. Solution data for linear cost function Φ(u) = q · u.

Values for T = 1

J 25.79803
λx(0) 7.386222
λy(0) 6.358150
λx(T ) 9.214515

t1 0.346523
t2 0.727053
t3 0.841542

onset. This policy is not in agreement with the statement in Cho, Abad
and Parlar (1993), Conclusion, Finding (3): “For a linear production
cost function it is always optimal not to produce units until the on-hand
inventory is completely depleted”.

In contrast to the results for quadratic production cost, we can ac-
tually prove that the purely bang-bang control (17.22) provides a strict
strong minimum. We use the recently derived second-order sufficient
conditions (SSC) in Agrachev, Stefani and Zezza (2002), Maurer and
Osmolovskii (2003,2004), Osmolovskii and Maurer (2005) and apply the
numerical verification technique in Maurer, Büskens, Kim and Kaya¨
(2004). Observe first that the production and maintenance controls do
not switch simultaneously. Furthermore, one reads off Fig. 17.7 and can
check it numerically that the following strict bang-bang property holds:

σ̇u(t1) < 0, σ̇m(t2) > 0, σ̇u(t3) > 0,

σu(t) �= 0 for�� t �=�� t1, t3, σm(t) �= 0 for�� t �=�� t2 .
(17.23)
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Figure 17.5. State variables x(t) and y(t).
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Figure 17.6. Control variables u(t) and m(t).
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Figure 17.7. Switching functions σu(t) and σm(t).

Let us sketch the crucial part of the SSC test in Agrachev, Stefani and
Zezza (2002), Maurer, Büskens, Kim and Kaya (2004). The bang-bang¨
control problem is reformulated as an optimization problem where the
optimization variables are the arc durations ξ1 = t1, ξ2 = t2 − t1 and
ξ3 = t3 − t2 of the bang-bang arcs. Therefore, the switching times are
related to the arc durations by tk =

∑k
i=1 ξk for k = 1, 2, 3. Since the

final time T is fixed, the duration of the last bang-bang arc is given by
T − t3 = T − (ξ1 + ξ2 + ξ3). Hence, we consider the optimization vari-
able z := (ξ1, ξ2, ξ3). The control policy (17.22) then defines functions
u(t; z), m(t; z) which determine the solution of the ODE system (17.1)
as functions x(t; z) and y(t; z). Therefore, the cost functional (17.5) can
be rewritten as the function

F (z) = F (ξ1, ξ2, ξ3) := J(x(t; z), y(t; z), u(t; z), m(t; z)) (17.24)

which is to be maximized subject to the equality constraint

G(z) = G(ξ1, ξ2, ξ3) := x(T ; z) = 0 . (17.25)
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The Lagrangian function for the optimization problem (17.24) and (17.25)
is defined by

L(z, ν) = F (z) + νG(z), (17.26)

where ν is a multiplier which coincides with that in the transversality
condition λx(T ) = ν in (17.10). The second order test in Agrachev, Ste-
fani and Zezza (2002), Maurer and Osmolovskii (2003,2004) is equivalent
to the following three conditions where partial derivatives are denoted
by subscripts and the asterisk denotes the transpose:

(a) Lz(z, ν) = FzFF (z) + νGz(z) = 0, Gz(z) = (0�� , 0, 0),
(b) h∗Lzz(z, ν)h > 0 ∀ h = (0�� , 0, 0), Gz(z)h = 0.

(17.27)

Note that condition (a) is equivalent to the adjoint equations and the
switching conditions; cf. Maurer, Buskens, Kim and Kaya (2004). The¨
SSC test (b) can be performed with the routine NUDOCCCS of Büskens¨
(1998). We get the following results : ξ1 = t1 = 0.346523, ξ2 = t2 − t1 =
0.380530, ξ3 = t3 − t2 = 0.114489 and the multiplier ν = λx(T ) =
9.214515. The Jacobian of G(z) and the Hessian of L(z, ν) are computed
as

Lzz(z, ν) =

⎛⎝⎛⎛ 41.62 21.04 −3.44
21.04 21.05 −3.46
−3.44 −3.46 34.53

⎞⎠⎞⎞ , Gz(z) = −(0.32, 1.82, 1.35).

(17.28)
Hence, condition (a) in (17.27) holds. Condition (b) in (17.28) requires
that the Hessian Lzz(z, ν) given in (17.28) be positive definite on the
kernel of Gz(z). This property can be easily checked numerically. Thus,
in view of the strict bang-bang property (17.23) we may conclude that
the control policy (17.22) yields a strict strong minimum.

The test of SSC has another important consequence for stability and
sensitivity of the optimal bang-bang control when the data of the con-
trol problem are perturbed. It follows from the sensitivity results in
Fiacco (1983), Büskens and Maurer (2001), and Kim and Maurer (2003)¨
that, for small perturbations of the data, the optimal control has the
same number of switching times as the unperturbed optimal control.
Moreover, it can be shown that the switching times are differentiable
functions of any parameter in the system.

To illustrate this result, we choose α = 2 as the nominal reference
parameter. Using the code NUDOCCCS in Buskens (1998) we obtain¨
the following parametric sensitivity derivatives of the optimal switching
times:

dt1
dα

= −0.0109557,
dt2
dα

= −0.0816061,
dt3
dα

= −0.1059373 .
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The negative signs of dtk/dα are quite reasonable since a higher obso-
lescence rate α would urge an economist to stop full production and to
apply full maintenance at an earlier time. The advantage of the numeri-
cal approach then lies in the fact that one is able to pass from qualitative
decisions to more precise quantitative decisions. Another example is the
influence of the cost parameter q in the production cost q · u. The sen-
sitivity derivatives at the nominal parameter q = 4 are evaluated as

dt1
dq

= −0.0134343,
dt2
dq

= −0.01841493,
dt3
dq

= −0.00849733 .

5. Linear production and maintenance cost and
state constraint y(t) ≥ ymin

As in the preceding section, we assume linear production and mainte-
nance cost functions and impose the additional state constraint (17.4),

S(y(t)) := y(t) − ymin ≥ 0 ∀ t ∈ [0, T ]. (17.29)

For a review of the maximum principles for state-constrained control
problems, we refer to Hartl, Sethi and Vickson (1995), Sethi and Thomp-
son (2004). The state constraint (17.29) has order one, since the first
derivative ẏ = −(α+m)y +m contains the control variable m explicitly.
We directly adjoin the state constraint to the Hamiltonian H in (17.9)
and obtain the augmented Hamiltonian

H̃(x, y, u, m, λx, λy, µ) = H(x, y, u, m, λx, λy) + µ(y − ymin) , (17.30)

with a non-negative multiplier function µ ≥ 0. On a boundary arc with

y(t) = ymin for t ∈ IbII ⊂ [0, T ],

the boundary control mb(t) is determined via the relation ẏ(t) = 0 as

mb(t) =
αymin

1 − ymin
. (17.31)

We are looking for feasible boundary controls which lie in the interior of
the control set,

0 < mb(t) < M = 4 , (17.32)
which implies ymin < M/(α + M). The adjoint equations are modified
on the boundary as follows:

λ̇x = ρλx − ∂H̃

∂x
= ρλx + h,

λ̇y = ρλy − ∂H̃

∂y
= λy(ρ + α + m) − λxu − µ .

(17.33)
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On interior arcs with y(t) > ymin the controls are shown to be bang-
bang. The assumption (17.32) on the boundary control implies that the
optimal control m is discontinuous at the entry and exit time of a bound-
ary arc. Since the order is equal to one, we infer from Corollary 5.2 (ii)
in Maurer (1977) that the adjoint variables do not have jumps at junc-
tions with the state boundary and thus are continuous across junctions.
The multiplier µ is implicitly determined by the fact that the switching
function vanishes,

σm(t) = λy(t)(1 − y(t)) − c ≡ 0 ∀ t ∈ IbII ⊂ [0, T ]

which follows from assumption (17.32) and the maximization of the
Hamiltonian. In view of y(t) ≡ ymin, the second adjoint variable is
determined by λy(t) ≡ c/(1 − ymin) = 25/6. Hence, we have λ̇y = 0 and
the second adjoint equation in (17.33) yields the formula

µ = λy(ρ + α + mb) − λxu . (17.34)

Let us choose the data T = 1, α = 2 and ymin = 0.4. Then the state
inequality constraint (17.29) will become active, since the unconstrained
solution y(t) achieves its minimum at y(t2) = 0.2366, cf., Fig. 17.5. The
boundary control (17.31) is mb(t) ≡ 4/3. With N = 5000 grid points,
the optimization package AMPL/LOQO in Fourer, Gay and Kernighan
(1993), Vanderbei and Shanno (1999) yields the following control policy
with one boundary arc:

(u(t), m(t)) =

⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪
(U, 0) , for 0 ≤ t ≤ t1
(0, 0) , for t1 < t ≤ t2
(0, mb) , for t2 < t ≤ t3
(0, M) , for t3 < t ≤ t4
(U, M) , for t4 < t ≤ T = 1

⎫⎪⎫⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎬⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎪⎪ . (17.35)

The solution data are given in Table 17.5. The state, control and ad-
joint variables are displayed in Figs. 17.8-17.10. The production control
u is zero along the boundary arc. Hence, the multiplier µ in (17.34) is
given by µ(t) = λy(t)(ρ + α + mb) ≡ 515/36 = 14.3056 > 0.

To show local optimality of this solution, we apply a second order
test that generalizes the one for bang-bang controls which was briefly
explained in the last section. The bang-bang control problem is tran-
scribed into an optimization problem where the optimization variables
are the arc durations ξ1 = t1, ξ2 = t2 − t1, ξ3 = t3 − t2, ξ4 = t4 − t3
of the bang-bang arcs and the boundary arc. The duration of the last
bang-bang arc is given by T −t4 = T −(ξ1+ξ2+ξ3+ξ4). We consider the
optimization variable z := (ξ1, ξ2, ξ3, ξ4). The control policy (17.35) de-
fines functions u(t; z), m(t; z) which determine the solution of the ODE
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Table 17.5. Solution data for linear cost functions and state constraint ymin = 0.4 .

Values for T = 1 and y(t) ≥ 0.4

J 25.49798
λx(0) 6.879734
λy(0) 6.430174
λx(T ) 8.654760

t1 0.308045
t2 0.458145
t3 0.753127
t4 0.813690

system (17.1) as functions x(t; z) and y(t; z). The cost function (17.5)
is determined as the function

F (z) = F (ξ1, ξ2, ξ3, ξ4) := J(x(t; z), y(t; z), u(t; z), m(t; z)) (17.36)

which has to be maximized subject to equality constraints that represent
the terminal condition and the entry condition for the boundary arc

G(z) = G(ξ1, ξ2, ξ3, ξ4) := (x(T ; z), y(t2; z) − ymin) = (0, 0) . (17.37)

Computations show that second order sufficient conditions of the form
(17.27) hold when we replace the second condition in (17.27) (a) by the
regularity condition rank(Gz(z)) = 2. Moreover, the switching functions
satisfy sign conditions which generalize the strict bang-bang property in
(17.23):

σ̇u(t1) < 0, σ̇m(t2−) > 0, σ̇m(t3+) > 0, σ̇u(t4) > 0,

σu(t) �= 0 for�� t �=�� t1, t4, σm(t) �= 0 for 0�� ≤ t < t3, t4 < t ≤ T.
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Figure 17.8. State variables x(t) and y(t).
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Figure 17.9. Control variables u(t) and m(t).
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Figure 17.10. Adjoint variables λx(t) and λy(t).

6. Conclusion
We have considered a control problem of optimal production and

maintenance which was discussed in Cho, Abad and Parlar (1993) for
a quadratic production cost and linear maintenance cost function. Two
recently developed optimization methods were applied to compute can-
didate solutions that satisfy the first order necessary conditions in Pon-
tryagin’s maximum principle with high accuracy. A surprising fact in
this numerical study was that no sufficient conditions could be found
that would bear upon the control problem. This is due to the fact that
two different types of control functions occur in the problem, the produc-
tion control being a continuous function while the maintenance control
is bang-bang and singular.

In the case where both the production and maintenance cost function
are linear, we have found that production and maintenance control are
purely bang-bang. We could apply a recent second order test to ver-
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ify numerically that the computed bang-bang control provides a strong
minimum. The second order test is based on an associated optimization
problem where the unknown switching times are optimized directly.

Finally, we have added to the control problem a state constraint of
practical interest, namely, a lower bound on the number of good items.
It is shown that the optimal solution contains one boundary arc while
on interior arcs both controls are bang-bang. The second test for bang-
bang controls was extended to include boundary arcs. Thus we could
again verify numerically that the computed solution provides a strong
minimum.
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Chapter 18

RELIABILITY INDEX

A. Bensoussan
University of Texas at Dallas, USA
Alain-Bensoussan@utdallas.edu

Abstract The reliability index is a useful indicator to compute the failure proba-
bility. If J is the performance of interest and if J is a Normal random
variable, the failure probability is computed by

PfP = N(−β)

and β is the reliability index. When J is a nonlinear function of n
normal random variables (X1, . . . , Xn), then the preceding formula can
be generalized, with some approximation. One uses a nice property of
the reliability index, to be the shortest distance of the origin to the
failure region. This method introduced by B.M. Ayyub, provides an
analytic alternative to the Monte Carlo method.

1. Introduction
The objective of this article is to discuss a method to compute the

failure probability (or its opposite the reliability ) of an element, subject
to several random inputs. It is an analytical approach, which can be
compared to the Monte Carlo approach, common in this type of problem.
This work relies on the presentation of B M. Ayyub (2003), where the
method is introduced. We give a rigorous treatment of the main results.

2. Reliability Assessment
The reliability of an element of a system can be determined based on

a performance function. Call J this performance function. It is assumed
function J(X1, · · · , XnXX ) , where the XiX are random variables. The

limit state is when J = 0. When J < 0, the element is in a failure state,
whereas when J > 0, it is in the survival state. The failure probability
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is defined as
PfP = P (J < 0)

Of course,we can write

PfP =
∫

· · ·
∫

{J < 0}fXff 1,··· ,Xn(x1, · · · , xn)dx1 · · · dxn

where
fXff 1,··· ,Xn(x1, · · · , xn)

represents the joint probability density of the random variables. This
formula is hardly computable, and one relies naturally of the Monte
Carlo approach to estimate it. The reliability index method that we
are going to develop is an alternative, which can be less costly than the
Monte Carlo approach, especially when the variables are gaussian, or
close to gaussian.

3. The case of a linear performance with two
inputs

This case permits to understand the essence of the method. We as-
sume that

J = S − L

If we are in the domain of materials, S represents the structural strength
of the material, and L the load effect. If we are in the economic field,
then S can represent the supply and L the demand. S, L are random
variables. Let µ, σ denote the mean and standard deviation of J . One
defines

β =
µ

σ

as the reliability index. If J is normally distributed and N(x) represents
the cumulative distribution of the standard normal variable, then one
has

PfP = N(−β) = 1 − N(β)

If S, L are normally distributed, with means µS , µL, standard deviations,
σS , σL and if they are not correlated, then one has the formula

β =
µS − µL√
σ2

S + σ2
L

We assume µS − µL > 0, so the reliability index is positive. Define the
reduced variables

YSYY =
S − µS

σS
, YLYY =

L − µL

σL
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In a plane of coordinates YSYY , YLYY , the line

YLYY =
σS

σL
YSYY +

µS − µL

σL

represents the limit state. To the right hand side of this line, we have
the survival region, and to the left hand side, we have the failure region.
The origin is in the survival region. As easily seen, the reliability index
β represents the shortest distance to the failure region.

Figure 18.1. Performance Function for a Linear,Two-Random Variable Case in Nor-
malized Coordinates

The point on the limit state line that corresponds to the shortest
distance β is called the Failure Point. It is the most likely failure point.
This is explained as follows: Since YLYY , YSYY are standard, normal and
independent, the probability density

P (YSYY = x, YLYY = y| System has failed) =

=
1

2πPfP

(
exp−1

2
(x2 + y2)

)
1I{y≥xσS+µS−µL

σL
}

This expression is maximum in x, y when

y =
xσS + µS − µL

σL

x minimizes x2 +
(xσS + µS − µL)2

σ2
L

The point which is obtained in this way is the failure point.
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4. Generalization to Nonlinear Performance
Functions

Suppose now that the performance function is given by

J(X1, · · · , XnXX )

where the XiXX are normal, with mean µXi and standard deviation σXi .
We assume that they are independent. Approximations are possible
where they are not gaussian, and when they are gaussian, but correlated.
Failure occurs when J < 0, and survival when J ≥ 0. If we consider the
reduced variables

YiYY =
XiXX − µXi

σXi

then we can consider the YiYY as coordinates in an Euclidean space Rn.
The region

J(µX1 + σX1Y1YY , · · · , µXn + σXnYnYY ) ≥ 0

is the survival region, and the limit state corresponds to J = 0.

The probability density of Y1YY , · · · , YnYY conditional to J < 0 is given by

1
(2π)

n
2 PfP

(
exp−1

2

n∑
i=1

y2
i

)
1I{J(µX1

+σX1
y1,··· ,µXn+σXnyn)<0}

where PfP is the probability of failure, PfP = P (J < 0). The most likely
failure point is obtained by solving the problem

min
n∑

i=1

y2
i , subject toJ(· · · ) ≤ 0

If J is a convex function, then the failure domain is convex. We assume

µJ = J(µX1 , · · · , µXn) > 0

so that the origin is not in the failure domain. Note that µJ is not the
mathematical expectation of J , but the certainty equivalent. The as-
sumption means that the system is operating correctly, when the random
factors are replaced by their means. With this assumption the distance
is strictly positive. We denote it by β. Under convexity assumptions,the
minimum ŷi is uniquely defined and is located on the boundary of the
failure domain.
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Figure 18.2. Performance function for a Nonlinear Two-Random Variable Case

By Lagrange multiplier theory,the optimal yi must satisfy the system
of equations

yi + λ
∂J

∂XiXX
σXi = 0

where λ is the Lagrange multiplier. Recalling the definition of β, one
has

λ =
β√∑

i(σXi
∂J
∂Xi

)2

Set

αi =
∂J
∂Xi

σXi√∑
i(σXi

∂J
∂Xi

)2

then
yi = −βαi

Considering β as a parameter, the preceding relations form a system
of nonlinear equations in y1, · · · , yn. Now β is obtained by writing the
condition

J(µX1 − σX1βα1, · · · , µXn − σXnβαn) = 0
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The next question is to compute PfP = P (J ≤ 0). Here we proceed with
an approximation. We shall expand J around the point

X̂iX = µXi − σXiβαi

instead of expanding it around the mean µXi . Writing

J(· · · , X̂iXX + XiXX − X̂iXX , · · · ) ∼
∑

i

∂J

∂XiXX
(XiXX − X̂iX )

We approximate J by a normal random variable with mean µXi − X̂iXX ,
and variance

(σJ)2 =
∑

i

(σXi

∂J

∂XiXX
)2

Writing
µJ = µXi − X̂iXX = βσJ

we obtain that the reliability index is the same ratio as in the linear case,
provided the real mean and standard deviation of J are replaced by the
formulas µJ , σJ above. The nice thing is that the formula

PfP = N(−β) = 1 − N(β)

remains a valid approximation, with the reliability index computed as
explained.

If the XiXX are not normally distributed, we can apply the preceding
procedure, by making first a new approximation, which is to find the
equivalent normal distribution. This amounts to finding, for each i two
numbers µN

Xi
, σN

Xi
, such that

N(
X̂iX − µN

Xi

σN
Xi

) = FiFF (X̂iXX )

N ′(
X̂iXX − µN

Xi

σN
Xi

) = F ′
iFF (X̂iX )σN

Xi

where FiFF (x) denotes the cumulative probability distribution of the vari-
able XiXX .

We deduce easily

σN
Xi

=
N ′
(
N−1[FiFF (X̂iXX )]

)
F ′

iFF (X̂iXX )
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µN
Xi

= X̂iXX − N−1[FiFF (X̂iXX )]σN
Xi

Having determined µN
Xi

, σN
Xi

for each variable, one can compute the re-
liability index as explained above.
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Abstract In this paper we present an extension of a direct solution method, orig-
inally due to Leitmann (1967) for single-player games on a finite time
interval, to a class of infinite horizon N -player games in which the state
equation is affine in the strategies of the players. Our method, based on
a coordinate transformation method, gives sufficient conditions for an
open-loop Nash equilibrium. An example is presented to illustrate the
utility of our results.

1. Introduction
Recently, there has been a series of papers by the authors in which

a direct solution method has been used to obtain solutions to open-
loop finite-horizon differential games with prescribed two-point bound-
ary conditions. The purpose of this paper is to extend the direct method,
alluded to above, to address problems defined on the infinite time hori-
zon. Problems of this type have many important applications in eco-
nomics and consequently the extension of the direct method to these
types of models will significantly enlarge the class of applied problems
to which this m n be utilized.
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2. The general model considered
We consider an N -player game in which the dynamics of the j-th

player, j = 1, 2, . . . , N , at time t ≥ t0 is denoted by xj(t), generated by
control uj(t),and satisfies an affine control system of the form

ẋj(t) = FjFF (t,x(t)) + Gj(t,x(t))uj(t), a.e. t0 ≤ t (19.1)

with fixed initial condition,

xj(t0) = x0j , (19.2)

control constraints

uj(t) ∈ UjUU (t) ⊂ Rmj , a.e. t0 ≤ t (19.3)

and state constraints

xj(t) ∈ XjX (t) ⊂ Rnj , for t0 ≤ t (19.4)

We assume here that for each j = 1, 2, . . . , N xj(·) : [t0, +∞) → Rnj ,
uj(·) : [t0, +∞) → Rmj , and x(·) = (. x1(·),x2(·), . . . ,xN (·)) : [t0, +∞) →
Rn1 × Rn2 × · · · × RnN = Rn. The functions FjFF (·, ·) : [t0, +∞) × Rn →
Rnj and Gj(·, ·) : [t0, +∞) × Rn → Rnj×mj are continuous for each
j = 1, 2, . . . , N and also for each t ∈ [t0, +∞) sets XjX (t) and UjUU (t)
are convex subsets of Rnj and Rmj . Additionally, we assume that each
matrix, Gj(t,x), for (t,x) ∈ [t0, +∞)× Rn, has a left inverse Gj(t,x)−1

that is also continuous.
The objective of each player is to minimize a performance criterion of

the form,

JjJJ (x(·), uj(·)) =
∫ +∞

t

∫∫
0

∫∫
F 0

jFF (t,x(t), uj(t)) dt (19.5)

in which F 0
jF (·, ·, ·) : [t0, +∞) × Rn × Rmj → R is assumed to be contin-

uous. Clearly, it is unreasonable to expect that each player will be able
to minimize his/her performance and consequently we seek a Nash equi-
librium. To define this we have the following definitions and notation.

Definition 1 We say a pair of functions {x(·),u(·)} : [t0, +∞) →
Rn×Rm is an admissible trajectory-strategy pair if and only if t → x(t)
is locally absolutely continuous on [t0, +∞) (i.e., it is absolutely con-
tinuous on each compact subinterval of [t0, +∞)), t → u(t) is Lebesgue
measurable on [t0, +∞), for each j = 1, 2, . . . , N , the relations (19.1)–
(19.4) are satisfied, and for each j = 1, 2, . . . , N , the functionals (19.5)
are finite Lebesgue integrals.
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Remark 1 For brevity we will refer to an admissible trajectory-strategy
pair as an admissible pair. Also, for a given admissible pair, {x(·),u(·)},
we will follow the traditional convention and refer to x(·) as an admissible
trajectory and u(·) as an admissible strategy.

For a fixed j = 1, 2, . . . , N , x ∈ Rn and yjy ∈ Rnj , we use the notation
[xj , yjy ] to denote a new vector in Rn in which xj ∈ Rnj is replaced by
yjy ∈ Rnj . That is,

[xj , yjy ] = (. x1,x2, . . . ,xj−1, yjy ,xj+1, . . . ,xN ).

Analogously [uj , vj ] = (.
u1, u2, . . . , uj−1, vj , uj+1, . . . , uN ) for all u ∈ Rm,

vj ∈ Rmj . With this notation we now have the following two definitions.

Definition 2 Let j = 1, 2, . . . , N be fixed and let {x(·),u(·)} be an ad-
missible pair. We say that a pair of functions {yjy (·), vj(·)} : [t0, +∞) →
Rnj × Rmj is an admissible trajectory-strategy pair for player j relative
to {x(·),u(·)} if and only if the pair

{[x(·)j , yjy (·)], [u(·)j , vj(·)]}
is an admissible pair.

Definition 3 An admissible pair {x∗(·),u∗(·)} is a Nash equilibrium if
and only if for each j = 1, 2, . . . , N and each pair {yjy (·), vj(·)} that is
admissible for player j relative to {x∗(·),u∗(·)},

JjJ (x∗(·), u∗
j (·)) =

∫ +∞

t

∫∫
0

∫∫
F 0

jFF (t,x∗(t), u∗
j (t)) dt

≤
∫ +∞

t

∫∫
0

∫∫
F 0

jFF (t, [x∗(t)j , yjy (t)], vj(t)) dt

=JjJJ ([x∗(·)j , yjy (·)], vj(·)).
Our goal in this paper is to provide a “direct method” which in some
cases will enable us to determine a Nash equilibrium. We point out that
relative to a fixed Nash equilibrium {x∗(·),u∗(·)} each of the players
in the above game solves an optimization problem taking the form of a
standard problem of optimal control. Thus, under suitable additional as-
sumptions, it is relatively easy to derive a set of necessary conditions (in
the form of a Pontryagin-type maximum principle) that must be satisfied
by all Nash equilibria. Unfortunately these conditions are only neces-
sary and not sufficient. Further, it is well known that non-uniqueness
is always a source of difficulty in dynamic games so that in general the
necessary conditions are not uniquely solvable (as is often the case in
optimal control theory, when sufficient convexity is imposed). Therefore
it is important to be able to find usable sufficient conditions for Nash
equilibria.
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2.1 The associated variational game.
We observe that, under our assumptions, the algebraic equations,

zjz = FjFF (t,x) + Gj(t,x)uj j = 1, 2, . . . N, (19.6)

can be solved for uj in terms of t, zjz , and x to obtain

uj = Gj(t,x)−1 (zjz − FjFF (t,x)) , j = 1, 2, . . . N. (19.7)

As a consequence we can define the extended real-valued functions
Lj(·, ·, ·) : [t0, +∞) × Rn × Rnj → R ∪ +∞ as

Lj(t,x, zjz ) =

⎧⎪⎧⎧⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎩⎪⎪
F 0

jF (t,x, Gj(t,x)−1(zjz − FjFF (t,x))) if x ∈ X(t)
and Gj(t,x)−1 (zjz − FjFF (t,x)) ∈ UjU (t)

+∞ otherwise.
(19.8)

With these functions we can consider the N -player variational game in
which the objective functional for the jth player is defined by

IjI (x(·)) =
∫ tf

t

∫∫
0

∫∫
Lj(t,x(t), ẋj(t)) dt. (19.9)

With this notation we have the following additional definitions.

Definition 4 A locally absolutely continuous n-vector valued function
x(·) : [t0, +∞) → Rn is said to be admissible for the variational game if
and only if it satisfies the initial conditions given in equation (19.2) and
such that the map t → Lj(t,x(t), ẋj(t)) is finitely Lebesgue integrable
on [t0, +∞) for each j = 1, 2, . . . , N .

Definition 5 Let x(·) : [t0, +∞) → Rn be admissible for the varia-
tional game and let j ∈ {1, 2, . . . , N} be fixed. We say that yjy (·) :
[t0, +∞) → Rnj is admissible for player j relative to x(·) if and only if
[xj(·), yjy (·)] is admissible for the variational game.

Definition 6 We say that x∗(·) : [t0, +∞) → Rn is a Nash equilibrium
for the variational game if and only if for each j = 1, 2, . . . , N

IjI (x∗(·)) ≤ IjI ([x∗j(·), yjy (·)])
for all functions yjy (·) : [t0, +∞) → Rnj that are admissible for player j
relative to x∗(·).
Clearly the variational game and our original game are related. In par-
ticular we have the following theorem given in Carlson and Leitmann
(2004).
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Theorem 1 Let x∗(·) be a Nash equilibrium for the variational game
defined above. Then there exists a function u∗(·) : [t0, +∞) → Rm such
that the pair {x∗(·),u∗(·)} is an admissible trajectory-strategy pair for
the original dynamic game. Moreover, it is a Nash equilibrium for the
original game as well.

Proof:. See Carlson and Leitmann (2004), Theorem 7.1. �

Remark 2 The above result holds in a much more general setting than
indicated above; see Carlson and Leitmann (2005). We chose the re-
stricted setting since it is sufficient for our needs in the analysis of the
model we will consider in the next section.

With the above result we now focus our attention on the variational
game. In 1967, for the case of one player variational games (i.e., the
calculus of variations), Leitmann (1967) and later Leitmann (2001) pre-
sented a technique (the “direct method”) for determining solutions of
these games by comparing their solutions to that of an equivalent prob-
lem whose solution is more easily determined than that of the origi-
nal. This equivalence was obtained through a coordinate transformation.
Since then this method has been used successfully to solve a variety of
problems. Recently, Carlson (2002) and in Leitmann (2004) an extension
of this method was presented that expands the utility of the approach
and also made a useful comparison with a technique originally given by
Caratheodory (1982) in the early twentieth century. Also, Dockner and´
Leitmann (2001) extended the original direct method to include the case
of open-loop dynamic games. Finally, the extension of Carlson to the
method was also modified in Leitmann (2004) to the include the case
of open-loop differential games in Carlson and Leitmann (2004). All of
these results are applied to problems over a finite linterval with both
fixed initial and fixed terminal conditions. We now present a modified
version of the basic lemma for open-loop dynamic games which enables
us to consider the problem addressed here, based on an infinite horizon
result of Leitmann (2001a).

Lemma 1 For j = 1, 2, . . . , N let xj = zjz (t, x̃j) be a transformation of
class C1 having a unique inverse x̃j = z̃jz (t,xj) for all t ∈ [t0, +∞) such
that there is a one-to-one correspondence x(t) ⇔ x̃(t), for all admissible
trajectories x(·) satisfying the initial conditions (19.2) and for all x̃(·)
satisfying

x̃j(t0) = j̃(t0,x0j)

for all j = 1, 2, . . . , N . Further for each j = 1, 2, . . . , N let L̃j(·, ·, ·) :
[t0, +∞) × Rn̂ × Rnj → R be a given integrand. For a given admissible
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x∗(·) : [t0, +∞) → Rn̂ suppose the transformations xj = zjz (t, x̃j) are
such that there exists a C1 function HjH (·, ·) : [t0, +∞) × Rnj → R so
that the functional identity

Lj(t, [x∗j(t),xj(t)], ẋj(t)) − L̃j(t, [x∗j(t), x̃j(t)], ˙̃xj(t))

=
d

dt
HjH (t, x̃j(t)) (19.10)

holds on [t0, +∞) and such that limtf→+∞ HjH (tf , x̃j(tf )) = 0 for j =
1, 2, . . . , N . If x̃∗

j (·) yields an extremum of ĨjI ([x∗j(·), ·]) with x̃∗
j (·) sat-

isfying the transformed boundary conditions, then x∗
j (·) with x∗

j (t) =
zjz (t, x̃∗(t)) yields an extremum for IjI ([x∗j(·), ·]) with the initial condi-
tions (19.2).

Moreover, the function x∗(·) is an open-loop Nash equilibrium for the
variational game.

Proof.. To prove this result we fix j = 1, 2, . . . , N and observe
that if x̃∗

j (·) is a minimizer of ĨjI ([x∗j(·), ·]) then for any admissible ˜(·) :
[t0, +∞) → Rnj that satisfies the initial condition

ỹ(0) = zjz (0,x0j)

we have as a consequence of the functional identity and the optimality
of x∗

j (·) that

ĨjI ([x∗j(·), x̃∗
j (·)]) = lim

tf→+∞

∫ tf

t

∫∫
0

∫∫
L̃j(t, [x∗j(t), x̃∗

j (t)], ˙̃x∗
j (t)) dt

≤ ĨjI ([x∗j(·), ỹ(·)])

= lim
tf→+∞

∫ tf

t

∫∫
0

∫∫
L̃j(t, [x∗j(t), ỹ(t)], ˙̃y(t)) dt

= lim
tf→+∞

∫ tf

t

∫∫
0

∫∫
Lj(t, [x∗(t), zjz (t, ỹ(t))],

d

dt
zjz (t, ỹ(t))) dt

− lim
tf→+∞[HjH (tf , ỹ(tf ))] + HjH (t0, ỹ(t0))

= IjI ([x∗(·), zjz (·, ỹ(·))] + HjH (t0, zjz (t0,x0j)),

where we have used the fact that limtf→+∞ HjH (tf , ỹ(tf )) = 0. As a
result of the functional identity we also have

IjI ([x∗j(·), zjz (·, x̃∗
j (·))]) + HjH (t0, zjz (t0,x0j)) = ĨjI ([x∗j(·), x̃∗

j (·)])
implying that

IjI ([x∗j(·), zjz (·, x̃∗
j (·))]) ≤ IjI ([x∗(·), zjz (·, ỹ(·))]).
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From this, as a consequence of the one-to-one correspondence between
the two sets of admissible trajectories, it follows that x∗

j (·) = zjz (·, x̃∗
j (·))

is a minimizer for IjI ([x∗j(·), ·]) over all trajectories meeting the pre-
scribed initial conditions. Further, since this holds for each j it is easy
to see that x∗(·) is an open-loop Nash equilibrium for the variational
game. �

Under assumptions of sufficient smoothness for the functions HjH (·, ·)
we have the following useful and immediate corollaries. For more details
we refer the reader to Carlson and Leitmann (2004).

Corollary 1 The existence of HjH (·, ·) in (19.10) implies that the fol-
lowing identities hold for (t, x̃j , p̃j) ∈ (t0, +∞) × Rnj × Rnjand for
j = 1, 2, . . . , N :

Lj(t, [x∗j(t), zjz (t, x̃j)],
∂zjz (t, x̃j))

∂t
+ 〈∇x̃jzjz (t, x̃j), p̃j〉)

−L̃j(t, [x∗j(t), x̃j ], p̃j) (19.11)

≡ ∂HjH (t, x̃j)
∂t

+ 〈∇x̃jHjH (t, x̃j), p̃j〉,

in which ∇x̃jHjH (·, ·) denotes the gradient of HjH (·, ·) with respect to the
variables xj and 〈·, ·〉 denotes the usual scalar or inner product.

Corollary 2 For each j = 1, 2, . . . , N the left-hand side of the identity,
(19.11) is linear in j̃ , that is, it is of the form,

θj(t, x̃j) + 〈ψj(t, x̃j), p̃j〉

and,
∂HjH (t, x̃j)

∂t
= θj(t, x̃j) and ∇x̃jHjH (t, x̃j) = ψ(t, x̃j)

on [t0, +∞) × Rnj .

Corollary 3 For integrands Lj(·, ·, ·) of the form,

Lj(t, [x∗j(t), xj(t)], ẋj(t)) =ẋ′
j(t)aj(t, [x∗j(t), xj(t)])ẋj(t)

+ bj(t, [x∗j(t), xj(t)])′ẋj(t) + cjc (t, [x∗j(t), xj(t)]),

and

L̃j(t, [x∗j(t), xj(t)], ẋj(t)) =ẋ′
j(t)αj(t, [x∗j(t), xj(t)])ẋj(t)

+ βjβ (t, [x∗j(t), xj(t)])′ẋj(t) + γjγγ (t, [x∗j(t), xj(t)]),
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with aj(t, [x∗j(t), xj(t)]) �= 0 and�� αj(t, [x∗j(t), xj(t)]) �= 0, the class of��
transformations that permit us to obtain equation (19.11) must satisfy,[

∂zjz (t, x̃j)
∂x̃j

]′
aj(t, [x∗(t)j , zjz (t, x̃j)])

[
∂zjz (t, x̃j)

∂x̃j

]
= αj(t, [x∗(t)j , x̃j ])

for (t, xj) ∈ [t0, +∞) × Rnj .

We conclude this section with a simple example for which the solution
can be obtained using the above theory.

Example 1. We consider two firms which produce an identical
product. The production cost for each firm is given by the total cost
function,

C(uj) =
1
2
u2

j , j = 1, 2,

in which uj refers to a jth firm’s production level. Each firm supplies
all that it produces to the market at all times. The amount supplied at
each time effects the price, P (t) and the total inventory at the market
determines the price according to the ordinary control system,

Ṗ (t) = s[a − u1(t) − u2(t) − P (t)] a.e. t ∈ [t0, +∞). (19.12)

Here s > 0 refers to the speed at which the price adjusts to the price
corresponding to the total quantity (i.e., u1(t)+u2(t))and a > 0 is a fixed
constant related to the linear demand function. The model assumes a
linear demand rate given by Π = a − X where X denotes total supply
related to a price Π. Thus the dynamics above says that the rate of
change of price at time t is proportional to the difference between the
actual price P (t) and the idealized price Π(t) = a − u1(t) − u2(t). We
assume that the initial price is given. This leads to the initial condition,

P (t0) = P0PP . (19.13)

Additionally we also impose the constraints

uj(t) ≥ 0 for almost all t ∈ [t0, +∞). (19.14)

and
P (t) ≥ 0 for t ∈ [t0, +∞). (19.15)

The goal of each firm is to maximize its accumulated profit, assuming
that it sells all that it produces, over the interval, [t0, +∞) given by the
integral functional,

JjJJ (P (·), uj(·)) =
∫ +∞

t

∫∫
0

∫∫
e−δt

[
P (t)uj(t) − 1

2
u2

j (t)
]

dt, (19.16)
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in which δ > 0 is a fixed positive discount rate. To put the above
dynamic game into the framework to use the direct method let α, β > 0
satisfy α+β = 1 and consider the ordinary 2-dimensional control system,

ẋ(t) = − s(αx(t) + βy(t) − a) − s

α
u1(t), a.e. t0 ≤ t (19.17)

ẏ(t) = − s(αx(t) + βy(t) − a) − s

β
u2(t), a.e. t0 ≤ t (19.18)

with the initial conditions,

x(t0) = y(t0) = P0PP (19.19)

For the remainder of our discussion we focus on the first player as the
computation of the second player is the same. We begin by observing
that the integrand for player 1 is

L1(x, y, p) = e−δt

{
α2

2s2
p2 +

α2a2

2
+
(

α2

2
+ α

)
(αx + βy)2

+
[
α

s
(αx + βy) − α2

s
(a − (αx + βy))

]
p (19.20)

−a(α2 + α)(αx + βy)
}

.

Inspecting this integrand we choose L̃(·, ·, ·) to be,

L̃(x̃, ỹ, p̃) = e−δt

[
α2

2s2
p̃2 +

α2a2

2

]

from which we immediately deduce, applying Corollary 3, that the ap-
propriate transformation, z1(·, ·), must satisfy the partial differential
equation (

∂z1

∂x̃

)2

= 1

giving us that z1(t, x̃) = f(t) ± x̃ and that

∂z1

∂t
+

∂z1

∂x̃
p̃ = ḟ(t) ± p̃.
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From this we now compute,

L1(f(t) ± x̃, y∗(t), ḟ(t) ± p̃) − L̃(x̃, y∗(t), p̃)

= e−δt

{
α2

2s2
(ḟ(t) ± p̃)2 +

α2a2

2

+
(

α2

2
+ α

)
(α(f(t) ± x̃) + βy∗(t))2

+
[
α

s
(α(f(t) ± x̃) + βy∗(t))

− α2

s
(a − (α(f(t) ± x̃) + βy∗(t)))

]
(ḟ(t) ± p̃)

−a(α2 + α)(α(f(t) ± x̃) + βy∗(t))
}

− e−δt

{
α2

2s2
p̃2 +

α2a2

2

}
= e−δt

{
α2

2s2
ḟ(t)2 +

(
α2

2
+ α

)
[α(f(t) ± x̃) + βy∗(t)]2

− a
(
α2 + α

)
[α(f(t) ± x̃) + βy∗(t)]

+
[(

α2

s
+

α

s

)
[α(f(t) ± x̃) + βy∗(t)] − α2a

s

]
ḟ(t)
}

± e−δt

{
α2

s2
ḟ(t) +

(
α2

s
+

α

s

)
[α(f(t) ± x̃) + βy∗(t)] − α2a

s

}
p̃

.=
∂H1(t, x̃)

∂t
+

∂H1(t, x̃)
∂x̃

p̃.

From this we compute the mixed partial derivatives to obtain,

∂2H1

∂x∂t˜
(t, x̃) = e−δt

[
±2
(

α2

2
+ α

)
[α(f(t) ± x̃) + βy∗(t)]α

∓aα(α2 + α) ± α

(
α2

s
+

α

s

)
ḟ(t)
]

= ±e−δt

[
α3(α + 2)(f(t) ± x̃) + α2β(α + 2)y∗(t)

−α2(α + 1)a +
α2

s
(α + 1)ḟ(t)

]
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and

∂2H1

∂t∂x̃
(t, x̃) = ±e−δt

{
α2

s2
f̈(t) +

(
α2

s
+

α

s

)[
αḟ(t) + βẏ∗(t)

]}
∓ δe−δt

{
α2

s2
ḟ(t) +

α(α + 1)
s

[α(f(t) ± x̃)

+βy∗(t)] − α2a

s

}
= ±e−δt

{
α2

s2
f̈(t) +

α2

s
(α + 1)ḟ(t) +

αβ

s
(α + 1)ẏ∗(t)

−α2δ

s
ḟ(t) − δα2

s
(α + 1)f(t)

∓δα2

s
(α + 1)x̃ − δαβ

s
(α + 1)y∗(t) +

α2δ

s
a

}
.

Assuming sufficient smoothness and equating the mixed partial deriva-
tives we obtain the following equation:

f̈(t) − δḟ(t) − (αs2(α + 2) + δs(α + 1))f(t) = h1(t, x̃)

where

h1(t, x̃) =(βs2(α + 2) +
δβs

α
)y∗(t) − βs

α
(α + 1)ẏ∗(t)

± (αs2(α + 2) − δs(α + 1))x̃ − a(s2(α + 1) + δs).

A similar analysis for player 2 yields:

L2(x, y, q) =e−δt

{
β2

2s2
q2 +

β2a2

2
+
(

β2

2
+ β

)
(αx + βy)2[

β

s
(αx + βy) − β2

s
(a − (αx + βy)

]
q (19.21)

− a(β2 + β)(αx + βy)
}

,

and so choosing

L̃2(x̃, ỹ, q̃) = e−δt

{
β2

2s2
q2 +

β2a2

2

}
gives us that the transformation z2(·, ·) is obtained by solving the partial
differential equation (

∂z2

∂ỹ

)2

= 1,
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which of course gives us, z2(t, ỹ) = g(t) ± ỹ. Proceeding as above we
arrive at the following differential equation for g(·),

g̈(t) − δġ(t) − (βs2(β + 2) + δs(β + 1))g(t) = h2(t, ỹ)

where

h2(t, ỹ) =(αs2(β + 2) +
δαs

β
)x∗(t) − αs

β
(1 + β)ẋ∗(t)

± (βs2(β + 2) − δs(β + 1))ỹ − a(s2(β + 1) + δs).

Now the auxiliary variational problem we must solve consists of mini-
mizing the two functionals,∫ +∞

t

∫∫
0

∫∫
e−δt

(
α2

2s2
˙̃x2(t) +

αa2

2

)
dt and

∫ +∞

t

∫∫
0

∫∫
e−δt

(
β2

2s2
˙̃y2(t) +

βa2

2

)
dt

over some appropriately chosen initial conditions. We observe that these
two minimization problems are easily solved if these conditions take the
form,

x̃(t0) = c1 and ỹ(t0) = c2

for arbitrary but fixed constants c1 and c2. The solutions are in fact,

x̃∗(t) ≡ c1 and ỹ∗(t) ≡ c2

According to our theory we then have that the solution to our variational
game is,

x∗(t) = f(t) ± c1 and y∗(t) = g(t) ± c2.

In particular, using this information in the equations for f(·) and g(·)
with x̃ = c1 and with ỹ = c2 we obtain the following equations for x∗(·)
and y∗(·),

ẍ∗(t) − δẋ∗(t) − [αs2(α + 2) + δs(α + 1)]x∗(t) =h1(t, 0)

ÿ∗(t) − δẏ∗(t) − [βs2(β + 2) + δs(β + 1)]y∗(t) =h2(t, 0).

with the initial conditions,

x∗(t0) = P0PP and y∗(t0) = P0PP .

These equations coincide exactly with the Euler-Lagrange equations, as
derived by the Maximum Principle for the open-loop variational game
without constraints. Additionally we note that as these equations are
derived here via the direct method we see that they become sufficient
conditions for a Nash equilibrium of the unconstrained system, and hence
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for the constrained system for solutions which satisfy the constraints
Moreover, we also observe that we can recover the functions HjH (·, ·), for
j = 1, 2, since we can recover both f(·) and g(·) by the formulas

f(t) = x∗(t) ∓ c1 and g(t) = y∗(t) ∓ c2.

The required functions are now recovered by integrating the partial
derivatives of H1(·, ·) and H2HH (·, ·) which can be computed. Moreover,
if the functions x∗(·) and y∗(·) are bounded, which implies that f(·) and
g(·) are also bounded, we further have that,

lim
t→+∞H1(t, x̃∗(t)) = 0 and lim

t→+∞H2HH (t, ỹ∗(t)) = 0.

Consequently, we see that in this instance the solution to our varia-
tional game is given by the solutions of the above Euler-Lagrange sys-
tem, provided the resulting strategies and the price satisfy the requisite
constraints. Finally, we can obtain the solution to the original problem
by taking,

P ∗(t) = αx∗(t) + βy∗(t),

u∗
1(t) = α

(
a − P ∗(t) − 1

s
ẋ∗(t)

)
,

and

u∗
2(t) = β

(
a − P ∗(t) − 1

s
ẏ∗(t)

)
.

Of course, we still must check that these functions meet whatever con-
straints are required (i.e., ui(t) ≥ 0 and P (t) ≥ 0).

There is one special case of the above analysis in which the solution
can be obtained easily. This is the case when α = β = 1

2 . In this case
the above Euler-Lagrange system becomes,

ẍ∗(t) − δẋ∗(t) −
(

5
4
s2 +

3δ

2
s

)
x∗(t) =(

5
4
s2 + δs

)
y∗(t) − 3

2
sẏ∗(t) − a

(
3
2
s2 + δs

)
ÿ∗(t) − δẏ∗(t) −

(
5
4
s2 +

3δ

2
s

)
y∗(t) =(

5
4
s2 + δs

)
x∗(t) − 3

2
sẋ∗(t) − a

(
3
2
s2 + δs

)
.

Using the fact that P ∗(t) = 1
2(x∗(t) + y∗(t)) for all t ∈ [t0, +∞) we can

multiply each of these equations by 1
2 an add them together to obtain
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the following equation for P ∗(·),

P̈ ∗(t) +
(

3
2
s − δ

)
Ṗ ∗(t) − 5

2
(s + δ) sP ∗(t) = −

(
3
2
s + δ

)
as,

for t0 ≤ t. This equation is an elementary non-homogeneous second
order linear equation with constant coefficients whose general solution
is given by

P ∗(t) = Aer1(t−t0) + Ber2(t−t0) +
(

3s + 2δ

5(s + δ)

)
a

in which r1 and r2 are the characteristic roots of the equation and A and
B are arbitrary constants. More specifically, the characteristic roots are
roots of the polynomial

r2 +
(

3
2
s − δ

)
sr − 5

2
(s + δ) s = 0

and are given by

r1 = s and r2 = δ − 5
2
s.

Thus, to solve the dynamic game in this case we select A and B so that
P ∗(·) satisfies the fixed initial condition and remains bounded. That is,
we require 0 ≤ δ < 5

2s, we put A = 0, and choose B to be,

B = P0PP −
(

(3s + 2δ)a
5(δ + s)

)
.

Further, we note that we can also take

x∗(t) = y∗(t) = P ∗(t)

and so obtain the optimal strategies as

u∗
1(t) = u∗

2(t) =
1
2

(
a − P ∗(t) − 1

s
Ṗ ∗(t)

)
.

and of course subject to the requirement that the control constraints
given by (19.14) and state constraints (19.15) are met. Regarding these
conditions it is an easy matter to see that the optimal price (as chosen
above) satisfies P ∗(t) ≥ 0 for all t ≥ 0 since P0PP ≥ 0. To satisfy the
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control constraints, we observe that

u∗
i (t) =

1
2

[
a −

(
P0PP −

(
(3s + 2δ)a
5(δ + s)

))
e(δ− 5s

2
)(t−t0) −

(
(3s + 2δ)a
5(δ + s)

)
−1

s

(
δ − 5s

2

)(
(3s + 2δ)a
5(δ + s)

)
e(δ− 5s

2
)(t−t0)

]
→ 1

2

[
1 − (3s + 2δ)

5(δ + s)

]
a

as t → +∞ so that a necessary condition for the optimal stratiegies to
remain positive would be that

1
2

[
1 − (3s + 2δ)

5(δ + s)

]
≥ 0,

or that s ≤ 3δ. In addition, we observe that since the optimal strategies
have the form E +Der(t−t0) with E and D cosntants it follows that they
must be strictly monotonic. This implies that for the control constraints
to be satisfied all we need check is that their initial values, ui(t0), be
positive. Thus we must choose the parameters so that,

2u∗
i (t0) =

[
a −

(
P0PP −

(
(3s + 2δ)a
5(δ + s)

))
−
(

(3s + 2δ)a
5(δ + s)

)
−1

s

(
δ − 5s

2

)(
(3s + 2δ)a
5(δ + s)

)]
= a − P0PP − 1

s

(
δ − 5s

2

)(
(3s + 2δ)a
5(δ + s)

)
=

[
1 − 1

s

(
δ − 5s

2

)(
(3s + 2δ)
5(δ + s)

)]
a − P0PP

=
(

25s2 + 14sδ − 4δ2

10s(s + δ)

)
a − P0PP

=

(
25(s + 7

25)2 + 51δ2

10s(s + δ)

)
a − P0PP

≥ 0.

Summarizing, the direct method provides an open-loop Nash equilibrium
for this example whenever the parameters, s, a, P0PP , and δ, are chosen so
that 0 < s

3 < δ < 5s
2 and

P0PP <

(
25(s + 7

25)2 + 51δ2

10s(s + δ)

)
a.
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C. Carathéodory.´ Calculus of Variations and Partial Differential Equa-

tions. Chelsea, New York, New York, 1982.
Dean A. Carlson. An observation on two methods of obtaining solutions

to variational problems. Journal of Optimization Theory and Appli-
cations, 114:345–362, 2002.

Dean A. Carlson and George Leitmann. A direct method for open-loop
dynamic games for affine control systems. too appear in Dynamic
Games: Theory and Applications, G. Zaccour and Alain Haurie (eds.)
2005.

Dean A. Carlson and George Leitmann. An extension of the coordinate
transformation method for open-loop Nash equilibria. Journal of Op-
timization Theory and Applications, 123(1): 27 - 47, 2004.

E. J. Dockner and G. Leitmann. Coordinate transformation and deriva-
tion of open-loop nash equilibrium. Journal of Optimization Theory
and Applications, 110(1):1–16, 2001.

G. Leitmann. A Direct Method of Optimization and Its Application
to a Class of Differential Games. Dynamics of Continuous, Discrete,
and Impulsive Systems, Series A: Mathematical Analysis, 11:191–204,
2004.

G. Leitmann. Some Extensions of a Direct Optimization Method. Jour-
nal of Optimization Theory and Applications, 111(1):1–6, 2001.

G. Leitmann. On a Class of Direct Optimization Problems. Journal of
Optimization Theory and Applications, 108(3):467–481, 2001.

G. Leitmann. A note on absolute extrema of certain integrals. Interna-
tional Journal of Non-Linear Mechanics, 2:55–59, 1967.



Suresh P. Sethi

Suresh Sethi (www.utdallas.edu/∼sethi), Ashbel Smith Professor and
Director of Center for Intelligent Supply Networks at University of Texas
at Dallas, has made fundamental contributions in a number of disci-
plines including operations management, finance, marketing, operations
research (applied mathematics), industrial engineering, and optimal con-
trol.

Suresh Sethi was born in Ladnun, India in 1945. He received his
B.Tech. in Mechanical Engineering from the Indian Institute of Technol-
ogy, Bombay, in 1967. He graduated with an M.B.A. from Washington
State University, Pullman, WA in 1969. In that same year, he joined
the Graduate School of Industrial Administration at Carnegie Mellon
University and there he received his M.S.I.S. in 1971 and his Ph.D. in
1972.

He became a Full Professor at University of Toronto at the age of 33,
where he served from 1973-1997 in various positions including General
Motors Research Professor and Director of Laboratory for Manufactur-
ing Research. There, he founded the Doctoral Program in Operations
Management. He joined the University of Texas at Dallas in 1997 to
build the Operations Management area including a doctoral program.
Currently, the area has about 10 faculty and 20 doctoral students.

Sethi’s doctoral thesis at Carnegie Mellon explored the applications
of optimal control theory to functional areas of management. Sethi ex-
tended the theory to deal with the peculiarities of management problems,
such as the nonnegativity constraints and time lags. He has made pio-
neering applications in the areas of operations management, marketing
and finance. Few individuals have contributed more toward the applica-
tion of optimal control theory to managerial problems than Sethi. His
work has been extensive in coverage and penetrating in analysis. His the-
sis and the subsequent work eventually led to the 1981 Sethi-Thompson
book (481 pages) that brought the theory of optimal control to manage-
ment schools. The second edition (505 pages) of this classic text became
available in Fall 2000.



336

In the areas of operations management, Sethi has applied optimal
control theory to HMMS-type production planning problems, machine
maintenance and replacement problems, simultaneous production and
pricing problems, etc. Sethi has surveyed this area in a 1978 paper.

Sethi has made numerous applications of optimal control in the area
of marketing. His application of Green’s Theorem to solve for optimal
advertising expenditures in the Vidale-Wolfe model is now a classic. In
1983, Sethi also introduced stochastic optimal control to the marketing
area. This paper has found a number of interesting extensions. Prasad
and Sethi develops a competitive extension of the Vidale-Wolfe adver-
tising model, and solves explicitly the resulting stochastic differential
game. Bass et al. introduces generic advertising in the model and solve
the resulting differential game explicitly to obtain the Nash equilibrium
levels of both brand and generic advertising expenditures by the com-
petitors. Sethi and Feichtinger, Hartl, and Sethi have provided extensive
reviews of the literature of optimal control of advertising models in 1977
and 1994, respectively.

In 1978, Sethi began to look into the fundamental problem of how
long-term planning influences immediate decisions. His work on decision,
forecast and rolling horizons has provided a logical foundation for the
practice of finite horizon assumptions and the choice of horizon. Sethi
has published extensively on the topic, and he is considered to be one of
the foremost scholars in the area. Recently, Chand, Hsu, and Sethi have
surveyed the field in an article commissioned by Manufacturing Services
& Operations Management (2002), a leading journal in the area.

Among his contributions in the finance/economics area, the most im-
portant is his work on the classical consumption-portfolio problem. He
is responsible for bringing the realistic features of subsistence consump-
tion and bankruptcy into the classical problem. His 1986 paper with
Karatzas, Lechozky and Shreve published in Mathematics of Operations
Research broadens the scope of the classical problem and provides an
explicit solution of the problem. It represents a landmark paper in the
area. It gave new life to the classical problem, which lay dormant for 15
years, and it inspired mathematicians and mathematical economists to
study the problem with new perspectives. Sethi’s further work on the
problem includes risk-averse behaviour of agents subject to bankruptcy.
The work of Sethi and co-authors on the problem has appeared in a
428-page book by Sethi, published by Kluwer. In its Fellow citation, the
New York Academy of Sciences mentions that Harry Markowitz, a 1990
Nobel Laureate in Economics, places Dr. Sethi ”among the leaders in
financial theory.”
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Sethi has also made significant contributions to the area of sequencing
and scheduling. In a seminal co-authored 1992 paper, a new paradigm
for scheduling jobs and sequencing of robot moves simultaneously in a
robotic cell is introduced and analyzed. A deep conjecture regarding the
optimality of the solution, referred to as the Sethi conjecture among the
co-authors, generated considerable research interest including at least
five doctoral theses and over 40 papers. The conjecture is now par-
tially resolved. A book co-authored by Dawande, M., Geismar, H., and
Sriskandarajah, C. on the topic is forthcoming in 2005.

In the area of flexible manufacturing systems, two surveys by Sethi has
defined and surveyed the various concepts of manufacturing flexibility
(Browne et al. and Sethi and Sethi). These are very well-known and
highly cited papers in the area. In addition, Sethi has published research
on flexible transfer lines and flexible robotic cells.

Over the last fifteen years, Sethi has been looking into the complex
problem of production planning in stochastic manufacturing systems.
The work has resulted in a new theory of hierarchical decision making
in stochastic manufacturing systems. While the work is still continu-
ing, a significant plateau reached by Sethi and co-authors resulted in
a 1994 book by Sethi and Zhang (419 pages). In reviews, the book
is variously described as impressive, pathbreaking, and profound. The
late Herbert A. Simon, the 1978 Nobel Laureate in Economics, stated,
”Suresh Sethi has clearly made a series of important extensions to the
treatment of hierarchical systems and applications to management sci-
ence problems, and the book with Zhang is an impressive piece of work.”
A review in Discrete Event Dynamic Systems (July 1996) states: ”This
is a truly remarkable book, in which Sethi and Zhang have contributed
enormously to the area of hierarchical controls in manufacturing.” The
theory leads to a reduction of the intractable stochastic optimization
problem into simpler problems, which could then be solved to obtain
a provably near-optimal solution of the original problem. More specifi-
cally, the theory gives rise to a relatively simpler model for higher-level
management decisions and a reduced model for lower level decisions on
the shop floor. The importance of the scheme lies in the facts that the
simpler higher-level model is realistic enough so that it captures the es-
sential features of the manufacturing process, and the lower level model
can be reduced since it is guided by higher-level decisions. In his 1994
text Manufacturing Systems Engineering, Gershwin mentions: ”There
have been many hierarchical scheduling and planning algorithms, some
quite practical and successful....However, outside of the work of Sethi
and his colleagues, there had been little systematic justification of this
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structure.” A follow-up of the 1994 book dealing with the average cost
criteria, co-authored with Zhang and Zhang, is soon to appear.

More recently, Sethi has been studying inventory problems with Markov-
ian demands or world-driven demands with discounted as well as aver-
age cost criteria. In addition, he has generalized the assumption on
cost functions to include those having polynomial growth. Moreover; he
has analyzed the case when the demand depends on a Markov process,
which in turn depends on other decisions such as promotion. A book
titled Markovian Demand Inventory Models is currently in progress to
appear in the International Series on Operations Research and Manage-
ment Science published by Springer.

Beginning with his 2001 paper, Sethi started studying the optimality
of base-stock and (s,S) type policies in cases of forecast updates and
multiple delivery modes. In this paper, Sethi, Yan and Zhang intro-
duce a general forecast updating scheme, termed peeling layers of an
onion, and show the optimality of a forecast-dependent base-stock pol-
icy with two delivery modes. Fix cost was introduced in a subsequent
paper. Finally, it is shown that the base-stock policy is no longer opti-
mal for other than the two fastest modes when there are three or more
consecutive delivery modes. Sethi had studied a variety of supply chain
contracts with demand forecast updates. Gan, Sethi and Yan look at the
issue of coordination in a supply chain consisting of risk-averse agents.
They develop a definition of coordination in this case, and obtain coor-
dinating contracts in a variety of supply chains with agents observing
different risk-averse objectives. Bensoussan, Feng and Sethi generalize
the standard newsvendor problem to include two ordering stages, a fore-
cast update at the second stage, and an overall service constraint. A
book titled Inventory and Supply Chain Management with Forecast Up-
dates is to appear in the International Series on Operations Research
and Management Science published by Springer in 2005.

Sethi has published over 300 papers in the areas of operations re-
search, operations management, optimal control, mathematical finance
and economics, industrial engineering, and semiconductor manufactur-
ing. He has presented his work at many scholarly conferences, univer-
sities and research institutions. He serves on several editorial boards
of journals in the areas of operations research, operations management,
applied mathematics, and optimal control. Over the years, Sethi’s re-
search has been supported by a number of sponsors including NSERC,
SSHRC, Manufacturing Research Corporation of Ontario, and Research
Grant Council (Hong Kong).

In recognition of his contributions, Sethi has received many honors.
The Canadian OR Society recognized his work on operations research by
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bestowing on him the 1996 CORS Award of Merit. In 1997 he gave a dis-
tinguished Bartlett Memorial lecture in mathematics at the University
of Tennessee. In 1999 he was elected a Fellow of New York Academy of
Sciences for his outstanding contributions in a variety of research areas.
In 2001 the Institute of Electrical and Electronics Engineers named him
IEEE Fellow for his extraordinary accomplishments in optimal control.
Suresh Sethi was awarded an INFORMS Fellow in 2003. The Ameri-
can Association for the Advancement of Science elected him an AAAS
Fellow in that same year. Other honors include C.Y. O’Connor Fellow,
Curtin University, Perth, Australia (1998); Honorary Professor at Zhe-
jiang University of Technology, Hangzhou, China (appointed in 1996);
Fellow of the Canadian Academy of Sciences and Humanities or The
Royal Society of Canada (1994); Visiting Erskine Fellow at the Uni-
versity of Canterbury, Christchurch, New Zealand (1991); Connaught
Senior Research Fellow at the University of Toronto (1984-85). He is
listed in Canadian Who’s Who, Marquis Who’s Who in the World and
Marquis Who’s Who in America (2001).

Sethi is a member of INFORMS, MSOM, SIAM, IEEE, CORS, POMS,
ORSI, DSI, AAAS, NYAS, Royal Society of Canada, Phi Kappa Phi, and
Beta Gamma Sigma.

Sethi has been very successful at mentoring post-doctoral fellows and
PhD students. These researchers have gone on to make important contri-
butions to both teaching and research in Operations Management. This
list includes Dr. Sita Bhaskaran (General Motors), Professor Richard
Hartl (University of Vienna), Professor Qing Zhang (University of Geor-
gia), Professor Steef van de Velde (Erasmus University), Dr. Dirk Beyer
(Hewlett Packard), Dr. Feng Cheng (IBM), Dr. Hanqin Zhang (Chi-
nese Academy of Sciences), Professor Gerhard Sorger (University of Vi-
enna), Professor Abel Cadenillas (University of Alberta), Dr. Wulin Suo
(Queens University), Professor Houmin Yan and Dr. Xun Yu Zhou (Chi-
nese University of Hong Kong), Professor Suresh Chand and Dr. Arnab
Bisi (Purdue University), Professor Chelliah Sriskandarajah (University
of Texas at Dallas), Dr. Ruihua Liu (University of Dayton).
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