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Preface to the English Edition 

This book is an updated and modified translation of the Russian edition of 1984. 
In the present edition, certain sections have been abridged (in particular, Sects. 6.1 
and 8.3) and the bibliography has been expanded. There are more detailed discus­
sions of the group properties of integrable systems of equations of mathematical 
physics (Sect. 3.4) and of the Riemannian problem in the context of the infinite­
dimensional internal symmetry groups of these systems of equations. There is an 
extended discussion of the reasons for the acceleration and retardation of pulsars 
in connection with more recent achievements of X-ray astronomy. Part of the 
material of Chap. 8 of the Russian edition has been included in Chap. 7; thus the 
number of chapters has been reduced to seven. 

S. Chandrasekhar set for me an example of brilliant analytical penetration into 
the essence of physical problems, and my book touches on his work in many in­
stances. The results of modem quantum theories of strong fields are not presented, 
but they can be found in the fundamental monographs Quantwn Electrodynamics 
of Strong Fields by W. Greiner, B. Muller, J. Rafelski (Sprioger-Verlag, Berlin, 
Heidelberg, New York 1985) and Quantwn Effects in Intense External Fields [in 
Russian] by A. Grib, S. Mamaev, W. Mostepanenko (Energoatomizdat, Moscow 
1988). 

This book was translated by Dr. N. M. Queen; I am very grateful to him. 
I thank sincerely H. Latta, C.-D. Bachem, V. Rehman, S. von Kalckreuth for 

preparing of the english manuscript. 

Moscow, August 1990 Nail R. Sibgatullin 



Preface 

"The current of life which flows day and night in my veins flows in the 
universe and dances a measured dance." 

RabindraNJ( Tagor 

This book is devoted to the investigation of waves and oscillations in the presence 
of strong gravitational and electromagnetic fields. 

A detailed study is made of the propagation of gravitational and electromag­
netic waves in the pseudo-Riemannian manifolds of the general theory of rela­
tivity. Much attention is given to the classical problems of the theory of black 
holes and waves in their vicinity. Rigorous results of the mathematical theory 
of black holes as well as of stationary axially symmetric fields are expounded, 
and the properties of electromagnetic and gravitational waves propagating in the 
gravitational fields of charged and neutral black holes are analyzed in detail. 

An account is given of the principles of relativistic hydrodynamics, magne­
tohydrodynamics, and the acoustics of a relativistic gas. Scale-invariant motions 
of an ultrarelativistic gas are analyzed in detail in the framework of the spe­
cial and general theories of relativity. An outline is given of the theory of the 
equations of state of an ideal gas under strong compression, and also at high 
temperatures. The development of nonhomogeneities in models of the Universe 
with a cosmological magnetic field is investigated. The reader who is interested 
only in problems of relativistic hydrodynamics can confine himself to Chaps. 5 
and 6 of the book, where a brief introduction to cosmology is given at the same 
time. Chapter 2 represents an introduction to the classical theory of black holes. 
Chapters 1 and 4 contain an account of the principles of the wave dynamics 
of gravitational and electromagnetic fields in general relativity. Some acoustic 
phenomena in strong gravitational fields and manifestations of weak nonlinearity 
for oscillations and waves in restricted systems in external electromagnetic and 
gravitational fields are considered in Chap. 7. 

As a guide for the reader, each chapter is prefaced with an elementary intro­
duction to the physical problems. 

A knowledge of the elements of tensor analysis is sufficient for reading the 
book. From the material, the novice reader can, if he wishes, master the various 
mathematical methods of the theory of waves in Newtonian mechanics and in 
the special and general theories of relativity, and can gain an idea of the new 
results in this field. 

The author has made use of material from lectures given by him in the 
Faculty of Mechanics and Mathematics at Moscow University. A bibliography 



X Preface 

is provided to enable the reader to make a detailed study of problems related to 
the subjects of the book but treated here with insufficient completeness. 

The author is deeply grateful to Academician L. I. Sedov, who suggested 
that this book be written, for numerous fruitful discussions of the problems 
considered, and to Professors V.I. Arnol'd, A. A. Starobinsky and R. A. Sunyaev 
for valuable remarks on the manuscript. 

The author expresses sincere gratitude to the editor, V. V. Rozantseva, for 
her work on improving the manuscript, and to Drs. G. A. Alekseev and Alberto 
Garsia for a number of helpful remarks. 

Moscow, December 1983 Nail R. Sibgatullin 
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1. Gravitational Waves 
in Strong Gravitational Fields 

Gravitational fields cannot propagate instantaneously. The problem of detecting 
gravitational waves experimentally is an unsolved fundamental problem of mod­
ern experimental physics. The solution of this problem requires corresponding 
instrumentation with greater accuracy (the measured effect must exceed the level 
of the errors in the measurements), as well as the search for an experimental 
arrangement in which the expected effect is most apparent for the existing level 
of accuracy of the experimental facilities. 

Near the Earth, space-time is asymptotically flat and gravitational waves are 
weak. Therefore it is comparatively easy to perform a theoretical analysis of the 
properties of gravitational waves on the flat background in any of the existing 
theories of the gravitational field. In particular, in the general theory of relativity 
it reduces to the determination of solutions of the classical wave equation. 

The pseudo-Riemannian manifolds near objects with strong gravitational 
fields (neutron stars, pulsars, quasars, and black holes) are essentially curved. 
Waves propagate very differently in pseudo-Riemannian and flat manifolds. This 
can be seen if only from the fact that weak waves in curved spaces do not in 
general satisfy Huygens's principle in the narrow sense, i.e., there is no backward 
front for perturbations with compact support [1.1-3]. 

In this chapter we study some general properties of wave fields on the back­
ground of pseudo-Riemannian manifolds in general relativity, the conditions on 
surfaces of discontinuity in generalized theories of the gravitational field, and 
the interference of plane waves in general relativity. At the beginning of the 
chapter, we explain the Newman-Penrose formalism, which is a very convenient 
theoretical tool for investigating problems having degenerate algebraic properties. 

1.1 Formalism of Complex Null Tetrads and Petrov 
Classification of Algebraic Types of the Weyl Tensor 

A set of space-time points M4 in which physical processes take place possesses 
in itself certain properties in general relativity. We shall assume that this set is a 
smooth four-dimensional manifold. By the definition of a manifold, each point 
of M4 is contained in some open neighborhood Q, which can be mapped in a 
one-to-one manner onto some open simply connected domain q in the Euclidean 
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space It-. The mapping of <p together with the neighborhood Q is called a chart 
or a local coordinate system. If two neighborhoods Q and Q' have a nonempty 
intersection Q n Q', then the maps (<p, Q) and (<p', Q') must be compatible, i.e., 
the transition from the coordinates <p(Q n Q') to the coordinates <p'(Q n Q') and 
vice versa has at least the smoothness class C2. The manifold M4 is assumed 
to be Hausdorff, i.e., for any two distinct points in it, it is possible to find 
nonintersecting neighborhoods containing them. The set of neighborhoods {Q} 
forms an open covering of M4: M4 = UQ. The totality of charts forms the atlas 
of the manifold M4. 

With each point x of the manifold M4 we can associate a linear space T M x 

tangent to the manifold at the point x. As a basis in TMx we can take four 

vectors £: i, i = 1, 2, 3,4; the vector £:. is a tangent vector to the coordinate line 
-+ 

xi: £: i = a/ax i • 

The geometry of a pseudo-Riemannian manifold is completely characterized 
by specifying on the manifold M4 a symmetric second-rank tensor gi}, which at 
each point can be reduced to the form g.j = "li}, "l0l0l = -1 (0: = 1,2,3), "l44 = 
1, "lij = 0 (i f- j) by means of affine transformations. Thus, locally a pseudo­
Riemannian space has the structure of Minkowski space. The quadratic form 
gijdxidx j determines the interval ds2 between two neighboring points with co­
ordinates xl, x 2, x3 , x4 and x I + dx I, x 2 + dx2 , x3 + dx3 , x4 + dx4. The interval 
on time-like curves is characterized by the proper time: ds2 = c2dr2, where cis 
the speed of light. On space-like curves, ds2 = -dzZ, where dl is the distance be­
tween two neighboring points on the curve. The interval is equal to zero between 
two neighboring points on isotropic curves (light rays). 

The space-time manifold is assumed to be orientable, i.e., the Jacobian of the 
coordinate transformation for compatibility of all charts can always be chosen to 
be positive. 

In order to formulate differential equations which do not depend on the choice 
of the coordinate system on each neighborhood of the manifold M4, it is neces­
sary to specify on it a connection, i.e., a set of functions r;k (i, j, k = 1,2,3,4), 
called the Christoffel symbols, which under a coordinate transformation y' = 
ji(x k ) change according to the law 

r'P( ) = ayP [r! (x)ax j ax k + &xi ] 
qT Y axi }k ayq ayT ayq ayT 

The connection in Riemannian spaces is consistent with the metric, i.e., the 
covariant derivatives of the metric tensor are identically equal to zero, Vi gjk = 0, 
and it is symmetric with respect to the lower indices. Hence the Christoffel 
symbols can be expressed uniquely in terms of the metric as 

2rjk = lm(gjm, k + gkm, j - gjk, m) . 

Here and in what follows, a comma indicates a derivative with respect to the 
coordinates whose index appears after the comma. 
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The degree of curvature of a Riemannian manifold is characterized by the 
Riemann-Christoffel curvature tensor 

2Rildm = (9im, kl + 9kl, im - 9il, km - 9km, i/) 

+ 29np (r;:,rtm - r;:mrf,) . (1.1.1) 

The Ricci tensor is formed from the Riemann tensor by means of a contraction 
with respect to the first and third indices: Rik = RilJk' In order to characterize the 
intrinsic properties of the gravitational field which do not depend on the choice 
of the scale factor a2(x) in the class of metrics conformal to a given metric, 
9ii = a2(x)9ii' we introduce the concept of the Weyl coriformal-curvature tensor 
Wiklm: 

R.klm = Wiklm + !(9.,R km + 9kmRii - 9im R ki - 9klR im) 
R 

- (;(9iI9km - 9im9kl) . (1.1.1') 

The Weyl tensors for a given metric 9iJ and for the metric 9ii = a29ii' where a 
is an arbitrary function of x', are equal when one of the indices is contravariant 
and the remaining ones are covariant: Wj~, = Wjkl' By definition, the Weyl 
tensor satisfies the identity Wi~k = O. 

In addition to the fields of the basis vectors £ i on the neighborhood Q, for 
various reasons it is convenient to introduce the fields of the orthonormalized 
vectors ha (a = 1,2,3,4) satisfying, by definition, the relations 

9iJh~ht = 71ab , 

where 71ab are the components of the metric tensor in Minkowski space and 
h~ (i = 1,2,3,4) are the components of the vector ha in the local system of 
coordinates xi. Because of the orientability of the manifold, we can impose on 
h~ the requirement of positivity of the determinant det(h~), where h4 is a time­
like vector directed to the future. For the matrices (h~), we introduce the inverse 
matrices (en The coefficients of the metric 9ii can be represented in the form 

9ii = e: e:71ab . 

In particular cases, the coefficients h~ can be holonomic, which means that 
they can be represented in the form of partial derivatives of the functions xi(ya), 
i.e., h~ = oxi / oya. In these cases, the metric tensor can be reduced to the 
principal axes directly for all points of the neighborhood Q by means of a single 
coordinate transformation. This means that the neighborhood Q is, in fact, a flat 
(more precisely, a pseudo-Euclidean) piece of the manifold M4. 

By definition, the tetrad components of an arbitrary tensor Tj::: are the ex-
pressl'ons Tb... - T i ... cb hi a ... = i ..... i··· a···· 

In many cases, it is very convenient to introduce complex null tetrads, which 
have been widely applied since the work of Newman and Penrose [1.4] and Sachs 
[1.5]. In contrast to the original work of Newman and Penrose [1.4], who used 
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the spinor representation (see also the reviews of [1.6,7]), in what follows we 
shall confine ourselves to a purely vector treatment 

We introduce, instead of the fields of the four vectors ha, the fields of the 
following four vectors, two of which are complex: 

V2n = hI + h4, V21 = h4 - hI, 

V2m = h2 + ih3, V2m* = h2 - ih3 
(1.1.2) 

The world lines of particles moving with the speed of light are integral curves 
of the vectors I and n. The length of each of the vectors I, n, m, m* is equal 
to zero. Therefore these vectors are isotropic, and the tetrads introduced by the 
method indicated above are said to be null. It follows from the definition (1.1.2) 
that the vectors I, n, m, m* satisfy the normalization conditions 

1·1 = m· m = n· n= m*· m* =1· m= n· m=O, 

I . n = -m . m * = 1 , 
(1.1.3) 

where, by definition, the scalar product a . b is equal to the number giJaibj in 
the local system of coordinates xi. 

It follows from the relations (1.1.2) that the metric tensor in the system of 
coordinates xi can be expressed in terms of the components of the vectors I, n, 
m, m* in this same system: 

From the complex null basis, it is very convenient to construct second-rank 
antisymmetric tensors (bivectors Fij). We introduce the tensor Ftj dual to the 
tensor Fij according to the rule 1 

where eijlel = R eijlelt and the component eijlel is equal to +1 or -1 if 
(i,j, k, 1) is formed from (1,2,3,4) by means of an even or an odd number of 
transpositions of the indices, respectively, and is equal to zero if two or more of 
the numbers i, j, k, 1 are equal. The contravariant components of the pseudotensor 

. leI / ~ e'J are -eijlel V -g. 
Let us form the bivector (Fij - iFtj)/2 and expand it in terms of the vectors 

of the null basis I, n, m, m *. It follows from the definition of a null tetrad that 
the determinant formed from the contravariant components of the vectors I, n, 
m, m * in the local coordinate system is equal to i/ R. Therefore we have the 
relations 

(1.1.4) 

1 The duality relations have been analyzed, for example, in [1.8]. 
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We denote by Mij the bivector (ljni - linj + mimj - mjmi). Then it follows 
from (1.1.4) that 

2Mij = -ieijklMkl . (1.1.5) 

Similarly, we can establish the relations 

ie- 'kllkm1 - -(l·m· -l·m·) ie · 'klnkm*l = -(n·m": - n ·m'!') '} -'}}' "J .} J' (1.1.6) 

Definitions. A bivector Aij is said to be simple if it can be represented in the 
form aibj - ajbi , where a and b are vectors. 

A bivector Gij is said to be self-dual if it satisfies the relation 

2iGij = eijklGkl . 

The simple bivectors Vij = limj - Ijmi and Uij = njm; - nimj, like M ij , 
are self-dual, since they satisfy the equations (1.1.6) analogous to (1.1.5). 

As is readily verified, the complex bivector (Fij - iFi~)/2 is a self-dual 
bivector and must therefore be expanded in terms of self-dual basis bivectors. 
Besides the basis bivectors V, M, and U, a complete basis in terms of which 
an arbitrary bivector is expanded includes also their complex-conjugate bivectors 
V*, M*, and U*. However, these bivectors are not self-dual, since they satisfy 
the equations 

2TT*' V*kl Vij =leijkl , 2M* . M*kl ij = leijkl , 2U* . U*kl ij = le.jkl . 

Therefore the self-dual bivector 2Ft; == Fij - ieijklFkl/2 has the following 
expansion with respect to simple bivectors 

(1.1.7) 

where the complex numbers qJo, qJl, qJz are the tetrad components of the bivector 
F+ in the three-dimensional complex space with the basis bivectors V, M, U. 
The components qJo, qJl, qJz of the complex bivector Ft; can also be obtained 
directly from the components Fij of a real bivector (for example, the bivector 
of the electromagnetic field) as follows 

qJo = Fiklimk, qJl = ~Fik(link - mim*k), qJz = -Fiknim*k . 

Each transformation of the six-parameter group of proper Lorentz transfor­
mations, which is the group of orthogonal rotations of Minkowski space, can 
be written explicitly as a transition at a point from the null tetrad I, n, m, m* 
to the tetrad I', n', m', m*' by means of the direct product of the following 
transformations: 

I) A rotation in the plane of the space-like vectors hz and h3 through an angle 
X: 
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I' = I, n' = n, m' = mexp(iX) . 

II) A Lorentz rotation in the plane of the vectors hI and h4 (a transition to 
a coordinate system moving with respect to the original one): I' = AI, 
n' = n/A, m' = m, where A is an arbitrary real number. 

III) A rotation of the vector n with I fixed: 

1'=1, n'=aa*l+n+am+a*m*, m'=a*l+m, 

where a is an arbitrary complex number. 
IV) A rotation of the vector I with n fixed: 

1'=bb*n+l+b*m+bm*, n'=n, m'=bn+m, 

where b is an arbitrary complex number. 

We emphasize that the transformed basis I', n', m', m*' also satisfies the 
normalization conditions (1.1.3). 

Under these transformations, the bive<ltors U, M, and V of the complex 
basis and the components qio, qil, qi2 transform as follows: 

I) 

II) 

U' =e-ixU, 

qio = eixqio, 

, 1 
U =-U A ' 

M' =M, V' =eixV, 

qi~ = qil, qi2 = e-ixqi2; 

M'=M, V'=AV, 

qio = Aqio, qi~ = qil, 

III) U'=a2V-aM+U, M'=M-2aV, V'=V; 

qio = qio, qi~ = qil + aqio, qi~ = a2qio + 2aqil + qi2; 

IV) U'=U, M'=M-2bU, V'=b2U-bM+V; 

qio = qio + 2b4i1 + b2qi2, qi~ = qil + bqi2, qi~ = qi2 . 

The transformations (I), (II), (III), and (IV) constitute Abelian subgroups of 
the group of Lorentz transformations. Thus, we can say that the formalism of 
null tetrads provides a representation of the Lorentz group in a three-dimensional 
complex space [1.9]. 

Suppose that the quadratic equation a2qio + 2aqil + qi2 = 0 is nondegenerate, 
i.e., for qio f. 0 it has distinct roots. In the case qio = 0 we shall assume that it is 
nondegenerate if qil f. O. Applying the transformation (III) with a equal to one 
of the roots of this equation, in the new coordinate system we obtain qi~ = 0 and 
qi~ f. 0, in view of the assumption of nondegeneracy. If qio f. 0, we can, after this, 
apply the transformation (IV) in order to reduce the component qio to zero. The 
corresponding value of b satisfies a linear equation and is therefore determined 
uniquely. 
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Thus, in the general case the bivector Fij at a fixed point with a perfectly 
definite null tretrad has the form 

The vacuum electromagnetic field at each point is completely described by the 
antisymmetric second-rank tensor Fij . As is well known, the energy-momentum 
tensor of the vacuum electromagnetic field has the form 

47rT.0 0 = - [F.°kFk - 19o 0F1, F'm] 'J • J 4'J m • 

U sing the expressions (1.1.7), it can be represented in the form 

47rT.j = 4.>o4.>oninJ + 4.>14.>i(n.1J + njl; + mimj + mimj) 

+ 4.>24.>i lilj - 2(minj + nimj)4.>o4.>i 

+ 24.>04.>im:mj - 2(l.mj + mi1j)4.>24.>i + c.c. , 

where c.c. denotes the complex conjugate of the preceding expression. 

(1.1.8) 

In the canonical basis, only the second term in the expansion (1.1.7) of 
Fij is nonzero. If the quadratic equation written above is degenerate, i.e., has 
multiple roots, then the application of the transformation (III) with the parameter 
a equal to the root of this equation simultaneously reduces both 4.>2 and 4.>1 to 
zero. The last remaining component 4.>0 can be made equal to unity by applying 
the transformations (I) and (II). Therefore the energy-momentum tensor of the 
electromagnetic field in the degenerate case can be represented in the form 

The degenerate case is realized in plane electromagnetic waves when both in­
variants of the electromagnetic field reduce to zero. 

It follows from (1.1.7) that in the general case the invariants of the electro­
magnetic field can be expressed in terms of the components 4.>0, 4.>1, and 4.>2 as 
follows: 

H2 - E2 = ~F'mF'm = 4 Re{4.>04.>2 - 4.>~}, 
1 001 2 

2E . H = 4 Fij F,mc'J m = 4 1m {4.>04.>2 - 4.>1 }, 

H2 - E2 + 2iE . H = 4(4.>04.>2 - 4.>~) . 

Let us consider now the algebra of a fourth-rank tensor Rijkl which is anti­
symmetric in the first and second indices, and also in the third and fourth indices, 
and symmetric with respect to transpositions of the first and second pairs of in­
dices. Contracting the components of Rijkl with respect to the first and third 
indices, we obtain a symmetric second-rank tensor Rjl. Contraction of the com­
ponents of the tensor Rjl gives a scalar R. An example of the tensor Rijkl is 
the Riemann curvature tensor. The algebraic properties of the tensor Rijkl also 
apply to the tensors 
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Pijkl = Rik9]1 + Rjl9ik - R"9jk - Rjk9il, qijkl = (9ik9jl - 9il9jk)R , 

whose components are linear in Rik and R. 
The tensor Wijkl = Rijkl+aPijkl+bqijkl also possesses antisymmetry within 

the first and second pairs of indices and symmetry with respect to transposition 
of these pairs. It is easy to choose the coefficients a and b in such a way that 
the tensor Wijkl gives zero after contraction with respect to the first and third 
indices. The corresponding values of a and bare -1/2 and 1/6. An example of 
the tensor Wijkl is the Weyl tensor introduced above. 

In the same way that this was done for the electromagnetic field tensor, we 
form the complex combination 

2Wijkl == Wi]kl - &Ci]st W:J (1.1.9) 

If the first pair of indices i and j is fixed, the tensor Wijkl is a self-dual bivector, 
and it can therefore be represented in the form 

(1.1.10) 

The bivectors aij, bij, and Cij can be expanded with respect to a complete basis 
of bivectors U'j' M ij , v.j' Ui;, Mi;, Vii. In (1.1.10) we now use the condition W:sm = O. It is easy to verify that only five linearly independent terms in (1.1.10) 
give zero after contraction, namely, 

Vi] Vkl, UijUkl, 

UijMkl + Ukl M ,] , 

MijMkl + UijVkl + Vi]Ukl, 

VijMkl + VklMij . 

All the remaining terms of (1.1.10) give linearly independent symmetric second­
rank tensors after contraction, and therefore their coefficients must vanish. 

Thus, in the general case, an arbitrary self-dual tensor having the algebraic 
properties of the Weyl conformal curvature tensor can be reduced to the form 

-Wijkl = .,pOUijUkl + .,pI (U'jMkl + UklM'j) 

+ .,p2(Mij Mkl + V;JUkl + VklUij) 

(1.1.11) 

The factor -1 is introduced here in order to conform to the notation of New­
man and Penrose [1.4]. It is readily seen from this that the Newman-Penrose 
scalars .,po, .,ph .,p2, th, .,p4 of the tensor Wijkl can be calculated directly from 
the components of the real tensor Wijkl: 

.1. TIT I' kl' m .1. TIT Ii kl' m 'Po = -VYiklm m m , 'PI = -VYiklm n m , 

.1._ _ TIT Ii k .. I m 
'VI. - -VYiklm m m n , .1. TIT ilk I .. m 'P3 = -VYiklmn n m , (1.1.11') 
.1. TIT , .. k I .. m 
'P4 = -VYiklmn m n m • 

The complex tensors Wijkl represent symmetric second-rank matrices WAB in 
a three-dimensional complex space: 
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- Wuu = t/Jo, 
- WVM = 1/J3, 

-WMU = 1/Jt, -WMM = -WUV = 1/l2, 

-WVV = 1/J4 . 
(1.1.12) 

Under the transformations (I), the components of tensors with the algebraic prop­
erties of the Weyl tensor in a complex null basis transform as follows: 

1/Jo = e2ixt/Jo, 1/J{ = eix1/Jt, 1/Ji = 1/l2, 1/J3 = e-ix1/J3, 1/J~ = e-2ix1/J4 ; 
(1.1.13) 

under the transformations (II), 

under the transformations (III), 

1/Jo = t/Jo, 1/Jl = 1/Jt + a1/Jo, 
1/Ji = 1/Ji + 2a 1/Jt + a2 t/Jo , 
1/J3 = 1/J3 + 3a1/l2 + 3a21/Jt + a31/Jo, 
1/J~ = 1/J4 + 4a1/J3 + 6a21/l2 + 4a31/Jt + a41/Jo 

under the transformations (IV), 

1/Jo = 1/Jo + 4b1/Jt + 6b21/l2 + 4b31/J3 + b 41/J4, 
1/J{ = 1/Jt + 3b1/l2 + 3b21/J3 + b31/J4 , 
1/Ji = 1/l2 + 2b1/J3 + b21/J4 , 
1/J3 = 1/J3 + b1/J4, 1/J~ = 1/J4 . 

(1.1.14) 

(1.1.15) 

(1.1.16) 

It is worthwhile to note that for the transformations (III) the expressions 1/J3' 
1/Ji, 1/J{, 1/Jo are obtained by successive differentiation of the expression for 1/J~ 
with respect to a and multiplication by a numerical factor. Similarly, for the 
transformations (IV) the expressions for 1/J{, 1/Ji. 1/J3' 1/J~ are obtained from 1/Jo 
by successive differentiation with respect to b and multiplication by a numerical 
factor; for example,1/J{ = 0.2581/J0/8b,1/Ji = 12-t{jlt/J0/8Il-, etc. 

Petrov Type I [1.10]. In general. the equation t/J~ = 0 [see (1.1.15)] has four 
distinct roots at, a2, a3, a4. By applying the transformation (Im with one of these 
roots ai, we reduce the component t/J~ to zero, with t/J3 f. O. Next, we turn to the 
equation 1/Jo = O. This equation will have three distinct roots bt = (ai - ai_I)-I, 
b2, = (ai - ai+l)-t, iJ.J = (ai - ai+2)-1. By applying the transformation (IV) with 
one of these roots b, we can make the component t/Jo vanish, if it was not already 
equal to zero, with t/J{ f. O. 

By means of the transformations (I) and (IT), we can ensure that t/Jl = 1. 
As a result, we find that a tensor W.AB of Petrov type I can be transformed 

to the form 
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- W~B = (~ J2 ~) . 
tP2 tP3 0 

(1.1.17) 

Thus, a Weyl tensor of Petrov type I has four independent real invariants. 

Petrov Type n. If the equation tP~ = 0 has one pair of multiple roots, then by 
applying the transformation (III) with the multiple root a we make the compo­
nents tP4 and tP3 vanish simultaneously. Next, we require that tPo vanish after 
the transformation (IV). Two different values of b are then determined. and it 
becomes possible to reduce the component t/Jo to zero by means of two different 
transformations (IV). The component tPI can be made equal to unity by means 
of the transformations (I) and (II). Thus, a Weyl tensor of Petrov type II in a 
canonical basis has the form 

(
01 tP2) 

-W~B = 1 tP2 0 
tP2 0 0 

or (~ ~2 ~) • 

tP2 1 0 
(1.1.18) 

Clearly, a Weyl tensor of type II is characterized by one complex or two real 
invariants. 

Petrov Type D. Suppose now that the equation tP~ = 0 has pairs of equal roots. By 
applying the transformation (Ill) with one of the roots, we make the components 
tP4 and t/J3 vanish simultaneously. After this, the quadratic equation tPo = 0 will 
have a multiple nonzero root b. By applying the transformation (IV) with this 
root b, we make the components tPo and tPI vanish simultaneously. Therefore in 
a canonical basis a Weyl tensor of type 0 will have the form 

- W~B = (~ ~2 ~) 
tP2 0 0 

and will possess two real invariants. 

Petrov Type m. Suppose that the equation tP~ = 0 has a root a of multiplicity 
three. Then the transformation (1lI) with this root a makes it possible to reduce 
tP2, t/J3, and tP4 to zero. After this, a unique transformation (IV) will make it 
possible to reduce the component t/Jo to zero. The component tPI can be made 
equal to unity by means of the transformations (I) and (II). In a canonical basis, 
a Weyl tensor of Petrov type 1lI has the form 

- W~B = (~ ~ ~) or 
010 

(0 1 0) 
100 . 
000 

Petrov Type N. In this case, the equation tP~ = 0 has a root of multiplicity four. 
Therefore, after the transformation (Ill) with the parameter a equal to this root 
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there remains only the single nonzero component 1/;0, which can be made equal 
to unity by means of the transfonnations (I) and (II). A Weyl tensor of type N 
in a canonical basis has the fonn 

(
0 0 0) 

-WAB = 0 0 0 
001 

or (1 0 0) 
000 . 
000 

Algebraic Invariants of the Weyl Tensor. The invariants 11 and h of the Weyl 
tensor given by 

I - TJrr wiklm 1 - I'l'iklm , 21 -. wikpqwlm 
2 - c.klm pq' 

which are quadratic in the components, are related to the Newman-Penrose scalars 
tPO, .•• , tP4 as follows: 

(1.1.19) 

Since in a canonical basis the Weyl tensor in the general case is characterized 
by four real scalars (petrov type I), it is also useful to calculate the invariants 13 
and 14 of the Weyl tensor, cubic in the components, given by 

1 - TJrr wlmpqwik 2L - TJrr wlmpqwstik 
3 - t'Y iklm pq' 4 - Cpqst t'Y iklm , 

13 + iI4 = 96( t/Jot/J2tP4 + 2tPi tP2tP3 - tP~ - t/JotP~ - tP~tP4) . 
(1.1.20) 

We note that if the quadratic invariants 11 and h of the Weyl tensor are equal to 
zero, then the fourth-rank tensor W.ts t Wt;!t possesses the algebraic properties 
of the Weyl tensor. For Petrov types N and Ill, the invariants 11, h 13, and 14 
of the Weyl tensor vanish, but the Weyl tensor itself is nonzero. 

Maxwell's Equations and Rotation Coefficients of the Null Tetrad. The eight 
Maxwell equations - Vj Fij = 41rji / c and Vii Fkl] = 0 (or Vi F*ij = 0) can be 
written as the four complex equations 

-Vi p-ki = 21rjk 
C 

(1.1.21) 

If in these equations we substitute the expansion (1.1.7) of the bivector F*ij 
with respect to simple bivectors and consider the projections of the equations 
onto the basis vectors I, n, m, m* of the null tetrad, we obtain a fonn of 
Maxwell's equations using the fonnalism of null tetrads. 

Before writing down the results, we note that in the general case a basis of 
isotropic vectors I, n, m, m * rotates continuously in a local chart in going from 
point to point. 

Following Newman and Penrose, we introduce a notation for the operators 
of covariant differentiation along the directions of the basis vectors, 
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C iT"? c* =_ m*iT"?,. , u == m vi, U v· 

and for the rotation coefficients of the null tetrad, 

A = -m*i8*ni' fl = -m*i8ni' 

v = -m*iL1n" 11" = -m*iDni , 

2a = n i8*li - m*i8*mi' 2f3 = ni81i - m*i8mi , 

2, = niL1li - m*iL1mi' 2.:: = niDli - m*iDmi 

(1.1.22) 

(1.1.23) 

(1.1.24) 

(1.1.25) 

The complex conjugates of these scalars are obtained by replacing the oper­
ator 8 by 8* and the vector m by m *, and vice versa. 

The derivatives of the basis bivectors U, M, V along the directions of the 
vectors of the null tetrad I, n, Tn, Tn * are self-dual bivectors and can therefore 
be expanded with respect to these bivectors. The coefficients of these expansions 
are, in fact, the quantities e, a, 7, etc., determined by (1.1.23-25): 

8*U = -2aU - AM, 

8U = -2f3U - flM, 

L1U = -2,U - vM, 
DU = -2.::U - 1I"M, 
8*V = 2aV - eM, 
8V = 2f3V - aM, 

8* M 12 = eU - A V, 
8M 12 = aU - fl V, 

L1M 12 = 7U - V V, 

DMI2=kU-1I"V, 
L1V = 2,V +7M, 

DV = 2.::V + kM, 

(1.1.26) 

It follows from (1.1.26) that the coefficients (1.1.23-25) are the "connection 
coefficients" in the three-dimensional complex vector space of U, M, and V. 

We now calculate the divergence of the bivectors U, M, V and write the 
result in terms of the projections onto the basis vectors of the null tetrad: 

m;~i U ii = -A, 

m*\7 Mii = 211" ) . , 
m/Vi U'i = -2, + fl, 

m) ~i Mii = 27, 

m~\7· Vii = f) - 2<' m .~. Vii = -a 
)' '" '-', )' , 
I·~· Ui) - 11" - 2a I~· M'i = 2f) ). - ,) , "" 

ni~' Uii = -v, 

ni~i Mii = 2fl, 

ni~' Vii = 7 - 2f3, 

li~' Vii = -k . 

(1.1.27) 

By means of these equations and the notation (1.1.22-25), we can now write 
down Maxwell's equations in the formalism of null tetrads: 

- A4>o + (8* + 211")4>1 + (-D + e - 2.::)4>2 = 211"jim *i Ie , 

(..1 + fl - 2,)4>0 - (8 - 27)4>1 - a4>2 = 211"ji mi Ie , 

- v4>o + (..1 + 2fl)4>1 - (8 - 7 + 2(3)4>2 = 211"jini Ie , 

(8* + 11" - 2a)4>0 - (D - 2e)4>1 - k4>2 = 21I"jiZi Ie . 

(1.1.28) 

0.1.29) 

(1.1.30) 

(1.1.31) 
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Bianchi Identities in the Formalism of Null Tetrads. In contrast to the case of 
flat spaces, in Riemannian spaces repeated covariant derivatives of the compo­
nents of vectors and tensors cannot be pennuted. For example, for the covariant 
derivatives of the components of an arbitrary vector u we have the identities 

(Vi Vj - Vj VdUk = -RkijU" , (1.1.32) 

(1.1.33) 

where the tensor Rijkl is defined by (1.1.1). 
Differentiating (1.1.32) covariantly with respect to x' and antisymmetrizing 

with respect to i, j, l, we eliminate the third derivatives of Uk from (1.1.32,33) 
by means of an antisymmetrization of (1.1.33) with respect to i, j, l. Then, in 
view of the arbitrariness of the vector u, by using the algebraic properties of the 
Riemann tensor we obtain the Bianchi identities 

From (1.1.34) there follow the identities 

Vi R~kl = Vk Rjl - V, Rjk , 

ViRj~, = 0 , 

where 2Riklm = CikstRi!.. 

(1.1.34) 

(1.1.35) 

(1.1.36) 

Multiplying (1.1.36) by -i (where i is the imaginary unit), combining this 
equation with (1.1.35), and using (1.1.1',9), we have 

2 '("'7 nr+i _ i 'l"'7 R q i 'l"'7 Rq + 1 i 'l"'7 R Vi vv jkl - -(Tjkq Vi I - (Tjql Vi k 3 (Tjkl Vi 

+ VkRjl - V, Rjk , (1.1.37) 

2(Tijkl = gikgjl - gilgJk - iCijkl . 

In tenns of the tetrad components, the Ricci tensor can be represented in 
a fann analogous to the fonn of the energy-momentum tensor (1.1.8) of the 
electromagnetic field2: 

Rik - gikR / 4 = 2[4iooninj + 4i22lilj + 24ill(n(ilj) + m(imj» 

+ mimj4i20 + mimj4i02 - 2m(imj)4iol 

- 2m(inj)4i1O - 2l(jmj)4i21 - 2l (i mj)4i121 (1.1.39) 

In view of the equalities (1.1.26,27), it is not difficult to take the divergence 
of the Weyl tensor in the fonn (1.1.11), but the calculation of the right-hand 

2 The convenience of the notation ~ AB for the tetrad components of the tensor Rij - 9ij R/4 is 
clear if only from the fact that Einstein's equations R;" = ItTi" for the gravitational field created 
by an electromagnetic field (see Sect. 1.2) in the formalism of null tetrads can be written in the 
elegant form 

~ AB = It~ A~B/(47r), A, B = 0, 1,2 . (1.1.38) 
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side of (1.1.37) presents major difficulties. By rewriting (1.1.37) in terms of the 
projections onto the basis vectors I, n, m, m* and dividing both sides by -2, 
we obtain the form of the Bianchi identities in the formalism of null tetrads. 
This form is given in the following equations, where before each identity we 
indicate the method of obtaining it by means of a convolution of both sides 
of (1.1.37) with the vector components in the square brackets [we recall that 
the tetrad components of the Weyl tensor tPo, tPl, tP2, tP3, tP4 are determined by 
(1.1.11), and the tetrad components of the Ricci tensor by (1.1.39)]: 

[/j Ikm']; (8* + 7r - 40:)tPo - (D - 4e - 2c)tPl - 3ktP2 

= (8 - 20:* - 2(3 + 7r*)poo - (D - 2e* - 2c)POI 

- k*P02 + 20"P1O - 2kPII , 
. k , 

[m1 1m]; (..1 + f-l - 4,""()tPo - (8 - 4r - 2(3)tPl - 30"tP2 

= -A *poo + (8 + 27r* - 2(3)POl 

(1.1.40) 

- (D - e* + 2c* - 2c)P02 + 20"P11 - 2kp12 , (1.1.41) 
[/j(lk n' - mkm*')]; -AtPo + (8* + 27r - 20:)tPl - (D - 3e)tP2 - 2ktP3 

= H(..1 + f-l* - 2f-l - 2'""( - 2'""(*)poo - (8* - 2r* - 20: - 27r)POI 

- 0"*P02 + 2(8 + 7r* - 20:* + r)PIO - 2(D - 2e* + e)Pll 

- 2k*p12 +20"P20 - 2kP2tl-iDR , (1.1.42) 
. k , 

[n1l m]; -vtPo + (..1 + 2f-l - 2'""()tPl - (8 - 3r)tP2 - 20"tP3 

= l[-v*poo + (..1 + 2f-l* - 2'""( - 2f-l)POI 

- (8* - r + 2(3* - 20: - 27r)P02 

- 2A*PIO + 2(8 + 27r* + r)p11 - 2(D - e* + 2c* + e)P12 

+ 20"P21 - 2kp22] + l8R , (1.1.43) 

[ljm*k n']; -2AtPl + (8* + 37r)tP2 - (D - 2e+2c)tP3 - ktP4 

= H -2vPoo + 2APOI + 2(..1 + f-l* - 2'""(* - f-l)PIO 

- 2(8* - 2r* - 7r)Pll - O"*P12 + (8 + 7r* - 20:* + 2r + 2(3)P20 

- (D - 2e* + 2e + 2c)P21 - k*P22] -i8* R , 0.1.44) 

[n1(lk n' - mkm*')]; -2VtPl + (..1 + 3f-l)t/J2 - (8 - 2r + 2(3)tP3 - O"tP4 

= H -2VPOI + 2AP02 - 2V*PIO + 2(..1 + 2f-l* - f-l)P11 

- 2(8* - r* + 2(3 - 7r)P12 - A *P2O + (8 + 27r* + 2(3 + 2r)P21 

- (D - e* + 2c* + 2c + 2e)P22] + i..1R , (1.1.45) 

[m*lm*k n']; -3AtP2 + (8* + 20: + 47r)t/JJ - (D - e + 4c)tP4 

= -2VPlO + 2AP11 + (..1 - 2'""(* + 2'""( + f-l*)P20 

- (8* + 20: - 2r*)P21 - 0"*P22 , 
[njm*k n']; -3vt/J2 + (..1 + 2'""( + 4f-l)t/JJ - (8 - r + 4(3)tP4 

= -2VPll + 2AP12 - V*P2O + (..1 + 2'""( + 2f-l*)P21 

- (8* - r* + 2(3* + 20:)P22 . 

(1.1.46) 

(1.1.47) 



1.1 Fonnalism of Complex Tetrads IS 

Connection of the Tetrad Components of the Weyl and Ricci Tensors with 
the Rotation Coefficients of the Null Tetrad. In order to express the tetrad 
components of the Weyl tensor and the Ricci tensor in tenus of the rotation 
coefficients of the null tetrad, we can make use of the identity (1.1.32), writing 
it in tenus of the projections onto the vectors of the null basis I, n, m, m*. 
It is sufficient to replace the vector u in (1.1.32) by one of the vectors of the 
null basis and make use of the relation (1.1.1') between the components of the 
Riemann tensor and the Weyl tensor. 

Since all the calculations follow the same pattern, we give the derivation of 
only the single component tPI, indicating for the remaining tetrad components of 
Wiklm and Rik the choice of the vector u and the method of projection. 

It follows from (1.1.32), in particular, that 
k .. . . 

2tPl = (Vi V) lk - V) V, h)m (Z'nJ - m'm*J) 

= -Wtiilsmk(lini - m'm*i) . 

Using the notation (1.1.22), from (1.1.48) we have 

2tPl = mk{(DLl- LlD - 00* + O*O)Zk 

+ Vi lk(-Dn' + LlI' + om*' - o*mi)} 

It is easy to verify that 

Lllk = lk(niLl1i) - mk(mi Lll') - mi(miLlZ'), 

mk\li lk = li(mk Ll1k) + ni(mk D1k) - mi(mko*lk) - mj(mkolk) 

Therefore it follows from (1.1.49) that 

2tPI = m k {D[lk(n;Lll i ) - mi(miLl/i)] 

- Ll[lk(niD1i) - mi(miD1i)] - o[lknio*/i - mimio*li] 

+ 0*[lknio1i - mimi61i]} - (liDni)(miLlP) 

+ (m,Dni)(m)o* Ij) + (mi Dni)(mjolj ) + (niLl/i)(miDlj) 

- (miLlli)(mio*li) - (mi Llli)(mjolj ) - (miDli)(mjonj ) 

- (miom*i)(mio*li) - (miLl1i)(mjolj ) - (/,o*mi)(/jLlmi) 

(1.1.48) 

(1.1.49) 

+ (nio*mi)(liDmi) + (mio*mi)(mj 61i ) . (1.1.50) 

Substituting the expressions (1.1.23-25) into (1.1.50), we finally obtain 

2tPl = (D + g* - g - e*)r - (0 - f3 - a* + 1r*)e 

+ (0* - 3a + f3* - r* - 1r)u - (Ll + ,.,,* - ,." - 3")' - ")'*)k . (1.1.51) 

Thus, the tetrad components of the Weyl tensor can be expressed in tenus of 
the coefficients (1.1.23-25) by means of the projection (1.1.47) as follows: 
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k' . tPO = 2(V'[i V'il1k)m I'mJ 

= (D - 3e + e* - (! - (!*)a - (6 - 313 - r - 0* + 7r*)k , 

tPl = (nkV'[i V'Jl1k - m*kV'[i V'il mk)lim i 

= (D + e* - (!*)f3 - a(o + 7r) - (6 - 0* + 7r*)e + k(p + ')') , 
. . k 

t/J2 = 21'mJn V'[i V'iJ mk 

= (D + e + e* - (!*)p - (6 - 0* + 7r* + f3)7r 

+ kv - a). + RIl2 , 

tP2 = 2m*inimkV[i V'il1k = -(..::1- ')' - ')'* + p*)(! 

+ (0* + 13* - r* - o)r + kv - 6), + RIl2 , 

2tP2 = (lini - mim*i)(nkV'[I V'ilZk - m*kV'[i V'Jl mk) 

= (D + 2e + e* - (!* + (!}f + (!p - (..::1 - p + p* - ')'*)e 

- (0 + 213 + r + 7r* - 0*)0 + (0* - 7r - r* + 13*)13 

- r7r + kv - 0). - RIl2 , 
.. . . k 

tP3 = 2(l'nJ - m'm*J)n V'[i V'il mk 

= (D + 3e + e* + (! - (!*)v - (..::1 + ')' - ')'*)7r 

(1.1.52) 

(1.1.53) 

(1.1.54) 

(1.1.55) 

(1.1.56) 

- (6 + 313 + r - 0* + 7r*». + (0* + 0 + 13* - r*)p , (1.1.57) 

tP3 = m*ini(nkV'[i V'ilZk - m*kV'[i V'il mk) 

= (0* + 13* - r*}f - (..::1 - ')'* + p*)o + v«(! + e) - ).(r + 13), (1.1.58) 
.1. 2 i *i *kT7 T7 'f'4 = n m m V[i v il nk 

= (6* + 7r - r* + 30 + f3*)v - (..::1 + 3')' - ')'* + P + p*». . (1.1.59) 

Similarly, we can obtain the tetrad components of the Ricci tensor: 
. . k 

4.>00 = 2Z'm*Jm V'[i V'iJ lk 

= (D - e - e* - (!)(! - (6* - 30 + 7r - f3*)k + rk* - aa*, (1.1.60) 
.. . . k 

24.>01 = 2(l'nJ + m'm*J)m V'[i V'j] lk 

= (D - e - 2(! + e* + (!*)r - (..::1 - 3')' + P - ')'* - p*)k 

+ (6 - 13 - 0* - 7r*)(! - (6* - 30 + 7r + r* + f3*)a , (1.1.61) 

4.>10 = lim*i(nkV'[i V'iJ lk - m*kV'[i V'il mk) 

= (D + 2e - (! - e*)o - 7r(! - f3a* 

- (6* - 13* + 7r)e + ')'k* + k>. , (1.1.62) 

4.>20 = 21im*Jn kV'[i V'il mA; = (D + 3e - (! - e*». 

- (0* + 0 + 7r - f3*)7r + vk* - pa* , (1.1.63) 
.. k 

4.>02 = 2m'nJn V'[i V'il1k 

= (0 - 13 - r + o*)r - (..::1- 3')' + ')'* + p)a + kv* - (!).*, (1.1.64) 

24.>11 = 2(l'ni + mim*i)(nkV'[i V'il1k - m*kV'[i V'il mk) 

= (D - (! + (!* + e*}f - (..::1 - 2')' - ')'* + P - p*)e 

+ (0 + 213 - r - 0* - 7r*)0 - (6* + 7r + r* + 13*)13 , (1.1.65) 
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2~21 = 2(lin i + mim*i)nk\7[i \7j] mk 

= (D + e* + c:* - e + 3c:)v - (..1 + ")' - ")'* + 2p, - p,*)7r 

+ (0 + 3(3 - a* - 7 - 7r*)'\ - (0* + a + (3* + 7*)p, , 
. . k k 

~12 = m'nJ(n \7[i \7i ]lk - m* \7[i \7i ] mk) 

= (0 - 7 + a*h - (..1 - 2")' + P, + ")'*)(3 

- p,7 - a'\ * + c:V* + va , 
. . k 

~22 = 2n'mJm* \7[; \7i ] 

= (0 + 3(3 - 7 + a*)v - (..1 + P, + ")' + ")'*)p, + 7rv* - ,\,\ * 

(1.1.66) 

(1.1.67) 

(1.1.68) 

We give the form of the Weyl equations for the neutrino spinor field with the 
components ~ and tJt in the Newman-Penrose formalism: 

Dp + o*tJt = «(2 - c:)p + (a - 7r)tJt, 

o~ +..1tJt = (7 - (3)~ + (")' - p,)tJt 

The energy-momentum tensor of the neutrino field has the form 

~oo = il\:[tJt DtJt* - tJt* DtJt + k~tJt* - k*~*tJt* + (c: - c:*)tJttJt*] , 

2~Ol = il\:[tJt otJt* - tJt* otJt - tJt Dp* + ~* DtJt 

+ a~tJt* - «(2* + c: + c:*)tJt~* + «(3 - a* - 7r*)tJttJt*], 

~02 = -il\:[tJt8~* - ~*8tJt + a~P* + (a* + (3)tJt~* + ,\*tJttJt*] , 

2~11 = il\:[~ D~* - ~* Dp + tJt ..1tJt* - tJt* ..1tJt + (c:* - c:)~~* 

+ (7 + 7r*)ptJt* - (7* + 7r)tJt~* + (")' -")'*)tJttJt*], 

2~12 = il\:[~o~* - ~* o~ - tJt ..1~* + ~* ..1tJt 

+ (a* - (3 - 7)~~* + ,\ *~tJt* - (p, + ")' + ")'*)tJt~* - v*tJttJt*], 

~22 = il\:[~..1p* - ~* ..1P + (")'* - ")')~~* + v*~tJt* - vtJt~*] . 

1.2 Gravitational Waves and Generalized Solutions 
of the Equations of the Electrovacuum 

In the general theory of relativity, gravitational fields are characterized by ten 
unknown functions, which endow space-time in a local coordinate system with a 
pseudo-Riemannian metric gii (i,j = 1, ... ,4). All test particles in gravitational 
fields move according to "inertia" - along trajectories with zero 4-acceleration, 
provided that no forces of nongravitational type act on them. The equations of 
general relativity relate the geometrical characteristics of the curvature of space­
time to the energy and momentum of the matter embedded in it. These equations 
have the form 
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(1.2.1) 

where Rik is the Ricci tensor, Tik is the energy-momentum tensor of the matter, 
It = 87rG / c4 , G is the gravitational constant, and c is the speed of light in vacuum. 
A necessary condition for the integrability of (1.2.1) is that the divergence of 
T,k be equal to zero, since, by virtue of the Bianchi identities, the divergence of 
the left-hand side of (1.2.1) is identically equal to zero. 

The part of the operator Rii containing second derivatives of the components 
of the metric tensor (the principal pan of R,k) takes the simplest form in the 
so-called harmonic coordinate system of Lanczos, determined by the condition 
(R gii),i = 0, where it reduces to the operator giioti for each component of 
the metric tensor: 

The characteristics of Einstein's equations (1.2.1) are the isotropic surfaces 
determined by the equations g'Ju"u,J = O. On the isotropic surfaces U = const, 
the field of directions u" forms a congruence of bicharacteristics, which are 
isotropic geodesics3• 

As was noted by Petrov [1.11] in his review of studies of the problems of 
gravitation, at the present time "there exists a rather motley collection of attempts 
to describe gravitational waves". After the classification of the types of Weyl 
tensor given by Petrov, there appeared many studies in which the definition of 
gravitational waves was based on algebraic criteria which distinguish the classes 
of solutions of Einstein's equations (see the references in [1.11,12]). 

A stimulus for attempts at an invariant definition of a gravitational radiation 
field was provided by a paper of Pirani [1.13], in which it was asserted that only 
algebraically special gravitational fields (of Petrov type IT or m) are wave-like. A 
gravitational radiation field is joined onto a non-wave-like field of algebraically 
general type along the wave front, at which there is a break of the Riemann 
tensor, which has a degenerate structure (of Petrov type N). The mechanism 
of transport of energy and momentum by means of gravitational waves [1.14] 
remains unclear in this approach, as before, and the various algebraically invariant 
definitions of gravitational waves actually provide only a means of distinguishing 
exact solutions of the nonlinear hyperbolic system. 

It is necessary to adopt a differential approach as a basis for solving the 
problem. The nonlinear hyperbolic system of Einstein equations is characterized 
by many distinctive features of hyperbolic systems: there is no effect of inversion 
of plane waves in it, but there is a characteristic tendency for focusing of any 
normal congruence of bicharacteristics with a nonzero shear (see Sect. 1.2.1). 

Wave solutions of the equations are characterized by different scales. It is 
natural to call the region with a smooth variation of the solution the background, 

3 Isotropic geodesics are also called null geodesics and light rays. The bicharacteristics of the equa­
tions of the electromagnetic field in vacuum are also isotropic geodesics. 
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and the region with a strong variation the wave. The nonlinear hyperbolic sys­
tem of gravitational equations obeys a generalized Huygens principle [1.2]. This 
principle asserts that the features of the solution at a point P depend asymptoti­
cally only on the features of the initial data localized near the intersection of the 
surface of the initial Cauchy data with the conoid of bicharacteristics emanating 
from the point P into the past. The dependence of the solution on only the initial 
data belonging to the intersection of the conoid of rays with vertex at the point P 
with the Cauchy hypersurface (the Huygens principle in the narrow sense) holds 
for the wave equation and for Maxwell's equations [1.1,3] only for a particular 
class of pseudo-Riemannian spaces, namely, those with the interval 

ds2 = 2 du dv - gab(U) dxadx b, a, b = 1,2 . 

Therefore initially sharp variations of gravitational fields in general relativity 
remain sharp in the future as they propagate, although they may be smeared 
slightly. 

In the case of a uniform background, the process of propagation of waves 
does not depend on their wavelength. It is to this case that the majority of exact 
solutions interpreted as waves refer. However, in the general case of a background 
which varies in space and time, only solutions which vary sharply in comparison 
with the background can work their way through it along isotropic geodesics. 
Such generalized solutions are well known for linear hyperbolic systems under 
the name of running waves [1.2]. In this case, the characteristic scale of variation 
of the background is the same as the characteristic scale of variation of the 
coefficients of the principal part of the differential operator. 

For the nonlinear equations of general relativity, a characteristic analog of 
solutions of the running-wave type is provided by solutions describing rapidly 
oscillating trains of waves or breaks in the derivatives of the components of the 
metric tensor. In view of the localization of such solutions along characteristic 
surfaces, the transport equations for solutions of the running-wave type can be 
interpreted as equations for conservation of the flux of "energy" of a wave along 
tubes formed by isotropic geodesics. 

We note that the results given below may be invalid for generalized (non­
Einstein) models of the gravitational field. Breaks in the field in non-Einstein 
theories of gravitation were studied in a paper by Sedov [1.15] (see Sect. 1.4), 
who derived algebraic conditions on nonisotropic surfaces with a strong break 
in the gravitational field. 

The problem of experimental detection of gravitational waves was discussed, 
for example, in [1.16,17]. Problems concerning the generation of gravitational 
waves by celestial bodies were considered in [1.18,19]. 
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1.2.1 Properties of Families of Isotropic Geodesics in General Relativity 

For an arbitrary continuous vector field I on a manifold M4, there exists an 
associated system of ordinary differential equations 

dxi/dr = li(x1 ,x2 ,x3 ,x4), i = 1,2,3,4 . 

The solutions of this system determine integral curves of the vector field 
Ii. We denote by D the covariant derivative along the direction of the vector 
field Ii: D == ['Vi. The integral curves are geodesics on the manifold if there 
exists a scalar p(x) such that Dl' = plio In this case, instead of the field I we can 
introduce the field I' = gl, with g-1 Dg+p = 0, for which DI' = O. For geodesics, 
this corresponds to the choice of an affine parameter on them. 

We shall call the pseudovector w with 2w' == c;,k/m lk V/lm the rotation of 
the vector field I. The rotation of a vector field I is equal to zero if it has an 
integrating factor: I, = pou/ox'. The converse is also true. If the rotation w 
of a vector field is equal to zero, then there exist functions p and u such that 
Ii = pou/oxi, and the family of surfaces {u} stratifies some open region in M4. 

Lemma 1. For a vector field I of smoothness class C2 for which DI, = 0 with 
Iklk = const, the divergence of the rotation vector is equal to zero. 

Indeed, let us choose, at a given point in the tangent space, four linearly 
independent vectors A(') (i = 1,2,3,4): 

detA(.')=e,k/mA(I)A(2)A(3)A(4)../.0 A(1)=I. 
) 'k / mr, 

It is easy to show that 2V, wi = c;iklm[lk Vi V/lm + Vi lk V/lm1. 
The first group of terms in V, wi vanishes because of the algebraic properties 

of the Riemann-Christoffel tensor. We represent the second group of terms in 
Vi wi in the form 

In each term of this sum, there is either a factor of the form Vk Imlm or a factor 
of the form Dlk • Therefore 12 is equal to zero, in view of the conditions of the 
lemma. 

For an isotropic vector field for which Dli = o:li' the assertion of the lemma 
can also be obtained from the vanishing of the imaginary part of (1.1.60). 

We shall consider below the family of isotropic geodesics with zero rotation, 
in terms of which we shall construct the gradient field of the tangent vectors 
Ii = u". 

Let 1) be the intersection of the family with some space-like hypersurface 
intersecting each geodesic only once. For the surface 1), the unit normal vector 
q is time-like, and the vector 1- q(l· q) is tangential to 1). Let u and v be fields 
of space-like unit vectors tangential to 1) and orthogonal to the vector 1- q(l· q). 
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The vector n == [2(1· q)2]-l[2q(1 . q) -I] is isotropic and orthogonal to 1t and 
v. Moreover, 1 . n = 1. We introduce the notation m == (1t + iv) / J2. 

We now define a field of null tetrads in a world tube of the manifold M4 by 
means of parallel transport of the tetrads along the isotropic geodesics 1 which 
form this tube. For such a tetrad field, Dn = Dm = DI = O. Therefore the 
rotation coefficients of the null tetrads have the values k = 7r = £ = 0; a* + f3 = T, 

Im{e} = 0, Re{e} = - \li Ii /2. Equation (1.1.60) takes the form 

Poo = (D - e)e - 0'0'* • (1.2.2) 

The derivative D is equal to the derivative with respect to the affine param­
eter. We shall show that \li Ii has the meaning of the rate of relative change of 
the area of the wave front. In fact, if we go over to a system of coordinates u, 
a, e, e, where u = const is the equation of an isotropic surface, a is an affine 
parameter of a geodesic on this surface, and e and e are Lagrangian coordinates 
of the geodesic, then the interval takes the form 

In this isotropic-geodesic coordinate system, the components of the vector 1 
have the values Zu = 1, Ze> = ZA = O. Therefore \l,Z' = oln Jg/oa, where 
9 = 911922 - 9[2' 

The area Ll of an element of surface cut out on a two-dimensional front 
u = const, a = const by neighboring rays is Jgdede. Consequently, (1.2.2) 
can be written in the form 

(1.2.4) 

The coefficient Poo = ",Tii Zi Ii /2 for an electromagnetic field and an ideal 
gas is always greater than zero. For the case of an arbitrary continuous medium 
with energy-momentum tensor Tii, the condition Ti) Ii Ii 2:: 0 is a plausible and 
reasonable restriction; it is called the weak energy condition [1.20]. Thus, the 
coefficient 0'0'* + Poo cannot be negative. Therefore the second derivative of the 
square root of Ll with respect to the affine parameter a cannot be positive. 

Equation (1.2.4) can be regarded as a linear equation for vLl. If a ray does 
not leave the region occupied by matter as the affine parameter a increases (for 
example, in closed models of the universe), then for 0'0'* + Poo 2:: const > 0 the 
solution of (1.2.4) has a set of zeros corresponding to focal points of the isotropic 
geodesics, where Ll ---+ 0 [1.21]. 

Property A. If the rays were focused at the initial instant, i.e., the area of the 
corresponding element of the wave front was decreasing (OLl/oa < 0) at a = 0, 
then according to (1.2.4) this area will decrease monotonically with increasing 
a until it reaches zero. 
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Property B. On an isotropic geodesic A(a), extended to sufficiently large values 
of the affine parameter a, there exist two points q = A(aq) and r = A(ar ) through 
which another isotropic geodesic passes, provided that at some point P E A(a) 
the Newman-Penrose scalar has a value tPO:f 0 in a null tetrad for which the 
vector I is directed along the tangent to A(a). These two points q and r are said 
to be conjugate to each other. The set of points t: at which the rays emitted 
orthogonally to a two-dimensional space-like surface E are focused is called the 
set conjugate to the surface E, and the points of the set t: themselves are called 
the focal points. 

In order to prove Property B, we consider in a sufficiently small neighborhood 
of the point p the set of two-dimensional elementary areas for which f! > O. 
Because of Property A, the rays emitted orthogonally to these surfaces will 
certainly intersect the geodesic A(O) for finite a. We shall show that even if 
f! = 0 on an area, the rays emitted from this area will still intersect A(a) for a 
finite value a = ao. Indeed, it follows from (1.1.52) that 

tPo = Du - 2f!u . 

If at the point p we have tPo:f 0, then for rays for which f! = 0 at the point 
p, the quantity u becomes nonzero with increasing a and, according to (1.2.2), 
the scalar f! becomes positive with increasing a. It follows from (1.2.4) that the 
area of the wave front then contracts to zero after a finite interval of variation 
of a. 

Let us now choose a point r = A(ar ), where a r > ao, and emit light rays 
from it into the "past". Suppose that not one of these rays intersects the geodesic 
A(a) in the interval of variation (ap , ao) (otherwise, Property B would already 
be proved). Then for those rays which pass near A(a) in a sufficiently small 
neighborhood of the point p, the scalar f! cannot be positive, for otherwise these 
rays would be focused to A(a) without reaching the point ao. Therefore near 
the point p we have parameter values f! < 0 for rays emitted from the point 
r = A(ar ). But then it follows from Property A that when a ray is extended into 
the past on the geodesic A(a) a focal point q = A(aq) is certainly formed. The 
points q and r are conjugate. 

Definition. For a given point p of the manifold M4, we denote by T(p) [re­
spectively, I-(P)] the set of points belonging to M4 which can be joined to the 
point p by time-like or isotropic curves directed to the future (respectively, to 
the past) with respect to the point p. We call I+(P) the future set for p. We shall 
denote the boundary of I+(P) by 8I+(p). 

Property C. Isotropic geodesics emitted orthogonally to a two-dimensional 
space-like orientable compact surface E belong to the boundary of the future 
set 8I+(E) only until the set conjugate to E is reached, and after this the rays 
enter the interior part I+(E) - 8I+(E) of the future set for E. 
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Accordingly, if an isotropic geodesic between the points p and r contains a 
point conjugate to the point p, it can be defonned into a time-like curve passing 
through the points p and r. 

Property C was proved in [1.20], where an explicit construction was pre­
sented. 

1.2.2 Propagation of Breaks in the Gravitational Field 
and Their Algebraic Classification 

We define a break in the field of order k on an isotropic hypersurface u(xi) = 
o to be a generalized solution of the field equations in which the metric gij 
together with all its derivatives up to the order k - 1 inclusive are continuous 
on the hypersurface u(xi) = 0, while some of the derivatives of gij of order 
k and above have a break in passing through u = 0, having finite limits as 
u ---. 0 from the "left" and "right" of u = O. The class of admissible coordinate 
transfonnations XiI = ji(xj) must belong to the class Ck, and by means of 
breaks in the derivatives of ji(xj) of order k + 1 it is not possible to eliminate 
the breaks in all the derivatives of gij of order k. 

The components of the Riemann tensor can be discontinuous only for breaks 
in the field of order 1 or 2. In the case of breaks of ord~r 1, there must be 
additional algebraic relations between the strengths of the discontinuities in the 
first derivatives. Since by a "break" we mean here a weak limit of smooth 
solutions which vary "sharply" across u = 0 and "smoothly" along u = 0, by 
virtue of the field equations this concept becomes meaningless near focal points, 
where solutions which vary sharply across the hypersurface u = 0 will also vary 
sharply along the bicharacteristics. 

The theory of Hadamard breaks was first applied to Einstein's equations 
by Stellmacher [1.22]. His ideas were elaborated by others [1.23--25]. In what 
follows, we outline the results of [1.23]. 

A convenient working tool for the analysis of breaks is the fonnalism of null 
tetrads (see Sect. 1.1). Suppose that on the surface u(xi) = 0 the field Zi is equal 
to the field of tangents to the bicharacteristics Zi = U,i, and let Ui and Vi be two 
space-like unit vectors orthogonal to Zi and to each other, and tangential to the 
hypersurface u = O. We have UiZi = ViZi = 0, Uiui = Vivi = -1. We define 
a complex isotropic vector mi and an outgoing vector ni on the hypersurface 
u = 0 by the relations Vi mi == Ui + iv,; niZi = 1, nimi = O. The field of tetrads 
introduced in this way is not defined uniquely. It is possible to go from one 
field to another by means of the transfonnations (I-ITI) given in Sect. 1.1. We 
define fields of null tetrads in the neighborhood of the hypersurface u = 0 by 
means of parallel transport along isotropic geodesics starting from the surface 
u = 0 along the direction of the vectors ni. Therefore in this neighborhood of the 
hypersurface of the break, u = 0, the rotation coefficients v, T, and 'Y are equal 
to zero. 

By the definition of a break of order 1, the metric and its interior derivatives 
are continuous at u = 0, i.e., in the notation (1.1.22) we have 
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there are breaks only in the derivatives of gij along the outgoing direction, 
[L1gij] = (ij. Functions which define coordinate transfonnations x'i = fi(x j ) 
can have breaks in the second derivatives along the direction n. Such functions 
satisfy the Hadamard conditions 

We find from these conditions that the discontinuity of (ij in going over to the 
system of coordinates XiI transforms as follows 

0.2.5) 

The algebraic conditions imposed on the discontinuity of (ij can be obtained 
either [1.25] as a result of integration, over a layer of small thickness e around 
the hypersurface u = 0, of continuous solutions which vary sharply across the 
hypersurface u = 0 and a subsequent transition to the limit e -+ 0 or [1.15], 
since the scalar curvature R is the Lagrangian for Einstein's gravitational equa­
tions, by means of the variational conditions for the continuity of the generalized 
momentum at u = 0: 

[O(og~~ ax")] I" = 0 . 

Writing out these conditions, we obtain 

(1.2.6) 

From (ij satisfying these conditions it is possible to form an invariant quantity 
which does not change under any of the possible transformations (I-UI), 

21P21 = (,j(ij _ (2/2 , 

where P is a complex scalar function whose modulus is an invariant character­
istic of the break. By expanding (ij in terms of the basis vectors of the tetrad 
constructed above and substituting this expansion into (1.2.6), we readily obtain 
the general form of (ij: 

(1.2.7) 

Owing to (1.2.5), the terms Inj + Ij"Yi in (1.2.7) can be eliminated by means of 
an appropriate choice of the coordinates. 

The rotation coefficients {!, u, and k do not contain derivatives of the metric 
along the outgoing direction and are therefore continuous at u = o. The coeffi­
cients ?r, 1-', e, a, and f3 are continuous as a consequence of the conditions (1.2.6) 
on the surface of the break: 
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2[11"] = -(iiZim*i = 0, 2[JL] = (ijmim*j = 0, 

2[e] = -(ijZili = 0, 4[0] = -(ijm*ilj = 0, 

4[,8] = (ijmil j = 0 . 

From the definition (1.1.24) we have 2[A] = -Po By the construction of the 
field of null tetrads in the neighborhood of the surface of the break, u = 0, the 
rotation coefficients T, 'Y, and v are equal to zero. 

On the surface of the break itself, k = 0 (in general, k:f 0 for u:f 0). At 
u = 0, we can also make the coefficients 11" and e vanish if the tetrad field on the 
surface of the break is obtained by parallel transport along the geodesics Zi. 

The tetrad components of the Ricci tensor as second-order differential oper­
ators of the components of the metric tensor can be divided into three groups as 
follows: 

a) The breaks in the components 4)00 and 4)10 are equal to zero, since accord­
ing to (1.1.60,62),4)00 and 4)10 can be expressed in terms ofrotation coefficients 
which are continuous on the surface of the break. The component 4)01 is equal 
to (4)10)* (the asterisk indicates complex conjugation) and is therefore also con­
tinuous. By means of Einstein's equations, we obtain from this the conditions 
for conservation of the flux of energy and momentum at the break, [niTj] = o. 

b) The break in the components 4)20 = 4)02 is determined by the function P, 
and according to (1.1.63) we have 

(1.2.8) 

c) The breaks in the components 4)11, 4)12, 4)2t. and 4)22 cannot be expressed 
in terms of the function P. By means of Einstein's equations, the breaks in 
these components can be expressed in terms of the breaks in the corresponding 
components of the energy-momentum tensor. 

If the characteristic surfaces of the nongravitational fields are isotropic (for 
example, neutrino and electromagnetic fields), as for the gravitational field, then 
the discontinuity in the component 4)20 is nonzero. As is shown below, breaks 
in the gravitational field produce breaks in these fields, and vice versa. 

We shall first analyze the relations at the breaks which follow from Maxwell's 
equations for the electromagnetic field. Maxwell's equations (1.1.28-31) imply 
algebraic conditions on the breaks of the tetrad components Fa): [4)0] = [4)11 = o. 
Therefore [Fij] = fV;j, where f = [4)2]. Taking the difference of the equations 
(1.1.28) written on both sides of the surface of the break, we obtain 

Df + !fVal' - !4)oP = 0 , (1.2.9) 

where 4)0 is the tetrad component of the electromagnetic field tensor, continuous 
at the break. The discontinuity of the component 4)~m) of the electromagnetic 
field at the break is readily calculated: 

(1.2.10) 
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We tum now to the Weyl equations (see the end of Sect 1.1). It follows from 
them that there can be a break in only the component ~ of the spinor of the 
neutrino field, and the component rp must remain continuous. However, a break 
in the component ~ is not related to a break in the gravitational field, and we 
shall assume in what follows that this break is equal to zero, owing to the initial 
conditions. 

The break in the component ~rc/ of the energy-momentum tensor of the 
neutrino field can be readily calculated from the relations of Sect. 1.1: 

[~~] = -i,,;Prprp* /2 . (1.2.10') 

Therefore from (1.2.8,10,10') we finally obtain 

0= DP + ! \7·1' P + 4G I~o + 87rG iPrprp* 
2' c4 c4 ' 

(1.2.11) 

where G is the gravitational constant. The system of equations (1.2.9,11) is a 
closed system of ordinary differential equations for 1 and P, describing the time 
evolution of the break in the gravitational and electromagnetic fields. 

It is interesting that the presence of the neutrino field has no influence on 
the total strength of the breaks in the gravitational and electromagnetic fields. 
Indeed, it follows from (1.2.9,11) that 

\7, [I' (8c~ 1/21 + jP21)] = 0 . 

Let us assume that there is no external electromagnetic field. Then from (1.2.11) 
we obtain 

P Fa = conS! . exp ( -i 8;.G 1 opop' d" ) (1.2.11 ') 

where 9 is the determinant of the metric tensor in the isotropic-geodesic coor­
dinate system. It follows from this equation that in the presence of a neutrino 
field the polarization vector of a gravitational wave undergoes a rotation. In fact, 
the argument of the complex function P characterizes the angle between the 
polarization vector of the gravitational wave and the initial polarization vector 
under parallel transport along the ray, and the greater the intensity of the neutrino 
field, the greater the rotation, according to (1.2.11 '), experienced by the polariza­
tion vector of the gravitational wave. In the presence of external electromagnetic 
fields, this effect is superimposed on the effect of successive mutual conversion 
of the breaks in the electromagnetic and gravitational fields, discovered in [1.26]. 

Let ~o = a exp(ib), where a and b are real numbers. In order to determine the 
effect of a variation of b along the rays, we go over to an isotropic-geodesic co­
ordinate system and the new variables P = Phexp(ib), :F = 2JGI h/~, 
2JG a/c2 == ~. Then the system of equations (1.2.9,11) can be rewritten in the 
form 
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..!!.P + il:F + i (871'G .p.p* _ Vb) P = 0, 
da c4 Va 

It follows from this system that the influence of the neutrino field on the evo­
lution of the breaks is equivalent to the influence of a certain effective external 
electromagnetic field ~o with the same intensity a as il but with a different law 
of variation of the argument along the ray: ~o = a exp(ib), where 

o 

b = b - 8~G J .p.p* da . 
00 

Therefore the successive mutual conversion of the gravitational and elec­
tromagnetic breaks in the neutrino-electromagnetic vacuum is accompanied by a 
rotation of the polarization vector of these waves, i.e., we have the same situation 
here as in an arbitrary electrovacuum wave [1.26]. 

The foregoing conclusions hold also for the case of short waves propagating 
in neutrino and electromagnetic fields. 

Let us establish the geometrical meaning of the invariant P for a congru­
ence of isotropic geodesics intersecting the surface of a break. A congruence 
can be characterized [1.5,27] by the Sachs optical scalars p. and ,\ [Re{p.} has 
the meaning of the rate of convergence of the null geodesics, 1m {p.} measures 
their rotation, and ,\ characterizes the shear (distortion) of the congruence]. By 
means of the conditions (1.2.7), it can be shown that the expansion parameter 
p. is continuous at the break, while the shear parameter has a discontinuity of 
magnitude [,\] = -P/2, as we have noted above. 

In order to describe the algebraic structure of a break in the Weyl tensor, we 
expand this tensor in terms of the basis bivectors Uij, Mij, and Vi} according to 
(1.1.11). Calculating the breaks in the tetrad components t/Jo and tPl of the Weyl 
tensor according to (1.1.52,53), we find that they are equal to zero. 

It follows from this that a first-order break in the Weyl tensor is a tensor with 
special algebraic properties, i.e., a Weyl tensor of Petrov type II, and the tangent 
to a bicharacteristic of the surface of the break is its principal isotropic direction 
(Debever vector). 

Using (1.1.54) and the fact that R = 0 for the electromagnetic field, we obtain 
for the break in the component tP2 the expression 

[tP2] = -0'[,\] = O'P/2 . 

Making use of (1.1.57,66), we have 

[tP3] = -[L17l'] - (6 + 3{3 - a*)['\] = 2[il~e;n)] + (6 + 3{3 - a*)P 

Therefore the break in the component t/J3 is also determined by the break in the 
component of the electromagnetic field, [il2] = j: 

[il~m)] = li:jilj /(471') . 
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The tetrad component tP4 contains second derivatives of the metric along the 
vector n, which give rise to a Dirac D function after passing to the limit of a 
discontinuous solution from a sequence of continuous solutions. According to 
(1.1.59), near the surface of the break we can separate from [tP4] the principal 
singular part in the form 

tP4 = D(u)P/2 + -¢4, 

~ 

lim J -¢4 du = 0 
~-o 

-~ 

where the quantity -¢4 can be discontinuous at u = O. To find the law of variation 
of the discontinuity [-¢4] along the bicharacteristics of the surface of the break, 
we use the Bianchi identity (1.1.45). We represent Ll4>20 near u = 0 in the form 

Ll4>~~m) = ~Ll(4)24>o/(411')) = fD(u)4>o~/(411') + Li4>~), 

-~ 

Then (1.1.46) determines the law of evolution of [-¢4] along the surface of the 
break [all the D functions drop out of (1.1.46), since their coefficients satisfy 
(1.2.8)]: 

- (D - e)[ -¢4] + (8* + 2a)[ t/J3] + 3Pt/J2 

= _p4>~;m) + [Li4>~)] + {p:'4>Of - (8* + 2a)(f4>i)}K/(411') 

_ O'*[4>g;m)] . 

Thus, near normal points of the surface of a first-order break, the Weyl tensor 
has the structure 

Wiklm = 8(u)Niklm + (J(u)IIiklm + Iiklm , 

where 8(u) and (J(u) are, respectively, the Dirac and Heaviside functions of the 
characteristic function u, the quantities N ik1m , IIiklm, and I;klm are bitensors 
of the corresponding Petrov types, and the principal directions of degenerate 
Weyl tensors coincide with the tangents to the isotropic geodesics of the surface 
of the break. In general, a first-order break in the gravitational field is always 
accompanied by breaks in the invariants of the Weyl tensor, as can be seen 
from the relations (1.1.19,20) between these invariants and the Newman-Penrose 
scalars. 

If a congruence of isotropic geodesics on the surface of a break has a zero 
shear 0' = 0, then tPo = 0 and [t/J2] = O. In this case, the discontinuity of the 
Weyl tensor has the Petrov type-III structure, and according to (1.1.19,20) the 
breaks in the invariants of the Weyl tensor are completely determined by the 
breaks in only the first derivatives of g.}, In this case, it follows from Einstein's 
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vacuum equations that tPl = 0, and the fields of the Weyl tensor must have an 
algebraically special fonn on both sides of the break in some neighborhood of 
the surface u = 0 (the Goldberg-Sachs theorem [1.4]). If the tensor describing 
the break in the Weyl tensor is of Petrov type m, then a field of type II can 
be joined at the discontinuity only onto another field of type II or onto one of 
type D, while a field of type m can be joined onto a field of type m or, in 
special cases, onto one of type N or empty space. An interesting example in 
which breaks of this kind can occur is provided by a solution found by Robinson 
and Trautman [1.28], for which u == O. 

We shall study the way in which the discontinuity in the rotation of the 
principal isotropic directions of the Weyl tensor different from I is related to 
the breaks in the components of the Weyl tensor in the case of second-order 
breaks in the gravitational field. In this case [tPo] = [tPtl = [Th] = [t/lJ] = 0, and 
according to (1.1.45) the discontinuity [tP4] satisfies the equation [1.29] 

In order to make the directions n coincide with the principal isotropic direc­
tions of the Weyl tensor "before" the break by means of the transformation (m) 
given in Sect. 1.1, the complex number a_ must satisfy the quartic equation [see 
(1.1.15)] 

(1.2.12) 

Here and in what follows, primes are used to denote the Newman-Penrose scalars 
in the new field of tetrads. The values of the other scalars tP~ (A = 0, 1,2,3) can 
be obtained by successive differentiation of the expression for tP4 with respect 
to a_ and division of the result by the coefficient obtained for the corresponding 
tP~. After the surface of the break, the complex number a+ must satisfy the 
equation 

(1.2.13) 

Let us subtract (1.2.13) from (1.2.12) and put [a] = a+ - a_. This gives 

(1.2.14) 

The rotation of the principal isotropic direction at u = 0 is due to the break [a]. 
From (1.2.14) we obtain the following results for weak discontinuities: 

[a] '" [tP4] if tP~::f 0, tP4 = 0 before the break (a nondegenerate Debever 
vector); 
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This means that the higher the degree of degeneracy of the Weyl tensor, the 
stronger the discontinuity in the rotation of its principal isotropic directions at 
the surface of the break. We emphasize that this analysis has a local character. 

1.2.3 Decay of an Arbitrary Break in the Vacuum Gravitational Field 

Suppose that on a space-like hypersurface T we are given the first and second 
quadratic forms with coefficients gO/p and bO/p, respectively, satisfying in empty 
space the four constraint equations (consequences of the Gauss and Peterson­
Codazzi equations) 

(1.2.15) 

where b = b~, R is the scalar curvature of the surface, and the covariant differ­
entiation is expressed in terms of gO/p. We assume that on the hypersurface T 
there exists a two-dimensional surface E with no boundary on which the coeffi­
cients of the second quadratic form and the derivatives of gO/p along the normal 
to E have breaks. We introduce on E a field of orthogonal tetrads m, m *, tT, 

where tT is the normal to E, v'2 m = 1.£ + iv, and 1.£ and v define an arbitrary 
continuous field of orthogonal unit vectors on E. (If such a field does not exist 
globally on E because of its topological properties, we must cover E by means 
of charts with such vector fields.) If we go over to a different parameterization 
of T, the breaks in the derivatives of gO/p on E acquire additional "fictitious" 
contributions from the transformation of the coordinates O'(O/Ap), where Ap is an 
arbitrary vector on E. 

We shall assume that the initial break on E is the limit as e -+ 0 of a 
sequence of smooth initial data with a sharp variation in a layer of thickness 
e in the neighborhood of E, where the smooth data also satisfy the constraint 
equations. Then the functions gO/p, 8",(gO/p, bO/p and their interior derivatives along 
E remain finite, while the second derivatives of gO/p and the first derivatives of 
bO/p along the normal tT tend to infinity as e -+ O. 

Integrating the constraint equations (1.2.15) over the e layer, in the limit 
e -+ 0 we obtain 

(1.2.16) 

Projecting [qu)gO/p] and bO/p onto the vectors of the chosen tetrad, by means 
of these equations we obtain 

[bO/p] = aO'O/O'p + P2mO/mp + Pim~mp, 

[8(O')gO/p] = PtmO/mp + Ptm~mp + O'(O/Ap) , 

where a and P2 are functions characterizing the breaks in the tetrad components 
of the second quadratic form, and the function Pt characterizes the breaks in the 
first derivatives of the metric gO/p. 
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We construct two isotropic surfaces fl+ and u_ passing through E. The initial 
break on E is divided into two breaks. With an appropriate choice of the affine 
parameter, the initial breaks in the first derivatives of the metric tensor on u+ 
and u_ will be determined by the expressions 

respectively. 
The Cauchy problem for initial data which are smooth off the surface E but 

have breaks on E can be divided into three problems, for each of which it is 
easy to prove the local existence of an analytic solution in the case of analytic 
initial data. 

T 

Fig. 1.1. Regions for the Cauchy problem with discontin­
uous initial data 

The surface of the break E divides the hypersurface T into two parts Tl and 
T2, as shown in Fig. 1.1. 

We complete the definition of the vector fields m and IT on Tl and T2, 
for example, by means of parallel transport of the triad given on E along the 
geodesics on T emanating from E in the direction of the normal. Then on T we 
can specify arbitrarily the first quadratic form and the tetrad component of the 
second quadratic form bO/pmO/mP (with a smooth dependence off the surface E). 
The tetrad components of bO/pmO/m*P and bO/puO/mP, which are continuous on 
E, need be specified only on E.1n fact, the constraint equations VO/ bp - Vp b = 0 
contain derivatives along the vector IT of only these tetrad components. The scalar 
bO/puO/uP can be expressed in terms of bO/pmO/m*P, bO/pmO/uP, gO/p, bO/pmO/mP 
as a consequence of the second equation in (1.2.15), which is linear in bO/puO/uP• 

An analytic solution of Einstein's equations in the regions I and III shown in 
Fig. 1.1 can be obtained in the form of series in the affine parameter of the normal 
congruences of isotropic geodesics by using the isotropic-geodesic coordinate 
system defined by (1.2.3). After solving Einstein's equations in regions I and nI, 
for the region n shown in the figure we obtain a Goursat problem with initial data 
on the characteristics u+ and u_. The problem with data on the characteristics 
for Einstein's equations was analyzed by Dautcourt [1.30] and Sachs [1.31]. The 
solution of the problem in region n requires a knowledge of only the parameter 
describing the shear of the isotropic geodesics on u+ and u _, whose values 
can be obtained by solving the problems in regions I and Ill. In addition, on 
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E it is necessary to specify the initial value of the expansion parameter of 
the bicharacteristics for each of the isotropic geodesics of u+ and u _ and the 
exterior rotation of the field m on E, i.e., M i j'\1i mj. The interaction of plane 
gravitational and electromagnetic waves in region II is described in Sect. 1.3. 

1.2.4 The Interaction of Short Gravitational and Electromagnetic Waves 
in Arbitrary External Electromagnetic Fields 

Owing to the nonlinearity of the system of Einstein's and Maxwell's equations, 
there is always an interaction between the gravitational and electromagnetic fields 
in a vacuum4• The interaction of wave-like fields is of special interest. 

We have already mentioned the wave properties inherent in solutions pos­
sessing different scales of variation in different regions of space-time. In this 
case, it is natural to call the region with a smooth variation of the solution the 
background and the region with a "sharp" variation the "wave". 

Most of the known exact wave solutions with distinguished algebraic proper­
ties have a unifonn background (see, for example, [1.5,32,33]). A single-stage 
process of conversion of electromagnetic waves into gravitational waves and 
vice versa in the presence of a constant transverse magnetic or electric field was 
considered in [1.34-36]. 

In the general case, only solutions which vary sharply in comparison with 
the background can work their way through nonhomogeneities of the background 
along isotropic geodesics without undergoing scattering. 

Such solutions (of the running-wave type) in the absence of external electro­
magnetic fields are characterized by propagation according to the laws of geo­
metrical optics along isotropic geodesics in curved space-time [1.37]. It follows 
from the transport equation for the amplitudes of the waves that the intensity 
(luminosity) of the radiation is inversely proportional to the elementary area of 
the wave front cut out by these same geodesics - the light rays. The polariza­
tion vector of a wave undergoes parallel transport along the rays which carry the 
wave. When the small amplitude of the gravitational waves becomes comparable 
in order of magnitude with the wavelength (in a system of units in which the 
speed of light in a vacuum is equal to unity), trains of short gravitational waves 
begin to distort the background, and the process of propagation of the waves 
must be considered together with the problem of detennining the background 
itself. 

We shall show in what follows that essentially new effects occur when short 
waves propagate in arbitrary electromagnetic fields. Either kind of wave - grav­
itational or electromagnetic - gives rise to the appearance of the other, and they 
propagate with a mutual modulation of the amplitudes of the waves. 

The total "energy" of the gravitational and electromagnetic waves obeys an 
equation of "continuity" with an isotropic velocity vector along the rays which 

4 The gravitational and electromagnetic fields described by the system of Einstein's and Maxwell's 
equations in empty space are also called the electrovacuum. 
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carry the wave. In the quasiclassical approximation, developed below, we can 
speak of a gas of photons and gravitons which are converted into each other. The 
total distribution function of these particles will satisfy the Liouville equation. 
Einstein's equations for the background will contain the total energy-momentum 
tensor of the photons and gravitons as the root-mean-square value of the "noise" 
in the waves. The reverse effect of the waves on the background manifests itself 
in exactly the same way as in the absence of external electromagnetic fields 
[1.37,38]. 

Besides the mutual conversion of the waves, another interesting effect which 
takes place in the general case is the fact that the plane of polarization of waves 
that were initially linearly polarized rotates with respect to the tetrad subjected 
to parallel transport along a bicharacteristic - a light ray. 

When waves propagate in the field of a rotating black hole, the plane of 
polarization at the "exit" of a wave from the gravitational field is found to be 
rotated with respect to its direction at the "entrance". The rotation of the plane 
of polarization can be determined by means of parallel transport with respect to 
the pseudo-Euclidean infinity [1.39,40]. This fact is connected with the nature 
of parallel transport in a curved Riemannian space. The present author [1.26] 
pointed out an effect which has an essentially different character, namely, an 
additional rotation of the polarization vector with respect to a tetrad undergoing 
parallel transport when there is an electromagnetic background. We note that, 
independently of the contributions [1.23,26] by the present author, in 1973-1975 
there appeared several publications in which the effect of mutual conversion of 
electromagnetic and gravitational waves was investigated in various special cases, 
namely, in a uniform magnetic field [1.41], in a dipole magnetic field [1.42], and 
in static electrovacuum fields [1.43,44]. In an interesting paper, Choquet-Bruhat 
[l.45] obtained transport equations for the amplitudes of waves, and the effect 
of distortion of the background was demonstrated by means of the Nordstrom­
Reissner-Vaidya solution. 

In what follows, we discuss the results of [1.23,26], where the most general 
case was studied. Thus, we shall seek an asymptotic solution gij, F,j of the 
electrovacuum equations in the form 

gij = 9ij(X,W) + c:h,)(wu, x,w), 

F,j = Fij(X,W) + C:W!ij(WU, x,w) , 
(1.2.17) 

where W is a large parameter and c: is a small parameter, with c:w < 1, and 
'" from among the variables x we have distinguished the fast variable WU. The 

background components 9ij and Fij do not depend on the fast variable. We 
shall assume that the functions hij and !ij have periodic dependences on wu == 
e, so that these functions can be expanded in Fourier series in the harmonics 
cos(nwu) and sin(nwu). The term "short wave" means that the characteristic 
scale of variation of the background metric and of the electromagnetic field is 
much larger than the wavelength of a monochromatic wave, since their ratio is 
of order w > 1. 
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We shall give an example of a solution for which the expansions (1.2.17) hold. 
Suppose that at some instant of time (i.e., on some space-like hypersurface) a 
wave was initially sinusoidal with a small amplitude of order e '" w-1• Then, 
because of the nonlinearity of the electrovacuum equations, higher harmonics 
cos(nwu) and sin(nwu) (n = 2,3, ... ) appear in the subsequent evolution of 
the wave. It can be seen from the system of equations for the electrovacuum 
that the coefficients of the higher harmonics will then be of order w-n , and the 
background metric !hi and the field 1';j are asymptotic expansions in powers of 
l/w2• 

The expansions (1.2.17) correspond to running waves of the electrovacuum, 
and therefore the perturbations hij cannot be reduced to terms of order l/w by 
means of a coordinate transformation of the form 

(1.2.18) 

for which 

h~j=hij+eiU,j+eJu,,+O(1/w), 9:j=9iJ+O(e/w). 

Here the dots denote derivatives with respect to the "fast variable", and the 
indices are lowered or raised by means of the background metric. 

Using the metric (1.2.17), the components of the Ricci tensor can be repre­
sented in the form of an expansion in powers of the small parameter: 

- . 21 2 2 2 3 2 2 
Rij = Rij + eW R'j + eWRiJ + e w R'j + O(eW) + O(e w ) 

1 .. k .. .. 
-2Rij = hijl Ik - liLj - IjLi , 

2 • k" 
-2Rij = 2Dhij + hijVk I - Vj Li - Vi L J 

• k' • k • 
- Ij("Vk h, - Vi h/2) - 1,(Vk hJ - Vj h/2) , 

(1.2.19) 

3 'k'k k 1 . . 
2Rij = -[Lk(hj Ii + h, Ij - I hij) + 'ih(/iLj + IjL,)] 

• • m .,. .. 
- LiLj + Iml (hihlj + hh'j/2) 

+ 1,IJ[!(hkmhkm - h2 /2)" - !h!,.hi + ~h2] 

here Ii == U,i; D == IkVk, Lk == hilj - hlk/2, h == hi. 
Let us assume that eW = 1 and equate the terms of order w in Einstein's 

1 
equations. Then we obtain R;j = O. 

H the scalar Iklk == giju,iU,j were not equal to zero, it would follow from 
1 

the equation R'j = 0 that 
.. k .. .. 
hijlkl = I;LJ + IjLi . 

Therefore by choosing the transformation 
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Xi' = xi - W-2 J Li(e, X) de, e = wu 

it would be possible to make hij equal to zero (apart from tenns of order l/w) in 
the system of coordinates xi', which contradicts the assumption that the leading 
tenns in hij cannot be eliminated by means of a coordinate transfonnation. 

It follows that Ik Ik = O. This means that the surfaces u = const are isotropic. 
The isotropic surfaces u = const detennine a family of isotropic geodesics with 
no rotation in the space of the background. 

We shall assume that in the irradiation region (the region filled with the light 
rays of the wave) the field of null tetrads is obtained by parallel transport along 
the rays 1 of a tetrad field given on some hypersurface which each ray intersects 
only once. 

1 •• •• 
From the conditions that R.} vanish we also obtain liLj + IJLi = 0, from 

which it follows that Li = 0 or 

hfl} - ~hli =0 . 

These four linear algebraic relations impose constraints on the ten components 
hij, so that only six of the quantities hij are independent. 

It is possible to represent hi} explicitly in tenns of the null tetrad I, n, m, 
m * in the fonn 

(1.2.20) 

Here the complex scalar P characterizes the actual gravitational wave (its 
modulus describes the amplitude of the wave, while the argument of P describes 
the direction of the polarization vector). The tenn liA} +/jAi in hij can be made 
equal to zero by means of an appropriate coordinate transfonnation (1.2.18). 
Similarly, it follows from Maxwell's equations Vi Fi} = 0 that ldij = 0, from 
which we obtain 

2fij = f~j + f*Vij, ~j = 2(limj -ljmi) . 

By averaging Einstein's equations Rij = ",'iij (where 'iij is the energy­
momentum tensor of the electromagnetic field) with respect to the fast variable 
wu, we obtain, apart from tenns of order 0(1lw2), 

(1.2.21) 

For an initially sinusoidal wave, the higher harmonics will have small am­
plitudes in comparison with the first harmonic, so that (1.2.21) can be rewritten 
in the fonn 

•• ·2 2 4 
Rij = ",Tij + u,iu,jllP 1/4 + 2Glf II c] . (1.2.21') 
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3 
This simple expression has been obtained on the basis of the fact that Rij is 
greatly simplified by using Lk = 0 (k = 1,2,3,4) and 'mzm = 0, and also the 

3 
fact that tenns which are total derivatives with respect to e drop out from Raj 

after this quantity is averaged with respect to e. 
Thus, when Einstein's equations are averaged, the system of background 

equations contains the squares of the amplitudes of the gravitational and electro­
magnetic waves, which tend to produce an additional curvature of the background 
in relation to a given background solution of Einstein's and Maxwell's equations. 

In Einstein's equations, we now equate the tenns containing the zeroth power 
2 

of w for the first harmonic. Then it follows from Einstein's equations that 211" Ri) = 
Kfl(iFJ). Multiplying both sides of these equations by m*im*j and summing over 
i and j, we obtain 

. 1. k 4G * 
DP+'2PVkl +74iof =0 . (1.2.22) 

Equation (1.2.22) could have been obtained directly from the equation 411"4i20 
= 1\:4i24i(j, where the expression for 4i20 is given by (1.1.63). 

It follows from Maxwell's equation (1.1.28) that 

(1.2.23) 

From (1.2.22,23) it is easy to obtain the following "continuity" equation for the 
total intensity of the electromagnetic and gravitational waves: 

(1.2.24) 

In an isotropic-geodesic coordinate system constructed on the rays Ii [see 
(1.2.3)], it follows from this equation that 

Vi [IPI + ;~IP21] = n(u,e ,e) . 

Therefore along fixed rays (u = const, e = const, e = const) we have conserva­
tion of the quantity 

2 C 2 [ 4] If I + 8G IP I yg . 

The quantity ,;g del de has the meaning of the elementary area on the surface 
of the wave front u = const, a = const cut out by these same rays. The total 
intensity of the waves is inversely proportional to the elementary area on the 
wave front. 

From the "continuity" equation for the total intensity of a wave and the 
equation 0.2.21) for the geometry of the background it follows that mutually 
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coupled trains of electromagnetic and gravitational waves act on the background 
in exactly the same way as purely gravitational waves in the absence of external 
electromagnetic fields [1.37]. It has been shown [1.38] that in this case it is 
possible to introduce a distribution function for massless particles which obeys 
the Liouville equation. 

The tetrad component ~o in the expansion of the bivector of the electromag­
netic field with respect to the tetrad I, n, m, m* characterizes the radiation of 
the external field along the rays which carry short waves, since the square of 
its modulus is proportional to the flux of energy and momentum of the external 
field along the isotropic direction: 

\~~ \ = 47rTii Ij , 

where Tij is the energy-momentum tensor of the background According to 
(1.2.22,23), all the special properties of short waves are related to the com­
ponent ~o. 

We shall show [1.26] that the variation of the component ~o along the rays 
can be expressed in terms of the rotation coefficients of the canonical tetrad for 
the bivector of the background electromagnetic field Let 1, ii, m, m * be a tetrad 
in which the bivector of the background field takes the canonical form in the 
nondegenerate case: Fij = ~lMij + ~i Mi} (see Sect. 1.1). 

We first define a new orientation of the vector 1 by means of the transfor­
mation (IV) in such a way that it becomes tangential to a given congruence of 
isotropic geodesics with no rotation. We then stretch it by means of the transfor­
mation (IT), so that it coincides with the vector Ii == U,i, where {u} is a given 
family of isotropic surfaces. 

The parameters A and b of the transformations (ll) and (IV) will then satisfy 
the following ordinary differential equations along the isotropic geodesics: 

D(bA) = A[miDii + bmiDm*i + \b2 \miDni], 
(1.2.25) 

By means of the transformations (m) and (I) with the parameter a and the 
angle 8, we rotate the vectors ii and m so that nand m satisfy the condition 
of parallel transport along the congruence. Then the parameter 8 satisfies the 
equation 

(1.2.25') 

The component ~o of the background electromagnetic field tensor in the tetrad 
undergoing parallel transport along the given congruence of isotropic geodesics 
is equal to 2A~1 exp(i8). According to (1.2.25,25'), we have 

D(Abexp(i8» = Aexp(i8)[miDi' + b2mi Dni] . (1.2.26) 

From Maxwell's equations (1.1.28-31), written in terms of the canonical tetrad, 
we obtain 
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0.2.27) 

It follows from (1.2.26,27) that 

Din q>o = A { ~[k + 31b2 1T + b*(j- + 3bg] - b[31i' + Ib2 1ii + 3b* il + b).]} 

(1.2.28) 

To obtain a convenient fonn for this equation, it is sensible to rewrite it by 
expressing the parameters A and b of the transfonnations in tenns of the com­
ponents of the vector Ii = U,i in the tetrad ;, ii, m, m*: 

Din q>o = 3 (u,(.;.)1i' - U,(ih*)T + U,(u)e - u,(i)il) 

(1.2.28') 

If the bivector of the background electromagnetic field is degenerate, i.e., both 
of its invariants are equal to zero, then in some tetrad it can be reduced to the 
fonn Fij = ~OUij. The corresponding expressions for this case were given in 
[1.26]. 

If arg q>o is to remain unchanged along an arbitrary isotropic geodesic, the 
following conditions must be imposed on the background gravitational field: 

{! = {!* , fl = fl* , 7r + r* = 0, k = (J = v = >. = 0 . (1.2.29) 

These conditions lead to a Weyl tensor of Petrov type D, for which all solutions 
of Einstein's vacuum equations have now been found [1.46]. 

By virtue of (1.2.22, 23), the variation of the phase of q>o gives rise to mutually 
consistent variations of the phases of the functions f and P. 

Making the substitutions 

in (1.2.22,23), we obtain 

d~ P+ cp*F = 0, 
d 

-F-{IlP=O da T , 

(1.2.30) 

r7 Z' = dIn v'9 
v, da' (1.2.31) 

We represent the complex function cp in trigonometric fonn and replace the affine 
parameter a by the variable x defined by the relation dx = Icplda. Eliminating 
the unknown P from (1.2.31), we obtain 

J2F +F+idargcpdF =0 
dx2 dx dx 

(1.2.32) 

This equation relates the variation of the amplitude IFI of the electromagnetic 
wave and the angle of rotation arg F of its plane of polarization. 
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In the particular case in which the conditions (1.2.29) hold, the argument of 
the function <P does not depend on x, and the system of equations (1.2.31) admits 
the simple solutions 

.r = A cos (/ <P dO' + l' ), P = A sin (/ <p dO' + l' ) , (1.2.33) 

where the complex number A and the phase shift l' are constant along a fixed 
ray. It follows from the form of the solutions (1.2.33) that the amplitudes of 
the electromagnetic and gravitational waves are sinusoidally modulated with a 
frequency determined by the equation 

21r = ! <p dO' = ~ / JTii dx'dxi . 

Before entering the region with a strong electromagnetic field 1<p1 rv 1, the 
gravitational and electromagnetic waves from sources localized in the same re­
gion propagate independently, with identical surfaces of the wave fronts, but in 
general with different planes of polarization. In the region l<p I rv 1, these waves 
experience only partial mutual modulation, and the plane of polarization of each 
of the waves experiences a rotation with respect to the tetrad which undergoes 
parallel transport along the rays. Formally, this happens because the phase l' in 
the expressions (1.2.33) is in general complex. 

The case of a real phase l' corresponds to a situation in which either the planes 
of polarization of the gravitational and electromagnetic short waves were coinci­
dent before the waves entered the region 1<p1 rv 1 or only one of these waves was 
initially incident. In this case, the solutions (1.2.33) describe total mutual conver­
sion of the waves over a length equal to the period calculated from the equation 
J 1<pldO' = 211", since the process of propagation of the waves takes place as a 
periodic appearance and disappearance of the gravitational and electromagnetic 
waves with conservation of their total intensity. This effect of periodic transfer 
of "energy" from one mode of oscillation to the other is analogous to the spatial 
beats of electromagnetic waves in two wave guides connected by a narrow gap 
[1.47,48] and to the beats in a system of two pendulums connected by a weak 
spring [1.49]. 

1.2.S Algebraic Structure of Perturbations of the Weyl Tensor 
in the Case of High-Frequency Waves 

It follows from (1.2.17) that the perturbation of the metric corresponding to short 
waves has the asymptotic form 

(1.2.34) 

Then from the definition of the tetrad components t/Jo, 1/Jl, th, 1/J3, 1/J4 of the 
Weyl tensor it follows that the values of these quantities for the perturbed metric 
(1.2.34) have the asymptotic structure 
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- • 1-
tP4 = tP4 - 2WP + ... , 

~ = th + ~(6 + 3f3 - a*)P + K~i /(47r) + ... , * = *- + ~uP + ... , .(fl = tfl +O(I/w), .(fo = tPo +O(I/w), 

P=.8P/8e, e=.wu. 

(1.2.34') 

It can be seen from these expressions that it is by no means obligatory to derive 
the relation (1.2.22) from Einstein's equation ~2fJ = K~2~0I(47r) [see (1.1.63)]. 
This same equation could have been obtained more elegantly from the Bianchi 
identity (1.1.46). In addition, it follows from (1.2.34') that the Weyl tensor in the 
case of short waves has the algebraic structure 

W.klm = W.klm +WNiklm + II.klm + (l/W)I. klm , 

where Wiklm is the Weyl tensor of the background space, and N iklm , IIiklm , 

and Iiklm are Weyl tensors of Petrov types N, II, and I, respectively. 
Thus, we can say that when the perturbations in the Weyl tensor are ex­

panded in inverse powers of the frequency, the degree of algebraic degeneracy 
of the successive terms becomes smaller. This fact is completely analogous to 
the properties of first-order breaks in the gravitational field (see Sect. 1.2.2). 

1.2.6 Behavior of Short-Wave Perturbations of the Gravitational Field 
Near Caustic Surfaces 

Waves attain the largest intensity at the focal points, where 9 = 0; this means that 
a treatment using the approximation of geometrical optics is not possible, since 
this approximation leads to fictitious features in the amplitudes of the waves. 

We have shown (see Sect. 1.2.1) that the appearance of focal points on light 
rays is not an exotic phenomenon in general relativity, since the area of any 
convergent element of a wave front decreases monotonically, becoming equal to 
zero at a focal point. 

The set of focal points forms a caustic surface. Here we consider only the 
simplest stable type of caustic (from the Greek kaustikos - burning) - the fold 
From the point of view of the classification of the singularities of mappings of 
Lagrangian manifolds (which occur in the representation of solutions in the form 
of rapidly oscillating integrals [1.50]), only the following types of singularities 
(apart from the fold) can be stable in a three-dimensional space: the (Whitney) 
cusp, the "swallowtail", and the hyperbolic and elliptic umbilics [1.49]. The 
maximum intensity rises as we go from one type of singularity to the next, with 
the following orders of magnitude as a function of frequency w: wl/6 for the 
fold, wl/4 for the cusp, w3/10 for the swallowtail, and wl/3 for both umbilics (at 
normal points, we assume the order of magnitude wO = 1). 

For a given congruence of light rays having zero rotation and "carrying" 
short-wave perturbations, we go over to the comoving isotropic-geodesic system 
of coordinates a, u, e, e [see (1.2.3)]. Exploiting the arbitrariness in the choice 
of the origin for the affine parameter, we shall measure it from the caustic surface. 
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We shall consider the asymptotic behavior of the metric coefficients near the 
caustic surface of a fold in the isotropic-geodesic coordinate system. 

We construct a field of null tetrads in this system as follows. Suppose that 
the isotropic vectors I, n, and m have the following components: 

lOt =0, lu = 1, IA =0; 

nOt = 1, nu = !(90 + gAgA), nB = 0; 

mOt = 0, mu = (2 - g22)-1/2[g2 + ig1 .j9]; 

ml = -(2g22)-1/2[gI2 + i.j9], m2 = -J 922/2, 

m*1 = -iJ g22/(2g) , m*2 = (1 - igI2 /.j9)/ -I2922 , 

9 == gl1g22 - gr2, A,B = 1,2 . 

(1.2.35) 

The indices A, B = 1,2 of the coefficients 9 A and gB are raised or lowered by 
means of the two-dimensional metric gAB. 

For such a tetrad field, the rotation coefficients can be expressed in terms of 
the metric as follows: 

k = 0, {! = {!* = -aIn ~/oa; 20" = -oln(g22/.j9)oa +4c: 

c: = -c:* = -i922(4.j9)-l o (912/922)/oa ; 

1 [ ogl ol] f3 + a* = T = 7r* = 2J2g22 (g12 + i.j9) oa + g22 oa ; 

1 A 1 [ A oln g ] 
J.L = 2 {!(gO + gAg) + '4 2\7A 9 - a;;- , 

1 m*Am*B ( 09AB) 
..\ = 20"*(90 + gAgA) + 2 \7 A gB + \7B gA - ---a;;-
For this field of null tetrads, (1.2.52,60) have the form 

!lio = (D - 4c: - 2{!)0", 4>00 = (D - (!){! - 0"0"* . 

(1.2.36) 

(1.2.37) 

(1.2.38) 

We assume that the component !lio of the Weyl tensor and the component 4>00 = 
K.Tijlilj of the energy-momentum tensor have the following orders of magnitude 
near the caustic: 4>00 = 0(0"0"*), !lio = O(O"{!). Then it follows from (1.2.38) that 
the leading terms in the expansions of (! and 0" with respect to a have the form 

(!=-2~+0(1), 0"=(2~+0(1»)exp(4fC:da) . 

Expressing (! in terms of the metric according to (1.2.36) yields 

9 = Goa2 + 0(a3), Go = Go(u, xl, x 2) . 

(1.2.39) 

Using the fact that the imaginary part of 0" is 2e, from (1.2.39) we obtain 
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4iae = sin (i J 4eda) . 

It follows from this that e = ieo, eO = eo(U, xl, x2). By equating the real parts of 
u detennined by (1.2.36,39), we arrive at 

8In(.,Jg/g22) _ cos(4ieoa) '" 1 
8a - a '" ~ . (1.2.40) 

Expressing e in tenns of the metric, we obtain 

(1.2.41) 

It follows from (1.2.39-41) that the matrix gAB has the following fonn for 
a --t 0: 

( a(c,o,xl)2(1 + PI a) + O(a2) ac,o,x1c,o,x2 - 2eoVGO a2 + O(a3») 
ac,o,x1 x2 - 2eo.JGii a2 + O(a3 ) a(c,o ,x2)2(1 - PI a) + O(a2) . 

(1.2.42) 

Here a, c,o, Ph and f32 are arbitrary functions of u, xl, and x2 (8c,o / 8x2 f 0). An 
isotropic-geodesic coordinate system retains the same fann under transfonnations 
of the type x A1 = fA(x l , x2, u). If we go over to a new system yl = f, y2 = c,o, 
where f is an arbitrary function of u, xl, and x2, we obtain from (1.2.42) the 
expressions 

gn = Gna2 + O(a3 ), 

g12 = -2eo"';GnG22 a2 +O(a3), 

922 = G22 + O(a) , 

where Gn and G22 are arbitrary real functions of u, xl, and x2. 

(1.2.43) 

To see how the metric coefficients gA (A = 1,2) depend on a, we make use 
of the equation 

!lil + !liio = (D - 2e - 2e)r - 2ur* , (1.2.44) 

which, for the quoted field of tetrads, results from (1.1.51,61). We assume that 
!lil + !liio = O(e1r) near a caustic. Then from (1.2.44) in a first approximation we 
obtain 

r ~ (M + iN / ( 2) exp(2ieoa) , 

where M and N are arbitrary real functions of u, xl, and x2. 
By expressing r in tenns of the metric and using (1.2.37,44), we obtain 

gl = - ~ J ~ 1 + 0 (±), l = G2 + 2aM J ;22 ' 

G2 = G2(u, xl, x 2) . 
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Dropping the indices on gA, we find 

gl = -N J2Gll + O(a), 92 = G2G22 + O(a) (1.2.45) 

We now detennine the asymptotic behavior of go+gAgA. To do this, we consider 
the relation (1.1.55): 

(D - e)p. - (6 - a* + f3 + 11"*)11" - 0''\ + R/12 = 1/'2 . (1.2.46) 

Let us assume that 1/'2 - R/12 = 0(11"11"*). Then according to the preceding 
calculations it follows from (1.2.46) in a first approximation that 

1 a A * '2 e aa (gO + gAg ) ~ 11"11" 

Hence 

(1.2.47) 

In the approximation of geometrical optics, the d' Alembertian Vi Vi, defined in 
tenns of the background metric and acting on a scalar function t/J of the fast 
variable wu and the slow variables a, xl, and x2, is equal asymptotically to the 
operator 

2(D - 2e)t/J,u . 

Let us differentiate (1.2.23) with respect to the fast variable. Then the system of 
equations (1.2.22,23) can be rewritten in the fonn 

(1.2.22') 

(1.2.23') 

Unlike the system of equations (1.2.22,23), the system (1.2.22',23') is mean­
ingful even near caustic surfaces, where the approximation of geometrical optics 
breaks down. 

In a particular case, along a family of bicharacteristics we have d arg 4>0/ da = 
O. Then by means of a rotation of the tetrad we can make the component 4>0 of 
the external electromagnetic field a real function for all a. 

We now differentiate (1.2.22') with respect to the fast variable (the differential 
operator a/au and the d' Alembertian commute for high-frequency waves). Then 
the system (1.2.22',23') can be rewritten as a pair of closed equations for x+ 
and x-: 

(V; ,<hiilo/ff:.) X± =0, X± '" F ± /i;;ia;: . (1.2.48) 
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Near a caustic surface a = 0, the second derivatives of the solutions with 
respect to the affine parameter (which are negligibly small outside the neigh­
borhood of the caustic) come into play in the d'Alembertian. In the isotropic­
geodesic coordinate system (1.2.3), the d'Alembertian (operating on a scalar) 
becomes asymptotically equal to the operator 

~~~~ __ 1_~ [(90+9AgAhlg~] . V'9 aa au v'9 aa aa 
(1.2.49) 

At normal points of isotropic geodesics, the second term in (1.2.49) is small 
and can be omitteds. Near caustics, we can rewrite (1.2.22,23) in a form which 
takes into account the dependence of the metric coefficients on a: 

~~ (va ap) + Go ~ (!~p) = 8G ~* f va aa au a aa a aa c4 0 , 

~~ (va af ) + Go~ (!~f) +~o &p =0 va aa au a aa a aa au2 

Let us make the change of variables 

a 2 
y=--

{j4G~ , 
a 3 

u---=x 
3Go 

Then from (1.2.50) we obtain 

&p &p 4G {/2G "'*f ay2 - y ax2 = 7 0 '£'0 , 

&f _ y&f = -~V'2Go~0 &p 
ay2 ax2 2 ax2 

(1.2.50) 

(1.2.51) 

In the absence of external electromagnetic fields, when ~o = 0, this system 
decomposes into two independent Tricomi equations. 

For monochromatic waves, the system of equations (1.2.51) reduces to the 
system 

& P 2 4G {/2G *f 0 ay2 +w yP -7 o~o = , 

&f 2 1 23~ ay2 +w yf +"2w v2Go~oP = 0 . 

The "irradiated" region, i.e., the region accessible by means of some light 
ray from the congruence, corresponds to y > O. For the "shadow" region, i.e., 

5 We note that many excellent studies (for example, [1.49-51]) have been devoted to the investi­
gation of asymptotic solutions of linear hyperbolic systems, particularly in the approximation of 
geometrical optics. 
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the region consisting of points inaccessible on the congruence for real values of 
the affine parameter a, we have y < o. 

In comparison with normal points on the rays, at focal points the luminosity 
of the waves is in general increased by a factor w1/ 6• 

1.3 Interaction of Gravitational and Electromagnetic Waves 

1.3.1 Curvature of Space-Time in a Plane Electromagnetic Wave 

As is well known, plane waves which propagate in one direction without change 
of form are distinguished by the property that the light rays corresponding to them 
have zero expansion, Re{e} = 0, rotation, Im{e} = 0, and shear, 0' = O. Space­
time must admit a group of motions along the light rays, which are the orbits 
of this group. Therefore, for exact plane-wave solutions of the Einstein-Maxwell 
equations in empty space, there must exist an absolutely parallel isotropic vector 
field I. This means that in the isotropic-geodesic coordinate system (1.2.3) co­
moving with the light rays the metric coefficients must not depend on the affine 
parameter a. 

The a-independent form of the metric (1.2.3) is invariant under coordinate 
transformations of the form 

I I + rl( c1 C2 ) cot' __ fQ(u, c1 , C2), u = u, a = a J& u, .. , .. , .. .. .. a = 1,2 , 

where {}(u, e1 ,e) and r(u, et ,e) are arbitrary functions. By means of an ap­
propriate choice of these functions, it is possible to make the coefficients g12 
and g2 of the metric (1.2.3) equal to zero, and the coefficient g22 equal to unity 
[1.52]. Then the metric (1.2.3) takes the form 

ds2 = A du2 + 2 du da + 28 du dx - E dx2 - dy2 , (1.3.1) 

where A == go(u,x,y), 8 == gl(U,x,y), E == gl1(U,x,y,), el = x, 6 = y. 
Below, following [1.53], we shall show that in a certain coordinate system 

the general solution of the system of Maxwell's and Einstein's equations for 
plane waves takes the form 

ds2 = A(u,x,y)du2 +2duda - dx2 _dy2 , (1.3.2) 

in which the function A(u, x, y) satisfies the equation 

EPA filA 4G • 
8x2 + 8y2 =--;FiJ2iJ2, iJ2=f(x+iy,u) , (1.3.3) 

where f is an arbitrary analytic function of x + iy, and the dependence of f on 
u is also arbitrary. 

In the literature, one can find several particular solutions of the Einstein­
Maxwell equations describing plane waves, for example, the solutions of Takeno, 
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Petrov, KaIgorodov and Pestov, Rosen, and Peres (see the references in the book 
of Zakharov [1.12]). 

In order to show that all these solutions take the fonn (1.3.2,3) in some 
coordinate system, we make use of the fonnalism of null tetrads. 

Let us choose a field of null tetrads in the coordinate system (1.3.1) with the 
following components: 

li(I,O,O,O), n,(A/2, 1, S,O), mi(O,O, VE/2,i/,fi) . (1.3.4) 

Then the nonzero rotation coefficients of a tetrad can be expressed in tenns of 
the functions A, E, and S as follows: 

1 8 1 8 i 8S 
,\ = 4 8u InE, I-' = 4 8u 1nE - 2-IE 8y' 

i 81n E 1 8S 1 8A i 8A 
a = f3 = - 4,fiay' v = ,fiE 8u - 2,fiE 8x - 2,fiE 8y' (1.3.5) 

i 8S 
'Y=-----

4VE 8y 

We shall assume that only the component ~2 of the electromagnetic field tensor 
F'i is nonzero. Einstein's equations (1.1.65-68) take the fonn 

(6 - 6")a + 4a2 = 0, 6'Y - Lla - 2'\a = 0, 

(6 - 6")'\ +4a'\ - 26"'Y = ° , 
6v - Lll-' + 2av - 1-'2 - '\'\" = 4~ ~2~i 

c 

Using (1.3.4,5) we can write (1.3.6) in the fonn 

~lnE +! (81nE)2 =0 !-. (_1_8S) =0 
8y2 2 8y '8y -lE8y , 

~ (_1_8S) +2~VE =0 
8x -IE 8y 8u8y , 

which, after integration, gives 

v'E = a(x, u)y + b(x, u), 

S = c(u, x) [a(u,;)y2 + b(u, X)y] + d(u, x) , 

8a+8c=0 
8u 8x ' 

(1.3.6) 

(1.3.7) 

(1.3.8) 

(1.3.9) 

(1.3.10) 

where a, b, c, and d are functions of the indicated variables. Making use of these 
last equations, we shall list the sequence of transfonnations which reduces the 
metric (1.3.1) to the fonn (1.3.2). We consider first the case a f 0, for which we 
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give each transfonnation and then, below it, the fonn of the interval after the 
indicated transfonnation (the coefficient A is different in certain transfonnations, 
but we always denote it by the same symbol): 

1) x' = j adx, y' = y, a' = a, 

ds2 = A du2 + 2 du do.' + [c(y,2 + 2by') + d] du dx' 

_ (y' + b)2 dx,2 _ dy,2. 

2) 0.'=0.+ j(d-cb2)dx, y'=y, x'=x, 

ds2 = A du2 + 2 du do.' + c(y' + b)2 du dx' 
2 2 2 - (y' + b) dx' - dy' . 

3) x' = ycosx - j bsinx dx, y' = -ysinx - j bcosx dx, 

0.'=0., 

ds2 = Adu2 +2duda' + f(u,x',y')dudx' 

( ") d d' d,2 d,2 + 9 u, x ,y u y - x - y . 

4) 0.'=0.+ j g(u,x,y)dy, y'=y, x'=x, 

2 2 - 2 2 ds = Adu + 2du do.' + 2S(u, x', y')dudx' - dx' - dy' 

(1.3.11) 

The fonn of the metric (1.3.11) is identical to (1.3.1) if for E and S in (1.3.9) 
we take a = 0 and b = 1, but in this case we find, using (1.3.10), that the function 
Sin (1.3.11) has the fonn 

S = c(u)y. 

5) a' = 0.+ c(u)xy, x = rCOS c.p, y = r sinc.p, 

ds2 = A du2 + 2 du do.' + 2c(u)r2 du dc.p - dr2 - r2dc.p2. 

6) c.p' = c.p - j c(u) du, a' = a, r' = r, 

ds2 = A du2 + 2 du do.' _ dr,2 _ r,2 dc.p,2 

This fonn of the metric is identical to (1.3.2). If, however, a = 0, then to reduce 
the metric (1.3.1) to the final fonn (1.3.2) it is necessary to begin with the 
transfonnation x' = J b dx and then carry out the transfonnations 4-6. 
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1.3.2 Nonlinear Interaction of Plane Waves 

Above, we considered the case of a plane wave traveling in one direction without 
change of fonn. 

An exact fonnulation of the problem of the nonlinear interaction of plane 
gravitational and electromagnetic waves has been given by several authors [1.54-
56). In order to study the interaction of plane waves, it is necessary to consider 
classes of metrics having a more general fonn than (1.3.1). We shall consider 
pseudo-Riemannian spaces which admit two-parameter commutative groups of 
motions with two-dimensional space-like transitivity surfaces. We take the inter­
val in the fonn 

ds2 = e-M du dv - e-u[e v cosh W dx2 

+e-v cosh W dy2 - 2 sinh W dx dy) (1.3.12) 

Here the unknown real functions M, U, V, and W depend on u and valone. 
The Einstein-Maxwell system of equations remains self-consistent if we set the 
component 4>1 of the electromagnetic field tensor equal to zero. 

The isotropic surfaces u = const and v = const are characteristic of the 
hyperbolic system of Einstein-Maxwell equations. 

In our case, the metric for the mutually incident waves before their interaction 
can be conveniently chosen in the fonn 

(1.3.13) 

for one plane wave and 

ds2 = 2dudv - gl1(v)dx2 - 2g12(V) dy dx - g22(v)dy2 (1.3.14) 

for the other. Then each of the incident waves will have the particular fonn 
(1.3.12), in which the dependence on either u or v is absent. In the region of 
interaction of the waves, the coefficients of the metric (1.3.12) will have an 
essential dependence on both of the variables u and v. 

The vectors of the null tetrad associated with the metric (1.3.12) have, with 
respect to the coordinates u, v, x, y, the components 

[i(O eM/ 2 0 0) ni(eM / 2 0 0 0) , '" , , , , 
mi(O, 0,e(U-V)/2 cosh(W + hr /4), e(U+V)/2 sinh(W + hr /4» 

(1.3.15) 

The nonzero rotation coefficients of this tetrad field can be expressed in tenns 
of the coefficients of the metric as follows: 

g = !eM / 2U,v, u = -!eM / 2 [y:v cosh W - iW,v) , 

J1- = _!eM / 2U,u, >. = !eM / 2[y:u cosh W + iW,u), 

2e = -!eM / 2[iY:v sinh W + M,v), 

2, = !eM / 2[ -iY:u sinh W + M,u) . 
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Instead of the tetrad components ~o and ~2 of the electromagnetic field tensor, 
we introduce the functions !io and !i2 defined by the equations !io = eM/2~o, 
!i2 = eM/2~2' Then (1.1.28,29) take the form 

- 1 - 1 -~2,v = -2(V;U cosh W + iW,u)~o + 2(U,V + iV;v sinh W)~2 , (1.3.16) 

- 1 - 1 -~o,u = -2(V;V cosh W - iW,v)~2 + 2(U,U + iV;u sinh W)~o , (1.3.17) 

Equations (1.1.30,31) are satisfied identically, as are Einstein's equations (1.1.61, 
62,66,67). Equations (1.1.63,64) are equivalent. Equations (1.1.60,68,65,63) 
take respectively the forms 

2 2 2 2 _ 4G - -* 2U vv - U v +2U vM v - Wv - Vvcosh W - --A~O~O , 
, , " " c"" 

2 2 2 2 _ 4G - - .. 
2U,uu - U,u + 2U,uM ,u - W,U - V;u cosh W - 7~2~2 , 

2M,uv + U,uU,v - W,u W,v - V;u V;v cosh W = 0 , 
(2V;uv - U,u V;v - U,v V;u) cosh W + 2(V;u W,v + V;v W,u) sinh W 

+ i[2W,uv - W,uU,v - W,vU,u - 2 sinh W cosh WV;u V;v] 

(1.3.18) 

(1.3.19) 

(1.3.20) 

4G - -= 4~2~O (1.3.21) 
c 

Taking the component of Einstein's equations Ruv = 0, we obtain the equation 

U,uv = U,uU,v , (1.3.22) 

which has the general solution 

U = -In[f(u) + g(v)] , (1.3.23) 

where f(u) and g(v) are arbitrary functions of their arguments. 
The relations (1.3.16,17,21) form a closed system of equations for the func­

tions V, W, !io, and !i2, in which U must be replaced by the expression (1.3.23)6. 
Using the resulting solution of this system, the function M can be found by means 
of (1.3.20). 

In what follows, we confine ourselves to the particular case in which W = O. 
According to (1.3.21), this situation can occur when Im{~2~0} = O. We shall 
assume that the forward front of one of the incident waves before the interaction 
is described by the equation u = 0 with v ~ 0, while the forward front of the 
other wave corresponds to v = 0 with u ~ O. The instant at which they meet 
corresponds to the intersection of the characteristics u = 0 and v = O. Since 
(1.3.16-21) have characteristics u = const and v = const, breaks run along the 
characteristics u = 0, v ~ 0 and v = 0, u ~ 0; these correspond to decay of the 

6 The efforts of many authors have now led to the creation of effective analytic methods of "multipli­
cation" of solutions of this system, i.e., methods of obtaining a countable set of solutions, starting 
from one known solution. The general solution has been found by the present author (see Sect. 3.3). 
Recently the interesting results were obtained by Chandrasekhar and Xanthopoulos, Ferrari and 
Ibanez Halil and Nutku, Garcia, see for references monograph of Griffiths. 
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break which occurs at the instant when the forward fronts of the waves meet. 
Thus, we have here a concrete realization of the situation described in a general 
form in Sect. 1.2.3, where we studied the Cauchy problem with initial data having 
breaks. 

On the characteristic u = 0, v ~ 0, the breaks in ~2 and V;u satisfy the 
conditions 

- 1 - 1 -
[tP2],v - 2U ,v[tP2] = -2 tPO [V;U]' 

1 4G -* -
[V;u] v - 2U,V[V;U] = -4 tPo[tP2] , 

, C 

(1.3.24) 

where for the coefficients U,v and ~o we must take the values corresponding to 
the single-wave solution (1.3.13,14). 

Similarly, the breaks in tPo and V;v along the surface v = 0, u ~ ° must obey 
the conditions 

- 1 - 1 -[tPo],u - 2U,u[tPO] = -2 tP2 [V;v], 

1 4G-* [V v] u - -2 U u[v v] = -4 tP2[tPo] , 
" " c 

(1.3.24') 

Now, using the explicit solution (1.3.23) for U, we shall reduce the system 
(1.3.16,17,21) to a simpler form. We shall assume that the derivatives of f(u) 
and g( v) do not vanish, so that in the region u > 0, v > ° it is possible to go 
over to the new variables f and g, and to replace the functions ~o and ~2 by the 
functions 

<POg'(v) = ~oe-U/2, <p2!'(u) = ~2e-U/2 . 

Then the system of equations (1.3.16, 17, 21) takes the form 

4G 
{V;g(f + g)},J + {V;/(f + g)},g = -;:;:<P2<PO 

"'0 / = _1 V '''2 . T , 2 ,gT 

(1.3.25) 

(1.3.26) 

From these last equations it follows that there exist potentials E and B such that 

<P2 = -e-V/2 E,J = e V/2 B,J; <po = -e-V/2 E,g = e V/2 B,g . 

Going over now to the variables f + 9 = q, f - 9 = t, the system (1.3.25,26) 
is reduced to the form 

(qV) - qV = 2Gc-4eV(B2 - B2) = 2Gc-4e-v (E2 - E2) ,q ,q ,tt ,q ,t ,t ,q , 

(eVBq) -(eVBt)t=O, (e-VE q) -(e-VEt)t=O. , ,q , , J ,q , , 

(1.3.27) 

The system of equations for E and V can be simplified substantially by 
putting 

eV = (1- e -E2)q(1 +0-2, v'2G c-2E = E(~ + 1)-1, tP = ~ +iE . 
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In this case, we obtain for ~ the equation 

( q~,q) (q~,t)_ 
~~* - 1 - ~~* - 1 t - 0 . 

,q , 

The system (1.3.27) has the t-independent particular solutions 

A2 
qeV =-- E=Atanha, a=coln(q/qo), 

cosh2 a' 

where A, co, and qo are arbitrary constants. 

(1.3.28) 

Another important particular class of exact solutions of the system (1.3.27) 
consists of self-similar solutions, which can be sought in the form 

v = V(..\) + ,In q, E = q(1+-r)/2 E(..\), B = q(I--r)/2 B("\) 

Here, is an arbitrary constant, and ..\ == t/q. 
These solutions are analyzed later (see Sect. 1.3.4). Here we simply write the 

exact solutions for, = ± 1: 

qeV = A2lcosh2(coO/2), E = Acoq(sinO)/2, 

B = A-I tanh(coO/2)(, = 1), 

E = coA tanh coO 
2 2 ' 

B = 2: q sin Ob = -1) , 

where A and CO are arbitrary constants, and -..\ = cos O. 
In the solution corresponding to the interaction of two electromagnetic waves 

having the form of a Heaviside step function, the components ~o and ~2 of the 
electromagnetic field remain constant [1.57]. Before the waves meet, their metric 
has the form 

ds2 = 2 du dv - cos2 au(dx2 + dl), u < 0, 

In the interaction region, the metric has the form 

G/~ /2 
a2 = -+ = const, 

G/~o/2 
b2 = --- = const 

c4 

ds2 = 2 du dv - cos2(au + bv) dx2 - cos2(au - bv) dy2 

Other well-known exact solutions describe the interaction of a b-like grav­
itational wave with a step-like electromagnetic or neutrino wave, or particular 
forms of interaction of neutrino waves [1.58,59]. We note that when plane waves 
interact there is a mutual focusing of the light rays. In the case in which two grav­
itational waves interact, the effect of focusing of the rays described in Sect. 1.1 
leads to the appearance of a singularity [1.54-56,60]. 
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1.3.3 Propagation of Weak Electromagnetic and Gravitational Waves 
in the Field of a Strong Electromagnetic Wave 

For short-wave perturbations of the background of a strong electromagnetic plane 
wave, the situation is quite clear. In this case, we have all those effects which 
manifest themselves when short waves propagate in a vacuum in the presence of 
external electromagnetic fields (see Sect. 1.2.4), namely. partial or total mutual 
conversion of gravitational and electromagnetic waves. rotation of the plane of 
polarization of a wave with respect to a tetrad undergoing parallel transport. con­
servation of the total flux of energy in electromagnetic and gravitational waves, 
and distortion of the background through which short waves propagate. 

In the case of plane waves, there is a particularly clear manifestation of the 
tendency, inherent in general relativity (see Sect. 1.1), for focusing of a pencil of 
isotropic geodesics without rotation: parallel isotropic geodesics passing through 
a nonlinear plane wave intersect on some surface, and rays from a momentarily 
active source which have passed through a plane wave meet at some point or 
on a space-like curve [1.27]. One might suppose that it would be possible to 
investigate perturbations near caustics on the basis of linear equations by means 
of an improved expansion with respect to the inverse frequency, as was done, for 
example, in Sect. 1.2. However, an exact treatment of the nonlinear interaction of 
two plane gravitational waves by a number of authors [1.54-56.60] indicates the 
appearance of a singularity in the region of interaction of the waves, while the 
investigation made in [1.57] applies to a particular case and does not allow us to 
say that the appearance of a singularity is atypical for the case of the nonlinear 
interaction of electromagnetic waves. 

Following [1.53], we shall show that the Einstein-Maxwell equations, lin­
earized with respect to the background of a plane electromagnetic wave with 
circular polarization, reduce to closed second-order equations for certain combi­
nations of the perturbations of the electromagnetic and gravitational fields, and 
we shall find an exact solution of these equations for the cases in which weak 
electromagnetic or gravitational waves with a backward front pass through a 
strong electromagnetic wave. 

The concept of the cosmic background radiation as a combination of plane 
electromagnetic waves with a Planck distribution of the intensity with respect to 
the frequency becomes invalid at a high temperature of the radiation. The gravita­
tional and electromagnetic radiation begin to interact with each other, and. as we 
shall show below, one electromagnetic wave passing through another is partially 
converted into a gravitational wave. In addition, owing to the weakness of the 
gravitational interaction, at a high temperature of the radiation a dominant role is 
played by quantum processes of pair production due to the nonlinear interactions 
of photons [1.61]. However, the classical gravitational effects described below 
should significantly modify the usual concepts of a radiation-dominant plasma at 
superhigh temperatures T ~ 108 K. 
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Let us write the equations for small perturbations of the gravitational and elec­
tromagnetic fields on the background of a plane electromagnetic wave. In a co­
ordinate system with the metric (1.3.2), the electromagnetic field in a monochro­
matic electromagnetic wave with frequency w can be specified by the 4-potential 
Ai(cp, 0, 0, 0), where cp = B(u)(xcoswu +ysinwu). The tetrad component ~2 of 
the electromagnetic field tensor then has the form 

(1.3.29) 

where B(u) is a real function. According to (1.3.3), the coefficient A in the 
metric (1.3.2) has the value 

G 2 2 2 A(u, x, y) = 2c4 B (u)(x + y ) (1.3.30) 

In the tetrad field (1.3.4), space-time with the metric (1.3.2) will have only the 
following nonzero characteristics: 

_ 2-3/2(A .A) _ GB2(u)( .) v - -I - X -Iy 
,x ,y 2,;2 c4 ' 

.,p4 = o*v = 2-2(A,zz - A,yy - 2iA,xy) = ° , 
G 

~22 = 2-2(A,xx + A,yy) = 2c4 B2(u) 

(1.3.31) 

(1.3.32) 

(1.3.33) 

We shall retain the same symbols, but with primes, to denote perturbations of the 
characteristics of the field. Assuming that the perturbations of all the quantities 
are small and linearizing Maxwell's equations (1.1.30,31), the Bianchi identities 
(1.1.39,40), and the definition of .,po given by (1.1.52), we obtain 

(1.3.34) 

-D.,p~ + o*.,pb = -D~bl + o~&o, Ll.,pb - o.,p~ = -D~:n + O~~l , (1.3.35) 

.,pb = Du' - ok' , 

where 

(1.3.36) 

and Tij is the energy-momentum tensor of the matter (excluding the energy­
momentum tensor of the electromagnetic field). 

After eliminating the perturbation ~~ from (1.3.34) and the perturbation .,p~ 
from (1.3.35) and making use of (1.3.36), we obtain the closed system of equa­
tions 

D~~=-J2B(u)exp(-iuw).,pb, D=2(DLl-oo*) , (1.3.37) 
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./.1 B(u)V2 G iU""'D2"" L 
0'f'0 = 4 e ~o + K, , 

c (1.3.38) 

L == D2T33 + fJ2Ttt - 2DfJT13 , 

where 0 is the d' Alembertian operator constructed from the metric (1.3.2) with 
the coefficient A determined by (1.3.30). 

If we make a Fourier transformation with respect to the variable a [see 
(1.3.2)], on which the coefficients in (1.3.37,38) do not depend, the d'Alembertian 
operator for the Fourier transforms (j(k) = .r.: exp( -ika)f(a) da) takes the 
form 

.0 2 22 EP EP -0=21k- -b (u)r k +-+-
OU ox2 oy2' (1.3.39) 

b(u) == VG/(2r!)B(u) . 

In the region in which the function B(u) is nonzero and equal to a constant, it is 
convenient to go over to new variables Da (a = 1,2) according to the relations 

(1.3.40) 

(1.3.41) 

After this, the system of equations (1.3.37,38), written for the Fourier transforms 
~b and ;j;b, decomposes into two independent equations: 

( . 0 2 2 2 4kb EP EP ) -
21k ou - b r k - 7]a ox2 + oy2 Da = K,7]a L . (1.3.42) 

We note that an analogous situation occurs in the study of wave-like fields in the 
Nordstrom-Reissner field, where, as was shown in [1.62], the linearized system 
of Einstein's and Maxwell's equations also decomposes into independent second­
order equations for certain combinations of the small perturbations of the metric 
and the components of the electromagnetic field tensor (see Chap. 4). 

In regions of space in which there is no electromagnetic wave, the function 
b(u) is equal to zero. In what follows, we shall consider the case in which the 
function b(u) is piecewise constant, i.e., b(u) = b = const for 0 < u < 1 and 
b(u) = 0 for u < 0 and u > 1. 

Interaction of a Nonlinear Electromagnetic Wave with Weak Gravitational 
and Electromagnetic Waves. Using (1.3.42), we can study the incidence of weak 
waves with arbitrary geometry on the nonlinear wave (1.3.3). In connection with 
the difficulties in solving the characteristic Goursat problem for the nonlinear 
hyperbolic system of equations written earlier in this section, we note that in 
the linearized formulation using (1.3.42) it is possible to study a larger class of 
problems for plane waves. 

We shall consider two cases. 
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Case A. Suppose that a strong electromagnetic wave with the space-time metric 
(1.3.2,30) is exposed to an incident weak gravitational wave in which the metric 
has the fonn 

ds2 = 2 du dv + c:[O(v + a) - O(v - a)]xy dv2 - dx2 - dy2, 

e = const, a = const, 

O(v) = -1 for v < 0, O(v) = +1 for v> 0 , 

where O(v) is the Heaviside function. Simple calculations give for u < 0 the 
following expression for the only nonzero tetrad components of the Weyl tensor: 

tPo = !ei[O(v + a) - B(v - a)] . 

For 0 < u < I, the weak gravitational wave propagates in the field of the strong 
electromagnetic wave. When for u > I the weak wave passes through the region 
of the nonlinear electromagnetic wave, it splits up into a weak gravitational 
wave and a weak electromagnetic wave. For u > I, these two waves propagate 
independently in the linear fonnulation. 

For u > I, the structure of these waves is described by the following exact 
solution of (1.3.42): ' 

p~ = J 1~~ eT/2Tn [exp ( - 2~/) -exp ( - 2~~/)] ~ j tP dv , (1.3.43) 
-00 

where tP = 0 for Iv - r 2C(u)1 2:: a, tP = 1 for Iv - r 2C(u)1 ::; a, C(u) = 
[2(u -1) - b-l cot(bl/2)]-l, L1 = (T/l - T/2)[cos(bl/2) - 2b(u - 1) sin(bl/2)], and 
T/l and TJ2 are related to the amplitude and frequency of the strong electromagnetic 
wave by (1.3.41). 

The perturbation of the tetrad component tP~ of the Weyl tensor for u > I is 
detennined by the equation 

tP~ = ;~ [T/2 exp ( - 2~/) -TJt exp ( _ 2~~/)] . (1.3.44) 

Case B. We assume now that a strong electromagnetic wave is exposed to a 
weak electromagnetic wave, which for u < 0 has only a single nonzero tetrad 
component 

p' = ~ ei(vwo+\Oo)[B(v - a) - B(v + a)] 
o Vi ' 

wo = const, cpo = const, a = const, A = const 

In [1.53] it was shown, using the technique of integral transfonnations, that 
a gravitational wave also appears for u > I. With IjI defined by (1.3.43) an 
exact solution of the linearized equations (1.3.42) is given in this case by the 
expressions 
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~o = ! exp{i[wo(v - r2C(u) -1) + epo]} 

[ ( 2·bl) ( 2·bl)] 
X 772 exP - ~ -TJ1exp - ~l ' (1.3.45) 

, fiG A . . [ (2ibl) ( 2ibl)] .,po = Y 7 L1 exp[lWOV + tepo] exp --;; - exp - 772 

X {iei"'Oac(v - r 2C - a) - ie-i"'Oac(v - r 2C + a) 

_ WOe<-i"'or2C)!li} . (1.3.46) 

For the solutions (1.3.43-46), the surfaces S± : 0 = v - r2C(u) ± a are 
characteristic surfaces, since gijOiSOjS = 0 on them. The gravitational and 
electromagnetic fields have breaks on these surfaces. 

In the solution (1.3.43,44) (Case A), the gravitational field has a second­
order break on the indicated surfaces, while the electromagnetic wave which 
appears is continuous. In accordance with the general theory of breaks in the 
gravitational field (see Sect. 1.2.2), the intensity of the break [.,po] satisfies the 
continuity equation Vi ([t/Jo]2g i j ojS) = o. 

When a weak electromagnetic wave is incident on a strong electromagnetic 
wave (Case B), the gravitational field has first-order breaks on the surfaces S± = 0 
(the components of the electromagnetic field tensor have discontinuities, while 
the nonzero component of the Weyl tensor has a c-function singularity). The 
structure of such solutions can be determined in accordance with the theory 
developed in Sect. 1.2. It is worth mentioning the review by Griffiths (in prepa­
ration) on the colliding plane-wave problem and new related results like the 
Nutku-Halil solution, the set of solutions by Ibanez, various families of solutions 
by Chandrasekhar and Xanthopoulos, by Ernst, Garcia and Hauser. 

1.3.4 Oscillatory Character of Solutions Near a Singularity 

For a self-similar interaction of electromagnetic waves in general relativity (due to 
the mutual conversion of electromagnetic and gravitational waves) the oscillatory 
behavior of the solutions in the vicinity of a singularity is discussed. 

In Sect. 1.3.2 we pointed out that the system (1.3.2) has the self-similar so­
lution 

H these expressions are substituted into (1.3.27), we obtain 

V"(A2 - 1) + AV' 

= 2e v [(1 - 'Ylep2/4 - (1 - 'Y)Aepep' + (A2 - l)ep'\ 

ep"(A2 - 1) + Aep' 

= ep('Y - 1)2/4 + V'«1 - 'Y)Aep/2 - (A2 - l)ep') , 

(1.3.47) 
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where the primes denote derivatives with respect to..\. We note that this system of 
equations remains unchanged if V is replaced by V + B, and ep by ep exp( - B /2). 
Therefore an arbitrary constant in the expression for V is not essential. 

We now go over to the new variable (J defined by the equation - cos (J = ..\ 
(0 < (J < 11"). Then the system (1.3.47) can be rewritten in the form 

if + 2e V [ep2(1 - ,..,i /4 + (1 - ')') cot (Jepcp - cp2] = 0, 

cp + <,y - l)2ep /4 + (')' - l)ep V(cot (J)/2 + V cp = 0 , 

where the dots indicate derivatives with respect to (J. 

(1.3.48) 

It is a remarkable fact that this system has a first integral, which describes 
the conservation of the intensity of the electromagnetic and gravitational waves 
during the process of their mutual conversion 

(1.3.49) 

By means of this integral, it is possible to reduce the order of the system (1.3.48). 
After making the substitutions 

2(1n epr = (1 - ')') cot JI, V = C{) cos X, e V/2ep(1 - ')') = C{) sin X sin JI 

the system (1.3.48) can be rewritten in the form 

2 sin (Ji<. = C{) sin X sin(2JI - (J), 

sin (J(2p, - 1 + ')') = C{) cos X[cos(2JI - (J) - cos (J] 
(1.3.50) 

If we introduce the new dependent and independent variables D == 2JI - (J 
and x == In cot(fJ /2), for')' = 0 we obtain from (1.3.50) 

-2dX/dx = C{) sinxsinD , 

-dD/dx = C{)cosX[cosD - (e2x _l)/(e2x + 1)] 

In the limit x ~ 00, (1.3.52) takes the form 

-dD /dx = C{) cos X(cos D - 1) + 2C{)e-2x cos X O(e-4x ) , 

(1.3.51) 

(1.3.52) 

in which, in the zeroth order approximation, we can neglect the terms of order 
exp(-2x). Then the solution of the asymptotic system (1.3.51,52) for ..\ ~ -1 
(or x ~ +00) has the form 

cos X = J 1 - q COS(C{)C1 X + (3), sin X sin(D /2) = C1, 

n (1 - c~) sin2(C{)C] x + (3) - c~ cos J& = __ -O...---"-_.....,,.... ___ -=-
1 - (1 - cD COS2(C{)C1 x + (3) , 

where C] and (3 are arbitrary constants of integration, with led < 1. 

(1.3.53) 
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This solution corresponds to an infinitely recurring nonlinear mutual conver­
sion of the gravitational and electromagnetic waves as the singular point A = -1 
is approached. The function V oscillates around zero with amplitude co~. 

The corrections to the leading term in (1.3.53) for A ---+ -1 are of order 
exp(-2x). 

Similarly, the nonlinear mutual conversion of gravitational and electromag­
netic waves is described asymptotically for A ---+ 1 by the equation 

cos X = )1 - cf cos[COCt X + ,8], Ct = const, ,8 = const . 

Besides the general solution in which oscillations occur for both A ---+ + 1 and 
A ---+ -1, the system (1.3.51,52) has special one-parameter solutions which 
oscillate only for A ---+ + 1 and have a nonoscillating asymptotic behavior for 
A ---+ -1, and vice versa. 

The system (1.3.47) also has exact solutions corresponding to a purely elec­
tromagnetic wave: 

'1' = const.jf'±1", V = const . 

However, these solutions cannot be interpreted as interacting waves, since in 
them either cJio or cJi2 is zero. 

We shall establish the form which the plane electromagnetic waves described 
in the interaction region by the self-similar solution must have before the inter­
action. 

The tetrad components of the bivector of the electromagnetic field corre­
sponding to the self-similar solution have the form 

cJio = e v/2 g'(v) ('f... - (1 + A)'P') 
f(u) + g(v) 2 ' 

A; _ v/2 f'(u) ('1' (1 \),) 
~2 - e f(u) + g(v) 2" + - A '1' . 

In the region before the interaction, for the wave incident from the left we 
have g(v) = Ij2 and hence A = (2f(u)-I)j(2f(u)+ 1). For this wave, cJio = M = 0 
[see (1.3.12)]. Of Einstein's equations, only (1.3.19) is not satisfied identically: 

2U,uu - U~ = ~! + 4GcJiV c4 . 

In the self-similar case, it follows from this equation that 

(1.3.54) 

In this equation, V(A) and 'P(A) must be replaced by the solutions of the 
system (1.3.47); this follows from the continuity of the functions V(A) and 'P(A) 
on the characteristic v = O. Equation (1.3.54) can be used to determine u as a 
function of A by quadratures. After inversion of the function u = U(A), we find 
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the required function f(u) = (1 + -X)/[2(1- -X)]. Similar calculations can be made 
for the wave incident from the right. 

Extensive numerical calculations carried out by L.Yu. Blazhennova-Mikulich 
have shown that the functions f(u) and g(v) decrease monotonically with in­
creasing u and v, becoming equal to zero at finite values of u and v. 

Finally, we note that the function M(u, v) is nonzero in the region of inter­
action of the waves. Knowing V, the function M must be found from (1.3.20), 
which can be written in the fonn 

2(M,qq - M,tt) + l/q2 = v:; - v:~, 
q = f(u) + g(v), 

t = f(u) - g(v) . 

In the self-similar case, this equation reduces to 

2M = V + 1 = c5 cos2 X + 1 . 

Hence, taking into account the boundary conditions M = 0 at 8 = 0 and 8 = 7r, 

we find that 
8 ~ 

M = J(8 - (1)[c5cos2 X(81) + 1] d81 - ~ J(7r - (1)[c5cos2 X(81) + 1] d81 
o 0 

1.4 Conditions on Surfaces with Strong Breaks in Theories 
of the Gravitational Field 

At the present time, in both theory and practice, complicated models are intro­
duced to describe continuous media, for which the parameters specifying the 
states of elementary volumes include, for example, the characteristics of defor­
mations, the electromagnetic field, the composition of mixtures, the structure of 
individual molecules and molecular aggregates, etc. The introduction of such 
auxiliary parameters for a medium entails the introduction of new equations, 
which have the character of kinetic equations or relations similar to equations 
of state. These equations must be added to the system of universal conservation 
laws. In order to construct models and fonnulate problems in tenns of these 
models, it is necessary to find the conditions which hold at strong breaks inside 
a region occupied by a medium and boundary conditions at the boundaries of 
this region. 

Sedov7 and representatives of his school [1.15,63-67] have developed unified 
general regular methods of deriving closed systems of equations for specific 
models and conditions on the discontinuities, using the basis variational equation 

7 In writing this section. we relied heavily on the paper by Sedov [1.15]. 
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6 J A dV + 6W* + 6W = 0 , (1.4.1) 

v. 

where A is a given Lagrange function, whose arguments are the parameters 
describing the state of a small macroscopic element of the medium and their 
derivatives with respect to the time and the coordinates. The relation of the 
basis equation (1.4.1) to Lagrange's classical variational principle and to the 
complete energy equation facilitates the construction of the Lagrange function 
and the functional 6W*. In particular, facts like this enable us to be guided by 
the methods and results of the thermodynamics of irreversible processes. 

The presence of 6W* in (1.4.1) is due to the occurrence of irreversible 
effects in the interaction of a given element of the medium with the surrounding 
elements, as is taken into account by the nonholonomic character of the volume 
integral in 6W*. A given functional 6W* which is linear in the variations of the 
parameters may contain a volume integral over l/4, an integral over the surface E 
which bounds the four-dimensional volume l/4, and surface integrals over both 
sides of the hypersurface 53 of the break, contained in l/4. The variations of the 
parameters on E and 53 in (1.4.1) are nonzero. 

The additional term 6W appears in (1.4.1) in order to compensate the cor­
responding surface integrals in 6W* and in the integrals which occur after the 
variation of the Lagrange function is integrated by parts. 

The invariant formulation of the basis equation (1.4.1) makes it possible to 
apply it to various relativistic theories of the gravitational field (see, for example, 
[1.52,68], which rely on the concept of a space with torsionS). In spite of the 
self-consistency of the general theory of relativity, the absence of reliable exper­
imental data make it impossible to ignore other theories of gravity which lead to 
the Newtonian law of universal gravitation in the nonrelativistic limit. From the 
mathematical standpoint, general relativity is the most highly developed theory 
of the gravitational field in which many exact solutions describing the proper­
ties of this field have been studied theoretically and interpreted. However, in 
the weak-field approximation, which alone is accessible to physical experiment, 
many effects of general relativity are also predicted by other theories of the 
gravitational field, in particular, by the above-mentioned. 

In Riemannian spaces, the components of the metric tensor can be regarded 
as unknown parameters characterizing the intrinsic degrees of freedom of space­
time. This raises the question of the actual selection of certain coordinate systems 
by means of various conditions and constructions, in particular, by means of 
special admissible assumptions about the functional form of the components of 
the metric tensor. 

The definition of a comoving coordinate system involves particularization of 
the points of some material or, in general, mentally defined medium. The indi-

8 Logunov and his school (see, for example. [1.69]) are developing a theory of the gravitational 
field by postulating a pseudo-Euclidean character of the physical space-time in order to define an 
energy-momentum tensor of the gravitational field. 
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vidual points of a material medium can be fixed by means of three Lagrangian 
coordinates et, e, e. The time-like coordinate line e4 coincides with the world 
line of a fluid element. The coordinate system xi of an observer in a nonsym­
metric Riemannian space can be introduced by means of purely geometrical 
constructions; for example, a unique coordinate system can be defined on some 
chart by taking the coordinates to be the four invariants of the Weyl tensor. 

A coordinate transformation xi = ji(e1, e, e ,~) represents nothing other 
than the law of motion of a given medium with respect to the coordinate system 
of the observer. H the functions 9ij(X") and 9pq(e") are known, the four functions 
ji can be found from the tensor rule of transformation of the metric coefficients: 

" 8xi 8x i 
A t 

9ij(X ) 8ep 8eq = gpq(e) . (1.4.2) 

Consequently, if equations for determining the metric of the comoving coor­
dinate system can be formulated independently of the system of the observer, the 
law of motion x' = f'(e") can be found from (1.4.2). These arguments enable us 
to understand why the law of motion follows in this case from the field equations, 
in the same way that the equations for the momentum and energy are conditions 
for compatibility of Einstein's equations. H the geometrical properties of space 
are known and simple, the equations which determine the law of motion of a 
medium may not be so simple, since they are not simple consequences of the 
metric properties of space, although these properties leave a clear imprint on the 
nature and form of these equations. 

Bearing in mind what we have said above, we now consider models in which 
A and OW* have the form 

A = A(R, gij, p,A, V" p,A, xk' K B ), x~ == 8xi /8e", 

oW* = - / MAOp,AdV , 
V4 

in which 9ij(X"), p,A(x"), xi(e") are unknown functions, p,A being thermodynam­
ical parameters characterizing the state of the medium, and K B(e") are known 
functions such as generalized physical constants. 

We shall use the notation oA for the variation of the function A at fixed 
Lagrangian coordinates, and 8A for the variation of A at fixed coordinates of 
the observer. It can be verified that these variations are related by the rule 

Op,A = 8p,A + ox"V" p,A . 

For the components of the metric tensor, the two variations are identical. The 
variation of the element of volume is 

o dV = (80n FY) + V, ox') dV . 

For the variation of the scalar curvature, we have the equations 
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{)R = - RiJ {)gij + V, Wi, Wi = (gik glJ - gij g'k)Vk {)gij 

Taking the variation in (1.4.1) on the basis of the foregoing equations, by con­
sidering the volume integral and equating the coefficients of the independent 
variations we obtain the following Euler equations: for {)gij' 

- Rij{)A/{)R + gij A/2 + {)A/{)gij - Vq B(ij)q 

- (giJ gqk _ giqgjk)Vq Vk {)A/{)R = 0 , (1.4.3) 

with 

Bijq _ ( {)A FA[q j]s ! {)A FAi jS) B 
- {)Vi p.A Bs 9 + 2 {)Vq p.A Bsg P. (1.4.4) 

for 6x', 

Vs (:~x;) + ::;V' x; + {)a:B V,KB+MAV,p.A=O (1.4.5) 

for 6p.A, 

{)A {)A 
{)p.A - V, {)V, p.A = MA (1.4.6) 

In (1.4.4) we have introduced the notation F;: for the corresponding products 
of Kronecker delta symbols 6:, depending on the structure of the indices A in 
the tensor components of p.A: 

"("'7 A _ {)p.A FAJrs B 
v, p. = {)xi + Bs iJP. 

The relations (1.4.3) are generalized equations for the gravitational field. If 
the function A depends nonlinearly on R, these equations contain fourth-order 
derivatives of the components of the metric tensor. 

After taking the variation of A and integrating by parts, we obtain for 6W an 
integral which extends over the three-dimensional hypersurface E which bounds 
the four-dimensional volume V4, and also over each of the two sides of the 
hypersurface S3 of the strong break. The required relations on the hypersurface 
of the strong break can be obtained by taking into account the arbitrariness of 
the volume V4 and of the continuous (on S3) functions 6x i and variations {)gij, 
{)({)gij/{)n), 6p.A, and 6xi. In particular, 6W is given by the expression 

6W = - J {[ B('J)k + q,kj/V, (~~)] {)gij - ~~ qikj/V, ({)gij) 

E+st 

{)A A ( k {)A k {)A A) i} . 
+ {)(Vk p.A) 6p. + A6i + {)x~ X S - {)Vk JlA V, P. 6x nk du, 

q'kJI = g,jgkl - g,kgjl . (1.4.7) 



1.4 Conditions on Surfaces with Stroog Breaks in Theories of the Gravitational Field 63 

Since 6p.A and 6x i in (1.4.7) are arbitrary, we have 

[N!nk\/Q] = 0, [Plnkyg] = 0 , 

where N! denotes the coefficient of 6p.A and pi denotes the coefficient of 
6x i in the surface integral for 6W. The tensor pl is the energy-momentum 
tensor of the continuous medium. The square brackets indicate the difference 
between the corresponding quantities on the two sides of the surface of the 
break. The continuity condition for N~nk.;g at the break is a new condition 
which supplements the usual continuity conditions for the flux of energy and 
momentum at the break. The coefficients of 6p.A and b i are also continuous at 
a break in the absence of a gravitational field in the special theory of relativity. 

An exposition of the main results obtained by applying the basis variational 
equation to various models of continuous media with no gravitational field, in­
cluding both new models and those that are already used in theory and practice, 
can be found in the papers and textbook by Sedov [1.15,65--67,70,71]. Here, 
following [1.15], we shall confine ourselves to a discussion of the new conditions 
on the discontinuities in the gravitational field which follow from the requirement 
that the variations ogaj and their derivatives 8(ogij)jon along the normal to the 
surface of the break must be continuous. 

For this purpose, we separate explicitly the normal derivative of Ogij in the 
second term of (1.4.7) and make use of a special coordinate system, assuming 
that the normal to the surface of the break is space-like. We take the coordinate 
line xl along the normal to the surface S3, and choose the remaining coordinate 
lines on the surface S3. In such a coordinate system, the quadratic form at points 
of S3 reduces to 

(1.4.8) 

where the coordinates x2, x3, x4 are parameters on the surface S3. The derivative 
along the normal to the surface is given by 

of 1 of 
on = J-gn oxl . 

From the condition that the coefficient of Ogij is continuous it follows that 

(1.4.9) 

where the components of the tensor Tijk in the coordinate system defined by 
(1.4.8) have the form 

T,l _ BI 1 Otp ogOtP oA 
- 11 - 11 + 2g oxl oR ' 

_TI"YI = _T"Y11 = BI"YI _ g"YP~ (OA gl1) 
oxP oR ' 

(1.4.10) 

TOtP _ BOtP Otp 0 oA 1 oA ogOtP 
- I - I + 9 oxl oR - 2 oR oxl (a,/3 = 2,3,4) 
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In these expressions, the tensor B,jk is assumed to be symmetrized with respect 
to the first and second indices. 

From the condition that the normal derivative of the variation agij is contin­
uous it follows that 

(1.4.11) 

Equations (1.4.9,11) show that at the discontinuities certain conditions must 
be imposed on the components of the metric tensor and their successive deriva­
tives along the normal. On the surface S3 the derivatives axi / ae have breaks 
in the general case, so that the conditions (1.4.9,11) depend on the coordinate 
systems of the observer on both sides of the surface S3. 

Recently, Sedov [1.67] gave relations between the algebraic properties of the 
Weyl tensor and the dynamical properties of the gravitational field. 
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Observable Manifestations of the X-ray Source Cygnus X-t. Sources of x­
ray emission in our galaxy were discovered in June 1962 by means of a high 
altitude rocket containing special equipment for detecting the flux of x rays at 
a wavelength of 3A [2.1]. A systematic study of x-ray sources was begun after 
the launch on 12 December 1970 of the artificial satellite Uhuru, which carried 
an x-ray telescope. The third Uhuru catalog lists 161 discrete x-ray sources, 
starting with the brightest source Sco X-I in the constellation Scorpius, with 
intensity 3 x 10-7 erg/cm2, and ending with sources 104 times less bright. The 
luminosities of the x-ray sources lie in the range HpS_1()38 erg/s [2.2]. After 
careful analysis of the data, it was found that only the radiation from the x-ray 
source Cyg X-I in the constellation Cygnus had characteristics consistent with 
theoretical ideas about "black holes". The radiation from Cygnus X-I exhibits 
no periodicity at any time scale between 0.1 s and several days. It was established 
that fluctuations in the radiation occur both at relatively low energies (2-5 ke V) 
and at high energies (5-12keV), but the typical pulsations are stronger at high 
energies. What was most intriguing was the existence of bursts on the scale of 
milliseconds [2.2,3]. This observed variability of the radiation indicates that the 
region from which it emanates is compact (an upper limit on the characteristic 
size of this region is obtained as the product of a millisecond and the speed of 
light, i.e., it is less than 300 km). 

Extensive data from both optical and radio observations of the object Cyg 
X-I have now been collected. It is interesting to note that the emission from 
Cygnus X-I in the range of radio waves was not detected until its discovery 
at the end of March 1971 [2.2], when it was established that the x-ray emission 
with its accompanying radio emission was subject to variation; to be specific, 
the flux of energy at relatively low frequencies became four times weaker, while 
in the frequency range 10-20keV it rose by a factor of two. The disappearance 
of the low-frequency component of the radiation is evidently due to a decrease 
of the plasma density. 

The source Cyg X-I has been identified with the optical star HDE 226868, 
which, judging by its emission spectrum, is a hot star with a surface temperature 
of about 25000 K. The period of this binary system is 5.6 days. As is well 
known, from spectral observations of a single component of a binary system 
it is possible to obtain only the so-called mass function f(Mx), whose value 
for Cyg X-I was found to be approximately 0.2M0. [We recall that f(Mx) = 
Mi sin3 'Y /(Mo + MX)2, where Mx is the mass of the x-ray source, Mo is the 
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mass of the optical star, and the angle 7 is the inclination of the plane of the 
orbital motion of the binary star with respect to the line of sight.] Judging by its 
surface temperature, the optical star HDE 226868 must be a blue supergiant and 
must have mass (20-30)M0 . Calculations of Mx at a fixed value of Mo give 
a decrease of Mx with increasing angle 7. However, even at moderate angles 
7'" 60° with Mo '" lOM0 a value Mx '" 4M0 is obtained for the mass of the 
x-ray source; if 7 = 90° and Mo = lOM0 , a value somewhat greater than three 
solar masses is obtained for all Mx. 

Thus, the proof that the source Cygnus X -I has a mass greater than three 
solar masses is based on the assertion that the optical companion is a typical 
blue supergiant with a mass exceeding ten solar masses. IT it is assumed that a 
supergiant with mass lOM0 is situated at a distance 0.5 kpc from the Earth, its 
luminosity will correspond to the observed luminosity of the star HDE 226868. 
However, the distance to this star, measured on the basis of the reddening of the 
emission in the dust near the galactic plane, is approximately 1.5-2.5 kpc; i.e., 
the star HDE 226868 must be a supergiant with even greater mass Mo '" 20M0 . 

Thus, the occurrence of the millisecond variations in the radiation from 
Cygnus X-I leaves no doubt that it is a compact object. The mass of this 
star cannot be less than three solar masses, and its emission in the optical range 
is weak [2.4]. What can we conclude from this? We shall describe qualitatively 
the contemporary ideas about the evolution of stars with large mass [2.5-10]. 

Stages in the Evolution of Stars with Large Mass. Numerous observations 
indicate that all young clusters of stars in which new stars are still being fonned 
are situated in extended clouds of gas and dust [2.6]. It is therefore highly prob­
able that the stars are fonned as a result of gravitational condensation of the gas 
and dust, which undergo intense cooling during this process. We note also that 
photographs of these regions clearly reveal a flaky, irregular structure. Owing to 
the release of gravitational energy during the rapid contraction, a protostar flares 
up and becomes opaque for radiation. The energy of the contraction cannot be 
transmitted by radiation from the interior of opaque stars; inside a star, there are 
turbulent eddies which carry heat from the warmer interior regions to the cooler 
exterior regions. As a star contracts and its temperature rises, the gas becomes 
completely ionized, and the convective transport of energy is replaced by radia­
tive transport. The larger the mass of the star, the earlier the radiative mechanism 
of energy transport begins to operate. In the first stage of their evolution, mas­
sive protostars fall in the same region of the mass-luminosity diagram as the red 
giants. However, the number of protostars in this region of the diagram is small 
in comparison with the number of red giants, since the characteristic time during 
which the protostars remain in this region is comparatively short. 

As a protostar continues to contract and its temperature rises to eight mil­
lion degrees, thennonuclear reactions which burn hydrogen into helium flare up 
within the body of the star (proton-proton reactions in stars with small mass, 
and reactions of the carbon-nitrogen cycle in massive stars). Stars in this period 
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of evolution lie on the main sequence in the Hertzsprung-Russell diagram. The 
hydrogen burns more quickly in massive stars; we can say that the ratio of the 
times for burning of the hydrogen within two stars is equal to the inverse ratio of 
the squares of their masses. For stars whose mass is not very large, the character­
istic burning time can even exceed the lifetime of the universe [(1-2) x 1010 yr]. 
Therefore, even in the "oldest" stars with mass less than that of the Sun the 
hydrogen has not yet had time to burn out, while in stars with mass equal to 15 
solar masses the hydrogen burns out after "only" ten million years. 

As the hydrogen in a star burns out, an isothennal helium core is fonned, 
this being surrounded by a thin layer of hot hydrogen. The star expands, the 
temperature of its outer layers drops, the matter of the star becomes more opaque, 
and convective eddies appear in its outer layers. The star leaves the main sequence 
of the Hertzsprung-RusSell diagram and becomes a red giant. 

As the mass of the helium in the central core increases, the core contracts 
more and more, and its temperature rises. When the temperature crosses the 
threshold value at which the triple alpha process sets in, burning of helium and 
production of carbon begin. The concentration of mass then begins to rise more 
sharply near the center of the star, its radius expands even more, and it becomes a 
yellow or red supergiant. As the helium burns out in the central core of the star, 
the abundance of carbon, nitrogen, and oxygen rises. The neutrino luminosity 
begins to carry away an increasingly significant fraction of the thennonuclear 
energy, and the processes in the star become explosive. 

Further reactions involving production of increasingly heavy elements up to 
iron nuclei can take place only in stars with sufficiently large mass. In the case 
of the Sun, the reactions taking place at the end of its evolution will involve 
helium, and its core will then consist primarily of carbon and nitrogen. Having 
been deprived of thennonuclear sources of energy, the Sun will contract, after 
passing through the stage of a red giant, since the strong radiation losses lead to 
an effective adiabatic index less than 4/3 in the equation of state of the matterl . 

1 Stable equilibrium of a star is impossible wilh an adiabatic index 'Y < 4/3. In fact, lhe total energy 
ofa star is equal to lhe sumoflhe internal and gravitational energies. E = Iv q(u-Gm(r)/r) dV. 
where u is lhe internal energy density. m(r) is lhe mass inside a sphere of radius r. and dV is lhe 
element of volume. For a state to be stable. lhe total energy at equilibrium must be a minimum. 
H we imagine lhat lhe star is displaced from equilibrium and expand its energy up to lhe termS 

of second order in the increments of lhe parameters. we obtain for lhe energy increment E' lhe 
expression 

E = edV ---+-V +-- - -2- - , '! {( P dV' Gm ') 'Y P (dVI)2 Gm (VI )2} 
e dV 3rV 2 e dV r 3V 

v 

where V'is the Lagrangian increment of lhe volume V. The linear termS in lhe expression for 
E' drop out, since lhe ground state is lhe equilibrium state. For homogeneous perturbations of 
lhe form V' = vV. where v = canst, lhe second variation of E. equal to E'. takes me form 
E' = (v2/2) I ('Y - 4/3)p dV if we make use of lhe viriallheorem. The stability condition implies 
lhat E' must be positive, i.e., lhe adiabatic index 'Y must be greater lhan 4/3 over most of lhe 
volume in which lhe pressure is not small. 
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In stars with mass equal to the mass of the Sun, the collapse is stopped by 
the pressure of the degenerate electron gas, and such a star becomes frozen in 
the state of a white dwarf. In stars with mass greater than that of the Sun, it 
is necessary to take into account the neutrino losses more accurately than at 
present. Nevertheless, on the basis of several calculations of the compression 
and explosion of stars, the following picture of the subsequent evolution of very 
massive stars emerges. 

Inside a massive star, an iron core is formed, and this is surrounded by layers 
containing more light elements and fewer heavy elements as the periphery of 
the star is approached. Such a star therefore contains a rather large quantity of 
carbon and oxygen, as well as ionized hydrogen in the outer layers. After the 
formation of the iron core, the effective adiabatic index in the equation of state 
of the matter, averaged over the star, becomes less than 4/3. This leads to the 
onset of a catastrophic contraction of the star, during which a strong shock wave 
is formed. The temperature beyond the front of the wave rises sharply, and there 
is a nuclear detonation of the unburned elements, especially the oxygen. The 
star flares up as a supernova and discards its shell, in particular, as a result of 
absorption of the neutrino radiation in the shell. As it expands, the shell of the 
supernova becomes involved in the motion of the interstellar gas. At the initial 
stage of the expansion, the shell moves with speed (3-6) x HP km/s, which 
is much greater than the speed of sound. Calculations show that the radiative 
energy losses of the gas are large when its temperature is about lOS degrees. At 
higher and lower temperatures, the radiation losses can be neglected. In these 
cases, the well-known strong-explosion solution of Sedov [2.11] can be used to 
describe the discharge of the interstellar gas. By means of a rational choice of 
the initial energy of the explosion and the density of the interstellar medium, it 
is possible to bring this solution into agreement with the observed parameters of 
the remnants of supernova explosions, such as those of the Crab Nebula [2.12]. 

When a star contracts, its angular speed increases sharply. In this connection, 
neutron stars rotate with a large angular speed. 

After discarding its shell, a star with mass up to 4M0 becomes either a 
neutron star or a black hole. In the case of a star with mass between 4M0 and 
15M0 , the explosion caused by the detonation of the oxygen is so strong that an 
appreciable fraction of the mass of the star is dispersed. Stars with even larger 
masses (from 15 to 40 solar masses) collapse so rapidly that the detonation does 
not have time to take effect. Such stars do not manage to discard their shells and 
"lose weight" in time to avoid the fate of being buried in a black hole. 

The small dimensions of the source Cyg X-I and its large mass for a small 
optical luminosity can be explained most naturally by the assumption that the 
x-ray source Cygnus X-I is a collapsed star which has become frozen for an 
observer at the pseudo-Euclidean infinity at its Schwarzschild radius. 

Some authors (see the references in the reviews of [2.8,13]) assume that 
radiation can be generated by a strong magnetic field between two normal stars, 
which is frozen into the gas and heats it strongly as a result of magnetohydro-
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dynamic turbulence. This picture is strengthened by the analogy with the solar 
wind, which "extracts" a magnetic field from the Sun [2.14,15]. 

A model of disk accretion of gas onto a black hole in the nonrelativistic 
approximation was proposed by Sunjaev and Shakura [2.8] and by Pringle and 
Rees [2.16], and has been studied by many other authors [2.17-19f. 

The reason for the possible appearance of a disk in the case of Cygnus X-I 
is the same as for ordinary close binary systems [2.20]. The blue supergiant HDE 
226868, the companion of Cyg X-I, is a highly inflated star, which completely 
fills its Roche lobe. It is easier for the stellar wind from this star to overcome the 
force of gravity in the region of the inner Lagrange point, where the gas stream 
is picked up by the gravitational field of the black hole. Owing to the orbital 
rotation of the binary system, the gas stream does not fall to the center of the 
black hole, but spirals around it. This leads to the fonnation of a disk, in which 
the particles move in practically circular orbits. Because of turbulent friction, 
the particles lose angular momentum and slip into orbits closer and closer to the 
center. The turbulent viscosity leads to strong heating of the gas, which, in fact, 
had a temperature of 25 000 K at the surface of the supergiant. It can be assumed 
that all the thennal energy from the turbulent friction and Compton scattering in 
the inner regions of the disk is radiated. 

The plasma currents attain the greatest speeds in the inner regions of the disk, 
whose dimensions are of the order of 200 km and from which about 80 % of the 
total radiation is emitted. 

Owing to the turbulent friction, the magnetized plasma in the inner regions 
is quite capable of being heated to a temperature of between 5 and 500 million 
degrees. The observed x-ray spectrum corresponds to just this range of temper­
atures. 

The foregoing picture of the turbulent motion of hot gas inside a disk can 
in principle lead to the observed fluctuations in the emission on any time scale 
(from several milliseconds to several days). 

Owing to the thennal instability, hot spots appear on the disk, which rotate 
in circular Kepler orbits. The directional character of the x-ray emission from 
the hot spots can be explained by the Compton emission mechanism and by the 
gravitational focusing effect of a black hole. Radiation from hot spots moving 
with relativistic speeds at sufficiently small radii is subject to a strong Doppler 
shift. Therefore the x-ray emission from the hot spots should occur in pulses, 
with a period between the pulses equal to the period of rotation of a spot on the 
disk around the black hole [2.21]. 

In the general case, a star which has exhausted its nuclear fuel and, having a 
supercritical mass, is doomed to end its evolutionary path in the state of a black 
hole may be charged. Mechanisms by which a star surrounded by a hot plasma 
can acquire a charge were proposed in [2.22-25]. Electrostatic fields can appear 

2 The semiempirical theory of disk accretion rests on observations and experiment, since the viscosity 
of a turbulent magnetized plasma has not yet been calculated by means of a consistent theory. 
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in stars as a result of polarization of a static plasma in the gravitational field 
[2.26]. 

It has been shown [2.27] that the production of elecb'On-posib'On pairs in 
strong elecb'Ostatic fields has the consequence, according to Schwinger's formula, 
that the charge of a black hole cannot exceed (jl M 2m;/(elic). Nevertheless, the 
existence of even a small charge in a black hole can lead to the appearance of 
new effects which qualitatively alter the processes of collapse and of emission 
and propagation of waves in the immediate vicinity of the black hole. 

The plausible physical arguments outlined above are aimed at giving an ele­
ment of realism to the geometrical objects studied in this chapter, which serves 
as an introduction to the theory of weakly asymptotically simple manifolds. In 
Sect. 2.1 we introduce the basic definitions and give an account of some general 
theorems. In Sect. 2.2 we give the elementary facts from the theory of Lie groups 
and the theory of exterior forms on manifolds which are needed to read Sect. 2.3. 
In Sect. 2.3 we discuss theorems on the properties of stationary and static weakly 
asymptotically simple manifolds of general relativity (the theorems of Carter, 
Hawking, Israel, Lichnerowitz, Papapeb'OU, and Robinson). In Sect. 2.4 we ex­
amine a formal analogy between the properties of a black hole and a certain 
thermodynamic system. Detailed discussions of the physical properties of black 
holes can be found in the fundamental monographs by ChandrasekluJr [1.72], 
Gal'tsov [1.73] and Novikov and Frolov [1.74]. 

2.1 Asymptotically Flat Gravitational Fields 

In this chapter, we shall study space-time manifolds in the theory of relativ­
ity which have a pseudo-Euclidean structure far from the sources, in other 
words, manifolds which are asymptotically flat. With increasing distance from 
the sources, the scale of variation of the perturbations caused by nonstationarity 
of the sources becomes smaller than the scale of variation of the background, 
which tends to become flat quite rapidly. Therefore we can speak of gravitational 
waves emitted by a bounded material system and impose the condition that there 
are no convergent waves at infinity. 

For asymptotically flat gravitational fields, we have the situation described 
in Sect. 1.2. Consequently, far from the sources of the perturbation, the Weyl 
tensor of the perturbed gravitational field has the algebraic structure of a tensor 
of Peb'Ov type N. Sachs [2.28] discovered the property of increasing degree of 
algebraic degeneracy of the Weyl tensor for waves in asymptotically flat spaces 
with increasing distance from the sources. In particular, he established that with 
increasing distance from the sources along any isob'Opic geodesic £, the Weyl 
tensor W has the asymptotic structure 

N III II I I' 
W=-+-+-+-+-

r r2 r3 r 4 r S ' 
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where r is the affine parameter along the geodesic C, measured in the direction 
from the region of the perturbations, and N, III, II, and I are Weyl tensors of 
the corresponding Petrov types, which can be reduced to the canonical form in 
a null tetrad, one of whose real isotropic vectors is directed along the tangent to 
C. For Weyl tensors of Petrov types II, TIl, and N, there is a degenerate principal 
direction (see Sect. 1.1) along the tangent to C. The Weyl tensor I' has principal 
directions not coincident with the tangent to C. The mass and angular momentum 
of a material system in asymptotically flat fields can be found by investigating 
the asymptotic behavior of the gravitational field far from the system. The loss 
of mass or energy of the system can be determined from the flux of energy in 
gravitational waves which propagate along isotropic geodesics at the pseudo­
Euclidean infinity. 

Penrose proposed a geometric definition of the pseudo-Euclidean infinity as 
the smooth conformal boundary of the manifold M4 formed by the "initial" and 
"final" points of each isotropic geodesic of the manifold M4. 

We shall explain the concept of a conformal boundary (which makes it possi­
ble to study infinity locally, as it were, without recourse to awkward asymptotic 
transitions) for the example of Minkowski space [2.29]. If we go over from the 
system of spherical coordinates r, (), <p, t to the coordinates p, q, (), <p, where 
tan p = ct + r, tan q = ct - r, the metric takes the form 

ds2 = cdt2 - dr2 - r2(d(}2 + sin2 () d<p2) = (1 + tan2 p)(1 + tan2 q) ds2, 

ds2 == dp dq - sin2(p - q)(d(}2 + sin2 () d<p2)/4 . 

The points of Minkowski space in the space of the coordinates p, q, (), <p form 
a finite domain -1[" /2 ~ q ~ p ~ 1["/2. The metric ds2 is completely regular on 
the conformal boundary p = 1[" /2, q = -1["/2, which consists of isotropic hyper­
surfaces. Each isotropic geodesic in Minkowski space begins on the boundary 
q = -1["/2 (of the isotropic infinity of the past, 8-) and ends on the boundary 
p = 1["/2 (of the isotropic infinity of the future, 8+). 

The manifold M4 with the metric ds2 is said to be asymptotically simple if 
the following conditions hold: 

1) M4 can be embedded in M4 as a manifold with the boundary 8M4; 
2) there exists on M4 a smooth pseudo-Riemannian metric ds2 such that the 

metric ds2 is conformal to the metric ds2, i.e., ds2 = (12ds2; 
3) on the boundary 8M4 we have (1 = 0, d{1 f 0; 
4) each isotropic geodesic begins and ends on the boundary 8M4; 
5) near 8M4, Einstein's vacuum equations Rij = 0 hold. 

Under these conditions, the boundary 8M4 is an isotropic hypersurface in the 
manifold M4, since the scalar curvatures R and R constructed from the metrics 
9ij and 9ij are related by the equation 

{12 R = R - 6{1<gikVi V k m + 3gik {1,i{1,k 
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Near 8M4, we have R = 0 according to the last condition. Therefore, in passing 
to the limit with Q -t 0, we obtain for Q an eikonal equation in the metric gij 

on the boundary 8M4. Asymptotically simple spaces are suitable for formulating 
the Cauchy problem, since they admit a global Cauchy hypersurface and are 
topologically equivalent to a Euclidean space. The boundary 8M4 consists of 
two isotropic surfaces 8+ and 8-, each of which has the topology of the product 
of a sphere and a line [2.29]. 

In order to study manifolds with a nontrivial topology, we must weaken the 
requirements (1-5). A manifold M4 is said to be asymptotically simple in the weak 
sense if there exists an asymptotically simple manifold M~ whose neighborhoods 
8+ and 8- are isometric with the analogous neighborhoods of M4. 

We recall that for a given point p we have adopted the notation T(P) and 
I-(P) (see the end of Sect. 1.2.1) for the sets of points of the manifold M4 which 
can be connected to the point p by time-like or isotropic curves directed from 
p into the future or into the past, respectively. Then I-(8+) is the set of points 
about which an observer at the pseudo-Euclidean infinity 8+ can in principle 
acquire any information, and I+(8-) is the set of points which can be reached 
by a signal from a distant observer. 

The boundary of the set I- (8+), if it is not empty, is called the event horizon 
H+ == 8[I-(8+)]. 

I) Let £ be a space-like surface, with no boundary, in a manifold which 
is asymptotically simple in the weak sense. The Cauchy region D+(£) for the 
surface £ is defined as the set of points for which each non-space-like curve 
directed into the past necessarily intersects the surface £ [2.29,30]. 

For manifolds which are asymptotically simple in the weak sense, we also 
assume the validity of the principle of strong asymptotic predictability: 

1) One of the boundaries of the Cauchy region D+(£) coincides with the 
pseudo-Euclidean boundary 8+. 

2) The evolution of the events in the neighborhood of the horizon can be 
predicted by means of Cauchy data on £, for which it is necessary that 

It can be shown [2.30] that for an arbitrary space-like surface £ with no 
boundary it is possible to construct a family of space-like surfaces £(r) home­
omorphic to £ and covering the region D+(£), with the following properties: a) 
the union of all £(r) (£(0) = £, 0 ~ r < 00) is identical to the region D+(£); b) 
the surface £(r2) lies in the future of the surface £(rl), i.e., £(~) c I+(£(rl» 
for r2 > rl; c) for each r the intersection of £(r) with the pseudo-Euclidean 
boundary 8+ has the topology of a space-like sphere, and the sphere £(~) n 8+ 
lies strictly in the future of the sphere £(TI) n s+ for ~ > TI. 

ff there exists a nonempty horizon H+, the surfaces £( r) will intersect H+ on 
compact two-dimensional space-like surfaces L(r), which represent the bound-
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aries of black holes. The area of a connected component of L( T) is called the 
surface area of a black hole. 

The most important property of a black hole is that its surface area cannot 
decrease with time. To prove this, it is sufficient to show that the expansion 
parameter I! of the isotropic geodesics of the horizon H+ is less than zero for 
all H+. IT in some neighborhood U C H+ the parameter I! were positive, then 
as the affine parameter of the isotropic geodesics of the horizon increases, the 
geodesics would go from the horizon into the interior of the black hole (see 
Sect. 1.2.1: property C of the isotropic geodesics). On the other hand, for I! > 0 
in U C H+ in the neighborhood of the horizon it would be possible to find a 
two-dimensional surface E such that the parameter (! is positive in both families 
of isotropic geodesics passing through E. In that case, however, the isotropic 
geodesics orthogonal to E could not remain on aZ+(E) (the boundary of the 
future set for E) for all values of the affine parameter (property C of the isotropic 
geodesics). 

An event horizon is formed during the process of collapse of a sufficiently 
compact mass, but not for any topology of space-time. In spatially compact mod­
els (for example, models of closed Friedman universes), the abundance of matter 
is sufficient to focus any congruence of isotropic geodesics without rotation 
[2.30]. 

II) We consider now the topology of a two-dimensional compact region with 
zero expansion of the isotropic geodesics (of an apparent event horizon). 

For a certain time after the sources flare up, on a space-like, connected, 
compact, orientable, two-dimensional surface E there exists an outward light 
wave front as well as an inward wave front. 

The corresponding two characteristic surfaces are envelopes of the light cones 
constructed at each point of E. Let Ut and U2 be the "outer" and "inner" char­
acteristic surfaces, respectively. Following [2.30], we shall now establish the 
topological structure of the surface E on which the expansion parameter (! of 
the "outer" characteristic Ut vanishes. Such surfaces E (more precisely, their en­
velopes) are called apparent event horizons. They lie inside the "true" horizons 
H+ and coincide with the latter only in stationary fields. 

We shall assume that for a continuous fibration of some neighborhood of 
Ut by means of a family of isotropic surfaces {u} for surfaces lying outside Ut 

(u - Ut > 0) the optical parameter has a value (! < 0 (i.e., the surfaces expand), 
while for surfaces inside Ut (u - Ut < 0) it has a value (! > O. Then d(!/dw < 0, 
where w is any space-like direction orthogonal to E (the exterior normal). 

The set of space-like directions orthogonal to E at some point Q E E forms 
a two-dimensional vector tangent subspace spanned by 1 and n, where 1 is an 
isotropic vector at the point Q tangential to Ut (Ii = [Vi Ut), and n is an isotropic 
vector orthogonal to E such that 1 . n = 1. 

Suppose that the vectors 1 undergo parallel transport along themselves: 
DI = O. Different assignments of the function f on the compact manifold E 
correspond to different space-like fields of normals w = (1- n)/V2 when the 
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two-dimensional surfaces E are embedded in three-dimensional space-like hy­
persurfaces. 

We shall assume that a null tetrad can undergo parallel transport along 
isotropic geodesics on the characteristic Ul, i.e., Dmi = Dni = 0 for i = 1,2,3,4. 
By means of the Newman-Penrose equations, we shall find an expression for 
de/dw = (De - Lle)/v'2. To do this, we write down the equations (1.1.55,60) 
from the formalism of null tetrads, taking into account the fact that 7r = c: = k = 0 
and e = 0 at the points of E: 

cioo + aa* = De, 
'1/12 - R/12 + aA + rr* - (h* + f3* - a)r = -Lle 

We note that the operator h* + f3* - a has the form of a divergence, 

(h* + f3* - a)'I/1 = V'A (m*A'I/1), A = 1,2 , 

(2.1.1) 

where the covariant differentiation is taken in the sense of the interior geometry 
on the two-dimensional surface E. 

From (2.1.1) we have 

Vi de = cioo + aa* + rr* - (h* + f3* - a)r + '1/12 - R + a A 
dw 12 

(2.1.2) 

Let us consider the equation which follows from the Newman-Penrose equa­
tions (1.1.56,65), 

2'1/12 - 2ciu + R/12 = 2«h* + f3* - a)f3 - (h + f3 - a*)a - a A) 

= V' A [m*A(r + hln f) - mA(r* + h* In f)] 

- K - 2aA , (2.1.3) 

where the term in the square brackets is purely imaginary and is a divergence 
term, and K is the Gaussian curvature of the two-dimensional surface, 

-K == (h + f3 - a*)(f3* - a) + (h* + f3* - a)(f3 - a*) 

= VA [mAVB m*B + m*AVB mB] . 

Equation (2.1.3) provides an embedding of the two-dimensional surface E in a 
pseudo-Riemannian manifold M4 , i.e., a connection between the interior geom­
etry on E and the "exterior" geometry on M4. 

Substituting the value of '1/12 + a A from (2.1.3) into (2.1.2), we obtain 

Vi de/dw = cioo + aa* + rr* + VA (BA /2) + ciu - R/8 - K/2. (2.1.4) 

Here the continuous vector field B A on the manifold E is defined, according to 
(2.1.2), as BA = niVA Ii. 

Let us integrate (2.1.4) over the surface E. Then the left-hand side of (2.1.4) 
will be negative, the first three terms on the right-hand side will be positive, and 
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the fourth tenn will vanish after integration over the surface. The sum 4111 - RI8 
in an arbitrary orthononnalized tetrad e], e2, e3, e4 will be equal to 

where the coordinate vectors e2 and e3 are tangential to E. Under Hawking's 
so-called energy dominance condition ~ > ITII, the sum 4111 - RI8 will always 
be positive [2.31]. 

We now make use of the well-known theorem [2.32] which asserts that every 
compact, orientable, connected, two-dimensional manifold E with no boundary 
is homeomorphic to a sphere with n handles. 

The Euler characteristic of a manifold E homeomorphic to a sphere with n 
handles is proportional to the integral of the Gaussian curvature Kover E: 

J KdE=47r(1-n) . 
E 

(2.1.5) 

Therefore the integral of the last term in (2.1.4) over E is negative only for 
a sphere (n = 0); for a torus (n = 1) and for spheres with larger numbers of 
handles, this integral is non-negative. 

Thus, for n ~ 1 we arrive at a contradiction, since the integral of the left-hand 
side of (2.1.4) is negative, while the integral of the right-hand side is positive. 
The only possible topological form for a compact orientable two-dimensional 
surface E (inside which e > 0, while e = 0 on the surface E itself) is a sphere. 

ill) We consider now a two-dimensional compact space-like surface E on 
which both of the families of isotropic geodesics lying on isotropic hypersurfaces 
passing through E have a negative rate of expansion, i.e., a parameter value 
e > O. The existence of such trapping surfaces E is, as was discovered by 
Penrose [2.29], an indication that "something unpleasant" will happen in the 
subsequent history of this region. 

In particular, we shall show that the following requirements on space-time 
are incompatible. 

1) There exists a noncompact global Cauchy hypersurface £ which any time­
like geodesic intersects once and only once. 

2) There exists a compact trapping surface E in the Cauchy region D+(£): 
E C D+(£). 

3) The property of focusing of isotropic geodesics with zero rotation holds. 
4) Each isotropic geodesic in M4 can be extended into the future up to an 

arbitrarily large value of the affine parameter. 

By virtue of assumption 4, the future set I+(E) has a boundary lJI+(E) with 
the following properties: a) no two points of 8I+(E) can be connected by a 
time-like curve; b) the boundary lJI+(E) is a three-dimensional closed edge-free 
manifold embedded in M4 [2.29]. Such a manifold is said to be semi-space-like. 
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Both isotropic hypersurfaces passing through E contain focused nonnal fam­
ilies of isotropic geodesics. Therefore on each light ray emitted orthogonally to E 
a focal point is fonned for a bounded variation of the affine parameter. Owing to 
the compactness of E, the semi-space-like set oI+(E) must possess a boundary, 
as is most readily seen by mapping it onto the Cauchy surface C by means of 
an arbitrary 'family of time-like curves intersecting oI+(E) only once. Since C 
is noncompact (assumption 1), the image of the compact manifold oI+(E) will 
possess a boundary in C. This contradicts property (b) of the boundary oI+(E) 
of the future set. 

Thus, when a trapping surface is fonned in space-time, the subsequent devel­
opment leads to either a Cauchy horizon3 or infinite limits for certain invariants 
of the curvature tensor. 

2.2 Basic Elements of the Theory of Lie Groups 
and Exterior Forms 

2.2.1 The Concept of Lie Groups 

Let M4 be a sufficiently smooth differentiable 4-dimensional manifold. We say 
that an N-parameter Lie group G N acts in the manifold M4 if the manifold admits 
motions in itself (automorphisms) joining points lying on transitivity surfaces: 
y' = fi(x k , al, ... , aN), where al, a2 ... , aN are parameters of the group. A 
set of continuous transfonnations y = f(x, a) fonns a group if and only if they 
satisfy the following conditions: 

a) there exists an identity transfonnation a = e: xi = f'(x k , e); 
b) the transformation x = <p(y, a) which is the inverse of a given transfonna­

tion y = f(x, a) belongs to the group [in other words, there must exist a set of 
parameters bl, ... , bN in terms of which the transfonnation x = <p(y, a) can be 
written in the fonn x = f(y, b)]; 

c) the laws of composition and associativity hold, which means that there 
must exist a set of parameters q, ... , eN, e = (a, b), such that 

z = f(j(x, a), b) = f(x, (a, b», (a, (b, e» = «a, b), e) . (2.2.1) 

The relations (2.2.1) can be regarded as functional constraints on the four func­
tions fi(x k , a) (i, k = 1,2,3,4). Important consequences follow from (2.2.1). The 
derivative of the transfonnation y = f(x, a) with respect to the group parameter 
av admits the separation of variables 

OY'//' a) = ~~(y)A~(a) . 
aV 

(2.2.2) 

3 The Cauchy horizon in the future of the set C refers to the boundary of the Cauchy region D+(C) 
in the future. Cauchy horizons consist of segments of isotropic geodesics which can be extended 
up to the boundary of C. 
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The Greek indices in (2.2.2) run through the values from 1 to N, where N is 
the number of parameters of the group. This separation of variables is unique, 
apart from the transfonnation 

A'<7(a) = A <7 L'" v .., v , 

where the matrices L and L are inverses of one another and are fonned from 
constants. 

We require now that the system of equations (2.2.2) is consistent, i.e., 

cPyi cPyi 

and we obtain 

o~t(x) ,k( ) _ o~~(x) ,k 
oxk '><7 x oxk '>v 

= ~~(x) (o~=~a) _ o~:;a) ) A~(a)A~(a) , (2.2.3) 

where A~(a) is the inverse of the matrix Ap(a). 
If the equalities (2.2.3), which contain functions of the variables x and a, are 

to hold, it is necessary that 

o~t(x) ,k( ) _ o~~(x) ,k( ) = ,i ( )C'" 
oxk '><7 X oxk '>v X '>.., X V<7 , (2.2.4) 

oAJ(a) oA~(a) = C'" AV( )A<7( ) (2 
oaOl oaP V<7 01 a P a .2.5) 

The constants CJ<7 (the structure constants of the group) completely detennine 
the individuality of the group. 

If the set of numbers CJ<7(" v, (j = 1, ... , N) is to define a group, equalities 
which follow from the definition of CJ<7 must hold. According to (2.2.4,5) and 
the associativity property, we have 

According to the definition of the action of the group on a Riemannian 
manifold, we have the equality 

oym oyn 
gij(X) = ox i ox j gmn(Y) , (2.2.6) 

where y = f(x, a) is a transfonnation belonging to the group. For a transfonnation 
y = f(x, a) which differs infinitesimally from the identity transfonnation, we have 

. . k of' . 
y' ~ f'(x ,e) + ~8av = x· + ~~8av 

uaV 
(2.2.7) 
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The vectors ~~(O' = 1, ... , N) are called the Killing vectors of the group G N on 
the manifold M4. 

The integral curves of the vector fields ~~(x)Ct7, where Ct7(O' = 1, ... , N) 
is a set of N arbitrary constants, will be called the trajectories of the group G N 

on the manifold M 4 • 

Apart from infinitesimal quantities of higher order, (2.2.6) can be rewritten 
in the form of the so-called Killing equations 

(2.2.8) 

In principle, the procedure of finding the metric corresponding to a given 
group of motions is as follows: 1) from the structure constants of the group, we 
find the Killing vectors ~t(x) by integrating (2.2.4); 2) the set of equations (2.2.8) 
is regarded as a system of partial differential equations for the components of the 
matrix gij' and from the known functions ~t(x) we find solutions for the metric 
depending on arbitrary functions of the appropriate number of variables. 

2.2.2 The Concept of Skew and Differential Forms 

Let e1, ... , eN(N :s: 4) be independent variable vectors and ilN(e1, ... , eN) be 
a scalar function of them, linear in each of its vector arguments. The semilinear 
function ilN is said to be a skew N -form if it changes sign when any two 
arguments are interchanged. 

Any N -form can be represented uniquely as a sum 

where the coefficients ai1 ... iN are antisymmetric in each pair of indices. 
Suppose that we are given two skew forms: a k-form ilk(e1, ... , ~k) and an 

I-form il/(111, ••. , 11,), The exterior product ilk 1\ il, of the forms ilk and il, 
is defined as the result of antisymmetrization of their product with respect to all 
k + I arguments: 

Here e1 == e1, ... ,ek == ek; ek+1 == 111, ... , ek+l == 11,; the summation is 
taken over all permutations i1, i2, ... , ik+l of the integers 1,2, ... , k + I. If a 
permutation is even, we must take the plus sign; if it is odd, the minus sign. 

A k-form ilk is said to be simple if it can be represented as an exterior 

product of k linear I-forms ~ (e1), ... , ~ (ek)' 
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where the summation goes over all permutations iI, ... , i k of the integers 1, ... , 
k, with the plus sign for an even permutation and the minus sign for an odd 
permutation. 

The criterion for linear dependence of linear forms can be expressed as the 
vanishing of their exterior product. 

A differential k-/onn at a given point is defined as a skew form of arguments 
~l' ••• , ~k which are the vectors of k infinitesimal displacements from the given 
point to neighboring points (so that the components of the vector ~i are equal 
to the differentials of the coordinates of the point for the i-th infinitesimal 
displacement): 

(2.2.9) 

Two coordinate systems in a region 'D have the same orientation if the Jacobian 
of the transformation from one to the other is positive in 'D. A 4-form can be 
integrated in an invariant manner over a given oriented region, and dl, ... , d4 
can be taken to be the infinitesimal displacements along the coordinate lines 
xl, ... , x4. 

For invariant integration over oriented N-dimensional surfaces, it is necessary 
to use differential N -forms. An N-dimensional surface can be parameterized by 
means of parameters u l , ... , uN: 

k _ fk( I N) x - u, ... , u , k = 1,2,3,4 

Then for the differentials dl, ... , dN we can take the infinitesimal displacements 
along the lines UI, ••• , UN. 

The exterior differential of a differential k-form ilk(dl , ... , dk) is defined 
as the (k+l)-form nk+l(d,dl, ... , dk) constructed from the form ilk as follows 
[2.33]. 

In the form ilk, each coefficient ail ... i. is replaced by its total differential 
(aa/ axi) dxi , and the resulting expression is antisymmetrized with respect to all 
the symbols d, dl, ... , dk. In expanded form, the exterior differential dilk can 
be written as 

(2.2.10) 

It follows from the definition (2.2.10) that the exterior differential of a form 
which is in turn an exterior differential is equal to zero. 

The most important application of the concept of an exterior differential is 
the multidimensional Stokes formula 

(2.2.11) 
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which states that the integral of the exterior differential of a fonn ilk over a 
(k + I)-dimensional oriented, simply connected region 1) is equal to the integral 
of the k-fonn ilk over the boundary of 1). Under the conditions of the theorem, 
in the region 1) and on its boundary the coefficients of the fonn ilk are single­
valued functions of the class C I . 

Differential fonns can be used to study the topology of a manifold. Here it is 
important that the result of two successive evaluations of the exterior differential 
of a skew-symmetric fonn is identically equal to zero. Thus, a local criterion for 
a given (k+ 1)-fonn to be the exterior differential of some k-fonn is the vanishing 
of the (k + 2)-fonn equal to the exterior differential of the given (k + 1)-fonn. 
This lemma does not in any way imply the global existence of a fonn on the 
entire manifold. 

We say that a differential fonn ilk is closed if its exterior differential is equal 
to zero. Closed fonns generate a linear space. Two closed k-fonns are said to be 
equivalent if they differ by the exterior differential of some fonn ilk-I. 

The equivalence classes of closed k-fonns generate the so-called k-dimensional 
cohomology group of the manifold M. 

2.2.3 Frobenius's Theorem 

Suppose that on some chart of the manifold M4 we are given a field of linearly 
independent vectors el, ... , eN (N < 4). Under what differential conditions on 
e I, ••• , eN does there exist a (4 - N)-dimensional surface which intersects these 
vectors orthogonally? 

Let dx i be the infinitesimal increments of the coordinates between two neigh­
boring points on the required surface. Then it follows from the condition of or-

thogonality that the differential fonns ~ = 6idx', ... , ~ = eNidx i generated by 
el, ... , eN vanish on this surface. 

Frobenius's theorem asserts that there exists a surface which intersects a field 
of linearly independent vectors orthogonally if and only if the exterior product 
of the exterior differential of each of the N linear fonns with all the other fonns 
is equal to zero. In coordinate fonn, this reduces to the requirement that 

kIN 
k = 1, ... , N or dW 1\ w 1\ ..• 1\ w = 0 .(2.2.12) 

The square brackets in (2.2.12) signify antisymmetrization. 
In the case N = 1, (2.2.12) takes the fonn 

eliek,j] = 0 or dw 1\ w = 0, w == e.dx i . 

This is the condition for the existence of a three-dimensional hypersurface which 
intersects a field of linearly independent vectors orthogonally. In the case N = 2, 
the condition for the existence of a two-dimensional surface which intersects the 
vector fields e and .,., orthogonally takes the fonn 

I I 2 2 I 2 
eli""jek,l] = ela""J""k,I] = 0 or dW 1\ w 1\ w = 0, dW 1\ w 1\ w = 0 . 



2.2 Basic Elements of the Theory of Ue Groups and Exterior Forms 81 

Definition. The Lie derivative I:,~T of a tensor field T with respect to a field e 
is the tensor quantity defined as 

I:, T!'" = cleo T!'" - T~"'o ci + ... + Ti"·o·c le . ~ J... '" Ie J... J... Ie", Ie... J'" 

Here the right-hand side contains one tenn for each upper and each lower 
index of the tensor Tj:::, and the partial derivatives Ole can be replaced by co­
variant derivatives Vie. The Lie derivative characterizes the rate of variation of 
the tensor Tj::: when the region in which the vector field e is given is mapped 
into itself by means of a mapping F(t). The mapping F(t) is generated by the 
integral curves of the vector field e. 
Problems [2.34]. 1) Prove that a Killing vector ki satisfies the relations 

- V. VJ k, = R'i'J,km, 

V'{(V[i kj)k'l} = jk'Rl[ikJl 

2) Suppose that k. and ti are Killing vectors of some group g. Prove that 

vm{t[mkiVj kl]} = ~km Rm[ikAJ . 

Hint: Use the fact that the Lie derivative of the tensor k[iVj kl] is equal to zero4• 

3) Suppose that Fij is an antisymmetric second-rank: tensor (with zero Lie 
derivative along the Killing vector field k). Prove that 

V'{FJ:ijkl]} = j(V'Fl[i)kj1 • 

4) Suppose that the group {h is commutative, i.e., V'(k[ltJl) = O. Prove that 
a tensor Fij satisfying the conditions of Problem 3 obeys the relations 

Vi FJ:ijk,tml = ~(V' F'[i)kitml . 

5) Prove that a Killing vector k obeys the relation 

2w i = ... jlmk·" k -.. JV, m, v = k,k' 

Hint: -(knVn ki)eij'mkjV, km = -l(knkn)eiilm . Vi kjV, km. 

6) Prove the equality 

k[it j V, kml = ~ [k[it j VI] km - km t[i Vj k'l + tm k[i Vj k ,l] , 

where ki and t j are two Killing vectors. 

4 Ue derivatives along Killing vectors of vector and tensor fields on manifolds admitting groups of 
motions are equal to zero. 
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Solution: 

k[at/v, kmJ = Hk[;t}JV, km + k[jtl)V; km + k[lt;JV} km + k[mt,JV, kj 

+ k[ltmJV; kj + klJtmJV, k;} 

= !k[;ti~71) km + -hkm{t;V, kj + t,Vj k; + t/v; k,J 

+ -htm {k;V} k, + k,V; kj + k} V, k;} . 

7) Suppose that the Killing vectors Ie and t of a commutative group {h satisfy 
the Frobenius conditions 

k[;t/l, kmJ = k[;tiV, tmJ = 0 . 

Prove that under these conditions 

A[;,jJ = B[;,)J = 0, A, == (7-1(-Xk; + Wt,), B, == (7-1(Wk; - Vt;), 

X == t't" V == k'k" W == t'k" (7 == W 2 -XV. 

2.3 Stationary Gravitational Fields 

A manifold M4 which is asymptotically simple in the weak sense is said to be 
stationary if there acts in M4 a one-parameter group R whose trajectories are 
time-like, at least in the neighborhood of the confonnal boundaries B+ and B-. 

Definition. The domain of exterior stationarity U is the maximal connected re­
gion having a time-like Killing vector and containing the neighborhoods of the 
conformal pseudo-Euclidean boundaries B+ and B-. 

The ergosphere £ is the boundary of the region U, and, by definition, the 
Killing vector on the ergosphere is isotropic: k,k' = O. 

Certain stationary fields are static fields, in which, by definition, there exist 
hypersurfaces intersecting orthogonally the trajectories of the group R on M4. In 
this case, Frobenius's theorem implies the condition 

k[;Vj kjJ = 0 . (2.3.1) 

We now consider static gravitational fields. 

1) Theorem A (by Carter) [2.34]. For static fields, the ergosphere £ coincides 
with the event horizon H if the latter exists. 

Indeed, from the orthogonality condition (2.3.1) it is easy to show that 

V:[;k)J = VV[j k'h V == k,k' . (2.3.2) 

Therefore the ergosphere, on which V = 0, is an isotropic surface, since it follows 
from (2.3.2) that the normal to the surface V = 0 with the components v:; is 
parallel to the isotropic vector k,. 
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2) Theorem B (due to Lichnerowitz and Carter) [2.34,35]. In static gravita­
tional fields, the energy-momentum tensor Tij of the matter satisfies the condition 

k'T/[ikj] = 0 . (2.3.3) 

It follows from the result of Problem 1 that if the condition (2.3.1) holds, then 
k' RI[ikj] = O. Making use of Einstein's equations the Ricci tensor is replaced by 
the matter tensor T'j to obtain the assertion of the theorem. 

3) Theorem C (by Lichnerowitz) [2.35]. The condition (2.3.3) is not only nec­
essary but also sufficient for the static character of space, provided that the fol­
lowing additional restrictions hold: a) the manifold M4 is asymptotically simple 
(see Sect. 2.1); b) the vector k, is time-like throughout the region U. 

Hawking [2.36] generalized this result of Lichnerowitz to the case of weakly 
asymptotic spaces in which the ergosphere coincides with the horizon: if an event 
horizon exists, the fact that it coincides with the ergosphere is a feature which 
distinguishes static spaces from other stationary spaces. 

To prove the theorem, we introduce, following [2.34], the rotation vector 

W i - !".,jlmk r7 k 
- 2" J VI m • (2.3.4) 

It follows from the result of Problem 1 that 

(2.3.5) 

Therefore, if the conditions (2.3.3,5) are satisfied, we obtain V[i Wj] = O. 
It follows from this that there exists a function U such that Wi = U, .. and on 

the horizon we can put U = 0, since Wi IH = 0 by virtue of the assumption that 
the surface V = 0 is isotropic. Consider the identity 

(2.3.6) 

where wi is a space-like vector according to the definition (2.3.4) and is orthog­
onal to the vector k .. which, by the conditions of Theorem C, is time-like off 
the event horizon. 

It follows from the result of Problem 5 that the second term in (2.3.6) is 
equal to zero. 

We multiply (2.3.6) by k j and make use of the equality kjVi Ai = 2Vi (A[i k j ]), 

which holds because the Lie derivative of the vector Ai is equal to zero. Then 
(2.3.6) can be written in the form 

V, (Uw[ip] jV2) = wiw,k j j(2V2) . (2.3.7) 

We define an intersecting sUr/ace E in M4 as a submanifold E which in­
tersects all the trajectories of the group R with a Killing vector k in the region 
U (off the horizon). Let us choose an intersecting surface E in the form of a 
space-like hypersurface. Then, as a consequence of Stokes's theorem, the inte­
gral of the divergence of the bivector on the left-hand side reduces to an integral 
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over the boundary of E, consisting of two parts: the intersection of E with the 
horizon H and an infinitely remote two-dimensional surface Soo, 

(2.3.8) 

where 8E = H + Soo' and u and v are parameters on the two-dimensional 
surfaces Hand Soo. We shall assume that the pseudo-Euclidean asymptotic limit 
is approached sufficiently rapidly to ensure that the integral (2.3.8) over Soo 
vanishes. 

On the horizon, the function U and its derivatives U,i = Wi are equal to zero. 
As the horizon is approached, the function U w, tends to zero more rapidly than 
V2 (by the condition on the horizon, the vector ki is parallel to the normal V:i 
to the isotropic surface V = 0). Thus, it follows from (2.3.7) that 

j[w.wlkin} dE/V2] = 0 . 

E 

(2.3.9) 

From the fact that the integrand in (2.3.9) has a definite sign and from the 
condition of Theorem C (w,w i :::; 0, k}ni > 0) it follows that w, = 0 everywhere 
on E and hence also everywhere off the horizon H. 

Thus, from the condition (2.3.3) for Tii and from the stationary character of 
the Killing vector in the strict sense, k,k' > 0 everywhere off the horizon, we 
deduce the static character of the gravitational field itself. 

4) Theorem D of Israel [2.37]. The Schwarzschild solution (the Nordstrom­
Reissner solution in the presence of an electrovacuum field) is the only solution 
of Einstein's equations in the class of static, weakly asymptotic simple mani­
folds possessing a nondegenerate, nonsingular, compact, simply connected event 
horizon. 

Under static conditions, there exists a function t(xi) such that k j = 0:\7, t. 
According to Theorem A, the coordinate lines of t coincide with the orbits 

of the action of the group R and are time-like everywhere up to the horizon H. 
Let x l , x 2, x3 be coordinates on the hypersurface t = const, which intersects the 
coordinate lines of t orthogonally. Then it follows from Killing's equations that 
the coefficients of the metric 

(2.3.10) 

will not depend on the time t. 
We assume that the horizon is a connected isotropic surface with a compact, 

orientable, space-like, two-dimensional cross section. The component Rtt of the 
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Ricci tensor for the metric (2.3.10) is -p Llp, where the Laplacian operator L1 
is formed from the spatial part of the metric (2.3.10). Therefore in empty space 
the function p is harmonic, and p -+ 1 as r -+ 00; on the horizon, p = ° 
according to Theorem A. In the region U, the harmonic function p cannot have 
singularities and cannot attain its maximum or minimum value (equal to 1 and 0, 
respectively). Consequently, the function p can be chosen for one of the spatial 
coordinates, whose variation from ° to 1 describes motion from the horizon to 
the pseudo-Euclidean infinity. We choose the other two spatial coordinates (}a 

(a = 1,2) on the surfaces p = const in such a way that the coordinate lines of p 
intersect the surfaces p = const orthogonally; then we have 

(2.3.11) 

We introduce a field of null tetrads as follows. Suppose that complex vectors 
m and m * are constructed from real vectors lying on the surfaces p = const, 
and let the vectors I and n have components 

li(p/Vi,-q/Vi,o,o), ni(p/Vi,q/Vi,O,O). 

Then the rotation coefficients of the null tetrad will have the values 

{! = p. = ___ 1_ oq k = -7 = 71"* = _11* = tiq 
2V2q2 op' 2q' 

C = "{* = 1 + _1_m*a (oma _ !mbOgab) 
2V2qp 2V2q op 2 op , 

0'=>'*, a=-(3*=-~Vam*a. 

Here and in the remainder of this subsection, covariant differentiation with 
Latin indices a, b, ... is taken in the sense of the interior geometry on the two­
dimensional surface p = const, and Ll (2) is the Laplacian operator on the surface 
p = const. 

We shall derive two equations [see (2.3.13,16) below] as follows. Equation 
(1.1.60) for the component iPoo of the Ricci tensor in the static case takes the 
form 

Ai 1 O{! 2 1 (*ak) * 2kk* ~oo = ---- - {! - --{! - Va m - 0'0' -V2q op V2pq 

This equation can be rewritten as 

_ 2-~ (p-l Oq-l/2) 
2q op op 

+ ; {~L1(2) Jq + (0'0'* + kk* + iPoo)Jq} = ° 
In (2.3.13) we have used the identity 

(2.3.12) 

(2.3.13) 
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JqVa(m*ak)== !d2)Jq-kk*Jq . 

Just as in the proof of Hawking's theorem concerning the topology of an 
apparent horizon (Sect 2.1), we subtract (1.1.65) from (1.1.56): 

R 2 1 (2) 
24 + th - ~11 = (! - '2 R - 0'0'* . (2.3.14) 

(2) 
Here R is the Gaussian curvature of the two-dimensional surface p = const: 

(2) 
R = - Va [m*aVb mb + maVb m*b] . 

Substituting the expression (1.1.55) for th into (2.3.14), we obtain 

- Va (m*ak) - 2kk* + _1_~(! - 2l -/2q 8p 

1 1 (2) ( R) 
+ -/2 pq (! + '2 R - ~11 - '8 = 0 . 

Multiplying (2.3.12) by two and subtracting (2.3.15) from it, we obtain 

~~ (_p 8q-l +~) 
4q8p 8p q 

[ 1 (2) 1 R] 
+p 20'0'*+'2 R + 2kk* +4LUnq+2~oo-~11+'8 =0. 

(2.3.15) 

(2.3.16) 

We now consider the boundary conditions at the horizon and at the pseudo­
Euclidean infinity. 

a) Using the fact that according to Einstein's equation the Laplacian operator 
gives zero when acting on the function p (~ = -pL\p) in the coordinate system 
(2.3.11), we obtain 

~ ( V;) = 0, where 9 = gl1g22 - g?2 . (2.3.17) 

Since the horizon is nondegenerate, the area of the two-dimensional cross 
section of the horizon H is not identically zero, so that ,;g 1= 0 at the horizon. 

At the pseudo-Euclidean infinity, a static gravitational field is characterized 
in a first approximation by the Newtonian potential r.p = GM/r: 

p = V9i4 = VI - 2r.p/Cl ~ 1 - m/r, m == GM/c2 • 

Using the fact that q2dp2 ~ dr2 as r -. 00, we obtain q ~ r2/m as r -. 00. 

Let us integrate (2.3.17) with respect to p from 0 to 1: 

,;g = sin(Jm 
q H 

(2.3.18) 
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It follows from (2.3.18) that at the horizon the function q is nonzero, q ---+ qo as 
p ---+ o. 

b) Let us now calculate the invariant 11 = RiklmRiklm of the curvature tensor. 
By definition, the invariant 11 has a finite value at the event horizon. Calculating 
this invariant by means of the field equations in empty space, we obtain 

I 12 r7 r7 V V 01"( f36 
1 = V2 VOl vf3 '\7"( '\76 9 9 . 

Using the coordinate system (2.3.11), we finally obtain for 11 the expression 

24 
11 = (pq)2 [(7(1* + kk* + 411 (2.3.19) 

Since (2.3.19) remains finite as p ---+ 0 and q ---+ qO < 00 as p ---+ 0, we obtain 
from (2.3.19) 

a ---+ 0, k ---+ 0, e ---+ 0 as p ---+ 0 . 

From the fact that k = 0 it follows that 8qo = 0, and qO is a constant at the 
horizon. 

Integrating (2.3.18) over the surface of the horizon, we obtain 

A = 47rmqo , 

where A is the surface area of the horizon or black hole. 

c) Let us eliminate oe/op from (2.3.12,15). This gives 

(2) 

2 * ( R).,fi R -e +aa +<Poo- <P11-- +-e+-=O. 
8 pq 2 

(2.3.20) 

(2.3.21) 

In empty space, <Poo = <Pll = R = 0, so that in the limit p ---+ 0 it follows from 
(2.3.21) and the results of step (b) above that 

. 1 oq -3 (2) 
hm--q =R 
p_o p op 

d) By repeating Hawking's arguments (see Part II of Sect. 2.1) concerning 
the topology of the event horizon (the apparent horizon for stationary spaces 
coincides with the true horizon), it can be seen from (2.3.15) that the surface of 
the horizon is homeomorphic to a sphere. Therefore, according to the well-known 
theorem of Gauss and Bonnet, we have 
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e) We now multiply (2.3.13,16) by vg, integrate over the surface p = const, 
and then integrate with respect to p from 0 to 1 using the results of steps (c) and 
(d). 

Then from (2.3.13,16), respectively, we obtain 

(2.3.22) 

The equality is possible only if a == 0 and k == 0 in the region U. However, 
taking into account (2.3.20), the strict inequalities (2.3.22) are incompatible. 
Therefore the system (2.3.22) admits only solutions with the equalities, from 
which it follows that a = 0 and k = 0 throughout the region U. The condition 
k = 0 means that the function q does not depend on the coordinates (}1 and (}2, 

i.e., q = q(P). The conditions a = k = oX = v = 0 imply zero values of the 
components of the Weyl tensor 1/Jo = 1/Jl = 1/J3 = 1/J4. Thus, a static field with a 
nondegenerate horizon must have a Weyl tensor of Petrov type D. 

(2) 
It follows from (2.3.21) that the Gaussian curvature R of the two-dimensional 

surface p = const is a quantity which is independent of the coordinates (}1 and 
(}2, i.e., the surface p = const is a sphere. 

The foregoing criteria correspond to the spherically symmetric Schwarzschild 
solution, and only to this solution. 

We now consider stationary gravitational fields. Here we dispense with the 
assumption of static conditions described by (2.3.1), assuming nevertheless that 
there is a group R with time-like trajectories in the domain of exterior stationarity 
U. 

5) Theorem E by Hawking [2.30,36]. A stationary predictable manifold which 
is asymptotically simple in the weak sense and has a nondegenerate event horizon 
necessarily possesses axial symmetry. 

In other words, no rotating black hole can be stationary until all the fields 
become axially symmetric. 

The property of predictability implies the existence of a Cauchy surface C 
such that each world line emanating from points of B+ and directed into the past 
returns to C without running into any singularity along the way. 

By virtue of Theorem C, in a non static but stationary manifold with a non­
degenerate horizon there exists a region off the horizon (inside the ergosphere) 
in which the Killing vector is space-like. On the horizon, which is an isotropic 
surface, the isotropic generators do not coincide with the trajectories ki of the 
group R. 

Under translations in time, the horizon goes into itself. Therefore the corre­
sponding trajectories of the group R wind onto the horiwn. In moving along an 
isotropic geodesic of the horizon, an observer moves (rotates) with respect to the 
stationary coordinate system determined by the trajectories of the group R. 

It follows from Einstein's equations and the Bianchi identities in the Newman­
Penrose formalism that 1/Jo = 1/Jl = e = a = 0 on the horizon, the scalar 1/J2 is 
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constant along a null generator of the horizon, and the rotation coefficient e is 
constant over the entire horizon. 

Making use of the axial symmetry of all the field functions on the horizon, it 
can be shown by means of a local analytic continuation that the solution is also 
axially symmetric in some region off the horizon. For a proof of Theorem E, the 
reader is referred to the monograph of Hawking and Ellis [2.30]. 

6) Thus, let us consider stationary manifolds with a nondegenerate horizon. 
According to Theorem E, in such gravitational fields there acts a subgroup 1 x SI 
with closed trajectories and a Killing vector ti. 

We shall assume that the group R x SI is Abelian, i.e., that the vectors k and 
t commute: 

(2.3.23) 

In what follows (in this chapter), we shall confine ourselves to a study of 
fields in which there exist two-dimensional surfaces F which intersect the integral 
curves of both Killing vectors ki and t' orthogonally. According to Frobenius's 
theorem, this is possible if 

(2.3.24) 

Theorem F of Carter [2.34]. The boundary of the region 'R in which the two­
dimensional surface F intersecting the orbits of k and t orthogonally is space-like 
coincides with the event horizon (provided that the latter is nondegenerate). 

To prove the theorem, we introduce the notation 

W=k,t i , 

Let a be a vector in the subspace A spanned by the vectors k and t: 

aj = akj + f3ti . 

In the linear subspace A, there exist two isotropic vectors when (7 == W2 -
V X > 0 and one isotropic vector when (7 = O. This follows from the equation 

a2 = a2V + 2af3W + 132 X = 0 . 

It is obvious that the region 'R in which the surface F is space-like is char­
acterized by the inequality (7 > 0, and (7 vanishes on the boundary OR. 

We make use of the result of Problem 6 and rewrite Frobenius's conditions 
(2.3.24) for the existence of the two-dimensional surface F in the form 

(2.3.25) 

(2.3.26) 
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We multiply (2.3.25) by t" and (2.3.26) by kIt and add the results. In the 
equation which is obtained, we then replace the index 1 by s and, conversely, s 
by 1, and subtract the result from the preceding equation. 

We then obtain 

(2.3.27) 

or 

{![ij V'kl {!l" = {!l" V[i {!jkl . (2.3.27') 

Multiplying both sides of (2.3.27') by {!"', we obtain 

(2.3.28) 

We have 0' = 0 on the boundary 8n, and from (2.3.28) it follows that 

(2.3.29) 

It follows from (2.3.29) that the vectors ki' ti, and Vi 0' are linearly dependent: 

Vi 0' = aki + (3t, (2.3.30) 

On the other hand, 

k i 80'. =2Wki8W _Xk,8V _ vki8X. =0 , 
8x' 8x' 8x' 8x' 

(2.3.31) 

since k i8Wj8xi = k i8Vj8x' = ki8Xj8xi = O. Similarly, it follows from the 
commutation condition for the vectors k and t and from the conditions Vci k j) = 0 
that t i80'j8xi = O. 

Multiplying (2.3.30) by ak' and (3ti in turn and adding the results, using 
(2.3.31), we have 

a 2V + 2a(3W + (32 X = 0 

On the other hand, 

(Vi O')(Vj 0')9'] = a 2V + 2a(3W + (32 X 

(2.3.32) 

Therefore it follows from (2.3.32) that the surface 0' = 0 is isotropic, with 
the expansion parameter (! equal to zero. Consequently, the surface 0' = 0 is the 
exterior event horizon. 

7) Definitions. A vector field ni is said to be circular if it satisfies the conditions 

n[,kjtkl = 0 . 

A bivector field F,] is said to be circular if it satisfies the conditions Fh] k,tml 
= 0, Fijk't] = O. 
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A symmetric tensor field Tij is said to be circular if it satisfies the conditions 

(2.3.33) 

Lemma 1. From Frobenius's conditions for the existence of a surface F inter­
secting the integral curves of the vectors k and t orthogonally it follows that the 
Ricci tensor is circular. 

To prove this, it is sufficient to make use of the result of Problem 2. 

Lemma 2. From the condition that the electromagnetic field tensor Fij is circular 
it follows that the current vector is circular (Problem 3). 

Indeed, from the commutation property of k and t and from the conditions 
(2.3.24) it follows that 

VI(F[ijkmtl) = ~ V, FI[mk.tj] = 27rj[mk,t)ljc , 

since VIFlk = 47rjkjc by virtue of Maxwell's equations. 

Lemma 3 [2.34]. There exists a constant fl such that the linear combination 
of Killing vectors k + flt is an isotropic vector on the horizon whenever the 
conditions (2.3.24) hold. 

The vector k - VtjW is isotropic on the horizon, which coincides with the 
surface a = 0 by virtue of Theorem F. We shall show that the function V jW is 
constant on the horizon. Then the required constant fl will obviously be - V jW, 
where the function V jW is evaluated on the horizon. 

In fact, 

Vk (-VjW) = W-2(VVk W - WVk V) 

= W-2(VVk (kit I) - 2WklVk kl) (2.3.34) 

Using (2.3.23), we have 

Vk (kltl) = tlVk kl + klVk tj = (Vk kl)tl - (VI tk)k l = 2tlVk kl 

Therefore, multiplying (2.3.34) by kit) and anti symmetrizing with respect to 
the indices i, j, k, we obtain 

k[.tjVkl (-VjW) = 2W-2(k[itjVkl kl)(tIV - klW) 

Using (2.3.25), we rewrite (2.3.35) in the form 

k[itjVkl (-VjW) = (W2 - XV)k[;Vj kkJ . 

(2.3.35) 

Therefore on the horizon, where W2 - V X = 0, the vector Vk (-V jW) is a 
linear combination of the vectors k and t: 

V;(-VjW) = akj + ,ati . 

On the other hand, the derivatives of - V jW along the Killing vectors k and 
t are equal to zero. This completes the proof. 
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8) Theorem G [2.38]. Lemma I admits a converse. Papapetrou proved that if 
the energy-momentum tensor of the matter satisfies the condition (2.3.33) for a 
circular tensor, then Frobenius's conditions (2.3.24) for the existence of a surface 
F with an orthogonal intersection are satisfied. 

Indeed, if the energy-momentum tensor of the matter satisfies the condition 
for a circular tensor, then, by virtue of Einstein's equations, the Ricci tensor 
satisfies this same condition. 

It follows from the result of Problem 2 that in this case 

(2.3.36) 

We introduce vectors wi and tPi characterizing the rotation of the vectors k 
and t: 

Any fourth-rank tensor which is completely antisymmetric is proportional to 
ci}kl. 1rherefore 

Then the conditions (2.3.36) can be written as 

Vi (t,w') = 0, V. (k,tP') = ° . 

(2.3.37) 

Therefore the pseudoscalars t,w' and k,tP' are constants. However, on the axis 
of rotation the vectors tk and tPk vanish, so that t,w' = 0, k,tP' = 0, and, as a 
consequence of (2.3.37), Frobenius's conditions (2.3.24) are satisfied. 

9) Canonical Form of the Metric 1rensor. It follows from Frobenius's conditions 
(2.3.24) that there exists a two-dimensional surface F such that any direction 
orthogonal to it is a linear function of the Killing vectors k and t. 

It follows from the results of Problem 7 that there exist potentials for the 
vectors Ai and Bi, where Ai == (J'-l(-Xki + Wti), B. == (J'-l(Wk. - Vti); we 
denote these potentials by t and '1', respectively: 

Vi t = (J'-l(-Xk. + Wti), V. 'I' = (J'-l(Wki - Vti) . 

Let ()a (a = 1,2) be parameters on the two-dimensional surfaces F = const. 
We go over to a system of coordinates t, '1', ()1, fP. Since the coordinate lines 
of t and 'I' are orthogonal to the coordinate lines of ()1 and ()2, the metric coef­
ficients gta and g<pa are equal to zero. It follows from Killing's equations that 
the remaining coefficients do not depend on the coordinates t and '1'. Thus, the 
metric fonn has the structure 

ds2 = V dt2 + 2W dt dr.p + X dr.p2 - gabd()ad()b , (2.3.38) 

where the functions V, W, X, and gab do not depend on t and '1'. 
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Lemma 4. In the presence of a stationary electromagnetic field, the function 
p = y'U is harmonic on the surface F with the interior metric gab. 

To prove this, we calculate the expression Q = yft Rtt + 2gt'" Rt", + g"'''' R",,,,. 
From Einstein's equations Rij = K,Tij, where Tij is the energy-momentum tensor 
of the electromagnetic field [calculated according to the canonical fonn (2.3.46) 
given below], it follows that the function Q is equal to zero. On the other hand, 
from a direct calculation of Q by means of the expression for the components 
of the Ricci tensor in tenns of the metric fonn (2.3.38) it follows that Q = 
p-l Va vap. Consequently, p is a harmonic function which is equal to zero on 
the horizon according to Theorem F. 

We note that at the pseudo-Euclidean infinity p tends to the radius in cylindri­
cal coordinates. As a harmonic function, p cannot have a maximum or minimum 
in any region off the horizon which contains no infinitely remote point, and it 
attains a minimum value p = 0 on the horizon. 

It follows from the condition that p is harmonic that there exists a function 
q which is harmonically conjugate to the function p. The lines p = const are 
orthogonal to the lines q = const on the surfaces F = const. Therefore, if p and 
q are chosen as parameters on the surface, the metric fonn finally becomes 

ds2 = V dt2 + 2W dt dr.p + X dr.p2 - E(p, q)(dp2 + dl) , (2.3.38') 

where p2 = W 2 - VX. 

10) Canonical Form of the Electromagnetic Field Tensor. We introduce the 
vectors of the electric and magnetic field strengths, Ei and B i : 

E I:'I k j B_1 kJFk1 i = .L'ij, i - '2ciJkl , 

Contracting Maxwell's equations V[& FJl] = 0 with the vector k', we obtain 

(2.3.39) 

The bracketed expression in (2.3.39) is the Lie derivative of the bivector Fij , 
which is equal to zero. 

Contracting (2.3.39) with the vector k' and using the fact that the Lie deriva­
tive of the vector Ei along the Killing vector t i is equal to zero, we obtain 

Vi (t j Ej ) - (tjVj Ei + E) Vi t j ) = Vi (t j Ej ) = 0 . 

From the fact that the scalar t i Ei vanishes on the symmetry axis it follows that 
t j Ej is equal to zero everyWhere. 

It follows from the result of Problem 4 that 
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Using the fact that the current vector is circular and that the expression Bktk 
vanishes on the symmetry axis, we obtain Bktk = O. Thus, we have proved the 
following lemma. 

Lemma 5 [2.34]. From the fact that the current vector is circular it follows that 
the electromagnetic field tensor satisfies the conditions for a circular tensor: 

(2.3.40) 

It follows from the conditions (2.3.40) that the bivector F;i can be represented 
in the form 

(2.3.41) 

where lik' = lit' = J;ki = J;ti = O. 
It follows from (2.3.39) that there exists a potential E for the vector E i : 

(2.3.42) 

Contracting the equations V[i F}k] = 0 with tk, we obtain, by analogy with 
the condition (2.3.42), 

Fjlt' = Vj B . 

Finally, we shall show that the vector 

Ai = Et" + Bc.p,i 

is a vector potential for the electromagnetic field. 
From (2.3.44) we have 

A[i,i] = t,hE,i] + c.p,[,B,J] . 

(2.3.43) 

(2.3.44) 

(2.3.45) 

Using (2.3.41-43), it is easy to show that, according to (2.3.45), in fact 2A[i,j] = 

F'j. 
It follows from the expression (2.3.44) for the 4-potential of the electromag­

netic field that the I-form Aidxi can be represented as 

Aidxi = Edt + B dc.p . 

Then the 2-form F,jdx i A dxi of the electromagnetic field has the structure 

(2.3.46) 

11) Ernst Equations for a Stationary Gravitational Field with Axial Symme­
try [2.39]. The metric form (2.3.38') can also be written as 

ds2 = J(dt - w dc.p)2 - J-1[e2"'Y(dp2 + dq2) + p2dc.p2] , (2.3.47) 

where we have introduced the notation 
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To obtain Maxwell's equations (in the absence of currents) and the equations 
of gravitation, it is convenient to begin with a variational principle. 

The Lagrangian density function for the metric in the form (2.3.47) is 

Cgr = ~gij (ri;r~, - ri~rlk) 
= 41K [p j-2('V f)2 - P -1 j2('V w )2] , (2.3.48) 

where we have introduced the notation ('V f)2 == (f,p)2 + (f,q)2. 
The Lagrangian density function for the electromagnetic field is Cern = 

R FijF'j j(87r). Calculating it for a field having the form (2.3.46), we ob­
tain 

(2.3.49) 

Equating to zero the first variation of the total action, we obtain the pair 
of Maxwell's equations and the pair of Einstein's equations [the function 'Y in 
(2.3.47) is calculated after integration of these equations by means of any field 
equation Rij = KTij which contains this function] 

'V(p-l j2'Vw) - Kj(w'VE+ 'VB)· 'VEj(21C"p) = 0 , 

'V(p'V f) - pj-l('V f)2 + p-l j3('Vw)2 

+ K[(fW'V E + j'V B)2 + p2('V E)2]j(47rp) = 0 , 

'V[p-l j(w'V E + 'V B)] = 0 , 

'V(pj-1'VE) - p-lj'Vw(w'VE + 'VB) = 0 . 

It follows from (2.3.52) that there exists a function D such that 

wE,p + B,p = pj-l D,q, wE,q + B,q = _pj-l D,p 

Eliminating the function B from (2.3.54), we obtain 

'V(pj-l 'V D) = w,qE,p - w,pE,q . 

Equation (2.3.53) can be written in the form 

'V(pj-1'V E) = -(w,qD,p - w,pD,q) . 

We introduce the complex potential if! == E + iD. 

(2.3.50) 

(2.3.51) 

(2.3.52) 

(2.3.53) 

(2.3.54) 

(2.3.55) 

(2.3.56) 

Multiplying (2.3.55) by the imaginary unit and adding the result to (2.3.56), 
we obtain for the potential if! the equation 

(2.3.57) 

We introduce the new independent variables z and z* defined by 
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2z = p + iq, 2z* = p - iq . 

Then (2.3.57) takes the form 

(2.3.58) 

of f2 ow 
G+=-+--

- oz* p oz*' 
(2.3.59) 

We now transform (2.3.50,51). Equation (2.3.50) can be written in the form 

(2.3.50') 

It follows from (2.3.50') that there exists a function e such that 

G + ..!::-.q>* oq> = Oe 
+ 471" oz* oz* ' 

(2.3.60) 

In the new variables, (2.3.51) can be written in the form 

- -(pG+)+-(pG_) -2G+G_+- ----+--- =0 f [ 0 0] "'f [f)q> f)q>* oq> oq>*] 
P OZ oz* 471" oz* OZ oz oz* 

(2.3.61) 

Substituting the expressions (2.3.60) for G+ and G _ in terms of e into 
(2.3.61), we finally obtain 

(2.3.62) 

It follows from the definitions (2.3.59,60) that 

o '" 0 '" 0 of -(e + e*) = - -(q>q>*) + G _ + G! = - -(q>q>*) + 2-
fu ~fu ~fu fu 

Hence f = Re e - ",q>q>* /(871"). Thus, (2.3.58,60,62) form a closed system of 
complex equations in the Ernst form: 

fLlq> = \lq>. M, fLle = \le· M, M == \le - ",q>*\lq>/(471") . (2.3.63) 

After going over to the required functions in the projective space of the 
variables u, v, w (e = (w-u)/(w+u), .JGq> = vc2/(u+w)), the system (2.3.63) 
takes the form 

uDw - wDu = 0, (u - w)Dv - v(Du - Dw) = 0 (2.3.63') 

Here we have introduced the D-operator notation 

D == (u*u + v*v - w·w)Ll- 2(u*\lu + v*\lv - w*\lw)\l 
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According to (2.3.63'), any solution of the system 

DV; = O(Vi = u, Vi = v, V3 = w) (2.3.64) 

will detennine a solution for e and ~. It is interesting that the system (2.3.64) 
retains its fonn under arbitrary unitary rotations in the complex space of the 
variables u, v, w. 

Thus, if the vector Vo is a solution of the system (2.3.64), then the vector V 
with components V; = A.j Voj, where Aij is a constant matrix with the property 
AiJAik = 1Jik> 1Jll = 1J22 = -1m = 1, 1Jik = 0, if k, is also a solution of the 
system. Consequently, starting from a known particular solution of the system 
(2.3.64), it is possible to make use of unitary rotations in the projective space of 
the variables u, v, w to obtain a new solution depending on several parameters 
[2.40]. 

If we transfonn from the variables p and q to the variables x and y (p = 
PoJ(x2 - 1)(1 - y2), q = Poxy), the system (2.3.64) takes the fonn 

1J.k tv, Vk*[«X2 - 1)v:"x),x + «1 - y2)\'i,y),y] 

- 2Vk*[(X2 - Uv"x \'i,x + (1 - y2rv"y v:"yJ) = 0 

For vacuum solutions, v = O. In this case, we can put w = i, and the equation 
for u takes the fonn [2.41] 

(uu* - 1)[«x2 - l)u,x),x + «1 - y2)u,y),y] 

= 2u*[(x2 - l)u~x + (1 - y2)u~y] . 
(2.3.65) 

Those solutions of the electrovacuum system (2.3.64) in which the functions 
v and w are proportional, v = const· w, reduce to solutions of Einstein's vacuum 
equations. 

The solution of Kerr and of Kerr and Newman for a rotating charged black 
hole corresponds to the linear solution of (2.3.65) given by 

u = x cos A - iy sin A, A = const . (2.3.66) 

12) We now consider charged black holes. 

a) In the general case, stationary black holes are completely characterized 
by three parameters: mass, charge, and angular momentum. They are described 
by the exact Kerr-Newman solution of the system of Einstein's and Maxwell's 
equations. The corresponding metric tensor can be reconstructed from the solution 
(2.3.66). 

In the coordinates of Boyer and Undquist [2.42], the Kerr-Newman solution 
has the fonns 

S Particular cases of the solution (2.3.67) are: a) the Schwarzschild solution (I = Q = 0, M f 0); b) 
the Kerr solution (Q = 0, If 0, M f 0); c) the NordsUtim-Reissner solution (I = 0, Q f 0, M f 0). 
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ds2 = E-1 {( b - a2 sin2 fJ)c2 dt2 - 2(r2 + a2 - b)a sin2 fJc dt dc.p 

_ lJ2dr2/b - E 2dfJ2 _ [(r2 + a2)2 - ba2 sin2 fJ] sin2 fJ dc.p2} 

E=r2+a2cos2 fJ, b=r2-2mr+a2 +q2, ..:1=_grr, 

m=GM/c2, a=I/(Mc), q2=GQ2/c4, 

(2.3.67) 

where M is the mass, I is the angular momentum, and Q is the charge of the 
black hole. The corresponding 2-fonn for the electromagnetic field has the fonn 

E2 F = 2Q{ _(r2 - a2 cos2 fJ) dr 1\ (dt - a sin2 fJ dc.p) 

+ 2ar sin fJ cos fJ dfJ 1\ [a dt - (r2 + a2) dc.p n . (2.3.68) 

For the solution (2.3.67,68), the basis vectors of the complex tetrad field can 
be chosen in the fonn 

{ 
2 2 } 1 i r +a a • 2 2 

I = ~,1,0,..:1 ' n = 2E{r +a ,-..:1,O,a}, 

i 1 {.. () ° 1 i } m = p:;. la sm , , '-:--fJ . 
v2 (r + la cos fJ) sm 

(2.3.69) 

In the Newman-Penrose fonnalism, the nonzero tetrad components of the 
Weyl, Ricci, and electromagnetic-field tensors and the nonzero rotation coeffi­
cients have the values 

(! = -(r - ia cos fJ)-l , 'Y = J1- + (r - m)(!(!* /2, J1- = l (!* ..:1/2, 

2,fif3=-cotfJ(!*, lI',fi=iasinfJl, r,fi=-iasin()(!(!* . 

(2.3.70) 

In the Boyer-Lindquist coordinates, the surface of the ergosphere is deter­
mined by the equation 

r2 - 2mr + a2 cos2 () + l = ° . 
The surfaces of the event horizons H satisfy the equation 

r2 _ 2mr + a2 + q2 = ° . 

(2.3.71) 

(2.3.72) 

The condition for the existence of a nondegenerate event horizon has the fonn 

m 2 ~ a2 +q2 . 

Equation (2.3.72) has two roots, corresponding to the exterior and interior 
event horizons. From the point of view of an external observer, the surface of 
a collapsing body possessing charge and angular momentum "freezes" on the 
exterior event horizon. 

b) The solution for a nonrotating charged black hole was obtained by Reissner 
and Nordstrom. It has the fonn 
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ds2 = cdt2 A - A-I dr2 - r 2(dfP + sin2 0d(l), 

r GQ2 
A == 1 - : + (c4r2) . 

Here r 9 is the Schwarzschild radius, given by r 9 == 2G M / Cl, and Q is the total 
charge of the black hole. The solution is written in a coordinate system in which 
the coordinate lines of the time are directed along the trajectories of the Killing 
vector k. Therefore in this coordinate system the solution becomes meaningless 
inside the horizon, where the Killing vector becomes space-like. 

In order to obtain an analytic continuation of the solution into the interior 
of the horizon, we must go over to a coordinate system in which the metric has 
no singularities at r = r ±, where r + and r _ are the larger and smaller roots of 
the equation (2.3.72) with a = O. For this, following [2.43], we go over to the 
coordinates u and v defined by 

u = u(r* + ct), v = v(r* - ct), dr* /dr == A-I . 

Then the metric takes the form 

(2.3.73) 

If the metric is to have no singularities at r = r + or r = r _, the zeros of the 
function A must coincide with the simple zeros of the function u'(r* +ct)v'(r*­
ct). This requires that the function u'v' can be represented in the form <.p(r*)t/J(t), 
from which we obtain 

u = aexp[-y(ct + r*)], v = ,8exp[-y(r* - ct)], 

l = e-2-yr r*(r - r+)n+(r - r _)n_ /(r2"-la,8), (2.3.73') 

n+ == 1 - 2'Yr~/(r+ - r_), n_ == 1 +2'Yr2_-I(r+ - r_) 

It is clear from the expression obtained for f2 that it is impossible to choose 
a coordinate system with no singularities at both r = r + and r = r _. To avoid 
singularities in the metric at r = r +, we must put n+ = O. Therefore a metric 
which is appropriate for analytic continuation beyond the exterior horizon r = r + 

has the form (2.3.73'), where n+ = 0, n_ = 1 + r~/r;, "'1+ = (r+ - r_)/(2r;). 
The metric (2.3.73) is written in one chart from the atlas of the manifold, where 
u and v vary from -00 to +00. The interior horizon r = r _ corresponds to the 
Cauchy horizon. To obtain the metric on the other chart of the manifold, we must 
put 

n_=O, n+=l+r~/r:, 'Y_=(r_-r+)/(2r:). 

This new chart with the coordinate grid u, ii has an intersection with the preceding 
chart on the open set u > 0, v > O. The metric in the new coordinates u 
and ii has no singularities at r = r _ and covers part of the manifold near the 
singularity r = O. It is interesting to note that, in contrast to the case of uncharged 
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nonrotating black holes, the singularity at r = 0 for charged black holes has a 
time-like character, and the time-like geodesics intersecting r = r _ first approach 
the singularity and then recede from it. 

By systematically matching the charts in the regions in which they have a 
nonzero intersection, we obtain the maximal analytic continuation of the Nord­
strom-Reissner solution. 

We note that the continuation of the solution from one chart to another is not 
determined by the field equations in general relativity; the particular continuation 
described above was distinguished by the requirement of analyticity and nonex­
tensibility. However, even analytic continuation does not, in general, ensure that 
the solution is uniquely determined globally: in the general case, it is difficult 
to establish which events reached on the various non-space-like curves can be 
identified. 

A collapsing cloud can pass through the two horizons r + and r _ and find itself 
in a new universe. Moreover, there is no singularity inside the cloud, though a 
time-like singularity occurs outside the cloud! After the cloud crosses the Cauchy 
horizon, we can say nothing about its subsequent fate, since it becomes possible 
to influence the entire evolutionary process by means of signals from the time-like 
singularity. 

It follows from the linearized formulation that small perturbations of the 
initial data at the Cauchy horizon grow without limit, but do they necessarily 
lead to the formation of singularities at Cauchy horizons [2.30,44]? Because of 
analytic difficulties, this question has not been fully investigated. 

13) We consider now the uniqueness theorem for stationary electrovacuum 
solutions with axial symmetry. The Lagrangian of the electrovacuum equations 
for the metric coefficients X and W [see (2.3.38)] and the potentials E and B 
of the electromagnetic field [see (2.3.46)] has the form 

L = p[(V' In X)2 - (V' B)2 I X] 

_p-l[X2(V'(WIX))2_X(V'E+WV'BIXi] , (2.3.74) 

which, apart from divergence terms, follows from the expressions for the La­
grangians (2.3.48,49). Equating to zero the coefficients of the independent vari­
ations b'(W I X) and 8E, we obtain the field equations 

pV'[p-l X 2V'(WIX)] + XV'B(V'E + WV'BIX) = 0, 

V'[p-l X(V' E + WV' B I X)] = 0 . 

These equations imply the existence of Ernst-type potentials Y and q;, i.e., 

cij X 2(WI X) ,j = p[l':j + 2(q; B,. - Bq; ,j)]' 

cijX(E,i + W B,.I X) = 2q;,jp ; 
(2.3.75) 

here i and j indicate the coordinates p and q, and Cij is the Levi-Civita symbol, 
with c11 = c22 = 0, c12 = -c21 = 1. For the functions Y and q; introduced in 
(2.3.75), we obtain, after eliminating WIX and E, the system 
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V[pX-2(V'y + 2~V B - 2BV'~)] = 0, 

V'[pX-lV'~] + pX-2V'B. M = 0, 

M==VY+2~VB-2BV~ . 

(2.3.76) 

From (2.3.74), by considering a variation with respect to X and B (for fixed 
W/X and E) and making use of (2.3.75), we obtain 

V(pX-l V' X) + p [M2 _ 2(V'~)2 _ 2(V B)2j = 0 
X2 X X ' (2.3.76') 

V(pX-l V' B) - X-2pV'~ . M = 0 . 

As is readily verified, the system (2.3.76,76') can be derived from a varia­
tional principle with a Lagrangian L: 

(2.3.77) 

The function X must be less than zero, and equal to zero on the symmetry 
axis. This follows from the requirement that there are no closed time-like curves, 
whose existence would contradict the principle of causality. 

We shall show that the functional L is convex, i.e., the second variation 62 L 
is positive definite, apart from divergence terms. We denote by P the set of 
parameters X, Y, ~, and B, and write {fP for a perturbation of the state P. 
Then, apart from cubic terms in 6P, we have 

L(P + 6P) = L(P) + 6L + 62 L + O«6P)3) 

We introduce the notation 

6X/X == ql, (6Y +2~6B - 2B6~)/X == q2, 6~ == q'3, 6B == q4 . 

Apart from divergence terms, the linear part 6L is equal to zero by virtue of the 
field equations for the unperturbed state P. 

We write the quadratic corrections 62 L for the individual terms in (2.3.77): 

p62(V' In X)2 = P(V qd + q~V(PV' In X) - V[pq~V' In X] , 

p62[«V~)2 + (VB)2)/X] = pX-l {(V'q'3)2 + (V'q4)2 - V~Vq'3ql 

+ V~q'3V'ql - VB· Mq'3qlX- l - VBVq4Ql 

+ V' Bq4 Vql + V E . M q4qlX-l + q~[(V~)2 

+ (V B)2]} - V' {pX-l [(V~)q3ql 

+ (V' B)q4qIl} , 
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82(M2/X2) = ('Vq2)2 + l +4M(q3'Vq4 - q4'Vq3)X-2 

+ 'V q2(4q3 'V B - 4q4 'V 4> - 2ql M)X-1 

- q2(4'Vq3'VB - 4'Vq4'V4> - 2'VqlM)X-1 

+ 4q2M(q3 'V4> + q4 'V B)X-2 - 2ql ~ 'V X M X-2 

- 2M ql (q2 'V X + 4q3 'V B - 4q4 'V4» 

- q~p-l'V(p'VlnX) +2M2qfX-2 

+ p-1'V {pX-1'Vq2(1' - qlM / X)} , 

I' == q2'VX +4(q3'VB - q4'V4» - Mql . 

Combining the terms in these expressions, it can be shown that 

82 L = p9 + div pA , 

9 == ['Vql + (q2M - 2q3 'Vq') - 2q4'V B)X-1f 

+ ['Vq2 - (qlM - 2q3'V B + 2q4'V4»X-1]2 

- 2X-1('Vq3 + q4MX-1 - q1'V4»2 

- 2X-1('Vq3 - q3'VlnX + q2'VB)2 

- 2X-1('Vq4 - q3MX-1 - ql'VB)2 

- 2X -1 ('V q4 - q4'V In X - q2 'V 4»2 

+ [ql M X-I - q2'V In X - 2(q3 'V B - q4 'V4»f 

+ 12(q3 'VB - q4 'V4»2 X-2 , 

A == -q~'V In X + X-I ql ['V4>q3 + 'V Bq4] + X-I 'V q2(1' - ql M / X) 

Thus, the equations for small perturbations qA (A = 1,2,3,4) can be obtained 
from the variational principle 8 J p9 dp dq = O. From this, we have 

Multiplying 89/ 8qA by qA, summing over all A, and making use of the fact 
that 9 is a homogeneous quadratic function of qA and 'V qA, we obtain 

4 

-p L qA 89/ 8qA = 'V(pqA 89/ 8'V qA) - 2p9 = 0 (2.3.78) 
A=l 

Theorem I by Carter-Robinson [2.45]. If two neighboring solutions of the elec­
trovacuum system (2.3.76,76') are equal on the boundary of a simply connected 
region 1), then it follows from (2.3.78) that they are equal throughout the interior 
of the region 1). 

Indeed, let us integrate (2.3.78) over the region V. The integral of the di­
vergence part of (2.3.78) reduces to an integral over the boundary of the region 
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1) and therefore vanishes. The positive definite function g can be equal to zero 
only if each of the eight squares of which g consists is equal to zero. However, 
in that case all the qA must be equal to zero identically. 

We shall apply Theorem I to a region whose boundary is the pseudo-Euclidean 
infinity and the horizon of a black hole. For this purpose, it is convenient to 
transform to the variables I-' and A defined by the relations 

p2 = (A2 _ c~)(1 - 1-'2), q = AI-', CI ~ A < +00, -1 ~ I-' ~ 1 . 

As was shown by Carter [2.34], the pseudo-Euclidean condition is ensured by 
the following asymptotic behavior of the functions X, Y, {I, and B as A - +00: 

X = (1-'2 - I)A2 + O(A), Y = 211-'(3 - 1-'2) + O(A -I), 

{I = -QI-' + O(A -I), B = O(A -I) , 
(2.3.79) 

where I and Q are, respectively, the angular momentum and charge of the black 
hole (in a system of units with C = G = 1), and the magnetic monopole is assumed 
to be equal to zero. A solution of the system (2.3.76,76') has an event horizon 
if it is regular at A = ct. It follows from Theorem I that there cannot exist two 
neighboring solutions which are regular at A = CI and have the same asymptotic 
behavior (2.3.79). Therefore all stationary, axially symmetric, asymptotically flat 
electrovacuum fields which are regular at A = ct form discrete families of s0-

lutions depending, at the most, on three parameters (mass, angular momentum, 
and charge). 

In addition to this theorem, Robinson [2.46] managed to prove a global 
uniqueness theorem for stationary axially symmetric solutions of Einstein's vac­
uum equations which differ finitely inside a region 1) and are identical on the 
boundary of 1). This theorem implies that the Kerr solution with a nondegener­
ate event horizon is unique among all solutions of Einstein's vacuum equations 
which are regular at A = CI and asymptotically flat as A _ 00. The corresponding 
result for the electrovacuum has not yet been proved but is apparently valid. 

2.4 Energetics of Black Holes 

2.4.1 Temperature of a Black Hole 

According to Lemma 3, there exists a constant n such that the Killing vector 
1= k + nt is time-like off the horizon and isotropic on the horizon H. 

We go over from the group coordinate 'I' in the canonical form of the station­
ary metric (2.3.38) to the variable '1'+ = 'I' - nt; then the metric (2.3.38) takes 
the form 

ds2 = V+ dt2 + 2W+ dt dr.p + + X dr.p +2 - 9abd(Jab d(Jb , 

w+=w+xn, V+=v+2wn+xn2, a,b=I,2 

(2.4.1) 

(2.4.2) 
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The coefficient V+ is equal to the scalar square of the vector 1 and therefore 
vanishes on the horizon. Thus, the surface V+ = 0 is isotropic, and the nonnal 
to it must be directed along the vector I: 

Vi V+ = -2A1i . (2.4.3) 

Theorem K. The scalar A is constant on each connected component of the 
horizon. 

This property of A was discovered [2.42] when the Kerr solution was trans­
formed from the original coordinate system (in which it was first found [2.47]) to 
the canonical fonn (2.3.38). The fact that the scalar A is constant on the horizon 
has also been proved [2.34,48] without using the theorem on the uniqueness of 
the Kerr solution for the description of rotating black holes. 

The scalar A can be interpreted [2.49] as a quantity proportional to the tem­
perature of a black hole: a black hole can emit particles as a quantum system with 
temperature TH = IiA/(27rkc), where Ii, k, and c are Planck's constant, Boltz­
mann's constant, and the speed of light in empty space, respectively [2.50-55]. 

2.4.2 Electrostatic Potential of a Black Hole 

If r.p is replaced by r.p+ == r.p-ilt, the I-fonn ofthe potential of the electromagnetic 
field can be written as 

(2.4.4) 

We shall show that the function cP+ must be constant on the horizon. 
Indeed, Vi cP+ = Fi} [i. The component of the energy-momentum tensor of 

the electromagnetic field Ti}[ili must vanish on the horizon, since the area 
of the horizon of a stationary black hole with Tii [i Ii =f 0 increases with time, 
which contradicts the assumption of stationarity. On the other hand, Tiilili = 

(47r)-lFii l iFll k • Therefore on the horizon the vector FiiIJ is isotropic; more­
over, this vector is orthogonal to the vector Ii (which is time-like off the horizon 
and isotropic on the horizon). Hence we find that the vector F,ili is parallel to 
the vector Ii: 

F,. ·Ii - T"7. A; - ~/. I} - v, ~+ - ,... I • (2.4.5) 

It follows from the condition (2.4.5) that the derivative of cP+ along any direction 
on the horizon must vanish. This proves the following lemma. 

Lemma 7. The potential cP + of the electric intensity F'i IJ maintains a constant 
value on each connected component of the horizon [2.34]. 

Definition. The value of cP+ on the horizon is called the electrostatic potential of 
the black hole. 
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2.4.3 Formula for the Mass of a Black Hole 

In the general case of a stationary axially symmetric system, the total mass, total 
angular momentum, and total charge of the system can be determined from the 
requirement that the asymptotic behavior at large distances must correspond to 
the Newton analog: 

",Me2 = 2 f V'kids·· ')' Q = _(411")-1 f F'ids ii , (2.4.6) 

Soo Soo 

",1 = - f Viti ds,) ; (2.4.7) 

Soo 

here the integration extends over an asymptotically remote two-dimensional 
space-like surface Soo at the pseudo-Euclidean infinity. 

When a large mass collapses, there is a loss of information about this star for 
an external observer, for whom the resulting field of the black hole (as the final 
state of the collapse) is characterized by only three parameters - the mass, the 
angular momentum, and the charge. From the point of view of thermodynamics, 
the final state of a collapsing system must be characterized by the maximum 
value of the entropy. It has been shown by numerous authors [2.56--64] that in 
the process of weakly nonspherical collapse the details of the internal structure 
of the star have an influence on the external field which vanishes according to a 
power law as the surface of the star approaches the horizon (see Chap.4), and 
that no fields other than the gravitational and electrostatic fields can exist outside 
the black hole. 

Following [2.48], we shall derive a relation between the scalar A (the tem­
perature of the black hole), the area of the black hole, the angular speed of its 
rotation, the electrostatic potential, and the parameters associated with the con­
servation laws (2.4.6,7), without making use of the proof given by Robinson 
[2.45] that the Kerr-Newman solution is locally unique among the stationary 
solutions of the electrovacuum equations possessing a nondegenerate horizon. 

For this, we construct a three-dimensional space-like surface E. According 
to the generalized Stokes's theorem [see (2.2.11)], the expression for the energy 
(2.4.6) can be transformed to 

",Me2 = 2 f V'Pdsii - 2 J Vi VikidEi . (2.4.8) 

H E 

Using the result of Problem 1 in Sect. 2.2.3, this expression can be rewritten 

",Me2 = 2 f '\lipds ii +2 J R~kldEi . (2.4.9) 

H E 

The integral over the horizon H on the right-hand side of (2.4.9) can be trans­
formed as follows: 
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f Vi ki dSii = j Vi [1 ds i} - il f Viti dS'i (2.4.10) 

H H H 

The differential 2-fonn dS ii is related to the element of area dA by the equation 

where Ii and ni are isotropic vectors orthogonal to the surface H, with lin' = 1. 
Using (2.4.3), we obtain from (2.4.9) the following result for the coefficient A: 

KMc2 =2 fAdA+2illHK+2 j R;kidE. , (2.4.11) 

H E 

KlH = - f Vi ti ds'} (2.4.12) 

H 

The constant lH is called the angular momentum of the black hole. The scalar 
lH defined by (2.4.12) is identical to the total angular momentum I defined by 
(2.4.7) if, off the horizon, there are no non gravitational fields or matter which 
give additional contributions to the angular momentum. In what follows, we shall 
assume that outside a black hole there exists only an electric field with sources 
equal to zero, and lH = I in view of the absence of magnetic charges. 

Using Theorem K, we can remove the scalar A from the integral sign and 
write (2.4.11) in the fonn 

KMc2 j . 0 -2- = RjP dE, + Kill + AA . (2.4.13) 

E 

We choose the surface E such that the nonnal to it is orthogonal to the vector 
t. Then 

j R'okidE- = jR'lidE } . } . (2.4.14) 

E E 

Suppose that 

Ii Rio = ~FilVI q;+ 
} 871" 

(2.4.15) 

Using (2.4.15), the expression (2.4.14) can be rewritten in the fonn 

j liRiodE- = ~ jv (q;+Fil)dE- = -~ fq;+Fi1ds o 
) • 871" I • 871" tl , 

(2.4.16) 

E E H 

since the integral over Soo tends to zero because of the properties of the asymp­
totic behavior of the electric field. 



2.4 Energetics of Black Holes 107 

According to Lemma 7, the potential ~+ is a constant on the horizon, and 
therefore ~+ can be removed from the integral sign. Thus, (2.4.16) takes the form 

J Ii Ri.dE· = ~+QI>, 
J' 2 ' 

since in the absence of sources off the horizon we have 

f Fil dSil = f Fil dSi/ = -47rQ . 

8 00 H 

Therefore the formula for the mass of a black hole finally takes the elegant form 

(2.4.17) 

In the Kerr-Newman solution, all the parameters of a black hole can be ex­
pressed explicitly in terms of quantities satisfying conservation laws: the mass, 
the angular momentum I, and the charge Q. If, however, the independent pa­
rameters are taken to be the area A of the horizon and the quantities I and Q, 
then for n and ~+ we have the expressions 

n = 471'1 
MA' 

~+ = 47rQ (A + Q2) . 
AMC2 I>, 2 

(2.4.18) 

The area of a black hole is related to its parameters by an equation discovered 
by Christodoulou and Ruffini [2.65,66]: 

(M c2)2 = 471' - + - + - + -- . { A Q2 Q4 12c2 } 
1>,2 I>, 4A A 

Using (2.4.17-19), we find for the scalar A the expression 

A = M~ A (AI I>, + Q2/2 - G M2) 

2.4.4 "Thermodynamics" of Black Holes 

(2.4.19) 

If the collapse of a sufficiently large mass takes place in a restricted region, the 
final state of the collapsing mass can evidently be only a black hole in which the 
singularity is hidden from a distant observer by an event horizon. This hypoth­
esis is highly plausible; in any case, it is true for a body with small deviations 
from spherical symmetry (see Sect. 4.3), In the general theory of relativity, many 
solutions belonging to the class of so-called "bare singularities" are known: the 
Weyl solutions and the Kerr-Newman solution (in particular cases, the Kerr and 
Nordstrom-Reissner solutions) with GM2 < Q2+12ClI(GM2). It is physically 
obvious that collapse cannot occur if a mass rotates too rapidly (when the cen­
trifugal forces prevent compression into a compact object) or if the matter is 
charged (when collapse is prevented by the electrostatic repulsion), 
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Theorem L due to Hawking [2.30,49]. For all classical interactions of black 
holes, the total area of their event horizons cannot decrease. 

As we have already pointed out in Sect. 2.1, in a space-time manifold which 
is asymptotically simple in the weak sense there exists a family of space-like 
surfaces {C(T)} which intersect the horizon H+(H+ == 8I-(8+» on connected 
compact two-dimensional surfaces Li(T), i = 1,2, ... , N, and the conformal 
pseudo-Euclidean boundary 8+ on a two-dimensional sphere. The number of 
black holes N can change with time, since black holes can "fuse", with the 
formation of a common event horizon. Black holes cannot break up, since in the 
Cauchy region for the surface C: D+(C) each time-like curve directed into the 
past must intersect the surface C outside the black holes, in the set C n I-(B+). 

Suppose that at T = TO the boundary H+ consisted of two components Ll and 
L2 (i.e., at T = To there were two black holes) and that at T = Tl the boundary 
H+ consisted of one connected component L3. As we noted in Sect.2.1, the 
isotropic geodesics which form the horizon H+ can only expand. The closed set 
L3 consists of the closed set of points belonging to the isotropic geodesics which 
at T = To passed through Ll and L2, as well as the open set of points belonging 
to the isotropic geodesics having initial points between the surfaces C( TO) and 
C( Tl). Therefore the area of the two-dimensional surface L3 is strictly greater 
than the sum of the areas of Ll and L2 of the black holes before their fusion. 

Imagine that for a certain time a black hole was subjected to external influ­
ences, as a result of which its initial parameters M, I, and Q have changed to 
values M + dM, I + dI, and Q + dQ in a final stationary state, and that before 
this state was reached all the perturbations not associated with the three basic 
parameters have died away. It follows from the Christodoulou-Ruffini formula 
(2.4.19) that the differentials dM, dI, dQ, and dA are related by the equation 

2 411" [A Q2 2] A 
d(Mc ) = Mc2A -;; + T - GM d-;; 

+ :~~ [~ + ~2] dQ + ~~ dI (2.4.20) 

Making use of (2.4.18), from (2.4.20) we obtain 

d(M c2) = AdA + il dI + ~+ dQ . (2.4.21) 

'" 
We compare (2.4.21) with the first law of thermodynamics for a charged, 

ideal, axially symmetric conductor rotating with angular speed il: 

dE = T dS + il dI + ~ dQ . (2.4.21') 

Here ~ is the potential of the conductor, E is its energy, T is the temperature, 
Q is the charge, and I is the angular momentum. According to the second law, 
the entropy S in an adiabatically isolated body can only increase. 

The analogy between the corresponding terms in (2.4.21) and (2.4.21') is 
quite transparent. Comparing (2.4.21) with (2.4.21 '), Theorem L offers grounds 
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for supposing that the role of the entropy in the "thennodynamics" of a black 
hole is played by a quantity proportional to the area of its horizon (or a mono­
tonic function of A). By means of traditional thennodynamic arguments (relating 
to the work of a heat engine in a Carnot cycle), it can be shown [2.67,68] that 
the entropy of a black hole must be proportional to its area. The exact value of 
the coefficient of proportionality can be found only on the basis of arguments 
involving quantum field theory [2.31,49]. Using the relation between the tem­
perature of a black hole and the scalar A mentioned in Sect. 2.4.1, we find from 
the equation THdSH = A dA/ K an expression for the entropy of the black hole 
in the fonn SH = 27rkcA/(KA), where k and A are Boltzmann's and Planck's 
constants, respectively. 

Equation (2.4.21) can be obtained differently by relating the change in the 
area of the black hole to the flux of energy and angular momentum of the matter 
through the event horizon in the linear approximation. 

Let us consider the perturbed equation (1.1.60) on the horizon, where in the 
unperturbed stationary solution the rotation coefficients e, u, and k are equal to 
zero on the horizon. In the case of a perturbation of the horizon, we assume that 
the vector I remains isotropic and tangential to the light rays from which the 
horizon is fonned. Then in the perturbed state we have a vanishing coefficient 
k = 0, and this equation takes the fonn 

de K· 
dv = Ae + "2?ij l'P, A = e + e* . (2.4.22) 

The parameter e has the meaning of an index giving the rate of convergence of 
the light rays (see Sect. 1.1): 

2e = -8ln..;g /8v , 

where 9 is the detenninant of the metric on a two-dimensional space-like cross 
section of the horizon. Therefore, if A is the area of this cross section, we have 

dA/ dv = -2eA . (2.4.23) 

Solving the linear equation (2.4.22) for e, we obtain 

00 

e = -i J Tijlil j exp[A(v - v')] dv' . (2.4.24) 

tI 

In (2.4.24) it is also assumed that when v -+ +00 the black hole reaches a 
stationary state, so that e -+ 0 for v -+ 00. Substituting (2.4.24) into (2.4.23) 
and integrating with respect to v from -00 to +00, we readily obtain 

6A=]JTij1idEj, dEj=ljdAdv, lj=kj+Dtj. (2.4.25) 

We now make use of the fact that the vector Tijki is the energy flux density, 
while the vector -Tijti is the angular-momentum flux density. Therefore the 
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integrated flux of energy and angular momentum of uncharged matter through 
the horizon must lead to changes in the mass and angular momentum of the 
black hole by the amounts 

6(Mc2) = J TiikidEi, O! = - J TiitidEi . 

Then for the change in area of the black hole we obtain from (2.4.25) the final 
expression 

A6(A/I\:) + QO! = 6(M c?) . (2.4.25') 

When 6Q = 0, (2.4.25') is identical to (2.4.21), which we obtained formally 
using Christodoulou's formula. 

We now consider the extraction of energy from black holes. 

a) Consider the following thought experiment [2.69]. Suppose that a test 
particle falls freely in the field of a stationary black hole described by the Kerr 
solution, and that inside the ergosphere (as a result of some internal mechanism) 
it breaks up into two particles, one of which is captured by the black hole, while 
the other escapes to the pseudo-Euclidean infinity. Let us calculate what energy 
and angular momentum are carried away by the escaping particle. Since the field 
of the black hole is assumed to be stationary, the quantity Piki = Eo is constant 
along the trajectory of the particle (the time-like vector Pi is the 4-momentum of 
the particle). Outside the ergosphere the vector ki is time-like, so that the constant 
Eo can only be greater than zero. However, inside the ergosphere the expression 
p.ki can be negative, since the vector k i is space-like inside the ergosphere. 

IT the particle breaks up into two uncharged particles, the energy and angular 
momentum must be conserved: 

(2.4.26) 

It is possible to choose the parameters of the breakup in such a way that one of the 
produced particles has negative energy, i.e., EI < 0, and moves in the direction 
opposite to that of the rotation of the black hole, i.e., II < O. In that case, if 
the original particle was moving in the direction of rotation of the black hole, 
the second produced particle (which escapes outward) will have values of the 
energy and angular momentum exceeding those of the initial particle. Therefore 
the second particle extracts energy and angular momentum from the black hole, 
carrying them away to the pseudo-Euclidean infinity. 

The black hole "swallows" the first particle and decreases its mass and angular 
momentum: 

6(M c2) = El < 0, O! = 11 < 0 . 

The process takes place with the maximum gain of energy in the case of breakup 
of the incident particle near the horizon, when the first particle has 4-momentum 
which is asymptotically parallel to the vector Ii = ki + Qti. However, in this 
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case El and 11 are related by the equation El = nIl (where n is the angular 
speed of rotation of the black hole). It is only in this limiting case that the area 
of the black hole will not increase, according to (2.4.25'). In the general case, 
when a particle breaks up in the ergosphere with fulfillment of the conservation 
laws (2.4.26), the surface area A of the black hole can only increase. In the 
first (limiting) case it is natural to say that the process is reversible, whereas in 
the general case the process is irreversible in view of the previously mentioned 
analogy between the area A and the entropy S. 

Using (2.4.19), we can readily estimate the maximum energy which can be 
extracted from an uncharged black hole. When a black hole loses its rotation, 
it becomes an uncharged black hole described by the Schwarzschild solution. 
The maximum amount of energy can be extracted from a black hole by means 
of reversible processes, when the final (irreducible) mass of the black hole is 
related to the original area A by the equation ~CJ Mo = ",,411" A. Therefore the 
upper limit on the energy which can in principle be extracted from a black hole 
by means of reversible processes is 

(2.4.27) 

b) Another classical process in which energy of rotational motion can be 
extracted from a black hole was proposed by Press [2.70]. Suppose that a black 
hole is situated in an external stationary field. Inside the ergosphere of the black 
hole, this field cannot change in a stationary manner from the point of view of 
a distant observer, since inside the ergosphere the Killing vector ki becomes 
space-like. 

Therefore, if a rotating black hole is situated in an external stationary force 
field, a local observer will see a flux of energy through the horizon. Because of 
this, the black hole evolves into another configuration (with mass not less than 
the irreducible mass). The direction of rotation of the black hole is aligned by 
the external force field in such a way that in the final configuration the total flux 
of energy through the horizon is equal to zero. 

c) The Penrose method of extracting rotational energy from a black hole 
can be modified somewhat by considering, instead of incident particles, inci­
dent waves, such as scalar, electromagnetic, or gravitational waves [2.62,71-74]. 
Since the main background is stationary and axially symmetric, solutions of the 
equations for the perturbations can be sought in terms of a superposition of solu­
tions of the form exp[i(wt + mc.p )]. For a monochromatic wave, the ratio of w to 
m gives the ratio of the flux of energy to the flux of angular momentum in the 
incident wave, and this same ratio will be preserved in the reflected and trapped 
waves. 

Therefore the ratio of the increment in the energy of the black hole to the 
increment in its angular momentum will be w/m: 

(2.4.28) 
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On the other hand, it follows from (2.4.21) that 

o(M~) 2:: nO! , (2.4.29) 

since oA 2:: 0 according to Theorem L. It follows from (2.4.28,29) that the 
reflected wave will carry away energy of the black hole, i.e., oM will be less 
than zero, only if w < nm [2.72]. We emphasize that this criterion of Starobinsky 
for enhancement of a wave after reflection from a rotating black hole does not 
depend on the specific form of the wave - scalar, electromagnetic, etc. This 
phenomenon of enhancement of waves after reflection from a rotating black hole 
has been called "superradiation" [2.74]. 

d) Hawking [2.75] has presented elegant arguments concerning an upper limit 
on the emitted energy when black holes collide. 

When two black holes approach each other, it can happen that there is an 
isotropic surface S having a compact space-like cross section and containing the 
horizons of both black holes in its interior, when the light rays of the surface S 
are unable to overcome the forces of gravity and escape to the pseudo-Euclidean 
infinity. This process can be treated as the fusion of two black holes with areas 
Al and A2 into a third black hole with area A3. 

It is obvious that a portion of the energy (MI + M2 - M3)Cl must be emitted 
in the process of fusion. Using (2.4.19), we can readily estimate an upper limit 
on the emitted energy. If the original black holes with masses MI and M2 and 
the resulting one with mass M3 are not charged and do not rotate, each of them 
obeys the relation 

According to Theorem L, 

Al +A2:::; A3 . 

Using (2.4.30), this inequality can be rewritten 

M~+M~:::; M~ . 

(2.4.30) 

Therefore we have the following inequality for the fraction of the emitted energy: 

MI + M2 - M3 < 1 _ v'Mi + M~ < 1 __ 1_ 
MI + M2 - MI + M2 - V2 

Thus, when uncharged nonrotating black holes collide, up to (l-I/V2)I00% ~ 
29 % of their initial energy can be emitted. 

In the general case of the fusion of charged and rotating black holes with 
masses MI and M2, up to (1 - 1/ V8) 100 % ~ 65 % of the initial energy (MI + 
M2)Cl of the colliding black holes can in principle be emitted. 

We note that the actually calculated fraction of the energy emitted in a col­
lision of two black holes may be much lower than the upper limits given here 
[2.76]. 



3. Stationary Axially Symmetric Fields 
in General Relativity 

In addition to gravitational and electromagnetic fields, neutrino fields are objects 
of fundamental research in theoretical physics. The subject of this chapter is the 
nature of the interaction of these three types of material fields in fairly general 
situations. 

In Sect. 1.2 we showed that in a region of neutrino emission there is a rotation 
of the polarization vector of linearly polarized gravitational waves. If, besides the 
neutrino emission, an external electromagnetic field is present, then gravitational 
and electromagnetic waves propagate as if there were no neutrino emission but 
there existed a certain effective electromagnetic field different from the given 
field. As was first shown in [3.1] (see Sect. 1.2), the process of propagation of 
waves in arbitrary external electromagnetic fields takes place as a gradual mu­
tual conversion of gravitational and electromagnetic waves, with a simultaneous 
rotation of their polarization vectors. 

In Sect. 3.1 we derive the canonical equations of the neutrino-electromagnetic 
vacuum with an Abelian group of motions G2 on \t2. For the canonical equations 
obtained in Sect. 3.1, in Sect. 3.2 we study a Lie algebra with a countable number 
of parameters and carry out its exponentiation. We also give the general solution 
of the electrovacuum equations for Ernst data on the axis of symmetry, using 
an integral equation obtained by the present author for a unique function, and 
we present new classes of exact solutions of the equations for the neutrino­
gravitational vacuum (Sect. 3.3). Use is made here of a model of the free neutrino 
field described by Weyt's equations. Like the Dirac model of the electron, this 
model has a well-known defect (an indefinite sign of the energy density), and this 
creates a number of difficulties, which can be eliminated by second quantization. 
Experiments to detect a possible neutrino mass and to study solar neutrinos may 
necessitate a radical revision of the existing concepts of neutrino physics. The 
classical approach developed here for the neutrino field would then be merely 
asymptotic. 

Finally, in Sect. 3.4 we study a relationship among the integrable systems of 
equations of mathematical physics, which consists in the possibility of a linear 
representation of their internal-symmetry algebras (Lie-Backlund algebras) by 
infinite-dimensional matrices. 
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3.1 Canonical Equations of Massless Fields 
Admitting Abelian Two-Parameter Groups of Motions 

We shall consider a space filled with free electromagnetic and neutrino fields 
which interact with free gravitational fields - the so-called neutrino electrovac­
uum. The complete system of equations describing this vacuum consists of Ein­
stein's equations with the energy-momentum tensor of the neutrino and electro­
magnetic fields, Weyl's equations, and Maxwell's vacuum equations. 

We shall consider the form of the equations of this system for solutions 
possessing an Abelian group of motions Gz. The situation in which one of the 
Killing vectors is time-like, while the second one is space-like and has closed 
orbits, corresponds to the case of stationary fields with axial symmetry. The 
situation in which both commuting Killing vectors are space-like corresponds to 
the case of plane or cylindrical waves. 

In what follows, we shall refer to these cases as cases (a) and (b), respectively. 

a) We write the square of the interval in the form 

(3.1.1) 

where the asterisk indicates complex conjugation, and in this case the vectors 
I, n, m, m* forming the complex tetrad do not depend on the time t or the 
coordinate angle r,p. In what follows, we shall use capital Latin letters A, B, ... 
(A, B, ... = 1,2) for the indices corresponding to the coordinates t and r,p, and 
Greek letters J.l, v, ... (J.l, v, ... = 3,4) for the remaining coordinates. 

We shall write the complete system of equations in terms of projections onto 
the indicated tetrad field. This will enable us to make use of the well-known 
calculations of Newman and Penrose (see Sect. 1.1). 

Let D, .1, 8, and 8* be the operators of differentiation along the vectors I, 
n, m, and m*, respectively. 

Weyt's equations for the neutrino field have the form 

DiP + 8*rjI = (~ - e)iP + (a - 1\")rjI , 

6iP + .1rjl = (r - {J)iP + ("Y - J.l)rjI , 

where iP and rjI are complex functions describing the neutrino field. 

(3.1.2) 

In order to calculate the rotation coefficients a, (J, "Y, e, ... of the complex 
tetrad, we reduce the arbitrariness in the choice of the coordinate subsystem 
x/J by requiring a conformal Euclidean character of the metric coefficients g/Jv , 

after which, instead of the real coordinates x3 and x4, we introduce the complex 
coordinates V2 e = x3 + ix4, V2 C = x3 - ix4. The square of the interval then 
takes the form 

dsz = gAB(dx A + 8g Ade + 8g A* dC)(dx B + 8g B de + 8g B* dC) 

- 28zde dC , (3.1.3) 
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where gAB and () are real functions of xl', and gA are complex functions of xl-'. 

We note that in the presence of a neutrino field there do not exist two-dimensional 
surfaces which intersect both Killing vectors orthogonally. 

We introduce 1 A and n B by means of the definition 

We shall raise and lower capital Latin indices by means of the metric gAB and 
introduce the notation r == vi det gAB I. 

From the definition of the rotation coefficients of the tetrad field (see Sect. 
1.1), we have 

* lar lAa lAa 
T=-7r =-2(h.ae ' k=-Ol ae lA v=On aenA 

n = -n* = 2c: = _l_lB [~(ogB) _ ~«()gB*)] 
0: 0: 202 ae* ae 

//. = -//.* = 2"" = _l_nB [~(OgB) _ ~(OgB*)] 
r r I 202 ae* ae (3.1.4) 

l[Aa Aa] laO 
a = 40 n ae* lA - 1 ae* nA - 202 ae* ' 

l[Aa Aa] laO 13 = 40 n ae 1 A - 1 ae n A + 202 ae ' (j = ,\ = 0 

The tetrad components of the energy-momentum tensor of the neutrino field, 
47rT~':')limj = ifJ(v) and 47rT(v)n'mi = ifJ(v) can be expressed in terms of the 

I) 01 ') 12 ' 
components of the spinor field, ifJ and tfF, as follows1: 

ifJ~~) = 47ri[tfFl5tfF* - tfF* I5tfF - kifJifJ* + eifJ*tfF + (13 - a* - 7r*)tfFtfF*] , 

ifJ~~) = 47ri[ifJl5ifJ* - ifJ*l5ifJ - v*tfFtfF* -ptfF*ifJ + (a* - 13 - T)ifJifJ*] 

(We are using a system of units in which the speed of light and the gravitational 
constant are equal to unity.) 

The expressions for these same tetrad components of the Ricci tensor, ac­
cording to its definition, have the form 

ifJOI = (15 - a* - 13 - 3T)e/2 + kp/2 , 

ifJ12 = (15 + a* + 13 - 3T)p/2 + v* e/2 

For what follows, it is important that the corresponding components of Einstein's 
equations [taking into account Weyl's equations (3.1.2)] can be written in the 
form of the system 

1 For the eleco-omagnetic field, the components cp~;"') and CP~":,) of the energy-momentum tensor 
are equal to zero; here and in what follows, the superscripts (v) and (em), respectively, label the 
neutrino and eleco-omagnetic components of the energy-momentum tensor. 
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(6 - a* - (3 - 3T)A - kB = 0 , 

(6 + a* + (3 - 3T)B + 11* A = 0 , 

where 

A == (! + 87ri!P!P*, B == JL - 87ri4i4i* . 

Here we use only the trivial solutions of the system (3.l.5): 

A=B=O . 

In this case, Weyl's equations (3.1.2) can be rewritten in the fonn 

6*!P = -47ri!P*!P4i + (a - 7r)!P; 64i = -47ri4i4i*!P + (T - (3)4i 

(3.l.5) 

(3.l.6) 

(3.l.2') 

Using the expressions (3.1.4) for a, (3, T, and 7r, we find that the system 
(3.1.2') has the important "first" integral 

(3.1.7) 

where w is an arbitrary real harmonic function, and the factor iJ87r and the 
expression for an arbitrary analytic function of e* in the fonn of the deriva­
tive of the function w with respect to e* are introduced for convenience in the 
calculations. 

Let us consider the tetrad components of the energy-momentum tensor of the 
neutrino field, 4i~) = 47r71;) I' Ii and 4i~~ = 47r71;)nini: 

4i~) = 87ri[k4i!P* - k*!P4i* + (c - c*)!P!P*] , 

4i~) = 87ri[II*4i!P* - 1I!P4i* + (-r* - ])4i4i*] 
(3.1.8) 

The underlined tenns in (3.1.8) cancel with the terms _(!2 and _JL2 of the Ricci 
tensor in Einstein's equations, by virtue of the solutions (3.1.6). The correspond­
ing components of Einstein's equations (after multiplication by 0) will contain 
only the components of the energy-momentum tensor of the electromagnetic 
field, the metric coefficients gAB, and the harmonic function w. 

Before writing down these equations explicitly, let us consider the fol­
lowing tetrad component of Einstein's equations: 47rTiilinJ = 4ill = -(!JL -
(6 - 2T + (3 - a*)7r. The electromagnetic constituent of this component of the 
energy-momentum tensor vanishes (in the stationary axially symmetric case, 
the electromagnetic field is described by the two complex Newman-Penrose 
scalars 4io and 4i2, since 4it = 0). The neutrino constituent of this component is 
47ri[(c* -c)4i4i* +(]-]*)!P!P*] = -(!JL, and it follows from Einstein's equations 
that 

(6 - 2T - a* + (3)7r = 0 , (3.1.9) 
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from which, using (3.1.4), we find at once that Efr/ae ac = O. Therefore the 
real function r == vi det gAB I is a harmonic function. 

The choice of the coordinates e and e* is subject to a conformal transfor­
mation e = f(e), where f(e) is an analytic function. In order to eliminate this 
arbitrariness, we can, for example, require that the harmonic function r be equal 
to the real part of e Vi. 

For what follows, it is convenient to go over to a tensor notation for the 
tetrad components of Einstein's equations which appear in (3.1.8,9). We shall 
substitute the expressions (3.1.4) for the coefficients into Einstein's equations 

cJ! = 47r(T(':) + T(~m»)li Ii 00 I) I) , 

Ai 4 (rnlll) rnlem») i i 
~22 = 7r.l iJ +.1 iJ n n , 
Ai - 4 T(II) Ii i 
~u - 7r ii n . 

In general, a symmetric second-rank tensor MAB in a two-dimensional space 
is determined uniquely by the three projections MABIAIB, MABnAnB, and 
MAB1AnB. However, the coordinates t and r.p themselves for a fixed determinant 
gAB = lAnB+nAIB are fixed only with accuracy up to an arbitrary transformation 
from the matrix group SL(2, R). This group of transformations leaves invariant 
the Levi-Civita symbols CAB and e AB (e12 = -e21 = e l2 = _c21 = 1, eAA = 
eAA = 0, A = 1, 2). 

It is easy to derive the relations 

rnA=eACnc, rIA=eAclc, 

nA = reAcnc , IA = reAc lc 

for a fixed orientation Iln2 - nIh = r. 

(3.1.10) 

It can be readily verified that we have a symmetric tensor with the projections 

cJ!00 + rl = -(8* - 3a - (3* + 7r)k + rk* , 

cJ!u + f!fl = -(8 - 2r + (3 - a*)7r , 

cJ!22 + J-l2 = (8 + 3(3 + a* - r)v + 7rv* 

in the case of the tensor RAB/fP with 

1 [ a2 1 ar agAB 1 ar agAB 
RAB == 2" ae ae* gAB + 2r ae ae* + 2r ae* ----ar-

1 agAC agBD CD 1 agAC agBD CD] 
- 2" ----ar- ae* g - 2" ae* ---ae g 

(3.1.11) 

It follows from (3.1.7,8) that to reconstruct the energy-momentum tensor of 
the neutrino field from the three projections it is sufficient to find a symmetric 
tensor XAB from the projections 
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A B A81A 
1 1 XAB = Ok = -1 ae ' 

A B 1 AOnA 
n n XAB=-n --

o ae 

Bearing in mind (3.1.10), it is easy to verify that such a tensor is 

1 [agCDr agCDr] 
XAB = 4r 9AC--ar:-cBD + 9BC--ar:-cAD 

According to Einstein's equations, we have 

( aw * aW) r,em) 2 
RAB = - XAB ae* + XAB ae + AB 0 , 

where 11:) are the components of the energy-momentum tensor of the electro­
magnetic field. Contracting both sides of these equations with rgBC, they can 
be reduced to the form 

a [BCa(9AC+WCAd] a [ BCa(9AC+WCAd] 
ae rg ae* + ae* rg ae 

= 167r02rT"':~)gBC . (3.1.12) 

In the stationary axially symmetric case, only the components AB (B = 1,2) 
of the 4-potential Ai of the electromagnetic field are nonzero. Maxwell's vacuum 
equations in tensor form for the components FiB of the electromagnetic field 
tensor have the form 

0 -'("'7 FiB _ 1 a [r:;.(-PII-BC _PC_BII)aAc] 
- Vi - ---- v -g 9 9 - 9 9 -- , Raxp axil (3.1.13) 

where the tildes over the contravariant components of the metric tensor indicate 
that these components of the metric are calculated as components of the ma­
trix which is the inverse of gij (i, j = 1,2,3,4). As is readily verified, in the 
coordinate system (3.1.3) it follows from the equations Vi Fip = 0 that 

( B*aAB BaAB ) r4>l = r 9 -- - 9 -- = const = Ct 
ae* ae . 

(3.1.14) 

In the particular case in which Ct = 0, which is the only case considered here, 
the Newman-Penrose scalar 4>t vanishes. 

In what follows, we shall agree to raise and lower the indices of JAB and 
'PA by means of the tensor cAB [3.2]: 

JAB == gAB, Jf = JAcc BC , 

JAB = JDccBCc AD = _gABr2, JfJBc = r2cAc 

Using (3.1.14), we can rewrite (3.1.13) in the form 

a [1 C a ] a [1 C a ] - -JB-Ac +- -JB-Ac =0 . 
ae r ae* ae* r ae 

(3.1.15) 
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We go over to the real variables x3 and x4, and introduce the operator 
"il (fJ j fJx3, fJ j fJx 4) to denote the gradient (when applied to a scalar) or the di­
vergence (when applied to a vector). We now write (3.1.15) in the fonn 

(3.1.15') 

It follows from this that there exist potentials B A such that 

1 C -r- fA "ilAc = "ilBA , (3.1.16) 

where V == (fJjfJx4, -fJjfJx3). 
We introduce a potential <.p A [3.3] in the fonn <.p A == AA +iBA. Using (3.1.16), 

it is easy to show that the complex vector potential <.p A satisfies the equation 

(3.1.17) 

We now find expressions for the components of the energy-momentum tensor 
of the electromagnetic field, T~~) gBC, in the coordinate system (3.1.3), in order 
to obtain a closed system of equations for the neutrino-electromagnetic vacuum: 

4 ,.,.,(em) - F F" 1 F F"c 7u AB - - "A B + 2,gAB "C 

= ~ [fJAE fJAD + fJAE fJAD] 
(}2 fJ~ fJe fJ~* fJ~ 

[ _E _D 1 ED ] VA DB-2,g gAB· 

Contracting these expressions with gBC j(j2 (not to be confused with gBC j(}2!), 
we obtain 

4 il2 TC(em) = [fJAE fJA D fJAE fJAD] [_E DC _! ED_C] 
7ru r A r fJ~ fJ~* + fJ~* fJ~ DAg 2g VA . 

Making use of the equations (3.1.15) for the electromagnetic field, we rewrite 
the expression on the right-hand side in divergence fonn: 

"il {r [b~gDC - !gED b~] AE"il AD} . 

Using the fact that b~fED AE"il AD == AAfCD"il AD - AC ff"il AD, we rewrite 
this expression in the fonn 

Finally, Einstein's equations can be written as follows: 

"il [~ff"il (J~ + Wb~) - 2AAf DC"il AD - 2ff A c"il AD] = 0 

It follows from this that there exists a matrix potential (tP~): 

(3.1.18) 
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rV1fJ<i = I:V U~ + w6~) - 2AAIDCVAD - 2/f ACVAD 

We introduce a complex matrix potential (H :): 

VH: = V U: +w6!) - cpB*VCPA 

- ~ IX [V Ug + w6~) - cpB*VCPC] 
r 

(3.1.19) 

Taking into account (3.1.16,17), the condition for the existence of such a potential 
is provided by (3.1.18). It follows from (3.1.19) that the matrix potential (H:) 
satisfies the equation 

irVH:=/f~Hg . 

Following [3.3], we introduce potentials LB and K such that 

VL B =2cpc*VHg, VK=2cpc*Vcpc. 

(3.1.20) 

The condition for the existence of these potentials is provided by the equations 

Vcpc*V H g = 0, Vcpc*Vcpc = 0 . 

Following [3.5] (the Kinnersley-Chitre equations in 3 x 3 matrix form have 
also been used by Alekseev [3.6]), we form a complex matrix (H!) (a, b = 1,2,3) 
as follows: 

From (3.1.17,19,20) we obtain the following matrix equations for (H!): 

2irV2H! = VH~VH! , a,b,c,= 1,2,3 . (3.1.21) 

Thus, in the stationary axially symmetric case the Weyl-Einstein-Maxwell system 
leads to the closed system of equations (3.1.21), which, as we shall show in 
Sect. 3.2, possesses remarkable properties of group symmetry. A consequence of 
this matrix equation is the relation 

V 2H: =0 . 

It follows from the definition of (H!) and from (3.1.19) that V H: = 2(Vw-iVr). 
We introduce a harmonic function z conjugate to the harmonic function r (Vr = 
-Vz). The trace of the matrix (H!) is 

H: = 2(w +iz) . (3.1.22) 

Consider the components H'f and Hf of (3.1.21). Using (3.1.17,20,22), we 
obtain from (3.1.21) a system which is closed with respect to these components: 
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[ 2 V'(r + iib) ] (cpcp*+Re{H}) V' + r V' cp=V'cp(V'H+2cp*V'cp), 

(cpcp* + Re{ H}) [V'2 + V'(r; iib) V'] H = V' H(V' H + 2cp*V'cp) 

H == -Hr, cp == CPl , V'ib = Vw , 
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(3.1.23) 

where ib is the function which is harmonically conjugate to the function w. 

b) We now consider the case in which both commuting Killing vectors are 
space-like (the case of plane or cylindrical waves). The square of the interval in 
such pseudo-Riemannian spaces can be written in the form 

ds2 = 2(Pdu dv - gAB(dx A + g~du + g~dv)(dxB + g:du + g~dv) , 

where (), g:!, g~, gAB are unknown functions of u and v. In this case, the 
two-dimensional metric gAB is positive definite and can be represented in the 
form 

(the indices are lowered and raised here by means of the matrix gAB). In this 
case, it is natural to define a field of isotropic tetrads as follows: 

mi«()mAg~, ()mAg~, -ml, -m2) , 

[i«(),O,O,O,), ni(O,(),O,O) , m'(0,0,mt,m2), 

[i(O ()-1 1 2) , ,gv,gv' ,«()-1 ° 1 2) n , ,gu' gu , i = 1,2,3,4 

The operators ~ and ~* give zero when applied to the various scalar characteristics 
of the fields under consideration. The corresponding Lie derivatives of the tensor 
characteristics are also equal to zero. 

We write down the nonzero rotation coefficients of the tetrad for this case: 

where r = Jdet gAB. 
It is interesting that the components 4>10 and 4>21 of Einstein's equations, to 

which the electromagnetic field does not contribute, can be represented in the 
form 
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(D - 3e + c - c*)(o: + 47ri4>!li*) - 0'*(0:* - 47ri4>*!li) = 0 

and 

respectively. This system of equations, rewritten for the quantity 0: + 47ri4>!li*, 
has the trivial solution 

Using this solution, Weyl's equations take the fonn 

D4> = (e - c)4> + 47ri4>!li*!li , 

Ll!li = -47r!li4>4>* + (, - J-t)!li . 

These equations have the "first" integrals 

(3.1.24) 

where Cl and C2 are arbitrary functions of their arguments. The component 4>~~ 
of the energy-momentum tensor of the neutrino field has the fonn 

(3.1.25) 

The same tetrad component of the Einstein tensor, RiJ - gijR/2, is equal to the 
expression 

We note that the corresponding Einstein equation after multiplication by (J2 
contains only the components of the tensor gAB, the functions Cl(U) and C2(V) 
characterizing the neutrino field, and the components of the electromagnetic field 
tensor, since the tenns containing the factor 0: cancel with each other on both 
sides of Einstein's equations by virtue of (3.1.24). 

The component 4>11 of the Ricci tensor is 

1 cPr 4 * 
rf)2 au av - 0:0: 

(3.1.26) 

On the other hand, the same tetrad component of the energy-momentum tensor 
of the neutrino field is 
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Using (3.1.26), we obtain the wave equation for the function r == y'detgAB, 
from which it follows that 

r = f(u) + g(v) . 

We represent the expression 4>20+402 in the form rnA*rnB* RAB, where RAB 
is a symmetric second-rank tensor. Then the tensor RAB for fixed r obeying the 
wave equation can be reconstructed with accuracy up to a transformation from 
SL(2,R) (xl' = Axl + Bx2; x2' = Cxl +Dx2, AD - CB = 1). We carry out the 
same procedure in the case of the expression 4>c;;J + 402 for the neutrino field: 

4rfP(4)~) + 4(2) 

[ ( 
o(gDCr) O(gDCr») = rnA*rn B* CI(U) gAD ov eCB + gBD ov eCA 

( 
o(gDCr) ogDCr )] 

- C2(v) gAD ou eCB + gBD-a;;-eCA . 

Here we have used the fact that rrnB*eCB = irnc and rnlmi - rn2rni = ir. 
After this, the calculations become analogous to those already carried out 

in case (a), and therefore we give only the final result for RAB for the mixed 
components A, B = 1,2 of Einstein's equations: 

[rgAC(gBC + CeBc),ul,v + [rgAC(gBC + CeBc),vl,u 

= 161l"gACT;~tPr; C,u = CI(U), C,v = C2(V) , (3.1.27) 

where ~e:) denotes the components of the energy-momentum tensor of the 
electromagnetic field. 

Let AB be the nonzero components of the 4-potential of the electromagnetic 
field. Maxwell's vacuum equations have the form 

(rgAB A ) + (rgAB A ) = 0 . B,u ,v B," ,u (3.1.28) 

The indices of f AB, c.p A, and AB will be shifted by means ofthe tensor eAB. Cal­
culating the components of the energy-momentum tensor of the electromagnetic 
field and substituting them into (3.1.27), we obtain 

{r-l [fX (Jg + Ct5g) ,u - 2fXAc,uAB - 2fBC AC,UAA] },v 

+ {r-l [fX (Jg + Ct5g) ,v -2fXAc,vAB _2fBC Ac,vAA] },u =0 , 

fXfg = -r2t5~, Ac,u == oAc/ou . (3.1.29) 

In order to obtain a complete system of equations, we rewrite (3.1.28) in the 
form 

(3.1.28') 
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We introduce variables x and t by means of the relations 

x +t 
u=--

.,fi' 
x -t 

v= .,fi . 

Since (3.1.28') has a divergence form, there exists a vector potential BA: 

(3.1.30) 

Forming the combination AB + iBB, we have from (3.1.30) an equation of self­
duality for the gradients of CPA: 

(3.1.31) 

where 

\l=(!,!) , f/=(:x':t) . 

It follows from (3.1.29) that there exists a complex matrix potential (H!): 

\lH! = \l (I! + Cb7f) - cpB*\lCPA 

i [- (B B) B - ] c + - \l fc + Cbc - cP *\lcpc fA 
r 

From the definition of (H!) it follows that 

r\lH! = if1f/Hf] . 

(3.1.32) 

(3.1.33) 

Taking the divergence of both sides of (3.1.31,33), we obtain the equations 

2· ik &2CPA ikaCPC ( a HC 2 c* a ) 
lr7] axi axk = c axi axk A + cP axk CPA , 

(7]ik) = (~ ~1 ) ; 

(3.1.34) 

2· ik &2 H! ik aH f] ( a HC 2 c* a ) 
lr7] axi axk = C axi axk A + cP axk CPA, 

(c ik ) = (~1 ~) . 
(3.1.35) 

Introducing, as in [3.5], the 3 x 3 matrix (H!) (a, b = 1,2,3) such that 
H! = H! (a = A = 1,2; b = B = 1,2), H~ = CPA, \lH3B = 2cpc*\lHf], and 
\l Hj = 2cpc*\l CPc, from (3.1.34,35) we finally obtain the following equation 
for the matrix (H!): 

(3.1.36) 
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From the definition of (H!) and (H:') in (3.1.32) it follows that H: = 2( C + iz), 
where z is defined by the equation Vr = -Vz. 

For the components Hf = -H and H~ = I.{), we obtain from (3.1.31,33-35) 
the complete system of equations 

ik(R H *) [ EP H 1 o(r + iC) 0 H] 
TJ e +1.{)1.{) ~·~L+- ~. ~L 

vx' vX'" r vX' vX'" 

- O~i H (O~k H + I.{)* O~k I.{) ) = 0 , 

ik(R H *) [EPI.{) 1 o(r + iC) 0 ] 
TJ e + I.{)I.{) ox' oxk + ; oxi oxk I.{) 

- O~i I.{) (O~k H + cp* O~k cp) = 0 , 

where C is defined by the equation VC = VC. 
Our canonical equations for the neutrino electrovacuum, (3.1.17,18,20,21, 

23,29, 31, 33, 36, 37), are generalizations of the corresponding electrovacuum 
equations [3.2, 3, 5] to the case in which a neutrino field is present. 

3.2 Infinite-Dimensional Algebra and Lie Group 
of the Equations for the Neutrino Electrovacuum 

The description of the interaction of free gravitational, electromagnetic, and neu­
trino fields in the general theory of relativity (the neutrino electrovacuum) pos­
sesses, for solutions with an Abelian group of motions G2 on l'2, remarkable 
analytic properties, which make it possible to reduce the Weyl-Maxwell-Einstein 
system to a system of linear singular integral equations. This reduction is possible 
because of the existence of an infinite-dimensional Lie group which transforms 
one solution of the equations for the neutrino electrovacuum into another solu­
tion of these same equations. An arbitrary orbit of the group in its domain of 
analyticity can be approximated by rational functions. The corresponding exact 
solutions can be expressed in terms of the solutions of a system of linear alge­
braic equations (see Sect 3.3). In contrast to the well-known studies of Geroch 
[3.2], Kinnersley and Chitre [3.3], and Hauser and Ernst [3.5], we develop here 
a new approach which permits a generalization to the case in which neutrino 
fields are present. 

We begin with the system to which the Weyl-Maxwell-Einstein system is 
reduced in the stationary axially symmetric case (see Sect. 3.1): 

l·r"HAB = f ACi7HcB , l·r"'" - f Ci7'" . v v v~A - A v~C , A,B,C = 1,2 . (3.2.1) 

(To consider the case of plane waves, it is sufficient to make the substitution 
iz -+ t in the final results.) 
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We introduce a complex matrix potential H AB according to the definition 

A 3 x 3 matrix H with components H! is defined as follows: 

H! = H!, a = A, b = B, H~ = P A , 

V'Hf = 2pC*V'H/J, V'Hj = 2p c*V'p c . 

(3.2.2) 

(3.2.3) 

The existence of HAB satisfying (3.2.2) follows from Einstein's equations, 
and the existence of H3B and Hj follows from (3.2.1). 

It is remarkable that the relations (3.2.1) and the definitions (3.2.3) can be 
obtained from the single 3 x 3 matrix equation 

(eD + MV')H = 0 (3.2.4) 

here 

D = 2i(rV - zV') , M = M+ = eH - We - ~ 17 , 

( 0 1 0) 
e = -1 0 0 , 

o 0 0 
(

0 0 0) 
17= 0 0 0 , 

001 

and the superscript + indicates Hermitian conjugation. 
Using (3.2.1,2), it can be shown that 

2irV'2H = V'HVH . (3.2.5) 

It follows from (3.2.5) that there exists an infinite hierarchy of left and right 
matrix potentials Q m and H m' respectively, which can be defined recursively: 

V'Hm = V'HHm_1 - DHm_1 , 

V'Qm = Qm-I V'H + DQm_1 . 
(3.2.6) 

Each of the matrices H n (n = 2,3, ... ) is uniquely defined, apart from a 
constant matrix Cn. Therefore in the hierarchy of potentials we can perform 
transformations of the form 

H'". = Hm + Hm_ICI + H m-2C 2 + ... + HICm_1 +Cm (3.2.7) 

The matrix C I satisfies the condition 

eCI = cre , (3.2.8) 

which holds as a consequence of the invariance of (3.2.4). The matrices H n 

which we have introduced, like HI, satisfy the equations 

(eD + MV')Hn = 0 . (3.2.9) 
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In fact, owing to (3.2.4,6), we have 

(cD + MV)Hn+1 = eDHn+1 + M(VHHn - DHn) 
=eDHn+I-(eDH+MD)Hn 

= 2ir[eVHn+1 - (eVH + MV)Hn] 

-2iz[eVHn+I-(eVH+MV)Hn] 

= [-2ir(eb + MV) + 2iz(eD + MV)]Hn 

This expression is equal to zero, by hypothesis. 
We introduce a generating function for the matrix potentials H n: 

00 

F(r,z,s) = LHm(-is)m, Ho = 1 , HI = H . 
m=O 

The expansion coefficients of the matrix which is the inverse of F satisfy the 
recurrence relations (3.2.6), and we therefore identify them in what follows with 
the coefficients in the relation 

00 

F-I = L Qm(is)m . 
m.,() 

In the transformations (3.2.7), the matrix F is multiplied on the right by the 
matrix C(t): 

00 

F' = FC(t) , C(t) = L( -it)nC n, Co = 1 . 
n=O 

(3.2.10) 

It follows from the relations (3.2.6) that the matrices F satisfy a redefined 
linear system, the consistency conditions for which are the second-order equations 
(3.2.5) [this situation is unusual in that the first-order equations (3.2.4) must also 
be satisfied, and the conditions (3.2.5) are differential consequences of (3.2.4)]: 

~F = -1 +i;ies (~H) F 
~F= is (~H)F ae* 1 - 2ie* s ae* 

(3.2.11) 

It follows from (3.2.11) that the generating matrix F has branch points at 
s = ij2e and s = -ij2C. In fact, from (3.2.11) we have 

J (a ) -I 1r aH 
ae F F ds = 2e2 ae ' J (a ) -I 1r aH 

ae* F F ds = 2e*2 ae* ' 

where CJ and C2 are closed contours in the complex s plane around the points 
s = ij2e and s = -ij2C, respectively. 
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We shall demonstrate the existence of a Lie algebra of solutions of (3.2.4), 
linearized around an arbitrary solution H. 

We find from (3.2.4) that the perturbations 6H satisfy the equations 

(eD + MV)6H + (e6H - 6We)V H = 0 . (3.2.12) 

The system (3.2.12) has solutions of the form (r = const) 

n 

6H = Xn(r) = L(-I)k H krGn-k, G k = Hte + Ht_lM (3.2.13) 
k=O 

under the additional condition r + ( _1)n r+ = 0 (it is easy to see that the G k 
satisfy the same recurrence relations as the Qk). 

In fact, we have 

n 

6M = L(-I)ke[HkrH;;_k + Hn-kr+Ht]e 
k=O 

n-l 

+ L(-I)k(eHkrH;;_l_kM - MHn-l-kr+Hke) 
k=O 

Changing the order of summation in the second and fourth sums, and using the 
fact that r + (_I)n r+ = 0, we find for 6M the expression 

n-l 

6M = L(-I)k[eHkrH;;_l_kM - MHkrHn_l_ke] 
k=O 

Therefore, for (eD + MV)6H + 6MV H we obtain 

n 

L(-I)keH kr(DGn_k + H:_k_1MVH) 
k=O 

n 

+ L(-I)kMHkr(VGn_k - H;;-l-keVH) 
k=O 

This expression vanishes, since the expressions in parentheses are equal to zero. 
The solutions (3.2.13) are related to each other by the recurrence relations 

Xn VH - VHXn + DXn = VXn+l . (3.2.14) 

We shall now show that the solutions of the type (3.2.13) form an infinite­
dimensional Lie algebra. For this, we must find the perturbations 6H m and 
6Gm due to the perturbation 6H = Xn. On the basis of (3.2.6), it is easy to 
prove by induction that 

6H m = XnH m-l - Xn+l H m-2 + ... + (_l)m-l Xn+m-l , (3.2.15) 
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6Gm = Gm-IXn + G m-2Xn+1 + ..• + Xn+m-l . (3.2.16) 

In order to simplify the resulting expressions, we shall establish the existence 
of an integral of the system (3.2.11): 

F+(e + isM)F = "'(s) , (3.2.17) 

where "'(s) is an anti-Hermitian matrix which is independent of rand z. Indeed, 

~ [r(e + isM)F] = F+ I-'F , 

1-'= l+i;ies [a!f(e+iSM)-(e+iSM)~7 + a;(1+2ies)] 

The matrix I-' is identically equal to zero, since, as a consequence of (3.2.4), 

Under the transformations (3.2.4), the matrix "'(s) transforms as follows: 

"'('(s) = C+(sh(s)C(s) . 

We take advantage of the arbitrariness in the choice of C(s) to reduce the 
matrix "'(s) to its simplest form. For this, it is sufficient to note that the expansion 
of "'(s) in powers of s has the form "'(s) = n + o(s), where n = e - isH /2. 
The arbitrariness in choosing a function C(s) which is analytic at the origin 
[C(O) = 1] cannot affect the first two terms of the expansion. The remaining 
terms in "'(s), denoted by o(s), can be made to vanish by choosing an appropriate 
matrix C(s) in (3.2.10). 

We rewrite (3.2.17) in the form 

r(e + isM) = nF-I (3.2.17') 

and equate the terms here with identical powers of s. This gives 

1 n 

G", = eQ", - '2HQ"'-1 , L(-I)"'G",Hn -", =0 
"'=0 

GoHo =e, GIHo - GOHI = -H/2 , 

since 

n~2 

Go = e, Ho = 1 , HI = H, GI = eH - H/2 . 

, (3.2.18) 

Consider the commutator of two solutions Xp(r) and Xp(i') of (3.2.12): 

8Xp(r) - 6Xq(i') . 

It is easy to show that it can be transformed to the form 
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p+q-l 

L (Xk(r)Xp+q-i-k(r) - Xk(r)Xp+q-l-k(r)) . 
k=O 

(3.2.19) 

Making use of the relations (3.2.18) and the expressions for Xk' from (3.2.19) 
we obtain 

(3.2.20) 

Thus, the commutator of two solutions of the form (3.2.13) gives another solution 
of the same form, i.e., the relations 

9 + (_I)p+q-l g+ = jj + (_I)P+q-2 jj+ = 0 , 

9 == reI' - rer, jj == rill' - rIlr 

are simple consequences of the conditions 

Thus, the solutions of the form (3.2.13) do indeed form an infinite-dimension­
al Lie algebra. 

We shall now find the corresponding Lie group. 
For this, we multiply both sides of (3.2.15) by (-it)m and sum over m from 

o to 00. Using (3.2.18), we find that 

00 

8F = -it 2)it)PXp+nF , 
p=n 

from which it follows that 
00 

8F F-1 = -it 2)it)PXp+n (3.2.21) 
p=n 

Making use of the integral (3.2.17'), we rewrite the expression (3.2.13) for Xp 
in the form 

(3.2.22) 

(we recall that F-1 = L:~=o(islQk)' 
Applying the residue theorem, the expression for Xp can be readily repre­

sented in the form 

1 f -1 ds 
8Xp = 27r F(s)r!1(s)F (s) (is)p+l . (3.2.23) 

L 

Here L is a smooth contour which bounds a simply connected region L+ in 
the complex s plane, containing the origin s = O. By hypothesis, the series 
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L:~~ H k( -is)k converges in the region L+. Substituting (3.2.23) into (3.2.21), 
we obtain 

-I 1 f 00 tp+1ds 
6FF + -2 F(s)rO(s) L p+1(" ) 

11" L p=O S IS n 

-I 1 f tds =6FF +-2 F(s)rO(s) ( )C) 
11" s-t IS n 

(3.2.24) 

L 

In the general case, the solution of (3.2.12) consists of a sum of solutions 
of the form (3.2.13). Assigning the index n - 1 to the matrix r in the solution 
(3.2.13), 

00 n 

6H= LL(-I)kHkr n -IGn -k , 
n=1 k~ 

we obtain from (3.2.24) the expression 

-I 1 f -I tds 6FF + -2' F(s)r(s)O(s)F (s) ( )' n ss-t 
(3.2.25) 

where we have introduced the generating function r(s) == L:~~(is)-k rk. 
It is assumed that this series converges throughout the region L_ = C - L+. 

We emphasize that the matrix r(s) is Hermitian, since rkik = (rkik)+. 
The expression (3.2.25) is the variation (for an infinitesimal variation of the 

group parameters) of the expression 

f ,-I tds 
F(s)u(s)F (s) ( ) = 0 , 

ss-t 
u(s) == exp[r(s)O(s)] , (3.2.26) 

L 

where F(s) is the result of a displacement of the initial solution F(s) along the 
orbit of the group. For F differing slightly from F and for small r(s), (3.2.26) 
again leads to (3.2.25) (if we make use of the analyticity of F and 6F in L+). 

As an exponential of the product of a Hermitian matrix r(s) and an anti­
Hermitian matrix 0 = E -isII /2, the matrix u obeys the Hauser-Ernst condition 

(3.2.27) 

The central result of this section, which follows from (3.2.26), can be inter­
preted as the condition of analyticity of the matrix X(s) == F(s)u(s)F-I(s) in 
the region L_. 

Thus, despite the presence of branch points in the matrices F and F at 
s = i/2e and s = -i/2e*, the matrix X(s) is analytic in L_. Explicit exact 
solutions of (3.2.26) can be found for rational u(s) having pole singularities in 
L+ (see Sect. 3.3). 

We shall now find a condition satisfied by the matrix X(s). Taking the Her­
mitian conjugate of the matrix X-I, we obtain 
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(X-It = (F-I)\u-It p+ . 

Using (3.2.27), we have (u-I)+ = Uu{rl • From (3.2.17) we obtain 

(F-It = (e+isM)FU-1 , P+=UP-I(Mis+e)-I. 

(3.2.28) 

(3.2.28') 

We note that det(€ + isM) = det(€ + isM) = (1 - 2zs)2 + 4r2 s2 vanishes only at 
the branch points 2s = (z ± ir)-I. We shall show that I det xl = 1. Indeed, from 
(3.2.11) we have 

is a 
1 - 2ie* s ae* H . (3.2.29) 

Taking the trace of both sides of the matrix equation (3.2.29), we have 

a (1 de F) is a Ha 
ae n t = - 1 + 2ie s ae a , 

a is a a 
ae (In det F) = - 1 _ 2ie* s ae* H a 

(3.2.30) 

It follows from the definition of H! that H: = Tr{H} = 2(w+iz). Therefore 
from (3.2.30) we have 

detF = 1/)", ).. = )(1- 2zt)2 +4r2t2 exp(i<7) , 

<7 = 2t (J ~~ 1 +d1iet + J ;; 1 _d;;et) 
(3.2.31) 

[we set the constant of integration in (3.2.31) equal to unity, since F can be 
multiplied by a matrix C(t)]. 

From the definition of x' it follows that det X = det F det u det p-I = det u. 
From (3.2.27), we have I det ul = 1. Substituting the expressions (3.2.28') into 
(3.2.28), we obtain 

(X-It = (e +isM)x(e +isM)-1 or 
(3.2.32) 

x+(e + isM)X = e + isM . 

Another property of the matrix X is its analyticity at the branch points of the 
matrix F. From the definition of x' we find 

~x = 1 +i;ies (:eHX - x~iI) 
a is (a a .) 

ae* x = - 1 _ 2ie* s ae* H x - x ae* H , 

(3.2.33) 

Equation (3.2.32) is a first integral of the system (3.2.33). 
In view of the analyticity of X at the points s = (z ± ie)-I, it follows from 

(3.2.33) that 
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( a a .) 
a&Hx(s) - x(s) a&H . 

.. .. s=t/2.f. 

( a a .) = -.Hx(s)-x(s)-.H =0 
a~ a~ s=-i/U,. 

(3.2.34) 

Thus, we could find the matrix X(s) directly from the conditions (3.2.32-34), 
assuming that it is a rational function of s. 

The zeros and poles of X(s) lie only in the region L+ and are independent 
of r and z, since they arise from the zeros and poles of the matrix u(s), which 
is independent of rand z. 

Proof of the Geroch Hypothesis, Having discovered an infinite group of trans­
formations for stationary axially symmetric gravitational fields, Geroch [3.2] put 
forward the hypothesis that an arbitrary asymptotically flat space (in the absence 
of electromagnetic and neutrino fields) can be obtained from Minkowski space 
by means of an appropriate transformation from the group. This hypothesis was 
proved by Xanthopoulos, and also by Hauser and Ernst [3.5]. 

Here we present a proof that arbitrary free gravitational, electromagnetic, and 
neutrino fields in general relativity with Abelian groups of motions G2 on V2 can 
be locally obtained from "Minkowski space" (generalized to the case in which 
a neutrino field is present) by means of a displacement along the orbit of some 
infinite-dimensional extended group of transformations L oo• 

The proof consists of three parts: (a) the construction of an arbitrary 3 x 3 
matrix H on the symmetry axis by means of data on c, ~, and aw/ar at r = 0; 
(b) the construction of a 3 x 3 generating matrix F(O, z, t) on the symmetry axis; 
(c) the derivation of a relation between the components of H and the parameters 
of the orbit of the extended group which carries the "initial" solution if into the 
solution H. 

a) The construction of the matrix H near r = O. The 2 x 2 matrix lAB is 
singular on the symmetry axis r = 0, since det(fAB) = _r2 by definition. We 
assume that the 3 x 3 matrix H is an analytic function of r near the axis r = 0, 
and that H'f = -H = -£ and H? = C(J = ~ at r = 0 are locally holomorphic 
functions of z. If we assume that w f 0 at r = 0, then it follows from the condition 
of boundedness of HAB at r = 0 and from (3.2.2) that 112(0, z) = w(O, z). Then 
the closed orbits of the Killing vector t near the symmetry axis become time-like, 
since t· t = h2(0, z) = w2 > O. Therefore, if we are to avoid the appearance of 
closed time-like curves violating the principle of causality, we must assume that 
w = 0 at r = O. It follows from the fact that w is a harmonic function that w 
in the neighborhood of r = 0 has the form w = IX _l)nw?n)(z)r2n+1 /(2n + I)!, 
and therefore w = wl(z)r + O(r) near r = O. 

The expansions of the components H! (a, b = 1,2,3) in powers of r according 
to the system (3.2.1) and the definitions (3.2.2,3) are completely determined 
by the functions H'f(O,z), H?(O,z), and Wl(Z). Calculations give the following 
principal terms in the asymptotic forms of the components H! near r = 0: 



134 3. Stationary Axially Symmetric Fields in General Relativity 

HI ~ 2iz + 2Wl r, Hr ~ -£ + irWl o£ j oz , 

Hl~4!+irwlE»joz , 
(3.2.35) 

HJ ~ 122, Hi ~ il22o£ j2oz, H~ ~ -il2204! j20z , 
1 Z 3 (3.2.36) 

H3 ~ -21224!*, H3 ~ -il224!*o£joz, H3 ~ ihz4!*E»joz 

Here 122 ~ (wf - l)rz j 1(0, z), 1(0, z) = Re{£} + 4!4!*. 

b) The construction of the matrix F near r = O. We calculate the generating 
matrix F by means of the system 

(1 +2ies)F,e = -isH,eF , (l- 2iCs)F,e· = -isH,e· F , (3.2.37) 

substituting into it the asymptotic fonn of H according to (3.2.35,36). From the 
system (3.2.37) we find for F, apart from tenns O(r), the asymptotic behavior 
F ~ (l-iwlrojoz)F(O,z), where 

(
1 - 2zs)-1 is£(1 - 2zs)-1 

F(O,z) = 0 1 
o 0 

-is4!(1 - 2zs)-1 ) 
o . (3.2.38) 
1 

c) The relation between the transfonnation of the internal symmetry of (3.2.4) 
and the initial values t, ~ and transfonned values £, 4! of the solutions at r = O. 

A linear representation of the group Loo of nonlinear transfonnations of 
(3.2.4) is provided by the condition (3.2.26) of analyticity of the matrix function 
X = Fup-l in the region L_, which includes the point at infinity. In L_, we 
also have analyticity of the matrix function u(s) giving a displacement along 
the orbit of the group Loo , which carries Pinto F and is independent of rand 
z. The matrix function u(s) must be represented in the fonn (3.2.26) and must 
therefore satisfy (3.2.27). 

The matrix functions P and F are analytic in the region L+o which includes 
the origin s = 0, and F(s = 0) = 1, (OFjOS)3~ = -iH. The regions L+ and 
L_ are separated by a smooth contour L. The branch points of the matrix F, 
28 = (z ± ir)-l, belong to the region L_. 

The conditions (3.2.34) are necessary and sufficient for analyticity of the 
matrix X at the branch points. 

From the conditions (3.2.34) at r = 0, we have 

(H~)' x~ - X~ (iI!)' = 0 ; (3.2.39) 

here and in what follows, a prime indicates a derivative with respect to z, eval­
uated at r = O. 

We put a = 2,3 in (3.2.39), using the expressions (3.2.36) for H!. This gives 
X~ = 0 (a = 2,3). 

We now put a = 1 in (3.2.39). For b = 1 the condition (3.2.39) is satisfied 
identically, while for b = 2,3 we have 
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2iX16 = XlI (H16)' - (H12)'X26 - (H12)'X~I. (3.2.40) 
g 8=1/2% 

Using the form (3.2.38) of the matrices F(O, z), we have 

X 2 = u2 - istul X3 = u3 + is~ul a = 2,3 4 tJ 4' tJ a a , 

The components xt for b = 2,3 at r = 0 have the fonn 

2_ A 3_ B 
Xl - 1 2 ,Xl - 1 2 ' - zs - zs 
A = -ist(z)(u~ (s) + is£'(z)u1(s) - is~ul(s» + u~(s) (3.2.41) 

+ is£'(z)u~(s) - is~(z)u~(s) , 

B = is~(u~ + is£'u1- is~ul) + u~ + is£'u~ - is~u~ . 

For analyticity of xf and x~, and also fulfillment of the condition (3.2.40) at 
2s = liz, the numerators on the right-hand sides of (3.2.41) must vanish: 

A=B=O or 2s= liz. (3.2.42) 

We now factorize the group of linear transformations Loo as follows. Let us 
set u1 = ul = 0, u~ = 1. Then it follows from (3.2.26,27) that the general form 
of the matrix u is given by 

(
a as(,,/ - ia*a) iSaa) 

u = 0 1/a* 0 . 
o -2a* 1 

(3.2.43) 

Here a(s) and a(s) are arbitrary complex functions of s, and ,,/(s) is an arbitrary 
real function of s. All these functions are analytic in L_. 

To verify that the matrix u can be represented in the form of an exponential 
of the product of some Hermitian matrix and the anti-Hermitian matrix n, it 
is sufficient to take the logarithm of the matrix u by means of the Lagrange­
Sylvester formula. 

Substituting (3.2.43) into (3.2.42), we obtain 

£' = aa*(t + i,,/ - 2a*~ - aa*) 

~ = a(~+a) . 
(3.2.44) 

We note that £' and ~ can be continued analytically and uniquely into some 
neighborhood of the axis r = 0 by means of the equations (see Sect. 3.1) 

.c£' = 0, .c~ = 0 , (3.2.45) 

where the operator .c is defined as follows: 

.c == (Re{ £'} + ~~*)[rV2 + (Vr + iVw)V] - r(V£, + 2~*V~)V 
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Thus, on the basis of the relation between the parameters a(s), a(s), ,(s) of 
the group transfonnation and the functions £ and P, it can be seen that for any 
pair of solutions if and H which are analytic near r = 0 there exists at least one 
transfonnation of the internal symmetry of (3.2.4) which carries these solutions 
into each other. 

As an application of the results (3.2.44), we shall show how it is possible to 
obtain a solution corresponding to a charged black hole with mass m and charge 
q in a neutrino field. 

If we suppose that t = 1, 4> = 0 [this is an exact solution of (3.2.45)], the 
final solution for r = 0 takes the values 

£=z+zo-m, 
z+zo+m 

p= -....:q=---
z+zo+m 

z>m (3.2.46) 

(the origin is displaced on the z axis in order to ensure that the solution is analytic 
at z = 0). 

According to (3.2.14,46), we have 

2qs 
, = 0, w = -=----=--:=----:-

1 + 2s(zo + m) , 

2 2 1 + 2s(zo - m) 
a -w = w = aa 

1 + 2s(zo + m) , 

(3.2.47) 

The generating matrix p-l corresponding to t = 1, 4> = 0 has the nonzero 
components 

(p-l)~ =(-z+iw)t+(I+A)j2 , 

(p-l)r = -it , 

(p-l)~ = -iz - w + (A - l)j2it , 

(p-l)~=(p-l)~=1 , 

A = J(l - 2tz)2 + 4t2r2 exp(2it) [/ ~; 1 :;iet + c.c.] 

(3.2.48) 

We find the matrix F corresponding to the solution (3.2.46) from the equation 

/ 
. -1 tds 

F(s)u(s)F (s) ( ) = 0 , 
s s - t 

(3.2.49) 

L 

into which we substitute u(s) in the fonn (3.2.43) with the specific functions 
. -1 

(3.2.47) and the matrix F defined by (3.2.48). 
In the final solution, it is necessary to make the inverse displacement z+zo --t 

z. Then for £ and P in the coordinates rand z we obtain 

£ = A+ + A_ - 2m 
A++A_ +2m 
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To go over to the coordinates in which the Nordstrom-Reissner solution is 
usually written, we must make the substitutions 

2R = 2m + J (z + J m2 - q2 f + r2 + J ( z - J m2 _ q2) 2 + r2 , 

2J m2 - q2 COS () = J ( z + J m2 - q2) 2 + r2 - J (z _ J m2 _ q2) 2 + r2. 

3.3 General Solution of the Einstein-Maxwell Equations 
for Ernst Data Regular Locally on the Symmetry Axis 

In this section, we present a method of constructing the general solution of 
the Einstein-Maxwell system in the stationary axially symmetric case, and we 
give new classes of exact solutions of the Einstein-Weyl system. We mention an 
interesting paper [3.7] in which a solution of Einstein's equations was constructed 
for the vacuum with an arbitrary distribution of sources of mass and angular 
momentum on the symmetry axis. Comparatively few exact solutions of the 
combined system of Einstein-Weyl equations are known. An exact solution with 
a group of motions G3 on Vz has been found by Golubiatnikov [3.8]. Solutions 
with an isotropic Killing vector (the case of pure radiation) and with a zero 
energy-momentum tensor are known [3.9]. Solutions describing the interaction 
of a step-like neutrino wave and a 8-like gravitational wave have been found 
by Griffiths [3.10]. A solution depending on a single variable has been found 
by Repchenkov [3.11]. A self-similar interaction of neutrino waves in general 
relativity has been studied by Blazhennova-Mikulich. Cosmological solutions 
with neutrino fields have been studied by Henneaux [3.12]. 

Here we present (a) classes of solutions of the Einstein-Weyl equations de­
scribed by a first-order equation (in the absence of neutrino fields, they reduce 
to solutions found by Bitsadze [3.13]), (b) a method of constructing the local 
general solution of the electrovacuum equations regular locally on the symmetry 
axis, (c) methods of constructing exact solutions of the equations for the neutrino 
vacuum, (d) a method of obtaining topologically nontrivial vacuum solutions of 
Einstein's equations, and (e) gravitational fields of rotating magnetized stars. 
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a) A Class of Solutions Described by a First-Order Equation. We shall con­
sider a class of exact solutions of an equation obtained, as we have already shown 
[see (3.1.23)], from the Einstein-Weyl system in the stationary axially symmetric 
case for cp = 0: 

r\72 H + \7 H(\7r + i\7w) - 2r(\7 H)2 I(H + H*) = 0 , 

where w is a real harmonic function. We rewrite this equation in terms of the 
variables e = r + iz, C = r - iz: 

&H 1 [aH (1 . aw) aH (1 .aw)] 
ae ae* + (e + e*) ae "2 + 1 ae* + ae* "2 + 1 ae 

2 aHaH 
--(H + H*) ae ae* 

aA A (1 .aw) A* (1 .aw) 
= ae* + (e + e*) "2 + 1 ae* + (e + e*) "2 + 1 ae 

2 aH A 
(H + H*) ae* 

aB B (1 . aw) B* (1 . aw) 
= ae + (e + e*) "2 + 1 ae + (e + e*) "2 + 1 ae* 

2 aH B = 0 where 
(H +H*) ae ' 

aH (H + H*) (1 . aw) aH (H + H*) (1 . aw ) 
A == ae - (e + e*) "2 + 1 ae ,B == ae* - (e + e*) "2 + 1 ae* 
Therefore solutions of the first-order equations A = 0 or B = 0 are also 

solutions of the original equation. 

b) Construction of the General Solution of the Einstein-Maxwell Equations 
for the Stationary Axially Symmetric Case. In Sect. 3.2 we proved that the 

function X == Fup-l is holomorphic outside any closed contour L which en­
closes all the singularities of the matrix u and excludes the branch points of 
the matrix F. We assume that the branch points s = (2z ± 2ir)-1 are the only 
singularities of the matrix F on the Riemann sphere and that the matrix F is 
holomorphic off the cut C joining these two points. For P we take the generating 
matrix (3.2.48) of Minkowski space (the function w in this case is equal to zero). 
Suppose that the matrix u is factorized in accordance with (3.2.43). Then the 
components of u are related to the values of the Ernst potentials £ and cP on 
the symmetry axis by (3.2.44), in which t = 1, d! = O. Let £(0, z) == e(z) and 
cp(O, z) == f(z) be arbitrary locally holomorphic functions (not only meromorphic 
ones on the Riemann sphere). We shall find locally the general solution £(r, z), 
CP(r, z) of the Einstein-Maxwell system with these values on the axis. 

The matrix function X is analytic on the cut C, and therefore [X] == (X+ -
X-).c = 0, where X± are the respective boundary values of X on the left and 
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right sides of the cut. Calculating the components of X and making use of their 
continuity, we have 

[F;] = ise[F~], [~] = -isf[F~], a = 1,2,3 , 

is{F~}e{F;}-2j{~}=0, {A}=~+A_. 

(3.3.1) 

(3.3.2) 

In these relations, e and f are functions of the argument e = 1/2s, and e(O = 
(e(C»*, i(e) = (f(C»*· The matrix F is holomorphic off the cut .c. Therefore 
its components can be expressed in the form of the Cauchy integrals 

1 1 J ds 1 
Fa = 271"i (s _ t) [Fa] , 

C 

b b t J ds b Fa = Ca + -2' ( ) [Fa] , 
71"1 ss-t 

(3.3.3) 
b=2,3 . 

C 

In the expression for F~, we have not yet made use of the condition F~ (0) = c~. 
Therefore the discontinuity [F~] must satisfy the additional constraint 

271"ic! = J ~s[F~] . (3.3.3') 

c 

The discontinuities [F~] become infinite at the ends of the cut .c. We introduce 
the unknown functions /Ja = [F~h/(1 - 2zs)2 + 4r2s2, which are continuous 
and bounded on the cut .c. We use for [F!] the conditions which follow from 
their representations (3.3.3), namely, 

1 1 f ds 1 {Fa} = 7I"i (8 _ t)[Fa] , 
C 

b b tf d8 b {Fa}-ca=~ ( t)[Fa], 71"1 8 8-

(3.3.4) 
b=2,3 , 

c 

where the principal values of the integrals are taken. In order to obtain singular 
integral equations for /Ja, we substitute the expressions (3.3.4) into (3.3.2) and 
use (3.3.1). In the integrals, it is very convenient to transform to the variable of 
integration 0' defined by the relation 1/28 = Z + irO'. This variable 0' runs from 
-1 to +1, and the required integral equations take the elegant form2 

1 

f ~a(e) (e(e) + e(71) + 2j(71)f(e» = 271"r(c! - 2j(71)C;), (3.3.5) 
1 - 0' (0' - r) 

-1 

where e = z +irO', 71 = z +irr, r E [-1,1]. 

2 For the case of cylindrical (or plane) waves, we must put e == t + reT, " == t + rT in (3.3.5-7). 
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The components of the required matrix H can be expressed in tenns of the 
functions J.ta as follows: 

1 

HI = ~ J eJ.ta(e) du 
a 11" ~' 

-1 

(3.3.6) 

For a single-valued definition of J.ta, the additional condition (3.3.3') takes the 
fonn 

(3.3.7) 

We shall give the general solution of the homogeneous equation (3.3.5) for 
a = 1, dropping the subscript on J.tl and using the well-known fonnula 

11' 

1 f dO cos nO sin ncp 
;: (cosO-coscp) = sincp , n=O,I,2 .... 

o 

We expand the functions J.t(e), e(O, and f(e) in Fourier series, making the sub­
stitution u = cos 0: 

00 

J.t(0 = ~:::>k(r,z)coskO , 
k=O 
00 

f(O = L fk(r, z) cos kO , 
k=O 

00 

e(O = L ek(r, z)cos kO , 
k=O 

e == z + ir cos 0 

(3.3.8) 

From the condition (3.3.7) we obtain J.to = 1. Substituting (3.3.8) into (3.3.6), for 
the Ernst potentials E = - HJ, ~ = Hi we obtain the expressions 

1 00 

E=e(z)+'2 Le.J.t. , 
.=1 

1 00 

~ = f(z) + '2 Lf.J.t •. 
i=1 

(3.3.9) 

Substituting (3.3.8) into (3.3.5), we obtain the following system of equations for 
J.tk(r, z): 
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00 

L/-IsTsn = Tn , n = 1,2,3, ... , 
s=1 

n 00 

Tns == L ik+s1n-k + LUk+n+s1k - fkA+n+s - ik+s1k+n) 
k=O k=O 

s 

- L fs-k1k+n + es+n - es+n + Tsn 
k=O 

For s :::; n we have 

n-s S 00 

Tsn = en- s + en- s + L fk1n-s-k + L fs-k1n-k + L fk+n-s1k , 
k=O k=O k=O 

while for s > n we have 

n 8-n 00 

Tsn = es- n + es- n + L fs-k1n-k + L fs-n-k1k + L fn-s+k1k 
k=O k=O k=s-n 

The solutions (3.3.9) can be expressed in a more compact form. Introducing 
the notation D == det T,h De == det(Tik + eiTk), D f == det(Tik + f.Tk), these 
solutions can be written as ratios of determinants with infinitely many rows and 
columns: 

£ = e(z) + (De - D)/(2D), P = f(z) + (D f - D)/(2D) . (3.3.9') 

Thus, we have solved the problem of finding the general solution of the system of 
Einstein-Maxwell equations3 ! From (3.3.9') we can calculate an arbitrary solution 
with any degree of accuracy. We note that solutions in the Prandtl theory of thin 
wings and hydroplanes [3.14] are frequently written in a similar form. 

We shall now show how to find exact solutions of (3.3.5) for arbitrary rational 
functions e(O and f(O. We must first find the roots 6, 6, ... , eN of the equation 
e(e) + e(O + 2f(01(0 = O. We denote their multiplicities by ml, m2, ... , mN, 
respectively. There can be only real roots and pairs of complex-conjugate roots. 
The solution for /-1(0 must be sought in the form 

N 

/-1(0 = A + L(Al(e - edmk - 1 + Ai(e - ek)mk-2 + ... + AZ'k)(e - ek)-mk, 
k=l 

where Ai: and A are functions of rand z. 

3 For the general solution of the Cauchy problem in the case of cylindrical waves, the functions e(e) 
and f(e) can be related to the Cauchy data by means of (3.3.9') by putting t = O. 
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From (3.3.5,7), using the fonnulas 

1 J dO' 7r 

(a+iO'b)~ = Va2 + b2 ' 
-1 

f dO' 7r 

(a - 7")(0' - 'Y)Vl - 0'2 = (7" - 'Yh/y2 - 1 ' 

where a, b, and 'Y are arbitrary constants, we obtain a closed linear system for 
the detennination of A;:(k = 1, ... , N; n = 1, ... , mk) after making a partial­
fraction decomposition of the rational functions and equating the coefficients 
of the independent partial fractions to zero. Suppose, for example, that e(O = 
(~ - m - iv)/(~ + m - iv) and 1(0 = q/(~ + m - iv), where m, v, and q 
are constants. The equation e + e + 2/ j = 0 in iliis case has roots ~ = ±a, 
a = J m2 - q2 - v2. We seek a solution for J-l in the fonn 

A A+ A_ 
J-l = + (~+ a) + (~ _ a) (3.3.8') 

It follows from (3.3.7) that 

Substituting the solution in the fonn (3.3.8') into (3.3.5), we obtain 

~ A_ 
A= . + ., 

m - a - Iv m + a - IV 

A+(m2 - ma - q2 - ivm) A_(m2 + ma - q2 - ivm) 0 
--'----,-,---:-;;c=---;:----'- + = 

r+[(m - a)2 + v2] r _[(m + a)2 + v2] 

After finding A and A± and substituting them into the expressions for £ and iP 
calculated according to (3.3.6), we obtain 

£=A- ~(m+a+iv) _ A_(m-a+iv) 
r+(m - a - iv) r _(m + a - iv) 

r +eill + r _e-ill - 2m cos 8 
= 

. il V 
sm u == -;===;;===:;: 

Jm2 _q2 

This is, in fact, the well-known Kerr-Newman solution. In the general case of 
rational e(O and /(0, the expressions for £ and iP can be written as rational 
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functions of J(z - ek)2 + r2 and z - ek with k = 1,2, ... , N (the solution of 
Sato and Tomimatzu [3.15] is obtained as a particular case). 

c) Construction of New Solutions by Means of a Displacement According 
to Subgroups of an Infinite-Dimensional Group. The integral matrix equation 
(3.2.26) with t E L+ reduces to an integral equation for one unknown function in 
two significant cases: (1) when the matrix r(t) == u- n has only one nonzero off­
diagonal component; (2) when the matrix r(t) is diagonal. Although an arbitrary 
matrix r(t) can be represented in the form of the product of four matrices of the 
type 1, the study of transformations of the type 2 enables us to obtain physically 
interesting solutions by solving an integral equation only once. 

In this subsection, we derive integral equations and give their solutions for 
matrices r(t) which are arbitrary rational functions that are analytic in the neigh­
borhood of infinity, for the cases 1 and 2 defined above. With a particular choice 
of the neutrino field w in the form w = ±r, it turns out to be possible to obtain 
a solution for an arbitrary displacement according to a one-parameter subgroup 
of an infinite-dimensional group. 

1) We shall consider the integral matrix equation (3.2.26) with t E L+ for 
the component Fl(t) under the assumption that the matrix r(t) has only one 
nonzero component ri(t). We adopt the notation ri(t) = T(t), Fl(t) = -Y(t)t. 
We obtain a Fredholm integral equation of the second kind: 

. 1 J Y(t) - Y(t) = 21l"i Y(s)T(s)M(s, t) ds , (3.3.10) 

L 

M(s, t) == A(s)ei<T[F;(s)FI2(t) - Ft(s)F;(t)]j(s - t) , 
2 • '2 

tY(t) == -FI (t), tY(t) == -FI (t) , 
(3.3.11) 

where Fl(t), F;(t) are the components of the generating matrix F(t) for the 
initial solution from which we intend to generate new solutions. It follows from 
the condition that T(s) is bounded in the limit s --t 00 and from its rational 
character that this function can be represented in the form 

N am rn 

T(s) = L L ( _an )n+l +const , 
rn=l n=O S Urn 

(3.3.12) 

where arn + 1 is the order of the pole at the point s = Urn, and N is the number 
of distinct poles UI, ••• , UN. The restriction to the complex constants a;:' and 
Urn is the condition that, after reduction to a common denominator, T(s) can be 
represented in the form of a ratio of two polynomials with real coefficients, in 
which the degree of the polynomial in the numerator does not exceed the degree 
of the polynomial in the denominator. 

Integrating by parts and calculating the residues at the points s = Urn, from 
(3.3.10,12) we obtain 
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N am m (an ) 
Y(t) - Y(t) = ~ ~ :, asn Y(s)M(s, t) FUm • 

(3.3.13) 

We denote akY(s)jask at s = U m by Ymk. It follows from (3.3.13) that 

N am 

Y(t) - Y(t) = L LYmkcpmk(t) , 
m=l k=O 

(3.3.14) 
mk(t) = a~k m (an M(s, t») 

cp L...J an+k ~ n k' , 
n=O uS .n. a=U m 

We differentiate (3.3.14) q times with respect to t and set t = UI (q takes the 
values from 0 to 0:1, where 1 = 1,2, ... , N). From (3.3.14) we obtain a closed 
linear algebraic system for Yiq : 

N am 

Yiq - Y;q = L LYmkQ;:k , 
m=l k=O (3.3.15) 

q = 0, ... , O:t; 1 = 1, ... , N , 

The required solution H = H(r, z) of (3.3.1) can be expressed in terms of the 
solution Y mk as follows: 

N am am_k m (an ) 
H = iY(O) = i L LYmk Ln=o ~i~~ asn [Y(s)'\(s)eilT ] s=u

m
• (3.3.16) 

m=l k=O 

Using (3.2.48) for the initial solution, we obtain 

(3.3.17) 

In the absence of a neutrino field, the solutions (3.3.15, 16) include, as special 
cases, the solutions found previously by Sato and Tomimatzu [3.15], Kinnersley 
and Chitre [3.3], and Hauser and Ernst [3.5]. 

2) We note that in the general case the matrix 11 = n+r(t), as the exponential 
of a matrix whose trace is equal to zero, must have determinant equal to unity. 
Therefore in the general case the diagonal matrix n + r(t) has the form 

( r(t) 0 ) n + r(t) = 0 (r(t»-l , 

where r(t) is an arbitrary analytic function of t, regular at infinity and real on 
the real axis. 
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In order to derive an integral equation containing a single unknown function, 
we make use of the result of Sect. 3.2 according to which there exists an analytic 
continuation X(t) of the matrix function F(s)(ll + T(s»(F(s»-l given on the 
contour L, into the region L_, by means of a Cauchy integral. 

We write this equality on the contour L in tenns of components: 

r- I X~ = (Fl Pi - Ft Pl r-2)X, X = oX exp ieT , 
r- I x~ = (-Fl Ft + F{ Pl r-2)X , 

1 21'2 2'1-rX2 = (r F2F2 - F2F2)oX , 
2 21'2 2'1-rX2 = ( - r F2 Fl + F2 F1 )oX • 

(3.3.13') 

(3.3.14') 

(3.3.15') 

(3.3.16') 

We emphasize that the functions r-1 xt and rxt (A = 1,2) are analytic in the 
region L_. 

We now make use of the well-known Privalov-Gakhov solution [3.16] of the 
nonhomogeneous Riemann Problem of finding functions X± which are analytic 
in the corresponding regions L± and related on the contour L by the linear 
equation 

where a = a(s) and b = b(s) are functions specified arbitrarily on the contour 
L. In the case in which the index of the function In a(s) is equal to zero, the 
Privalov-Gakhov solution has the fonn 

X_ = X(t) for t E L_ , 

X+ = X(t) for t E L+ , 

X (t) = exp( -!I>(t» [const - 2~i I 6(, )(exp !I>(8)) (8 -: t) ] , 

where 

4>(t) = ~ J In a(s) ds 
27rl s - t 

(3.3.17') 

Using (3.3.17'), from (3.3.13',14') and the condition Fl(O) = 6~ we obtain 

1 . 2 - 1 J - 2 . 1 2 t ds Fl (t)F2 (t)oX(t) = 1 + -2' oX(s)Fl (s)F2 (s)r- (s) ( )' 
7rl ss-t 

(3.3.18) 

L 

Fl(t)Pt(t)X(t) = -21. J X(s)Ft(s)Pl(s)r-2(s) / ds ) 
7rl ss-t 

(3.3.19) 

L 

Eliminating the function Fl(t) from (3.3.18,19), we obtain the singular integral 
equation 
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. 1 J 2 Y(t) = 27ri Y(S)r- (S)W(S, t)ds , 

L 

where 

2 . ·2 
sY(S) = -Fl (S), sY(S) = -Fl (S) , 

).(S) ·1·2 ·1·2 
W(S, t) = -( -) [F1 (S)F2 (t) - F2 (S)Fl (t)] 

s-t 

(3.3.20) 

(3.3.21) 

A similar singular integral equation can be obtained from the system (3.3.15', 16') 
by eliminating Ff: 

Z(t) = 2~i J Z(s)r2(s)W(s, t) ds , 

L 

sZ(s) = Fi(s) , sZ(s) = Fi(s) , 

where W(s, t) is given by (3.3.21), as before. 

(3.3.22) 

In the case w = r (or w = -r), it is easy to obtain the solution of (3.3.20,22) 
for an arbitrary analytic function r-2(s). In fact, in this case, according to 
(3.2.48), the components P!(t) are given by the expressions 

·2 it 
Fl = (1 + 2iet) , 

·2 
F2 = 1 , e=r+iz 

Therefore W(s, t) = l/(s - t), and it follows from (3.3.20,22) that 

F2( ) = itr2(i/20 
1 t 1 + 2iet ' 

1 . 1 1 
Fl (t) = Fl , F2 (t) = 0 , Fi(t) = 1 , 

Thus, in the case w = r the function H(r, z) = r2(i/2e) is the required 
solution. Since r = r(s) is arbitrary, H is an arbitrary analytic function of the 
complex variable e = r + iz, regular at the origin. 

In the case of an arbitrary harmonic function w, we assume that r2(s) is an 
arbitrary rational function which is bounded but nonzero at infinity. We represent 
r-2(s) in the form 

(3.3.23) 

where 0: = const, the exponent O:k + 1 is the order of the zero at the point s = Uk> 

the exponent f3n + 1 is the order of the pole at the point s = Vn (Uk = const, 
Vn = const), Nl is the number of distinct zeros, N2 is the number of distinct 
poles, and 
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Nl N2 

L(ak + 1) = L(.8n + 1) = N . 
k=1 n=1 

If the denominator in (3.3.23) has complex-conjugate roots, the correspond­
ing gravitational fields have ring singularities. Integrating the right-hand side of 
(3.3.20) by parts and taking the residues at the points s = Vn , n = 1, ... , N2, we 
obtain 

Nnl( )Qk+l I N2 1 aPn s - Uk 
Y(t) = Y(t)r-2(t) + L ---r.iI a an Y(S)W(S, t)..;.;';.....;I ___ _ 

a~n' SP 2 
n=1 n (S - Vk)Pk+1 

kf n S=Vn 

We simplify the fonn of this expression by introducing the notation 

m = 0, 1, ... ,.8n; n = 1, 2, ... ,N2 , 

__ 1 __ (aasP:n~: W(s, t») ~-Vn = Qnm(t) , 
m!(.8n - m)! P G-

from which we have 

N2 Pn 
Y(t) = Y(t)r-2(t) + L LYnmQnm(t) (3.3.24) 

n=1 m=O 

In order to obtain the required solution for H, we put t = 0 in (3.3.24), which 
gives 

(3.3.25) 

Thus, the problem reduces to the detennination of expressions for the quantities 
Ynm. In order to obtain these expressions, we differentiate both sides of (3.3.24) 
1 times with respect to t (1 = 0, 1, ... , ak) and then put t = Uk. This gives 
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!lly' ( ) N2 Pn 
U uk = '"' '"' Y. Qnm -07 8-'1:-'-'- L...J L...J n m kl , 

n=1 m=O 

(3.3.26) 

where 1 = 0, 1, ... , G:k, and k varies from 1 to Nl. 
Thus, the relations (3.3.26) form a linear algebraic system of order N 

for the N unknowns Ynrn (m = 1, ... , f3n; n = 1,2, ... , N2). 
We consider now the particular case of (3.3.23) in which G:k = f3n = 0, i.e., 

the expression (3.3.23) has the form 

(3.3.27) 

where Uk and Vk are distinct constants. We take the initial solution for F!1(t) 
(3.2.48) corresponding to the metric gll = 1, g12 = w, g22 = w2 - r2. We introduce 
the notation 

According to (3.3.26), the quantities XI are determined by the linear system 

N X N A+ +A-
1 + L i + Urn L v rn _ U I XlVI = 0, m = 1, ... ,N , 

1=1 1=1 I rn 

(3.3.28) 

where 

(3.3.29) 

When the constants Urn and VI (m, I = 1, '" , N) are real, it is convenient to 
replace them by the constants Zk and mk given by the expressions 

Uk = 1/2(zk + mk), Vk = 1/2(zk - mk) . 

Then from (3.3.27) we obtain the linear algebraic system of equations 
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At = V(Zk + mk - Z)2 + r 2 exp(il1t) , 

Ai: = V(Zk - mk - Z)2 + r 2 exp(il1i:) , 

+_Jaw de Jaw dC 
11k = ae (Zk + mk + ie) + ae* (Zk + mk - ie*) , 

- Jaw de Jaw dC 
11k == ae (Zk - mk + iO + ae* (Zk - mk - ie*) . 
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(3.3.30) 

(3.3.31) 

(3.3.32) 

The solution (3.3.30-32) corresponds to a solution for N black holes situated on 
the symmetry axis in an arbitrary neutrino field4 • In the absence of a neutrino 
field, this solution reduces to the Belinskii-Zakharov N -soliton solution [3.17]. 

To find the unknown components H!, we must make use of the formula 

~Fl(t)1 = -iH! at 
t=O 

As a result, we obtain 

N 

n=1 

H12 = 2(w + iz) + L X1[w + i(z - ZI) + iA/ + imtl 
1=1 

(3.3.33) 

We note that in the case of a single black hole the explicit solution has the form 

H _ A+ +A- - 2m 
11 m = m1 , - A++A-+2m ' 

H 2( .) 4 w+i(Z-Zl)+iA-+im 
12 = w + 1z - m---:--~:----::---­

A++A- +2m 

(3.3.34) 

d) Method of Obtaining Topologically Nontrivial Solutions of Einstein's 
Equations with an Abelian Group of Motions G2 on l'2 in the Absence 
of a Neutrino Field. As we found earlier [see (3.2.44)], the matrix function u(s) 
can be obtained by means of an analytic continuation, into the complex s plane, 
of the functions £(z) and p(z) specified on the symmetry axis. For this, we must 
replace Z in the expressions for these functions by i/2s. Then in the general 

4 In this solution for m k > 0 (k = I, ... , N) there exist c-like singularities of the Ricci tensor 
on the symmetry axis between the black holes (so-called conical points) corresponding to rather 
mystical structures. The same singUlarities occur in the solution even if there is no neutrino field 
[3.17]. 
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case we obtain multivalued functions. For example, we could specify £ and ~ 
uniquely on the z axis by means of a selected branch of an algebraic curve whose 
branch points lie off the z axis. However, if an analytic continuation is made into 
the complex plane, the matrix function u(s) is found to be multivalued. We shall 
consider only the case in which the Riemann surface of the function u(s) has n 
sheets and is determined by some algebraic curve. The genus 9 of an algebraic 
curve is given by the formula V = 2(n + 9 - 1), where V is the number of branch 
points, including their multiplicities. Then, as in Sect. 3.2, the analysis of the 
group properties of the system of equations (3.2.1) makes it possible to deduce 

the analytic structure of the matrix function X(s) = FuF-1 on the indicated 
Riemann surface. This surface is homeomorphic to a sphere with 9 handles. The 
function X and the parameter s can be represented as single-valued functions 
of a uniformization parameter 17: X = X(17), s = s(17). For 9 ~ 2 the functions 
X(17) and s(17) are automorphic (Fuchsian, in Poincare's terminology), for 9 = 1 
they are elliptic, and for 9 = 0 they are rational. We recall that an automorphic 
function is one which is invariant with respect to some group of bilinear transfor­
mations. For 9 ~ 2, the functions X(17) and s(17) depend parametrically on 69 - 6 
real moduli of an algebraic curve of the Riemann surface of u(s). According to 
the Riemann-Roch theorem (see below), the function X cannot have less than 
9 + 1 distinct simple poles not situated at the Weierstrass points. Recently D.A. 
Korotkin (Theor. Math. Phys. 77, No.1, 25 (1988) [in Russian]) succeeded to 
find the exact solutions of the Ernst equations using the theta-function technique 
developed by Matveev, Its, Dubrovin, and Novikov. 

e) Restrictions Imposed by the Topology of a Two-Dimensional Manifold on 
the Order of the Singularities of the Neutrino Field in the Stationary Axially 
Symmetric Case. We assume that a two-dimensional manifold S with local 
coordinates x 3 and x4 for t = const, cp = const is compact. The admissible changes 
of variables preserving the form of the metric (3.1.3) are analytic transformations 
e = f(~) (~ = x3 + ix4) with a positive definite Jacobian. Consequently, the 
manifold Sis orientable. From the topological point of view, such manifolds are 
homeomorphic to spheres with 9 handles (9 is called the genus of the surface). 
From the point of view of conformal transformations, the surface is defined by 
the genus and by the 39 - 3 complex parameters which determine the conformally 
distinct compact Riemann surfaces with genus 9 [3.18]. 

Every compact orientable surface S can be realized as an n-sheeted Riemann 
surface of some algebraic function given by the irreducible polynomial 

cpn + rl(~)cpn-l + ... + rn(~) = 0 , (3.3.35) 

where ri(~) (i = 1,2, ... , n) are rational functions of the parameter ~. Any other 
meromorphic function f on S can be written in the form 

f = Rl(Ocpn-l + ... + Rn(~) , (3.3.36) 

where Ri(~) (i = 1,2, ... , n) are rational functions of ~. 
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We use the properties of compact Riemann surfaces in order to determine 
the restrictions on the order of the singularities of the neutrino field given by 
the singularities of the hannonic function w. We assume that the meromorphic 
function e, whose real part is equal to the hannonic function .jIg AB I, takes 
each value n times on S. Then this function establishes a one-to-one conformal 
mapping onto an n-sheeted Riemann surface. 

If S is given by an algebraic curve (3.3.35), the analytic function W = w+itii 
must have the form (3.3.36). The function W is specified not in the entire complex 
e plane, but only in the half-plane Re{ 0 = r ~ O. In order to define this function 
in the whole plane, we require that [W(O]* = -W(-e*). This equality will be 
satisfied if the coefficients rj(p) and R,(p) (p = iO are rational functions of p 
over the field of real numbers. We stress that merom orphic functions on S other 
than constants cannot be everywhere regular. 

The arbitrariness in specifying the singularities of the merom orphic function 
W(O is restricted by the Riemann-Roch theorem. In order to formulate this the­
orem, let us recall several definitions. Suppose that near an arbitrary point Q on 
S the function W can be expanded in a series W(O") = anO"n+an+IO"n+1 + ... with 
an f 0 (0" is the so-called uniformization parameter, and n is a positive or nega­
tive integer). The meromorphic function Won S can have only a finite number of 
zeros and poles Q}, Q2, ... , QN with prescribed orders aI, a2, ... , aN of the 
zeros or poles at all these points. We shall call the symbol A = Qr1 QZ2 ••• Q'J.f 
the divider and adopt the notation (W) for the divider of the meromorphic func­
tion W. The degree of a divider A = Qr1 ••• Q'J.f, denoted by d[A], is defined as 
the sum of the orders, al +a2+ ... +aN. For meromorphic functions, d[(W)] = O. 

The dimension of the complex vector space L[A] of meromorphic functions 
f' having singularities at prescribed points QI, Q2, ... Q N with orders ai ~ a, 
(i = 1,2, ... , N) will be denoted by r[A]. The space L[A] is empty for dividers 
with positive degree d[A] > 0, since the degree of the divider of an arbitrary 
meromorphic function is equal to zero. 

For Abelian differentials with a local representation w = (ane n + an+len +l + 
... ) de at the points Pt, P2, ... , PN (ao f 0 at all other points of S), we introduce 
the symbol (w) to denote the divider A with prescribed orders at. a2, "', aN 
of the zeros or poles at the points Pj (i = 1, ... , N): A = Pt1 P20/2 ••• 

P~N. The degree of an Abelian differential is related to the genus of the surface 
by the formula d[(w)] = 2g - 2. For a given divider A, the dimension of the 
complex vector space of Abelian differentials w': {w'} = .G[A] with singularities 
of orders ai ~ aj (i = 1, ... , N) at prescribed points Pt, Pz, ... , PN will be 
denoted by irA]. We note that the space .mA] is empty if d[A] ~ 2g - 1. 

The Riemann-Roch theorem asserts that a given divider A has the property 

r[A-1] = d[A] + irA] - g + I . 

From this theorem it follows, in particular, that on a surface of genus g it is always 
possible to find g distinct points such that there does not exist a nonconstant 
meromorphic function whose singularities are poles of order not higher than the 
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first at these points. This constitutes a restriction on the zeros and simple poles 
of the function W = w + iw. 

As another corollary of the Riemann-Roch theorem, we give the assertion 
that for 9 ~ 2 it is possible to specify a pole of order not exceeding 9 as the only 
singularity of a meromorphic function W(O only at a finite number of points 
PI, ... , PN (the so-called Weierstrass points). 

As has been shown by Musin and the present author, in the general case a 
harmonic function w for the neutrino field must be multi valued if it satisfies the 
inequality w2 :s r2 and thus makes it possible to avoid the appearance of closed 
time-like curves violating the fundamental physical principle of causality. Thus, 
in the presence of a neutrino field the two-dimensional space-time cross section 
t = const, <p = const has, in general, a nontrivial topology (the topology of a 
sphere with 9 handles in the compact case). 

f) Gravitational Fields of Rotating Magnetized Stars. For the calculation of 
fields in the neighborhood of rotating magnetized stars a different form of our in­
tegral equation (3.3.5) (for a = 1) is more useful. We shall generate the functions 
e(z) and f(z) in that equation by integrals of the Cauchy type: 

b b 

27rie(z) = J 6(0 (z ~ 0 ' 27rif(z) = J <p(0 (z ~ 0 . 
a a 

These functions are holomorphic everywhere in the complex z plane except for 
the segment [a, b] on the real axis, where due to Sohotzky's formulae they have 
the discontinuity [e(O] = 6(e), [f(e)] = <p(e). 

Let us show that these functions play the role of sources of gravitational and 
electromagnetic fields. For any given geometry of an axially symmetric star with 
given Ernst functions on its surface it is possible to obtain sources on the axis 
of symmetry which reproduce outside the star fields coinciding with those of the 
given star. It should be stressed that the Ernst equations are of elliptical type and 
that one cannot determine independently the Ernst functions and their transverse 
derivatives on the surface of the star. Thus for a solution of the interior problem 
one need not consider the exterior solution, because one can use the relationship 
between £, tJj and their transverse derivatives on the boundary of the stars as 
boundary conditions for the solution of the interior problem. With these points 
in mind the integral equations (3.3.44,45) as given below are very useful. We 
shall also show that the Hansen-Tome coefficients in the multipole expansions 
of Ernst potentials at infinity can be expressed in terms of the moments of the 
sources of the gravitational and electromagnetic fields on the symmetry axis. 

Let us introduce functions X2(t) via the definition 
1 

7rXj(t) = -Jt2=1 J J.l(z + irs)xi(s) (s ~ t) ~ , 
-1 

Xl == 1, X2 == e(z+irs) , X3 == f(z+irs) 
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(for the notation see (3.3.1-6), p(O == PI (0)· Then we arrive at 

Xi + Xi = e(O(Xt + Xn, X; + X3- = I(e)(xt + X l-) , (3.3.37) 

where Xi, X i- are the values of the functions Xi on different sides of the cut 
from -1 to + 1 in the complex t plane and 

Our integral equation (3.3.5) for a = 1 may be rewritten as 

Xi - Xi + e(O(Xt - X l-) + 2j(X; - X 3-) = 0 . (3.3.38) 

Using t = (A + I/A)/2 one maps the exterior of the cut from -1 to +1 of the t 
plane into the exterior or interior of the circle IAI = 1. We define X2(A) to be 
holomorphic outside the circle IAI = 1, while Xl (A) and X2(A) are holomorphic 
inside IAI = 1 in the A plane. 

Then we haveS 

With the help of (3.3.37) equation (3.3.38) can be brought to 

( e+e -) (e-e -) (1) - (1) X2(A) = -2- + II Xl(A)+ -2- + II Xl ~ - 2/X 3 ~ 

(3.3.39) 

Let Y+o Y_ be solutions of the Riemann problem: 

( e+ e -) Y+ = -2- + I I Y- , Y_(O) = 1 , (3.3.40) 

where Y+ and Y_ are respectively holomorphic outside and inside IAI = 1. 
Equation (3.3.39) can be written as 

X2(A) = Xl(A) + X(1/ A) (e -e + I j) _ 2jX3(1/ A) 
Y+(A) Y_(A) ~(A) 2 Y+(A) . 

(3.3.41) 

We use the relationship Y+(1/ A) = Y+(OO)/Y_(A). Multiplying both sides of 
(3.3.41) by p/ A(A - p), where p is inside IAI = 1, and integrating the resulting 
expression along the curve I A I = 1, we obtain 

[ 1 J Y_(A) 
Xl (p) = Y_(p) 1 + 27ri Y+(oo) 

loXl=l 

x (XI (~) ( e ~ e + f 1) - 21 X3(~») (~ !~fp) 1 (3.3.42) 

5 Another boundary problem is obtained by Neugebauer and Kramer see J. Phys. A 16, 1927 (1983). 
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Similarly from equation (3.3.37) one arrives at 

X3( ) = (p, - 1/ p,) J 1(>') (>'XI (>') - p,XI (p,» d>' 
p, 2m (>' - p,)(>. - 1/ p,) 

(3.3.43) 

1~1=1 

Now we specify the assumption about e, I being represented by Cauchy type 
integrals and deform (contract) the curve 1>'1 = 1 to the interior image of the 
segment [a, b] in the >.-plane using the holomorphic properties of Xl (>') and 
X3(>') on the interior of 1>'1 = 1. Returning from the variable>. to the variable 
e = z + ir(>' + 1 / >') /2 and substituting Xl (e) = A(e)w(e), X3(e) = B(e)w(e), 
where w(e) == V(z - 0 2 + r2, into equations (3.3.42,43) we finally obtain 

b 

A(e) = Y_(O {I + ~ J Y-(7]) Q(e, ) 
w(O 2m Y+(oo) 7] 

a 

X (A(7]) [e; e + Ii] -2[hB(7]») d7]} , (3.3.44) 

b 

B(e) = ~ J[f] A(O - A(7]) d7] , 
2m e - 7] 

(3.3.45) 

a 

where 

( 1 ) Jb [ (e + e -) ] d7] Y_(O = exp 27ri In -2- + II Q(e, 7]) w(7]) , 
a 

1 Jb [ (e + e -) ] d7] Y+(oo) = exp 27ri In -2- + I I w(7]) , 
a 

Q(t ) = ! (1 + w(O - W(7]») 
<",7] - 2 e - 7] , 

while square brackets denote the discontinuity of the corresponding function on 
the segment [a, b]. After solving the system (3.3.44,45), which can easily be 
written as a single integral equation, the Ernst potentials are be found to be 

b 

£ = Y+(oo) + 2~i J Y_(O {[ e; e + Ii] A(O - 2[j]B(0} de , 

a (3.3.46) 
b 

iP = 2~i j[f]A(Ode 
a 
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In the case of various stars to be modelled, one must introduce several seg­
ments [ai, bi] i = 1,2, ... N and give (3.3.44-46) in the form of a sum of 
integrals on the segments [ai, bi] with sources [eli and [f]i. 

Let us show how one can calculate the asymptotics of £, ~. 

1) First we calculate £, ~ in the neighborhood of the axis of symmetry outside 
the sources z > ~, ~ E [a, b]. The asymptotic behavior of A and B is as follows: 

(z _ ~)A(O R:l 1 _ r2 ( e'(z) +2j(z)!'(z! + _1_) + ... , 
2(z - 0 e(z) + e(z) + 2f(z)f(z) z - ~ 

r2 " r2 ( f(z) ,) (z - ~)B(O R:l f(z) - - f (z) - - - f (z) 
4 2(z - 0 z - ~ 

( e'(z) + 2j(z)f'(z) 1) 
x e(z) + e(z) + 2f(z)j(z) + z - ~ +... . 

Then for the Ernst potentials from (3.3.46) we have the expansions: 

r2( 2e'(e'+2j !'») £ R:l e(z) + -4 -e" + _ - +..., 
e+e+2ff 

A>"""f() r2 (-f" 2f '(e'+2j !'») 
,£,,,, z+4 + - + .... 

e+e+2ff 

2) Next we consider asymptotic expansions of A(O and B(~) for large R = 
J r2 + z2. We define z = R cos cp. r = R sin cp. cos cp == t and introduce the 
notation for the moments of the sources 

b b 

27riek = J[e(~)]~kd~, 27ri/k = J[f(~)]~kd~ 
a a 

The moments of the holomorphic function 

b - J - d~ 27rif(z)f(z) = [f(~)f(~)] (z - 0 
a 

are related to the moments fk as follows: 

b 

J [f(~)j(O] d~ = 0 , 
a 

b 

J[f(~)j(~)]ed~ = 27ri(fk-do + fk-dl + ... + fOjk-l) 
a 
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The moments of the holomorphic function In« e + e) /2 + I j) can be expressed 
also in tenos of the moments ek, Ik. Then the solutions of the integral equations 
(3.3.44,45) are 

A(e)~ ~+ ~2 (~(1-t)+et)+ ~3{3t22-1e+(1-t)~1+3t)eoe 
(1 - t)(l + 3t) t(1 - t) 2 (1 - t)2 2 

+ 4 el - 2 mo - 2 ao (3.3.47) 

(1 - t)(1 - 3t) . (1 - t)(1 + t) r. +*} 
+ 4 laomo + 2 JOJO +. .. , 

lot 3t2 - 1 (1 - t)(1 + 3t) 
B(O ~ R2 + 2R3 (Uo + II) + 4R3 eolo + ... 

Substituting these expressions into (3.3.46) one obtains: 

co 1 eo 1 ( (1 - t) 2) 3t2 - 1 e2 
c, ~ + R + R2 tel - -2-eo + 2 R3 

(1 - t) { (1 + 3t) 1 + t ,,+* m~t + -- eleo + --JOJO - -R3 2 2 2 

. (m~(1-5t) (1-t) 2 (l-2t). )} 
+ lao 4 - -4-ao + 2 laomo + ... 

ijj 10 1 (f (1 - t) fi) (3t2 - 1) h 
= R + -R-2 t 1+ -2-eo 0 + ":"'--2-"':"R3 

(1 - t) { (1 + 3t) + -W -4- (etfo + eolt) 

( 1 - 3t. (1 - t) 2 t 2) (1 + t) * } 
+ 10 -4-Iaomo - -4-ao - 2mo + -2-1010 + ... 

In (3.3.47,48) 

mo == Re{eo} ao == 1m { eo}, eo == mo + iao 

(3.3.48) 

3) Let us assume the Ernst function on the surface of the star to be given. 
Using the integral equations (3.3.44,45) and taking into account (3.3.46), one 
can consider the problem of finding the sources [e(e)], [f(e)], which detenoine 
the' fields for given functions £, ijj on the surface of star. Thus one can express 
the transverse derivatives of £, ijj as a functional of £, ijj on the surface un­
der consideration. Hence the Dirichlet problem for the Ernst equations of the 
electrovacuum is reduced to two linear problems: 
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a) detennination of the sources [e(e)], [f(e)] (the discontinuities of the holo­
morphic generating functions e(z), f(z» according to the given values e, ~ 
on the considered curve r = r(z) with the help of (3.3.44-46); 

b) detennination of e, ~ for any point (r, z) using (3.3.44-46) for sources[e(e)], 
[f(e)] derived in (a). 

3.4 Lie-Backlund Groups of Integrable Systems 
of Mathematical Physics 

Integrable systems of equations (or systems integrable in the kinematic sense) 
usually refer to equations which can be represented in the fonn of compatibility 
conditions for linear matrix equations [3.19] 

cp,e=Ucp, cp,,,=Vcp, U=U()..,e,7]), V=V()..,e,7]), (3.4.1) 

U," - V:e + UV - VU = 0 (3.4.1') 

Equation (3.4.1') can be treated as the condition of zero curvature of a two­
dimensional manifold with the connections U and V, admitting a covariantly 
constant vector field cp. It is important that the matrices U and V depend on an 
auxiliary analytic parameter >.. However, the matrix equation (3.4.1') is satisfied 
if and only if there are a finite number of equations not depending on >.. These 
represent initial integrable systems. 

In most applications, 7] and e have the meaning of the time and a space 
coordinate (on the entire real axis or on a circle in the case of a segment with 
identified ends). In relativistic models, it is convenient to interpret e and 7] as 
retarded and advanced times =fx+t, respectively. For stationary two-dimensional 
integrable systems, it is convenient to take for e and 7] the complex coordinates 
e = x + iy, 7] = x - iy. 

We now give some examples. 

a) Suppose that the matrices U and V have poles in >. at one and the same 
point of the complex>. plane, of order n and m, respectively. Without loss of 
generality, we can choose this point to be the point at infinity. In nonrelativistic 
models of this type, e and 7] have the meaning of a coordinate and the time. 

Example 1. 

U = i(>'0'3 + R), V = i(2)..20'3 + 2>'R - i0'3R,x - 0'3W) 

Here 0' a (a = 1,2,3) are the standard 2 x 2 Pauli matrices 

0'1 = (~ ~) , ( 0 -i) 
0'2 = i 0 ' 

and R is an unknown 2 x 2 matrix (~ ~). 
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The compatibility condition (3.4.1') reduces to the equation 

iR,t - (13R,xx - 2(13R! = 0 

Example 2. 

U = i(,\(13 + R) , 

V = i( _4,\3 (13 - 4,\2 R + 2'\(13(R2 + iR,x) + iRR,x + R,xx + 2R!) 

Equation (3.4.1') is equivalent to the equation 

R t + R,xxx + 6R2 R,x = 0 

Example 3. 

U = i('\M + [H, M]), V = i('\N + [H, N]) , 

(3.4.2) 

(3.4.3) 

where M = diag(al, ... , an), N = diag(bl, ... , bn), the square brackets denote 
the commutator, and ai and bi are real constants. Here (3.4.1') has the form 

[M, H,t] - [N, H,x] - i([M H], [N H]) = 0 

Example 4. 

i).2 ,\ 
V=-S+-SS 2 2 ,x 

(3.4.4) 

where we have the 2 x 2 matrix S = 2:::=1 Sa(1a, in which (1a (a = 1,2,3) are the 
Pauli matrices, with Sf + si + Sr = 1. Then (3.4.1') is equivalent to the equation 

2iS,t = SS,xx - S,xxS (3.4.5) 

Example 5. 

U = i('\J + R), V = i(2,\2 J + 2,\R - iJR,x - JR2) , 

where U, V, J, and Rare n x n matrices, with J = diag(1, ... , 1, -1), and in 
the matrix R only the last column and the last row with a zero diagonal element 
are nonzero6• Equation (3.4.1) has the form 

iRt - JRxx -2JR! =0 . (3.4.6) 

b) The matrices U and V have two simple poles. In relativistic models of 
this type, e and TJ have the meaning of either t =t= x or x ± iy. 

6 In Example 5, we can take J to be an arbitrary matrix satisfying J2 = 1 and R = J M - M J, 
where M is an arbitrary matrix. 
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Example 1. 

2iU = OtU3<P,F, + AUI sin (Ot;) + AU2 cos (Ot;) , 

2.V 1 . (Ot<P) 1 (Ot<P) 
1 = -OtU3<p,,, - XUI sm T + XU2COS T ' 

for which the compatibility condition (3.4.1') is equivalent to the equation 

Ot<P,F,,, + sin(Ot<p) = 0 (3.4.7) 

Example 2. 

U - dia ( ) + Ae exp(<pa+l - 'Pa) 
- g <p1,F" 'P2,F" ... ,'Pn,F, a 2 ' 

. 1 exp(<pa+l - <Pa) 
V = -diag('PI,,,, 'P2,,,, ... ,'Pn,,,) - Xea 2 

(3.4.8) 

In the matrix ea the component in row a and column a + 1 is equal to unity, 
and the others are zero, while in the matrix e_a the component in row a + 1 and 
column a is equal to unity. 

Here the compatibility condition (3.4.1') has the form 

2<pa,F,,, = exp(<pa+l - <Pa) - exp('Pa - 'Pa-l) , 
a = 1, ... ,n, 'Pn+l = 'PI . 

Example 3. 

U- H,F, 
- (A -1) , 

H 
V = (A ~"1) 

with the following compatibility condition for the n x n matrix H: 

2H,F,,, + H,F,H,,, - H,,,H,F, = 0 

Example 4. 

U- H,F, 
- (A - ~) , 

H V= ,,, 
(A - TJ) 

with the compatibility condition 

(3.4.8') 

(3.4.9) 

(3.4.10) 

The foregoing examples have an important practical significance in vari­
ous reductions allowed by the integrable systems (3.4.2-10). Great importance 
attaches to the fact that the matrices U and V belong to some matrix algebra, 
since the operations of differentiation with respect to ~ and TJ and the commutator 
of two matrices remain within this matrix algebra. 
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For example, (3.4.2) with the reduction R E SU(2) (the algebra of anti­
Hennitian matrices) reduces to a nonlinear SchrOdinger equation of the first 
kind. If, however, R E SU(1, 1), then (3.4.2) reduces to a SchrOdinger equation 
of the second kind. Equation (3.4.3) with the additional reduction R* = O'lRO'l 

reduces to a modified Korteweg-de Vries equation, which in turn reduces to the 
ordinary KdV equation through a Miura transfonnation. 

In the cases (3.4.4,6) we can impose the conditions H, R E SU(p, n - p), 
where p can take one of the values 1,2, ... , n. In the case n = 3, the matrix 
equation (3.4.4) reduces to a system of equations for three wave interactions with 
various relations between the group velocities. 

In the case (3.4.5,7), U and V clearly belong to the SU(2) algebra (more 
precisely, to its algebra of currents; see below), and (3.4.5) describes the one­
dimensional model of an isotropic Heisenberg ferromagnet, while (3.4.7) de­
scribes the model of self-induced transparency in laser physics. For (3.4.10) an 
additional reduction is given by the differential relation described by the first­
order equation (3.2.4). If the trace of the matrix H is not fixed, then for n = 3 
we obtain the general case of the neutrino electrovacuum, and for Tr{H} = e +TJ 
the neutrino field is "expelled" from the general case. 

The expressions (3.4.8') for U and V are obtained from the general matrices 
with simple poles at A = 0 and A = 00 in the case of the so-called 7l.n reduction: 

where ( = exp(27ri/n) is an n-th root of 1, and Z is a diagonal matrix of the 
powers of (: 

The divider of the matrix functions U and V (i.e., the pole structure of the 
rational functions U and V at definite points of the complex A plane) is preserved 
by so-called gauge transfonnations. These are related to the arbitrariness in the 
choice of the redefined linear system with a given divider of the functions U and 
V associated with the substitution 'P' = Q'P, where Q does not depend on A. The 
matrices U and V then change as the connections 

U' = Q Q-l + QUQ-l ,e , V' = Q,1/Q-l + QVQ-l . (3.4.11) 

For example, in the case of the reduction R E SU(2) the equations (3.4.2,5) 
with the same divider are gauge-equivalent. Similarly, the equation (3.4.9) of the 
principal chiral field is gauge-equivalent to the sine-Gordon equation (3.4.7) and 
the two-dimensional Toda model (3.4.8) with the reduction 'PI = -'P2 = 'P in the 
case n = 2. 

In principle, in a given region D of the complex A plane the divider of the 
functions U and V is also preserved by the transfonnations 'P' = Q'P when Q 
depends on A, provided that the matrix Q as a function of A is nondegenerate 
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and holomorphic in the region D. Then the transformation (3.4.11), which we 
write in the form 

(3.4.11') 

can be extended to the whole complex plane if there exists a function ill, holo­
morphic outside D, such that 

(il<p),e<p-l il-l = (ill <p),e<p-l illl; (il<p),,,<p-l il-l = (ill<P),,,<p-l ill- l 

on the boundary of D. It can be seen from this that on aD we have 

(3.4.12) 

where G(.\) is independent of e and "1. 
However, (3.4.12) can be interpreted as a classical Riemann boundary-value 

problem for the functions il and ill, holomorphic in D and outside D, respec­
tively, and related on the contour aD by the linear equation (3.4.12). By means of 
the indicated transformation (3.4.11 '), which Zakharov and Shabat [3.20] called 
the procedure of "dressing the bare solution U and V", it is possible to use a 
given solution to obtain new solutions U' and V' . 

. The possibility of representing a given system of equations in the form of 
the condition of zero curvature is a major basic problem. After the fundamental 
studies of Gardner et al. [3.21] and Lax [3.22], the greatest successes here have 
been achieved by Zakharov et al. [3.23]. 

We now consider the general case of an integrable system with functions U 
and V which are rational in the parameter .\. It is remarkable that the system 
(3.4.1) admits exact solutions of the linearized equations. Suppose that <po, Uo, 
and Vo are arbitrary exact solutions of the system (3.4.1). Then the following 
theorem holds. 

Theorem 1. The following expressions for b<p, bU, and 8V are solutions of the 
linearized equations (3.4.1, I'): 

27ri8<p(p,) = J <1'(.\)(.\ - p,)-l d.\ <po(p,) , 

c 
<1'(.\) == <po(,\)F(.\)<po\X) , 

27ri8U(p,) = J [UoC'\) - Uo(p,), <1'(.\)](.\ - p,)-l d)" , 

c 

27ri8V(p,) = J [Vo(.\) - Vo(p,), <1'()")]()" - p,)-l d)" 

C 

(3.4.13) 

(3.4.13') 

In these expressions, the arbitrary matrix F()") is independent of e and "1, and 
its form is determined solely by the additional reduction applied to the matrices 
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U and V. The contour C bounds a simply connected region in which, according 
to (3.4.13), the perturbations ocp(p), oU(p), oV(p) have the same analyticity 
properties as the unperturbed solutions cpo(p), U(p), V(p) inside the contour7 C. 

Theorem 2. The solutions (3.4.13) form an infinite-dimensional algebra of solu­
tions if the matrices {F(A)} form a matrix algebra. 

To prove this, we consider the second variation of the solution (3.4.13), 

and take the commutator of the second variations, 271'i[010cp(p) - 001 cp(p)]. Writ­
ing cpo(A)FI (A)CPO I (A) == PI (A), we have 

OIOcp(p) - OIOcp(p) 

1 {J J' dA dA' = (271'i)2 [PI (A )P(A)] (>.' _ A)(A _ p) cpo(p) 

C C 1 

+ J J [P(A), PI (A')] dA dA' 
(A - p)(>.' - p) 

C Cl 

-J J [P(A')PI (A)] dA dA' ()} 
(>.' _ A)(A _ p) CPO P 

C C 1 

1 J dA = -2' [P(A)Pl(A)]-,-cpo(p) 
71'1 A - P 

C 

1 J 1 dA = -2' cpo(A)[F(A)Fl (A)]CPO (A)-, -cpo(p) 
n A-P 

C 

The algebra of solutions is infinite-dimensional, since the matrices F(A) in the 
general case depend on a countable number of parameters, which can be taken 
to be the coefficients of the Laurent series in the neighborhood of the point at 
infinity. In many cases, the algebra of the infinitesimal solutions (3.4.13) will be 
isomorphic to the so-called algebra of currents associated with a certain matrix 
Lie algebra. The algebra of currents is constructed from the formal Laurent series 

7 The expressions (3.4.13) detennine two functions 6"'(11)",;1(11) holomorphic inside and outside 
C, respectively, which represent an explicit solution of the linearized Riemann problem. Unlike 
(3.4.13), the expressions (3.4.13'), which are continuous on the contour C detennine 6U().) and 
6V().) throughout the complex). plane. 
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with coefficients belonging to the matrix algebra, and the series in negative 
powers of -\ is truncated. The variable -\ introduces a natural grading in the 
algebra of currents. 

H reductions are applied to the solutions of the systems (3.4.2-10), the r(-\) 
matrix algebras have the same additional algebraic properties as the matrices 
U(-\) and V(-\). However, in contrast to the connections of U and V, the analytic 
structure of matrices r(-\) depending only on -\ can be arbitrary. We shall use an 
asterisk to denote Hermitian conjugation of the matrices r(-\), without applying 
the symbol of Hermitian conjugation to the argument -\. 

In the case (3.4.2), if R E SU(2), then r*(-\) = -r(-\); but if R E SU(1, 1), 
then r*(-\) = -U3r(-\)U3. In the case (3.4.3), in order to obtain the infinitesimal 
solutions of the equation for the reduction r*(A) = -ro), we must also require 
that r(-A) = Ulr(A)UI, i.e., we have a 112 reduction. Similarly, in the case of 
the two-dimensional Toda model (3.4.8), we have a ll n reduction 

r«(A) = Z-l r(A)Z , 

where Z is the n x n diagonal matrix of the successive powers of the root of 
unity. 

Unusual reductions arise in the case of the electrovacuum (see Sect. 3.2). In 
this case, the 3 x 3 matrix r(A) is the product of an arbitrary matrix with the 
property T*(A) = T(-A) and the special matrix fl whose nonzero components 
are fll2 = -fl21 = 1, fl33 = 1/4A. 

The Lie-Backlund matrix group {T} for which the Lie-Backlund matrix al­
gebra {r(A)} is the tangent space in the unit of the group can be obtained as 
the union of one-parameter subgroups of the form exp[o:r(A)], where 0: is a 
parameter. 

We now consider how this group {T} acts in the space of solutions of a 
given functional class of a specific integrable system, converting one solution of 
this class into another. 

By Theorem 2, (3.4.13) can be written in the form 

(3.4.14) 

where we have omitted the dependence of the matrices I{J on 0:, e, and "I. The 
initial condition for (3.4.14) is given by the "bare" solution l{J(jl)I",~ = cpo(jl). 
Equation (3.4.14) is an ordinary differential equation in the space of functions 
{ l{J(jl)}. The intermediate "points" of the integral curve of this equation, which 
are exact solutions of (3.4.1), join the initial solution cpo(jl) to the final solution 
l{J(jl). On the space of solutions I{J(A) there act one-parameter groups of diffeo­
morphisms generated by the elements of the algebra {r(-\)}. To show this, we 
introduce a new unknown function S(jl,7'): 
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It is easy to see that (3.4.4) can then be rewritten as follows: 

2 . d S( ) J r(>') d>' J S(jJ-, >.)r(>.) d>' 
71"1 do: jJ-" = (>' - jJ-)(>' _,) + (>' _,) 

r. r. 

-J r(>.~~~~~) d>' + J S(jJ-, >')r(>')S(>',,) d>' (3.4.15) 

r. r. 

We now introduce two important restrictions on the contour C. We assume 
that: (a) inside the contour C, the matrix function <po(>') is holomorphic in >. 
and nonsingular (i.e., its determinant vanishes nowhere inside C): (b) outside the 
contour C, the matrix r(>.) is a holomorphic function of >.. 

On the basis of property (a), we introduce a "Heisenberg" representation of 
the functions S(jJ-, >') in the form of matrices of infinite order, in which at row 
m and column n we have the coefficient Smn in the expansion of S(jJ-, >') in 
positive powers of >. and jJ-: 

00 

S(jJ-,>')= I: SmnjJ-m>.n (3.4.16) 
m,n=O 

If >. = 0 does not lie inside C, then instead of (3.4.16) we must take an expansion 
in powers of jJ- - e and >. - e, where e lies inside the contour C. On the basis 
of property (b), on the contour C we write r(>.) in the form of a Laurent series 

r(>.) = f ~: . 
n=O 

(3.4.16') 

Thus, all the singularities of r(>') lie inside the contour C. In view of property 
(b), the first term on the right-hand side of (3.4.15) vanishes and, using the 
residue theorem, (3.4.15) can be written in the form of an equation for the 
infinite-dimensional matrix S = (Smn) (m, n, = 0, 1,2, ... ): 

(3.4.17) 

In (3.4.16), r 1 = (r m-n) denotes a triangular matrix in which all the elements 
above the main diagonal are equal to zero: r m-n = 0 for m < n. The matrix 
n is obtained from rl by transposition, n == (rn - m ), and is also triangular, 
with all the elements below the main diagonal equal to zero. The matrix H is 
constructed from the coefficients of the Laurent series for the matrix r by the 
rule (H)m,n = r m+n+l. In (3.4.17) the product of matrices should be understood 
as the ordinary matrix product: 

00 

(AB)m,n = I: AmsBsn . 
s=O 

We now multiply (3.4.17) on the right by the matrix 
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and on the left by the matrix 

00 [',k 
exp(r2a ) == ~)a)k k~ . 

k=O • 

Then (3.4.6) can be rewritten in the fonn 

d 
da (exp(aH)Sexp(-aFt» = exp(aH)SFJSexp(-aFt) 

We introduce the new unknown matrix 

T == exp(aH)Sexp(-aFt) . 

Equation (3.4.18) can be rewritten for this matrix as 

~~ = TQT, Q == exp(aFt)FJexp(-aH) 

Equation (3.4.18') has the solution 

0/ 

T-1 = - J Q(a') da' + TO- 1 , To == TIO/=o = So , 
o 

(3.4.18) 

(3.4.19) 

(3.4.18') 

which (in order to avoid complications associated with the inverses of infinite­
dimensional matrices T) can be written in the fonn 

0/ 

To = -T J Q(a') da'To + T 
o 

or in the fonn 
0/ 

To = -To J Q(a')da'T+T 
o 

(3.4.20) 

(3.4.20') 

Multiplying both sides of (3.4.20) by exp( -ar2) on the left and returning to the 
function S, from (3.4.20) we have 

0/ 

exp(-aH)So = -Sexp(-aFt) J Q(a')da'So + Sexp(-arl) (3.4.21) 

o 

We note that exp( -aFt) and exp( -aH) are triangular matrices with zero ele­
ments above and below the main diagonal, respectively, and they are obtained 
from each other by transposition. The element of exp(-arl) in row m and 
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column n is equal to the coefficient <pm-n in the expansion of the matrix 
exp(-ar(;\» = E':'=o<Pk/;\k. 

We shall now consider the infinite-dimensional matrix 
a 

Q == - exp( -an) J Q(a') da' 

o 

and show that Qmn = <Pm+n+l. 
Indeed, we have 

Qmn = - (eXP(-an ) J exp(a'Ft)HeXp(-a'n») 

o m,n 

<Xl <Xl Ja (' )"j 
= ""' ""' a - a a da'(F,i[1 r/) (_1)o+j+l ~ ~ ., ., 1 3 2 m,n 

'-" '-" t.J. 
,- J- 0 

<Xl k+l k 
= 2:(-1)k+l (t+ 1)! '~~)rlHr;-i)m,n . 

k=1 ,=0 

The result to be established follows from the identity 

k 

2:(rl r3 r ;-i)m,n = 2: rit ... r 'k+l' 
i=O '1 + ... +ik+l =m+n+l 

where on the right we have the coefficient with index m + n + 1 in the Laurent 
expansion of [r(;\)]k. 

We now multiply the components in row m and column n of the matrix equal­
ity (3.4.21) by /-Lm"{n and sum over m and n from 0 to 00. Using (3.4.16,16'), 
we then have -J exp( -ar(;\»So(;\, "{) d;\ = J S(/-L, ;\) exp( -ar(;\» 

~-0 ;\-"{ 
c c 

+ J S(/-L,;\) exp( -ar(;\»So(;\, "{) d;\ . (3.4.22) 

c 

Using the fact that exp[ -ar(;\)] is holomorphic outside the contour C and re­
turning from the function of two variables S(/-L, "{) to the function of one variable 

<p-l(/-L)<p("{) = 1 + (/-L - ,,{)S(/-L, "{) , 

from (3.4.22) we finally obtain the integral equation 

J -1(;\)d;\ 
<p(;\) exp( -ar(;\» <p~;\ _ /-L) = 0 , 

c 
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from which it also follows that 

- - I-' J <Pol(.\)d.\ o - X = 21ri <p(.\) exp( -ar(.\» (.\ _ c)(.\ _ 1-') , (3.4.23) 

where the points I-' and c lie inside the contour C. This relation was first obtained 
in the particular case of integrable equations (for the stationary axially symmet­
ric electrovacuum in general relativity) by Ernst and Hauser. If we start from 
(3.4.20'), we can also write (3.4.23) in the form 

J <p-l(.\)d.\ 
o = <po(.\) exp(ar(.\» (.\ _ c)(.\ _ 1-') . (3.4.23') 

We now consider the integral (3.4.23) when I-' varies outside the contour C. In 
this case, X = X-(I-') determines a function which is holomorphic outside the 
contour C and which, owing to (3.4.23), has the following limiting values as I-' 
tends to a point on the contour C: 

(3.4.24) 

The condition (3.4.24) relates the two functions X-(.\) and <p(.\), which are holo­
morphic and nonsingular matrices outside and inside the contour C, respectively. 
Instead of <p(.\), it is convenient to introduce the function X+(.\) = <p(.\)<pOl(.\). 
Then (3.4.24) can be written in the form of the traditional Riemann problem 
of determining the functions X ± which are holomorphic outside and inside the 
contour C, respectively, and linearly related on the contour: 

X-(.\) = X+(.\)G(.\) , G(.\) == <po(.\)exp(-ar('\»<pol(.\) . 

Thus, we have obtained a complete classification of the integrable systems of 
mathematical physics on the basis of the dividers of the connections and the 
Lie-Backlund algebras. 

Out result permits new refinements of the above-mentioned Zakharov-Shabat 
method of "dressing the bare solution Uo, Vo". In the investigation outlined 
above, the following natural restrictions arise: (a) the matrices <po(.\) and <p(.\) 
are holomorphic inside the contour C; (b) the matrices r(A) are holomorphic 
outside the contour C in the extended complex plane; (c) the matrices r(.\) 
belong to some matrix algebra. We stress that the algebras of currents associated 
with finite matrix algebras do not exhaust all the possibilities. The matrix algebras 
of r(.\) are isomorphic to the algebras of infinite-dimensional triangular matrices 
having the special fonn Ft = (ri-j), where ri-j = 0 for i < j and Ec;=o rk/.\k 
is the Laurent series for r(.\) on the contour C. 

Finally, we note that a study of the unique solvability of the Riemann problem 
for solutions of the given functional classes of certain integrable systems was 
given in a recent monograph [3.24]. In the case of dividers of U and V consisting 
of a unique singular point, it is convenient to choose the contour C to be a contour 
passing through this point 



4. Propagation of Waves in the Gravitational Fields 
of Black Holes 

In this chapter, we consider the propagation of perturbations on the background 
of the gravitational fields described by the Schwarzschild, Nordstrom-Reissner, 
and Kerr-Newman solutions (see Sect. 2.3); like the Kerr solution, these solu­
tions are representatives of asymptotically flat stationary spaces possessing a 
nondegenerate event horizon. 

The external fields of a collapsing star (assuming stability of the process 
of contraction) must become asymptotically stationary at large times. If, for an 
external observer, the boundary of a body eventually "freezes" on a nonsingular 
horizon, then no physical fields (other than the electromagnetic and gravitational 
fields) - scalar, vector, etc. - can be present outside this "frozen" starl [4.1,2]. 
There now exist a number of arguments which indicate that the final state of the 
external field of a collapsar must be characterized by only three parameters: the 
mass, charge, and angular momentum of the body; i.e., in the general case it is 
described by the exact Kerr-Newman solution [4.4] (see Sect. 2.3). 

For the case of static Einstein-Maxwell vacuum fields, there exists a theorem 
which asserts that the Nordstrom-Reissner solution is the only asymptotically flat 
solution possessing a nonsingular and simply connected event horizon [4.5] (see 
Chap. 2). 

However, in the evolutionary stages preceding and during the collapse, com­
plex physical processes take place inside the star, which give rise to the existence 
of various physical fields in the exterior space, and these fields (induding the elec­
tromagnetic and gravitational fields) can have multipole components. Therefore 
the formation of a black hole without rotation is accompanied by the attenuation 
of the multipole components of the electromagnetic and gravitational fields in the 
surrounding space and by the vanishing of all possible fields of different types. 

Particularly detailed studies have been made of wave fields outside a collaps­
ing, weakly nonspherical star. The system of Einstein's equations, linearized near 
the Schwarzschild solution, has been reduced [4.6,7] to two second-order equa­
tions, which have no eigenfrequencies for spherical harmonics of order 1 ~ 2. 
The stability of the black-hole state has been proved [4.6]. 

The gravitational collapse of a perfectly conducting, spherically symmetric 
mass possessing a magnetic dipole moment was studied [4.8], and it was shown 

1 An interesting approach to this problem was developed by Markov [4.3). 
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that in the quasistationary approximation the total magnetic moment of a col­
lapsing star decreases with the time. It was shown [4.9] that when a weakly 
nonspherical uncharged star collapses, the resulting external field is described by 
the Kerr solution with a small angular momentum. 

Under the assumption that the "primary" radiation (emanating from a col­
lapsar) is effectively switched off, the laws of attenuation of the "secondary" 
(scattered) radiation have been studied [4.10,11]. The quantitative details of the 
asymptotic law of attenuation of the tails of the radiation from a collapsing body 
were found [4.11]. We mention a preprint [4.12] in which the results of intensive 
investigations of gravitational collapse were summarized. A major contribution 
to the study of wave fields in the neighborhood of black holes was made by 
CharuJrasekhar [4.13]. 

Various aspects of the propagation of (scalar, electromagnetic, and gravita­
tional) waves in the Schwarzschild field have also been investigated [4.11,14-
18]. 

The emission of particles, either rotating in circular orbits or falling radi­
ally in the field of black holes (including charged particles), has been studied 
[4.19-23]. It was shown [4.14] that a collapsing dust cloud can focus, in it­
self, gravitational radiation from external sources, and the canonical equations 
of Regge and Wheeler [4.6] and Zerilli [4.7] were interpreted in an invariant 
manner as equations for the linearized invariants of the Riemann tensor. The 
idea of a logarithmic branch point of the scattering matrix at frequency w = 0 for 
Regge-Wheeler and Zerilli potentials was put forward [4.24], and it was shown 
that there is an intermediate asymptotic behavior, which relaxes with the time 
towards the asymptotic behavior found by Price [4.11]. A study was made [4.25] 
of the attenuation of the tails of scalar waves emitted during the collapse of a 
charged star with limiting charge. 

In Sect. 4.3 we outline the results of an investigation [4.26] of the external 
wave fields in the case of weakly non spherical collapse of a star which is, in 
general, charged. Using a new method of finding the singularities of the scattering 
matrix at w = 0, we study the asymptotic attenuation of the tails of the radiation 
from a collapsing body for various values of its charge, with allowance for 
the interaction of the electromagnetic and gravitational fields. The investigation 
is based on four independent canonical second-order equations with separable 
variables, which we have been able to obtain from the combined system of 
Einstein-Maxwell equations, linearized near the Nordstrom-Reissner solution, for 
both even and odd perturbations2• We note that in the case of charged rotating 
black holes it has hitherto been possible to study only short-wave perturbations 
(see Sect. 4.1). 

When a black hole occurs in a binary system (in a pair with an ordinary 
star), the black hole becomes a "source" of scattered radiation. This effect is 

2 It is worthwhile to note that this result was obtained independently of authors [4.26] also by 
Moncrief [phys. Rev. 1974, v. D9, p. 2707; ib. 1974, v. 10, p. 1057; ib. 1975, v. 12. p. 1526]. 
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considered in Sect.4.2. In Sect.4.1 we show that charged black holes, if they 
exist, must mix the electromagnetic and gravitational radiation in the universe. 

4.1 Propagation of Short Waves in the Field 
of a Charged Black Hole 

In this section, the general theory of the behavior of short waves in strong external 
electromagnetic fields, developed in Sect. 1.2, is applied to the case of the field of 
a charged black hole, see [4.27]. In accordance with this theory, we must first find 
the trajectories of the light rays3 along which short-wave perturbations propagate 
and then determine the tetrad component 4'0 of the external electromagnetic 
field, which governs the mutual conversion of high-frequency gravitational and 
electromagnetic waves. 

4.1.1 Short Waves in the Nordstrom-Reissner Field 

The eikonal equation gaiu"U,j = 0 admits, in the Nordstrom-Reissner field, the 
complete integral 

u=t±R(r)±"p(O)+N<p, R(r) = J A-t VI-).2A/r2dr , 

"p(O) = J V).2 - N2/ sin2 0 dO, A == 1 - rg/r + GQ2/r2c4 • 

Here ). and N are arbitrary constants. 
The trajectories of the light rays are described by the equations 

au/a). = const, au/oN = const . 

(4.1.1) 

In the case of the Nordstrom-Reissner metric (see Sect. 2.3), the component 
4'0 in the tetrad field associated with a given normal congruence of the null 
geodesics has the form 

(4.1.2) 

It is convenient to replace the affine parameter a by the radial coordinate r: 

According to the general theory developed in Sect. 1.2, the period of the 
sinusoid which modulates mutually converted gravitational and electromagnetic 
packets can be found from the equation 

3 For this, it is sufficient to find the complete integral of the Hamilton-Jacobi equation for the 
isotropic geodesics (the eikonal equation). 
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It follows from this expression that the effect of mutual conversion on a given 
light ray depends on the constant A, called the impact parameter. Waves trapped 
by a black hole have impact parameters for which the equation4 1 - AA2/r2 = 0 
has no real roots. The corresponding values of A satisfy the inequality A < Aero 
where 

A~ = r; [x2 + ~ + VI + 8x2 + (8x2)-t (VI + 8x2 - 1)] 
x2 == 1 - Q2 / (G M) , 

Aer = v'firg/2 for Q = 0 , 

Aer = 2rg for Q = MVG 

For A > Aer, short waves incident on a black hole approach it up to a 
minimum radius r2, which is the larger root of the equation 1 - AA2/r2 = O. In 
the case in which an electromagnetic wave with amplitude B is incident on a 
charged black hole without being trapped, this wave, after experiencing several 
conversions into a gravitational wave in the field of the black hole, again escapes 
to infinity in the form of an electromagnetic wave and an emergent gravitational 
wave, whose amplitudes are 

f = Beos [2QAv'ik'[~; VI ~ AA'/r'] (4.1.4) 

P = 2e -, Bv'() sin [2QA v'() c-,[ ~ VI ~ AA' /r'] (4.1.5) 

(see the notation in Sect. 1.2). 
The integrals in (4.1.4,5) diverge whenever the equation 1 - AA2/r2 = 0 

has a multiple root A = Aer. The corresponding value of the impact parameter 
belongs to a ray winding around an unstable limit cycle - a closed circular orbit 
of light rays with radius 

rer = rg (3 + VI + 8x2) /4 

(the radius is rer = 3rg/2 for Q = 0 and rer = rg for Q = M v'C). 
In the neighborhood of the limit cycle, the approximation of geometrical 

optics is not appropriate, and we have here leakage of short waves through a 

4 For a given A. this equation reduces to a fourth-order equation for r. which for A > Aa has 
two real roots rl and r2 outside the horizon. For A < Aa. this equation has no roots outside the 
horizon. The value Aa corresponds to the case of a multiple root rl = ~. 
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potential barrier (see Sect.4.3.1) with comparable values of the reflection and 
transmission coefficients. 

The relations (1.2.48) for the Nordstrom-Reissner field. after expansion of the 
solution in spherical harmonics Yim «(}, <p) and in a Fourier integral with respect 
to the time. take the form 

8 (8) [w2 (1+1)1 (GQ>.W)] A 8r A 8r rx± + rx± -;J: - A ----;:z =t= V di cr2 = 0 . (4.1.6) 

The ratio cJ(l + l)l/w has the meaning of the impact parameter >.. 
For rays whose impact parameters are close to the critical value I>' - >'crl "" 

O(1/w). near a closed ray Ir - rcrl "" O(1/w) the relation (4.1.6) reduces to the 
parabolic-cylinder equation 

r~ Jl w2 [ 26r~ - >.~ 
>.~ dr2 X± + -;J: X± (r - rcr) r~ 

+ ,2 (>'cr - >') ± ~,Qc ] = 0 . 
Acr V di Acrwrcr 

(4.1.7) 

The Weber (parabolic-cylinder) functions can be expressed in terms of the 
confluent hypergeometric function, the theory of which makes it possible to prove 
[4.28] that the amplitudes of the incident. reflected, and transmitted waves are in 
the ratio 1 : I R± I : IT ± I. where the reflection and transmission coefficients I R± I 
and IT ± I are given by 

1 
IR±I= , 

';1 + exp( -7ra±) 
1 

IT±I= , VI + exp(7ra±) (4.1.8) 

a± = ~ >'cr [2(>' - >'cr) ± (G~] 
c Vdi>.crwrcr 

It follows from the expansion of the hypergeometric function that at small 
values of the argument the amplitudes of the waves near a limit cycle become 
w1/ 4 times larger than at normal points, where the expansion of geometrical 
optics holds. 

Suppose that an electromagnetic wave is incident on a black hole. with impact 
parameters of the rays close to the critical value and with an asymptotic behavior 
at infinity given by 

f = Br-1 exp[iw(t + r)] . 

According to (4.1.7), the gravitational wave which appears as a result of the 
reflection is given by the expression 



4.1 Propagation of Shon Waves in the Field of a Charged Black Hole 173 

Here r2 is the root of the equation 1 - A)..2 Jr2 == 0 with 

Re{r2} > i (1 - VI - G~2) , 
P± == w2 (1 _ A)..2) ± fG Q)"wA , 

r2 V~ r3 c 

( 1 ia±) a± a± 
i± == argF 2: + T + T - T[ln(la±i> -ln2] , 

and R± and a± are defined by (4.1.8). 
For a finite difference of ).. from )..er, with)" > )..ero the solution of (4.1.7) 

in the region r < rl for nontrapped short waves becomes exponentially small, 
since, according to the definition (4.1.8), a± becomes of order w. In this case, 

i± ~ 0, exp(-1l'a±) ~ 0 , 

F± ~ fG AQ).. 
±-wVl-7~V~r3JI_A)..2Jr2 ' 

and we again obtain (4.1.5). 
If I).. - )..cr I :s; 0(1 J w), the total intensity of the reflected electromagnetic 

wave and the resulting gravitational wave will form a finite part of the initial 
intensity: 

The number of mutual conversions of the waves is comparable with unity if 
Q"" .;eM. 

Thus, charged black holes might in principle control the equilibrium of the 
relic gravitational and electromagnetic radiation in the universe. 
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4.1.2 Short Waves in the Neighborhood of a Rotating Charged Black Hole 

The eikonal equation for the Kerr-Newman solution (see Sect. 2.3) admits a total 
integral in the form 

U = t ± R(r) ± 'I/J«()) + N t.p , (4.1.9) 

where 

'I/J«()) = A - N d() . [ 
2 2 ] 1/2 J sin2 () - a2 sin2 () 

(4.1.11) 

For the Kerr-Newman solution, the principal axes of the bivector of the 
electromagnetic field and of the Weyl tensor in the coordinate system (2.3.67) 
are given by the components (2.3.69). 

In Chap. 1 we derived the expression (1.2.28') for the derivative of the argu­
ment of the tetrad component q)o (which controls the mutual conversion of the 
waves) with respect to the affine parameter. 

For the Kerr-Newman field, which has a Weyl tensor of Petrov type D, the 
rotation coefficients k, v, A, and a of the tetrad are equal to zero. Therefore the 
expression (1.2.28') for arg q)o takes the form 

d(arg q)o) 3 [ * * 
d = 2' U(m)(7r+7 )-U(m·)(7r +7) aI' , 

-U,(n)(e - e*) - U,(/)(/J - /J*)] 

We now use the equations 

dr = -.1 dR 
do. dr' 

substitute (2.3.70) into (4.1.12), and integrate. We then obtain 

arg q)o = -3 arctan(r / a cos ()) . 

(4.1.12) 

(4.1.13) 

(4.1.14) 

For a rotating charged black hole, the electromagnetic field of the background 
in the tetrad (2.3.69) has the form (2.3.68). 

Using the formulas for the transformation of the tetrad components of the 
electromagnetic field (see Sect. 1.1), we obtain 

Iq)ol = E-3/ 2QJA2 +2aN . 

Finally, making use of the expression for the argument, we obtain for the 
tetrad component q)o the elegant expression 

q)o = QJA2 + 2aN(r - iacos ())-3 . (4.1.15) 
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In the absence of rotation, (4.1.15) reduces to (4.1.2). 
A new effect for short waves, which occurs specifically in the case of their 

propagation in the field of a rotating charged black hole, in contrast to the case 
of the Nordstrom-Reissner field, is the rotation of the plane of polarization for 
waves with initial linear polarization (with respect to a tetrad which undergoes 
parallel transport) [4.27]. 

In the general case, at normal points of a congruence of null geodesics, the 
equation for the amplitude F has the form 

J2 F + F _ i d(arg q>o) dF = 0 
dm2 dm dm 

(4.1.16) 

(see the notation in Sect. 1.2). 
The variable m for the Kerr-Newman field is related to the radius as follows: 

dm = Q ~ V)..2 +2aN dr . (4.1.17) V ~ .:1 E dR/dr 

Therefore the function d(argq>o)/dm which appears in (4.1.16) is given implicitly 
in terms of m by the relation 

d(argq>o) = 3a (.:1dRcoso+rsinod1/J) ~. (4.1.18) 
dm QVEV)..2 + 2aN dr dO v'G 

The largest numbers of mutual conversions and rotations of the plane of polar­
ization occur for waves on null geodesics which wind onto a limit cycle whose 
radius is a multiple root of the equation 

(r2 + a2)2 + 2aN(rgr _ CQ2/c4) + a2 N 2 _ )..2.:1 = 0 . 

This root gives the radius of a closed trajectory of massless particles. 
For trajectories lying in the equatorial plane 0 = 7r /2, there is no rotation of 

the plane of polarization. In this case, the period of the modulating frequency 
can be found from (4.1.17). Mutual conversion of waves does not occur for rays 
with N = -a lying in the equatorial plane. 

Another interesting case is the case of trajectories winding around the cone 
0= arcsin(INI/a) (with INI < a, )..2 = -2aN). 

For these trajectories of isotropic geodesics, the tetrad component q>o is equal 
to zero, so that the effect of mutual conversion of gravitational and electromag­
netic waves does not occur for the corresponding wave packets. The general 
solution of (4.1.16) for large r admits the following series expansion: 

F = C {I _ CQ2()..2 + 2aN) iaCQ2()..2 + 2aN) cos 00 } 
1 8 4 4 + 10 5 4 + ... r ere 

C {
I 2ia cos 00 )..2 - 2a2 - 10a2 cos2 lJo 

+ 2 2- 3 + 44 r r r 

ia cos 00 2 2 2 2 } + 5r5 (14a cos 00 + 6a - 3)" ) + .. . . 
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Therefore, if a ray approaches a charged rotating body at the closest distance 
R ~ A ~ rg, the argument of :F (for C2 = 0) changes by an amount S ~ 1: 

S f'V aGQ2 cos Oo/(c4 R!) . 

The change in the argument of :F is equal to the angle of rotation of the 
plane of polarization with respect to a tetrad which undergoes parallel transport 
along a null geodesic. 

Finally, we note that for rays with large impact parameters A, or in the case 
of a black hole with small charge, the rotation of the plane of polarization with 
respect to the tetrad will be much smaller than the rotation of the parallel-transport 
tetrad itself (a possible measure of the latter is given by parallel transport with 
respect to the pseudo-Euclidean infinity from the "point of entry" of the ray 
into the gravitational field to its "point of exit"). The ratio of the corresponding 
angles of rotation is of the order of Q2 / M c2 R. The two effects of rotation of 
the plane of polarization become comparable with each other when A f'V Acr and 
Q2 f'V G M2, i.e., when the mutual conversion of the waves is not small. 

4.2 Asymptotic Theory of Scattering of Wave Packets 
in the Gravitational Field of a Black Hole 

The problem of small perturbations of the Einstein-Maxwell equations on the 
background of the Schwarzschild solution reduces to the analysis of equations 
of the type 

{fQr {fQr [( r g ) Ll ] -----+ 1-- -+V(r) Qr=O 
ar*2 at2 r r2 ' 

(4.2.1) 

where the quantities Q are certain combinations of small perturbations of either 
the metric or the bivector of the electromagnetic field, r* = r + rg In(r /rg - 1), 
and .2i is the Laplacian operator on a sphere of unit radius. Regge and Wheeler 
[4.6] have shown that V(r) = 3rg(1 - rg/r)/r3 in the case of perturbations of 
the metric of odd type. For even perturbations of the metric (see the beginning 
of Sect. 4.3.1), the potential V was found by Zerilli [4.7,23]; for electromagnetic 
waves of odd type, V = O. Nevertheless, the differences between the potentials 
V(r) for describing the propagation and scattering of short waves are unimportant 
asymptotically. 

Following [4.29], we shall describe here the effects of scattering by the field 
of a black hole of radiation from the second component in a binary system. 
Of course, there is also a contribution to the total radiation from the radiation 
of the stellar wind and interstellar gas accreting on the black hole, which are 
not considered here. However, the specific feature of the scattering is that the 
black hole becomes a source of secondary radiation of a wave having the same 
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wavelength as that of the second component, and the radiation comes from a 
sphere of radius 3rg/2. 

Before investigating this problem, we recall that a homogeneous linear or­
dinary differential equation of the second order with variable coefficients can 
always be reduced, by means of a transformation of the unknown function, to 
the canonical form dly/dx2+iP(x)y = O. This equation retains its canonical form 
under a transformation x = 1(0 of the independent variable if the unknown 
function is transformed as y = ff z(O (f' == dx / de). Then z(e) obeys the 
equation 

dlz -
de + iP(Oz = 0 , where 

4;(0 = iP(x)/,2 + VJi~ (_1_) 
- de ff (4.2.2) 

In the case in which the scale L of the characteristic variation of the positive 
function iP(x) is much greater than 1/ V¥, the asymptotic solution of the second­
order equation (the WKB approximation) has the form 

y ~ const . iP-1/ 4 exp ( ±i J # dX) . 

If the function iP(x) is positive only in a certain region, then near the zeros of 
iP(x) with iP' f 0 (the so-called turning points) a more accurate asymptotic form 
for the solution is given by 

y = ~~Ai(z)exp(2z3/2 /3)exp (±i J )iP(X)dX) , 
V liP'l 

z == _iPliP'I-2/ 3 , iP' == diP/dx , 

where Ai(z) is the Airy function. A wave incident on a turning point is ideally 
reflected from it with a phase change 7r /2. The situation here is completely 
analogous to the approximation of geometrical optics at normal points and to the 
behavior of waves near caustics described in Chap. 1. 

At certain isolated points, the scale L can become of order equal to or less 
than iP-1/ 2, although the function iP remains positive. In other cases, the distance 
between two turning points beyond which iP(x) > 0 can be of order equal 
to or less than I min iP(x)I-1/ 2. In such cases, there is a partial reflection and 
partial "leakage" of the waves through the potential barrier characterizing the 
nonhomogeneity of the background [the function iP(x) carries information about 
the characteristic features of the background around which the linearization was 
made in obtaining the linear equation y" + iP(x)y = 0]. 

We write the scattering potential iP(x) in the form A2.,p(x), where A is a 
large parameter. Near a double turning point xo, the analytic function .,p(x) can 
be represented in the form 
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(4.2.3) 

We shall assume that the radius of convergence of this series is of order 1. The 
constant rna can have either sign. 

In the equation y" +4i(x)y = 0, we transform to the variable t = VA(x - xo). 
Then this equation takes the form 

tP y 
dt2 + cp(t)y = 0 , (4.2.3') 

The equation for the unknown function y(t) with this potential cp(t) can be 
reduced by means of a substitution y = Jdt/de z(e) to Weber's equation, whose 
general solution can be expressed in terms of confluent hypergeometric functions. 

In order to find this substitution e(t), i.e., the mapping t -+ e, we must solve 
the equation 

2 (de)2 (d{ tP fdt 
cp(t) = (e + m) dt - V dt dt2 V de . (4.2.2') 

We shall seek the unknown constant m and the function e(t) in the form of 
asymptotic expansions 

00 

ml m2 "mk 
m=mO+""A+ A2 + ... = L...J Ak ' 

k=O 

e(t) = t + 11 (t) + h(t) + ... = f Ik(t) + t 
VA A k=1 (VA)k 

(4.2.4) 

Substituting the expansions (4.2.4) into (4.2.2'), where the function cp(t) is 
represented in the form of the series (4.2.3'), and equating the coefficients of 
identical powers of A -1/2, we obtain, in tum, the results 

a 1tl =2tll +21{(t2 + rna) + 1{"/2 , 

a2t4 = 2th + 21l(t2 + rna) + Il" /2 + If + ml + 4tlll{ 

+ (f{)2(t2 + mo) - 3[(f{)2]" /8 + I{J{" /2, '" . 
(4.2.5) 

It follows from the structure of the recurrence relations (4.2.5) that the solu­
tion for the functions Ik can be found in the form of polynomials of degree k+ 1, 
where the polynomials 12k contain only odd powers of t, while 12k-l contain 
only even powers. We write the required solution for 11, 12, and ml: 

3 13 2 mo [15 2 ] 
ml = -ga2 + 96a1 - "8 32a1 - 3a2 , 

al 2 
11 = 6'(t - mo) , (4.2.6) 

f: - a2-13a~/36 3 mo [103 2_3 ] 
2 - 8 t + 16 t 36 al a2 
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To analyze the character of the propagation of short waves in the Schwarz­
schild field, it is sufficient to know only the principal part of the differential wave 
operator, which, after expanding in spherical hannonics, takes the following fonn 
for a monochromatic wave with frequency w: 

~(Qr) + [w2 _ (I + 1)1 (I _ r g)] Qr = 0 
dr*2 c2 r2 r (4.2.7) 

Solutions of the Cauchy problem for short-wave perturbations which differ from 
zero at the initial time only in a sufficiently small region are subsequently local­
ized in the neighborhood of the corresponding bicharacteristic (of the ray). Such 
solutions represent the classical transition from a wave to a particle [4.30], and 
the ratio lc/w has the meaning of the impact parameter p of the ray along which 
the wave packet propagates. 

Trapped wave packets correspond to impact parameters such that the expres­
sion 

4i(r) = w2 _ 1(1 + 1)(1 - rg/r) 
c2 r2 

remains positive up to the horizon. This requires that the impact parameter p be 
less than rgV27 /2. 

Wave packets incident from infinity are not trapped by a black hole if their 
impact parameters are greater than rgV27 /2: in this case, there is a reflection of 
the solution from the first turning point which is encountered on the path of the 
wave [the root of the equation 4i(r) = 0]. 

Finally, wave packets with near-critical impact parameters in the neighbor­
hood of the sphere r = 3rg/2 undergo strong scattering, and a certain fraction of 
the radiation is trapped by the black hole. In fact, when p R:: rgV27 /2 we have 
the situation described above, since for p = rgV27 /2 the equation 4i(r) = 0 has 
a double root r = 3rg/2. Therefore when Ip - rgV27 /21::: l/w near the multiple 

turning point r = 3rg/2 the differential equation (4.2.7) reduces asymptotically 
to Weber's equation 

~Q +~ [12(r-3rg)2 +~ (27 r2 _ p2)] Q=O 
dr2 c2r2 2 3 4 g g 

Using the known asymptotic fonn of the solution of this equation, we can de­
tennine the coefficients in the WKB solutions of (4.2.7) corresponding to the 
reflected and transmitted waves. 

Thus, making use of the properties of the confluent hypergeometric function 
[4.28], we obtain for a nontrapped wave packet incident on a black hole from 
infinity the following asymptotic solution of (4.2.7): 
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Q = B(p)'rl/'~ {i(\ +exp(-.a'»-ll'exp [-i (~+ ] -Hdr.) 1 

+exp (i] -Hdr')} for r; < r' < 00 , (4.2.8) 

Q = B(P)<l'-I/.!: {(I + exp .a')-II' exp [i (~+ ] -H dr.) 1 } 
for r* < ri . (4.2.9) 

Here B(P) is the amplitude of the incident wave, and 

if! = w2 _ (1 + 1)1(1 - rg/r) 
- Cl r2 

1== argr (& +i~) + ~ -a2 1n (i) , 
r2 

7ra2 = J ~ dr ~ ~ (p2 _ 27 r2) 
2 1 - rg/r V27 4 g 

rl 

In (4.2.8,9), ri and ri are, respectively, the smaller and larger roots of the 
equation if!(r) = 0, in which r is expressed in terms of r*. The solution (4.2.8) 
consists of the incident and reflected waves, and the solution (4.2.9) corresponds 
to the part of the wave passing into the region r < rl. It is easy to see from 
the structure of the solution that an "energy" balance holds for the waves: the 
square of the modulus of the amplitude of the incident wave is equal to the sum 
of the squares of the moduli of the reflected and trapped waves. In order to go 
over to the coordinate representation of the solution, we mUltiply Q(r) by the 
spherical harmonic PI (cos 0) and sum the result over 1. If the main contribution 
to the sum comes from the coefficients of large I, then for normalized Legendre 
functions in the range 0 < 0 < 7r we can make use of their WKB approximation 
[7r sin 0/2]-1/2 cos[(1 + 1/2)(}+7r /4] and replace the summation by an integration 
with respect to 1 from V27 wrg/(2c) to infinity. 

In order to simplify the resulting integral, we use the method of stationary 
phase for the calculation of an integral: 

b J eiAf(x)'I/J(x) dx ~ AI!:,7xo) I {exp [iA!(xo) + i~sgn!,,(xo)] } 'I/J(xo) , 
a 

where A is a sufficiently large number, and Xo is the unique root of the equation 
f'(x) = 0 in the interval (a, b). Carrying out the calculations for the solution 
Q(t, 0, r) corresponding to the incident wave, we obtain 
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Q = ~ [(Sin ()o()) _ #]-1/2 B(P) 
V -; op p=p r 

X exp [-iW (1+ P:) +ij..adro +i~ 1 (4.2.10) 

Here we can replace p by its value from the equation 

x 

() = J p [ri - p\x2 - x3 )] -1/2 dx, x == rg/r . (4.2.11) 

Xo 

In (4.2.10) it is assumed that all the rays emanate from the point () = 0, x = Xo. 

We shall calculate the flux of energy arriving at a black hole as a result of 
scattering of un trapped wave packets in the case in which the black hole is one 
of the components of a binary system, in which the other component is a source 
of electromagnetic or gravitational radiation. We shall assume that the period 
of rotation of the system is much greater than the time required for a light ray 
to reach a distance 3rg /2 from the radiating component. The angle () will be 
measured from the axis joining the two components. 

Suppose that near the source r = rO, () = 0 the function Q has the asymptotic 
form 

Q = ~ exp[ -iw(t - f(r, ro)/c)] 
J4; f(r,ro) 

(4.2.12) 

Here 

f(r, ro) = V r2 + r5 - 2rro cos () ~ v(r - ro)2 + r5()2 

is the distance between the points with coordinates r and () and the source with 
intensity a = const at the point r = rO, () = 0, and the effects of the curvature of 
space near the source are neglected. 

Comparing the solutions (4.2.10,12) near the source, we can determine the 
function B(P) in the solution (4.2.10). Indeed, according to (4.2.11), we have for 
() the estimate 

( 
2)-1/2 

() ~ 1- 1 - ~ (r - ro) . 
r2 r2 o 0 

Therefore, near the source, f(r, ro) ~ (r - ro)/ VI -rJ /r5. Thus, the expression 
(4.2.12) has the following asymptotic behavior near r = ro, () = 0: 

aVI -rJ/r5 [( r-ro )] Q = exp iw -t + --;:==== 
J4;(r - ro) cV1 - rJ/r5 

(4.2.12') 
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On the other hand, the expression (4.2.10) near the source has the fonn 

.\/(1 -p2/r5? 
Q = v'i.jP( ) roB(p) p r - ro 

xexP[iJ#d"+iW(-t+ r-ro )] 
• cli-#/r5 

(4.2.10') 

r 2 V 

Comparing (4.2.10',12'), we obtain 

l7.jPexp [-if. #dr*] . 
B(P) = 2 e-17r/ 4 

roy'4;\/1 - #/r5 
(4.2.13) 

For the complete system of spherical hannonics, we have 

J IQ21 sin B dB = f: IQrl . 
1=1 

In the case under consideration, the main contribution to this sum comes from 
hannonics with large I, for which the summation can be replaced by an integra­
tion. For the flux of "energy" arriving at the black hole as a result of scattering 
of untrapped wave packets, we obtain, using (4.2.9), 

II = 27rRe (J ~~ ~~: r2 sin B dB) 

= _ 27rw2 J IB2(p)1 dp --'----'=-'''':'-'='2;;- . (4.2.14) 
c 1 + exp(7ra ) 

v'firg /2 

Forimpact parameters p close to the critical value, a2 P::j 2w(p2_27r~/4)/.,fi7crg. 
Substituting the expression (4.2.13) for B(p) into (4.2.14) and calculating the in­
tegral in (4.2.14), we obtain, apart from small quantities of higher order in the 
small parameter c/wrg, 

w2172 Joo {n [ (2w(-Y -27ri/4)] }-2 II = - -- d, 1 - - 1 + exp 4cr5 r5 rgc.,fi7 
27r~/4 

w172rg .,fi7ln 2 wl72.,fi7rg In 2 

P::j - Sr5 VI -27rV(4r5) P::j - Sr5 
(4.2.15) 

In the derivation of (4.2.15) we have made use of an asymptotic method of 
calculating an integral of the fonn Jooo f(x) dx/(eAx + 1), where A is a large 



42 Scattering of Wave Packets in Black Hole Field 183 

parameter. Expanding the function f(x) in a Maclaurin series in the interval 
(0, R), where R is the radius of convergence of the series, we obtain 

00 00 (k) R-e J f(x)dx = "f (0) J xkdx +O(e-AR) 
eAx + 1 L...J k! eAx + 1 

o k=O 0 

00 Elk) 00 k 
=.!. "~J~ O( -AR) A L...J Akk' t 1 + e 

k=O • e+ o 
In 2 1 00 Elk) (0) 

= -f(O) + - "_F_I"(k + 1)(1 - 2- k ) +O(e-AR) A A L...J Ak .. , 
k=1 

where 0 < e ~ R, and (k) is the Riemann zeta function 

00 1 
(k) = Lk . 

n=1 n 

In (4.2.15) we have retained only the first and most important term. We now 
make use of (4.2.13) to calculate the flux of "energy" trapped by the black hole, 
neglecting scattering: 

"fi'ir,J2 

27rw2 J 1= --c- IB(p) 12 dp 

o 
27r:/4 

w2cr2 J d"Y w2cr227r2 

= - 4cr6 0 Jl -"Y/r6 ~ - 16c r/ (4.2.16) 

If we calculate the part of the flux of "energy" scattered by the black hole from 
the rays trapped by it, we find a value of magnitude 11 with the opposite sign. 

Thus, we have obtained the final result that a black hole becomes a source 
of secondary radiation, whose output [as can be seen by comparing (4.2.15, 16)] 
is n times smaller (n == wrgV27/2cln2) than the flux of "energy" trapped by 
the black hole. 

We shall now give estimates. For a black hole with the mass of the Earth, 
rg = O.44cm. For a wavelength 27rc/w = to-2 cm (the infrared range of radiation 
of the companion of a black hole), n has the value 165. This means that the 
part of the radiation scattered by the black hole is 165 times smaller than the 
part trapped by it. However, for the microwave range of radio emission with 
wavelength 1 cm, this ratio is of order unity. Consequently, the phenomenon of 
diffraction becomes important for wavelengths greater than 1 cm. 

The effect of scattering of optical radiation will manifest itself for black holes 
with mass greater than about Ion or 1()23 g. 
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Let us now consider the effects of scattering for radiation emitted by a col­
lapsing body. Gravitational and electromagnetic harmonics with 1 ~ 1 emitted 
by a collapsing body with rB < 3rg/2 (here rB is the limiting radius of the 
body) can reach a distant observer with frequencies w ~ 21c/ V27rg (the part of 

the spectrum of the radiation with w ~ 21c/V27rg reaches a distant observer 
with an exponentially small amplitude). 

The scattered part of the radiation of a collapsing body with rB < 3rg/2 
reaches a distant observer with an asymptotic time dependence determined by 
the factor exp(2ilct/V27rg). This result agrees with the conclusions of Press 
[4.31], obtained by means of computer calculations. 

4.3 Wave Fields Outside a Collapsing Star 

In Sect.4.3.1 we make use of the Einstein-Maxwell equations, linearized around 
the Nordstrom-Reissner solution, to obtain a set of four independent second­
order equations describing the behavior of arbitrary multipole perturbations. In 
the case of zero charge, two of these equations reduce to the equations obtained 
by Regge and Wheeler [4.6] and Zerilli [4.7] for perturbations of the gravitational 
field on the background of the Schwarzschild solution, and the other two reduce 
to equations equivalent to Maxwell's equations on this background. Each of our 
equations [4.26] for monochromatic waves with a fixed spherical harmonic has 
the form of a one-dimensional SchrOdinger equation with a potential function 
which vanishes at the pseudo-Euclidean infinity and at the horizon. The WKB 
approximation for our equations, and also their short-wave asymptotic behavior 
taking into account the scattering of waves on an unstable closed circular photon 
orbit, give the same results as those obtained previously [4.27] (see Sect. 4.1). 

In Sect. 4.3.2 we write down the asymptotic form of the boundary conditions 
on the surface of a star near the horizon for radiated waves in the case of 
different charge, and we describe the general features of the process of scattering 
of monochromatic waves. 

In Sect.4.3.3 the asymptotic properties of the "tails" of the radiation are 
described in terms of a certain integral along the edges of the cut for functions 
having a logarithmic branch point at the origin. 

In Sect. 4.3.4 we obtain the asymptotic behavior of normalized monochro­
matic waves, as well as the transmission coefficient for monochromatic waves 
with a large period. 

In Sect. 4.3.5 we make use of the above-mentioned integral and the results 
of Sect. 4.3.4 to establish the laws of attenuation of the "tails" of the radiation 
with time, and we find the intermediate asymptotic behavior, which, with time, 
goes over into the behavior given in this section. 
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4.3.1 Derivation of the Basis Equations 

As is well known, the external field of a nonrotating, charged, spherically sym­
metric black hole is described by the Nordstrom-Reissner electrovacuum solution 

ds2 = Ac2dt2 - A-I dr2 - r2(dfi2 + sin2 (Jdc;l) , 

F4r = -E , 

GM 
m:::::7 ' 

E:::::~ , 
r 

2m q2 
A:::::l--+2" ' 

r r 

VGQ q=-;;r , 
where Q is the charge and M is the mass of the black hole. 

(4.3.1) 

Notation and Relations Used Here. The indices take the values a, f3, 'Y, ••• = 
3,4; a,b,c, ... = 1,2; i,j,k, ... = 1,2,3,4; the coordinates are xl ::::: (J, x2 ::::: 

cp, x3 ::::: r, x4 ::::: d; gab and gcrp are the metric tensors on the coordinate 
surfaces (xl, x2) and (x3 , x4), respectively, induced by the metric gij of the 
solution (4.3.1). The indices a, b and a, f3 are raised and lowered by means of 
the metrics gab and gcrP, respectively; Va and Vcr are the operators of covariant 
differentiation on the coordinate surfaces (xl, x2) and (x3 , x4) constructed with 
the metrics gab and gcrp; and Cap and eab are the Levi-Civita tensors on these 
surfaces. The nonzero components of the Maxwell tensor for the Nordstrom­
Reissner solution are Fap = -capE; /J = In r2, /Ja = Va /J, Va E = -/JaE, 
o ::::: gap Va Vp, Ll = _r2gabV a Vb, where Ll is the Laplacian operator on the 
two-dimensional sphere of unit radius. 

Regge and Wheeler [4.6] noted that arbitrary small perturbations hik of the 
metric on the background of the Schwarzschild metric can be divided into two 
independent types: even and odd (in accordance with the different behavior of 
these constituents under inversion of the coordinates on the sphere). Perturbations 
on the background of the Nordstrom-Reissner metric can be divided in exactly 
the same way according to their parity. 

Coordinate Conditions. We impose the following coordinate conditions on ar­
bitrary small perturbations hij of the metric: 

(4.3.2) 

These conditions can be satisfied by choosing a particular infinitesimal transfor­
mation of the coordinates, yi = xi + ~i(xl, x2, x3, x4), and the required ~i can be 
determined from hik by quadratures. The details can be found in [4.32]. 

A) Odd Perturbations. If the coordinate conditions are satisfied, the odd per­
turbations of the components of the metric tensor have the form 

(4.3.3) 
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The perturbations of the components of the tensor P.k and of its dual tensor 
P;';' = ciklmp1m /2 have the form 

Spop = 0, spoa = eabV7b po , spab = eabSH 

Sp*op = c;of3 SH, sp·oa = V7a(c;of3 Pf3 - EhO), SPMb = 0 
(4.3.4) 

Maxwell's Equations for the Perturbations. Under the conditions (4.3.2), the 
determinant 9 of the metric tensor remains unperturbed and Maxwell's equations 
for the perturbations take the form 

(4.3.5) 

Using the notation introduced above, these equations can be written in the form 

V7f3 pf3 = SH, cof3 V7 0 Pf3 + E{l° ho = 0 , 

V7f3 SH + {lf3SH - L1(Pf3 - ECf3,h'Y)/r2 = 0 . 
(4.3.6) 

Applying the operator V7f3 to the last equation in (4.3.6) and eliminating pf3 by 
means of the first two equations, we obtain 

(4.3.7) 

Perturbations of the Components of the Energy-Momentum Tensor. The perturba­
tions (4.3.4) of the electromagnetic field lead to perturbations of the components 
of the energy-momentum tensor: 

STop = 0, STab = 0 , 

SToa = eabV7b[E2ho/87r - (E/47r)cof3 Pf3] 
(4.3.8) 

Linearized Einstein Equations. The perturbations of the components of the Ricci 
tensor due to the perturbations (4.3.3) of the metric have the form 

2SRao = -eab V7b[Oho - L1ho/r2 - V70 V7f3 hf3 + {lo V7f3 hf3 

- R.ho/2 - V70 ({lf3 hf3) + (2V7o {lf3 + (lo{lf3)hf3 ] , 

SRof3 = 0 , 
(4.3.9) 

2SRab = eacV7b V7C(V7,h')+ebc V7a V7C(V7,h') , 

where R. == J2 A/ dr2 is the curvature scalar for the metric gof3. By virtue of 
Einstein's equations, it follows from (4.3.8,9) that 

V70 hO = 0 , 

oho - L1ho/r2 - V70 ({lf3 hf3) + (2V7o {lf3 + {lo{lf3)h f3 - R.ho /2 

= KEcof3Pf3 /27r - KE2ho/47r . 

(4.3.10) 

(4.3.11) 

In (4.3.11) we have omitted terms which vanish by virtue of (4.3.10). We perform 
the operation of contracting (4.3.11) with {l0 and apply the Laplacian operator 
to both sides of the equation: 
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oh - .:1h/r2 + (3R*/2 - ",E2/87r)h = ",ECOlPpOi .:1pP /27r , 

h == .:1pOlhOi . 
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(4.3.12) 

Using (4.3.6) and eliminating pP from the right-hand side of (4.3.12), we obtain 

oh - .:1h/r2 + (3R*/2 - 5",E2/87r)h = ",E2cOlP POI "Vp (oH /(27r E» .(4.3.13) 

A Closed System of Equations. Using (4.3.10,11,13), we can express the right­
hand side of (4.3.7) in terms of h. For this, we apply to (4.3.7) the operator 
rcOlPpOl"Vp , which in the coordinates 0, cp, r, ct reduces to -2a/cOt and hence 
commutes with all the other operators of differentiation. We obtain 

OP - .:1P /r2 + ",E2p /27r + (.:1 + 2)h/r3 = 0 , 

where P = rcOlPpOl"Vp(oH/E). Then (4.3.13) takes the form 

oh - .:1h/r2 + (3R*/2 - 5",E2/87r)h = ",E2rP/27r . 

(4.3.14) 

(4.3.15) 

Equations (4.3.14,15) form a closed system. On the basis of their solutions, 
the components of the perturbations of the electromagnetic and gravitational 
fields can be determined from the remaining Einstein and Maxwell equations in 
the form of series in spherical harmonics, and the coefficients of these expansions 
can be calculated by quadratures. In the coordinates 0, cp, r, ct, these equations 
take the form 

2. (a&2 - 2a:2) h + .:12 h - 4q
4
2 h = -6 m3 h - 4q

3
2 P , (4.3.16) 

A r* c U~ r r r r 

2. (~ _ ~) P + .:1 P _ 4l P = .::1 + 2 h 
A ar*2 c2at2 r2 r 4 r3 ' 

r* = J ~ , .::1 = -1(1 + 1) , 

(4.3.17) 

where 1 2': 2, since for spherical harmonics with the index 1 equal to 0 or 1 the 
derivation of the equations becomes invalid. 

It turns out to be possible to introduce new variables 'T/+ and 'T/- in the form 

(4.3.18) 

such that the system (4.3.16,17) decomposes into two independent second-order 
equations, each of which contains only one unknown (the sign + or - is chosen 
according to the condition corresponding to the unknown 'T/+ or'T/_): 

(4.3.19) 

B) Even Perturbations. An analogous procedure is possible for the even per­
turbations. Under the coordinate conditions (4.3.2), the nonzero components of 
the even perturbations of the metric are 
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hcxp(h~ = 0), hcxa = Va Hcx , 

and those of the tensor Fij and its dual tensor F,] are 

oFcxP = -gCXPoE, oFcxa = va fcx , oFab = 0 

of*cxP = 0, of*cxa = -eab(Vb gCXP fp - EHCX ) , of*ab = eaboE . 

Maxwell's Equations ffJr the Perturbations. For even perturbations, we write 
(4.3.5) in the fonn 

Vp fP = 0, £1r + gOlPVp (r2oE) = 0 , 

gOlPVOI fp + EJLOIHOI + oE = 0 . 
(4.3.20) 

By analogy with the case of odd perturbations, by eliminating f P we obtain from 
(4.3.20) the equation 

DtP - £1tP /r2 - £1(JL OI H OI /r2) = 0, tP == oE / E . (4.3.21) 

In addition, we shall use below the following equality, which is a consequence 
of (4.3.20): 

£1g OlP JLOIfp = -QJLOIVOI tP . 

Perturbations of the Components of the Energy-Momentum Tensor. In the case of 
even perturbations, we have 

oTcxp = EgOl poE/47r + E 2hOlP /87r , 
OTab = -EoEgab /47r , 

oTOIa = Va [-EgOlpfP /47r + E2 HOI /87r) 

Linearized Einstein Equations. From Einstein's equations for the even perturba­
tions, using a method analogous to that given in [4.14) for obtaining a single 
equation describing the behavior of gravitational waves on the background of 
the Schwarzschild metric, it is possible to obtain an equation which, however, 
contains on its right-hand side a function tP characterizing the perturbation of the 
electromagnetic field: 

( &- &-) [£1 (6m 4l) 8l A ] 
8r*2 - c28t2 t? + r2 + --:;:- - ~ V(r) + r4p(r) At? 

+ KE2r3 AV(r)tP/47r = 0 , 

p(r) == £1+2-6m/r+4l/r2 , 

t? == (rh44 - £1H1)/p(r) , 

V(r) = [£12 - 4 + 12m/r - 12m2/r2 + 4ml /r3)j(r2p2(r» 

(4.3.22) 

A Closed System of Equations. Equation (4.3.22) together with (4.3.21), taken 
after the transfonnation to the variable t? in the fonn 
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( {jl {jl) [..1 q2 A ] - --- .,p+ -+8-- A.,p 
ar*2 Clat2 r2 r 4 p(r) 

4A a [ (3m 4l) / ]2A + ---{} + 4A - - - p(r) - ..1 -{} =0 , 
r2 ar* r r2 r3 

(4.3.23) 

form a closed system, whose solutions can be used to detennine all the compo­
nents of the perturbations by quadratures. 

Like the system (4.3.16,17) for the odd perturbations, the system (4.3.22,23) 
decomposes into two independent equations when we introduce the new variables 

(4.3.24) 

where C± are defined by (4.3.18). The variables x± satisfy the equations 

( {jl {jl) [..1 ( 4q2 ) V(r) 8q2A] ----- x±+ -+ C±-- --+-- AX±=O 
ar*2 Clat2 r2 r r r4p(r) 

(4.3.25) 

4.3.2 Boundary Conditions and General Properties of the Reflection 
and Transmission Coefficients of Waves 

Inside a collapsing body, there can be various processes which influence the 
waves emitted by it into the surrounding space. The external wave fields are 
detennined by the boundary conditions on the surface of the star. We shall 
not solve the complex interior problem of obtaining the values of the unknown 
functions on the surface of the star, but shall simply assume that they are finite 
(nonsingular) at the instant at which the boundary of the body crosses the exterior 
event horizon (according to a clock of a comoving observer). 

The law of motion of the boundary of a charged sphere (without surface 
charge), neglecting pressure forces, can be found by calculating the law of motion 
of a free uncharged particle in the Nordstrom-Reissner field. We denote the charge 
and mass of the star by q and m, respectively. In what follows, we shall use 
a system of units in which G = c = 1. As in the calculations for an uncharged 
sphere [4.33], we find that the rate of contraction of the boundary is 

(4.3.26) 

where, as before, A == 1-2m/r+q2/r2, and c: distinguishes the elliptic (0 < c: < 
1), parabolic (c: = 1), and hyperbolic (c: > 1) laws of motion. The proper time T 

of a comoving observer is related to the coordinates t and r of an observer at 
infinity as follows: 

( J (1 - A)I/2 ) 
T = c: t + A-I ez dr . (4.3.27) 
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Substituting t as a function of r from (4.3.26) into (4.3.27), we obtain the relation 
between the proper time and the radius of the surface of the star: 

r 

T - Tl = - j(c? - A)-1/2dr , 

rl 

where Tl is the time at which the boundary of the body crosses the exterior 
horizon rt. 

Suppose that the function t/J( T) determines the law of radiation at the surface 
of a star for waves receding from the surface. Near the exterior horizon rl 
[the largest of the roots of the equation A(r) = 0], we can seek solutions of 
(4.3.19,25) in the wave zone in the form of expansions in powers of r - rt. In 
the zeroth approximation, we consider waves receding from the horizon; then 
the approximate solutions (4.3.19,25) have the form <p = <p(t - r*). However, it 
follows from (4.3.26) that on the surface of the body 

j (1 _ A)-1/2 
t = - ~ dr* ~ -r* . 

(By means of a displacement of the origin from which t is measured, it is always 
possible to ensure that the trajectory of the boundary of the body for t -+ 00 is 
tangent to the line t + r* = 0.) Therefore we determine the form of the function 
<p(t - r*) by the equality 

<p(-2r*) ~ t/J(T} - (r - rt)/c;) . 

For q2 < m 2 the coordinate r* near the horizon is related to r by r* ~ "{ In(r-rl), 
and for q2 = m 2 it has the form r* ~ -m2/(r - rl). Hence for t :» r* we have 

<p(t - r") ~ t/J(TI) - (aat/J) (m2) for q2 = m 2 , 
T rl c; r* - t 

(4.3.28) 

<p(t - r*) ~ t/J(T}) - (at/J) C;-l exp (r* - t) for q2 < m2 , 
aT rl 2"{ 

(4.3.29) 
r2 

2"{ == 1 • 
Jm2 _q2 

It is convenient to carry out the analysis of the scattering properties of the 
field of a charged black hole for the Fourier transforms of the unknown functions 
with respect to the time 

00 

X(w, r) = j eiwtX(t, r) dt 

o 

Then the differential equations (4.3.19,25) for the perturbations become ordinary 
second-order differential equations of the form 
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(4.3.30) 

We shall call the real function U{x) the potential barrier of the curvature. 
The differential equations (4.3.30) have, for x --+ ±oo, wave zones in which 

the homogeneous solutions possess asymptotic expansions of the form 

00 

exp{±iwx) L anr-n for r --+ +00 , 

n=O 
00 

exp(±iwx) L bn{r - rl)n for r --+ rl . 
n=O 

The domains of convergence of these series depend on w. The smaller w, the 
further these domains recede to +00 and -00, respectively, along the x axis. 
Suppose that for x --+ +00 the solution has the asymptotic form 

aOUl{w)ToUl{w) exp{iwx) 

(the subscript "out" refers to a wave receding from the surface of the body to 
+00 along the x axis). Analytically continuing this solution to the entire x axis 
near the horizon in the wave zone, we obtain an expression of the form 

aoUl{w)[exp{iwx) + Rout{w) exp{ -iwx)] . 

For a second-order equation in canonical form and with a real potential 
barrier, we have the equality 

yy*' - y' y* = const . 

Here the asterisk signifies complex conjugation, and y{x) is an arbitrary solution 
of the equation y" + ~(x)y = 0, in which Im{~{x)} = O. Using this equality, we 
obtain the relation 

which indicates that the flux of "energy" is conserved. 
The term aout(w)exp(iwx) indicates a wave emitted by the body near the 

horizon, and aout(w)Rout{w)exp(-iwx) is the part of this wave reflected by the 
potential barrier of the curvature back to the horizon; lZoUl{W)Tout(w)exp(iwx) is 
the other part of the wave, which penetrates through the barrier and reaches an 
observer at x --+ +00. The determination of the functions T(w) and R(w) is the 
direct problem of scattering theory. [Equations of the type (4.3.30) containing 
potential barriers have only a continuous spectrum.] 

For a wave incident on a black hole from +00, the boundary condition at 
x --+ -00 should consist in the absence of a wave coming from the horizon. 
Therefore, for x --+ -00 the solution has the form 

am(w)Tin(w)exp(-iwx) , 
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while for x --. +00 it has the fonn 

am(w)[exp(-iwx) + Rm(w)exp(iwx)] 

(the subscript "in" refers to a wave coming from +00). 
The transmission coefficient Tin(w) characterizes the frequency distribution 

of the part of the energy of the radiation trapped by the black hole; the reflection 
coefficient Rm(w) characterizes the part scattered by its field. The function Tin(w) 
can be analytically continued into the lower half of the complex plane of the 
variable w, and the function Tou1(W) into the upper half of this plane. We adopt the 
notation Yout(w, x) for the homogeneous solution of (4.3.30) which for x --. +00 
has the asymptotic behavior exp(iwx). This function can be analytically continued 
into the upper half-plane. 

The equations with potential barriers U(x) obtained from (4.3.19,25) do not 
admit bound states, and therefore the operators of (4.3.30) have only a continuous 
spectrum. It follows from this (see [4.34]) that for 1m {w} ~ 0 the function Tout(w) 
is bounded. 

4.3.3 Properties of Radiation Emitted by a Collapsing Body 
Near the Horizon 

We shall restrict ourselves to the problem of finding the asymptotic behavior of 
the radiation at large t only as a result of radiation of waves by a body near the 
horizon, i.e., we shall set the initial perturbations equal to zero. 

Thus, the properties of the coefficients of the scattering described above are 
required only for finding the asymptotic behavior for t-r* ~ m ofthe following 
integral: 

+00 

X(t, x) = (211')-1 J aout(w)Tout(w)yout(w, x) exp( -iwt) dw (4.3.31) 

-00 

We shall calculate this integral by means of a contour integration on the basis of 
the following two assumptions. 

1) For x > t the integral (4.3.31) is equal to zero for a contour around the top 
of the singular point w = O. This follows from the fact that the functions 
aout(w), Tout(w), and Yout(w, x) are analytic in the upper half-plane. Therefore 
the integral (4.3.31) is equal to the limit of the integral of the same functions 
around a semicircle in the upper half-plane when its radius tends to infinity. 
However, this limit is zero, as was to be proved. 

2) For t > x the integral (4.3.31) can be calculated by means of a contour 
integration. A cut is placed along the negative part of the imaginary axis, 
and the contour shown in Fig.4.1 lies on one sheet of the Riemann surface 
for the integrand of (4.3.31), which has a logarithmic branch point at w = O. 
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6J=O 1m", >0 

Fig. 4.1. Contour of integration in the Fourier 
transfonn 

When q2 < m2, the function aout(w) has poles A, B, ... on the imaginary 
axis for Imw ~ 0 [which follows from (4.3.29)] (see Fig.4.1); when q2 = m2, 

the function Uout(w) has a logarithmic branch point at w = 0: 

i1/l(TI) (eN) 2 
aout(w) ~ -w- + [h Tl m lnw 

[see (4.3.28)]. H the radius of the semicircle tends to infinity, the integrals over 
CI and C2 vanish. Therefore the integral (4.3.31) is equal to the integral along 
the edges of the cut, i.e., along the contour C which goes around the top of the 
singularity at w = 0 [apart from terms which falloff exponentially with the time 
and arise because of the poles A,B, ... of the integrand of (4.3.31) inside the 
contour of integration]. If the function Tout(w)yout(w) were analytic at w = 0, the 
integral along C would be equal to zero, and for q2 < m2 the asymptotic form 
of (4.3.31) would be an exponential decrease. 

4.3.4 Behavior of the Transmission Coefficient for Small w 

The differential equations (4.3.30) are equations with two turning points, which 
for w -+ 0 come arbitrarily close to the exterior event horizon r = rl and 
r = 00. Since for sufficiently small w the first turning point lies in the region 
(r - rt)/rl ~ 1 (the region flt), the solution in this region is able to change 
from a wave solution to a static solution. 

In the region w2r2 ~ Al(l+ 1) (the region il2, the sub-barrier region, which is 
separated from both turning points), the solutions can be approximated by static 
solutions, i.e., expanded in series in powers of w2• 

In the region r ~ m (the region il3), the solutions change from monotonic 
to oscillating solutions. 

It is easy to see that the regions of the different asymptotic expansions over­
lap, and therefore they can be joined in the intersections of the regions ill and il2 
and of the regions il2 and il3. In the region il3, we rewrite (4.3.30) in integral 
form, assuming that for x -+ 00 there is only an outgoing wave exp(iwx) (as a 
rule, we shall omit the argument w of functions depending on w and x): 

00 

y(x) = H(x) + J G3(X, x')y(x') dx' , 
(4.3.32) 

x 

G3(X, x') == i[H(x)H*(x') - H(x')H*(x)]U(x')/2w , 
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where 

_ iwx ~ k (1+k)! 
H(x) = e to'(-I) (1- k)!k!(2iwx)k 

(;(x') == U(x') -1(l + 1)/x'2 . 

For large x, we can express r asymptotically in tenns of x: 

00 

r = x - 2mlnx + L x-nCf'n(lnx) , 
n=l 

where Cf'n(z) are polynomials of degree n, which can be calculated recursively: 
Cf'l(Z) = m 2 - q2 - 4m2z. Therefore, for x ~ m the perturbing potential {;(x) 

admits the expansion 

00 

(;(x) = x-3(4ml(1 + I) In x - 2m - C±) + L x- n- 3cpn(ln x) 

n=l 

In the region rh, we can seek a solution of (4.3.30) by the method of successive 
approximations: 

00 

y(x) = L Zk(X) , Zo(x) = H(x) , 
k=O 

00 (4.3.33) 

Zk(X) = J G3(X,X')Zk-l(X')dx' . 

x 

In the region rh, an arbitrary solution of (4.3.30) is a solution of the integral 
equation 

x 

y(x) = aYl (x) + j3Y2(X) + w2 J G2(X, x')y(x') dx' , 
(4.3.34) 

a 

where Yl (x) and Y2(X) are the solutions of the static equation (4.3.30) (with 
w = 0) which are bounded for x ---+ -00 and x ---+ +00, respectively, and x is an 
arbitrary point in {ho 

The method of successive approximations leads to a fonnal series in powers 
of w2 : 
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y(w, x) = aWa(w, x) + ,BVa(w, x) , 
00 

Wa(W,x) = LW2nwn(x) , 
n=O 
00 

Va(W,x) = Lw2nvn(x) , 
n=O 

wo(x) == Yl(X) , 

vo(X) == Y2(X) 

(4.3.35) 

We determine the coefficients a and ,B by requiring continuity of y(w, x) and 
y'(w, x) at x = a: 

a = Y2(a)y(w, a) - Y2(a)y'(w, a), ,B = y'(w, a)Yl(a) - y(w, a)yHa) , 

and y(w, a) is calculated by (4.3.33). 
In the region fll' after the substitution 

y=rD , 
r-m 

t = -;=::;:===;;: 
Jm2 _ q2 ' 

we rewrite (4.3.30) in the form 

where C} == w2rf /(m2 _ q2). 
The perturbing potential ~(t) is small throughout the region fll. Linearly 

independent solutions of the left-hand side of (4.3.36) are given by the Legendre 
functions piW(t) and q{J(t). We normalize them so that for t -+ 1 (for x -+ -00) 
we obtain exp(-iwx) and exp(iwx), respectively, with 

x = m+ t./m2 - q2 + Jm2 - q2 [rfln v't=l- riln v'i+l] , 
pO(t) = 2-iw/2 r(1 - iw)PiW(t) , 

qo(t) = 2l+iw/2 [Q}W(t) - 2r~l(i:)iW) P;W(t)] r(1 + i - iw) 

x r(1 + i + iw)[r(1 - iw)r l , 

and the Wronskian of pO(t) and qo(t) is 

-2iwr~(t2 _ 1)-1 ( ./m2 _ q2) -1 . 

An arbitrary solution of (4.3.36) in the region fll can be represented in the form 

q(t)/[T(w)] + p(t)R(w)/T(w) , (4.3.37) 
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where p(t) and q(t) satisfy the integral equation 

t 

{ P(t)} = {pa(t)} + J GI(t, t,){p(t')} dt' , 
q(t) qo(t) q(t') 

I 
(4.3.38) 

GI (t, t') = [po(t)qo(t') - qo(t)pa(t')]4i(t')Vm2 - q2 j2iwr~ 

In the region ill we can find solutions of (4.3.38) for these functions in the 
usual way by taking pa(t) and qo(t), respectively, as the zeroth approximation 
and calculating the following approximations in terms of the preceding ones by 
means of the integral operator in (4.3.38). 

We determine the scattering coefficients T(w) and R(w) by matching the 
solutions of (4.3.30) of the form (4.3.35) with the solutions of (4.3.30) in the 
form (4.3.37), using the conditions of continuity of the solution and its derivative 
at an arbitrary point b E ill n !h 

Finally, for the transmission coefficient T(w) we obtain the expression 

T(w) = { I y(w, a) Y2(a) II Wa(w, b) p(w, b) I (4339) 
y'(w, a) yi(a) [Wa(w, b)]' p'(w, b) .. 

I y(w, a) YI(a) I I Va(w,b) p(W,b)I}-12. (' ') 
- y'(w, a) yHa) [Va(w, b)]' p'(w, b) lw YIY2 - Y2YI . 

The primes indicate derivatives with respect to the variable x. Of course, the 
scattering coefficients do not depend on the choice of the points a and b in the 
regions ill n il2 and il2 n il3 • In the asymptotic construction of T(w) according 
to (4.3.39), y(w, a) is constructed according to (4.3.33), Va(w, b) and Wa(w, b) 
according to (4.3.35), and p(w, b) according to (4.3.38). We note that in the region 
ill n il2 the functions Va(w, b), Wa(w, b), and p(w, b) are analytic in w. 

We shall now show that for a ~ m, aw ~ 1 the function y(w, a) can be 
represented in the form 

y(w, a) = [1 + cp(w)]w1+1 X(w, a) + i[1 + t,p(w)]w-1X(w, a) , (4.3.40) 

where X(w, a) and X(w, a) are formal expansions in powers of w2, and cp(w) 
and t,p(w) are functions which have a logarithmic branch point at w = O. We use 
for this purpose the asymptotic expansions (4.3.33). For Zo(w, x) with xw ~ 1, 
we have 

Zo(w, x) = w1+1 Xo(w,x) +iw-1Xo(w, x) , 

where 

_ i7r(I+I)/2 r= (~)l+l ~ (_I)k(wx)2k 
Xo(w, x) - e v1r 2 ~ 22k r(l + k + Ij2)k! ' 

- _ i7r(I+I)/2 r= (~)-l ~ (_1)k(wx)2k 
Xo(w,x) - e v1r 2 L...J 22kr(k -1- Ij2)k! 

k=O 
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The part of ZI (w) nonanalytic in w can be contained only in the integral 

00 

(2iw)-1 ! H 2(x')U(x')dx' . (4.3.41) 

x 

This integral consists of tenns of the fonn 

00 

const !(X')-S Ink (x') exp(2iwx') dx' , 

x 

where 8 ~ 3. By means of an integration by parts, assuming that 1m {w} > 0, 
these integrals can be reduced to a sum of tenns of the fonn Rms with 

00 

const· R ms == (iw)S ! Inm(x')exp(2iwx')dx' (m = 1, ... , k + 1) 

x 

and tenns analytic in w. However, the part of this integral which is nonanalytic 
in w does not depend on x and has the value 

m 

~)ln(-iw)]nCn , 
n=1 

00 

Cn = (iwn-l)m-n J e-2I'(lnp)m-n dp 

o 

In fact, we represent the integral Rms from x to 00 as the difference of the 
integrals from 0 to 00 and from 0 to x. The first of these integrals is equal to 
the expression written above (for the nonanalytic part). In the second integral, 
we may make a series expansion of exp(2iwx') and integrate tenn by tenn, and 
it follows from this that it is analytic in w. 

According to (4.3.33), the part of ZI (w, x) which is analytic in w is given by 

i~) 1 H(x')H'(x')U(x')dx' + •. p. {iH~X) 1 H'(X')U(X')dX'} , 

where a.p.{f(x,w)} denotes the part of the function f(x,w) which is analytic in 
w. As a result, we obtain 

Z ( ) 1+1 X . -IX- (/+1 X . -IX-) () 1 w, X = W 1 + lW 1 + w 0 - lW 0 rpo W , 

where rpo(w) is the part of the expression (4.3.41) which is nonanalytic in w. 
Repeating this process, it can be shown that Z k (w, x) consists of tenns of the 
following fonn: 
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Zk(W, x) = W'+l [Xk + c,oO(W)Xk-l + ... + c,ok(W)XO] 

+ iW-1[Xk + <PO(W)Xk-l + ... + <Pk(W)XO] 

Here Xi and Xi are fonnal series in powers of w2 for xw ~ 1, x > m, and, 
since the perturbing potential fj is small, we have 

Hence we find that 

00 

yew, x) = L Zk(W, x) 
k=l 

has the fonn (4.3.40), where 

00 

00 00 

c,o(w) = L c,ok(W) , 
k=O 

<p(w) = L <Pk(W) , 
k=O 

with 

c,oo(W) = -<po(w) ~ 8il(1 + l)mAw lnw , 

A = I (I + k)!(1 + n)!( _1)k+n+l k+n+2 ~ 
L=o k!n!(1 - k)!(1 - n)!(k + n + 2)! Ll P . 

k,n p= 

In fact, the principal tenns of the nonanalytic part of (4.3.41) have the fonn 

8Bm/(1 + l)iw 102 W 

- 2iw Inw { [<81 + 1)11.-1, Inpdp - 2m - c± 1 B - 4Am{l + 1)1} , 
where the value of A is given above, and B is given by the expression 

B_' (I + k)!(1 + n)!( _1)k+n 

- k~ k!(1 - k)!n!(1 - n)!(k + n + 2)! . 

By means of cumbersome manipulations it can be shown that the expression for 
B is identically equal to zero. 

H q2 = m 2, the relation (4.3.31) in the region ill reduces to Bessel's equation, 
with the general solution 

x±(W,x) =..;x {ClH~ll(wx) + C2H~2l(wx)} , 
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where v+ = 1 - 1/2, v- = 1 + 3/2. In this case, the perturbing potential for 
x --+ -00 has the form 

00 

L:>-n-2cpn(ln Ix\) 
n=1 

For Iql ~ m, the transmission coefficient T(w) has a branch point at w = 0 
because of the logarithmic power decrease of the perturbing potential at +00. For 
Iql = m, an additional nonanalyticity in T(w) comes from the region -x > m. 

To find the asymptotic expressions for the transmission coefficients T(w), it 
remains to find the static solutions Yl(X) and Y2(X) of (4.3.30) (for w = 0). These 
solutions for odd perturbations can be expressed in terms of hypergeometric 
functions in two limiting cases: 

1) q2 ~ m 2 , 2) ol ~ 1 , where 0'.2 == 1 _ q2/m2 • 

The expression 1 - q2/m2 is non-negative because of the assumption that the 
horizon is nondegenerate. Finally, from (4.3.33,35,39), using the asymptotic be­
havior of the Bessel, Gauss, and Legendre functions, we obtain the following 
asymptotic expressions for the transmission coefficients T(w) of the odd pertur­
bations: for q2 ~ m2 

T ( ) ~ ( )/+1 r(l + 2 + C±/2m)r(1 - C±/(2m».,fi exp[ -i1r(1 + 1)/2] 
± w wm 2'+1 (2l)!r(l + 3/2)[1 - cpo(w, l)] 

(4.3.42) 

for 0'.2 ~ 1 

T ( ) '" ( )'+1 1'1'1 (21 + 3 =F 1)1r r(1 + 1/2 =F 1/2) exp[ -i1r(1 + 1)/2] 
± w '" wm a (21- 1 =F 1)221+1'1'1 [r(1 + 1 =F 1/2)]2[1 - cpo(w, 1)] , 

(4.3.43) 

and for q2 = m2 

T ( ) '" _( )21+1'1'1 (21 + 3 =F 1) 1r[1 + cpo(w, 1) + cpo(w, 1 =F 1)] 
± w '" wm (21- 1 =F 1) 221 1r(1 + 1 =F 1/2)12 . (4.3.44) 

4.3.5 Laws of Attenuation of the "Tails" of the Multipole Radiation 

As we demonstrated in Sect. 4.3.3, the asymptotic behavior of the radiation emit­
ted from under the potential barrier is given by the expression 

J a(w)T(w)exp(-iwt)y(w, x) dw , 

c 
(4.3.45) 

where C is a contour along the edges of the cut on the negative part of the 
imaginary axis (see Fig.4.1). For t > x, the main contribution to (4.3.45) comes 
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from low frequencies w ;:; lit, so that for y(w, x} it is necessary to use precisely 
the asymptotic form (4.3.40) for wx ~ 1. The principal term of the nonanalytic 
part in (4.3.45) has the form 

2cpO(W}Yl (x } Tow2l+2 

for Iql < m, where for T(w) we have used the asymptotic behavior (4.3.42,43): 

T(w} ~ Tow 1+1 [1 + cpo(w}] . 

The analytic part of a(w}T(w}y(w,x} gives zero when the integration is made 
around the contour C. We shall take into account the fact that, according to 
(4.3.28), the function a(w} has a simple pole at w = 0, being single-valued in the 
neighborhood of this point. Finally, when q2 < m 2, for the attenuation of the 
perturbations in the case t ~ r* == x we find, using (4.3.45), the law 

1 
X±(t,x}~ t 2l+3 Yl(x}"pof±(q, m} , 

where 

f±(q, m) rv 1 

f ±(q, m) rv a lOf1 

for 

for 

(4.3.46) 

When q2 = m 2, the attenuation of the perturbations acquires a qualitatively 
different character: 

"po 
X±(t, x} rv tl+2'Fl Y2(X} (4.3.47) 

Finally, we note that the laws of attenuation (4.3.46,47) are established not 
directly, but through a certain intermediate asymptotic behavior, in the region 
beyond the wave front t = r*: t - r* ~ r*. For the function y(w, x} in (4.3.45), 
we must take the asymptotic fonn in the wave zone for x ~ m, i.e., exp(iwx}. 

In the intermediate region, it is the wave zone for monochromatic waves that 
forms the structure of the radiation immediately after crossing the forward front. 
It follows then from (4.3.42-44,45) that for q2 ~ m2 we have 

1 
X±(t,x} rv (t _ x)I+2f±(q,m} (4.3.48) 

For q2 = m 2, we obtain 

1 
X±(t,x} rv (t _ x)2l+2'Fl (4.3.49) 

All the expressions (4.3.46-49) include, as a proportionality factor, the quantity 
"po == "p(Tl), which detennines the radiation of the body at the proper time at 
which its boundary crosses the event horizon. 
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From (4.3.46-49) we deduce the interesting fact that for 0:2 <t:: 1 (q2 ::::l m2) 

the component x_in the radiation which has passed through the barrier can 
be neglected in comparison with x+, since x- is attenuated more rapidly. This 
indicates that in the tails of the radiation for 0:2 <t:: 1 the ratio of the amplitudes 
of the electromagnetic and gravitational waves tends to a fixed value, which is 
independent of their initial ratio near the horizon: 

h 262m 
-~-~--
~ tP 1-1 

[see (4.3.18,24)]. 
Our results concerning the attenuation of the multipole perturbations are valid 

only for I ~ 2. For 1= 1, the linearized Einstein-Maxwell system admits a sta­
tionary solution without attenuation for a slow rotation, corresponding to the 
Kerr-Newman solution in the case of a small angular momentum. From (4.3.17), 
on the basis of the results of Sects. 4.3.2-5, we can deduce that there is attenu­
ation of the odd dipole electromagnetic radiation: ~ -t 0 for t -t 00 according 
to the law (4.3.46) or (4.3.47), so that there remains only the stationary part of 
8H, in terms of which it is possible to express the other components of the elec­
tromagnetic field tensor and the components of the metric of the Kerr-Newman 
solution, linearized in the angular momentum. For I = 1, there is also attenuation 
of the even perturbations. 



5. Relativistic Hydrodynamics 

In this chapter, we consider problems of the wave dynamics of a relativistic gas. 
Relativistic hydrodynamics is distinguished from Newtonian hydrodynamics in 
the following respects: (a) it gives a correct description of the motion of particles 
of a fluid having speeds comparable with the speed of light; (b) it uses, of 
necessity, equations of state which are qualitatively different from those of the 
Newtonian theory, either in regions of high densities (at low temperatures) or at 
very high temperatures. 

In the first two sections of this chapter, which have an introductory character, 
we make a qualitative analysis of the evolution of the composition of matter 
when its density increases up to the nuclear density in the case of relatively 
low temperatures, and we note the difficulties in obtaining the corresponding 
equations of state. In the case of high temperatures, it is pointed out that matter 
is described asymptotically by the so-called uItrarelativistic equation of state. 

In Sect. 5.3 we consider adiabatic motions of an ultrarelativistic gas. In the 
particular case of isentropic motions, it is shown that the vortices are frozen 
in the fluid particles and that there exists a class of potential motions (when a 
curvilinear shock wave occurs, the isentropic and potential character of the flow 
is, in general, destroyed). In Sect. 5.3.3 we derive equations of nonlinear acoustics 
for short sound waves propagating in an arbitrary potential flow of a relativistic 
gas. Using model equations obtained here, an analysis is made of the attenuation 
of weak spherical, cylindrical, 1lI1d plane shock waves in the case of the Friedman­
Lemaltre cosmological model for various equations of state of the matter. In 
Sect. 5.4 we present the basic principles of relativistic magnetohydrodynamics. In 
Sect. 5.5 we analyze self-similar motions of an ultrarelativistic gas with spherical 
and cylindrical symmetries in the framework of the special theory of relativity. 

In Sect 5.6 we describe the stationary flow of an ultrarelativistic gas in the 
Schwarzschild field, resulting from the production of particles near the event 
horizon. 
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5.1 Relativistic Dynamics of a Point and Gas of Free Particles 

A material point on which forces act describes, in its motion in the manifold 
M4, a curve called the world line of the particle. For arbitrary motion of the 
particle, one can associate with it a natural orthonormalized tetrad, one of whose 
vectors coincides with the unit vector u tangential to the world line and having 
components dx / ds, dy / ds, dz / ds, dt / ds. The vector u is called the 4-velocity 
of the particle. A second vector coincides in direction with the derivative of 
the vector u with respect to the canonical parameter s, equal to the so-called 
4-acceleration of the particle; the 4-acceleration of a particle characterizes the 
presence of forces which deflect the motion of the particle from rectilinear and 
uniform motion. By definition, an increment of the canonical parameter is equal 
to the interval between two neighboring points on the world line. It is proportional 
to the proper time of the particle, dr = ds / c. 

It is natural to reformulate Newton's second law in the theory of relativity in 
the form d(mcu)/dr = F. The constant m characterizes the inertial properties of 
the particle and is called its rest mass. If m = const, the force 4-vector F must be 
orthogonal to the 4-velocity u in the sense of the geometry of pseudo-Euclidean 
space. The vector mcu, proportional to the 4-velocity, is called the 4-momentwn 
of the particle. 

Kinetic Description of a Gas of Free Particles. We shall now consider a system 
of many particles l and introduce the particle distribution function. We consider 
at the point x the set Tx of vectors tangential to all possible world lines, directed 
to the future, and passing through the point x. In the tangent space Tx at the 
point x, we identify the vectors obtained from one another by multiplication by 
a positive number. 

Consider two world lines passing through a point x, and suppose that on each 
of them there passes an infinitesimal time interval dr. After the time dr, these 
curves are separated by an interval ds2 = (Ul - U2)2c2dr2. In the tangent space 
Tx of unit vectors in a locally Lorentzian coordinate system, the natural interval 
ds2 = TJijduidui is induced, and the space Tx becomes a Riemannian space. 
Here TJO/p = -SO/P, where SO/P is the Kronecker delta symbol, and a, f3 = 1,2,3, 
TJ0/4 = 0, TJ44 = Cl. The geometry of this manifold is the same as the geometry of 
a pseudosphere (or of Lobachevsky space). If for the coordinates we choose the 
first three components of the 4-velocity vector in a Cartesian coordinate system, 
the metric of the three-dimensional pseudosphere will have the form 

1 The reader can become acquainted with the problems of describing a system of interacting particles 
in the theory of relativity from the monograph of [5.11. for example. 
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where the indices 0: and f3 take the values2 1, 2, 3, and the volume element in 
this space has the form 

dul du2du3 
du = ----:--::---=--=---,,-::-:--:::-

(1 + (u l )2 + (u2)2 + (u3)2)l/2 

The invariant volume element on the pseudosphere in the tangent space at the 
point x is given by du = ..;:::g dul du2du3 /U4, where 9 is the value of the 
determinant of the metric tensor at the point x. 

Fourier integral expansions of arbitrary functions in Lobachevsky space in the 
form of superpositions of spherical (or cylindrical) waves, and also expansions 
in terms of different systems of eigenfunctions, were obtained in [5.2,3]. 

Suppose that the world lines of particles cross a hyperarea dV with projec­
tions onto the coordinate hyperplanes equal to (dx2dx3dt, dx3dt dxl, dt dx l dx2, 
dx l dx2dx3 ). Then the number dN of particles crossing the hyperarea with ve­
locity components in the intervals [ul , u l + dul; u\ u2 + du2; u3 , u3 + du3 ] can 
be written in the form 

dN = (n,ui)f(u, x) dV du , (5.1.1) 

where ni are the components of the 4-normal to the area, determined by 
nldV = dx2dx3dt, ... , n4dV = dxl dx2dx3, and f(u,x) has the meaning of 
the distribution function of the particles, given on the set of tangent spaces at 
all the points of the manifold M4. The total number of particles crossing the 
hyperarea dV is given by the expression 

+00 +00 +00 

dN = dVni J J J uif(u, x) du l du2du3 Fa/U4 (5.1.2) 

-00 -00-00 

Consider an elementary volume dxl dx2dx3dt at a point x. Suppose that at 
this point all the Christoffel symbols vanish inside this volume. If the particle 
world lines do not terminate in this volume, the total flux of particles through its 
surface must be equal to zero, and by Gauss's theorem we obtain the equation 
of continuity3 aNi/axi = 0, where 

+00 +00 +00 

N i = J J J ui f(u,x)du l du2du3 /U4 (5.1.3) 
-00 -00-00 

When they cross the hyperarea, the particles carry energy and momentum. 
The 4-momentum of a particle is defined as the vector mcu. In the nonrela­
tivistic approximation, the first three components of the 4-momentum form the 
momentum 3-vector mv, and the fourth physical component of the 4-momentum 

2 For what follows, we adopt the convention that Greek indices take the values I, 2, 3, and Latin 
indices take the values I, 2, 3, 4. 

3 In an arbitrary coordinate system, this equation can be rewritten in the form V, N i = o. 
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has the value (m~ + mv2/2)/e, i.e., it is proportional to the sum of the kinetic 
energy and the rest energy of the particle. 

In elastic collisions, the total 4-momentum of the particles, determined by the 
motion of their center of mass, is conserved: ml u~ +m2u2 = ml u~' +m2u~. The 
flux of 4-momentum through the area dV is emu dN, where dN is determined 
by (5.1.2). 

The ith component of the flux of 4-momentum through the hyperarea dV is 
njT! dV, where 

(5.1.4) 

The tensor T,j which we have introduced in this way is called the energy­
momentum tensor of the relativistic gas. We note that the transition from the 
discrete particle-number function to a continuous distribution function implies a 
transition to a continuous medium moving in the phase space [5.4]. 

If no external forces act on the particles, and their momentum is changed only 
in collisions, then the total flux of energy and momentum through the surface 
of the elementary 4-volume dx 1dx2dx3dt is equal to zero, and we obtain the 
equations of conservation of energy and momentum4 : 

~Tij =0 oxi . 

The average macroscopic velocity in the gas can be defined in two ways: 
either as an eigenvector of the tensor Tij [5.5] or as the normalized particle flux 
vector N j (in this case, the normalization factor obviously has the meaning of 
the particle number density [5.6]). 

5.2 Thermodynamic Equilibrium in an Ideal Gas 

Owing to collisions of the particles in the gas, thermodynamic equilibrium is 
established in each volume whose dimensions are much greater than the mean 
free path of the particles. The state of the gas in thermodynamic equilibrium is 
determined by the following macroscopic parameters: the velocity 4-vector u i , 
the temperature T, and the pressure p. 

The analysis which follows is carried out in a coordinate system in which 
the given small volume V is at rest. We adopt the notation P for the value of 
the thermodynamic potential P == E + pV - T S of the volume of gas V (E is its 
internal energy, and S is the entropy), and the notation JL for the value of P per 
particle, JL = piN, where N is the (variable) number of particles in the volume 
V. 

4 In an arbitrary coordinate system, these equations can be rewritten in the fonn Vi TiJ = O. 
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The equilibrium state of the gas can be detennined by specifying the tem­
perature T and the chemical potential 1'. 

In order to find the equation of state of the gas, we must use the fonnula of 
the Gibbs distribution for a system with a variable number of particles. According 
to the general Gibbs fonnula, the thennodynamic function pV is given by the 
expression 

(5.2.1) 

where ei and nik are, respectively, the energy and occupation numbers of the 
state i. 

According to the Pauli principle, for particles with half-integral spin the 
occupation numbers of each state can take the values 0 and 1. Therefore from 
(5.2.1) we have in this case 

PV=-kT~ln[l+exp(p.,:;.,ei)] . 
• 

(5.2.2) 

For a gas of Bose particles (particles with integer spin), the occupation num­
bers nik are not restricted in any way and can have arbitrary values (0, 1,2, ... ). 
Summing the geometric progression in the argument of the logarithmic function 
in (5.2.1), with the condition that the chemical potential is negative, we obtain 

pV = kT ~ In [1 - exp (1' ;Tei )] . 
• 

(5.2.3) 

The number of particles N in the system is related to the function il == pV 
by the equation 

N= (ail) 
01' T,V . 

(5.2.4) 

By "particles"we shall mean those having only translational degrees of freedom. 
The quantum state of a particle is detennined, for a given value of its momentum, 
by the direction of its spin and by its charge state (we neglect completely the 
interaction between the particles). Therefore, for a given ei in the sums (5.2.2,3), 
there are s identical tenns. For electrons, s = 2 (two spin directions); for nucleons, 
s = 4 (two spin directions and two charge states); and for pions, s = 3, since 
there are three states 11"+, 11" -, 11"0. 

The energy of a free particle is related to its momentum P and its rest mass 
m by the equation 

(5.2.5) 

In a small volume V of a continuous medium, the number of particles N is, 
by definition, quite large. Using the law of large numbers, we can convert the 
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summations in the distributions (5.2.2,3) to integrations (this replacement is not 
valid for a degenerate Bose gas, in which there is an accumulation of particles 
in the state e = 0). 

According to quantum statistics, the number of quantum states of the trans­
lational motion of the particles with momentum components in the intervals 
[Px, Px + dPx]' [Py, Py + dPy], [Pz , Pz + dPz] in a stationary volume V is 
V dPxdPydPz 1(27rn)3 (n is Planck's constant). Let n be the number of particles 
per unit volume: n = N IV. Then from (5.2.2-5) we have, in a locally Lorentzian 
coordinate system, 

(5.2.6) 

S J p 2dPxdPydPz 
p = (27rn)33m [exp (e - p)1 kT) ± 1] VI + p2(me)-2 ' (5.2.7) 

p2=p;+p;+p; . 

Here and in what follows, the upper and lower signs correspond to Fermi and 
Bose statistics, respectively. 

For macroscopic motions of a gas in local equilibrium, the particle-flux 4-
vector is determine by (5.1.3), and the energy-momentum tensor by (5.1.4), where 
the invariant distribution function is given by 

( me )3 [ (P e ) ] -\ = S 27rn exp - kT + kTP,u' ± 1 (5.2.8) 

Cold Fermi Gas. At low temperatures, kT I(m~) --+ 0, we have quantum de­
generacy of the gas. For a Fermi gas, the distribution function tends to a step 
function: 

for e < p , 
for e > p 

Therefore the chemical potential p for a degenerate Fermi gas is equal to the 
limiting value of the energy e, called the limiting Fermi energy ep. In this case, 
(5.2.6,7) give, after integration, 
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= _S_ J dP dP dP = s(md 471'(t2 _1)3/2 
n (271'n)3 x y z (271'n)3 3 ." , 

e<p. 

s J p 2dPx dPy dPz 

P = 3(27l'n)3m . II + p21 2 2 
e<p. V m e (S.2.9) 

= sm42 ~ [2(e _ 1)3/2e - 3(e - I)1/2e + 3ln(e + v0"=1)] 
~~6 ' 

c; = sm4271' [(e - I)1/2e - !(e - I)1/2e - ! In(e + v0"=1)] 
(271'n)3 2 2 ' 

where e == /llme2 = eFlme2• The expressions (S.2.9) become particularly simple 
in the ultrarelativistic limit, when the limiting Fermi energy is much greater than 
m~: e ~ 1; in this case, from (S.2.9) we obtain 

c; ~ 3p . 

Eliminating eF from these relations, we have 

~ = p = ~ (6:2 y/3 ncn4/ 3 • (5.2.10) 

In the nonrelativistic case, leF - me21 «: m~, i.e., Ie - 11 «: 1, and from (S.2.9) 
we readily obtain 

~ (me)3 471' 23/2(t _ 1)3/2 
n s (271'n)3 3'" , 

1 (671'2)2/3 n2 5 3 p~- - -n/ 
Ssm 

c; ~ mne2 + 3pl2 . 

(S.2.1I) 

It follows from (S.2.9) that the limiting Fermi energy for a cold gas is related to 
the density of the gas by the equation 

1 + (271'n)2 (~)2/3 . 
me 471's 

(S.2.12) 

The ratio of the limiting Fermi energy (minus the rest energy) and Boltzmann's 
constant is called the degeneracy temperature: eF - me2 = kTo. A Fermi gas 
at temperatures T ~ To much higher than the degeneracy temperature has a 
Maxwell distribution, while at temperatures T < To the gas is degenerate. We 
note that the temperature of a degenerate gas can be relatively high at high 
densities. 

In a cold gas, the condition for the transition to the ultrarelativistic equation of 
state c; = 3p is the condition eF ~ m~. According to (5.2.12), this is equivalent 
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to the condition that the average distance between the particles is much less 
than their Compton wavelength >'c == 1i,/(meC) (for an electron the Compton 
wavelength is 3.8 x 10-11 cm, and for a neutron it is 2.10 x 10-14 cm). 

Formation of a Gas of Free Electrons. Owing to the compression in stars which 
have exhausted their supplies of thermonuclear energy, the density increases. 
Therefore it becomes possible for electrons to escape from one atom to another 
(the tunneling effect). The matter becomes ionized. The tunneling of electrons is 
particularly effective when the average distances between the atoms, 1"" n-1/ 3 , 

become comparable with the radius of the lowest energy level for the electrons 
in an atom (the radius of the K shell), i.e. , for n-1/3 "" 1i,2 /mee2 Z, where me 
is the electron mass and Z is the number of protons in the nucleus. Therefore 
the density of particles required for complete ionization is of order 

n "" (mee2Z/1i,2)3 . 

The corresponding mass density is of order 

{! ~ Amnn "" IOZ4 g/cm3 , 

where A is the number of nucleons in a nucleus and mn is the neutron mass. 
At sufficiently high densities, the bare nuclei of the atoms find themselves 

in the environment of a degenerate electron gas (we have the "electron-nucleus 
phase of matter"). 

Neutronization of Matter. The condition of neutrality of matter reduces to the 
condition of equality of the numbers of protons and electrons per unit volume. 
For matter with mass densities {! > 107 g/cm3 and for a limiting Fermi energy 

~ 

eF> 1 MeV (1 MeV, i.e., one million electron volts, is equal to 1.783 x 10-27 g), 
neutronization of matter sets in, since the nuclei become unstable with respect to 
the process of inverse f3 decay, in which one of the protons in a nucleus absorbs 
an electron from the electron gas surrounding the nucleus, emitting an electronic 
neutrino Ve: 

(A, Z) + e -t (A, Z - 1) + Ve • 

The limiting Fermi energy eF of the electrons in the electron gas, corresponding 
to this reaction, is 

eF = (M(A, Z - 1) - M(A, Z»c2 • 

Here M(A, Z) is the mass of the nucleus with Z protons and A nucleons. We 
can calculate the threshold values of eF [and the density of particles related to 
eF by (5.2.12)] on the basis of the nuclear mass formula 

(5.2.13) 
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where mp is the proton mass and the binding energy Eb is given by the semiem­
pirical formula [5.7,8] 

Et, = f(A, Z) . (5.2.13') 

Formation of a Gas of Free Neutrons. When the limiting Fermi energy ep of 
the electrons exceeds the binding energy Eb of a nucleus, the electron-nucleus 
plasma must contain free neutrons as well. Thermodynamic equilibrium between 
different components of the matter is maintained through the reactions 

(A, Z) + Ze ~ (A,n) + ZVe . 

Besides processes of f3 decay, in cold but dense matter there can also occur 
so-called picnonuciear reactions, in which light nuclei fuse and form heavier 
nuclei. Therefore, in cold matter in which the neutrons form a superfluid, heavy 
nuclei forming a crystal lattice exist up to extremely high densities [5.9]. 

Qualitatively, the thermodynamic equilibrium can be described by means 
of the principle of the minimum of the internal energy. Let n be the number 
of nucleons per unit volume, and no be the number of free neutrons per unit 
volume. Then there will be (n - no)/ A nuclei per unit volume. 

The energy density will consist of the energy of the nonrelativistic degenerate 
gas of neutrons [see (5.2.11)], the energy of the relativistic degenerate gas of 
electrons [see (5.2.10)], and the energy of the nuclei [5.10]: 

e = M(A, Z)c2(n - no)/A + nomoc2 + 3a2n~/3 /(lOmo)c2 

+ 3a[Z(n - no)/At/3/4 , (5.2.14) 

where a == (37l'2)1/3 nc, and we have taken into account the condition that the 
plasma is electrically neutral: 

Z(n - no) = Ane . 

For a fixed number of nucleons n, the energy e as a function of no, A, and 
Z has a minimum for the most stable nuclei. Therefore, to determine no, A, and 
Z for fixed n as functions of n, we have the three equations 

8e 
oZ =0 , 

Oe =0 
ann . 

(5.2.14') 

At the threshold for production of the electron-nucleus phase with free neutrons, 
the limiting Fermi energy of the electrons is equal to the binding energy Eb of 
the particles in the nucleus: 

Zep = -Eb . 

We stress that at high densities, owing to the reaction of f3 decay, the presence 
of a gas of free protons is energetically forbidden. 
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Although the extrapolation of the empirical fonnula (5.2.13) to the case of 
nuclei in which the number of neutrons is much larger than the number of 
protons is not entirely accurate, the relations (5.2.14') together with (5.2.13',14) 
nevertheless provide a means of gaining a qualitative idea of the rate of increase 
of the number of free neutrons with increasing density of the total number of 
nucleons. 

At (! ~ 2 X 1013 g/cm3, a continuous nuclear medium is fonned, consisting 
mainly of free neutrons, with a small number of protons and electrons. 

By means of scattering of high-energy electrons on heavy nuclei, the density 
distribution in these nuclei has been detennined. It has been found [5.7] that 
the density at the center of the nucleus does not depend on the number of 
nucleons in the nucleus. Experiments have revealed an attraction of the nucleons 
in the nucleus and a strong repulsion of nucleons at distances of order 2 x 
10-14 cm (at supemuclear densities). At the same time, the nuclear forces at 
very small distances cannot be detennined from scattering experiments. It is 
doubtful whether they can be described at all by a static potential [5,7,11]. 

So far, the only theoretical method which makes it possible to obtain equa­
tions of state of nuclear matter with equal numbers of protons and neutrons is 
the method of Brueckner and Goldstone [5.7,12-14]. Semiempirical equations 
of state have also been given in the literature (see the references in [5.7,10)). 
At supemuclear densities, neither the theory nor experiments give as yet reliable 
direct indications of how to construct equations of state. 

Neglecting the strong interactions between the particles, the equilibrium in 
a cold mixture of various free fennions and bosons with allowance for all pos­
sible nuclear-reaction channels was considered by Ambartsumyan and Saakyan 
[5.10, 15] under the assumption that the heavy bosons which occur are condensed 
onto the lowest energy level e,.. = m,..~. 

Equilibrium in Hot Matter in the Relativistic Region. By "hot matter" we 
mean matter whose temperature is much greater than the degeneracy temperature 
[see the definition after (5.2.12)] at the density in question. 

For particles whose number in the system is detennined by the condition 
of thennal equilibrium, the chemical potential is equal to zero. Therefore the 
integrals in (5.2.6,7) must be calculated with Jl = O. For particles with nonzero 
mass, the energy and momentum are related by (5.2.5). Examples of a hot gas 
are a gas of pions (Bose particles) produced by collisions of superfast nucleons 
[5.16-19] or gases of photons (Bose particles) and neutrinos (Fenni particles) 
[in this case, the rest mass of the particles is zero, and calculations based on 
(5.2.7) are greatly simplified]. The masses of the 11"-, 11"+, and 11"0 mesons differ 
on account of the contribution to the mass from the Coulomb energy of the 
charged pions. These mesons can therefore be regarded as three different states 
of the pions. 

At high temperatures kT > m,..c2, i.e., large collision energies, for a pion 
gas we obtain from (5.2.7) the following equation of state: 
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e ~3p (5.2.15) 

We note that in these expressions there is no dependence on the pion mass m 7r • 

In the case of a photon gas, we obtain for all T the well-known Stefan­
Boltzmann formulas 

e = 3p, n =0.244 (~~y . (5.2.16) 

At high temperatures, matter contains electron-positron pairs, and the equi­
librium distribution functions of the electrons and positrons are described by 
(5.2.8). The condition for equilibrium with respect to pair production has the 
form f1.+ + f1.- = 0, where f1.+ and f1.- are the chemical potentials of the positrons 
and electrons, respectively. The actual value of f1.+ is determined by the condition 
of electrical neutrality of the gas, n_ - n+ = L:k Zknk, where Zk is the number 
of protons in the nucleus of type k, and nk is the concentration of nuclei of 
type k. If Zk, nk, and T are specified, we can completely determine f1.+ and 
f1.-, and thereby determine the parameters in the distribution function (5.2.8). 
At temperatures kT ~ meCl the concentrations of positrons and electrons are 
practically the same, (n+ - n_)/~ <t:: 1, and in a first approximation we have 
f1.+ = f1.- = O. Then for a gas of electron-positron pairs we obtain from (5.2.6,7) 
the equation of state 

e = 7:O\T (~~y , e = 3p, n = 0.366 (~y . (5.2.17) 

5.3 Relativistic Dynamics and Acoustics of an Ideal Gas 

The equations of the relativistic dynamics of an ideal gas in the absence of exter­
nal forces and heat exchange between the particles reduce to the five equations 

(5.3.1) 

Here Ui denotes the macroscopic 4-velocity of a fluid particle, and e is the internal 
energy per unit volume of the gas. These equations are written in covariant form, 
and they hold also in the Riemannian space determined by the equations of 
general relativity. 

The continuous field of time-like vectors u, determines the world lines of the 
fluid particles. We shall write dr for a small interval of length on a world line 
of a fluid particle. Then the derivative of an arbitrary function 'P with respect 
to the proper time of a particle (called the total derivative in the nonrelativistic 
limit) can be written as 



5.3 Relativistic Dynamics and Acoustics of an Ideal Gas 213 

. dcp 
CUi,,,. =_ 

T,l - dr 

From the thennodynamic identity (S is the entropy, and w is the enthalpy per 
unit mass) 

Ow = op +ToS 
e 

it follows that 

(p + c:) w=-­e 

(5.3.2) 

Using (5.3.2) and the equation of continuity, we rewrite (5.3.1) in the fonn [5.20] 

(5.3.3) 

Contracting (5.3.3) with the components u j , we find that the motions of the gas 
detennined by (5.3.1) are adiabatic: dSjdr = O. 

In the particular case of isentropic motions of the gas, when p = p(e), the 
detenninant of the antisymmetric tensor nij is equal to zero, and in the comoving 
coordinate system it follows from (5.3.3) that 

(5.3.4) 

The components of the velocity in the comoving coordinate system can be ex­
pressed in tenns of the metric coefficients as follows: 

A 9a4 
U a = VYi4 ' 

By differentiation, from (5.3.4) we readily obtain the equations 

(5.3.5) 

from which we deduce the relativistic integral of freezing of the vortices (Thom­
son's theorem): 

op(WUa) - Oa(WUp) = naP, 04nap = 0 . 

In the Newtonian limit, the relations (5.3.5) also have the fonn (5.3.4), where 
ua are equal to the velocity components in a Lagrangian coordinate system, and 
the function W must be set equal to 2-. 
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5.3.1 Shock Waves and Vortex Motions of an Ideal Gas 

According to (5.3.3), the motion of a gas cannot have a potential character if the 
entropy distribution varies with the particles. 

If the flow of a gas involves a shock wave with variable intensity, then the 
flow beyond this wave has a variable entropy distribution in the particles and will 
have a vortex character, even if the flow had an isentropic and potential character 
before the break. This fact. which is well known in classical gas dynamics, is 
equally true in the relativistic case. The corresponding analysis is given below. 

The geometry of the surface of discontinuity is characterized by the first and 
second quadratic forms. The first quadratic form is nondegenerate, since shock 
waves propagate with speeds less than the speed of light. The first quadratic form 
can be reduced at each point to the form _(dx2)2 - (dx3)2 + (dx4)2. 

In the neighborhood of a shock wave, let us transform to a coordinate system 
constructed as follows. From each point of the shock wave we construct, along 
the normal to it, a space-like geodesic characterized by the parameter Z which 
measures the arc length from the shock wave. 

Let X" (a = 1,2,3) be the internal parameters of the surface of discontinuity. 
The square of the interval in some neighborhood of the discontinuity then takes 
the form 

ds2 = -dZ2 + g"/3dX" dX/3 . 

The coefficients of the first quadratic form of the surface of discontinuity are g"/3 
(at Z = 0), and the coefficients of the second quadratic form b"/3 are (8g"/3/80I=o. 

The projection of the equation of motion (5.3.1) of an ideal gas onto the 
plane tangential to the shock wave in the system of coordinates i, X2, X3, I at 
a fixed point has the form 

(5.3.6) 

Here u" is the component of the tangential part of the velocity, and the covariant 
differentiation is carried out by means of the three-dimensional metric g"/3II=O, 
j == eU(n), u(n) = UI = uini, in which n is the normal to the shock wave. 

The conditions on shock waves for a relativistic gas in an arbitrary coordinate 
system have the form 

[(p + €)U(n)Ui - pni] = 0 , 

[j] = 0, j == eU(n) • 

(5.3.7) 

(5.3.8) 

The square brackets denote the difference of the corresponding quantities "be­
fore" and "after" the break. 

Writing the projections of (5.3.7) onto the normal and onto the plane tan­
gential to the surface of discontinuity at a given point, using (5.3.8), we obtain, 
respectively, 

[jWU(n) - p] = 0 , (5.3.9) 
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[WUa]=O, a=I,2,3. (5.3.10) 

Differentiating the condition (5.3.9) with respect to Xa and subtracting the 
result from (5.3.6) individually from each of the two sides of the surface of 
discontinuity, after using (5.3.10) to separate the terms continuous at the break, 
we obtain 

j[il'a] + [!] (WU,8il,8a+ Va W2iU,8) -rl[p]Vaj=O . (5.3.11) 

We stress that in deriving this relation we did not make use of the thermodynamic 
identity (5.3.2). 

Taking advantage of (5.3.3), in which we have made use of (5.3.2), from 
(5.3.11) we have 

(5.3.12) 

According to the relations (5.3.11,12), there is a break in the component 
of the vortex bivector and in the tangential component of the entropy gradient 
if at least one of the following two situations occurs: (a) nonuniformity of the 
distribution of the square of the tangential component (with respect to the surface 
of a strong break) of the pseudovelocity q,8, related to the 4-velocity components 
by the equation qi == WUi; (b) nonuniformity of the mass flux density, {Va j}:f O. 
If the flow before the break has a potential character, these circumstances lead 
to a nonuniformity of the particle entropy distribution and to a vortex character 
of the flow beyond the break. 

5.3.2 Potential Motions 

In the important special case of isentropic motions of a gas, there exists a pseu­
dovelocity potential, WUj = CP,j, so that the relations (5.3.3) are satisfied iden­
tically. For potential motions of a gas, the equation of continuity leads to an 
equation for the potential cP: 

Vi eui = Vi «Vicp)e2/(p + c» 

= i /(P + e)[Vi Vicp + V'cpVi In(e2/(p + e))] = 0 (5.3.13) 

From the relation (5.3.2) with S = const, we have 

d[ln«p+e)e-2)] = -4 (~; -1) d(lnw2) , (5.3.14) 

while Vi cpvicp = w2 by the definition of cp, so that from (5.3.13), using (5.3.14), 
we deduce the equation 

(5.3.15) 
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which can be written in the form [5.20] 

dp.. .. . . 
de (g'1 - U'U1)Vi Vi c.p + U'U1Vi Vi c.p = 0 (5.3.16) 

According to the theory of equations of hyperbolic type, this equation has 
real characteristics .,p = const: 

dp ..... 
_.1 •• 1 •. (g'l _ u'u1) + U'U1.1 .• 1 . . = 0 de 0/,'0/,1 o/,I'I",} (5.3.17) 

Equation (5.3.17) gives rise to a system of ordinary differential equations for 
sound rays: 

dXi (.. dp.. ..) 
- = u'u1 + _(g'l - u'u1) k. 
do. de l' 

dki = -k,km ~ (u1um + dp (glm _ U1U m») 
do. ox' de 

(5.3.18) 

ki == o.,p/ox i , 

where a is a parameter on a sound ray, related to the proper time on the sound 
ray by the equation 

5.3.3 Acoustic Waves in a Relativistic Gas 

We shall derive equations for rapidly varying perturbations propagating in an 
arbitrary potential flow of a relativistic gas [5.21]. 

Suppose that the sound characteristics .,p = const stratify some region of 
4-space in accordance with (5.3.17) and that we can introduce a "comoving" 
coordinate system for the sound rays: .,p, a, et , e, where e and e are Lagrangian 
coordinates of a sound rayon the sound wave front .,p = const; the transition to 
such a coordinate system is determined by the solution of (5.3.18). 

In acoustic waves, the derivatives of hydrodynamical quantities with respect 
to the coordinate .,p will always be much greater than their derivatives with 
respect to the coordinates a, e, e, except in the neighborhood of caustic sur­
faces. Therefore, in the equation for the perturbations we shall neglect the second 
derivatives with respect to the slow variables, but we shall retain the quadratic 
terms involving products of derivatives with respect to the fast variable .,p. We 
note that such an approach to arbitrary nonlinear hyperbolic systems was devel­
oped by Choquet-Bruhat [5.22]. The acoustic equation has the form 
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dXi [(dXi) ( dP) dxi ] 2-Vi4>+4> Vi - + 1- - -Vi lne 
da da de da 

_ 2 (de _ 1) (kiu i)34>84> = 0 
dp W ot/J ' 

dx i (dP ' .. ..) - = k· _(gl) - UIUJ ) + UIUJ 
da J de 

(5.3.19) 

We denote by dV the 4-volume element dV = +Fg dx 1 dx2 dx3 dx4. If each 
point of this volume is displaced along the sound lines, then a variation of the 
parameter a on each sound ray by an amount Lla leads to a change in the volume 
by an amount 

LldV = dV Vi (dx i /da)Lla . (5.3.20) 

This relation is analogous to the kinematic interpretation, well known in the 
mechanics of continuous media [5.23], of the divergence of the velocity as the 
rate of relative change of the volume. On the other hand, the element of volume 
can be expressed in terms of the Lagrangian coordinates as 

D( 1 2 3 4) 
~_ x,x,x,x r-: 

y-g- D(t/J,a,e1,e) v-g 

Therefore (5.3.19) can be rewritten in the form 

284> +4>~lnR+4> (1- dP) ~lne 
oa oa de oa 

. 3 
_ 2 (de _ 1) (kiU I

) 4>84> = 0 . 
dp W ot/J 

(5.3.21) 

We shall assume that the gas has the equation of state p = >.e. We introduce the 
notation 

A;4~ e v == '£'y-g-- , 
Vp+e 

dx = 
(1 - >.)(ki u' )3da 

Avp+e>. 

Then (5.3.21) reduces to the equation v,x + vV,t/J = O. It can be seen that sound 
waves in relativistic hydrodynamics have the same qualitative behavior as in 
classical gas dynamics (see Sect.4.1). The only change is in how far the initial 
sinusoidal wave varies up to the point at which it deviates from the parameters 
of the unperturbed solution, and in the characteristic dissipation interval of the 
wave. In the case of the most rigid equation of state p = e, we obtain, according 
to (5.3.15), a linear equation for the pseudovelocity potential, so that this effect 
does not occur in such a gas. 
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5.3.4 Nonlinear Acoustics of an Expanding Universe: Relativistic Theory 

We shall consider an important example of the application of our equation 
(5.3.21) when there is a background consisting of a homogeneous isotropic uni­
verse with a flat comoving space. For matter in the early stage of expansion 
at high temperatures, we adopt the relativistic equation of state p = ..\C with 
..\ = const. In the case of the model commonly known as the Friedman-Lemaftre 
model, it follows from Einstein's equation m - R/2 = Kc that the scale factor 
a in the metric ds2 = -a2(t)(dx2 + dy2 + dz2) + dt2 is related to the comoving 
time t by the law a = aot2/(3M3), where ao = const. 

We introduce a variable T/ such that a dT/ = dt, T/ '" t(3M1)/(3A+3). The equation 
of the characteristics (5.3.17) for one-dimensional motions (spherical, cylindrical, 
and planar) on the background of the Friedman-Lemaitre model can be written 
in the form ..\(t/J,r)2 - (t/J,,,)2 = 0, from which we have t/J = r T ..J>.. T/. In what 
follows, we shall consider waves moving in the direction of increasing r, i.e., 
we shall take the upper sign. 

It follows from the equation of continuity that e '" a-3 and hence c '" eM1 '" 
a-3(M1) '" t-2• 

We now calculate the determinant of the metric tensor constructed on the 
sound rays. The components of the vector k(kr, k,,) are kr = 1, k" = -..J>... 
Therefore, according to (5.3.18), the components of the vector tangential to the 
sound rays are 

dr ..\ 
da=-a2 ' 

According to (5.3.20), the elementary volume in the coordinate system co­
moving with the sound rays can be calculated from the equation 

and therefore A = arv /2 const. Here v = 2 in the spherical case, v = 1 in the 
cylindrical case, and v = 0 in the planar case. 

Substituting these data into (5.3.21), we obtain 

2rv/2a2 Jp + c~ (vrV/2a2 J(P + c») + ~[v2a4(p + c)rV](1 - ..\) = 0 
OT/ ot/J 

(5.3.22) 

In this equation, v is the perturbation of the velocity: 

..J; = or.p = _ (p+c)va 
'£-ot/J e· 

Substituting the dependence of the background quantities on T/, we have 
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(5.3.23) 

Hence we obtain, for the curves along which X = const, the differential equation 

(1 - '\)X d11 1 = (t/J + 11v':X) 11/2 11(1-3>')/(3>.+1) • 
dt/J X=e:onst 

(5.3.24) 

In what follows, we shall consider separately the cases of plane, spherical, 
and cylindrical waves. In the case v = 0, we introduce the variable r by the 
equation 

r = 3~~ 1116>'/(3)'+1)(1 _.\) . 

Then (5.3.23) can be written in the fonn 

X,r + X X,.p = 0 . (5.3.25) 

This equation admits discontinuous solutions, in which the discontinuity moves 
with speeds 

dt/J 1 
dr = '2(Xl +X2) . 

Here Xl and X2 are, respectively, the values of X before and after the disconti­
nuity. This follows from the fact that at the discontinuity f,r[X] + f,.p[X2]/2 = 0, 
where f(t/J. r) = 0 is the equation of the surface of discontinuity. 

Let us calculate the asymptotic behavior of weak shock waves propagating 
through an unperturbed background. In this case, X2 = O. The intensity Xl of 
the shock wave is attenuated in time, since the Riemannian wave comes onto 
the surface of discontinuity: the discontinuity moves with speed Xl/2, while the 
particles move with speed Xl. Therefore the shock wave is overtaken by the 
particles with a smaller and smaller speed. 

The general solution of (5.3.25) has the fonn 

t/J - X r = C(X) . (5.3.26) 

The function C(X) can be expanded at small X in a series in powers of X: 
C(X) ~ ClX + .... 

Differentiating (5.3.26) with respect to r for particles in front of the shock 
wave, and using the fact that dt/J/dr = Xl/2, we obtain for Xl(r) the equation 

Xt/2 + r Xl = -ClXl . (5.3.27) 

S Thus, weak shock waves move through the gas with a speed which depends strongly on the size 
of the penurbation. In other words, the sound characteristics of the unperturbed solution do not 
coincide with the fronts of the weak shock waves. 
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By integrating, we readily obtain the asymptotic law of attenuation of plane 
shock waves: 

Xl = const 
VT+CI 

For a plane wave obtained from an inverted periodic wave, we have Xl + X2 = 
o at the discontinuity, so that from (5.3.26), by differentiating with respect to T, 

using the fact that dt/J / dT = 0 for points on the shock wave, and then integrating, 
we obtain 

X '" l/T . 

Returning to the quantity v, the perturbation of the speed, we obtain the 
law of attenuation of plane shock waves and periodic waves in an expanding 
universe: 

v'" 1]-1/(3.\+1) '" l/va for shock waves , 

v '" ." -1 for periodic waves 

We note that for a photon gas (>. = 1/3) these expressions are completely 
analogous to the well-known formulas for plane waves in a gas at rest, provided 
that ." is replaced by the time t. 

We now tum to the case of cylindrical and spherical waves. Using (5.3.23), 
we find that the discontinuity moves with a speed given by 

dt/J = Xl + X2 (t/J + ..r>.) -11/2 (3~-1)/(3~+1) 
d." 2 ." ." . 

We introduce the notation v/2 + (1 - 3>')/(1 + 3>') == b. The effects of inversion 
and dissipation occur only when b ~ 1, i.e., only for >. ~ 1/3 in the spherical 
case, and only for >. ~ 1/9 in the cylindrical case. 

If b > 1, i.e., if >. < 1/3 for v = 2 and >. < 1/9 for v = 1, then the intensity 
X becomes asymptotically constant, and this leads to a change in the amplitude 
of periodic waves and in the intensity of shock waves according to the laws of 
geometrical optics: v '" .,,-b. The effect of wave inversion is absent, owing to 
the expansion of the universe and the geometrical expansion of the wave itself; 
the nonlinearity in these cases is unimportant 

The nonlinear asymptotic behavior of the attenuation in the case b = 1 (>' = 
1/3 for v = 2 and >. = 1/9 for v = 1) is as follows: 

v '" (." In .,,)-1 for periodic waves , 

v '" (1]~) -1 for shock waves . 

For >. > 1/3 the law of attenuation of the intensity of shock waves in the 
spherical case is 
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v '" rp)'+3)/(6)'+2) '" r 1/ 2 , 

while in the cylindrical case for ,\ > 1/9 we have 

v'" 11-1/ 4- 1/(3).+1) '" (a211)-1/4 . 

When ,\ = 1/3 in the cylindrical case, we have v = 11-3/ 4• 

In the case of periodic sawtooth-shaped waves, independently of the sym­
metry and the equation of state, an essentially nonlinear law of attenuation is 
established when b < 1, namely, v '" 1/11. 

We note that the importance of nonlinear acoustic phenomena for an expand­
ing universe was pointed out by Peebles [5.24]; the treatment given above is due 
to the present author. 

5.4 Relativistic Magnetohydrodynamics 

Various aspects of the relativistic electrodynamics of a continuous medium are 
also considered in other books which should be consulted for further details6• In 
the theory of relativity, the electromagnetic field is described by an antisymmetric 
tensor FiJ' The properties of molecules of matter in changing their electromag­
netic characteristics under the influence of fields external to the molecules are 
characterized macroscopically by a polarization and magnetization tensor M ij. 

In a medium, electric currents can flow and charges can accumulate. In the the­
ory of relativity, one introduces the electric-current 4-vector ji, whose first three 
components in the Cartesian coordinates x, y, z, t are the components of the 
electric-current density vector, while the fourth component gives the density of 
charge. 

If in some coordinate system the current 4-vector lies inside the light cone 
in the tangent space, the fourth component of the current 4-vector cannot be 
transformed to zero by means of a transformation of the coordinates. In this 
case, it is possible to introduce the proper density of electric charge, C2{!~ = jd i . 

It is convenient to introduce the tensor FiJ which is dual to the tensor F.j by 

the relation F;"i. = !cik'mF'm. Then Maxwell's equations can be rewritten in the 
form 

Vi F*ij = 0, Vi (Fik + Mik) = 411" jk . 
c 

Ohm's law in the special theory of relativity can be reformulated as 

ji = C{!eUi + O'Fijuj . 

Magnetohydrodynamics (MHO) is the study of the dynamical properties of 
a fluid with infinite conductivity, 0' = 00, and a space-like electric-current 4-
vector. In this case, it follows from Ohm's law that Fi j Uj = O. We shall restrict 

6 See [5.23,25-28] and the references to journal publications cited therein. 
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ourselves to the case Mij = O. It is convenient to introduce [5.27] a space-like 
magnetic-field 4-vector hi = F*'}U}. Then the energy-momentum tensor of the 
electromagnetic field, T1j = [F,kFjk - 9IjFklFkl/4]f47r, can be represented in 
the form 

T . = ~ {hkhk (-u.u. + !g .. ) - h.h.} I} 47r I} 2 I) I}' 

The combined energy-momentum tensor of the matter and the field has the form 

( 1 k) (1 k) 1 T,.·= p+c--hkh uu'- p--hkh g··--h·h· 
I} 47r 1 } 87r I} 47r 1 } • 

(5.4.1) 

Therefore the closed system of equations of relativistic MHD consists of the 
equations of energy-momentum conservation Vi Tj = 0, where Ti} is given by 
(5.4.1), the equation of continuity, and the magnetic-induction equations 

Vi (hiu j - hjui) = 0 . 

In the comoving system of coordinates e 1, e, e, T, this equation can be 
readily integrated, since 

a [hiaeOt.1 ~/~] 0 - -. v -g g44 - , 
aT ax' ~a 

a = 1,2,3 i=I,2,3,4, 

from which, using the equation of continuity 

~ [UV-Y/Y44] =0 aT ~a 

for an arbitrary coordinate system of the observer, we have 

(5.4.2) 

Analogous first integrals of the magnetic-induction equation hold also in the 
nonrelativistic theory. After transforming the equations 

a at B = curl[v x B] 

to the comoving coordinate system, using the equation of continuity, we have 

~ [B'Y aec~] = 0 
at (! ax'Y ~a 

aeOt 
whence B'Y- = IlX Ot ax'Y "" , (5.4.2') 

xOt = XOt(et. e, e) , a, I' = 1,2,3 . 

The equation Vi Fik = 47rjk /e makes it possible to use the resulting solution 
to determine the electric currents flowing in the matter. 
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Let .,p(x, y, z, t) = const be the equation of a characteristic surface of the 
equations of relativistic MHO. Then the characteristics of the fast and slow 
magneto-sound waves satisfy the equation 

P(k) == (p+e) (~; -1) (uiki)4+ (p+e- 4~~;hkhk) (u i ki )2km km 

- (47l')-1(h i k,)2km k m = 0 , 

(5.4.3) 

and that of the Alfven wave satisfies the equation 

(5.4.3') 

The velocity of motion of the surface .,p = const relative to the gas is detennined 
by the equation 

(5.4.4) 

From the requirement that the speed of sound in the gas does not exceed the 
speed of light, dp/de < 1, it follows that the speeds of waves in relativistic 
MHO are always less than the speed of light. Moreover, (5.4.3,3') imply the 
inequalities 

Va < VA < Vf , 

where Vs. Vf, and VA are the speeds of the slow and fast MHO waves and the 
Alfven wave, respectively. 

5.4.1 Shock Waves in Magnetohydrodynamics and the Hugoniot Adiabat 

The conditions of continuity of the flux of energy-momentum and of the rest 
mass in crossing the surface of a break in the theory of relativity have the fonn 

[Tii]ni = 0, [eUi]ni = 0 , 

where ni is the 4-vector of the nonnal to the surface of the shock wave. For 
the energy-momentum tensor in the case of an ideally conducting gas, we must 
substitute the expression (5.4.1). Maxwell's equations lead to the condition of 
freezing of the magnetic field: 

(5.4.5) 

The corresponding algebraic equations in the nonrelativistic case are ana­
lyzed, for example, in the book of [5.29]. In the relativistic case, the analysis 
of the conditions on MHO breaks as shown by Lichnerowitz [5.27] also has an 
inherent elegance. 
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From the conditions of conservation of the flux of energy-momentum and of 
the magnetic induction on the break, we can form four scalars: 

[Tik]nink = 0 , 

[fiiTi]nink = 0 , 

[T,kTi]nkn' = 0 , 

[fiifl]n'n k = 0 , 

[(p+c:+h2)u!+(p+h2/2)-h!/471"] =0 , 

h2 == _hkhk/471" , h n == h'ni , 

[(p + c: + h2)2U! - (p + h2/2)2 

or 

-2(P + c: + h2)(P + h2/2)u! + ph!/271"] = 0 , 

[(P + c:)unhn] = 0 , 

[H] = 0, H == (h2u! - h!/471") . 

(S.4.6) 

(S.4.7) 

(S.4.8) 

(S.4.9) 

In (S.4.6-9) the subscript n is used to denote the normal components of 
vectors, for example, Un == uini. We have made use of the fact that, according 
to its definition, hi has the property h,ui = O. We add to (S.4.6-9) the condition 
of conservation of the flux of mass across the surface of the break: 

[j] = 0, j == (!U n • (S.4.lO) 

We introduce the notation w == (P + c:)/ (! for the specific enthalpy, and also 
the function W == (p+c:)/ (!2. H we form the expression T'kTJknini + (T'knink)2, 
which is continuous on the shock wave, then from the conditions (S.4.6, 7), using 
(S.4.9, 10), we obtain the relation 

After squaring (S.4.8) and eliminating hn and Un> we obtain 

[W2 i h2 - w2 H] = 0 . 

Using (S.4.9, 10), we rewrite the condition (S.4.6) in the form 

[E] =0, E == Wi+p+(h2 +H)/2 . 

Using (S.4.12) to eliminate the function w from (S.4.11), we obtain 

[F] = 0, F == (h2 + H)(W i + H)2 . 

(S.4.11) 

(S.4.12) 

(S.4.13) 

(S.4.14) 

We note that, according to the definition of H in (S.4.9), the expression h2+H 
cannot be negative. We therefore rewrite (S.4.14) in the form 

(S.4.1S) 

According to this relation, the function W P+ H remains unchanged in sign on 
crossing the shock wave. Fast and slow MHD breaks correspond to W P + H > 0 
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and W j2 + H < 0, respectively. On Alfven breaks, the function W P + H is equal 
to zero. 

Using (5.4.13,14), we write the relation (5.4.11) in the fonn [5.27] 

'H(ZI, Z2) == wi - wf + (PI - P2)(W2 + WI) 

+ !(W2 - WI) ( J h~ + H - J ht + Hy = 0 , (5.4.16) 

where the subscripts 1 and 2 are used to denote quantities before and after the 
break, respectively, and ZI and Z2 denote the states before and after the break. 

Equation (5.4.16) is called the equation of the relativistic Hugoniot adiabat. 
If we fix the constants E, F, and H, the state Z2 for (5.4.13, 14) is detennined 
by specifying two parameters, which can be taken to be j2 and the entropy S, 
or Wand the effective pressure p = p+ (h2 + H)/2. 

5.4.2 Properties of MHD Breaks 

In Newtonian gas dynamics, the equations of state of many gases satisfy the 
conditions 

I) oV/opls < 0, IT) oV/oSlp > 0, ill) &V/op2Is > 0 , (5.4.17) 

where V is the specific volume and S is the entropy per unit mass. 
If the function W is substituted into these conditions in place of the function 

V, we obtain following Lichnerowitz [5.27] the corresponding conditions for a 
relativistic gas. 

From the thennodynamic identity 

dw = dp/ e + T dS (5.4.18) 

it follows that o(w2)/op = 2W. 

Corollary I. We fix the state ZI and consider the state Z2 + dZ, where Z2 is a 
point on the Hugoniot adiabat, for given j2, E, F, and H. From (5.4.13,14,16) 
we find that 

d'H=2wTdS . (5.4.19) 

Corollary II. The propagation speed of small adiabatic perturbations cJop/oels 
is less than the speed of light c. Indeed, from the definition of Wand from the 
condition I of (5.4.17), oW/opls < 0, we have oW/opls = e-2(I-oe/opls) < 0 
and hence op/oels < 1. 

Corollary III. The Poisson adiabat S = const in the p, W plane is convex: 
&p/oW2 1" > O. Indeed. from (5.4.14) it follows that 

h2 + H = F(W P + H)-2 . 
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Using this, by differentiating p == p+(h2+ H)/2 with respect to W with S = const, 
we obtain 

This expression is greater than zero as a consequence of the conditions I and III 
of (5.4.17). 

Corollary N. On a line Ll in the p, W plane, any extremum of the entropy must 
be a maximum. If we differentiate S with respect to W twice along the line 
(p - Pl)/(Wl - W) = const, at a point at which 8S/8WI.Il = 0 we obtain 

This expression is less than zero, in view of the conditions I-III of (5.4.17). 

Corollary V. On weak shock waves, the discontinuity in the entropy and the 
discontinuity in the pressure are related by the equations 

12wT[81 = Q[p]3 . (5.4.20) 

In view of the conditions I and III of (5.4.17), Q > 0, and a positive discontinuity 
in the pressure causes a positive discontinuity in the entropy of the third order. 
In order to prove (5.4.20), we expand wi in a series in powers of [P] up to 
the term of third order and retain only the first power of [81 in the expansion. 
We represent the term (W2 + Wl)<P2 - PI) in the form {2W1 + (8W/8p)[P] + 
2-1(&W/8p2)[Pf}[p]. The last term in (5.4.16) is of third order in [p], and we 
transform it by means of a linearization of the condition (5.4.14). After this, the 
relation (4.20) is obtained by means of thermodynamic identities when collecting 
similar terms in (5.4.16). 

Corollary VI. If the conditions I and III of (5.4.17) are satisfied on breaks of 
finite intensity, it follows from the law of growth of the entropy on crossing a 
break, S2 > SI, that P2 > PI and W2 < WI. We shall prove that P2 > PI for 
S2 > SI. Let us assume the contrary, i.e., that P2 < Pl. Then along the Poisson 
adiabat SI = const, using its convexity [condition III of (5.4.17)], we have 

PI 

w? - w2<P2, Sl) = 2 ! W dp < (PI - P2)(W<P2, Sl) + WI) . (5.4.21) 

P2 

Making use of the inequalities aw2/aslp = 2wT > 0, 8W/aS > 0, from 
(5.4.21) we obtain 



5.4 Relativistic Magnetohydrodynarnics 

w~ - wi < (PI - P2)(W2 + WI) , 

Wt = WWt, Sl), W2 = W(]J2, Bl) 

227 

(S.4.22) 

However, it now follows from this and from (S.4.16) that W2 < WI. This 
contradicts the assumptions PI > P2, S2 > Sl and the conditions I and II of 
(S.4.17). 

We shall now prove that W2 < WI. If we assume the contrary, i.e., that W2 > 
WI, then from (S.4.16), using P2 > Pt. we obtain I == w~-wf-2W2(]J2-pl) < O. 
However, the expression I cannot be negative, since it can be represented in the 
form 

P2 

I = 2 j[w(P', S2) - W(]J2, S2)] dp' + w2(Pt, S2) - w2(pl, St) , 

Pi 

where W(p', S2) > W(]J2, S2), since P2 > p' and aw / ap < O. The expression 
W 2(Pl, S2) - w2(Pt, Sl) is greater than zero because aw2 / aSlp > O. 

Corollary VII. On slow MHD breaks, the magnetic field intensity h2 decreases 
on crossing the break; in the case of fast breaks, it increases. This property of 
MHD breaks is readily obtained from (S.4.14) by using the condition W2 < Wt, 
which holds according to Corollary VI. 

5.4.3 Relative Positions of the Poisson and Hugoniot Adiabats 

It follows from Corollary V that the Poisson and Hugoniot adiabats passing 
through a point PI' WI in the P, W plane have a second-order tangency at this 
point 

Corollary VIII. The Hugoniot function 'H(Z, Zt) on the Poisson adiabat passing 
through the point Zt is negative for W < WI. Calculating the second deriva­
tive of the Hugoniot function 'H(Z, Zt) along the Poisson adiabat, we obtain 
&'H/aw2Is = (W - Wl)&p/aw2Is. For W < Wt. it follows from condition 
III of (S.4.17) that the function &'H/aw2Is is negative. Using the fact that 
81i/awls = 0 for W = WI, we conclude from this that 81i/awls > 0 for 
W < WI and, in tum, 'H(Z, Zt) < 0 for W < Wt. 

Corollary IX. In the P, W plane, let us draw an arbitrary straight line L1 with 
slope _j2 = (p- Pl)/(W - WI) which is less than the slope of the tangent to the 
Poisson adiabat at the point Z = Zl. The line L1 intersects the Poisson adiabat 
at two points Zl and ZA, since the latter is convex. We shall prove that on the 
line L1 there is a unique Z2 belonging to the Hugoniot adiabat 'H(Z2, Zl) = O. 

The entropy has the same value at the points Zt and ZA: S = St. Therefore 
the entropy has at least one extremum on the line L1 between these points. It 
follows from Corollary IV that this extremum can be only a maximum, and 
therefore the entropy has no other extrema. Consequently, as/aWI.d is greater 
than zero at Z = ZA and less than zero at Z = Zl. According to Corollary 



228 5. Relativistic Hydrodynamics 

I, on the line L1 the function 1t(Z, Zt) has a maximum at the same point as 
the entropy, and 81i/aWI.<:l > 0 at Z = ZA and 81i/aWI.<:l < 0 at Z = Zt. 
According to Corollary VITI, at the point ZA we have 1t(ZA, Zt) < 0, while at 
the point Z = Zt this function is equal to zero. Consequently, between the points 
ZA and Zt there is a unique point Z2 at which 1t(Z2, Zt) = O. 

Corollary X. In relativistic MHD, for a given initial state Zt and mass flux j2 
the state Z2 after a shock wave is uniquely determined. 

Corollary Xl. For a small change of the state along the line ..1, it follows from 
(5.4.13,14) that 

(aw/aS)p(Wj2 + H)(aS/8W)I.<:l = P(n) , (5.4.23) 

where P(n) is defined as P(k) according to (5.4.3): P(n) vanishes on the fast and 
slow MHO characteristics, and W P + H vanishes on the Alfven characteristics 
(5.4.3'). We now make use of Corollary IX: as/aWI.<:l > 0 at Z = Z2 and 
as/aWI.<:l < 0 at Z = Zt. Then for the speeds of propagation of the waves 
calculated according to (5.4.4), we readily obtain from (5.4.23) the following 
inequalities: for fast MHD breaks, 

Vis < VtA < vlf < Vt , 

'V2s < V2A < V2 < V2f 

for slow MHO breaks, 

Vis < Vt < VtA < vlf , 

~<V2s<V2A<V2f , 

(5.4.24) 

where Vt and ~ are the speeds of propagation of a strong break in the particles 
before and after the break, and Vs. VA, and Vf are the characteristic speeds of 
propagation of the slow, Alfven, and fast MHO waves. In the derivation of 
(5.4.24), we have taken into account the fact that on fast MHO breaks W P+ H > 
0, while on slow breaks W j2 + H < O. 

We note that Corollaries I, IV-VI, VIn, and IX are ingenious generalization, 
to the case of relativistic MHO [5.27], of well-known results (in particular, results 
due to Weyl [5.30]) in Newtonian gas dynamics. 
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5.5 Hydrodynamical Flow Resulting from Production 
of Ultrarelativistic Particles in the Field of a Black Hole 

In the case of quantum production of particles near a black hole, there is a gas-like 
dynamical flow which carries the particles to the pseudo-Euclidean infinity. 

As a quantitative characteristic of this process, we cite its parameters for 
various black-hole masses M [5.31-34]: for example, for M '" 1017 g, the main 
component of the mdiation consists of electronic and muonic neutrinos and an­
tineutrinos (",81 %), about 17 % of the energy is mdiated in the form of photons, 
and about 2 % in the form of gmvitons. The total power of the radiation is 

( 
17 )2 

3.5 x 1012e:g 1~ g . 

With decreasing mass of the black hole, the output of energy increases: for 
example, for M = 1015 g the power of the radiation is 6.3 x 1016 erg/s, and in 
this case ",45 % of the energy is radiated in the form of electron-positron pairs, 
",45 % in the form of neutrinos and antineutrinos, ",9 % in the form of photons, 
and about 1 % in the form of gravitons. 

The smaller the mass of the black hole, the heavier the particles which appear 
in its radiation, and this leads to a quantum explosion of black holes [5.31,35,36]. 
To calculate the mass distribution of the produced particles at a given tempemture, 
we can use semiempirical theories. 

We shall confine ourselves to black-hole masses of order 1015 g and above, 
when the main contribution to the radiation comes from light particles and we 
can use the ultrarelativistic equation of state p = e/3. For such black-hole masses 
the mte of loss of mass is compamtively low, and we shall therefore neglect the 
changes in the gmvitational field due to the decrease of the mass of the black 
hole. 

We shall assume that the resulting spherically symmetric hydrodynamical 
flows have been established. In static gmvitational fields, the equations of hy­
drodynamics admit the relativistic Bernoulli integral TU4 = Too = const [5.5]. It 
is assumed that at infinity the gas has finite tempemture and zero velocity. From 
the condition of constancy of the flux of energy, we have 

(5.5.1) 

Let v be the three-dimensional mdial velocity of the gas in units of the speed 
of light, in terms of which the components of the 4-velocity can be expressed as 
follows: 

ur=~v/~ , 
U4=~/(C~ , 
x == rg/r, rg = 2GM/c2 
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Then Bernoulli's equation and (5.5.1) can be written in the fonn of the system 

T(1 - x) = (1 - v2), T2(1 - xlv = 6(1 - v2)x2 I 

T=(T/Too )2 I 6=Mc![411'(p+e)oor~] . 

Eliminating either v or T from the system (5.5.2), we obtain 

T2[1 - T(1 - x)] = x 462 I v(1 - v2) = 6(x2 - x3 ) • 

(5.5.2) 

(5.5.3) 

The case of accretion corresponds to M < 0 or 6 < 0, and in the case of outflow 
of the gas to infinity we have M > 0 or 6 > O. The equations (5.5.3) describe 
both cases. It is interesting to note that the gravitational field of a black hole acts 
as a huge Laval nozzle with the minimal cross section' for r = (3/2)rg. 

We pose the problem of finding the stationary regimes of the hydrodynamical 
flow of the particles produced by quantum processes in the region [rg, (3/2)rg] 
with a finite temperature corresponding to the temperature of a black hole. The 
only curve from the family of curves described by (5.5.3) for which the tem­
perature is finite and nonzero for x -+ 0 (r -+ 00) and for x -+ 1 (r -+ rg) is 
the curve with a continuous transition through the speed of sound. This solution 
corresponds to 6 = v'27 /2. 

The solution in question can be given in parametric fonn as follows: 

;g = ;y [3y2 + (y - l)V3(3 y2 + 2y + 1)] I 

T = 3yrg/r I v = V3 rg /(2yr) . 

As y varies from .J3 /2 to infinity, r varies from r g to 00, T varies fonn v'27 /2 
to 1, and the speed decreases from the speed of light to zero at infinity. The 
point y = 1 corresponds to a transition through the speed of sound. In this case, 
x = 2/3, T = 2, v = .J3/3. 

Thus, a stationary outflow from a black hole is possible only when the tem-

perature of the black hole is J.J27 /2 greater than the temperature of the gas at 

infinity. Stationary outflow regimes with 6 > .J27 /2 are impossible, and here, 
as in the case of the Laval nozzle in the nondesign regime, shock waves occur. 

For 6 < v'27 /2, stationary subsonic regimes are possible only in the case of 
unbounded growth of the temperature at the horizon. The asymptotic behavior 
of the temperature for small accretion numbers 6, but for all x, is as follows: 

(T/Too)2 ~ (1- x)-l - 62(1- x)x4 , v ~ 6(1- x)x2 . 

In the case of a finite temperature at the horizon, subsonic regimes must entail 
rarefaction waves violating the stationarity condition. 

7 It follows from (5.5.3) that the families of curves T = T(6, :1:), v = v(6,:I:) can be continuously 
defonned into families of curves for the distribution of temperature and Mach number along a 
current tube whose area has a minimum at some interior point and is maximal at the ends of the 
current tube, for adiabatic flow of an ideal gas in classical gas dynamics. 
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In supersonic outflow regimes with c < V27 /2, the speed of the gas tends 
to the speed of light at large r and near the horizon, and the temperature tends 
to zero at large r. 

We note that accretion onto dense objects has been studied in [5.37,38], and 
the stationary flow of a gas in the field of a black hole has also been studied in 
[5.39]. 

5.6 Self-Similar Motions of an Ultrarelativistic Gas 
with Spherical or Cylindrical Symmetry 

In Sect. 5.2 we described the physical conditions under which matter can have 
the ultrarelativistic equation of state P = £/3. We shall distinguish the cases of a 
cold superdense gas [see (5.2.10)] and a hot gas whose particle-number density 
is determined by the condition of thermal equilibrium [see (5.2.16,17)]. In a hot 
gas and in a nuclear fluid [5.11,16,40], the flux of the number of particles on 
a shock wave is not conserved, owing to the production of particles on a strong 
break. 

In an ultrarelativistic gas, the conditions of conservation of the flux of energy 
and momentum on a shock wave are sufficient to describe P2 and V2 when PI, VI, 

and the speed of the wave are known. The condition of continuity of the flux of 
the number of particles serves to determine the jump in the entropy in crossing 
the shock wave. 

The conditions of continuity of the flux of energy and momentum on a direct 
jump in the coordinate system in which the jump is at rest have the form 

where v is the speed in this coordinate system. These conditions can be solved 
[5.5] for the square of the speed before and after the jump: 

v? (PI - P2)(PI + £2) 
c? = (£1 - £2)<P2 + £1) , 

v~ <P2 - PI)<P2 + £1) 
c? = (£2 - £I)(PI + £2) 

Multiplying the relations (5.6.1), we readily obtain 

VIVz PI - P2 
7 = £1 -£2 

(5.6.1) 

(5.6.2) 

In a coordinate system in which the speed of the shock wave 1) is d, we obtain 
for the speeds VI and V2, according to the relativistic rule for the composition of 
velocities, the values 

VI,2 = (VI,2 - c>")/(l + VI,2>"/C) • (5.6.3) 
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Fig. 5.1. The integral curves (5.6.5) for 0 < I < 
I - 1/.../3. v = 2. The point A corresponds to 
a weak break. A transition onto the separatrix 
segment 0 A is possible through a strong break 

v 
1t---~~~~~~~ 

-1&------------KL----------

Fig. 5.2. The integral curves for 1 - 1/.../3 ::; 
I ::; I + 1/.../3. v = 2. There are no solutions 
with a weak break. A transition from the curve 
[( B onto the curve Q B is possible through a 
strong break 

For an ultrarelativistic gas, p = £/3, we find from the relations (5.6.2,3) that 

3A2 - 1 - 2ViA 
V2=Vi(A2 _3)+2A' cVi==vl , CV2==V2. (5.6.4) 

It is convenient to study the transformation (5.6.4) in the A, V plane; it carries 
the straight line Vi = 1 into the curve NB, Vi = (3A + 1)/(3 + A) (see Figs. 5.1-5). 
The image of the line Vi = -1 is the curve MB, Vi = (3A - 1)/(3 - A). On the 
curves EB, V = (AV3 + 1)/( V3 + A) and FB, V = (AV3 -1)/( V3 - A) there are 
points which, after the break, transform into themselves. Since the speed of a 
shock wave is bounded by the speed of light, breaks are possible only for A < 1. 
No breaks are possible in the region NBMON. 

The system of equations representing the conservation of energy and mo­
mentum for self-similar motions of an ultrarelativistic gas can be reduced to the 
equation 

A dV = (1 - V2)[31A + (v - 3l)V2 A - vV] 
dA (1 - V A2) - 3(A - V)2 ' 

(5.6.5) 

where A == r / ct, and v = 2 in the spherical case and v = 1 in the cylindrical 
case. 

In self-similar solutions, p = P(A)r-41 • From the known function V(,x), the 
function P(A) can be found by quadrature: 
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Fig. 5.3. The integral curves for 1 + 1/ v'3 < 
I < 2, v = 2. The point A is a node. Continuous 
solutions for),. < 1 coincide with the separatrix 
o B. Discontinuous solutions for),. < 1 coincide 
with the piecewise-smooth curve OQ J( B with 
a strong break at the point Q 
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v 
1h~~~~~~:::: 

" F " 

-1~----------------------

Fig. 5.4. The integral curves for I > 2, v = 2. 
The point A is a focus. The solution of the 
Cauchy problem for all initial speeds of dis­
persion is given by the piecewise-smooth curve 
OQ J( B ... with a strong break at the point Q 

d(ln P(,,\» 4,,\(,,\ - V)dV/d,,\ + 41(1 - V2) 
d"\ = ---'--'-"\-(I--'-_-V--'2:C-)(""'I-_-"\"-V--)--'- (5.6.6) 

In what follows, we summarize the results of a previously published investiga­
tion and physical interpretation of self-similar motions of an ultrarelativistic gas 
[5.40,41]. The problem of finding self-similar solutions in the theory of relativity 
was raised in [5.42,43]. Self-similar solutions in the planar case (v = 0) were 
considered in [5.44,45]. 

5.6.1 Qualitative Investigation of (5.6.5) 

We shall list the properties of the integral curves of (5.6.5), which are qualitatively 
identical for the spherical and cylindrical cases. If 0 < 1 < (1 - 1/ V3)v /2 
(Fig. 5.1), there exists a singular point A (a node singularity) with coordinates 
v/[(v - 21)V3], V31/(v - 31). All the integral curves reach the point A, being 
tangent to the separatrix of the node A with asymptote 

V- V31 
v - 31 

( v) (21 - v)2 ( ) = ,,\ - V3(v _ 21) 8v(3v _1)2 -a + Va2 - 144vl(31 - v) 



234 5. Relativistic Hydrodynamics 

v 

N 

11 

-f~--~H~-----------

Fig. 5.5. The integral curves for I = 0, v = 2. The point A, a 
degenerate node, corresponds to a weak break. A transition 
from a point on the curve K A onto the segment Q A is 
possible through a strong break 

where a = 3v2 - 121v - 6v. The asymptote of the other separatrix of the point 
A differs from this expression only in the sign in front of the square root. As 1 
increases, the singular point A moves along the curve FB, V = (AV3 -1)/( V3-
A) from the point (1/V3,0) (for 1 = 0) to the point B(I,I) (for 1 = (1 -
1/V3)v/2). 

In the interval (1 - 1/ V3)v /2 ::; 1 ::; (1 + 1/ V3)v /2 (Fig. 5.2), the singular 
point A is absent. When 1 > (1 + 1/V3)v/2 but a2 > 144vl(31 - v), a singular 
point A«21-v)v/V3, V31/(31-v» reappears. As 1 increases, the node A moves 
from the point B(I, 1) (Fig. 5.3) along the curve V = (AV3 + 1)/( V3 + A) up to 
some critical point A for 1 = i, where iis a root of the equation a2 = 144vi(3i-v). 
If 1 varies in the interval «(1 + 1/V3)v/2,l), then the curves reach the point A 
being tangent to the separatrix OB at the point A (a node singularity) with 
asymptote 

(V -37!lV) 
= (A + V3(: _ 21)) 8~~~; :~)2 (-a - Va2 - 144vl(31 - v») 

For the other separatrix of the node A, the asymptote differs only in the sign 
in front of the square root. For all 1 E (0, i), the separatrix of the saddle 
point 0(0,0) reaches B with asymptote8 V-I = (A - 1)[2 + v/2 - 31 + 

8 The asymptote of the other separatrix of the degenerate singular point B, on which V ..... V· 
as ~ ..... 00, differs from the one given here in the sign in front of the square root. Curves on 
which V{oo) > V· reach the point B, being tangent to the line V = 1. When V{oo) < V·, the 
corresponding curves do not reach the point B. 
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V(2 + v /2 - 31)2 + v-I]. In the intervals 0 < 1 < (1-1 /0)v /2 and (1 + 1/0) 
v /2 < 1 < i, the separatrix of the saddle point 0, passing through the node A, 
coincides with the separatrix of the point A to which the integral curves are 
tangent. For 1 E «1 - 1/0)v/2, (1 + 1/0)v/2), some of the integral curves 
reach the point B, being tangent to the separatrix 0 B. 

The node A degenerates when 1 = i; we shall write A for the point A when 
1 = i. For I> i, the singular point A (Fig. 5.4) becomes a focus, and as 1 increases 
we move along the curve V = (.\0+1)/(0+.\) from A to (0, 1/0) as 1-+ 00. 

We now note the difference between the cases v = 2 and v = 1. In the spherical 
case (v = 2), practically all the integral curves at the point B for alII are tangent 
to the line V = 1 with the asymptote V-I ~ const . (.\ - 1)2. The as m totes 
of the separatrices at the point B are V-I = (.\ - 1)[3(1-1) ± 9(1 - 1)2 + 1]. 

In the cylindrical case (v = 1), the integral curves (with the exception of the 
separatrix and the line V = 1) reach the point B, being tangent to the line V = 1 
on only one side (the asymptote is 

V-I = (.\ - 1)/[(6.\ - 5)(const + In(.\ - I»))) . 

When 1 < 5/6, the tangency is only on the left; when I > 5/6, it is only on the 
right. When 1= 5/6, the integral curves do not reach the point B. The point B 
has, for alII, only one separatrix, and its asymptote at B is V-I = (5 -61)(.\ -1). 

The character of the point A for 1 = 0 is different in the spherical and 
cylindrical cases: for v = 2 the point A (Fig.5.5) is a degenerate node with 
asymptote of the integral curves given by 

V = (3.\ - V3)/[ln(.\ - 1/V3) + const] , 

while for v = 1 it is an ordinary node. All the integral curves for v = 1 reach the 
point A, being tangent to the line V = (3.\ - 0)/4. The foregoing qualitative 
investigation of (5.6.5) admits a double physical interpretation (Sects. 5.6.2, 3). 

5.6.2 Ejection of Matter from a Singular Point (Axis) at the Instant t = 0 

At a fixed instant t, the matter ejected from a point can be contained only within 
a sphere (cylinder) with radius ct and with center at the point (on the axis) of 
symmetry. The difference between the methods of ejection of matter is controlled 
by variation of the parameter I. The separatrix OB gives the velocity distribution 
at a fixed instant for 1 E (0, i). 

If I > i (i = 2 for v = 2 and i = (3 + v'fi)/8 for v = 1), the motion 
takes place with a shock wave: the point in question jumps from one separatrix 
to the other and, along it, reaches the point B(1, 1). For the pressure, we have 
for all 1 near the center (axis) of symmetry, .\ ~ 1, the expansion p(r, t) = 
const[l + {9r /(ct) + .. . ]/t41, where {9 = 12/(lv - 21 + v + 1)/(v + 1)2. If 1 < 5/6 
for axial symmetry, and for alII in the case of spherical symmetry, near B(I, 1) 
the pressure along the separatrix has the asymptote 
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= const(1 _ \)<T 2(3 - 41) 
p 41 A, a = 

r 3[ - 1 - ";9([ - 1)2 + 1 
(for 1/ = 2) , 

p = const (1 _ ,\)-4/3 (for 1/ = 1) . 
r41 

It can be seen from these expressions that the matter is concentrated mainly near 
a sphere (cylinder) which expands with the speed of light. 

For [ > 5/6 in the cylindrical case, outflow from an axis is also impossible 
without a shock wave, but the nature of the motion becomes different: beyond 
the shock wave (the point K), all the matter moves with the speed of light. 
Outside the core restricted by the shock wave, where the velocity distribution 
is represented by the segment of the separatrix of the saddle from the point 
0(0,0) to the point Q, the intersection with the image V = 1 of the curve 
V = (3'\ + 1)/(3 + ,\), the pressure distribution is given by the expression 

( )
2-41 _ const r 

p--- --
r41 ct - r 

5.6.3 Solution of the Cauchy Problem 

We pose the Cauchy problem for an ideal gas with the equation of state p = c /3 
and with initial distributions of the speed vo(x) and pressure pO(x) given by 
vo(x) = f3Vr, 1131 < c, pO(x) = a/r41 , where c is the speed of light, and a and 
13 are characteristic dimensional constants. We shall assign the argument r the 
meaning of the distance to the center or to the axis of symmetry. For such initial 
conditions, the subsequent motion will be self-similar and will possess spherical 
or axial symmetry. 

The Problem of Focusing. For [ E (0, (1/ + 1)/4), there exists a solution to the 
problem of focusing onto a point. There is a spherical (cylindrical) core restricted 
by the shock wave, which expands with constant speed (for [ = 0, with speed 
less than c/V3). Inside the core, the velocity distribution is given by the segment 
of the separatrix of the saddle (0,0). For [ = 0, the matter inside the core is at 
rest9 [5.46]. For [ ~ (1/ + 1)/4, there does not exist a self-similar solution of the 
problem of focusing with a subcritical speed, since in this case the separatrix of 
the point 0 does not intersect the curve V = (3'\ - 1)/(3 - ,\). 

The Problem of Dispersion. When 1/ = 2, there exists for all [ a certain critical 
dispersion speed V*. When 1/ = 1, a critical speed does not exist for [ less than 
5/6. Dispersive motion (with subcritical initial speeds for 1/ = 2 and arbitrary 
initial speeds of dispersion for 1/ = 1) for [ E (0, (1 - 1/ V3)1/ /2) take place with 
a weak break. 

9 We have cited the monograph [5.46] in order to emphasize the qualitative analogy between the 
conclusions of this section and the corresponding results of Sedov in nonrelativistic gas dynamics. 
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In going from infinity to the center, the speed first increases up to some value 
V = max V(A) on the curve 3lA + (v - 31)V2 A - vV = 0 and then decreases 
down to V = ../31/(v - 31) at r = v../3ct/(3v - 61), corresponding to the point 
A. At this value of r, there is a weak break. Inside the spherical core r < 
v../3ct/(3v - 61) for fixed t, the motion is standard for all initial speeds. It is 
given by the segment of the separatrix of the saddle from the point 0(0, 0) to 
the point A (v../3/(3v - 61), ../31(v - 31». 

For 1 E «1-1/../3)v/2, (v+ 1)/4) in the case of dispersion of the gas (with 
subcritical initial speeds when v = 2 and arbitrary initial speeds when v = 1), a 
shock wave is formed: the image point comes onto the separatrix of the saddle 
0(0,0) discontinuously. 

In all the solutions with 1 2:: (v + 1)/4, the pressure becomes infinite on 
approaching the sphere (cylinder) r = ct from either the outside or the inside. 
We shall consider this case separately for spherical and axial symmetry. 

For v = 2 and 1 E (3/4, 5/4), the solution of the Cauchy problem for any 
supercritical initial speed inside the light sphere has a unique continuation. It is 
given by the separatrix OB, onto which it is possible to come only at the point 
B (on the light sphere), since for 1 E (3/4, 5/4) it is impossible to jump onto 
the curve 0 B through a shock wave. 

For 1 > 5/4, the continuation of the solution for r < ct becomes nonunique. 
In the interval 5/4 < 1 < 2, one (smooth) solution is given by the separatrix, 
and another solution is discontinuous. For 1 > 2, only discontinuous solutions 
are possible. 

The cosmological solution of Milne [5.47] is a particular solution for 1 = 1. It 
coincides with the separatrix 0 B with the equation V = A. The other separatrix 
of the point B has the equation V = 1/ A. 

Thus, the analysis of the solution of the Cauchy problem with the initial 
pressure distribution p = a/r4 for a stationary gas leads to the conclusion that 
inside the light sphere the solution is given by the known cosmological solution 
of Milne, while outside the sphere the motion of the fluid particles is uniformly 
accelerated and is given by the expressions 

v = c2t/r, p = ar-S/ 3(r2 _ c2t2)-2/3 . 

In the case of axial symmetry v = 1 with 1/2 < 1:S 5/6, there are solutions 
with initial speed of outflow from the axis equal to the speed of light, and only 
such solutions. When 1 E (1/2, 3/4), the curve OB is the only continuation of the 
solution V = 1 into the light cylinder. The continuation into the light cylinder is 
nonunique if 1 E (3/4, 5/6), but shock waves occur for all continuations through 
A = 1. In particular, the solution V = 1 can be analytically continued through 
the singular cylinder A = 1 up to a certain value 5., at which the speed decreases 
discontinuously from the speed of light to the speed c(3). + 1)/(5. + 3). 

If 1 > 5/6, there exists a certain critical initial speed. Only motions with 
initial speeds not less than the critical speed V* can be physically realized. 
The continuation of the solution into the light cylinder becomes unique but 
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nonanalytic. For r < ct, the matter moves with the speed of light up to a certain 
value r = ct). (the point K), at which the speed decreases discontinuously to the 
value c(3)' + 1)/()' + 3) (corresponding to the point Q). 



6. Some Problems of the Dynamics of Waves 
in Relativistic Cosmology 

In spite of the striking successes of modern observational astronomy - the 
discovery and investigation, by means of artificial satellites, of x-ray sources, 
quasistellar objects (quasars), radio pulsars, and achievements in the study of 
individual stars, galaxies, and clusters of galaxies - comparatively few facts are 
known at the present time about the global structure of the universe, and these 
must be extracted from observations for the most part by means of a statistical 
analysis. We shall enumerate the most important of these facts. 

1) Hubble's Law. The celebrated law of Hubble states that the remote galaxies 
are receding from us with a speed proportional, on the average, to the distance. 

This law was established in two stages. From observations of Cepheids in the 
Magellanic Clouds situated at approximately the same distances from the Earth, 
Shapley concluded that the period of oscillations of the apparent magnitude (the 
flux density of radiated energy from a star per unit time at the surface of the 
Earth) is related to the total Cepheid luminosity (the energy radiated by the 
star per unit time). This made it possible to determine the relative distance to a 
Cepheid on the basis of the period of oscillations and the apparent magnitude. 
The method of statistical parallax was used to find the absolute distance. 

By observing Cepheids in other galaxies of the local system (in particular, 
in the Andromeda Nebula M-31), Shapley estimated the distance to neighboring 
galaxies for the first timet. 

The second stage consisted in the use by Hubble of the brightest stars as 
indicators of the distances to remote galaxies, assuming that they are distributed 
uniformly on the average over the galaxies. It is possible to calibrate the total 
luminosity of a "typical" bright star in a galaxy on the basis of the distance 
determined by means of Cepheids in the same galaxy. 

Using data obtained by Slipher on the red shift of spectral lines and comparing 
them with estimates of the distances to remote galaxies, Hubble concluded that 

1 Baade subsequently discovered an error in the period-luminosity calibration: this relationship gives 
for the classical Cepheids (stellar population I) a luminosity four times larger than for variables 
like RR Lyrae (stellar population II). Population I consists of stars like the Sun with a relatively 
high content of metals. Population II includes stars with a lower content of metals. These are 
weakly luminous, slowly evolving stars, which represent the first generation of the galaxy. 
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v = HI, where v is the speed of recession of a galaxy from the Earth, 1 is its 
distance from the Earth, and H is a constant. 

2) Age of the Universe. There is some uncertainty in the value of the Hubble 
constant H. From 1936, when Hubble obtained the estimate H = 530 km/s Mpc 
[Mpc (one million parsecs) = 3.086 x 1()24 cm], to the present time, the value of 
this constant has dropped by almost a factor of 10 (see the references in [6.1]), 
and we can only say with confidence that the true value of the Hubble constant 
can hardly fall outside the interval 50-Iookm/sMpc. The quantity H-l has the 
dimension of time and is of the order of 1010 yr; for the very simple Friedman­
Lemaitre cosmological model, H-l is equal to the time which has elapsed since 
the infinitely dense and hot mass (the primordial fireball) began to expand 

It is remarkable that the value H-l = 1010 yr agrees with estimates obtained 
from data on the radioactive decay of the isotopes of uranium and from the 
theory of stellar evolution. We shall cite such estimates. 

a) In ore of uranium U 238 , the content of lead Pb206 is related to the geological 
age of the ore, since the lead is the final decay product of the uranium. 
Therefore, knowing the rate of decay of uranium, it is possible to determine 
the age of the ore from the ratio of the contents of lead and uranium. On the 
basis of this method, the estimate 1.3 x 109 yr is obtained for the maximum 
age of the ore. 

b) A more delicate method of estimating the age is based on the abundance 
of the uranium isotope U 23S, whose final decay product is the lead isotope 
Pb207 • The ratio of the abundances of the uranium isotopes U23S and U238 is 
0.003. The relative content of the isotope Pb207 in lead ore is 0.07. Knowing 
the rate of decay of uranium U 238 , we can calculate from this what interval 
of time is required for ore with the same content of U 23S and U238 to be 
converted into ore with the ratio of the contents equal to 0.003. This interval 
of time is 3 x 109 yr. 

c) Estimates of the age of stars on the basis of the theory of stellar evolution 
with thermonuclear sources of hydrogen combustion lead to a characteristic 
lifetime of a star on the main sequence in the range (3-25) x 109 yr. 

Thus, it follows from independent data that an extraordinary event took place 
about 1010 yr ago in the life of the metagalaxy surrounding us. 

3) Homogeneity of the Universe. The positions of the bright galaxies in the night 
sky indicate that the distribution of galaxies is far from uniform; for example, 
very many objects are concentrated in the Vrrgo cluster and in a band emanating 
from it. Therefore a statistical analysis of the distribution of galaxies must be 
made over characteristic scales much larger than the distance to the Virgo cluster 
(equal to approximately lOMpc). 

To test the hypothesis of a uniform distribution of galaxies, it is customary to 
construct a curve from the data of observations of distant galactic radio sources 
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by plotting the number N of sources with magnitude f greater than a fixed 
value as a function of the apparent magnitude for a given wavelength2• Counts 
of radio sources by different groups of observers have given mutually consistent 
results, in spite of the statistical scatter and different wavelengths at which the 
observations were made. The experimental data show [6.1] that the dependence 
of In N on In f is practically linear, with the tangent of the slope angle equal to 
-1.8 (In N ~ -1.8 In f + const); in the region of weak sources, the tangent of 
the slope angle is -0.8. Allowance for the expansion of the universe makes it 
easier to obtain good agreement between the theory and the observations. The 
mean density in structures with a scale of 1000 Mpc varies in any case by not 
more than a factor of two. It has not yet been possible to give a definitive proof 
that the universe does not have a hierarchical structure. The microwave and x-ray 
radiations are relic phenomena not associated with a possible hierarchy: galaxies, 
clusters of galaxies, metagalaxies, etc. 

4) Cosmic Microwave Radiation. The most important of the observations from 
which we can learn about the state of the universe in the distant past is the 
cosmic radiation in the microwave range, discovered by Penzias and Wilson in 
1965. The spectrum of radiation with wavelengths A ~ 0.3 cm is close to the 
Planck spectrum with temperature 2.83 K. This radiation cannot be created as a 
result of scattering of radiation from sources in interstellar or intergalactic gas or 
dust. However, if we assume that in the distant past the universe was dense and 
hot, we can conclude that the radiation interacted with the matter as a result of 
scattering by the hot plasma. After recombination of the hydrogen, the radiation 
ceases to interact with the matter, retaining a "memory" of the thermal spectrum. 
The isotropy of the background radiation has been established with a very high 
degree of accuracy. The interpretation of the "cosmic" noise in the radiometers 
of Penzias and Wilson as relic black-body radiation and the modem scenario of 
the evolution of the chemical composition of the universe with time were given 
for the first time by Dicke et al. [6.2]. 

A theory of an expanding universe with a high temperature of matter and 
radiation in the early stages of the evolution - the model of a hot universe - was 
put forward by Gamow (see [6.1]). Gamow and his coworkers were responsible 
for the first consistent theory of the formation of the chemical elements in the 
early stages of expansion of the universe, in particular, for the theory of the 
formation of helium. 

5) Uniform Distribution of Helium. The observational data on the presence of 
helium in the cosmos indicate [6.3] a surprising uniform distribution of helium in 
the universe. The relative helium content Y in the Orion Nebula is approximately 

2 In a statistical homogeneous Euclidean model with a unifonn distribution of sources, the number 
of them inside a sphere of radius r is proponional to r3, and the radiation flux 1 from a source 
falls off in inverse proportion to the square of the distance. Therefore the number N of sources 
with magnitude greater than a fixed 1 depends on the magnitude as 1-3/ 2 ; N(> I) '" 1-3/ 2 • 
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the same as in the Sun. In regions of ionized hydrogen HI! in our galaxy and 
in other galaxies of the local system, Y = 0.28-0.29. Models of the stellar 
populations of classes I and II are best fitted to the observational data if one takes 
a relative helium concentration Y = 0.30--0.32. Such a helium concentration is 
estimated in the case of the planetary nebula of the spherical cluster MIS, which 
belongs to the oldest stellar population II. 

It is quite possible that the reason for the uniform distribution of helium lies 
in the universality of its origin in the period of high temperature in the history 
of the universe. 

6) Mean Density of Matter. A basic tool for the calculation of the mean density 
of matter in the universe is the luminosity function N(> f) for galaxies, in terms 
of which one can calculate the luminosity of galaxies per unit volume, as well 
as the mass-luminosity (M - L) relation for typical galaxies: for spiral galaxies 
M/ L '" 1-10 M0/ L0 , and for elliptic galaxies M/ L '" SO M0/ L0 , where M0 
and L0 are, respectively, the mass and luminosity of the Sun. Multiplying the 
luminosity C of galaxies per unit volume (Oort, Van der Berg, and Kiang estimate 
Cas 3 x 108 L0 Mpc-3) by the mean mass-luminosity ratio M/ L ~ 20 M0/ L0 , 
we obtain the value 4 x 10-31 g/cm3 for the mean density of matter. A discussion 
of the systematic errors in finding the mean density of matter was given, for 
example, in Chap. IV of the book by Peebles [6.1]. The neglected forms of 
matter (apart from galaxies) can strongly alter the estimate of the mean density. 

7) Cosmological Magnetic Field. Hoyle was the first to indicate the difficulties 
in explaining the origin of the magnetic field 10-6 G of our galaxy. Estimates of 
the lifetime of the galactic magnetic field on the basis of ohmic dissipation give 
a time much longer than the age of the universe. 

If we assume that the magnetic field of our galaxy has a relic origin, then 
for the cosmological magnetic field we can take the value 10-10 G; it is this 
value that leads to the appearance of a field of intensity 10-6 G in our galaxy 
if the matter with a frozen magnetic field and with an assumed mean density 
10-30 g/cm3 in the universe is compressed to the mean density of matter in the 
galaxy, 10-24 g/cm3, with conservation of the magnetic flux. 

Cosmology is characterized by a large number of models of the expanding 
universe, special attention to the various possible physical and chemical pro­
cesses taking place during the expansion, and bold assertions about the distant 
past of the universe (going right back to the time of the singular state). Neverthe­
less, a reasonable interpretation of the accumulated facts is possible only on the 
basis of definite theoretical constructions, which must be sufficiently flexible to 
encompass as many as possible of the observationally accessible manifestations 
of the part of the universe around us. For a detailed exposition of problems only 
mentioned here, see the monographs of [6.1,4-10]. At present the concept of the 
inflationary universe is popular, its mathematical model was first introduced by 
Starobinsky [phys. Lett B 91, 99 (1980)]. 
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6.1 Development of Inhomogeneities in Models 
of the Universe with a Cosmological Magnetic Field 

Solutions of Einstein's equations which admit three-parameter groups of mo­
tions on three-dimensional space-like surfaces of transitivity (Bianchi groups) 
have been studied intensively in recent years in connection with the problem of 
choosing a general relativistic homogeneous model of the universe (Zel'manov 
[6.11] first introduced a definition of homogeneity, not related to the concept of 
a group of motions, on the basis of his theory of chronometric invariants). 

Particularly interesting properties hold for the corresponding dynamical sys­
tem of ordinary differential equations in the case of the nonsolvable Bianchi 
groups VIII and IX [6.12-14]. The accumulated observational data (see the intro­
duction to this chapter) do not enable us to make a categorical choice of a definite 
theoretical cosmological model from the class of models with isotropization3 in 
the time or with initial isotropic conditions. 

Secondly, the theoretical model must ensure a rate of development of arbi­
trary small perturbations after the instant of recombination4 which is capable of 
explaining the observed strong concentration of matter in the galaxies (this being 
six orders of magnitude greater than the cosmological value). The current status 
of this problem is described in several books [6.6,7,9]. Investigations have been 
made of the development of inhomogeneities on the background of expanding 
Friedman models [6.16,17], and also of the development of perturbations in 
axially symmetric Bianchi-I models [6.18]. 

Below, we present the results of investigations [6.19, 20] of the development 
of small perturbations in cosmological models with a magnetic field (the corre­
sponding homogeneous solutions were found in [6.21-24]). Such an approach 
offers the attractive possibility of explaining the appearance of a magnetic field 
in our galaxy as a result of the curvature of the lines of force of a cosmological 
magnetic field frozen into the large-scale perturbations. Upper estimates have 
been obtained [6.25] for the intergalactic magnetic field on the basis of the Fara­
day effect of rotation of the polarization. We note also that some authors [6.1] 
believe that the presence of a magnetic field in the early stages of expansion 
would facilitate the production of primordial helium. 

3 By "isotropization" we mean equalization of the velocities of the cosmological expansion in all 
directions. 

4 Prior to this instant, small penurbations in the plasma are resorbed under the action of the radiation, 
which, owing to the Compton effect, smoothes the inhomogeneities [6.15]. 
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6.1.1 Unperturbed Solution 

Suppose that the group properties (axial symmetry and spatial homogeneity) of 
some solution of the Einstein-Maxwell equations make it possible to write the 
interval in the synchronous coordinate system, which is the comoving system for 
a gas, in the form 

ds2 = dt2 - a2(t) [dr2 + k-1 sin2 (v'kr) d(l] - b2(t)dz2 , 

where k = +1, 0, -1 for closed, flat, and open models, respectively (the system 
of units is such that the speed of light is c = 1). 

Einstein's equations for spaces with such a metric reduce to the following 
system of ordinary differential equations: 

R~-R/2=a/a+ab/ab+b/b=-x;(p+W) , 

R~ - R/2 = 2a/a + (a/a)2 - k/a2 = -x;(p - W) , 

m - R/2 = (a/a)2 +2ab/ab - k/a2 = x;(c; + W) 

(6.1.1) 

It is assumed here that only the z component of the magnetic field F12 is nonzero, 
W = F12F12/87r = B5/87ra4(t), where Bo = const, and the dots always indicate 
differentiation with respect to t. We assume that all space is filled with an ideal 
gas with the magnetic field frozen in it. 

It follows from (6.1.1) that when k = 1 this system describes oscillations of 
the comoving ("fluid") ellipsoids of rotation between the "pancake" configuration 
(b ~ bot -+ 0, a -+ ao = const, {! ~ (!O/t -+ 00) and a certain limiting ellipsoid 
(these solutions are qualitatively similar to the Dirichlet solutions [6.26] for 
oscillations of the ellipsoid of an incompressible gravitating fluid). The role of 
the magnetic field is to prevent the ellipsoid consisting of any particular fluid 
particles from being drawn out into a filament. 

Flat models for certain equations of state of the gas undergo isotropization 
for t -+ 00, i.e., they tend asymptotically to the Friedman-Lemaitre solution 
(a solution with a flat comoving space). Here the magnetic field forbids the 
appearance of filament-like singularities. 

For k = -1, the solutions tend in the limit t -+ 00 to the well-known axially 
symmetric solution of Milne (uniform outflow from the axis) in the special theory 
of relativity. 

6.1.2 Notation for Small Perturbations and Coordinate Restrictions 

We shall assume that one of the solutions of (6.1.1) is the basic homogeneous 
cosmological background, and superimpose on it arbitrary small inhomogeneous 
perturbations of the density and velocity of an ideal conducting medium and of 
the gravitational and electromagnetic fields. The electric field in the comoving 
coordinate system is equal to zero. In the perturbed Riemannian space with the 
metric g.) + hi)' we also use the synchronous reference frame: 
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h44=h41'=h43=O, 1'=1,2. 

Here and below, the indices 1', TJ, v take the values 1, 2. Covariant differen­
tiation will be carried out in what follows by means of the metric 

a2(t) [dr2 + k-1 sin2 (Vk r) dc,.i] (6.1.2) 

We adopt the notation h'A for a perturbation of the quantity A. In the linear 
approximation, h'u4 = O. 

We introduce the following notation for perturbations of the magnetic field 
components: 

(6.1.3) 

The perturbation of the total energy-momentum tensor of an ideal gas and of the 
magnetic field frozen in it, in the linear approximation, has the form 

h'T: = -[h'p + W(2H3 + hJ.)]h'~ , 

h'Tl = -h'p + W(2H3 + hJ.) , 

h'Tl = (p + e)h'u3 , 

h'Tj = 2W8(HI')/8z , 

h'TI = (p + e + 2W)h'ul' , 

h'Tt = & + W(2H3 + hJ.) 

Here and in what follows, hJ. == hI + h~, hU == h~. 

(6.1.4) 

The required system of equations for small perturbations is obtained by lin­
earization of the combined system of relativistic magnetohydrodynamics (see 
Sect. 4.4) and Einstein's equations near the solution (6.1.1). 

It can be shown that in the case under consideration the system of linear 
equations for small perturbations decomposes into two independent subsystems 
for even and odd perturbations (for the definition of even and odd perturbations 
for this case, see the footnote below). 

Let e 1''' be the Levi-Civita tensor in the two-dimensional subspace of the 
coordinates r, c.p with the metric (6.1.2). Instead of the three components of the 
tensor he in the two-dimensional space (6.1.2), we can introduce three scalars 
hJ., Q, K: 

h~ = 15: hJ./2 + (VI' V" Q - 15: L1Q /2) 

+ a2(e"" VI'V" + el'''V" V,,)K . (6.1.5) 

Instead of the two-dimensional vectors h31" h'ul" HI" we can introduce scalars 
L, M, ~, c.p, H, G in accordance with the relationss 

h31' = 8[VI' L + a2el' " V" M]j8z , 

h'ul' = VI' ~ + a2el' " V"c.p , 
(6.1.6) 

5 In (6.1.5-7) the tenns containing €"" correspond to odd perturbations, and the remaining tenns 
to even perturbations. The independence of the even and odd perturbations follows from the fact 
that Laplace's equation does not admit nonconstant solutions which are everywhere bounded and 
regular. 
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HI' = V7,. H + a2ep." V7"G . (6.1.7) 

Rotational perturbations (see the definition in [6.16] for Friedman models) in 
anisotropic models in a "pure" form do not exist; the transverse components of 
the curl of the velocity are coupled in the differential equations to the perturbation 
of the density. 

Gravitational waves in anisotropic models can be distinguished only for short­
wave perturbations; for perturbations of sufficiently long length, gravitational 
waves interact with the matter. 

We now expand all the scalar perturbations in a Fourier integral with respect 
to the coordinate z and in terms of cylindrical waves, i.e., the eigenfunctions of 
the Laplacian operator V7p. V7P. in the plane of xl and x2• For k = 0 (flat model) 
and for k = -1 (open model), the eigenvalues of "cylindrical" waves form a 
continuous spectrum (for a discussion of cylindrical waves in an open model, 
see [6.27]) and take the values _n2/a2 and _(n2 +4-1)/a2, respectively. For 
k = 1, the eigenfunctions of the Laplacian operator are spherical harmonics with 
the discrete eigenvalues -n(n + 1)/a2 (n = 0,1,2, ... ). In all three cases, we 
shall denote the eigenvalues of the operator V7p. V7" by -a2(t), and those of the 
operator V73 V73 by _(32(t). 

6.1.3 Equations of Conservation of Energy-Momentum 
and of the Magnetic Induction 

If we substitute the perturbation of (6.1.4) into the equations for the conservation 
of momentum, c5(V7, T;) = 0, we obtain equations for the even perturbations, 

2W(32(H + L) + [(p+ e + 2W)a2b4i]"/a2b + c5p 

+ W(2H3 + h.lJ + Wh ll = 0 , 

c5p+[(p+e)a2bU]"ja2b-2Wh.l=0, c5U3=OU/OZ, 

and for the odd perturbations, 

2W(32a2(G + M) + [(P + e + 2W)a4 bc,o] "ja2b = 0 . 

Here a dot signifies differentiation with respect to the time. 
It follows from these equations that in the absence of a magnetic field the 

curl of the velocity is frozen in the fluid particles, so that 

[(p + e)a2b(!P - U)]" = [(P + e)a4 bc,o]" = 0 . (6.1.8) 

Eliminating the electric field from Maxwell's equations V7[i Fkl] = 0 by means of 
the condition of freezing, we obtain for the even perturbations 

(H3r = a2!p, (H/a2r = !P/a2 , H3 = a2H , (6.1.9) 

and for the odd perturbations 

(6.1.10) 
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6.1.4 A Closed System for the Odd Perturbations 

Each of the expressions c5E" - Kc5~ and c5~ - Kc5r:, after substitution of the 
perturbations of the metric and of the matter, taken in the fonn (6.1.4-7), can be 
regrouped and represented in the symbolic fonn 

'V"A+c""V"B . (6.1.11) 

Equating to zero an expression of this kind, by virtue of Einstein's equations we 
obtain for the even perturbations the symbolic equation A = 0, and for the odd 
perturbations the equation B = O. 

The components of the two-dimensional tensor c5[R~ - K(T; - Tc5~/2)], after 
substitution of the expressions (6.1.5-7) and after grouping of the even and odd 
tenns separately, can be represented in the symbolic form 

(6.1.12) 

from which, by virtue of Einstein's equations, we obtain for the even perturba­
tions the symbolic equations C = 0 and D = 0, and for the odd perturbations the 
symbolic equation E = O. 

These equations for the odd perturbations [the B components of the equations 
c5(R! - KT;) = 0, c5(R! - KT!) = 0 and the symbolic equation E = 0] have, 
respectively, the fonn 

M + M(a4 /b)" b/a4 +4KWM 

+ (ci + k/a2)(M - K) + 4KWG = 0 , (6.1.13) 

/PM+(a?+k/a2)K-2K(P+c+2W)cp=0, 

-f32(M - K) + K + K(a2b)" / a2b = 0 . 

(6.1.14) 

(6.1.15) 

Eliminating the functions G and cp from (6.1.13,14), by means of the mag­
netic induction equation (6.1.10) we obtain 

{a4 [M + M(a4 /b)" b/a4 +4KWM + «(i + k/a2 )(M - K)])· 
+2Wa4(p+c+2W)[f32M+(l.i+k/a2)K]=0. (6.1.16) 

Equations (6.1.15, 16) fonn the required closed system for the functions M 
and K, and the function M can be eliminated. It is interesting to note that we 
then obtain a fourth-order equation for the single function K, which we have 
written down elsewhere [6.19]. The exact solution K = const corresponds to a 
perturbation of the metric in going over to a perturbed coordinate system and is 
therefore physically meaningless. 
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6.1.5 A Closed System for the Even Perturbations 

The C component of the equation b(R~ - K(Tt - b~T /2» = 0 [see (6.1.12)] has 
the form 

- 2k(hl. + olQ) + a2(hl. + a 2Q) + 2-1 [(hl. + a 2Qr 
+ 2(hll + hl.)a/ a + (hl. + a2Q)" (a2b)" / a2b] 

- K[& - bp + W(2a2 H + hl.)] = 0 , (I) 

and the D component of this same equation has the form 

(II) 

We now separate the A components of Einstein's equations b [R3 - KT3'1] = 0 
and b [Rl - KT4'1] = 0 [see the definition (6.1.11)]: 

- (hl. + a 2Q)/2 + kQ/a2 - L + bt/b - 2KWH 

-L[K(p+t:)+4ab/ab]=O , (ill) 

- hl. + hll + (h ll + (32 L)(b/ a)" alb - 2-1 [2-1(hl. + a2Q)" 

- kQ/a2 - a 2a2(Q/a2)"] - K(P+t: +2W)(H/a2)" a2 = 0 (IV) 

Einstein's equations b(m - R/2) = KbTt and b~ = K(bTf- bT/2) have, 
respectively, the form 

hl.(ab)"jab+2h ll a/a + 2a2(32L + a2hll - a 2(32Q 

+ (hl. + a2Q)«(32 + a 2/2 + k/a2) 

= 2K(& + 2Wa2 H + Whl.) ; (V) 
2 2 2 2 ... . . 

2a (3 L + (3 hl. + a hll + hll + 2hll(ab)"jab + hl.b/b 

= K[(& - bp)/2 - W(2a2 H + hl.)] . (VI) 

In deriving the system (I-Vn, we have used Maxwell's equations (6.1.9) to 
eliminate ~ and H3. 

6.1.6 Exact Solutions of the Linearized Equations Corresponding 
to Perturbations of the Coordinate System 

Not all solutions of the linearized combined system of Einstein's equations and 
equations of magnetohydrodynamics are physically meaningful. The point is that 
if in the unperturbed homogeneous model we go over to a perturbed coordinate 
system X' = xi +~i(x), where the functions ~i(x) are regarded as small displace­
ments, then in the perturbed coordinates all the quantities at the point x acquire 
increments, although the pseudo-Riemannian space itself remains the same. 

The metric tensor acquires increments hi) = VI~) + Vj ~,. If the "new" 
coordinate system is to be synchronous, the components of the vector ~i will 
have the special form 
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e4 = f(xC't), e'J = V" f(xC't)a2 / a-2dt + f"(xC't) , 

e=V3f(XC't)b2/b-2dt+f3(XC't), 1-'=1,2; a=1,2,3 

249 

(6.1.17) 

We stress that the functions f. f". and f3 depend only on the spatial coordinates 
xl. x2• and x3. 

By means of the expressions (6.1.17) for the components e. we obtain the 
following exact solution of the system (1-VI) for the even perturbations. defined 
in accordance with (6.1.5.6): 

hJ. = -2a2lta2 / a-2dt+4f1aja -2a2a2h , 

hll = _2(32 It b2 / b-2dt + 2f1 bjb - 2(32b2 h , 

Q = 2lta2 / a-2dt + 2a2 h , 

L = It (b2 / b-2dt + a2 / a-2dt) + ha2 + hb2 

(6.1.18) 

Here It. h. and h do not depend on the time t. We make use of our "false" 
solution of the system (I-VI) for the even perturbations in order to reduce its 
order. 

For this. we make a linear replacement of the unknown functions: instead of 
hJ.. hll' L. and Q. we introduce unknown functions i1. i2. k and 9 according 
to the relations 

2 2 (/ 2 ) - - 2 2-hJ. = -2a a a- dt f1 + 4ftaja - 2a a h , 

2 2 (/ 2 ) - - . 2 2-hll = -2(3 b b- dt ft +2ftbjb - 2(3 b h +2g , 

Q = 2ha2 (/ a-2dt) + 2a2 i2 , 

(6.1.19) 

L = i1 (a2 / a-2dt + b2 / b-2dt) + i2a2 + i3 b2 

After the substitutions (6.1.19). the system of equations (I-VI) for the even 
perturbations contains only the derivatives of the functions i1. i2. and i3 with 
respect to the time. It is therefore convenient to seek not these functions directly. 
but the following combinations of them: 

f - f- m == fl..1a2 /a-2dt + a2fl..2 = 1 , 

n == f 1b2 / b-2dt+b2f3 . 

(6.1.20) 
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This linear substitution enables us to reduce the order of the system for the even 
perturbations by three units. 

6.1.7 Closed System of Equations for the Even Perturbations 

We shall assume that the perturbations are adiabatic and eliminate from (I-VI) 
the perturbations associated with the magnetic field and with the matter, H, be, 
and 8p [see the definitions (6.1.3-5)]. We then obtain a closed system of four 
equations for the functions hll' hl..' L, and Q. 

To obtain the first equation, we eliminate H from (III) and (IV). We obtain 
the second and third equations of the system by substituting in place of be and 
H in (I) and (IV) their values calculated by means of (III) and (V). We take (II) 
to close the system. 

We now replace hl..' hll' L, and Q in this system by the expressions (6.1.19) 
and make use of the notation f, m, and n defined in (6.1.20). 

We obtain the following closed system of equations for the functions f, g, 
m, and n: 

a-2{ a2[rh, + n + (a2 jb)" (bja2)m + hnjb + 2fn' + 4"Wm 

+ 2W(p + c + 2W)-1 X [-2kmj a2 + (32(n - m) + 2f(ab)" jab 

+ 2g + 2g(bj a)" ajb] = 0 , (6.1.21) 

a( -cim - (32n + j + g) + ,,(1 + dpjdc)(W + kja2)f 

= (1 - dpjdc)[ -ci(ab)" j2ab + (g - (32n)aja + 0:2gj2] 

- (1 + dpjdc)4-1 

X 0:2[rh, + n + (a2 jb)" (bj a2)m + nhjb + 2f] , (6.1.22) 

9 + 2(ab)" gjab+ 0:2g - (32n - 2(32naja - 0:2mhjb 

- (32 f + hj jb + 2f(bjb + 2ahjab) 

= 2-10 - dpjdc)[0:2g + (ab)"j ab( -0:2m + 2af j a) 

+ 2aja(-(32n + 9 + hf jb)] 

+ (3 - dpjdc)4- 1 

X 0:2[rh, + n + (a2 jb)" (bja2)m + nhjb + 2f] , (6.1.23) 

-g + mbjb + rh, + f = 0 . (6.1.24) 

In the absence of a cosmological magnetic field, the system is of fourth order, 
since it admits an integral corresponding to conservation of the even component 
of the curl of the velocity [see (6.1.8)]: 

(0:2 + (32)(m - n) + 2g + 2(g + f)(bj a)" ajb - 2kmj a2 

= L(a2b)-1 , L = const . 

Moreover, for W = 0 we can integrate (6.1.21). 

(6.1.25) 
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6.1.8 Analysis of the Closed System of Equations for Odd Perturbations 

The system of equations (6.1.15, 16) for M and K with odd perturbations having 
a scale of variation much smaller than the characteristic scale of variation of the 
background contain solutions for gravitational and Alfven waves. In fact, if we 
seek solutions of (6.1.15, 16) in the form of rapidly oscillating expressions 

where il ~ max(a/a, bib), we obtain for il the two values 

ill = V 0:2 + f32, il2 = V2W/(p + e + 2W) f3 , 

of which ill corresponds to a gravitational wave, and il2 to an Alfven wave. 
For the amplitudes /J(t) and X(t) in the gravitational wave, we obtain the 

expressions 

The rate of change of the amplitude of gravitational waves in anisotropic models 
depends on the direction of their propagation. Therefore in anisotropic models the 
spectrum of gravitational radiation cannot be isotropic, provided that the gravita­
tional radiation is not thermalized by some process, such as the interaction with 
the electromagnetic radiation (see Sect. 1.3), which has an equilibrium character 
at a high temperature of the matter. 

For 2W(p + c; + 2W)-1 f32 ;;; 1, the Alfven perturbations have a character­
istic time of variation of the order of the characteristic time of variation of the 
scale factors a(t) and b(t), which, according to the system (6.1.1), is of order 
(J K(C; + W))-l. It is meaningless to speak of gravitational and Alfven waves 
individually if the characteristic time of their variation is greater than or of the 
order of (JK(C; + W))-l, since for such scales the odd subsystem cannot be split 
into purely Alfven and purely gravitational perturbations. 

6.1.9 Analysis of the Closed System for Even Short-Wave Perturbations 

For short-wave perturbations, we shall seek solutions for f, g, m, and n (6.1.21-
24) in the form of amplitudes 1, g, rh, and n, multiplied by a rapidly oscillating 
factor exp(f iil dt). Each of the amplitudes is represented as a formal series in 
powers of 1/ il, whose principal terms we denote by fo, go, mo, and no. 

Retaining the principal terms in (6.1.21-24), we obtain 
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- il2(mo + no) + 2W 10 - 2W(p + e + 2W)-1 

X [,82(no - mo) - 2iilgo] = 0 , 

- (1- dp/de)go/2+4-1(1 + dp/de)[iilmo +iilno +2/0] = 0 , 

(il2 + a 2)go + iil,82no + ,8210 = 0, -go + iilmo + 10 = 0 , 

f = 10 + It / il + ... , 11 = go + gt/ il + . . . , 

in = mo +mt/il+ ... , n = no+nt/il+ .... 

This system has the solution mo = no, go = 0, 10 = -iilno. In order to obtain 
the modes of the short:.wave oscillations in the equations, we must retain, after 
the principal terms, the following terms: 

(ml - nl)(il2 + 2,82w) + iilmo[2(a/bY b/a - 4w(abY /(ab)] 

+2Wgl(1+2w)=0, 

w = W/(p+e+2W) , 

il/4(1 + dp/de)a2(ml - nl) - a2(dp/de)gl (6.1.26) 

+ mo[a/a(Ll2dp/de - il2) + a2(b/ay (a/b) dp/de] = 0 , 

iilLl2(ml - nl) + (,<12 + il2)mo(b/b - a/a) - gl (Ll2 + il2) = 0 , 

iilml + bmo/b + 11 - gl = 0, ,<12 == a 2 +,82 . 

Equating the determinant of the system (6.1.26) to zero, we obtain 

(il2 _ ,<12){il4 _ il2[Ll2dp/de+2w(,<12 - a2dp/de)] 

+2w,82,<12dp/de} =0 . (6.1.27) 

The roots il = ±Ll refer to a gravitational wave. The corresponding solution of 
(6.1.26) does not contribute to the perturbation of the density and velocity of the 
matter, and also does not lead to the appearance of an electromagnetic wave. 

The expression in the curly brackets in (6.1.27) is the dispersion relation for 
the fast and slow magnetohydrodynamic waves (see Chap.4). Substituting the 
magnetohydrodynamic modes for il into the system (6.1.26), we can calculate 
the perturbations of the metric, of the magnetic field and of the density of the 
matter in these waves (the corresponding expressions were given in [6.19]). 

Short-wave even perturbations diffuse in magnetohydrodynamic and gravita­
tional waves. However, if the inhomogeneities have a sufficiently large charac­
teristic scale, they will be sustained by the forces of gravity. We assume that for 
such scales the solution for the gravitational waves is, as before, rapidly oscil­
lating, i.e., ,<1 ~ max(liz/al, Ib/bl). Then, using the gravitational-wave solution, 
we can reduce the order of the system (6.1.21-24) by two units. 

After this, with accuracy up to terms of order a/aLl and b/bLl, we ob­
tain the equations of general relativistic magnetohydrodynamics with gravity in 
a cosmological model with an unperturbed metric tensor satisfying the system 
(6.1.1). An analysis of the resulting system of equations leads to the following 
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conclusions. In the presence of a cosmological magnetic field, the minimal di­
mensions of the inhomogeneities of the matter which are sustained by gravity 
are different from those in isotropic models, where one can use the Jeans cri­
terion: if along the field the critical size of the inhomogeneities is of the Jeans 
order V[K(€ + W)]-ldp/d€, then across the magnetic field the critical size of 
the clustering of matter is of order 

V[dp/d€+2w(1-dp/d€)][K(€+W)]-1 , w=W/(P+€+2W). 

The evolution of a cluster of matter with dimensions much greater than these 
critical dimensions takes place according to the linear theory during the char­
acteristic time of development of the unperturbed model. The rate of increase 
of the density of matter in these clusters depends significantly on the configu­
ration of the initial perturbation (Le., on the ratio a/ (3) if the dimensions of the 
perturbations are much smaller than (J K(€ + W»-l. 

6.1.10 Evolution of Perturbations of Arbitrary Finite Scales 
Near a "Pancake" Singularity 

Let us consider the character of the development of inhomogeneities in a suffi­
ciently small interval of time near the singular instant at which a "pancake" is 
produced. For a gas with the equation of state 0 :::; dp/d€ == >.. = const < 1, we 
can deduce from the system (6.1.1) the following asymptotic behavior for the 
energy density and the scale factors: 

a = ao[1 + (2 - 2>..)-1 K€ot(l-A) + ... ], b :=:;j bot , 

€ = €OC(l+A) +... , >.. == dp/d€ , 

ao = const, bo = const, €o = const 

Because of the contraction of the scales along the z axis, the moduli of the 
gradients of the functions with respect to z, for a sufficiently small interval of 
time, will be much greater than the moduli of the gradients in the plane of xl 

and x 2• We shall now assume that 0'2 ~ (32. For any scale of inhomogeneity, 
this inequality is satisfied for sufficiently small t, since (3 has the asymptotic 
behavior (3 :=:;j l3o/t. 

Equations (6.1.21-24) for a gas with the equation of state indicated above 
take the following asymptotic form: 

[m + 'Ii - mit + nit + 2fl" = 0 , 

j + (g - n/t2)>.. = 0 , 

g+2g/t - (35'1i + j/t - f(35/t2 = 0 , 

- 9 + mit + m + f = 0 . 

A solution of the system (6.1.28) can be sought in the form 

(6.1.28) 
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m = mot"Y+l , n = not"Y+l , f = fot"Y , 

g = got"Y, 1= const ; 
(6.1.29) 

substituting the expression (6.1.29) into (6.1.28) and equating to zero the deter­
minant of the resulting system for rna, no, fa, and go, we obtain the "dispersion 
equation" 

(6.1.30) 

The relative perturbation of the density, 8e/£, then has the asymptotic behavior 
P. 

Thus, the magnetic field near a "pancake" singularity is of little importance, 
so that the angular momentum in an ideal gas is conserved. We recall that if 
there were no magnetic field at all, the system (6.1.21-24) would admit the first 
integral (6.1.25). 

It should be stressed that the dispersion relation (6.1.30) indicates the exis­
tence of a wave zone for perturbations of arbitrary scales in an ideal gas and in 
a gravitational field near a "pancake" singularity. 

The root I = 0 corresponds to rotational perturbations which are frozen in the 
matter. The vanishing of the second factor in (6.1.30) corresponds to the modes 
of the gravitational waves. A "pancake" singularity is unstable with respect to 
such perturbations, which become infinitely large in the limit t -+ O. 

The third factor corresponds to adiabatic perturbations in an ideal gas. The 
dispersion relation for adiabatic perturbations, 1(1 + 1 - A) + f3'6 A = 0, indi­
cates that there are wave properties only in the case of perturbations for which 
f3'6 > (1- A)2/4A (analog of the Jeans criterion). The amplitude of "sound" per­
turbations falls off with time as r(1->.>/2. Long-wave perturbations, for which 
the inequality sign is reversed, do not have wave properties. The larger the scale 
of these inhomogeneities, the slower the falloff of the relative perturbations of the 
density. Finally, for the largest scales, the relative perturbations become frozen 
(see below). 

As t increases, the boundary between the scales of the perturbations which 
diffuse in sound waves and those which are sustained by gravity is shifted toward 
smaller scales. Therefore the perturbations of a fixed scale with f3'6 > (1- A)2/4A 
first diffuse with a decrease of the amplitude 8e/£ '" r(1->.>/2, but after a 
certain time the perturbations become frozen, as it were, losing their oscillatory 
properties. This means that after that time the inhomogeneities fall in the long­
wave part of the spectrum. 

After isotropization (equalization of the rates of expansion in all directions) of 
anisotropic models, the inverse process begins: the growth of the inhomogeneities 
leads to an increase of the gradients of the density. In a certain interval of scales, 
the growth of the gradient of the density causes the inhomogeneities to "burst", 
and they then diffuse in sound waves. 

As to the rotational perturbations, for sufficiently small scales, some time after 
the singular instant they begin to diffuse in slow magnetohydrodynamic waves. 
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By the time of isotropization, the strength of the cosmological magnetic field 
falls so much that slow MHD waves are again converted into frozen vortices. 

6.2 Self-Similar Motions of a Photon Gas 
in the Friedman-Lemaitre Model 

In the early stages of expansion of the universe, the dominant contribution to 
the energy of the matter comes from the electromagnetic radiation, which is 
related to the cosmic radiation of a black hole with temperature 2.83 K [6.2]. In 
the simplest model of a universe filled with radiation - the Friedman-Lemaitre 
model with a flat comoving space - the analytic expressions for the metric and 
the energy density in Lagrangian coordinates have the form 

ds2 = Cldr2 - aor[de + e(dfP + sin2 () dcp2)] , 

c = 3c2/327rGr2 • 
(6.2.1) 

Here ao is a constant, r is the "world time", and ~ is the Lagrangian radial 
coordinate. 

The solution (6.2.1) of Einstein's equations is a particular self-similar solu­
tion. Therefore it is natural to consider the position of the Friedman-Lemaitre 
solution in the class of self-similar spherically symmetric solutions and to study 
the physical and analytic properties of these solutions, including solutions with 
shock waves. 

In this section, spherically symmetric self-similar motions are studied in an 
orthogonal spherical coordinate system of an observer: 

(6.2.2) 

Here v(r, t) and 'Y(r, t) are unknown functions. 
The problem of self-similar spherically symmetric motions of a gravitating 

gas in the general theory of relativity was first formulated in [6.28]. Owing to a 
choice of variables which was not entirely successful, the correctly written con­
ditions on gas-dynamical shock waves in general relativity lacked the simplicity 
that is inherent in these conditions in the special theory of relativity [6.29]; how­
ever, it was possible to derive a condition on a break after which the gas goes 
into a state of rest. 

Einstein's equation was reduced [6.28] to a second-order equation with rad­
icals. For a fixed velocity of the shock wave, the parameters of the gas were 
calculated behind the shock wave, and from these data an integral curve outside 
the stationary core was constructed numerically. A system of ordinary differential 
equations for self-similar motions was written down [6.30] and was later greatly 
simplified [6.31] by choosing a new scaling variable. In the comoving coordinate 
system, a study was made [6.32] of the self-similar problem in the case of the 
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maximally rigid equation of state p = c. In the theory of small perturbations, self­
similar perturbations of the Friedman-Lemaitre model were considered in [6.33]. 
A qualitative analysis of a self-similar system in a conform ally static coordinate 
system was given in [6.34]. An extended concept of self-similarity in general 
relativity was analyzed from a group-theoretical point of view in [6.35]. 

The system of ordinary differential equations for self-similar motions of a 
gravitating gas in general relativity was studied in the comoving coordinate sys­
tem in [6.36], where it was shown, in particular, that it is possible to match the 
known solutions by means of the conditions on the breaks. A study was made 
[6.37] of the self-similar formation of non stationary black holes in cosmological 
models which at large distances tend to the flat Friedman-Lemaitre model. Use 
was made of the comoving coordinate system. 

This section is based on [6.38]. Here we derive a closed system of two 
first-order ordinary differential equations, which is convenient for a qualitative 
investigation. It is shown that the conditions on shock waves for a gas with the 
equation of state p = c /3 have, in special variables, the same form in general 
relativity as in special relativity. For certain solutions, we demonstrate the exis­
tence of a limiting sphere (a nonsingular horizon) outside which the coordinate 
system (6.2.2) becomes meaningless. This happens because, for these cosmolog­
ical solutions, particles outside the light horizon have a speed with respect to the 
center of symmetry exceeding the speed of light. 

The integral curves on which the speed of the gas is equal to zero at the center 
of symmetry form a one-parameter family containing the Friedman-Lemaitre 
solution. Therefore all solutions not containing a source or empty space at the 
center of symmetry must be converted into this family by means of either a 
shock transition or a weak break. It is interesting to note that all solutions with 
weak breaks have a light horizon on which the speed of the gas with respect 
to the system (6.2.2) is equal to the speed of light but the pressure is finite. In 
these solutions, the whole of space-time cannot be covered by the coordinate 
grid (6.2.2). 

The situation with regard to solutions possessing shock waves is quite differ­
ent. It turns out that there exists a critical wave intensity. If a solution exhibits 
a break with a subcritical intensity, then the solution possesses a light horizon. 
Solutions containing a break with a supercritical intensity do not possess a hori­
zon and have all the qualitative properties of the self-similar Cauchy problem of 
focusing of a gas to the center, as described in [6.39]. 

In the case of formation of a stationary core, none of the solutions with 
a shock wave in the system (6.2.2) have a light horizon and, conversely, all 
those with a weak break do have one. We establish for what initial data the 
problems of outflow and focusing are physically meaningful. We describe the 
phase portraits of the integral curves near the light horizon, the sound line, and the 
coordinate origin. We present the results of the following numerical calculations: 
(1) solutions with a spherical shock wave of subcritical or supercritical intensity, 
inside which there is either a "segment" of a Friedman-Lemaitre universe or 
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a stationary core; (2) solutions with a weak break on a sound surface, inside 
which there is either a Friedman solution or a stationary core; (3) inhomogeneous 
cosmological models possessing a light horizon. 

6.2.1 Derivation of a Closed System of Ordinary Differential Equations 
and Conditions on Shock Waves 

For our purposes, it is convenient to introduce the radial velocity Y, measured 
in terms of the speed of light, which is defined at a point as the ordinary velocity 
with respect to a local Lorentz coordinate system with basis vectors directed along 
the coordinate lines of (6.2.2). In terms of the components of the 4-velocity u i 

and the metric coefficients exp, and exp v, the velocity Y can be expressed as 
follows: 

Y == u r exp[(, - v)j2]ju4 • 

For self-similar solutions, the unknown functions v(r, t), ,(r, t), Y(r, t), and 
p(r, t) have the form 

v = v(..\) , ,= ,(..\) , Kp = P(..\)jr2 , ..\ == rj(ct) . 

We introduce a new scaling variable ( having the meaning of the velocity of 
the surface ..\ = const with respect to the local Lorentz coordinate system: 

(= ..\exp[{f - v)j2] . (6.2.3) 

We introduce the notation x == exp" and we shall find the dependence of the 
functions v, x, P, and Y on the variable (. 

Einstein's equations in this case have the form 

KT.[ = Rr , 4PY = x-2e(1 - L)(1- y2)dxjd( , 

KT; = R~ - Rj2 , 

- p(3y2 + 1) = [1 - .!. - i(1 - L) dV] (1 _ y2) , 
x x d( 

KTt =m -Rj2 , 

P(3 + y2) = [1 _ .!. + i. dX] (1 _ y2) , 
X x2 d( 

2(x - 1)(y2( + (- 2Y) 
L== (3+Y2)-4Y 

(6.2.4) 

(6.2.5) 

(6.2.6) 

(6.2.7) 

In the expressions on the left, we have indicated the corresponding components. 
The function P«() can be calculated explicitly from (6.2.4,6) if the solutions 

x«() and Y«() are known: 

P«() = (x - 1)(1 - y2)(x-l[(3 + y2)( - 4Y)r1 • (6.2.8) 
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The coefficient v(O can be found by quadrature from (6.2.5) in tenns of the 
known x(O and V(O if P(O is replaced by the expression (6.2.8): 

dv 4V(x - 1) 
(d((1-L)= (3+V2)-4V 

Eliminating the function P(O from (6.2.4,6), we obtain 

dx 4V(x -1)x 
(I-L)(d( = (3+V2)-4V (6.2.9) 

Eliminating the pressure from the conservation equations V, T: = 0 and 
V, T'; = 0, we have 

(dV (1 _ L) = (1- V2)[2V - (V2/2 - 3(/2+ ill 
d( 3(V - 0 2 - (1 - V 0 2 ' 

Q == 4(x - 1)[V3 ( - 3V( + 3(2/2 + V2 - V4(2/2] 

x[(3 + V2) - 4vrl . 

(6.2.10) 

Equations (6.2.9,10) constitute a system of equations for x(O and V(O. The 
relation between the variables ( and ..\ can be obtained by integration of the 
equation 

((1- L)dlo..\/d( = 1 , (6.2.11) 

which follows from the relation (6.2.3). 

Conditions on Breaks. The definition of differentiable manifolds involves a 
fixed class of local coordinate systems, within which the transition from one 
coordinate system to another must satisfy given smoothness conditions. In order 
to encompass the possible appearance of gas-dynamical shock waves, the coor­
dinate transfonnations in the distinguished class of coordinate systems must be 
twice differentiable and must have piecewise-smooth third derivatives. In this 
case, in the absence of a medium, breaks in the second derivatives of the metric 
on nonisotropic surfaces can be eliminated by an appropriate choice of breaks in 
the third derivatives of the coordinate transfonnations. 

The differential operator (Rik - 9,kR/2)n' contains only first derivatives of 
the metric along the nonnal to the surface of the break and is therefore continuous. 
As a consequence of Einstein's equations, we can then deduce continuity of the 
flux of energy and momentum across a shock wave, [T,k]nk = o. 

When a coordinate system is distinguished by means of some auxiliary con­
straints on the fonn of the metric of the four-dimensional space, it may happen 
that the distinguished coordinate grid does not belong to the class of coordinate 
systems indicated above. In such coordinate systems, there can be breaks in both 
the metric itself and its first derivatives. In this case (see, for example, [6.40]), 
on a nonisotropic surface of a break the first and second quadratic fonns of the 
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surface of the break must both be continuous. For the coordinate system (6.2.2), 
this implies continuity of the metric and of the flux of energy and momentum 
across the surface of the break. 

Suppose that the equation of the surface of a shock wave has the form 
f(r, t) = O. We denote by c( the velocity of the shock wave with respect to 
an orthonormalized tetrad of the local coordinate basis (6.2.2): 

( = - exp[(')' - v)/2]f,t/ f,r . 

We write down the components of the 4-normal to the shock wave: 

nr = - exp( ')' /2)(1 - 1:r1/2 , n4 = exp(v /2)(1 - (2)-1/2 

From the conditions n,[T:] = n,[Tj] = 0 it follows that 

[(P + o5)(V - p(1 - V2) - (p + o5)V2/(1 - V2)] = 0 , 

[(p + 05)«( - V)/(1 - V2) - p(] = 0 

(6.2.12) 

(6.2.13) 

respectively. It is remarkable that these conditions have the same form as in 
special relativity [6.41]. 

Eliminating the pressure from the conditions (6.2.12,13), we obtain for an 
ultrarelativistic gas the expression 

::2 - - -2 V2=(3( -1-2ViO/(2(+Vi«( -3» , (6.2.14) 

where Vi and V2 are the speeds of the particles of the gas before and after the 
break, in units of the speed of light. 

Equation (6.2.14) means that, in the photon gas in the coordinate system 
associated with the break, the product of the speeds before and after the break 
is equal to the square of the speed of sound. 

6.2.2 Friedman Solution and Qualitative Investigation of the System 
of Equations for z(C) and V(C) 

The metric tensor in the Friedman solution in the Lagrangian coordinates (6.2.1) 
can be readily transformed to the coordinate system (6.2.2) of the observer. One 
transformation is obviously r2 = ClOre, and another can be found from the 
condition of orthogonality of the metric (6.2.2). It is convenient to seek it in the 
form 

r = r / f(>") , >.. == r / ct . 

After simple calculations, we obtain for the function f(>") and the speed V(>") 
the expressions 

V=f/2=>../ (1+~) . (6.2.15) 

The metric coefficients exp')' and exp v in the Friedman solution are identical: 
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exp,=expv= (1+~) /2~ . (6.2.16) 

For the pressure as a function of the coordinates, we have 

P= c6t2 (1-~)2 /87rGr4 • (6.2.17) 

The coordinates (6.2.2) can span only part of the Friedman solution in the infinite 
comoving space. 

We shall carry out a qualitative investigation of the system (6.2.9, to). 
We first linearize the system (6.2.9, to) near the straight line ( = 0, V = o. 

We introduce the notation V / ( == q and reduce the system (6.2.9, to) to the form 

d( 2dq[3 - 4q - 2(x - 1)(1 - 2q)] 

(" = (3 - 4q)[3(1 - 2q) - 4(x - 1)(1 - q)] 

dx[3 - 4q + 2(x - 1)(1 - 2q)] 
= 

4q(x - l)x 
(6.2.18) 

It follows from this that in the first approximation in V and ( the integral 
curves near the straight line ( = 0, V = 0 will lie on surfaces x = x(V / (, a), 
where x(q, a) is an integral curve of the equation 

dx 8q(x - l)x 
-=-------.:....:....----=------
dq (3 - 4q)[3(1 - 2q) - 4(x - 1)(1 - q)] . 

(6.2.19) 

A schematic representation of the integral curves of this equation is shown 
in Fig.6.1. According to (6.2.19), in order to reach the value ( = 0 along the 
integral curve with the direction V / ( = qO, it is necessary that the point qO, xo be 
a singular point of the equation (6.2.19). Further investigation shows that one of 
these singular points (the point E in Fig. 6.1) has coordinates qO = 1/2, xo = 1, 
and the other point D has coordinates q = 0, xo = 7/4. The family of integral 
curves depending on a single parameter PI and going into the point E(qo = 1/2, 
xo = 1) has the following asymptotic behavior: 

2 [ (4 PI) 2 x-1=H( 1+ S-5 ( 

( 207 17 4 2) 4 ] 
+ 280 - 35 H + 35 PI (+ . . . , 

[1 (7 H) 2 V=( 2+ 40-5 ( 
(6.2.20) 

1 (61 5 2 2) 4 ] +14 4O-2H -SPI (+ ... , 

"'P = He2[l + (1 - 2H)e + ... J . 

For the parameter value H = 1/4, these expressions represent the first terms of 
the expansion of the Friedman solution (6.2.15-17). The exact solution xo = 7/4, 



6.2 Self-Similar Motions of a Photon Gas in the Friedman-Lemaitre Model 261 

q 

Fig.6.1. Integral curves of (6.2.19). The sin­
gular points have the coordinates A(7/IO, 0), 
B(3/4, 0), C(3/4, I), D(O, 7/4), and E(1/2, 1) 

Vo = 0, Po = (7 Kr2)-1 corresponds to a static configuration of the gas (the state 
of rest). 

The complete set of solutions of (6.2.9,10) depends on two parameters, while 
the solutions (6.2.20) depend on only one parameter, so that all the other solutions 
must go over into one of the curves of (6.2.20) or into a static solution, either 
through a weak break along a sound line or through a strong break (if, of course, 
there is no source or empty space at the center). 

We shall now study the behavior of the integral curves of the system 
(6.2.9, 10) near the light cone V = 1, ( = 1. 

If we linearize the system (6.2.9,10) in ( - 1 and V-I, then, introducing 
the notation (V - 1)/«( - 1) == q, this system can be reduced to the form 

d( (4-q-2x)(q2+1-4(j)dq (4-q-2x)dx 
= = 

( - 1 q(2 - q)(3q - jj2 + 1) 2(x - 1)x 
(6.2.21) 

In the first approximation, the integral curves lie on the family of surfaces x = 
x«V - 1)/«( - 1), 0'), where x(q,O') is an integral curve of the equation 

dx 2(x - l)x(q2 + 1 - 4(j) 
dq = q(2 - q)(3q - jj2 + 1) 

(6.2.22) 

A schematic representation of the integral curves of (6.2.22) is shown in 
Fig. 6.2, where the arrows indicate the direction of increase of (. A schematic 
representation of the integral curves of (6.2.21) for x > 1 and for a fixed value 
of the constant of integration in (6.2.21), projected onto the plane of V and (, 
is shown in Fig. 6.3. The direction (V - 1)/«( - 1) = 2 is singUlar. 

The asymptotic behavior of the ends of the loops (Fig. 6.3), which approach 
the straight line V = ( = 1 and x -+ 00 with a finite slope qO f 0, is as follows: 
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J-I/tj 0 2-1/3 
-2-

Fig. 6.2. Integral curves of (6.2.22) 

2 3+fi3 2+0/3 if 
-2-

Fig. 6.3. Integral curves of the system (6.2.21), 
projected onto the plane of V and <: 

a 
x = (1 _ 0 + 0(1) , 

V-I = qO«( - 1) + 0«( - 1)2) , 
qO 

P~--2 . 
qO -

(6.2.23) 

For the slope q = 0, we find that the curves have the following asymptotic 
behavior: 

(x - 1) = at «( - 1) + 0«( - 1)2) , 

(V - 1) = -{3t «( - 1)2 + 0«( - 1)3) , 

P = at {3t «( - 1)2/2 . 

Here at and {3t are arbitrary positive constants. 
It is quite essential to consider the asymptotic behavior of the curves for 

q --t 00. An analysis shows that there exists a one-parameter family of integral 
curves, not contained in the two-parameter family of integral curves of (6.2.21), 
having the following asymptotic behavior: 

V = 1 - aJ(l - () + (3/4 + (i /16)(1 - () +... , 

x(a2 + 2) = a / .J<T='O + (a4 - 36)/16 +... . 
(6.2.24) 
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For a = -/2, the expressions (6.2.24) represent the asymptotic form of the Fried­
man solution for ( -+ 1. Numerical calculations show that the one-parameter 
family having the asymptotic behavior (6.2.24) for ( -+ 1 will have the asymp­
totic behavior (6.2.20) for ( -+ O. 

As we shall show below, these solutions are submanifolds of inhomogeneous 
cosmological models bounded by a light horizon. It is interesting that for the 
Friedman-Lemaitre solution the coefficient a/(a2 +2) in the asymptotic behavior 
(6.2.24) for x has the maximum value. 

We now investigate the structure of the weak: breaks near the sound lines, 
which are determined as the zeros of the numerator and denominator of the 
right-hand side of (6.2.10): 

(6.2.25) 

As (0 varies from 0/3 to 0/2, we obtain the sound lines in the various 
inhomogeneous cosmological models described above. When (0 is equal to 0/3, 
we obtain from (6.2.25) the sound line in the static solution Xo = 7/4, Vo = O. 
Near this line, the curves form a degenerate node at which the curves intersect 
the sound line, being tangential to the straight line V = 0, x = 7/4. 

For 0/3 < (0 < 0/2, the curves near the sound line (6.2.25) form a node 
lying in the plane: 

x - Xo = 15«( - (0) , 

Vo (3 - V~) (0 + Vo) (7 - 20Vo - 3V~) 
15 = --------.,.-'----'--'-----,,..--,;----:.....,-

2 (1 - V~)2 (0 - 30v~ +4Vo) (1 + 0Vo) 

Finally, if (0 = 0/2, we obtain from (6.2.25) the sound line in the Friedman­
Lemaitre solution (6.2.15-17) (xo = 3/2, Vo = 0/2), near which the curves 
form a degenerate node. All the curves intersect the sound line, being tangential 
to the straight line 

For (0 > 0/2, the points on the sound line (6.2.25) are foci. 
An investigation of the system (6.2.9,10) gives the following asymptotic 

expressions for x«(), V«(), and P(O in the limit ( -+ 00: 

x = Xo + 0(1/ (), V = Vo + 0(1/ (), P = Po + 0(1/ () , 

Po = (1 - V~) (xo - l)xol (3 + V5r1 . 
(6.2.26) 



264 6. Some Problems of the Dynamics of Waves in Relativistic Cosmology 

(Concrete expressions for the coefficients of 1/( were given in [6.19], and for 
Xo -1 = (3+ V5)[2(1 + V5)]-1 the solutions were decomposed [6.19] into powers 
of (-1/2.) 

The relation between the scaling variable A and the variable ( defined in 
(6.2.3) has the following form at large (: 

dln(/dInA = 1 - 2(xo -1) (V~ + 1) / (3+ V5) . 

Large positive values of ( correspond to A ~ 1 for 1 - L > ° or for 

Xo < (5 + 3V5) [2 (1 + V5)r1 . (6.2.27) 

For such xo, when ( -+ 00, we obtain a restriction on the possible value of the 
constant Po in (6.2.26): 

Po < (1- V~) (5+3V~rl . (6.2.28) 

Thus, the self-similar Cauchy problem of focusing or outflow for a gravitat­
ing photon gas has a solution subject to the constraints (6.2.27,28). The actual 
integration of the system (6.2.9, 10) may make these inequalities even more strin­
gent. 

6.2.3 Discussion of the Results 

In order to investigate the possibility of analytic continuation of the solutions 
beyond the light horizon, let us consider the relation between the comoving 
coordinate system and the coordinate system of the observer for self-similar 
solutions. Suppose that the metric in the comoving coordinate system has the 
form 

(6.2.29) 

where the metric coefficients a2 , b2 , and r2 are unknown functions of ~ and r. 
In the comoving coordinate system, the momentum equation gives p = !(r)a-4 , 

and from the energy equation it follows that l/4r2b = <p(~), where !(r) and <p(~) 
are arbitrary functions of their arguments. We fix the time r and the Lagrangian 
coordinate ~ by putting !(r) = A4r-2 , <p(O = A3e/2 , A = const. 

The self-similar solutions in the comoving coordinate system are distin­
guished by the requirement 

a = a(f..t) , b = b(f..t) , r = ~R(f..t), P = A 4 /(r2a4(f..t» , 

where f..t == ~/r. 
By definition, the velocity 4-vector in the comoving coordinate system has 

only one nonzero component u4: ui(O,O,O, a-I). According to the rule for trans­
formation of the components of vectors in the coordinate system with the metric 
(6.2.2), the vector u i will have the components 
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(6.2.30) 

Dividing the first of these equations by the second and making use of the defi­
nition of the velocity V, we obtain 

or/oT=Vexp[(v-,)/2]Ot/OT . (6.2.31) 

From the condition of orthogonality of the comoving coordinate system (gTe = 
0) we obtain, using this relation, 

V or/oe = exp[(v - ,)/2]/(Ot/00 . (6.2.32) 

Substituting into (6.2.31,32) a self-similar dependence of rand t on e and T in 
the form r = eR(p), t = eR(p)/ A, from (6.2.31,32) we obtain 

(1- L)dlnR/d( = V(V - o-lel , 
(1- L)dlnp/d( = -(1 - V2)(V - 0-1(1- VO- l 

(6.2.33) 

[L is defined by (6.2.7)]. 
Using (6.2.33) in going from the system (6.2.2) to the system (6.2.29) ac­

cording to the tensor law of transformation of the components of the metric, we 
obtain for the coefficients a and b the expressions 

a2 = (pR/02x(1 - V(i /(1 - V2) , 

b2 = (R/02x«( - V)2/(1 _ V2) . 
(6.2.34) 

Equations (6.2.33,34) determine the dependence of R, a, and bon p in parametric 
form (in terms of O. 

Substituting into (6.2.34) the asymptotic behavior (6.2.24) of the inhomoge­
neous cosmological models near the horizon, we obtain expressions for R(O, 
p(O, a2(O, and b2(O in the form of series in powers of y'1=(: 

R = Ro [1 + (0:2 + 2)~/(20:3) + 0(1 - 0] , 
p = po [1- (0:2 +2)~/0:3 +0(1- 0] , 
a2 = p5~ [0:2 /(20:2 +4) +0 (~)] , 

b2 = ~ [0:2 /(20:2 +4) +0 (~)] , 

(6.2.35) 

where po, Ro, and 0: are arbitrary constants. Expressing y'1=( in terms of 
p - po, we obtain for R, a2, and b2 analytic series in powers of p - po which 
contain no singularities on the light horizon. Formally, the continuation through 
the horizon in this case corresponds to a reversal of the sign in front of the square 
root y'1=(, with ( remaining less than unity outside the light horizon as well. 

Solutions with the asymptotic behavior (6.2.23) can also be analytically con­
tinued through the light horizon. For the functions R(O, p(O, a2(O, and b2(O 
in this case, we have series expansions in powers of ( - 1: 
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R=Ro{I- (q:O~I~a«(-I)+ ... } , 

{ 2qo(qo - 2) } 
jl = jlO 1 + (q5 _ l)a «( - 1) +... , 

2 2 (qo + 1)2 
a = (jloRo) a 2 + . . . , 

qO 

(6.2.36) 

2 n2 (qo _1)2 
b =.l1{)a 2qo + . .. , 

where Ro, jlO, a, and qO are arbitrary constants. 
Expressing ( - 1 in tenns of jl - jlO, we obtain analytic series in powers of 

jl - jlO for the required functions. The solution outside the light horizon is given 
by (6.2.36) for ( > 1. 

Thus, the continuous and discontinuous self-similar motions of an ultrarel­
ativistic gas which we have described above indicate that all the continuous 
self-similar motions of the gas have a cosmological character, since, accord­
ing to (6.2.35), they can be analytically continued beyond the light horizon. This 
one-parameter class of solutions, which contains the Friedman-Lemaitre solution, 
represents a set of (in general) inhomogeneous expanding cosmological models. 

The segments of the curves of this class of solutions up to the sound line 
(6.2.25) appear as central cores in the larger two-parameter class of solutions 
possessing weak breaks. [In the space (x, V,O, the sound spheres are repre­
sented by the points on the sound line (6.2.25).] Each central core of the sound 
sphere can be attached to some solution in the two-parameter class of solutions. 
The analytic continuation beyond the light horiwn of each of these solutions 
with weak breaks in the comoving coordinate system is given by (6.2.36). These 
solutions are inhomogeneous cosmological models with a weak break along the 
sound characteristic. They have greater generality than the class of regular cos­
mological solutions (6.2.20,24), since they depend on two parameters. 

In contrast to solutions with a weak break, in solutions with shock waves 
of sufficiently large intensity there is no light horizon. Inside a shock wave, a 
solution is described by a segment of one of the solutions (6.2.20,24) or by 
a static solution. Thus, the unifonnity and expansion of the matter around an 
observer does not guarantee the unifonnity of the universe as a whole. At a 
sufficiently large distance from the center, a shock wave can lead to a complete 
change in the structure of the solution, when the pressure of the matter falls off 
to zero at infinity. In other words, regions with a unifonn outflow (segments of 
Friedman-Lemaitre universes) can be fonned as a result of focusing [Yo < 0 
in (6.2.26)] (accumulation) of the gas to the center, with preservation of the 
pseudo-Euclidean asymptotic behavior at infinity. 

The results of a numerical integration of the system (6.2.9,10) are shown in 
Figs. 6.4-7, in which the abscissa represents the scaling variable A == r / (ct). 

In Figs. 6.4 and 6.5 we show the solutions for the velocity and the pressure 
with a stationary core. The curves a with weak breaks correspond to inhomo-
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v P 
V=1 

• o 
Fig. 6.4. Graphs of V = V(OX) for solutions with weak and strong breaks in the presence of a static 
stationary core. Here and in Fig.6.5, the point A corresponds to a weak break; 0 Aa is a typical 
solution with a weak break, and Ob is a typical solution with a strong break 

Fig. 6.5. Graphs of P = P(OX) for solutions with weak and strong breaks in the presence of a static 
stationary core 

P=1 

V=-1 

• Fig.6.6. Graphs of V = V(OX) for solutions with weak and strong breaks in the presence of a 
homogeneous Friedman core. Here Oa, Ob, and Oc are typical curves with a strong break: Oa is 
a solution with a light horizon, on the curve Ob we have V ..... 0 for oX ..... 00, and the curve Oc 
corresponds to a solution of the problem of accumulation towards the center. On the Friedman curve 
OSO) there is a point with a weak break at oX = ../3/2, V = ../3/3, :r: = 3/2, and OSB is a typical 
curve with a weak break. Inhomogeneous cosmological solutions are shown as 0 A and OC 

Fig. 6.7. Graphs of P = P(oX) corresponding to the curves in Fig. 6.6 

geneous cosmological solutions possessing a light horizon. The curves a with 
strong breaks represent solutions of the problem of initial focusing to the center, 
when a stationary core is formed inside the shock wave. The point A in these 
two figures corresponds to the surface of a weak break with A = 1/.)3, V = 0, 
P = 1/7. 

In Figs. 6.6 and 6.7 we show the solutions for the velocity and the pressure 
with a core of uniform outflow. The curves 0801 in Fig. 6.6 and, correspond­
ingly, 08'O~ in Fig. 6.7 represent the Friedman-Lemaitre solution for the velocity 
and the pressure inside the light sphere. The curves 08 B and 08' B' represent 
a typical solution with a weak break, for which part of the solution (the curves 
08 and 08') coincides with the Friedman-Lemaitre solution. 
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The curves a and a' correspond to a typical inhomogeneous cosmological 
solution with a shock wave and a light horizon. The shock wave includes the 
Friedman-Lemaitre solution. The curves b and b' give an idea of the dynamical 
evolution of the initially stationary gas, in which a "fragment" of a homogeneous 
universe is formed inside the shock wave. 

The curves c and c' correspond to a typical solution of the problem of initial 
focusing to a point. Besides the Friedman-Lemaitre solution, in which the pa­
rameter Pt in (6.2.20) has the value 0.25, we have plotted in Figs. 6.6 and 6.7 the 
solutions (6.2.20) with Pt = 0.125 (the curves OA and OA') and with Pt = 0.75 
(the curves OC and OC'). These curves correspond to smooth inhomogeneous 
cosmological models. The point S in these two figures corresponds to the surface 
of a weak break for .A = v'3/2, V = v'3/2, x = 3/2. 



7. Acoustic Phenomena in Strong Gravitational 
and Magnetic Fields 

The launch of the spacecraft Uhuru, Ariel, SAS-3, and Copernicus containing 
x-ray detectors led to the discovery of a large number of sources of pulsating x­
ray emission (x-ray pulsars). The largest of the known periods of their pulsations 
exceeds the smallest period by three orders of magnitude. For example, the x­
ray pulsars Her X-I and Cen X-3 have periods 1.24 and 4.8 s, respectively, and 
the x-ray sources 3U0352 + 30 and 3U0900 - 40 according to the third Uhuru 
catalog have periods 835 and 284 s, respectively. The pulsations of the emission 
from an x-ray source can be explained by the variability of the direction of the 
emission from the regions of the magnetic poles, which occurs because the axis 
of rotation does not coincide with the axis of the magnetic dipole. If the x-ray 
pulsars belong to a single class of physical objects and are magnetized, rotating, 
accreting stars belonging to binary stellar systems, it is natural to ask why there 
is such a large spread in the angular speed of their rotation. (We note that at least 
six long-period sources belong to binary systems [7.1].) 

We shall trace the main stages in the evolution of the mechanisms of retarda­
tion of a neutron star in a binary system whose normal component is characterized 
by strong loss of mass!. In its early stages, a neutron star is characterized by 
rapid rotation and is an ejecting pulsar (like the pulsar in the Crab Nebula) which 
produces intense acceleration of cosmic rays and emits radiation in all parts of 
the electromagnetic spectrum. The resulting radio emission may not be observed 
because of its absorption in the stellar wind of the normal star. The period of 
rotation of the pulsar grows as a result of the loss of the total angular momentum 
carried away by the magnetic dipole radiation. In turn, the power of the magnetic 
dipole radiation of the ejecting pulsar falls off rapidly with increasing period, and 
at a certain time the plasma pressure of the stellar wind begins to exceed the 
pressure of the cosmic rays. The plasma penetrates into the region of the light 
cylinder r < ct and disrupts the operation of the pulsar mechanism. 

Accretion of matter onto the neutron star during this stage is impossible. The 
pressure of the magnetic field stops the matter on a certain surface, called the 
magnetosphere, on which p = H2 j87r. Since the surface of the magnetosphere 
is not spherical, it acts like a propeller and throws off matter which is incident 
on it. Naturally, the propeller mechanism contributes to the retardation of the 

1 The observational data and theoretical ideas on x-ray sources have been reviewed in a number of 
papers [7.1-5]. 
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rotation of the neutron star. This mechanism operates as long as the component 
of the rotational velocity of the magnetosphere normal to the surface of the 
magnetosphere is much greater than the parabolic velocity. 

At lower rotational velocities, other mechanisms of retardation of the neu­
tron star operate. The rotating neutron star generates acoustic and shock waves, 
which effectively heat the plasma surrounding it. There is turbulent convection, 
which deflects the angular momentum. An important role in the retardation of 
the rotation of the neutron star is played by the viscous forces acting in the gas 
surrounding it. The operation of these mechanisms is possible because of the 
subsonic (see Sect. 7.3) flow of the accreting gas. 

The retardation of the neutron star continues until the angular momentum 
carried by the accreting matter per unit time begins to compensate the moment 
of the hydrodynamic forces acting on the magnetosphere. The equilibrium period 
of rotation of the neutron star is determined by the parameters of the binary 
system. The acoustic and viscous mechanisms of retardation lead to dissipation 
of energy in the accreting gas, heat it, and hinder the accretion. Therefore it is 
highly probable that accretion becomes possible only when the period of rotation 
of the pulsar comes close to the equilibrium period. The neutron star is then 
converted into an x-ray source. If allowance is made for the nonspherical form 
of the pulsar and the resulting moment of the gravitational forces in the presence 
of accretion, there will be a long-period variation of the angular velocity of 
rotation of the pulsar (see Sect. 7.8). 

The periods of long-period x-ray pulsars are so long that they are not likely 
to be converted into radio pulsars that can be seen by observers after the normal 
star runs through its evolutionary path and is converted into a dead star. Thus, 
besides the mechanisms of retardation of the rotation of magnetized neutron 
stars which have already been considered (such as magnetic dipole radiation 
[7.6], acceleration of cosmic rays [7.7], and the supersonic "propeller" [7.8]), 
there exist also gas-dynamical mechanisms of retardation of the rotation, which 
become very important for long-period pulsars: (a) generation of shock and sound 
waves by the rotating magnetosphere in the plasma surrounding the star; (b) 
retardation of the rotation due to the viscosity of the plasma and its transition to 
turbulence at large Reynolds numbers. These processes are important in the case 
of a subsonic value of the normal component, with respect to the surface of the 
magnetosphere, of the rotational velocity of the boundary of the magnetosphere 
(see Sect. 7.3). 

In Sect. 7.1, which is introductory in character, we present the fundamentals 
of the theory of short acoustic waves on the background of an arbitrary poten­
tial flow of a gas with constant entropy. In the case of variable entropy in the 
particles, acoustic waves and rotational perturbations influence each other. In 
Sect. 7.4 we investigate the behavior of arbitrary small adiabatic perturbations of 
radial pulsations in a well-known model of the Cepheids, in which the entropy is 
distributed non uniformly over the particles and the unperturbed density depends 
only on the time. In Sect. 7.2 we develop analytic methods which make it pos-
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sible to detennine the explicit fonn of the magnetosphere, both in the case of 
supersonic rotation and in the case of negligible small rotation. In Sect. 7.5 and 
7.6 we study nonlinear transverse oscillations in layers of a weakly compressible 
liquid or gas with ideal conductivity in strong magnetic fields in the presence 
of resonant oscillations of the electric current at the boundary. It is found that 
a characteristic feature of such oscillations is the appearance of shock waves 
and Alfven breaks. We note that it is possible to write the equations of ideal 
magnetohydrodynamics in Lagrangian coordinates as the equations for a certain 
material with nonlinear elasticity. 

7.1 Propagation of Nonlinear Short Acoustic Waves 

In Sects. 7.1.1 and 7.1.2 we derive model equations for the description of acoustic 
waves at nonnal points on sound rays and near the envelope surfaces for sound 
rays on an arbitrary potential background. Fonnally, the problem reduces to the 
addition of quadratic tenns in the approximation of geometrical acoustics, these 
having the maximum order. 

In Sect. 7.1.3 the model equations are reduced to the simplest fonn, and 
known results in the one-dimensional case are used to analyze the fonnation and 
dissipation of a sawtooth wave in the general case. 

In Sect. 7.1.4 we analyze the reflection of acoustic waves from a shock wave 
in the case of direct or oblique incidence. Some of the results of that section have 
been obtained by many authors, beginning with Rayleigh (of Soviet authors, we 
mention R. V. Khokhlov and O. S. Rizhov). For example, the second approxima­
tion in the theory of acoustic waves has been discussed in the literature since the 
1930s. For detailed references, we refer the reader to various monographs and 
articles [7.9-13]. The references given in the text make no claim to completeness. 

7.1.1 Derivation of the Model Equations 

Suppose that in some region, in which the external forces have a potential U, 
the motion of a perfect gas is described by the potential in the fonn v = V1 'P 
and is isentropic. Then the pressure p is related to the density (! by a power law 
p = const . (!'Y, where "( is the ratio of the specific heats at constant pressure and 
at constant volume. 

Under the stated assumptions, the equations of gas dynamics have the 
Cauchy-Lagrange integral 

oiP v 2 a2 a5 
- + - + U + -- = -- = const at 2 "(-1 "(-1 

Eliminating the density from the equation of continuity, by means of the 
Cauchy-Lagrange integral we obtain 



272 7. Acoustic Phenomena in Strong Gravitational and Magnetic Fields 

- + v . \7 - + - + u + (-y - 1) - _0_ + - + - + U Llcp (a) (aiP v2) [a2 aiP v2 ] 
at at 2 ,,/-1 at 2 
= 0 . (7.1.1) 

The characteristic .,p of (7.1.1) satisfies the equation 

Q=Q(r,t,k,w)=. 2!2[k2a2 -(w-k.v)21=O , (7.1.2) 

where k =. \7.,p, w =. -.,p,h and r is the vector with components x, y, z (the 
radius vector). 

For the first-order partial differential equation (7.1.2), there is an associated 
characteristic system of ordinary differential equations in the Hamiltonian form: 

(7.1.3) 

here a is the canonical parameter on the integral curve of the system (7.1.3). The 
system (7.1.3) determines a normal congruence of sound rays, the bicharacteris­
tics of (7.1.1). We note that the sound rays lie on a surface .,p = const, covering 
it, as it were, since \7.,p(dr fda) + .,p,t dtfda = 2Q = o. 

The individuality of each sound rayon the three-dimensional surface .,p = 
const can be characterized by means of Lagrangian coordinates e and e, so 
that the solution of (7.1.3) can be written in the form of the dependence of 
the functions r, t, k, w on the arguments a, .,p, e1, e, this dependence being 
determined by the initial data for the system (7.1.3): 

k = '\l f(xo, Yo, zo), r = ro for t = to . 

These conditions correspond to initial conditions for the solution of (7.1.2): 

.,p = f(x,y,z) for t = to . 

Suppose that some solution of (7.1.1), which we shall call the background (or 
unperturbed solution), has a characteristic length L and a characteristic time T of 
variation of the gas-dynamical quantities. We shall henceforth speak of a solution 
corresponding to an acoustic wave in the case of a perturbed solution of (7.1.1) 
which has a characteristic scale of variation 1 such that 1 « L =. min(L, aT), 
where a is the characteristic speed of sound in the unperturbed solution. We shall 
assume that the relative amplitude of the perturbations is of an order not greater 
than the ratio of 12 to L2. 

We shall denote the perturbations of the hydrodynamic quantities in an acous­
tic wave by a prime. Let cp be the potential of the perturbation of the velocity: 
v' = \7 cp. Quantities referring to the unperturbed solution will appear in the 
coefficients in the equations for the perturbations. We shall consider the terms 
of highest order in (7.1.1) when the solution is formally expanded in the small 
parameter c = If L. 

In an acoustic wave, the field of the hydrodynamic quantities varies "rapidly" 
along the directions "extracted" from the surface .,p = const. If we transform from 
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the variables x, y, z, t in (7.1.1) to the variables a, t/J, e, e, then t/J is a "fast" 
variable, while a, e, and e are "slow" variables "almost everywhere"; near 
caustics, a also becomes a "fast" variable. The largest of the nonlinear terms 
in (7.1.1) will be those of the form CP,1/J and CP,1/J1/J' where cP is the potential of 
the velocity perturbation. We shall assume that the characteristic length in an 
acoustic wave is of the order of IVt/JI-1, i. e., 1", IVt/JI-1• 

In what follows, the index j in the notation xi will take the values 1,2,3,4, 
and x4 == t. We note that the affine parameter a on sound rays is determined 
only to the extent that an arbitrary function f(t/J, e, e) can be added to it. 
Transforming in (7.1.1) to the variables a, t/J, e, e and neglecting the derivatives 
with respect to e and e in comparison with the derivatives with respect to a 
and t/J, we find that the potential of the velocity perturbation satisfies the equation 

&cp 8 (8Q(t/J,i; Xi») 8cp &cp . i 
2 8t/J 8a + 8x; 8t/J,; 8t/J + 2 8a2 Q(a,i, x ) 

8 (8Q(a i; Xi») 8cp {! 2 +- ' -+-(-y+l)k (w-k,v)cp1/Jcp1/J1/J=O 8x' 8a 8a a2 , , ,. 
(7.1.4) 

Far from caustics [envelopes for the bicharacteristics of (7.1.3)], the third and 
fourth terms in (7.1.4) can be dropped in comparison with the terms containing 
derivatives with respect to t/J. Therefore, far from caustics, we obtain from (7.1.4), 
after multiplication by CP,1/J' the equation 

8 [ (w - k· v) 2] [( ka2 ) (w - k· v) 2] 8t {! a2 (cp,1/J) + div v + w _ k . v {! a2 (cp,1/J) 

+ ~(-y+l)k2(w-k.v)cp~1/JCP,1/J1/J~0 . (7.1.5) 

If there is an envelope for a family of rays (a caustic surface), we shall assume 
that it is convex. Sound rays which are tangential to a caustic remain on the same 
side of it. Caustics separate the "light" region from the "dark" region, i. e., the 
region with real bicharacteristics (constructed on the basis of the initial data) 
from the region with imaginary bicharacteristics. If O'(xi) = 0 is the equation of 
a caustic, then, by the definition of a caustic, the normal to it is orthogonal to 
the direction of a ray: 

dr dt 8Q 80' 
-. VO'+ -at =0 or ----. =0 . 
da da ' 8t/J,j 8x) 

(7.1.6) 

Taking advantage of the arbitrariness in the definition of the affine parameter on 
a sound ray, we shall measure the affine parameter on each ray from the point 
of tangency of the sound ray to the caustic. From the fact that the rays remain 
on the same side of the caustic, 0' > 0, it follows that 

(7.1.7) 
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We transfonn in the neighborhood of the caustic to the coordinates a, u1, u2, 

u3 , i. e., we stratify the space of the variables x, y, z, t by means of an analytic 
definition of the surfaces a = const in the neighborhood of the caustic a = 0 (u 1 , 

u2, u3 are internal variables on these surfaces). Then the conditions (7.1.6,7) 
take the fonn 

da =0 
da ' 

Jla 2 
-=2c >0 for a=a=O 
da2 ' 

where c is some function of u1, u2, u3• 

At their tangency, the sound rays leave a field of directions on the caustic 
a = O. From this field on the caustic, it is possible to reconstruct a nonnal 
congruence of curves which cover the caustic2• Let 9(u1, u2 , u3) be a continuous 
continuation of the characteristic 'I/J onto the caustic. 

It follows from (7.1.6) that a ~ Cla2 and dalda ~ 2Cla ~ 2c.;u. On the 
other hand, according to (7.1.3), 

da 8Q 
da = - 8'I/J,u . (7.1.8) 

From the fact that 8Q 18'I/J,u "-J va according to (7.1.8), it follows that 'I/J ,u "-J .;u. 
Consequently, near a caustic the solution of the equation for the characteristics 
has the fonn 

2a3/ 2 
'I/J=9±-3- . (7.1.9) 

[This fonn of the solution can always be obtained by multiplying a by some 
function f(u\ u2 , u3), with no change in the equation of the caustic.] 

It follows from (7.1.8,9) that near a caustic the quadratic fonn Q has the 
structure 

3 

2Q('I/J,i; xi) ~ 2c('I/J,u)2 + L cAB'I/J,A'I/J,B , 
A,B=l 

where the CAB are certain functions of u 1, u2, u3• 

We now calculate, near a caustic, the coefficients which appear in (7.1.4): 

8 (8Q ) 8(8Q ) C 1 
8xi 8'I/J,J ~ 8a 8'I/J,u ~ va ~ -;:; , 

Q(a,); xJ) ~ ~ [2C(a,u)2 + t CABa'Aa'B] 
A,B=l 

8~i [::J ~ -2a~/2 ~ 2Ja3 • 

2 These curves can also have envelopes corresponding to cusps on the caustic (see, for example, 
[7.14]). 
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Thus, near a caustic the equation for the acoustic waves takes the fonn 

2 &cp 8cp 1 1 8 ( _1 8CP) 
8.,p 8a: + 8.,p ~ + 2& a: 8a: a: 8a: 

(-y + l)e 2 
+ a2 k (w-k·v)cp,.pcp,.p.p=O (7.1.10) 

Making the substitution 

20'3/2 fU 
.,p = e + -3- , a: = V ~ , 

from (7.1.10) we finally obtain 

&cp [ 8cp] 82cp 
80'2 - 0' - A 8e 8e2 = 0 (7.1.11) 

We stress that the coefficient A in (7.1.11) is a function of e, e1, and e. In the 
particular case in which 8A/8e = 0, (7.1.11) is readily reduced in the hodograph 
plane to the Tricomi equation (A. A. Bagdoev). Indeed, making the substitution 
cp = (rp + O'e)/A, we obtain for rp the equation 

&rp 8rp &rp 
80'2 + 8e 8e2 = 0 (7.1.12) 

We transfonn from the variables 0' and e to the variables >. = rp ,tr and 
I-' == rp,8. Dividing both sides of (7.1.12) by the Jacobian of the transfonnation 
rp,trtrrp,88 - (rp,tr8)2, we obtain e,p' + 1-'0',>" = O. From the condition \8 = I-',tr, 
which follows from the definition of >. and 1-', we obtain e,>.. = 0',1'" From this 
equation it follows that there exists a function F(>',I-') such that e = F,p. and 
0' = F,>... For this function we obtain the required Tricomi equation 

(7.1.13) 

7.1.2 The Energy Density, Enthalpy Flux Vector, and Momentum Density 
in an Acoustic Wave Traveling Through an Arbitrary Background 

The equation of conservation of energy in adiabatic flow of an ideal gas has the 
fonn 

(7.1.14) 

In the expression e( v2 /2 + c) for the volume energy density, we substitute v + v' 
in place of v and e + e' in place of e, and we expand this expression in a series 
in the small quantities v' and e' up to the tenns of the second order inclusive. 
Then we obtain 
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E ( ,)(V+V,)2 a«(!c), &(!c(!12 
= (!+(! + (!c+--(! +----

2 a(! a(!2 2 

= (! (~2 + c) + e' (~2 + c + ~) + (!V' . v 

+{e'v'.v+~e'2a: + (!v212} . (7.1.15) 

When (7.1.15) is integrated over a volume much greater than the scale 1 but less 
than the scale L, the linear terms drop out. 

It follows from the equations of motion that in an acoustic wave in the first 
approximation the perturbations of the velocity and of the density are related by 
the equation 

(!V'(w - k . v) = kp' . (7.1.16) 

In (7.1.15) the energy density in the acoustic wave is obviously represented 
by those terms in the curly brackets which are quadratic in the perturbations. 
Eliminating the density perturbation, we obtain 

Eac = (!W v,2. 
w-k·v 

(7.1.17) 

We now consider the flux vector of the total enthalpy: 

W=(!V (c+~+ ~) . 

By analogy with the procedure for extracting the density of acoustic energy from 
(7.1.15), for the enthalpy flux vector in the acoustic wave we obtain 

Wac = ( ~ v + v') (p' + (!V . v') + ... . 

Using (7.1.16), this expression for Wac can be readily transformed to 

Wac = (!V 12 V + . ( ka2 ) w 
w-k·v w-k·v 

(7.1.18) 

Omitting the analogous calculations, for the momentum density in the acous­
tic wave we obtain 

(7.1.19) 

Taking into account the fact that v' ~ kcp,cp, we can write (7.1.5) in the form 

! (w~v~2.v)+diV[(V+ w~~.v) (W~v~2.V)] 
+ (!(, + 1)(w _ k . v)v,2 av' = 0 (7 120) 

k~ a~ . . 
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Multiplying (7.1.20) by w, in accordance with (7.1.17,18), we obtain an 
equation for the acoustic energy; multiplying (7.1.20) by k, we obtain an equation 
for the momentum in the acoustic wave. Therefore (7.1.20) has the meaning of 
a kinetic equation for the acoustic "particles", where the last term describes the 
dissipation of the acoustic particles as a result of the effect of distortion of the 
acoustic waves. We note that for v = 0 the expressions (7.1.17,18) reduce to the 
well-known expressions for the corresponding quantities in a stationary gas. For 
one-dimensional motions and perturbations, when the vector k is parallel to v, 
we find from (7.1.2) that w - kv = =fak. Therefore the expressions (7.1.17,18) 
take the form 

Eac=e(v=fa)vt2/a, Wac=e<v=fa)2vt2/a. 

7.1.3 Distortion of Short Acoustic Waves 

We denote by D the Jacobian of the transformation from the variables xi (i = 
1,2,3,4) to the variables a,.,p, e, e: 

D= D(x,y,z,t) 
D(a,.,p, ~1, e) 

It is easy to show that 

d a (dxi) 
da InD = axi da 

by analogy with the interpretation of the divergence of the velocity as the rate 
of relative change of the volume. 

Away from caustics, we have D:f 0, and therefore (7.1.4) can be rewritten 
in the form 

&t.p 1 (a ) at.p e('Y + 1) 2 
2a.,paa + D aa D a.,p + a2 k (w-k·v)t.p,1/Jt.p,1/J1/J=O . (7.1.21) 

In (7.1.21) we make the substitution u == t.p,1/J.[J5 and take advantage of the fact 
that the function D is a slowly varying function of its arguments. Then (7.1.21) 
takes the form 

2.[J5au + (-y+ l)e k2(w _ k. v)u au = 0 . 
aa a2 a.,p 

(7.1.21') 

Instead of the parameter a on sound rays we introduce the parameter X given 
by 

d = (1' + l)ek2(w - k . v) da 
X 2a2.[J5 

(7.1.22) 

Equation (7.1.21') then takes the form 
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au au 
-+u-=o 
ax at/; , 

(7.1.23) 

whose general solution is 

u = f(t/; - ux) . (7.1.24) 

On the basis of (7.1.24), by means of a well-known analysis (see, for example, 
[7.10]), it can be shown that any sinusoidal profile of an acoustic wave for X = 0 
leads to the formation of a sawtooth profile as X increases. 

If u = Uo sin t/; for X = 0, then in the range 0 < X < 1 I Uo there is a smooth 
growth of the higher harmonics, and the Bessel-Fubini solution of (7.1.23) has 
the form [7.10] 

_ ~( l)n-12I ( )(sinnt/;) u - L..J - n nuox . 
n=l X 

At XUO = 1, breaks begin to form, and the profile takes a sawtooth shape. The 
process of formation of a sawtooth profile is completed at XUO = 7r 12, and the 
required solution for XUO > 7r 12 acquires a sawtooth profile: 

'""' 2uo . .1. 
U = - L..J ( 1) S10 no/ . 

n XUo-

Thus, the ampltitude u decreases in inverse proportion to X, and the energy of 
the acoustic wave is converted into heat with the passage of time. 

Let us consider the particular case in which the vector k is parallel to the 
velocity v and the unperturbed solution is planar (v = 0), cylindrical (v = 1), or 
spherical (v = 2) and, in addition, stationary, depending on the single coordinate 
r. 

Then from (7.1.21) we obtain 

a ( frVi) (-y + 1 )wz 
2ar CP,>I>Y-;;: =f(I=fM)3azJearvcp,>I>cp,>I>>I>=0, 

(7.1.25) 
dr ew 
-==f-
do: a 

Here M == via and t/; = ±t+ J dr/(a=fv). According to (7.1.22), the coordinate 
x, which characterizes the distortion of the profile, is related to the coordinate r 
as follows: 

(r+ l)wz J dr 
X = =f 2 Jerva aZ(1 =f M)3 . 

(7.1.25') 

Equation (7.1.25) leads, in particular, to the well-known results that in the 
case e = const and M = 0 the distortion of the profile for v = 2 increases with 
the distance as its logarithm, while for v = 1 the distortion of the profile grows 
as ..;r [7.9]. 
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7.1.4 Reflection of Acoustic Waves from Strong Breaks 

The conditions on direct discontinuities in the coordinate system in which the 
gas after the discontinuity is at rest have the form (see, for example, [7.15]) 

e(v-C)=-el C , P=Pl+(1-et/e)el C2 , 

a2 (v - c)2 2 2 
(')' _ 1) + 2 = at/(')' - 1) + C /2 . 

(7.1.26) 

Here the quantities before the discontinuity have no subscript, those after the 
discontinuity have the subscript 1, and C is the speed of the shock wave. In an 
acoustic wave incident on a shock wave from the region before the discontinu­
ity, the state 1 cannot be perturbed, since perturbations after the discontinuity 
propagate with speed less than the speed of the shock wave. Therefore for small 
perturbations (denoted by primes) in the acoustic wave we find from (7.1.26) 
that 

e'(v - c) + e(v' - c') = -elC' , 

, 2 '(1 /) e' er~ P = el CC -el e +-;;:- , (7.1.27) 

-')'- (p' - e'p) + (v' - c')(v - c) = CC' 
')'-1 e e2 

Hence, eliminating c' and using (7.1.26), for the unperturbed solution we have 

P' [ el] [el ] e' el - (-y + 1) - (-y - 1)- (')' + 1)- - (')' - 1) - 4')'-- = 0 , 
pee e e 

P' B - el CV' = 0 , 

B = 3 - ')'+ (')' + 1)et/e 
- 4 

(7.1.28) 

(7.1.29) 

(7.1.30) 

It follows from (7.1.16) that in the incident wave (denoted by the subscript 
"in") and reflected wave (subscript "out") the perturbations of the velocity and 
of the pressure are related by the equations 

p~ - eav~ = 0, P~ut + eav~ut = 0 . 

From (7.1.29), after simple manipulations, putting v' = vfn +v~ut and P' = p~ +P~ut' 
we obtain the elegant result 

V~ut oB - 1 2 _ la2 1 [ e ] 
= oB + 1 where 0 = - = - (')' + 1)- - (-y - 1) 

v~ er~ 2 el 
(7.1.31) 

Therefore the coefficient of reflection of acoustic waves from a shock wave is 
given by the expression 
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Wout (a - v)2V~t (D + 1 - {!/ {!d(DB - 1)2 
Win = (a + v)2vt; = (D - 1 + {!/ {!1)2(DB + 1)2 

Here Win is the flux of enthalpy in the incident wave, and Wout is the flux of 
enthalpy in the reflected wave. For strong shock waves, we have [7.16] 

{!1 (-y - 1) 
-= {! h + 1) , 

1 
B=-

2 ' 

Therefore the reflection coefficient in this case is 

Woot [D(-y - 1) - 2]2 (D - 2)2 

Win = [D(-y+1)+2]2 (D+2)2 ' 
• =..j 21 

-y-1 

A shock wave which has an acoustic wave incident on it in the subsonic region 
will radiate acoustic and entropy waves, as a consequence of (7.1.28). In the 
entropy wave, the perturbations are frozen in the fluid particles, and some of the 
energy of the incident acoustic wave is irreversibly expended on heating of the 
gas. 

We note that since the direction of the wave vector is reversed, the frequency 
in the reflected wave changes discontinuously: Wout = k( v - a); this can be treated 
as a Doppler effect, since Win = k(v + a). 

Suppose now that an acoustic wave is incident on a shock wave at an angle 
B, i. e., that the vector k is directed at an angle B with respect to the normal 
to the shock wave. We shall perform a calculation of the local quantities - the 
angle of reflection Bout of the acoustic wave and the reflection coefficient - in a 
coordinate system in which, at the point M of incidence of the acoustic wave on 
the shock wave, the velocity of the unperturbed flux is directed along the local 
normal to the shock wave (taken as the x axis). After the shock wave the gas 
is at rest We take the y axis to be directed along the projection of the vector 
k onto the plane tangential to the shock wave at the point M. Then instead of 
(7.1.29) we obtain, in a similar way, 

p' B - {!1 cv~ = 0, v~ = 0 . (7.1.32) 

We represent the perturbations of the velocity and of the pressure on the shock 
wave in the form of sums of perturbations in the incident and reflected acoustic 
waves (the perturbation of the density also includes an entropy perturbation): 
p' = P!m + P~ut' v' = vk + V~ut. Using (7.1.16) and the dispersion equation (7.1.2), 
for the incident and reflected waves, respectively, we have 

I I 
Pin - {!avxin = 0 

cos(}-m ' 

I I 
Pout - {!av x out = 0 • 

cos Bout 
(7.1.33) 

Here Bout is the angle which the vector kout makes with the normal to the surface 
of the shock wave. 

We introduce the notation Bl == 11' - Bout. so that the angle Bl varies in the 
range from 0 to 11'/2. Using (7.1.33), we can then write (7.1.32) in the form 
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[ Vi V] 6B --0 - ~O - (Vi + vo) = 0 , 
COS COS 1 

Vi tan 0 = Vo tan Oi , 
(7.1.34) 

Vi == V~in' Vo == V~O\1t 

From the homogeneous equations (7.1.34) we obtain an equation which re­
lates the angle of incidence 0 to the angle 01: 

6B(sin 01 - sin 0) - sin(O + (1) = 0 

Solving (7.1.35) for OJ, we obtain 

01 = (6B + l)tan(O/2) 
tan 2 6B -1 . 

(7.1.35) 

(7.1.36) 

We define the critical angle of incidence Ocr as the angle at which the angle of 
reflection is 01 = 7r /2. At supercritical angles of incidence 0 > Ocr there is no 
reflection, since in this case, according to (7.1.36), the angle 01 becomes greater 
than the direct angle 7r/2. For tan(Ocr/2) we obtain from (7.1.36) the equation 

(6B + l)tan(Ocr/2) = 6B - 1 . (7.1.37) 

The expression (7.1.37) makes sense only for 6B - 1 > 0 or for 62 B2 - 1 > o. 
According to the definition of Band 6 by means of (7.1.30,31), we have 

62 B2 _ 1 = ~ (f!.)2 (.R. _ 1)2 [(3 - ,)2.R. - (-(_ 1)] . 
32 (! (!1 (!1 

Therefore the expression for tan( Ocr /2) makes sense only for (! / (!1 > (,2 - 1 )(3 -
,)-2. On the other hand, the degree of compression (!/ (!1 in shock waves cannot 
exceed the value h + 1)/h - 1) [7.15]. Therefore reflection of acoustic waves 
from a shock wave is possible only for , < 2, which is a consequence of the 
inequality 

,+1 ,2-1 
-->~-= , - 1 (3 - ,)2 

For , < 5/3, reflection of acoustic waves is possible for any intensity of the 
shock wave. 

For 5/3 < , < 2, reflection of acoustic waves is possible only in the interval 

,+1 (! ,2-1 
-->-> . 
, - 1 (!1 (3 - ,)2 

We define the reflection coefficient for an oblique acoustic wave as the ratio 
of the moduli of the incident and reflected fluxes of enthalpy. It follows from 
(7.1.34) that 
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IVkl _ 8B - COS 01 
IV~utl - 8B + COS 0 

According to (7.1.18), for the incident and reflected fluxes of enthalpy in an 
acoustic wave we have the expressions 

a+vcosO , 2 I Win I = (}'/ a2 + 2av cos 0 + V2 (Vin) , 
a 

..; a - V COS 01 2 I Woutl = e a2 + 2av COS 01 + v2 (V~ut) 
a 

Therefore the reflection coefficient in this case has the fonn 

I Wout 1= (8B - cos 01 )2 (8 -(e/ el - I)COS01 ) 

Win 8B+cosO 8+(e/el -1)cosO 

82 - 28(e/ el - 1) cos 01 + (e/ el - 1)2 
X 

fJ2 + 28(e/ el - 1) cos 0 + (e/ el - 1)2 

The reflection coefficient attains its largest value for strong shock waves, but this 
is a small value which tends to zero as 'Y ~ 2. This implies almost complete 
"absorption" of the incident acoustic wave, i. e., almost complete transfonnation 
of it after the reflection into an entropy wave. For example, for 'Y = 1.4 and 0 = 0 
the reflection coefficient (for a maximum degree of compression e/ el = 6) is 
0.0018. 

7.2 The Form of the Magnetosphere in a Nonuniform Plasma 

7.2.1 The Form of the Static Magnetosphere in a Nonuniform Plasma 

Neutron stars, owing to their high density of matter, have small dimensions (their 
radii are of the order of 10 km). In the process of evolution of a star, its magnetic 
field is frozen in the matter in a first approximation, so that the magnetic flux is 
conserved. Simple estimates show that if a star with the characteristic parameters 
of the Sum is compressed to the dimensions of a neutron star, the magnetic field 
strength on its surface rises to enonnous values of the order of 1012 G. 

The atmospheric plasma surrounding the neutron star then is casted by its 
magnetic field to distances of the order of 100-200 km from the star. The surface 
on which the pressure in the plasma is balanced by the pressure of the magnetic 
field is called the magnetosphere. On the magnetosphere, there are flows of 
surface electric currents, which screen the magnetic field of the neutron star. From 
the continuity of the nonnal component of the magnetic field, which is absent 
outside the magnetosphere, it follows that the latter must consist of magnetic 
lines of force. As the neutron star is approached, the magnetic field tends to 
the field of a magnetic dipole, since the characteristic dimension in the problem 
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is the size of the magnetosphere, which is much greater than the radius of the 
neutron star. 

The determination of the surface of the magnetosphere in the three-dimensional 
case is a cumbersome problem of mathematical physics. In the static case (with­
out allowance for the rotation of the star) it was solved approximately in [7.17] 
for a uniform plasma, and in [7.18] for a nonuniform plasma with a pressure 
which falls off according to the law p ~ r-5/2. 

The two-dimensional case is attractive, above all, in that it is then possible 
to obtain a solution of the problem in closed form. Certain qualitative features 
of two-dimensional solutions make it possible to get some idea of the character 
of the solution in the three-dimensional case. For p = const the two-dimensional 
problem was solved in [7.19]. and for p ~ r -2 in [7.20]3. 

Below, we give an exact solution for the case of an atmosphere with an arbi­
trary power-law distribution of pressure p = Por- I , where Po and [ are arbitrary 
constants. For the special values [ = 0 and [ = 2, our solution is identical to the 
solutions known from [7.19, 22]. We note that the form of the magnetosphere 
cannot be stable for 1 > 4. In this case, for a small perturbation of the magne­
tosphere the forces of the magnetic pressure and of the pressure in the plasma 
take the elements of the surface of the magnetosphere away from the position of 
equilibrium. In the three-dimensional case, the surface of the magnetosphere is 
not stable if the pressure in the plasma falls off according to the law r- I with 
[> 6. 

In the planar case, it follows from the equation div H = 0 (where H is 
the magnetic field intensity) that there exists a function '!/J such that H x = '!/J,y, 
Hy = -'!/J,x. The complex potential W of the magnetic field is r.p + i'!/J, where r.p 
is the potential of the magnetic field. The function W depends on the complex 
variable z = x + iy, with Izl = r. 

On the magnetosphere, the function '!/J must be constant, and we choose it 
so that '!/J = O. If we determine '!/J = Im{W} as a function of x and y, then the 
required surface of the magnetosphere is determined by the equation '!/J(x, y) = O. 
On the magnetosphere there are flows of surface currents, which screen the field 
from the point dipole situated at the point z = O. The pressure of the magnetic 
field for '!/J = 0 must be equal to por-I: 

(7.2.1) 

We introduce the new variable z = (o:z,,)-l, where 0: == [/2 - 1. For the 
variable Z, the boundary condition for '!/J = 0 can be rewritten in the form 

IdWI2 
dz = 87rpo . (7.2.2) 

3 The generalization of this problem of the case of a quadrupole magnetic moment instead of a 
magnetic dipole was given in [7.21]. 
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In the limit z - 0, the function W must tend to the complex potential of a point 
dipole: 

W ~ A/z = A(az)l/a . 

As a result, for the derivative dW / dz near z = 0 we have the limiting behavior 

dW/dz ~ A(az)l/a-l . 

Consequently, the functions W and dW/dz near z = 0 are related by the 
equation 

(7.2.3) 

We direct the x axis along the axis of the dipole. Then A a/{a-l) will be a real 
constant. To find the required dependence of W and dW/dz, we recall that a 
circulation-free flow around a cylinder of radius R in the plane of the complex 
variable ( is described by the complex potential 

where Voo is the speed at large ( (the solution with arbitrary circulation is dis­
cussed below). 

The role analogous to the coordinate ( is played in our case by the variable 

(dW/dz)I/(1-a) , 

and the role of Voo is played by the expression Aa/(a-l). 
In fact, according to (7.2.3), W at large ( behaves as voo(, and on the circle 

1(1 = R (corresponding to t/J = 0) (dW/dz)I/(I-a) must be equal in modulus to 
the quantity (811"po)I/2{I-a) in accordance with the boundary condition (7.2.2). 
Therefore the role of R2 in our case is played by the quantity (811"po)I/(I-a). 
Thus, the required relation between the functions W and dW / dz has the form 

W = Aa/(a-l)[(dW/dz)I/(I-a) + (811"11O)I/(1-a)(dW/dz)I/(a-l)] 

Solving this equation for dW/dz, we obtain 

dW/dz = 2-1WAa/(1-a) + v'4-1W2A2a/(I-a) - (811"110)1/(1-01) [ ] (1-~ 

In the W plane, we have a cut along the real axis, where t/J = O. 
It can be readily shown from (7.2.4) that 

811"11O.!.. (A)a = JdW [w _ 
A2a a z 2 

r---------., (I-a) 
W2 _ (811"110)1/(1-01) 
4 A2a 

(7.2.4) 

(7.2.5) 
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The cut in the W plane is transfonned by the confonnal mapping (7.2.5) into 
the surface of the magnetosphere. In order to obtain the equation of the surface 
of the magnetosphere in parametric fonn, in (7.2.5) we must take points W lying 
on the cut: 

W = W* = t.p = 2[871'po/A2a]I/[2(I-a)) cos 0 . 

The upper edge of the cut corresponds to variation of 0 from 0 to 71', and the 
lower edge corresponds to variation from 71' to 271'. 

Then from (7.2.5) it is easy to show that 

R/ z = e-i8 (1 + a exp(2iO)/(2 _ a))l/a , 

where 

Separating the real and imaginary parts in this equation, we obtain the equa­
tion of the surface of the magnetosphere in parametric fonn: 

x = R cos{ 0 - a-I arctg[a sin 20(2 - a + a cos 20)-1]} 
[1 + (a/(2 - a))2 + 2a/(2 - a) cos 20]1/(2a) , 

_ Rsin{ 0 - a-Iarctg[a sin 20(2 - a + a cos 2(n-l]} 
y - [1 + (a/(2 - a))2 + 2a/(2 - a) cos 20]1/(2a) , 

(7.2.6) 

These equations describe the shape of the surface of the magnetosphere as a 
varies from -1 to +1. For a = -1 and p = const, the expressions (7.2.6) give a 
known result. Letting a tend to zero, from (7.2.6) we obtain in the limit 

[A2 (cos 20) [ sin 20] x = y s;p;; exp - -2- cos 0 - -2-

M2 (COS 20) . [0 sin 20] y= --exp --- sm ---
871'po 2 2 

It follows from (7.2.6) that the magnetosphere has a symmetry with respect to 
replacement of x by -x and y by -yo In the neighborhood of the points 0 = 0 
and 0 = 71', the shape of the magnetosphere is described asymptotically by the 
equation of a semicubic parabola: 

_ (2 _ a)l/a 
R=R -2- . 

For 0 = 71'/2, we obtain on the magnetosphere a point with zero abscissa and 
ordinate YO = R(1 - a)-l/a. As the degree of nonunifonnity increases, i.e., as 
a increases, the magnetosphere deviates more and more from a circle: the ratio 
of the distances from the center to the cusp of the semicubic parabola on the x 
axis and to the point on the y axis tends to zero (Fig. 7.1). 
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(90 
(a) (b) 

00 
(c) (d) 

Fig. 7.ta-d. Evolution of the shape of the magne­
tosphere with increasing a, the degree of nonuni­
formity of the pressure distribution, with equal 
R: (a) a = -I (uniform case); (b) a = -1/2, (c) 
a=O; (d) a= 1/2 

Above, we studied a special class of solutions with symmetric surfaces of the 
magnetosphere. We shall now consider the general case. We introduce the variable 
z == J87rPo (azo )-I. Then the boundary condition (7.2.1) on the magnetosphere 
can be rewritten in the form 

IdWI2 = 1 dz . (7.2.7) 

Using the asymptotic behavior W ~ AI z for z --+ 0, in the neighborhood of this 
point we have, for the relation between W and dW I dz, the asymptotic expression 

= (dW)I/O-0) = (~)I/O-0) 
W ~ voce, e - dz ' Voc - J87rPo . (7.2.8) 

Let us consider the plane of the complex variable e. For e --+ 00, we have 
W ~ voce according to (7.2.8). For lei = 1, we have tP = const according to 
the boundary condition (7.2.7). A function W(e) which is harmonic outside the 
circle lei = 1 and satisfies these conditions, with allowance for the real constant 
voc, is given by 

(7.2.9) 

where r is an arbitrary real constant. 
Differentiating (7.2.9) with respect to e, we have 

dW dz = t"1-0 dz = (1 _ ..!.. + ir) 
dz de .. de Voc e2 e ' 

from which 

_ 0 ( a 1 air) 
az = e 1 - (a _ 2) e2 + (a - 1) e (7.2.10) 

Returning from the variable z to the variable z, from (7.2.10) we obtain 

J4J ( a 1 a Fi)I/0 
-; = e 1 - (2 _ a) e + (a - 1) e ' 

( 
~)1/(0-1) 

J4J= ~ . 
A 

(7.2.11) 
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Equations (7.2.9,11) give a parametric solution to the problem of the dis­
tribution of the magnetic field inside the magnetosphere and the configuration 
of the magnetic lines of force, since, according to (7.2.9,11), we have for the 
complex magnetic intensity 

dW Voo 2 ( a 1 a Fi)<cr+t)/cr 
dz = - & ~ 1 + (2 - a) e + a-I T 

= - v; ~ (1 + (2 : a);2 + (a ~ 1) z) . 
The equation of the magnetosphere itself can be readily obtained from (7.2.11) 

by putting ~ = exp( -in): 

( . )-t/cr z· al· a . - = et(J 1 + ret(J + e']j(J 

& (a - 1) (2 - a) 

From this it is easy to obtain a parametric form for the equation of the surface 
of the magnetosphere in polar coordinates z = r exp(icp): 

r = Ro [, + (2: a)' + 2 ~ a cos2IJ+ (0 :',)'1" + 2 ~ a rsin°r'/20 , 
(7.2.12) 

o 1 { [(2-a)rcosO+(a-l)sin20] } 
cp = - -;;arctg a [(2 _ a)(a _ 1) + a(a - 1) cos 20 - a(2 - a)r sin 0] . 

(7.2.13) 

For the conformal mapping of the ~ plane into the z plane to be one-to-one 
outside the circle I~I = 1, it is necessary (but not sufficient) that in the ~ plane 
for I~I > 1 there be no branch points, i.e., that the derivative dz/d~ not vanish 
for I~I > 1. From this it is easy to obtain a bound on the arbitrary constant r in 
the solution (7.2.9): IFI ~ 2. 

For a > 0 finite points of the plane with I~I > 1 cannot be mapped into the 
point at infinity in the z plane, in view of the compactness of the magnetosphere, 
and for a < 0 the point z = 0 cannot have several inverse images in the ~ plane. 
Therefore the expression 1 + air~-t /(a - 1) + a~-2 /(2 - a) cannot vanish for 
I~I > 1. This requirement also imposes a bound on r: 

IFI < 2(1 - a)2/[ial(2 - a)] . (7.2.14) 

We now calculate the derivative dcp/dO of the function cp(O) defined by 
(7.2.13): 

dcp 4 ( r )4cr 1 - a (. 0 )(. 0 ) dO = & 2 _ a sm + at sm - a2 , 

ra(2 - a) r 
at = 2(1 _ a)2 ' a2 ="2 . 
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Owing to the bounds on r, the quantity cp as a function of 6 in the interval 
161 < 7r has four extrema for Irl < 2 and three extrema for IFI = 2. In what 
follows, we shall assume that r > 0 (the case r < 0 is reduced to the case 
r > 0 by the transformation 6 -+ 6 + 7r). 

Consider the value of the function cp at the extreme points 61 and 62, where 
sin61,2 = -ai, 1611 < 7r. According to (7.2.13), the value of cp at the point 
6 = 61 is (a - 1)6t/a, and cp(62) is equal to 7r - (a - 1)6t/a for a < 0 and 
-7r - (a - 1)61/ a for a > O. The change of the function between these extreme 
points is Icp(61) - cp(62)1 = 7r + 261 (a - 1)/ a. IT the curve r = r(cp) is to have no 
self-intersections, taking into account the fact that r(61) = r({}z), it is necessary 
that Icp(61) - cp(62) I be less than 27r. Hence we find that 1611 < 7ra/(2a - 2)1, 
and therefore 

. ( 7ra ) 2(a - 1)2 
r < - sm 2a _ 2 a(2 - a) . (7.2.15) 

This inequality holds for -1 :5 a :5 1/2 (for example, r < 4V2/3 for 
a = -1, r < 7r/2 for a = 0, and r < 2/3 for a = 1/2). We note that for 
1/2 < a < 1 the change of the function cp between the extreme values cp(61) and 
cp(62) is always less than 27r, and therefore the constant r must satisfy only the 
inequality (7.2.14) (the inequality r < 2 is satisfied automatically in this case). 

We now consider the extrema of the function cp(6), at which sin 63,4 = r /2. 
At these same values of 6, there are extrema of the function r(6). Indeed, from 
(7.2.12) it follows that 

dr _ 4 cos 6 (. 6 r) ( /0_)2<>+1 0_ - - -- sm - - r.tl{) .tl{). 
d62-a 2 

The extrema of r( 6) and cp( 6) for sin 6 = r /2 in the case r < 2 correspond 
to cusps on the magnetosphere [near cusps, the curve r = r(cp) has the asymptotic 
behavior of a semicubic parabola]. Thus, for a :5 1/2 the unit circle in the e 
plane is mapped in a one-to-one manner into a curve without self-intersections 
in the z plane for r satisfying the inequality (7.2.15), while for 1/2 < a < 1 
there is a one-to-one mapping for r satisfying the inequality (7.2.14)4. It follows 
from the one-to-one character of the conformal mapping on the boundaries of the 
region and from the absence of branch points inside the region that the conformal 
mapping z(e) is single-sheeted everywhere inside the magnetosphere. In Fig. 7.2 
we show the evolution of the shape of the magnetosphere for a = -1 with 
increasing r up to the critical value 4V2/3. 

We now calculate the principal vector F of the forces acting on the mag­
netosphere. We form the complex number Fz - iFy, where Fz and Fy are the 

4 In a multisheeted solution for a supercritical value of the parameter r. there is trapping of the 
plasma inside the magnetosphere, which evidently corresponds to the formation of a plasma droplet 
with simultaneous restructuring of the magnetosphere. The subsequent severance of the droplet and 
its fall onto the neutron star should lead to a burst of radiation from such a star. 
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(a) (b) (c) 

Fig.7.2a-e. Evolution of the shape of the surface of the magnetosphere as the parameter r varies 
in the case ex = -1: (a) r = 0; (b) r = v2; (c) r = 4v2/3 

components of the vector F. According to the Blasius-Chaplygin formula (see, 
for example, [7.23]), we have 

In order to calculate the integral on the right-hand side of this equation, we 
deform the contour C2 into an infinitely remote contour c in the e plane. Then 
this integral can be calculated by means of the residue theorem if we expand the 
derivative del dz in the e plane in the neighborhood of the point at infinity in a 
Laurent series, retaining in this series the terms up to the third order inclusive. 
This gives 

F -·F = iv~(a+ 1) (~_ r\a _1)2) 
x 1 y 4~ 2 _ a 3 

It is clear from symmetry arguments that the moment of the forces acting on 
the magnetosphere is equal to zero. 

From the expression just obtained, we find the natural result that in the 
uniform case (a = -1) the principal force vector is equal to zero. 

7.2.2 Shape of the Magnetosphere of a Star Rotating 
in the Supersonic Regime 

Let us consider the situation in which a gas falls onto a star rotating around 
some axis, in a uniform manner from all directions with supersonic velocity. 
The pressure in the gas can be neglected in this case [7.16]. We shall consider 
the gas as an aggregate of dust particles which, after colliding elastically on the 
magnetosphere, recede from it with velocities sufficient to overcome the attraction 
of the star. In [7.8] this model was called the propeller model. Under the action 
of the collisions of the dust particles, the magnetosphere acquires some unknown 
shape. Let v~ be the normal component of the velocity (n is the outward normal 
to the magnetosphere) of a particle with respect to the magnetosphere. Then along 
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the nonnal there is a force per unit area of the magnetosphere equal to 2e(v~)2, 
where e is the density of the gas falling on the surface of the magnetosphere. 

The calculation of v~ presents no difficulty. In a coordinate system rotating 
together with the magnetosphere, its fonn does not depend on the time. In a 
stationary spherical coordinate system, the equation of the surface of the magne­
tosphere has the fonn r = R(O, cp - {U), where n is the angular speed of rotation 
and the z axis is coincident with the axis of rotation. The speed of motion of 
this surface along the nonnal is 

oR Dn = n"'{ ocp , where 

7 = [1 + (81n.!)' +sin-' 0 (81n ~ )T" 
In spherically symmetric accretion, only the radial component of the velocity -Vo 
is nonzero. Its projection onto the nonnal to the magnetosphere is Vn = -VO"'{. 

Thus, for the velocity of the gas with respect to the magnetosphere we have 
the expression 

v~=vn-Dn=-(n~:+vo)"'{ . 
The component of the magnetic field intensity nonnal to the magnetosphere 

vanishes on the magnetosphere. Let ~ be the potential of the magnetic field. 
Then for the harmonic function ~ we have the following conditions on the 
magnetosphere: 

( oR )2 1Y"~12 = 811"e n ocp + Vo l, (7.2.16) 

_ o~ + o~ oR ~ + o~ oR 1 = 0 
or 00 00 R2 ocp ocp R2 sin2 0 

(7.2.17) 

Near the neutron star, the magnetic field tends to the field of a dipole: 

~ -+ (A· Y")(1/r) for r -+ 0 , (7.2.18) 

where A is the magnetic moment of the neutron star. 
In the three-dimensional case, the boundary-value problem (7.2.16-18) has 

not yet been studied In what follows, we present our solution for the two­
dimensional case, obtained in explicit fonn. In the two-dimensional case, the 
boundary conditions (7.2.16-18) can be rewritten for the complex potential W = 
~ + i!li in the fonn 

1 
dW 12 (OR)2 [ ( R )2]-1 dz = 811"e n ocp + Vo 1 + dIn ocp , (7.2.19) 
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IJt = 0 for r = R(c.p - Ot) , (7.2.20) 

A 
W --+ - for z --+ 0; Z = x +iy = rexp(ic.p) 

z 
(7.2.21) 

From the boundary condition (7.2.19), for the increment of the potential along 
a magnetic line of force we obtain 

d~ = ±-/87r{! (OR dR + voRdc.p) . (7.2.22) 

For the magnetic pressure to balance the pressure on the magnetosphere, v~ 
must be negative everywhere on the magnetosphere; otherwise, the gas would 
break: away from the surface, and it would be impossible to satisfy the boundary 
condition (7.2.19). Consequently, the right-hand side of (7.2.22) does not change 
sign. In what follows, we shall choose the upper sign and impose on the solution 
the additional condition of positivity of the right-hand side of (7.2.22). 

In the two-dimensional case, Vo is the speed of axially symmetric flow toward 
the symmetry axis. The density (! and the speed Vo depend on the radius r. 

The conditions (7.2.20,21) are identical to the conditions for plane-parallel 
flow of an incompressible fluid around a cylindrical body in the 1 I z plane. 
Therefore the solution for W must have the form 

W=D*(+DCl +2rln( . (7.2.23) 

Here (-l(z-l) is a function which gives a one-to-one conformal mapping of the 
exterior of the streamline body onto the exterior of the unit circle, in which the 
dependence of ( on z near z = 0 must be linear: 

(~DzIA . (7.2.24) 

Consider the function F( () == id(ln z) I d(ln (), which is analytic inside the 
unit circle 1(1 :::; 1. Then the condition (7.2.22) can be written as a linear relation 
between the real and imaginary parts of the functions F( () on the contour I (I = 1: 

a ReF + bImF = c (7.2.25) 

a = -/87r{!OR2 , b = vs;evoR, c = i(D*( - DCl +ir) . (7.2.26) 

The condition (7.2.25) for the required function F( () could be interpreted 
as a Hilbert boundary-value problem if the coefficients a and bin (7.2.25) were 
given together with c = c«() as functions of () = -itn ( for 1(1 = 1. From the 
condition W ~ AI z for z --+ 0, we have F(O) = i. 

As is well known, the solution of the Hilbert problem (7.2.25) (in the case in 
which it is uniquely solvable with the condition F(O) = i) has the form [7.24,25] 

F(O = _1 c.p«() (( J 2c(r) dr _ 27r) 
27ri rc.p(r)(a(r) - ib(r»(r - () c.p(0) 

ITI=l 

(7.2.27) 
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where 

1 J InG(r) 
c,o(O == exp -2 . --,.- dr , 

11"1 r - .. 
ITI=1 

G( ) = a(r) + ib(r) 
r - a(r) _ ib(r) . 

However, according to (7.2.26), a and b are given as functions of R. and not 
as functions of 0 = - i In ( for I( I = 1. This makes it difficult to obtain solutions 
with the functions a(R) and b(R) specified arbitrarily. 

Particular exact solutions can be constructed as follows. We shall specify 
a and b as real functions of O. Using (7.2.27), we detennine z = z(O. The 
magnetosphere corresponds to the circle 1(1 = 1. Therefore from z = z(O we 
obtain the expression R = R(O). Using this expression to eliminate the parameter 
o from the originally specified a(O) and b(O), we obtain a(R) and b(R). 

Suppose, for example, that 

a(O) = ao (a + ~ +2COSO) cos!, , 

b(O) = ao (a+ ~ +2COSO) sin!, . 

(7.2.28) 

Here ao, a, and !' are positive constants, with 0 < a < 1 and 0 < !' < 2-111". 

Then 

G(O = exp(2i!,), c,o(O = c,o(O) = exp(2i!') 

From (7.2.27) we now obtain 

F(O=i-.fJ (D*r-D/r+ir)dr 
11" (r + a)(r + I/a)(r - 0 

= i [1 _ ~ exp(i!') D* - Da2 - ira] 
ao «( + I/a) (1 - ( 2) 

From (7.2.28), using (7.2.24), we have 

(7.2.29) 

(7.2.30) 

Let us consider the case of a real constant m, which, as is shown below, 
corresponds to a power dependence of a and b on R. Then from (7.2.30) we find 
for ( = exp(iO) that 

R= Izl = 1~1(1 +a2 +2acoso)m/2 , 

from which 
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IRDI2
/

m 
1 + (i + 20: cos 0 = A . 

Eliminating 0 by means of this relation, from (7.2.28) we have 

IRDI2
/

m 
a(R) = ao cos, A ' IRDI2

/
m 

b(R) = ao sin, A . 

It follows from these relations that the constants 0: and m cannot be equal 
to zero. For m = 2 the equation of continuity {!voR = const is satisfied, since 
in this case (! rv 1/ R2 and vo rv R. As a consequence of (7.2.30), the shape of 
the magnetosphere is determined with accuracy up to a similarity transformation, 
corresponding to the arbitrariness in the choice of the modulus of the constant 
D. If the circulation of r is equal to zero, the argument of D is determined 
uniquely by the requirement that m be real. 

In parametric form, the shape of the magnetosphere is determined by the 
equations 

R= 1~1(1+0:2+20:coSo)m/2 , (7.2.31) 

( 0: SinO) A 
r.p - nt = 0 + m arctan 0: cos 0 + 1 + arg D (7.2.32) 

The relation (7.2.31) follows from (7.2.30) with 1(1 = 1 and arg ( = O. 
A sufficient condition for the curves (7.2.31) in the plane to have no self­

intersections is that the derivative dr.p / dO be greater than zero. Then from (7.2.32) 
we have the inequality 

1 + 0:2(1 + m) + 0:(2 + m) cos 0 2: 0 , (7.2.33) 

which must hold for all O. From (7.2.33) we obtain a bound on the arbitrary 
constant 0: which enters into the solution (7.2.30): 

1 
0: ~ 1m + 11 . (7.2.34) 

We recall that 0 < 0: < 1. Therefore the bound (7.2.34) is significant only for 
m > 0 and m ~ -2. Self-intersections of the curves for 0: > 1/lm+ 11 evidently 
correspond to drops of the magnetized plasma which become detached from the 
magnetosphere and then fall onto the pulsar. 

A limiting case for the solution (7.2.30) is the case in which ao ~ 0 and 
0: ~ 0, with the existence of a nonzero limit of ao/o:. In this case, proceeding 
to the limit in (7.2.30), we have 

A 
z = D ( exp(pO 
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~oo 
(a) (b) (c) 

(d) (e) Fig. 7.3 

This solution corresponds to functions a(R) and b(R) which degenerate into 
constants. Then the shape of the magnetosphere is given parametrically as fol­
lows: 

A 
R = D exp(p,cos 0) , 

cp - ilt = 0 + p, sin 0 + arg (~ ) 
This family of curves with the arbitrary parameter p, will have no self-intersection 
only for 0 < p, < 1. 

We note that each curve belonging to the family (7.2.31,32) will be a circle 
for all admissible a if m = -1. 

The equations of these circles are as follows: 

It follows from (7.2.31,32) that the real constants m and aoJDJm/2/a and the 
complex constant A are physically specified. Thus, there remains an arbitrariness 
associated with the constants r and a. In Fig. 7.3 we show the characteristic 
evolution of the shape of the magnetosphere for m = 2 when the parameter 
a evolves from 0 to 1. The curves with no self-intersections for a ~ 1/3 are 
physically meaningful. 

We now calculate the force and the torque of the magnetic field acting on 
the magnetosphere. They can be determined by means of expressions of the 
Blasius-Chaplygin type (see, for example, [7.23]): 
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where C is the contour of the magnetosphere in the complex z plane, and F* is 
the complex-conjugate force F* = Fx - iFy • Conform ally mapping the interior 
of the magnetosphere into the interior of the circle 1(1 < 1 by means of (7.2.30), 
we have 

8rr F* = i J ~: (d; Y d( , J d( (dW)2 
8rr M = Re z dz d( d(. 

1<:1=1 

Hence we have 

F* = iFlD21 _ maD (r2 + 21D2i) 
2A 2A 

_ (m - 4)(m + 1)a2 . D2 r _ m(m + 1)(2m + 1)a3 D3 
8A 1 3A ' 

(7.2.35) 

2M = Re [maDr + iD2 m(m ; 1)a2] (7.2.36) 

As the accreting matter is discarded, an amount of work M w per unit time 
is done. It follows from (7.2.36) that this work is equal to zero (in the absence 
of circulation, r = 0) only if m = -1, i. e., if the magnetosphere has the shape 
of a circle (the cases with m = 0 and a = 0 are degenerate). Besides the torque, 
according to (7.2.35) the magnetic dipole will be acted upon by a force which is 
constant in the rotating coordinate system. For a(R) = const and b(R) = const, 
we must proceed to the limit limm-<CXl ma = f-l in (7.2.35,36). We then obtain 

ir D2 liD 1/2 1/3 D3 
F* = -- - _r-(r2+2ID2i) _ _ r iD2r _ _ r_ 

2A 2A 8A 3A' 

[ * D2] 2M=Re f-lDr+iT 

7.3 Generation of Acoustic Waves 
by the Rotating Magnetosphere in the Stellar WindS 

For slow rotations of a neutron star, the main contribution to the radiation of 
acoustic perturbations comes from the rotation of the magnetosphere as a solid 
body; if the boundary conditions are formulated with allowance for the deforma­
tion of the surface of the magnetosphere due to the rotation, there is a relative 
correction to the shape of the magnetosphere of the order of the square of the 
Mach number, (ilR/a)2, where il is the angular speed, R is the radius of the 

5 The author expresses gratitude to R. A. Sunyaev for his part in the fonnulation of the problems of 
this section and for discussion of the results. 
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magnetosphere, and a is the speed of sound. Slowness of the rotation implies 
that the Mach number flR/a is small. In order to calculate the generation of 
sound by the rotating ellipsoid which approximately replaces the magnetosphere, 
we must know the speed of motion of the surface along the normal to it. 

Suppose that in the principal axes the equation of the ellipsoid has the form 

x5 + y~ + z~/(1 - e2) = R2 . 

The moving system of coordinates Xo, YO, Zo rotates together with the ellipsoid. 
The angle a is the angle between the minor axis of the ellipsoid (taken as the 
zo axis and the corresponding axis of the magnetic dipole) and the vector {} 
of the angular velocity of rotation of the neutron star (taken as the z axis of 
the stationary system of coordinates x, y, z). Let the relation between the two 
Cartesian systems of coordinates Xo, yo, zo and x, y, z be given by 

from which it follows that 

Zo = sin a[x cos flt - y sin flt] + z cos a 

Apart from terms of order e4 , the equation of the ellipsoid can be written in the 
form 

X5 + y~ + x5 + e2 z~ = R2 . 

Using the fact that x5 + y~ + z6 = x2 + y2 + z2, in the stationary coordinate system 
we have 

f( ) - 2 2 2 2 2 R2 0 x,y,z,t =x +y +z +e Zo - = . 

By definition, the speed of motion of the surface along the normal to it is 

Dn = -Igradfl-taf fat ~ -e2zoazo/atR-t 

= e2 fl R sin a sin( if' + flt) sin 9[sin a sin 9 cos( if' + flt) + cos a cos 9] 

Here R, 9, if' are the coordinates in the spherical system associated with the 
stationary Cartesian system of coordinates x, y, z with center at its origin. The 
boundary condition that the gas does not flow across the magnetosphere obviously 
has the form 

V~ = Vn - Dn = 0 , (7.3.1) 

where Vn is the component of the velocity v normal to the surface of the ellipsoid. 
We note that the expression for Dn is a linear combination of two independent 
quadrupole spherical harmonics. 
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In Sects. 7.3.1 and 7.3.5 we calculate the total flux of acoustic energy gen­
erated by a slowly rotating ellipsoid in various models of the atmosphere sur­
rounding the magnetosphere: in an isothermal atmosphere (Sect.7.3.1) and in 
an adiabatic atmosphere with allowance for viscosity of the gas (Sect. 7.3.5). In 
Sect. 7.3.2 we calculate the power of the acoustic energy carried away by short 
waves. In Sect. 7.3.3 we study the question of the distances from the magneto­
sphere at which inversion of the acoustic waves occurs as a result of nonlinear 
effects, and in Sect. 7.3.4 we carry out a qualitative analysis of the consequences 
of the heating of the plasma by the acoustic waves. In Sect. 7.3.6 we give a quali­
tative description of the generation of acoustic perturbations in the case of super­
sonic rotation of the magnetosphere. In Sect. 7.3.7 we consider a model problem 
of stationary accretion of gas in the presence of energy release. In Sect. 7.3.8 
we show that, for the hydrodynamical mechanisms of retardation considered in 
Sects.7.3.l-6, nonsymmetric pulsars have a stable long-period variation of the 
angular velocity of rotation. 

7.3.1 Acoustic Waves in an Isothermal Atmosphere 

In equilibrium of an unperturbed isothermal atmosphere filled with an ideal gas, 
we must have fulfillment of the condition p = a2 {!, a2 = const, and of the 
eqUilibrium condition 

~~ + ~~ = 0, and hence {! = (!O exp (~~) ; 

here M is the mass of the star (we neglect the gravitation of the gas). The 
perturbations of the pressure p' and of the density {!' are related at constant 
temperature by the equation p' = a2 {!' . 

From the Cauchy-Lagrange integral for potential perturbations, we have 

a~ 2 {!' 
at+a(i=O' (7.3.2) 

Here ~ is the potential of the perturbed velocity, and we neglect the term v2 /2 as 
a small quantity of the second order. From the equation of continuity it follows 
that 

~ {!' _ G M a~ + Ll~ = 0 
at (! a2r2 ar 

(7.3.3) 

Using (7.3.2), from (7.3.3) we have 

1 ~ ra a~ 
- a2 at2~ - r2 ar + Ll~ = 0, ra == GM/a2 . (7.3.4) 

We shall expand the function ~ in spherical harmonics and seek a solution of 
the form ~ = exp(UU)P,m(cos (J)eim"'~(r). Then from (7.3.4) we obtain 
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(7.3.5) 

Owing to the boundary condition of impenetrability (7.3.1), the acoustic emis­
sion has a quadrupole character, i. e., 1 = 2, and the boundary condition (7.3.1) 
contains two linearly independent angular harmonics: 1 = 2 with m = 1,2. 

We shall assume that the radius R of the magnetosphere is less than r a: 
R < r a. The condition of slowness of the rotation can be written as flr a / a :::; 1. 
Then the region outside the magnetosphere can be divided into a near zone 
[where in (7.3.5) the term fl2~ / a2 is small] and a wave zone. In the wave zone, 
for the power of the emitted energy we have (see Sect. 7.1.2) 

(7.3.5') 

where s is a sphere in the wave zone. The solution of (7.3.5) for 1 = 2 in the 
near zone has the form 

~ = AI(1 - 6x + 12x2) 

+ A2[ -1 + 6x - 12x2 + e- l / z (1 + 6x + 12x2)] , (7.3.6) 

where Al and A2 are arbitrary constants, and x == r/ra. 
For r ~ ra , in the wave zone we can neglect the second term in (7.3.5). 

Then the solution of (7.3.5), valid throughout the wave zone, takes the form 

~ = ~~ei!1r/a (1 - 3i ;r -3 (;:)2) . (7.3.7) 

Here B is an arbitrary constant. 
The second linearly independent solution is omitted in (7.3.7) because of 

the condition that there are no incident waves. In the case of a homogeneous 
atmosphere, ~ has the form (7.3.7) for all r > R. 

Combining (7.3.6,7), for ra ~ r ~ a/fl we obtain 

A2 . 32400 
- = l-:-=----:~ 
Al (flra/a)5' 

and hence IA21 ~ IAII. Therefore in the near zone we neglect the term containing 
the factor AI, and put 

(7.3.8) 

We adopt the notation 

f(x) = 20[-24x + 6 + e-I / Z (18 + 24x + 6/x + l/x2)] , (7.3.9) 

where f(x) is the derivative with respect to x of the part of the expression (7.3.6) 
containing the factor A2. 

From the boundary condition (7.3.1), we have 
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~~ I '" e2 Ril sin a . 
r=R 

Using (7.3.6), we find the constant A2: 

A2!(xm ) 2nR' 
20ra '" e J& sma, 

and hence 

A 20raRile2 sina 
2'" f(x m ) 

R 
x m =­

ra 

It is easy to calculate the flux of energy W in the wave zone: W = 47reaB2 lIS. 
The final expression for the flux of acoustic energy generated in the presence of 
rotation of the magnetosphere can be represented, using (7.3.8), in the form 

W = (47re4 RtO il8 sin2 a) 1 
1215 as x~.f(xm) . 

The expression in the brackets is equal to the emitted flux of acoustic energy 
in the case p = const. The factor [x~P(Xm)]-t is the ratio of the power of the 
acoustic energy generated in the presence of weak rotation of the magnetosphere 
in an isothermal atmosphere to the power of acoustic emission in a homogeneous 
(p = const) atmosphere for identical speeds of sound and identical densities for 
r -t 00. For Xm -t 00, the factor tends to unity, which is perfectly natural, 
since the density of an isothermal atmosphere tends exponentially fast to a con­
stant value. For x m -t 0, this factor attains large values, and this fact indicates 
that sound is generated more effectively in an isothermal atmosphere than in a 
homogeneous one. 

In fact, according to the definition (7.3.9), with increasing x the function f(x) 
falls off monotonically: f(O) = 120, f(0.25) = 23.7, and f(x) -t 0 as x-4 when 
x -t 00, and, for example, for Xm = 0.25 the power of acoustic emission in a 
homogeneous atmosphere is less than in an isothermal one by a factor 117, i. e., 

[x~P(xm)]-t ~ 117 . 

7.3.2 Generation of Short Waves 

We assume now that the angular velocity of rotation of the star satisfies the 
inequality il RI a > 1. To ensure that the component of the velocity of its motion 
normal to the surface of the magnetosphere does not exceed the speed of sound, 
the following inequality must hold: 

e2ilRsina < a . 

In this case, the pulsations of the surface of the magnetosphere give a con­
tribution to the acoustic emission of the same order as the contribution from the 



300 7. Acoustic Phenomena in Strong Gravitational and Magnetic Fields 

rotation of the magnetosphere as a solid body. An exact calculation in this case 
is extremely complicated. The order of magnitude of the power of the acoustic 
emission can be estimated by assuming that the boundary of the magnetosphere 
is rigid. 

For short waves, the wave zone begins at once from the magnetosphere, and 
therefore we obtain the following expression for the emitted power of acoustic 
energy: 

W = ~; a{!e4 It rP sin2 0:' • 

It is of interest to note that in the case of an isothermal atmosphere the emitted 
power of acoustic energy according to this expression (for fixed 0:', D, a, and eex,) 
attains a minimum when the radius of the magnetosphere is one quarter of the 
radius ra. Indeed, the expression It exp(ra/ R) has a minimum at R = ra/4[W '" 
It exp( r a / R) if we take into account the fact that e = eoo exp(r a / R)]. 

7.3.3 Inversion of Acoustic Waves 

In the wave zone, each element of an acoustic wave moves approximately as 
a plane wave in the radial direction with phase velocity a + v, where v is the 
unperturbed radial velocity of the gas (v < 0 in the case of accretion). The 
motion of each element of the wave front is described by the equation of the 
characteristic, 'IjJ == t - J dr(a + v)-l = const. 

The characteristic scale over which inversion of the wave takes place can be 
found by determining the point of intersection of the characteristics corresponding 
to the crest and the valley of the wave. We make use of the fact that up to the 
instant of inversion the flux of acoustic energy of the spherical waves is constant 
(see Sect. 7.1): 

W = 471"(1 + M)2 ear2v'2 . 

Here v'is the amplitude of a spherical wave propagating through an arbitrary 
spherically symmetric background, for which M is the Mach number, M == 
Iv/al· 

If at r = ro the amplitude of the perturbation was Va' then from the condition 
of constancy of W we have 

I (1 + Mo)roy'{jii(iO I 
v = Vo 

(1 + M)rvea . 

In the acoustic wave, from the equation of motion we obtain, in the first approx­
imation, 

2a' v ' = 
(,-I) 

Then the equation of motion of the crest can be written 
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J
r dr Jr dr Jr drJaW 

t- =t- --+b =to 
a+v+a'+v' a+v r(a+v)3~ , 

~ ~ ~ 

where 

JW == J4;vbroJeoao (1 + Mo) , b = h+ 1) 
(4y'1i) 
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(7.3.10) 

The equation of motion of the valley can be written by analogy, using the 
fact that it is emitted half a period earlier: 

J
r dr Jr drVaW" 11" 

t- a+v -b r(a+v)3~=to- a . (7.3.11) 

ro ro 

Subtracting (7.3.11) from (7.3.10), for the determination of the point of in­
tersection of the characteristics we obtain 

r 

baJ drVaW" =~ 
r(a+v)3~ 2' 

ro 

(7.3.12) 

or, introducing the notation a for this integral, we have a = 11"/2 for the point of 
intersection of the characteristics. Equation (7.3.12) is an algebraic equation for 
the inversion radius r. We shall consider the form of this equation for various 
models of the atmosphere. 

For the homogeneous case in which v = 0, we obtain from (7.3.12) the 
well-known result [7.9] 

a = avbh + l)ro(ln rjro)/(2a2) = 11"/2 . 

For an isothermal stationary atmosphere, 'Y = I, v = 0, and (! = eo exp( r a / r ). 
The inversion radius is determined by the condition 

(7.3.13) 

In comparison with the homogeneous case, inversion in an isothermal atmosphere 
takes place nearer the point of acoustic emission. 

Stationary spherically symmetric accretion (the solution of Bondi [7.26]) is 
described by the expressions 

a '" r-1/ 2 , v '" r-1/ 2 , (! '" r-3/ 2 , 'Y = i , (7.3.14) 

the radial velocity v is directed to the gravitating center, and the motion of the 
perfect gas is assumed to be isentropic. Then according to (7.3.12) we obtain 
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vw -2 2 7r 
U = S/2 (r - rO) = -3../i r~aO (1 + M)3 Vi!O 2 

(7.3.14') 

The foregoing expressions hold only for the wave zone. In the case of long­
wave emission, we must interpret ro as the radius of the wave zone, and vb as 
the perturbation of the velocity at this radius. 

7.3.4 Heating of the Plasma Due to Dissipation of Acoustic Waves 

A more accurate analysis based on Sect. 7.1 for periodic waves shows that in­
version of the acoustic perturbations begins at u = 1, when on a discrete family 
of spheres the gradients of the perturbations of the velocity and density become 
infinite (the wave acquires a sawtooth profile), and not at u = 7r /2, as given by 
(7.3.12). 

For u > 2, the flux of acoustic energy is dissipated according to the asymp­
totic law [7.10] 

W = Wo(1 + u)-2 . (7.3.15) 

Equation (7.3.15) holds on the segment on which the sawtooth profile of the 
inverted wave has been completely formed. In the range 1 < u < 2, (7.3.15) is 
inaccurate. Equation (7.3.15) has the same form for both isothermal and adia­
batic atmosphere. The only difference is that in the first case u must be replaced 
by the expression (7.3.13), and in the second case by (7.3.14'). In the dissipa­
tion of a sawtooth profile, there are irreversible losses in shock waves (in the 
approximation of large acoustic Reynolds numbers). 

For acoustic waves propagating through a spherically symmetric stationary 
background perturbed by the rotation of an oblate magnetosphere with angular 
velocity n around the z axis, the flux of outgoing energy and the z component 
'of the flux of angular momentum are related by the equation 

Therefore the dissipation of acoustic waves for u > 1 leads to the transfer of 
angular momentum to the layers of the flowing gas, and they acquire nonradial 
components of velocity (the total flux of angular momentum must be conserved, 
so that if the acoustic waves vanish, a rotational nonwave motion of the gas must 
appear). 

The stronger the accretion, the closer it presses the zone of heating of the 
plasma by the acoustic waves to the magnetosphere. Strong energy release in­
hibits the accretion. 

For vanishingly small viscosity, falling off with increasing r, there is practi­
cally no laminar outflow of angular momentum from the system if the zone of 
acoustic dissipation is situated sufficiently close to the magnetosphere and the 
flux of acoustic energy W vanishes according to (7.3.15) sufficiently rapidly. 
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Owing to the strong differential rotation of the layers of the gas in the zone 
of heating, an instability develops. As a result of the chaotic motion of turbulent 
sections, angular momentum flows out from the zone of heating. The discharge 
of heat in this zone leads to a superadiabatic temperature gradient, and this in 
tum leads to turbulent convection in the gas, which, as estimates show, carries 
away heat to infinity much more effectively than the electron heat conduction. 

The acoustic waves themselves do not carry away angular momentum to 
infinity, but serve to induce turbulent angular momentum, which retards the 
rotation of the neutron star. 

7.3.5 Inclusion of Viscosity of the Gas in Calculating the Torque 
Acting on the Rotating Magnetosphere 

The problem of calculating the torque acting on a nonsymmetric body rotating 
around a stationary axis in a viscous compressible fluid is one of the least studied 
problems in classical fluid mechanics. 

We shall describe briefly the facts about the motion of a fluid around a rotating 
sphere which have been well studied experimentally and theoretically [7.27]. At 
small Reynolds numbers (steady flow), the motion of the fluid is described by the 
Kirchhoff solution (a generalization of this solution to the case of viscosity which 
varies with the radius in the presence of spherical accretion is given below). At 
Reynolds numbers 1000 < Re < 40000, a laminar boundary layer is formed 
around the sphere. In this case, the rotating sphere experiences a torque of the 
viscous friction given by m ~ 13en2 R5 / JRe (e is the density of the gas, n is 
the angular velocity of the sphere, and R is its radius). 

The rotating sphere acts as a fan: it sucks in gas from all directions and 
ejects it in the equatorial plane. In a thin boundary layer, the gas flows along 
spirals toward the equator. In the equatorial plane, aerial jets collide and are 
ejected in the form of twisted plaits. The volume discharge of "fanned" air is 
then V ~ 3R2~. At Reynolds numbers Re > 400000, a turbulent boundary 
layer is formed around the sphere, and at the equator this layer has thickness of 
the order of the radius of the sphere. The volume discharge of the gas flowing 
to the sphere and ejected in the equatorial plane is of order R3 n / (Re)1 /5. The 
torque acting on the sphere is then of order 

m rv 10-1 en2 R5 We . 

The sphere experiences the strongest drag in the case of rotation in the turbu­
lent regime. In view of the local character of the boundary layer, the expression~ 
for the retarding torque at large Reynolds numbers can be used to estimate the 
characteristic time of retardation of a neutron star with a strong magnetic field. 
At small Reynolds numbers, it is necessary to perform an analysis of the prob­
lem as a whole with allowance for the nonhomogeneity of the distribution of the 
parameters of the gas. 
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In this section, we give a combined analysis of viscous and acoustic effects 
accompanying the rotation of an ellipsoid with small eccentricity in a nonho­
mogeneous atmosphere around an arbitrary stationary z axis6 at small Reynolds 
numbers. We begin with the Navier-Stokes equations with zero second viscosity: 

dVi op a [ (OVi OVj 2 . )] 
edt = - Oxi + ox j I-' oxj + oxi - '30ij div 11 (7.3.16) 

All the perturbations and the Navier-Stokes equations for them on a spheri­
cally symmetric background can be divided naturally into two groups: even and 
odd, in accordance with the different behavior under inversion of the coordi­
nates on the sphere r = const. The velocity component tangential to the sphere 
is a vector with respect to coordinate transformations on the sphere. Any vec­
tor tangential to the sphere can be represented in terms of a scalar iP (an even 
perturbation) and a pseudoscalar (an odd perturbation): 

V~=iP,A+cAB9BCt/J,C; A,B,C=I,2, 

where gAB and cAB are the covariant components of the metric and of the Levi­
Civita tensor on the sphere of radius r, respectively. In s~herical coordinates (), 
cp, the metric on the sphere has the form ds2 = r2(d(}2 sin () dc(2). Then 

VB = iP,B + t/J,,,,/ sin (), V", = iP,,,, - t/J,B sin(} . 

By virtue of the Navier-Stokes equations, the function iP is related to the 
perturbations of the density and pressure, i. e., to the acoustic perturbations. In 
contrast, the function t/J is related to the perturbation of the component of the curl 
of the velocity Wr = - L5.t/J / (2r2), where L5. is the Laplacian on the sphere of unit 
radius. The odd perturbations are not related to the perturbation of the density. A 
classical example of a solution for the odd perturbations is the Kirchhoff solution 
for the rotation of a sphere in a viscous homogeneous fluid. 

From the Navier-Stokes equations (7.3.16), linearized around a spherically 
symmetric stationary solution e = e(r), Vr = r(r) in which I-' = p,(r), 47reVrr2 = 
-!VI = const, it follows that 

e (OV~ +v OV~) = _ op' + 01-' (OV~ + ov~ _ 2V~) 
at r or oxA or or oxA r 

[ a (L5.iP Q2iP) 
+ I-' oxA -;r + or2 

BC a (L5.t/J Q2t/J)] +CABg oxC -;r + or2 

( 2 ov~ 1 a di ,) 
+ I-' -; oxA + '3 oxA V 11 • 

6 The axis of rotation evolves slowly with time under the influence of the torques acting on the 
ellipsoid. However. this evolution can be neglected in the calculation of the torque themselves. 
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Here and in what follows. the perturbed quantities are indicated by primes. As a 
consequence of these equations. we have the following relations: 

{}(a~ +vr~) =_p,+af-L (~ +V~-2~) 
dt dr ar dr r 

[ Ll~ {fl~ 2v~ 1 di ,] 
+f-L -;:2+ arz + -;+3' vv , (7.3.17) 

(7.3.18) 

Odd Perturbations. From (7.3.18). using the equation of continuity for the 
unperturbed solution 471"{}vrrz = -M = const. where M is the flux of mass 
flowing to the magnetosphere per unit time. we have 

zat/J M at/J a [( zat/J )] -(}r - - - -- = - r - - 2rt/J f-L + f-L(11 + 2)t/J . 
at 471" ar ar ar 

IT we expand t/J in spherical hannonics Y,m«(), c.p). a solution which gener­
alizes the Kirchhoff solution is obtained for 1 = 1 and with the assumption of 
stationarity. The equation for t/J in this case can be integrated with respect to r. 
We shall denote the constant of integration by q. Then we obtain 

f-Lrza; - 2f-Lrt/J + ~ t/J = q . (7.3.18') 

Let us explain the physical meaning of the constant q. From the equations of 
motion of a fluid with a symmetric stress tensor it follows that 

(7.3.19) 

where pk is the vector whose components belong to row k of the stress tensor. 
The moment of the hydrodynamical forces acting on a body rotating in the fluid 
is 

j[{}(Vn - Dn)(r x v) + pn X r] dS = d;; , 

s 

(7.3.20) 

where m is the angular momentum of the rotating body. S is the surface of the 
body. and n is the outward normal to S. 

The total angular momentum of the body and the fluid is 

m+ j {}(v x r)dV=M , 

where the integration extends over the entire volume occupied by the fluid. It 
follows from (7.3.19.20) that 
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! M = J {eVk(r x v) + pk X r }nk dE , 
E 

where 17 is a surface which tends to infinity. 

(7.3.21) 

The rotating magnetosphere will experience a torque which effectively retards 
it only if angular momentum is carried away to infinity. 

We choose 17 to be a sphere of radius r, since in the stationary case the 
expression (7.3.21) does not depend on the value of r, and for the gas we adopt 
the Navier-Stokes model with zero second viscosity: 

p') = -pDij + p,(Vi,j + Vj,i - ~D.) div v) . 

Substituting into (7.3.21) the odd perturbations with 1 = 1, in the stationary case 
we readily obtain 

dMz 871" (!VI 20'I/J ) 
const = Lz = -;It = 3 471" 'I/J + p,r or - 2rp,'I/J . (7.3.21') 

For the odd perturbations with 1 = 1, we shall neglect the deviation of the 
magnetosphere from a sphere and write the condition of adhesion at r = R. 
Therefore the constant q in (7.3.18') is determined by the equation 

Equation (7.3.21') can be integrated in explicit form. It is necessary here 
to use the boundary condition of adhesion on a sphere having radius R and 
rotating around the z axis with angular velocity D. For the viscosity we adopt a 
power-law dependence on the radius, p, = p,o(r / R)-OI, and we introduce the new 
variable x == r / R and the constants 

!VI ,=--- , 
471"P,oR 

Then (7.3.21') can be written as the equation 

'I/J 
f=2 . 

r 
(7.3.22) 

with the boundary condition f(l) = D. The properties of the solution of (7.3.22) 
for 0 < C\' < 1 and C\' > 1 are very different. Physically, this is due to the fact 
that the condition of smallness of the Reynolds number throughout the region 
occupied by the gas mayor may not be satisfied: 

Re = elvrl r = ~ = ~ (~)OI-l = ,xOl-1 . 
p, 471"r p, 471" Rp,o R 

From the condition of smallness of the Reynolds number it follows that, < 1. 
For C\' < 1, the rotation of the sphere produces smooth motion of the external 
layers of the gas, and the angular momentum determined by the angular velocity 
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a will be carried away to infinity. For a > 1, a viscous boundary layer is fonned 
around the sphere. The Reynolds number grows as r increases, and therefore in 
this case the effects of viscosity become unimportant with increasing distance 
from the sphere. In an ideal gas, for barotropic motions the vortices are frozen 
into the fluid. They can be arbitrary in magnitude. For a > 1, the flux of angular 
momentum is not detennined by the rotation of the sphere and can be arbitrary. 

An analysis of the solutions of (7.3.22) confinns what we have said above. 
For a < 1 (7.3.22) has a unique particular solution which does not increase as 
r -+ 00. It has the fonn 

( x a-1 ) Joo (ta-1 ) J(x) = -qexp _1__ ta - 4 exp __ 1 __ dt . 
I-a I-a 

(7.3.23) 

From the boundary condition J(I) = a we obtain an expression which detennines 
the flux of angular momentum carried away to infinity: 

00 

-a = q J ta - 4 exp (- 1(t;~: 1») dt . (7.3.24) 

1 

As an example, let us consider the case of an isothennal atmosphere in which 
I-" = const and a = O. In this case, from (7.3.24) we obtain 

ay 
-q = -::-=-----::----'-----::--:= 

2[e"Y - 1 - 1 - 12/2] . 
(7.3.25) 

For 1 -+ 0 (the case of small accretion), we obtain by means of (7.3.25) 
the classical Kirchhoff result Lz = -87rI-"R3 a [7.28]. The solutions for arbitrary 
a < 1 have analogous properties. In the case of weak accretion (1 -+ 0), for the 
torque acting on the sphere we obtain 

87r 3 
Lz = TaR (a - 3) . 

In the case a > 1, (7.3.23) does not hold, since all the solutions of (7.3.22) 
are physically meaningful. The solution of the homogeneous equation (7.3.22) 
with exponential damping at infinity gives the distribution of velocities in the 
boundary layer, and the general solution which takes into account the boundary 
condition J(1) = a has the fonn 

!(x) = exp (')(x;~.:- 1») [Q+q I j"-'exp (:~-; H 
The constant q is detennined by the flux of angular momentum frozen (in view 
of the small viscosity) in the barotropically accreting gas. 

For 1 > 1 and a > 1, the characteristic depth of penetration Llr of the 
viscous forces is found from the relation ..::1x = Llr / R '" 1 /1 to be 
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The physical condition for the fonnation of a boundary layer is the smallness 
of the mean free path A of the molecules in comparison with the thickness of the 
layer. From the elementary kinetic theory of a gas, we have Ji-O rv Aa(}. Therefore, 
from the condition A < 47r Ji-OR2 / M = Ji-O / (}Vr it follows that Vr / a < 1. Thus, in 
the case O! > 1 the viscous-fluid model is applicable only for subsonic accretion. 
In the case of supersonic accretion with O! > 1, it is necessary to consider the 
interaction of a rarefied gas with the magnetosphere in the framework of kinetic 
theory. 

In the case of the Bondi adiabatic atmosphere (the exponent of the adiabat 
is equal to 5/3), Ji- falls off with increasing r as r-S/2, i.e., O! = 5/2. Therefore 
in this case the model of retardation of a pulsar solely by smooth motions of a 
viscous gas is inapplicable. 

Even (Acoustic) Perturbations in the Bondi Adiabatic Atmosphere in the 
Case of Subsonic Accretion. In what follows, we shall assume that the ac­
cretion is weak and shall always neglect the square of the Mach number in 
comparison with unity. We shall make use of the fact that for completely ion­
ized hydrogen the viscosity depends on the temperature according to the law 
Ji- = 1.2 X 1O-16T s/2 g/cm s, where the temperature is measured in degrees 
Kelvin. Therefore the dependence of Ji- on the radius is Ji- = Ji-.r-S/2 with 
Ji-. = const. We recall that in the Bondi atmosphere the density and the speed of 
sound depend on the radius as follows: 

where M is the mass of the star. We shall assume that the perturbations have a 
time dependence exp(Wt). 

The Navier-Stokes equations (7.3.16) for the even perturbations in the case 
of the Bondi atmosphere for small Mach numbers take the form 

iilv' = _.2... (pI) + v· [a2v~ _ 2- av~ + Llv~ _ 2LlP] 
r ar (} r ar2 2r ar r2 r3 

(7.3.26) 

iilp = _pI + v· [&p _ 2- aP + (Ll+5)p _ !ile'] 
(} r ar2 2r ar r2 3 (} (7.3.27) 

v. = Ji-./ (}. . 

Here we neglect the viscous dissipation and use the adiabatic dependence of 
the pressure on the density, taking into account the equation of equilibrium for 
the unperturbed solution. Equation (7.3.27) represents (7.3.17) for the case of 
the Bondi atmosphere with allowance for the perturbed equation of continuity, 
which has the fonn 
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iD (!' + 8v~ + ~ v~ + Lip = 0 
(! 8r 2 r r2 

We rewrite (7.3.26-28) by introducing the notation 

Dv* 
c=-2- , 

a* 
p 

x=- , 
r 

and using the fact that p' = a; e' / rand 

· 8 1 Q &v 20 V 4ic Q IV=--Q+--+- - --+--
8x 3 x 8x2 9 x2 3 x 

· 2 Q &X 14 X 2. Q 
IX = -3-; + 8x2 - "9 x2 - "9 1c-; 

· 8v 1 v 2 Lix 
lcQ+-+--+--=O. 

8x 3 x 3 x 

309 

(7.3.28) 

(7.3.26') 

(7.3.27') 

(7.3.28') 

In what follows, we shall assume that c ~ 1. Physically, this means that the 
characteristic scale J v / D (the penetration depth of tangential viscous perturba­
tions) which arises in periodic motions of the viscous fluid is small in comparison 
with the wavelength a/ D. In addition, we shall assume that Jv / D is much larger 
than the radius R of the magnetosphere. It follows from this that 

xR~c~1 , where 3XR=2VR3D/v*. 

In the zone of action of the viscous forces (in the zone near the magnetosphere), 
the effects of compressibility can be neglected. 

In (7.3.26'-28'), in a first approximation, we can drop the terms containing 
the coefficient c. In contrast, in the wave zone in (7.3.26-28) we can neglect the 
viscous forces, but we must take into account the compressibility. Actually, in 
the wave zone the scale of variation of the functions of x is of order 1/ V€, and 
(7.3.26-28) can be rewritten in the form 

iv = _~Q + ~ Q + c (82 
V _ 20 ~ + 4i Q) 

8z 3 Z 8z2 9 z2 3 z 

· _ 2Q ( & _ 14 _ 2iQ) 
l X =-T+ c 8z2X -9z2X - 9z 

· - 8v v 2 Lix lQ + - + - + -- = 0 
8z 3z 3 z 

Q=V€Q, z=V€x, X=V€X 

(7.3.26") 

(7.3.27") 

(7.3.28") 
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We first consider the behavior of the perturbations in the near zone. Substi­
tuting Li = -6 for the quadrupole acoustic waves and eliminating Q and X' from 
the system (7.3.26'-28') we obtain 

1 [9 4 a' 3 d3 2 J!- 268] 
x2 ZX dx4 + 18x dx3 - 12x dx2 + 9'" v 

= -1 -x - + 9x- - 11 v . . (9 2 J!- d ) 
2 dx2 dx 

(7.3.29) 

For x ~ 1, the solution of (7.3.29) can be expanded in a series in powers of 
x: 

4 

V = L A kx n k(1 - iakx2 + ... ) , 
k=l 

(7.3.30) 

where the Ak (k = 1,2,3,4) are arbitrary constants. In (7.3.30), nk (k = 1,2,3,4) 
is one of the four roots of the equation 

!l>(n) == n(n - 1)[~n(n - 1) - 21] + ~8 = 0 , (7.3.31) 

which is obtained by equating the left-hand side of (7.3.29) to zero. 
The fact that the roots of (7.3.31) are complex has the consequence that 

the trajectories of the fluid particles near the magnetosphere are bounded. The 
appearance of mixing near the magnetosphere is a consequence of the variation 
of the coefficient of viscosity with the radius; the effect disappears in the case 
of constant viscosity (an isothermal atmosphere). 

The roots of (7.3.31) can be represented in the form 

n = (1 ± a ± ib)/2, a ~ 3.28; b ~ 0.66 . (7.3.32) 

For x ~ 1 but ,fi x ~ 1, the solution of (7.3.29) has the asymptotic behavior 
(C and D are arbitrary constants) 

_ C -xvr (1 190 ) m_ ( !l>(m)i ) v - e - """h"'" + ... + Dx 1 + 9(1 _ m)x2 + ... 

(7.3.33) 

Here m_ is the negative root of the equation obtained by equating the right-hand 
side of (7.3.29) to zero: 

9m(m + 1) - 22 = 0, m ~ -2.13 . (7.3.33') 

In (7.3.33) we have omitted two solutions of (7.3.29) which increase' as 
x -+ 00. The condition that the two increasing solutions of (7.3.29) are absent 
imposes two conditions on the four arbitrary constants Ak in the asymptotic 

7 One of them increases with :r: as an exponential exp(v1 :r:), and the other as a power :r:m +, where 
m+ is the positive root of (7.3.33'). 
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behavior of (7.3.30) for v as x -t O. We obtain two other conditions from the 
boundary conditions on the magnetosphere by assuming that the functions v~ 

and X are given at r = R, i. e., at x = x R ~ 1: v~ = vo, X = xo. We recall that 
for a weakly oblate impenetrable ellipsoid Vo ~ Dn '" e2 DR sin Q. 

Thus, on the magnetosphere x = x R we have the conditions 

alAI + a2A2 + a3A3 + a4A4 = 0 , 

bl Al + ~A2 + ~A3 + b4~ = 0 , 

AIX~l + A2X7z2 + A3 X7z3 + A4X7z4 = Vo , 

nlAlx7z1 + n2A2x7z2 + n3A3x7z3 + n4~x7z4 = XO 

(7.3.34) 

The first two equations, which contain the constants ak and bk (k = 1,2,3,4) are 
the conditions for the absence of solutions which increase at infinity, and in the 
last two equations we have used the asymptotic behavior of (7.3.30) for XR ~ 1. 
The coefficient D in (7.3.33) is a certain linear combination of the coefficients 
Ak: 

(7.3.35) 

We now study the behavior of the solutions in the wave zone by means 
of the system (7.3.26/1-28/1). For this, we use the matching condition in the 
region 1 ~ x ~ lyle, in which the exponentially small term in (7.3.33) can be 
neglected. In the wave zone, the analytic continuation of the solution (7.3.33) 
has the form 

v~ = Disinb7l'-F(1- b) (!!...)b 8m _(1/3.!!:.. [(1/6 Hb (D()] 
1/6 - b 2a. d( a. 

(7.3.36) 

where ( = 2r3/2/3, b = J%/6 ~ 1.63, Hb(Y) is a Hankel function, F(x) is the 
Euler gamma function, and 8 = (1 - i)JD/2v·. 

The solution (7.3.36) is an exact solution of the system (7.3.26"-28") for 
c: = 0, corresponding to a diverging quadrupole acoustic wave. Therefore the 
flux of energy (7.3.5') carried away to infinity by the acoustic waves is given by 
the expression 

( 
Dv. )b-Hl.5 2 

W'" a; IDI e.a• . (7.3.37) 

Thus, the problem of the flux of energy or angular momentum carried away 
to infinity by the acoustic waves reduces to the problem of determining the 
coefficient D. 

According to the system (7.3.34) and the relations (7.3.32,35), for Vo ~ XO 
we have 

(7.3.38) 

From (7.3.37), using (7.3.38), we finally obtain 



312 7. Acoustic Phenomena in Strong Gravitational and Magnetic Fields 

2 2 28 ~&V.. 2 2 HV ~& ( n ) 2.13 (n )2.13 (R2 n )1.14 
W rv u*a"VO(XR) . a; = UaR Vo 7 -V-

(7.3.39) 

In (7.3.39-39") the values of all the quantities are taken on the magnetosphere 
r=R. 

In the case in which there is no accretion and the magnetosphere is impene­
trable, we have va rv e2 nRsina, and then from (7.3.39) we obtain 

(7.3.39') 

We note that if no allowance is made for viscosity in the case of rotation 
of a weakly oblate ellipsoid as a solid body in an adiabatic atmosphere, the 
following expression is obtained for the output of energy radiated as a result of 
long acoustic waves: 

7.3.6 Supersonic Rotation of a Pulsar 

When a pulsar rotates supersonically, e2 nRsin a> a, the surface of the magne­
tosphere is very different from its static shape. Indeed, otherwise, part of the sur­
face of the static magnetosphere would have a velocity greater than the speed of 
sound with respect to the gas. At certain instants of time, the surface of the static 
magnetosphere would move away from the gas with velocity greater than the 
maximum velocity of the gas expanding into empty space, Vrnax = 2a/( ,-1) = 3a 
for, = 5/3. The gas would break: away from the surface of the magnetosphere, 
and it would not be possible to satisfy the boundary condition which requires 
that the pressure of the gas be equal to the pressure of the magnetic field on the 
magnetosphere. 

Let us consider the figure formed by the static surface of the magnetosphere 
during a period 27r / n. We shall refer to it as an "apple". In the case of rapid 
rotation, the gas cannot penetrate deep inside the apple: the characteristic pene­
tration depth is of order a/ n. Therefore the shape of the magnetosphere in the 
case of rapid rotation will be approximately the same as the shape of the apple. 
The fields produced by the currents flowing along the surface of the rotating 
magnetosphere are extremely complex, and we shall not enter into their analy­
sis. We note only that the main variation in the pressure of the magnetic field 
on the magnetosphere is produced by the rotation of the magnetic dipole. The 
pressure of the magnetic field on the magnetosphere is stationary in the rotating 
coordinate system, and it can therefore be expanded in spherical harmonics, with 
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a dependence on the azimuthal angle cp and the time t which appears in the fonn 
of the expression cp - nt. We shall assume that the variation of the pressure of 
the magnetic field is detennined mainly by the rotation of the pulsar, and not by 
the currents flowing on the magnetosphere. 

In the case of supersonic rotation, perturbations in the gas will be generated 
mainly by oscillations of the surface of the magnetosphere. The wave zone for 
acoustic waves begins immediately from the surface of the magnetosphere, each 
segment of which, independently of the others, generates a practically plane 
wave. 

The speed of sound for 'Y = 5/3 is related to the pressure by the equation 
a' /a = 5-1p' /p, where the primes designate the perturbed values of the corre­
sponding quantities. We shall assume that each segment of the magnetosphere 
acts like a weightless bar to which a magnetic pressure, varying according to 
a harmonic law. is applied. The resulting motion of the bar in the gas causes 
the generation of waves, which are inverted at a certain distance from it. If the 
process of emission of acoustic waves is to be periodic, there must be a loss of 
heat, which is liberated in shock waves. 

The perturbation of the velocity is related to the perturbation of the speed of 
sound by the law v' = 3a'. Therefore the power of the acoustic emission by the 
whole surface of the magnetosphere [see (7.3.5')] is given by 

Here all the quantities are evaluated on the magnetosphere, and it is assumed 
that the relative oscillations of the pressure on the magnetosphere are, on the 
average, of order sin a. 

Owing to the dissipation of acoustic waves, the gas is heated in the vicinity 
of the magnetosphere. The instability of this equilibrium of the atmosphere leads 
to the appearance of turbulent thennal convection, in which the surplus of heat 
in comparison with adiabatic lamination is carried away to infinity. 

7.3.7 A Model Problem of Stationary Accretion of a Gas with Index 
of the Adiabat "'Y < 5/3 in the Presence of Energy Release 

We shall show that stationary spherical accretion in the presence of strong energy 
release is impossible if the mechanisms of cooling of the gas are sufficiently 
weak. 

For this, we consider the following model problem. Suppose that in a unit 
volume of a perfect gas an amount of heat Q is released per unit time, where this 
quantity depends on the radius according to the law Q = Ar-S/ 2 with A = const. 
This heat is transferred completely to the incident gas. We denote the expression 
PU--r by S. The function S depends only on the entropy S. 

The equations of motion and the energy can be written as follows: 
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d V2 -2 de GM -I dS 
-- = -'YSe'Y - - -- - e'Y -
dr 2 dr r2 dr ' 

e'Y-1 as 
--v- = Q = Ar-S/ 2 • 
"I-lor 

We seek a particular solution of this system in the form 

v = v*r-1/ 2 , e = e*r-3/ 2 , S = S*r[3(-y-l)/2-1] , 

where the asterisks indicate the corresponding constants. 
Eliminating the entropy from this system of equations, we obtain 

v~ - 2GMv* = 5("1 - 1)[1 - 3("1 - 1)/2r1 A 

We introduce the notation 

B == 5("1 - 1)[1 - 3h - 1)/2r1 A , 

v* = 3Bx/2GM, a == 27B2/(2GM)3 

Then (7.3.42) can be written in the form 

ax3 - 3x - 1 = 0 . 

(7.3.40) 

(7.3.41) 

(7.3.42) 

(7.3.43) 

In the regime of accretion, the velocity of the gas is directed toward the center, 
so that v* < 0 or x < O. However, negative solutions of (7.3.43) exist only 
for a < 4. Therefore, if the rate of energy release is sufficiently large (a > 4), 
accretion of this type is impossible. 

7.3.8 The Stability of Rotation of Pulsars in Close Binary Systems 

In this section, we show that in the presence of accretion the rotation of a pulsar 
with a long-period variation of its rotational angular velocity is stable. This 
corresponds to a stable limit cycle in the corresponding dynamical system and 
is confirmed by the statistics of observations of pulsars with acceleration and 
retardation of the rotational angular velocity [7.1]. An important point in the 
discussion is the assumption that the pulsar is non spherical and hence that there 
is a moment of the gravitational forces. In fact, prolonged accretion of matter 
in the region of the magnetic poles makes the ellipsoid of inertia of the pulsar 
triaxial in the general case (excluding the case in which the axis of rotation 
coincides with the axis of the magnetic dipole). An indirect theoretical argument 
in favor of asymmetry of the pulsar is the instability of the axially symmetric 
figures of equilibrium (Maclaurin spheroids) of a gravitating homogeneous fluid 
in the case of supercritical angular velocities of rotation, when the triaxial Jacobi 
ellipsoids are stable. 

Thus, we consider a pulsar as a solid body moving along a circular orbit 
and simultaneously rotating around some axis. We apply the theorem on angular 
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momentum to this body. In the coordinate system associated with the principal 
central axes of inertia, Euler's dynamical equations have the well-known form 

dwx 
Adt + (C - B)wywz = Mx , 

dw y 
Bdt + (A - C)wxilz = My , (7.3.44) 

dw z 
Cdt + (B - A)wxwy = Mz 

Here w x , wY ' and W z are the components of the instantaneous angular-velocity 
vector in the indicated rotating system, A, B, and C are the moments of inertia 
of the pulsar with respect to the principal axes of inertia, and M x, My, and 
M z are the projections of the moment of the external forces with respect to the 
center of mass of the pulsar in the same system of moving axes. 

The moment of the external forces acting on the pulsar can be divided into 
three parts: 

1) The stellar wind from the second component, which is partially trapped by 
the gravitational field of the pulsar and accretes onto it, imparts an angular 
momentum Mac per unit time to the latter. 

2) The magnetosphere of the pulsar experiences retarding hydrodynamical 
forces Mh, which we studied in detail above. 

3) Because the pulsar is nonspherical, it experiences a moment of the gravita­
tional forces Mgr (in the center-of-mass system of the pulsar). 

We calculate the moment Mgr under the natural assumption that the distance 
between the centers of mass of the pulsar and of the second component is much 
greater than their dimensions. The moment of the Newtonian force acting on an 
elementary mass (21 dr1 with radius vector r1 from the mass (22dr2 with radius 
vector itJ + r2 is 

G(21f!2 [r1 x V1 (~12)] dr1dr2 . (7.3.45) 

Hence itJ is the radius vector of the center of mass of the second component in 
the center-of-mass system of the pulsar, and R12 == litJ + r2 - r11. 

To find Mgr, the expression (7.3.45) must be integrated over the volume of 
both stars. 

Expanding 1/ R12 in a series in the small quantities rtf Ro and r2/ Ro, and 
including only the largest terms, after elementary calculations we obtain 

4R6Mgrk = 3GM2€klm 1ln X mX n . 

In (7.3.45), Tin is the moment of inertia tensor of the pulsar 

Tin = J (21 (Olnrf - XIX n) dr1 ; 
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Ckln is Levi-Civita tensor in R3; x}, X2, and X3 are the components of TI; M2 
is the mass of the second component; and Xl == X, X2 == Y, X3 == Z. In the 
system of principal axes of inertia, we have 

4mMgr., = 3GM2(B - C)YZ , 

4mMgry = 3GM2(C - A)X Z , 

4mMgrz = 3GM2(A - B)XY 

Let us consider the simplest case in which the axis of rotation of the pulsar 
is perpendicular to the plane of the circular orbit. We take the x axis along the 
axis of rotation, and the y and z axes in the plane of the orbit, in such a way that 
B> C. Then Wy = Wz = Mgry = Mgrz = O. Suppose that in the fixed system 

~(O, Ro cos 'IjJ, Ro sin 'IjJ) , 

where 

'IjJ = JG(MI +M2)/RJt 

according to the well-known equations for circular motion. 
Let <p be the angle of rotation of the pulsar around the axis of rotation: 

w., = d<p/dt. Then for Mgr., we have 

3GM2(B - C) 
a== ~ Mgr., =asin2(<p+'IjJ) , (7.3.46) 

We now write (7.3.44) under the assumption that the gas jet accreting on the 
pulsar is symmetric with respect to the plane of the orbit and carries a time­
independent angular momentum: 

Mac = (mac, 0, 0), mac = const 

According to the treatment of this section, the moment of the hydrodynamical 
forces can be taken in the form 

where w is the angular velocity of rotation of the pulsar with respect to the sec­
ond component: w = <P +.,p. We recall that n = 1 for slow (smooth) rotation [see 
(7.3.25)] and n = 2 for fast rotation in the turbulent regime (see Sect. 7.3.5). The 
deviation of the shape of the magnetosphere from the spherical shape leads to ex­
citation of quadrupole acoustic waves and shock waves (see Sects. 7.3.1, 2, 5, 6). 
The exponent n then varies over a wide range. Therefore, using (7.3.46), the 
relations (7.3.44) reduce to 

(7.3.47) 
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We introduce the dimensionless time variable r = ..) AI2a t and put 2(r.p + 
'IjJ) = ~ + 11". Then from (7.3.47) we have 

J2~. (d~)n 
dr2 + sm ~ + (3 dr = 0: , 

mac 
0:=­

a 
(3 = mn - . (7.3.48) 

a 

It is remarkable that (7.3.48) has the fonn of the equation for the oscillations 
of a mathematical pendulum in the presence of a constant moment in a medium 
with nonlinear resistance. Equation (7.3.48) on the phase cylinder n = ~, ~ 
modulo 211" has the fonn 

n~~ + (3nn = 0: - sin~ . (7.3.49) 

For 0: > 1, (7.3.49) has no singular points. We shall show that there exists a 
stable limit cycle for 0: > 1, i. e., a stable periodic solution n = n(~). In fact, 
for sufficiently small c and n = c it follows from (7.3.49) that dn 1 d~ > 0, i. e., 
all the trajectories enter the region n > 0 as ~ increases. On the other hand, for 
n = n. + c, where n. = \1'(0: + 1)1(3, all the trajectories also enter the region 
(0, n.) as ~ increases, since for n = n* + c we have dn 1 d~ < O. For the 
direction of winding of the cylinder by the integral curves of (7.3.49) to change 
inside the region (0, n.), one of the following conditions must hold: either (a) 
there is a closed curve on which d~ 1 dn changes sign, becoming equal to zero 
on this curve, or (b) there is at least one closed curve onto which the integral 
curves wind indefinitely both "from above" (from the direction n > n*) and 
"from below" (from the direction n < O. However, version (a) is impossible by 
virtue of the boundedness of dnld~ in [c, n* + c]. Thus, we have proved that 
there exists at least one limit cycle. 

We now consider the case n = 2, in which (7.3.49) admits an explicit solution: 

2 0: 4(3. 2 
n = constexp(-2(3~) + p - 4(32 + 1 sm~ + 4(32 + 1 cos~ . 

Obviously, here a limit cycle is given by the closed (on the cylinder) curve 

n2 0: 4(3 . "" 2 "" (7 3 50) 
J& = P - 4(32 + 1 sm ~ + 4(32 + 1 cos ~ . . . 

The dimensionless period of variation r of the angular velocity can be cal-
culated from the fonnula 

271" 

r= J~ . (7.3.51) 

o 

Substituting (7.3.50) into (7.3.51), we have 

4- 1(3..)4(32 + 1 
r = V K(x) J 0:..)4(32 + 1 + 2(3 

(7.3.52) 
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Here K(x) is the complete elliptic integral. For small friction 13 -+ 0, the period 
of variation of the angular velocity is also small: 

For large friction 13 -+ 00, the period T according to (7.3.52) increases without 
limit: 

T ~ 4vf3/(a + 1) K ( v2/(a + 1)) . 
Thus, knowing from observations the minimum Wmin and the maximum Wmax 

of the rotational angular velocity of the pulsar, as well as the period of its 
variation T, we can use (7.3.50,52) to calculate the parameters a and 13. In fact, 
from (7.3.50) we have 

Q;in = (aV4f32 + 1 - 2(3) / (f3V4f32 + 1) , 
Q;ax= (aV4f32+ 1 +2(3) / (f3V4f32+1) 

Then 

By using the observations to calculate the parameters of the orbital motion, 
we can estimate the degree of deviation of the inertia tensor of the pulsar from 
sphericity [i. e., the parameter (B - C) / A]. In fact, according to the definition of 
T, from (7.3.47) we have T = V A/2a t and hence 

(7.3.53) 

The period 7i of the orbital circular motion is 27rV ~/G(MI + M2). There­
fore, knowing the ratio of the masses of the components in a close binary system 
and the period of the orbital motion, we can use (7.3.53) to calculate the param­
eter (B - C)/A, which (as was shown above) is determined by the observable 
quantities Wmin, Wmax, T, Tl, and Mt/M2. 

7.4 The Stability of Uniform Nonlinear Pulsations 
of Gravitating Gaseous Spheres 

Among the various models of the pulsations of variable stars like the Cepheids, a 
special place is occupied by a solution with uniform nonlinear pulsations of grav­
itating gaseous spheres [7.15,29,30]. This is a physically simple model, which 
can be calculated analytically. It does not explain why the maximum luminosity 
of a star occurs not at the instant of greatest compression, but, as observations 
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show, a quarter of a period later. Moreover, in the theory the asymmetry of 
the curve giving the periodic time dependence of the ray velocity for a star of 
hydrogen manifests itself only for large amplitudes of the pulsations, whereas 
observations show that for the majority of the Cepheids the degree of compres­
sion during the pulsations does not exceed 10--15 %. Nevertheless, this solution 
predicts quite accurately the period of the pulsations on the basis of the den­
sity of the star (if the Cepheid mass is determined on the basis of the empirical 
mass-luminosity law). 

The methods of investigating the stability of gravitating objects arose in 
the theory of figures of equilibrium. The main results in this field apply to an 
incompressible fluid. Besides solutions describing the rotation of masses of an 
incompressible fluid as a solid body (the Maclaurin and Jacobi spheroids, the 
Laplace ring, etc.), studies have been made of problems involving a velocity 
field linear in the coordinates (the solutions of Dirichlet, Dedekind, Poincare, 
and others; see the references in [7.31]). 

Lyapunov showed that the only possible static equilibrium shape of a gravitat­
ing mass of incompressible fluid is a sphere. If we assume that in the conceivable 
varied states the body rotates as a solid object, we can regard it as a dynami­
cal system. Then a given equilibrium of the body will be stable if in this state 
the energy of the body attains a minimum value for fixed values of the gener­
alized momenta corresponding to the cyclic coordinates. This idea was used to 
study the stability of the linear series of Maclaurin and Jacobi (poincare, Darwin, 
Jeans, and others). In its general formulation, the problem of small oscillations 
was studied by Poincare and Bryan. With inclusion of small corrections of the 
post-Newtonian theory in general relativity, the problem of the stability of clas­
sical figures of equilibrium was formulated and investigated by Chandrasekhar 
[7.32], who, in particular, studied the way in which the stability is influenced by 
a new phenomenon of general relativity: the emission of gravitational waves in 
the presence of oscillations. 

Allowance for the compressibility of the gas leads to new effects charac­
teristic of nonlinear nonstationary motions. Self-similar solutions and solutions 
with velocities linear in the coordinates were considered for the first time in 
gas dynamics by Sedov [7.15] and in magnetohydrodynamics by Kulikovskii and 
Lyubimov [7.33]. Nonradial oscillations of Emden spheres were investigated in 
[7.34]. 

In this section, we study the stability of the exact solution with a uniform 
density which varies periodically with the time, about which we spoke above. Be­
low, we show that the equations for arbitrary small perturbations of this solution 
lead, after expansion of the perturbations in a certain system of eigenfunctions, 
to a system of ordinary differential equations with periodic coefficients. 

The Lyapunov stability of the solutions of this system is related to the behav­
ior of the characteristic exponents of the system, which depend parametrically 
on the amplitude of the pulsations of the background. It turns out that for each 
eigenvalue there exists a corresponding critical value of the amplitude of the pul-
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sations of the background at which the system exhibits a parametric resonance 
of spherical acoustic waves. In the linear theory, the amplitudes of the spherical 
perturbations grow without limit for a supercritical amplitude of the pulsations of 
the background. The regime of nonlinear uniform pulsations with a temperature 
which decreases to zero at the boundary of the sphere is found to be unstable 
with respect to nonspherical perturbations with a sufficiently large number of 
spherical harmonics. A method is developed for constructing approximately the 
characteristic exponent corresponding to the unstable mode of oscillations. When 
there is thermal mixing of particles with different entropy as a consequence of 
rotational adiabatic motions of the gas, essentially nonlinear effects come into 
play, and these are not considered in this section. 

Unperturbed Solution. We shall give a brief description of the unperturbed 
solution, referring to [7.15,29] for further details. In the studied motions of a 
gravitating gas, the quantity r, the distance of a fluid particle from the center 
of symmetry at time t, is a linear function of its initial distance e: r = e/1-1(t). 
The density of the gas during the pulsations remains uniform in the particles: 
(! = (!O/13(t), where eo = const. For adiabatic pulsations with index of the adiabat 
'Y > 4/3, the entropy is variable in the particles, and the pressure is a function 
of e and /1(t): 

(7.4.1) 

Here R is the value of the Lagrangian coordinate e at the boundary of the sphere. 
After substituting these expressions into Euler's equations and using Pois­

son's equation for the gravitational potential, we obtain an equation for the func­
tion /1(t), a first integral of which has the form 

( d/1)2 _ 4 ( 4]10 3(-,-1) 811"Geo ) dt -/1 -3('Y- 1)/1 +-3-/1+X, (7.4.2) 

where X is an arbitrary constant of integration. 
It can be shown [7.15,29] that the right-hand side of (7.4.2) has two roots 

for values of the constant X in the interval 

811" (3'Y - 4) (211"G{!O )1(31'-4) 
0> X > -- --- --- Geo . 

9 'Y - 1 3]10 

The corresponding integral (7.4.2) characterizes the nonlinear periodic pul­
sations. 

Derivation of Equations for Small Perturbations. We write the equations of 
gas dynamics with inclusion of the gravitational force in the variables t and 
e(6,ez,6): 

ov [( e d/1)] /1 -+JL v+-- .\7 v=--\7P+/1\7iP , 
dt /12 dt (! 

(7.4.3) 
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(7.4.4) 

(7.4.5) 

(7.4.6) 

[The vector operations of differentiation in (7.4.3-6) are taken with respect to 
the variable 0 

We shall assume that the perturbations of v, p, and e are small and linearize 
(7.4.3-6) around the solutions described earlier. Let K = bel e be the relative 
perturbation of the density. Taking the divergence of (7.4.3) and making use of 
(7.4.4,5), we obtain 

Jl.~ [2.~K] _ ,Pbp _ 6pOJl.-2+3"YK 
at Jl.2 at (!OJl.2 

- 2pOJl.-2+3"Y(e . '\1)K - 47rG(!OJl.2 K = 0 (7.4.7) 

We replace bv by a new unknown function w according to the relation 

Jl.bv = awlat . (7.4.8) 

Then the first integral of (7.4.6) for small perturbations can be written in the 
form 

ap 2 2 J.Y - "{pO(!O(R - e )K - 2pO(!Ow . e = f(e) , 
Jl. 

(7.4.9) 

where f(e) is an arbitrary function. 
Since according to (7.4.8) the addition of an arbitrary vector function Cf'(e) 

to w does not change av, the function f(e) can be made to vanish. 
Using (7.4.9), from (7.4.7) we obtain 

Jl.~ [2. ~ K] _l"Y-2pO{\72[(R2 - e)K] + 2K - 2Q at Jl.2 at 
+ (2e· \7 + 4)(K + div w)} - 47rG(!OJl.2 K = 0 , 

Q == e . curl curl w = e . ('\1 div w - Llw) . 

The first integral of the linearized equation (7.4.5) has the form 

K +divw = 'I/J(e) , 

where 'I/J(e) is an arbitrary function. 
From (7.4.3) we obtain an equation for the function Q: 

(7.4.10) 

(7.4.11) 

(7.4.12) 
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Without loss of generality, we set the function t/J(e) in (7.4.11) equal to zero 
[for t/J(e) t= 0, the system (7.4.10,11) becomes nonhomogeneous]. 

We shall introduce the new variable r and use a dot to denote differentiation 
with respect to r: VIPO Jl.2dt == dr. Then the homogeneous equations (7.4.10, 12) 
can be rewritten in the form 

Jl.S-3'Y K - ~1''V2[(R2 - e)K] - K - 271'~eo Jl.4- 3 'Y K + Q = 0, (7.4.13) 

Jl.S-3'YQ = LlIK . (7.4.14) 

We note that any perturbation, if it is not spherically symmetric, will neces-
sarily be rotational by virtue of the nonuniformity of the entropy distribution in 
the unperturbed solution. 

We represent the functions Q and K as expansions in spherical harmonics: 

{ Q} = f t {Qlm(e,t)}p,m(COS()eim'P . 
K 1=0 m=-l K'm(e, t) 

(7.4.15) 

[Here the p,m(cos () are the associated Legendre polynomials.] 
We consider in the interval (0, R) the eigenfunctions of the operator D with 

eigenvalues -En: 

D[ ] = ~~ [c2~(R2 _ C2) ] _ 1(1 + l)Yn(R2 - e) =-E 
Yn - e de .. de .. Yn e nYn . 

(7.4.16) 

Below, we shall show that this operator has a discrete spectrum. We introduce 
the substitution 

(7.4.17) 

and rewrite (7.4.16) in the form 

2 ~qn 1 dqn En 
(1 - X )-+ -(1 - x)(21 + 3)- + -qn = ° 

dx2 2 dx 4 
(7.4.18) 

It follows from (7.4.17) that the functions qn must vanish at x = 1. For 
arbitrary En, the solution of (7.4.18) can be expressed in terms of hypergeometric 
functions; however, it is only for certain discrete values of En that the solution 
of (7.4.18) vanishes at x = 1. This is the well-known system of Jacobi orthogonal 
polynomials [7.35]: 

qn = p;l, l+l/2(x) = ~ (n: 1) (n: ~+ :!2)<x _l)n+m(x + l)m . 

(7.4.19) 

Here En = 4n(n + 1 + 1/2). 
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We write down the first three eigenfunctions Yn(e) with the normalization 
Yn(R) = 1: 

Yl = (11 , Y2 = 2-2(11[(21 + 7)(12 - 21 - 3] , 

Y3 = 6-1 (11[(p + 7l + 69/4)(14 - (12(212 + III + 15) 

+ 12 +41 + 15/4] , 

(1==e/R. 

(7.4.19') 

After expanding the functions K'm(e, t) and Q'm(e, t) in the complete system 
of polynomials Yn(O, 

we readily obtain from (7.4.13,14) a fourth-order ordinary differential equation 
for Qn(t): 

JlS-3/'[JlS-3/'Qnr+ [2,n(n + 1+ 1/2) - 1 - 27rG(!OJl4-3/' /po]JlS-3/'Qn 

- (l + 1)IQn = 0 . (7.4.20) 

Analysis of the Stability in the Absence of Pulsations. Let us consider the 
stability of the equilibrium configuration when Jl == 1 and 3po = 27rG{!o. In this 
case, the solution of (7.4.16) can be sought in the form Q = const· exp(Ar), and 
for A we obtain the equation 

A4 + [2,n(n + 1+ 1/2) - 4]>.2 -1(1 + 1) = 0 . (7.4.21) 

Two roots of this equation are conjugates and purely imaginary. They correspond 
to acoustic waves. The other two roots correspond to rotational perturbations, one 
of which increases exponentially. 

The appearance of an instability can be understood as follows. Consider the 
stability in the gravitational field of a gas which is cooler "above" and warmer 
"below" (the gravitational forces are directed downward). For small adiabatic 
perturbations, a small particle from above which penetrates (slightly at first) into 
the lower "warm" layer will have density proportional to <P2/pdh . But then 
the Archimedean force acting on the particle will be less than the weight of the 
particle, and the particle will be carried downward. Convection occurs when the 
lower "warm" layers begin to mix with the upper "cool" layers. 

We note that from the form of the functions Yn(O for n f"V 1 and 1 ~ 1 [see 
(7.4.19)] it follows that these functions always differ little from zero, except in 
a small neighborhood of the boundary. 

On the other hand, according to (7.4.21), An has the largest rates of growth 
for highly non spherical perturbations with 1 ~ 1 and n f"V 1, when An I'V 0. 
Therefore the strongest thermal mixing occurs near the boundary of a gravitating 
static gaseous sphere. 
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Stability of the Nonlinear Pulsations with Respect to Spherical Perturba­
tions. We now consider whether the nonlinear pulsations can prevent the indi­
cated instability. Suppose that 'Y = 5/3. Then p. = 1 + A cos r, where A = const 
is the relative amplitude of the pulsations, and (7.4.20) is reduced to the form 

QIV + [~O n (n + 1 + ~) - 4 + 13+A ;~:; r ] Q - (1 + 1)IQ = 0 . (7.4.22) 

We first consider spherical perturbations, with respect to which the static 
configuration will be stable. 

Suppose that 1 = 0 and n = 2 [the case with n = 1 and 1 = 0 corresponds to a 
change of the amplitude of the uniform oscillations, and one of the solutions of 
(7.4.13) with Q = 0 has the form K = const· p.dp./dr]. 

Following the general scheme for finding the characteristic Lyapunov expo­
nents for a second-order equation with periodic coefficients [7.36], we shall seek 
a numerical solution of the equation with Poincare's initial values. 

.. (47 3) K+ -- K=O 
3 1 +Acosr ' (7.4.23) 

K(1)(O) = 1, K(1)(O) = 0, K(2)(0) = 0, K(2)(0) = 1 

Then the characteristic exponents (more precisely, their exponentials) will be 
roots of the equation 

82 - a8 + 1 = 0, (a == K(1)(27r) + K2(27r» . 

The numerical values of the coefficients a for various values of the amplitude 
A are as follows: 
A 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
a -1.88 -1.91 -1.95 -1.99 -1.99 -1.85 -1.23 -1.22 -17.65 

Obviously, the case of parametric resonance corresponds to a = ±2. IT lal < 
2, the waves vary as almost periodic functions without becoming stronger. On 
the other hand, if lal > 2, the waves become stronger after a period, and the 
system becomes unstable. The numerical calculation shows that for an amplitude 
A < 0.815 of the nonlinear oscillations the regime of pulsations is stable, while 
for A > 0.815 the regime is unstable with respect to proper acoustic spherical 
oscillations with n = 2. 

Stability of the Nonlinear Pulsations with Respect to Nonspherical Perturba­
tions. IT 1 f 0, it can be shown that the solutions of (7.4.20) include four indepen­
dent functions Qi (i = 1,2,3,4) such that Qi(r) = 8,Qi(r+2'1r) (i = 1,2,3,4). 
Then the exponentials of the characteristic exponents can be found from the 
equation 

YI - 8 Y2 Y3 Y4 
YI iJ2 - 8 Y3 Y4 =0 (7.4.24) 
ih ih tis - 8 ti4 
YI Y2 Y3 Y4 - 8 
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Here Yi(r) are particular solutions of (7.4.22) which at r = 0 take the values 

y~n-l)(O)=6k' k,n=I,2,3,4. 

Thus, the problem reduces to numerical integration of (7.4.22) with the initial 
data (7.4.25), followed by solution of the algebraic equation (7.4.24). 

If I ~ 1 and n f'V 1, there is a possible analytic approach for the determination 
of the characteristic exponent and the solution of (7.4.22), corresponding to an 
increasing mode. We introduce the notation IOn (n + I + 1/2)/3 - 4 == N. For 
n f'V 1 and N f'V I ~ 1, we shall seek a solution of (7.4.22) in the form 

Q = const· exp(..\r) (1 + ~ 4>(m) (r)) , 
where the 4>(m)(r) are periodic functions of r: 4>(m)(r + 27r) = 4>(m)(r), with 
14>(m)(r)I f'V l-m /2. 

We shall also seek the exponent A in the form of an expansion 

00 

\ - \ + ~ ~ ~m -. l-m / 2 • A - An L..J "'m, '" ,-
m=<! 

Here An is the positive root of (7.4.21). We shall choose the numbers /'i,m in such 
a way that in the expressions for 4>(m) there are no terms which rise linearly in 
r. We shall obtain the desired equations for /'i,m by integration, over a period, of 
the equations for 4>(m), which have the form 

2' 3 An(4An + 2N)4>(m) + /'i,m(4An + 2N An) 
= L m (4)(l), .•• , 4>(m-l), /'i,l, ••• , /'i,m-l, r) , 

where Lm is a linear differential operator on the periodic functions 4>(1), ••• , 

4>(m-l) with coefficients which are fourth-degree polynomials in /'i,l, ••• , /'i,m-l 

and periodic in r. From the requirement of periodicity of 4>(m) it follows that 

2,.. 

/'i,m • 27r(4A~ + 2N An) = J Lm dr . 

° 
The calculations for /'i,O, /'i,l, and /'i,2 give zero values for them, and 

/'i, (4A2 + 2N)3 = 9A2 A (2A2 + 3n) [4(1 - ~) - 1] 
3 n n n A2v'f=A2 

The equations for 4>(1) and 4>(2) have the form 

2 • 3Acosr 
(4An + 2N)4>(1) + 1 A An = 0 , 

+ COsr 

3 • 2 •. 3Acosr 2 
(4An + 2N An)4>(2) + (6An + N)4>(1) + 1 A 4>(1)An = 0 + COSr 
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Thus, for large 1 the Lyapunov exponent .A for the increasing mode of per­
turbations in a pulsating sphere differs from the corresponding exponent .An for 
the static case by an amount of order 1-3/ 2• 

In conclusion, we note that (as we found above) the exact solution with 
nonlinear pulsations of homogeneous gaseous spheres has an interesting type 
of convective instability, which increases strongly as the outer layers are ap­
proached. Emission from the inner layers (not taken into account in this section) 
inhibits thermal mixing, and, as a result, in the inner layers the regime of non­
linear pulsations can be stable. The indicated instability evidently occurs only 
near the surface, and, as a result, a "corona" of turbulent gas is formed around 
the pulsating sphere. 

7.5 Nonlinear Transverse Oscillations at Resonance in a Layer 
of an Ideally Conducting Fluid in a Magnetic Field 

In this section, we demonstrate the equivalence of the equations of one-dimen­
sional motions of an isotropic, nonlinearly elastic body with plane waves and an 
ideally conducting compressible magnetizable fluid moving along the direction 
of the intensity vector of an external magnetic field, when the magnetic perme­
ability of the fluid is an arbitrary function of the density and the length of the 
intensity vector of the magnetic field. For these cases of the motion of a con­
tinuous medium, we consider the essentially nonlinear problem of the transverse 
oscillations excited in an infinite layer of the medium by an external tangential 
force which acts periodically on one of the plane boundaries of the layer. We 
examine the behavior of forced oscillations at resonance when in an elastic body 
the speed of the longitudinal waves is much greater than the speed of the trans­
verse waves, and in a fluid the speed of sound is much greater than the speed of 
the Alfven waves. We establish relations between the amplitude of the driving 
force and the proximity of its frequency to the resonance frequency at which 
Alfven discontinuities appear in the layer. 

7.5.1 Magnetohydrodynamic Analogy of One-Dimensional Motions 
of a Nonlinearly Elastic Body with Plane Waves 

a) Nonlinearly Elastic Layer. The equations of the dynamics of an isotropic 
elastic body for one-dimensional motions with planar symmetry can be written 
in the form 

{flwl a {flwi a 
eo at2 = a~PI , eo 8t2 = a~P., i =2,3 , 

aF aF d= aWl 
PI = eo ad ; Pi = eohi ah2/2' - a~ (7.5.1) 
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Here PI and Pi are the components of the stress tensor, PI == pn and Pi == Pli; 
WI, W2, and 'W3 are the components of the displacement vector of a Lagrangian 
particle in the Cartesian coordinate system x I, x2, x3 of an observer; ~ is a 
Lagrangian coordinate which in an initial discharged state (PI = PI i = 0 for 
d = h2 = h3 = 0) coincides with the Cartesian coordinate; eo is the initial 
density; and F = F(d, h2/2) is the free-energy density, where h2 == h~ + h~ (we 
assume that the temperature is constant). 

The relations (7.5.1) are obtained from the general equations for the dynamics 
of an elastic body in Piola-Kirchhof form [7.37], which in a Cartesian frame of 
reference take the form 

&Wi a [( aWi) aF] 
at2 = a~j O.k + a~k 8e jk ' i,j,k=I,2,3, 

where ~ I, e, and e are the Lagrangian coordinates, and c: j k are the components 
of the deformation tensor. In the derivation of (7.5.1), allowance has been made 
for the fact that the invariants of the deformation tensor in the one-dimensional 
case with plane waves can be expressed in terms of d and h2, and the nonzero 
components c: jk have the form 

In what follows, we shall confine ourselves to the case h3 = O. We introduce 
the notation h2 == h. Then from the system (7.5.1) for the displacements we 
obtain the following equations for the longitudinal, PI, and shear, P2, stresses: 

a [ Fhh api Fdh aP2 ] & 
at Fdda~ at - Fdda~ at = ae PI , 

a [ Fdh api 1 aP2 ] a2 
at - Fdda~ at + a~ at = a~2P2 , 

a2F &F a2F 
Fhh == ah2 ' Fhd == ahad' Fdd == adl ' 

2 (Fhd)2 
a2==Fhh--­

Fdd 

(7.5.2) 

The equations of the characteristics of the systems (7.5.1,2) (for h3 = 0) are 

(~;y =~ [Fdd+Fhh±V(Fdd-Fhh)2+4Flh] , (7.5.3) 

Here d~ / dt has the meaning of the speed of propagation of the wave fronts of 
the stresses in the particles. 

b) Layer of Ideally Conducting Fluid. The pondermotive force in magnetizable 
media in the absence of polarization and volume charge is [7.37] 
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1 . 1 k k 
-[j X B] + -8 (BkVH - HkVB ) . 
C 11' 

Using this relation, it can be shown that one-dimensional motions with plane 
waves of a magnetizable and compressible ideally conducting fluid in an external 
magnetic field BI applied in the direction of wave propagation are described in 
the Lagrangian coordinates by the equations 

(7.5.4) 

i =2,3 . 

Here WI is the component of the displacement vector in the direction of the xl 

axis, and all the quantities depend on only xl and t; BI, B2, and B3 are the 
components of the magnetic induction vector, and it follows from Maxwell's 
equations that BI = const; eo is the unperturbed density of the fluid for WI = 0; 
and Hi are the components of the intensity vector of the magnetic field. 

From the equation for heat flow in the reversible adiabatic case, it follows 
[7.37] that 

du = H . d (~) _ (p + H· B) d~ , 
411'g 811' g 

(7.5.5) 

where u is the total density of the internal energy of the fluid and the magnetic 
field. 

c) The Analogy. It follows from (7.5.4,5) that if we introduce potentials Wi 

(i = 2,3) for the new unknown functions h, == B,(l + d)/ BI (hi = 8w,/80, the 
relations (7.5.4) for WI, W2, and W3 will have the form (7.5.1) if the function u 
depends on the components of the vector B through its length. 

In the absence of magnetization of the fluid, the system (7.5.4) becomes the 
system of equations for one-dimensional magnetohydrodynamics [7.33]. In this 
particular case, the function u takes the form 

B 2h2 

u = U(d) + [811'eo(1 + d)] , 

where U(d) is the density of internal energy of internal energy of the fluid at 
constant entropy. 

In our notation, the equations of the characteristics of the system (7.5.4) will 
be identical to (7.5.3). 

The indicated magnetohydrodynamic analogy for nonlinear waves in an elas­
tic body was first established in a paper by the present author [7.38]8. (It is 

8 Of course, the analogy also holds in general, and not just for one-dimensional motions. Moreover, 
it is possible to establish an analogy between the model of an ideally conducting and magnetizable 

(continued on p.329) 
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clear that the analogy holds for waves in unbounded systems; for problems with 
boundary conditions, we must make a further analysis, as is done below in part 
(b) of Sect. 7.5.2.) 

7.5.2 Derivation of Basis Equations for Oscillations Near Resonance 

a) Oscillations in an Elastic Layer. Suppose that an elastic body is such that 
Fdd ~ Fdh ~ Fhh in the body in the range of values of d and h characteristic 
of the problems under investigation. Then from (7.5.3) it follows that the speed 
of propagation at of "fast" longitudinal waves is JFdd, while the speed of 
slow "transverse" waves is determined by the last relation in (7.5.2), where 
a~ = dFh(d(h), h)/dh along the curve aF/ad = const. 

Let us consider a layer of such an elastic material of thickness L, resting 
without a break on an absolutely solid base with no tangential frictional forces; 
acting per unit area of the surface of the upper boundary of the layer, there 
is a periodic tangential force A sin wt, as well as a constant normal load qo, 
corresponding to the following boundary conditions for the system (7.5.1) for 
(7.5.2): 

n=O, WI =0 for e=O , 

Pt = qo , P2 = A sin wt for e = L 
(7.5.6) 

We shall seek a periodic solution of this problem, for the realization of which 
the layer must not store energy, i. e., the work done by the external tangential 
force during a period must be equal to zero: 

wI'" J Asinwt(aW2/Ot)dt=0 . 

-wlw 

(7.5.7) 

If the amplitude of the driving force is sufficiently small, the desired solution 
can be obtained from the solution of a linear problem with linearized boundary 
conditions. This will be a standing transverse wave 

_ A. sin(we/ a2) 
P2 - sm wt . ( L/ ) , Pt = qO • smw a2 

(7.5.8) 

However, as the frequency w approaches the resonance frequency w = w* == 
mra2/ L (n = 1,2, ... ), infinite stresses occur inside the layer. It follows from 
this that our boundary-value problem is essentially nonlinear near the resonance, 
even for a small amplitude of the driving force. 

elastic ferromagnet (with intemal-energy density depending arbitrarily on the components of the 
induction vector of the magnetic field, the deformation tensor, and the entropy) and the model of 
an anisotropiC nonhomogeneous elastic body. This fact is essentially due to the integrals of the 
equation for the induction of a frozen magnetic field in the Lagrangian description of a continuous 
medium [see (5.4.2')]. 
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In view of the fact that the problem has a characteristic length L and a 
characteristic time T = 27r/w, with L/T ~ a2 ~ at. we can seek a solution in 
the form of an expansion in the two small parameters Fhd/ Fdd and Fhh/ Fdd. In 
a first approximation, the longitudinal stress is constant, corresponding to the fact 
that no longitudinal waves are emitted. The relation between the longitudinal and 
transverse deformations is finite, owing to the equality PI = PI (d, h) = qo = const. 
Expressing d in terms of h, we find a2 = a2(h). 

From (7.5.1) we obtain an equation for the shear displacement: 

lPW2 2lPW2 
8t2 - a2 8e2 = 0 (7.5.9) 

From (7.5.2) we have an equation for the shear stress: 

8[18] lP at a~ at P2 = 8eP2 . 

Equation (7.5.9) can be written in two equivalent forms: 

This leads to the equations 

(7.5.10) 

where C± can be found from the equation e = e(t, C±), which determines the 
family of integral curves of the equation 

de! dt = ±a2(h) , 

and the constant a is determined below by (7.5.12). In view of the periodicity of 
the required solution, the functions cp- and cp+ must also be periodic. In order to 
eliminate the arbitrariness in choosing the parameters of the families of charac­
teristics C±, we shall set them equal to the times t at which the characteristics 
intersect the curve e = O. From the conditions (7.5.6) at e = 0 it follows that 

(7.5.11) 

We now study the case of a weakly nonlinear material whose free energy is 
an analytic function of the invariants of the deformation tensor Jt, 12, and J3. It 
can be shown that in this case the function a2(h) can be expanded in a series in 
even powers of h near the point Jt = 12 = J3 = O. We confine ourselves to the 
first two terms: 

(7.5.12) 
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With accuracy up to the tenns "" h4, from the equations of the characteristics we 
have 

(>'+1')/2 

C+ = A + 3a J [cp(A) - cp(2r - A)f dr , 

A 

C_ = p- 3a j [cp(p) - cp(2r - p)]2 dr , 

(>'+1')/2 

A=:=t-e/a, p=:=t+e/a. 

From (7.5.10), using (7.5.11), we obtain 

h + ah3 = cp(C-) - cp(C+) . 

We find the function cp from the conditions (7.5.6) at e = L: 

(!Oa2(h + 2ah3) = A sin wt . 

(7.5.13) 

(7.5.14) 

Substituting here the solution (7.5.14) at e = L, we obtain for cp the functional 
equation 

(7.5.15) 

For a small deviation of the frequency of the driving force from the resonance 
frequency, in the nonlinear tenns of (7.5.15) we put w = w*, A = t - mr/w, 
p = t + mr /w, and we replace the difference cp(C_) - cp(C+) by the expression 

2n7r dcp(A) 2 - 1 
---d -[3acp (A) + 3acp2 + (w* - w)w;] . 

w t 

Here we have made use of the condition and the notation 

+~/w ~/w J cp(t) dt = 0, cp2 =:= ~ J cp2(t) dt 

-~/w -~/w 

(7.5.16) 

(7.5.17) 

and the periodicity of cp(t). We shall neglect the last tenn on the left-hand side 
of (7.5.15), since it is proportional to (w _w*)3. Integrating (7.5.15) with respect 
to the time, we finally obtain 

cp\t) + cp(t)(3cp2 + 19) + vcoswt = 0 , 

'I9=(w*-w)/aw*, v=(-l)nA/2mweoa2 
(7.5.18) 

b) Magnetohydrodynamic Oscillations in a Layer of a Weakly Compressible 
Fluid. We assume that the speed of sound in a weakly compressible fluid is 
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much greater than the speed of Alfven transverse waves a2 [in the presence of 
magnetization, ~ f Bt/47r!?o], 

The boundary conditions (7.5.6) in this case acquire a different interpretation: 
a layer of this fluid is enclosed between two infinitely conducting planes. One 
of the planes is fixed and inactive, and on the other there is a periodic current, 
and a constant normal load is applied to it. If the frequency w of the current 
approaches the resonance frequency w*, then even for small amplitudes of the 
current the problem becomes nonlinear. With the method explained above, the 
determination of the solution in the case of weak nonlinearity again reduces to 
the analysis of the algebraic equation (7.5.18). 

If on the boundary ~ = L instead of the condition PI = qO we impose the 
condition WI = 0, then instead of (7.5.18) we obtain the equation 

3 -
<p (t)+<p(t)(<p2+19)+//coswt=0 . (7.5.19) 

7 .5.3 Investigation of Oscillations in an Elastic Layer 

All the analysis which follows reduces to the determination of solutions of the 
system (7.5.17,18) [the case of the system (7.5.17,19) can be analyzed in a 
similar manner]. It is convenient to simplify (7.5.18) by means of the substitution 
<p = ~ y( 7), 7 = wt. From (7.5.17, 18) we obtain the system 

3 -y (7) + 3Y(7)(y2 + .a) = cos 7 , 
7r 

27ry2 = J y2(7) d7 , 
(7.5.20) 

-7r 

7r J y(7)d7=0, D=19/3{IV. (7.5.21) 

-7r 

Depending on the value of D, (7.5.20) can determine either (I) one real 
function for all values of 7 or (II) three real functions for all values of 7, or 
(III) for some 7 (7.5.20) has one real root, and for other 7 it has three real roots. 
Therefore we divide the whole range of variation of D into three intervals. 

I) We first consider the case in which D + y2 ~ O. Making the substitution 

y = 2..jy2+DsinhI11' from (7.5.20) we obtain COS7 = 2V(y2+.a)3Sinh3111. 
Therefore the only real solution of the system (7.5.20) has the form 

y(7) = 2..) y2 + D sinh 111 ; 1 . h-1 ( cos 7 ) 

111 = "3 sm 2V(y2 + D)3 
(7.5.22) 

where y2 is found from the solution of the equation 
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11' 

7ry2 = 4(y2 + Q) J sinh2 I-'ldr (7.S.23) 

o 

For fl ~ 1, the solution (7.S.22) becomes a linear solution: 

cosr 
y(r) = 3fl ' 

( ) vcos(wt) 
cpt=- {) . (7.S.24) 

For w = w* (the resonance frequency), fl = 0 and y2 satisfies the equation 

If fl + y2 = 0, it follows directly from the system (7.5.20) that 

11' 

sr.=::-= ""2 - J s~ _ '- r(S/6) y(r)=ycosr, try - ycos~rdr-y7rr(4/3). 

o 

Here r(x) is Euler's gamma function. Therefore the region fl + y2 ~ 0 corre­
sponds to the range of variation of fl from fll = -r(S/6)/(..,fi r(4/3» to +00 
(fll Rl -0.7S). 

II) Suppose now that -(fl + 1Ji) ~ 2-2/3• In this case, in (7.S.20) we make 

the substitution y = -2V _(y2 + Q) sin 1-'2, after which we obtain 2V _(y2 + fl3 
x sin 31-'2 = cos r. Therefore in case (II) (7.S.20) determines three continuous 
functions 

Yk = -2V _(y2 + Q) sin (J.l2 + 2;k) , 

1-'2 = ! arcsin ( cos r ). 
3 2V _(y2 + Q)3 

(7.5.2S) 

Of the three solutions Yk(r), k = 0,1,2, only the solution yo(r) satisfies the 
condition (7.S.21). Therefore Y5 satisfies the equation 

11' 

7rY5 = -4(Y5 + Q) J sin2 1-'2 dr . (7.S.26) 

o 

From smooth segments of the continuous solutions Yl(r) and Y2(r), we can 
construct discontinuous solutions Ya(r) and Yb(r) which ensure fulfillment of 
(7.S.7) and satisfy the condition (7.5.21): 

Ya(r) = {Yl(r) () {Y2(r) for -7r/2<r<7r/2, 
Y2(r), Yb r = Yl(r) for 7r/2<r<37r/2. 
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However, for il --t -00 the discontinuous solutions Ya(7) and Yb(7) [unlike the 
continuous solution YO(7)] does not tend to the linear solution (7.5.24). 

We now determine the boundary of the interval in il, il = iln, in which 

there is a solution in the form (7.5.25,26). For 2.) -(Y5 + il)3 --t 1, the smooth 
solution tends to the continuous periodic solution YO(7) having a discontinuity in 
the derivative at 7 = 7rm for m = 0, ±1, ... (Fig. 7.4): 

I/(T) 

Fig. 7.4. Continuous solution yo(r} and discontinuous solutions Ya(r) and Yb(r) for n = nu 

Here N is the integer part of 7/7r. Calculating Y5, we readily obtain Y5 = 21/ 3(7r_ 
3V3/2)/7r. Hence 

ilu = _21/3 (7r - 3 ~) /7r - 2-2/3 ~ -0.848 

III) Suppose now that il varies in the interval (iln, ill), which corresponds 
to the inequality 0 < _(y2 + il) < 2-2/3. In this interval, the system (7.5.20) 
determines a unique, but multiple-valued, function Y(7). Its form is shown in 
Fig. 7.5. Since Y(7) is multiple-valued in this range of variation of il, a continuous 
solution does not exist. 

Let us denote arccos (2.) _(y2 + il)3) by fl. In the interval (iln, ill), the 

quantity fl is real and satisfies the inequalities 0 < fl < 7r /2. We shall distinguish 
two ranges of variation of 7: 1 cos 71 > cos fl and 1 cos 71 ::; cos fl. 

For the ranges of 7 in which 1 cos 71 > cos fl, we make the substitution 

Y(7) = 2.) _(y2 + il) (cosh Jl) sgncos 7 . (7.5.27) 



!/(1') 
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Fig.7.S. Typical discontinuous 
solution for [) E (.au, 01) 

Here sgnx = +1 for x > 0, sgnx = -1 for x < 0, and sgnx = 0 for x = O. 
Then the single-valued solution of (7.5.20) has the form (7.5.27), where 3p = 
cosh -\1 cos Til cos D). 

Suppose now that I cos TI ::; cos D. In this case, we make the substitution 

y=2V-(y2+il)(SgnCOST)COSiL . (7.5.28) 

Then from (7.5.20) it follows that the discontinuous solution of (7.5.20) has the 
form (7.5.28), where 

3iL = arccos(1 cos Til cos D) . 

For T = trk + 7r/2 (k = 0, ±1, ... ), the solution (7.5.28) has a tangential discon­
tinuity, since 

y (~+ 'Irk - 0) = v'3(-I)kV -(il + ]12) , 

y (~+ 'Irk +0) = -v'3(-llV -(il + y2) . 

For I cos TI = cos D, the solution (7.5.27) can be continued analytically to the 
solution (7.5.28). 

In the interval ilIl, ill), we have for y2 the equation 

[
0 1r/2 1 

7ry2 = _8(y2 + il) I cosh2 P dT + ! cos2 iL dT 

Thus, our investigation leads to the interesting conclusion that when the 
dimensionless parameter il == (w. - w)(2n7rf!a2)2/3 13~w.A2/3 varies in the 
interval (ilu, ill) (ilIl :::::J -0.848, ill :::::J -0.75) forced transverse oscillations 
in a layer of weakly compressible fluid (Alfven waves) must have tangential 
discontinuities. 

For (7.5.19) (the case of a fixed boundary e = L), the values of illi and ili 
are as follows: 
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* 1 r(5/6) 
OIl = - 3.fi r(4/3) ~ -0.25 ; 

OJ = _21/3 (7r -31") /37r -2-2/3 ~ -0.70 

In the interval (Oll. On, forced transverse oscillations in a layer with fixed bound­
aries have tangential discontinuities. 

7.6 Excitation of Shock Waves in a Layer of an Ideally 
Conducting Gas at Resonance in a Magnetic Field 

To study the effects of weak: nonlinear interactions, it is of interest to consider 
resonators in which the dimensions of the system are multiples of the length 
of a periodically excited wave (the linear theory in this case gives an infinite 
amplitude). Gas-dynamical waves excited by periodic motion of a piston in a 
closed tube near resonance have been studied theoretically and experimentally 
[7.39-44]. 

Small nonlinear effects in a plasma accompanying the propagation of waves in 
extended systems have been described [7.45] in the framework of hydrodynamic 
and kinetic approaches9• In Sect. 7.5 we demonstrated the formation of tangential 
discontinuities at resonance of transverse oscillations in a layer, assuming that the 
speed of the longitudinal waves is much greater than the speed of the transverse 
waves. 

In this section, we consider nonlinear oscillations of the density of the gas and 
of the magnetic field intensity in a layer of thickness L of an ideally conducting 
gas bounded by two stationary parallel planes in the case of a double resonance. 
A periodic electric current passes through one of the boundaries, and the other 
plate is assumed to be a dielectric. The external magnetic field is assumed to be 
perpendicular to the boundary planes. Near the resonance, the transverse oscilla­
tions cease to be standing waves and excite longitudinal acoustic waves. In the 
case of a double resonance, when the Alfven and acoustic speeds are similar, 
the nonlinear interaction of the longitudinal and transverse waves is particularly 
pronounced. For this case, we examine below the evolution of the form of the 
periodic oscillations of the density and of the magnetic field intensity (in cer­
tain intervals with magnetohydrodynamic shock waves) as the frequency of the 
electric current exciting the oscillation varies. 

9 It is worthwhile to underline the remarkable contribution of english school of M.J. Lighthill and 
G.B. Whitham as well as french school of P. Germain (p. Bois, P. Gatignol, J.-P. Guiraud, G.A. 
Maugin, M. Roseau and others) in this topic for continuous media. 
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7.6.1 Formulation of the Problem 

For one-dimensional motions with plane waves, the equations of magnetohydro­
dynamics take the form (see, for example, [7.33]) 

( avx avx) a ( Hi) e at + Vx ax = - ax p + 871" ' (7.6.1) 

e (av1.. + v av1..) = Hx aH1.. 
at x ax 471" ax ' (7.6.2) 

aH1.. a aV1.. -at + ax (H 1..Vx) = Hx ax ' (7.6.3) 

ae a at + ax (evx) = 0, Hx = const (7.6.4) 

Here p is the pressure, e is the mass density, Vx and Hx are, respectively, the 
components of the velocity and of the magnetic field intensity along the x axis, 
and v 1.. and H 1.. are the vector components of the vectors v and H perpendicular 
to the direction of propagation of the wave. We have already shown in Sect 7.5 
that [even if allowance is made for the reversible magnetization of the medium, 
{l = {l(e, HZ)] the equations of magnetohydrodynamics (7.6.1-4) are identical, 
after a change of notation, to the equations of the one-dimensional dynamics of 
an isotropic nonlinearly elastic body. 

The system written above has particular solutions in the form of simple 
waves: Alfven, fast, and slow magnetohydrodynamic waves in the presence of a 
constant component of the transverse magnetic field [7.33]. We exclude rotational 
Alfven waves from consideration, assuming that the oscillations of the magnetic 
field take place in a fixed plane passing through the direction of propagation of 
the wave. If the constant component H 1.. tends to zero, the speed of the fast 
magnetohydrodynamic wave tends to the larger of the speeds a;' = JH';/471"(!O, 
ao = Jap/aels, and the speed of the slow wave tends to the smaller of these 
speeds. To simplify the terminology in what follows, we shall speak of the 
interaction of the transverse and acoustic waves. Therefore the transverse waves 
will be either the fast or slow magnetohydrodynamic waves for aA > ao or 
aA < ao, respectively, and will have a characteristic speed or propagation aA, 

and the acoustic waves will have speed ao. We rewrite the system (7.6.1-4) 
in terms of the Lagrangian coordinates t and e, where e coincides with the 
coordinate x in the absence of waves, when the density of the gas is eo. The 
equation of continuity then takes the form e(de + dw) = eo de, where w = x-e. 
Eliminating V1.. from (7.6.2,3), from the system (7.6.1-4) we obtain 

(7.6.5) 
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Assuming that the motion of the gas is isentropic, for the dependence of 
the pressure on the specific volume V == £,>-1 we use the expression which 
approximates the adiabat with accuracy up to terms of the second order inclusive: 

p = pO - (~ y (V - Vo) + 2~~ (V - Vo)2, ao,pO, Vo, bo = const. (7.6.6) 

The desired system, obtained from (7.6.5) using (7.6.6), has the form 

(7.6.7) 

We shall seek periodic solutions of the system of equations (7.6.7) satisfying 
the boundary conditions 

h = 0, w = 0 for e = 0 

h = ho sin wt, W = 0 for e = L 
(7.6.8) 

The conditions (7.6.8) correspond to the fact that the boundaries of the layer are 
assumed to be stationary, a periodic electric current passes through the boundary 
e = L, and the boundary e = 0 is assumed to be a dielectric. 

Far from resonance, both in the speed of sound and in the Alfven speed, 
i.e., when I2wL/ao - mrl ~ e, IwL/aA - m7r1 ~ e, where m and n are 
integers and e ~ 1, the solution of (7.6.7) for a small amplitude of the current 
at the boundary e = L with the boundary conditions (7.6.8) will be described 
by a standing transverse wave with amplitude of order e, which leads to the 
appearance of gas-dynamical oscillations of order e2: 

h = hoA(e) sin A~~) , A(O == sin(we/ aA) , (7.6.9) 

W = (16wA3(L»-1 h~aA {(aA/ ao)2[eL -1 A(2L) - A(2e)] 
+ ai(a~ - ai)-1 cos 2wt[A(20 - A(2L) sin(2we/ao)/ sin(2wL/ao)]} . 

(7.6.10) 

In the neighborhood of a resonance in the Alfven speed, IwL / aA - m7r1 :::; e, 
the expression (7.6.10) does not correctly describe the behavior of the oscillations, 
since the amplitudes of the oscillations of the magnetic field increase without limit 
according to the linear theory. An analogous situation occurs near a resonance in 
the speed of sound, i. e., for 12w L / ao - n 7r I :::; e, since according to the equation 
of continuity the expression (7.6.10) then gives unbounded amplitudes of the 
oscillations of the density. 

The point is that (although between the nodes of the standing wave the non­
linear terms are small, as before) near the nodes of the waves the nonlinear and 
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the linear terms are of the same order of smallness. Near a resonance, fulfillment 
of the boundary condition at ~ = L occurs near a node, since at resonance there 
is an integer number n of wavelengths in the layer. Therefore the form of the 
waves at resonance will be determined essentially by the nonlinear terms of the 
solution subject to the boundary conditions at ~ = L. 

7.6.2 Investigation of the Form of the Oscillations Near a Resonance 

We shall investigate resonant oscillations when the speeds of propagation of 
the acoustic and transverse waves are similar, i. e., we shall find the asymptotic 
behavior of the solution of the problem (7.6.7,8) under the assumptions 

(7.6.11) 

In the first approximation, the oscillations at resonance will be described by the 
expressions 

We shall find the form of the functions f and 'P by means of a nonlinear solution 
with boundary conditions at ~ = L. We substitute the expressions (7.6.12) into 
the right-hand side of (7.6.2) and find the next approximation for W and h. In 
calculating the values W2 and h2 of the second approximation on the boundary 
~ = L with accuracy up to infinitesimals of order higher than the second in c, 
we replace Lw / ao by N 7r and aA by ao. 

Suppose that, by definition, L/ao = Nw- I 7r(1 + .6.//2) and L/aA = 
w-I N 7r(1 + .6.",/4), where .6./ '" c and .6.", '" c in view of the conditions 
(7.6.11). Then because of the periodicity of 'P and f with periods 27r/w and 
7r /w, respectively, for the values of WI and hI on the boundary ~ = L we have 

WI = w-IN7r.6.tf'(t + N7r/w) , hI =.6.",N7r'P'(t+N7r/w)/2w ,(7.6.13) 

where the primes indicate derivatives of the functions with respect tp their argu­
ments. 

At ~ = L, the conditions WI + W2 = 0 and hI + h2 = ho sin wt must hold. From 
the first of these conditions, we obtain, using (7.6.13), the equation 

(7.6.14) 

We find the constant A by integrating the left-hand side of (7.6.14) over a period 

1r/W 

7rA/w=- f['P2+b~ft2/ari]dt . 
o 

From the boundary condition for h, we obtain 

Ll",'P(t) + aO"I j'(t)'P(t) + (-I)N2ho cos(2wt/7r N) = 0 (7.6.15) 
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We write Ll", -Llfaa/115 == d. For convenience in analyzing (7.6.14, 15) for dfO 
we introduce instead of I' and cp the new functions F and 4i, and instead of the 
given constants Ll"" Llf' ho, and N the new constants n, YO, and 17, defined as 
follows: 

21' 
F == aod + n, n == d-1(Ll", + Llfa~bo2) , 

2cpao 4hoao 
4i == bod ' yo == N7rbod ' (7.6.16) 

y == (_I)Nyocoswt, r == wt 

17 == ~[-A + Ll/ao/bo)2](bod)-2 . 

(The case d = 0 is considered below.) Then from (7.6.14, 15) we obtain equations 
for 4i and F, and a relation between them: 

(F2 _ 1)2 + y2 _ 417(F + 1)2 = 0, (F + 1)4i + y = 0 , 

(24i + yi + 4i4 - 4E4i2 = 0 . 

(7.6.17) 

(7.6.17') 

For given n and YO, the positive constant 17 can be found from the condition 
J;1r(F - {))dr = 0, which follows from the definition of Fin (7.6.16) and the 
periodicity of f. 

According to (7.6.17), we can easily construct the family of curves F(y, E) 
for various values of the parameter 17 [Fig.7.6(A)]. In the plane of F and y, on 
the two curves defined by the equation 

(7.6.18) 

the derivatives dF/dy become infinite. [For fixed y, (7.6.18) has only two real 
roots.] The critical trajectory corresponding to 17 = 1, 

(7.6.19) 

separates the closed curves with no self-intersections (0 < 17 < 1) from curves 
having the form of a nonsymmetric "figure of eight" with a point of self­
intersection at F = -1. For these curves, 17 > 1. In Fig.7.7(A) we show the 
qualitative character of the family of curves 4i = 4i(y, E) defined by (7.6.17'). 

The parameter n characterizes the difference of the oscillation frequency 
from the resonance frequency. We shall find the relation between n and 17 by 
means of the condition 

21r J (F - {)) dr = 0 or 

o 

Yo 

.!. J F(y, E) dy = n 
7r V 2 2 -Yo Yo - Y 

In the (F, y) and (4i, y) planes, we draw the lines y = ±YO [according to (7.6.16), 
YO is proportional to the oscillation amplitude ha]. These lines are tangential to 
two curves from the family (7.6.17) at the points F = F+ and F = F_, where F+ 
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Fig.7.6. (A) Family of curves F = F(y, E) [see (7.6.17)]. (8) Evolution of the discontinuous 
solutions for F in the case Yo < ffi for [] E ([]3, []\) 

Fig.7.7. (A) Family of curves <P = <p(y, E). (8) Evolution of the discontinuous solutions for <P 
corresponding to the solutions for F in Fig. 7.6 

and F_ are the positive and negative roots of (7.6.18), respectively. We determine 
the corresponding values of E+ and E_ by means of (7.6.17): 

2E+=F;-F+, 2E_=F:-F_. 

Let us consider the change in the qualitative character of the oscillations as 
il varies from +00 to -00 under the condition YO < "fi7 (Yo = "fi7 corresponds 
to the vertical tangent to the critical trajectory E = O. In the interval il > ill, 
the oscillations are smooth. In order to find the value of ill corresponding to 
E+o we introduce the indefinite integral 

t/J(F, F ±) == 2 J F (;; ) E dF , 

where F± is equal to either F+ or F_. 
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For E = E+o we have 

dy 2(F+F+ -1)dF 
dT I E = - = ---r::::::::::::::::::;::=.:====:==:::==:=-~~==========~ 

JY~ -y2 J(F + F+)2 + 2(F+ - l)J2(F; - F+) - (F - 1)2 

Then from the definition of tP we have 

In the interval (il3, ill), continuous oscillations are impossible, and continuous 
motions reappear only when 

In the interval (il3, ill), we shall construct discontinuous solutions on the ba­
sis of the following requirements: (1) in magnetohydrodynamics, discontinuities 
of rarefaction are impossible, since they correspond to transitions with a decrease 
of the entropy [7.33] without supply of heat; (2) the shock waves are weak, so 
that on the breaks we can neglect the discontinuity of the entropy. It follows from 
this that a break is admissible only from one branch to another branch of the 
curves F(y, E) and q>(y, E) for a fixed value of E (along the curves E = const 
the value of the entropy does not change). 

The oscillations of the density are described by the function 

e - eo = -eo/ao[f'(t + e/ao) + f'(t - e/ao)] . 

This solution consists of two waves, traveling in opposite directions. It follows 
from the requirement (1) that the function f' on the cut must fafl off with 
increasing t. Therefore as T increases on the cut the function F == 21' /aod + il 
must fall off for d > 0 and rise for d < 0, and, according to the corollary of 
the condition (2), the discontinuity connects different branches of the nonunique 
curve F = F(y, E). In Fig.7.6(B) we show the evolution of the discontinuous 
solutions for F over one period in the interval (il3, ilt> for yo < Vfj, which 
are constructed by means of segments of the closed curve F = F(y, E+) with 
E+ < 1. The direction of increase of T for d > 0 corresponds to passage through 
the breaks with decreasing F, and for d < 0 the direction must be chosen 
so that F increases at the breaks. In Fig.7.7(B) we show the corresponding 
discontinuous curves q>(y) over a single period in T. The discontinuous curves 
for q> must be traversed in the direction consistent with the direction taken for the 
discontinuous curves for F. In the interval (il3, ill), the discontinuous solutions 
for the density are qualitatively similar to the near-resonance oscillations of a 
gas in a closed tube excited by periodic motion of a piston [7.39,43]. The break 
in F becomes most intense for il = il2, when there is a resonance in the speed 
of sound, il2 = (ill + il3)/2 [see Fig. 7.6(b)]. Then the corresponding curve q>(y) 
is continuous, with a break in the derivative at y = 0 [Fig.7.7(b)]. In the interval 
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Fig. 7.8. (8) Continuous oscillations of F for {} E ({}S,{}3). YO <../ff; (b,c,d,e) evolution of the 
discontinuous solutions for F for {} E (~, {}s) 

Fig. 7.9. Fonn of the oscillations of ~ corresponding to the oscillations of F in Fig. 7.8 

fl4 < fl < fl3, the solutions are again smooth. The value fl4 corresponds to the 
value E = 1: 

Fl 

fl4 = 4 J F y'(F+I)(2 - F) dF 

-I yI{3 - F)JY5 + (F + 1)3(F - 3) . 

Here FI is the smaller root of (7.6.19) for Y = yO. For fl = fl4, the solutions 
for F and ip have vertical tangents at Y = 0 and are described by the part of 
the curve (7.6.19) for Y < Yo. In the region fls < fl < fl4' the solutions for ip 
have Alfven breaks, where ip changes sign without a change in its magnitude. At 
these points, the function F has a break in its derivative. Here 11' fls = t/J( - F _ -
';2(1- F_), F_) - t/J(-I,F_). 

In Figs. 7.8(a) and 7.9(a) we show the evolution of the continuous oscillations 
of F and ip in the interval (fls, fl3). 
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For D < Ds, the Alfven breaks become weak magnetoacoustic shock 
waves, which will be present in the solution up to D = D9, where 7r D9 = 
.,p (1 - ..j2(F: - F_), F_) - .,p(F_, F_). These discontinuous solutions are 

constructed from segments of the curves F = F(y, E_), ~ = ~(y, E_). In 
the interval Ds < D < D9, the evolution of the discontinuous solutions for 
the functions F and ~ is shown in Figs.7.8 (b,c,d,e) and 7.9(b,c,d,e), respec­
tively. The rule formulated above for the direction in which the discontinuous 
curves are traversed remains valid here. Besides weak magnetoacoustic shock 
waves, the oscillations of ~ have Alfven breaks, and the oscillations of F have 
weak breaks in the interval (D7, Ds), where 7rD7 = .,p(F-, F_) - .,p(-I, F_) and 
2Ds = D7 + D9• The oscillations of F and ~ have breaks of maximum intensity 
for D = Ds and D = D6, 2D6 = Ds + D7. All these values of D can be expressed 
in terms of F+ and F _ using Jacobi elliptic integrals. The parameters F+ and F_ 
in turn can be expressed in terms of YO as the roots of the fourth-degree equation 
(7.6.17). 

For Yo > .J2j, the pattern of oscillations is somewhat different. In this case, 
DI can be expressed in terms of F+, just as in the case YO < .J2j, and the 
expression for D3 has the form .,p(F+, F+) - .,p(-I, F+). In the interval (D2, (3), 

the oscillations have not only magnetoacoustic breaks but also Alfven breaks 
for ~ and weak breaks for F when y = O. In Fig. 7 .1O(a, b, c) we show the 
evolution of the curves F = F(y) for DI > D > D3. In the interval (D3, ( 9), 

the oscillations for YO > .J2j are qualitatively similar to the oscillations for 
yo < .J2j in the interval (D4, (9). 

If the curves F = F(y) and ~ = ~(y) represented as functions F = F(r) and 
~ = ~(r) for various values of D from DI to D9, we obtain the picture of the 
evolution of the oscillations in the density and magnetic field intensity shown 
in Figs. 7. 11 (a, b) and 7. 12(a, b). Figure 7.11(a, b) corresponds to yo < .J2j, and 
Fig. 7. 12(a, b) corresponds to YO > ../i7 for d > O. In order to obtain the picture 
of the evolution of the oscillations for d < 0, we must make the transformation 
r' = -r. We stress that in Figs. 7. 11 (a) and 7.12(a) the average value of F over 
a period is equal to D, and in Figs.7.11(b) and 7.12(b) the average value of ~ 
over a period is equal to zero. 

We now describe the form of the oscillations in the case d = O. We introduce 
the new notation 

F == (y~aij) -1/2 f' + Ll , 

Ll == (Y~C4J) -1/2 Llcp . 

( bo)-1/2 

~ == y:o cp(t) , 

Then (7.6.14,15) can be rewritten in the form 

F~+COST =0, .y. +F' = E, E;: [(".:')' - A] yOl . (7.6.20) 
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For a given value of .1, the required value of E can be found from the require­
ment 

11' J (F - .1) dT = 0 . 

o 

(7.6.21) 

Qualitatively, the evolution of the oscillations in this case is similar to the 
evolution of the oscillations for d > 0 in the interval from [19 to [16, and then the 
picture goes in the opposite order (from [16 to [19). Therefore the entire range 
of variation of .1 can be divided into eight parts. 

I) For 'Ir .1 > 4 (i. e., in the case of continuous oscillations), from (7.6.20,21) 
we readily obtain 

2~ = .j E - 2 cos T - .j E + 2 cos T , 

2F = .j E - 2 cos T + .j E + 2 cos T • 
(7.6.22) 

According to (7.6.21), the constant E in (7.6.22) must be found from the equation 

(7.6.23) 

where E(J.t) is the complete elliptic integral of the first kind. Equation (7.6.23) 
has a unique solution for 'Ir .1 > 4. 

II) For 1'Ir .11 < 4, breaks occur for T = -00 + 'Irk. We shall describe the 
solutions only in a half-period, since the magnetic field intensity in the other 
half-period has the opposite sign and the perturbation of the density has period 
'Ir. For brevity, we introduce the notation 

s == sinT/2, c == cosT/2 . 

In the interval 2../i < 'Ir .1 < 4, the solution has the form ~ = s - c, F = s + c 
for -00 < T < 'Ir - 00. The point of the break 00 lies in the interval 0 < 00 < 'Ir /2, 
and 'Ir .1 = 4 cos 00/2. 

m) For 4(../i - 1) < 'Ir .1 < 2../i. the point of the break 00 lies in the 
interval 'Ir /2 < 00 < 'Ir, and 'Ir L1 = 4(../i - sin(00/2». The solution of the system 
(7.6.20) has the form ~ = ±(s - c), F = ±(s + c), where the upper sign is 
taken for the interval 'Ir /2 > T > 'Ir - 00, and the lower sign for the interval 
'Ir - 00> T > -'lr/2. 

For 'lr.1 = ±4(../i - 1), the solution of (7.6.20,21) has Alfven breaks for 
T = 'Ir/2 + 'Irk and weak breaks for T = 'Irk (k = 0, ±1, ... ). 

N) For 0 < 'Ir .1 < 4(../i - 1), the point of the break 00 lies in the interval 
'Ir/2 < 00 < 'Ir, and 'lr.1 = 4[sin(00/2) + cos(00/2) - 1]. The solution has the 
form ~ = s - c, F = s + c for 0 > T > -00 , and ~ = c - s, F = -s - c for 
-00 > T > -'lr. When .1 = 0, the solution has the form ~ = s - c, F = s + c for 
-'Ir < T < O. 

V) In the interval -4(../i - 1) < 'Ir L1 < 0, the point of the break is determined 
by the equation 'lr.1 = 'Ir(1 - cos(00/2) - sin(00/2» (0 < 00 < 'Ir/2). Here the 
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Fig. 7.12. Evolution of the form of the oscillations of the density [curves (a)] and of the magnetic 
field intensity [curves (b)] as [) varies for Yo > .JTi 

solution is iP = ±(8 - c), F = ±(8 + c) (the upper sign for -7r < T < -(Jo, and 
the lower sign for -(Jo < T < 0). 

VI) For -2/2 < 7rLl < -4(/2 - 1), we have 7rLl = -4(/2 - sin«(Jo/2», 
and the point of the break: (Jo lies in the interval 0 < (Jo < 7r /2. The solution has 
the fonn iP = 8 + c, F = 8 - c for -(Jo < T < 7r /2, and iP = -(8 + c), F = c - 8 
for 7r/2 < T < 7r - (Jo. 

VII) For -4 < 7r ..1 < -2/2, for the detennination of (Jo we have 7r ..1 = 
-4 sin (Jo/2, 7r /2 < (Jo < 7r. The solution here is iP = 8 + c, F = 8 - c for 
-(Jo < T < 7r - (Jo. 

VIIl) For 7r ..1 < -4, the solution again becomes continuous: 

2iP = J 17 + 2 cos T - J 17 - 2 COST , 

-2F=J17+2cosT+J17-2cosT , 

where 17 can be found by means of (7.6.23) with ..1 replaced by -..1. 
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