
Trim Size: 6.625in x 9.625in Mariño ffirs.tex V3 - 02/11/2016 6:55 P.M. Page i�

� �

�

OPTIMIZATION
OF COMPUTER
NETWORKS –
MODELING AND
ALGORITHMS

www.ebook3000.com

http://www.ebook3000.org

Trim Size: 6.625in x 9.625in Mariño ffirs.tex V3 - 02/11/2016 6:55 P.M. Page ii�

� �

�

www.ebook3000.com

http://www.ebook3000.org

Trim Size: 6.625in x 9.625in Mariño ffirs.tex V3 - 02/11/2016 6:55 P.M. Page iii�

� �

�

OPTIMIZATION
OF COMPUTER
NETWORKS –
MODELING AND
ALGORITHMS
A HANDS-ON APPROACH

Pablo Pavón Mariño

www.ebook3000.com

http://www.ebook3000.org

Trim Size: 6.625in x 9.625in Mariño ffirs.tex V3 - 02/11/2016 6:55 P.M. Page iv�

� �

�

This edition first published 2016

© 2016, John Wiley & Sons, Ltd

Registered office
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for
permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright,
Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK
Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and
product names used in this book are trade names, service marks, trademarks or registered trademarks of their
respective owners. The publisher is not associated with any product or vendor mentioned in this book

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing
this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of
this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is
sold on the understanding that the publisher is not engaged in rendering professional services and neither the
publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert
assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Names: Marino, Pablo Pavon, author.
Title: Optimization of computer networks : modeling and algorithms : a

hands-on approach / Pablo Pavon Marino.
Description: Chichester, West Sussex, United Kingdom : John Wiley & Sons,

Inc., [2016] | Includes bibliographical references and index.
Identifiers: LCCN 2015044522 (print) | LCCN 2016000694 (ebook) | ISBN

9781119013358 (cloth) | ISBN 9781119013334 (ePub) | ISBN 9781119013341
(Adobe PDF)

Subjects: LCSH: Network performance (Telecommunication)–Mathematical models.
| Computer networks–Mathematical models. | Computer algorithms.

Classification: LCC TK5102.83 .M37 2016 (print) | LCC TK5102.83 (ebook) | DDC
004.601–dc23

LC record available at http://lccn.loc.gov/2015044522

A catalogue record for this book is available from the British Library.

Set in 10/12pt, TimesLTStd by SPi Global, Chennai, India.

1 2016

www.ebook3000.com

http://www.ebook3000.org

Trim Size: 6.625in x 9.625in Mariño ffirs.tex V3 - 02/11/2016 6:55 P.M. Page v�

� �

�

To my sons, Pablo and Guille, and to my wife Victoria,
the smiles of my life.

www.ebook3000.com

http://www.ebook3000.org

Trim Size: 6.625in x 9.625in Mariño ffirs.tex V3 - 02/11/2016 6:55 P.M. Page vi�

� �

�

www.ebook3000.com

http://www.ebook3000.org

Trim Size: 6.625in x 9.625in Mariño ftoc.tex V3 - 02/10/2016 10:25 A.M. Page vii�

� �

�

Contents

About the Author xv

Preface xvii

Acknowledgments xxi

1 Introduction 1
1.1 What is a Communication Network? 1
1.2 Capturing the Random User Behavior 4
1.3 Queueing Theory and Optimization Theory 5
1.4 The Rationale and Organization of this Book 6

1.4.1 Part I: Modeling 6
1.4.2 Part II: Algorithms 7
1.4.3 Basic Optimization Requisites: Appendices I, II, and III 10
1.4.4 Net2Plan Tool: Appendix IV 11

Part I MODELING

2 Definitions and Notation 15
2.1 Notation for Sets, Vectors and Matrices 15

2.1.1 Norm Basics 15
2.1.2 Set Basics 16

2.2 Network Topology 17
2.3 Installed Capacities 19
2.4 Traffic Demands 19

2.4.1 Unicast, Anycast, and Multicast Demands 20
2.4.2 Elastic versus Inelastic Demands 21

2.5 Traffic Routing 21
References 22

www.ebook3000.com

http://www.ebook3000.org

Trim Size: 6.625in x 9.625in Mariño ftoc.tex V3 - 02/10/2016 10:25 A.M. Page viii�

� �

�

viii Contents

3 Performance Metrics in Networks 23
3.1 Introduction 23
3.2 Delay 23

3.2.1 Link Delay 23
3.2.2 End-to-End Delay 27
3.2.3 Average Network Delay 27
3.2.4 Convexity Properties 27

3.3 Blocking Probability 28
3.3.1 Link Blocking Probability 28
3.3.2 Demand and Network Blocking Probability 30
3.3.3 Other Blocking Estimations 31
3.3.4 Convexity Properties 34

3.4 Average Number of Hops 34
3.5 Network Congestion 36
3.6 Network Cost 36
3.7 Network Resilience Metrics 37

3.7.1 Shared Risk Groups 40
3.7.2 Simplified Availability Calculations 41
3.7.3 General Model 41

3.8 Network Utility and Fairness in Resource Allocation 44
3.8.1 Fairness in Resource Allocation 44
3.8.2 Fairness and Utility Functions 45
3.8.3 Convexity Properties 47

3.9 Notes and Sources 47
3.10 Exercises 49

References 51

4 Routing Problems 53
4.1 Introduction 53
4.2 Flow-Path Formulation 54

4.2.1 Optimality Analysis 55
4.2.2 Candidate Path List Pre-Computation 58
4.2.3 Ranking of Paths Elaboration 58
4.2.4 Candidate Path List Augmentation (CPLA) 59

4.3 Flow-Link Formulation 61
4.3.1 Flow Conservation Constraints 62
4.3.2 Obtaining the Routing from xde Variables 63
4.3.3 Optimality Analysis 64

4.4 Destination-Link Formulation 65
4.4.1 Obtaining the Routing Tables from xte Variables 67
4.4.2 Some Properties of the Routing Table Representation 67
4.4.3 Comparing Flow-Based and Destination-Based Routing 71

4.5 Convexity Properties of Performance Metrics 71
4.6 Problem Variants 72

4.6.1 Anycast Routing 72
4.6.2 Multicast Routing 74

www.ebook3000.com

http://www.ebook3000.org

Trim Size: 6.625in x 9.625in Mariño ftoc.tex V3 - 02/10/2016 10:25 A.M. Page ix�

� �

�

Contents ix

4.6.3 Non-Bifurcated Routing 75
4.6.4 Integral Routing 77
4.6.5 Destination-Based Shortest Path Routing 77
4.6.6 SRG-Disjoint 1+1 Dedicated Protection Routing 79
4.6.7 Shared Restoration Routing 80
4.6.8 Multi-Hour Routing 81

4.7 Notes and Sources 83
4.8 Exercises 83

References 86

5 Capacity Assignment Problems 88
5.1 Introduction 88
5.2 Long-Term Capacity Planning Problem Variants 89

5.2.1 Capacity Planning for Concave Costs 89
5.2.2 Capacity Planning with Modular Capacities 94
5.2.3 Multi-Period Capacity Planning 97

5.3 Fast Capacity Allocation Problem Variants: Wireless Networks 98
5.3.1 The Wireless Channel 99
5.3.2 Wireless Networks 100
5.3.3 Modeling Wireless Networks 101

5.4 MAC Design in Hard-Interference Scenarios 104
5.4.1 Optimization in Random Access Networks 105
5.4.2 Optimization in Carrier-Sense Networks 109

5.5 Transmission Power Optimization in Soft Interference Scenarios 113
5.6 Notes and Sources 116
5.7 Exercises 117

References 118

6 Congestion Control Problems 120
6.1 Introduction 120
6.2 NUM Model 121

6.2.1 Utility Functions for Elastic and Inelastic Traffic 121
6.2.2 Fair Congestion Control 122
6.2.3 Optimality Conditions 123

6.3 Case Study: TCP 124
6.3.1 Window-Based Flow Control 125
6.3.2 TCP Reno 126
6.3.3 TCP Vegas 131

6.4 Active Queue Management (AQM) 134
6.4.1 A Simplified Model of the TCP-AQM Interplay 135

6.5 Notes and Sources 136
6.6 Exercises 137

References 139

7 Topology Design Problems 141
7.1 Introduction 141

www.ebook3000.com

http://www.ebook3000.org

Trim Size: 6.625in x 9.625in Mariño ftoc.tex V3 - 02/10/2016 10:25 A.M. Page x�

� �

�

x Contents

7.2 Node Location Problems 142
7.2.1 Problem Variants 143
7.2.2 Results 144

7.3 Full Topology Design Problems 146
7.3.1 Problem Variants 148
7.3.2 Results 150

7.4 Multilayer Network Design 152
7.5 Notes and Sources 154
7.6 Exercises 154

References 157

Part II ALGORITHMS

8 Gradient Algorithms in Network Design 161
8.1 Introduction 161
8.2 Convergence Rates 163
8.3 Projected Gradient Methods 164

8.3.1 Basic Gradient Projection Algorithm 165
8.3.2 Scaled Projected Gradient Method 165
8.3.3 Singular and Ill-Conditioned Problems 168

8.4 Asynchronous and Distributed Algorithm Implementations 169
8.5 Non-Smooth Functions 172
8.6 Stochastic Gradient Methods 174
8.7 Stopping Criteria 176
8.8 Algorithm Design Hints 177

8.8.1 Dimensioning the Step Size 177
8.8.2 Discrete Step Length 178
8.8.3 Heavy-Ball Methods 179

8.9 Notes and Sources 181
8.10 Exercises 181

References 182

9 Primal Gradient Algorithms 184
9.1 Introduction 184
9.2 Penalty Methods 185

9.2.1 Interior Penalty Methods 185
9.2.2 Exterior Penalty Methods 186

9.3 Adaptive Bifurcated Routing 188
9.3.1 Removing Equality Constraints 189
9.3.2 Optimality and Stability 190
9.3.3 Implementation Example 192

9.4 Congestion Control using Barrier Functions 197
9.4.1 Implementation Example 198
9.4.2 Exterior Penalty 200

www.ebook3000.com

http://www.ebook3000.org

Trim Size: 6.625in x 9.625in Mariño ftoc.tex V3 - 02/10/2016 10:25 A.M. Page xi�

� �

�

Contents xi

9.5 Persistence Probability Adjustment in MAC Protocols 201
9.5.1 Implementation Example 203

9.6 Transmission Power Assignment in Wireless Networks 205
9.6.1 Implementation Example 207

9.7 Notes and Sources 210
9.8 Exercises 211

References 213

10 Dual Gradient Algorithms 214
10.1 Introduction 214
10.2 Adaptive Routing in Data Networks 217

10.2.1 Optimality and Stability 219
10.2.2 Implementation Example 219

10.3 Backpressure (Center-Free) Routing 221
10.3.1 Relation between 𝛾 , ΔP, and Average Queue Sizes, Qnd 224
10.3.2 Implementation Example 225

10.4 Congestion Control 228
10.4.1 Optimality and Stability Conditions 229
10.4.2 Implementation Example 230

10.5 Decentralized Optimization of CSMA Window Sizes 231
10.5.1 Implementation Example 234

10.6 Notes and Sources 236
10.7 Exercises 236

References 238

11 Decomposition Techniques 240
11.1 Introduction 240
11.2 Theoretical Fundamentals 241

11.2.1 Primal Decomposition 241
11.2.2 Dual Decomposition 244
11.2.3 Other Decompositions 246

11.3 Cross-Layer Congestion Control and QoS Capacity Allocation 247
11.3.1 Implementation Example 249

11.4 Cross-Layer Congestion Control and Backpressure Routing 249
11.4.1 Implementation Example 252

11.5 Cross-Layer Congestion Control and Power Allocation 253
11.5.1 Implementation Example 254

11.6 Multidomain Routing 256
11.6.1 Implementation Example 258

11.7 Dual Decomposition in Non-Convex Problems 259
11.7.1 Implementation Example 261

11.8 Notes and Sources 261
11.9 Exercises 263

References 265

Trim Size: 6.625in x 9.625in Mariño ftoc.tex V3 - 02/10/2016 10:25 A.M. Page xii�

� �

�

xii Contents

12 Heuristic Algorithms 266
12.1 Introduction 266

12.1.1 What Complexity Theory Tells Us that We cannot Do 266
12.1.2 Our Options 267
12.1.3 Organization and Rationale of this Chapter 268

12.2 Heuristic Design Keys 270
12.2.1 Heuristic Types 270
12.2.2 Intensification versus Diversification 271
12.2.3 How to Assess the Solution Quality 271
12.2.4 Stop Conditions 272
12.2.5 Defining the Cost or Fitness Function 272
12.2.6 Coding the Solution 273

12.3 Local Search Algorithms 273
12.3.1 Design Hints 274

12.4 Simulated Annealing 276
12.4.1 Design hints 277

12.5 Tabu Search 278
12.5.1 Design Hints 280

12.6 Greedy Algorithms 281
12.7 GRASP 282
12.8 Ant Colony Optimization 283

12.8.1 Design Hints 286
12.9 Evolutionary Algorithms 288

12.9.1 Design Hints 289
12.10 Case Study: Greenfield Plan with Recovery Schemes Comparison 291

12.10.1 Case Study Description 291
12.10.2 Algorithm Description 293
12.10.3 Combining Heuristics and ILPs 295
12.10.4 Results 296

12.11 Notes and Sources 297
12.12 Exercises 297

References 299

A Convex Sets. Convex Functions 301
A.1 Convex Sets 301
A.2 Convex and Concave Functions 303

A.2.1 Convexity in Differentiable Functions 303
A.2.2 Strong Convexity/Concavity 306
A.2.3 Convexity in Non-Differentiable Functions 306
A.2.4 Determining the Curvature of a Function 307
A.2.5 Sub-level Sets 310
A.2.6 Epigraphs 311

A.3 Notes and Sources 311
Reference 312

Trim Size: 6.625in x 9.625in Mariño ftoc.tex V3 - 02/10/2016 10:25 A.M. Page xiii�

� �

�

Contents xiii

B Mathematical Optimization Basics 313
B.1 Optimization Problems 313
B.2 A Classification of Optimization Problems 315

B.2.1 Linear Programming 315
B.2.2 Convex Programs 318
B.2.3 Nonlinear Programs 320
B.2.4 Integer Programs 321

B.3 Duality 324
B.3.1 Dual Function 324

B.4 Optimality Conditions 330
B.4.1 Optimality Conditions in Problems with Strong Duality 330
B.4.2 Graphical Interpretation of KKT Conditions 333
B.4.3 Optimality Conditions in Problems Without Strong Duality 336

B.5 Sensitivity Analysis 337
B.6 Notes and Sources 339

References 340

C Complexity Theory 341
C.1 Introduction 341
C.2 Deterministic Machines and Deterministic Algorithms 342

C.2.1 Complexity of a Deterministic Algorithm 342
C.2.2 Worst-Case Algorithm Complexity 343
C.2.3 Asymptotic Algorithm Complexity 343
C.2.4 Complexity is a Real Barrier 345

C.3 Non-Deterministic Machines and Non-Deterministic Algorithms 346
C.3.1 Complexity of a Non-Deterministic Algorithm 347

C.4 and Complexity Classes 347
C.5 Polynomial Reductions 349

C.5.1 A Polynomial Time Reduction Example 350
C.6 -Completeness 351

C.6.1 An Example Proving -Completeness for a Problem 352
C.7 Optimization Problems and Approximation Schemes 352

C.7.1 The Class 353
C.7.2 Approximation Algorithms 354
C.7.3 PTAS Reductions 356
C.7.4 -Complete Problems 356

C.8 Complexity of Network Design Problems 357
C.9 Notes and Sources 357

References 358

D Net2Plan 359
D.1 Net2Plan 359
D.2 On the Role of Net2Plan in this Book 360

Index 363

Trim Size: 6.625in x 9.625in Mariño ftoc.tex V3 - 02/10/2016 10:25 A.M. Page xiv�

� �

�

Trim Size: 6.625in x 9.625in Mariño fbetw.tex V3 - 02/11/2016 6:48 P.M. Page xv�

� �

�

About the Author

Pablo Pavón Mariño is Associate Professor at the Universidad Politécnica de Cartagena (Spain)
and Head of GIRTEL research group, MSc and Ph.D in Telecommunications, and MSc in
Mathematics, with specialization in operations research. His research interests in the last 15
years are in optimization, planning, and performance evaluation of computer networks. He
has more than a decade track as a lecturer in network optimization courses. He is author or
co-author of more than 100 research papers in the field, published in top journals and inter-
national conferences, as well as several patents. He leads the Net2Plan open-source initiative,
which includes the Net2Plan tool and its associated public repository of algorithms and net-
work optimization resources (www.net2plan.com). Pablo Pavón has served as chair in
international conferences like IEEE HPSR 2011, ICTON 2013 or ONDM 2016. He is Tech-
nical Editor of the Optical Switching and Networking journal, and has participated as Guest
Editor in other journals such as Computer Networks, Photonic Network Communications, and
IEEE/OSA Journal of Optical Communications and Networking.

Trim Size: 6.625in x 9.625in Mariño fbetw.tex V3 - 02/11/2016 6:48 P.M. Page xvi�

� �

�

Trim Size: 6.625in x 9.625in Mariño fpref.tex V3 - 02/11/2016 6:52 P.M. Page xvii�

� �

�

Preface

Computer and communication networks have evolved into more and more complex structures
of heterogeneous technologies with multiple interactions between different protocols and lay-
ers. From a didactic point of view, it is challenging to show newcomers how things are, and
more importantly, why they are like that.

This is the task I faced in 2011 when starting the preparation of two basic courses in net-
work theory fundamentals at the Universidad Politécnica de Cartagena in Spain for second and
third year students doing telecommunications engineering degrees. My wish list included three
musts: keep it simple, provide technology-agnostic fundamentals enriched with application
examples, and make it practical.

Keep it Simple

There is added value in simplicity per se. In this case, it was also a constraint given the still
incipient mathematical skills of the undergraduate students targeted. In plain words, there was
no room to cover the different mathematical disciplines traditionally used in network courses,
mainly queuing theory, control theory, and game theory for analysis of network protocols and
the network as a distributed dynamic system, and optimization for static provisioning and
dimensioning.

Within this less is more philosophy, I got convinced that optimization was the most conve-
nient choice for a sort of didactic theory to rule them all1:

• Optimization is a popular approach in network provisioning and dimensioning problems,
and fits well when the network is seen as a static system.

• The work initiated in the 1990s extended the application of optimization to capture the
macroscopic dynamic behavior of network protocols. This methodology is complementary
to queueing theory or a stochastic network characterization (e.g., using Markovian analy-
sis): these are left for studying the fast timescale interactions, and their main average and
system equilibrium results are then introduced and exploited in macroscopic network opti-
mization models. Gradient projection algorithms have a prominent role in this framework for
understanding network dynamics. Network protocols and their interactions among different
layers are seen as gradient schemes that globally optimize a network problem. Then, stability

1 This is the only quote from The Lord of the Rings, I promise.

Trim Size: 6.625in x 9.625in Mariño fpref.tex V3 - 02/11/2016 6:52 P.M. Page xviii�

� �

�

xviii Preface

in a fair equilibrium solution emerges easily from the convergence properties of gradient
iterations under asynchronous distributed executions, subject to delays or losses in the sig-
naling between the nodes, or noisy observations of the network.

Eventually the goal of simplicity led to a careful compilation of a relatively reduced mathe-
matical optimization corpus (summarized in the book’s appendices), and the quest of making
the most of it to describe networks.

Technology-Agnostic Fundamentals

The book intends to develop a methodology for understanding and optimizing computer net-
works, applicable to any network technology. With this aim, the material is separated into two
parts: problem modeling (Part I) and algorithm design (Part II).

• Part I identifies and models as constrained optimization formulations, the essential network
design problems appearing in any network technology: routing the traffic, allocating capac-
ities to the links, controlling the source rates, and deciding the network topology. Multiple
real-life problem variants are included to illustrate the modeling process. When possible,
Karush–Kuhn–Tucker (KKT) optimality conditions are used to give insight as to what the
optimum network designs look like.

• Part II covers a set of mathematical techniques suitable for computer network problems.
We concentrate on gradient-based algorithms for creating distributed schemes and network
protocols and heuristics for offline algorithms suitable, for example, for capacity planning.
Also, we show how the same technique can be applied to apparently different problems lead-
ing to different protocols. For instance, a dual decomposition approach can help to devise
a decentralized transmission power allocation scheme in wireless networks or provide a
cross-layer algorithm where congestion control and traffic routing cooperate to globally
optimize network performance.

The book is full of examples and applications in IP, optical, and wireless networks to illus-
trate how the theory applies into real algorithms. We hope this prepares the reader to adapt this
methodology to other existing technologies, or new technologies appearing.

Make it Practical

The hands-on philosophy of the book aims to permit students to perform practical optimization
of networks in their homework, and the general reader to see how the ideas and mathematical
approaches take real form in algorithms and models. Three practical skills are pursued:

• Formulate and obtain numerical solutions to the network problem instances, interfacing with
numerical solvers.

• Implement and fine-tune the parameters of distributed network algorithms, and observe
their performances and convergence under realistic scenarios, with asynchronous execu-
tions, random delays, or losses in signaling messages and subject to noisy observations of
the network.

Trim Size: 6.625in x 9.625in Mariño fpref.tex V3 - 02/11/2016 6:52 P.M. Page xix�

� �

�

Preface xix

• Implement heuristic-based offline algorithms for network dimensioning and adjust their
parameters to perform an efficient exploration of the solution space.

At the moment of designing the network optimization courses in 2011, no software
tool was even close to match these requirements in the form I expected: easy to use,
technology-agnostic, and open-source. This was the motivation to start JOM and Net2Plan
open-source initiatives, the latter in collaboration up to release 0.3.1 with my Ph.D.
student and colleague José Luis Izquierdo Zaragoza. JOM (Java Optimization Modeler,
www.net2plan.com/jom) is a library to solve constrained optimization models written
inside Java programs in a human-readable syntax, interfacing with several solvers (at this
moment, GLPK and CPLEX for mixed integer linear programs, and IPOPT for differentiable
programs). Net2Plan (www.net2plan.com/) is a network optimization tool that supports
the fast-prototyping in Java of offline and online (dynamic) network algorithms.

Net2Plan and JOM are enabling tools for the reader interested in gaining practical skills
in network optimization. All the models and algorithms in the book’s text, examples, and
selected exercises are included as Net2Plan algorithms, and are freely available for inspection
and reuse in:

www.net2plan.com/ocn-book

The reader is encouraged to access the web page and follow the instructions there to use
Net2Plan, and get the most of this book.

Both Net2Plan and JOM are stable software. As a resource for network optimization courses
they are used today by several hundreds of students in my university and other institutions.
Net2Plan has also become a powerful software tool for research and industry, and is present
in a number of ongoing projects.

Reader Requisites and Intended Audience

Reader prerequisites are just the basic skills to handle functions of multiple variables, at the
level of a first-year university course in calculus. The book appendices are then all that is
needed to follow the results in the book. These appendices include a fair amount of examples
and can be the base of introductory lectures.

As a textbook, this book can support courses in different forms. Several examples follow:

• Courses in the mathematical fundamentals of computer networks. In particular, those fol-
lowing the technology-agnostic view, accompanied by examples in different technologies.
In this context, I use Part I (modeling) in a second year course for a four-year degree in
Telecommunications Engineering.

• Courses in design of distributed network algorithms. Part II of the book can help to illus-
trate the network dynamics and the design, implementation, and test of network distributed
algorithms.

• Courses in heuristic algorithms for network planning, including development of planning
algorithms. Chapter 12 and Appendix C support a third year course in my University for a
four-year degree in Telecommunications Engineering, specializing in networking.

• Ph.D. courses in network optimization can benefit from advanced material in the book, such
as the chapters devoted to decomposition techniques and cross-layer algorithms.

Trim Size: 6.625in x 9.625in Mariño fpref.tex V3 - 02/11/2016 6:52 P.M. Page xx�

� �

�

xx Preface

• The book can be a secondary resource for different courses in computer networks and related
degrees that focus on a particular technology (e.g., wireless networks, optical networks, IP
networks), and rely on this book for network dimensioning, or protocol and algorithm design
for these technologies.

The book can be useful for researchers and practitioners in network planning, or protocol
design for multiple network technologies. For instance:

• This book, and in particular its hands-on approach, would be quite appealing for network
specialists with a limited background in optimization, to address the network problems vari-
ants appearing in their technologies of interest, making benefit of a rigorous methodology
that leads to successful models and algorithms.

• In addition, practitioners in operations research willing to specialize in computer networks,
will appreciate the systematic approach to categorize network optimization problems, and
the consistent methodology showed in the book to apply classical optimization results to
communication networks.

www.ebook3000.com

http://www.ebook3000.org

Trim Size: 6.625in x 9.625in Mariño flast.tex V3 - 02/11/2016 6:50 P.M. Page xxi�

� �

�

Acknowledgments

I am heartily grateful to the many people who have contributed in some way in the preparation
of this book. First, the many colleagues and students who helped me with their day-to-day
discussions. Among them, I would like to give special thanks to José Luis Izquierdo Zaragoza
and Victoria Bueno Delgado for their thoughtful feedback when reading the book drafts. I am
thankful to the members of the GIRTEL group for the time spent together in this fascinat-
ing work. I want to express my gratitude to the Wiley editors for their confidence, help, and
cooperation in the process.

Last, but foremost, I owe my family and my friends a huge debt of gratitude. Thank you,
Victoria, for your love, for putting up with my mental absences this last year, and your flexi-
bility and support. Big thanks also to Marta, María Jesús, Sonia, and Sara for helping us with
the kids. I am grateful to my sisters and my parents for being there any time I needed. Finally,
Pablo and Guille. Still too small to read this. You are everything to me.

Trim Size: 6.625in x 9.625in Mariño flast.tex V3 - 02/11/2016 6:50 P.M. Page xxii�

� �

�

Trim Size: 6.625in x 9.625in Mariño c01.tex V3 - 02/11/2016 6:35 P.M. Page 1�

� �

�

1
Introduction

1.1 What is a Communication Network?

We are surrounded by communication networks, they are part of our life. If asked, we can
easily enumerate examples of them: the fixed or mobile telephone network, the Internet, or
someone’s Ethernet home network would probably be the most popular answers. However,
difficulties appear when we try to define the concept “communication network” more formally,
without mentioning any specific network technology, looking for a definition applicable to any
of them. We will start this book addressing precisely this basic question.

There are two basic elements on which networks are constructed: telecommunication sys-
tems and switching systems. A telecommunication system or “link” consists of a transmitter
and one or more receivers connected through a medium that propagates the involved electro-
magnetic signals. Applying this definition, two telephones A and B directly connected through
a bidirectional cable pair (Fig. 1.1) contain two telecommunication systems: (i) one composed
of the transmitter at A, the medium A → B, and the receptor at B, and (ii) another system
formed by the transmitter at B, the medium B → A and the receiver at A.

Telecommunication systems are the basis for assembling any communications service.
However, no service can be reasonably built by pure aggregation of telecommunication
systems. As an example, imagine we want to provide the telephone service to four users A,
B, C, and D, using just “links”. To do that, we would need two telephones and one cable
dedicated for each different user pair. The result would be something like Fig. 1.2.

The previous example illustrates that, although possible, it is not economically feasible to
provide a communication service using just links. Inefficiency in Fig. 1.2 appears because
each link is dedicated exclusively to a particular user pair, and is thus idle when corresponding
users are not talking each other. Improving the efficiency in our example requires adding new
elements to the picture that permits a link to be shared among several communications. And
that is precisely where switching systems come into play.

A switching system or “node” is a device that connects telecommunication systems (links)
among them, so that the information from one link can be forwarded to other. We can repre-
sent a switching system with a node with Nin input ports and Nout output ports, as shown in

Optimization of Computer Networks – Modeling and Algorithms: A Hands-On Approach,
First Edition. Pablo Pavón Mariño.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/PavonMarinoSol16

Trim Size: 6.625in x 9.625in Mariño c01.tex V3 - 02/11/2016 6:35 P.M. Page 2�

� �

�

2 Optimization of Computer Networks – Modeling and Algorithms

BA
Link A-B

Link B-A

Figure 1.1 Two telecommunication systems

A

B

C

D

Figure 1.2 Communication service built with dedicated telecommunication systems

Fig. 1.3a. Each input port represents the receiver side of a link, each output port represents the
transmitter side of other. The state of the switching system at a given moment is defined by
the particular scheme in which input and output ports are internally connected. For instance,
Fig. 1.3b represents a node configuration where information from input port 1 is forwarded to
output port 2, while input port 3 is connected to output port 1.

The defining aspect to make a system like the one in Fig. 1.3 a switching system, is that
it must be reconfigurable. That is, using mechanical, electronic, optical, or any other physi-
cal procedure, it should be possible to rearrange the internal connections between input and
output ports, so that an outgoing link can be carrying at different moments the information
received from different input links. Reconfigurability is the enabling feature to make output
links become a shared resource among the input links.

Figure 1.4 helps us to illustrate how a combination of nodes an links supports a telephone
service to seven users, using four nodes and seven (bidirectional) links. Naturally, a network
like the one shown, requires extra elements to enable end-to-end communications. First,

Trim Size: 6.625in x 9.625in Mariño c01.tex V3 - 02/11/2016 6:35 P.M. Page 3�

� �

�

Introduction 3

(a) Schema

(b) Switching state

1
2

1
2

NoutNin

1
2
3

1

2

Figure 1.3 Switching system (node)

2 4

3

1

A

B

Figure 1.4 Communication network example

telephones become now a more sophisticated device, since a single telephone can be used
in Fig. 1.4 to communicate with any other telephone. They are actually the sources and
destinations of information. An addressing or numbering scheme is now required to identify
each telephone individually, so that each user can decide the destination telephone to call to.
Second, a decision on the sequence of links (route) to be traversed by each telephone call
should be taken and signaled to the switching nodes that must reconfigure accordingly.

The previous network scheme should be enriched with the concept of multiplexed links.
Previous examples have shown links as elements that can either carry one single telephone
call, or otherwise be idle. In its turn, a multiplexed link is able to simultaneously carry

Trim Size: 6.625in x 9.625in Mariño c01.tex V3 - 02/11/2016 6:35 P.M. Page 4�

� �

�

4 Optimization of Computer Networks – Modeling and Algorithms

several communications, so that the aggregated traffic can be de-aggregated again at the link
receiver side. Many multiplexing technologies exist, according to the physical form in which
the aggregation/deaggregation takes place, the most frequent being frequency multiplexing,
time multiplexing, code multiplexing, or a combination of them. The particular multiplexing
technique has no importance for the abstract network model we are pursuing. What is
important, to capture the essence of multiplexing, is that links should be characterized by a
link capacity, measured in arbitrary units (e.g., bits-per-second – bps – in digital links). In
turn, sources should now be characterized as producers of traffic measured in the same units
as the link capacities. Eventually, the link capacities become the shared resource, so that
we will be able to compare the capacity of a link with the sum of the traffic of the sources
traversing it.

Put together, we have identified four elements in a communication network: (i) informa-
tion sources and destinations, (ii) links capable of propagating information between their end
points, (iii) switching nodes capable of interconnecting links in a reconfigurable form, and (iv)
addressing and signaling systems for controlling network operation.

1.2 Capturing the Random User Behavior

A characteristic aspect of communication networks is that they have to deal with the random
nature of the user behavior. In Fig. 1.4 this means that we do not know beforehand who each
user is willing to talk to at each moment. Random behavior is crucial for the dimensioning of
resources such as link capacities in the network.

In Fig. 1.4, capacities are set so that two idle users will always be able to call each other,
irrespective of what other users are doing. This is called a worst-case network dimensioning.
However, this approach is clearly economically unfeasible for nontrivial scenarios. Just imag-
ine that in Fig. 1.4 10,000 phones were connected to nodes 1 and 2. A worst-case dimensioning
would need a capacity of 10,000 calls for links 1-3 and 2-3. These links would be clearly under-
utilized, since the probability of the two sets of 10,000 users using the phone at the same time
is small.

For this reason, communication network design has been historically based on probabilistic
models that characterize the random user behavior. A statistical characterization of the perfor-
mances observed by the users, permits dimensioning the network resources so that the service
degradation (or the probability of this to happen) becomes small enough. The statistical metrics
of interest can be quite variable. However, two main alternatives appear corresponding to the
two main strategies network apply for link capacity sharing: delay systems and loss systems:

• Delay systems. Delay systems typically correspond to the form in which packet switch-
ing networks operate. In packet switching networks, traffic sources split the information
into fragments called packets. Each packet is attached to a header, with sufficient control
information to permit the packet reach its destination. Nodes process incoming packets one
by one and forward them to their corresponding output link. Link capacities are dimen-
sioned so that the average flow of packets that traverses a link does not exceed its capacity,
potentially with some safety margins. However, the random nature of packet arrival times
makes that packets could find their output links busy with other packets. For this reason,
nodes incorporate memories for storing packets waiting for their turn to be transmitted. The
storage time or queue time is an added delay to the end-to-end communication. Moreover,

Trim Size: 6.625in x 9.625in Mariño c01.tex V3 - 02/11/2016 6:35 P.M. Page 5�

� �

�

Introduction 5

traffic fluctuations can fill up these memories and force the nodes to discard packets. In these
systems, the delay and the packet loss probabilities are the performance metrics of interest.

• Loss systems. Loss systems can appear in networks where the traffic takes the form of
end-to-end connections. These connections can be circuits, in so-called circuit switching
networks (e.g., telephone calls in the telephone network, lightpaths in WDM optical
networks), or virtual circuits over packet switching networks (e.g., virtual circuits in MPLS
networks). Each connection reserves a given amount of capacity in each of the traversed
links. The reserved bandwidth is kept throughout the communication. If a connection
request does not find a sequence of links with enough capacity, it is discarded (lost or
blocked). The probability that a new connection request is blocked, or blocking probability,
is the main performance metric for dimensioning loss systems.

1.3 Queueing Theory and Optimization Theory

Queueing Theory has been traditionally the mathematical corpus supporting the design of com-
puter or communication networks, capturing the non-deterministic user behavior and network
occupation. This theory focuses on systems where a set of resources (e.g., links in a network)
are shared among different users, so that the moment in which each user requests a resource
(e.g., a new connection or a packet to transmit), and/or the time in which the resource is to be
occupied (connection/packet duration), are known statistically. As such, Queueing Theory is
a branch of Applied Probability.

Queueing Theory has been extremely successful and elegant for analyzing network subsys-
tems such as the performances of the traffic traversing a link or a switching node. However,
applying this strategy to a network view is extraordinary challenging. Actually, the probability
models used in Queueing Theory become intractable when applied to non-trivial communica-
tion networks, unless strong simplifying assumptions are made. The essential disadvantage is
that the exact statistical characterization of the traffic traversing several links and/or merging
with other users traffic, can be mathematically intractable. For these situations, the combina-
tion of Queuing Theory and Network Optimization has shown to be a successful approach.

Optimization is a branch of Applied Mathematics, studying the maximization or mini-
mization of functions, subject or not to a set of constraints. Network optimization is just the
application of standard general optimization results to network design problems, exploiting
any special structure they may have. Decision variables in these problems take the form of,
for example, the capacity to assign to each link or the amount of a user traffic to route in each
valid path.

The application of network optimization requires getting rid of the unreachable goal of a
full statistical characterization of the traffic in the links. In its turn, in most of the cases (as
happens in this book), the traffic in network design problems is modeled as a continuous flow,
not identifying individual connections or packets in it. Flows are simply characterized by a
real number: its average intensity, measured in bits-per-second, number of active connections,
or any suitable unit. Characterizing a traffic flow just by its average yields a significant sim-
plification: the intensity of the traffic in a link aggregating the contributions of several flows,
is just the sum of the intensities of the traversing flows.

Previous simplification, opens the door to introducing into the optimization models expres-
sions coming from Queuing Theory that estimate performance metrics like delay or blocking
probability, as a function of average flow intensities. In general, these relations are closed

Trim Size: 6.625in x 9.625in Mariño c01.tex V3 - 02/11/2016 6:35 P.M. Page 6�

� �

�

6 Optimization of Computer Networks – Modeling and Algorithms

formulas that assume as constants other parameters (e.g., variance or Hurst parameter of the
traffic flows), and result in simple expressions. Thanks to that, these network performance esti-
mations can be introduced into the optimization model as objective functions (e.g., minimize
the average network delay), or design constraints (e.g., blocking probabilities should be below
1%), without significantly augmenting the problem complexity.

1.4 The Rationale and Organization of this Book

The casuistic of the different network design problems that can exist is unlimited, as the multi-
tude of technologies, protocols and heterogeneous network conditions yield to an unnumbered
amount of variants. Since it is impossible to study them all, the target of this book is providing
a methodology that can be applied whatever network technology we focus on, and eventu-
ally results in (i) insights to understand the network behaviors and (ii) design keys to produce
algorithms that solve network problems.

The mathematical corpus of our approach is network optimization, or the application of
general optimization theory to network problems. In this strategy, we distinguish two main
steps, elaborated into the two parts (Part I and Part II) in which this book is divided: problem
modeling and algorithm design. This is followed by a small set of appendices covering basic
optimization concepts used throughout the book.

1.4.1 Part I: Modeling

In this part, we pursue the modeling of network design problems appearing in communication
networks, as optimization problems. This means translating them into the problem of finding
the values of a vector x of decision variables that maximize or minimize an objective function,
subject to some constraints. The reasoning of the approach is that, once a problem is modeled,
we can benefit from optimization theory to characterize what their optimum solutions look
like and how to reach them.

For didactic purposes, four problem types are addressed separately: (i) traffic routing, (ii)
link capacity dimensioning, (iii) bandwidth sharing among network users (i.e., congestion
control), and (iv) topology design. These problems appear in different forms in all network
technologies. In this part of the book, multiple variants of each are described and analyzed,
covering most of the aspects appearing in production networks. The source code for Net2Plan
tool of the examples and selected exercises is available for the reader. Then, the he/she will be
able to find numerical solutions to these problems in any network instance, using the solvers
interfacing with Net2Plan.

Part I chapter organization is described below:

• Chapter 2. Definitions and notation. Key definitions and the notation that will be used along
the book is presented. We elaborate on concepts like network links, nodes, traffic demands
(unicast, anycast, multicast, broadcast), and routing (bifurcated, non-bifurcated, integral).

• Chapter 3. Performance metrics. This chapter describes different performance metrics that
are commonly used within network optimization models: delay and blocking probabilities
in packet-switched and circuit-switched networks, respectively, average number of hops,
network congestion, network cost, network availability in failure scenarios, and fairness

Trim Size: 6.625in x 9.625in Mariño c01.tex V3 - 02/11/2016 6:35 P.M. Page 7�

� �

�

Introduction 7

among competing entities in the allocation of shared resources. We pursue, when possible,
simplified estimations of these metrics that can be introduced in network design models.
In such case, their convexity properties are analyzed, since this is a property that can be
exploited when designing optimization algorithms.

• Chapter 4. Traffic routing. The routing problem consists of deciding the sequence of links
that traverse each user’s traffic. Three main modeling strategies are addressed: flow-path and
flow-link formulations, for flow-based routing (e.g., suitable for MPLS, SDH, WDM net-
works), and destination-link formulation for destination-based routing (e.g., IP, Ethernet).
Main routing problem variants are presented, including routing in anycast and multicast
traffic, bifurcated/non-bifurcated routing, routing under protection or restoration schemes,
and multi-hour routing.

• Chapter 5. Link capacity dimensioning. This chapter covers the modeling of the capac-
ity assignment problem in two typical contexts: (i) the capacity assignment, as an offline
problem to be solved every, for example, 6 months for updating the capacities in network
core links, (ii) capacity assignment as a network control problem, for example, solved at a
sub-second pace in wireless networks where each node optimizes its rate to adapt to varying
medium and traffic conditions, affecting and being affected by the interferences from neigh-
bor nodes. In offline capacity planning, one of the difficulties is handling the concavity of
the link cost with respect to its capacity. We present a case study for which a closed formula
is reached to characterize the optimum and give insight on different trade-offs appearing in
network design, in particular, between complete and hub- and -spoke topologies. For the
wireless case, we first model the medium-access control problems in random-access and in
CSMA-based networks (like Wi-Fi). Then, we focus on a network where the link capacities
are adjusted by tuning the transmission power in the antennas.

• Chapter 6. Congestion control. This chapter covers the modeling of the classical network
congestion or bandwidth sharing problem, consisting of assigning the amount of traffic to
be injected by each traffic demand without oversubscribing the links. Typically, network
congestion control is implemented in a decentralized form, by rate adjustment schemes in
the traffic sources. We present here a popular model based on the Network Utility Max-
imization (NUM) framework, where each demand is associated to an utility function. It
is shown how fairness in congestion control is related to the concave shape of the utility
function, so that by choosing different functions it is possible to enforce different fairness
notions. We then concentrate on NUM modeling of the two main versions of TCP protocol
(Reno and Vegas), showing how, despite its decentralized nature, it enforces a fair distribu-
tion of the link bandwidth among the competing connections. The role of NUM modeling to
understand the behavior of active queue management (AQM) techniques is also illustrated.

• Chapter 7. Topology design. This chapter covers the modeling of topology design problems.
First, we address the classical node location problem variants, where the position of the
network nodes is optimized. Then, we include some topology design variants where the
network links are a part of the problem output. Case studies and numerical examples are
provided to illustrate some of the trade-offs in topology design.

1.4.2 Part II: Algorithms

This part targets the development of algorithms to solve network problems like the ones mod-
eled in Part I. In this task, we emphasize the importance of the algorithm context, describing the

Trim Size: 6.625in x 9.625in Mariño c01.tex V3 - 02/11/2016 6:35 P.M. Page 8�

� �

�

8 Optimization of Computer Networks – Modeling and Algorithms

scenario where the algorithm should be implemented. This comprises relevant information like
the scale of the network targeted, the time and computing resources available, or the acceptable
accuracy. Actually, good algorithms in a particular context, can be bad or simply inapplicable
schemes in other contexts.

In this book, we clearly distinguish two families of algorithms: those targeted to be imple-
mented by distributed protocols and those that are amenable to a centralized execution:

• Distributed algorithms. In multiple scenarios it is not possible to communicate to a
centralized server the full network picture so that it can run the optimization algorithm.
These problems should be solved in a distributed fashion by properly designed network
protocols, where nodes cooperate and exchange signaling information such that they
can iteratively and autonomously adjust its configuration. An example of distributed
implementation is congestion control schemes, where traffic sources adjust their rates
autonomously and asynchronously receiving a limited signaling information from their
traversed links (or estimating it implicitly, e.g., as in TCP, monitoring its packet losses or
round-trip-time delays).

• Centralized algorithms. A centralized algorithm execution is possible when a central
computer can be fed with the full network knowledge required to solve the problem.
Centralized algorithms are typical, for example, of those design problems executed offline
by network planning departments. For instance, the upgrade plans for the link capacities
or the placement of new links for the upcoming year, in order to cope with a forecasted
traffic demand. Once the current network topology and traffic forecasts are collected, these
algorithms can typically run for hours or even days until an acceptable solution is found.

This distinction between distributed and centralized executions is not gratuitous, since the
mathematical approach is different for both. In this book, the theoretical corpus for the design
of distributed algorithms is the application of the standard gradient or subgradient projection
iterative methods to the primal or the dual version of the network problems. Convergence
guarantees are strong in many situations, as long as the optimization problem is convex. In its
turn, many offline planning problems to be solved by a centralized algorithm are non-convex
and with -hard complexity. For them, heuristic and approximation algorithms are needed.

In Part II of the book, we guide the reader in the design of distributed and centralized network
algorithms. The source code for Net2Plan tool of the case studies, examples, and exercises is
available. In particular, the reader will be able to easily repeat the experiments in the book, or
extend them to other network instances, or different contexts in terms of signaling delays or
losses.

The organization of the material is described below:

• Chapter 8. Gradient algorithms in network design. This chapter initiates the reader in the
basic but necessary theory related to the standard gradient and subgradient schemes. Their
convergence properties are also summarized when they are executed in a distributed form by
separated entities that operate asynchronously, potentially using outdated information; for
example, because of signaling delays or affected by noisy observations of the network. Tech-
niques and hints for dimensioning the step size are described and later applied in multiple
examples in the subsequent chapters.

Trim Size: 6.625in x 9.625in Mariño c01.tex V3 - 02/11/2016 6:35 P.M. Page 9�

� �

�

Introduction 9

• Chapter 9. Primal gradient algorithms. In this chapter we present methods based on the
application of the gradient projection iteration to the primal (original) network problem.
First, we present penalty techniques to deal with non-separable feasible sets, for which the
projection operation is not easy. Then, we apply the primal methodology in several case
studies providing distributed primal algorithms for adaptive routing, congestion control,
persistence probability adjustment in MAC protocols and transmission power assignment in
wireless networks. In each case, the convergence is empirically tested and connected to the
theoretical convergence guidelines, under asynchronous executions, handling delayed and
noisy observations, and applying convergence improving techniques described in Chapter 8.

• Chapter 10. Dual gradient algorithms. In this chapter we elaborate on the application of
gradient projection iterations to the dual version of network problems. Convergence prop-
erties of dual methods are summarized, emphasizing the importance of the strict convex-
ity/concavity of the objective function, and the role of problem regularization when this does
not hold. The dual approach is exemplified in several case studies, providing distributed
dual algorithms for adaptive routing, backpressure (center-free) routing, congestion con-
trol, and decentralized optimization of CSMA window sizes. Empirical convergence tests
are provided under realistic asynchronous executions, with delayed and noisy observations.

• Chapter 11. Decomposition techniques. This chapter presents a framework for applying
decomposition techniques to network problems, splitting them into simpler subproblems
that can be solved independently, but coordinated by a master program. First, we describe
the two baseline decomposition approaches: primal and dual decomposition, together with
some reformulation techniques. Then, these strategies are applied in selected examples. We
start putting the emphasis on problem decomposition as a theoretical support for so-called
cross-layer algorithms that make protocols at different network layers cooperate to achieve
a common goal. In this case, each network layer is a subproblem, which is solved by a dif-
ferent protocol (potentially itself a distributed protocol), and the master program defines
the signaling to coordinate the layers. Three examples with empirical tests are provided:
cross-layer congestion control and capacity allocation to traffic sources with different QoS
requirements, cross-layer congestion control and backpressure routing, and cross-layer con-
gestion control and power allocation in wireless networks.

Afterward, we use decomposition techniques to coordinate different agents in a
single-layer problem. We present a case study where multiple interconnected network
carriers can cooperate in an asynchronous form to globally optimize the routing, for
example in the Internet, without disclosing sensitive information like their internal topolo-
gies and traffics. Finally, we also include a case study for a -hard joint capacity and
routing design problem to be solved offline. In this case, the target of the decomposition
is reducing the overall computational complexity and also permitting parallel executions
of the subproblems at a cost of losing some convergence properties. Illustrative numerical
tests are included for all the examples.

• Chapter 12. Heuristic algorithms. This chapter focuses on the design of heuristic algo-
rithms for solving large instances of -hard network planning problems in offline and
centralized executions. The main heuristic techniques are described in a didactic form:
local search, simulated annealing (SAN), tabu search (TS), greedy algorithms, GRASP, ant
colony optimization, and evolutionary algorithms. Recommendations for parameter tuning
are provided. Each scheme is illustrated by applying it to a common traffic engineering

Trim Size: 6.625in x 9.625in Mariño c01.tex V3 - 02/11/2016 6:35 P.M. Page 10�

� �

�

10 Optimization of Computer Networks – Modeling and Algorithms

example: finding the OSPF link weights in IP networks that minimize congestion. Then, a
realistic network planning full case study is described where a backbone optical network is
optimized for three different protection and restoration schemes. This exemplifies an algo-
rithm where a heuristic scheme is used to guide the search and control the complexity of
small ILP formulations.

1.4.3 Basic Optimization Requisites: Appendices I, II, and III

The defining rationale of this book is the systematic application to network problems of
selected optimization theory results. The fact that a relatively simple mathematical corpus
can be exploited to provide insight on complex network interactions, and guide the design of
successful network algorithms, is by all means a strength of this approach.

Still, queuing theory alone has been often the spine of network courses, leaving optimization
basics for separated operations research subjects. The fruitful application of optimization to
network design along the last decades has changed this inertia, and optimization theory is
gaining more and more momentum in the computer networks curricula.

Appendices I, II, and III in this book are motivated by this. As a whole, their target is provid-
ing the reader not familiar with optimization theory, the necessary results repeatedly applied
throughout the book. Despite being appendices, the material is organized such that it can be
used as an introductory part in those computer network courses that prefer to integrate this
theory. This is the approach I make in my lectures.

A short description of these appendices follows:

• Appendix I. Convex sets. Convex functions. Convexity is a keystone concept in optimization,
which helps to later characterize the frontier between those problems that are easy to solve
(solvable in polynomial time) from those that are not. This appendix defines and summarize
the key properties of convex sets, and of convex and concave functions.

• Appendix II. Mathematical optimization basics. This appendix introduces optimization the-
ory in a simple and didactic form, suitable for beginners. Optimization problems are first
classified according to classical taxonomies, emphasizing the role of convex optimization.
The dual of an optimization problem is defined and their main properties exposed. Then,
we present and provide a graphical interpretation of Karush–Kunt–Tucker (KKT) optimal-
ity conditions for problems with a strong duality property, like the convex network problems
appearing throughout the book. KKT conditions are a simple but powerful tool recurrently
applied to characterize the optimum of these problems.

• Appendix III. Complexity theory basics. Complexity theory helps us to assess the compu-
tational complexity of problems and algorithms solving them. For problems, we define the
concept of deterministic and non-deterministic machines that helps us to define and

problem complexity classes. For algorithms, we define algorithm complexity and empha-
size the practical difference between polynomial and non-polynomial algorithms. Then,
we define -complete complexity class and discuss its importance in network design:
-complete problems cannot be solved to optimality for real network sizes. Then, we
elaborate on problems for which it is possible to find algorithms with approximation guar-
antees (class and and approximation schemes), and problems for
which it is conjectured that no approximation algorithm exists (-complete problems).

Trim Size: 6.625in x 9.625in Mariño c01.tex V3 - 02/11/2016 6:35 P.M. Page 11�

� �

�

Introduction 11

1.4.4 Net2Plan Tool: Appendix IV

This appendix briefly presents Net2Plan, an open-source freeware Java-based software
application for network optimization and planning, and its role as a supporting tool in the
hands-on approach pursued. The book does not rely on, but is well supported by, Net2Plan for
demonstrating competency and practice. The mathematical formulations and algorithms in the
book are implemented as Net2Plan algorithms. They are available, indexed and documented,
for the interested readers in the website www.net2plan.com/ocn-book. Then, the user will be
able to see how the ideas and mathematical approaches take real form in algorithms, reuse, or
execute them to obtain numerical solutions, and end up developing his/her own algorithms.

Trim Size: 6.625in x 9.625in Mariño p01.tex V3 - 02/10/2016 9:20 A.M. Page 13�

� �

�

Part One
Modeling

Trim Size: 6.625in x 9.625in Mariño c02.tex V3 - 02/11/2016 6:36 P.M. Page 15�

� �

�

2
Definitions and Notation

2.1 Notation for Sets, Vectors and Matrices

Throughout, we use the following notation. We use capital calligraphic letters like , , ,
to denote sets. We denote as − to the set of elements of that are not in . Given a set
 , the number of elements of is noted as ||. The notation f ∶ → means that f is a
function from the set into the set . The set of real numbers is denoted as ℝ, and ℝ+ is
the set of non-negative real numbers. Similarly, the sets of integer and non-negative integer
numbers are ℤ and ℤ+, respectively. The Cartesian product of ℝ,ℝ+,ℤ or ℤ+, multiplied n
times by itself is denoted as ℝn

,ℝn
+,ℤn and ℤn

+, respectively.
Vectors and scalars are represented with lower case letters, for example x, u, h, while matri-

ces are denoted using capital letters, for example H, R. The ith coordinate of a vector x is
denoted as xi. The (i, j) coordinate of matrix X is noted as Xij. Unless stated otherwise, vectors
have a column form. That is, a vector x of k coordinates is supposed to be a matrix of dimension
k × 1. The transpose of a vector x and a matrix X are denoted xT and XT , respectively, although
we may omit the transpose sign to simplify the writing when it is evident from the context.
Finally, we use 𝔼(x) to denote the expectation of the scalar or vectorial random variable x.

2.1.1 Norm Basics

A function ‖x‖ ∶ ℝn → ℝ is called a norm, if: (i) ‖x‖ ≥ 0,∀x, (ii) ‖x‖ = 0 ⇔ x = 0, (iii)‖tx‖ = |t|‖x‖,∀t ∈ ℝ,∀x, and (iv) ‖x + y‖ ≤ ‖x‖ + ‖y‖,∀x, y.
A norm is a form of measuring the length of a vector. A well-known family of norms

parametrized by a constant p ≥ 1, called p-norms, is given by:

‖x‖p =

(∑
i

|xi|p
)1∕p

(2.1)

Most common p-norms are the Euclidean norm

(
p = 2, ‖x‖2 =

√∑
ix

2
i

)
, the maximum

or infinite norm (p = ∞, ‖x‖∞ = max{|xi|, i = 1,… , n}), and the sum-absolute norm(
p = 1, ‖x‖1 =

∑
i|xi|). Unless specified otherwise, ‖x‖ will represent the Euclidean norm.

Optimization of Computer Networks – Modeling and Algorithms: A Hands-On Approach,
First Edition. Pablo Pavón Mariño.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/PavonMarinoSol16

Trim Size: 6.625in x 9.625in Mariño c02.tex V3 - 02/11/2016 6:36 P.M. Page 16�

� �

�

16 Optimization of Computer Networks – Modeling and Algorithms

We refer to dist (x, y) = ‖x − y‖, as a measure of the distance between two vec-
tors. In the Euclidean norm, the distance corresponds to the standard expression:
dist (x, y) =

√∑
i(xi − yi)2.

Let A be a m × n real matrix. A vectorial norm ‖x‖p induces a matrix norm in matrices
given by:

‖A‖p = sup‖x‖p=1
‖Ax‖p = sup

x∈ℝn

‖Ax‖p‖x‖p

In the case p = 1 and p = ∞, the matrix norms can be computed as:

‖A‖1 = max
j

∑
i

|Aij|, ‖A‖∞ = max
i

∑
j

|Aij|
If A is a square matrix, ‖A‖2 is the modulus of its largest eigenvalue, and is called the matrix
spectral radius. The following inequality holds:

‖A‖2 ≤
√‖A‖1‖A‖∞ (2.2)

Note that if A is symmetric, ‖A‖1 = ‖A‖∞, and previous inequality reads ‖A‖2 ≤ ‖A‖1 =‖A‖∞.

Example 2.1 Let A be a symmetric matrix:

A =
(

1 −2
−2 4

)
The p = 1 and p = ∞ norms of A are given by:

‖A‖1 = ‖A‖∞ = max{|1| + | − 2|, | − 2| + |4|} = 6

The eigenvalues of A are 0 and 5, satisfying that ‖A‖2 = 5 ≤ ‖A‖1 = ‖A‖∞ = 6.

2.1.2 Set Basics

We define a ball of radius r > 0 centered in x0 as the set:

(x0, r) = {x ∈ ℝn ∶ ‖x − x0‖ ≤ r} ⊂ ℝn

A vector x ∈ ⊂ ℝn is called an interior point of , if it is possible to find a ball (x, r),
with r > 0 that is contained in . The set of all interior points of is denoted as int ().
The norm used for defining the ball is not important, an interior point with a norm, is interior
with any other norm, a non interior point according to a norm, is not interior according to
any other norm. This is true here since all norms defined in a finite dimension space ℝn are
equivalent: given any two norms ‖x‖a and ‖x‖b, there exists positive constants 𝛼, 𝛽 such that
for all x ∈ ℝn:

𝛼‖x‖a ≤ ‖x‖b ≤ 𝛽‖x‖a

Trim Size: 6.625in x 9.625in Mariño c02.tex V3 - 02/11/2016 6:36 P.M. Page 17�

� �

�

Definitions and Notation 17

A set ⊂ ℝn is said to be open, when all its points are interior points (= int ()). A set
 ∈ ℝn is said to be closed when its complement ℝn − is open. Both ℝn and the empty set
are considered open and closed sets. The boundary of a set (denoted bd ()) is the set of
points x for which every ball (x, r) of any radius, centered in x, intersects with and with
ℝn − . That is, arbitrarily close points in exist, as well as arbitrarily close points not in .
Finally, a set ⊂ ℝn is compact if and only if it is closed and bounded. Being bounded means
that it can be contained in a ball of finite radius.

Example 2.2 In ℝ, open intervals (a, b) are open sets, closed intervals [a, b] are closed sets.
The boundary of [a, b] is the set of end points of the interval: bd([a, b]) = {a, b}. The interval
[a, b) is not closed nor open and its boundary is also {a, b}. Set [a, b] is closed and bounded
and thus compact, but [a,∞) is not compact, since it is not bounded.

2.2 Network Topology

The network topology is represented as a graph (,), being the set of network nodes,
and the set of links composing the network. Each link e ∈ has a single initial node denoted
as a(e) and a single end node denoted as b(e), both belonging to . Thus, only unidirectional
links are considered. Given a node n, we denote as 𝛿

+(n) to the set of outgoings links from
n (that is 𝛿+(n) = {e ∈ ∶ a(e) = n}). Also, we denote 𝛿

−(n) as the set of incoming links to
node n: 𝛿−(n) = {e ∈ ∶ b(e) = n}1. Figure 2.1 illustrates these concepts.

Given a network topology (,), a path p in the network is a sequence of links p =
(e1,… , ek), such that end node of link ei is the initial node of link ei+1. The initial node of a
path p is the initial node of its first link, and we denote it as a(p). The end node of path p,
denoted as b(p), is the end node of its last link. For instance, in Fig. 2.1 p = (e2, e3) is a path
with a(p) = n1 and b(p) = n3. If a path traverses a link e, we denote it as e ∈ p. If a node n
is the initial, final or intermediate node of a path, we denote it n ∈ p. Note that a path may
traverse a node or a link more than once. When a path p starts and ends at the same node
(a(p) = b(p)) we call it a cycle. A simple path is a path which does not contain any cycle, and
thus does not traverse any node more than once. In Fig. 2.2, where each connection between
two nodes represents two links, one in each direction, the path p = (e23, e34, e42) is a cycle.
The path p′ = (e12, e23, e34, e42) is not a simple path, since it contains the cycle p.

Given a topology (,), we say that two nodes n, n′ ∈ are connected, when con-
tains at least one path between them. In communication networks, we commonly work with
connected topologies. Formally, we say that a topology (,) is connected, when all the

n1 n2 n3

e1

e2
e3

Figure 2.1 Example. Topology with | | = 3 nodes, = {n1, n2, n3}, || = 3 links = {e1, e2, e3}.
End nodes of e1 are a(e1) = n2, b(e1) = n1. Outgoing links of node n2 are 𝛿+(n2) = {e1, e3}, and incoming
links of n2 are 𝛿

−(n2) = e2

1 Note that this representation puts no restriction in the number of links between two nodes.

Trim Size: 6.625in x 9.625in Mariño c02.tex V3 - 02/11/2016 6:36 P.M. Page 18�

� �

�

18 Optimization of Computer Networks – Modeling and Algorithms

n1 n2

n3

n4 n5

Figure 2.2 Example topology

possible node pairs in the topology are connected between them. For instance, the topology
in Fig. 2.1 is not connected, since there is no path from node n3 to node n2 (nor to node n1),
while the topology in Fig. 2.2 is connected.

We define a multipath or multicast tree p, originated at node a(p) and ended at the set of
nodes b(p) ∈ − a(p), as a set of |b(p)| paths pn, n ∈ b(p). Each path pn starts at the com-
mon origin node of the tree a(p), and ends at n ∈ b(p). We use e ∈ p and n ∈ p to denote that
a link e and a node n belong to the multipath. The paths in a multipath should form a directed
tree, so that path pn is the only sequence of links of the multipath that permits connecting a(p)
and n ∈ b(p). This means that each node n ∈ p has one and only one incoming link e ∈ p, but
the tree origin node a(p) that has none. Also, it holds that the number of links in a multicast
tree equals its number of nodes minus one. Figure 2.3 clarifies the concept of what is and what
is not a multipath or multicast tree.

n1 n2

n3

n4

(a) Multicast tree

(b) Not a multicast tree

n5

n1 n2

n3

n4 n5

Figure 2.3 (a) Multicast tree p with origin a(p) = n1 and destination nodes b(p) = {n3, n5}. (b) Not a
multicast tree. Note that n4 has two input links

Trim Size: 6.625in x 9.625in Mariño c02.tex V3 - 02/11/2016 6:36 P.M. Page 19�

� �

�

Definitions and Notation 19

2.3 Installed Capacities

Each link e ∈ has associated a real number ue ≥ 0 representing its capacity, that is, the
amount of average traffic it can transfer. To simplify the notation, it is sometimes convenient to
represent the capacities of all network links as a vector u = {ue, e ∈ }, where each coordinate
contains the capacity of its correspondent link.

Link capacities can be measured in any traffic unit that is appropriate to the problem.
In packet-switching networks, bits-per-second is the standard capacity unit. Commonly,
packet-switching technologies do not permit the designer choosing each link capacity arbi-
trarily, but restrict them to a discrete set of possible capacity candidates. For instance, in SDH
networks, link capacities can be limited to be integer multiples of 155 Mbps, the capacity of
a single STM-1 circuit. When the link capacities are constrained to belong to a discrete set,
we refer to them as modular capacities. In connection-based networks dimensioned using
loss systems, the link capacity is commonly given as the (integer) number of simultaneous
connections that the link can carry. Thus, link capacities in this case are inherently modular.

2.4 Traffic Demands

Traffic offered to the network is composed of a set of traffic demands. Each demand d ∈

represents a traffic flow. We write a(d) to denote the set of one or more nodes generating
the flow d, and b(d) is the set of one or more nodes where the flow is targeted. No node
can simultaneously be source and destination of a demand (a(d)

⋂
b(d) = ∅). We use hd to

indicate the offered demand intensity of d. In general, hd is measured in the same units as the
link capacities u. Vector h = {hd, d ∈ } denotes in a compact form the traffic offered by all
the network demands.

The meaning of flow intensity hd values is slightly different in packet-switched and
circuit-switched networks:

• In packet-switching networks, demands correspond to packet flows with a given average
intensity (e.g., measured in bits-per-second or in packets-per-second). Thus, instantaneous
traffic injected by the source can fast and randomly fluctuate around its average according
to different patterns, oscillating from time intervals when the traffic is above its average
(traffic bursts) or below it. The maximum instantaneous rate of a source is usually called
its peak rate. The effective bandwidth of a source is a value between its average rate and its
peak rate, defined as the amount of link capacity that a source requires in each traversing
link, to statistically satisfy its Quality of Service (QoS) threshold. Different procedures exist
to estimate the effective bandwidth of a source under different QoS conditions. Describing
them is out of the scope of this book, some seminal papers in the topic are [1, 2]. In general,
the more stringent the flow QoS is, and the longer its bursts are, the closer that the effective
bandwidth is to the peak rate. When the intensity hd of a flow d is a measure of its effective
bandwidth, the network design should enforce that the sum of the effective bandwidths
traversing a link is below the link capacity. When hd values are the flow average intensities,
network designs typically limit the maximum average link utilization to a value between 50
and 90%, to grossly guarantee the flow QoS.

• In circuit-switching networks, a demand d is a source of connection requests arriving ran-
domly to the network, with average arrival frequency of 𝜆d connections per time unit (e.g.,

Trim Size: 6.625in x 9.625in Mariño c02.tex V3 - 02/11/2016 6:36 P.M. Page 20�

� �

�

20 Optimization of Computer Networks – Modeling and Algorithms

per second). Each connection can have a random duration with an average time (e.g., in
seconds) given by 𝜇

−1
d . A carried connection occupies in all its traversed links a determinis-

tic amount of capacity sd. When all the demands generate connection requests with the same
size (typically sd = 1,∀d), the traffic is qualified as single-class. In contrast, in multi-class
traffic, requests from different demands can have different sd sizes. In either case, we use
hd to denote the average traffic intensity, which is given by:

hd = sd
𝜆d

𝜇d

The hd values are given in the same units as sd values. Usually, sd and link capacity ue are
measured using integer numbers, such that link capacities are considered the number of
simultaneous connections a link can carry. In these cases, the link capacities (ue) and traffic
intensities (hd) are said to be measured in Erlangs, in honor to Agner Krarup Erlang, who
greatly contributed to teletraffic theory in early twentieth century.

2.4.1 Unicast, Anycast, and Multicast Demands

The notation a(d) and b(d) as the set of initial and end nodes of a demand d, permits us mod-
eling in a consistent form the main types of traffic demands in the networks:

1. Unicast demands (1 – 1): A demand d is of the unicast type when it has a single initial and
end node (i.e., |a(d)| = 1, |b(d)| = 1). Unicast demands are the most usual form of traffic:
each demand is originated in a particular node and is targeted to other particular node.
When the offered traffic is composed of one unicast demand per each node pair, the offered
traffic is frequently represented using a traffic matrix: a square matrix with as many rows
and columns as nodes, such that coordinate (i, j) of the matrix contains the traffic offered
(hd) for the demand d initiated at node i and destined to node j. Figure 2.4 illustrates with
an example the generation of a traffic matrix M from a list of demands.

2. Anycast demands (j – k): A demand d is of type anycast j − k when (i) the demand can be
originated in one or several nodes, among a set of j source nodes (|a(d)| = j) and (ii) the traf-
fic should be delivered to one or more nodes, chosen among a set of k different destination

n1

M = {Mij} =

a(d1) = n1, b(d1) = n2, hd1 = 4

a(d2) = n1, b(d2) = n3, hd2 = 1

a(d3) = n1, b(d3) = n4, hd3 = 8

a(d4) = n2, b(d4) = n3, hd4 = 5

a(d5) = n2, b(d5) = n4, hd5
 = 3

a(d6) = n3, b(d6) = n4, hd6 = 1

a(d7) = n4, b(d7) = n2, hd7 = 2

a(d8) = n4, b(d8) = n3, hd8 = 6

0

0

0

0

4

0

0

2

1

5

0

6

8

3

1

0

n2

n3

n4

Figure 2.4 Example. Traffic matrix M is created from the list of demands at the left

Trim Size: 6.625in x 9.625in Mariño c02.tex V3 - 02/11/2016 6:36 P.M. Page 21�

� �

�

Definitions and Notation 21

nodes. Most frequent cases correspond to anycast 1 − k and anycast k − 1 demands. For
instance, let us suppose we are using a cloud computing service that has the information
spread in a set of k different server nodes (n1 … nk). In this situation, a user in node n that
wants to submit a file to the cloud, can be modeled as an anycast 1 − k source, if there is
the flexibility to freely choose one server to upload the file to. In its turn, a user in node n
willing to download a file that is mirrored in k servers can be modeled as a k − 1 anycast
demand, as long it is possible to freely choose the server where to download the file.

3. Multicast demands (1 – k): A demand d is of the multicast 1 − k type, when it consists of
a traffic flow originated in a single node (|a(d)| = 1), and such that k exact copies of the
traffic flow should be delivered, one for each k destinations in b(d) (|b(d)| = k). Note that
the need of delivering a copy of the traffic to each destination is a difference with respect
to anycast 1 − k demands: in anycast demands, the traffic should be delivered to any of the
target nodes, but not to all of them. Common examples of multicast sources are multimedia
distribution services, on-line games, or mirroring among servers, where a single source
wants to simultaneously update information in a set of destination nodes.

4. Broadcast demands: A broadcast demand d is a subtype of multicast demand, where an
origin node a(d) wants to deliver a copy of the traffic to all the rest of the nodes in the
network, but itself (b(d) = − a(d)).

2.4.2 Elastic versus Inelastic Demands

In previous definitions, traffic demands represent random packet or connection arrivals, which
can have fast fluctuations with respect to the average on the short time scale. The concepts
of elastic and inelastic demand distinguish how the average flow intensity varies at longer
time-scales.

In elastic traffic demands, the average flow intensity can vary along time, adapting its rate
to the perceived state of the network. The typical example of an elastic source is an elephant
TCP connection: a TCP connection that is always willing to transmit at higher rate if allowed,
and whose actual rate is periodically adjusted by the TCP congestion control mechanism to
adapt to perceived network conditions. In Chapter 6 we model the rate control problem for
elastic demands. Different techniques for devising decentralized algorithms that enable a fast
adaptation to network conditions, will be presented in Part II of the book.

In inelastic demands, the average offered flow intensity is supposed to be constant in long
time scales. Typical cases are multimedia sources that generate a flow rate with very partic-
ular and constant patterns, and do not react to congestion signals. Inelastic demands are also
considered in offline network design problems where the demand volumes are supposed to be
known in advance (e.g., coming from a traffic forecast or a monitoring process).

2.5 Traffic Routing

Traffic routing is the process by which the traffic demands are carried from their initial to their
end nodes. This is represented in different forms for different demand types:

• Unicast demands. The routing of an unicast demand d is realized through one or more paths,
each of them with the same initial and end nodes as d. When the demand is routed through

Trim Size: 6.625in x 9.625in Mariño c02.tex V3 - 02/11/2016 6:36 P.M. Page 22�

� �

�

22 Optimization of Computer Networks – Modeling and Algorithms

p1

p3

na

p2
b1

b2

Figure 2.5 Bifurcated multicast example. A fraction f of the traffic is delivered through multicast
tree {p1, p3} and node a forwards two copies of the traffic, while a fraction 1 − f is delivered through the
tree {p2, p3} and node n is the one that forwards two copies of this traffic

two or more paths (e.g., 30% of the traffic in one path, 70% in other), we say that it is
balanced or bifurcated.

• Anycast demands. The routing of an anycast demand d is realized through one or more paths.
Each path starts in any node belonging to a(d), and end in any node of b(d). Similarly to
the unicast case, if the demand is carried by two or more paths, we say that it is balanced or
bifurcated.

• Multicast demands. The traffic of a multicast demand d, with origin node a(d) and the set
of destination nodes b(d), can be routed through one or more multicast trees starting in
a(d) and ending in all nodes in b(d). Again, if more than one multicast tree is used to carry
the demand traffic, we say that the demand is balanced or bifurcated. This happens in the
example of Fig. 2.5 when a fraction f of the traffic is delivered through a multicast tree, and
a fraction 1 − f through other. Note that multicast routing requires from the network nodes
the capability of making copies of the traffic in an input link, to potentially more than one
output link. For instance, in Fig. 2.5, nodes a and n require such a copy capability.

Chapter 4 is dedicated to model multiple routing problem variants, while Part II provides
several examples of routing algorithms.

References
[1] F. P. Kelly, “Effective bandwidths at multi-class queues,” Queueing Systems, vol. 9, no. 1–2, pp. 5–15, 1991.
[2] A. I. Elwalid and D. Mitra, “Effective bandwidth of general Markovian traffic sources and admission control of

high speed networks,” IEEE/ACM Transactions on Networking (TON), vol. 1, no. 3, pp. 329–343, 1993.

Trim Size: 6.625in x 9.625in Mariño c03.tex V3 - 02/11/2016 6:37 P.M. Page 23�

� �

�

3
Performance Metrics in Networks

3.1 Introduction

In this chapter we introduce the main performance metrics in network design that will be part
of the optimization models along the book. Link and end-to-end delay estimations are pro-
vided for packet switching networks, and several models are presented for evaluating blocking
probability in circuit switching networks. Average number of hops and network congestion
metrics are defined. Then, cost models are introduced that capture the economies of scale
discounts appearing in network equipment acquisitions. Network availability is used for eval-
uating network resilience, under failure risks modeled using the Shared Risk Group (SRG)
concept, and we present a method to estimate network availability in general protection or
restoration schemes. Finally, we provide a rigorous definition of fairness in the allocation of
resources (e.g., bandwidth in the links) among competing entities, and its connection with
utility functions.

We pursue, when possible, simplified estimations of the performance metrics to ease its
utilization in network models. In such case, their convexity properties are analyzed, since this
is a property that can be exploited when designing optimization algorithms.

3.2 Delay

In packet-switching networks, randomness in the sources reflect in randomness in the packet
flows observed in the links. This is the origin of buffering delays in the nodes and even
packet drops when these buffers become full. Keeping such degrading effects under a satisfac-
tory threshold requires an appropriate network design. For this, we will provide estimations
for the average delay (i) traversing a link, (ii) in an end-to-end route, and (iii) a figure which
captures the average delay in the network.

3.2.1 Link Delay

Given a link e, Te denotes the average delay of the packets traversing it. To estimate Te we
assume a simple link model, shown in Fig. 3.1. Packets arriving to a node (and also packets

Optimization of Computer Networks – Modeling and Algorithms: A Hands-On Approach,
First Edition. Pablo Pavón Mariño.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/PavonMarinoSol16

Trim Size: 6.625in x 9.625in Mariño c03.tex V3 - 02/11/2016 6:37 P.M. Page 24�

� �

�

24 Optimization of Computer Networks – Modeling and Algorithms

Crossbar switch Buffer

Buffer

Buffer

Buffering
delay T b

e

y
e

ue

Transmission
delay T t

e

Propagation
delay T p

e

Figure 3.1 Node and link model

generated at the node), are supposed to be instantaneously switched by a crossbar, to its output
port. There, they are stored in a buffer of infinite size waiting for their turn to be transmitted.
According to this model, the link delay is the sum of the buffering delay, transmission delay
and link propagation delay:

Te = Tb
e + Tt

e + Tp
e

• Average buffering delay (Tb
e), represents the time spent by the packet in the buffer. This time

depends on the link capacity ue, the average intensity ye, and other statistical properties of
the traffic.

• Average transmission delay Tt
e is the average time needed to transmit the packet when it

leaves the buffer. This is given by the ratio between the average packet length in bits (L),
and the link transmission rate ue: Tt

e = L∕ue.

Example: A 500 bytes packet (a good approximation for the average packet size in the
Internet), has a transmission time of 0.4 ms in a 10 Mbps link, and 0.4 𝜇s in a 10 Gbps
link.

• Propagation delay Tp
e is the time needed by the electromagnetic signal to reach the link end

node. This is given by the ratio between the link distance de and the propagation velocity:
≈ 300,000 km/s in wireless links, and ≈ 200,000 km/s in wired technologies.

Example: In a 100 m link in a Local Area Network (LAN) the propagation delay is in the
order of 0.5 𝜇s, while in 500 km Wide Area Network (WAN) link, it is ≈ 2.5 ms.

The estimation of transmission and propagation delays do not pose any particular difficul-
ties. In contrast, a precise estimation of the average buffering delay would require the full
statistical characterization of the traffic from all the sources traversing the link. This is actu-
ally far from being possible in real networks, even for the simplified node architecture assumed
in Fig. 3.1.

Instead of pursuing a precise queueing (buffering) delay estimation, network design is com-
monly based on simplified expressions that capture the main trends governing this delay, but
simple enough to be introduced in network-wide mathematical models. We focus on two
buffering delay estimations: the Poisson traffic model and the self-similar traffic model.

Trim Size: 6.625in x 9.625in Mariño c03.tex V3 - 02/11/2016 6:37 P.M. Page 25�

� �

�

Performance Metrics in Networks 25

3.2.1.1 Poisson Traffic Model

The Poisson traffic model, assumes that the offered traffic to each link is a packet flow, where
the time between two consecutive packets are independent samples of a negative exponen-
tial distribution. This assumption is supported by the Palm–Khintchine theorem ([1], p. 160),
which states that under mild assumptions, the multiplexing in a link of a large number of
independent renewal packet sources (inter-arrival times in each source are i.i.d), asymptoti-
cally approximates a Poisson source. If the packet sizes are also independent samples of a
general distribution, the average buffering delay is given by the Pollaczek–Khinchine M/G/1
formula (3.1):

Tb
e = L

ue

𝜌e

2(1 − 𝜌e)
(1 + CV2

L) (3.1)

where CVL is the coefficient of variation (standard deviation divided by its mean) of the packet
length, ue the link capacity in bps, and 𝜌e the average link utilization 𝜌e = ye∕ue. If packet sizes
have an exponential distribution (CV2

L = 1), previous expression results in the well-known
M/M/1 formula (e.g., see [2] for details):

Tb
e = L

ue

𝜌e

1 − 𝜌e
(3.2)

3.2.1.2 Self-Similar Traffic Model

Delay estimations given by Poisson traffic models are optimistic approximations with respect
to what is monitored in real networks. In particular, the probability of finding long bursts
decays exponentially in Poisson models, which contradicts empirical traffic observations. The
reason is that in real traffic interarrival and packet transmission times are not independent
processes, and the user traffic behavior can be better approximated with patterns of infinite
variance.

Self-similar models are widely accepted as a more realistic form of characterizing the net-
work traffic. In self-similar traffic models, traffic is bursty at different scales: there are short
bursts and short low traffic intervals, but also the probability of having long bursts and long
low-traffic intervals is significant. Long bursts tend to saturate the links, and to worsen the
buffering delays and the probability of packet drops. There are many types and flavors of
self-similar traffic models, which intend to accurately capture these effects. The interested
reader can find a comprehensive view of the topic in [3]. Frequently, buffering delay esti-
mations under self-similar traffic are quite complex, and do not result in a closed formula
expression. In (3.3) we show an exception to this: an approximation to the buffering delay
presented in [4] for the case of an infinite size queue, fed with self-similar traffic generated
using a FBM (Fractional Brownian Motion) model:

Tb
e = (L∕ue)

𝜌
1∕2(1−H)
e

(1 − 𝜌e)H∕(1−H) (3.3)

parameter H ∈ [0.5, 1) in (3.3) is the so-called Hurst parameter, which characterizes the degree
of self-similarity of the traffic. High H parameters H ≈ 1 appear in traffic models with high
levels of self-similarity, while H = 0.5 characterizes traffic that is not self-similar. Different
traffic measurements in the Internet have reported traces with Hurst parameters between 0.6
and 0.9. Note that approximation (3.3) converts in (3.2) formula when H = 0.5.

Trim Size: 6.625in x 9.625in Mariño c03.tex V3 - 02/11/2016 6:37 P.M. Page 26�

� �

�

26 Optimization of Computer Networks – Modeling and Algorithms

3.2.1.3 Discussion

Figure 3.2 plots the link delays associated to (3.3) for different link utilizations 𝜌 and Hurst
parameters H. As can be seen, link delays are small and approximately constant at low link
utilizations and then increase abruptly when the utilization exceeds a threshold. The threshold
is around 𝜌 = 0.5 for very bursty traffics (H = 0.9), and 𝜌 = 0.95 for non-self-similar traf-
fic (H = 0.5). These results support a common practice in network planning, consisting in
dimensioning the network links such that utilization for the average expected traffic is below
50–60%. Note that in this case, buffering delays can be negligible in high-bit-rate links, com-
pared to user reaction times, or to propagation delays. For instance, in a 10 Gbps link of
500 km, buffering delays can be in the order of microseconds, and can be neglected with
respect to propagation delays, which are in the order of milliseconds.

Observing expression (3.3), we notice also that, for the same link utilization, average delays
are inversely proportional to link capacities. This means that, for example, the average delay
of a 10 Mbps link loaded at a 50% is 1000 times larger than the delay of a 10 Gbps link
at a 50% load. Thus, the optimization of the buffering delay figures in a network is a force
towards concentrating the network traffic in a small number of large-capacity links, instead of
spreading it in a high number of small ones. As will be shown in Chapter 5 and Chapter 7, and
is made evident along the book, this trend competes with other opposite ones, so that optimum
network design is often the one that finds the right balance among multiple trade-offs.

Finally, according to estimation (3.3), average delay is proportional to the average packet
size. Thus, ideally, dividing by two the packet sizes would halve the average buffering delay.
However, the packet lengths are not commonly a figure to optimize in network design, but
an input provided by the architecture of protocols in the network. Moreover, reducing the
packet length would have two negative effects: (i) each packet still needs to carry a header
with control information so, for example, duplicating the number of packets for the same data,
means duplicating the overhead, and (ii) the cost of the packet switching nodes grows with the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

Link utilization ρ

A
ve

ra
ge

 b
uf

fe
ri

ng
 d

el
ay

 (
m

s)

H = 0.9

H = 0.8

H = 0.7

H = 0.6

H = 0.5

Figure 3.2 Average buffering delay estimation (3.3). L = 500 × 8 bits, ue = 100 Mbps

Trim Size: 6.625in x 9.625in Mariño c03.tex V3 - 02/11/2016 6:37 P.M. Page 27�

� �

�

Performance Metrics in Networks 27

number of packet headers per second to process: for example reducing the packet length by
two, roughly means multiplying the rate of headers to process by two.

3.2.2 End-to-End Delay

The average end-to-end of a traffic traversing a path p is given by Tp:

Tp =
∑
e∈p

Te

If the traffic is multicast, and p is the multicast tree routing it, the end-to-end delay can be
different for different destination nodes n ∈ b(p). In general, we are interested in the worst-case
or maximum average delay, experienced by the traffic going to the different destinations:

Tp = max
n∈b(p)

{∑
e∈pn

Te

}
(3.4)

3.2.3 Average Network Delay

The average network delay is defined as the average end-to-end delay suffered by a traffic
unit (e.g., a packet) chosen randomly in the network. This figure can be useful as an objective
function to minimize in network design, since it condenses in a scalar number the delay per-
formance of the network. In this section, we estimate network delay for non-multicast traffic,
following the method in [5]. Let be the set of paths carrying traffic, xp the amount of traffic
carried by path p, associated with demand d(p), and hd the total amount of traffic carried of
demand d ∈ . The average network delay T is the weighted delay for the different paths in
the network:

T =
∑

p

xp∑
dhd

Tp

Assuming that all paths of all demands are treated equally (i.e., there are no priority paths
that observe smaller link delays), we have that:

T = 1∑
dhd

∑
p

xp

∑
e∈p

Te =
1∑
dhd

∑
e

Te

∑
p∈e

xp

Where in the second equality, the order of the summatories are exchanged, so e is the set
of paths that traverse link e. Denoting ye as the total amount of traffic in link e (ye =

∑
p∈e

xp)
we have the final expression for average network delay.

T = 1∑
dhd

∑
e

yeTe (3.5)

An expression for average network delay with multicast traffic is obtained in Exercise 3.1.

3.2.4 Convexity Properties

It can be shown by direct inspection of the second derivatives, that link delay formulas for
M/M/1 (3.2), M/G/1 (3.1), and self-similar traffic (3.3) are strictly increasing and strictly
convex expressions with respect to the traffic in the link (ye variables). Logically, same
properties apply with respect to utilization variables 𝜌e. In addition, aforementioned formulas

Trim Size: 6.625in x 9.625in Mariño c03.tex V3 - 02/11/2016 6:37 P.M. Page 28�

� �

�

28 Optimization of Computer Networks – Modeling and Algorithms

are also strictly decreasing and strictly convex with respect to capacity variables (ue).
However, joint convexity with respect to (ye, ue) does not hold. See Exercise 3.2 for the
derivations. Figure 3.2 helps to illustrate the strictly increasing and convex evolution of the
link delay with respect to 𝜌e values.

From previous results, convexity of the end-to-end delay Tp in a path p, Tp =
∑

e∈pTe is
guaranteed, as a function of ye or ue, since the sum of convex functions is also convex. Note
that strict convexity with respect to u or y variables does not hold unless the path traverses
all the links in the network. Similarly, expression (3.4) for worst-case multicast tree delay is
a convex function of ue or ye or 𝜌e variables, since the maximum of a convex function is also
convex.

Finally average network delay expression T (3.5) is a strict convex function with respect to
ue, ye or 𝜌e variables, for any of the studied Te estimations. See Exercise 3.3 for the derivations.

3.3 Blocking Probability

According to our notation model, in circuit-switching networks a demand d is the source of
connection requests that arrive randomly to the network and, if carried, occupy a fixed and
deterministic amount sd of bandwidth in each traversed link. The average intensity in Erlangs
of such demand hd is given by:

hd = sd
𝜆d

𝜇d

Where 𝜆d is the mean number of connection requests per time unit, and 𝜇
−1
d the average

connection holding time. Link capacity values (ue) are integer units (e.g., number of channels),
and also the amount of bandwidth consumed by a connection sd is integer. When a request does
not find a path with enough available capacity, it is blocked.

In this section, we will treat both the single-class and multiclass traffic cases. Recall that in
single-class traffic, all the demands generate connection requests with the same size sd = 1,
while in multiclass networks, requests from different demands can have different sd sizes.
We will first describe a simplified model to estimate the blocking probabilities at the link,
path, and network level. The benefits of this model are its simplicity, and the opportunity to
provide reasonably simple estimations, for which a convexity analysis can be presented. This
is obtained at a cost of estimation accuracy. In the last part of this section, other more complex
and more accurate models are presented.

3.3.1 Link Blocking Probability

Figure 3.3 illustrates the link model considered for estimating the blocking probabilities of
connections traversing a link e. The traffic intensity of each demand d in the link is noted
yde, ye =

∑
dyde is the total offered link traffic, and 𝜌e = ye∕ue the normalized link load. We

assume that connection arrival times are Poisson, and connection holding times are indepen-
dent samples of any distribution. We also assume the so-called complete sharing link model
[6], which means that a request is blocked only if there are not enough idle channels in the
link. In these conditions, if the traffic is single-class, the blocking probability Be is the same

Trim Size: 6.625in x 9.625in Mariño c03.tex V3 - 02/11/2016 6:37 P.M. Page 29�

� �

�

Performance Metrics in Networks 29

1

2

ye
(yde, sd), ∀d ∈ D

ue

Figure 3.3 Node and link blocking model

for all the demands, and given by the celebrated Erlang-B formula:

Be = EB[ye, ue] =
yue

e ∕ue!∑ue
k=0 yk

e∕k!
(3.6)

In the multiclass context, demands with different sd values can observe different block-
ing probabilities Be(d). These can be computed for the complete sharing model using
the Kaufman–Roberts recursion (proposed independently in [7] and [8]), described in
Algorithm 1. Note that, logically, all the demands with the same bandwidth requirements sd
perceive the same blocking.

Algorithm 1 Kaufman–Roberts recursion
1: g(c) = 0, c < 1; g(0) = 1
2: for all c = 1,… , ue do
3: g(c) = 1

c

∑
d ydeg(c − sd)

4: end for
5: G =

∑ue
c=0 g(c)

6: Be(d) =
1
G

∑sd−1
i=0 g(C − i), ∀d ∈

7: return {Be(d), d ∈ }

3.3.1.1 Discussion

Figure 3.4 plots the blocking probabilities in the single-class traffic case, for a link e with
different link capacities (ue) and load values (𝜌e). The first observation is that blocking prob-
abilities always increase with link offered load. For a given link utilization, blocking prob-
abilities decrease with link capacity. For instance, let us assume a 1 Gbps link, which is
offered an average of 600 Mbps, consisting of arrivals of 100 Mbps connections. In this case,
the link capacity equals 10 units (10 simultaneous connections), utilization is 60%, and the
resulting blocking probability is EB(0.6, 10) ≈ 4%. In its turn, if half of the traffic (300 Mbps)

Trim Size: 6.625in x 9.625in Mariño c03.tex V3 - 02/11/2016 6:37 P.M. Page 30�

� �

�

30 Optimization of Computer Networks – Modeling and Algorithms

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Load ρe = ye / ue

B
lo

ck
in

g
pr

ob
ab

ili
ty

ue = 1

ue = 500

Figure 3.4 Blocking probability (single-class, Erlang-B). ue ∈ {1, 2, 3, 4, 5, 10, 20, 50, 100, 500}

was offered to a link with half capacity (500 Mbps), the resulting blocking would be higher:
EB(0.6, 5) ≈ 11%. A similar effect could be obtained if we reduce the granularity of the con-
nections. For instance, if 600 Mbps of traffic are offered to a 1 Gbps link, but with connection
sizes of 10 Mbps instead of 100 Mbps, the link can now accommodate 100 simultaneous
connections (ue = 100). This reduction in connection granularity, results in a much reduced
blocking probability EB(0.6, 100) ≈ 6 × 10−7.

As a general rule, similar trends favoring the concentration of the traffic in links of larger
capacities, and reducing the granularity, also hold in multiclass networks. However, some
anomalous behaviors, like the blocking probability of a traffic class being reduced when the
traffic of the class is increased, can occur when the link capacity is of a comparable size with
respect to the connection bandwidths sd. We will briefly present some examples on this in
Section 3.3.4.

3.3.2 Demand and Network Blocking Probability

The demand blocking probability Bd provides the probability of rejecting a connection request
of a given demand, while the average network blocking B is the weighted average of the frac-
tion of traffic rejected by the network:

B = 1∑
dhd

∑
d

hdBd (3.7)

The exact calculation in a network of the demand blocking probabilities, managing the inter-
play of different demands traversing different links, accepting one or more possible (alternate)
routes for the connection, becomes intractable for all but simple cases. The derivation of usable
estimations has received a lot of attention in the literature. Section 3.3.3 will provide a short
review of some of them, the interested reader is recommended the compendiums [6] and [9].

www.ebook3000.com

http://www.ebook3000.org

Trim Size: 6.625in x 9.625in Mariño c03.tex V3 - 02/11/2016 6:37 P.M. Page 31�

� �

�

Performance Metrics in Networks 31

In this section we present a simplified approach, valid for single and multiclass networks,
where traffic can be unicast, anycast, multicast, or any combination of them. We make the
following assumptions:

1. Poisson traffic model: Connection requests associated to any demand follow a Poisson
arrival process.

2. Load sharing model: If a demand d is assigned more than one possible path p ∈ d (or
multicast tree for a multicast demand), each connection arrival randomly and independently
chooses one path out of d. If the path has not enough capacity, the connection is rejected
(i.e., with no re-trial in other path). As a result, a path p associated to demand d(p) can
be treated as an independent demand of load hp = hd(p)zp, where zp is the path selection
probability.

3. Link independent Poisson arrivals: Connection requests associated to a link are supposed
to be a Poisson process, independent from other links.

4. Low-blocking regime: The load and capacity conditions in the network are supposed to be
such that the blocking probabilities are moderate (e.g., below 5%).

Given a path p, link independence assumption permits estimating the path blocking proba-
bility Bp as:

Bp = 1 −
∏
e∈p

(1 − Bep) (3.8)

where Bep is the probability of not finding enough idle resources in link e for connections of
the size sd (being d the demand associated to p). Note that in single-class networks, we have
Bep = Be,∀p. In the low-blocking regime, path blocking (3.8) can be approximated as:

Bp = 1 −
∏
e∈p

(1 − Bep) ≈
∑
e∈p

Bep

Previous approximation is pessimistic, and its accuracy proportional to the product of block-
ings (the smaller the blockings the better). Finally, we assume that all the links in a path p sum
a quantity equal to hp to the offered traffic. Therefore, in the multiclass case, Algorithm 1 can
be used to compute the Bep values, taking as link offered traffic the sum of the traffics in the
traversing paths. According to this approximation, the average network blocking probability
B can be obtained as:

B = 1∑
php

∑
p

hpBp = 1∑
php

∑
p

hp

∑
e∈p

Bep

In the single-class case, Erlang-B formula (3.6) is used to compute Be blockings and the
link offered traffic is given by ye =

∑
p∈e

hp. The average network blocking expression can
be further simplified, resulting in:

B = 1∑
php

∑
p

hp

∑
e∈p

Bep = 1∑
php

∑
e

∑
p∈e

hpBe =
1∑
php

∑
e

yeBe (3.9)

3.3.3 Other Blocking Estimations

In this section we provide an overview of more complex blocking estimations appearing in
the literature. Again, the reader is referred to classical books like [6] or [9] for an in-depth
survey.

Trim Size: 6.625in x 9.625in Mariño c03.tex V3 - 02/11/2016 6:37 P.M. Page 32�

� �

�

32 Optimization of Computer Networks – Modeling and Algorithms

3.3.3.1 Load Sharing: Reduced Load Approximation

Reduced load approximations are probably the most popular approximations in loss networks.
Let us assume a load sharing model for a single-class or multiclass network where each demand
d is a source of connection requests associated to a single path pd. The main idea behind
reduced load approach is that connection blocking probabilities Bd for the path pd can be
approximated by:

Bd = 1 −
∏
e∈pd

(1 − Bed) (3.10)

where Bed is the probability that a connection of demand d is not accepted on link e. In other
words, (3.10) says that blocking on different links are approximately independent. The most
common reduced load approximation is the one from Kelly (see [10] for a complete theoretical
background), which uses path blocking probabilities of the form:

Bd = 1 −
∏
e∈pd

(1 − Be)sd (3.11)

This means that a request for one unit of capacity in link e is blocked with probability Be,
and we make the approximation that all these blocking events are independent. According to
this, the traffic offered to link e will be Poisson and the level of carried traffic hd(1 − Bd) will
be

∑
dhd

∏
e′∈pd

(1 − Be′)sd . The Be values are determined by solving the following system of|| equations involving the Erlang-loss (EB) formula:

Be = EB

(
1

1 − Be

∑
d

hd

∏
e′∈pd

(1 − Be′)sd , ue

)
, e ∈ (3.12)

Equations (3.12) simply state that Be values in all the links should be consistent with the
appropriate level of carried traffic of all demands.

Kelly proved [11] that there is a unique solution to (3.12), and that this solution is asymp-
totically exact for large networks (when capacities and traffics are multiplied by a factor
k → ∞). The blocking estimation has shown to be accurate for many topologies of interest
in the single-class case, while its accuracy can be degraded when multiclass traffic appears.

The Erlang fixed point method depicted in Algorithm 2 is the most popular approach to find
the Be values solving (3.12), by using a repeated substitution iteration.

Algorithm 2 Erlang fixed point method

1: k = 0, Choose B0
e ∈ [0, 1],∀e ∈

2: for all e ∈ do
3: Bk+1

e = EB

(
1

1−Bk
e

∑
d hd

∏
e′∈pd

(
1 − Bk

e′

)sd
, ue

)
4: end for
5: G =

∑ue
c=0 g(c)

6: Be(d) =
1
G

∑sd−1
i=0 g(C − i), ∀d ∈

7: return {Be(d), d ∈ }

In single-class networks, the Erlang fixed point iteration is empirically known to converge
in a few iterations to the correct Be values. Actually, formal convergence guarantees are that

Trim Size: 6.625in x 9.625in Mariño c03.tex V3 - 02/11/2016 6:37 P.M. Page 33�

� �

�

Performance Metrics in Networks 33

it does not diverge, but may oscillate without improvements in some hand-picked scenarios
(e.g., see [12]). In multi-class networks, the method has no convergence guarantees, and its
use is discouraged.

3.3.3.2 Alternate and Adaptive Routing

The obvious drawback of load sharing model is that if the path selected by a demand is unavail-
able, the request is lost, although other paths may be free. For this reason, pure load sharing is
not used in real networks, and its interest is mostly theoretical. The improvement is to permit
choosing the path from a given set, taking into account the state of the network.

One example is the so-called alternate routing, where each demand has a precomputed and
ordered list of paths. When a connection request arrives, the first path available in the list is
chosen, and the request is blocked only if all are unavailable. Other examples fall into the
so-called adaptive routing techniques. In these schemes, when more than a path is available
for a connection, the one to choose does not depend on a pre-defined order, but on the current
network state. This is the case of the so-called Least Congested Routing (LCR). In LCR, a
measure of congestion is computed for each connection admissible path. The path congestion
is defined as the idle capacity in the traversed link with less idle capacity. Then, LCR routes
the connection through the path with lower congestion.

Estimating the blocking probabilities in alternate and adaptive routings is difficult, and
closed-form expressions are not available but in trivial cases. In its turn, a plethora of esti-
mations based on numerical methods have been presented, for different routing flavors. The
reader is referred to [6] for an exhaustive compilation.

Alternate and adaptive routing techniques bring into discussion new effects in the network:
random oscillations between different network states, and the need of admission control tech-
niques to address them. To illustrate this, let us imagine a network where each demand has
two alternate paths, a short and a long one. In some circumstances, for the same average
offered traffic, two stable states can appear in the network: a high blocking state and a low
blocking state.

• In the high blocking state, most of the demands use the long alternate path, which occupy
more links. This situation becomes stable since subsequent connection requests find their
short paths occupied by connections following alternate paths of other demands.

• In the low blocking state, most of the connections use the short path, occupying a similar
amount of link resources as in the previous state, but carrying more connections.

Oscillations between these two states can occur because of random fluctuations of the
arrivals process: a network in a low blocking state after a burst of arrivals can enter in the
high blocking state, and stay there even when the burst disappears. This type of network
instabilities have been studied in several works (e.g., see [6] for further details), and are
known to occur in just some regimes of offered traffics. In order to avoid such instabilities,
the so-called trunk reservation technique is used. This consists of the following: (i) a link
with available capacity always accepts a connection if it follows its primary (short) path, but
(ii) if the connection is routed through an alternate (long) path, the link should have at least
T > 1 idle capacity units to accept it. The result is that, when the links are heavy loaded,
connections are only routed through their short paths, or rejected, so no wasteful alternate

Trim Size: 6.625in x 9.625in Mariño c03.tex V3 - 02/11/2016 6:37 P.M. Page 34�

� �

�

34 Optimization of Computer Networks – Modeling and Algorithms

routes are accepted. By an appropriate dimensioning of the trunk reservation factor T , it is
possible to eliminate network instabilities and reduce the network blocking at high loads.

3.3.4 Convexity Properties

It is well known that Erlang-B blocking (3.6) is an increasing function with respect to the link
utilization 𝜌e or link traffic ye, and a decreasing function of the link capacity ue. In [13], it
was shown that Erlang-B is a convex function of the link capacities, when they take integer
values. Extensions of the Erlang-B for continuous values of ue (of interest in some blocking
estimation methods), have been shown to be also convex [14].

The convexity of the Erlang-B as a function of the traversed traffic ye or the link utilization
𝜌e, has been studied in several works. In [15], it is shown that if a link has one unit of capacity
(ue = 1), the blocking probability is strictly concave function of ye (or 𝜌e). In contrast, if ue > 1,
the blocking is a strictly convex if the link utilization is below a given threshold 𝜌e < 𝜌

∗, and
strictly concave if 𝜌e > 𝜌

∗. Figure 3.4 illustrates the inflection point. Note that in those uti-
lization regimes where the blocking is below 10%, the Erlang-B function is always convex.
Finally, it holds that, for any utilization regime, the link throughput ye(1 − Be) is strictly con-
cave in ye or 𝜌e, and thus the amount of blocked traffic yeBe is a strictly convex function of 𝜌e
or ye. Note that according to this, the average single-class network blocking estimation (3.9)
is a strictly convex function with respect to {ye, e ∈ } variables.

Unfortunately, the multiclass case does not enjoy many of the monotonicity and convex-
ity properties of its single-class counterpart (see [16, 17] for details). Figure 3.5 helps us to
illustrate this, for two Poisson traffic classes traversing a link:

• In Fig. 3.5a, we see how increasing the link capacity for a fixed traffic can increase the
blocking probability of some connections. This happens since the extra capacity can reduce
the blocking of some wide traffic classes, leaving less room to the rest.

• In Fig. 3.5b the traffic of the demand with sd = 2 is increased, keeping constant the load of a
traffic class with sd = 3. As can be seen, increasing the traffic of a class can actually decrease
the blocking of such class. This is because the extra traffic can increase the blocking of other
classes, which then gives extra capacity to reduce the blocking of the first.

3.4 Average Number of Hops

The average number of hops n̄ is a popular measure to characterize the routing. It is defined
as the average number of links traversed by a packet or a traffic connection in the network.

n̄ =
∑

plpxp∑
pxp

Where lp is the number of links in path p, or, in multicast trees, the average number of links
traversed among each destination. If the traffic is just unicast and/or anycast, but not multicast,
and all the offered traffic is carried, we can further simplify the previous expression:

n̄ =
∑

e ye∑
d hd

(3.13)

Trim Size: 6.625in x 9.625in Mariño c03.tex V3 - 02/11/2016 6:37 P.M. Page 35�

� �

�

Performance Metrics in Networks 35

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Link capacity

B
lo

ck
in

g
pr

ob
ab

ili
ty

(a) Behavior with respect to link capacity

0 2 4 6 8 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Traffic intensity in the connection with bk = 2

B
lo

ck
in

g
pr

ob
ab

ili
ty

(b) Behavior with respect to link traffic

b = 1
b = 5

b = 2
b = 3

Figure 3.5 Example. Evolution of blocking probability for two traffic classes k = 1, 2 of connection
sizes sk, traversing a link (Poisson assumption). (a) ue = {5… 30}, s1 = 1, s2 = 5, y1 = 1 E, y2 = 5 E.
(b) ue = 7, s1 = 2, s2 = 3, y1 = [0, 20], y2 = 3

Trim Size: 6.625in x 9.625in Mariño c03.tex V3 - 02/11/2016 6:37 P.M. Page 36�

� �

�

36 Optimization of Computer Networks – Modeling and Algorithms

Which means that the metric n̄ can be obtained by using just aggregated information of the
traffic in the links and the demands. Note that the numerator in (3.13) is obtained by rewriting
the sum per path as a sum per link:∑

p

lpxp =
∑

e

∑
p∈e

xp =
∑

e

ye

It is easy to see that metric n̄ (3.13) is a linear (and thus convex and concave) function with
respect to the traffic in the links.

3.5 Network Congestion

In packet switched networks, the network congestion cg is defined as the utilization in the link
of the network, which has a higher utilization (so-called, the bottleneck link):

cg = max
e∈

ye

ue
(3.14)

In other words, if a network has a congestion of 0.7, means that at least one link has a utiliza-
tion of 70%, and the rest have a 70% utilization or less. The other common way to represent
the network congestion is the worst-case unused bandwidth (uu) metric. This is defined as the
unused bandwidth (ue − ye) in the link of the network with less unused bandwidth:

uu = min
e∈

ue − ye (3.15)

Note that according to the M/M/1 formula, the average transmission plus buffering delay
in a link is given by L

ue−ye
, and thus is inversely proportional to the link unused bandwidth.

Thus, designs maximizing the worst-case unused bandwidth uu, simultaneously minimize the
worst-case average link delay in the network.

Expression (3.14) is a convex (but not strictly convex) function of ye and also of ue variables,
since ye

ue
is a convex function with respect to both, and the pointwise maximum of a set of

convex functions is also convex. Similarly, expression (3.15) is concave, as a function of ye or
ue, since ue − ye is linear (and thus concave), and the pointwise minimum of a set of concave
functions is itself concave.

3.6 Network Cost

The cost of the network is naturally one of the major aspects subject to optimization. A pre-
cise determination of the cost of a design is a complex task, and in realistic scenarios, it is
commonly not possible to find a close expression for it. In this section, we will describe a
cost model that intends to be simple, but flexible enough to capture the main trends in cost
evolution and being applicable in different contexts.

We denote as C the cost of a network, which is assumed to be given by the sum of a cost
per link (c(e)), and a cost per node (c(n)):

C =
∑

e

c(e) +
∑

n

c(n) =
∑

e

cf (e) + c
𝑣
(e, ue) +

∑
n

cf (n) + c
𝑣
(n, un)

Trim Size: 6.625in x 9.625in Mariño c03.tex V3 - 02/11/2016 6:37 P.M. Page 37�

� �

�

Performance Metrics in Networks 37

Both link and node costs are separated as the sum of a fixed cost (cf) and a variable cost
(c

𝑣
). Fixed costs in links and nodes are applied only if the link/node exists, whatever the link

capacity (ue) or node capacity (which we denote as un). In turn, variable costs c
𝑣

are increasing
functions of the link/node capacity. Both fixed and variable costs can have multiple forms,
depending on the network technology and, for example, the particular cost structure of the
network operator. Several illustrative examples follow:

• In optical backbone networks, links are optical fibers deployed between major cities. Usu-
ally, the companies building railways or highways infrastructures in the country are the
owners of these fibers. They rent them to the telco carriers and the telco is responsible of
adding all the necessary transmission equipment to the fiber1. The renting cost is in general
a linear function of link length de (cf (e) = 𝛼 + 𝛽de). A rented fiber can host a quite variable
number of channels (e.g., up to 160 40G channels), and the cost of using a channel is low
compared to the fiber renting cost. In this context, cf (e) costs are dominant with respect to
c
𝑣
(e) costs.

• Corporate networks of private companies are usually composed of small to medium size IP
routers, connected by virtual circuits hired to the network carrier. In this case, circuits costs
given by the carrier tariffs strongly depend on the link rate, and are dominant with respect
to the router costs.

The dependence of the variable costs with respect to the link/node capacity often follows
the economies of scale law or the law of diminishing returns: as the capacity grows, (i) the
absolute cost grows, but (ii) the cost per capacity unit decreases. As an example, this explains
why buying a 10 Gbps link is cheaper than buying ten 1 Gbps links. On some occasions,
economies of scale appear as a lower list price per capacity unit in higher capacity equipment,
or take the form of a discount in the link/node cost if more capacity units are acquired.

The economies of scale law is reflected in c
𝑣

functions that are (i) increasing, and (ii) con-
cave functions with respect to the link/node capacities. Figure 3.6 illustrates this, plotting the
(normalized) prices of several wholesale Internet access links in Spain as published in p. 92
of [18]. Clearly, we see that costs can be approximated by an increasing and concave curve.
In particular, a least-square fit of the costs is given by:

c(e) = 0.575 − 0.42ue + 0.843
√

ue

3.7 Network Resilience Metrics

Network resilience is a term describing the ability of a network to provide an acceptable ser-
vice level even in the presence of failures or attacks. This is a critical aspect in network design,
given the economic importance of the activities that rely on communication networks today.
Service Level Agreements (SLA) that carriers sign with their clients often include different
measures relative to network resilience. The most important among them is the service avail-
ability, defined as the percentage of time during which the service should be operative during
the observation period (e.g., 1 year). Typical availabilities appearing in SLAs are between

1 Since the carrier lights the fiber adding the optical transmission equipment, the fiber rented is usually called dark
fiber.

Trim Size: 6.625in x 9.625in Mariño c03.tex V3 - 02/11/2016 6:37 P.M. Page 38�

� �

�

38 Optimization of Computer Networks – Modeling and Algorithms

0 0.2 0.4 0.6 0.8 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Link capacity (normalized)

Pr
ic

e
(n

or
m

al
iz

ed
)

Figure 3.6 Concave costs example. Normalized wholesale Internet access prices (GigADSL) for dif-
ferent rates in Spain (p. 92, [18])

99.9% and 99.999%. The latter (popularly called five nines) is considered a premium class
performance in standard (non-critical) services. Note that a five nines availability means that
the service can be discontinued at most for about 5 minutes per year.

SLAs include penalties if the performance metrics are not met and it is important for network
operators and service providers to precisely estimate the availability guarantees they can offer.
This requires an assessment of the failure risks that threaten the network: risk of software
and hardware malfunctions, cable cuts, power outages, and so on. As an example, Table 3.1
shows an estimation study in [19] for different network resources. For each equipment type,
availability is extracted as a function of two separated estimations:

• Mean Time Between Failures (MTBF): Average time elapsed between two consecutive
equipment failures.

• Mean Time To Repair (MTTR): Average time needed to repair a failure. During this time,
the resource is unavailable.

The availability A of an equipment is related to MTBF and MTTR by the formula:

A = MTBF − MTTR
MTBF

The successful provision of any actual network service involves the cooperation of multiple
resources, which can suffer individual or coordinated failures. For instance, Fig. 3.7 shows an

Trim Size: 6.625in x 9.625in Mariño c03.tex V3 - 02/11/2016 6:37 P.M. Page 39�

� �

�

Performance Metrics in Networks 39

Table 3.1 Typical MTBF MTTR and availability values [19]

Equipment MTBF MTTR Availability

Web server 104 − 106 h 1 h 99.99–99.9999%
IP interface card 104 − 105 h 2 h 99.98–99.998%
IP router itself 105 − 106 h 2 h 99.998–99.9998%
ATM switch 105 − 106 h 2 h 99.998–99.9998%
SONET/SDH DXC or ADM 105 − 106 h 4 h 99.996–99.9996%
WDM OXC or OADM 105 − 106 h 6 h 99.994–99.9994%
Long distance cable 50–200 days hours-days 99–99.75%
(per 1000 km)

0.999 0.992 0.998

0.99995 0.99995 0.99999

Client R2 Web serverR1

Figure 3.7 Simple service availability example

example of a web connection whose successful completion requires the correct operation of
three links, two routers, and the web server. The resulting availability of the service As, if the
up/down state of each resource was statistically independent, would be given by:

As = 0.999 × 0.99995 × 0.992 × 0.9995 × 0.998 × 0.99999 ≈ 0.9889

This example helps us to illustrate that, in service provisions subject to realistic link and node
MTBF/MTTR values, the availability figures obtained can be very poor. Thus, the only way
to improve these numbers is the adoption of fast and automatic recovery actions that reroute
the traffic affected by a failure, such that the service is not disrupted during the (usually long)
reparation time of the failing resources. We distinguish two main strategies:

• Protection recovery: In this case, the recovery actions are pre-planned and typically
pre-signaled in the network such that failure reactions can be very fast (e.g., from tens
of ms to 1 s). The most popular protection systems are illustrated in Fig. 3.8. In the 1+1
protection (Fig. 3.8a), a traffic connection through a (primary) path p is backed by a
secondary or back up path p′, which is disjoint to p. The source node sends two copies
of the traffic, one for each path. In case of failure in the primary path, the receiver is
reconfigured to read the traffic coming from the backup path. As a variation on this, in
1:1 protection systems, the secondary path can be idle or transmit low priority traffic
when the primary path is up. When p fails, any low priority traffic is pre-empted, and the
secondary path is used to carry the original traffic. In both 1+1 and 1:1 protection schemes,
the capacity reserved in the primary and secondary paths are the same, and the backup
capacity is dedicated to protect a particular connection. In its turn, in the M:N protection

Trim Size: 6.625in x 9.625in Mariño c03.tex V3 - 02/11/2016 6:37 P.M. Page 40�

� �

�

40 Optimization of Computer Networks – Modeling and Algorithms

1

Primary paths
Backup paths

1

(a) (b)

2

2

Figure 3.8 (a) 1+1 protection (dedicated), (b) 2:3 protection (shared)

schemes, a set of M backup paths are allocated to protect N primary connections. Any
primary connection can be allocated any backup path. Thus, the capacity in the backup
links is shared among the primary connections. Figure 3.8b shows a 2:3 shared protection
scheme.

• Restoration recovery: In restoration schemes, the recovery actions are not pre-planned, but
decided after the failure/reparation is detected. This permits the maximum flexibility to
decide on the most efficient recovery adapted to current network state, at a cost of a slower
reaction.

Typically, network design is constrained to guarantee a minimum availability to the traf-
fic demands. In the following subsections, we provide two different models to estimate such
metrics. Both models are based on the definition of the Shared Risk Groups (SRG) in the
network.

3.7.1 Shared Risk Groups

We refer to risks as the possible causes that can create failures in a network. For instance, a risk
could be the malfunction of a particular router, the risk of fire in a particular site affecting all the
equipment located there, or the risk of accidentally cutting a duct between two cities carrying
a multitude of links. In this context, we define a Shared Risk Group (SRG) f , associated to a
particular risk, as the set of network nodes and network links that simultaneously fail if the
associated risk is materialized. Given the one-to-one relation between risks and SRGs, we will
use both terms interchangeably throughout the text. We denote as the set of all risks/SRGs
identified in a network.

Note that an SRG can be composed of one or more nodes and/or links. And that a single node
or link can belong to zero, one, or more SRGs. The example in Fig. 3.9 helps us to illustrate
this. In this network, we identify three risks of failure, associated to three different ducts that
can be accidentally cut. Note that links 1–2 and 1–3 share the f1 duct so if it is cut, both links
fail simultaneously. Also note that link 1–2 belongs to two SRGs and link 2–3 to none.

Given a particular risk f , we denote MTBFf , MTTRf and Af as its MTBF, MTTR and avail-
ability. The estimation of such values is typically an input to network design, coming from
a risk assessment study. For instance, Net2Plan gives full flexibility to configure the SRGs
in the network, their MTBF/MTTR values and the associated failing nodes and links in an
arbitrary form.

Trim Size: 6.625in x 9.625in Mariño c03.tex V3 - 02/11/2016 6:37 P.M. Page 41�

� �

�

Performance Metrics in Networks 41

1 3

2

f3

f2f1

Figure 3.9 Example. Three SRGs f1, f2, f3 associated to three ducts that is estimated that can be acci-
dentally cut

3.7.2 Simplified Availability Calculations

In this simplified model, two assumptions are made:

• Independent risks: The events of failure in two SRGs are statistically independent. Thus,
the probability that two SRGs f1, f2 are currently working correctly is given by Af1

Af2
.

• Disjoint SRGs: There is no link nor node in the network that belongs to more than one SRG.
This permits simplifying the notation and write Ae and An to refer to the availability of the
SRG to which e and n belong, respectively. If a link/node does not belong to any SRG, it
will never fail, and thus has an availability of one.

The independent and disjoint SRG assumptions ease the calculation of the availability of ser-
vices that require the simultaneous correct operation of multiple nodes and links. For instance,
let us assume a service represented by a traffic demand d, whose traffic is carried through a
particular path p. We assume that the chances of a node failure are neglected and thus only
link failures are considered. The availability of a demand d is equal to Ap, the availability of
the path, equal to the probability of having all the traversing links working correctly. This is
given by:

Ad = Ap =
∏
e∈p

Ae

If the primary path p is protected with a 1+1 scheme by (disjoint) backup path p′, the demand
availability is given by:

Ad = 1 − (1 − Ap)(1 − Ap′) = 1 −

(
1 −

∏
e∈p

Ae

)(
1 −

∏
e∈p′

Ae

)

3.7.3 General Model

In this section, we describe a general model which drops the SRG disjointness assumption
of the simplified model. In this case, for example since two links/nodes can share a risk, we

Trim Size: 6.625in x 9.625in Mariño c03.tex V3 - 02/11/2016 6:37 P.M. Page 42�

� �

�

42 Optimization of Computer Networks – Modeling and Algorithms

cannot consider the probability of having both simultaneously active as the product of their
availabilities.

To cope with this difficulty we consider a set of possible network states in which the
network can be. A state s ∈ is defined by the set do𝑤n(s) of risks that are in failure, and the
set up(s) = − do𝑤n(s) of risks that are not. We denote as s0 to the no-failure state, when no
SRGs are down. By applying the SRG statistical independence assumption, the probability 𝜋s
of finding the network in state s is given by:

𝜋s =
∏

f∈up(s)
Af

∏
f∈do𝑤n(s)

(1 − Af)

In particular, the fraction of time in which the system is in the no-failure state is given by:

𝜋s0
=
∏
f∈

Af

Note that 𝜋s values can be computed independently of the recovery system applied (if any),
and only depends on the set of SRGs identified in the network and their availabilities. Also
note, however, that the number of possible states in a system grows with 2| |.

Given a particular network state s, we denote hd(s), as the amount of traffic of demand d that
is carried in the network when, starting from a no-failure situation, all the SRGs in do𝑤n(s) fail
in any particular order. That means hd(s) is a measure of the surviving traffic of demand d in
state s. We assume that in the no-failure situation all the traffic is carried, such that hd(s0) = hd.

Interestingly, hd(s) values can be easily computed for any network state, by tracking the reac-
tions of the recovery mechanism, whatever its complexity is. In particular, this methodology
can be applied to both protection and restoration schemes.

A limitation of the method is that the hd(s) values are computed considering that the network
starts in a no-failure situation, and then failures in do𝑤n(s) occur one by one. However, in
some recovery schemes, the hd(s) values can differ depending on the particular order in which
failures occur, or be different if the network did not start in a no-failure situation, but, for
example, in a state with more failures than s, where some SRGs are repaired. The only situation
when hd(s) computations are exact are when the surviving traffic of a demand only depends
on the state of the network and not on how this state is reached. This holds, for instance, in
networks with no recovery strategy and in networks with dedicated protection schemes.

The computation of 𝜋s and hd(s) values is enough to compute many availability performance
metrics in the network:

• Availability of demand d (Ad): The fraction of time in which the 100% of the traffic of the
demand is carried:

Ad =
∑

s∶hd(s)=hd

𝜋s

• Traffic survivability of demand d (AH
d): The weighted average fraction of traffic of demand

d carried, in all the network states:

AH
d =

∑
s𝜋shd(s)

hd

Trim Size: 6.625in x 9.625in Mariño c03.tex V3 - 02/11/2016 6:37 P.M. Page 43�

� �

�

Performance Metrics in Networks 43

• Network availability (A): The fraction of time in which the 100% of the traffic of the network
is carried:

A =
∑

s∶hd(s)=hd ,∀d∈
𝜋s

• Network traffic survivability (AH): The weighted average fraction of traffic carried, in all
the network states:

AH =
∑

s𝜋s
∑

dhd(s)∑
dhd

See that all previous metrics require the enumeration of all the network states in , and
computing 𝜋s and hd(s) values for each of them. However, it is possible to obtain approximate
values if we enumerate only a subset ′

⊂ of the possible states, such that the probability
𝜋ne of finding the network in a non-enumerated state s ∉ ′ is small enough.

We illustrate this with an example. Let us suppose a network with 50 SRGs identified, all
of them with availability A = 0.999. The number of possible network states is given by 250,
and the computation of the metrics enumerating all these states is considered prohibitive. If
we consider only single-SRG failures, the number of states enumerated is 51, and the 𝜋ne is
given by:

𝜋ne = 1 − 0.99950 − 50 × (1 − 0.999)0.99949 ≈ 0.0012

The first substraction is the no-failure probability, and the second, the single failure proba-
bility. The availability estimations when not all the states are enumerated, become a pessimistic
estimation, and it holds that:

Ad(′) ≤ Ad ≤ Ad(′) + 𝜋ne

AH
d (

′) ≤ AH
d ≤ AH

d (
′) + 𝜋ne

A(′) ≤ A ≤ A(′) + 𝜋ne

AH(′) ≤ AH ≤ AH(′) + 𝜋ne

That is, considering all the network states would increase the availability in, at most, 𝜋ne,
which would occur in the (rare) case in which all the traffic was carried in the non-enumerated
states. In our example, if we are designing a system with a 0.999 availability target in mind
(0.001 unavailability), it is better to enumerate a number of states such that the possible error
𝜋ne becomes at least one order of magnitude lower than the maximum allowed unavailability.
In our case, we satisfy this by just enumerating both single and double failures (1276 states),
such that:

𝜋ne = 1 − 0.99950 − 50 × (1 − 0.999)0.99949 −
(50

2

)
(1 − 0.999)20.99948 ≈ 0.000019

As a final remark, the availability report functionality of Net2Plan implements the model
described in this section to estimate the availability and survivability performances of a net-
work. Availability estimations can be also produced using the built-in simulator that tests the
recovery mechanism under failure and repairing events randomly created according to the SRG
information.

Trim Size: 6.625in x 9.625in Mariño c03.tex V3 - 02/11/2016 6:37 P.M. Page 44�

� �

�

44 Optimization of Computer Networks – Modeling and Algorithms

3.8 Network Utility and Fairness in Resource Allocation

Many network design problems are versions of allocation problems, in which resources have
to be assigned to different entities, under several constraints. For instance, in congestion con-
trol problems, traffic flows are assigned the rate they are allowed to inject in the network. The
allocation of different flows is coupled, since the sum of the traffic of the demands travers-
ing each link cannot exceed its capacity. Another example is the assignment of transmission
power to the different users of a cellular network. In this case, assigning more power to a user
means increasing the bandwidth of its connection with the base station, but generating more
interference that may degrade the bandwidth of other users.

The NUM (Network Utility Maximization) model is a framework for addressing this type
of problems, as an application to communication networks of the social welfare maximization
principle in economics, in which resources are allocated to maximize the sum of the well-being
perceived by the individuals. Let be a set of users (e.g., demands in a bandwidth assignment
problem, transmitters in a cellular network, …), to which we have to assign resources. Given a
user a ∈ , we should decide the amount xa of resources assigned to it. For this, we define the
utility function of user a, Ua(xa), a function that returns the utility (which can be interpreted
as a “profit”) that user a perceives depending on the amount of resources xa granted. Utility
functions are always non-decreasing, meaning that assigning more resources to a user (higher
xa) is always perceived as better (higher Ua(xa)).

In the general form of the NUM problem (3.16), resource allocation x = (xa, a ∈) is tar-
geted to maximize the sum of the utilities perceived by all the users, subject to a general set of
constraints x ∈ :

max
x

∑
a

Ua(xa), subject to: x ∈ (3.16)

Different shapes of the utility function Ua result in different allocations when NUM frame-
work is applied. In this section, we are interested in showing the connection between the
particular form of the utility function, and the fairness of the resulting resource allocation.
In this context fair means avoiding those allocations where some users are granted a high
amount of resources (high xa), while others, comparatively, suffer starvation (low xa).

3.8.1 Fairness in Resource Allocation

Intuitively, fairness in resource allocation means avoiding those assignments where some users
are granted a high amount of resources (high xa), while others, comparatively, suffer starvation
(low xa). However, formalizing the essence of what a fair resource allocation is, is not an easy
task, and fairness has been defined in a number of different ways. The definitions have been
mostly presented in the context of the problem of congestion control in data networks, and we
generalize them here for any resource allocation.

One of the most common fairness notions is max-min fairness. An allocation x is said to be
max-min fair if the resources granted to any user a1 cannot be increased without decreasing
the resources of some other user a2 which in x received less bandwidth (xa2

≤ xa1
). As a side

effect, this policy tries to maximize the resources granted to the user with minimum resources
allocated (and this motivates the name max-min fairness).

Trim Size: 6.625in x 9.625in Mariño c03.tex V3 - 02/11/2016 6:37 P.M. Page 45�

� �

�

Performance Metrics in Networks 45

In [20], Kelly proposed the concept of proportional fairness. A vector x∗ is proportionally
fair if, for any other feasible allocation x, the aggregate of the proportional change of x with
respect to x∗ is negative: ∑

a

xa − x∗a
x∗a

≤ 0, ∀x feasible

That is, the percentages of increases/decreases with respect to any other allocation should
result in a negative sum.

In [21], Mo and Walrand extended the notion of proportional fairness. Let 𝑤 = (𝑤a, a ∈)
be a vector of positive weight coefficients and 𝛼 a non-negative number. A resource allocation
a∗ is said to be (𝛼,𝑤)-proportionally fair if for any other feasible allocation x it holds that:∑

a

𝑤a
xa − x∗a

x∗𝛼a
≤ 0, ∀x feasible (3.17)

The 𝑤a values can be used to give more importance to the resources allocated to some users.
If all users are equal for the system (𝑤a = 1,∀a ∈), classical fairness notions are produced
for some 𝛼 values. In particular, 0-proportionally fair solutions (𝛼 = 0) are those that maximize
the total amount of resources granted

∑
axa. When xa means the amount of bandwidth assigned

to a source a in a network, this solution is the one which maximizes the network throughput.
Actually, as we will see later in this section and in Chapter 6, maximum throughput solutions
can be arbitrarily unfair, granting all the resources to some users and zero to others. If 𝛼 = 1
we have the Kelly’s notion of proportional fairness. In addition, it can be shown that max-min
fairness solutions are obtained when 𝛼 → ∞ [21].

There is no consensus on which particular value of 𝛼 is best suited for being “fair enough”
in a resource allocation context. Actually, this decision is clearly problem dependent. Lower
values of 𝛼 tend to produce solutions where the total amount of resources

∑
axa is higher, but

with larger differences between the resources xa allocated to different users (more “unfair”).
In turn, higher 𝛼 values reduce the difference between users, commonly at a cost of a lower
aggregated throughput.

3.8.2 Fairness and Utility Functions

The importance of the definition (3.17) of (𝑤, 𝛼) fairness is that, if appropriate utility functions
Ua are used, the optimum solutions of NUM resource allocation problems, are also (𝑤, 𝛼)-fair.
This connection was presented in [21], for a basic version of the NUM problem for bandwidth
assignment. The following proposition extends its application to a more general set of resource
allocation problems.

Proposition 3.1 Let us define the generalized NUM problem for resource allocation, with
decision variables (x, y). Vector x = {xa, a ∈ } represents the resources to assign to the users,
while y represents any arbitrary set of auxiliary variables. We define a generalized resource
allocation problem as:

max
∑

a

Ua(xa) subject to (x, y) ∈ (3.18)

Trim Size: 6.625in x 9.625in Mariño c03.tex V3 - 02/11/2016 6:37 P.M. Page 46�

� �

�

46 Optimization of Computer Networks – Modeling and Algorithms

where is an arbitrary non-empty, closed, convex set. Let the utility functions in (3.18) be:

Ua(xa) =
⎧⎪⎨⎪⎩
𝑤axa if 𝛼 = 0

𝑤a log xa if 𝛼 = 1

𝑤a
x1−𝛼

a

1−𝛼 if 𝛼 > 0, 𝛼 ≠ 1

(3.19)

Then, it holds that a resource allocation (x, y) is (𝛼,𝑤)-proportionally fair if, and only if, it is
the optimum solution of (3.18).

Proof. The proof is based on a classical optimality condition in convex optimization [[22],
Prop. 3.1] that states that given a non-empty, closed and convex set, and F a convex func-
tion in , a vector x∗ ∈ is an optimal solution of the problem min

x∈
F(x) if and only if,

(x − x∗)∇F(x∗) ≥ 0, for every x ∈ . Applying this property to problem (3.18) we have that a
solution (x∗, y∗) is optimal to (3.18) if and only if it is (𝑤, 𝛼)-fair according to (3.17).

In the following example, we illustrate the different allocations that different notions of fair-
ness produce. We focus on a network of two links and three demands like the one in Fig. 3.10.
Rate allocation is performed solving the NUM problem:

max
∑

d

U
𝛼
(hd), subject to:

h0 + h1 ≤ 1

h0 + h2 ≤ 1

where U
𝛼
(hd) is an utility function of the form (3.19) with all 𝑤 coefficients equal to 1. In our

example, assigning more bandwidth to demand d0 consumes more link capacity (since it tra-
verses two links), than granting bandwidth to d1 or d2 (that only traverse 1). Figure 3.11 shows
the allocations for different 𝛼 values. As we can see, small 𝛼 values tend to allocate a reduced
amount of bandwidth to d0 and more to d1 and d2. Higher 𝛼 results in a more equal bandwidth
distribution, at a cost of reducing the throughput. As 𝛼 → ∞ the solution approximates to the
max-min fairness, which in this example assigns the same rate to all demands (although this
does not hold in general networks).

1

d1

d0

d2 h2

h1

h0

2 3

Figure 3.10 Example. Bandwidth allocation example. Demands d0, d1, d2 are assigned a rate h1, h2, h3,
respectively. Link capacities are equal to one

Trim Size: 6.625in x 9.625in Mariño c03.tex V3 - 02/11/2016 6:37 P.M. Page 47�

� �

�

Performance Metrics in Networks 47

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

α

B
an

dw
id

th

Throughput

hd0

hd1
 = hd2

Figure 3.11 𝛼-Fair allocations in Fig. 3.10, for different 𝛼 values

3.8.3 Convexity Properties

Figure 3.12 plots utility functions of the form (3.19) for different 𝛼 ≥ 0 values. It is easy to see
that utilities are concave functions and strictly concave for 𝛼 > 0. Being concave means that a
sort of diminishing returns effect occurs in resource allocation, that is, increasing the amount
of resource granted to a user from z to z + 1 means a higher increase in utility than increasing
a unit of resource from z + 1 to z + 2. Interestingly, the sum of the utilities

∑
aU

𝛼
(xa) is a

concave function of vector x and NUM problems for which the set of feasible solutions is
convex are convex optimization problems that can be solved efficiently.

NUM modeling will be applied in several contexts throughout the book, such as the fair
assignment of transmission power or access probabilities to the links in wireless networks, or
the fair rate assignment to the flows subject to congestion control.

3.9 Notes and Sources

Multiple models for packet traffic exist in the literature, too many to cite them all. We refer
to classical books on the topic like [2, 5, 23, 24]. Markovian modulated processes, where a
source behavior is dependent on an internal state for which the transition probabilities are
known and regression models, where the traffic intensity depends on a (usually linear) rela-
tion with previous inputs and outputs, are probably the most popular. It has been shown that
self-similarity and long-range dependence (related to the chances of long bursts) can appear
in the aggregation of such sources.

No closed-form formulas ara available for sophisticated traffic models. In the scope of
network-wide optimization models, the interest on precise delay predictions becomes less
and less important as bit rates increase, making buffering delays negligible with respect to,

Trim Size: 6.625in x 9.625in Mariño c03.tex V3 - 02/11/2016 6:37 P.M. Page 48�

� �

�

48 Optimization of Computer Networks – Modeling and Algorithms

0 1 2 3 4 5 6 7

−6

−4

−2

0

2

4

6

xa

U
til

ity
 U

(x
a)

α = 0
α = 1
α = 2
α = 10

Figure 3.12 𝛼-Utility functions U
𝛼
(xa) ((3.19), 𝛼 = 0, 1, 2, 10, 𝑤a = 1)

for example, propagation delays. Expressions (3.1) and (3.3) capture the main trends in packet
delay and their simplicity makes them appealing for network models. A recent result producing
simple approximations in self-similar models is [25].

Apart from the references in the text, a plethora of results exist for blocking probability
models in loss networks, many of them presented in teletraffic symposiums for which pro-
ceedings are not easy to access. Fortunately, excellent compilations like [9] or [6] make them
available to a wider audience.

The basic introduction to network recovery has been extracted from [19]. The general
model presented for estimating the availability of arbitrary network recovery schemes is
original to the best of the author’s knowledge, although it is established on standard and simple
principles.

Utility maximization in the context of computer networks has been first introduced in [20].
Max-min fairness has its routes in economics and philosophy. A seminal application in com-
puter networks is the classic Bertsekas and Gallager book [26] (Section 6.5.2), [27] contains a
more recent survey. Proportional fairness was introduced by Kelly [20] in the context of net-
work communications, and corresponds to the log utilities that enforce the Nash bargaining
solution in economics. 𝛼-fair utilities also have their roots in the economics [28]. The first
application to resource allocation in communication networks appears in [21]. Proposition
3.1 generalizing the connection of fairness and utility functions in [21] is original, although
established in very simple properties of convex programs. Utility maximization has become a
useful tool to address multiple network problems, as will be shown throughout the book. Some
books covering the topic are [29, 30], and [31]. A path breaking contribution for understand-
ing the interactions among network layers in the framework of network utility maximization
is [32].

Trim Size: 6.625in x 9.625in Mariño c03.tex V3 - 02/11/2016 6:37 P.M. Page 49�

� �

�

Performance Metrics in Networks 49

3.10 Exercises

3.1 Let us define the average end-to-end delay in a multicast tree p as the average among
the end-to-end delay to each destination:

Tp = 1|b(p)| ∑
n∈b(p)

∑
e∈pn

Te

Using this expression, find a simple formula for the average network delay in a network
fed with multicast traffic. Show that the resulting formula is not convex with respect to
xp variables.

3.2 Show that expressions (3.1), and (3.3) for the average link buffering delay are strictly
increasing and strictly convex functions of 𝜌e. Show that they are also strictly decreasing
and strictly convex functions with respect to capacity variables.

3.3 Let Te by a link delay estimation for link e, being a strictly increasing and strictly convex
function with respect to ye variables and strictly convex with respect to ue variables.
Show that the average network delay expression T given by (3.5) is also strictly convex
with respect to ue, ye, or 𝜌e variables.

3.4 We want to compare two options: (i) a 10 Mbps link fed by a 6 Mbps flow and (ii) two
5 Mbps links fed by 3 Mbps flows each. Average packet size is 500 bytes. Compute the
M/M/1 average delay in both cases and comment on the sentence: “network designs
targeted to minimize average network delays tend to concentrate traffic into fewer links
of higher capacity”. Repeat the computations when the average packet length is 64
bytes. What are the trade-offs network architects face when optimizing the packet sizes?

3.5 We want to compare two options: (i) a 10 Mbps link fed by an average load of 6 Mbps
of random connection arrivals (occupying 1 Mbps of capacity each), and (ii) two 5
Mbps links fed by an average load of 3 Mbps of random connection arrivals (occupying
1 Mbps of capacity each). Compute the blocking probability in each case. Comment
on the sentence: “network designs targeted to minimize blocking probabilities tend to
concentrate the traffic into fewer links of higher capacity”.

3.6 Let e be a 10 Mbps link, fed by Poissonian connection request arrivals where six con-
nections per minute arrive in average, connection average duration is 1 min, and each
connection occupies 1 Mbps. Compare the blocking probability obtained with the cases:
(i) the number of connection arrivals per minute is doubled and the average connection
duration is halved, (ii) the number of connection arrivals per minute is doubled, but each
connection occupies 500 Kbs. Is there any benefit in fractioning the traffic in lower size
connections? Why?

3.7 Net2Plan online algorithm Online_evProc_generalProcessor in the repos-
itory implements three connection admission control rules for incoming connections:
(i) alternate routing among the k-shortest paths, (ii) load sharing using a route selection
probability proportional to the routes carried traffic, and (iii) least-congested routing

Trim Size: 6.625in x 9.625in Mariño c03.tex V3 - 02/11/2016 6:37 P.M. Page 50�

� �

�

50 Optimization of Computer Networks – Modeling and Algorithms

(LCR) selection rule among the k-shortest paths. Use Net2Plan simulation function-
alities in the network and traffic in example7Nodes.n2p file, setting link capac-
ities to 20 units, to compare the performance of the three options. Use the built-in
generator for exponential interarrival times with connection size equal to one. Use
k = 10 in alternate and LCR routings. In load sharing, the routes carried traffic are set
before calling the simulation to those that minimize the average network blocking using
Offline_fa_xpFormulations algorithm. Simulate 106 events with a transitory
of 105 events.

3.8 Repeat the previous experiments restricted to alternate routing and LCR. Now use dif-
ferent connection sizes for different demands chosen arbitrarily. Find the link capacity
(common to all the links) that make the simulated blocking fall below 10−3 in the two
cases.

3.9 Let (,) be a network, and let {ye, e ∈ } be the known traffic carried by each link
e. The network cost C is given by:

C = 35.4 +
∑

e

2ue + 12u𝛼e

where 𝛼 ∈ (0, 1) is a given constant. Show that C is a strictly concave function with
respect to u = {ue, e ∈ } variables. Show that C is a strictly convex function with
respect to 𝜌 = {𝜌e = ye∕ue, e ∈ } variables.

3.10 Figure 3.13 shows a ring network, the ducts where the links are placed, and each duct
length. Each duct is assigned a risk of accidental cutting, which would break all the
traversing links. Ducts suffer an average of two cuts per year, per 1000 km in length,
and have an average repair time of 12 h. (i) Identify the SRGs, their associated links
and nodes, and their availability, (ii) compute the availability of a demand from node 1
to node 4, with a primary route in link 1–4, and 1+1 protected through path 1–2–3–4,
and (iii) use Net2Plan availability report to estimate the availability and survivability
of all the demands, and the network availability and survivabilities.

1

2

4

3

f4
400 km

f3
500 km

f1
200 km

f2
1000 km

f5
250 km

Figure 3.13 Figure Exercise 3.10

3.11 We want to design a shared protection system M ∶ N, to protect N = 2 connections.
All the M + N routes are SRG disjoint and have an availability Ap = 0.999. Indicate the
number of backup routes M needed to provide a 0.99999 availability to the connections.

Trim Size: 6.625in x 9.625in Mariño c03.tex V3 - 02/11/2016 6:37 P.M. Page 51�

� �

�

Performance Metrics in Networks 51

3.12 Net2Plan online algorithm Online_evProc_ipOspf implements the reac-
tions to network failures of an IP network using the OSPF protocol. Use
Net2Plan availability report, with this algorithm as a provisioning algorithm,
and Online_evGen_generalGenerator as a failure generator, to compute
the minimum integral link capacity (common to all links) that ensures an avail-
ability of 0.999 to the example7Nodes.n2p network. The identified network
risks are one SRG per bidirectional link with a MTTF of 1 year and MTTR of
1 day, and assuming random exponential distributions..

3.13 Repeat the previous exercise, using the Net2Plan per SRG failure analysis report, to
obtain the minimum integral link capacity, common to all the links that ensures a 100%
availability under single SRG failure.

3.14 A set of users is allocated resources in the network solving the NUM model
max
x∈

∑
aU(xa), where U(x) are (𝑤, 𝛼) utility functions in (3.19), and xa reflects the

bandwidth assigned to user a measured in bps. Does the optimum sum of utilities
change if we solve a modified NUM problem where xa is measured in Gbps? Does the
allocation change?

References
[1] D. P. Heyman and M. J. Sobel, Stochastic Models in Operations Research: Stochastic Optimization. Courier

Dover Publications, 2003, vol. 2.
[2] L. Kleinrock, Queueing Systems. 1975, vol. I: Theory, (Published in Russian, 1979. Published in Japanese, 1979.

Published in Hungarian, 1979. Published in Italian 1992.).
[3] K. Park and W. Willinger, Self-Similar Network Traffic and Performance Evaluation, 1st edn. New York, NY,

USA: John Wiley & Sons, Inc., 2000.
[4] I. Norros, “A storage model with self-similar input,” Queueing Systems, vol. 16, no. 3-4, pp. 387–396, 1994.
[5] L. Kleinrock, Queueing Systems. Wiley Interscience, 1976, vol. II: Computer Applications.
[6] A. Girard, Routing and dimensioning in circuit-switched networks, ser. Addison-Wesley series in electrical and

computer engineering: Telecommunications. Addison-Wesley, 1990.
[7] J. Kaufman, “Blocking in a shared resource environment,” Communications, IEEE Transactions on, vol. 29, no.

10, pp. 1474–1481, Oct. 1981.
[8] J. Roberts, “A service system with heterogeneous user requirements,” in Performance of Data Communica-

tions Systems and Their Applications, vol. 29, no. 10. Amsterdam, The Netherlands: North-Holland, 1981, pp.
423–431.

[9] K. Ross, Multiservice loss models for broadband telecommunication networks, ser. Telecommunication networks
and computer systems. Heidelberg, Germany: Springer, 1995.

[10] F. P. Kelly, “Loss networks,” The Annals of Applied Probability, vol. 1, no. 3, pp. 319–378, 08 1991.
[11] F. P. Kelly, “Blocking probabilities in large circuit-switched networks,” Advances in Applied Probability, pp.

473–505, 1986.
[12] W. Whitt, “Blocking when service is required from several facilities simultaneously,” AT&T Technical Journal,

vol. 64, no. 8, pp. 1807–1856, 1985.
[13] E. Messerli, “Proof of a convexity property of the Erlang B formula,” The Bell System Technical Journal, vol.

51, no. 951, p. 553, 1972.
[14] A. Jagers and E. Van Doorn, “On the continued Erlang loss function,” Operations Research Letters, vol. 5, no.

1, pp. 43–46, 1986.
[15] A. Harel, “Convexity properties of the Erlang loss formula,” Operations Research, pp. 499–505, 1990.
[16] P. Nain, “Qualitative properties of the Erlang blocking model with heterogeneous user requirements,” Queueing

Systems, vol. 6, no. 1, pp. 189–206, 1990.
[17] K. W. Ross and D. D. Yao, “Monotonicity properties for the stochastic knapsack,” Information Theory, IEEE

Transactions on, vol. 36, no. 5, pp. 1173–1179, 1990.

Trim Size: 6.625in x 9.625in Mariño c03.tex V3 - 02/11/2016 6:37 P.M. Page 52�

� �

�

52 Optimization of Computer Networks – Modeling and Algorithms

[18] (2008) Informe comisión del mercado de las telecomunicaciones (Spain), mtz 2008/626.
[19] J.-P. Vasseur, M. Pickavet, and P. Demeester, Network recovery: Protection and Restoration of Optical,

SONET-SDH, IP, and MPLS. Elsevier, 2004.
[20] F. Kelly, “Charging and rate control for elastic traffic,” European transactions on Telecommunications, vol. 8,

no. 1, pp. 33–37, 1997.
[21] J. Mo and J. Walrand, “Fair end-to-end window-based congestion control,” IEEE/ACM Transactions on Net-

working (ToN), vol. 8, no. 5, pp. 556–567, 2000.
[22] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods. Athena Scien-

tific, 1997.
[23] R. Cooper, Introduction to Queuing Theory, 2nd edn. 1981.
[24] D. Gross, J. F. Shortle, J. M. Thompson, and C. M. Harris, Fundamentals of Queueing Theory, 4th ed. New

York, NY, USA: John Wiley & Sons, Inc., 2008.
[25] J. Chen, H. Bhatia, R. Addie, and M. Zukerman, “Statistical characteristics of queue with fractional brownian

motion input,” Electronics Letters, vol. 51, no. 9, pp. 699–701, 2015.
[26] D. Bertsekas and R. Gallager, “Data networks. 1992,” PrenticeHall, Englewood Cliffs, NJ, 1992.
[27] D. Nace and M. Pióro, “Max-min fairness and its applications to routing and load-balancing in communication

networks: a tutorial,” Communications Surveys & Tutorials, IEEE, vol. 10, no. 4, pp. 5–17, 2008.
[28] J. W. Pratt, “Risk aversion in the small and in the large,” Econometrica: Journal of the Econometric Society, pp.

122–136, 1964.
[29] S. Shakkottai, S. G. Shakkottai, and R. Srikant, Network Optimization and Control. Now Publishers Inc, 2008.
[30] R. Srikant, The Mathematics of Internet Congestion Control. Springer Science & Business Media, 2012.
[31] R. Srikant and L. Ying, Communication Networks: An Optimization, Control, and Stochastic Networks Perspec-

tive. Cambridge University Press, 2013.
[32] M. Chiang, S. H. Low, R. Calderbank, and J. C. Doyle, “Layering as optimization decomposition,” Proceedings

of IEEE, 2006.

Trim Size: 6.625in x 9.625in Mariño c04.tex V3 - 02/11/2016 6:38 P.M. Page 53�

� �

�

4
Routing Problems

4.1 Introduction

Routing in communication networks is the particular set of rules that decide the path followed
by the traffic units from their origin to destination nodes. The two main technological strategies
to forward the traffic are flow-based routing and destination-based routing:

• In flow-based routing, network nodes are able to identify the demand d of the arriving
traffic and make a different per-demand routing decision. Flow-based routing is character-
istic of connection-oriented technologies like MPLS, ATM, frame-relay or SONET/SDH,
where a flow completes a connection establishment stage before any data is carried. During
this stage, the network decides and signals the flow route and configures the internal rout-
ing tables of the traversed nodes accordingly. After that, the flow data frames are attached
enough control information in their headers so that the intermediate nodes can enforce the
routing previously defined.

• In destination-based routing, the network nodes apply the same routing decision to all the
traffic units targeted to the same destination. This happens irrespective of the particular
flow or demand the traffic belongs to or, for instance, the particular initial node of the traf-
fic. IP and Ethernet networks are the main representatives of destination-based routing, as
IP routers and Ethernet switches make forwarding decisions observing the packet IP desti-
nation address and MAC destination address, respectively.

Destination-based routing is typical of connectionless network layers, where a source can
inject traffic (IP datagrams, Ethernet frames) without any prior connection establishment.
The nodes’ routing tables should be configured beforehand, associating to each destination
the output link or links to forward the traffic. When a destination is assigned more than one
output link, a splitting rule sets the fraction of traffic forwarded to each.

Naturally, destination-based routing offers less flexibility than flow-based routing. For
instance, in the network of Fig. 4.1, the routing of demands d1 and d2 would be feasible in an
MPLS network, where each demand is carried through a virtual circuit. However, this routing
is not implementable in an IP network, since node 3 would have to distinguish between the

Optimization of Computer Networks – Modeling and Algorithms: A Hands-On Approach,
First Edition. Pablo Pavón Mariño.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/PavonMarinoSol16

Trim Size: 6.625in x 9.625in Mariño c04.tex V3 - 02/11/2016 6:38 P.M. Page 54�

� �

�

54 Optimization of Computer Networks – Modeling and Algorithms

2 4

3 51

d2 (2→5)

d1 (1→5)

Figure 4.1 Example. Routing not valid in networks implementing destination-based routing

traffic of demand d1 and d2, which have the same destination node. Still, as we will see later,
destination-based routing can be as bandwidth efficient as flow-based routing: any traffic that
can be carried in a form can be carried in the other not needing extra capacity in the links.

This chapter models the problem of deciding the connection routes in flow-based networks
and setting the routing tables in destination-based networks. First, we introduce the three main
modeling strategies that lead to the flow-path, flow-link, and destination-link formulations. In
the latter case, we elaborate on the case of shortest-path based routing in IP networks gov-
erned by the OSPF or IS-IS protocols. For this case, the forwarding follows the Equal-Cost
Multi-Path (ECMP) rule, which determines that if a node has more than one shortest path to
a destination, the traffic is split in equal fractions among all the output links in the shortest
paths. Finally, we expose a comprehensive set of problem variants such as the routing of any-
cast and multicast traffic, routing in the presence of protection and restoration schemes, or
routing under variable traffic (multi-hour routing).

4.2 Flow-Path Formulation

The two characteristics of flow-path routing formulations are:

• Each demand d ∈ is associated (as an input to the problem) a set of candidate paths d,
which are the only ones admissible for carrying traffic of d. Given a path p, d(p) denotes the
(unique) demand that p is associated to. We denote as =

⋃
dd to the set of all candidate

paths in the network, and e ⊂ is the subset of those paths traversing link e.
• There is a decision variable xp for each candidate path p ∈ determining its carried traffic:

xp = {Amount of traffic of demand d(p) carried by p}, ∀p ∈

In this section, we use as a case study the flow-path formulation (4.1) that finds the minimum
congestion routing by maximizing uu, the worst-case unused bandwidth in the links.

max
x,uu

uu subject to: (4.1a)

𝜆d ∶
∑

p∈d

xp = hd, ∀d ∈ (4.1b)

Trim Size: 6.625in x 9.625in Mariño c04.tex V3 - 02/11/2016 6:38 P.M. Page 55�

� �

�

Routing Problems 55

𝜋e ∶
∑

p∈e

xp ≤ ue − uu, ∀e ∈ (4.1c)

𝑣p ∶ xp ≥ 0, ∀p ∈ (4.1d)

We use to denote the set of nodes, the set of links, and ue ≥ 0 the capacity of link e. The
offered traffic is composed of a set of unicast demands . Constraints (4.1b) state that all the
traffic is carried: the sum of the traffic in the candidate paths of a demand d, equals its offered
traffic hd. Constraints (4.1c) mean that link traffic (the sum of the traffic in the traversing paths)
does not exceed its capacity, minus the amount uu. That is, uu is the maximum bandwidth we
can remove from all the network links, while still keeping the problem feasible1. Finally, (4.1d)
prohibit a negative amount of carried traffic in a path.

An analogous flow-path formulation is obtained if we use x̂p variables representing fractions
of traffic carried in each path:

x̂p = {Fraction ∈ [0, 1] of traffic of demand d(p) (with respect to hd(p)) carried by p},

∀p ∈ (4.2)

Then, the traffic actually carried by a path p is given by: hd(p)x̂p. As we will see throughout
the book, using x̂p variables can sometimes ease the modeling of problem constraints, like,
for example, non-bifurcated routing. The rewriting of formulation (4.1) using new decision
variables is straightforward and left as an exercise.

4.2.1 Optimality Analysis

Problem (4.1) is linear and thus enjoys strong duality property. In this section, we show how
the application of KKT optimality conditions and other general optimization results in the
problem gives a significant insight on what the optimum routing looks like.

The Lagrange function of (4.1), put as a minimization problem, is given by:

L(x, uu,𝜆, 𝜋, 𝑣) =

= −uu +
∑

d

𝜆d

(
hd −

∑
p∈d

xp

)
+
∑

e

𝜋e

(∑
p∈e

xp − ue + uu

)
−
∑

p

𝑣pxp =

= uu

(∑
e

𝜋e − 1

)
+
∑

p

xp

(∑
e∈p

𝜋e − 𝜆d(p) − 𝑣p

)
+
∑

d

hd𝜆d −
∑

e

ue𝜋e (4.3)

The term reorganization in the last equality eases the computation of the Lagrange mini-
mization optimality conditions:

𝜕L
𝜕uu

= 0 ⇒
∑

e

𝜋e = 1 (4.4a)

𝜕L
𝜕xp

= 0 ⇒
∑
e∈p

𝜋e = 𝜆d(p) + 𝑣p,∀p ∈ (4.4b)

1 In the summation
∑

e∈e
xp throughout the book we assume that if a path p traverses a link more than once, its xp

variable is summed the appropriated number of times.

Trim Size: 6.625in x 9.625in Mariño c04.tex V3 - 02/11/2016 6:38 P.M. Page 56�

� �

�

56 Optimization of Computer Networks – Modeling and Algorithms

The complementary slackness conditions are:

𝜋e

(∑
p∈e

xp − ue + uu

)
= 0,∀e ∈ (4.5a)

𝑣pxp = 0, ∀p ∈ (4.5b)

4.2.1.1 Multipliers Interpretation

We interpret 𝜋e ≥ 0 as a weight associated to each link. Then:

• Observing (4.4b), and since 𝑣p ≥ 0, the weight of any path p using 𝜋e as link weights
(
∑

e∈p𝜋e) is always greater or equal than 𝜆d(p), the optimum multiplier for the path demand.
If the path p carries traffic (xp > 0), then 𝑣p = 0 (4.5b), and the path weight is exactly 𝜆d(p).
That is:

– If a path p carries traffic, it is a shortest path among d(p), using 𝜋e values as link weights.
𝜆d(p) is the shortest path weight.

– If a path p is not a shortest path, it will not carry traffic.
– It is still possible to be a shortest path and not carry traffic (𝑣p = 0, xp = 0).

• If 𝜋e > 0, applying (4.5a) we get the result that the traffic in the link equals ue − uu and thus
the link is a bottleneck (has the minimum unused bandwidth among the network links). In
contrast, if a link e is not a bottleneck, 𝜋e = 0.

Summing up, if we use optimal 𝜋e multipliers as link weights, the optimum routing will be
one that only carries traffic using shortest paths among . However, note that in our problem
more than one shortest path can exist for a demand and in that case we cannot deduce from the
optimum multipliers how the traffic should be split among them to achieve optimality. Actually,
although we know that at least one splitting yields to the optimal routing, other splittings among
the shortest paths could even violate link capacity constraints. Example 10.1 in Chapter 10
illustrates this situation in the context of an adaptive routing (dual) algorithm that iterates to
find the optimum multipliers as an indirect form to optimize the routing. In Chapter 10 we show
the practical importance of having strictly convex objective functions to avoid these difficulties.

4.2.1.2 Traffic Bifurcation in the Optimum

Since problem (4.1) is linear, we can use Prop. B.2 (the Fundamental Theorem of Linear Pro-
gramming) to find a bound to the number of paths carrying traffic in an optimum solution.

Proposition 4.1 If problem (4.1) is feasible, there is an optimum solution for which, at most,|| + k paths carry traffic, where k is the number of bottleneck links with exactly uu units of
unused capacity.

Proof. According to Theorem B.2 in Appendix B, if a linear problem of the form
min

x
cTx, s.t.Ax = b, x ≥ 0, is feasible, there is an optimum solution with a number of non-zero

coordinates lower or equal than the number of equality constraints. We can reformulate

Trim Size: 6.625in x 9.625in Mariño c04.tex V3 - 02/11/2016 6:38 P.M. Page 57�

� �

�

Routing Problems 57

problem (4.1) converting link capacity inequality constraints into an equality as in (4.6) by
adding || slack variables se ≥ 0:∑

p∈e

xp + se − uu = ue,∀e ∈ (4.6)

If a link e is not a bottleneck, se > 0. Then, the number of non-zero xp variables is limited to|| + || − (|| − k) = || + k.

Proposition 4.1 means that we can find an optimum solution to (4.1), where at most ||
demands are bifurcated, the worse (and rare) case when all the links are a bottleneck. Interest-
ingly, in many networks || >> || and an optimum routing exists where most of the demands
are not bifurcated. For instance, in a network with | | = 100 nodes, a demand between each
node pair (|| = 100 × 99 = 9900) and an average of six links per node (a reasonable number
in backbone networks) (|| = 600), at most ≈ 6% of the demands would be bifurcated.

4.2.1.3 Sensitivity Analysis

Optimal multipliers to problem (4.1) provide us sensitivity information on how the optimum
routing would change if we modified or perturbed the problem constraints (see Appendix B
for details). In this section, we perturb the original problem as follows:

• The offered traffic of a demand d is augmented in zd units (hd is replaced by hd + zd in
(4.1)).

• The capacity of a link e is augmented in ze units (ue is replaced by ue + ze in (4.1)).

Let p∗(z) be the optimum unused bandwidth uu, when the original problem is perturbed
by z = {zd, d ∈ , ze, e ∈ } values. p∗(0) is the optimum uu unused capacity in the original
problem. Applying the sensitivity results in Appendix B, we have that 𝜋∗ and 𝜆

∗ optimum
multipliers of the original problem are subgradients of the perturbation function p∗ in the origin
z = 0 and thus it holds that:

p∗(z) ≤ p∗(0) +
∑

e

𝜋eze −
∑

d

𝜆dzd

Then:

• Increasing the capacity of one link (ze > 0) leaving the rest unchanged can increase the
unused bandwidth uu in, at most, 𝜋eze units. Reducing the link capacity (ze < 0) worsens uu
in 𝜋eze units or more. Note that if 𝜋e = 0, increasing the link capacity provides no congestion
improvement (p∗(z) ≤ p∗(0)).

• Decreasing a demand offered traffic (zd > 0) leaving the rest unchanged, will improve the
uu value in at most 𝜆dzd units. Then, if 𝜆d = 0, reducing the demand yields to no conges-
tion improvement. In its turn, increasing the offered traffic (zd < 0), will worsen the idle
bandwidth in at least 𝜆dzd units.

Note that since the objective function of (4.1) is linear, the dual function may be
non-differentiable at some points. For this reason, the optimum multipliers may be non
unique, and there is no possibility to interpret the multipliers as the partial derivatives of the
perturbation function in z = 0.

Trim Size: 6.625in x 9.625in Mariño c04.tex V3 - 02/11/2016 6:38 P.M. Page 58�

� �

�

58 Optimization of Computer Networks – Modeling and Algorithms

4.2.2 Candidate Path List Pre-Computation

Flow-path formulation forces the designer to pre-compute a list of admissible paths for each
demand. This approach can have a number of advantages. Practical routings often have partic-
ular constraints, as avoiding too long paths, paths with loops, paths traversing specific nodes,
and so on. The candidate path list is a good tool for applying these policies by just not includ-
ing the invalid paths in the candidate list. However, if we want to compute an optimal routing
that accepts any path as admissible, we are forced to populate the list with all the paths in the
network, which can be an infinite number. Even, if we restrict to just the set of loopless paths,
this number can still grow exponentially with the number of network links.

Example 4.1 In a network of | | = 30 nodes and one link between each node pair, the num-
ber of paths || traversing a maximum of two links is given by:

|| = 30 × 29 + 30 × 29 × 28 = 25,320

which is a reasonable amount of paths for solving a linear flow-path formulation, with standard
computing facilities. In turn, the number of candidate paths would be impractical if we just
restrict them to the loopless paths (not traversing a node twice):

|| = 30 × 29 + 30 × 29 × 28 + 30 × 29 × 28 × 27 +… ≈ 7.2 × 1032

The next sections elaborate on two main workarounds to the issue of oversized candidate
path lists: (i) limiting the list to the top paths (e.g., top k paths) in an elaborated ranking of
paths and (ii) the application of Candidate Path List Augmentation (CPLA) techniques.

4.2.3 Ranking of Paths Elaboration

This technique consists of restricting the candidate path list to the k minimum cost paths for
each demand, k being a design parameter. By doing so, the size of the candidate path list
is limited to k||. The rationale behind this approach is that in many design case studies, a
restricted candidate list (e.g., k = 10) has shown to be enough to produce optimal, or close to
optimal, results.

Let 𝑤e > 0 be a constant cost applied to every link in the network, and n and n′ two nodes.
We consider the cost of a path as the sum of the costs of its traversing links. According to this,
the k-minimum cost path problem finds a ranking of k paths (p1,… , pk), from n to n′ such that:∑

e∈p1

𝑤e ≤
∑
e∈p2

𝑤e ≤ … ≤
∑
e∈pk

𝑤e

and there is no other path from n to n′ with a cost lower than pk. Note that when 𝑤e = 1,∀e,
the paths are ranked according to the number of traversed links.

The case k = 1 is the well-known shortest path problem, which can be solved in (|| +| | log | |) using the celebrated Dijkstra algorithm [1]. Several other algorithms have been
proposed for the general case k > 1 (see [2] and references therein). It is of special interest
the algorithm proposed by Yen [3], which computes the k-shortest and loopless paths between

Trim Size: 6.625in x 9.625in Mariño c04.tex V3 - 02/11/2016 6:38 P.M. Page 59�

� �

�

Routing Problems 59

two nodes. That is, those paths with loops are excluded for the ranking2. Net2Plan tool pro-
vides methods to elaborate and handle candidate path lists, including different variants of the
k-minimum cost path rankings.

Finally note that although there is no a priori guarantee of optimality of the resulting routing
when a restricted candidate list is used, it may be possible to make an a posteriori optimality
check. Moreover, if the check does not certify that optimality has been reached, it suggests a
set of paths that could be added to the candidate path list, with good chances of improving the
solution. This is the essence of the CPLA technique described in Section 4.2.4.

4.2.4 Candidate Path List Augmentation (CPLA)

Candidate Path List Augmentation (CPLA), is an application to the flow-path formulation of
the so-called column generation method for linear programs (e.g., see [4] or [5] for details).
CPLA technique consists of solving the original flow-path problem with the set of admissible
paths , by sequentially solving flow-path formulations for a restricted candidate path list
R

⊂ , with a much lower number of paths. The rationale behind CPLA technique is that in
many practical problems, in the optimum, the number of paths carrying traffic of a demand is
small (e.g., usually one, up to three).

The CPLA technique has been frequently used for linear problems, the reader is referred
to [6] for examples. In this book, we present a generalization of this technique, valid for a
somewhat wider set of problems. Let (4.7) be a generalized flow-path routing problem, for a
candidate path list . Decision variables xp are the flow-path variables, while z = {z1,… , zK}
denotes an arbitrary set of decision variables. Constraints (4.7b–d) are the standard flow-path
constraints, while functions gje are problem-specific convex constraints.

min
x,z

∑
e

fe(x, z), subject to: (4.7a)

𝜆d ∶
∑

p∈Pd

xp = hd, ∀d ∈ (4.7b)

𝜋e ∶
∑
p∈Pe

xp ≤ ue, ∀e ∈ (4.7c)

𝑣p ∶ xp ≥ 0, ∀p ∈ (4.7d)

𝑤j ∶
∑

e

gje(x, z) ≤ 0, j = 1,… , J (4.7e)

Note that this definition includes non linear convex problems. We are interested in compar-
ing the optimal solution of problem (4.1), when a restricted candidate path list is used (= R)
(restricted problem), and when all the admissible paths are included in the list (= A

⊇ R)
(original problem). Given a solution x to the restricted problem, we denote as a(x) its extension
to the original problem given by:

a(x)p =

{
xp, if p ∈ R

0, if p ∈ A − R

2 A trivial but useful ranking variant is admitting for each demand the minimum cost path and all the paths with a cost
up to, for example, 50% greater than it.

Trim Size: 6.625in x 9.625in Mariño c04.tex V3 - 02/11/2016 6:38 P.M. Page 60�

� �

�

60 Optimization of Computer Networks – Modeling and Algorithms

That is, both x and a(x) reflect the same routing, and the variables a(x)p for those paths which
are not in the restricted problem are set to zero. We make the following assumptions:

• Assumption 1: fe and gje are convex differentiable functions and both restricted and aug-
mented problem versions enjoy the property of strong duality.

• Assumption 2: fe and gje are solely functions of z and of ye =
∑

p∈e
xp, the total amount of

traffic traversing a link. This means that:

fe(x, z) = fe(a(x), z), ∀(x, z) feasible (4.8a)

gje(x, z) = gje(a(x), z), ∀(x, z) feasible (4.8b)

𝜕fe
𝜕ye

(y, z) =
𝜕fe
𝜕xp

(x, z) =
𝜕fe
𝜕xp

(a(x)x, z), ∀(x, z) feasible (4.8c)

𝜕gje

𝜕ye
(y, z) =

𝜕gje

𝜕xp
(x, z) =

𝜕gje

𝜕xp
(a(x)x, z), ∀(x, z) feasible (4.8d)

We remark that functions like average path or network delay, Erlang-B blocking probabil-
ity, average number of hops and so on. satisfy previous assumptions and can fit into these
definitions.

Proposition 4.2 Let s = (x∗, z∗, 𝜋∗
, 𝜆

∗
, 𝑤

∗) be an optimal primal-dual solution to the
restricted version of problem (7.1) (set of paths R). Then, under the conditions and
assumptions described in this section, it holds that (a(x∗), z) is a primal optimal solution to
the augmented problem (set of paths A

⊇ R), if and only if:

𝜆
∗
d = min

p∈
d

∑
e∈p

c∗e , ∀d ∈ (4.9)

where c∗e is a cost associated to each link given by:

c∗e = 𝜋
∗
e +

𝜕fe
𝜕ye

(x∗, z∗) +
∑

j

𝑤
∗
j

𝜕gje

𝜕ye
(x∗, z∗) (4.10)

Previous condition means that, if we use c∗e as the cost per link, 𝜆∗d multipliers for each demand,
must be the cost of the shortest paths among all the paths in

d .

Proof. The Lagrangian minimization optimality conditions in the restricted problem are, after
reorganizing terms, and applying 𝑣p ≥ 0:

∑
e∈p

(
𝜕fe
𝜕xp

(x∗, z∗) + 𝜋
∗
e +

∑
j

𝑤
∗
j

𝜕gje

𝜕xp
(x∗, z∗)

)
≥ 𝜆

∗
d(p), ∀p ∈ R (4.11a)

∑
e∈p

𝜕fe
𝜕zk

(x∗, z∗) +
∑

j

𝑤
∗
j

𝜕gje

𝜕zk
(x∗, z∗) = 0, ∀k = 1,… ,K (4.11b)

When a path p carries traffic, expression (4.11a) is an equality. By applying (4.9) and (4.8)
we have that expression (4.11a) holds also in the augmented problem, for all p ∈ A. In addi-
tion, (4.11b) is satisfied in the augmented problem since both fe and gje functions just depend

www.ebook3000.com

http://www.ebook3000.org

Trim Size: 6.625in x 9.625in Mariño c04.tex V3 - 02/11/2016 6:38 P.M. Page 61�

� �

�

Routing Problems 61

on the total traffic in the links, which does not change when we augment the path lists. Then, it
is easy to see that solution sA = (a(x∗), z∗, 𝜋∗

, 𝜆
∗
, 𝑤

∗) is an optimal solution for the augmented
problem, since the rest of the optimality conditions hold: (i) the (a(x∗), z) solution is feasible
since (x∗, z∗) is, (ii) 𝜋∗ multipliers are non-negative, and (iii) complementary slackness holds
since it holds in the restricted problem.

For the necessary condition, let us now suppose that an augmented solution is optimal and
all the paths in A − R carry zero traffic. Then, it must be also optimal for the restricted
problem. Applying (4.11a) to the augmented problem, it is easy to see that (4.9) must hold.

Proposition 4.2 permits certifying if an optimal solution to the restricted problem is optimal
to the original one: if the shortest path cost for each demand d using c as link costs equals 𝜆d, the
optimum has been reached. If the solution is not optimal, a good heuristic attempt to get closer
to the optimum is augmenting the setR, adding the shortest paths for the demands not passing
the test. Although it is not guaranteed that these new paths will enter in the optimal solution
in any future iteration, empirical tests support this approach [6]. Algorithm 3 summarizes the
pseudocode of the CPLA technique described.

Algorithm 3 CPLA Algorithm

1: Initialize R
d sets in any form (e.g., k-minimum cost paths).

2: repeat
3: Solve problem for path lists R

d : 𝜋∗
, 𝜆

∗ are the optimal multipliers.
4: for all d ∈ do
5: pd is the shortest path in A with link weights c∗e as in (4.10)
6: if

∑
e∈pd

c∗e < 𝜆
∗
d then

7: R
d = R

d

⋃
{pd}

8: end if
9: end for

10: until no new path is added in the loop

Alternatively, it is possible to modify the stopping condition in the CPLA, terminating the
algorithm when the cost is close enough to a lower bound to the optimal cost of the original
problem. This can be done in some cases by computing in each iteration a value of the dual
function in the augmented problem. Exercise 4.6 shows an example of this.

4.3 Flow-Link Formulation

Let (,) be a network, and be the set of offered demands, composed solely of uni-
cast traffic. In flow-link formulation, the routing is represented using the so-called flow-link
decision variables:

xde = {Amount of traffic of demand d that traverses link e}, ∀d ∈ , e ∈ (4.12)

In (4.13) we show the equivalent flow-link formulation to (4.1), for finding the routing that
maximizes the worse case unused link bandwidth uu.

max
x,uu

uu subject to: (4.13a)

Trim Size: 6.625in x 9.625in Mariño c04.tex V3 - 02/11/2016 6:38 P.M. Page 62�

� �

�

62 Optimization of Computer Networks – Modeling and Algorithms

𝜆nd ∶
∑

e∈𝛿+(n)
xde −

∑
e∈𝛿−(n)

xde =
⎧⎪⎨⎪⎩

hd, if n = a(d)
−hd, if n = b(d)

0, otherwise

, ∀d ∈ , n ∈ (4.13b)

𝜋e ∶
∑

d

xde ≤ ue − uu,∀e ∈ (4.13c)

𝑣de ∶xde ≥ 0,∀d ∈ , e ∈ (4.13d)

Constraints (4.13b) are the so-called flow conservation constraints that guarantee that all
the traffic is carried in a form that could be a unicast routing. They will be explained in further
detail in next subsection. Constraints (4.13c) mean that link carried traffic does not exceed
its capacity minus the unused bandwidth. Finally, non-negativity constraints (4.13d) prohibit
having a negative amount of traffic of a demand in a link.

An alternate flow-link formulation for the same problem can be obtained using fractional
x̂de decision variables:

x̂de = {Fraction ∈ [0, 1] of traffic of demand d (with respect to hd) that traverses link e},

∀d ∈ , e ∈ (4.14)

Again, formulation (4.13) can be rewritten taking into account that xde = hdx̂de. In particular,
note that flow conservation constraints in this case become independent of the hd values:

∑
e∈𝛿+(n)

x̂de −
∑

e∈𝛿−(n)
x̂de =

⎧⎪⎨⎪⎩
1, if n = a(d)
−1, if n = b(d)

0, otherwise

, ∀d ∈ , n ∈ (4.15)

4.3.1 Flow Conservation Constraints

One flow conservation constraint (4.13b) exists for each node n and each demand d, stating
that (see Fig. 4.2):

• The sum of the demand traffic that leaves n through its output links:
∑

e∈𝛿+(n)xde …
• minus the sum of the demand traffic that enters n through its input links:

∑
e∈𝛿−(n)xde …

• is: (i) hd if node n is the origin of the demand (and thus produces an excess of hd units of
traffic of this demand), (ii) −hd if node d is the end node of demand d (and thus is a sink
consuming hd units of traffic), or (iii) zero in the rest of the nodes (what gets in, gets out),
since intermediate nodes do not produce nor consume demand traffic and just forward it.

The | | × || flow conservation constraints can be rewritten in a compact matrix form
using the concept of incidence matrix of a graph. Let us define the incidence matrix for the set
of links , as a matrix Cne with as many rows as nodes | | and as many columns as links ||:

Cne = {1 if n = a(e),−1 if n = b(e), 0 otherwise, ∀n ∈ , e ∈ }

Similarly, we define the incidence matrix for the set of demands as a matrix Cnd with as
many rows as nodes | | and as many columns as demands ||:

Cnd = {1 if n = a(d),−1 if n = b(d), 0 otherwise, ∀n ∈ , d ∈ }

Trim Size: 6.625in x 9.625in Mariño c04.tex V3 - 02/11/2016 6:38 P.M. Page 63�

� �

�

Routing Problems 63

5

7

2

e ∈ δ– (n) e ∈ δ+ (n)

n

0

0

0

0

Figure 4.2 Flow conservation constraint example for a demand d and node n. xde values are plotted
next to incoming and outgoing links of the node. The node is not a source nor destination of the demand:
the traffic of the demand entering and leaving the node are the same (5 + 2 = 7)

If we consider xde and x̂de variables as matrices of size || × ||, the flow conservation
constraints (4.13b) and (4.15) can be rewritten as matrix equality constraints3:

CnexT
de = Cnddiag (hd), Cnex̂T

de = Cnd

Where diag is the diagonal matrix with elements hd in its diagonal and zero elsewhere.

4.3.2 Obtaining the Routing from xde Variables

Flow conservation constraints are necessary conditions for a solution to be a routing fully
satisfying the traffic demands. However, we may encounter some difficulties when trying to
extract the path routing (xp information) from the xde variables. Figure 4.3 helps us to illustrate
the two main problems:

• Ambiguity in the routing. More than one xp routing can be compatible with xde variables. For
instance, in Fig. 4.3a the following two routings are consistent with xde variables depicted:
(i) routing five traffic units in each path 1-2-4-6-8 and 1-3-4-7-8, and (ii) routing five traffic
units in each path 1-2-4-7-8 and 1-3-4-6-8.

• Existence of isolated cycles. Fig. 4.3b is an example of a xde solution that contains an isolated
cycle of traffic (nodes 2-6-5). This solution satisfies flow conservation constraints, but is
not a real routing. Note that solutions with cycles are never optimal in problems where the
objective function sums a strictly positive cost to each xde variable. This does not hold in
(4.13), so in this problem the solver could return a solution with isolated cycles, which
should be removed offline.

Net2Plan tool provides a conversion function which produces a xp routing from any feasible
xde variables. Ambiguities are resolved arbitrarily, and cycles (isolated or not) are eliminated
so that the resulting routing consumes the same or less link capacity than xde solution.

3 Net2Plan incorporates a built-in library for computing incidence matrices, used in the flow-link formulations
with JOM.

Trim Size: 6.625in x 9.625in Mariño c04.tex V3 - 02/11/2016 6:38 P.M. Page 64�

� �

�

64 Optimization of Computer Networks – Modeling and Algorithms

(a) Ambiguity in routing

5

5
5

5

5

5

5

5

1

2 6

8

5

4

3 7

8

8

10

10

(b) Non feasible xp equivalence, because of isolated cycles

10

1

2 6

8

5

4

3 7

8

Figure 4.3 Example. Potential problems when converting a feasible xde solution into a xp routing, for
a demand d with hd = 10, from node 1 to node 8. The number in each link illustrates its xde value

4.3.3 Optimality Analysis

The Lagrangian function of problem (4.13) put as a minimization problem is given by:

L(x, uu, 𝜆, 𝜋, 𝑣) =

= −uu +
∑
nd

𝜆nd

(
Cndhd −

∑
e

Cnexde

)
+
∑

e

𝜋e

(∑
d

xde − ue + uu

)
−
∑
de

𝑣dexde =

= uu

(∑
e

𝜋e − 1

)
+
∑
de

xde(𝜆b(e)d − 𝜆a(e)d + 𝜋e − 𝑣de) +
∑

d

hd(𝜆a(d)d − 𝜆b(d)d) −
∑

e

ue𝜋e

(4.16)

Trim Size: 6.625in x 9.625in Mariño c04.tex V3 - 02/11/2016 6:38 P.M. Page 65�

� �

�

Routing Problems 65

The Lagrange minimization and complementary slackness optimality conditions are:

𝜆a(e)d − 𝜆b(e)d + 𝑣de = 𝜋e, ∀d ∈ , e ∈ ,
∑

e

𝜋e = 1 (4.17a)

𝜋e

(∑
d

xde − ue + uu

)
= 0, ∀e ∈ , 𝑣dexde = 0, ∀d ∈ , e ∈ (4.17b)

We can interpret 𝜋e ≥ 0 multipliers as a weight associated to each link, similar to what
happened in the flow-path formulation. In turn, 𝜆nd is interpreted as a potential of node n with
respect to demand d, such that the traffic is transferred only from nodes of higher to lower (or
equal) potential. Then:

• Let pd be any set of links composing a path between demand d end nodes. According to
(4.17b) we have:∑

e∈pd

𝜋e =
∑
e∈pd

𝜆a(e)d − 𝜆b(e)d + 𝑣de = 𝜆a(d)d − 𝜆b(d)d +
∑
e∈pd

𝑣de

Since 𝑣de ≥ 0, the sum of the weights of the traversed links is greater or equal than the
difference of potential between the demand end nodes. If pd carries traffic of d, then xde > 0
and 𝑣de = 0 for the path links, according to (4.17b). In summary, the traffic of each demand
is only routed through shortest paths between demand end points, taking 𝜋e as the link
weights and the shortest path weight equals the end nodes difference of potential for that
demand.

• If 𝜋e > 0, applying (4.17b) we have that the link carries ue − uu units of traffic, and thus is
a bottleneck link. Similarly, if a link e is not a bottleneck, then 𝜋e = 0.

Note that these conclusions are analogous to that of the flow-path formulation (4.1).

4.4 Destination-Link Formulation

We consider a network (,), with offered traffic given by a traffic matrix h of
size | | × | |, where hst, s ≠ t is the traffic that source node s generates, targeted to
node t. In destination-based routing, nodes take forwarding decisions depending solely on
the traffic destination node, for example independently on the traffic ingress node or any
notion of end-to-end demand. Destination-link formulation is a suitable form of modeling
such situations, characterized by xte decision variables:

xte = {Amount of traffic targeted to node t, that traverses link e}, ∀t ∈ , e ∈

A destination-link formulation for the maximum worst-case unused bandwidth uu is shown
in (4.18).

max
x,uu

uu subject to: (4.18a)

∑
e∈𝛿+(n)

xte −
∑

e∈𝛿−(n)
xte =

{
hnt, if n ≠ t

−
∑
s

hst, if n = t , ∀t, n ∈ (4.18b)

Trim Size: 6.625in x 9.625in Mariño c04.tex V3 - 02/11/2016 6:38 P.M. Page 66�

� �

�

66 Optimization of Computer Networks – Modeling and Algorithms

∑
t

xte ≤ ue − uu, ∀e ∈ (4.18c)

xte ≥ 0, ∀t ∈ , e ∈ (4.18d)

Constraints (4.18b) are a variation of the flow conservation constraints adapted to destination
based routing, while (4.18cd) are the standard link capacity and non-negativity constraints.

Figure 4.4 helps us to illustrate the flow conservation constraints (4.18b). When a node n is
not the destination of the traffic (Fig. 4.4a), the difference between what gets out and what gets
in targeted to t, is exactly the amount hnt of traffic that n generates to t. The constraint for node
n = t (Fig. 4.4b), means that the difference between what leaves the node (which should be zero
in general) and what is received is just −ht = −

∑
shst: the total amount of traffic that the rest

of the network nodes generate, targeted to t. Note that this constraint is a linear combination
of the previous ones and is thus redundant.

The optimality analysis for the destination-link formulation (4.18) is similar to the one for
flow-link formulation, and left as an exercise. Again, multipliers 𝜋e of the link capacity con-
straints (4.18c) are link weights according to which the optimum routing is a shortest path
routing. Also, 𝜋e > 0 indicates that the link is a bottleneck.

Finally note that destination-link formulation has | | × || variables and just | |2 flow
conservation constraints, which is usually much less than the || × || variables and | | ×|| conservation constraints in flow-link formulation. This usually results in a significant
reduction of the solver time for finding an optimal solution numerically.

2
13

1

n ≠ t

2

18

n = t

(a) Case n ≠ t. Node n produces hnt = 13 + 1 – 2 = 12 traffic units to t

(b) Case n = t. The total network traffic targeted to t is ht = Σst hst = 18 + 2 = 20

Figure 4.4 Example. Flow conservation constraints for destination-link formulation

Trim Size: 6.625in x 9.625in Mariño c04.tex V3 - 02/11/2016 6:38 P.M. Page 67�

� �

�

Routing Problems 67

4.4.1 Obtaining the Routing Tables from xte Variables

In destination-based routing networks, the routing tables in the nodes define the fraction of
traffic to forward to each output link. This is represented by the fte variables as follows:

fte ={Fraction ∈ [0, 1] of the traffic in node n = a(e) targeted to t, that is forwarded to e},

∀t ∈ , e ∈

In particular, the routing table in node n is reflected by the fte values for the outgoing links
of n. Obtaining the routing tables from the destination-link variables xte is easy, by computing
for each node the ratio of the traffic in their outgoing links, with respect to the own generated
traffic plus the one received through the input links:

fte =
xte

ha(e)t +
∑

e∈𝛿−(a(e))xte
, ∀t ∈ , e ∈ (4.19)

If a node does not generate nor receive traffic to a destination t, both numerator and denomi-
nator in previous expression are zero. This indetermination can be arbitrarily solved by assign-
ing a value x̂te = 1 to one outgoing link of the node (e.g., the one in the shortest path in number
of hops to t) and zero to the rest.

4.4.2 Some Properties of the Routing Table Representation

Let (,) be a connected topology, and fte a set of routing tables in it. We say that routing
tables are well-defined, when for any offered traffic matrix (assuming links of infinite capacity),
all the traffic units reach their destination node in a finite or infinite number of hops. If the
number of hops is always finite, which means that the routing has no cycles, we say that the
routing is well-defined in the strict sense.

Figure 4.5 helps us to illustrate previous definitions. When the routing tables are not well
defined (Fig. 4.5a), it may happen that for some destination node t, the routing has cycles such
that all the traffic to t entering such cycles never leaves them. When the cycles are open in
the sense that a fraction of the traffic leaves them and eventually reaches the destination, the
routing is well-defined, but not in the strict sense. For instance, in Fig. 4.5b, a traffic unit to
node 4, arriving to node 2 could enter in a cycle between nodes 2-5, or among nodes 2-3-5.
If the routing decision in each node is made randomly, the probability of not reaching the
destination after k hops is positive for any k → ∞. Finally, when the routing has no cycles
(e.g., Fig. 4.5c), the destination node is always reached in a finite number of hops.

Naturally, we are interested in routings that are strictly well-defined (loopless). We try now
to characterize them. First, we base our approach in a modified network version, where for
each destination t two new nodes are added: a success node ns and a loss node nl. Both are
sink nodes, meaning that the traffic arriving to them stays in them:

• The success node ns represents the traffic that arrives to target node t that is not forwarded
again to the network. Usually, all the traffic targeted to t that reaches t stays in it, but the

Trim Size: 6.625in x 9.625in Mariño c04.tex V3 - 02/11/2016 6:38 P.M. Page 68�

� �

�

68 Optimization of Computer Networks – Modeling and Algorithms

(a) Routing not well-defined

(b) Routing well-defined, not strictly well-defined

(c) Routing strictly well-defined

30%

70%

90%

100%

100%

10%

1

2 3

4

5

30%

70%
90%

95%

100%
10%

5%

1

2 3

4

5

30%

70%
100%

100%

100%

1

2 3

4

5

Figure 4.5 Routing table examples for destination node 4

Trim Size: 6.625in x 9.625in Mariño c04.tex V3 - 02/11/2016 6:38 P.M. Page 69�

� �

�

Routing Problems 69

node ns permits us modeling situations where this does not happen when (maybe by a con-
figuration error) the node t is part of a routing cycle.

• The loss node nl receives the traffic targeted to node t, that any node drops and thus will
never arrive to the destination. Dropping of traffic occurs in reality, for example, when a
node receives traffic to a destination t, but has not configured any entry in the routing tables
for it.

To represent the routing, we define the | | + 2 × | | + 2 routing matrix for destination t,
and we denote it as P(t). The coordinate (i, j) of P(t) contains the fraction of the traffic arriving
to node i, that is forwarded to node j, i, j ∈

⋃
{ns, nl}. This information is structured as

shown below:

P(t) =
⎛⎜⎜⎝

Q| |×| | l| |×1 s| |×1

0 1 0
0 0 1

⎞⎟⎟⎠ (4.20)

• Matrix Q contains the routing information among the nodes in , coming from fte routing
coefficients:

Q(t)
ij =

∑
e∶a(e)=i,b(e)=j

fte, ∀i, j ∈ (4.21)

• Coordinate si indicates the fraction of traffic in node i that is forwarded directly to the success
node. In general:

si =
{

0 if i ≠ t
1 if i = t

but coordinate st < 1 when the network has loops that involve the target node t.
• Coordinate li contains the fraction of traffic arriving to node i, targeted to t, that node i drops.

Traffic dropping can be caused by the absence of an appropriate entry in the routing table
of a node. If these misconfigurations do not occur, li = 0,∀i ∈ .

Note that routing matrices P(t) are stochastic matrices: (i) all their elements are non-negative
and (ii) their rows add up to 1. Thus, they can be seen as a transition matrix of a discrete time
Markov chain, with one state per network node, and P(t)

ij representing the transition probabil-

ity between states. In our analogy, we interpret P(t)
ij as the probability that a traffic unit (e.g.,

a packet) in node i at time k, is forwarded to node j (and thus is there at time k + 1). States ns
and nl are absorbing states of the matrix, since when they are reached, the chain stays in them
eternally. This corresponds to a traffic unit that arrives the destination t (state ns) or is dropped
(state nl). Also in this analogy, matrix Q(t) contains the forwarding decisions in the network.

The Markov chain representation helps us to extract some interesting properties of the rout-
ing tables.

Proposition 4.3 The routing represented by {P(t)
, t ∈ }matrices is well-defined, if and only

if the matrix (I − Q(t)) is invertible.

Proof. Matrix (I − Q(t)) is not invertible for a destination t if and only if it has an eigenvalue
equal to 𝜆 = 1 (recall that the condition for being an eigenvalue of a matrix A is that det
(A − 𝜆I) = 0). Then, there is an eigenvector 𝑣 ≠ 0 such that 𝑣 = 𝑣Q(t). The eigenvector

Trim Size: 6.625in x 9.625in Mariño c04.tex V3 - 02/11/2016 6:38 P.M. Page 70�

� �

�

70 Optimization of Computer Networks – Modeling and Algorithms

represents an amount of traffic in the nodes that persists unchanged along time, eternally
being routed in a closed cycle.

Proposition 4.4 The routing represented by {P(t)
, t ∈ } matrices is well-defined in the

strict-sense (and thus has no loops), if and only if the diagonal values in the so-called fun-
damental matrices M(t):

M(t) =
∞∑

k=0

(Q(t))k = (I − Q(t))−1 (4.22)

are all equal to one, for all destination nodes t ∈ .

Proof. The matrix M(t) is the so-called fundamental matrix of the Markov chain associated
to node t. A well-known property of this transition matrix is that its coordinate Mij is the
expectation of the number of times that the chain is in state j, assuming it starts in state i. If
i = j, M(t)

ii ≥ 1 since the starting situation counts. Then, the chain never gets back to node i after
it leaves it if and only if M(t)

ii = 1. In our analogy, this means that the routing has no cycles if
and only if M(t)

ii = 1. Finally, a well-defined routing without cycles is strictly well-defined.

The following proposition provides a relation to extract xte destination-link information (and
thus the amount of traffic traversing network links) from the routing tables fte, valid also when
the routing is well-defined, but has open loops.

Proposition 4.5 Let fte be a well-defined routing, and hst the offered traffic matrix. Then, the
xte values:

xte =
∑

i

hitM
(t)
ia(e) fte

are non-negative, and satisfy the flow conservation constraints (4.18b).

Proof. The product hitM
(t)
ia(e) is the amount of traffic originated in node i and targeted to t, that

appears at node a(e). By summing for all the possible origins i we have the total amount of
traffic targeted to t, that reaches node a(e). Thus:∑

i

hitM
(t)
ia(e) = ha(e)t +

∑
e∈𝛿−(a(e))

xte, ∀t ∈ , e ∈

Then, a fraction of traffic given by fte is routed to e. Resulting xte values satisfy (4.19), and
thus are non-negative and compatible with the flow-conservation constraints.

Other metrics that can be easily extracted from the fundamental matrices are:

• The fraction of the traffic originated in i and targeted to t that successfully arrives to the
destination is given by M(t)

it st, which is also the i-th coordinate of vector M(t)s.
• The fraction of the traffic originated in i and targeted to t that is dropped is 1 − M(t)

it st, which
is also the i-th coordinate of vector M(t)l.

• The expected number of hops in the network of a packet targeted to t, initiated in node i, is
given by the i-th coordinate of the vector M(t)1, where 1 is the column vector of length | |
full of ones.

Trim Size: 6.625in x 9.625in Mariño c04.tex V3 - 02/11/2016 6:38 P.M. Page 71�

� �

�

Routing Problems 71

In Net2Plan, the routing in each network layer can be configured according to two forms. In
so-called source-routing, end-to-end routes are assigned to demands (alike to xp information).
In hop-by-hop routing, the routing is defined by setting the routing tables fte. In this latter case,
Net2Plan detects open and closed loops and estimates routing statistics using the expressions
in this section.

4.4.3 Comparing Flow-Based and Destination-Based Routing

Let (,) be a network, with offered traffic given by a traffic matrix hst. We consider two
possible forms of carrying the traffic: using flow-based routing (e.g., using MPLS tunnels),
and destination-based routing (e.g., using an IP network with static routing tables). Trivially,
any destination-based routing xte could be reproduced with flow-based routing (xde, xp), by
just appropriately defining the flows. We are interested in this section in assessing the opposite
question: which are the limitations that destination-based routing imposes?

The previous question was partially answered in Section 4.1 (e.g., the example in Fig. 4.1),
where it was shown that some routings which are possible in flow-based networks, could
never be exactly reproduced with destination-based forwarding. However, the following prop-
erty shows that for any feasible routing in a flow-based network, we could find a feasible
destination-based routing, carrying the same offered traffic with same link capacities.

Proposition 4.6 Let (,) be a network and hst a traffic matrix with the offered traffic
between nodes s, t ∈ , s ≠ t. Let denote the set of demands created from this matrix: one
demand between each node pair. Then, it holds that for every xde solution carrying the offered
traffic that is feasible according to the flow-link constraints (4.13b–d), we can create a xte
solution feasible according to the destination-link constraints (4.18b–d), carrying the same
traffic matrix hst in the same network and link capacities.

Proof. By making xte =
∑

d∶b(d)=txde, it is easy to see that xte values satisfy all the constraints
(4.18b–d).

4.5 Convexity Properties of Performance Metrics

Assessing the convexity of a routing optimization problem may require determining if several
performance metrics are convex functions of the routing variables. This task is eased by the
fact that, for any network link e, the amount of traffic traversing the link is a linear expression
with respect to the routing variables in any formulation:

ye =
∑

p∈e

xp, in flow-path formulations

ye =
∑

d

xde, in flow-link formulations

ye =
∑

t

xte, in destination-link formulations

As shown in Section A.2.4 of Appendix A, if a function f (y) is convex (concave) with
respect to y, the function f (Ax + b) is convex (concave) with respect to x, although strict

Trim Size: 6.625in x 9.625in Mariño c04.tex V3 - 02/11/2016 6:38 P.M. Page 72�

� �

�

72 Optimization of Computer Networks – Modeling and Algorithms

Table 4.1 Convexity of some functions and constraints with respect to
routing variables

Function/constraint Convex?

B =
∑

eyeBe yes (uni/any/multicast), single-class4

T =
∑

eyeTe yes (uni/any cast), no multicast (see Exercise 3.1)∑
e∈pBe ≤ Bmax yes if single-class, ue > 1,∀e, Bmax

< 15%∑
e∈pyeBe ≤ hpBmax yes if single-class (hp: traffic offered to path p)∑
e∈pTe ≤ Tmax yes

n̄ =
∑

eye∕
∑

dhd yes

maxeye∕ue yes

convexity/concavity is not kept unless A is full-rank. From this, we have that all performance
metrics that are convex (concave) functions with respect to the set of variables {ye, e ∈ },
are also convex (concave) as functions of the routing variables xp, xde or xte in their respective
formulations. Strict convexity or concavity with respect to the routing variables does not hold
in general, even if the function is strictly convex or concave with respect to {ye, e ∈ }.

Example 4.2 The average network delay expression for unicast traffic T = 1∑
dhd

∑
e

ye

ue−ye
is

a strictly convex function with respect to ye variables, taking hd and ue as constants. Thus, it
is a convex function with respect to xp, xde, or xte variables in routing problem formulations.
Strict convexity with respect to routing variables would only hold in the case (of no practical
interest), when there is a one-to-one relation between possible routings and ye values. This
happens, for instance, in a flow-path problem with one path per link.

In Table 4.1 we summarize the convexity properties of some performance metrics and typ-
ical constraints that can be introduced in routing problems. Proofs can be easily derived, and
are omitted or referred to exercises.

4.6 Problem Variants

In this section, several routing problem variants are presented, including in some cases their
formulations, which serve as modeling examples.

4.6.1 Anycast Routing

Let us assume a routing problem with offered traffic composed of a set of anycast demands.
Each demand d ∈ , has a set of possible origin nodes a(d) and possible destination nodes
b(d). Carrying the anycast demand means that all the demand traffic routed from any node in
a(d) to any node in b(d), should sum up the offered traffic hd.

4 Formulations including the Erlang-B can be solved in JOM with the built-in erlangB function.

Trim Size: 6.625in x 9.625in Mariño c04.tex V3 - 02/11/2016 6:38 P.M. Page 73�

� �

�

Routing Problems 73

4.6.1.1 Flow-Path Formulation

Modeling anycast routing problems in a flow-path formulation (e.g., (4.1)) just needs popu-
lating the (pre-computed) set of candidate paths d for every anycast demand d, with all the
accepted paths from any node in a(d), to any node in b(d). Once d path lists are computed,
the same formulation (e.g., (4.1)) returns the optimal anycast routing.

4.6.1.2 Flow-Link Formulation

A convenient form of modeling anycast routing problems in flow-link formulations such as
(4.13) is performing a graph transformation of the problem. This consists of adding two extra
nodes to the network for each anycast demand d, so-called source node ad and sink node bd.
A link of infinite capacity connects ad with each node in a(d), and each node in b(d) with the
sink bd. Then, the anycast demand d, is replaced by a standard unicast demand d′, starting in
ad and ending at bd. Figure 4.6 illustrates this procedure. The original network is composed of
nodes {1,… , 9}. The network is offered an anycast demand d, with origins a(d) = {1, 2, 3} and
destinations b(d) = {6, 8}. The unicast routing solution obtained in the transformed problem,
plotted in the figure, means that four units of traffic are routed from node 1 to node 6, and six
units of traffic from node 2 to node 8.

4.6.1.3 Destination-Link Formulation

A similar approach as in the previous case permits adding anycast traffic demands to a
destination-link formulation like (4.18). Note that in this case, the two nodes added for each

86 7 9

bd

4 5

31 2

ad

4

6

4

4

4

6

6

6

Figure 4.6 Anycast → unicast graph transformation example

Trim Size: 6.625in x 9.625in Mariño c04.tex V3 - 02/11/2016 6:38 P.M. Page 74�

� �

�

74 Optimization of Computer Networks – Modeling and Algorithms

anycast demand means enlarging with two more rows and columns per demand the matrix of
offered traffic hst, which would have just one non-zero value in the coordinate (ad, bd).

4.6.2 Multicast Routing

A multicast traffic demand d has a single initial node a(d), multiple end nodes b(d), and a traffic
volume hd, such that exactly hd units of traffic have to be delivered to each node in b(d). If all
the traffic of a multicast demand is carried through a single tree, the demand is not bifurcated.
In contrast, if more than one tree is used (e.g., 30% of hd in one tree and the remaining 70%
in other), the demand is said to be bifurcated.

4.6.2.1 Flow-Path Formulation

Multicast routing problems can be modeled in a flow-path formulation exactly like unicast
routing problems (e.g., (4.1)), by just populating the d sets of candidate paths with multicast
trees from a(d) node to destinations b(d), instead of paths. Then:

• Pre-computation of the candidate path lists involves solving the k-minimum cost multicast
tree problem. In its simpler version (k = 1), the problem is called the Steiner tree problem
for directed graphs, which is known to be -complete. The general versions k > 1 are
also naturally -complete. Thus, there is no algorithm that guarantees computing min-
imum cost multicast trees in worse case polynomial time, which can be an issue in large
networks. In Exercise 4.11 we present an algorithm for producing k-shortest multicast trees
solving a sequence of k ILP formulations. This scheme is integrated in Net2Plan to ease the
development of multicast routing algorithms.

• The CPLA technique described in Section 4.2.4 and Algorithm 3 can be applied to multicast
routing problems. The only change occurs in line 1 and 5 of the algorithm: shortest path com-
putations should be replaced by the equivalent minimum cost multicast tree computations,
which now involves solving an -complete problem.

It is important to remark that, even though multicast routing flow-path formulations can be
linear (e.g., (4.1)), and thus solvable in polynomial time, the computation of the candidate path
list involves -hard computations, and the overall multicast routing problem versions are
-complete. An exception to this occurs with broadcast demands: where the destination
nodes are all but the origin: b(d) = − {a(d)}. In this case, the computation of the minimum
cost broadcast tree gets the name of the Minimum Spanning Tree (MST) problem, which can
be solved in polynomial time with, for example the Edmond’s algorithm in [7]. Also, we can
compute the k-minimum cost spanning trees in polynomial time, for example with Gabow
et al. algorithm in [8].

4.6.2.2 Flow-Link Formulation

Flow-link formulations of the multicast problem involve integer (in general 0–1) decision
variables5. As an example, (4.23) presents a linear flow-link formulation for finding the

5 Since the optimal multicast routing problem even for a single demand is -complete, no LP nor convex formula-
tions for the problem can exist (unless = P).

Trim Size: 6.625in x 9.625in Mariño c04.tex V3 - 02/11/2016 6:38 P.M. Page 75�

� �

�

Routing Problems 75

non-bifurcated multicast routing which maximizes the unused bandwidth in the bottleneck
link (uu). Decision variables are:

uu = {Amount of unused link bandwidth in the bottleneck link}

x̂de = {1 if multicast tree of demand d traverses link e, 0 otherwise}, ∀d ∈ , e ∈

x̂det = {1 if multicast tree of demand d traverses link e, in the path to t, 0 otherwise},

∀d ∈ , e ∈ , t ∈ b(d)

max uu subject to: (4.23a)

∑
e∈𝛿+(n)

x̂det −
∑

e∈𝛿−(n)
x̂det

⎧⎪⎨⎪⎩
= 1, if n = a(d)
= −1, if n = t

0 otherwise

, ∀d ∈ , t ∈ b(d), n ∈ (4.23b)

x̂det ≤ x̂de, ∀d ∈ , t ∈ b(d), e ∈ (4.23c)∑
d

hdx̂de ≤ ue − ue, ∀e ∈ (4.23d)

Constraints (4.23b) are the flow conservation constraints for the individual paths of each
multicast tree. (4.23c) means that a link e belongs to a tree d if it appears in any path to any
destination in b(d). Constraints (4.23d) are the standard link capacity constraints, so that uu
contains the maximum amount of capacity that is unused in all the links. Finally, 0–1 integrality
of x̂de and x̂det variables mean that the routing is non-bifurcated, and thus each demand is
carried by one and only one multicast tree.

It is interesting to remark that constraints (4.23b,c) are necessary conditions for a valid
multicast routing, but not sufficient. In particular, these constraints do not avoid the existence of
loops similarly to the unicast case, or unnecessary links in the trees, which should be removed
offline. Extra constraints can help to avoid some (but not all) of these situations. For instance,
making the number of incoming links of a tree in a node n(

∑
e∈𝛿−(n)xde) equal 0 for the tree

initial node and ≤1 for the rest. Finally, these difficulties do not appear if the objective function
sums a positive cost coefficient for each x̂de variable, since then solutions with unnecessary
links are never optimal. Note that this is not the case in (4.23a), although it is possible to
replace it in practice by ū − 𝜖

∑
dex̂de, being 𝜖 > 0 a small enough value.

4.6.3 Non-Bifurcated Routing

In non-bifurcated routing, the traffic of each demand d is carried in one and only one
path (or multicast tree if the demand is multicast). In the general case, finding the optimal
non-bifurcated routing is an -complete problem. As shown in the next subsections, it can
be modeled using 0–1 integer constraints in the three formulations, flow-path, flow-link, and
destination-link.

Trim Size: 6.625in x 9.625in Mariño c04.tex V3 - 02/11/2016 6:38 P.M. Page 76�

� �

�

76 Optimization of Computer Networks – Modeling and Algorithms

4.6.3.1 Flow-Path Formulation

It is relatively easy to add the non-bifurcated constraint to a flow-path formulation like (4.1) by
just rewriting it using the x̂p variables (4.2). These variables represent the fraction ∈ [0, 1] of
traffic of the demand, that is carried by the path. Then, the constraint x̂p ∈ {0, 1}, that forbids
xp to take fractional values, makes the routing non-bifurcated.

4.6.3.2 Flow-Link Formulation

Similar to the previous case, it is possible to rewrite the problem using the variables x̂de (4.14)
that contain the fraction ∈ [0, 1] of the traffic of the demand, that traverses link e. Adding the
constraints x̂de ∈ {0, 1} makes the routing non-bifurcated.

4.6.3.3 Destination-Link Formulation

In a non-bifurcated destination-based routing, a node n handles all the traffic to a destina-
tion node t, forwarding it to a single outgoing link. Adding this type of constraints requires
some rewriting. Below (4.24) we present a formulation for the non-bifurcated variant of the
maximum worst-case unused bandwidth routing problem (4.18). Decision variables are:

uu = {Amount of unused link bandwidth in the bottleneck link}

xte = {Amount of traffic targeted to node t, that traverses link e}, ∀t ∈ , e ∈

fte = {1 if traffic targeted to node t traverses link e, 0otherwise}, ∀t ∈ , e ∈

max uu subject to: (4.24a)

∑
e∈𝛿+(n)

xte −
∑

e∈𝛿−(n)
xte =

{
hnt, if n ≠ t

−
∑
s

hst, if n = t ,∀t, n ∈ (4.24b)

∑
t

xte ≤ ue − uu, ∀e ∈ (4.24c)

xte ≥ 0, ∀t ∈ , e ∈ (4.24d)

xte ≤ Mfte, ∀t ∈ , e ∈ (4.24e)∑
e∈𝛿+(n)

fte ≤ 1, ∀t, n ∈ , t ≠ n (4.24f)

The objective function and constraints (4.24b–d) are equal to the original problem (4.18).
Constraints (4.24e) forces that fte = 1 when a link e carries traffic to t (xte > 0). M is a big con-
stant, larger than any value xte can take (e.g. M =

∑
nhnt). Then, 0–1 integrality of fte variables

and (4.24f) a node to use at most one output link to forward traffic to t, making the routing
non-bifurcated.

Trim Size: 6.625in x 9.625in Mariño c04.tex V3 - 02/11/2016 6:38 P.M. Page 77�

� �

�

Routing Problems 77

4.6.4 Integral Routing

In some network design problems, traffic demands are composed of an integer number of traffic
units, for example number of channels or connections to be established. In such cases, although
bifurcating the traffic of a demand is possible, the routing must carry an integer number of
traffic units in each path. This constraint is called integral routing. Figure 4.7 illustrates it with
an example.

Finding the optimum integral routing is an-complete problem in the general case. Mod-
eling it is quite easy using the flow-path, flow-link and destination-link formulations: (i) the
offered traffic hd (or hst) should be given as the integer number of traffic units to carry, (ii)
then, routing variables xp, xde, or xte represent the number of units carried and are restricted to
integers.

4.6.5 Destination-Based Shortest Path Routing

In general destination-based routing networks, the optimal routing tables fte computed (e.g.,
first solving (4.18, then applying (4.19)), should be signaled by separately communicating to
each node the set of output links and their forwarding percentages for each destination. This
process has two main shortcomings: (i) the complexity of signaling all this information and (ii)
the hardware impossibility for common equipment to apply arbitrary forwarding percentages
to each output link and destination.

Shortest path routing is an attempt to address both difficulties. In shortest path networks,
each network link e has associated a cost ce > 0. Link costs can be offline decided by a central-
ized authority, or more or less dynamically adjusted by link end nodes. In any case, a signaling
protocol should propagate the ce costs of all the links in the network, to all the network nodes.
In IP networks, where shortest path routing is popularly applied, this is commonly the task of
the so-called link-state protocols like OSPF or IS-IS. Once a node knows the link costs ce, it
autonomously devises its routing table by applying two rules:

• Shortest path rule: Each node n forwards the traffic to each destination node t, only using
the shortest path (or paths) from n to t, computed using ce values as the cost per link.

• Splitting rule: In case that more than one shortest path exists (thus with equal cost), an
unambiguous splitting rule is applied to decide which fraction of traffic is forwarded through
each output link belonging to a shortest path.

2 4

3 51

p1
(2 T.U)

p1
(2.5 T.U)

p2
(2.5 T.U)

p2
(3 T.U)

2 4

3 51

(a) (b)

Figure 4.7 Example. Routing of demand d with hd = 5 traffic units (T.U). (a) integral routing and, (b)
not an integral routing, since one of the paths does not carry an integer amount of traffic

Trim Size: 6.625in x 9.625in Mariño c04.tex V3 - 02/11/2016 6:38 P.M. Page 78�

� �

�

78 Optimization of Computer Networks – Modeling and Algorithms

40

6

40

20

1010

10

10
2040

40

40 20

20

1 4

s

5

3

t

6 8

7

9

Figure 4.8 ECMP splitting rule example. All the links have cost ce = 1. 80 units of traffic are delivered
from s to t, nodes 1, 4, and 7 split the traffic equally between two links

The most popular splitting rule in IP networks is the Equal-Cost Multi-Path (ECMP)
scheme. Let sp(n, t) denote the set of outgoing links of n that belong to at least one shortest
path to t. Then, the ECMP rule in n splits the traffic to t equally among all the links in sp(n, t).
Figure 4.8 helps us to illustrate the ECMP technique, for a case where 80 traffic units are
generated in s, targeted to t.

IP routers can implement ECMP in different forms. The simpler one distributes one packet
at a time to each output link in sp(n, t) using a round robin pointer. This would produce a
very finely balanced distribution of traffic. However, it would also cause IP packets of the
same TCP transport connection to follow different routes in the network, creating packet
out-of-sequence events at the TCP receiver end. This is something to avoid, since TCP could
interpret packet disorders as packet losses and then react unnecessarily reducing its rate. For
this reason, many routers implement ECMP using hash-based splitting: each packet origin and
destination address (and maybe transport ports) are hashed, producing a number, for example
between 0 and 15. Then, a map between hash values and the shortest path’s output links deter-
mines where the packet is forwarded. Since all the packets of the same transport connection
produce the same hash value, they will follow the same path in the network. However, depend-
ing on the traffic, resulting splitting ratios can be very unbalanced: for example if a single
TCP connection produces the 100% of the traffic to a destination, only one output link would
be used.

The constraints imposed by the shortest path and the splitting rules make it difficult or even
impossible to reproduce optimal routings achievable in general flow-based forwarding. One
of the first works to explore this for the ECMP rule was [9]. It showed that properly select-
ing ce weights, which are constrained to be integer numbers, could produce close to optimal
solutions in many practical cases, although for some topologies the performance could differ

Trim Size: 6.625in x 9.625in Mariño c04.tex V3 - 02/11/2016 6:38 P.M. Page 79�

� �

�

Routing Problems 79

substantially from the optimum. The problem of finding the best OSPF weights for a network
setting is -hard [9]. Since this is a traffic engineering problem of practical interest in IP
networks, we have selected it in a case study in Chapter 12 and will present several heuristic
algorithms for it.

Interestingly, as we have seen in Section 4.2.1 and Section 4.3.1, we can find a set of link
costs ce, such that the optimal routes of a flow-based or destination-based routing problem are
shortest paths according to them6. This establishes that the shortest path rule is not in essence a
major obstacle for routing performance, and that the impossibility of matching with IP/OSPF
the optimum routings achievable in general destination-based routing, comes from the ECMP
splitting rule.

4.6.6 SRG-Disjoint 1+1 Dedicated Protection Routing

Let (,) be a network, the set of offered traffic demands, and the set of risks or Shared
Risk Groups (SRG) identified for them (see Section 3.6.1 for the definition and notation of
SRGs). In this section, we model the problem of finding a 1+1 dedicated protection routing
where primary and backup paths should be SRG disjoint. By doing so, we guarantee that all
the traffic is carried in the presence of a single SRG failure.

We model this routing problem using a flow-path formulation that maximizes the worst-case
unused bandwidth uu in the links (3.15). For each demand d, we denote as d its set of admis-
sible paths. Logically, a necessary condition for finding a valid routing is that for each demand,
at least two SRG-disjoint paths exist in d. This requires that demand end nodes do not belong
to any SRG.

The decision variables are:

uu = {Amount of unused link bandwidth in the bottleneck link}

x̂p = {1 if path p is the primary path of demand d (p), 0 otherwise}, ∀p ∈

x̂′p = {1 if path p is the backup path of demand d(p), 0 otherwise}, ∀p ∈

The routing formulation is given by (4.25):

max
x̂,x̂′

uu subject to: (4.25a)∑
p∈d

x̂p = 1, ∀d ∈ (4.25b)

∑
p∈d

x̂′p = 1, ∀d ∈ (4.25c)

∑
p∈e

hd(p)(x̂p + x̂′p) ≤ ue − uu, ∀e ∈ (4.25d)

∑
p∈f

⋂
d

x̂p + x̂′p ≤ 1, ∀d ∈ , f ∈ (4.25e)

6 In the routing problems addressed in those sections, these link costs were the optimal multipliers 𝜋e of the link
capacity constraints.

Trim Size: 6.625in x 9.625in Mariño c04.tex V3 - 02/11/2016 6:38 P.M. Page 80�

� �

�

80 Optimization of Computer Networks – Modeling and Algorithms

With constraints (4.25b, c), we force each demand to have one primary and one backup path
associated. In (4.25d), the traffic in each link is constrained to be lower or equal to the capacity
minus the worst-case unused bandwidth uu. Constraints (4.25e) make that for every demand d
and SRG f , no two primary-backup paths associated to the demand (∈ d) and affected by the
same failure (which we denote as ∈ f), can simultaneously carry traffic. This is true since x̂p
and x̂p are constrained to be 0–1 integers.

An alternate flow-path formulation for the problem can be obtained by populating the
candidate path lists, not with paths, but with SRG-disjoint 1+1 path-pairs. For instance,
from d we compute the set 1+1

d of path pairs (p1, p2), such that both p1 and p2 belong to
d and are SRG-disjoint. Then, we apply a standard flow-path formulation using 1+1

d as
“path” lists. Note that in this case, we do not need the routing to be non-bifurcated to enforce
SRG-disjointness. However, the general problem of finding the minimum cost SRG-disjoint
path pair is -hard, and so is the problem of enumerating the k-shortest SRG-disjoint path
pairs. Still, there are polynomial algorithms for some problem variants, like the Suurballe’s
algorithm for minimum cost link-disjoint paths [10, 11].

4.6.7 Shared Restoration Routing

In contrast to dedicated 1+1 protection, in shared restoration routing the link bandwidth can
be shared by different backup paths. In other words, depending on the particular failure state
(failed nodes and links in the network), different primary paths may be using it. Designing
the routing in such a restoration scheme usually involves first defining a set of possible
failure states of interest, such that the possibility 𝜋s of finding the network in failure state s
cannot be neglected. Usually, set includes at least the no-failure state (denoted s0), and the
single-failure states, when just one SRG is down. The reader is referred to Section 3.6.3, for
more information on how to enumerate failure states in the network, and estimate their 𝜋s
probabilities from the MTBF and MTTR values of the SRGs.

In this section we present a flow-link formulation for finding the different || non-bifurcated
routings (one for each possible network state considered), that optimizes the network conges-
tion by maximizing the unused bandwidth in the bottleneck, in any network state. Decision
variables are:

uu = {Amount of unused link bandwidth in the bottleneck link}

x̂des = {1 if traffic of demand d is carried in link e during network states, 0otherwise},

∀d ∈ , e ∈ , s ∈

The routing formulation is given by (4.26):

max
x̂

uu subject to: (4.26a)

∑
e∈𝛿+(n)

x̂des −
∑

e∈𝛿−(n)
x̂des =

⎧⎪⎨⎪⎩
1, if n = a(d)
−1, if n = b(d)
0, otherwise

, ∀d ∈ , n ∈ , s ∈ (4.26b)

Trim Size: 6.625in x 9.625in Mariño c04.tex V3 - 02/11/2016 6:38 P.M. Page 81�

� �

�

Routing Problems 81

∑
d

hdxdes ≤ ue − uu,∀e ∈ , s ∈ (4.26c)

xdes = 0,∀d ∈ , s ∈ , e ∈ (s) (4.26d)

Constraints (4.26b) and (4.26c) just force all the routings in all the network states to follow
the standard flow conservation and link capacity constraints. (4.26d) means that during a net-
work state s, the failed links represented by (s) (including all the input and output links of a
node, if such node is failed), cannot carry traffic.

In (4.26), the routings can be totally different from one state to the other. This means for
instance, that the routing of a demand d could change if a link fails, even if the failed link
is not traversed by the demand. Frequently, restoration in real networks do not permit such
flexibility, and only the demands directly affected by a failure can be rerouted. This limitation
can be incorporated by adding the constraint (4.27):

−
∑

e′∈(s)
xde′s0

≤ xdes − xdes0
≤

∑
e′∈(s)

xde′s0
, ∀d ∈ , e ∈ , s ∈ − s0 (4.27)

Expression
∑

e′∈(s)xde′s0
is the number of links carrying traffic of the demand, that are

affected by the failure s. If this number is zero, the constraint (4.27) forces that xdes = xdes0
,

such that the routing must be the same as the one in the non-failure state. If not, any 0–1
combination for the variables xdes and xdes0

is allowed, and thus the routing can be different.
The reader is referred to Exercise 4.15 to see an example of flow-path formulation for a

similar problem.

4.6.8 Multi-Hour Routing

In many real networks, the offered traffic follows periodic (daily/weekly) patterns easy to
forecast. For instance, the traffic in the morning is usually different than that at the non-working
hours in the evening, and different than what we find at midnight. These variations can be
modeled as a multi-hour traffic demand: a sequence of demands (or of traffic matrices), each
estimating the offered traffic at contiguous time intervals. We use index t, t = 1,… ,T , for
identifying the time interval. Then, for a given set of demands , we denote hdt as the amount
of traffic offered by demand d during time interval t. The number of time intervals used in
multi-hour depends on the time granularity of our traffic estimations. Typically, we can find
design ranges from T = 2 (e.g., day traffic and night traffic), to more complex studies with, for
example one traffic interval for each hour of the week (T = 7 × 24 = 168).

The target of multi-hour design is take benefit of the knowledge of traffic fluctuations
to devise more efficient routings that make a better use of network resources. Two main
multi-hour routings variants exist: (i) oblivious or static routing and (ii) dynamic routing.

4.6.8.1 Oblivious Routing

In the oblivious routing case, the routing is static, and is never changed along the time intervals.
This means that the fraction of traffic x̂p of demand d(p) that is carried in a path p, is not
changed, or in a destination-based routing networks like IP, that the routing tables fte are never

Trim Size: 6.625in x 9.625in Mariño c04.tex V3 - 02/11/2016 6:38 P.M. Page 82�

� �

�

82 Optimization of Computer Networks – Modeling and Algorithms

modified. Naturally, since the fractions of traffic routed in each path are unchanged, the amount
of traffic in the links fluctuates as the offered traffic changes. For instance, if a demand d
is 50%–50% bifurcated into two paths, these two paths will carry 100 units of traffic when
hdt = 200, and 20 units of traffic when hdt = 40.

The difference between oblivious routing and standard non-multihour routing, is that the
oblivious routing exploits the knowledge of traffic fluctuations for having a better network per-
formance. Formulation (4.28) shows a flow-path formulation of the multi-hour static routing,
optimizing the worst-case unused bandwidth uu.

max
x̂,uu

uu subject to: (4.28a)∑
p∈d

x̂p = 1, ∀d ∈ (4.28b)

∑
p∈e

hdtx̂p ≤ ue − uu, ∀e ∈ , t = 1,… ,T (4.28c)

xp ≥ 0, ∀p ∈ (4.28d)

Note that the difference between (4.28) and the standard non-multihour formulation is just
the existence of one link capacity constraint (4.28c) per link and time interval t.

4.6.8.2 Dynamic Routing

In the dynamic routing case, the fractions x̂p (or x̂de or x̂te) can now be different at different
time intervals. In the adaptation of (4.28) to this problem, decision variables should be of
the form x̂pt, denoting the fraction of traffic of demand d(p) being carried in p during time
interval t.

Naturally, when the network is able to adapt its routing every time interval, a more effi-
cient resource utilization can be made. However, frequent routing changes are undesirable,
and an artificial cost is commonly added to the objective function to avoid excessive routing
modifications. This is the case in (4.29).

max
x̂,uu

uu − 𝛾

T∑
t=1

∑
p

(x̂pt − x̂pt+1)2 subject to: (4.29a)

∑
p∈d

x̂pt = 1, ∀d ∈ , t = 1,… ,T (4.29b)

∑
p∈e

hdtx̂pt ≤ ue − uu, ∀e ∈ , t = 1,… ,T (4.29c)

xpt ≥ 0, ∀p ∈ , t = 1,… ,T (4.29d)

Modifications in the problem constraints with respect to static routing are trivial. In the
objective function, note that the last term substracts a positive value 𝛾(x̂pt − x̂pt+1)2 if the rout-
ing changes between two consecutive intervals (we assume that time interval t = T is followed
by time interval t = 1). Parameter 𝛾 tunes the penalization given to the routing changes. Note
that the objective function is concave, and thus the maximization problem can be computed in
polynomial time.

Trim Size: 6.625in x 9.625in Mariño c04.tex V3 - 02/11/2016 6:38 P.M. Page 83�

� �

�

Routing Problems 83

4.7 Notes and Sources

The routing problem as described is an application to communication networks of the classical
multicommodity flow problem, appearing in transportation, logistics and many other disci-
plines. Flow-path, flow-link, and destination-link formulations are common in this context,
and can be found in multiple sources. In this book, we partially inherit the notation used in
[6] for them. The relation between routing tables (fte) and xte destination-routing variables in
Section 4.4.2 is derived from standard results in Markov chains (e.g., see Chapter 1 of [12]).

Candidate Path List Augmentation procedures are an application of standard column-
generation techniques of linear programs to flow-path formulations. A background on the
topic can be found in [4–5]. [6] describes CPLA techniques in the context of linear routing
formulations. The extension to nonlinear convex problems described in Section 4.2.4 is
original.

The formulations on the multiple problem variants in Section 4.6 are original, in the sense
that were derived from variations of classical network problems, adapted to the book notation,
and no effort was made to find them in other sources. The added value is putting them together,
and describing them within a common framework and notation, with the aim of growing in
the reader the skill of modeling any routing problem. I would like to credit the book in [6] as
an encyclopedic compilation of routing problems.

4.8 Exercises

4.1 Let (4.30) be the flow-path formulation of the routing that minimizes the worse case
link utilization, and let 𝜋∗, 𝜆∗, and 𝑣

∗ be optimum multipliers for the problem, and 𝜌
∗

the optimum congestion.

min
x,𝜌

𝜌 subject to: (4.30a)

𝜆d ∶
∑

p∈d

xp = hd, ∀d ∈ (4.30b)

𝜋e ∶
∑

p∈e

xp ≤ 𝜌ue, ∀e ∈ (4.30c)

𝑣p ∶ xp ≥ 0, ∀p ∈ (4.30d)

Answer true of false, justify your answer:

1. If a path p does not carry traffic, then 𝑣
∗
p > 0.

2. If a path p carries traffic, then its weight according to 𝜋
∗ equals 𝜆∗

d(p).
3. If a link e has an utilization 𝜌e < 𝜌

∗, then it could happen that 𝜋e > 0.
4. If a link e is a bottleneck (𝜌e = 𝜌

∗), then it could happen that 𝜋e = 0.

4.2 For the problem in formulation (4.30), prove that the expression:
∑

dhdld∑
eue

, where ld is
the number of links in the shortest path of demand d, is a lower bound to the optimal
congestion 𝜌∗. Hint: Show that this is the solution of the relaxed problem for multipliers
𝜋e =

1∑
eue

.

Trim Size: 6.625in x 9.625in Mariño c04.tex V3 - 02/11/2016 6:38 P.M. Page 84�

� �

�

84 Optimization of Computer Networks – Modeling and Algorithms

4.3 For the problem in formulation (4.30), assume that a given path p is constrained to
carry at least a traffic zp > 0. Let (𝜌∗, x∗, 𝜋∗

, 𝜆
∗
, 𝑣

∗) be a primal dual optimal solution
to the original problem. Use it to compute a lower bound to the network congestion
when the new constraint is added.

4.4 For the problem in formulation (4.30), where all the paths are admissible, prove that a
necessary optimality condition is that every path in the network should traverse at least
a bottleneck link.

4.5 Let Fig. 4.9 show a network where all the links have the same capacity. The offered
traffic and routing is unknown, but the carried traffic in each link is written next to the
links. Prove that the routing does not optimize the worst-case utilization in the links
(all the paths are admissible). Hint: Use the results in Exercise 4.4.

4 5

7

3

6

5

6

1 2

7

10

6

4

3

33
3 5

Figure 4.9 Example topology

4.6 Write the flow-path formulation that minimizes the average number of hops in the
network. Prove that the CPLA technique described in Section 4.2.4 can be applied to
it. Devise a lower bound to the optimum in each iteration and write the stop condition
to apply to terminate the algorithm when the average number of hops is guaranteed
to be at most 1% worse than the optimum (𝜖 = 0.01). Implement previous scheme in
a NetPlan algorithm. The CPLA policy should add at least one shortest path for each
demand not satisfying the optimality condition. Include 𝜖 as an input parameter. The
optimum solution is returned by updating the traffic routing.

4.7 An optical network is composed of a set of nodes and a set of fiber links. The
length in km of fiber e is denoted as de. The offered traffic is composed of a given set
 of optical connections, called lightpaths. A lightpath d should be assigned a route
among the admissible paths d, and a wavelength 𝑤 in the set W = {1,… ,Wmax} of
valid wavelengths. Two lightpaths traversing the same fiber cannot be assigned the
same wavelength (these are the so-called wavelength clashing constraints). Devise
the flow-path formulation which finds the routing and wavelength assignment that
minimizes the average number of hops. Adapt the formulation to the multicast case.

Trim Size: 6.625in x 9.625in Mariño c04.tex V3 - 02/11/2016 6:38 P.M. Page 85�

� �

�

Routing Problems 85

Implement a Net2Plan algorithm that solves this formulation with JOM. The maximum
length in km to be an acceptable route is set as an input parameter and used to build
the candidate path list. The optimum solution is returned by updating the routes of
the demands, and using the functions in WDMUtils library of Net2Plan to store the
wavelength assignment to each route as route attributes.

4.8 In the same context of Exercise 4.7 (unicast case), adapt the formulation for the case
when each lightpath should be assigned a primary and backup route, which are link
disjoint and are assigned the same wavelength. Implement a Net2Plan algorithm that
solves this formulation with JOM. The optimum solution is returned by updating the
routes of the demands and assigning one protection segment to each, with the backup
route.

4.9 In the same context of Exercise 4.7 assume that a set of SRGs has been defined
in the network, and that a lightpath that is affected by a failure can change its route
and wavelength. Devise the flow-path formulation which finds the routing and wave-
length assignment of each lightpath d ∈ in the no-failure state, and in each of the
single-SRG failure stages. The optimization target is minimizing the average propaga-
tion delay of the lightpaths. Implement a Net2Plan algorithm that solves this formula-
tion with JOM and appropriately returns the optimum solution.

4.10 In the same context of Exercise 4.7 (unicast case), let us assume that each link is a
SRG with an unavailability given by Uf (the fraction of time the link is down). We
assume that unavailabilities are below 10−2, and link failures are statistically indepen-
dent. Show that the unavailability of a lightpath can be approximated by the sum of
the unavailabilities of the traversed links. Write the formulation of the problem which
finds the route and wavelength assignment of the lightpaths that minimizes the average
lightpath unavailability. Modify the previous formulation to minimize the worst-case
unavailability among the lightpaths. Implement two Net2Plan algorithms that solve
previous formulations with JOM and appropriately return the optimum solution.

4.11 Let (,) be a network, {ce, e ∈ } be a strictly positive cost assigned to each link,
and {ue, e ∈ } the given link capacities. Let d be a multicast demand, from node
a(d) to nodes in set b(d). Write a flow-link formulation that finds the multicast tree
satisfying d, which minimizes the sum of the costs in the traversed links. Let be a set
of multicast trees satisfying d. Modify the previous formulation to forbid returning any
multicast tree in (that is, with exactly the same set of traversed links that a tree in p).
Devise an algorithm which uses previous formulation to solve the k-shortest multicast
tree problem. Implement such algorithm in a Java function, solving the formulations
with JOM.

4.12 Let (,) be a network, {ce, e ∈ } be a strictly positive cost assigned to each
link, and {ue, e ∈ } the given link capacities. Let be a set of SRGs defined in
the network. Write an integer flow-link formulation that finds two SRG-disjoint paths
for one demand d, such that minimizes the sum of the costs of the traversed links.
Write a flow-path formulation for the 1+1 SRG-disjoint routing of a set of demands

Trim Size: 6.625in x 9.625in Mariño c04.tex V3 - 02/11/2016 6:38 P.M. Page 86�

� �

�

86 Optimization of Computer Networks – Modeling and Algorithms

. The candidate path list 1+1
d of each demand d is supposed to be populated by

SRG-disjoint path pairs (instead of paths). Devise a CPLA scheme where the 1+1
d

sets are dynamically populated. Implement such scheme in a Net2Plan algorithm that
solves previous formulations with JOM, and appropriately returns the optimum solu-
tion.

4.13 Solve Exercise 4.12 for the case of link-disjoint paths (that is, one SRG exists per
network link). Can we replace the integer flow-link formulation by a polynomial-time
algorithm? Modify the Net2Plan algorithm in Exercise 4.12 to apply the Suurballe’s
algorithm (built-in in a Net2Plan library) in the case when one SRG is defined per
network link.

4.14 Let (,) be a network and {ue, e ∈ } the given link capacities, and {de, e ∈ } the
link distances in km. Let be the set of unicast offered demands. Devise a flow-path
and a flow-link formulation that minimize the worst-case utilization among the network
links, subject to the constraint that no path can have a propagation delay higher than
50 ms, and the routing is non-bifurcated. Modify the flow-path formulation with the
constraint that the routing can be bifurcated, but a path cannot carry less than a 10%
of the demand traffic.

4.15 Rewrite the formulation (4.26) in Section 4.6.7 using a flow-path approach. Add the
constraint that demands unaffected by a failure cannot change its routing.

4.16 Implement a Net2Plan algorithm that solves formulation (4.28) for multihour oblivious
routing with JOM. The input traffic is given by a set of T traffic matrices. The routing
of each demand is constrained to one out of k loopless shortest paths in number of hops
for that demand. Input parameters to the algorithm are the number of time intervals T ,
the root name of the .n2p files with the traffic matrices (full names are supposed to
be root_1.n2p, …, root_T.n2p), the maximum number k of loopless candidate
paths per demand, and a parameter stating whether or not the routing is constrained to
be bifurcated.

4.17 Repeat the previous exercise for the case of dynamic routing in formulation (4.29).

References
[1] E. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Mathematik, vol. 1, no. 1, pp.

269–271, 1959.
[2] D. Eppstein, “Finding the K shortest paths,” in Foundations of Computer Science, 1994 Proceedings., 35th

Annual Symposium on. IEEE, 1994, pp. 154–165.
[3] J. Yen, “Finding the K shortest loopless paths in a network,” Management Science, pp. 712–716, 1971.
[4] M. Minoux, Mathematical Programming: Theory and Algorithms, ser. Wiley-Interscience series in discrete

mathematics and optimization. Wiley, 1986.
[5] L. Lasdon, Optimization Theory for Large Systems, ser. Dover books on Mathematics. Dover Publications, 2002.
[6] M. Pioro and D. Medhi, Routing, Flow, and Capacity Design in Communication and Computer Networks. Mor-

gan Kaufmann Publishers, 2004.
[7] J. Edmonds, Optimum Branchings. National Bureau of Standards, 1968.
[8] H. Gabow, Z. Galil, T. Spencer, and R. Tarjan, “Efficient algorithms for finding minimum spanning trees in

undirected and directed graphs,” Combinatorica, vol. 6, no. 2, pp. 109–122, 1986.

Trim Size: 6.625in x 9.625in Mariño c04.tex V3 - 02/11/2016 6:38 P.M. Page 87�

� �

�

Routing Problems 87

[9] B. Fortz and M. Thorup, “Internet traffic engineering by optimizing OSPF weights,” in INFOCOM 2000. Nine-
teenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE, vol.
2. IEEE, 2000, pp. 519–528.

[10] J. Suurballe, “Disjoint paths in a network,” Networks, vol. 4, no. 2, pp. 125–145, 1974.
[11] J. W. Suurballe and R. E. Tarjan, “A quick method for finding shortest pairs of disjoint paths,” Networks, vol.

14, no. 2, pp. 325–336, 1984.
[12] J. R. Norris, Markov Chains. Cambridge University Press, 1998, no. 2008.

Trim Size: 6.625in x 9.625in Mariño c05.tex V3 - 02/11/2016 6:40 P.M. Page 88�

� �

�

5
Capacity Assignment Problems

5.1 Introduction

Given a network topology (,), with the set of nodes and the set of links, the capacity
assignment problem decides on the capacity ue allocated to each link e ∈ . This problem
appears in two main (quite diverse) contexts: (i) as a problem to be solved periodically at long
time scales (e.g., every 6 months) to upgrade the capacity of deployed links in a network and
(ii) as a control problem to solve at subsecond time scale, to allocate capacity to users in a
dynamic environment. We provide two examples:

• (Slow) Capacity planning: In Internet Service Provider (ISP) backbone networks, network
links are virtual circuits hired to a network carrier, or transport connections established in
an own network infrastructure. The link costs depend on the link distance and capacity
according to the carrier tariffs or the infrastructure cost structure. ISPs periodically (e.g.,
every 6 months) execute a so-called capacity planning process [1] or capacity expansion
[2], where the capacity upgrade in the links is planned to match a forecasted traffic demand,
at the minimum cost. In this context, the capacity assignment falls into the problems that
can be solved without major time constraints, in a centralized form. Chapter 12 is devoted
to the design of algorithms for them.

• (Fast) Capacity allocation: In many wireless networks technologies, a set of mobile systems
(e.g., phones in a cell network) are served by a central base station. To orchestrate the uplink
(phone to base station) and downlink (base station to phone) communications, different
medium access protocols exist. Depending on them, the capacity of a link is established
indirectly by deciding on figures such as the link transmission power or the access proba-
bility to the channel, which may have a complex relation with the resulting capacities. In
particular, the decisions on different links are coupled, mutually affected in many forms.
For instance, while increasing the transmission power of a link can augment its capacity, it
can also add interferences degrading other links’ rates. Also, increasing the access proba-
bility to the channel of a link is made at a expense of other link capacities. In this context,
when designing an allocation algorithm we should consider that the capacity assignments

Optimization of Computer Networks – Modeling and Algorithms: A Hands-On Approach,
First Edition. Pablo Pavón Mariño.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/PavonMarinoSol16

Trim Size: 6.625in x 9.625in Mariño c05.tex V3 - 02/11/2016 6:40 P.M. Page 89�

� �

�

Capacity Assignment Problems 89

should be optimized at a subsecond rate to rapidly adapt to changes in the wireless channel
or traffic conditions. Distributed algorithms will be generally preferred. Chapters 9, 10, and
11 provide techniques for the design of such algorithms.

In this chapter, we provide a set of comprehensive examples of capacity assignment prob-
lems in both contexts, studying the problem convexity properties and providing an optimality
analysis.

5.2 Long-Term Capacity Planning Problem Variants

5.2.1 Capacity Planning for Concave Costs

In this section we address the problem of finding the optimal link capacities that minimize
network congestion such that the link costs do not exceed an available budget C. Network con-
gestion is measured as the utilization at the bottleneck link, the one with the highest utilization
in the network.

We focus on the case in which link costs are a concave (sublinear) function of link capacities,
so that, for example the cost of a link of 10 capacity units is lower than the cost of 10 links of
capacity 1. As was shown in Section 3.5, this is the realistic cost structure that reflects the law
of economies of scale.

Let(,) be a network, for which we know (or estimate) the offered traffic and its routing.
As a result, the traffic ye carried by each link e ∈ is known. The cost c(e) of a link e depends
on its capacity according to:

c(e) = ceu𝛼e

where 𝛼 ∈ (0, 1] and ce are the constants that reflect the cost structure. Factor 𝛼 tunes the
intensity of the discount for buying large amounts of capacity in a link. In particular, the ratio
between the acquisition cost of (i) k links of U units of traffic and (ii) one link of kU units of
traffic, is given by:

kceU𝛼

ce(kU)𝛼
= k

k𝛼
= k1−𝛼

When 𝛼 = 1, costs are linear with respect to capacities and there is no large capacity dis-
count. In its turn, the cost of 10 links of one unit of capacity (k = 10,U = 1) is more than three
times more expensive than buying one link of 10 capacity units when 𝛼 = 0.5 (100.5 ≈ 3.1),
and almost eight times more expensive if 𝛼 = 0.1 (100.9 ≈ 7.9). Figure 5.1 helps to further
illustrate the magnitude of the capacity discounts for different 𝛼 values.

The decision variables to the optimization problem are:

𝜌 = {Worst-case link utilization}

ue = {Capacity installed in link e}, ∀e ∈

The optimization problem to solve is:

min
𝜌,u

𝜌 subject to: (5.1a)

ye∕ue ≤ 𝜌, ∀e ∈ (5.1b)

Trim Size: 6.625in x 9.625in Mariño c05.tex V3 - 02/11/2016 6:40 P.M. Page 90�

� �

�

90 Optimization of Computer Networks – Modeling and Algorithms

ue ≥ ye, ∀e ∈ (5.1c)∑
e

ceu𝛼e ≤ C (5.1d)

The objective function (5.1a) minimizes network congestion. In (5.1b) we make link utiliza-
tion ye∕ue be lower or equal than 𝜌, the bottleneck utilization. Constraints (5.1c) force that link
capacities are greater or equal than carried traffics. Finally, (5.1d) is the budgeting constraint:
the total link costs should not exceed the available budget C.

5.2.1.1 Problem Convexification

Objective function of problem (5.1) and constraints (5.1c) are linear, and constraint (5.1b) is
satisfied by a convex set of solutions, since function ye

ue
− 𝜌 is convex with respect to problem

variables. However, in constraint (5.1c), the network cost function:

c(u) =
∑

e

ceu𝛼e (5.2)

is concave with respect to link capacities for 𝛼 ∈ (0, 1) and the set of points satisfying con-
straint (5.1c) can be non-convex. For instance, Fig. 5.2a shows the non-convex set of feasible
link capacities in a network with two links, 0.5 units of traffic in it, and the cost constraint
given by

√
u1 +

√
u2 ≤ 3.

The non-convexity of the feasibility set of (5.1) impedes the application of KKT optimality
conditions and hinders the utilization of standard solvers for obtaining a numerical solution
to the problem. Fortunately, in this case it is possible to circumvent these issues by a variable

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100
c(e) = ue

α

ue

c(
e)

α = 0.5

α = 0.8

α = 1

α = 0.25

Figure 5.1 Concave cost evolution example, c(e) = u𝛼

e for different values 𝛼 = {1, 0.8, 0.5, 0.25}

Trim Size: 6.625in x 9.625in Mariño c05.tex V3 - 02/11/2016 6:40 P.M. Page 91�

� �

�

Capacity Assignment Problems 91

change that produces a new equivalent convex formulation. In particular, in (5.3) we rewrite
problem (5.1), using the link utilizations 𝜌e = ye∕ue instead of link capacities ue as decision
variables:

min
𝜌e,𝜌

𝜌 subject to: (5.3a)

𝑣0 ∶ 𝜌 ≥ 0 (5.3b)

𝑣1 ∶ 𝜌 ≤ 1 (5.3c)

𝜋e ∶ 𝜌e ≤ 𝜌, ∀e ∈ (5.3d)

𝜆 ∶
∑

e

cey𝛼e𝜌
−𝛼
e ≤ C (5.3e)

Problems (5.1) and (5.3) are equivalent in the sense that there is a one-to-one translation
between a solution in terms of capacities and in terms of utilizations (𝜌e = ye∕ue) and consid-
ering this translation both solutions have the same feasibility set and optimum solutions.

Objective function and constraints (5.3b–d) are linear. Linear constraints (5.1b,c) just state
that link utilizations should be between zero and one, which means that no link can be over-
subscribed and capacities should be non-negative. Also, it is easy to show that the network
cost c(𝜌) is now a convex function with respect to 𝜌e variables, observing its hessian matrix:

𝜕
2c

𝜕𝜌
2
e

= cey𝛼e
𝛼(𝛼 + 1)
𝜌
𝛼+2
e

> 0,
𝜕

2c
𝜕𝜌e𝜕𝜌e′

= 0,∀e, e′ ∈ , e ≠ e′

In summary, problem (5.3) is convex and thus amenable to KKT optimality analysis.
Figure 5.2b illustrates this, showing the convex feasibility set resulting after the variable
change for the example in Fig. 5.2a.

5.2.1.2 Optimality Analysis

We apply KKT conditions to convex problem (5.3). The Lagrangian function is given by:

L(𝜌e, 𝜌, 𝑣, 𝜋, 𝜆) = 𝜌 − 𝑣0𝜌 + 𝑣1(𝜌 − 1) +
∑

e

𝜋e(𝜌e − 𝜌) + 𝜆

(∑
e

cey𝛼e𝜌
−𝛼
e − C

)

The Lagrangian minimization optimality conditions are:

𝜕L
𝜕𝜌

= 0 ⇔ 1 − 𝑣0 + 𝑣1 =
∑

e

𝜋e (5.4a)

𝜕L
𝜕𝜌e

= 0 ⇔ 𝜋e = 𝛼𝜆cey𝛼e𝜌
−𝛼−1
e ,∀e ∈ (5.4b)

Multiplier 𝑣0 must be zero, since its respective constraint (𝜌 ≥ 0) cannot be tight: a zero link
utilization means infinite link capacities. Thus, according to (5.4) at least one 𝜋e multiplier is
strictly greater than zero. Then, 𝜆 > 0 and thus 𝜋e > 0 for all network links, so constraints
(5.3d) are all tight. That is, in the optimum all the links have the same utilization, equal to 𝜌.
This is intuitively logical: if one or more links had a higher utilization than the rest, we could

Trim Size: 6.625in x 9.625in Mariño c05.tex V3 - 02/11/2016 6:40 P.M. Page 92�

� �

�

92 Optimization of Computer Networks – Modeling and Algorithms

0 1 2 3 4 5 6
0

1

2

3

4

5

6

u1

u 2

(a) Non-convex feasibility set (ue variables, (5.1))

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ1

ρ 2

(b) Convex feasibility set (ρe variables, (5.3))

Figure 5.2 Example. Feasibility set for problems (5.1) and (5.3) in a network of two links, ye = 0.5

units of traffic in each, C = 3, network cost c(u) =
√

u1 +
√

u2 =
√

0.5
(

1√
𝜌1

+ 1√
u2

)

Trim Size: 6.625in x 9.625in Mariño c05.tex V3 - 02/11/2016 6:40 P.M. Page 93�

� �

�

Capacity Assignment Problems 93

improve the solution reducing the capacity in the low-utilization links and using the extra
budget to increase the capacity of higher utilization links.

Since 𝜆 > 0, constraint (5.3e) is tight, so in the optimum, all the budget C is invested in
network links. From this, we can arrive to a closed formula expression to the optimum solution
of problem (5.3), given by:

C =
∑

ecey𝛼e
𝜌𝛼

⇒ 𝜌 =
(∑

ecey𝛼e
C

) 1
𝛼

(5.5)

Note that expression
∑

ecey𝛼e is the minimum budget (which we denote Cmin) needed to have
a feasible solution, which installs in each link a capacity equal to the carried traffic. In the next
subsections we use formula (5.5) to gain insight on some trade-offs appearing in network
design.

5.2.1.3 Diminishing Returns Law With Respect to Available Budget

Differentiating (5.5) with respect to C we obtain the network congestion sensitivity to a vari-
ation in budget C.

𝜕𝜌

𝜕C
= −

(∑
ecey𝛼e

)1∕𝛼

𝛼C1+1∕𝛼 = − 𝜌

𝛼C
(5.6)

Logically, higher budgets C always yield improvements in network congestion, since
expression (5.6) is negative. Performance improvements are high when C is close to Cmin,
since we are upgrading links that have a capacity close to the carried traffic and congestion
can be reduced significantly with small capacity increases. However, the more C grows, the
lower are the improvements obtained by each extra budget unit we invest. This is a form of
the diminishing returns law in network design. Eventually, the C budget is such that further
improvements in congestion are too small to justify investing more resources in the network.

5.2.1.4 Trends in Network Topology Design

In this section, we analyze the optimum capacity assignment (5.5) to show up some trade-offs
appearing in network topological design. That is, we are interested in using (5.5) to gain insight
on the previous step of capacity optimization: the design phase that decides the set of links to
deploy in the network.

Let us assume we want to design a network topology and routing to connect a set of nodes
with the minimum cost, but satisfying a given network congestion target 𝜌. Once the links and
routing are decided, the cost of the optimal capacity assignment, the only cost considered,
would be:

C =
∑

ecey𝛼e
𝜌𝛼

(5.7)

If all the links have the same cost factor ce = c and traffic ye = y, the investment required to
meet the congestion target becomes:

C =
||cy𝛼

𝜌𝛼
(5.8)

Trim Size: 6.625in x 9.625in Mariño c05.tex V3 - 02/11/2016 6:40 P.M. Page 94�

� �

�

94 Optimization of Computer Networks – Modeling and Algorithms

We can observe two competing trends:

• Cost C is proportional to the number of links in the network ||, and thus penalizes the
topologies that spread the traffic in multiple links (e.g., full-mesh topologies) and favors
those designs that aggregate the traffic of multiple sources in a lower number of links (e.g.,
tree topologies).

• Cost C is proportional to y𝛼 and thus increases (sublinearly) with the amount of traffic carried
in each link. This penalizes topologies with a small number of links that aggregate the traffic
of multiple users. In contrast, it favors, for example, full-mesh topologies in which each link
just carries the traffic of the users between its end nodes.

Previous analyses show up a trade-off between two opposite trends in network topology
design: a trend towards full-mesh topologies with a high number of low loaded links and a
trend towards tree-like topologies where a lower number of links carry the aggregated traffic
of multiple users. In real designs, the described trade-off is affected by multiple factors like
different costs per link, not uniform traffic demands, a fixed cost per link deployment summed
to capacity costs (which would favor tree-like topologies), latency, network resiliency, techno-
logical constraints, and so on. As we can see in multiple examples along the book, when these
factors come into play, the optimum network topologies and routings are usually not regular.

Still, the next example intends to give light on the effect of the 𝛼 factor on the cost structure:
the larger the capacity discounts given by economies of scale (lower 𝛼), the more intense the
trend toward tree topologies.

Example 5.1 We want to compare three possible topologies for an IP network of | | = 6
routers, a star, ring and full-mesh topology as shown in Fig. 5.3. The offered traffic matrix is
composed of one traffic unit between each node pair. The traffic is routed through the shortest
path in number of hops and the ECMP rule is applied for equally bifurcating the traffic if more
than one shortest path exists. Then, the number of links and amount of link traffic y in each
topology is shown in Table 5.1.

Figure 5.4 plots the cost of the optimum capacity assignment for a congestion target 𝜌 =
0.5, ranging values of 𝛼 ∈ [0, 1] and assuming that all links have the same cost factor ce =
1,∀e ∈ . We see that tree and link topologies that aggregate traffic in a small number of links
are preferred when the economies of scale are strong (low 𝛼 values). In turn, when the costs
evolve close to linearly (𝛼 → 1), the benefits of aggregating the traffic decrease and full-mesh
topologies seem a better option.

5.2.2 Capacity Planning with Modular Capacities

No existing network technology permits establishing links of arbitrary capacities eligible in a
continuum ue ≥ 0. On the contrary, real network technologies restrict link capacities to a dis-
crete set of possibilities, a situation usually called modular capacities constraint. For instance,
Table 5.2 shows available link rates for some popular layer 1/2 technologies today.

Modular capacities can appear in conjunction with techniques that combine multiple parallel
links between two nodes, such that they act as a single link of aggregated capacity. For instance,
Link Aggregation Control Protocol (LACP) enables this for Ethernet, and ECMP rule in IP

Trim Size: 6.625in x 9.625in Mariño c05.tex V3 - 02/11/2016 6:40 P.M. Page 95�

� �

�

Capacity Assignment Problems 95

(a) Star topology

(b) Ring topology

(c) Full-mesh topology

1

2 3

4

6 5

1

2 3

4

6 5

1

2 3

4

6 5

Figure 5.3 Example topologies

Table 5.1 Topology Example 5.4

Topology || y

Star 10 5
Ring 12 4.5
Full-mesh 30 1

Trim Size: 6.625in x 9.625in Mariño c05.tex V3 - 02/11/2016 6:40 P.M. Page 96�

� �

�

96 Optimization of Computer Networks – Modeling and Algorithms

0 0.2 0.4 0.6 0.8 1
10

20

30

40

50

60

70

80

90

100

110

α

C

Example. Optimal network cost

Star
Ring
Full−mesh

Figure 5.4 Example. Concave cost evolution example, c(e) = u𝛼

e for different values 𝛼 ∈ [0, 1]

Table 5.2 Discrete capacities available in different layer 1/2 technologies

Technology Rates

OTN (Optical Transport Network) (Gbps) 1.25, 2.5, 10, 40, 100
SONET/SDH (Gbps) 0.051, 0.155, 0.622, 1.25, 2.5, 10, 40
Ethernet (Gbps) 0.01, 0.1, 1, 10, 100
802.11 Point-to-point radio linka (Mbps) 15, 30, 45, 60, 90, 120, 135, 150, 180, 200

a5 GHz frequency band, 40 MHz bandwidth.

networks can bifurcate the traffic between two nodes among parallel links, producing a similar
effect to link aggregation.

Let (,) be a network and the set of available capacity module types eligible for
determining the link capacities. We denote u(k) and c(k) the capacity and the cost of a module
of type k ∈ , respectively. Cost values c(k) usually reflect an economies of scale discount.
For instance, if a module has twice the capacity of an other, its cost will be less than twice.
Each link e in the network can be composed of an arbitrary number of modules of each type
k. We denote this number aek and they are the decision variables of our assignment problem
(5.9):

aek = {(Integer) number of modules of type k that make up link e}, ∀e ∈ , k ∈

min
a

∑
e

∑
k

aekc(k) subject to: (5.9a)

Trim Size: 6.625in x 9.625in Mariño c05.tex V3 - 02/11/2016 6:40 P.M. Page 97�

� �

�

Capacity Assignment Problems 97

ye ≤
∑

k

aeku(k), ∀e ∈ (5.9b)

aek ≥ 0, ∀e ∈ , k ∈ (5.9c)

The objective function minimizes the sum of the costs of the network links. In (5.9b) the
capacity of a link, given by the sum of the capacities of its components, is restricted to be
higher than or equal to the link traffic. Finally, (5.9c) forbids having a negative amount of
modules in a link.

Problem (5.9) can be trivially decomposed into || independent problems, one per network
link, which can be fast solved for network scenarios appearing in practice using standard com-
puting facilities. Modular capacity assignment becomes challenging when it appears in CFA
problems that jointly optimize traffic routing and link capacities. In the next section, we show
a case of joint routing and modular capacity assignment minimizing network cost.

5.2.3 Multi-Period Capacity Planning

Previous models for capacity planning targeted the optimization of the link bandwidth
acquisition in a particular moment of time, so that the network meets its performance
objectives during the subsequent single period until a new capacity planning process is done,
for example 6 months later. In turn, multi-period capacity planning jointly optimizes the link
capacity acquisitions to be performed during a sequence of T planning periods, for example,
a sequence of four consecutive 6-month periods. Link capacities are usually considered
modular and accumulative: that is, the capacity modules assigned to a link at a time period,
stay there in the subsequent periods, so the capacity in the links only grows. Multi-period
planning should be fed by two estimations:

• Capacity costs forecast. The expected evolution of the costs of the different link capacity
modules during the next T periods. In general, the cost of the capacity modules for a given
bit rate decreases with time and new higher-rate modules can appear. In addition, delaying
the acquisitions can reduce the operational expenditures added to the total cost, since new
equipment does not incur in maintenance expenses until it is purchased.

• Traffic growth forecast. The traffic forecasts can be based on sophisticated own-developed
estimations, or use simple compound-annual-growth rate (CAGR) predictions (e.g., traffic
growth of 20% per year) that are periodically published by network companies.

The rationale behind multi-period planning is that both previous estimations can permit
better planning decisions in the network, which reduce costs in the long term. In particular, a
multi-period view can recommend delaying the capacity acquisitions in some links, waiting
for price cuts, or anticipating the acquisition of a more cost-efficient large capacity module,
not immediately needed, but expected to be needed soon according to the traffic growth fore-
cast. Still, the multi-period optimization should be repeated every single acquisition period,
updating the cost and traffic forecasts. In other words, an acquisition plan for, as an example 2
years, produced by the multi-period optimization, is re-optimized and updated every 6 months,
for example.

Multi-period planning can be solved as a joint routing and capacity assignment problem.
In (5.10) we present a formulation for a multi-period planning, for a sequence of T periods,

Trim Size: 6.625in x 9.625in Mariño c05.tex V3 - 02/11/2016 6:40 P.M. Page 98�

� �

�

98 Optimization of Computer Networks – Modeling and Algorithms

t = 1,… ,T . Link capacities are modular. denotes the set of module types, u(k) is the capac-
ity of a module k ∈ , and c(k, t) is the estimated cost of a module of type k if acquired
during time period t. The offered traffic forecast for a demand d ∈ during time period t
is given by hdt. Note that in general, hdt volumes are increasing with t: hdt+1 > hdt. Finally,
we assume that the routing can be different in consecutive time periods, opening the door to
exploit new trade-offs. For instance, offloading the traffic of some links until a expected cost
reduction makes desirable acquiring a large capacity module for it. Decision variables for the
problem are:

aekt = {Number of NEW modules of type k for link e, acquired in time period t},

∀e ∈ , k ∈ , t = 1,… ,T

xpt = {Amount of traffic of demand d(p) carried by p during time period t},

∀p ∈ , t = 1,… ,T

The formulation of the described multi-period problem is (5.10):

min
a,x

∑
t

∑
e

∑
k

aektc(k, t) subject to: (5.10a)

∑
p∈d

xpt = hdt, ∀d ∈ , t = 1,… ,T (5.10b)

∑
p∈e

xpt ≤

t∑
t′=1

∑
k

aekt′u(k), ∀e ∈ , t = 1,… ,T (5.10c)

aek ≥ 0, ∀e ∈ , k ∈ (5.10d)

xpt ≥ 0, ∀p ∈ , t = 1,… ,T (5.10e)

Objective function (5.10a) sums the acquisition costs along the time periods. Constraint
(5.10b) means that all the traffic is carried. Constraint (5.10c) makes that in any period, the
traffic in each link does not exceed its capacity. Note that the capacity installed in a link at time
t is given by the accumulation of all the modules assigned in t and before.

5.3 Fast Capacity Allocation Problem Variants: Wireless Networks

Fast capacity allocation problems appear in network technologies where the link capacities
should rapidly adapt to network varying conditions. The paramount example of this are wire-
less networks, for two reasons. First, the typical random variabilities in the wireless channel,
due to a phenomenon called fading, require frequent readjustments of the link capacity, for
example, at a subsecond rate. Second, when the wireless links are not point-to-point, but spread
the signal energy in a broadcast pattern (e.g., in mobile cellular networks and in wireless
LANs), the messages from multiple users can simultaneously arrive to a receiver hindering
or even impeding the detection of legitimate communications. Because of this, the spectrum
becomes a shared medium and access control or multiplexing mechanisms are needed to coor-
dinate the users communication.

In this section we provide a brief overview of wireless technologies to introduce the techno-
logical context, and define some basic concepts appearing in its modeling like the capacity

Trim Size: 6.625in x 9.625in Mariño c05.tex V3 - 02/11/2016 6:40 P.M. Page 99�

� �

�

Capacity Assignment Problems 99

region. Sections 5.4 and 5.5 are devoted to model selected capacity assignment problems
appearing in realistic case studies on wireless technologies.

5.3.1 The Wireless Channel

Figure 5.5 illustrates a single wireless channel, using as an example the transmission from a
base station antenna to a mobile phone. In its travel to the receiving antenna, the base station
signal suffers several forms of degradation:

• Signal attenuation or path loss: The signal power received at a distance d of the transmit-
ter antenna is proportional to p

d𝛾
, where p is the signal power irradiated by the transmitter

antenna, and 𝛾 is a so-called path loss exponent. Path loss exponents range typically from
2 to 5. Larger exponents significantly increase the attenuation, and thus reduce the wireless
coverage. As an example, if the distance to the transmitter is multiplied by 2, the received
power is divided by 4 when 𝛾 = 2 and divided by 32 when 𝛾 = 5.

• Fading: Fading is a significant and relatively fast variation of the received power or sig-
nal quality. Fading is caused by the propagation of the signal from the transmitter to the
receiver through different paths (multi-path propagation), for example a direct path between
both antennas, and several paths where the signal is reflected in surrounding objects (see
Fig. 5.5). The signal received from different paths, traverse different distances, and can
arrive to the receiver creating constructive or destructive interferences. A constructive inter-
ference increases the signal received power, while destructive interferences reduce it, for
example up to 60 dB. The interference patterns depend on the reflecting objects, their shapes,
movement, position, channel local conditions, and so on in a form impossible to control.
The result is that the observed attenuation can largely and randomly fluctuate in intervals of
duration typically between hundreds of milliseconds to several seconds.

The apparition of fading at a particular frequency band is random, and independent from
other bands. Also, the apparition of fading in a reception antenna located in a particular posi-
tion is also random, and independent from a fading event in an antenna separated a short

Figure 5.5 Example of multi-path propagation

Trim Size: 6.625in x 9.625in Mariño c05.tex V3 - 02/11/2016 6:40 P.M. Page 100�

� �

�

100 Optimization of Computer Networks – Modeling and Algorithms

distance from it1. Different diversity strategies can exploit independence of fading events
to alleviate their effects. The frequency-hopping technique is an example of this, where the
transmission frequency is rapidly switched among many channels in a sequence known by
the transmitter and the receiver so that the effects of fading at some frequencies are reduced.
Another diversity technique is using multiple transmission and/or reception antennas sep-
arated a short distance among them, a technique called MIMO (Multiple Input Multiple
Output).

• Noise: The noise is an undesired fast and random varying signal (e.g., varying at least two
orders of magnitude faster than the fading), coming from the multiple electromagnetic sig-
nals produced in nature and by the transmission and reception circuitry, which sum to the
legitimate received signals.

A well-known relation coming from information theory, states that the maximum transmis-
sion rates ue attainable at a wireless link e can be written, for a large family of modulations
as [3]:

ue =
1
T

log(1 + K ⋅ SNRe) (5.11)

Here, constant T is the symbol period, constant K = (−𝜙1)∕(log(𝜙2BER)), where 𝜙1 and
𝜙2 constants depend on the modulation, and BER is the required bit-error-rate. SNRe stands
for the signal-to-noise ratio of the link, given by:

SNRe =
Prx

e

𝜎
2
e

Prx
e is the power received from the legitimate signal, which depends on the transmission

power and the total signal attenuation, considering both path loss and fading. 𝜎2
e is the noise

power, including the thermal noise caused by the electronics at the receiver.

5.3.2 Wireless Networks

In point-to-point wireless links designed to have a fixed capacity (e.g., point-to-point radio
links between two locations), the link parameters are engineered such that even in some
worst-case fading and noise conditions considered, a minimum SNR is obtained to meet the
target BER. The link antennas are designed to be directive, sending and receiving most of
the energy in the direction towards the other antenna, and thus not affecting or being affected
significantly by other surrounding wireless links. These fixed capacity radio links do not add
any particular difference from a modeling point of view with respect to any other (wired) link.

In contrast, we are interested here in wireless networks where the signal transmitted by
a node is broadcast to the medium and/or shares the spectrum with the transmissions from
other nodes. This is the case of mobile cellular networks, and IEEE 802.11 wireless LAN
technologies. Depending on the channel conditions (which fluctuate), and the simultaneous
transmissions from other users, a legitimate signal received by a node can be mixed with
the signals from other transmissions, generally called interferences. Interference signals can

1 Usually, it is considered that a separation similar to the signal wavelength or a small multiple of it is enough to
consider the apparition of fading in a location statistically independent from the other. Note that a wavelength 𝜆 (m)
of a signal at frequency f (Hz) is given by 𝜆 = c∕f . For instance, at 2.4 GHz the wavelength is 12.5 cm.

Trim Size: 6.625in x 9.625in Mariño c05.tex V3 - 02/11/2016 6:40 P.M. Page 101�

� �

�

Capacity Assignment Problems 101

hinder, or even prevent the correct reception of the legitimate messages. As a result, the traffic
sent by a node can produce a reduction of the capacity of other nodes to receive traffic. This
is a major difference with respect to wireline networks.

We distinguish two cases:

• Hard interference scenario: In some wireless technologies, when two or more simultaneous
signals from different sources arrive to a receiver, the detection of any of them is impossible.
This situation is commonly referred to as a collision between the two (or more) messages. A
Medium Access Control (MAC) protocol is needed to coordinate network nodes, reducing or
eliminating the possibility of such collisions. Wireless communications under IEEE 802.11
protocols (e.g., Wi-Fi) include MAC protocols of this type.

• Soft interference scenario: Multiple wireless technologies implement a multiplexing
scheme, such that a node can simultaneously receive different communications from
different sources. Interfering signals from other users are seen as a noise that penalizes
the SNR of the link. If the interfering power is small enough, the messages received from
the link can be detected. Code Division Multiplexing (CDM), Orthogonal Frequency
Division Multiplexing (OFDM) or Time Division Multiplexing (TDM) are examples of
such techniques. In CDM, each information bit is multiplied before transmission by a
sequence of bits (called chips) using a particular code. A node receiving simultaneous
transmissions is able to demultiplex them using the corresponding transmitter code. User
codes are chosen to be orthogonal, which means that in perfect channel conditions, each
user information can be demultiplexed without corruptions. If not, other users’ signals
appear as attenuated added noise. CDM is used in the radio interface of mobile phone
standards like CDMA2000 or WCDMA (3G). In OFDM the information is transmitted
in parallel slower rate signals at different frequencies or subcarriers, where the separation
between frequencies is specifically chosen to cancel the interferences between them. Then,
users using different subcarriers do not interfere each other. Finally, TDM consists of
dividing the time into frames, and the frames into slots. Users are allocated slots, such that
two users can transmit in the same frame, as long as they use different slots. TDM is used
in old GSM cellular systems. Modern LTE and LTE-advanced 4G use a combination of
OFDM and TDM techniques, such that each user is assigned a set of carrier-slot pairs. The
higher the number of slot pairs assigned, the larger the capacity allocated to the user.

Both MAC and multiplexed access case studies will be modeled in examples throughout
this section.

5.3.3 Modeling Wireless Networks

We reuse the same notation and framework of the book, and denote the set of network nodes
with and is the set of links. Since links in a wireless network can appear and disappear
because of channel fluctuations, we will consider that a wireless link e ∈ exists if, in opti-
mum channel conditions, the link source node can send messages to the link end node. This
model can include:

• Ad-hoc wireless networks, where all nodes are of the same type and a link between any
node pair is possible if channel conditions between them allow it.

Trim Size: 6.625in x 9.625in Mariño c05.tex V3 - 02/11/2016 6:40 P.M. Page 102�

� �

�

102 Optimization of Computer Networks – Modeling and Algorithms

• Cellular networks where some nodes are base stations and the rest are mobile systems. In
this case, direct communications between mobile systems are not possible. Thus, network
links are restricted to (i) links from a base station to and from mobile system, and (ii) base
station to base station links.

We define the capacity ue in a link e as the amount of traffic that can be sent by the origin
node, that is correctly received by the end node.

5.3.3.1 Capacity Region

To model the coupling between the capacities at different links such that, for example, the
increase of a link capacity can imply the reduction of other, we use the concept of capacity
region of a network as the set of vectors u = {ue, e ∈ } that can be attained.

As an example, let us focus on a network like the one in Fig. 5.6a, where two nodes can
send information to a common central node. Wireless links have a nominal rate of 1 Mbps, but
the wireless technology is such that a node cannot receive messages arriving simultaneously
from two incoming links, since a collision would occur destroying both signals. The capacity

(a) Three-node network example

0 0.5 1 1.5
0

0.5

1

1.5

u1 (Mbps)

u 2
 (

M
bp

s)

(b) Capacity region

21 3
e1 e2

Figure 5.6 Example. Three node network and its capacity region (u1, u2), when a node cannot receive
simultaneously traffic from two nodes (black) and when this constraint does not exist (black and gray)

Trim Size: 6.625in x 9.625in Mariño c05.tex V3 - 02/11/2016 6:40 P.M. Page 103�

� �

�

Capacity Assignment Problems 103

region in this network is given by those (u1, u2) non-negative vectors, for which u1 + ue ≤ 1
(Fig. 5.6b). Note that the situation u1 + u2 = 1 would be only achieved if both links can be
perfectly coordinated to (i) never use the channel at the same time and (ii) never leave the
channel unused. This would be the task of the Medium Access Control (MAC) protocol. The
concept of capacity region can also be applied to wired networks. In this example, if no external
constraint exists to use both wired links at its maximum rate, the capacity region would be the
square {0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1} (see Fig. 5.6b).

5.3.3.2 Indirect Capacity Allocation

Capacity allocation algorithms in the wireless context, that we will see in Part II of the book,
are distributed iterative methods running at network nodes, with the aim of rapidly adapting
link capacities to varying network conditions. A characteristic of these algorithms is that the
link capacity is usually not directly configured, but comes indirectly as a result of controlling
other figures. For instance, in some cellular networks, a link capacity is set by deciding on the
transmission power of that and other links. Assigning more power to a link could increase its
capacity at a cost of augmenting the interference power of surrounding users and thus reducing
their capacities. In an other example, MAC protocols can be based on assigning each link
a probability to access the channel. Then, increasing the access probability of a link would
augment its capacity at a cost of increasing the chances of collisions with other users and thus
reducing their capacities.

In this context, a general modeling of the capacity assignment problem maximizing the
network utility takes the form:

max
u,p

∑
e

Ue(ue) subject to: (5.12a)

u = f (p) (5.12b)

p ∈ (5.12c)

where p = {pe, e ∈ } is the set of control variables like transmission power or access
probabilities and the set of feasible values that these control variables can take (e.g.,
minimum and maximum powers, probabilities below 1, etc.). Ue are the utility functions
of the NUM model and f denotes the control-to-capacity function, which determines the
capacity of the network links, depending on the decisions taken on p. We remark that usually
f is such that a link capacity ue depends on the pe decisions on that and other links.

The control-to-capacity function helps us to more formally define the concept of capacity
region of a network:

 = {u such that exists at least an allocation p ∈ , for which u = f (p)}

Given a set of hardware constraints that characterize a technology, we say that a capac-
ity assignment scheme is throughput optimal when it is able to find the control variables to
produce any capacity vector desired within the capacity region. Naturally, no capacity assign-
ment algorithm can attain a capacity outside the capacity region. But as we will see, not all the
capacity allocation schemes are able to cover the full capacity region.

Trim Size: 6.625in x 9.625in Mariño c05.tex V3 - 02/11/2016 6:40 P.M. Page 104�

� �

�

104 Optimization of Computer Networks – Modeling and Algorithms

5.4 MAC Design in Hard-Interference Scenarios

In this section we study the design of MAC protocols coordinating the transmissions in a
wireless network constrained by hard interference schemes. We consider a network composed
of wireless nodes and wireless links. A link e exists between origin node a(e) to destination
node b(e), if under perfect channel conditions, a(e) can send traffic to b(e) at the link nominal
rate ūe.

We assume that all the nodes share the same wireless channel, such that the transmission
on a link can impede the reception in another link/s (hard interference). This can happen for
instance if the distance between the receiver of the former node and the transmitter node of the
latter is less than some threshold (e.g., dI km). In general, dI can be equal to or higher than the
coverage distance. In the latter case, a node can cause interferences to more nodes than those
to whom it can send traffic.

We use a general framework to model hard interferences, using a Boolean matrix Aee′ ∈
{0, 1}||×||, where Aee′ = 1 if link e interferes link e′, and Aee′ = 0 otherwise. In other words,
Aee′ = 1 means that if e and e′ simultaneously transmit traffic, the message in link e′ is lost.

The interference map A is a powerful framework to model multiple interference constraints
and hardware limitations. Figure 5.7 helps us to illustrate this. We assume a case when d = dI ,
and thus the coverage range equals to the interference range (drawn in the figure). A link end-
ing in node n is interfered by any other link whose transmitter has n in range. For instance,
links e and e′ in Fig. 5.7 cannot be simultaneously active, since both end in the same node
(Aee′ = 1,Ae′e = 1). Also, Ae′′e = 1 since when the link e′′ is active, the signal interferes any
link entering in node 2. Note, however, that Aee′′ = 0 and A matrix is in general not symmet-
ric. Finally, the interference map can be also a tool to add other hardware constraints. For
instance, in some wireless technologies, nodes cannot transmit and receive simultaneously. In
the example of Fig. 5.7, this can be included in A by making Ae′′′e = Ae′′′e′ = 1.

Given an interference map A, we define by ⊂ {0, 1}|| the set of valid link schedules.
A valid link schedule m ∈ represents a set of links that do not generate any collision

2

1

3

e

eʹ

4

eʺ

5

eʹʹʹ

Figure 5.7 Example of interference map

Trim Size: 6.625in x 9.625in Mariño c05.tex V3 - 02/11/2016 6:40 P.M. Page 105�

� �

�

Capacity Assignment Problems 105

when they are transmitting simultaneously. That is, for any e ≠ e′ such that me = me′ = 1,
Aee′ = 0.

We define 𝜋m,m ∈ , as the proportion of time that the network is operating under a partic-
ular scheduling m. Then, the capacity region of a network constrained by hard interferences,
for any MAC protocol, should be contained in the set ̄ of feasible capacities:

̄ =

{
u ∈ ℝ||

+ ∶ ∃𝜋 ∈ ℝ||
, 𝜋m ≥ 0,

∑
m∈

𝜋m = 1, such that u ≤ ūe

∑
m∈,me=1

𝜋m

}
(5.13)

Note that since
∑

m𝜋m = 1, we are implicitly assuming a best-case situation when all the
time is spent in valid link schedules that are collision free. For this reason we call ̄ the
set of feasible capacities, since no MAC protocol can attain a capacity vector outside ̄ .
Interestingly, it is easy to show that the set ̄ is convex, since it is composed of all the convex
combinations that can be made with the || capacity vectors associated to valid schedules
(Exercise 5.2).

In this context, the target should be the design of MAC protocols that can attain any capacity
within set ̄ . Unfortunately, this can require complex coordination mechanisms, not amenable
to a distributed implementation in practice. In next subsections, we will see a distributed ran-
dom access MAC scheme whose capacity region is significantly smaller than ̄ and a model
of CSMA (Carrier Sense Multiple Access) protocols, which have been shown (under some
simplifying assumptions) to attain any capacity within the interior of ̄ .

5.4.1 Optimization in Random Access Networks

In this section we model the capacity allocation problem associated to a Aloha-type random
access MAC protocol2 for a wireless network composed of a set of nodes and a set of
wireless links. A synchronization scheme exists such that time is divided into consecutive slots
of equal duration and slot initial times are aligned for all networks nodes. The access to the
wireless medium is based on the so-called persistence probabilities as follows:

• In each slot, each node n independently decides to transmit with probability qn or be idle
with probability 1 − qn. We call qn the persistence probability of node n.

• When a node n determines to transmit traffic, it chooses one of its outgoing links e ∈ 𝛿
+(n)

with probability p′e, such that
∑

e∈𝛿+(n)p
′
e = 1. Then, the probability pe that a link e transmits

traffic is given by: pe = p′eqa(e). We call pe the persistence probability of link e and denote
p = {pe, e ∈ } to its vector form. When a link e is transmitting traffic during a time slot,
it makes it so at its nominal transmission rate ūe, which can be the same for all links, or
depend on the link distance, end nodes hardware, and so on. Note that node transmission
probabilities qn are determined by persistence probabilities pe:

qn =
∑

e∈𝛿+(n)
pe, ∀n ∈

2 ALOHAnet was a pioneering wireless network developed in the 1970s demonstrating a wireless packet-based net-
work. Each ALOHA station implemented a random-based access protocol to transmit. This scheme inspired later the
access control in Ethernet and other random-access based protocols.

Trim Size: 6.625in x 9.625in Mariño c05.tex V3 - 02/11/2016 6:40 P.M. Page 106�

� �

�

106 Optimization of Computer Networks – Modeling and Algorithms

The network is subject to hard interferences and we denote A as the || × ||matrix describ-
ing the interference map. From it, we define I

to(e) as the set of nodes whose transmissions
interfere to the receiver of e, excluding the transmitter of e (a(e)). Also, I

from(n) denotes the
set of links that are interfered from any transmission of node n, excluding outgoing links of
node n. Hence,

• If a link e transmits traffic and any node in I
to(e) is transmitting traffic simultaneously, the

transmission in e fails.
• If a node n transmits traffic and any link e ∈ I

from(n) is transmitting traffic simultaneously,
the transmission in e fails.

Note that it is also possible to model wireless technologies that forbid a node to transmit
and receive data at the same time. To represent this situation, sets I

to(e) should include the
end node of e (b(e) ∈ I

to(e)) and sets I
from(n) should include all the incoming links to e

(𝛿−(n) ⊂ I
from(n)).

In this section we are pursuing a model to adjust the persistence probabilities in our
time slotted network, with the target of maximizing the network utility and enforcing a
fair capacity allocation to the links. The average capacity ue of a link e is the time average
of the traffic that can be correctly received at its end. This depends on the persistence
probabilities (q, p) in all the nodes and links. In particular, if e is active in a time slot,
correct reception occurs when all nodes that can interfere with e (NI

to(e)) are silent. Given the
statistical independence in transmission decisions in different nodes, the probability of correct
reception equals

∏
n∈ I

to(e)
(1 − qn) and thus the relation between persistence probabilities

(the control variables) and link capacities is:

ue = ūepe

∏
n∈ I

to(e)

(1 − qn) (5.14)

We apply a NUM (Network Utility Maximization) model as described in Section 3.7, where
each link e is associated an increasing utility function Ue(ue). The optimization problem for-
mulation is:

max
u,q,p

∑
e

Ue(ue) subject to: (5.15a)

ue ≤ ūepe

∏
n∈ I

to(e)

(1 − qn), ∀e ∈ (5.15b)

umin
e ≤ ue ≤ umax

e , ∀e ∈ (5.15c)∑
e∈𝛿+(n)

pe = qn, ∀n ∈ (5.15d)

0 ≤ qn ≤ 1, ∀n ∈ (5.15e)

0 ≤ pe ≤ 1, ∀e ∈ (5.15f)

The first constraint establishes the capacity in the links. The second constraint sets the limits
to ue capacities between umin

e and umax
e , input parameters to the problem.

Trim Size: 6.625in x 9.625in Mariño c05.tex V3 - 02/11/2016 6:40 P.M. Page 107�

� �

�

Capacity Assignment Problems 107

The capacity region of (5.15) is the set of vectors u = {ue, e ∈ } for which it is possible
to find at least one feasible persistent probabilities (q, p) satisfying (5.15def):

 = {u satisfying (5.14) for at least a (q, p) satisfying (5.15def)}

Note that the capacity region is solely determined by the nominal capacities ū and the inter-
ference model given by the sets { I

to(e), e ∈ }. The following example shows us that (i) the
capacity region of the problem can be a non-convex set and (ii) since collisions can occur, the
capacity region is smaller than the maximal set of capacities ̄ for this interference map that
can be attained by an optimum MAC protocol.

Example 5.2 We focus on a network like the one in Fig. 5.6a, where nodes 1, 3 are the only
ones transmitting traffic. The capacity region is composed for those vectors (u1, u2) for which
there exists at least one valid persistence probability values (p1, p2) ∈ [0, 1]2 such that u1 =
p1(1 − p2), u2 = p2(1 − p1). This set is shown in Fig. 5.8a.

The non-convexity of the capacity region (e.g., see Fig. 5.8a as an example), caused by
constraint (5.15b), hinders the problem solution by efficient methods. However, under verifi-
able sufficient conditions on the curvatures of utility functions, we can transform (5.15) into a
separable convex optimization problem. To do so, we have to apply the logarithm function to
both sides of constraints (5.15b,c):

log ue ≤ log
⎛⎜⎜⎝ūepe

∏
n∈ I

to(e)

(1 − qn))
⎞⎟⎟⎠ , ∀e ∈

log umin
e ≤ log ue ≤ log umax

e , ∀e ∈

And now rewrite problem (5.15) using u′e = log ue as decision variables. To simplify the
writing, we adapt the notation of the constants u′min

e = log umin
e , u′max

e = log umax
e , ū′e = log ūe,

and function U′
e(u′e) = Ue(eu′e):

max
u′,q,p

∑
e

U′
e(u′e) subject to: (5.16a)

u′e ≤ ū′e + log pe +
∑

n∈ I
to(e)

log(1 − qn), ∀e ∈ (5.16b)

u′min
e ≤ u′e ≤ u′max

e ,∀e ∈ (5.16c)

(q, p) satisfying (5.15def) (5.16d)

Problem (5.16) has now a convex feasibility set, since: (i) all constraints but (5.16b) are
linear, and (ii) log pe and log (1 − qn) are concave functions of the decision variables, and thus
constraint (5.16b) is satisfied by a convex set of solutions. Another form to state this is that the
set of points:

 ′ = {log(u), u ∈ }

composed of the points in the capacity region, where capacities are now measured in a log-
arithmic scale, is actually a convex set (see Fig. 5.8b as an example). Still, problem (5.16)

Trim Size: 6.625in x 9.625in Mariño c05.tex V3 - 02/11/2016 6:40 P.M. Page 108�

� �

�

108 Optimization of Computer Networks – Modeling and Algorithms

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u1

u 2

(a) Capacity region in natural units (u1, u2).

−10 −8 −6 −4 −2 0
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

log(u1)

lo
g(

u 2
)

(b) Capacity region in logarithmic units (log u1,log u2).

Figure 5.8 Example. Capacity region (u1, u2) for a network of two nodes, persistence probabilities
p1, p2 ∈ [0, 1], and capacities u1 ≤ p1(1 − p2), u2 ≤ p2(1 − p1)

Trim Size: 6.625in x 9.625in Mariño c05.tex V3 - 02/11/2016 6:40 P.M. Page 109�

� �

�

Capacity Assignment Problems 109

may not be convex, if its objective function is not concave. Happily, the following proposition
shows sufficient conditions that state that if utility functions U are elastic enough (concave
enough), the transformed utilities U′ are still concave functions.

Proposition 5.1 If utility function Ue(ue) is such that:

d2Ue(ue)
du2

e

< −
dUe(ue)
uedue

(5.17)

Then function U′
e(u′e) = Ue(eue) is strictly concave with respect to u′e variables.

Proof. Since ue = eu′e we have:

d2U′
e(ue)

du′2e
=

d2U′
e(ue)

du′2e

(
due

du′e

)2

+
dUe(ue)

due

d2ue

du′2e
= u2

e

(
d2Ue(ue)

du2
e

+
dUe(ue)
uedue

)
which is below zero if (5.17) holds, and exactly zero (and the function is non-strictly concave)
if it holds with equality.

This proposition states that the utility function needs to be not just strictly concave

(d2Ue(ue)
du2

e
< 0), but with a curvature that is bounded away from zero by as much as dUe(ue)

uedue
. It

is easy to show that this holds for 𝛼-utility functions like (3.19), for 𝛼 ≥ 1.

Proposition 5.2 𝛼-utility functions of the form (3.19) satisfy Proposition 5.1 with a strict
inequality for 𝛼 > 1 and equality for 𝛼 = 1.

Then, we can conclude that for 𝛼-utilities elastic enough (𝛼 ≥ 1), problem (5.16) is convex
(with a unique optimum for 𝛼 > 1). Applying Proposition 3.1, we see that optimum solution
of (5.16) in these convex cases is 𝛼-proportionally fair.

5.4.2 Optimization in Carrier-Sense Networks

The random access schemes shown in the previous section has the undesirable property of a
reduced capacity region with respect to the maximal feasible capacity region ̄ (5.13). Its
main reason is that no specific hardware is available to reduce the chances of collisions. In
this section we model MAC protocols based on CSMA (Carrier Sense Multiple Access), an
scheme that has this precise target.

The basic principles behind CSMA is that each node senses the channel (carrier sense)
before transmitting and refrains from starting a transmission if it is found to be busy. If multiple
stations sense the channel is busy and defer their access, they will also simultaneously find
when the channel is released and try to seize it. To reduce the chances of the collisions at this
point, when a transmitter finds the channel idle, it waits a random time before transmitting,
this is called a back-off time. If other node seizes the channel before the end of the back-off
time, the timer is frozen and restarted when the channel is sensed idle again.

CSMA-based random access algorithms are the most widely used distributed MAC schemes
in wireless networks. As an example, IEEE 802.11 is based on a carrier sense phase like the

Trim Size: 6.625in x 9.625in Mariño c05.tex V3 - 02/11/2016 6:40 P.M. Page 110�

� �

�

110 Optimization of Computer Networks – Modeling and Algorithms

one described. The back-off time is randomly chosen as a multiple between 0 and W − 1 times
the DIFS (DCF Interframe Space). The DIFS parameter varies among different 802.11 flavors
between 28𝜇s and 128𝜇s and is related to the time needed by the electronics to detect a col-
lision. W is the so-called back-off window. Since each mini-slot (of DIFS duration) is chosen
with the probability 1∕W, the larger W the smaller the collision probability. The Distributed
Coordination Function (DCF) implementation in 802.11 uses a Binary Exponential Backoff
(BEB) to dynamically adjust the window size. BEB works doubling the window size when a
collision is detected, unless it already has its possible maximum value, and resetting it to its
minimum value after every successful transmission.

The network dynamics under CSMA have been thoroughly studied. We make use in this
section of the simplified model described in [4]. It is based on the following assumptions:

• If two links conflict, because their simultaneous transmissions would result in a collision,
then the carrier sense of both transmitting nodes can hear when the other transmits. This
means that the carrier sense range should be greater than the coverage range and the
so-called hidden node problem can be avoided3.

• If a transmitter senses a conflicting link transmission, it keeps silent. If not, it waits for
a random period of time with exponential distribution of mean 1∕Re and then starts its
transmission. If some conflicting link is sensed during the back-off, the timer is frozen and
continues when the channel is sensed idle again. We assume that the transmission time of
any link has a random duration with exponential distribution, with mean 14.

• The carrier sense is instantaneous and the back-off time is chosen in a continuum. Then, the
possibility of two nodes choosing the same back-off time is zero and collisions never occur.
Note that this assumption is violated in real networks, because of the discretization of the
back-off time, the finite speed of light and the time needed to detect a received power.

We call re = log Re the transmission aggressiveness (TA for short) of the link e. The larger
the aggressiveness of a link, the smaller the average back-off time when accessing the channel.
In window-based schemes where the back-off time is randomly chosen between 0 and W, there
is a direct relation between re and W given by:

1
ere

= W
2

⇒ W = 2e−re

The TA of each link is the parameter we can control in CSMA protocols to tune the average
link capacity. At this point, we are interested in the following questions that will be addressed
in subsequent subsections:

• Which is the relation between the TA in the network links and the resulting link capacities?
• Which is the region of attainable capacities in CSMA protocols?

3 The hidden node problem occurs when two nodes cannot communicate each other (are hidden from each other),
but have a common neighbor to whom they can send traffic simultaneously, generating collisions. For instance, in
Fig. 5.6a, nodes 1 and 3 are hidden between them, and have node 2 as a common neighbor. By assuming that the carrier
sense range is large enough, a node can sense the hidden nodes transmissions and avoid collisions. For instance, if
carrier sense range in Fig. 5.6a is twice the coverage range, node 1 and 3 could sense each other an avoid collisions
in node 2.
4 It is possible to show [4] that results in this section do not depend on the distributions of the back-off and channel
holding times, provided that their mean are the ones stated here.

Trim Size: 6.625in x 9.625in Mariño c05.tex V3 - 02/11/2016 6:40 P.M. Page 111�

� �

�

Capacity Assignment Problems 111

In Part II of the book, we exploit these results to devise algorithms that optimize the
transmission aggressiveness in a distributed form, but unlike, for example BEB schemes, can
be tuned to decide the network utility function to maximize.

5.4.2.1 TA-to-Capacity Relation

Given some fixed transmission aggressiveness values r = {re, e ∈ }, the network state ran-
domly transits among conflict-free states, since according to our model collisions cannot occur.
Then, the set of possible network states is at most , the set of valid schedules of the network.
For a given network state m, (m) denotes its set of active links. Given a link e, (e) is the
set of states where link e is active.

The system evolution can be described by a continuous time Markov chain. This Markov
chain has been studied in [4] and other works, showing that its stationary distribution for par-
ticular r values is given by:

𝜋m(r) =
e
∑

e∈(m) re

C(r)
, ∀m ∈ (5.18)

C(r) is a normalizing constant chosen to make the sum
∑

m𝜋m(r) = 1:

C(r) =
∑

m

e
∑

e∈(m) re

The value 𝜋m(r) is the fraction of time that the network is found in state m, when the obser-
vation time is large enough. Then, the average traffic that can be transmitted by a link e when
transmission aggressiveness is given by r, is:

ue(r) = ūe

∑
m∈(e)

𝜋m(r) =
1

C(r)
∑

m∈(e)
e
∑

e∈(m)re (5.19)

Expression (5.19) is the targeted TA-to-capacity relation, that reflects that the capacity in a
network link depends on the transmission aggressiveness in all the network links.

5.4.2.2 Capacity Region

The capacity region of the CSMA MAC model described is composed of those capacities
u = {ue, e ∈ } that can be induced in the network by a TA vector r, where 0 ≤ re < ∞:

 = {u: there is a TA vector 0 ≤ r < ∞ satisfying (5.19)}

Naturally, the set is contained in the set ̄ of feasible capacities (5.13). It is possible to
show (see [5] for details) that the interior of this set int (̄), is given by those capacity vectors
u induced by schedules which spend a non-zero amount of time in all possible network states:

int (Ū) = {u ∈ ℝ||
+ ∶ ∃𝜋 ∈ ℝ||

, 𝜋m > 0,
∑

m∈
𝜋m = 1, such that u ≤ ūe

∑
m∈(e)

𝜋m}

(5.20)

we call these capacities strictly feasible. Interestingly, Proposition 5.3 states that using finite
r values we can attain any strictly feasible capacity. This means that if a capacity vector u

Trim Size: 6.625in x 9.625in Mariño c05.tex V3 - 02/11/2016 6:40 P.M. Page 112�

� �

�

112 Optimization of Computer Networks – Modeling and Algorithms

is in the interior of the feasible set ̄ we can attain it and, if it is in the boundary, we can
approximate it as much as we want.

Proposition 5.3 The capacity region of the CSMA protocol described is the set of strictly
feasible capacities.

Proof. Let u be a strictly feasible capacity vector. We focus on the optimization problem that
finds 𝜋m distribution that maximizes the entropy among those that provide link capacities equal
or higher than u:

max
𝜋

−
∑

m

𝜋m log(𝜋m) subject to: (5.21a)

re ∶ ue ≤ ūe

∑
m∈(e)

𝜋m ∀e ∈ (5.21b)

𝑤 ∶
∑

m

𝜋m = 1 (5.21c)

𝑣m ∶ 𝜋m ≥ 0, ∀m ∈ (5.21d)

The objective function to maximize is concave and thus the problem (5.21) is convex. Also, if
u is a strictly feasible solution, the problem has a non-empty feasibility set, since at least the
𝜋m values that attain u are feasible. For Slater conditions to hold, the feasibility set should have
a non-empty relative interior and (see [5] for further details, and Exercise 5.4 for an example)
this is why we need u to be strictly feasible, and not just feasible. Finally, when the problem is
feasible and Slater conditions are satisfied, KKT conditions hold for (5.21). Then, the proof is
based on showing that the optimum 𝜋m is the distribution enforced by a CSMA protocol when
re multipliers are the TAs at the nodes, multiplier 𝑤 = log(C(r)) − 1, and multipliers 𝑣m = 0.
The complete proof can be consulted in [4].

Note that since ̄ is a convex set, its interior is also convex [6]. Then, the following property
holds.

Proposition 5.4 The capacity region (5.20) is a convex set.

A NUM modeling of the capacity allocation problem, applying the capacity-to-TA relation
(5.19) is given in (5.22):

max
u,r

∑
e

Ue(ue) subject to: (5.22a)

ue ≤
1∑

me
∑

e∈(m) re

∑
m∈(e)

e
∑

e∈(m)re ∀e ∈ (5.22b)

ue ≥ 0, re ≥ 0, ∀e ∈ (5.22c)

where Ue(ue) are the utility functions. Problem (5.22) is convex as long as the utility functions
are concave. Recall that the set of feasible solutions is convex, since the capacity region defined
by constraints (5.22b) is a convex set, as stated in Proposition 5.4.

Trim Size: 6.625in x 9.625in Mariño c05.tex V3 - 02/11/2016 6:40 P.M. Page 113�

� �

�

Capacity Assignment Problems 113

5.4.2.3 CSMA and Maximum Entropy

An intriguing relation derived from the proof of Prop. 5.3 is that when a CSMA protocol
with TA values r attains a capacity u(r), the resulting distribution of schedules 𝜋m is the one
that maximizes the entropy among those schedules that attain this capacity. We can speculate
about this, making an analogy with classical statistical mechanics, where many microscopic
behaviors aggregate into macroscopic states and the equilibrium is reached in the macroscopic
state that is the most likely one.

Let us assume a network whose state evolves jumping among valid schedules m ∈ in
discrete steps. We observe the system during T consecutive instants and denote as {m(t), t =
1,… ,T} the sequence of states observed. In our analogy, any of the possible sequences {m(t)}
is a microscopic state. The number of different microscopic states that can be observed is ||T
and we assume that all of them have the same probability to occur.

Each sequence {m(t)} has associated a number xm of times that the network was in state
m during the observation period. Note that it always holds that

∑
mxm = T . In our analogy, a

vector {xm,m ∈ } is our macroscopic state.
Many different microscopic states {m(t)} can produce the same macroscopic state {xm}.

When all the microscopic states are equiprobable, the number of microscopic states that result
in the same macroscopic state {xm} is:

K{xm} =
T!∏
mxm!

We want to search for the most likely macroscopic state, that is, the {xm} with the largest
K, or equivalently with the maximum 1

T
log K. Using Stirling’s approximation of the factorial

for large numbers (n! ≈ nne−n) we have:

max
1
T

log
T!∏
mxm!

≈ max −
∑

m

xm

T
log

xm

T

When the observation period is large xm∕T approximates the probability of finding the sys-
tem in state m, that is, 𝜋m. This means that the most likely network state distribution, the
equilibrium one in the statistical mechanics analogy, is the 𝜋m distribution that maximizes the
entropy −

∑
m𝜋m log 𝜋m.

5.5 Transmission Power Optimization in Soft Interference Scenarios

In this section we focus on a wireless network where communications apply a multiplexing
technique that permits simultaneous communications between nodes. The imperfections of
the multiplexing technique mean that some of the power received from a link appears in other
links as interference and computes as an added noise.

Let (,) be a wireless network where is the set of nodes and the set of links. Let
Gee′ denote the gain (in linear units) of the signal propagating from initial node of e to end
node of e′: the ratio between the power (e.g., in mW) of the transmitted signal at a(e) and the
measured signal at b(e′). When e = e′, Gee values depend on the distance between link e end
nodes and wireless channel conditions (which can significantly fluctuate along time). When
e ≠ e′, Gee′ factor includes, together with the effect of channel conditions, an extra attenuation

Trim Size: 6.625in x 9.625in Mariño c05.tex V3 - 02/11/2016 6:40 P.M. Page 114�

� �

�

114 Optimization of Computer Networks – Modeling and Algorithms

added by the ability of the receiver at e′ to filter out most of the interfering signal received from
link e. For instance,

• In CDM systems this ability is provided by the orthogonality between the codes of different
links. Although ideal code orthogonality makes Gee′ = 0, Gee′ > 0 in realistic situations.

• In OFDM systems, uplink signals arriving to the base station from different mobile phones
are orthogonal and in general we can consider Gee′ = 0 (where e and e′ are the uplinks
from different phones to their common base station). However, interferences can still
occur if neighbor base stations share the same frequency bands. In this case, the uplinks
from a mobile phone can arrive to other base stations aside to the one serving it, causing
interferences.

The transmission power at each link e in linear units is denoted by pe and p = {pe, e ∈ }
is the vector form of these transmission powers. The overall Signal-to-Noise Ratio (SNR) at
the receiver of e is given by:

SNRe =
peGee

𝜎
2
e +

∑
e′≠epe′Ge′e

(5.23)

The numerator in (5.23) is the power transmitted at the initial link node that reaches the
receiver. The denominator sums the power (in linear units) at the receiver of those signals
that are considered to be undesired noise hindering the correct detection: (i) the power of the
thermal noise 𝜎

2
e at the receiver hardware and (ii) the sum of the interference powers from

other links5.
In those contexts when user interferences dominate in the SNR, the link capacities are lim-

ited by them, with a theoretical limit given by [3]:

ue =
1
T

log(1 + K ⋅ SNRe) (5.24)

As mentioned in Section 5.3.1, constant T is the symbol period and K is a constant dependent
on the modulation and target BER. Without loss of generality, to simplify the notation in the
sequel we assume T = 1 and absorb K into the Gee factor. Also, applying the assumption
that gains Gee′ ≪ Gee, we can approximate 1 + SNRe ≈ SNRe. Note that this approximation
requires working in sufficiently high SNR regions, which may not happen if a significant
amount of interfering transmitters are much closer to the receiver than the legitimate
transmitter.

With the previous assumptions, we can model the problem of assigning transmission power
pe to each link e to maximize the utility of the resulting capacity allocation in the network
(u = {ue, e ∈ }) as follows (5.25):

max
u,p

∑
e

Ue(ue) subject to: (5.25a)

ue ≤ log

(
peGee

𝜎
2
e +

∑
e′≠epe′Ge′e

)
, ∀e ∈ (5.25b)

umin
e ≤ ue ≤ umax

e , ∀e ∈ (5.25c)

pe ≥ 0, ∀e ∈ (5.25d)

5 Some systems set a limit to the amount of interference power that can handle, as a multiple with respect to the
receiver thermal power. This is called the Rise Over Thermal (ROT), typically between 3 dB and 10 dB.

Trim Size: 6.625in x 9.625in Mariño c05.tex V3 - 02/11/2016 6:40 P.M. Page 115�

� �

�

Capacity Assignment Problems 115

0 2 4 6 8 10 12
0

2

4

6

8

10

12

u1

u 2

Figure 5.9 Capacity region of a network composed of two links {e1, e2} with a common receiver
node and Ge1e1

= Ge2e2
= 1,Ge1e2

= Ge2e1
= 0.001, 𝜎2

e1
= 𝜎

2
e2
= 10−10, and transmission powers from 0

to 100 mW

The capacity region of the system is the set of rates u = {ue, e ∈ } for which at least a
feasible power allocation p exists such that (5.25b,d) hold. It can be shown (see Exercise 5.5)
that the capacity region is a convex set (see Fig. 5.9 for an example).

Although the feasibility set of problem (5.25) is convex, the right-hand side of constraint
(5.25b) is a non-concave function. This can create difficulties when devising solution algo-
rithms for the problem. Interestingly, it is possible to construct an equivalent convex formu-
lation solving this issue, by using a convenient set of decision variables p̃e that are simply pe
variables expressed now in a logarithmic scale:

p̃e = log pe ⇒ pe = ep̃e , ∀e ∈ (5.26)

Problem (5.25) becomes:

max
u,p̃

∑
e

Ue(ue) subject to: (5.27a)

ue ≤ log

(
ep̃e Gee

𝜎
2
e +

∑
e′≠eep̃e′ Ge′e

)
, ∀e ∈ (5.27b)

umin
e ≤ ue ≤ umax

e , ∀e ∈ (5.27c)

The next proposition, adapted from [7], proves the validity of the transformation.

Trim Size: 6.625in x 9.625in Mariño c05.tex V3 - 02/11/2016 6:40 P.M. Page 116�

� �

�

116 Optimization of Computer Networks – Modeling and Algorithms

Proposition 5.5 The function:

f (p̃) = log

(
ep̃e Gee

𝜎
2
e +

∑
e′≠eep̃e′ Ge′e

)

is a concave function with respect to P̃ variables, for all e ∈ .

Proof. Let p̃ and q̃ be two different power assignments in the network. We need to show that
for all p̃ and q̃ assignments and all 𝛼 ∈ [0, 1]:

𝛼f (p̃) + (1 − 𝛼)f (q̃) ≤ f (𝛼p̃e + (1 − 𝛼)q̃e)

The left- and right-hand sides of previous expressions can be rewritten as:

𝛼f (p̃) + (1 − 𝛼)f (q̃) = log

(
e𝛼p̃e e(1−𝛼)q̃e G𝛼+1−𝛼

ee

(𝜎2
e +

∑
e′≠eep̃e′ Ge′e)𝛼(𝜎2

e +
∑

e′≠eeq̃e′ Ge′e)1−𝛼

)

f (𝛼P̃e + (1 − 𝛼)q̃e) = log

(
e𝛼p̃e+(1−𝛼)q̃e Gee

𝜎
2
e +

∑
e′≠ee𝛼p̃e′+(1−𝛼)qe′ Ge′e

)
Then, the proposition holds if:

log

(
𝜎

2
e +

∑
e′≠ee𝛼p̃e′+(1−𝛼)qe′ Ge′e

(𝜎2
e +

∑
e′≠eep̃e′ Ge′e)𝛼(𝜎2

e +
∑

e′≠eeq̃e′ Ge′e)1−𝛼

)
≤ 0 (5.28)

Previous condition is guaranteed by the celebrated Holder’s inequality, which states that if
xi, yi ≥ 0, p > 1 and 1∕p + 1∕q = 1, then:(∑

xp
i

) 1
p
(∑

yq
i

) 1
q
≥
∑

xiyi

By making p = 1
𝛼

, q = 1
1−𝛼 , and:

x = {𝜎2𝛼
e , e𝛼p̃e′ G𝛼

e′e∀e′ ≠ e}

y = {𝜎2(1−𝛼)
e , e(1−𝛼)q̃e′ G1−𝛼

e′e ∀e′ ≠ e}

Then the numerator in (5.28) equals
∑

xiyi and the denominator equals
(∑

xp
i

) 1
p
(∑

yq
i

) 1
q

and thus Holder’s inequality proves the proposition.

5.6 Notes and Sources

The inclusion in this chapter of long-term capacity planning problems and transmission power
or random access allocation problems in wireless networks is consistent with the aim of the
book of putting together related problems, even if they have been traditionally studied sepa-
rately.

The problem convexification described in Section 5.2.1 is original, together with the case
study illustrating the trade-offs in network design coming from the optimal capacity allocation

Trim Size: 6.625in x 9.625in Mariño c05.tex V3 - 02/11/2016 6:40 P.M. Page 117�

� �

�

Capacity Assignment Problems 117

formula. However, this case study is inspired by the minimum average delay capacity alloca-
tion problem studied in [8]. In particular, in Chapter 5 of [8] a closed formula was obtained
just for the linear cost case, which made it difficult to connect the topology trade-offs with the
concave cost structure.

The models for capacity planning with modular capacities and multi-period capacity plan-
ning are original, but similar to other models found in the literature (e.g., [2]).

The modeling of the persistence probability optimization in random access protocols,
together with Prop. 5.1 and Prop. 5.2 that characterize its convexity, come from [9].

The modeling of CSMA protocols presented is adapted from [4, 5, 10, 11]. A detailed model
of 802.11 protocol can be found in [12].

The optimization of transmission power in wireless networks has been investigated in mul-
tiple works from different perspectives. The problem of optimizing the transmitter powers that
match a known set of data rates (and thus minimum SNRs) has been extensively investigated,
and distributed schemes like the Foschini and Miljanic algorithm [13] are widely used by the
industry in such transmission power adaptations. Section 5.5 targets the problem of finding the
SNRs or link rates that make an efficient utilization of the shared channel and is based mostly
on the works in [7, 14, 15], and [16].

5.7 Exercises

5.1 (Chapter 5, [8]) We focus on a modified version of problem (5.1), where the objec-
tive function is replaced by the average network estimation with M/M/1 link delays
and constraint (5.1b) is removed. Show that the problem is convex using the variable
change 𝜌e = ye∕ue. Apply KKT conditions to obtain a closed formula for the optimum
capacities in the linear cost case (𝛼 = 1).

5.2 Prove that the set of feasible capacities (5.13) in a hard-interference scenario is always
convex.

5.3 Prove Prop. 5.2 applying Prop. 5.1.

5.4 For the network of Fig. 5.6a, show that the capacity vector u1 = 0.5 and ue = 0.5 is
feasible, but not strictly feasible. Also, show that it cannot be attained using a CSMA
protocol with finite transmission aggressiveness values. Hint: Use (5.19) and note that
the fraction of time when no link is active should be zero.

5.5 [15] Show that the capacity region in problem (5.25) is convex.

5.6 Implement a Net2Plan algorithm that finds the optimum routing and capacity assign-
ment in a multi-period context for a given network, solving formulation (5.10) with
JOM. Input parameters are the set of capacity modules , their capacities u(k) and cur-
rent costs c(k), the number of planning periods T , and cf and hf parameters: a capacity
module cost at period t + 1 is supposed to be a fraction cf of its cost at time t, and
the traffic of a demand at t + 1 increases in a fraction hf with respect to the traffic in
period t. The optimum solution for the first time interval is returned by updating the
link capacities and routing.

Trim Size: 6.625in x 9.625in Mariño c05.tex V3 - 02/11/2016 6:40 P.M. Page 118�

� �

�

118 Optimization of Computer Networks – Modeling and Algorithms

5.7 Implement a Net2Plan algorithm that finds the optimum persistence probabilities for
a given network, by solving with JOM a modified version of (5.16), where decision
variables u′e and constraints (5.16bc) are eliminated, and u′e in the objective function is
replaced by ū′e + log pe + +

∑
n∈ I

to(e)
log(1 − qn). Input parameters to the problem are

the 𝛼 factor, the minimum link persistence probability and maximum node persistence
probabilities (different to 0 and 1, respectively, to avoid numerical instabilities in the
solver), the nominal link capacities ūe (the same for all links), and a Boolean argument
stating if a node can or cannot transmit and receive simultaneously. The optimum solu-
tion is returned by updating the link capacities, setting the pe values as link attributes,
and qn values as node attributes. Hint: In the case 𝛼 ≠ 1, use the relation elog x = x in
JOM formulation.

5.8 Implement a Net2Plan algorithm that finds the optimum transmission aggressiveness in
a CSMA network with JOM solving a modified version of (5.21), where the objective
function is replaced by −

∑
m𝜋m log 𝜋m + 𝛽

∑
eUe(ue), where Ue is an 𝛼-utility func-

tion, and 𝛽 ≥ 0 a parameter controlling the importance of utility maximization in the
objective function. Input parameters to the problem are the 𝛼-fairness factor, 𝛽, the
link nominal capacities ūe (the same for all links), and the minimum value accepted
for 𝜋m. The optimum solution is returned by updating the link capacities and setting
the re values as link attributes.

5.9 Implement a Net2Plan algorithm that finds the optimum transmission power in a wire-
less network with JOM solving the formulation:

max
p

∑
e

Ue

(
log

(
peGee

𝜎
2
e +

∑
e′≠epe′Ge′e

))
, subject to: pmin ≤ pe ≤ pmax

, ∀e ∈

pe are the transmission power in logarithmic units, Ue are 𝛼-utility functions. Gee values
are given by Gee = d−𝛾

e , where de is the link distance and 𝛾 the path loss exponent. When
e ≠ e′, Gee′ = d(ae, be′)−𝛾A, where d(n1, n2) is the euclidean distance between nodes
n1 and n2 and A an attenuation factor given by the receiver ability to filter out some of
the interfering signals. The thermal noise 𝜎

2
e is set as 𝜎2

e = i
𝑤c∕ROT, i

𝑤c is the worse
case interference received if all the links transmit at the maximum power, and ROT is
the Rise over Thermal parameter (e.g., ROT=10). Input parameters to the algorithm
are 𝛼, pmin

, pmax
, 𝛾,A, and ROT. The optimum solution is returned by updating the link

capacities and setting the transmission power values as link attributes.

References
[1] A. Nucci and K. Papagiannaki, Design, Measurement and Management of Large-Scale IP Networks: Bridging

the Gap Between Theory and Practice. Cambridge University Press, 2009.
[2] M. Pioro and D. Medhi, Routing, Flow, and Capacity Design in Communication and Computer Networks. Mor-

gan Kaufmann Publishers, 2004.
[3] A. Goldsmith, Wireless Communications. Cambridge University Press, 2005.
[4] L. Jiang and J. Walrand, “A distributed csma algorithm for throughput and utility maximization in wireless

networks,” IEEE/ACM Transactions on Networking (TON), vol. 18, no. 3, pp. 960–972, 2010.
[5] L. Jiang and J. Walrand, “A distributed algorithm for maximal throughput and optimal fairness in wireless net-

works with a general interference model,” EECS Department, University of California, Berkeley, Tech. Rep,
2008.

Trim Size: 6.625in x 9.625in Mariño c05.tex V3 - 02/11/2016 6:40 P.M. Page 119�

� �

�

Capacity Assignment Problems 119

[6] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY, USA: Cambridge University Press, 2004.
[7] C. W. Sung, “Log-convexity property of the feasible sir region in power-controlled cellular systems,” Commu-

nications Letters, IEEE, vol. 6, no. 6, pp. 248–249, 2002.
[8] L. Kleinrock, Queueing Systems. New York, NY, USA: John Wiley & Sons, Inc., Wiley Interscience, 1976,

vol. II: Computer Applications.
[9] J.-W. Lee, M. Chiang, and A. R. Calderbank, “Utility-optimal random-access control,” Wireless Communica-

tions, IEEE Transactions on, vol. 6, no. 7, pp. 2741–2751, 2007.
[10] B. Nardelli, J. Lee, K. Lee, Y. Yi, S. Chong, E. W. Knightly, and M. Chiang, “Experimental evaluation of optimal

CSMA,” in INFOCOM, 2011 Proceedings IEEE. IEEE, 2011, pp. 1188–1196.
[11] J. Liu, Y. Yi, A. Proutiere, M. Chiang, and H. V. Poor, “Towards utility-optimal random access without message

passing,” Wireless Communications and Mobile Computing, vol. 10, no. 1, pp. 115–128, 2010.
[12] G. Bianchi, “Performance analysis of the ieee 802.11 distributed coordination function,” Selected Areas in Com-

munications, IEEE Journal on, vol. 18, no. 3, pp. 535–547, 2000.
[13] G. J. Foschini and Z. Miljanic, “A simple distributed autonomous power control algorithm and its convergence,”

Vehicular Technology, IEEE Transactions on, vol. 42, no. 4, pp. 641–646, 1993.
[14] M. Chiang, S. H. Low, J. C. Doyle et al., “Layering as optimization decomposition: A mathematical theory of

network architectures,” Proceedings of the IEEE, vol. 95, no. 1, pp. 255–312, 2007.
[15] D. ONeill, D. Julian, and S. Boyd, “Seeking Foschini’s genie: optimal rates and powers in wireless networks,”

IEEE Transactions on Vehicular Technology, 2003.
[16] D. C. ONeill, D. Julian, and S. Boyd, “Adaptive management of network resources,” in Vehicular Technology

Conference, 2003. VTC 2003-Fall. 2003 IEEE 58th, vol. 3. IEEE, 2003, pp. 1929–1933.

Trim Size: 6.625in x 9.625in Mariño c06.tex V3 - 02/11/2016 6:41 P.M. Page 120�

� �

�

6
Congestion Control Problems

6.1 Introduction

Communication networks are intended to carry the traffic offered by the sources. When traffic
volumes are too high, network links saturate, and there is a situation called congestion. To
prevent it, a mechanism is needed to perform a fair and effective sharing of the link bandwidth
by assigning the traffic volume each source is allowed to inject.

The network elements taking the bandwidth sharing decisions traditionally receive different
names in different contexts. When traffic demands are virtual circuits or traffic connections at
a fixed rate, the bandwidth sharing is governed by an admission control logic that decides
for each connection request whether to carry it or block it. In turn, if the target is adjusting
periodically (e.g., at a subsecond rate) the traffic injected by a demand, such that network
resources are not saturated, the process is called congestion control. This chapter is mostly
devoted to congestion control in packet switched networks.

Congestion control algorithms are code running in the traffic sources that computes an upper
limit to the allowed rate to inject in the network. Some sources do not have much traffic to
transmit and the congestion control upper limit is actually not restrictive for them. These
are typically called mouse connections and correspond to occasional traffic between stan-
dard users. In contrast, other sources are always willing to transmit as much traffic as they
are allowed. They are connections for large file downloads as an example, mirroring between
servers, bulk data retrievals, and so on. In the congestion control field these sources are referred
to as elephants.

Commonly, the number of mouse connections in a network is much higher than the num-
ber of elephants. However, a small number of elephant connections can solely deplete the
bandwidth in the traversed links if allowed, unfairly leaving little for the rest. The role of a con-
gestion control mechanism is precisely to avoid this, enforcing two goals: (i) a fair bandwidth
assignment among the connections and (ii) utilizing the network links as much as possible, but
still keeping traffic losses and packet delays at acceptable levels.

The most challenging example of congestion control context is the Internet: a network of
millions of users and links, with a multitude of technologies and link bandwidths ranging
from Kbps to Gbps and loosely organized as an interconnection of thousands of subnetworks

Optimization of Computer Networks – Modeling and Algorithms: A Hands-On Approach,
First Edition. Pablo Pavón Mariño.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/PavonMarinoSol16

Trim Size: 6.625in x 9.625in Mariño c06.tex V3 - 02/11/2016 6:41 P.M. Page 121�

� �

�

Congestion Control Problems 121

administered by different institutions. The majority of the traffic in the Internet is exchanged
through TCP (Transmission Control Protocol) connections between end users. TCP congestion
control is the paramount example of how it is possible to successfully adjust connection rates
in a fair and scalable decentralized form. Because of its special interest, we will use it is a
modeling case study in Section 6.3.

6.2 NUM Model

The congestion control can be modeled as a Network Utility Maximization (NUM) problem.
The success of NUM model is its flexibility to explain the behavior of already existing con-
gestion control schemes and give insights to build new enhanced variants. We will see several
examples of this in this chapter.

Let (,) be a network, where is the set of nodes and the set of links. The sources
of traffic are the demands in a demand set . The traffic hd injected by a demand d is routed
through a path (or multicast tree if the demand is multicast) pd. Each traffic source d has an
associated utility function Ud(hd), which returns the utility in the sense of profit or abstract
benefit that the source perceives when it transmits at rate hd.

The basic NUM congestion control model assigns the rates h = {hd, d ∈ } that solve (6.1):

max
h

∑
d

Ud(hd) subject to: (6.1a)

𝜋e ∶
∑

d∶e∈pd

hd ≤ ue, ∀e ∈ (6.1b)

𝑣d ∶ hd ≥ 0, ∀d ∈ (6.1c)

The objective function (6.1a) maximizes the so-called network utility, defined as the sum
of the utilities of all the demands in the network. As explained in Section 3.7, this concept is
the application to network problems of the global welfare maximization target in economics.
Constraint (6.1b) represents how the rates assigned are coupled among them: the sum of the
rates of the sources traversing a particular link (that is, the total traffic in the link), cannot
exceed its capacity. Finally, (6.1c) shows the standard non-negativity constraints.

6.2.1 Utility Functions for Elastic and Inelastic Traffic

Different demands d ∈ can have different utility functions Ud, which are always
non-decreasing: a demand perceives a higher bandwidth assignment as better (or “not
worse”). If Ud is differentiable, this means that 𝜕Ud

𝜕hd
≥ 0.

The particular non-decreasing shape of utility functions characterizes the elasticity of the
demands:

• Elastic sources: As described in Chapter 2, pure elastic sources are always willing to trans-
mit traffic and can fill any extra bandwidth assigned. This is represented by a strictly increas-
ing utility function U′

d(hd) > 0. In addition, a law of diminishing returns applies, meaning
that the extra utility coming from increasing the bandwidth from hd + 1 to hd + 2, is lower
than the increase occurred from hd to hd + 1. That is, the increases in the utilities (U′(hd))

Trim Size: 6.625in x 9.625in Mariño c06.tex V3 - 02/11/2016 6:41 P.M. Page 122�

� �

�

122 Optimization of Computer Networks – Modeling and Algorithms

Ud(hd) Ud(hd)

(a) (b)

Hd

hd hd

Figure 6.1 Examples of utility functions, (a) inelastic source and (b) elastic source

decrease with hd and thus Ud functions are strictly concave ((U′(hd))′ < 0). Note that the
behavior of elastic demands described coincides with elephant elastic connections.

• Inelastic sources: A pure inelastic or rigid traffic demand d requires a fixed bandwidth (Hd)
without significant variations. Being assigned a bandwidth lower than Hd, is not useful for
it (Ud(hd) = 0, hd < Hd). If it is assigned exactly Hd units, the utility is maximum (e.g.,
Ud(Hd) = 𝛾 > 0). Any extra bandwidth assigned over Hd does not mean any extra util-
ity (Ud(hd) = 𝛾, hd > Hd). This corresponds, for instance, with a multimedia source that
requires a more or less constant bit rate to transmit its content. A lower bit rate means that
the multimedia flow cannot be satisfactorily received. An excess rate above its request is
not used.

Figure 6.1 shows an utility function example for inelastic and elastic traffic sources. Note
that NUM problem (6.1) becomes a convex optimization problem with a unique optimal solu-
tion in the case of pure elastic utility functions and a non-convex problem with potentially
multiple local optimums in the case of pure inelastic sources.

6.2.2 Fair Congestion Control

Section 3.7 exposed the relation between the shape of the utility functions and fairness in
the resource allocation resulting of solving the NUM problem with such functions. Applying
Prop. 3.1 to the NUM problem (6.1) shows that utility functions of the form:

Ud(hd) =
⎧⎪⎨⎪⎩
𝑤dhd if 𝛼 = 0

𝑤d log hd if 𝛼 = 1

𝑤d
h1−𝛼

d

1−𝛼 if 𝛼 > 0, 𝛼 ≠ 1

(6.2)

enforce congestion controls where rate allocation is (𝑤, 𝛼)-fair. This means allocations h∗ =
{h∗d, d ∈ } such that, for any other different feasible allocation h = {hd, d ∈ } it holds that:∑

d

𝑤d

hd − h∗d
h∗𝛼d

≤ 0, ∀h feasible (6.3)

Trim Size: 6.625in x 9.625in Mariño c06.tex V3 - 02/11/2016 6:41 P.M. Page 123�

� �

�

Congestion Control Problems 123

As was discussed in Section 3.7 (see example in Fig. 3.10 and the associated plot in
Fig. 3.11), utility functions associated to different 𝛼 values enforce different types of fairness,
and there is no consensus on which particular value of 𝛼 is “fair enough”.

• 𝛼 = 0 corresponds to NUM problems that intend to maximize the total network throughput∑
dhd. These allocations can be arbitrarily unfair. For instance, demands with one-hop routes

deplete all the bandwidth of their traversing links, leaving zero bandwidth for any other
demand sharing the link, but with a longer route.

• 𝛼 = 1 corresponds to allocations which are proportionally fair. In this context, a propor-
tionally fair allocation h∗ is such that in any other allocation h, some demands can receive a
higher percentage (proportion) of traffic and some others a lower. However, the sum of the
percentages with respect to h∗ will always be strictly negative.

• 𝛼 = 2 corresponds to network utilities
∑

d𝑤d∕hd. If we interpret 𝑤d values as the size of a
file to be transmitted by demand d, then 𝑤d∕hd is the delay incurred in fully transmitting it.
For this reason, this type of fairness is commonly called min-delay.

• 𝛼 → ∞ approximates the max-min fairness. In such case, the allocation h∗ is such that no
demand d can receive a higher rate (hd > h∗d) without reducing the rate of a “poorer” demand
d′ (hd′ < h∗

d′
, for d′ for which h∗

d′
≤ h∗d). This maximizes the rate of the demand with the

minimum rate allocated.

In summary, lower 𝛼-fairness values tend to produce solutions where the network throughput∑
dhd is higher, but with larger differences between the rates hd of different sources (more

“unfair”). In its turn, higher 𝛼 values tend to reduce the difference between sources, commonly
at a cost of a lower network throughput. Finally, as we will see, any 𝛼 > 0 fairness forbids
allocating zero bandwidth to a demand in the optimum.

6.2.3 Optimality Conditions

For concave utility functions (e.g., elastic demands), problem (6.1) is a convex optimization
problem with linear constraints, for which KKT optimality conditions hold. The Lagrange
function of (6.1) is given by:

L(h, 𝜋, 𝑣) =
∑

d

Ud(hd) +
∑

e

𝜋e

(∑
d∶e∈pd

hd − ue

)
−
∑

d

𝑣dhd

When 𝛼 > 0, all demands receive a non-zero bandwidth in the optimum, since otherwise
the utility increase 𝜕Ud∕𝜕hd in the optimality conditions becomes infinite. Thus, constraints
(6.1c) are loose and multipliers 𝑣d = 0. Lagrange minimization optimality conditions become:

𝜕Ud(hd)
𝜕hd

=
∑
e∈pd

𝜋e, ∀d ∈ (6.4)

Where 𝜋e ≥ 0 multipliers satisfy the complementary slackness conditions: 𝜋e = 0
for non-saturated links for which the carried traffic is strictly below the capacity(∑

d∶e∈pd
hd < ue

)
.

Trim Size: 6.625in x 9.625in Mariño c06.tex V3 - 02/11/2016 6:41 P.M. Page 124�

� �

�

124 Optimization of Computer Networks – Modeling and Algorithms

We can interpret 𝜋e as the price per bandwidth unit that any demand traversing link e has
to pay. The reading of (6.4) is that, in the optimum, the variation of the benefit per bandwidth

unit obtained modifying the rate

(
𝜕Ud(hd)
𝜕hd

)
, equals the variation of the cost per bandwidth unit

incurred if this modification is done
(∑

e∈pd
𝜋e

)
.

For 𝛼-fair utility functions (6.2), we have that:

𝜕Ud(hd)
𝜕hd

=
∑
e∈pd

𝜋e ⇒ hd =

(
𝑤d∑

e∈pd
𝜋e

)1∕𝛼

, ∀d ∈

Then optimality conditions expose that:

• A single non-negative number per link 𝜋e is enough information for determining the opti-
mum congestion control for all the network demands.

• To compute its optimum rate, each demand just needs to know its own utility function, and
the sum of the optimum 𝜋e values in their traversing links. No specific information is needed
from other demands.

Previous observations are exploited for the design of decentralized congestion control algo-
rithms, as will be shown later in this chapter and Part II of this book. We can classify these
schemes according to how the links notify congestion information (link multipliers) to the
sources, distinguishing between explicit and implicit feedback controls.

• Explicit feedback means that a proper signaling message is sent from the links to the sources.
This is possible in technologies like ATM, which reserve space in Resource Management
(RM) cells to let the links feedback information to the traversing flows ingress nodes.

• Implicit feedback means that the source is able to estimate the congestion situation in the
network (link multipliers in the NUM model), without receiving any specific message from
the links. The congestion conditions is derived primarily from (i) detection of packet losses
or (ii) increments in the end-to-end delays of the connection. Both implicit approaches cor-
respond to the operation of TCP protocol in the Internet, which for its special interest is
analyzed in deeper detail in the next section.

6.3 Case Study: TCP

The Transmission Control Protocol (TCP) is the largely dominating protocol used by applica-
tions in the Internet for exchanging data. A TCP connection established between two applica-
tions: a1 in node n1 and a2 in node n2, acts as a bidirectional pipe, permitting a1 sending data
to a2 and vice versa. Nodes n1 and n2 are usually end-user computers identified by their IP
address and an IP network (typically Internet) is in charge of forwarding the datagrams of the
TCP connection.

In the following analysis, we focus on the data flow from a1 to a2. An analogous scheme
occurs for the data in the opposite direction. The transmission buffer in a1 side stores the
data that a1 is willing to send to a2. TCP chops the buffered data into individual segments of

Trim Size: 6.625in x 9.625in Mariño c06.tex V3 - 02/11/2016 6:41 P.M. Page 125�

� �

�

Congestion Control Problems 125

maximum size MSS (Maximum Segment Size)1, a parameter negotiated during connection
establishment. Each segment has enough information in its TCP header to identify the posi-
tion of the data carried. It is encapsulated in (typically one) IP datagram targeted to n2. If it
arrives successfully to the destination, the data is placed in the TCP reception buffer for a2 and
an acknowledgement segment2 (ACK) is sent from n2 to n1. These ACKs may be segments
carrying or not data of the opposite direction a2 → a1. The ACK segment notifies the identifier
of the next segment that n2 is willing to receive, implicitly acknowledging all the segments of
lower identifiers.

6.3.1 Window-Based Flow Control

TCP uses a window-based flow control to pace the transmission of packets. A transmission
window is defined within the transmission buffer. The window starts in the first byte of the
first segment of the buffer (the oldest segment not acknowledged) and has a size of W bytes.
All the data placed in the transmission window is immediately chopped into segments and
sent to the other end. A retransmission timer is dedicated to each segment. During normal
operation, the segment ACK is received before the timer expires. Then, the acknowledged
bytes are removed from the buffer and the window slides, moving its initial byte to the first
byte not acknowledged. However, if a timer expires before the segment ACK was received, it
is retransmitted3.

Previous operation means that by controlling the transmission window size W, it is possible
to effectively modulate the amount of data segments injected in the network. This is illustrated
in Fig. 6.2. We show the case of an elephant TCP connection and an ideal IP network in which

h = W/RTT

RTT secs RTT secs

1 2 3

ACK 5

ACK 6

ACK 7

ACK 8

ACK 1

ACK 2

ACK 3

ACK 4

4 5 6 7 8

Figure 6.2 Window-based congestion control. The average rate of a connection h is limited by W

RTT

1 Ideal MSS is the largest possible segment size that can reach the destination in one single IP packet without frag-
mentation. This depends on the MTU (Maximum Transfer Units) of the intermediate links, an information that is in
general unknown. A default value for the MSS is 536 bytes.
2 Under some conditions, an ACK can be sent every two received packets instead of one, a situation called delayed
ACKs. Delayed ACKs add no significant insight to the picture and will not be included in our analysis.
3 If the segment to retransmit is not in the transmission window (which can happen if the window size W was reduced),
the retransmission is delayed until the segment re-enters into the transmission window.

Trim Size: 6.625in x 9.625in Mariño c06.tex V3 - 02/11/2016 6:41 P.M. Page 126�

� �

�

126 Optimization of Computer Networks – Modeling and Algorithms

segments have a constant end-to-end delay and are not dropped. To simplify the notation, we
consider that all the segments are of the MSS size, and identify them by a correlative number4.
In Fig. 6.2, the window size is W = 4 segments, and assumes that transmission and reception
buffers at each connection end are also at least this size. The round-trip-time (RTT) of the
connection is the time between a segment is transmitted and its associated ACK is received.
Initially, the transmission buffer is empty and all the segments are immediately transmitted at
the bit rate of the network card of the node (which can be assumed as infinite, or any large
value). However, a second round of transmissions cannot start until the ACKs arrive, RTT
seconds later5. Thus, the source sends W bytes every RTT seconds and has an average rate h:

h = W
RTT

(6.5)

Note that the relation W = hRTT means that larger windows are needed for high through-
put connections, between ends separated a long distance. These networks, for which the
bandwidth-delay product can be high, are popularly called Long Fat Networks (LFN). As an
example, consider two Internet users that experience a RTT of 200 ms (a reasonable value
for, e.g., users at different continents). A TCP connection between them of average rate 100
Mbps would require a transmission window (and thus transmission and reception buffers) of
size W = 2.5 MBytes.

Congestion control is implemented in TCP by adjusting the transmission window size W
according to the signs observed that may suggest a congestion condition in the network. This
approach was first proposed by Van Jacobson in 1988 [1] and the associated TCP variant was
called TCP Tahoe. Several refinements to the TCP congestion control have appeared since
then and TCP is generally recognized as a successful protocol that has performed remarkably
well in the last decades, while the Internet scaled up several orders of magnitude in size and
bit rates.

In the next subsection we will investigate, for didactic purposes, two main TCP variants that
capture the two main approaches for TCP congestion control:

• TCP Reno that uses segment losses as a sign of network congestion.
• TCP Vegas that uses increments in the round-trip-time as a sign of network congestion.

TCP implementations in modern operative systems like Compound TCP (mainly Microsoft
systems) and PRR (RFC 6937, in Linux kernels), apply the ideas of one or both of the
approaches.

6.3.2 TCP Reno

The congestion control in TCP Reno was originally presented in 1990 [2] and has gone through
several enhancements after it such as TCP New Reno (RFC 6582) and TCP SACK (RFC 2018

4 Note that TCP actually identifies bytes, not segments. The identifier of a segment is the identifier of its first byte.
During connection establishment, the identifier of the first byte is randomly chosen and subsequent bytes are numbered
consecutively.
5 Subsequent window transmission rounds are paced by the arrival of ACKs. If the window size is kept, each ACK
slides the window, a new segment enters in it, and is transmitted. For this reason TCP is termed a self-clocking protocol.
The time separation between consecutive ACK receptions depends on the bandwidth and traffic conditions of the
traversed links. Still, the relation W = hRTT remains an average.

Trim Size: 6.625in x 9.625in Mariño c06.tex V3 - 02/11/2016 6:41 P.M. Page 127�

� �

�

Congestion Control Problems 127

W
(MSSs)

Slow-
start

Congestion avoidance

Losses

Time
(RTTs)

LossesLosses

Figure 6.3 TCP Reno slot window evolution

and 2883). Figure 6.3 helps us to illustrate the baseline Reno congestion control version that we
will study. It shows the time evolution of the window size W of an elephant TCP connection.
For the sake of simplicity, window size W is measured in number of segments, and time t
in number of RTTs after connection establishment, assuming that all RTTs have the same
duration.

TCP Reno connections start with a phase called slow-start. Initial window size is W = 1,
and during slow-start the transmitter increases the window size in one unit for every ACK
received. Since during an RTT6 the sender receives as many ACKs as the number of segments
sent (W), the window size at time t + 1 is twice the window size at time t (W(t + 1) = 2W(t)).
See that this results in an (everything but slow) exponential growth of the window during
slow-start.

Slow-start ends when window size reaches a configured threshold. Then, the so-called con-
gestion avoidance phase begins. During congestion avoidance the window size W evolves as
follows:

W(t + 1) =

{
W + 1, if no segment losses detected during previous RTT
W
2
, otherwise (one or more losses detected)

(6.6)

This is the core of the method, which enforces the generally called AIMD operation (Addi-
tive Increase Multiplicative Decrease). There are two manners in which a TCP sender can
detect segment losses:

• Retransmission timeouts. If the retransmission timer of a segment expires, TCP assumes
that the segment is lost because of a severe congestion situation in the network, resets the
transmission window W = 1, and enters into slow-start phase again.

• Duplicate ACKs. Duplicate ACKs are consecutive ACK segments received that request the
same segment identifier. They suggest that the repeatedly requested segment was lost, while

6 Each TCP connection is permanently updating a RTT estimation, using information of the elapsed time between
data segment transmission and ACK reception.

Trim Size: 6.625in x 9.625in Mariño c06.tex V3 - 02/11/2016 6:41 P.M. Page 128�

� �

�

128 Optimization of Computer Networks – Modeling and Algorithms

ACK 6

ACK 6

ACK 4

3 4 5 6 7 8 9

Duplicated ACKs

ACK 5

ACK 6

ACK 6

Figure 6.4 Duplicated ACKs example

some or all of the next segments in the window were correctly received7. This is illustrated in
Fig. 6.4. When a number of duplicated ACKs are detected (typically four) in an RTT, TCP
Reno halves the congestion window and performs the so-called fast recovery where the
requested segment is immediately retransmitted. Fast recovery is repeated until all the win-
dow segments are acknowledged. If this is acquired, TCP continues in congestion avoidance
mode. If not, it reverts to a slow-start starting from W = 1.

In ideal situations, TCP Reno remains in the AIMD congestion avoidance phase perma-
nently: it increases linearly its window size every RTT until eventually losses occur, then
halves its window, attempts a fast recovery, and starts again. The resulting sawtooth shape
in Fig. 6.3 is the typical stationary behavior of elephant connections under TCP Reno, that we
model in the next subsection.

6.3.2.1 Losses and Throughput Relation in Macroscopic Equilibrium

We model a TCP connection as two unidirectional demands d, d′ ∈ , one for each direction.
We focus in the sequel on a particular direction represented by demand d. We denote pd the
set of links traversed by the demand data segments (from transmitter to receiver). Td denotes
the RTT of the connection d, which we assume to be constant.

We can reasonably estimate TCP’s average performance by making some simplifications.
We assume that only data segments can be lost and ACK segments carried in the opposite
direction do not suffer congestion. We denote qe the segment loss probability in link e and qd
denotes the end-to-end loss probability, which we approximate as follows:

qd ≈ 1 −
∏
e∈pd

(1 − qe) ≈
∑
e∈pd

qe (6.7)

7 They can be also a sign that a packet out of sequence occurred, without segment losses. For this reason TCP is
sensitive to packet misorders, since the resulting duplicated ACKs are interpreted as a sign of packet losses.

Trim Size: 6.625in x 9.625in Mariño c06.tex V3 - 02/11/2016 6:41 P.M. Page 129�

� �

�

Congestion Control Problems 129

W
(MSSs)

Wm

Wm/2

Wm/2 RTTs

Time
(RTTs)

Figure 6.5 Simplified AIMD evolution

To simplify the analysis, we consider that losses do not occur randomly, but happen period-
ically. In the equilibrium, an ideal periodic sawtooth is created as shown in Fig. 6.5.

Let the maximum value of the window be Wm segments and Wm∕2 the minimum, occurring
when losses are detected and the window is halved. The duration of each cycle is exactly Wm∕2
RTTs, since during congestion avoidance the window grows in one unit each RTT. The total
number of delivered segments during a cycle is the shaded area under the sawtooth, which is:(

Wm

2

)2

+ 1
2

(
Wm

2

)2

= 3
8

W2
m

The average bandwidth hd is thus given by the ratio between the traffic delivered in a cycle
and the cycle duration:

hd =
MSS 3

8
W2

m

Td
Wm

2

= 3
4

MSS
Td

Wm (6.8)

In equilibrium, exactly one segment loss occurs within a cycle. Then, neglecting the retrans-
mission during the fast recovery process of the segment lost, we have that:

qd = 1
3
8
W2

m

⇒ Wm =

√
8

3qd
(6.9)

Substituting (6.9) into (6.8) we have that:

hd = MSS
Td

√
3

2qd
⇔ qd = 3

2

(
MSS
Tdhd

)2

(6.10)

Equilibrium relation (6.10), derived in [3], has been shown to be significantly precise. Other
approaches considering, for example, random losses (instead of periodic) or the presence of
delayed ACKs lead to similar hd estimations, where constant factor

√
3∕2 ≈ 1.22 in (6.10) is

replaced by others between 1.31 and 0.87.

Trim Size: 6.625in x 9.625in Mariño c06.tex V3 - 02/11/2016 6:41 P.M. Page 130�

� �

�

130 Optimization of Computer Networks – Modeling and Algorithms

A

C D

B

Bottleneck link

Figure 6.6 Example. Connection d (A → B), RTT of 100 ms, connection d′ (C → D), RTT of 200 ms.
Losses only occur in the (shared) bottleneck link. According to (6.10), hd = 2hd′

Expression (6.10) shows an inverse proportional dependence of the connection rate with
respect to the RTT. This means that a connection d with twice the RTT of other connection d′

and the same loss probability would receive half bandwidth. For instance, in Fig. 6.6 two con-
nections d, d′ share a link. If RTTs of both connections are related by Td = 1

2
Td′ and the shared

link is the only dropping packets, then both connections would observe the same segment loss
probability and their average rates would be such that hd = 2hd′ .

6.3.2.2 NUM Modeling of the Macroscopic Equilibrium

Let (,) be a network and a set of demands on it, where each demand represents one
direction of a TCP Reno elephant-type connection. In macroscopic equilibrium, the average
rate of each demand is given by (6.10).

We assume that the equilibrium of TCP Reno described in (6.10) is an optimum assignment
of a NUM problem with utility functions Ud and link multipliers 𝜋e. Then, the NUM optimality
conditions hold:

𝜕Ud

𝜕hd
=

∑
e∈pd

𝜋e (6.11)

In our NUM modeling, we interpret the Lagrange multiplier 𝜋e as the probability of dropping
a segment traversing link e, which we denoted qe in our TCP model. Then, assuming that loss
probabilities qe are small enough for approximation (6.7) to apply, we have that

∑
e∈pd

𝜋e is
the probability or fraction of segments lost:∑

e∈pd

𝜋e = qd (6.12)

Putting together (6.11), (6.12), and TCP equilibrium (6.10), setting MSS = 1 without loss
of generality, we have:

𝜕Ud

𝜕hd
=

∑
e∈pd

𝜋e = qd = 3
2

(
1

Tdhd

)2

⇒
𝜕Ud

𝜕hd
= 3

2

(
1

Tdhd

)2

Trim Size: 6.625in x 9.625in Mariño c06.tex V3 - 02/11/2016 6:41 P.M. Page 131�

� �

�

Congestion Control Problems 131

Integrating the previous expression we see that the utility function of the NUM problem
TCP Reno solves Ud(hd):

Ud(hd) = − 3

2T2
d

1
hd

(6.13)

We make the following considerations:

• Fairness. Utility function (6.13) corresponds to a (𝑤, 𝛼) utility function like (6.2) with fair-
ness parameter 𝛼 = 2 and weight 𝑤d = 3

2T2
d

. Then, we can conclude that Reno congestion

control enforces a (𝑤, 𝛼)-fair solution in the network with the previous values.
• Implicit signaling. Lagrange multipliers 𝜋e are signaled to the sources implicitly, without

the need of the links to actually compute any 𝜋e value, nor communicate it with any explicit
message to the traversing sources. This is because the sources can deduce the end-to-end
segment loss information indirectly from the reception of duplicated ACKs. Then, TCP
Reno is a purely decentralized system in which each connection autonomously decides its
rate and yet converges to a global fair allocation. This is done in a robust form that can adapt
automatically to fluctuations of congestion conditions of the links, number of competing
TCP connections, and so on.

6.3.3 TCP Vegas

TCP Vegas was introduced in 1994 [4] as an alternative to TCP Reno. The Vegas congestion
control modifies TCP Reno congestion avoidance phase with the intention of correcting the
oscillatory sawtooth-like behavior of TCP Reno. In contrast to the Reno scheme that increases
permanently the window until queues are saturated and congestion is produced, a Vegas source
anticipates the onset of congestion by estimating, from RTT observations, the end-to-end
queueing delay of the connection segments. To do so, if no losses occur, congestion avoidance
updates the window size every RTT according to:

Wd(t + 1) =
⎧⎪⎨⎪⎩

Wd(t) + 1, if Wd(t)
Tmin

d

− Wd(t)
Td(t)

< 𝛽d

Wd(t) − 1, if Wd(t)
Tmin

d

− Wd(t)
Td(t)

> 𝛾d

(6.14)

Window size is measured in number of MSS segments. Td(t) is the current RTT estimation,
and Tmin

d is the minimum value observed in the historical RTT monitoring, and intends to
approximate the end-to-end propagation part of the RTT if all the queues were empty. That is,
the queuing delay would be given by Td(t) − Tmin

d .
Interpreting (6.14) we have that:

• hmax
d (t) = Wd(t)

Tmin
d

in (6.14) is the best possible expected rate, occurring if all the queues in the

path of the connection are empty.

• hd(t) =
Wd(t)
Td(t)

is the actual rate.

• Control (6.14) intends to keep the difference between the expected and actual rate within
the interval [𝛽d, 𝛾d], typically 𝛽d = 1∕Tmin

d and 𝛾d = 3𝛽d.

Trim Size: 6.625in x 9.625in Mariño c06.tex V3 - 02/11/2016 6:41 P.M. Page 132�

� �

�

132 Optimization of Computer Networks – Modeling and Algorithms

We can have a second interpretation of Vegas if we multiply expression (6.14) by Tmin
d :

Wd(t + 1) =

{
Wd(t) + 1, if Wd(t) − hd(t)Tmin

d < 1

Wd(t) − 1, if Wd(t) − hd(t)Tmin
d > 3

(6.15)

• Wd(t) is the volume of traffic injected in a RTT.
• hd(t)Tmin

d is the average number of packets that are “on the fly”, not waiting in the queues.
This is the direct application of the Little’s law that states if a conservative system (every-
thing that gets in, gets out) receives elements at a rate h, the average number of elements
inside the system N and the average time each element stays in the system T are related by:
h = N

T
.

• Then, Vegas control intends to keep the sum of the number of packets in the queues (typ-
ically called backlog) of the traversed nodes at a very low value: between 1 and 3. So, in
contrast with Reno, Vegas intends to adjust rates to have approximately empty queues in the
routers.

6.3.3.1 NUM Modeling of the Macroscopic Equilibrium

To simplify the analysis, we make 𝛽d = 𝛾d, denote Td to be the constant RTT, and Wd as the
equilibrium window size. Then, in macroscopic equilibrium, it holds that:

Wd

Tmin
d

−
Wd

Td
= 𝛽d, ∀d ∈

Rewriting the previous expression we have the equilibrium condition:

𝛽d = 1

Tmin
d

(Wd − hdTmin
d) (6.16)

Where (Wd − hdTmin
d) is the total number of packets queued along the source path pd. We

consider that, in equilibrium, TCP Vegas is assigning rates that optimize a particular NUM
model with utility functions Ud and link multipliers 𝜋e. Then, in equilibrium, optimality con-
ditions should hold:

𝜕Ud

𝜕hd
=

∑
e∈pd

𝜋e, ∀d ∈ (6.17)

We now consider that 𝜋e multiplier for Vegas is the queueing delay in link e. This is given
by the backlog be at queue e (number of packets in the queue) divided by link capacity ue:

𝜋e =
be

ue
, ∀e ∈

These multipliers satisfy the complementary slackness condition of NUM problem (6.1),
since 𝜋e = 0 (no packets in the queue) if the aggregated rate in e is below the link capacity(∑

d∶e∈pd
hd < ue

)
.

If be is the backlog at link e, under the first-in-first-out queueing discipline we can assume
that the fraction of queued packets that belong to a source d is given by hd∕ue. Thus, the

Trim Size: 6.625in x 9.625in Mariño c06.tex V3 - 02/11/2016 6:41 P.M. Page 133�

� �

�

Congestion Control Problems 133

total number of packets of source d in the backlog of link e ∈ pd equals behd∕ue. Summing
this expression along all the source traversed links we have the sum of the queued packets of
source d:

Wd − hdTmin
d =

∑
e∈pd

be
hd

ue
, ∀d ∈

Introducing the previous expression into the equilibrium conditions (6.16) we have:

𝛽d = 1

Tmin
d

∑
e∈pd

be
hd

ue
, ∀d ∈

If we compare previous expression with optimality condition (6.17) we have by simple
inspection that:

𝜕Ud

𝜕hd
=

∑
e∈pd

𝜋e ⇒
𝜕Ud

𝜕hd
=

𝛽dTmin
d

hd

Thus, the utility function Vegas is optimizing is given by:

U(hd) = 𝛽dTmin
d log hd

We make the following considerations:

• Fairness. Since Vegas sets 𝛽d as a multiple of the inverse of Tmin
d (typically 𝛽d = 1∕Tmin

d),
we have that Vegas applies an utility function U(hd) = log hd, thus enforcing so-called pro-
portional fairness (𝛼 = 1 in 𝛼-fairness functions (6.2)). Note that this is a somewhat “less
fair” 𝛼 factor than Reno (𝛼 = 2), which would suggest that Vegas penalizes the longer con-
nections more than Reno. However, this is compensated for by the factor 1∕T2

d in (6.13) that
Reno applies penalizing the utility of connections with a larger RTT.

• Implicit signaling. As in Reno, Vegas Lagrange multipliers 𝜋e are signaled to the sources
implicitly, without the need of the links to actually compute any 𝜋e value, nor communi-
cate with it any explicit message to the traversing sources. This is because the sources can
deduce the end-to-end queueing delay by monitoring the connection RTT, which is done
observing the elapsed time between the transmission of a data segment and the reception of
its associated ACK. Then, TCP Vegas is also a purely decentralized system in which each
connection autonomously decides its rate and converges to a global fair allocation. Note that
it also adapts automatically to fluctuations of congestion conditions of the links, number of
TCP connections, and so on. without modifying its behavior.

• Vegas and segment losses. TCP Vegas is quite effective at sharing the bandwidth in the links
among Vegas sources, avoiding oscillations (sawtooths) and reducing the queueing delays.
However, it requires the absence of losses to reach this equilibrium. If a TCP Vegas connec-
tion shares a bottleneck link with Reno connections, the Reno source will steadily grow the
window until losses occur, according to its standard AIMD operation while Vegas reduces
its window to reduce the queueing delay. For this reason, initial versions of Vegas received
an unfairly low bandwidth when competing with Reno sources. This has been somewhat
addressed in subsequent versions of the protocol, where Vegas reverts to a Reno-like oper-
ation in the presence of losses.

Trim Size: 6.625in x 9.625in Mariño c06.tex V3 - 02/11/2016 6:41 P.M. Page 134�

� �

�

134 Optimization of Computer Networks – Modeling and Algorithms

6.4 Active Queue Management (AQM)

Congestion control in the Internet was and is dominated by loss-based Reno-like AIMD behav-
ior in which TCP elephant connections steadily increase their rate until packet drops are
eventually produced. The interplay of AIMD sources and the tail drop standard behavior of
queues in the routers8, brings two main issues:

• Excessive buffer delays: Loss-based congestion control keeps the queues highly occupied in
every link that is a bottleneck, since traffic is increased until buffers saturate and losses are
produced. Queues are persistently full and each queue can add up to tens of milliseconds of
buffering delay. TCP connections traversing multiple bottlenecks, even mouse connections
not causing congestion, can experience a large end-to-end latency and RTT.

• Global synchronization: When a queue is full and the router receives a burst of packets, all of
them are dropped and all the affected connections will at the same time reduce the window
and ramp up again. If connection RTTs are similar, they may get synchronized, increasing
and reducing their windows simultaneously. This phenomenon is called global synchro-
nization, and impairs network performance, since it makes the resulting traffic pattern more
bursty.

Active Queue Management (AQM) is the name given to a set of techniques implemented in
the routers that replace the standard tail drop queue policy by making some preventive packet
drops before the queues fill up, with the aim of addressing previous problems. One of the
most popular AQM techniques available in the routers is the Random Early Discard (RED)
queues (or some of its variants, see [5] for details). Upon packet reception, a RED queue on
a link e observes its backlog length be (averaged with its recent past). Then, RED will make
a preventive drop of the packet with a probability p given by a piece-wise linear distribution
like the one in Fig. 6.7, where bmin

e , bmax
e and me are RED configuration parameters.

p

1

min max

me

be be

Figure 6.7 RED marking probability example. me is the slope of the line

8 Tail drop operation means that packets are dropped only when they arrive at a router with full queues.

Trim Size: 6.625in x 9.625in Mariño c06.tex V3 - 02/11/2016 6:41 P.M. Page 135�

� �

�

Congestion Control Problems 135

AQM techniques can be combined or not with Explicit Congestion Notification (ECN).
Under ECN mechanism, when a link detects incipient congestion, it activates the ECN bit
reserved in the IP header of the affected packet, which is not dropped but forwarded. When
it arrives to the receiver TCP side, the congestion notification is conveyed back in the TCP
header of the ACK, to warn the transmitter. Then, TCP reduces its rate as if the acknowledged
segments were lost, but without the need for retransmissions.

6.4.1 A Simplified Model of the TCP-AQM Interplay

What follows is a discussion to give some insights of the interplay of TCP and AQM techniques
in the macroscopic equilibrium. We make the following assumptions:

1. We model an AQM scheme for a link e as a function Ge(be(t), ye(t), 𝑣e(t)), which returns
the probability pe(t) of dropping or marking a packet arriving at instant t, depending on the
current length of the queue backlog be(t), the amount of arriving traffic ye(t), and an internal
link state 𝑣e(t). The tail drop policy for a buffer of B packets can be modeled as one more
AQM with Ge given by:

pe(t) =
{

0, if be(t) < B
1, if be(t) = B

2. Since the dynamics of retransmissions are not captured in our model, we do not further
distinguish between packet drops and ECN markings as congestion notifications and results
in this section are applicable to both. We use the term “marking” to refer to both packets
drops and ECN-bit settings.

3. We do not focus here on the transient time evolution and short time scale dynamics of the
congestion loop engaging the source and AQM links. We assume that the network reaches a
macroscopic equilibrium and consider that, in this equilibrium, the application of the AQM
technique does not change the equilibrium relation of AIMD sources:

hd = MSS
Td

√
3

2qd
(6.18)

where qd is estimated as the sum of the marking probabilities in the path links and RTT Td
is considered constant, as is customary in the literature (e.g., [3]).

4. As we did in Section 6.3.2, we interpret marking probabilities as Lagrange multipliers of
the NUM problem (6.1), when AIMD Reno-like sources are being used (pe = 𝜋e).

5. The AQM behavior is consistent with the complementary slackness optimality conditions
of the multipliers: 𝜋e > 0 ⇒

∑
d∶e∈pd

hd = ue. This means that a link drops packets (𝜋e > 0)
only when its queues in the equilibrium are non-empty (be > 0), since this means that the
link is saturated (ye = ue). Note that any AQM that does not drop packets when the queues
are empty (be = 0) meets this condition and all satisfy this in practice.

According to previous assumptions, the application of an AQM does not modify the utility
function (6.13) that describes the behavior of the TCP source. This means that the same NUM
model (6.1) with the same utility function applies whatever AQM (or tail drop) is used. For
them, the NUM model predicts the same average macroscopic rate allocation hd and the same

Trim Size: 6.625in x 9.625in Mariño c06.tex V3 - 02/11/2016 6:41 P.M. Page 136�

� �

�

136 Optimization of Computer Networks – Modeling and Algorithms

loss probabilities in the links 𝜋e = pe. The only difference partially captured by the model
would be the average queueing delay in the links be, which would depend on the AQM. In
particular, after solving the model, the resulting link loss probabilities can be used to derive
the average queueing delay as follows:

be =
{

0, if ye < ue
(Ge)−1(𝜋e), if ye = ue

, ∀e ∈

As an example, in a RED queue with marking probability given by Fig. 6.7, any estimated
loss probability pe coming from the NUM model that falls in the range (0,me(bmax

e − b,ine)) is
unambiguosly associated with an average backlog be in the range (bmin

e , bmax
e). In turn, any loss

probability pe > 0 in a tail drop link, is associated with an average queue length equal to the
maximum queue size be = B.

Interestingly, the model presented predicts that (i) the loss probability and average rate allo-
cated in the network does not depend on the AQM nor the buffer sizes, (ii) queueing delays
do depend on them, but (iii) so that larger buffers only degrade the performance bringing
higher queuenig delays! In other words, the model suggests that cutting down the buffers would
reduce the RTTs (considered constant in the model), actually improving the TCP responsive-
ness and performance.

Naturally, this result should be taken with care, since the simplified model supporting it is
not considering many of the microscopic dynamics where buffers are really needed. In partic-
ular, buffers are required to absorb normal short-scale traffic fluctuations in packet switching
networks without discarding datagrams. For that, they are good queues. However, this model
suggests that too big buffers do not produce an improvement in the congestion loop: any buffer
put would be filled up during congestion and larger buffers just mean longer delays for the
traversing traffic, without a payoff of more link utilization. Actually, the increased RTT just
degrades TCP performance. Thus, they are bad queues.

Previous discussion is actually a hot topic today, and TCP and AQM foundations are being
revisited under a new light. This is stemmed from the path-breaking works [6, 7], where the
distinction between good queues and bad queues (too large queues) is set. The rationale behind
this approach is that current IP routers are equipped with bad queues: buffers of hundreds of
MBs per link, which normal congestion control loops keep persistently full. This results in
hundreds of milliseconds of extra RTT caused by queueing delays in long-distance connec-
tions and a chaotic and laggy performance observed in the network. To address this situation,
a redefinition of the AQM schemes, queuing dimensioning, and other processes are being con-
ducted. The interested reader is referred to the set of projects under the keyword buffer-bloat
[8] and similar initiatives.

6.5 Notes and Sources

Congestion control is the first network topic where the utility maximization framework was
applied [9]. In this context, [9] introduced proportional fairness, min-delay fairness was pre-
sented in [10], and 𝛼-utilities in [11].

Multiple works have successfully explored the NUM model, producing insights for reverse
engineering existing congestion control schemes, inspiring enhancements to existing algo-
rithms as well as devising new ones [12–17]. Excellent books covering the topic are [18, 19],
and [20].

Trim Size: 6.625in x 9.625in Mariño c06.tex V3 - 02/11/2016 6:41 P.M. Page 137�

� �

�

Congestion Control Problems 137

TCP Tahoe was presented in [1] and the first reference to TCP Reno is usually credited
to [21]. TCP Reno has gone through several enhancements in RFCs like RFC 1323, RFC
2001, RFC 2018, RFC 2581, and RFC 2582. AIMD behavior was previously analyzed in [22].
TCP Vegas was presented in [4], and analyzed in other sources like [23]. The macroscopic
equilibrium relation presented for Reno is the one in [3]. Other approaches leading to similar
estimations can be found in [24, 25]. A comprehensive description of the internals of multiple
TCP variants can be found in various sources like [26].

Some other selected TCP models not based on utility functions are [27, 28], and [29]. Infor-
mation on congestion control schemes in ATM networks can be found in [30]. A seminal
reference on RED-like AQM techniques is [31]. [5] is an organized index on RED proposals.
Other marking proposal based on an optimization model is [32]. The model of the TCP-AQM
interplay is extracted from [33]. Seminal papers on buffer bloat discussions are [6, 7], while
[8] provides updated references.

6.6 Exercises

6.1 Let (,) be a network, ue and de the capacity and length of link e, and a set of
unicast demands. Each traffic demand d ∈ consists of sending a file of size Wd bits
through a known path pd. Each demand has an end-to-end delay estimated using the
M/M/1 queue model limited to T . The maximum difference between the maximum and
minimum bandwidth assigned to a demand is bounded by F. Write the formulation of the
program that finds the bandwidth assignment to the demands that minimize the average
file delivery times, under the mentioned constraints.

6.2 Figure 6.8 shows a network with k + 1 nodes, k links, k one-hop demands and one
demand (d0) traversing all the links. All the links have one unit of capacity. Find the
expressions for the optimum carried traffic for each demand, the network throughput,
and the network utility for the NUM problem using 𝛼 utility functions. Study the effect
of 𝛼 factor and the number of links k in the trade-off network throughput versus traffic
assigned to the long connection d0.

1 2 k

h1 hk

h0d0

d1 dk

k+1

Figure 6.8

6.3 Let (,) be a network and {ue, e ∈ } the link capacities in bps. Demand set
is composed of one traffic demand between each node pair. Each demand d is served
through the shortest path pd between the demand end nodes. Each demand can be
served using a high quality or a low quality connection, requiring Rh and Rl bps,
respectively, where Rl < Rh. The network operator has a benefit of 1 unit per each
demand carried in a low quality connection, 1.5 units for each served with a high quality
connection and has a penalization of 4 units if the demand is not served. Formulate the

Trim Size: 6.625in x 9.625in Mariño c06.tex V3 - 02/11/2016 6:41 P.M. Page 138�

� �

�

138 Optimization of Computer Networks – Modeling and Algorithms

problem that optimizes the bandwidth allocation to the sources. Implement a Net2Plan
algorithm that solves this formulation with JOM, using Rl,Rh and the per-demand
benefits/penalization quantities as input parameters. The optimum solution is returned
by updating the demand routes and offered traffic.

6.4 The multi-path congestion control problem consists of optimizing the demand rates, in
the case when the traffic of each demand traffic d ∈ can be bifurcated in several paths
d. We use to denote the set of all paths in the network, e the paths traversing link e.
Devise a formulation for the NUM problem that maximizes the sum of the 𝛼-utilities of
the demands.

6.5 Implement a Net2Plan algorithm that finds the optimum 𝛼-fair bandwidth allocation for
a network with JOM. The algorithm creates a number K of demands between each node
pair, all of them carried through a shortest path between demand end nodes. If more
than one shortest path exists, one is selected out of them and used for all the demands.
Every demand has a minimum injected traffic hmin. Input parameters to the algorithm
are 𝛼, K, and hmin. The optimum solution is returned by updating the demand routes
and offered traffic. Use previous algorithm to explore the network throughput versus
fairness trade-off for 𝛼 = {0, 0.5, 1, 2, 3, 5} in several chosen non-regular topologies. As

a measure of fairness use the Jain index: F = (∑dhd)2

||∑dh2
d

.

6.6 Implement a Net2Plan algorithm that finds the macroscopic bandwidth allocation of TCP
Reno or TCP Vegas connections, using the NUM model in Section 6.3.2 and Section
6.3.3, respectively. The algorithm creates a number K of demands between each node
pair, all of them carried through a shortest path between demand end nodes. If more
than one shortest path exists, one is selected out of them and used for all the demands.
Demand RTTs are computed from the link distances assuming a propagation speed 𝑣.
Input parameters to the algorithm are the type of TCP connections (Reno or Vegas),
K and 𝑣. The optimum solution is returned by updating the demand routes and offered
traffic.

6.7 Use a modification of previous algorithm to study the behavior of Reno sources with
different RTTs that share a bottleneck link. For this, use a topology like the one in Fig. 6.8,
with K demands from node i to node k + 1, i = 1,… , k. All links have a capacity of
two, but the link between nodes k and k + 1 with a capacity of one (the bottleneck).
Observe the traffic assigned to demands of different RTTs depending on the TCP type
and factor K.

6.8 A set of TCP Reno connections traverse one single shared bottleneck link with a
capacity of one. Td denotes the RTT of demand d ∈ D. Deduce the expression of the
throughput hd of each demand and of the packet drop probability in the bottleneck as a
function of the RTTs of all the demands. Do the traffics hd change if all the demands mul-
tiply their RTT by any common factor? And the drop probability? Assume that K TCP
connections exist for each demand instead of just one. Answer the previous questions
and comment on the effect of K in the throughputs and link packet drop probability.

Trim Size: 6.625in x 9.625in Mariño c06.tex V3 - 02/11/2016 6:41 P.M. Page 139�

� �

�

Congestion Control Problems 139

References
[1] V. Jacobson, “Congestion avoidance and control,” in ACM SIGCOMM Computer Communication Review, vol.

18, no. 4. ACM, 1988, pp. 314–329.
[2] V. Jacobson, “Berkeley TCP evolution from 4.3-tahoe to 4.3-Reno,” in Proceedings of the 18th Internet Engi-

neering Task Force, University of British Colombia, Vancouver, BC, 1990, p. 365.
[3] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The macroscopic behavior of the tcp congestion avoidance algo-

rithm,” ACM SIGCOMM Computer Communication Review, vol. 27, no. 3, pp. 67–82, 1997.
[4] L. S. Brakmo and L. L. Peterson, “Tcp vegas: End to end congestion avoidance on a global internet,” Selected

Areas in Communications, IEEE Journal on, vol. 13, no. 8, pp. 1465–1480, 1995.
[5] References on red (random early detection) queue management. Available online at: http://www.icir.org/floyd

/red.html
[6] J. Gettys and K. Nichols, “Bufferbloat: Dark buffers in the internet,” Queue, vol. 9, no. 11, p. 40, 2011.
[7] K. Nichols and V. Jacobson, “Controlling queue delay,” Communications of the ACM, vol. 55, no. 7, pp. 42–50,

2012.
[8] Bufferbloat projects Available online at www.bufferbloat.net.
[9] F. Kelly, “Charging and rate control for elastic traffic,” European transactions on Telecommunications, vol. 8,

no. 1, pp. 33–37, 1997.
[10] L. Massoulié and J. Roberts, “Bandwidth sharing: objectives and algorithms,” in INFOCOM’99. Eighteenth

Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE, vol. 3.
IEEE, 1999, pp. 1395–1403.

[11] J. Mo and J. Walrand, “Fair end-to-end window-based congestion control,” IEEE/ACM Transactions on Net-
working (ToN), vol. 8, no. 5, pp. 556–567, 2000.

[12] F. P. Kelly, A. K. Maulloo, and D. K. Tan, “Rate control for communication networks: shadow prices, propor-
tional fairness and stability,” Journal of the Operational Research society, pp. 237–252, 1998.

[13] S. H. Low and D. E. Lapsley, “Optimization flow control: basic algorithm and convergence,” IEEE/ACM Trans-
actions on Networking (TON), vol. 7, no. 6, pp. 861–874, 1999.

[14] H. Yaïche, R. R. Mazumdar, and C. Rosenberg, “A game theoretic framework for bandwidth allocation and
pricing in broadband networks,” IEEE/ACM Transactions on Networking (TON), vol. 8, no. 5, pp. 667–678,
2000.

[15] S. Kunniyur and R. Srikant, “End-to-end congestion control schemes: Utility functions, random losses and ecn
marks,” Networking, IEEE/ACM Transactions on, vol. 11, no. 5, pp. 689–702, 2003.

[16] T. Alpcan and T. Başar, “A utility-based congestion control scheme for internet-style networks with delay,” in
INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer and Communications. IEEE
Societies, vol. 3. IEEE, 2003, pp. 2039–2048.

[17] D. X. Wei, C. Jin, S. H. Low, and S. Hegde, “Fast TCP: motivation, architecture, algorithms, performance,”
IEEE/ACM Transactions on Networking (ToN), vol. 14, no. 6, pp. 1246–1259, 2006.

[18] R. Srikant, The Mathematics of Internet Congestion Control. Springer Science & Business Media, 2012.
[19] S. Shakkottai, S. G. Shakkottai, and R. Srikant, Network Optimization and Control. Now Publishers Inc, 2008.
[20] R. Srikant and L. Ying, Communication Networks: An Optimization, Control, and Stochastic Networks Perspec-

tive. Cambridge University Press, 2013.
[21] V. Jacobson, “Modified TCP congestion avoidance algorithm,” End2end-Interest Mailing List, 1990.
[22] D.-M. Chiu and R. Jain, “Analysis of the increase and decrease algorithms for congestion avoidance in computer

networks,” Computer Networks and ISDN Systems, vol. 17, no. 1, pp. 1–14, 1989.
[23] S. H. Low, L. L. Peterson, and L. Wang, “Understanding TCP Vegas: a duality model,” Journal of the ACM

(JACM), vol. 49, no. 2, pp. 207–235, 2002.
[24] S. Floyd, “Connections with multiple congested gateways in packet-switched networks part 1: One-way traffic,”

ACM SIGCOMM Computer Communication Review, vol. 21, no. 5, pp. 30–47, 1991.
[25] T. Lakshman and U. Madhow, “The performance of tcp/ip for networks with high bandwidth-delay products

and random loss,” Networking, IEEE/ACM Transactions on, vol. 5, no. 3, pp. 336–350, 1997.
[26] K. R. Fall and W. R. Stevens, TCP/IP illustrated, Volume 1: The protocols. Addison-Wesley, 2011.
[27] E. Altman, K. Avrachenkov, and C. Barakat, “A stochastic model of tcp/ip with stationary random losses,” ACM

SIGCOMM Computer Communication Review, vol. 30, no. 4, pp. 231–242, 2000.

Trim Size: 6.625in x 9.625in Mariño c06.tex V3 - 02/11/2016 6:41 P.M. Page 140�

� �

�

140 Optimization of Computer Networks – Modeling and Algorithms

[28] F. Baccelli and D. Hong, “AIMD, fairness and fractal scaling of TCP traffic,” in INFOCOM 2002. Twenty-First
Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE, vol. 1.
IEEE, 2002, pp. 229–238.

[29] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP throughput: A simple model and its empirical
validation,” ACM SIGCOMM Computer Communication Review, vol. 28, no. 4, pp. 303–314, 1998.

[30] E. J. Hernandez-Valencia, L. Benmohamed, R. Nagarajan, and S. Chong, “Rate control algorithms for the ATM
ABR service,” European Transactions on Telecommunications, vol. 8, no. 1, pp. 7–20, 1997.

[31] S. Floyd and V. Jacobson, “Random early detection gateways for congestion avoidance,” IEEE/ACM Transac-
tions on Networking, vol. 1, no. 4, pp. 397–413, 1993.

[32] S. Athuraliya, S. H. Low, V. H. Li, and Q. Yin, “Rem: active queue management,” Network, IEEE, vol. 15,
no. 3, pp. 48–53, 2001.

[33] S. H. Low, “A duality model of TCP and queue management algorithms,” Networking, IEEE/ACM Transactions
on, vol. 11, no. 4, pp. 525–536, 2003.

Trim Size: 6.625in x 9.625in Mariño c07.tex V3 - 02/11/2016 6:42 P.M. Page 141�

� �

�

7
Topology Design Problems

7.1 Introduction

Topology design refers to the network problems that optimize the set of nodes and/or links to
deploy in a network. These problems typically appear in the elaboration of long-term network
planning projects for network deployments or upgrades. When these planning studies corre-
spond to a network to build from scratch, they are referred to as greenfield planning. When
they are recommendations for adding or upgrading links/nodes in an existing network, they
are commonly called brownfield planning.

Topology planning tasks are typically conducted offline by consultant companies or
planning departments within the network operator. Since the deployment of nodes and links
involves a high cost and impacts on the performance merits achievable later, an accurate
modeling of the problem and a good method to find numerical solutions are critical points.
In this context, topology design problems can be solved without major time constraints
in a centralized form. However, the problem variants of practical interest are typically
-complete, formulated using integer programs and thus it is -hard finding even
approximate solutions, and there are no algorithms that guarantee obtaining them in worse
case polynomial time. Then, we should get along with just suboptimal solutions for medium
to large networks. This can be achieved solving the integer formulations like the ones in this
chapter using numerical solvers (e.g., interfaced through JOM), configured with a maximum
running time so that the best solution found so far is returned if the time limit is reached
before the optimal is hit. As we will see in Chapter 12, another customary option relies on
ad-hoc developed heuristics for that.

There are two classical types of topological design problems:

• Node location problems, where the number and location of the network nodes is optimized.
For instance, given a set of access node locations, find the optimum placement of the network
core nodes and connect each access node to at least one core node, such that the deployment
cost is minimum.

Optimization of Computer Networks – Modeling and Algorithms: A Hands-On Approach,
First Edition. Pablo Pavón Mariño.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/PavonMarinoSol16

Trim Size: 6.625in x 9.625in Mariño c07.tex V3 - 02/11/2016 6:42 P.M. Page 142�

� �

�

142 Optimization of Computer Networks – Modeling and Algorithms

• Full topology design that receive as an input a set of sources and destination nodes of traf-
fic and the forecasts of traffic volumes between them. From this, the problem should find
(i) the set of links connecting these nodes, potentially adding new transit nodes to the net-
work (that just forward traffic), (ii) the capacity of these links, and (iii) the routing of the
traffic, so that network cost is minimized.

Node location and full topology design problems appear in all the network technologies in
one or other form. In this chapter we provide example models for both, together with some
illustrative variations. In addition, we will present results obtained solving small-scale versions
of the described problems to optimality using Net2Plan. These results will expose how the cost
structure of the problem (e.g., link to node cost ratio or fixed to variable link cost ratio) affect
the resulting topology.

7.2 Node Location Problems

Let a be a set of known locations, each one hosting an access node in the network, or any
entity that generates traffic. Let c be the set of known locations where core nodes can be
potentially placed. Each core location nj ∈ c can host at most one core node. Each access
node must be connected by a direct link to one and only one core node. For technological
limitations, each core node can be connected to at most K access nodes.

We use index i = 1,… , |a| to refer to access nodes and index j = 1,… , |c| for potential
core node locations. We denote cij as the cost of connecting access node ni to the core node
placed at location nj and denote cj as the cost of placing a core node at location nj (including
core node cost).

We are interested in determining the placement of core nodes and how the access nodes are
connected to them, such that the total network cost is minimum. We formulate the problem as
an integer program with the following decision variables:

zj = {1 if a core node is placed at location nj ∈ c, 0 otherwise}, ∀j = 1,… , |c|
eij = {1 if access node ni ∈ a is connected to nore location nj ∈ c, 0 otherwise},

∀i = 1,… , |a|, j = 1,… , |c|
The problem formulation is given by (7.1):

min
z,e

∑
ij

cijeij +
∑

j

cjzj subject to: (7.1a)

∑
j

eij = 1, i = 1,… , |a| (7.1b)

∑
i

eij ≤ Kzj, j = 1,… , |c| (7.1c)

Objective function (7.1a) sums the total network cost, including the link costs (
∑

ijcijeij) and
node costs (

∑
jcjzj). Constraint (7.1b) means that each access location should be connected to

exactly one core node. Finally, constraint (7.1c) means that:

Trim Size: 6.625in x 9.625in Mariño c07.tex V3 - 02/11/2016 6:42 P.M. Page 143�

� �

�

Topology Design Problems 143

• If a location j has no core node (zj = 0), then it cannot be connected to any access node
(
∑

ieij = 0).
• If a location j has a core node (zj = 1), then it can be connected to at most K access nodes

(
∑

ieij ≤ K).

7.2.1 Problem Variants

Multiple problem variants exist for the baseline node location problem described. Below, we
provide some of them:

• Multiple core nodes per location: By allowing variables zj to take any non-negative integer
value (not just 0 or 1), without any other changes in (7.1), we model the case when more
than one core node can be placed in the same location.

• Maximum traffic per core node: Let us assume that each access node generates an amount
of traffic hi and core nodes, because of technological constraints, cannot handle more
than H traffic units. These limitations can be incorporated into the problem by adding the
constraints: ∑

i

hieij ≤ Hzj, j = 1,… , |c|
• Maximum number of core nodes: Inventory limitations that settle a maximum number M of

available core nodes to place can be modeled by constraint:∑
j

zj ≤ M

• Brownfield design: In brownfield design, some of the core nodes ′
c ⊂ c are already

placed and the decision to make is how to upgrade the network with new core nodes. This
can be easily modeled by adding the constraints:

zj = 1, ∀j ∶ nj ∈ ′
c

Then, the formulation searches for the minimum cost solution among those that include
existing nodes in the design.

• Full-mesh core nodes connection costs. Let us assume that core nodes must be fully con-
nected between them in a bidirectional full mesh. We denote 𝜉jj′ as the cost of a bidirectional
connection between core node in location j and core node in location j′. We are interested
in adding these costs into the total network cost. We add new decision variables to prob-
lem (7.1):

ẽjj′ ={1 if core location nj is connected to core location nj′ , 0 otherwise},

∀j, j′ = 1,… , |c|, j > j′

Limiting the cases j > j′ is a form of not considering twice each bidirectional link between
two locations. For instance, a connection between location 10 and 5 includes both 5 → 10

Trim Size: 6.625in x 9.625in Mariño c07.tex V3 - 02/11/2016 6:42 P.M. Page 144�

� �

�

144 Optimization of Computer Networks – Modeling and Algorithms

and 10 → 5. Then, we can update the objective function of problem (7.1) by adding the core
link costs:

min
z,e,ẽ

∑
ij

cijeij +
∑

j

cjzj +
∑
j>j′

ẽjj′𝜉jj′

And add the following constraints to make ẽjj′ variables reflect a full mesh between the core
nodes placed:

ẽjj′ ≥ zj + zj′ − 1, ∀j, j′ = 1,… , |c|, j > j′

Previous constraint makes that if both locations j and j′ have a node, then a core link should
be considered (ẽjj′ ≥ 1). If only one location or none location has it, then previous constraint
converts into ẽjj′ ≥ 0 or ẽjj′ ≥ −1, which in the optimum means that ẽjj′ = 0 and no core link
is computed.

7.2.2 Results

This section is devoted to illustrating some trade-offs appearing in node location design. We
expose selected tests conducted in a topology of |a| = 30 access site locations plotted using
a random uniform distribution. Access sites are also the candidate locations for placing core
nodes; that is, a = c. To simplify our tests, the cost of each link is considered equal
to its euclidean distance and costs cij are normalized such that its maximum value is one
(maxijcij = 1). We denote as C to the cost of a core node, independently from where it is
placed.

We use Net2Plan to solve to optimality several problem instances of (7.1), ranging different
K and C values. Tests were completed interfacing to a CPLEX solver using the built-in JOM
library, meaning a total computation of less than 1 min. Figure 7.1 graphically illustrates two
solutions for core node costs C = {5, 1}. Maximum core node capacity is set to K = 30 and
thus one single core node could serve all access nodes if needed. When the node cost is suffi-
ciently high (e.g., C = 5 in Fig. 7.1a), the optimum solution places one single core node in a
central position. Reducing C incentives placing more core nodes to reduce the link costs (e.g.,
Fig. 7.1b, for C = 1).

In Fig. 7.2 we show the number of core nodes in the optimal solutions for a set of parameters
K = {3, 5, 10, 20, 30} and C = {0.05, 0.1, 0.25, 0.5, 0.75, 1, 2, 5}. This helps us to explore the
trade-off between link costs and node costs in node location problems. For a given K value,
the optimal number of core nodes is a non-increasing function of C. When core nodes are
inexpensive with respect to link costs, the optimal solution places one in each possible location
(30 in our case). When they are expensive, the minimum possible amount of core nodes is
placed (Zmin). This is given by:

Zmin = ⌈ |a|
K

⌉

Trim Size: 6.625in x 9.625in Mariño c07.tex V3 - 02/11/2016 6:42 P.M. Page 145�

� �

�

Topology Design Problems 145

(a) K= 30, C = 5

(b) K= 30, C = 1

26

8

20

2229

17

16

11

6 0

2

10

14

12 24
15

23
5

4
28 18

9
3

25

27
13

19

1

20
7

29

16

21 11

6 0

214

10
24

15

5

18

9

13
27

3

25

19

1
28

4

12

23

26 17

22 8

21

7

Figure 7.1 Example: node location plots

Trim Size: 6.625in x 9.625in Mariño c07.tex V3 - 02/11/2016 6:42 P.M. Page 146�

� �

�

146 Optimization of Computer Networks – Modeling and Algorithms

0 1 2 3 4 5
0

5

10

15

20

25

30

C

N
um

be
r

of
 c

or
e

no
de

s

K = 3
K = 5
K = 10
K = 20
K = 30

Figure 7.2 Node location trends: number of core nodes for different values of maximum node connec-
tivity (K) and core node costs (C)

where ⌈x⌉ is x rounded up to the closest integer. Previous expression just means that if each
core node can serve a maximum of K access nodes, we will need at least |a|

K
of them (rounded

up) to serve all access nodes. Finally, for a given cost factor C, higher values of K mean less
restrictions in the placement process that results in a lower or equal cost and a lower equal
number of core nodes used.

7.3 Full Topology Design Problems

Let denote a given set of already located core nodes, each concentrating the traffic coming
from and going to a set of users in its area of coverage, not included in the model. The traffic
offered to the network is given by a set of unicast demands between core nodes. The traffic
volume hd of each demand d is known, coming from a traffic forecast study.

The basic full-topology design problem we address in this section intends to find (i) the links
between core nodes to be deployed in the network, (ii) the capacity in each link, and (iii) how
the traffic is routed in the resulting network. The optimization target is the minimization of the
total network cost C, given by the sum of the costs of the links. The cost c(e) of deploying a
link e with capacity ue is given by:

c(e) = cf (e) + c
𝑣
(e)ue

cf (e) is a fixed opening cost, applicable if the link is deployed, whatever capacity is installed
in it. In its turn, c

𝑣
(e) is the cost factor multiplying the link capacity, such that the increments

of link capacity have a linear cost impact, c
𝑣
(e) being the increase slope.

Trim Size: 6.625in x 9.625in Mariño c07.tex V3 - 02/11/2016 6:42 P.M. Page 147�

� �

�

Topology Design Problems 147

To simplify the problem modeling we use the concept of candidate link set. A candidate link
set ′ of a topology design problem is the set of links that could be included in the network
design. If no specific constraints exist, ′ contains a full-mesh with one candidate link per each
node pair:

 ′ = {(n1, n2), ∀n1, n2 ∈ , n1 ≠ n2}

But if the problem context forbids the deployment of links between some particular nodes,
they are just removed from the candidate link set.

We formulate in (7.2) the topology design problem, using a flow-link formulation for the
routing. Decision variables are:

ze = {1 if candidate link e is deployed, 0 if it is not}, e ∈ ′

ue = {Capacity of link e}, ∀d ∈ , e ∈ ′

xde = {Traffic of demand d that traverses link e}, ∀d ∈ , e ∈ ′

min
z,x,u

∑
e

cf (e)ze + c
𝑣
(e)ue subject to: (7.2a)

ue ≤ Uze, ∀e ∈ ′ (7.2b)

∑
e∈𝛿+(n)

xde −
∑

e∈𝛿−(n)
xde =

⎧⎪⎨⎪⎩
hd, if n = a(d)
−hd, if n = b(d)
0, otherwise

, ∀d ∈ , n ∈ (7.2c)

∑
d

xde ≤ ue, ∀e ∈ ′ (7.2d)

ue ≥ 0, xde ≥ 0, ∀d ∈ , e ∈ ′ (7.2e)

Objective function sums for each link (i) its fixed cost cf (e) only if the it is deployed (ze = 1),
and (ii) its variable cost c

𝑣
(e)ue, where we assume that if a link is not deployed, then its capacity

should be zero (ze = 0 ⇒ ue = 0). This is enforced by constraint (7.2b): if ze = 0 then, the
capacity is constrained to be zero (ue ≤ 0), and if ze = 1, the capacity should be below U
(ue ≤ U), where U is any constant larger than any reasonable value that a link capacity can
take (e.g., U =

∑
dhd).

Constraints (7.2c–e), are the standard flow conservation, link capacity and non-negativity
constraints present in flow-link problems (e.g., see Section 4.3 for details), where link capaci-
ties ue are also decision variables. The important difference is that these constraints are defined
as if all the candidate links ′ are accepted in the network. For instance, sets of outgoing and
incoming links of a node n, (𝛿+(n) and 𝛿

−(n)), include all such links in the candidate set.
In summary, topology design problems can be modeled as any routing and capacity

assignment problem over a candidate link set ′ including all the possible network links.
Then, ze binary decision variables and associated constraints (7.2b) are the basic modifications
needed to introduce the link deployment decision into the problem, as is done in the objective
function (7.2a).

Trim Size: 6.625in x 9.625in Mariño c07.tex V3 - 02/11/2016 6:42 P.M. Page 148�

� �

�

148 Optimization of Computer Networks – Modeling and Algorithms

7.3.1 Problem Variants

Below, we sketch some of the multitude of problem variants to the baseline topology design
problem (7.2):

• Different routing types: It is possible to easily produce versions of the problem (7.2) in
flow-path and destination based formulations. In the former, the candidate path list should
be computed using the candidate link set ′ as the baseline topology. Then, if xp represents
the traffic carried in path p ∈ , (7.2c,d) constraints should be replaced by:∑

d∈d

xp = hd, ∀d ∈

∑
e∈e

xp ≤ ue, ∀e ∈ ′

A destination-based routing version of (7.2), would replace (7.2c,d) with:∑
e∈𝛿+(n)

xte −
∑

e∈𝛿−(n)
xte =

{
hnt, if n ≠ t

−
∑

shst, if n = t
, ∀t, n ∈

∑
t

xte ≤ ue, ∀e ∈ ′

where xte is the traffic targeted to node t carried by link e ∈ ′ and hst the traffic offered
from node s to node t.

• Brownfield design: In brownfield design, some of the links are already installed and we
should optimize the extra links to deploy. Let 0 ∈ ′ denote the set of already installed
links. By adding constraints:

ze = 1, ∀e ∈ 0

we restrict the search to those solutions that include the already deployed links.
• Bidirectional topology constraints. In a bidirectional topology, if a link n → n′ is part of the

topology, then the opposite link n′ → n also does. We can enforce bidirectional topologies
adding the constraints:

ze = ze′ , ∀n ≠ n′ ∈ , e = (n, n′), e′ = (n′, n) (7.3)

• Ring-topology constraints. A unidirectional ring over the set of nodes is a connected
topology of as many links as nodes, which passes through each node exactly once. Let us
assume that the demand set is such that the offered traffic can only be routed through
connected topologies (e.g., one demand exists with non-zero offered traffic for each node
pair). Then, adding the constraint:∑

e∈𝛿+(n)
ze = 1,

∑
e∈𝛿−(n)

ze = 1, ∀n ∈

means that each node has exactly one incoming link and exactly one outgoing link. Since
the resulting topology should be connected, previous constraint forces it to be a ring.

Trim Size: 6.625in x 9.625in Mariño c07.tex V3 - 02/11/2016 6:42 P.M. Page 149�

� �

�

Topology Design Problems 149

We can easily restrict the topology to be a bidirectional ring by making:∑
e∈𝛿+(n)

ze = 2,
∑

e∈𝛿−(n)
ze = 2, ∀n ∈

ze = ze′ , ∀n ≠ n′ ∈ , e = (n, n′), e′ = (n′, n)

where each node has two incoming and outgoing links and the topology is bidirectional.
• Tree-topology constraints. A bidirectional tree in a topology over the set of nodes is

a connected bidirectional topology with the minimum possible number of (unidirectional)
links: 2(| | − 1). Similar to the ring case, if the demand set can only be routed through
connected topologies, then any feasible solution of (7.2) is a connected topology. By adding
the constraint: ∑

e

ze = 2(| | − 1)

ze = ze′ , ∀n ≠ n′ ∈ , e = (n, n′), e′ = (n′, n)

we restrict the topology to be a bidirectional tree.
• Joint link and node location. In this type of problems, the designer should find the topol-

ogy, link capacities, and routing that connects a given set of core nodes, carrying the
set of demands between them. The difference with the basic topology design problem
(7.2) is that now there is also the possibility to add transit nodes to the network, which do
not generate nor consume traffic and just forward it. The set of candidate locations for the
transit nodes is given by t, where each location can host one or none transit nodes. We
denote as ct(n), n ∈ t the cost of placing a transit node in location n, and Gn the maximum
number of incoming or outgoing links that n can have, because of any applicable techno-
logical constraints. The modeling of the joint link and node location problem can be easily
accomplished by extending the candidate link set ′ to all the links between the set of nodes
 ′ =

⋃
t:

 ′ = {(n1, n2),∀n1, n2 ∈ ′
, n1 ≠ n2}

That is, the topology can contain not only links between core nodes, but also transit-transit
and core-transit links. We use the same notation cf (e) and c

𝑣
(e) to reflect the costs of any

candidate links, including the new link candidates involving transit nodes. If technological
restrictions forbid the use of some of these links, they can just be removed from ′ set.
Formulation (7.2) just needs three simple variations to include the possibility of placing
transit nodes. First, the following decision variables should be added to the problem, to
capture the transit node placement:

zn = {1 if a transit node is place in location n, 0 otherwise}, n ∈ t

Then, the objective function (7.2a) should be extended to include the transit node placement
costs: ∑

e

cf (e)ze + c
𝑣
(e)ue +

∑
n∈t

ct(n)zn

Trim Size: 6.625in x 9.625in Mariño c07.tex V3 - 02/11/2016 6:42 P.M. Page 150�

� �

�

150 Optimization of Computer Networks – Modeling and Algorithms

In addition, the following constraints should be added to baseline problem (7.2):∑
e∈𝛿+(n)

ze ≤ Gnzn, ∀n ∈ t∑
e∈𝛿−(n)

ze ≤ Gnzn, ∀n ∈ t

Previous constraints mean that if a location n does not have a transit node (zn = 0),
then there can be no incoming nor outgoing links to it (

∑
e∈𝛿+(n) ≤ 0,

∑
e∈𝛿−(n) ≤ 0). If a

location n has a transit node, the number of incoming or outgoing links is limited to Gn
(
∑

e∈𝛿+(n) ≤ Gn,
∑

e∈𝛿−(n) ≤ Gn).
• Other problem variants: The candidate link set approach eases the modeling of the

topology-design version for multiple problem variants, like non-bifurcated routing, multi-
cast routing, modular capacities, network design for protection and restoration schemes,
maximum end-to-end delay for a demand, and so on. The exercises at the end of this
chapter provide illustrative examples.

7.3.2 Results

In this section we illustrate with test examples how the relative values of fixed and variable
link costs (cf and c

𝑣
factors), influences the design making it range from tree-like topologies

(when fixed costs dominate) to full-mesh like topologies (when variable costs dominate).
We solve problem (7.2) with the extra constraint of obtaining a bidirectional topology (7.3).

Optimal solutions are obtained with Net2Plan, interfacing to a CPLEX solver using the JOM
built-in library. We consider three node locations of | | = {7, 12, 14} nodes. They correspond
to the nodes of the example topologiesexample7nodes.n2p, abilene_N12_E30.n2p
and NSFNet_N14_E42.n2p in Net2Plan tool. The offered traffic is uniform, meaning that
all the node pairs (s, t) offer the same amount of traffic, normalized such that the total offered
traffic in the network sums one unit. Thus:

hst =
1| |(| | − 1)

, ∀s ≠ t ∈

We assume that c
𝑣
(e) = de and cf (e) = deC, where de is the euclidean distance between end

nodes of candidate link e, and C is the fixed cost per km of link e. The fixed Cf and variable
C
𝑣

part of the network cost is:

Cf =
∑

e

Cde

C
𝑣
=
∑

e

uede

Higher values of C mean that deploying links is the expensive resource, while putting more
capacity to an existing link is comparatively inexpensive. This penalizes intensely connected
topologies. In its turn, tree-like topologies would be preferred, since (i) they concentrate the
traffic in a small number of links, the expensive resource, (ii) and augment the average number

Trim Size: 6.625in x 9.625in Mariño c07.tex V3 - 02/11/2016 6:42 P.M. Page 151�

� �

�

Topology Design Problems 151

(a) C = 0.1

(b) C = 0.01

(c) C = 0.001

2

8

11
5

1

0
4

6
3

10

9

7

2

8

11
5

1

0
4

6
3

10

9

7

2

8

11
5

1

0
4

6
3

10

9

7

Figure 7.3 Example of topologies in an Abilene node set. cf (e) = Cde, c
𝑣
(e) = de, hst =

1

12×11

of hops in the network n̄ and thus the total amount of capacity installed n̄
∑

dhd, which is
comparatively cheap.

Conversely, smaller values of C would make inexpensive the addition of new links. Then,
topologies tend to be a full-mesh, where a lot of traffic is routed by a direct link (reduced n̄),
and the total amount of capacity installed (the expensive resource) is reduced. Figure 7.3a–c
illustrates the different topologies obtained for different C values in Abilene node set.

Trim Size: 6.625in x 9.625in Mariño c07.tex V3 - 02/11/2016 6:42 P.M. Page 152�

� �

�

152 Optimization of Computer Networks – Modeling and Algorithms

10−6 10−5 10−4 10−3 10−2 10−1
0

20

40

60

80

100

120

140

160

180

C

N
um

be
r

of
 li

nk
s

Spain − 7 nodes
Abilene − 12 nodes
NSFNET − 14 nodes

Figure 7.4 Topology trends: number of links in the topology for different values of link cost per km (C)

The impact of the relative cost per km C in the optimal number of links to deploy, is illus-
trated in Fig. 7.4 for the three node topologies of our case study. The fixed cost factors C ranged
are in a logarithmmic scale:

C = {10−6
, 5 × 10−6

,… , 10−2
, 5 × 10−2

, 10−1}

Higher fixed costs produce tree-like bidirectional topologies with a number of links equal to
2(| | − 1), while lower link costs result in full-mesh topologies with | |(| | − 1) links.
However, a large range of intermediate cost factors C produce topologies that are far from
being trees nor full-meshs. In other words, topology design is needed to optimize the complex
trade-offs appearing in these scenarios, and the results cannot be predicted in advance.

7.4 Multilayer Network Design

Communication networks are organized into layers, governed by different protocols, and
potentially managed by different companies or institutions, such that the links in an upper
layer appear as traffic demands carried by the lower layer in an underlying topology. For
instance, in IP over WDM optical networks:

• The upper layer is composed of a set of IP routers, connected through optical connections
of fixed capacity (e.g., 10 Gbps, 40 Gbps, 100 Gbps) called lightpaths. The IP routers see
each lightpath as a link and the traffic is routed on top of the lightpaths according to the IP
nodes routing tables.

Trim Size: 6.625in x 9.625in Mariño c07.tex V3 - 02/11/2016 6:42 P.M. Page 153�

� �

�

Topology Design Problems 153

• In the lower layer, each lightpath is a demand to carry on top of the underlying topology
of optical fibers. Each lightpath is assigned a wavelength that cannot be changed along
its route, unless wavelength conversion devices are available. The optical switching nodes
forwarding the lightpaths are called Optical Add/Drop Multiplexers (OADMs).

Thus, in the previous example, a lightpath appears to the IP layer as a direct link between
two routers of a fixed capacity, irrespective of the actual route of the lightpath across the fibers.
The topology of IP links (each corresponding to a lightpath) is usually referred to as the virtual
topology, since each link is not backed by an actual wire but by a lightpath that follows an
arbitrary optical path across the fiber topology.

Many other examples of multilayer networks exist. For instance, a common three-layer
structure is that of IP routers connected through a topology of MPLS virtual circuits, which
are routed on top of a topology of lightpaths that are routed on top of a topology of optical
fibers. What follows is a general illustrative example of a multilayer design with two layers.

Let be a set of sites, each one hosting a lower layer switching node and an upper layer
switching node. Lower layer nodes in the sites are connected through a given set of transport
links lo and lower layer connections (called circuits) are forwarded through them. Each trans-
port link can carry a maximum of Ulo circuits. In the upper layer, a traffic matrix h = {hst, s,
t ∈ , s ≠ t} is routed by the upper layer nodes over the circuits using destination-based rout-
ing. Each circuit appears as a link in the upper layer with a capacity of Uhi traffic units.

Formulation (7.4) models the problem that finds the network design satisfying all the upper
layer traffic at minimum cost, given by the number of circuits needed. To model the possible
virtual topology of circuits, we define up as a full-mesh of virtual links between all nodes
in . Decision variables are:

zc = {Number 0, 1, 2,… of circuits in virtual link c}, c ∈ up

xtc = {Upper layer traffic targeted to t, in virtual link c}, ∀t ∈ , c ∈ up

xce = {Number of circuits of virtual link c that traverse lower layer link e},∀c ∈ up, e ∈ lo

min
∑

c

zc subject to: (7.4a)

∑
c∈𝛿+(n)

⋂
up

xtc −
∑

c∈𝛿−(n)
⋂

up

xtc =

{
hnt, if n ≠ t

−
∑
s

hst, if n = t , ∀t, n ∈ (7.4b)

∑
t

xtc ≤ Uhizc, ∀c ∈ up (7.4c)

∑
e∈𝛿+(n)

⋂
lo

xce −
∑

e∈𝛿−(n)
⋂

lo

xce =
⎧⎪⎨⎪⎩

zc, if n = a(c)
−zc, if n = b(c)
0, otherwise

, ∀c ∈ up, n ∈ (7.4d)

∑
c

xce ≤ Ulo, ∀e ∈ lo (7.4e)

Trim Size: 6.625in x 9.625in Mariño c07.tex V3 - 02/11/2016 6:42 P.M. Page 154�

� �

�

154 Optimization of Computer Networks – Modeling and Algorithms

The objective function counts the number of circuits. Equations (7.4b,c) are the
destination-link and link capacity constraints for the routing of the upper layer traffic over
the virtual topology. Equations (7.4d,e) are the flow-link and link capacity constraints for the
routing of the circuits over the lower layer topology.

The problem variations seen in single-layer problems like multicast/anycast traffic,
bifurcated/non-bifurcated routing, protection, restoration, and so on can appear in one or
more layers of a multilayer design. The modeling of the virtual topology using a full-mesh of
candidate virtual links simplifies how these variations can be applied in multilayer problems.

7.5 Notes and Sources

Node location and general topology design are classical network problems, appearing in one
form or another, with multiple variants, in all the network technologies. Multilayer network
design is motivated by the advantages of the joint optimization of several layers of the network
and has become popular in IP-over-any networks.

Some reference books covering the general node location and topology design models in
this chapter are [1] [2] [3], and [4]. In particular, [4] collects and studies multiple variants
of multilayer design problems. Readers interested in topology problems applied to particular
network technologies should refer to its specialized literature.

7.6 Exercises

7.1 Implement a Net2Plan algorithm that solves a variation of formulation (7.1) with JOM
where the access nodes are constrained to be connected to exactly two different core
nodes. This technique is called dual-homing and appears in networks like SS7 (signaling
networks in telephone systems) for improving the fault tolerance. The nodes of the input
topology are the access node locations, equal to the core node locations. The cost of link
(i, j) is given by its distance dij normalized so that the maximum link cost equals 1. The
core node cost is C, an input parameter to the algorithm, together with K in (7.1). The
optimum solution is returned by updating the network links, and adding an attribute
hasCoreNode to each node, with the value true or false accordingly.

7.2 Modify Exercise 7.1 to permit an arbitrary number of core nodes per location, but lim-
iting the total number of core nodes to M an algorithm input parameter.

7.3 Modify Exercise 7.1 to optimize the case when all core nodes are fully connected
between them. The cost of inter-core nodes links is proportional to its distance, but nor-
malized so that a core link between the two most distant locations in the input network
had a cost of C′.

7.4 In Exercise 7.1, assume that each possible access to core link eij is assigned an
availability value assuming 0.05 failures per year and link km, and a mean repair time
of 12 h. Modify Exercise 7.1 to optimize the case when the probability of an access
node to be disconnected from the core node is not higher than 10−3.

Trim Size: 6.625in x 9.625in Mariño c07.tex V3 - 02/11/2016 6:42 P.M. Page 155�

� �

�

Topology Design Problems 155

7.5 Modify Exercise 7.4 for the case when each access node is constrained to connect to
two core nodes and that an access node is considered disconnected when both of its
links fail.

7.6 A set a of users of known location should be covered placing base stations (BS) in a
set b of potential sites. Each BS is able to cover a maximum of K users, among those
located at a distance of dmax or less. In addition, each BS should be assigned a frequency,
so that those BSs whose coverage region overlap (located at less that 2dmax km), cannot
have the same frequency. The cost of each BS is one. The total cost sums the BSs cost
and a cost of C multiplied by the number of different frequencies needed. Write the for-
mulation that finds the BS placement and frequency assignment that minimizes the total
cost. Implement a Net2Plan algorithm that solves this problem with JOM. The nodes
of the input topology are the user locations, equal to the potential BS locations.
C and dmax are input parameters to the algorithm. The optimum solution is returned by
updating the network links and adding an attribute hasBS to each node, with the value
true or false accordingly, and an attribute bsFrequency with its frequency
(e.g., 0, 1, 2, …).

7.7 Let be a set of node locations where to place SDH digital cross-connects. Let
be a set of virtual circuit demands to carry, and hd the virtual circuit volume in Mbps.
The routing of the virtual circuit cannot be bifurcated. Model the problem that finds the
bidirectional ring of minimum cost (summing the cost of the links) which carries all
the traffic. Ring links are all of the same capacity u, chosen among a set of available
capacities (in Mbps) {155, 622, 2488, 9953, 39813}, and associated cost of the capacity
module per bidirectional link {c1,… , c5}, respectively. The total link cost is C times its
length in km, plus the cost of its capacity modules. Implement a Net2Plan algorithm that
solves previous formulation with JOM. Input parameters to the algorithm are the cost
factors C and {c1,… , c5}. The optimum solution is returned by updating the network
links, link capacities, and routing accordingly.

7.8 Modify Exercise 7.7 assuming that the offered traffic is composed of a set of multicast
demands.

7.9 Modify Exercise 7.7 assuming that each virtual circuit is protected through a
link-disjoint path. Backup paths are returned in Net2Plan using protection segments
with the appropriate reserved capacity.

7.10 Modify Exercise 7.7 assuming that in the case of link failure, the network reacts rerout-
ing all the affected virtual circuits, keeping the unaffected circuits unchanged. Then,
the design is constrained to carry the 100% of the traffic under any failure of a single
bidirectional link. The optimum solution is returned by updating the network links, link
capacities, and routing in the no-failure state accordingly.

7.11 Implement a Net2Plan algorithm that solves formulation (7.2) with JOM and repeat the
results in Section 7.3.2.

Trim Size: 6.625in x 9.625in Mariño c07.tex V3 - 02/11/2016 6:42 P.M. Page 156�

� �

�

156 Optimization of Computer Networks – Modeling and Algorithms

7.12 Let be a set of node locations. Model the problem that finds the minimum cost bidi-
rectional tree spanning all the nodes, such that the maximum propagation time between
most distant nodes in the tree is limited to Tmax and maximum number of links outgoing
from a node is limited to 𝛿max. The link cost is proportional to the sum of the distances of
the links. Implement a Net2Plan algorithm that solves previous formulation with JOM.
Input parameters to the algorithm are Tmax and 𝛿max. The optimum solution is returned
by updating the network links accordingly.

7.13 In Exercise 7.12, we have a set of offered traffic demands. All links have the same
capacity U, an input parameter. Modify Exercise 7.12 such that the design is constrained
to carry all the traffic.

7.14 Implement a Net2Plan algorithm that solves the problem of joint link and node location
in Section 7.3.1. Transit node candidate locations are those nodes in the input design
with no ingress nor egress demands. Link capacities are constrained to be an integer
multiple of U. Link costs are proportional to its distance, normalized such that the cost
of a link between most distant nodes is one. The topology is constrained to be bidirec-
tional and the number of outgoing links of a transient node is limited to G. The cost of a
module of capacity U in a link is cu and the cost of a transit node is ct. Input parameters
to the problem are U, G, cu, and ct. The optimum solution is returned by updating the
network links, link capacities, and routing accordingly.

7.15 Implement a Net2Plan algorithm that solves formulation (7.4) with JOM. Input param-
eters to the algorithm are Ulo and Uhi. The optimum solution is returned by creating
a two layer design using standard multilayer Net2Plan functions and updating the net-
work links, capacities, and routes accordingly.

7.16 Modify Exercise 7.15 in the case that each circuit is assigned in the lower layer two link
disjoint routes.

7.17 Modify Exercise 7.15 in the case that upper layer offered traffic is composed of a set
 of unicast demands and a flow-path formulation in the upper layer is used with the
constraint that each upper layer demand can traverse a maximum of three circuits.

7.18 Modify Exercise 7.15 in the case that circuits are lightpaths in an optical network, which
are assigned a wavelength𝑤 ∈ {1,… ,Ulo}, and such that two lightpaths using the same
wavelength cannot traverse the same lower layer link (optical fiber).

7.19 Modify Exercise 7.18 in the case that OADMs have an internal blocking constraints,
such that a maximum C of lightpaths can be originated or terminated in a node with the
same wavelength.

7.20 Modify Exercise 7.18 in the case that upper layer traffic has a multihour profile and is
given by a set of demands, with estimated traffic volume during time interval t of
hdt, d ∈ , t = 1,… ,T . The routing in the upper layer is oblivious and the lightpaths
established do not change along time intervals. Compare with the case when the upper
layer routing is dynamic.

Trim Size: 6.625in x 9.625in Mariño c07.tex V3 - 02/11/2016 6:42 P.M. Page 157�

� �

�

Topology Design Problems 157

7.21 Let be a set of nodes, and a set of demands between them. Let us assume that all
network links are constrained to have a capacity of U units. Show that the following
lbin and lbout are two lower bounds lb to the number of links in the network, if all the
traffic is to be carried:

lbin =
∑

n

⌈∑d∶n=a(d)hd

U
⌉, lbout =

∑
n

⌈∑d∶n=b(d)hd

U
⌉,

References
[1] L. Kleinrock, Queueing Systems. New York, NY, USA: John Wiley & Sons, Inc., 1976, vol. II: Computer

Applications.
[2] D. Bertsekas and R. Gallager, Data Networks. Englewood Cliffs, NJ: Prentice Hall, 1992.
[3] R. S. Cahn, Wide Area Network Design: Concepts and Tools for Optimization. Morgan Kaufmann, 1998.
[4] M. Pioro and D. Medhi, Routing, Flow, and Capacity Design in Communication and Computer Networks. Morgan

Kaufmann Publishers, 2004.

Trim Size: 6.625in x 9.625in Mariño p02.tex V3 - 02/10/2016 9:20 A.M. Page 159�

� �

�

Part Two
Algorithms

Trim Size: 6.625in x 9.625in Mariño c08.tex V3 - 02/11/2016 6:42 P.M. Page 161�

� �

�

8
Gradient Algorithms
in Network Design

8.1 Introduction

In this chapter, we introduce the application of gradient methods to network design problems.
Most of these problems, like congestion control or fast capacity allocation in wireless net-
works, involve a potentially large amount of loosely coupled elements that operate more or
less independently. Then, there is no possibility of having a central decision unit that receives
all the problem inputs, implements a sophisticated algorithm and returns the outputs to the net-
work nodes that have to apply them. For these important cases, we pursue algorithms where
each element can proceed to make decisions on its own, coordinated by a small amount of
signaling information. As we will see, gradient algorithms are a strong theoretical tool that
permits creating such schemes, with convergence guarantees.

We concentrate on constrained convex problems of the form:

min
x

f (x), subject to: x ∈ (8.1)

where x is a vector in ℝn, f is convex in ⊂ ℝn, and is an arbitrary closed convex set. The
unconstrained problem when = ℝn is dealt with as a particular case of (8.1).

There are multiple alternatives for solving this type of problems, the reader is referred to
excellent sources such as [1–4] for a survey. Among them, we will concentrate on some variants
of the so called gradient projection iterative methods, because of its theoretical simplicity and
its successful applicability in multiple network optimization problems.

A gradient projection algorithm is an iteration of the form:

x(t + 1) = P (x(t) − 𝛾(t)B(t)−1∇f (x(t))), t = 0, 1,… (8.2)

In the first iteration t = 0, the method starts in a feasible point x(0) ∈ . Given a current
point x(t), the next iteration moves in a direction given by minus the gradient of f at point x(t),

Optimization of Computer Networks – Modeling and Algorithms: A Hands-On Approach,
First Edition. Pablo Pavón Mariño.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/PavonMarinoSol16

Trim Size: 6.625in x 9.625in Mariño c08.tex V3 - 02/11/2016 6:42 P.M. Page 162�

� �

�

162 Optimization of Computer Networks – Modeling and Algorithms

multiplied by the inverse of a symmetric positive definite scaling matrix B(t) and a strictly
positive factor 𝛾(t) > 0. Note that:

• −∇f (x(t)) is the direction of steepest decrease of f , so if ∇f (x(t)) ≠ 0 and we move from x(t)
infinitesimally in that direction, function f decreases with the maximum slope compared to
any other direction.

• Since B(t) is positive definite, B(t)−1 also is, and the direction −B(t)−1∇f (x(t)) is also a
descent direction, which makes an angle of less than 90∘ with −∇f (x(t)).

• Depending on, for example 𝛾(t), the resulting point:

y = x(t) − 𝛾(t)B(t)−1∇f (x(t))

can be outside the feasibility set. If so, the projection operation P (y) returns the closest
feasible point to y.

There are multiple variants of gradient methods within (8.2). For instance, Newton methods
are based on computing at each iteration a matrix B(t) = ∇2f (x(t)) and quasi-Newton meth-
ods an approximation to it. These schemes have fast convergence properties. However, the
computation of the hessian matrix in each iteration makes them computationally expensive
and not amenable to a distributed implementation. Therefore, we will in general restrict to
methods where: (i) factor 𝛾(t) is a known constant for all the iterations 𝛾(t) = 𝛾 , (ii) B(t) matri-
ces are constant (e.g., B(t) = I) or its structure is such that it does not hinder the distributed
implementation of the method (e.g., B(t) is a diagonal matrix).

Previous limitations will result in slower convergence rates than, for example, sophisti-
cated Newton approaches. We will briefly review the theoretical basis quantifying this to
provide practical recommendations in this aspect. Still, slow convergence rates are consid-
ered an acceptable sacrifice in our contexts of interest. For instance, in congestion control,
the algorithms are supposed to be running permanently, adapting to the fluctuations of net-
work conditions. Algorithm robustness and algorithm stability are in this scenario as relevant
features as algorithm convergence rate:

• Algorithm robustness considers the ability of an algorithm to converge even in the presence
of faults like the loss or out of sequence delivery of signaling messages.

• Algorithm stability requires an algorithm to converge to a solution in a finite amount of time,
without eternal oscillations around the optimum, independent of the initial starting solu-
tion. Similarly, it means that even if the network conditions change abruptly, the algorithm
converges to the new equilibrium situation in a finite amount of time.

Convergence guarantees will be provided for some versions of projected gradient methods.
In particular, sufficient conditions are shown in the important cases when the implementation
is asynchronous and gradient information used in an iteration can be outdated, signaling mes-
sages are lost or delivered out of order, and the case when the gradient information handled
has random measurement errors. Both are frequent engineering situations, for which gradient
algorithms can be robust.

As we will see, convergence guarantees coming from the analysis usually take the form of
maximum step sizes 𝛾 . In practice, these conditions are very restrictive and produce such small
step sizes 𝛾 that the algorithm would be extremely slow to converge. This issue should not be

Trim Size: 6.625in x 9.625in Mariño c08.tex V3 - 02/11/2016 6:42 P.M. Page 163�

� �

�

Gradient Algorithms in Network Design 163

taken as a strong inconvenient. Our interest in gradient algorithms is providing a theoretical
insight and guidelines on how new network design algorithms should be engineered, or why
some other existing algorithms behave so well. Actually, in real implementations, network
algorithms often deviate from a pure application of the gradient iteration. For example internal
parameters are dimensioned such that convergence is not guaranteed in theory, but is observed
in practice at a reasonable pace according to a battery of tests performed based on the cases
of interest. Also, some sophisticated techniques can be added to an algorithm, for example to
fast cut down oscillations, even if the algorithm remains in equilibrium in a slightly subopti-
mal solution. They are a form to address the typical tension between convergence guarantees
and convergence speed in control problems. These techniques are problem dependent, mostly
heuristics, and are outside the scope of this book. We will contempt with providing some
suggestions in the last section of the chapter.

8.2 Convergence Rates

The convergence rate of an algorithm quantifies how fast the algorithm approaches the opti-
mum. The classical methodology to study this is called local analysis, which focuses on the
behavior of the algorithm in the neighborhood of an optimal solution1. Let x∗ denote an opti-
mum solution to a minimization problem, f (x∗) its optimal cost, and x(t) a sequence of iterates
generated by the algorithm. Convergence rate analysis evaluates the asymptotic evolution of
an error function e(t) = ‖x(t) − x∗‖ or e(t) = |f (x(t)) − f (x∗)| that measures how far we are
from an optimum solution. We distinguish the following cases:

• Sublinear convergence rate. The error drops according to a power function of the iteration
counter. For example:

e(t) ≤ c
t

where c > 0 is a constant. In this case, to find a solution with a maximum error 𝜖, we need
at least c∕𝜖 iterations and the approximation is in the order (1∕𝜖). Sublinear rates are
considered slow. This is the rate we will find (in the worst-case) in our basic and diagonally
scaled algorithms in the next sections, when the objective function is non-smooth or it is
not strongly convex (second derivative is not bounded away from zero in every direction).

• Linear or geometric convergence rate. The error drops according to an exponential (geo-
metric) function of the iteration counter. For example,

e(t) ≤ c𝛽 t ⇒ e(t + 1) ≤ e(t)𝛽

where 𝛽 ∈ (0, 1), c > 0. Then, the number of iterations t to reach an error 𝜖 is related by:
t ≤ − log 1∕𝜖−log c

log 𝛽
, which is in the order of log 1∕𝜖. The convergence can be considered fast,

since improving the accuracy of the answer in one right digit, takes a constant amount of
computations. This is the worst-case rate we can observe in basic or diagonally scaled gradi-
ent projection algorithms, when the objective function is differentiable and strongly convex.

1 Local analysis does not account for the rate of progress of the algorithm in its initial iterations, far from the optimum,
for which there is little theoretical support. Still, it is generally considered a good insight to compare the quality of
algorithms.

Trim Size: 6.625in x 9.625in Mariño c08.tex V3 - 02/11/2016 6:42 P.M. Page 164�

� �

�

164 Optimization of Computer Networks – Modeling and Algorithms

• Superlinear convergence rate. The error drops faster than the geometric progression, in a
sort of double exponential form. In particular, there exists p > 1, 𝛽(0, 1), c > 0 such that:

e(t) ≤ c(𝛽)pt
⇒ e(t + 1) ≤ c1−pe(t)p

The case p = 2 is called quadratic convergence, p = 3 cubic convergence, etc. This rate is
extremely fast, since we can double (in p = 2) the number of precision digits in the answer
in a constant time. Superlinear convergence is provided, for example, by Newton methods
that include full second-derivative information in the scaling. As discussed previously, these
methods do not yield in general to a distributed implementation when applied to our network
optimization problems of interest and thus are not further considered in this chapter. Mul-
tiple software packages (e.g., IPOPT solver, accessible with JOM from Net2Plan) include
this type of method, which are of practical use when the problem allows a centralized imple-
mentation.

8.3 Projected Gradient Methods

A projected gradient scheme is an iteration of the form:

x(t + 1) = P (x(t) − 𝛾(t)B(t)−1∇f (x(t))) (8.3)

where P (y) is the projection of vector y on set . That is, the point x ∈ closest to y according
to a particular distance:

P (y) = {x′ ∈ arg minx∈‖y − x‖}
Different norms in the projection can yield to different vectors x. If unspecified, the

Euclidean norm is assumed. When matrices B(t) = I, the iteration (8.3) is called the basic
gradient projection method. If not, the method is called the scaled gradient projection method.

Projecting a vector y in a set can be a problem as difficult to solve as the original one.
Thus, the interest of projection methods lays on those cases when the projection operation is
easy to compute. In particular, this occurs when is a box-like set:

 = {x = (x1,… , xn) ∶ li ≤ xi ≤ ui} (8.4)

That is, each coordinate is limited to belong to an interval [li, ui], where li can be −∞ and/or ui
can be ∞. In this case, the projection of a vector y ∈ ℝn is computed independently for each
coordinate i:

P (y) = (x1,… , xn), xi = [y]ui
li
=
⎧⎪⎨⎪⎩

li, if yi ≤ li
yi, if li ≤ yi ≤ ui
ui, if yi ≥ ui

, ∀i = 1,… , n (8.5)

Note that if an independent element exists handling each coordinate of a vector y, it can
compute the i-th coordinate of its projection without knowing the values in other coordinates:
leaving yi as it is, if it belongs to the interval [li, ui], or taking li (ui) when yi is lower than
(greater than) the interval limits. This occurs since the feasibility set is separable; that is, it
can be expressed as the Cartesian product of other sets, in this case one set per coordinate:

 = {1 ×… × Xn,i = [li, ui]}

Trim Size: 6.625in x 9.625in Mariño c08.tex V3 - 02/11/2016 6:42 P.M. Page 165�

� �

�

Gradient Algorithms in Network Design 165

8.3.1 Basic Gradient Projection Algorithm

We focus on an iteration:

x(t + 1) = P (x(t) − 𝛾∇f (x(t))) (8.6)

for solving problem (8.1), where f is a differentiable function and feasibility set is
non-empty. In the unconstrained case, = ℝn.

The convergence of basic projected gradient algorithms is affected by the so-called Lipschitz
constant of the gradient of the objective function, which measures how fast ∇f (x) can change
when we move from x(t) to x(t + 1). Given a continuously differentiable function f ∶ ⊂

ℝn → ℝ, we say that it has a Lipschitz continuous gradient with constant K, if it holds:‖∇f (x) − ∇f (y)‖ ≤ K‖x − y‖, ∀x, y ∈

The larger constant K is, the steeper that the change of the gradient of f can be. If f is twice
differentiable, then constant K is given by the modulus of the largest eigenvalue of the hessian
matrix ∇2f (x) in .

Example 8.1 The Lipschitz constant of function f (x) = log x, x > 0 or g(x) =
√

x, x ≥ 0 is
infinite, since when x → 0, the second derivative is given by: f ′′(x) = − 1

x2 and g′′(x) = − 1
4x3∕2 ,

which tends to infinite when x → 0. Restricted to the domain x ≥ 1, it happens that
max
x≥1

| f ′′(x)| = 1 and maxx≥1|g′′(x)| = 1, so K = 1 for both.

Proposition 8.1 In problem (8.1), we assume that is a non-empty, closed and a convex
set, f is convex, bounded below in and differentiable, and ∇f is Lipschitz continuous with
constant K. Then, if 0 < 𝛾 <

2
K

:

• the basic gradient projection scheme (8.6) converges to a global optimum, for any initial
point x(0).

• if f is twice differentiable, and m and M are the minimum and maximum modulus of the
eigenvalues of the hessian matrix in , the convergence rate is linear and the best progression
factor is achieved for 𝛾 = 2

M+m
, and is given by:

𝛽 = ‖x(t + 1) − x∗‖‖x(t) − x∗‖ = M − m
M + m

The proof of this property (e.g., see [5], p. 214, [6], p. 207) is based on showing that the
step 𝛾 is small enough to guarantee that the objective function is improved in every iteration.

Example 8.2 In the application of gradient algorithm to problem min f (x), for f (x) = x2, we
have that since f ′′(x) = 2, convergence is guaranteed for 𝛾 < 1. Figure 8.1a shows how the
algorithm converges starting in x(0) = 1 when 𝛾 = 0.9 and Fig. 8.1b shows how it diverges for
𝛾 = 1.1, since in each iteration the optimum is overstepped.

8.3.2 Scaled Projected Gradient Method

Scaled projection methods are a sophistication of the basic gradient step (8.6) that intends to
improve its convergence rate. The scaled projection iteration is given by:

x(t + 1) = P (x(t) − 𝛾(t)B(t)−1∇f (x(t))) (8.7)

Trim Size: 6.625in x 9.625in Mariño c08.tex V3 - 02/11/2016 6:42 P.M. Page 166�

� �

�

166 Optimization of Computer Networks – Modeling and Algorithms

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

3.5

4

x(0)

x(1)
x(2)

x(3) x(4)

(a) Algorithm converges (γ = 0.9)

0

0.5

1

1.5

2

2.5

3

3.5

4

x(0)

x(2)

x(3)

x(1)

(b) Algorithm does not converge (γ = 1.1)

Figure 8.1 Gradient algorithm application to problem min x2. Lipschitz constant for the gradient of the
objective function is (x2)′′ = 2. Convergence is guaranteed for 𝛾 <

2

K
= 1

where B(t) is a definite positive matrix. Its role is that the new jumping direction in each iter-
ation given by B(t)−1∇f (x(t)), makes a better progress to the optimum than the basic gradient
approach. Many scaling techniques have been studied and proposed. When B(t) = ∇2f (x(t)),
we have a form of the celebrated Newton method with superlinear convergence, but seldom
amenable to distributed implementations.

Trim Size: 6.625in x 9.625in Mariño c08.tex V3 - 02/11/2016 6:42 P.M. Page 167�

� �

�

Gradient Algorithms in Network Design 167

The scaled gradient projection methods converge for a 𝛾 sufficiently small in unconstrained
problems. Proposition 8.2 provides some convergence guarantees.

Proposition 8.2 In the unconstrained problem min f (x), let f be a continuously differentiable
and bounded below function, and ∇f be Lipschitz continuous with constant K. B(t) matrices
are bounded above, and the minimum eigenvalue of B(t) along all t is K2. Then, the scaled
gradient scheme:

x(t + 1) = x(t) − 𝛾B(t)−1∇f (x(t)) (8.8)

converges for 0 < 𝛾 < 2 K2
K

(see [5], p. 205). In particular, if f is twice differentiable and strictly
convex, the method converges for the scaling matrices:

B(t)ii =
𝜕

2f

𝜕x2
i

(x(t)), B(t)ij = 0, i ≠ j (8.9)

and now K2 is the lowest diagonal value of B(t), along t.

Unfortunately, the convergence in constrained problems is not straightforward. The reason
is that convergence under general feasibility sets requires applying a norm different to the
Euclidean. We illustrate this in a counterexample. Let us assume that at any iteration t, the
method (8.7) reaches the optimum x(t) = x∗, which is in the boundary of the feasibility set,
with one active constraint. In this situation:

• A basic gradient method would have a searching direction −∇f (x∗), which is orthogonal to
the active constraint, according to KKT conditions (see Fig. B.9 in Appendix B). Thanks to
this, if we project back the point x∗ − 𝛾∇f (x∗) into the feasibility set, x(t + 1) = x∗ again.
That is, when the algorithm reaches the optimum, stays in it.

• A scaled gradient method would have a searching direction −B(t)−1∇f (x∗), which now is
not orthogonal to the active constraint. Then, if we project back the point x∗ − 𝛾∇f (x∗) into
the feasibility set, x(t + 1) ≠ x∗. Thus, the algorithm does not stay in the optimum when it
reaches it.

To rule out convergence issues in constrained problems, we have to modify the projection
operation, so that now it is performed using a new norm. If B(t) matrices are symmetric and
positive definite, we can use them to induce a norm:

‖x||B(t) = (xTB(t)x)1∕2

This norm is applied to redefine the projection of a point y into the feasibility set , PB(t)

(y)
as the vector x ∈ such that ‖y − x||B(t) is minimum2 over all x ∈ . Now, it can be shown
that the scaled gradient projection scheme:

x(t + 1) = PB(t)

(x(t) − 𝛾(t)B(t)−1∇f (x(t))) (8.10)

has restated convergence guarantees for 𝛾 > 0 sufficiently small (see [5], p. 217).

2 Note that if B(t) = I, the projection PB(t)

(y) coincides with the standard projection.

Trim Size: 6.625in x 9.625in Mariño c08.tex V3 - 02/11/2016 6:42 P.M. Page 168�

� �

�

168 Optimization of Computer Networks – Modeling and Algorithms

Previous assert helps us in the particular case of diagonal scaling, when (i) B(t) matrices are
diagonal and also (ii) the feasibility set is box-like. In box-like sets, the projection PB(t)

(y)

is the same for any diagonal positive definite matrix B(t), for example the same as with B(t) =
I and given by (8.5). In this case, the following proposition, twin of Prop. 8.2 for box-like
constraints and diagonal scaling matrices, provides sufficient conditions for convergence.

Proposition 8.3 In problem minx∈ f (x), we assume that is a non-empty, box-like set (8.4).
Function f is convex, continuously differentiable and bounded below, and ∇f is Lipschitz
continuous with constant K. B(t) are diagonal matrices bounded above, and the minimum
diagonal term of B(t) along all t is K2 > 0. Then, the scaled gradient scheme:

x(t + 1) = P (x(t) − 𝛾(t)B(t)−1∇f (x(t)))

converges for 0 < 𝛾 < 2 K2
K

(see [5], p. 217). In particular, if f is twice differentiable and
strongly convex, the method converges for the scaling matrices (8.9).

As established, for example, in [2], the diagonal scaling method with second derivatives in
the diagonal values is not guaranteed to improve the convergence rate of the basic gradient
algorithm, but it is simple and often surprisingly effective in practice.

8.3.3 Singular and Ill-Conditioned Problems

Gradient projection algorithms described yield to linear convergence rates provided that the
objective function is twice differentiable and strongly convex. Then, according to Prop. 8.1,
the error drops geometrically in the worse case with a progress factor 𝛽:

𝛽 = ‖x(t + 1) − x∗‖‖x(t) − x∗‖ = M − m
M + m

= 𝜅 − 1
𝜅 + 1

where M and m are the modulus of the largest and smallest eigenvalue of the hessian matrix
in the proximity of the optimum, and 𝜅 = M

m
is its so-called condition number. Then:

• The best convergence guarantees are obtained for smaller 𝛽 → 0, which happens when M ≈
m, or equivalently 𝜅 ≈ 1. These are called well-conditioned problems. A condition number
𝜅 = 1 corresponds to functions that, in the proximity of the optimum, have a symmetry
in the curvature in all the dimensions: whatever direction we move from x∗, the gradient
modulus increases at a similar rate. As a result, the gradient at any point x near x∗, has an
angle close to 0∘ with the line between x and x∗. That is, the gradient vector heads to the
optimum.

• When M ≫ m (or 𝜅 → ∞), we have 𝛽 → 1 and the progress towards the optimum can be
very slow. These are called, ill-conditioned problems. Large 𝜅 values mean that in the prox-
imity of the optimum, f is almost flat in some directions (eigenvectors associated to m), and
curves very steeply in other directions (eigenvectors associated to M). Graphically, the con-
tours of the objective function are quite asymmetrically elongated ellipsoids. As a result,
depending on the point x, the gradient ∇f (x) can make an angle of almost 90∘ with the line
connecting x and x∗, making little progresses in the direction towards the optimum. Visually,

Trim Size: 6.625in x 9.625in Mariño c08.tex V3 - 02/11/2016 6:42 P.M. Page 169�

� �

�

Gradient Algorithms in Network Design 169

−20 −10 0 10 20 30 40 50 60 70

−40

−30

−20

−10

0

10

20

30

40

Figure 8.2 Basic gradient algorithm iterations for min f (x), with f (x) = x2
1 + 50x2

2, x(0) = (40, 20).
Lipschitz constant K = 100, 𝛾 = 0.9 2

K
= 0.018. Condition number of ∇2f (x) is 𝜅 = 50. The method

needs 290 iterations to arrive to a distance of 10−3 units of the optimum x∗ = (0, 0)

the method jumps making unproductive zigzags in successive iterations, as illustrated in
Fig. 8.2.

• In the limit, an infinite condition number 𝜅 = ∞ is obtained when:

– Objective function f is smooth (M < ∞) and convex, but not strongly convex, so it is flat
in some directions (m = 0). In these cases, linear convergence rates are no longer attained.
As an example, the constant 𝛾 gradient method provides a sublinear convergence rate,
such that the number of iterations needed to make f (x(t)) − f (x∗) ≤ 𝜖 is (1∕𝜖) [2].

– The objective function is not differentiable (M = ∞), as occurs in the dual function of
linear programs, or any program for which strong duality does not hold. In these cases,
gradients must be replaced by subgradients and convergence is guaranteed only to the
proximity of the optimum for constant 𝛾 , as will be shown in Section 8.5.

8.4 Asynchronous and Distributed Algorithm Implementations

In this section we concentrate on the case when the gradient projection algorithm implemen-
tation is distributed, in the sense that it is executed in parallel by a set of n agents, each agent
handling a coordinate of the vector x. Also, we assume that the feasibility set is box-like (8.4)

Trim Size: 6.625in x 9.625in Mariño c08.tex V3 - 02/11/2016 6:42 P.M. Page 170�

� �

�

170 Optimization of Computer Networks – Modeling and Algorithms

and thus separable for each coordinate3. Then, the update process for each agent i handling
the i-th coordinate, in the basic gradient method is:

xi(t + 1) =
[

xi(t) − 𝛾
𝜕f

𝜕xi
(x(t))

]ui

li

, t = 0, 1,… , i = 1,… , n (8.11)

where [x]ui
li

is the projection of x in the interval [li, ui] (8.5). The gradient scheme (8.11) is
synchronous, in the sense that:

• The time evolution is discrete t = 0, 1,… In an iteration, all the agents operate at the same
time, simultaneously computing their coordinate xi(t + 1).

• The result of each agent i, have to be signaled to the rest of the agents before the next
iteration starts. This is because each agent needs to know the full x(t) vector to compute
𝜕f
𝜕xi

(x(t)) in (8.11).

We now describe a distributed partially asynchronous version of the method (8.11), applying
the partially asynchronous parallel implementation described in [5]. We assume that there is a
set of times = {0, 1,…} at which one or more components xi are updated, and define:

 i = {Set of times when xi is updated} ⊂

The agent updating xi may not have access to the most recent values of the components of
x. Thus, we assume that agent i, at time t has a view of vector x given by xold

i (t), composed of
potentially outdated components from different past times:

xold
i (t) = (x1(𝜏 i

1(t)),… , xn(𝜏 i
n(t))),∀t ∈ i

Where 𝜏 i
j (t) is the creation time of the information about coordinate j that agent i will use at

a simultaneous or later time t. The difference (t − 𝜏
i
j (t)) between the current time and the time

𝜏
i
j (t) when the j-th component is available at the agent updating xi(t) can be viewed as a form

of communication delay. At all times t ∉ i, xi is left unchanged, so the time evolution of the
basic partially asynchronous gradient projection algorithm is controlled by:

xi(t + 1) = xi(t),∀t ∉ i (8.12a)

xi(t + 1) =
[

xi(t) − 𝛾
𝜕f

𝜕xi
(xold

i (t))
]ui

li

,∀t ∈ i (8.12b)

Any particular choice of i and 𝜏
i
j (t) values is called an scenario. For any fixed scenario,

the values of x(t), t > 0 are uniquely determined by the initial conditions. We make the partial
asynchronous assumptions, which means that there exists a positive integer B such that:

1. For every i and for every t ≥ 0, at least one of the elements of the set {t, t + 1,… , t + B − 1}
belongs to i.

3 This can be generalized in the case when each agent handles a block of coordinates, with potentially more than one
coordinate per block. In this case, the feasibility set should be separable per blocks.

Trim Size: 6.625in x 9.625in Mariño c08.tex V3 - 02/11/2016 6:42 P.M. Page 171�

� �

�

Gradient Algorithms in Network Design 171

2. There holds

t − B < 𝜏
i
j (t) ≤ t

for all i and j, and all t ≥ 0 belonging to i

Note that according to previous assumptions, variable t does not have to be explicitly known
to the agents. Actually, t does not necessarily correspond with real time and is just an artificial
variable used to order the sequence of events.

Partially asynchronous assumptions mean that each agent performs an update at least once
during any time interval of length B and the information used by any agent coming from any
other agent is outdated by at most B time units. Then, the value of x(t + 1) depends only on
x(t), x(t − 1),… , x(t − B + 1), and not on any earlier information. This such general assump-
tions can be used to model situations like the loss or out-of-sequence delivery of signaling
messages to the agents, as long as old information is purged from the system after at most B
time units.

The following proposition ([5], p. 529), establishes the convergence of the basic gradient
projection algorithm in a distributed partially asynchronous implementation.

Proposition 8.4 In problem minx∈ f (x), we assume that is a non-empty, box-like set (8.4),
f is convex, continuously differentiable and bounded below in , and ∇f is Lipschitz continu-
ous with constant K1. Then, the distributed (partially asynchronous) basic gradient projection
scheme (8.12) converges to the global optimum for 0 < 𝛾 <

1
K1(1+B+nB) .

The next proposition ([5], p. 529) says that the diagonally scaled version of the algorithm
for box-like constraints also enjoys convergence guarantees in the partially asynchronous case.

Proposition 8.5 Under the conditions of Prop. 8.4, the distributed (partially asynchronous)
version of the diagonal scaled gradient projection scheme:

x(t + 1) = P (x(t) − 𝛾B(t)−1∇f (x(t)))

where B(t) are diagonal matrices bounded above, and the minimum diagonal term of B(t) along
t is K2 > 0, converges to the global optimum for 0 < 𝛾 <

K2
K1(1+B+nB) . In particular, if f is twice

differentiable and strongly convex, the method converges for the scaling matrices (8.9).

The following example illustrates how the signaling delay B can make a distributed imple-
mentation of a gradient algorithm not converge, if 𝛾 values are not correctly dimensioned.

Example 8.3 Three traffic sources share a common link. The traffic volume generated by each
source, denoted as xi, i = 1, 2, 3, is optimized by the problem maxx≥0

∑
ixi − 10(

∑
ixi − 1)2,

which intends to maximize the throughput, but adding a quadratic penalization term which
tends to zero if the total traversing traffic equals to one. The optimum solution can be obtained
by solving KKT conditions: x1 = x2 = x3 = 0.35. A basic gradient projection algorithm for
the problem is given by:

xi(t + 1) =

[
xi(t) − 𝛾

(
1 − 2

(∑
i

xold
i (t) − 1

))]
0

Trim Size: 6.625in x 9.625in Mariño c08.tex V3 - 02/11/2016 6:42 P.M. Page 172�

� �

�

172 Optimization of Computer Networks – Modeling and Algorithms

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

t

x 1

B = 3, γ = 0.033333
B = 3, γ = 0.0018519

Figure 8.3 Convergence using delayed information, Example 8.3

We see that each source needs to know the sum of the traffic in the link
(∑

ixi

)
to perform the

gradient iteration, but not the full individual xi values. We consider an asynchronous implemen-
tation, where the

∑
ixi values are communicated to the links once every B′ time slots, at times

t = B′t′, t′ = 0, 1,…, and xold
i (t) vectors are constructed accordingly. In the synchronous case

(B′ = 1), convergence is guaranteed for 𝛾 <
2
60

= 0.0333, since the largest eigenvalue of the

hessian matrix of the objective function is 60. Figure 8.3 plots the time evolution of source x1
when B′ = 3. We see that if the step 𝛾 computed for synchronous gradient is used, the algorithm
does not converge. In its turn, convergence is obtained if 𝛾 = 1

60(1+(B′−1)+n(B′−1)) = 0.00185.
Actually, it can be shown that convergence occurs also for some higher 𝛾 values.

Note that the 𝛾 values that provide sufficient convergence guarantees are quite restrictive,
and approximately decrease proportionally with n + 1 and B. In [5], the reader is warned that
these step values are fairly conservative and should not be taken at face value. Then, some anal-
ysis are provided that can yield to less restrictive sufficient conditions. Also, specific analysis
tuned to particular problem instances can provide tighter convergence conditions.

8.5 Non-Smooth Functions

The application of gradient methods to non-smooth convex functions means using subgradi-
ents as search directions for those points when a gradient does not exist. This will be applied in
this book in the maximization of the dual function of, for example, linear problems, for which
the dual function is non-everywhere differentiable.

Trim Size: 6.625in x 9.625in Mariño c08.tex V3 - 02/11/2016 6:42 P.M. Page 173�

� �

�

Gradient Algorithms in Network Design 173

Let f be a convex non-everywhere differentiable function, and a non-empty closed and
convex set. The basic projected subgradient method for problem minx∈ f (x) is given by:

x(t + 1) = P (x(t) − 𝛾(t)s(x(t))) (8.13)

where s(x(t)) is a subgradient of the objective function f at point x(t). Note that if f is differ-
entiable, method (8.13) is the basic gradient projection. The convergence of the subgradient
projection cannot be established by guaranteeing that in every step the function decreases,
since in some cases a subgradient is an ascent direction (function f increases for any 𝛾(t) in
(8.13)). Instead, convergence is established by showing that the distance ‖x(t) − x∗‖ between
x(t) and an optimum solution x∗ decreases with t.

Proposition 8.6 In problem (8.1), we assume that is a non-empty, closed convex set, f
is convex but may be non-everywhere differentable, and bounded below in . Subgradients
s(x) ∈ 𝜕f (x) are bounded:

‖s(x)‖2 ≤ S, ∀x ∈

Then, the following inequality holds for the basic subgradient projection iteration (8.13):

fbest(t) − f (x∗) ≤ R2

2
∑

t𝛾(t)
+

S2∑
t𝛾(t)2

2
∑

t𝛾(t)
(8.14)

where fbest(t) is the best function cost found so far, until iteration t, and R is a bound to the
distance from algorithm initial point to the optimum:

R ≥ ‖x(0) − x∗‖
Inequality (8.14) helps us to show that subgradient algorithms converge to the optimum if

𝛾(t) values satisfy:

𝛾(t) > 0, lim
t→∞

𝛾(t) = 0,
∞∑

t=0

𝛾(t) = ∞

For instance, the step rules 𝛾(t) = 1∕t and 𝛾(t) = 1∕
√

t satisfy previous assumptions. How-
ever, for constant step sizes 𝛾(t) = 𝛾 , the only guarantee is that iterations reach and stay in the
proximity of the optimum, closer the smaller 𝛾 is. Indeed, the first sum in (8.14) vanishes when
t → ∞, but not the second, and we have:

lim
t→∞

fbest(t) − f (x∗) ≤ S2
𝛾

2
(8.15)

The basic subgradient method inherits the simplicity of the basic gradient iteration, extend-
ing its applicability. It works well for many type of problems, however, it can also work
very badly in ill-conditioned instances, as happens in the gradient version. There are several
variations and scaling methods to accelerate its convergence, although its applicability in a
distributed scenario is a somewhat less investigated topic than the gradient counterpart, and

Trim Size: 6.625in x 9.625in Mariño c08.tex V3 - 02/11/2016 6:42 P.M. Page 174�

� �

�

174 Optimization of Computer Networks – Modeling and Algorithms

we will not apply them in this book. The interested reader is referred to, for example, [2] or
[7] for a more detailed view.

8.6 Stochastic Gradient Methods

In this section we describe the stochastic gradient method, consisting of applying the stan-
dard basic gradient projection to a problem where the gradients have measurement errors.
This situation is of interest, since in many network algorithms gradient estimations come from
observations and measures like, for example, average delays or loss probabilities that can be
affected by inaccuracies.

The stochastic (sub)gradient descent for the problem minx∈ f (x) is an iteration of the form:

x(t + 1) = P (xt − 𝛾(t)s̃(x(t))) (8.16)

where P stands for the orthogonal projection and s̃(x(t)) is an unbiased estimation of the
subgradient of function f in point x(t), sometimes referred to as a noisy unbiased subgradient.
This means that s̃(x(t)) can be written as s(x(t)) +𝑤(t), where s(x(t)) is a subgradient of f in
x(t) and 𝑤(t) is a random variable with zero mean, representing a sort of measuring error in
the subgradient.

The following proposition from [8] is useful to provide sufficient convergence guarantees
in some cases of interest.

Proposition 8.7 In problem (8.1), we assume that is a non-empty, closed convex set, f is
convex but may be non-everywhere differentable, and bounded below in . Noisy unbiased
subgradients s̃(x) can be obtained for any point x ∈ , meaning that 𝔼(s̃(x)) ∈ 𝜕f (x). Noisy
subgradients have a finite variance:

𝔼(‖s̃(x)‖2
2) ≤ S2

, ∀x ∈

Then, the following inequality holds (“almost surely” should be understood here) for the basic
stochastic subgradient projection iteration (8.16):

𝔼(fbest(t) − f (x∗)) ≤ R2

2
∑

t𝛾(t)
+

S2∑
t𝛾(t)2

2
∑

t𝛾(t)
(8.17)

where fbest(t) is the best function cost found so far, until iteration t, and R is a bound to the
distance from algorithm initial point to the optimum:

R ≥ ‖x(0) − x∗‖
Previous proposition establishes a convergence in expectation version of Prop. 8.6, under

reasonable assumptions like unbiased and finite variance measurement errors. Analogous to
the deterministic non-smooth case:

• Convergence (in expectation) occurs for non-summable and diminishing 𝛾(t).

Trim Size: 6.625in x 9.625in Mariño c08.tex V3 - 02/11/2016 6:42 P.M. Page 175�

� �

�

Gradient Algorithms in Network Design 175

• For constant step 𝛾(t) = 𝛾 , convergence is guaranteed only to the proximity of the optimum:

lim
t→∞

𝔼(fbest(t) − f (x∗)) ≤ S2
𝛾

2
(8.18)

Next proposition states that for the smooth stochastic constant step gradient case, conver-
gence (in expectation) can only be guaranteed to the proximity of the optimum. This is a
difference with the deterministic iteration, which could in the smooth case converge to the
optimum for a constant, but sufficiently small 𝛾 .

Proposition 8.8 ([9], Prop. 5) In problem (8.1), we assume that is a non-empty, closed
convex set, f is convex and differentiable with Lipschitz gradient with constant K > 0, strongly
convex with constant m > 04. Let 𝛾 ∈

(
0, 2

K

)
, in the iteration (8.16). Then, we have

𝔼(‖x(t) − x∗||2) ≤ q(𝛾)tR2 +
1 − q(𝛾)t

1 − q(𝛾)
𝛾

2S2 (8.19)

where R is an upper bound to the initial distance to the optimum (R ≥ ‖x(0) − x∗‖), q(𝛾) =
1 − m𝛾(2 − 𝛾K) < 1 and

𝔼(‖s̃(x)||22) ≤ S2
,∀x ∈

The first sum in (8.19) is a transient error that vanishes as t → ∞. However, the second sum
is a persistent error, invariant to increasing the number of iterations, and thus would necessitate
of a diminishing 𝛾 for eliminating it.

From a practical point of view, several observations and recommendations can be considered
when dealing with stochastic gradients:

• Stochastic gradient methods are slower, and sometimes much slower in practice, than their
deterministic counterparts. As an example, error drops like 𝔼(f (x(t) − f (x∗)) = (1∕t) have
been reported for differentiable and strongly convex functions. This is a logical consequence
of the measurement error. The smaller the measurement noise (S), the better the convergence
can be. Averaging techniques that take multiple samples of the gradient before iterating
using its average as a gradient, can have a positive impact in convergence, helping to reduce
both the zigzagging effect and the error variance5.

• Scaling techniques has also been investigated to improve the convergence rate of stochastic
gradient algorithms (e.g., see [10]). However, as pointed out in [11], the scaling does not
reduce stochastic noise and therefore does not significantly reduce the noise variance. Then,
in those cases when noise variance is high, scaling methods may be ineffective for improving
convergence in practice.

• Stopping criteria should be adapted to the stochastic nature of the gradient. For instance,
even when the optimum is reached, the algorithm still iterates randomly around the optimum
and never gets stuck in it, challenging the detection of algorithm termination.

4 This holds if f is twice differentiable, and all the eigenvalues of any hessian matrix are greater or equal than m.
5 For instance, note that the average of n IID random variables of variance 𝜎

2, has a variance of 𝜎2∕n.

Trim Size: 6.625in x 9.625in Mariño c08.tex V3 - 02/11/2016 6:42 P.M. Page 176�

� �

�

176 Optimization of Computer Networks – Modeling and Algorithms

0 2000 4000 6000 8000 10,000
0

0.1

0.2

0.3

0.4

0.5

0.6

t

x 1
W = 0.01, γ = 0.03

W = 0.1, γ = 0.03W = 0.1, γ = 0.03/t

Figure 8.4 Example 8.4: Stochastic gradient realization

Example 8.4 In the gradient algorithm implementation of Example 8.3, let us assume that
the link traversing traffic information

∑
ixi is signaled to each source without any delay, but

each with a zero mean random error with uniform distribution [−W,W]. Figure 8.4 illustrates
the evolution of the traffic of source one (x1) in a realization of the stochastic algorithm for
W = {0.01, 0.1} and constant step size 𝛾 = 0.03, and W = 0.1 but diminishing step size 𝛾(t) =
0.03∕t. We see how in the constant step size, higher errors yield to a less tight convergence
around the optimum, while diminishing 𝛾 can always converge reasonably fast to the optimum,
without leaving it.

8.7 Stopping Criteria

In many situations in network optimization, gradient algorithm variants are used as guidelines
for the design of, for example congestion control protocols, routing protocols, dynamic trans-
mission power, or scheduling allocations. These protocols are running permanently, adapting
the network to varying conditions like traffic or channel condition fluctuations. In such cases,
there is no algorithm termination and thus no need to determine when the algorithm should be
stopped.

In other situations, gradient algorithms are used for offline network design and are typi-
cally executed in a centralized equipment. For instance, as we will see in Chapter 11, gradient
algorithms are used to maximize the dual function in some network design problem decom-
positions. In these cases, algorithms are fed with input data, run, and need to be stopped when
the optimum solution is reached. Several stopping conditions can be used:

• Gradient vanishing (unconstrained optimization): In unconstrained convex problems,
∇f (x) = 0 is an optimality condition, and ‖∇f (x)‖ < 𝜖 can be a reasonable termination.

Trim Size: 6.625in x 9.625in Mariño c08.tex V3 - 02/11/2016 6:42 P.M. Page 177�

� �

�

Gradient Algorithms in Network Design 177

If f is twice differentiable and K is the maximum eigenvalue of the hessian matrix in ℝn,
we have that: ‖∇f (x)‖ < 𝜖 ⇒ ‖x − x∗‖ ≤

𝜖

K
, f (x) − f (x∗) ≤ 𝜖

2

K

where x∗ is an optimum solution. Note that this stop criteria cannot be used in constrained
optimization, since gradients can be arbitrarily large when the optimum is in the boundary
of the constraint set (e.g., see Appendix B).

• Comparison with cost lower bounds: Stop when the best solution found so far fbest is close
enough to a known lower bound: fbest − L ≤ 𝜖. This lower bound can be precomputed or
generated during the algorithm as a by-product. This is the case of primal-dual algorithms
that generate in each iteration a primal and dual solution, so that evaluating the dual function
produces a lower bound to the optimal cost. In these cases, a natural stopping criteria is that
fbest − Lbest ≤ 𝜖, where Lbest is the highest lower bound found so far. When the original
problem enjoys strong duality, the algorithm can converge to a situation when Lbest = fbest,
certifying that the optimum has been reached. If strong duality does not hold, the condition
fbest − Lbest ≤ 𝜖 is never met, even if the optimum solution is reached, when 𝜖 is greater than
the duality gap.

• Other: Popular stop conditions in general optimization algorithms can also be applied, like
stopping when the best function cost found so far fbest is not improved during sufficiently
large amount of iterations, or when a maximum number of iterations or execution time is
reached.

8.8 Algorithm Design Hints

As we will see in many examples throughout this book, gradient projection algorithms provide
theoretical insight and guidelines to devise network algorithms, for example distributed proto-
cols that dynamically adapt the routing, control the congestion, or the assignment of capacity
to the network links. Theoretical convergence guarantees established for gradient algorithms,
even in the presence of asynchronous distributed updates subject to delays, losses, or noisy
gradient estimations, support this application.

Still, multiple difficulties can appear if we want to directly apply a gradient iteration into a
real network protocol. We elaborate on some of them in the following subsections. Application
examples of these techniques are scattered throughout in different case studies in the next
chapters.

8.8.1 Dimensioning the Step Size

As we have seen in this chapter, convergence conditions in basic and scaled gradient projec-
tion algorithms depend on dimensioning the 𝛾 step and scaling matrices (if any) according
to quantities like the largest and smallest eigenvalues of the hessian matrix, or upper bounds
to the euclidean norm of the gradients/subgradients. In many network design problems, these
quantities are unknown for the nodes implementing the gradient iterations. For instance, when
applied to a congestion control problem they may require a demand source node to know the
number of flows sharing the traversed links, the number of links in the longest path of other

Trim Size: 6.625in x 9.625in Mariño c08.tex V3 - 02/11/2016 6:42 P.M. Page 178�

� �

�

178 Optimization of Computer Networks – Modeling and Algorithms

demands, or the utility functions employed. Using worst-case values for these quantities can
yield to ridiculously small 𝛾 factors that make the algorithms too slow to be useful.

An alternative to this is fixing the 𝛾 step such that convergence is reached in normal or rea-
sonable network conditions, according to some empirical tests. Then, extra techniques should
be added to alleviate or attenuate the non-convergent behaviors if they occur. One of these
techniques is limiting the maximum variation in a coordinate to a quantity Δx, a technique we
call bounded step length.

Let minx∈ f (x) be the problem to solve, where f is convex and is box-like (8.4). The
standard basic gradient iteration with bounded step length is given by:

xi(t + 1) =
⎧⎪⎨⎪⎩
[
xi(t) − 𝛾

𝜕f
𝜕xi

(t)
]ui

li
if 𝛾

𝜕f
𝜕xi

(t) ≤ Δx

[xi(t) − Δx]ui
li

otherwise

Then, the idea is that, if quantity 𝛾
𝜕f
𝜕xi

(t) is above the maximum step length Δx, we replace it
byΔx. As a result, each iteration can change the value of a coordinate in at mostΔx units. Since
Δx is measured in the same units as the problem variables, it may be easier to find a reasonable
value to it within the problem context. For instance, in a capacity allocation algorithm, we may
not want to change a link capacity in more than Δx Kbps in each iteration.

Applying Prop. 8.5 it is possible to show that bounded step length technique converges to
the optimum solution for a sufficiently small 𝛾 (see Exercise 8.5). Exercise 8.6 also shows a
counter-example of how the algorithm may not converge if constraints are not box-like.

8.8.2 Discrete Step Length

In multiple practical contexts, the update in the xi coordinates should be performed in discrete
steps, instead than on a continuum. For instance, if the optimization variable x has a coordinate
per network link representing the link capacity, a typical technological constraint restricts the
capacity adjustment to multiples of a fixed capacity slot.

Discretization of the step length can be modeled using the iteration:

xi(t + 1) =
[

xi(t) − f
𝛿

(
𝛾i(t)

𝜕f

𝜕xi
(t)
)]ui

li

(8.20)

where f
𝛿
(y) is a discretization function and we call 𝛿 the discretization step. The 𝛾i(t) value is

used to include a possible diagonal scaling. A suitable choice of f
𝛿

is using the closest multiple
of 𝛿, with an absolute value lower or equal than y:

f
𝛿
(y) = sign(y)𝛿

⌊|y|
𝛿

⌋
(8.21)

By doing so, the convergence properties are:

• The convergence can be guaranteed to the proximity of the optimum for a sufficiently small
𝛾 factor. This behavior comes intuitively seeing that the discretized version always makes
smaller or equal steps than the continuous version, which converges for a sufficiently small

Trim Size: 6.625in x 9.625in Mariño c08.tex V3 - 02/11/2016 6:42 P.M. Page 179�

� �

�

Gradient Algorithms in Network Design 179

𝛾 step. If 𝛾 is not appropriately dimensioned, the algorithm can suffer from oscillations
around the optimum, or simply diverge, as in the continuous version.

• If the discretization function is not based on the floor function ⌊y⌋, but the ceiling function⌈y⌉ that rounds to the upper closest multiple of 𝛿, the algorithm can still converge to the
proximity of the optimum, but then oscillations can occur for any 𝛾 step we pick. The
reason is that discretized jumps may be longer now than in the continuous version and the
ratio ⌈y⌉∕y can be arbitrarily large. Then, in the proximity of the optimum, these jumps
may be non-improving, whatever the 𝛾 value is, and be followed by later jumps improving
the solution, and repeat again. In Exercise 8.7 we show an example of this situation. If the
function f

𝛿
rounds to the closest multiple of 𝛿 (a sort of midway between floor and ceil

functions), convergence to the proximity without oscillations can again we obtained, but
requiring half the 𝛾 step than the floor function.

Example 8.5 We use a discretized gradient algorithm with step 𝛿 = 1, for solving the problem
min 10x2. The 𝛾 step is small enough to converge to the optimum in the continuous case (for
example, 𝛾 = 1

20
). Then, if the initial solution is a fractional number, for example, x(0) = 10.5,

the algorithm would never reach the optimum solution x∗ = 0, but get stuck in the solution
x = 0.5.

8.8.3 Heavy-Ball Methods

Heavy-ball methods are the most simple among the so-called multistep optimization tech-
niques, which are those where the determination of next point x(t + 1) depends not only
on information regarding x(t) (gradient, hessian at this point), but on some preceding steps
x(t − 1), x(t − 2),… .

The basic gradient projection two-step heavy-ball method, for a problem minx∈ f (x), takes
the form:

x(t + 1) = P (x(t) − 𝛾∇f (x(t)) + 𝛾h(x(t) − x(t − 1))) (8.22)

where 𝛾 > 0, and 𝛾h ≥ 0 are parameters. When 𝛾h = 0, method (8.22) turns into the basic gra-
dient projection.

The heavy-ball method owes its name to a physical analogy with the inertia suffered by
a heavy ball that tends to continue in the same direction when moving. This is the effect of
term 𝛾h(x(t) − x(t − 1)), which sums to the current gradient, the past search direction. Inertia
term may increase convergence and reduce the zigzagging. This is because (i) the components
of the gradient that make zigzagging in consecutive iterations tend to cancel, (ii) while the
components of the search direction that do not zigzag, which may lead to the optimum, sum
constructively. Proposition 8.9 characterizes the convergence benefits of heavy-ball methods
in the unconstrained case.

Proposition 8.9 Let f be a convex function bounded below in ℝn, twice differentiable and
strongly convex, with minimum x∗, and m and M the minimum and maximum eigenvalues
of ∇2f (x∗). Then, if 0 ≤ 𝛾h < 1, and 0 < 𝛾 <

2(1+𝛾h)
M

, the two-step heavy-ball scheme (8.22)
converges in the unconstrained case to x∗, for any initial point x(0). The convergence rate is

geometric. The best geometric progressing rate 𝛽 =
√

M−
√

m√
M+

√
m

, is obtained when 𝛾 and 𝛾h is

Trim Size: 6.625in x 9.625in Mariño c08.tex V3 - 02/11/2016 6:42 P.M. Page 180�

� �

�

180 Optimization of Computer Networks – Modeling and Algorithms

−20 −10 0 10 20 30 40 50 60 70

−40

−30

−20

−10

0

10

20

30

40

Figure 8.5 Application of the heavy-ball method with 𝛽 = 0.5, to same example as Fig, 8.2 (same 𝛾

step also). The method needs 130 iterations (instead of 290) to arrive at a distance of 10−3 units of the
optimum x∗ = (0, 0)

chosen to be:

𝛾 = 4

(
√

M +
√

m)2
, 𝛾h =

(√
M −

√
m√

M +
√

m

)2

The convergence rate factor in the heavy-ball method 𝛽 = (
√

M −
√

m)∕(
√

M +
√

m),
shown in Prop. 8.9, is lower (better) than the factor 𝛽 = (M − m)∕(M + m) in the basic gradi-
ent case (Prop. 8.1). Also, convergence is guaranteed for higher 𝛾 values (𝛾 < 2(1 + 𝛾h)∕M).
This suggests that heavy-ball variations are effective techniques to apply to gradient schemes.
Figure 8.5 illustrates this with an an example. However, it has been shown in [6] that
heavy-ball methods are relatively less effective under noisy gradients than standard gradient
methods, since (intuitively) the use of old information tends to increase the uncertainty region.
Then, its use when gradient noise is significant is discouraged.

Aside of the potential convergence benefits, our interest in heavy-ball methods is in the
simplicity. In particular, if 𝛽 parameters are constants fixed in advance, applying the heavy-ball
principle does not hinder a distributed implementation of a gradient method: the same node or
agent computing a coordinate of the solution vector, just needs to store it to be used in future
s − 1 iterations, but does not need to signal any new information to other nodes.

Trim Size: 6.625in x 9.625in Mariño c08.tex V3 - 02/11/2016 6:42 P.M. Page 181�

� �

�

Gradient Algorithms in Network Design 181

8.9 Notes and Sources

The basic steepest descent gradient algorithm dates to Louis Augustin Cauchy in his Compte
Rendu à l’Académie des Sciences of October 18, 1847, who attributes to Newton the origins
of what we call today the Newton’s method. The modern theory of gradient and subgradient
methods evolved from the 1960s.

Many good sources exist that cover gradient and subgradient algorithms in a more or less
exhaustive form, the material used is mostly from [1–6]. The reader is referred to those sources
for a comprehensive view of the topic, outside the scope of this chapter.

The description of the partially asynchronous operation that can accommodate gradient
algorithms where different agents interact asynchronously using potentially delayed or
out-of-order signaling messages and the convergence properties in this context, are extracted
from [5]. Results on subgradient algorithms has been collected from [6, 7, 12]. The effect of
using noisy gradient/subgradient observations in the method convergence is presented using
material from [8–11, 13]. The effect of discretization steps in convergence is derived from
some properties in [5]. Results on heavy-ball methods are from [6].

Finally note that this and the next three chapters are based on the application of gradient
projection algorithms to network problems. Gradient projection schemes have been chosen for
various reasons. First, they are the customary approach in the network optimization literature,
since their simplicity has a didactic value and ease distributed implementations. Also, strong
convergence results exist under asynchronous executions and with random gradient observa-
tions. As a recent alternative, proximal algorithms are a generalization of gradient projection
algorithms, based on solving a so-called proximal operator of a function. These methods have
received a significant attention in recent years, due to their potential for solving large-scale
problems in a distributed form, and their convergence properties in noisy and asynchronous
environments, suitable for practical network implementations, have been explored. The reader
is referred to excellent surveying sources in the topic like [14, 15], the lecture notes [16], and
the monograph [17].

8.10 Exercises

8.1 Compute the Lipschitz constant of the gradient of the objective function of the NUM
modeling of the congestion control problem (6.1) in Chapter 9, considering 𝛼-fair util-
ity functions for the demands. Repeat the exercise for the case when each demand is
constrained to receive a minimum of two units of traffic.

8.2 Repeat the previous exercise, assuming the utility functions come from TCP Reno and
TCP Vegas sources.

8.3 Compute the Lipschitz constant of the gradient of the objective function of problem
(5.16) in Chapter 5, given by:

f (ue, e ∈) =
∑

e

(eue)1−𝛼

1 − 𝛼

for 𝛼 > 1.

Trim Size: 6.625in x 9.625in Mariño c08.tex V3 - 02/11/2016 6:42 P.M. Page 182�

� �

�

182 Optimization of Computer Networks – Modeling and Algorithms

8.4 Find the optimum solution of the problem:

min
x1,x2

2(x1 − 1)2 + (x2 − 1)2, subject to: x1 + x2 ≤ 1

Show that a diagonally scaled gradient projection algorithm, using the hessian matrix
of the objective function as the scaling matrix, does not converge for any constant step
𝛾 > 0. In particular, show that if the algorithm hits the optimum in an iteration, it jumps
out of it in the next one. Indicate a set of 𝛾 steps that guarantee convergence in the basic
projection case, without diagonally scaling.

8.5 Apply Proposition 8.5 to show that bounded step length technique in the basic projection
algorithm converges to the optimum solution for sufficiently small 𝛾 , in the case when
constraints are box-like.

8.6 Find the optimum solution of the problem:

max
x≥0

10x1 + x2, subject to x1 + x2 ≤ 1

Consider the application of a basic gradient projection scheme with the bounded step
length technique. Show the ranges of 𝛾 > 0 for which the method gets stuck in the
suboptimum point (0.5, 0.5) if reached.

8.7 We use a gradient algorithm (8.20) with discretized step 𝛿 = 1, for solving a problem
min x2. The discretization function used is:

f
𝛿
(y) = sign(y)𝛿⌈ |y|

𝛿
⌉

Show that, if algorithm initial solution is x(0) = 2.5, the algorithm enters in a persistent
cycle {0.5,−0.5, 0.5,−0.5,…} for any small 𝛾 step.

References
[1] M. Minoux, Mathematical programming: theory and algorithms, ser. Wiley-Interscience series in discrete math-

ematics and optimization. Wiley, 1986.
[2] D. P. Bertsekas, Nonlinear Programming. Bertsekas: Athena Scientific, 1999.
[3] L. Lasdon, Optimization theory for large systems, ser. Dover books on Mathematics. Dover Publications, 2002.
[4] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY, USA: Cambridge University Press, 2004.
[5] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods. Athena Scien-

tific, 1997.
[6] B. T. Polyak, Introduction to Optimization. Optimization Software New York, 1987.
[7] A. Nedić, “Subgradient methods for convex minimization,” Ph.D. dissertation, Massachusetts Institute of Tech-

nology, Department of Electrical Engineering and Computer Science, 2002.
[8] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, “Robust stochastic approximation approach to stochastic

programming,” SIAM Journal on Optimization, vol. 19, no. 4, pp. 1574–1609, 2009.
[9] F. Yousefian, A. Nedić, and U. V. Shanbhag, “On stochastic gradient and subgradient methods with adaptive

steplength sequences,” Automatica, vol. 48, no. 1, pp. 56–67, 2012.
[10] D. P. Bertsekas and J. N. Tsitsiklis, “Gradient convergence in gradient methods with errors,” SIAM Journal on

Optimization, vol. 10, no. 3, pp. 627–642, 2000.
[11] L. Bottou, “Stochastic gradient descent tricks,” in Neural Networks: Tricks of the Trade. Springer, 2012, pp.

421–436.

Trim Size: 6.625in x 9.625in Mariño c08.tex V3 - 02/11/2016 6:42 P.M. Page 183�

� �

�

Gradient Algorithms in Network Design 183

[12] S. Boyd and A. Mutapcic, “Subgradient methods,” Lecture notes of EE364b, Stanford University, Winter Quar-
ter, vol. 2007, 2006.

[13] S. Boyd and A. Mutapcic, “Stochastic subgradient methods. lecture notes,” 2007.
[14] B. Lemaire, “The proximal algorithm,” International series of numerical mathematics, vol. 87, pp. 73–87, 1989.
[15] A. Iusem, “Augmented lagrangian methods and proximal point methods for convex optimization,” Investigación

Operativa, vol. 8, no. 11–49, p. 7, 1999.
[16] L. Vandenberghe, “Optimization methods for large-scale systems,” Lecture Notes, 2010.
[17] N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and Trends in optimization, vol. 1, no. 3, pp.

123–231, 2013.

Trim Size: 6.625in x 9.625in Mariño c09.tex V3 - 02/11/2016 6:43 P.M. Page 184�

� �

�

9
Primal Gradient Algorithms

9.1 Introduction

In this chapter we describe a comprehensive set of case studies where gradient projection
algorithms are applied to the primal of network design problems. The outcomes are solution
methods that provide theoretical support to the design of distributed protocols that optimize
resource allocations.

We focus on problems of the form minx∈ f (x), for which the basic gradient projection iter-
ations are:

x(t + 1) = P (x(t) − 𝛾(t)∇f (x(t))) (9.1)

We remark that, in order for the gradient iteration (9.1) to inherit the convergence, robust-
ness and stability properties described in Chapter 8, should be a convex set and f a convex
function, such that the overall problem is convex.

The major difficulty in the application of the gradient scheme (9.1) to the primal problem,
is dealing with non-separable feasible sets , for which the projection operation P (x) is not
easy to compute, or cannot be implemented in a distributed form. Section 9.2 describes the two
main alternatives to address this issue: the utilization of interior or exterior penalty methods that
permit removing those constraints in that complicate the projection step, and sum them (with
some modifications) to the objective function. Afterwards, remaining sections in the chapter
describe the case studies analyzed. Table 9.1 enumerates them, indicating the optimization
techniques applied.

Scattered along the case studies, we provide empirical tests illustrating the application of
some of the convergence improving techniques described in Chapter 8. Also, we observe the
effect of delayed and noisy information in the gradient iteration and the oscillation or diver-
gence situations that can bring.

Optimization of Computer Networks – Modeling and Algorithms: A Hands-On Approach,
First Edition. Pablo Pavón Mariño.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/PavonMarinoSol16

Trim Size: 6.625in x 9.625in Mariño c09.tex V3 - 02/11/2016 6:43 P.M. Page 185�

� �

�

Primal Gradient Algorithms 185

Table 9.1 Case studies in Chapter 9

Problem type Algorithm Section

Adaptive bifurcated routing Primal gradient and interior penalty Section 9.3
Congestion control Primal gradient and interior and exterior penalty Section 9.4
Persistence probability adjustment Primal gradient Section 9.5
Power control in wireless networks Primal gradient Section 9.6

9.2 Penalty Methods

9.2.1 Interior Penalty Methods

Interior penalty methods, or barrier methods, apply to problems of the form:

min
x

f (x) subject to: (9.2a)

gi(x) ≤ 0, i = 1,… ,m (9.2b)

x ∈ (9.2c)

where f and gi are convex, is a closed set, and the interior of the feasibility set relative to

is not empty:

 = {x ∈ ∶ gi(x) < 0,∀i = 1,… ,m} ≠ ∅

Barrier methods consist in moving the constraints gi(x) ≤ 0 in problem (9.2) to the objective
function, inside the argument of a so-called barrier function B(x), which should be continu-
ous, bounded below, and go to ∞ as x approaches zero from negative values. The resulting
optimization problem becomes:

min
x∈

f (x) + 𝜖

p∑
i=1

B(gi(x)) (9.3)

The role of barrier functions is penalizing with increasing cost those solutions that tend to
violate the constraints. Since the barrier cost goes to infinity when any gi(x) → 0, any feasible
solution of (9.3) is feasible for the original problem. That is, barrier methods guarantee feasi-
bility. Constant 𝜖 > 0 plays the role of weighting the importance of the barrier in the objective
function. The lower the value of 𝜖, the lower the effect that barrier functions have in distorting
the original objective function f . This is formally stated in the following proposition.

Proposition 9.1 ([1], p. 372, [2] p. 199) Under the conditions described previously, lower
𝜖 > 0 values produce solutions in (9.3) with lower or equal optimum costs. When 𝜖 tends to
zero, the optimum solution of (9.3) tends to the global optimum of the original problem (9.2).
In addition, the value 𝜖

∑p
i=1 B(gi(x)) also tends to zero.

Trim Size: 6.625in x 9.625in Mariño c09.tex V3 - 02/11/2016 6:43 P.M. Page 186�

� �

�

186 Optimization of Computer Networks – Modeling and Algorithms

The most common examples of barrier functions are:

B(x) = −
p∑

i=1

log(−gi(x)), logarithmic barrier

B(x) = −
p∑

i=1

1
−gi(x)

, inverse barrier

The main difficulty of barrier methods is that using small 𝜖 values tends to produce
ill-conditioned problems, since the objective function in (9.3) will grow steeply in the
directions of the tight constraints and be almost constant in the other directions. Then,
applying gradient methods to such modified problems can suffer from slow convergence
and zigzagging. In centralized implementations, it is possible to alleviate this difficulty by
solving a sequence of problems of the form (9.3) (i) with decreasing values of 𝜖, such that
the starting point of a minimization problem with 𝜖(k + 1) is the optimum solution of the
previous problem with factor 𝜖(k) > 𝜖(k + 1) and (ii) using powerful Newton-like methods in
each iteration. When the logarithmic barrier is used with these schemes, they are commonly
called interior point methods. Interior point methods are extensively and successfully applied
today in linear and convex programming.

Unfortunately, the application of barrier methods in network optimization problems where
a distributed implementation is pursued, is hindered by the difficulty of varying the 𝜖 value
during the algorithm, or using sophisticated Newton steps. Then, if a constant 𝜖 value is to be
used, a trade-off appears between accuracy in the optimum solution (low 𝜖) and convergence
speed (high 𝜖).

Example 9.1 The problem minx1≥1(x1 + x2)2 has the optimum solution x1 = 1, x2 = 0. Apply-
ing a logarithmic barrier method we have that

min(x1 + x2)2 − 𝜖 log(x1 − 1)

has an optimum solution x2 = 0, and

x1 = arg min
x1>1

(x1 + x2)2 − 𝜖 log(x1 − 1) =
1 +

√
1 + 2𝜖

2

which tends to x1 = 1 as 𝜖 → 0.

9.2.2 Exterior Penalty Methods

Exterior penalty methods are a family of algorithms applicable to problems of the form:

min
x

f (x) subject to: (9.4a)

gi(x) ≤ 0, i = 1,… ,m (9.4b)

where f is a continuous function and the feasibility set is closed. Note that linear equality
constraints h(x) = 0 can be expressed in (9.4) as two inequality constraints h(x) ≤ 0,−h(x) ≤ 0.

Trim Size: 6.625in x 9.625in Mariño c09.tex V3 - 02/11/2016 6:43 P.M. Page 187�

� �

�

Primal Gradient Algorithms 187

Exterior penalty methods consist in moving the constraints gj(x) ≤ 0 in problem (9.4) to the
objective function, inside the argument of a so-called penalty function P(x), converting (9.4)
into an unconstrained optimization problem:

min f (x) + 𝜇

p∑
i=1

P(gi(x)) (9.5)

The role of exterior penalty functions is (i) adding a zero cost to the feasible solutions and
(ii) adding a positive and large cost to those solutions which violate the constraints. When the
optimum solution of the original problem is a boundary point, the solution of the penalized
problem (9.5) is often unfeasible. The role of the 𝜇 parameter is adding a sufficiently high cost
to the penalty, to make the optimum solutions of (9.5) only slightly unfeasible. For increasing
values of 𝜇, we can obtain solutions that approximate the optimum of the original problem
coming from the exterior of the feasibility set1. This is formally stated under mild assumptions
in the following proposition.

Proposition 9.2 ([2] p. 196) Let P(x) be an exterior penalty function satisfying

• P(x) ≥ 0,∀x ∈ ℝn.
• P(x) = 0 ⇔ x feasible.
• P(x) is continous.

We also assume that f in (9.4) is continuous, the feasibility set is closed, and at least one
of these conditions hold: (i) f (x) → ∞, when ‖x‖ → ∞ or (ii) the feasibility set is bounded
and P(x) → ∞ when ‖x‖ → ∞. Then, when the penalty coefficient 𝜇 tends to infinity: (i) the
optimum solution of (9.5) tends to be an optimum solution of the original problem (9.4),
(ii) 𝜇

∑m
i=1 P(gi(x)) → 0 and (iii) if for any 𝜇 > 0 the optimum of (9.5) is feasible, it is a global

optimum.

Naturally, exterior penalty methods are useful in those cases in which some unfeasibility
is allowed before the algorithm ends. We are interested in smooth penalty functions that are
differentiable everywhere, so that gradient methods can be applied to the penalized problem.
Typically the quadratic penalty function is used:

P(x) =
{

0, if x ≤ 0
x2
, if x > 0

(9.6)

The main drawback of exterior penalty methods is that the problem becomes ill-conditioned
as the penalty factor 𝜇 increases. In particular, it can be shown (e.g., see [2], p. 237) that the
hessian matrix of the objective function to minimize has m eigenvalues that tend to infinity as
𝜇 does. As was observed in Chapter 8, basic gradient algorithms suffer of zigzagging and slow
convergence in these circumstances. In centralized implementations of penalty methods, it is
possible to apply Newton-like scalings that alleviate this problem. However, this is not possible
in general when a distributed implementation is pursued. Then, if a constant 𝜇 value is to be
used, a trade-off appears between accuracy in the optimum solution/unfeasibility permitted
(high 𝜇) and convergence speed (low 𝜇).

1 This approach is the basis of the so-called Sequential Unconstrained Minimization Techniques (SUMT) methods
[3].

Trim Size: 6.625in x 9.625in Mariño c09.tex V3 - 02/11/2016 6:43 P.M. Page 188�

� �

�

188 Optimization of Computer Networks – Modeling and Algorithms

9.3 Adaptive Bifurcated Routing

Let us consider a basic routing problem in the flow-path formulation, for a network (
,
),

where is the set of nodes and the set of links. Offered traffic is given by a demand set .
For each demand d ∈ , hd denotes the offered traffic and d the set of candidate paths. For
each path p ∈ =

⋃
d∈d, xp is the amount of traffic to carry through p.

The optimal routing is given by:

min
x

∑
e

Fe

(∑
p∈e

xp

)
subject to: (9.7a)

∑
p∈d

xp = hd, ∀d ∈ (9.7b)

xp ≥ 0, ∀p ∈ (9.7c)

where function Fe associates a cost to a link e, depending on the amount of traffic ye =
∑

e∈e
xp

carried in it. Fe functions are convex with respect to ye and thus also convex with respect to xp
(see Section A.2.4 in Appendix A). As an example, Fe functions can be given by a M/M/1 delay
estimation (Fe =

1
ue−ye

) that assigns an increasing convex cost with ye, which tends to infinity
as the traffic in the links approaches the link capacity ue and is infinite when ye > ue. By doing
so, Fe acts as a barrier function and link capacity constraints are enforced penalizing those
solutions that violate it.

The gradient of f , the objective function (9.7a), is given by:

𝜕f

𝜕xp
(x) =

∑
e∈p

𝜕Fe

𝜕ye
(x), ∀p ∈

where we apply that:

𝜕Fe

𝜕xp
(x) =

{
𝜕Fe

𝜕ye
, if e ∈ p

0, otherwise
, ∀e ∈

The value 𝜕Fe

𝜕ye
can be seen as a weight assigned to each link. Then, by applying a basic

gradient projection algorithm to (9.7) directly, we have the iteration:

xp(t + 1) = Pd

(
xp(t) − 𝛾

(∑
e∈p

𝜕Fe

𝜕ye
(x(t))

))
, ∀d ∈ , p ∈ d (9.8)

where the set d is composed of the vectors {xp, p ∈ d} that satisfy (9.7bc). That is, if we
denote as x′p(t) to the potentially unfeasible solution coming from the gradient update before
projection in (9.8), the next solution is unique and given by:

xp(t + 1) = arg min∑
p∈d

xp=hd , xp≥0
‖xp − x′p‖2

,∀p ∈ d (9.9)

The previous projection operation is not immediate, since constraints are not box-like. Good
news is that each demand source node can perform this projection efficiently using only local
information (see Exercise 9.13, and its Net2Plan implementation), jointly deciding on all the
paths of the demand.

Trim Size: 6.625in x 9.625in Mariño c09.tex V3 - 02/11/2016 6:43 P.M. Page 189�

� �

�

Primal Gradient Algorithms 189

Overall, a distributed implementation of the adaptive routing method (9.8) is possible, as
shown in Algorithm 4. Each link e is in charge of monitoring the value 𝜕Fe

𝜕ye
, as a function of

the traffic traversing the link. Then, this information is periodically signaled to every network
node. In turn, source nodes of the demand modify the routing according to (9.8).

Algorithm 4 Adaptive routing for (9.7)
1: Link’s algorithm: At times t = t1(e), t2(e),…, link e:
2: Computes 𝜕Fe

𝜕ye
using link monitored information.

3: Signals this information to all network source nodes.
4: Source node’s algorithm: At times t′ = t1

′(d), t2′(d),…, source node of demand d:
5: Collects the most updated 𝜕Fe

𝜕ye
weights received from network links.

6: Updates xp for p ∈ d, applying (9.8), using the information signaled.

9.3.1 Removing Equality Constraints

As an alternative, in this section we use problem (9.7) as an example of how equality constraints
can sometimes be eliminated to simplify the projections. We concentrate on an iterative algo-
rithm that, in each iteration t, solves a variation of problem (9.7) where constraint (9.7a) is
removed. Let xp(t) denote the current routing and 𝑤e(t) be the current values of the weights of
the links:

𝑤e(t) =
𝜕Fe

𝜕ye
(x(t)), ∀e ∈

For each demand d, we choose a path p̄d ∈ d with a weight that is minimum among d. We
call these paths (one per demand) the shortest paths according to weights 𝑤. Then, problem
(9.7) is modified eliminating the decision variables associated to these shortest paths, applying
equality constraint (9.7b):

xp̄d
= hd −

∑
p∈d−p̄d

xp, ∀d ∈

The new problem at iteration t is now given by

min
x

f (x̄) subject to: (9.10a)

x̄p ≥ 0, ∀d ∈ , p ∈ d − p̄d (9.10b)

where f̄ , denotes the original objective function (9.7a), now expressed with respect to the
reduced vector of variables x̄. To apply the gradient projection algorithm to (9.10), we need
first to obtain the gradient of f̄ :

𝜕f̄

𝜕x̄p
=

𝜕f

𝜕xp
−

𝜕f

𝜕xp̄d

, ∀d ∈ , p ∈ d − p̄d

Then, iteration of the algorithm becomes:

x̄p(t + 1) = [x̄p(t) − 𝛾(dp − dp̄d
)]0, ∀d ∈ , p ∈ d − p̄d (9.11)

Trim Size: 6.625in x 9.625in Mariño c09.tex V3 - 02/11/2016 6:43 P.M. Page 190�

� �

�

190 Optimization of Computer Networks – Modeling and Algorithms

where dp and dp̄d
are the path lengths according to:

dp =
∑
e∈p

𝑤e(t), dp̄d
=

∑
e∈p̄d

𝑤e(t)

Note that for every iteration, all the nonshortest paths that carry traffic will reduce traffic by
𝛾(dp − dp̄d

) units at most, which thus will be shifted to p̄d. The nonshortest paths that do not
carry traffic, remain in the same situation.

The algorithm can be implemented in a similar distributed form as Algorithm 4. The only
modification would be how each demand source node computes the next routing, now using
(9.11) instead of (9.8). The convergence can be accelerated in practice using a diagonal scaling,

if the information 𝜕
2Fe

𝜕y2
e
(x(t)) is also periodically signaled to the network nodes, together with

the first derivatives. See Exercise 9.2 for details.

9.3.2 Optimality and Stability

Optimality and stability for any initial conditions are guaranteed in previous algorithms, for
sufficiently small 𝛾 steps, inherited from the convergence properties of the gradient iteration.
In this respect, it is important to remark that:

• Objective function (9.7) is convex but not strictly convex (and thus not strongly convex).
Then, there is no guarantee of a convergence rate better than sublinear.

• If Fe(ye) functions are such that Fe(ye) → ∞ as ye → ue, the gradient of the objective func-
tion will grow steeply as ye → ue in some links. Then, if the problem is feasible but in the
optimum the traffic in some links is close to its capacity(ye ≈ ue), the second derivative
eigenvalues will be large, and convergence will require small 𝛾 steps.

9.3.2.1 Instability of Adaptive Non-Bifurcated Routing

A relevant remark is that convexity of the feasibility set is a required condition for having
both optimality and stability. In our case, this means that it should be possible to bifurcate the
routing among different paths in arbitrary fractions. For instance, convexity is lost if we force
the routing to be non-bifurcated, since, for example, this means adding the discrete constraints
xp ∈ {0, hd(p)} to the problem formulation (9.7).

The routing in the Internet is a prominent example of the difficulties brought by non-convex
routing problems. In particular, link-state protocols like OSPF assign a weight to each network
link. Then, the demands are routed through the shortest path according to those weights and
bifurcation can only occur in equal fractions (not arbitrary), when more than one shortest
paths exist.

In this context, let us analyze an adaptive routing scheme that periodically adjusts the link
weights as described in Algorithm 4, but that then carries all the traffic through the shortest
path according to those weights2. Intuitively, our intention is adapt to traffic variations, shifting

2 Mathematically, this means that in Algorithm 4 the projection is now performed in a discrete set of valid routings,
which is not convex.

Trim Size: 6.625in x 9.625in Mariño c09.tex V3 - 02/11/2016 6:43 P.M. Page 191�

� �

�

Primal Gradient Algorithms 191

e

eʹ

21

xe’(d), xe’(dʹ)

xe
(d), xe

(d ʹ)

Figure 9.1 Example: Unstable routing. Demands d, d′, two potential routings each through links, e or
e′, of the same capacity. If the routing is non-bifurcated, the minimum delay routing is unstable for some
initial conditions if hd = dd′ and always unstable if hd ≠ hd′

the traffic from those links that become congested by increasing their weights. However, it is
easy to see how, because of the non-convex nature of the problem, such an approach can create
dangerous interactions that produce an unstable network, performing constant routing changes
even under a constant traffic demand.

A simple example where equilibrium may not be reached consists of a network of two nodes
connected by two links of the same capacity, with two offered traffic demands (see Fig. 9.1).

• If both demands have the same volume, then equilibrium and optimality can be reached or
not, depending on the initial conditions. If both demands are initially routed through differ-
ent links, the solution remains unchanged and is both optimal and stable. However, if both
demands are initially routed through the same link, in the next routing update the link carry-
ing traffic will be assigned a higher weight than the idle link, and both demands change their
route. Then, neither equilibrium nor optimality is ever reached, since the routing eternally
alternates between both links.

• If both demands have different volumes the problem has now two optimum solutions
(the ones that route each demand in different links). Then, if the initial solution consists
of the two demands being carried in the same link, the algorithm oscillates between two
non-optimal solutions. Still, if the two demands are initially routed in two different links
(one of the optimum solutions), the algorithm would still oscillate, now between both
optimum solutions, permitting the routings of both in each iteration, and thus would have
optimality but not equilibrium.

The dangerous and undesired interactions described in the previous example are brought
by the non-convex nature of the Internet shortest path routing policy. They have been part of
a long disputed debate over the Internet since their very beginning [4], discussing and even
benchmarking in trial tests the practical utilization of adaptive routing techniques in IP net-
works. Eventually, the difficulty of enforcing stability and optimality at a practical level has
prevented the application of adaptive routing policies that react in short time scales to traffic
variations. In turn, the link weights are usually static or updated a reduced number of times per
day, such that the immediate effects of a routing change do not trigger a new change. In this

Trim Size: 6.625in x 9.625in Mariño c09.tex V3 - 02/11/2016 6:43 P.M. Page 192�

� �

�

192 Optimization of Computer Networks – Modeling and Algorithms

0

1

2

3

Figure 9.2 Test network. Link capacities ue = 25,∀e

latter case, so-called multihour routing, updates are computed in a centralized form based on
a long-term network-wide monitoring or estimations of the offered traffic.

9.3.3 Implementation Example

In this section we present some empirical convergence tests of Algorithm 4 for solving routing
problem (9.7). The data is taken from simulations conducted in the Net2Plan tool for a network
shown in Fig. 9.2 and non-uniform traffic demands with the traffic matrix:

hst =

⎛⎜⎜⎜⎜⎝
0 26.75 11.26 7.9

26.75 0 2.98 0.81

11.26 2.98 0 0.3

7.9 0.81 0.3 0

⎞⎟⎟⎟⎟⎠
(9.12)

To avoid the difficulties brought by functions that are not Lipschitz continuous, we use link
cost functions Fe of the form:

Fe(ye) =
⎧⎪⎨⎪⎩

1
ue−ye

, if ye∕ue ≤ 0.99

ye−0.99ue

(0.01ue)2
+ 1

0.01ue
, if ye∕ue > 0.99

As shown in Fig 9.3, the Fe function equals 1∕(ue − ye) when link utilization is below 0.99
and continues as its linear interpolation when utilization is higher than 0.99. As a result, the
first and second derivatives with respect to ye are:

𝜕Fe

𝜕ye
=
⎧⎪⎨⎪⎩

1
(ue−ye)2

, if ye∕ue ≤ 0.99

1
(0.01ue)2

, if ye∕ue > 0.99
,

𝜕
2Fe

𝜕y2
e

=

{ 2
(ue−ye)3

, if ye∕ue ≤ 0.99

0, if ye∕ue > 0.99
,

And Fe(ye) has a Lipschitz continuous gradient, with a Lipschitz constant given by the
maximum value of its second derivative: 2

(0.01ue)3
. The gradient and second derivatives of the

Trim Size: 6.625in x 9.625in Mariño c09.tex V3 - 02/11/2016 6:43 P.M. Page 193�

� �

�

Primal Gradient Algorithms 193

0 2 4 6 8 10 12
0

20

40

60

80

100

120

ye

F
e

Figure 9.3 Fe function for a link with ue = 10

objective function f with respect to decision variables xp are:

𝜕f

𝜕xp
=
∑
e∈p

𝜕Fe

𝜕ye
, ∀p ∈

𝜕
2f

𝜕xp1
xp2

=
∑

e∈p1
⋂

p2

𝜕
2Fe

𝜕y2
e

, ∀p1, p2 ∈

The Lipschitz constant of the objective function f can be computed as the modulus of the
largest eigenvalue of its hessian matrix ∇2f , which is also the norm two (spectral radius) of
matrix ∇2f : ‖∇2f ||2. Since the second derivative is not continuous when a link has an utiliza-
tion of exactly 0.99, the hessian matrix at these points may not be symmetric. Leaving aside
these points, the spectral radius of the hessian satisfies the following inequalities:

‖∇2f ||2 ≤ ‖∇2f ||1 = max
i

∑
j

|∇2fij| ≤ ∑
p

K
2

(0.01ue)3
≤ ||K 2

(0.01ue)3
(9.13)

where K is the maximum number of links traversed by a path. The last inequality in (9.13) is
satisfied with an equality, in the (quite useless) case where all the paths in have the same
sequence of K links (and thus overlap), and all these links have a 0.99 utilization. A better
approximation requires full knowledge of all the paths and the number of links that share each
couple of paths.

Expression (9.13) could be used to dimension the 𝛾 step in a gradient algorithm, such that
full theoretical convergence guarantees are provided, even in worst-case scenarios. However,
the resulting 𝛾 steps would be quite small, making the method too slow in practice. As an
example, a four node network like the one in our example, assuming, for example || = 16

Trim Size: 6.625in x 9.625in Mariño c09.tex V3 - 02/11/2016 6:43 P.M. Page 194�

� �

�

194 Optimization of Computer Networks – Modeling and Algorithms

paths, ue = 25, and K = 4 links, would yield to a 𝛾 step:

𝛾 <
2||K 2
(0.01ue)3

=
(0.01ue)3||K = 0.000244

In the following subsections, we see that convergence is obtained in practice for much higher
𝛾 steps.

9.3.3.1 Convergence in the Asynchronous Case

We assume that each router computes all the loopless paths to any destination and uses
Algorithm 4 to update the traffic carried in each route. The routing update is performed
asynchronously: each router independently computes the routing using the most updated
information link weight it has. Then, it waits a random time between 0.5 and 1.5 units before
the next routing update. Also, independent from the routing update, each router computes the
weight of its outgoing links, signals them to every other network node, and waits a random
time between 0.5 and 1.5 time units until the next link weight for computation and signaling.
We consider that signaling information arrives instantly at each other node, but a fraction of
5% signaling messages are randomly lost.

These assumptions reflect a realistic asynchronous and distributed application of the algo-
rithm in a case where signaling delays are negligible. Figure 9.4 illustrates the algorithm

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4

6

8

10

C
os

t

Time

0

10

20

30

x p

Figure 9.4 Evolution of Algorithm 4 in asynchronous case with signaling losses, 𝛾 = 2. The upper
graph plots the xp evolution for each path. The lower graph plots the cost evolution (9.7a). Optimum
solutions are marked with squares on the right hand-side

Trim Size: 6.625in x 9.625in Mariño c09.tex V3 - 02/11/2016 6:43 P.M. Page 195�

� �

�

Primal Gradient Algorithms 195

evolution in the case 𝛾 = 2. As we see, the algorithm starts with a relatively long period of
chaotic routing fluctuations up to t = 850, followed by a period where convergence swiftly
occurs. This behavior usually witnesses a 𝛾 step that is very close to the convergence limit,
such that the algorithm fluctuates until it is captured in a trajectory that results in convergence.
Actually, in our tests fluctuations remained at t = 5000 when 𝛾 = 3 and disappeared when
𝛾 = 1. Finally, note that when the convergent phase starts, a solution with a close to optimal
cost is found very fast (after a couple of iterations). However, after this happens, the algorithm
smoothly changes the routing with small cost improvements, requiring around 800 iterations
to reach equilibrium.

9.3.3.2 Limiting the Routing Change

In Section 8.8.1 it was shown that by limiting the change in a coordinate (𝛾 𝜕f
𝜕xp

) to a maximum

value Δx convergence guarantees were kept, as long as projection was performed onto a
box-like set. This is not the case in our problem, since projection (9.9) includes the constraint∑

p∈d
xp = hd. Still, we can keep convergence guarantees if we change the algorithm iteration

as follows:

• The routing x̂p(t + 1), p ∈ d for all the paths of the demand are computed using (9.8), as
in the original algorithm.

• If the maximum variation x̂p(t + 1) − xp(t) is below the maximum allowed change Δx,
x̄(t + 1) becomes the new routing. If not, the new routing is:

xp(t + 1) = xp(t) + (x̄p(t + 1) − xp(t))
Δx

maxp∈d
|x̄p(t + 1) − xp(t)|

The result is that in the new algorithm no route changes its carried traffic by more than
Δx units. This technique has the effect of permitting use of a higher 𝛾 producing a faster
convergence. As an example, Fig. 9.5 illustrates the convergence in the same asynchornous
case as before for 𝛾 = 10 and a maximum route variationΔx = 0.1. As we can see, convergence
and equilibrium without fluctuations occurs at around one order of magnitude faster than in
the previous example.

9.3.3.3 Effect of Signaling Delays

As predicted by theory, higher signaling delays mean using outdated information in the gradi-
ent iteration, requiring smaller 𝛾 steps to converge. Figure 9.6 illustrates this in a modification
of the previous tests (𝛾 = 10,Δx = 0.1), where each signaling message now takes a random
time uniformly distributed in the interval B = 50 ± 0.5. As shown, oscillations occur and
neither equilibrium nor optimality are reached. In Exercise 9.1, the reader is asked to analyze
the coupled effects that B, 𝛾 , and Δx have in algorithm convergence. For instance, the reader
can see how lower Δx thresholds provide robustness for higher delays B and how the increase
in the network traffic worsens convergence, since gradients become larger at higher link
utilizations.

Trim Size: 6.625in x 9.625in Mariño c09.tex V3 - 02/11/2016 6:43 P.M. Page 196�

� �

�

196 Optimization of Computer Networks – Modeling and Algorithms

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

C
os

t

Time

0

10

20

30

x p

Figure 9.5 Evolution of Algorithm 4 in the asynchronous case with signaling losses, 𝛾 = 10, but lim-
iting the routing changes to Δx = 0.1. The upper graph plots the xp evolution for each path. The lower
graph plots the cost evolution (9.7a). Optimum solutions are marked with squares on the right hand-side

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4

6

8

10

C
os

t

Time

0

10

20

30

x p

Figure 9.6 Evolution of Algorithm 4 in the asynchronous case with signaling losses, 𝛾 = 10, Δx = 0.1,
random signaling delay in the interval 50 ± 0.5. The upper graph plots the xp evolution for each path.
The lower graph plots the cost evolution (9.7a). Optimum solutions are marked with squares on the right
hand-side

Trim Size: 6.625in x 9.625in Mariño c09.tex V3 - 02/11/2016 6:43 P.M. Page 197�

� �

�

Primal Gradient Algorithms 197

9.4 Congestion Control using Barrier Functions

In this section we show a primal approach for solving the NUM congestion control problem
(9.14) in a network (,) with a set of traffic demands. The decision variables hd reflect
the rate of demand d ∈ , pd is the (known) sequence of links traversed by traffic of d, and ue
is the known capacity in link e.

max
h

∑
d

Ud(hd) subject to: (9.14a)∑
d∶e∈pd

hd ≤ ue, ∀e ∈ (9.14b)

md ≤ hd ≤ Md, ∀d ∈ (9.14c)

The primal approach followed consists of moving constraints (9.14b) to the objective func-
tion through a barrier function B(y) based on the M/M/1 estimation of the average queuing
delay in link e:

B(ye) =

{ ye

ue−ye
, if ue > ye

∞, if ye ≥ ue

where ye =
∑

d∶e∈pd
hd is the traffic traversing e. The resulting problem is:

max
m≤h≤M

∑
d

Ud(hd) − 𝜖
∑
e

∑
d∶e∈pd

hd

ue−
∑

d∶e∈pd
hd

(9.15)

The barrier function satisfies the requisites in Prop. 9.1 and thus the optimum of (9.15)
approximates the optimum of the original problem (9.14) as 𝜖 → 0. Applying a basic gradient
projection algorithm to (9.15) we have the iteration:

hd(t + 1) =

[
hd(t) + 𝛾

(
𝜕Ud

𝜕hd
(hd(t)) − 𝜖

∑
e∈pd

ue

(ue −
∑

d∶e∈pd
hd(t))2

)]Md

md

(9.16)

Algorithm 5 Congestion control for (9.15)
1: Link’s algorithm: At times t = t1(e), t2(e),…, link e:
2: Computes ue

(ue−ye)2
using link monitored information.

3: Signals this information to all network source nodes.
4: Source node’s algorithm: At times t′ = t1

′(d), t2′(d),…, source node of demand d:
5: Collects the most updated signaled values from network links.
6: Updates hd for ingress demands, applying (9.16), using the information signaled.

A distributed implementation of (9.16) is described in Algorithm 5. Link algorithm com-
putes the weights ue

(ue−ye)2
using only local information. Then, these weights have to be explic-

itly signaled to the traversing demands source nodes. For instance, in ATM networks under the
Available Bit Rate (ABR) control mode, this can be implemented by storing the weights in the
Resource Management (RM) cells.

Trim Size: 6.625in x 9.625in Mariño c09.tex V3 - 02/11/2016 6:43 P.M. Page 198�

� �

�

198 Optimization of Computer Networks – Modeling and Algorithms

9.4.1 Implementation Example

We present some empirical tests of Algorithm 5. The network topology is the one shown in
Fig. 9.2, and a demand exists between each node pair, carried through the shortest path route in
km between the end nodes. We are interested in the algorithm convergence in an asynchronous
case, a more realistic situation. Each demand independently computes its injected traffic hd
using the most updated link weight information it has. Then, it waits a random time between
0.5 and 1.5 units before the next update. Also, independent from the demand update, each
link computes its weight, signals it to every network node, and waits a random time between
0.5 and 1.5 time units until the next link weight for computation and signaling. We consider
that signaling information arrives instantly to each other node but a fraction of 5% signaling
messages are randomly lost.

The utility functions of the demands are the 𝛼-utility functions (3.19) with 𝛼 = 2. Minimum
and maximum demand rates are set to md = 0.1,Md = ∞∀d.

An implementation aspect of practical importance is that the gradient of the barrier function
is not Lipschitz continuous. Then, the gradient of the objective function (in absolute value) can
largely grow when the link utilization approaches 100%. High link utilizations are a normal
state for the network, especially for low 𝜖 values (𝜖 = 10−5 in our case). The reason is that,
unless the utilization is very close to 100%, the algorithm pushes the demands to inject more
and more traffic. Only when the link is close to saturate, the barrier cost abruptly appears. When
this happens, the gradient can take a large (negative) value and drastically reduce the rate.

As a result, it is important to limit the maximum change in each demand rate or otherwise
violent fluctuations of the traffic are produced. Figure 9.7 illustrates a reasonable algorithm
convergence, when the maximum demand change is limited to Δh = 1 traffic units, according
to the technique described in Section 8.8.1 (step 𝛾 = 20). As can be seen, convergence occurs

0

10

20

30

h d

0 100 200 300 400 500 600 700 800
−3

−2

−1

0

Time

N
et

w
or

k
ut

ili
ty

Figure 9.7 Evolution of Algorithm 5 in the asynchronous case with signaling losses, 𝛾 = 20, Δh = 1.
The upper graph plots the hd evolution for each path. The lower graph plots the network utility evolution
(9.14a). Optimum solutions are marked with squares on the right-handside

Trim Size: 6.625in x 9.625in Mariño c09.tex V3 - 02/11/2016 6:43 P.M. Page 199�

� �

�

Primal Gradient Algorithms 199

0

10

20

30

h d

0 100 200 300 400 500 600 700 800
−3

−2

−1

0

Time

N
et

w
or

k
ut

ili
ty

Figure 9.8 Same example as Fig. 9.7, Δh = 10

in practice to the optimum solution, but the fluctuations caused by the non-Lipschitz continu-
ity of the gradient result in small oscillations. Lower Δh values reduce the fluctuations even
more. In contrast, setting larger Δh values can produce drastic changes in the demand carried
traffics. For instance, Fig. 9.8 shows such effects at a value Δh = 10. Higher Δh values result
in permanent and large oscillations without equilibrium.

9.4.1.1 Diagonal Scaling

Since the problem constraints are box-like, it is possible to apply diagonal scaling tech-
niques without harming the algorithm convergence (aside of the difficulty because of the
non-Lipschitz continuity of the gradient). The second partial derivative of the objective
function f of (9.14) is:

𝜕
2f

𝜕h2
d

(h) = −𝛼h−𝛼−1
d − 𝜖

∑
e∈pd

2ue

(ue −
∑

d∶e∈pd
hd(t))3

(9.17)

Then, the gradient iteration is modified by dividing the 𝛾 step of each demand by the absolute
value of the previous quantity (9.17). Note that to apply the diagonal scaling, links should
compute the quantity 2ue

(ue−ye)3
, which does not require storing per-flow information, and signal

it together with the link price to the initial nodes of the traversing demands.
In our case study, the diagonal scaling makes it tricky to find a good balance of the 𝛾 step

to avoid drastic fluctuations when gradients and second derivatives become close to infinity.
To illustrate this, Fig. 9.9 shows the algorithm evolution for 𝛾 = 0.5 and Δh = 1, which is
remarkably fast. However, the reader can check using the provided implementation in Net2Plan
how other factors, like 𝛾 = 0.4 or 𝛾 = 0.6, can yield to long erratic phases before convergence
is reached.

Trim Size: 6.625in x 9.625in Mariño c09.tex V3 - 02/11/2016 6:43 P.M. Page 200�

� �

�

200 Optimization of Computer Networks – Modeling and Algorithms

0

10

20

30

h d

0 100 200 300 400 500 600 700 800
−3

−2

−1

0

Time

N
et

w
or

k
ut

ili
ty

Figure 9.9 Evolution of Algorithm 5 in asynchronous case with signaling losses, diagonal scaling, and
𝛾 = 0.5, Δh = 1

The interested reader can observe the interplay of signaling delay, gradient noise, and
other implementation aspects in algorithm convergence using the Net2Plan implementation
provided.

9.4.2 Exterior Penalty

In this section we present a primal algorithm for (9.14), where link capacity constraints
are moved to the objective function through a differentiable exterior penalty function P(y)
given by:

P(ye) =

{
0, if ye ≤ ue

(ye − ue)2, if ye > ue

where:

𝜕P(ye)
𝜕hd

=

{
0, if ye ≤ ue

2(ye − ue), if ye > ue

, ∀e ∈

The resulting problem is:

max
m≤h≤M

∑
d

Ud(hd) − 𝜇
∑
e

P(
∑

d∶e∈pd

hd) (9.18)

We see that P(ye) functions satisfy the requisites of Prop. 9.2 and thus the optimum of (9.18)
approximates the optimum of the original problem (9.14) from the exterior as 𝜇 → ∞. Denot-
ing 𝜋e(t) as the gradient of the penalty function at link e and time t, the basic gradient projection
iteration is:

Trim Size: 6.625in x 9.625in Mariño c09.tex V3 - 02/11/2016 6:43 P.M. Page 201�

� �

�

Primal Gradient Algorithms 201

hd(t + 1) =

[
hd(t) + 𝛾

(
𝜕Ud

𝜕hd
(hd(t)) − 𝜇

∑
e∈pd

𝜋e(t)

)]Md

md

(9.19)

Algorithm 5 can be trivially modified to have a distributed implementation of (9.19). This is
left as an exercise for the reader (see Exercise 9.5).

9.5 Persistence Probability Adjustment in MAC Protocols

In this section we devise a distributed algorithm based on a gradient projection primal
approach, to optimize the persistence probabilities in a random-access (Aloha type) wireless
network (,), adopting the model described in Section 5.4.1. A MAC protocol is assumed,
such that time is slotted, and in every time slot each node randomly decides to use the channel
with a probability of qn. One link e out of its outgoing links is randomly chosen to transmit
traffic at the link nominal rate ūe. We call pe to the link persistence probability, the probability
of finding a particular link e active at any time.

Collisions can occur and we denote I
to(e) as the set of nodes whose transmission interferes

to link e, such that if any node in I
to(e) is using the channel when e is transmitting, the traffic

in e is lost. From this information, it is easy to construct the sets I
from(n), as the set of links

that are interfered by a node n, excluding outgoing links of n:

n ∈ I
to(e) ⇔ e ∈ I

from(n)

The capacity of a link e depends on the average amount of collision-free traffic that is
able to transmit, which depends on the persistence probabilities of e and its interfering nodes
according to:

ue = ūepe

∏
n∈ I

to(e)

qn, ∀e ∈

The reader is referred to Section 5.4.1 for a full description of the problem. The persistence
probabilities (pe, qn) that result in a capacity assignment that maximizes the network 𝛼-fairness
are optimized by (9.20):

max
p

1
1 − 𝛼

∑
e

⎛⎜⎜⎝ūepe

∏
n∈ I

to(e)

(
1 −

∑
e′′∈𝛿+(n)

pe′′

)⎞⎟⎟⎠
1−𝛼

subject to: (9.20a)

∑
e∈𝛿+(n)

pe ≤ 1, ∀n ∈ (9.20b)

0 ≤ pe ≤ 1, ∀e ∈ (9.20c)

Note that formulation (9.20) is a simplified version of (5.15) in Section 5.4.1 where:

• Variables ue are eliminated, together with constraints umin
e ≤ ue ≤ umax

e .
• We replace variables qn by its expression

∑
e′′∈𝛿+(n)pe′′ .

Trim Size: 6.625in x 9.625in Mariño c09.tex V3 - 02/11/2016 6:43 P.M. Page 202�

� �

�

202 Optimization of Computer Networks – Modeling and Algorithms

It is possible to show (see Exercise 9.8) that for 𝛼 ≥ 1 fairness factors, problem (9.20)
involves the maximization of a concave function with linear constraints and thus we can apply
a gradient projection algorithm for solving it, without any variable change. The average link
capacity ue, given by the collision-free traffic received by the end node of link e is:

ue = ūepe

∏
n∈ I

to(e)

(1 −
∑

e′′∈𝛿+(n)
pe′′), ∀e ∈

The gradient of the objective function f (9.20a) is:

𝜕f

𝜕pe
=

u1−𝛼
e

pe
−

∑
e′∈ I

from
(a(e))

u1−𝛼
e′

1 −
∑

e′′∈𝛿+(a(e′))p
′′
e
, ∀e ∈

And the algorithm iteration, applying a basic gradient projected approach with a constant
step of sufficiently small 𝛾 is:

pe(t + 1) = Pn

(
pe(t) + 𝛾

𝜕f

𝜕pe
(p(t))

)
, ∀n ∈ , e ∈ 𝛿

+(n) (9.21)

where n is the set of points (pe∀e ∈ 𝛿
+(n)) limited by constraints (9.20bc). This projection

can be solved efficiently (see Exercise 9.13 and its Net2Plan implementation) and using only
local node information.

A distributed implementation of iteration (9.21), is sketched in Algorithm 6. The key aspects
to consider are:

• ue(t) values are the time average of collision-free traffic in link e in the last observation
period. This quantity can be computed by the receiver end of e.

• To update the persistence probabilities of a link e, the link origin node (n) should know
the link capacity (ue) and the capacity of all the links e′ that are interfered with by n (e′ ∈
 I

from(n)). Also, node n should know the persistence probability qn′ for all the nodes n′ that
have an outgoing link interfered by n.

• The previous point requires establishing a signaling mechanism that permits to each link
e destination node (b(e)), delivering monitored ue information to (i) link origin node (its
neighbor) a(e) and to (ii) all the nodes that interfere e (n ∈ I

to(e)). Also, a node n should
deliver its qn probability to all the nodes that interfere with it.

• For those cases when 𝛼 = 1 (proportional fairness), there is no need to monitor or signal ue
estimations, since they apply in the gradient as u1−𝛼

e = u0
e = 1.

Algorithm 6 Persistence probability adjustment for (9.20)
1: Node’s algorithm, signaling part: At times t = t1(n), t2(n),…, node n:
2: Estimates capacity ue of incoming links.
3: Signals ue of incoming links and own qn to all nodes that interfere me.
4: Node’s algorithm, update part: At times t′ = t1

′(n), t2(n)′,…, node n:
5: Collects the most updated signaled values of ue of outgoing links, and of links that

interfere me.
6: Collects the most updated qn′ of nodes n′ that n interferes to.
7: Updates pe(t + 1), for outgoing links e, using (9.21).

Trim Size: 6.625in x 9.625in Mariño c09.tex V3 - 02/11/2016 6:43 P.M. Page 203�

� �

�

Primal Gradient Algorithms 203

1

7

3

2

5
0

Figure 9.10 Example figure

9.5.1 Implementation Example

We test Algorithm 6 in a wireless network like the one shown in Fig. 9.10, with a nominal
rate of ūe = 1 in all links. As an interference model, we assume that reception in a node n is
interfered by any simultaneous transmission of any other node n′ that can send traffic to n and
also interfered by itself (a node cannot receive and transmit simultaneously):

 I
to(e) = {n ≠ a(e), such that exists a link n → b(e)}

⋃
a(e)

As an example, in the topology of Fig. 9.10:

• Link e50 = (5 → 0) is interfered by nodes I
to(e50) = {n0, n1, n2}.

• Links that are interfered by node n3 are: I
from(n3) = {e01, e21, e13, e71, e17, e27, e73, e51}

We also consider bidirectional topologies, so if a link n → n′ exists, link n′ → n also does.
In these circumstances, a node n, in order to update the persistence probabilities of its outgoing
links according to (9.21), needs to know:

• The ue estimations of those links ending in any neighbor node of n. This can be accomplished
if every node estimates the capacity ue of its incoming links and broadcast this information
to all its neighbors.

• The persistence probabilities qn′ of those nodes n′ that are at a two-hop distance from n in
at least a path. This requires every node n′ to (i) broadcast its qn′ value, together with (ii)
the qn′′ values received from its neighbors.

Trim Size: 6.625in x 9.625in Mariño c09.tex V3 - 02/11/2016 6:43 P.M. Page 204�

� �

�

204 Optimization of Computer Networks – Modeling and Algorithms

Signaling and persistence probabilities updates occur asynchronously:

• Each node independently updates its persistence probabilities using the gradient iteration
and the most recent ue and qn information it has and waits a random time between 0.5 and
1.5 time units before the next update.

• Each node independently broadcasts the ue values of its incoming links, its qn value and the
most update ones learned from its in neighbors, and waits a random time between 0.5 and
1.5 units before the next signaling procedure. Broadcast messages arrive instantly.

The duration of the time slot is assumed to be arbitrarily small. Then, the signaling and gra-
dient updates happen in average at the same periodicity, which is much slower than the slotted
and synchronous periodicity of the MAC protocol. In other words, many time slots are pro-
duced applying the persistence probabilities computed. Thus, we can consider ue estimations
as an unbiased and precise observation of the link capacities.

The utility functions of the capacities are the 𝛼-utility functions (3.19), with 𝛼 = 2. The
gradient of the objective function is not Lipschitz continuous and grows to infinity when a
link has pe → 0, or a node n has a persistence probability qn → 1. In practice, both situations
do not happen in the proximity of optimal solutions: (i) when pe = 0, link e is allocated no
capacity and the solution has an infinite gradient coordinate and (ii) a node can have persistence
probability one in the optimum only if it is isolated and thus does not have to share any medium.
Still, in our tests we avoid previous issues by setting a minimum and maximum values of the
persistence probabilities modifying constraints (9.20bc):∑

e∈𝛿+(n)
pe ≤ 0.99, ∀n ∈

0.03 ≤ pe ≤ 0.99, ∀e ∈

The interested reader can observe the interplay of signaling delay, update frequencies, and
other implementation aspects in algorithm convergence using the Net2Plan implementation
provided.

We use a variation of the bounded step technique to avoid drastic changes in the persistence
probability updates. In particular, we limit the pe change in an iteration to Δpe = ±1%, so if
the pe variation in the output links of a node exceeds ±1%, the variations of all the output
links are scaled down by the same factor to satisfy the Δpe limit. Note that this variation
is compatible with the distributed implementation of the algorithm. Figure 9.11 shows the
algorithm convergence using 𝛾 = 0.00001 as the algorithm step. As can be seen, convergence
occurs reasonably fast in practice, to a close to optimal solution (calculated solving (9.20) with
JOM). Note that although small differences exist between the two solutions found, both have a
similar network utility. The reader can check how higher Δpe values or 𝛾 steps can very easily
produce algorithm oscillations, although still with close to optimal solutions.

9.5.1.1 Effect of Estimation Noise

Algorithm 6 relies on the estimation of link capacities ue used in the gradient computations.
In our previous tests, we assumed that these estimations were perfectly precise. This is a rea-
sonable assumption when the number of time slots monitored is large, which means that the

Trim Size: 6.625in x 9.625in Mariño c09.tex V3 - 02/11/2016 6:43 P.M. Page 205�

� �

�

Primal Gradient Algorithms 205

0 10 20 30 40 50 60 70 80 90 100
−900

−850

−800

−750

N
et

w
or

k
ut

ili
ty

Time

0

0.05

0.1

p e

0

0.02

0.04

u e

Figure 9.11 Evolution of Algorithm 6 in the asynchronous case with signaling losses, 𝛾 = 0.00001,
Δpe = 0.01. The upper graphs plot the ue and pe evolution for each link. The lower graph plots the
network utility evolution (9.20a). Optimum solutions are marked with squares on the right-hand side

signaling intervals are much longer than the MAC time slots. When this is not the case, mea-
surement errors occur in the ue predictions and gradient updates use noisy information.

In Chapter 8, we presented the main convergence properties of the stochastic gradient pro-
jection algorithm. We saw that under mild assumptions (e.g., unbiased noisy gradient with
finite variance), convergence in expectation to the proximity of the optimum occurred. In this
section, we show how these convergence properties apply to Algorithm 6. In particular, we
consider the same network and algorithm setup as in Fig. 9.11 in the case when capacity obser-
vations are subject to an unbiased error uniformly chosen in the range of ±20% of the true link
capacity. Results are shown in Fig. 9.12. We see that (i) convergence in expectation seems to
occur reasonably fast, (ii) although naturally the persistence probabilities do not become stable
since gradient observations are noisy and (iii) still, the algorithm fluctuates among solutions
with close to optimal network utilities.

9.6 Transmission Power Assignment in Wireless Networks

In Section 5.5, we modeled a wireless network in a soft-interference scenario where all network
links can transmit simultaneously thanks to an appropriate multiplexing scheme. However, the
receiver side of a link e, sees the incoming power from other links as a noisy interfering signal
that limits the maximum rate that e can attain. In particular, we saw that the theoretical limit
to the capacity ue achievable by a link, is (up to a scaling factor) given by:

ue = log(1 + SNRe) ≈ log(SNRe) (9.22)

Trim Size: 6.625in x 9.625in Mariño c09.tex V3 - 02/11/2016 6:43 P.M. Page 206�

� �

�

206 Optimization of Computer Networks – Modeling and Algorithms

0 10 20 30 40 50 60 70 80 90 100
−900

−850

−800

−750

N
et

w
or

k
ut

ili
ty

Time

0

0.05

0.1

p e

0

0.02

0.04

u e

Figure 9.12 Same example as Fig. 9.11, but capacity observations are subject to a noise uniformly
chosen in the range ±20% of the true link capacity

where SNRe is the Signal-to-Noise Ratio, including the interference power as noise, at the
receiver end of e, and the approximation is valid when SNRe values are large enough. The
SNR of a link e is given by:

SNRe =
peGee

𝜎
2
e +

∑
e′≠epe′Ge′e

(9.23)

In (9.23), pe is the transmission power at link e in linear units, 𝜎2
e is the thermal noise power

at the receiver end, and Gee′ , e, e
′ ∈ is the interference map between links: the fraction of the

power transmitted in pe that reaches the receiver of e′. In general, Gee′ ≪ Gee, when e ≠ e′,
since the multiplexing scheme is able to further attenuate the effects of the interfering signals.

In this section, we attempt a primal approach to solve the power allocation problem that
enforces a fair capacity assignment to the network links:

max
P̃min≤P̃≤P̃max

∑
e

Ue

(
log

(
eP̃e Gee

𝜎
2
e+

∑
e′≠eeP̃e′ Ge′e

))
(9.24)

We note that:

• P̃e is the transmission power in link e expressed in logarithmic units: P̃e = log pe. Recall
that this transformation is required to guarantee concavity in the objective function of (9.24).

• Problem (9.24) is a modification of problem (5.27) in Chapter 5, where variables ue are
replaced by expression ue = log(SNRe).

Trim Size: 6.625in x 9.625in Mariño c09.tex V3 - 02/11/2016 6:43 P.M. Page 207�

� �

�

Primal Gradient Algorithms 207

• Applying Prop. 5.5 in Chapter 5, the objective function is concave with respect to P̃e
variables.

• The constraints P̃min and P̃max parameters are the minimum and maximum transmission
powers in logarithmic units.

Problem (9.24) involves the maximization of a concave function under linear box-like con-
straints and can be solved using a gradient projection algorithm. The gradient of the objective
function f of (9.24) is:

𝜕f
𝜕P̃e

= 𝜕Ue

𝜕P̃e
+

∑
e′′≠e

𝜕Ue′′
𝜕P̃e

(9.25)

For 𝛼-fair utilities of the form (9.26):

Ue(ue) =

{
𝑤e log ue if 𝛼 = 1

𝑤e
y1−𝛼

e

1−𝛼 if 𝛼 ≥ 0, 𝛼 ≠ 1
(9.26)

we have that (taking ue = log SNRe):

𝜕Ue

𝜕P̃e

=
𝜕Ue

𝜕ue

𝜕ue

𝜕P̃e

= 𝑤eu−𝛼e

𝜕Ue′′

𝜕P̃e

=
𝜕Ue′′

𝜕ue′′

𝜕ue′′

𝜕P̃e

= −𝑤e′′u
−𝛼
e′′

SNRe′′

eP̃e′′Ge′′e′′
eP̃e Gee′′

using me′′ = 𝑤e′′u
−𝛼
e′′

SNRe′′

eP̃e′′ Ge′′e′′
, we can rewrite the gradient of the objective function as:

𝜕f

𝜕P̃e

= 𝑤eu−𝛼e − eP̃e
∑
e′′≠e

me′′Gee′′

Then, the gradient projection iteration is given by:

P̃e(t + 1) =
[

P̃e(t) + 𝛾
𝜕f

𝜕P̃e

]P̃max

P̃min

(9.27)

Note that me quantity of a link can be computed from information that wireless network links
typically monitor: the current link capacity ue, its SNR, and the gain of the direct channel Gee.
In addition, a link e should also estimate by external procedures the fractions Gee′′ of the signal
transmitted that reaches other links receiver ends, to compute the iteration (9.27). Algorithm
7 sketches a distributed implementation of the iteration under these assumptions.

9.6.1 Implementation Example

We test Algorithm 7 to control the uplink of a cellular network shown in Fig. 9.13. This means
the communications from the mobile phone to the base station central node. The base station
is permanently monitoring the link capacity, its SNR and its received power, and thus can
compute the me factor for all the links. Since links are permanently informing the base station
about its transmission power, it can also estimate the full interference map Gee′ .

Trim Size: 6.625in x 9.625in Mariño c09.tex V3 - 02/11/2016 6:43 P.M. Page 208�

� �

�

208 Optimization of Computer Networks – Modeling and Algorithms

Algorithm 7 Transmission power allocation for (9.24)
1: Link’s algorithm, signaling part: At times t = t1(e), t2(e),…, link e:
2: Estimates its capacity ue, me and interference map Gee′′ ,∀e′′.
3: Signals me to all network nodes.
4: Link’s algorithm, update part: At times t′ = t1

′(n), t2′(n),…, node n:
5: Collects the most updated signaled/monitored values of ue, me′′ ,Gee′′ ,∀e′′ ≠ e.
6: Updates P̃e(t + 1), using (9.27).

11

1

5

19

3

139
1615

0
14

8

6

20

10

2

7
1812

17

Figure 9.13 Example network: uplink channels in a cell

We assume that mobile phones update their transmission power asynchronously and inde-
pendently. After a power update applying (9.27), the phone waits a random time between 0.5
and 1.5 time units before the next update. In addition, the base station signals each phone the
me and ue values asynchronously. The time between two signaling messages sent to a phone
is random, and uniformly distributed between 0.5 and 1.5 time units. In addition, a 5% of the
messages is lost.

The wireless channel has a path-loss exponent equal to 3. The multiplexing system is able
to attenuate the power of an interfering signal by 60 dB (106). Finally, the Gee′ values are
normalized so that its maximum coordinate is 1, and satisfying that:

Gee′ ∝

{
d−3

e , if e = e′

d−3
e 10−6

, if e ≠ e′F

where de is the length of link e. The maximum and minimum power on each phone in logarith-
mic units are P̃max = 3, P̃min = 0 and the thermal noise 𝜎2 at the base station for all the channels
is the same. We compute it such that it is 10 times smaller than the worst-case interfering power

Trim Size: 6.625in x 9.625in Mariño c09.tex V3 - 02/11/2016 6:43 P.M. Page 209�

� �

�

Primal Gradient Algorithms 209

0 10 20 30 40 50 60 70 80 90 100
−6

−4

−2

N
et

w
or

k
ut

ili
ty

Time

0

1

2

3

P
e

(l
og

 u
ni

ts
)

4
6
8

10
12
14

u e

Figure 9.14 Evolution of Algorithm 7 in the asynchronous case with signaling losses, 𝛾 = 10. The
upper graphs plot the ue and pe evolution for each link. The lower graph plots the network utility evolution
(9.24). Optimum solutions are marked with squares on the right-hand side

in any link:

𝜎
2 =

P̃maxmaxe
∑

e′≠eGe′e

10

According to this, the worst-case so-called Rise Over Thermal (ROT) parameter among the
links is 10, a reasonable assumption in cellular networks.

We assume a 𝛾 = 10 step in the gradient iteration. Also, because of the monitoring processes
involved, we consider that gradient values are actually noisy gradients. To model this, every
phone in every iteration adds a random noise uniformly sampled in the interval [−0.01, 0.01]
to the gradient. Note that since 𝛾 = 10, this can result in a power variation of up to ±0.1 in one
iteration.

Figure 9.14 illustrates the algorithm convergence in the described case and a fairness factor
𝛼 = 2. As we see, the objective function converges to the optimum in about 20 iterations.
Fluctuations in transmission power after that do not reflect in large link capacity deviations,
and actually do not impact the overall network utility.

As predicted by theory in Section 8.8.3, convergence can be improved using a heavy-ball
technique like:

P̃e(t + 1) =
[

P̃e(t) + 𝛾
𝜕f

𝜕P̃e

+ 𝛾h(x(t) − x(t − 1))
]P̃max

P̃min

(9.28)

where 𝛾h(x(t) − x(t − 1)) is an inertia term that tends to make this iteration variation, similar
to the previous one. Figure 9.15 shows the algorithm convergence in the same setting as in

Trim Size: 6.625in x 9.625in Mariño c09.tex V3 - 02/11/2016 6:43 P.M. Page 210�

� �

�

210 Optimization of Computer Networks – Modeling and Algorithms

0 10 20 30 40 50 60 70 80 90 100
−6

−4

−2

N
et

w
or

k
ut

ili
ty

Time

0

1

2

3

P
e

(l
og

 u
ni

ts
)

4
6
8

10
12
14

u e

Figure 9.15 Same example as Fig. 9.14, with a heavy-ball variation (9.28) with 𝛾h = 0.9

Fig. 9.14, but applying the heavy-ball variation (9.28) to with 𝛾h = 0.9. Convergence is sig-
nificantly faster (e.g., 6–7 iterations). However, as also predicted by theory, the heavy-ball
iteration amplifies the effect of noise, resulting in larger deviations around the optimum, and
higher fluctuation in transmission powers. Still, these oscillations produced no effect in the
total network utility.

9.7 Notes and Sources

The mathematical background of primal gradient methods is accessible from multiple sources,
like [1, 2, 5–8]. The material for interior and exterior penalty methods exposed in this chapter
is quite basic and is mainly extracted from [2] and [1]. Barrier penalties have become crucial in
the development of interior point methods for convex programs, the state-of-the-art for many
modern solvers. Exterior penalty methods are the base of SUMT (Sequential Unconstrained
Minimization Techniques) algorithms first proposed in [3]. [1] and [8] are good starting points
for the reader interested in these topics.

An evolution of exterior penalty techniques not covered in this book are the augmented
Lagrangian and multiplier methods. In this case, a constrained problem is replaced by a series
of unconstrained problems adding a per constraint penalty term to the objective, plus another
extra term designed to mimic a Lagrange multiplier (in that sense, it can be seen as an hybrid
of a primal and dual approach). The interest of the method is that constraint multipliers are
obtained as a by-product, and that convergence does not need the 𝜇 term to reach infinity.

Trim Size: 6.625in x 9.625in Mariño c09.tex V3 - 02/11/2016 6:43 P.M. Page 211�

� �

�

Primal Gradient Algorithms 211

However, the convergence of these methods has been somewhat less studied under asyn-
chronous executions and noisy observations. Interested readers are referred to [9].

The primal algorithm for adaptive routing case study in Section 9.3 removing equality con-
straints has been extracted from [10] [11].

A continuous version of the primal algorithm for congestion control in Section 9.4 based on
a barrier function was initially presented in [12] and appears in other sources like [13].

A dual algorithm for adjusting the persistence probabilities in random-access wireless net-
works is presented in [14] and [15]. In Section 9.5 we present a primal approach to a simplified
version of the problem presented in [14] and in Chapter 5.

The model for optimizing the transmission power in soft-interference networks in
Section 9.6 is analogous to that in other works like [15–17] or [18]. In [18] a dual approach for
the cross-layer optimization of congestion control and transmission power yields a distributed
algorithm with similarities, in the transmission power side, to the primal approach presented
in Section 9.6, which is not published elsewhere.

9.8 Exercises

9.1 Use the Net2Plan implementation available in the Net2Plan repository for the adaptive
routing algorithm in Section 9.3.2 to observe the coupled effects that signaling average
delay B, 𝛾 step and maximum route change Δx, have in algorithm convergence. Find
the 𝛾 and Δx parameters that provide empirical convergence in the case of signaling
delays B = 20 ± 5 time units, in two cases: (i) when the optimal routing has a bottleneck
utilization of 0.5 and (ii) when the bottleneck utilization is 0.95.

9.2 Modify the Net2Plan implementation available in the Net2Plan repository of the pri-
mal algorithm for adaptive routing, to implement the algorithm version when equality
constraints are removed (Section 9.3) with or without diagonal scaling. Repeat the tests
described in previous exercise and comment on the empirical convergence improve-
ments of diagonal scaling in these tests. Hint: the diagonal values of the hessian of the
objective function f̄ are given by:

𝜕
2 f̄

𝜕x̄2
p

(x(t)) =
∑
e∈Lp

𝜕
2Fe

𝜕y2
e

(x(t))

where Lp is the path composed of the links belonging to either p or p̄d, but not both.

9.3 Apply an exterior penalty method using a quadratic penalty to devise a primal algorithm
for the adaptive routing problem in Section 9.3.2. Implement the algorithm in Net2Plan
using the provided implementation for the interior penalty as a template. Repeat the
results for the case of a logarithmic barrier.

9.4 Use the Net2Plan implementation available in the Net2Plan repository for the conges-
tion control algorithm in Section 9.4, and empirically study the 𝛾 and Δh trade-offs in
a network like the one in Fig. 9.10.

Trim Size: 6.625in x 9.625in Mariño c09.tex V3 - 02/11/2016 6:43 P.M. Page 212�

� �

�

212 Optimization of Computer Networks – Modeling and Algorithms

9.5 Devise a primal algorithm for solving the congestion control problem in Section 9.4,
using an exterior penalty function for the link capacity constraints. As a penalty function
of link e, use:

P(ye) =

{
0, if ye ≤ ue

(ye − ue)2, if ye > ue

Show that the convergence conditions are satisfied with this penalty function. Use the
Net2Plan implementation available in the Net2Plan repository and repeat the empirical
studies in Section 9.4.1, tailoring the 𝛾 , Δh and 𝜇 parameters. Compare the convergence
results of the interior and exterior penalty methods.

9.6 The multi-path congestion control problem consists of optimizing the demand rates,
in the case when a demand traffic d can be bifurcated in several paths d. We use

to denote the set of all paths in the network, e the paths traversing link e, and xp for
the decision variable representing the traffic carried in path p. The multi-path NUM
problem formulation is given by:

max
x≥0

∑
d

Ud

(∑
p∈d

xp

)
subject to: (9.29a)

∑
p∈e

xp ≤ ue, ∀e ∈ (9.29b)

Devise a primal algorithm for solving the multi-path congestion control problem
using a logarithmic barrier for constraints (9.29b), with a maximum gradient step Δp.
Implement it in Net2Plan and empirically tailor the 𝛾 , Δp, and 𝜖 parameters for a set of
selected topologies.

9.7 Repeat Exercise 9.6 using exterior penalty (9.6) for constraints (9.29b).

9.8 Show that the objective function of problem (9.20) is concave with respect to pe vari-
ables for 𝛼 utilities with 𝛼 ≥ 1. Hint: Apply the relation x = elog x.

9.9 Use the Net2Plan implementation available in the Net2Plan repository for the persis-
tence probability adjustment algorithm in Section 9.5 and repeat the empirical studies
in Section 9.4.1 for other selected topologies. Find a setting 𝛾 , Δpe that is robust for all
the topologies and report on the convergence speed in them with this setting.

9.10 Repeat the previous exercise for 𝛼-fairness values {0.5, 1, 2, 3}. Comment on the effect
of 𝛼 in empirical convergence and provide a theoretical explanation for it.

9.11 Modify the Net2Plan implementation available in the Net2Plan repository of the primal
algorithm for transmission power adjustment, discretizing the power change in units of
0.2 dB, and using the floor function based discretization function (8.21) in Chapter 8.
Tailor empirically the 𝛾 parameter in this case, assuming that 𝛾h = 0 (without heavy-ball
inertia).

Trim Size: 6.625in x 9.625in Mariño c09.tex V3 - 02/11/2016 6:43 P.M. Page 213�

� �

�

Primal Gradient Algorithms 213

9.12 Use the Net2Plan implementation available in the Net2Plan repository for the trans-
mission power adjustment algorithm in Section 9.6 and repeat the empirical studies
in Section 9.5.1 for other selected topologies. For the case when 𝛾h = 0, find a 𝛾 set-
ting robust for all the topologies and report on the convergence speed in them with this
setting.

9.13 Apply KKT optimality conditions to find an efficient algorithm for solving the problem
in ℝn:

min
x≥0

∑
i

(xi − ci)2, subject to:
∑

i

xi = C

References
[1] D. P. Bertsekas, Nonlinear Programming. Bertsekas: Athena Scientific, 1999.
[2] M. Minoux, Mathematical Programming: Theory and Algorithms, ser. Wiley series in discrete mathematics and

optimization. New York, NY, USA: John Wiley & Sons, Inc., Wiley, 1986.
[3] A. Fiacco and G. McCormick, Nonlinear Programming: Sequential Unconstrained Minimization Techniques.

New York, NY, USA: John Wiley & Sons, Inc., 1968.
[4] J. M. McQuillan and D. C. Walden, “The ARPA network design decisions,” Computer Networks (1976), vol. 1,

no. 5, pp. 243–289, 1977.
[5] B. T. Polyak, Introduction to Optimization. Optimization Software New York, 1987.
[6] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods. Athena Scien-

tific, 1997.
[7] L. Lasdon, Optimization Theory for Large Systems, ser. Dover books on Mathematics. Dover Publications, 2002.
[8] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY, USA: Cambridge University Press, 2004.
[9] D. P. Bertsekas, Constrained optimization and Lagrange multiplier methods. New York, NY, USA: Academic

Press, 2014.
[10] J. N. Tsitsiklis and D. P. Bertsekas, “Distributed asynchronous optimal routing in data networks,” Automatic

Control, IEEE Transactions on, vol. 31, no. 4, pp. 325–332, 1986.
[11] D. Bertsekas and R. Gallager, Data Networks. Englewood Cliffs, NJ: Prentice Hall, 1992.
[12] F. P. Kelly, A. K. Maulloo, and D. K. Tan, “Rate control for communication networks: shadow prices, propor-

tional fairness and stability,” Journal of the Operational Research Society, pp. 237–252, 1998.
[13] R. Srikant and L. Ying, Communication Networks: An Optimization, Control, and Stochastic Networks Perspec-

tive. Cambridge, UK: Cambridge University Press, 2013.
[14] J.-W. Lee, M. Chiang, and A. R. Calderbank, “Utility-optimal random-access control,” Wireless Communica-

tions, IEEE Transactions on, vol. 6, no. 7, pp. 2741–2751, 2007.
[15] M. Chiang, S. H. Low, J. C. Doyle et al., “Layering as optimization decomposition: A mathematical theory of

network architectures,” Proceedings of the IEEE, vol. 95, no. 1, pp. 255–312, 2007.
[16] D. O’Neill, D. Julian, and S. Boyd, “Seeking Foschini’s genie: optimal rates and powers in wireless networks,”

IEEE Transactions on Vehicular Technology, 2003.
[17] D. C. ONeill, D. Julian, and S. Boyd, “Adaptive management of network resources,” in Vehicular Technology

Conference, 2003. VTC 2003-Fall. 2003 IEEE 58th, vol. 3. IEEE, 2003, pp. 1929–1933.
[18] M. Chiang, “Balancing transport and physical layers in wireless multihop networks: Jointly optimal congestion

control and power control,” Selected Areas in Communications, IEEE Journal on, vol. 23, no. 1, pp. 104–116,
2005.

Trim Size: 6.625in x 9.625in Mariño c10.tex V3 - 02/11/2016 6:45 P.M. Page 214�

� �

�

10
Dual Gradient Algorithms

10.1 Introduction

In this chapter we present a selected set of case studies to illustrate the so-called dual approach
for devising network design algorithms. In brief, a dual approach means that a gradient pro-
jection algorithm is applied to find the optimum multipliers of a Lagrange relaxation of the
problem, as an indirect form to also find its primal solution. Methods obtained in the case
studies are amenable to distributed implementation, and inherit the convergence properties for
asynchronous executions and noisy gradient observations from the standard gradient iteration.

Let (10.1) be the primal problem to solve.

min
x∈

f (x) subject to: (10.1a)

𝜋i ∶ gi(x) ≤ 0, i = 1,… ,M (10.1b)

where set represents an arbitrary set of constraints which are not relaxed, gi(x) ≥ 0 are the
relaxed constraints and 𝜋i their associated non-negative multipliers. Given a vector of feasible
multipliers 𝜋 ≥ 0, the set of associated primal solutions is given by:

∗(𝜋) = arg min
x∈

{
f (x) +

∑
i

𝜋igi(x)

}
(10.2)

Under mild assumptions (e.g., being a compact set), sets ∗(𝜋) are never empty and at
least a minimizer x∗(𝜋) ∈ (𝜋) exists for every 𝜋 ≥ 0 vector. Then, the dual function:

𝑤(𝜋) = min
x∈

{
f (x) +

∑
i

𝜋igi(x)

}
is well defined and is concave for all its domain 𝜋 ≥ 0. A key idea of the dual approach, is that
for any multiplier 𝜋, a subgradient s(𝜋) of the dual function in 𝜋 is given by (see Prop. B.8 in
Appendix B)1:

si = gi(x∗(𝜋)), ∀i = 1,… ,M (10.3)

1 The word supergradient actually describes better s(𝜋), since it defines an overestimator of a concave function. As
established in Appendix A and is customary in the literature, we use the word subgradient to refer to both subgradients
of convex functions and supergradients of concave functions.

Optimization of Computer Networks – Modeling and Algorithms: A Hands-On Approach,
First Edition. Pablo Pavón Mariño.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/PavonMarinoSol16

Trim Size: 6.625in x 9.625in Mariño c10.tex V3 - 02/11/2016 6:45 P.M. Page 215�

� �

�

Dual Gradient Algorithms 215

and this holds for any minimizer x∗(𝜋) of the multipliers. That is, from a vector of multipliers
𝜋 we can obtain a minimizer x∗(𝜋), which can violate the relaxed constraints, and observing
the slack of the constraints g(x∗(𝜋)) we form a subgradient.

The rationale of the method is then that the optimum multipliers 𝜋∗ that maximize the dual
function can be computed using any flavor of subgradient projection algorithm. When a dis-
tributed implementation is sought, a basic iteration with a constant 𝛾 step is the usual choice:

𝜋i(t + 1) =
[
𝜋i(t) + 𝛾gi

(
x∗(𝜋(t))

)]
0, ∀i = 1,… ,M (10.4)

As shown in Appendix B, optimization theory tells us that if the original problem has the
property of strong duality (e.g., a convex problem where Slater conditions hold), once the
optimum 𝜋

∗ multipliers are found, at least one among their associate minimizers x∗(𝜋∗) is an
optimal primal solution. In summary, the general scheme of the dual approach is described in
Algorithm 8.

Algorithm 8 General dual algorithm for (10.1)
1: Initialization: t = 0, 𝜋(0) is any non-zero vector.
2: Primal iteration: Compute a minimizer x∗(𝜋(t)) solving (10.2).
3: Dual iteration: Compute 𝜋(t + 1) multipliers with (10.4).
4: If optimum 𝜋

∗ is not reached, t ← t + 1, go to the Primal iteration.

The following considerations should be made:

• Equality constraints: To simplify the writing, previous explanations assumed only inequality
constraints. When some constraints are in the equality form, the whole scheme is the same.
The only difference occurs in the gradient update (10.4). Since 𝜋i multipliers for equality
constraints do not need to be non-negative, the projection is skipped for them in the subgra-
dient iteration. Then, if we denote = and ≤ to be the sets of indexes of the equality and
inequality constraints, respectively, the subgradient update (10.4) is replaced by:

𝜋i(t + 1) =
[
𝜋i(t) + 𝛾gi(x(𝜋(t)))

]
0, ∀i ∈ ≤ (10.5)

𝜋i(t + 1) = 𝜋i(t) + 𝛾gi(x(𝜋(t))), ∀i ∈ = (10.6)

• Differentiability of the dual function: For those cases when the dual function is differen-
tiable, we know that subgradients (10.3) are actually gradients. This is good news, since the
iteration (10.4) is a gradient projection algorithm that is known to converge to the optimum
multipliers for a constant 𝛾 step, as long as it is sufficiently small. Recall that when the dual
function is not differentiable, a constant 𝛾 step guarantees convergence just to a proximity
of the optimum. In problems with strong duality, the dual function is differentiable every-
where if the objective function f is strictly convex, gi are convex functions, and a convex
set (see Prop. B.9). Instead, when strong duality does not hold, the dual function is never
differentiable in any dual optimum 𝜋

∗ (see Prop. B.10).
• Uniqueness of the minimizers: For any feasible multipliers 𝜋, the set of associated

minimizers ∗(𝜋) contains the solutions to the relaxed problem (10.2). If the solution of
(10.2) is unique, ∗(𝜋) has a single element (x∗(𝜋)). This is a desirable property and an
important requirement in many algorithms. The reason is that when optimum multipliers

Trim Size: 6.625in x 9.625in Mariño c10.tex V3 - 02/11/2016 6:45 P.M. Page 216�

� �

�

216 Optimization of Computer Networks – Modeling and Algorithms

𝜋
∗ are reached, at least one associated minimizer is guaranteed to be primal optimum. But

if more than one minimizer exists, the rest can be non-optimum and even unfeasible. A
sufficient condition to have uniqueness in the minimizer computation is that the problem
objective function f is strictly convex, the constraints g(x) are convex and is a convex
set. Then, the relaxed problem becomes the minimization of a strictly convex function in a
convex set, which has a unique optimum.

• Problem regularization. From previous points, it becomes evident that strict convexity of
the objective function is a valuable feature to improve convergence of dual algorithms. For
those problems (10.1) where the objective function f is convex but not strictly convex, strict
convexity can be achieved by adding to f a so-called regularization term like 𝜖

∑
jx

2
j , being

xj the j-th coordinate of vector x. For sufficiently small 𝜖 > 0, the resulting objective func-
tion f (x) + 𝜖

∑
jx

2
j is in practice equal to the original one, and strictly convex2. However, as

will be shown in a later case study, numerical difficulties can prevent the use of too small
𝜖 factors. Other regularization techniques exist, for instance, the so-called proximal min-
imization algorithms, consisting of adding the term 𝜖‖x(t)||2 in the step t of the gradient
iteration [1].

• Feasiblity of intermediate solutions. One of the disadvantages of the dual approach, is that
it can produce unfeasible solutions that violate the dualized constraints in all the iterations
but the last. In contrast, recall that in the primal gradient methods, every iteration produced
a feasible solution.

• Asynchronous operation, use of outdated information: The dual approach described in Algo-
rithm 8 enjoys the convergence properties of the standard gradient iteration in the presence
of asynchronous updates and also the use of delayed information in the gradient computa-
tion. These aspects will be explored in empirical tests in the case studies.

• Dual approach in -hard problems. In contrast to the primal methods described in
Chapter 9, the dual approach can be applied to -hard problems, or in general, for
problems for which strong duality does not need to hold. In such cases, the convergence of
the method has the following issues:

– The dual function is not differentiable, at least in any optimum 𝜋
∗ multipliers. Then, (10.4)

is a subgradient iteration and convergence requires a diminishing step rule, difficult to
realize in distributed implementations.

– Even if the optimum multipliers 𝜋∗ are reached, there is no guarantee that any associated
minimizer is optimum (which would mean that strong duality holds for that particular
problem instance) or even feasible.

Still, dual approaches can be valuable methods for many -hard problems. The rationale
is that given some multipliers 𝜋, maybe in the proximity of 𝜋∗, the associated minimizers
are optimum solutions to problems that can be small variations of the original problem (see
Prop. B.19 in Appendix B for details). This aspect will be further explored in Chapter 11.

The creative part in the algorithm design, is finding for our target problem the set of con-
straints to relax such that the resulting primal (10.2) and dual iterations (10.4) can be imple-
mented in a distributed form or require a significantly lower computation. In this respect, a
major advantage of the dual approach is that the projection in the gradient iteration is always

2 Recall that for any 𝜖 > 0, 𝜖
∑

jx
2
j is strictly convex and that a strictly convex function summed to a convex function

is strictly convex.

Trim Size: 6.625in x 9.625in Mariño c10.tex V3 - 02/11/2016 6:45 P.M. Page 217�

� �

�

Dual Gradient Algorithms 217

Table 10.1 Case studies in Chapter 9.

Problem type Algorithm Section

Adaptive bifurcated routing Dual gradient and
regularization

Section 10.2

Center-free backpressure routing Dual subgradient without
regularization

Section 10.3

Distributed congestion control Dual gradient Section 10.4
Backoff adjustment in CSMA

protocols
Dual gradient Section 10.5

performed in a very simple constraint set 𝜋 ≥ 0 and thus each multiplier can be projected
without knowing the value of the rest. In turn, one of the disadvantages is that a problem reg-
ularization may be needed if the objective function is not strictly convex and this can further
complicate the primal iteration.

What follows is a comprehensive set of case studies trying to cover the main techniques
involved in dual-based network algorithms (see Table 10.1 for an index). Case studies include
empirical tests to expose some trade-offs when tailoring the algorithm parameters.

10.2 Adaptive Routing in Data Networks

In this section we present a dual algorithm for the minimum average hop routing problem in a
network (,), with a given traffic demand . We focus on a path-flow formulation (10.7),
being the set of paths and lp the number of links traversed by a path p ∈ .

min
x

∑
p

lpxp subject to: (10.7a)∑
p∈e

xp ≤ ue, ∀e ∈ (10.7b)∑
p∈d

xp = hd, ∀d ∈ (10.7c)

xp ≥ 0, ∀p ∈ (10.7d)

Dualizing the link capacity constraints (10.7b) using 𝜋e as link multipliers, we have the dual
problem max

𝜋≥0𝑤(𝜋), where 𝑤(𝜋) is the dual function that assigns to each link weight vector
𝜋 the minimum cost of its relaxed routing, given by:

𝑤(𝜋) = min
x∈(10.7c,d)

{∑
p

lpxp +
∑

e

𝜋e

(∑
p∈e

xp − ue

)}

= min
x∈(10.7c,d)

{∑
p

xp

∑
e∈p

(𝜋e + 1) −
∑

e

𝜋eue

}
The dual function may be non-differentiable, since the objective function is not strictly con-

vex. A subgradient s of the the dual function is given by the slack of relaxed constraints, and
this yields to the dual iteration:

Trim Size: 6.625in x 9.625in Mariño c10.tex V3 - 02/11/2016 6:45 P.M. Page 218�

� �

�

218 Optimization of Computer Networks – Modeling and Algorithms

𝜋e(t + 1) =

[
𝜋e(t) + 𝛾

(∑
p∈e

xp − ue

)]
0

, ∀e ∈ (10.8)

We notice that each link e is able to compute its subgradient coordinate using local informa-
tion: its capacity ue and the traffic traversing the link

∑
p∈e

xp. For this, no per-flow information
should be kept. Note also that when 𝛾 steps are constant, 𝜋e values evolving as in (10.8) become
proportional to the length of the queue of packets in link e.

Periodically, the 𝜋e(t + 1) values computed should be signaled to all the network nodes3.
Then, each source d adapts the routing to the current weights making:

{xp, p ∈ d} = arg min
xp≥0,

∑
p∈d

xp=hd

{ ∑
p∈d

xp
∑
e∈p

(𝜋e + 1)

}
(10.9)

which means that the traffic of a demand d should be carried only through paths which are
shortest paths using 𝜋e + 1 as link weights. This is consistent with the optimality conditions
in the routing problem seen in Chapter 4, which states that the optimal routing is a shortest
path routing when the link weights are the optimal multipliers.

Unfortunately, the described scheme yields two main difficulties:

• Since the dual function may be non-differentiable, the subgradient iteration (10.8) with a
constant step length is guaranteed to converge just to the proximity of the optimum link
weights.

• Even if the optimum weights are attained, there may be infinite associated routings solving
(10.9). This happens when more than one shortest path route exists. Theory guarantees that
at least one splitting of the traffic among the shortest path routes is optimal, but others may
be non-optimal and even unfeasible. The algorithm provides no information on which one
to choose. Example 10.1 illustrates this case.

In this case study, we address the previous issues by adding a regularization term 𝜖
∑

px2
p to

the objective function, which now becomes strictly convex for any 𝜖 > 0. By choosing an 𝜖

value sufficiently small, the regularized problem is in practice equal to the original one, but
now the dual function is differentiable and only one minimizer exists for each multipler 𝜋.

Regularization changes nothing in the dual update (10.8), but complicates the routing update
performed by each demand, which now requires solving a somewhat more complex problem:

{xp, p ∈ d} = arg min
xp≥0,

∑
p∈d

xp=hd

{ ∑
p∈d

xp
∑
e∈p

(𝜋e + 1)) +
∑

p∈d

x2
p

}
(10.10)

The good side is that (10.10) can still be efficiently solved (see Exercise 10.2, and its
Net2Plan implementation) and only requires using demand local information and signaled
𝜋e values. Algorithm 9 illustrates a distributed implementation of the complete scheme.

3 This can be implemented in multiple forms in current networks. For instance, using protocols like BGP-LS (BGP
Link-State) or OSPF-TE (OSPF Traffic Engineering) in IP/MPLS networks. Software Defined Networking (SDN)
controllers can also collect and disseminate this information.

Trim Size: 6.625in x 9.625in Mariño c10.tex V3 - 02/11/2016 6:45 P.M. Page 219�

� �

�

Dual Gradient Algorithms 219

Algorithm 9 Adaptive routing for regularized (10.7)
1: Link’s algorithm: At times t = t1(e), t2(e),…, link e:
2: Estimates link carried traffic and weight 𝜋e.
3: Signals 𝜋e to all network nodes.
4: Demand’s algorithm: At times t′ = t1

′(d), t2′(d),…, demand d:
5: Collects the most updated signaled 𝜋e values.
6: Updates (xp, p ∈ d), using (10.10).

Example 10.1 Consider the network in Fig. 10.1, with one single traffic demand of offered
volume 1.5 units, which should be carried through two paths, p, and p′. All the links have a
capacity ue = 1 and thus both paths should carry traffic to satisfy the demand. According to the
optimality conditions of the problem, this means that both paths are shortest paths when the 𝜋e
weights are optimal. Let us assume that the dual iteration reached such optimal link weights.
Applying (10.9), we have no information on which splitting of the traffic between two paths
could be chosen. One of these solutions (xp = 1, xp′ = 0.5) is optimal. However, other solutions
are suboptimal (e.g., xp = 0.75, xp′ = 0.75), or can be even unfeasible (xp = 1.25, xp′ = 0.25).

10.2.1 Optimality and Stability

Optimality and stability for any initial conditions can be guaranteed in the regularized version
of the dual algorithm described, for sufficiently small 𝛾 steps that make the algorithm converge
to the optimal link multipliers. This may be no longer true if the original problem (10.7) is not
convex for example, if non-bifurcated discrete constraints like xp ∈ {0, hd(p)} are added. In this
case, oscillations and instabilities can occur, analogous to those described in Section 9.3.2.

10.2.2 Implementation Example

In this section we present some experimental tests of Algorithm 9. The network topology (Fig.
9.2), link capacities (ue = 25,∀e) and traffic matrix (9.12) are the same as the ones in Section
9.3.3. The candidate paths for each demand are all the loopless paths between the demand end
nodes. The link weight and routing updates are performed asynchronously. Each link updates
its weight using the gradient iteration, signals it to the rest of network nodes, and waits a
random time between 0.5 and 1.5 time units to the next update. Signaling messages arrive
immediately to all network nodes, except for a 5% of the messages that are randomly lost.

1 2

pʹ

p

Figure 10.1 Example network

Trim Size: 6.625in x 9.625in Mariño c10.tex V3 - 02/11/2016 6:45 P.M. Page 220�

� �

�

220 Optimization of Computer Networks – Modeling and Algorithms

Each router updates the routing of all its outgoing demands using the most recent link weight
information it has, and then waits a random time between 0.5 and 1.5 time units before the
next routing update.

10.2.2.1 Dimensioning of the 𝝐 Regularization Parameter

Figure 10.2 illustrates the algorithm convergence for the case of 𝜖 = 10−3 and a step 𝛾 = 0.001.
We observe that, during the first iterations, some links are oversubscribed and their link weights
grow, while others are not and their weights decrease. This first phase is slow given the small
𝛾 step. However, when a critical point is reached, the routing is successfully adapted in a few
iterations and remains stable in the optimum. In our experiments, higher 𝛾 steps could fail to
do that. We argue that the long first phase should not be seen as a big issue in an adaptive
routing algorithm, which is supposed to be permanently reacting to relatively slow variable
network conditions.

Parameter 𝜖 plays a very important role to keep algorithm stability. Using lower 𝜖 values
means that small variations in the link weights can produce drastic changes in the routing,
since the reaction is closer to “non-bifurcation, shortest path takes all”. In our example,
this happens, for example for 𝜖 = 10−5, as shown in Fig. 10.3. See that links can be
oversubscribed.

0 50 100 150 200 250 300 350 400 450 500

100

150

R
eg

ul
ar

iz
ed

 c
os

t

Time

0

0.5

1

π e

0

10

20

30

y e

0

10

20

x p

Figure 10.2 Evolution of Algorithm 9 in the asynchronous case with signaling losses, 𝛾 = 0.001,
𝜖 = 10−3. The upper graph plots the xp evolution for each path, the ye graph shows the traffic in each link,
𝜋e graph is the link weight evolution, and the lower graph plots the regularized cost

∑
plpxp + 𝜖

∑
px2

p.
Optimum solutions are marked with squares on the right-hand side. Regularized costs are lower than
the optimal occuring since in the first phase, some links are oversubscribed, and the solution is
unfeasible

Trim Size: 6.625in x 9.625in Mariño c10.tex V3 - 02/11/2016 6:45 P.M. Page 221�

� �

�

Dual Gradient Algorithms 221

0 50 100 150 200 250 300 350 400 450 500

100

150

R
eg

ul
ar

iz
ed

 c
os

t

Time

0

0.5

1

0

10

20

30
0

10

20

π e
y e

x p

Figure 10.3 Same example as Fig. 10.2, effect of reducing 𝜖 to 𝜖 = 10−5

10.2.2.2 Effects of Signaling Delays

Higher signaling delays means using outdated information in the link iteration that can hin-
der or even prevent convergence. As an example, Fig. 10.4 shows the algorithm evolution in
the same case as Fig. 10.2, but assuming that each signaling message takes a random delay
uniformly distributed in the interval B = 10 ± 0.5. As is shown, oscillations occur and neither
equilibrium nor optimality are reached (actually, solutions violate link capacity constraints).
The reader can easily check how smaller 𝛾 values can counteract this effect, as predicted by
theory.

10.2.2.3 Effects of Gradient Noise

Inaccuracies in the computation of the link traffic and/or the link capacity (when it is not fixed)
mean that link weights can have measurement errors. As predicted by theory, convergence
is then guaranteed to the proximity of the optimum, as long as the noise variance remains
finite. As an example, Fig. 10.5 shows the algorithm evolution when link available capacities
(ue − ye) are measured with an unbiased error of ±2.5 traffic units, which is ±10% of link
capacity. As can be seen, the link measurement errors are translated into small fluctuations
in some of the routes, which can cause link oversubscriptions. The routes of non-bifurcated
demands are insensitive as long as the link weight noise is not large enough to change the
routing decision.

10.3 Backpressure (Center-Free) Routing

We refer to a center-free routing algorithm as an scheme where routing decisions in a node are
determined by signaling information from their neighbor nodes and do not rely on network

Trim Size: 6.625in x 9.625in Mariño c10.tex V3 - 02/11/2016 6:45 P.M. Page 222�

� �

�

222 Optimization of Computer Networks – Modeling and Algorithms

0 50 100 150 200 250 300 350 400 450 500

100

150

R
eg

ul
ar

iz
ed

 c
os

t

Time

0

0.5

1

π e

0

10

20

30

y e

0

10

20
x p

Figure 10.4 Same example as Fig. 10.2, effect of signaling delay B = 10 ± 0.5

0 50 100 150 200 250 300 350 400 450 500

100

150

R
eg

ul
ar

iz
ed

 c
os

t

Time

0

0.5

1

0

10

20

30
0

10

20

π e
y e

x p

Figure 10.5 Same example as Fig. 10.2, effect of measurement error in idle link capacity of ±10% of
link capacity

Trim Size: 6.625in x 9.625in Mariño c10.tex V3 - 02/11/2016 6:45 P.M. Page 223�

� �

�

Dual Gradient Algorithms 223

wide information (e.g., link weights of all network links traversed). Moreover, routing
decisions are taken hop-by-hop, in contrast to the previous section where nodes bifurcate the
traffic among a precomputed set of end-to-end paths.

Center-free algorithms can be obtained from flow-link or destination-link formulations, by
relaxing flow conservation constraints and moving them to the objective function. In this
section we illustrate this, presenting a flavor of a well-known center-free scheme called the
backpressure algorithm.

We focus on a flow-link formulation of the minimum average hop routing problem in a
network (,), with offered traffic given by demand set :

min
x

ΔP
∑
de

xde subject to: (10.11a)

∑
e∈𝛿+(n)

xde −
∑

e∈𝛿−(n)
xde

{
≥ hd, if n = a(d)
≥ 0, otherwise

, ∀d ∈ , n ∈ − b(d) (10.11b)

∑
d

xde ≤ ue, ∀e ∈ (10.11c)

xde ≥ 0, ∀d ∈ , e ∈ (10.11d)

Factor ΔP > 0 in the objective function is the pressure difference threshold. Note that the
optimum routing of (10.11) is the same whatever value ΔP takes. The importance of ΔP factor
to explain the algorithm behavior will be clarified later.

Compared to the traditional flow-link formulation, we have eliminated the flow conservation
constraints (10.11b) for demand end nodes (n = b(d)) since they are redundant. Also, we have
replaced equalities with inequalities. Both problems are equivalent in the sense that, in the
optimum flow, conservation constraints are satisfied with equalities, since injecting more traffic
in the links than strictly needed is not optimal.

We dualize constraints (10.11b), using qnd as multipliers associated to node n and demand
d. Note that these multipliers are now non-negative. The relaxed problem is thus:

min
x∈(10.11c,d)

ΔP
∑
de

xde +
∑

d,n≠b(d)
qnd

(
hnd −

∑
e∈𝛿+(n)

xte − +
∑

e∈𝛿−(n)
xte

)
(10.12a)

= min
x∈(10.11c,d)

∑
de

xde

(
ΔP + qb(e)t − qa(e)t

)
+

∑
d,n≠b(d)

qndhnd (10.12b)

To simplify the notation, we used hnd to denote the traffic of demand d that is generated by
node n:

hnd =
{

hd, if n = a(d),
0, otherwise

, ∀d, n ≠ b(d)

In the dual approach, the evolution of the qnd multipliers is controlled by the gradient pro-
jection iteration:

qnd(t + 1) =

[
qnd(t) + 𝛾

(
hnd −

∑
e∈𝛿+(n)

xde(t) +
∑

e∈𝛿−(n)
xde(t)

)]
0

(10.13)

Trim Size: 6.625in x 9.625in Mariño c10.tex V3 - 02/11/2016 6:45 P.M. Page 224�

� �

�

224 Optimization of Computer Networks – Modeling and Algorithms

The following considerations are made:

• The variation of qnd in the dual iteration (10.13) is proportional to the difference between the
traffic of d that the node should forward, minus the traffic it actually forwards, and becomes
zero if the accumulation of these quantities along time vanishes. Then, for fixed step 𝛾 , qnd
values are proportional to the queue length Qnd associated to the traffic of demand d, that
is at node n, waiting to be forwarded:

qnd = 𝛾Qnd

• The algorithm requires that each node n is signaled the qn′d values for all demands d, and
from all neighbor nodes n′ to whom it can transmit traffic to (n′ = b(e),∀e ∈ 𝛿

+(n)). There-
fore, each node n′ should just collect the sizes of its internal queues (one per demand) and
signal this information to its incoming neighbors (the nodes from which it receives traffic).

• For a given set of qnd multipliers signaled, each node n determines the traffic to forward
solving the relaxed problem (10.12). Interestingly, this problem can be solved independently
for each link: a link e must forward the traffic of demand d for which the quantity (ΔP +
qb(e)d − qa(e)d) is minimum, assuming that the quantity is negative. If ΔP + qb(e)d − qa(e)d) >
0 for all demands, the link does not forward traffic.

• According to the previous operation, the multiplier qnd can be interpreted as a pressure that
node n feels to forward traffic of demand d. The forwarding condition qa(e)d − qb(e)d > ΔP
means that the pressure felt by the origin node of e to transmit traffic of d minus the pressure
felt by the destination node should be higher than the pressure difference threshold ΔP.

Algorithm 10 summarizes the described backpressure scheme. A similar dual approach can
be applied to destination-link formulation. This is left as an exercise (Exercise 10.6).

Algorithm 10 Center-free backpressure routing for (10.11)
1: Node’s algorithm: At times t = t1(n), t2(n),…, node n:
2: Collects queue length information for its queues {qnd,∀d}.
3: Signals it to incoming neighbor nodes.
4: Link’s algorithm: At times t′ = t′1(e), t

′
2(e),…, link e:

5: Collects the most updated qnd values signaled from outgoing neighbors.
6: Transmits traffic of demand d with highest pressure difference, as long as it is >ΔP.

10.3.1 Relation between 𝛾 , ΔP, and Average Queue Sizes, Qnd

The following relations hold:

• The optimum routing does not depend on the ΔP parameter, but the optimum multipliers qnd
do depend on it. Actually, if we denote qnd(ΔP) to the optimum qnd multipliers of problem
(10.11) using the ΔP threshold, we have:

qnd(ΔP) = ΔPqnd(1)

In other words, multipliers are proportional to the ΔP parameter. The proof is left for
Exercise 10.7. Intuitively, the dual function of (10.11) is proportional to ΔP and so are

Trim Size: 6.625in x 9.625in Mariño c10.tex V3 - 02/11/2016 6:45 P.M. Page 225�

� �

�

Dual Gradient Algorithms 225

qnd multipliers as subgradients of the dual function. Interestingly, this also means that if a 𝛾
step is sufficiently small to guarantee convergence for a problem with ΔP factor, an 𝛼𝛾 step
will also be sufficiently small to guarantee convergence in a problem with 𝛼ΔP.

• If a constant 𝛾 step is used, and if the algorithm converges to the optimum multipliers qnd,
then, according to (10.13):

qnd = 𝛾Qnd

Putting together previous points, we have that if convergence is achieved, the resulting queue
sizes Qnd(ΔP, 𝛾), for a problem with pressure difference ΔP and a constant step 𝛾 , satisfies the
relation:

Qnd(ΔP1, 𝛾1) =
ΔP1𝛾2

ΔP2𝛾1
Qnd(ΔP2, 𝛾2) (10.14)

And the convergence guarantees depend on the ratios ΔP1∕𝛾1 and Δp2∕𝛾2. Then, 𝛾 and
ΔP parameters are coupled and, for analyzing convergence guarantees and queue evolution of
Algorithm 10 it is enough to focus just on the ratio ΔP∕𝛾 .

10.3.2 Implementation Example

In this section we present experimental results of Algorithm 10 to illustrate some of the
trade-offs appearing in it. We focus on a network like the one in previous section (topology in
Fig. 9.2), traffic matrix (9.12). All links have a capacity of ue = 25 units.

We assume that time is slotted and assume without loss of generality a slot duration of 1
time unit. New traffic is generated every time slot, according to the traffic matrix (9.12). Also,
for every time slot, each link repeats for ue times the forwarding procedure:

• Choose the demand d with highest pressure difference qa(e)d − qb(e)d. If more than one exists,
pick one arbitrarily.

• If the pressure difference is above ΔP = 1, forward one packet of the queue for demand d
and reduce appropriately the queue size in a(e) and thus the qa(e)d pressure.

The signaling processes occur asynchronously for every node and asynchronously to the
slotted operation. A node collects its queue information, signals it in a message to each incom-
ing neighbor node, and waits a random time between 0.5 and 1.5 time units until the next
signaling event. Some 5% of the signaling messages are lost. Then, a node uses its local queues
qa(e)d information for the forwarding decision, but possibly outdated qb(e)d sizes are signaled
from the neighbor nodes.

10.3.2.1 Non-Differentiability of the Dual Function

Since the objective function (10.11a) is not strictly convex, the dual function is not differ-
entiable. Thus, (10.13) is a subgradient algorithm, with guarantees of converging just to the
proximity of the optimum for constant 𝛾 steps. In addition, even if the optimum qnd multipliers
are found, many minimizers can exist. This reflects in the possibility of having several demands
with the same maximum pressure difference in a node. Algorithm 10 picks one arbitrarily.

Trim Size: 6.625in x 9.625in Mariño c10.tex V3 - 02/11/2016 6:45 P.M. Page 226�

� �

�

226 Optimization of Computer Networks – Modeling and Algorithms

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0.2
0.4
0.6
0.8

1
1.2

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

Time

0

100

200

Q
nd

0

10

20
x p

Figure 10.6 Evolution of Algorithm 10 in asynchronous case with signaling losses, 𝛾 = 0.01, ΔP = 1.
The upper graph plots the resulting route evolution, the medium graph the queue sizes in the average
number of packets, and the lower graph the average number of hops

In this case, we do not address the lack of differentiability adding a regularization term
𝜖
∑

dex2
de to the objective function. The reason is that we cannot send fractions of packets

through a link (something that could come up if a regularization term is used). Besides, we are
targeting a scheduling algorithm where the forwarding decisions are as simple as possible to
permit fast implementations to be used in time slots in the order of microseconds/miliseconds.
As we will see, the resulting fluctuations that can appear at the packet level become relatively
unimportant observing the aggregated traffic at higher time scales.

10.3.2.2 Trade-Off between Queue Sizes and Convergence

As predicted by theory, sufficiently small 𝛾 steps are needed to have algorithm convergence.
According to relation (10.14), this means that resulting queue sizes should be large enough.
Longer queues mean longer end-to-end delays and thus there is a trade-off between algorithm
convergence and queueing delays: there is a minimum and unavoidable queueing delay that
should be accepted to have algorithm convergence.

Figures 10.6–10.8 help us to illustrate these aspects. The three figures show the evolution
of the routes, queue sizes (in number of packets), and average number of hops of the routing
for different 𝛾 steps (ΔP = 1). Each sample of these quantities is the result of averaging 100
contiguous slots. We see that:

• Convergence to the optimum routing is achieved in Fig. 10.6 (𝛾 = 0.01) and Fig. 10.7 (𝛾 =
0.1). The resulting average number of hops is close to 1, which is possible since the offered

Trim Size: 6.625in x 9.625in Mariño c10.tex V3 - 02/11/2016 6:45 P.M. Page 227�

� �

�

Dual Gradient Algorithms 227

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0.2
0.4
0.6
0.8

1
1.2

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

Time

0

10

20

Q
nd

0

10

20

x p

Figure 10.7 Same example as Fig. 10.6, 𝛾 = 0.1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0.5

1

1.5

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

Time

0

5

10

Q
nd

0

10

20

x p

Figure 10.8 Same example as Fig. 10.6, 𝛾 = 1

Trim Size: 6.625in x 9.625in Mariño c10.tex V3 - 02/11/2016 6:45 P.M. Page 228�

� �

�

228 Optimization of Computer Networks – Modeling and Algorithms

traffic between the nodes separated two hops is small. The initial phase with a number of
hops lower than 1 reflects the fact that the network is initially empty. In this transitory part,
traffic enters the network but does not leave it, since queues are growing and the traffic
is being stored instead of forwarded. This phase results in a significant delay to the initial
traffic that may be queued a relatively long time and/or follow very long routes. It ends when
queues stabilize and the resulting routes are optimum.

• As predicted by theory, average queue sizes when 𝛾 = 0.1 are 10 times smaller than when
𝛾 = 0.01. Then, they are also relatively more affected by the random fluctuations of the
traffic. The optimum queue values plotted correspond to qnd∕𝛾 .

• When 𝛾 = 1, the equilibrium reached is far from an optimum solution: the average number
of hops is now ≈ 1.4 and queue sizes are much larger than qnd∕𝛾 .

Exercise 10.8 observes the effects of increasing signaling delays into the algorithm. Inter-
estingly, it can be seen how a backpressure algorithm is significantly robust to such delays.

10.4 Congestion Control

In this section, we show a dual approach to solving the NUM congestion control problem:

max
h

∑
d

Ud(hd) subject to: (10.15a)

∑
d∶e∈pd

hd ≤ ue, ∀e ∈ (10.15b)

md ≤ hd ≤ Md, ∀d ∈ (10.15c)

where decision variable hd is the rate allocated to demand d ∈ , restricted to the interval
[md,Md]. pd is the known path associated to demand d and Ud(hd) a strictly concave utility
function that determines the fairness properties of the optimum solution of (10.15).

In the dual approach, we relax link capacity constraints (10.15b) associating 𝜋e multipliers
to them. The dual function 𝑤(𝜋) returns the optimum relaxed cost for a set of multipliers 𝜋:

𝑤(𝜋) = max
h≥0

∑
d

Ud(hd) +
∑

e

𝜋e

(
ue −

∑
d∶e∈pd

hd

)
(10.16)

=max
h≥0

∑
d

Ud(hd) + hd

∑
e∈pd

𝜋e +
∑

e

𝜋eue (10.17)

The dual function is differentiable, since the objective function is strictly concave and
problem (10.15) enjoys strong duality. Then, the only minimizer associated to the optimum
multipliers is the primal optimum. Optimum multipliers are pursued using a basic gradient
projection algorithm in the iteration:

𝜋e(t + 1) =

[
𝜋e(t) − 𝛾

(
ue −

∑
d∶e∈pd

hd

)]
0

, ∀e ∈ (10.18)

Trim Size: 6.625in x 9.625in Mariño c10.tex V3 - 02/11/2016 6:45 P.M. Page 229�

� �

�

Dual Gradient Algorithms 229

The coordinates of the gradient of the dual function are the differences between the link
capacities and the offered traffic to the links. Then, for constant 𝛾 steps, 𝜋e(t) evolution is
proportional to the amount of traffic queued, pending to be transmitted through link e. Given
a set of multipliers 𝜋(t), the associated demand rates are computed finding the minimizer in
(10.17) and thus the primal iteration is the hd value for which:

hd(t) =

[
U′−1

d

(∑
e∈pd

𝜋e(t)

)]Md

md

For 𝛼-fair utility functions (3.19), equation (10.19) becomes:

hd(t) =

[(∑
e∈pd

𝜋e(t)

)−𝛼]Md

md

(10.19)

The dual scheme described is amenable to a distributed implementation where links and
sources cooperate as in Algorithm 11.

Algorithm 11 Congestion control for (10.15)
1: Link’s algorithm: At times t = t1(e), t2(e),…, link e:
2: Observes the traffic carried in the link

∑
d∶e∈pd

hd.
3: Computes its new price according to (10.18).
4: Signals the new price 𝜋e(t + 1) to the sources traversing e.
5: Demand’s algorithm: At times t′ = t′1(d), t

′
2(d),…, demand d:

6: Receives from the network the sum of link prices
∑

e∈pd
𝜋e.

7: Chooses a new transmission rate according to (10.19).

The link iteration requires monitoring the aggregated link occupation, without storing any
per-flow information. The signaling of the link weights to the demand source nodes is assumed
to be implemented in a explicit form, using an external signaling mechanism (e.g., the one
provided by the Resource Management (RM) cells ATM Available Bit Rate (ABR) control
mode).

10.4.1 Optimality and Stability Conditions

An asynchronous operation of Algorithm 11 means that the traffic observed in the link e at
a moment t depends on the sources’ congestion control decisions performed asynchronously
in the past. In addition, a variation in a source can take time to be observable in the links,
for example because of non-negligible propagation times. Then, the gradients computed for
adjusting the link weights may be based on outdated information. Still, the theory predicts that,
for a sufficiently small 𝛾 step, the algorithm convergence is guaranteed. The following result
in this line is extracted from [2]:

Trim Size: 6.625in x 9.625in Mariño c10.tex V3 - 02/11/2016 6:45 P.M. Page 230�

� �

�

230 Optimization of Computer Networks – Modeling and Algorithms

Proposition 10.1 In problem (10.15), we assume that utility functions are increasing, twice
continuously differentiable and strongly convex, where:

|U′′
d (hd)| ≥ 1

𝜂
, ∀hd ∈ [md,Md]

we denote L as the maximum number of hops a demand traverses and S the maximum number
of demands sharing a link. Then, if gradient step 𝛾 satisfies:

0 < 𝛾 <
2

𝜂LS

the synchronous version of Algorithm 11 converges to the optimum (assuming the problem is
feasible), for any initial network conditions.

As shown in [2], and confirmed by the experiments shown later in this section, convergence
can be obtained in practice for significantly higher 𝛾 values than the ones in previous sufficient
conditions.

10.4.2 Implementation Example

We present here some tests illustrating the convergence properties of Algorithm 11. We use
the same topology as in the primal congestion algorithm: topology of Fig. 9.2, with a demand
between each node pair, carried through the shortest path route in km between the end nodes.
Each link e independently computes its weight 𝜋e monitoring its traffic, signals it to the travers-
ing demands, and waits a random time between 0.5 and 1.5 units before the next update.
Signaling messages arrive instantly to demand source nodes, but a fraction of 5% messages
are randomly lost. Independent from the demand update, each demand recomputes its injected
traffic using the most updated link information it has, and waits a random time between 0.5
and 1.5 time units until the next computation.

The utility functions of the demands are the 𝛼-utility functions (3.19), with 𝛼 = 2. Minimum
demand injected traffic is set to md = 0.1,∀d, and the maximum Md = ∞. Observing network
topology (Fig. 9.2), the maximum number of hops of a demand is L = 2, and the maximum
number of demands sharing a link is S = 2. Since 𝛼 = 2, we have that:

U′′
d (hd) = −2h−3

d

The minimum value that U′′
d can take occurs when hd gets its maximum value. Since Md = ∞

the hd limit is set by the link capacity (ue = 25). Thus:

𝜂 = max
d

{
h3

d

2

}
= 253

2
= 7812.5

Then, applying Prop. 10.1, convergence is guaranteed in the synchronous case for:

0 < 𝛾 <
2

𝜂LS
= 6.4 × 10−5

Trim Size: 6.625in x 9.625in Mariño c10.tex V3 - 02/11/2016 6:45 P.M. Page 231�

� �

�

Dual Gradient Algorithms 231

0 100 200 300 400 500 600 700

−10

−5

0

N
et

w
or

k
ut

ili
ty

Time

0

0.02

0.04

π e

0

10

20

30

h d

Figure 10.9 Evolution of Algorithm 11 in the asynchronous case with signaling losses, 𝛾 = 0.0001.
The upper graph plots the resulting injected traffics hd, medium graph the link multipliers and the lower
graph the network utility to maximize

We have found that empirical convergence in the asynchronous executions occurs for 𝛾 =
10−4, as shown in Fig. 10.9. We can see that traffic adaptation is relatively fast, once the
𝜋e multipliers reach the proximity of the optimum (initial multipliers are set to one). In our
tests, convergence did not occur for 𝛾 = 5 × 10−4. When signaling was subject to random
delays in the interval 5 ± 0.5 time units, a 𝛾 step as small as 𝛾 = 10−5 was needed to have
convergence.

10.5 Decentralized Optimization of CSMA Window Sizes

In Section 5.4.2 of Chapter 5 we modeled MAC protocols based on carrier sense (CSMA) for
wireless networks. In CSMA protocols, nodes sense the channel and refrain the transmission
if they find it occupied. When the channel is sensed idle again, nodes wait a back-off time
randomly chosen for each outgoing link. This timer is frozen when the channel is sensed as
occupied. Eventually, the link transmits the message, but a collision can still occur if more
than one node end its back-off timer at exactly the same time.

We modeled the case when link back-off times are randomly selected using an exponential
distribution of average 1∕Re and called re = log Re to the transmission aggressiveness (TA)
of the link. The higher the TA re, the shorter are the average back-off times Re, and the more
aggressively that link e tries to transmit traffic.

Since the back-off times are chosen in a continuum, the model assumes that collisions never
occur. Thus, the network permanently produces schedules (sets of simultaneously active links)
that are valid, or collision-free. We denote as the set of valid schedules, and (m) the set

Trim Size: 6.625in x 9.625in Mariño c10.tex V3 - 02/11/2016 6:45 P.M. Page 232�

� �

�

232 Optimization of Computer Networks – Modeling and Algorithms

of active links in schedule m ∈ . Given the TA in the links r = {re, e ∈ }, the fraction of
time 𝜋m that the network uses schedule 𝜋m(r) is given by:

𝜋m(r) =
e
∑

e∈(m)re∑
me

∑
e∈(m)re

, ∀m ∈

The resulting capacity in a link e (ue(r)) is computed by aggregating the time fractions of
those schedules where e is active ((e)), multiplied by the link nominal bit rate ūe:

ue(r) = ūe

∑
m∈(e)

𝜋m(r)

A relevant property introduced in the proof of Prop. 5.3 in Section 5.4.2, is that given a
TA allocation r and strictly feasible capacities u, the resulting schedules 𝜋(r) are those which
maximize the negative entropy of the distribution among those schedules that attain u. This
means that:

𝜋(r) = arg max∑
m𝜋m=1,𝜋m≥0

{
−
∑

m

𝜋m log (𝜋m) +
∑

e

re

(
ue − ūe

∑
m∈(e)

𝜋m

)}
(10.20)

In this section, we exploit this property to devise an algorithm that approximates the opti-
mum TA allocation which maximizes the network utility of the resulting capacity allocation.
For this, we focus on the optimization problem:

max
𝜋,u

−
∑

m

𝜋m log (𝜋m) + 𝛽

∑
e

Ue(ue) subject to: (10.21a)

re ∶ ue ≤ ūe

∑
m∈(e)

𝜋m ∀e ∈ (10.21b)

∑
m

𝜋m = 1, 𝜋m ≥ 0, ∀m ∈ (10.21c)

where Ue are increasing and strictly concave utility functions, and both u and 𝜋 are problem
variables. 𝛽 is an input parameter, chosen to be as large as possible (limited by numerical inac-
curacies), so that the importance of the utility maximization part makes the negative entropy
effect negligible.

Problem (10.21) is convex, since it involves the maximization of a concave function under
linear constraints. Moreover, the problem has a unique optimum solution, as the objective
function is strictly concave. We attempt a dual approach to solve (10.21), using re as multipliers
of dualized constraints (10.21b). As will be shown later, these multipliers are the TAs of the
links in the CSMA protocol. The Lagrangian function is given by:

L(𝜋, u, r) = −
∑

m

𝜋m log (𝜋m) + 𝛽

∑
e

Ue(ue) +
∑

e

re

(
ūe

∑
m∈(e)

𝜋m − ue

)

Trim Size: 6.625in x 9.625in Mariño c10.tex V3 - 02/11/2016 6:45 P.M. Page 233�

� �

�

Dual Gradient Algorithms 233

Given a set of multipliers r ≥ 0, the associated maximizers 𝜋(r), u(r) can be computed inde-
pendently:

𝜋(r) = arg max∑
m𝜋m=1,𝜋m≥0

{
−
∑

m

𝜋m log (𝜋m) +
∑

e

reūe

∑
m∈(e)

𝜋m

}
(10.22a)

u(r) = arg max

{
𝛽

∑
e

Ue(ue) − reue

}
(10.22b)

Observing (10.20), we see that maximizer 𝜋(r) is the schedule enforced by an ideal CSMA
protocol that uses r as its TA. In turn, the link capacities u(r) associated to such TA, may not
satisfy the relaxed constraints (10.21b). This means that if r are arbitrary TAs in the network,
the link e may not be able to carry a traffic given by ue(r). However, when TAs are the opti-
mum TAs, associated ue(r) capacities are the unique solution of problem (10.21), they satisfy
constraints (10.21a), and optimize the objective function. It can be shown (see [3]) that as
𝛽 parameter increases (𝛽 → ∞), the resulting capacities approximate the ones that optimize
network utility.

Since the objective function is strictly concave, the dual function of problem (10.21) is
differentiable and has a gradient given by the slack of relaxed constraints (10.21b). A basic
project gradient iteration to find the optimum TAs r is given by:

re(t + 1) =

[
re(t) − 𝛾

(
ūe

∑
m∈(e)

𝜋m(r) − ue(r)

)]
0

(10.23)

We see that:

• Expression se(r) = ūe
∑

m∈(e)𝜋m(r) is the amount of traffic served or carried by link e when
TAs in the links are given by r. This can be monitored independently by each link, without
the need of computing the 𝜋m schedules.

• The associated capacities ue(r) are a sort of intended capacities computed solving (10.22b).
This computation can be also made independently link by link, using link local information.
Recall that before the optimum TAs are reached, it can happen that se < ue(r). Then, ue(r)
has the meaning of actual link capacity, just when optimum TAs are reached.

Previous ideas are the guidelines for Algorithm 12, a distributed scheme that finds the opti-
mum TAs that maximize the network utility of the resulting link capacity allocation. Since the
dual function is differentiable, algorithm converges to the optimum for a sufficiently small 𝛾
step also in the asynchronous case. Note that no signaling information is exchanged between
nodes. Coordination occurs thanks to the standard CSMA interactions, that produce the ser-
vice rates se observed by the links. Finally, note that in real networks, service rates monitored
se(r) are actually random variables. A study of the convergence in expectation of the resulting
stochastic algorithm can be consulted in [3].

Trim Size: 6.625in x 9.625in Mariño c10.tex V3 - 02/11/2016 6:45 P.M. Page 234�

� �

�

234 Optimization of Computer Networks – Modeling and Algorithms

Algorithm 12 CSMA window adjustment for (10.21)
1: Link’s algorithm: At times t = t1(e), t2(e),…, link e:
2: Observes the traffic carried in the link se during previous interval.
3: Computes its new TA re according to (10.23).
4: Applies the TA during next interval.

10.5.1 Implementation Example

This section shows convergence tests validating the Algorithm 12, and illustrates a trade-off
between convergence speed and algorithm accuracy related to the 𝛽 factor. We perform our
experiments in the wireless network of Fig. 9.10, with a nominal rate ūe = 1 in all the links. We
assume the standard wireless limitations in the CSMA model described: a node cannot receive
simultaneous transmissions from different nodes, and cannot receive and transmit simultane-
ously. Nodes operate independently and asynchronously: the time between two node wake-ups
for TA update is random and uniformly distributed between 0.5 and 1.5 time units. During an
update event, the node recomputes its TA using the monitored information since its last update,
and applies it until the next.

We assume that the ideal CSMA MAC protocol described in previous section is operating
between any two consecutive re adjustments. This means that collisions are avoided, the net-
work spends a fraction of time given by 𝜋(r) in each scheduling state, and served traffic of each
link se is determined by these 𝜋(r) vectors. However, to reflect the random nature of the traffic
in a real network, the monitored traffic se(r) is the ideal one plus a noise uniformly picked in
an interval of ±10% of se(r).

Figure 10.10 shows the convergence tests for 𝛽 = 10, 𝛾 = 5. The algorithm converges and
obtains the optimal TAs r reasonably quickly, with close to optimal utilities achieved in ≈ 50
iterations. However, because of the random noise added to the r evolution, the small changes
in the TAs produce a significant added noise in the link capacities that does not reflect into
significant utility variations. It is easy to see that, as predicted by theory, lower 𝛾 steps can
reduce these effects, at a cost of a slower convergence.

As a final remark, it is interesting to see how the link capacities obtained by the CSMA pro-
tocol are significantly larger (about one order of magnitude) than the ones obtained in Section
9.5 for the same network using a random access MAC protocol4.

10.5.1.1 Effect of Increased 𝜷 Factor

As a measure of the inaccuracy associated to the 𝛽 = 10 factor, we observed that in the opti-
mum cost, the weight of the negative entropy part (−

∑
m𝜋m log 𝜋m) was approximately 100

times less than the weight of the network utility part (𝛽
∑

eUe(ue)). Figure 10.11 shows the case

4 Results in the random access case were obtained for a different fairness factor 𝛼 = 2. The reader can check that the
differences in link capacities are similar if the same 𝛼 factor is used.

Trim Size: 6.625in x 9.625in Mariño c10.tex V3 - 02/11/2016 6:45 P.M. Page 235�

� �

�

Dual Gradient Algorithms 235

0

0.2

0.4

u e

0

50

100

r e

0 100 200 300 400 500 600 700 800 900 1000
−100

−80

−60

−40

Time

O
bj

ec
tiv

e
fu

nc
tio

n

Figure 10.10 Evolution of Algorithm 12 in the asynchronous case with measurement noise, 𝛾 = 5.
The upper graph plots the resulting link capacities ue, the medium graph the TAs (link multipliers)
and the lower graph network utility to maximize. Optimum solutions are marked with squares on the
right-hand side

0

0.2

0.4

u e

0

500

1000

r e

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−100

−80

−60

−40

Time

O
bj

ec
tiv

e
fu

nc
tio

n

Figure 10.11 Same example as Fig. 10.10, 𝛽 = 100

Trim Size: 6.625in x 9.625in Mariño c10.tex V3 - 02/11/2016 6:45 P.M. Page 236�

� �

�

236 Optimization of Computer Networks – Modeling and Algorithms

when 𝛽 = 100. Now, the weight of the negative entropy falls to 0.1% in the objective function
and network utility is actually the same in practice.

A trade-off exists between improved accuracy (higher 𝛽) and algorithm convergence. Higher
𝛽 factors, mean higher TA values in the links. The explanation for this is that, as network
utility dominates the objective function, multiplying it by, for example, 10 (by making 𝛽 = 100
instead of 𝛽 = 10), means scaling the multipliers of problem (10.21) by 10, which are the
link TAs.

Intuitively, scaling up by 10, the TAs also require scaling 𝛾 steps by 10 in order to have
similar convergence times. However, as the reader can easily check, this amplifies the effect of
measurement noise making the link capacities drastically oscillate, even for small variations
in the TAs. As a result, as shown in Fig. 10.11, using the same 𝛾 for higher 𝛽 factors results in
slower convergence times and even higher amplitudes of link capacity variation.

10.6 Notes and Sources

For a comprehensive mathematical background on dual algorithms, the reader can access many
good sources like [1, 4–7] or [8].

The dual algorithm in Section 10.2 for minimum average hop adaptive routing is a straight-
forward application of a dual scheme to the regularized problem, not published elsewhere to
the best of the author’s knowledge.

The original backpressure algorithm was presented by Tassiulas and Ephemerides in [9],
and applied in multiple network problems later. The derivation of the backpressure routing as
a dual algorithm relaxing flow conservation constraints is present in other works like [10, 11]
or [12].

The dual algorithm for congestion control and the sufficient convergence conditions in Prop.
10.1 come from [2].

The dual algorithm for distributed adjustment of CSMA window sizes is adapted from the
works [3, 13].

10.7 Exercises

10.1 In the adaptive routing case described in Section 10.2, assume that a link e changes its
weight in Δ𝜋 units, keeping the rest of weights unchanged. Compute the maximum
variation that a path xp may suffer in this case.

10.2 Apply KKT optimality conditions to find an efficient algorithm for solving the problem
in ℝn:

min
x≥0

∑
i

cixi +
∑

i

x2
i , subject to:

∑
i

xi = C

10.3 Modify the Net2Plan implementation available in the Net2Plan repository of the dual
algorithm for adaptive routing so that the link weight change in an iteration is limited
to a maximum value Δ𝜋, an input parameter to the algorithm. Find a setting 𝛾 , Δ𝜋,
keeping 𝜖 = 10−3, which is robust enough for a set of different selected topologies and
report on the convergence speed in them with this setting.

Trim Size: 6.625in x 9.625in Mariño c10.tex V3 - 02/11/2016 6:45 P.M. Page 237�

� �

�

Dual Gradient Algorithms 237

10.4 Modify the Net2Plan implementation available in the Net2Plan repository of the dual
algorithm for adaptive routing, so that the primal iteration carries all the traffic through
the shortest path, and if more than one exists, chooses the shortest path in km. Does this
algorithm enjoy the convergence properties of the dual algorithm? Devise empirical
tests to assess the algorithm convergence.

10.5 Devise empirical tests using the Net2Plan implementation provided to compare the
primal version of the adaptive routing scheme provided in Chapter 9 with that in
Section 10.2

10.6 Adapt the derivations in Section 10.3 to devise a dual based backpressure algorithm
for destination-based routing by relaxing flow conservation constraints.

10.7 Show that the optimum routing in (10.11) does not depend on ΔP parameter, but that
the optimum multipliers qnd of the relaxed problem are proportional to ΔP.

10.8 Make empirical tests using the Net2Plan implementation provided to assess the robust-
ness of backpressure algorithms under significant signaling delays.

10.9 Modify the Net2Plan implementation available in the Net2Plan repository of the dual
backpressure algorithm in Section 10.3, applying a heavy-ball inertia term to the dual
iteration. Find a setting for 𝛾 and 𝛾h terms that is robust enough for a set of different
selected topologies and report on the convergence speed in them with this setting.

10.10 [2] Compute the hessian matrix of the dual function in problem (10.15) relaxing link
capacity constraints. Use this expression to prove Prop. 10.1.

10.11 Modify the Net2Plan implementation available in the Net2Plan repository of the dual
algorithm for congestion control including a diagonal scaling of the gradient update,
estimating the second derivative values of the dual function 𝑤 as [14]:

𝜕
2
𝑤

𝜕𝜋
2
e

= −
∑

d∶e∈pd

hd(t) − hd(t − 1)∑
e∈pd

𝜋e(t) −
∑

e∈pd
𝜋e(t − 1)

To avoid numerical instabilities limit the minimum scaling value to 𝜖 an input param-
eter of the algorithm.

10.12 In the dual congestion control case described in Section 10.2, assume that a link e
changes its weight in Δ𝜋 units, keeping the rest of weights unchanged. Compute the
maximum variation that a rate hd may suffer in this case.

10.13 Modify the Net2Plan implementation available in the Net2Plan repository of the dual
algorithm for congestion control, so that the link weight change in an iteration is lim-
ited to a maximum value Δ𝜋, computed according to Exercise 10.12 to enforce a
maximumΔh variation, an input parameter to the algorithm. Find a setting 𝛾 ,Δh that is
robust enough for a set of different selected topologies and report on the convergence
speed in them with this setting.

Trim Size: 6.625in x 9.625in Mariño c10.tex V3 - 02/11/2016 6:45 P.M. Page 238�

� �

�

238 Optimization of Computer Networks – Modeling and Algorithms

10.14 In Exercise 9.6 the multi-path congestion control problem was described, and a pri-
mal algorithm was provided for it. Comment on the convergence difficulties appearing
when applying a dual algorithm to this problem, relaxing the link capacity constraints.
Derive a distributed dual algorithm applying a regularization term to the objective
function 𝜖

∑
px2

p. Implement it in Net2Plan and use empirical tests to tailor the 𝜖 param-
eter.

10.15 [15] In Exercise 10.14, use the strictly convex function 𝜖
∑

p(xp − yp)2 for problem
regularization, where 𝜖 is an algorithm constant and yp values are constants that will be
different in each algorithm iteration. In particular, in the primal iteration, computing
the routing xp(t + 1), the yp values used are current routing values xp(t). Implement
this scheme in a Net2Plan algorithm and empirically find a robust setting for 𝛾 and 𝜖

in a set of selected scenarios. Note: This algorithm is an application of the Proximal
Minimization Algorithm ([6], p. 233). Its convergence in this multi-path congestion
control variant was studied in [15].

10.16 Modify the Net2Plan implementation available in the Net2Plan repository of the dual
algorithm for CSMA backoff window adjustment applying a heavy-ball inertial term.
Find a setting for 𝛾 and 𝛾h terms that is robust enough for a set of different selected
topologies and report on the convergence speed in them with this setting.

10.17 Use the Net2Plan implementation available for the persistence probability adjustment
in Aloha-type networks, and the backoff window optimization in CSMA networks, to
compare the network utilities and link capacities achieved with both MAC protocols
in wireless networks of different selected topologies.

References
[1] D. P. Bertsekas, Nonlinear Programming. Bertsekas: Athena Scientific, 1999.
[2] S. H. Low and D. E. Lapsley, “Optimization flow controli: basic algorithm and convergence,” IEEE/ACM Trans-

actions on Networking (TON), vol. 7, no. 6, pp. 861–874, 1999.
[3] L. Jiang and J. Walrand, “A distributed csma algorithm for throughput and utility maximization in wireless

networks,” IEEE/ACM Transactions on Networking (TON), vol. 18, no. 3, pp. 960–972, 2010.
[4] M. Minoux, Mathematical programming: theory and algorithms, ser. Wiley series in discrete mathematics and

optimization. New York, NY, USA: John Wiley & Sons, Inc., 1986.
[5] B. T. Polyak, Introduction to Optimization. Optimization Software New York, 1987.
[6] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods. Athena Scien-

tific, 1997.
[7] L. Lasdon, Optimization Theory for Large Systems, ser. Dover books on Mathematics. Dover Publications, 2002.
[8] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY, USA: Cambridge University Press,

2004.
[9] L. Tassiulas and A. Ephremides, “Stability properties of constrained queueing systems and scheduling poli-

cies for maximum throughput in multihop radio networks,” Automatic Control, IEEE Transactions on, vol. 37,
no. 12, pp. 1936–1948, 1992.

[10] X. Lin and N. B. Shroff, “Joint rate control and scheduling in multihop wireless networks,” in Decision and
Control, 2004. CDC. 43rd IEEE Conference on, vol. 2. IEEE, 2004, pp. 1484–1489.

[11] X. Lin, N. B. Shroff, and R. Srikant, “A tutorial on cross-layer optimization in wireless networks,” Selected
Areas in Communications, IEEE Journal on, vol. 24, no. 8, pp. 1452–1463, 2006.

[12] M. Chiang, S. H. Low, J. C. Doyle et al., “Layering as optimization decomposition: A mathematical theory of
network architectures,” Proceedings of the IEEE, vol. 95, no. 1, pp. 255–312, 2007.

Trim Size: 6.625in x 9.625in Mariño c10.tex V3 - 02/11/2016 6:45 P.M. Page 239�

� �

�

Dual Gradient Algorithms 239

[13] J. Liu, Y. Yi, A. Proutiere, M. Chiang, and H. V. Poor, “Towards utility-optimal random access without message
passing,” Wireless Communications and Mobile Computing, vol. 10, no. 1, pp. 115–128, 2010.

[14] S. Athuraliya and S. Low, “Optimization flow control with Newton-like algorithm,” in Global Telecommunica-
tions Conference, 1999. GLOBECOM’99, vol. 2. IEEE, 1999, pp. 1264–1268.

[15] X. Lin and N. B. Shroff, “Utility maximization for communication networks with multipath routing,” Automatic
Control, IEEE Transactions on, vol. 51, no. 5, pp. 766–781, 2006.

Trim Size: 6.625in x 9.625in Mariño c11.tex V3 - 02/11/2016 6:46 P.M. Page 240�

� �

�

11
Decomposition Techniques

11.1 Introduction

In this chapter, we focus on the application of decomposition techniques to network opti-
mization problems. A problem decomposition is a transformation of a problem into a set of,
potentially, many independent and simpler problems, coordinated by a so-called master pro-
gram, such that the optimum solution of this overall scheme also solves the original problem.

A key idea is that there can be many alternative decompositions to the same network problem
and that different decompositions yield to different schemes, network engineering decisions,
and protocols. Section 11.2 is devoted to reviewing the most relevant baseline techniques called
primal and dual decomposition, together with other mixed approaches that can exist. Then,
Sections 11.3 –11.7 include a set of case studies to illustrate the richness and strength of decom-
position techniques in network design. Table 11.1 summarizes the case studies addressed.

First, in Sections 11.3–11.5 we put the emphasis on problem decomposition as a theoretical
support to create so-called cross-layer algorithms. These are coordination schemes that make
protocols at different network layers cooperate to achieve a common goal, typically to max-
imize the network utility perceived by the application-layer users. In this case, each network
layer is a subproblem, which is solved by a different protocol (potentially itself a distributed
protocol), and the master program defines the signaling to coordinate the layers. The three
case studies chosen are good examples of a recent and successful research trend called Net-
work layering as optimization decomposition (e.g., see [1] for a surveying contribution). Here,
decomposition theory is the mathematical language to build an analytic and systematic study
of the network architecture of protocols.

As a further application of problem decomposition, in Section 11.6 we show how it sup-
ports the coordination of different agents in the cooperative solving of a single-layer problem.
In particular, we present a case study where multiple interconnected network carriers coop-
erate to globally optimize the routing, for example, in the Internet. The interest behind the
decomposition is creating separated subproblems for each carrier, such that the information
they need to exchange is minimum and not sensible.

Finally, Section 11.7 includes a case study for a -hard joint capacity and routing design
problem to be solved offline. In this case, the target of the decomposition technique is to reduce

Optimization of Computer Networks – Modeling and Algorithms: A Hands-On Approach,
First Edition. Pablo Pavón Mariño.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/PavonMarinoSol16

Trim Size: 6.625in x 9.625in Mariño c11.tex V3 - 02/11/2016 6:46 P.M. Page 241�

� �

�

Decomposition Techniques 241

Table 11.1 Case studies in Chapter 11

Problem type Decomposition
technique

Section

Cross-layer congestion control
and QoS capacity alloc.

Primal Section 11.3

Cross-layer congestion control
and backpressure routing

Dual Section 11.4

Cross-layer congestion control
and power allocation

Dual Section 11.5

Multidomain routing
design

Primal Section 11.6

Joint capacity and routing
offline planning

Dual Section 11.7

the overall computational complexity and also permit parallel executions of the subproblems,
at a cost of loosing some convergence properties.

As in the previous chapters, the code of the devised algorithms implemented in Net2Plan
tool is accessible and algorithm convergence of the case studies is illustrated in empirical tests.

11.2 Theoretical Fundamentals

Decomposition techniques are commonly classified into primal and dual methods:

• Primal decomposition or right-hand side allocation methods are applied to the original
(primal) problem. In each iteration, the master program decides a particular allocation of the
shared resources among the subproblems. Then, each subproblem independently computes
the optimal form of using them. After the subproblems complete their local optimization,
the master obtains feedback from them to improve the shared resources allocation in the
next iteration.

• Dual decomposition methods are based on dualizing or relaxing some constraints and using
a (sub)gradient iteration to solve the dual problem, as an indirect form to also solve the
original problem. This is just the approach already described in Chapter 10. In this chapter,
we focus on how it can be used in a systematic form to create coordination mechanisms
between layers or to create heuristic algorithms for -hard problems.

We see both decomposition methods in further detail next. To finalize, we include hybrid
decomposition strategies to produce different engineering solutions.

11.2.1 Primal Decomposition

Primal decomposition is appropriate when the target problem has a set of decision variables
that, if fixed, permit separation of the rest of the variables into small and independent problems.
We illustrate this in problem (11.1):

Trim Size: 6.625in x 9.625in Mariño c11.tex V3 - 02/11/2016 6:46 P.M. Page 242�

� �

�

242 Optimization of Computer Networks – Modeling and Algorithms

min
y,{xi}

∑
i

fi(xi) subject to: (11.1a)

xi ∈ i i = 1, · · · ,M (11.1b)

y ∈ (11.1c)

hi(xi) ≤ y i = 1, · · · ,M (11.1d)

where xi represents a set of decision variables that only appear in subproblem i, while y is
the decision variables that couple all the candidate subproblems together, through constraints
(11.1d). We can call xi the local or private variables and y the coupling or complicating vari-
ables. The set is assumed to be such that if y ∈ , then the problem (11.1) is always feasible.

Primal decomposition separates the problem (11.1) into two levels. On one hand, the lower
level operates assuming some fixed values y ∈ , and computes the optimum xi values in such
case. This can be done independently for each subproblem i = 1, · · · ,M solving:

min
xi

fi(xi) subject to: (11.2a)

xi ∈ i (11.2b)

hi(xi) ≤ y (11.2c)

We denote x∗i (y) as the optimum solution of the i-th subproblem (11.2), for coupling vari-
ables y, and we denote f ∗i (y) = fi(x∗i (y)) as its local cost. According to this, f ∗i (y) is a perturba-
tion function of (11.2) that returns how the ith subproblem optimum cost changes if we perturb
the right-hand side of inequality (11.2c) (see Appendix B for details). Since subproblem (11.2)
has an optimal solution for every i = 1, · · · ,M and every y value (should be chosen in that
way), perturbation functions f ∗i (y) are always well defined.

The upper level or master program is in charge of iteratively finding the best y values that
make the resulting solution (y, x∗i (y), i = 1, · · · ,M) optimize the original problem:

min
y∈

∑
i

f ∗i (y) (11.3)

If the original problem is convex, all the subproblems and master program are also con-
vex. Then, according to Prop. B.20 in Appendix B, perturbation functions f ∗i (y) are convex
functions, and for any y ∈ , it holds that:

si(y) = −𝜋∗
i (y)

is a subgradient of f ∗i in point y, being 𝜋
∗
i (y) any optimal multipliers of constraints (11.2c). As

a result, a subgradient of the objective function of the master problem
∑

i f ∗i (y) can be obtained
summing the subgradients of the perturbation functions:

f (y) =
∑

i

f ∗i (y) ⇒ s(y) =
∑

i

si(y) = −
∑

i

𝜋
∗
i (y)

The subgradient s(y) is a gradient when the perturbation function is differentiable. A suffi-
cient condition for this to happen is that fi(x) functions are strictly convex and that the unique
optimum solution in each subproblem is a regular point where the gradients of all the binding
constraints are linearly independent. In general, there is no easy form of guaranteeing this.

Trim Size: 6.625in x 9.625in Mariño c11.tex V3 - 02/11/2016 6:46 P.M. Page 243�

� �

�

Decomposition Techniques 243

Whether s(y) are gradients or subgradients, if the master problem (11.3) is convex, it can be
solved using, for example a (sub)gradient projection algorithm that iterates through y variables
according to:

y(t + 1) = P (y(t) − 𝛾s(y(t))) = P

(
y(t) + 𝛾

∑
i

𝜋
∗
i (y(t))

)
(11.4)

Note that using a constant step 𝛾 means that convergence to optimal y values is guaranteed
for a sufficiently small 𝛾 only if s(y(t)) are gradients, and only to the proximity of the optimum
if they are subgradients. The overall primal decomposition is summarized in Algorithm 13.

Algorithm 13 Primal decomposition algorithm for (11.1)
1: Initialization: Set t = 0, initialize y(0) to any value in

2: Local iteration: Solve (11.2) for each subproblem, to obtain x∗i (y(t)) and 𝜋
∗
i (y(t)).

3: Master iteration: Update resource allocation using (11.4), t ← t + 1 and go to Step 2.

The stop condition in Algorithm 13 is any valid stop condition for the (sub)gradient itera-
tion (11.4). In the cases in which the subproblems are solved using an inner iterative method,
convergence and stability of the overall system is guaranteed if the subproblem iterations are
faster than the master iteration (11.4), such that subproblems converge to the local optimum
solution and communicate to the master the optimum 𝜋

∗
i multipliers before y(t) is updated. In

such case, robustness of the master iteration under outdated, disordered or noisy 𝜋
∗
i values is

inherited from the properties of the (sub)gradient algorithm. In turn, if iterations of the mas-
ter problem and the inner gradient iterations in the subproblems are at the same time scale,
convergence is still possible under certain conditions (see [2]).

11.2.1.1 Primal Decomposition without Strong Duality

Primal decomposition principle requires each of the subproblems to be convex, such that 𝜋∗
i (y)

multipliers become subgradients of the perturbation functions. Also, this means that f ∗i (y) are
convex functions and so is the objective function of the original problem. Still, the primal
may not be convex if set is not convex, for example, it has integer constraints. Then, the
subgradient algorithm (11.4) would iterate in y variables, which could be unfeasible (y(t) ∉).

Primal decomposition can still be useful in this case. The master iteration should be replaced
by other, for example heuristic, approaches that smartly explore the set of valid allocations y ∈
 . In this case, we can take benefit of the knowledge that s(y(t)) vectors are still subgradients of
the objective function and define a whole semispace of y′ solutions that we can get rid of, since
they are worse than the already explored solution y(t). In particular, applying the subgradient
definition, they are solutions y′ for which:

s(t)T (y′ − y(t)) ≥ 0 ⇒
∑

i

f ∗i (y
′) ≥

∑
i

f ∗i (y(t)), ∀y′

Previous inequality can be added to future (heuristic) iterations of the master problem,
reducing the space of solutions to explore.

Trim Size: 6.625in x 9.625in Mariño c11.tex V3 - 02/11/2016 6:46 P.M. Page 244�

� �

�

244 Optimization of Computer Networks – Modeling and Algorithms

11.2.2 Dual Decomposition

Dual decomposition is the application of the gradient iteration to the dual function of a relaxed
problem. The reader is referred to Chapter 10 and Appendix B for details on the mathematical
background.

In this section, we are interested in showing the strength of the dual approach as a systematic
form of creating successful problem decompositions. In this respect, dual decomposition can
be naturally applied to problems that have a set of constraints such that, if dualized, produce a
relaxed problem that can be separated into subproblems that can now be solved independently.
Let us focus on the formulation:

min
x

∑
i

fi(xi) subject to: (11.5a)

xi ∈ i ∀i = 1, · · · ,M (11.5b)∑
i

hi(xi) ≤ 0 (11.5c)

where xi, i = 1, · · · ,M are blocks of decision variables. Initially, we put no restrictions to the
functions fi, hi, nor sets i. In problem (11.5), we see that the objective function can be sep-
arated into the sum of one function per each variable block. Also, constraints (11.5b) are
“easy” in the sense that they do not couple decision variables of different blocks. Actually,
if constraints (11.5c) did not exist, problem (11.5) could be separated into M independent
subproblems minxi∈i

fi(xi). So, we tag constraint (11.5c) as the “coupling” or “complicating”
constraint.

The common dual strategy consists of dualizing the complicating constraints. Using 𝜋 as
the vector of multipliers for (11.5c), we have:

min
xi∈i,∀i

∑
i

fi(xi) + 𝜋
T
∑

i

hi(xi) (11.6)

which decouples into M programs (11.7) that can be solved independently for fixed values
of 𝜋:

min
xi∈i

fi(xi) + 𝜋
Thi(xi),∀i = 1, · · · ,M (11.7)

We denote x∗i (𝜋) as a minimizer of the ith subproblem in (11.7) for particular prices 𝜋. If
strong duality holds for (11.5), there exists a set of prices 𝜋∗ such that at least one x∗i (𝜋

∗) solves
the original problem. If the original problem is convex with strictly convex objective function,
x∗i (𝜋

∗) is the unique primal optimum.
The original problem is now separated into two levels of optimization. At the higher level,

the master program finds the optimum of the dual problem max
𝜋≥0

𝑤(𝜋), using a gradient projec-

tion iteration like:

𝜋(t + 1) = [𝜋(t) + 𝛾s(t)]0 (11.8)

Trim Size: 6.625in x 9.625in Mariño c11.tex V3 - 02/11/2016 6:46 P.M. Page 245�

� �

�

Decomposition Techniques 245

where s(t) is a subgradient of the dual function given by the slack of the constraint in any
minimizer of 𝜋(t): 1:

s(t) =
∑

i

hi(x∗i (𝜋(t))) =
∑

i

si(t)

The complete scheme is illustrated in Algorithm 14.

Algorithm 14 Dual decomposition algorithm for (11.5)
1: Initialization: Set t = 0, initialize 𝜋(0) to any value in 𝜋(0) ≥ 0
2: Local iteration: Solve the M subproblems (11.7) using 𝜋(t).
3: Master iteration: Iterate the master using s(t), e.g., (11.8) and go to Step 2.

On some occasions, subproblems are so simple that they can be solved analytically with a
closed formula. This happened in the case studies in Chapter 10. In other cases found in this
chapter, solving the subproblems (11.7) for given prices 𝜋(t) involves an inner iterative method.
In such situation, convergence of the decomposition scheme is guaranteed if the subproblem
inner iterations go at a faster time scale than the price updates, such that they converge before
the prices 𝜋(t) are changed. If this does not hold, convergence of the overall system can still be
guaranteed under certain technical conditions. The theoretical analysis of these cases is outside
the scope of this book, the interested reader is referred to [2]. In this chapter, we will content
with illustrating the convergence with empirical tests. Still, we note that the master iteration
inherits the robustness and stability properties of gradient algorithms. This means that for a
sufficiently small 𝛾 step in (11.8), the dual decomposition is robust against using outdated
si(t) information in some or all of its coordinates, and inherits the convergence in expectation
properties of stochastic gradient algorithms, when s(t) information is subject to, for example
unbiased measurement errors.

Finally recall that in the dual approach there is no guarantee of having feasible solutions
(satisfying also the relaxed constraints) until the optimal multipliers are found. In contrast, in
the primal decomposition, every iteration produced a feasible solution.

11.2.2.1 Dual Decomposition without Strong Duality

If problem (11.5) does not satisfy sufficient conditions guaranteeing strong duality, we do
not know beforehand if strong duality holds for a particular problem instance, and then if
optimum multipliers have an associated minimizer that is primal optimal. Actually, it can be
the case that all the minimizers of all the iterations are primal unfeasible. For this reason,
in this case Algorithm 14 should be completed, adding an intermediate step that uses any
heuristic technique that produces a feasible solution from the subproblem minimizers in the
local iteration.

Proposition B.19 in Appendix B is the theoretical support to motivate the application of the
dual approach when strong duality does not hold. It tells us that given some multipliers 𝜋(t),

1 As established in Appendix B, under mild assumptions (like a compact feasibility set of (11.5), the dual function
is concave in all its domain, and the vector s(t) exists for any dual feasible 𝜋(t). If x∗i (𝜋

∗) is unique, for example the
original problem is a convex problem with strictly convex objective functions, then s is actually a gradient.

Trim Size: 6.625in x 9.625in Mariño c11.tex V3 - 02/11/2016 6:46 P.M. Page 246�

� �

�

246 Optimization of Computer Networks – Modeling and Algorithms

maybe in the proximity of 𝜋∗, the associated minimizers are optimum solutions to problems
that can be small variations of the original problem. In addition, the dual approach has the
advantage that every iteration t can produce a lower bound to the optimum cost by evaluating
the dual function in 𝜋(t).

11.2.3 Other Decompositions

According to previous sections, those problems composed of subproblems coupled by a set
of common constraints are adequate for dual decompositions, while when the subproblems
are coupled by some common decision variables, primal decomposition can be more conve-
nient. However, this is not a strict rule. The same problem can be decomposed by primal or
dual methods, producing different optimization algorithms. Moreover, optimization problems
can be reformulated, for example, adding new auxiliary decision variables and constraints that
make up an equivalent optimization problem, which do not change the optimum solution nor
the feasibility set. Then, the reformulated problem can go through primal or dual decomposi-
tions that produce new different algorithms!

The basic techniques of problem reformulation are illustrated in two examples that follow.
First, we apply a dual decomposition to solve the problem with coupling variables (11.1), for
which we already described a primal decomposition. First, we reformulate the problem as
follows:

min
y,{yi},x

∑
i

fi(xi) subject to: (11.9a)

xi ∈ i i = 1, · · · ,M (11.9b)

hi(xi) ≤ yi i = 1, · · · ,M (11.9c)

yi = y,∀i = 1, · · · ,M (11.9d)

y ∈ (11.9e)

Reformulation consists of creating the auxiliary variables yi, i = 1, · · · ,M, which should be
seen as local copies for the i-th subproblem of the common variables y. This is enforced by
adding constraints (11.9d) (yi = y, i = 1, · · · ,M), the so called consistency constraints. Then,
if we dualize the consistency constraints, the relaxed problem can now be decomposed into M
subproblems, each one handling only local variables, and one common problem handling the
consistency:

min
xi,yi

∑
i

fi(xi) +
∑

i

𝜋iyi subject to: (11.9b,c), i = 1, · · · ,M

min
y∈

−y

(∑
i

𝜋i

)

These subproblems are coordinated by a master program that finds the optimum 𝜋i multi-
pliers using

∑
i(yi − y) as subgradients.

As a second example, we can apply a primal decomposition to problems with coupling
constraints like (11.5), for which we applied dual decomposition in the previous section.

Trim Size: 6.625in x 9.625in Mariño c11.tex V3 - 02/11/2016 6:46 P.M. Page 247�

� �

�

Decomposition Techniques 247

Introducing again auxiliary variables {yi, i = 1, · · · ,M}, we reformulate the problem as
follows:

min
x,{yi}

∑
i

fi(xi) subject to: (11.10a)

xi ∈ i ∀i = 1, · · · ,M (11.10b)∑
i

hi(xi) ≤ yi (11.10c)

∑
i

yi ≤ 0 (11.10d)

Then, applying primal decomposition to (11.10), using {yi} as master variables, we have
subproblems of the form:

min fi(xi) subject to: (11.10b,c), ∀i = 1, · · · ,M

And a master program:

min
∑

i

f ∗i (yi) subject to:
∑

i

yi ≤ 0

where f ∗i (yi) is the optimum cost in the i-th subproblem, for master variables y. According
to the standard primal method, the master program is solved using a subgradient projection
iteration, with a subgradient given by:

𝜋(y) = −
∑

i

𝜋
∗
i (y)

being 𝜋
∗
i (y) the optimum multipliers for constraints (11.10c) in the i-th subproblem.

As a conclusion, the reformulation-decomposition technique is a powerful strategy to cre-
ate different network optimization algorithms, providing a theoretical support to a systematic
approach on multiple cooperation schemes between and within network layers.

11.3 Cross-Layer Congestion Control and QoS Capacity Allocation

In this example, we consider a network with two types of traffic demands represented by sets
1 and 2. We denote to the set of network nodes and the set of network links. The
capacity ue of each link is known and fixed. However, in order to enforce a strict separa-
tion between the QoS of demands in 1 and 2, each link e capacity is split into two: (i)
a bandwidth u1

e dedicated to demands of 1 and (ii) a bandwidth u2
e = ue − u1

e dedicated to
those in 2.

A congestion control scheme determines the rate hd of each demand, such that the network
utility

∑
d∈1

⋃
2

Ud(hd) is maximized. All utility functions are increasing, strictly concave,
and differentiable. The path pd followed by each demand d is known.

Trim Size: 6.625in x 9.625in Mariño c11.tex V3 - 02/11/2016 6:46 P.M. Page 248�

� �

�

248 Optimization of Computer Networks – Modeling and Algorithms

The joint optimization of the congestion control and the link capacity partitioning is accom-
plished solving the following network optimization problem:

max
h≥0,u1≥0,u2≥0

∑
d∈1

Ud(hd) +
∑

d∈2

Ud(hd) subject to: (11.11a)

∑
d∈1∶e∈pd

hd ≤ u1
e ∀e ∈ E (11.11b)

∑
d∈2∶e∈pd

hd ≤ u2
e ∀e ∈ E (11.11c)

u1
e + u2

e = ue ∀e ∈ E (11.11d)

We apply a primal decomposition approach, observing that if u1 and u2 = u − u1 capacity
vectors are fixed, problem (11.11) decouples into two separated congestion control problems
(11.12), one for each traffic class:

max
h1≥0

∑
d∈1

Ud(hd) subject to: (11.11b) (11.12a)

max
h2≥0

∑
d∈2

Ud(hd) subject to: (11.11c) (11.12b)

We denote 𝜋
1(u1) and 𝜋

2(u2) as the optimal multipliers of the link capacity constraints in
each subproblem. The master program adjusts the split of link capacities between the two
classes, solving:

max
u1≥0,u2≥0

U∗
1 (y

1) + U∗
2 (y

2) subject to: (11.11d) (11.13a)

where functions U∗
1 (u

1) and U∗
2 (u

2) are the optimum utilities of each subproblem (11.12a,b),
respectively, for a particular bandwidth split u1

, u2. Since the original problem is convex, we
have that:

s(u1
, u2) = [𝜋1(u1), 𝜋2(u2)]

is a subgradient of the objective function of the master, which thus can be solved using an
iterative projection algorithm decoupled per each link, such as:

(u1
e , u

2
e)(t + 1) = Pe

(
(u1

e , u
2
e)(t) + 𝛾s(u1(t), u2(t))

)
, ∀e ∈ (11.14)

where the set e represents the constraints u1
e ≥ 0, u2

e ≥ 0, u1
e + u2

e = ue. The projection oper-
ation can be solved efficiently using local information (see Exercise 11.6). The pseudocode in
Algorithm 15 illustrates the complete scheme.

Algorithm 15 describes a double iteration. First, the master algorithm updates the u1
, u2

values at a slow time scale. For a given u1
, u2 bandwidth split, the links apply a QoS pol-

icy that reserves the specified bandwidth to each class. Then, the standard congestion control
algorithm is left enough time to converge to a maximum utility solution. Depending on how

Trim Size: 6.625in x 9.625in Mariño c11.tex V3 - 02/11/2016 6:46 P.M. Page 249�

� �

�

Decomposition Techniques 249

congestion control problem is solved, optimal 𝜋1
e (u1) and 𝜋

2
e (u2) multipliers are generated. For

instance, as we saw in Chapter 6, if congestion control is based on Reno-like sources, 𝜋1
e and

𝜋
2
e multipliers can be approximated by the packet loss probability of connections of type 1

and 2 in link e. In TCP Vegas versions, the multipliers would be approximated by the average
queue backlog. Also, a general congestion control algorithm based on a dual relaxation of link
capacity constraints, like Algorithm 11 with explicit signaling, can be used. In either case, the
link prices are local information to the links, that links can convey implicitly or explicitly to
the demand sources, but that in any case each link uses to complete its master iteration.

Algorithm 15 Cross-layer congestion control and QoS capacity allocation for (11.11)

1: Set t = 0, initialize u1(0), u2(0) to any non-negative vectors satisfying (11.11d).
2: QoS adjustment (slow): Each link updates its bandwidth split asynchronously using

(11.14).
3: Congestion control (fast): Each class solves its congestion control subproblem, 𝜋1

e and 𝜋
2
e

multipliers are generated in each link.

11.3.1 Implementation Example

We present here some tests illustrating the convergence of Algorithm 15. We use the topology
in Fig. 9.2, with two demands between each node pair, carried through the shortest path route
in km between the end nodes. Demands implement the dual approach for congestion control
algorithm described in Section 10.4. Demands of both types have the same fairness factor
𝛼 = 1, but utility of type 2 is weighted by a factor of two, and thus for the same injected
traffic, contributes double to network utility than a type 1 demand. Each link e independently
computes its weight 𝜋e monitoring its traffic, signals it to the traversing demands, and waits a
random time between 0.5 and 1.5 units before the next update. Signaling messages to demand
sources are delayed randomly between 2.5 and 3.5 time units, but a fraction of 5% messages
are randomly lost. Independently from the link update, each demand recomputes its injected
traffic using the most updated link information it has and waits a random time between 0.5 and
1.5 time units until the next computation.

The QoS capacity split iteration is performed at a slower time scale than congestion con-
trol. Each link e updates its split u1

e , u
2
e asynchronously, using the most updated local link

information, and the time between two updates is randomly chosen between 40 and 60 time
units.

Figure 11.1 illustrates the algorithm convergence when the congestion control step 𝛾c =
0.001 and the QoS split step in (11.14) is 𝛾Q = 5. Interestingly, the reader can check how
convergence of the joint optimization occurs for the same 𝛾c and 𝛾Q values, also when both
congestion control and QoS updates are on similar time scales and when the QoS update is,
for example, 10 times faster on average than the congestion control update.

11.4 Cross-Layer Congestion Control and Backpressure Routing

In this section, we present a cross-layer algorithm motivated by the application of a dual
decomposition to the joint optimization of congestion control and backpressure center-free
routing in a network. Let and be the set of network nodes and links, respectively, ue the

Trim Size: 6.625in x 9.625in Mariño c11.tex V3 - 02/11/2016 6:46 P.M. Page 250�

� �

�

250 Optimization of Computer Networks – Modeling and Algorithms

0 100 200 300 400 500 600
20
40
60
80

N
et

. u
til

ity

2
4
6
8

10
20
30

h d2
h d1

0

10

20

u1
0

10

20

u2

Figure 11.1 Evolution of Algorithm 15, 𝛾c = 0.001 (congestion control), 𝛾Q = 5 (QoS split). Plots from
upper to lower are the capacity splits, demand rates, and network utility. Optimum values are plotted as
squares on the right-hand side

link capacities and the set of offered demands. Each demand d is associated to an utility
function Ud, strictly increasing and strictly concave with respect to the flow rate hd. The NUM
modeling of the joint congestion and routing control problem optimizes both layers:

max
x≥0,h≥0

∑
d

Ud(hd) subject to: (11.15a)

qnd ∶
∑

e∈𝛿+(n)
xde −

∑
e∈𝛿−(n)

xde

{
≥ hd, if n = a(d)
≥ 0, otherwise

, ∀d ∈ , n ∈ − b(d) (11.15b)

∑
d

xde ≤ ue, ∀e ∈ (11.15c)

The objective function targets maximizing the network utility, representing the performance
observed at the application layer. (11.15b) are the flow conservation constraints in the flow-link
formulation, (11.15c) the link capacity constraints. The reader is referred to Section 10.3 for
a deeper explanation.

We see that congestion control (h) and routing (x) variables are coupled by flow conservation
constraints. We apply a dual approach and relax them using qnd as multipliers. For given qnd
values of the multipliers, the relaxed problem can be separated into two:

min
x≥0,

∑
d

xde≤ue

∑
de

xde(qb(e)d − qa(e)d) (11.16a)

max
h≥0

∑
d

Ud(hd) − qa(d)dhd (11.16b)

Trim Size: 6.625in x 9.625in Mariño c11.tex V3 - 02/11/2016 6:46 P.M. Page 251�

� �

�

Decomposition Techniques 251

First subproblem (11.16a) determines the routing, and yields to a similar backpressure
center-free scheme to that described in Section 10.3. In particular, note that this problem
can be solved independently for each link: a link e must forward the traffic of demand d
for which the quantity (qb(e)d − qa(e)d) is minimum, assuming that the quantity is negative.
If (qb(e)d − qa(e)d) > 0 for all demands, the link does not forward traffic. Then, to make for-
warding decisions, each node n needs to know the qn′d multipliers for all demands, but just in
its neighbor nodes n′.

Second subproblem (11.16b) can be solved independently for each demand in one shot
using local information qa(d)d: the multiplier at the demand source node. For instance, if Ud
are 𝛼-utility functions:

hd = q−1∕𝛼
a(d)d , ∀d ∈ (11.17)

Note that the two layers are coordinated using very simple signaling. The routing side
requires that each node n is signaled the qn′d values for all demands d and from all outgo-
ing neighbor nodes. In turn, each demand d needs to know the multiplier qnd for its origin
node n = a(d), which is local information.

The multipliers gradient update, using a constant 𝛾 step is:

qnd(t + 1) =

[
qnd(t) + 𝛾

(
hnd −

∑
e∈𝛿+(n)

xde(t) +
∑

e∈𝛿−(n)
xde(t)

)]
0

(11.18)

where hnd is hd when n is the origin node of d, and zero otherwise. Note that the subgradient
coordinate for multiplier qnd is the difference between the new traffic in n to transmit to d, and
the traffic already transmitted. Then, for a constant 𝛾 step, qnd becomes proportional to the
queue size Qnd of pending traffic at node n, of demand d, information easy to track:

qnd = 𝛾Qnd, ∀n ∈ , d ∈ (11.19)

The complete scheme of the cross-layer algorithm, for an asynchronous and distributed
operation, is shown in Algorithm 16.

Algorithm 16 Cross-layer congestion control and backpressure routing for (11.15)
1: Node’s algorithm: At times t = t1(n), t2(n),…, node n:
2: Collects queue length information for its queues {qnd,∀d}.
3: Signals it to incoming neighbor nodes.
4: Link’s algorithm: At times t′ = t1

′(e), t2′(e),…, link e:
5: Collects the most updated qnd values it has, signaled from outgoing neighbors.
6: Transmits traffic of demand d with highest pressure difference, as long as it is > 0.
7: Demand’s algorithm: At times t′′ = t1

′′(d), t2′′(d),…, demand d:
8: Adjusts its volume hd using (11.17).

As a final remark, as happened in Section 10.3, there is an interesting connection between
algorithm convergence and queue size. In particular, let us assume that a network instance has
some particular optimum multipliers q∗nd when solving (11.15). Then, if we apply Algorithm

Trim Size: 6.625in x 9.625in Mariño c11.tex V3 - 02/11/2016 6:46 P.M. Page 252�

� �

�

252 Optimization of Computer Networks – Modeling and Algorithms

16, the average Q∗
nd values observed in the queues when the algorithm converges is given by

q∗nd∕𝛾 . Higher 𝛾 values mean smaller queue sizes and thus smaller delays. However, we cannot
have arbitrarily large 𝛾 steps, and thus arbitrarily small queue sizes, since the gradient iteration
would not converge.

11.4.1 Implementation Example

We test Algorithm 16 on the same topology as the tests for the backpressure algorithm in
Section 10.3.2, and a similar implementation of the routing process in the nodes in a time
slotted fashion (slots of one time unit), together with an asynchronous signaling. A node col-
lects its queue information, signals it in a message to each incoming neighbor node, and waits
a random time between 0.5 and 1.5 time units until the next signaling event. Some 5% of
the signaling messages are lost. Then, a node uses its local queues qa(e)d information for the
forwarding decision, but using possibly outdated qb(e)d sizes signaled from the neighbor nodes.

We assume that a demand exists between each node pair, with an associated 𝛼-utility func-
tion (3.19), with 𝛼 = 2. We assume that the routing is performed by a fast scheduler (time slots
are relatively small), while the congestion control has slower reactions. Each demand asyn-
chronously updates its rate and waits a random time between 5 and 15 time units until its next
update. As shown in Fig. 11.2, convergence to the optimum routes (xp) and optimum demand
rates (hd) is achieved reasonably quickly for a step 𝛾 = 5 × 10−6.

Interested readers can use Net2Plan to observe the algorithm convergence in the presence
of delays, losses, and so on, and check how the relation between queue sizes and the 𝛾 step is
met while the algorithm converges.

0 500 1000 1500
−2

−1

0

N
et

w
or

k
ut

ili
ty

0

500

1000

Q
nd

0

10

20

x p

15

20

25

h d

Figure 11.2 Evolution of Algorithm 16 in the asynchronous case with signaling losses, 𝛾 = 5 × 10−6.
Plots from upper to lower are the demand rates, routes evolution, queue sizes in average number of
packets, and network utility. Optimum values are plotted as squares on the right-hand side

Trim Size: 6.625in x 9.625in Mariño c11.tex V3 - 02/11/2016 6:46 P.M. Page 253�

� �

�

Decomposition Techniques 253

11.5 Cross-Layer Congestion Control and Power Allocation

Herein we present a cross-layer distributed algorithm for joint optimization of the congestion
control and transmission power allocation in a wireless network. Radio communications use a
multiplexing scheme (e.g., CDM, OFDM), such that a link e receiver sees the power from its
other end as a signal to detect that is interfered by the incoming power from other transmitters.
The wireless constraints are the same as the ones described in Section 5.5, the reader is referred
to that section for further details.

We denote for the wireless network nodes and to its links. The capacity ue in each link
e depends on its transmission power p̃e (in logarithmic units), and the transmission power of
the rest of the network links interfering it. It is approximated by the expression:

ue = log (SNRe) = log

⎛⎜⎜⎜⎝
ep̃e Gee

𝜎
2
e +

∑
e′≠e

ep̃e′ Ge′e

⎞⎟⎟⎟⎠ (11.20)

where 𝜎
2
e is the thermal noise power at the receiver end (in linear units) and Gee′ , e, e

′ ∈ is
the interference map between links: the fraction of the power transmitted in e that reaches the
receiver of e′. As shown in Prop. 5.5, ue is a concave function of variables p̃.

The wireless network is fed with the traffic of a set of demands. We are interested in the
joint optimization of the transmission powers p̃e and rate allocations hd, such that the network
utility is maximized, solving the problem:

max
h≥0,p̃

∑
d

Ud(hd) subject to: (11.21a)

𝜋e ∶
∑

d∶e∈pd

hd ≤ log

⎛⎜⎜⎜⎝
ep̃e Gee

𝜎
2
e +

∑
e′≠e

ep̃e′ Ge′e

⎞⎟⎟⎟⎠ , ∀e ∈ (11.21b)

p̃min ≤ p̃ ≤ p̃max
, ∀e ∈ (11.21c)

where Ud is the concave and increasing utility function of demand d, and 0 < p̃min
< p̃max

< ∞
state the hardware constraints in the minimum and maximum transmission power. Problem
(11.21) is convex with strong duality. We pursue a dual decomposition approach relaxing the
link constraints. This decouples the relaxed problem into two:

max
h≥0

∑
d

Ud(hd) − hd

∑
e∈pd

𝜋e (11.22a)

max
p̃min≤p̃≤p̃max

∑
e

𝜋e log

⎛⎜⎜⎜⎝
ep̃e Gee

𝜎
2
e +

∑
e′≠e

ep̃e′ Ge′e

⎞⎟⎟⎟⎠ (11.22b)

For given 𝜋e multipliers, congestion control problem (11.22a) can be solved in one shot. For
instance, for 𝛼-fair utility functions of the form (3.19), the maximizer hd(𝜋) is given by:

hd(𝜋) =
⎡⎢⎢⎣
(∑

e∈pd

𝜋e

)−1∕𝛼⎤⎥⎥⎦0

,∀d ∈ (11.23)

Trim Size: 6.625in x 9.625in Mariño c11.tex V3 - 02/11/2016 6:46 P.M. Page 254�

� �

�

254 Optimization of Computer Networks – Modeling and Algorithms

In turn, given 𝜋e multipliers, transmission power optimization (11.22b) can be solved with
a primal projection gradient algorithm. Repeating the steps in Section 9.6, for the particular
case of Ue(ue) = 𝜋eue, we have that the gradient of the objective function f of (11.22b) is:

𝜕f

𝜕p̃e
=

𝜕Ue

𝜕p̃e
+

∑
e′′≠e

𝜕Ue′′

𝜕p̃e

𝜕Ue

𝜕p̃e
=

𝜕Ue

𝜕ue

𝜕ue

𝜕p̃e
= 𝜋e

𝜕Ue′′

𝜕p̃e
=

𝜕Ue′′

𝜕ue′′

𝜕ue′′

𝜕p̃e
= −𝜋e′′

SNRe′′

ep̃e′′Ge′′e′′
ep̃e Gee′′

using me′′ = 𝜋e′′
SNRe′′

ep̃e′′ Ge′′e′′
, we can rewrite the gradient of the objective function as:

𝜕f

𝜕p̃e
= 𝜋e − ep̃e

∑
e′′≠e

me′′Gee′′

The dual decomposition presented, creates two separated subproblems that use congestion
prices 𝜋e as the coordination information. The link prices evolution depends on both layers.
The subgradient coordinate for link e is obtained monitoring the difference between the link
capacity and the offered traffic.

𝜋e(t + 1) =

[
𝜋e(t) − 𝛾(t)

(
ue(t) −

∑
d∶e∈pd

hd(t)

)]
0

(11.24)

The upper problem can be solved, for example, by a standard TCP algorithm, which receives
the link prices 𝜋e implicitly, or a dual congestion control algorithm like the one described in
Section 10.4 that explicitly conveys the 𝜋e multipliers to the demand source nodes. The lower
problem can be solved using the primal gradient projection iteration described in Section 9.6
(Algorithm 7). Algorithm 17 illustrates the higher layer scheme.

Algorithm convergence requisites and robustness under asynchronous implementations are
investigated in detail in [3]. Intuitively, it is shown that problem (11.21) can be made equivalent
to a problem maximizing a strictly concave function under convex constraints and that both
subproblems (11.22) maximize a strictly concave function. Then, iteration (11.24) is actually
a gradient iteration, and given some link weights 𝜋, the associated primal solution (h, u) is
unique. Therefore, convergence is guaranteed for sufficiently small 𝛾 steps in (11.24) and 𝛾i
steps in the inner power allocation update of Algorithm 7.

Intuitively, convergence is also guaranteed if transmission power inner iteration is executed
at a sufficiently faster time scale than congestion control and multipliers update. Then, after
a link weight update, link capacities fast converge to the adequate solution, and congestion
control convergence is guaranteed under standard assumptions of Section 10.4, since after
convergence this loop sees a constant capacity in the links.

11.5.1 Implementation Example

We illustrate the convergence properties of the cross-layer scheme proposed for a 6-node wire-
less network like the one in Fig. 9.10. In the congestion control side, one demand is considered

Trim Size: 6.625in x 9.625in Mariño c11.tex V3 - 02/11/2016 6:46 P.M. Page 255�

� �

�

Decomposition Techniques 255

Algorithm 17 Cross-layer congestion control and power allocation for (11.21)
1: Set t = 0, initialize 𝜋(0) to any value 𝜋(0) ≥ 0.
2: Power allocation: Inner iterations of Algorithm 7 for multipliers 𝜋, to iteratively adjust

the power.
3: Congestion control: Each demand adjusts its rate to 𝜋 using (11.23).
4: Multipliers update: At times t = t1(e), t2(e),…, link e updates 𝜋e using (11.24).

between each node pair, with an 𝛼-fair utility function with 𝛼 = 1. Congestion control operates
at a time scale one order of magnitude slower than power adjustment. Each demand asyn-
chronously adjusts its rate using the most updated multipliers obtained, and waits a random
time between 5 and 15 units until the next update. Also, each link adjusts its multiplier 𝜋e using
the local capacity and traffic information and waits a random interval between 5 and 15 time
units to the next update. In every update, link multipliers are signaled to the nodes. Signaling
messages are assumed to arrive with a random delay between 15 and 45 time units, but 5% of
messages are lost. The 𝛾 step in the congestion control iteration is 𝛾 = 0.0001.

In the power adjustment side, the algorithm operates in an asynchronous form. Each link
uses the most updated 𝜋e value locally known in every moment. The algorithm parameters
and wireless channel conditions are equal to the ones described in Section 9.6.1, including
the noisy gradients but not the heavy-ball term. The only difference is a reduction of the 𝛾

parameter to 𝛾 = 1 (instead of 𝛾 = 10).
Figure 11.3 illustrates the results. As we can see, convergence is smoothly achieved. The

reader can check using the Net2Plan code provided, how convergence is reached for a wide
range of 𝛾 steps in the inner and outer algorithm, and also when time-scales of power allo-
cation and congestion control are similar. In particular, for the same 𝛾 steps, speeding up the
congestion control one order of magnitude (so both subproblems operate asynchronously, but
at the same time-scale) creates no diverging feedback, and just speeds up the convergence.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

20

40

ne
t u

til
ity

0.2
0.4
0.6
0.8

1

π e

8

10

12

u e

2
4
6
8

10
12

h d

Figure 11.3 Evolution of Algorithm 17. Optimum values are plotted as squares in the right-hand side

Trim Size: 6.625in x 9.625in Mariño c11.tex V3 - 02/11/2016 6:46 P.M. Page 256�

� �

�

256 Optimization of Computer Networks – Modeling and Algorithms

11.6 Multidomain Routing

In this section, we use a primal decomposition approach in the routing optimization in a net-
work composed of a set of clusters or domains. Each domain c ∈ can correspond to an
autonomous system in the Internet or any set of nodes controlled by an independent network
carrier. Each node n belongs to exactly one domain, the institution managing it. We denote as
c(n) to the cluster (carrier or domain) a node belongs to, and c to the set of nodes composing
a cluster c. The set of all network nodes is =

⋃
c∈c and the set of all network links is .

Given a cluster c, i
c is the set of internal or intradomain links of the cluster: that is, those

links starting and ending inside it. Naturally, these are not the only links in the network since
domains are not isolated but connected by interdomain links, which start in a node of a domain
and end in a node of another domain. Domains connected by one or more links are said to be
neighbors. We denote f

c as the interdomain links incoming or outgoing to/from cluster c, and
 f =

⋃
c∈Ef

c to the set of all interdomain or frontier links in the network.
The network offered traffic is composed of a traffic matrix hnt, n, t ∈ containing the vol-

ume of traffic originated in node n, targeted to node t. When n and t are in different domains,
its exchanged traffic must traverse interdomain links, and we call it interdomain traffic. In con-
trast, intradomain traffic can be routed only through the domain internal links, although this is
not mandatory. We denote hct as the aggregated sum of traffic originated in cluster c targeted
to t: hct =

∑
n∈c

hnt.
Optimizing the routing in an interdomain network is a challenging task, since carriers own-

ing the domains are reluctant to share sensible information like (i) the internal topology of
intradomain links, (ii) its intradomain routing, and (iii) fine details of the offered traffic from/to
their nodes.

The primal decomposition strategy that follows, targets the destination-based routing (xte
formulation) that minimizes the average number of hops in the complete network. Domains
engaged in this optimization collaborate on exchanging a limited amount of coordination data
in an iterative process, but the shared data does not include any of the three previous types of
sensitive information.

We consider the traffic traversing the interdomain links as master variables to the problem,
and we denote them as:

mte, t ∈ , e ∈ f = {Traffic targeted to t traversing interdomain link e}

Once the master variables are fixed, domains become isolated entities that can optimize their
network independent from each other. Each cluster c does that solving the problem:

min
∑

t,e∈ i
c

xte + Muc subject to: (11.25a)

∑
e∈𝛿+(n)

xte −
∑

e∈𝛿−(n)
xte = hnt, ∀t, n ∈ c, n ≠ t (11.25b)

∑
t

xte ≤ ue + uc, ∀e ∈ i
c (11.25c)

uc ≥ 0, xte ≥ 0, ∀t ∈ , e ∈ i
c (11.25d)

𝑣
c
te ∶ xte = mte, ∀t, e ∈ Ef

c (11.25e)

Trim Size: 6.625in x 9.625in Mariño c11.tex V3 - 02/11/2016 6:46 P.M. Page 257�

� �

�

Decomposition Techniques 257

The objective function sums two contributions: (i) the amount of traffic carried in the links
(proportional to the average number of hops of the routing) and (ii) a penalization factor Muc,
where uc is a variable with the maximum amount of oversubscription traffic in any internal link,
as enforced by constraint (1.1c). Oversubscription in the links is allowed (although strongly
penalized by a large M factor), so that routing subproblems for a domain are always feasible,
whatever the master variables are. Recall that this is a requirement for the primal decomposi-
tion to work.

Constraints (11.25b) are the flow conservation constraints, involving only the domain nodes.
Note that constraints (11.25e) fix the xte values for the frontier links to constants given by
associated mte values, and 𝑣te are the multipliers of these constraints.

We denote C∗
c (m) as the optimum cost of the routing problem in cluster c, given the master

variables m. We denote 𝑣te(m) as the multipliers of constraints (11.25e). The master program
solving the original problem is given by:

min
m

∑
c

C∗
c (m) +

∑
e∈f

∑
t

mte subject to: (11.26a)

∑
e∈𝛿+(c)

mte −
∑

e∈𝛿−(c)
mte

{
= hct, if t ∉ c

−
∑

c′≠c
hc′t, otherwise , ∀t ∈ , c ∈ (11.26b)

∑
t

mte ≤ ue,∀e ∈ f (11.26c)

mte ≥ 0,∀t ∈ , e ∈ f (11.26d)

The objective function sums the contributions of the internal costs in each cluster (intrado-
main carried traffics and oversubscription cost), plus the carried traffic in the interdomain links.
(11.26b) are flow conservation constraints applied seeing a domain as a single node, and 𝛿

+(c)
and 𝛿

−(c) are the outgoing and incoming interdomain links for a cluster c, respectively:

• If a target t is not in a domain c, the outgoing minus incoming traffic in c to destination t is
hct, what the domain generates targeted to t.

• If a target t is in a domain c, the incoming minus outgoing traffic in c to destination t sums
the total amount of traffic to t generated by external sources:

∑
c′≠chc′t.

The primal decomposition rationale lies in solving the master problem using an iterative
projected gradient approach. A gradient of the objective function can be obtained by exploiting
the fact that 𝑣c

te(m) multipliers produced by cluster c under master variables m, are negative
subgradients of the function C∗

c (m). Then, the subgradient of the objective function f of the
master is:

𝜕f

𝜕mte
(m) = −𝑣c(a(e)

te − 𝑣
c(b(e)
te + 1, ∀t ∈ , e ∈ f (11.27)

And the master subgradient iteration using a constant 𝛾 step is given by:

m(k + 1) = P(m(k) − 𝛾∇f (m(k))) (11.28)

where P(m) is the projection of m into the set of constraints (11.26b–d). Convergence of the
subgradient iteration with constant step length is guaranteed to the proximity of the optimum,

Trim Size: 6.625in x 9.625in Mariño c11.tex V3 - 02/11/2016 6:46 P.M. Page 258�

� �

�

258 Optimization of Computer Networks – Modeling and Algorithms

and this holds even if gradients are computed using outdated information, for instance, when
𝑣

c
te multipliers collected are outdated, and each domain updates its routing asynchronously and

independently from others. This inspires Algorithm 18.

Algorithm 18 Distributed multidomain routing
1: Master iteration: At times t = t1, t2,…, master unit:
2: Collects the multipliers 𝑣c

te from the domains.
3: Computes the new mte variables solving (11.28).
4: Signals each domain with the mte variables of its frontier links.
5: Domain iteration: At times t = t1(c), t2(c),…, each domain c:
6: Collects the mte values for its frontier links.
7: Recomputes its routing tables according to (11.25).

11.6.1 Implementation Example

We test Algorithm 18 in a network of three clusters, as shown in Fig. 11.4. Topology and traffic
chosen are that of the Abilene reference topology and traffic matrix, included in the Net2Plan
release as abilene_N12_E30_withTrafficAndClusters3.n2p. The total offered
traffic sums 75 units and link capacities are ue = 20.

Each carrier asynchronously and independently updates its routing solving (11.25), using
the current mte master variables just for its frontier links. Then, it signals the obtained 𝑣te mul-
tipliers to a central unit implementing the master iteration, and waits a random time between
0.5 and 1.5 time units until the next routing update.

The master iteration is implemented asynchronously with respect to each carrier, using the
most updated 𝑣te information from each of them. After completing the iteration, updated mte
master variables are available, and the central unit waits a random time between 0.5 and 1.5
time units until the next master iteration.

When each carrier recomputes its routing, the xte values obtained from (11.25) are used to
configure the routing tables of their nodes. As is common in hop-by-hop routing (e.g., IP),
these tables state the fraction of the incoming traffic to be forwarded to each output link, and

2

8

11
5

1

0
4

6
3

10

9

7

Figure 11.4 Topology example. Cluster 1, nodes 1 = {3, 7, 9, 10}, Cluster 2, nodes 2 =
{0, 1, 4, 6}, Cluster 3, nodes 3 = {2, 5, 8, 11}. Link capacity ue = 20, offered traffic in file
abilene_N12_E30_withTrafficAndClusters3.n2p

Trim Size: 6.625in x 9.625in Mariño c11.tex V3 - 02/11/2016 6:46 P.M. Page 259�

� �

�

Decomposition Techniques 259

10 20 30 40 50 60 70 80 90 100
200

250

300

T
ot

al
 B

W

0

5

10

15

x t
e

0

10

20

y e

Figure 11.5 Evolution of Algorithm 18, 𝛾 = 0.1. Plots from upper to lower are the traffic in the links,
xte values, and total bandwidth consumed in the links (target to minimize). Optimum values are plotted
as squares on the right-hand side

not the absolute values. Actually, the xte values observed in the carrier links can be somewhat
different to that coming from (11.25). The reason is that the traffic in the frontier links can
also be different to mte values, since carriers operate asynchronously, and some carriers may
be routing the traffic using an outdated mte information.

Figure 11.5 illustrates the convergence of the algorithm for a fixed step 𝛾 = 0.1. Note that
since the master iteration involves a subgradient projection, a fixed step produces convergence
to the vicinity of the optimum. Once this is achieved, a somewhat oscillatory behavior can
appear, as witnessed by ye evolution (traffic in the links). A diminishing step rule like 𝛾 = 1∕t
would be needed to guarantee exact optimality. The interested reader can check this using the
Net2Plan implementation provided.

11.7 Dual Decomposition in Non-Convex Problems

In this section, we present a case study where a dual decomposition is applied to a -hard
network problem to reduce its computational complexity. As explained in Section 11.2.2, the
resulting algorithm has no convergence guarantees to the optimum, since the original problem
instance may have a duality gap.

We focus on a network (,) with offered traffic given by the set of demands . The
link capacities are constrained to be integer multiples of a basic module of capacity U and
the routing is constrained to be non-bifurcated. We are interested in obtaining the routing and
capacity allocation that minimizes the network cost, given by the number of capacity modules
to install. Flow-link formulation (11.29) models the problem:

Trim Size: 6.625in x 9.625in Mariño c11.tex V3 - 02/11/2016 6:46 P.M. Page 260�

� �

�

260 Optimization of Computer Networks – Modeling and Algorithms

min
x,n

∑
e

ne subject to: (11.29a)

∑
e∈𝛿+(n)

x̂de −
∑

e∈𝛿−(n)
x̂de =

⎧⎪⎨⎪⎩
1, if n = a(d)
−1, if n = b(d)

0, otherwise
, ∀d ∈ , n ∈ (11.29b)

𝜋e ∶
∑

d

hdx̂de ≤ Une,∀e ∈

x̂de ∈ {0, 1}, ne ∈ {0, 1, · · ·Umax}, ∀d ∈ , e ∈ (11.29c)

where ne is the integer number of capacity modules installed in link e, x̂de is 1 if the traffic of
demand d traverses link e, and 0 otherwise. Umax is the maximum number of capacity modules
a link can host.

Recall that integrality of the decision variables makes the problem non-convex, and strong
duality is not guaranteed. Dualizing link capacity constraints (11.29c), using 𝜋e as multipliers,
the relaxed problem becomes:

min
(11.29bd)

∑
e

ne +
∑

e

𝜋e

(∑
d

hdx̂de − Une

)
(11.30)

= min
(11.28bd)

∑
e

ne(1 − 𝜋eU) +
∑

d

hd

∑
e

𝜋e(x̂de) (11.31)

The number of modules ne(𝜋) in the minimizer for multipliers 𝜋 can be computed easily:

ne(𝜋) =
{

0 if 𝜋eU ≤ 1
Umaxotherwise

, ∀e ∈ (11.32)

The computation of the optimum routing x(𝜋) of the relaxed problem can be separately
solved for each demand. Moreover, each demand routing can be computed efficiently, since
the solution minimizing (11.31) routes the 100% of the demand traffic through the shortest
path between its end nodes according to link weights 𝜋e. If more than one shortest path exists,
any can be arbitrarily chosen (e.g., in our tests, the one with the shortest length in km).

Note that the solution ne(𝜋), x(𝜋) may violate the relaxed link capacity constraints and thus
be unfeasible. Every iteration, we can easily compute an associated feasible solution by reusing
the routing x(𝜋), but recomputing the number of modules per link as the minimum number
needed to carry the link traffic ye =

∑
dhdx̂de:

ne(𝜋)f =
⌈ye

U

⌉
(11.33)

Since strong duality is not guaranteed to hold, the dual function may be non differentiable.
The multipliers iteration, for a general 𝛾k step in the subgradient projection, is given by:

𝜋e(k + 1) =

[
𝜋e(k) + 𝛾k

(∑
d

xde(𝜋(k)) − Une(𝜋(k)))

)]
0

, e ∈ (11.34)

Trim Size: 6.625in x 9.625in Mariño c11.tex V3 - 02/11/2016 6:46 P.M. Page 261�

� �

�

Decomposition Techniques 261

Algorithm 19 describes the pseudocode of the approach. In every iteration k, the minimizers
associated to 𝜋(k) are computed. Then, an associated feasible solution is extracted with (11.33).
Finally, the multipliers are updated using (11.34) and the loop is repeated until a stop condition
is met. Note that the algorithm should keep track of the best feasible solution found historically,
and return it when it is terminated.

Algorithm 19 Non-convex capacity and routing optimization for (11.29)
1: Initialization: Set k = 0, initialize 𝜋e(0) = 1,∀e ∈

2: Minimizer computation: Obtain ne(𝜋(k)) (11.32) and x(𝜋(k)) (shortest paths).
3: Feasible solution: Compute feasible capacities ne(𝜋)f with (11.33).
4: Weight update: Update the 𝜋 weights using (11.34).

11.7.1 Implementation Example

Algorithm 19 is tested in the network shown in Fig. 11.4 (without any node clustering). Its
topology and traffic correspond to the Abilene reference topology and traffic matrix, included
in the Net2Plan release as abilene_N12_E30_withTrafficAndClusters3.n2p.
The total offered traffic sums 75 units, and modules have capacity one (U = 1). The maximum
number of acceptable modules in a link Umax is set to 75 (enough to host all the total traffic).

The problem instance chosen could be solved to optimality in several tens of seconds using a
CPLEX solver interfaced from JOM (optimum cost is 210 capacity units), while GLPK solver
could not find a feasible solution when stopped after a 5 minute run.

Figure 11.6 plots the evolution of Algorithm 19 for a decreasing step length 𝛾k = 0.05∕k.
The upper graph shows the convergence of the multipliers. The lower graph draws two lines:
(i) the evolution of the cost of the feasible solutions produced, and (ii) the dual cost in each
iteration, a lower bound.

We can clearly see how the dual algorithm searches for the multipliers that maximize the
dual function, reaching a maximum dual cost of ≈ 202.4 units. As the theory states, any dual
cost is a lower bound to the optimum cost, and the maximum of the dual function (202.4 units)
is the best among them. Since we know the optimum for this problem instance (210), we can
determine that its duality gap is of ≈ 7.6 units: (210 − 202.4 = 7.6). The best solution found
by Algorithm 19 is 215.

The reader can use the Net2Plan implementation provided to see how the duality gap tends
to decrease as the capacity modules U become smaller. The reasoning behind is that it results
in a finer granularity for choosing the link capacity, which approximates a problem without
capacity integrality constraints.

11.8 Notes and Sources

Decomposition techniques have formed a part of general optimization theory since their begin-
ning. The publication of the Dantzig–Wolf decomposition principle in 1961 [4], is considered
the start of the extensive evolution of large-scale mathematical optimization that followed.
Multiple contributions exist, too many to cite them all. Some references exposing basic decom-
position principles are [2, 5, 6] and [7]. Problem decomposition is a hot topic today, fueled by
the quest of more and more efficient parallelizable algorithms, for example in the big data
processing. The reader is referred to specialized journals and conferences in the topic.

Trim Size: 6.625in x 9.625in Mariño c11.tex V3 - 02/11/2016 6:46 P.M. Page 262�

� �

�

262 Optimization of Computer Networks – Modeling and Algorithms

50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

C
os

t

Time

0

0.5

1

1.5

2

π e

Figure 11.6 Evolution of Algorithm 19, decreasing step 𝛾 = 0.05∕k. Plots from upper to lower are link
multipliers and primal and dual costs. Optimum cost is 210

The interest in this chapter lays on the fundamental decomposition principles that provide an
insight for understanding the interactions between protocols. The path breaking contribution
in this line is the work Layering as optimization decomposition: a mathematical theory of
network architectures [1] that puts together multiple previous contributions under a common
view: interactions among network layers can be explained as the coordination of subproblems
in a decomposition of a global network algorithm. This is an invaluable resource for the reader
interested in the topic that links to more than a hundred of related references.

The organization of the decomposition methods into primal, dual, and problem reformula-
tions is similar to that in [7] and [8]. The case study on cross-layer optimization of conges-
tion control and QoS-aware capacity allocation is adapted from [8]. A dual approach for the
cross-layer congestion control and backpressure routing was initially addressed in [9] and also
appears in [1]. The cross-layer optimization of congestion control and transmission power in
wireless networks is first studied in [3]. For didactic purposes, the algorithm in Section 11.5
is a simplified version of the work in [3], also tailored to reuse the primal power allocation
algorithm in Section 9.6.

The idea of an inter-domain cooperative traffic engineering among ISPs in the Internet,
supported by a dynamic control that enforces stable, efficient, and predictable interactions is
discussed in works like [10, 11]. Domain collaboration schemes based on dual decompositions
are presented in [12, 13]. The primal approach for coordination of network domains in Section
11.6 is original, and not published elsewhere.

The dual algorithm for modular capacities and non-bifurcated routing optimization is a
simple application of the dual approach with didactic purposes. There is a growing and rich
literature studying the duality gaps appearing in Lagrange relaxations and how to characterize

Trim Size: 6.625in x 9.625in Mariño c11.tex V3 - 02/11/2016 6:46 P.M. Page 263�

� �

�

Decomposition Techniques 263

strong relaxations that produce tight lower bounds. This analysis is out of the scope of this
book, the interested reader is referred to sources like [14, 15].

11.9 Exercises

11.1 In the optimization problem (11.35)

min
x,y

f (x) + g(y) subject to: (11.35a)

x ∈ , y ∈ (11.35b)

Fx + Gy ≤ h (11.35c)

Devise a dual algorithm for the problem dualizing the complicating constraint
(11.35c). Comment on the algorithm convergence.

11.2 Repeat Exercise 11.1 using a primal approach. Hint: Use an auxiliary variable z and
replace (11.35c) by Fx ≤ z,Gy ≤ h − z.

11.3 In the optimization problem (11.36)

min
{xi},y

∑
fi(xi, y) subject to: (11.36a)

y ∈ , xi ∈ i ∀i (11.36b)∑
i

gi(xi) ≤ b (11.36c)

hi(xi) ≤ y, ∀i (11.36d)

This problem has a coupling variable y and a complicating constraint (11.36c). Apply a
primal decomposition of the problem to get rid of coupling variable y. Then, solve the
resulting problem using a dual approach relaxing the coupling constraints. Comment
on the resulting algorithm and its convergence.

11.4 Repeat Exercise 11.3 using first a dual approach relaxing constraint (11.36c) and then
a primal approach on coupling variable y to solve the relaxed problem. Comment on
the resulting algorithm and its convergence.

11.5 Repeat Exercise 11.3 using first a dual approach relaxing constraint (11.36c) and then
a dual approach using auxiliary variables yi and consistency constraints. Comment on
the resulting algorithm and its convergence.

11.6 Apply KKT optimality conditions to find a closed expression for the euclidean pro-
jection of a point (a1, a2) ∈ ℝ2 into the ℝ2 subset = {x1 ≥ 0, x2 ≥ 0, x1 + x2 = c}.

11.7 [8] Devise a dual algorithm for solving the joint congestion control and QoS capacity
allocation problem (11.11) dualizing the link capacity constraints (11.11bc). Comment
on a possible distributed implementation of the scheme. Implement the algorithm in
Net2Plan, using as a template the implementation available for Algorithm 15.

Trim Size: 6.625in x 9.625in Mariño c11.tex V3 - 02/11/2016 6:46 P.M. Page 264�

� �

�

264 Optimization of Computer Networks – Modeling and Algorithms

11.8 Devise an algorithm for solving the joint congestion control and routing problem
(11.15), with a modified objective function:

max
h,x

∑
d

Ud(hd) − 𝜖

∑
de

xde

where 𝜖 > 0 is expected to be a small number. Apply first a primal decomposition, with
hd being the coupling variables, and then solve the routing subproblem using a dual
decomposition. Comment on a possible distributed implementation of the scheme.
Implement the algorithm in Net2Plan using as a template the implementation available
for Algorithm 16.

11.9 Devise an algorithm for solving the joint congestion control and transmission power
optimization problem (11.21), with a modified objective function:

max
h,x

∑
d

Ud(hd) − 𝜖

∑
e

ep̃e

where 𝜖 > 0 is expected to be a small number. Apply first a primal decomposition,
with hd being the coupling variables, and then solve the power allocation subproblem
using a dual decomposition. Comment on a possible distributed implementation of the
scheme. Implement the algorithm in Net2Plan, using as a template the implementation
available for Algorithm 17.

11.10 [13] In the interdomain routing problem of Section 11.6, let us assume that each
domain c has an utility function Uc(xc) where xc represents the destination-link rout-
ing variables of its internal and frontier links. The global optimization problem to
solve is:

min
x≥0

∑
c

U(xc) subject to: (11.37a)

∑
e∈𝛿+(n)

xte −
∑

e∈𝛿−(n)
xte = hnt,∀t, n ∈ c, n ≠ t,∀c ∈ (11.37b)

∑
t

xte ≤ ue, ∀c ∈ , e ∈ i
c (11.37c)

∑
t

xte ≤ ue, ∀e ∈ f (11.37d)

See that the problem is coupled by flow conservation constraints (11.37b) in frontier
nodes, and link capacity constraints (11.37d) in frontier links. For each frontier link
e ∈ f between clusters c1 and c2 create the destination-link auxiliary variables: xc1

te
and xc2

te for all destinations t, as local variables to each domain of the routing in these
links. Create an equivalent problem to (11.37) where each domain c solves an inde-
pendent routing problem using only local variables and the consistency constraints:

xc1
te = xc2

te ,∀t, c1, c2 ∈ , neighbor domains, e ∈ Ef
c1
∩ Ef

c2

couple the routing problem between neighbor links. Devise a dual algorithm that
solves (11.37) relaxing the consistency constraints and coordinating the domain

Trim Size: 6.625in x 9.625in Mariño c11.tex V3 - 02/11/2016 6:46 P.M. Page 265�

� �

�

Decomposition Techniques 265

through these multipliers. Elaborate on the conditions for algorithm convergence.
Implement the algorithm in Net2Plan, using as a template the implementation
available for Algorithm 18.

11.11 We focus on the multilayer network design problem (7.4) described in Section 7.4.
Find a dual algorithm targeted to an offline centralized execution, that decouples upper
and lower layer problems by relaxing the upper layer link capacity constraints (7.4c).
Comment on the resulting algorithm and its convergence in the case when zc variables
are restricted to be integers and when they are not.

11.12 Repeat Exercise 11.11 applying a primal algorithm, using zc as the complicating vari-
ables.

References
[1] M. Chiang, S. H. Low, J. C. Doyle et al., “Layering as optimization decomposition: A mathematical theory of

network architectures,” Proceedings of the IEEE, vol. 95, no. 1, pp. 255–312, 2007.
[2] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods. Athena Scien-

tific, 1997.
[3] M. Chiang, “Balancing transport and physical layers in wireless multihop networks: Jointly optimal congestion

control and power control,” Selected Areas in Communications, IEEE Journal on, vol. 23, no. 1, pp. 104–116,
2005.

[4] G. Danzig and P. Wolfe, “The decomposition algorithm for linear programming,” Econometrica, vol. 4, pp.
767–778, 1961.

[5] D. P. Bertsekas, Nonlinear Programming. Bertsekas: Athena Scientific, 1999.
[6] L. Lasdon, Optimization theory for large systems, ser. Dover books on Mathematics. Dover Publications, 2002.
[7] S. Boyd, L. Xiao, A. Mutapcic, and J. Mattingley, “Notes on decomposition methods,” Notes for EE364B,

Stanford University, 2007.
[8] D. P. Palomar and M. Chiang, “A tutorial on decomposition methods for network utility maximization,” Selected

Areas in Communications, IEEE Journal on, vol. 24, no. 8, pp. 1439–1451, 2006.
[9] X. Lin and N. B. Shroff, “Joint rate control and scheduling in multihop wireless networks,” in Decision and

Control, 2004. CDC. 43rd IEEE Conference on, vol. 2. IEEE, 2004, pp. 1484–1489.
[10] J. Winick, S. Jamin, and J. Rexford, “Traffic engineering between neighboring domains,” Available: http://www

.research.att.com/~jrex/papers/interAS.pdf, July 2002.
[11] R. Mahajan, D. Wetherall, and T. Anderson, “Negotiation-based routing between neighboring ISPs,” in Proceed-

ings of the 2nd conference on Symposium on Networked Systems Design & Implementation-Volume 2. USENIX
Association, 2005, pp. 29–42.

[12] A. Tomaszewski, M. Pióro, and M. Mycek, “A distributed scheme for optimization of interdomain routing
between collaborating domains,” Annals of Telecommunications-Annales des Télécommunications, vol. 63, no.
11-12, pp. 631–638, 2008.

[13] G. Shrimali, A. Akella, and A. Mutapcic, “Cooperative interdomain traffic engineering using Nash bargaining
and decomposition,” IEEE/ACM Transactions on Networking (TON), vol. 18, no. 2, pp. 341–352, 2010.

[14] L. Wolsey, Integer Programming, ser. Wiley Series in Discrete Mathematics and Optimization. New York, NY,
USA: John Wiley Inc., 1998.

[15] L. A. Wolsey and G. L. Nemhauser, Integer and combinatorial optimization. Hoboken, NJ, USA: John Wiley &
Sons, Inc., 2014.

Trim Size: 6.625in x 9.625in Mariño c12.tex V3 - 02/11/2016 6:48 P.M. Page 266�

� �

�

12
Heuristic Algorithms

12.1 Introduction

This chapter is devoted to the development of offline algorithms for non-convex -hard
network problems, typically executed in centralized servers, and without major running time
requisites (e.g, from minutes to hours). These problems typically appear in contexts like:

• Capacity planning: Planning departments elaborate upgrade plans for the link and node
capacities or the placement of new links/nodes for the upcoming year, to cope with a fore-
casted traffic growth. These tasks typically receive the name of capacity planning.

• Greenfield network planning: A greenfield plan involves designing a network from scratch,
for example to plan a network deployment in a region where the operator is currently absent.

• Brownfield network planning: Brownfield planning tasks refer to a redesign of a large
portion of an existing network, reusing some or all of the legacy equipment in place, for
example, in a migration plan to a new network technology.

• Online network optimization: The increasing introduction of Software Defined Network-
ing (SDN) instruments in the network, permits automating multiple tasks that tradition-
ally required manual intervention. For instance, the unified collection of traffic measure-
ments, routing, and topology information from diverse databases, can now be managed by
so-called SDN controllers. Then, the updated network state is available to network optimiza-
tion engines, which can periodically: (i) redesign the traffic routing or the link capacities
(using on-demand capacity services) and (ii) issue the required reconfiguration orders to
the SDN controller, which automatically conveys them to the nodes. The online network
optimization (sometimes called in-operation planning [1]) consists of repeating the process
a limited number of times per day to adapt the network to slow-changing traffic conditions.

12.1.1 What Complexity Theory Tells Us that We cannot Do

It is the case that the majority of the optimization problems involved in previous design tasks
are non-convex and -hard. For instance, node and/or link placement problems, traffic rout-
ing under integral or non-bifurcated constraints, non trivial OSPF/ECMP routing variants, is

Optimization of Computer Networks – Modeling and Algorithms: A Hands-On Approach,
First Edition. Pablo Pavón Mariño.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/PavonMarinoSol16

Trim Size: 6.625in x 9.625in Mariño c12.tex V3 - 02/11/2016 6:48 P.M. Page 267�

� �

�

Heuristic Algorithms 267

the case. As stated in Appendix C, this means that there are not known polynomial algorithms
solving them and it is conjectured that such algorithms do not exist. Moreover, in Appendix
C we see that some problems could be not only hard to solve, but also hard to approximate.
We presented the concept of polynomial approximation algorithms, as those that guarantee
finding an 𝜖-approximation in polynomial time, where the 𝜖 value can be chosen beforehand.
For instance, in a minimization problem, a 0.1-approximation algorithm (𝜖 = 0.1) guarantees
producing a solution with, at most, 10% extra cost than the optimal.

In this respect, we saw that:

• -complete optimization problems are not approximable (assuming ≠), mean-
ing that there are no 𝜖-approximation algorithms for any 𝜖

1. Examples are solving general
integer linear programs (ILPs) and finding the minimum cost ring in a network or its maxi-
mum clique (subset of nodes fully connected among them).

• problems are those for which there are polynomial 𝜖-approximations for some 𝜖.
-complete problems are those that (assuming ≠) have no polynomial approx-
imations for small 𝜖 values. Examples are the node location problem, integral routing, or
minimum cost multicast tree problem.

• Problems in that are not in have an approximation for any 𝜖 > 0, but its
running time grows worse than a polynomial with respect to the approximation quality 1∕𝜖.
Then, it can still be intractable finding fine approximations.

The reader is referred to Appendix C for deeper explanations.

12.1.2 Our Options

All in all, complexity theory leaves a dark panorama on the limits to what can be done to solve
large instances of common non-approximable network problems. In practice, the two main
alternatives are:

• Formulate and solve. If the problem can be reasonably formulated using integer linear pro-
gramming, integer convex programming, or general nonlinear programs, it is possible to
use standard commercial or freeware solvers to attempt finding good suboptimal solutions
for them. For instance, current version of Net2Plan/JOM provides access to CPLEX (com-
mercial) and GLPK (GNU) solvers for mixed integer linear programs. These solvers can
be configured with a maximum limit time and an acceptable approximation quality. Then,
the solver returns the best solution found so far if the time expires before an acceptable
solution is found. In the author’s experience, the advantage of this approach is that in many
medium-size problems the solver is able to find close to optimal solutions in a reasonable
time. However, it may very well fail or crash in large-scale problem instances.

• Devise an ad hoc heuristic. Heuristics are algorithms that search for approximate solutions
to a problem in polynomial time. However, in contrast to approximation algorithms, they
do not provide any guarantee beforehand of the quality (𝜖-approximation) of the solution to
return.

1 They have polynomial approximation algorithms with 𝜖 values that grow with problem size.

Trim Size: 6.625in x 9.625in Mariño c12.tex V3 - 02/11/2016 6:48 P.M. Page 268�

� �

�

268 Optimization of Computer Networks – Modeling and Algorithms

12.1.3 Organization and Rationale of this Chapter

This chapter provides the guidelines for creating heuristics for hard network planning prob-
lems, suitable for an offline centralized execution in a server, and without major time limits.
The interest in heuristic design is motivated by the multiplicity of network technologies and
particular conditions when planning a network that demand ad hoc algorithm developments.
A typical situation faced by planning departments and academia sounds like:

I have found in the literature no algorithm for dimensioning the network in this
potentially interesting context X, although some previous works exist for vari-
ations of it, and subproblems inside it. We should devise an ad-hoc heuristic,
potentially reusing or adapting some of the algorithms already investigated. The
heuristic will enable our report assessing X.

Then, a creative process starts to design our heuristic, which should ideally combine two
sources:

• A precise knowledge of the problem to solve and the tactics used by other algorithms,
addressing variations or subparts of it.

• A background in heuristic design strategies. These are techniques for building successful
heuristics as skeletons adaptable to any problem that help to smartly explore among the
enormous set of potential solutions.

In this chapter we exemplify the heuristic design process by first describing some general
rules applicable (Section 12.2), followed by a didactic review of most common strategies
for building heuristics: local search, greedy algorithms, and meta-heuristics like simulated
annealing (SAN), tabu search (TS), GRASP, ant-colony optimization (ACO), and evolutionary
algorithms (EA).

We accompany each of the techniques with an example, where the heuristic philosophy is
applied to a particular -hard network problem. This will help us exposing design hints and
recommendations. In order to didactically emphasize the differences between the heuristics,
the same problem is solved with all of them. For this, we selected a popular traffic engineering
problem, consisting of finding the OSPF link weights in an IP network to minimize a measure
of network congestion. The particular problem version is described in Example 12.1.

OSPF weight setting is known to be a difficult and tricky task, since modifying a single
link weight can drastically change the routing in multiple parts of the network. The reader is
referred to Section 4.6.5 for details on how the OSPF/ECMP routing in IP networks works.
Formulations of the problem using integer linear programs turn to be intractable even for small
instances, since many auxiliary variables and constraints are needed to model the Equal-Cost
Multi-Path (ECMP) bifurcation rule [2]. Several heuristics have been also presented for the
problem (see Section 12.11), aside of the ones that we will present here.

In order to estimate the performances of the algorithms, we compare the solutions provided
with a lower bound to network congestion: the optimum congestion if a destination-based rout-
ing without ECMP traffic bifurcation restrictions was used. This lower bound can be computed
in polynomial time solving a linear program, as described in Example 12.1.

We illustrate each heuristic with numerical examples, for a problem instance based on the
topology and offered traffic given by NSFNet_N14_E42.n2p file in Net2Plan tool (see

Trim Size: 6.625in x 9.625in Mariño c12.tex V3 - 02/11/2016 6:48 P.M. Page 269�

� �

�

Heuristic Algorithms 269

6

7

8

10 11

13

95

4

3

2

1

0

12

Figure 12.1 NSFNET topology. The network has 21 bidirectional links, all with the same capacity
(ue = 500 Gbps). Total offered traffic is as in NSFNet_N14_E42.n2p file, normalized to sum 4 Tbps

Fig. 12.1). The network is composed of 42 links, and link weights {𝑤e, e ∈ } are restricted
to integer numbers between 1 and Wm = 16.

In the implementation provided, evaluating the network congestion for a set of link weights
𝑤 needs around 1 ms of computation time. For those heuristics based on the vicinity concept,
that will be described later in this chapter, we can cut down the computational cost applying
the following property.

Proposition 12.1 If a link does not carry traffic of a demand (it is not in a shortest path), it
will neither carry traffic of that demand when we increase the link weight, keeping the rest of
weights unchanged.

An obvious consequence of previous proposition is that increasing the weight in a link that
does not carry traffic, keeping the rest unchanged, does not modify the routing of any demand.

Despite of any code profiling we make, a brute force test of all the possible weight settings
would mean evaluating 1642 ≈ 1050 solutions, which would need more than 1034 years of
running time even if we could evaluate each solution in 1 nanosecond.

The problem instance described has a congestion lower bound of cglb ≈ 0.51 (with a max-
imum link utilization ≈ 0.52 and an average link utilization of ≈ 0.4). As we will see, the
heuristics presented are all close to it after some minutes of computation. All the algorithms
are implemented in the Net2Plan tool and their source codes are available to the reader.

To finalize, Section 12.10 includes a complete and fairly realistic network planning case
study, where we develop an ad hoc heuristic for planning a backbone IP over WDM network,
under three different recovery schemes: 1+1 lightpath protection, shared lightpath protection,
and lightpath restoration. Equipment acquisition and link hiring costs are representative of
current technology. A detailed analysis of the results is included to show the reader a realistic
network planning application example.

The developed heuristic for the case study is based on combining a GRASP scheme with
small size ILPs, with running times in the order of tens of milliseconds (and limited to a a few
seconds) in a standard laptop (Intel Core i5, 2.27 GHz, 8 GB RAM). The role of the ILPs is
performing an efficient exploration of a reduced solution space, taking benefit of the extremely
profiled implementations of sophisticated optimization techniques in ILP solvers. The GRASP
scheme is in charge of guiding the search of the ILPs. The combination of an heuristic skeleton
repeatedly calling ILP-based routines has shown its strength in multiple practical works (see
Section 12.11 for references). This strategy is enabled by libraries like, for example, JOM, that

Trim Size: 6.625in x 9.625in Mariño c12.tex V3 - 02/11/2016 6:48 P.M. Page 270�

� �

�

270 Optimization of Computer Networks – Modeling and Algorithms

efficiently interface with optimization solvers from programs in general purpose languages,
permitting building large formulations in memory in tens of milliseconds.

Example 12.1 Let be a set of IP routers and the set of links connecting them, with known
capacities {ue, e ∈ }, and let {hst, s, t,∈ } be the offered traffic matrix. We are interested
in optimizing the vector 𝑤 of OSPF link weights 𝑤 = {𝑤e, e ∈ }. Weights are restricted to
be integer numbers between 1 and Wm. The optimization target is minimizing a measure of
network congestion given by:

cg(𝑤) = 0.9max
e

ye(𝑤)
ue

+ 0.1
∑

e

ye(𝑤)
ue

where ye(𝑤) is the amount of traffic in link e when the OSPF/ECMP routing is applied with
weights 𝑤. This measure balances two contributions: the maximum link utilization (90%), and
the average link utilization (10%).

A lower bound to the network congestion achievable with OSPF routing is provided by the
optimum of the destination-based formulation (12.1):

min
x≥0,𝜌≥0

0.9𝜌 + 0.1
∑

e

∑
txte

ue
subject to: (12.1a)

∑
e∈𝛿+(n)

xte −
∑

e∈𝛿−(n)
xte =

{
hnt, if n ≠ t

−
∑

shst, if n = t
, ∀t, n ∈ (12.1b)

∑
t

xte ≤ ue𝜌, ∀e ∈ (12.1c)

12.2 Heuristic Design Keys

12.2.1 Heuristic Types

There is a vast diversity of heuristic algorithms, for didactic purposes we classify them in three
types:

• Local search algorithms: These are iterative algorithms that, in each iteration k, jump from
a solution xk to a neighbor solution that improves the current one. The process ends when
no improving neighbor solution is found. These methods depend on the particular definition
of solution neighborhood or vicinity.

• Greedy algorithms: These are constructive algorithms. The algorithm starts with an empty
solution, for example, no decision variable in the problem is set, and in each iteration some
parts of the solution are fixed trying to optimize a myopic or greedy function. The method is
constructive, in the sense that there is no “coming back”: those parts of the solution already
set in previous iterations are not changed and only new pieces are decided. The algorithm
ends when a complete solution is created.

• Metaheuristic algorithms: These are templates, general schemes or “philosophies” for
searching for good problem solutions, which can be adapted in different forms to any
optimization problem. Most metaheuristics are inspired in observing how the nature works
to solve complex problems.

Trim Size: 6.625in x 9.625in Mariño c12.tex V3 - 02/11/2016 6:48 P.M. Page 271�

� �

�

Heuristic Algorithms 271

It is important to emphasize that, in most of the cases, network planning algorithms are
designed combining different techniques among those described in this chapter, in a somewhat
creative process governed by experience and intuition. The techniques are described separately
for didactic purposes.

12.2.2 Intensification versus Diversification

Heuristics target an efficient exploration of a large solution space, riddled with of local optima.
This process coordinates two opposite trends that should appear in every heuristic:

• Intensification: The heuristic should include techniques that intensify the search on those
regions of the solution space that have provided good solutions in previous iterations, guess-
ing that the chances are better to find improving solutions in the future.

• Diversification: The heuristic should include techniques that avoid confining the search into
a small region in the solution space. For this to happen, it is necessary that the heuristic
accepts to iterate among solutions that worsen the current one, with the hope that these iter-
ations end up later in a better solution’s region. A common diversification technique consists
of, after a number of iterations have passed without improving the incumbent solution (best
solution found so far), randomly choosing the next solution to explore and continuing the
search from it.

Local search algorithms are examples of pure intensification schemes with no diversifica-
tion. In turn, a pure diversification scheme would randomly pick solutions in each iteration,
without any trend to intensify the search near the best solutions found.

Both diversification and intensification techniques should appear in any heuristic. We will
see them in different forms in the strategies described in this chapter.

12.2.3 How to Assess the Solution Quality

In contrast to approximation algorithms, heuristics do not provide guarantees beforehand on
the quality of the solution to return. Then, to assess it we must compare the returned solution
with optimality bounds: lower bounds to the optimal cost in minimization problems or upper
bounds to the achievable benefit in maximization problems.

Optimality bounds can be obtained in multiple forms, some of them are:

• Via the dual problem, fixed multiplier values: Any dual solution with non-negative values for
multipliers of inequality constraints has a dual cost that is an optimality bound. For instance,
removing constraints of the type f (x) ≤ 0 or h(x) = 0 is equivalent to computing the dual
cost in a relaxed problem where the multipliers of these constraints are set to zero.

• Via the dual problem, optimum multiplier values (Lagrange relaxation): The dual of an
optimization problem is a convex problem solvable in polynomial time, even if the origi-
nal problem is -hard. The optimum dual solution provides the best optimality bound
achievable using the dual function: the maximum lower bound in minimization problems,
the minimum upper bound in maximization problems.

Trim Size: 6.625in x 9.625in Mariño c12.tex V3 - 02/11/2016 6:48 P.M. Page 272�

� �

�

272 Optimization of Computer Networks – Modeling and Algorithms

• Relaxing integrality constraints. For instance, this converts an ILP into a linear program
solvable in polynomial time, whose optimum solution is an optimality bound. An important
property regarding to these relaxations is that, in linear programs with integer variables,
they are always weaker than Lagrange relaxations (see [3] p. 172). That is, for example
in minimization problems, the cost lower bounds achieved with a Lagrange relaxation are
always equal or greater than (and thus “better’” or “stronger”) than those achieved relaxing
integrality constraints and solving the resulting linear program.

Exercise 4.2 in Chapter 4 and Exercise 7.21 in Chapter 7 include examples of easy to com-
pute optimality bounds.

12.2.4 Stop Conditions

There are no good stop conditions for heuristic algorithms, which is a natural consequence of
targeting problems that are -hard even to approximate. Implementations usually combine
some of the following:

• Approximating an optimality bound: A solution that is an 𝜖-approximation to an optimality
bound is also an 𝜖-approximation to the true optimum. A common stop condition is halting
the algorithm, for example when the cost approximates enough to a cost lower bound pre-
computed or computed on the fly. However, note that being far from an optimality bound
does not mean that our solution is bad: it may be that our bound is inaccurate. Even if the
bound is accurate, our heuristic may never come close to it in polynomial time. For these
reasons, optimality bounds are auxiliary stop conditions, combined with others.

• Maximum running time/iterations: The algorithm stops after some fixed time, or after a
maximum number of iterations.

• Maximum time/iterations without improvement: The algorithm stops if no improvement in
the incumbent solution (best solution found so far) is observed in a given time or number of
iterations. Alternatively, instead of stopping the algorithm, it can be restarted using a new
randomly chosen initial solution.

12.2.5 Defining the Cost or Fitness Function

Heuristics use the so-called cost function (in minimization problems) and fitness function (in
maximization problems) to control the algorithm behavior. This is a function that, given a
solution x, returns a real value evaluating its “goodness”. The natural value of the cost (fitness)
function, is just the objective function to minimize (maximize). However, there are two extra
aspects to consider:

• If x is not a feasible solution, its objective function may be not defined. We may be tempted
to return in such case an infinite cost. However, to help the heuristic to find better feasible
solutions in future iterations, it is important that the cost/fitness function assigns different
costs to different unfeasible solutions, for example, distinguishing between those “slightly
unfeasible” from those “very unfeasible”. As an example, the cost function may be the sum
of the objective function plus a penalization term that (i) takes large values, so that feasible

Trim Size: 6.625in x 9.625in Mariño c12.tex V3 - 02/11/2016 6:48 P.M. Page 273�

� �

�

Heuristic Algorithms 273

solutions are always preferred over even slightly unfeasible solutions, and so that (ii) penal-
ization is higher when unfeasibility is more profound. For instance, it may be proportional
to the number of constraints violated, or the extent by which they are not met.

• In some occasions, an exact computation of the objective function is too costly. For instance,
it requires an event-driven simulation that can take minutes or hours. In such cases, the
cost/fitness function is based on an estimation of the true objective value, which can be
efficiently computed, leaving the exact evaluation for just a small set of selected solution
candidates.

12.2.6 Coding the Solution

Given a problem solution x, the coding of the solution c(x) refers to the specific form in which
it is implemented in the computer. This is often a crucial aspect when designing an heuristic,
the following points should be considered:

• One-to-one representation of the solutions. There should be a one-to-one relation between
the set of feasible problem solutions and the set of possible codifications. This means that
every feasible solution x has one and only one coding. In Exercise 12.1 we see an example
when this condition is not met, resulting in an artificial and unproductive increase in the size
of the solution space to explore.

• Efficiency to implement heuristic-specific operations. Some heuristics are based on, given
a solution x, enumerating the vicinity set (x), the neighbor solutions to x. In such cases,
the coding of the solution should make this enumeration computationally inexpensive. In
turn, evolutionary algorithms apply special operations as crossover, consisting of producing
a child solution xc from two different parent solutions x1, x2, such that xc inherits some of
the properties in x1 and x2. In this case, the coding should permit efficient implementations
for producing c(xc) from c(x1) and c(x2).

12.3 Local Search Algorithms

Local search algorithms are iterative schemes targeted to find local optima in complex prob-
lems. Algorithm 20 illustrates its pseudocode. In each iteration the algorithm enumerates the
solutions y in the vicinity of the current solution x (y ∈ (x)) and moves to one out of them
that improves x. Two alternatives exist:

• Best-fit: Every neighbor in (x) is evaluated and x is updated to the best among them.
• First-fit: Neighbor solutions in (x) are evaluated in a particular order, x is updated to the

first improving solution found. Then, the remaining neighbor solutions are not evaluated,
saving computation time.

In either case, if no improving neighbors exist the algorithm stops returning x, the last and
best solution found. Note that the solution returned is a local minimum according to the defi-
nition of vicinity adopted, since it is equal or better than their neighbors.

Trim Size: 6.625in x 9.625in Mariño c12.tex V3 - 02/11/2016 6:48 P.M. Page 274�

� �

�

274 Optimization of Computer Networks – Modeling and Algorithms

Algorithm 20 Local search (best-fit)
1: Initialization: Set x initial solution
2: do
3: next = x.
4: for each y ∈ (x)
5: if f (y) < f (x) comment: f is the cost function to minimize.
6: next = y comment: Improving solution
7: comment: If first-fit then execute break here to leave the for each loop
8: while next ≠ x comment: End when no improving solution
9: return x

12.3.1 Design Hints

In this section we provide some hints in the design of local search heuristics:

• Vicinity size. Local search algorithms are determined by how we define the set (x) of
neighbor solutions of x. In this respect, a crucial parameter to consider is the vicinity size.
A large vicinity is likely to mean better returned solutions at a cost of a higher execution
time, since the solution returned is the best among a larger set of neighbors to evaluate.
However, this is an average behavior and we can find examples when a larger vicinity results
in faster and/or worse solutions, since the iterations behave using local information and
better solutions in one iteration can lead to worse solutions later on.

• Connectivity of the solution space. When defining the solution vicinity we should guarantee
that from any initial solution it is possible to reach any other solution in a finite number of
steps.

• Best-fit versus first-fit. Intuitively, one may imagine that best-fit runs should provide in aver-
age better solutions than first-fit, at a cost of higher running times. However, because of the
local-based decisions, starting from the same initial solution a first-fit run can be faster or
slower than best-fit and/or return a better or worse solution.

Example 12.2 Offline_fa_ospfWeightLocalSearch file provides a local search
implementation for the OSPF weight setting problem (Example 12.1), where the first-fit versus
best-fit option is user-defined. We consider that two solutions are neighbors if all the links but
one have the same weight and in that link the weight differs in at most D units, where param-
eter D can also be user defined. Then, the maximum number of neighbors V of a solution is,
for instance:

V = 21 × 2 = 42 → if D = 1

V = 21 × 15 = 315 → if D = 15

It is easy to check that the solution space is connected under this vicinity definition, since from
any weight setting x we can reach any other in at most ||⌈(Wm − 1)∕D⌉ iterations.

• Figure 12.2 compares the congestion and running time obtained in 100 runs with vicini-
ties defined for D = 1 and D = 15. We see that in both the first-fit and best-fit executions
(Fig. 12.2a and Fig. 12.2b, respectively), small vicinities tend to be less robust, producing
both good and bad solutions. Larger vicinities improve in average the solutions returned with
also less outliers, at a cost of a significantly higher and more variable computation time.

Trim Size: 6.625in x 9.625in Mariño c12.tex V3 - 02/11/2016 6:48 P.M. Page 275�

� �

�

Heuristic Algorithms 275

0 10 20 30 40 50
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Running time

C
on

ge
st

io
n

D = 1
D = 15

Best−fit

(a) Comparison D = 1 and D = 15, best-fit case

0 10 20 30 40 50 60 70
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Running time

C
on

ge
st

io
n

D = 1
D = 15

First−fit

(b) Comparison D = 15 and D = 15, first-fit case

Figure 12.2 Local search vicinity size comparison. Congestion lower bound: 0.51

Trim Size: 6.625in x 9.625in Mariño c12.tex V3 - 02/11/2016 6:48 P.M. Page 276�

� �

�

276 Optimization of Computer Networks – Modeling and Algorithms

• Figure 12.2 also helps us to compare first-fit versus. best-fit trade-offs. We see that, on
average, both provide very similar congestion values and computation times for D = 15,
while for D = 1 the best-fit average computation is twice that of first-fit, without significant
congestion improvements.

12.4 Simulated Annealing

Simulated Annealing (SAN) meta-heuristics were first proposed in the 1980s [4] to optimize
functions with multiple local optima. It is inspired in emulating the annealing process that
brings a fluid into a low-energy state, such as growing a crystal. Annealing consists of melting
the fluid and then slowly lowering the temperature, such that molecules arrange into lower
energy crystalline structures. A slow temperature decrease, especially in the final the stages,
tends to produce better crystals.

SAN algorithms emulate this behavior varying the standard local search algorithms by
adding a mechanism that permits uphill movements, that is, jumping to a non-improving neigh-
bor solution. The standard SAN pseudocode is shown in Algorithm 21. In each iteration, the
algorithm chooses randomly one solution y among the neighbors of the current solution x
(y ∈ (x)). Then, it applies the so-called Metropolis [5] test to decide whether to jump to y, or
stay one more iteration in x:

• Accept y if it is better than x. That is, if c(x) < c(y), where c(z) is the cost of solution z, the
objective target to minimize.

• If not, still accept y with probability:

Pacc = e
c(y)−c(x)

T

Here T is the system temperature, a global variable in the algorithm. The importance of the
temperature T is critical in SAN:

• For high T values, non-improving solutions are always accepted:

T → ∞ ⇒ Pacc = e
c(y)−c(x)

T → 1

Then, SAN behaves as a random algorithm, which erratically jumps between neighbor solu-
tions whatever their costs are.

• For low T values, non-improving solutions are never accepted:

T → 0 ⇒ Pacc = e
c(y)−c(x)

T → 0

and SAN behaves as a standard first-fit local search and eternally stays in the first local
optimum found.

The annealing process is emulated by (i) initializing T to a high value, which is slowly
decreased and (ii) every time a temperature decrease occurs, SAN performs a sufficient num-
ber of iterations to simulate an equilibrium state for that temperature in the physical crystal
equivalence. This is implemented by two nested loops in Algorithm 21, the outer loop reducing
the temperature, the inner loop running a usually fixed number of iterations at that temperature
(typically between hundreds and thousands).

Trim Size: 6.625in x 9.625in Mariño c12.tex V3 - 02/11/2016 6:48 P.M. Page 277�

� �

�

Heuristic Algorithms 277

Algorithm 21 Simulated annealing
1: Initialization:
2: Set T = T(0), initial temperature, x initial solution, xbest = x0 incumbent solution
3: do comment: Outer loop
4: do comment: Inner loop
5: 𝑣 = random chosen neighbor in (x)
6: if c(𝑣) < c(x) or with probability e−

c(𝑣)−c(x)
T

7: x = 𝑣, update xbest if needed. comment: Jump to 𝑣

8: while tempDecreaseCriterion
9: Decrease T .

10: while stopCriterion
11: return xbest

12.4.1 Design hints

In general, SAN parameters should be tailored empirically, adapted to the particular problem
to solve. Here, we provide some hints for that, using the minimum congestion OSPF weight
setting problem as an example. We consider that two solutions are neighbors if they differ in
the weight of a single link, in any quantity (D = 15 case).

• Initial temperature: We can fix manually the initial temperature if we (i) estimate the worse
case cost difference c(𝑣) − c(x) between two neighbor solutions and (ii) fix a (high) accep-
tance probability for that case, for example Pacc = 0.5. For instance, in the OSPF problem
example we can fix T(0) to accept with a probability of 0.5, a congestion worsening of 0.25,
then:

e
− 0.25

T(0) = 0.5 ⇒ T(0) = −0.25
log 0.5

≈ 0.36

The maximum temperature can be also computed using an adaptive scheme that initially
increases the temperature from a low value (warming stage), and monitors the percentage
of worse solutions that are accepted. Then, the first temperature found that matches a target
acceptance threshold (e.g, between 0.5 and 0.9) becomes the initial temperature and the
standard cooling stage of SAN continues from it.

• Freezing temperature: The freezing temperature Tf is that which makes the algorithm get
stuck in a local optimum. Usually, freezing temperatures are not computed manually, but
with adaptive schemes that detect that the system is frozen just observing that the acceptance
ratio falls below a threshold (e.g, 0.01). In these cases, the temperature is raised again (e.g,
reheated to the initial temperature) to make the algorithm advance.

• Temperature reduction schedule. The most popular temperature reduction scheme is the
geometric: T = T × 𝛼, where 𝛼 ∈ (0, 1) is the reduction factor, typical numbers are around
𝛼 = 0.9. Other options are for instance the linear decrease: T = T − 𝛽, for 𝛽 > 0.

• Rapid quenching: Another technique based on the physical system analogy is the rapid
quenching approach. Rapid quenching, quickly reduces the system temperature bringing
the algorithm to a local optimum quickly. The system is then reheated to a temperature
lower than the initial temperature, and the process is repeated.

Trim Size: 6.625in x 9.625in Mariño c12.tex V3 - 02/11/2016 6:48 P.M. Page 278�

� �

�

278 Optimization of Computer Networks – Modeling and Algorithms

0 50 100 150 200 250

0.1

0.2

0.3

T
em

pe
ra

tu
re

Running time

0.5

1

1.5

2

C
on

ge
st

io
n

Figure 12.3 Evolution of SAN Algorithm for OSPF weight setting problem, 𝛼 = 0.8, P𝑤c
acc = 0.5, Pf =

0.01, initial solution is chosen randomly. Best congestion objective found≈ 0.521 (0.51 is a lower bound)

Example 12.3 Offline_fa_ospfWeightSAN provides a SAN implementation for
the OSPF weight setting problem. The algorithm fixes the input temperature according to
a user-defined worse case acceptance probability, for example of P𝑤c

acc = 0.5 and applies
a geometric decrease factor 𝛼. The algorithm monitors the acceptance probabilities and
considers that the algorithm is stuck in a local minima if in the inner loop the fraction of
moves that change the congestion is below a user-defined fraction Pf . If that happens, the
temperature is reset to the initial value and the algorithm continues from there.

Figure 12.3 shows the congestion evolution trace in a 5 minute execution for the same net-
work topology as in Section 12.3.1. This helps to illustrate the typical SAN behavior. High
temperatures produce a large variability in the solutions found. As the temperature decreases,
the system gets frozen and converges to a local optimum. This is detected by the algorithm that
reheated the system around t = 140 s. The best congestion objective found is ≈ 0.521 (recall
that 0.51 is a lower bound).

12.5 Tabu Search

Tabu search (TS) algorithms were proposed by Fred Glover in the late 1970s and have been
applied since then in multiple -hard optimization problems.

TS is a variation of the local search scheme that includes techniques to permit jumps to
non-improving neighbor iterations. This is accomplished by implementing a so-called tabu
list, which describes a subset of neighbor solutions that are forbidden. Then, in each iteration

Trim Size: 6.625in x 9.625in Mariño c12.tex V3 - 02/11/2016 6:48 P.M. Page 279�

� �

�

Heuristic Algorithms 279

we explore all non-forbidden neighbor solutions and move to the best among them, which,
depending on the tabu list contents, can be non-improving.

Every iteration, the new solution visited or an attribute characterizing it is added to the tabu
list. The size of the tabu list T (or tabu tenure) is typically fixed, so that when the list becomes
full after the first iterations, every subsequent step a new solution or attribute is added and the
oldest one is removed. Then, the tabu list emulates the behavior of a short-term memory that
remembers last solutions tried to not repeat them.

We now illustrate the difference between including in the tabu list full solutions and solution
attributes. We focus on a TS method for the minimum congestion OSPF link weight setting
problem (Example 12.1), where two solutions are neighbors if their weights are equal in all
links but one. Then, in an iteration k a particular link e(k) in the current solution changes its
weight from 𝑤e(k) to 𝑤e(k + 1). In this context:

• Full solutions. Including a full solution in the tabu list means that it cannot be repeated in the
near future. Checking if a candidate neighbor 𝑤 is in the tabu list can be a costful process,
since it requires comparing the weights for all the links with all the solutions of the tabu
list2.

• Solution attributes. An attribute a(x) of a solution x is a usually short identifier that charac-
terizes the solution x and potentially multiple other solutions. Then, by adding an attribute
to the tabu list, all these solutions are simultaneously forbidden. In the OSPF weight setting
problem, we can add to the tabu list the link e(k), which has changed its weight in current
iteration. Then, once the weight of a link has been changed, it will stay unchanged in the near
future. Such type of attributes are called move attributes since they characterize a transition
between two neighbor solutions.

Algorithm 22 includes the pseudocode of the basic TS procedure described.

Algorithm 22 Tabu search (basic scheme)
1: Initialization:
2: Set x initial solution, xbest = x
3: Set = ∅ comment: Tabu list initially empty
4: do
5: xbestNeighbor = ∅.
6: for each y ∈ (x), y not tabu
7: if f (y) < f (xbestNeighbor)
8: xbestNeighbor = y comment: Improving solution
9: x = xbestNeighbor comment: Jump to the best neighbor

10: =
⋃

a(x) comment: Update the tabu list
11: if | |> T then remove oldest element in

12: if f (x) < f (xbest) then xbest = x comment: Update incumbent solution
13: while stop criterion not met
14: return x

2 This process can be sped up if the tabu list is populated with a hash number computed from the full solution. This
is the strategy followed in [6].

Trim Size: 6.625in x 9.625in Mariño c12.tex V3 - 02/11/2016 6:48 P.M. Page 280�

� �

�

280 Optimization of Computer Networks – Modeling and Algorithms

12.5.1 Design Hints

In this section we describe common techniques added to standard basic TS scheme, together
with design hints.

• Tabu tenure. The size of the tabu list (tabu tenure) is a key design parameter in TS method.
Larger tabu lists help to diversify the search, although too large lists may prevent reaching
the optimal solution and/or create erratic movements. Typically, the tabu list size is set man-
ually. To tailor it, it is important to consider the fraction of the neighborhood that becomes
tabu when the list is full. For instance, in the TS OSPF weight setting algorithm described,
a tabu list of size f || links, where || is the number of network links, roughly forbids a
fraction f ∈ [0, 1] of the neighbor solutions. The tabu tenure parameter can also be dynam-
ically adapted. As an example, the Reactive Tabu Search technique [7] suggests increasing
the tabu list when cycles in the iterations are detected.

• Multiple tabu lists. Multiple tabu lists can be combined in a problem, such that a solution is
considered tabu if it is forbidden by any of them. Typically, multiple tabu lists appear as a
combination of a per-solution list with a move-attribute list.

• Medium-term memory. Medium-term memory structures (or recency memory) can be used
to intensify the search in promising regions of the solution space. The idea is extracting
common features of elite solutions, and confine the search among those solutions sharing
these features. In our example, the recency memory can take the form of a vector re, which
assigns to each link e the number of consecutive jumps in the past in which the weight
of e did not change. Then, we confine the search during a certain period by not exploring
those solutions that change these weights, which are considered a characteristic of “good
solutions”.

• Long-term memory. Long-term memory structures can be included in TS to encourage diver-
sification. Their typical representation is a frequency memory, which stores for each solution
component or for each possible move the number of times that it appeared since the algo-
rithm started. For instance, in the OSPF weight setting example, the long-term memory can
be implemented as a re𝑤 matrix, counting the number of times that link e was assigned
weight 𝑤. The diversification can be applied periodically or when the algorithm gets stuck.
Then, the search is restarted from a new solution that includes the components that less fre-
quently appear, maybe randomly combined with those in elite solutions. Also, a penalty in
the objective function can be applied to the most frequently used components.

• Aspiration criterion. Aspiration criterion is a form to override the tabu list, provided that
the neighbor solution initially forbidden is “good enough”. The commonly used aspiration
criterion consists of accepting a tabu solution if it improves the incumbent solution. This is
the approach also followed in our OSPF weight setting example. Note that applying such
criterion increases the iteration running time, since all neighbor solutions are evaluated,
including those forbidden by the tabu list.

Example 12.4 Offline_fa_ospfWeightTabuSearch implements a TS scheme for
the OSPF weight setting problem, following the guidelines described above. Figure 12.4 shows
the results of two runs of the algorithm, with and without aspiration criterion, and with a tabu
tenure equal to half the number of links. More or less similar results have been obtained with

Trim Size: 6.625in x 9.625in Mariño c12.tex V3 - 02/11/2016 6:48 P.M. Page 281�

� �

�

Heuristic Algorithms 281

0 50 100 150 200 250 300
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Running time

C
on

ge
st

io
n

Aspiration criterion

No aspiration criterion

Figure 12.4 Evolution of Tabu Search Algorithm for OSPF weight setting problem. Tabu list size is
21 (50% of the number of links). Randomization occurs after 15 iterations without improving the best
solution found since the last randomization event. Best congestion objectives are ≈ 0.546 (aspiration
criterion) and ≈ 0.562 (no aspiration criterion). 0.51 is a congestion lower bound

smaller and larger tabu lists, were usually (but not always) the aspiration criterion resulted in
better solutions. Best congestion objectives in the plotted case are≈ 0.546 (aspiration criterion)
and ≈ 0.562 (no aspiration criterion). Recall that 0.51 is a congestion lower bound.

The algorithm includes a long-term memory structure, and the current solution is random-
ized when the algorithm gets stuck. In particular, we keep the best solution found since the
last randomization event and the search is restarted after 15 iterations without improving it. In
Fig. 12.4 this happened once for the case with aspiration criterion, around t = 220 s. In the ran-
domized solution, each link takes the weight in the incumbent solution with a 50% probability,
or otherwise one chosen uniformly among the least used weights for that link.

12.6 Greedy Algorithms

Greedy algorithms are typically simple schemes targeted to quickly produce a feasible prob-
lem solution, called as subroutines in other heuristics. The defining characteristics of greedy
schemes are:

• Iterative and constructive. The method is iterative and in every iteration a solution compo-
nent is fixed, and never changed later, so the algorithm ends when all the components have
been added.

• Myopic decisions. The decision on how to proceed in each iteration is taken using a locally
optimal decision that maximizes an immediate benefit (using a greedy or myopic function).

Trim Size: 6.625in x 9.625in Mariño c12.tex V3 - 02/11/2016 6:48 P.M. Page 282�

� �

�

282 Optimization of Computer Networks – Modeling and Algorithms

Algorithm 23 helps us to illustrate the greedy schemes more formally. In a greedy algorithm
a problem solution x is represented as a subset of , the set of candidate components. Initially,
x is empty. In each iteration, one component c ∈ (x) is added to it, where (x) ⊂ is the
subset of possible components that could be added in this iteration, according to the current
state of x. The component c aggregated is one that optimizes (in this case, maximizes) a myopic
or greedy function fx, where the subindex reflects that the function may be different in different
iterations.

Algorithm 23 Greedy algorithm

1: Initialization: x = ∅
2: do
3: Find set (x) of candidate components.
4: x = x

⋃
{arg maxc∈(x)fx(c)} comment: Greedy selection

5: while x is not a complete solution
6: return x

Then, the defining elements of a greedy algorithm are (i) how we represent a solution as an
aggregation of elements in a set , (ii) how sets (x) are created and (iii) the greedy functions
fx used.

Example 12.5 File Offline_fa_ospfWeightGreedy implements a greedy scheme for
the OSPF link weight optimization problem in Example 12.1. Set is given by all the possible
link-weight pairs:

 = {(e, i),∀e ∈ , i = 1, · · · ,Wm}

The algorithm visits each link in an arbitrary order. In the iteration associated to link e, the set
of candidate components is (x) = {(e, 1), · · · , (e,Wm)}. The weight i chosen is the one that
minimizes the congestion considering: (i) the weight assigned in x for the already visited links
and (ii) an arbitrary weight 𝑤0

e in the non-visited links.

12.7 GRASP

Greedy Randomized Adaptive Search Procedures (GRASP) were proposed at the end of the
1980s by Thomas Feo and Mauricio Resende [8, 9]. They consist of repeating an arbitrary
number of times, until any standard stopping criterion is met, a GRASP iteration, consisting
of two consecutive phases (see Algorithm 24):

• Greedy randomized phase: A solution x is produced using a randomized version of a greedy
scheme. This means, a greedy scheme where some steps or decisions are taken randomly,
such that different solutions are produced every GRASP iteration.

• Local search: A local search heuristic starts using x as initial solution, the one produced in
the previous greedy step.

Trim Size: 6.625in x 9.625in Mariño c12.tex V3 - 02/11/2016 6:48 P.M. Page 283�

� �

�

Heuristic Algorithms 283

Algorithm 24 GRASP algorithm
1: do
2: x = solution created using a greedy-randomized scheme.
3: x′ = solution resulting from a local search starting in x.
4: Update xbest, the incumbent solution.
5: while stopping criterion is not met
6: return xbest

There are multiple procedures for creating randomized greedy algorithms. An approach
described in [10] consists of modifying the standard greedy behavior in line 4 of Algorithm
23. Instead of adding to x the candidate component c ∈ (x), which optimizes the myopic
function fx, we use fx to rank the components in (x). From it, we create a so-called restricted
candidate list (RCL), with the elite components providing the best myopic results. Then, one
component chosen randomly out of the RCL is added to x. Note that the larger the size of the
RCL, the more random the process becomes. If the RCL is limited to just one element, the best
according to the myopic function, we have the standard greedy approach. If all the components
are added to the RCL, the greedy choice is totally random.

Example 12.6 File Offline_fa_ospfWeightGRASP implements a GRASP scheme for
the OSPF link weight optimization problem in Example 12.1. The local search procedure is
similar to the one described in Section 12.3.1. The greedy algorithm is randomized by (i)
randomizing the order in which the links are visited, (ii) randomizing the set 𝑤0 of initial link
weights, and (iii) applying the RCL concept, where the RCL size is controlled by a user-defined
parameter 𝛼 ∈ [0, 1]. In particular, if we define 𝑣min as the best and 𝑣max as the worse conges-
tion measures among the 16 candidate weights in an iteration, the components in the RCL are
given by:

RCL = {c ∈ (x) such that fx(c) ≤ 𝑣min + 𝛼(𝑣min − 𝑣max)}

𝛼 = 0 restricts the RCL to the local optimum and in 𝛼 = 1 the greedy function has no effect,
since xi is chosen randomly in (x). Figure 12.5 plots the results of the algorithm in our case
study for a parameter 𝛼 = 0.5. Best congestion objective found is ≈ 0.547 (recall that 0.51 is
a lower bound).

12.8 Ant Colony Optimization

Ant Colony Optimization (ACO) meta-heuristic was proposed by Marco Dorigo in 1992 [11],
inspired in the behavior of ants. It is a representative example of a series of relatively recent
metaheuristics based on swarm intelligence: the social behavior of insects and other animals,
that enables them to cooperatively solve problems in nature.

ACO takes inspiration in the ants’ foraging behavior, in particular in how ants find the short-
est path between the food and their nest. In the natural world, ants wander randomly in their
quest for food. When an ant finds some, it returns to the nest while laying down a pheromone
trail. The ants in the proximity of the trail can sense it with a probability proportional to the
concentration of pheromones and then stop traveling at random and follow that trail. More ants
in a trail means more pheromones in it, with more chances to attract more ants. This creates a

Trim Size: 6.625in x 9.625in Mariño c12.tex V3 - 02/11/2016 6:48 P.M. Page 284�

� �

�

284 Optimization of Computer Networks – Modeling and Algorithms

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2
After local search
After greedy

Figure 12.5 Results from GRASP algorithm for OSPF weight setting problem in a 5 minute run
(8 GRASP iterations). RCL size corresponds to 𝛼 = 0.5. In each stack, the upper solution comes from
the greedy step, the lower solution is returned by the local search procedure. Best congestion objective
found is ≈ 0.547 (0.51 is a lower bound)

positive reinforcement. Simultaneously, pheromone trails tend to evaporate, thus reducing its
attractive strength. Pheromone evaporation plays a double role: without evaporation the path
chosen by the first ants could attract the rest without a sufficient exploration of other options,
but a too strong evaporation can quickly eliminate the trail of poor solutions that diversify the
search.

The key idea, is that all this process is biased towards shortest paths. Initially, multiple
ants can create several paths from the food to the nest. However, since the ant needs less
time to march shorter paths, the pheromone density becomes higher there. Then, shorter paths
tend to attract more and more ants than longer ones, until eventually all the ants traverse the
shortest path.

The goal of the ACO metaheuristic is to mimic this ant behavior, for the solution of arbitrary
problems. The scheme guidelines are described in Algorithm 25:

• Ant algorithm. In each ACO iteration, a number A of artificial ants are created and their
movement from the food to the nest emulated. In its march, each ant creates one prob-
lem solution, implemented as a greedy randomized scheme where pheromone information
shows bias toward the random decisions. Let be the solution components and assume that
each component c ∈ is assigned an amount 𝜏c ≥ 0 of pheromones. Each ant starts with
an empty solution x and adds one component in every greedy iteration, representing in our
analogy that it traverses this component in its walk. Given a current solution x, (x) is the
set of candidate components that could be added, meaning the possible next choices the ant
can take in its position. Then, each possible choice c ∈ (x) has assigned two values:

Trim Size: 6.625in x 9.625in Mariño c12.tex V3 - 02/11/2016 6:48 P.M. Page 285�

� �

�

Heuristic Algorithms 285

– A non-negative amount of pheromones 𝜏c, a measure of how often c appeared in good
solutions in the past.

– A non-negative value bc provided by a myopic function fx, measuring the immediate
benefit (the higher the better) of choosing c.

The probability pc of choosing component c (so called transition probability) should then
be positively biased towards higher values of 𝜏c and bc. This can be done with:

pc =
𝛾𝜏c + (1 − 𝛾)bc

M
(12.2)

where M is a constant to make the transition probabilities sum one (
∑

c∈(x)pc = 1), and 𝛾 ∈
[0, 1] is a factor to balance the importance of the pheromones versus the greedy information.
In the limit, when 𝛾 = 1 only the pheromones affect the decisions, while with 𝛾 = 0 they
are not considered at all and the essence of the ACO meta-heuristic is lost3.

• Reinforcement: After all the ants produce a solution, the pheromones of traversed compo-
nents are reinforced. The reinforcement of a component should be more intense if it results
in better solutions. Let us denote b(x) to the benefit associated to a full solution x, the target
to maximize. Then, a typical reinforcement scheme is:

for each a = 1,… ,A
for each c ∈ xa
𝜏c ← 𝜏c + b(xa)

A common alternative is reinforcing with just those ants producing the best solutions.
• Evaporation: Pheromone evaporation uniformly decreases the pheromone values in all the

components. This is to avoid an unlimited growth of pheromones and a useful form of for-
getting poor choices made in the past. This is also needed to forget good but not optimal
choices made in the first ACO iterations, which can produce a far too rapid convergence to
a sub-optimal region. The usual evaporation rule is:

for each c ∈

𝜏c ← 𝜏c(1 − 𝜌)

where 𝜌 ∈ (0, 1] is the evaporation rate. When 𝜌 → 1, the pheromone information is soon
forgotten, while 𝜌 → 0 make the pheromones laid by good and bad decisions persist longer.

• Optional local search: It is possible to perform actions that boost the ACO performance.
The main example of such operations is introducing a local search phase starting in the solu-
tion produced by each ant, such that pheromone reinforcement is applied on the resulting
solution.

3 In many works pc is computed with the formula pc = 𝜏
𝛼

c ×b𝛽c
M′ , using parameters 𝛼 and 𝛽 to tailor the importance of

pheromones and greedy information, respectively. However, this introduces a counter-intuitive effect when tuning 𝛼

and 𝛽: (i) if 𝜏c > 1 (bc > 1), higher 𝛼 (𝛽) increases the importance of the pheromones (greedy information), while (ii)
if 𝜏c < 1 (bc < 1) the opposite effect occurs. In contrast, in (12.2) only one parameter has to be adjusted and higher 𝛾
always amplifies the importance of the pheromones and reduces that from the greedy information.

Trim Size: 6.625in x 9.625in Mariño c12.tex V3 - 02/11/2016 6:48 P.M. Page 286�

� �

�

286 Optimization of Computer Networks – Modeling and Algorithms

Algorithm 25 ACO algorithm
1: Initialization:
2: A = number of ants
3: 𝜏c = pheromone of each component c ∈

4: do
5: for each a = 1,… ,A
6: xa = ant solution created using a greedy-randomized scheme, biased by 𝜏.
7: Update the incumbent solution xbest
8: Reinforcement: increase 𝜏c of traversed components, more if part of better solutions.
9: Evaporation: reduce 𝜏 for all components (used or not by ants).

10: while stopping criterion is not met
11: return xbest

12.8.1 Design Hints

Tailoring ACO parameters needs experimentation with the particular problem to solve. We
provide below some hints to guide this process (more details e.g., in [12] and references in
[13]):

• Number of ants: In each ACO iteration, A ants choose a solution using the same pheromones
values 𝜏c. More ants mean a more intense search in the region of solutions stochastically
biased by 𝜏, at a cost of a higher per iteration running time. Typical A values range from
one ant to several hundreds. Different studies recommend increasing the number of ants as
the algorithm progresses (e.g., 1 ant every 10 iterations), so that intensification occurs once
a good region of solutions is found.

• Algorithm convergence: The convergence of ACO algorithms occurs when a large majority
or all of the ants choose a similar solution, which happens, for example, when pheromone
values are such that ant decisions become almost deterministic. This situation can be
detected using several methods. For instance, the entropy of the transition probabilities
pc, c ∈ (x) measures the uncertainty in the decision process of an ant in a particular
greedy-randomized iteration:

Ex = −
∑

c∈(x)
pclog2pc

The minimum uncertainty (Ex = 0) occurs when pc = 1 for some c and the maximum (Ex =
log2|(x)|) when all pc are equal. By averaging the entropy values of all the decisions of all
the ants, we can have a view of the algorithm convergence.

• Evaporation rate: Evaporation rate is typically chosen using experimentation, with reported
values as small as 𝜌 = 0.01 or as high as 𝜌 = 0.99. In general, higher evaporation rates make
poor decisions be soon forgotten and make the algorithm converge faster.

• Greedy versus pheromone balance: The 𝛾 ∈ [0, 1] factor in (12.2) weighting the impor-
tance of the pheromones over the greedy information should also be chosen experimentally.
Higher emphasis in the greedy information can make the process less random, and enforce
a too rapid convergence. Some works propose to help the diversification during the initial
ACO iterations by reducing the importance of the greedy information and increasing it in
the last iterations.

Trim Size: 6.625in x 9.625in Mariño c12.tex V3 - 02/11/2016 6:48 P.M. Page 287�

� �

�

Heuristic Algorithms 287

Example 12.7 File Offline_fa_ospfWeightACO implements an ACO scheme for the
OSPF link weight optimization problem in Example 12.1. An ant greedy-randomized solution
is obtained similarly to the GRASP algorithm in Example 12.6. The solution components are
all the possible link-weight pairs (e, i), each one is assigned a pheromone quantity 𝜏ei. An ant
traverses the links in a random order. The probability pei of assigning weight i to link e in an
iteration is:

pei =
𝛾𝜏ei + (1 − 𝛾)bei∑Wm

i=1 𝛾𝜏ei + (1 − 𝛾)bei

where bei is the inverse of the congestion evaluation for the candidate link-weight, obtained as
in Example 12.5. A user-defined fraction f of the best ranked ants contribute to the pheromone
reinforcement.

for each a index of best-ranked ant
for each c ∈ xa
𝜏c ← 𝜏c + b(xa)

we use as a benefit b(x) of a solution x the inverse of its congestion metric. Pheromone evap-
oration rate is a user-defined parameter 𝜌.

Figure 12.6 plots the results of a 5 minute run of the algorithm in our case study, for a
system with 100 ants (A = 100), initial pheromone values 𝜏ei = 1, and parameters 𝛾 = 1 (only

50 100 150 200 250

1

2

3

4

E
nt

ro
py

ACO iteration

50

100

150

Ph
er

om
on

es
 e

w

0

0.5

1

1.5

C
on

ge
st

io
n

Figure 12.6 Results from the ACO algorithm for a OSPF weight setting problem in a 5 minute run
(270 ACO iterations), A = 100, 𝛾 = 1, f = 0.5, 𝜌 = 0.4, initial pheromone values 𝜏c = 1. Best solution
found has a congestion metric cg = 0.541 (0.51 is a lower bound)

Trim Size: 6.625in x 9.625in Mariño c12.tex V3 - 02/11/2016 6:48 P.M. Page 288�

� �

�

288 Optimization of Computer Networks – Modeling and Algorithms

pheromone information is used), f = 0.5 (best half of the ants reinforce the pheromones), and
evaporation factor 𝜌 = 0.4. As can be seen, bad solutions tend to disappear from the algorithm
as iterations evolve and uncertainty in the ant movements tends to decrease. This is witnessed
by the average entropy values of the pei distributions, and how multiple pheromone quantities
approximate to zero values.

Best congestion found in this experiment is ≈ 0.541 (recall that 0.51 is a lower bound). The
reader can observe, using the provided implementation, how algorithm convergence occurs
significantly sooner producing a worse solution when 𝜌 = 0.9, or it becomes much slower
when 𝜌 = 0.1.

12.9 Evolutionary Algorithms

Evolutionary algorithms (EA) are metaheuristics inspired in the behavior of biological sys-
tems, in terms of how species evolve along generations, and natural selection enforces the
survival of the fittest. EA schemes were first used in the 1960s and since then have shown their
validity in problems appearing in very diverse disciplines. When applied to problems where
solutions are coded using strings or arrays of numbers, EAs are typically referred to as genetic
algorithms.

The higher layer pseudocode of EAs is shown in Algorithm 26. Initially, a population of
diverse problem solutions is created using a pure random or a greedy-randomized procedure.
Then, a sequence of EA iterations follows until any stop criterion is met. Each EA iteration
emulates a generation, using the so-called evolutionary operators:

• Parent selection: A number of couples of solutions out of the population are selected.
• Crossover: An offspring is created as each couple creates a child solution that inherits some

characteristic from both progenitors.
• Mutation: Offspring solutions can be slightly and randomly changed to emulate mutations

in the crossover process.
• Selection: Some elements in the new population (the union of the previous population and

the offspring) survive to the next generation while others disappear.

Algorithm 26 Evolutionary algorithm
1: Initialization:
2: = initial population
3: do
4: Parents = selected set of couples (x, y) of solutions in

5: Offspring = apply the crossover operation to every pair in Parents
6: Offspring = apply the mutation operation to every solution in Offspring
7: = apply selection operation to

⋃
Offspring

8: Update the incumbent solution xbest
9: while stopping criterion is not met

10: return xbest

Trim Size: 6.625in x 9.625in Mariño c12.tex V3 - 02/11/2016 6:48 P.M. Page 289�

� �

�

Heuristic Algorithms 289

12.9.1 Design Hints

As with the rest of heuristics, the form in which previous general rules are implemented is
problem dependent. We provide some guidelines:

• Coding the solution: In the context of EAs, the form in which a solution is coded is usually
called a chromosome. The coding should facilitate the implementation of the crossover oper-
ation, the most characteristic in the EA process, in which two parent solutions are somehow
mixed to produce a new solution, inheriting features from both.

• Initial population: Initial population should be sufficiently large and diverse, or otherwise
the algorithm will narrow the search to a small region of the solution space. Typically, initial
population has several thousands of solutions, created using a greedy-randomized algorithm.

• Parent selection: Parent selection should be a random process, where the probability px
that a solution x becomes a parent is related to its fitness function. This is the function that
evaluates the “goodness” of a solution, typically based on the maximization version of the
problem objective function. Then, better solutions have better chances to reproduce and get
mixed with other solutions by the crossover operator. It is a design decision letting or not
a parent to be selected in more than one couple in a generation. Two classical selection
methods are:

– Roulette wheel selection: Each time a parent is chosen, the probability of choosing a
particular solution x is proportional to its fitness.

– k-Tournament selection: Each time a parent is chosen, k solutions are randomly extracted
from , and the best (highest fitness) among them is selected.

• Offspring size: The number of couples created in a generation determines the size of the
offspring. This size is usually fixed as a fraction (e.g, between 10 and 50%) of the population
size ||. Smaller sizes tend to limit diversification, since worse solutions usually survive
during a low number of generations, and with smaller numbers of offspring their probability
of engaging in a crossover drops.

• Crossover: The crossover process may have a random nature, so if the two different parents
have several children, they are likely to be different solutions. Also, it should guarantee that
child solutions inherit characteristics from both parents. Classical methods are:

– Crossover for discrete vectors: When a solution is coded as a vector of discrete numbers,
the 1 point, N points, or uniform crossovers are often used (see Fig. 12.7). They are based
on splitting the parent solutions in one, N or all possible points, so the child solution
inherits each part from one parent chosen randomly, but potentially biased by its fitness
its fitness.

– Crossover for real vectors: When solutions are vectors of real numbers, the crossover of
two solutions x and y can be computed as its average (x + y)∕2, or an average weighted
by the solution fitness.

– Crossover for orderings: In some occasions, a solution is coded as a vector where their
coordinates are dependent on each other. Then, inheriting a coordinate from a parent may
condition the crossover in other coordinates. The typical example is when a solution is
a particular ordering of numbers 1, · · · ,N, so the same number cannot appear twice in a
solution. This happens, for example when a solution is the order in which nodes are visited
in a TSP problem instance. In this case, we can modify the 1-point crossover as follows.
First, the left solution part is inherited from a parent. Then, the already used numbers are
removed from the other parent and the resulting solution appended to the child.

Trim Size: 6.625in x 9.625in Mariño c12.tex V3 - 02/11/2016 6:48 P.M. Page 290�

� �

�

290 Optimization of Computer Networks – Modeling and Algorithms

01 0 01 0
01 0 11 0

0

01 0 01 0
01 0 11 0 1 01 00 0

01 0 01 0
01 0 11 0

01 00 1 0

1 1 01 0

1-point
crossover

3-points
crossover

Uniform
crossover

(7 ; 2.5)

(1 ; 3.5)
(4 ; 3)

Mean-based
crossover

25 1 43 6
41 6 32 5

351 62
4

4

Crossover for
orderings

Figure 12.7 Crossover examples in evolutionary algorithms

• Mutation: The mutation operator consists of changing randomly and slightly a child solution
after the crossover to reflect natural mutation in biological systems. For example, when a
solution is coded as an array of numbers, mutation can consist in randomly change one
vector coordinate also chosen randomly. The mutation role is increasing diversification.

• Survival of the fittest: This operator emulates the natural selection process, where the best
elements among the previous population and the offspring pass to the next generation. Often,
the population size M is a fixed parameter so in every generation the number of solutions
dropped equals the size of the offspring. For instance, 80% of the next generation population
can be the best solutions (highest fitness) among the population plus offspring, while the
other 20% is chosen randomly among the rest.

Example 12.8 File Offline_fa_ospfWeightEA implements an EA scheme for the
OSPF link weight optimization problem in Example 12.1. The population size M and
offspring size L are user-defined parameters. Initial population is chosen in a pure random
form. In parent selection, a used-defined fraction f of parents are the best solutions among
the population and the fraction 1 − f is chosen randomly (thus, a parent can be selected more
than once). Couples are formed randomly. In the crossover, the child solution inherits each
link from one parent chosen randomly. Then, mutation randomly changes one link weight of
the child solution. Finally, the best M solutions among the previous population and offspring,
survive to the next generation.

Figure 12.8 plots the algorithm evolution in our case study. The best congestion found is
≈ 0.545, recall that 0.51 is a lower bound. We see how, as time evolves, worse solutions tend to
be eliminated from the population while new better solutions appear and survive. The method
converges in the sense that the diversity of the solutions in the population decreases, as wit-
nessed by the reduction of the average entropy in the weight assignment among the population
(Ē), computed as:

Ē = −
∑

e
∑

𝑤
pe𝑤log2pe𝑤||

Trim Size: 6.625in x 9.625in Mariño c12.tex V3 - 02/11/2016 6:48 P.M. Page 291�

� �

�

Heuristic Algorithms 291

Figure 12.8 Results from an Evolutionary Algorithm for OSPF weight setting problem in a 5 minutes
run (356 generations), M = 1000, M = 200, f = 0.1. Best solution found has a congestion metric cg =
0.545 (0.51 is a lower bound)

where pe𝑤 is the fraction of the solutions in the population that assign weight 𝑤 to link e. Note,
however, that in this example, more time would be needed to further reduce the entropy. The
reader can check how reducing the offspring size, the entropy values achieved after a 5 minute
run are in general lower.

12.10 Case Study: Greenfield Plan with Recovery Schemes Comparison

This section includes a case study with a network greenfield planning example with a double
aim:

• Exemplify a realistic network planning task that requires the development of ad hoc
heuristics.

• Illustrate a different strategy for building network algorithms where an heuristic scheme is
used to guide the search and limit the complexity of integer linear formulations.

12.10.1 Case Study Description

We take the role of a network operator, planning a new optical backbone network deployment.
The locations of the core nodes are given and in our example correspond to that of the NSFNET
network in Fig. 12.1, and in the NSFNet_N14_E42.n2p file. Distances are normalized so
that most distant nodes are separated 4500 km. Nodes should be connected using optical fibers

Trim Size: 6.625in x 9.625in Mariño c12.tex V3 - 02/11/2016 6:48 P.M. Page 292�

� �

�

292 Optimization of Computer Networks – Modeling and Algorithms

rented to a dark fiber provider4 and the fiber topology to deploy is part of the planning deci-
sions to optimize. Wavelength Division Multiplexing (WDM) technology is used, such that
each fiber link is able to carry a maximum of W = 80 different channels, each at a different
wavelength.

The input traffic to carry is given by a number of end-to-end optical connections between
each node pair, called lightpaths. Each lightpath can carry 100 Gbps, and is originated in a
transponder at the ingress node, traverses a sequence of fibers, and ends in other transpon-
der card at the egress node. Intermediate nodes with respect to a lightpath do not look into it.
Instead, an Optical Add Drop Multiplexer (OADM) located at each node switches the light-
paths optically. Each lightpath occupies a wavelength in each traversed fiber. Regeneration
equipment can be located along the lightpath route to remove the effects of optical signal
degradation and change the wavelength of a lightpath if needed. However, lightpath propaga-
tion delay cannot exceed 50 ms (a realistic latency constraint in backbone design). Considering
a standard propagation speed in the fiber of 200,000 km/s, this limits lightpath lengths to
10,000 km.

The number of lightpaths hnn′ to establish between node n and n′ is known. In our example,
the traffic is symmetric (hnn′ = hn′n) and given by:

hn′n = hnn′ =
⌈

10 × max{TMnn′ ,TMn′n}
100

⌉
Where TMnn′ is the traffic n → n′ in Gbps in NSFNet_N14_E42.n2p file. The resulting
total traffic contains 558 lightpaths. We make the following considerations with respect to the
network costs:

• Each fiber link costs $400 per km and year. This includes the leasing payments to the dark
fiber provider and the annual prorated cost of the optical amplification and regeneration
equipment needed. To ease the network management, the topology of fiber links should be
symmetric: the number 0, 1, 2, · · · of fiber links deployed from a node n to n′, is the same to
the ones from n′ to n.

• One OADM is placed in each location. The acquisition cost of the OADM is of $20 K for
OADMs of degree two (at most, two output fibers) and $40 K for OADMs of a degree higher
than two. The per-year cost of the OADM is given by the acquisition cost prorated in 5 years
of expected operation.

• Each lightpath starts and ends in a transponder. Transponders are bidirectional and to ease
the network management lightpath routes are constrained to also be symmetric. The acqui-
sition cost of a bidirectional transponder is $15 K, which also includes the cost of the router
line card connected to it. The per-year cost is given by the acquisition cost prorated in 5 years
of expected operation.

We consider that the network links are vulnerable to fiber cuts5 and the network design
should add some resiliency for it. In particular, we assume that all the links deployed between

4 Long distance fiber links are typically laid by civil engineering, railway, or highway building companies, and then
leased to network operators. The product is called dark fiber when the optical amplification, compensation, transmis-
sion, and reception equipment is placed by the network operator, which has the full control of the link.
5 Some studies [14] estimate that every 1000 km of fiber link can suffer an average of ≈ 1.7 accidental cuts per year,
with repairing time in the order of hours/days.

Trim Size: 6.625in x 9.625in Mariño c12.tex V3 - 02/11/2016 6:48 P.M. Page 293�

� �

�

Heuristic Algorithms 293

two nodes in both directions are placed in the same duct, so that if cut, all these links fail
simultaneously. As a design constraint, the network must be tolerant to a single duct cut.

In this scenario, the target of the case study is assessing three different network designs,
based on three different potential recovery strategies to adopt in the network:

• 1+1 lightpath dedicated protection: Each lightpath is backed up by a duct-disjoint lightpath
between the same nodes. Then, under any duct cut at least one out of the two survives. The
recovery is fast and the network management simple, but the number of lightpaths deployed
is twice the number of lightpaths needed.

• Lightpath shared protection: A set of lightpaths between each node pair (n, n′) is established
so that under any single duct failure, at least hnn′ lightpaths survive. Then, the number of
lightpaths deployed can be higher than the number of lightpaths needed, but in general less
than twice this number. As a drawback, the recovery is more complex than 1+1 case, since
it requires the higher layer to deviate the traffic from the failed lightpaths to the surviving
ones. If lightpaths are IP links, this is automated by the OSPF/ECMP rule of the routers.

• Lightpath restoration: The number of lightpaths deployed equals the number of lightpaths
needed. However, lightpaths are not static, and the network can react rerouting lightpaths to
adapt to duct failures. This dynamicity requires a more complex management system, and
sophisticated OADMs that are able to reroute added, bypassed and dropped lightpaths6.

12.10.2 Algorithm Description

Our assessment study requires implementing heuristic algorithms that obtain the fiber links to
deploy, the lightpaths, and their routes, such that the total network cost is minimized, in each of
the three scenarios considered. In this section, we describe the algorithm developed, available
in the Offline_wdm_physVirtTopDesign file, suitable to solve the three cases.

The algorithm is based on a GRASP scheme, where GRASP iterations are executed until a
maximum running time is met. The two stages of each GRASP iteration are described next,
the pseudocode is shown in Algorithm 27:

• Greedy-randomized algorithm: One solution z is created using a greedy-randomized
method. This stage starts with an empty network where no links nor lightpaths are
deployed. Then, node pairs (n, n′) are visited in a random order. For each node pair, we call
an ILP formulation to deploy the bidirectional lightpaths between them, so the accumulated
network cost is minimized. The method is constructive so the lightpaths and links deployed
in a greedy step are not changed and affect the decisions taken later. For instance, the ILP
search will naturally prefer reusing scarcely occupied links deployed in previous iterations
instead of deploying new ones. The ILP to optimize the lightpaths in a node pair is different
in the 1+1 case and the other two cases, as will be described later.

• Local search: A first-fit local search starts from the solution z created in the greedy stage.
The vicinity of a solution is composed of those designs where all the lightpaths follow the
same route, but those between two nodes. The enumeration of all the neighbors means listing
all the node pairs in an arbitrary order, and then reusing the same ILP as in he previous stage
to search for an improving reorganization of the node pair lightpaths.

6 OADMs with this functionality are called colorless-directionless OADMs. They usually add some internal blocking
and design constraints (e.g., see [15]) not considered in this example.

Trim Size: 6.625in x 9.625in Mariño c12.tex V3 - 02/11/2016 6:48 P.M. Page 294�

� �

�

294 Optimization of Computer Networks – Modeling and Algorithms

Algorithm 27 GRASP iteration, case study algorithm.
1: comment: Greedy-randomized stage
2: Order the node pairs randomly, z = empty network
3: for each (n, n′)
4: z = ILP-based search of best deployment of new lightpaths in z between (n, n′)
5: comment: Local search stage starting from z
6: do
7: Order node pairs randomly.
8: for each (n, n′)
9: z′ = ILP-based search of best reoptimization of lightpaths in z between (n, n′).

10: if f (z′) < f (z) comment: f is the cost function to minimize.
11: z ← z′, break comment: Improving solution, first-fit
12: while z has been improved comment: End when no improving solution
13: return z

12.10.2.1 1+1 ILP Formulation

ILP program (12.3) describes the optimization of the primary and backup lightpath routes
between a node pair (n, n′), so that the network cost is minimized. We denote as the set of
all potential ducts where dark fibers can be leased, a full mesh of ducts between all node pairs.
We use pe to denote the number 0, 1, 2, · · · of fiber links to hire in duct e. Both fiber links and
ducts are bidirectional. Let denote the set of requested lightpaths to establish between n and
n′. For each lightpath demand d, we compute the set d of admissible paths for it. is the
union of all the paths for all the lightpaths and e the subset of traversing duct e. Decision
variables to the problem are:

• xp, p ∈ : 1 if path p carries a lightpath (backup or primary) for demand d(p), 0 otherwise.
• pe, e ∈ : Number of fibers (bidirectional) in duct e (bidirectional).
• d3

n , n ∈ : 1 if node n needs a more expensive OADM, since its degree is higher than two.
0 otherwise.

Also, we denote as ce the per-year cost of two fibers (one in each direction) in duct e, ct
the cost of two transponders occupied by a bidirectional lightpath and cO the extra per-year
cost associated to a high-degree OADM with respect to a degree two OADM. Finally, ye is the
number of occupied channels in the fibers of duct e, because of already deployed lightpaths.

min
∑

e

cepe + cT

∑
p

xp + cO

∑
n

d3
n subject to: (12.3a)

∑
p∈d

xp = 2, ∀d ∈ (12.3b)

∑
p∈d

⋂
e

xp ≤ 1, ∀d ∈ ,∀e ∈ (12.3c)

∑
p∈e

xp ≤ Wpe − ye, ∀e ∈ (12.3d)

Trim Size: 6.625in x 9.625in Mariño c12.tex V3 - 02/11/2016 6:48 P.M. Page 295�

� �

�

Heuristic Algorithms 295

∑
e∈𝛿+(n)

≤ 2 + Md3
n , ∀n ∈ (12.3e)

The objective function minimizes the network cost. First constraint (12.3b) means that
all lightpaths occupy two routes, a primary and a backup. Constraint (12.3c) makes them
duct-disjoint, and (12.3d) dimensions the number of fibers needed in each duct according to
host the previously and currently deployed lightpaths. Finally, (12.3e) establishes that more
expensive OADMs are needed when the node degree exceeds two (M is any large number).

12.10.2.2 Shared Protection Formulation

Program (12.4) optimizes the lightpaths to establish between two nodes n and n′ in the shared
protection case. nn′ is the set of bidirectional routes admissible for the lightpaths, and hnn′

the number of bidirectional lightpaths requested. Set contains all the possible 1 + || failure
states in which the network can be: the state where all ducts are active, and the states when all
are active but one. s is the set of paths that survive in failure state s. Finally, decision variables
xp now represent the number of lightpaths in the route p (which can be higher than one).

min
∑

e

cepe + cp

∑
p

xp + c
∑

n

d3
n subject to: (12.4a)

∑
p∈nn′

⋂
Ps

xp ≥ hnn′ , s ∈ (12.4b)

∑
p∈e

xp ≤ Wpe − ye, ∀e ∈ (12.4c)

∑
e∈𝛿+(n)

≤ 2 + d3
n , ∀n ∈ (12.4d)

Constraint (12.4b) means that at least hnn′ lightpaths should survive in any failure state,
(12.4c) dimensions the number of fiber links in each duct according to the previously and
currently deployed lightpaths, and (12.4d) sets the OADM needs.

12.10.3 Combining Heuristics and ILPs

The combination of ILP formulations and heuristics can be a useful strategy for building plan-
ning algorithms, for those problem sizes where formulating and solving the full problem is
outside the CPU and memory limits. This happens in the example described.

In our algorithm, a GRASP heuristic skeleton is used to guide the search. The role of the
ILPs is being a routine that efficiently explores a reduced solution space, where only the
lightpaths between two nodes can be changed. Then, we take benefit of the efficient and sophis-
ticated optimization techniques that solvers implement in their exploration. For instance, the
number of different forms in which 10 lightpaths can be routed in 200 candidate paths is7(

10+200-1
10

)
≈ 3 × 1016. Evaluating the objective function for all of them and checking their

7 A lighptath-path allocation is represented by a chain of 209 letters: 200-1 letters s (representing a separator between
one path and the next), mixed with 10 letters L (lightpath). The number of different chains is the given expression.

Trim Size: 6.625in x 9.625in Mariño c12.tex V3 - 02/11/2016 6:48 P.M. Page 296�

� �

�

296 Optimization of Computer Networks – Modeling and Algorithms

survivability under all failure scenarios would take an unreasonable amount of time in standard
implementations. However, ILPs often find optimum solutions to such problems in tens of
milliseconds. The reason behind this is their extremely profiled internal implementation that
includes branch-and-bound, branch-and-cut, and branch-and-price techniques that efficiently
find and rule out suboptimal parts of the solution space8.

Combining ILP solving and heuristics in the same algorithm is enabled by libraries like
for example JOM, that interfaces with CPLEX and GLPK solvers from Java. In our tests, the
average time needed by JOM to construct the ILP model was in the order of tens of miliseconds,
approximately the same as the average time taken then by the solver to find the optimum
solutions. As theory predicts, worst-case running times of the ILP solvers can be quite long,
since ILP solving is an -complete problem. To cope with this, the solver was configured
through JOM with a maximum running time of 2 seconds, so that the best solution found so far
is returned in the (very infrequent) cases when this time is exceeded before the ILP optimum
is reached.

12.10.4 Results

This section reports some of the results obtained in our example, after running the heuristic
algorithm devised for one hour in the 1+1 and shared protection case. The lightpath restoration
plan is extracted from the shared protection solution, by just keeping the same deployed links
and reducing the lightpaths to exactly that in hnn′ matrices. Note that since deployed links in
the shared protection case are enough to carry hnn′ lightpaths in any failure state s ∈ , the
lightpath restoration is also feasible. Finally, for the sake of comparison, we use the shared
protection heuristic to solve the case (unrealistic in the backbone context) where no network
recovery is planned. For this, the shared protection algorithm is run with the set containing
just the no-failure state.

In our tests, the set of admissible paths for each lightpath is composed of all the paths travers-
ing a maximum of four ducts, and with a maximum length of 10,000 km, with a maximum
of 200 candidate paths per demand (sufficient to include at least all the valid routes traversing
three ducts). Computing facilities used are a standard laptop with an Intel i5 CPU (2.27 GHz)
with 8 GB of RAM, interfacing the CPLEX v12.2 solver from JOM library.

Table 12.1 plots the results in the four cases tested, that suffices to show the main trends9. In
the cost side, first observation is that dark fiber leasing costs dominate with respect to transpon-
ders and optical switching costs. The lower cost solutions are lightpath restoration and shared
protection, while 1+1 protection is the most expensive. The gross of the cost difference lies
in the four extra links needed in the 1+1 case. The differences in the number of lightpaths is
quite relevant among the three, however, their impact in the cost is reduced in this scenario
where link costs dominate. Note, however, that a similar study in a metro network, with link
distances in the order of hundreds of km instead of thousands, would make the transponder
cost differences impact the final outcome, since link costs would have a much lower weight.

Regarding the algorithm evolution, we see that several thousands ILPs were solved in each
run, with an average running time of hundreds of milliseconds. The time needed to build the
model with JOM and the time needed to solve it dominate with respect to the rest of the tasks.

8 The interested reader in ILP and mixed ILP solution techniques is referred to specialized literature like [16]
9 Professional planning reports usually include cost assessments along a 5–20 years period, considering different
annual growth traffic profiles.

Trim Size: 6.625in x 9.625in Mariño c12.tex V3 - 02/11/2016 6:48 P.M. Page 297�

� �

�

Heuristic Algorithms 297

Table 12.1 Case study results

Description 1+1 protection Shared protection Restoration No recovery

Total cost (K$/year) 29,506.5 28,808.7 27,710.7 15,358.7
Link costs (K$/year) 26,046.5 25,928.7 25,928.7 13,612.7
Transponder costs (K$/year) 3348.0 2772.0 1674.0 1674.0
OADM costs (K$/year) 112 108 108 72

Num. links 62 58 58 32
Num. transponders (bid) 1116 924 558 558
Num. degree 2 OADMs 0 1 1 1
Num. degree >2 OADMs 14 13 13 13

Num. GRASP iterations 11 21 21 92
Num. solver calls 1981 9421 9421 16,698
Av. solver time (s) 0.241 0.194 0.194 0.052
Av. JOM modeling time (s) 1.55 0.182 0.182 0.159

Both are in the same order of magnitude, excepting the 1+1 case where JOM modeling was
more time expensive. This is because the number of variables and constraints is higher, as one
demand was needed per each lightpath request (set), instead of an aggregated demand for
each node pair.

12.11 Notes and Sources

The interested reader in the techniques for solving integer linear programs and the tightness of
Lagrange relaxation optimality bounds in those programs is referred to specialized literature
like [3] and [16].

Heuristic and metaheuristic problem solving is a relatively recent discipline, with appli-
cations in every knowledge field. Multiple excellent sources exist covering metaheuristics in
detail such as in the books [17–19].

Applications to network -hard problems are widespread, especially for planning
problems in any network technology. The interested reader in a particular problem variant is
referred to its specialized literature. In [2] we found a significant amount of examples.

The optimization of link weights in IP/OSPF-like routing protocols is a classical traffic
engineering problem. A comprehensive compilation of results can be found in Chapter 7 of [2],
a complete planning study involving OSPF link weight setting in a real network is described
in [20].

The reader interested in planning problems for IP over WDM networks is referred to survey-
ing sources like [21–24], or [25]. More examples in this field of algorithms combining heuristic
skeletons and ILP routines are [26] or [27]. Algorithms considering the internal blocking of
colorless-directionless OADMs in the planning decisions can be found in [28, 29].

12.12 Exercises

12.1 Let be a set of links and ye > 0 the known traffic carried in each. We have K modules
of capacity U to distribute among the network links. The design target is minimizing

Trim Size: 6.625in x 9.625in Mariño c12.tex V3 - 02/11/2016 6:48 P.M. Page 298�

� �

�

298 Optimization of Computer Networks – Modeling and Algorithms

a blocking function f (u), which assigns to each possible capacity assignment in the
links u = {ue, e ∈ }, an estimation of the resulting worst-case connection blocking.
For the two following forms of coding a solution:

• As a vector of || coordinates, indicating the number of modules in each link.
• As a vector of K coordinates, indicating the identifier of the link that each module

is assigned to.

Show in each case if the coding is a one-to-one representation of the solution space.

12.2 In the first solution representation of Exercise 12.1, we assume that two solutions are
neighbors if all the links but two have the same number of modules and in those two
links one module was moved from one to the other. For the case || = 20,K = 20,
(i) compute the maximum and minimum number of neighbors of a solution x
and (ii) compute the size of the solution space: the number of different problem
solutions.

12.3 In the IP/OSPF link weight setting problem described in Example 12.1, for a network
of links, we assume that two solutions 𝑤 and 𝑤

′ are neighbors if 𝑤e = 𝑤
′
e in all the

links e ∈ , excepting at most k links. Compute the size of the vicinity set for different
values of k. In a network of || = 42 links, compute the maximum number k for which
the number of neighbors of a solution does not exceed one million.

12.4 Let be a set of locations of access nodes. Each access node location can host zero
or one core nodes. An access node i ∈ must be connected to one core node. The
cost cij of connecting an access node i to a core node in site j and the cost cj of placing
a core node in site j are known. Since there are no specific constraints to access node
connections, in the minimum cost placement each access node is linked to its closest
core node. A problem solution can be coded with a binary vector of | | coordinates,
indicating whether or not a site n has a core node. Two solutions x1, x2 are neighbors
if they have the same placement in all the sites but in k. Indicate the maximum size of
the vicinity for different values of k. Implement in Net2Plan a local search algorithm
for solving this problem, when cij equals the distance between i and j nodes. Input
parameters to the algorithm should include parameter k and the constant cost M of a
core node.

12.5 Modify algorithm in Exercise 12.4 for the case when each core node is constrained to
be connected to a maximum of K access nodes. Implement the algorithm in Net2Plan
using a metaheuristic among the ones shown in this chapter, or a combination of them.
Comment on the tailoring of the heuristic specific parameters.

12.6 Let (,) be a given network, ue the capacity in link e, a set of offered demands,
hd the demand d offered traffic and d the admissible paths for the traffic of demand
d. We are interested in finding link-disjoint primary and backup admissible paths for
each demand d, such that network survivability AH (computed as in Section 3.6.3) is
maximized, for the set of SRGs defined in the network. Implement in Net2Plan an
algorithm to solve this problem, using a metaheuristic among the ones shown in this
chapter, or a combination of them. Comment on the tailoring of the heuristic specific
parameters.

Trim Size: 6.625in x 9.625in Mariño c12.tex V3 - 02/11/2016 6:48 P.M. Page 299�

� �

�

Heuristic Algorithms 299

12.7 Let be a set of IP routers running OSPF routing protocol, and cij the leasing cost of
a bidirectional 10 Gbps link between nodes i and j. Offered traffic is given by a traffic
matrix {hij, i, j ∈ , i ≠ j}. We are interested in finding the minimum cost set of links
to hire in the network that carry all the traffic. An arbitrary number of links can be hired
between each node pair, and all network links have the same OSPF weight. Implement
in Net2Plan an algorithm to solve this problem, using a metaheuristic among the ones
shown in this chapter, or a combination of them. Comment on the tailoring of the
heuristic specific parameters.

12.8 Repeat Exercise 12.7 assuming that OSPF weights are restricted to be integers between
one an Wm (an input parameter), jointly optimized together with the network links.

12.9 Let be a set of nodes and cij the cost of connecting nodes i and j with a bidirec-
tional link. Compute the number of different bidirectional rings in the network. Find
a one-to-one coding of the solution space. Let 𝑣 be a vector specifying the order in
which the nodes are visited in the ring. We assume that two solutions 𝑣 and 𝑣

′ are
neighbors if they are equal but in k coordinates where their nodes are permuted in any
form. Compute the number of neighbors of a solution for different k values.

12.10 Devise a metaheuristic for finding the minimum cost bidirectional ring in a network,
where link cost is proportional to its distance using any of the schemes described in this
chapter, or a combination on them. Comment on the tailoring of the heuristic specific
parameters.

12.11 In the ACO metaheuristic, let us assume that the transition probabilities pc are com-
puted as:

pc =
𝜏
𝛼

c × b𝛽c
M′

where 𝜏c is the pheromone in component c, bc its greedy benefit, 𝛼 ≥ 0 and 𝛽 ≥ 0 two
algorithm parameters weighting the importance of pheromones and greedy informa-
tion in the decision, and M′ a constant that makes

∑
c∈(x)pc = 1 in each ant choice.

• If 𝜏c < 1, a higher 𝛼 factor means a higher impact of 𝜏c in the decision?
• If 𝜏c > 1, a higher 𝛼 factor means a higher impact of 𝜏c in the decision?

References
[1] L. Velasco, A. Castro, D. King, O. Gerstel, R. Casellas, and V. Lopez, “In-operation network planning,” Com-

munications Magazine, IEEE, vol. 52, no. 1, pp. 52–60, 2014.
[2] M. Pioro and D. Medhi, Routing, Flow, and Capacity Design in Communication and Computer Networks. Mor-

gan Kaufmann Publishers, 2004.
[3] L. Wolsey, Integer Programming, ser. Wiley Series in Discrete Mathematics and Optimization. New York, NY,

USA: John Wiley & Sons, Inc., 1998.
[4] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi et al., “Optimization by simulated annealing,” Science, vol. 220, no.

4598, pp. 671–680, 1983.
[5] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equation of state calculations

by fast computing machines,” The Journal of Chemical Physics, vol. 21, no. 6, pp. 1087–1092, 1953.

Trim Size: 6.625in x 9.625in Mariño c12.tex V3 - 02/11/2016 6:48 P.M. Page 300�

� �

�

300 Optimization of Computer Networks – Modeling and Algorithms

[6] B. Fortz and M. Thorup, “Internet traffic engineering by optimizing OSPF weights,” in INFOCOM 2000. Nine-
teenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE,
vol. 2. IEEE, 2000, pp. 519–528.

[7] R. Battiti and G. Tecchiolli, “The reactive tabu search,” ORSA Journal on Computing, vol. 6, no. 2, pp. 126–140,
1994.

[8] T. A. Feo and M. G. Resende, “A probabilistic heuristic for a computationally difficult set covering problem,”
Operations Research Letters, vol. 8, no. 2, pp. 67–71, 1989.

[9] T. A. Feo and M. G. Resende , “Greedy randomized adaptive search procedures,” Journal of Global Optimization,
vol. 6, no. 2, pp. 109–133, 1995.

[10] J. P. Hart and A. W. Shogan, “Semi-greedy heuristics: An empirical study,” Operations Research Letters, vol. 6,
no. 3, pp. 107–114, 1987.

[11] M. Dorigo, “Optimization, learning and natural algorithms,” Ph. D. Thesis, Politecnico di Milano, Italy, 1992.
[12] T. Stützle, M. López-Ibánez, P. Pellegrini, M. Maur, M. M. de Oca, M. Birattari, and M. Dorigo, “Parameter

adaptation in ant colony optimization,” in Autonomous Search. Springer, 2012, pp. 191–215.
[13] Ant colony optimization Available online at: www.aco-metaheuristic.org/.
[14] Y. T’Joens, G. Ester, and M. Vandenhoute, “Resilient optical and Sonet/SDH-based ip networks” in Proceedings

of the Second International Workshop on the Design of Reliable Communication Networks (DRCN 2000), 2000,
pp. 255–260.

[15] P. Pavon-Marino and M. Bueno-Delgado, “Dimensioning the add/drop contention factor of directionless roads,”
Lightwave Technology, Journal of , vol. 29, no. 21, pp. 3265–3274, 2011.

[16] L. A. Wolsey and G. L. Nemhauser, Integer and Combinatorial Optimization. Hoboken, NJ, USA: John Wiley
& Sons, Inc., 2014.

[17] F. Glover and G. A. Kochenberger, Handbook of Metaheuristics. Heidelberg, Germany: Springer Science &
Business Media, 2003.

[18] E.-G. Talbi, Metaheuristics: From Design to Implementation.Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009,
vol. 74.

[19] Z. Michalewicz and D. B. Fogel, How to Solve It: Modern Heuristics. Heidelberg, Germany: Springer Science
& Business Media, 2013.

[20] A. Nucci and K. Papagiannaki, Design, Measurement and Management of Large-Scale IP Networks: Bridging
the Gap Between Theory and Practice. Cambridge, UK: Cambridge University Press, 2009.

[21] C. S. R. Murthy and M. Gurusamy, WDM Optical Networks: Concepts, Design, and Algorithms. Prentice Hall,
2002.

[22] B. Mukherjee, Optical WDM Networks. Heidelberg, Germany: Springer Science & Business Media, 2006.
[23] A. Somani, Survivability and Traffic Grooming in WDM Optical Networks. Cambridge University Press, 2006.
[24] R. Dutta, A. E. Kamal, and G. N. Rouskas, Traffic Grooming for Optical Networks: Foundations, Techniques

and Frontiers. HeidelBerg, Germany: Springer Science & Business Media, 2008.
[25] J. M. Simmons, Optical Network Design and Planning. Springer, 2014.
[26] P. Pavon-Mariño, S. Azodolmolky, R. Aparicio-Pardo, B. Garcia-Manrubia, Y. Pointurier, M. Angelou, J.

Sole-Pareta, J. Garcia-Haro, and I. Tomkos, “Offline impairment aware RWA algorithms for cross-layer
planning of optical networks,” Journal of Lightwave Technology, vol. 27, no. 12, pp. 1763–1775, 2009.

[27] B. Garcia-Manrubia, P. Pavon-Marino, R. Aparicio-Pardo, M. Klinkowski, and D. Careglio, “Offline
impairment-aware RWA and regenerator placement in translucent optical networks,” Lightwave Technology,
Journal of , vol. 29, no. 3, pp. 265–277, 2011.

[28] P. Pavon-Marino, M.-V. Bueno-Delgado et al., “Add/drop contention-aware RWA with directionless roadms:
The offline lightpath restoration case,” Journal of Optical Communications and Networking, vol. 4, no. 9, pp.
671–680, 2012.

[29] P. Pavon-Marino, M.-V. Bueno-Delgado, and J.-L. Izquierdo-Zaragoza, “Evaluating internal blocking in non-
contentionless flex-grid roads [invited],” Journal of Optical Communications and Networking, vol. 7, no. 3,
pp. A474–A481, 2015.

Trim Size: 6.625in x 9.625in Mariño b01.tex V3 - 02/11/2016 6:31 P.M. Page 301�

� �

�

Appendix A

Convex Sets. Convex Functions

A.1 Convex Sets

Let x1 and x2 be two different points in ℝn. The line crossing x1 and x2 is given by the set
of points x of the form x = 𝛼x1 + (1 − 𝛼)x2, where 𝛼 ranges all the values in ℝ. In turn, the
segment between x1 and x2 is the set of points x = 𝛼x1 + (1 − 𝛼)x2, where 𝛼 is now restricted
to be 𝛼 ∈ [0, 1].

A set ∈ ℝn is said to be a convex set, if and only if for any two points x1
, x2 ∈ , the

segment between them is also contained in . Figure A.1 helps us to provide a graphical
intuition of convex sets, using examples in ℝ2.

Let = {x1
, · · · , xp} be any arbitrary set of points. We say that y is a convex combination

of points in , when it is possible to find a set of coefficients 𝛼i ≥ 0, i = 1, · · · , p,
∑p

i=1 𝛼i = 1,
such that y =

∑
xi∈𝛼ix

i.
Extending the convex combination to an infinite set of summands, we can define the convex

hull of a convex or non-convex set , denoted con𝑣(), as the set of all the possible convex
combinations of points in :

con𝑣() =

{
y =

∑
xi∈

𝛼
ixi
, ∀𝛼i ≥ 0,

∑
i

𝛼
i = 1

}

The convex hull con𝑣() can be equivalently defined as the smaller convex set that contains
 , and thus a set is convex if and only if it is equal to its convex hull. Figure A.2 illustrates
the concept of convex hull, using ℝ2 examples. For instance, the convex hull of a set of two
points, is the segment between them, and the convex hull of three not-aligned points, is the
triangle among them, including the interior area and the border.

The following operations over sets, preserve the convexity:

• Intersection of convex sets. The intersection of a finite or infinite family of convex sets, is a
convex set. On the contrary, the union of convex sets is usually non-convex (see Figure A.3
for a graphical illustration).

Optimization of Computer Networks – Modeling and Algorithms: A Hands-On Approach,
First Edition. Pablo Pavón Mariño.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/PavonMarinoSol16

Trim Size: 6.625in x 9.625in Mariño b01.tex V3 - 02/11/2016 6:31 P.M. Page 302�

� �

�

302 Appendix A: Convex Sets. Convex Functions

(a) (b) (c) (d) (e) (f)

Figure A.1 Convex and non-convex set examples in ℝ2. Dark points belong to the set, white do not.
(a) and (d) are convex sets. The rest are not, since it is possible to find segments with the end points in
the set, but that have points not belonging to the set

(a) (b) (c) (d) (e) (f)

Figure A.2 Convex hull examples in ℝ2. Dark points belong to the set , gray points and black points
are in con𝑣()

(a) (b) (c) (d)

Figure A.3 (a) Set 1, (b) set 2, (c) set 1

⋃
2 (not convex), (d) 1

⋂
2 (convex)

• Affine transformation of a convex set. Let ⊂ ℝn be a convex set. The transformation of
by a linear function:

f () = {Ax + b, ∀x ∈ }

is also convex, for any matrix A ∈ ℝn×m and vector b ∈ ℝm defining the transformation. This
means that the set b + that translates each point in convex set by a constant direction
b is convex. Also, the projection of a convex set into a subset of its coordinates is convex:
if ⊂ ℝn+m is convex, then:

{x1 ∈ ℝn ∶ (x1, x2) ∈ for at least one x2}

is convex.

Trim Size: 6.625in x 9.625in Mariño b01.tex V3 - 02/11/2016 6:31 P.M. Page 303�

� �

�

Appendix A: Convex Sets. Convex Functions 303

A.2 Convex and Concave Functions

A function f ∶ ⊂ ℝn → ℝ is convex, if its domain is a convex set, and for any two points
x, y ∈ , and all 𝛼 ∈ [0, 1], we have that

f (𝛼x + (1 − 𝛼)y) ≤ 𝛼 f (x) + (1 − 𝛼) f (y), ∀x, y ∈ (A.1)

and we say that f is strictly convex when the inequality (A.1) holds strictly for 𝛼 ∈ (0, 1)
whenever x ≠ y. Figure A.4 helps us to illustrate convex functions. Given two points x, y, right
hand-side of (A.1) is the segment in the graph between points (x, f (x)) and (y, f (y)), which
according to (A.1) should be above the graph of f .

Similarly, a function f ∶ ⊂ ℝn → ℝ is concave, if its domain is a convex set, and for
any x, y ∈ , 𝛼 ∈ [0, 1]:

f (𝛼x + (1 − 𝛼)y) ≥ 𝛼 f (x) + (1 − 𝛼) f (y), ∀x, y ∈ (A.2)

Strict concavity holds if previous inequality is strict whenever x ≠ y, 𝛼 ∈ (0, 1). Figure A.5
shows a concave function. It is easy to verify that a function f is (strictly) convex if and only
if − f is (strictly) concave.

A.2.1 Convexity in Differentiable Functions

If f ∶ ⊂ ℝn → ℝ is a differentiable function, the gradient of f in point x = (x1, · · · , xn) is
given by:

∇ f (x) =
(

𝜕 f

𝜕x1
(x), · · · ,

𝜕 f

𝜕xn
(x)

)
∈ ℝn

a x b y

αf (x) + (1 – α) f (y), α ∈ [0,1]
f (αx + (1 – α) y), α ∈ [0,1]

Figure A.4 Convex function f ∶ ℝ → ℝ. For any two points x, y, the segment 𝛼 f (x) + (1 − 𝛼) f (y), 𝛼 ∈
[0, 1] is above the function graph f (𝛼x + (1 − 𝛼)y), 𝛼 ∈ [0, 1]. The function is not strictly convex, since
for some points, for example a, b, the segment between them is not strictly above the graph

Trim Size: 6.625in x 9.625in Mariño b01.tex V3 - 02/11/2016 6:31 P.M. Page 304�

� �

�

304 Appendix A: Convex Sets. Convex Functions

x a y

f (αx + (1 – α) y), α ∈ [0,1]
 αf (x0) + (1 – α) f (x), α ∈ [0,1]

Figure A.5 Concave function f ∶ ℝ → ℝ. For any two points x, y, the segment 𝛼 f (x) + (1 −
𝛼) f (y), 𝛼 ∈ [0, 1] is below the function graph f (𝛼x + (1 − 𝛼)y), 𝛼 ∈ [0, 1]. The function is not strictly
concave, since for some points, for example x, a, the segment between them is not strictly below the
graph

The convexity and concavity of f in its convex domain can be checked using the gradient
of f :

f is convex ⇔ f (y) ≥ f (x) + (y − x)T∇ f (x), ∀x, y ∈

f is concave ⇔ f (y) ≤ f (x) + (y − x)T∇ f (x), ∀x, y ∈

Strict convexity and concavity occurs if previous inequalities are strict for all x ≠ y. Previ-
ous expression means that a differentiable function is convex (concave), if its linear expansion
approximation centered in any point x (given by f (x) + (y − x)T∇ f (x)), is a global subestima-
tor (overestimator) of the function. Figure A.6 illustrates this in real functions.

If f is twice differentiable, the second order Taylor approximation of f around point x is:

f (y) ≈ f (x) + (y − x)T∇ f (x) + 1
2
(y − x)T∇2 f (x)(y − x)

where ∇2f (x) is the second-derivative or hessian matrix. This is an n × n matrix, with (i, j)
coordinate given by 𝜕

2f∕𝜕xi𝜕xj. In the common case, when second partial derivatives are con-
tinuous, hessian matrix is symmetric. In the Taylor approximation, we see that the second order
term (y − x)T∇2 f (x)(y − x) represents the curvature of f in x: how much f separates from the
linear estimation f (x) + (y − x)T∇ f (x), when we move from x to y. Then:

• If (y − x)T∇2 f (x)(y − x) ≥ 0 for all x, y ∈ , the function is always above the linear estima-
tion and thus is convex. This happens if and only if the hessian matrix ∇2 f (x) is semidefinite
positive (s.d.p.)1 for all x. If it is definite positive (d.p.), (y − x)T∇2 f (x)(y − x) > 0 for every
x ≠ y and the function is strictly convex.

• If (y − x)T∇2 f (x)(y − x) ≤ 0 for all x, y ∈ , the function is always below the linear esti-
mation, and thus is concave. This happens if and only if the hessian matrix ∇2 f (x) is

1 A matrix A is definite positive (negative) if all its eigenvalues are strictly greater (lower) than zero, which happens if
and only if xT Ax > 0 (xT Ax < 0) for every x ≠ 0. Positive and negative semidefiniteness permits some eigenvalues to
be zero. A matrix is not defined when it has strictly positive and strictly negative eigenvalues, and thus xT Ax is strictly
positive for some x and strictly negative for others.

Trim Size: 6.625in x 9.625in Mariño b01.tex V3 - 02/11/2016 6:31 P.M. Page 305�

� �

�

Appendix A: Convex Sets. Convex Functions 305

x

f (x) + ∇f (x)T (y – x)

f (x) + ∇f (x)T (y – x)

f (y)

f (y)

x

(a) Convex differentiable function, linear subestimator

(b) Concave differentiable function, linear overestimator

Figure A.6 Convex and concave differentiable functions

semidefinite negative (s.d.n.) for all x. If it is definite negative (d.n.), the function is strictly
concave.

• If (y − x)T∇2 f (x)(y − x) is strictly positive when we move in some directions (y − x), and
strictly negative when we move in other directions, f is neither convex nor concave. This is
equivalent to having a hessian matrix ∇2 f (x) that is not defined with both strictly positive
and strictly negative eigenvalues. If we move in the direction provided by an eigenvector, f
is locally curved by an amount given by its associated eigenvalue.

Example A.1 The function f (x1) = x2
1 is strictly convex with respect to x1 in all ℝ

(f ′′(x1) = 2). However, f (x1, x2) = x2
1 is convex but not strictly convex with respect to (x1, x2),

since its hessian equals:

∇2 f (x1, x2) =
(

2 0
0 0

)
which has 2 and 0 as its eigenvalues.

Trim Size: 6.625in x 9.625in Mariño b01.tex V3 - 02/11/2016 6:31 P.M. Page 306�

� �

�

306 Appendix A: Convex Sets. Convex Functions

A.2.2 Strong Convexity/Concavity

A twice differentiable function f is strongly convex (concave)2 when it is strictly convex (con-
cave), and there is a finite number a > 0 (a < 0), such that all the eigenvalues of ∇2 f (x) are
strictly greater (lower) than a.

In other words, both strict and strong convexity force the function curvature to be always
strictly positive. However, there can be strictly convex functions with curvatures approaching
zero in some points. The strong convexity rule out these cases and requires the curvature to be
separated from zero at least a constant quantity a. The strongly concave case is analogous.

Example A.2 The function f (x) = ex is strictly convex in its domain ℝ, since f ′′(x) =
ex

> 0,∀x. However, it is not strongly convex in ℝ, since when x → ∞, the curvature f ′′(x)
can be arbitrarily close to zero.

A.2.3 Convexity in Non-Differentiable Functions

Let f ∶ ⊂ ℝn → ℝ be a convex function, not necessarily differentiable in all its convex
domain . Subgradients are a generalization of gradients, suitable also for points where f is
not differentiable. We say that a vector g ∈ ℝn is a subgradient of f in x ∈ when:

f (y) ≥ f (x) + (y − x)Tg, ∀y ∈ (A.3)

That means that, if g is a subgradient of f in x, the linear approximation (first order Taylor
approximation) of the function given by f (x) + (y − x)Tg, is a global subestimator of f .

When a convex function f is not differentiable in a point x, it can have many subgradients.
The set of those subgradients is called the subdifferential of f in x, and is denoted as 𝜕 f (x).
When f is differentiable in x, ∇ f (x) is its only subgradient:

f convex and differentiable in x ⇒ 𝜕 f (x) = {∇ f (x)}

f convex and 𝜕 f (x) = {∇ f (x)} ⇒ f differentiable in x and ∇ f (x) = g

Figure A.7a helps us to illustrate the concept of subgradient of a convex function. The func-
tion is differentiable in x1 and in this point there is only one line crossing x1 and that is always
below f : the tangent of f in x of slope given by ∇ f (x1). Then, ∇ f (x1) is the only subgra-
dient in x1. In turn, the function is not differentiable in x0, and there is an infinite number
of tangent lines which subestimate f . Their slopes are subgradients of f in x0. In particular,
in Fig. A.7a, all the slopes in the interval [g1, g4] are subgradients in x0: 𝜕 f (x0) = [g1, g4].
It can be shown that if g and g′ are two subgradients of f in x, all the convex combination
of vectors 𝛼g + (1 − 𝛼)g′, 𝛼 ∈ [0, 1], are also subgradients. That is, the set of subgradients
(subdifferential of f) is always a convex set.

The concept of subgradient can be adapted to concave functions. If f ∶ ⊂ ℝn → ℝ is a
concave function, a vector g ∈ ℝn is a subgradient of f in x ∈ when:

f (y) ≤ f (x) + (y − x)Tg, ∀y ∈ (A.4)

2 A definition of strong convexity and concavity exists for non-differentiable functions, not included in this appendix
since we mostly restrict to the differentiable case in this book.

Trim Size: 6.625in x 9.625in Mariño b01.tex V3 - 02/11/2016 6:31 P.M. Page 307�

� �

�

Appendix A: Convex Sets. Convex Functions 307

Figure A.7 Subgradients in convex and concave functions

This means that in concave functions, subgradients define global overestimators3.
Figure A.7b shows an example. It can be easily shown that g is a subgradient of a concave
function f , if and only if −g is a subgradient of convex function − f .

Below are some properties of subgradients:

• If g is a subgradient of f in x, then 𝛼g is a subgradient of 𝛼 f in x for any 𝛼 ≥ 0 .
• If gi are subgradients of fi in x, i = 1, · · · ,m, then

∑
igi is a subgradient of

∑
i fi in x.

• Let f (x) = maxi=1,···,m fi(x). Let k be the index of a function fi where the maximum is reached
in point x. Then, any subgradient of fk in x is a subgradient of f in x.

A.2.4 Determining the Curvature of a Function

Given a function f , the determination of its convexity or concavity can be quite laborious by
direct application of convexity/concavity definitions (A.1, A.2), or computation and definite-
ness analysis of its hessian matrix. In this section we provide a set of rules that can simplify
the process in most of the cases.

First, Table A.1 illustrates the convexity and concavity properties of some basic functions.
Proofs are omitted, the reader is referred to Chapter 3 of [1] for details.

3 For this reason, some texts refer to the subgradients of concave functions as supergradients. In this book, we prefer
applying the same term subgradient to both convex and concave functions.

Trim Size: 6.625in x 9.625in Mariño b01.tex V3 - 02/11/2016 6:31 P.M. Page 308�

� �

�

308 Appendix A: Convex Sets. Convex Functions

Table A.1 Some basic convex functions

Function Curvature properties

aT x + c CVX and CVE ∀x ∈ ℝn

xT Ax + bT x + c CVX (CVE) ∀x ∈ ℝn if A s.d.p (s.d.n). S-CVX (S-CVE) if A d.p (d.n)
xa
, a > 1 S-CVX ∀x ∈ ℝ, x ≥ 0

xa
, a ∈ (0, 1) S-CVE ∀x ∈ ℝ, x ≥ 0

xa
, a < 0 S-CVX ∀x ∈ ℝ, x > 0|x|a, a ≥ 1 CVX ∀x ∈ ℝ, S-CVX if a > 1

ex S-CVX ∀x ∈ ℝ
log x S-CVE ∀x ∈ ℝ, x > 0
x log x S-CVX ∀x ∈ ℝ, x > 0‖x‖ CVX ∀x ∈ ℝn‖x‖2

2 S-CVX ∀x ∈ ℝn

max{x1 · · · xn} CVX ∀x = (x1, · · · , xn) ∈ ℝn

x2

y
CVX ∀x, y ∈ ℝ, y > 0(∏n

i=1 xi

)1∕n
CVE ∀x ∶ xi ≥ 0∀i = 1, · · · , n

CVX: convex, CVE: concave, S-CVX: strictly convex, S-CVE: strictly concave.

Next, we provide a set of function transformations and the resulting function curvature.
The application of these properties often permits determining the curvature of complex
functions:

• Non-negative scaling: If f is a convex function, then 𝛼 f is convex for every 𝛼 ≥ 0. If f is
strictly convex, and 𝛼 > 0, then 𝛼 f is also strictly convex.

• Non-negative weighted sums: Let f1, · · · , fm be a set of convex functions in the same
domain . Then, the function f1 + · · · + fm is convex in . Moreover, if at least one
function fi is strictly convex, then f is also strictly convex.

• Composition with affine transformation. Let f ∶ ∶ ℝn → ℝ, A an n × m matrix, and
b ∈ ℝn. Define g ∶ ℝm → ℝ as:

g(x) = f (Ax + b),

where the domain of g is {x ∶ Ax + b ∈ }. Then, if f is convex (concave), so is g.
Moreover, if transformation y = Ax + b is one-to-one (bijective), which occurs if n = m
and A has full-rank, then if f is strictly convex (concave), so is g.

• Pointwise maximum. Let f1, · · · , fm be convex functions defined in the same domain . The
pointwise maximum function:

f (x) = max{ f1(x), · · · , fm(x)}, ∀x ∈

is convex. If all of the fi functions are strictly convex, then so is f . Figure A.8a helps us to
graphically illustrate the pointwise maximum property. The result can be generalized to the
pointwise supremum of an infinite set of convex functions. In this case, strict convexity of
all the functions fi does not guarantee strict convexity of the pointwise supremum.

Trim Size: 6.625in x 9.625in Mariño b01.tex V3 - 02/11/2016 6:31 P.M. Page 309�

� �

�

Appendix A: Convex Sets. Convex Functions 309

Figure A.8 Pointwise maximum and minimum properties for convex and concave functions

• Pointwise minimum. Let f1, · · · , fm be concave functions defined in the same domain .
The pointwise minimum function:

f (x) = min{ f1(x), · · · , fm(x)}, ∀x ∈

is concave. Figure A.8b helps us to graphically illustrate this. The result can be generalized
to the pointwise infimum of an infinite number of functions. If the number of functions is
finite, and all of the them are strictly concave, then so is f .

• Composition of functions. We analyze the curvature of the composite function

f (y) = g(h(y)) = (g ∘ h)(y)

h is a vectorial function h ∶ ⊂ ℝn → ℝk, so that h(y) = (h1(y), · · · , hk(y)). g is a real func-
tion g ∶ Im(h) ⊂ ℝk → ℝ, where Im(h) is the image set of h, and thus f is well defined. In

Trim Size: 6.625in x 9.625in Mariño b01.tex V3 - 02/11/2016 6:31 P.M. Page 310�

� �

�

310 Appendix A: Convex Sets. Convex Functions

Table A.2 Convexity of the composite function

g hi, i = 1, · · · , k f = g(h(y))

CVX INC CVX CVX
CVX DEC CVX –
CVE INC CVX –
CVE DEC CVX CVE
CVX INC CVE –
CVX DEC CVE CVX
CVE INC CVE CVE
CVE DEC CVE –

CVX: convex, CVE: concave, INC: increasing, DEC:
decreasing, –: any.

some occasions, it is possible to derive the convexity or concavity of function f ∶ ⊂

ℝn → ℝ depending on if g and hi are convex/concave and increasing/decreasing functions.
This is shown in Table A.2.

The results in Table A.2 are applicable for any dimensions of the multivariate trans-
formations h, and for differentiable and non-differentiable functions. Still, we can use the
chain-rule expression of the second derivative of single variable functions (k = n = 1):

f (y)′′ = (g(h(y)))′′ = g′′(h(y))(h′(y))2 + g′(h(y))h′′(y) (A.5)

as a mnemotecnic rule to produce Table A.2: when the sign of f ′′, can be derived from
the signs of g′, g′′, h′, and h′′, we can automatically determine the curvature of f . Strict
convexity and concavity in the general case can also be derived from (A.5). For instance, if
g is convex and strictly increasing, and all hi are strictly convex, then so is f .

• Partial minimization. Let f (x, y) be a jointly convex function in (x, y) variables. If is a
compact convex non-empty set, then the function:

g(x) = min
y∈

f (x, y)

is convex in its domain, given by the projection of into the x-coordinates:

dom g = {x ∶ (x, y) ∈ dom f for at least one y ∈ }

Example A.3 The function f (x1, x2) = (5x1 − x2)2 is convex since x2 is a convex real function,
and (5x1 − x2)2 is x2 replacing 5x1 − x2 with x. Since this transformation is not one-to-one,
(5x1 − x2)2 is not strictly convex with respect to (x1, x2) although x2 is strictly convex with
respect to x.

A.2.5 Sub-level Sets

Let f ∶ ⊂ ℝn → ℝ be a convex function and c any scalar constant. Then, the set of points
x ∈ :

f (x) ≤ c

Trim Size: 6.625in x 9.625in Mariño b01.tex V3 - 02/11/2016 6:31 P.M. Page 311�

� �

�

Appendix A: Convex Sets. Convex Functions 311

Figure A.9 Sub-level sets. (a) f is convex and its sub-level set for f (x) ≤ 0 is the interval [a, b]. (b) f
is non-convex, and its sub-level set f (x) ≤ 1 is the set {[a1, b1]

⋃
[a2, b2]}, that is not convex

if not empty, is a convex set commonly known as the sub-level set of f for constant c.
Figure A.9 shows an example of convex sub-level sets of a convex function, and a non-convex
sub-level set of a non-convex function.

A.2.6 Epigraphs

The epigraph of a function f ∶ ⊂ ℝn → ℝ, is defined as:

epi f = {(x, t) ∶ x ∈ , f (x) ≤ t} ⊂ ℝn+1

This means that an epigraph is the set of points that are above the graph of f . Then, it holds
that a function f is convex if and only if its epigraph is a convex set. Figure A.10 illustrates this.

A.3 Notes and Sources

Although convex optimization has been studied for more than a century, its interest has
steadily grown since the 1980s, after recognizing the possibility of efficiently solving convex
programs, and the multitude of convex optimization problems appearing in diverse disciplines,

Trim Size: 6.625in x 9.625in Mariño b01.tex V3 - 02/11/2016 6:31 P.M. Page 312�

� �

�

312 Appendix A: Convex Sets. Convex Functions

f (x)

epi f

Figure A.10 Epigraph of a convex function

like computer networks. This appendix extracts standard results in convex analysis, which can
be found in any recent optimization book. An accessible reference for further reading is [1].

Reference
[1] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY, USA: Cambridge University Press, 2004.

Trim Size: 6.625in x 9.625in Mariño bapp02.tex V3 - 02/11/2016 6:32 P.M. Page 313�

� �

�

Appendix B

Mathematical Optimization Basics

B.1 Optimization Problems

A mathematical optimization problem, or just an optimization problem, consists of finding a
vector x = (x1,… , xn) that minimizes an objective function f ∶ ⊂ ℝn → ℝ, searching only
among a set of solutions that satisfy given constraints:

min
x

f (x), subject to: (B.1a)

gi(x) ≤ 0, i = 1,… ,m (B.1b)

hj(x) = 0, j = 1,… , p (B.1c)

x ∈ (B.1d)

where x1,… , xn are the problem decision variables1. In network optimization problems, they
typically represent quantities like “capacity in a link”, “traffic to be carried through a path”,
or “number of links between two nodes”. Function f is called the problem objective func-
tion, (B.1b) are the equality constraints, (B.1c) the inequality constraints, and (B.1d) the set
constraints.

A solution x which satisfies all problem constraints (B.1b–d) is referred to as a feasible
solution. The set of all feasible solutions to a problem is called the feasible set. All the functions
f , gi, and hj in the objective and constraints should be well defined in the feasible set. When
the problem has no constraints, we refer to it as an unconstrained optimization problem, and
every vector in ℝn is feasible.

Any minimization problem minx∈ f (x), which is a short form of minx f (x), subject to
x ∈ , can be converted into a maximization problem by changing the sign of the objective
function. That is, the problem minx∈ f (x) is equivalent to maxx∈ − f (x). Also, note that

1 In this book, we assume that the number of decision variables is finite (n < ∞)

Optimization of Computer Networks – Modeling and Algorithms: A Hands-On Approach,
First Edition. Pablo Pavón Mariño.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/PavonMarinoSol16

Trim Size: 6.625in x 9.625in Mariño bapp02.tex V3 - 02/11/2016 6:32 P.M. Page 314�

� �

�

314 Appendix B: Mathematical Optimization Basics

a x1 x2 x3 x4 x5 x6 b
x

f (x)

Figure B.1 Example. dom f = = [a, b]. Local maximums are {a, x2
, (x3

, x4), x5
, b}. Local mini-

mums are {x1
, [x3

, x4], x6}. Global maximum is b and global minimum x6

inequalities gi(x) ≥ 0 are equivalent to −gi(x) ≤ 0. Then, we can study only minimization
problems where inequalities are of the form “≤”, without loss of generality.

Given an optimization problem minx∈ f (x), a vector x∗ ∈ is said to be a global optimum,
when f (x∗) ≤ f (x) for all x ∈ . x∗ ∈ is said to be a local optimum when f (x∗) ≤ f (x),
for every x ∈

⋂
B(x∗, 𝜖), where B(x∗, 𝜖) is a ball centered in x∗ and with a radius 𝜖 > 0, as

small as we wish. In other words, f reaches a minimum in x∗, compared to the feasible points
which are in its proximity. Global and local minimums are tagged as strict, when the relation
f (x∗) ≤ f (x) holds strictly when x ≠ x∗. As an example, Fig. B.1 illustrates the previously
defined concepts.

In some occasions (of little practical interest), an optimization problem with feasible solu-
tions, may not have a global optimum. For instance, the problem minx>1x has no global opti-
mum since given any point x > 1, you can always find one closer to the limit x = 1. The
intuition would say that the optimum is x = 1, but formally x = 1 is unfeasible. This is the
type of problems that appear when the feasible set is not closed and some boundary points are
not feasible. Similarly, the problem maxx>1x has no global optimum, since for any real number
x we can always find a larger one and the limit x = ∞ is not a feasible point.

The Theorem of Weierstrass provides sufficient conditions to rule out these mathematical
technicalities.

Theorem B.1 (Weierstrass) If f is a continuous function, and is a non-empty compact set,
then the problem minx∈ f (x) has at least a global optimum.

In finite dimension spaces likeℝn, a set is compact if and only if it is closed on bounded. This
is easily achieved in problem (B.1) if, (i) we do not use strict inequalities in the constraint set2,

2 Actually, general solver programs which find numerical solutions to optimization problems, simply treat strict
inequalities as if they were non-strict.

Trim Size: 6.625in x 9.625in Mariño bapp02.tex V3 - 02/11/2016 6:32 P.M. Page 315�

� �

�

Appendix B: Mathematical Optimization Basics 315

(ii) set in (B.1d) is closed, and (iii) we include box-constraints to the decision variables of
the problem: li ≤ xi ≤ ui, i = 1,… , n, where li and ui are finite.

The previous requisites do not pose any loss of generality in practical problems. For
example, if a decision variable ue is the capacity of a link e, we can add the box constraint
0 ≤ ue ≤ Umax, where Umax is the maximum capacity that any link could have in a realistic
situation. If a strict inequality g(x) < c appears, it can just be replaced by g(x) ≤ c − 𝜖, where
𝜖 > 0 is any hand-picked constant, so small that it has no influence from an engineering point
of view.

B.2 A Classification of Optimization Problems

Optimization problems admit multiple classifications. We follow a classical approach next, and
briefly review linear programs, convex programs, nonlinear programs, and integer programs.
Note that the word program here has nothing to do with the concept of a software program,
but with the task of creating optimal programs or schedules of activities, one of the initial uses
of optimization. Proofs of presented properties will be omitted. Further details can be found
in many texts such as [1–4].

B.2.1 Linear Programming

Linear programs are optimization problems (B.1) where all functions f , gi, hj are linear3, and
there is no extra set constraints (B.1d). Thus, they are problems of the form:

min
x

c1x1 +…+ cnxn subject to:

ai1x1 +…+ ainxn ≤ bi, ∀i = 1,… ,m

a′j1x1 +…+ a′jnxn = b′j , ∀j = 1,… , p

This can be expressed in a compact matricial form:

min
x

cTx, subject to: Ax ≤ b,A′x = b′

where matrices A ∈ ℝm×n
,A′ ∈ ℝp×n, and vectors c ∈ ℝn, b ∈ ℝm, b′ ∈ ℝp, are input con-

stants defining the program.
The points satisfying a linear inequality constraint are called a semispace. The points satis-

fying linear equality constraint are called a hyperplane. The set of feasible points in a linear
program is a polyhedron. A semispace {x ∈ ℝn ∶ aTx ≤ b} is a convex set since it is the
sub-level set of the convex function f (x) = aTx. This applies also if we reverse the inequal-
ity sign, since the function −aTx is also convex, and thus have convex sub-level sets. Then, a
hyperplane {x ∈ ℝn ∶ aTx = b} is a convex set since it can be expressed as the intersection of
two semispaces: {x ∈ ℝn ∶ aTx ≤ b, aTx ≥ b}. Finally, the polyhedron is the intersection of
semispaces and hyperplanes, and thus is also convex.

3 A function f ∶ ℝn → ℝ is linear if it can be expressed as f (x) = cT x = c1x1 +…+ cnxn, where c = (c1,… , cn) is
any constant vector.

Trim Size: 6.625in x 9.625in Mariño bapp02.tex V3 - 02/11/2016 6:32 P.M. Page 316�

� �

�

316 Appendix B: Mathematical Optimization Basics

2

x2

4 6 8 100

2

4

6

8

10

x1

x1 + x2 ≤ 10

4x1 + 3x2 = 34

4x1 + 3x2 = 58

4x1 + 3x2 = 46

Figure B.2 Linear program example

In the rest of this section, we will use the example formulation (B.2) to give graphical
insights and fundamental properties of linear programs.

max
{x1,x2}

4x1 + 3x2, subject to: (B.2a)

x1 + x2 ≤ 10 (B.2b)

0 ≤ x1 ≤ 4 (B.2c)

0 ≤ x2 ≤ 8 (B.2d)

Figure B.2 shows the polyhedron of points (x1, x2) which are feasible to the problem.
The dotted parallel lines in the upper part of Fig. B.2 are solutions with the same benefit
B = 4x1 + 3x2. The optimum solution will then belong to the parallel line which touches the
feasible set, and has the highest B value. This is the line 4x1 + 3x2 = 34, and the only one
feasible point in the line (4, 6) is the optimum solution to (B.2).

We see that the optimum solution is a vertex or extreme point of the feasible set. More
formally, a point x in a set is a vertex of , if it is not possible to find two different points
y1, y2 ∈ , both different to x, such that x lays in the segment between y1 and y2. This definition
of a vertex coincides with the geometrical vertex definition in a polyhedron. In Fig. B.2, the
vertexes of the feasible set are {(0, 0), (0, 8), (2, 8), (4, 6), (4, 0)}.

The observation that optimum solution of (B.2) lays in a vertex of the feasible set is not
casual, as stated by the following theorem.

Trim Size: 6.625in x 9.625in Mariño bapp02.tex V3 - 02/11/2016 6:32 P.M. Page 317�

� �

�

Appendix B: Mathematical Optimization Basics 317

Theorem B.2 (Fundamental theorem of linear programming) Let P be a linear program, and
 its feasible set. Then:

• If the problem has optimum solutions, at least one of them is a vertex of .
• If x1, x2 are two optimum solutions, all the points in the segment between them are also

optimum.

Theorem B.2 applies only to problems with optimum solutions. These are problems with
non-empty feasible sets , and for which the optimum benefit to maximize cannot be made
arbitrarily large (e.g., that would happen if we remove constraints (B.2bc) in our example).

A linear program can have multiple optimum solutions. For instance, if we change the objec-
tive function (B.2a) to max3x1 + 3x2, the iso-benefit lines 3x1 + 3x2 = B become parallel to
the boundary of constraint x1 + x2 ≤ 10, and all the points in the segment between (2, 8) and
(4, 6) are optimal.

The following proposition is derived from Theorem B.2.

Proposition B.1 Let {minxcTx, subject to: A1x ≤ b1,A2x = b2, x ≥ 0}, be a linear program
where A1 ∈ ℝm×n

,A2 ∈ ℝp×n. If the problem has optimum solutions, then at least one of them
has at most m + p non-zero coordinates.

This comes from the fact that the vertexes of the polyhedron A1x ≤ b1,A2x = b2, x ≥ 0 are
vectors x = (x1,… , xn) which have at most m + p non-zero coordinates.

B.2.1.1 Solution Methods

Today, it is possible to find numerical solutions to linear programs of thousands of decision
variables and constraints, using standard computing facilities. Even programs several orders
of magnitude larger can be efficiently solved if the constraint matrices A and A′ are sparse, and
have a structure that can be exploited.

The celebrated simplex method (George Dantzig, [5]) is the first and for many years
best method for solving linear programs. For this and other contributions, George Dantzig
(1914–2005) is considered “the father of linear programming”. The simplex method checks
in each iteration the optimality of a vertex of the feasible set. If the vertex is not the problem
optimum, it jumps to an adjacent one that improves the cost to minimize. This procedure
is supported by the Fundamental Theorem of Linear Programming: if the problem has
optimum solutions, at least one of them is a vertex. The number of different vertexes in a
polyhedron can exponentially grow with the number of decision variables and constraints.
Simplex method has an exponential worst-case time complexity, since in some pathological
problem instances the number of vertexes visited can grow exponentially with problem size.
Anyway, in most of the practical cases, the simplex method can efficiently solve large-scale
problems.

The first worst-case polynomial method for solving linear programs is the ellipsoid method
published in 1980 [6]. The ellipsoid method is slower than simplex in non-pathological

Trim Size: 6.625in x 9.625in Mariño bapp02.tex V3 - 02/11/2016 6:32 P.M. Page 318�

� �

�

318 Appendix B: Mathematical Optimization Basics

instances. Both have been beaten by the so-called interior point methods that jump in each
iteration between interior points of the feasible set, approaching the optimum solution, a
vertex in the boundary. First interior point method was proposed by Narendra Karmarkar in
1984 [7]. Interior point methods have a polynomial worst-case complexity, and have gone
through multiple refinements that make them outperform simplex method implementations.
JOM library integrated in Net2Plan, used in the exercises, permits interfacing with linear
solvers GLPK, IPOPT (open-source) and CPLEX (commercial). GLPK and CPLEX permit
choosing between simplex and interior point algorithms for solving linear programs.

B.2.2 Convex Programs

A program minx∈ f (x) or maxx∈ − f (x), is a convex program when f is a convex function,
and is a convex set.

A sufficient condition for a problem of the form (B.1) to be convex is:

• Objective function f is convex.
• gi functions in inequality constraints gi(x) ≤ 0, are convex.
• hj functions in equality constraints hj(x) = 0 are affine (linear plus a constant).
• set in the constraint x ∈ , is a convex set.

Convex programs have particular properties that provide them of special importance in opti-
mization. We enumerate some of them.

Proposition B.2 If x is a local optimum of a convex problem, then x is also a global optimum.

Proposition B.3 If x1 and x2 are optimum solutions of a convex problem, all the points in the
segment between them are also optimal.

Proposition B.4 If the objective function f of a convex minimization program is strictly con-
vex, then if a solution exists, it is unique.

Proposition B.2 means that if the problem is convex, any solution that is better than its
neighbor solutions (local optimum), is also better than all the feasible solutions (global opti-
mum). Prop B.3 implies that the set of optimum solutions of a convex problem, is a convex
set. Finally, Prop. B.4 sets simple sufficient conditions for uniqueness of the global optimum,
and will be extensively used throughout the book.

Note that linear programs are subtypes of convex programs. However, while optimum solu-
tions of linear programs are always boundary points of the feasibility set, the optima of a
convex problem can be either interior or boundary points. For instance, the convex program

min
x
(x1 − 1)2 + (x2 − 1)2, subject to: x2

1 + x2
2 ≤ 9

has a unique optimum solution in the point (1, 1), which is in the interior of the feasibility set
(see Fig. B.3a). In turn, the program

min
x
(x1 − 3)2 + (x2 − 3)2, subject to: x2

1 + x2
2 ≤ 9

Trim Size: 6.625in x 9.625in Mariño bapp02.tex V3 - 02/11/2016 6:32 P.M. Page 319�

� �

�

Appendix B: Mathematical Optimization Basics 319

x1

x1

x2

x2

(a) Optimum in the interior of the feasibility set

(b) Optimum in the boundary of the feasibility set

x1
2 + x2

2 ≤ 9

x1
2 + x2

2 ≤ 9

Figure B.3 Convex program examples

has 3(cos 𝜋

4
, sin 𝜋

4
) as its unique optimum solution, a boundary point (see Fig. B.3b). Note that

in both cases the optimum solution is unique, since the problem is convex with a strictly convex
objective function. Strict convexity of the objective function does not guarantee uniqueness
of the optimum solution, when the problem is not convex. As an example, the program (see
Fig. B.4):

min
x
(x1 − 2)2 + (x2 − 2)2, subject to: x2

1 + x2
2 ≤ 9, x1x2 ≤ 0 (B.3)

has a strictly convex objective function but two optimum solutions (2, 0) and (0, 2). This is
because the problem is not convex, since the feasibility set is not convex, due to constraint
x1x2 ≤ 0. Note also that Prop. B.3 is not met, since the points in the segment between (2, 0)
and (0, 2) are not optimum solutions to the problem.

B.2.2.1 Solution Methods

The interior point methods described for linear programs can be generalized for convex pro-
grams and convex programs have polynomial worst-case complexity. Actually, they are con-
sidered the most difficult problems that can be efficiently solved, where “efficiently” means
“in polynomial time”.

Trim Size: 6.625in x 9.625in Mariño bapp02.tex V3 - 02/11/2016 6:32 P.M. Page 320�

� �

�

320 Appendix B: Mathematical Optimization Basics

x1 x2 ≤ 0

x1

p

p'

x2

x1
2 + x2

2 ≤ 9

Figure B.4 Non-convex program example

Interior point methods work quite well in practice, and there is a number of commercial and
open-source libraries that solve efficiently generic convex programs. Problems of hundreds of
variables and thousands of constraints can be solved in a few seconds using standard computing
facilities [8]. The convex models in Part I of this book are solved in Net2Plan algorithms that
rely in the open-source IPOPT solver for nonlinear programs to find numerical solutions. Part
II of the book provides examples and guidelines to produce algorithms specifically designed
to exploit the structure of network problems enabling a distributed implementation.

B.2.3 Nonlinear Programs

Problems of the form:

min
x

f (x), subject to: (B.4a)

gi(x) ≤ 0, i = 1,… ,m (B.4b)

hj(x) = 0, j = 1,… , p (B.4c)

that cannot be classified as convex programs, are classically named nonlinear programs, or
more specifically non-convex nonlinear programs. In this type of problem, none of the prop-
erties Prop. B.2, Prop. B.3, or Prop. B.4 have to be met. For instance, in Fig. B.4 associated to
problem (B.3) we see an example where the set of optimum solutions of a nonlinear program
does not have to be convex and having a strictly convex objective function does not guarantee
uniqueness of the global optimum. In turn, the program:

min
x
(x1 − 1)2 + (x2 − 2)2, subject to: x2

1 + x2
2 ≤ 9, x1x2 ≤ 0 (B.5)

is an example that nonlinear programs can have multiple local minima (Fig. B.5).

Trim Size: 6.625in x 9.625in Mariño bapp02.tex V3 - 02/11/2016 6:32 P.M. Page 321�

� �

�

Appendix B: Mathematical Optimization Basics 321

x1 x2 ≤ 0

x1

p

p'

x2

x1
2 + x2

2 ≤ 9

Figure B.5 Example of nonlinear problem (B.5) with two local minimum p = (1, 0), with cost 4 and
p′ = (0, 2), with cost 1

B.2.3.1 Solution Methods

There are no efficient methods (worst-case polynomial) to find the global optimum in generic
nonlinear programs. Nonlinear solvers like IPOPT that can be interfaced from Net2Plan, con-
tempt with finding a local minimum in differentiable problems. If the global optimum is
pursued, we should rely on heuristic approaches (usually ad hoc developed) that provide sub-
optimal solutions in polynomial time. Chapter 12 in Part II of the book is devoted to this type
of algorithms in the network optimization context.

B.2.4 Integer Programs

Optimization problems of the form:

min
x

f (x), subject to: (B.6a)

gi(x) ≤ 0, i = 1,… ,m (B.6b)

hj(x) = 0, j = 1,… , p (B.6c)

xk ∈ ℤ, ∀k ∈ (B.6d)

are called integer programs when all of the decision variables are constrained to be integer, and
mixed integer programs when only some of them are. In (B.6), represents the set of integer
constrained variables. When a decision variable is restricted to take just the values zero or one,
it is called a binary variable. When all the decision variables are binary, the program is referred
to as a binary program.

The most common case of integer and mixed integer programs occur when functions f ,
gi, hj in (B.6) are all linear. In this case, they receive the name of Integer Linear Programs

Trim Size: 6.625in x 9.625in Mariño bapp02.tex V3 - 02/11/2016 6:32 P.M. Page 322�

� �

�

322 Appendix B: Mathematical Optimization Basics

0

x2

1 2 3 4 5 6 7 x1

1

2

3

4

5

Max 3x1 + 2x2

LP optimum

ILP optimum

Figure B.6 Integer program example

(ILP), and Mixed Integer Linear Programs (MILP). As is shown in Part I of the book, there
is a multitude of network optimization problems which are modeled using ILPs and MILPs.
Non-bifurcated routing, modular capacities, topology design problems, or multicast delivery
are some examples.

B.2.4.1 Solution Methods

Integer decision variables create discontinuities in the feasibility set, that impedes the appli-
cation in integer programs of the solution methods for convex programs. Actually, even the
linear integer versions (ILPs and MILPs) are known to be -complete, and thus there is
no algorithm that can solve or even approximate its generic version in worst-case polynomial
time4. Figure B.6 shows the graphical solution of the problem (B.7), an example to illustrate
the difficulties in solving integer problems:

max
x1,x2

3x1 + 2x2, subject to: (B.7a)

3x1 + x2 ≤ 9 (B.7b)

x1 + 3x2 ≤ 7 (B.7c)

− x1 + x2 ≤ 1 (B.7d)

x1, x2 ∈ ℤ (B.7e)

The optimum solution is achieved in point (3, 0), with a benefit of nine units. This can be
graphically observed, since if we move down the iso-benefit line 3x1 + 2x2 = B, for decreasing
values of B, the first line touching a feasible point occurs for x1 = 3, x2 = 0, and B = 9. It is
also possible to compute the optimum solution by enumerating all the feasible points, since
there is a finite number of them, computing each feasible solution benefit, and taking the best.

4 No algorithm is known and the assertion that such algorithm does not exist is true assuming that ≠ .

Trim Size: 6.625in x 9.625in Mariño bapp02.tex V3 - 02/11/2016 6:32 P.M. Page 323�

� �

�

Appendix B: Mathematical Optimization Basics 323

Table B.1 Brute force enumeration for problem (B.7)

(x1, x2) Benefit 3x1 + 2x2

1 (0, 0) 0
2 (1, 0) 3
3 (2, 0) 6
4 (3, 0) 9
5 (0, 1) 2
6 (1, 1) 5
7 (2, 1) 8
8 (1, 2) 7

This approach is commonly called brute force method. Such enumeration for problem (B.7)
is shown in Table B.1. Brute force methods are not valid in practice but in very small problem
instances, even if enumerating all the feasible solutions was easy (which is often not true).
The impossibility lays on that the number of feasible solutions can grow exponentially with
the number of decision variables. For instance, a brute force enumeration of a moderate size
problem with 100 binary variables, would require enumerating and evaluating the objective
function for 2100 ≈ 1030 solutions. If we could process a solution every picosecond (10−12 s),
it would take around 30,000 million years to end, more than the estimated age of the Universe!

Other technique that we can intuitively presume that can help to solve linear integer prob-
lems is (i) finding the optimum of the non-integer linear program (LP) and (ii) use a rounding
technique to find the optimum integer solution from it. Unfortunately, rounding a non-integer
solution to find the integer optimum is a problem that is generally as difficult as the origi-
nal one. In Fig. B.6, we show that the LP optimum is the point xLP = (2.5, 1.5) and that no
rounding produces the integer optimum (3, 0).

Although there is no worst-case polynomial time algorithm for solving generic convex or lin-
ear programs with integer constraints, sophisticated techniques in commercial and open-source
solvers can effectively solve some medium size instances. Most common techniques are varia-
tions of the basic branch-and-bound scheme (B&B). In a B&B iteration, the original problem is
modified by fixing the value of a subset 1 of the integer variables, and optimizing the rest with-
out integer constraints using a standard linear or convex solver. This provides a lower bound to
the integer modified version. An upper bound can be obtained using a heuristic method to find
a feasible solution. Then, if the lower bound obtained is worse than an upper bound of other
B&B instances, we can safely assume that the values assigned to 1 variables, are not part of
any optimum solution of the original problem. Different forms of deciding how the 1 sets are
chosen or how the lower and upper bounds are calculated, provide multiple variations to B&B.
The interested reader is referred to specialized books in the topic like [9] or [10], for further
details in B&B techniques, and other variations like branch-and-cut or branch-and-price.

ILPs and MILPs models in Part I of the book are solved using Net2Plan in numerous
exercises, interfacing with GLPK (free, open-source) and CPLEX (commercial, non disclosed)
solvers. In Part II, we address the design of heuristic algorithms to provide (in general subop-
timal) solutions of -complete integer programs.

Trim Size: 6.625in x 9.625in Mariño bapp02.tex V3 - 02/11/2016 6:32 P.M. Page 324�

� �

�

324 Appendix B: Mathematical Optimization Basics

B.3 Duality

We consider an optimization problem:

min
x

f (x), subject to: (B.8a)

𝜋i ∶ gi(x) ≤ 0, i = 1,… ,m (B.8b)

𝜆j ∶ hj(x) = 0, j = 1,… , p (B.8c)

x ∈ (B.8d)

where f , gi, hj are continuous functions (not necessarily convex) correctly defined in the prob-
lem feasibility set and is any arbitrary set. Along this section, we call problem (B.8) the
primal problem, refer to x as the primal variables, and denote as p∗ the global optimum cost
of (B.8).

B.3.1 Dual Function

We define the Lagrangian function L of problem (B.8) as a function L ∶ ×ℝm
+ ×ℝp → ℝ:

L(x, 𝜋, 𝜆) = f (x) +
∑

i

𝜋igi(x) +
∑

j

𝜆jhj(x)

we refer 𝜋i as the Lagrange multiplier or dual variable associated to inequality constraint
gi(x) ≤ 0, and 𝜆j the Lagrange multiplier or dual variable associated to equality constraint
hj(x) = 0. Note that inequality multipliers 𝜋i must be non-negative, while equality multipliers
𝜆j can take values in all ℝ.

The Lagrange function “‘moves” to the objective function some of the constraints, sum-
ming them multiplied by a real number (the multiplier). This is called relaxing or dualizing
a constraint. We use set to denote the non relaxed constraints. See that 𝜋i and 𝜆j symbols
are written followed by a colon next to the constraints in the problem definition (B.8). This is
a short form of denoting that these constraints are to be dualized and that 𝜋i and 𝜆j represent
their multipliers.

The dual function 𝑤(𝜋, 𝜆) of a problem (B.8) returns the minimum cost of a relaxed problem
version, for particular values of the multipliers (𝜋 ≥ 0, 𝜆):

𝑤(𝜋, 𝜆) = min
x∈

{
f (x) +

∑
i

𝜋igi(x) +
∑

j

𝜆jhj(x)

}
= min

x∈
L(x, 𝜋, 𝜆)

The value 𝑤(𝜋, 𝜆) is usually called the dual cost or relaxed cost associated to multipliers
(𝜋, 𝜆). The domain of the dual function (dom 𝑤) is composed of those multipliers (𝜋 ≥ 0,
𝜆 ∈ ℝp) such that the minimum minx∈L(x, 𝜋, 𝜆) exists. For instance, those multipliers for
which 𝑤(𝜋, 𝜆) = −∞, are outside of dom𝑤. Recall that if is a non-empty compact set, a
finite minimum always exists and dom 𝑤 = {(𝜋, 𝜆) ∶ 𝜋 ≥ 0, 𝜆 ∈ ℝp}.

We can interpret the dual function as follows. Let us assume that a constraint gi(x) ≤ 0
represents that a solution x cannot use more resources of a type i than available. For instance,
that the traffic carried in a particular link cannot exceed its capacity. Then, relaxing the con-
straint means that now we accept solutions that violate it. However, if a solution x is such that

Trim Size: 6.625in x 9.625in Mariño bapp02.tex V3 - 02/11/2016 6:32 P.M. Page 325�

� �

�

Appendix B: Mathematical Optimization Basics 325

gi(x) > 0, it is penalized in cost by an amount 𝜋igi(x) > 0, as if we had to buy the extra
resources needed at a price of 𝜋i cost units per resource unit. In turn, if a solution uses
less resources of type i than available (gi(x) < 0), it is favored reducing its cost since now
𝜋igi(x) < 0, as if we were able to sell unused resources at a price 𝜋i. A similar interpretation
can be made when relaxing equality constraints.

Because of this interpretation, multipliers are often referred as prices or dual prices. In this
context, the dual function for a particular set of multipliers (𝜋, 𝜆) returns the optimum cost
achieved if constraints were relaxed and associated resources could be acquired and sold at
the prices (𝜋, 𝜆).

Example B.1 In the optimization problem (B.9)

min(x1 − 1)2 + (x2 − 1)2, subject to: (B.9a)

𝜋 ∶ x1 + 2x2 ≤ 2 (B.9b)

the dual function relaxing constraint (B.9b) is given by:

𝑤(𝜋) = min
(x1,x2)∈ℝ2

{(x1 − 1)2 + (x2 − 1)2 + 𝜋(x1 + 2x2 − 2)}, ∀𝜋 ≥ 0 (B.10)

Since we relax all the constraints, the set of non-relaxed constraints is = ℝ2, which is not
compact. Thus, the dual function will not be formally defined for those 𝜋 values for which
𝑤(𝜋) = −∞. There is no such point in this case, so dom 𝑤 = {𝜋 ≥ 0}. Given a 𝜋 ≥ 0 value, we
can find the points (x1, x2) which minimize the Lagrangian, as those points where its gradient

0 0.5 1 1.5 2 2.5 3
−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

π

w
(π

)

w (π)

p* = d* = 0.2 = w(0.4)

π* = 0.4

(π = 2, w (2) = –3)

Figure B.7 Dual function of problem (B.9)

Trim Size: 6.625in x 9.625in Mariño bapp02.tex V3 - 02/11/2016 6:32 P.M. Page 326�

� �

�

326 Appendix B: Mathematical Optimization Basics

vanishes: 𝜕L
𝜕x1

= 𝜕L
𝜕x2

= 0. This occurs for x1 = 1 − 𝜋

2
, x2 = 1 − 𝜋. Then, substituting these val-

ues in (B.10) we have after some manipulations:

𝑤(𝜋) = −5
4
𝜋

2 + 𝜋

which is plotted in Fig. B.7.

B.3.1.1 Properties of the Dual Function

We denote ∗(𝜋, 𝜆) as the set of all the primal solutions x̃ that are optimal for the relaxed
problem with multipliers (𝜋, 𝜆):

∗(𝜋, 𝜆) =

{
x̃ ∈ ∶ x̃ solves min

x∈
f (x) +

∑
i

𝜋igi(x) +
∑

j

𝜆jhj(x)

}

Each solution to the relaxed problem x̃ ∈ ∗(𝜋, 𝜆) is called a minimizer for multipliers
(𝜋, 𝜆). It is important to remark, that a minimizer x̃ must satisfy the non relaxed constraints
{x̃ ∈ }, but may violate the relaxed ones. That is, it can happen that gi(x̃) > 0 and/or hj(x̃) ≠ 0.

If is a compact non-empty set, the relaxed problem has always at least one solution, and
∗(𝜋, 𝜆) is never empty. In the general case, ∗(𝜋, 𝜆) can have multiple minimizers. However,
if the primal problem is convex with an strictly convex objective function, according to Prop.
B.4 the relaxed problem has a unique solution.

Proposition B.5 If in problem (B.8), the objective function f is strictly convex, gi are convex
functions, hj are linear functions, and is a non-empty compact and convex set, there is exactly
one minimizer for each multiplier vector (𝜋, 𝜆).

Example B.2 All the assumptions of Prop. B.5 hold in Example B.1, but one: set = ℝ2 in
the example, which is not compact. Still, it was shown in Example B.1 that each multiplier
𝜋 ≥ 0, has just one minimizer ∗(𝜋) = {(1 − 𝜋

2
, 1 − 𝜋)}.

Proposition B.6 (Weak duality) For any problem of the form (B.8), and any multipliers
𝜋 ≥ 0, 𝜆 ∈ ℝp within the domain of the dual function, it holds that:

𝑤(𝜋, 𝜆) ≤ p∗ (B.11)

Previous important property is called weak duality, and holds for any optimization problem
of the form (B.8), for example convex or not, with or without integer constraints. It means
that relaxing some constraints using whatever multipliers or prices, produces a dual cost that
is always lower or equal than the optimum cost of the original problem p∗. Thus, the dual
function can be seen as a generator of lower bounds: computing the dual function for any
particular multiplier vector produces a lower bound to p∗.

Proposition B.7 The dual function 𝑤(𝜋, 𝜆) is concave in its domain, for any optimization
problem (B.8).

Trim Size: 6.625in x 9.625in Mariño bapp02.tex V3 - 02/11/2016 6:32 P.M. Page 327�

� �

�

Appendix B: Mathematical Optimization Basics 327

Example B.3 Following with Example B.1, we see that the dual function 𝑤(𝜋) is concave in
all its domain 𝜋 ≥ 0: 𝑤(𝜋) = − 5

4
𝜋

2 + 𝜋, as established by Prop. B.7

Since the dual function is concave, any local maximum is a global maximum, and it has
subgradients. The following properties characterize the subgradients of the dual function, and
provide sufficient conditions to guarantee that the dual function is differentiable and thus sub-
gradients in each (𝜋, 𝜆) point are unique (the gradients).

Proposition B.8 ([3], p. 423, [2], p. 210) Let 𝜋 ≥ 0 and 𝜆 be multipliers of the problem (B.8),
and x̃ ∈ ∗(𝜋, 𝜆) be any minimizer of the relaxed problem x̃ ∈ ∗(𝜋, 𝜆). Then, the vector:

(g(x̃), h(x̃)) = (gi(x̃), i = 1,…m, hj(x̃), j = 1,… , p)

is a subgradient of the dual function 𝑤 in (𝜋, 𝜆). Moreover, the set 𝜕𝑤(𝜋, 𝜆) of all subgradients
of the dual function in (𝜋, 𝜆) is the convex hull of the subgradients generated by the minimizers
in ∗(𝜋, 𝜆):

𝜕𝑤(𝜋, 𝜆) = conv({(g(x̃), h(x̃)),∀x̃ ∈ ∗(𝜋, 𝜆)})

Proposition B.8 shows that a subgradient of 𝑤 can be obtained by just finding a minimizer
x̃ for the relaxed problem and evaluating it in each relaxed constraint. Since the minimizers
can violate any relaxed constraint, any subgradient coordinate associated to gi(x̃) or hj(x̃) can
be negative, positive or zero.

Next proposition provides sufficient conditions for the dual function to be differentiable:
when the minimizer is unique and the subgradients characterized in Prop. B.8 are actually
gradients.

Proposition B.9 ([3], p. 427) Let 𝑤(𝜋, 𝜆) be the dual function of problem (B.8), where f is
strictly convex, gi functions are convex, hj functions are linear, and is convex. Then, the dual
function is differentiable in all its domain. Recall that if is compact, the domain of the dual
function is all (𝜋 ≥ 0, 𝜆).

Example B.4 Following with Example B.1, we see that the dual function 𝑤(𝜋) = − 5
4
𝜋

2 + 𝜋

is everywhere differentiable, as established by Prop. B.9. Gradients of the dual function are:
𝜕𝑤

𝜕𝜋
= − 5

2
𝜋 + 1. For instance, in the point 𝜋 = 2, we have that 𝜕𝑤

𝜕𝜋
(2) = −4. The minimizer for

𝜋 = 2 is x1 = 1 − 𝜋

2
= 0, x2 = 1 − 𝜋 = −1. The relaxed constraint (B.9b) g(x) ≤ 0, with g(x) =

x1 + 2x2 − 2, when evaluated in point (0,−1) yields g(0,−1) = −4 = 𝜕𝑤

𝜕𝜋
(2), as predicted by

Prop. B.8 and Prop. B.9. The line touching the dual function in (𝜋 = 2, 𝑤(2) = −3), with a
slope of −4 (gradient) is the only global overestimator of the dual function: the line tangent to
the graph in that point (see Fig. B.7).

B.3.1.2 Dual Problem

The dual problem associated to primal problem (B.8) with constraints (B.8b,c) relaxed, is
defined as the optimization problem:

max
(𝜋,𝜆)∈dom 𝑤

𝑤(𝜋, 𝜆) = max
(𝜋,𝜆)∈dom 𝑤

{
min
x∈

f (x) +
∑

i

𝜋igi(x) +
∑

j

𝜆jhj(x)

}
(B.12)

Trim Size: 6.625in x 9.625in Mariño bapp02.tex V3 - 02/11/2016 6:32 P.M. Page 328�

� �

�

328 Appendix B: Mathematical Optimization Basics

That means, the dual problem intends to find the multipliers that return the best possible
(higher) lower bound: the one that has a dual cost as close as possible to the primal cost p∗.
We denote d∗ to the optimum dual cost, provided by the solution of (B.12). Note that the weak
duality property states that d∗ ≤ p∗.

Recall that if is compact, dom 𝑤 = {(𝜋, 𝜆) ∶ 𝜋 ≥ 0}. In this common case, since accord-
ing to Prop B.7 the dual function is concave, we have that the dual problem involves maximiz-
ing a concave function in a very simple convex domain {𝜋 ≥ 0, 𝜆 ∈ ℝp}, and thus is a convex
problem which can always be efficiently solved (in polynomial time). Note that this holds even
if the primal problem (B.8) is non-convex or has integer constraints.

Example B.5 The dual problem of (B.9) in Example B.1, is:

max
𝜋≥0

−5
4
𝜋

2 + 𝜋

That has a maximum in 𝜋
∗ = 2

5
= 0.4. The optimal dual cost is given by: d∗ = 𝑤(0.4)

= 1
5
= 0.2.

In Part II of the book, we will show that the application of gradient algorithms to maximize
the dual function, exploiting Prop. B.8 and Prop. B.9, are effective methods to, for example,
create distributed algorithms for some network design problems.

B.3.1.3 Strong Duality

A problem of the form (B.8) is said to enjoy the property of strong duality when d∗ = p∗. This
means that the maximum of the dual problem has the same cost as the primal optimum. When a
problem does not enjoy strong duality, d∗

< p∗, and the difference p∗ − d∗ is called the duality
gap. Also, it can be shown that the dual function is never differentiable in the optimum when
the problem has a duality gap.

Proposition B.10 ([2], p. 212) If strong duality does not hold, the dual function is not differ-
entiable in the optimum.

If strong duality holds, the door is open to attempt solving a problem by (i) finding some
optimum dual multipliers (𝜋∗

, 𝜆
∗) for it, (ii) choosing a minimizer x̃ ∈ ∗(𝜋∗

, 𝜆
∗) that is an

optimum solution to the primal problem. This is enabled by the following propositions.

Proposition B.11 ([2], p. 212) Let (B.8) be a problem with strong duality. Let (𝜋∗
, 𝜆

∗)
be a dual optimum solution. Then, at least one x̃ vector among the minimizers of (𝜋∗

, 𝜆
∗)

(x̃ ∈ ∗(𝜋∗
, 𝜆

∗)), is a primal global optimum.

Previous proposition shows up the difficulty that some minimizers x̃ ∈ ∗(𝜋∗
, 𝜆

∗) may be
not a primal optimum. Actually, this happens when those minimizers violate some relaxed
constraints and thus are unfeasible5. We can rule out this difficulty, in the case when there

5 If a minimizer associated to the optimum multipliers is feasible in a problem with strong duality, then it is a global
optimum, since it will be a feasible solution with a cost d∗ = p∗.

Trim Size: 6.625in x 9.625in Mariño bapp02.tex V3 - 02/11/2016 6:32 P.M. Page 329�

� �

�

Appendix B: Mathematical Optimization Basics 329

is only one minimizer, since according to Prop. B.11 it must be then feasible and a primal
optimum.

Proposition B.12 Let (B.8) be a problem with strong duality, and for which the objective func-
tion f is strictly convex, gi functions are convex, hj functions are linear, and set is non-empty,
compact, and convex. Then, the unique minimizer associated to the dual optimum solution
(𝜋∗

, 𝜆
∗) is the unique primal global optimum of (B.8).

It is important to remark that under the assumptions of previous proposition, the primal
problem has a unique optimum solution x∗, but the dual problem may have multiple optimum
multipliers (𝜋∗

, 𝜆
∗). It is just that any of them has x∗ as its unique minimizer.

The following proposition provides a sufficient condition for a problem to enjoy strong
duality and is extensively applied throughout the book.

Proposition B.13 ([8]) (Sufficient condition for strong duality). Let (B.13) be a convex prob-
lem of the form:

min
x

f (x), subject to: (B.13a)

gi(x) ≤ 0, i = 1,… ,m (B.13b)

Ax ≤ b,A′x = b′ (B.13c)

x ∈ (B.13d)

where f and gi functions are convex and well defined, meaning that its domain includes the
feasibility set. (B.13c) represents any linear equality and inequality conditions, and is a
closed convex set, not necessarily compact. We assume (Slater condition) that there exists at
least one feasible solution x̃, which strictly satisfies convex inequality constraints:

∃x̃ such that {Ax̃ ≤ b;A′x̃ = b′, gi(x̃) < 0,∀i = 1,… ,m, x̃ ∈ relint()} (B.14)

Then, problem (B.13) has the property of strong duality.

Notation relint () stands for the relative interior of 6. Conditions (B.14) are called the
Slater conditions and are a variation of those proposed by Morton Slater in [11]. They can be
considered more a mathematical technicality than a real limitation from an engineering point
of view. In particular, if a convex problem does not satisfy them, we can always modify it by
replacing gi(x) ≤ 0 constraints by gi(x) ≤ 𝜖 with 𝜖 being such a small positive number that it
means no real difference from an engineering point of view. Then, Slater conditions would be
met in the modified problem. Finally, note that strong duality always holds in convex problems
with linear constraints.

Example B.6 Strong duality properties hold for problem (B.9) in Example B.1, since the
objective function is convex (actually strictly convex) and constraints are linear. We saw that

6 A vector x ∈ is in the relative interior of a set , when there exists a ball B(x) centered in x, such that
B(x)

⋂
aff() ⊂ , where aff is the smallest affine set that contains . Note that if x is in the interior of , it is also in

its relative interior. As an example, the set {(x, y, 0) ∶ x ≥ 0, y ≥ 1} has empty interior, but has {(x, y, 0) ∶ x > 0, y > 1}
as its relative interior.

Trim Size: 6.625in x 9.625in Mariño bapp02.tex V3 - 02/11/2016 6:32 P.M. Page 330�

� �

�

330 Appendix B: Mathematical Optimization Basics

the dual optimum is reached for 𝜋∗ = 0.4, with optimal dual cost d∗ = 𝑤(0.4) = 0.2. The dual
optimum has only one associated minimizer x1 = 1 − 𝜋

∗

2
= 0.8, x2 = 1 − 𝜋

∗ = 0.6, which has
to be the primal optimum. Effectively, we see that (0.8, 0.6) is feasible, since it satisfies con-
straint (B.9b) and its primal cost equals the optimal dual cost:

p∗ = (x1 − 1)2 + (x2 − 1)2 = 0.22 + 0.42 = 0.2 = d∗

B.4 Optimality Conditions

In this section, we characterize the optimum solutions of constrained optimization problems
of the form:

min
x

f (x), subject to: (B.15a)

𝜋i ∶ gi(x) ≤ 0, i = 1,… ,m (B.15b)

𝜆j ∶ hj(x) = 0, j = 1,… , p (B.15c)

x ∈ (B.15d)

We study necessary conditions and sufficient conditions for optimality under different
assumptions. This family of conditions are usually named Karush–Kuhn and Tucker con-
ditions, or KKT conditions for short, after the works of William Karush in 1939 [12], and
Harold Kuhn and Albert Tucker in 1951 [13].

We will treat separately the problems with and without strong duality. When strong dual-
ity holds, it is possible to find KKT necessary optimality conditions that are also sufficient
in convex problems. In simple cases, these conditions yield to close expressions solving opti-
mization problems. For the rest, they give insight on how the optimum looks like and how it
can be reached.

KKT conditions will be applied profusely throughout the book. When applied to the par-
ticular case of unconstrained differentiable convex problems, they reduce to the well known
statement that the gradient of the objective function should vanish in the optimum (x∗ opti-
mum ⇔ ∇f (x∗) = 0). In problems without strong duality, the KKT optimality conditions do
not hold, and the insights on the optimum are weaker.

B.4.1 Optimality Conditions in Problems with Strong Duality

Let (𝜋∗
, 𝜆

∗) be a maximum of the dual function of a problem (B.15) with strong duality, and
x∗ a primal optimal solution of (B.15). Then, it holds that:

f (x∗) = 𝑤(𝜋∗
, 𝜆

∗) = min
x∈

{
f (x) +

∑
i

𝜋
∗
i gi(x) +

∑
j

𝜆
∗
j hj(x)

}

≤ f (x∗) +
∑

i

𝜋
∗
i gi(x∗) +

∑
j

𝜆
∗
j hj(x∗)

≤ f (x∗) (B.16)

Trim Size: 6.625in x 9.625in Mariño bapp02.tex V3 - 02/11/2016 6:32 P.M. Page 331�

� �

�

Appendix B: Mathematical Optimization Basics 331

The first equality in (B.16) is met because of strong duality property. The next equality in
the first line is the definition of the dual function. The first inequality holds since the minimum
in a set is lower or equal than the value in a particular point x∗ ∈ . The last inequality
holds since 𝜋

∗
i gi(x∗) ≤ 0 (as 𝜋i ≥ 0 and gi(x∗) ≤ 0) and hj(x∗) = 0. Then, the two inequali-

ties are equalities if and only if the problem has strong duality. This leads to the following
proposition.

Proposition B.14 For a problem (B.15), we assume that there exists a primal solution x∗, and
the problem dual function has a maximum in (𝜋∗ ≥ 0, 𝜆∗). Then, strong duality holds for the
problem, if and only if:

• Lagrange minimization: x∗ is a minimizer of minx∈{ f (x) +
∑

i𝜋
∗
i gi(x) +

∑
j𝜆

∗
j hj(x)}, and

• Complementary slackness: 𝜋∗
i gi(x∗) = 0,∀i = 1,… ,m.

Complementary slackness conditions appear only for inequality constraints7. They mean
that, if x∗ is an optimal solution and 𝜋

∗
i an optimum multiplier for a constraint gi(x) ≤ 0, then:

• If the multiplier 𝜋
∗
i > 0, then the constraint is satisfied with equality in the optimum

(gi(x∗) = 0). We say that the constraint is tight or active.
• If a constraint is inactive, or loose (gi(x∗) < 0), then its associated multiplier must be zero

𝜋
∗
i = 0.

Proposition B.14 is the root of the derivations of the KKT conditions elaborated on in next
propositions.

Proposition B.15 (KKT necessary and sufficient conditions) Let (B.15) be a problem with
strong duality, and which has at least an optimal solution, with finite cost. Then, x∗ is an
optimal solution of (B.15) and (𝜋∗

, 𝜆
∗) is an optimal solution of the dual problem, if and only

if all of the following conditions hold:

• Primal feasibility: x∗ satisfies all constraints in (B.15).
• Dual feasibility: 𝜋∗ ≥ 0.
• Lagrange minimization: x∗ minimizes minx∈{ f (x) +

∑
i𝜋

∗
i gi(x) +

∑
j𝜆

∗
j hj(x)}.

• Complementary slackness: 𝜋∗
i gi(x∗) = 0,∀i = 1,… ,m.

If we apply the KKT conditions in a convex differentiable problem where all the constraints
are relaxed (= ℝn), we have:

Proposition B.16 (KKT necessary conditions for convex differentiable problems). Let (B.15)
be a problem with strong duality, and which has at least an optimal solution, with finite cost.
f , gi are convex and differentiable, hj is linear, and = ℝn. Then, x∗ is an optimal solution of

7 Note that in equality constraints, hj(x∗) = 0 in the optimum and in any feasible solution. Thus it always trivially
holds that 𝜆∗j hj(x∗) = 0.

Trim Size: 6.625in x 9.625in Mariño bapp02.tex V3 - 02/11/2016 6:32 P.M. Page 332�

� �

�

332 Appendix B: Mathematical Optimization Basics

(B.15) and (𝜋∗
, 𝜆

∗) is an optimal solution of the dual problem, if (i) x∗ is feasible, (ii) 𝜋 ≥ 0,
(iii) complementary slackness holds, and:

∇f (x∗) +
∑

i

𝜋
∗
i ∇gi(x∗) +

∑
j

𝜆
∗
j ∇hj(x∗) = 0 (B.17)

If f and/or gi in Prop. B.16 are not everywhere differentiable the necessary and sufficient
optimality conditions hold replacing: (B.17) by:

0 ∈ 𝜕f (x∗) +
∑

i

𝜋
∗
i 𝜕gi(x∗) +

∑
j

𝜆
∗
j 𝜕hj(x∗) (B.18)

When applying Prop. B.18 to unconstrained problems {min f (x)}, we have the well known
relations:

• If f is differentiable, x∗ is an optimum if and only if ∇f (x∗) = 0.
• If f is not everywhere differentiable, x∗ is an optimum if and only if 0 ∈ 𝜕f (x∗).

The following property can be easily derived applying KKT conditions in Prop. B.15, in the
case when no constraints are relaxed.

Proposition B.17 In the problem minx∈ f (x), where f is a continuously differentiable convex
function and is a non-empty, closed convex set, x ∈ is the global minimum if and only if:

(y − x)T∇ f (x) ≥ 0, ∀y ∈

From Prop. B.4 we know that convex problems with a strictly convex objective function, the
optimum (if it exists) is unique. Still, it is possible to have multiple optimum dual solutions that
have the same common primal solution x∗ as their unique minimizer. The following proposition
sets some conditions to guarantee that the dual optimum is unique.

Proposition B.18 (Uniqueness of the primal-dual optimal pair). Under the assumptions of
Prop. B.16, if the objective function f is strictly convex, and x∗ is the unique global optimum.
Then, if the gradients of the active constraints in the optimum are linearly independent (x∗

is then called a regular point), the optimal dual multipliers (𝜋∗
, 𝜆

∗) are unique. Note that the
active constraints are all equality constraints and inequality constraints for which gi(x∗) = 0.

Example B.7 Problem (B.9) is a convex problem with strong duality. Lagrange function is:
L(x, 𝜋) = (x1 − 1)2 + (x2 − 1)2 + 𝜋(x1 + 2x2 − 2). Lagrange minimization optimality condi-
tions mean that:

𝜕L
𝜕x1

= 0 ⇔ 2(x1 − 1) + 𝜋 = 0

𝜕L
𝜕x2

= 0 ⇔ 2(x2 − 1) + 2𝜋 = 0

Trim Size: 6.625in x 9.625in Mariño bapp02.tex V3 - 02/11/2016 6:32 P.M. Page 333�

� �

�

Appendix B: Mathematical Optimization Basics 333

From this we have that in the optimum: x2 = 2x1 − 1. If in the optimum 𝜋 = 0, we have that
x1 = x2 = 1, which is an unfeasible solution. If 𝜋 > 0, then problem constraint should be tight,
and thus x1 + 2x2 = 2. This yields to x1 = 4

5
, x2 = 3

5
, and 𝜋 = 2

5
, which is the primal dual

optimum. Note that the primal optimum is unique, since it is a convex problem with a strictly
convex objective. Also, the optimum dual is also unique, since there is only one constraint,
and thus conditions of Prop. B.18 are met.

B.4.2 Graphical Interpretation of KKT Conditions

To provide a graphical insight on KKT conditions, we focus on an optimization problem in ℝ2

of the form:

min
x

f (x), subject to: (B.19a)

𝜋1 ∶ g1(x) ≤ 0 (B.19b)

𝜋2 ∶ g2(x) ≤ 0 (B.19c)

𝜋3 ∶ g3(x) ≤ 0 (B.19d)

we assume that f , gi, g2, g3 are differentiable, and such that KKT conditions are necessary and
sufficient. We denote as the set of feasible solutions of (B.19). x∗ and 𝜋

∗ feasible vectors
are primal and dual optimal if and only if:

∇f (x∗) + 𝜋
∗
1∇g1(x∗) + 𝜋

∗
2∇g2(x∗) + 𝜋

∗
3∇g3(x∗) = 0

𝜋
∗
1 g1(x∗) = 0, 𝜋∗

2 g2(x∗) = 0, 𝜋∗
3 g3(x∗) = 0

Then, we explore three possibilities:

• x∗ is an interior point of : Fig. B.8 illustrates this case. In an interior point, the three
constraints are loose, and because of complementary slackness 𝜋

∗
1 = 𝜋

∗
2 = 𝜋

∗
3 = 0. Then,

Lagrange minimization condition becomes:

x∗optimum ⇔ ∇f (x∗) = 0

which are the well-known optimality conditions for unconstrained convex problems.
• x∗ is a boundary point of , with one active constraint: Fig. B.9 illustrates the case when

g2(x∗) = 0, while g1(x∗) < 0 and g2(x∗) < 0. Then, 𝜋∗
1 = 𝜋

∗
3 = 0 by complementary slack-

ness and optimality conditions are:

x∗optimum ⇔ ∇f (x∗) + 𝜋
∗
2∇g2(x∗) = 0 ⇔ −∇f (x∗) = 𝜋

∗
2∇g2(x∗)

Vector −∇f (x∗) is such that if we move from x∗ in any direction with an angle of up to
90∘ with it, the objective function decreases (improves). In turn, if we move from x∗ in any
direction with an angle of up to 90∘ with 𝜋

∗
2∇g2(x∗), the new point becomes unfeasible.

Thus, optimality condition means that all directions that locally improve the solution, yield
to unfeasible points (these are called not admissible directions).

Trim Size: 6.625in x 9.625in Mariño bapp02.tex V3 - 02/11/2016 6:32 P.M. Page 334�

� �

�

334 Appendix B: Mathematical Optimization Basics

g3(x) = 0

g1(x) = 0

g2(x) = 0

x*

Figure B.8 Optimum point x∗ in the interior of the feasibility set

that is both

Figure B.9 Point x∗ in the boundary of the feasibility set with one active constraint

Trim Size: 6.625in x 9.625in Mariño bapp02.tex V3 - 02/11/2016 6:32 P.M. Page 335�

� �

�

Appendix B: Mathematical Optimization Basics 335

that is both

Figure B.10 Point x∗ in the boundary of the feasibility set with two active constraints

• x∗ is a boundary point of , with two active constraints: Fig. B.10 illustrates optimality
when g1(x∗) = 0, and g3(x∗) = 0, while g2(x∗) < 0 and thus 𝜋∗

2 = 0. Lagrange minimization
conditions become:

x∗optimum ⇔ −∇f (x∗) = 𝜋
∗
1∇g1(x∗) + 𝜋

∗
3∇g3(x∗)

The set of vectors 𝜋
∗
1∇g1(x∗) + 𝜋

∗
3∇g3(x∗), for different values of 𝜋

∗
1 ≥ 0, 𝜋∗

3 ≥ 0, is the
cone drawn as a light shaded area in Fig. B.10. It is possible to show that if we move in a
direction that makes an angle of up to 90∘ with at least one direction in the cone, then we
move out from the feasibility set. A point is optimal if vector −∇f (x∗) lays on this cone.
Again this means that a point is optimal, if all the directions that can locally improve the
solution (make an angle of up to 90∘ with −∇f (x∗)), are not admissible.

Trim Size: 6.625in x 9.625in Mariño bapp02.tex V3 - 02/11/2016 6:32 P.M. Page 336�

� �

�

336 Appendix B: Mathematical Optimization Basics

B.4.3 Optimality Conditions in Problems Without Strong Duality

According to Prop. B.14, if strong duality does not hold for a problem, Lagrange minimiza-
tion and/or complementary slackness conditions do not hold for it either. Then, there is no
primal-dual pair that satisfies KKT optimality conditions. That is, even though the problem
can have a perfectly defined optimal primal solution and optimal dual solution:

• If the optimal primal x∗ is a minimizer of the optimal dual (𝜋∗
, 𝜆

∗), complementary slackness
will not hold (

∑
i𝜋

∗
i gi(x∗) > 0) and we cannot assert optimality using the lower bound given

by d∗, since there is a non-zero duality gap p∗ − d∗ =
∑

i𝜋
∗
i gi(x∗) > 0. This is the case in

Example B.8.
• It can happen that the primal optimal is not a minimizer of any dual solution. This is the

case in Example B.9.

Still, the maximization of the dual function can help to find approximate primal solutions.
This remark follows from the following proposition.

Proposition B.19 ([2], p. 213) For any (𝜋 ≥ 0, 𝜆) multipliers for problem (B.15), not neces-
sarily dual optimal, any minimizer x∗ ∈ ∗(𝜋, 𝜆) is a global optimum of the perturbed problem
(where the right-hand side of the constraints is modified):

min
x

f (x), subject to:

gi(x) ≤ gi(x∗), i = 1,… ,m

hj(x) = hj(x∗), j = 1,… , p

x ∈

This property can be used in different manners. We can search for the optimal dual solution,
which is always a convex program. For any minimizer of the dual optimum x∗, it holds that
gi(x∗) is the coordinate of a subgradient and for those constraints with a non-zero multiplier,
this subgradient tends to be small. Then, even if the minimizers associated are unfeasible for
the original problem, they will be at the global optimum for perturbed problems that can be
very similar to the original one (although this is not guaranteed). This can be of use, if in our
problem we have some margin to accept unfeasible solutions.

Example B.8 In the integer program (B.20):

min − 3x1 + x2 − x3, subject to: (B.20a)

𝜋 ∶ 2x1 + 3x2 + 2x3 ≤ 3 (B.20b)

x ∈ = {xi ∈ {0, 1}, i = 1, 2, 3} (B.20c)

when constraint (B.20b) is relaxed, we have eight points (x1, x2, x3) in set . Each point pro-
duces a linear function of 𝜋: −3x1 + x2 − x3 + 𝜋(2x1 + 3x2 + 2x3 − 3). The dual function for
a multiplier 𝜋 is the minimum among the eight lines in this particular point. This is shown
in Fig. B.11 as a thick black line. The three points associated to the three lines that are mini-
mizers at some 𝜋 values are annotated next to them. See that the function is concave but not
everywhere differentiable. This occurs in linear integer problems. The optimum multiplier is

Trim Size: 6.625in x 9.625in Mariño bapp02.tex V3 - 02/11/2016 6:32 P.M. Page 337�

� �

�

Appendix B: Mathematical Optimization Basics 337

0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

π

w
(π

)

(0,0,0)

(1,0,0)

(1,0,1)

w(π)

Figure B.11 Example. Dual function of problem (B.20)

𝜋
∗ = 0.5, where the dual cost is maximum, d∗ = 𝑤(0.5) = −3.5. The primal optimal solu-

tion can be obtained by brute force enumeration and is (1, 0, 0), which has a primal cost of
p∗ = −3. Thus, d∗

< p∗, the strong duality does not hold for this problem and the duality gap
is d∗ − p∗ = 0.5. Note that one of the minimizers associated to the dual optimum is the optimal
problem solution.

Example B.9 If we replace inequality constraint of (B.20) by an equality constraint, the dual
function of the problem is the same in the 𝜋 ≥ 0 range and it extends in 𝜋 ≤ 0. The maximum
of the dual function is the same 𝜋

∗ = 0.5 and also its maximum, d∗ = 𝑤(0.5) = −3.5. The
primal optimal solution is (0, 1, 0), which has a primal cost of p∗ = 1, and the duality gap is
d∗ − p∗ = 4.5. Note that no 𝜋 value has the optimum solution as a minimizer.

B.5 Sensitivity Analysis

In problems with strong duality, the optimal multipliers provide significant insight into how
the optimal cost would change if the problem constraints were modified. To study this, we
consider a primal problem of the form (B.15) and define its perturbed problem (B.21) as:

min
x

f (x), subject to: (B.21a)

𝜋i ∶ gi(x) ≤ ui, i = 1,… ,m (B.21b)

𝜆j ∶ hj(x) = 𝑣j, j = 1,… , p (B.21c)

x ∈ (B.21d)

That is, the perturbed problem replaces the zeros in the right hand-side of the original con-
straints by constants u = (ui, i = 1,… ,m), 𝑣 = (𝑣j, j = 1,… , p). We define the perturbation

Trim Size: 6.625in x 9.625in Mariño bapp02.tex V3 - 02/11/2016 6:32 P.M. Page 338�

� �

�

338 Appendix B: Mathematical Optimization Basics

function of (B.21) and denote it p∗(u, 𝑣), as the function that returns the optimal cost of (B.21).
Thus, p∗(0, 0) is the optimal cost of the original problem. We make p∗(u, 𝑣) = ∞ when the
problem is unfeasible.

The following properties help us to characterize the perturbation function.

Proposition B.20 ([14], p. 10) If (B.15) is a convex problem, p∗(u, 𝑣) is a convex function
with respect to (u, 𝑣).

Proposition B.21 For any problem (B.15), the perturbation function is non-increasing with
respect to perturbations in inequality constraints:

u1 ≥ u2 ⇒ p∗(u1, 𝑣) ≤ p∗(u2, 𝑣), ∀𝑣

Example B.10 The perturbed problem of (B.9) is given by:

min(x1 − 1)2 + (x2 − 1)2, subject to: (B.22a)

𝜋 ∶ x1 + 2x2 ≤ 2 + u (B.22b)

The dual function is 𝑤(𝜋) = − 5
4
𝜋

2 + 𝜋(1 − u), with minimizer: x1 = 1 − 𝜋

2
, x2 = 1 − 𝜋. The

optimal multiplier is the maximum of the dual function: 𝜋∗ = 2−2u
5

if u ≤ 1, and 𝜋
∗ = 0 if

u > 1. Then:

p∗(u) =

{
(1−u)2

5
, if u ≤ 1

0, if u > 1

which is a convex and non-increasing function of u (see Fig. B.12).

−10 −5 0 5 10
−5

0

5

10

15

20

25

u

p* (u
)

slope = −0.4
p*(0) = 0.2

p*(u)

Figure B.12 Perturbation function of problem (B.22)

Trim Size: 6.625in x 9.625in Mariño bapp02.tex V3 - 02/11/2016 6:32 P.M. Page 339�

� �

�

Appendix B: Mathematical Optimization Basics 339

Proposition B.22 ([8] p. 250) Let be a perturbed problem (B.21) with strong duality, and an
optimum solution x∗ of finite cost. Then, (𝜋∗

, 𝜆
∗) are optimum multipliers for the problem, if

and only if,

p∗(u, 𝑣) ≥ p∗(0, 0) −
∑

i

𝜋
∗
i ui −

∑
j

𝜆
∗
j 𝑣j, ∀u ∈ ℝm

, 𝑣 ∈ ℝp (B.23)

this is equivalent to saying that −(u, 𝑣) is a subgradient of the perturbation function in point
u = 0, 𝑣 = 0.

Example B.11 In the perturbed problem of (B.9), the perturbation function is differentiable.
The tangent line to p∗(u) in u = 0 is plotted. Its slope is given by minus the optimum multiplier
of the unperturbed problem 𝜋

∗ = 0.2, as computed in Example B.5.

Inequality (B.23) provides us with optimistic bounds to the optimum cost when we perturb a
problem with strong duality. For instance, if 𝜋∗

i > 0 for an inequality constraint and we tighten
it (ui < 0), the optimal cost is guaranteed to worsen in at least |𝜋∗

i ui| units. However, if 𝜋∗
i = 0,

losing the constraint (ui > 0) will not improve the cost.
Inequality (B.23) has a global application, meaning that it holds for any perturbation

u ∈ ℝm
, 𝑣 ∈ ℝp. If the dual function of the original problem is differentiable, there is only

a subgradient which is a gradient. Then, the perturbation function is also differentiable in
u = 0, 𝑣 = 0, and it holds that:

𝜕p∗

𝜕ui
= −𝜋∗

i , ∀i = 1,… ,m

𝜕p∗

𝜕𝑣j
= −𝜆∗j , ∀j = 1,… , p

Then, the multipliers are a linear approximation on how the optimal cost p∗ would change
if we make small perturbations to the problem (e.g., this occurs in Example B.10).

B.6 Notes and Sources

Many excellent books exist covering and extending the optimization introduction in this
chapter, like [1–4]. Convex programming is specifically dealt with in, for example [8], and
integer programming in [9] or [10].

Many software optimization packages exist that can be used for finding numerical solutions
to optimization problems, too many to cite them all. A non-exhaustive relation of mixed
linear integer solvers and/or nonlinear software packages is CPLEX [15], Gurobi [16] Mosek
[17], SCIP [18], GLPK [19], COIN-OR [20], or Lindo [21]. In this book we often refer to
GLPK (MILP, free, open-source), IPOPT (nonlinear differentiable, free, open-source, part
of COIN-OR project), and CPLEX (MILP, commercial) solvers, since these are the ones
interfaced by the current version of the JOM modeling library, used in conjunction with
Net2Plan in multiple exercises throughout the book. However, this is not in any case a sign
of superiority with respect to the many other existing free and commercial optimization
packages.

Trim Size: 6.625in x 9.625in Mariño bapp02.tex V3 - 02/11/2016 6:32 P.M. Page 340�

� �

�

340 Appendix B: Mathematical Optimization Basics

References
[1] D. G. Luenberger and Y. Ye, Linear and Nonlinear Programming. Heidelberg, Germany: Springer, 2008, vol.

116.
[2] M. Minoux, Mathematical Programming: Theory and Algorithms, ser. Wiley series in discrete mathematics and

optimization. New York, NY, USA: John Wiley & Sons, Inc., 1986.
[3] L. Lasdon, Optimization Theory for Large Systems, ser. Dover books on Mathematics. Dover Publications, 2002.
[4] D. P. Bertsekas, Nonlinear Programming. Bertsekas: Athena Scientific, 1999.
[5] G. B. Dantzig, “Maximization of a linear function of variables subject to linear inequalities,” Activity Analysis

of Production and Allocation, pp. 339–347, 1947.
[6] G. J. Tee, “Khachian’s efficient algorithm for linear inequalities and linear programming,” SIGNUM Newsl.,

vol. 15, pp. 13–15, March 1980.
[7] N. Karmarkar, “A new polynomial-time algorithm for linear programming,” Combinatorica, vol. 4, no. 4, pp.

373–396, 1984.
[8] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY, USA: Cambridge University Press, 2004.
[9] G. L. Nemhauser and L. A. Wolsey, Integer and combinatorial optimization. New York, NY, USA:

Wiley-Interscience, 1999.
[10] L. Wolsey, Integer Programming, ser. Wiley Series in Discrete Mathematics and Optimization. Wiley, 1998.
[11] M. Slater, Lagrange multipliers revisited: a contribution to non-linear programming, 1950.
[12] W. Karush, “Minima of functions of several variables with inequalities as side conditions,” Master’s thesis,

Department of Mathematics, University of Chicago, Chicago, IL, USA, 1939.
[13] H. W. Kuhn and A. W. Tucker, “Nonlinear programming,” in Proceedings of the Second Berkeley Symposium

on Mathematical Statistics and Probability, J. Neyman, Ed. Berkeley: University of California Press, 1951,
pp. 481–492.

[14] A. Geoffrion, Duality in nonlinear programming: a simplified applications-oriented development, ser. Memo-
randum (Rand Corporation). Rand Corp., 1970.

[15] Ibm ilog cplex optimization studio.
[16] Gurobi optimization.
[17] Mosek optimization.
[18] T. Achterberg, “Scip: Solving constraint integer programs,” Mathematical Programming Computation, vol. 1,

no. 1, pp. 1–41, 2009.
[19] Gnu linear programming kit.
[20] Computational infrastructure for operations research (COIN-OR).
[21] Lindo optimization.

Trim Size: 6.625in x 9.625in Mariño b03.tex V3 - 02/11/2016 6:33 P.M. Page 341�

� �

�

Appendix C

Complexity Theory

C.1 Introduction

Complexity theory studies the computational complexity of the problems and the algorithms
solving them. In this appendix, we are interested in transmitting the main concepts and the-
oretical limits to algorithm efficiency coming from this theory. and drop some rigor in the
description, for the sake of brevity and clarity.

Complexity theory deals with so called algorithmic problems, which are those that can be
coded in a computer, and for which there is no ambiguity in distinguishing between correct
and incorrect answers. This leaves aside, for instance, religious or philosophical problems. An
algorithmic problem p is defined by:

• A description of the possible problem input parameters, formally described in any finite
alphabet (the symbol set in our computer).

• A function that relates any possible input zp for problem p (which we call a problem
instance), with one or more elements in a set of possible outputs: the right answers to that
problem instance.

As an example, “Given a positive integer number k, determine if it is prime” is the descrip-
tion of a problem p. The possible inputs are integer positive integer numbers, the outputs are
{yes , no}. A problem instance is “determine if 17 is prime”, which has a single correct answer
“yes”.

Among algorithmic problems, we define optimization problems as those for which there can
be more than one correct solution for an instance that are in some way optimal. In turn, evalu-
ation problems are those for which the correct solution is always unique. Evaluation problems
for which only two answers can be correct: “yes” or “no” are called decision problems.

A similar problem can have an optimization, evaluation, and decision version. For instance,
“given a graph and two nodes in them, find the shortest path in number of hops” is an opti-
mization problem: the shortest paths may not be unique. An evaluation version could be “given

Optimization of Computer Networks – Modeling and Algorithms: A Hands-On Approach,
First Edition. Pablo Pavón Mariño.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/PavonMarinoSol16

Trim Size: 6.625in x 9.625in Mariño b03.tex V3 - 02/11/2016 6:33 P.M. Page 342�

� �

�

342 Appendix C: Complexity Theory

a graph and two nodes, find the number of hops in a shortest path”, which has a unique solu-
tion, and “given a graph and two nodes, is there a path between them of less than five hops?”
is a decision version of the problem.

Interestingly, complexity theory has shown that the difficulty in solving the optimization,
evaluation, and decision versions of a problem is often similar. For this reason, many books
concentrate on the analysis to decision problems. We will also do that in this appendix. How-
ever, in the last sections we will extend the view to optimization problems to study approxi-
mation algorithms.

C.2 Deterministic Machines and Deterministic Algorithms

Leaving the details aside1, deterministic machines correspond to current computers available,
based on finite memory and a processor with an instruction set that determines without any
ambiguity the steps to follow. Programs using such instruction set executed in such computers
are deterministic algorithms.

We say that a deterministic algorithm A solves a decision problem p when, for any problem
instance:

• It always produces an answer.
• And the answer is always correct.

C.2.1 Complexity of a Deterministic Algorithm

There are two basic measures of complexity in deterministic algorithms:

• Space complexity, related to the amount of memory the algorithm needs.
• Time complexity, related to the time needed for the algorithm to finish.

Both time and space complexity have a formal background we skip in this appendix2. In the
following, we focus on time complexity for its practical importance and assume that algorithms
are executed in machines with sufficient storage space.

Let A be an algorithm solving a decision problem p and z be a particular problem instance.
We use tA(z) to denote the computation time of A for the problem instance z. This computation
time depends on:

1 The formal definition of deterministic machines is based on the celebrated Turing machine. In a Turing machine,
input data is stored in an unbounded tape composed of cells linearly arranged, each cell containing a symbol of a
finite alphabet. Also, the machine has an external finite memory which it can access at any time, storing the state of
the machine. Initially, the tape has the problem input codified in some form in the cells 0,1, The rest of the cells
contain a special blank symbol. The machine is initially reading the cell 0. In each execution step, the Turing machine
(i) reads the cell and (ii) decides the next action to do depending on the read value and the machine state. The function
defining the actions for each read value and state is actually the Turing algorithm or program. The possible actions are
(all possible at the same time): (i) write a new symbol in the read cell, (ii) modify the machine state, and (iii) move to
the left or right neighboring cell. The algorithm ends when it saves in the state a special code for halting. It is assumed
that at that moment, the answer has been written in the tape in cells 1,2,… coded in any suitable form.
2 In the Turing machine definition in the previous note, the space complexity relates to the number of cells the algorithm
needs to occupy to run, while the time complexity is related to the number of instructions executed before the algorithm
halts.

Trim Size: 6.625in x 9.625in Mariño b03.tex V3 - 02/11/2016 6:33 P.M. Page 343�

� �

�

Appendix C: Complexity Theory 343

• The chosen computer where the algorithm is run.
• The chosen programming language.
• How the algorithm is actually implemented.

Complexity theory targets measuring the complexity of any existing and non-existing deter-
ministic algorithm. In this context, the previous three dependencies are arbitrary and have no
theoretical interest. The theory gets rid of them by assuming that deterministic machines have
a standard instruction set capable of doing the elementary operations appearing in all program-
ming languages: arithmetic, assignment, memory access, conditional jumps, and so on. Then,
a uniform cost model is assumed, which means that all of these operations take one time unit
to be completed. Naturally, this is not true since we know, for example. that some arithmetic
operations may take a longer time to complete than others (e.g., divisions versus sums). Still,
these differences are unimportant when a rough complexity measure is pursued.

C.2.2 Worst-Case Algorithm Complexity

Complexity theory is interested in a measure of time complexity that depends on the so-called
problem instance size (denoted by n), but not the particular sample of that size. As an example,
in an algorithm A ordering lists, we pursue a value of time complexity tA(n) that condenses
how long does it take to order lists of n elements.

But, how to define, for example tA(100), the complexity of A for ordering lists of n = 100 ele-
ments, since it is evident that some lists (e.g., those almost already ordered), can be processed
faster than others? Three main alternatives exist:

• Empirical analysis: We enumerate some (but not all) lists of 100 elements, probably the
most representative ones in our case study, and average the time complexity of A for them.

• Average-case analysis: We try to devise the mathematical expectation of the running time
for all the lists of size 100.

• Worst-case analysis: In this case, tA(100) is the longest running time among all the lists of
100 elements.

The worst-case analysis is by far the most accepted algorithm complexity measure, since
empirical tests are arbitrary, and average-case analysis are commonly impossible to compute.
Then, in the sequel we adopt the worst-case analysis, and define tA(n) as:

tA(n) = sup {tA(z) ∶ z problem instance of size n}

C.2.3 Asymptotic Algorithm Complexity

Computing precise worst-case values of tA(n) for an algorithm is still a tedious and difficult
task. Fortunately, complexity theory is not much focused on computing tA(n) accurately, but in
estimating it approximately: the inaccuracies already brought by the uniform cost model makes
unproductive investing effort in a precise computation of tA(n). In addition, complexity theory
puts the focus on how tA(n) evolves when n → ∞. That is, in large-scale problem instances,
where the efficiency differences of the algorithms have a higher practical importance.

Trim Size: 6.625in x 9.625in Mariño b03.tex V3 - 02/11/2016 6:33 P.M. Page 344�

� �

�

344 Appendix C: Complexity Theory

Three notations of tA(n) are used to convey the approximate complexity of the algorithms
in large-scale instances:

• notation: An algorithm A is of complexity (g(n)), and we denote it tA(n) = (g(n)) (this
reads tA is big-O of g) when there exists a constant c < ∞ such that:

lim
n→∞

tA(n)
g(n)

≤ c

• Ω notation: An algorithm A is of complexity Ω(g(n)) and we denote it tA(n) = Ω(g(n)) (this
reads tA is big-omega of g) when there exists a constant c such that:

lim
n→∞

tA(n)
g(n)

≥ c

In summary, tA(n) = (g(n)) means that g(n) is an upper bound to the complexity growth
of tA(n), and tA(n) = Ω(g(n)) that g(n) is a lower bound (both asymptotically, and up to a
multiplying constant).

• Θ-notation: In turn tA(n) = Θ(g(n)) (tA is big-theta of g) means that the growth rate is precise
up to a multiplying constant:

tA(n) = Θ(g(n)) ⇔ {tA(n) = (g(n)) and tA(n) = Ω(g(n))}

Note that the notation tA(n) = (g(n)) (and the same for Ω and Θ) is prone to confusion,
since it suggests that (g(n)) = tA(n) also holds, while this reversed relation is not defined.

Example C.1 If tA(n) is a polynomial of degree k(tA(n) =
∑k

i=0 ain
i), then tA(n) = (nk), since

the lower order terms of the polynomial become unimportant when n → ∞, and are eliminated
by notation.

The growth rates more frequently found in the algorithms are:

• Constant running time: tA(n) = (1).
• Logarithmic complexity: tA(n) = (log n).
• Linear complexity: tA(n) = (n).
• Polynomial complexity (order k ∈ ℕ): tA(n) = (nk). For k = 2 we read it as quadratic com-

plexity, k = 3 cubic complexity.
• Superpolynomial complexity: tA(n) = Ω(nk), for every k. That is, it grows faster than any

polynomial.
• Subexponential complexity: tA(n) = (2n𝜖), for any 𝜖 > 0. That is, it grows slower than any

exponential function.
• Exponential complexity: tA(n) = Ω(2n𝜖) for some 𝜖 > 0. That is, at least as fast as an expo-

nential function.
• Factorial complexity: tA(n) = (n!). Recall that n! ≈

√
2𝜋n(n

e
)n, which, for example grows

faster that 2n, since both the base and the exponent grow with n.

Trim Size: 6.625in x 9.625in Mariño b03.tex V3 - 02/11/2016 6:33 P.M. Page 345�

� �

�

Appendix C: Complexity Theory 345

When computation times depend on two or more parameters, , Ω, and Θ notations are
still applicable. For instance, the complexity of the famous Dijkstra algorithm for finding the
shortest path between two nodes in a network, is tA(n,m) = (m + n log n), where n and m are
the number of network nodes and links, respectively. This means that there is a constant c such
that tA(n,m)∕(m + n log n) ≤ c when n and m tend to infinity.

C.2.4 Complexity is a Real Barrier

At this point, it is important to stress the practical differences of having algorithms of different
complexity types, in special the differences between polynomial and exponential algorithms.
The goal of this section is removing any hope of the type:

“I have an exponential algorithm for this problem, and I guess I will not be able to
solve large-scale instances in my home computer. But what if we sum the resources
of millions of computers? I think that with enough money, and enough time I can
solve any problem instance...”

Table C.1 illustrates why this belief is false, showing the worst-case number of operations for
different algorithms and problem sizes n. In the left columns, polynomial and sub-polynomial
complexities are shown. First, logarithm complexity numbers reflect that this is an extremely
favorable complexity growth. Polynomial growths may be not that nice, for example n3 results
in 1012 operations in instances of size n = 1000. Still, polynomial algorithms are tagged as
“easy” algorithms in complexity theory, while exponential algorithms are tagged as “hard”.
The reason is made evident when we see the running time growth in exponential and factorial
algorithms, for example n = 1000 ⇒ 2n ≈ 10300. Now, the fact that exponential complexity
issue cannot be addressed with more time or computing facilities is clear comparing these
numbers with other large quantities like:

• The estimated number of atoms in the Universe ≈ 1080.
• If a computer executing 1012 instructions per second was running since the start of the

Universe up until today (≈ 15, 000 million years), it would execute ≈ 1030 operations.
• If every atom of the Universe was a computer like the one before, running from the start of

the Universe, the overall computation effort would be ≈ 1080 × 1030 = 10110 operations.

Table C.1 Case studies in Chapter 9

n log n
√

n n2 n3 2n n!

10 3.32 3.16 102 103 103 3.6 × 106

100 6.64 10 104 106 1.27 × 1030 9.3 × 10157

1000 9.97 31.62 106 109 10301 4 × 102567

10000 13.29 100 108 1012 103010 2.8 × 1035659

Trim Size: 6.625in x 9.625in Mariño b03.tex V3 - 02/11/2016 6:33 P.M. Page 346�

� �

�

346 Appendix C: Complexity Theory

(a) (b)

Figure C.1 (a) Execution path in a deterministic machine. (b) Tree of execution paths created by a
non-deterministic machine

C.3 Non-Deterministic Machines and Non-Deterministic Algorithms

Different textbooks provide diverse but equivalent descriptions of non-deterministic machines
(NDM), that try to make more understandable its operation. A somewhat informal but simple
description is that a NDM is a computer that in each iteration can (i) execute the following
instruction as a conventional (deterministic) computer, or (ii) execute a clone instruction that
creates a finite number of replicas of the computer and its state, but each jumping to a different
selected next instruction. After such cloning, each replica can clone again and again in future
computation steps, but two computers cannot communicate with each other3.

The difference between deterministic and non-deterministic machines is illustrated in
Fig. C.1. The left-hand figure represents the execution of a deterministic machine, with a
single thread that in each step executes the action determined by previous computations.
In turn, the cloning feature of NDMs permits emulating the parallel execution of mul-
tiple threads, each potentially executing different routines, without any communication
among them. We call each of the paths starting in the common root and ending in a leaf
as a computation path. For instance, Fig. C.1 illustrates a NDM with seven computation
paths.

An algorithm for a NDM, including such special clone instructions, is referred to as a
non-deterministic algorithm (NDA). It is important to note that any problem solvable by a
deterministic machine can also be solved by a non-deterministic machine, since determinis-
tic algorithms with no clone instructions can be executed in NDMs. Interestingly, this works
also the other way around: an NDA can be executed in a deterministic machine by sequen-
tially executing, instead of in parallel, the many (but finite) computation paths. Then, we can
state that there is no difference in the set of problems that deterministic and non-deterministic
machines can solve, it is just that NDMs could be much faster thanks to their arbitrary parallel
processing capabilities.

3 For those familiar with UNIX programming, the clone operation emulates a fork instruction with an arbitrary number
of child processes, without any communication among them nor the father process.

Trim Size: 6.625in x 9.625in Mariño b03.tex V3 - 02/11/2016 6:33 P.M. Page 347�

� �

�

Appendix C: Complexity Theory 347

C.3.1 Complexity of a Non-Deterministic Algorithm

Prior to define the complexity of NDAs, we should revisit the definition of the sentence “an
algorithm A solves a problem p”. Recall that, in the deterministic case, this means that the
algorithm always produces the correct answer. However, in the non-deterministic case this
definition is relaxed.

Definition C.1 We say that a non-deterministic algorithm A solves a decision problem p, when
for those instances when the correct answer is yes, at least a computation path ends answering
it correctly, while the others may wrongly answer “no”. Instead, for those problem instances
when the correct answer is no, all the computation paths answer “no”.

The reader may be shocked on the previous definition, which contradicts the intuitive mean-
ing of “solving a problem”. Also, we see that yes problem instances are treated differently to no
instances. We will comment on this asymmetry later. A second important definition follows:

Definition C.2 We define the running time of a NDA A in a problem instance z (tA(z)) as
the maximum number of computation steps needed by any path. Then, we say that A runs
in polynomial time if the running time of A for an instance of size n is bounded above by a
polynomial on n.

As a final remark, we stress that non-deterministic machines and algorithms are mathemat-
ical tools used in complexity theory, but are non-realizable concepts: a machine with such
unlimited parallel execution capabilities cannot be built. However, it can be made equivalent
to a non-parallel machine that in every clone instruction, instead of making replicas of the
computer, randomly chooses one of the branching computation paths and continues with it.
That is, it possesses an special instruction ? that permits implementing pseudocodes like:

if ? then program1 else program2

In this context, we say that an NDA solves a problem when the probability that such ran-
domized machine correctly solves a yes instance is higher than zero and correctly solves no
instances with probability one.

C.4 and Complexity Classes

We now define and as the set of decision problems that can be solved in polynomial
time by deterministic and non-deterministic machines, respectively.

Definition C.3 A decision problem p is of class if there exists a deterministic algorithm A
that solves p, with complexity tA(n) = (nk), for some k.

Definition C.4 A decision problem p is of class if there exists a non-deterministic algo-
rithm A that solves p, with complexity tA(n) = (nk), for some k.

We recall that for being in the problem must be solvable in polynomial time by standard
computers, answering always correctly to yes and no instances. However, for being in

Trim Size: 6.625in x 9.625in Mariño b03.tex V3 - 02/11/2016 6:33 P.M. Page 348�

� �

�

348 Appendix C: Complexity Theory

we just need to show that a non-deterministic algorithm exists that answers yes at least some
times to yes instances and never fails to answer correctly no instances.

Clearly, ⊆ , since a polynomial deterministic algorithm solving a problem can also
be executed in an NDM. It is conjectured, but still not proved, that the other relation does not
hold and that: ⊈ and thus ≠ . We will come back to this question later, one of
the most intriguing dilemmas in computer science.

It is customary to qualify problems as those that can be solved in polynomial time, while
 problems are those that can be verified in polynomial time. We provide an intuitive expla-
nation of this with an example. Let us focus on the decision problem:

“Given a network (,), with a cost ce associated to each link e ∈ , there
exists a unidirectional ring traversing all the nodes, with an aggregated cost of the
traversed links lower than 100?”

We denote the previous problem TSP, since it is a version of the classical Traveling Sales-
man Problem (TSP)4. The size of the problem is defined by the number of nodes and links in
the network. To date, it is not known any polynomial deterministic algorithm solving it. Then,
we cannot assert whether TSP is in or not. However, we know that TSP is in . For this,
let us imagine a NDA working in two consecutive steps, called guess and verify.

1. Step 1. Guess. Using the non-deterministic cloning functionalities, we create a computation
path for each possible sequence of | | links. This is equivalent as saying that we create a
random sequence of | | links, and store it in memory.

2. Step 2. Verify. The outcome of previous step is verified. It checks if (i) the links are consec-
utive (one ends where the next starts), (ii) do not traverse a node twice, and (iii) their cost
sums to less than 100. If so, the algorithm returns yes. If not, it returns no.

We see that previous algorithm solves TSP in the (awkward) NDM sense:

• If the correct answer is yes, then at least one ring of cost less than 100 exists, and one
computation path answers yes: the one that guesses it.

• If the correct answer is no, all guesses yield to computation paths returning no.

The guess step can be executed in polynomial time in NDMs (or in exponential time in
deterministic machines). The verify step in each computation path does not need special NDM
capabilities and actually could be executed in polynomial time by a standard computer. Then,
we can safely say that TSP is polynomial in NDMs and thus TSP ∈ .

More generally, a problem is said to be in , when the previous guess-verify approach
is applicable. Then, it is possible to guess candidate solutions (called certificates) that could
be checked by a polynomial verifier algorithm. The name certificate comes since if positively
verified, a certificate is a proof that the correct answer is yes (although a non-verification does
not prove that the correct answer is no).

Now we can see the implications of the asymmetry treating differently yes and no problem
instances. Let us imagine the so-called complement of the TSP problem described above,
which we denote as co-TSP:

4 The name TSP comes after the classical problem description, where a salesman has to visit a set of cities exactly
once, starting and ending in the same city, traversing the minimum distance.

Trim Size: 6.625in x 9.625in Mariño b03.tex V3 - 02/11/2016 6:33 P.M. Page 349�

� �

�

Appendix C: Complexity Theory 349

“Given a network (,), with a cost ce associated to each link e ∈ , all the
unidirectional rings in it traversing all the nodes, have an aggregated cost equal or
higher than 100?”

the answer to co-TSP is no for those instances when TSP answers yes and the other way
around. This type of reversed decision problems are called counterexamples. The difference
lies in that we cannot apply the guess-verify strategy described before. If the correct answer
is no and we are presented with a candidate ring with a cost higher than 100, we cannot
answer yes. Intuitively TSP and co-TSP are essentially different versions and it is not clear
if co-TSP is actually an problem. Actually, those decision problems whose comple-
ment is are called co- problems and it is conjectured (although still not proved) that
 ≠ co- , and that for instance co-TSP, is not in .

C.5 Polynomial Reductions

Given two decision problems p and q, we are interested in ordering them according to how
complex they are to solve. That is, determining if p is more or less complex than q, or if
their complexities are similar. For this, polynomial complexity will play the role of stating the
granularity to consider two complexities similar.

Definition C.5 Given two decision problems p and q, we say that p can be polynomially
reduced to q (p⪯P q) if:

1. There exists a polynomial deterministic algorithm Ap→q that transforms every input zp to p
into an input to q, zq = Ap→q(zp).

2. With Aq being any algorithm solving q, the combined algorithm that takes a zp instance,
transforms it with Ap→q and then applies Aq to it, solves problem p.

Figure C.2 illustrates this ordering relation. The key is that if p⪯P q, there is an indirect
form of solving p using Aq as a subroutine, after a fast (polynomial time) transformation of
the input using Ap→q.

Using the sign ⪯P in the relation suggests on purpose that the complexity of p is somewhat
smaller or equal than that of q. Actually this intuition is correct, and p⪯P q can be read as
“p is easier or similar to q”. Actually, it holds that if q is polynomial (easy), and p⪯P q, then
p is also easy:

p⪯P q ⇒ { if q ∈ then p ∈ }

Problem p

Problem q

Aq
zqzp

Ap→q
yes/no

Figure C.2 Polynomial reduction, p reduces to q (p⪯P q)

Trim Size: 6.625in x 9.625in Mariño b03.tex V3 - 02/11/2016 6:33 P.M. Page 350�

� �

�

350 Appendix C: Complexity Theory

The proof is straightforward: if q is a polynomial problem and Aq a polynomial algorithm
for it, then the indirect algorithm combining Ap→q and Aq solves p in polynomial time.

Definition C.6 If p⪯P q and q⪯P p we say that p and q problems are polynomially equivalent
and we denote it as p≡Pq. Then:

p≡Pq ⇒ {q ∈ ⇔ p ∈ }

C.5.1 A Polynomial Time Reduction Example

Polynomial time reductions are important to compare the complexity of problems that may
look quite different. The following example helps to clarify this concept. Let (,) be a
graph where links are bidirectional. A subset of nodes ′

⊂ is:

• An independent set, when no two nodes in ′ are connected by a link.
• A clique, when all the node pairs in ′ are connected by a link.

The independent set decision problem (ISet) reads: given a graph and a number k, has
an independent set of size k?. Equivalently, the clique problem (Clique) reads: given a graph
 and a number k, has a clique of size k?.

We can show that ISet⪯P Clique as follows:

• Given an input graph , we transform it into the complement graph ′: a link between n1
and n2 exists in ′ if and only if it does not exist in . This transformation is fast (polynomial
time).

• Then, we use ′ and k as an input to Clique.

The polynomial reduction holds since an independent set in is a clique in ′. Figure C.3
illustrates this with an example.

(a) (b)

Figure C.3 Example equivalence between independent sets and cliques. Gray nodes highlight (a) an
independent set of , (b) a clique of ′

Trim Size: 6.625in x 9.625in Mariño b03.tex V3 - 02/11/2016 6:33 P.M. Page 351�

� �

�

Appendix C: Complexity Theory 351

(a) (b)

NP-hard
NP-hard

NP-complete

P = NP-complete

P = NP

NPP

Figure C.4 The = dilemma. (a) ≠ , the widely accepted conjecture, (b) = , then
-complete problems are all

C.6 -Completeness

Definition C.7 A decision problem p is -hard when every problem is easier or sim-
ilar to p.

q is -hard ⇔ {∀p ∈ , p⪯P q}

Definition C.8 A decision problem p is -complete when it is -hard and p ∈ .

That is, -hard problems are those which are equally or more difficult than any

problem, and thus -complete problems are the hardest among .
From the definition of -completeness, it becomes clear that if a single -complete

problem q can be solved in polynomial time, then every problem can also be solved
in polynomial time, and thus = . This is probably the most famous dilemma in
computer science5. Figure C.4 illustrates it. The general belief is that ≠ and thus
that -complete problems cannot be solved in polynomial time. What is absolutely true
is that if a problem p is shown to be -complete, we know that: (i) no one in the history
of computing has ever found a polynomial algorithm for it and (ii) many smart people thinks
that such an algorithm does not exist. This is actually useful information to know.

Since 1971, numerous problems in engineering, mathematics science and daily live have
been shown to be -complete. It was at that moment when A. S. Cook [1] (and later Levin
in [2], using a different approach) found the first -complete problem. This was the
so-called satisfiability (SAT) problem, that reads:

SAT: Let x1, · · · , xn be a set of Boolean variables, that can be either true or
false. A literal, is a variable xi or its negation x̄i, and a clause is an arbitrary set

5 The dilemma ≠ is stated as a Millennium Problem by the Clay Mathematics Institute, and a correct solution
to it is awarded with a million dollar prize.

Trim Size: 6.625in x 9.625in Mariño b03.tex V3 - 02/11/2016 6:33 P.M. Page 352�

� �

�

352 Appendix C: Complexity Theory

of literals linked by OR operations6. Then, given a set of m clauses, is there any
true/false assignment to the n variables, that make all the clauses evaluate to true?

After showing that SAT is -complete, proving that other problem q is -complete
does not need to show that p⪯P q, for all q ∈ . Instead, it is enough to show that SAT is
easier or similar than q (SAT⪯Pq), or, as the list of -complete problems found grows, it is
enough to show that q is harder than one other -complete problem.

C.6.1 An Example Proving -Completeness for a Problem

As an example, we show in this section that ISet decision problem is -complete, by
proving that ISet can be used to solve SAT (SAT⪯PISet)7. The transformation of the SAT
input (variables and clauses) into a graph where to apply ISet is as follows:

• Build a graph with one node per each literal in each clause.
• Fully connect all the nodes of the same clause.
• Add a link between any node pairs of the form (xi, x̄i).

SAT is solved by the question: is there an independent set of size m in graph ? The hints
to prove that are: (i) any independent set of is composed of nodes in different clauses, since
nodes in the same clause are fully connected among them and (ii) the nodes in the independent
set represent literals that do not conflict each other. Then, a literal xi (x̄i) in the independent
set means that xi = true (xi = false) in the SAT solution. Figure C.5 illustrates this with an
example.

Finally, note that since ISet⪯P Clique, it immediately follows that Clique is also
-hard.

C.7 Optimization Problems and Approximation Schemes

To this point, we have focused on decision problems that produce a yes/no answer. Instead,
network design problems are optimization problems, which target the computation of a solution
consisting of a vector of values that are optimal in a certain sense. Studying decision problems
was motivated by the fact that, for most of the problems of practical interest, their optimization
version is polynomial if and only if the decision version is.

As an example, let us focus on Min-TSP, the optimization version of TSP problem:

• Min-TSP: Given a set of nodes and a non-negative integer cost cij for each possible
bidirectional link between each node pair, compute the minimum cost ring connecting all
the nodes

• TSP: For the same input as before, there exists a ring of cost less than C?

6 For instance a clause (x1OR x3OR x̄4) is composed of literals x1, x3, x̄4. The clause evaluates true when x1 is true, x3
is true, or x4 is false.
7 This actually proves that ISet is -hard. Proving that ISet is in is easy by finding a guess-verify algorithm
for it. This is left as an exercise for the reader.

Trim Size: 6.625in x 9.625in Mariño b03.tex V3 - 02/11/2016 6:33 P.M. Page 353�

� �

�

Appendix C: Complexity Theory 353

x2

x1

x4

x3 x4x1

x2

x1

x4

x3

x3 x4

Figure C.5 Example of reduction of SAT to ISet. Representation of the problem: (x̄1OR x̄2

OR x4)AND (x3OR x̄4)AND (x1OR x2OR x̄3OR x̄4)AND (x̄1OR x3OR x4). Links among the nodes
of the same clause are not shown. In gray, an independent set that reflects a SAT solution: x1 = false,
x4 = false, x2, x3

It is trivial that if Min-TSP is polynomial, we can answer TSP just finding the minimum
cost ring, and checking if its cost is higher or not than c. In turn, if TSP is polynomial, we can
find the minimum cost ring by a two-stage approach, where each of the two consecutive stages
are polynomial8:

1. We iterate increasing values of c and use TSP to check if there is a ring of such cost. We
start with c equal to a ring cost lower bound, for instance, the sum of the cheapest links
and stop when the first (minimum) c value with a yes answer is found.

2. For the minimum c value obtained, we find a minimum solution by removing the network
links one by one. After each removal, we check if the resulting graph still has a ring of cost
c. If no, we add the link again and continue with the next link. The process ends when there
are exactly | | links in the graph, which form a minimum cost ring.

C.7.1 The Class

It is time to more formally define optimization problems. We use subindex z to denote an
instance to the problem. In the Min-P optimization version, a problem instance z takes the
form minfz(x), x ∈ z, where fz and z are the objective function and feasibility set, respec-
tively. The Max-P version just turns min into max. In the Min-TSP example before, each
problem instance z is defined by a particular set and cij values. A feasible solution for z is
a set of links that are a ring and the objective function sums the cij costs of the links in it.

8 More formally, we say that Min-TSP is polynomial-time Turing reducible to TSP.

Trim Size: 6.625in x 9.625in Mariño b03.tex V3 - 02/11/2016 6:33 P.M. Page 354�

� �

�

354 Appendix C: Complexity Theory

We are interested in replicating in optimization problems, the role that class had in
decision problems. We recall that in problems tentative solutions could be verified in
polynomial time. We define class of optimization problems as an analogue to ,
where the feasibility check and objective function evaluation of a tentative solution now play
the verification role.

Definition C.9 An optimization problem p belongs to complexity class (non-
deterministic polynomial time optimization problem) if for each instance z, given any
tentative solution x, it is possible to (i) check in polynomial time if x is feasible (x ∈ z) and
(ii) evaluate in polynomial time the objective function in x (fz(x)).

In the optimization context, we also use letter to denote those problems in that can
be solved in polynomial time.

C.7.2 Approximation Algorithms

The theory of -completeness has helped to draw limits on what we cannot do in poly-
nomial time in decisions problems. As we have seen, similar limits apply to the optimization
problem versions. However, in optimization problems we have a workaround on these limits
if we contempt with solutions that are not optimal, but are close enough. For instance, in the
Min-TSP problem, we may be interested in finding rings with a cost close to optimal, which
can be computed in polynomial time.

Approximation algorithms that run in polynomial time for difficult optimization problems
are a useful practical alternative. In this section we will expose different forms of approxima-
tion algorithms, and classify optimization problems according to how approximable they are
in polynomial time. We will see that unless = , multiple problems of interest in network
design can only be polynomially approximable to a certain limit. In other words, finding better
approximation than this limit is -hard.

Given a problem instance z, we denote f ∗z the optimum value of such an instance and fz(x) the
value of a feasible solution x. We measure the goodness of approximations using the approxi-
mation ratio concept.

Definition C.10 Let x be a feasible solution of a problem instance z, we define the approxi-
mation ratio of x, rz(x) as:

• rz(x) = fz(x)∕f ∗z for minimization problems.
• rz(x) = f ∗z ∕fz(x) for maximization problems,

We restrict ourselves to problems where the solution values are always positive (fz(x) > 0)
and thus approximation ratios are positive numbers higher or equal to one. In particular, rz(x) =
1 means that the solution x is optimal and higher values of rz(x) reflect worse approximations.

An equivalent form of writing the approximation ratio is the 𝜖 notation. When a solution
x has an approximation ratio rz(x), we say that it is an 𝜖-approximation, where 𝜖 = rz(x) − 1.
For instance, if the optimum solution to a Min-TSP instance is 100, a suboptimal solution of
cost 120 is a 0.2-approximation.

Trim Size: 6.625in x 9.625in Mariño b03.tex V3 - 02/11/2016 6:33 P.M. Page 355�

� �

�

Appendix C: Complexity Theory 355

Definition C.11 Let A be a polynomial time approximation algorithm and rz(A) denote the
approximation ratio of the solution produced by A to a problem instance z. We define the
worst-case approximation ratio rA(n) for problem instances of size n, as:

rA(n) = sup {rz(A), z an instance of size n}

We are primarily interested in those approximation algorithms whose ratio rA(n) (or equiv-
alently its 𝜖 = rA(n) − 1) is independent on the problem size, in opposition to those whose
approximation grows with n, and thus gets worse and worse for large problems. In particular,
 class contains the problems with constant factor approximations.

Definition C.12 The complexity class contains all optimization problems in that
have an 𝜖-approximation algorithm, for at least one 𝜖.

As an example, we briefly describe an 𝜖-approximation algorithm for the -hard problem
called Min-VertexCover, which given a graph (,), computes a minimum size subset
of its nodes (′

⊂), such that any link in has at least one of its ends in ′ (is covered
by ′). Algorithm 28 illustrates the approximation.

Algorithm 28 Min-VertexCover 1-approximation

1: Initialization: Set ′ = ∅
2: while ∃e ∈ not covered by ′

3: Add both e end nodes to ′

4: return ′

To show that Algorithm 28 is an 1-approximation, we see that if the resulting cover has k
nodes, it is because the original graph has at least k∕2 links without any common node. Then,
there cannot be any other covering with less than k∕2 nodes.

We define now two so-called approximation schemes, which are algorithms for which we
can choose any approximation ratio 𝜖 > 0.

Definition C.13 A polynomial-time approximation scheme (PTAS) for an problem is
an algorithm A that includes as an input the approximation ratio 𝜖, and for every 𝜖 > 0 and every
problem instance, A produces an 𝜖-approximation with a time complexity that is polynomial
with respect to instance size. The complexity class contains all problems for
which there is at least a PTAS.

Definition C.14 A fully-polynomial-time approximation scheme (FPTAS) for an prob-
lem is a PTAS with a complexity that is polynomial with respect to both the problem instance
size and with respect to the approximation quality 1∕𝜖. The complexity class con-
tains all problems for which there is at least a FPTAS.

Differences between PTAS and FPTAS are evident in an example like this. Let A and A′ be

two PTAS of time complexities given by tA(n, 𝜖) = n22
1
𝜖 , and tA′ (n, 𝜖) = n2

𝜖
. Second algorithm

Trim Size: 6.625in x 9.625in Mariño b03.tex V3 - 02/11/2016 6:33 P.M. Page 356�

� �

�

356 Appendix C: Complexity Theory

is a FPTAS while the first is not. If we are pursuing approximating a problem instance of size
n = 100, with a precision of 𝜖 = 0.001:

• Approximation using PTAS A would be intractable, since tA(n, 𝜖) = n22
1
𝜖 ≈ 10305.

• Approximation using FPTAS A′ would be tractable, with tA′ (n, 𝜖) = n2

𝜖
= 107.

From previous definitions, it easily results in:

 ⊆ ⊆ ⊆

C.7.3 PTAS Reductions

Using a similar approach as that of the polynomial reductions, but using PTAS instead of
polynomial algorithms, it is possible to define a relation of the form: p⪯PTAS q.

Definition C.15 A PTAS reduction of optimization problem p to q (denoted p⪯PTAS q) consists
of a triple of three functions (f , g, 𝛼):

• f is polynomial and maps instances of problem p into instances of problem z.
• 𝛼 is a surjective map, which determines in polynomial time the approximation ratio 𝛼(𝜖)

to be used in problem q, in order to have an approximation ratio in p of 𝜖, using the PTAS
reduction.

• g is polynomial and maps the 𝛼(𝜖) approximated solution coming from q, into an
𝜖-approximation of p.

Figure C.6 helps to illustrate the reduction.

C.7.4 -Complete Problems

PTAS reductions can be used to order the difficulty of approximating optimization problems
in a similar form to polynomial reductions, which helped to order the difficulty of decision
problems. The following properties easily follow:

• If p⪯PT AS q, and q ∈ , then p ∈ . Equivalently, if p ∉ , then
q ∉ .

• If p⪯PTAS q, and q ∈ , then p ∈ . Equivalently, if p ∉ , then q ∉ .

Problem p
Problem q

zq xq
xp

Aq
zp fp→q gq→p(ε)

α(ε)-approx. ε-approx.

Figure C.6 PTAS reduction of optimization problem p into q, p⪯PTAS q

Trim Size: 6.625in x 9.625in Mariño b03.tex V3 - 02/11/2016 6:33 P.M. Page 357�

� �

�

Appendix C: Complexity Theory 357

Table C.2 Complexity of some optimization problems of interest in network design.

Name Description Complexity

Conv General convex programs Polynomial ()
ILP General integer linear programs -complete
BLP General binary linear programs -complete
Min-kMST k-minimum cost spanning trees Polynomial ()
Min-kSP k-minimum cost paths Polynomial ()
Min-kSP k-minimum cost paths Polynomial ()
Min-Ste Min cost multicast tree (Steiner tree) 0.55-approx., -complete
Max-Clique Maximum size clique -complete
Min-TSP Min cost ring -complete
Min-NonBif Min congestion non-bifurcated routing 2.23-approx., -complete
Max-IntegralFlow Max integral k multicommodity flow on trees 1-approx., -complete
Min-NodeLocation Min cost node location, no connectivity limit 1.4-approx., -complete

Then, p⪯PTAS q relation can be read as “p is easier or similar to approximate than q”, or
that “q is similarly or harder to approximate than p”. Using ⪯PTAS we can now define the
classes -complete, -complete, and -complete, containing the hardest prob-
lems among their classes.

• An optimization problem q is -complete, if it belongs to , and p⪯PTAS q for all
the problems in .

• An optimization problem q is -complete, if it belongs to , and p⪯PTAS q for all
the problems in .

• An optimization problem q is -complete, if it belongs to , and p⪯PTAS q for
all the problems in .

C.8 Complexity of Network Design Problems

Many of the problems of interest in network design happen to be hard to solve and hard to
approximate. In general, the large majority of non-convex network problems fall into this cat-
egory. Fruitful literature exists presenting approximations to some versions of these problems,
together with, in some occasions, results stating their inapproximability.

Table C.2 includes some examples brought from the collection [3]. Negative (inapprox-
imability) results are true conjecturing that ∉ , as is customary. Full references can be
checked in [3], the interested reader is referred there for further descriptions.

C.9 Notes and Sources

Complexity theory is a well established discipline in computer science for which many good
sources exist. The concise introduction in this appendix is mostly based on [4, 5] and some
explanations in [6] and [7]. A compendium of complexity results of multiple problems
is available in [3].

Trim Size: 6.625in x 9.625in Mariño b03.tex V3 - 02/11/2016 6:33 P.M. Page 358�

� �

�

358 Appendix C: Complexity Theory

References
[1] S. A. Cook, The complexity of theorem-proving procedures, Proceedings of the third annual ACM symposium

on Theory of computing, 1971.
[2] L. A. Levin (1973) Russian Academy of Sciences, Branch of Informatics, Computer Equipment and Automati-

zation, Universal sequential search problems, (Problemy Peredachi Informatsii) 9(3), pp. 115–116.
[3] P. Crescenzi, V. Kann, and M. Halldórsson, “A compendium of NP optimization problems,” Available online

at www.nada.kth.se/~viggo/problemlist/compendium.html, Department of Science, University of La Sapienza,
Rome. 1995.

[4] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to NP Completeness. San Francisco,
CA, USA: W. H. Freeman, 1979.

[5] I. Wegener, Complexity Theory: Exploring the Limits of Efficient Algorithms. Heidelberg, Germany: Springer
Science & Business Media, 2005.

[6] M. Pioro and D. Medhi, Routing, Flow, and Capacity Design in Communication and Computer Networks. Mor-
gan Kaufmann Publishers, 2004.

[7] J. Bergstra and M. Burgess, Handbook of Network and System Administration. Amsterdam, The Netherlands:
Elsevier, 2011.

Trim Size: 6.625in x 9.625in Mariño b04.tex V3 - 02/11/2016 6:34 P.M. Page 359�

� �

�

Appendix D

Net2Plan

D.1 Net2Plan

Net2Plan is an open-source and free to use Java-based software, developed by Pablo Pavón
Mariño and (up to version 0.3.1) José Luis Izquierdo Zaragoza, and licensed under the GNU
Lesser General Public License (LGPL). Net2Plan has its origins in September 2011, as a
resource for network optimization courses at Technical University of Cartagena. Since then, it
spread to other Universities, and has been applied in a number of works in the academia and
industry. Installing instructions, documentation (including video tutorials), research publica-
tions, and teaching materials can be accessed via the website

www.net2plan.com

Specific instructions to more easily access the book materials are available at:

www.net2plan.com/ocn-book

Net2Plan was designed with the aim to overcome the barriers imposed by existing network
planning tools in two forms: (i) users are not limited to execute non-disclosed built-in algo-
rithms, but also can integrate their own algorithms, applicable to any network instance, as Java
classes implementing particular interfaces, and (ii) Net2Plan defines a network representation,
the so-called network plan, based on abstract concepts such as nodes, links, traffic demands,
routes, protection segments, shared-risk groups, and network layers.

Network instances can have an arbitrary number of layers, arranged in arbitrary forms.
Technology-specific information can be introduced via user-defined attributes attached
to nodes, links, routes, layers, and so on in the network plan. The combination of a
technology-agnostic substrate and technology-related attributes provides the required flexibil-
ity to model any network technology within Net2Plan, an added value from a didactic point
of view. In this respect, current Net2Plan version provides specific libraries to ease the design
of IP, wireless and optical networks.

Optimization of Computer Networks – Modeling and Algorithms: A Hands-On Approach,
First Edition. Pablo Pavón Mariño.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/PavonMarinoSol16

Trim Size: 6.625in x 9.625in Mariño b04.tex V3 - 02/11/2016 6:34 P.M. Page 360�

� �

�

360 Appendix D: Net2Plan

Net2Plan provides both a graphical user interface (GUI) and a command-line interface
(CLI). In either mode, Net2Plan includes four tools:

• Offline network design: Targeted to execute offline planning algorithms, that receive a net-
work design as an input and modify it in any form (e.g., optimize the routing, the capacities,
topology, etc.). Network design algorithms in Part I and heuristic algorithms in Chapter
11 of this book are implemented in this form. Algorithms based on constrained optimiza-
tion formulations (e.g., ILPs or convex formulations) use the open-source freeware Java
Optimization Modeler (JOM)

www.net2plan.com/jom

developed by the author to interface from Java to a number of external solvers such as
GPLK, CPLEX or IPOPT, that produce a numerical solution. The modeling syntax of JOM
is human-readable, and capable of handling arrays of decision variables and constraints of
arbitrary dimensions, facilitating the definition and solving of complex models directly from
Java in a few lines of code.

• Online simulation: Permits building simulations of online algorithms that code how the
network reacts to different events generated by built-in or user-developed event generation
modules. For instance, it can be used to evaluate network recovery schemes that react to
failures and repairs or dynamic provisioning algorithms that allocate resources reacting to
time-varying traffic demands. The distributed algorithms presented in Part II of the book are
implemented as online algorithms, where nodes asynchronously iterate to adapt to network
conditions.

• Automatic report generation: Net2Plan permits the generation of built-in or user-defined
reports, from any network design.

• Traffic matrix generation: Net2Plan assists users in the process of generating and normal-
izing traffic matrices.

We remark that every algorithm and report in Net2Plan can be either built-in or user-made.
For a full description of Net2Plan functionalities, and how to program algorithms in Net2Plan,
please refer to Net2Plan documentation (including video tutorials) on the website.

D.2 On the Role of Net2Plan in this Book

Net2Plan enables the hands-on approach in network optimization targeted in this book:

• The book materials indexed repository in www.net2plan.com/ocn-book includes all
the examples of models and algorithms in book Part I and Part II, suitable for Net2Plan
v0.4.0 or later. No Java programming skills are needed to use these algorithms, repeating the
tests found throughout the book or extending them to other network instances. The variety
of built-in reports and performance metrics computed by Net2Plan can help the reader to
further enrich the evaluation of the network designs.

• In addition, standard Java programming skills permit the reader to develop their own algo-
rithms, apply the techniques described, and then test the produced methods in Net2Plan.
This is actually the final goal of the book and how Net2Plan is being already used in sev-
eral network optimization courses. For this, algorithms in the repository can be used as

Trim Size: 6.625in x 9.625in Mariño b04.tex V3 - 02/11/2016 6:34 P.M. Page 361�

� �

�

Appendix D: Net2Plan 361

templates or new algorithms can be created from scratch. Net2Plan includes various useful
libraries for developing network algorithms, easing tasks like the manipulation of candidate
path lists, conversion between different routing types (destination-based and flow-based
routing), computation of incidence and adjacency matrices, multiple variants of shortest
path algorithms, computation of performance metrics, generation and normalization of traf-
fic matrices, or efficient algorithms for solving the simple projections or regularization
examples in the book. Technology-related libraries are included to ease the development
of algorithms for IP, wireless and optical networks.

The reader is encouraged to access

www.net2plan.com/ocn-book

and follow the instructions there to use the full Net2Plan resources, and get hands-on with
optimization of computer networks!

Trim Size: 6.625in x 9.625in Mariño bindex.tex V3 - 02/11/2016 6:34 P.M. Page 363�

� �

�

Index

ABR (Available Bit Rate), 197, 229
absorbing states, 69
ACK, 125–28, 133, 135

delayed, 125, 129
acknowledgement segment. See ACK
ACO (ant-colony optimization), 268,

283–87, 299
pheromones, 283–88, 299

Active Queue Management. See AQM
adaptive routing, 211, 237

blocking probability, 33
dual algorithm, 217, 219–20, 236–37
non-bifurcated instability, 190–91
primal algorithm, 188–89

admissible directions, 333
admissible path, 58–59
AIMD (Additive Increase Multiplicative

Decrease), 127–29, 133–35
algorithm complexity

asymptotic, 343
cubic, 344
deterministic algorithm, 342–45
non-deterministic algorithm, 347
notations, 344
quadratic, 344
space, 342
sub-polynomial, 345
types, 344
worst-case, 343

Optimization of Computer Networks – Modeling and Algorithms: A Hands-On Approach,
First Edition. Pablo Pavón Mariño.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/PavonMarinoSol16

algorithmic problem, 341
algorithms

centralized, 8
distributed, 8
stop condition, 175–77, 272

Aloha-type algorithm, 105, 201, 238
anycast

demands, 20–22
routing, 72–73

approximation ratio, 354–56
AQM (Active Queue Management),

134–36
aspiration criterion. See TS (tabu search),

aspiration criterion
asynchronous algorithm. See partially

asynchronous algorithm
ATM, 39, 53, 124, 197
availability, 37–40, 50–51, 154

five nines, 38
general model, 42–43
simplified model, 41
typical values, 39

Available Bit Rate (ABR), 197, 229

backlog, 132–33
back-off time (CSMA), 109, 231, 238

Binary Exponential Backoff (BEB),
110–11

IEEE 802.11, 110

Trim Size: 6.625in x 9.625in Mariño bindex.tex V3 - 02/11/2016 6:34 P.M. Page 364�

� �

�

364 Index

back-off time (CSMA) (continued)
optimization. See CSMA (Carrier Sense

Multiple Access), backoff
optimization

simplified model, 110
back-pressure routing, 221, 223–24, 228,

237
in cross-layer congestion control, 249,

251–52
pressure difference threshold, 223–26,

237
ball, 16–17, 314, 329
bandwidth, unused, 36
bandwidth assignment problem. See

congestion control
bandwidth-delay product, 126
barrier functions, 186
barrier method. See interior penalty method
base stations. See BS
BGP Link-State (BGP-LS), 218
Binary Exponential Backoff (BEB), 110–11
binary programs, 321
blocking probability, 28–35, 49–50, 60

complete sharing, 28
link model, 28
load sharing, 32
multicast, 30
multiclass networks. See multiclass

traffic
network, 30

BLP (Binary Linear Program), 321, 357
boundary set, 17
bounded step length, 178
box-like constraints, 164

asynchronous execution, 169, 171
bounded step length, 178, 182
diagonal scaling, 168, 199
Weierstrass theorem, 315

branch-and-bound, 142, 296, 323
branch-and-cut, 296, 323
branch-and-price, 296, 323
brownfield network planning, 141, 143,

148, 266
brute force methods, 323, 337
BS (base stations), 102
buffering delays, 23–26, 36, 136

in AQM, 134, 136
in back-pressure routing, 226
in TCP-Vegas, 131–33

CAGR (compound-annual-growth rate), 97
candidate link set, 147–49
candidate path list, 58, 85–86

1+1 pairs, 80, 86
CPLA. See CPLA (Candidate Path List

Augmentation)
elaboration, 58–59
multicast, 74
Net2Plan routines, 361
topology design problems, 148

Candidate Path List Augmentation. See
CPLA

capacity planning, 266
capacity region, 102–3

CSMA networks, 109, 111–12
hard interference scenario, 105
random-access networks, 107–8
transmission power optimization, 115,

117
wireless network, 102–3

Carrier Sense Multiple Access (CSMA).
See CSMA (Carrier Sense Multiple
Access)

CDM (Code Division Multiplexing), 4, 101,
114, 253

CDMA2000, 101
center-free routing. See back-pressure

routing
clauses. See satisfiability problem (SAT)
CLI (command-line interface), 360
clique, maximum clique problem, 267, 350,

352, 357
clone instruction, 346–47
cloud computing, anycast traffic, 21
Code Division Multiplexing (CDM), 4, 101,

114, 253
collisions, 101–10, 201, 231, 234
column generation method, 59
command-line interface (CLI), 360
complementary slackness, 61, 331–33, 336
complexity class, 347

 , 355

Trim Size: 6.625in x 9.625in Mariño bindex.tex V3 - 02/11/2016 6:34 P.M. Page 365�

� �

�

Index 365

-complete, 267, 357
 , 355
 , 347
-complete, 351–52, 354
-hard, 351
, 353–54
-complete, 356–57
 , 347
 , 355
 -complete, 357

complicating constraints. See constraints,
complicating

complicating variables. See variables,
complicating

composite function, 309–10
compound-annual-growth rate (CAGR), 97
computation paths, 346–48
concave functions, 303

strictly, 303–4
strongly, 306

condition number, 168–69
congestion avoidance, 127–29, 131
congestion control, 120–40

multi-path, 138, 212, 238
window-based, 125

connected topologies, 17, 148–49
constraints

active, 167, 242, 332–35
binding. See constraints, active
complicating, 244, 263
consistency, 246, 263–64
coupling, 263

convergence rate, 162–65, 175
basic gradient projection, 165
cubic, 164
diagonal scaling, 168
geometric, 163, 179
heavy-ball, 180
linear, 165, 168–69
sublinear, 163, 169, 190
superlinear, 164, 166

convex combination, 301
convex functions, 303

strictly, 303
strongly, 306

convex hull, 301–2, 327

convex problem, 318
convex programs. See convex problem
convex sets, 301–2
Cook’s theorem, 351
cost model

concave costs, 89
network, 6, 36, 292
regularized, 220
uniform, 343

co-TSP, 349
CPLA (Candidate Path List Augmentation),

58–59, 61, 74, 84, 86
CPLEX solver, 144, 150, 261, 267, 296,

318, 323, 360
cross-layer algorithms, 240

congestion control and backpressure
routing, 249, 251

congestion control and QoS capacity
allocation, 247, 249

congestion control and transmission
power, 253, 255

crossover. See EAs (evolutionary
algorithms)

CSMA (Carrier Sense Multiple Access),
109

backoff decentralized optimization,
231–36, 238

backoff formulation, 118
capacity region, 111–12, 117
hidden node, 110
maximum entropy, 113
simplified model, 110

cubic convergence rate. See convergence
rate, cubic

curvature of a function, 304, 306–10
cycles, isolated, 63–64

dark fiber, 37, 292, 294, 296
decision problems, 341–42, 347–52
decomposition, problem, 240–65

dual, 244–47, 249–55, 259–61, 264
other, 246–47
primal, 241–43, 246–48, 256–59,

263–64
delay

average network, 27–28, 49, 72

Trim Size: 6.625in x 9.625in Mariño bindex.tex V3 - 02/11/2016 6:34 P.M. Page 366�

� �

�

366 Index

delay (continued)
buffering. See buffering delays
end-to-end, 27
link, 23–27
link model, 23–24
multicast, 49
transmission, 23

destination-based routing, 53–54
back-pressure, 237
destination-link formulation. See

destination-link formulation
vs. flow-based routing, 71
multidomain, 256
multilayer networks, 153
oblivious, 81
shortest path, 77, 79
topology design, 148

destination-link formulation, 65–71
anycast routing, 73
back-pressure algorithm, 223–24
integral routing, 77
multidomain routing algorithm, 256, 264
multilayer routing, 154
non-bifurcated routing, 75–76

deterministic algorithms. See algorithm
complexity, deterministic algorithm

deterministic machines, 342–46, 348
diagonal scaling, 168

congestion control, 199–200, 237
discrete step length, 178
routing optimization, 190, 211

DIFS (DCF Interframe Space), 110
Dijkstra, algorithm, 58, 345
discretization function, 178–79, 182
Distributed Coordination Function (DCF),

110
diversification, heuristic technique, 271,

280, 286, 290
dual cost, 324
dual decomposition. See dual gradient

algorithms
dual function, 324–28

differentiable, 327
not differentiable, 328

dual gradient algorithms, 214–65
dual-homing, 154

duality gap, 328, 337
dual decomposition, 259, 261
stopping criteria, 177

dual prices, 325
dual problem, 327–29, 331–32
dual variable. See Lagrange multipliers
duplicated ACKs, 127–28, 131

EAs (evolutionary algorithms), 273,
288–91

ECMP (Equal-Cost Multi-Path), 54, 77–79,
94, 293

formulation model, 268
ECN (Explicit Congestion Notification),

135
Edmonds algorithm, 74
effective bandwidths, 19
elephant connections. See TCP

(Transmission Control Protocol),
elephant connections

ellipsoid method, 317
entropy, 286–88, 290–91

in CSMA, 112–13, 232, 236
epigraph, 311–12
𝜖-approximation algorithm, 267, 271–72,

354–56
Equal-Cost Multi-Path. See ECMP
Erlang-B function, 32, 72
Erlang fixed point method, 32
Ethernet, 53, 94, 96, 105
Euclidean norm, 15–16
evolutionary algorithms. See EAs
Explicit Congestion Notification (ECN),

135
exterior penalty method, 184–87

adaptive routing, 211
congestion control, 200, 212
multi-path congestion control, 212

fading, 98–100
fairness, 44–47

𝛼-fairness, 45
max-min, 44, 46, 123
min-delay, 123
proportional, 45, 133, 202
and utility maximization, 44–47

Trim Size: 6.625in x 9.625in Mariño bindex.tex V3 - 02/11/2016 6:34 P.M. Page 367�

� �

�

Index 367

fitness functions, 272, 289
fixed point method, Erlang. See Erlang fixed

point method
flow-based networks, 53–54, 361

vs. destination-based, 71
flow conservation constraints

destination-based routing, 66, 70
multicast routing, 75
unicast routing, 62–63

flow-link formulation, 61–65
anycast routing, 73
back-pressure cross-layer algorithm,

250
back-pressure routing algorithm, 223
vs. destination-link, 71
integral routing, 77
multicast routing, 74, 85
multilayer design, 154
non-bifurcated routing, 76
non-convex routing algorithm, 259
shared restoration routing, 80
SRG-disjoint paths, 85
topology design, 147

flow-path formulation, 54–61, 71–72
1+1 SRG-disjoint protection routing,

79–80
adaptive routing algorithm, 188, 217
anycast routing, 73
integral routing, 77
multicast routing, 74
multi-hour routing, 82
non-bifurcated routing, 76
topology design, 148

FPTAS (fully-polynomial-time
approximation scheme), 355–56

Fractional Brownian Motion (FBM), 25
frame-relay, 53
frequency-hopping, 100
fully-polynomial-time approximation

scheme. See FPTAS

genetic algorithms. See EAs (evolutionary
algorithms)

geometric convergence rate. See
convergence rate, geometric

global synchronization, 134

GLPK solver, 261, 267, 296, 318, 323, 360
gradient algorithms, 161–82

asynchronous execution, 169
basic projected, 165
discrete step, 178
heavy-ball. See heavy-ball method
ill-conditioned, 168, 173, 186
multistep, 179
Newton methods, 162, 164, 166
non-smooth functions, 172
scaled projected, 165
stochastic, 174
stopping criteria, 176

gradients, 303
noisy unbiased. See subgradients, noisy

unbiased
GRASP (Greedy Randomized Adaptive

Search Procedures), 282–84
optical topology design, 293–95, 297

GRASP (Greedy Randomized Adaptive
Search Procedures), OSPF weight
optimization, 287

greedy algorithms, 270, 281–82
greedy function, 270, 281–83, 285
greedy-randomized algorithm, 283,

286–89, 293–94
greenfield network planning, 141, 266, 291
GSM, 101

hash-based forwarding. See splitting rule,
forwarding, hash-based

heavy-ball method, 179–80
back-pressure routing optimization, 237
CSMA backoff optimization, 238
transmission power optimization,

209–10
hessian matrix, 304, 307
heuristic algorithms, 266–99

in CPLA, 61
in gradient algorithm, 163
metaheuristics. See metaheuristics
in primal decomposition, 243

hidden node problem, 110
Holder’s inequality, 116
Hurst parameter, 6, 25
hyperplanes, 315

Trim Size: 6.625in x 9.625in Mariño bindex.tex V3 - 02/11/2016 6:34 P.M. Page 368�

� �

�

368 Index

IEEE802.11, 110
ill-conditioned. See gradient algorithms,

ill-conditioned
ILPs (integer linear programs), 321–23

complexity, 267, 357
in heuristics, 268–69, 293–96
in Net2Plan, 360
optimality bound, 272
solution methods, 322–23
solvers, 267

implicit signaling, 124, 131, 133, 249,
254

inapproximability, 357
incumbent solution, 271
independent set, 350

and clique, 350
independent set problem, 350

and SAT problem, 352–53
in-operation planning, 266
integer convex programming, 267
integer linear programs. See ILPs
interdomain routing. See multidomain

routing
interference map

hard-interference, 104
random-access networks, 106–7
soft-interference, 113, 206–8, 253

interferences
constructive, 99
destructive, 99
hard-interference scenario, 101, 104–6,

117
soft-interference scenario, 101, 113, 205

interior penalty method, 185
adaptive routing, 188, 211
congestion control, 197, 212
multi-path congestion control, 212

interior point algorithm, 186, 318–20
interior points, 16–17, 318, 333
Internet Service Provider (ISPs), 88
IP/MPLS networks. See IP networks
IP networks, 359, 361

adaptive routing, 191, 218
AQM, 136
cost model, 37
destination-based routing, 53–54, 71

ECMP. See ECMP (Equal-Cost
Multi-Path)

equipment availability, 39
fragmentation, 125
link topology, 94
modular capacities, 94
multidomain routing, 258
multilayer IP over WDM, 152–53, 293
oblivious routing, 81
OSPF. See OSPF
TCP. See TCP (Transmission Control

Protocol)
IPOPT solver, 164, 318, 320–21, 360
IS-IS, 54, 77
ISPs (Internet Service Provider), 88

Jain fairness index, 138
Java Optimization Modeler (JOM), 360

Erlang-B function, 72
with incidence matrices, 63
modeling time, 269, 296–97
options, 141
solvers, 360

Karush–Kunt–Tucker (KKT) conditions.
See KKT optimality conditions

Kaufman–Roberts recursion, 28–29
KKT optimality conditions, 330–31

capacity assignment concave costs, 91
capacity assignment linear costs, 117
congestion control, 123
convex differentiable, 331
CSMA window adjustment, 112
graphical interpretation, 333
necessary and sufficient, 331
Net2Plan routines, 361
routing problem, 55
simple projection problems, 213, 236,

263
unconstrained, 332
without strong duality, 336

k-minimum cost paths, 58–59
complexity, 357
CPLA, 61

k-minimum spanning tree. See Minimum
Spanning Tree (MST), k-MST
algorithm

Trim Size: 6.625in x 9.625in Mariño bindex.tex V3 - 02/11/2016 6:34 P.M. Page 369�

� �

�

Index 369

k-shortest paths. See k-minimum cost paths
k-shortest SRG-disjoint path pairs, 80
k-tournament selection, 289

LACP (Link Aggregation Control Protocol),
94

Lagrange function, 324
Lagrange minimization, 331, 333

without strong duality, 336
Lagrange multipliers, 324–25

sensitivity analysis, 57, 337
unique, 57, 329, 332

Lagrange multipliers interpretation
back-pressure routing, 224, 237, 251
congestion, 124, 131–32, 135, 249
CPLA, 60
CSMA, 112, 232, 235–36
destination-link formulation, 66
flow-link formulation, 65
flow-path formulation, 56, 218
multidomain routing, 257
shortest-path routing, 79

Lagrange relaxations, 214, 271–72
LCR (Least Congested Routing), 33, 50
Lesser General Public License (LGPL), 359
LFN (Long Fat Networks), 126
LGPL (Lesser General Public License), 359
lightpaths, 152–53, 292–93

1+1 protection, 269, 293
restoration, 269, 293, 296
shared protection, 269, 293
transponders, 292, 294, 296–97

linear convergence rate. See convergence
rate, linear

linear programming, 315–17
fundamental theorem, 56, 317
solution methods, 317–18

Link Aggregation Control Protocol (LACP),
94

link capacity optimization, 88
integral. See link capacity assignment,

modular
modular, 51, 94–98, 117, 261
with QoS, 247, 249, 263
See also link capacity planning

link capacity planning, 88, 266

concave costs, 89
modular capacities. See link capacity

optimization, modular
multi-period. See multi-period

optimization
See also link capacity optimization

link-state protocols, 77, 190
Lipschitz continuous, 165

asynchronous gradient algorithm, 171
basic gradient algorithm, 165–66, 169,

171
hessian matrix, 193
scaled gradient algorithm, 167–68
stochastic gradient algorithm, 175

literals. See satisfiability problem (SAT)
Little’s law, 132
local search algorithm, 270–71, 273–75

best-fit, 274
first-fit, 276, 293

Long Fat Networks (LFN), 126

MAC (Medium Access Control). See
Medium Access Control (MAC)

marking, 134–36
RED marking probability, 134, 136

Markov chains
CSMA network state, 111
fundamental matrix. See matrix,

fundamental
routing representation, 69–70
transition matrix. See transition matrix

master algorithm, 240
in cross-layer algorithm, 248–49
in dual decomposition, 244–45
in multidomain routing, 256–59
in other decompositions, 246–47
in primal decomposition, 241–43

matrix
adjacency, 361
not defined, 304
definite negative (d.n), 304
definite positive (d.p.), 304
hessian, 304, 307
fundamental, 70
incidence, 63, 361
semidefinite negative (s.d.n), 304

Trim Size: 6.625in x 9.625in Mariño bindex.tex V3 - 02/11/2016 6:34 P.M. Page 370�

� �

�

370 Index

matrix (continued)
semidefinite positive (s.d.p), 304, 308
stochastic, 69

Maximum Segment Size (MSS), 125–27,
129–31

Maximum Transfer Units (MTU), 125
Mean Time Between Failures. See MTBF
Mean Time To Fail. See MTTF (Mean Time

To Fail)
Mean Time To Repair. See MTTR
Medium Access Control (MAC), 101

capacity region. See capacity region
CSMA-based networks, 109, 231, 234,

238
hard interference scenarios, 104–5
random access networks, 105, 107, 201,

204, 238
metaheuristics, 270
Metropolis test, 276
M/G/1 formula, 24

convexity properties, 27
MILPs (Mixed Integer Linear Programs).

See ILPs (integer linear programs)
Minimum Spanning Tree (MST), 74, 156
Minimum Spanning Tree (MST), k-MST

algorithm, 74, 357
misorder in delivery

IP packets. See TCP (Transmission
Control Protocol), packet misorder

signaling, 171
Mixed Integer Linear Programs. See MILPs
M/M/1 formula, 25

convexity properties, 27
and unused bandwidth, 36

modular link capacities, 19
mouse connections. See TCP (Transmission

Control Protocol), mouse connections
MPLS, 5, 53, 71, 153, 218
MST (Minimum Spanning Tree), 74, 156
MTBF (Mean Time Between Failures),

38–40, 80
MTTF (Mean Time To Fail), 51
MTTR (Mean Time To Repair), 38, 40, 51,

80
multicast

average network delay, 49

blocking probability, 30
congestion control, 121
demand, 21
routing, 22, 74–75, 150

multicast tree, 18
k-minimum cost problem, 74, 85
minimum cost problem, 74, 267, 357

multiclass traffic, 20, 28, 30–35
multicommodity flow, 357
multidomain routing, 256–58, 264
multilayer networks, 152–54, 156, 265
multi-period optimization, 97–98, 117
Multiple Input Multiple Output (MIMO),

100
multistep optimization, 179
multiplexed links, 3
mutation. See EAs (evolutionary

algorithms)
myopic function. See greedy function

NDA (non-deterministic algorithm),
346–48

NDMs (non-deterministic machines),
346–48

Net2Plan, 359–61
network, cellular, 98, 100, 102–3, 207
network availability, 43
network congestion, 36, 269

lower bound, 84, 268, 270
network instabilities

admission control, 33–34
non-bifurcated routing. See adaptive

routing, non-bifurcated instability
network recovery, 39–40

availability evaluation. See availability,
general model

online simulation, 360
protection. See protection recovery
restoration. See restoration recovery

network resilience, 37
network throughput

vs. allocation fairness, 123, 137–38
unfairness, 45

network utility, 44–48
connection with fairness, 45

node location problems, 142–46, 154, 267

Trim Size: 6.625in x 9.625in Mariño bindex.tex V3 - 02/11/2016 6:34 P.M. Page 371�

� �

�

Index 371

joint link and, 149
noise, thermal, 100, 114, 118, 208
non-bifurcated routing, 75–76

complexity, 357
topology design, 150

non-deterministic algorithm. See NDA
non-deterministic machines. See NDMs
nonlinear problem, 320–21

complexity, 267
solution methods, 321

non-smooth Functions. See gradient
algorithms, non-smooth functions

norms, 15–16
in gradient projection, 164, 167
matrix, 16, 193

NUM (Network Utility Maximization), 122
in congestion control, 46, 121–24, 197,

228
convexity properties, 47
in cross-layer optimization, 250
general resource allocation, 44–45
in link capacity allocation, 103, 112
in TCP-AQM model, 135–36
in TCP-Reno, 130
in TCP-Vegas, 132

OADMs (Optical Add/Drop Multiplexers),
153, 292–95, 297

availability, 39
colorless-directionless, 156, 293, 297

OFDM (Orthogonal Frequency Division
Multiplexing), 101, 114, 253

offspring. See EAs (evolutionary
algorithms)

Optical Add/Drop Multiplexers. See
OADMs

optical networks, 5
cost model, 37, 292
dark fiber. See dark fiber
multilayer IP over WDM. See IP

networks, multilayer IP over WDM
Net2Plan, 359, 361
routing, 84

optimality bounds, 271–72
optimality conditions. See KKT optimality

conditions

Orthogonal Frequency Division
Multiplexing (OFDM), 101, 114, 253

OSPF
adaptive routing instability, 190
forwarding. See ECMP (Equal-Cost

Multi-Path)
link topology design, 299

OSPF-TE (OSPF-Traffic Engineering), 218
OSPF weight optimization, 78–79, 270

ACO, 287
complexity, 79, 266
EA, 290
GRASP, 282
greedy, 282
local search, 274–76
lower bound, 270
SAN, 277

OTN (Optical Transport Network), 96
out-of-sequence delivery

IP packets. See TCP (Transmission
Control Protocol), packet misorder

signaling. See misorder in delivery,
signaling

 = dilemma, 348, 351
Palm–Khintchine theorem, 24
partially asynchronous algorithm, 169–71
path loss exponent, 99, 118, 208
penalty function, 187, 200, 211–12
penalty methods, 185–87

exterior. See exterior penalty method
interior. See interior penalty method

persistence probabilities, 105–8
adjustment algorithm, 201–5, 238

perturbation functions, 338–39
in primal decomposition, 242–43
sensitivity analysis, 57

perturbed problem, 336–39
p-norms, 15
pointwise infimum, 309
pointwise maximum, 308–9
pointwise minimum, 309
pointwise supremum, 308
Poisson model, 24–25

blocking probability, 28, 31–32, 35, 49
polyhedron, 315–17

Trim Size: 6.625in x 9.625in Mariño bindex.tex V3 - 02/11/2016 6:34 P.M. Page 372�

� �

�

372 Index

polynomial approximation algorithms, 267.
See also 𝜖-approximation algorithm

polynomial-time, Turing reducible, 353
polynomial-time approximation scheme.

See PTAS
polynomial-time reductions, 349–50
pressure difference threshold. See

back-pressure routing, pressure
difference threshold

primal decomposition method. See
decomposition, problem, primal

primal gradient algorithms, 184–213
probability

collision. See collisions
marking. See marking

problem complexity. See complexity class
problem convexification, 90
problem regularization, 216

back-pressure routing, 226
dual adaptive routing, 218–20
dual gradient algorithms, 217
multi-path congestion control, 238
in Net2Plan, 361

program nonlinear. See nonlinear problem
propagation, multi-path, 99
protection recovery, 39–43

dedicated, 39–43, 79, 155, 269, 293–97
segment, 85, 155, 359
shared, 39–43, 50, 269, 293–97
topology design, 150, 154

proximal minimization algorithm, 216, 238
PTAS (Polynomial-Time Approximation

Scheme), 355–57
PTAS reduction, 356

Quality of Service (QoS), 19
cross-layer congestion control and QoS

capacity allocation, 247–50
quenching, rapid (SAN), 277
queueing delays. See buffering delays
queueing theory, and optimization, 5

radius, spectral, 16, 193
rapid quenching, SAN, 277
RCL (restricted candidate list), in

greedy-randomized algorithms,
283–84

RED (Random Early Discard), 134, 136
reduced load approximation, 32
regularization, problem. See problem

regularization
regular point, 242, 332
reinforcement scheme, in ACO, 284–86
renewal packet sources, 24
Reno. See TCP (Transmission Control

Protocol), Reno
restoration recovery, 40

availability estimation, 42
lightpath, 269, 293, 296
routing, 80–81
topology design, 150, 154

restricted candidate list
in CPLA, 58–59
in greedy-randomized algorithms. See

RCL (restricted candidate list), in
greedy-randomized algorithms

retransmission timer. See TCP
(Transmission Control Protocol),
retransmission time-out

right-hand side allocation. See
decomposition, problem, primal

ring-topology constraints, 148
Rise Over Thermal. See ROT
ROT (Rise Over Thermal), 114, 118, 209
roulette wheel selection, 289
round-robin, ECMP, 78
round-trip-time. See RTTs
routing, 21–22

adaptive routing. See adaptive routing
anycast, 72–73
back-pressure. See back-pressure routing
destination-based. See destination-based

routing
flow-based. See flow-based networks
hop-by-hop, 71, 258
integral, 77, 267
multi-hour, 81–82, 156, 192
non-bifurcated. See non-bifurcated

routing
oblivious, 81–82, 86
strictly well-defined, 67, 69–70
well-defined, 67, 69–70

routing tables, 53

Trim Size: 6.625in x 9.625in Mariño bindex.tex V3 - 02/11/2016 6:34 P.M. Page 373�

� �

�

Index 373

Markov chain representation, 69
multidomain routing, 258
shortest-path routing, 77
strictly well-defined. See routing,

strictly-well defined
well-defined. See routing, well-defined

from xte variables, 67
RTTs (round-trip-time), 125–36, 138–39

SAN (Simulated Annealing), 276–78
satisfiability problem (SAT), 351–53
scaled projected gradient algorithm. See

gradient algorithms, scaled projected
SDH (SONET), 19, 39, 53, 96, 155
SDN (Software Defined Networking), 218,

266
s.d.n. See matrix, semidefinite negative

(s.d.n)
s.d.p. See matrix, semidefinite positive

(s.d.p)
semidefinite negative. See matrix,

semidefinite negative (s.d.n)
semidefinite positive. See matrix,

semidefinite positive (s.d.p)
semispace, 243, 315
separable

feasibility set, 164, 170, 184
optimization problem, 107

Sequential Unconstrained Minimization
Techniques (SUMT), 187

Service Level Agreements (SLAs), 37–38
Shared Risk Groups. See SRGs
Signal-to-Noise Ratio. See SNR
simplex method, 317–18
Simulated Annealing. See SAN
single-class traffic, 28–29

blocking probability, 32, 34
slack variables. See variables, slack
SLAs (Service Level Agreements), 37–38
Slater conditions, 329

in CSMA window optimization, 112
in dual algorithms, 215

slow-start phase. See TCP (Transmission
Control Protocol), slow-start

SNR (Signal-to-Noise Ratio), 100–101
in cross-layer optimization, 253–54

in transmission power optimization, 114,
205–7

social welfare maximization principle, 44,
121

solvers, 66
combined with heuristics, 295–96
CPLEX. See CPLEX solver
GLPK. See GLPK solver
IPOPT. See IPOPT solver
in Net2Plan/JOM, 360
numerical instabilities, 118
producing isolated cycles, 63
strict inequalities, 314–15
topology design, 141, 267

SONET. See SDH
source-routing, 71
spectral, radius. See radius, spectral
splitting rule, forwarding, 77–78

hash-based, 78
SRGs (Shared Risk Groups), 40–41

1+1 SRG-disjoint, 79–80
general availability model, 41–43
in Net2Plan, 40, 359
network restoration, 80
simplified availability model, 41

SS7, 154
stability, algorithm, 162
starvation, 44
Steiner tree problem, 74

complexity, 357
step size dimensioning hints, 177
Stirling’s formula, 113
strictly concave. See concave functions,

strictly
strictly convex. See convex functions,

strictly
strong duality, 328–29

in CPLA, 60
in dual gradient algorithm, 169, 215–16,

245
in optimality conditions, 330–32,

336–37
in primal decomposition, 243–44
in sensitivity analysis, 337, 339
in stop criteria, 177

subdifferential, 306

Trim Size: 6.625in x 9.625in Mariño bindex.tex V3 - 02/11/2016 6:34 P.M. Page 374�

� �

�

374 Index

subgradient algorithms, 172–74, 225, 243
subgradients, 307

dual function, 169, 214–15, 217, 225,
327

noisy unbiased, 174
of perturbation function, 57, 242, 339
in primal decomposition, 242–43,

247–48, 257
and supergradients, 214, 307

sub-level sets, 310–11, 315
sublinear convergence rate. See

convergence rate, sublinear
SUMT (Sequential Unconstrained

Minimization Techniques), 187
supergradients, 214, 245, 307
superlinear convergence rate. See

convergence rate, superlinear
survivability, 42–43, 50, 295, 298
Suurballe’s algorithm, 80, 86
swarm intelligence, 283
switching systems, 1–5

tabu search. See TS
Taylor approximation

first order, 306
second order, 304

TCP (Transmission Control Protocol),
124–36

Compound , 126
elephant connections, 21, 120, 122, 125,

127–28, 134
fast recovery, 128–29
mouse connections, 120, 134
retransmission timer, 125, 127
slow-start, 127
New Reno , 126
packet misorder , 78, 128
Reno , 126–28, 130–31, 138, 181
Tahoe , 126
TCP-AQM Interplay , 135
transmission window , 125–27
Vegas , 126, 131–33, 138, 181, 249

telecommunication systems, 1
time complexity, exponential worse case,

317
Time Division Multiplexing (TDM), 101

topology design problems, 141–57
traffic demands, 19

anycast, 20–22
broadcast, 21, 74
elastic, 21, 121–23
multicast, 21
unicast, 20–21

traffic matrices, 20
multi-hour, 81
Net2Plan, 360–61

transition matrix, 69–70
transmission aggressiveness, 110–11,

231
Transmission Control Protocol. See TCP
transmission power optimization, 113–15,

118
cross-layer, 253–54, 264
primal algorithm, 206–10, 212
stopping criteria, 176

transmission window. See TCP
(Transmission Control Protocol),
transmission window

transponders. See lightpaths, transponders
Traveling Salesman Problem. See TSP
trunk reservation, 33
TS (tabu search), 278–81

aspiration criterion, 280–81
medium-term memory, 280
reactive TS, 280
tabu tenure, 279–81

TSP (Traveling Salesman Problem),
348–49

approximation algorithms, 354
co-TSP, 349
crossover in EAs, 289
decision vs. optimization problem,

352–53
TSP (Traveling Salesman Problem),

class, 353
TSP (Traveling Salesman Problem),

-completeness, 357
Turing algorithm, 342
Turing machine, 342
Turing reducible, polynomial-time.

See polynomial-time, Turing
reducible

Trim Size: 6.625in x 9.625in Mariño bindex.tex V3 - 02/11/2016 6:34 P.M. Page 375�

� �

�

Index 375

unavailability, 43, 85
unconstrained problem, 161

optimality conditions, 332
scaled gradient convergence, 167

unicast demands. See traffic demands,
unicast

utility funcion, 𝛼-fair, 45
utility function. See network utility

variables
complicating. See variables, coupling
coupling, 242, 246, 263–65
dual. See Lagrange multipliers
slack, 57

vertex, of a polyhedron, 316–18
vertex cover problem, 355

approximation algorithm, 355
vicinity set, 270

local search, 273–74
node location problem, 298
OSPF weight optimization, 269, 298
solution coding, 273

virtual links, 153–54
virtual topology, 153–54

wavelength
fading, 100
optical. See Wavelength Division

Multiplexing (WDM)
wavelength clashing, 84

wavelength conversion, 153
Wavelength Division Multiplexing (WDM),

292
equipment availability, 39
See also IP networks, multilayer IP over

WDM
WCDMA, 101
weak duality, 326
Weierstrass theorem, 314
well-conditioned problem, 168
WiFi, 7, 101
window

back-off. See back-off time (CSMA)
transmission. See TCP (Transmission

Control Protocol), transmission
window

window-based flow control. See TCP
(Transmission Control Protocol),
transmission window

wireless
channel, 99–100
propagation speed, 24

wireless networks, 100–101
modeling, 101

zigzagging, gradient algorithm, 169
barrier methods, 186
exterior penalty methods, 187
heavy-ball, 179
stochastic, 175

	10.1002@9781119114840.ch0.pdf (p.1-22)
	10.1002@9781119114840.ch1.pdf (p.23-33)
	10.1002@9781119114840.ch2.pdf (p.34-42)
	10.1002@9781119114840.ch3.pdf (p.43-72)
	10.1002@9781119114840.ch4.pdf (p.73-107)
	10.1002@9781119114840.ch5.pdf (p.108-139)
	10.1002@9781119114840.ch6.pdf (p.140-160)
	10.1002@9781119114840.ch7.pdf (p.161-177)
	10.1002@9781119114840.ch8.pdf (p.178-201)
	10.1002@9781119114840.ch9.pdf (p.202-231)
	10.1002@9781119114840.ch10.pdf (p.232-257)
	10.1002@9781119114840.ch11.pdf (p.258-283)
	10.1002@9781119114840.ch12.pdf (p.284-318)
	10.1002@9781119114840.ch13.pdf (p.319-330)
	10.1002@9781119114840.ch14.pdf (p.331-358)
	10.1002@9781119114840.ch15.pdf (p.359-376)
	10.1002@9781119114840.ch16.pdf (p.377-379)
	10.1002@9781119114840.ch17.pdf (p.380-392)

