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Preface 

In the mathematical description of a physical or biological process, it is a common 
practice \0 assume that the future behav ior of Ihe process considered depends only 
on the present slate, and therefore can be described by a finite sct of ord inary diffe­
rential equations. Thi s is satisfactory for a large class of practical systems. However. 
the ex istence of lime-delay elements, such as material or infonnation transport, of­
tcn renders such description unsatisfactory in accounting for important behaviors of 
many practical systems. Indeed. due largely to the current lack of effective metho­
dology for analysis and control design for such systems, the lime-delay elements arc 
often either neglected or poorly approximated, which frequently results in analysis 
and si mulation of insuffic ient accuracy, which in turns leads to poor performance 
of the systems designed. Indeed, it has been demonstrated in the area of automatic 
control that a relatively small delay may lead to instability or significantly deteriora­
ted perfonnances for the corresponding closed- loop systems. 

In order to reliably analyze and design feedback controls for such systems, it 
is necessary to consider the fact that the system's future behaviors depend on not 
on ly the current value of the state variables, but also some past history of the state 
variables. These systems arc called lime-delay systems (also known as hereditary 
systems or systems with aftereffects). Examples of system clements which cause 
time delays incl ude: the measurements of system variables (engineering process), 
the physical natu re of some system's components (engineering systems, such as hy­
droelectric power systems; biological and ecological systems, such as population 
dynamics) or signal transmissions (power and communication systems). According 
to the causes of delays, we may rough ly classify them as physically inherent de­
lays (physical or biological systems), technological delays, transmission delays, and 
ill/ormatioll delays. 

To effectively deal with time-delay systems, the TCsearchers and practitioners in 
the systems and control fi elds are faced with three natural issues: I) How to ma­
thematically describe such systems in a form which is convenient for analysis and 
design? 2) How to analyze a given system to extract some fundamental propenies 
such as stabi lity? and 3) How to design a control via feedback principle 10 achieve 
stability and satisfy prescribed perfonnance requirements? 



VI Preface 

Regarding the fi rst issue, there are main !y three ways of representing dynamica! 
systems with time delays based on the differentia! interpretations of the "states"; dif­
ferentia! equations on abstract spaces of infini te dimensions, functional differential 
equations, and differential equations over rings and modules. Each representation 
has its advantages and di sadvantages, and the choice often depends on the specific 
problem to be solved. The readers will sec various examples regarding the second 
and the third issues in the chapters to follow. 

Background, purpose, and intended audience 

In recent few years, we have witnessed substanti al increase of research activ ities in 
the fi e ld of time-delay systems, as ev ident from the large volumes of publications 
and conference presentations. The purpose of this book is to bring together specia­
lists working on various aspects of time-delay systems with different background 
such as mathematics, engineering, control systcms theory, and present some of the 
important progress of research on the theory, methodology, new applications as well 
as overviews of background materials. Most of the chapters arc based on the ma­
terials presented in the CNRS-NS F Workshop "Advances in Time- Delay Systems" 
held in Paris in January 22- 24, 2003. We believe the interdi sciplinary nature of the 
subject can benefi t greatly from contributors of diversified background . 

Similar to robust stability and control theory for finite dimensional systems, the 
analysis and design of time-delay systems have benefited substantial ly from the avai­
lability of amazing computational power due to Ihe breathtaking pace of the deve lop­
ment of modern computers as well as modem numerical procedures such as semi­
definite programming. On the other hand, important numerical issues continue 10 
emerge to challenge the researchers in this area. For ex ample, an implementation of 
distributed feedback control may lead to instability even for very small error, as dis­
cussed by Michiels, et al (the last chapter of Part IV). It is also desirable to evaluate 
the design algorithms on the growth of the computational requirements as the size of 
the system grows. This book is published as a volume in the series of Lectu re Notes 
in Computational Science and Engineering (LNCSE) with a hope that it will raise 
the awareness in the systems and control community on the computational issues in­
volved in the subject. At the same time, we hope to call to the attention of the experts 
in the computational area regarding the challenges and opportunities in the area of 
time-delay systems. 

The book should be of interest to both researchcrs and practitioners in this area, 
as well as those new to the area. The reporting of the newest progress in various 
fronts of this rich area is clearly of interest to researchers and practitioners who are 
concerned with the newest tools available and remaining challenges. For those new 
to the area, the overviews of background materials wi ll al low them to develop a sense 
of the issues involved, and familiari ze themselves on the topics studied in this area, 
and find from the chapters the speci fic topics they are interested in. 
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Book outline 

We have divided the book into seven parts, with topics ranging from stability ana­
lysis, numerical analysis, to applications. In sol iciting the contributions, we have 
sought to present a wide range of topics which we feel important and avoid redun­
dancy. We have also provided a table of index to allow the readers to quickly locate 
the specific topics discussed. It should be pointed out that the subjects discussed in 
many chapters arc relevant to more than one part, and indeed can be naturally put in a 
different part from where they are now. Therefore, in the following, we will provide 
a brief description of each chapter to highlight the main topics discussed. 

PART l. BASIC THEORY 

This part contains onc chapter contributed by VerdIlYII-LlIllel. It introduces many 
basic concepts and important results of time-delay systems by considering linear 
systems with a single delay. Many of these concepts are used repeatedly in the sub­
sequent chapters. An abstract differential eq uation approach is used. It is a nice illus­
tration that some of the properties may be easily obtained which would be very dif­
ficult to obtain using other approaches. 

PART II. STABILITY AN D ROBUST STABILITY 

This part discusses the stability problem oftime-delay systems. The stability cri­
teria may be either dependent or independent on delays. It contains four chapters. 
Since stability is one of the most important properties of systems theory, it is a re­
curring scene in othcr parts of the book as well. 

The first chapter, contributed by KhariroTlov, discusses the construction of com­
plete quadratic Lyapunov- Krasovskii functionals for linear systems. The result has 
important implications in robust stability under uncertain perturbations, as well as ef­
fective numerical implementations of Lyapunov approach 10 the stability and robust 
stability problem. 

The next two chapters use the other main approach frequently used in the stabi lity 
problem- frequency domain approach. The second chapter of thi s part, contributed 
by Chen alld NiculesclI, deals with the robust delay-independent stability of quasipo­
lynomials in the fonn of frequency-sweeping tests. The third chapler, contributed by 
Sipahi and algae. discusses a method of checking the stability of quasipolynomials 
by considering the crossing of its roots as the delays increase. 

The last chapter of this part, contributed by Bliman, attempts to build links for 
both Lyapunov and frequency domain approaches for delay-independent stability. It 
provides a unified view on various approaches for studying stability of time-delay 
systems, parameter-dependent systems, and structured singular values. 

PART III. CONTROL, IDENTIFICATION, AND OBSERVER DESIGN 

This part discusses the design of controllers to render the system stable and sa­
ti sfy perfonnance specifications, the identifiability and identifier design of system 
parameters, as well as the observations of system states. 
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The fi rst three chapters consider the feedback control using inputs which tire sub­
ject to delays. As is well known. thi s scenario occurs repetlledl y in practical tlppli ­
cations. 1lle fi rst chapter in this part, contributed by Mandie and Loiseau, discusses 
finite spectrum assignments. The next chapter, contributed by Rtlsval/ and Popescl/ , 
uses an elementary approach based on a variant of the Smith predictor, and discusses 
some implementation schemes. The implementation issue will be revisited in Ptlrt 
IV. 

The th ird chapter in th is part, contributed by Mazenc, Mandie, and NiculesC/l, 
discusses the possibility and specific control design for systems which are subject to 
arbitraril y large delays, and the open-loop systems are oscil lators. 

The next chapter, contributed by Be/kaura, et aI., discusses the identifiability of 
system parameters using the measured data, and the design of parameter identifica­
tion schemes. 

The last chapter in this part, contributed by Fa/fO ul! alld Sellame, discusses the 
design of robust observers for uncertain linear systems. 

PART IV. COMPUTATION, SOFTWA RE, AND IMPLE MENTATION 

This part tackles the numerical , computations and implementation issues. The 
fi rst chapter, contributed by Bellell alld Zemwro, discusses the numerical solution of 
delay-differential equations using a variable stepsize Runge- KUlla method. 

The next chapter, contributed by Roose, et al., describes a Matltlb soft ware pa­
ckage "DDE-B1FTOOL," which is capable of carrying out the stability and bifurca­
tion analysis for parameter-dependent systems of delay-differential equations. 

The third chapter, contributed by Da/ko, proposes two schemes of checking the 
stability of systems, based on variants of Lyapunov and analytic function approaches, 
and take advantage of exi sting numerical packages such as Matlab. The fourth chap­
ter, contributed by Louisell, discusses the numerical calculation of exact upper bound 
of real parts of system eigenvalues. 

The last chapter in this part, contributed by Michiels, et 01., discusses the im­
plementations of distributed delay control laws, which is often arrived at by a finite 
spectrum assignment. It illustrates the mechanism of losing stability in point-wise 
approximation and proposes safe implcmenttltions of distributed delay control laws. 

PA RT V. PARTI AL DIFFERENTI AL E QUATIONS, NONLI NEA R AN D N EUTR AL SyS­

TEM S 

This part considers the time-delay problem in the partial difTerential equations, 
nonlinear systems, as well as systems of neutral type. 

The first chapter, contributed by Hale, illustrates the possibility of synchroniza­
tion of systems defined by partial differential equations through the boundary inter­
action. This is carried out by considering lossless transmi ssion lines which interact 
through resistive coupling al the end of the lines. An equivalent formulation in terms 
of a set of partial neutral functional differential equations is used to solve the pro­
blem. 
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The next chapter, contributed by Fridman, generalizes the output regulation of 
non linear systems to neutral time-delay systems. The condition is in the form of a 
set of partial differential and algebraic equations. 

The third chapter, contributed by BOllnet and Partington, discusses the robust sta­
bility and stabilization oftime-de1ay systems, including those of neutral type, usi ng a 
SIBO stabi lity framework. The fourth chapter, contributed by Rabah, Sklyaralld Re­
ZOllllenko, addresses the stability and stabilization problem based on the framework 
of the strong stabil ity. 

The last chapter in this part, contributed by Rodriguez. Dion, alld Dugard dis­
cusses the delay-dependent robust stability of neutral time-delay systems with a 
nonn-bounded nonlinear and time-varying uncertainty using a Lyapunov approach. 

PART VI. ApPLICATIONS 

This part presents some applications of time-delay systems. The first chapter, 
contributed by Yuan, Efe, alld Ozbay, di scusses modeling and control of cavi ty 
now. The second chapter, contributed by Annaswamy, deals with the active-adaptive 
control of acoustic resonanee nows related to propulsion and power generation sys­
tems. 

The third chapler, con tributed by Lozano, et al., discusses a robust prediction­
based control for time-delay systems with unstable open-loop systems. The method 
is implemented in the real-time control of the yaw angle displacement of a 4-rotor 
mini-helicoptor. 

The fourth chapter, contributed by Taolltaoll, Niclilescu, and Gil, discusses the 
stability analysis of a teleoperation system subject to constant or time-varying com­
munication delays. 

The fifth chapter of thi s part, contributed by TarbOllriech, Abdallah, alld Ariola, 
discusses bounded control of systems with multiple delays with specific applications 
to ATM networks. 

The last two chapters, contributed by Birdwell, et 01., and Hayat, et al., respec­
tively, discuss dynamic time-delay models of load balancing in parallel computing. 
One of them uses dctennin istic models, and the other carries out a stochastic analysis 
of the e lTect of delay uncertainty. 

PART VII. MISCELLANEOUS TOPICS 

The last part of this book discusses a number of other topics of interest in time­
delay systems. The first chapter, contributed by Verriest, is an overview of stochaslic 
time-delay systems. The last chapter, contributed by Haddad and Chellaboilla, pre­
sents an extension to time-delay systems of the stability and Dissipativity theory for 
nonnegative and compartmental systems. 
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Basic Theory for Linear Delay Equations 

Sjocrd M. Verduyn Lunei 

Mathematisch lnstimut, Universiteit Leiden, P.O. Box 9512. 2300 RA Lciden, The 
Netherlands 
verduyn@ math . leid enuniv. nl 

Summary. For dynamical systems governed by feedback laws, time delays arise naturally in 
the feedback loop to represent effeclS due \0 communication, transmission, transponation or 
inenia elTeets. The introduction of time delays in a system of differential equations results in 
an infinite dimensional stale space. The solution operator becomes a nonsel f-adjoint operator 
acting on a Banach space of segments of functions. In this chapler we discuss the state space 
approach, the solution operator and ils spectral pro)X!l1ies for differential delay equations. As 
an application we present strong convergence results for series expansions of solutions and 
construct examples of solutions of delay equations that decay fastcr than any exponcntial. 

I Introduction 

The aim of this chapter is to present the basic theory for linear autonomous delay 
equations. The topics incl ude the very definit ion, the state space approach, the so­
lution operator and an analysis o f the spectral properties of autonomous d iffere ntial 
delay equations. As motivation for the theory that we develop in this chapter, we 
briefly discuss some examples. 

In the implementation of any feedbac k control system, e.g., the control o f partial 
differential equations through the appl ication of forces on the boundary, it is very 
li kely that time delays wi ll occur. There fore, it is of importance to understand the 
sensitivi ty of the control system with respect to the introduction of small delays 
in the feedback loop. For some systems, small delays lead to destabilization while 
other systems are robust wi th respect to smalltime delays. In [ II ] a first attempt was 
made for a unifying theory which explai ns the underly ing mechan isms in terms of 
spectral properties of the solution operator. See also [12,29] for applications towards 
stabilization of neutral differential delay equations. 

The second example concerns the identifiab ility of unknown parameters that ap­
pear in differential delay equations. Parameter identifiabi lity is concerned with the 
question whether the parameters o f a specific model can be identified from know­
ledge about certain solutions of the model, assuming perfect data. Using the solu­
tion operator approach condit ions for identifiabil ity of parameters and time delays 

S. -I. Niculescu et al. (eds.), Advances in Time-Delay Systems
© Springer-Verlag Berlin Heidelberg 2004



4 Sjocrd M. Verduyn Lund 

In linear differential delay equations, assuming knowledge of particular solutions 
on bounded time intervals, can be given. Completeness of the eigenvectors and ge­
neralized e igenvectors of the solution operator plays a crucial role in these results 
( 126,28]). 

Fig. I. Chaotic behaviour of the solutions or (I) for the initial data !f(B) = 2, -1 :5 8 :5 o. 

To illustrate how complicatcd the behaviour of scalardiffcrential delay cquations 
can become, we plot the solution of 

x(1 - I ) 
x(l ) ~ - 5x(') + 101+ x l' 1)8 ' Xo = !p , ( I) 

with initial data !p(O) = 2 for - 1 .:5 t .:5 0 in Fig. I. Equation (I) was introduced 
and studied by Mackey (7J as a model to describe different periodic diseases. Note 
that the sol ution intersects the steady state x(t) = 1, but this turns out not to be a 
contradiction to the uniqueness of solutions because the states of the solutions are 
different (see Section 2). 

We concl ude this introduction with an outline of the chapter. In Section 2 we 
define the state of a solution and discuss existence and uniqueness of solutions. In 
Section 3 we discuss a functional analytic approach toward differential delay equa­
tions based on semi flows which is essential in the modem treatment of differential 
delay equations. In Section 4 we discuss the spectral theory for autonomous delay 
eq uations. For autonomous equations the theory is well developed,see [10], but since 
we restrict our attention to the special case of one point delay - relevant in applica­
tions as we have seen - it is possible to present a novel simpler approach based on 
resolvent estimates for the characteristic matrix and series expansions of sol utions. 
We discuss completeness and noncompleteness results, the existence of solutions 
that decay faster than any exponential , and the convergence of series of spectral pro­
jections. Our results extend earlier results in [1,2, 18]. Further extensions to linear 
periodic delay eq uations and to neutral equations can be found in [27,29]. 
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2 Basic Theory for Delay Equations 

In this section we present a short introduction to the basic theory for differential 
delay equations. We start to discuss the existence and uniqueness of sol utions and 
then continue with a discussion of linear autonomous delay equations. 

2.1 Existence and uniqueness of solutions 

Since all OUf examples are of the form 

xl') ~ F(x('), x(' - T», t;::: 0, (2) 

where F : lR" x IR" -+ IR" is a Lipschitz continuous vector field and the time delay 
T ~ 0 is a fi xed real number, we shall restrict the introduction to the basic theory of 
equations of th is type. 

The solution of (2) is defined to be a vector-valued function x : (-T, 00) -+ IR" 
satisfying (2) for positive ti me. A moment of reneetion indicates that, in order for (2) 
to have a unique solution, the minimal amount of infonnation of initial data is given 
by a continuous function on the interval (- T,O] . 

In fact, if x(t) = <p(t) for -T :s; t :s; 0, where rp is a given continuous func­
tion, then the solution x{t) for 0 :s; t ::;: T satisfi es the nonautonomous ordinary 
differential equation 

x(t) ~ F(x('), 'P(' - T)) forO ::;: l::;: T, x(O) = <p(0). (3) 

This equation has a unique solution and the solution of (3) on [0, T] coincides with the 
solution of(2) on [0, T] with initial data rp on [-T, 0] . Once the solution x is known on 
[0, Tj, we can repeat the same procedure, starting with the solution on [0, T], to find 
the solution x(t) for T :s; t :s; 2T, etc. Thi s process is called the method of steps and 
yields a unique, globalJy defined, solution x( . ; <p) of (2), given an in itial condition 
<p on [-T,O]. Note that the solution becomes smoother in t as t increases. If we 
start with a continuous function on [-T, 0], then the solution x( . ; rp) is continuously 
differentiable on (0, T), twke continuously differentiable on (T, 2T), etc. 

From the method of steps, it also follows that, in general, solutions of (2) are only 
defined on [-T, 00). Backward continuation of solutions of differential delay equa­
tions for negative time requires additional smoothness of the initial function rp on 
[-T, 0]. Furthermore, there is the additional problem that, if there exists a backward 
continuation, then this backward continuation is not necessari ly unique, see Theorem 
5. 

Si nce there is only one time delay in equation (2), we can rescale time and assume 
that T = l. To understand the large time behaviour of solutions of (2), one begins 
with an analysis of the behaviour of solutions of (2) near steady states. A steady 
state of (2) is a solution of the form x(t) = x, where x is a solution of the algebraic 
equation F(x, x) = O. To understand the behaviour of solutions near a steady state, 
one has to linearize around the steady state x. This results in an autonomous linear 
delay equation 
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(4) 

with Bo = Dl F(x, x) and Bl = D 2F(x, x ). Here Di denotes the partial deri vative 
of the function F with respect to the itll variable. 

Next we prcsentthe basic theory for linear autonomous delay equations. 

2.2 Linear autonomous equations 

For autonomous linear delay equations the theory is well-developed, using principles 
from the theory of Laplace transformation. If we define C(x) to be the Laplace trans­
form of the function x, i.e., 

and apply the Laplace transform to the autonomous equation (4) with initial data 
x(8) = tp(8) for - 1 'S 8 $ 0, we obtain 

Ll(z)£(x)(z) = tp(O) + Bl 11 e-Z1tp(t - I )dt , (5) 

where Ll(z) denotes the characteri stic matrix of (4) and is given by 

(6) 

The idea is to obtain an explic it representation of x by using the inverse Laplace 
transform, the Cauchy theorem and a residue calculus. In order 10 follow this ap­
proach, we need good estimates for Ll(z )- 1 when z approaches infinity. 

Since the zeros of the determinant of Ll(z), i.e., the roots of the equation 

(7) 

satisfy a transcendental equation, there are, in general, infinitcly many zeros. Cha­
racteristic equations of type (7) arc well-studied (d. [2,201). 

The asymptotic behaviour of the solutions of (4) as t tends to infinity is comple­
tely controlled by the behaviour of the roots of the characteristic equation (7). 

Theorem I. Let x be the solution of(4) corresponding to an initial function tp. For 
any"f E IR such that (7) has no roots on the fine Rc z = "f, we have the asymptotic 
expansion of the solution 

m 

x(t) = LPi(t)e~;t + o(e, t) for t -1 00, 

i =1 
(8) 

where '\1 , ... , Am are the jinitely mallY roots of(7) with real part exceeding "f and 
where PI (t) , .. . ,Pm (t) are polynomials in t. 
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Corollary I. All solutions of (4) conl'€rge 10 zero exponentially as t --t 00 if alld 
ollly if (7) has I/O roots in {he right half-plal/e {z I Re z 2: O}. 

Therefore questions about exponential stability of steady states of (2) can be 
reduced to questions about the location of the zeros of the entire function det Ll(z) 
where Ll(z) is given by (6). 

The proof of Theorem I is based on the representation of the solution x of (4) 
using the inverse Laplace transform. From (5) and properties of the characteristic 
roots, it foJlows that 

(9) 

Next the idea is to shift the line of integration to the left, while keeping track of the 
residues corresponding to the singularities of Ll(z) - t that we pass (see [10, 10] for 
details). 

What happens when we let 1'0 --t - 00 in the series expansion (8)? Do we get 
a convergent infinite series and if so, is it a faithfu l representation of x(t) or does 
x(t) contain a component wh ich goes to zero (as t --t 00) faster than any exponen­
tial? A solution which does go to zero faster than any exponential is called a small 
solutiO/I. How do we recognize from the characteristic matrix Ll(z) whether or not 
small solutions ex ist? And how do we recognize whether the infinite expansion in 
polynomial -exponential functions is convergent and represents the solution for arbi­
trary initial data or, otherwise, how can we characterize those initial data for which 
it does? 

For autonomous functional differential equations the importance of these ques­
tions have already been addressed in [1 ,3,4, 19}. 

In the next section we shall outline this approach which is based on analyzing 
solution operators acting on function spaces of initial data rather than analyzing C"­
valued solutions. We explain the natural connection between the questions above 
and very interesting quest.ions about the completeness of systems of eigenvectors 
and generalized eigenvectors of nonself-adjoint operators. 

3 A Functional Analytic Approach 

The dynamical system approach to differential de lay equations is to associate with 
(2) a seminow acting on the space of initial data, defined by the time evolution of 
segments of solutions (see Fig. 2). 

Let C denote the Banach space of continuous functions defined on the interval 
[- I , D] with values in C', provided with the sup-norm 1I!.p1l := sUP_t <9 <oIIP(0)1 
for !.p E C. If the solution of (2) with initial data x(O) = !.p(0), - I ~- 0- ~ 0, is 
denoted by x( . ;!.p) and the state of the solution x( . ; IP) is defined by 

x,(O;~) ~ x(t + 0; ~), - I :<:;0:$0, 
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then the semiflow L'{t ; .) ; C --t C is defined by 

-1 o 1-1 _ time 

slale al lime I 

Fig. 2. The state space approach 

3.1 Linear autonomous equations 

The linearization of the semiflow L'(t ; . ) around an equilibrium leads to a strongly 
continuous semigroup T(t) defined by translation along the solutions of (4). i.e., 
T(t)<p = Xt. where x the solution of 

x(t) = Box(t) + B,x(t - 1), xo =<p, ipEC. (10) 

An important observation is that the evolution of the state Xt is given by an abs· 
tract ordinary differcnlial equation in the infinite dimensional state space C. Given 
equation (10) this abstract ordinary differential equation can be computed explicitly 
and is given by 

d. 
dt = Au, u(O) = <p, <p E C, ( It) 

where A(C --t C) is an unbounded operator defined by 

{
A'P 
V(A) 

-<1£ -" 
~ ('I' Eel A'P E C "d ~(O) ~ Bo'P(O) + B,'P( - l )) 

(12) 

and u ; [0,00) --t C is given by u(t) = It for t ?: O. Thus, the system of diffe­
rential equations (10) with time delays can be viewed as a transport equation with 
nonlocal boundary conditions. Furthennore. the sol utions of (10) are in one-to-one 
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correspondence with the solutions of the infi nite dimensional ordinary differential 
equation ( I I) and this correspondence is £iven by 

u(')(O) ~ xl'). 

This observat ion ori£inated with Krasovskii and has been crucial in the development 
of the qualitative theory of differential delay equations. 

The semi£roup T(t) satisfies the followin£ basic properties 

0) T(O) ~ I; 
(i i) T(t + s) = T(t)T(s) for t , s 2: 0; 

(ii i) for every VJ E C, the maps l --t T(t )VJ are continuous. 

Furthennore, the operator A defined by ( 12) is the infinitesimal £enerator of the 
semigroup T(t) and is fonna lly defined by 

. 1 
AVJ := hm ~ [T(t)VJ ~ VJ] for every VJ E V(A), 

t.j.O t 

where V(A) consists of all VJ E C for which the limit in ( 13) exists. 
The growth bound ofT(t) is defined by 

. 1 
Wo ,~ hm - log IIT(')II. 

t ..... oo t 

(13) 

It is known that Wo < 00 and that, for Re z > wo, the resolvent of A equals the 
Laplace !ransfonn of the semigroup T (t) 

(zl ~ A)- t = 10
00 

e- ztT(t) dt for Re z > Woo ( 14) 

Let >. E a(A) be an ei£envalue of A, the kernel N( >'1 ~ A) is called the 
eigenspace at >. and its dimension d:.. the geometric mllltiplicity. The generalized 
eigenspace M>. is the smallest closed subspace that contains all .IV( (>.1 - A)i ), j = 
1, 2, ... and its dimension is called the algebraic "wltiplicity. It is known that there 
is a close connection between the spectral properties of the infinitesimal generator 
A and the characteristic matrix Ll(z) associated with ( 10) (cf. (JOJ and [ 16]). In 
particul ar, the geometric mul tipl icity d:.. eq uals the dimension of the null space of 
Ll(>') at >. and the algebraic multipl icity is equal to the mul tiplicity o f z = >. as a 
zero of det Ll(z) . Furthennore, the generalized eigenspace at >. is given by 

where k:.. is the order o f z = >. as a pole of Ll(Z) - I. The eigenval ue>. is called 
simple if rn>. = L 

Let {¢! , . . . ,¢m~ } be a basis of e igenvectors and generali7..cd eigenvectors of A 
at >.. Define the row m>. -vector <P = {¢1," . , ¢"" ,}. Since M:.. is invariant under A. 
there exists a m>. x rn:.. matrix M such that A<P = pM. The action of the semigroup 
T(t) on <P is given by T(t)<P = <Pew. In part icular, it follows that <P(8) = <P(O)e8M , 
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- 1 :S 8 :S O. So, in order to obtain a complete description of the subspace M~, we 
have to compute p(O). 

From standard spectral theory it follows that the spectral projection onto M~ 
along n( ()"I - A)k~ ) can be represented by a Dunford integral 

1 f ( -, PA = - . z I - A) dz , 
27rl r;,. 

( 15) 

where r A is a small c ircle such that)" is the only singularity of (z I - A)- I inside 
r~. A direct computation yields the following representation for the resolvent o f A 

_ , 1 
(d - A) ~ ~ de' Ll('{(' ) ~' (16) 

where 

(P( , )~) (8) ~ e" { adj Ll( ' )[~(O) + B, [ e- N ~(a - I) da] 

+ det.6.(z) lO e- zt>"r.p(a) dO} (17) 

For example, if)" is a simple e igenvalue, this representation together with formu la 
(15) can be used to obtain an explicit representation for the spectral projection onto 
the eigenspace corresponding to a simple eigenvalue 

PArp = Res (z I _ A)- lrp 
::= A 

~ e" HC'\)(~CO) + B, [e- '" 'Pca - l )da). (18) 

where H()") = lim:-+A(z - )")Ll(Z) - 1 is the residue of .6.(Z)-1 at z = )... 
Equivalently, we can wri te PArp = (¢~ , rp)¢~ , where ¢A is an eigenvector at).. for 
A,1>; is an e igenvector at).. for A" and (1);,¢~) = 1 (here (.,.) denotes the duality 
pairing between C and the dual space CO). For example, consider the system of delay 
equations (10) with Bo = O. The characteristic matrix is given by .6.(z) = zI -
B1e-: and, for every simple rool of det .6.(z), the spectral projection P" is given by 

See [6] for details and for applications 10 the large lime behav iour o f solutions of 
differential delay equations. 

Thus <1>(0) can be found by providing a basis for the range of P~. In [1 6] and Sec­
tion IVA of [10] a systematic procedure has been developed to construct a canonical 
basis using Jordan chains. We shall here describe the underlying idea. 

Definition 1. A sequence of vectors {1>0 , 1>1 , ... ,¢r- I} in C with 1>0 cf; 0 is called 
a Jordan chain of A at ).. if 
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A¢n = '¢n, 

for j = 1, 2, ... , r - 1. The integer r is called the ral/k of the Jordan chain Note that 
<Po is all eigellvector of.4, the vectors ft, . . . , fr - l are called generalized eigenvec­
tors at >.. 

One can organize Ihe Jordan chains according to Ihe following procedure [9]. 
Choose an eigenvector, say fi'o, with maximal rank, say rl. Next, choose a Jordan 
chain 

{
A.I,O ..I.t , r, - Ij 
'*").. , ... , 't'),. 

of lenglh rl and let NJ be Ihe complement in N( >'1 - A ) of the subspace span ned 
by fi'o . In NI we choose an eigenvector ¢~,o of maximal rank , say r2, and let 

be a corresponding Jordan chain of length T2. Next let N2 be the complement in 
NJ of Ihe subspace spanned by ¢i'o and replace NI by N2 in the above-described 
procedure. 

This construction yields a basis {¢i'o, ... ,¢~~,o} for N( >.I - A) and a corres­
ponding canonical system of Jordan chains 

Nole that max{rj I j = I , ... ,d)..} = k).. and Ihal 

<, 

L: rj = 1n),.. 

j = 1 

Because of the construction, the canonical system of Jordan chains is a basis for the 
generalized eigenspace A1)... Wilh respcctlo this basis, the malrix M has Jordan nor­
mal fonn. We shall call such a basis a canonical basis ofcigenvectors and generalized 
eigenvectors for A at >.. 

To apply Ihese ideas to delay equations, we shall first restrict ourselves to the 
case that z = >. is a simple pole of d{ Z) - l , i.e" d{Z) - ' = (z - >.) - 1 H {z) with H 
analytic at z = >.. 

Lemma 1. If z = >. is a simple pole of Ll{Z) - I, thell the generalized eigenspace at 
>., M)" = n( P),.), is given by 

and equals the eigellspace at >. (i.e., the geometric and fhe algebraic multiplicity of 
>. are equal). 
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Proof First note that R( H(A)) = N( Ll(A) ). Indeed, since 

£1( , )H( , ) ~ H(, )£1(, ) ~ (, - >.)1. 

It follows that Ll(A)H (A) = O. Assumc that v E en is such that Ll(A)V = 0 and 
define 

w = lim ~Ll(z )v = Ll'(A)V. 
z .... A Z ~1\ 

Then 
1 z ~ A 

H{A)W = lim --H(z)Ll(z)v = lim --v = V. 
Z .... A Z ~ A Z .... A Z ~ A 

So H(A)W = v. The proof of the lemma is now easi ly completed using the represen­
tation (18) for PA' 

From the characterization of .All A for simple poles of Ll(Z) - 1 we obtai n p(O) = 
(v] , ... ,vrn) , where {Vj }; ; ] is a basis for N( Ll(A)). To describe the procedure 
in general , one fi rs t has to extend the notion of a Jordan chain. An ordered set 
(xo , XI , ... , Xk _ d of vectors in C" is called a Jordan chain for Ll(z) at z = A if 
Xo ::p 0 and 

Ll(z)[xo + (z ~ A)XI + ... + (z ~ A)k- I xk - d = O«z ~ A)k) 

for Iz ~ AI -t O. The number k is called the length of the chain and the maximal 
Icngth of a chain start ing with Xo is called the rank of Xo. 

We now have the following theorem (see [16] for a proof). 

Theorem 2. The speC/rum of the generator A consisls of eigenvallles of finile Iype 
only. 

a(A) ~ (AI det £1(>') ~ OJ . 

For A E utA), Ihe geomelric mullipliciry of A equals Ihe dimension of the null space 
of Ll(A), the algebraic nll/ltipliciry of A equals the order of A as a zero of det Ll(z) 
alld the ascelll of A eqllals the order of A as a pole of Ll- I (z) . Furthermore, a CO/IO­
nical basis of eigenvectors and generalized eigenvectors for A at A can be obtained 
in the following way: If 

{('Y;,o,· .. , l'i,k,-d I i = 1, .. . , d.d 

is a canonical system of Jordan chainsfor Ll(z) at z = A E n, then 

{Xi .O,···,Xi.k, - ll i= 1, ... ,dA} , 

where 

is a canonical basis for A III A 
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The generalized eigenspace M is the smallest subspace that contains all M", 
>. E O'(A). If M is dense in C, we call the system of eigenvectors and generalized 
eigenvectors of A complete. A Jordan chai n of A gives rise to a special solution of 
(10). If { <Po, <PI, ... ,IPr- d is a Jordan chain of A at >. , then 

( 19) 

is a sol ution of (10) for all t . This solution corresponds to the special solutions in 
Theorem I . So, if the linear space spanned by all eigenvectors and generali zed ei­
genvectors of the infinitesimal generator is dense in C, then each solution of ( 10) can 
be approximated by a li near combination of solutions of elementary solutions of the 
fonn(19). 

4 Spectral Theory for Autonomous Equations 

In this section we are interested in the question whether we can obtain a convergent 
series by letting , --t -00 in (8). In Section 2 we have seen that the initial data cor­
respondi ng to sol utions x ( t) = p( t )c"t that arise in (8) are precisely the eigenvectors 
and generalized eigenvectors of the infinitesimal generator A defined in (12). There­
fore, the question of whether we obtain a convergent series by letting , --t - 00 in (8) 
can be rephrased as a question concerning the convergence of the spectral projections 
of the infinitesimal generator A 

Tit)", ~ L Tit )?,,,,, 
" Ea (A) 

(20) 

where the convergence is in the state space C. The initial question is contained in this 
problem. Indeed, every solution of ( 10) has a convergent series expansion if and only 
if (20) holds for every t > 1. 

To analyse the behaviour of sums of spectral projections, we shall use the Riesz 
projection and the Cauchy theorem on residues. In order to do so, we need good 
estimates for the resolvent of A near infinity. The expl icit representation for the re­
solvent of A given in (16) allows us to obtain these estimates using estimates for 
Ll(Z)-1 near infinity. 

4.1 Basic estimales 

In this section we recall estimates for the inverse of the characteristic matrix in the 
complex plane outside small circles centered around the zeros of det Ll( z) . These 
estimates were first given in [271 and provide the basic tool to estimate the resolvent 
of the generator ncar infinity. 

Consider the characteristic matrix (7) 
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where 8 0 and Blare constant (n x n ) ~matr ices . In order to estimate 1..1(z) - II . we 
first analyse the behaviour of 1..11 (z ) - 11, where 

(21 ) 

Since eZ ..11 (z) = ze~ - B l , esti mates for 1..11 (z )- 11 follow from estimates for the 
resolvent R(w):= (wl - Bd - I of B 1 • 

From the Neuman n series, we have 

IR(w)1 ~ ((wi - IB, 1) - ' for Iwl > IBII· (22) 

Therefore, for z E C with Izez i > IBI I, 

and hence. forz E Cwith Izezl;::-: CoIIBd and Co < l ,wefind 

-I 1 Izezi 1 - I 
ILl,V) I ~ j;j I"' I - IB,( ~ j;j( l - Go) . (23) 

In particular. it follows that det..1 l (z) ¢ 0 for z E C in the region with Izezi ;::-: 
CoIIBd· 

To estimate 1..1 I (Z)-1 1 for z E C with Izezi close to zero, we need further in­
fonnat ion about the behaviour R(w), the resolvent of BI. near the poles of R(w). 
The poles of R{w) are exactly the eigenvalues of BI and on the resolvent set 
p(Bd = C\ O"(BI ), Ihe function w 1-+ R(w) is holomorphic. To extend the estimate 
(22) away from Ihe poles of R(w), it remains to estimate IR (w)1 on the compact sct 
[(, where 

J( = {w E C Ilwl ~ IB,( "d d(w ,a(B,) ~ <) 

and d(w , H ) = inf{d{w ,h) I h E H) denotes the distance from a point w E C to 
the set H c C. 

Si nce w H R( w) is continuous on [(, we conclude that g iven f: > 0 and w E C 
with d(w ,O"(Bd) ;::-: f, there exists a constant M = M(f) such Ihat IR(w)1 ~ M. 
Therefore, for z E C with d(ze Z

, O"(BI)) ~ f, we fi nd 

(24) 

FurthemlOre, to each nonzero eigenvalue Ilj' j = 1, 2, ... , m, of B\, there corres­
ponds a chain of zeros zjl .. k = 1, 2, ... , of det..1\ (z) defined by 

Continuity of the complex functio n z H zez implies that, given to > 0 and z E C 
with d(ze\ O"(Bd) ;::-: f, there exists a J > 0 and a C > 0 such that, if Izl > C, then 
z is outside circles of radius J centered at the zeros of det..1 1 (z). 

If 8 1 is invertible, then 0 I/. O"{BI) and we obtain that, given f > 0, there 
exists a posi tive constant Co such that, for z E C with Izel .s; Co, we have that 
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d(ze Z
, a(B])) 2: L Hence, if B] is invertible, then for z E C and Izezi :::; Co, we 

have the fo llowi ng estimate 

(25) 

In particular, it follows that detLl I (z) :f:. 0 for z E C with Izezi :::; Co . Furthennore, 
it follows from (24) that, for z E C and Co < Ize z I < Co' , the same estimate (25) 
holds as long as d(ze Z

, (f(Bd) > L Or, equivalently, as long as z E C is outside 
circles of radius is centered around the zeros of det Ll, (z). 

Summari zing we have proved the follow ing lemma. 

Lemma 2. If Ll, (z) = z1 - B,e- z and B, is invertible. then,for every 15 > O. there 
exists a COllstallt 111 = M (is) such thai 

(26) 

for z E C o/ltside circles ofradills 15 centered arol/lld Ihe zeros oJdetLl1(z). FlIr­
thennore. there exists a cOllstant Co. 0 < Co < 1, such Ihallhe zeros of det Lll (z) 
are inside the set V(Co) = {z Eel Co < Izezi < CO l }. 

Next we use estimate (26) for ILl, (z)-I I to find an estimate for ILl(z)-II. Fix J > 
o and let z E C outside c irc les of radius 0" centered around the zeros of det Lll (z). 
Since det Lll (z) :f:. O. we have 

(27) 

and it fo llows that 

So, it remains to estimate 1(1 - Lll (z) - ] Bo) - ' I. From the Neumann series, it follows 
that it suffices to estimate ILl I (Z) - 1 Bol and, from Lemma 2, we obtain that, for 
Izl > 2MIBol, 

1(1 - Ll, (,) - 'Bo)-' 1 s (I -ILl,(z) - ' Bol) - ' 

'S 2. 

Thus, for Izl > 2MIBol, we have that Ll(z) is invertible and 

(28) 

for z E C outside circles of radi us is centered around the zeros of detLldz). In 
particular, for Izi > 2MIBol. the zeros of detLl(z) are inside circles o f radius is 
centered around the zeros of detLl,(z). In particular, inside the set V(Co) and (28) 
ho lds for z E C outside c ircles of rad ius 2J centered around the zeros of det Ll(z) . 

We summarize the results of the discussion in a lemma. 
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Lemma 3. If Ll (z) = zl ~ Bo - Bl e- z mul BI is inrertible. then. for everyJ > O. 
there exists a COl/StalltS C Gild M = M (0) sllch that 

for z E C wilh Izl > C owside circles of radillS 8 centered arol/lld the zeros of 
det Ll(z). FlIrthennore. there exists a COllstalit Co, 0 < Co < 1, silch that the zeros 
ofdetLl(z ) are inside the set V(Co) = { z E e l Co < lzez i < COl}. 

Actually, we can use Lemma 2 to prove estimates for ILl(z )-11 for much more 
general characteristic matrices Ll{z ). In fact, the same proof shows that Lemma 3 
remains true for the characteristic matrix 

where (0 is a matrix-valued function of bounded variation that is continuous at () = 1. 
See [25] for a proof of this fact using different arguments. 

Next we consider the case that Bl -:fi 0 is not invertible. In this case we need 
more information about the si ngularity o f the resolvent R(w) of Bl at w = O. This 
information can be obtained from the Laurent series of R(w) at w = 0 

~ 

R(w) = L w" A". 
,,=- 1:0 

The coefficients A n are given by 

A n = -2
1

. r Z-"- I R(z ) dz, 
11"1 ir 

where r is a positively-oriented small circle of radius J with center at w = 0 exclu­
ding any other eigenvalue of B I • The coefficient A _I is exactly the spectral projec­
tion onto the general ized eigenspace of BJ at A = 0 (sec [17]). 

Therefore, for wE e with 0 < Iwl :s 0, there exists a constant MI = MI (0) 
such that 

IR(w)1 S Mdwl - ", 

where ko is the order o f the pole of R(w) at w = O. Therefore, for zE it with 
0< Izezi :s l , we find 

Thus, in the general case, Lemma 2 becomes 

Lemma 4. If Lld z ) = z l - Ble- z Gild ko is the order of pole of the resolvent of 
BJ -:fi 0 at zero, thell there ;s a COllstant Co, 0 < Co < 1, slIch that, for every 8 > 0, 
there exis/s a COIISIaIit M = M (8) and 
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for z E C with Izc' l > Co alld z oUlside circles of radius J celltered around fhe 
zeros ofdctLlI(z) . If 0 < Ize' l ::; Co, thell LlI(z) is invertible and 

ILlI(z} - 11 ::; Mlzl- kole( l - ko)' I· 

Furthermore, the nOllzero zeros of det Lli (z ) are inside the sel V (Co) = {z Ee l 
Co < Izezi < COl} . 

As before, we use Lemma 4 and (27) to deri ve estimates for ILl(z)- II. In the 
general case, however, we have that ILlI (z)- II can grow in the region 

Therefore, we cannot use the Neumann series to estimate 1(1 - LlI(z) - IBo) - II. 
To provide the estimate for ILl(z)-11 in the region W, we have to use a different 
approach. Fi rst we claim that Ll(z) is invertible for z E W. To prove this claim, note 
that Lemma 4 implies that, for z E W, the matrix d l (z) is invertible. Furthennore, 
for Co sufficientl y small, we have the inequality 

and hence 
1 
21Bd ~ I" Ll, (' )1 ~ 21Bd· 

Since e' Ll(z) = e% Lli (z) - e% Bo and Izi > 2Co 

it follows that, for C large, Co small and z E W, the matrix Ll(z) is invertible. 
Secondly, we claim that, for z E W, the spectrum of d l (Z) - I Bo is outside a circleof 
radius T = r(C, Co) centered at 1. To prove this claim, we assume that the statement 
is not true. Then there exists a ft E C with 1ft - 11 < T and a vector v E C" with 
v ¢ 0 such that Lli (Z)-I Bov = J1V. But then Bov = J1LlI (z)v and 

Since Ll(z) is invertible, it suffices to show that, for 1ft - 11 close to zero, we have 
Id(z)1 > I,,, - I l1d l (z)l· Indeed, this estimate implies that d(z) + (J1 - l)ddz) 
is invertible and hence v = 0 which contradicts the assumption. Note that if z E W, 
then we can choose Co > 0 small and C > 0 large such that 
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Ie' Ll, (')1 ~ I'" 1 - B<I ~ 21B<I. 
Thus if we chooser < 1/4 and It E C with Itt- I I < r, then ILl(z)1 > IIt-l IILl! (z)1 
and Ihis proves the claim. 

Thi s observation allows us to use the Laurent scries to concludc that there exists 
a constant M2 = M2(r) such that 

So representation (27) together with Lemma 4 yields an est imate for 1L1(Z)- 11 when 
zE W. 

Thus, in the general case, we arrive at the following estimates for ILl(z) - II . 

Lemma s. If Ll(z) = zI - Bo - B\e- z and ko is the omer of pole oJthe resolvent 
oj B\ ":f:. 0 at zero, then there is a constant Co, 0 < Co < 1. such that. Jor every 
J > O. there exists a constant M = M(J) and 

for z E C with Izezi > Co alld z outside circles oj radius J centered around the 
zeros ofdetLl(z). IJ O < Izezi :::; Co alld Iz) > C. thell Ll(z) is invertible alld 

ILl(z)-11 :::; Mlzl-A·ole(i-.l:o):I. 

FUr/herll/ore. Ihere exisl positive COI/StalllS Co and C such that the zeros oj det Ll(z) 
with Izl > C are inside the set V(Co) = {z Eel Co < Izezi < CO l }. 

Remark that Lemma 5 docs not immediately generalize to more general pertur­
bations of Ll\ (z) and the precise estimates for ILl(z) - 11 now do depend on the lower 
ordertenns in Ll( z). 

To illustrate this fact consider the system of delay equations 

. 1 
x(t) ~ Box(t - 2) + B, x(t - 1). 

The characteristic matrix Ll( z) is given by 

Therefore 
e- Z Ll(z) - ' = (I - Ll,(z)BoeZ

/
2) - ' Lll (z) - '. 

Note that in the region where Ll\(z) is invertible, we do not necessary have that 
Ll(z) is invertible. Indeed, ILl\(z)Boez/2

1 is close to 1 for Izez/ 2 1 close to 1. This 
leads 10 chains of zeros of det L1(z) with differen t asymptotics then the zeros of 
detL1, (z) and the behaviour of Ll(Z) - 1 is not completely controlled by the beha­
viour of L1,(z)-\. See [22J and Chapter V of [ IOJ for a different approach based on 
an analysis of det L1(z) directly. 
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We end this subsection with the introduction of a standard sequence of contours 
that will be used to compule the complex line integral in the next section. 

Using the estimates for Ll(z) - t in Lemma 3 and Lemma 5, we can construct a 
sequence of reat numbers PI, such that PI -+ 00, and a sequence of closed contours 
r" l = 0, 1, .. . , such that for some positive constants k, f and J: 

(i) n is contained in the interior of rl+[ and there are at most k zeros between n 
and r l+ l ; 

(i i) the contours have at least distance f > 0 from the set of zeros of det Ll(z); 
(i ii)the contour n lies along the circle Izl = PI outside V(CoL inside V(Co), the 

contour lies between the ci rcle Izl = PI - J and the circle Izl = PI + J; 
(iv) the length of the portion of 1/ within V(Co) is bounded fod -+ 00. 

For any real l' we denote the part of the sequence of contours n contained in the 
left half-plane {z 1 Re z s: 1'} by rl- {-y)· 

We end this section with an auxiliary result from complex analysis (sec, for 
example, Lemma VS.IO of [10]). 

Lemma 6. For allY real number l' 

Iim l f "'min(I'I~I' I , l )d'I=O, 
/ .... 00 i r,-hl z 

fort> O. 

The cOllvergellce is IImformfor t ill allY illterval 0 < to < t < tl < 00. 

4.2 Series expansions [or autonomous equations 

In this section we use the estimates for ILl(z)- 11 to analyse the behaviour of the 
series of spectral projections. As explained before, the idea is to obtain an expli­
cit representation for T(t)<p itself, using the inverse of the Laplace transfonn. The 
starting point is the following inversion formula, see Theorem 11 .6.1 of [I S}, 

1 / 1'+;'" 
T(t)", = lim -. eZI(zl _ A)-lipdz, 

"' .... 00 21Tt 1' - ;'" 
t > 0, (29) 

for l' > w(A) and for every ip E V(A) . 
In order to use the contours n introduced in the previous subsection to compule 

the integral in (29), we need the followi ng observation. If>' E 0'(.4) is a pole of 
z f-t ezt(zI - A) - I"" thcn 

Res ezt(z I - A) - I", = T(t)P),,,,, 
z= ), 

where P), denotes the spectral projection onto M)'. Thi s identity can be derived from 
(29), (15) and the resolvent equation 

We are now ready to prove the following theorem. 
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Theorem 3. Let T(t) del/ore the semigrollp associated wifli 

xl') = Boxl') + B,xl' - 1), 

where BI is a ,wI/singular matrix. If A(C -t C) deno/es fhe generator ofT(t), fhel/, 
for every 'I' E V( A), we have 

N 

I;m IITI')<p - "TI')P,<p1l = 0 
N .... oo L J 

j=O 

fort>O 

I/nifonnly on compact I-sets. Here )"j, j = 0, 1, ... denote the eigenvalues of A 
ordered by inCretlSing modI/Ius and P)"j denotes the spectral projection giren by 
(15). 

Proof The Cauchy theorem implies that 

m(t) 1 
T(t)rp = lim {2: T(l)P)"jrp - -2 .! e· t(zl - A)- l rpdz } , 

1 .... 00 In r -
j=O I 

where ),,0, ... , )"m(l) are the zeros of det Ll inside the area enclosed by the line 

Re z = 'Y and the contour rl- . And it suffices to prove that, for every 'I' E V(A). 

(30) 

To analyse this limit, we shall use the representation for the resolvent o f A given in 
(16) which we rewri te as follows 

(3 1) 

where 

(Clz)<p) (0) = ," {<p(0) + B, [ ,-N <pIa - I ) da + Lllz) l ,-N <pIa) da) 

r (J+l 
=e:ll rp{O) +B\ io e-:"rp(a- l )da 

+(zl - Bo) 1-0 
e- Z"rp(a + O)da. (32) 

Note that 

Together with the identity 

1 1 
(z l - A)- Irp = - (z l - A)- I AJP + -'1', 

z z 
<pEV(A), 
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it follows that, for If' E V( A), 

Because of the estimates for )L1(z) - 11 and the defin ition of the contours r l , there 
ex ists a constant lo such that, fo r zEn, l 2': lo, we have 

(34) 

Therefore, we obtain the following estimale for the resolvent of A 

and an application of Lemma 6 shows (30). 

Si nceR(T(t») C V(A) fort> I ,the next result follows immediately, see [24] 
for details and further results. 

Corollary 2. For erery If' E C, Ihe sollllion x( . ;!.p) oflhe differential delay equalioll 

:i;(t) = Box(t) + BIX(t - 1), Xo = !.p, 

where Bl is a nOllsill811/ar malrix, has a com'ergent series expansion 

00 

x(t) = L e).;tpj(t) , t > O. 
j=O 

Example I. Consider the retarded equation 

x(t) = Btx(t - 1) , t 2': 0, Xo = !.p, (35) 

where BI ::j:. 0 is an n x u -matrix. The characteristic matrix is given by 

(36) 

For every simple root of det L1(z), the spectral projection is given by 

In the scalar case, a root .\ of L1 is not simple if and on ly if 

Therefore, if B ¥ -1 / e or equivalently .\ = - I is not a root of L1, then all roots of 
(36) arc simple. So the spectral projections are given by 
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(37) 

where A satisfies A - BI e- ). = O. Fun hennore, it follows from Theorem 3 that 

00 00 

T(t)<p = L P,;T(t )<p = LT(t)P,; <p, t > 0, 
i=1 i=1 

where Aj, j = 0, 1, ... , denote the roots o f A - B e- ). = 0, ordered accord ing to 
decreasi ng real part . Using (37) and the fact that T(t)e).j· = e).j(t+·), we can now 

explicitly compute the solution of (35) with initial condition Xo = r.p 

t > O. 

If B, = - lie, then all zeros of Ll( z) are simple except for A = -l. For the 
simple zeros we can again use (37). For the double zero A = -1, we have 10 work 
directly with ( 15) to compute the projection onto the two di mensional space M _, 
and a residue computation yields that P - I is given by 

(P -I r.p)(8) = ( - ~r.p(0) + ~ [0, e"l" r.p{r)dT + 2 [a, re"l" r.p{r)dr) e- 9 

+ 2 ( r.p{0) - [~ e"l"r.p{r)dr)Ue - 9. 

Since T(t)¢> = .p(t+. ), where .p(U) = Ue- 9 , we can again give the solution explici tly 

x(t ; r.p) = ( - ~r.p(0) + ~ [a, e"l" r.p(r)dr + 2 [ 0, re"l" r.p(r)dr) e- 9 

+ 2 ( r.p(0) - [0, e"l"r.p(T)dT)Ue- 9 

00 1 /. ' + L --( r.p{0) - e- ). ;"I" - ' r.p(T - 1)dT)e).;t, 
j=1 1 + Aj ° t > 0, 

where Aj, j = 1, 2 , ... are the zeros o f Ll with real part less than - 1 ordered accor­
ding to decreasing real part. See [6] for further resul ts. 

The next corollary is a completeness resul t. See [22- 24,30] for much more ge­
neral resul ts. 

Corollary 3. Let T(t ) denote the semigrollp associated with 

x(t) = Box{t) + B, x( t - 1), 

where BI is a nonsingtlfar matrix. If A(C -t C) denotes the generator ofT(t), then 
the system of eigenvectors and generalized eigenvectors of A is complete in C. 
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Proof Let M denote the linear space spanned by the eigenvectors and generalized 
e igenvectors of A. To prove the statement we have to show that M = C. Let I{) E C. 
Since V(A) is dense in C, we can choose a sequence I{)j E V(A) such that 'Pj --t I{) 
in C. Then T(t)l{)j --t TU)I{) unifonnly in t on compact subsets of [0, (0) . Because 
of Theorelll 3, for every I{)j and l > 0, we have for t ;::-: 0 

N 

lim IIT(t+<h' - "'T(t + <JP, .<p1l = 0. 
/1.' ..... 00 ~ J 

j = O 

Define I{)i, ' = T( l )I{)j and recall from the Co-semigroup property of T ( t) that 

lI<pj" - <Pj II --+ 0 

Therefore, we can construct a subsequence {~j} of {'Pi.'}, such that T(t)~j has a 
convergent spectral projection series uniformly in t on compact subsets of Iftt. and 
~j converges to 'P in C as j --t 00. So, we have proved ~i E M and hence I{) E M. 
Thus M = C and this proves the corollary. 

To illustrate Corollary 3, we consider the following example 

{ Xl (t) = xdt) + X2( t - 1), 
X2( t ) = xdt - 1). 

(38) 

Since Bl is invertible, the system of eigenvectors and generalized eigenvectors of 
the generator of the sem igroup associated with (38) is complete. 

Next we consider the case that Bl is not invertible. From an inspection of the 
proofofTheorem 3, we can make the following observation. If, for I{) E V(A), there 
exist positive constants T,lo and I<" such that, fori ;::-: to and Z E r,- ('Y), 

then the conclusion of Theorem 3 holds. Therefore, for t > T, 

N 

T(t}'P = lim "'"'T(t) P>. _I{) . 
N ..... oo ~ J 

j =O 

To investigate condition (39) further, we use (31 ) and the basic estimates for 
lL1(z) - I I. First note that, it fo ll ows from Lemma 5, that, for Z E C and lzezl > Co 
for some Co, 0 < Co < I , the estimate for lL1(z)-11 is the same as in the case that 
BJ is invertible. Thus to investigate (39), we can assume that Izel S Co. In this 
case, Lemma 5 yields the following estimate 

where ko is the order of the pole of the resolvent of BJ at zero. 
This proves the following generalization of Theorem 3 and Corollary 2. 
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Theorem 4. Let ko dellote the order of the pole of file resolvellt of BI aI zero. For 
every initial conditioll t.p E C, fhe so/Iltioll x( . ; t.p) of the differential delay equalioll 

x(t ) = Box(t) + Bl x(t - 1), Xo = t.p, 

has a cOfll'ergellf series expansion for t > ko. 

Definition 2. A soilltion x of (10) is called a small SOllltioll if 

lim x(t)eH = 0 
Hoo 

fo r every k E III 

Small soilltiOIlS rhat are 1101 idemically zero are called nontrivial. 

LetS = {t.p Eel Z H (z I -A)- I isentire }. lf t.p E C is such that x( .;t.p) isa 
small solution, then 

for every k E lR 

and henee 

Z H LX> e- :tT(t)t.p(lt 

defines an entire function. But the Laplace transfonn of T(t)t.p equals the resolvent 
of the infinitesimal generator, see (14). Therefore. by analytic continuation , we have 
t.p E S. lllUs, the small solutions correspond to solutions with initial data belonging 
to S. On the other hand if t.p E S, then all the spectral projections of t.p are identically 
zero. Thus, it follows from Theorem 4 that the corresponding solution x = x( . ; t.p) 
is identically zero on (ko,oo). 

The following theorem gives a complete characterization of Sand M and we 
refer to [25,27] for a complete proof. 

Theorem S. If ko dellotes the order of the pole of the resolvem of BI at zero alld if 
T(t) denotes the solurion semigrollp generated by (12), then for t 2: ko 

S ~N( T(t)) aod M = R(T(t )) 

alld these relations do not hold for any t smaller than ko. 

So, in particular, it follows that, the small solutions of a linear autonomous delay 
equation are identically zero after finite time [14,2 11. 

Corollary 4. Let ko denote the order of the pole of the resolvellf of BI at zero. If the 
soilition x = x ( . ; t.p) of the differemial delay equation 

x(t) = Box(t) + Bl x( t - 1), Xo = t.p, 

is a small solution, then x is identically zero all [ko - 1,00). 

To illustrate Theorem 4 and Theorem 5 we conclude with the fo llowing example. 
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Example 2. Consider the system of d ifferential delay equations 

{ 
So Bo=O and 

XI (t ) 
x,(t ) 

X3( t ) 

x:.dt ~ 1), 

xl(t~ I)+X3(t~ I ), 

XI (t - 1) - X2( t - 1) + X3(t - 1). 

(
0 1 0) 

BI = 1 0 1 
1 - 1 1 

(40) 

A simple computation shows that ko = 2. So every solution has a convergent series 
ex pansion for t > 2. In order to investigate the small solutions, we provide an initial 
vector function '-P on the ill\erval [- 1,0]. Suppose that '-P = (IP I ,'-P2, -'-PI), where 
'Pi [-1,0] ~ lR, i = 1, 2, arc continuous functions. The solution to (40) on the 
interval [0, I] satisfie s 

{ X, (t) ~ ",(t - 1), 

X2( t ) = 0, 

X3( t ) - ",(t - 1). 

So, the solution to (40) on the interval [0, I] is given by 

{ 
'-PI (0) + J~ '-P2(S - 1) ds, 

",(0), 
- '-PI (0) - J~ '-P2(S - 1) ds. 

(4 1) 

Suppose that '-P2(0) = O. Given the solution on [0, I], we can now compute the 
solution to (40) on the interval [1, 2]. Indeed, from (4 1), it follows that the solution 
to (40) on the interval [1, 2] sati sfies 

{ 
x, (t) 
x,(t) 
X3(t) 

0, 
~ 0, 
~ 0. 

Therefore, the solution to (40) on the interval [1, 2] is given by 

{ = '-Pl(0)+ Jo
1

!p2(S -I)ds, 

0, 

- 'PI (0) - J; '-P2(S - I) ds . 

(42) 

Thus, if '-P I (0) + J; 'P2(S - 1) ds = 0, the solution is identicall y zero on the interval 
[1, 2] and therefore identical ly zero on [1, (0) . This shows that any solution of (40) 
with initial date Xo =!p, where!p = ('-P I ,'-P2, - !PI) E C sueh that '-P2(0) = 0 and 
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is identically zero on the interval [1,00). Since we already know that small solutions
are identically zero on [ko- 1,00) = [1,00). This shows that the value ko in Theorem
5 is indeed the best possible.
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Summary. In this chapter we give a general description of the complete type quadratic 
Lyapunov-Krnsovskii functiona ls. Special Lyapunov matrices associated with the functional s 
are also defined. Uniqueness conditions, as well as a numerical scheme for computation of the 
Lyapunov matrices, are discussed. Some robust stability conditions. based on the functional, 
close the chapter. All main results are illustrated with numerical examples. 

1 Introduction 

It is well known Ihat Lyapunov-Krasovskii func tionals play an imponant role for 
stabili ty and robust stability analysis of time delay systems, see references in [8J, (3 ). 

Starting from the first publications on the topic, see (9), ( I I), the principal goal 
was to obtain general expressions for such functionals, at least for the case of li­
near time delay systems. This study was continued later in several of very important 
works, see [2j, [4), [6). But technical difficulties, arising in construction of such 
functionals, along with some open problems associated with the positivity check of 
the fu nctionals, have prevented a wide spread appl ication of the functiona ls in the 
engineering practice. 

The main goal of thi s chapter is to demonstrate that some of these difficul ties and 
problems can be overcome. 

Section 2 is devoted to definit ions of basic concepts for linear time delay systems. 
Main results are given in Section 3. Here we introd uce first a general description 

of the complete Iype quadratic Lyapunov- Krasovskii functionals. Special Lyapunov 
matrices, associated with these funclionals, are also defined. The Lyapu nov matrices 
satisfy a time delay matrix equation. Uniqueness conditions for these matrices are 
discussed in Theorems 1-2. Some elegant results concerning the uniqueness issue 
have been reported in [10). The approach adopted there is based on analysis of a 
special two-point boundary problem associated with the Lyapunov matrices. Our ap­
proach to the uniqueness probles is more rough and direct. A numerical scheme for 
computation of the Lyapunov matrices is also proposed. It is shown that the func­
tionals admit a positive quadratic low bound, see Theorem 3. Some robust stability 
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conditio ns, based on the functional, close the Section. All main results of the chapter 
are illustrated with numerical examples. 

2 Time Delay Systems 

Given a time delay system of the fonn 

:t(t) = Aox(t) + A\x(t - Il), (I) 

where Ao and Al are g iven n x n matrices, and h? o. 

2.1 Basie nolations 

In this chpater we will use some standard notations. For any piece-wise continuous 
in itial functio n 'P: [-h,O] -+ JR" there ex ists the unique solution, x(t, 'P), of (1) 
satisfying the initial condition 

x(8 , 'I') = '1'(8) , 8 E [-10,0). 

If t 2: 0 we denote by Xt ('P) the trajectory segment 

x,('I') , 8 .... x(. + 0,'1'),0 E [-10,0). 

In this chapter we will use the Euclidean nonn for vectors and the induced matrix 
nonn for matrices. The space o f piece-wise continuous initial functions is provided 
with the supremum norm li'PIi " = m aX@E[_ h,O)II'P(8)1I . When it will not cause an 
ambiguity we write x(t) and XI instead of x(t,ip) and x/tip). 

2.2 Fundamental matrix 

The fundamental matrix of system (I ), see [I ] , is n x n matrix K (t) which satisfies 
the matrix equation 

d 
elt K(t) = AoJ«t) + A\K(t - h), for t 2: 0, 

and the following initial conditions 

K (8) = O"X," for 8 E [-It,D), and K(O) = E. 

Here E denotes the identity matrix . 

Remark 1. The fundamental malfix satis fies also the eq uation 

d 
dt K(t) = K(t )Ao + K (t - h)AI , for t 2: o. 
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2.3 Cauchy formula 

Given an in itial condition, 'P, the corresponding sol ution x(t , 'P) can be written as 

x(t,'I') ~ [((t)'I'(O) + [h [((t - 0 - h)A,'I'(O)dO, (2) 

sce f l J. 

2.4 Stability concept 

Definition I. (I J System (I) is said to be expollentially stable if there exist ...., ?: 1 
alld a > 0 such that allY solutioll of the system satisfies the illeqtwlity 

(3) 

Remark 2. Systcm (I ) is cxponcntially stable if and only if it is Lyapunoy asympto­
tically stable. 

3 Complete Type Lyapunov·Krasovskii Functionals 

3.1 General formula 

We start with thc observation that given matrices W" Wz then 

(:t (iOh x T( l + 0) [WI + (h + O)Wz] x(t + O)dO) :::: xT(t ) [WI + hWz]x(t)­

_xT(t _ h)W,x(t - h) - i Oh X T (t + O)Wzx(t + O)dO. 

So, if there ex ists a functional vo{') such that 

d T 
dt vo(xt}:::: -wo(x,.) :::: -x (t ) two + W, + hW2 ] x(t), t ?: 0, (4) 

then the first timc dcrivative of thc functional 

v(xt} = vo(xd + i Oh x T (t + 8) [WI + (h + O) Wz]x(t + 8)dO (5) 

is given by 

d T T dt v(xd = -x (t)Wox(t) - x (t - h)Wlx(t - h) -

- iOh X T (t + 8)W2X(t + 8)d8. (6) 
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Let systcm (I ) be ex ponentially stable. Then functional vo(-) exists and can be writ­
ten as 

vo (~) = 100 

xT(t ,l{!) two + WI + hW2]x (t ,l{!)dt. 

Substituting under the integral at the right hand side of the last equality x( t ,~) by 
Cauchy fonnula (2). we arrive at the following expression 

where 

U(r) = l oo /{ T (t) two + WI + hW2] /{ (t + r)dt . 

is the Lyapllllov matrix/or delay system (1). 

3.2 Lyapunov matrix 

(8) 

Let system (I ) be exponentially stable, then for every symmetric matrix IV, the cor­
responding Lyapunov matrix 

U(T) ~ I.~ K T (t )W K (t + T)dt , (9) 

is well defined for all T E R. 
By direct calculations one can verify that matrix (9) satisfi es the following pro­

perties. 

• Dynamics 
d 

-d U(r) = U(T)Ao + U(T - h) A" for r > O. 
T -

( 10) 

• Symmetry 
U( - r) = UT(T) , for r ~ O. (1 1) 

• Algebraic 

-IV ~ U(O)Ao + A,jU(O) + U T(h)A , + A iU(h). (12) 

Remark 3. Properties ( 11)-( 12) admit natural extensions to the case of systems with 
several time delays. and systems with distributed delay. 
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3.3 Uniqueness issue 

One can compute Lyapunov matrix V(T) using equation (10) and conditions (11)­
(1 2), instead of the formal definition of the matri x as the improper integral (9). This 
al ternative looks very attra.ctive if equation (10) admits onl y one solution which sa­
tisfies conditions (11)-(12). In this case the sol ution automatically coincides with 
matrix (9). 

Theorem I. Let system (J ) be exponentially stable. Matrix (9) is the unique sollllion 
of eqllation (10) which satisfies conditions (J I )-( 12). 

Proof: The fact that matrix (9) satisfi es eq uation (10) and conditions (11)-( 12) 
has becn demonstrated in P l. 

Assume by contradiction that there are two solutions, V, (T) and VZ(T), of equa­
tion (10) which satisfy conditions ( 11 )-( 12). Using these solutions one can define Iwo 
functionalsofthe form (7), the first one wi th V(T) :::: V, (T), and the second one with 
V(T) :::: VZ(T). Let us denote these functionals as Vt(xd and v2(xd, respectively. 
By direct calculations one can check that 

It means that functional Llv(xt) :::: V2(Xt} - v] (xd satisfies the equality 

d 
dt Llv(xr) :::: 0, for t :?: 0, 

which implies that 
Llv(xd<p)) :::: Llv(<p) , for t 2: o. 

By exponential stabi lity of (I ) Llv(Xt(<p)) -t 0, as t -t 00, therefore 

Llv(<p) ~ 0, 

for every initial vector function <po 
In the explicit form the last condition looks as 

o ~ <p T (0)V(0)<p(0) + 2<p T (0) t, V( - h - O)A, <p(O)dO+ 

+ iOh <p T (ez)Ai [iOh V(Oz - edA, <p(OddO,) dOz, ( 13) 

where matrix V(T) :::: U2(-r) - V](T). Matrix V(T) sati sfi es the equation 

V'(T) :::: V(T)Ao + V(T - h)A], T:?: O. (14) 

For the initial vector function 
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{
'1, forO = O 

<pee) = 0, foe 0 E [- h,O) , 

condilion ( 13) takes the form '1T V (Oh = 0, and we can state that 

V(O) = 0, ( 15) 

because V(O) is a symmetric matrix and '1 is an arbitrary vector. 
Now, let 00 E [- h,O) and e > ° be such that 00 + e < 0. For any given vectors 

'1 and ~ one can de fine the initial funct ion 

{ 
>, foce = 0 

<p(0) = (,foc OE[Oo,Oo+e[ 
0, for all other points of [- It , OJ. 

( 16) 

For this initial function condition ( 13) looks as 

[1. '0+< 1 
0 = 2'1

T eo V (- h -O)AtdO ~+ 

The last equality can be written as 

where ¥ -+ 0, as e -+ + 0. The fact that '1 and ~ are arbitrary vectors, and t: can be 
made arbitrary small, impl ies 

V(T - h)AJ = 0, for T E [0 , It]. (17) 

So, for T E [0, It] equation (14) is the form 

V'(r) = V(r)Ao, 

and condition ( 15) implies that 

V(T) = 0, for T E [O,h], (18) 

i.e., 

This ends the proof. 
Now, we would like to study situations when equation (10) has no solutions sa­

tisfying condilions (1 1)-(12). Of course, such situations may occur only if our basic 
assumption on exponential slability of system (I) fails. Let us stan with the following 
statement. 
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Lemma l. Given two IIOl/{ril'ial veCLOrs "I and~. There exists a symmetric matrix IV 
stICh that 'YTW~ t- O. 

Proof: If there is an index j such that 'Yj~j #- 0, then IV = cje; satisfie s the 
lemma. If for any j the product is zero, then there ex ist i and k (i t- k) such that 
"Ii t- 0 and "II" :::; 0, while ~j :::; 0 and ~k t- O. In this case matrix W = ejeI + eke; 
satisfies the lemma. 

Theorem 2. If system ( I ) has two eigellvallles, SI alld sz, sllch Ihat 51 + 5Z :::; 0, then 
there exists a symmetric matrix l-V fo r which eqllation ( 10) has 110 solution satisfying 
conditiOlls ( 11 )-( 12). 

Proof: Assu me by contradiction that for any symmetric matrix W equation ( 10) 
has a solution sati sfying conditions (11)-(12). 

We can associate with eigenvalues 51 and 52 two solutions of system (I) of the 
foml 

X( l )(t) = e S)tl', and x(2}(t ) = eS2t~, 

where "I and ~ are eigenvectors corresponding to the eigenvalues. By Lemma I there 
ex ists a symmetric matrix IVa such that 

In accordance wi th the previous assumption, equation (10) has a solution U(r) sa­
tisfying conditions ( 11 )-( 12), where W = Wo o Let us define the bilinear functional 

*', ,,) ~ <p T (O)U(O),,(O) + <p T (0) t, U( - h - O)A, ,,(O)dO+ 

+ [1.: <p T (O)A;U(h +B)dO] ,,(0)+ 

+ iOh 'P T (9z)Ai Le. U(9z - 9dA1 1/J(9dd91] d9z. 

Given two solutions of system (1 ), x( t) and y{ t), one can verify by direct calculations 
that 

d 
-/ z(xt.yd = -xT(t)WO y(t), 

" see Appendix for details. In particular, for solutions x(l)(t) = eS,!'Y and x(Zl( t ) = 
e S2tC we obtain 

On the other hand, substituti ng these solutions directly into the bilinear functional 
we arrive at the following expression 
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z(x;J), x;2l) = e(Bl+3,)11' T [U(O) + iOh U( - h - O)A\ ehil dO + 

+ (0 A{U(h+O}eB1ildO+ f O ( 0 e.,il1+81il' A[U(02- 0\) A\dO\d02] ( 
J_h Lh J_h 

Observe that matrix in the square brackets docs not depend o f t , conditi on Sl + 82 = 0 
implies that 

~z(x(]l x(2l) - 0 
dt I' t - . 

The latter equality contradicts with that in (19). 
The contradiction ends the proof. 
Theorem 2 can be interpreted in the terms of eigenvalues o f the Lyapunov ope­

rator associated with system ( I). In fact, this theorem states that any sum ofthe form 
S; + SkI where 8j and Sk are e igenvalues of system (I), is an eigenvalue of the opera­
tor. This result is a natural extension of the well known statement about eigenvalues 
o f the Lyapunov operator V -+ ATV + V A for delay free systems. 

3.4 Computational issue 

A very useful propeny of Lyapunov matrices for systems with one delay will be pre­
sented next. Matrix (9) is a sol ution of the second order differential matrix equation 

U"(T) = U'(T} Ao - A;rU'(T) + A;{'U(T}Ao - A{U(T)A] , (20) 

with the following boundary conditions 

• - W = U(O} Ao + A;jU(O) + UT(h)Al + AiU(h); 
• U'(O) = U(O)Ao + U'(h)A , . 

Equation (20) and the boundary condi tions may be used for computation of U (T). 
If there exist just one solution of (20) wh ich satisfi es the boundary conditions, then 
this solution defines the Lyapunov matrix (9). If there arc several o f such solutions 
one has to select among them the o ne which satisfies also to equation (10) and condi­
tions (11)-(12). 

Example 1. System 

. (0 1) ( ° 0) xi') = - 1 - 2 x(t) + - 11 x(t - 1) 

is exponentially stable. Let W = 3£, components o f matrix U(T) for T E [0 , I ] are 
plotted on Figure I. 
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• 

,~. --~.~, --7",-~",--t."--~.~,--,.~.--,.~, --~,,.-~ .. .--+--· 

Fig_ L Components of matrix U(r) 

3_5 Quadratic low bound 

One of the basie conditions for Lyapunov-Krasovskii funct ionals states that functio­
nal vU shou ld admit a quadratic low bound of the fonn 

a, IIx(')II' ~ vex,), 

where 01 > O. Surprisingly enough, no such a bound has been demonstrated for 
functional voO. The corresponding attempt, made in [6], resulted in a local cubic 
low bound onl y, see also [5]. The following theorem sheds light on the problem and 
indicates a modification of the functional needed to guarantee ex istence of a global 
quadratic low bound. 

Theorem 3. Let system (J) be exponentially stable. Given matrices Wo > O. WI > 0 
and W z 2: 0, then there exists £ > 0 such that functional (5) admits the following 
qllOdratic low bOl/nd 

'lIx(')II' ~ vex,). 

Proof: Consider the modified func tional 

vex,) ~ vex,) ~' llx(')II' · 

Then 

(:t v(xd = -w(xd ~ 

~ _(xT(t),xT(t - Ii)) (Wo + E;1f + An ;C1I) (X(:~)h)) . 
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For sufficiently small E > 0 functional w(xd '2: 0, therefore 

v(rp) = 100 

w(xt{rp))dt ?: 0, and v(xd ?: E IIx(t)1I2 . 

Example 2. For system 

. (0 1) ( 0 0) xl') ~ - 1 - 2 xl') + - 1 1 x(1 - 1). 

If we assu me that Wo = W t = E then functional v(xtl satisfi es inequality 

where E is such that 

v(x,) 2: < IIx(I)II', 

(
Wo +dAo +A;D EA]) > 0 

EAT W] -' 

Direct calculations show that the last inequality holds for 

e S v'1.5 - 1 ~ 0.2247. 

3.6 Robust stability conditions 

Consider a perturbed system of the fonn 

y(t) ~ (Ao + Llo) .(1) + (A, + Ll,) .(1 - h) . 

Here matrices, ..10 and ..1], are unknown, but such that 

(21) 

(22) 

Let system ( I ) be exponentially stable. We would like to fi nd conditions on Po and 
PI under which system (21) remains stable for all ..10 and Ll t satisfy ing (22). 

The fi rst time derivative of (5) along sol utions of system (2 1) is 

d T 
dt v(ytl = -w(yr) + 2 [Lloy(t) + Ll]y(t - Il)] x 

x [U(O).(I) + [, U(-h-O)A,Y(I+O)dO]. 

Let II = maX9 E[O,h j { IIU(e)I!}, then 

• 2yT(t)Ll6U(0)y(l) ~ 2vPoyT(I)Y(I); 

• 2yT(t - h)LlTU(O)y(t) S Vp]yT(t)y(t) + vPlyT(t - Il)y( t - Il); 
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• 2yT(t)L1J' J~h U( - h - B)Aly(t + B)dB :5 

:5 vPo [hyT(t)y(t) + 10h y"/'(t + lJ)Aj Aly(t +lJ)dlJ] ; 

• 2yT(t - h)L1j J~hU( -h - lJ)Aly(t+B)d8:5 

:5 I1PI [hyT(t - h)y(t - h) + 10hyT(t + O)AjAly(t+lJ)dlJ] . 

i,From these inequalities we obtain that 

d 
dt v(yd :5 - w(Yd + II [2po + hPo + pJ] yT (t )y(t )+ 

+IIPI [1 + hJyT(t - h)y(t - h)+ 

+11 [Po + pJ] lOh yT (t + O)Aj A ly(t + O)dO. 

i,From this inequality one can ded uce the following statement. 

Theorem 4. Let system (I ) be expollenlially stable. Givell positive definite matrices 
lVo , WI , 1Vz. System (21) remaills exponentially stable for all do and d l satisfying 
(22) if 

i) Amin(WO) 2:: II (2Po + hPo + PI) , 
ii) Ami,,(W\) 2:: IIPI (1 + h), 

iii) W22::v(Po+p\)AjA\. 

Example 3. Consider tlgain the system 

x(t) ~ ( ~I ~2) x(t) + ( ~l n x(t -I). 
Given the perturbed system 

y(t) ~ (.4, + Ll,)y(t) + (.4, + Ll,)y(t - I), 

where 

Let Wo = WI = 1V2 = E, then from Figure I v < 13. Theorem 4 implies that 
perturbed system remains sttlble if 

I 
P < -- 56 · 
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4 Conclusions 

In this chapter we present some results on construction of complete type Lyapunov­
Krasovskii functionals for time delay systems. 
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Summary. In this chapter we study the robust stability independent of delay of some class 
of uncertain quasipolynomials, whose coefficients may vary in a certain prescribed range. OUf 

main contributions include frequency-sweeping conditions for interval, diamond and sphe­
rical quasipolynomial families. The correspoding results provide necessary and slIfficiem 
condilions, and arc easy to check, requiring only the computation of two simple frequency­
dependent functions. Various extensions (poly topic uncertainty. multivariate polynomials) are 
also presented. 

1 Introduction 

The stability of delay systems is a subject of recurring interest in the study of dy­
namical systems, and received considerable attention in the laSI decade, see, for ins­
tance, [12, 12, 16, 18], and the references therein. Two parlicu lar stabi lity notions, 
delay-dependent and delay-independem stability, respectively, have been extensively 
treated in the literature, and both time and frequency domain stability tests have been 
developed. Here by delay-independent stabi lity of a system we mean Ihat the system 
is stable for all nonnegative values of delay, and otherwise the system's stability is 
delay-dependent. It is known that with on ly commensurate delays, the stability of 
a linear time-invariant system, whether delay-dependent or delay-independent, can 
be determined by solving a matrix eigenvalue problem [4,5] . On the other hand, 
for systems with incommensurate delays, the stabil ity problem has been found to be 
NP-hard in general [22]. 

This chapter focuses on the robust stability independem of delay of linear time­
invariant delay systems. Specifically, we consider uncertain quasipolYllomia/s whose 
coefficients depend on uncerlain parameters in an affine manner. Unlike in the gene­
ral situation, where one may have to resort to the computation of strucl!lred singular 
values [3], in this chapter we seek computable necessary and sufficient conditions 

• Author 10 whom all correspondences should be addressed. 
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for robust slability. We shall focus particu larly on poly topic uncertain quasipoly­
nomials, and its sub- families of interval, diamond and spherical quasipolynomials. 
Note that the robust stability of quasi polynom ials has been a well-studied topic (see, 
e.g., [2, I I, 12, 14, 15,20] and the references therein), though the results seem less 
well-developed. 

We adopt a frequency domain approach, one that is built upon the frequency­
sweeping conditions obtained in [7,8], which give necessary and su ffi cient robust sta­
bility conditions for uncertain polYllomials. We develop frequency-sweeping robust 
stabi lity tests. These results require only the computation of some simple frequency­
dependent funct ions and the computation can be done rather efficiently. For example, 
for interval, diamond and spherical polynomials, the robust stabili ty can be detenni­
ned by computing two frequency-dependent functions only, with one for the robust 
stabi lity in the absence of delay, and another serv ing as a distance measure. 

The remainder of this chapter is organized as follows. Some preliminary facts are 
included in Section 2. Section 3 presents frequency-sweeping conditions for interval, 
diamond and spherical quasipolynomials. The results will then be extended to more 
general problems in Section 4 (uncertain coeffi cients in tp-balls, poly topic uncer­
tainty and mul tivariate polynomials). Illustrative examples are given in Section 5. 
The chapter concl udes in SeClion 6 with a number of concluding remarks. Our deve­
lopment is guided by a geometrical inlerpretation which not only leads to the readily 
computable robust stability conditions, bUi also furn ishes intuitively transparent in­
sights guiding the derivations. This, apart from the technical results, appears to be 
another contri bution of this chapte~. 

2 Preliminaries 

We consider the class of quasi polynomials given by 

... 
p (s; e- T,8, "', e-"-~·) ::::: ao(s) + L ak(s)e- T•3, 

,1,=1 

Tk ~ O,k ::::: 1, '" , m, where 

,,-I 

ao(s) = s" + L ao;s;, 
i= O 

"-, 
ak(s)::::: L akisi . 

;=0 

(I) 

Th is quasipolynom ial corresponds to the characteristic function of delay systems 
described by 

,, - I m 

y(n)(t) + L L akiy(i)(t - Tk) ::::: 0, Tk 2: 0, (2) 
;= 0,1, = 0 

3 For the brevity of the chapter, all the proofs are omitted. However, the main ideas and 
interpretations are sufficiently well detailed. For complete proofs, see, for instance, the 
paper (91. 
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or more generally, those given in the state-space description 

x(t) ~ Ao x(t) + I:.4, x(t - T,J , (3) 
k = 1 

We study the stabili ty propert ies of the quasipoJynomial (I), and accordingly, the 
stability of the time-delay systems (2) and (3). In particular, we are interested in the 
stability of (I) independellt of the delay values Tk, k = 1, "' , m . This stability 
notion is stated fonnally as follows. 

Definition 1. The qllasipo/Yllomial ( J ) is said to be sUlble if' 

(4) 

It is said to be stable indepel/dent of delay if the cOl/dition (4) holds for al/I/ollnega­
tive delays Tk. 

We shall consider only quasipolynomials with incommensurate, independent delays, 
by which we mean that in ( I) thedelay parameters Tk, k = 1,' .. , m are independent 
of each other. In this case, a necessary and sufficient stability condition is available 
from, e.g., [3,6, 12]. 

Lemma I. Let Tk, k = 1" , ' ,m be independent delays. Then the ql/(lsipolYllomitll 
( I ) is stable illdepelldent of delay if alld only if 

(i) ao(s) is stable; 
m 

( ii) L al;O # 0, alld 
k = O 

(iii) 
m 

L: ]a,(jw)] 
,,-~,~~~ 

]ao(jw)] < 1, 'r/w > O. (5) 

Our primary purpose in this chapter is to study the stability of uncertain quasipoly­
nomials with incommensurate, independent delays. Thus, we assume that the coe ffi ­
cients of the quasipolynomial (I) vary in a prescribed set. In general, such quasipo­
lynomials can be described as 

m 

p(S;C- TI ', .. . , c- ..... · ; a) =ao(s ,aO) + L ak(S , ak)c- T 
•• , (6) 

k= 1 

Tk :?: 0, k = 1, ···,m where ak E Qk C IRn, k = 0, " ' , m represent the 
uncertain parameters. 

4 Here 4 ._ {s: R(s) > O} denotes the open right half plane, and C+ 
{s: Re{s) 2:: O} the closed right half plane. 
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Definition 2. The qllasipolynomial family (6) is said 10 be robustly stable If for all 
ak E Qb k == 0, .. . , m , 

.. e- r"". a) 4 0 , , ..,... , Vs E <\ . (7) 

It is robustly swble illdependelll of delay if (7) holds for aI/nonnegative delays Tk . 

We shall assume that each unccrtain vector ak varies independently. Additionally, 
we assume that each uncertain polynomial ak(s , (tk), k = 1, ·· . ,m is perturbed in 
an affine manner, so that it can be written as 

.. 
ak(s, ak) = ak(s , (tk) + L 1'kiPN(S)Oki, (8) 

;= 1 

k = 0, 1,··· , m, where 'Yki and Pki(S) are known constants and pol ynomials, 
and Ok; are unknown perturbations within some prespecified ranges. Write Ok := 

[Okl·· ·Ok ... jT . Then, a common characterization for the unknown perturbations is 
furnished by the lp- Holder norm, that is, 

For example, for Pki = s; and 1) = 00, 1, 2, the uncertain polynomial ads, O"k) 
defi nes correspondingly the families of interval, diamond, and spherical polynomials, 
respectively. In the sequel, the uncertain quasipolynomial (6) wi ll be tenned interval, 
diamond. and spherical quasi polynomials if all its coeffi cient polynomials Uk(S, (tk) 
are interval, diamond, and spherical polynomials, respectively. 

3 Frequency·Sweeping Conditions 

We shall present several necessary and sufficient frequency-sweeping conditions for 
the uncertain quasipolynomial (6) when its coefficients are characterized by lp balls. 
In this case, the polynom ial families ak(s, O"k) assume the form 

... - 1 n - I 

ao(s , (to) = s" + L (tOiS; , ak(s , (tk) = L (tNS;, (9) 

where each (tki, k = 0, 1, .. . , m is assumed to tie in a given interval [gki ' Uki]. 
and the vector (tk is to vary in a weighted lp ball . More specifically, define 

(tN - l!ki 
'Yki := 2 rk :=diag('Ykl , ··· ,'Ykn)· 

Then for any P E [1, ooj, the coe ffic ient vector (tk is characterized by the weighted 
lp ball 
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Q" := {(tk : (tk = (tk + rk6k , 116k ll p ::; I}. 

Note that by defining Pki(S) = si, the polynomial family a(s, (tk ) coincides with 
that given by (8), with 116k lip::; 1. Assume, without loss of generality, that n is an 
even integer; an analogous analysis applies when n is odd. Let q E [1,00] satisfy the 
relation (l ip) + (l /q) = 1. For each w E [O,oo), define 

Xk ,q(W) : = bZo + h'k2W2)q + h'k4 W4)Q + ... ) I/q , 

Y".q (w) : = ('YZ ] + bk3W2)Q + hkSW4)Q + ... ) I/q , 

R,, (w) : = o ko - ok2w2 - ok4w4 + 
lk(w ) : = 0kl - Ok3w2 + OkSw4 + . 

Note that for q = 00, 

X",oo(w) = max {'YkO, 'Yk2W2, 'Yk4W4, ... } , 

Yk ,oo (w) = max {r ki , 'Yk3W2, r kSw4, .}. 

" also follows thaI a,,(jw, o,i') = Rk(w) + j wI,,(w) . 

3,1 Interval quasipolynomials 

In this case, as speci fied above, al l the polynomials ak(s, (tk) are each interval po­
lynomials, that is, Ok E [!"lk;' ak;], or alternatively, 

For eaeh k = 0, 1, . .. , m. define the four Kharitonov vertex polynomials 

](k,l(S): = !"lkO +!"lkl s +ak2sz +ak3s3 +ftk4S4 +Q:kSSs + . 
Kk,Z(S) : = akO + a,,] s + ftkZSz + ftk3S3 + ak4s4 + aksss + 

](k,3(S) : = akO + ftkl S + ilizSz + ak3s3 + a k4s4 + ftkSSS + 
](k,4(8): = ftkO + a"ls + akZs2 +ftk3S3 +ftk4 S4 +akS ss +. 

(10) 

It is well-known that the interval polynomial aloes, (tk) will be stable whenever 
O"n ::j:. 0 and the four vertex polynomials are stable. In the present setting, of in­
terest is the stability of the interval polynomial £10(8 , (to). The following alternative 
condition [8] provides a frequency-sweeping test and will be required. 

Lemma 2. Suppose thaI ao(s , (to) is stable. Then, the interval polynomial ao(s, 00) 
is stable if and only if 9:00 > 0 and 

. {XO,I(W) YO,I(W)} 
mill IRo(w)I ' 110(w)1 < 1, Vw > O. ( II ) 

Based upon Lemma I and Lemma 2, we are now ready to state a frequency-sweeping 
condition for the interval quasipolynomial (6). 



48 Jie Chen and Silviu-Iulian Niculcscu 

Theorem 1. Let 'Tk. k = 1, ... , m be independent delays. Define 

where 

p,(w) , = V(lR,(w)1 + X", (w))' + w' (1J, (w)l + V" , (w))' , 

en(w): = VM'k (w) +w2Ml(w) , 

MR(W) _ {IRn(W)1 - Xo., (w) ifIRn(w)1 > X o" (w) 
- 0 ifIRn(w)1 " X o" (w), 

M,(w)' _ {IIo(W)I- Yo,,(w) ifI1o(w)1 > Yo ,,(w) 
. - 0 ifllo(w)1 " Yo.,(w). 

Theil the interval qllasipolynomiaf (6). with ads ,ak) given by (9-10). is robustly 
stable independent of delay if and ollly if 

(i) The interval polynomial ao{s, ao) is stable; 
m 

(ii) L!!kO > 0; 
k=O 

(iii) 
m 

I: p,(w) 
~'-~',-;-",-- ) < 1, 

en(w 
Vw > 0, (12) 

Theorem I makes it clear that the robust stability of the interval quasi pol ynomial 
independent of delay can be ascertained by checking the stability of one interval 
polynom ial and additionally perfonning a frequency-sweeping test. Here the stabi­
lity of the interval polynomial can be determ ined by either checking the fou r vertex 
polynom ials. or by checking the frequency-sweeping condition (11 ). We note that 
both frequency-sweeping conditions require only simple algebraic computations and 
both admit rather intuitive interpretations. To illustrate, consider the value set of 
ads,ak). Vkt(W) := {ak(jw,ak): ak E Qd, which is a frequency-dependent 
rectangle, known as the Kharitonov box depicted in Figures I and 2. Clearly. at any 
w > O. the max imum of laJ;(jw,adl is ach ieved at the vertex farthest from the 
origin, whose distance from the origin is: 

V(IR,(w)1 + X, ,, (w))' +w' (II,(w)1 + Y", (w))' . 

When al w > 0 so that the rectangle lies strictly in anyone of the four quadrants, the 
minimum of lll()(jw, ao)l is also achieved at one of the four vertices, one which is 
nearest the origin and whose distance from the origin is: 

V(IRn(w)l- Xo,,(w))' +w' (l Io (w)l- Yo,,(w))'. 

However, when the rectangle crosses either the real or imaginary axis, as shown 
in Figure 2, the smallest distance between the rectangle and the origin is that on the 
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either axisS, which is either IRo (w)l - XO ,t (w) orw (Ilo(w)1 - YO ,l (w)) . Th is conse­
quently gives a rather simple geometrical interpretation to the frequency-sweeping 
condition ( 12). A geometrical interpretat ion for Lemma 2 can be found in [8]. 

1< •• , 

••• 
o ... 

Fig. I. Kharitonov boxes 

I< •.• t;.o) ....., 
·F'------------:::7~ K.,v...) 

o 
_. 

•• 
L...,---__________ ~ K • • • . , 

I<.,u...) ~ 

Fig. 2. KharilOnov boxes 

~ The former corresponds to Ilo(w)1 :::; YIJ• l (w), when the rectangle intersects the real axis, 
while the latter corresponds to lRo(w)1 :S X O. 1 (w), when the rectangle intersects the ima· 
ginary axis. 
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3_2 Diamond quasi polynomials 

For the diamond quasipolynomial famil y, each poly nomial Uk(S, 0'1.) defines a dia­
mond polynom ial, whose coeffi c ients vary in the parameter set 

( 13) 

For the brevi ty of the chapter, we shall consider olily unifonnly weighted diamond 
polynomial s6. For this purpose we assume that for each k = 0 , I , " ', m,1'k1 = 
. .. = 1'1." = '"fl.. Denote the value set o f ads, 0"1.) by Vp(w) . It is known that 
VP(w) fonns a frequency-dependent diamond with its center at adjw, O'j,) . For 
wE (0 , 1], thc fo ur venices o f thc diamond are thc polynomial s Ck, I(S), Ck,2(S), 
Ck,3(S), and Ck,.I(S), while forw E (1, (0), the veniccs are Ck,,,(S). Ck,6(S). Ck ,7(S). 
and Ck,S(S), which are the extremes of the e ight edge polynomial s 

Ck,I(S, A) = ak( S, uk) - h k - (1 - Ah kS, 

Ck,2(S,"\) = a,.{s,o.p + A1'k - (1 - Ah kS, 

Ck.3(S, A) = ak(s,ok) + A")'k + (1 - AhkS, 

Ck.4(S, A) = ads, Ok) - A")'k + (I - Ah kS, 
Ck,,,(S, A) = ak(s,ok) - A")'kS,, - 1 - (I - >'hkS,, - 2, 

Ck,6(S, >.) = ads, O"k) + >'")'kS"- 1 - (1 - >'hkS,, - 2, 

Ck,7(S, A) = ak(s,O";) + >'")'kS" - 1 + (1 - >'hkS,, - 2, 

Ck,8(S, >.) = ak(s ,O";) - >'")'kS,,-1 + (1- >'h kS ,,-2. 

Correspondingly, the eight vencx polynomials arc 

Ck,1 (s) = ads, u;) - ")'k, Ck,2(S) = ak(s,O";) + ")'k 

Ck,3(S) = ak(s,O";) - ")'kS, Ck,4(S) = a,,(s, O";) + "),,,s , 

C",5(S) = a,, (s,O";) - 1'kS ,, - 2, cu(s) = a,,(s,O";) + 1'kS,,-2, 

C",7(S) = a,,( s, O";) - 1'kS,, - I, cu(s) = ak(s,O";) + "),,, S,,-l . 

It is well-known that the diamond polynomial CI{)( s, 0"0) is robustly stable if and 
only if its eight vertex polynomials are stable. Additionally, its robust stability can 
be detennined using the following frequency-sweepi ng eondition7. 

Lemma 3, Suppose that CI{) (s, 0"0) is stable. Then, the diamond polynomial ao(s, 0"0 ) 

is robustly stable if and only if Qoo > 0 and 

Xo,oo(w) < 
11o(wll + IRo(wll I , 

Vw > O. ( 14) 

(; More generally, the diamond polynomial s ads, O'k) may not be unironnly weighted, and 
the analysis may become substantially more complex. Nevertheless, the geometrical ar­
gument employed remains useful and suggests a general, systematic approach. See, for 
instance, [91. 

7 Here X k •oo = Yk. <>c = ")'k max{I ,w,,-2}, Vk = 0, 1,'" ,m. 
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We obtain a similar frequency-sweeping condition for the robust stability of the dia­
mond quasipoJynomial. 

Theorem 2_ Let Tk. k == 1,"" m be illdepelldelll delays. ASSllme Ihal for each 
k = 0,1, '" ,m.'kL = ... = I kn = I k. Define 

p",(w) : :::: max { j(IRk(W)1 + Xk ,oo(W»2 + w'l I~(w), 

J R~(w) + w'l (l h (w)1 + Yk,oo(W))2 } , 

ek(w): = min {JIRk(W)1 2 +w2 (I Idw)l- Yk,oo(w))2, 

jClR,(w)l - X" oo(w))' +w2Ih(w)I' } ' 

Fllrlhermore, defille 

and 

rL~ {w > 0, IRo(w)1 - w' 11o (w)1 + w2 Xo .oo(w) > 0, 

IRo(w)1 - w2lfo(wll - Xo, oo(w) < O} , 

,,"(w) , ~ { ",':;.w' (IRo (w)1 + 11o (w)l- Xo ,oo(w)) w E fI, 
eo(w) w If- n. 

Then the diamond quasipolynomial (6). with ads, ad given by (9). (13), is robustly 
stable independent of delay if and only if 
(i) The diamond polYllomial 00(8, 0'0) is stable; 

'" 
(ii) aoo > L I kO; 

k""l 
(iii) 

m 

2: p,(w) 
<, .-~,'--,.~-- () < 1, 

PoW 
'r/w> O. ( 15) 

The idea behind Theorem 2 is also rather si mple. It is clear from Figure 3 that the 
maximum of 10k(jW, Cl'k)1 must be achieved on one of the four vertices. The lIIilli­
mllm of lao(jw, 0'0)1. however, occurs on one of the four edges, but may not on the 
vertices. This is the case when a straight line from the origin is perpendicular to the 
edge closest to the origin, which occurs for w E n. Otherwise, the minimum will still 
be attained at one of the vertices. The calculation of fJO(w) explains this intuition . 

3.3 Spher ical quasipolynomia ls 

For the spherical quasi polynomial family. each polynomial ak(s , O'k) is comprised 
of a spherical polynomial fami ly, characterized by the parameter set 
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Rool 

Fig. 3. Special case when [he minimum is on one or [he edges 

( 16) 

The robust stability of the spherical polynomial ao (s, ( 0) can be detennin ed as well 
using a frequency-sweeping condition [8]. 

Lemma 4. Suppose that ao (s, (0 ) is stable. Theil, the spherical polynomial oo(s, (0) 

is robustly stable if and only if Qoo > 0 and 

1 R.(w) I' 11o(w)I ' 
, ( ) + '() > 1, X 0 2 w Y0 2 w , . ';/w> O. ( 17) 

As in the case of interval and di amond quasipolynomials, we shall also calcu late 
max lak(jw, ok )1 and min 100(jw,oo) l. Define 

O"k E Qk O"oEQo 

(1 8) 

Xk . = w2 Yk2Aw) if Rdw) = 0 
{

Xi 2(W) if Idw) = 0 

. max { X i,2(w), w2 Yk~2(W) } otherwise, 

~k : = w2 Yl,2(W) if Rk(W) = 0 
{ 

Xi. ,(w) ;f l, (w) ~ 0 

min { X i,2(w), w2Yk~2(W) } otherwise. 

We have the fo llowing rcsuil: 
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Theorem 3. Lei Tb k = 1, ' , m be independem delays. Define 

IR,(w)I' w'IJ,(wW 
(~; + XZ,2(W))2 + (~; + w2Yk2,2(w))2 ' 

where for all k = 0, 1" .. ,m, X; E (- 00, -Xk ), A~ E (-AkJ 00), alld hk(X;) = 
hdA;) = 1. Thenlhe spherical qllasipolYllomial (6), wilh ads,ok) givell by (9) 
alld ( 16), is robllslly slable independem of delay if and only if 
(i) The spherical polYliomial ao(s, 00) is swb/e; 

m 

(ii) L 9:kO > 0; 
k=O 

(iii) 
m 

L: p,(w) 
"~",-' -;-,---- < 1, 'r/w > O. 

.eo(w) 
(19) 

Theorem 3 makes it clear that the robust stabi lity o f the spherical quasi polynomial 
can be determined by solving essentially ~ and X;, k = 1, ... , m. With the 
properlies of hk (>..) (i ncreasing func tion on (-00 , - Xk ), and decreasing function 
on (-,1k 'oo). respectively), each of these can be solved readily using a li ne search 
method. They can also be found by solving the 4th order polynom ial equation 

at each W E (0, 00). This can be easily accomplished as well. 

4 Extensions 

The preceding techniques and results can be extended in a number of ways, resulting 
in stability conditions fordifferentand more genenll uncerlain quasipolynomials. For 
example, it is easy to extend Theorems 1-3 to more general uncertainty descriptions 
characterized by the €p nonn, for an arbitrary p with 1 :s p :s 00. Indeed, a direct 
generalization will yield necessary or sufficient cond itions for robust stability inde­
pendent of delay, by appropriately estimating the maximum of laJ;(jw , ok)1 and the 
minimum of lao(jw, 00)1; many bounds for these quantities can be obtained to this 
effect. One may also consider using different €p norms in the uncertainty characteri­
zations, which will allow us to combine the formulas OfPk(W) and .eo(w) to obtain 
necessary and sufficient frequency-sweeping conditions in much the same spirit as in 
Theorem 1-3, despite that the uncertain coefficient polynomials are each described 
individually by any of the ii, e2 , or eoo norms. 
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Th is section presents a number of extensions beyond those alluded to above. We 
consider more general uncertainty descriptions and seek frequency-sweeping results. 
A generalization is also made to a special class o f multivariate polynomials. 

4_1 Uncertain coefficients in lp balls 

Our first generalization is sought after for a case where uncertain coeffi cients are 
characterized by general €p nonns. Consider the uncertain quasi polynomial (6) with 
the coefficients described by 

(20) 

where 
(2 1) 

In other words, we assume that the reat and imaginary paris of the coefficient polyno­
mials vary independently of each other. This enables us to general ize our preceding 
results immediately. Note that in this case a similar frequency-sweeping condition 
for the robust stability o f ao(s, 0'0) can be obtained in much the same spirit as in 18] . 
Note also that uncertain polynomials with independent real and imaginary parts are 
studied in [21}. 

Lemma 5. Suppose that ao(s , 0'0) is stable. Then, the IIncertain polynomial ao( s, 0'0) 

with Qo given by (20-21) is robustly stable if and only if Qoo > 0 and 

. {XO,q,(W) YO,Q2(W)} 
mill IRo(w)I' IIo(w)1 < I, Vw > O. 

The following result is a counterpart to Theorem I. 

Theorem 4. Let Tk, k = 1, " ', m be independent delays. Define 

where 

p,(w) , ~ VUR'(w)1 + X, ... (w))' + w' (lh(w)1 + y, ... (w))' , 

.eo(w) : = J M~(w) + w2M'f(w) , 

M (w) ~ { IRo(W)1 - X, .• , (w) ifIRo(w)1 > X, .• , (w) 
R 0 ifIRo(w)1 ~ X, ... (w) 

Ah(w)' = { IIo(W)I- YO,Q2(W) ifllo(w)1 > YO,q2(W) 
. 0 ifllo(w)l::; YO,q2(W) 

(22) 

Then the IIncertain qllasipolynomial (6), with Uk(S, Ctk) given by (9) and (20-2 1), is 
robustly stable independem of delay if and only if 

(i) The uncertain polYllomial ao(s, 0'0) is stable; 
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m 

(ii) L !!kO > 0,­
k=O 

(iii) 

4.2 Polylopic uncertainty 

m 

L p,(w) 
k= 1 
=7(,)- < 1, 

!!o w 
Vw> O. (23) 

Exlensions may also be found to quasi polynomials wilh poly topic uncertainties. For 
this purpose, let Ihe family of polynomials ak{s, ak) be the convex hull 

(24) 

In other words, ak{s , aJ;) can be expressed as the convex combination of the gene­
rating polynomials PI<i{S) : 

" " ak{s, ad = 2:: AjPkj{S) , L Aj = 1, Aj ~ 0, j = I , ... , lk ' (25) 
j = 1 j = 1 

where 

,, - 1 

A:lj(S) = s"+ L P~) si, (26) 

i=O 
H 

Pkj{S) = 2: p~~)Si, k = 1, 2, ... , m. (27) 
;= 0 

We note that both Ihe interval and diamond polynomials fa ll as special cases of thi s 
polylopie class. Nole also thallhe stabi lity of au(s, ao) can be checked using the so­
called edge theorem and other lools (see, e.g., [1,3]). We provide below freq uency­
sweepi ng results for Ihe corresponding q uasipolynomials. 

T hem-em S. Let Tk ~ 0, k = 1, ... , m be independent de/ays. Define 

{ 

I/m{pO i{ j"')pO; U..,))1 if 
IpOiti.., ) pOjti.., )1 I 

Pij(W):= R e{A:li(-jW)A:lj(jw)} < min{ lA:li(jwJ!2, lA:lj(jwJ!2} 

min {1A:l;(jw) I, lA:lj (jw) I} othen vise. 

Then the /lncertain quasipolynomial (6), with ak (s , ak) given by (25-27), is robustly 
stable independent of delay If an.d ollly if 

(i) The polyropic polynomial au(s, ao) is robllstly stable; 
m 

(ii) ""' min p ti) > 0.­
L l<j <l .. kO 
k= O - -
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(iii) 
m 

L max Ipkj (jw) I 
"-=C'c'<=cj<='c'-:-,~--- () < I , min Pii w 

ISi<i9o 

Vw> O. (28) 

We note that the numerator in (28) can be easily computed. The computation of the 
denominator can be more demanding, which requires lo{lo - 1)/2 computations of 
Pij(W). 

4.3 Multivariate polynomials 

It is straightforward to extend the preceding results to a special cl ass of multivariate 
polynomi als which arc also known as disc polynomials [3}. This class of multi varia Ie 
polynomi als are described as 

m 

p (s; ZI, "', z",) = ao(s) + L ak(S)Zk . 
k = J 

The multivariate polynomial p (s; Zl, " ' , z",) is said to be stable if 

p(s; Zl , "' , z",) ¥- 0, "Is E C+, Zk E U, k = 1, "', m. 

(29) 

A necessary and suffic ient condition for the stability of P (8; ZI, . .. , zm) is avai­
lable from, e.g., [3, 17l, which can also be seen rather trivially from [3]. 

Lemma 6. The multivariate polynomial (29) is stable if alld ollly if 

(i) ao(s) is stable; 
(ii ) 

""-;""",,,-1",,(jw)1 < I , Vw ;?: O. (30) 

Clearly, the sole difference between Lemma 6 and Lemma I lies at the frequency 
w = O. It is thus unsurprising that the preceding results can all be extend ed readily 
to th is class of multivariate pol ynomials with uncertain coefficients. 

5 Illustrative Examples 

We consider the uncertain quasipolynomial 

p(8; e- H " e - ~T2, e-~"") = 8 4 + 00383 + 00282 + 0018 + 000 

+(01383 + 01282 +0118 + OIO)e-$T, + (02383 + 02282 + 021S + 020)e- 6TO 

+(0318 + 030)e-
ST3

, (3 1) 
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where aoo E [4.85,5.15].001 E [7.85,8. 15],002 E [9.85, 10.15].003 E [5.85, 6.15] 
010 E [0.2 , 0.4].0" E [0.9 , 1.1].012 E [0.2 ,0.4].013 E [0.2,004] 0"20 E [0.1,0.5], 
021 E [0.8, 1.21,0"22 E [0.3 , 0.7].0"23 E [0, 0.4],0"30 E [0,0.6]. and 031 E [0.6, 1.2], 
respectively. Our purpose is to demonstrate how the preceding results can be e ffec­
tively used to test robust stability independent o f delay. For this purpose, we first 
obtai n 

Ro(w) = 5 ~ IOw2+w\ 10(w)= 8 -6w2, 
R,(w) = 0.3(1 - w2

), h (w) = 1 - 0. 3w2, 
R2(W) = 0.3 - 0.5w2 , 12(w) = I - 0.2W2, 
R3(W) ~ 0.3, J,(w) ~ 0.9. 

Assu me first that p(s; e- S"'l, e- .... 2, e- 8T"3 ) is an interval quasi pol ynomial. In this 
case, 

Xo. ,(w) = 0.15( 1 + w2
), Yo .,(w) = 0.1 5( 1 + w2

), 

X"I (W ) = 0.1(1 + w2), Y1 ,I(W) = 0.1 (1 + w2), 
Xz,.(w) = 0.2(1 + w2), Y2,,(w) = 0.2(1 + w2), 
X 3, d w) = 0.3 , Y3.I(W) = 0.3. 

Figure 4 plots the frequency-dependent conditions in Lemma 2 and Theorem I. From 
these plots, it is immediately clear that the interval quasipolynomial is robustly stable 
independent o f delay. Next, suppose that p(s; e- ST" e- · T2 , e- · T3 ) is a diamond 

,. 
,., 

" .. , 
.. 
',:-~", -~,.c--;c, • .-~,~ • .---:-, -~,~,-~,~.-~,~. - 7".---{, 

~:-

Fig. 4. Interval quasi polynomials 

polynomial. One may immediately verify Ihat it is a unifonnly weighted diamond 
quasipolynomial with 10 = 0.15 , I ' = 0.1,1'2 = 0.2. and 13 = 0.3. Furthennore, 
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XO. (Xl (W) = 0.15 max{l , w2}, Yo ,(Xl (w) = 0.15max{1, w2}, 
X 1,(Xl(w) = O.lmax{l , w2}, Y1,(Xl (w) = 0.1 max{l , w2}, 
X 2,(Xl (W) = 0.2max{l , w2}, Y2,(Xl (w) = 0.2max{1 , w2}, 
X3 ,(Xl (W) = 0.3, Y3 ,(Xl (W) = 0.3. 

The conditions in Lemma 3 and Theorem 2 are plotted in Figure 5. Likewise, we 
conclude that the diamond quasipolynomial is robustly stable independent of dclay. 
Fina1iy, when p(s; e- ST

" e- H2 , e- H3 ) is a spherical quasipolynomial, we find 

.. , 

.. 
r 
r 
i!' 0.3 

.. , 

•• !--"""'.~, ~~ •. ~. -~.,'----.~.'------7, -~,~,-~,~.-~,7, -~ .. ~~ --
Fig, 5, Diamond quasipolynomials 

X O,2(W) = 0,15vl +w2 , YO.2(w) = 0.15vl + W2 , 
X 1.2(W) = O.lvl + w2, Yl .2(W) = O. I Vl + w2, 
X 2.2(W) = 0.2Vl +W2, Y2.2(W) = 0.2~, 
X3,2(W) = 0.3, Y3,2(W) = 0.3 . 

Figure 6 shows that conditions in Lemma 4 and Theorem 3, which also shows that 
the spherical quasi polynomial is robustly stable independcnt of delay. Furthennore, 
a comparison of Figures 4, 5 and 6 reveals that the robust siability of the interval 
quasipolynomial implies that of the sphcrical quasipolynomial , and the latter implies 
Ihe robust stability of the diamond quasi polynomial. This is expected, as the fp nonn 
II . lip defines an increasing function of p E [1, 00) . 
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Fig. 6. Spherical quasi polynomials 

6 Concluding Remarks 

In this chapter we have studied the robust stability of uncertain quasipolynomials. 
We addressed specifically the notion of robust stabi lity independent of delay, and 
considered interval, diamond and spherical quasi polynomials We derived necessary 
and sufficient conditions for these uncertain quasipolynomials, which can be checked 
by perfonn ing frequency-sweeping tests. OUf technique is built upon the frequency 
domain approaches developed in l7,8J for robust stability analysis of uncertain po­
lynomials, and in [3] for stability of time-delay systems. A useful feature about this 
technique is that it provides a rather intuitive geometrical interpretation. This inter­
pretation may shed light inlo re lated stabil ity problems for other classes of uncertain 
quasipolynomials. The authors have also developed vertex-type necessary and suffi­
cient conditions for stabi lilY independent of delay. These resu lts are provided in [9]. 
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Improvements on the Cluster Treatment of 
Characteristic Roots and the Case Studies 
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06269-3139 

Sum mary. A recent methodology, the Direct Methoo (OM) , is considered for the stabil ity 
analysis of the linear time-invariant lime.delayed systems (LTI-TDS). Its fundamental strength 
is in the paradigm called the "cluster treatment of the charac teristic roots" (CTC R) . Salient 
features of the crCR and the sleps of OM are described. An interesting extension 10 DM is its 
equall y effective utiliza tion fo r both the TCtarded and neutra l TDS. A well studied necessary 
condition for NTDS is shown to be an inherent property imbedded within the steps of thc DM . 
Example case studies are given to show the effectiveness of the procedure. 

I Introduction 

This Quasipolynomial is rormed in two parts. The first part presents several pro­
gressive steps on a recent methodology which deals with the stability of LTI-TDS 
(Linear Time-Invariant Time Delayed Systems). The treatment departs rrom the core 
concept of "cl uster treatment of characteristic roots" (CTCR) [13J. And it addresses 
the improvements over it. The second part is on the applications of the CTCR para­
digm on several practical problems. One of them is an active vibration control on a 
mutli-dimensional dynamics with MIMO structure which is influenced by a delay in 
the feedback control line. Another practical problem is a 2-D target tracking, again 
using a MIMO structure. 

The treatment is on a relatively old problem of LTI-TDS in the form of 

x ::::: A x (t ) + Bx (t - 7) ( I) 

where x (n x 1), A , B E 3(:(" )( " ),7 E 3(:+ [3,3,6, 13,23]. We consider constant A and 
B matrices and try to assess the stability posture of the dynamics forthe semi-infinite 
7 > 0 domain . The objective is to detennine all the stability intervals of 7 exclusi­
vely. This process should be applicable independent of the initial stabil ity nature of 
the system when non-delayed (i .e .• 7 ::::: 0). Such an objective is rather interesting in 
that, a dynamics which is unstable when there is no time delay may exhibit stable 
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posture for larger T values, or within several T > 0 intervals. Knowledge of these 
intervals can be of practical importance as demonstrated in the appl ication example 
cases. 

The characteristic equation of ( I) is 

GE(s , T) = det( s I - A - Be- U
) 

".. ( ) - k'T ' = L.k=oak se , r > O 

This equation is transcendental due to the exponentialtenns. Therefore it has infinite 
dimensional nature (i.c., infinitely many characteristic roots exist). The particular 
dynamics represented above is called " retarded" TDS with "commensurate" lime 
delays, which implies that the highest order derivative tenn in (I) does not have 
delay in it (for " rctarded" feature) and there are integer multiples of T appearing in 
(2) yielding the "commensurate" property. 

By definition, for the asymptotic stability of the dynamics all of the infin itely 
many characteristic roots have to be on the left half of the complex plane. To verify 
thi s is a very cumbersome task. Many earlier investigations [2,3,2 1- 23,25,30] ad­
dress this very question offering various paths to resolve the stability detennination 
along the time delay axis. There are, however, limitations to these methodologies. 
Most common limitations can be listed as follows 

• None of the ex isting techniques can offer a non-sequential procedure to identify 
all of the stable T intervals, exclusively. 

• These procedures depart wi th a stable system T = 0, and determine a "stability 
margin , Tma,," which assures stable operation forO $. T s: Tma" . 

• These peer methodologies are all based on the detection of imaginary root cros­
sings, the cxclusivity of which cannot be achieved by the procedures suggested. 
Thcrefore the completeness of the methods are questionable especially when the 
dimension /I increases. It is apparent from the li terature that all of the peer me­
thods can be implemented only for small dimensional dynamics (n s: 2) and for 
relatively simple A and B matrices (mostly vacuous cases). 

In response to these limitations we present a structured paradigm "the cluster treat­
ment o f characteristic roots" (crCR) in the methodology presented in [13,16, 25J, 
the "Direct Method" (OM). We briefl y recite, next, the underlying features of both 
the crCR and the OM. 

It is obvious that when a T value causes a pair of characteristic roots s = ~wi 
(i.e., root crossing over the imaginary axis) this transition needs to be examined as to 
the nature of the crossing. Therefore there is a need of detennining all such T values 
yielding an imaginary crossing. Consider that such exhaustive analysis is done and a 
complete set of {Tk, Wk }, k = 1 ... 111 is available. The following can be stated about 
these crossings (proofs of which are left to [13, 16,25]): 
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i) s :::: Wki is generated not only by r"" but al so infi nitely many 

2. 
ru :::: rk + - £ k = 1.. .m , e = 0,T' 1,=F2 .. . w, (3) 

For simpl icity and accounting for the positiveness of the time delay, r we rename 
this set of delays as {rkt}, £ = 0, 1, 2 .. . , where rkO is the smallest positive r 
among the set in (3). 

ii) For a given system in (I ) there is a finite number of Wk'S, k :::: 1.. .m; and 
m",a% ::; n x Fibonacci number2n(l , I) [25], where the Fibonacci numbcr(l , I) 
is a series with temlS [24] : 

{ I , 1, 2, 3, 5,8, .. . ai = a i _ l + ai- d (4) 

and the upper bound uses the 2n t/' tenn of th is series. 
iii) At these m crossings the root tendency (RT) of s is invariant with respect to the 

generating value of r. That is 

RTk, = sgn[Re (~; ) s = wkil f = 0, 1,2 ... (5) 

r = rkt 

is invariant with respect to f. What this indicates is that at a given crossing s = Wki 
there can only be one directional passage of roots (RT = + 1 from \cft to right-half­
plane of s, and RT :::: - 1 vice versa), no matter what the corresponding delay value 

". 
Utilizing the feature (i), we form III clusters of roots to be studied, which contain 

the III critical crossings and the respective delays,{'Tkt}, k = l.. .m , £ = 0, 1, 2 ... 
which create these m crossings as "stabilizing", i.e., with RT = -1 and "destabili ­
zing",i.e., with RT = + 1 [13, 16, 19,20, 25J. These two clusters fonn the complete 
set of characteristic roots to be examined for stability, and again this set is exhaustive. 
This is the reason the methexl is called the "d uster treatment of characteristic roots" 
(CfCR). It enables the declaration of the complete picture of stability pockets . 

The crucial point in this stability analysis is the determination of the complete 
set of imaginary crossings {'TkO, Wk} , k = 1 ... m . This problem is addressed by many 
researchers in the past and it is also a current research topic [2,3, I I, 17, 23]. Throu­
ghout this study we deploy the methexlology suggested by ( 17) in 198 1, because of 
its simplicity and enabl ing properties. It starts with a substitution of 

- u 1 - Ts 1IJo+ T ~ e ~--- TE ~ , E " 
1 +Ts ' 

(6) 

which really represents an exact expression only when s :::: wi and for the mapping 
cond ition between 'T and T as: 

2 _ 
'T = - [tan 1 (wT) + f1rJ £= 0, 1, 2, .. . 00 

w 
(7) 
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The substitution (6) converts the nth degree transcendental characterist ic equati on 
(2) into a 2nth degree algebraic one as below. 

CE(s,T) = L~=o al;(s)(1 - Ts)I;(1 + T s)n - I; 
(8) 

Notice, however, that in (7) the mapping from T to T is one on infinitely many. Th is 
really corresponds to the first clustering feature which is mentioned earlier, i.e., the 
fi nite number of T's (upper bounded by a Fibonacci number) which correspond to 
imaginary crossings wi ll represent infin itely many time delays for the same crossing 
s = wi . 

An important convenience that the Rekasius substitution offers is in numerical 
simplicity and exactness fordetennining the complete set of {TI; ,Wk}, k = 1 ... m . As 
explained in [1 31 this procedure takes place as follows: The characteristic equation 
CE(s, T), which is parameterized in T as in equation (8), is taken into account. Cor­
responding Routh 's array (also parameterized in T) is fonned. In order for CE(s, T) 
to have a pair of imaginary roots two conditions must be satisfied; 

i) the on ly tenn on the row corresponding to Sl has to be zero for a real value of T, 
ii) For this T the two tenns on the row of 82 has 10 agree in sign. Notice that these 

2 terms fom1 the auxiliary equation which yields the WI;. k = L.m. 

In other words, the Sl tenn of the array, which is a polynomial of T can be solved for 
all real T roots, and the condition (ii) can be tested. These conditions, (i) and (i i), are 
the numerical procedures which result in the complete set of {TI; ,WJ.}, k = l...m. 
This is probably the key uniqueness of the Rekasius substitution. 

Once the critical ' cl ustering' step is finali zed using {T",WI;,RTIJ.},k = l.. .rn 
set, the structured framework of the Direct Method (DM) follows [13, 16,25] ; 

i) Usi ng the Rekasius substitution, determine all III imaginary roots of the system. 
if) Check the number of unstable roots of the non-delayed system,NU(T = 0). 

A conventional Routh 's array application suffices for this. If thi s number is 
zero, then the non-delayed system is asymptotically stable or at worst margi­
nally stable. The DM does not req uire the stable non-delayed system. 

jii) Form the Routh 's array using equation (8). Study (NS v. T) variation at T = 0 
where NS is the number of sign changes on the first column of the array. Check 
the following two conditions: a)NS(T = 0- ) - NS(T = 0+) = n , and 
b)NS(T = 0+) = NU(T = 0) . They correspond to the "T-stabilizability" 
conditions of the system for the NTDS as explained furt her in the chapter as 
well as in [20J. 

iv) Fonn a table of {TI;t}, k = l...m, e = 0, 1,2 ... and RTI"H = RTII; in ascen­
ding order of TI;( . This table presents the complete picture of the root clusters 
with respective WI;'S and RTII; 's. 

v) Go to the smallest TI;l, detennine the number of unstable roots, NU, using the 
RTII;, as T = T:;'. If RT = + 1, NU increases by 2, if RT = -1, it decreases 
by 2. 
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vi) Repeat the previous step (v) for the next tkl sequentiall y completing the analysis 
when the target value of 7 is reached. 

vii) Identify those regions in 7, where N U (T) = ° as stable and others as unstable. 

The Direct Method also renders a unique function of 7 {l 3] avoiding the sequen­
tial treatment of these steps (from one 7k{ to the next). This function declares the 
number of unstable roots of the system in a 1101! ·seqllelHial/orm: 

(9) 

where NU(O+) is the number of unstable roots when 7 = 0+ and it is equal to 
NU(O) for T-stabili zable systems. U(7 , 7kO) = Step function at 7 = 7kO. 

{

OO <T<TkO 
U(T, TkO) = 1 f or 72: TkO, Wk = 0 

2 7 2: TkO, Wk t- 0 

r (x) = is the cciling fu nction of x. It rcturns the smallest integer greater than or 
equal to x. This expression NU(T) requires the knowledge of four quanti ties: 

i) NU(O+) is from Routh 's array 
ii) TkO, smallest T corresponding to Wk. k = 1 .. m 

iii) Ll 2 / k 1 Tk = Tk,l - Tk ,t- l = 'If Wk • . = ... 711 

iv) RT(k), k = I.. .m 

Notice again that, NU is a nonsequentiall y eval uated function of 7. That is, 
in order 10 delennine the NU(7,Tk < 7 < Tk+d one docs not need 10 know 
NU(T,7k _ 1 < T < Tk) ' In Ihis sense it is unique and usefu l when enumerating 
the stability outlook. 

Th is completes the review of the OM. We present in Section 2 the further pro­
gress on the methodology and in Section 3 some practical applications. 

2 Extension to the DM on Neutral TDS 

The procedure described in Section I was first introduced for retarded IDS (RTDS). 
It is further elaborated for the neutral TDS (NTDS). Conventionally this class can be 
represented by 

x = Ax(t ) + Bx(t - 7) + Cx(t - T) (1 0) 

and the respective characteristic equation 

GE(s,7) = det(s I - A - B e- -rs _ C se- T8
) ( II ) 

Again the transcendentality inducing infinitely many characteristic roots and the 
need for a clustering framework (CfCR) for assessing the stability arc similar to 
the RTDS . The main difference between RTDS and NTDS appears in small delay, 
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r = f region. It is proven by many investigators [1,5-81 that the "r·stabilizability" 
of NTOS in ( 10) requires the discrete kernel operator 

L(x) = x(t ) - exit - T) (12) 

to be stable as a necessary condition. This is equivalent to say that the eigenvalues of 
C are all within the unit c irc le, or the spectral radius of C, p{C ) is less than 1 L 1 ,5-9, 
30] .If this condition is not satisfied an interesting property appears: regardless of the 
NU(O) (I.e ., the number of unstable roots when r == 0), NU(O+) becomes infinity. 
In other words the transition of r = 0 ....; 0+ brings a sudden appearance of infinitely 
many right-half plane roots (i.e., unstable roots). Furthennore all of these roots are at 
+00, injecting an incredibly strong instability. Other than r = 0, there is no point in 
r E 1R+ domain which exh ibits this form of "root discontinuity". Therefore when the 
small delay instability appears with NU(O+) --+ 00 no fin ite r > 0 rcgioll can exist 
bringing the system back to stability. That is primarily the reason we call p(C) < I 
requirement, the "r-stabilizability" condition. 

It is analytically proven that the steps (iii)a and (i ii)b in the steps of the OM 
(Section 2) arc equivalent to saying p(C) < 1 [16, 25J. We avoid the repetition of 
the proof here in the interest of space and simply sta te that these conditions (iii)a and 
(ii i)b of OM are satisfied automatically by all RTOS, and only by the "T-stabil izable" 
NTOS (i .e., those with p(C) < 1). Thus the "r-stabilizability" condition, which is 
presented in the earl ier studies as a necessary condition to be examined, happens to 
be an imbedded component within the OM. The "r-stabilizabi lity" does not need a 
sepcrate verification other than the verification of (iii)a and (iii)b. This statement al so 
impl ies that the structured steps of the OM are identically utilized for both RTOS and 
NTOS. This feature gives an added strength to OM. 

3 Application Case Studies 

Two application cases are presented in thi s section, one is on active vibration sup­
pression and the other is on target tracking. 

3.1 Active vibration suppression with lime delayed feedback: 

This case study is fundamentally different procedure than what is reported in the li ­
terature as "active vibration absorber" [14]. Instead of bringing an absorber section 
10 resonance for suppressing the vibration, we use a full state feedback control force 
in order to make the system asymptotically return to quiescence. This feedback, ho­
wever, is influenced by a time delay. Take the system in Figure 1 from [18 , 19], with 
its dynamic model 

x == Ax(t) + Bll ( 13) 
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A = 
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Ul and Uz in Figure I are the control forces created by hydrau lic actuators and they 
are known for delayed reac tions. Consider the feedback control Jaw as 
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K ~ (3.55080.6220 - 2.0604 - 0.6741 - 2.8536 - 0.78063,2636 1.1393) 
2.06210.6296 - 2.5922 - 1.1130 - 2.5424 - 0.66351.33380.5483 

Here B in Ecquation (I) is indeed B = BK. For this 2-input, 4-output system the 
characteristic equation is 

( 14) 

where 

ao(s ) = 88 + 47.3333s7 + 67486 + 4127.77778f> + 37244.4444s·\ 
+ 111244.4444s3 + 4679 11 .1111 s2 + 9111 11.1 111s + 444444.4444 

al(s) = - 5.5833s7 
- 130.3520s6 - 568.2364s5 -10714.0oo2s4 

- 26942.9025s3 - 162821.8942s2 - 352026.91488 - 171542.7049 
a2(s) = 7.4630s6 - 8. 1770S5 + 798.9722s4 + 1065.197883 

+ 13931.0291s2 + 33937.28428 + 16607.8984 

Notice that rank(B) = 2 which causes the max imum commensurate delay term in 
(14) to appear as 2. When the OM and the root clustering procedures are deployed 
on (14) the followi ng results appear: Rekasius substitution yie lds CE(s, T), which 
is suppressed here for brev ity. The Routh's array of this characteristic equation forms 
Sl and S2 rows which resul t in T E R solutions of interest. Symbolically: 

Routh's 
8'1 r21 r22 

array I 
8 rl1 

8
0 

rOl 

For the specific problem above, th is procedure renders 16 real T roots, 4 of which 
are valid: 

TI = -0.1105 yields 
T2 = - 0.0492 yields 
T3 = 0.4614 yields 
T4 = 1.8029 yields 
T5 = - 1.3954 not valid 

WI = 3.9804 
W2 = 6.0076 
W3 = 6.7815 
W4 = 4.1906 

8ign disagreement 

And the resu lts of the OM are shown on Table I . 
It is obv ious that there arc 3 stability pockets for this system and the vibration 

suppression can be perfonned effectively within these intervals of T. A few example 
cases arc taken from stable operation intervals (T = 0.25,2 .09,3.08 sec.) and their 
respective frequency response plots are superposed in Figure 2 for comparison. No­
tice that un less the preamble study for stability is completed these frequency response 
plots are meaningless. Thus, the importance of the OM in this procedure is clear. If 
one wishes to increase the suppression effi ciency without changi ng the feedback gain 
matrix K, the feedback delay T can also be used as a parameter to ach ieve this. For 
instance when the excitation is at W = 6 rad{ s, T = 0.25 sec works beller than no 
delay case (T = 0) as well as r = 2.09 sec and T = 3.08 sec cases. 
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Table I. Stabil ity table for the vibration suppression ease study 

T RT Stable IUnstable w 
[secl NU [radlsecl 

0 
S,NU- O 

0.3720 +1 6.7815 
U, NU 2 

U,NU 2 
1.9960 - I 6.0076 

S,NU_O 
2.1 862 +1 4. 1906 

U,NU 2 

U, NU 2 
3.041 8 - I 6.0076 

S,NU 0 
3.1 516 +1 6.7815 

U, NU 2 

'" , 
, 

'" 

Fig. 2, Frequency response plots for various lime dc1ays( - =uncont rolled, - -=controlled with 
no delay, - =controlled with T = 0. 25 8.,- =eontrolled with T = 2.08 s., -=controlled with 
T = 3.09 8.) 

3.2 Target t racking with delayed feedback 

In a 2-D p[atfonn a point mass (call it the pursuer) is expected to follow a target 
moving on a path unknown to the pursuer. A feedback controllaw which is fo nned 
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ovcr thc crror dynamics is supposed to enforce this, except the time delay which 
appears on the feedback line. In other words, the controller knows about the state 
being T sec late. The immediate question is the stabili ty posture of the system for 
various T intervals. That brings us to the DM. 

We start with the description of the error dynamics of 

e = Ae + B u = Ae + BKe(t - T) ( 15) 

where e = (x - x/argel, X - Xtarg et' Y - Ytarget , iJ - Ytarget)' 

( 
0 I I I) 

A = - kx/m -cx/m 0 0 
210 1 
o 0 - kg/m -cy /m 

(16) 

(

0000 ) B _ kl z/m k2z /m 0 0 
- 0 0 0 0 

o 0 k l y/m k2 y/m 

As it is clear from ( 16) the c! and ez dynamics arc coupled. For the system parame-
lers: 

m= 1 
klx = -5.5 
kl y = -0.4 

kz = 30.5 
k2z = 3 
k2y = - 2.4 

Cz = 2.8 
cy = 2 
kll = 40 

we query the stability of the system. The OM follows through the sleps given in 
Section 2 and we arrive at a stability table, Table 2. It suggests that the given dy­
namics is stable in 5 separate T intervals 0 :<:::: T < 0.2036, 0.4630 < T < 0.9323, 
1.3368 < T < 1.6609,2.2107 < T < 2.3896,3.0845 < T < 3.1183 sec. Regard­
less of Ihe trajectory of the evader the pursuer could catch up with il as tile simu la­
tions in Figure 3 represent. In this figure various stable and unstable time delays are 
taken into account. 

4 Conclusions 

The new method, OM, brings several unique features to the stability analysis of LTI­
TOS. It is exhaustive, i.e., it reveals ill.! stability intervals of time delay completely. 
It is exact in determining the bounds of these intervals and the numerical proce­
dure suggested in a structured form is very efficient. This numerical procedure of 
OM is capable of handling large dimensional systems as well. Very importantly, 
the new method is equally applicable to the retarded and neutral TOS. It has the well 
known necessary condition of"T-stabilizability" of NTOS imbedded within its steps. 
Example case studies on vibration and larget tracking control problems are g iven just 
to display the strengths of the methodology. 
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Fig. 3. Simulations of ez = x - XI Qr g d for various delay cases 
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Summary. OUf scope in this note is to give a unified view on different approaches for stu­
dying stability of delay systems and parameter-dependent systems, and on estimation methods 
for some structured singular values. The classical approaches arc exposed in Scnions 1 10 3. 
A new result which links them together is given in Section 4, Elements of proof are gathered 
in Section 5. Comments are provided in Section 6. Finally, Seclion 7 proposes some open 
problems. For sake of space, exposure is kept to minimum, the reader is refered [ 0 the cited 
literature for more details. 

Notations, Representation of Polynomials 

By c+ is meant the closed set of complex numbers with nonnegative real part. The 
closed unit ball (resp. circ le) in C is denoted IDi (resp. allJl). The symbol 0 denotes 
Kronecker product, the power of Kronecker products being used with the natural 

meaning: MO@ = 1, Mv@d,;t M{p- l )@0 M. The transpose and transconj ugate 
of a matrix are respectively denoted with a superscript T and II. We study here 
the stabil ity of linear syste ms with m independent delays hi, . .. , hm . In the whole 

note, we write h d~f (h!, ... ,hm) , 'V d~r ('VI , ... , 'V m), where 'Vi is the delay ope­
rator associated to delay hi, acting on any convenient space of time func tions. Also, 

z d,gf (Zl , .. . , zm) denotes a free variable in C", and for si mplicity, the notation 

e- 8h d,gf (e - 8h" . .. , e- 8hm) is used in the transfers, where s is the Laplace variable. 
For any integer n, let IRn xn[z) (resp. IRnxn[z, zj) be the ring of polynomials in 

z E em (resp. in z, Z) with coefficients in IRnxn . The sets C'xn [zl, C' xn [z,:Z1 are 
defined similarl y. With S " the subset of symmetric matrices in IRnxn , one defines 
analogously the set sn[z , z). An important subset of sn[z ,:z) is the set of those M(z) 
such that Vz E C'''. M(Z)H ::::: M(z); it is denoted Sjj[z , z}. 

To be able to represent and manipulate matrix-valued polynomials. define, for 
1 E N,i ::::: l , . .. ,m andforany v E C, 

S. -I. Niculescu et al. (eds.), Advances in Time-Delay Systems
© Springer-Verlag Berlin Heidelberg 2004
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Notice that we denote in the same way the powers of complex nu mbers and the 

powers of delay operalors (for the composition product), along the rule: v~ dg,f V i 0 

v; ... 111is will perm it in the seq ue l to apply polynomials in C" to the operator 'V. 
The expression z!~ 0 ' . ' 0 z ~l l gathers all the monomials with degree at most l - l 

in each of the components of z, so for any M(z) in c'xn [z, :z], there ex ist lEN and 
A11 E C'''' "xl"'n such that, for all z E C''', 

M( z) = (z~ 0 ··· 0 z\'l 0 1,,)/f AI,(z~1 0' " 0 z\'1 0 1,,). 

The matri x IHI is just a concatenation, in prescribed order, of the matrices coefficients 
of M(z) . In this representation, which will be used as a central tool in the whole 
chapter, I and MI arc unique when taking minimal t. The matrix MI is called the 
coefficient matrix of M(z), [- 1 the degree of the representat ion. Remark that, for 
AI under the previous fonn, AI E SJ/[z ,:Z] iff MI E SI"'" for some 1 > O. 

The following identities arc useful for calculations: for any 1', 1 :5 [' :5 1, 

Vl' - I = (Olx(l' - l ) 1 01_1') VII I, 
( 1 ) 

'V:- - Ix = ((Olx(I'_l) 1 01_1') 0 1,, )'V\I)X , 

for any complex v and any time- function x taking values in JR." . Last, let JI,), E 
IR'X('+ I ) be defined by: 

- dof( ) -dor J1 = It O'XI ,J, = (O' XI It) (2) 

This corresponds to the matrix presenl in (I), for the values l' = 1 and [' = [. 

1 Delay Systems and Associated Stability Properties 

The delay system under study is denoted under the qui te general fonn 

i: = A('V)x , (3) 

where A(z) E JR."X"[z] is a polynom ial. By defi nition, we denote its degree k -
1 (that is, the maximum of the m partial degrees with respect to Zl , .. . ,z..,). For 
example. for the affine map (k - 1 = 1) 

(4) 
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1.1 Basic properties 

Let us first recall the fo llowing 

T heorem 1 (Stability characteriza tion). System (3) is asymptotically stable iff 

Vs E c+ 1 det(sIn - A (e - sh )) :f:. O. 

As in [20,2 1], we put: 

Definition I (Delay-independent stability (DIS». Syslem (3) is said to be delay­
independently stable if it is stable/or any h E [0, +oo)m. 

The previous notion has been introduced in order 10 study the stabi lity of systems 
with delays of imperfectly known val ues. The assumption that no information on the 
value of the delay is available may be coarse in practice, when bounds are already 
known. This has necessitated developrnentof delay-dependent cri leria too. This topic 
is nOl treated here. 

Extension of results in [16, 17] permits the following claim. 

Theorem 2 (Characteriza tion of the delay-independent stability). System (3) is 
DIS iff 

V(",) E c+ \ {OJ x jjjm U {to, 1, ... , I )), det (,J" - A(z)) "0 . 

Extending [23] leads to in troduce the slightly stronger property : 

Definition 2 (Strong delay-independent stability (SOlS» _ System (3) is said to be 
strongly delay-independently stable if 

\i(s, z) E c+ x Dim, dct(sl n - A (z)) :f:. o. (5) 

Infinitely close (in terms of a metric on the coeffi cients of A) from any DIS system 
which is fl a t SOlS, one may fi nd systems which are not DIS. In other words, the set 
of SOlS systems is Ihe interior of the set of DIS systems endowed with the topo­
logy whose neighborhoods are defi ned by the choice of a metric on the coefficient 
matrices (2l . 

1.2 The Lyapunov-Krasovskii funetionals approach 

For P, Q t, . .. ,Qm E sn, defi ne for any ¢ E C([-( k - 1) max hi, 0]; en) the func­
tional V by (see [6, 15, 22]): 

V (¢)( t ) '1gf ¢(O)' P¢(O) + / ' ¢(r)'Q, ¢(r) dr 
- ( k - t )h, 

+ . .. + / ' ¢(r)'Q",¢(r) dr . (6) 
- (k - l )h m 
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Denoting abusively F (Xi( t -(k- l ) maxh; ,tj) by F(x )(t), one has, along the trajecto­
ries of (3): 

d[V(x)(')] ~ ((~['[ 0 ... 0 d ' [ 0 J )x)(,)TR( (d'[ 0 · d'[ I ) )( ) dt Vm VI " v'" " 0 v I 0" x t , 

where the exact value of the matrix R :::: R(P, QI, .. . , Qm) E S ( k+ I )"' " may 
be wrinen using the fonnulas in (I ) . It is important 10 remark thai R is affine in 
P, QI , ... , Qm and independenl of the values of hi , .. . , h",. Thus, searching for a 
Lyapu nov-Krasovskii functional in the class (6) leads to the following. 

Theorem 3 (Sufficient condition for SOlS). If there exist P, QJ , ' . , Q", E S " 
such that 

P > O, QI > O, ... , Q", > O,R < 0 , 

then system (3) is SDIS. 

The su ffi cient condition in Theorem 3 is a Linear Matrix Inequality (LMI), see [6J. 

2 Robust Stability of Parameter Dependent Systems 

Associated to delay system (3) is the system with parameter z E C''' given by 

x = A(z )x . (7) 

2.1 Basic properties 

Definition 3 (Robust stability). Syslem (7) is said robuslly stable ifit is asymptoti­
cally stable for any z E [lim. 

Trivially, this nOlion is linked with SOlS: 

Theorem 4 (Link with SOlS). System (7) is robustly swble iff system (3) is SDIS. 

2.2 Sufficient conditions for robust stability and the parameter-dependent 
Lyapunov functions approach 

A number of published contributions have obtained robust stability criteria for sys­
tems similar 10 (7), by use of some prescribed class o f parameter-dependent Lya­
punov functions. The laller have been chosen independent of the parameters, af­
fine [8, 11 , 14,24], quadratic [29, 30}. 

Ex istence of a Lyapunov function in these classes may be recast as solvability 
problem for certai n LMI. Nevertheless, due to the fac t that they assume a prespecified 
dependence of lhe Lyapunov function with respect to the parameters, Ihey all lead to 
sufficient conditions for robust stabi lity. 
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3 Structured Singular Values with Repeated Scalar Blocks 

The notion of structured singular val ues is one of the basic tools of robust control 
[ 10). 

3.1 Basic properties 

Definition 4 (St ructured singular values (ssv». For fixed 1"1, ... , 1"", E N, lei 

.6. d~r {diag[J] Jr,; .. . ; In.Jrm I : (J\, ... , J",) E en}. Thell,for allY M E crxr . 

where T ~r 1", + + T",. the structured sillgularWllue J1.lJ,, (A1) is 1111111/110 //latrix 
Ll E .6. makes Jr - M Ll singular. alld otltenvise equal to 

Compuling J1. is generally a NP-hard task [28]. Using the change of variable s = 
:!~~, which maps c+ into '0, one may exhibit, for any polynomial A(z), a certain 
structure.6. A and a rcal matrix AlA such that (5) holds iff 

(8) 

Thus, checking SOlS of (3) or robust stability of (7) amounts to estimate a ssv with 
Tn + 1 repeated scalar blocks. This more spec ific problem is also NP-hard [27]. 

Alternatively, th is is equivalent [7] to check whether 

(8') 

for certain structure 6. A (with m repeated scalar blocks) and transfer M A. 

Conversely, let Al be a real square matrix and .6. a block structure of compatible 
size, having m + 1 repealed complex scalar blocks. Is it possible to find a polyno­
mial A(z) such that (3) is SOlS iff J.llJ,,(M) < I? The answer is no in general, as 
structured singular values may describe not only polynomial dependences, but also 
rational ones, via Linear Fractional Transfonn. As a mailer of fact, the whole gene­
ralilY is obtained when considering delay-differential equations of nell/ral type, and 
not on ly of retarded type. In tenns of parameter-dependent systems, this corresponds 
to parameter-depel/dent singular (descriptor) systems. 

3.2 Uppe.- bounds for ssv and the multiplier approach 

Various upper bounds for the structured singular values have been proposed. Their 
principle re lics on the use of mllitipliers [12] or sealillg techlliqlle [I). Some results 
are based on mixed methods [9, 13J. 

Interestingly enough, it has been shown [32] that checking SDIS by means of 
Lyapunov- Krasovskii functionals of the class (6), amounts to use in the previous 
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inequality the conservative evalution of I-t provided by D-scal ings (the classical "Jl 
upper bound"). 

Con nection between the scaling approach and the parameter-dependent methods 
has been established by Iwasaki et al. [18, 19}. Both approaches may be interpreted as 
special cases of the qlladratic separator, separating in an appropriate space a graph 
associated to the "system" from a graph associated to the "perturbation", here the 
parameters. Rough ly speaking, the prev ious results arc obtained when looking for 
such a separator with prespecified, "simple", dependence, either with respect to the 
frequency (frequency-dependent scaling matrix in JI-analysis), or to the parameters 
(parameter-dependent Lyapunov functions). 

4 A Key Result 

For any lEN, for any PI E Sl"''', define RI = RI(PJ) E S{ k+I~ I ) "''' to be the 

coefficient matrix I o f R(z) d,gt A(Z)II P(z) + P(z)A(z), where P(z) is de fined by 
its coeffic ient matrix PI. As an example [3,5}, for A(z) defined in (4), one has 

R, ~ ((i,m®" Ao) + ~ (i"m-ol0 
" J, " J," - ')0 " A;) ) H P, (i,m® " I" ) 

+(J,"'@® I,,)1"PJ (( Jt'''@ 0 Ao) + ~ (JI(m -i)@0 J, ®J/i- 1)@® Ai)) 

The fo llowing result is an ex tension of [3,5] to the cases where k > 2. 

Thcorem 5. The following properties Qre equivalent 
L System (3) is SDIS (resp. system (7) is robustly stable, resp. condition (8) or 

(8') is fulfilled with adequate structure and matrix. choice). 
2. There exists P(z) E S'H[z,Z-] such that, 

'1z E IDim , P(z) > 0", A(Z)II P(z) + P(z)A(z) < 0". 

3. There exist lEN, m matrices QI.i E S(k+I - 2)", - HI{k+l- l) ;- I", i = 
1, . .. ,ln, mid matrix PI E 51"' .. slIch that 

(9a) 

and 

I There may exist a representation of R(z) with coefficient matrix of size smaller than (k + 
1- 1)"'11, this aspect has no incidence on the sequel. 
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'" T "(J",m-H<)® J ) Q (J",m-'+<)0 J ) + ~ k+l-2 ® (k+I _ I) ; - ln I ,; k+I-2 0 (k+I _ I ); - ln 

;= 1 
In T 
"(J",m-"0 J- J ) - ~ k+I-2 0 k+I - 2 0 (k+I_I); - l " 

;=1 

where Jk , Jk are defined in (2). 
Moreover, if LMI (9) is solvable for rhe index l, then it is also solvable for an)' 

larger index. 

Thus, Ihc conditions cxpressed in (9) arc morc and morc precise (less and less 
conscrvativc) when 1 increases, and thc fcasibility of any ofthcm is sufficienlto have 
the properties depicted in l. An important point is thaI necessity also holds, in the 
precisc sense that: if the stability propertics hold, then the corresponding LMls are 
fu lfil led from a cerlai" rank l and beyond. 

5 Elements of Proof of Theorem 5 

System (3) is SOlS iff for any z E jjj"' , there exists P(z) > 0 such that A(z)H P(z)+ 
P(z)A(z) < O. Thc prev ious problem is a parameter-dependent LMI, in which z is 
the parameter vector. The dependence upon the latter being polynomial, and thus 
continuous, one may apply the result given in {4J, and concludes that if (3) is SOlS, 
then without loss of gencrality P may be chosen polYliomial ill z alld z. This esta­
blishes the implication 1. ::} 2_ 

To prove that 3_ ::} 1., right- and left- multiply (9a) (rcsp. (9b» by (z!:} 0 .. . 181 
z\1) 181 / ,,) (resp. (z!~+f- I l ®·· · 0 Z\.l:+I-1) 0 I,,)) and its transconjugate. This yields 
P(z) > 0" and 

m 

R(z)+ L(1-lz;12)(z~+1 - 2I ®, . ·0Z!.l:+1 -21®z!~il-1 1 0 . .. z\k+l-1]0 / ,,)1l Q,,; 
;= 1 

where R(z) d~/ A(z)1I P(z) + P(z)A(z). Indeed, this is a direct consequence of (I). 
Thus, R(z) < 0" if Iztl = ... = Iz",1 = 1, so the matrix A(z) is Hurwitz for 
all Z E (aD)"'. This observation may be extended to the whole jjim, basically by 
subanalyticity, as in [5J, This proves that solvability of (9) implies robust stability of 
(7). In other terms, 3. implies I.. 
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The difficult part of the proof is the implication 2. ::} 3., whose proof is adapted 
from [5]. 

First, it may be shown (but th is is a non-triv ial result) that the coefficient matrix 
fl of P(z), which is symmetric as P E SIi [z, zl, may be supposed pasitive dejinite, 
withawlass of generality. 

The next stage consists in removing one by one the free variables Zl , . .. , z'" and 
introducing concomitantly the multipliers Q/,I , ' .. , QI ,In' Basically, this operation is 
achieved by applying recursively D-scaling with respect to ZI , ... , Z",. This proce­
dure is lossless for one complex parameter (this is just the discrete-time counterpart 
of Kalman-Yakubovich-Popov lemma, see [26.3 1 J, and [25] for recent statement 
and proof) . The argument is the same than for the resul ts in [5], up to some technical 
detai ls. At each step. a new matrix is introduced, which however depends upon the 
remaining free-variables. Applying again [4J, one may assume that this dependence 
is indeed polynomial , and the coeffi cient matrix of the latter turns out to be one of the 
QI,; . Some special care has to be taken, as the degree of the pOlynomial previously 
introduced is un known: indeed, increases of the "degree" I may occur when passing 
from 2. to 3., this is explained in detai l in [5J . 

6 Interpretation of Theorem 5 and Comments 

6.1 Link with parameter-dependent systems 

Based on a solution (fl , QI ,I,"" Q",,/) ofLM I (9), construct P(z) E SIi[z ,zl with 
coeffi cient matrix PI . Then, along the trajectories of (7), 

d[X(t) T P (z)x(t) [ _ ()T R() () dt _ xl z xt , 

where R(z) = A(z)1I P (z) + P (z) A(z) is defined by its coeffi cient matrix RI (Pd . 
Remark however that A(z) . being polynomial , is analytic, and Hurwitzness of 

A(z) for z E (81Dl)m implies the same properly in [pm, see [5]. In order to obtain 
a simpler LMI in the stability criterion, the smallest set has been considered, and 
the corresponding parameter-dependent Lyapunov function based on a solution of 
(9) is guaranteed to decrease only for IZII ::::: .. . = Iz",1 ::::: 1. Positivity of the 
matrices Q /,; would ensure the properly for the whole sel 0"', see inequality (25) 
above. We conjecture that the previous positivity condition may be added without 
supplementary conservatism. This assertion is true at least for m ::::: l , k = 2 [2]. 

6.2 Link with delay systems 

For any ll , .. . , l ", E N, de fi ne 
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which takes values in IR" ... I", n. Consider the following functional (compare with 
(6» , parametrized by (m + I) hermitian matrices PI> QI .; having the same size than 
in Theorem 5: 

\If (x)( t ) d,gt Xli • .. • I](t)T P,X[I .... . I] (t) 

+ /1 x IHk- 2 .. ... /H - 2] (T)T QI .IXIIH- 2 •. .• + IH - 2)(T) dr 
I - h, 

/

1 x [l + k - I.I+ k - 2 •. .. • + IH- 2] (r)1'QI .2X[IH - I .IH- 2 •...• IH - 2]{T) dT + 
I - h2 

+ /t x l'+k- I , ... ,IH- l .IH-2](r)1'Q"mx [IH-l •... ,IH-l .IH-2)(T) dT. (II ) 
t - h", 

The value of v,(x) at time t depends onl y upon the values of x on [t - (k + l -
2) L hi; t]. It turns out that 

d[V,(x)(t)] :::: x (l+ k- I , .... IH - I )( t )T S ([1 Q . Q )xll+ k- I ... . ,I+ k- I)(t) dt I I, I.t, .. , I,m , 

where S, is defined in (9a). 

~ [/' x lIH- 2, ... ,I+ k- 2)(r)TQ"IXIIH- 2, ... ,IH- 2)(r) dT] 
dt I - h, 

:::: x IIH-2, ... ,IH-2) (t) T QI ,I x (l+k-2 •... ,IH - 2] (t) 

_ x 1IH- 1 ,IH - 2, ... ,IH- 2) (t ) T Q/.I X1Hk - 1 ,IH- 2, ... ,IH-2) (t ) 

_ XIHk-1 , ... ,I+k- I)(t)T [(J-m® 0 1 )T Q . (J-m ® 0 1) 
- k+/-2 n I., k+I- 2 n 

( -(m-»0 - )T ( -(m-»0 ' )] - Jk+l_ 2 ® Jk+ I_ 2 <&I I" Q/,; J k+I _ 2 ® J k+l_ 2 0 I" 

x IIH-1, ... ,IH-l](t) , 

due to (I). Therefore, the appearance of LMI (9) is also related to the search for a 
Lyapunov-Krasovskii functional of the fonn (II). However, no positivity assump­
tion has 10 be made in (9), see also the remark made previously in Section 6. 1 
for parameter-dependent systems. In the eventuality where the positivity assump­
tion may be added without loss of encrality (e.g. k = 2, m = 1), strong delay­
independent stability is equivalent to the existence of a cenain Lyapunov- Krasovskii 
functional in the class (II) ensuring stabi lity of delay system (3) for any nonnegative 
value of hi, . .. , lim. 

7 Open Problems on I-' Computation 

To conclude, we present two open questions, linked to application and extension of 
the ideas and methods previously presented. 
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• Is it possible to extend the method, in order to associate to any problem (8) or (8'), 
a fami ly of LMls similar to (9), constituting sufficient conditi ons with increasing 
precision? 
• How to use practically the above results for numerical estimation of structured 
singular val ues? In particular, how 10 choose in (9) the degree l- 1 of the underlyi ng 
parameter-dependent Lyapunov function? In the case m = 1, k = 2, an answer has 
been given in [33]. which seems extendable 10 non affine systems (k > 2), but the 
general case is still unsolved . 
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Summary. The problem of invariant factors assignment of input delay systems with classical 
finite spectrum assigment control laws with distributed delays is adressed. The multiplicities of 
the invanant factors are shown to be restricted by specified Rosenbrock lype inequalities. The 
results arc proved with the help of an equivalent linear assignment problem with no delay, and 
within the Bezout domain C. Two different algorithms are hence provided. A bidimensional 
illustrative example is given. 

1 Introduction 

Consider a linear systcm wi th delays described by 

K K 

xl') = L A;x(, ~ ih) + L B;u(, ~ ih) , ( I ) 
;=0 ;= 0 

with control input u(t) E IRm, instantaneous state x(t) E IRn for t ;::: 0, delay hE IR, 
o < h, and the famil y of control laws described by integral Volterra equations of the 
second kind, 

rK' K rK' 
u(' ) = io I(T)u(' ~ T)dT + L g,x(' ~ ih) + io g(T)X(' ~ T)dT. 

o ;= 0 0 

(2) 

Such a contro l law was introduced in [13J, where the spectral controllability of sys­
tem (I) is shown to be a necessary and sufficient condition to frecly assign a closed 
loop finite spectrum using a contro l law of the form(2). However, not only the lo­
cation of the roots, but also their multiplicities, or cquivalently the invariant factors 
of the closed loop, are crucial for the closed loop dynamics. The question that arises 
is to characterize the freedom in assigning the invariant factors. The answer to this 
query was given in the recent result in [10] : the constraint is that the sum of the 
degrees of the invariant factors must be equal to n. 

S. -I. Niculescu et al. (eds.), Advances in Time-Delay Systems
© Springer-Verlag Berlin Heidelberg 2004
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In this work, we restrict our attention to input delay systems. This subfamily of 
the systems introduced above includes the models of a wide class of applications 
where the delay is due to transport phenomenons, time consuming infonnation pro­
cessing, sensors design, among others. These systems are described by 

N 

x(t) = Ax(t) + L B,u(t - ih). (3) 
;",0 

As shown in [II, 13}, these systems are n-assignable by control laws that are simpler 
that those described by (2), of the ronn 

N , 

u(t) = l« x(t ) + ~ l - h e(t - o - ;h)A B;u(a)da) . (4) 

This is indeed a particular case of the finite spectrum assignment problem introdu­
ced above. The motivation for using such control laws is their simplicity and their 
natural interpretation in terms of predictors. As shown below, they pennit fl at only to 
assign a finite spectrum, but also finite invariant factors. The motivation for assigning 
invariant factors with a finit e number of roots is the same as the one for spectrum as­
signment: the invariant factors give and additional freedom in shaping the dynamics. 
If they have a fin ite number of roots, they can be readily analyzed. The question is 
then whether or not the freedom, that exists in the general case, is restric ted when 
such simpler laws arc used. The problem under consideration is then the fo llowing. 

Problem I. Consider a spectrally controllable input time delay system of the form 
(3). Under what conditions docs a control law described by (4) exists, such that the 
d osed loop has prescribed invariant factors with finite number of roots. 

The solution to this problem is organized as follows. Some backgrounds are re­
called in Section 2. Then, the main result is established in Section 3. Further insight, 
including the design procedures for assigning invariant factors with control laws (4) 
and (2) are described in Section 4. An illustrative example is presented in Section 5 
and some concluding remarks end the chapter. 

2 Backgrounds 

2.1 Notation 

IR(s) denotes the ring of pol ynomials over IR, the field of rea Is. The degree of a poly­
nomial o(s) is denoted dego(s) . IR(s) stands for the field of rational functions over 
IR, while the ring of proper rational functions is denoted by JR,,(s). Further, IRmxn , 
IRm x'l[sl, IR;' xn(s) denote the sets of m x n matrices having elements in IR, IRIs}. 
JR" (s), respectively. Units of the ring IRm x m [sl are called unimodular matrices and 
those of the ring JR;,n Xm (s) bipropenllarrices. The set {; is a Bezout domain whose 
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clements are fractions of the foml a(s , e- hs ) = n(s, e-1U)/d(s), where all the zeros 
of d( s) E lfl (sJ arc zeros o f n( s, e- hs) E lfl [s, e- Sh ] the set of quasipolynomials. 
Notice that lfl (sJ c e. Units of the Bezout domain [ are called unimodulars over [ . 
For detailed infonnation on these sets and their properties, see [4,5,7, 9, IOJ .) 

2.2 Theorem of Rosenbrock 

Consider a linear system described by 

x(t) = Ax(t) + Bu(t) (5) 

where A E )Rnxn, 8 E IRnxm. Its input-state transfer is the rational matrix 
T(s) = (sIn - A)- I B, which admits a right matrix fraction description T (s) = 
N(s)D-l(S), where N(s) E lflnxn[sJ and D(s) E IRmxm [sJ arc right coprime 
polynomial matrices. The denominator matrix can be chosen 10 be column redu­
ced, with ordered column degrees, which means that it can be writen as D(s) = 
B {s)diag {sC" . . . ,sC",}, where 8 {s) E lRp(s) is a biproper matrix, and CI 2' 
C'l . 2' Cm > O. The column degrees Cj are called the controllability indices of 
system (II). The system is called controllable if rank (s I n - A , 8J = n, "Is E C, 
and in that case we have 2:::1 Cj = n. Further, it is well known [5] that there exist 
unimodular polynomial matrices U(s) E )Rnxn[s] and V {s) E )R",xm [s] so that 
D(s) can be factored as 

D(s) = U(s) (gi(l9 {0";(S)}i=, ~) V(s). (6) 

where {aj (s)}i:=l are unique monic polynomials such that OJ(s) divides ai _l(s), 
called the invariant factors of D(s) . We recall here the so-called control structure 
theorem of Rosenbrock [8, 15], which is a key motivation of the present work. 

Lemma I . {/5} Let the linear system 

x(t) = Ax(t) + Bu(t ) 

be COlltrollab/e, having the controllability indices {Ci }:~I \.,,·here Ci :S Ci_ I' for i = 
2, .. . , m. Then there exists a static swtefeedback 

u(t) = K x(t) 

such thm the invariantf(jc/ors of the closed loop system are {o: (s) } i'~ I' where 0:( s) 
divides oj_1 (s).for i = 2, ... , m, alld o;(s) = 1,for i = m + 1, ... , n, if alld ollly if 

i i 
L C; :S L deg (a~), j = I , ... ,m, 
;=1 i = 1 

with equality for j = m. 
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2.3 Time·dclay systems and pseudopolynomial matrices 

The input delay system (3) is called spectrally cOl/lrollable if 

rank [s In - A , B (e - hs )] = n, \:Is E C , 

where 
N 

B(c-h, ) = L B;e- ;h s . 
;=0 

The Bczout domai n [. whose defin ition and basic properties are recalled in the nota­
tions, section I, has proved to be a powerful tool for the study of commensurate time 
delay systems, by providing a solid algebraic framework that allows the generaliza­
tion of many results established for linear systems without de lays [3J. The followi ng 
remarks en lightens some subtleties of the machincry in [, in connection with our 
problem. Firsl of all , remark Ihat [ is also a so·called invariant factor domai n. Follo­
wing [101, every matrix D(s, e- hs ) over [ can also be fac tored in the form (6), were 
now the matrices U(s) and V (s) and their inverses are over [, and {O' ;(S)}i=l are 
elements of [, which are also called the invariant factors of D (s) . We first establish 
the following clue facts. 

Proposition I. The invariarlt factors in the BeZOl1l domain [ of a polYllomial matrix 
coincide with its invariant factors over the ring IRIs]. 

Proof Consider a polynomial matrix D(s) E JRnxm[s] of rank r. Now, since 
IRIs] C [, it is clear that when D(s) is polynomial, the polynomi al fac torization 
(6) is also a factorization over [. U(s) and V(s) are indeed matrices over [, which 
are unimodu lar over [ , the rank of D (s) is rover [, and, since such a fac torization 
over [ is uniq ue, the {oj(s)} i=l> are also the uniquely defined invariant factors of 
D(s) overt. 0 

The degree of an element o(s,e- h , ) = n('d{:t') E [, where n(s,c- h , ) E 

IRIs, c - hsj and d(s) E IRIs), is the difference J = deg, n(s,e- h,) - degd(s), which 
lies in Z, and we write dego:(s,e- hs ) = O. A matrix D(s,e- hS) E [mxm being 
given, and denoting Cj the degree of its ith column, it appears Ihat 

o 
D( s,e- hS) = L Dde- hS )diag{sC',sc2, ... ,s-C",}, 

k: -oo 

where the coefficient matrices Dde- h , ) are uniquely defined. By analogy with 
the polynomial case, D( s,e-h, ) is called column reduced whenever the ran k of 
Do(e-h, ) equals m . Every matrix over [can be brought in column reduced form 
under unimodu lar operations over [; . Notice that the degrees of the elements of [; can 
be negative, for instance deg I - e

s
•

h
• = - I. This implies that the reduced eomumn 

degrees of a matrix over E are not uniquely defined. Consider for instance 
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(
S+ln2 l=L ) U(s,e - S

) = 2-~-" 
S 8+/,,2 

(7) 

Th is matrix is un imodular over E. It is also column reduced, since 

U ( - ') (11-e-' ) o e = 1 2 ~ e-s . 

is full rank and even unimodul ar, and ils column degrees arc 1 and ~ 1. One can see 
that U(s, e-S)U- 1 (s, e-') is also column reduced, with column degrees equal to O. 

3 Finite Eigenstructure Assignment 

We first give a new interpretation of the resu lt established in [I, li lthat has been 
extensively used in the literature, in the light of n-assignability, namely the ability 
to assign a finite spectrum 10 the closed loop system, provided that the system is 
spectrally controllable. Indeed, there is more to say: it is also possible to assign pres­
cribed invariant fac tors with a fin ite number of roots to the closed loop characteristic 
matrix. 

Lemma 2. Consider a spectrally cOl1frollable linear mllitivariable system with delay 
in the inpllt described by 

N 

x(t) = Ax(t) + L B iU(t - ih) , (8) 
;=0 

where A E ~nx", Bi E lR"xm, for i = lIO N, and the delays in the inpllt are 
commensurate to h ;::-: O. Then the following problems are equivalellf. 
(iJ The control law 

N , 

u(t) = K (x( t) + ~ l- ih e( ! - " - ih )A B;u(l7)dl7] 

assigns 10 the system (8) a closed loop with invariant/actors {a:(s) }:~ l ' 
(ii) The control law u(t) = Ky(t) assigns to the controllable system 

N 

.(') ~ Ay(') + L e - ,"A B,u(') 
;=0 

a closed loop system with a set of illvariant factors {a~( s) }i",l' 

(9) 

( 10) 

Proof Consider the description of the system (8) and the closed loop (9) in the 
frequency domain. They are respectively 
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N 

(s In - A )x(s) = L Bie~iI"u(s) 
;=0 

Defi ni ng the matrices Band M as 

N 

N 

B = L B;e~;h ~ 

;=0 

M = L e-ih A(s i - A) ~ J (1 - C- ih(31 ~ A ) B; , 
i",O 

it appears Ihat the closed loop characteristic matrix writes 

(
, ] ,, -A -B ) 

- K I ", -KM 

Notice that Ihe matrices B and At are over £. Thus the matrices 

(
]" B+ (' ]" - A)M ) 
J( I", 

arc un imodu lar over £ , and since 

(
]"B + (S ]" -A)M ) ( ' ]" -A -B ) ( ]" - M) 
K I ", - K 1m - K M Ol", 

~ ( ('] " - A)(I" - M I<) + BI< 0 ) , 
- K I", 

the invari ant factors of the closed loop are those of 

(, ] " - A)( ] " - M I< ) + BI< 
N N 

= sIn - A - L e~ ;hA(I _ e- ih(s J- A) B jJ( ) - L Bie- ;h~ K 
;",0 

N 

= sIn - A - L e-ihA B;l( . 
;=0 

One can finally observe that 
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N 

B + (sI" - A)M = Le-ih AB;, 
i=O 

which ends the proof. 0 

The two matrices 

are also equivalent under unimodular transformat ions. Hence the above proof also 
permits to establ ish the fo llowing key resu lt. 

Lemma 3. (I3J The il/pl/r delay system (8) is spectrally cOll1rollable if and only if 
the linear system (10) is col!1rollable. 

We are now able to state our main result. 

Theorem I. Consider a spectrally controllable linear 1lI111tivariable system with de­
lay ill the illPllt described by 

N 

i ( t) ~ Ax(t) + L B;u(t - ih), ( I I) 
;=0 

where A E R"xn, B i E R"xm and Ii ;?: 0 is the delay. LeI {cd:~, be the control­

lability indices, in non decreasing order, of the pair (A, z::::~o e- ihA Bd alld let 
{aj(s) }~ I be a set of monic polynomials Stich that ai(s) divides a~_ l (8), for 
i = 2, ... ,m. 
There exist a cOl!1rollaw 

N , 

u(t) = K[x(t) + ~ l-h e(I-.,. - ihlA B;u(u)du] (1 2) 

that assigns a closed loop with invariant factors {a; (8)} i= 1 if and ollly if 
j j 

L ei S L degaj , j = 1, ... ,m (13) 
;=1 i= \ 

with eqllalityfor j = m, and, by COl/ventioll, 0';(8) = l ,for i = m + 1, . . , n. 

Proof According to Lemma 3, the pair (A, L~o e-;hA B i ) is controllable. Let 
{colr,:,\ denote its controllabi lity indices. From the Rosenbrock Control Structure 
Theorem ( I ), there ex ists a control law ( 12) that assigns to the system ( 10) a closed 
loop with invariant factors {a~(8)}r=I' where Q~(8) divides Q~ _ I (8), i = 2, .. . , m, if 
and only if conditions (13) hold. Finally, the result follows from Lemma 2. 0 

Remark I. Clearly, the use of simpler control laws has a cost: the degrees of the 
invariant factors cannot be assigned arbitrarily. 
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Remark 2. Lemma 2 implies that the control law described by (12) permits to as­
sign to the input delay system ( II) a set of desired invariant factors that satisfies the 
inequalities (1 3). The parameter K of the control law can be calculated in a straight­
forward manner as the solution to the problem of a static state feedback invariant 
factors assignment for the li near system with no delay (10). Notice that toolboxes 
for the analysis and design of linear systems are available [14J. If a set of desired 
invariant factors does not satisfies the inequalities (1 3), the results obtained in [ I OJ 
guarantee that there exists a control law of the morc gcnaral form (2) that allows to 
assign them. Thi s comrollaw if fu lly dctcnnined by gi, i = 1, 2, ... , 1(7) and g(7). 

4 Further Comments and Design Algorithms 

The design of a control law assigning the invariant factors of the closed-loop factors 
is based on the computation of a right coprime factorization of the open- loop transfer 
of the system. The follow ing is a key for th is aim. 

Pro~sition 2. If the input delay system (8) is spectrally controllable, then its trans­
fer matrix can be factored In the form 

where D(s) and N(s,e - h$) are right coprime matrices that are respectively po­
lynomial in the rarhlbles s alld s. e- h8 . Moreover, if we expand N(s,e-h$) as a 
polynomial in e-h

$ , oftheform 

N 

N(s,e- h,) = L e- ih
$ Ni(s) , 

i",O 

then a factorization of the eq!IIvalenr system without delay (10) is obtained as 

N N 
L (s I" - A)- !e- i

/
1A Bi = L e- ih A N;(s)D-I(S). 

i"'O 

( 14) 

wher the colllmn degrees of the CO/limn reduced polynomial denominalOr D(s) are 
equal to the comrollability indices of the pair (A, E~oe- ;hA Bd and they are uni­
quely defined. 

Proof. Consider the controllable linear system without delay described by (10), and 
let the pairs (N;(s), D,(S» be coprime factorizations for the pairs (A , B,) , i = 0, N. 
Hence 

(51" - A)-I B i = N[(s) Di l (s). 

Lct Ni(s) = Nf(s)Dil (s) D(s) where D(s) is the lowest right common multiple of 
Di(S). i = 0, . .. ,N. We then have 
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N N 

2:)sl " - A )- Ie- ih ;' B i = 2: e- ihA N i(s) D- I (s). 
;=0 i=O 

The matrices 2:: ::0 e- iliA Ni(s) and D(s) are right coprime. Observe that 

N N 

2:(s l " - A ) - l B ic- i lls = 2: c- i lls Ni(s) D - 1 (s) , 
i= O ;= 0 

and that E~OC-ihsNi(S) and D(s) are right coprime. Both systems (8) and (10) 
have the same denominator, D (s) , which is pol ynomial in s . As it is usual for systems 
without delays. we can assume that D(s) is column reduced. Its cotumn degrees are 
the controllability ind ices o f the pair (A , E~oe- ihA Bi). namel y, { C;} ~ I ' 

Any other polynomial denominator for (8), say D'(s) is such that 
D (s)U(s,e - hS ) = D' (s), for some matri x U(s,e - hs ) which is unimodular over 
[. We can see that U(s,e- Il S) = D- l(S)D' (s) is rational in the variable s. Since 
it is al so a matrix over [ , an analytic function without pole, we conclude that it 
is actually polynomial in s. Since in IRm"m [s] column degrees are not modified by 
post-multiplication by a unimodular, those of D'(s) are equal to those of D(s) . In the 
sequel . we shall call such a fac torization with a polynomial denominator a naillral 
factori zation of the system. 0 

Any coprime fac torization (N '(s, e- $), D' (s, e- S » in [ for the system (8) can 
be written in tenns of a natural coprime factorization as 

N'(s,e - hB ) = N(s ,e- hs)U(s,e- h. ) 

D' (s,e - hs ) = D(s)U(s,e - h,) 

where U(s,e-h~ ) is a unimodular matrix over [ . It fo llows from Proposition 2 that 
the latter satisfies 

N 

(s l .,.. - A)N(s, e- hs) = 2: Bie- ihs D(s) ( IS) 
;=0 

and that the column indices of D(s) are { Ci } ~I ' The control law (4) is described in 
the frequency domain as 

and the closed-loop denominator is given by DK( S, e-' ): 

«(1m - K E~I e- ihA(s l - A)- I [1 - e- ill(sJ- A)j B il D' (s, e- S
) - K N'(s, e-~ ) 

= «(I", - K (E{';. le- ihA(s l - A)- I[I - e- ill (s l - A)j B i» D(s)U(s , e- 8
) 

- K N(s , e-~)U (8 , e- S ) • 

Using (15) gives 
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or equivalently, 

On the one hand, the matrix (1m - K(sI - A) - I E ;:" le - ih A B ;) is a bipropcr ma­
trix in ]R",x m (s ), Hence (1m - f(sI - A )- IE;:" le- ihAB;) D(s ) is a polyno­
mial matrix and so is DK(s,e-6 )U(s,e-~ ) - I. Moreover, the column degrees of 
DK(s,e-s )U(s , e- s) - I are the same as those of D(s ), namely, { cd :~ I. 
On the other hand, U(s,e - S)- I is a uni modular matrix, therefore the invariant 
fac tors of DK (s,e - 8)U(s , e- s )- lare the same as those of DK( s,e- S), namely 

{ai(s)} :~ I· 
The polynomial matrix DK (s, e-' )U( s, e-,) -Ihas invariant fac tors {ai(s )} :':" 1 and 
column degrees {Ci};''; I' Then. according to [8]. the lists {a:(s) }~ l and { Ci }~1 arc 
necessarily related by Rosenbrock inequalities. 

The natural coprime factorization described in Claim 2 hence gives an alternative 
sufficiency proof of Theorem I , and bases a design algorithm for the finite spectrum 
assignment. Next, two design procedure for finite invariant fac tors assignment of 
input delay systems are described. The first one is appropriate when the degrees of 
the invariant factors satisfy the Rosenbrock inequalities whi le the second. which is 
computationally more complex, works in the general case. 

Design procedure if the Rosel/brock inequalities (J 3) are satisfied: 
(i) Using Proposition 2. calculate a natural fac torization (N(s, e-~h ). D (s ») of the 
transfer matrix of system (8) where the matrix D(s) is column reduced with column 
degrees { cd :~ I' 
(ii) Choose a set of monic polynomials {a: (s)} :~ 1 where a:(s) divides a:_1 (s ) for 
i = 2, .. . , m , such that {a: (s) } :~ l and {Ci}:~ 1 satisfy the inequalities( 13), and take 
a~+1 (s) = ... = a~(s) = 1. 
(iii) Construct a polynomial matrix DK(S), that is column reduced, with column 
degrees { cd ~ 1 and invariant factors {aas)} ;',;, !, according to the procedure in [8]. 
(iv) Determine the constant matrices X and Y of conven ient dimensions, with X 
invertible, that satisfy the Diophantine equat ion 

The existence of these matrices is guaranteed [8], and a toolbox is available to per­
fonn the computations [14J. 
(v) Substitute K = - X-Iy in the expression for the control law (3). 

The situation is quite different when considering factorizations over c. As shown 
in [10], contrarily to what happens in lR(s) , post multiplication of elements of c by 
unimodular over c modify the column degrees. An immed iate consequence of this 
fac t is the non unicity of the col umn degrees of the denominator of a left coprime fac­
tori zation in C. Moreover, there is complete freedom in choosing the column degrees 
of such a factorization. 
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If a set of invariant factors o'~( s) does not satisfy the inequalities (1 3), except for 
j = m, it is still possible to achieve the desired assignment by employ ing a wider 
class of control laws. The design is based on the fact that the column degrees of the 
column reduced denominator of a coprime factorization in £ are not un ique. 

Design procedure if the inequalities ( 13) are lIot satisfied: 
(i) Using proposition 2, calculate a natural factorization (N(s,c - sh ), D(s)) of the 
transfer matrix of system (8). 
(ii) Obtain a coprime facto rizat ion (N'(s, e- sh ), D' (s,e - sil )) as 

D'(s,e- ') ~ D(,)U("e- '), 

N'(s,e-') = N(s,e- ')U(s,e-'), 

( 17) 

where U(s, e- ') is an unimodular matrix such that D'(s, e- Mh ) is column reduced, 
with column degrees dcgo;(s), i = 1, .. . ,m. Such a transfonnation is obtained 
recursively using elementary operations as in (7). 
(i ii) Solve in £ the Diophantine equation 

(1", - F(s,e- Sh
)) D'(s ,e-·h ) +G(s,c - Sil)N'(s,e- ' il ) = Z(e- h')diag{oi(s)} 

where Z(e- h .) is a a unimodular matrix in e-h , and matrices F(s,e- 6h ) and 
G(s, e - sh ) belong to £. The existence of such a solution is proved in [10] . 
(iv) Detennine the control law in the time domain (2) by inverse Laplace transform 
of 

(Im - F("e- · h )) u(,) ~ G(s,e- · h )*), 

according to the algorithm described in [3, 4], 

This shows that a control law of the foml (2) pennits to assign the invariant 
factors O';(s) to the closed loop system (3-2). It should be clear that, in that case, a 
simpler control law of the fonn (4) cannot get this assignment. 

5 Illustrative Example 

The above results and design procedures are illustrated with the two dimensional 
academic example 

. (00) (' I) x(t ) ~ 10 x(t) + 00 u(t - h). 

This system is spectrally controllable because the pair (A, exp( -hA) 8 ) is control­
lable (See Lemma 3). Its control labi li ty indices arc {2 , OJ . 

The natural coprime factorization for this system is 

_. (,e-.o) (" -1) N(s,e ) = e- ' 0 ' D(s) = 0 1 

It is possible to design a control law that assigns prescribed invariant factors with 
finit e roots, of degree {2 , OJ . A solution is given by 
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(12 - F(s ,e- ' ) D(s,e- ' ) - G(s ,e- ' )N(s,e- ' ) :::: DK(s, e-'). (1 8) 

According to Theorem 3, a control law where G(s,e- ') :::: 1(, and F(s ,e- ') :::: 
J«s[ - A) - l (e - hA - e- hsl)B does the job, and substituting D(s ), N(s ,e-· ), A, 
B, and 

into ( 16), gives 

D ( _'J_ (S2 - kIlS+kI28 - kI2 - 1) 
K s,e - k k k . - 21S + '228 - n 1 

( 19) 

The invariant factors of degree {2, O}, namely {82 + (- kl l + kl2 - k21 + k22 ) -

(k12 + kn ), I} , can indeed be assigned to arbi trary fin ite locations by choosing K. 
We have in this simple case obtained a parametrization of all the invariant factors 
that can be obtained with the control laws under consideration. 

Now, if we want to assign invariant factors of degrees {I , I }, for instance both 
invariant factors taking the value s+ 1, let llS consider, according to the design proce­
dure described in the previous section, a copri me factorization with column degrees 
{I , l} for the denominator, Substituting the unimodular 

( ,-.-' ,-.-' ) $+ln 2 --,-
- 8 s+ln2 

in (17) gives the new fac torization 

.+In 2 , 
(

s' -1) ('-.-. _!.=C ) 
o 1 - s s + In 2 ' 

( ,-.-' '-.-.) 8+l n2 --,-
- s s +ln2 

and a sol ution to the Diophantine equation in £ 

(Z{e-· ) - F(s , e- s)) D'(s, e- 8
) + G(s, e-· )N'(s, e-' ) :::: diag{ s + 1, s + I } , 

is given by 

,nd 

G( -'J ~ (1 + In 2)(2 - e- ' J In 2(2 - e- ' )) 
8,e 2 _ e-$ 0 

(
1 2- e-' ) 

Z(e- S
) :::: 13 - e-· , 

F11(s,e-' ) 

FI2 (s,e-' ) 
F21 (s, e-' ) 
F22 (s,e - ') 
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Of course this calculation is uneasy, and so is the obtention of the corresponding 
control law in the time domain [3,4], since there is no special ized toolbox to deal 
with £. 

6 Conclusion 

It is shown that the control laws (4) for input delay systems that allows the assign­
ment of a finite spectrum, can be used to assign as well invariant factors with a finite 
number of roots. This feature is indeed of interest in shaping the dynamic of the 
closed loop system. It is shown that the multiplicities of the invariant factors can not 
be assigned freely: they are restricted by Roscnbrock inequalities by a set of well 
defined integers. The result is explained in the framework oflhe Bezout domain £, 
where more general control laws allow a complete freedom in assigning the multipli­
ci ties of the invariant factors. Summarizing, finite invariant factors assigning control 
laws for input delay systems can be designed in a straightforward manner, bUI at a 
cost: the freedom in the assignment of the multiplicities of the invariant factors is 
restricted. 
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Summary. The stabilization by feedbac k control of systems with input delays may be consi­
dered in various frameworks; a very popular is the abstract one, based on the inclusion of such 
systems in the Pritchard-Salamon class. In this chapler we consider the elementary approach 
based on variants of (he Smith predictor, make a system theoretic analysis of the compensator 
and suggest a computer control implementation. This implementation is based on piecewise 
constant control which associa tes a discrete-lime finite dimensional control systcm; it is this 
systcm which is stabilized, thus avoiding unpleasant phenomena induced by the essential spec­
trum of othcr implementations 

1 Motivation and the State of Art 

It has been pointed out that systems with input delays are of interest to control theo­
ris ts and practitioners for various reasons, They originate from the simplest model of 
process control which assigns to the controlled plant a transfer function of the form 
H(s)e -T~ with H (s) a strictly proper rational function. 

To thi s transfer function one may associate one of the following slale representa· 
tions 

0' 

x::::Ax+bu(t~T) 

y:::: c·x(t ) 

i: :::: Ax + bu(t) 
y:::: c·x(t ~ r) 

( 1 ) 

(2) 

where in both cases c*(sI - A) - Ib == H (s). Systems arising from such transfer func­
tions are of special type: their state space is finite dimensional but either the input or 

S. -I. Niculescu et al. (eds.), Advances in Time-Delay Systems
© Springer-Verlag Berlin Heidelberg 2004
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the output operators are defined on infinite dimensional extensions and are unboun­
ded. Throughout several decades it has been established that such systems have "a 
finite dimensional flavor". Indeed, there exists a remark of Y.M. Popov [17] which 
tells that problems as stability and optimality in the framework of hyperst ability (or 
dissipativity/passivity as it is called now) may be solved for these systems like for 
systems without delay; nevertheless Popov did not follow this line in his research. 
We may add to this the results on feedback stabilization due to Olbrot [II], Manitius 
and Olbrot [9]. Watanabe and Ito [231. The techn iques of these papers are essentially 
finite dimensional; the opin ion of Pandolfi [12- 15] was that those resul ts were not 
obtained in a standard way si nce they were not deduced from an abstract theory. In 
order to sustain his ideas, Pandol fi fe-introduced in the model the propagmioll effecls 
taken into account by the introduction of the delay and make use of the theory of the 
singular control. On the other hand, the finite dimensional results seem legitimate if 
the transform introduced by Artstein [ II is used. The papers of Tad mor (e.g. [21,22J) 
also support the idea that finite dimension is the most adequate framework for sys­
tems with input delays (see also [10]). 

In the same line of research we may cite the papers of A. E. Pearson and his 
co-workers [3,4,8, 161. Worth mention ing that research on various subjects which is 
underlined by the above mentioned ideas is in progress within various groups (see 
e.g. the chapters in this book). 

2 Artstein Transform and Stabilization Results 

We shall consider here the case of [8] 

.i(t} = Ax(t) + Bou(t) + Blu(t - r) (3) 

We might have chosen a more general structure of the input operator but this one 
helps a better understanding; at the same time it is not the simplest case and il lustrates 
the advantages of the laken approach as well as its drawbacks. 

Obviously the solution is defined for t > 0 if there are given the initial conditions 
(xo , uo('» and the control u(t) for t > 0; here uo(O) is some initial function defined 
for 0 E [- r ,O). The Artslein transform (Artstein, 1982) in this case is given by 

z(t ) = x(t) + [0.,. e- A(o+r-J B1u(t +O)dO (4) 

and the result of Artstein takes the form of the fo llowing equivalence. 

Proposition I. Let (x( t), u( t ); t > 0) be a sO/lltion (admissible pair) fo r (3). defined 
by some initial condition (xo , uo('» ' Then (z(t),u(t);t > 0) with z(t) defined by 
(4) is a sO/lllion (admissible pair) for the system 

itt ) = A,(t) + (Bo + e- A< B.) u(t) (5) 
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with Ihe initial condition Zo = z(O). Conversely, let (z(t) ,u(t); t > 0) be a sO/lition 
of(5) defined by some initial condition 20. Theil, given sOllie uoO defined on ( - T, 0) 
Gnd taking 

Xo = Zo - lOT e- A (9+ T) BI110(fJ)dfJ (6) 

lhe SO/ill ioll of (3) defined by lhese inilial condilions and by u(t), t > 0 is given by 

(7) 

The proof of this result is straightforward. The simplest result to be obtained withi n 
thi s framework is the structure of the stabilizing feedback . The result on stabilization 
appears as such in the paper of Kwon and Pearson [8] but it may be found included 
in c.g. [7, 9,23 ] also in {I] as well as [19,20], The result reads as follows 

Proposition 2. Lei u = Fz be afeedback slabilizing scheme for (5). Then /lle comral 

(8) 

is stabilizing for (3). 

The proof is straightforward and relies entire ly on Proposition I. 
The structure defined by (8) may be used as a stabilizing compensalOr since the 

solution of the closed loop system 

x(t) = Ax(t) + Bou(t) + BlU(t - T) 

u(t) - F lOT e- A (9+ T
) BIU(t + fJ)dfJ = Fx(t) 

(9) 

may be constructed by steps. Let (xo , uo( fJ ), - 7 :::; fJ :::; 0) be some initial condition 
with Uo of appropriate smoothness; using it we may construct x(t ) for 0 :::; t :::; 7 

by integrating the first equation of (9). Now if 0 :::; t :::; T and -T :::; fJ :::; 0 then 
t - T :::; t + fJ :::; t and u( t ) may be constructed on (0, T) using values that precede 
it with one step at most. If u(t ) is known on (0, 7) then x(t ) may be constructed on 
(7, 27) and the process will continue. 

It is interesting to comment on the second equation of (9) : it describes the com­
pensator which has some dynamics and may be viewed also as a linear functional on 
system's state space; at the same time this equation may be viewed as 

(Vu)(t) ~ Fx(t) 

with V a difference operator in the sence used e.g. in the book by Hale and Verduyn 
Lund [6]. Coupled delay-differential and difference equations have been considered 
by the first author of the present chapter since 1973 (see [1 8) as a more recent survey) 
and they account for propagation phenomena thus sending to the already mentioned 
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papers of Pandolfi. generall y speaking such systems belong 10 the class of neutral 
functional differential equations; it is not the case here and the best argument is that 
discontinuity propagation does not occur. Indeed we have 

henceu(t) is, generally speaking, discontinuous at O. But for t > 0 u(t) is continuous 
- due to the specific structure of the difference operator; moreover u(t) is absolutely 
continuous and we may differentiate it 10 obtain the system 

x(t) = Ax(t) + Bou(t) + Blu(t - T) 
" \1 1) 

u(t) = F (A X(t) + (Bo + e- M Bdu(t) + A i T e-A(O+T) SI U( t + (})dB) 

which is of delayed type. 
Even more interesting is to check the characteri stic equations of the two systems 

of Functional Differential Equations namely (9) and (I I). Considering the Euler so­
lutions we obtain for the first system 

det(sl - A - (Bo + e - M BdF) = 0 (12) 

hence the spcctrum is finite and may be assigned from the stabilization problem 
solved by Proposition 2 . For the second system we obtain 

sm· det(s1 - A - (Bo+e - ATBI)F) = 0 (13) 

where m = dim u and the factor sm is a consequence of differentiation showing that 
the system evol uates confined to an invariant manifold. 

3 The Discrete-Time Implementation. Spectral Properties of the 
Closed Loop 

The implementation of the designed compensator requires memorizing of a trajec­
tory segment i.e. a set of data that has infinite size. The practical implementation 
is finite and based on a suitable discretization. Following the line of the papcr of 
Halanay and Rasvan [5] and of the book of Dr3gan and Halanay [2] we shall use 
piecewise constant control signals, defined as follows 

u(t) =u", ko s: t < (k+ 1)0, k = 0, 1,2, ... (14) 

where 0 = TIN. For the system (3) we associate the di screte time system 

(1 5) 
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where 

A(o) = eAO , B;(J) = (1'5eAIJdO)B;, i = O, l (16) 

Let (xo,uo(-)) be the initial condition associated with (3). Since the di screti zed 
system is satisfi ed by Xk = x(kJ), xC) being the solution of (3) with piece­
wise constant control , it is only natural to choose the discretized initial condition 
(xo; U~i = uo( -io) , i = 0, N). We may define 

-, 
Zk = Xk + L A(O)-(N+i+l} Bdo)uk+j 

- N 
(17) 

which is the discrete analogue of Artstein transform and find the associate system 

It is worth mentioning that (17) might be obtained by writing (4) at t 
computing the integral for piecewise constant control signals. 

Let F be a stabili zing feedback for (18), i.e. is such that 

A(b) + (Bo(') + A(,)-NB, (,)) F 

has its eigenvalues inside the unit disk. We deduce that the compensator 

- , 
Uk = FXk + L F A(0)-(N+i+i) B1(J)Uk+j 

- N 

(18) 

kJ and 

(1 9) 

is stabilizing for (15). On the other hand, if we consider the closed loop system 

Xk+1 = A (O)Xk + BO(O)Uk + Bl (O)Uk _N 
-, 

Uk = FXk + LFA(o) -( N+i+I )Bt(o)Uk+j 
- N 

one may see that this is a feedback system with an augmented dynamics 

Xk+1 = A(J)Xk + BI(O)Vk + Bo (05)uk 

Vk+1 wi 
N-' 

wk+1 u, 
U, = Flxle + A(05) - t BI (J)Vk + ... 

+ A(J) - (N - I) BI (05)w;; - 2 + A(J) - NBI (J)W;; - I] 

(20) 

(2 1) 

Since W;; - l = Uk _ I the corresponding initial condition is W{j - I = U_I = uo( -J) ; 
further, W{j - 2 = U_2 = uo(-205), ... , w~ = "Ilo(-(N - 1)05), Vo = uo(-NJ). 
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Obviously (2 1) is exponentially stable. This follows from the fact that u = Fz is 
exponentially stabilizing system ( 18) and making use of (1 7). 

To end the anal ysis we have to show how stabilization of the associated discrete 
time system ensures stabilization forthe initial continuous time system. This problem 
wi ll be tackled on the transformed system (5) with the stabili zing feedback 

u(t ) = Fz(kd) = Fz" kJ <0 t < (k + I )J, k = 0, 1, 2,. . . (22) 

The system is of the type considered in [5}; a straightforward application of the 
results from the above paper will ensure the exponential stability of the closed loop 
hybrid system. Further, if z{ t) satisfi es an ex poncnlial estimate then using (4) the 
ex ponential estimate for x{t} is obtained what ends the proof of the following result 

Proposition 3, Consider the system (3) under the assumption that (.4 , Bo+e- A-r B \) 
is a stabilizabfe pair. Then the pair (A (o) , Bo{o) + 
A (0) - N B \ (0)) is stabilizable and a stabilizing feedback for this couple is stabili­
zing for (3) provided 0 > 0 is small enough. Here A(o), Bo(o), BI (0) are defined 
by (16) alld 0 = TIN. Moreover, a stabilizing feedback fo r (5) is stabilizing also 
if the implemelllalioll is pe/formed using samples i.e. stale vailies measured al ko, 
k = O, 1, 2, . 

4 Concluding Remarks 

We would like to poi nt out a single but most important feature of our approach, 
confirmed also by simulations (nevertheless the proofs are rigorous and on a sound 
basis - see again [2, 5}). Most implementation approaches arc based on thc discre­
tization of the integral what leads to continuous-time compensators descri bed by 
difference equations hence to systems of neutral type with an essential spectrum. 
Stability of such systems require this spectrum to be inside the unit disk which is 
IIot automalically ensured by a refined (with the step small enough) discretization ; 
consequently such systems often destabilize being either non-robust or fragile. The 
introduction of a Low Pass filter changes the system into one of delayed type and 
may fe-stabilize, the paid price being another dimension augmentation. 

The method of this chapter makes a difference in the sense that a specific control 
is used - the piece- wise constant control. In this way a discrete-time system is as­
sociated and it is this system that is stabilized; its augmented dynamics replaces the 
discretized integral tenn. Under these circumstances, the closed loop system (wh ich 
is hybrid since it contains a continuous time controlled plant and a sampled-data 
compensator) is always stable provided the sampling stepJ is small enough (op cit). 

The small sampling step is helpful in stabilization from another point of vicw 
also [5}. LeI F(o) be the stabilizing feedback for the discrelized system. Following 
the way from [5}, of the asymptotic expansions, it is easily found that 

F(J) = F + F,J + 0(0) 
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where F is a stabilizing feedback for the continuous time system; one may use for 
implemenlation with piece-wise constant control F instead of F(O) and the stability 
is preserved provided is is small enough . 
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Summary. The problem of globally asymptotically stabi lizing by bounded feedback an osci l­
lator with an arbitrary large delay in the input is solved. A first solution follows from a general 
result on the global stabilization of null controllable linear systems with delay in the input by 
bounded control laws with a diSiribulcd term. Next, it is shown through a Lyapunoy analysis 
Ihat the stabilization can be achieved as well when neglecting the distributed tenns. II turns 
out that this main result is intimately related 10 the output feedback stabilization problcm. 

1 Introduction 

The fam il y of the linear systems described by 

x(t) = Ax(t) + Bu(t - r) (I) 

where A E nnxn , BE n"xm, T is a delay, u is the input and the initial condition is 

x(O) = ¢(O),O E [-r, 0) 

is one of the simplest class of models with delay. Nevertheless, they describe pro­
perly a number of phenomena commonly present in controlled processes such as 
transport of infonnation or products, lengthy computations, infonnation processing, 
delays inherent to sensors, etc ... Well known approaches for the control of these sys­
tems include in an explicit or implicit manner a predictor of the state at time t + T. 

Some of the more widely used are the Smith predictor [34J, [13}, Process-Model 
Control schemes [381, and fin ite spectrum assignment techniques (21), [4). A com­
mon drawback, linked to the internal instability of the prediction, is that they fai l 
to stabi lize unstable systems [10]. As shown in [ II ), it is possible to overcome this 
problem by introducing a periodic resetting of the predictor. 

A common concern in practical problems is the use of bounded control laws. It 
is well known that for linear systems with poles in the open right half plane, on ly 
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locally stabilizing control laws can be obtained if there is a bound on the inpul, 
and that global asymptotic stabil ity can be achieved on ly for systems with poles in 
the closed left half plane, named nu ll-controllable systems. As shown in [ 18], the 
problem can be decomposed inlo two fundamental subproblems, namely, the control 
of chains of integrators of arbitrary fini te length, and that of osci llators of arbi trary 
fini te multiplicity. Solutions to this problem in the framework of systems with no 
delay are givcn in [19], [18], [7]. 

From the above, it follows that the study of linear systems whose inpufs arc both 
delayed and bounded is useful in many appl ications. 

In this chapter, we focus our attention on the stabi lization of a simple oscillator 
with arbitrari ly large delay in the input described by 

(2) 

We restrict our analysis to the case where the frequency is one for the sake of sim­
plicity, but all the resul ts that are presented can be adapted easily to the system 

{
i:)(t) = axz(t), 
x,(t) ~ -px,(t) + u(t - T), 

(3) 

where a and {3 arc strictly posi tive or strictly negative real numbers because this 
system can be transfonned into the system (2) by a time rescal ing and a change of 
coordinates. 

To the best authors' knowledge, the issue of the stabi lization of the oscill ator 
was first discussed in [9] in the I 940s for a second-order (delaycd) friction equation. 
Further comments and remarks on delayed osci llatory systems can also be found 
in [2,3]. 

The nature of osci ll ators is sign ificant ly different from that of chains of integra­
tors: for example, when the input is zero, the solutions of oscill ators are trigonome­
tric functio ns of the time wh ile those of integrators are polynomial functions of the 
time. Not surprisingly, the technique of proof we use is sign ificant ly di ffere nt from 
the approach of [8] for chains of integrators with bounded delayed inputs based on 
the use of saturated control laws introduced in [19] that on ly requ ire the knowledge 
of an upper bound on the delay. in the case of osci ll ators, we take advantage of the 
properties of the expl icit solutions to zero inputs to detenn ine expressions of the 
control laws which depend explici tly on the exact value of the delay. The proof of 
the resul t relies on the celebrated Lyapunov-Razu mikhin theorem. The key feature 
of our control design are that for arbitrarily large delays it allows us to detemline 
a family of globally asymptotically stabilizing state feed backs which contains ele­
ments arbi trari ly small in norm. The rei nterpretation of this resul t in the context of 
output feedback stabilization leads to the following result: for an)' linear output one 
can fi nd an arbitrari ly large delay for which the problem of globally asymptotically 
stabi lizing the oscillator by bounded feedback is solvable. 

The chapter is organized as follows. In Section 2 a general result on the stabi­
lization of null-controllable systems is established via distributed control laws. The 
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procedure is applied to the osci ll ator. Next, a stabilizing bounded state feedback is 
proposed. In Section 3 this last result is embedded in the output feed back context. 
Some concludi ng remarks are presented in Section 4. 

PI"e1iminaries: 

• For a real valued G' function k(·), we denote by k'(-) its fi rst derivative. 
• A func tion 0: : [0, +00) --+ [0, +(0) is said to be of class K..oo if it is zero at 

zero, strictly increasing and unbounded. 
• We denote by 0-(-) an odd nondecreasing smooth saturation such that 

- 0(8) = s when 8 E [0, 1], 
- o(s) = ! when s ~ 2. 
- - s::; o(s) ::; s, 0::; 0'(8) ::; 1. 

2 Stabilization by Bounded Delayed Control Laws 

We establish first a general result on the stabilization of nu ll-controllable linear sys­
tems with delayed bounded inputs. by control law that contain distributed elements. 
Next we particularize this result to the cases of the oscill ator. Finally, we exploit 
th is last result in order to detennine state feedbacks which do not contain distributed 
elements. 

2.1 Distributed contl"ollaws rOI" null-controllable systems 

Lemma 1. Consider a spectrally cOlllrollable linear multivariable system with delay 
jll Ihe inplll described by 

x(.) = Ax(.) + Bu(. - r) (4) 

where A E R"x" , B E R"xm is such that (A , B ) is flull -comrollable, alld the 
delays in the inpllt is r ~ 0, with initial conditions 

x(O) = .(0) ,0 E [- r,O[ 

where 1>( .) is a cOlllinuolls fllnctioll. Then the following problems are equivalent. 
(i) The bounded cOlllrol law 

ui') = «x) 
globally asymplotically stabiliz.es the system (I) whe" T = O. 
Oi) The bOllnded distributed comrollaw 

u(t - r) = {(eM x(t - T) + 1t e(t-~) A Bu(s - r)ds) ,-, 
globally asymptotically stabiliz.es the system ( J). 

Proof The result follows in a straightforward manner from the fact that 

x(t) = eAT x(t _ r) + eAt 1t e- As Bu(s - T)ds . 
,- , 

(5) 

(6) 
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2.2 Distributed control laws for the oscillator 

As a preliminary step for the main pan of the work, we particularize this general 
result 10 the case of an oscillator. Recall first a lIery simple result whose proof is 
omitted. 

Lemma 2. COllsider the system 

(7) 

where u is the inpllt. This system is globa/ly asymptotically stabilized by the bounded 
control law 

(8) 

where c is a strictly positive parameters alld a(·) is the bOllllded illllctioll de filled ill 
the prelimillaries. 

Using the Cauchy fonnula for the osci llator 

xdt) = cOS(r-)XI(t - T) + sin (r)x2(t - T) - /1 sin (s _ t)u{s _ r)ds, (9) 
H 

Xz(t) = - sin(T)xl (t - T) + COS(T)XZ(t - T) 

-/1 costs _ t )u{s _ T)ds, 
H 

(10) 

( II ) 

and Lemma I , it follows straightforwardly that the distributed delayed control law 

u(t - T) = - £a( - sin (T)x l (t - T) + COS(T)XZ(t - T) 
- fL .. costs - t)u(s - T)ds) 

globally asymptotically stabilizes the system (2). 

2.3 Delayed state feedbacks for the oscillator 

(1 2) 

The control law (6) involves distributed elements. The implantation of such terms 
using numerical approximation is time consuming and, in some cases, it leads to 
instability [10]. One can observe that in (II) the distributed tenn is of the order of € 
whereas the other tenn does not depend on c: so we conjecture that as t: decreases, 
the influence of the distributed tenn decreases as wei\. Then, the question that arises 
naturally, is wether or not stabi lity is preserved if the integral tenns are neglected, in 
other words, if instead of (6), the control law 

is used. The answer 10 this query depends on various aspects of Ihe problem, as the 
dynamic of the open loop system , and the bounded control law itself. These fact s are 
now illustrated with the oscillator considered in this chapter. 

We state now the main result of the work. 
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Theorem I. Lei r be a posilive number. The origin of lhe sysleln (2) is globally 
aSYlllpLOlically swbilized by lhe comrollaw 

( 13) 

where 

c E lo, min {~ , 32~r2' 4~r } 1 ( 14) 

and 0'(.) is lhe bounded fimclioll defined in lhe preliminaries. 

Proof The system (2) in closed loop with the feedback ( 13) rewrites 

( IS) 

with 

B2(t) = -it cos(s - t)Us(XI (s - r), X2(S - r))ds ,-, 
= E I~T cos(s - t)O'( - sin(r)Xl (s - r) + cos(r)X2(S - r))ds. 

( 16) 

One can check rcadily that 

{

;,' (I) = x,(I), 

;,,ct) = -x,(I) - ca(x,(In + P(I), 
(1 7) 

with 

P(I) = cB,(I) J,' e' (,,(I) + IB,(I» dl. (18) 

The result is established through a Lyapunov-Razumikhin approach. Consider the 
func tion 

( 19) 

where .\.(.) is a fu nction of c1ass';'oo such that .\.(s) ~ 5, S 2:: 0 to be specified later. 
With such a choice for .\. (.), U(X l ,X2) is a positive de fi ni te and radially unbounded 
function. 

Its time derivative along the trajectories of system (17) satisfies 

(20) 

According to the properties of 0'( .) and the fact that e:5 !, it fo llows that 
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(2 1) 

Let now choose 

A(,) ~ 2. [ J a~l) dl (22) 

where k ~ ~. The properties satisfied by aO ensure that this function is well defi ­
ned, of class Keoo , and such that '\"(8) ~ O. Then , 

[ " + !.,.{z~) 

Choosing k = : (wh ich, according to ( 14), is larger than 1), 

On the other hand . the use of the inequalit ies 0 ~ a'(s) ~ 1 and ( 16) lead s to 

f3(tf = f,ZBz( t)Z [1 1 

(J'(X2(t) + lBz(t))dlr 

~ € 4 [j~T la( - sin(r)x\ (8 - r) + cos(r)xz(s - r))ldsf 

We distingu ish now between two cases. 
First case: x1 + x~ 2: !. Inequalities (24) and (25) imply that 

One can check readily that ofu ~ 1 + 8 for all 8 ~ O. It follows that 

(23) 

(24) 

(25) 

(26) 

(27) 
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When € :::; 1~T' the inequality 

(28) 

holds, and . , , 
U(xJ X2) < --x - 4 , - 4 I (29) 

Second case: xi+x~ :::; t .]n this case IXII :::; ~,IX21 :::; ~,0"(X2) = X2, O"(xi +x~) = 
xi + x~ . Then it fo llows from (24) that 

f3(t)2 = €2 B2(tf [11

0"' (X2(t) + lB2(t))(Uf 

:::;€ 4 [j~}IXI(S-7)1+IX2(S-7)lJdsf 
Combin ing (30) and (3 1) leads to 

(30) 

(3 1) 

. I 2 4 2 
U(XI,X2) :::; -"2X1 - 3"X2 (32) 

+ [16€:2 + €:1] [j~}I XI(S - 7)1 + IX2(S -7)lJdsf (33) 

Next, we determine the values of €: for which the feedback ( 13) globally asympto­
tically stabili zes the system (2) with the he lp ofRazumikhin Theorem (see Appendix 
A). To do so we prove by exploiting (29) and (34) that when the inequality 

U(x.(t +O) , x,(t + 0» < 2U(x,(t) ,x,(t» (35) 

holds for al l () E [- 27, 01. there exists a continuo us, nondecreasing functions w(.) 
such that 

[J(x" x,) S -"(lIxll) 

with x = (XI, X2)T . Recall that U(-) is positive definite and radially unbounded. 
I. When xt{tf + x2(tf 2: t, it follows from (29) that U(Xt (t),X2( t )) < 
-lllx(t)II' . 
2. When XI(t)2 + X2(t)2 ::; t, the saturations act in their linear regions hence. 

8 
U(x,(t),x,(t)) = -(x , (t)' +x,(t)') + x,(t)x,(t). (36) , 

One can check readily that 
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9 , , 
U(x,('),x,(I)) < -(x,(') + x,(t) ). - < 

On the other hand, 

Since C1(l) ::; I, I:?: 0, it fo llows that 

8 22 8 1 22 U(XI,X2» - (XI +X2 )+XIX2>(---)(Xl +X2). - c - c 2 

In particular, thi s inequality impl ies that 

Combining (37), (35) and (38), 

It fo llows from (39) and (34) that 

18 2 2 
-(x, (I) + X2(t) ). 
< 

(37) 

(39) 

U(Xl,X2) ::; -txY - ix~ + 34c2r2~[x l(t)2 +X2(t)2J (40) 
::; -"2XT - 3X~ + 162cr2[xl(t)2 + x2(tfJ· 

Choosing c ElO, min 0, 4~T' 64~Td l, implies that 

This concludes the proof. 

. " U(x"x,) ,s -.lIxll . 

3 Output Feedback Stabilization 

(4 1 ) 

The above analysis shows that when the delay is r, feedbacks depending only on 

stabilize the oscillator. This leads straightforwardly to the fo llowing interpretation of 
Theorem I in an output feedback framework. 

Corollary L Consider the system 

(42) 

with the outpllt 
(43) 
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where a and & are arbitrary realnllmbers sllch that a2 + &2 > O. Then the system is 
globally asymptotically stabilized by a delayedfeedback 

u = ~fa ( y(t - r) ) 
Ja2 + &2 

(44) 

where a(.) is theflll/ction defined in Theorem I, and where T is a strictly positive 
number such that 

{a = -va2 + b2 sin (r), 
& = va2 + b2 cos(r), 

al/d f EjO,min {t, 4~T' 64~T2 }l · 
An interesting and somehow surprisi ng particular case is when the output is Xl . 

In {hiS case, although the system is not stabil izable when the delay is zero, it is for 
suitably chosen delays, as shown in Corollary I . 

An analysis of the problem of output feedback stabilization by linear feedback, 
based on the study of the corresponding characteristic equation [12J, or on the Ny­
qu ist criterion [ IJ can be camed out. It leads to the fo llowing result that provides 
additional informations on our problem. 

Proposition J. {12 J. {I JThe IiI/ear system 

with the OlltPllt 
y(t) ~ x, (t) , 

can be stabilized by delayed output feedback 

u(t) ~ -ky(t - r) 

for all the pairs (k, r) satisfying simultaneollsly: 

iJ the gain k E (0, 1) 
ii) Ihedelayr E Cr.i(k),T;(k)) where: 

fori = 1, 2, . . .. 

{ 

r(k) ~ (2i - 1). 
- , A"=k 

2i1T 
T; ( k) ~ -''';;;;1 ';"+"'k 

(45) 

(46) 

(47) 

(48) 

Furthenllore. if r = :Li(k) or r = Ti(k), the corresponding characteristic eqllation 
in closed-loop has at least one eigem·alue 011 the imaginary axis. 

The regions of stabilizing k shrink as the delay T gels larger, and furthennorc 
for each k there exists a value r " (k) , such thaI for any r > T " (k) the closed-loop 
system is unstable. 
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Remark 2 Obsen'e that ill Ihe case when y = XI, Ihe vailles of a alld b irl eqllatioll 
(2) ill Corol/ary I are respeclively 1 and O. This implies Ihal T; = ~ ~ + 2i1l" , where 
i is an i/lleger. NOI surprisingly, these va/lies are sllch that 

rr 
T; = ~ 2 + 2i1l" E h:i{k), T;{k)[ 

when k is slifficielit/y small: indeed, Ihe feedback (44) is linear in a neighborhood of 

the origill which implies Ihat Ihe system (I) in closed-loop wilh ~€ ~~"-;l1 is globally 

asymptotically stable when T = Ti. 

Rema rk 3 This observatioll gives a /lew lVay to establish thai the delayed OlllPllt 
feedback (47) satisfyillg i) alld ii) are stabiliZillg. Indeed, boundaries of the regions 
of the plane k-T described by i) and ii) correspolld to crossillg oflhe imaginary axis 
oflhe roots of the closed loop quasipolynomial. Itfollowsfrom a colltilluityargumenr 
that in each region, the qllosipolYllomial has a fixed mill/ber of roOfS in the right­
half plane, hence it is either stable or IIIIstable in the whole regioll. A COrlsequence 
of Remark 2 is II/al we are able to exhibit a stabilizing element (ki,T;) ill each of 
the regions described by i) alld ii). hence all the cOlllrollaws all the pairs (k,T) 
satisfying simultaneously i) and ii) are stabilizillg as well. 

4 Concluding Remarks 

The problem of globally asymptotical ly stabi lizing by bounded feedback an oscill a­
tor with an arbitrary large delay in the input is solved. A first solution fo llows from 
a general result on the global stabilization of null-controllable linear systems with 
delay in the input by bounded control laws with a distributed tenn. Next, it is shown 
through a Lyapunov analysis that the stabil ization can be achieved as well when ne­
glecting the distributed tenns. It turns out that this main result is intimately related 
to the output feedback stabilization problem. The robustness problems due to the 
need for the exact knowledge of the delay can be investigated with the help of the 
Lyapunov func tion we have constructed. 
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A Razumikhin's Theorem 

Theorem 4. f8/ Consider the filll ctional differential eqllOlion 

xl' ) ~ f(' ,x,), ' ~ 0, 

x,,(O) ~ ~(O),W E i-T,Oj 

(49) 

(50) 

(Note: xt(09) :::: x(t + 09), VB E [-T,O]). Thefimcliol/ f:R x Cn,T is slIch Ihalthe 
image by f oj Rx(a boul/ded subsel OjCn,T) is a bounded sllbset oj R1\ and the 
junctiolls u,v,w:R+ --+ R+ are comilluolls, I/ondecreasing, u(s),v(s) positive 
jor all s > 0, u(O) = v(O) :::: 0 and v is strictly increasing. 
Ijthere exisls ajuflclion V: R x R1\ --+ R such that 

(a) "Oixil) ~ V(" x) ~ a(lIxll),' E R. x E R" 
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(bPi ("x) ~ -w(lIxll) ifV(, +O, x(t+O)) ~ V(t , x(t)) ,VB E [- T, O] 
Illen Ille trivial solution oj (49, 50) is uniformly stable. 

Moreover. ifw(s) > 0 whell s > 0, alld Ihere exists ajul1Cfiol! p: R + -+ 
p( s) > s when s > 0 such that: 
(a)u(lIxll) ~ V(t,x) ~ v(lIxll),t E R, x E R" 
(b) V(t,x) ~ -w(lIxll) if 

V(t + 0, x(t + 8)) < p(V(t,x('))), VB E [-T , O] 

then the trivial so/Iltioll oj( 49, 50) is uniformly asymptotically stable. 

R+ , 

(5 1) 
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Summa ry. Parameter identifiability and identification are studied for linear differential de­
lay equations of neutral type and with distributed delays. It is shown how the identifiability 
property can be fonnulated in terms of comrollabililY conditions, namely approximate control­
lability for the general case, and weak controllability for the retarded case with finitely many 
lumped delays in the state vector and cont rol input. The notion of sufficiently rich input, which 
enforces identifiability, is also addressed, and the results are obtained assuming knowledge of 
the solution on a bounded time interval. Once the parameter identifiability is guaranteed. syn­
thesis of an adaptive paramcler identifier is developed for systems with fin itely many lumped 
delays in the slate vector and control input. Theoretical results arc supponcd by numerical 
simulations. 

1 Introduction 

Numerous researches involve time-delay systems and their applications to model­
ling and control of concrete systems. To name a few, the two monographs [20,281 
give examples in biology, chemistry, economics, mechanics, viscoelasticity, physics, 
physiology, population dynam ics, as we ll as in engi neeri ng sciences. In addition, 
actuators, sensors, field networks and wireless communications that are involved in 
feedback loops usuall y introduce such delays. As it was noted in the recent sur~ 
vey l34}, delays are strongly involved in challenging areas of communication and in­
formation technologies: stabi lity of networked controlled systems, quality of service 
in MPEG video transmission or high-speed communication networks, teleopcrated 
systems, parallel computation, computing times in robotics ... Finally, besides actual 
delays, time lags are frequently used to simplify very high order models. 

Works on identification ofFDEs have shown the complexity of the question [37]. 
Identifying the delay is not an easy task for systems with both input and state delays, 
or when the delay is varying enough to require an adaptive identifier. Several authors 
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usc the relay-based approach initiated by Astrorn and Hagglund [26, 35J, which, ho­
wever, is not a real-time procedure since it needs to close some switching feedback 
loop during a preliminary identification phase. The adaptive control of delay systems 
is not so much developed either [4, 15,38] and the delay is generally assumed to be 
known. And yet, as noted in [II], the on-l ine delay estimation has a longstanding 
issue in signal processing. 

The present work wi ll focus on the question of identifiabi lity (section 2) and, 
then, on some algorithms for identification (section 3). 

2 Identifiability Analysis 

In this scction, the question of identifiability of time invariant systems described by 
linear delay differential equations is addressed. We consider here the general case of 
equation of neutral type and with di stributed delay of the form: 

d N N 

d'x(, ) = I: A;x(' - h;) + I: L;x(, - h;) 
; :=0 ; := 1 

+ { A, (O)x(' - O)dO 

N h 

+ I: B;u(' - h;) + 1 B, (O)u(' - 8)dO, 
;:=0 0 

( I ) 

where 0 S 110 < hi < ... < hN = h. We shall not consider the problem of iden­
tifiability of the in itial conditions, and the reader in terested in this subject can refer 
to the work of [25] for homogeneous (without control) and retarded systems. The­
refore, and without loss of generality, we shall consider zero initial state. According 
to [43], equation (1) admits an input/output representation in terms of convolution 
equation: 

(2) 

where P and Q are respectively n x nand n x m matrices with entries in the space 
[' of distributions with compact support and are given by: 

N N 

P = J' I + LA; J~; + LA_;J~; + Ac(8) (3) 

N 

Q = I: B; ;h ; + B , (O). (4) 
;= 0 

Note that a non zero initial state would result in an additional term in the right hand 
side of (2), consisting in an clement of [', the support of which is included in [0, It). 
In association with (I),let us consider a reference model governed by: 

(5) 
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where P and Q share the same expressions as (3,19) with coefficients N, il;, 
~;, ,L;'....4c (8) , B; and Bc(8). We shall further assume 0 :S ho < hi < .'. < hiV = 
Ii, with h :s: h. However, we shall present in section 2.3 some particular cases for 
which the latter assumption can be removed. The problem of identifiability can be 
stated as follows: 

Definition I. The linear system described by (2) is coiled idemijiable by (5) if olle 
can find a inpllt u and a bounded rime imen'al I such that the equalities P = P and 
Q = Q result from :i; = x on I. 

We fi rst in troduce some notations and results we shall usc in the sequel: V'+ (resp. 
[" ['(IlL) is the space of distributions with support bounded on the left (resp. com­
pact support, compact support contained in (-00 , OJ). It is an algebra with respect to 
convolution with identity 5, the Dirac distribution. When T is a matrix valued distri ­
bution , supp T is the union of the support of its entries. With no danger of confusion, 
ifT E (£')nxm, we denote T{s), SEC, the n x m matrix of entire functions obtai­
ned by Laplace transform of T. A distribution u E £' is called invertible for V' (in 
the sense of Ehrenpreis) if the map V' 3 v --+ U * v E V' is onto. We let 0 denote 
the space of all entire functions and E' c 0 the Laplace transform of C. Denote 
also (in this paragraph) u E E' the Laplace transfonn of u E £'. The next result can 
be found in [ 121 where the general problem of div ision in various spaces is studied. 

Theorem I. [121 Thefollowing sIGtemems are eqllivafenr: 

i) u E £' is illvertible. 
ii) For allY 9 E 0, if ug E E', then gEE'. 

Another property of the convolution product we shall use is the well known relation 
suppa * {3 C suppa + supp{3, for 0', fJ E V,+. which easi ly extends to the matrix 
valued case. Moreover, for a square matrix T E {c)nxn with supp T C [0, hI, and 
in the convolution sense, one can easily show that the detenninant and the adjoint of 
T have their support contained in [0, nit] and ]0, (n - l )h] respecti vely. 

2.1 Time interval and sufficiently rich input 

This paragraph is devoted to the design of an input u and to the characteri zation of 
I such that the equality of the solutions on I results in that of the impu lse response, 
i. e. 

x=x on I:} p-I *Q=P-I*Q. (6) 

In order to restrict the identifiability study to a bounded time interval of observa­
tion. we assume the input to have a compact support contained in some segment U. 
The "richness" of u will be defined within this time interval. The proof of the next 
propositions is given in the appendix. 
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Proposition 1. IJI := [TI, T2J alld U := [tt, t2J are such thal 

TI +(n+ l )h < tl < t2 < T2 - (n+ l )h 

thell x = x 011 I implies x = i: 011 III 

(7) 

Now, define u as a piecewise lR'" -valued polynomial function, and let the set 11u = 
{SO ,S I, . .. . ,sL} be its singular support (i.e. the set of points in lR having no open 
neighborhood N such that the restriction of u to N is a Coo func tion). Besides, let 
us denote: 

O"~(stl = U(k)(S, + 0) _ U(k) (S/ - 0), 
N 

U,(D) = L "~- ' (',)Di, D = dldt, 
;= 0 

(8) 

(9) 

One o f the fundamental properties of d istributions is that, by d ifferentiation, we do 
not miss something essential such as a discontinuity. In our case, if all the polyno­
mials defining u are o f order ~ N forsorne N E N, differentiation at the order N + 1 
results in the singular distribution 

L 

U( N +I ) = L UI(D) [JJ * Jw ( 10) 
1=0 

Using a Smith form factorization together with the invcrtibil ity of differential opera­
tors in V~ , we have the following statement 

Proposition 2_ Under assumption (7), relation (6) holds with a piecewise polynomial 
u such that 

i) Tank IU,(D), .. " UdD)] = m , 
i i) 8/ - 8/ _ 1 >(n+ l )h, l = l , .. ,L. 

The simplest example consists in a piecewise constant lR"'-valued function with dis­
continuity points 8/ as in condition (2) and jumps 0"~(8tl forming a matrix of full 
rank. More generally, we can design an input u of class Cr for an arbitrary finite in­
teger T, but the main property required in this approach remains the non-smoothness 
of the input. 

2.2 Identifiability of the plant 

Using the kernel representation with R := [P, - Q], the equality of the impulse 
response can be equivalently written as: 

R =o: *R, 
a = P*p- l. 

(II) 

( 12) 

Using the notion of o rder of a distribution (see [43]), one can easi ly show that 0: is 
a measure with support contained in [0,00). On the other hand, it is clear from (I I) 
that R is compact supported if a is, too, but the converse is not true in general. 
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Proposition 3.lfrank R(s) := n, sEC, thell a has its entries ill ['. 

Proof Since Rand R arc compact supported distributions, R( s) and R(s) are with 
entries in E' c 0. Hence. taking the Laplace transfonn of (II ), we deduce that, if 
rank R(s) := n, sEC, then o(s) must be in 0""". It remains to show that a (s) E 
Em"". Since (Jet P)(s).a(s) := P(s).Adj(P)(s) E £1""'" and det P is invertible, 
theorem I applies componentwise and thus a{s) EE'""". 

The condition rank R{ s) := n, sEC. is usually referred to as spectral contro l­
lability. Clearly, this condition is not sufficient to guarantee the uniqueness of the 
impulse response representation in terms of the kemel R. Additional infonnation 
will be obtained using the properties of the support o f a convolution product; For 
A E ([')""m , we define 

E{A) :=sup {t EsuppA}. (13) 

Note that by assumption, il := E(R) :S h := E(R), and clearly E(Jr * A) := 

T + E(A). T E Dl Now we recall here some algebraic resu lts one can find in [431; 
Let F be the quotient fi eld o f the quotient ring A ::= [I{L )/J, where 

J ~ {'P E ['(ilL); E('P) < OJ, (14) 

and denote 0 : [I(L) -t :F the composition of the canonical projection [I(L) -t 

A with the inclusion A -t F . In thi s setting, an element W E ([I(L ))n is nonzero 
when considered over F if and only if E(w) = O. The convention we shall use here 
slightly differs from [43] since, in what follows, when we speak of a rank of a matrix 
W E ([')""m over F, we shall always mean the rank of the matrix O(Le{IV ) * IV) 
considered over F. We can now state our main result. 

Theorem 2. Let R E ([,)",,(,,+m) be such th(lf: 

i) rank R(s) = n, sEC, 
ii) rank:F( R) := n. 

Theil, the system (2) is idelltifiableby (5). 

Proof From condition (I) and proposition 3, a has a compact support C [O,E(o)]. 
Assume £(a) > O. From [43. Thm 3.91, if rank:F(R) = n, then for any such a, 
E(Lh * a * R ) > 0, that is from (I I), £(Lh * R) > 0 which contradicts the 
assumption h :S h. Hence E{a) :S 0 so suppa := to}, which means that a is a 
linear combination of Dirac distributions and its derivatives. Since a is a measure, 
a := (toJ for some invertible n x n real matrix ao. The nonnalization of P and P 
(due to the tenn 15') in (3) yields ao = 1. 

Note that condition (2) is automatically satisfied if n = 1. For distributions with 
punctual support, this cond ition takes also a very simple fonn if one observes that 
rank:F(R) uniquely depends on the behavior of R in the vicinity of E(R). The fol­
lowing example illustrates the link between identifiability and controllability results. 
Let P as in (3), Q = BoJ, and consider the system described by; 
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(15) 

The kernel is given here by R = [J - hN * P, - Q). and the conditions of Theorem 
2 are nothing but the necessary and sufficient cond itions for the system ( 15) to be 
approximaTely controllable (in the sense that the reachable space is dense in the stale 
space [431). 

2.3 The particular case of systems with discrete delays 

We end this section with a result in a part icular case for which the identifiability 
condition can be expressed in terms of the weak controllability rather than the ap­
proximate controllabi lity. Let us assume the plant and the associated model to reduce 
to retarded systems with discrete de lays (i.e. A_i = A_; = 0, .4c{O) = Ac{O) = 0 
and Bc(O) Bc(O) = 0 (a.e.», and considcr thc two following matriccs of entire 
fu nctions: 

N N 

A(s) = 2:: A; c- h ; s, B(s) = 2::B; c-h" . (16) 
;= 0 ;=0 

The next result [3,29], which no longer requires the assumption A < ft, is easily 
derived from the (non) regulari ty of p-l * Q and its derivatives. 

Theorem 3. If. for sOllie sEC. 

rank [B(s) ,A(s)B(, ), ... A"- ' (, )B(s)] ~ n , (17) 

{hen sysfem (2) is idemijiable by (5). 

In the next section, efficicnt algorithms are developed in order to prov ide in line 
parameter identification for those lime delay systems. 

3 Adaptive Parameter Estimation for Time-Delay Systems 

Recursive identification theory is nowadays well developed for linear timc- invariant 
systems, but it is not the case for time-delay systems besides the fact that the presence 
of a not well identified time lag in a closed-loop may li mit seriously the system per­
fonnanccs (scc, for instance, fl l]). There ex ist few papers on adaptive identification 
of linear time-delay system but most of thcm focussed on dead-ti mc systcms. A great 
number of these papers concern discrete-time modcls, which appears at first sight thc 
easy case, since a pure time-delay can be exactly represented by introduction of ze­
ros and zero poles. But, when the delay is unknown, the on- line identification is 
not so straightforward, most mcthods are based on the identification of an extended 
modcls, thc sclcction of the delay is then computed using ad-hoc criteria (number of 
negligible coeffi cients [5]. mini mization of an error function [221. .. . ). In continuous 
time, most of the identification schemes arc obtained in replacing the delay tcnn 
by a fi nite-dimensional approximation (for instance, Pade approximant [l l l2] [32J, 
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Laguerre approximation [14J •... ). other schemes arc obtained using extension of 
standard methods such as least square method [36] . or gradienl-based algorithms 
( [24]. [16]). Papers dealing with identification of linear systems with time-delay in 
the state variables are not so numerous, let us mention [31} which concerns parameter 
identification of time-delay systems with commensurate delays. and [3D}. 

The following algorithm, first presented in r30], allows on-line identification of 
linear dynamic systems with finitely many lumped delays in the state vector and 
control input. These systems are governed by linear functional difTerential equations 
with uncenain time-invariant parameters. The state variables of the system are assu­
med 10 be available for measurements. 

Let us consider a system of Ihe fonn 

, 
x(t) = I: [A ,x(' - r;) + B ,u(t - r,)J, (1 8) 

i=O 

where x(t) E IR:n is the state vector, u(t) E IR:P is a piecew ise continuous control 
input. 0 = TO < T] < .. . < Tr are time delays whose values are assumed to be 
known, and A;, B i arc matrices of adequate dimensions with unknow coefficien ts. 
Now. consider the following identifier system: 

, 
itt) = I:[A,(t)x(t - r,) + B;(t)u(t - r,)J - GLlx(t), ( 19) 

;=0 

where .dx(t) = x(l) - xU) is the state error. G E IR:nxn is a Hurwitz matrix, and 
time-varying matrices Ai(t) , B;(t) satisfying 

A,(,) = F,PLlx(t)xT
(, - r,), A,(O) = A1, 

B;(t) = P;P.dx(t)uT( t - T;), B;(O) = B? (20) 

with adaptation gain matrices Fi , P i being positive definite and of appropriate di­
mensions, and P the (positive definite) solution of the Lyapunov equation 

GTP+PG= _Q 

fora given positive definite matrix Q. Using Lyapunov redesign technique arguments 
[30], we obtain the following result: 

Theorem 4_ Assume that system ( J) is asymptotically stable and identifiable. Then, 
ifu(t) is a periodic, sufficiently rich input signal, the state error .dx(t) converges 
asymptotically to 0, and the time-varying matrices Ai(t), Bdt) converge towards 
the plant parameter matrices A i, B i. 

Proof Let us represent the over-all system (I ), ( 19), (20) in tenns of the output­
parameter errors: 
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e(t) == E [=oA;e(t - T;), 

M(') = E,=o{LlA ;[e( , - T;) + 'it - T;)J + LlB;u(t - T;)} + GLlx( ' ), 

LlAdt) = -F;PLlx(t )[e(t - T;) + 'it _ T;)}T , 
. T· 11Bi == -<P jPL1x (t)u (l - Tj) , l=O, ... , r (21) 

where e(t) == x (t) - z (t ) is the state deviation with rcspect to the steady-state so­
lution z (l) of (I) with periodic input u(t). Now let us prove that (2 1) is globally 
asymptotica lly stable. For this purpose, we introduce the Lyapunov funct ional 

V(e , L1x, .:1Ao, ... , L1Ed =< IV e, e > +L1xT P.:1x 

+E[=o[tr(11ATF;- ' ..:::lA;) + lr(11Br<Pi ' 118;)] (22) 

where tT denotes the trace of the matrix, W = Jooo S'(t)S(t)dt (S(l) being the 
exponentially stable semigroup of the former equation of (2 1). The computation of 
the ti me-derivative of the Lyapunov functional V along the trajectories of (2 1) yields 

Although this time-derivative is on ly negative semidefi nite, global asymptotic stabi­
lity of (2 1), the right-hand side of which is apparently time-periodic, is established 
by invoking the extension of the LaSal le's invariance principle to periodic delay sys­
tems. According to the invariance principle, there must be a convergence of the tra­
jectories of (2 1) to the largest invariant subset of the set of solutions of (2 1) for which 
V(t) =: 0, or equivalently 

e(t) " 0, Llx(t) " o. (23) 

The manifold of (23), however, does not contain nontrivial trajectories of (21). In­
deed, if (23) is in force, then taking into account (20), it fo llows that 

(24) 

In tum, coupled to (21), relations (23), (24) result in 

E [=o(11A ; x(t - Ti) + .:1B;u(t - Ti») == ° 
which by identifi abil ity of ( I) implies that 

11A; == 0, ..:::lE; == 0, i == 0, ... , T. 

Thus, by applying the invariance pri nc iple system (21) is globall y asymptotically 
stable and the required identifie r convergence is concl uded. 

Perfonnance issues of the adaptive identifier were studied by si mulation of a 
scalar system 

x(t ) == aox(t) + aJx(t - Ttl + bou(t), x ,u E lR (25) 
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with a single delay in the slate. Apparently system (25) is weakly controllable if and 
only if bo t- O. Thus system (25) with bo t- 0 turns out to be identifiable and its 
identifiability is enforced by a sufficiently nonsmooth control input. If, in addition, 
the unforced system (25) s ubject to u = 0 is asymptotically stable ( ao < 0, 00 + 
la[1 < 0) then the parameters of the system can be identified vi a the proper adaptive 
identifier design. The equations of the identifier of equation (25) are: 

i (t) = aox(t) + at x (t - T,) +bou(t ) + aLlx( t}, t 2: 0, (26) 

fio = .8oLlx(t)xT (t) , fil = .8tLlx( t)xT (t - Td, 

bo ~ >oLlx( t)uT(t ), (27) 

where T, is the a priori estimated value of the delay T,. The followi ng parameters of 
the system were selected: 

an = - 1.5, at = 0.5 , bo = I, T[ = 1. 

The initial distribution of the system and that of the identifier as well as the initial 
conditions of Ihe tunable parameters were set to zero, i.e. x(t) = itt ) = 0 t S 0, 
and ai(O) = 0, bi (O) = 0, i = 0, .. . , t. All of the adaptation parameters were 
set to eight and the input u(t) was the sum of two square waves of amplitude 5 and 
frequencies 0.5 and 0.7 Hz . 

In the first simulation, the delay of the identifier was matched to the plant's one: 
Tt = 7, = 1. Figure 2 shows the convergence of tunable parameters ao , a" and bo, 
to their nominal values. 

~rs;:;; : : I · , . . . . ,. , 

)~~, : : 1 · , . . . . . , . . ,. 

j:];p~: : 1 · , . . . . ,. , 

Fig. I. Adaptivc identifier with a priori known delay 

The second simulation underline some robustness property of the identifier, al­
lowing an estimation of an a priori unknown delay; We test the following identifier 
including two delays T, = 1.01 and T2 = 1.1, both mismatching to that of the 
system: 
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As shown in Figure 2, the tunable parameters converge to their nominal values. It is 
concluded from this fig ure that the only parameter a2(t) becomes neglcclablc as t---) 
00 thereby establish ing a fictitious delay 72 = 1. 1 and approximately identifying 
another delay value 7"1 :::: 1.01. 

" :~, : : : : : 1 
~'. , .. " , , , , , , " 

' ·~~f : ~ : 
: : 

: : : l · , .. " 
, , " 

, " " " 

"J~' 
, 

: 

, , 

I 
• • " >. , , " , " " " 

" :k : : I 
• " " , , , , " " " 

Fig. 2, Adaptive identifier with mismatched delays 

4 Concluding Remarks 

In analogy 10 linear lumped-parameters systems, counterparts of controllability 
conditions are imposed on the delay systems to guarantee that it is in pri nciple pos­
sible to identify all unknown system parameters and delays. The approach used is 
also constructive since it is shown how to explici tly construct a sufficiently rich in­
put in order 10 enforce the system identifiab ility. 

The favorable robustness properties of Ihe proposed identifie r against small de­
viations of the delays suggest that, in addition to the identification of the parameters, 
we may also prov ide an estimation of unknown delays using an identifie r involving 
a large number of delays (so that some estimated parameters correspond to ficti tious 
delays). 

Appendix 

Proof (of proposition I) Let x := x - x = Xl + X2 with SUPPXI C [0, rs] and 
SUPPX2 C (r2,oo[, Denote a[so,j := det P, and consider Ll * P * X. We gel after 
some simple manipul ations 

(28) 
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where we have denoted formally 

80 ~ .1. p. (P- ' • (.) - p- ' • 0) 
~ P. Adj(P). (.) - .1. (.). 

(29) 

(30) 

Clearl y, S(Q) and Ll * ? have their support included in [0, (n + l )h], so the res­
pective supports in (28) are contained in [t\, t2 + (n + I )h]. [0, T[ + (n + I )Il], and 
[r2, 00[, If (7) holds, these supports are disjoint, so each correspondi ng distribution 
must idenlically vanish. lnvertibility of Ll * ? in (28) results in XI = X2 = O. 

Proof (of proposition 2) In (29), Ll*? is invertible so it suffices to show that S(Q) * 
u = 0 =} 5(Q) = 0. Using ( 10), d iffe rentiation of S(Q) * u = ° yields 

" I: 8(Q). U,(D) [01' J" ~ 0, (31) 
1",0 

with supp S(Q) C [0 , (n + l )hj. while supp UI(D) [8j = {O}. I f condition (2) 
holds, all the terms of the sum in (3 1) have disjoint supports and then must identically 
vanish. Hence, 

8(Q). [Uo(D) , ... ,UdD)lIol ~ O. (32) 

Now if rank U(D) = In, U(D) admits a Smith form fac torization, U(D) = 
W(D) [A(D) , OJ V(D) where W(D), V(D) are unimodular matrices, and A(D) = 
diag(J..;(D» , with no identically zero polynomial on its diagonal. Since every non 
zero polynomial J..(D ) [8], D = a/at is invertible in D~ , the conclusion fo llows. 
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Summary. Unccnainties arc unavoidable in practical situations and they have [0 be laken 
into consideration in control system design. In this chapter, a method for designing a robust 
observer for linear lime-delay systems is proposed. Under the assumption that the conside­
red time-delay system is spectrally controllable and spectrally observable, a double BCZOUl 
faclOrization of ils nominal transfer matrix is obtained. Nc)';\, based on this factorization, all 
stable observers for the nominal system are parameterized, By applying those observers on the 
real system, the parameterization transfer matrix has to be found such that the error between 
the real estimation and the nominal one is minimized. This problem is rewritten as an infinite 
dimensional model matching problem for different types of uneenainty. In order to solve this 
infinite dimensional model matching problem, it is transformed into a finite dimensional one, 
and therefore a suboptimal solution can be obtained using existing algorithms. 

1 Introduction 

Time-delay systems appear naturally in many engineering appl ications and, in fac t, 
in any situation in which transmission de lays cannot be ignored. The control of such 
systems using state feedback has been thoroughly studied (see [2. 13,39] and the 
references therein). One of the major difficulties in implementing such control laws is 
that all the state variables o f the system (at leaSI some state variables) are required for 
the controller synthesis. However, in most practical situations, this condit ion is rarely 
satisfied and an observer has to be built up in order to estimate the state variables 
from the measured output and the controlled input. 

Many observer schemes have been proposed in the literature under the assump­
tion that there are no mode l uncertainties [7, 10, 16,201. However in practice, model 
uncertainties have to be taken into consideration when designing observers. These 
uncertainties have been considered in the literature as additive disturbances [3,4,2 1] 
or as an un known input [5]. 
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In thi s chapter, unstructured uncertainties (addit ive uncertainty and in put multi ­
plicative uncertainty) are considered when designing observers. A set of all stable 
observers for the nominal system is firstly parameterized based on a double Bezout 
factorization o f its transfer matrix . Then, the problem of finding the parameteriza­
tion transfer matrix such that the resulting observer sat isfi es a specified robustness 
property is wrillen as an infinite d imensional model matching problem. A subopti ­
mal solution of this infinite dimensional problem has been proposed by the authors 
in [6, 17J in terms o f multiple finite dimensional model matching problems. l'lowe­
ver the solution of those multiple finit e dimensional model matching probl ems is not 
easy to obtain . Therefore, another solutio n is proposed in this chapter by transfor­
ming the infinite dimensional model matching problem into only one modified finit e 
d imensional model matching problem. Then by applying an ex isting optim izatio n 
algorithm on the modified fin ite d imensional problem a solution can be obtained. 

The chapter is organi zed as follows. Section 2 gives some basic definiti ons 
concerning time-delay systems. Section 3 shows how to get a double Bezout fac­
torization of a given delayed transfer matrix and based on this factorizatio n how to 
parameteri ze the set o f all stable observers_ Section 4 describes how to fi nd the pa­
rameterization transfer matrix for different types of system uncertainties. Section 5 
provides a suboptimal solution o f the infinite dimensional problem descri bed in the 
previo us sectio n. Illustrative examples are given in Section 6 and some concluding 
remarks are given in Secti on 7. 
Throughout this chapter the following notations will be used: 

e[z] 
F 
M (o) 
I" 
Oiy 
X 

II·II~ 

C[a,b] 

is the field o f real numbers 
is the set o f integer numbers 
= {aE IF': 0 < a < + oo},F denoteslR:or N 
is the ring of pol ynomials in • with coeffi cients in IR 
denotes the Laplace variable, z = e- sh and h E IR+ fi xed 

={l=~~oadz)s" : a,,(z) E IR/z],m E N+} 
is the fi eld of rat ional functions in s and z with coeffici ents in IR 

= {*,z) = 'ij;j1 E R(s , z) , &(8, Z) E R[zJlsJ . a(,) E R[,], 
deg.(a(s)) > deg.(b(s,z) and p(s,z) isenlire} 

is the ring o f polynomials in z with coeffi cients in e 
= {p(s, z) = bH~j) E 8[z ] : a(s) is monic and stable} 

denotes a transfer matrix of appropriate dimension with entries in • 
denotes the (n x n) identity matrix 
denotes the (i x j) zero matrix 
denotes the transpose of a matrix X 
is the Hoc -nonn de fined by: II X (s)lI oc = CTm<l:t'(X(jw»; 

O"m<l:t'(X) denotes the maximum singular value of X , 
j is the imaginary number, w denotes the frequency 

is the set of continuous functions {a, b] ---jo IR'" 

The e lements of 8 can be viewed as transfer matrices o f distributed time de lays while 
the elements o f 8[z] can be viewed as transfer matrices of finite interconnections of 
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point and distributed time delays [9J. 
III order LO simplify the 1I0ta/ioll. X will denote either X(s , z) or X(s) when there is 
110 confllsion. 

2 Preliminaries 

In this scction, some basic definitions concerning time-delay systems are recalled . 
Consider the following model of a time-delay system 

where 

{ 

i(t) ~ A(7)x(t) + B(7)", (t ) 
y,(t) ~ C(7)x(t) 

x(t) ~ oft); t E [- mh,O] 
(I) 

• x(t) E IR", uo(t) E IRr and yo(t) E IRP are the state, the control input and the 
measu red output vcctors respectively. 
• A(7) E 111[7["'", B(7) E 111[7]"", C(7) E 111[7]'''' "d .(t) E C[ - mh,O[ 
is thc functional in itial condition of (1). 
• \7 is thcdelay operator {(\7x){t) == x(t - h), (\7 2x)(t) = x(t - 2h) , ... ), It E lR+ 
is the fixed known delay duration and TIl is a positive intcger such that mil represcnts 
the maximal delay in the system. 

Definition 1. /9J Consider the time-deftlY system ( I). Let z be a complex variable, 
the pair (A(z) , B(z» is 

i) JRtz] -conrrol/able ifand only ifrank[sl" - A(z), B(z)] == n '1 (s , z) E 1(:2. 
ii)spectrallycontrollableiftllldolllYifrank[sln-A(e- Sh) , B(e- Sh)] = n V sEC. 
iii) lR(z )-comroJJable if alld ollly if rank[sl n - A(z), B( z») = n for all bur finitely 
many pairs (s , z) E r!J. 
The pair (C(z), A(z» is (i) lR[z ]-obsef1lable (resp. (ii) spectraily obsen'able or (iii) 
lR(z)-obsef1lable) if alld ollly if the pair (AT(z),CT(z» is (i) iR[z]-cofltrollable 
(resp. (ii) spectrally controllable or (iii) lR(z )-colllrollable). 

Moreo ver, the realization ( I J is 

i) callollical if alld only if Ihe pair (A(z), B(z» is IR!z)-colllrollab/e and the pair 
(C(z), A(z)) is lR(z)-observable. 
iiJ co-canonical if and only if the pair (A (z), B(z» is IR( z )-controllable alld the pair 
(C(z), A(z» is IR{z)-obsen>able. 
iii) spectrally canonical if and only if the pair (A( z), B(z)) is spectraJJy controllable 
alld the pair (C(z), A(z» is spectrally observable. 0 

It should be noted thai if the pair (A(z), B(z» is IR[z]-controllable thcn thcre 
exists a polynomial matrix K(z) E M{lR!z]) (i.e. K(z) is rile Lapl.1ce transfor­
mation of point time delays) such that det[sl" - A(z) - B(z)I«z)] = O'ds) 
where O't(s) E IR[s] is a stable polynomial. In return, if the pair (A(z) , B(z)) 
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is spectrally controllable then there exists a matrix K (s,z) E M (B [z]) (i.e. 
K (s, z) is the Lap/ace trans formation of point and distributed time delays) such that 
det[s/" - A(z) - B(z) K (s,z)] = 02(S) where 02(S) E !fl{s] is a stable polynomial. 

Remark I . When system (I ) is spectrally canonical then there exist feedback ma­
trices Fj(s,z), Fz(s,z) E M (B[z]) and an observer gai n matrix K (s,z) E 
M (B [z]) such that 

det [S I" - A (z) -B(z) ]_ 0(') 
-F1(s,z) I ,. - Fz(s,z) -

detls I" - A(z) - ]« " z)C(z)] ~ fir,) 

where o(s), (3(s) E lR[s] and are stable polynomials. 

The transfer matrix of system ( I) is given by [ 18] 

G("z) ~ C(z)(' I" - A(zW' B(z) 

Note that G(s,z) is a (p x r) matrix with i,j entry Gij(s,z) 
bij(s,z}, Qij (S,Z) E IR.(z][s ], Qij(S, z) is monic and 

deg, (uij(s,z)) 2: deg,(bij(s,z)). 

(2) 

o 

(3) 

~; .(, ,: 
B;j ',% where 

It has been shown in L9J that any transfer matrix G(s,z) as defi ned above has a 
canonical realization and a co-canonical realization. In the seqllel it is assumed that 
the co-canonical realization (I) of G( 8, z) is spectrally controllable which will be 
IlOteti as spectrally co-canonical realization. Note that this assumption is not res­
trictive as G(s, z) has a spectrally canonical real ization if and only if the canonical 
real ization of G(s, z) is spectrally observable which is equivalent to requiring that 
the co-canonical realization of G(s, z) be spectrally controllable (see [9J fordetai ls). 

3 Parametrization of All Stable Observers 

In this section, the set of all stable observers for system (I) are parameterized based 
on a polynomi al factorization of its transfer matrix (3). 

The following lemma prov ides us a polynomial factorization of the transfer ma­
trix (3) associated with a spectrally co-canonical realization (I ), 

Lemma 1. f 14J Consider the lransfer matrix (3) associated wi/h a spectrally co­
cal/ol/ ica/ realization ( J). The transfer matrix (3) can be factorized as fo{fows 

G(s,z) = N(s,z) M - 1(s,z) = M- 1(s,z)N(s,z) (4) 

where N, Af, M, N satisfy the following double Bezour equation 

[ Y X] [M -X] _ [1, 0", ] 
-N M N Y - Opu / p 

(5) 
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The eight matrices in (5) belong 10 M{F) and they can be obtained using the/allo­
wing equations 

where 

- - -I 
M = l p + Ce{sle - Ao) J(e 

N = Ce{sIe - 110)-1 Be 
Y =: Ip - Ce{S[e - Ao) - I [(e 

X = Fe(sle - A,,)- IJ(e 

(6) 

and F1(s,z), F2 {s,z) E M(G[z]), J«z) E M(IR[z]) are chosen stich that (2) is 
satisfied/or some stable polynomials a(s), (3 (s) E lR(s]- 0 

Now, let r(t) :::: E(\7)x(t) E IR/;x I be the vector to be estimated. An asymptotic 
observer of r(t) is defined as a dynamic system of the following form 

(7) 

where U(s , z) , V(s,z) E M(G[z]), such that for all control input limt->oo (r(t) ­
f(t)) :::: 0 is satisfied_ 

A parameterization of all stable observers (7) based on the factorization (4) and 
(5) is given in the following lemma. 

Lemma 2. 121 J Consider systems (I) and(7J. The set 0/ M(G[z])-matrices U(s, z), 
V (s, z) sllch that system (7) is an observer 0/ r( s) :::: E(z )x(s) is given by 

{ 
U(s , z) = P(',z)Y(',z) - Q(',z)N("z) 
V(" z) = P("z)X(" z) + Q(s,z)M(s,z) 

where P(s , z) E M(8[z]) is given by 

P(s, z) = Ee(z)(s l e - Ao(S,Z)) - 1 B e(z) 

E,(z) = [E(z) O",J 

(8) 

(9) 

Y, N, X, M are given by the double Bb.otll/actorization (6) alld Q(s, z) is any ma­
trix belonging 10 M(8[z])_ 0 

It should be noted that Q(s, z) can be properly chosen in order to achieve cenain 
performance speci fications as it will be shown in the next sections_ 
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4 Model Matching Problem for Different Types of Uncerta inties 

Let us consider G(s,z) as a real time·delay system and its correspond ing model is 
given by (3). Let (7H8) be the set of all stable observers for the nominal model 
(3) associated with a spectrally co·canonical reali zation (I). Applying the set of ob· 
servers (7H 8) on the real system, the parameteri zed transfer matrix Q(s,z) has to 
be found such that the difference between the real estimation and the nominal one 
is minimi zed as shown in Fig. I . This problem is formulated in the follow ing pro­
position as an infi ni te d imensional model matching problem for di fferent types of 
uncertainties. 

u(s) 
G(s,z) 

y(,) 

U(s,z) \I {,~,z) 

e(s) 

U(s , z) \I (s,z) 

tlo(S) 
G(s,z) 

Yo(s) 

Fig. I. Error due to system uncenainty. 

Proposition 1. Given a real time·delay system G(s, z} with a nominal model G(s, z) 
associated with a spectrally co·canonical realization ( J). Let (7)-(8) be the set 0/ all 
stable observers/or nominal model. An observer ojG(s, z) is given by (7)-(8) where 
Q(s, z) is the solution ojthe/ollowing model matching problem 

min IIT,(s,')-Q(s, ,)T,(s,')II= 
QEM(F } 

( 10) 

where T1(s,z) and Tz(s,z) E M ([8[z]) are defined according to the considered 
model uncertainty. 

--I -
Proof Let G(s,z) = N(s,z)M- 1(s,z) = M (s,z)N(s,z) be the nominal 

model with a spectrally co-canonical state-space reali zation ( I). Let (7)-(8) be a set 
of all stable observers of realization (I). Let lV (s) be a fixed stable trans fer matrix 
and L1(8,Z) be variable stable transfer matrix with 11 L1 (s,z)lloo S 1. 

Appl ying (7)-(8) on the real system, the real estimation f(8) can be calculated for 
different model uncertainties as follows (see Fig. I and Fig. 2): 
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.-------------------- , , , 

, 
,,(I ) : : 11 (1) 

<;( .• • z ) + 

(a) Additivc uncenaimy 

.------ --- --- --- ----- , , , 

! d~~ 
, , 

-'~'(~')~:,JI----i,i)-[~~: yet) G(.,z) 

: G( .• , z) 

(bJ Multiplicative input uncenainty 

Fig. 2. Different types ofuncenaimy. 

I. Additive uncertainty: 
In this case G = G + W d and y(s) = Yo(s) + W Lluo(s). The real estimation is 
given by 

which implies that 

e(,) ~ f(s) - fo(s) ~ VW Lluo(s) ~ (PXW + QMW)Lluo(s) 

Now, as Wand Ll are stable, then e(s) is stable. Moreover, as tlo(s) is bounded then 
e( s) is bounded. From the above equation, we can write 

As IILl(s,z)lIoo :=; 1, then in order to minimize the e!Tects of uncertainty on the real 
estimation, the optimization problem minollT\ - QT2 11 coo has to be solved for 

{
T, (s,z) ~ P(s,z)X(s,z)W(s) 
T,(s,z) ~ -M(s,z)W (s) 

2. Multiplicative input uncertainty: 
Following the same steps applied on the case of additive uncertainty, we get 

e(s) ~ -UW Llu(s) ~ -(PYW - QNW)Llu(s) 

( II ) 

Now, as Wand Ll are stable, then e(s) is stable. Moreover, as u(s) is bounded, then 
e( s) is bounded. In order 10 minimize the effects of uncertainty on the real estimation, 
the optimization problem minQIITt - QT2 11 00 has to be solved for 

(l2) 
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From the above cases one can conclude that in order to minimize the effect of the 
model uncertainty on the estimated states one has to solve the model matching pro­
blem (10) for TI (s, z) and T2(s , z) are g iven by (II ) or (1 2) according to the model 
uncertainty type. 0 

Remark 2. The result of Proposition I can be interpreted as follows: the estimation 
f(s) depends on the input and output infonnation signals. When there arc uncer­
tainties in those infonnation in some frequency intervals, this dependence has to be 
wasted away in these intervals by a proper choice of transfer matrix Q(8, z). 0 

A suboptimal solution to (10) can be obtained by finding a transfer matrix Q(s, z) 
E M(F) solution to 

IIT,("z) - Q(s,z)T,(s ,z)lIoo s, (13) 

for some positive scalar f. A solution for this optimi zation problem is given in the 
next section. 

5 Suboptimal Solution 

In this section, the infinite dimensional optim ization problem (13) is transfonned 
into a finite dimensional one. 

Proposilion2. Given two transfer matrices Td8,Z), Tz(s,z) E M(F). Suppose 
that de9z(T] (s,z» 2: deg.(T2(s ,z». then there exists a matrix Q{s,z) E M(F) 
with de9.(Q(S, z» = de9z(Tds, z» - de9.(Tz(s, z» sllch that !IT](s, z) -Q(s, z) 
T2(s,z)!loo ::::; "( where"( is some positive scalar. 

Proof The proof provides a method to construct Q(s, z) E M(F) solution to 
(1 3). First, note that 

l' T T IIT, (s,z) - Q(s,z)T,(s,z)lIoo ~ liT, (s,z) - T, (s,z)Q ("z)lIoo ( 14) 

Note also that any matrix T(s, z) belonging to M(F) can be wri tten as T(s, z) = 
L:~o Ti(s)Zi where Ti(S) are proper stable rational transfer matrices and m E N+. 
Suppose that 

"'1 m, 

Tr(s,z) = L Tli(s)zi and Ti(s,z) = LT2j(s)zj ( 15) 
;=0 j=O 

where TI;(s) and T2j (s) arc proper stable transfer matrices and m ], mz E N+ . Since 
degz(T, (s, z» 2: de9z(Tz(s, z». then m] 2: m2. 

Let the parameterized matrix Q1' (s, z) be of the fonn 

(ml -"" ) 

QT(S , z),~ ~ Q,(s)z' (16) 

k= O 
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Then, using (14), ( 15) and ( 16), the optimization problem ( 13) can be rewritten as 
fo llows 

where 

T U,(' ) 
T, ,( , ) 

T,(.) - • 'fi(.} -

T, ... , (.) 

" • 
T~,(.) TW( ' ) 

" 

Now, using an algorithm from [8J or [I J, a solution Q(s) to the finite dimensional 
optimization problem (1 7) can be found, wh ich is a solution to the original infinite 
dimensional optimization problem ( 13). 0 

Remark 3. The problem is solved here as an optimi zation problem of the Hoo -nonn 
of some transfer matrix . The analysis of the structure at infin ity of T,( s,z) and 
T2 (s,z) may allow to know whether there exists an exact solution for the model 
matching problem (13) or not (see [11, 151 for more details). 0 

6 Illustrative Examples 

In this section the proposed method is applied on two examples. In the first one, the 
system has de lay on its input but the value of this de lay is uncertain. In the second 
one, the system has internal delay and the system parameters are uncertain. 

6_1 Example 1 

Consider the following transfer function [ 11 

kz 
G(s,z) ~--

I +TS 
(18) 

The parameters of the syste m are k = 2.5, T = 2.5 and the delay is presumed to be 
in the interval [2,3J, i.e. 2 ::; h ::; 3 (note that z = e- Sh

). The nominal value of the 
delay is h = 2.5, thus the nom inal transfer function is 

z 
Go( s,z) ~ - 04 ,+ . ( 19) 
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A spectrally co-canonical state space rcpresentation of ( 19) is given by 

{ 
x(') = -O.4x(') + 'Vu(t) 
y(') = x(') 

(20) 

A double Bezout factorization for the transfer matrix (19) associated with the 
state space representation (20) 'can be obtained using (4) and (6) as fo llows 

Based on thi s factorization, the set o f all stable observers for r( t) = x( l ) is given by 
(7) and (8) wi th 

z 
P(s) = s+ 1.4 

and Q(s, z) is any matrix belonging to .M(8[z]). 
Now, the changes in the delay II has to be specified in frequency domain by a 

we ighting matrix lV (s) representing the uncertainties on the nominal transfer matrix 
(19). In this example, we have modelled these parameter variations as an addi tive un­
certainty. Therefore, a transfer function lV(s) has to be found such that the following 
inequality is satisfied 

(2 1) 

By plotting the left hand side of the above inequality, we can choose the following 
weighting function (see Fig. 3) 

lV(s) = 0.I S2 + 2.8s + 0.15 
S2 + s + 0.3 

(22) 

Now the model matching problem (13) has to be solved for TI (8, z) and T2(s, z) 
given by (12). For this example they equal to 

The model matching problem (1 3) can be rewrillen in the ronn (17) with 

[ 
0 1 0. 1,,-' ,2+28.+1.5 

(,+ 1.4 ($ +.+0.3 

[ 

_ 0.1,2+2 .8 , + 0.15 $+0 .4 
,+1.4 , +,+0.3 

o 

Q(') = [Qo(') Q,(')( 
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Fig. 3. Left hand side of(21) and the corresponding weighting function W( s). 
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Fig. 4. Estimated error for for differcm values of h. 

Applying the algori thm of Francis [8} on (17), we found that QO(8) == 0 and 
Q, (s) ::: - 0.3679/(82 + 1.8s + 0.56) with 'Y = 0, i.e. the robust observer is an exact 
observer. The robust observer of r(t) = x (t ) is given by (7) with 

, 
U("z) ~ --0-' 

s + .4 
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Fig. 4 shows the estimated error for different values of h. From this fi gure, we 
can state that estimated error converges to zero for all admissible values of h but the 
convergence rate is different for each value. 

6.2 Example 2 

In this example, a wind tunnel system is considered which has the following state 
space model (1 2] 

with 

{ 
xl') ~ A(v)x(') + 8(v)"(,) 
y(') ~ C(v )x(') 

[
- akaV 0] [0] 

A(v) ~ 0 0 1 , 8(v) ~ 0 ,C(v) ~ [ 1 00] 
o _ w2 - 2(w w2 

(23) 

where a = ~ and T, k, (, ware parameters depending on the operating point and 
thcy lie in the following intervals O. 739 ~ T ~ 2.58, - 0.0144 ~ k ~ - 0.0029. 
Theirnominal values are T = 1.964, k = - 0.0117. Other parameters arc presumed 
constant ( = 0.8, w = 6. The components of the state vector x(t) are the change in 
Mach number, the guide vane angle and the guide vane angle velocity respectively. 

Apply ing the test conditions of Definition I on system (23), we can find that 
system (23) is spectrally canonical , i.e., it is spectrally controllable and spectrally 
observable. 

A state feedback control law is calculated in [12]. Based on th is control law, an 
observer-based state feedback for system (23) can be obtained as fo llows (note that 
a constant gain for the observer is sufficient here) 

{ 
u(t) = Fl(V')X(t) + F2 J~h e"/lx(t + O)dO 
i(,) ~ A(v)i(') + 8 (v)"(, ) + J( (y(') _ C(V)X(')) (24) 

where 

F.(v) ~ [661.5612 1.2399 + 0.0432v 0.1003] x 10- ' 

F, ~ [0 - 4.6881 0.0510] x 10-' 

J( ~ [0.5 0 0]' 

The transfer matrix of system (23) is given by 

kaw2z 
G ( " ,) ~ 7:c-:-:C""'::=;:;;7c-:-C--"; (s + a)(s2 + 2(ws + w2) 

(25) 

Based on the above infonnalion, a double Bczout factorization for the transfer 
matrix (25) for nominal values of its parameters associated with the state space re­
presentation (23) can be obtained using (4) and (6) as follows 
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AI - 3J ± IO _ l h~±408h+ 18 _ 33 Al _ 8+0 .5092 
- 83+ 10.1132 + 40.848+ 18.48 - ,+0.009165 

N - 0.2145 ,. N _ 0.214 [> ,. 
- 83+ 10_11.2+ 40.848+ 18.48 '" - 83+ 9.60982 + 36.098+0.3299" 

Y _ $3+10_1132 + 40 _846+ 18-48 Y _ 3+0.009]65 
- 83+ 10.11&2 +,10.896+ 18.33 - s+0.5092 

+ 3 .1 68t 00682 0.0015828+0.07092 Z + 3. \RSe 0068' 0.0015828+007092 
. '+10.12,3+40.98,2+18.78+0.168 ,' t 10.6\ 83+45.99.2+ 39.27, +9-407 Z 

X = X - O.330Ss2t 3.1758± 11.91 
- 83+ 10.11 8 + 40.8,h+ 18,48 

The sci of all stable observers for r( t) = [0 1 O]x{ t) is given by (7) and (8) with 

P(s) _ 368 + 18 .33 
- 83 + 10.11 82 +40.848+ 18.48 

and Q(s,z) is any matrix belongi ng to M(8[z]). 
The matrix Q(s, z) has to be found such that the effects or the T and k parameter 

changes on the estimation are minimized. To this end, changes in the parameters T 

and k have to be specified in frequency domain by a weighting matrix W (s) repre­
senting the uncertainties on the lIomilial transfer matrix (25). In this example, we 
have mode lled these parameter variations as direct input multipl icative uncertainty. 
Therefore, a transfer function W(s) has to be found such that lhe followi ng inequa­
lity is satisfied 

(26) 

"'l'J-j2."·'I'I .. , .o1 

'- -
Fig. S. Left hand side o f (26) and the corresponding weighting function 11' (s). } 
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By plotting Ihe left hand side of the above inequality, we can choose the following 
weighting function (see Fig. 5) 

W(s) = 2.5s + 1 
s + 1.5 

(27) 

Now the model matching problem (13) has to be solved for TI (s, z) and T2(S, z) 
given by ( 12). For th is example, they eq ual to 

Tds,z) = &3+ 11.~~~t~g.4&+54 
0.000285183 O.1 4258~+6.32h+2.553 + .T +21.21 ,6+203.6.5+ 1031&4+2819,3+31(;2,2+ 1026,+9. 144 Z 

Tz(s,z) = s4 +11. 11s3~~1~~:2!5~~!~8+0.49.19Z 

The model matching problem ( 13) can be rewritten in the fonn (17) with 

T1(s) = 

Q(s) ~ Qo(s) 

••• , 
! • 

-" 

••• , 
! • 

_ ....... "". 

Fig. 6. Estimated error for for different values of 'T and k . 
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Applying the algorithm of Francis [8] on (17), we found that Qo(s) = 0 with 
'/ = 1.26 which means that the nominal (central) observer is robusl. This observer is 
given by (7) with 

U 
36 -0.0001141 82 

- 0.056938 + 2.553 
= + z 

82 + 9.68 + 36 86 + 19.7185 + 17484 + 775.983 + 165582 + 680.28 + 6.096 

V = 11.918 + 6.063 
84 + 10.1183 + 40.9382 + 18.858 + 0.1693 

Fig. 6 shows the estimated error for different values of T and k. From those 
fi gures we can state that estimated error converges to zero for all adm issi ble values 
of T and k but the convergence rate is different for each value. 

7 Concluding Remarks 

A robust observer has been designed for time-delay systems. The time-delay system 
is assumed to be spectrally controllable and spectrally observable and Ihe uncertain­
ties arc assumed to be defined by a weighting matrix in the frequency domain . The 
design method is based on a polynomial fac torization of the nominal transfer matrix 
and on the parameteri zation of the set of all stable observers. The parameterizalion 
tem is then found as a so lution of an optimization problem depending on the un­
certainty type. The assigned eigenvalues by the observer- based stale feedback in Ihe 
factorization stage innuence the solution of the final optimization problem. This re­
lationship between the closed- loop eigenvalues and the optimization problem will be 
considered in the future work. 
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Summary. We consider the numerical solution of nonstiff de lay differential equations by 
means of a variable stcpsize continuous Runge. Kulla method, the adl"G/rcilrg me/hod, of di s­
crete order p and uniform order q S p. As in the well-known case of ordinary di fferential 
equat ions, the slcpsizc contro l mechanism is based on the usc of a second method, the error­
estimating method, of order pi f:- p, used to adap{ the current slepsizc in order that the local 
error fits a user-supplied tolerance TOL. We detect the minimal uniform order q needed for 
the correct performance of both the advancing and the error-estimating methods. Arter sta­
ting the relationships among global and local errors, we also discuss the effectiveness of the 
stepsize control mechanism in connection !O the possible use of an additional continuous error­
esti mating method, which is used to monitor the unifonn local error. A complete and detailed 
description of both the advancing method of unifonn order 4 and the discrete error-estimating 
method of order 5 is given so as to enable the interested reader to implement his own code. 
A unifonn error-estimating mechanism is also given which is recommendable for the reliabi ­
lity of the overall procedure. Finally. numerical experiments with a constructed equation are 
carried out aimed to test and check the results provided by the theory. 

1 Introduction 

We consider the numerical solution of nonstiff de lay differential eq uations (DOEs) 
of the fonn 

{ 
Y'(t) = ! (t , y(t) , y(t - T(t , y(t ))) ) , to S t S t /' 
y(t) = ¢(t) , t s to, 

by means o f variable stepsize continuous Runge- Kutta (RK) methods of discrete 
(nodal) order p and unifonn order q :::; p. Our aim is to ensure, as far as possible, 
the proportionality o f the maximum global error to a given tolerance TOL and to 
minimize the computational cost. 

It is well known that, for ordinary differential equations (ODEs), the stcpsize 
control mechanism for a (discrete) ad)IQncillg method o f order p is mostly based on 
the use of a second method, the error-estimalillg method, used to adapt the current 

S. -I. Niculescu et al. (eds.), Advances in Time-Delay Systems
© Springer-Verlag Berlin Heidelberg 2004
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stepsize in order that the local error fits the IOlerance TaL. The error-estimating 
method has order p', usual ly p + 1 or p ~ 1. When p' = p + 1 the tenn TaLis used 
as a tolerance per IlIIit step whereas, for p' = p - 1, it is used as a tolerance per 
srep. However, in both cases the global error turns out to be proportional to TaL, 
even though in the second case the proportionality can fai l in presence of fort uitous 
and unpred ictable superconvergence of the error-estimating method. Some imbedded 
pairs o f advancing and error-estimating methods o f order p and p + 1 respectively 
has been proposed by Fehlberg for ]J = 2, p = 4 and p = 7 and arc known as 
Runge- Kutta- Fehlberg pairs RK F2(3), RK F4(5) and RK F7(8). The alternative 
approach with p' = p - l has been considered much later by Donnand and Pri nce (21 
who provided, forp = 5 and p' = 4the pair DoPri5(4). For a comprehensive analysis 
of this topic and presentation o f more general imbedded pairs, we refer the interested 
reader to the book by Hairer, N~rsett and Wanner [4]. 

Since the step-by-step numerical integration of DOEs is based on the use of conti­
nuous approx imations with possibly different orders o f d iscrete and continuous local 
errors, the ex tension of the error control mechanism is nol straighforward, and its 
mathematical justification is far from being obvious. 

For DOEs, the local problem 10 be solved by the advancing method is 

{ 
w"+. (t) = fit , w"+. (t), x(t - T(t, w"+. (t)))), 
Wn+l(tn) = Yn , 

( I ) 

{ 

4>(s) for s:S to , 
X(8) = 11(8) for to:S 8 :S tn , (known) 

wn+t(s) for tn:S8 :S tn+l ' (to be computed) 

where, for 8 < t", the delayed approx imate solution 11(8) has uni fonn global order 
p, that is 

(2) 

where It = maxn hn+ I. 
The conti nuo us RK method for ( I) takes the fonn 

• 
1](tn + 8hn+d = Yn + h"+1 L bi(8)J(~+I' O:S 8:S 1, (3) 

i=l 

where the system 

f(~+l = f (t~'+I' Y~+l> X(t~+1 - T(t~ + l> Y'!+I)) ) , 
• 

Y,:+I = y" + hn+1 L aij](~+ l' 
j == 1 

i = 1, .. . , s, (4) 

has 10 be solved for the stage values K~+l (and, hence, for the Y~+l 's, that arc called 
stage values 100). Here t~+1 = t"+ 1 + Cihn+l and the Ci arc the abscissae of the RK 
method . 
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In particular, for () = I we get the nodal value 

• 
Yn+1 = '1{tn+l) = y" + 11,,+1 L b; f(~+I' 

;=1 

If overlapping occurs, i.c. if, for some index i, the argument t~+ l -T(t~+ I ' Y~+ l) 
of x(s) lies in the current interval [t", tn+tl. then the spurious stage value Y~+l 
x(l~+! - T(t~+l' Y~+l)) arises which is given by the formula (3) itsclffor 

T(t~+)' Y~+I) 
- c'-- , hn+

1
' 

that is • 
Y~+l = y" + h"+1 L bj{():,+ !)K~+ I' (5) 

i=1 

It is worth remarking that. in the case of overlapping, the overall RK method 
becomes implicit even if the underlying RK method is explicit, that is the coefficient 
matrix (o;j) is strictly lower triangular. Remark also that overlapping may occur in 
eq uations with state-dependent delay, where the val ue of the delay T is impredictable, 
as well as in equations with constant delay for large val ues of the stepsize. 

II is known that, as long as the solution is smooth, in order for the advancing 
ODE method to perfonn to thc discrete and unifonn global order p it is sufficient 
(and nccessary) to usc a discrctc RK method of order p (local error O(hp+ I ) and a 
continuous extension of order q (unifonn local error O(hq+ 1) with q = P - 1 only. 
Remark that, in this case, the local and global unifonn errors in the DDE method are 
both O( hP ) . In other words, the crror of thc continuous extension docs not propagate 
as t incrcases. 

On the other hand, if the initial function I/>{t) and the solution y(t) do not link 
smooth ly (or even continuously) at to. a number of discontinuity points (called brea­
killg poims) propagate along the integration interval, where the solution is not regular 
enough and the desired order of the error is no longer guaranteed by the numerical 
method. In this case the required conditions are recovered by simply including the 
breaking points as mesh points in order to proceed across steps where the solution is 
piecewise as smooth as necessary. Whereas locati ng the breaking points is trivial for 
constant and timc·dcpendent delays, it is not an easy task for state-dependent delays 
where their location depends on the solution itself. For an insight on possible stra­
tegies for going around these difficulties see Bellen and Zennaro [I, Chapter 4]. In 
particular, the recent code RADAR5 developed by Guglielmi and Hairer [3], gives 
up locating the breaking points and try to control the local error by simply suitably 
reducing the stepsize in thcir prox imity. 

However, the choice of the unifonn order q in the advancing method has an im­
pact on the accuracy of the error-estimating method. More precisely : 

• If the (discrete) error-estimating method has order pi = P + 1 (local error 
O(hP+2 ), then the unifornl order of the conti nuous advancing method should 
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be raised to q = p (local and global unifonn error O(hp+ I )). On the contrary, if 
p' = p - I, then q = p - 1 is sufficient. For a rigorous proof of this statement, 
see [ I, Chapter 7]. 

2 The Stepsize Control Mechanism 

In ordcr to state thc resul ts on the stepsize control let us consider a mesh Ll = 
{la, t\ , . .. ,tN = t I } along the integration interval [to, til and denote the max imum 
discrete and unifonn global errors by 

en = max lIy(t;) - yd[ and E" = max [[y (t) - l}(t)lI . 
IS" tStn 

Moreover, let 

be the discrete local error per unit step and the uniform local error of the (local) 
problem (I) respectively. Finally, let us define 

e,:1=maxe" , U,:1=maxu" and E,:1 = max En. n n n 

By a su itable modification of the standard propagation error analysis taki ng into 
account the error on the approximated delayed tenn x in (I), the concl usions we 
arrive at are synthetized in the follow ing two points: 

• The following relation among global and local errors holds independently of the 
presence of overlapping: 

(6) 

Therefore 

U TI ~ TOL and En:S TOL ==> e,:1:S K'· TOL. 

So we can say that both the discrete and the unifonn local errors should be 
controlled, rather than the sole discrete local error as is done in ODE codes. 
More precisely, the given tolerance TOL should bound both the discrete local 
error per uni t step and the un ifonn local error. For the lauer, one can use a conti­
nuous error-estimating method of unifonn order q' other than q, say q' = q - l. 

• Under the option q = p in the unifonn order of the advancing method, one might 
be satisfied with controlling the discrete local error only. In fact , we have 

Therefore, as TOL decreases the contribution of E,:1 in (6) becomes smaller and 
smaller and eventually it turns out to be negligible in comparison with U.:1. 
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A rigorous proof of the above statemcnts is given in [I , Chaptcr 7] in the simpli ­
fied case of variablc non statc-dcpendent dclay. 

The case q = p - 1 leads to local errors (j.d and E.d of the same order so thaI it 
is recommendable to submit both of thcm to the test of tolcrance. 

3 A Sample Method 

In this section we illustrate the foregoing theory by means of a sample mcthod. Our 
presentation shows some degrces of frcedom, so that some parametcrs are not fi xcd 
a priori. They have \0 be chosen by the reader who wants to actually implement the 
method wc propose. 

We illustrate the strategy based on an advancing method of uniform order q = p 
endowed with a discrete error-estimating method of order p' = p + I . 

In this selling, we base our procedure on explicit RK methods of order 1) = 4, 
namely the classical four- stage RK method 

o 
! , , , 
! 0 ! , , 
1 0 0 1 

! ! ! ! 
6" 3" 3" 6" 

In order to maintain the order p = 4 ofthc di scrcte RK mcthod, whcn implemcn­
ting fonnulae(3), (4), (5), il is suffi cient to use an interpolant of orderp- i = 3 in thc 
current stcp [tn, t,,+lj. It turn s out that, as the intcrpolant of uniform ordcr 3 in the 
current step [t n' tn+ tI, it is convenient to consider the so-called nall/ral colltinuous 
extension (NCE) of degree 3, introduccd by Zcnnaro [51, dcfincd as follows: 

• 
i/{O)(tn + 8h,,+d = Yn + h,,+! L b;(8)J(~+I' 0 ::; (} ::; I , (7) 

where 

and the stage values are 

;=1 

b] (8) = (~82 - ~8 + 1)9, 

1>,(8) ~ (-j8 + 1)8', 

b3 ((}) = (-~()+ 1)(]2, 

b4 (9) = (j() - !)82, 



160 Alfredo Sellen and Marino Zennaro 

with 

otherwise; 

with 

otherwise; 
'( 3 -") K,,+l = / t,,+hn+I, Yn+hn+IKn+l, Y,,+I, 

with 

- , ( 3 ) Yn+1 = 'fI t" + hn+1 - r(t" + hn+l,y" + hn+l K n+l ) 

othcrwise. 
Once we have computed the discrete approximation Yn+ l = 1}(O}(tn+1) obtained 

from (7) for () = 1, we do not consider the interpolant il{o)(t) any more. but we 
switch to the cubic Henllile interpolant 'fI(O)(t) at the end-points tn and t n +l. which 
also makes use of the extra stage 
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where 

otherwise. 
In other words. we consider the interpolant 

where 
<I, (0) = (0 - 1)'(20 + 1), 
d,(o) = 0'(3 - 20), 
<1,(0) = 9(0 - I)' , 
d.(O) = 9'(9 - 1). 

Note that. if overlapping docs not occur in the current step. then K~+I equals 
I<~+2 ::: J(tn+l, Yn+l, 1}(tn+1 - T(t n+l , Yn+d»), which is available for free from 
the next step [tn+I ' tn+2J . 

In order to construct the contin uous approximation 1/(t) of order q = <I for the 
advancing method in the current step [tn' tn+d, we perfonn one unifonn correction 
of 1J(O)(t). Such a procedure is a particular case of a more general approach for 
raisi ng the unifonn order, based on successive uniform corrections starting from a 
lower order interpolant (see (I, Chapter 5]). 

To this aim, consider the extra abscissa 01 E (0, I), 01 f; t. and the extra stage 

where 

otherwise. 
Thus 1/( t) is defined as the fourth-degree Hennite- Birkhoff interpolant relevant, 

for the generic polynomial P(O) of degree four, to the interpolation conditions on 
P(O), P(I), P'(O), P'(I) and P'(Od. Note that 01 f; t because the interpolation 
condition on P'( t) is linearly dependent on the other four conditions. We obtain 
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where 

1}(t" +Oh,,+d = dl(O)y" +d2(0)Y"+1 +d3(9)h"+IKf'+1 

+d'I(O)h"+I K~+1 + d:;(9)h"+1 K~+l ' 

ell (9) = 2/1,I_d O - 1)2( - 392 + 2(291 - 1)9 + 29 1 - 1), 

d2(9) = 2/1,1_102 (30 2 
- 4(91 + 1)9 + GOd, 

d3(9) = 20'(2~' 1) 9(0 - 1)2((1 _ 30t)0 + 291(201 - 1»), 
d4 (9) = 2(0, 1)\20, 1)02(0-1)(2- 30t)0+Od401- 3»), 
d5 (0) = 20,(2/1, \)(0, 1)02 (0 _ 1)2 . 

In order to estimate the discrete local error by means of an error-estimating me­
thod of higher order p' = p + 1 = 5, we construct an approx imation Y,,+J by using 
a suitable quadrature form ula. More precisely, we consider the Lobatto abscissae 
7TJ = 5~t and 7T2 = 5=tt and the additional stages 

, ( -, ) 
[(,,+1 = / t,,+7T 1h,,+I,17(t,, +7T1h,,+I)'Y,,+1 , 

where 

otherwise; 

where 

if t n + 7T2h,,+1 - T(t n + 7T2hn+1 ,1/(t" + 1i2h,,+d) > t", and 

V:+ 1 = 17(t" + 1i2h"+1 - T(t n + 7T2hn+l, 1}(tn + 1i2hn+d») 

otherwise. 
Then the quadrature formula is 

- - , ( , K' , }(' , }(' , ~K ) y,,+1 - Yn + l,,+1 IT ,,+ J + IT ,,+1 + 12 ,,+1 + IT ,,+1' 

where, as we have already observed, 

-, , ( ) 
[(n+1 = [(n+2 = f t,,+I,Y,,+I,1}( tn+J -T(t,,+I, Yn+J) 

may or may not equal the already available stage K~+ I ' 
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As is usually done, we estimate the discrete local error per unit step by 

0 ,,+1 = 1111,,+1 - Y,,+III /h,,+ I. 

The current !>tep is accepted if and only if 

(8) 

where TOL is the user-supplied tolerance. 
The new stepsize hnew, to be used e ither as 11,,+2 in the next step [t ,,+I, t ,,+2] 

if (8) is satisfied or, again, as hn+ 1 in the current step [tn' t n+ tl if (8) is violated, is 
computed by using the common formula 

hnew = max { Wmi'" min {W",ax , p(~~~) 1/ 4} } . h,,+I , (9) 

where Wmin E (0 , 1), Wmax > 1 and p E (0, 1) are suitable safety factors. 
A maximum number of rejections per step may be fixed by the user as we ll . 
Since the uniform order is q = p, controlling the discrete local error is suffi­

cient for the stepsize selec(jon. Nevertheless, for more reliability, we also propose an 
addi tional optional control of the uniform local error 1:',,+ 1 by a continuous error­
estimating method of lower order q' = q - 1 = 3, by employing local extrapolation . 
More precisely, we consider the computable quantity 

( 10) 

It can be seen that 
E d ~ O(TOL) ( II ) 

is assured if we impose 
( 12) 

Note that, by (6), relation (II) is necessary to e nsure error-tolerance proportio­
nality. 

The test ( 12) is made whenever (8) holds. If (12) is not satisfied, then we reduce 
the stepsize by using the formula 

{ ( TOL )'I' ) hnew2 = max Wmin , p _ . h"+1 
hn+ l 1:'n+ 1 

( 13) 

and repeat the computations in the current step [t,.. , t,,+I ] with h"+1 = hnew2 . 
In any case, even if (8) is satisfied, the stepsize lI"ew2 suggested by ( 13) is used 

to bound the next step h,,+2, so that (9) is substituted by 

{ . { (TOL)' I' ( TOL )' I' )} h,,+2 = max Wmin , mm wmax , P -.- - ,p. ·h,,+I. 
0',,+1 hn + 11:',,+ 1 

In order to compute .tn+ l from (10), we set 
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It turns out that 

so that 

4 A Numerical Experiment 

We conclude by appl ying the method introduced in the previous section 10 the 
constructed equation 

{
yl{t) : ~y{t;+y{a{t» + 2tocOS(2~) +sin Uo) -sin (-~) , 0 :::; t :::; 1000, 

y{t) - sm(w) , - 20 :::; t:::;0, 
(14) 

with variable (non state-dependent) deviated argument a{t) = t - 1 + sin{t) cor­
responding to a delay T{t) = 1 - sin{t) which periodically vanishes at the points 
~ + 2k7r, k positive integer. The exact solution y(t) = sin (10) is smooth and hence 
no breaking points have to be included as mesh points for preserving the piecewise 
regularity of the solution and hence the accuracy of the methods. Remark that over­
lapping occurs in the proximity of every point where the delay van ishes, and possibly 
somewhere else. Being the exact solution available, the example is suitable to illus­
trate that, according to the theory, the local error estimation as well as the expected 
proportionality with the given tolerance are succesfully obtained also in presence of 
overlapping. 

For the actual implementation of the method described in Section 3, we have 
chosen 81 = ~ for the computation of J(~+ l' and Wm;" = 0.5, Wmax = 1.5, P = 0.9 
in (9) and (13). 

Since q = p, the error-tolerance proportionality is guaranteed under the sole 
discrete error control (In :::; TOL (see Table I where (I -rejections stands for the 
number of steps rejected by the test on the discrete error). In Table 2 we provide 
the results obtained by perfonning also the continuous error control En :::; TOL. 
The tenn E-rejections stands for the number of steps rejected by the test on the 
continuous error control. As expected from the theory, for sufficiently small tolerance 
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TOL, the continuous error control docs not work any more and the global error is 
esscntially detcnn ined by the d iscrete error controller. However, the estimation of 
the unifonn crror En is tak.en inlO account in the prediction of the next stepsize. 111is 
is why the resulls in the last three rows of Table I and Table 2 are not just identical. 

TOL u - rejections steps overlappings -"L 
TO' 

10 5 17 17 32.17 
10 108 200 200 25.34 
10 210 429 429 26.72 
10 208 687 430 11 .03 
10 253 121 1 523 14.50 
10 280 2 120 649 20.28 
10 265 3741 770 20. 12 

Table l. Numerical resulls for equallon (14) wlIh the sole d iscrete test of tolerance. 

TOL u - rejections E - rejections steps ovcrlappings -"L 
T Q /, 

10 2 158 276 276 1.47 
10 I 238 415 415 2.86 
10 16 238 573 462 3.61 
10 128 112 780 446 10.38 
10 209 0 1196 509 16.40 
10 235 0 2121 650 15.64 
10 253 0 3740 771 17.19 

Table 2. Numencal results for equatIOn ( 14) wIth the d iscrete and umfonn test of 
tolerance. 
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Summary. DDE-BIFfOOL is a Mallah software package for the stability and bifurcation 
analysis of parameter-dependent systems of delay differential equations. Using continuation, 
branches of steady state solutions and periodic solutions can be computed. The local stability 
of a solution is determined by computing relevant eigenvalues (steady state solutions) or Ro­
que! Multipliers (periodic solutions). Along branches of solutions, bifurcations can be detccted 
and branches of fold or Hopf bifurcation points can be computcd. We outline the capabilities 
of the package and some of the numerical methods upon which it is based. We illustrate the 
usage of the package for the analysis of two model problems and we outline applications and 
extensions towards controller synthesis problems. We explain how its stability routines can be 
used for the implementation of the continuous pole placement method, which allows to solve 
stabilization problems where multiple parameters need to be IUned simultaneously. 

1 Introduction 

Mathematical modeling with delay differential equations (DOEs) is widely used in 
various application areas o f engineering (e.g . semi-conductor lasers with delayed 
feedback) and in the life sciences (e.g. population dynamics, epidemiology, immu­
nology, physiology, neural networks), see e.g. [81. Most often, numerical methods 
are the only possible way to achieve a complete analysis, predic tion and control o f 
these models. 

DDE-8IFfOOL is a collection of Matlab routines for the numerical stabil ity and 
bifurcation analysis of systems of delay differential equations (DOEs) with mUltiple 
d iscrete delays, 

x(t) = f(x('), x(' - T,), . . . ,x(' - Tm), ,,), ( I ) 

where x(t) E lR", f: IR,,{m+l} x JRP -+ 1R" is a nonlinear smooth function , 1} E lRP 

are parameters and Tj > 0, i = 1, . .. , m, denote the delays, which can be fixed or 
state-dependent, i.e. Tj = gj(x(t)). 

It can be used to compute branches of steady state solutions and branches of 
fold and Hopf bifurcation points usi ng continuation. G iven a steady state solution, 

S. -I. Niculescu et al. (eds.), Advances in Time-Delay Systems
© Springer-Verlag Berlin Heidelberg 2004
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it approximates the rightmost, stability determining roots of the characteristic eq ua~ 
tion using time-integration of the variational equation, Periodic solutions and their 
Floquet multipliers are computed using orthogonal collocation with adaptive mesh 
selection. Branches ofpcriodic solutions can be continued starting from a prev iously 
computed Hopf point or from an initial guess of a periodic solution. The package 
does not perfonn a time integration of DOEs, but the Matlab routine dde23 [39] can 
be used in combination with DDE-BIFfOOL. 

In thi s chapter we briefly outline the numerical methods upon which DDE­
B1FfOOL is based and the structure of the package. We illustrate its capabilities 
by presenting results for two model problems and indicate how the package can be 
used to solve con troller synthesis problems. 

Detailed information on the numerical methods and the usc of DDE-BIFfOOL 
can be found in [18- 20,23,25] and the references therein. For example, DDE­
BIFfOOL has been used to analyze mathematical models arising in physiology [21], 
immunology (30] and in analyzing the stability of semi~conductor lasers with de­
layed feedback and the associated nonlinear phenomena (low frequency fluctua­
tions) (26), [37]. The package is freely available for scientific purposes. 

2 Numerical Methods 

Steady slate solutions. A steady state solution x ' E JR" of (I) is computed by 
solving the n-dimensional algebraic system 

f( X· , X·, . . . ,X· , 71) = 0 (2) 

with 7J fixed. Note that x' does not depend on the delays. The stability of a steady 
state solution is determined by the roots of the characteristic eq uation 

(3) 

h . I - I( 0' "') were, uslng = x ,x, ... ,x ,71, 

Ai~;f. 1 , i= O, ... , 7n. 
x' (" . ,,, . , ... ,,,, . ,'1) 

(4) 

The rightmost (stability detennining) characteristics roots of (3) are approx ima­
ted as follows. The solution operator of the linearization of ( I), 

m 

y(t) = Aoy(t) + L A,y(t - r;) , (5) 
i= ! 

is discretized over one time step h using a linear multistep method, combined with 
Lagrange interpolation to evaluate the delayed tenns. In this way a linear map (a 
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matri x) is constructed which approxi mates the linear solution operator. Eigenvalues 
of th is matrix, Jlh' approximate a fin ite number of the eigenvalues J' of the solution 
operator which correspond, by the exponential transform Jt = e~h, to the characte­
ristic roots A of (3). Once Ph are computed, the approx imations A" to the roots A arc 
extracted usi ng 

A steplength heuristic for It [18] is used to ensure accurate approxi mations of all the 
roots with real part greater than a given constant. The obtained approximations can 
be corrected using a Newton iteration on the characteristic matri x. 

Periodic a nd hornoclinic solutions. Periodic solutions are computed using piece­
wise polynom ial collocation [23]. Adaptive mesh selection allows the efficient com­
putation of solutions with steep grad ients. Approxi mations to the Floq uet multipliers, 
which detennine the local asymptotic stability of a periodic solution, are computed 
as eigenval ues of the d iscretised Monodromy operator obtained fro m the collocation 
equations. Homocl inic orbits are computed in a simi lar way as periodic solutions by 
imposing projection boundary cond itions on the profi le. see [38). 

Continua tion a nd bifurcations. The dependence of a steady state solution (orperio­
die solution) on a physical parameter can be studied by computing a branch of steady 
state solutions (periodic solutions) usi ng a continuation proced ure. The branch is 
computed by a combination of secant predictions and Newton corrections. The ste­
p1cngth strategy is based on a combination of extrapolations and interpolations [19J, 

The stabi lity of the steady state can change during continuation whenever cha­
racteristic roots cross the imaginary axis. Generically a fold bifurcation (or turning 
point) occurs when a real characteristic root passes through zero and a Hopf bi­
furcation occurs when a pair of complex conjugate characteristic roots crosses the 
imaginary axis. Once a fold point or Hopf point is detected it can be followed in 
a two parameter space using an appropriate detennining system (Equation (2) ex­
tended with eq uations involving an eigenvalue and eigenvector of the characteristic 
matrix). In thi s way, one can compute, for instance, the stability region of a steady 
state solution in the two parameter space. 

A branch of periodic solutions can be started from a Hopf point or fro m an ini­
tial guess (e.g. result ing from time integration). A bifurcations of periodic solutions 
occurs when Floquel multipliers move into or OUi of the unit circle. Generically this 
is a turning point when a real multiplier crosses through I, a period doubling point 
when a real multiplier crosses through - I and a torus bifurcation when a complex 
pair o f multipliers crosses the unit circle. 

Extra conditions. The package allows to add extra (algebraic) conditions and cor­
responding free parameters to a determin ing system. We mention two possible ap­
plications of such extra cond itions. 

0) Extra conditions allow to continue branches in a higher-dimensional parame­
ter space with (possibly non linear) dependence between some parameters. E.g., a 



170 Dirk Roose et al. 

branch of steady state solutions can be continued by vary ing two parameters '11. rn 
under the condition 1/12 + 1/22 = 1. 

(ii) Also spec ific properties of a given system may requi re the introduction of 
an extra (algebraic) condition to ensure a unique solution. Thi s situation occurs e.g., 
wi th phase shifts in oscillators. because periodic solutions are invariant w. r.t. time­
shifts. 

Note that these situations differ from the case of a system of differential-algcbraic 
cquations. In this case, the algebraic equations are part of the system definition and 
determine the stabi lity together with the differential equations. In our application 
extra conditions are used to select special solutions of the (given) differential system. 

3 Structure of DDE-BWrOOL 

The package is structured into four layers, each with a different functionality. 
Layer zero contains the system definition and is providcd by the user. It consists 

of a routine to evaluate the right hand side f and a routine to evaluate the derivatives 
of f required by the different determining systems and their Jacobian matrices. A 
default fil e is availablc which implements finit e difference approximations to the 
desircd derivatives. 

Layerone fonns the numerical core of the package and is (nonnally) not directly 
accessed by the user. The func tionality of this layer is hidden by and used through 
layers two and three. 

Layer two contains routines to manipulate individual points. A point has one of 
the following four types. It can be a steady state point, steady state Hopf or fold bi­
furcation point, a periodic solution point or an homoclinic orbit point. Furthennore a 
point can contain additional infonnation concerning its stability. Routines are provi­
ded to compute indiv idual points, to compute and plot their stability and to convert 
points from one type to another. The latter allows to switch e.g. from a steady state 
solution to a steady state fo ld or Hopf bifurcation or from a Hopf bifurcation to the 
emanating branch of periodic solutions. 

Layer three contains routines to manipulate branches. A branch is the combina­
tion of an array of points and three sets of method parameters. The array contains 
points of the same type ordered along the branch. Method parameters allow to guide 
the computation of individual points, Ihe continuation strategy and the computation 
of stability. Default sets of method parameters are available which can easily be chan­
ged whenever required . Routines are provided to extend a given branch (that is, to 
compute extra points using continuation), to (re)compute stabi lity along the branch 
and to visualize the branch and/or its stability. 

4 Illustrative Examples 

4.1 Model of coupled neurons 

As a first example, we use the system of delay differential equations, taken from [401, 
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XI(t) :::: Kxdt) + .8 tanh(x l (t - T,) ) + al2 tanh(X2 (t - T2)) 
X2(t) ::::: KX2(t) + .8 tanh (X2(t - T, )) + W.n tanh(XI (t - Td) · 

17 1 

(6) 

Thi s system models IwO coupled neurons with lime delayed connections. We fix the 
paramelers K :::: -0.5, .8 ::::: - 1, al2 :::: I and TI :::: T2 :::: 0.2 , T~ :::: 1.5 and vary a2 1. 

Continuation of branches of steady state and periodic solutions and their stabili ty 
analysis results in the bifurcation diagram shown in Fig. I. 

0.8 .-----~--~--~--~--~_--~-_____, 

OAK ,~ 
~ , 

o - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -I: -0- - -

-OA '~ 

-O.8~--c---:7.---;';--~;---::----:;~----;! 
O.7S 1.25 1.5 1.75 2 2.25 2.5 

Fig. J. Branches of stable (thin lines) and unstabte (- -) steady state solutions. Hopf bifurca­
tions (0) and stable (thick lines) and unstable ( ... ) branches of periodic solutions emanating 
from these Hopfbifurcations (maximum and minimum values of Xl (t ) arc shown). Homocli­
nic orbits arc denoted by (.). 

The branch of periodic solutions (thick lines) which emanales from the Hopf 
point of the zero steady state branch (Ihin lines) is initially stable, looses its stabili ty 
in a luming pa in! and approaches a double homoclinic loop (due to sy mmetry). Its 
solution profile is depicled in Fig. 4 (top). The symmetric branches of periodic so­
lutions which emanate from the nonzero steady state branches are always unstable. 
As au grows both branches approach a (nonnal) homoclinic solution (see Fig . 4 
(bottom» . 

We now give some more details on the computation of this bifurcation diagram 
using DDE-BIFrOOL. 

Siability of steady states. Equation (6) has a trivial sleady state solution for all va­
lues of the parameters. We fix a'!l :::: 2.5 and compute the rightmost roots of the 
characteri stic equation at the zero steady slate solulion. By selling a system parame­
ter, we indicate that we want to compute all roots >. with lR(>') ~ - 3.5. The results 
are shown in Fig. 2. Approximations of these roots (obtained via time integration of 
the vari ational eq uations) are corrected via Newton iteration. For practical reasons, a 
lower bound for the steplength used in the time integration is imposed. If this bound 
is reached, a warning signals that approx imated and corrected rools may diverge, 
possibly causing part of the wanted spectrum to be missed, (cf. left part o f Fig. 2). 

Periodic solutions with sleep gradients. The possibility of adaptively refined 
meshes 10 compute periodic solutions in Ihe collocation procedure is especiall y use-
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Fig. 2. Approximated (0) and corrected ( x) characteristic roots of (6) computed up to ~(>') ;?: 
-3.5. 

ful for solutions with steep gradients. This is ill ustrated by the results shown in 
Figs. 3 and 4. In this case, the periodic solution has a steep gradient si nce it is near 
a homoclinic orbit. When a coarse mesh is used, the solution is not computed accu­
rately (leading also to wrong stability results), see Fig. 3. In Fig. 4 (top) we depict 
the same periodic solution computed using a refined mesh. The effectiveness of the 
mesh adaptation is apparent. 

Continuation of homodinic solutions. A branch of homocl inic solutions in two­
parameter space can be approximated by imposing projection boundary conditions 
on the solution profil e [38]. We freed a second parameter, T" and take a period ic 
solution with a large period T = 300 as a staning point. In this way we computed 
a branch of homoclinic sol utions in the (aZI ' T, )-plane. This branch emanates from 
the Bogdanov-Takens point (aZI = 2.25, T. = 1.3) and its continuation leads to 
the homoclinic sol utions depicted in Fig. I for T , = 1.5. The corresponding solution 
profiles are shown in Fig. 4. 

4.2 Congestion control model 

The following nonlinear delay equations. taken from [28,3 1], 

{ 
loV (t ) = .!.. _ t IV(t) I~(t R) pet - R) 

q(t) ~ N~V!,') - C, p(t) ~ K q(t) 
(7) 
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Fig. 3. Nonsmooth profi le computed using a coarse mesh. 
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Fig. 4. Profiles of a double homoclinic (top) and a nonnal homoclinic (bottom) solutions. 
These solutions are approximated using an interval of length 300; T . = 1.5, a2! ;:::: 2.346. 
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describe a simplified model for the behav ior of congested routers in TCP-AQM net­
works. Under the assumption that the parameters J() C, Rand N arc all constant, a 
rescaling of state and time allows a transformation to the form 

{ 
w(l) = 1 =- w(I) ~(f- 1)kq(l _ 1) , 
qeD ~ wet) - c. 

(8) 

where I = tlR, w = IV, q = QN, k = J(Nandc = ~. lnFig. 5 (lert) we show 
a bifurcation diagram of this system, when k is the free parameter and c = 1 is fixed. 

For small k > 0 the unique steady state solution (w,q) = (c, k~2) is locally 
asymptotically stable. As k is increased, stability is lost in a subcritical Hopf bi­
furcation, where a branch of stable periodic solutions emanates. The latter become 
unstable after a period doubling bifurcation. As shown in [3 1}, the sequence of period 
doubling bifurcations ultimately leads to chaotic behavior. 

The period doubling bifurcations are detected in DDE-BIFrOOL by computing 
and monitoring the dominant Floquet Multipliers along the branch of periodic so­
lutions. Near the bifurcation one can easily jump to the period doubled branch by 
usi ng an automaticall y created periodic doubling profile on a new mesh (concatena­
tion of two times the original mesh) as start ing value in a Newton based correction 
process and an appropriate steplength condition, the latter preventing convergence to 
the original si ngle period branch. 

By the direct computation of the Hopf bifurcation and the automatic continua­
tion in the two-parameter space (k, c) the (local) stability region of the steady state 
solution is obtained, see Fig. 5 (right). 

...------..---, 

" 
, 

.. 
•. !---"",---cc----c.".----:---' 

lo' ig.5. (left) Bifurcation diagram of the system (8) with c = 1 and free parameter k. Stable 
(thin line) and unstable (--) steady state solution. Stable (thick lines) and unstable ( ... ) 
branches of periodic solutions (maximum and minimum values of w(t) are shown). Connec­
tions are formed by a Hopf Bifurcation (0) and by Period Doubling Bifurcations (0). (right) 
Stability region of the steady state solution in the (k , c)-plane, whose boundary is formed by 
a branch of Hopf bifurcations. 
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5 Applicability to Controller Synthesis Problems 

We briefl y outline the cap.abilities of DDE-BlFrDOL to solve controller sYllthesis 
problem, focusing on stabi lization. 

5.1 Systems with one parameter 

When a stabilization problem consists of tuning olle parameter the routines to com­
pute the rightmost eigenvaJues or dominant Floquet multipliers and the contin uation 
facility of DDE-B IFfOOL are readily applicable. If a stabil izing sol ution is found, 
stabi lity regions can be explored in a multi-parameter space. Here, note that in the 
continuation routines of the package constant time-delays arc treated in the same 
way as other system's parameters. 

The continuation approach is not necessari ly limited to problems with only one 
physical parameter. Often theoretical considerations allow a re(/Ilction of multiple 
parameters to one parameter, as we now ill ustrate with an example. 

Example. A chain of n integrators, 

y(n>(t ) = u(t) , n;::-: 1, (9) 

is stabilizable with a delayed output feedback controller of the fonn 

" 
u(t ) = z= k; ylt - T;), 

i= l 

see [36]. Based on a derivative feedback approximation idea, a reduction of the 2n 
controller parameters (ki ' Tj) to one parameter is possible, as expressed in the follo­
wi ng resu lt [36, Theorem 3.4): 

Theorem J. Assume thai 0 ~ Tl < < Tn alld that the polYllomial q(A) = 
An + L~l qn_ jAn- i is Hunvitz.. Theil the control law 

(10) 

achieves asymptotic stability oj(9),jor sufficiently small values oj£ > O. 

An upper bound for parameter £ guaranteeing closed loop stability can be directly 
computed with DDE-B IFfOOL. 

Analogous types of control laws, depending on one parameter, can be fou nd in 
the context of low-gain control, see e.g. [351, and singular perturbations (14). Note 
that numerical threshold computations are exact and often much beller than analyti­
cally obtained bounds, which may be conservative. 0 
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5.2 Systems "'ith multiple parameters 

The situation is differen t when one has to detennine multiple controller parameters 
at the same time. For instance. consider an open loop unstable linear control system 
of the form 

"z ,,~ 

i:(t) = 2::::: A i x(t - rz ,i) + 2::::: B; ui(l - r .. ,i), x E IR" , 1£; E IR"H, ( II ) 
;= 1 ;=1 

where all the time-delays in states and inputs are constant and a stabilizing feedbac k 
controller 

u;(t) = KT x(l) , i = 1 . .. n" , ( 12) 

is searched for. Tuning the elements of the feedback gains K ; one by one using conti­
nuation and eigenvalue computations. whi le keeping the others fixed, will generally 
not lead to a solution. Also a classical pole placement approach cannot be followed 
since the closed-loop system has infinitely many eigenvalues, while the nu mber of 
controller parameters is finite . 

In [25] we have developed a constructive numerical method for the stabil ization 
of linear time-delay systems with mu ltiple parameters, which combines an iterative 
pole-shifting algorithm with the computation the rightmost eigenvalues of the DOE. 
The main idea consists of moving the rightmost or unstable eigenvalues to the left 
half plane in a q uasi-continuous way, by apply ing small changes 10 the controller 
parameters. and meanwhile monitoring the other eigenvalues with a large real part. 
Because the method heavily relics on the contin uous dependence of the rightmost 
eigenvalues on the controller parameters, it is called cOlltillUOUS pole placement. Ap­
plied to the problem ( 11) and (12). the basic algorithm is as fol lows: 

Algorithm I The continuous pole placement method 

A. Initialize m = 1 and the gains K i . 

B. Compllte the rightmost eigenvallles of (I I) alld ( I 2). IIsing the stability roll tines 
of DDE-BIFTOOL 

C Compute the sensitil'ity of the m rightlllost eigenvalues 1V.r.t. changes in the feed­
back gains K; . 

D. MOl'e the m rightmost eigenvalues ill the directioll of the left half plane by ap­
plying a small change to the feedback gains K i , /Ising the computed sensitivities. 

£. MOll itor the rightmost uncontrolled eigenl'alues. If necessary, increase the num­
ber of cOlltrolled eigenvalues, m. Stop IVhen stability is reached or when the 
arailabJe degrees of freedom in the colltroller do IIOt allow to further reduce the 
real part of the rightmost eigenvalue. In the other case. go to step 8. 

More details on the different Sleps can be fou nd in [25), A numerical example is 
presented below. 

Example. We consider the system with distribUied delay, taken from [25], 

{ 
i:(t) = Al x(t) + Az x(t - Td + Jt-T, A3 x{s)ds + Bu{t - r2) (13) 
u(t ) ~ f(T x(t) , 
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where the system matrices are given by 

[
0.1 0 0] 
0.2 0 - 0.2 , 
0.30.1 - 0.2 

A z = [ =~:~ - O.~ O.~] 
- 0.4 - 0.1 0.2 

[ 
0.1 -0.2 0] [0.1] 

A3 = 0 0.1 0.1 , B = 0 , 7\ = 6, 
- 0.1 00.1 0 

and a feedback gain J( E I(t3 X 1 needs to be detennined. 

( 14) 

In order to apply the continuous pole placement method, we first remove the 
distributed delay by differentiating ( 13), which leads to the following closed-loop 
equation with only discrete delays: 

where z (t) = [ ~~!~]. This model transfonllatioll introduces 3 additional zero ei ­

genvalues in the spectrum, whatever the value of J(. Therefore, the zero solution 
of (15) is never asymptotically stable. However, the continuous pole placement me­
thod can cope with this problem because the zero eigenvalues can be removed after 
applying step B of Algorithm I to (15). 

To illustrate the capability of DDE-BIFTOOL to analyze delay sensitivity, we 
show in Fig. 6 the eigenvalues of the uncontrolled system ( 13) and (15) as a function 
of the delay 7\. For the nominal delay 7\ = 6, there are 3 eigenvalues in the open 
right half plane, a real eigenval ue and a pair of complex conjugate eigenvalues. 

Iterations of the continuous pole placement algorithm are shown in Fig. 7. First 
only the dominant real eigenval ue is controlled. This way control is lost over the 
other eigenvalues and at around 5 iterations an unstable pair of complex conjugate 
eigenvalues starts moving to the right in the complex plane. This is detected and af­
ter 10 iterations both the real eigenvalue and the real part of the complex conj ugate 
pair of e igenvalues are controlled. After 50 iterations another pair of eigenval ues be­
comes almost dominant and from that moment on the three degrees of freedom in the 
controller are used to shift the real eigenvalue and the real parts of the two complex 
conj ugate pairs of eigenvalues. Around 90 iterations the procedure terminates and 
an optimum is (almost) reached, characterized by 5 rightmost e igenvalues with the 
same real pan: a complex conjugate pair of eigenvalues with multiplicity 2 and a real 
eigenvalue. In Fig. 8 we depict the rightmost eigenvalues of (13) for J( = 0 and for 
the final , stabilizing value of the feedback gain. 0 

The conti nuous pole placement method emphasizes sUlbilization. Iteration steps 
can be taken until the stability exponent, the real pan of the rightmost eigenvalue, 
is minimized over the controller parameters. Therefore, the method introduces no 
conservatism, i.e. in principle a stabi lizing solution can be found ifit ex ists. However, 
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" 
Fig. 6. Real parts of the rightmost eigenvalues of the system (13) and ( 15) for J( = 0 as a 
function of the delay T) . The solid lines correspond to the eigenvalues of (13). Equation ( 15) 
has in addit ion a triple eigenvalue at zero (dashed line) . 

.• 'r---------------, 
•• 
•• 
•• , 

i< 0 ------- -- ------------------------- , . 
•• , --

Fig. 7. Real pans of the rightmost eigenvalues of (13) and (15) (left) and components of the 
feedback gains K ;= [k l k2 k3f (right) as a function of the iterations of the continuous pole 
placement algori thm. Starting from K = 0 a stabil izing feedback gain is computed . 
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Fig.8. Rightmost cigcnvalues of (13) for K = 0 (left) and fOrlhe final va lue of the feedback 
gain (Iteration 89, K = [-5.190.491 4.06f) (right). 

no attention is paid to the robuslness of the achieved stability against perturbations of 
the system's parameters. Notice that precisely the minima of the stability exponent 
may be very sensitive to perturbations, because they are usually characterized by 
rightmost e igenvalucs with a multiplici ty larger than one, as seen in e.g. [33,34] and 
confinncd by the numerica l example above. These observation arc the motivation for 
the numerical procedure described in [34J, which -staring from a stabilizing solution­
improves the robustness of stability. In that reference static perturbations arc assu­
med on the system matrices and the robustncss of stability is expresscd in terms of 
complex stability rad ii . In the numerical procedure, these stability radi i are maximi­
zed as a function of the controller parameters. This corresponds to a Hoc synthesis 
problem, which is solved by a quasi-continuous shaping of some frequency response 
plots. The structure of the algorithm is analogous to Algorithm I. 

6 Conclusions 

In this chapter we described the software package DDE-BIFfOOl for the stabi­
lity and bifurcation analysis of parameter-dependent delay differential equations. We 
described the usage of the package for the analysis of some model problems (mo­
del for coupled neurons, behavior of congested routers). We also indicated how the 
package can be used for controller synthesis problems, with the emphasis on the 
implementation of the continuous pole placement method. 
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Empirical Methods for Determining the Stability of 
Certain Linear Delay Systems 

Richard Datko 

Georgetown University, Department of Mathematics, Washington, DC 200257- 1233 

Summary. In this chapter we present two methods for examining the stability of cenain de­
lay systems. These methoos make use of well-known computing packages such as MATLAB 
and are variations on both the Lyapunov and analytic function approaches. The first method 
is 10 consider systems where the delays arc treated as parameters and the undelayed system 
is uniformly exponentially stable (u.c.s.). To find the "closest" parameters for which (he pa­
rametric family loses u.c.s. we give a necessary and sufficient condition for a corresponding 
family of quadrat ic matrices to sat isfy a Riccati matrix equation. This condition is relatively 
easy to verify and depends on the zeros of a quasi-polynomial defined on a compact Canesian 
product. In panicular if the delays are commeasureable this procedure either determines the 
smallest delays for which the system is u.e.s. or shows that it is u.e.s. for all delays. 

The second method is more general and is based on a variation of the Poisson Integral 
representat ion for H-infinity mappings. This method is more useful in de termining instability 
than stabil ity, but is easily implemented by standard numerical packages since it involves the 
computation of a parametric family of scalar functions over a fixed compact interval. 

I Introduction 

In this chapter we give two numerical procedures for determin ing the stabi lity or 
instability of certain linear dynamical processes. The first method is appl icable to a 
large class of linear autonomous delay-differential equations. It is based on a simple 
variant of the Lyapunov method used to determi ne the stabi lity or instabi lity of or­
dinary differential equations with constant coefficients and the observation that the 
n x n matrix equation 

A"X+XA= - C (I) 

(* denotes adjoint and X is unknown) has no unique solution if A has an eigenvalue 
on the imaginary axis. 

The second method is more general and encompasses a wide variety of linear 
dynamical systems. It is more effective in determin ing instability than stabili ty. It is 
based on the observations that a mapping from the complex plane into a complex 
Banach space is in R OO if and only if its Poisson Integral over the imaginary axis 

S. -I. Niculescu et al. (eds.), Advances in Time-Delay Systems
© Springer-Verlag Berlin Heidelberg 2004
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is analytic in the right half plane and the Cauchy-Riemann condition for analyticity. 
These two criteria for analyticity lead to the condition that a function F which is ana­
lytic and uniformly bounded in an open vertical strip which contain s the imaginary 
axis is in H oc if and only if the integral 

/'" e- 2i
t> F[i(x tan 0- + y)]da = 0 

-1f /2 
(2) 

for all x > O. 
A note on the computations used in this report. The numerical calculations for 

the first method (presented in Sections 2 and 3) were performed on a TI-86 calcula­
tor using Newton's Method where di fferentia tion was approximated by a difference 
scheme using the increment 1 x 10-6. The numerical calculations for the second 
method (presented in Section 4) were also performed on a TI -86 calculator using 
Simpson's Rule and the interval [-~ + .0001, ~ - .0001]. The number of divisions 
varied from 100 to 200. Any numerical values related to specific mathematical sys­
tems will be denoted by Eq. == value. 

2 Preliminaries 

Notation 

i) R+ will denote the sets o f vectors in the Euclidean space, R"', wh ich satisfy 

II = {(hi , . .. ,hm ) : 0 S hi> 1 S j S m} 

ii) K will denote the set of vectors in nm which satisfy the condition 

a:::: {(Ol, ... , a m) : 0 S OJ S 211" ,0 S j S mI· 

iii) M(n) will denote the set ofn x n matrices with complex entries. The identity 
matrix in M(n) is denoted by 1. If A E M(n), A' will denote its conjugate 
transpose, A its complex conjugate and A' its transpose. 

iv) If B E M(n) is Hennitian and positive definite, it will be denoted by B > O. If 
it is Hennitian and negative definite, it will be denoted by B < O. 

v) det A denotes the detenninant of A E M(n). 
vi) en denotes the complex n-vectors. The nonn in en is the usual lz-norm denoted 

by 1·1. The matrix nonn in M(n) is given by 

vii) Let A E M(n) . Then 

o-(A) = {ReA: >. is an eigenvalue of A}. 

viii) If A E M(n) and o-(A) lies in the open left half complex plane, then A is said 
to be Hurwitzian. This is signified by 

A E H. 
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Some Properties of M (n) 

Property 1. A E M(n) has no eigenvalues on the imaginary axis iff there is a unique 
Hennitian matrix, X, which satisfies the eq uation 

XA+A·X = ~I. 

Property 2. TIle solution of (3), if it exists, is given by the nZ -linear equation 

lA' 0 I + I 0 Ali = - i, 
where ® represents the Kronecker Product of two matrices and 

(sec, e .g., [7], Chapter 8). 

(3) 

(4) 

A more general form of (3), which will be used in the sequel is the following. 

Property 3. Let A , B, and C be in M(n). Then the solution of the matrix equation 

AXB· + BXA· = -C, (5) 

if it ex ists, is 
(6) 

where 

x= : and C = : 
(

xn ) (en ) 
Xnn em, 

(again see [71, Chapler 8). 

Property 4. Let A and B be in M(n) with det B # O. Then B - 1 A has no eigenva­
lues on the imaginary axis iff 

det[A 0 B + B x A] " O. (7) 

Proof From Property I 

has a unique solution iff B - 1 A has no eigenvalues on the imaginary ax is. But (13) 
is equivalent to 

AXB'+BXA' = -BB', (9) 

whose unique solu tion is, by Property 3, dependent on the condition that (10) be 
sati sfied. 
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Corolla ry I. Assllme B-1 E M(n}. Theil B - 1 A has an eigenvalue on the imagi­
nary axis iff 

det[A 0 B+ B 0 A] = O. ( 10) 

3 The Main Stability Results 

Let 040, AI , ... , A", and B I , . .. , B", be matrices in M(n) with real entries and 
II E R+. Consider the differential delay equation 

( II ) 

The fol lowing are standing assumptions in this sect io n, with the exception of Example 
4. 

Assumption I The matrices {B j } satisfy the condition 

m 

L ]B,] < 1 ( 12) 
j== l 

Assumption 2 \Vhen It = 0, the system (II) is I/niformly exponentially stable 
(u.e.s.) i.e., all eigenvalues of 

(I - f: B, ) -, (AO + f: .4,) 
J == l J = I 

lie in ReA < O. 

Definition I. Let (l' E K. Then 

m 

B(f7) = I L Bje- iuj (13) 
i = 1 

m 

A(f7) = Ao + L Aje- iuj . (14) 
J = l 

Property 5. If Assumptions I and 12 are satified, then either: (i) the system ( II ) is 
uniformly exponentially stable (u.e.s.) For all hER'" or (ii) there exists and hO t- 0 
in Rm such that the system 

(15) 

has a nontrivial periodic solution. 
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Proof The proof is a consequence of the observation thai, because of Assumptions 
I and 2, fo r a fixed II E R'" the family of matrices 

C(Sh,.\) =.\ (1 - t. Bj' - W', ) - Ao - t. ' (j,- m, (16) 

has the property that 

7(0, h) = sup{Re.-\: detC(oh , A) = O} (1 7) 

is continuous on [0 , (0) (sec, e .g., [I I). Thus, if for all h E R+y(o, l1) < 0, then (i) 
must be satisfied. On the other hand if for some" E Rm, h :f:. 0, and 0 > 07(0, h) = 
o then there exists w > 0 s uch that 

Hence (ii) must hold for ho = olt. 
Property 6. The system ( II ) has a nontrivial periodic solution for some It E R+ iff 
for some a E I<, a :f:. 0, the equations 

detIA (a) ® B (a) + B(a)xA(a )] = 0 

and 
det!iw( B(a) - A(a)} = 0, w > 0, 

arc satisfied. In which case 

C(h, iw) = 0 (i.e., (16», where 

h= ~. 
w 

(18) 

( 19) 

(20) 

Proof (i) If (I I ) has a nontrivial periodic solution for some h E R~', h :f:. 0, then 
there exists w > 0 such that C(h, iw) = 0 (w cannot be zero because of Assumption 
2). Let a = wll, then ( 18) and (19) arc both satisfied for the pair a and w. (ii) Assume 
(18) and (19) are satisfied. Then if It = -;;, C( h, iw) = O. 

Recipe for Application of Properly 6 

Let ho be in R+ . Consider the system 

d [X(t) - t. Bjx(t - Jh1)] = Aox(t) + t. Ajx(t - Jh1)' (2 1) 

where 0> 0 and Assumptions I and 2 hold. Thus for system (21) 7(0, hO) < 0 and, 
by the continuity of {(o , hO), there are fi ve possibilities. 
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0) Y(J ,hO) < o for all J :2: O. Then ( ll )isu.e.s. forh = hO. 
Oi) The smallest J for which Y{J, 11°) = 0 is J > L Then ( II ) is u.e.s. for h = Ito 

(iii) Y( I , itO) = 0 and (19) is satisfied for h = ho and some w > 0, where a = who. 
Then the system (II ) has a nontrivial solution for h = 110. 

Ov) Y(J ,hO) = 0, but (19) is satisfi ed only when w = O. Then the system is u.e .s. at 
It == 110 . 

(v) Y(O , itO) = 0 for some 0 < 1 and (19) has a solution w > 0 where a == woho . 
Then the stability of the system is indetenninant. 

Remark I. To find where Y{o, hO) = 0 it is only necessary to solve the eq uation 

where 

Examples 

Example I. 

T > O. 

x(t ) ~ (~ _~ ) x(t ) + ( -~ ~) x (t - D + ( _~ ~) x (t - ~) 
= Aox(t) + A, x(t - ltd + A2 x (t - %). 

Here h, = ~ and It'] = ~,Assumpt ions I and 2 are satisfied and 

B (T) ~ I , 

The smallest value of T for which (22) is satisfied is 

T == 1.180333. 

At this point 
w == 1.8028 > 1. 

Hence the system is u.e.s. 

(22) 

(23) 

Example 2. Let Ao, A" and A2 be the matrices in Example 36. But hi = I , h2 = 1T. 

Then 

B(T) ~ I , A(T) ~ A(T) ~ 

Here the solution of (22) yields 

T = .590167, 

w == .65472211 and 

• = .901401. 

Hence the test is indctcrminant. However using the method described in Section 4 
we shall show the system in this example is unstable. 
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Example 3. Let 

B, ~ ( ~ ~ ) , 
-- 0 

2 

Then 

B(a) ~ 
( 

1, 

I - ia 2'e , 

(-1 0) 
Ao = 0 - I ' (24) 

1 _;. ) --e 
2 , 

1 
( 

1 - ;.) 
.'1(0) = _~_ ;''' ' e_ 1 . (25) 

The correspond ing delay system satisfies Assumptions I and 2 and has a zero when 
o = rr/2. However, the only point on the imaginary axis which satisfies (19) is 
w = O. Thus the corresponding system ( II ) is u.e.s. for all delays. 

The next example docs not conform to the context of this section in that Assump­
tion 2 is not satisfied. However, the general methodology of this sect ion may still be 
applied to study its stabil ity. 

Example 4. 

:, [x(t) + ~x(t - h)) ~ y(t) (26a) 

dy 
dt (t) ~ -x(t). (26b) 

Here 

( ,+~e- ;., 0), 
B(a) ~ 

0, 1 

(27) 

When It = 0 this system has two independent periodic solutions. It is easy to show 
that for h "small" (26) is u.e.s. The object is to find the maximum interval (0, hO) for 
which it is u.e.s. Equation (18) and (19) are satisfi ed when 

2 
0=rr, w = .j3· 

Hence the system is u.e.s. when h E (0, Y,f rr). 

Example 5. Let 

(28) 

Assumptions I and 2 are satisfied, 
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( I, --2Ie-'0 ) 
B(a) ~ 1 . , 

~e-'o 1 
A(a) ~ (0, I) 

-2, - \ 
2 ' 

and Equation ( 18) and ( 19) are satisfied for 

w == 1.9463989, 

a == 2.635816 and 

11° == .73844. 

4 The Poisson Integral Method 

(29) 

In this section C wi ll denote the complex pl ane, B is a complex Banach space with 
a zero vector denoted by o. 

Observation I LeI F be a vector-va/lied mapping/rom C illfo a Banach space B. 
Then F is analytic in a nonemptyopen sel, 6., in C if and only if the Callchy·Riemann 
condilion 

aF l aF 
>' = x+iy, ax i By' 

is satisfied in 6.. 

Definition 2. A mapping F C ~ B is in H oo if F is analytic and uniformly 
bOllnded ill Re>' > 0 (see, e.g., /6}). 

The Poisson Integral 

Let F : C ~ B be analytic and unifonnly bounded in a vert ical strip 

S(,) ~ p , -b < ReA < 'J. 
Then the Po isson Integral of F 

[(F ') ~ ,,!~ F(it)dt , . 0 (30) 
, A '()2' 1\ = X + ~y, x > , 

11" _oo X + t - y 

is a unifonnly bounded hannonic function o n Re).. > O. If F is also holomorphic 
and uni fonnly bounded on Re>. > 0, then 

[(F,A)~F(A), (3 1) 

(see e.g. [6]). 

Lemma 1. The Poisson Integral also has the representation 
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1/' - F [i(xtana + y)]da = T(F, >.). 
1r - t 

(32) 

roof. Substitute t = Y + x tan a into (38). 

Theorem I. Let F be allalytic alld IIniformly bOllnded OI[ a I'ertiull opell strip, 5(8), 
contaill ing the imagillary axis, t!tellthe cOlldition 

{ ~ C 2
;" F[i(xtana + y)]da = 0, x> 0, 

J~, 
is necessary and sufficient for F to be in H oo . 

(33) 

Proof. The proof is a conseq uence of the Cauchy- Riemann cond ition applied to (40) 
(see e.g. [3D. 

Remark 2. Sinee I (F, >.) is harmonic in Re>. > 0 the mappings g! (F, >.) and 

g~ (F, >.) are also. Consequently the function 

G(F,:') ~ BaI(F,:,) _ !Ba l (F,),) 
x , y 

1 / ' . ~ - e- 2'''F[i(xtana +y)]da 
1rX - t 

(34) 

is also hannonic in Re>.. > o. 

Remark 3. The func tions [ (F, >.) and G(F, >.) have harmonic conjugates which are 
unique up to constants. Th is implies that if either I(F, >.) is holomorphic in a neigh­
borhood, V, in Re>. > 0 or if G(F,>.) == 0 in V, thaI T(F,>.) is holomorphie in 
Re>. > 0, Consequently F(>.) = I(F, >.) in Re>.. and F E !-JOo , Conversely if eilher 
I(F,>.o) =f:. F(>.o) or G(F, >'0 ) :f:. 0 for some >'0 ERe>. > O. then F is not in H oo . 
Th is observation is encaps ulated in the following theorem. 

Theorem 2. (i) Ifeither I(F,>.) = F(>.) orG(F, >.) = 0 is some neighborhood. V. 
ill Re>. > 0, thell F E H oo, 

(ii) If either F(>.o) :f:. T(F, >'0 ) or G(F, >'0) :f:. 0 at some point >'0 ill Re>.. > O. 
then F is lIot in /l oc, 

Examples 

Example 6. Consider Example 4. 
The stability of this system is determined by the analytic function 

[ ( ~") l ~ ' )..2 1 + T + 1 , It> o. (35) 
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In Example 4 it was shown that the system was stable for 0 < h < ::/f if. Clearly 

h = 2 < ::/frr. Thus for y = 0 and x = I 

l(F, 1) " .401684093537 (36) 

(using Simpson's Rule, 200 panitions and the interval 

I = [ - ~ + .0001, ~ - .0001]. 

The actual value is 
F( I ) " .491682255339. 

On the other hand for h = 3 > ::/f rr and .\ = I, the value of (41) is approximately 
2. 137 which confirm 's the instability of the system in Example 4 for thi s value of h. 

Example 7. Consider the system in Example 37, where hi = 1 and 112 = 1T. The 
methods of Pan l Ied to an indeterminate concl usion concerning the stability of the 
system. However the value of (41) for the Laplace Transform of this system, i.e. the 
holomorphic function 

(37) 

at ,.\ = 1 is approximately .933526. Hence the system is unstable (The integral (4 1) 
at ,.\ = I was approx imated using Simpson's Ru le over [- ~ + .0001, ~ - .0001] 
using 200 equispaced panitions). 
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Stability Exponent and Eigenvalue Abscissas by Way 
of the Imaginary Axis Eigenvalues 

James Louisell 

Department of Mathematics, Colorado State University-Pueblo, Pueblo, CO 81001, USA 

Summary. In this chapler we present a technique for accurate computation of the stability 
exponent and other eigenvalue abscissas of a matrix delay equation. Previously the author in­
troduced a finite dimensional linear operator, dctcnnined by the delay equation coefficients, 
having spectrum containing all possible imaginary axis eigenvalues of the delay system. Using 
the eigenvalues of this operator, and introducing a lranslmion in the equation's characteristic 
fu nction, we can make an accurate numerical delenninalion of the system stability or growth 
ex.ponent and other eigenvalue abscissas. Arter giving the basic theorems for the method, we 
give an example in which we go over essentials of implementat ion. Then we explore the me­
thod in some special cases, beginning with second ordcr scalar delay cquations and an inter­
esting example of positive delay feedback. We proceed to a rather detailed examination of the 
effect of the delay parameter in some simple first order delay equations, finding that accurate 
computation of the system abscissa leads us to some interesting and unconventional conelu­
sions on its behavior with respect to this parameter. We then give an example in which the 
method is adaptcd to a cenain distributed delay equation. We conclude with some comments 
on possible future research. 

1 Introduction 

In prev ious papers the author has investigated the computational determination of 
the slability exponent and other eigenvalue abscissas of a linear autonomous delay 
differential equation [5,6]. For an asymptotically stable system, the method involved 
first solving a boundary value problem having as its solution a system quadratic 
energy matrix of the type first explored by Repin [IIJ and Datko [3). By varyi ng a 
real parameter representing a translat ion of the characteristic fun ction, and noting the 
behavior of the solution to the boundary value problem as this parameter varies, the 
stability exponenl could be determined. In the more general case, where the stability 
or instability of the system is not known, a translation given in terms of the norms of 
the system coefficients allows us to use the same method. 

In the time si nce publication the author, along with Niculescu [9J, has been in­
terested in the determination of the oscillatory eigenvalues of linear delay systems. 
Earlier contributions to this topic were made by Chen et al [2}, and Marshal et al [8). 

S. -I. Niculescu et al. (eds.), Advances in Time-Delay Systems
© Springer-Verlag Berlin Heidelberg 2004
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We now have techniques which work well for many commensurate delay systems. 
Since these eigenvalues play such an important part in determining system stabi lity, 
it seemed natural to investigate whether one could develop an approach to detenni­
nation of the stability exponent by way of the imaginary axis eigenvalues. 

In Section 2 of this chapter we present such an approach, which will work for 
many commensurate delay systems. To keep the presentation manageable, we will 
give our theorems for matrix retarded single delay systems or systems that can be 
readily pUi in that fonn. We use a theorem previously given by the author on a finite 
di mensional linear operator which we associate with the delay system l7]. This ope­
rator has all possible oscillatory eigenvalues of the delay system included in its spec­
trum. We project this operator's eigenvalues horizontally onto the imaginary ax is, 
and then evaluate the delay system's characteristic function at these pure imaginary 
values. Again vary ing a real parameter representing a translation of the characteristic 
function, we will find the abscissas of system eigenvalues. One advantage of the me­
thod is that the imaginary parts of the eigenvalues of the delay system can be readily 
recovered from the associated linear operator. 

An example with MATLAB computation is given at the end of Section 2. In 
the sections following, rather than elaborating on detai ls of the method, we give 
examples of the value of accurate computation of the stability exponent as a means 
of understanding some interesting questions that occur in stability analysis. 

In Section 3 we first have a look at second order scalar si ngle delay equations. 
After establishing an algebraic framework for the calculation of imaginary axis ei­
genvalues for these equations, we examine an example of Abdallah et al [IJ on po­
sitive delay feedback for the osci ll ator. Here we give a computation of the stability 
exponent for a system of the type proposed by these author.;. Readers interested in 
scalar single delay systems and the stability exponent can also see the references 
given in that section. 

In Section 4 we show how accurate computation of the stability exponent can 
help us understand the stabi lity behavior of a delay system as the delay parameter 
varies. Just using first order systems, we come to some surprising conclusions on the 
effect of the delay parameter. In Section 5 we give an example of computation of 
the stability exponent for a di stributed delay equation which can be recast in tenns 
of a matrix delay system or a scalar third order delay equation. We concl ude with 
comments and suggestions for future research in Section 6. 

There may be other ways to use the osc illatory eigenvalues in the detennina­
tion of system eigenvalue abscissas. The method presented in Section 2 was chosen 
for simplicity of presentation and ease of implementation in MATLAB and simi­
lar programming environments. Considerations of computational size might dictate 
that many of the associated linear operator's e igenvalues be dismissed in advance, 
so that time not be spent evaluating the characteristic function at many more pure 
imaginary values than necessary. Other considerations, including interpretation and 
visuali zation, could lead to other modifications. 

It is worth noting that Engelborghs and Roose [4J have also been developing a 
method for computational detennination of delay system eigenvalues, particularly 
including the eigenvalues having the leading abscissas. This techn ique involves ap-



Stability Exponent and Eigenvalue Abscissas 195 

proximating the solution operator, and can be very fast. Since it involves the solution 
operator, it can of course at. times have inconven ient size. The author's method, based 
on an associated linear operator determined by the system, involves only matrices of 
fixed size for any given system. 

2 Imaginary Axis Eigenvalues 

We begin with matrices Ao, Al ER''''''' , and h >O, and we consider 

the delay differential equation, along with its characteristic matrix function T (s) == 
sf - Ao - Al e- s li and the complex characteri stic function J(s) == IT(s)l. We refer 
10 any zero of J (s) as an eigenvalue of the system (*). Setting 

T(/ (s) == T(s + d) == sl - (Ao - dl) - (e- li
(/ Ade-,Ii , 

J(/(s) == ITd(s)1 for real d, we note that Td(S) is the characteristic matrix function 
for the delay eq uati on 

(*d) x'(t) == (Ao - dl) x (t ) + (e- lid Adx(t - h). 

Noting the linear shift of s, we have the following si mple lemma, which will be very 
useful in giving a numerical method for detennining the stability exponent. 

Lemma I. Let Ao,A\ER,,:<n, and h >O. Then the system (*) x'(t) == Aox(t ) + 
A, x ( t - h) has an eigenvalue with abscissa equal 10 d if, and only if, the system (HI) 
x'(t ) == (Ao - dl)x(t ) + (e- hd A,)x(t - h) has an imaginary axis eigenvalue. 

The val ue of this lemma will be seen when we consider recent work on finite di­
mensional techniques for lhe computation of oscillatory eigenvalues of delay equa­
tions. For our purposes, we notc that the author has shown [7J that the imaginary 
axis eigenvalues of the delay equation (*) arc also eigenvalues of the operator '-P on 
c ,,:<n x cn:<n given by 

(X) (AoX+A'Y) 
<P Y == - XAT-YA;r 

for X , Y Ec .. :<n . This operator was converted to the matrix J given in Lemma 4, 
operating on CZn ' . We summarize in the lemma below, which fo llows directly from 
the author's previously derived theorem [7 , Thm. 3.1 ] by setting the matrix B of the 
theorem in that paper equal to the zero matrix. 

Lemma 2. Let Ao , A, ER"'''', h >O, and let 

J _ ( Ao 0 1 A, 0 1 ) 
- -f ® A\ - f ® Ao ' 

where ® denotes Kronecker product. Then all imaginary axis eigenvalues of tile delay 
equation (*) x'(t) == Aox (t) + A\x(t - h) are eigenvalues of J. 
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For real d, we let JrI be the matri x assoc iated with the system (*d) just as J is 
associated with (*). To be precise, we let 

Now noting Lemma 3, we have it in mind to determine the x - coordi nlltes of the 
eigenval ues of the delay equation (*) by finding the values of d giving the system 
(*d) pure imaginary e igenval ues. Noting Lemma 4, we know that imaginary axis 
e igenvalues of (*d) are pure imaginary eigenvalues of Jd • We can evaluate these 
e igenvalues in fd(S) = ITd(S)1 to see if they arc genuine eigenvalues of (*d) . 

We would like to eval uate the characteristic func tion f (s + d) only for those 
S = Sd in Eig(Jd) which lie close to the imaginary axis, observing the convergence 
of f(Sd + d) to zero as d converges to system eigenvalue abscissas. It might seem 
then that we would be making a numerical decision on which Sd lie close enough to 
the imaginary axis to consider. Since the eigenvalues we are look ing for lie on the 
imaginary axi s, we will instead, for clarity of presentation, simply project all values 
of Sd horizontally onto the imaginary axis. Thus, for Sd = Od + iWd , we will evaluate 
f (iwd + d) rather than f(Sd + d). For thi s purpose, given any complex nxn matrix 
F, we define 1m Eig(F) = {w: S = 0 + iw is an eigenvalue of F}. 

Theorem J. Let Ao,A1E R n",,,, h>O. Ford E n , define 

g(d) = min Ifd(iw)l . 
wE )", Eig(Jd) 

If G + ib is an eigenvalue of (*) x/(t) = Aox(t) + Al x(t - It). then g(d) ---) 0 as 
d --+ G. If g(d) ---) 0 as d ---) a. then a is an absciss(1 of an eigenvalue of (*). 

Proof. Noting that ¢(d , s) = /d(s) is continuous on C'1, and that the entries of Jd 
arc continuous in d, we know that the function g(d) is continuous over the reals. 

Now if a + ib is an eigenvalue of (*), then ib is an eigenvalue of (*a), so that 
ib is also an eigenvalue of J" . This gives us g(a) = 0, and by continuity, we have 
g(d) --+ 0 as d --+ a. On the other hand, if g(d) --+ 0 as d --+ a, then g(a) = 0, i.e. 
o = miuwE I", Eig(Ja ) If",(iw)l. We let b be that w achieving the minimum, and we 
have f (a + ib) = O. 

The system stability exponent being the abscissa of most interest, we will fre ­
quently initialize our examination of system abscissas at d-values d = d+ greater 
than the leading abscissa. For this we have the fo llowing lemma, proven in a few 
lines in the author's previous paper on the stabil ity exponent [5]. 

Lemma 3. For /3 = IIAol1 + II AIII, there exist 110 complex zeros of f(s) = Is I -
040 -Ale-~hl which lie in {Re(s) > /3 }. 

From the above theorem and lemmas the ideas for our numerical determination of 
system eigenvalue abscissas arc now clear. The above theorem gives us a numerical 
characterization of the eigenvalue abscissas which Clln be implemented by plouing 



Stability Exponent and Eigenvalue Abscissas 197 

the graph of the real function y = g(d). To determine the leadi ng abscissa, we take 
d+ > 11.'1011 + 11.'11 11, and begin by sweeping th rough decreasing d-values. 

This new method for determining eigenval ue abscissas has some advantages over 
the method presented in [5]. Since there is no boundary value problem to solve, 
one of the most obvious advantages is simplicity of programming using software 
packages such as MATLAB. The itcms to calculate are the eigenvalues of the matrix 
Jd and the detenninants of the matrices Td(iw). The matrix Jd has dimension 2n2, 
as docs the boundary value problem, while the matrices Td(S) have dimension n. 

Although the method's si mplicity and directness are wonhy of note, there are 
tradeoffs to mention . The method based on quadratic energy gives us the bchaviorof 
the system's quadratic energy as the exponent varies. For time delay perturbations of 
finite dimensional systems, the quadratic energy method allows us to simultaneously 
assess the effect of time delay on LQ energy, and detennine the stabil ity exponent 
of the time delay system resulting from the pcnurbation. There is also the advantage 
that after all the calculations involved in solving the boundary value problem, the 
item we plot in the end is j ust the maximum eigenval ue of a symmetric matrix . The 
method chosen will depend on the user's context. 

To demonstrate the new technique, we give an example of abscissa computation 
previously carried out with the author's quadratic energy method [5J. 

Example I. Consider the system (*) x'(t) = Aox(t) + AIX(t - 1.3), where 

A ( - 1.6.8) 
0 = 2.4 2.7 ' 4 (

2.5 4. 1 ) 
.' I = 1.5 - 3.2 . 

Since 11.'1011 ::; 5.1, IIAIII ::; 7.3, we can set d+ = 12.5. For d ::; 12.5, Its) = 
IT(s)l, we then compute g(d) = min"'E lm Eig(Jd ) l/d(iw)1 using MATLAB. Below 
we first graph y = g(d) for 0 ::; d ::; 12.5, and then focus on the leading zero of 
g(d) in that interval. Then we do the same for 0::; d ::; 1, and finally for - 1 ::; 
d ::; O. We use increments of size 0.01 in the larger intervals, and of size 1 x 1O~5 
in the smaller. We see here that the stability exponent dn lies in (3.0982, 3.0983), 
while the eigenvalue abscissa d1 closest to dn lies in (0.2577, 0.2578), and the closest 
eigenvalue abscissa d2 on the left of d l lies in (- .1741, -.1740) . 

Figures 1,2 and 3 show the results of 

(.) x'(t) ~ Aox(t) + A,x(t - 1.3). 

To find the imaginary pari of Ihe eigenvalue which accompanies the leading abs­
cissa, we let d = 3.09825, and use MATLAB to compute Eig(Jd ). We find thai the 
only imaginary axis eigenvalues of Jd are ±0.0002i. Thinking now that the leading 
eigenvalue may be real, we consider the characteristic function Its) at s = 3.0983, 
S = 3.0982. Confinning, we find thai /(3.0983) ~ 2.6249xlO~4, /(3.0982) ~ 
-2.4263x lO- 4 , so thal..\o ~ 3.09825 is real. Next, we SC I d = 0.25775, and again 
compute Eig(Jd ). This lime we find imaginary axis eigenvalues 8 = ±1.1369i, 
±0.6739i. We find /(.25775 + 1.1369i) ~ - 0.0007 + 0.0049i, hav ing absolute va­
lue approximately .00495, while /(.25775 + .6739i) ~ - 4.8836 + 6.3877i. Thus 
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lhe eigenvalues having abscissa d, are >. ,_, >' 1+ ~ 0.25775 ± L1369i. Doing the 
same at d2 , we will find that the eigenvalues with thi s abscissa are >'2- , >'2+ ~ 
-0. 17405 ± 3.545li. 

3 Second O rder Scalar Delay Equations 

In this section we have a look at our new techn ique for detennining eigenval ue abs­
c issas in the well known case of a second order scalar del ay equation having a single 
delay. Rather than apply Theorem 8 literally, we adhere to the ideas of Section 2, at 
the same time using special propert ies of low order systems for si mplification. We 
fi rst present algebraic details of the method which are relevant to our particular case 
here. Then we examine the idea of stabil ization of the oscill ator via positive delay 
feedback proposed by Abdallah et al [11, giving an accurate computation of the sta­
bil ity exponent for this inte resting example. In Section 4 and Section 5 we will return 
to direct use of the matrix .!d and Theorem 8. 

It is fair to mention that the idea of first solving an equation for pure imaginary 
e igenvalues, and then vary ing a real parameter to match the characteristic equation, 
was developed independently, just for the scalar single delay case, by Ozbay and 
Ulus [10, 12]. It is interesting that these authors, motivated largely by engineering 
education, arrived at this notion which has such general value when viewed in the 
context of the appropriate linear operators as explai ned in Section 2. 

We consider (*) x"(t) + a lx'(t) + b,x'(t - h) + a2x(t) + bzx(t - It) = 0, the 
scalar second order delay equation with a single delay. We can write this in matrix 
fonn as z'(t ) = Aoz(t ) + A,z(t - II), with 

A_ (O 1) 
0- -a2 -a, ' 

In e ither fonn we have scalar charaeteristic function f (8) = 82 + (a, + ble-h~ )8 + 
a2 + bze-"'. For fd(S) = f (s + tI), easy calculations lead to f d(S) = S2 + (a, + 
2d)s + (b,e - hd)se - hs + (cP + a id + a2) + e- hd(b, d + b2)e-I." which we write 
as f d(S) = 8 2 + 01 S + (J,se - h• + 0:2 + 112e- "8, noting the dependence of these 
coeffi cients on d. 

The complex [unction f(s) has a zero with abscissa equal 10 d if, and only if, the 
function fd(S) has an imag inary axis zero. In this case we have fd(8) = 0 = f d( - S) . 
We can solve for e- h

• in f(s + d) = 0 and for e'" in f ( -s + d) = 0, obtaining 
S2+0' ,S+0'2 = e- h $( -112 -fit 8). and S2 -0, 8+0'2 = eh ,( -112 +11,8). Multiplying 
left and right sides of these equations and simpl ifying, we obtain a quadratic equation 
in 8 2, i.e. 8 4 + B S2 + C = 0, with B = 202 + N - Q~, C = o~ - (3~ . Thus we 
have the four roots s = ±.ji, where t = 8 2 is given by the quadratic fonnul a 
t = B±~ , 
Example 2. Consider x"(t ) + 4x(t) = 2x(t - 1), an example of the type of Abdallah 
et al [1] showing that positive delay feedback can stabilize the oscillator. In matrix 
fonn we have Zl( t ) = Aoz(t) + A ,z(t - I ). 
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Since IIAol1 = 4, IIAll1 = 2, we set d+ = 6.001, and examine f(l( s ) with s = ±.Ji 
determined by d as above, where d < d+ . With h = 1 and f( s ) ::::; S Z + 4 _ 2c h s , 

we have fd(S) = S2 + 2ds + ([2 +4 - 2e- hde- ''' . We set al = 2d, az = d? + 4, and 
(3z = _2e- hd. From f(s+d) = 0 = f(-s+d), wehaves2 +al s +az = -(3ze- hs, 
S2 _ als + az = - (32eh •. Proceeding as above, we obtain S4 + (2a2 - ai)sz + a~ ­

(3~ = O. Thi s equation has roots s = ±.Ji , with t = D~v75, B = 2az - ai, D = 
a1 +4j3~ - 4aiaz. Referring to these four root branches as sJ;(d) = oJ;(d) +iwJ;(d), 
k = 1, .. . , 4, we can plot 9J; = fd( iw".) or 9 = mill l :9 •9 19kl as d varies. We have 
given the plot of 9 below. 

Figures 4 and 5 show the results of 

x"(t ) + 4x(t) - 2x(t - 1) ~ O. 

We see here that the stabi lity exponent lies in the interval [- .35, - .30[. Below 
we get a closer look, finding that the stability exponent lies in [- .32, - .3175]. 

4 The Effect of the Delay Parameter 

In Ihis section we use the previously developed techniques to examine some com­
monly held notions about the significance of the delay parameter for the stabi lity 
of delay differential equations. In giving this presentation our goal is not merely 10 
encourage new thinking on this question, but also to display the general value of ac­
curate computational techniques in assessing the merits of conventional wisdom. To 
make comparisons between conventional wisdom and scientific understanding, we 
will onl y need first order delay equations. We are careful not \0 make very general 
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claims about stabi lity theory here. Our stability criterion will just be the behavior of 
the stability exponent as the delay parameter varies. 

Consider now the idea that if a delay system is asymptoticall y stable, then in­
creases in the delay time bri ng the system closer to instability. This idea is ex­
pressed at many conferences and in all kinds of engineering and mathematics jour­
nals. We use the method introduced in Section 2 to test this idea in the case of the 
system (*) x/(t) = 2x(t ) - 3x(t - h). With J (s) = s - 2 + 3e- h

&, we have 
J( s + d) = s - (2 - d) + (3e- hd )e- h

" and this gives us 

(
2 - d _ 3e- OO

) 
Jd = 3e- hd - (2 _ d) , 

having eigenvalues ± Sd, with Sd = « 2 - d}'l - ge- Zhd )I/2. For real w we know 
/d(iw), Jd (- iw) are conj ugates. We write g( d) = minwElmEig(Jd) IJd( iw)l, as in 
Section 2. With 3d = Od + iWd , we then have g(d) = IJd{iwd)l. Below we graph 
this function for h = .05, h = .20, h = .25, h = .30. 

Figure 6 shows the resul ts of 

(. ) x'(, ) = 2x(' ) - 3x(' - h ). 

When h = 0, the leading e igenval ue of the system (*) is at x = - 1. As one can 
see from the fi rst three graphs above, the abscissa ofthe leading eigenvalue is at first 
to the left of x = - 1 with increased delay time, and the system is enjoying enhanced 
decay. On ly after the parameter h increases to val ues in the interval (.25 , .30) do 
we have the destabilizi ng effect of increased delay. The avai labi li ty of this means 
of determ ining the stability abscissa has allowed us a carefu l look at a phenomenon 
which is considerably at odds with the folklore of the area. 

It is certain ly interesling that for II = .20 , the stability exponent is more than 
twice the distance left of zero as the stability exponent for h = O. If we desire to 
detennine the h - intervals of stability or instabil ity for the system (*), we note that 
with d = 0, the matrix Jd has e igenval ues 3 = ±iJ5. Solving J (iJ5) = 0 for II, we 
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o 

find that Ihe smallest possible nonnegative valueof h is Ito = 7! arctan( 1-) >::i .376 

• so that (*) is exponentially stable for 0 ::; h<ho. With further routine analysis we 
will find this system exponentially unstable for ho<h. 

It may seem surprisi ng that the stability exponent can behave this way in a first 
order delay system with such simple stability structure. There is no multiple stability 
switching and the imaginary axis eigenvalues are simple. The conclusion is that the 
fo lklore is often wrong to regard zero delay as the optimal condi tion . If we use the 
stabil ity exponent as our criterion here, it is more appropriate to regard h = 0 as the 
le ft endpoint of an interval containing the opti mal h in the interior and havi ng the 
value of II giving exponent zero at the right endpoi nt. 

It is also interesting to examine the effect, on an unstable system, of changes 
in the delay. Here the conventional wisdom holds that the system is brought closer 
to stability as the delay decreases. We try this idea oul on the system (*) x/(t) = 
3x(t) + 2x(t - II), having lead ing abscissa x = 5 with h = O. Here the matrix Jd 
will have e igenvalues ±Sd , with Sd = «3 - d)z - 4e-Zhd )1/Z. This ti me we graph 
the function g(d) = Ifd(iwd)1 for h = .10, h = .01. 

Figure 7 shows the results of 

(.) x'(t ) ~ 3x(') + 2x (t - h). 

We see here that decreases in the delay from h = .1 10 h = .01 10 h = 0 bring 
increases in the leading abscissa, again contrary to conventional wisdom. 

If we had used the system x'(t) = 3x(t) - 2x(t - Il) . then we would have 
observed the leading abscissa decreasing with decreasing delay, as conventional wis­
dom would expect. Alert readers may by now have noticed what is happening with 
these simple fi rst order systems. As h first increases from the value zero, the lea­
ding abscissa is moving in the direction of the dominant coefficient, e.g. would move 
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in the direction of - 3 in the system (*) x'(t ) = 2x(t) - 3x(t - It ). As the delay 
increases to very large values, the leading abscissa moves in the direction of the co­
efficient of present position, c.g. would move in the direction of 2 in the system (*) 
x'(t) ~ 2x(t ) - 3x( t - h). 

Again we emphasi ze that having a means of direct computational determination 
of Ihe system abscissa has allowed us to have a careful look at the area's folklore, 
arriving at a better understanding of the effect of thc delay in these simple systems_ 
The author has small doubt that there are many cases in wh ich our understanding of 
higher order delay equations would be enhanced by similar studies. 

5 An Equation with Distributed Delay 

In this section we show how the author's new technique can be adapted for use in 
detennining the stability exponent of a delay diffe rential eq uation having distributed 
delay. As in Section 4, we only give a rather si mple first order example. We use a 
trigonometrically distributed delay function, anticipating that with advances in com­
puting power, it may soon be practical to use the author's technique in analyzing 
the stability of di stributed delay systems with delays approximated by finite Fourier 
series with many harmonics. We proceed entirely by example. 

Example 3. Consider the delay equation (*) x'(t) = k J~h sin(u)x (t + u)du. 
, " Looking for exponential solutions of the fonn x( t) = e3

, we arrive at T 
J~h este'l> sin (u)du, i.e. f = J~h e'l> sin(u)du. Integrating by parts, we have 

f = - 1 +(S;nh)8t.~:t(COSh)t'~h'. Note that s = i, s = -i are zeros com­
mon to both numerator and denominator on the right. We have its) = f­
- 1+(.; " h)':~ :t(COS hIe- h. for characteristic function, and by L' Hopital's Rule we 

have lilll3 ~ i its) = t + ~(e- ihsinh - h). With h20, it is interesting that 
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this limi t is equal to zero if, and only if, we have h = n7T, k = ,;" for some 
natural number n. In this case, and on ly in this case, will the equation (*) have 
e igenval ues s = ±i. In all other cases we multiply f (s) by k(S2 + 1), obtaining 
F (s) = S3 + s + k - (k sin h)se- h3 - (k cos h)e - h -. For h>O the set of zeros of 
F(s) is equal to the union of {±i} with the set of zeros of f(s). Note that with h = 0 
the equation (*) is just x' (t) = O. 

Now F(s) is the characteri stic fu nction for x(3)(t) + x'(t) - k si n(h)x'(t - h ) + 
kx(t) - kcos(lt)x(t - It) = O. Converting this to matrix fonn , we have Zl(t) 
Ao z(t) + A1 Z(t - It) , where 

( 
0 1 0) 

Ao =OO I , 
-k - 1 0 ( 

0 0 0) 
AI = 0 0 0 . 

kcos(/t) ksin(h) 0 

Wri ting the components of Ao z, A lz as inner products and using the Cauchy­
Schwarz inequality, one will find that I!Aol! ::; .jk2 + 3, I!AII! ::; Ikl. Thus we 
can set d+ = 2(k2 + 3)1/2, and now with Fd(S) = F(s + d) = 1sT - (Ao -
dI) - e- hd Al e- hsl, we detemli ne the eigenvalues Sd = ad + iWd of the matrix Jd 
from Section 2. For fixed d < d+ we then examine the minimum of the values of 
!Fd(iwd)l, call it g(d) . 

Consider this example with k = 1, It = 0.1. We will display the graph of 
y = g(d) with these parameters presently. In this graph we must be careful not 
to prematurely dismiss the zero value of y = g( d) at d = O. In fact, with d = 0, 
MATLAB computation wi ll give us s = ±i, s = ± 1.OO49i for the pure imaginary ei­
genvalues of Jd . Noting the proximity of the two positive imaginary axis eigenvalues, 
we might think of first detennining, algebraically, whether they are distinct, and then 
evaluating F(1.0049i) if so. However, si nce F(i) = 0, numerical evaluation could 
give a very small value for F (1.0049i). lnstead choosing to return directly to f(8), 
and evaluati ng in the vicinity of the two eigenvalues, we find that If(s)1 2: 0.97 for 
s = iw, 0.98 ::; W :s 1.02. Now we know that the second observed zero of y = g(d), 
i.e. d Rl -0.005, is the stability exponent. 

Shown in Figure 8 is the matri x formulation for stabi lity analysis of 

x'(t ) = k [Oh sin(u)x(t + u)du 

with k = I , h = 0.1, and Zl(t ) = Aoz(t) + Al z(t - h) . 

6 Conclusion 

In this chapter we have presented a means of using the possible oscillatory eigen­
values of a linear delay differential equation as a gu ide in making a computational 
detennination of the system stabili ty exponent and other eigenvalue abscissas. The 
technique made use of system coefficients to fonn a linear operator having spectrum 
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containing all possible imaginary axis eigenvalues of the delay equation. The infor­
mation on the delay was fitted by varying a real parameter representing a translation 
in the characteristic function. 

Afterproviding an illustrative example, we examined the technique in the SpeCh11 
case of second order scalar equations having a single delay, then giving an example in 
which we continn a claim of Abdallah et al by giving a computational determination 
of the stabi lity exponent for an oscillator with positive delay feedback. Following 
this, we used the method to examine the behavior of the stability exponent as the 
delay parameter varies. By direct computation of the stability exponent for various 
values of the delay parameter, we were able to arrive at an understanding of the beha­
vior of the exponent which could not be provided by conventional wisdom. Finally, 
using the characteristic function as an intennediary, we gave an example of how a 
matrix delay system with discrete delay can be used 10 find the system exponent for 
a scalar distributed delay equation. 

The theorems arc given for matrix delay equations having a single delay. There 
is nothing to prevent the method from carrying over to equations having several 
commensurate delays. The associated numerical, algebraic, and practical intricacies 
remain for future investigations. Likewise, there are many questions which remain 
about the use of the method for distributed delay equations. Among the topics of 
interest are the kinds of distributed delay equation the method is convenient for, 
the particular questions involving delays represented by tinite Fourier series, and 
any understanding of distributed delay models that can be deduced from accurate 
computation of eigenvalue abscissas. 

There is one topic wonhy of special mention for the sake of practicality. In the 
presentation given here the system characteristic function is evaluated at the ima­
ginary axis projections of all eigenvalues of the tinite dimensional linear operator 
we associated with the delay equation. In practice it may often be just one, two or 
four of these eigenvalues which arc close to the imaginary axis, and with symmetry 
considered, we often need to eval uate the characteristic function at just one eigen-
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value projection. It may be desirable, from a computational perspective, to classify 
the eigenvalues of the associated linear operator as sufficiently or not suffi c iently 
close to the imaginary ax is to warrant evaluation. A preliminary draft of thi s chap­
ter was written with thi s understood, and some correspondi ng MATLAB programs 
were written. For the sake of clarity in presenting the idea, eigenvalue classification 
was not introduced here. In computations for high order delay equations, this kind of 
classification wi ll make implementation considerably morc convenient and feasi ble. 
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Summary. An overview of stability results on the implementation of distributed delay control 
laws, arising in the context of finite spectrum assignment, is given. Firstlhe case where dis­
tributed delays are approximated with a finite sum of poilJl-wise delays is considered. The 
instability mechanism is brieny discussed and conditions for a safe implementation are pre­
sented. Secondly modifications of the control law to remove the limitations, imposed by these 
conditions, are outlined. Throughout the chapter eigenvalue plots are used to provide an intui­
tive explanation for the phenomena and results. 

I Introduction 

Consider the linear finite -dimensional system with input delay 

x(t) = Ax(t) + Bu(t - T), x E JRd, u E JR, ( I ) 

where we assume that the matrix A is not Hurwitz and the pair (A, B) is stabilizable. 
An approach for the stabilization and control of ( I), called finite spectrum assignmelll 
[2 1,37], can be interpreted as follows: a prediction of the state variable over one delay 
interval is generated first and then a feedback of the predicted state is applied, thereby 
compensati ng the effect of the time-delay. This results in a closed- loop system with 
a finite number of eigenva lues, which can be freely assigned. Mathematicall y, with 
the feedback law 

u(t) = KTxp(t , t+r) 
~ KT (eA,x(,) + J; eM Bu(' - 9)d9) , 

(2) 

where Xp(t l ,t2) is the prediction o f x(i} at t = t2, based on values of x and u for 
t $ it, the characteristic equation of the closed-loop system is given by 

dct (AI - A - BKT) ~ O. (3) 

S. -I. Niculescu et al. (eds.), Advances in Time-Delay Systems
© Springer-Verlag Berlin Heidelberg 2004
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Thi s elimination of the delay is employed in the so-called process model control 
techniques [38J, as for example, the celebrated Smith Predictor [34]. When applied 
to (I) and (2) it can also be interpreted as the effect of a model transfonnation [161. 
For generalizations of the finite spectrum assignment approach to a broader class of 
time-delay systems than (I ), we refer to [ I ,2 1,39J. 

A difficulty in applying the control law (2) consists of the practical implementa­
tion of the integral tenn. Obtaining this term as the solution of a differential equation 
must be di scarded because it involves an unstable pole-zero cancellation when A is 
unstable, see [2IJ. It is then suggested to realize the control law by means of a nume­
rical computation of the integral tenn on-line, which involves some approximation. 

In this chapter we mainly consider the approximation of the distributed delay 
with a SI/III of poilll·wise delays by applying a numerical quadrature rule. To state 
this more precisely, define C([O, TI, cal as the space of continuous functions from 
[0, TJ C IR to ca, eq uipped with Ihe supremum nonn. A quadrature rule on [0, TI is 
a sequence of maps {In } .. ;:::! from C([O, TI, cal -+ C, defined as 

" 
I .. (f ) = 2: hj,nf(()j,,,), hj,,, > 0, ()j,n E [0 , T], (4) 

j= 1 

where we assume that the following convergence property is satisfied: 

Vf E C([O, r[,C'), V, > 0, 3n E fht. [l,,(f) - J; f (O)dOI <', Vn ~ n . (5) 

When the quadrature fonnulae (4) are uscd to approximate the integral tenn in (2), 
we end up with a sequence of control laws 

The effect of this semi·discretization of the control law on the closed-loop stability 
will be analyzed in detail. 

The structure of the text refl ects our main goal, i.e. giving an overview of exis­
ting stabi lity resu l l~ on the implementation of distributed delay control laws. After 
some prelim inaries we comment on a possible instability mechanism when using 
the control law (6), reported in [6,27,35,36]. Then we di scuss conditions for a safe 
implementation (2 3,28] and outline modifications of the control law to remove Ihe 
resulting restrictions [8,23,29,32,33,36]. For the derivation of the stability results 
and mathematical detai ls we refer to the bibliography. Plots of eigenvalues for a nu­
merical example are ex tensively uscd throughout the chapter in order to make the 
main ideas apparent. 

2 Preliminaries 

The initial data for both the system (1 )-(2) and the system (I) and (6) arc x(o) E 
lRd , 'Ito E C([-T, OJ, IR). For t E [0 Tj, the closed-loop system becomes 
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±(t) = Ax(t) + B tlO (t - T) . 

For t 2: T, we have 

Bu(t - T) = BK1' (eAl-x(t - T) + f~ eAe Bu(t - 0 - T)dO) 
= BK1' (eATx(t - T) + fo eM(x(t - 0) - Ax(t - O))dO) , 

where the right-hand derivative of x should be taken at lime zero, and we can write 
the system (I) and (2) in the form 

C(¢) = ¢(O) - BKT [ ,M¢(-O)dO. 

Because ( 1 )-(2) is a Volterra eq uation of the second kind, the growth of its solutions 
is determined by the roots of its characteristic equation (see (2 1]) 

det { >. (I -BK1' fo T e{A-U)q dO) _ A _ BK1' eIA - ),l )r + 

BK1' A foT e(A-U)q dO } = 0, (7) 

wh ich can be si mplified to (3). This makes the finite spectru m assignment propen y 
apparent. 

Analogously, with the approximated control law (6) and for t 2: T the closed­
loop system can be written as 

(~Nn(xd = A x(t) + BJ(TeATx(t - T} - BKT A t hj,neM;'~x(t - OJ,n), (8) 
i=l 

wherethemapNn : C([- Tn, O],IRd) -+ IRd is defined as 

" 
N"(¢) = ¢(O) - BKT I: hj,,,,M;."¢( - OJ.,,). 

i=t 

with Tn = maxj OJ,n. 
Equation (8) is a neutral functional differential equalion(NFDE). Under mild as­

sumptions on Ihe integration ru le (4), the map Nn is atomic at zer04, guaranteeing 
existence and uniqueness of solutions for initial conditions <P E C([-Tn, 0], IRd). Lei 
Tn(t) be the solution operator, mapping initial data onto the state at time t, i.e. 

4 This propcny makes the system (I) and (6) causal, and allows to write the control input u 
at the present time as a function of the present state and past inputs. 
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(T"(!)(f))(O) = x,(0; 1) = x(! + 0; 1), 0 E [-r" , 0[, 

which is a strongly contin uous semi-group. The associated difference equation of(8) 
is given by N,,(xd = 0, i.e. 

(9) 
j = l 

For any initial condition ¢ E Co([-r", OJ, IRd ), where 

a solution of (9) is uniquely defined. Let T})(t) be the corresponding solution opera­
tor. 

The asymptotic behavior of the solutions and. thus, stability of the neutral equa­
tion (8) is determined by the spectral radius r(T"(t)), satisfying 

r(T"( I )) = ,", 0= sup {!/(.\) ; d,t(Ll"('\) ) = OJ , 

where the characteristic matrix Ll" is given by 

Ll"(.\) = ('\Ll~('\) - A - BI<T e(A - M ), + BI<T At. h j, ,,,( A- M )'; .• ) 

LlD{>') = (I - BKT t hj'Jle( A - >'J) 8j.~ ) . 
J= I 

In a si milar way. stabi li ty of the difference equation (9) is determined by the spectral 
radius 

r(To( I )) = , -, ~ = su p {!/(.\) ; det (Llo(.\)) = OJ. 
An important property in the stability analysis of a NFDE is the relation 

r , (T"(I)) = r(TW)), (lO) 

where r <! (.) denotes the radi us of the essential spectrum, see e.g. [II J. 
In the rest of the chapter, we will call the rOOls of the characteristic equation 

d,t (Ll"('\)) = 0 

the eigenvalues of the neutral equation (8) (in fact they are the eigenvalues of the 
infinitesimal generator ofT"(t). wh ich determines the evolution when (8) is written 
as an abstract ordinary differential eq uation over C([ - r" , 0] , IR;d). Similarly. we will 
call the roots of 

det (Llo(.\)) = 0 

the e igenvalues of the difference equation (9). 
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3 Instability Mechanism 

A starting point of the research on the implementation of distributed delay control 
laws was the paper (35], which illustrated that the closed-loop system (I) and (6) may 
be unstable for arbitrarily large values of n, even when the ideal closed- loop system 
( I) and (2) is exponentially stable, the latter expressed by the Hurwitz stability of 
matrix A + BKT. This paradox can intuitively be explained with the occurrence of 
unstable eigenvalues with a large modulus for the approximated closed- loop system. 
When the approximation becomes better, some eigenvalues tend to the eigenvalues 
of the limit case, while the others move off to infinity. When some e igenvalues do so 
without leaving the right h::llf plane, instability persists. Th is is now illustrated with 
an example. 

Example I. Consider the scalar system 

x(t) = x(l) + u(1 - I ), ( II ) 

and the control law 

which assigns one closed- loop e igenval ue,\ = - 1. When the integral term in (12) is 
discretized using the forward rectangular rule, i.e. using (4) with 

j - 1 1 . 
B,',n == --, h,' n = - , J = I ... n, 

n ' n 

the control law becomes 

( I"" '=-' ( i -I)) u(t) = -2 ex(t)+~f;-;e .. u t - ~ (13) 

In Fig. I (above) the e igenvalues of the closed-loop system(l l) and ( 13) arc shown 
for n == 40 and n = 60. As n --+ 00, one eigenvalue converges to the assigned 
eigenvalue ,\ = - 1, while all the eigenvalues, introduced by the approximation, 
move off to infi nity. However, stabili ty is not obtained. The sequences of eigenvalues, 
whose imaginary parts tend to infin ity, yet whose real parts have a finite limit, are 
explained by the neutral type of the closed-loop system. In Fig. I (below) we show 
the eigenvalues of the associated difference equation 

(I"" '=-' ( i -I)) u(t)= - 2 ~f;-;e ~ u t - -,,- ( 14) 

As expected from theoretical considerations (related to property (10», the closed­
loop eigenvalues with a large modulus, but small real pari, are well approximated by 
eigenvalues of the d ifference equation [8]. 
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TIle instability mechanism is due to the nelllral type of the apptoximatcd closed­
loop system (I) and (6), in contrast with the rctarded type of the ideal closed-loop 
system (1)-(2). Hence, for any n the approximation involves a non-compact pertur­
bation of the solution sem i-group, associated with (I) and (2), which introduces an 
essential spectrum, see [23J. Having the radius of this essential spectrum larger than 
one resul ts in the sensitivity of stabi lity. Alternatively, a freque ncy domain interpre­
tation, including links with (lack of) w-stabi lity [9], is presented in [27]: the integral 
in (2) has a smoothing e ffect on its input, unlike any finite sum approx imation. This 
is reflected in the property that the sequence 

{
SUP r e( A - jw f) 8 dO _ thj,nC( A-iWI) 8;.n } 

w~O 10 j= 1 
">, 

does not converge to zero, as n -t 00. The hi gh-frequency error is indeed responsible 
for the unstable closed-loop e igenvalues with large imaginary parts. 

4 Stability Conditions 

Because the Hurwitz stabi lity of A + BKT does not imply the stability of ( I ) and 
(6) for large val ues of n, add itional conditions are needed to guarantee that also the 
eigenvalues, due to the approx imation, arc in the open left half plane. A compari­
son of the spectral plots in Fig. I suggests that hyperbolic stability properties of the 
closed- loop system ( I ) and (6) are tightly related to stabi lity properties of the diffe­
rence equation (9). This is indeed the case, leading to very simple and easy-to-check 
stabi lity criteria, which we now review. 

4.1 Necessary Condition 

The well known resu lt, stating that a necessary condition for the stabi lity o f the neu­
tral eq uation (8), or equivalently ( 1) and (6), is given by the stability of the difference 
equation 

" 
N,,(xr) = x(t) - L BKT eA9;·n x(t - OJ,,, ) = 0, 

j = l 

see e.g. L 8J, and the re lation of ( 15) with 

C(xd = x(t) _IT BKT eAt/x(t - O)dO = O. 

(15) 

( 16) 

lead to the fo llowing necessary condition for a safe implementation, which slightly 
generalizes [28, Theorem I]: 

Theorem I. Consider the system (1)-(2) and a quadrafllre rule sa/isfyillg (5). As­
sume that the closed-loop system ( 1) and (6) is asymplOticalfy stable fo r la rge valiles 
ofn. Then the characteristic equation off 16), 
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( 17) 

has all its roots in fhe closed left half plane. 

As an illustration we compare in Fig. 2 the rightmost roots of Equation (17), 
applied to the example ( 11 )-(12), with eigenvalues of the difference equation (14). 
Notice that the real parts o f the roots of (17) correspond to the position of chains of 
eigenvalues of the closed-loop system (II) and (1 3) for large n. 

"" • •• •• 
"" O{ 
" >0 00++ 

00,. 

" 
0. 

. ~ 
~~ ., ., 

~ 
., 

::J " < ., ., ., 
~ ., 

~" 
. ~ 

G' 
oo~ 

~,,>O OO{ 
~'" •• •• •• 
~"" ~ _3.5 ~, _2.5 ~, _1.5 ~, -<>., " '" 9! (J.) 

Fig. 2, Rightmost roots or (17), applied to the system (11)-( 12) (indicated with '0') and eigen­
values or the difference equation (14), where n = 40 (' + '). The latter are shown on a different 
scale in Fig. I (below). 

4,2 Necessary and Sufficient Condition 

The numerical experi ments wilh the example could suggest thallhe necessary condi­
tion of Theorem I is close to sufficient. However, in [231 it is proven that this is ge­
nerally not Ihe case, beeause Theorem I does nOI take into account the fact that the 
radius of the essential spectrum of the solution semigroup, associated with the neutral 
equation (8), i.e. Te(Tn(l)), is not continuous in the de lays Bj,n. See [2, II , 12,24] 
and the references therein for more infonnation on delay sensitivity of neutral equa­
tions and related questions. A consequence for the system (I) and (6) is that closed-
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loop stability may depend on the type of integration rule used and be sensitive to 
infinitesimal perturbations of Ihe abscissa OJ.,,, as we now illustrate. 

Example 2. We rev isi t Example 55 and discretize the control law (12) as 

u(t) ~ - 2 (e x(t) + t hj, .. e';,"u (t - OJ,") ) 
J=l 

( 18) 

where 

{ 
d, j even I . 

OJ,,, = j~4/5 . odd' hj , .. = n' J = 1 . .. n. 
" ,J 

( 19) 

Notice that the mod ified integration rule with parameters ( 19) also sat isfies the 
convergence property (5). In Fig. 3 we show the eigenvalues of the closed-loop sys­
tem (I I ) and ( 18), as well as the eigenvalues of the associated di ffe rence equation 

u(t) = -2 (t hj,,,eIJ;,nu(t - OJ.,,) ) , hj.,,,Oi.,, given by (19). (20) 
J= 1 

and roots of (17). Although the rightmost roots of ( 17) are also well approx imated 
by eigenvalues of (20), they do no longer detenni ne the stability of (20) and of the 
closed-loop systcm ( II ) and (18) for large n. 

By making infini tesimal perturbations of the abscissa OJ,,, in (19), the rightmost 
eigenvalues of the dilTerence eq uation can have their real part arbitrarily close to 
the value a", indicated on the figure, but no larger than a" + E, for any E > O. In 
fac t, such a val ue a" detenni nes stability of the diffe rence equation when subject 
to small variations in the delays, called strong stability in [1 2], In [23, Section 41 
it is described how a" can be computed analytically. Furthennore, it is shown that 
lim,,-->oo a" exists and is independent of the type of quadrature rule. 

Remark /, The sensitivity of stability w.r.t. infinitesimal perturbations, as well as the 
high-frequency instabi lity mechani sm, described in Sect. 3, are phenomena, which 
are related to the sensitivity of stability of some boundary controlled hyperbolic 
PDEs, feedback controlled descriptor systems and neutral type systems against small 
delays in Ihe control loop, as reported in e.g. [3-5, 13,17-20]. Sensitivity stabi­
lity w.r.t. infinitesimal modelling errors also occurs in the Sm ith predictor control 
scheme [34), see [26,3 1] and the references therein. 

Because arbitrarily small perturbations of the abscissa OJ,,, may destroy stabi lity 
of the closed-loop system ( I) and (6), yet are inevitable in any practical application, 
they should be taken into account in a definition of a safe implementation. Therefore, 
we say: 

Definition 1. COllsider the system (/) alld (2), where A + BJ{T is Humitz. and the 
quadrature rule (4). Theil the implementation (6) of the control law (2) is safe if the 
following two conditions are satisfied: 
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<: . 
•• • • : t 
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+ + + +"+ ~ • 
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• • t • • C·· 2: 0 • 0 

--------------
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~ + 
-roo . .j.+++..: , , • • < .. • • • 
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-'00 ' +++ + ~+ • 

++ + + ++ 
+ .. + +.+ -It. • 

- 000 <;+++ + • , ., <: .. • 
• • -, ~ -, -, -, 0 , , 

'X(J..) 

<: • t +++ + • n -+<><> , 
1 , • - +-t + • , 

<: .. + • • • • · ., , , , , , <++ + • • ... • • • • • • • 
'" + 

• • • • , 
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•• • • • • • 
H • • •• • <H , , 

++ + , , • • +' .,.; , • , , , , <+.+" + 
t-t+. + '+ 

1 , , 
<+++ + 

, · , , -, -. -, -, -, 0 , , 
'X()') 

Io' ig. 3. (above) Closed-loop e igenvalues of the system (J I) and ( 18)-( 19) for n = 40. (below) 
Eigenvalues of the associated difference equation (20) C+') and roots of (1 7) Co'). Unlike 
the situation displayed in Fig. I, stabi lity of the difference equation for large n is no longer 
determined by the rightmost roots of (17). 
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i) There exists a IlIImber n E N such that the closed-loop system (1) and (6) is 
asymptotically stable for all n 2: n. 

ii) For each n 2: n, there exist constants LlOj ,n > 0 sllch ,har the cOlI/rollaw 

«(t) = [(1' ( eATX(t) + ~ h - eA(Oj ... H9 j·" )B u (t - (0 · +JO · ») 6 J,n J,n J,n 
j : ] 

achieves asymptotic stability for all lJO j .n I < t10 j .u ' 

In the sense of this defmition, an almost necessary and sufficient stabi lity cond i­
tion is given in [23, Theorem I], which does not depend on the type of integration 
rule. Essentially it corresponds to a strong stabil ity requirement for the difference 
equation (9) for large n: 

Theorem 2. Consider the system (I) and (2), and assllme that A + BKT is Hllnvitz. 
Let 

(21) 

If S < 1. then the control law (2) CO/! be safely implemellled as (6), in the sense of 
Definition 1. 
If S > 1, then the control law (2) cannot be safely implemented. 

In the multiple input case, a sufficient condition for a safe implementation is 
given by 

see [23 , Section 6]. 

5 Removing restrictions 

The main advantage of the control law (2) lies in the fact that all the closed-loop 
eigenvalues can be freely assigned. A disadvantage is the difficulty of computing 
the control law on-l ine, which involves the evaluation of the integral. In particular, 
for the implementation with a sum of point-wise delays the stabil ity condition of 
Theorem 2, i.e. S < 1, puts severe restrictions on stabilizability and perfonnance, 
which are shown in l23jto be comparable to the case of a static, non-predictive, stale 
feedback controller, u(t) = KT x(t). In this section we briefly comment on possible 
modifications of the control law (6) to remove these restric tions. 

5.1 Adding a Low-Pass Filter 

The instability mechanism, as explained in Sect. 3, is a high-frequency mechan ism, 
related to the occurrence of unstable eigenvalues with arbitrarily large imaginary 
parts. A closer look at the problem reveals thatlhe latter are caused by the throughput 
at infinity of past inputs in (6) and, therefore, can be avoided by including a low-pass 
jilter in the control dynamics. This is now illustrated. 
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Example 3. We reconsider the system (I I) and (13) and modify the control law, by 
adding a first order low-pass filter, to 

{ 
itt) = ~ / z{t) - 2/ { ex(t) + ~ 'L j'=1 e.L;;-! u (t - ~)}. (22) 
u = z{t) 

Due to the filter, the closed-loop system is of retarded type. Its eigenval ues are shown 
in Fig. 3 for difTerent values of n . For sufficiently large values the closed- loop system 
is asymptotically stable. 

• • • 

"'" \ 
+ + + + 

"" • • , ",., • • 
+ + "-

+ + + + + n. 40 

"'" 
2: , 

+-----0 

assigned 
eigenvalue 

-"'" + + 

, , I 
-"" , , 

+ + + + 

-"'" I 
• • • -, -. -, -, -, , , 

'}{(),) 

Fig. 4. Closed-loop eigenvalues of (II) and (22) for f = 100 and fl = 40 C+'), respectively 
fl = 60 ClI'). Due to the low-pass filter the closed-loop system is of retarded type and unlike 
the situation shown in Fig. I (above), sequences of eigenvalues, whose imaginary pans grow 
unbounded, yet whose real pans have a finite limit, do not occur. The low-pass filter puIS an 
upper bound on the imaginary parts of the unstable eigenvalues, which is independent of n. 
Therefore, the real parts of the introoueed eigenvalues move to the left half plane as fl --+ 00 
(actually their real pans move off to minus infinity) and stability is obtained. 

This idea is generalized in [29]. Since any strictly proper linear system represen­
ted by (A f ' B f, C f) has a low-pass filtering property, the dynamic control law 
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l
i (t) ~ .4 f'{t)+ B',(eAOx(t)+ [~A9BU(t - 9)de} (23) 

x p( t,t+h) 

u(t ) ~ C, ,(t) . 

is suggested, It is shown that the closed-loop eigenvalues are equal to the e igenvalues 
of the fin ite-dimensional system 

{ 
x(t) ~ Ax(t) + /3C,,(t) 
i(t) ~ A,,(t) + B,x(t ) , 

(24) 

hence, also assignable using standard design methods for ordinary differential equa­
tions, Furthermore, a di screti zati on usi ng (4) preserves stability for large values of 
n. 

5,2 Piece-Wise Constant Input 

In [36], [32, Section 3] and [33, Section 3 J the input u( t) is kepI p iecewise COllstam in 
time-intervals of length d, inspired by the implementation with a digital controller, 
Then, at the sampling times, the system ( I) is completely equivalent with a discrete 
system, When d = rip, pEN, this di screte system takes the fo nn 

x(k + 1) = AdX(k) + Bd'fi(k - p), 

where x(k) = x(kd), u(k) = u(kL1) and 

(25) 

As in the continuous time case, the delay can be compensated using a prediction: for 
the control law 

(26) 

the characteristic equation of the closed-loop system is given by 

Because the system (25) and (26) is full y discrete, the maximal possible frequency 
is given by 1/(2d) (the eelebnlled Nyquist-Shannon criterion) and, therefore, sensi­
tivity of stability w,r,1. arbi trarily small pcnurbations of the parameters of (26) is not 
possible. 

Note that the control-law (26) can be considered as a full discretization of the 
continuous control law (2), using a panicular quadrature rule. However, in [36] it is 
also illustrated that one cannot take any quadrature rule, satisfying (5), and obtain 



220 Wim Michiels et al. 

stability for sufficiently small values of .1 after a full discretization. For instance, 
applying Simpson's rule may lead to instability. The instability mechanism is related 
to the one in the cont inuous time case, where approximations lead to eigenvalues with 
arbitrarily large frequencies. In the discrete time-case, unstable modes may occur 
with the maximal frequency5 1/(2.1), which tends to infinity as Ll ~ O. 

Acknowledgements 

Thi s work presents research results of the Belgian program on Interuniversity Poles 
of Attraction, initiated by the Belgian State, Prime Minister's Office for Science, 
Technology and Culture (lAP PS) and is supported by Conacyt, Mexico, project 
41276- Y. Wim Michiels is a postdoctoral fellow of the Fund for Scientific Research 
-Flanders (Belgium). 

References 

I. Anstein, Z., "Linear systems with delayed control: a reduction," IEEE Transactions on 
Alltomatic COl1lrol, vol. 27: 869-879,1982. 

2. Avellar C.E. and Hale J .K: "On the zeros of exponential polynomials:' Mathematical 
analysis and applications, vol. 73:434-452, 1980. 

3. oatko, R., ''Two examples of ilI-posedness with respect to time delays revisited:' IEE£ 
Transac/ions on AII/omatic COIl/rol, vol. 42: 434-452, 1997. 

4. Oatko, R., "Not all feedback stabilized hyperbolic systems are robust with respect to 

small time delays in their feedbacks," SIAM JOllrnal on COl1lrol and Optimization, vol. 
26: 697-7 13, 1988. 

5. Oatko R., Lagnese J ., and Polis M.: "An example on the effect of time delays in boundary 
feedback stabilization of wave equations," SIAM JOllmal on Control and Optimization, 
vol. 24:152-156,1986. 

6. Engclborghs K. , Oambrine M. and Roose D.: "Limitations of a class of stabilization me­
thoos for delay equation, I££E Transactions on AI4tomlllic COII/rol, vol. 46(2), 336-339, 
2001. 

7. Engelborghs, K., Luzyanina T. and Samaey, G., "DOE-BIFrOOL v. 2.00: a Matlab pa­
ckage for bifurcation analysis of delay differential equations," Technical Report nv-330, 
Depanment of Computer Science, K.U.L..euven, L..euven, Belgium, 2001 (Available from 
www . cs.kuleuven.ac.be/ ...... koen/delaylddebiftool. shtml). 

8. Fattouh. A., Sename, O. and Dion, J.M., " Pulse controller design for linear time-delay 
systems," Proceedings of the IFAC WorkshOIJ on System, Strllclllre and Comrol, Prague, 
the Czech Republic, 2001. 

9. Georgiou, T.T. and Smith, M.e., "Gl1lphs. Causality and Stabilizabi lity: Linear, Shift­
Invariant Systems on £2{[O, 00) Math. Comrol Signals Systems. vol. 6: 195-223, 1993. 

10. Hale J.K. and Verduyn Lunel, S.M.: ImroduClion to fllnClional differential eqllations, vol. 
99 of Applied Mathematical Sciences. Springer-Verlag, 1993. 

5 Such a mooe corresponds to a negative real eigenvalue of the fully diseretized system. 



Approx.imating Distributed Delay Control Laws 221 

II. Hale, J.K., "ElTects of delays on dynamics," in Topological melhods ill d(fferenlial equo· 
lions alld illclusions, (A. Granas, M. Frigon, G. Sabidussi, Eds.), Kluwer Academic Pu· 
blishers, 191 - 238, 1995. 

12. Hale, J.K. and Verduyn Lunel, S.M, "Strong stabilization of neutral functional differential 
equations," IMA Journal of Mathematical COlJlroland II/jonnalion. vol. 19: 5-23, 2002. 

13. Hannsgen, K.B., Renardy, Y. and Wheeler, R.L., "Effectiveness and robustness with res­
pect to time delays of boundary feedback stabilization in one-dimensional viscoelasticity," 
SlAM Journal on COII/roi and Optimization. vol. 26: 1200- 1234. 1988. 

14. Hardy G. H. and Wright E.M.: An illlroduction 10 fhe theory of numbers. O"ford Univer­
sity Press, 1968. 

15. Kolmanovskii, V. B. and Nosov, V. R., Stability offimctiono/ differelllial equations, vol. 
180, Mathematics in Science and Engineering, Academic Press, 1986. 

16. Kwon, W. H. and Pearson, A.E., "Feedback stabilization of linear systems with delayed 
control," /£E£ Transactions all AWolllatic COII/ro/, vol. 25: 266-269, 1980. 

17. Logemann H.: "Destabilizing effects of smalltime-delays on feedback-controlled des­
criptor systems," Linear Algebra and its ApplicatiQllS, vol. 272: 131-153, 1998. 

18. Logemann, H. and Rebarber, R., "T he effect of smalltime-delays on the closed-loop 
stability of boundary control systems," Math. COl1lrol Signals Systems, vol. 9: 123-151, 
1996. 

19. Logemann H., Rcbarbcr R. and Weiss G.: "Conditions for robustness and nonrobustness 
of the stability of feedback control systems with respecllo small delays in the feedback 
loop," SIAM JOllrnal 011 COl/tral and Optimil(ltion, vol. 34(2):572-600, 1996. 

20. Logemann, H. and Townley, S., ''The effect of small delays in the feedback loop on the 
slllbility of neutral systems." Systems & COlJlrol Let/ers, vol. 27: 267-274, 1996. 

21. Manitius A. Z. and Olbrot A.W.: "Finite spectrum assignment problem for systems with 
Delays," IE££ TraIlS. Autonl. Contr:, vol. AC-24, No.4, 541-553, 1979. 

22. Michiels W., Mondie S. and Roose, D.: "Robust stabilization of time-delay systems wi th 
distributed delay control laws: necessary and sufficient conditions for a safe implementa­
tion," AUlOlllatica, 2002, submitted. 

23. Michiels, W., Mondie. S. and Roose, D.: "Robust stabilization of time-delay systems with 
distributed delay control laws: necessary and sufficient conditions for a safe implementa­
tion." Technical Report n¥-J63 Depanment of Computer Science, K.U.Lcuven. Belgium, 
2003. 

24. Michiels W., Engelborghs K., Roose D. and Dochain D.: "SenSitivity 10 infinitesimal 
delays in neutral equations," SIAM Jormral on Control and Optimization, 40(4): 1134-
1158,2002. 

25. Michiels W., Engelborghs K., Vansevenant P., and Roose D.: "The continuous pole pla­
cement method for delay equations," Autonrorica, 38(5):747-761. 2002. 

26. Michiels W. and Niculescu 5.-1.: "On the delay sensit ivity of Smith predictors:' Inter­
natiolla/ Joumal of System Sciences, invited paper in special issue on control theory of 
time-delay systems, 2003 (to appear). 

27. Mirkin, L. and Zhong, Q.-c., "Are distributed delay conlrollaws intrinsically unapprolli­
mable," in Proceedings of the 4th IFAC Workshop on Time-Delay Systems, INRIA Roc­
quencoun, France, 2003. 

28. Mondif S., Dambrine M. and Santos, 0 .: "Approllimations of control laws with distribu­
ted delays: a necessary condition for stability," Kybemetica, vol. 38: 54 1-551, 2002. 

29. Mondie, S. and Michiels, w., "Finite spectrum assignment of unstable time-delay systems 
with a safe implementation," IEEE Transactions on Automatic Control, 2003 (accepted). 

30. Niculescu S.-I.: Delay effects on stability: A robust cOlI/rol approach, Springer: Heidel­
berg, 2001. 



222 Wim Michiels et al. 

31. Palmor, ZJ., 'lime-delay compensation- Smith predictor and its modifications," in The 
COII/roi Handbook, (CRC and IEEE Press, New York), (chapter 10),224-237, 1996. 

32. Rasvan, V. and Popescu, D, "Control of systems with input delay: An elementary ap­
proach," (this volume, part 111). 

33. Rasvan, V. and Popescu, D., "Feedback stabi li zation of systems with delays in control;' 
Control Engilleerillg alld Applied III/omwties vol. 3: 62-66, 200 1. 

34. Smith, OJ., "Closer control of loops with dead time," Chemical Ellgilleerillg Progress, 
vol. 53: 217-219,1957. 

35. Van Assche V" Dambrine M .. Lafay J .-F. and Richard J.- P.: "Some problems ariSing in the 
implementation of distributed-delay control law," Proceedillgs o/the 39th IEEE Con/e­
rence 011 DecisiOlJ alld COlltrol, Phoenix, AZ, December 1999. 

36. Van Assche v., Dambrine M., Lafay J.-F. and Richard J. ·P.: " Implementation of a distri· 
buted control law for a class of systems with delay," Proceedillgs 0/ the 3rd Workshop Oil 
Time Delay Systems, 266-271. Santa Fe. NM, December 200 1. 

37. Wang, Q.G .• Lee, T.l1. and Tan. K.K, Finile Spectrum Assigllmelll for TIme-Delay Sys­
tems, Lecture Notes in Control and Informat ion Sciences, vol. 239, Springer-Verlag, 1999. 

38. Watanabe, K. and Ito, M, "A process model control for linear systems with delay." IEEE 
Transactiolls all Alltomatic COlllrol. vol. 26: 1261- I 268, 1981 

39. Wanmabe, K .• "Finite spectrum assignment and observer for muhivariable systems with 
commensurate delays," [EEE Transactiolls on Automalic COl!lrol, vol. 3 I: 543- 550, 1986. 



Part V 

Partial Differential Equations, Nonlinear and Neutral 
Systems 



Synchronization Through Boundary Interaction 

Jack K. Hale 

School of Mathematics, Georgia Institute of Technology, Atlanta. GA 30332, USA 

Summary. The dynamics of a physical system can change when exposed to an environment 
in which it interacts with other systems. In many situations, such interaction can lead to syn­
chronization in the sense that the dynamics of all systems are essentially the same. Some 
results and references can be found in Iiale (1997) for ode and certain types of pdc. Other 
interesting classes of problems occur when the equations arise from the interaction of systems 
whose dynamics arc defined by a pde on a given domain and the interaction of the systems is 
through the boundary. We give an illustration of how this can occur for lossless transmission 
lines which interact through resistive coupling at the end of the lines. The problem will be sol· 
ved using the equivalent formulation in tenns of a set of partial neutral functional differential 
equations. 

1 A Model Problem with Transmission Lines 

Consider the lossless transmission line 

Lai __ av 
~ at - ax 

cav __ {}i 
6 at - ax 

with x E (0, 1) with the boundary conditions 

o ~ E - v(O, t ) - R.,i(O , t) 

- c :t v( l , t) ~ -i( l , t) + g(v( l , t». 

(1a) 

( l b) 

(2,) 

(2b) 

The constant L$ represents the series inductance and C$ the capac itance per unit 
length of the line. The fonn of the boundary condition denotes a specific type of 
circuit across the line consisting of battery source E, a resistor Rn and a nonlinear 
resistor circuit 9 and a capacitance C. We assume thai 9 is at least C1

. 

WU and Xia (1996) have considered N such transmission lines with currents 
ik and voltages Vk on a c ircle with identical resistive coupling R to their nearest 
neighbors at the boundary point x = 1 to obtain the system 
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£8i k __ 8vk 

$ 8t - 8x 
C 8Vk __ tJiJ.. 

$ at - ax 

with x E (0, 1) with the boundary conditions 

0= E - Vk(O,t) - Roik(O, t) 

-C ~vdl,t) = -ik(l,t) + g(vk(l,t)) 

1 
- R[Vk+l - 2Vk +vk_ d( l ,t), 

wherek = 1,2, ... ,N. 

(3,) 

(3b) 

(3c) 

(4a) 

(4b) 

Following Hale ( 1994), if we now suppose that ~ = 1f¥, where h is the spacing 
between the lines and f{ > 0 is a constant independent of N, then, as h -.; 0, we 
obtain the partial differential equation 

£ ai(x, y , t) 
• at 

c tJv(x,y,t) 
• at 

with the boundary conditions 

av(x , y, t) 
ax 

8i(x, y , t ) 
ax 

XE(O , l ), 

0= E - v(O,y, t) - Roi{O,y, t), 

_ C av(l ,y ,t) ~ _ '( ) _ 1(Ca'v( l ,y,t) 
at ! l , y , t ay2 ' 

where 51 is the planar unit circle with center zero. 

(Sa) 

(5b) 

(6a) 

(6b) 

The variables (v(x,y,t),i{x,y, t)) satisfy the telegraph eq uation in x E (0, 1) 
and a parabolic equation in y E 51 at the boundary point x = 1. We choose the space 
of initial data from the space X == [£2(0, I ) X HI (51 W. We will show that the 
asymptotic properties of the solutions of this equation do not depend upon y E 51 if 
the coupli ng constant f{ is sufficiently large; that is, we have synchronization through 
the boundary conditions. 

To be more precise, we suppose that the eq uation defines a semigroup TK - l (t), 
t 2: 0 on X for which there is the compact global attractor AK- l; that is, AK - , is 
a compact set which is invariant under TK - , (t) for t 2: 0 (T K-' (t)A K -, = AK -, 

for t 2: 0) and, for any bounded set B ex, 

lim distx(TK- l{tjB,AK- ,) = O. 
,~OO 

Definition I. lYe say that 5),stem (5), (6) is synchronized if each element oj the com­
pac/ global attractor AK-, is iI/dependent ofy E 51. 

The main result is 
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Theorem I. There is a corlstmll J(l > 0 such tllat,jor each J( ~ J(l, system (5), (6) 
is synchronized. 

Remark I. For the discrete system (3), (4), the space X should be [L2(0 , 1 )1 2 X IRN . 
Synchronization can be defined for (3), (4) by saying that the elements of the attractor 
must be of the foml (v(x, t) , . .. , v(x , t» E aN ; that is, lies on the diagonal in aN . 
The same conclusion as in Theorem I holds for (3), (4) if [{ is sufficiently large. 

It wou ld be interesting to prove Theorem I by working directly on the partial 
differential equations. However, it is not known at this time if this is possible. The 
proof below goes through an auxiliary neutral functional differential equation. 

It has been known for a long time (see Hale and Verdyun-Lunel (1993) or Wu 
( 1996)for references) that, if V(t) == v( l ,t) , then (I), (2) is equ ivalent to a neutral 
functional differential eq uation (NFDE) 

d 
dt D(q)v, ~ 1(11,), 

on the space C([-r,O), IR), where 

D(q)<p ~ <prO) - q<p(-' ), 

r == 2jL'C$' 
,;r;rc; -Ro 
jL,IC, + Ro 

(7) 

(8, ) 

(8b) 

lev, ) ~ ~ - ,~ Vet) - :l: Vet - ,) - D(q)g(V,) (9) 

and CI' == 2EI«L.IC.)1/2 + Ro). 
The reduction of ( I), (2) to (7), (8), (9) makes use of the boundary conditions and 

the represention of the solutions of ( I ) as 

v(x,t) == !.p(x - st) + 1/J(x + st ) 
1 

;(x,t) ~ (L , IC,),I' [<p(x - ,t) - ",(x + ")1 · 

( IDa) 

( lOb) 

The same procedure can be applied to (5), (6) to obtain the partial neutral func­
tional differential equation (PNFDE) 

( 11) 

with periodic boundary conditions. 
Let Y == C([-r,0J, Hl (5 1». If !.p E Y. then there is a unique solution 

u(t,!.p)(x) of (8) with initial value If' on [-r,O); that is. u(B,If')(x) == !p(B)(x) , 
B E (-r, O], x E 51, or, equ ivalently, uO( ·,!.p) == !.p. This solution is defined on a 
maximal interval (-r, CI'",) and Ut( ·,rp) E Y for t E [0,0'",) (see Hale (1994), Wu 
(1996». Furthennore, u(t,!.p) is as smooth in If' as the funct ion j. 
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We suppose that all soluti ons of ( II ) are defined for all t ~ 0 and let TK - , (t), 
t ~ 0, be the semi group defined by T K-' (t)ip = UI(' , 11'). As remarked above, if / 
is a Ck- function (or analytic), then T K -, (t)'P is C k (or analytic) in 'P. 

With the operator D(q) de fined as in (8), define the space 

Cv(I- ' , 0], III) = {", E C(I - ,, 0]' III) , D(q)", = OJ ( 12) 

and consider the homogeneous d ifference equation 

D(q)y, = O. ( 13) 

If Iql < I , then D(q) is exponenti ally stable; that is, there are positive constants 
a, {3 such that, for any II' E CD{[- r, O], IR), the solution y(t ,'P) , YO(- ,'P) = 'P, of the 
difference equation ( 13) satisfi es 

( 14) 

For the special D thai we are considering, e-a = Iql. 
We recall that a compact global allraclOr A for the semigroup T K- ' (t) on Y 

is a compact sci which is invariant (TK- , (t)A = A for all t ~ 0) and A allrncts 
bounded sets of Y ; that is, 

lim disty(TK - , (t) B ,A) = 0 
,~= 

for each bounded set BeY. 
Suppose that there is a compact global attractor A K - , C Y for TK - , (t ), t ~ 0, 

for each J{ E (0,00). This will be the ease if the orig inal equation (5), (6) has the 
compact global attractor. 

If SI is represented by the interval (0, 1I""J with ° and 11"" identi fi ed , then the e igen­
values of the Laplacian K a'1 lax" with periodic boundary conditions are _Kn'1 for 
n = 0, 1, 2, .. .. Therefore, if K is very large, it is to be expected that the auractor 
AK - , of ( II ) should be very c lose to the attractor Ao of the equation (7) (which we 
assume to ex ist). 

We can prove the fo llowing theorem which is essentially contai ned in Hale 
( 1997). 

Theorem 2. Suppose that there is a positive COl/SWill K J such that the allracrors 
{A K- " K ~ K J } U Ao 0[( II ) are ullifonllly bounded. Theil there is a K '1 ~ K I 
such thatJor K ~ K'1. 

A K - , = Ao, 

the compact global allractor 0/(7); that is. the system is synchronized. 

We outline the proof. Let Y = Yo ffi Y I , where Yo consists of fu nctions which arc 
independent of the spatial variable and Y I are all functions in Y which are orthogonal 
to the constant functions. For any 'P E Y , we have 
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'P :::: 'Po + 'Pt 

J 1" !Po = - !p(x)dx, 
IT 0 

1" !PI (x)dx :::: 0 

I f we let a solution of ( 11) be written as 

Ut = V, +wt. Vt E Yo,Wt E YI 

then Vt, Wt sati sfy the equations 

8 at D(q)v, ~ J (v,) 

+1T-1 l 1f

[f(Vt + Wt{-,x)) - f(vdldx . ( 15a) 

8 8' 
8t D(q)Wt = K QXz D(q)wt 

+ f(vt + wd - 1T-
1 10 If [t(Vt + Wt(·, x))dx. 

a' 
:: K 8 xzD(q)Wt + F(vt,wd (1 5b) 

We first observe th3t solutions on the attractors must s3tisfy some special proper­
ties. If we let B :::: J1/dx2 with periodic boundary conditions, then each solution on 
any of the al1ractors {A K - " J( 2: /(\} must satisfy 

DWt :::: [ too eK8(t-' )P(v"w,)ds (16) 

for all t E lfl 
Since F('Po, 0) = 0 for each 'Po E Yo, there is a const3nt ko such th3t 

From (17), (16), the fact that 

(18) 

D is stable and W, is bounded for t E lR, it can be shown that Wt :::: 0 for all t E IR 
provided that J( is sufficiently large. This proves the Theorem. 

2 Proof of Theorem 1 

Let us now show how the concl usion in Theorem 2 implies the conclusion in Theo­
rem I. Let (i(x, y, t), v(x, y, t» be a solution whieh belongs 10 the auraetor .4.K - , . 
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Theorem 2 implies that v( l , y , l ) is independent of y E SI. The boundary condition 
(6) implies that i( 1, y , t) is independent of y E SI. From (10), for all T E IR. 

v(x , y , :' + T) + (L 8 /C. )I /zi (x , y ,:' + T) = 2¥?(- ST, y) . , , 
Evaluat ion at x = 1 implies that r.p (O , y) is independe nt of y for all y E SI. Also, 
from ( 10), 

x 
v(x , y , -- + T) = r.p( -2x - ST, y) + "I/J (ST, V). , 

Evaluation at x = I implies that "I/J (O , y) is independent o f y E SI. Again, using 
(10), we conclude that (i (x , y, t), v (x, y, i)) is independent of y E SI. This proves 
Theorem I . 

3 Almost Synchronization 

If we allow the ind ividual systems to be governed by the same PDE ( I) and keep the 
same boundary condition al x = 0, but have different nonli near resistor circuil in the 
boundary condit ion at x = 1, then we obtain the spatially dependent equation 

with periodic boundary condit ions. 
In this case, one would expeci that the aHraclOrs A K - , would be close 10 the 

altrac\or Ao of the 'averaged' neutral FDE 

a -
B,D(q)y, ~ flY,) , y, E C([ - r, O],III). (20) 

where 

7(<p) ~ - f (x , <p)dx, 1 l' 
• 0 

(2 1) 

This is actually the case as stated in the following 

Theorem 3. Suppose that there is a positive constant K 1 such that the arrracrors 
{A K- l , K 2. K 1} U Ao 0/ ( / 9) are ulliformly boullded. Theil there is a K2 :?: K1 
such thatJor K :?: /(z. A K -, is a smooth graph over the cOllstant/unctions in Y 
which approaches Ao as K -+ 00, where A o is the compact global attractor for 
(20); that is, the system is almost synchronized. 

The proof follows in spirit the proof of Theorem 2. We make the same decompo­
sition of solutions Ut = Vt + Wt to obtain the equations 
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8 -
8t D(q)v, ~ f(v,) 

+1T - t l"[j(X,VI +Wt(·, X)) - f( x,vdldx. (22a) 

8 8' at D(q)Wt = J( ox2 D(q)wt 

+ f (x,vt + wd - 1T - t lit [j(x ,Vt + WtLx))dx . 

8' 
::: J( OX2D(q)Wt + F(x ,vt, wd (22b) 

Under the hypotheses of the theorem, one can show the existence of ko and kJ such 
that 

IF(x, <Po, <p t} ly ~ kol<ptl + kl V<po + <PI E {A K-" J( 2' I(I} UAo, x E SI (23) 

Using (23), ( 16) and (1 8), we have 

Si nce D is exponential stable and Wt must be bounded on Ifl, we conclude that 

k, 
IWt l :::; oK ' t E IR 

(24) 

(25) 

for some 0 > O. This relation shows that elements on the attractor must approach 
spatially independent functions as J( -+ 00, which is almost synchroni zation. 

To prove the more precise statement in the theorem, we make use of the theory 
of invariant manifolds which we do not discuss. 

4 Further Remarks 

Other interesting properties of the equation ( 19) (as well as more general ones) is 
that the solution operatorTK-, (t) can be written as 

TK -, (t ) ~ S(t) + U(t) (26) 

where S(t) is a linear sem igroup on Y and there are positive constants k2' 0.2 such 
that 

IIS(t)1I ,; k,e- ·", t 2 0 (27) 

and the operator U(t) is completely continuous for t > 0 (see Hale (1994». 
As a consequence, we obtain the existence of the compact global attractor if 

{TK - l (t )B,t 2' O} is bounded for each bounded set B c X and TK-l (t) is point 
dissipative; that is, there is a bounded set U c X such that, for any <p EX, there is 
ato > Osuchthat TK-,(t)<p E U for t 2' to (see Hale (1988». 
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Following Hale and Scheurle (1985), one also can show that each solution 
u{t), t E IR, which belongs to a compact invariant set (in partiuclar, the compact 
g lobal attractor) is as smooth in t as the fun ction f. Therefore, all periodic orbits 
must be smooth manifolds and one can define characterist ic mult ipl iers of periodic 
orbi ts, hyperbolicity, etc. The effects of perturbations in f on periodic orbits has not 
been di scussed completely, but it should be possible to do so using the techniques in 
Hale and Wcedemlan (2002). 
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Summary. Output regulation of neutral type nonlinear systems is considered. Regulator 
equations are derived, which generalize Francis-Bymes-Isidori equations to the case of neu­
tral systems. It is shown that, under standard assumptions, the regulator problem is solvable if 
and only if these equations are solvable. In the lincar case, the solution of these equations is 
reduced 10 linear matrix equations. 

I Introduction 

One of the most imponant problems in control theory is that of controlling the output 
of the system so as to achieve asymptotic tracking of prescribed trajectories. This 
problem of output regulation has been studied by many authors (see e.g. a survey 
paper by Byrnes and Isidori [2] and the references therein). In the linear case, Francis 
[41 showed that the solvability of a multivariable regu lator problem corresponds to 
the solvability of a system of two linear matrix equations. In the nonlinear case, 
Isidori and Byrnes (II} proved that the solvability of the output regul ation problem 
is eq uivalent to the solvabil ity of a set of part ial differential and algebraic equations. 
Thi s set of partial d iffe rential and algebraic equations is now known as the regulator 
equations or Francis-lsidori-Bymes equations. 

For linear infinite-dimensional control systems a solution of the regulator pro­
blem was introduced by Schumacher [13] and Byrnes et aJ. [3], where a Hilbert 
space was used as a state space. The case of the bounded input and output opera­
tors was considered . In the case of systems with time-delay it means that there are 
/10 discrete delays in the COII/rol input, cOlI/roffer output and measured output. The 
solution was given in terms of the operator regulator equations. 

The solution of the output regulation problem for re tarded type systems was ob­
tained recently in [6], where a Banach space was used as a state-space. In the present 
chapter we generalize the results of[6] to the neutral type case. Our solution is based 
on the appl ication of the center manifold theory. The existence, smoothness and the 
attractiveness of the center manifold for neutral type systems were proved by Hale [81 
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(sec also [8], chapter 10.2). A partial differential equation for the function, determi­
ning the center manifold for such system was derived in [14], [51. [I]. In tile present 
chapter, we consider output regulation of nonlinear systems with stme. controller 
Ol/tplll and measured Ollfpllf delays. As for the systems of retarded type [6], the pro­
blem is solvable ilT certain regu lator equations are sol vable. These equations consist 
o f partial differential equations for a center manifold of the closed- loop neutral sys­
tem and of an algebraic eq uation. In the linear case the solutio n of these equations is 
reduced to linear matrix equations. 

Notations. R'" is the Euclidean space with the norm I . I and C"'[a, bj is the 
Banach space o f continuous functions 4> : la, b] -t Rm with the supremum norm 

11· 11 
A function f : X -t Y, where X and Yare Banach spaces, is a C" func tion if it 

has k continuous Frechet derivatives. 
D' oote by x,(O) ~ x(t + 0) (0 E [- h; 01). 
Lz{[ - /1 , 0], Rn) is the Hil bert space o f square integrable R" valued functions 

with the corresponding norm . 
W1.Z([_h,OJ,Rn) is the Sobolev space of absolutely continuous R" valued 

functions on [- h, 0] wilh square integrable derivatives. 
The transpose o f a matrix /1.1 is written MI . 

2 Problem Formulation 

We consider a nonlinear system modelled by equations of the form 

-IkDXt = f (xt,u(t) ,w(t)) , e(t) = g(Xt ,w{t» (Ia,b) 

where x(O) = ¢(O),O E [- h,O], with state x(t) ERn , initial func tion ¢ E 
Cn[ - h,D]. control input u(t) E R"', exogenous input w(t) E Wand tracking 
error e(t) E RP. The linear bounded operator D : C"[- h,O] -t R n is represented 
in the form of Slicitjes intcgral [8J: 

D1 ~ 1(0) -l, dl{(0)11(0), 

with n x n -matrix function f; of bounded variations. 
We assume 
HO: The following conditions hold : 

(i) ~ is nonatomic at zero, i.e. V ar[_6.o)f;(·) -t 0 for t -t 0; 
(ii) D is the stable operator, i.e. the equation DXt = 0 is asymptotically stable . 

The exogenous input is generated by an autonomous dynamical system of the 
foom 

w(t) ~ ,(w(t)) (2) 

The functions f : V -t R", s : tv -t Rr, 9 : Y -t RP are smooth (I.e. C OO ) 
mappings, where V c cnl- h, O] x R'" x nr , tv eRr, Y C cn[ - h,o] x Rr 
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are some neighborhoods of the origin of the corresponding spaces. We assume that 
1(0,0, 0) :::: 0, 8(0) :::: O. g(O, O) := O. Thus, for u :::: 0, Ihe system (la) has an 
equil ibri um state (x,w) = (0, 0) with zero error ( I b). 

A solution of ( I) with in itial value Xo E C"[- h, O] is a contin uous function 
taking [- h, A), A > 0 into R" such that D(xd is cont inuously differentiable and 
satisfies ( I) for t E (0, ..4). Assumption HO (i) guarantees the existence and the uni­
queness of the solution to initial value problem for (I ), wherc u(t) and w(t) are 
continuous functions [8]. Assumption HO (ii) guarantees that the characteristic equa­
tion corresponding to the lincar systcm 

d 
-[ DXt := LXi> 

" 
wherc L : C"[ - h,O] -)0 R" is a linear boundcd operator, has a finite number of 
roots with nonnegative real part. 

We consider both, a state- feedback and an error-feedback regulator problems. 
Problem I (Slate- Feedback Regufator Problem): Find a state- feedback control 

low 

u(t) ~ a(x"w(t )), 

whercCt : Y -)0 R m is a Ck(k 2: 2) function and Ct(O,O) :::: Osuch that : 
l a) the equilibrium x(t ) :;: 0 of 

is exponentially stable; 

(3) 

Ib) there exists a ne ighborhood Y C C"[- h, 0) x W of the origin such that, the 
solution of the closed-loop system 

d 
-[ Dx, ~ f (x"a(x"w(t»,w(t», wit) ~ ,(wit)) 

" 
(4) 

satisfie s 

lim g(Xt,w(t» = o. 
,~= 

(5) 

Problem 2 (Error-Feedback Regulator Problem); Find an error-feedback control­,,, 
(6) 

with C k fu nctions 11 : Zo --+ R" and e : Z I --+ R m , where Zo C CO' [-h, 0] x RP, 
Z, c CV[-h, O] are some neighborhoods of the origin , such that: 

2a) the equilibrium (x(t) ,z(t» :;: 0 of 
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is exponentially stable; 
2b) there exists a ne ighborhood Z C C"[-h, o[ x C"[-h, 0] x Ii' of the origin 

such that, the solution of the closed-loop system 

ft D Xt ::: 1(x(, e(zd , w(t», fk DZt = 11(Zt. g(xt, w{t))), w(t ) = s(w(t)) 
(7) 

satisfies (5). 

3 Linearized Problem and Assumptions 

Using Taylor expansion in the neighborhood of the origin of the Banach space 
C"[ - h, 0] x Rm x Rr, we obtain the following approx imation of the smooth func tion 

f' 
1(xo, u, w) = Axo + Bu + Pw + O(xo, u , W)2, 

where the linear bounded operator [A, B, P] : C"! -11,0] x Rm x Rr -t R" is a 
Frechet derivative of 1 at the origin. The function O( .)2 van ishes at the origin with 
ilS first-order Frechet derivative. Simi larly, smooth functions g, cr, e and 1"/ can be 
represented in the fonn 

g(xo,w) = CXo + Qw + 0(xo,w)2, 
cr(xo , w) = Kxo + Lw{t) + O(xo, w)z, 
e(zo) = Hzo + 0 (ZO)2, 1"/(zo, e) = Fzo + Ge + O(zo , e)2, 

where the func tions 0 (-)2 van ish at the origin with their first-order Frcchct deriva­
tives. The linear bounded operators A : C"[-h, 0] -+ R" and C : C"[- h,O] -+ RP 
by Riesz theorem can be represented in the fonn of Stieltjes intcgrals [8}: 

A¢ ~ [, d[~(9)}¢(O), C¢ ~ [, d[« 9)}¢(O), (8) 

with n x n and p x n-matrix functions Jt and ( of bounded variations. A similar 
representation can be written for the linear bounded operators K : C"[-h, 0] -+ Rm, 
H: C"[- h,Oj-+ Rm and F: C"[-h,O]-+ R". 

The linearized system is given by 

ftDxt = AXt + Bu(t) + Pw(t), w(t) = Sw(t) , ell) = CXt + Q-w(t). 
(9a-c) 

The linearized state-feedback and error- feedback controllcrs have the form 

u(t) = KXt + Lw(t) ( 10) 

( II ) 

respectively. 
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Similarly to the case wi thout delay [ II] we assume the fott owing: 
H J. The exosystem (2) is neutrally stable (i.e. Lyapunov stable in forward and 

backward time, and thus S has all its eigenval ues on the imaginary axis). 
H2. The tri ple {D, A, B} is stabi li zable, i.e. there ex ists a linear bounded opera­

tor K : Cn[ - h, Oj-t nm such that the system 

d 
dt Dx/ = (A + B K)x/ (12) 

is asymptotically stable. 
H3. The pair 

[~~] , [e QJ 

is detectable in the fo llowi ng sense: there exis ts a (n + r) x p-matrix G such that the 
system 

d [Di"] {[A P] G[ dt Z2(t) = 0 S + C 
(13) 

where ZI (t ) E Rn, Z2(t) E Rr , is asy mptotically stable. 
We note that H2 is equivalent to the foJlowing condition [IOJ: 

H2 '. rank ['>'[1 - th d[~(O)jeAej - J~" d[J.t(O)je AII , B] = n for all .>. E C 

with Re'>' 2: O. 
Similar condition equivalent to H3 can be written for the case o f 
CXt = Cox(t), where Co is a constant matrix. Some sufficient cond itions for H2 

and for finding a stabi li zing controller u( t) = [(ox( t) or u( t) = /( I x( t - h) may be 
found e.g. in [7J (see also references therein) in terms of linear matrix inequalities. 
Similar suffi cient conditions may be derived for H3. 

4 Solution of the Regulator Problems 

4.1 Center manifold of Ihe dosed·loop system 

The solution of the output regulation problem is based on the center manifold theory 
[8J, [8J. 

Lemma 1. Let HO hold. Assume that all eigenvalues oj S are on the imaginary axis 
and thai jor some Q(Xt, w) condition 1a) holds. Then the closed-loop system (4) 
has a local celller manifold Xt(O) = JT(w(t))(O), 8 E [-h,Oj. where 11" : Wo -t 
cn[-h, Oj (0 E Wo e W e R r) is a C k mapping with 11"(0 )(0) == O. The center 
manifold is locally attractive, i.e. satisfies 

Ilx, - .(w(t»11 OS Me-Mllx, - . (w(O»II, M > 0, a> 0 (14) 

jor all xo, w(O) sufficiently close 10 0 and all t 2: O. 
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Proof: The closed-loop system (4) has the fo rm 

,vet) ~ Sw(t) + O(w(t))' , 
ftDXt = (A + BK)Xt + (P + BL)w(t) + O(Xt,W(t))2. 

(l5a,b) 

By assumption. the zeros of the characteristic equation corresponding 10 (12) arc in 
C- , and the eigenvalues of the matrix S arc on the imaginary axis. 

It is we ll-known (see e.g. [8]) that according to this dichotomy, the space Rr x 
Cn[ - h,O] of the initial values of the linear system 

wet) ~ S w (t ), 
d 
dt DXt = (A + B K)xt + (P + BL)w(t ), (16) 

can be decomposed as a direct sum Rr x Cn[_h, 0] = P \B Q, where P and Q arc 
invariant sub-spaces of the solutions of ( 16). in the sense that for at! initial conditions 
from P ( Q), solutions of(16) satisfy {w(t) , xe} E P ({w(t) , xe} E Q) for all t 2. O. 
Moreover, P is an r-dimensional and corresponds to solutions of ( 16) of the form 
p(t)e:..t, where p(t) is a polynomial in t and>. is an eigenvalue of S . The space Q 
corresponds to exponentially decaying sol utions of (16). By Theorem 2.1 of [8] (p. 
314) the system ( 15) has a local smooth center manifold X o = 1T{W}. The flow on 
this manifold is governed by (ISa). By Theorem 2.2 of [8] (p.2l6) this manifold is 
locally attractive. 0 

The function 1T which determines a center manifold of (4) can be considered as 
a function of one variable 1T : Wo ~ Cn[-h ,O] in the Banach space or a func tion 
of two variables 1T : Wo x [- h,O] -t nn in the Euclidean space. Further we find 
relation between the smoothness properties in both considerations by introducing 
two classes of functions: 

Class MI of C l functions 1T : Wo -t Cn[ - h,O](Wo C W), satisfying the 
fo llowing conditions: 
(i) For each w E Wo there exists a continuous in () E [-h , O] partial derivative 
(/1f(a;P8) g 'Y(w)«(}); 
(ii) The function 'Y : Wo -t Cn[_ h, 0] is continuous. 

Class M2 of functions 1jJ : Wo -t Cn[- h,O) such that the functions tj;(w , 8) g 
1jJ(w)((}) , 1j) : Wo x [- h,O]-t Rn are continuously differentiable. 

Proposition I. [6/ Ml = M 2 . 

Lemma 2. Assume HO. A C I mapping 1T : Wo -t cn[ - h,o], 1T(O) = ° defines a 
cemer manifold Xt«(}) = 1T(W(t ) )((}) , () E [- h, OJ 0/(4) ifandonlyif1T E Ml 
andVw E Wo, V(} E [- h,O] it satisfies the/ollowing system o/partial differential 
equations 

(17a,b) 
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Proof. Note that for a G 1 mapping rr : Wo --t G" [- h,O] and fo r w (t ), sati sfy ing 
(2), we find that for cach 0 E [- h, 0] 

:, [.(w(t))(8)[ = a'('~~)(8) s(w(t)). ( 18) 

Necessity: Let a G1 mapping rr : Wo --t G"[- h, 0] dctcmlinc a center manifold 
of (1 5). Then there ex ists 6 > 0 such that Xt(O) = rr (w(t»(O) satisfi es (4) for 
t E [-6, 6] and, hencc 

l)il)) = &"'&~ tf) , Xo = ¢, 0 E [- 11 , 0], t E [- 0,6], (19) l) 81"" = f (xt ,a(xt, w(t)) ,w(t)) , lU(t) = s(w( t». 

Substituting Xt = rr(w(t» , w(O) = w, t E [- 6, 6] into (19) and setting further 
t = 0, wc obtain that for all wE Wo, rr(w)(O) is di fferentiable in 0 E [- It ,O] and rr 
sati sfi es (1 7). The function ~ : Wo --t G"[-h , O] is continuous sincc the le ft hand 
side of (17a) has the same property. 

Sufficiency: let a C1 m apping rr : Wo --t G"[ - h , O] satisfy (1 7). Substitute 
w = w(t ) into (1 7), where w(t ) is a solution of(2), then Xt = rr(w(t)) satisfi cs (19) 
(and thus (4» and therefore rr detcnnines the invariant manifold of (4).0 

Remark 1. Approx imate solution to (17) can be found in a fo rm of series expansions 
in the powers of w (similarly to [8], [14], fl )). 

4.2 State-feedback regulator problem 

Applying Lemmas I and 2, we obtain regulator equations by using argumentsof[ I I ]. 

Lemma 3. Under HO and HI assume that fo r some a(Xt ,w) cmulition fa) holds. 
Then, condition lb) is also f ulfilled iff there exists a Ck(k 2: 2) mapping rr : Wo --t 

G" [- h, OJ, rr(O) = ° satisfying (17) and the algebraic equation 

g(.(w),w) = O. (20) 

Proof is simi lar to l6). 

Theorem I. Under HO, H I and H2, the state-feedback regulator problem is sol­
vable if and ollly if there exist Gk(k 2: 2) mappings xo(O) = rr(w)(O) , with 
11" E M 1 , rr(O)(O) = 0, and u = e(w) , with e(O) = 0, both defined in a neigh­
borhood W c Rr of the origin, satisfying the conditions Vw E Wo, VO E [- h,O] 

&".(w)(9 ) ( ) _ &". ( w )( tf ) 
l) sw - l)9 ' 

D I D8~w} l s (w) = f (rr(w),c(w) ,w), 
g(~(w),w) = O. 

SlIppose that rr and c satisfy (21), then the state-Jeedback 

u = a(x" w(t ) = c(w(t)) + K[x , - .(w(t»)J, 

(2 1 a-c) 

(22) 

where K is a stabilizillg gain which is defi lled ill H2, solves fhe state-Jeedback regu­
lator problem. 
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Proof. The necessity follows immediatel y from Lemma 3. For the sufficiency 
consider the state-feedback (22). This choice satisfies la), since 

Moreover, by construction 
O(7r(W), w) = c(w) 

and therefore, (2 Ia), (2 Ib) reduce to (17). From (2 Ic) by Lemma 2 it follows that 
condition I b) is also fulfill ed. 0 

4.3 Error-feedback regulator problem 

Applyi ng Lemmas I and 2 to the system (7), we obtain the following: 

Lemma 4. Lei HO hold. Assume Ihm all eigenvalues of S are on Ihe imaginary axis 
alld Ihm/or some e(zd and 7/(Zt, e) condilion 2a) holds. Then 
( i) Ihe closed-loop syslem (7) has a local cemer manifold Xt(e) = lr(w(t»)(e), 
Zt{e) = a(w(t»)(O), where 11' : Wo -+ C"[-h, O], a Wo -+ CV[-h, O] (0 E 
Wo eWe W) are C k mappings wilh 11'(0)(0) == 0, a(0)(8) == 0; 
(i i) rhe cemer malli/old is locally artractive, i. e. satisfies 

Ilx, - n(w(t))11 + liz< - "(w(t))11 
SM'-"'(llx, - n(w(Ollll + II', - "(w(O))IIl , 

for all Xo, zo, w(O) sufficielllly close to ° and all t 2': O. 

Ai> 0, a> 0 (23) 

(ii i) C 1 flwppings 71' : Wo -+ C"(- II,O], 11"(0)(8) = 0, a : Wo -+ CV[-h,O]. 
0-(0)( e) = ° define a center manifold Xt (8) = 71'( w(t) )(8), Zt (e) = a( w( t»( e), 8 E 
[-h,O] of(7) if and ollly ifrr : Wo x [-h, O] -+ R", a : Wo x [-h, O] -+ R V are 
cOnlimlOus/y differemiable functions and \lw E Wo , VB E [-h, 0] they satisfy the 
following system of partial differemial eqllQlions 

"".(w)(O) ( ) _ 1;I ". (w)(O) ",,(w)(O) ( ) _ 1;I,,(w)(O) 
Ow sw - /;1(1' /;Iw sw -:... 1;1(1 , (24a-d) 

I;I[D..rJw)ls(w) = f(1r(w),8(11(w» ,w), 8[D;Jw)l s(w) = 7/(a(w),0). 

Remark 2. In the case when z(t) = col{ZI( t ),Z2(t )}. where Z2 appears in (7) wi­
thout delay and thus col { Zjt (8), Z2( t)} = col {11\ (w( t»( e), a2( w(t»}. (24b) holds 
on ly for a = a,. 

Similarly to Lemma 3, the following lemma can be proved 

Lemma 5_ Under flO and HI, assllme that for some 8(zt} alld 7J(Zt , e) colldition 
2a) holds. Theil. condition 2b) is alsojillfilled iff there exisl Ck(k 2': 2) mappings 
11': Wo -+ C"[-h, O], rr(O) = 0, a: Wo -+ CV{- h, O] , 0'(0) = O Salisjying(24) 
alld the algebraic eqllation (20). 

From the latter lemmas we deduce a necessary and sufficient condition for the 
solvability of the error~feedback regul ator problem 
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Theorem 2. Under HO-H3. the errorJeedback regulator problem is solvable if and 
only if there exist Ck(k 2: 2) mappingsxo(O) :::: 1T(W){O), with 1T E M I , 1T(O){O) == 
O. alld u == e(w), with e(O) = O. both defined ill a neighborhood lV c n r of the 
origin. salisfying the conditions (2 1) \lw E lV, 'riO E [- 11 , 0]. 

Suppose Ihm 1T and c satisfy (2 1), and that a linear bounded operator H : 
en [- h, 0] --t R'" is such that {he syslem 

d 
dt Dx/ = (A + BH)xt 

is asymptotically stable. Then the errorJeedback (6), where 

z(t) == col { zj(t) ,Z2(t)}, 1/ == col{7]j,7]d , D = diag{D , I}, 
u == 8(zt} == e(z2(t)) + H[zl/. - 1T(Z2(t))], 
1/1 (Zit , Z2(t) , e(t)) = f( z lt,$(zd, Z2(t)) - G j (ll(ZJt, Z2(t)) - e(t)), 
112(ZJt,z2(t),e(t)) = S(Z2(t)) - G2(h(zu ,Z2(t)) - e(t)), 

and where G == col { G I , G2} is defined in H3, solves the regulator problem. 

(25) 

(26) 

Proof. The necessity fo llows immediately from Lemma 5. For the sufficiency we 
note, that there ex ist a linear bounded operator H : C"[- h,O] -t R'" and a matrix 
G = col{GI ,GZ} such that (25) and (13) are asymptotically stable. A standard 
calcu lation shows that for any m x r-matrix K , the characteristic quasipolynomial 
that corresponds to the system 

(27) 

is equal to the product of the characteristic quasi polynom ials that correspond to (25) 
and ( 13) respectively. Therefore, (27) is asymptotically stable. 

Consider the error-feedback controller of (6), (26). The linearized system corres­
ponding to the closed-loop system (7) has exactly the fonn of (27), where 

1< - lac] _H[a,] 
- ow w= o ow wo:=o' 

Thus requirement 2a) is satisfied . By construction zz(t) appears in (7) without delay 
and thus (2 1 a)-(21 b) imply (24) with a( w) == col {a1 (w), £12 (w)} == col {1T( 1V) , w}, 
where in (24b) a = £11 . Thus requirement 2b) follows from Lemma 5. 0 

5 Linear Case 

5.1 Linea r regulator equ ations 

Consider the linear regulalor problem (9). In the li near case the center manifold has 
a fonn XI == l1 (O)w(t), where n is an n x r matrix function continuously differen­
tiable in 0 E [- h, 0]. From Theorems 1 and 2 it follows, that 
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the lincar problem (9) is solvable iff there exists fl and an m x T-malrix r that 
satisfy the following system 

n (O) ~ B (O)S, 0 E [-h,O], 

(D B )S ~ f~" d[,,(O)]B (O) + Br + P, 

f~" d[«(O)[B(O) + Q ~ O. 

(28a-c) 

Eq. (28a) yields fl (8) = JJ (0)expS8. Substituting the laller into (28b) and 
(28c), wc obtain the following linear algebraic system for in itial val ue fl (O): 

[11(0) - I~" d[«(O)]B(O)eSO[S ~ 1°" d["(B)]Il(O),SO + Br + P, 

J~" d[«(B)]Il(O)eso + Q ~ o. 
(29) 

The latter system is a generali zation of Francis equations [4J to the case of neutral 
systems. 

Wc consider now a particular, but important in applications case of (9) with 

DXt = x(t) - 2:~=1 D;x(t - h;) - J~h Dd(8)x(t + B)dB , 

AXt = 2::=0 AiX(t - h;) + J~h Ad(8)x(t + B)dO, (30) 

e Xt = 2::=0 Cix(t - hi) + J~h Cd{B)x(t + O)dO, 

where 0 = Ito < hi < . . < h" ::; h, Dd, Ad and Cd are piecewise continuous 
matrix funct ions and where D;, A; and Ci are constant matrices of the appropriate 
dimensions. In this case (29) has the fonn: 

[B (O) - L:=, D,B(O)e- '"' - I~" Dd(O)Il (O),s,dO]S ~ L:=o A,Il(O)e-S<" 

+ J~h Ad«(J)fl{O)eslId(J + sr + P, 

2::=0 C; JJ (O)e- Sh, + J~h Cd(B)fl(O)eSlIdB + Q = O. 
(3 1) 

Theorem 3. Under HO-H2, the linear state-feedback regulaLOr problem (9) ((9) and 
(30)) is solvable if and only iftliere exist n x rand m x r-matrices fl (O) and r 
which solve the linear matrix equations (29) ((3 1». 

In the case of error-feedback regu lator problem, the similar result holds under 
HO-H 3. 

Consider the case of (30) with the general controller output. We assume that the 
regulator problem for (9) without delay, i.e. for 

(I - L:=. D,)x(t) ~ (L:=o A;)x(t) + Bu(t) + P w( t), 
wit ) ~ Sw(t), 

e(t) ~ (L:=o C,)x(t ) + Qw(t) 

is solvable for all P and Q. This is eq uivalent (see e.g. [4]) to the following assump­
tion 
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AI . det90{..\) f. 0 for al l eigenvalues..\ of S, where 

, , , 
90(» ~ (2:: GillA(! - 2:: Di ) - 2:: A,J - ' B 

;= 0 ;= 0 

Under A I the linear regulator equations 

, , , 
(J - 2:: Di)1108 ~ (2:: A;)Do + Br + P, (2:: Gi )Do + Q ~ 0, 

i= t ;= 0 ;= 0 

where no and r are constant matrices, are solvable for all P and Q. Then, by the 
impl ici t func lion theorem for all small enough h > 0 (3 I ) is solvable. We have: 

Proposition 2. Under HO-H2 and AI, the Oil/put regillation 0[(9) with (30) via state­
feedback of ( 10) is achievable and the regulator equations (31) are solvable for all 
small enollgh h . 

6 Conclusions 

The geometric theory of oUlput regulation is generalized to non linear neutral type 
systems. II is shown that the state-feedback and the error- feedback regulator pro­
blems are solvable, under the standard assumptions on stabilizabili ty and delectabi­
li ty of the linearized system, if and only if a set of regulator equations is solvable. 
This set consists of part ial diffe rential and algebraic eq uations. In the linear case 
these equations are reduced to the linear matrix equations. 

The solvability of the nonl inear regul ator eq uations and the approxi mate solu­
tions to these equations are issues for the fut ure study. 

References 

I. M. Ait Babram, O. Arino and M. Hbid, Computational scheme of a center manifold for 
neutral func tional differential equations, J. Math. Anal. Appl. 258 (200 I) 396-414. 

2. C. I. Bymes and A. Isidon, Output regulation for nonlinear systems: an overview, Int. J. 
of Rob. and NonJin. Cont. 10 (2000) 323-337. 

3. C.I .Bymes, I. G. Lauko, D. S. Gilliam and V. I. Shubov, Output Regulation for Linear 
Distributed parameter systems, IEEE Trans. On Aut. Cont., 45 (2000) 2236-2252. 

4. B.A. Francis, The Linear Multivariable Regulator Problem, SIAM J . on Cont. andOptim., 
15 ( 1977) 486-505. 

5. E. Fridman, Asymptolics of integral manifolds and decomposition or singularly perturbed 
systems of neutral type, Differential equations 26 (1990) 457-467. 

6. E. Fridman, Output regulation of nonl inear systems with delay, Systems & Control LeIters 
50 (2003) 8 I -93. 

7. E. Fridman and U. Shakcd, A descriptor system approach to Hoc control of time-delay 
systems, IEEE Trans. on Automat. Contr., 47 (2002) 253-270. 



244 Emilia Fridman 

8. J. Hale, Critical cases for neutral functional d iffercmial cquat ions, 1. Differential Eqns. 
10 ( 1971)59-82. 

9. J. Hale and S. Verduyn Lunel, Introduction \0 Functional Diffcrential Equations, 
Springer-Verlag, New York, 1993. 

10. J. Hale and S. Verduyn LuneL Strong stabilization of neutral functional differential equa­
tions.IMA 101m/al of Mathematical Conlrol and Infomwliol1, 19 (2002) 5-23. 

II. A. Jsidori and c. 1. Byrnes, Output regulation of nonlinear systems, IEEE Trnns. On 
AutorR. Control 35 (J990) 131- 140. 

12. K. Murakami, Bifurcated periodic solutions for delayed Van der pol equat ion, Neurni. 
Parallel & Scientific Computations 7 (1999) 1-1 6. 

13. J. Schumacher, Finite-dimensional regulators for a class of infinite-dimensional systems, 
Systcms & Control Leners. 3 (1983) 7-12. 

14. V. Strygin and E. Fridman, AsymplOtics of integrnl manifolds of singularly penurbed 
differential equations with retarded argument, Math. Nachr., 117 ( 1984) 83-109. 



Robust Stability Analysis of Various Classes of Delay 
Systems 

Catherine Bonnet l and Jonathan R. Parlington2 

INRIA RocqucncourI, Domaine de Voluceuu, B.P. 105,78153 Lc Chcsnay ccdex, France. 
Catherine . Bonnet@inr i a . fr 

2 Univers ity of Leeds, School of Mathematics, Leeds LS2 9JT, U. K. 
J . R. Pa r t ing ton@leeds . ac . u k 

Summary. This chapler is a review of some work of the authors on the robust stabilization 
of retarded and ncutral delay systems, including the case of fracliona l delay systems. 81B0-
stability and nucleanty conditions are derived and the question of parametrization of all BIBO· 
stabilizing controllers is addressed. 

1 Introduction 

This chapler presents an overview of some work we have done on the robust stabili ­
zation of various linear 5150 conti nuous-time delay systems [3]- [7J . Each of these 
studies has been motivated by practical problems that we have encountered or found 
in the literature, however we wi ll not present them here concentrating on the metho­
dology as it can be found in the original papers. In the same spirit, no proofs will be 
given . 

Here the notion of stability is that of input-output stability; that is, an input signal 
in LP must produce an output signal in U where 1 ~ p , q ~ 00. We restrict ourselves 
to the linear case (that is a convolution operator between input and output signals) 
although we have also considered the stabilisation of nonlinear delay systems in [8J 
and [9] using the framework introduced in [15] and (34]. 

Usually, people consider the case p = q = 2, which corresponds to finite energy 
signals and leads to an analysis of the transfer function using the Hoo norm. We refer 
particularl y to [13], [II J for a study of robust stabilization of delay systems in this 
case. Note that the case p = 2 and q = 00 (or p = 1 and q = 2) would induce 
an analysis of the transfer function using the H2 nonn. We consider here the case 
p = q = 00, which (equivalentl y to the case p = q = 1) allows one to analyse the 
transfer function of the system in the Wiener algebra setting. 

The chapter is organized as follows. We fi rs t describe in Section 2 the setting 
chosen to analyse robust stabilization. Next, Section 3 is concerned with robust sta­
bi lization in this setting of retarded delay systems, including the case of fractional 
delay systems. Seclion 36 deals with the case of neutral (standard and fractional) 

S. -I. Niculescu et al. (eds.), Advances in Time-Delay Systems
© Springer-Verlag Berlin Heidelberg 2004
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delay systems, the main questions addressed here being the characterization of the 
BIBO-stability of these systems with easy frequential conditions as well as a pa­
rametrization of all stabilizi ng controllers. Finally. Section 5 deals briefly with the 
nuclearity of these systems. 

Similar questions have been widely studied in the literature. We refer among 
others to [29]. no], [28]. [30] for general considerations. to [35], [13], [14]. [15]. 
[33], [24J for questions of stability, and to [3 1], [17], [18], [19]. [27] . [25], [23]. 
[26]. [22} for other results on delay and fractional systems. 

2 Preliminaries and Definitions 

For x E lR, [xl denotes the integer part of x and {x} the fractional part. so x 
[x[ + {xJ. 

IlL denotes the negative real axis {x E IR : x :s: O}. 
Loo denotes the complex-valued measurable functions on the nonnegative real 

axis such that ess sup If(t)1 < 00 . 
tER+ 

£I (IR+) or LI denotes the complex-valued measurable functions on the nonne-

gative real axis such that 100 
If(t)ldt < 00, and Ll (IR) denotes the complex-valued 

o 00 

measurable functions on the real axis such that 1 00 If(l)ldt < 00. 

Hoo is the space of bounded analytic functions on the right half-plane C;j 
( s E C, Res> OJ. 

RHoo denotes the space of rational Hoo functions. 
00 

A denotes the space of distributions of the form h(t) = haft) + L hio(t - tj) 
i= O 

whereti E [0,(0).0:S: to < tt < ·· ·.O(t -ti) is a delayed Dirac function. hi E C, 
00 

Ita E Lt and L Ih;j < 00. 

The nonn on A is defined by IIhliA = IIhall/,1 + L Ihil· 
i=O 

The subspace of A of distributions in L l + CJ is particularly interesting as we 
--A • have that RHoo = C(L + CJ) where {, denotes the Laplace transfonn. In other 

words. these systems can be approximated by finite-dimensional systems as closely 
as we like in the given nonn. 

Furthennore. RHoo If.,. = A(C). the space of functions which are analytic and 
bounded in the ri¥ht half-plane and continuous on the extended imaginary axis. 

The symbol A denotes the space of Laplace transfonns of functions in A. which 
is a linear subspace of A(C). 

We write.4_ (0) = (i: j E A_(.8) for some t3 < O}. 
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Also Aoo(O) = {/ E A _(O) : inf li(s)1 > 0 for some p > OJ. 
sect .131>p 

Finally the Callier- Desoerclass is 6(0) = {jig : 1 E A _(O), 9 E Aoo(O)} . 
We recall that BIBO-stability of a system P with convolution kernel h (with va· 

. h· . I ). d fi d lilt * xllL"" h· h· . I ms 109 smgu aT part IS e me as sup II II < 00, w IC IS cqUlva cnt 
:tE Loo,z,o:O X Loo 

10 IIhliA = IIPIIJ. < 00. It is well known that this implies that P lies in H oo. 
A transfer function P analytic in {Re s > O} and continuous on lilt is said to be 

proper on {Res 2: O} if, for suffic iently large p, sup IP(s)1 < 00. 
(ne 3?,:0,lsl?: p) 

Similarly a tran sfer function P analytic in {Re s > O} and continuous on tilt is 

said 10 be strictfypropcron {Res 2: 0} if lim ( sup IP(S)I ) = 0. 
p_oo {Re ~?:o,I ' I?':p} 

A transfer function P analytic in {Res> O} and continuous on tilt is said to 
have a limit al infinity in {Re s 2: O} if there ex ists a complex constant Poo such that 

lim ( sup !F(s) - P~I) = O. 
p--+oo (Re s?,:o, lsl?':Pl 

Let P be a function that is meromorphic in C \ lll... and has a branch point at 
s = O. The point s = 0 is defined 10 be a pole o f fractional order 0 > 0 of P if there 
is a non-zero constant C such that l (s) = s- a(c + 0(1)) as s --t ° in C \ IlL . It 
is easy to see that th is defin ition is independent o f our choice o f a branch of s-a in 

ClnL . 
P is said to have a coprimejactorization (N, D) over A if P = N D - 1 , D"# 0, 

N, DE A and there ex ist Bewlltjactors X , Y E A such that -NX + DY = 1. 
Below is a useful necessary and sufficient condi tion to characterize the coprime­

ness of a given pair. Th is condition is also valid for scalar functions in Hoo. 

Theorem I. Let N, D be ill A. Then (N, D) is a coprimejactorizalion over A if and 
only if inr (IN(s)1 + ID(')I) > O. 

{Re nO} 

If P admits a coprime factorization over A (respectively Hoo ) then the set o f all 
stabilizing controllers is given by the YOli la parametrization: 

LeI us note that these controllers arc not necessari ly proper. 
TIle robustness is considered here relatively to coprime factor perturbations (ro­

bustness in the BIBO gap topology) and in the sub-case LI + CO, the optimal robust­
ness margin is given by 

X +DQopt 
and the optimal controller by Copt = Y + NQopt . This setting offe rs nice conver-

gence properties when considering approximation of systems (convergence of the 
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controllers in the BIBO gap topology). Let us also mention that if P is strictly pro­
per, a small change in the delay (in state, input or output) is also a small variation in 
the BIBO gap topology. 

It is well-known that P is stabilizable over Hoo if and only P admits a coprime 
factoriza tion over Hoo . However, for A. we onl y know that if P admits a coprime 
factorization over A then it is BIBO-stabilizable. A parametrization of all s tabilizing 
controllers of systems which do nOI necessarily admit a coprime fac torization has 
recently been given in [33]. 

A system is said 10 be nuclear if its sequence (un ) of Hankel singular values 
satisfi es L Un < 00 (see, for example (16]). 

We now give three theorems which represent the main tools to establish the re­
sults that fol low. The first is due to Wiener and the second to Peller, with alternative 
versions due to Coifman and Rochberg, and Bonsall and Walsh. The third is due to 
Hardy and Littlewood. 

Theorem 2. (See 121, Theorem 4.18.6].) Let f be in A. Theil f has all illverse in A 
lfandolllyif inf 1/ (8)1> O. 

{Re .?:O} 

Theorem 3. (See 129}.) Let P be an Hoo trails fer fUl/ctioll. Then P is nuclear if and 
only if 

I Ie. 1P"(s)1 dA(s) < 00, 

where the integral is with respect 10 standard plane measure. 

Theorem 4. (See 120}.) Lei r E L Joc have a Laplace transform 1'(s) that is defined 
(as all absolutely com'ergent integral) in the open halj-plane {Re s > O} . Moreover. 
suppose that f is bounded and has a bounded comilluous extension to the closed 
right halj-plane {Res 2: O}, and that the boulldaryfimctioll i(w) = lim f(u+iw) 

.~o 

is locally absolutely comilluous alld satisfies f' E LL (IR). Then. r E LL ( IR+). and 

IlrIiL'(R+) ::; ~IIi'IiL'(R ) ' 

3 Robust Stabilization of Retarded Dclay Systcms 

3.1 The standard case 

As is wen-known (see for example [IJ or [30]), the poles of delay systcms-Qther 
than systems oftypc e- ·T R(s) with R rational- lie in infinite chains, which can be 
of three types: retarded, neutral or advanced. The most easily analysed systems arc 
those with pole chains of only retarded type, and we begin with these. 

Thus we consider the class of delay systems with scalar transfer function given 
by 
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( I ) 

where 0 ::: 'Yo < 'Yl '" < 1'",,0 ::; Po < PI'" < P"2' the Pi and qi being 
polynomials satisfying the following condit ion : 

Condition I (r etarded delay systems): deg A:l > deg Pi fori ::: 1, ' " , nl and 
deg A:l > deg qi for i::: 0" " , n2' 

It is well-known I I ) that these systems have a fini te number of poles in any right 
half-plane, indeed are in the Call ier-Desoer class [L(D) and possess a coprime fac­
torisation. For these systems, the stabil ity cond ition is the same than for fi nite dimen­
sional systems: 

Proposition I. Let P be defined as in (/) and satisfying Condition I. P is H oo or 
BIBO-stable if and only if P has I/O poles in {Re S ~ OJ. 

Coprime factorisations of retarded delay systems have been known for a long time. 
We nex t give an extension to the case where hi and 112 have common unstable zeros 
and provide an algorithm for the calcu lation of the Bczout factors in this case. 

. . 112(S) 
Proposlhon 2. ( f4/) Let P (8 ) = - (- ) where h] (8) and 112(s) defined as abo~·e. 

h] s . .. (h2(S) hl(S) ) . . 
There eXists a ratlOnalfimctlOn r(s ) such that r(8) , r( 8) IS a copm nefacto-

rization of P over A. If hI and 112 have no more than 150 common unstable zeroes 
then r can be taken to be ( I polynomial_ 

A suitable choice of Bczout factors is given in the next resul t. 

Theorem S. ( f4J) Let m be the number of unstable zeroes ()" of h i (8) (which are I/ot 
zeroes of h'l ) cOllllled with their multiplicity. 

( ) 
r(,) I' (S) h2 (3) 

- It S 11(3) 
1£, Xl ' ) ~ - ( -) and Y (, ) ~ ( ) 

us hi S 

where Jt is a polynomial of degree m - 1 chosen such that 

(
r(s ) _ It(s)h2(s) )(k) = 0 

u(s) 

at s ::: CT fo r k ::: 0, . _ . , mi - 1 if CT is a zero of multiplicity mi > 1, u is a polynomial 
chosen sllch that its im'use is ill A and X is proper (degu ~ degp). 
Theil X and Yare Bezout factors corresponding to lhe coprime factorizalions 

(
" , (8) "'(S) ) "P A' 
r(s ) , r(s) OJ ove r . 
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e- IIT 
Example I. Let P(s) = -- with u E IR and 1 = -/1 +uz . Then the pair ,-" 
(N(s) , D(s» = (e- 8T

, s - u) is a coprime factorization of P over A. Corres­
S+1 s+ ")' 

ponding Bczout factors arc given by 

Using this, a fam ily of controllers is d irectly implementable in Scilab/Scicos 
when u = 0 and implementable after some minor manipulations in Scicos when 
0" ~ O. 

The coprime factors in this example have been chosen to be normalized, that 
is, they sati sfy IN(sW + ID(sfl = 1 on iIll This notion is important in robust 
control theory [IOJ. However, for general delay systems the calculation of nonnalized 
coprime factors is much more difficult to pcrfonn explic itly, as explained in [32] . 

3.2 The fmc tional case 

We consider the class of fractional systems with scalar transfer function given by 

(2) 

where 0 = ")'0 < ")'1 < ")''''' 0 :S Po < PI .. . < P"2' the Pi being polynomials 
'; 

of the fonn L al;.Sa~ with Ctl;. E 114 and the qi being polynomials of the form 
1;. = 0 

m ; 

L bl;.SOk with fJl;. E 114 · 
1;.= 0 

We will assume throughout that h2 and hi have no common zeroes in {Re s 2:: 
OJ \ {OJ. 

Note that, for s#-O and fJ E IR, we define SO to be exp(fJ(log lsi + iargs», and 
a contin uous choice of a rg s in a domain leads to an analytic branch of S6 . In th is 
work we shall normally make the choice -11" < arg s < 11", for sEC \ L. 

We will need later to characterize the behaviour of hi and h2 at zero and infin ity, 
so let us remark that there ex ist constants Ct, f3 2:: 0 and CI, Cz #- 0, such that for 
s E {Res 2:: O} 

Let us write also 

hl(s) = SO(CI +0( 1)) 

h2(S) = S.B (C2 + 0(1» 

near s = 0, 

near s = O. 

(3) 
(4) 
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'Y = deg Po > 0, and 0 = . max deg q; ~ O. 
. ",O, ... n, 

and lei us denote It = miu(a, fJ). 
As for the classical dclay systems, we shall consider the systems which satisfy 

Condition I. We can see from the next two results that they behave exactly the same 
as the standard delay systems. 

Theorem 6. ({6}) Let P be defined as in (2) and satisfying Condition 1. Then P is 
8180 stable if and only if il has no poles in {Res ~ O} (in particular, no poles of 
fractional order at s = 0). 

Proposition 3. ( {6]) The system P defined as in (2) has afinite nllmbero/poles in 
any wt right hal/-plane, that is, the set 

Reso ? a alld So is a pole of P} 

is finite fo r all a E IR 

As for the standard retarded delay case, coprime and Bczout factors can be found in 
tenus of the behaviour of h, at infinity. Moreover, it is also necessary to take into 
accou nt here the behav iour of h, and hz at zero. 

Proposition 4. ( {5]) A coprime/aclOrization (N, D) in A 0/ P defined as (2) and 
satisfying Condition 1 is given by 

~('~+~I~)I"~l~('~{"~}_+~l )~h~,~(,~) N(,) - -
~ sJ«s + l )hl(sb} + 1) 

"(''::+71,-,-)1,-'' l",( 'j;;{ ',,' },.;+",I:.t) I::,' '",( ':L) D(,) - -
~ sJ«s + l )hl(sb) + 1) 

The next result gives a fonnula for some corresponding Bezout factors, but it is 
considerably more complicated. 

Theorem 7. ( {51) Let (11 , •.. , (1 m be the Tn nonzero unstable zeroes 0/ hI and leI 

Now. let liS define 

T\ (s) = SI'(S + l )hl(sb) + 1), 

Tz(s) = (8 + 1)[pl(s{J·) + l )h2(8), 

T3 (S ) = (s + 1)[/·I(s{p) + 1)hd8). 
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where A., E IR and A1 E N is chosen SItch that /y[ > )'" + m. the coefficients 
/0, hI , ' .. , h~ are chosen in order to satisfy tlwtTt (s)+T2(s)X(s) is offracrional 
order 0" at zero, and the coefficiellts / M - m+l, ... , / Mare chosell so that Tl (a;) + 
T2 (ai)X(ai) = Of or 1 :::; i ::; m. 

Theil (X. Y) are Bezourfactors associated to file coprime factors Nand Do/ P. 

4 Robust Stabilization of Delay Systems of Neutral Type 

The case of neutral systems is much more difficu lt. Such systems will be defined by 
( I ) or (2) and wi ll satisfy Condition 2 below. 
Condition 2: deg Po 2: deg Pi for i = 1, ··· ,nl (with eq ual ity for at least one 
polynomial Pi) and deg Po > deg qi for i = 0" .. , n2· 

4.1 The standard case 

Delay systems that are of purely neutral type have their poles in a band {- a ::; 
Res::; aJ about the imaginary axis, although there is in general no asymptotic 
formula for them. Moreover, the location of the poles does not delennine the stability 
of a neutral de lay system: for example the transfer fu nction Pots) = 1/(s+ 1 +se-$) 
has no poles in the closed right half-plane, but docs not lie in Hoo , and thus is not 
BIBO-stable either. In fac t every band {-o < Re s < O} contai ns infin itely many 
poles of P; they approach the imaginary axis as their modulus tends to infi nity. 

On the other hand PI (s) = Po(s)/(s + 1) is in Hor." and the system P:; (s) = 
Po(s)/(s + I):; is even BIBO-stable. For morc on this and similar examples we refer 
to the analysis in [7J. It shou ld be poi nted out that there remain several unsolved 
questions in this area, since the known tests arc not subtle enough to decide the 
question of BIBO stabi li ty for every neutral delay system. 

Thus the fo llowing well -known proposition gives a suffic ient but not necessary 
condition for stability. 

Proposition 5. Let P be defined as in (J) and satisfyillg COllditioll 2. If there exists 
a < 0 such Ihal P has flO poles in C n {Re s > a J thell P is BIBO-stable. 

4.2 The fractional case 

We consider here systems (2) satisfying Condition 2. The following result extends 
Proposition 5. 

Proposition 6. (6/ Let P be defined as in (2) and satisfying Condition 2. If there 
exists a < OS!lch that P has lIopoies ill (C \ llL )n {Res> aJ U {OJ Ilrell P is 
BIBO-stable. 
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5 Nuclearity of Delay Systems 

Nuclearity is an important notion when considering model reduction, for example 
the standard techniques of Hankel-noml approximation and truncated balanced rea­
lizations are guaranteed to converge in the nuclear case and, in general, not other­
wise (see lI6]). Note that it is often simplcr to pcrfonn control design on a rcduced­
order model (in particular, on a finitc-dimcnsional systcm), rather than dircctly on an 
infinitc·dimcnsional system. Wc re fer to [301 for morc on this topic in thc context of 
delay systcms. 

Nuclearity is characterized by lllcorem 3. Moreover, the nuclearity of a system 
with transfer function P implies that 

i: IP'(;y)1 dy < 00, 

which in tum is a sufficicnt condition for BlBO stability. 
The follow ing elcmentary lemma is a useful tool for analysing thc nuclcarity of 

systcms. 

Lemma I. [6J Suppose that 1 E Hoo(i14) and I/(s)1 = O(lsl - O) as lsi -+ 00 in 
114. Then 

(i) J fe, 1/(')1 dAr,) < 00 if a> 2; 

(ii) J fe, 1/(')1' - ' dAr,) < 00 if Q > 1; 

On combining this with Theorem 3 one arrives at a test for nuclearity of (fractio­
nal) delay systems, which can be expressed in the following fonn . 

Proposition 7. [6J Let P be defined as in (2) and satisfying Condition 1. Suppose 
that P is BI8G,slable. Then P is nuclear if the following condition is satisfied: 

• Any delayed tenll of the form r(s)e- ~' occurring in olle of h~. h~h;. h2h~ 
or h2h'l hj is stich that the degree of the fractional polynomial part r(s) is less than 
')' - 1, 2')' - 1. 2')' - 1 or 3')' - 1, respectively. 
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Summary. For linear stat ionary systems, the infinite dimensional framework allows one to 
distinguish different not ions of stabi lity: weak, strong or exponential. The purpose of ( hi .~ 

chapler is 10 investigate the problem of strong stabi lity, i.e. asymptotic non-exponential stabi­
li ty for linear systems of neutral type in order 10 use this characterizmion in thc study of the 
stabiJizability problem for this type of systems. An important tool in this investigation is the 
Riesz basis property of generalized eigenspaces of the neut ra l system, because that the gene­
ralized eigenvectors do not fonn, in general, a Riesz basis. This allows one to describe more 
precisely asympt()(ic non-exponential stabi lity of neutral systems. For a particular case, condi­
tions of strong stabilizability of neutral type systems are given with a feedback law without 
derivative of the delayed state. 

1 Introduction and Preliminary Results 

In this note we present a new approach for studying the strong stabili ty and stabili ­
zability properties of the functional differential equation of neutral type 

where A_I is constant n x n- matrix, det A_I of. 0, A2 , A3 are n x n-matrices whose 
e lements belong to L2( - 1,0). 

This eq uation occurs, for example, when a system of neutral type is stabilized. 
Even if the initial system contains pointwise delays only, then the set of natural feed­
back laws contains d istributed delays (see e .g., [15, 17]), so the corresponding closed­
loop system takes the fonn (I ). 

The problem of exponential stabili ty of systems like (I) is well studied l8, IOJ . 
Our purpose is to analyze more subtle properties of stabili ty (and stabilizabi lity), na­
mely strong non-exponential asymptotic stability (see e.g. [4]). One needs to consider 
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an operator model generated by the system ( I) in some infinite dimensional space. It 
is well-known that for neutral type systems the choice of the phase-space is crucial 
(in contrast to the case of retarded functional differential equations where solutions 
arc morc smooth than the initial data). 

In [6,8]. the fra mework is based on the description of neutral type systems in the 
space of continuous fu nctions CO- I , OJ; e n). The essential result in th is framewo rk 
is that the exponential stability is characterized by the cond ition that the spectrum 
of the system belongs to the open left-half plane. The problcm of asymptotic (non­
exponential) stability is much more complicated. 

Following {25] we treat our system as a system in the Hi lben space Mz = 
e n x Lz( - 1,0; e n). This fact is important for us since it allows to use deep ideas 
and technique of the operator theory in Hilbert space ll , 7] and results l 19] on the 
existence of Riesz basises (see Section 2 for more detai ls) in the analysis the follo­
wing operator model (see [25]) of the systcm ( I) 

~ (y (t») = A (y (t») = (1', o4 ,(O)i,(B)dB + f~, o4 ,(O)Z,(B)dB ) (2) 
dt Zt(-) Zt(-) dzt (0)/d8 ' 

where the domain of A is given by 

V(A) = {(y"O) , z E H '( - I ,O,C"),y = ,(0) - o4 _ ,z( - I )) eM,. 

Theorem I. The operator A defined in (2) is [he infinitesimal generator of a Co-
semigroup denoted T(t) == eAt , t :?: 0 on the Hilbert space Mz = C n x 
Lz( - I ,O; C n ). 

If additiollally det A_I f:. 0, then the operator A is the generator oj a group 
eAt ,tE R o1IM2. 

Let us denote by /.tl , .. . , ttl. /.li f. J'j if i f:. j, the eigenvalues of A_ I and the 

dimensions of their rootspaces by PI , .. . ,Pt , L~= l Pk = n . Consider the points 

>.~) == In l/.lml + i(arg /.lm + 21Tk) , m = 1, .. , f; k E Z and the circles L~) of filled 

radius r :S ro == ~ min{I>'~~) - >.ji\ (m , k) f. (i , j)} centered at A!! ). 

Theorem 2. The spectrum of A cOllsislS oflhe eigenvalues only which are the roOlS 
oflhe equatioll det L1(A) = 0, where 

The correspollding eigenvectors of A are If' = (C- ~~-~:~_ l C ) , wilh C E J{ er L1(A) . 

There exists N, such that for allY k , such Ihal lkl :?: N 1 , the total multiplicity of 

the roots of the eq!lalion det L1(A) = 0, contained in the circle L~~ ) , equals Pm. 

To describe the location of the spectrum of A we use Rouchc theorem. More 
precisely, for sufficiently large k and any m we show that IfdA)1 > 112(.-\)1 for 
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any'\ E d~) and fl('\) == det(A _ I - c)../) , h('\) == det(A_ I - e-AI)­

det ((.L I - e - A I) + e).. J~I eA' Az{s)ds + e A,\ -I J~I eA' A3(s)ds) . 

11ms, h - h has the same number of roots inside L~~ ) as function fl. 

We start our analysis o f the stabil ity properties of the system (2), using the clas­
sical techniq ue (sec c.g. [5]), and prove the following 

Theorem 3. Assume that the spectrulII satisfies u(A) C {>' : 3l:'\ < O} and 

(4) 

Then fhe system (2) is exponemially stable. 

The proof of Theorem 3 is based on the fact that for a Co-semigroup T(t) on 
Hilbert space one has so(o4) = wo(T), where A is the generatorof T, 80(A) is the 
abscissa of IIlliforlll bOlllldedness of the resolvent and 

worT) = inf{w E R, 3M > 0, IIT(t)lI" Mew', Vt" 0) 

See [24J for defi nitions and details. This fac t is crucial for the following theorem 
which we use to prove Theorem 3. 

Theorem 4. /5.1'.222, Ih.5.1.5J Let A be Ihe infinitesimal generator of Ihe Co-
semigroup T(t) 011 Hilbert space Z. Then T(t) is exponentially stable if and only 
if(s! - A) - I E Hoo(C(Z). Here Hoo (C(Z» is Hardy space of bounded I/OIOII/or­
phic functions on { z E C : !R z > O} with Miues ill C( Z). 

It is easy to sec that Theorem 3 can not be applied to the case when there exists 
Il E u(A_d such that IIlI = I (see (4». Moreover, Theorem 2 shows that under the 
assumptions of Theorem 3 one has o-(A - d c {.u: IIlI ~ J < l} or equivalently 
utA) C {,\ : 3l:'\ ~ -£ < O}. For the system (I) this is the case of exponential 
stabil ity. 

Further on we are mainly interested in studying the case when the system is 
strongly asymptotically (non-exponentially) stable. Let us give an illustration of such 
a situation. We consider the scalar system ( I ) 

x(t) = ax(t - 1) + [°
1 

'Pz(B)i:(t + B)dB + [°
1 

'P3(O)X(t + O)dO (5) 

where a is a constant such that lal = I , and 'P'l, 'P3 are any functions belongi ng 10 
L,(-l,O). 

Proposition I. The system (5) is strongly asymptotically (noll-expollenrially) 
stable if and ollly if u(A) C {>. : 3l:'\ < O} (see (2) for the definition of A with 
'P2, if!3 instead of A'l, A3)· 

To prove this and the other statements of this chapter on the strong stabili ty and 
stabilizability properties of neutral type systems we develop a new approach which 
we describe in detail s in th e following sections. 
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First, we involve the classical theorem from the theory of semigroups (see Sec­
tion I) which is proposed as the main tool for the analysis of the stability properties. 
Second, we discuss a new result [ 19j on the ex istence of Riesz basises and, particu­
larly, use it (see Section 2) to prove Propositi on I. Section 3 is devoted to the study 
of the stabili zabil ity properties, when the contro l action is Bu(t). For ne utral type 
systems, exponential stabili zabil ity by feedback requires, in general , the delayed de­
rivative in the feedback [1 5]. Our method allows to usc only state feedback but we 
obtain asymptotic (non-exponential) stabil ity of the closed loop system. To this end 
we recall fi rst some deep results on strong stabilizability of linear systems in Hil bert 
spaces. In the last secti on one presents concl usions and perspectives. 

2 Strong Stability 

Apparently, the fi rs t result which may be considered as a basis of the investi gation 
on strong stabil ity is the following one [23, p. I02l. 

Theorem 5. Let be given a complete nonunitary contraction T ill the Hilbert space 
H silch that 

mes(a(T) n So (1)) = 0, 

where So(1 ) = P. E C : 1>.1 = I} alldmes(.) is a Lebesgue measure in So(1) . Then 
for each x E H we have 

lim T "x = 0 and lim T ' ''x = O. 
" ..... "" .. ..... "" 

Let us recall that a contraction T is said to be completely nonunitary if there does 
not exist a subspace H I C H , invariant by T, such that T ill , is an uni tary operator. 

In the Theorem 5, the notion of stability is not explicitly involved. However, with 
this important theorem one can obtain the following result on asymptotic stability of 
a semigroup in Hilbert space . 

Definition 1. A Co·semigrollp T(t), t 2:: 0 is called to be contraclive semigrollp if 
IIT (t)1I ,; 1, t 2 o. 
Definit ion 2. A semigroup T{t) , t 2: 0 is said to be unita ry ifVx E H and t 2: 0 we 
have 

IIT(t )xll ~ IIxll ~ IIT(t)"xll · 

The semigroup T (t) is said to be completely nommitary if Vx E H ,x t- 0, there 
exists t 2:: 0 such thm 

IIT(t )xll < IIxll "' IIT (t )"xll < IIxll · 

Let us recall that a semigroup is contractive if and only if the infi nitesimal generator 
A of the scmigroup is maximal dissipative: !R(Ax,x) ::s 0 for all x E D( A ), and 
unitary if and only if the infinitesi mal generator A is skew-adjoint. 
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Theorem 6. 112, §A3 Slrong Stability of Evolution Equations). Let A be the infinite· 
simal generator of a contractive completely nOfllmirary semigrollp eAt , t 2:" 0 in the 
Hilbert space Hand 

mes(a(A) () (iR)) = 0, (6) 

where iR is the imaginary axis alld mes(.) a Lebesgue measure Oil this set. Then for 
all x E H we have eAlx -+ 0 , t -+ 00. 

The proof of Theorem 6 is based on Theorem 5 and the introd uction of the cogene­
rator of the semi group [23], i.e. the operator 

The condit ion (6) is essential for the stabi lity of the semigroup. For practical use, an 
important particular case is the condition: the set (O"( A) () (i R )) is at most countable. 

It turns out that when th is condition is satisfied, then the semigroup {eAt }, t ?: 0 
is completely nonuni tary if and only if the operator A has no pure imaginary eigen­
values. This gives a simple fonnu lation of the Theorem 6. 

Moreover, with this assumption the resul t on strong asymptotic stabi li ty may be 
extended to the case of Banach space. Namely one has the fo llowing criteria of strong 
asymtotic stabil ity. 

Theorem 7. Let eAt, t ?: 0 be a Co-semigroup ill the Banach space X and A be the 
infinitesimal generator of the semigrotlp. Assume that (O"(A) n (iR)) is at most COIIII­

table and the operator A · has 110 pure imaginary eigellvalues. Then eAt is strongly 
asymptotically stable (i.e. eAt x -+ 0, t -+ +00 as x EX) if and ollly if one of the 
following conditions is valid: 

i) There exists a IlOrlll II . Ih. equivalelltto the illitial one II . II, such thar the 
semigrollp eAt is contractive accordillg to this IIorlll: ileA/xiI! ~ Ilxll!. Yx E 
X, t 2:" 0; 

ii) The semigroup eAt is ullifonllly boullded: 3C > 0 such thar ileA/II ::; C, t ?: O. 

The Theorem 7 was obtained first in f20] for the case of bounded operator A, then 
generalized in [2, 14] fo r the general case. The development of this theory concerns a 
large class of differential equat ions in Banach space (see [24] and references therein). 

3 Riesz Basis Property 

We notice that the condition "O"(A) n (iR) is at most countable" (see Theorem 7) 
can be easily verified for many concrete systems which arise from appl ications. For 
example, in the case when A has compact resolvent, one has that CT{A) itself is at 
most countable and consists of the point spectrum on ly. The location of eigenvalues 
of A for some systems can be easily described while for others this question needs a 
careful investigation, using, for example, Rouche theorem and perturbation analysis 
(see e.g. Theorem 2).11 is well known that the property a(A) c p. : ~A < O} is 
necessary but not sufficient for the strong asymptotic stability of eAt. 
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Taking this into account, we arrive at the necessity to have an efficient method to 
check the property i) (or equivalently ii» of Theorem 7. Work ing in a Hilbert space 
, we get a powerful tool to study the property i), namely, the concept of Riesz basis. 
The simplest case is a Riesz basis of vectors. Let us remind the definition. 

Definition 3. A basis { t{;j } of a Hilber! space H is called 0 Riesz basis if there are 
all orthollormal basis { ¢ j} of H alld a lillear bounded illvertible operator R, such 
that Rt{;j = ¢j. 

To the best of our knowledge, the main source of abstract results on Riesz basises 
is the monograph [7J. The most desired situation for concrete systems is to have a 
Riesz basis fonned by e igenvectors of A or, at least, by generalized eigenvectors 
[7, 12,21]. In more general situations, one studies the existence ofbasises fonned by 
su bspaces. We remind that a sequellce of IIOllzero subspaces {Vk } r of the space V 
is called basis (of subspaces) of the space V, if allY rector x E V call be ulliquely 
presented as x = L~1 Xk , where Xk E Vk , k = 1,2, .. We say that the basis 
{Vk} r is orthogonal if V; is orthogonal to Vj when i ¥ j. As in the case of a basis 
of vectors we can introduce the fo llowing definition. 

Definition 4. [7 J A basis {Vk } of subspaces is called a basis equivalent 10 orthogo­
lIal (a Riesz basis) if there are all orthogollal basis of subspaces {IV d (lIId a lillear 
bounded invertible operator R , such that RVk = Wk. 

The best "candidatcs" to fonn the basis of subspaces are generalized eigenspaces 
of the generator of a semigroup, but there arc si mple examples (sec Example I below) 
showing that generalized eigenspaces do nOI fonn such a basis in the general case. 

One of the crucial ideas of our approach is to construct a Riesz basis of finile ­
dimensional subspaces which are invariant for the generator of the semigroup (see 
(2» . The ex istence of such basises essentially simplifies, for example, the verification 
of the property i) of Theorem 7. 

In [19] we obtained the following general resul t. 

Theorem 8. There exists a sequellce of im'arialll for A (see (2)) jinite-dimensional 
subspaces which constifllte a Riesz basis ill lvf2. 

More precisely, these subspaces are {V~k), Ikl 2:: N ,m = 1, .. , t} and a 2(N + 
1 )n-dimensional subspace spanned by all eigen· alld rootvectors, corre~pondillg to 

all eigenvalues of A, which are outside of all circles L~) , Ikl 2:: N , m = 1, .. , t . 
Here V~k) == pj;) Ah, where 

are spectral projectors; L~) are circles defined before. 

We emphasize that the operator A may not possess in a Riesz basis of generalized 
eigenspaces. We illustrate this on the follow ing 
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Example I, Consider the particular case of the systcm (1): 

:i: (t) = A _ 1x (t - 1) + Aox(t ), Ao = (
a 0) Op . (7) 

One can check thatthc characteristic equation is det .6.(.-\) = (a - A + ..\e- >')(.B­
..\ + ..\e->') = 0 and for a ¥- .B there arc two sequcnces of eigcnvcctors, such that 
Ilv:. - v~ 1l -t 0, as n -t 00 , By the definition, such vectors can not fonn a Riesz 
basis. 

To prove Proposition 1 we notice that for the particular case of the system (5), 

Theorem 8 gives that e = n = 1, all thc subspaccs V/k
), Ikl ?: N, are one­

dimensional and together with the 2(N + I)-dimcnsional subspacc fonn a Riesz 
basis of the space M2. Using this property, we consider the operator R (see DeL 3) 
which maps the cigen- and possibly finite number of root-vectors of A to an ortho­
nonnal basis of M'l. It is now easy to check that the new nonn 11 . lit == IIR · II is 
equivalcnlto II , 11 · This, together with the property a(A) c {..\ : ~..\ < O}, allow us 
to apply Theorcm 7 to prove Proposition 1. 

Let us precise that for the general multivariable system (1) the stability conditions 
is more complicated. A complete analysis for the general case wi ll be given in one 
of our forcoming papers. 

4 Strong Stabilizability 

4.1 The abstract theory 

The problem of strong stabili zabi lity of control systems in infin ite dimensional 
spaces has been intensively studied since seventies. The basic abstract fonnulation 
of this problem is the following one. 

Consider the linear system 

X = Ax+Bu, x E H,u E U, (8) 

where H , U are Hilbert spaces, the operator A is the infinitesimal generator of a Co-
semigroup of contractions {eAt}, t ;::: 0, i.e.lleAIII :5 1, t 2: ° or, what is the same, 
such that A is a maximal dissipative operator. The operator B is usually assumed to 
be a bounded linear operator from U to X . The problem under invcstigation is: if 
the feedback control law u = -BO x is a stabili zing control, i.e. e( A- BB'jtx -t 0, 
t -t + 00, 'tIx E H. 

Undcr some additional assumptions this problem was studied in [22J using the 
Lyapunov method. In [13J and other works by N. Levan (d. references in l16J) a fra­
mework based on the decomposition of the contractive semigroup and the harmonic 
analysis of operators was developed. Based on this framework the partial answers to 
the problem of strong stabilizability were given. Necessary and sufficient conditions 
of the strong stabi lizability under the assumption (6) were given in the PhD thesis 
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of G. M. Skl yar (Kharkov, 1983). In a slightly weaker fOnTIulation thi s result was 
published in [I []. The complete result was included to the book [[ 2] (§A3. Strong 
Stabil izability of Evolution Equations). Let us recall it: 

We denote for the system (8) 

Lr = L eAtBU and 
t?:o 

Lor = L eA'fBU. 
t?:o 

For the contractive semi group eAt, t ::::-: 0 , the canonical decomposition [23J holds: 

H =V $ W, 

whcre the restriction e,Hlv is an unitary semigroup, while the restriction eAthv is 
completel y non un itary. 

Theorem 9. Letfor the system (8) the conditioll 

mes(0(.4) n (i R )) ~ 0 

be valid. Theil the system (8) is strollgly slabilizable if and olily if 

v nL~ n L:r = {OJ. (9) 

The stabililing control law is then given by 1t = - B ' x. 

Let us note that the condition (9) becomes much simpler when the set (a(A) n 
(i R )) is at most countable. It is eq uivalent to the following condition : There does 1101 

exist an eigenvector x E H of the operator A, with pure imaginary eigenvalue stICh 
that B' x = O. 

In this fOnTIulation the result was found one more time in [3J, where the au­
thors used Theorem 7. An extensive investigation of the strong stabilizability can be 
found [16] (see also references therein). In [2 1] the problem of the description of 
a large class of (strong) stabilizing control laws of the type u = Px is given. The 
main tools are the Theorem 7 and the techn ique of the characterization of equivalent 
nOnTIS for which tile operator A + BP is dissipative. For the particular case when 
the operator A is skew-adjoint with separated discrete spectrum this class was iden­
tified. The problem of robustness in thi s class was al so investigated. The perspective 
is to develop th is framework to the case of unbounded operator P in the feedback 
u= Px. 

The abstract theory of stabilizability given here may be applied to the system of 
neutral type. 

4.2 Systems of neutral type 

Let us present some results on the stabilizability for the particular case of the system 
(2). 
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For simplicity we consider a control neutral type system with one delay in the 
state 

x(t) = Aox(t) + A IX(t - 1) + A _ Ix(t - 1) + Bu(t) , (10) 

x E R" ,UE RT, A j,j == - l , O, l aren x n-matrices,B is a n x r- matrix. 
The stabil izability problem consists in determination of linear feedback control 

U == p{x(·)) such that the closed- loop system 

x(t) ~ A,x(t) + A, x(t - 1) + A _,x(t - 1) + Bp(xO) 

becomes a stable one. The abstract functional model of the system (10) uses the 
operator A ; D(A) --t Mz defined by (c.r. (2» 

A ( y ) ~ (o4 ,y+(.4, ~o4' o4 _ ,),(-1) ) , 
'0 ",0 

where D{A) is defined as before (see (2». 
With these notations ( 10) can be rewritten as 

5!. ( y(t) ) ~ A (y (t ) ) + 6u(t) , 
dt ZtO ZtO 

( II ) 

where B == (g) is a linear operator B : C " --t M2 . 

The spectrum a(A) is the set 

a(A) == a = Pldet(.U - A_l ).e- >' - 040 - Ale - >')} = o. 

and consists of eigenvalues only. Denote further by I:: the set of all nonzero eigenva­
lues of matrix A_I. Then for any IJ E I:: the set a includes a family of eigenvalues 

,<"," L = {>.~ = log l/JI + i(A rg fl. + 21Tk) + 0( 1), 

where 0 is meant as k --t ±oo. 

We assume that the following assumptions are satisfied. 
(al ) I:: c {w : Iwl :S l } and there ex ists fl. E I:: : 1fl.1 = 1. 

k E Z }, (12) 

(a2) All the eigenvalues I' E I:: such that 11'1 = 1 arc simple in the sense that 
there are no Jordan chains corresponding to such eigenvalues. 

(a3) Finite-dimensional system 

x(t ) == Aox(t ) + Bu(t), x E R" ,u E R r ( 13) 

is controlable. i.e. rank(B, AoB, ... , A~- l 8) = n. In particular. this means that 
(3) is stabil izable. i.e. there exists a linear feedback control u = P1Jx such that 
!Ra(Ao + BP8 ) < O. 

(a4) rank (AI + AoA_ \ ,B) = rankE. 

As it is di scussed in lI8]. we are main ly interested in the controls which are 
bounded with respect to operator A (for the definition and details see e.g. [9]) i.e. 
controls of the ronn 



266 Rabah Rabah, Gngory M. Sklyar, and Alexandr V. Rezounenko 

,,~P(xC)) ~ [" P(O)x(t + O)dO + [" P(O)x(t + O)dO, 

where p( (J), ?( (J) , (J E [- 1, OJ arc square-integrable (r x n )-matri x-funct ions. This 
is the natural choice of controls to achieve the non-exponential stabili zability. 

We have the follow ing result. 

Theorem 10. Let the 5),stem (10) satisfy the assumptions (a l ) - (a4). Then this 
system is strongly stabilizable with the aid offeedback colltrols which are bOllfuled 
with respect to operator A if and only if fo r an arbitrarily chosen matrix Po sitch 
thaI 

a(A, + BP,)n log( I )n(iR ) ~ 0 

there do not exist an eigenvector 9 of A _ I corresponding to an eigenvalue I-' E 

L , 11-'1 = I and k E Z such that 

B' R;~{Ao + BPo)g = 0, • 
where..\~ is given by (12). 

Under this condition the strong stabilization can be achieved by the choice of 
control; 

u ~ Q, x(t) + Q,x(t - 1) + [" Q,(O)x(O)dO, 

where Qh Q2 are collstant (r x n)-matrices, Q3 is (r x n)-matrix which elements 
belollg to L2 ( - 1, 0). 

The proof is based on the analysis of the system ( II ) and using the Theorem 9. 

5 Conclusions and Perspectives 

In this note we presented a new approach for investigation the strong stability and sta­
bilizability for systems of neutral type. We describe the main ideas and facts which 
fonn the background of our research. These facts are collected from the theory of 
differential equation wi th retarded argu ment (see e.g. [5,6,81), the theory of semi­
groups as well as general operator theory (see e.g. [7.9,23,24] and recent results 
from [1 8, 19]). We give examples emphasizing that our approach is widely appli­
cable, perspective and extends the classical stability theory. 
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Summary. This chapler focuses on the delay-dependent robust stability of linear neutral de­
lay systems. The systems under considcr:llion are described by functional differential equa­
tions, with norm bounded time varying nonlinear uncertainties in the "state", in the delayed 
"state" and nonn bounded time varing quasilincar uncertainties in the difference operator. Two 
unknown constant delays, in the delayed "stale" and in the dilTcrcncc operator, lead 10 consi ­
der a more general delay-dependent robust stabi lity problem. The analysis is perfonned Ilia 
Lyapunoll-Krasollskii functional approach. The main difference with respect to [ IS[ is that 
we obtain sufficient conditions for robust stability given in tenns of the existence of positive 
dcfinite solutions of LMls. Thc proposcd stability analysis extends some previous results on 
the subject. 

1 Introduction 

A great variety of systems can be modeled by time-delay systems [13}, i.e. the "fu ­
ture" states depend not on ly on the "present" states, but also on the "delayed" states. 
Indeed, the delay naturally occurs in the dynamical behavior of systems in many 
fie lds: mechanics, physics, etc. Even if the systems themselves do not have inter­
nal delays, closed loop systems may involve delay phenomena, because of actuators, 
sensors and computation time. 

Among systcms with delays, the class of neutral systems is characterized by the 
fac t that the delay argument occurs in the "slate" and also in the derivative of the 
difference operator applied to the "state variable" D(t)Xt. Some examples of such 
neutral systems are given in [14J, [IJ. 

Several works have been concerned with the stabi lity analysis of neutral systems 
either in the time domain approach, see for example: [9]. [19J. or in the frequency do­
main approach, see for example: {S]. {19J. In these studies. the attention was mainly 
focused in giving conditions for delay independent stability, which are conservative 
when the delays are unknown. It is then of interest to consider delay-dependent sta­
bility analysis. see [5J.I ll ]. 

In practice, the model parameters are not precisely known. leading to study the 
robustness of the stability w.r.1. uncertainties {1 2l. In th is case, neutral systems can 
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be represented by uncertain models, sec for instance [14] (for example. lossless 
transmission line models may have uncertain parameters). Sufficient robust stabi­
lity cond itions have been obtained by the authors for neutral systems, but with only 
o ne delay parameter and with restrictive hypothesis on the neutral part [17) and in a 
much more general case in [ 18) but leading to non linear very complex conditions, 
d ifficull to check. 

The objective o f this chapter is to st udy the stability analysis of linear neutral sys­
tems in adelay-dependent framework incorporating robustness issues. The delays are 
assumed to be unknown and constant and the uncertaint ies may be time varying and 
nonl inear. Here we avoid the differentiability cond ition on the "state" (in general we 
suppose it is not differentiable) we transfonn a system wilh poi ntwise delays into 
a system with d istributed delays by applying the Le ibnitz's rule. One obtains suf­
ficient delay-dependent stability condit ions via the Lyapunov-Krasovskii fun ctio nal 
approach . The systems under consideration are described by functional differential 
equations, with nonn bounded time varing nonlinear uncertainties in the "state", in 
the delayed "state" and nonn bounded time varing quasi linear uncertainties in the 
difference operator. The main contribution here with respccllo [18] is thai we obtain 
delay-dependent stabili ty resu lt expressed in lenns of LMI. 

This chapter is organized as follows: Section 2 gives some prel iminaries and 
states the problem. Model transformation is discussed in section 3. The main stabi lity 
resul t is given in section 4. In section 5, two examples arc proposed to show the 
interest of the approach. Some final re marks end the chapter. 

1.1 Notations 

1m is the identity matrix of dimension m x m. x E I~.", II . II denotes the Eucli­
dean noml of x. For a real number r > 0, Cr = C([ - r ,Oj,IR") is the Banach 
space o f continuous vector funct ions v> : [- r , Oj --+ IRrt wi th the supremum norm 

1Iv>lIc. = sUP_ r< t<o 1Iv>(t)lI· Cr ,v denotes the open sci v> E Cr with IIrplic < v. 
C! = C' ([ - r , OJ ,-Rii) denotes Ihe Banach space of continuous differentiable func­
tions'P : [- r, 0] --+ R" with the norm 1I 'Pllc: = 11'P11e. + 1I <p11e • . The funclion Xl 

denotes the restriction of x to the interval [t - r , t] so that Xl is an element of Cr 
defined by Xt (O) = x(t + 0) for - r S 0 S O. 

1.2 Problem statement 

Consider the foll owing system, written in the ronn proposed by J.K. Hale and M.A. 
Cruz [8]. [91. [14]: 

d 
dt[D(t)xd ~ f(t , x,),t;> u, (1 ) 

D(t)'P'~ ['P(O) - 9(t,'P)], (2) 

with 
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x" == q,,¢ E Cr, (3) 

where the state Xt is a functional in C,. and f, 9 : [0",00) x C,. ~ JRn are continuous. 
Since the initial value problem for e I )-(3), in general, does not have a solution [8J, 

system (1)-(3) is defined as a neutral system if g(t,cp) is non-atomic at zero. The 
concept insures that the function g(t ,cp) docs not depend very strongly upon '1'(0). 
General ex istence, uniqueness and continuous dependence theorems have been given 
in [8J for System ( I )-(3) under the hypothesis that g(t, cp) is non-atomic at zero. 

Definition 1. IB/Suppose that 1/. is an open set in nt+ x C([u,oo), JRtI). A nelltral 
system is a system oftheform (J )·(3)for which f,9 : 1/. ~ JR'! are cOllliTluous and 9 
is nonatomic at zero on 1/.. 

In order to define a neutral system, suppose also that f , 9 are uniformly bounded 
in t for cp in closed bounded sets of Cr , that 9 is linear in the second argument and 
that there are a n x n matrix It(t , e), t E [a , 00),0 E [-r, Ol, of bounded variation in 
o and a scalar continuous function 1(8) nondecreasing for 8 E [O,rl, [(0) ::::: 0 such 
that 

g(t,,,,) ~ J~,d,I/'(t,9)1",(9), 
[[ J~. d,I~(t, 0)]",(9)[[ S 1(,) ,up_.<,<o 11'1'(9)[[, 

for all t, cp in C. 
We denote the solutions of the system (1)-(3) by x(a,¢) where x,,(O",¢) 

The value of x( a, ¢) at t is denoted by x( t) ::::: x( t; 0", ¢). 
Let us recall some definitions of stability. 

(4) 

" ¢ . 

Definition 2. /9} The zero soilltion of the system ( 1)-(3) is said to be stable if, for 
each £ > 0 alld 0" 2: 0, there exists 8 = 8(0",£) > 0 sllch that ifllq,l!cr < 8, then 
Ilx( tj u , q,) II < £ for all t 2: u. Thez.ero SO/lit ion of (I ).( 3) is asymplolically stable if 
it is stable and the value 8 can be chosen indepelldently of a such Ihal, ill addilion, 
IIx(t ; u, q,)11 ~ 0 as t ~ +00 holds. 

Definition 3. /6} Consider H E C([O", 00), IR") alld the equation 

D(t )x, ~ D(t)¢ + H(t) - H(a),x. ~ ¢, t ~ a. (5) 

Suppose Ihal:J{ is a subset ofC([O",oo),lR:n). The operator D(t) is said to be Imi· 
formly stable with respect 10 :J{ if there are COIIStOlIlS K, 11 sllch that for any q, E Cr, 
()" E nt+, and H E :J{ , the solutioll x(t ; a , q" H) 0[(5) satisfies 

Iix,(a,¢,H)IIc. S K [[¢IIc. + A sup I H (T) - H (a) I,t ~.. (6) 
"~r::;:t 

Let V : 1R+ x C,. ~ 1R+ be a continuous functional ; the upper right-hand deriva­
tive of V along the solution of the System ( 1)-(3) is defined by 

. 1 
V(t,q,)::::: lim sup -h[V(t + h,Xt+h(t,q,)) - V(t,q,)] (7) 

h-+O+ 

We wi ll usc the following Lyapunov-Krasovskii functional approach: 
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Them·em I, (6 j Consider fhe neutral system ( / )-(3), Assume that D(t ) is un iformly 
stable with respect to Cr and that there exist non decreasing continuous junctions 
Vi : IR+ --+ IR+, i = 1, 2,3 such that v;(O) = 0 alld v;(s) > O.jor all s > 0 alld 
i = 1,2,3. Then. the zero solution oj ( 1 )-(3) is asymptotically stable if there exists a 
cOllt illllollsfim ctional V: IR+ X Cr --+ IR+ sllch that: 

i) v,(II D(I)'P11) S V (t,'P) S ",(11'1'11,.) and 
ii) V(t,xd s: -v3(IID(t )xtID'/or alit 2: u. 

The present chapter considers the following fairl y general class of uncertain neutral 
systems (1 )-(3), I(t, xd = Ax(t) + Hx(t - r2) + .dA(t, xd + .dB(t , xd, g(t, xt} = 
Cx(t - rJ) + .dc(t,xd (assumed non-atomic at zero), linear neutral di fferential 
equations that include continuous quasi linear and nonlinear uncertainties. Thc delays 
rl and r2 are assumed to be non negative constants and unknown, 

1i: [D(t)xt] = Ax{t) + Ex(t - r2) + F(t,xt}, t 2: a 

(8) 

with 
x. = ¢,{¢,'P} E C" (9) 

where X, = {x(t + 8) : 8 E I-r, 0], r := max{rl, r2 }} . The known matrices A, B, 
and C are constant and the unknown nonlinear mappings .1A, .10 : IR x Cr,v --+ IRn , 
and the linear mapping in the second argument .1e : 1R x Cr,v --+ JR" take closed 
bounded sets into bounded sets, They are described by 

LlA(t,'P(O» ,= EAoA(I,'P(O)), 
o{(t,'P(O))oA(I,'P(O)) S'PT(O)Wr WA'P(O), 

Ll 8 (1,'P(-r,» ,= E808(1,'P(-r,)), 

J~ (t, <p( -r2 ))08 (t, <p( - r2» s: <pT (- r2) W t'W 8<P( -r2), 
Llc(t,'P(-r,) ,= oc(t)<p(-r,), 

We + oc(t) ?: 0, We - oc(t ) 2: 0 
V(t,<p) E jR+ x Cr,v, 

( 10) 

where the matrices EA, EB are known, the matrices nr A, f.V 8 and We arc real given 
weighting matrices, and the unknown mappings OA and DB sati sfy 

OA(t,O) = 0,08(t,0) = 0, ( II) 

so that X = 0 is a solution o f the neutral differential equation (8)-(9) , Notice that the 
uncertainties on .1e are unstructured , this will allow us to get stability, results using 
LMI tools. 

Remark 1. Note that rl > 0 implies C<p( - r l) + dc(t, <p) depends only upon values 
of <p(O), conditions ( 10) allow to satisfy (4), then CX( t -1'J )+dc(t , <p) is nonatomic 
at zero in 1t {8]. 
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If it is required to have smooth solutions of (8)-(9), then assume that the initial 
function 1 is in C: and sati sfies the sewing condition 

This condition implies the continuity of x(t ) for t 2: a and then x( t) is differentiable 
on (a - 1', 00). 

Two important stabili ty problems are associated to the neutral system (8)-(11 ) 
(see also [171): 

Robust stability problem: Find conditions, if they ex ist, 10 ensure the asy mptotic sta· 
bi lity (independent Q] the del ay§) of the neutral system (8)-( 11 ) for all unk­
nown fu nctions LlA' .dB and Lle 

In [ IOJ a simi lar si mpler problem was presented with no uncertainty on C, 
(LlC( ·, ) ,, 0). 

Delay-dependent stability problem: Find bounds 1';, Ti, if they exist, on the delays 
1'1,1'2, such that the asymptotic stabil ity of (8)-( 11 ) when LlA' LlB and Lle are 
identically zero, is preserved for 1'\ :S Tj and for 1'2 :os: 1'2. 

In l ll] and {1 7] the delay-dependent stability problem was performed only in the 
delay 1'2, not in 1'1 . 

Now consider the scalar neutral system [18] 

d 
dt {x( t ) - TICX(t - 1'1)] :::: -ax(t) - bx(t - 1'2), t 2: a , x" := 1, 1 E Cr. (13) 

where a, b, c t- 0, and 1'1, 1'2 are constant. Of course, since Xt E Cr , this system 
can be written in the form (8)-(11 ) by the Riesz representation theorem but in thi s 
case the difference operator depends on 1'1. In the particular case l' = 1'1 = 1'2, the 
stability of the difference operator DXt ;= x(t) - rcx(t - 1') is directl y linked to 
some upper bound on the delay T ° :::: 11'1 < 1/14 In this case the stability will 
depend on r. 

Remark 2. In example (13) the stability of the difference operator does depend on l' 
because the coeffi cient of the "delay differentiated state" contains the delay 1'1. When 
it is not the case, it is well known that the delay-stabil ity depends only in the delay 
of the "delay state", 1'2 [II]. 

In this chapter, we cons ider the following mixed problem: 

Delay-dependent robust stability problem; Find bounds ri, 1'2 if they exist, on 1'1, 

1'2, and conditions to ensure the asymptotic stability of the neutral system (8)­
(II), for 1'1 :os: Ti and for 1'2 :S 1'2 for any LlA, LlB, Lle . 

Diffe rent methods have been considered to study the stability of the solutions 
of such systems [14J and among them, the direct Lyapunov method (Razumikhin or 
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Krasovskii approaches) [9] , [14] . It reduces the stability problem to the construc­
tion of appropriate functionals V , defined along the systems solutions. We use this 
methodology to study robust stability and delay-dependent stability problems simul­
taneously. The delay-dependent robust stabil ity conditions arc given in terms of the 
existence of positive definite solutions for some matrix inequality. 

2 Model Transformation 

Some authors introd uce a transfonnation to prove stability, for example transform a 
time delay system x (t ) = f (t , xd into a neutral time delay system written in the 
Hale's fonn by integration over one delay interval [1 5]: 

x(t ) = f (t , xr}-t ~[x{t) - i O/ (t + O, Xt+9 ) dO] = f (t - r, xt _r) . 

Or sometimes, when possible, transform a neutral system [8]: 

x (t) = G~ (t , xd + G~, (t , xd Xt +F (t , xd , 

into a neutral system written in the Hale's form: 

Or finally the Leibnitz'rule in the state Xt ( II J 

x (t ) ~ x(t~r) = [" x(t +O) dO . 

However, in all these transformations, the "state" is supposed to be differentiable. In 
this chapter, we avoid this restriction. 

Let us consider now the neutral system (8)-( II) : 

d 
dt D (t )x1 = Ax(t) + B x(t - rz) + F(t , xd. ( 14) 

From the Leibnitz's rule in the difference operator, D(t)xt - D(t - rZ)xt_r2 

f~r2 do[D(t + O)Xt+8j, holds for t ~ r + rz 

x(t - rz) = x( t) - Cx( t - rd - dc(t, xd 
+ Cx(t - TI - rz) + d c(t - TZ, Xt - r2) - t r2 1t[D (t + O)xt+o]dO 

( IS) 

since D(t )Xt is continuously differentiable. 

Remark 3. Here we slate the problem with respect to the space C([ - r,O], IR"), but 
the previous transfonnation holds in other particular spaces, for example in the So­
bolev space W1, P({_ r, 0) , JR.") , proposed in [10). Or even in more general cases, 
for example using the product space IR" x CP([ - r, 0], IR"), proposed by [4J, where 
DXt is absolutely continuous on [0,00] (with the integral in (15) in the sense of the 
Lebesgue Integral [7]). 
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Then equation (8) can be rewritten in the new variable (as (see [12J, [17]) 

f,[D(t){,] ~ (A + B){(t) - BC{(t - ,.,) - B£lc (t ,<,( - r,)) 
+BC~(t - Tt - T2 ) + BLlc(t - T2 , (t- r2( - Ttl) (16) 

- B J~r,lA<(t + 0) + BW + e - r,) + F(' + e, < .. , )Ide + F(t ,{,) . 

It is not very difficult 10 check that every solution of neutral system (8) is also solution 
of the equation ( 16), then lhe stability of ( 16) implies the stability of (8) r 12]. 

If a function sat isfies (8) on some interval and has a sufficiently smooth derivative 
(assume that the initial func tion 1> is in C: and the sewing condition (12) is fu lfi lled), 
then carrying out the differentiation in (8) leads to 

d 
dt[D(t)'!'1 ~ ';(0) - C,;(-r, ) - £le,,(t , ,!,) - £le" (t , ,!,),,, (t7) 

where LlC,t(t , !.p) is the partial derivative with respect to "t" and Llc,\p (t ,'P) is the 
derivative with respect to " !.p" . 

In the next section, the stability analysis of the transformed model ( 16) is perfor­
med in terms of the variable x. 

3 Delay·Dependent Robust Stability 

In thi s section, as in [18j, one uses the Lyapunov-Krasovskii functional approach, 
with the help of theorem I to prove the main result of thi s chapter, given in the next 
theorem: 

Theorem 2. Consider the Neutral System (8)·( J J). If the following conditions are 
satisfied: 

i) At := A + B is a Hunvitz stable maIrix; 
ii) The difference operator D(t)!.p := [!.p(O) - C!.p( - TI) - Llc(t, !.p)] is linear in!.p. 

continuous and uniformly srable with respect to Cr and dc( t , !.p) is nonaromic 
at zero; 

iii) there exist a real positive number Ti and positive defi"ite matrices p. S; > 0, 
i = l,7 such that the following i"equality holds: 

< 0, ( 18) 

where 
Q (T;): = nil + S(r:;) n- 1sT 

(Ti) , ( 19) 

nll := PAl + A[ P+2S - S(r!j)R- IS
T 

(Ti) (20) 
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, , 
8:= wlwA + 2:: 8 j + 1·; L 8;, 

;:1 ;=3 

5 (,;) ,= (5 , 5, (,;)) , 

5, ,= (PA" "fiPB , PEA , PEB ) , 

S:dr~):= "Jt1 (PBEA , PBEu , PBA , PB'1 ) , 

(

- 1,,, 0 0) 
n- I := 0 - 8; 1 0 , 

o 0 - 86 ' 

!112:= (PA + wlwA + t,5i + r2 ~s;) C, 

!12'1: = 2WJ We - 81 + 87 + CTSC +3WJ 5We 

!133:= WJWB - S2 + riS6 , 

!144 := WJ We - 57 , 

!114 := PBG, 

(2 1) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

Theil the Nell/ral System (8)-( J J) is robustly delay-dependelll asymptotically stable 
fo r allY T2 :s: r; . 

Remark 4. In [18] only in the case where.de == 0 the main result can be checked in 
tenns of a LMI, however in this work condition 3: (18)-(2 1) can be checked always 
by using LMI Tools [2]. Notice that condition I is necessary and directly fol lows 
from the satisfaction of condition 3. Condition 2 consists in checking the unifonnl y 
stability of D(t) with respect to C([a, 00) , JRn) see Definition 3l6J . 

Remark 5. C + We < I is a sufficient condition to have an operator D(t ) uniformly 
stable with respect to C([a, 00), IRn). 

Proof: Consider the Neutral System (8)-(1 1) and the Lyapunov-Krasovki i func-
tional 

V(t,'P) ,= V,(t , ~) + V, ('P) + V' (~) ,'P E C" 

where 
V,(t , ~) ,= DT(t)~PD(t)'P, 

V,(~) ,= l:;=. JO
" ~T (O)S,'P(O)dO + t" If; 'PT(~)S,~(~)d~ldO, 

V,('P) ,= JO"IJ;-" 'PT(~)S' 'P(~)d~ldO + J:::_" 'PT(O)S,'P(O)dO, 

+ l:~=, J~,,[J,o "'T(~)S" p,(~)d~ldO 

(3 1) 

(32) 

(33) 

(34) 

and the func tionals, 1/1;, are 1/1~ := VJ, 1/16(19) := VJ(19 - r'1) . For the functional V, we 
can construct V along the trajectories of ( 16) in (enns of x, if ip is replaced by Xt in 
the right hand side of V (ip). pass to x, differenti ate in I (so that D(t)xt appears only 
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for the current (not delayed) value of I), substilute D(t)xt from (16), pas~ from x to 
XI, and replace Xt by <po With this procedure, the ex pressions for V and V are often 
straightforwardly written in tenns of x, keeping in mind the transition from X 10 <p, 

as proposed by [14 J. Then we have: 

. • T 
V,(x,) ~ L 'o.lXT(t)S,x(t) - x (t - r.}S;x(t - r,)1 (36) 

+ J~ r,lxT(O)S3xttO) - xi+9(O)S3XI+O(O)]dO, 

. 0 T T 
V3(xd = L r2[-Xt+O( - rz)5.tXt+o( -r2) + XI (O)S4Xt(O)]dO 

T T +X (t - rdS7x(t - rd - X (t - TI - r2)S7x(t - TI - T2) (37) 

+ J~rJxi(O)S5Xt(O) - xl~o(O)S5xl+o(O)+ 

+xi( -TZ)S6Xt( -TZ) - xi+9( - TZ)S6Xt+tl( -T2) ]dO 

Substituting (16) in (35) and selling AI := A + B leads to: 

VI (t, xd = DT(t)XtPA t x(t) + xT (t)AT PD(t )xt 
+2DT(t )XtP[EAO'A(t,Xr) + EnO'n(t ,xtl] 

- DT(t )XtPBC{x( t - TJl - x(t - TI - T2)] 
_{XT(t - TJl - xT(t - Tl - TZ)]CTBT PD(t)xt (38 ) 

-2DT(t)xt PBEc[O'c(t)x(t - rd - O'c(t - rz)x(t - r] - rz)] 

- 2DT(t )XtPB J~r, [Axt+o(O) + BXt+o( - TZ) 
+EAO'A(t + 61, Xt+o(O» + EnO'n(t + 0, Xt+tl( - Tz»]dO. 

Using the following well known inequality: 

(39) 

assumption (10) and positive square matrices RI and R 2, we havc directly the follo­
wing inequalities 

2DT (t)XtP EBO'n(t , Xl) :s DT ( t)XtPEBE~PD(t)X t + xi (- T2)WIWBXt( - T2) 
(40) 

- 2DT(t )XtPB J~r2 BXI+tl( -r2)d8 :s 
J~r2 [DT(t)xtp 8 z 11;;1 (82)T P D(t)xt 

+xi+tl( -rz)Rzxt+tl( - r2)]dO, 

and simi lar inequalities for O'A and R I , 

-2DT(t )xt p B J~r2 EAO'A(t + 0, Xt+tl(O»dO :s 
tr2{DT(t)XtP BEAEIBT PD(t )xt 

+xi+o (0) W,rW A Xt+tl(O)]dO, 

similar inequalities for 0'8 and Rz. 

(4 1) 

(42) 
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The inequalities (40)-(42) allow to get a bound for \i",. Now we choose R, := Sa. 
R'l:= S6, 

{
S3 = wI I· VA , if WIW;t > 0, 

S3 > WIWA,olherwise, 

{
S4 = WJWn,ifWb"WB > 0, 

S4 > Wb"WB " olherwise 

and using equalities (36) and (37), we derive the following bou nd for V: 

. T T V (t ,xd::; D (t)x/PA,x(t) + x (t - rdS7x(t - rtl 
+xT(t)Af P D(t)xt - xT(t - T[ - T'l)S7X(t - Tl - T'l) 

- DT(t)XtPBC{x(t - rd - x(t - rl - T'l)] 
{ T T )ITT) -x (t-rJ)- x (t-TI-T'l C B PD(txt 

+DT(t )xt P E;tEI PD(t)xt + xT(t) W I WAX(t) 
+DT(t)xtPEBEEpD(t )x/ + xT(t - r'l)WJWnx(t - TZ) 

+2DT(t)xt PBEcE'f:BT PD(t)xt + xT(t - rJ)WJWex(t - TJ) 

(43) 

(44) 

+xT(t - rl - r'l)WJWex(t - T[ - r'l) (45) 

+ J~r2 DT(t )xtPBASs' AT B TpD(t)xtdB 

+ J~r2 DT(t )XtPB'l SS-I(B'l)T PD(t )xtdB 

+ J~r2 DT(t)xtPBEAEIBTpD(t)xtd() 

+ J~r2 DT(t)xtPBEnE"EBTpD(t)xtdB 

+ L~= I [XT(t)S;X(t) - xT(t - T;)S;X(t - Til] 
+r'l L~=3 xT(t)S;x(t) + rzxT(t - T2)S6X(t - T2)' 

Using the following identities with S = WIW A + L~= l Si + T'l L~=3 S;, we can 
rewrite each expression containing the vector function x(t) in (45) as an expression 
containing DXt and x(t - T]): 

T T T T +x (t - rdC S D (t) x / + x (t - TdC SCx(t - rtl 
+2DT(t)x t SLlc(t ,xd + 2xT(t - TdCTSLlc( t ,xd (46) 

+Llt:(t , Xt)S Lle( t, xtl, 

D'l'(t)xtPA I x( t ) + xT(t )Af P D(t)xt = 
DT(t)Xt( PA I + Afp)D(t )xt + DT(t)xtP A]Cx(t - rd (47) 
+xT (t - rJ)CT Af P D(t )xt + 2DT(t)XtPA ] Llc(t, xtl, 

and we can overbound the tenns 

2DT(t)XtSLlc(t, Xt) ::; DT(t)xtSD(t)xt 
+xT(t - TdWJSWex(t - rd, 

Llt:(t,xt)SLlc(t , xtl::; xT(t - rdWJSWex(t - Td, 

(48) 

(49) 
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similarly for 2xT(t - T] )CT Sdc(t , xtl, 2DT(t)xtp.4, dc(t , xd. Note that (49) is 
obtained directly from the fact that (We + 6c(t))T S(We - 6c(t)) 2: 0 by assump­
tion ( 10). 

With all these inequalities and identities, if there exists a real positive number 
T2 2: T'l such that the Matrix Inequality (18) holds, then ( 18) is equ ivalent to: 

• T 
V(t ,xd$w flw < O, (50) 

where the vector w is 

w,~ ( ~f:(~;:~ ) 
X( t -T,-T'l) 

(SI ) 

and the matrix fl: = (flu),i = 1, ... , 4, j = 1, ... ,4 is defined in Theorem 2. This 
fact fo llows via an appropriate Schur transformation [2] . 

The relation (50) means fl < 0, n] ,] < 0 and that there exists some '""( > 0 such 
that V(t ,xd ::; -'""( IID(t)Xtll for all t 2: (7. D is stable by Assumption (2), see [6], 
then, the robust asymptotic stability 0£(8)-(11 ) is ensured by Theorem I for all delay 
T'l S; T2' [6]. 

Remark. 6. When conditions of Theorem 2 are satisfied, the robustly delay-depcndenl 
asymptotically stability of(8)-( II) is ensured for all T'l $ T2 and for any r, positive. 
However Theorem 2 can be applied to analyze stability of (1 3) where the neutral 
coeffi cient CT] depends on r, . In this case, the stability will depend on T]; so, T] 

should be such thai conditi on 2 of Theorem 2 is satisfied. 

Remark. 7. When the uncertainties .1.4(' , .), dE(- , .), dC are zero, we can choose 
the Lyapunov-Krasovskii functional (3 1) V (tp) := VI (tp) + V2 (tp) + V3 (tp) wi th V, 
defined in (32) and 

V,(~),~ [, ~T(8)5,~(8)d8+ [,,[l ~T(~)5,~(~)d~ld8, (52) 

V,(<p) ,~ I:, [I.:" <pT (~)5,<p(~)d~ldB + !~:~" <pT (8)5''1'(8)<18, (53) 

leading to the delay dependant result without uncertainties of [I I]. 

Remark. 8. If we are interested only in the delay independent robust stability of Neu­
tral System (8)-( 11), the model transformation can be avoided; choosing V(ip) .­
V] (ip) + V'l(tp) with VI defined in (32) and 

, 0 

V,(~),~ L! . <pT(8)5;<p(8)d8, 
;=, -J", 

(54) 

leads to similar results proposed in [10]. 

Remark. 9. If the difference operator is defined by D(t) = D, dc(t, tp) = dCip(t ­
T,), dC a constant matrix and if we suppose ip is right-handdiffc rentiablc (ip E C~), 
then we recover the results of [17]. 
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4 Examples 

We will illustrate robust stability resu lts on two simple neutral systems with no un­
certainty in the C matrix. 

4.1 Consider the following linear neutral system: 

d [ (0.10) 1 (2 ° ) (10) dt x(t)~ 0 0. 1 X(t-TJ) = - 00.9 x(t)- 11 X(t-TZ) (55) 

y(t} ~ (Ol)x(t - r,) (56) 

Note first that. when C == O. the time delay system is not asymptotically stable 
independently of the size of the delay T2 if A + B is stable and A - B is not (condition 
obtained for the system free of delay). Equivalently, in the neutral system case, for 
Tl == 0, if the matrix (I - C) - I (A + B) is Hurwitz stable and (I - C) - I (A - B) 
is unstable, then the system cannot be stable independently of the delay T2 . 

In this example. Ict us consider Tl = T2. For uncertainties characterized by 
WA = WB = 0.15/2. the sufficient condition provided by Theorem 2 leads to 
T::; = 0.5s , a feasible solution for the LMI (18) of Theorem 2. In Figure I a simu­
lation is presented for system (55)-(56) with initial condition (h (8) = - 0.758 + I , 
rh (8) = - 16.6258 + 1. Under this initial condition, the sewing condition (12) holds 
if WA = W B = 0, and x is differentiable for t > 0; howevcr, in the uncertain case 
thcre is a small jump at t = O. 

, <c-. --.--~'----~-~ •• _--~ ... ~. --J 

"' ig. 1. - 4 :$ yet) :$ 10, - 0.5 :$ t :$ 3 

When the case without uncertainties is considered (WA = WB = 0) the solution 
given by the theorem is T~, any finite positive bound, and T; = 0.894s . 

4.2 The second example is a realistic neutral system problem motivated by the 
small PEEC (Partial Element Equivalent Circuit) model studied in [1]: ft[x (t) -
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Cx {t - r)] = Ax (t) + B x (t - r) . It is characterized by the following A, B, C 
matrices: 

.4 
100 3 - 90 , 1~0 = - 0.5 - 0.5 - 1 , C = 7

1
2 " 0 3 (-7 1 2 ) (1 0 -3) (-152) 

1 2 - 6 - 0.5 - 1.5 0 - 24] 

y(') = ( 0 0 l )x« - r,) . 

(57) 

(58) 

In [11], the system stability is computed for r ' = ri = r:i = 0.438. In [I], the 
system stability is computed for r = 1 using a contractive continuous RK-method. 
However in our case, we guarantee the system stability for all the delays less than or 
eq ual to J'*. Applyi ng Theorem 2. using LMI-Toolbox, we find that the inequality is 
feasible forri = 100s. In fact, the ineq uality is satisfi ed for larger val ues of ri. The 
following simulation is shown in Fig. 2 for Ti = lOs. The initial condition is given 
between - lOs and O. Notice that there are discontinuities in the derivative of f(t) 
for t = O. 10, ... , k x 10. 

' .. 

Fig. 2. -1:S y(t):S 1, - 1O:S t :S 40 

If we only use VI given in equation (32) for the system without uncertainties, it 
leads to the delay independent condition [191 

(
ATP+PA+S P(AC+B)+SC) 0 (59) 
CTS + (cr AT + BT) CTSC - S < • 

CTSC - S < 0, (60) 

where matrices P > 0 and S > 0 are sy mmetric positive definite. The system (57) 
does satisfy this last LMI, it is then asymptotically stable, independent of the delay 
r = rl = rz. 
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5 Concluding Remarks 

In this chapter, we cons idered the delay dependent robust stability of a fairly ge­
neral class of neutral systems. A key point of this work is the fac t Ihat we give 
sufficient conditions checkable in the LMI frame work. We proposed a Lyapunov­
Krassovskii functiona l which includes, as particular cases, functionals developed in 
previous works. A long the same lines, more general classes of neutral systems in­
c luding quasilinearitics in Ihe operator D of (1 ) satis fyi ng the atomicity condition 
should be considered. 
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Summary. Design and implementation of now control problems pose challenging difficu lt ies 
as the now dynamics are governed by coupled nonlinear equations. Recent research outcomcs 
stipulate that the problem can be studied ei ther from a reduced order modeling point of view 
or from a transfer function point of view. The latter idcntifies the physics of the problem on 
thc basis of separate components such as scauering, acoustics, shear layer etc. This chapter 
uses the transfer function representation and demonstrates a good match between the real-t ime 
observations and a well-tuned transfer function can be obtained. Utilizing the devised model, 
an Hoo cOnlroller bascd on Tokcr-Ozbay formula is presented. The simulation results illustrate 
that the effect of the noise can be eliminated significantly by appropriately exciting the now 
dynamics. 

I Introduction 

Aerodynamic flow control is a core issue aiming to reduce skin frict ion thereby in­
creasing the maneuverability of aerial vehicles and reducing the fuel expenditure. 
The research towards this goal is in its infancy. however, some major problems have 
been identified. These particularly include the development of a dynamic model for 
a given fl ow geometry. and describing the best control scheme in some sense of op­
timal ity. In this chapter we di scuss cavity fl ow problem. 

One of the two branches of research towards the model development for cavity 
flow stipulate the use of proper orthogonal decomposition techniques to remedy the 
problem of infinite dimensionality, [I}, [2), These procedures yield a set of ordi­
nary differential equations. which are autonomous. The underlying idea is to extract 
the most dominant features (modes) containing the essential part of the fl ow energy. 
Although the modeling iss ue has we11 been addressed, the control design is sli11 de­
pendent upon models that explicitly include the control input. The other viewpoint 
exploits the strength of representing the physical properties by dynamical models in 

S. -I. Niculescu et al. (eds.), Advances in Time-Delay Systems
© Springer-Verlag Berlin Heidelberg 2004
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transfer function fonns, [3]' [4], [5] . Cited stud ies demonstrate that the shear layer, 
scattering, cavity acoustics and receptivity can be represented dynamically as trans­
fer functions. Due to the reflections from the upstream wall of the cavity, after some 
propagation delay time, the reflections interact with the oncoming flow and a delay­
based coupled dynamics arise. II must be noted that the devised form of the trans­
fer function matches the frequency content of the data obtained from Navier-Stokes 
equations. 

In th is chapter, we optimize the parameters of the model developed in (3], [4], [5J 
to match the magnitude and frequencies of the resonant peaks and use thi s model 10 
synthesize an Hoo controller. 

It is a well known fact that Hoo controller design scheme is panicularly well 
suited if the model involves uncenainties. This study demonstrates that an optimal 
controller can be detennined by utilizing the framework presented in [6]. 

The chapter is organized as follows: Section 2 introduces the transfer function 
based model of the cavity flows with its sub-components. The third section is devoted 
to the parameter tuning issues. The frequency response match is presented in that 
section. Following this, the methodology to design an [Joo controller is discussed 
together with the sim ul ation results. Concluding remarks are made in the last section. 

2 Delay-Based Models or Cavity Flow 

The process shown in Figure I is for cavity flows, which constitute the simplest 
geometry for studying aerodynamic flow control problems. Basically, this represen­
tation captures major dynamic phenomena inside the flow field. For the shear layer, 
we have, 

G( s) = Go(s)e-"', ( I ) 

where T& = LI(KU) (with L being the length of the cavity, U being the freestream , 
velocity and K is a known constant). In (I), Cots) = 2+2t o + 2 with Wo and < are 

8 "'08 "'0 

the natural frequency and damping ratio, respectively. 
The acoustics tenn is given as 

where 
r 

r( s ) = ~-,­
l +slwr ' 

(2) 

(3) 

is the attenuation factor of the reflection process. Denoting the speed of sound by a, 
the lime delay representing the acoustic lag between the trailing edge and the leading 
edge is given as Ta = Lla. Here, the Mach number can be calculated as M = U la. 
Funhennore, the numerical values of R (receptivity), Sc (scattering), V (actuator) 
and Sm (sensor) are assumed to be available in [41 and denote them by I<R, I<s , 
I<v and ](m respectively. In the view of these, tile cavity transfer function P can be 
fonned as given below: 



On Delay-Based Linear Models and Robust Control of Cavity Flows 289 

n 
(noise) 

Cavity 

p Shear 
Layer 

G 

Scattering Acoustics ~ 
, Y 

A 
P o ~ (pressure) 

Receptivity 

R 

',······ ...... ·"A'cLU-ator·'··Co·ntroi"i(;T·· ···Sensor·······~ 
u 

Fig. I. Block representation of the cavity fl ow and the control loop [3J, [4J 

(4) 

Although the system is a linear one, at some Mach numbers unstable limit cycling 
appears. The focus of this chapler is to study how a robust controller can be devised 
under dynamic uncertainties. 

The goal of the controller is to reduce the peak value of lP(jw)S(jw)l, where 
S(jw) is the sensitivity function, so that the effect of the noise at the output is redu­
ced. An example of achieving such a goal can be found in [4], in which the controller 
is composed of a filter followed by a gain and a time delay. In the next section, we 
outline the effect of each parameter on the frequency response characteristics. 

3 Parameter 'liming for the Flow Dynamics 

Our studies have demonstrated that the now dynamics developed by Rowley el 01, 
[4], [5] ex.hibit certain degrees of flex. ibi li ty to match the frequency response obtained 
from the real -time data with that of the input-output modcl . In order to analyze this, 
we have performed several tests 10 see which parameter is responsible for introducing 
what sort of modification into the freque ncy content. Fol lowing is a lisl summarizing 
our conclusions in this respect: 

As Wo increases, the dominant peak moves towards higher frequencies. The fre­
quency domain picture is stretched 10 the right. 

As ( increases, the values of the peaks get lowered, and the frequency content 
becomes more flattened. 
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An increase in J(s lifts up the enti re frequency domain picture whi le magnifying 
the peak val ues slightly. 

If r is increased, more peaks appear panicularly in the higher frequencies . 
As'Ts increases, the frequency response acquires more fluctuations (peaks) in the 

low frequencies. Funher increments lead to more wavy low frequency behavior. 
Change in 'Tn causes small translations with some tiny changes in the peak ma­

gnitudes. 
As J( R increases, the peak magnitudes get larger. 
Apparently, the above information constitutes a knowledge base for us, and lets 

us know how to tune the parameters given some real-time data. 

, 

F,""IU"<"ICY IHzl 

Fig. 2. Power spectral density comparison of pressure data obtained from full order Navier­
Stokes simulation and data from the model in (4) 

In this chapter, we use trial and error method to match the frequency content and 
the result of the model match is illustrated by Figure 2, from which we can see that 
the power spectral density of the simulation output of the linear model matches that 
of the si mulation outputs based on Navier-Stokes equations very well. The data for 
the linear system are given in Table I, on which the robust controller design is based. 
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Table I. Parameters of the Linear Model 

Parameter Value 

wo 200 radlsee 
( 0.95 
T. 0.01 95 sec 
T. 0.00 1 see 
T 0.1 
w. 100 radlsee 
f( R 0.408 
K, 1.65 
K. 
Km 

4 Robust Controller Design 

Inserting the transfer functions of the shear layer and the acoustics into the plant 
transfer function, we get 

K, 
No2 (s) = I<sGo(s) = 1 + 2(s/wo + s2/wl' 
.M"(s) = e-

h
" , where h i = T8 +Ta, 

N,.(,) = (1 - KR N.,(s)M.(s) - T(s)M,(s))-', 

(6) 

(7) 

(8) 

where .M2(S) = e-2TaB . Plant is stable for the numerical values determined in this 
case. For different numerical values it is possible to have an unstable plant, then fini ­
tely many unstable modes may appear from the roots of I INol (s) = O. This si tuation 
can be handled in our approach as well. At this slage, we propose to use Toker-6zbay 
fonnula (see 16]) to design the controller. The optimal robust performance is defined 
by 

(9) 
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where n is the set of all compensators stabi lizing P. II is known that S = (1 + 
PC) - L and T = 1 - S are the sensiti vity and complementary sensitivity functions 
and W] and Wz are Ihe perfonnance and stabil ity weighting fu nctions. Since the 
goal of the controller is to reduce the peak value of IP(jw)S(jw) l, we choose the 
performance weighting function W] (s) as given in (I I), such that the oscillation 
magnitude at the dominating modes is suppressed. To take care of the uncertainties in 
the high freq uency, we set the compleme ntary sensitivity weighting function Wz(s) 
as g iven by (13). In Figure 3, Bode plots of these weighting functions and the plant 
are depicted. 

IV () ~ k ( I + ,/w'o) 
lo S l(l+s/Wld) ' 

W , (,) ~ W'o(s)(1 - ,(s)M,(s))No' (s), 

WZo(s) = (2s(1 + S/Wl n), 

W,(s) ~ W'o(s)( 1 - ,(s)M,(s)). 

'~ r-----'------------'-----------'-----------C<=~~ 
::-:: I~" ' , . 11100: 

""d . 500: 
""0. 1000: 

10' ~, .2: 

,,' 

,,0 

IWI 

10·''------..,.----------...,,----------~,__----------'c_--.>..J .. ~ ~ .. 
F""IUfII"OCY (,adlsec) 

F ig. 3. Weighting functions 

Define the fo llowi ng func tions 

( 10) 

( II) 

( 12) 

( 13) 
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Pz := NozM,,, (14) 

Sz = (1 + P'lC'l) - I, (15) 

T'l= l -Sz. ( 16) 

By inverting Ihe ouler part of the plant, we see that the H 00 controller has to be 
in the form C(s) = C'l(s)(I - r(s)Ah(s)) + K n. where C2 is designed for 

(17) 

By definition. it can be seen that the performance speci fications of both systems are 
equivalent, i.e., 

IW, (jw)S(jw)1 ~ IW,,(jw)S,(jw)l, 

For the robustness of the system, it can be shown that if 

I~I < 11-'w,"I, 
ILlKR I < 11'-' WI"Nol~,,~ rM'l)21· 

( 18) 

( 19) 

(20) 

then the system associated with plant P and controller C is robustly stable, where 
Lll'\, denote the uncertainty of the plant P2 and LlKR be the uncertainty of the va­
ri able K n. The problem is sign ificantly simplified such that C2 can be computed 
explicitly by hand calculations. The optimal contro ller C'l for P2 is in the form 

C,(,) _ (~_ 1 m ," ) N;;"(,) ( 1) (2 1) 
- 1'm;n l' (I + as + bs'l) 1 + H(s) , 

To compute the optimal perfonnance level 1'. define 

x~ 

w" 1'min:= k , -, 
WIn 

1'ma., := k" 

kf - ")'2 

")'2 ""'~'in ' 

b = f2JI - hm;n!1'F, 
k , Wld 

(22) 

(23) 

(24) 

(25) 

(26) 

Taking the largest value of ")' satisfy ing the below equality (27) in the allowable 
range: 1'ma., > ")' > 1'min wi ll give us the optimal ")' needed in the optimal controller 
fonnu la (2 1). For the current problem, we obtain l' = 1.9484. 
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_ I _ I Wld X - I awldX 
11" = hlW l dX + tan x + tan -- + tan bw2 2. (27) 

Win 1 - IdX 

To implement the controller in real-time, H (s) is expanded as a finite impulse 
response (FIR) fi lter and an exponential deeay tenn, i.e. H (s) = HFIR (S) + 
H/lR(S), which are described in (28) and (29). The magnitude of H (s) and its 
constituents are shown in Figure 7. 

H/I/1 (5) 

in which CQ, CI, 1iQ, d l and w., are defined as below: 

co = (b( 1 - /x.J;) - a2
) d

l
, 

a 
CI = - bd l , 

"" ~ d, (bw~ - 1) , 
a 
-a 

d l = w,ia2 + (I - bc.J,iF ' 
w., = WldX . 

(28) 

(29) 

(30) 

(3 1) 

(32) 

(33) 

(34) 

11 has been demonstrated that the impulse response of HFIR(S) is restricted to 
the time interval [0, hi I. which is shown in Figure 6. Hence, H Ff R(S) can be real i­
zed as a FIR fi lter of duration hi. The discrete-time realization of H F/ R(S) requires 
only hlIT~ states, where Ts is the sampling period . Theoretically, the infinite dimen­
sional controller can be implemented through a finite impulse response (FIR) filter 
approximation. 

In Figure 4, we demonstrate the Bode plot of the controller, which has been 
discussed above. Figure 8 illustrates the Bode plot of the closed loop control system 
compared to the open loop planl. As the fi gure suggests, the controller modifies the 
frequency COnient of the open loop system signifi cantly at the dominating modes. 
The resonant peaks in the frequency response of the open loop system are suppressed 
and the improvement is obvious. Figure 9 shows the time domain simulation result 
of the the closed loop system. 

5 Conclusions 

In this study, we focus on the transfer function based models of cavity flows. Due 
to the delays inherited fro m the physics of the problem, the problem is an infinite 
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r , 
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'0' 00" ,. ,0> 

Fig. 6. Impulse response of HFlR(S) 
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, .. 

Fig. 7. Magnitude of H (s). fI FI R(S) and fIll R( s) 
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Fig. 8. Bode plot of the closed loop system compared wiht that of the open loop system 

t , 

'"' r----~-----~---F_:'';;:;;~''il I:.: ;::::,,';" I 

'"' 
, , , , 

f---~_ " , 
' - - , , 

" 

I O-''--------------"~--------------------~--------------------' 1~ Id ,~ 

Fig. 9. Power spectral densi ty of Output of time domain simulation 
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dimensional one. We demonstrate that a previously studied fonn of de lay-based fl ow 
model can be tuned so as to capture the resonant peaks appearing in the freq uency 
response. We present how a Hoo based controller can be devised for such a Single­
Input-Singie-Outpul system. The observed results demonstrate that the controller 
perfonns well under Ihe presence of uncertainties. The undesired resonant peaks of 
the open loop system have been suppressed fairly well. 
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Summary. Several fluid flow problems related 10 propulsion and JXlwcr generation exhibit 
strong acoustic resonances. Produced due to interactions of the acoustics with other underlying 
unsteady mechanisms such as unsteady heat-release or shear flow instability. these resonances 
manifest as large and sustained pressure oscillations. In addition \0 the obvious undesirable 
effect of high ambient noise and acoustic fatigue, these oscillations are coupled with other 
damaging effects such as excessive vibrations, high bum rates, lift-loss, and ground erosion. 
Compromises made in order to reduce these oscillations lead to departures from the desired 
operating conditions and can in tum result in suboptimal perfonnance with reduced heat­
output, increased emissions, or decreased efficiency. Over the past few years, active control 
technology has been increasingly sought after to realize the desired perfonnance metrics in 
these problems without encountering resonant behavior. In order to provide guaranteed and 
unifonn pcrfonnance over a large range of operating conditions in the presence of various 
system uncertainties, it has been demonstrated in these problems that a model-based approach 
to designing the control strategy is feasible and scalable, and leads to a reliable and impro­
ved pressure reduction at the desired operating conditions. In this chapter, two examples of 
such fluid flow problems, combustion-instability and impingement-tones in supersonic flows, 
and thcir active control will be discussed. Models of the resonant mechanisms using both 
physically-based and system-identification principles are presented. In active-adaptive control 
of combustion systcms, Posi -cast control methods and their closed-loop perfonnance in prac­
tical combustors are discussed. In active-adaptive control of supersonic impingement tones, 
a POD-based active control slrategy and the corresponding experimental results from a Short 
Takeoff Vertical Landing (STOV L) supersonic jet facility at Mach 1.5 are presented. 

1 Introduction 

Problems in power generation and propu lsion concern the organized motion of a fluid 
past various boundaries under varied conditions. Because of the boundary conditions 
and operating conditions, often the fluid fl ow experiences acoustic resonances, wh ich 
correspond to large and undesirable pressure oscillations. Occuring due to the com­
bined presence of several mechanisms, some of which are coupled in feedback, these 
oscillations have been observed to be effectively curtai led through the use of act ive 
controL In particular, careful articulation o f the input conditions in the flow such as 
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the pUlsing of a fuel fl ow or an air fl ow or adding external fl ow at receptive locations, 
have been fo und to make a dras tic change in the system behavior with very little 
external input. 

An important feature of the flow resonances is the presence of time-delays in the 
system. Given that the instability is imbedded in a flow problem which is governed 
by fl ow particles being convected from one location to another, it is not surprising 
that a good part of the fl ow dynamics, including instability, is affected by convective 
dclays. Two examples of such fluid fl ow problems include combustion-instability [I] 
and impingement-tones in supersonic flows [2], in both of which time-delay plays 
a dominant role, in the modeling of the ph ysical process and in the acti ve control 
design of such systems. Over the past fi ve years, we have developed linear and non­
li near time-delay models of the resonant mechani sms based on both physically-based 
and system-identification methods. In active-adaptive control of combustion systems, 
we have developed a new controller referred to as an Adaptive Posi-cast controller 
and have successfull y implemented it in a number of rigs that exhibited fairl y large 
time-delays. In active-adaptive control of impingment tones, we have implemented 
an active optimization strategy that makes use of POD modes from on-line measure­
ments and MEMS dev ices. In the following sections, highlights of these results are 
presented. 

2 Acoustic Resonances in Combustion Systems 

Continuous combustion systems, common in power generation and propUlsion ap­
plications, are susceptible to the phenomenon known as thermoaeoustic instability. 
Thi s instability is due to a self-sustained coupling between the acoustic fi eld of the 
combustion chamber, and the heat release rale. Pressure oscillations inside the com­
bustor cause fluctuations in the heat-release rate, which in tum produces an energy 
input into the acoustics, generating a feedback-loop. Under certain conditions the 
pressure and heat-release fluctuations are in phase, causing this feedback to be desta­
bili zing. The resulting instabili ty is undesirable because the large amplitude pressure 
and heat re lease rate oscillations lead to high levels of acoustic noise and vibration, 
as well as structural damage. 

Several mechanisms contribute to combustion dynamics including acoustics, 
heal-release dynamics, hydrodynamics, and mixing (see Figure I). Of these, the first 
two mechani sms are better understood and have been modeled through both physi­
cally based P , 4] and system-identification based approaches [5]. In both of these 
cases, the model is invariably of the foml 

W (s) = ~ = Wo(s)e~TI 
v 

(1 ) 

where y is the unsteady pressure, v is the voltage that drives the fuel-injector valve, 
Wo(s) is an n th order transfer function whose zeros are in the left-half of the complex 
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plane, with a relative degree one or two, and with the high frequency gain known. 
The time-delay T corresponds to the transport lag, which is the distance between 
the injection of the fuel, and the burn ing zone. Typicall y, Wo(s) has a few complex 
poles, at least two of which are in the right-half of the complex plane, or are vcry 
lightly damped. The problem is one of deriving acontroller that dctcrminev(t) which 
guarantees that the closed-loop remains stable even with partial knowledge of the 
plant-model parameters. 

Fig. L Schematic of acoustics. hydrodynamics and heat-release dynamics interactions in com­
bustion systems. 

2.1 The adaptive Posi-cast contl"ollel" 

Thc controllcr chosen to s tabilize the above cl ass of systems is motivated by time­
delay controllers in [6,7] and has been discussed in detail in [3.8]. The general form 
of Ihis controller is given by 

WI = AOWt + itt(t - T) 

W2 = AOW2 + €y(t) 

u = eJ(t)Wt + 0[(t)W2 + r (t) + XT (t )u(t) 

Ott ) = -(yet) - Ym(t))W( t - r) . 

(2) 

where 01 , W I lR+ -+ IR'\ 02,W2 : lR+ -+ lR", A is an asymplolical\y stable 
matrix and det (s l - A ) = ).(s), is a Hurwitz pol ynomial. u; is the i th sample of 
u(t) in the interval [t - T, t), i = 1, ... ,p, and p is suitably chosen as dictated by 
the requ ired accuracy and the affordable complexity. It has been established in [8] 
that starting from initial conditions whose magnitude depends on T, the closed-loop 
signals will remain bounded. In {3], a lower-order controller whose order depends on 
the relative degree of the plant rather than its order has been shown 10 be sufficient 
for stabilization as well, for a small T. 
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2.2 Experimental results 

The controller described above has becn implemented in several rigs, all of which 
exhibit acoustic resonances. We briefly describe two such rigs below, the correspon­
ding control input, and the nature of the uncontrolled combustion dynamics. We then 
show the impact of the controller in closed-loop. 

A dump combustor 

Experiments were conducted using an ax i-symmetric dump combustor at the Uni ­
versity of Maryland. TIle inlet consisted of a circu lar tube with a diameter 

4.1 em and length 2.24 m. The upstream boundary was defined by a choked ori­
fice and the downstream by a SUdden-expansion dump. At I m upstream of the inlet 
dump plane, a choked nozzle was used to inject ethylene in a transverse manner into 
the air fl ow. The inlet fl ow simulated the prevaporized premixed reactants entering 
a ramjet combustor. A set of secondary pulsed fue l injectors, which were pointed 
at 450 into the flow direction, were mounted at the dump plane. They supplied a 
small amount of liquid ethanol directly into the combustor continuously or at pres­
cribed freque ncies. The IOtal amoun t of ethanol injection was controlled by pulse 
duration and injection frequencies. In a typical case, about 15% of total combustion 
enthalpy was provided through the controlled fuel injection; the remaining 85% was 
supplied through the steady premixed inlet flow. TIle associated time delay in the 
secondary fuel injection to pressure modu lation was 2 ms. The combustor was na­
turally unstable at an equivalence rat io of 0.6-0.7 and air flow rate of 23 gis, which 
corresponded to a Reynolds number of 30,000. For these conditions, a fundamcntal 
mode was observed at 39-40 H z with pressure amplitude of up to 160 dB and 10 
kPa peak to peak val ues. 

With the secondary fuel injection as the input, the output pressure response to 
a white-noise input was detennined, and using the input-output pairs, a system­
identification model of the combustor was de\ennined, and was of the fonn 

(3) 

We then implemented a Posi-casl cOnlroller of the fonn in Eq. (2), with a sam­
pling frequency of 500 H z. This led to a salisfactory suppression of the pressure 
response which is shown in time-domain and frequency-domain in Figures 2 and 3 
respectively. 

A Swirl-stabilized Combustor 

The experimental faci lity discussed in this seclion is a generic combustor designed 
to model the fuel injection/premix ducts of a Rolls-Royce RB2 11 -DLE industrial 
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I<' ig. 2. Time plots of pressure and controller output with the adapt ive Posi-cast controller. 
Controller was turned on at t= lsec. 
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Fig. 3. Pressure spectrum in the dump combustor without control and with adaptive Posi-cast 
controller. 

gas turbine. The swirler unit is a scale model, however, where the geometry of the 
plenum and combustor have been reduced to si mple cylindrical pipes. Fue l is injected 
upstream into the annular channels through eight cylindrical bars each fitted with two 
ex it holes of 1.0 mm diameter. Actuation for control was achieved using a Direct 
Drive Valve CODV) from Moog to modulate the fuel flow rale into the swirler and 
hence produce variations in equivalence ratio in the premix dUCIS. In the current 
set of feedback control tests the experimental data has been obtained in the ranges 
m,,=O.03-0.05 kgls and 7nf= 1.6-2.5 gis, resulting in 1>=0.5-0.75. The rig exhibits 
a 207 Hz plenum mode instabi lity with up to 165 dB and 20 kPa peak to peak 
without conlrOI. This leads to unsteady combustion with a significant ti me delay (9.6 
ms) that needs to be accounted for in the control strategy. 

To accurately reproduce pressure oscillations with affordable computation time, 
a sampling freq uency was chosen to be 2 kH z, which resulted in p= 19 in the Posi­
cast controller in Eq. (2), leading to twenty-one adjustable parameters in the control­
ler. Figure 4 shows the closed-loop contro l result with the Posi-cast contro ller. The 
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controller was turned on at 0 s. and stabilization was achieved in about seven se­
conds. All of the 2 1 control parameters started at zero and converged to constant 
values. Of these, the parameter kl' is shown in Figure 4. The zero initial conditions 
simply impl y that the controller docs not know the combustion dynamics initially 
and these values are automatically tuned by the controller to give optimal perfor­
mance. Figure 5 shows typical pressure spectrum for the control onloff cases where 
there is a reduction of approximately 15 dB by the delay controller, whose control 
parameters were obtained by trial and error, and 30 dB for the Posi-cast controller 
at the 207 H z instability. The robustness of the controller was also tested and results 
showed that the controller retains control for a 20% change in frequency and a 23% 
change in air mass flow rate [9] . 

·r:s .. r: I 
Fig. 4. Time series of the pressure fluctuations in the combustor wi th the Posi·cast controller 

----

"'-=..~'" ... ... ...... 
Fig. S. SPL spectra showing lhe reduction in noise when the Posi-cast and the delay controllers 
arc turned on. 
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3 Acoustic Resonances in Impinging Jets 

Several acoustic resonances have their origin in the instabil ity of certain fluid mo­
tions. One of these motions is in the context of impinging high-speed jets. Experien­
ced by STOVL aircraft whi le hovering in close proximity to the ground, impingement 
tones, which are discrete, hi gh-amplitude acoustic tones, are produced due to inter­
actions between high speed jets emanating from the STOVL aircraft nozzle and the 
ground [10]. The high-amplitude impi ngement tones are undesirable not on ly due 
10 the associated high ambient noise, but also because of the accompanied highly 
unsteady pressure loads on the ground plane and on nearby surfaces. While the high 
noise levels can lead to structural fatigue of the aircraft surfaces in the vicin ity of the 
nozzles, the high dynamic loads on the impingement surface can lead to an increa­
sed erosion of the landing surface as well as a dramatic lift-loss during hover. In an 
effort 10 reduce or eliminate these tones, several passive and active control methods 
have been attempted over the years to interrupt the feedback loop that is the primary 
cause oflhe impingement tones. Of these, the technique proposed by Alvi et a/. [Ill 
appears most promising from the point of view of efficiency, fl exibil ity, and robust­
ness. This melhod introd uces microjets along the peri phery of the nozzle ex it which 
interrupt the shear-layer at its most receptive location thereby efficiently impacting 
the impingement tones. Due 10 their small size, these microjets can be optimally 
distributed along the circumference and can also be introduced on-demand. 

Alvi el a/. [II ] showed that an open- loop control strategy that employs the micro­
jets is effective in suppressing the impingement tones. It was also observed that the 
amount of suppression is dependent to a large extent on the operating conditions [I I ]. 
For example, it was observed in experimental studies that the amount of reduction 
that was achieved varied with the height of the lift-nozzle from the ground-plate as 
well as with the fl ow conditions. Since in practice, the operating conditions are ex­
pected to change drastical ly, a more attractive control strategy is one that employs 
feedback and has the ability 10 control the impingement tones over a large range of 
desired operating cond itions. 

3.1 Closed-loop control of impinging jets 

In [12], it was shown that a possible reduced-order model of the impinging jets is of 
the form 

T(t) = A(u)T(t) (4) 

where T corresponds to the states of the system, u is the control input, and A has 
lightly damped eigenvalues. Since the details of the A matrix were unknown, a sys­
tematic control method that guarantees stabilization was not implemented. However, 
it was observed that a closed-loop control strategy of the form 

u = k¢(8) (5) 

where the control input u is the microjet pressure distribution along the nozzle, ¢ is 
the most dominant Propcr-Orthogonal-Decomposition(POD) mode of pressure mea-
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surements p and k is a calibration gain was quite successful in suppressing the pres­
sure oscillati ons. The complete closed- loop procedure consisted of collecting pres­
sure measurements p(t), expanding them using POD modes, determining the domi­
nant mode 1>, and matching 11 to this dominant mode as in Eq . (5). That is. the control 
input adapts to the on-line eigenmode 1>, which may vary with now-conditions. 
This active-adaptive control strategy. which is denoted as "mode-matched" control, 
was used to detennine the control input in the experimental investigations using the 
STOVL facility at Florida State University. 

3.2 Experimental results 

The mode-matched control strategy described above was implemented at the STOVL 
supersonic jet fac ility of the Fluid Mechanics Research Laboratory, FSU (see [13] for 
details). Four banks of microjets were distributed around the nozzle exit, while pres­
sure fluctuations were sensed using six Kulite1"M tmnducers placed symmetrically 
around the nozzle periphery plate, at rid = 1.3, from the nozzle centerli ne where 
d is the nozzle throat diameter, and r is the radial distance of the transducer from 
the center. The jets were fabricated using 400 J1m diameter stai nless tubes and are 
oriented at approximately 20" wi th respect to the main jet axis. The supply for the 
microjets was provided from compressed nitrogen cyl inders through a main and four 
secondary plenum chambers. In this manner, the supply pressures to each bank of 
microjets could be independently controlled. The control experiment was performed 
for a range of heights of the nozzle above ground. 

4 Summary 

Problems of acoustic resonances in nows and their active control were discussed in 
th is chapter. These problems include continuous combustion processes, which exhi · 
bit thermoacoustic instability as a result of feedback interactions between acoustics 
and heat-release, and supersonic impinging nows, which exhibit acoustic resonances 
due to feedback coupling between shear-layer dynamics and acoustics. In both CllSCS, 

introd ucing external inputs such as pulsed fucl and additional air-now via microjets 
produce a drastic change in the underlyi ng dynamics. and cause the resonances to 
be damped out. In the combustion dynamics, it is observed that time-delays playa 
dominant role and pose a significant challenge to the control design. It is shown that 
by using an adaptive Posi-cast controller, even large delays can be accommodated 
and satisfactory pressure suppression can be obtained. 
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diagram of the dosed-loop control program or impingement tones. 
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Summary. We present a discrete-time prediction based state-feedback controller. It is shown 
that this controller stabilizes possibly unstable continUOUS-lime delay systems. The stability 
is shown to be robust with respccllO uncertainties in the knowledge on the plant parameters, 
the system delay and the sampling period. The proposed prediction based controller has been 
tested in a real-time application to control the yaw angular displacement of a 4-rotor mini ­
helicopter. 

1 Introduction 

The area of control of delay systems has attracted the attention of many researchers 
in the past few years l ID]. lll]. tl8]. This is motivated by the fact that de lays are 
responsible for unstabi lities in closed-loop control systems. Delays appear due to 
transport phenomenons, computation of the control input, time-consuming infonna­
tion processing in measurement devices, etc .. A numbcr of approaches for the control 
of systems with delay are available as the Smith predictor [8], [9], [15J, [1 3] and its 
many improved schemes generically named Process-Model Control schemes [16), 
fin ite spectrum assignment techniq ues [6), reduction achieved through transforma­
tions and algebraic approaches as those in [12] , [4J, [3]. 

A close analysis of these methods show that they all use, in an explicit or implicit 
manner, prediction of the state in order to achieve the control of the system. A com­
mon drawback, linked to the internal unstabi lity of the prediction, is that they fail to 
stabilize unstable systems. 

The well known pole-placement controller proposed by [6] requ ires the compu­
tation of an integral used to predict the state. In the ideal case this control scheme 
leads to a finite pole-place ment. However, arbi trary small errors in the computation 
of the integral tenn produce unstability, as shown in [7]. This can also be explained 
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by the fact that in the ideal case the closed- loop behavior is governed by a finite 
polynomial while in presence of small errors, the closed-loop behavior is given by a 
quasi-polynom ial having an infinite number of roots. Since in practice we normally 
use a computer to implement the control law [I], it is justified to study whether unsta­
bilities can also appear in discrete-time pole-placement control algorithms. Note that 
small variations in the sampling period may be such that the closed-loop behavior 
will be described by a quasi-polynomial in the complex variable z. The zero location 
of quasi-polynomials are known to be very sensitive to small changes in the polyno­
mial parameters and can easil y move from the Slable region to the unstable region. 
Therefore it is importanllo prove robustness also with respect to small variations of 
the sampling period. To our knowledge, such type of robustness has not been studied 
in the literature for discrete-time systems. 

In this chapter we present the stability analysis of an hybrid control scheme, 
i.e. when the system representation is given in continuous-time while the control­
ler is expressed in discrete-time. The controller is basically a discrete-time state­
feedback control in which the actual state is replaced by the prediction of the slate. 
We present a stabi lity proof based on Lyapunov analysis of the hybrid cl osed-loop 
system. Convergence of the state to the origin is insured regardless of whether the 
original system is stable or not. The stability is established in spite of uncertainties 
in the knowledge of the plant parameters and the delay. Robusteness is also proved 
with respect to small variations of Ihe time between sampl ing instants. 

The proposed prediction-based controller has been tested in a real-time appl ica­
lion to control the yaw angular displacement of a 4-rotor mini-helicopter rS] . The 
experimental validation of the proposed algorithm, has been developed on a novel 
real-time system, MaRTE OS, which allows the implementation of minimum real­
time systems according to standard POSIX. 13 del IEEE [14]. 

The chapter is organized as follows: the discrete-time representation o f the sys­
tem including uncertainties is presented in section 2. Section 3 is devoted to present 
the state predictor. The prediction-based state-feedback controller is given in Sec­
tion 4. Section S presents the stabi lity analysis of the hybrid closed-loop system. In 
Section 6 we show the experimental results and finall y, the conclusions are given in 
Section 7. 

2 Problem formulation 

Let us consider the following continuous-time state space representati on of a system 
with input delay 

x(t) = Aex(t) + Beu(t - h) ( I) 

where the nominal plant parameter matrices are A c E ~nxn , Be E ~,.xm and h 
is the plant delay. Usually, in the discrete-time framework, the sampling time instant 
tk is defined as tk = kT whereT is the sampling period and k is an integer. However, 
since we wish to prove robustness of the control scheme with respect to the time 
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elapsed between sampling time instants, we will not define tl; as a multiple ofT. We 
will rather define tl; as the k-th sampli ng instant and such thai 

tHI - tJ; = T+e (2) 

where T is the ideal sampling period and e is a smal l variation of the time bet­
ween sampling instants. Furthermore. we will assume that T and h satisfy 

h = dT+t" (3) 

where d is an integer and to is a small uncertainty in the knowledge of the delay h. 
Both vari ations e and to can be positive or negative and even time-varying. However 
e and f have to be bounded in such a way that 

lei -:: f« T. 

We wi ll use Ihe notation Xl; = X(tl;). From (I ) we obtain the follow ing time 
response equation 

(4) 

where 

(5) 

We wi ll define A as 

(6) 

and .Q4 such Ihat 

(7) 

Since we are interested in implementing the control law in a computer, we will 
assume that the input u is constant between sampling instants, i.e. u(t) = Uk Vt E 

(tl;,tl;+d · 
We will next obtain a recursive equalion for XI: in which the influence of the 

uncertainties in the plant parameters A c and Be ,the delay h and the ideal sampling 
period T will appear clearly. We will fi rs t study separately Ihe cases when to > 0 and 
l < 0 and then obtain a general state space recursive expression for XI:. 
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2.1 Case: € > 0 

We can rewrite (4) as 

(8) 

0 ' 

(9) 

where 

For future usc we wi ll decompose 8\ as 

( 10) 

where 

( II ) 

ond 

(12) 

2.2 Case:€ < 0 

We can rewri te (4) as 

( 13) 

0' 

( 14) 
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where 

Let us rewrite B2 as 

where B is given in (I I) and 

In general we have 

where 

X k + l = AXk + BUk_ d + LlIUk_ d_ 1 + Ll2Uk _ d 

+Ll3Uk_ d+1 + Ll4 X k 

= AXk + BUk_d + Llh 

Ll _ { Ll2~<O 
2- Llo~ > O 

and Ll E ~"x ~ and h E fW with s = 3m + n are defined as 

Ll = [Lll' Ll2 ' Ll3 , Ll4J 
[ 

'1' '1' T '1']7' h = U k - d _ l , U k _ d , U k _ d+ l , XI< 

( 15) 

( 16) 

( 17) 

( 18) 

( 17) can be viewed as a general state-space representation for discrete-time systems 
in which Ll takes into account uncertainties in matrices Ac and Be, in the de lay h 
and in the ideal sampling period T. We assume that the nominal plant parameters Ac 
and B e and the ideal sampling period T are such that (A, B) is a controllable pair. 
Note that c and ~ in (2) and (3) are in general time-varying. Rigorously speaking we 
shou ld use the notation ~k and Ck. The same is true for Ll in ( 17). However, to prove 
robustness of the control scheme we will mainl y use the property that Ll -+ 0 as the 
uncertainties in Ac. Be, h( i.e ~ ) and T( i. e. € ) go to zero. Therefore, to simplify thc 
notation in the rest o f the c haptcr we will use Ll without the subscript k. 
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3 d-step ahead prediction scheme 

From (17) the prediction of Xk+2 is given by 

XkH .::: A{Axk + BUk-d + ,11,,) + BUk _d+l + iJ/Hl 

.::: A 2Xk + ABuk_d + BUk_d+l + AiJik + Ll/H I (19) 

Similarly we have 

Xk+3 = A{A2Xk + ABuk_d + BUk_ d+ 1 + 1'1Ll11· + iJ/H.) 

+ BUk_dH + Ll/H2 

= A 3Xk + A2 BUk_d + ABuk_d+l + BUk _d+2 

+ A 2 Llh + ALl/HI + Ll/H2 

Extending this prediction d steps ahead we have 

Xk+d = Adx k + A d- L BUk_d + ... + ABu"_2 + BUk_ 1 

(20) 

+Ad-1Ll!t+A,J-2Ll/HI + ... +Llh+d_ 1 (2 1) 

0' 

XHd = AdXk + Ad- I BUk _d + ... + ABuk_2 

+BUk _ l + LlYk+d_l 

where .:1 and Y Hd- J are given by 

- [T T T]T 
I"+d- I = Ik , 1,,+1,·'" IHd- 1 

Define X~+d as the prediction of the state XHd at time tk 

X~+d = AdXk + A d- 1 BUk _d + ... + BUk_ J 

Note that x:+d can be computed with infonnmion available at time t". 

(22) 

(23) 

(24) 

(25) 
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4 Prediction-based state feedback control 

Let us define the following prediction-based control input 

or using (25) 

UI; = f(T { Adxl; + Ad- I BUk- d + ... + BUI;_ d 

From the above and (22) it follows that 

T --
"U I; = [( (XI;+tl - ..d lII+d- l) 

Introducing the above equation into (17) we obtain 

T T- -
XI;+I = (A + Bf( )XI; - Bf( ..d 11; - 1 + ..dlk 

(26) 

(27) 

(28) 

(29) 

As will be shown next, for small parameter and delay uncertainties, the stability 
of the above system wi ll be insured if A + Bf(T is stable and if we can show that 
7 k - I and /I: are linear combinations of the elements of the closed-loop system state 

[ 
T T T T JT ZI; = XI; ) ... , XI; _ d' U k _ d _ l , ... , UI; _ 2d_ 1 (30) 

where ZI; E ~ with 1 = (d + l ){n + m). Recall from (17) and (18) that 

(31) 

In the above equation u k_d_ Iand Xk are clearly elements of ZI; in (30). Using 
Equation (27), UI; _ d above can be expressed in tenns of Xk _ d , UI; _ 2d , ... , and 
Uk _ d _ 1 which are elements of ZI;. Similarly, ltl;_d+lcan be expressed in tenns of 
XI;_d+l, UI;-2t/+l, ... and UI;-d. As before, ltk_d can be expressed in tenns of ele­
ments of Zk. Therefore /I: in (29) can be expressed as a function of the elements of 
ZI;. Note also that we can prove similarly that Ik- I is a function of Zk. 

From (23) and (24) we have 

..d 71;-1 ::: Ad- I ..dill- d + Ad
-

2 
..dfl;-d+ 1 + ... + :.1i11_ 1 (32) 

In view of (18), h-d , h -d+l, . . , and /1: - 2 in the above equation, are functions 
of Zk in (30). As explained before h'- I is also a function of Zk and we conclude that 
71; - 1 in (32) is a function of Zk . Therefore the tenn - Bf(1":.171;_ 1 + :.1/1: in (29) 
can be expressed as 

(33) 

where :.1' is a matrix whose elements vanish as:.1 goes 10 zero. From (28) we get 

T --
Uk_d = J( (xk - ..1fk _ l ) (34) 
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T " 
Uk _ d = 1< Xk +.d Zk (35) 

where .d" is a matrix whose elements vanish as.d goes to zero. From (29), (33) 
and (35), the closed-loop system can be written as 

(A + BI<T) 0 0 ... 0 
X k + l 1 0 0 .. . 0 X, 
x, X k _ l 

0 0 1 . . 
Xk _ d+l 

~ 

. .. 0 
X k _ d 

Uk _ d I<T 0 .. . 0 Uk _ d _ l 

Uk _ d _ l Uk _ d _ Z 

1 

Uk _ 2d Uk _ Zd _ J 

0 0 0 1 0 

,1' 

0 

0 
+ ,1" z, (36) 

0 

o 

With obv ious notation we rewrite the above system as 

(37) 

where B --t 0 as L\ --t 0 and A E ~X!, B E ~XI with I = (d + l ){n + m). 
Note that from (3) it fo llows that d -+ 00 as T -+ O. This means that as T -+ 0 the 
closed-loop system in (36) becomes infinite dimensional. In the followi ng section we 
present a stabil ity analysis of the closed-loop system (36) when T t- 0 i.e. when the 
dimension of Zk in (36) is fin ite_ 

5 Stability of the closed-loop system 

We wil l now prove the stabi li ty of the closed-loop system in (36) or (37) and robust­
ness with respect to small uncertainties in Ae. Be, hand T in the system (I ). It can 
be seen from (36) and (37) that the eigenvalues of A are given by the set of the n 
eigenvalues of (A + BKT) and (1 - n) eigenvalues at the origin. If 1< is chosen 
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such that (A + Bf(T) is a Schur matrix, then A is also a Schur matri x i.e. A has all 
its eigenval ues strictly inside then uni t circle. It then follows that for every Q > 0, 
3 p > 0 such that the fo llowing Lyapunov equation holds 

- T -
A PA - P ~-Q (38) 

Let us define the candidate Lyapu nov function Vk 

T Vk = zk PZk (39) 

From (37), (38) and (39) we have 

Vk+1 = Z'bI P Zk+ l 
= (AZk + BZk)T P(AZk + Bzk) 

T- T - T-T - T- T -
= zk A PAz k + 2zk B PAzk + z} B PEzk 

= Vk - Z[QZk + z f{2B
T 

PA + B PB) Zk 

(40) 

If the uncertainties arc small enough such that 

(4 1) 

then 

(42) 

It then follows that Zk --t 0 exponentially as k --t 00. Given that x and u converge 
to zero at the sampling instants (see (30», it follows that u(t) converges to zero Vt 
as t --t 00. From ( I) it follows that x( t) converges to zero Vt as t --t 00. 

6 Practical application 

In this section we show that the proposed controller has a satisfactory behavior 
when applied to control the yaw displacement of a mini helicopter. We usc a mini­
helicopter having 4 rotors as shown in figure ( I). 

In this type of helicopters the front and the rear motors rotate clockwise whi le 
the other two rotale counter-clockwise which reduces the gyroscopic phenomena. 
The 4-rotor hclicopter docs not have a swatch plate. In fact it does not need any ser­
vomechanism. The main thrust is the sum of the thrusts of each motor. Pitch move­
ment is obtai ned by increasing (rcducing) the speed of lhe rear mOlor while reducing 
(increasing) the speed of the front motor. 

The roll movement is obtained similarly using the lateral motors. The yaw mo­
vement is obtained by increasing (decreasing) the speed of the front and rear motors 
while decreasing (increasing) the speed of the lateral motors. This is done whi le 
keeping the lotal thrust constant. Delays arc introduced to the system due to the po­
sition/orientation measuring system and also due 10 the computation of the control 
input. 
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Fig. I. The 4 rotors helicopter. 

We aim at using visual servoing control for the mini-helicopter in future work. 
We know that image processing wi ll introd uce a considerable delay and one of our 
objectives in this chaptcr is to show that our prediction-based control algorithm can 
be used to avoid unstabilities in the position and orientation control of a flying Ve­
hicle. 

The radio used for radio control is a Futaba Skysport 4. The radio and the PC 
(INTEL Pentium 3) are con nected using data acquisition cards (ADVANTECH PCL-
818HG and PCL-726). In order to simplify the experiments, the control inputs can 
be independently commuted between the automatic and the manual control modes. 

The connection in the radio is directly made to the joystick potentiometers for 
the thrust, yaw, pitch and roll controls. llle helicopter evolves freely in a 3D space 
without any fly ing stand. 

We use the 3D tracker system (POLHEMUS) [17] for measuring the position 
(x,y,z) and orientation (r/>,e,t/J) of the helicopter. The Polhcmus is connected via 
RS232 to the PC. 

6.1 Real-Time implementation 

We present in this section the characteristics and implementation of real-time control 
system environment that we have used. We use an embedded system based on the 
MaRTE OS environment. 

MaRTE OS [2J is a real- time kernel for embedded applications that fo llows the 
Minimal Real-lime POSlX. 13 subset [14J , providing both the C and Ada language 
POSIX interfaces. It allows cross-development of Ada and C real-time applications. 
Mixed Ada-C applications can also be developed, with a globally consistent schedu­
ling of Ada tasks and C threads. 

MaRTE OS works in a cross development environment. The host computer is a 
Linux PC with the gnat and gee compilers. The target platfonn is any bare machine 
based on any 386 PC or higher, with a floppy disk (or equivalent) for booting the 
application, but not requiring a hard disk. 

Figure (2) shows the interaction between the system and the external devices. 
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To design the real time control five main tasks have been defined: 

• ControLTask: th is periodic task gets infonnation of the helicopter position and 
calcu late the actions to be sent to the motors. 
This task has a period of 80 ms. The control actions arc sent to a shared protected 
object which stores the system infonnation. The actions arc not sent di rectl y to 
the motors. 

• Send...Actions: this is a periodic task wh ich is in charge of extracti ng the informa­
tion from the control status and send the motor actions using the digital/analog 
converter. This task can introduce forced delays in the actions to be sent to the 
motors in order to test di ffe rent control algorithms. The forced delays arc intro­
duced by getting actions calculated in previous periods when the delay is greater 
than the control period . If the delay is less than the period then an internal delay 
is executed. 

• Monitor: Thi s is a peri odic task for control status monitoring. The task gets in­
formation from the sha red object control status and send it to a RS232 line to be 
used by the host to visualize the control variables. 

• UseLCommands_Task: this task reads user commands from the keyboard and 
execute them. Uscr commands can change the monitoring period, change control 
parameters or start and stop the control. 

• ControLStatus: this is a shared protected object where the tasks get or put infor­
mation about the process. 

Several drivers have been implemented to handle the RS-232 seri al line, key­
board, and the digitallanalog converters. 

~ 
Pt:>sition ..,n~()I" 

O ---+-
DWieale keypad 

Embedded 
Control System 

OM • 
COnlf"Qt action 

RS-232 

• 
Monitor 

Fig. 2. Interaction between the system and the external devices. 
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6.2 Ex~rimental results 

The transfer function from the yaw-contro l input to the yaw-displacement has been 
identified by introducing a pulse input while the mini-helicopter was hovering. 

The obtained pulse response is shown in figure 3. We know that the mini­
helicopter has an in-built gyro that introduces an angular velocity feedback . The 
transfer function withoutlhe gyro is basically a double integrator. However, the trans­
fer function of Ihe system including the angular velocity feedback, has a pole al the 
origin and a negative real pole. 

We assumed that the system was represented by a second ordcr system with two 
parameters. Trying different values for the parameters we observed that the fo llowing 
model has a behavior that is close to the behavior of the real system: 

A simple controller as 

G(,) _ 200 
- 8(8+4) 

where y ' is a reference signal, can be used to stabilize the model (43). 

(43) 

(44) 

However, when there is a delay of 3 sampling periods (0.24 seconds) in the mea­
surement o f the yaw angul ar position, the controller becomes 

Uk = O.08(y · - Yk - 3) (45) 

and the closed loop system behav ior is unstable as can be seen in fi gure 4 . 

" 
£ 
~ 10 

, 

Fig. 3. Pulse response of the system without measurement delay. 
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£ , 
" 

fo' ig. 4. Output of the delayed system when using the controller (45) without prediction. 

Predictor-Based system stabilization 

The discrete-time state-space representation for the model in (43) for 
T :::: 0.08 seconds, is given by: 

[x:+.] _ [0.72610] [xl] [05477] 
X~+ I - 0.2739 1 x~ + 0.0923 'Uk 

Yk:::: [0 6.25] [ ~! ] 
Since the state Xk is not measurable, we use the fo llowing observer 

~ [0.7261 - 2.7940] [i~] 
0.2739 -1.0261 i k 

[
0.4470] [0.5477] + 0.3242 Yk + 0.0923 'Uk _ 3 

(46) 

(47) 

(48) 

(49) 

The prediction of the state 3-steps ahead can be done using the fo llowing equa­
tion (see also (25» 

(k) ~ [0.382900.28880.3977 0.5477] 
xp 0.61711 0.35120.24230.0923 

The control law in (44) (see also (26» becomes: 

xl 
x~ 
'Uk _ 3 

Uk_2 

Uk_l 

(50) 
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u, = 0.08(y· - [06.25] x,(k)) (5 1) 

The yaw angular displacement of Ihe mini-hel icopter when using the above 
control law is shown in figure (5). We have chosen y' as a square wave funct ion. 
As it can be seen, the system is stabi lized. 

7 Conclusions 

We have presented a control scheme for continuous-time systems with delay. We 
have proposed a discrete-time controller based on state feedback using the predic­
tion of the state. A convergence analysis has been presented that shows that the state 
converges to the origin in spite of uncertai nties in the knowledge of the plant para­
meters, the system delay and even variations of the sampling period. The proposed 
control scheme has been implemented to control the yaw displacement of a real 4-
rotor mini-helicopter. Real-time experiments have shown a satisfactory performance 
of the proposed control scheme. 

• 
::; "" 

• '. 
" .. 

" , 

': ~ 
' " I 
" ' " , , , , " ~ 

" ' , , 
• 

• '----;".---c, •• ,---.'""--'',.o---, .. ,,---, .. ~--"'"." _.0."'_ 
Fig. 5. Closed-loop behavior using the prediction-based controller. 
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Summary. This chapler addresses the robust stability of some bilateral teleoperation control 
scheme subjecllo various constant and/or time-varying delays in the communication channel. 
The stability conditions arc derived using/requcnc)'-domain techniques. More specifically, in 
the case of constant delays, the stability regions of the systems' parameters are completely 
characterized. Next, the analysis is extended to the case of time-varying unccnain delay, and 
we derive sufficient (closed-loop) stability conditions. 

I Introduction 

A basic teleoperation system consists of a slave device and a master device. The mas­
ter is directly manipulated by a human operator, and the slave is designed to track 
the master closely. The main purpose of such a master-slave confi guration is to ma­
nipulate the environment (or space) generally inaccessible to human operators, such 
as hazardous environment. Such systems are often known as a bilateral teleoperalOr 
systems. 

Time delay plays an important role in the teleoperation systems. Due to the phy­
sical distance between the master and slave, as well as the signal processi ng, the 
communications involve significant delays. Another source of delay is the reaction 
of the human operators. In this chapter, we wi ll discuss the e ffec t of the communica­
tion delays (constant or time-varying) on the closed- loop stabi lity of such systems. 

In this context, we are interested in characterizing the way that delays change 
performances in commun ication channels connecting the master and slave sites (bi­
lateral teleoperation). It is well known that the passivity of the channel (see, e.g., 
[ [,6, 17, 18,24]) may be used to guarantee desirable characteristics for the closed­
loop schemes (sec also n O]). The techniques proposed to perform such an analysis 
use the scattering transfonnation [ I] or the wave vari able transformation [17, 18), if 
the delays are assumed constant. The case of time-varying or di stribu ted delays was 

S. -I. Niculescu et al. (eds.), Advances in Time-Delay Systems
© Springer-Verlag Berlin Heidelberg 2004
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considered in [ II , 19} using the wave transfonnation approach and in [14] but under 
some assumptions on the delay variation_ 

Consider the following equations widely used to describe the dynamics of te leo~ 

perators {I , ll J. 

{ 
Mmx,.,(t) + Bmx,.,(t) ~ F,,(t) - F",(t) 
M,x.(t) + B,x,(t) ~ F.(t) - (1 + at )Z, x , (t) , 

( I ) 

where x, M , B are the velocities, inertias, and damping coeffi cients, respectively. 
The subscripts m and s denote the corresponding quantity is of the master and the 
slave, respectively. The in put Fh denotes the operator force or torque, and Z~ is the 
environmental impedance. The quantity Fs is the force or torque applied to the slave 
transmitted fro m the master, and F", is the force on the mastef fed back from the 
slave. 

For an explicit stability analysis, see [6J for various frequency-domain techniques 
(see also [12)), and [2J for a Lyapunov functional approach. For delay-independent 
stability, the approach proposed in this chapter is simpler than the one proposed 
in [6}, and the derived conditions are necessary and sufficient, and in an al/alytical 
fonn. 

For delay- independent stability, the main idea is to use a frequency-domain me­
thod based on the Tsypkin 's criterion [5, 12]. For frequency-sweeping tests appl ied to 
various control systems, see, for instance, [3]. Various discussions and comments re­
lated to such tcchniqucscan be found in [12J. Such an approach was used in [20] for 
the closed-loop stability analysis of a simple teleopcration control scheme, where 
delay- independentldelay-depcndent stability conditions were derived under the as­
sumption of symmetric delays in the channels (7] == 72 = 7). 

As in [11], consider the control law described by the following equations 

F,(t) ~ K , [ (X' d(t) - x,(t))dO + B,,(X.d(t) - x,(t )) , (2) 

F",(t) ~ Km [ (Xm(t) - xmd(t))dO + Bm,(x",(t) - X",d(t)). (3) 

Due to communication delays, the most recently available infonnation is used ins~ 
tead , that is, we choose, 

Xsd(t) = x",(t - 7]) , 

Xmd(t) = X. (t - 72), 
(4) 
(5) 

where 71 and T2 are the delays in the forward and feedback communication channels, 
respectively. 

As mentioned above. we afe interested in first finding analytical conditions on 
the system's parameters such that the closed-loop system is asymptotically stable 
for arbi trary commun ication delays. For thosc parameters which do not satisfy such 
delay-independent stability conditions, we will find the corresponding delay inter­
vals such that the closed-loop system is stable. Funhennore, we are also interested 
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in finding conditions for which there is only one delay interval, and computing the 
corresponding optimal bounds. A similar problem, but only with constant and sy m­
metric time-delays (7\, T2), was considered in [20j . 

In the case of ti me-varyi ng delay uncertainty, the idea is to construct an appro­
priate fictit ious transfer function such that the stability of the orig inal closed-loop 
scheme is reduced to some !"oo-nonn property of the corresponding transfer. To the 
best of the authors' knowledge, such an approach was not considered in the bilateral 
te1eoperation case. 

The chapter is organized as follows: Section 3 is devoted to the stability ana­
lysis of the closed-loop system using frequency-domain techniques. Constraints on 
the controller's gain 1($ and 'damping' B31 will be given such that the closed-loop 
scheme is asymptotically stable independent of the commun ication delays. Next, the 
delay-dependellf stability o f the closed-loop system will be considered. Section 4 dis­
cusses the case of time-varying delays. Some concluding remarks end Ihe chapter. 
The notations are standard . 

2 Stability Analysis for Constant Delays 

2.1 Problem setup 

Carrying out the Laplacc transfonn (under zcro initial conditions) of the closed­
loop system, using the veloc ities v",(t ) = :i:",(t) and v,(t) = :i:,(t) as the system 
variables, we obtain 

(6) 

(7) 

F",(s) = (8) 

Using the control laws (7) and (8) in the second equation of (6), with the notation 
B , = B , +(1 +o/)Ze, it follows that: 

V,(S) = ](, + B ,2S -TIS V. ( ) 
e ms) 

M,S2 + (B , + B ,2)S + K , 

Let 7 = 7] + 72, and use the fo llowing notations: 

r] (s) = B 82 S + K8 : slave torque, 

r2(S) = M3S + B8 : slave, 

r3(S) :::: M",s + B", : master, 

r 4(S) = B",28 + K", : master torque, 

(9) 

( 10) 

( II ) 

( 12) 

( 13) 
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we obtain from the first equation of (6) and (8) 

Using (9) in the above, we obtain 

Therefore, the transfer funct ion from Fh to Von is given by: 

( 15) 

Furthermore, based on the form of Vs(s), the transfer function from Fh to V~ is given 
by: 

H( ) - H()- J(,+B,IS ~"-l' "!s _ ]s e, 
M,s"! + (Bs + Bsds + J(s 

(16) 

Since M" B" B,t, /(" of, Z( are positi ve real numbers, H] (s) and Hz(s) share the 
right half plane poles. Therefore, 10 study the stability of the closed- loop system, it 
is sufficient 10 study the stabil ity of the transfer function HI(s), Or, equivalent, one 
needs only to study the distribution of zeros of the expression: 

(17) 

We will first study asymptotic stabi lity of the closed-loop system when it is/ree/rom 
delays. In this case, the zeros of the characteristic function (17) becomes those of the 
third-order polynomial: 

( 18) 

Using the Routh-Hurwitz stability criterion (see, for example, rS]), it follows that 
the system free from delays is asymptoticall y stable if and onl y if the following 
inequality holds: 

It is not difficult to show that ( 19) is always valid for all positive parameters. There­
fore, as expected, if the system is free from delay, the controller (2)-(5) guarantees 
the asymptotic stability of the closed-loop system. 
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2.2 Delay-independent stability 

The next step is to fi nd the conditions under wh ich the stabi lity in the closed-loop 
systems is guaranteed for arbitrary cO""lIIlIIication delays 71 and 7Z. Fi rst, under 
a certain parameter constraint, we will find necessary and sufficient conditions for 
stabil ity. Next, we will provide a simple sufficient condition easy 10 use in practice. 

Theorem I. Assume the feedback gaills K ", alld K " Bmz and B ,z (Ire positive 
constants. Then the closed-loop system is asymptotically stable fo r all cOl1lmuni­
catioll delays 71, 7Z if alld only if, 'Vw > 0 : 

. . . I r.(jw)r, (jw) I 1 (Jw)r,(Jw) + r.(Jw) I> r (.) . r (. ) . 
I)W+)WZ)W 

(20) 

Proof In view of the fonn of H I (s), since Sr3(S) + r,(s) is Hurwitz stable, it 
follows that the stability of the closed- loop system ( I )-(5) is equivalent to the stability 
of the unit feedbac k closed-loop system with the open· loop transfer funct ion 

H ( ) r.(s)r,(s) - n 

" ~ (,r3(,) + r,(,))(r,(s) + sr,(s))e . 
(2 1 ) 

Since (Sr3(S) + r4(S))(rt(s) + srz(s)) is Hurwitz stable, and Ho(B) is strictly 
proper for 7 = 0, then we may apply the Tsypkin 's criterion, and the condition (20) 
follows directly. 

Note that for W = 0, 

.. . I r4(jW)rl (jw) I 
IJwr3(]w)+ r'(Jw) l ~ r(·) . r(· ) ~J(m 

I)W+JW 2)W 

Furthennore, if (20) is verified forw > 0, then the same inequality holds for W < O. 
The condition (20) in Theorem I is a simple frequency-sweeping rest that can be 
easily perfonned if the parameters of the system and the controller are given. To 
obtain a even simpler criterion than (20), introduce the notation 

I 
r. (jw)r, (jw) I 

1'([{"" B",2, K 8 , B 82 ) = sup r (.) . r (. ) , 
",>0 I)W + JW 2 JW 

(22) 

wh ich depends continuously on the contro ller's parameters K "" B",2, [{" B 8z (they 
are all real and positive). Then, we have the following natural corollary: 

Corollary I. The closed-loop system is asymptotically stable for arbitrary COI/II1I1l­
nication delays 7\,72 2: 0 if the cOll troller gaim [{" K", alld the "damping coeffi ­
cients" B,2, Bm2 are chosell to satisfy 

(23) 

(24) 
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Proof The resu lt is a straighforward from Theorem I: The condition (23) ensures 
that I jwr3(jW) + r4(jW) I is a strictly increasing function of w, which implies 
T<", <I jwr3(jW) + r 4(jW) I for all w > O. Therefore the condition (20) is implied 
by (24). 

As given in the next Proposit ion, the condition (24) can be written out explicitly. 

Proposition 1. The closed-loop system is asymptotically stable for all communica­
tion delays TI , T'1 ~ 0, if the cOli/roller's parameters satisfy: 

[(m < 

8 8 '1 8 ", 
M. 

(8m + Bm'1)2 
2M", 

(25) 

(26) 

(27) 

Proof We will show that (25) and (26) is necessary and sufficient condition for (24), 
which will be suffi cient to complete the proof, Define 

f' [0,00) >-> (0,00) 

few') ~ 1 r,(jw) 1' · 1 r,(jw) I' 
1 rl(jw) + jwr'1(jw) 12 

Then , f(w2 ) is in the fonn of 

where the denominator 

Therefore, the equalion (23), or equivalently, f (w2 ) S T<~" is eq ui valenl l.O 

aw4 + bw2 + 1 5 dw4 + ew2 + 1 for all w'l > 0 

in view of (29). BUlthe above is Salisfied if and only if 

asd 
b 5 e 

(28) 

(29) 

(30) 

(3 1) 

With the specific parameters substituted, (30) reduces to (26). The condition (3 1) is 
a quadratic inequality of ](3' which is satisfied if and on ly if (25) is satisfied in view 
of the fact thai K , is positive. 

Remark J (Tl.lnill8 parameters). Proposilion 1 above gives a very simple way of 
construcling Ihe conlrollcr (I) such that thc closcd-loop system is guaranlced to be 
asymptotically stable for all communication delays 71, 7'1 ~ O. 
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2.3 Delay-dependent stability 

If (20) is not sati sfied for all w > 0, the conditions for Theorem I do not hold, and 
there must exist delays such that the system is unstable. Since the system without de­
lays is asymptotically stable, there always exists one or more intervals of delay such 
that the system is asymptotically stable. We are interested in finding the max imum 
T" > ° such that the system is asymptotically stable for all T E [0, T O). Th is can be 
carried out by solving the equation 

(32) 

This equation can be reduced to a third order polynomial equation of the variable 
w'l, and fonnulas arc available to express the sol utions explicitly (see, for example, 
[22]). Clearly, since (20) is not satisfied for all w 2: 0, and it is clearly satisfied for 
sufficientl y large w, the equation (32) has at least one real positive solution. Let all 
the real positive solutions be denoted as w;. i ::: 1, 2, ... , m. Clearly, 1 :::; m :::; 3. 
Then, we can conclude: 

Theorem 2 (S"'itch characterizations). If (20) is nOl satisfied fo r all w > O. let 

. . . 1 [L ( r4(jW)n(jW) ) 2'] 0 T=mlllllllll- og +rr>, 
te Z l:Si:Sm Wj (jW r 3(jW) + r4(jW»(jWn(jw) + n(jw» 

(33) 
where" Log" denotes the principal vallie ofrlie logarilhm. 

Then, rlie closed·loop system is asymptotically stable for all T E [0, T O). 

Proof As discussed above, the equation (32) has one to three real positive solutions. 
If and on ly if w is a real positive solution, there exists a T satisfying the characteristic 
equation 

-TI r 4{S)rl (s) 
(Sr3(S) + r4(S» - e n(s) +Sr2(S) ~ O 

for s = jw, some simple but tedious computations lead to the smallest T > ° in (33). 
Specific discussions on deciding the stable delay intervals are very similar to [1 6]. 

3 Time-Varying Uncertain Delays 

IT Introduce the vector of stale variables x ::: [XI, .. . , X4 ,where 

x,(t) ~ l vm(O)dO, x,(t) ~ vm (t) 

X3( t) = lot v,(B)dB, X4( t ) = v,(t) 

Then, the closed-loop system described by (I ) to (5) can be written as 

(35) 

(36) 
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where: 

[ 
0 0 00] o 0 00 

8 1 = 0 0 00 ' 8 2 = 
&!!...2. 00 
M , M. 

l' 
,"dB,~ [0100 J . 

[
00 0 0] 
OO Km.~ 

AI.", M~ 

00 0 0 
00 0 0 

(39) 

In the sequel, we will consider the case that the time-delays 71 and T2 are sub­
ject to time-varying uncertainties. Let J] (t) and J2(t) be continuous time-varying 
bounded functions with bounded derivatives, 

OS Ji(t ) S to;, Ji(t) S Pi,O S Pi < 1 i::::: 1,2. (40) 

With the delay uncertainty, we write the system as follows: 

We have also omitted the human input term Fh since 11 docs not affect the stabil ity 
analysis in the state-space form. Although not considered here, it is also possible to 

allow J; to assume both positive and negative val ues with potential further reduction 
of conservatism, see [71 . Equation (4 1) can be written as: 

x(t) = Ax + Blx(t - 7t} + B2X(t - 72) 

/

0 a 
- B] 80x(t - 7] + 8)dO 

- <l.( t ) 

/

0 a 
- B2 f)Ox(t - 72 + 8}d8 

- <12(1) 
(42) 

Usc (41) for the terms to x( t - 71 + 0) and to x( t - 72 + 0) in the above equation, 
(known as the model transformation) and let 

u](t)::::: A/O x(t - 7] +8)dO (43) 
- <l,(t) 

U3(t) = A/O x(t - 72 + O)dO (44) 
- <l2( t ) 

U2(t) = B2/
0 

x(t - 7] + 0 - 72 - J2(t - 71 + O))dO (45) 
-6,(t) 
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tt4(t) :::: 8110 x(t - 7Z + 8 - TI - Ol(t - T2 + 8))dO (46) 
-J2( t ) 

Since BI BI ::: B2Bz :::: 0, we can write (41) as : 

i(t) :::: Ax + Blx(t - 7tl + 8zx{t - T2) - Btut{t) 

- Btuz{t) - Bzu3{t) - B2U4{t) (47) 

Assuming zero initial conditions, we will estimate the gai ns from x to U i , i 
1, 2, 3, 4. It is useful to define lIi {1/) :::: 1J - OJ{1J), i :::: 1, 2. Thcn, 

Also. since dvddTJ :::: 1 - 0;{1/) ? I - Pi > 0, vi is a strictly increasi ng function, 
the inverse function 1/ :::: 1/( 11;) is well defined, and 

~-,I",=" < _ I_ 
I 8:(") - 1 - p; 

FurthcnTlorc, due to the range of 0;, we can easily verify that 

11- < 1/(V) < v- + l-' - ' - ' . 
Using Jensen's Inequality [231 [71. we can show that: 

fot uy {~)U.I {Od~ 

:::; t(Sz{{)[jO {XT{VI({-T2+0) - T!lBT. 
10 -<i2{O 

BlxT {VI (~ - 7Z + 0) - 7d)dOld~ (5 1) 

Change integration variable from 0 to J-!, with J' = VI (~ - 7Z + 0) - TI. Then, we 
have 

(52) 

Therefore, 

t uY({)u4(,;)d{:::; (et + ez)ezIIBdlz rt 

xT(J-!)x(JJ)dJJ 10 1 - PI 10 
Simi larly, we can show 
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With a simpler procedure, we can also show 

lot uf(Oul(fJd~::; ci llA llz lot xT{I-£)x{l-£)dl-£ 

10" uj{Ou3{~)d~::; dllA llz lot xT(Jt)x(J-t)dJ-t 

With the above discussion, we can write the system described by (47) and (43)-(46) 

" 

where 

y;{t) = CiX{t), i = 1, 2,3,4 

u{t ) = (u;(t) uf(t) uI(t) uY{t)IT 

iJ = [81 8 1 8 z 8 21 

(C'l + c~e'II BzlI, 

(0' H,)o'IIBdl 
1 - PI 

with feedback Ui(t) = LliYi(t), 1 ::; i ::; 4. 

(54) 

(55) 

(56) 

With the definition of U; and c;, it can be easily shown that the gains of the 
dynamic operator Lli is bounded by 1. 

Theorem 3. The closed loop system is uniformally asymprotical/y srable for any 
time-varying delay III/certainty bitt), i = 1,2,3,4, satisfiying (40), if there exist 
scalars ai, i = 1, 2, 3,4 s!lCh Ihar 

[
e. I" 1 

H (s) = ~~ ~: (s f - A + Ble- TIB + Bze - T"2B) - 1 iJ 

c4 f " 

(58) 

Proof Use the small gain theorem, as discussed in Chapter 8 of {7]. 
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4 Concluding Remarks 

In this chapter, we have been interested in the closed-loop stability of some simple 
bihlleral teleoperation scheme in the hypothesis of the existence of some communica­
tion delays. A frequency-domain approach was used to perform the stability analysis 
in terms of delays. The main advantage of the dcrived method lies in its simplicity. 
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1 Introduction 

The transmi ssion of multimedia traffic on the broadband integrated service digital 
networks (B-ISDN) has created the need for new transport technologies such as 
Asynchronous Transfer Mode (ATM). Briefl y, because or the variability o f the mul­
timedia traffic, ATM networks seek to guarantee an end-Io-cnd quality of service 
(QoS) by dividing the varying types of traffi c (voice, data, etc,) into short, fi xed­
size cells (53 bytes each) whose transmission delay may be predicted and control­
led. ATM is thus a Virlllal Circuit (Ve) technology which combines advantages of 
circuit-switching (all intennediate switches are alerted of the transm ission require­
ments, and a connecting c ircuit is established) and packet-switching (many circuits 
can share the network resources). In order fo r the various VC's to share network 
resources, fl ow and congestion contro l algorithms need to be designed and imple­
mented. The congestion control problem is solved by regulating the inputlraffic rate. 
In addition, because of its inherent flexibility, ATM traffi c may be served under one 
of the following service classes: 

I . The COllslall t bit rate (CBR) class, which accommodates traffi c that must be re­
ceived at a guaranteed bit rate, such as telephone conversations, video conferencing, 
and telev ision. 

2. The variable bit rate (VBR) which accommodates bursty traffic such as indus­
tri al control, multimedia e- mail , and interactive compressed video. 

3. The available bit rate (ABR) which is a best-effort class for applications such 
as fil e transfer or e- mail. Thus, no serv ice guarantees (transfer de lay) are required, 
but the source of data packets controls its data rate, using a feedback signal provi­
ded by switches downstream which measure the congestion of the network. Due to 
the presence of this feedback, many classical and advanced control theory concepts 
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S. -I. Niculescu et al. (eds.), Advances in Time-Delay Systems
© Springer-Verlag Berlin Heidelberg 2004
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have becn suggcstcd to deal with the congestion control problem in the ATMJABR 
case [3, 121. 

4. The ullspecified bit rate (U BR) which uses any lcftover capacity to accomodate 
applications such as e- mail. 
Note that fo r the CBR and VBR serv ice categories, a traffic contract is negotiated 
at the in itial stage of the VC setup, and maintained for the duration of the connec­
tion. This contnlct will gU3n1ntce the fo llowing QoS parameters: I) Minimum cell 
rale (MCR), 2) Peak cell rate (PCR), 3) cell delay variation (CDY), 4) maximum 
cell transfer delay (maxCfD), and 5) cell loss ratio (CLR). This then forces CBR 
and YBR sources to keep thei r rate constant regardless of the congestion status of 
the network. The ABR sources on the other hand, are only required to guarantee an 
MCR and an PCR, and thus can adjust their rates 10 accomodate the level available 
aft er all CBR and VBR traffic has been accommodated. In order to avoid conges­
tion, the ATM Forum adopted a rate-based ABR control algorithm as opposed to a 
credit approach whereby the number of incoming cells as opposed to their rate is 
controlled l6J. This chapter will then conce ntrate on Ihe ABR service category since 
ABR sources are the ones to adjust their rates using explicit network feedback. In 
the orig inal ATM forum specification, an ATMJABR source is requ ired to send one 
cell called a resource management (RM) cell for every 32 data cells. Switches along 
the path from the source to the destination then write into the RM cell their required 
data ra te 10 avoid congestion. The destination swi tch then has infonnation about the 
minimum rate requ ired by all switches along the VC which is then relayed back to 
the ATMiABR source as a feedback signal which serves to adjust its own data nile . 

The earliest control algorithms for ABR consisted of setting a binary dig it in Ihe 
RM ce ll by any switch along the YC when its queue level exceeds a certain tresh­
hold (3]. This was then shown to cause oscillations in the closed-loop system. Other 
controllers were then suggested by various authors [4,5], to address this problem. 
Most of these controllers are e ither complex or d id not guarantee the closed-loop 
stabili ty (in a sense defined later). 

In addition, one of the limiting factors of these earl ier proposed controllers was 
that the ABR bandwidth needed to be known in the implementation of the control al­
gorithm. This however poses a problem in multimedia applications where the ABR 
bandwidth is bu rsty and is e ffectively the remaining available bandwidth after the 
CBR and YBR traffic have been accommodated. In [1 2] this particular issue was 
dealt with using a Smith pred ictor which then considered the available ABR band­
width as an unknown disturbance. While thi s controller had many desirable proper­
ties, it only guaranteed stability in an appropriately de fined sense but had no optima­
lity guanlntees. In addition, the delays encountered along with the number of ABR 
sources were assumed known, although the earlier tech report (6] did nOI require the 
delays to be exactly known. In [9 ), robust controllers were designed when both the 
number of ABR sources and the delays were uncertain. 

In the current chapter, we present a framework which allows us to deal with the 
ATMJABR problem with uncenain delays, and number of sources. Moreover, we 
shall account for the limitations on the rate of traffic and on the speed of change in 
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such rates. Our fonnulation will allow us to deal with other performance objecti ves 
while maintaining a simple controller structure. 

Notation. 1R+ is the set of non-negative real numbers. 04 (;) denotes the i th row of 
matri x A. A(i, j ) denotes the element of the i th row and the j th column of ma­
trix .4. 1m denotes the m - order identity matrix. 1m denotes in lR'" the vector 
[ I 1]'. CT = C([- 7, 0], lRn) denotes the Banach space of continuous vector 
functions mapping the interval [-7, 0] into lRn with the topology of uniform conver­
gence. II . II refers to either the Euclidean vector norm or the induced matri x 2-
norm. II 1> IIc= sup II 1>( t ) II stands for the norm of a function 1> E CT. When 

- T<t< O 

the delay is finite then "sup" can be replaced by "max". C: is the set defined by 
C: = {1> E CT ; II 1> Ilc< v, v > O}. Finally, PE(X) indicates the entire part of the 
real number x . 

2 The Network Model and the Control Problem 

2.1 The network model 

There are two philosophically distinct approaches to modeling an ATM network. 
The first assumes a continuous-time flow of the data and thus results in a delay­
differential model of the system [1 2], while the other one assumes a discrete-time 
flow and results in a difference equation model [4, 9]. In e ither model however, the 
eventual controller needs to be implemented in di screte-time. In this chapter, we 
choose the delay-differential model and assume for the time being that the controller 
is also continuous-time with the understanding that a discrete-time controller may 
be obtained as discussed for example in [6]. As discussed earlier, the considered 
ABR class is designed as a best-effort class for applications such as fil e transfer or 
e-mail. Thus, no serv ice guarantees are required (beyond meeting the Me R and peR 
limits), but the source of data packets controls its data rate, using a feedback signal 
provided by switches downstream which measure the congestion of the network. 
Due to the presence of this feedback, many classical and advanced control theory 
concepts have been suggested to deal with the congestion control problem in the 
ATM/ABR case [3], [1 2]. In what follows we present the dynamic model of an ATM 
queue following [1 21 and [91 . The data cells enter the network from a source node Sj, 
and are then stored and forwarded along intennediate links to various intermediate 
nodes. At each node, the process is repeated until a data cell reaches its destination 
node D i. Each node stores its data cells to be transmitted in a queue along each one 
of its outgoing links. The network is thus modeled as a graph consisting of a set 
of N = {I , . .. ,Ti} nodes or switches, connected via a set of L = {I , · .. , l} links. 
Eaeh node i E N has a set 1 (i ) C L of input links and a sel O( i) C L of output links. 
Let tj (sec) be the transmi ssion time of a cell through a link i and the transmission 
capacity or bandwidth of the corresponding link be Cj = l it; (cellS/s). Let td; (sec) 
be the propagation time delay of link i . Let tprj (sec) be the transmission time of a 
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node j denot ing the time it takes a cell from the time it arrives at node j to the time it 
goes into one of outgoing links queues. In the following, tprj is assumed to be small 
enough so that any congestion is only due to the transmission capacity and not by 
any processing delays. 

At any particu lar time, let C be the set of active source/destination pairs (5, D) E 
N x N. Let He be the cardinal ity ofC, and assoc iate with each pair (5, D) a YC and 
a path p(S, D) spec ified by the sequence of links that the YC traverse in going from 
S to its corresponding D. 

In order to provide feedback signals to itself, each source node generates a for­
ward RM cell for every 32 data cells. The destination node or intenned iate nodes 
(switches) then returns this RM cell (which then becomes a backward RM cell) to 
the source. These RM cells contain a field called the explic it rate (ER) feedback field, 
a congestion indicator (CI) bit, and a no increase (NI) bit. The RM cells then travel 
the same path as the data cells and fl ow through a particular switch (node) which 
then can take one or more of the following actions: 

I. Insert feedback control information in the ER fi eld of an RM cell. 
2. Prov ide binary feedback infonnation by marking the CI bit or the NI bit. 
3. Set the explici t forward congestion indicator CEFCI) bit in lhe data cell header, 

so that the destination can mark the CI bit in the corresponding RM cell. 
4. Generate and send its own backward RM cell 10 the source. 

Now, each AB R source has an actual cell rate (ACR) along with its MeR and PCR. 
The ACR must lie between the lower MCR lim it and the upper PCR limit and is 
adjusted accordi ng to the feedback provided though the backwards RM cells. The 
ER field of a forward RM cell is set by the source at its current ACR, and the source 
wailS until it receives the backward RM cell in order to act accordi ng to one of the 
following scenarios: 

I . The CI and Nt bits are not set, denoting a no congestion situation. The source 
node then can increase its ACR by Rl F*PCR where RlF is the rate increase factor 
subject to the new ACR being no greater than the explicit rate specified in the ER 
field by any of the switches downstream, and of course slill less than PCR. 

2. The CI bit is set, denoting a congestion situation. The source node will then 
decrease its ACR by RDF*PCR where RDF is the rate decrease factor subject to the 
new ACR being no greater than the explicit rate speci fied in the ER field by any of 
the switches downstream, and of course still greater than MeR. 

3. If the NI bit is sel, the source sets its new ACR to be the mimimum of the old 
ACR and the explicit rate speci fi ed in the ER field by any of the switches downs­
tream. 
This control approach however leads to oscillatory behavior [9]. In what follows, a 
detenninislic fluid model of Ihe cell fl ow is assumed, so that the source transmission 
rate is denoted by the continuous variable u(t) = ACR (cells/sec). Then, each ABR 
source declares its peak cell rate c. = l /t& = PCR and is assumed 10 always have 
a cell to send (i.e. be persistent). 

The model we consider is that described in [12] and used in [2]. We then assume 
thaI each output link of a given node maintains a First-In-First-Out (AFO) queue 
shared by all YCs Howing through the link. Hence we suppose that the flow of pa-
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ckets is conserved and the refore the queue level model for each buffer in the ATM 
network is given as the following continuous-time differential equation: 

" 
x(t ) = - <l(t) + L u(t - T,) (I) 

;=1 

with the initial condi tion: 

u(to + >!» = ¢(>!», V>!> E [- T, OJ, (to,¢) E !l+ x C;, T = . max T, (2) 
.= I •.. .• n 

where x(t ) is the queue level associated with Ihe considered link; n is the number 
of virtual circuits sharing the queue level associated with the considered link which 
can be controlled by feedback from the current switch . In other words. there may be 
many other sources feeding inlo the current switches bUI they may be bott lenecked 
at some other switch (thus. cannot increase their own rate due to feedback from Ihe 
current switch) or are already transmitting at thei r current PCR (and thus cannol 
increase their ACR); u is the rate accomodated by the considered link. We assume 
Ihat all the n virtual circuits which share the link have the same input rate u; T; is the 
propagation delay from the i th controlled source to the queue; d( t ) ::::: I' (t ) - rU(t) is 
the disturbance consisting of the rale of packets leaving the queue 1'( t ). minus r U (t ), 
the rate of all the packets arriv ing from all uncontro llable sources. 

K (s) <1(1) 

+ 
r--,~~U(~tq)~-.:-=,-,---'T"~+~ __ ~ xCt) 

Fig. I. The controlled system 

Furthennore we assume that the following assumptions hold with respect to sys­
tem ( I). 

Assumption 3 The inpul u (t ) (ACR ::: u) is limited ill ampliwde asjol/ows: 

u(t) E no::::: {u, O ~ u(t) S uo,Vt ~ O} (3) 

wilh Uo > O. NOIe lhal in Ihis case. we have chosen Ale R ::::: 0 and P C R ::::: Uo and 
Ihal the input constrainlS are supposed to be satisfied by the initial j Ullctioll 1>( 1jJ). 
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Vt/J E [-r,O[. This assl/mplion basically slates Ihallhe inflow rale is bOl/nded abO\'e 
and Ihal each sOl/rce is persislem. 

Assumption 4 The rale ofu(t), Ihal is, ils lime-deriva/ive 1i(t) is limiled in ampli­
II/de as follows: 

(4) 

with Ul > O. This basically glloranlees Ihat 110 sOllrce COli challge jls celJ rale ;IIS­

tOrl/aneollsly. 

2.2 The control problem 

The control objective of this network is to achieve a certain stability property and 
assure full link utilization as described for example in (12J whi le simultaneously 
taking into account the actuator state limitations and external disturbances. Thus, 
and simi larly to [12] , let us introduce the fixed-struc ture controller: 

k[ "[' 1 u(t) = n ro - x( t) - ~ J t - T; u(r)dr (5) 

where TO > 0 represents the queue capacity and k is a positive scalar. The author 
in [12] has shown that with the appropriate choice of k, thi s controller will achieve 
the desired objectives given the exact knowledge ofT; (otherwise known as the round 
trip delay RTD) and of the number of sources n. i,From ( I ) the controller (5) may be 
equivalently defined as 

. k 
u(t) = - (d(t) - nu(t)) 

n 

With this type of controller, the closed-loop system reads: 

{ 

±(t) = - d(t) + t,U(t - T.) 

u(t) = *(d(t) - nu(t)) 

Hence, by de fining the new vectors o f states z as follows: 

the initial closed- loop system (7) reads: 

" 
i(t) = A,(t) + AdL:* - T.) + Bd(t) 

;=1 

with 

(6) 

(7) 

(8) 

(9) 
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This closed-loop system is defined with the initial condition 

r= max T i( I! ) 
i= l. ___ ... 

Furthennore, due to the fonn of the closed-loop system (9), we ean show that the 
constraints (3) and (4) can be described in the assumption below. 

Assumption 5 IVilh respect to the closed-loop system (9), thefollowing COl/straints 
/III/Sl be satisfied: 

z(t) E 20 = {z E 1R:2 ;0:S [01] z(t):S t1o,Vt} 

z( t) E ZI = {z E R'l;_u! :S [01] i(t):S til, Vt} 

( 12) 

( 13) 

The control problem addressed in the chapter can then be re-fonnul ated as fo l­
lows: 

Problem l. Find a gain k, a set of initial condition So ~ 1R:2 and a set of admissible 
disturbances Wo C 1R: suc h that the closed-loop system (9)-( 10) exhi bits the follo ­
wing properties: 
1. Stability. V¢(1/J) E So, V1/J E [-r,OI. and Vd E Wo one has: 

[ 1 01 *) ~ x(l) " ro, YI ~ 0 (14) 

Since TO corresponds to the queue capacity, this condition allows us to guarantee that 
no cells are lost, but is not a usual stability requirement. It does however guarantee 
no osci llation, nor overshoot. 
2. Full link utilization. V¢(1j;) E So, VljJ E [-r,OI, and Vd E Wo one has: 

[10 1 ,ttl ~ x( t) ~ 0, YI ~ 0 ( 15) 

3. Acluator conslraints _ The position and rate constraints of the actuators are li ­
nearly satisfied. 

Remark 1. The satisfaction of condition 2) in problem I may be relaxed to x{t ) ~ 0, 
Vt ~ T tr ~ ° [12J. [2], where TtT mainly accounts for the transient time of the 
dynamics. By imposing a linear behav ior on the actuator, we avoid the saturation 
regimes of lim ited variables. 

In the disturbance free case (that is, d(t) = 0, Vt ~ 0), the resulting nonlinear 
closed-loop system considering the limitations (1 2) and (1 3) possesses a basin of 
allraction of the equilibrium point z" = ° [1 3J, [15J. Then there exists a subset 
o f this basin of attraction in which the behav ior o f the closed- loop system remains 
linear. When d(t) ::j:: 0, it is not possible to strictly de fine one equilibrium point 
for the closed- loop system (9) with the time-vary ing dislUrbance d(t) . At a given 
time such that d(t ) = d", a corresponding equilibrium point z" such that i~ = ° 
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could be computed, implying that associated with any constant disturbance d~ E Wo 
, there exists a set of equilibrium points Ze. Thus, the closed- loop system due to 
constraints (12) and (13) exhibits local behaviors around these equilibrium points 
whose study may be very difficult, if not impossible. Recall that we are interested by 
a linear behavior of the closed-loop system. Thus, an interesting way to overcome 
these difficulties is to detenni ne a su itable set of admissible initial conditions, So 
from which the stability of system (9) with respect to the desired equi librium points 
is guaranteed. 

Thus the set of equi librium points under consideration can be defined as fo llows: 

Z~= { Z~ ElR2;Ze= [:: ] , ze= O,Vde = constant EWo } ( 16) 

Hence, for any admissible constant disturbance de, de E Wo, the objective is that 

the trajectories of system (9) converge towards the eq ui libri um point Ze = [x,]. 
", 

Hence, for d(t) = de. Vt ;::: 0, Ze is an eq uil ibrium point for system (9) provided that 
some conditions are verified (see the next section). 

3 Mathematical Preliminaries 

3.1 Proper ties of the model 

Since we are interested in the linear behavior of the closed- loop system, that is in 
avoiding the saturation of Z and i, we state the following lemma [161. 

Lemma I. The closed-loop system model (9) subject to constraints (12) and (13) is 
only valid in the region of linearity Zo n ZI. In other words, the closed-loop system 
model (9) subject to constmints (12) and (13) is only valid. that is, remains linear if 
and only if the set of initial conditions So is such that 

When there is a value of ¢(t/J) from which z(t) does not remain in ZOnz\, Vt. the 
closed- loop system resulting from (1), (3), (4), and (5) has to be described by using 
saturation functions. In this case, the occurrence of saturation on the variables u and 
U has to be investigated and new ways of modeling the resulting closed-loop must 
be investigated. Such a study will not be considered here, but will be investigated in 
later research. Note that a solution to such a control problem via stutislical 1eaming 
control was proposed in the case of discrete-time systems with saturation [ 1]. 

3.2 Characterization of the equilibrium set 

Lemma 2. Suppose that there exists an equilibrium point Ze = z{ te)for system (9). 
Then this equilibrium point satisfies: 
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( 17) 

(18) 

(
1 1 " ) Xe = ro - de - + - l::Ti 
k " i =o l 

(19) 

Proof. Relations (1 7) and (IS) arc derived by searching Ze = z (t e) satisfying in (9) 
ze = O. Relation (1 9) is derived from (5) by considering that 11 = ~ on the interval 
Ite - Ti , te]. 0 

Remark 2. Cond ition (IS) is consistent with those in [12J and means that the AB R 
bandwidth de is equally shared by the n VC's. Relation (17) is eq uivalcnt lO 

[

U(t. - T.) 1 d. 
: =- I JI+(e 
. " 

u(te - Tn) 

where ( e is any vector of ~J1 such as I :.(e = O. Hence, a particular solution consists 
in choosing ( e = 0 leading to u(te - T i ) = ~, Vi = I , ... , n. Condition ( 19) is 
consistent with the value exhibited in II2J. 

4 Main Results 

A natural way for maintaining the system trajectories in a certain set consists of 
imposing the positive invariance of such a set wi th respect for the considered system. 
Hence, part of our results is based on the use of the extended Farkas lemma applied 
to delay systems: see lS], [ 14 J and references therein. 

Let us fonnu late the following proposition in order to capture the solution to 
Problem 1. As a fi rst step, we consider that the value of all delays T;, i = I , .. . , n. 
are exactly known. 

Proposition t. Jfthe positive vailies ofro. tlo. Ul> k, n, T; and do satisfy: 

do O<-<uo (20) - n -

k 
kuo + - do .s: ttl (2 1) 

" " 
TO - £uo - tio l::T; ;?: 0 (22) 

j=l 

then Problem J is solved for the given vailles of k and any disturbances satisfying 

d(tl E Do ~ {d;O S d S do, do > OJ (23) 
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Proof. To solve Problem I, we have to satisfy the three requirements of Problem I, 
namely, stability, full link utilization , and actuator constraints. 
• We must first verify that x(t) :S TO, "It 2:: 0, i,From the controller described in (5), 
one can wri te the fotlow ing: 

n " l' TO - x(t) ::::: - u(t) + L u(r)dr 
k ; = 1 I - T, 

i, From Assumption 3 one gets: 

o OS t l' u(r)dr OS uo t T; 
;= 1 I - T, ;= 1 

(24) 

Therefore, it can be deduced from (3) and (24) that 

" , 
TO - x(t) = ~u(t) + L I ' u(r)dr 2:: O. 

;",, 1 I - F; 

Furthennore, since from Lemma 2, the trajeclOries of system (9) may attain its equi­
librium point z(te) = z~ as defined in (17), (18) and ( 19) we have to verify that 

TO - Xe 2:: O. Thus, from (19) it follows that 0 :s: TO - x e = de (t + rtT;) OS 
.=1 

do ( t + ~ tT;). Thus, the first requiremenl of Problem I is satisfi ed for any u;(t) 

and d(t) satisfying (3) and (23). 
• The second point to verify is the fact that x(t) must be non-negative. Thus, one has 
to prove that 

" , 
x(t) = TO - ~u(t) - L 1 u(r)dr 2:: 0 

k ; =1 t - T; 

" 
i,From (3) it foHows: x(t) 2:: TO - IUo -uo LT;. Hence, if condition (22) is satisfi ed 

;=1 
one gets x(t) 2:: O. This property must also be verified at the equilibrium. Thus, from 
Lemma 2, if relation (25) is satisfi ed we have Xe 2:: 0 for any u(t) and d(t) sati sfying 
(3) "nd (23). 
• The last point consists in verifying the constraints along the trajectories of the linear 
closed-loop system (9). Recall that, from Lemma I, system (9) subject to constraints 
(12) and (1 3) is only valid in Zo n Z" Thus, we have to prove that 

i) the equilibrium point belongs to this region Zo n Z\ (see Assumption 5). 
ii) for any u and d such that 0 :S U :s: Uo and 0 :s: d :S do it follows 0 :s: u :S Uo and 

-UJ :s: 1i:S UJ or equivalently 0 :s: u:s: Uo and - UJ :s: ~[d(t) - nu(t)] :s: UJ. 

The sati sfaction of relations (20) and (22) one gets: 
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do ( ") TO - -;:;- ~ + ?,:T; 2 0 
,:=] 

(25) 

With respect to the point I, we have shown above that 0 ~ x~ ~ TO from the 
sat isfaction of(25). Furthennore, from (20) one can verify that u(te) and u(te - T i ) 

satisfy (3). 
With respect to the point 2, by using the extended Farkas lemma [8]' [14J, it 

follows that if relation (2 1) is satisfied then there ex ists a non-negative matrix N 
such that: 

with 

[ 
1 0] [1 0] - k ~ 0 1 

- 1 '0 == N - 1 0 
k-li 0- 1 

" 

[
1000] 
k ~ 2k 0 
o 0 1 0 
k i 0 2k 

" " 

(26) 

(27) 

o 

Remark 3. Relation (21) gives an implicit relation between the bounds Uo and U I . 

Indeed, necessarily, we have to satisfy IU] - nuo 2 o. 
In a second stage, we suppose that the delays T; are uncertain and moreover the value 
of the number of Virtual Circuits (say n) is unknown. In order to solve our control 
problem in the case where we have also to provide an estimation of n, we suppose 
that all the delays T; satisfy: 

(28) 

Let us now present a solution to our control problem when the values nand Tm a", 

arc not perfectly known. 

Proposition 2. Given TO > 0, tlo > O,"IJ] > 0 and do > O. If there exist positive 
values X, Y and Z satisfying: 

TO - doX - doZ 2 0 

tlo+doX ~UIY 

TOX -tloY -uoZ 2 0 

:cc"r"o,;-;" 2 1 + max { (In ; 
uo(Y + Z) Uo TO 

do . do 
doZ ' "IJ]Y 

then Problem I is solved for the vallles 

(29) 

(30) 

(3 1) 

(32) 

(33) 
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alld all)' diSfl/ rballces d{ t ) E Vo (described ill (23)) alld fo r (Ill dela)'s verifyillg (28) 
with T",ax = Z. 

Proof. Consider relations of Proposition I with unknown n , k and T max' In order to 
have linear conditions in the decision variables we choose X = ~ , Y = t and Z = 
T ."a", ' Hence, rel ations (20) and (2 1) directly translate into (29 ) and (3 1). Relations 
(30) and (32) comes from relations (25) and (22) by considering (28). Finall y, when 
all conditions are coherent, one obtains: 

uo{Y + Z) 
X . { uo.ro - doZ . uIY -Uo} s: S; mm do ' do ' do ' 

or equivalently, 

Thus, in order to pick the entire value of * to obtain n , there mu st exist an entire 

I . h ' I [ {1ll. ~~} " 1 Th h' va ue m t e mterva max "0; ro-doZ; u, Y - "0 ' "o( Y +Z) , us, to ensure tiS, 
we have to satisfy condition (33). 0 

4.1 Numerical examples 

Hereafter we provide two numerical examples; one making use of the conditions 
provided by Proposition I , the other one making use of the conditions provided by 
Proposition 2. Example 1. Let 

To = 13 , uo = l , ul = 2 , n = 5 , Ti =2for i= I , .. . 5. 

We applied the conditions (20}-(22) of Proposition I, trying to find the largest value 
of do such that there exist a feasible value of k. It is easy to show that these conditions 
can be turned into a Generalized Eigenval ue Problem which can be solved with the 
aid of the LMI Toolbox [5}. We found that Problem I is satisfi ed with k = 1.66 for a 
max imum value of do = I . In Figure 2 we show the simul ation results obtained with 
thi s controller using the scheme of Figure 1: all the req uirements (stability, full link 
utilization and actuator constraints ) are met. Example 2. Let 

TO = 100 , Uo = I , UI = 2 , do = 10. 

We applied the conditions (29H33) of Proposition 2, trying to find feasible values 
for n, k and T ma", . Again with the aid of the LMI Toolbox, we found that Problem I is 
solved forlhe values n = 13, k = 0.31, for all the delays veri fy ing (28) with T max = 
3.86. In Figure 3 we show the simul ation results obtained with this controller using 
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Fig. 2. Simulation results: case I 

the scheme of Figure I. The controller estimates the maximum time-delay Tma., = 
3.86 and the number of the virtual c ircuits n = 13, whereas only \0 virtual circuits 
were considered and the corresponding time-delays were all chosen less than T rna ., . 

Also in this case all the requirements (stabil ity, full link utilization and actuator 
constraints) arc met. 

5 Conclusions 

In this chapter we have provided a new approach to deal with the ATMJABR control 
problem keeping in mind requirements of simplicity of the controller structure and 
allowing for various performance objectives 01 be met. Our approach basically leads 
to polynomial design inequalities to be satisfi ed. Such inequalities have been studied 
by the authors and their coll aborators in various papers [II ]. The statistical lear­
ning control approach disc ussed by the authors in [1 ,2) for example, promises to be 
effective in this setting. While our controller structure is currently derived in conti­
nuous time, it is possible to translate such designs into discrete-time as was done for 
example in [6J . In addition, and while our controller structure is basically the Smith 
predictor structure of [ 12J, other controller structures arc being investigated. 
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Summary. Parallel computer architectures utilize a set of computational elements (CE) to 
achieve perfonnance that is not anainable on a single processor, or CE, computer. A common 
archi tecture is the cluster of otherwise independent computers communicating through a sha­
red network. To make usc of parallel computing resources, problems must be broken down 
into smaller units tha t can be solved individually by each CE while exchanging information 
with CEs solving other problems. 

Effective uti liza tion of a parallel computer architecture requires the computational load 
to be distributed more or less evenly over the avai lable CEs. The qualifier "more or less" is 
used because the communications required to distribute the load consume both computational 
resources and network bandwidth. A point of diminishing returns exists. 

In this work, a nonlinear deterministic dynamic time-delay systems is developed to model 
load balancing in a cluster of computer nodes used for parallel computations. This model is 
then compared with an experimental implcmcntation of the load balancing algorithm on a 
parallel computer network. 

1 Introduction 

Parallel computer architectures utilize a set of computational elements (CE) to 
achieve pcrfonnance that is not attainable on a single processor, or CE, computer. 
A common architecture is the cluster of otherwise independent computcrs commu­
nicating through a shared network. To make usc of parallel computing resources, 
problems must be broken down into smaller units thai can be solved individually by 
each CE while exchanging information with CEs solving other problems. 

The Federal Bureau of Investigation (FBI) National DNA Index System (NDIS) 
and Combined DNA Index System (CODlS) software arc candidates for parallcJi­
zation. New methods developed by Wang et OIL 171 [I } [8J [39} lead naturally 10 a 
parallel decomposition of the DNA database search problem whi le providing orders 
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of magnitude improvements in performance over the current release of the CODIS 
software. The projected growth of the NDIS database and in the demand for searches 
of the database necessitates migration to a parallel computing platform. 

Effective util ization of a parallel computer architecture requires the computatio­
nal load to be distributed more or less evenly over the avai lable CEs, The qualifier 
"more or less" is used because the communications required to distribute the load 
consume both computational resources and network bandwidth. A point of dimi­
nishing returns exists. The distribution of computational load across available re­
sources is referred to as the load balancing problem in the literature. Various taxo­
nomies of load balancing algorithms ex ist. Direct methods examine the global di stri ­
bution of computational load and assign portions of the workload to resou rces before 
processing begins. Iterative methods examine the progress of the computation and the 
expected utili zation of resources, and adjust the workload assignments periodically 
as computation progresses. Assignment may be either detenninistic, as with the di­
mension exchange/diffusion fl BJ and gradient methods, stochastic, or optimization 
based. A comparison of several detenninistic methods is provided by Willeback­
LeMain and Reeves [401. 

To adeq uately model load balancing problems, several features of the parallel 
computation environment should be captured ( I) The workload awaiting proces­
sing at each CE; (2) the relative perfonnances of the CEs; (3) the computational 
requirements of each workload component; (4) the delays and bandwidth constraints 
of CEs and network components involved in the exchange of workloads, and (5) 
the delays imposed by CEs and the network on the exchange of measurements. A 
queu ing theory [30J approach is well-suited \0 the modelli ng requirements and has 
been used in the literature by Spies [38] and others. However, whereas Spies assumes 
a homogeneous network of CEs and models the queues in detail, the present work 
generalizes queue length to an expected waiting time, nonnalizing to account for dif­
ferences among CEs, and aggregates the behavior of each queue using a continuous 
state model. The present work focuses upon the effects of delays in the exchange 
of infonnalion among CEs, and the constraints these effects impose on the design 
of a load balancing strategy. Preliminary results by the authors appear in [7J with 
a stability analysis for a proposed linear model given in [2J. Here, a nonl inear mo­
del is developed to obtain beller fidelity and experimental results are presented and 
compared to that given by the model. 

Section 2 presents our approach to modelling the computer network and load ba­
lancing algorithms to incorporate the presence of delay in commun icating between 
nodes and transferri ng tasks. Section 3 presents si mulations of the nonlinear model. 
Section 4 presents experimental data from an actual implementation of a load ba­
lanci ng algorithm which is compared with the simu lations. Finally, Section 5 is a 
summary and conclusion of the present work and a discussion of fu ture work. 
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2 Models of Lmtd Balancing Algorithms 

In th is section, a continuous ti me model in the fonn of a nonlinear delay-differential 
system of equations is developed to mode l load balancing among a network of com­
puters. A modifi cation to the model is presented so that the nu mber of tasks a node 
d istributes to the other nodes is based on their relative load levels. 

To introduce the basic approach to load balancing, consider a computing nctwork 
consisting of n compUiers (nodes) all of which can commun icate with each other. At 
start up, the computers are assigned an equal number of tasks. However, when a node 
executes a particular task it can in tum generale more tasks so that very quickly the 
loads on various nodes become unequal. To balance the loads, each computer in the 
network sends its queue size qj{t) to all other computers in the network. A node i re· 
ceives th is information from nodej delayed by a finite amount of time Tij, that is, it 
receives qj {t - Tij). Each nodc i then uses Ihis information to compute its local esti · 
mate4 o f the average number of tasks in the queues of the n computers in the network. 

In this work , the simple esti mator (2::7=1 qj{t - Tij») In (Tii = 0) is used which is 

based on Ihe most recent observations is used. Node i then compares its queue size 

q;{t) with its estimate of Ihe network average as qi(t) - (2::7=1 qj(t - Tij) ) In and, 

if this is greater than zero, the node sends some of its tasks 10 the other nodes while 
if it is less than zero, no tasks are sent (see Figure I ). Further, the tasks sent by node 
i arc rece ived by node j with a delay hi]. The controller (load balancing algorithm) 
decides how often and fast to do load balancing (transfer tasks among the nodes) and 
how many tasks are to be sent to each node. As j ust expl ained, each node controller 
(load balanc ing algorithm) has only delayed values of the queue lengths of the other 
nodes, and each transfer of data from one node to another is 

received only after a fin ite time delay. An important issue considered here is 10 

study the effect of these delays on system performance. Specifically, the continuous 
time model developed here represents our effort to capture the effect of the delays 
in load balancing techniques and were developed so that system theoretic methods 
cou ld be used to analyze them. 

2.1 Basic model 

The basic mathematical model of a given computing node for load balancing is given 
by 

4 It is an estimate ~cause at any time, each nexle only has the delayed value of the num~r 
of tasks in the other nexles. 
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Queue tengths as measured by node 1 
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Average Queue Length 
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Fig. I. Graphical descri ption of load balancing. This bar graph shows the lood for each com· 
puter vs. node of the network. The thin horizontal li ne is the average load as estimmed by node 
1. Node 1 will transfer (pan of) its lood only if it is above its es timate of the average. Also, it 
only transfers to nodes that it estimates are below the node average. 

where 

([X i (t ) = -X . _ II ' + u ·(t ) _ ~ p" tp; 1t -(t - h·-) 
dt 1,-" L.... IJ t . J 'I 

j = 1 p, 

Yi(t) = Xi (t ) _ 'Lj'=l xi(! - T1)) 

" u ;(t) = - K ;sOI (y;(t)) 

" 
Pii ;?: O,Pii = 0, LPij = 1 

;=1 

sat (y) = y if y;?: 0 

= Oif y < O. 

In this model we have 

• n is the number of nodes. 

(I ) 

• x;(t) is the expected waiting time experienced by a task inserted into the queue 
of the i 1h node. With q;(t) the number of tasks in the ith node and tp; the average 
time needed to process a task on the i 1h node, the expected (average) waiting lime 
is then g iven by Xi (t ) = qi( t )tp;. Note that xi / tpi ::::: qj is the number of tasks in 
the node 1 queue. If these tasks were transferred to node i, then the waiting time 



Time Delay Models for Load Balancing. Pan I 359 

transferred is qjtv; = Xjtp; It"i' so Ihat Ihe frac tion tp; ltv, converts waiting time 
on node j to waiti ng lime on node i. 

• Ai is the rate of generation of waili ng time on the ith node caused by the addition 
of tasks (rale of increase in :cd 

• Il ; is the rate of reduction in wailing lime caused by the service oflasks at Ihe ith 

node and is given by J.l i := (1 x tv;) Itp; = 1 for all i. 
• u;{t) is the rate of removal (Iransfer) of the lasks from node i at lime t by the 

load balancing algorilhm al node i . Nole that u;(t) :s o. 
• P;jUj(t) is the rate Ihat node j sends waiting lime (tasks) to node i at time t where 

Pij ~ 0, L;~l Pi) = I and Pj) = O. That is, Ihe transfer from node j of expected 

waiting time (tasks) ft',2 uj(t)dt in the interval of time [tl, t:d 10 the other nodes 

is carried oul wilh Ihe ilh node being sent the fraction P;j~ ftl,2 uj(t)dt where 

Ihe fraction tp; Itp; converts Ihe task from wailing time on node j to waiting time 

on node i. As L7=1 (p;j fl~2 Uj{t)dt) = ft,2 uj{t)dt. this results in a removi ng 

all the waiting time f/,2 uj(t)dl from nodej. 

• The quanti ty -PijU j (t - hi}) is the rate of increase (rate of transfer) ofthe expec­
ted waiting time (Iasks) at lime t from node j by (10) node i where h;j (ltH = 0) 
is the time delay for Ihe task transfer from node j 10 node i . 

• The quantities T;j (T;; = 0) denote the lime delay for commun icating the expec­
ted waiting time Xi from node j to node i . 

• The quantity x~vg = (Lj'=1 Xj (t - T;j) ) In is the estimate~ by the ith node of 

the average waiting lime of Ihe network and is referred 10 as the local average 
(local esti mate of the average). 

In this model, all rales are in units of Ihe rare of change of expected waiting 
rime, or rime/time which is dimension less. As u;{t) :s 0, node i can only send tasks 
to other nodes and cannot initiate transfers from another node to itself. A delay is 
experienced by transmitted tasks before they are received at the other node. The 
conlrol law u;(t) = - K ;sat(y;(t)) states thai if the ith node output x;(t) is above 

the local average (L;=1 Xj (t - Tij)) In, Ihen it sends data to the olher nodes. while 

if it is less than the local average nothing is sent. The jth node receives Ihc fraction 

ftt,2 1Jj;U;(t)dl of transferred wailing time J/,2 ui(t)dt delayed by the time h ;j . 

2.2 Constant Pii 

The model (I) is the basic model but one important detail remains unspecified. na­
mely the exact form Pi; for each sending node i. One approach is to choose them as 
constant and equal 

1 
Pii = --16); n-

~ This is an only an estimate due to the delays. 

(2) 
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where /ij i is the standard Ksoneeker delta function. It is clear that Pji ~ 0, 

,,£7=1 Pji = 1. 
Remark If the Pij are specified by (2) and the saturation functions in (I ) are 

removed, the following lil/ear rime il/variam model results 

dx, (t ) L -- = oX - It + u·(t) - ~,(t - II ··) dt ' " '--)') 
#i 

y;(t) = Xi(t) _ ,,£7=1 Xi (t - T;j) 
n 

1 
lt i(t) = - K ;y;(t) , P = - -1 . 

n -

(3) 

When Ui(t) = - K iYi(t) < 0, this operates as in ( I ) in that the tasks are immediately 
removed and sent to the other nodes where each of those nodes experiences a delay 
(hij) in getting these tasks. However, a fundamental problem with this linear model 
is that when y;( t) < ° the controller (load balancing algorithm)ui(t) = - K iYi(t) > 
o so that the node is instantaneollsly taking on waiti ng time (tasks) from the other 
nodes before those tasks are removed from the other nodes' queues. That is, it is 
accepting the waiting times (tasks) VUi( t ) from each of the other nodes. There is a 
fi nite time delay associated with this transfer of (asks, and this model ignores this 
fact. In spite of th is fact, it is sti ll of value to consider the system (3) because it can 
be completely analyzed with regards to stabi lity, and it does capture the oscillatory 
behavior of the Yi(t) . A stability analysis of this linear model is presented in [2]. 

2.3 Non constant Pij 

It could be usefu l to use the local information of the waiting times x i(t),i = 1, .. , 11 

10 sel the values of the Pii' Recall that Pii is the fraction of Uj(t) that node j 
allocates (transfers) to node i at time t , and conservation of the tasks requires 
Pij ~ 0, "£~ 1 Pii = 1 and Pjj = O. The quantity Xi (t - Tji) - xj V

9 represents 
what node j estimates6 the waiting time in the queue of node i is with respect to the 
local average of node j. If queue of node i is above the local average, then node j 
docs nOI send tasks to it. Therefore sat (xjV

9 - Xi(t - Tii ») is an appropriate mea­
sure by node j as to how much node i is below the local average. Node j then repeats 
th is computation for all the other nodes and then portions out its tasks among the 
other nodes according to the amounts they are below the local average, that is, 

sat (x j V
9 - Xi(t - Ti ;)) 

Pii = ",,,-'-'c--=--''-_='-c L sat (xjV9 - Xi(t - Tii)) 
i:>i#i 

(4) 

A Pii is defi ned to be zero if the denominator L sat (xr g 
- Xi(t - Tii) ) = O. 

i • i#j 

6 Again, the term "estimates" is used because node j does nO{ know the current val ue of 
x;(t ), but only its earlier value Xi(t - Tij ) . 
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Fig. 2. Illustration of a hypothetical distribution P il of the load at some time t from node 1 's 
point of view. Node 1 will send data out to node i in proportion Pil it estimates node j is below 
the average where 2::7=1 P i l = 1 and PII = 0 

Remark If the denominator L sat (xjV 9 - x;{t - Tji}) is zero, then xjV
9 -

i • i#-j 

x;(t - Tj;} < 0 for all i "# j. However, by defini tion oflhe average, 

L (xjV
9 - x;(t - Tj;} ) + xjV

9 - Xj(t) = L (xjV
9 - x;{t - Tj;} ) = 0 which 

i • i#-j 

impliesx;V9 -Xj(t) = - L (x jV9 -Xi(t - Tji )) > O. Thai is, if the dcnomina· 
i • i#-j 

tor is zero, the nodej is below the local average so that Uj( t ) = - J(jsat(Yj(t}} = 0 
and is therefore not sending out any tasks. 

With the definit ion of the P;j given by (4), a load balancing algori thm which 
portions out the tasks in proportion to the amounts they are below the local average, 
is given by the following nonlinear differential~de lay system 
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3 Simulations 

(J Ilg Lj'-t Xj(t - Tij) 
x - = , n 

Yi(t) = x ;{ t) - x~ "g 

",(tl = -K,,,, (y,(tl l (5) 

The simulatio ns here were perfomled using the model ( I) in order to compare with 
the actual experimental data in the next section. Experimental procedures to deter­
mine thc delay values are given in [20] and su mmarized in [2 1] . These g ive represen­
ta tive values for a Fast Ethemet network with three nodes of T;j = T = 200 J,see for 
i :f:. j ,Tij = 0, and /i ; j = 2T = 400 J-lsec fori:f:. j , hjj = O. The ini tial conditions 
for the waiting times were chosen as XI (0) = 0.6, X2(0) = 0.4 and X3(0) = 0.2. 
The inputs were set as Al = 31l1, A2 = 0 , A3 = 0 , III = J-l2 = J-l3 = 1. The tp, 's 
were taken to be equal and P;j = (l f2)o;j for all i, j. 

Figures 3 and 4 show the responses with the gains set as J{ = 1000 and 
J{ = 5000, respectively. These fi gures indicate that the value of the gain f{ has a 
signi fica nt effcct on the response of the system. Many simulations were perfonned 
that arc not presented here, and it was found that the system did not go unstable. 
However, for low values of the gains, the response was sluggish as in Figure 3 whi le 
for high values of the gains, the response was quite osci ll atory. 

To compare with the experimental results given in Figure 8 of the next sec­
tion, Figure 5 shows the output responses with the gains set as J{\ = 6667, J{2 = 
4167, K3 = 5000, respectively. 

It is important to note that these plots arc of the quantities Yi in equation (I ) 
which are the amount of waiting time refati~'e to the local average and therefore can 
and do go negative. The actual waiting times Xi do nor go negative. 

4 Experimental Results 

A parallel machine has been built to implement an experimental faci lity for eval ua­
tion of load balancing strategies. To date, this work has been perfonned for the FB I 
Laboratory to evaluate candidate designs of the parallel CODIS database. The design 
layout of the paral lel database is shown in Fig ure 6 . A root node comm unicates with 
k groups o f computer networks. Each of these groups is composed of n nodes (hosts) 
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Fig. 3. Output responses with K = 1000. 
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Fig. 4. Output responses with K = 5000. 

holding identical copies of a portion of the database. (Any pair of groups correspond 
to different databases, which are not necessarily disjoint . A specific record, or DNA 
profil e, is in general stored in two groups for redundancy to protect against fai lure 
of a node.) Within each node, there are either one or two processors. In the experi-
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K1 = 6666.7, K2 = 4166.7, K3 = 5000 

,1 

0.002 0.004 0.006 0.008 0.01 
Time in sees 

Fig. 5.0urpu[ responses with K l = 6666.7; K2 = 4166.7; K3 = 5000 

mental facility, the dual processor machines use 1.6 GHz Athlon MP processors, and 
the single processor machines use 1.33 GHz Athlon processors. All run the Linux 
operating system. Our interest here is in the load balancing in anyone group of n 
nodeslhosts. 

The database is implemented as a set of queues with associated search engine 
threads, typically assigned one per node of the parallel machine. Due to the structure 
of the search process, search requests can be fonnulated for any target DNA profi le 
and associated with any node of the index tree. 

These search requests are created not only by the database clients; the search pro­
cess also creates search requests as the index tree is descended by any search thread. 
This creates the opportunity for parallelism; search requests that await processing 
may be placed in any queue associated with a search engine, and the contents o f 
these queues may be moved arbit rarily among the processing nodes of a group 10 

achieve a balance of the load. This structure is shown in Figure 7. 
An important point is that the actual delays experienced by the network trallic 

in the parallel machine are random. Work has been performed to characterize the 
bandwidth and delay on unloaded and loaded network switches, in order to identify 
the delay parameters of the analytic models and is reported in [20] [21]. The value 
T == 200 J.'sec used for simulations represents an average value for the delay and 
was found using the procedure described in [21]. The interest here is to compare 
the experimental data with that from the si mulations given presented in the previous 
section. 

To explain the connection between the control gain K and the actual implemen­
tation, recal l that the waiting time is related to the number of tasks as Xi(t) == qi (t)t p; 



Time Oclay Models for Load Balancing. Part I 365 

000 o 

""" 
processor 

Fig. 6. Hardware structure of the pamllel database. Each of the host computers in any given 
group have the same database. Load balancing is carried out only within a given group as they 
all perform the same task. of searching a particular database. 

o 2..0 o 

• • • 

Fig. 7. A depiction of multiple search threads in the database index tree. Here the server 
corresponds to the "root" in Figure 6. To even OUi the search queues in each database group, 
load balancing is done between the nodes (hosts) of a group. If a node has a dual processor, 
then it can be considered \0 have two search engines for its queue. 

where tp; is the average time to carry out a task.. The continuous time control law is 

u(t) ~ - Ks",(y ,(t» 

where u{t) is the rate of decrease of waiting time Xj{t) per unit time. Consequently, 
the gain ]( represents the rate of reduction of wailing time per second in the conti-

nuous time model. Also, y;{t) = (q;{t) - (2:;': 1 qi(t - Tii)) In) tp; = ri(t) tp; 



366 J. Douglas Birdwell. et al. 

where r;(t) is simply the number of tasks above the estimated (local) average num­
ber of tasks, As the interest here is the ease y;(t) > 0, consider u(t) ::: -Ky;(t). 
With .6.t the time interval between successive executions of the load balancing al­
gorithm, thc eontrollaw says that a fraction of the queue ](~ ri(t) (0 < /(z < 1) is 
removed in the time .6.t so the rate of reduction of wailil! g tillle is - ]{ z r ;( t)tp ; l .6. t ::: 
- ICy;(t)/.6.t so that 

( ) 
__ [{, y,(t) [( _ [{, 

u t - .6.t or - .6.t' (6) 

This shows that the gain K is related to the actual implementation by how fast the 
load balancing can be carried out and how much (fraction) of the load is transferred. 
In the ex perimental work reported here, .6.t actually varies each time the load is ba­
lanced. As a consequence, the value of .6.t used in (6) is an average value for that 
run . The average time tp; to process a task is the same on all nodes (identical proces­
sors) and is equallO/lsec while the time it takes to ready a load fortransfer is about 
5p, sec . The initial conditions were taken as q] (0) ::: 60000, qz(O) ::: 40000, qs(O) ::: 
20000 (corresponding to X I (0) ::: q] (O)tp; ::: 0.06, xz(O) ::: 0.04 , xs(O) = 0.02). 
All of the experimental responses were carried out with constant Pij = 1/2 for i ::J. j . 

Figure 8 is a plot of the responses r; (t) ::: qi (t ) - ( 2:)=1 qj (t - Tij) ) In for 

i ::: 1, 2, 3 (recall that y;(t) ::: r ;{t )tp,). The (average) value of the gains were 
(IC = 0.5) K ] ::: 0.5/75j.l sCC ::: 6667, K z = 0.5/120j.lsec ::: 4167, K 3 ::: 

0.5/100j.lsec == 5000. This fi gure compares favorably with Figure 5 except for the 
ti me scale being off, that is, the experimental responses are slower. The explana­
tion for thi s it that the gains here vary during the run because .6.t (the time interval 
between successive executions of the load balancing algorithm) varies during the 
run. Further, this time .6.t is IIo t modelled in the continuous time simulations, only 
its average effect in the gains K i . That is, unlike the actual computer network, the 
conti nuous time model does not stop processing jobs (at the average rate tp;) while 
it is transferring tasks to do the load balancing, 

Figure 9 shows the plols of the response for the (average) value of the gains 
given by (1<. == 0.2) KI = 0.2/ 125j.l sCC = 1600, K'l = 0.2/80j.lsec == 2500, 
K3 ::: 0.2/ 70j.lsec ::: 2857. The initial conditions were ql(O) ::: 60000, q2(0) ::: 
40000, q,(O) = 20000 (x, (0) = q, (O)t;, = 0.06. x,(O) = 0.04. x,(O) = 0.02). 

Figure 10 shows the plots of the response for the (average) value of the gains gi­
ven by ( ]{z = 0.3)]{1 = 0.3/125/-, sec == 2400, ]{2 == 0.3/110Jlsec::: 7273, K3 = 
0.3/120j.lsec ::: 2500. 

5 Summary and Conclusions 

In thi s work , a load balancing algorithm was modelled by a system of nonlinear 
delay-differential equations. Simulations were preformed and compared with actual 
experimental data. The comparison indicates that the model does indeed capture dy­
namic behavior of the load balancing network. 
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Fig. 9. Experimental response of the load balancing algorithm. The average value of the gains 
are (1(, = 0.2) K J = 1600, K2 = 2500, K 3 = 2857. 

A consideration for future work is the fac t that the load balancing operation in­
volves processor time which is not being used to process tasks. Consequently, there 
is a trade-off between using processor time!network bandwidth and the advantage 
of distributing the load even ly between the nodes to reduce overall processing time. 
Another issue is that the delays in actuality are not constant and depend on such 
fac tors as network availability, the execution of the software. etc. An approach to 
modell ing using a discrete-event ! hybrid state fomlUlation that accounts for block 
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transfers that occur after random intervals may also be advantageous in analyzing 
the network . 
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Summary. In large-scale distributed computing systems, in which the computational ele­
ments aTC physically or virtually distant from each other, there are communication-related 
delays that can significantly alter the expected perfonnance of load-balancing policies that do 
not account for such delays. This is a particularly significant problem in systems for which 
the individual units are conneclCd by means of a shared broadband communication medium 
(e.g., the Intcrnet, ATM, wireless LAN or wireless Internet). In such cases, the delays, in 
addition to being large, nuctuate randomly, making their one-time accurate prediction im­
possible. In this work, the stochastic dynamics of a load-balancing algorithm in a cluster of 
computer nodes are modeled and used to predict the effects of the random time delays on the 
algorithm's performance. A discrete-time stochastic dynamical -equation model is presented 
describing the evolution of the random queue size of each node. Monte Carlo simulation is 
also used to demonstrate the extent of the role played by the magnitude and uncenainty of the 
various time-delay elements in altering the performance of load balancing. This study reveals 
that the presence of delay (deterministic or random) can lead to a significant degradation in 
the performance of a load-balancing policy. One way to remedy such a problem is to wea­
ken the load-balancing mechanism so that the load-transfer between nodes is down-scaled (or 
discouraged) appropriately. 

1 Introduction 

Effective load balancing of a cluster of computational elements (CEs) in a distri­

buted computing system relies on accurate knowledge of the state of the individual 

CEs. This knowledge is used to judiciously assign incoming computational tasks to 

appropriate CEs, according to some load-balancing policy [1,2]. In large-scale dis­

tribu ted computing systems in w hich the CEs are physically or vi rtually distant from 
each other, there arc a number o f inherent time-delay factors that can seriously al­

ter the expected perfonnance of the load-balancing policies that do not account fo r 
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such delays. One manifestation of such time delay is attributable to the computatio­
nallimitations of the individual CEs. A more significant manifestation of such dclay 
ari ses from the communication limitations between the CEs. These include delays 
in transferring loads between CEs and delays in the commun ication between them. 
Moreover, these delay clements not only fluctuate within each CE, as the amounts 
of the loads to be transferred vary, but also fluctuate as a resu lt of the uncertainty in 
the condition of the communication medium that con nects the units. There has been 
an extensive research in the development of the appropriate dynamic load balancing 
policies. The policies have been proposed for categories such as local versus global, 
static versus dynamic, and centralized versus distributed schedul ing l3-5J. Some of 
the existing approaches consider constant performance of the network wh ile others 
consider deterministic communication and transfer delay. Here, we propose and in­
vestigate a dynamic load balancing scheme for distributed systems which incorpo­
rates the stochastic nature of the delay in both communication and load transfer. 

To adequately model load balancing problems, several features of the parallel 
computation environment should be captured incl uding: ( I) the workload awaiting 
processing at each CE (Le., queue size); (2) the relative performances of the CEs; 
(3) the computational requirements of each workload componenl; (4) the delays and 
bandwidth constraints of CEs and network components involved in the exchange of 
workloads, and (5) the delays imposed by CEs and the network on the exchange of 
measurements and information. The authors have previously developed a determinis­
tic model, based on dynamic rate equations, describing the load-balancing dynamics 
and characterizing conditions for its stability [2,6-8]. While th is determin istic mo­
del is appropriate when dealing with a dedicated communication medium, it may 
become inadequate for cases when a shared communication medium is used whe­
reby the delays encountered are stochastic. In thi s chapter, we wi ll focus on the ef­
fect of stochastic delay on the performance of load balancing. The effect of delay 
is expected to be a key factor as searching large databases moves toward distributed 
architectures with potentially geographically distant units. 

This chapter is organized as follows. In Section 2 we identify the stochastic cle­
ments of the load-balancing problem at hand and describe its time dynamics. In 
Section 3 we present a discrete-time queuing mood describing the evolution of the 
random queue size of each nooe in the presence of delay for a typical load balancing 
algorithm. In Section 4 we present the results of Monic-Carlo si mulations which de­
monstrate the ex tent of the role played by the uncertainty of the various time-delay 
elements in altering the performance of load balancing from that predicted by de­
terministic models, wh ich assume fixed delays. Finally, the conclusions are given in 
Section 5. 

2 Description of the Stochastic Dynamics 

The load balancing problem in the presence of delay can be generically described 
as follows. Consider It nodes in a network of geographically-di stributed CEs. Com­
putational tasks arrive at each nooe randomly and tasks are completed according 
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to an exponential service-time model. In a typical load-balanci ng algorithm, each 
node routinely checks its queue size against other nodes and decides whether or not 
to allocate a porlion of its load 10 less busy nodes according to a predefined policy. 
Now due to the physical (or virlual) distance between nodes in large-scale distributed 
computing systems, communication and load transfer activity among them cannOt be 
assumed instantaneous. Thus, the information that a parlicular node has about other 
nodes at any time is dated and may not accurately represent the current state of the 
other nodes. For the same reason, a load sent to a recipient node arrives at a delayed 
instant. In the mean time, however, the load state of the recipient node may have 
considerably changed from what was known to the transmitting node at the lime of 
load transfer. FUrihermore, what makes matters more complex is that these delays 
are random. For example, the communication delay is random si nce the state of the 
shared communication network is unpredictable, depending on the level of traffic, 
congestion, and quality of service (QoS) attributes of the network. Clearly, the cha­
racteristics of the delay depend on the network confi guration and architecture, the 
type of communication medium and protocol, and on the overall load of the system. 

Other factors that contribute 10 the stochastic nature of the di stributed-computing 
problem include: I) randomness and possible burst-like nature of the arrival of new 
job requests at each node from external sources (i .e., from users); 2) randomness 
of the load-transfer process itself, as it depends on some determin istic law that may 
use a sliding-window history of all other nodes (which are also random); and 3) 
randomness in the task completion process at each node. In the next section, we lay 
out a queuing model that characterizes the dynamics of the load-balancing problem 
described so far. 

3 A Discrete-time Queuing Model with Delays 

Consider n nodes (CEs), and let Qi(t) denote the number of tasks awaiting proces­
sing at the i th node at time t. Suppose that the i th node completes tasks at a rate 
/-li, and new job requests are assigned to it from external sources (i.e., from external 
users) at a rate Ai. Note that these incoming tasks come from sources external to the 
network of nodes and do nOI included the jobs tran sferred to a node fro m OIher nodes 
as a resull of load balancing. Let the counting process Ji(tt , t2) denote the number of 
such external tasks arriving at node i in the interval (tt, t2J. To capture any possible 
burst-like characteristics in the external-task arrivals (as each job req uest may involve 
a large number of computational tasks), we will assume that the process Ji(·, ·) is a 
compound Poisson process 19]. That is, J;( t l , t2) = Lk:tl < rk<!2 Hk , where Tk are 
the arrival times of job requests (which arrive according to a Poisson process with 
rate Ai) and Hk (k = 1, 2 . .. ) is an integer-valued random variable describing the 
number of tasks associated with the kth job request. We next address the load trans­
fer between nodes which will allow us to describe the dynamics of the evolution of 
the queues. 

For the ith node and at ils specific load-balancing instants Tl, f. = 1,2 , ... , the 
node looks at its own load Qi(TD and the loads of other nodes at randomly del ayed 
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instants (due to communication delays), and decides whether it should allocate SOme 
of its load to other nodes, according to a detemlinistic (or randomized, if so desired) 
load-balancing policy. Moreover, at times when it is not balancing its load, it may 
receive loads from other nodes that were transmitted at a randomly delayed instant, 
governed by the characteri stics of the load-transfer delay. With the above description 
of task assignments between nodes, and with our earlier description of task com­
pletion and external-task arrivals, we can write the dynamics of the ith queue in 
different ial fonn as 

Q;('+Ll') = Q,(' )-C,(" ,+ .1,) - I>, ,(')+ I: L"(' - T,, )+J,(I , ' + .11), ( I ) 
#i j;t.i 

where 

• C;(t , t + ilt ) is a Poisson process with rate 11; describing 
the random number of tasks completed in the interval (t , t + ilt] 

• Tij is the delay in transferring the load arriving 10 node i sent by node j, and 
finall y 

• L;j (t ) is the load transferred from node j to node i at the time t. Note that L ij (t ) 
is zero except at the load-transfer instants T/ , f. = 1, 2, . .. , for the j lh node. 

Now for any k f; e, the random load Lu(t) diverted from node e to node k 
at a pre-specified load-transfer time t is governed by the mutual load-balancing po­
licy a-priory agreed upon between the two nodes. This policy utilizes know ledge of 
the state of the f.th <transmitting) node and the delayed knowledge of the recipient 
klh node as well as the dated states of all the other nodes. More precisely, we as­
sume Lkt (t) = 9u( Ql (t) , Qk (t - fJlk) , .. . , Q j (t - 1}tj ) , .. . ), where for any j f; k, 
11kj = 11j k is the communication delay between the klh and j lh nodes. The function 
9kl governs the load-balancing policy belween the klh and f lh nodes. One common 
example is 

9,,(Q,(I), Q,(' - " lk),. · . ,Q,(t - %), ... ) 

= T<kPU' ( Qdt) - n - I t Qj (t - 11/j» ) 
]=1 

(2) 

where u( ·) is the unit step function with the obvious conventi on 11i; (t) = 0, and 
f{ k is a parameter that controls the "strength" or "gain" of load balancing at the 
kth (load distributing) node. We will refer to it henceforth as the gain coeffic ient. In 
this example, the elh node simply compares its load to the average over all nodes 
and sends oul a fraction PH of its excess load, Qt (t ) - n - I 'LJ=I Qj(t - fJl j ) , 10 
the l th node. (Of course we requ ire that L k# Pu = 1.) This fonn of policy has 
been previously adopted and implemented by the authors for a cluster of CEs [1 ,2]. 
Finally, the fractions P l A: can be defined in a variety of ways. In this work they are 
defined as follows: 
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• 1 { Q,(t - ',,,)} Pkt =-- 1 - . 
n - 2 L i#l Qi(t flU) 

(3) 

In this definition, a node sends a larger fract ion of its excess load to a node with a 
small load relative to all other candidate recipient nodes. 

4 Simulation Results 

We have developed a custom-made Monte-Carlo simul ation software according 
to our queuing model . We utilized actual data from load-balancing experiments 
(conducted at the University of Tennessee) pertaining to the numberoftasks awaiting 
processing, average communication delay, average load-transfer delay, and actual 
load-balancing instants [2]. In the actual experiment, the communication and load­
transfer delays were minimal (due the fact that the PCs were all in a local proximity 
and benefited from a dedicated fast Ethernet). Thus, to better re fl ect cases when the 
nodes arc geographically distant we synthesized larger delays in communication and 
load transfer in our si mulations. 

0 I """" < - """', 
9 05 

~ 
""'" , 

~ 
~ w 0 0 x w 

...{l.5
0 " 20 30 " 50 W 

TIME, ms 

Fig. I. Top: Queue size in the ideal case when delays are nonexistent. The queues are nonna­
lized by the total number of submitted tasks (12000 in this case). The dashed curves represent 
the tasks completed cumulatively in time by each node. Bottom: Excess qucue length for each 
node computed as the difference between each nodes nonnalized queue size and the nonnali­
zed queue size of the overall system. Note that the three nodes are balanced at approximately 
15 ms and that all tasks are completed in approximately 39 ms. 
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Deterministic- Delay Case 
08---~;=C:=::'='--'F-~~=~ 

:I: '1 - Queue 1 
I- _ Queue 2 

W~0.6 - Queue 3 
. - - Tasks Co ed u: 0.4 •• ___ ••• u • • • • 

Wo~ 0.2~~""cf~:~~~··:;·;··~·:··::·~· ·::~:~~:": :.·_··_·c··"·_··_._ .. _.~- . 
-. ~!~::::--- - -

% 10 ro ~ ~ ~ W 
TIME,ms 

D 

9 0.5 -, 
~ ~ 
~ 0 ""'--~-?-~==_-___ .j 
w -O.50.!-'==';O~=-C20C:---C3"O'----'''O--C50''''---!60. 

TIME,ms 

Fig_ 2. Similar to Fig. I but with a detenninistic communication and load-transfer delays of 
S ms and 16 ms, respectively. In contrast to the zero-delay case, the three nooes are balanced 
at approximately 60 ms and all tasks are completed shortly afterwards. Also note that nooes 2 
and 3 each execute approximately 40% of the total tasks, where nooe 3 executes only 20% of 
the total tasks submitted to the system. 

4.1 Effect of delay 

ThreeCEs (n = 3) were used in the simul ations and a standard load-balancing policy 
[as described by (2)1 was implemented. The PCs were assumed to have equal com­
puting power (the average task completion time was 10 J.ls per task), but the initial 
load was distributed unevenly among the three nodes as 7000. 4500, and 5()() tasks, 
with no additional external arrival of tasks (viz., J\ (t\, tz) = 7000, JZ(t l , tz) = 
4500, Ja(tl, tz) = 500 only if tl = 0,0 < tz and they are zero otherwise). Figure I 
corresponds to the case where no communication nor load-transfer delays are as­
sumed. This case approx imates the actual experiment [ 1], where all the computers 
were within the proximity of each other benefiting from a dedicated fast Ethernet. 
Note that the system is balanced at approximately 15 ms and remains balanced the­
reafter until all tasks arc executed in approximately 39 ms. 

We next considered the presence of detennin istic communication delay of 8 ms 
and a load transfer-delay of 16 ms. The behavior is seen in Fig. 2, where it is observed 
that the delay prevents load balancing to occur. For example, nodes I and 2 each 
eventually executes approximately 40% of the total tasks, whereas node 3 executes 
only 20% of the total tasks submitted to the system (as seen from the dashed curves 
in the top fi gure in Fig. 2). The conclusion drawn here is that the presence of delay 
in communication and load transfer seriously disturbs the pcrfonnance of the load 
balancing policy, as each node utilizes dated infonnation about the state of the other 
nodes as it decides what fraction of its load must be transferred to each of the other 
nodes. 
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Fig. 3. In this example, the communication and load-transfer delays arc assumed random 
with average values of 8 ms and 16 ms, respectively. Note Ihat the perfonnance is somewhat 
superior to the detenninistic-delay case shown in Fig. 2, 
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Fig. 4. Another realization of the case described in Fig. 3 showing the variability in the per­
fonnance from one realization to another. Load-balancing characteristics here arc inferior to 
those in Fig. 3. 

To see the effect of the delay randomness on the load balancing perfonnance, 
two representative realizations of the perfonnance were generated and are shown in 
Figs. 3 and 4. The avcrage delays were taken as in the detenninistic case (i.e., 8 ms 
for the communication delay and 16 ms for the load-transfer delay). For s implicity 
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Fig. 5. The empirical average queue length using 100 realizations of the queues for each node 
(solid curves). The dashed curves are the empirical average of (he number of (asks perfonned 
by each node cumulatively in time nonnalized by the total number of tasks submilled 10 (he 
system. Only 87% of the IOtal tasks are completed within 60 ms. 

10 20 30 " 50 60 
TIME,ms 

Fig, 6. The empirical variance of the queue length nonnalized by the mean·square values. 
Observe the high-degree of uncertainty in the lowest queue as well as the variability at large 
times, which is indicative of the fact that nodes continue to exchange (asks back and forth, 
perhaps unnecessarily. 

and due to lack of availability of detailed information on the statistics of the delays, 
the delays were assumed to be uniformly-distributed in the range extendi ng from 0 to 
twice their mean values. For the example considered, it turns out that the performance 
is sensitive to the realizations of the delays in the early phase of the load-balancing 
procedure . For example, i( is seen from the simulation results that a deterministic 
(fixed) delay can lead to a more severe performance degradation than the case when 
the delays are assumed random (with the same mean as the deterministic case). To 
see the average effect of the random delay, we calcu lated the mean queue size and 
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the nonnalized variance (normalized by the mean square) over 100 realizations of 
the queue sample func tions, each with a different set of randomly generated delays. 
The results are shown in Figs. 5 and 6. It is seen from the mean behavior that the 
randomness in the delay actuall y leads, on avcragc, to balancing charactcristics (as 
far the excess-load is concerned) that arc superior to the case when the delays are 
deterministic! However, there is a high level of uncertainty in the queue size, and 
hence in the load balancing. It is seen from Fig. 5 (dashcd curves) that the average 
total number of tasks completed by each node contin ues to increase well beyond 60 
ms, which is inferred from the positive slope of the dashed curves. This indicates 
that in comparison to the determin istic-delay case, the system requi res (I) almost 
twice as long as the zero-delay case 10 complete all the tasks and (2) a longer time 10 
complete aillhe tasks than the deterministic-delay case. 

4.2 Interplay between delay and the gain coefficient K 

We now consider the effect of varying the gain coefficient j{ on the perfonna ncc 
of load balancing (assu me that K\ :::: Kz :::: [(3 == K). Figures 7 and 8 show the 
performance under two cases corresponding to a large and small gain coefficient, 
f( :::: 0.8 and K :::: 0.2, respectively. It is seen that when K ::::: 0.8, the queue lengths 
fluctuate more than the case when K :::: 0.2, resulting in a longer overall time to 
total task completion. This example shows that a "weak" load-balancing policy can 
outperfonn a "strong" policy in the presence of random delay. We wi ll revisit this 
interesting observation in more detail in the next section. 

i" 
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'000 

I 

~ 
"00 

Fig. 7. Queue size versus time when the gain coefficient is K = 0.8, corresponding 10 a 
"strong" load-balancing policy. Notice the abundance of Ouctuations in the tail of the queue in 
comparison to Fig. 8. 
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Fig. 8. Same as Fig. 7 but with K = 0.2, corresponding 10 "weak'" [oad-balancing policy. 

4.3 Load dependent delay 

Clearly, Ihe nature of the transfer delay depcndson the amount of load to be transfer­
red; a sizable load will entail, on average, a longer transfer delay than a small load. As 
a consequence, the load balancing policy is directly affected by the load-dependent 
nature of transfer delay. For example, if there is a high degree of load imbalance 
present at any time, it might seem tempting to redistribute big packets of data up 
front so as to rid the imbalance quickly. However, the tradeoff here is that the sizable 
load takes much longer to reach the destination node, and hence, the overall com­
putation time will inevitably increase. Thus, we would expect the gain coefficient K 
to play an important role in cases when transfer delay is load dependent. Since the 
balancing is done frequently, it is intuitively obvious that we would be better off if 
we were to select 1< conservatively. To address this issue quantitatively, we will need 
to develop a model for the load-dependent transfer delay. This is done next. 

We propose to capture the load-dependent nature of the random transfer delay 
T;j by requiring Ihal its average value, O;j, assumes the following form 

O . _ d . _ 1 + exp([L;;(t)dPJ-') 
'J - mm 1 exp([L;j (t)d.8] 1) ' 

(4) 

where dm;" is the minimum possible transfer delay (its value is estimated as 9 ms 
in this chapter), d is a constant (equal to 0.082618), and .8 is a parameler which 
characterizes the transfer delay (selected as 0.04955). Moreover, we will assume 
that conditional on the size of the load to be transferred, the random delay Tij is 
unifonnly-distributed in the interval [0, 20;j]. Thi s model assumes that up to some 
threshold, the delay is constant (independent of the load size) that is dependent on the 
capacity of the communication medium. Beyond this Ihreshold, however, the average 
delay is expected to increases monotonically with the load size. The parameters d and 
b are selected so that the above model is consistent with the overall average delay for 
all the actual transfers that occurred in the simulation. We omil the details. 
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Fig. 9. The load-depcndem lransfer delay as a funclion of {he load size according 10 {he model 
shown in (4). 
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Fig, 10. Scatter-plot of the transfer-delay showing ils f111clllalions for a particular realization 
of the queues. 

The load-dependent transfer delay versus the load is shown in the Fig. 9. The 
transfer delay for the loads sent from node I to node 3 (top) and from node 2 to 
node 3 (bottom) over the period of execution time is shown in Fig. 10. With the 
average communication delay being equal to 8 ms (as before) and the transfer delay 
made load dependent, according to the model described in (4), one realization of the 
load-balancing perfonnance for K = 0.5 was generated and it is shown in Fig. II . 
As expected, the performance deteriorates beyond the case corresponding to a fixed 
transfer delay. For example. we see from the figure that a load sent by node I at 
approximately 5 ms arrives at node 3 approximately 50 ms later, thereby bringing 
more fluctuation to the tail of the queues. The average effect (over 50 realizations) 
of this delay model for two different gain coefficients (1< = 0.1 and K = 0.9) can 
be seen in Figs. 12 and 13. Whcn K = 0.9, the queue is fluctuating even beyond 
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Fig. 11. Queue size and cumulative (in time) number of tasks completed (by each node) as
a function of time. These graphs show that queues become more uncertain when the load­
transfer delays are load dependent. (K = 0.5 in this example.)

t = 80 ms while when K = 0.1, all the tasks are completed at approximately 60 ms.
The optimal value of K for this delay model was found to be equal to K = 0.06 and
the overall completion time in this case was 54.85 ms. The variation of the overall
completion time with respect to the gain coefficient is shown in Table ) below.

Table 1. Dependence of the load-balancing performance on the gain coefficient K.

Gain (K) Task completion time (ms) Time to execute·95% of tasks (ms)
0.0] 62.53 41.80
0.02 61.44 42.86
0.03 59~68 42~59

0.04 57.27 41.98
0.05 56.79 41.35
O~O6 54~85 41~99

0.07 56.04 42.49

O~O8 59~68 41~56

0.09 62.53 41.81

0.1 6L1O 42.18
O~2 65 43~38

0.3 63.40 46.2
O~4 78.313 53+33
O~5 > 80 55.21

It is clearly seen in Fig. 13 that the required time for completing an tasks (in
the system) is significantly larger than the time required to execute 95% percent of
the assigned tasks. This difference increases with higher values of K. This is due
to the fact that even when all the queues are almost depleted of tasks, they continue
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to execute the balancing policy. As a result, small amounts of tasks (e.g., one or
two) are sent from one node to other nodes and vice versa. This unnecessary task­
swapping significantly increases the transfer delay, therefore increasing the overall
computational time. This phenomenon is clearly depicted in Fig. 13 where the minute
fluctuations are evident near the tail of the queues.
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Fig. 12. Queue size versus time for the case where the transfer delay is load dependent. The
gain coefficient K is 0.]. Note that the total execution time is approximately 60 ms.
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Fig. 13. Same as Fig. ]2 but with K = 0.9. The queues fluctuate even at 80 ms.
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5 Summary and Conclusions 

Whenever there are tangible communication limitations between nodes in a distribu­
ted system, possibly with geographicall y-distant computational clements, we must 
take a totall y new look at the problem of load balancing. In such cases, the presence 
of non-neg ligible random delays in inter-node communication and load transfer call 
signi fican tly alter the expected performance of existing load-balanc ing strategies. 
The load-balanc ing problem must be viewed as a stochastic system, whose perfor­
mance must be evaluated statistically. More importantly, the policy itself must be 
developed with appropriate statistical performance criteria in mind. Thus, if we de­
sign a load-balancing policy under the no-delay or fixed-delay assumptions, the po­
licy will not perfonn as expected in a real si tuation when the delays arc non-zero or 
random. A load-balancing policy must be designed with the stochastic nature of the 
delay in mind. 

Monte-Carlo simulation indicates that the presence of delay (detemlinistic or ran­
dom) can lead to a significant degradation in the performance of a load-balancing po­
licy. Moreover, when the delay is stochastic, this degradation is worsened, leading to 
extended cycles of unnecessary exchange of tasks (or loads), back and forth between 
nodes, leading to extended overall delays and prolonged task-completion times. One 
way to remedy such a problem is to weaken the load-balancing mechanism so that 
the load-transfer between nodes is down-scaled (or discouraged) appropriately. 111is 
action makes the load-balancing policy in the presence of random delay "less reactio­
nary" to changes in the load distribution within the system. Thi s, in tum , reduces the 
sensitivity of the load-balancing process to inaccurac ies in the state-of-knowledge 
of each node about the load di stribution in the remainder of the system caused by 
communication limitations. 
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Summary. A gentle and elementary introduction \0 the theory of stochastic lime delay sys­
tems is prcsemcd in this contribution. First an introduction to the stability problem in Ihe 
discrete case is given. This class of systems is simpler from a dynamical point of view, as they 
remain finite dimensional, and provide thus a 'wann-up' for what is to come. Since conti­
nuous time stochastic systems are analyzed in the language of itO-calculus, an clementary 
introduction to the lalter is included to make these notes self-contained. Delay-independent 
and delay dependent conditions for stochastic stability arc derived. Some of thcsc arc new. 
In the absence of equilibria. invariant distributions may still exist. Existence condilions. and 
the sl3(ionary Fokkcr-Planck equation arc discussed. Thcsc results are further extended to the 
class of stochastic neutral systems. Finally. a new realistic design procedure is suggested for 
dynamic controllers in the absence of precise delay information. 

1 Introduction 

The past decades has seen renewed interest and a flurry of activity in stabilization 
and control of systems with delays {1O,47]. Although a fairly recent endeavor, the 
literature on stochastic delay systems and stochastic func tional differential equations 
(SFDE) in general, is already considerable, and no attempt will be made to give a 
complete survey of the results known to date. The main problems range from exis­
tence and uniqueness of sol utions to SFDE's to stabi lity and qual itative behav ior of 
stochastic systems with delay, estimation in systems with delay and control of sys­
tems with delay (e.g., stabjJization and optimal stochastic control). Stochastic delay 
systems are used to model behaviour and/or describe phenomena in epidemiology, 
neural networks, traffic control (freeway and communication) and in many other bio­
logical and biomedical applications. 

The seminal work in stochastic stability theory originates with Bucy [6]. Khas­
minsk;i {19]. and Kushner {3D] based on Ito stochastic differential equations and 

o This chapter is dedicated to the memory of my mother. 

S. -I. Niculescu et al. (eds.), Advances in Time-Delay Systems
© Springer-Verlag Berlin Heidelberg 2004



390 Erik L Ven; est 

{super-)martingale methods. Thi s was followed by the work of many mathemati ­
cians: we mention among others, Arnold, Elworthy, Friedman, Gihman, Kl iemann, 
Kolmanovskii, Ladde, Lakshm ikantham, Skorohod but the enumeration of a few 
names can hardl y begin to cover the exc iting history. 

Unlike deterministic system theory, there arc many different notions of stochastic 
stability: moment stability, exponenti al stability, stability in probability, and distri bu­
tional stability. In the contex t of delay systems, a good starting point is the pioneering 
work of Mohammed [44], Mao [34,35J, Kolmanovski i, Myshkis, Nosov and Shai­
khet [22- 24] for the main theory. Note that besides adding substantial new material 
in stochastic dynamics, e.g. Lyapunov exponents, and existence of smooth densities 
usi ng Malliavin calculus [11, the approach in [461 is more gentle than in [44J. 

Filtering issues arc discussed in [22,24, 53J, but already here the li terature is 
plenty. In pathwise stabi lity (almost sure stabil ity) it is understood that the solu­
tion converges pathwise to an equilibrium. This means that each sample path of the 
process converges to an equilibrium. If the equil ibrium is unique, without loss of ge­
nerality it is taken to be at the origin. Of course, this is only possible if thc drift and 
the diffusion tenns at this equili brium are zero. Unless this is the case, as for instance 
in a system driven by additive noise, all one can possibly ask fo r is the convergence 
of the joint distributions to some limit distribution. 

This chapter gives a brief introduction to the necessary mathematical background 
and surveys the problem of stability and the limiting distribution. Resul ts for stabili ­
zation follow from the correspondi ng stabi lity results, and will not be cove red in this 
chapter, See for instance [60]. For simplic ity, mainly linear or semilinear systems 
will be discussed. In addi tion, some new results arc presented in sections 2, 4 and 
5, deal ing respectively with the stability of discrete delay systems, continuous delay 
systems and neutral systems. 

For instance, if the delay system, x(t) = f(Xt , u(t)). has a constan t delay T, 
with where Xt = {x(t + 0);0 E (- T,O)} and u(·) is a random process, then one 
may be interested in the evolution of the joint distribution of the variables x( t), x(t­
TJ ),x(t - TN) with 0 < T1 < ... TN = T. In a problem with discrete measurements, 
y(tk). this allows one to obtain fonnulas for the time update, to be combined with 
a measurement update in Bayesian fashion at the sampl ing times {td in order to 
obtain say the least squares estimates of the states. 

For finite dimensional systems, the joint distribution of the state variables is given 
by the solution of the Fokker-Planck equation, also known as the forward Kolmogo­
rov equation. This is a PDE for the density p(x, t) . Unfortunately, for a delay system, 
things are not so simple. This is because the delay system is infinite dimens ional, and 
thus the state Xt lives in a function space. It is well known that the density of a pro­
cess with respect to Lebesgue measure may not be defined. Hence more involved 
machinery (Radon-Nikodym derivative and Wiener measure) needs to be introduced 
if one wants to do things the right way. 

In recent work [14 , IS] this has been avoided to some extent. A fini te dimensio­
nal equation for the density may still be obtained, but on ly in disgu ise. Indeed, the 
Fokker-Planck equation derived by Frank is actually a coupled system of (infinitely 
many) fi nite dimensional PDE's. For instance, it cannot readily be used to compute 
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the equ ilibrium solution, which typically is the first quantity of interest. The moment 
problem [13 ,67] behaves s imilarl y. 

One goal in this chapter is to give finite dimensional approximations for Ihis 
density. For si mplicity we focus first on the linear delay system, however the ideas 
are readi ly generalized to the nonlinear case as far as setting up the Fokker-Planck 
equation is concemed. Solving it is another problem, but readi ly available numerical 
packages ex ist for solvi ng such equations, which after all are parabol ic and therefore 
numerically well behaved. 

In the present survey we shall not focus too much on any particular aspect, but try 
to give a sampler. To this effect, we begin in Section 2 with the the stochastic stabi­
lity for discrete delay syste m as a bridge between the finile and infinile dimensional 
theory. In Section 3, a shon digression on Ito-calculus is presented in order to keep 
the chapler self-contained. It fonns a minimal necessary background in stochastics 
and is explained in very si mple terms. We also shed some light on the nature of the 
solutions of stochastic delay systems. Section 4 treats stochastic stabi lity of conti­
nuous time stochastic delay systems, and we illustrate how delay dependent condi­
tions may be obtained from the Lyapunov- Krasovskii theory. Existence of invariant 
distributions is discussed in Section 5. We also present a new approximation for the 
Fokker-Planck eq uation of a delay system. Stability results for neutral equations are 
presented in Section 6. 

With regards 10 notation, we need to clarify that we opted to use identical no­
tation, x .... for two different things: If it appears in the conjunction with x, then the 
va/lies x(t - r) and x(t) will be meant respectively, th us suppressing 't'. In the other 
context Xt denotes the (infinite dimensional) state of the delay system at time t , as 
defined in [161 and already introduced above. We hope that the burden of this dual 
use is offset by the notational simplicity. 

2 Discrete Stochastic Delay Systems 

Stochastic theory is typically simpler in di screte time problems. Indeed, a stochastic 
sequence is fundamenta lly a countable collection of random variables, and a terse 
detai led theory of processes can be avoided. Thus let us consider, for Xk E X for all 
k ;::: 0, the discrete delay system 

Xk == <Pk , k E {- N, . .. , O} == I. ( 1 ) 

wherewk is a white noise sequences (independent zero mean random variables), and 
X lk ) denotes IX~,X~ _ l, .•• ,x~_N J' E XN. We assume that 1(0,0) == 0, so that 
Xk =: ° is the solution to the stochastically unperturbed (Wk == 0) equation with 
zero initial condition (<Pk == ° , k E I), called the null-solution. Let <P == .p[0] for 
simplicity of notation. 

2.1 Stability defini tions 

The following are standard definitions [29,31] 
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Definition I. The null-SO/lllion of the stochastic system ( I) is said to be 
i) Mean square stable, if 'iff, there exists J such that 

1I.lIi ~ sup EII.llI < 5 => Ellx,II' < , , Vi E Z+ 
iEZ 

ii) Asy mptotically mean square stable, if 
it is mean sq uare stable 

- limi---+ oo Ex~ -+ 0. 
iii) Stable in probability, if 'iff , f' > 0, there ex ists J > ° such that 

P{II. II, < 5) = 1 => P{sup IIx,1I > <J < <' 

iv) Asymptotically stable in probability, if 
- it is stable in probability 
- P{lim,~= IIx,11 = 0) = 1. 

Mean square (asymptotic) stability implies (asymptotic) stability in probability [31] . 
The next type of stability is different in character, as the null solution may not be an 
equilibrium for the system. 

5. Stability in distribution, if the probability distri bution of the state converges (in 
some appropriate nonn) to an invariant distribution. 

The following Lyapunov stability theorems are established [25,48]. 

Theo..-em I (Kolmanovskii and Shaikhet, 1995). If there exists a nonnegarivefimc­
(ional V : I -+ R, such that 

EVo ~ clll¢l1~ 
E.6. Vi ~ - cz E x? 

for c" C2 > 0, then the system is asymptotically mean square stable. 

Theorem 2 (Paternoster and Shaikhet, 2000). If there exists a functional V : I -+ 
R . such that 

v, ;, Co 11,,11' 
E Vo ~ cllI¢lI~ 

E.6.Vi ~ O 

fo r Co , c, > 0, then the nlill soilition of the system is stable in probability. 

The paper [27] surveys methods for the construction of appropriate Lyapunov 
functionals. In ii, syslems with varying delays and classes of nonlinear systems are 
di scussed. Recently, extensions for the case where the delays are random and mo­
deled by a Markov process have been given [2 IJ . In what follows the foc us is on 
stochastically perturbed linear delay systems of the fonns 
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called semi linear (linear ir C ;:::; 0) with zero mean multiplicative noise, {ws.}k>O, 
0', 

(3) 

with zero mean additive noise, {Vs.}k >O. As in the determini stic case, the discrete 
time theory leads to surfic ient conditions ror stability and instability, un like the Ric­
cati based methods in continuous time, which only supply sufficient conditions ror 
stabili ty. We first define our notion or robust (in)stability in either or the above senses 

Definition 2. i) The llelay-dijJerence system (2) is robustly (asymptotically) stable 
(R(A)SS) if for any number of delay steps N 2: 0 the dynamical system is (asympto ­
tically) stable. 
ii) The delay-dijJerence system (2) is robustl y unstable iffor ail N ;::: 0 the dynamical 
system is unstable. 

2.2 Sta bili ty with multiplicative Noise 

Shaikhet studied a scalar linear stochastic delay system, Xk + l ;:::; 2:7=oajXk - j + 
iTXktWk,wh ere the unknown but otherwise fixed delay enters only in (one) stochas­
tic teml. Such a system is readily represented in a finite dimensional matrix form 
Xk+l = AXk + CXkWb where C has rank one, for which necessary and sufficient 
conditions ror asymptotic mean square stabi lity are obtained [51J . In a more gene­
ral case, only a partial cOflverse is possible (i.e., necessity fails in general). Indeed, 
the following stochastic extcnsions for robust stabi lity, shown in [17, 18,681 for the 
detenn inistic case, are easi ly established: 

Theorem 3. Tlte system witlt multiplicative white lIoise 

is stochastically stable for all n, i.e., robustly stochastically stable (RSS) if there exist 
positive definite matrices P and S sllch that 

'{= [A
I
PA - P+ 5+B

I
PB+C

I
PCA

I
PB] 0 

" B' PA - 5 < . 

If M > Of or some P, 5> 0, tlten tlte system is not RSS. 

Proof" Take the discrete Lyapunov- Krasovski i functional 

-. 
F (¢_ ", . . . , ';") = ¢~P';" + L ¢:Q¢" 

;=- tl 

with P > 0, Q > 0, and express the LM I 

E6.Vk = E [x~x~_tllM [ x, ] 
Xk-" ' 

(4) 
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upon setting Q - B' P B === S. Then Vk = V(Xk) satisfi es the cond itions of Theorem 
2, so that stabil ity in probability follows. On the other hand, if AI > 0, it follows that 
E Vk > E Vo > ° and the null solution cannot be stable. 0 
No conclusion is reached if AI is indefi ni te. The previous theorem leads directly to 
the following Riccati conditions for robust asymptotic mean square stability (RA SS). 

Theorem 4. The system 

(5) 

is RA SS if either there exist positive definite symmetric matrices P , W , R sllch that 

A'PA+ B'PB + C' PC + W +A'PBW - IB'PA+ R = P, 

or there exist positive defin ite s),""IIelric matrices JI, Z , S sllch thaI 

A'JIA + B'JI B + c'nc + Z + B'flAZ- I A'nB + S = fl. 

Proof: The first equality is derived from the Schur complement of S in AI, the se­
cond the Schur complement of the ( 1, I)-block in M, with suitable relabeling. Then 
E V;2 :::; C2 E IIxdl2

, where C2 is respectively IIRII > 0 or IISII > O. Then invoke 
Theorem 3. 0 

Corollary I. The system (5) is RASS if either 

A'A- IA + fl+R = P - C'PG 
Bfl- I B' + A = p - 1 

jor P,R,A Qnd n > 0; or, 

jor n, S, r Qlld E > O. 

B'E- I B + r+ S = II - CIIC' 
Ar - I AI + E = n-I 

The proof is similar to the determi nistic case (making use of Woodbury 's lemma), 
and omitted. The special choice P = X, R = Q,A = lX- I, and n = qB' PB 
leads to a nice fonn under the condition of invertibility orB. Indeed, substitution in 
the corollary givespA'X A + qB' X B + Q = X - GIXC and B[} - I B' = X -I -
~X- I. Hence one obtains a generalized Lyapunov equation involving a Holder pair: 

1 +1= 1 , , 
pA'XA+qB'XB+C'XC+Q = X. (6) 

However, while the positive definiteness o f the solution to the Lyapunov equation 
A' X A + Q = X is necessary and suffic ie nt fo r the Schur-Cohn stability o f A, the 
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condition (6) is on ly sufficient for RASS. 

Example: Consider the scalar difference equation Xj+1 = aX j + bj _" + CXiWj.One 
finds 

po? + qb2 + e2 < 1 

thus, for lei < 1, a Holder pair (p,q) can be found if (a,b) lies in the diamond 
bordered by 

lal + 
JI=C2 

Ibl _ 1 
JI=C2 - . 

In addition instability theorems can be obtained, giving a partial converse. 

Theorem 5. The sys1el1/ (5) is unstable if 

[
AIPA - P+ S + B'PB + G'PC AIPB] 

B'PA - S >0. 

for some P > O. S > O. 

Proof: By expressing that E6. V > 0, hence V is increasing on average. 0 

Corollary 2. All equivalent condition is expressed by fhe RiccaI; equafioll 

A'PA + S'PB + C'PG - S - A'PBS- 1 B'PA - R = P 

forsomeP > O, R > O,S > O. 

2.3 Stability with additive and multiplicative noise 

Consider now the model 

(7) 

where Wk and Vk are independent zero mean white noiscs, with respectively the 
variance 0"2 and covariance matrix R 2: O. If the pair (A, RI /2) is reachable, it is 
clear that Xk == 0 can no longer be a solution. Hence the only meaningfu l questions 
are the one of existence of a stationary distribution (and convergence towards it), and 
the moment stability [31}. The first problem lies in the domain of ergodic theory. 

Using the same Lyapunov functional (4), one finds with M as defined in Theorem 
3, 

E.6. Vk = E [ x~ x~_ " 1M [ x, ] + Tr P R. 
Xk_.! 

(8) 

Obviously, under the conditions of RASS in the additive noise free case, it will be 
true that E.1 Vk S -czEllxklz, outside some ball centered at the origi n. This gua­
rantees the ex istence of a stationary distribution, 7r, sec Tong 155]. 

Assuming a statistical steady state ex ists, we investigate its properties: Set PI d~f 
EXHIX;' ,it is then readily established that 
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Po = APoA' + BPoB' + a2 CPoC' + APNB' + BP;"A' + R (9) 

Pl = APl_ 1 + BPl_1_u e = 1, ... ,no (10) 

Si nce by definition Pf = P'- l ' one obtains upon setting 

A~f l-; °IBo] 

thc generalized Lyapunov equation 

( II ) 

where also we defined 

Note that if C = 0, and the additi ve noise is gaussian, then if a steady state exists, 
it will also be gaussian, in which case case the steady state density is completely 
detennined by P. If (1 I) is solved by an iterative scheme. convergence is guaranteed 
if and only if the matrix A ® A + a2C 181 C is Schur-Cohn stable . 

3 Continuous Time Stochastic Delay Systems 

There are very many intricate details, as already the study of of finite dimensional sto­
chastic systems is challengi ng and requires quite some machinery and new concepts. 
A fulI study of stochastic delay systems, involving dynamic modeling, ex istence and 
uniqueness of solutions, stability in its various guises, qualitative properties, filtering 
and control is out of the questions in this chapter. We refer the reader once again to 
monographs of Mohammed, Mao, Kolmanovskii and Myshkis, Shaikhet and many 
other. Additional biographical notes regardi ng topics not covered are found at the end 
of this chapter. The aim is toequip the readers quickly with some powerful tools, with 
the aid of which they can attack their own problems. In thi s sense, we wi ll also strip 
also all unnecessary complications most of the time. The idea being that once the rea­
der sees how to attack the simple problem, chances wi ll be good that the 'usual' ex­
tensions bearing quantifiers as "uncertain", "pcrturbed", "t ime-variant", "multiple", 
and "di stributed" will work as well . When one considers a continuous time model in 
the fonn: :i:{t) = Ax(t) + Bx(t - T) + [Cx(t) + Dx(t - T)]u(t),where u is "while 
noisc", thcn one must realize that such a model is not well defined, since u has infi­
nite variance. While in the li near theory, hand waving arguments can be presented to 
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make things work ; in the nonl inear realm, things get quickly out of hand . The work 
of Ito and many others led to a new way of thinking about stochastic models. We give 
a very brief glimpse of the Ito-calculus in order 10 make Ihis chapter self-contained . 
The cogni scenti can easily skip th is digression. 

3. 1 Digression: Ito-calculus in a nutshell 

We briefly show how the limit of a random walk model defines the Wiener process (or 
Brownian motion). Then we shall define the quadratic variation and show its repur­
cussions on a Taylor expansion of a function of a Wiener process, thus heuristically 
presenting the celebrated lIo-rule. 

Random walk 

We start from a random walk model: let the time step be It and the spatial step d. Let 
{f ;} be a symmetric Bernoulli process. i.e., a sequence of random variable whose 
values attain only two val ues: + 1 and - I , and each with probabi li ty 1/2. Moreover, 
the random variables f; are independent. The random walk starts at the zcro position, 
and at the k-th step (ti me t == kit), a spatial step of size .1 is taken in the forward 
or the backward direction, depend ing on whelher f A; was +1 or - 1. Thus, if x(t) 
denotes the position at time t, we have 

, 
x(kh) ~ L Ll,;_ 

;=1 

The following properties are easily verified: 

i) E x(kh) == L~= I .1E E; == 0 
ii) Varx(kh) = L~= l Va r (.1f;) == .12 k . 

iii ) Increments in nOr/overlapping intervals arc independent. 

Wiener Process (Brownian J\'lotion) 

Consider now the limit of a random walk for II -+ 0 and Ll -+ O. Let t == kh 
remain fixed, so that h -+ 0 also impl ies thai the number of steps k -+ 00. Thus 
x(kh) == x(t}, and by the centrallimil lheorem, x(t} is nonnally distributed, with 

mean zero and variance equal to li mkh"" t .12k == t lim ( ~O ) . Obviously, the pro­

cess x(t} will only be mean ingful and nontrivial if ~2 -+ a 2 where a 2 is a po­
sitive constant (called the variance parameler). This has important repercussions: 
Given an arbitrary part ition P == {O == to < t1 < .. . < tn == T } of the inter­
val [0, TI, define the quadra/ic varialion over P of a process x, denoted QVp(x), 
as the sum L;[x(ti+d - x(t ;)f. The quadratic variation, QV[O,T](x) of thc pro­
cess x over the interval [O,T] is then defined as the limit of QVp(x) ovcr fi ner 
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and finer part itions such that maxdtk+ 1 - tt) -1 O. It foll ows then from the de­
fin ition of the Wiener process as the limit of a random walk that Q V[O,T](x) :::: 
lim L{X((k + l )h) - x(kh)]2 :::: lim(1,d2 = k ,d2 = (12t with probability one. Li­
kewise, the total variatioll T Vp (x), of a process x given the partition p, is defined 
as the limit of the sum L; Ix{t;+d - x(t ;) I. The total vari ation of x in [0, T] is then 
again the limit ofTVp (x), when the partition gets finer. Now one has 

Q Vp :::: 2:[x(tHd - x(tdl 2 

" max Ix(t ,+.) - x( t') l L Ix(t,+.) - x(t, )1 

:S ma.:< IX(ti+d - x( t;)1 T Vp 

The left hand side converges to the quadratic variation (12t , the sum on the right 
hand side approaches the total variation. But the maximum size of a subinterval in 
the partit ion converges to zero. Hence, the inequal ity can only be maintained if the 
total variation goes to infinity. Now when the totat vari ation of a function x is infi ni te 
in any arbitrary subinterval, this function x is nowhere differentiable. Indeed in any 
finite amount of time, an infinite distance is covered by the process, giving it an 
infinite average speed. Hence considering white noise as a "derivative" of a Wiener 
process is somewhat far fetched, as the latter is nowhere differentiable. Note however 
that by construction, the Wiener path is contin uous almost everywhere. 

lIo-differentialion rule 

The Wiener process w(t ) will be called standard if its variance parameter equals 1. 
Heuristically, the quadratic variation identity of the standard Wiener process in [0, T] 
can be written as 1:: (dw(t))2 = t . Hence the square (dW)2 acts like dt . The effect 
on the Taylor ex pansion of f (w( t ), t ) is 

By the quadratic variation property, dw2 acts as d t with probability one. The other 
tenns inside the square bracket, and all other higher order tenns have greater order 
than d t, and arc negligible. Hence, one obtains (heuristically) the rule 

(
of 1 a'f) af 

df (w , t) = at + '2 8w2 dt + 8w dw (1 2) 

In fact, a rigourous interpretation of the above is through its integral fonn 

( T ( af l a'f) ( Taf 
f(w(T) , T) ~ f (O, O) + 10 at +2aw' dt+ 10 QWdw(t) , 

where the second integral is the non-anticipatory Ito integral, defined as a limit over 
a partition P = {O = to < tt < . .. < tn = T} of the interval [O ,T] : 
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rT 

g(X , t) dx (t) = li m I: g(x (t ;), t ;) xlt .. ,) - x( t;)]_ Jo P 

This integral may be generalized for 9 a fu nctional of x as long as it is non­
antic ipatory, i.e ., g( {x },t) does not depend onj uture values x (s), for s > t . 

More generally, if the state of a first order stochastic system sati sfi es the Ito 
equation: dx:: j (x, t) dt + g(x, t) dw(t) , then fo r any smooth F : 

8F 8F 1 82F 2 
dF(x , t) :: 8x dx + tit cit + 2" 8x2 (dx) . 

With (dX)2 ,...., g(x, tf dt, we obtain 

8F [8F 8F 18
2
F 2] 

dF(x , t) = 8x g(x , t )dw+ 7it+ 8 x l (x , t)+2"8x2 g(x , l ) ci t. 

The operator C such that 

( 13) 

is called the infinitesimal generator for the process x . 

3,2 Solutions of stochasti c delay systems 

We briefl y glance over the main resul ts on existence and uniqueness of sol utions to 
delay stochastic differential equations and some of their properties. Only a stripped 
down version of the condi tions will be presented here. For the intricate details, see 
the books of Mohammed [441 and Mao [34,35]. 

Generically speaking. if a determi nistic dynamical system j; = I (t , x) has state 
space X. then a trajectory is an element from C([O, T ], X) , the set of continuous 
maps from the interval [0 , T] to X , assigning to t E [0, TJ the vector x(t) EX. 
Stochastic theory invariably starts with the specification of the ubiquitous probabi­
lity triple (n, H, Pl. All random variables within the theory are measurable in this 
(big) space. The slale space of the corresponding stochastic problem defined over 
a probability space (n, H,p) is the set of maps n ~ X having some prescribed 
"we ll -defined"-ness properties: In IIx(w)1I 2dP(w) < 00. Thus Xstoch = .c2 (n,X ). 
In addition , there is a well defined injonnatiol! stnlctllre, technically presented by 
what is called a fi ltration. This is an increasing fami ly {Fdt>o of sigma-algebras 
Ft ~ H, with the property that if t[ < t 2, then Ftl ~ Ft~ . We say that a ran­
dom variable y : n ~ R is adapted to Ft . denoted y E Ft , if its val ue y(w) can 
be unambiguously determ ined from Ihe knowledge of the sigma algebra F t al time 
t. For instance, if we consider Ihe sigma-algebra generated by the successive coin 
tosses, then the val ue of the second toss is known if t 2: 2, but unknown at t :: 1. 
We say that f( w , t , x(t )) is I!on-anticipative with respect 10 the filtration {Ft}t>o if 
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f(w , t , x(t» E F t foral! t "2: o. 

For a general detennini stic n-dimcnsional functional differential system, ± = 
f(t , xd , with finite delay T, using the standard notation 

XI ~f {x(t + s) Is E [~T, O] ~f I} , ( 14) 

the state space is the Banach space X det = G(I, R n) equipped with the sup-nonn 
[16l 

where [ . I denotes the Euclidean nonn in R n. 
In the stochastic sense, Xstoch = .c2 (n, C(I, R '!)). and fJ E X stoch implies 

IIfJ(w)lI c is in.c2 with respect to n, i.e., 119l1x"o<h = [In IIfJ(w)lIbdP(w)]1 /2. with 
trajectories being c lements of C ([O, T] , .c2(n, Xdet ») . 

The general stochastic functional differential equation (SFDE) 

x w , _ { ¢(w)(t ) t E I 
( )() - ¢(w)(o) + Hg(s , x.)d,O(s) 0 s t S T (IS) 

where z is a general ' noi se'-process, separable into z(w)(t) = A(t) + Zm(W)(t), 
where A is a Lipshitz function, Zm an Ft -adaptcd martingale satisfying a growth 
condition, and f indicates a stochastic integral, is studied by Mohammed in his 
monograph [44J. If g is Lipschitz (albeit in a 'stochasticized' fonn) and non­
anticipatory, then the SFDE has a solution, i.e .• a trajectory, t E [ ~ T, T] ---t Xl E 
£2(n,G(I , R")) , such that Xo = q,. 11 is unique up to equivalence of stochastic 
processes, and its trajectory [0, T ] -t .c2 (n, C(I, R "» is adapted to the filtration 
{Ft }. and almost all sample paths are continuous for almost all wEn [44, p.36l 
For 0 ::; tl ::; t2 ::; T, the solutions define a family of evolution maps 

and set T[! = Tt . It is easily verified that the stochastic semigroup property 
Tt~ = Ttt~L 0 Ttl holds for all 0 ::; t\ ::; t2 ::; T. If TI is Lipschitz and g has 
continuous partial derivatives with respect 10 its second argument, then T t is conti­
nuously differentiable. 

The Ito delay differential system with x taking values in R", 

dx( t ) ~ f( t , x,) dt + g( t, x,) dw( t), (16) 

is a special case of the previous class of systems. If f and g arc globally Lipschitz and 
continuous then the trajectories Xt through the initial data Xo = ¢ E C(I, R") des­
cribe a Markov process on G(I, R") with filtration generated by the Wiener process 
wet), and transition probabilities 
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whcre B is a Borel set in the state space C(I, R"). Enter Cb, the Banach space 
of bounded conti nuous functions 1/1 X = C(I, R") ~ R with the sup-norm 
11 1j;lb = SUP<t>E X 11/1(1))1· For 0 ::; tt ~ t'l ~ T, define fOTeach 1{1 E Cb, the map 

p/o' (1}; ): X = C(I, R") -t R (17) 

1/ ~ E(1{I oTf; (¢ )) = Ix 1}; (s )p(tt ,¢, tz ,ds) , ( 18) 

then the set {p/; j 0::; it ~ t2 ::; T} is a contraction semigroup on Cb. Howcvcr, 
unl ikc thc non-delay case (r = 0), th is contraction semigroup is not strongly conti­
nuous, thus addi ng further complications to the theory of SFDE's. This is a conse­
quence of the statc space X not being locally compact when r > O. Consequcntly, 
an unbounded wcak infinitesimal generator exists 

A, V(A) c C, --+ C" 

A(1j; ) = w - lim Pt (1/I ) - 1/1 . 
h -+O+ h 

( 19) 

(20) 

Recall that a paramctcri zed fami ly of functions {1/It ; t > O} in Cb COl/verges weakly 
to 1j; in Cb as t ~ 0 if liml-lo+(1/It,/1) = (1j;, ll) for all Bore l measurcs /1 on 
C(I, R "). There are many intricate detai ls, for wh ich wc refcr to [44]. The infinitc­
simal gencrator is nccded 10 obtain an Ito-differentiation rule (and thus a stochastic 
Lyapunov theory). Howcvcr a simplification is possible. Let cg C Cb be the do­
main of strong continuity of {Pth~o , i.c., Pt(1j; ) ~ 1j; for all 1j; in cg. Introducing 
the class of qllasitame functionals, Mohammed has shown that they form a weakly 
dense subalgebra of cg, belong to V(A), and generate the Borel sets in C. In addi­
tion, if 1/1 is quasi-tame, then its value along a solution is a scmi-martingalc, and Ito's 
formula holds. 

A functional 1j; C --t R is quasilamc if thcre are C oo boundcd maps h 
(R n)" ~ R, K j ; R n ~ R n, and piecewise C t functions ej : I ~ R j I ~ j ~ k 
such that for all x E C: 

Under appropriate conditions, regularity of the the trajectory random field is shown. 
While it has been establi shed that stochastic de lay systems with delay in the diffusion 
have very irregular behavior - continuous versions of the trajectory field never exist 
- regularity is preserved in a di stributional sense. See [44, Chapter V]. 

Remark I. Alternatively, the Delfour-Mitter Hilbert space M2 = R " x L'l(I, 

RErikn) with the Hilbert norm lI(x,1{I)IL""2 = (lIxll2 + J~T 1I1{1(8)1I2 d8) 1/ 2 may 

be taken as the state space. This only requires minor modifications for the existence 
and uniqueness conditions, but is more appropriate in dealing the LQG problem (sto­
chastic optimal control). An important feature of this forn1Ulation is that continuity 
of initial data is no longer required [22). 
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In the remaining part of this chapter, we will for simplicity put the emphasis on 
the linear (additive noise) and the semi linear (multiplicative noise) delay systems. 
Whereas many different criteria for stability can be obtained, see [34,35,37,45, 52\, 
we will single out methods that bear resemblance to the ubiquitous Riccati (stem­
ming from LM1) approaches in the detenninistic theory. Previous work [28,75] has 
recentl y come to our attention. A few constructive results on stabilization are men­
tioned. in [59,60]. 

Thus consider the Ito delay-differential system 

dx(t ) = {A X(t) + t,BkX( t - Ti) + bU(t) } ci t + C dw(t ) (2 1) 

with C E R "xm , and w(l ) an m-dimensional standard Brownian motion (SBM ); 
,nd 

dx(t) ~ { AZ(t) + t. B,x(t - To) + bu(t) } dt + 

(22) 

with C(i) and D~j) E R f\ X f\ and the { Wi, j (t)} standard one dimensional Brownian 
motions. where A and B ;, i = 1, . .. N, are all n x n matrices over R , and b E R " x m. 

The main point we make is that as far as stability is concerned, the complexity of 
the analysis is not much greater for the stochastic than for the deterministic theories, 
see [1 3, 57,67]. One approach to stabilization with static and dynamic output feed ­
back, is based on this Riccati theory [60,72] . The earlier publication assumed (quite 
unrealistically) exact knowledge of the delay T. In addition some very restrictive 
technical conditions were required. In the later paper it was shown how to combine 
the Riccali method with perturbation theory, to circumvent the need for such precise 
infornlation. 

4 Stability of Stochastic Retarded Systems 

Substantial work in the stability of stochastic time delay systems originated in the 
works of Kolmanovskii, Myshkis, Nosov and Shaikhct [22,23 ,26], Mohammed [44] 
and Mao [34,35], and many others. The main approach as in the detennini sticcase­
is Lyapunov based, and centers around the martingale convergence theorem and Ito's 
fomlUla [19]. Both Lyapunov-Krasovskii based methods and Razumikhin type theo­
rems arc known. The different point of view, the fi rst using Lyapunov functionals, 
the second functions, is elaborated in [16] for the detenninistic concepts. We shall 
focus on the functionals. Razumikhin-type methods are derived in [38, 50]. 
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The defi ni tions for stabi li ty for the general Ito-model 

dx(t) = I{t , xd dt + g(t , xd dw(t) , (23) 

in continuous timc arc analogous to the discrete time ones_ We only specify: 

Definition 3. If 1(0) = 0 alld g(O) = 0, then the equilibriulll Xt == 0 of (23) is 
globally asymptotically stable in probabil ity if V s ~ 0, andY f ~ 0, 

lim P {sup Ix:'¢1 > f} = 0 
z---+O ,< t 

P{ lim Ix: '¢1 = O} = L 
H oo 

Here x:'z is fhe sO(lIIioll 01 time tfor the system with illitia( condition Xt = ¢ whel/ 
t = s. 

Definition 4_ The sfochastic (lelay-differential equation (23) is robustly (asymptoti­
cally) stochastically stable (R(A)SS) if it is globally (asymptotically) slable for all 
vollies of fhe delay( s). 

The following Riccati type conditions were obtained for the continuous delay sys­
tems were obtained in [13,67): 

Theorem 6_ The system (22) with N = k = 1 and WOI == Wil (for simplicity) is 
RSS if eifher of the following holds: 

i) There exist sYlllmetric positive definite matrices P, R, W sllch that 

A' P + PA+W +C' PC+D' PD+(PB+C' PD)W - 1(B' P+D' PC)+R = 0 

ii) There exisl symmetric positive definite matrices P, R , Z sNch that 

A'P+PA + Z+C'PC + D'PD+(B' P+D' PC)Z- '(PB+C'PD) +R = 0 

Proof" Consider the Lyapu nov- Krasovskii fu nctional 

V(x) = x' Px + l~ .,. x'(a )Qx(a) da. 

The Ito-rule: dV = dx' Px + x' Pdx + [x'Qx - x.,.Qx.,.l dt + dx' P dx , yields 

£1' = [ , '[ [A'P + PA + Q+C'PC PB+C'PB] [x] (24) 
x x.,. B'P+D'PC D'PD-Q x.,.' 

fro m which an LMI-condjtion (negative defi niteness of the above weight matrix) 
fo llows. The two Riccati eq uations follow by setting either D' PD - Q = - W < 0 
orZ = -(A'P + PA + Q+C'PC) >0. 0 
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Remark. 2. The Lyapunov-Krasovskii functional, V, used in the theorem is not qua­
sitame, due to the presence of the (unbounded) quadratic forms, but the direct ap­
pl ication of Ito's formula and super-martingale estimates justify its use in stability 
analysis. 

Remark. 3. Kolmanovskii and Shaikhet considered also sufficienl conditions forti me­
varying and distributed delays [26]. It should be noted that, as in the detenninistie 
case, the bound +(t) s: I on all delays is allowed [58] . A simple ex planation is that as 
time proceeds, the lower boundary of the interval for the definition of the state, i.e., 
t - T(t), keeps mov ing forward . 'The system never has to remember what it already 
forgot.' Iknce the idea that the statc is a suffic ient statistic (Markovian character in 
the stochastic case) is conserved. 

Remark 4. The results of Korenevsk ii [28J and Zclcntsovskii [75] used a special 
choice of the Lyapunov functional for which a linear sufficient condition LMI was 
obtained. 

Finally, we state a useful definition for delay dependent stability : 

[)efinition S. The stochastic delay-dijJerentitll eqlwtion is delay-dependent robustly 
stochastically stable (f- RSS) if it is globally asymptotically stable fo r all values of 
tlte de/ayes) in [0 , r). 

4.1 A distributed system 

In [12], Florchinger investigated the stability of a distributed delay stochastic system 

dx(t ) = (AX (t) + B l~T x(s) dS) dt + Cx(t) dw(t). (25) 

Using a Lyapunov-Krasovskii func tional of the form 

V(¢) ~ ¢(O)' P¢(O) + { t ¢'(O)Q¢(O) dO d" 

he proved that if there exist symmetric P > 0 and Q > 0 such that 

A'P + PA + C'PC +rQ + TPBQ-I B'P < 0, 

then the system is T-RSS in probability. 

This condition is delay dependent, and useful for smaller delays. But, the larger 
T, the more stable A should be. It is therefore impossible to conclude robust stochas­
tic stability via this method. 

An alternative is obtained by considering a larger partial state vector. Indeed, 
introducing for some invertible S E R "x" the new state y(t) = 5 - 1 ILT x(s) ds, 
the distributed system (25) reduces 10 the coupled 
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[~~~:n ~ [-; g] [~m] + [~I~] + [~i: =;n + [~ ~ ] [~m]dW(t) 
(26) 

(For simplicity, wc have let 5 :::: I). Thi s system is of the 'usual' form wi th crisp 
de lays . '·Ience the simple criterion (24), with P and Q in the form 

[P, P] 
p:::: P'P

2
' Q ~ [Q' 0] o Q, 

can be appl ied, thus giv ing the LMI 

[
W (p]) + P' + P +Q] + PQ"!1 P' PIB + A'P+ P2 + PQ"! IP2] 0 

B'P] + PiA + P2 + P2Q]"]p' B'P+ PIB + Q2 + P2QJ I P2 < 

where W (P]) is the linear term A' PI + PI A+C' PI C. For instance, selling P :::: - 1, 
P2 :::: pI and QI = I, whi le Q2 ...-.t 0 gives a criterion for the case Ba > 0, where 
B8 is the sy mmetric part of B . (The freedom in choice of 5 can be exploited in other 
cases). If there ex ists a positive definite matrix PI and a positive number p such that 

PP, > I , and [W(Pd PIB - A' ] < 0 
B'P1 - A - 2B a +p2 [ , 

then the stochastic delay system (25) is robustly asymptotically stable. Differenti al 
delay systems driven by multi-dimensional Wiener processes, and having multiple 
crisp and distributed delay terms can be dealt with in the same way. A teChnique of 
reduci ng a more general distributed delay system with rational kernel to a system 
with crisp delays was discussed in [631. 

4.2 Transformation method-delay-dependent condition 

Inspired by Niculescu's transfonnatioll method [47] to obtai n delay-dependent sta­
bil ity conditions in the noisc- free case, de Souza replaced (22) (again taking N = 
k= land wOI=wII) by 

dx(t) ~ [(A + L)x(t ) + (B - L)x(t - T) - L L, [Ax(O) + Bx(O - T)] dO+ 

- L L, Cx(O)dW(O)] dt+Cx(t)dw(t) 

A matrix L of free parame ters is introduced, which is used to optimize T [9]. Ty­
pical for the transformation method is the change in state space. The state of the 
transformed system arc clements in the space C([- 2T, OJ, Rn). He obtained: 

Theorem 7 (de Souza, 2000). The stochastic delay system (22) with N = k = 1 is 
meal] square asymptotically stable/or all T E [0, r) ijthere exist symmetric positive 
definite matrices P, Q alld R alld a lIIatrix Y sllch that the/ollowing WI holds: 
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[

A'P + PA+ Y + Y' + C'(P + R)C + Q F~ PB - Y A'Rl 
FY' - R 0 0 

B' P - Y' 0 _Q B'R < O. 

RA 0 RB - R 

(27) 

We took the liberty to combine 'f and R in de Souza's original statement to R = FR. 
Since mean sq uare asymptotic stability implies stochastic stabi lity, we have at once 
Iho 

Corollary 3. The slOchastic delay system (22) with N = k = 1 is 'f-RSS if there 
exist symmetric positive definite matrices P, Q alld R ami a matrix Y such that (27) 
holds. 

Remark 5. When R ~ ° and Y ~ 0, the RSS criterion, equivalent to A' P + P A + 
C' PC + Q + PBQ- l S'P < ° by the Schureomplement. is retrieved. 

We give an altcmative form of dc-Souza's theorem, wh ich sheds more light on 
the delay dependence, and provides a necessary condition for the inequal ity (27) 
itself. Define fi rs t for positive definite sy mmetric matrices P, Q and R the forms 

L(P) '1¥ (A' + S')P + PtA + B) + c' PC (28) 

X(Q ,R) '1¥ C' RC + (A' + S')(BQ- ' B' - W') - '(A + B) (29) 

T(P,Q, R)'1¥ (PB - Q)W'(B'P-Q). (30) 

Note thai the last two matrix forms are necessarily positive semidefinite. 

Theorem 8. If there exist symmetric positive definite matrices P, Q alld R such that 

L(P) + X(Q , R) < 0 

then there exists F > 0 such that the slOchastic delay system is F-RSS. 

Proof Pre- and postmultiply the LMI of de Souza's theorem respectively with 

and its transpose and, since there are no restrictions on Y, let Y = P B - Q, to get 
the LMI condition 

[

fI(P, Q, R,'f) <!... 0 A' + B' 1 
o - R 0 0 
o 0 _Q 0 < O. 

A+B 0 0 n - 1 - BQ- 1B' 
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To si mplify notation, we introduced: n(p,Q,R ,'f) = (At + Bt )P + PtA + B) + 

C'(P + R)C + f'l(PB - Q)R-1(BtP - Q) . This LMI is obviously satisfied if 

R- I < BQ- tB' and L(P) + X(Q ,R) +'f2T( P,Q,R) < O. Clearly, if L(P) + 
X(Q,R) < 0 there exists a 'f > 0 such that the above inequality holds for all 
o < r < 'f. In tum this implies the stabili ty for all 0 :$ T < 'f. 0 

The linear form (A' + B')P + PtA + B) + C' PC is in strumental in obtaining 
stability dependent on the delay. Indeed, the following is obtained. 

Corollary 4. If there exists a symmetric positive definite matrix P sllch that 

L(P ) ~ (A' + B' )P + PtA + B) + c' PC < 0 

fhen there exist 'f > 0 sl/ch that the stochastic delay system (22) (N = k = l )is 
stochastically stable for all ° :$ T < 7'. 

Prool Without loss of generality, we may assume (rescaling if necessary) that 
L(P) < -I, For arbitrary S > 0, the matrix R = (5-1 + BQ-I B')-I > ° is 
well defined. Note that R- I > 8Q- t B', and by Woodbury's lemma 

R ~ 8 - 8B(Q + B'8B)- ' B'8. 

Hence 

X(Q , R ) ~ X(Q,8) ~ C'8C -C' 8B(Q+B'8B) - ' B'8C+(A' + B')8(A + B). 

Choose S = sl and Q = qlto get 

X(, I ,q!) ~ [C'C + (A' + B')(A + B)J, - C' B(,I + B' B ,)- ' B'C,' > o. 

If the ratio q / s = p is kept fixed, 

X(, I , p,!) ~ [C'C + (A' + B')(A + B)J' - C'B(pI + B'B) - ' B'C" 

can be made arbitrarily small by making s > 0 su ffi ciently small. In particular, for 
anyt" > Owe haves. > Osuch thatX (s, l , ps, I) = s, X o(p) < d. ltfollows that 
L (P) + X (Q, R ) < - (1 - t") / . Now, consider 

T( P, Q , R) ~ (PB - Q)n-' (B' P - Q) 

which, for the chosen matrices, evaluates to: 

, )' 1 T,(P,p,') ~ (PB-p,I)(BB + pI (B P -p,I)­, 
It follows that a bound 7' is given by letting L (P ) + X(Q, R) + 7'2T (P, Q, R) = 0, 

7'(p, s) 2: 
(1 - ,), 

IIPB p, I )(BB' + p!)(B'P p' !) 11 > O. 
o 
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The condi tion L( P ) < 0 implies also that the stochastic system 

dx = IA + B)x dt + Cdwlt) , 

i.e. the delay system with T = 0 is stochastically stable. Since it is also a necessary 
condition [5], we get: 

Corollary 5 (Continuity in the delay). If the stochastic system 

dx = (A + 8)x dt + Cdw(t ) 

is stochastically stable, then the stoclw stic delay system 

dx(t) = [.4x lt ) + B x lt - r)l d t + C xlt) dwlt) 

remains stochastically stable for sufficiently small llalues of the delay. 

Remark 6. A necessary condition for the LMI to hold is that A + B is a Hurwitz 
matrix. However, this is not necessary for the stabi lity (with probability one) of the 
null solution of the stochastic delay system itself, but it is necessary for th e stability 
of the moments. Indeed sample equations may possess stable equilibrium solutions 
with probability one, even though all moments become unbounded [291-

Iff A + 8 is a Hurwitz matrix, and w(t ) has variance parameter (1'1 instead of I , 
then the linear fonn L(P) = (A' + B' )P + PtA + 8) + (1'lC' PC has a positive 
definite solution for su ffi ciently small (1. Hence for a (nonstandard) Wiener process 
wilh sufficiently small variance parameter, the stochastic delay free system remains 
stable. and by corollary 5 also the stochastic delay system fo r sufficiently smatt noise 
intensity and delay. 

Remark 7. Now we show that the condition in the corollary 4 is not vacuus. Indeed, 
rOt 

A = [ ~ ! ] , 8 = ( ~2 =~] ,C = 7 (~ ~ ] , 

it is obvious that for all positive defini te P and Q the quadratic fonn A' P+PA +Q+ 
P B Q- I 8' P cannot be negative defi nite. Hence robust stochastic stability cannot be 
concluded. However, the choice 

P= [~~] JR = [ ~ ~]JQ = ~B'B = [ i2~5] ' 
I" d, to LIP) = I,' - 2)1, XIQ ,R) = I,' + 1)/ , ,nd T IP,Q,R) = IPB ­

Q)S - I (B ' P - Q) = [ 7~ 2 : .; 5] ' The LM I matrix is negative definite foq < 1/ /2 
and then a bound on the delay is given by 

rl, ) = ~ /'1165 - / 10841)(1 - , , ') = .1 7241 / 1 21 '. 
64 V 

Note that in the scalar case with positive b, the existence of a bound 7' implies 
that 2(a + b) + c? < O. But this is equal to 20+ c? + inf w>o(w +b'l /w) . Hence there 
exist p = l , w = b > 0 and r > 0 such that 2ap + c?p+ w + p'lb'l/w +r = O. By 
theorem 6 the stochastic delay system (with D = 0) is then RSS. Thus if Ih is scalar 
delay system is 7'-RSS for some 0 < T < 00, it is stochastical1y stable for all T > O. 
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5 Invariant Distributions 

Scheutzow [54] considered stochastic delay eq uations of the form: 

dx(t) = J(x,) dt + dw(t) 

For arbi tral)' initial data t/J E C, he showed that all bounded Borel sets B in the state 
space C are revisited infinitely often either with probability one or with probability 
zero. In the first case call (Xtk~: o recurrent, and in [he second case transient. If recur­
rent, there ex ists an invariant measure (but not necessarily a probability measure). He 
derived sufficient criteria on f for the existence of an invariant probability measure. 
Some systems with non-unit diffusion may be transformed by change of variables to 
the above fonn. A notewonhy example is the generalized delayed logistic equation . 

It is shown that the conditions kl > (klI2), and k2 ' k 3 , k4 > 0 guarantee a unique 
invariant probability measure. 

Mohammed proved that whenever the detenninistic equation, x(t) = f(xd, with 
f : C(I, R n) -+ R n a continuous linear map, is globall y asymptotically stable, 
then a unique invariant Gaussian distribution exists fordx(t) = f(xd dt + G dw(t), 
and is globally asymptotically stable [44, p.2171 The result is based on a stochas­
tic version of the variation of parameters fonnula and a splitting of the state space 
C = U $ S [16]. The (unstable) subspace, U, is finite dimensional, and the stable 
one, S, is closed. The splitting is invariant under the semigroup (Tdt::::o. 

Da Prato and Zabczyk [8J studied the linear equation 

dx(t) = [AX(t) + t,B,(t - r,)] dt+Cdw(t) (31) 

using the di ssipativity method developed in their monograph. Let 

(32) 

If P < 0, then there exists a unique invariant measure for the system (31). Conversely, 
if an invariant measure exists for (3 1), and the matrix [>.1 ~ 2::;::0 e-A .. , B; I C ] 
has full rank for all >. E C, then p < O. Note that this converse involves a reachabi­
lity condition. 

5.1 Existence for all delays 

Forsimplicity, let us restrict the rest of the section 10 the additive noise, single (p = 1) 
delay model (3 1 )(generaliz.1tion is straightforward). An invariant distribution exists 
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if there ex ists a positive defini te V(x) vanishing at 0, and such that £V < 0 outside 
some ball centered at O. 

Noting that: £V = x'[A' P + PA + Q]x - X~QXT +2x' PBx.,. +TrC' PC, one 
obtai ns (see [67]), 

Theorem 9. The system (3/) (p = 1) has an invariant distribwionfor all 7 i/rhere 
exists P, Q, R > ° such that 

A'P + PA +Q+ PBQ-IB'P+ R = 0. 

The condition of the theorem implies also the robust stability of the theorem of the 
(determin istic) system .i(t) = Ax(t ) + B x(t - 7). 

5.2 Correlation 

Various properties can be derived for the stationary distribution with specific 7. For 
instance the correlation matrix is obtained as fo llows: Fix 7 = I (one may always 
rescale the time), and let t > s. Then 

x(t) = eA(t-6)x(s) + J.l eA(t- ()[Bx( - 1) + Cu(O] d(. 

Postmultiply by X'(S) and take expectations. If the initial condition satisfies E 1>(9) = 
o for 9 E [-7,0], then the process x(t) has zero mean and R(t,s) = E x(t)x' (s) 
satisfies the integral equation 

R(t , s) = eA(t-6) R(s, s) + J.1 eA(t-() BR( - I , s) d(. 

Set s = t - 9, and take the limit for t -+ 00, letting R(9) ~f limt->oo(t, t - 9), 

Di fferen tiate 

dR(O) ~ AR(O) + BR(O _ 1) 
dO 

Also, symmetry gives: 
R( 0) ~ R( -0)' 

The case 9 = 0 is special, and can be obtained by "squaring up" x(t) and taking ex· 
pectations, followed by differentiation. The results are summarized in the following 

Theortm 10. Iflhe deterministic system 

x(t) ~ Ax(t) + Bx(t - 1) 

is asymptotically stable, then the stochastic additive noise system 
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dx = [o4x(t) + Bx{t - 1)1 dt + Cdw 

has an invariant distribution with meoll 0 olld covariance R(O). The sample paths 
exhibit temporal correlation R(8) satisfying 

AR(O) + R(0) .4' + R(l)B' + BR(!) + GG' ~ 0 

d~~9 ) = AR(8) + BR(O - I) , \i8 > 0 

R( - 0) ~ R( 0)' vo> 0 

5.3 Fokker-Planck approximation 

For finite dimensional systems, the stationary density can be obtained as the equi­
librium solution to the Fokker-Planck (or forward Kolmogorov) equation. Thi s is a 
scalar PDE governing the evolution of the probability density of the (finite dimen· 
sional) state. Let us fix the ideas again on the simple scalar toy model, thus avoiding 
only notational complexity. Given the stochastic delay system dx = [Ax(t)+ Bx(t -
7)1 dl + bdw(t) , consider the (N + I )-dimensional approximation by simple discre­
tization , where 0 = 71 N. 

A, 0 .. om b 
1 - 1 0 

1 
dX(t) ~ J x(t) dt + dw(t) (33) 

1 - 1 0 

0 ' 
I 

dX(t) ~ J[A - [[,(t)dt + Bdw(t) (34) 

with 
1 + 040 0 o B, 

1 0 

A~ 

1 0 

a matrix in the companion fonn. Note that x(t) = e~ x(t) = XI(t), the first com­
ponent of X(t) . In this model, one has also 

i(t - (k - 1),) '" ~[x(t - k,) - x(t - (k - 1)')1 , 
from wh ich the approx imation of the N remaining components of X(t) follow: The 
(k + l )st component of the slate X(t) is an approximation for x(t - ko). The deter­
ministic part of Ihis approximation is asymptotically stable if A has its spectrum to 
the left of I + o. The eigenvalues of A are the roots of the characteristic polynomial 
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For fixed N, there is a root of multiplicity N at 0, and a si ngle root at - J. Tem­
porari ly neglecting the rel ation between Nand 0, the influence of 0 on the roots of 
th is polynomial may be studied with the classical root locus method . When generali ­
zing to vector delay systems, the multivariablc extension of the root locus, involving 
branch points and Riemann surfaces, needs to be used [49}. Thus, 

1 

6 

The (0 degree) root locus branches leave the poles (N at the orig in , one at I), and 
move towards the zeros, which arc located in a Butterworth pattern. For small 0, the 
departure from the single pole at I is cri tical for the stability. Obv iously, IE I AI < 1 
is a sufficient condition for stability for this model, regard less of N . Hence in the 
limit, the stability of the delay system is g uaranteed for all values o f T. 

The Fokker-Planck equation associated with this approxi mate (N+ I)-di mensional 
state model is 

This expands to 

If the detennini stic part of the system is asymptotically stable, then the solution, 
p(N)(X , t) converges for t -t 00 to a steady state solut ion, p(N )(X) . As we arc 
here dealing with a linear system in gaussian noise, the limiting distribution must be 
gaussian. Hence it suffices to compute the mean and the covariance matrix . 

Introducing for the origi nal delay system in the steady slate, 

P{N)(X!'", ,XN+ tl dXI'" dXN+ 1 

~f Pr {x(t) E (Xl ,Xl + dxd,' , x(t - No) E (XN+I, XN + I + dXN+ tl , 

it follows that the covariance matrix must have a symmetric Toeplitz structure. This 
is not consistent with the above approximation. However, remark that this can be 
remedied by adding no ise teons in the last N rows of the approximating d ynamics. 
This is heuristically justifiable by noting that the mean value theorem implies the 
existence of ~k E [0,0] such that 

t(t - kb + (,j ~ Jrx(! - (k - 1)6) - x(t - kb)l. 
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The d ifference x(t - kJ + {,.) - ±(t - kJ) is the requisite perturbation for the above 
approximating modeL Once the requisite perturbation terms are in place, we postu­
late their conservation in the model to compute the transient solution via the finite 
dimensional approximation. 

While these ideas may be extended to the nonlinear case, the Fokker-Planck 
equation itself remains a linear PDE. These approximations may be valuable in the 
applications to neural networks with delay, applications in epidemiology, applica­
tions to synchronization and applications in traffic models. 

6 Stochastic Stability of Neutral Systems 

The analysis of stochastic stabil ity for neutral systems and conditions for existence 
of invari ant distributions also received considerable attention recently. Existence and 
uniqueness of solutions to general stochastic neutral equations arc found in Kolma­
novski i and Nosov [23J, where also stabi lity and asymptotic stability are d iscussed. 
The problem is further discussed in Kolmanovskii and Myshkis [22] . Mao obtai­
ned general criteria for exponential stability using various techniques in a series of 
papers [36, 39,41 ]. 

In this section we focus again on the linear stochastic neutral systems 

dx(t) ~ [.4x(t ) + B x(t - T)[ dt + C dx(t - T) + r x dw( t ) (36) 

Guided by the Lyapunov-Krasovskii methods for the deterministic case [62,69- 711 
we construct new stochastic versions, based on different choices of Lyapunov func­
tionals. 

6.1 First criterion 

Consider first the Lyapunov- Krasovskii func tional , V: C(I, R ") ~ R , de fined by 

V( ,p) ~ ,p'(O)p.p(O) + [ , ,p( t)'Q,p(t)dt + [, d,p'(t) Rd,p(t), (37) 

recall ing that E dx' Rdx is of order dt, the second integral contributes really a non­
zero term. Applying the Ito-differentiation rule: (here, and in what follows, X T de­
notes the value of x at the delayed time argument) 

dV = 2[Ax + BXTJ' Pxdt + 2x' PCdxT + dx~ C' PCdxT + x'r' prx dt + 

+{x'Qx - x~Qx.,..J dt + dx' Rdx - dx~ Rdx.,.. 

Substituting dx' Rdx by dx~ C' RC dx.,..+x' r Rrx dt gives for E dV the quadratic 
form, 
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EdV :::: [X'../dt, x~../dt, dx~l 

[

A'P + PA + Q+ r' (p + R)r PB PC 1 
. BP -Q 0 

C'p 0 C'(P+R)C-R [ 
xv'dt 1 x..-Jdt 
dx , 

Note that Schur-Cohn stability ofC is a necessary condition for negative defin iteness 
of this quadratic form. If r = 0, we obtain the determin istic cri terion 

[
A'P+PA+QPB] 0 

B'P -Q < , 

since the tenn dx' Rdx is now of second order in dt and is set to zero. Tl1is differs 
from the deterministic Lyapunov- Krasovskii functional in [62] where we defined 

V,,, (,,;) ~ ,,;'(O) P,,;(O) + J~ , ,,;'( t)Q,,;(t)dt + J~, ~'(t) N ~(t) dt. 

Theorem 11. The linear stochastic neutral eq!wtion (36) is RASS if there exists sym­
metric positiJle definite matrices P, Q and R such that either of the following are 
negatiJIC definite: 

{ 

C'(P+R}C-R and 
i) [A' P + PA + Q + r'(p + R)r + PC(R - C'(P + R)C) - 'C' P PB] 

B'P -Q 

(38) 

. . ) [A'P+PA+Q+PBQ - 'B'P+r'(p+R)r PC ] (39) 
" C'P C'(P+R)C-R 

Proof: The LMJ's are the Schur complements of respectively the (3,3) and the (2,2) 
blocks in the above 3 x 3 blockmatrix in the expression of CV. 0 

Corollary 6. The linear stochastic nellfral equation is stochastically stable if Ihere 
exists symmetric positiJIC definite matrices P, Q and R slIch that R-C' (P+ R)C > 0 
and 

A'P+PA+Q+PBQ- 'B'P+r'(p+R)r+PC(R -C'(P+R)C) - 'C'P < O. 
(40) 

Proof: By taking Schur complements in either of the LMI's in Theorem II. 0 

6.2 Second stability criterion 

Here we start fro m a stochastic varaiant of the Lyapunov-Krasovskii func tional in 
the fonn presented in [70,7 1]. Let 

V( ,,;) ~ [";(0) - C,,;(-x)]'P[,,;(O) - C,,;(-x)]+ 

+ [, ,,;'(t)Q,,;(t)dt + [, d,,;'(t) Rd.p(t), (4 1) 
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TIle Ito-differentiation rule leads now to: 

dV = 2(dx ~ C dxT) 'P(x - CXT) + (dx ~ CdxT)' P(dx - Cdx T) + 
+(x'Qx - X~QXT) dt + dx' Rdx ~ dx~RdxT 

Cdl' = 2[Ax + BXrr P(x ~ CXT) dt + x' r' prxdt + 

+[x'Qx ~ x~Qx,.-] dt + dx' Rdx ~ dx~ Rdx,.-

= 2[Ax + BxT]' P(x ~ CxT)dt + x' r' prxdt + 
+ [x'Qx ~ X~QXTJ dt + dx~C' RCdxT + x' r' nrxdt ~ dx~ RdxT 

= 2[Ax + BxT]' P(x ~ Cx ... ) elt + x' r' (P + R)rxdt + 

+[x'Qx ~ X~QXT] dt + dx~[C' RC ~ R]dx ... 

This yields for C dV the sum of the quadratic fonns dx~[C' RC ~ R] elx ... , and 

[ ' 'J[.4'P+PA+Q+r,(p+R)r PB - A'PC ][X]dt 
x, X T B'P ~ C'PA ~ B'PC ~ C'PB ~ Q X

T 
• 

This proves 

Theol""tm 12. The sloclwslic system (36) is RASS ifC is SchurColm stable and there 
exisl positive definite matrices P, Q, n such thai the following holds: 

Ai - [A'P+PA+Q+r'(p+R)r PB-A'PC ] < 0 
- B'P - C' PA -B'PC-C'PB-Q 

Note thai if we let r = 0, the LMI 

[
A'P+PA+Q PB - A'PC ] 
B'P - C'PA - B'PC -C'PB - Q <0, (42) 

results. But r = ° means that the system is delenninistic, and thus the above is a 
new criterion for asymptotic stability of a deterministic linear neutral system. Mao 
obtained in [39] the LMI (42) for P = I as one condition for almost sure ex ponential 
stability for the neutral system (36), the other conditions are IICII < 1, and a nonli­
near and lime varying stochastic perturbation tenn, satisfy ing a Lipschitz and linear 
growth condition. 

Remark 8. Note that the LMI given in l70] for the deterministic case is 

[ 
A'P+PA+S P(AC+B)+SC] 

(B' + C'A')P + C'S C'SC _ S < 0 

6.3 Application: multiple commensurate delays 

The neutral stability criterion may aid in obtaining less conservative bounds for sto· 
chastic stability of delay equations with commensurate delays. Indeed, when the 
sufficient condition for RSS is used for the multi-delay system, (the result given in 
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section 4 is readily generalized) the information on the precise relation between the 
two delays is losl. However, treating the system as a single delay neutral system, 
and using the neutral RASS criterion, a less conservative resul t may be expected. 
The deterministic case was explored in [65]. For instance, the commensurate delay 
equation 

dx = (Ax + Bx .. + e X':? r) dt + rx dw 

can be augmented to a neutral equation 

[ dx ] = ([ A M,] [x] + [B - ,M, C] [x' ]) dt + 
dx.. 0 M2 X.. - AI2 0 X2 .. 

+ [~~] [::;, ] + [~~] x dw 

This is of the single-delay fonn 

dX = [AX + BX .. ]dt + CdXr + GXdw, 

where two free parameter matrices MJ and M2 arc introduced. This additional free­
dom may aid in the search for a feasible LMI. 

7 Conclusions 

We ex plored some aspects of the stochastic delay differential and delay difference 
equations. We briefly looked at some of the intricate details a deeper study of Ihe sub­
ject is involved with. We surveyed some of the results on stability of delay systems. 
Some new material was included in this chapter, relating to the stability of discrete 
and continuous linear stochastic systems. Th is was given in terms of the ex istence of 
solutions to certain Riccati-type equations (or LMl's). A sufficient condition for the 
existence of a unique invariant distribution is related 10 the same Riccali equation. 
We also obtained new results for the stability of neutral systems and discussed briefl y 
the Fokker-Planck eq uation. 

8 Bibliographical Notes 

We have left the general discussion of filtering and control of stochastic time delay 
systems and some aspects of their dynam ical properties largely untouched. Notewor­
thy are the extensions to La Salle's theorem by Mao [40,42], the computation of 
Lyapunov exponents, Ihe deeper theory of invariant densities [2, 11J, the approach 
by dissipation methods [8], and the numerical approximation and simulation of sto­
chastic delay systems [7,20,73]. A very important class of systems are the ones with 
random delay and Markovianjump parameters. We refer to the recent monograph [4] 
and recent work of Mao and collaborators [43,74], and Mahmoud and Sh i [32,33]. 
Page restrictions also prohibited us from presenting applications of stochastic delay 
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systems in traffic control and the biosciences. (e.g., prey-predator models, epidemio­
logy [3] and dynamics of cancer). We hope further research in these areas will be 
stimulated. 

Acknowledgement: The author is indebted to Professor S.-E.A. Mohammed for use­
ful comments, and to Professor A. Tannenbaum for 'freeing up some lime'. 
Support o f the collaborative NSF-CNRS grants INT-98l8312 and INT-O 129062, is 
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Summary. Nonnegative and companmcmal dynamical system models arc derived from mass 
and energy balance considerations that involve dynamic states whose values are nonnegative. 
These models are widespread in engineering and life sciences and typically involve the ex­
change of nonnegative quant ities between subsystems or compartments wherein each com· 
paI1ment is assumed to be kinetically homogeneous. However, in many engineering and life 
science systems, transfers between compartments arc not instantaneous and realistic moods 
for capturing the dynamics of such systems should account for material in transit between 
compartments. Including some information of past system states in the system model leads 
to infinite-dimensional delay nonnegative dynamical systems. In th is chapter we present ne­
cessary and sufficient conditions for stability of nonnegative and companmental dynamical 
systems with time delay. Specifically, asymptotic stability conditions for linear and nonlinear 
as well as continuous-time and discrete-time nonnegative dynamical systems with time delay 
are established using linear Lyapunov-Krasovskii functionals . Furthermore, we develop new 
notions of dissipativity theory for nonnegative dynamical systems with time delay using linear 
storage functionals with linear supply rates. These results are then used to develop general 
stability criteria for feedback interconnections of nonnegative dynamical systems with time 
delay. 

1 Introduction 

Modcm complex engineering systems arc highly interconnected and mutually inte r­
dependent, both p hysically and through a multi tude o f infonnat ion and com m u nica­

tion networks. By properly fonnu lating these systems in tenns of subsystem interac­

tion and e nergy/mass trans fer, the dynamical models of many of these systems can 

be derived from m ass, energy, and in fo nnation balance considerat io ns that involve 

dynamic states whose values are nonnegative. Hence, it follows from physical consi­
derations that the state trajectory o f such systems rem ains in the no nnegative orthant 

of the slate space for nonnegative in itial conditions. S uch systems are commonly 

referred to as nonnegative dynamical systems in the literature [I, 2 J. A s ubclass of 
nonnegative dynam ical systems are compartmental systems [2-5) . Com partmental 
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systems involve dynamical models that are characterized by conservation laws (e.g., 
mass and energy) capturing the exchange of material between coupled macrosco­
pic subsystems known as compartments. Each compartment is assumed to be kineti­
cally homogeneous; that is, any material entering the compartment is instantaneously 
mixed with the material of the compartment. The range of applications of nonnega­
tive systems and compartmental systems is not limited to complex engineering sys­
tems. Their usage includes b;iological and physiological systems, chemical reaction 
systems, queuing systems, large-scale systems, stochastic systems (whose state va­
riables represent probabilities), ecological systems, economic systems, demographic 
systems, telecommunication systems, tran sportation systems, power systems, heat 
transfer systems, and structural vibration systems, to c ite but a few examples. A key 
physical limitation of such systems is that transfers between compartments are not 
instantaneous and reali stic models for capturing the dynamics of such systems should 
account for material, energy, or infonnation in transit between compartments [5). 
Hence, to accurately describe the evolution of the aforementioned systems, it is ne­
cessary to include in any mathematical model of the system dynamics some in for­
mation of the past system slates. This of course leads to (infinite-dimensional) delay 
dynamical systems [6,7]. 

In this chapter we develop necessary and suffic ient conditions for stability of 
time-delay nonnegative and compartmental dynam ical systems. Specifically, usi ng 
linear Lyapunov- Krasovskii functionals we develop necessary and suffic ient condi­
tions for asymptotic stability of linear nonnegative dynamical systems with time de­
lay. The consideration of a linear Lyapunov-Krasovskii functional leads to a /l ew 

Lyapunov-likeequation for examining stability of time delay nonnegative dynamical 
systems. The motivation for using a linear Lyapunov- Krasovskii functional follows 
from the fact that the (infinite-dimensional) state of a retarded nonnegative dyna­
mical system is nonnegative and hence a linear Lyapunov-Krasovskii functional is 
a valid candidate Lyapunov-Krasovskii functional. For a time delay compartmental 
system, a linear Lyapunov-Krasovskii functional is shown to correspond 10 the total 
mass of the system al a given time plus the integral of the mass How in transit bet­
ween compartments over the time intervals it takes for the mass to fl ow through the 
intercompartmental connections. 

Next, exploiting the input-output properties rel ated to conservation, di ssipation, 
and transport of mass and energy in nonnegative and compartmental dynamical sys­
tems, we develop a /l ew notion of classical di ssipativity theory [8] for nonnegative 
dynamical systems with lime delay. Specifically, using linear storage funclionals 
with linear supply rates we develop sufficient conditions fordi ssipativilY of nonnega­
tive dynamical systems with time delay. The motivation for using linear storage func­
tionals and linear supply rates follows from the fact that the (infinite-dimensional) 
state as well as the inputs and outputs of retarded nonnegative dynamical systems are 
nonnegative. The consideration of linear storage functionals and linear suppl y rates 
leads to new Kalman-Yakubovich-Popov equations for characterizi ng dissipativity 
of nonnegative systems with time delay. For a time delay compartmental system, 
a linear storage functional is shown 10 correspond to the tOlal mass of the system 
at a given time plus the integral of the mass How in transit between compartments 
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over the time intervals it takes for the mass to flow through the intercompartmental 
connections. In thi s case dissipativity implies that the total system mass transport is 
equal to the supplied system flux minus the expelled system flux. Finally, using the 
concepts of dissipativity for retarded nonnegative dynamical systems, we develop 
feedback interconnection stabil ity results for nonnegative systems with time delay. 
In particular, general stabi lity criteria arc given for Lyapunov and asymptotic stabi­
lity of feedback nonnegative dynamical systems with time delays. 

2 Notation and Mathematical Preliminaries 

In this section we introduce notation, several definitions, and some key results 
concern ing linear nonnegative dynamical systems [2, 31 that arc necessary for deve­
loping the main results of this chapler. Specifically, N denotes the set of nonnegative 
integers, IR denotes the reals, and 1R" is an n-dimensional linear vector space over 
the Teals with the maximum modulus nann II . II given by Ilxll = max;=" ... ,,, Ix;!, 
x E 1R" . For x E !R" we write x 2:2: 0 (resp., x» 0) to indicate that every com­
ponent of x is nonnegative (resp., positive). In this case we say that x is nonnegative 
or positive, respectively. Likewise, A E lR"xm is nonnegative' or positil'e if every 
entry of A is nonnegative ~ositive, respectively, which is written as A 22: ° or 
A » 0, respectively. Let 1R+ and Iii.+ denote the nonnegative and positive onhants 

of lR"; that is, if x E IRn , then x E i~ and x E IR+ are equ ivalent, respectively, to 
x 22: 0 and x > > O. Finally, C([a, bl, 1R") denotes a Banach space of continuous 
functions mapping the interval [a, bl into 1R" with the topology of unifonn conver­
gence. For a given real number T 2: ° if[a, bl = [-T,OI we let C = C{[-T, 0], IR") 
and designate the nonn of an element f in C by I f I = sUPOE[_:r,olllf(O) II . If 
a, P E Iii. and x E C([a - T, a + .6]' Iii."), then for every t E [a, a + PJ, we let 
Xt E C be defined by Xt(6I) = x(t + 0), 61 E [-T,OJ . The following definition 
introduces the notion of a nonnegative function. 

Definition I. Let T > O. A real jllnction u : [0, TJ --+ Iii.'" is a nonnegative (resp., 
positive) function ifu(t) 2:2: 0 (resp., u{t) » 0) on rhe il/teroal [0, TI. 

The next definition introduces the notion of essentially nonnegative matrices. 

Definition 2 ([2,3]). Let A E lR"X". A is essentially nonnegative if A(;,j) > 0, 
i,j= l , ... ,n. i-:j:j. 

Next, we present a key result for linear nonnegative dynamical systems 

xl') ~ Ax(t), x(O) ~ Xo, ' " 0, (1) 

where x(t) E Iii.", t ?: 0, and A E Iii."x" is essentially nonnegative. The solution to 
(t) is standard and is given by x(t) = eAtx(O), t 2: O. The followi ng lemma proven 
in [3J (sec also (2]) shows that A is essentially nonnegative if and only if the state 
transition matrix eAt is nonnegative on (0,00). 

! In this chapter it is important to disti nguish between a square nonnegative (resp., positive) 
matrix and a nonnegative-definite (resp., positive-definite) matrix. 
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Lemma I. Let A E IR"xn. Then A is essentially nonnegative if and only if eAt is 
nonnegative for all t 2: O. Furthermore, if A is essentially nonnegative and Xo 2: 2: 0, 
then x{t} 2:2: 0, t 2: 0, where x(t}, t 2: O. denotes the sollltionlO (J). 

Next, we consider a subclass or nonnegative systems; namely, compartmental 
systems. 

Definition 3. Let A E lR"xn. A is a compartmental matrix if A is essentially nonne­
gative and 'L,:'=.I A (i,j) :::; D, j = 1, 2, ... , n . 

Ir A is a compartmental matrix, then the nonnegative system (I ) is called 
an inflow·closed compartmemal system [2, 5J. Recall that an inflow·closed com· 
partmental system possesses a dissipation property and hence is Lyapunov stable 
since the total mass in the system given by the sum or all components or the 
state x( t), t 2: 0, is nonincrcasi ng along the forward trajectories of (1 ). In par· 
ticular, with V(x} = eTx, where e ~ [1, 1"" , I]T. it follows that V(x) = 
eT A x = 'L,'!=I ['L,~I A(i,))] Xj :::; 0, x E i:. Furthermore, since ind(A) :::; 1, 
where ind (A) denotes the index or A, it rollows that A is semistable ; that is, 
Iimt -+oo eAt exists. Hence, all solutions or intlow-closed linear compartmental sys· 
terns are convergent. For details or the above racts see (2,3]. 

3 Stability Theory for Nonnegative Dynamical Systems with 
Time Delay 

In this chapter we consider linear time-delay dynamical systems 9 or the ronn 

x(t) ~ Ax(t) + A,x(t - r) + Bu(t), x(O) ~ .(0), -T OS 0 OS 0, t 2 0, (2) 

y(t) ~ Cx(t) + Du(t) , (3) 

where x(t) E IRn , u(t) E IRm, y(t) E JRl, t 2: 0, A E IRnxn , Ad E IRnx" , B E JRlxn, 
C E ]RIxn,D E jRlxm,T > O,and1>(') E C = C([-T, o] ,lRn) is a continuous vector­
valued runction specirying the initial state or the system. Note that the state or (2) at 
time t is the piece o/trajectories x between t - T and t, or, equivalently, the element 
Xt in the space or continuous functions defined on the interval [- 7, 0] and taking 
values in IRn; that is, Xt E C([-T, OJ, IRn). Hence, Xt(e) = x(t + 19) , 19 E [-T, OJ. 
Furthennore, since ror a given time t the piece or the trajectories Xt is defined on 
[-7, 0], the unironn nonn IXt l :::: sUPOE[_,.-,olllx(t + 19)11 is used ror the definitions 
or Lyapunov and asymptotic stability or (2). For runher detai ls see [6,9]. Finally, 
note that since 1>0 and 1£0 are continuous it follows rrom Theorem 2.1 of[6. p. 14] 
that there exists a unique solution x(1)) defined on [-T,OO) that coincides with 1> on 
[-T, O} and satisfies (2) ror t 2': O. The rollowing definition is nceded ror the main 
results or this section. 

Definition 4. The linear time delay dynamical system 9 given by (2) is nonnegative 
iffor everytPO E C+, whereC+ ~ {1jJ(.) E C: 1jJ(e) 2':2': 0 ,19 E [-T,O]}. alld 
u(t) 2':2: 0, t 2': 0, the SOilllioli x(t ), t 2: 0, to (2) alld the OlllpUl y(l ), t 2': 0, are 
Ilolillegative. 
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Proposition I. The linear time delay dynamical syslem g given by (2) is nOl/l/egalil'e 
if and only if A E IR" X" is essen/ially nOllnegalive and Ad 2: 2: 0. B 2: 2: 0, C 2:2: 0, 
alld D 2:2: O. 

Proof. It follows from Lagrange's formula that the solution to (2) is given by 

(4) 

Now, if A is essentially nonnegative it follows from Lemma I that e At 2:2: 0, t 2: 0, 
and if ¢O E C+, Ad 2:2: 0, B 2:2: 0, C 2:2: 0, and D 2:2: 0, it follows that 

r'~' (' 
x(t ) = eAt¢(O) + l _T eA{t-T-O)Ad x (8) d8 + 10 eA{l-O) Bu(O)dO 2:2: 0, 

'E [O,T) (5) 

and y(t) 2:2: o for all t E [O,T). Altematively, for all T < t, 

x(t) =eATx(l-T) + loT eA{T-O)AdX(t+O-2T)dO+ lot eA{t-OlBu(O)dO (6) 

and hence, since x(t) 2:2: 0, t E [-T, T), it follows that x(t) 2:2: 0, t E [T,2T) . 
Repeating Ihis procedure iteratively it follows that x(t ) 2:2: 0, t 2: 0, and hence 
y(t) 2:2: 0, t 2: 0, which implies that g is nonnegative. 

Conversely, suppose g is nonnegative. Now, note that wilh u(O) = 0, y(O) = 
Cx(O) and, since y(O) 2:2: ° for all x(O) E TIC, it follows that C 2:2: O. Next, with 

x(O) = 0, y(O) = Du(O) and, since y(O) 2:2: 0 for all u(O) E lR~, it follows that 
D 2:2: O. Now, let ¢(e) = 0, -T :::; 8 :::; 0, and let u(t) = J(l -...!~u, t,i E [0, T), 
where U 2:2: O. In this case, since x(i) = Bu 2:2: ° for all ii E IR+ it fo llows thai 
B 2:2: 0. Furthermore, with u(t) == 0, ¢(8) = 0, -T :::; 8 :::; 0 , x(t) = eAt¢(O), 
t E [0, T), and hence it follows from Lemma I that if x(t ) 2:2: 0, t 2: 0, for all 
¢(O) E TIC, then A is essentially nonnegative. Finally, suppose, ad absurdum, A d is 
not nonnegative, that is, there exist I , J E {I , 2, .... , n } such that Ad{ / .J) < O. Let 
u(t) = 0, t 2: 0, and let {V" }~=I C C+ denote a sequence of functions such that 
lim,,-.oov,,(8) = eJ J(8 -1/ + T), where 0 < 1/ < T and 0(-) denotes the Dirac delta 
function. In thi s case, it follows from (4) that 

x,,(l) = e A"v,,(O) + 10'/ e A('1-0) A dx (8 - T)d8, (7) 

which implies that x(1/) = lim" .... oox,,(1/) = eA'1 A deJ. Now, by choosing 1/ suffi ­
c iently small it follows that X I (1/) < 0 which is a contradiction. 0 

For the remainder of this chapter, we assume that A is essentiall y nonnegative 
and Ad, B , C, and D, arc nonnegative so that for every ¢O E C+, the linear time 
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delay dynamical system Q given by (2), (3) is nonnegative. Next, we present neces­
sary and sufficient conditions for asy mptotic stability for the linear undisturbed (i .e., 
u(t) == 0) time delay nonnegative dynamical system (2). Note that for addressing the 
stability of the zero solution of a time delay nonnegative system, the usual stability 
definitions given in [6J need to be slightly modified. In particular, stability notions 
for nonnegative dynamical systems need to be defined with respect to relatively open 
subsets of R:;. containing the eq ui librium solution Xt == O. For a similar definition 
see [2]. In this case, standard Lyapunov-Krasovskii stabil ity theorems for nonlinear 
time delay systems [6] can be used directly with the required sufficient conditions 
verified on C+. 

Theorem I. Consider rhe linear undisturbed (i. e., u( t) == 0) IlOllnega/ire time delay 
dynamic(ll system Q given by (2) where A E IR""" is essentially nonnegative alld 
Ad E IR""" is nonnegative. Then Q is asymptotically sttlble/or (lll T E [0,00) if alUl 
only if there exist p, r E 1R" such that P > > 0 and r > > 0 satisfy 

(8) 

Proor. To prove necessity, assume that the linear undisturbed (i.e., u(t) := 0) time 
delay dynamical system Q given by (2) is asymptotically stable for all T E [0,00). 
In this case, it follows that the linear nonnegative dynamical system 

x(t) :::: (A + Ad)x(t), x(O)::: Xo E TR:, t 2: 0, (9) 

or, equivalently, (2) with T = 0 and u(t) == 0, is asymptotically stable. Now, it 
follows from Theorem 3.2 of [2] thai there exists p > > 0 and r > > 0 such that (8) 
is satisfied. Conversely, to prove suffic iency, assume that (8) holds and consider the 
candidate Lyapunov- Krasovskii functional V : c+ --+ lit given by 

Now, note that V(~) 2: pT ~(O) 2: O'I I ~{O)II, where 0' ~ millie{t,2, ... ,n} Pi > O. 
Next, using (8), it fo llows that the Lyapu nov-Krasovskii directional derivative along 
the trajectories of (2) with u(t) == 0 is given by 

V (x,) = pT X(t)+pT Ad [X(t)-X( t -T)[ =pT (A+Ad)x(t) = -T T x(t) ,,-Pllx(t)lI, 

where {J ~ miIlie(I,2, ... ,n} Ti > 0 and Xt((9) == x(t + 0), (9 E [~T,O]. denotes the 
(infinite-dimensional) state of the time delay dynamical system Q. Now, it follows 
from Corollary 3. 1 of [6, p. 143] that the linear nonnegative time delay dynamical 
system Q is asymptotical ly stable for all T E [0,00). 0 

Remark J. The results presented in Proposition I and Theorem I can be easily ex­
tended to systems with multiple delays of the fonn 

"' 
x(t) = A x(t) + 1:: A dOx(t - T;), x(O) = ¢(B), -r" B" 0, t 2: 0, (10) 

i=l 
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where x(t) E IItOl , t 2:: 0, A E lR"xOl is essentially nonnegative, Adi E \!lOlxOl, 
i:::: 1, ... ,nd, is no nnegative,f:::: max;E{I, ... ,Ol~ }T;,and 1(-) E { t/l(.) E 
C([ -f, 0], IROl) : 1/;(0) 2::"2: 0, 0 E [- f) OJ}. In this case, (8) becomes 

." 
O ~(A+ I: A,,)Tp+r, ( II ) 

i=l 

which is associated with the Lyapunov-Krasovskii functio nal 

Old 0 
V(,p) ~ pr ,prO) + I:! pr Ad,,p(0)d9. 

;=1 -r, 
( 12) 

Si milar remarks hold for the non li near extension o f Theorem I presented below and 
the discrete-time results addressed in Remark 2. 

Remark 2. An analogous theorem to Theorem I can be derived for di screte-time, 
nonnegative time delay dynamical systems 9 of the form 

x(k+ l)~Ax(k)+Adx(k-<), x(O) ~¢(9), -< ';9';0, kEN, (13) 

where x(k) E IR:Ol, kEN, A E IROlx " and Ad E IR:OlxOl are nonnegative, r;. E N, 
,"d ¢O E C+, wh"e C+ £ (,pO E C({-<,'" ,0},llI") , ,p(8) ~~ 0,0 E 
{ -I(,' .. , O}} is a vector sequence specifying the initial state of the system. In th is 
case, 9 is asymptotically stable for all I( E {O, '" , K:}, where K: > 0, if and only if 
there exist p , T E IR:" such that p > > 0 and r > > ° satisfy 

(14) 

The Lyapunov-Krasovski i functional V : C+ -+ IR used to prove this result is g iven 
by -, 

V( ,p) ~ P T ,prO) + I: pT A" ,p(O), <1>0 E C+. (IS) 
(J=-;< 

A similar remark holds for Theorem 2 below. 

Next, we present a nonlinear extension of Proposition I and Theorem I. Spec ifi ­
cally, we consider nonlinear time delay dynamical systems 9 of the form 

x(t) ~ Ax(t) + f,,(x(t - T)), x(O) ~ ¢(9) , -T'; 9 ,; 0, t ~ 0, (16) 

where x(t) E 1ft", t "2: 0, A E JR"X" , id IR:Ol -+ JR" is locally Lipschitz and 
id(O) :::: 0, T "2: 0, and 1(-) E C. Once again, since 1(-) is continuous, ex istence 
and uniqueness of solutions to (16) follow from Theorem 2.3 o f [6, p. 44] . Nonl inear 
time delay systems of the form given by (16) arise in the study of physiological and 
biomedical systems [IO}, ecological systems [1 I}, population dynamics [1 2}, as well 
as neural Hopfield networks [13] . For the nonlinear time delay dynamical system 
(16), the definition of nonnegativi ty holds with (2) replaced by ( 16). The following 
defini tion is needed for our next result. 
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Definition 5. Let fd = [fd1 , ... , fdnrr : V -t Ill", where V is all open subset of 
IR" tl/at contains i:. Theil fd is nonnegative if fd i(x) ;::: O./or all i = 1, . .. , n, alld 

x E R;.. 
Proposition 2. COl/sider the lIonlineartime delay dynamical system q given by ( 16). 
If A E IRn X" is essentially nonnegative and fd : JR." -t IR" is nonnegative, then q is 
/lolillegative. 

Proof. The proof is identical to the proof of Proposition I . o 
Next, we present sufficient conditions for asymptotic stability for nonl inear non­

negative dynamical systems g iven by (16). 

Theorem 2. COllsider the II onlinear norlllegati~·e time delay dynamical system q gi­
veil ( 16) where A E IRnx " is essemially nonnegative, fd : IR" -t IR" is nonnegative, 
and fd(x) :S:S 1'X, x E i:, where l' > o. If there exist p, r E IR" such that p > > 0 
alldr » o satisfy 

0= (A +1'Isrp+ r, 

then 9 is QjymplOtically stable for all T E [0,00). 

(17) 

Proof. Assume that (17) holds and consider the candidate Lyapunov-Krasovskii 
functional V : C+ -t IR given by 

V(,p) = pT,p(O) + [: pT J.,(,p(B))dB, ,pO E C+_ 

Now, note thai V{ t,b) ;::: pT t,b(0) ;::: O'il tJ7(O)II, where 0' £ min'E{I,2, ... ,n} Pi > O. 
Next, using (17), it follows that the Lyapunov-Krasovskii directional derivative along 
the trajectories of (1 6) is given by 

V (x,) = pT x(t) + pT [!dIx(t)) - J,(x(t - ,))1 
= pT(Ax( t ) + J,(x(t))) 

:s pT Ax(t) + 1'pT x(t) 

=_rTx (t ) 

~ -Pllx(t)lI, 

where {3 £ mill iE{i ,2, ... ,n} ri > O. Now, it follows from Corollary 3. 1 of [6, p. 143J 
that the nonl inear nonnegative time delay dynamical system 9 is asymptotically 
stable for all T E [0,(0) . 0 

Remark 3. The structural constraint fd(x) S:S 1'x, x E 1R:, where l' > 0, in the 
statement of Theorem 2 is naturally satisfied for many compartmental dynamical 
systems. For example. in non linear phannacokinetic models [14J the transport across 
biological membranes may be facilitated by carrier molecules with the nux described 
by a saturable from fdi(x i, Xj) = ¢ma,,[(xf /(xf + (3) - (xj /(xj + {3)], where 
Xi, Xi are the concentrations of the i lh and jlh compartments and ¢ max. 0', and {3 
are model parameters. This nonlinear intercompartmental now model sati sfies the 
structural constraint of Theorem 2. 
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4 Dissipativity Theory for Nonnegative Dynamical Systems with 
Time Delay 

In this section, we present sufficie nt condi tions for dissipativi ty for the linear time 
delay nonnegative dynamical system (2), (3). Recall that a func tion s : IRm x IRI ..-f IR 
is called a slIpply rate [8] if it is locally in tegrable; that is, for all input-output pairs 

u E IRm and y E IR', s( ·, ·) satisfies Itt,2Is(u(a),y(a))ldO" < 00, tl , t2 2: O. The 
fo llowing defi ni tion is needed for the next result . 

Defini(ion 6. The nonnegatil'edynamical system (2), (3) is dissipative with respect to 

the supply ra te s : i~ x i~ ..-f IR if there exists a «l nonnegative-definitefimctionai 
Vs : C+ -+ lit called a storage functional, such Ihallhe d issipation inequal ity 

( 18) 

is satisfied/or all tJ ,t 2: 0, where x(t), t 2: 0, is the sollllion 10 (2) wilh 41(-) E C+ 
alld u(t) E iR:'. The lIollnegative dynamical system (2), (3) is strictly d issipative 

with respect to the supply rate s : i~ x ~ ..-f IR if the dissipation inequality (18) 
is strictly satisfied. 

Theorem 3. Let q E IR' and r E IR"'. Consider the nonnegative dynamical system {I 
given by (2), (3) where A E IRnxn is essefltially nonnegative, Ad 2:2: 0, B :::::::::: 0, 
C :::::::::: 0, and D :::::::::: o. If ' here exist p E iR:, I E iR: (resp., I E JR.t.), and w E lR: 
silch that 

0= (A + Ad)Tp - CTq+/ , 

0= BT P - DT q - r + w, 

(19) 

(20) 

Ihen 9 is dissipative (resp., strictly dissipative) wilh respect 10 the sllpply rate 
s(U,y)=qTy+rTu. 

-n -" -'" Proof. Suppose that there ex ist p E iR+ .1 E iR+, and wE iR+ such that ( 19) and 
(20) hold. Then, wi th storage functional 

it follows that, for all Xt E C+ and u E nr;, 
1I,(x,) = pT x(t ) + pT Ad[X(t) - x(t - T)] 

= pT[Ax(t) + AdX(t - T) + Bu(t)] + pT AdX(t) - pT AdX(t - T) 

= pT (A + Ad )x(t) + pT Bu(t) 

= qTCx(t) _IT x(t) + qT Du(t ) + r T u{t) _ wTu(t) 

(2 1 ) 

S qTy(t ) +rTu(t), (22) 
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which implies that 9 is dissipative with rcspect to thc supply ratc s(u, y) = qT Y + 
r T u. Finally. in the casc whcre l E IR+ . the inequality in (22) is strict and hence 9 is 
strictly di ssipative with respect to the supply rate s(u, y) = (/ y + rT u . 0 

The result presented in Theorem 3 can be easily extended to systems with mul­
tiple and distributed state delays. Specifically. consider the multiple point-wise de lay 
system 9 given by 

'" x (l) = A x (t) + L A d;x(t - T;) + Bu( l ) , x {8) = 4>(8), -'f::; 8 ::; 0, l 2: 0, 
j=:= ] (23) 

y(t ) ~ Cx(t ) + Du(t) , (24) 

whcre x(t) E JRl"l. t 2: o. A E IR>1 X>1 is essentially nonnegative, A d; E R>1 X>1 . 
i = 1, ... , n d , is non negative, T = maxjE{I. ... . "d} r;. and 4>0 E i'\ ~ { tj7(.) E 
e([ - T, 0], JR'!) ; tj7(8) 2: 2: 0,8 E [-7'", OJ} . In thi s case, with (19) replaced by 

". 
0 = (A + L Adj)T P - CT q + I (25) 

;=1 

and storage functional 

(26) 

it can be shown using a similar construction as in the proof of Theorem 3 that 9 given 
by (23), (24) is di ssipative with respect to the suppl y rate s(u , y) = q T Y + r T u. 

Alternatively, for pure distributed de lay systems of the form 

,,(t ) ~ Ax(t ) + ['. AdX(t + a)da + Bu(t), x (O) ~ ¢(O), 

y( t ) ~ Cx(t) + Du(t) , 

it can al so be shown, with (19) replaced by 

and storage functional 

- T ::; 8 ::; 0, l 2: 0, 
(27) 

(28) 

(29) 

that (27). (28) is di ssipative with respect to the supply rate s(u , y) = q T Y + r T u. 
Finally. we show that linear compartmental dynamical systems with time delays 

[51 are a special case of the linear nonnegative time delay systems (2), (3). To see 
this, for i = 1, .. . ,n , let x ;(t ), t 2: 0, denote the mass (lmd hence a nonnegative 
quantity) of the i th subsystem of the compartmental system shown in Figure I. let 
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u,(t) 

ith Subsyst.;m 
%;(t) 

a; ,%,{t) 

uJ{t) 

ith Subsys\.<:IIl 
%,(t) 

a,,%,(t) 

Fig. I. Linear eompanmcmal intcrconnccted subsystcm model with timc dclay. 

a u 2: 0 denote the loss coeffici ent of the i th subsystem, let tP;j(t - r), i t- j, 
denote the net mass flow (or flu x) from the jth subsystem to the i th subsystem given 
by tP;j(t - r) ::::: aijXj(t - r) - ajixi(t), where the transfer coeffi c ient aij 2: 0, 
i t- j, and r is the fixed time it takes for the mass to fl ow from the jth subsystem 
10 the ith subsystem, and let u;(t) 2: 0, t 2: 0, denote the input mass flu x to ith 
compartment. For si mplicity of exposition we have assumed that all transfer times 
between compartments are given by r. The more general multiple delay case can be 
addressed as shown for the system 9 given by (23), (24). Now, a mass balance for 
the whole compartmental system yields 

" " 

i=1.i;tj i== I ,ii-i i::::: 1, . . . ,n, (31) 

or, equivalently, 

x(t) ::::: Ax(t) + Adx(t - r) + u(t), x(O) ::::: ¢(O), -7:::; 0 :::; 0 , t 2: 0, (32) 

where x( t) ::::: [XI (t),- . . ,Xn (t)]T, u( t) ::::: [UI (t), . . ,U" (t)]T, ¢(.) E C+, and for 
i,j::::: 1, .. . ,n, 

_ { 0, i ~ j 
Ad(ii) - . ...J. . • 

, a;j, l ..,.. J 
(33) 

Note that A is essentially nonnegative and Ad is nonnegative. Furthermore, note that 
A + Ad is a compartmental matrix and 

(A + Ad)X ~ (J"(x) - D(x»e, (34) 

where In(x) is a skew-symmetric matrix funct ion with J"{;,i)(x) ::::: 0 and 

i t- j, 

x E i~. 
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To show that all compartmental systems of the form (32) with measured outputs 
corresponding to material outnows y = D(x)e = [all Xl , anX2, ... , a""x,,]T are 
dissipative with respect to the special supply rate s(u, y) = e T u - eT y, consider 

the storage functional VsCI/J) = eT 1j.> (O) + eT I~T Ad'lj.> (O)dO, Note that the storage 
functional Vs('Ij.» captures the total muss of the system at t = 0 plus the integral of 
the mass now in the transit between the compartments over the time intervals it takes 
for the mass to now through the intercompanmental connections. Now, it follows 
that 

\is(xtl = eTx(t) +eTAd [X(t) - x(t - T)] + eTu(t) 

= eTI(A + A,)x(t) + u(t)] 

= eT u(t) _ eT y(t) + eT J,,(x(t»e 

=eTu(t) _eTy(t), XtEC+, (35) 

which shows that all compartmental systems with outputs y = D(x)e are dissipative 
with respect to the supply rate s(u,y) = eTu - eTy. Note that in the case where 
the system is closed; that is, u(t) == ° and y(t) == 0, v,.(xd = 0, XI E C+ , which 
corresponds to conservation of mass in the system. 

5 Feedback Interconnections of Nonnegative Dynamical Systems 
with Time Delay 

In this section we consider feedback interconnections of dynamical systems with 
time delay. We begin by considering the nonnegative dynamical system Q given by 
(2), (3) with the nonnegative dynamical feedback system Qc given by 

Xe(t) = Aexe(t) + AdeXe(t - T) + Bcue(t), xc(O) = f e(O), - T:5 ° :s 0, 
t ~ 0, (36) 

(37) 

where A e, Ade E IR."G X n. , Be E IRn• x m. , Ce E lR'< x "G, Ae is essentially nonnega­
tive, Adc 2:2: 0, Be 2:2: 0, Ce 2:2: 0, and fcO E Cc+ £ {'Ij.>cO E C([ - T, 0], !R.n . ) : 
'lj.>e(O) 2:2: 0, 0 E [-T,Oj}. Note that the delay amount in the feedback system Qc 
need not be the same as the delay amount in the dynamical system Q. The assump­
tion of equal delay amounts in Q and Qc is made for convenience only. If this were 
not the case, the closed- loop system has the fonn given by ( 10) and thus can easily 
be addressed. For the following result we assume that row;(C) ::J. 0, i = 1, ... , n, 
and roWi(Cc) ¥- 0, i = 1, ... ,nc, where rowi(') denotes the i th row operator. 

Theorem 4. Let q E nr, r E !Em, % E nr<, and r c E IRm<. Consider the linear 
nonnegative dynamical systems Q and Qc given by (2), (3) alld (36), (37), respec­
tively. Assume that Q is dissipative with respect to the linear supply rate s(u, y) = 
qT y+r T u and with a linear storagejllnctiollal Vs( 'Ij.» = pT 'Ij.>(0)+ I~T pT Ad'lj.> (O)dO, 
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where p > > 0, and assume that ge is dissipative with respect to the linear SIlP­
ply rate S(ue,Ye) ::: qJ Ye + rJ U e and with a linear storagefimctional VsdWe) = 
pJ We(O) + J~,.- pJ AdeWc(O) dO, where Pc > > O. Then the following statements holtl: 

i) If there exist a scalar a > ° sllch thai q + a1' e ~ ~ 0 and l' + aqc ~ ~ 0, rhen 
rhe positive feedback imercollnecliol! of9 and 9c is Lyapunov stable. 

iO If Ihere exist a scalar a > ° such that q + arc < < ° and l' + aqc < < 0, rhen 
the positive feedback interco"nection of 9 and 9c is asymptotically stable. 

Proof. Note that the positive feedback interconnection of 9 and ge is g iven by u = 1fe 
and Ue = Y so that the closed-loop dynamics of 9 and 9c is given by 

[ 
x(t) 1 [A BG, 1 [X(t) 1 [Ao a 1 [X(t - r) 1 
xc{t) = BeC Ae + BeDCe xe(t) + ° Adc Xc(t - T) , 

[ x(O) 1 [f(O) 1 - T ~ 0 ~ 0, t 2 O. (38) 
x,(O) - f,(O) , 

Now, note that .4. ~ [A BCc 1 is essentially nonnegative and Ad £: 
- BeG Ac + BeDGe 

[~d A~e] is nonnegative . Hence, the closed-loop system is nonnegative and thus 

itt) £: [xT(t) xJ(t)]T 2:::2:: 0, t 2:: O. Next, consider the Lyapunov-Krasovsk ii func­
tional V : C+ -+ IR given by 

V(,p) = V, (,,) + aV"(,,,) 

= pT 1/7(0) + [ 0 ... pT Ad1/J(O)d8 + ap[ 1/7c(O) + a [ 0" p[ AdCWC(O) dO , 

;p = [W T wJY E C+, 

where ¢ £ [17 ¢J]T E C+ £ ({wT 1/7J'JT : w(·) E C+ , we(·) E Ce+}. Now, note 
that 

V(",) 2 pT,,(O) + p;", (0) = pT,p(O) 2 all,p(O)II, 

where p £: [pT pJ r and a£: min ;E{i,2, ... ,n+n.}P; > O. Next, it follows that the 
Lyapunov-Krasovskii directional derivative along the trajectories of (38) is given by 

V(xd ~ q T y(t) + r T u(t) + a(qJ Yc(t) + r{ uc(t)) 

= (q + are)T y(t ) + (1' + aqe)T u(t) 

= (q + are)T Cx(t) + [(q + are)T DCc + (1' + aqc)T Cc]xe(t) 
,T '(t) = -1' x 

~ -filli(t)11. 

where l' £: - [(q + arc)TC, [(q + arc)T D + (1' + aqc)T]Cc ]T, (3 £: min;E{L,2, 
... ,n+n<)1'; 2:: 0 , and X[(O) = i(t+O), 0 E [- T, 0), denotes the (infinite-dimensional) 
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state of time delay dynamical system. Now, it follows from Corollary 3. 1 of [6, 
p. 143J that the closed-loop linear nonnegative time delay dynamical system (38) 
is Lyapunov stable which proves 0. 

Finall y, to show ii) note that if q + OTc < < 0 and J' + oqc < < 0, then f3 > O. 
Hence, it follows from from Corollary 3. 1 of l6, p. 143] that the closed-loop linear 
nonnegative time delay dynamical system (38) is asymptotically stable. 0 

6 Conclusion 

Nonnegative and compartmental models are widely used to capture system dynam ics 
involving the interchange of mass and energy between homogeneous subsystems or 
compartments. In this chapter, necessary and su ffi cient conditions for asymptotic sta­
bility of nonnegative dynamical systems with time delay were given. Furthermore, 
we developed sufficient conditions for dissi pat ivity with linear storage functionals 
and linear supply rates for nonnegative dynamical systems with time delay. Finally, 
general stability criteria were given for Lyapunov and asymptotic stabil ity of feed­
back interconnections of retarded nonnegative dynamical systems. Analogous dissi­
pativity resu lts for discrete-time nonnegative dynamical systems with time delay are 
given in [15]. 
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