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Preface

The wide penetration of renewable energy sources and plug-in electric vehicles
(PEVs) has imposed significant challenges to the design and operation of the power
grid. In particular, the increase in the intermittent renewable sources, such as solar
and wind power, seriously affects the provision of system services that balance
supply and demand. Such services include frequency regulation, voltage control,
and the control and management in day-ahead, hour-ahead, and real-time operation.
Utilizing the energy storage system (ESS) in power grids is considered an effective
mechanism for absorbing the fluctuation of energy generation and consumption.
Besides traditional ESSs, such as pump hydro, the increasing number of PEVs can
be viewed as an emerging type of battery energy storage systems (BESSs) that
are widely available at the distribution level. This book studies the optimal online
charging control of BESS and PEVs, with the aim to absorb the random fluctuation
in the power supply as well as demand and reduce the additional burden on the grid
due to massive EV penetration. Both the theoretic analysis and numerical results
show the effectiveness and efficiency of the proposed online control techniques.

This book not only provides researchers with the latest research results timely
and extensively but also presents a comprehensive overview of the online charging
control techniques. In particular, the online control techniques have strong practica-
bility since they do not rely on any noncausal knowledge of future information. The
researchers, operators of power grid, and EV users will find this to be an exceptional
resource.

Shatin, Hong Kong Wanrong Tang
June 8, 2016 Ying Jun (Angela) Zhang
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Chapter 1
Introduction

1.1 Motivations

Renewable energy sources have been widely adopted to reduce carbon dioxide
emissions and the dependence on fossil fuels. The large-scale integration of
renewable energy sources imposes significant challenges to future power grids,
mainly because the power generation from renewable energy sources is intermittent
and fluctuating. Uncertain power generation leads to unpredictable fluctuation in
both the power demand for traditional power generators and the power flow in
the grid system. This may result in serious problems such as voltage instability
and cost-ineffective power generation [1]. Energy storage systems (ESSs) offer
a promising solution that can significantly contribute to stable and cost-effective
supply of electricity energy. Today’s ESSs include pumped hydro, various battery
technologies (Lead-Acid, Nickel-Cadmium, Sodium-Sulfur, etc.), flywheel, and
compressed air energy storage (CAES) [2]. The major problem with pumped hydro
and under ground CAES storage is that there are few locations which have the
required geological layout that allows these methods to be used. In practice, the
locations where pumped hydro/CAES is deployable usually have a long distance
from where the electricity is needed. Battery energy storage systems (BESSs), on
the other hand, being modular and pad mounted in design, can be put into any
traditional electrical sub-stations [3]. Compared with other types of ESSs, BESSs
have very fast ramping rates, making them suitable for various system services such
as frequency control and real-time market operation.

BESS was used in the early days of direct current electric power [4]. Where AC
grid power was not readily available, isolated lighting plants run by wind turbines
or internal combustion engines provided lighting and power to small motors. BESS
could be used to run the load without starting the engine or when the wind was
calm. BESSs that connect to large solid-state converters has been used to stabilize
power distribution networks. In recent studies, BESS is considered to be a promising

© The Author(s) 2017
W. Tang, Y.J.A. Zhang, Optimal Charging Control of Electric Vehicles in Smart
Grids, SpringerBriefs in Electrical and Computer Engineering,
DOI 10.1007/978-3-319-45862-5_1
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2 1 Introduction

mechanism for absorbing the variability in local power generation and consumption,
thereby reducing the fluctuation in the total power flow [5–10]. The key problem
is how to optimally control the charging/discharging of BESSs to maximize its
potential benefit for the grid.

The massive integration of plug-in electric vehicles (PEVs) has introduced a
new type of BESS, i.e., mobile BESSs [11, 12]. A PEV is a motor vehicle that
can be recharged from an external source of electricity, and the electricity stored
in the rechargeable battery packs drives or contributes to driving the wheels [13].
The transportation industry represents a major portion of global emission, which is
responsible for 24 % of the global carbon dioxide production. The deployment of
PEVs on roads is regraded as an efficient way to reduce carbon emission from the
transportation industry [14]. As such, world government have pledged billions of
dollars to fund the development of PEVs and their components. According to the
new analysis from the Centre for Solar Energy and Hydrogen Research, the demand
for electric vehicles (EVs) is growing around the world fairly rapidly that brings the
total global market more than 740,000 EVs in early 2015 [15].

The fast increasing adoption of EVs brings both challenges and opportunities to
the power grid. On one hand, the massive load caused by the integration of EVs
into the power grid raises concerns about the potential impacts to the operating cost,
voltage stability and the frequency excursion at both generation and transmission
sides. On the other hand, EVs can be used as a new type of mobile ESSs that
can serve many purposes. With adequate energy stored in the batteries of EVs,
the bidirectional charging and discharging control has extensive applications in the
microgrids/distribution networks, such as load flattening, peak shaving, frequency
fluctuation mitigation and improving the integration of renewable sources. For
instance, Fig. 1.1 illustrates the use of EVs for load flattening in a power gird. During
off-peak hours, EVs can act as loads to withdraw and store electricity from the main
grid. During peak hours, EVs can release the stored energy back to the grid to meet
the high demand of other electricity consumers. Overall, the use of EVs flattens
the power profile over time and improves the stability of the entire power system.
In both cases, uncontrolled EV charging/discharging will lead to inefficient system
operation or even severe problems at different network levels. It is therefore critical
to develop effective charging/discharging scheduling algorithms for efficient grid
operation. In practice, a key design challenge of charging scheduling algorithms
lies in the randomness and uncertainty of future events, including the charging
profiles of EVs arriving in the future, future load demand in the grid, future
renewable energy generation, etc. Therefore, it is necessary to develop online
charging/discharging algorithms to cope with different degrees of uncertainty when
making real-time decisions. Besides, the large-scale charging of EVs requires low-
complexity control mechanisms to reduce the operating delay and the capital cost
of equipment investment.

In this book, we study the optimal online charging control of BESSs and PEVs
in Microgrids. We first consider the problem of EV charging scheduling, when
different amount of future information is available at the time when scheduling
decision is made. We then consider the case when bi-directional power flow can
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be drawn from the BESS to mitigate the impact of renewable energy integration in
a microgrid. In all cases, we endeavor to find simple yet optimal or near optimal
solutions that are readily deployable in practical systems.

1.2 Backgrounds

1.2.1 Energy Storage Systems

The development of smart power grids has for a long time hinged on concepts of
flexibility and demand response [2, 3]. Meanwhile, compared with the traditional
power plants, sources like solar or wind tend to output far more uncertain and less
controllable power. As such, the balance between supply and demand will depend
more on adjusting demand, shifting it over time as required. Eventually, power
balance will depend and more often on the availability of buffer/storage capacity
available in the network, since there is a limit for individual electrical devices and
components to absorb the variability. By providing the energy buffers, power grids



4 1 Introduction

could gain additional capacity to absorb the load demand during the peak hours or
supply for a longer period of time. Furthermore, the energy capacity will play a
crucial role to increase the amount of renewable energy sources in the power grids.

A storage solution is considered a black box that takes in electricity from the grid
and releases energy in some form, which naturally influences the balance between
demand and supply in the system. This is obvious when energy is released again as
electricity and thus adds to the overall supply (e.g. a battery, pumped hydro) [16].
When energy is released/used as heat, it means no electricity needs to be used at
that point in time to generate the heat and thus overall demand is suppressed. For
example, energy is stored as heat in a heat pump with an integrated thermal buffer,
and released when required without the heat pump having to use electricity again
[17]. Based on the principle of operation and main components, the energy storage
systems can be mainly classified into three types [16–20]:

• Mechanical Storage System,
• Electrochemical storage system,
• Thermal storage system.

Mechanical storage system includes pumped hydro electric system (PHS),
flywheel energy storage system (FESS) and compressed air energy storage system
(CAES). PHS is a large scale energy storage system, which converts the potential
energy of water into electrical energy. FESS is an electromechanical device, which
stores the energy in the form of kinetic energy. CAES is capable of providing the
large energy storage deliverability of above 100 MW with single unit, which works
on the basis of gas-turbine technology.

The typical electrochemical storage system is the battery energy storage tech-
nology. The battery technology is one of the oldest storage system, which stores
the electrical energy in the form of chemical energy. The battery storage system
is comprised of one or more electrochemical cells, where each cell consist of a
liquid or solid electrolyte together with a positive and negative electrodes. Based on
the electrochemical technologies, the battery storage system can be classified into
following types [21]:

• Lead-acid battery storage system
• Lithium-ion battery storage system
• Nickel-cadmium battery storage system
• Sodium-Sulphur battery storage system
• Sodium-nickel Chloride battery storage system
• Vanadium redox flow battery (VRB) storage system
• Zinc bromine battery storage system (Zn Br battery)
• Polysulphide-bromide battery storage system
• Hydrogen fuel cell system

The thermal storage systems are classified into low temperature and high
temperature systems [22]. They are further categorised into industrial cooling ,
building cooling, building heating and industrial heating systems.
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1.2.2 Applications of ESSs

The main applications of ESSs in the power system focus on the following
aspects [21]:

• Ancillary services: By providing or absorbing energy from the grid, ESSs are
able to provide ancillary services including frequency control, voltage control,
spinning reserve, standing reserve and black start.

• Peak shaving: The adoption of ESSs can reduce peaks in power demand
and therefore effectively reduce the investment cost, because distribution and
transmission lines as well as generation capacity are dimensioned according to
the peak power demand.

• Load leveling: Load leveling reduces fluctuations in energy demand during one
day. During times with low demand, energy is transferred into the ESSs and
during times with high demand, the energy stored in the ESSs is fed back into
the grid.

• Island grids: In remote areas or on islands, the connection to an integrated power
network is in many cases either not economical or technically impossible.

• Other sectors include but not limited to the electromobility, heat storage, resi-
dential energy storage for increased self-consumption of distributed electricity
generation, industrial energy storage, uninterruptible power supply (UPS).

1.2.3 BESS Models

As the fast development of BESSs, there are different kinds of BESSs for different
scenarios, where the installations sizes range from kilowatts to gigawatts, and
discharge times range from seconds to hours [2]. Various mathematical models
have been developed to predict the operation of BESSs given a set of parame-
ters. There are numerous factors that affect the operation of a battery, including
charging/discharging rate, battery age, battery type, temperature, etc. In general, the
modelling methods are broadly divided into two types: electrochemical models and
equivalent circuit models.

• Electrochemical models of batteries are designed to take into account the
chemical, thermodynamic, and physical qualities of the batteries and are typically
more precise and complex [23].

• Equivalent circuit models are typically used simulating BESSs in power system
applications [24]. The battery voltage, current, charge and temperature vary as
functions of one another, which in turn affect the battery output.
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1.3 Contributions

This book studies the optimal online charging control of the energy storage system
in microgrids and distribution networks. To address some practical concerns of
ESS charging control, we pursue the development of the following two design
components:

• Online or stochastic problem formulations to capture the fact that the information
future system data are typically unknown or uncertain at the time when decisions
are made;

• Online algorithm designs to solve the online or stochastic problems with
improved performance in terms of optimality and scalability.

We practise our idea of schemes through the investigation of two types of energy
storage systems, i.e., PEVs and BESS. Each of them has some practical challenges,
which render the conventional designs infeasible or unscalable. Specifically, the key
contributions of this book are summarized into the following three aspects.

• We propose an efficient Online cooRdinated CHARging Decision (ORCHARD)
algorithm that aims to minimize the total energy cost without making use
of any future information. In contrast to the algorithms proposed in [25–27],
ORCHARD allows heterogeneity among PEVs. That is, PEVs can have arbitrary
arrival (or plug-in time) and departure times, charging demands and maximum
charging rates. We show that ORCHARD is strictly feasible in the sense that
it guarantees to fulfill all charging demands before the due time, as long as
the charging problem is feasible. More importantly, we rigorously analyze the
performance of ORCHARD in terms of competitive ratio, which is a commonly
used metric for assessing online algorithms. Our analysis shows that ORCHARD
achieves a competitive ratio of 2.39 when the energy cost function is quadratic
form of the load demand. This is the best known competitive ratio so far [28].
To further reduce the computational complexity, we propose a low-complexity
optimization routine to replace the standard convex optimization algorithms used
in ORCHARD. Extensive simulations show that the average performance gap
between ORCHARD and the offline optimal solution is as small as 6.5 %. The
gap can be reduced to 5 %, if the speeding factor used in the algorithm is carefully
chosen according to the charging demand pattern.

• We consider the optimal PEV charging scheduling, assuming that the future
charging demand is not known a priori, but its statistical information can be
estimated. In particular, we define the cost of PEV charging as a general strictly
convex increasing function of the instantaneous load demand. Minimizing such
a cost leads to a flattened load demand, which is highly desirable for many
reasons [25, 29–32]. The online PEV charging scheduling problem is formulated
as a finite-horizon dynamic programming problem with continuous state space
and action space. To avoid the prohibitively high complexity of solving such a
dynamic programming problem, we rigorously prove that a Model Predictive
Control (MPC) approach yields a near-optimal solution that has a bounded
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performance gap from the optimal solution regardless of the distribution of
exogenous random variables. Specially, the performance gap is evaluated by
the Value of the Stochastic Solution (VSS), which represents the gap between
the solution of the approximate approach and that of dynamic programming
problem [33–35]. Instead of adopting the generic convex optimization algorithms
in MPC approach, we propose an algorithm with computational complexity
O(T3) by exploring the load flattening feature of the solution, where T is the
total number of time stages. Furthermore, we show that the proposed online
algorithm can be made scalable when the random process describing the arrival
of charging demands is first-order periodic. That is, the complexity of obtaining
the charging schedule at each time stage is reduced to O(1) and is independent of
T . Extensive simulations show that the proposed algorithm performs very closely
to the optimal solution. The performance gap is smaller than 0.4 % in most cases.

• We address the problem in a microgrid system with renewable energy sources
and a BESS. The microgrid exchanges power with an interconnected main grid
when its power demand and supply cannot balance internally. To mitigate the
negative impact of renewable energy integration, we aim to minimize a cost
function, which is a general convex increasing function of the instantaneous
power exchanged with the main grid. On one hand, the increasing convexity of
objective function reflects the fact that each unit of additional power demand is
more expensive to obtain and make available to the consuming entity. On the
other hand, it flattens the power exchanged with the main grid over time as much
as possible. Through rigorous analysis, we show that the optimal BESS operation
policy exhibits a threshold structure, which allows the design of simple control
algorithms. When the discount factor satisfies certain conditions, the optimal
policy degenerates to one that takes a short-sighted behavior, i.e., to discharge
the battery as fast as possible regardless of the system state. This short-sighted
policy drains the battery as fast as possible without recharging it, making BESS
almost useless. As such, our analysis here provides a guideline to set the discount
factor such that the short-sighted policy is avoided. Moreover, we discuss the
effect of the battery energy capacity on the total cost under the optimal charging
policy. We show that the optimal cost is a decreasing convex function of the
battery capacity, implying that there exists an optimal battery sizing that strikes a
balance between the total cost and the capital investment. Our simulation results
show that the battery can significantly reduce the large fluctuation in the power
demand caused by the integration of renewable energy sources. The numerical
results also verify our analysis, including the threshold structure of the optimal
policy, the condition when the short-sighted policy occurs, and the effect of the
battery energy capacity.
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1.4 Organization

This book is organized as follows. Chapter 2 investigates the PEV charging schedul-
ing problem without any assumptions or predictions of the future information. An
Online cooRdinated CHARging Decision (ORCHARD) algorithm is proposed and
its worst case performance is quantified in terms of competitive ratio. In Chap. 3,
we consider the PEV charging scheduling problem with the estimation of statistical
information of random data. A Model Predictive Control (MPC) based algorithm
is proposed and analyzed in terms of both optimality and scalability. Chapter 4
is concerning the optimal control of a battery energy storage system (BESS) in a
microgrid with renewable energy sources. We show that the optimal charging policy
has a threshold structure. Besides, the optimal battery size is analyzed under the
optimal charging policy. Finally, we conclude this book in Chap. 5 by summarizing
the main results of this book and discuss several potential directions in future work.
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Chapter 2
ORCHARD Algorithm for PEV Charging

In this chapter, we consider the PEV charging problem in a community, where the
power consumption consists of the load of a PEV charging station and the other
inelastic base load, as shown in Fig. 2.1. By controlling the charging rates of PEVs,
we aim to minimize total cost on electricity bill paid by the charging station. PEVs
arrive at the charging station at random instants with random charging demands that
must be fulfilled before their departure time.

The optimal PEV charging scheduling problem has been widely studied in the
literature. Many of the existing PEV charging algorithms are “offline” in the sense
that they rely on the non-causal information of future PEV charging profiles when
deciding the charging schedules. That is, the arrival time and charging demand
of a PEV are assumed to be known to the charging station prior to the arrival of
the PEV. For instance, [1] requires all PEVs to negotiate with the charging station
about their charging schedules one day ahead. However, this assumption does not
hold in practice. A PEV’s charging profile is revealed only after it arrives at the
charging station or connects to the charging pole. Considering the most conservative
case where neither the future PEV arrival instants, charging demands, nor their
distributions are known a priori, we are interested in developing an online charging
algorithm that schedules PEV charging based only on the information of the PEVs
that have already arrived at the charging station.

2.1 Problem Formulation

In this section, we first introduce the offline PEV charging problem by assuming
the knowledge of future information. We then formulate the online PEV charging
problem without future knowledge. The optimal offline PEV charging scheme

© The Author(s) 2017
W. Tang, Y.J.A. Zhang, Optimal Charging Control of Electric Vehicles in Smart
Grids, SpringerBriefs in Electrical and Computer Engineering,
DOI 10.1007/978-3-319-45862-5_2
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Fig. 2.1 Illustration of PEV
charging scenario

Grid

Charging station

Base load

will be used as a benchmark to evaluate the performance of the proposed online
algorithm.

2.1.1 Optimal Offline PEV Charging Problem

Suppose that N PEVs arrive during a time period T , indexed from 1 to N according
to their arrival order. Notice that for a given time period T , N itself is a random

variable due to the random arrival of PEVs. Let Di, t
(s)
i , t(e)i denote the charging

demand, arrival time, and departure time of PEV i, respectively, which will be
known by the charging station once the PEV arrives. In order to capture the key
characteristic of the online charging problem, we assume that a PEV will not depart
unless its charging demand is fulfilled. Nonetheless, later we will show that our
online algorithm is not affected by early charging terminations.

Due to the battery constraint, PEV i can only be charged at a rate xit ∈ [0,Ui],
where Ui is the maximum charging rate. For the formulation to be meaningful, we
assume that all the charging demands are feasible. That is,

Di ≤ min{Ui(t
(e)
i − t(s)i ),ζi} (2.1)

holds for all i, where ζi is the battery capacity of PEV i. For simplicity, we omit the
upper bound of the total charging rate that can be provided by the charging station.
Let It be the set of PEVs parking in the station at time t. The charging station has
the control of the charging rate xit for each PEV i. We define st as the total charging
rate at time t, i.e.,

st = ∑
i∈It

xit, (2.2)
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which is also called charging load at time t. The total load consists of the charging
load and the inelastic base load. The base load, denoted by lt, represents the load
of other electricity consumptions at time t except for PEV charging. Here, we
assume that the base load does not change continuously with time. Rather, it remains
constant for a duration of time (usually in the unit of seconds or minutes) and varies
to another value afterwards (see Fig. 2.2 for the illustration). Then, the total load at
time t, denoted by yt, is given by

yt = st+ lt = ∑
i∈It

xit+ lt. (2.3)

In this chapter, we assume that the community pays a wholesale electricity price that
is time-varying and determined by the total power consumption rate in the system.
This often corresponds to a generator supporting a small geographic area with only
the temporal variation but no spatial variation of the price [1, 2]. The electricity price
is modeled as a linear function of the instant load [1, 3], which is given as follows:

a+2bzt, (2.4)

where a and b are non-negative real numbers, zt is the instant load. Similar to [3],
the electricity cost paid by the charging station at time t is given by

∫ yt

lt
(a+2bzt)dzt = (a( ∑

i∈It

xit+ lt)+b( ∑
i∈It

xit+ lt)
2)− (alt+bl2t ), (2.5)

which indicates that the charging station should be responsible for the increased
electricity cost caused by the PEV charging. The total cost paid by the charging
station for the electricity bill within [0,T] is denoted by Ψ and computed by

Ψ =
∫ T

0

(
a( ∑

i∈It

xit+ lt)+b( ∑
i∈It

xit+ lt)
2 − (alt+bl2t )

)
dt. (2.6)

The optimal charging scheduling problem that minimizes the total energy cost is
then formulated as (2.7).

min
xit

∫ T

0

(
a( ∑

i∈It

xit+ lt)+b( ∑
i∈It

xit+ lt)
2 − (alt+bl2t )

)
dt (2.7a)

s. t.
∫ t(e)i

t(s)i

xitdt = Di, i= 1,2, . . . ,N, (2.7b)

0 ≤ xit ≤ Ui, i= 1,2, . . . ,N, t ∈
[
t(s)i , t(e)i

]
. (2.7c)
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Fig. 2.2 Illustration of one offline case. The time instants are defined as the arrivals and departures
of PEV 1,2,3, · · · , and the change times of base load. Then, relabel the time instants as t1, t2, · · · in
a sequential order. In this case, both PEV2 and PEV3 leave at time t6, and both PEV 3 arrives and
base load changes at time t5

As shown in [4], (2.7) also captures the intent of flattening the total load over
time since the cost function is a convex function of total load. It is obvious that
Problem (2.7) is a convex optimization problem. In the ideal case where the base

load lt and all PEVs’ charging profiles, including t(s)i , t(e)i , Ui and Di are known
to the charging station noncausally at time 0, one can obtain the optimal xit for all
i and t by solving (2.7) before the start of system time. We refer to the optimal
solution obtained with noncausal information as the offline optimal solution. In
practice, however, a PEV’s charging profile is revealed only after it arrives at the
station. Meanwhile, the base load is also a time-varying random process that cannot
be precisely predicted beforehand. In Sect. 2.3, we will investigate an online PEV
charging problem that determines the charging rate at each time t based only on the
current and past information.

2.1.2 Model Transformation

A close look at (2.7) suggests that there are infinite number of variables xit, because
the time t is continuous. In this subsection, we show that the problem (2.7) can
be equivalently transformed to a discrete model that is easier to solve and more
practical to implement, i.e., the optimal charging rate changes only once in a while.

The equivalence is established through transforming the original continuous
problem (2.7) to an event-driven discrete time problem. Throughout this chapter,
an event is defined by an PEV arrival, departure, or a change in the base load.
Likewise, a time interval is defined as the time period between two adjacent events.
As illustrated in Fig. 2.2, we relabel the time instants when the events occur as
t1, t2, · · · in a sequential order. By doing so, neither the base load nor the set of
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PEVs parked in the station changes in the middle of a time interval. Here, we
does not exclude the possibility that more than one event occurs at the same time.
For instance, in Fig. 2.2, both PEV2 and PEV3 leave at time t6, and both PEV 3
arrives and base load changes at time t5. Let K denote the set of indices of the
time intervals, and δk(k ∈ K ) denote the length of kth interval. Without loss of
generality, we denote the base load during the kth interval [tk, tk+1) by lk, since it
does not change within a time interval. We show in Lemma 2.1 that there exists an
optimal solution where the charging rates remain constant during each time interval.

Lemma 2.1. Let x∗it denote an optimal solution to (2.7) and s∗t = ∑i∈It x
∗
it. Then,

the optimal total charging rate s∗t remains constant in each time interval. Moreover,
there exists an optimal solution where x∗it remains constant during each time
interval.

The lemma can be easily proved by Jensen’s inequality. The detailed proof please
refer to Appendix “Proof of Lemma 2.1”.

Due to Lemma 2.1, we can safely assume that xit do not change during a time
interval. Denote by xik the charging rate of PEV i during the kth interval. Likewise,
denote J (i) as the set of indices of the time intervals during which PEV i parks
in the station, I (k) as the set of PEVs that park in the kth interval. Based on
Lemma 2.1, we can equivalently transform problem (2.7) to the following form
that has finitely many variables:

min
xik

∑
k∈K

(
a( ∑

i∈I (k)

xik+ lk)+b( ∑
i∈I (k)

xik+ lk)
2

− (alk+bl2k)
)

δk (2.8a)

s.t. ∑
k∈J (i)

xikδk = Di, i= 1,2, . . . ,N, (2.8b)

0 ≤ xik ≤ Ui, i= 1,2, . . . ,N,k ∈J (i). (2.8c)

It is worth pointing out that the discrete time model in (2.8) is different from
the traditional time-slotted models. The lengths of time slots are fixed in traditional
time-slotted models, whereas the variables in (2.8) are defined by the random events.
By doing so, the model in (2.8) successfully captures the dynamics in the system,
which is not achievable by the traditional time-slotted models unless the time slots
are set infinitesimally small.

2.1.3 Online PEV Charging Problem and Performance Metric

The online PEV charging problem assumes that, at any time instant t, the scheduler
only knows the information that is available so far, including the charging profiles
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of the PEVs that have arrived upon or before t, as well as the past and current base
load. Based on the causal information, the scheduler makes an online decision of the
charging rates xit when an event occurs, and the charging rates remain unchanged
until the occurrence of the next event. Notice that for practicality, a past decision
that has already been implemented cannot be changed in the future. Thus, without
knowing the future information, an online algorithm is forced to make decisions
that may later turn out to be suboptimal. That is, we have ΨON ≥Ψ ∗, where ΨON

denotes the total cost induced by an online algorithm and Ψ ∗ denotes the optimal
cost obtained by the offline optimization.

A standard metric to evaluate the performance of an online algorithm is the
competitive ratio, which compares the relative performance of an online and the
offline algorithm under the same sequence of inputs (e.g., the PEV charging profiles
in our problem)[5]. In particular, the competitive ratio of an online algorithm is the
maximum ratio between its performance and that of the offline optimal algorithm
over all possible input sequences. The formal definition is given in the following
Definition 2.1 [5].

Definition 2.1. An online algorithm is c−competitive if there exists a constant θ
such that

ΨON ≤ c ·Ψ ∗+θ (2.9)

holds for any input.

By definition, the competitive ratio is always greater than or equal to 1. Notice
that the competitive ratio measures the performance ratio in the worst case. Very
often, the average performance ratio is much smaller than c. This will be shown
in the simulation section, where the proposed ORCHARD algorithm achieves an
average performance ratio less than 1.06, although the competitive ratio is 2.39
when the cost function is a quadratic function of load demand.

2.2 Related Work

There have been some recent studies on online PEV charging [3, 4, 6–11]. Gerding
et al. [6] proposes an online auction protocol that vehicle owners use agents to
bid for the charging opportunities. Therein, it assumes that all the PEVs have the
same fixed charging rate. In practice, however, the charging rate could vary among
different types of PEVs. Masoum et al. [7] studies the coordinated charging of
PEVs in residential distribution systems to reduce the power loss, by assuming
that all the PEVs have the same charging period. In practice, the PEVs are very
likely to be at the charging station during different time periods. In contrast to
the algorithms proposed in [6–8], the proposed PEV charging algorithms in this
chapter allow heterogeneity among PEVs. That is, PEVs can have arbitrary arrival
(or plug-in time) and departure times, charging demands and maximum charging
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rates. He et al. [3] considers the scheduling of PEV charging and discharging in
a small geographic area and proposes an online charging algorithm based on an
assumption that no future PEV will arrive when a charging schedule is made. The
resulting charging schedule is suboptimal as it underestimates the actual charging
load. More importantly, most of the existing work, including [3, 4, 6–8], do not
provide theoretical analysis of their online algorithms. The few works that analyze
the performance, e.g., [9], do not guarantee the satisfaction of PEVs’ charging
demands before their departures. Compared with [3, 4, 6–9], we have rigorously
analyzed the performance of the proposed PEV charging algorithms and show that
the proposed PEV charging algorithms are strictly feasible in the sense that they
guarantees to fulfill all charging demands before the due time. In addition, the cost
functions adopted in [10, 11] depend on the individual PEV’s charging demand,
whereas in this chapter we consider the price based on the aggregate load demand,
including the charging demand of all PEV users as well as the base load.

The charging scheduling for PEV is similar to, but not the same as, the speed
scaling problem, which is a power management technique that involves dynamically
changing the speed of a processor [12–16]. Specifically, the processor must schedule
in real-time a number of tasks and allocate a processing rate to each of them, given
that all tasks can be completed before their predetermined deadlines. The processor
tries to minimize the total energy cost, where the energy cost at each time t is
a positive power function of the total processing rate s(t) at that time, i.e. sα(t)
and α > 1. The key difference from a PEV charging problem is that speed scaling
studied in [12–14] does not place a constraint on the maximum processing rate of
each individual job as the PEV charging problem, i.e., each PEV has a maximum
charging rate. Another difference is that the cost function of PEV charging problem
is a general polynomial instead of a positive power function. In other words, PEV
charging schedule is a more general problem than the speed scaling problem, thus
its competitive ratio is no less than 2.39, i.e., the best known ratio for speed scaling
problem when the cost function is a quadratic form [14].

The first offline optimal algorithm to solve the speed scaling problem was
proposed by Yao, Demers and Shenker (YDS) [12]. Later, [12] proposed two online
algorithms, i.e. Average Rate (AVR) and Optimal Available (OA). Conceptually,
AVR processes a task at a rate equals to its average work load within its specified
starting time and deadline. The algorithm is proved to be 2α−1αα -competitive in
[12]. OA uses YDS to calculate the current optimal processing rate by assuming no
more tasks will be released in the future, and its competitive ratio was proved to be
αα [13]. Apparently, the OA solution is suboptimal, as it underestimates the future
workload. To address the problem, [14] proposed a qOA algorithm that scales up
the processing rate of OA by a factor q > 1. It also showed that qOA works better
than OA and AVG in terms of competitive ratio. There are many follow-up works
on extended topics, such as managing both temperature and power [13], minimizing
the total flow plus energy [15, 16] , etc. Overall, the existing online algorithms for
speed scaling cannot be directly applied to solve our problem, mainly because they
do not consider the limits on the maximum processing speeds of tasks.
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In contrast to the previous work, we propose an Online cooRdinated CHARging
Decision (ORCHARD) algorithm, which minimizes the energy cost by mimicking
the offline optimal charging decision. Note that ORCHARD relies on no assump-
tions or predictions of the future information. Through rigorous proof, we show that
ORCHARD is strictly feasible in the sense that it guarantees to fulfill all charging
demands before due time. Meanwhile, it achieves the best known competitive ratio
of 2.39, when the cost function is a quadratic function of the load demand. By
exploiting the problem structure, we propose a novel reduced-complexity algorithm
to replace the standard convex optimization techniques used in ORCHARD.
Through extensive simulations, we show that the average performance gap between
ORCHARD and the offline optimal solution, which utilizes the complete future
information, is as small as 6.5%. By setting a proper speeding factor, the average
performance gap can be further reduced to 5%.

2.3 Online Algorithm

In this section, we present an efficient online algorithm ORCHARD. We show that
ORCHARD achieves a competitive ratio that is the best known so far. Moreover,
the algorithm is strictly feasible in the sense that it always ensures to satisfy all PEV
charging demands.

The proposed ORCHARD algorithm could be easily implemented in a practical
charging station. On one hand, it has low computational complexity. On the other
hand, it only relies on the causal information of the vehicles and the base load rather
than the schedule of the vehicles and the base load in the future. It is robust under
any PEV traffic distribution and base load pattern, because it involves no predictions
about the future information of PEVs and the base load.

2.3.1 Online Optimal Available (OA) Algorithm

In this subsection, we describe a simple online scheme called Optimal Available
(OA) algorithm, which, although suboptimal, will be helpful later in understanding
our proposed ORCHARD algorithm.

The OA algorithm works as follows. At a time instant tj when an event occurs,
the scheduler calculates the optimal charging schedule assuming that no more PEVs
will arrive and base load is unchanged in the future. More specifically, the scheduler
solves the following problem (2.11) at time instant tj, where Ī (t, tj) denotes the set
of PEVs who have arrived by time tj and will be in the station at time t ∈ (tj, T̄(tj)],
where

T̄(tj) = max{t(e)i : i ∈Itj} (2.10)
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Fig. 2.3 Illustration of one online case. The time intervals are defined by change times of base
load as well as the departures of PEVs that are parking in the station at current time tj. Then,
relabel the time instants as tj1, tj2, · · · in a sequential order

denotes the latest departure time of all PEVs that have already arrived by tj(recall
that Itj is the set of PEVs parking in the station at time tj), D̄i(tj) denotes the residual
demand to be satisfied for PEV i at time tj, i.e., the unfinished charging demand of
PEV i observed at time tj.

min
xit

∫ T̄(tj)

tj
(a( ∑

i∈Ī (t,tj)

xit+ ltj)+b( ∑
i∈Ī (t,tj)

xit+ ltj)
2

− (altj +bl2tj))dt (2.11a)

s. t.
∫
t∈[tj,t(e)i ]

xitdt = D̄i(tj), i ∈Itj , (2.11b)

0 ≤ xit ≤ Ui, i ∈Itj , t ∈
[
tj, t

(e)
i

]
. (2.11c)

Having obtained the solution to (2.11), the scheduler charges the PEVs according
to the solution until a new PEV arrives or the base load changes. Then, Prob-
lem (2.11) is re-solved with the updated set of charging profiles and base load
level. Similar to the discussion in Section II-B, the time axis (from tj to T̄(tj)])
in Problem (2.11) can be divided into intervals, which are defined only by the
departures of the existing PEVs, since the events occurred after time tj, i.e., the
arrivals/departures of new PEVs or the changes of base load after time tj are not
known by the scheduler. By keeping a charging rate in each interval constant,
Problem (2.11) can be equivalently transformed to one with finitely many variables.
An example in Fig. 2.3 illustrates the intervals defined by change times of base load
and the departures of PEVs that are parking in the station at time tj. Denote ¯K (tj)
as the set of indices of the intervals seen at time tj, δ̄k(tj), where k ∈ ¯K (tj) as the
length of the kth interval, Ī (k, tj) as the set of PEVs who have arrived by time tj
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and will be in the station at interval k,k ∈ ¯K (tj), and J̄ (i, tj) as the set of indices of
time intervals that PEV i will park in the station. It directly follows from Lemma 2.1
that there exists an optimal solution to (2.11) where the optimal charging rates are
constants during each interval. Denote xik by the charging rate of PEV i in interval
k,k ∈ ¯K (tj). Then, (2.11) is equivalent to the following discrete time optimization
problem

min
xik

∑
k∈ ¯K (tj)

(a( ∑
i∈Ī (k,tj)

xik+ ltj)+b( ∑
i∈Ī (k,tj)

xik+ ltj)
2

− (altj +bl2tj))δ̄k(tj) (2.12a)

s.t. ∑
k∈J̄ (i,tj)

xikδ̄k(tj) = D̄i(tj), i ∈Itj , (2.12b)

0 ≤ xik ≤ Ui, i ∈Itj ,k ∈ J̄ (i, tj). (2.12c)

In the next section, we will introduce our proposed ORCHARD algorithm. Note
that ORCHARD also solves Problem (2.12), but only uses xi1, i ∈ I (1, tj), i.e.,
the charging solutions in the first (i.e., current) interval. As we will introduce
later, (2.12) needs to be resolved again with the updated ltj , δ̄k(tj), Ī (k, tj), J̄ (i, tj),
D̄i(tj) once a new PEV arrives, finishes charging, or the base load changes.

2.3.2 The ORCHARD Algorithm

The charging rate scheduled by OA tends to be smaller than the optimal offline
solution due to the neglect of future demands. In ORCHARD, we speed up the
charging schedule obtained from (2.12) by a speed-up factor q (q ≥ 1). Roughly
speaking, the total charging rate by ORCHARD is q times that of OA. The value of
q determines the performance of ORCHARD, including both the competitive ratio
and the average performance. We will discuss how to set a proper q to obtain the
minimum competitive ratio in Sect. 2.3.3 and to obtain the best average performance
in Sect. 2.5.3.

Due to the factor q, the charging rate of ORCHARD is larger than that of OA such
that ORCHARD finishes charging PEVs earlier than OA does. Then ORCHARD
always finishes charging PEVs before their departure time. Hence, ORCHARD
recalculates the charging rate when there is a new PEV arrival, a PEV finishes
charging, or the base load changes. We denote by x̄ik(tj) the charging rate of PEV
i∈Itj in the kth interval computed by OA at time tj, x̂it the charging rate of PEV i at
time t computed by ORCHARD, and ŝt the sum of x̂it at time t. When ORCHARD
recalculates the charging rate, the right hand side of (2.12b) is updated as follows
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D̄i(tj)

=

⎧⎪⎪⎨
⎪⎪⎩

0, if PEV i finishes charging,

Di, if PEV i arrives,

D̄i(tj−1)− x̂itj−1(tj− tj−1), otherwise.

(2.13)

Here, x̂itj−1 denotes the constant charging rate between tj−1 and tj. Moreover, we

also need to update J̄ (i, tj), δ̄k(tj) and Ī (k, tj) due to the change of current PEVs
at tj. A pseudo code of ORCHARD is presented in Algorithm 1 and explained as
follows:

Step 1: Once the base load changes, a PEV arrives, or a PEV finishes charging,
let j= j+1, set tj as the current starting time and update the current base load ltj
as well as the parameters based on current PEVs (line 3).
Step 2: Solve (2.12) with the updated parameters. Denote by x̄i1(tj) the optimal
charging solution of the first (i.e., current) time interval. (line 4).
Step 3: Determine the total charging rate, which is the minimum of q times of the
total charging rate computed by OA, i.e., ∑i∈Ītj

x̄i1(tj), and the sum of maximum

charging rates of current PEVs, i.e., ∑i∈Ītj
Ui (line 5).

Step 4: Determine the charging solution at time [tj, tj+1) by setting the charging
rate of PEV i as in line 6 in Algorithm 1, where tj+1 is the next time that the base
load changes, a PEV arrives, or a PEV finishes charging.

By doing so, we ensure that: (1) for each PEV, the charging rate does not exceed
its maximum charging rate, i.e., xit ≤ ui, i ∈ Itj ; (2) the sum of the charging rates
equals the total charging rate given by Step 3, i.e., ∑i∈Itj

x̂it = ŝt; (3) for each PEV,

the charging rate is no smaller than the solution given by OA in Step 2, i.e., x̂it ≥
x̄i1(tj),∀i ∈Itj (line 6).

Algorithm 1: ORCHARD

input : Ui, t
(e)
i , Di of all parking PEVs, the base load lt

output: x̂it
1 initialization j= 0;
2 while the base load changes, a PEV arrives, or a PEV finishes charging do
3 Let j= j+1, record current time tj. Update ltj , δ̄k(tj), Ī (k, tj), k ∈ ¯K (tj), J̄ (i, tj),

D̄i(tj), i ∈Itj .
4 Solve problem (2.12) for the optimal solution x̄i1(tj)∀i ∈ Ītj .
5 Set ŝt = min{q ·∑i∈Ītj

x̄i1(tj),∑i∈Ītj
Ui}.

6 Set the charging rate of PEV i at the time t ∈ [tj, tj+1) as

x̂it = min{x̄i1(tj)+ Ui−x̄i1(tj)
∑i∈Ītj

(Ui−x̄i1(tj))
· q−1

q ŝt,Ui}.

7 end
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Since OA always guarantees a feasible solution, we can intuitively infer that
ORCHARD also guarantees producing a feasible solution, simply because its
charging rate is always no smaller than that of the OA. The feasibility of ORCHARD
is proved in Lemma 2.2 below.

Lemma 2.2. ORCHARD always outputs a feasible solution to problem (2.12).

Proof. Please see the detailed proof in Appendix “Proof of Lemma 2.2”. �

2.3.3 Derivation of Competitive Ratio

In this subsection, we show that ORCHARD is 2.39-competitive when the cost
function is a quadratic function of the load demand. Here, we consider an amortized
local competitiveness analysis and a potential function Φ(t) as a function of time.
In the following, we will construct a Φ(t) to prove the inequality (2.9) for a specific
competitive ratio c. In particular, Φ is chosen to satisfy

Φ(0) = Φ(T) = 0. (2.14)

We always denote the current time as τ0. Let l, ŝ and s∗ be the current base load,
total charging rate of ORCHARD and the optimal offline algorithm respectively. In
order to establish that ORCHARD is c-competitive, it is sufficient to show that the
following key equation

(a(ŝ+ l)+b(ŝ+ l)2 − (al+bl2))+
dΦ
dτ0

≤c · (a(s∗+ l)+b(s∗+ l)2 − (al+bl2)),

(2.15)

holds for all τ0 ≤ T , where c≥ 1. This is because the integral over the entire time T
on both sides leads to

∫ T

0
(a(ŝ+ l)+b(ŝ+ l)2 − (al+bl2))dt

≤c ·
∫ T

0
(a(s∗+ l)+b(s∗+ l)2 − (al+bl2))dt,

(2.16)

where
∫ T

0 (a(ŝ+ l) + b(ŝ+ l)2)dt is the total cost of ORCHARD,
∫ T

0 (a(s∗ + l) +
b(s∗+ l)2)dt is the cost of optimal offline algorithm. In this sense, (2.16) is consistent
with the definition of competitive ratio in (2.9). Before providing the proof of
competitiveness, we introduce the following notations. At a current time τ0 in the
ORCHARD algorithm, let ŵ(t′, t′′),τ0 ≤ t′ ≤ t′′ denote the total residual demand of
PEVs whose deadlines are between [t′, t′′]. Similarly, for offline optimal algorithm,
let w∗(t′, t′′),τ0 ≤ t′ ≤ t′′ denote the total residual demand of PEVs whose deadlines
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are between [t′, t′′]. Note that ŵ(t′, t′′) and ŵ(t′, t′′) are likely to be rather different
since the charging solution before current time τ0 of ORCHARD and offline optimal
algorithm are very likely different. We further denote

d(t′, t′′) =max
{

0,min{ŵ(t′, t′′), 1
q ∑
i∈I (t′)

Ui(t
′′ − t′)}

−min{w∗(t′, t′′), ∑
i∈I (t′)

Ui(t
′′ − t′)}

} (2.17)

as the amount of additional demand left for ORCHARD with deadline in (t′, t′′].
Then, we define a sequence of time points τ1,τ2, · · · as follows: let τ1 be the
time such that d(τ0,τ1)/(τ1 − τ0) is maximized. If there are several such points,
we choose the furthest one. Given τk, we let τk+1 > τk be the furthest point that
maximizes d(τk,τk+1)/(τk+1 − τk), i.e.,

τk+1 = arg max
τ>τk

d(τk,τ)/(τ − τk). (2.18)

The “load intensity gap” within (τk,τk+1] is denoted as

gk = d(τk,τk+1)/(τk+1 − τk),k = 1,2, · · · . (2.19)

Evidently, gk is a non-negative monotonically decreasing sequence.
We are now ready to define the potential function Φ as

Φ = β1 ·a
∞

∑
k=0

((τk+1 − τk)gk)+β2 ·b
∞

∑
k=0

((τk+1 − τk)g2
k), (2.20)

where β1,β2 will be assigned finite values later. We notice that Φ(0) = Φ(T) =
0 holds, since the load is clearly zero before any PEV arrives and after the last
deadline.

In the Theorem 2.1 below, we derive the competitive ratio of ORCHARD. First,
we provide the following Lemma to be used in proving Theorem 2.1.

Lemma 2.3.

qg0 ≤ ŝ≤ qg0 +qs∗. (2.21)

The detailed proof please see Appendix “Proof of Lemma 2.3”.
In the Theorem 2.1 below, we derive the competitive ratio of ORCHARD.

Theorem 2.1. ORCHARD is 2.39-competitive when the cost function is a quadratic
function of the load demand by setting q= 1.46.

Proof. Please see the detailed proof in Appendix “Proof of Theorem 2.1”.
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Fig. 2.4 Illustration of example based on KKT conditions. In case 1, we have y∗k1
= y∗k2

. In case 2
and 3, we cannot achieve the balanced charging rate, i.e., y∗k1

< y∗k2
, either because x∗ik1

has increased
to the limit Ui (case 2) or x∗ik2

has decreased to 0 (case 3)

2.4 The Optimal Offline Algorithm with Low Complexity

The major complexity of Algorithm 1 lies in the computation involved in solving
Problem (2.12) every time when a PEV arrives or finishes charging. By exploring the
special structure of the optimal solution, we propose in this section a low-complexity
solution algorithm to solve problem (2.12). Notice that Problem (2.12) and the
offline optimization problem (2.8) have exactly the same structure. Both of them are
to minimize a convex and additive objective function over a polyhedron. Thus, the
algorithm proposed here can also apply to (2.12). The proposed algorithm is shown
to have a much lower computational complexity than generic convex optimization
algorithms, such as the interior point method.

2.4.1 Optimality Analysis

It is easy to verify that problem (2.8) is convex, and then we apply the Karush-
Kuhn-Tucker (KKT) conditions to it [17]. We associate a dual variable λi with
inequality (2.8a), a dual variable wik with inequality (2.8b), a dual variable νik with
inequality (2.8c). Then, the Lagrangian is given by:
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L= ∑
k∈K

(a( ∑
j∈I (k)

xjk+ lk)+b( ∑
j∈I (k)

xjk+ lk)
2

− (alk+bl2k))δk−
N

∑
i=1

λi( ∑
k∈J (i)

xikδk−Di)

+
N

∑
i=1

∑
k∈J (i)

(−ωikxik+νik(xik−Ui)).

(2.22)

Let x∗ik denote the optimal charging rate for EV i at interval k ∈I (k). The necessary
and sufficient KKT conditions are given by:

a+2b( ∑
j∈I (k)

x∗jk+ lk)−λi+νik−ωik = 0,

i= 1, . . . ,N,k ∈J (i), (2.23a)

λi(Di− ∑
k∈J (i)

x∗ik) = 0, i= 1, . . . ,N, (2.23b)

ωikx
∗
ik = 0, i= 1, . . . ,N,k ∈J (i), (2.23c)

νik(x∗ik−Ui) = 0, i= 1, . . . ,N,k ∈J (i), (2.23d)

where (2.23a) means that the differentiation of L should be 0 at x∗ik, and (2.23b),
(2.23c), (2.23d) are the complementary slackness conditions. We separate our
analysis into the following three cases:

1. If x∗ik1
∈ (0,Ui) for a particular PEV i in a time interval k1 ∈ J (i), then,

by complementary slackness, we have νik1 = wik1 = 0. From (2.23a), yk1 =

∑j∈I (k1) xjk1 + lk1 = (λi−a)/2b.
2. If x∗ik2

= 0 for PEV i during a time interval k2 ∈J (i), we can infer from (2.23c)
and (2.23d) that ωik2 > 0 and νik2 = 0. Then, yk2 = ∑j∈I (k2) x

∗
jk2

+ lk2 =
(λi−a)/2b+ωik2/2b.

3. Similarly, if x∗ik3
= Ui for PEV i in interval k3 ∈ J (i), then, we have yk3 =

∑j∈I (k3) x
∗
jk3

+ lk3 = (λi−a)/2b−νik3/2b.

Let y∗k be the optimal total load that

y∗k = ∑
i∈I (k)

x∗ik+ lk. (2.24)

From the above discussions, we can conclude that the necessary and sufficient
conditions for the optimal total charging rate as follows:

1. y∗k is the same for a set of intervals as long as there exists a PEV i that parks
through this set of intervals with x∗ik ∈ (0,Ui).
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2. If x∗ik = 0 for a PEV i during an interval k that it parks in, then, y∗k in that interval
is no smaller than that of the other interval k′ ∈J (i) during which x∗ik′ ∈ (0,Ui].

3. If x∗ik = Ui for PEV i during an interval k, then, y∗k is no larger than that of the
other interval k′ ∈J (i) whose charging rate x∗ik′ ∈ [0,Ui).

The above conditions can be intuitively understood as follows. Due to the
convexity the objective function, the optimal solution to (2.8) always tries to balance
the total load yk across different intervals. For example, as shown in Fig. 2.4, if
there are two intervals k1 and k2 with y∗k1

< y∗k2
, and a PEV i such that x∗ik1

= 0 and
0 < x∗ik2

≤ Ui, then we can always shift the charging load of PEV i from interval
k2 to k1 to decrease the total load difference between k1 and k2. In other words,
whenever possible, the charging load should be shifted from interval k2 to k1 until
y∗k1

= y∗k2
(case 1 in Fig. 2.4). However, such balanced charging rate at two intervals

may not achievable, resulting y∗k1
< y∗k2

, either because x∗ik1
has increased to the limit

Ui (case 2) or x∗ik2
has decreased to 0 (case 3). Based on these conditions, we present

a low-complexity solution algorithm in the next subsection.

2.4.2 Algorithm Description

From the analysis of KKT optimality conditions, one should manage to balance
the total load among all intervals under the constraints of each individual PEV’s
charging profiles. In this subsection, we present a charging rate allocation algorithm
to achieve the objective of “load balancing”. The optimality and complexity of the
proposed algorithm will be discussed in the next subsection.

Intuitively, one should shift the demand from “heavily loaded” intervals to the
others. To do this, we first introduce the concept of intensity of an interval k, denoted
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by ρk, to quantify the heaviness of the load in the interval. Specifically, ρk is defined
as the upper bound of the charging load of an interval, and is given by:

ρk = ∑
i∈I (k)

min

{
Ui,

Di

δk

}
. (2.25)

This is because the charging rate of each PEV i in the interval k will not exceed
the minimum between the charging rate bound Ui and the Di/δk, i.e., PEV i only
charges in the interval k. The basic idea of the proposed algorithm is to shift the
demand of a set of intervals with high intensities to the others with lower intensities.
Notice that the demand of an interval k1 can only be transferred to its neighboring
interval k2 such that k1 ∈ J(i) and k2 ∈ J(i) hold for some PEV i. Therefore, we need
to consider both the intensities of an interval set and their neighboring intervals to
make the decision on “load balancing”.

From the above discussion, we take into consideration a set of consecutive
intervals, referred to as a “time window”, starting from the arrival time of a PEV to
the departure time of one, probably another PEV. If there are N PEVs, the maximum
number of time windows is N2. Within a tagged time window, we select a set of
intervals of the highest intensities as the candidate interval set from which the load
is to be transferred to the other intervals in the time window. In practice, we first
consider the single interval with the highest intensity, then the top two intervals, top
three intervals, etc. That is, for each time window, sort the intervals in descending
order according to ρ . The index is denoted by k1,k2, . . ., as illustrated in Fig. 2.5.

Evidently, a time window consisting of K′ intervals contains K′ such interval
sets. For example, there are 5 interval sets in the time window shown in Fig. 2.5. We
denote the interval sets obtained from all the time windows in the entire duration T
as K1, K2, · · · . Then, the following iterative algorithm determines the load transfer
operation of intervals as well as the charging rate schedule of all PEVs.

Step 1: For each interval set K , we first compute the residual demand of PEV
i on K . The residual demand of PEV i on K , denoted by Di(K ), is calculated
by letting PEV i be charged at the upper bound Ui on its parking intervals non-
overlapped with K . That is

Di(K ) = Di−Ui ∑
k∈J (i)\(J (i)∩K )

δk. (2.26)

The intuition is to transfer as much as possible the charging demand from
intervals with high intensities to its neighboring intervals. Then, we can calculate
the total load of the interval set K by balancing the residual demand over all the
intervals in K , i.e.,

y=
∑k∈K (∑i∈I (k)(max{0,Di(K )})+ ŷkδk)

∑k∈K δk
, (2.27)
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where ŷk is the total load after scheduling in previous iterations at the interval
and initially set to be lk.
Step 2: Find the interval set K ∗ with the highest total load y∗. Then the optimal
total charging rate of interval in K ∗ is set to be s∗k , where

s∗k = y∗ − lk,∀k ∈K ∗. (2.28)

We denote I ∗ by the set of PEVs of which the residual demand Di(K ∗) is
non-negative, Δ ∗ by the total length of the intervals in the set K ∗, i.e., Δ ∗ =
∑k∈K ∗ δk. For each PEV i ∈I ∗, we schedule the charging rate as

x∗ik =

{
Ui− (UiΔ∗−Di(K

∗))(∑i Ui−s∗k)
∑i(UiΔ∗−Di(K ∗)) , k ∈K ∗,

Ui, k ∈J (i)\K ∗.
(2.29)

It is easy to verify that ∑k∈K ∗ x∗ik = s∗k for k ∈ K ∗. Note that PEV i ∈ I ∗ has
finished scheduled charging rate and will not be considered in the next iterations.
Then the total charging rate at any interval k ∈J (i) \K ∗ should be increased
by Ui. We use ŝk to denote the total rate scheduled in the interval k /∈K ∗ up to
the current iteration, which is updated as.

ŝk = ŝk+ ∑
i∈I ∗∩I (k)

Ui. (2.30)

For a PEV i /∈ I∗ whose parking intervals overlaps with K ∗, the charging rate of
its parking intervals overlapped with K ∗ is assigned to be 0, i.e.,

x∗ik = 0,k ∈J (i)∩K ∗. (2.31)

Step 3: Exclude I ∗ and K ∗ from the PEV set and interval set, and merge the
remaining intervals into a new time duration. Find all the interval sets in the
newly formed time windows as in Fig. 2.5. Then, repeat from step 1 until the
charging rates of all PEVs are scheduled.

2.4.3 Optimality and Complexity

We first provide the following Lemma 2.4 before proving the global optimality of
the proposed algorithm. Denote K ∗(m) by the interval set found in mth iteration,
Δ ∗(m) by the total length of intervals in K ∗(m), i.e,

Δ ∗(m) = ∑
k∈K ∗(m)

δk, (2.32)

y∗(m) by the highest total load of interval set K ∗(m) respectively.
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Lemma 2.4. In the proposed low-complexity solution algorithm, the highest total
load found in mth iteration is no smaller than that found in (m+1)th iteration, i.e.,
y∗(m)≥ y∗(m+1).

Please see the proof in Appendix “Proof of Lemma 2.4”.

Theorem 2.2. The proposed algorithm always outputs a globally optimal schedule.

Proof. Please see the detailed proof in Appendix “Proof of Theorem 2.2”.

Now we give a complexity analysis of the proposed algorithm. Consider the
worst case where N PEVs lead to 2N − 1 intervals, N2 variables and 2N2 + N
constrains. The proposed low-complexity solution algorithm at least excludes one
interval in each outer loop that leads to at most 2N− 1 iterations. In each iteration
(step 1 - step 3), there are at most N(N + 1)/2 time windows which contains at
most N possible interval sets. Hence, the total number of iterations is in the order
of O(N4). Since the operation complexity of intensity calculation for each sequence
is O(N) (we regard one addition, subtraction, multiplication and division as one
operation), the upper bound of operation complexity is O(N5). On the other hand,
the generic interior point algorithm has a complexity at the order of O(n3.5) [18],
where n is the number of variables. Note that n = N2 in our problem, and thus the
complexity of interior point algorithm is O(N7), which is much higher than that of
the proposed algorithm.

2.5 Simulations

In this section, we evaluate the performance of ORCHARD and verify the iteration
complexity of the low-complexity solution algorithm. Specially, we define the
average performance ratio as the ratio of the average cost of online algorithm to
that of offline optimal algorithm. Note that the variation of a and b, (a,b > 0) will
not change charging solution to ORCHARD while the variation of q will, so we
only discuss how the average performance ratio changes by varying q, shown in
Sect. 2.5.3.

2.5.1 Performance Ratio Evaluation

We consider a running time T of 24 hours. We choose the base load profile of one
day in the service area of South California Edison from [4]. The coefficients of the
cost function are set to a = 10−4 $/kWh and b = 0.6×10−4 $/kWh/kW [3]. There
are two types of PEVs in our simulation [19]: (1) maximum charging rate Ui =
3.3 kW, battery capacity ζi = 35 kWh; (2) maximum charging rate Ui = 1.4 kW,
battery capacity ζi = 16 kWh. Each PEV is equally likely chosen from the two
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Fig. 2.6 Base load and total load of five algorithms

Table 2.1 Parameter settings
of the arrival and parking
durations

Time of day Arrival rate Mean parking

(PEVs/hour) Time (hour)

08:00–10:00 7 10

10:00–12:00 5 1/2

12:00–14:00 10 2

14:00–18:00 5 1/2

18:00–20:00 10 2

20:00–24:00 5 10

24:00–08:00 0 0

types and the charging demand is uniformly chosen from [0,min{Ui ·(t(e)i − t(s)i ),ζi}]
(this ensures that (2.8) is feasible). Each PEV’s arrival follows a Poisson distribution
and the parking time follows an exponential distribution [9]. The mean arrival and
parking durations are listed in Table 2.1, where there are three peak hours with large
arrival rates, i.e. 8 to 10, 12 : 00 to 14 : 00 and 18 : 00 to 20 : 00. The settings of
the peak hour match with the realistic vehicle trips in National Household Travel
Survey (NHTS) 2009 [20].

We compare ORCHARD to the optimal offline algorithm as well as other online
algorithms. Unless otherwise specified, the speeding factor of ORCHARD, q, is
set to be 1.46. Note that by Theorem 2.1 q = 1.46 achieves the best competitive
ratio in the worst case, but may not be the best choice for average performance. We
will discuss the effect of q in Sect. 2.5.3. We denote the cost of ORCHARD and the
optimal offline algorithm by ΨORC and Ψ ∗, respectively. The other online algorithms
for comparison are
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Table 2.2 Average
performance ratio of online
algorithms

ΨORC
Ψ∗

ΨOA
Ψ∗

ΨAVG
Ψ∗

ΨEG
Ψ∗

1.065 1.134 1.528 2.344

Table 2.3 Parameter settings
of the three scenarios Time of day

Arrival rate (PEVs/hour) Mean parking

S. 1 S. 2 S. 3 Time (hour)

08:00–10:00 7 7 7 10

10:00–12:00 5 5 5 1/2

12:00–14:00 10 30 50 2

14:00–18:00 5 5 5 1/2

18:00–20:00 10 30 50 2

20:00–24:00 5 5 5 10

24:00–08:00 0 0 0 0

1. online average charging (AVG): The charging demand is evenly distributed

during the parking period, i.e. the charging rate is Di/(t
(e)
i − t(s)i ).

2. online eagerly charging (EG): PEV i is charged at the maximum charging rate
Ui.

3. online optimal available information charging (OA) : Set q= 1 in ORCHARD.

Their costs are denoted by ΨAVG, ΨEG and ΨOA, respectively.
All the convex optimizations are solved by CVX [21]. We simulate 105 cases

and plot the average base load as well as the total load over time in Fig. 2.6, where
the total load represents the sum of the base load and the charging load, defined in
Eq. (2.3). In addition, the average performance ratios normalized against the optimal
offline solution are shown in Table 2.2. Figure 2.6 shows that the total load curve
of ORCHARD follows closely with the optimal offline solution curve. In contrast,
EG and AVG largely deviate from the optimal charging curve, being either too
aggressive or too conservative depending on the arrival patterns. From Table 2.2,
we can see that ORCHARD performs the best among the four online algorithms,
which has on average less than 6.5% extra cost compared with the optimal offline
algorithm.

2.5.2 The Influence by the PEV Pattern

In this subsection, we ignore the base load that mainly discuss how PEV pattern
affects the average performance ratio. We consider three different scenarios, whose
mean arrival and parking durations are listed in Table 2.3. In particular, scenarios
1–3 represent light, moderate and heavy traffic, respectively. The main difference
lies in the arrival rates at the two peak hours, i.e. 12 : 00 to 14 : 00 and 18 : 00 to
20 : 00.
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Fig. 2.7 PEV total charging rate of five algorithms in Scenario 1
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Fig. 2.8 Base load and total load of five algorithms in Scenario 2

For each scenario, we simulate 105 cases and plot the average total charging
rate over time in Figs. 2.7, 2.8 and 2.9, respectively, where the vertical axis is
the total charging rate of PEVs, defined in Eq. (2.2). In addition, the average
performance ratios normalized against the optimal offline solution are shown in
Table 2.4. In all scenarios, ORCHARD performs the best among the four online
algorithms, which has on average less than 14% extra cost compared with the
optimal offline algorithm. We also notice that ORCHARD has a 10% performance
gain compared with the OA algorithm in the scenario with heavy traffic. We will
discuss the proper setting of q in Sect. 2.5.3. The charging rate curve of the proposed
online charging algorithm follows closely with the optimal offline solution curve. In
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Fig. 2.9 Base load and total load of five algorithms in Scenario 3

Table 2.4 Average
performance ratio of online
algorithms

Scenario ΨORC
Ψ∗

ΨOA
Ψ∗

ΨAVG
Ψ∗

ΨEG
Ψ∗

1 1.068 1.135 1.530 2.346

2 1.104 1.197 1.645 2.309

3 1.133 1.240 1.701 2.273

contrast, EG and AVG largely deviate from the optimal charging curve, being either
too aggressive or too conservative depending on the arrival patterns. In general, all
charging algorithms perform better when the traffic is relatively light, except for
EG. It produces even the worst performance ratio under light traffic. This is partly
because its aggressive charging scheme somehow matches with the large traffic
variations in scenario 3.

2.5.3 Setting a Proper q

Theoretically, setting q to be 1.46 will achieve the best ratio in the worst case.
However, it does not achieve the best average performance in general. In this
subsection, we discuss how q affects the normalized average performance ratio.
For the three scenarios with different traffic, we plot the normalized average
performance ratio in Fig. 2.10 by varying q from 1 to 5. For scenario 1, setting
q= 1.8, ΨORC

Ψ∗ achieves the lowest average ratio 1.053. For scenario 2, setting q= 2.1,
ΨORC

Ψ∗ achieves the lowest average ratio 1.052. For scenario 3, setting q = 2.3,
ΨORC

Ψ∗ achieves the lowest average ratio 1.050, which is about 8% lower than that
when q = 1.46. In general, the optimal q is larger when the traffic is heavy and
unpredictable as in scenario 3. Intuitively, this is because the energy cost during
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peak arrivals largely dominates the overall cost. A larger q is able to better utilize
off-peak hour and to speed up charging when peak hours arrive. Here, we provide a
simple method to achieve a better average performance by adjusting q. In practice,
a charging station can collect the past data on PEV patterns, based on which, the
value of q can be searched for the best average performance.

2.5.4 Complexity of Low-Complexity Solution Algorithm

To verify the iteration complexity of the low-complexity solution algorithm, we
adopt it to solve problem (2.8). For the system parameter, we use the same
settings with the default settings except the arrival rates, which are assumed to
be the same during 8 : 00− 18 : 00 and 0 after 18 : 00. We vary the arrival rate
in 8 : 00 − 18 : 00 from 1 to 10 (PEVs/hour) that leads to the mean of N(the
number of total PEVs one day) varies from 10 to 100. For each specified mean
of N, we simulate 10000 times and compute the average number of iterations and
operations. The result is shown in Fig. 2.11. We also fit the data of iterations and
operations with the polynomial function f (x) = 2019.5x4 −297.9x3 +18.6x2 −0.2x
and f (x) = 166010x5−26270x4+1200x3−10x2 with the mean relative error 0.039
and 0.054 respectively. It shows that both the iteration and operation complexity
match our complexity analysis in Section IV.C.
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Fig. 2.11 Iterations and operations of low complexity algorithm

2.6 Conclusions

In this chapter, we have proposed an Online cooRdinated CHARging Decision
(ORCHARD) algorithm, which minimizes the energy cost and flattenes the total
electric load profile without knowing the future information. Through rigorous
proof, we showed that ORCHARD is strictly feasible in the sense that it guarantees
to fulfill all charging demands before due time. Meanwhile, it achieves the best
known competitive ratio of 2.39 when the cost function is a quadratic function of
the load demand. To further reduce the computational complexity of the algorithm,
we proposed a novel reduced-complexity algorithm to replace the standard convex
optimization techniques used in ORCHARD. Through extensive simulations, we
showed that the average performance gap between ORCHARD and the optimal
offline solution, which utilizes the complete future information, is as small as 6.5 %.
By setting proper speeding factor, the average performance gap can be further
reduced to less than 5 %.

Appendix

Proof of Lemma 2.1

Proof. The proof is given by contradiction. The optimal total charging rate at time
t ∈ [tk, tk+1) is denoted by s̃k(t), where
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s̃k(t) = ∑
i∈I(tk)

x∗it,k = 1, . . . ,K. (2.33)

Let

sk =

∫ tk+1
tk s̃k(t)dt

tk+1 − tk
(2.34)

be the average charging rate in δk. Note that sk is always achievable by setting the
charging rate of each EV i as

∫ tk+1
tk x∗itdt/(tk+1 − tk). By Jensen’s inequality, we have

∫ tk+1

tk

a(ŝk(t)+ lk)+b(ŝk(t)+ lk)
2

tk+1 − tk
dt

≥a

∫ tk+1
tk ŝk(t)+ lkdt

tk+1 − tk
+b

[∫ tk+1
tk ŝk(t)+ lkdt

tk+1 − tk

]2

=a(sk+ lk)+b(sk+ lk)
2.

(2.35)

Equivalently, we have

∫ tk+1

tk

[
a(ŝk(t)+ lk)+b(ŝk(t)+ lk)

2 − (alt+bl2t )
]
dt

≥ (tk+1 − tk)(a(sk+ lk)+b(sk+ lk)
2 − (alk+bl2k)).

(2.36)

From (2.36), the uniform total charging rate sk incurs no higher cost than that of
x∗it, which contradicts with the assumption that x∗it is the optimal charging schedule.
Therefore, the optimal charging schedule must produce constant total charging rate
in each interval δk, which completes the proof. �

Proof of Lemma 2.2

To see this, the charging rate of EV i is

x̂it = min{x̄i1(tj)+ Ui− x̄i1(tj)

∑i∈Ītj
(Ui− x̄i1(tj))

· q−1
q

ŝt,Ui}. (2.37)

From step 5 of ORCHARD, the total charing rate is

ŝt = q · ∑
i∈Ītj

x̄i1(tj), (2.38)
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if

q · ∑
i∈Ītj

x̄i1(tj)≤ ∑
i∈Ītj

Ui. (2.39)

In this case, the charging rate of PEV i is

x̄i1(tj)+
Ui− x̄i1(tj)

∑i∈Ītj
(Ui− x̄i1(tj))

q−1
q

ŝt

=x̄i1(tj)+
Ui− x̄i1(tj)

∑i∈Ītj
(Ui− x̄i1(tj))

· (q−1) ∑
i∈Ītj

x̄i1(tj)

≤x̄i1(tj)+
Ui− x̄i1(tj)

∑i∈Ītj
(Ui− x̄i1(tj))

· ( ∑
i∈Ītj

Ui− ∑
i∈Ītj

x̄i1(tj))

=Ui.

(2.40)

Otherwise if (2.39) does not hold, the total online charging rate is

ŝt = ∑
i∈Ītj

Ui. (2.41)

Then, we have

x̄i1(tj)+
Ui− x̄i1(tj)

∑i∈Ītj
(Ui− x̄i1(tj))

· q−1
q

ŝt. (2.42)

By step 4, x̂it =Ui, and also it is easy to verify that ∑i∈Ītj
x̂it = ŝt. To sum up, in any

case, the following constraints are satisfied, i.e.

x̄i1(tj)≤ x̂it ≤ Ui, ∑
i∈Ītj

x̂it = ŝt. (2.43)

On the other hand, the charging schedule x̂it can finish the charging of all EV’s
before their departures. This is because it is no slower than the optimal charging
schedule x̄i1(tj), which guarantees the feasibility of (2.7). �

Proof of Lemma 2.3

Based on the definition, we have following two inequalities



38 2 ORCHARD Algorithm for PEV Charging

ŵ(τ0,τ1)

τ1 − τ0
≤ ∑

i∈I (τ0)

Ui, (2.44a)

w∗(τ0,τ1)

τ1 − τ0
≤ ∑

i∈I (τ0)

Ui, (2.44b)

which hold because all the PEVs with deadlines in [τ0,τ1] must park in the station at
current time τ0 such that ∑i∈I (τ0)Ui is larger or equal to ∑i∈I (t)Ui for t ∈ (τ0,τ1].
Due to the setting of ŝ in our online algorithm, either the inequality

q
ŵ(τ0,τ1)

τ1 − τ0
≤ ŝ< ∑

i∈I (τ0)

Ui (2.45)

or

ŝ= ∑
i∈I (τ0)

Ui ≤ q
ŵ(τ0,τ1)

τ1 − τ0
(2.46)

holds. Similarly, for optimal total charging rate s∗ in offline algorithm, the inequality

w∗(τ0,τ1)

τ1 − τ0
≤ s∗ ≤ ∑

i∈I (τ0)

Ui (2.47)

holds since w∗(τ0, t) does not include the demand of the future coming PEVs while
s∗ dose. From the definition of gk, we get that

g0 = max
{

0,min{ ŵ(τ0,τ1)

τ1 − τ0
,

1
q ∑
i∈I (τ0)

Ui}−

min{w
∗(τ0,τ1)

τ1 − τ0
, ∑
i∈I (τ0)

Ui}
} (2.48)

To further reduce g0, we need to discuss the following four cases.

Case 1: If

q
ŵ(τ0,τ1)

τ1 − τ0
≥ ∑

i∈I (τ0)

Ui and
w∗(τ0,τ1)

τ1 − τ0
= ∑

i∈I (τ0)

Ui, (2.49)

then from (2.46), (2.47) we get

ŝ= s∗ = ∑
i∈I (τ0)

Ui (2.50)
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and

g0 = max
{

0,
1
q ∑
i∈I (τ0)

Ui− ∑
i∈I (τ0)

Ui

}
= 0. (2.51)

Hence,

qg0 = 0 ≤ ŝ= ∑
i∈I (τ0)

Ui ≤ q ∑
i∈I (τ0)

Ui = qg0 +qs∗. (2.52)

Case 2: If

q
ŵ(τ0,τ1)

τ1 − τ0
< ∑

i∈I (τ0)

Ui and
w∗(τ0,τ1)

τ1 − τ0
= ∑

i∈I (τ0)

Ui, (2.53)

then from (2.45), (2.47) we get

ŝ≤ s∗ = ∑
i∈I (τ0)

Ui (2.54)

and

g0 = max
{

0,
ŵ(τ0,τ1)

τ1 − τ0
− ∑

i∈I (τ0)

Ui

}
= 0. (2.55)

Hence,

qg0 = 0 ≤ ŝ≤ q ∑
i∈I (τ0)

Ui = qg0 +qs∗. (2.56)

Case 3: If

q
ŵ(τ0,τ1)

τ1 − τ0
≥ ∑

i∈I (τ0)

Ui and
w∗(τ0,τ1)

τ1 − τ0
< ∑

i∈I (τ0)

Ui, (2.57)

then from (2.46), (2.47) we get

s∗ ≤ ŝ= ∑
i∈I (τ0)

Ui (2.58)

and

g0 = max
{

0,
1
q ∑
i∈I (τ0)

Ui− w∗(τ0,τ1)

τ1 − τ0

}
. (2.59)
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If

1
q ∑
i∈I (τ0)

Ui ≤ w∗(τ0,τ1)

τ1 − τ0
, (2.60)

then we get g0 = 0, and

qg0 = 0 ≤ ŝ= ∑
i∈I (τ0)

Ui ≤ q
w∗(τ0,τ1)

τ1 − τ0
≤ qs∗ = qg0 +qs∗. (2.61)

If

1
q ∑
i∈I (τ0)

Ui >
w∗(τ0,τ1)

τ1 − τ0
, (2.62)

then we get

g0 =
1
q ∑
i∈I (τ0)

Ui− w∗(τ0,τ1)

τ1 − τ0
. (2.63)

Hence, from (2.58) we have

qg0 = ∑
i∈I (τ0)

Ui−q
w∗(τ0,τ1)

τ1 − τ0
≤ ŝ, (2.64a)

and from (2.47) we have

qg0 +qs∗ = ∑
i∈I (τ0)

Ui−q
w∗(τ0,τ1)

τ1 − τ0
+qs∗ ≥ ∑

i∈I (τ0)

Ui = ŝ. (2.65a)

Since (2.21) holds for both cases, we see that (2.21) holds in Case 3.
Case 4: If

q
ŵ(τ0,τ1)

τ1 − τ0
< ∑

i∈I (τ0)

Ui and
w∗(τ0,τ1)

τ1 − τ0
< ∑

i∈I (τ0)

Ui, (2.66)

we get

g0 = max
{

0,
ŵ(τ0,τ1)

τ1 − τ0
− w∗(τ0,τ1)

τ1 − τ0

}
. (2.67)

When ŵ(τ0,τ1)≥ w∗(τ0,τ1), (2.48) is reduced to
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g0 =
ŵ(τ0,τ1)

τ1 − τ0
− w∗(τ0,τ1)

τ1 − τ0
. (2.68)

Recall that ŝ = qsOA where sOA is the total charging rate of OA algorithm given
the current demand ŵ(τ0,τ1), and s∗ is the charging rate given w∗ (τ0,τ1) and
possible future arrivals of other PEVs. Notice that both ŵ(τ0,τ1) and w∗(τ0,τ1)
do not include the charging demand of future coming PEVs, and the difference
between sOA and ŵ(τ0,τ1)/(τ1 − τ0) is only resulted from the bounds of current
PEVs, while the difference between s∗ and w∗(τ0,τ1)/(τ1 − τ0) is due to the
bounds of current PEVs as well as the possible heavy load of future coming
PEVs. Therefore,

sOA− ŵ(τ0,τ1)

τ1 − τ0
≤ s∗ − w∗(τ0,τ1)

τ1 − τ0
(2.69)

As ŝ= qsOA, we have

ŝ−q
ŵ(τ0,τ1)

τ1 − τ0
≤ qs∗ −q

w∗(τ0,τ1)

τ1 − τ0
. (2.70)

Hence we get the following inequalities:

qg0 = q
ŵ(τ0,τ1)

τ1 − τ0
−q

w∗(τ0,τ1)

τ1 − τ0
≤ ŝ, (2.71a)

qg0 +qs∗ ≥ (q
ŵ(τ0,τ1)

τ1 − τ0
−q

w∗(τ0,τ1)

τ1 − τ0
)

+(ŝ−q
ŵ(τ0,τ1)

τ1 − τ0
+q

w∗(τ0,τ1)

τ1 − τ0
) = ŝ, (2.71b)

where the last inequality of (2.71a) and the first inequality of (2.71b) are derived
from (2.45) and (2.70) respectively. For the case that ŵ(τ0,τ1) < w∗(τ0,τ1), we
have g0 = 0 and ŝ≤ qs∗ by adding on left hand side of (2.70) qŵ(τ0,τ1)/(τ1−τ0)
and right hand side qw∗(τ0,τ1)/(τ1 − τ0). Therefore, (2.21) holds in case 4.
Finally, inequality (2.21) holds in all the four cases. This completes the proof. �

Proof of Theorem 2.1

Proof. We can derive from (2.20) that
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dΦ
dτ0

=β1 ·a
∞

∑
k=0

d [(τk+1 − τk)gk]
dτ0

+β2 ·b
∞

∑
k=0

d
[
(τk+1 − τk)g2

k

]
dτ0

.

(2.72)

When ŵ(τ0,τ1)< w∗(τ0,τ1), we divide into following four cases to prove that g0 =
0, where τ1 is infinity.

1. If

q
ŵ(τ0,τ1)

τ1 − τ0
≥ ∑

i∈I (τ0)

Ui and
w∗(τ0,τ1)

τ1 − τ0
= ∑

i∈I (τ0)

Ui, (2.73)

then (2.51) implies that g0 = 0.
2. If

q
ŵ(τ0,τ1)

τ1 − τ0
< ∑

i∈I (τ0)

Ui and
w∗(τ0,τ1)

τ1 − τ0
= ∑

i∈I (τ0)

Ui, (2.74)

then (2.55) implies that g0 = 0.
3. If

q
ŵ(τ0,τ1)

τ1 − τ0
≥ ∑

i∈I (τ0)

Ui and
w∗(τ0,τ1)

τ1 − τ0
< ∑

i∈I (τ0)

Ui, (2.75)

then

q
w∗(τ0,τ1)

τ1 − τ0
≥ q

ŵ(τ0,τ1)

τ1 − τ0
≥ ∑

i∈I (τ0)

Ui. (2.76)

Hence,

g0 = max
{

0,
1
q ∑
i∈I (τ0)

Ui− w∗(τ0,τ1)

τ1 − τ0

}
= 0. (2.77)

4. If

q
ŵ(τ0,τ1)

τ1 − τ0
< ∑

i∈I (τ0)

Ui and
w∗(τ0,τ1)

τ1 − τ0
< ∑

i∈I (τ0)

Ui, (2.78)

then

g0 = max
{

0,
ŵ(τ0,τ1)

τ1 − τ0
− w∗(τ0,τ1)

τ1 − τ0

}
= 0. (2.79)
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Hence, g0 = 0 holds when ŵ(τ0,τ1) < w∗(τ0,τ1). Then dΦ/dτ0 remains zero
and ŝ≤ qs∗ by Lemma 2.3. Then, (2.15) always holds by letting q2 ≤ c. Therefore,
we only consider the case that ŵ(τ0,τ1) ≥ w∗(τ0,τ1) with q2 ≤ c. For the speed
scaling problem in [15], since there is no constraint of scheduling rate for each
individual job, both the online and offline algorithm can always have a solution that
only schedule one job that the load intensity gap varies only in at most two time
intervals. However, in our problem, since for any PEV, its charging rate can not
exceed the maximum charging rate, this leads to that the scheduler should at least
charging one PEV at time τ0. Then we should compute the differential of intensity
gap for all intervals and then combine them together. For the time interval [τ0,τ1],
we have

d(τ1 − τ0)g0

dτ0

=(τ1 − τ0)
(τ1 − τ0)

dd(τ0,τ1)
dτ0

+d(τ0,τ1)

(τ1 − τ0)2 −g2
0

=
dd(τ0,τ1)

dτ0

(2.80)

and

d(τ1 − τ0)g2
0

dτ0

=2g0(τ1 − τ0)
(τ1 − τ0)

dd(τ0,τ1)
dτ0

+d(τ0,τ1)

(τ1 − τ0)2 −g2
0

=2g0
dd(τ0,τ1)

dτ0
+g2

0.

(2.81)

For the time interval (τk,τk+1],k = 1,2, . . ., we have

d((τk+1 − τk)gk)
dτ0

=
dd(τk,τk+1)

dτ0

<
dd(τk,τk+1)

dτ0
,

(2.82)

and

d((τk+1 − τk)g2
k)

dτ0
=2gk

dd(τk,τk+1)

dτ0

<2g0
dd(τk,τk+1)

dτ0
,

(2.83)
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where the last inequality holds because gk < g0, ∀k> 0. Summing up (2.80), (2.81),
(2.82) and (2.83), dΦ/dτ0 is upper bounded by

β1a

(
∞

∑
k=0

dd(τk,τk+1)

dτ0

)
+β2b

(
2g0

∞

∑
k=0

dd(τk,τk+1)

dτ0
+g2

0

)

= β1a(−ŝ+ s∗)+β2b
(
2g0(−ŝ+ s∗)+g2

0

)
.

(2.84)

Then, to prove (2.15), it suffices to show that the following inequality holds, where

(a(ŝ+ l)+b(ŝ+ l)2 − (al+bl2))+(β2b(2g0(−ŝ+ s∗)+g2
0)

+β1a(−ŝ+ s∗))− c(a(s∗+ l)+b(s∗+ l)2 − (al+bl2))≤ 0.
(2.85)

It also suffices to show that the following two inequalities hold, where

(a+2bl)ŝ+β1a(−ŝ+ s∗)− c · (a+2bl)s∗ ≤ 0, (2.86a)

b(ŝ)2 +β2b(2g0(−ŝ+ s∗)+g2
0)− c ·b(s∗)2 ≤ 0. (2.86b)

Notice that the LHS of (2.86a) is a linear function of ŝ. Therefore, it suffices to show
that (2.86a) holds for all s∗ ≥ 0 and g0 ≥ 0, when ŝ= qg0 and ŝ= q(s∗+g0), i.e.,

(1+2bl/a−β1)qg0 +(β1 − c(1+2bl/a))s∗ ≤ 0 (2.87a)

(1−β1)(qg0 +qs∗)+(β1 − c)s∗ ≤ 0. (2.87b)

Since c ≥ 1 and q ≥ 1, by setting β1 = 1+ 2bl/a, (2.87) holds for all s∗ ≥ 0 and
g0 ≥ 0. Note that β1 is finite since a,b, and l are finite number. Similarly, the LHS
of (2.86b) is a convex function of ŝ. Therefore, it suffices to show that (2.86b) holds
for all s∗ ≥ 0 and g0 ≥ 0 when ŝ = qg0 and ŝ = q(s∗ + g0). To obtain the lowest
competitive ratio, we need to determine the values of q where 1 ≤ q2 ≤ c and β2

that minimize c. This can be achieved by using the numerical method in [14]. We
do not present the detailed steps but only the numerical results. That is, the optimal
parameters are q= 1.46 and β2 = 2.7, where the lowest competitive ratio is 2.39. �

Proof of Lemma 2.4

We give the proof by contradiction. Note that, in the mth iteration, one of the
candidate interval sets is the union of intervals sets K ∗(m) and K ∗(m+1), denoted
by K ′, i.e.,

K ′ =K ∗(m)∪K ∗(m+1). (2.88)
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Note that the interval set K ∗(m) and K ∗(m+1) have no intersections, i.e.,

K ∗(m)∩K ∗(m+1) = /0, (2.89)

then the total energy of K ′ is the sum of energy of K ∗(m) and K ∗(m+ 1), i.e.,
y∗(m)Δ ∗(m)+y∗(m+1)Δ ∗(m+1). Thus, the total load of the interval set K ′ is the
balanced the energy over all the intervals in K ′, that is,

y=
y∗(m)Δ ∗(m)+ y∗(m+1)Δ ∗(m+1)

Δ ∗(m)+Δ ∗(m+1)

> y∗(m).
(2.90)

where the last inequality holds because y∗(m) < y∗(m+ 1). Thus, it makes a
contradiction with y ≤ y∗(m) since y∗(m) is the highest total charging rate over
all candidate interval sets in iteration m. This completes the proof. �

Proof of Theorem 2.2

Proof. For any PEV i, assume that there exist intervals k1,k2,k3 ∈ J (i) where
x∗ik1

= 0, x∗ik2
∈ (0,Ui) and x∗ik3

= Ui. We separate the proof into the following three
parts to match with the three cases of KKT optimality conditions:

1. Interval k1 must be excluded before interval k2 and interval k3 since when
schedule x∗ik1

= 0 from (2.31), the considered PEV i has not been scheduled that
interval k2 and k3 should be reserved and goto next iteration. By Lemma 2.4, we
have y∗k1

≥ y∗k2
and y∗k1

≥ y∗k3
.

2. Interval k2 must be excluded before interval k3 since when schedule x∗ik2
and x∗ik3

from (2.29), interval k2 belongs to the interval set with highest total charging rate
and will be excluded in the current iteration, while interval k3 should be reserved
to next iteration. Similarly, by Lemma 2.4 we have y∗k2

≥ y∗k3
.

3. For any other interval k′ ∈J (i) with x∗ik′ ∈ (0,Ui), y∗k′ is the same as y∗k2
because

both k′ and k2 belongs to the set K ∗ in the same iteration by (2.29) and are
assigned the same optimal total charging rate from (2.28).

Therefore, our algorithm satisfies the KKT conditions that the solution is always
global optimal. �
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Chapter 3
A MPC-Based PEV Charging Scheduling

Recall that in Chap. 2, the controller of PEV charging station relies on no assump-
tions nor predictions of the future information. Whereas in this chapter, we study
another practical scenario, where the non-causal information about future PEV
arrivals is not known in advance, but its statistical information can be estimated. In
fact, the statistical information of the future charging demands can often be acquired
through historic data, which benefits the control of the PEV charging scheduling in
practical scenarios.

3.1 Problem Formulation

In this section, we first introduce the offline PEV charging problem by assuming
the knowledge of future information, and then provide the online PEV charging
problem. The optimal offline PEV charging scheme will be used as a benchmark to
evaluate the performance of the proposed online algorithm.

3.1.1 Optimal Offline PEV Charging Problem

For the offline optimal PEV charging problem, we adopt the same model and
notations as Chap. 2 except that (1) the upper bounds of charging rates are assumed
to be sufficiently large for all EVs and (2) the charging cost is assumed to be a
strictly convex increasing function of the total load. On one hand, the convexity of
cost function reflects the fact that each unit of additional power demand becomes
more expensive to obtain and make available to the consumer. For example, in the
wholesale market, the instantaneous cost can be modeled as a increasing quadratic

© The Author(s) 2017
W. Tang, Y.J.A. Zhang, Optimal Charging Control of Electric Vehicles in Smart
Grids, SpringerBriefs in Electrical and Computer Engineering,
DOI 10.1007/978-3-319-45862-5_3
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function of the instant load [1–3]. On the other hand, it also captures the intent of
reducing the load variance over time.

In the ideal case, assume that lt, t
(s)
i , t(e)i , and di for all t = 1, · · · ,T, i ∈ N are

known non-causally at the beginning of the system time. Then, the charging station
can solve (3.1) and obtain the optimal charging rate, denoted by x∗it for all time t and
the optimal total cost, denoted by Ψ1. Such a solution is referred to as an “optimal
offline solution”.

Ψ1 =min
xit

T

∑
t=1

f

(
∑

i∈I (t)

xit+ lt

)
(3.1a)

s.t.
t(e)i

∑
t=t(s)i

xit = di,∀i ∈N , (3.1b)

xit ≥ 0,∀t = t(s)i , · · · , t(e)i ,∀i ∈N . (3.1c)

In particular, the optimal total charging rate, denoted by s∗t , is defined as s∗t =

∑i∈I (t) x
∗
it.

Note that there are in total O(T|I (t)|) variables in (3.1), where |I (t)| denotes
the cardinality of the set I (t). This number can be quite large when the number
of cars present at each time slot, |I (t)|, is large. In this subsection, we propose an
equivalent transformation of (3.1) that drastically reduces the number of variables.
In particular, the following Theorem 3.1 shows that as long as we find the optimal
s∗t ∀t, the optimal x∗it ∀i, t can be obtained by earliest deadline first (EDF) scheduling.

Theorem 3.1. If a set of st’s satisfy the following inequality for all n= 1, · · · ,T
n

∑
t=1

∑
i∈{i|t(e)i =t}

di ≤
n

∑
t=1

st ≤
n

∑
t=1

∑
i∈{i|t(s)i =t}

di, (3.2)

then there exists at least a set of xit’s that is feasible to (3.1). One such set of xit’s can
be obtained by EDF scheduling, which charges the PEV i ∈I (t) with the earliest
deadline at a rate st at each time t. Moreover, when st = s∗t , the set of xit’s obtained
by EDF scheduling are the optimal solution, x∗it, to (3.1).

Proof. Please see the detailed proof in Appendix “Proof of Theorem 3.1”. To see
Theorem 3.1, note that (3.2) implies that the total energy charged by any time slot
n is no less than the total charging demand that must be satisfied by time n. On
the other hand, by EDF scheduling, PEVs with earlier deadlines must be fully
charged before those with later deadlines can be charged. Thus, (3.2) guarantees
the fulfillment of the charging demands of each individual PEV.

With Theorem 3.1, we can transform (3.1) to the following equivalent problem
with T variables.
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Ψ1 =min
st

T

∑
t=1

f (st+ lt) (3.3a)

s.t.
n

∑
t=1

st ≥
n

∑
j=1

∑
i∈{i|t(e)i =j}

di,∀n= 1, · · · ,T. (3.3b)

n

∑
t=1

st ≤
n

∑
j=1

∑
i∈{i|t(s)i =j}

di,∀n= 1, · · · ,T. (3.3c)

The optimal solution s∗t to (3.3) has an interesting feature: it does not change with the
cost function f (st+ lt), as long as f is strictly convex. Moreover, s∗t also minimizes
the variance of total load subjecting to (3.3b) and (3.3c), where the variance of total

load is defined as ∑T
t=1(st+ lt− ∑T

t=1 st+lt
T )2 [4, 5]. This is proved in Theorem 3.2.

Theorem 3.2. The optimal solution s∗t to (3.3) does not change with the cost
function f (.), as long as f (.) is strictly convex. Moreover, s∗t is essentially a load
flattening solution that minimizes the variance of total load.

Proof. Please see the detailed proof in Appendix “Proof of Theorem 3.2”.

3.1.2 Online PEV Charging Problem

For the online PEV charging problem, the charging schedule only depends on the
statistic information of future load demand, the current based load and the remaining
charging demands and deadlines of the PEVs that have arrived so far. In contrast to
the offline algorithm that solves (3.3) only once at the beginning of system time,
the online charging scheduling algorithm computes the charging rate sk at each time
slot k. The charging rate sk, once determined, cannot be changed in the future. In
particular, sk is computed by solving a problem similar to (3.3), except that (i) the
objective function is now an expectation of charging cost over the random PEV
arrivals in the future, (ii) the sum over time in both the objective function and
constraints starts from k instead of 1, and (iii) the charging demands at the right
hand side of the constraints are replaced by the unfinished charging demands that
have not yet been fulfilled by time k. Specifically, the remaining charging demand
of PEV i at time k is given by

d̂ki = di−
k−1

∑
t=t(s)i

xit. (3.4)

Note that, d̂ki = di for all PEVs that have not yet arrived by time k−1. A close look
at (3.3) suggests that the charging schedule st only depends on the total charging
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demand that needs to be finished before a certain time, but not the demand due to
individual PEVs. Thus, for notational simplicity, we define

d̃kt = ∑
i∈{i|t(e)i =t}

d̂ki ,∀t = k, · · · ,T, (3.5)

as the total unfinished charging demand at time k that must be completed by time t.
With this, we define the state of system at time t as

Dt = [lt, d̃
t
t , d̃

t
t+1, · · · , d̃tT ], (3.6)

where lt is the base load at time t, d̃tt′ is the total unfinished charging demand at time
t that must be completed by time t′. Let ξ t represent the random arrival events at
time t. ξ t is defined as

ξ t = [ιt,η t
t ,η t

t+1, · · · ,η t
et ], (3.7)

where ιt is the base load at time t, η t
t′ is the total charging demand that arrive at time

t and must be fulfilled by time t′, et is the latest deadline among the PEVs that arrive
at time t. Then, the system state at time t+1 is defines as

Dt+1 := g(st,Dt,ξ t+1), (3.8)

where g(.) is the transition function between st,Dt,ξ t+1 and Dt+1. Given Dt,st and
ξ t+1, the system state Dt+1 can be uniquely determined as follows:

lt+1 = ιt+1 (3.9)

and

d̃t+1
t′ =

[
d̃tt′ −

[
st−

t′−1

∑
j=t

d̃tj

]+]+
+η t+1

t′ ,∀t′ = t+1, · · · ,T. (3.10)

Here, [x]+ = max{x,0}. With the above definitions of system state and state
transition, we are now ready to rewrite (3.3) into its online counterpart. In particular,
given Dk at a current time slot k, the optimal online charging decision sk is the
solution to the following finite-horizon dynamic programming problem.

Qk(Dk) =min
sk

f (sk+ lk)+Eξ k+1
[Qk+1(g(sk,Dk,ξ k+1))] (3.11a)

s. t. d̃kk ≤ sk ≤
T

∑
t=k

d̃kt , (3.11b)
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where Qk+1(g(sk,Dk,ξ k+1)) is the optimal value of the dynamic programming at
time k+ 1. The left side of (3.11b) ensures all changing demands to be satisfied
before their deadlines. The right side of (3.11b) implies that the total charging power
up to a certain time cannot exceed the total demands that have arrived up to that time.
By slight abuse of notation, in the rest of the chapter we denote the optimal solutions
to both the online and offline problems as s∗k , when no confusion arises. The actual
meaning of s∗k will be clear from the context. Suppose that s∗k is the optimal solution
to (3.11) at stage k. Then, the resultant total charging cost, denoted by Ψ2, is

Ψ2 =
T

∑
k=1

f (s∗k + lk). (3.12)

Note that (3.11a) comprises nested expectations with respect to random PEV
arrivals at each time slot. Except for few special cases, it is hard to provide
the closed-form of the optimal solution to (3.11). Then, (3.11) can be solved by
the commonly numerical methods, such as backward reduction and the sample
average approximation (SAA) based on Monte Carlo sampling techniques [6–9].
Notice that (3.11) includes continuous spaces of both state and variable, where
the continuous spaces should be discretized into indefinitely small pieces in the
commonly numerical methods. Thus, the discretization of continuous spaces and the
curse of dimensionality lead to a prohibitive complexity of the commonly numerical
methods.

3.2 Related Work

The works on the PEV charging scheduling with uncertain PEV load demand
include both simulation-based evaluations [10, 11] and theoretical performance
guarantees [4, 5, 12]. Meanwhile, MPC is one of most commonly approaches for
which has been widely adopted in recent studies [4, 5, 11, 12]. Rao and Yao [11]
leverages the MPC based method to design a dynamic charging and driving cost
control scheme. Both [4] and [5] apply MPC algorithms to minimize the load
variation. Bansal et al. [12] proposes a plug and play MPC approach to minimize the
voltage fluctuations by assuming that the load demand is time-periodic. Compared
to [4, 5, 11, 12], in this chapter we analyze the performance gap between the
solution of MPC approach and the optimal solution regardless of the distribution
of the load demand. Besides, we provide a more scalable algorithm with O(1)-
complexity as well as the optimality analysis for the case when the load demand
is first-order periodic. Additionally, the objective functions in [4, 5, 11, 12] are
quadratic forms of load demand. Whereas in this chapter, the objective function
is a general strictly convex increasing function which reflects both the charging cost
and the load variance.
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In this chapter, we provide a Model Predictive Control (MPC) based algorithm
to solve the online charging scheduling problem. In contrast to the previous work,
we rigorously prove that the proposed algorithm yields a near-optimal solution
that has a bounded performance gap from the optimal solution regardless of the
distribution of exogenous random variables. Furthermore, our rigorous analysis
shows that the proposed algorithm can be made scalable when the random process
describing the arrival of charging demands is first-order periodic. That is, the
complexity of proposed algorithm can be reduced to O(1), which is independent
of T . Extensive simulations show that the proposed online algorithm performs very
closely to the optimal online algorithm. The performance gap is smaller than 0.4%
in most cases. As such, the proposed online algorithm is very appealing for practical
implementation due to its scalable computational complexity and close to optimal
performance.

3.3 MPC-Based Online Charging Algorithm

Instead of adopting the commonly numerical methods to solve (3.11), we are
motivated to solve a much simpler problem here: the one obtained by replacing
all exogenous random variables by their expected values. This is referred to the
expected value problem [7–9] and the MPC approach [4, 5, 11, 12]. Moreover, by
exploring the load flattening feature of the optimal solution to the expected value
problem, we propose a low-complexity online Expected Load Flattening (ELF)
algorithm, as shown in Sect. 3.3.1. Section 3.3.2 proves that the optimal solution
to the expected value problem yields a bounded performance gap compared with
the optimal solution to (3.11). Numerical results show that the performance gap is
negligible (< 0.4%) in most cases.

3.3.1 Algorithm Description

Denote the expectation of ξ t as

μ t = [νt,μ t
t , · · · ,μ t

T ], (3.13)

where

νt = E[ιt],μ t
t′ = E[η t

t′ ],∀t′ = t, · · · ,T. (3.14)

Replacing ξ t in (3.11) with μt, we obtain the following deterministic problem:
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min
sk

f (sk+ lk)+
T

∑
t=k+1

f (st+νt) (3.15a)

s. t.
j

∑
t=k

st ≥
j

∑
t=k

d̃kt +
j

∑
m=k+1

j

∑
n=m

μm
n ,∀j= k, · · · ,T, (3.15b)

j

∑
t=k

st ≤
T

∑
t=k

d̃kt +
j

∑
m=k+1

em

∑
n=m

μm
n ,∀j= k, · · · ,T, (3.15c)

In each time k, we solve problem (3.15) and obtain the optimal charging solution s∗k .
Then, problem (3.15) is resolved with the updated d̃kt according to the realization of
the PEVs arrived in next time. So on and so forth, we obtain the optimal charging
solution s∗k for time stage k = 2, · · · ,T . The total cost, denoted by Ψ3, is defined as

Ψ3 =
T

∑
k=1

f (s∗k + lk), (3.16)

where s∗k is the optimal solution to (3.15) at time stage k. The solution to (3.15) is
always feasible to (3.11) in the sense that it always guarantees fulfilling the charging
demand of the current parking PEVs before their departures. This is because the
constraints of sk in (3.11) are included in (3.15).

Due to the convexity of f (·), the optimal solution is the one that flattens the total
load as much as possible. By exploiting the load flattening feature of the solution, we
present in Algorithm 2 the online ELF algorithm that solves (3.15) with complexity
O(T3). The online ELF algorithm have a lower computational complexity than
generic convex optimization algorithms, such as the interior point method, which
has a complexity O(T3.5) [13]. Notice that similar algorithms have been proposed
in the literature of speed scaling problems [14, 15] and PEV charging problems
[16]. The optimality and the complexity of the algorithm have been proved therein,
and hence omitted here. The algorithm presented here, however, paves the way for
further complexity reduction to O(1) in Sect. 3.4. For notation brevity, we denote in
the online ELF algorithm

d̄t
′
t′′ =

{
d̃t

′
t′′ , for t′′ = k, · · · ,T, t′ = k,

μ t′
t′′ , for t′′ = t′, · · · ,T, t′ = k+1, · · · ,T.

(3.17)

The key idea of online algorithm ELF is to balance the charging load among all
time slots k, · · · ,T and then assign the balanced load at time k to the solution s∗k .
Specifically, step 3–5 is to find the time interval that has the maximum load density
during time k to T , and set the optimal charging rate for that time interval to be
equal to the maximum density. The time interval is then deleted, and the process is
repeated until the current time k belongs to the maximum-density interval.
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Algorithm 2: Online algorithm ELF
input : Dk,μ t, t = k+1, · · · ,T
output: sk

1 initialization i= 0, j= 0;
2 repeat
3 For all time slot i= k, · · · ,T, j= i, · · · ,T , compute

i∗, j∗ = argmax
i,j

{∑j
t′=i(∑

j
t′′=t′ d̄

t′
t′′ +νt′)

j− i+1
}. (3.18)

4 Set

y∗ =
∑j∗
t′=i∗ (∑

j∗
t′′=t′ d̄

t′
t′′ +νt′)

j∗ − i∗+1
. (3.19)

5 Delete time slot i∗, · · · , j∗ and relabel the existing time slot t > j∗ as t− j∗+ i∗ −1.
6 until i∗ = k;
7 Set sk = y∗ − lk.

3.3.2 Optimality Analysis

In this subsection, we analyze the optimality of the solution to (3.15). A well-
accepted metric, Value of the Stochastic Solution (VSS) is adopted to evaluate
optimality gap between the optimal online solution and the solution to the expected
value problem [7–9]. To evaluate the VSS, the previous study, e.g., [8, 9], mainly
focus on the numerical simulations. Whereas in this subsection, we derive an upper
bound of the VSS through the rigorous theoretical analysis. we denoted by Ξ a
scenario, which is defined as a possible realization of the sequence of random load
demand [6],

Ξ = [ξ 2,ξ 3, · · · ,ξ T ]. (3.20)

Here, we treat ξ 1 as deterministic information since the demand of PEVs arrived
at the first stage is known by the scheduler. Let Φ1,Φ2 and Φ3 be the expectation
of the optimal value of the offline problem (3.3), the online problem (3.11) and the
expected value problem (3.15) over the set of scenario Ξ , respectively. That is,

Φ1 = EΞ [Ψ1(Ξ)] ,Φ2 = EΞ [Ψ2(Ξ)] ,Φ3 = EΞ [Ψ3(Ξ)] . (3.21)

It has been proved previously [7, 8] that

Φ1 ≤ Φ2 ≤ Φ3. (3.22)



3.3 MPC-Based Online Charging Algorithm 55

To assess the benefit of knowing and using the distributions of the future outcomes,
the VSS is defined as

VSS = Φ3 −Φ2. (3.23)

To show that the online algorithm ELF yields a bounded VSS, we need to bound
Φ3 and Φ2. Generally, it is hard to calculate Φ2 or analyze the lower bound of
Φ2 directly [8, 9]. Thus, we choose to analyze the lower bound of Φ1 instead,
since (3.22) shows that the lower bound of Φ1 is also the bound of Φ2. In other
words, for the gap VSS, we have

VSS = Φ3 −Φ2 ≤ Φ3 −Φ1. (3.24)

In what follows, we will derive in Proposition 3.1 the lower bound of Φ1. Likewise,
we will also derive the upper bound of Φ3 in Proposition 3.2.

Proposition 3.1.

Φ1 ≥ Tf

(
∑e1
t=1 d̃

1
t +∑T

t=2 ∑et
j=t μ

j
t +∑T

t=1 νt
T

)
. (3.25)

Proof. Please see the detailed proof in Appendix “Proof of Proposition 3.1”.

Let O(t) be the set that

O(t) = {(m,n)|em ≥ t,m= 1, · · · , t,n= t, · · · ,em}. (3.26)

Then we show that Φ3 is bounded by the following proposition.

Proposition 3.2. For any distribution of ξ t, t = 1, · · · ,T, there is

Φ3 ≤ E

[
T

∑
t=1

f

(
∑

(m,n)∈O(t)

ηm
n + ιt

)]
. (3.27)

Proof. Please see the detailed proof in Appendix “Proof of Proposition 3.2”.

Now, we are ready to present Theorem 3.3, which states that the VSS is bounded
for any distribution of random variables.

Theorem 3.3. For any distribution of random vector ξ t, t = 1, · · · ,T,n = t, · · · ,T,
there is

VSS≤ E

[
T

∑
t=1

f

(
∑

(m,n)∈O(t)

ηm
n + ιt

)]
−Tf

(
Γ
T

)
, (3.28)
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where Γ = ∑e1
t=1 d̃

1
t +∑T

t=2 ∑et
j=t μ

j
t +∑T

t=1 νt.

Proof. Please see the detailed proof in Appendix “Proof of Theorem 3.3”.

Before leaving this section, we would like to comment that in practice, the per-
formance gap between the online algorithm ELF and the optimal online algorithm is
often much smaller than the bound of VSS. This will be elaborated in the numerical
results in Sect. 3.5.

3.4 Online Algorithm ELF Under First-Order Periodic
Process

Notice that the complexity of O(T3) of online algorithm ELF mainly comes from
step 3, which exhaustively searches the maximum-density period [i∗, j∗] over all
subintervals within [k,T]. When the arrival process is first-order periodic, we argue
that the searching scope can be reduced to one period from the whole system time
T . Thus, the complexity of step 3 is limited by the length of a period instead
of T . As a result, the complexity of the algorithm reduces from O(T3) to O(1),
implying that it does not increase with the system time T , and thus the algorithm
is perfectly scalable. In practice, the arrival process of the charging demands are
usually periodic. For example, the arrival of charging demands at a particular
location is statistically identical at the same time every day during weekdays (or
weekends). In Sect. 3.4.1, we will investigate a special case when the random arrival
process is first-order stationary. The investigation is then generalized to the first-
order periodic case in Sect. 3.4.2.

3.4.1 First-Order Stationary Process

In this subsection, we show that the optimal solution to (3.15) can be calculated in
closed form if the arrival process is first-order stationary. By first-order stationary,
we mean that the statistical mean of ξ t, i.e., νt and μ t

t′ , t
′ = t, · · · ,T only depends on

the relative time difference τ = t′ − t, but not the absolute value of t. We can then
replace νt by ν and replace μ t

t′ by μτ , where τ = t′ − t. When the arrival process is
first-order stationary, i.e., ∀t= 2, · · · ,T, μ t in (3.13) is no longer a function of t, and
can be represented as

μ = [ν ,μ1,μ2, · · · ,μē,0, · · · ,0], (3.29)

where ē is the maximum parking time of a PEV. To find the subinterval
[i∗, j∗] ⊆ [k,T] with the maximum density, we decompose the search region
{i, j|i= k, · · · ,T, j= i, · · · ,T} into three sub-regions, i.e., {i, j|i= k, j= k, · · · ,k+ ē},
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{i, j|i = k, j = k+ ē+ 1, · · · ,T} and {i, j|i = k+ 1, j = i, · · · ,T}. Let [i1, j1] be the
maximum-density subinterval within the first sub-region {i, j|i= k, j= k, · · · ,k+ ē},
and the corresponding maximum density is denoted as X. Likewise, let [i2, j2]
be the maximum-density subinterval of the second sub-region {i, j|i = k, j =
k + ē+ 1, · · · ,T}, with the maximum density denoted as Y , and [i3, j3] be the
maximum-density subinterval within the third sub-region {i, j|i= k+1, j= i, · · · ,T},
with the maximum density denoted as Z. By definition, i1 = i2 = k. The maximum
density X of the first sub-region can be obtained by searching j1 over {k, · · · ,k+ ē}:

X = max
k≤n≤k+ē

{
∑n
t=k d̃

k
t +∑n

j=1(n− k− j+1)μj+ lk−ν
n− k+1

+ν

}
. (3.30)

The searching complexity is limited by ē instead of the system time T . Moreover,
we will show in the following Lemma 3.1 that Y and Z can be calculated in closed
form. That is, the complexity of obtaining the maximum densities over the second
and third sub-regions is very low.

Lemma 3.1. The maximum density of {i, j|i = k, j = k+ ē+ 1, · · · ,T} is achieved
by setting i2 = k, j2 = T, and calculated by

Y =
∑k+ē
t=k d̃

k
t +∑k+ē

j=1 (T− k− j+1)μj+ lk−ν
T− k+1

+ν . (3.31)

Moreover, the maximum density of {i, j|i= k+1, j= i, · · · ,T} is achieved by setting
i3 = k+1, j3 = T, and calculated by

Z =
∑k+ē
j=1 (T− k− j+1)μj

T− k
+ν . (3.32)

Proof. Please see the detailed proof in Appendix “Proof of Lemma 3.1”.

The largest of X,Y, and Z is the maximum density of the interval [i∗, j∗] ⊆ [k,T]
over all possible pairs i, j ∈ {i = k, · · · ,T, j = i, · · · ,T}. Specially, if X or Y is the
largest one, then k is already contained in the maximum-density interval, and thus
X or Y is the optimal charging rate at time k. On the other hand, if Z is the largest,
then the maximum-density interval, i.e., [k+ 1,T], does not include k. Following
Algorithm 2, we will delete the maximum-density interval and repeat the process.
Now, time slot k is the only remaining time slot after deletion. This implies that all
charging demands that have arrived by time slot k should be fulfilled during time slot
k. These arguments are summarized in Proposition 3.3, which provides the closed
form solution to (3.15).

Proposition 3.3. The optimal charging schedule to (3.15) is given by the following
close-form
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s∗k =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X− lk, if X = max{X,Y,Z}, (3.33)

Y− lk, if Y = max{X,Y,Z}, (3.34)

k+ē

∑
t=k

d̃kt , otherwise. (3.35)

It is obvious that the complexity of calculating s∗k is independent of T . In other
words, the computational complexity is reduced to O(1).

3.4.2 First-Order Periodic Process

In this subsection, we extend Proposition 3.3 to the case when the arrival process
is first-order periodic. By first-order periodic, we mean that μ t in (3.13) repeats
itself periodically. Suppose that the period is p. Then, instead of considering μ t for
t= k+1, · · · ,T , we only need to consider μ t for one period, i.e., for t= k+1,k+p:

μk+1 = [νk+1,μk+1
k+1 ,μ

k+1
k+2 , · · · ,μk+1

k+e1
,0, · · · ,0],

...

μk+p = [νk+p,μk+p
k+p ,μ

k+p
k+p+1, · · · ,μk+p

k+ep
,0, · · · ,0].

(3.36)

Here, en ≤ T,n = 1, · · · ,p is the maximum parking time for PEVs arriving at time
k+ n. Specially, we define ê as ê = max{ek+1,ek+2, · · · ,ek+p}. Similar to the first-
order stationary case, we decompose the search region {i, j|i= k, · · · ,T, j= i, · · · ,T}
into three sub-regions, i.e., {i, j|i= k, j= k, · · · ,k+ ê}, {i, j|i= k, j= k+ ê+1, · · · ,T}
and {i, j|i = k+ 1, j = i, · · · ,T}. Let [î1, ĵ1] be the subinterval with the maximum
density, denoted by X̂, over the first sub-region {i, j|i= k, j= k, · · · ,k+ ê}, [î2, ĵ2] be
the subinterval with the maximum density, denoted by Ŷ , over the second sub-region
{i, j|i = k, j = k+ ē+ 1, · · · ,T} and [î3, ĵ3] be the subinterval with the maximum
density, denoted by Ẑ, over the third sub-region {i, j|i = k+ 1, j = i, · · · ,T}. By
definition, î1 = î2 = k. Similar to the stationary case, X̂ can be calculated by
searching ĵ1 over {k, · · · ,k+ ê}. That is,

X̂ = max
k≤t≤k+ê

∑t
n=k(d̃

k
n+νn)+∑t

n=k ∑t
m=n μn

m

n− k+1
. (3.37)

Moreover, Lemma 3.2 shows that Ŷ and Ẑ can be calculated once the maximum
density of [k+1,k+ ê] has been obtained. Here, we define [ī, j̄] to be the maximum-
density interval within [k+1,k+ ê], i.e.,
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ī, j̄= arg max
k+1≤i≤j≤k+ê

∑j
n=i(∑

k+en
m=n μn

m+νn)
j− i+1

. (3.38)

Now we are ready to present Lemma 3.2.

Lemma 3.2. The maximum density of {i, j|i= k, j= k+ ê+1, · · · ,T} is calculated
by

Ŷ =
∑ĵ2
n=k(∑

k+en
m=n μn

m+νn)
ĵ2 − k+1

, (3.39)

where

ĵ2 =

{
max{j̄,k+ ê+1}, if j̄< ī+p,

j̄+(r−1)p, otherwise.
(3.40)

The maximum density of {i, j|i= k+1, j= i, · · · ,T} is calculated by

Ẑ =
∑ĵ3
n=î3

(∑k+en
m=n μn

m+νn)

ĵ3 − î3 +1
, (3.41)

where î3 = ī and

ĵ3 =

{
j̄, if j̄< ī+p,

j̄+(r−1)p, otherwise.
(3.42)

Proof. Please see the detailed proof in Appendix “Proof of Lemma 3.2”.

Based on Lemma 3.2, we can modified the searching region of step 3 of online
algorithm ELF as follows:

• if j̄ < ī+ p, the interval with the maximum density during time stages [k+ 1,T]
is [ī, j̄]. Then, for the step 3 of online algorithm ELF, the search region of i, j
is reduced from {i, j|i = k, · · · ,T, j = i, · · · ,T} to {i, j|i = k, · · · , ī, j = i, · · · , ī, j̄},
where ī ∈ [k+1,k+ ê].

• If j̄ ≥ ī+ p, the interval with the maximum density during time stages [k+ 1,T]
is [ī, j̄+(r−1)p]. Then, for the step 3 of online algorithm ELF, the search region
of i, j can be reduced from {i, j|i = k, · · · ,T, j = i, · · · ,T} to {i, j|i = k, · · · , ī, j =
i, · · · , ī, j̄+(r−1)p}, where ī ∈ [k+1,k+ ê].

Hence, the searching region of the modified online algorithm ELF is only related
to [k+ 1,k+ ê] instead of T . Thus, the computational complexity of the online
algorithm ELF is O(1) instead of O(T3) when the arrival process is first-order
periodic.
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3.5 Simulations

In this section, we investigate the performance of the proposed online algorithm
ELF through numerical simulations. All the computations are solved in MATLAB
on a computer with an Intel Core i3-2120 3.30 GHz CPU and 8 GB of memory.
For comparison purpose, we also simulate the performance of the optimal offline
solution, the optimal online solution obtained by SAA method as well as the online
algorithm AVG, which charges each PEV as the ratio of its charging demand
to parking time [3]. The average cost of online algorithm AVG is denoted by
Φ4. Define the relative performance loss of the online algorithm ELF and AVG
compared with the optimal online solution as Φ3−Φ2

Φ2
and Φ4−Φ2

Φ2
, respectively.

Similar to [3, 16], we adopt a quadratic cost function in the simulations, i.e.,
f (st+ lt) = (st+ lt)2.

3.5.1 Average Performance Evaluation

In this subsection, we evaluate the average performance of the online algorithm
ELF under three different traffic patterns, i.e., light, moderate, and heavy traffics. In
particular, the system time T is set to be 24 h. The PEV arrivals follow a Poisson
distribution and the parking time of each PEV follows an exponential distribution
[16]. The mean arrival and parking durations of the three traffic patterns are listed
in Table 3.1. The main difference lies in the arrival rates at the two peak hours,
i.e. 12:00 to 14:00 and 18:00 to 20:00. The settings of the peak hour match with
the realistic vehicle trips in National Household Travel Survey (NHTS) 2009 [17].
Specially, the average number of total PEVs simulated in scenario 1, 2 and 3 are
104, 204 and 304, respectively. We choose the base load profile of one day in the
service area of South California Edison from [18]. Each PEV’s charging demand is
uniformly chosen from [25,35] kWh.

For each scenario, we simulate the average performance of 105 independent
instances by adopting optimal offline algorithm, optimal online algorithm, online
algorithm ELF and AVG, respectively. The average total load over time are plotted

Table 3.1 Parameter settings
of the PEV traffic patterns

Arrival rate (PEVs/hour) Mean parking

Time of day S. 1 S. 2 S. 3 Time (hour)

08:00–10:00 7 7 7 10

10:00–12:00 5 5 5 1/2

12:00–14:00 10 35 60 2

14:00–18:00 5 5 5 1/2

18:00–20:00 10 35 60 2

20:00–24:00 5 5 5 10

24:00–08:00 0 0 0 0
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Fig. 3.1 Base load and total load of four algorithms in Scenario 1
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Fig. 3.2 Base load and total load of four algorithms in Scenario 2

in Figs. 3.1, 3.2 and 3.3. For each scenario, we calculate the average costs of four
algorithms normalized by the optimal offline, respectively, and plot the normalized
costs in Fig. 3.4. In addition, the VSS and the relative performance loss are shown
in Table 3.2.

From Figs. 3.1, 3.2 and 3.3, we notice that the curve of total load output by the
online algorithm ELF follows closely to that of optimal offline algorithm. Figure 3.4
and Table 3.2 show that the online algorithm ELF has on average less than 7 %
extra cost compared with the optimal offline algorithm throughout three scenarios.
Moreover, the online algorithm ELF performs very closed to the optimal online
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Fig. 3.3 Base load and total load of four algorithms in Scenario 3

Table 3.2 Average
performance comparison
under three traffic patterns

Scenario VSS Φ3−Φ2
Φ2

Φ4−Φ2
Φ2

1 0.1178 0.19% 3.50%

2 0.1319 0.28% 4.46%

3 0.1536 0.38% 5.82%

Scenario 1

Optimal online Online ELF Online AVG

1 1 11.0019
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Fig. 3.4 The average costs of four algorithms normalized by the average cost of the optimal offline
in three scenarios

algorithm. the VSS and the relative performance loss are no more than 0.1536
and 0.38 % respectively. In contrast, online algorithm AVG largely deviate from
the curve of the optimal offline algorithm in all the three scenarios. Compared
with online algorithm AVG, online algorithm ELF always performs better in three
scenarios, which produces half of the extra cost compared with the optimal offline
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Fig. 3.5 The average costs of three algorithms normalized by the average cost of the optimal
offline in two cases

algorithm than that produced by AVG. This is because AVG does not rely on any
future information that leads to a larger fluctuation of the total load curve.

3.5.2 Discussion the Influence of Variance

Note that only the statistic means of the random variables are required in the online
algorithm ELF. Intuitively, the variance of the random variables may influence the
results. In this subsection, we discuss how the variance of charging demands affects
the performance of our online algorithm. Let the arrivals and parking durations of
PEVs be the same as scenario 1 in Table 3.1. For comparison, we simulate two cases
where each PEV’s charging demand is uniformly chosen from different intervals:
case 1: [25,35 kWh], where the variance is 25

3 (kWh2); case 2: [5,35 kWh],
where the variance is 225

3 (kWh2). Thus, the variance of the charging demands
in case 2 is 9 times of that in case 1. For each scenario, we simulate the average
performance of 105 independent instances by adopting four algorithms respectively.
For each scenario, we calculate the average costs of four algorithms normalized
by the optimal offline, respectively, and plot the normalized costs in Fig. 3.5.
Figure 3.5 shows that the online algorithm ELF has on average less than 3.6 % extra
cost compared with the optimal offline algorithm and 0.29 % extra cost compared
with the optimal online algorithm. Hence, when the variance of random variables
increase 8 times, the performance gap between the online algorithm ELF and
optimal offline algorithm changes at most 0.5 % and the performance gap between
the online algorithm ELF and optimal online algorithm changes at most 0.1 %.
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Fig. 3.6 CPU computational time over system time for three online algorithms

3.5.3 Complexity Comparison

In this subsection, we proceed to evaluate the computational complexity of the
online ELF algorithm when the load demand is first order periodic. Similar to
Sect. 3.4.2, we use the optimal online algorithm and the online AVG algorithm as
performance benchmarks. One period is set to be one day. For each day, the settings
of traffic patterns are adopted the same as scenario 1 shown in Table 3.1, and other
parameter settings are adopted the same as Sect. 3.5.1. We simulate 7 cases in total,
where the system time are set to be 1,2, · · · ,7 days and average number of PEVs
per day is 204. For each algorithm, we record the CPU computational time at each
time stage and calculate the average CPU computational time as the sum of CPU
computational times of all time stages divided by the number of time stages. Each
point in Fig. 3.6 is an average of 100 independent instances. Figure 3.6 shows that
the CPU computational time of the online ELF algorithm is almost a constant around
100 s regardless of the total system time. This observation is consistent with our
analysis in Sect. 3.4.2, which states that the algorithm is scalable. In comparison,
the average CPU computational time of the optimal online algorithm and online
AVG algorithm grows very quickly as system time increases. We notice that the
optimal online algorithm consumes more than 2.5 days when system time increases
to 4 days, while online AVG algorithm takes around 15.5 min. It is foreseeable that
the computational complexity of optimal online algorithm will become extremely
expensive as we further increase the system time.
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3.6 Conclusions

In this chapter, we formulate the optimal PEV charging scheduling problem as a
finite-horizon dynamic programming problem. Instead of adopting the backward
reduction method with prohibitive complexity, we provide a MPC-based online
algorithm with a computational complexity of O(T3), where T is the total number of
the time stages. We rigorously show that the performance gap between the proposed
online algorithm and the optimal solution is bounded regardless of the distribution of
random variables. Moreover, we show that the algorithm can be made scalable with
O(1)-complexity when the arrivals of load demands are first-order periodic. Our
analyses are validated through extensive simulations, which shows the proposed
online algorithm can efficiently minimize the charging cost and reduce the load
variance.

Appendix

Proof of Theorem 3.1

We use the inductive method to show that through EDF scheduling, all the PEVs
can be fulfilled charging before deadlines. For n= 1, (3.2) becomes

∑
i∈{i|t(s)i =1}

di ≥ s1 ≥ ∑
i∈{i|t(e)i =1}

di. (3.43)

Thus, by EDF scheduling, we can first satisfy the demand of PEVs whose deadline

at time stage 1. That is, for any PEV i ∈ {i|t(e)i = 1}, we set

xi1 = di. (3.44)

Assuming that for all time stage m, EDF scheduling can fulfill charge all the PEVs
which depart at or before time stage m, i.e., there exists at least a set of xit’s that
satisfy

t(e)i

∑
t=t(s)i

xit = di,∀i ∈ {i|t(e)i ≤ m}, (3.45a)

xit ≥ 0,∀t = t(s)i , · · · , t(e)i ,∀i ∈ {i|t(e)i ≤ m}. (3.45b)
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Since

m

∑
t=1

st ≥
m

∑
t=1

∑
i∈{i|t(e)i =t}

di, (3.46)

then, ∑m
t=1 st−∑m

t=1 ∑
i∈{i|t(e)i =t} di represents the amount of power which is outputted

from the charging station during time stage 1, · · · ,m and charged to the PEVs with
deadline after time stage m. By EDF scheduling, once the PEVs which depart at
time m have been fulfilled charging, we will first charge the PEVs which depart at
time stage m+1. Thus, if

m

∑
t=1

st−
m

∑
t=1

∑
i∈{i|t(e)i =t}

di ≥ ∑
i∈{i|t(e)i =m+1}

di, (3.47)

we finish charging of PEVs with deadline m+ 1, and then go to charge the PEVs
with deadline m+2. If

m

∑
t=1

st−
m

∑
t=1

∑
i∈{i|t(e)i =t}

di < ∑
i∈{i|t(e)i =m+1}

di, (3.48)

then the PEVs with deadline m + 1 have been charged as power ∑m
t=1 st −

∑m
t=1 ∑

i∈{i|t(e)i =t} di. At time stage m+1. Since

m+1

∑
t=1

st ≥
m+1

∑
t=1

∑
i∈{i|t(e)i =t}

di, (3.49)

then,

sm+1 ≥ ∑
i∈{i|t(e)i =m+1}

di−

⎛
⎜⎝

m

∑
t=1

st−
m

∑
t=1

∑
i∈{i|t(e)i =t}

di

⎞
⎟⎠ , (3.50)

which means all the PEVs with deadline m+ 1 can be fulfilled charging. This is
because we will charge the PEVs with deadline m+1 first by the EDF scheduling.
Thus, there exists at least a set of xit’s that satisfy

t(e)i

∑
t=t(s)i

xit = di,∀i ∈ {i|t(e)i = m+1}, (3.51a)

xi,m+1 ≥ 0,∀i ∈ {i|t(e)i = m+1}. (3.51b)
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Combining (3.45) and (3.51), we get that all the PEVs whose deadline at or before
stage m+1 can be fulfill charging, i.e., there exist at least a set of xit’s that satisfy

t(e)i

∑
t=t(s)i

xit = di,∀i ∈ {i|t(e)i ≤ m+1}, (3.52a)

xit ≥ 0,∀t = t(s)i , · · · , t(e)i ,∀i ∈ {i|t(e)i ≤ m+1}. (3.52b)

Therefore, we can conclude that by EDF scheduling, there always exists at least a
set of xit’s that is feasible to (3.1). This completes the proof. �

Proof of Theorem 3.2

First, we show that if there exists a PEV parking in the station at both time t1 and t2,
i.e.,

t1, t2 ∈ {t(s)i , · · · , t(e)i }, (3.53)

and

x∗it1 ≥ 0,x∗it2 > 0, (3.54)

then the optimal total loads at time t1 and t2 must satisfy that

s∗t1 + lt1 ≥ s∗t2 + lt2 . (3.55)

The Karush-Kuhn-Tucker (KKT) conditions to the convex problem (3.1) are

f ′( ∑
i∈I (t)

xit+ lt)−λi−ωit = 0, i ∈N , t = t(s)i , · · · , t(e)i , (3.56a)

λi(di−
t(e)i

∑
t=t(s)i

xit) = 0, i ∈N , (3.56b)

ωitxit = 0, i ∈N , t = t(s)i , · · · , t(e)i , (3.56c)

where λ ,ω are the non-negative optimal Lagrangian multipliers corresponding
to (3.1b) and (3.1c), respectively. We separate our analysis into the following two
cases:
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1. If x∗it1 = 0 for a particular PEV i at a time slot t1 ∈ {t(s)i , · · · , t(e)i }, then, by
complementary slackness, we have ωit1 > 0. From (3.56a),

f ′(st1 + lt1) = λi+ωit1 . (3.57)

2. If x∗it2 > 0 for PEV i during a time slot t2 ∈ {t(s)i , · · · , t(e)i }, we can infer
from (3.56c) that ωit2 = 0. Then,

f ′(st2 + lt2) = λi. (3.58)

On the other hand, since f (st+ lt) is a strictly convex function of st+ lt, then f ′(st+
lt) is an increasing function. From the above discussions, we get the following two
conclusions:

1. If x∗it1 > 0,x∗it2 > 0, then by (3.58),

f ′(st1 + lt1) = f ′(st2 + lt2) = λi. (3.59)

Due to the monotonicity of f ′(st), we have s∗t1 + lt1 = s∗t2 + lt2 .
2. If x∗it1 = 0,x∗it2 > 0, then by (3.57) and (3.58), there is

f ′(st1 + lt1) = λi+ωit1 > f ′(st2 + lt2) = λi. (3.60)

Since f ′(st) is a increasing function, we have s∗t1 + lt1 ≥ s∗t2 + lt2 .

Consider two function f̂ (st+ lt) and f̄ (st+ lt). Let x̂∗it and x̄∗it denote the optimal
solutions to (3.1) with f (st + lt) replaced by f̂ (st + lt) and f̄ (st + lt), respectively.
Define ŝ∗t , s̄∗t as

ŝ∗t = ∑
i∈I (t)

x̂∗it, s̄
∗
t = ∑

i∈I (t)

x̄∗it, t = 1, · · · ,T, (3.61)

respectively. Suppose that there exists a time slot t1 such that

ŝ∗t1 < s̄∗t1 . (3.62)

Since

T

∑
t=1

ŝ∗t =
T

∑
t=1

s̄∗t = ∑
i∈N

di, (3.63)

there must exist another time slot t2 such that

ŝ∗t2 > s̄∗t2 (3.64)
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and

ŝ∗t1 + ŝ∗t2 = s̄∗t1 + s̄∗t2 (3.65)

Thus, we can find a PEV i ∈N such that

x̂∗it1 < x̄∗t1 , x̂
∗
it2 > x̄∗it2 . (3.66)

As a result,

x̂∗it2 > 0 (3.67)

since x̄∗it2 ≥ 0. Based on (3.55), there is

ŝ∗t2 + lt2 ≤ ŝ∗t1 + lt1 . (3.68)

Combining (3.62), (3.65), (3.68), we get

s̄∗t2 + lt2 < ŝ∗t2 + lt2 ≤ ŝ∗t1 + lt1 < s̄∗t1 + lt1 . (3.69)

Since f̄ (st+ lt) is a strictly convex function of st+ lt, then, based on (3.65) and (3.69),
we have

f̄ (s̄∗t1 + lt1)+ f̄ (s̄∗t2 + lt2)> f̄ (ŝ∗t1 + lt1)+ f̄ (ŝ∗t2 + lt2). (3.70)

This contradicts with the fact that the s̄∗t is the optimal total charging rate for
objective function f̄ (st+ lt). Therefore, the optimal charging solution s∗t is the same
for any strictly convex function f (st+ lt). Next, we show that optimal solution s∗t is a

load flattening solution that minimizes ∑T
t=1(st+ lt− ∑T

t=1 st+lt
T )2 subjecting to (3.3b)

and (3.3c). Based on the argument that s∗t is the same for any strictly convex function

f (st + lt), then it is equivalent to show that ∑T
t=1(st + lt − ∑T

t=1 st+lt
T )2 is a strictly

convex function of st+ lt. Since

∑T
t=1 st+ lt

T
=

∑i∈N di+∑T
t=1 lt

T
, (3.71)

which indicates that ∑T
t=1 st+lt

T is a constant. Then, we see that ∑T
t=1(st + lt −

∑T
t=1 st+lt

T )2 is a strictly convex function of st+ lt. This completes the proof. �
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Proof of Proposition 3.1

First, we show that Ψ1(Ξ) is a convex function of Ξ . For any Ξ ′, define s∗t (Ξ ′)
as optimal solution that minimizes Ψ1(Ξ ′) subject to (3.3b)–(3.3c). Likewise, we
define s∗t (Ξ ′′) for any Ξ ′′. Now let

Ξ ′′′ = λΞ ′+(1−λ )Ξ ′′,λ ∈ [0,1]. (3.72)

Then, there must exist a feasible solution st(Ξ ′′′) such that

st(Ξ ′′′) = λ s∗t (Ξ ′)+(1−λ )s∗t (Ξ ′′). (3.73)

Note that st(Ξ ′′′) still satisfies (3.3b)–(3.3c) due to the linearity of the constraints.
Meanwhile, based on the convexity of f (st+ lt), we have

T

∑
t=1

f (st(Ξ ′′′)+ lt)

≤λ
T

∑
t=1

f (s∗t (Ξ ′)+ lt)+(1−λ )
T

∑
t=1

f (s∗t (Ξ ′′)+ lt),

(3.74)

which holds for all λ ∈ [0,1]. On the other hand, for Ξ ′′′ = λΞ ′+(1− λ )Ξ ′′, let
s∗t (Ξ ′′′) be the optimal solution that minimizes ∑T

t=1 f (st+ lt) under Ξ ′′′. Then

T

∑
t=1

f (s∗t (Ξ ′′′)+ lt)≤
T

∑
t=1

f (st(Ξ ′′′)+ lt). (3.75)

Combining (3.74) and (3.75), we have

Ψ1(Ξ ′′′) =
T

∑
t=1

f (s∗t (Ξ ′′′)+ lt)

≤λ
T

∑
t=1

f (s∗t (Ξ ′)+ lt)+(1−λ )
T

∑
t=1

f (s∗t (Ξ ′′)+ lt)

=λΨ1(Ξ ′)+(1−λ )Ψ1(Ξ ′′).

(3.76)

Thus, we have established the convexity of Ψ1(Ξ) over the set of Ξ . Therefore, we
have

E [Ψ1(Ξ)]≥Ψ1(E[Ξ ]), (3.77)

On the other hand, based on the definition of st, d̃it,μ
j
t , i= 1, · · · ,e1, j= t, · · · ,et, we

have
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T

∑
t=1

st =
e1

∑
t=1

d̃1
t +

T

∑
t=2

et

∑
j=t

μ j
t . (3.78)

Then, by Jensen’s inequality,

Ψ1(E[Ξ ]) = min
st

T

∑
t=1

f (st+νt) (3.79a)

≥
T

∑
t=1

f

(
∑e1
t=1 d̃

1
t +∑T

t=2 ∑et
j=t μ

j
t +∑T

t=1 νt
T

)
(3.79b)

= Tf

(
∑e1
t=1 d̃

1
t +∑T

t=2 ∑et
j=t μ

j
t +∑T

t=1 νt
T

)
. (3.79c)

This completes the proof. �

Proof of Proposition 3.2

For any stage t, the following inequality holds.

st ≤
T

∑
n=t

d̃tn. (3.80)

Then,

T

∑
n=t

d̃tn =
T

∑
n=t−1

d̃t−1
n − st−1 +

et

∑
n=t

η t
n (3.81a)

≤
T

∑
n=t−1

d̃t−1
n − d̃t−1

t−1 +
et

∑
n=t

η t
n (3.81b)

=
T

∑
n=t

d̃t−1
n +

et

∑
n=t

η t
n (3.81c)

= ∑
m∈{m|em≥t,m=1,··· ,t−1}

em

∑
n=t−1

ηm
n +

et

∑
n=t

η t
n (3.81d)

= ∑
m∈{m|em≥t,m=1,··· ,t}

em

∑
n=t

ηm
n , (3.81e)
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where the second inequality is due to the fact that

st−1 ≥ d̃t−1
t−1. (3.82)

Let O(t) be the set that

O(t) = {(m,n)|em ≥ t,m= 1, · · · , t,n= t, · · · ,em}. (3.83)

Then we get

st ≤ ∑
(m,n)∈O(t)

ηm
n . (3.84)

Since O(t) is a bounded set for t = 1, · · · ,T , then

E

[
T

∑
t=1

f ( ∑
(m,n)∈O(t)

ηm
n + ιt)

]
(3.85)

is also bounded. Thus, (3.85) is an upper bound of Φ3. This completes the proof. �

Proof of Theorem 3.3

By Proposition 3.1 and Proposition 3.2, for any distribution of d̃tn and ιt, t =
1, · · · ,T,n= t, · · · ,T, we have

VSS=Φ3 −Φ2

≤Φ3 −Φ1

≤E

[
T

∑
t=1

f ( ∑
(m,n)∈O(t)

ηm
n + ιt)

]
−Tf

(
Γ
T

) (3.86)

where Γ = ∑e1
t=1 d̃

1
t +∑T

t=2 ∑et
j=t μ

j
t +∑T

t=1 νt. This completes the proof. �

Proof of Lemma 3.1

Let ρ(i, j) denote the maximum density of [i, j]. For any i = k, j = k+ ē+ 1, · · · ,T ,
the density of interval [i, j] is given by
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ρ(i, j) = ∑j−k
k=1 ∑j−2k+1

t=1 μt+∑k+ē
t=k d̃

k
t + lk+(j− k)ν

j− k+1

=
∑j−k
t=1(j− k+1− t)μt+∑k+ē

t=k d̃
k
t + lk−ν

j− k+1
+ν .

(3.87)

To prove that the maximum density is achieved by setting j = T , we only need to
show ρ(i, j) is a non-decreasing function of j for each given i, i.e.,

ρ(i, j)≤ ρ(i, j+1),∀k+ ē+1 ≤ j≤ T−1. (3.88)

Since

∑j−k
t=1(j− k+1− t)μt+∑k+ē

t=k d̃
k
t

j− k
≤

j−k+1

∑
t=1

μt,

k+ ē+1 ≤ j≤ T−1,

(3.89)

we have

ρ(i, j+1)

=
∑j−k
t=1(j− k+1− t)μt+∑k+ē

t=k d̃
k
t +∑j−k+1

t=1 μt+ lk−ν
j− k+1

+ν

≥∑j−k
t=1(j− k+1− t)μt+∑k+ē

t=k d̃
k
t + lk−ν

j− k
+ν

=ρ(i, j),

(3.90)

which implies (3.88). Hence, Y is the maximum density of [k, j], j= k+ ē+1, · · · ,T .
Next, we show that Z is the maximum density of [k+1,T]. For any k+1≤ i≤ j≤ T ,
the density of interval [i, j] is given by

ρ(i, j) = ∑j−i+1
k=1 ∑j−i+2−k

t=1 μt

j− i+1
+ν

=
∑j−i+1
t=1 (j− i+2− t)μt

j− i+1
+ν .

(3.91)

To prove that the maximum density is achieved by setting i= k+1, j= T , we only
need to show ρ(i, j) is a non-decreasing function of j for each given i, i.e.,

ρ(i, j)≤ ρ(i, j+1),∀k+1 ≤ i≤ j≤ T−1, (3.92)
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and a non-increasing function of i for each given j, i.e.,

ρ(i, j)≥ ρ(i+1, j),∀k+1 ≤ i+1 ≤ j≤ T. (3.93)

On one hand, since

∑j−i+1
t=1 (j− i+2− t)μt

j− i+1
≤

j−i+2

∑
t=1

μt,∀k+1 ≤ i≤ j≤ T, (3.94)

we have

ρ(i, j+1) =
∑j−i+1
t=1 (j− i+2− t)μt+∑j−i+2

t=1 μt

j− i+2
+ν

≥ ∑j−i+1
t=1 (j− i+2− t)μt

j− i+1
+ν

= ρ(i, j),

(3.95)

which implies (3.92). On the other hand, as

∑j−i
t=1(j− i+1− t)μt

j− i
≤

j−i+1

∑
t=1

μt,∀k+1 ≤ i≤ j≤ T, (3.96)

then

ρ(i+1, j) =
∑j−i
t=1(j− i+1− t)μt

j− i
+ν

≤ ∑j−i
t=1(j− i+1− t)μt+∑j−i+1

t=1 μt

j− i+1
+ν

= ρ(i, j),

(3.97)

which implies (3.93). This completes the proof. �

Proof of Lemma 3.2

First we provide the proof by discussing the following two cases:

1) If j̄ ≥ ī+ p, which means that [ī, j̄] and [ī+ p, j̄+ p] overlaps with each other,
then the density of period [ī, j̄+ p] is higher than that of [ī, j̄], and the density
of [ī, j̄+ 2p] is higher than that of [ī, j̄+ p]. So and so forth. Finally, we see that
the period [ī, j̄+ (r− 1)p] has the maximum density among {i, j|i = k+ 1, j =
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i, · · · ,T}. Thus, we have

î3 = ī, ĵ3 = j̄+(r−1)p, (3.98)

and the corresponding maximum density

Ẑ =
∑j̄+(r−1)p
n=ī

(∑k+en
m=n μn

m+νn)
j̄+(r−1)p− ī+1

. (3.99)

Likewise, for the region {i, j|i= k, j= k+ ê+1, · · · ,T}, we have

ĵ2 = j̄+(r−1)p, (3.100)

and

Ŷ =
∑j̄+(r−1)p
n=k (∑k+en

m=n μn
m+νn)

j̄+(r−1)p− k+1
, (3.101)

2) If j̄ < ī+ p, which means [ī, j̄], · · · , [ī+ (r− 1)p, j̄+ (r− 1)p] have the same
maximum density among [k+1,T]. Then we have

î3 = ī, ĵ3 = j̄, (3.102)

and the corresponding maximum density

Ẑ =
∑j̄
n=ī

(∑k+en
m=n μn

m+νn)
j̄− ī+1

. (3.103)

For the region {i, j|i= k, j= k+ ê+1, · · · ,T}, if j̄≤ k+ ê+1, then ĵ2 = k+ ê+1
since ĵ2 ≥ k+ ê+1, and

Ŷ =
∑k+ê+1
n=k (∑k+en

m=n μn
m+νn)

ê+2
. (3.104)

Otherwise, ĵ2 = j̄, and

Ŷ =
∑j̄
n=k(∑

k+en
m=n μn

m+νn)
j̄− k+1

. (3.105)

This completes the proof. �
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Chapter 4
Optimal BESS Control in Microgrids

With the wide penetration of the renewable energy generators in power grids, the
high variability of renewable source output poses significant challenges to the power
grid, including voltage instability and power generation cost. Utilising BESS in
microgrids is considered an effective mechanism for absorbing the fluctuation of
local energy generation and consumption, and thereby mitigating the detrimental
impact of renewable energy sources on the main grid. In this chapter, we consider
the optimal control of a microgrid, e.g., a factory or a commercial building, which
is equipped with a finite-capacity BESS and renewable energy generators. The
microgrid tries to meet the demand using the power drawn from the renewable
generator, BESS, as well as the main grid. In particular, the optimal control decisions
are made without the non-causal knowledge of future load demand and renewable
source output. We aim to minimize a cost function, which is a general convex
increasing function of instantaneous power flow from the grid. The increasing
convexity of the cost function ensures that the power flow exchanged with the main
grid remains as flat over time as possible, and thus minimizes the negative impact
of renewable energy integration.

4.1 Online Optimal Battery Charging Problem

We consider a microgrid, e.g., a factory or a commercial building, which is equipped
with a finite-capacity BESS and renewable energy generators. The microgrid tries
to meet the demand using the power drawn from the renewable generator, BESS, as
well as the main grid.

Suppose that the entire system time is divided into T equal-length time slots.
Suppose that the length of the time slots is normalized to 1. We denote by E(t) the
amount of energy stored in the battery at the beginning of time slot t, and by ζ the

© The Author(s) 2017
W. Tang, Y.J.A. Zhang, Optimal Charging Control of Electric Vehicles in Smart
Grids, SpringerBriefs in Electrical and Computer Engineering,
DOI 10.1007/978-3-319-45862-5_4
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Grid
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Source

Demand
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Fig. 4.1 The illustration of the system model

energy capacity of the battery. Then, the energy stored in the battery should satisfy

0 ≤ E(t)≤ ζ (4.1)

for all t. Let x(t) and y(t) be the charging and discharging power during time slot t,
respectively. Notice that since the length of a slot is normalized to 1, x(t) and y(t)
are also the energy charged or discharged during the time slot. The power that can be
charged or discharged from the battery is always bounded. Let us denote by ux the
maximum charging power and uy the maximum discharging power. Then, x(t),y(t)
should satisfy

0 ≤ x(t)≤ ux,0 ≤ y(t)≤ uy, (4.2)

respectively. Note that the battery cannot be charged and discharged simultaneously.
Therefore, x(t) and y(t) cannot be non-zero at the same time. The battery has the
following dynamics:

E(t+1) = E(t)+ x(t)− y(t). (4.3)

Since the battery is operated on dc, an ac-to-dc converter or a dc-to-ac converter is
necessary when the battery is being charged or discharged. For simplicity, suppose
that both converters have the same constant conversion efficiency1 η , where

0 < η ≤ 1. (4.4)

As a result, the ac power drawn from (or injected into) the microgrid is x(t)/η (or
ηy(t)) when BESS is charged (or discharged). Likewise, let l(t) be the load demand

1In general, the charging and discharging efficiency may not be the same. The result in this chapter
can be easily extended to the case when the charging and discharging efficiency are different.
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of the microgrid at time t. Suppose that there exists a renewable energy source, e.g.,
solar energy, wind power or some biomass materials, which is connected to the ac
bus. Let r(t) be the power generated by the renewable sources at time t. Now we
define an auxiliary variable p(t),

p(t) = l(t)− r(t), t = 1, · · · ,T, (4.5)

which denotes the net difference between the load demand and renewable power
generated at time t. The space of p(t) is denoted by P . We denote by g(t) the power
purchased from (i.e., g(t) > 0) or sold to (i.e., g(t) < 0) the main grid at time t, as
shown in Fig. 4.1. To balance the power supply and demand in the microgrid, g(t)
is calculated as

g(t) =
x(t)
η

−ηy(t)+p(t). (4.6)

We assume that the instantaneous cost associated with the power flow from the
grid g(t) is an convex increasing function, denoted as f (g(t)). On one hand, the
convexity of f (.) reflects the fact that each unit of additional power demand becomes
more expensive to obtain and make available to the consumer. For example, in the
wholesale market, the instantaneous cost can be modeled as a quadratic function of
the instant load [1–3]. On the other hand, it also captures the intent of flattening g(t)
over time [4], so that the detrimental effect on the main grid is reduced.

The system state is defined as (E(t),p(t)) at each time t. Specifically, E(t) is
defined as the endogenous state variable that depends on the decision variable
x(t),y(t) through the transition rules (4.3), and p(t) is defined as the exogenous state
variable that does not depend on the previous decisions [5]. Let E be the variation
space of the E(t), i.e.,

E = {E(t)|0 ≤ E(t)≤ ζ}. (4.7)

Then, the state space is given by E ×P . Given the system state (E(t),p(t)), the
corresponding action space, denoted by S (E(t)), is given by

S (E(t)) = {x(t),y(t)|0 ≤ x(t)≤ min{ζ −E(t),ux},
0 ≤ y(t)≤ min{E(t),uy}}.

(4.8)

Our objective is to calculate, at each time t, the optimal battery charging policy
without knowing the realization of the future load l(t) and the renewable source
output r(t). In other words, at each time t, we solve the following problem to find
the optimal policy x∗(t) and y∗(t) that achieves the optimal cost-to-go G∗

t (E(t),p(t))
at current state (E(t),p(t)).

G∗
t (E(t),p(t)) (4.9a)
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= min
x(t),y(t)

f (g(t))+λEp(t+1)∈P [G∗
t+1(E(t+1),p(t+1))] (4.9b)

s. t. g(t) =
x(t)
η

−ηy(t)+p(t), (4.9c)

E(t+1) = E(t)+ x(t)− y(t), (4.9d)

x(t),y(t) ∈S (E(t)), t = 1, · · · ,T, (4.9e)

where λ is a discounted factor, which represents the value reduction over time.
The following proposition prove that there always exists an optimal solution where
x∗(t) and y∗(t) are not nonzero at the same time. That is, the battery is not charged
and discharged at the same time under the optimal solution, even though such a
constraint is not included in (4.9) explicitly.

4.2 Related Work

In this chapter, we rigorously prove that the optimal BESS operation policy exhibits
a threshold structure, which can potentially lead to a simplified control policy.
Specifically, we show that the optimal policy degenerates to one that displays short-
sighted behaviour when the discount factor satisfies certain conditions. Moreover,
we show that the optimal cost is a decreasing convex function of the battery capacity,
implying that there exists an optimal battery sizing that strikes a balance between
the operation cost and the capital investment. Our analyses are validated through
extensive simulations. Our results demonstrate that BESS can significantly reduce
the fluctuation of power flow exchanged with the main grid.

Optimal BESS control mechanisms have been recently studied for systems with
renewable energy sources [6–12]. For simplicity, most of the work assumed that
the cost function is linear with the instantaneous power drawn from the main
grid [6–9]. Therein, BESS was mainly used for energy arbitrage by exploiting
the electricity price variation in the main grid. On the contrary, our chapter aims
to reduce the fluctuation in the power flow exchanged with the main grid. The
flattened power flow greatly reduces the vulnerability of the power system, thus
reducing the negative impact of renewable energy source integration. To this end,
we adopt an increasing convex cost function instead of a linear one. Similar
convex cost functions were also considered in [10, 11]. Reference [10] devises an
online dynamic control policy to minimize long-term average grid operational cost.
Meanwhile, Lyapunov optimization technique was used in [11, 12] to minimize the
long term average cost of a power consuming entity. Note that the control polices
provided in [10–12] are suboptimal. For instance, the control polices provided in
[10, 11] are asymptotically optimal as the storage capacity becomes large. That
is, the gap from optimality increases as storage capacity decreases. Whereas in
this chapter, the control policy is strictly optimal for any battery capacity, and the
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optimality is not affected by the battery capacity. Besides, [10] does not take into
account the charging efficiency of the battery converter and the upper bounds on the
charging and discharging rates. In contrast, both the battery charging efficiency and
the maximum charging/discharging rate have been considered in this chapter.

4.3 Optimal Charging Policy

In this section, we derive the optimal charging policy at each time slot t depending
on BESS energy level E(t) as well as l(t) and r(t) in that time slot. First, we
introduce the following proposition which shows one feature of the optimal charging
solution.

Proposition 4.1. There always exists an optimal solution x∗(t),y∗(t) to (4.9) such
that x∗(t) and y∗(t) are not nonzero at the same time.

Proof. Please see the detailed proof in Appendix “Proof of Proposition 4.1”.

Proposition 4.1 provides a class of optimal policy which is relatively easy to
calculated. In the next sections, we always calculate the optimal policy x∗(t),y∗(t)
where x∗(t) and y∗(t) cannot be nonzero at the same time. Due to Proposition 4.1,
it is safe to ignore the constraint that BESS cannot be charged and discharged at the
same time in (4.9), knowing that such a constraint is automatically satisfied in the
remaining of this chapter, we thus focus on the optimal policy x∗(t) and y∗(t) where
they are not positive at the same time.

4.3.1 Optimal Battery Charging Policy by Value Iteration

In practice, the length of each time slot is sufficiently small compared with the entire
system time T , so that T can be viewed as infinite compared with t. In this case,
Problem (4.9) can be treated as an infinite-time horizon dynamic programming and
the time index in (4.9) can be removed. We use E,p,x∗,y∗ and G∗(E,p) to replace
E(t),p(t),x∗(t),y∗(t),G∗(E(t),p(t)) at time t, respectively. We define an auxiliary
function Ĝ(E,p)∀x,y ∈S (E),

G̃(E,p,x,y) = f (
x
η
−ηy+p)+λEq∈P [G∗(E+ x− y,q)]. (4.10)

Then, G∗(E,p) satisfies the Bellman’s equation

G∗(E,p) = min
x,y∈S (E)

G̃(E,p,x,y). (4.11)
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where x∗ and y∗ are the optimal solutions to Problem (4.11). x∗ and y∗ can be derived
through the standard value iteration algorithm [13], as shown in Algorithm 3,
where ε is defined as the optimality gap between the cost-to-go value output by
Algorithm 3 and the optimal cost-to-go value.

Algorithm 3: Optimal battery charging algorithm by value iteration
input : E ,P,ε,λ
output: Gn+1(E,p),x∗,y∗

1 initialization n= 0,G0(E,p) = 0 ∀E ∈ E ,p ∈P;
2 repeat
3 For E ∈ E ,p ∈P , compute Gn+1(E,p) by

Gn+1(E,p)

= min
x,y∈S (E)

f (
x
η
−ηy+p)+λEq∈P [Gn(E+ x− y,q)].

(4.12)

4 until ||Gn+1 −Gn|| ≤ ε(1−λ )/(2λ );
5 For E ∈ E ,p ∈P , compute x∗,y∗ by

x∗,y∗ ∈ arg min
x,y∈S (E)

f

(
x
η
−ηy+p

)
+λEq∈P [Gn+1(E+ x− y,q)]. (4.13)

4.3.2 Threshold Structure of the Optimal Policy

In this subsection, we characterize a two-threshold structure property of the optimal
policy. First, we introduce the following Lemma that helps prove the threshold
structure.

Lemma 4.1. The cost function G∗(E,p) and Ep∈P [G∗(E,p)] are convex functions
of in E ∈ E for each given p ∈P .

Proof. Please see the detailed proof in Appendix “Proof of Lemma 4.1”.

Based on Lemma 4.1, we establish the threshold-based structure of the optimal
policy for Problem (4.11) in Theorem 4.1.

Theorem 4.1. For each state (E,p), there exists two threshold boundaries, denoted
by ξ1(E,p) and ξ2(E,p), where ξ1(E,p),ξ2(E,p) ∈ E and ξ1(E,p) ≤ ξ2(E,p). The
optimal battery charging policy for the state (E,p) is given by
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(x∗,y∗) =⎧⎪⎪⎨
⎪⎪⎩
(min{min{ζ ,ξ1(E,p)}−E,ux},0) if E ≤ ξ1(E,p),

(0,min{E−max{0,ξ2(E,p)},uy}) if E ≥ ξ2(E,p),

(0,0) otherwise.

(4.14)

Proof. Please see the detailed proof in Appendix “Proof of Theorem 4.1”.

Theorem 4.1 states the fact that if the current energy level E is smaller than
ξ1(E,p), then optimal policy is to increase the energy level to as close to ξ1(E,p) as
possible. If E is larger than ξ2(E,p), then optimal policy is to decrease the energy
level to as close to ξ2(E,p) as possible. Otherwise, the optimal policy is to neither
charge or discharge the battery.

4.4 Degeneration to a Short-Sighted Policy

If the future is not considered at each time slot, i.e., λ in (4.9) is set to be 0, then the
optimal policy takes a short-sighted behavior that discharges the battery as fast as
possible for any state. This is because G∗(E,p) only minimizes the function f (x/η−
ηy+ p) when λ = 0. This shortsighted policy drains the battery as fast as possible
without recharging it, making BESS almost useless in the system operation. When
0 < λ < 1, it is still possible that the optimal policy degenerates to the short-sighted
policy. In this section, we show that if λ is no larger than the valley-peak ratio,
defined as the ratio of the lowest possible total load to the highest possible total
load, then the optimal policy is to discharge the battery as fast as possible for all
states. Note that the valley-peak ratio may not be small in practice. For example, the
valley-peak ratio is calculated to be 0.3408 by adopting the real data of the load and
the system parameters in Sect. 4.6.3. In this case, to avoid the short-sighted policy,
λ should be set to be more larger than 0.3408.

For all p ∈P , let p1,p2 be the lower bound and upper bound of p, respectively.
Now we are ready to present Proposition 4.2.

Proposition 4.2. For all η ∈ (0,1], if λ ,p1,p2,ux,uy satisfy the follow inequality,

p1 ≥ uy,λ ≤ p1 −ηuy
p2 +

ux
η

, (4.15)

then, the thresholds satisfy

ξ1(E,p)≤ ξ2(E,p)≤ max{0,E−uy}, (4.16)
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and the charging policy degenerates to

x∗ = 0,y∗ = min{E,uy}. (4.17)

Proof. Please see the detailed proof in Appendix “Proof of Proposition 4.2”.

4.5 Optimal Battery Sizing

Intuitively, a battery with larger capacity can absorb higher variability and achieve
a lower total cost. In this section, we are interested to find the optimal investment
in battery capacity without non-causally knowing the future load and renewable
sources. Specifically, for each given state (E,p), we treat the optimal cost-to-go
G∗(E,p) as a function of ζ and analyze how G∗(E,p) changes as ζ changes. That is,
for each given ζ ,ζ ≥ 0, First, by Theorem 4.2, we show that G∗(E,p) is a decreasing
convex function of ζ .

Theorem 4.2. The optimal value G∗(E,p) is a decreasing convex function of ζ .

Proof. Please see the detailed proof in Appendix “Proof of Proposition 4.2”.

Theorem 4.2 leads to a fact that the optimal cost-to-go decreases quickly as
the battery capacity increases at first and then decreases more and more slowly
as battery capacity increases. There exists an optimal battery sizing that strikes a
balance between the operation cost and the capital investment. The numerical results
in Sect. 4.6.2 also verifies this conclusion.

4.6 Simulations

In this section, we will illustrate our theoretical results through extensive numerical
simulations. Similar to [1, 3], we adopt a quadratic cost function in the simulations,
i.e.,

f (g(t)) = g2(t). (4.18)

4.6.1 The Optimal Policy in General Case

We use Algorithm 3 provided in Sect. 4.3.1 to compute the optimal charging
policy and validate the threshold structure. The length of each time slot is set to
be one hour. The battery in our simulation is chosen from [14] with maximum
charging/discharging rate 3 kW, battery capacity 35 kWh. Based on the typical
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Fig. 4.2 Optimal policy over
system state for the battery
with ζ = 35 kWh
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parameter setting of the sodium sulfur (NaS) battery [15], we set the conversion
efficiency η = 0.85. The discount factor is set to be λ = 0.9 and the optimal gap
ε is set to be ε = 0.001. According to the load profile of the service area in South
California Edison during Feb. 2011 [1], the minimum and maximum of base load
are given by

p1 = 18kW,p2 = 46kW, (4.19)

respectively. Then, the base load (kW) is assumed to be uniformly distributed in
[18,46]. We adopt the wind energy source as the renewable source and assume that
the wind power (kW) is set to be uniformly distributed in [7,9]. Similar settings
of wind power have been adopted in [11]. We consider two types of batteries
[14]: (1) maximum charging/discharging rate ux = uy = 5 kW, battery capacity
ζ = 35 kWh; (2) maximum charging/discharging rate ux = uy = 5 kW, battery
capacity ζ = 10 kWh. For all batteries, we discretize the continuous spaces of the
battery energy level and charging/discharging rate, where the step sizes are set to be
1 kWh and 1kW, respectively.

We plot the optimal policy versus system state for battery with capacity 35 kWh
in Fig. 4.2. An observation is that when both the net load p and the battery energy
level E are very high, the optimal policy tends to discharge the battery as fast as
possible. When both the net load p and the battery energy level E are very low, the
optimal policy tends to charge the battery as fast as possible. When the net load p
and the battery energy level E are neither too high nor too low, it is better to not
charge or discharge the battery. As such, the optimal policy efficiently avoids the
extremely high or low level of total load g.

To further verify that the battery can efficiently reduce the fluctuation caused
from the renewable energy, we randomly generate the sample of base load and wind
power within 50 time slots, shown as the black line with square in Fig. 4.3. For both
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Fig. 4.3 Total load comparison among different type of batteries

batteries, we set the initial battery energy level to be half of the battery capacity.
Then, from time slot 1 to 50, we calculate the total loads of both batteries at each
time slot based on their optimal charging policies, respectively. We draw the curve
of the total load of two batteries under the optimal charging policy, respectively, as
shown in Fig. 4.3. Figure 4.3 shows that both two type of batteries can efficiently
reduce the total load at the peak time, e.g., 24, 25, 30–33 and raise the total load at
the valley time, e.g., 18,23,26,27. Besides, we see that the battery with ζ = 35 kWh
has more ability to absorb the fluctuations than the battery with ζ = 10 kWh.
Therefore, we see that under the optimal charging policy, BESS flattens the power
flow from the main grid as much as possible.

4.6.2 The Optimal Battery Capacity

In this subsection, we investigate how the battery capacity influences the total cost
under the optimal policy in practical scenario. We let the capacity of the battery ζ
increase from 0 to 40 kWh. Other parameter settings are the same as Sect. 4.6.1.
For each battery capacity ζ , we calculate the average cost of the optimal cost-to-go
over all system states under the optimal policy. In order to facilitate comparison,
we normalize all the average costs over the average cost without battery, i.e.,
ζ = 0 kWh. We plot the normalized cost over the battery capacity in Fig. 4.4.
Figure 4.4 shows that the normalized cost under the optimal policy is a decreasing
convex function of the battery capacity ζ , which is consistent with Theorem 4.2 in
Sect. 4.5. We see that when the battery capacity increases from 0 to 40 kWh, the
normalized cost decreases from 1 to 0.7848. That is, the microgrid with a battery
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capacity 24 kWh saves 21.52% cost compared with that without battery. When the
battery capacity exceeds 24 kWh, the normalized cost decreases very slightly as the
battery capacity increases. Thus, to achieve the most economic benefit, 24 kWh is
suggested to be the best choice of the battery capacity.

4.6.3 The Short-Sighted Policy Under Special λ

In this subsection, we simulate the short-sighted policy by setting λ to be no larger
than the valley-peak ratio. The empirical distribution of net load and the settings of
the batteries are the same as Sect. 4.6.1. Then, p1,uy satisfies

p1 ≥ uy. (4.20)

The valley-peak ratio is calculated as

p1 −ηuy
p2 +ux/η

= 0.3408. (4.21)

To ensure that the condition of Proposition 4.2 is satisfied, we set the discount factor
λ to be 0.3408. Besides, we set the optimal gap ε = 0.001. We still use Algorithm 3
provided in Sect. 4.3.1 to compute the optimal charging policy with λ = 0.3408.
Figure 4.5 shows the optimal charging policy of the battery with ζ = 35 kWh. We
see that the optimal charging policy always discharges the battery as fast as possible
for all states. Similar to Sect. 4.6.1, we simulate the performance of fluctuation
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Fig. 4.5 The short-sighted policy over system state for the battery with ζ = 35 kWh
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Fig. 4.6 Total load comparison among different type of batteries under the short-sighted policy
with λ = 0.3408

reduction under current optimal charging policy. The samples of base load and net
load are adopted the same as Sect. 4.6.1. We draw the curve of the total loads with
two batteries under current optimal policy as well as the total load without battery,
as shown in Fig. 4.6. Figure 4.6 indicates that the charging policy takes a short-
sighted behaviour that can hardly reduce the load fluctuation since it discharges two
batteries as soon as possible at the first 7 hours and then never charge or discharge
again. Compared with Fig. 4.3, Fig. 4.6 shows that for both two types of batteries,
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the short-sighted optimal policy with λ = 0.3408 performs much worse than the
optimal policy with λ = 0.9 in the matter of flatten the total load exchanged with
the main grid. Therefore, to avoid the short-sighted policy, λ is suggested to be
much more larger than 0.3408.

4.7 Conclusions

This chapter investigates the problem of optimal BESS control in a microgrid with
renewable energy sources. In particular, we derived an optimal BESS operation
policy that minimizes a cost function, which is a general convex increasing function
of instantaneous power flow from the grid. The increasing convexity of the cost
function makes sure that the power flow from the main grid is as flat over time
as possible. Through rigorous analysis, we show that the optimal policy exhibits a
threshold structure. Specially, we prove that the optimal policy take a short-sighted
behavior when the discount factor satisfies certain conditions. Additionally, we show
that the optimal cost is a decreasing convex function of the battery capacity, which
implies that there exists an optimal battery sizing that strikes a balance between the
total cost and the capital investment. The simulations validate the analyses and show
that BESS can significantly reduce the fluctuation of power flow exchanged with the
main grid.

Appendix

Proof of Proposition 4.1

Note that 0 < η ≤ 1 by definition. We first prove the proposition for the case when
0 < η < 1 by contradiction. Let x′(t)> 0,y′(t)> 0 be an optimal solution to (4.9). If
x′(t)≥ y′(t), then, there exists another solution x′′(t),y′′(t) such that x′′(t) = x′(t)−
y′(t) ≥ 0,y′′(t) = 0, which satisfies the constraint (4.9d)–(4.9e). Since 0 < η < 1,
the following inequality always holds.

x′(t)/η −ηy′(t)+ l(t)− r(t)> x′′(t)/η −ηy′′(t)+ l(t)− r(t). (4.22)

Note that E(t)+ x′(t)− y′(t) = E(t)+ x′′(t)− y′′(t). Thus,
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E

[
lim
T→∞

T

∑
t=1

λ tf

(
x′(t)

η
−ηy′(t)+ l(t)− r(t)

)]

>E

[
lim
T→∞

T

∑
t=1

λ tf

(
x′′(t)

η
−ηy′′(t)+ l(t)− r(t)

)]
,

(4.23)

which contradicts the assumption that x′(t) > 0,y′(t) > 0 is the optimal solution.
Similarly, we can show that x′(t)> 0,y′(t)> 0 cannot be the optimal solution when
x′(t)< y′(t). Next, we prove the proposition when η = 1. In this case, the variables
x(t),y(t) in (4.9) can be replaced by a single variable h(t), where

h(t) = x(t)− y(t),−uy ≤ h(t)≤ ux. (4.24)

Let us denote by h∗(t) the optimal solution to (4.9). If h∗(t)≤ 0, the x∗ = 0,y∗(t) =
−h∗(t) is one of the optimal solutions to (4.9). If h∗(t) > 0, x∗ = h∗(t),y∗(t) = 0 is
one of the optimal solutions to (4.9). This completes the proof. �

Proof of Lemma 4.1

We show the lemma by induction. Define Gk(E,p) as the cost-to-go value at kth
value iteration in Algorithm 3. First, when k = 0,

G0(E,p) = 0 ∀E ∈ E ,p ∈P (4.25)

and

Ep∈P [G0(E,p)] = 0 ∀E ∈ E . (4.26)

Thus, it is trivial to see that G0(E,p) is convex in E ∈ E ∀p ∈ P . Now we show
that if Gk(E,p) is convex in E ∈ E ∀p ∈P , then Gk+1(E,p) is also convex in E ∈ E
∀p ∈P . Suppose that Gk(E,p) is convex in E ∈ E ∀p ∈P . Then, Ep∈P [Gk(E,p)]
is convex in E ∈ E . At (k+1)th value iteration, for any E ∈ E ,

Gk+1(E,p)

= min
x,y∈S (E)

f

(
x
η
−ηy+p

)
+λEq∈P [Gk(E+ x− y,q)].

(4.27)

For any E1 ∈ E , define x∗(E1),y∗(E1) as optimal solution to (4.27) with E = E1.
That is,
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Gk+1(E1,p) =f

(
x∗(E1)

η
−ηy∗(E1)+p

)

+λEq∈P [Gk(E1 + x∗(E1)− y∗(E1),q)].

(4.28)

Likewise, we define x∗(E2),y∗(E2) for any E2 ∈ E . Now let

E3 = αE1 +(1−α)E2. (4.29)

Note that E3 satisfies that E3 ∈ E . Then, there must exist xt(E3),yt(E3) such that

x(E3) = αx∗(E1)+(1−α)x∗(E2),

y(E3) = αy∗(E1)+(1−α)y∗(E2).
(4.30)

Because x∗(E1),y∗(E1) ∈ S (E1) and x∗(E2),y∗(E2) ∈ S (E2), we have
x(E3),y(E3) ∈S (E3) due to the linearity of (4.8). Since

E3 + x(E3)− y(E3)

=α(E1 + x∗(E1)− y∗(E1))+(1−α)(E2 + x∗(E2)− y∗(E2)),
(4.31)

where E1+x∗(E1)−y∗(E1),E2+x∗(E2)−y∗(E2)∈ E . Then, we have E3+x(E3)−
y(E3) ∈ E . Let x∗(E3),y∗(E3) be the optimal solution to (4.27) with E = E3. Then,
for all p ∈P ,

Gk+1(E3,p)

=f

(
x∗(E3)

η
−ηy∗(E3)+p

)

+λEq∈P [Gk(E3 + x∗(E3)− y∗(E3),q)] (4.32a)

≤f (x(E3)/η −ηy(E3)+p)+λEq∈P [Gk(E3 + x(E3)− y(E3),q)] (4.32b)

≤αf (x∗(E1)/η −ηy∗(E1)+p)+(1−α)f (x∗(E2)/η −ηy∗(E2)

+p)+αλEq∈P [Gk(E1 + x∗(E1)− y∗(E1),q)]

+(1−α)λEq∈P [Gk(E2 + x∗(E2)− y∗(E2),q)] (4.32c)

=αGk+1(E1,p)+(1−α)Gk+1(E2,p), (4.32d)

where (4.32a) and (4.32b) hold based on the definition of x∗(E3),y∗(E3)
and x(E3),y(E3), (4.32b) holds based on the definition of x∗(E3),y∗(E3) and

x(E3),y(E3), (4.32c) holds due to the convexity of f ( x(E3)
η − ηy(E3) + p) and

λEq∈P [Gk(E3 + x(E3) − y(E3),q)], and (4.32d) holds based on the definition
of x∗(E1),y∗(E1) and x∗(E2),y∗(E2). Thus, Gk+1(E,p) is convex in E ∈ E for
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all p ∈ P . Therefore, we have shown that Gk(E,p) is convex in E ∈ E for all
p ∈ P,k = 0,1,2, · · · . Similarly, we can show that Ep∈P [Gk(E,p)] is convex in
E ∈ E for each given p ∈P . Since

lim
k→∞

Gk(E,p) = G∗(E,p) ∀E ∈ E ,p ∈P, (4.33)

it is suffices to show that G∗(E,p) is convex in E ∈ E for all p ∈ P . Due to the
linearity of the expectation operator, we see that Ep∈P [G∗(E,p)] is convex in E ∈ E
for all p ∈P . This completes the proof. �

Proof of Theorem 4.1

We define an auxiliary variable e,

e= E+ x− y,e ∈ E . (4.34)

In the next proof, we use e instead of x,y in (4.11) since e and E uniquely determine
x and y through the definition of e and the fact that x and y are not non-zero at
the same time. To prove the theorem, we show in the following that the thresholds
ξ1(E,p) and ξ2(E,p) are the target e that would minimize the function G̃(E,p,x,y)
in the case when x ≥ 0,y = 0 and the case when x = 0,y ≥ 0, respectively. When
x≥ 0,y= 0, the space of e, denoted by H1, is given by

H1 = {e|e ∈ E ,0 ≤ e−E ≤ ux} (4.35)

and G̃(E,p,x,y) is computed by

G̃(E,p,x,y) = f ((e−E)/η +p)+λEq∈P [G(e,q)] ∀e ∈H1. (4.36)

When x= 0,y≥ 0, the space of e, denoted by H2, is given by

H2 = {e|e ∈ E ,0 ≤ E− e≤ uy} (4.37)

and G̃(E,p,x,y) is computed by

G̃(E,p,x,y) = f (η(e−E)+p)+λEq∈P [G(e,q)] ∀e ∈H2. (4.38)

For notation brevity, we define function Ĝ1(E,p,e) and Ĝ2(E,p,e) as

Ĝ1(E,p,e) = f ((e−E)/η +p)+λEq∈P [G(e,q)] (4.39a)

Ĝ2(E,p,e) = f (η(e−E)+p)+λEq∈P [G(e,q)], (4.39b)
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for all e∈R respectively. Thus, the cost-to-go for e∈H1, denoted by G1(E,p), and
the cost-to-go for e ∈H2, denoted by G2(E,p), are computed by

G1(E,p) = min
e∈H1

Ĝ1(E,p,e), (4.40)

G2(E,p) = min
e∈H2

Ĝ2(E,p,e), (4.41)

respectively. Specially, when x = 0,y = 0, we have e = E, and the cost-to-go,
denoted by G3(E,p), is computed by

G3(E,p) = min
e=E

f (p)+λEq∈P [G(e,q)]. (4.42)

The optimal charging policy to (4.11) can be obtained by solving (4.40)–(4.42) with
variable e in different regions, and select the one that yields the minimum optimal
values of (4.40)–(4.42), i.e.,

G∗(E,p) = min{G1(E,p),G2(E,p),G3(E,p)}. (4.43)

Intuitively, the optimal solutions to (4.40), (4.41), (4.42) are the optimal solution if
the battery is under charging mode, discharging mode and idle mode, respectively.
By Lemma 4.1, both Ĝ1(E,p,e) and Ĝ2(E,p,e) are convex in e for all E,p.
We denote the minimizer of Ĝ1(E,p,e) and Ĝ2(E,p,e) by ξ1(E,p) and ξ2(E,p)
respectively. By definition, ξ1(E,p) satisfies the condition that the first order
derivative of Ĝ1(E,p,e) at e is equal to 0, i.e.,

f ′ ((ξ1(E,p)−E)/η +p)/η +λ
(
Eq∈P [G(ξ1(E,p),q)]

)′
= 0. (4.44)

Similarly, we have

η f ′ (−η(E−ξ2(E,p))+p)+λ
(
Eq∈P [G(ξ2(E,p),q)]

)′
= 0. (4.45)

Now we show that

ξ1(E,p)≤ ξ2(E,p)∀E ∈ E ,p ∈P (4.46)

by the contradiction. Assume that ξ1(E,p)> ξ2(E,p). Then,

(ξ1(E,p)−E)/η +p>−η(E−ξ2(E,p))+p. (4.47)

Since f ′(.) is a non-decreasing function, then based on (4.47),

f ′ ((ξ1(E,p)−E)/η +p)/η ≥ η f ′ (−η(E−ξ2(E,p))+p) . (4.48)
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Combining (4.44), (4.45), (4.48), we have

(
Eq∈P [G(ξ1(E,p),q)]

)′ ≤ (Eq∈P [G(ξ2(E,p),q)]
)′
. (4.49)

Since Eq∈P [G(e,q)] is a convex function of e, as shown in Lemma 4.1, then,(
Eq∈P [G(e,q)]

)′
is a non-decreasing function of e. Thus, there is ξ1(E,p) ≤

ξ2(E,p), which leads to the contradiction with the assumption that ξ1(E,p) >
ξ2(E,p). Next, we divide all possible relationships between ξ1(E,p),ξ2(E,p),E,0,ζ
into the following five cases to discuss the optimal charging policy.

Case 1: If 0 ≤ E ≤ ζ ≤ ξ1(E,p), we calculate the optimal e under three battery
modes respectively. In other words, we calculate the optimal solution to (4.40),
(4.41), (4.42) respectively. When the battery is under idle mode, i.e., e = E, the
optimal solution to (4.42) is trivial to be E, and the optimal value is G3(E,p) =
f (p)+λEq∈P [Gt(E,q)]. When the battery is under charging mode, i.e., e ∈H1,
Ĝ1(E,p,e) decreases as e increases within the domain (E,ζ ]. Then, the optimal
solution to (4.40) is given by e= min{ζ ,E+ux} and the optimal value is given
by G1(E,p) = Ĝ1(E,p,min{ζ ,E+ ux}). When the battery is under discharging
mode, i.e., e ∈H2, Ĝ2(E,p,e) increases as e decreases within the domain [0,E].
Then, the optimal solution to (4.41) is e = E and the optimal value is given by
G2(E,p) = Ĝ2(E,p,E). Thus, based on the fact that the Ĝ1(E,p,e) decreases
within the domain [E,ζ ], we have the following inequality.

G1(E,p) =Ĝ1(E,p,min{ζ ,E+ux}) (4.50a)

≤Ĝ1(E,p,E) (4.50b)

=f (p)+λEq∈P [Gt(E,q)] (4.50c)

=G3(E,p). (4.50d)

On the other hand,

G2(E,p) = Ĝ2(E,p,E) = f (p)+λEq∈P [Gt(E,q)] = G3(E,p). (4.51)

Therefore, the optimal cost-to-go is given by

G∗(E,p) = G1(E,p) = Ĝ1(E,p,min{ζ ,E+ux}) (4.52)

and the optimal charging policy is given by

x∗ = min{ζ −E,ux},y∗ = 0. (4.53)

Case 2: If 0 ≤ E ≤ ξ1(E,p) ≤ ζ , we calculate the optimal value under three
battery modes respectively. When the charging is under idle or discharge mode,
the results are the same as Case 1. When the battery is under charging mode,
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i.e., e ∈H1, Ĝ1(E,p,e) decreases as e increases within the domain (E,ξ1(E,p)].
Thus, the optimal solution to (4.40) is given by e = min{ξ1(E,p),E+ ux} and
the optimal value is given by G1(E,p) = Ĝ1(E,p,min{ξ1(E,p),E+ ux}). Since
Ĝ1(E,p,e) decreases within the domain [E,ξ1(E,p)],

G1(E,p) =Ĝ1(E,p,min{ξ1(E,p),E+ux}) (4.54a)

≤Ĝ1(E,p,E) (4.54b)

=f (p)+λEq∈P [Gt(E,q)] (4.54c)

=G3(E,p). (4.54d)

Thus, the optimal cost-to-go is given by

G∗(E,p) = G1(E,p) = Ĝ1(E,p,min{ξ1(E,p),E+ux}), (4.55)

and the optimal charging policy is given by

x∗ = min{ξ1(E,p)−E,ux},y∗ = 0. (4.56)

Case 3: If ξ2(E,p)≤ 0 ≤ E≤ ζ , we still solve (4.40), (4.41), (4.42) respectively.
When the battery is under idle mode, i.e., e = E, the optimal solution to (4.42)
is e = E, and the optimal value is G3(E,p) = f (p) + λEq∈P [Gt(E,q)]. When
the battery is under discharging mode, i.e., e ∈ H2, Ĝ2(E,p,e) decreases as
e decreases within the domain (0,E]. Then, the optimal solution to (4.41) is
given by e = max{0,E − uy} and the optimal value is given by G2(E,p) =
Ĝ2(E,p,max{0,E−uy}). When the battery is under charging mode, i.e., e∈H1,
Ĝ1(E,p,e) increases as e increases within the domain [E,ζ ] Then, the optimal
solution to (4.40) is e = E and the optimal value is given by G1(E,p) =
Ĝ1(E,p,E). By the fact that Ĝ2(E,p,e) increases within the domain [0,E], we
have the following inequality.

G2(E,p) =Ĝ2(E,p,max{0,E−uy}) (4.57a)

≤Ĝ2(E,p,E) (4.57b)

=f (p)+λEq∈P [Gt(E,q)] (4.57c)

=G3(E,p). (4.57d)

On the other hand,

G1(E,p) = Ĝ1(E,p,E) = f (p)+λEq∈P [Gt(E,q)] = G3(E,p). (4.58)
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Thus, the optimal cost-to-go is given by

G∗(E,p) = G2(E,p) = Ĝ2(E,p,max{0,E−uy}), (4.59)

and the optimal charging policy is given by

x∗ = 0,y∗ = min{E,uy}. (4.60)

Case 4: If 0 ≤ ξ2(E,p) ≤ E ≤ ζ , similar to Case 3, the optimal cost-to-go is
given by

G∗(E,p) = G2(E,p) = Ĝ2(E,p,max{ξ2(E,p),E−uy}), (4.61)

and the optimal charging policy is given by

x∗ = 0,y∗ = min{E−ξ2(E,p),uy}. (4.62)

Case 5: If ξ1(E,p)< E< ξ2(E,p), we can observe that under the charging mode
Ĝ1(E,p,e) increases as e increases within (E,ξ2(E,p)] and under the discharging
mode Ĝ2(E,p,e) increases as e decreases within [ξ1(E,p),E). That is, there is no
incentive to charge or discharge. i.e.,

G1(E,p) = Ĝ1(E,p,E) = G3(E,p) (4.63)

and

G2(E,p) = Ĝ2(E,p,E) = G3(E,p). (4.64)

Therefore, the optimal cost-to-go is given by

G∗(E,p) = G1(E,p) = G2(E,p) = G3(E,p), (4.65)

and the optimal charging policy is given by

x∗ = 0,y∗ = 0. (4.66)

Combining the results of Case 1 and Case 2, Case 3 and Case 4, we can get
the first two equalities in (4.14) respectively, and Case 5 verifies the third equality
in (4.14). This completes the proof. �
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Proof of Proposition 4.2

In order to show the proposition, it is sufficient to show that the function G̃(E,p,x,y)
is an increasing function of x and decreasing function of y for all x,y ∈S (E),E ∈
E ,p∈P,y∈S (E). That is, for all x1 ≤ x2,x1,x2 ∈S (E),E∈ E ,p∈P,y∈S (E),
we have

G̃(E,p,x1,y)≤ G̃(E,p,x2,y), (4.67)

and for all y1 ≥ y2,y1,y2 ∈S (E),E ∈ E ,p ∈P,x ∈S (E), we have

G̃(E,p,x,y1)≤ G̃(E,p,x,y2). (4.68)

Now we show that (4.67) holds for all x1 ≤ x2,x1,x2 ∈ S (E),E ∈ E ,p ∈ P,y ∈
S (E). Equation (4.67) is equivalent to the following inequality.

Eq∈P [G(E+ x1 − y,q)−G(E+ x2 − y,q)]≤
(x2 − x1)((x1 + x2)/η −2ηy+2p)/(ηλ ).

(4.69)

Since x1,x2,y ∈S (E), then,

(x1 + x2)/η −2ηy+2p≥ 2p−2ηuy ≥ 2p1 −2ηuy. (4.70)

Combining (4.15) and (4.70), we have

(x2 − x1)((x1 + x2)/η −2ηy+2p)/(ηλ )≥ (x2 − x1)(2p2 +2ux/η). (4.71)

Thus, to prove (4.69) holds, it suffices to show that the inequality

G(E+ x1 − y,q)−G(E+ x2 − y,q)≤ (x2 − x1)(2p2 +2ux/η) (4.72)

holds for all q∈P . Next, we show that (4.72) holds by the mathematical induction.
Define Gk(E,q) as the cost-to-go value at kth value iteration for all E ∈ E ,q ∈P in
Algorithm 3. When k = 0,

G0(E+ x1 − y,q)−G0(E+ x2 − y,q)

=0 ≤ (x2 − x1)(2p2 +2ux/η).
(4.73)

Now assume that ∀q ∈P,k = 0,1,2, · · · ,

Gk(E+ x1 − y,q)−Gk(E+ x2 − y,q)≤ (x2 − x1)(2p2 +2ux/η). (4.74)
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Let xk+1
1 ,yk+1

1 and xk+1
2 ,yk+1

2 be the solutions that yield the cost-to-go value at (k+
1)th value iteration, i.e., Gk+1(E+ x1 − y,q) and Gk+1(E+ x2 − y,q) respectively.
Then,

Gk+1(E+ x1 − y,q)−Gk+1(E+ x2 − y,q)

=

(
xk+1

1

η
−ηyk+1

1 +q

)2

−
(
xk+1

2

η
−ηyk+1

2 +q

)2

+λEq′∈P [Gk(E+ x1 − y+ xk+1
1 − yk+1

1 ,q′)]

−λEq′∈P [Gk(E+ x2 − y+ xk+1
2 − yk+1

2 ,q′)] (4.75a)

=

(
xk+1

1 + xk+1
2

η
−η(yk+1

1 + yk+1
2 )+2q

)(
xk+1

1 − xk+1
2

η

−η(yk+1
1 − yk+1

2 )

)
+λEq′∈P [Gk(E+ x1 − y+ xk+1

1

− yk+1
1 ,q′)−Gk(E+ x2 − y+ xk+1

2 − yk+1
2 ,q′)] (4.75b)

≤
(
xk+1

1 + xk+1
2

η
−η(yk+1

1 + yk+1
2 )+2q

)(
xk+1

1 − xk+1
2

η

−η(yk+1
1 − yk+1

2 )

)
+λ (xk+1

2 − xk+1
1 −η(yk+1

2 − yk+1
1 )

+ x2 − x1)(2p2 +2ux/η), (4.75c)

where the last inequality holds based on (4.74). Since

xk+1
1 ≤ ux,x

k+1
2 ≤ ux,y

k+1
1 ≥ 0,yk+1

2 ≥ 0, (4.76)

then

xk+1
1 + xk+1

2

η
−η(yk+1

1 + yk+1
2 )+2q≤2ux/η +2q (4.77a)

≤2ux/η +2p2, (4.77b)

where the last inequality holds because q ≤ p2. By substituting (4.77) into (4.75),
we have

Gk+1(E+ x1 − y,q)−Gk+1(E+ x2 − y,q)

≤(2ux/η +2p2)

(
xk+1

1 − xk+1
2

η
−η(yk+1

1 − yk+1
2 )

)
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+λ
(
xk+1

2 − xk+1
1

η
−η(yk+1

2 − yk+1
1 )+ x2 − x1

)
(2p2

+2ux/η) (4.78a)

≤(x2 − x1)(2ux/η +2p2), (4.78b)

where the last inequality holds because 0 < η ≤ 1,λ ≤ 1. Since

lim
k→∞

Gk(E+ x1 − y,q)−Gk(E+ x2 − y,q)

=G(E+ x1 − y,q)−G(E+ x2 − y,q)
(4.79)

holds for all q∈P , it is sufficient to show that (4.72) holds. Similarly, we can show
that (4.68) holds for any y1 ≥ y2,y1,y2 ∈S (E). This completes the proof. �

Proof of Proposition 4.2

For any ζ ′ ≥ 0, define x∗(ζ ′),y∗(ζ ′) as optimal solution to (4.11) with ζ = ζ ′.
Likewise, we define x∗(ζ ′′),y∗(ζ ′′) for any ζ ′′ ≥ 0. Now let

ζ ′′′ = αζ ′+(1−α)ζ ′′,∀α ∈ [0,1]. (4.80)

Then, there must exist a group of x(ζ ′′′),y∗(ζ ′′′) such that

x(ζ ′′′) = αx∗(ζ ′)+(1−α)x∗(ζ ′′),y(ζ ′′′) = αy∗(ζ ′)+(1−α)y∗(ζ ′′). (4.81)

Note that x(ζ ′′′),y(ζ ′′′) still satisfies x(ζ ′′′),y(ζ ′′′) ∈ S (E) due to the linearity
of (4.8). Based on (4.81), we have

α(x∗t (ζ ′)/η −ηy∗t (ζ ′)+pt)+(1−α)(x∗t (ζ ′′)/η −ηy∗t (ζ ′′)+pt)

=xt(ζ ′′′)/η −ηyt(ζ ′′′)+pt,α ∈ [0,1],
(4.82)

and

α(E+ x∗(ζ ′)− y∗(ζ ′))+(1−α)(E+ x∗(ζ ′′)− y∗(ζ ′′))

=E+ x(ζ ′′′)− y∗(ζ ′′′),∀α ∈ [0,1].
(4.83)

Then, we have

f (x(ζ ′′′)/η −ηy(ζ ′′′)+p)≤ αf (x∗(ζ ′)/η −ηy∗(ζ ′)+pt)

+(1−α)f (x∗(ζ ′′)/η −ηy∗(ζ ′′)+pt)
(4.84)
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and

Eq∈P [G∗(E+ x(ζ ′′′)− y(ζ ′′′),q)]≤ αEq∈P [G∗(E+ x∗(ζ ′)

− y∗(ζ ′),q)]+(1−α)Eq∈P [G∗(E+ x∗(ζ ′′)− y∗(ζ ′′),q)]
(4.85)

for all α ∈ [0,1], where inequality (4.84) and (4.85) hold due to the convexity
of f (x(ζ ′′′)/η −ηy(ζ ′′′)+ p) and Eq∈P [G∗(E+ x(ζ ′′′)− y(ζ ′′′),q)], respectively.
Thus, Combining (4.84) and (4.85), we have

G̃(E,p,x(ζ ′′′),y(ζ ′′′))

≤αG̃(E,p,x∗(ζ ′),y∗(ζ ′))+(1−α)G̃(E,p,x∗(ζ ′′),y∗(ζ ′′))
(4.86)

for all α ∈ [0,1]. Let x∗(ζ ′′′),y∗(ζ ′′′) be the optimal solution to (4.11) with ζ = ζ ′′′.
By definition,

G̃(E,p,x∗(ζ ′′′),y∗(ζ ′′′))≤ G̃(E,p,x(ζ ′′′),y(ζ ′′′)). (4.87)

Based (4.86) and (4.87), we have

G̃(E,p,x∗(ζ ′′′),y∗(ζ ′′′))

≤αG̃(E,p,x∗(ζ ′),y∗(ζ ′))+(1−α)G̃(E,p,x∗(ζ ′′),y∗(ζ ′′))
(4.88)

for all α ∈ [0,1]. Thus, we have established the convexity of G∗(E,p) over ζ ,ζ ≥ 0.
Next, we show that G∗(E,p) is a decreasing function of ζ . Suppose that ζ ′ ≤ ζ ′′.
Then, by definition of x∗(ζ ′) and y∗(ζ ′), x∗(ζ ′) and y∗(ζ ′) satisfy

0 ≤ E+ x∗(ζ ′)− y∗(ζ ′)≤ ζ ′ ≤ ζ ′′, (4.89)

which indicates that x∗(ζ ′),y∗(ζ ′) are the feasible solutions to (4.11) with ζ = ζ ′′.
Since x∗(ζ ′′),y∗(ζ ′′) are the optimal solutions to (4.11) with ζ = ζ ′′, then, we have

G̃(E,p,x∗(ζ ′),y∗(ζ ′))≥ G̃(E,p,x∗(ζ ′′),y∗(ζ ′′)). (4.90)

This completes the proof. �
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Chapter 5
Conclusions and Future Work

5.1 Conclusions

Grid level energy storage systems are a cornerstone of future power networks and
smart grid development. Being aware of challenges in different type of energy
storage systems, this book focuses on proposing online charging control scheme
to minimize the total energy cost and flatten the total power flow exchanged with
the main grid. The main results of the book are summarized as follows.

Chapter 2 investigates the PEV charging problem in a community, whose
power consumption consists of the load of a PEV charging station and the other
inelastic base load besides the PEV charging consumption. By controlling the
charging rates of PEVs, we aim to minimize total cost on electricity bill paid
by the charging station. we propose an Online cooRdinated CHARging Decision
(ORCHARD) algorithm, which minimizes the energy cost without knowing the
future information. Through rigorous proof, we show that ORCHARD is strictly
feasible in the sense that it guarantees to fulfill all charging demands before
due time. Meanwhile, it achieves the best known competitive ratio of 2.39 when
the cost function is a quadratic function of the load demand. By exploiting the
problem structure, we propose a novel reduced-complexity algorithm to replace the
standard convex optimization techniques used in ORCHARD. Besides, we show
that this reduced-complexity algorithm output the optimal solution to the offline
PEV charging problem.

In Chap. 3, we consider the optimal PEV charging scheduling, which results in a
charging load demand that is as flat as possible over time. Specifically, we consider a
practical scenario, where the non-causal information about future PEV arrivals is not
known in advance, but its statistical information can be estimated. This leads to an
“online” charging scheduling problem that is naturally formulated as a finite-horizon
dynamic programming with continuous state space and action space. We provide a
Model Predictive Control (MPC) based algorithm with computational complexity
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O(T3), where T is the total number of time stages. We rigorously prove that the
proposed algorithm yields a near-optimal solution that has a bounded performance
gap from the optimal solution regardless of the distribution of exogenous random
variables. Furthermore, our rigorous analysis shows that the proposed algorithm
can be made scalable when the random process describing the arrival of charging
demands is first-order periodic.

Chapter 4 is concerning the optimal control of a battery energy storage system
(BESS) in a microgrid with renewable energy sources. In particular, the optimal
control decisions are made without the non-causal knowledge of future load demand
and renewable source output. We aim to minimize a cost function, which is a
general convex increasing function of instantaneous power flow from the grid.
The increasing convexity of the cost function makes sure that the power flow
exchanged with the main grid is as flat over time as possible, and thus minimizes
the negative impact of renewable energy integration. Through rigorous analysis,
we prove that the optimal BESS operation policy exhibits a threshold structure,
which can potentially lead to a simplified control policy. Specifically, we show that
the optimal policy degenerates to one that takes a short-sighted behavior when the
discount factor satisfies certain conditions. Moreover, we show that the optimal cost
is a decreasing convex function of the battery capacity, implying that there exists
an optimal battery sizing that strikes a balance between the operation cost and the
capital investment.

To sum up, we mainly studied the online charging control for two energy storage
systems, i.e., MESS and BESS, in different scenarios. We prove that the proposed
online charging schemes achieve remarkable improvement on the optimality and
scalability of system performance. Our results also show that the proposed online
charging schemes can efficiently save the energy cost as well as reducing the
fluctuation of the total load output from the main grid.

5.2 Future Work

The work presented in this book offers many possibilities for future extensions. In
particular, the following topics are of interest:

1. The PEV charging problem studied in this book assumes that the charging rate
of PEVs are non-negative, where the power only transmits from the grid to the
energy system stored in the PEV. In other words, we only consider the case
of Grid to Vehicle (G2V). With significant penetration of PEVs in the near
future, the concept introduced in literatures as Vehicle to Grid (V2G) will be
practically possible [1]. The V2G concept eases the integration of renewable
energy resources into power system and gives a new force to the inevitable
move towards power generation by clean energy resources. Then, it is critical
to construct and analyze a general system which includes G2V, V2G and the
renewable energy generators. Meanwhile, the control schemes can be designed
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for different purposes, such as minimizing the total operation cost, stabilizing
the voltage, flattening the total power flow, etc. The analysis of the worst-case
performance and average-case performance of the proposed algorithms in this
book may be extended to the control of the general system.

2. The major challenge of the online charging algorithm design is the uncertainties
from the behavior of EV users. A promising solution is to introduce economic
incentive schemes to encourage more users to arrive at the charging station during
the off-peak hour of base load consumptions and less during the peak hours, so
that the total load demand is flattened over time. Equivalently, pricing method can
be used to adjust the EVs’ charging demand over time. Besides, the scheduler
can also offer financial compensation to those users who are willing to make
reservations day-ahead, park the EV for a longer time, or tolerate charging delay
after the specified parking time. Through optimizing the pricing schemes, the
scheduler maximizes its overall utility, e.g., its profit defined as the revenue minus
the operating cost and the cost on offering the incentives. The joint design of
pricing scheme and online EV scheduling is also a promising yet challenging
topic to investigate, considering the complex correlations between the pricing and
the EV user profiles, including arrival rates, parking time and charging demand.

3. Tang and Zhang [2] shows that the accurate knowledge of future data can lead
to significant performance improvement of online algorithms. Currently, most
studies on online scheduling design assume perfect knowledge of (partial) future
data or statistical information. In practice, however, the actual knowledge could
be inaccurate, and the data collected could be noisy, incomplete or out-dated. It is
therefore important to incorporate the acquisition of data knowledge in the design
of online scheduling algorithm. A promising solution is to use online/stochastic
learning methods to exploit the random data to assist the decisions of EV
scheduling in an iterative manner. In this case, however, the learning algorithm
efficiency is of paramount importance, as the EV data size could be enormous
and the charging scheduling is a delay-sensitive application.

4. In the BESS control problem, we focus on the scenario where the microgrid
includes only one BESS. Another scenario of our interest is that the microgrid
includes an aggregator connected a number of BESSs through a distribution
network. For the microgrid system with one BESS, the charing/dischaging power
flow of the BESS is limited by the physical factors of batteries, i.e., max
charging/discharging rate, battery size, etc. In contrast, for the distributed BESS
system, the charing/dischaging power flow of each BESS is constrained by not
only the physical factors of batteries, but also the voltage of the location and
the power loss during the transmission. On the other hand, current research
mainly focuses on the centralized optimal control scheme design [3]. In practice,
the integration of distributed energy resources would require a decentralized
solution to these problems. Then it is an important future direction to incorporate
the distributed/decentralized deterministic optimization into the online control
scheme.

5. Large-scale deployment of BESSs is considered to be a promising mechanism
for fast frequency control in various electric systems. Although BESS can not
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compete with the mechanical storage system regarding the capacity of storage, it
can play an important part by compensating small deviations from the power
balance, among others. The BESS takes instruction from the power grid to
provide or absorb a certain amount of power for the purpose of primary frequency
control. The profitability of this application is mainly established by comparing
frequency control reserve prices on ancillary service markets with realistic
installation and maintenance costs of BESS units [4]. To guarantee the full
availability for primary frequency control, it requires efficient control algorithms
to keep the State of Charge (SoC) in between certain limits.

6. The integration of renewable sources brings both challenges and opportunities to
the EV charging scheduling problem. On one hand, EVs as energy storage can be
used to reduce the intermittency of renewable sources, absorb the variability of
load caused by renewable sources and even as energy carriers to transport energy
from remote renewable sources to loads in urgent need of power supply. On
the other hand, renewable source could help reduce the fluctuation of base load
and energy generation cost, especially for charging stations that own distributed
renewable generators. However, the integration of renewable energy introduces
another layer of randomness in the system design, such that online algorithms
now need to tackle the uncertainties from both the EVs and the renewable
sources. Prediction and data mining play even more important role in improving
the overall system performance.
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