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Preface

This book outlines physically intuitive concepts and theories for students,
engineers, and scientists who will be engaged in research in nanophotonics
and atom photonics. The main topic is the optical near field, i.e., the thin
film of light that is localized on the surface of a nanometric material. In the
early 1980s, one of the authors (M. Ohtsu) started his pioneering research
on optical near fields because he judged that nanometer-sized light would be
required to shift the paradigm of optical science and technology. This field
of research did not exist previously, and was not compatible with trends in
optical science and technology. However, he was encouraged by the knowledge
that scientists in other countries started similar research in the mid 1980s.

In the 1990s, optical technology progressed very rapidly and the pho-
tonics industry developed, but further progress became difficult due to the
fundamental limit of light known as the diffraction limit. However, there was
a growing awareness among scientists and engineers that this limit can be
overcome using optical near fields. Since a drastic paradigm shift in the con-
cepts of optics is required to understand the intrinsic nature of optical near
fields, the demand for a textbook on this subject has increased. The present
book aims to meet this demand.

Most scientists and engineers believe that optical near fields can only
be applied to microscopy. Therefore, this field of applications has been called
near-field optics. However, applications to microscopy never exploit the essen-
tial nature of optical near fields. Although this book discusses the application
to microscopy as a simple topic in order to guide beginners in the study of
optical near fields, the main purpose here is to justify a much wider claim, i.e.,
that the essence of utilizing optical near fields is to realize novel nanometric
processing, function, and manipulation by controlling an intrinsic interaction
between nanometer-sized optical near fields and material systems or atoms.
This has not been realized by conventional optical science and technology.
M.O. refers to the novel optical science and technology in nanometric and
atomic regions as nanophotonics and atom photonics, respectively. As long as
this more fundamental aspect exists, realizing nanometer-sized optical science
technology beyond the diffraction limit is no more than a by-product.

The book neither reviews formulae for numerical calculations nor intro-
duces experimental results on microscopy. It describes physically intuitive
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theories in three separate parts. Appendices A–D provide supplementary ex-
planations.

Chapters 1–3 review the background, history, and present status of re-
search and development in optical near fields. Chapter 1 reviews the history
of optics and early progress in photonics, i.e., applications of lasers to optical
disk memory, optical fiber communication, and optical microfabrication. It
shows how progress in photonics reached a deadlock due to the diffraction
limit. Chapter 2 describes how to end this deadlock and realize nanophoton-
ics for the requirements of the 21st century. This is possible by generating
and utilizing optical near fields and the principles for doing so are described
in this chapter. These reviews introduce the theoretical discussions later in
the book. Chapter 3 discusses the practical aspects of the novel science and
technology related to optical near fields. It also describes the structure and
performance of probes, which are key devices for generating or detecting op-
tical near fields. The present status of research and development is reviewed,
including applications to microscopy, spectroscopy, fabrication, optical disk
memory, and atom manipulation. Finally, this chapter overviews possible
trends in the novel fields of optical science that will be founded by exploiting
optical near fields.

Chapters 4–8 provide the theoretical basis for optical near fields. They
describe a theoretical model for the electromagnetic interaction between two
or more nanometric material systems located in proximity. Although one can
derive some information on optical near fields by simultaneously solving the
approximated Maxwell and Schrödinger equations, this derivation requires
numerical calculations with a very long computation time. Although numer-
ical results are possible, it is very difficult to obtain an intuitive physical
picture of the physics of optical near fields. In order to overcome this diffi-
culty, these four chapters are devoted to reviewing theoretical models that
offer intuitive concepts for analyzing the physical meaning of optical near
fields and relevant experimental results.

Chapter 4 presents the simplest theoretical model to describe the phenom-
ena presented in Chap. 2. It imposes a condition on the size of the material
systems in which optical near fields are investigated. Under this condition,
the basic role of a probe is described from the viewpoint of a dipole–dipole
interaction. The characteristics of fiber probes, which depend on their shape
and composition, are also discussed.

Chapter 5 deals with a single atom or molecule as a nanometric material
system to investigate its basic spectral properties. If a conducting or dielectric
probe approaches the nanomaterial, the emission properties of the atom or
molecule are substantially modified. This phenomenon is discussed by dealing
with the atom or molecule as an oscillating electric dipole moment. After
presenting the basic concepts, an analytical method is given in which the
probe tip is approximated as a planar mirror. The results of a quantum
mechanical approach are also described.
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Chapter 6 discusses the effect of multiple scattering for the more precise
investigation of optical near fields. A propagator, i.e., the transfer function,
is derived, in order to evaluate the electric field at an arbitrary position
generated by a light source at another position. The result of this derivation
is applied to near-field optical microscopy.

In Chap. 7, by introducing a dual vector potential and a scalar potential,
the basic formulae of electromagnetics are transformed and a novel theoretical
model is presented. This model is put to use for a systematic analysis of
several cases. In the first case, the near-field condition is met, i.e., the sizes of
the material systems under study and their separation are sufficiently smaller
than the wavelength of the incident light. The second case is the quasi-near-
field condition, i.e., the near-field condition is not met with sufficiently high
accuracy.

Chapter 8 presents a quantum mechanical model and a new approach
based on a projection operator method to describe the interaction between
nanometric material systems via optical near fields. This model can also be
used to describe the interaction between an atom and a probe, and its appli-
cation to atom photonics is discussed in the last two chapters of the book. An
outstanding advantage of this model is its ability to describe systematically
the light–matter interactions in nanometric material and atomic systems.
This is because the model is based on concepts developed in the fields of
elementary particle physics, statistical mechanics, quantum chemistry, and
quantum optics. Furthermore, the model provides an intuitive physical pic-
ture in which the localized optical near fields can be described as an electron
cloud localized around an atomic nucleus.

Utilizing the theoretical basis presented in Chaps. 4–8, Chap. 9 discusses
the possibility of creating new fields in nanophotonics and atom photonics,
to shift the paradigm of optical science and technology.

Chapters 1–7, and 9 were written by M. Ohtsu, whilst Chaps. 8 and 9
were by K. Kobayashi. Both authors checked the whole manuscript. The au-
thors thank Drs. H. Hori, I. Banno (Yamanashi University), Drs. T. Saiki,
S. Mononobe, R. Uma Maheswari, K. Kurihara, M. Ashino, M. Naya, J.D.
White, K. Matsuda, N. Hosaka (Kanagawa Academy of Science and Tech-
nology), Drs. G.H. Lee, V. Polonski, T. Yatsui, T. Kawazoe, T.W. Kim, H.
Aiyer, S. Sangu, K. Totsuka, S.M. Iftiquar, A. Shojiguchi (Japan Science and
Technology, Corp.), Drs. H. Ito, M. Kourogi, A. Zvyagin, H. Fukuda, S.J.
Lee, Y. Yamamoto, and H. Takamizawa (Tokyo Institute of Technology) for
their collaboration in conducting the research on nanophotonics and atom
photonics, and preparing the manuscript for the book. They also extend spe-
cial thanks to Drs. T.W. Kim, S. Sangu, T. Yatsui, S.J. Lee, and H. Aiyer
for their critical readings and comments on the manuscript.

They gratefully acknowledge Dr. T. Asakura, editor of the Springer Se-
ries in Optical Sciences and Professor Emeritus at Hokkaido University, who
recommended the publishing of this book. Finally, they wish to express their
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gratitude to Dr. C. Ascheron of Springer-Verlag, for his guidance and sug-
gestions throughout the preparation of this book.

Yokohama, Kanagawa, Motoichi Ohtsu
Machida, Tokyo, Kiyoshi Kobayashi
September 2003
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1 Deadlocks in Conventional Optical Science
and Technology

The present chapter starts by reviewing the history of optics in Sect. 1.1. Then
Sect. 1.2 describes early progress in photonics, i.e., applications of lasers to
optical disk memory, optical fiber communication, and optical microfabrica-
tion. Finally, Sect. 1.3 shows how progress in photonics reached a deadlock
due to the diffraction of light.

1.1 Progress in Optics

The history of optics is a long one. Even as early as the 17th century, Isaac
Newton studied the nature of light and proposed the particle model of light
[1.1]. This resulted in his long dispute with Robert Hooke and Christiaan

Huygens who proposed the wave model of light. However, Newton also in-
tensively studied the characteristics of an interference fringe called Newton’s
ring, showing that he also paid attention to the wave property of light. This
implies that his main interest cannot have been to discuss whether the na-
ture of light is a particle or a wave, but was rather to treat light as a particle
and/or a wave depending on the property manifested. On the other hand,
although Thomas Young supported the wave theory, he claimed that optical
interference cannot prove the validity of the wave theory. These historical
aspects suggest that both Newton and Young were aware of the fact that it
was difficult to elucidate the particle model and the wave model separately.

Through these arguments over the nature of light described above, the
idea arose that light might have both properties, those of a particle and those
of a wave, i.e., the notion of the duality of light was born. Accordingly, light
exhibits a particle-like nature through its energy, while it exhibits a wavelike
nature through its phase. The problem is to discuss which property of light
manifests itself, rather than to identify the nature of light. From these discus-
sions, it was found that a quantum theory is required to describe the various
aspects of the properties of light, including the problem of measurement.

Today, quantum theory claims that light has both the properties of a par-
ticle and the properties of a wave. Light is thus called a photon. When light
behaves as a wave, it has a wavelength λ (period of spatial repetition) and a
frequency ν (a number of oscillations per unit time). These are inversely pro-
portional to each other, i.e., they are related by λ = c/ν, where c is the speed

M. Ohtsu et al., Optical Near Fields
© Springer-Verlag Berlin Heidelberg 2004
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of light. When light exhibits a particle-like nature, its energy is a multiple
of hν, where h is Planck’s constant with the value of 6.626176 × 10−34 J s.1

Therefore, from the energy viewpoint, being a fundamental physical quan-
tity, only the frequency ν is a significant quantity, even though λ is inversely
proportional to ν.

Concerning the progress of quantum theory and its applications, a novel
light source known as the laser was invented in 1960 [1.2]. The use of lasers
has led to a dramatic change in optical science and technology, and its inven-
tion has been evaluated as one of the biggest scientific events in the twentieth
century, on a par with the invention of the transistor. It can be claimed that
the laser is an artificial light source invented by utilizing the accumulated
scientific and technological resources of modern science and technology. The
laser can be regarded as an ideal light oscillator with unique properties, com-
pletely different from those of a white light source or thermal radiation source
such as the sun, a flash lamp, or a light bulb. It is the source of a sinusoidally
oscillating electromagnetic wave, similar to conventional lower-frequency elec-
tronic oscillators. Laser light therefore exhibits far more remarkable proper-
ties than light emitted from conventional sources [1.3], i.e., high directivity,
high spatial and temporal coherence, high power density, and high brightness.
Further, its amplitude, phase, frequency, and polarization can be controlled
and modulated very precisely. These considerable control and modulation ca-
pabilities are inherent advantages of the laser which have not been achieved
by conventional light sources. Therefore, lasers have found a variety of appli-
cations.

1.2 Major Photonics Technologies and Their Limits

Industrial applications of lasers have been called photonics or opto-electronics.
Optical disk memory and optical fiber communication systems are reviewed
here as successful examples in photonics. Photolithography is also discussed,
used to fabricate the photonic devices that make up these systems.

1.2.1 Optical Disk Memory System

A compact disk (CD), popularly used as a read-only memory (ROM), is an
example of an optical disk memory which has a number of small pits on its
surface to store digital signals, i.e., one pit corresponds to one bit. In order to
read out these signals, the disk surface is illuminated by a laser beam which is
focused by a convex lens, as shown in Fig. 1.1. Detection of laser light power
reflected from the disk surface corresponds to the readout operation. The
advantages of this disk system are long lifetime due to non-contact readout,
1 The quantity h/2π which is used in Chaps. 8 and 9, where it is represented by h̄

and called Dirac’s constant.
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Fig. 1.1. Schematic diagram of an optical disk memory system
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Fig. 1.2. Technical road map showing the increase in storage density of optical
disk memory

high density due to the small spot size of the focused laser beam, and low
noise due to digital signal processing. Random access memories (RAM), e.g.,
digital versatile disks (DVD), have also been developed, where a focused laser
beam is also used to store and rewrite by heating the disk surface locally.
Figure 1.2 shows progress in increasing the storage density of optical disk
memory systems, at the annual increase rate of 30%.

A report on future trends in photonics technology has recently estimated
the storage density and readout speed required of optical disk memory in the
year 2010 [1.4], i.e., 1 Tb/in2 and 100 Mb/s, respectively. However, the di-
ameter of the circular pit corresponding to the 1 Tb/in2 density is as small as
25 nm, which cannot be fabricated for the reasons to be explained in Sect. 1.3.



4 1 Deadlocks in Conventional Optical Science and Technology

Optical fiber

Direction of 
light transmission

Core

Cladding

Position

Amplitude of
electric field of light

ncore nclad

   
1

Refractive index

Fig. 1.3. Schematic diagram of an optical fiber. ncore and nclad represent the
refractive indices of the core and cladding, respectively

1.2.2 Optical Fiber Communication

An optical fiber is made from a coaxial silica glass with typical diameter
125 μm. Its inner and outer parts are called the core (about 3 μm in diameter)
and the cladding, respectively, as shown in Fig. 1.3. The refractive index
of the core is higher than that of the cladding and this means that they
form an optical waveguide for light focusing and low-loss transmission. By
dehydrating the silica glass, the transmission loss has been reduced to as
low as 0.2 dB/km in the 1.5 μm wavelength region, which means that the
transmitted light power decreases only 3.6% even after transmission as far
as 1 km. As a result, long-distance optical transmission has become possible
for the submarine optical communication cable system in the Pacific and
Atlantic oceans.

The light sources used for optical fiber communication systems are semi-
conductor lasers with the structure shown in Fig. 1.4. Light is emitted from
an active layer with typical thickness, width, and length 0.1 μm, 2 μm, and
300 μm, respectively. That is, by injecting current into this layer, light is
emitted by the electronic interband transition from conduction to valence
bands. The refractive index of the active layer is made higher than that of
the adjacent cladding layers in order to form an optical waveguide for ef-
fective propagation of the emitted light. The light propagating through the
active layer is reflected at the end facets for a round trip, i.e., the two end
facets work as a cavity resonator. As a result of this round trip, the light is
confined in the cavity for lasing [1.3]. A part of the lasing light leaks from
the cavity and is used as the output laser light. The injection current is
modulated in order to modulate the light power when carrying digital sig-
nals. To distribute the signals transmitted through the optical fiber to each
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Fig. 1.4. Schematic diagram of a semiconductor laser

receiver, optical switching devices have been used. These are composed of
optical waveguides, semiconductor lasers, and so on. Photonic integrated cir-
cuits have been developed to integrate these photonic devices on a common
substrate.

A report on technological trends in optical fiber communication systems
using photonics technology has recently estimated the dramatic increase in
signal transmission rate that will be required in the year 2015 for domestic
and local photonic networks [1.5]. For example, the numbers of input and
output channels on an integrated optical switching array must be increased
to as many as 3000 each in order to meet this requirement. This means that
the size of each optical switching device must be reduced to the wavelength
of light or even less in order to keep the integrated switching array as small
as conventional arrays. However, this size reduction is not possible for the
reason to be explained in Sect. 1.3.

1.2.3 Optical Microfabrication

Research and development of semiconductor microfabrication has been con-
ducted with the support of national projects. It aims to fabricate ultralarge
scale integrated circuits for semiconductor dynamic random access memo-
ries (DRAMs), photonic integrated circuits for optical fiber communication
systems, and so on. Photolithography has been employed as a tool for micro-
fabrication, using focused light to process the material surfaces. Fabricated
sizes have been reduced rapidly using short wavelength light. For example,
it has become possible to fabricate linear patterns of 100 nm width using an
ArF eximar laser as light source (wavelength 196 nm). This will be used for
mass production of 1 Gb or 4 Gb DRAMs in the near future.

It is estimated that 64–256 Gb DRAMs will be required in the early 21st
century, as shown in Fig. 1.5. The linear pattern in these devices must be as
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narrow as 35–70 nm. However, such narrow patterns cannot be fabricated for
the reason to be explained in Sect. 1.3. In order to make this possible, various
light sources emitting extreme ultraviolet light, synchrotron radiation and
X rays, as well as electron beams, are under development. However, they
may not be feasible in mass production factories because of their large size
and high cost. Semiconductor industries are expecting advances with novel,
inexpensive, and practical fabrication tools.

1.3 Origin of Limits: Diffraction of Light

The three examples presented in Sect. 1.2 indicate that the society of the 21st
century requires a novel optical technology in order to fulfill measurement,
fabrication, control, and function requirements on a scale of several tens of
nm. Such a technology can be called optical nanotechnology. However, con-
ventional optical technology cannot meet this requirement. This is due to the
diffraction limit of light waves.2

Figure 1.6 explains the phenomenon of diffraction schematically. A plane
light wave propagates to a plate. After the light wave passes through a small
aperture on the plate, it is converted to a diverging spherical wave. Such
divergence is called diffraction [1.6]. It is an intrinsic characteristic of waves,
2 For the formulation of diffraction, refer to Problems 1.1 and 1.2 given at the end

of this chapter.
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Fig. 1.6. Schematic representation of the diffraction phenomenon of light

exhibited by acoustic waves, ocean waves, and so on. In the case of a circular
aperture, the divergence angle is about λ/a (radian), where λ and a are the
wavelength of the incident light and the aperture radius, respectively.3

Due to this diffraction, the spot size of light cannot be zero even if it is
focused by a convex lens. This is called defocusing. As shown in Fig. 1.7, the
spot size on the focal plane is as large as λ/NA.4 Here, the quantity NA is
the numerical aperture given by n sin θ, where n is the refractive index of the
medium between the lens and the screen, sin θ = (a/2)/

√
f2 + (a/2)2, a is

the diameter of the circular convex lens, and f is the focal length. The value
of NA is smaller than unity for conventional convex lenses.

Therefore, when two point sources of light are located closer together
than λ/NA, their images formed by the convex lens cannot be resolved on
the focal plane. This also holds true for imaging by an optical microscope.
Thus, the smallest size resolvable by the optical microscope (i.e., the res-
olution) is λ/NA, which is called the diffraction limit. It is advantageous
to use shorter wavelength light in order to improve the diffraction-limited
resolution. Electron microscopes have realized very high diffraction-limited
resolution because they utilize the short wavelength of the de Broglie wave
of the electron. However, a disadvantage of the electron microscope is that
the observable samples are limited to conductors installed in a vacuum, and
this does not allow one to observe insulators and living biological samples.
3 This expression is given by (Q1.9) in the solution to Problem 1.1.
4 This expression is given by (Q1.10) in the solution to Problem 1.2.
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Fig. 1.7. Schematic representation of residual defocusing

A laser beam also diverges due to diffraction. Its divergence angle is ex-
pressed as λ/πw (radian), where w is the spot size of the laser beam [1.3]. For
example, the divergence angle is about 0.3 mrad for λ = 1 μm and w = 1 mm,
which means that the 1 mm spot size of the laser beam becomes as large as
3 mm after propagating 10 m. Although this size is much smaller than that of
solar light, flash lamps, and light bulbs, it gives undesirable effects in photonic
systems.

In the case of optical disk memory, storage and readout of pits smaller
than λ/NA are not possible. Shorter wavelength lasers have been intensively
developed in order to decrease the diffraction-limited pit size, i.e., the major
efforts shown in Fig. 1.2 for increasing storage density have aimed to use
shorter wavelength light for storage and readout. However, the upper limit
of the storage density achieved using visible light is several 10 Gb/in2, while
the value required in the year 2010 is estimated to be more than ten times
greater.

Semiconductor lasers, optical waveguides, and optical switching devices
have to confine the light within them for effective operations. In the case of
a semiconductor laser, its active layer has to be larger than the diffraction-
limited volume, i.e., λ3, for this confinement. In the case of an optical fiber,
its core diameter has to be larger than λ. These examples mean that the sizes
of photonic devices cannot be smaller than the wavelength of light, which is
the diffraction-limited size of the photonic device. However, sizes of photonic
switching devices for optical fiber communication systems in the year 2015
must become smaller than the diffraction-limited size.

The narrowest linewidth of the pattern fabricated by photolithography
is also limited by diffraction. The progress in decreasing the pattern size
shown in Fig. 1.5 has been the result of efforts to use shorter wavelength light
to decrease the diffraction-limited value. However, further shortening of the
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wavelength requires gigantic and expensive light sources which can become
prohibitive when developing practical microfabrication systems. For visible
light sources, the 30–70 nm linewidth for 64–256 Gb DRAMs is far beyond
the diffraction limit.

To summarize, miniaturization of optical technology is not possible as
long as conventional propagating light is used. This is the deadlock imposed
by diffraction of light. One must go beyond the diffraction limit in order to
open up a new field of optical technology. This field is called nanophotonics.

Problems

Problem 1.1

In order to estimate the value of the divergence angle due to diffraction,
Fig. 1.8 shows a slit on a plane Σ at z = 0, where the width of the slit is
a. The plane light wave of wavelength λ emitted from the light source S is
incident on Σ. It can be considered that a point source is generated at the
point P (x = x1) by this incident light. A spherical lightwave is emitted from
this source and propagates into the space z > 0. In this context, solve the
following two problems.

(a) Derive the light intensity at the point Q (x = x2) in the plane Σ′ at
z = z. Assume that the angle ψ between the z-axis and segment PQ is
negligibly small, and that the distance r between P and Q is much longer
than λ.

(b) Derive the divergence angle of the light after passing through the slit.

          

Fig. 1.8. Schematic representation of the diffraction of light by a slit
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Problem 1.2

Replace the convex lens in Fig. 1.7 by a cylindrical convex lens with width a
and focal length f . By illuminating this lens with light with wavelength λ,
derive its spot size on the focal plane.



2 Breaking Through the Diffraction Limit
by Optical Near Field

The present chapter describes how to realize nanophotonics for the require-
ments of the 21st century. This is possible by generating and utilizing an
optical near field. Sections 2.1 and 2.2 describe the principles for generating
and detecting the optical near field. These reviews introduce the theoretical
discussions in Chaps. 4–8.

2.1 Generation of Optical Near Field

How can nanophotonics meet the requirements of the 21st century as pre-
sented in Chap. 1? Since light exhibits both particle and wave properties (see
Sect. 1.1), one may propose to use the particle property rather than the wave
property of light. However, this would not appear to be a good answer, be-
cause the particle property of light reviewed in Sect. 1.1 does not mean that
light can be confined in a limited space. It means that the energy of light can
take a discrete value, as is the case for confined electrons. That is, conven-
tionally used light propagates and spreads in space, i.e., it is not a spatially
localized particle. Is it then possible to generate spatially localized light?
The main topic discussed in this book seeks to answer this question. And the
answer is affirmative. Such light is called an optical near field.

Figure 2.1 shows how to generate an optical near field on a small sphere S
with conventionally propagating incident light. Here, it is assumed that the
radius a of the sphere S is much smaller than the wavelength λ of the incident
light. The scattered light 1 in this figure represents the incident light scattered
by the sphere S. However, it should be noted that an optical thin film with
thickness about a is also generated on the surface of the sphere S. This is
called an optical near field.1 2 Since a � λ, the volume of this optical near
field is much smaller than the diffraction-limited value. However, it cannot
be separated from the sphere S because it is localized on S.
1 The term ‘optical thin film’ is used only to give an intuitive image of the nature

of the optical near field. Chapter 9 presents a more appropriate term, i.e., an
optical cloud localized on the material.

2 The frequency of the optical near field is equal to that of the incident propagating
light.

M. Ohtsu et al., Optical Near Fields
© Springer-Verlag Berlin Heidelberg 2004
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Fig. 2.1. Schematic representation of an optical near field
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Fig. 2.2. Schematic representation of an optical near field generated by a small
aperture

As an alternative case, Fig. 2.2 shows that the optical near field is gen-
erated on a circular aperture with a sub-wavelength diameter. With con-
ventionally propagating incident light, a hemispherical optical near field is
generated simultaneously with the scattered light 1 on the aperture, and its
diameter is close to that of the aperture. In summary, Figs. 2.1 and 2.2 show
that the optical near field and scattered light 1 are generated by a sphere S or
an aperture. The scattered light propagates to the far field, and exhibits the
properties of a light wave as reviewed earlier in Sect. 1.3. In the following, we
will not consider the light propagating in the far field but focus on the optical
near field whose size depends on the size of the sphere S or the aperture.

Why is the thickness of the optical near field about a? This is explained
using Fig. 2.1. If the sphere S is assumed to be made of a dielectric such as
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Fig. 2.3. Detailed explanation of the generation of an optical near field

a glass, electrons stay around the nuclei in the atoms which compose S.3 By
shining the light on S, nuclei and electrons in atoms of S are displaced from
their equilibrium positions due to the Coulomb forces from the electric field
of incident light. Their displacement directions are opposite because the nu-
clei and electrons are oppositely charged. Thus, pairs of oppositely displaced
charges, i.e., electric dipoles are generated. Further, the vector representing
the product of electric charges and the displacement vector of this electric
dipole is called an electric dipole moment.4

The electric dipole moments in S are mutually attracted or repelled due
to the Coulomb forces between the oppositely charged nuclei and electrons.5

Figure 2.3 represents S by an ensemble of smaller spheres with radius a1(�
a), where the i th sphere is denoted S1i. In S1i, a great number of electric
dipole moments p2k (the k th electric dipole moment in S1i) arrange their
orientations as a result of the attractive and repulsive Coulomb interactions
with the surrounding electric dipoles. As a result of this arrangement, the
vectorial sum of p2k produces a large electric dipole moment p1i in S1i.
Figure 2.3 represents the generated p1i in S1i. It should be noted that the

3 The discussion in this section is effective even if S is made of a metal or semi-
conductor.

4 Refer to (A.25) of AppendixA for the definition of the electric dipole moment.
5 It should be noted that the electric field is equivalent to the magnitude and

direction of the Coulomb force.
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size of S1i has to be small enough for S1i to be considered as having a single
electric dipole moment p1i.

These electric dipole moments p1i also attract or repel each other. Here
it should be noted that they oscillate with the oscillating electric field of
the incident light. Figure 2.3 is a schematic representation of such oscillating
electric dipole moments, showing how the orientation of p1i is governed by
the following two factors:

1. The first factor is the direction of the electric field vector of the incident
light. This orientation can be considered as constant in S because a � λ.

2. The second factor is the shape, size, and structure of S. The electric
dipole moments p1i in S1i determine their final orientations through the
Coulomb interaction with other electric dipole moments p1i in order to
maintain the shape, size, and structure of the sphere S. Since the ori-
entation of the electric field vector of the incident light is constant in
S, as pointed out in (1), the orientations of p1i are independent of the
wavelength and phase of the incident light. They thus depend only on
the shape, size, and structure of S.

Figure 2.3 also shows the electric lines of force representing the magnitudes
and orientations of the Coulomb forces. These lines connect the electric dipole
moments p1i. Since the magnitude and direction of the Coulomb force is
equivalent to the electric field as pointed out above, these electric lines of
force show that p1i generates the electric field. An important feature is that
these electric lines of force are found, not only in S, but also on the surface
of S. The electric field represented by the electric lines of force on the surface
of S corresponds to the optical near field.

These electric lines of force of the optical near field emanate from one
electric dipole moment and terminate at another. They tend to take the
shortest possible trajectory. As a result, most of them are located in close
proximity to the surface of S. This is the reason why the optical near field is
very thin. Although we shall later explain quantitatively why the thickness
is about a,6 a qualitative understanding can be obtained by the following
considerations. The thickness is independent of the wavelength of the incident
light because the two above-mentioned factors determining the orientations of
p1i are independent of the wavelength. On the other hand, the only spatial
quantity included in the two factors is a, which means that the quantity
governing the thickness can only be a.

More quantitatively, the spatial distribution of the optical near field en-
ergy decreases rapidly as we move away from the surface, as shown by the
small graph in Fig. 2.3. Its energy becomes negligibly small at distance a from
the surface of S. This is caused by the fact that most of the electric lines of
force are located in close proximity to the surface.
6 See Sects. 4.3.2 and 8.3
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As mentioned above, Fig. 2.3 shows a schematic representation of the
electric dipole moments p1i, which oscillate synchronously with the oscillating
electric field of the incident light. Two kinds of electric field are generated
from such oscillating electric dipole moments. One is the optical near field
whose electric lines of force come out of one electric dipole moment and
terminate at another. The other is the electric field whose electric lines of force
form a closed loop, which propagates to the far field. Figure 2.3 also shows
these closed loops, which represent the scattered light 1 shown in Fig. 2.1.7

Before closing this section, note that the radius ai of the sphere S1i in S
is optional. It can be fixed in such a way that S1i is sufficiently small to be
represented by a single electric dipole moment p1i. When the observation is
made in a region closer to S1i, the latter must be divided into smaller spheres
S2i with radius a2 (a2 � a1), depending on how close the observation point
is to the surface of S1i. In this case, the thickness of the optical near field
observed on the surface of S1i is about a1. Further, if the optical near field is
observed in close proximity to S2i, it must be divided into smaller spheres S3i.
By dividing the sphere into smaller ones depending on the size and position
of observation, the discussion regarding Fig. 2.3 can be repeated. This means
that there exists a hierarchy within the theoretical model, depending on the
size of optical properties observed.

However, this hierarchy is not infinite. If the sphere is repeatedly divided,
it will eventually exhibit specific characteristics depending on its size, which
are different from those of a bulk sphere. For example, the optical and elec-
trical properties of a nanometric glass differ from those of a bulk glass. The
behavior of an ensemble of atoms in a nanometric material becomes very
different from that in a bulk system, and this again is different from the be-
havior of a single atom. The range of sizes between a bulk material and a
single atom is called mesoscopic. This is one of the key subjects in material
science and technology today.

This finite hierarchy is a common concept in modern science, suggesting
that there is an optimum theoretical model ranging from classical macroscopic
to quantum atomic theories depending on the size of the physical quantities
under study. This concept was also proposed by Democritus, an ancient Greek
philosopher. He assumed that there exists a smallest material which survives
when a bulk material is repeatedly divided. He called this the atom. On the
basis of the modern quantum theory of the atom, it can be further divided
into a nucleus and electrons. However, their optical and electrical properties
are different from those of the atom, i.e., the specific properties of atoms
7 FigureA.3 in AppendixA shows the electric lines of force generated from a single

oscillating electric dipole moment. This figure also shows two kinds of line. One
comes out of the top of the electric dipole moment and terminates at the tail. This
corresponds to the optical near field. The other, represented by a closed loop,
propagates to the far field. This corresponds to the scattered light. Figure 2.3
shows these lines generated from multiple electric dipole moments.
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are lost by this division. An important feature is found by considering the
opposite approach, i.e., if one tries to study the properties of the atom by
evaluating the characteristics of a mesoscopic material, one need not consider
the behavior of the nuclei and electrons in this material. This is the modern
concept of the atom.

Supplement: Total Reflection and Evanescent Light

First, assume that there is a planar boundary between materials 1 and 2
with refractive indices nh and nl, respectively (nh > nl). When light with
incidence angle θ1 is propagated from material 1 to the boundary, part of the
power is reflected back whilst the rest of the power is transmitted to material
2 with angle of refraction θ2. The relation between these angles is given by
Snell’s law, which is expressed as

nh sin θ1 = nl sin θ2 . (2.1)

It is found that θ2 > θ1 because nh > nl. The maximum of θ1 is derived by
substituting angle θ2 = 90◦ into this equation. It is called the critical angle
θc and is given by

sin θc =
nl

nh
. (2.2)

There is no transmission if θ1 > θc, in which case we have total reflection. Fig-
ure 2.4 shows this situation. In the case when materials 1 and 2 are water and
air, the value of θc is 48.8◦ because nl and nh are 1.0 and 1.33, respectively.

Next, assume that the incidence angle is larger than the critical angle,
i.e., θc < θ1 < 90◦. Although a real refraction angle θ2 does not exist, the
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Fig. 2.4. Schematic representation of evanescent light under the condition of total
reflection



2.1 Generation of Optical Near Field 17

mathematical expression for θ2 can be obtained by substituting (2.1) into the
relation sin2 θ2 + cos2 θ2 = 1 to give

cos θ2 = ±i

√
1
n2 sin2 θ1 − 1 , (2.3)

where n is defined as nl/nh and is called the relative refractive index. If it
is assumed that some light penetrates into material 2 in Fig. 2.4, its electric
field is given by

E(x, z) = T0 exp
[− iωt + ik2(x sin θ2 + z cos θ2)

]
, (2.4)

where ω(= 2πν) is an angular frequency. The wave number k2 in material 2
is given by k2 = 2π/λ2, where λ2 is the wavelength in material 2. Inserting
(2.1) and (2.3) into this equation, one obtains

E(x, z) = T0 exp

[
−iωt + ik2

(
x

n
sin θ1 ± iz

√
1
n2 sin2 θ1 − 1

)]
. (2.5)

The negative sign in ± in this equation has to be neglected in order to keep
the value of |E(x, z)| finite as z → ∞. As a result, E(x, z) is given by

E(x, z) = T0 exp
(
−iωt + ik2

x

n
sin θ1

)
exp

(
−k2z

√
1
n2 sin2 θ1 − 1

)
. (2.6)

This equation shows that |E(x, z)| decreases exponentially with increasing

z, and it is e−1 times the value of |E(x, 0)| at z = 1/k2

√
(1/n)2 sin2 θ1 − 1.

Thus, the decay length is defined by

Λ ≡ 1

k2

√
(1/n2) sin2 θ1 − 1

, (2.7)

whose value is of the same order as λ2. Equation (2.6) shows that a surface
wave exists on the boundary of material 1 and 2. This is called evanescent
light. Further, the first exponential term in this equation shows that this light
propagates along the x-axis with wavelength

λx =
nλ2

sin θ1
=

λ1

sin θ1
, (2.8)

where λ1 is the wavelength in material 1.
The evanescent light does not carry energy away from the planar surface

(along the z-axis) because it propagates on the surface (along the x-axis). This
feature is analogous for the optical near field shown in Fig. 2.1. However, the
thickness of the optical near field is about the radius of the sphere, while that
of the evanescent light is Λ. What is the origin of this difference? Figure 2.5
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Fig. 2.5. Detailed explanation for the generation of evanescent light

provides the answer to this question. It is drawn up in a similar way to Fig. 2.3.
In this figure, the material is assumed to be an insulator such as a glass, and
the upper part is assumed to be the vacuum for simplicity. This figure also
illustrates the incident and totally reflected light, electric dipole moments,
and electric lines of forces generated on the boundary. The electromagnetic
field represented by these electric lines of force is the evanescent light.

Since the boundary is an infinite plane, the orientations of the electric
dipole moments p1i generated in the vicinity of the boundary depend on
the spatial phase and wavelength of the incident and reflected light. They
are thus arranged periodically. Due to this periodicity, no propagating light
is generated on the boundary. In other words, these periodically arranged
electric dipole moments do not generate any closed-loop electric lines of force
on the boundary, even though they are oscillating with the optical frequency.
This is the origin of the total reflection.

However, if there are electric lines of force connecting electric dipole mo-
ments on the boundary, which represents evanescent light, the evanescent
light then covers the boundary as an optical thin film whose thickness can be
calculated by summing all the electric lines of force generated on the surface.
The calculated result is given by (2.7), which is of the order of the optical
wavelength. On the other hand, in the case of the sub-wavelength-sized sphere
S in Figs. 2.1 and 2.2, the orientations of the electric dipole moments p1i in
the smaller sphere S1i do not depend on the phase and wavelength of the
incident light. It then generates the scattered light 1 and an optical near field
as thin as the radius a. It should be pointed out that the planar boundary
case shown in Figs. 2.4 and 2.5 is a special case of Figs. 2.1 and 2.2.

The nature of the evanescent light remains within the framework of con-
ventional optics, because the thickness of the evanescent light on a planar
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surface is of the order of the wavelength of the incident light, which origi-
nates from the fact that the spatial distribution of the induced electric dipole
moments depends on the wavelength of the incident light. Thus, the use of
evanescent light cannot realize any measurement, fabrication, and so on be-
yond the diffraction limit, and cannot meet the requirements of our society in
the 21st century. One has to draw a sharp dividing line between the optical
near field on a nanometer-sized surface and the evanescent light on a planar
surface.

The physical origin of the optical near field is the same as that of evanes-
cent light. The difference lies in whether the orientation of the induced electric
dipole moments depends on the phase and wavelength of the incident light.
Finally, it should be pointed out that the term ‘optical near field’ is more
general than the term ‘evanescent light’ when expressing the nature of the
surface electromagnetic field.

2.2 Detection of Optical Near Field

The scattered light 1 in Fig. 2.3 can be detected by a photodetector placed in
the far-field region of the sphere S because it is conventional propagating light.
However, the optical near field cannot be detected because it is localized on
the surface of S and does not carry energy to the far field. In order to detect
the optical near field, the method shown in Fig. 2.6a is employed, i.e., the
optical near field is disturbed by a secondary sphere P. The disturbed optical
near field is converted to propagating light, called scattered light 2, and its
energy is transferred to the photodetector to be detected.8

Figure 2.6b explains the principle of this detection with the help of electric
dipole moments p1i induced in the spheres S1i and electric lines of force. By
placing P in the optical near field on the surface of S, some electric lines of
force are directed to the surface of P and induce electric dipole moments p1i
in P. These electric dipole moments generate the scattered light 2 as well
as the optical near field on the surface of P. Measurement of the power of
this scattered light 2 corresponds to detection of the optical near field on the
surface of S.

The detection of the optical near field described above uses the demolition
method, i.e., orientations and positions of the electric dipole moments p1i in
S and electric lines of force are varied by the approach of P.9 Since electric
lines of force are newly generated from P, one must consider the spatial
distribution of the total electric lines of force on the closely spaced spheres
S and P. This means that the two spheres S and P establish a mutually
8 The rate of energy flow per unit time is called the power, which is the flow rate

of the number of photons.
9 Note that orientations of some electric dipole moments p1i of S in Fig. 2.6b are

illustrated as different from those in Fig. 2.3.
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Fig. 2.6. Schematic representation of the detection of an optical near field. (a)
Basic explanation. (b) Detailed explanation

dependent situation to be connected by the electric lines of force. However,
this situation becomes valid only in the presence of the incident light. If
the incident light is off, they are independent of each other, even though
they are very close. Thus, the detection of the optical near field forms a
special coupling between the two spheres. It means that this coupling exhibits
unique response characteristics to the incident light, which differ considerably
from those exhibited by two independent spheres. Hence, the two spheres are
coupled to each other in response to the incident light, even though they are
mutually isolated material systems. Such an optically coupled condition is
called a mesoscopic condition, as pointed out at the end of the last section.

Although the scattered light 2 is generated by disturbing the optical near
field on S, one should note that there still exists scattered light 1 which
originates from S. Therefore, the scattered light 2 must be selectively detected
for sensitive demolition detection of the optical near field on S. For this
selective detection, Fig. 2.7 shows the use of a screen to prevent detection of
scattered light 1. As a successful device possessing this screening function,
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Fig. 2.8. Schematic illustration of a fiber probe (collection mode)

a sharpened optical glass fiber has been used instead of P. This is called
a fiber probe, as shown in Fig. 2.8, whose tip radius a corresponds to the
radius of P. By inserting this fiber probe into the optical near field on S,
the probe tip disturbs the optical near field to generate the scattered light
2. Part of the scattered light 2 is coupled to the fiber probe and transmitted
to its end. A photodetector installed at the end measures the transmitted
power of the scattered light 2. On the other hand, an opaque film coated on
the tapered part and foot of the fiber probe works as a screen to prevent
scattered light 1 from coupling to the fiber probe. This is because the foot
radius af of the protruding sharpened core is smaller than the wavelength
of the incident light. By this screening, the scattered light 2 is selectively
detected. A metallic film of Al or Au has often been used.

By applying this detection method, a novel optical microscope can be
made, which is called a near-field optical microscope, and explained schemat-
ically in Fig. 2.9. The power of scattered light 2 is measured by inserting a
fiber probe into the optical near field on the surface of S. After this measure-
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Fig. 2.9. Schematic diagram of a near-field optical microscope (collection mode)

ment, the fiber probe is scanned to another place in the optical near field to
measure the power of the scattered light 2 again. By repeating this scanning
and power measurement, the spatial distribution of the power of scattered
light 2 is obtained as a function of the position of the fiber probe. Since scat-
tered light 2 originates from the optical near field, this distribution represents
the spatial distribution of the optical near field energy, and also the shape of
S. As a result, this distribution represents a microscopic image of S.10

How high is the resolution of this microscope? It depends on the tip size a
of the fiber probe, i.e., the radius of the sphere P, because it is determined by
the fractional volume of the optical near field from which the scattered light
2 is generated. Thus, the smaller the tip size, the higher the resolution. Since
the discussion of resolution given above is independent of the wavelength of
the incident light, magnifications much higher than the diffraction-limited
value can be realized by using a sub-wavelength-sized tip.

Figures 2.10a and b illustrate the last comment of the present chapter.
Comparing Fig. 2.10a with 2.6a, the positions of the light source and pho-
todetector are exchanged. It would be more appropriate to say that the roles
of the spheres S and P are exchanged. That is, Fig. 2.10a represents light
propagating from the light source to the sphere P and the sphere S is then
illuminated by the optical near field on the surface of P. This optical near
field is disturbed by S and the converted scattered light 2 propagates to the
photodetector.

Figure 2.10b shows the sphere P of Fig. 2.10a replaced by a fiber probe,
where the light from the source is injected into the end of the fiber probe to
10 The sphere S stands for the sample under microscopic measurement, whilst

sphere P is named after the probe.
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Fig. 2.10. Illumination mode of operation. (a) Principle. (b) How to use a fiber
probe

generate the optical near field on the tip. The scattered light 2 is generated
in S by the optical near field, and its power is measured by the photodetector
while scanning the fiber probe. The spatial distribution of the measured power
as a function of the position of the fiber probe gives the microscopic image
of S. This mode of operation is called illumination mode, wherein the fiber
probe is used as light source for the optical near field to illuminate the sample.
The mode of operation shown in Figs. 2.6a, 2.8, and 2.9 is called collection
mode, because the optical near field is scattered and collected by the fiber
probe.
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Fig. 2.11. Schematic illustration of a fiber, as found in certain references

Problems

Problem 2.1

Figure 2.11 shows the cross-sectional profile of a fiber probe. It is a scanning
electron microscope image which has been shown in certain references. In
this figure, the sharpened core does not protrude from the opaque metallic
film. The top of this fiber probe is called an aperture, by analogy with the
aperture of Fig. 2.2. Its radius corresponds to af in Fig. 2.8. It is sometimes
claimed that the spatial resolution of a near-field optical microscope obtained
using this fiber probe is determined by af . Is this claim correct?

Problem 2.2

Characteristics of the optical near field are independent of the wavelength of
the incident light. So what color does the optical near field have?



3 Past and Present of Near-Field Optics

The present chapter discusses practical aspects of the novel science and tech-
nology that uses optical near fields. The history of research and development
is described in Sect. 3.1. Section 3.2 describes the structure and performance
of probes, which are key devices for generating or detecting optical near
fields. The present status of research and development is reviewed in Sect. 3.3,
including applications to microscopy, spectroscopy, fabrication, optical disk
memory, and atom manipulation. Finally, Sect. 3.4 overviews possible trends
in the novel fields of optical science that will be founded by exploiting optical
near fields.

3.1 History and Progress

A primitive proposal to apply the optical near field on a small aperture (see
Fig. 2.2) to high resolution optical microscopy was made as early as 1928
[3.1]. However, the theoretical discussion was limited to the framework of
wave optics. Consequently, it referred neither to the inherent nature of the
optical near field nor to the more promising applications in spectroscopy,
fabrication, and manipulation. After this proposal, no significant research and
development was carried out for about half a century. Modern studies on the
optical near field started in the early 1980s. Early in 1982, the fabrication of a
fiber probe was launched in Japan by sharpening an optical fiber [3.2]. Soon
afterwards, in 1984 [3.3] and 1986 [3.4], experimental results on near field
optical microscopy were published. These were obtained independently of the
Japanese work by using the sharp edge of a quartz crystal as a probe. Research
and development trends in the 1980s were limited to microscopy, and until
today, most of the work has concentrated on applications for scanning probe
microscopy to study optical properties of organic/inorganic materials and
biological samples.

Since the early 1980s, just after launching the fiber probe fabrication, one
of the authors (M.O.) realized that fabrication was a more essential appli-
cation of the optical near field, and that high resolution fiber probes must
be fabricated in a reproducible manner in order to realize these applications.
Following this realization, remarkable progress was made in fiber probe fabri-
cation by developing a chemical etching process. Applying these fiber probes

M. Ohtsu et al., Optical Near Fields
© Springer-Verlag Berlin Heidelberg 2004
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to near-field optical microscopy, high resolution images were obtained, prov-
ing the superiority of chemically-etched fiber probes over other probes. This is
because the chemical etching process has a very high reproducibility as com-
pared with other processes such as heating–pulling methods. Applications to
spectroscopy, fabrication, optical disk memory, and atom manipulation were
developed using these high performance fiber probes.

3.2 Probe Technology

A probe is a key device for optical near field science and technology. Satis-
factory and reliable results cannot be obtained without a high quality probe.
The following three basic features are required of the probe:

1. Its tip must be small in order to treat the small optical near field.
2. The conversion efficiency of the optical near field from/to propagating

light must be high, for efficient generation and detection of the optical
near field.

3. Screening capability must be included to discriminate the optical near
field from unwanted propagating light, as shown in Fig. 2.7.

In order to meet these requirements, an optical glass fiber is used to fabricate
the probe, called a fiber probe, as shown in Figs. 2.8 and 2.10b. The first
requirement above is fulfilled by sharpening the fiber to decrease the tip radius
a. The second feature is achieved by controlling the shape of the tapered part
between the tip and the foot. As a result of this control, the propagating
scattered light 2 generated by disturbing the optical near field with the tip is
effectively guided to the foot and finally transmitted to the photodetector in
the case of collection mode. In the case of illumination mode, the propagating
incident light reaching the foot is effectively guided to the tip in order to
generate an optical near field. After this sharpening, the taper is coated by
an opaque metallic film to fulfill the third requirement.

Figure 3.1a shows the cross-sectional profiles of an optical glass fiber which
is chemically etched in a buffered HF solution in order to fulfill conditions
(1) and (2) above. The left-hand picture of Fig. 3.1b shows a SEM image
of a sharpened fiber with tip radius a ≤ 2 nm. The right-hand picture of
Fig. 3.1b shows a SEM image of the foot radius af = 15 nm after coating
with a metallic film. Figure 3.1c shows cross-sectional profiles of sharpened
fibers which have been used for various applications. In this figure, the high-
resolution-type fiber probe has a relatively small tip radius a, as is the case
in Fig. 3.1b.

A high-efficiency-type fiber probe is fabricated in order to fulfill require-
ment (2). The conversion efficiency, defined as the ratio of the converted
energy of the optical near field to the energy of the incident light, is required
to be higher than 10%. T. Yatsui et al. demonstrated a higher conversion
efficiency than 10% in illumination mode [3.5]. Figure 3.1d shows the SEM



3.2 Probe Technology 27

image of such a high-efficiency-type probe, which is referred to as double-
tapered-type [3.6]. Double taper can decrease the length of the tapered part,
thereby achieving high efficiency. Its tip is buried into the metallic film to
make a flat top surface for spectroscopic applications (see Sect. 3.3.2). The
radius of the central hole on the metallic top surface, sometimes called an
aperture, corresponds to the foot radius af of Fig. 2.10b.1 It should be noted
that the aperture radius af of the fiber probe does not determine the res-
olution because the contribution from the tip radius a at the center of the
aperture remains.2

As a combination of high-resolution-type and high-efficiency-type probes,
a triple-tapered fiber probe has been developed [3.7]. Further, a functional-
type probe has been developed by fixing light-emitting dye molecules on the
tip [3.8]. By selecting optical fiber materials, high efficiency fiber probes have
been developed in the visible, infrared, and ultraviolet regions [3.7]. Recently,
by applying a microfabrication process to a silicon crystal substrate, a two-
dimensional array of probes has been developed for high efficiency and fast
scanning (see Fig. 3.15) [3.9]. A probe using a cantilever technology like an
atomic force microscope has also been fabricated [3.10] (see the supplement
to Sect. 3.3.1).

In order to fulfill the third requirement listed above, the foot of the fiber
probe has to be coated with an opaque material, as shown in Figs. 2.8 and
2.10b. For this purpose, a metallic film has been used. This avoids the un-
necessary detection of the scattered light 1 of Fig. 2.2 in the fiber (collection
mode) and the leakage of the incident light through the tapered part (illu-
mination mode). These are possible because the foot radius af in Figs. 2.8
and 2.10b is much smaller than the wavelength of the propagating light, i.e.,
propagating light such as the scattered light 1 and incident light suffer large
transmission losses by such a sub-wavelength aperture.

Instead of using a fiber probe, a metallic needle has sometimes been used.
This was originally used as a probe for a scanning tunneling microscope (see
the supplement to Sect. 3.3.1). It is called an apertureless probe, which fulfills
requirement (1). Further, the metallic probe is capable of highly efficient
generation of scattered light 2 by disturbing the optical near field. This is
due to the high refractive index of the metal. However, fatal defects are that
it does not satisfy requirements (2) and (3).3

In order to correct these defects, an advanced fiber probe has been de-
veloped, whose SEM image is shown in Fig. 3.1e [3.11]. Requirement (1) is
fulfilled because it is made of a sharpened fiber. Further, the scattering effi-
1 The value of af in this figure is 35 nm, i.e., the aperture diameter is 70 nm.

However, the value is measured by a SEM. Since the metallic film in the vicinity
of the aperture is thin, it leaks light. Therefore, the optically effective radius for
generating and detecting the optical near field should be larger than this value.

2 See Problem 2.1 of Chap. 2
3 It has an additional defect, as discussed in Problem 3.2 at the end of this chapter.
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Fig. 3.1. A fiber probe. (a) Method for sharpening an optical glass fiber by chemical
etching. (b) SEM image of a basic fiber probe. Left : Optical glass fiber sharpened
by chemical etching. The width of the image is 8.9 μm. Right : Metal-coated fiber
probe. (c) Cross-sectional profiles of sharpened fibers which have been used for
various applications of fiber probes. (d) SEM image of a double-tapered-type fiber
probe. Left : Fiber core with a double tapered profile. Right : Metal-coated probe
tip. Two white arrows represent the diameter 2af (= 70 nm). (e) Fiber probe with
the metal-coated tip of the sharpened core. Left : Schematic explanation of the
cross-sectional profile. Right : SEM image

ciency is as high as that of the metallic needle because its tip is coated with
a metallic film. Requirement (2) is satisfied because its tapered part is con-
trolled by the chemical etching technique. Finally, requirement (3) is fulfilled
because its tapered part and foot are coated with an opaque metallic film.

As mentioned above, the profile of a fiber probe can be expressed by a
tip radius a, foot radius af , and cone angle θ. This profile can be approxi-
mately represented by a chain of small spheres which are connected in order
of increasing radius, from a up to af , as shown in Fig. 3.2a. These spheres
disturb the optical near field in the case of collection mode, while they gen-
erate the optical near field on their surfaces in the case of the illumination
mode. Therefore, in the case of the collection mode, high disturbing efficiency
is obtained if the size of the optical near field falls between a and af , i.e., the
dependence of the efficiency on the size of the optical near field shows the
characteristics of a band-pass filter, as shown by the folded lines A and B in
Fig. 3.2b. This means that the collection-mode near-field optical microscope



30 3 Past and Present of Near-Field Optics

2a 2af

Sharpened core

Metallic film

Radius = a

Radius = 2af

(a)
Size

2af2a

E
ffi

ci
en

cy

A

B

C

(b)

Fig. 3.2. Filtering characteristics of a fiber probe. (a) Approximation by a chain
of different-sized spheres. (b) Relation between the size of the optical near field and
the efficiency of generation or detection of the optical near field. Folded lines A and
B represent the efficiencies for the fiber probe with smaller and larger cone angles
θ, respectively. The folded line C is for a conventional optical microscope

can detect an optical near field whose size falls within the pass band of this
spatial filter (i.e., between a and af). Here, the figure shows that a fiber probe
with smaller θ (folded line A) exhibits lower efficiency at af than that with
a larger θ (folded line B), because the sphere of radius af is farther from the
tip in the case of a smaller θ.4

This means that the sharper fiber probe can fulfill higher selectivity in
picking up the optical near field with size as small as the tip radius a. On
the other hand, in the case of illumination mode, the folded lines A and B
represent the size dependence of the optical near field energy generated on
the fiber probe, i.e., the optical near field with size ranging from a to af is effi-
ciently generated. These size dependencies of optical near field detection and
generation are valid not only for collection and illumination mode near-field
optical microscopes, but also for all other applications such as spectroscopy,
fabrication, and manipulation.5

4 See Sect. 4.3.1
5 The image formation efficiency of a conventional optical microscope using a com-

bination of lenses shows the characteristics represented by the folded line C in
Fig. 3.2b. Due to the diffraction limit of light, it detects light with size larger
than the wavelength λ, where λ � a, af .
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Fig. 3.3. Schematic diagram of the collection-mode near-field optical microscope.
(a) Configuration of setup. (b) Relation between sample–probe separation and
power of scattered light 2 measured by disturbing the optical near field on a 30-
nm-diameter plastic sphere

3.3 Development of Nanophotonics
Using Optical Near Fields

3.3.1 Microscopy

Figure 3.3a is a schematic diagram of a collection-mode near-field optical
microscope. In order to generate the evanescent field on the substrate of the
sample,its rear surface is irradiated by incident light. The optical near field
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Fig. 3.4. Schematic diagram of the illumination-mode near-field optical microscope

on the sample is generated by this evanescent light.6 PZT in this figure stands
for piezoelectric transducer, which is an electromechanical transducer used
to scan a fiber probe precisely. Figure 3.3b represents the relation between
the sample–probe separation and the power of scattered light 2 measured by
disturbing the optical near field on a 30-nm-diameter plastic sphere whilst
vertically scanning the fiber probe. A drastic decrease in detected power is
seen with a decay length of about the size of the sphere.

A schematic diagram of an illumination-mode near-field optical micro-
scope is shown in Fig. 3.4. The optical near field is generated on a fiber probe
tip which is disturbed by the sample in order to generate the scattered light
2. Although scattered light 2 is detected from the rear surface of the substrate
in this figure, it can also be detected from the front surface of the substrate.

The sample–probe separation must be maintained constant in order to
scan the probe along the horizontal direction in a stable manner. One popular
technique is to detect the magnitude of the mechanical interaction called the
shear force between the probe tip and the sample. The vertical position of
the probe is feedback-controlled in order to maintain the magnitude of the
detected shear force constant. However, it should be noted that the contours
of the equipotential surface of the shear force and the equi-energy surface
of the optical near field differ from one another, as explained schematically
in Fig. 3.5. Thus the probe can cross the equi-energy surface of the optical
near field when it is scanned by tracing the equipotential surface of the shear
force. In this figure, point A represents such a crossing point. As a result,
the power of the detected scattered light 2 varies at this point so that an
artifact image of the sample appears. This crossing occurs only because the
slope of the equipotential surface of the shear force is sharper than that of
6 Instead of evanescent light, propagating light can be used to generate the optical

near field. However, it is more advantageous to use the evanescent light because
one can reduce the power of the scattered light 1 (see Fig. 2.1).
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Fig. 3.6. Topographical image of a single string of DNA on an ultrasmooth sapphire
surface, taken by a collection-mode near-field optical microscope

the equi-energy surface of the optical near field. This is not related to the
high resolution capability of the microscope. The feedback-control system for
sample–probe separation should be carefully designed in order to avoid this
artifact.

As an example, Fig. 3.6 shows a topographical image of a single string of
DNA, i.e., a biological sample, mounted on an ultrasmooth sapphire surface,
taken by a collection-mode near-field optical microscope [3.12]. The width of
4 nm in this image exhibits the world record for the highest resolution, which
is less than 1/100 of the wavelength of the incident light. This image does not
contain any artifact because the sample–probe separation was controlled to
maintain the detected near-field optical energy constant, instead of employing
the shear force feedback control. The separation was maintained at 1 nm.

Various biological samples can be imaged in the air, as shown in this figure,
and imaging in solution has also been demonstrated [3.13]. Imaging in such
varied environments has never been possible with an electron microscope.

Supplement: Scanning Probe Microscopes

A family of high resolution microscopes has been developed that is related
to the near-field optical microscope. These are the scanning probe micro-
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Fig. 3.7. Basic structure of a scanning tunneling microscope (STM)

scopes. Figure 3.7 shows one example. By bringing a metallic probe towards
a conductive sample, if it is electrically biased, electrons in the sample tun-
nel through the potential barrier of the sample surface, thereby producing a
tunneling current. A sample image can be obtained by scanning the probe
and mapping the spatial distribution of the magnitude of this current. This
apparatus is called a scanning tunneling microscope (STM).

In order to explain the principles underlying the generation and detection
of the tunneling current, Fig. 3.8a shows the exponentially decaying wave
function of an electron which penetrates the potential barrier of the con-
ductive sample surface. By bringing the probe close to the sample surface
as shown in Fig. 3.8b, the penetrating wave function can be picked up and
converted to a propagating wave function in the probe, whereby a tunnel-
ing current is obtained. A topographic image of the sample surface can be
obtained with high resolution because of the short penetration length of the
wave function. Figure 3.9 shows the experimental result of imaging the two-
dimensional array of atoms on a graphite surface. It should be noticed that
the spatial layout between the sample and metallic probe is analogous to that
of the spheres S and P in Fig. 2.6a. The analogy can also be drawn between
the penetrating wave function of the electron and the optical near field of
Fig. 2.6b, and between the propagating wave function in the metallic probe
and the scattered light 2 of Fig. 2.6b.

Apart from the STM, there are various microscopes which can be cate-
gorized as scanning probe microscopes. Among them, the most widely used
is the atomic force microscope (AFM) utilizing the atomic force between the
sample and probe.7 AFM has been used to obtain topographical images of
7 Atomic force is the mechanical force existing between atoms. The potential en-

ergy for this force is proportional to R−6, where R is the internuclear distance
between atoms. This is derived as follows. Due to the Coulomb interaction be-
tween atoms A and B, an electric dipole moment is instantaneously generated in
atom A. This electric dipole moment generates an electric field whose magnitude
at atom B is proportional to R−3 [refer to the last term of (A.28) in Appendix A
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Fig. 3.8. Schematic representation of the principles underlying the scanning tun-
neling microscope (STM). (a) An exponentially decaying electron wave function
penetrates the potential barrier of the electrically conductive sample surface. (b)
The penetrating wave function is picked up by the approaching metallic probe

Fig. 3.9. Image of the two-dimensional array of atoms on a graphite surface taken
by STM. Image size 3 nm × 3 nm

conducting, insulating, and biological samples in vacuum, air, and solution.
The shear force described in Sect. 3.3.1 is one form of the atomic force.

3.3.2 Spectroscopy

The optical near field can be applied, not only for topographical imaging,
but also for mapping the spatial distribution of the photon energy emitted
from the sample. Further, emission spectra can be measured, i.e., emission

and (D.3) in Appendix D]. By this electric field, atom B generates an electric
dipole moment whose magnitude is also proportional to R−3. The magnitude of
the electric field at atom A originating from the electric dipole moment in atom B
is thus proportional to R−3×R−3(= R−6). This shows that the potential energy
is proportional to R−6, and exerts an attractive force towards the ground-state
atom, called the van der Waals force.
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Fig. 3.10. Schematic diagram of the experimental setup to measure the emission
spectra of semiconductor quantum dots. The numerical value in brackets represents
the thickness of each layer

spectroscopy can be carried out. Figure 3.10 shows an experimental setup to
measure the emission spectrum of a nanometric particle of InGaAs called a
quantum dot, to be used as an active medium for advanced semiconductor
lasers [3.14]. Electronic energy in quantum dots takes discrete values because
the size of the quantum dot is as small as the spread of the electronic wave
function.8 The quantum dots shown in this figure have an average diameter of
30 nm and an average height of 15 nm. They are grown on a GaAs substrate
with a high density and covered by thin cap layers. Note that topographical
images of the quantum dots cannot be obtained from the top surface because
of these cap layers.

Free electrons are generated in the cap layers when the sample surface
is illuminated by the optical near field on the fiber probe tip. Once these
electrons have diffused about 1 μm, they flow into the quantum dots. Light is
emitted from the quantum dot by the electronic transition from the conduc-
tion band to the valence band. The spatial distribution of the emitted light
intensity can be mapped if it is collected by the same fiber probe used to
illuminate the sample surface. Emission spectra can also be obtained. Curves
A–D in Fig. 3.11 show the emission spectra of quantum dots measured for four
different optical excitation power densities at liquid helium temperature. The
two peaks connected by broken lines correspond to the two discrete energies
of the electrons. Saturation of the peak intensity is observed by increasing
the optical excitation power density. Figures 3.12a and b show the spatial
distribution of the emission intensity and the ordinal numbers of discrete
8 This electron corresponds to a quantum mechanical particle in a potential well.

Its energy thus assumes discrete values.
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Fig. 3.12. Spatial distribution of the emission intensity. (a) Experimental results.
Image size 3 μm×3 μm. (b) Results of identifying electronic energies. Numbers 1–5
in white circles represent the orders of discrete electronic energies. Smaller numbers
represent lower energies

electronic energies identified in the emission spectra, respectively. Such high
resolution intensity mapping and spectral measurement for individual quan-
tum dots has never been possible with conventional optical and spectroscopic
methods.
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It is not straightforward to achieve high spatial resolution using the ex-
perimental setup in Fig. 3.10 because the emission intensity is very weak.
In order to overcome this difficulty, the high efficiency double-tapered-type
fiber probe shown in Fig. 3.1d was developed. As a result, highly sensitive
detection was achieved whilst maintaining high resolution [3.8].

As other examples, intensity mapping of emission from a single dye
molecule (see Sect. 9.1.2) and Raman spectroscopy of organic/inorganic ma-
terials have been realized [3.15, 3.16].

3.3.3 Fabrication

This section reviews nanofabrication using the optical near field. This is a key
application of the optical near field. Optical near-field photochemical vapor
deposition (NFO-PCVD) was devised in order to fabricate nanometric mate-
rials by direct deposition on a substrate. In NFO-PCVD, the main process is
the photochemical dissociation of a metal organic gas, which is performed by
the optical near field. As an example, metallic zinc (Zn) deposition is illus-
trated schematically in Fig. 3.13a, where diethyl zinc molecules (Zn(C2H5)2)
are dissociated by the optical near field. A nanometric pattern of Zn can be
deposited on the substrate surface using the photochemical reaction localized
in the small space of the optical near field.

Figure 3.13b is a schematic diagram of the potential energy curves in a
Zn(C2H5)2 molecule. Thermal excitation or molecular vibronic excitations by
infrared multiphoton absorption are required to go directly over the poten-
tial barrier of 2.25 eV, which is called the dissociation energy. However, since
these excitation efficiencies are very low, pre-dissociation is preferred: after
the electron has been excited from the ground state to the excited state by
absorbing light, it relaxes to the dissociative orbital for dissociation. Ultra-
violet (UV) light is required for this excitation because the energy difference
between the ground and excited states is 4.59 eV, which corresponds to the
absorption edge wavelength 270 nm.

The experimental deposition system uses a low pressure molecular gas of
Zn(C2H5)2 in a vacuum chamber, in which a UV fiber probe [3.7] is installed
for illumination mode operation. The Zn(C2H5)2 molecules are dissociated
by the optical near field on the probe tip, and dissociated Zn atoms are
deposited on a substrate. If the position of the fiber probe is fixed, the size
and profile of the deposited atoms are determined by the spatial distribution
of the optical-near-field energy. If the probe is scanned, various patterns can
be deposited whose profiles depend on the scanning trajectory.

Figure 3.14a shows two hemispherical nanometric Zn dots deposited by
fixing the fiber probe at two closely spaced positions [3.17]. The measured
diameters of these dots are as small as 37 nm and 52 nm, where it should be
noted that the real value is smaller than these values because the measured
value is increased in a way that depends on the resolution of the measure-
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Fig. 3.13. Schematic illustration of photochemical vapor deposition of Zn by the
optical near field. (a) Configuration of an experimental setup. (b) Schematic dia-
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Fig. 3.14. Images of Zn deposited on a glass substrate. (a) Two closely deposited
hemispherical Zn dots. (b) Elliptical pattern of a Zn wire

ment.9 Figure 3.14b shows the elliptical pattern of the nanometric Zn wire
deposited by scanning the fiber probe [3.18]. The measured width is as nar-
row as 20 nm, which is more than ten times narrower than the wavelength
of the incident light (244 nm). It should also be noted that the real width is
narrower than the measured value, for the reason given above.

Various sizes and profiles of deposited material can be obtained by con-
trolling the fiber probe. Furthermore, the position of the deposited materials
9 In order to obtain topographic images of these patterns, the magnitude of the

shear force was mapped (see Sect. 3.3.1) with the fiber probe used for deposition.
That is, a shear force microscope was used for imaging. This is a member of the
category of atomic force microscopes reviewed in the supplement to Sect. 3.3.1.
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can be accurately controlled. As shown in Fig. 3.14a, the separation between
the two dots has been decreased until they are as close as their diameters.
This is an outstanding advantage which has never been equalled by conven-
tional deposition technologies. It thus shows great potential for fabricating
nanometric materials with high reproducibility.

One advantage of using the optical near field for photochemical vapor de-
position is the ability to fabricate nanometric patterns beyond the diffraction
limit, as mentioned above. However, it should be noted that a more significant
advantage is the availability of a unique mode of dissociation and deposition
which has never been realized using conventional propagating light. For ex-
ample, it has been confirmed experimentally that Zn is deposited even if
244 nm wavelength light is replaced by 488 nm wavelength light [3.19]. In
general, it is not possible to dissociate Zn(C2H5)2 using 488 nm wavelength
light because the wavelength is much longer than the absorption edge of the
molecule. This means that such low energy photons as are provided by 488 nm
wavelength light cannot excite electrons in the molecule into the dissociative
orbital.

For the optical near field, however, this unusual dissociation behavior is
possible due to the intrinsic nature of the optical near field. In the case of con-
ventional dissociation by propagating light, only the electron can respond to
the oscillatory optical field while the nuclei do not, i.e., the process of dissoci-
ation is adiabatic. This adiabatic approximation is valid because the electric
field of the propagating light is spatially homogeneous due to its sufficiently
long wavelength compared with the molecular size. However, the optical near
field is spatially inhomogeneous because of its very short decay length. Thus,
the process becomes non-adiabatic, i.e., the nuclei in the molecule can re-
spond to the optical near field. As a result, a unique dissociation process can
occur.10

For example:

1. an electron can be directly excited from the ground state to the dis-
sociative orbital due to non-adiabatic deformation of molecular orbital
potentials,

2. high energy phonons in a Zn(C2H5)2 molecule can be excited, although
they cannot be coupled with propagating light.

The novel mode of dissociation described above has several technical ad-
vantages in addition to its profound scientific significance. For example, an
expensive ultraviolet light source can be replaced by a conventional visible
10 With regard to this non-adiabatic process, it should be noted that the main

aim in applying the optical near field to novel areas of nanophotonics and atom
photonics is to bring out and use these intrinsic phenomena and functions, which
are not possible with propagating light. The nanophotonic switch in Sect. 9.3 is
one example exploiting this intrinsic phenomenon. Compared with this primary
objective, the ability to make nanometric measurements and fabrications are no
more than secondary advantages.
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light source. Further, since this dissociation is possible for various metal–
organic molecular gases, it opens the way to depositions of novel materials
that have never been realized using propagating light.

Besides Zn, metallic Al has been deposited. In addition, ZnO has been
deposited. This is an oxide that can emit blue light. Not only metals and
oxides, but composite semiconductors can also be deposited. This possibility
of depositing a wide range of materials is a great advantage if we seek to fab-
ricate nanophotonic integrated circuits with sizes much smaller than the light
wavelength. This is because various nanometric materials can be deposited
on the substrate with very high accuracy and reproducibility with regard to
their size and position. Such novel nanophotonic integrated circuits can meet
the requirements of the future society as described in Sect. 1.2.2.

Besides the above-mentioned deposition, several modes of fabrication have
been demonstrated such as photolithography [3.20] and pulsed laser ablation
[3.21], which may be able to meet the requirements of the future society

described in Sect. 1.2.3.

3.3.4 Optical Disk Memory

Storage and readout of optical disk memory come under the heading of
nanofabrication reviewed in the previous section. However, following the stage
of basic study, the development of practical systems has begun. Indeed, ex-
tensive experimental work is under way to:

• write sub-wavelength-sized pits by modifying the surface of a magneto-
optical medium or phase-change medium with the optical near field;

• read out written pits using illumination-mode near-field optical microscopy.

Since scanning with a fiber probe is not a fast way to achieve data trans-
mission in the readout context, a two-dimensional array of silicon pyramidal
probes has been employed. This so-called storage/readout head is explained
schematically in Fig. 3.15. Figure 3.16 shows the profile of a contact slider
fabricated by assembling this head and pads on a silicon substrate. The de-
vice slides over the storage medium which is coated with a thin lubricant film
in order to maintain fast and stable sliding. A pit of length 110 nm has been
stored and read out by sliding this device over a phase-change medium at
sliding speeds as fast as 0.43 m/s [3.9]. As this result demonstrates, a proto-
type of practical near-field optical storage systems can be developed to realize
high storage densities beyond the diffraction limit.

3.3.5 Extending Applications: Toward Atom Photonics

Besides the topics reviewed in Sects. 3.3.1–3.3.4, the optical near field has
been applied to imaging, spectroscopy, and fabrication for various organic,
inorganic, and biological samples. Commercial near-field optical microscopes
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Fig. 3.15. Two-dimensional array of silicon pyramidal probes. Left : Schematic
explanation of the structure. Right : SEM image
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Fig. 3.16. Schematic representation of the experimental setup for high-density
storage and high-speed readout using the optical near field

and near-field optical spectrometers are already available, and this should
help to expand the field of applications in the future.

Atom manipulation has been proposed as an ultimate application of the
optical near field, where the thermal motions of free neutral atoms in vacuum
are controlled by using the mechanical effect of the optical near field. Several
experiments have already succeeded in opening a new field of atom photonics,
which is the next generation of nanophotonics. This section reviews recent
progress in atom photonics, starting with the basic principles.11

11 Refer to Sect. 9.2 for detailed explanations
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Fig. 3.17. Schematic diagram showing how to
trap an atom by the optical near field on a probe
tip

The idea is to use the dipole force, which is the force exerted by the
electric field of light on the electric dipole of the atoms induced by the light.
If the atom feels this force in the optical field and the optical frequency ν is
lower than the resonant frequency ν0 of the atom, it is forced to move toward
the higher energy side of the optical field. On the other hand, the atom
moves toward the lower optical energy side if ν > ν0. Since the optical-near-
field energy decreases with increasing separation from the material surface
on which the optical near field is generated, the atom is attracted to the
material surface by this dipole force if ν < ν0. On the other hand, the dipole
force becomes repulsive if ν > ν0.

The possibility of confining an atom in the optical near field on a probe tip
has been proposed, as explained schematically in Fig. 3.17 [3.22]. The figure
demonstrates the possibility of atom trapping by the optical near field. The
atom jumps into the optical near field on the fiber probe tip and is trapped
by the balance between the attractive van der Waals force on the tip surface
and the repulsive dipole force of the optical near field for ν > ν0. Only one
atom is trapped because of the small volume of the optical near field.

As a preliminary experiment, atom guidance has been carried out using a
hollow optical fiber, as shown in Fig. 3.18a [3.23]. A cylindrical optical near
field is generated on the inner surface of the hollow fiber by guiding a light
through the core with doughnut-shaped cross-section. The atoms jump into
the entrance of the hollow fiber, and are guided to the outlet by the repulsive
force from the optical near field for ν > ν0. However, the optical-near-field
energy must be high enough to exert a stronger repulsive dipole force on the
atom than the attractive force of adsorption onto the inner surface.12

Atom guidance experiments have been successfully carried out using ru-
bidium (Rb) atoms. By heating metallic Rb to 200◦C in an oven, Rb atomic

12 This attractive force is the sum of the van der Waals force (see the supplement
to Sect. 3.3.1) and the Casimir–Polder force, which has been called the cavity
potential. (A detailed explanation is given in Sect. 5.3.
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Fig. 3.18. Atom guidance by a hollow optical fiber. (a) Principle. (b) Cross-
sectional profile of the hollow fiber. A black circle at the center represents the
hollow with diameter 2 μm. The white doughnut around the black circle is the core.
The larger gray circle is the cladding

vapor sprays into the high vacuum chamber with an average thermal atomic
speed of about 300 m/s. The atoms are introduced into the hollow fiber. Fig-
ure 3.18b shows the cross section of a hollow fiber with inner diameter 2 μm.
Several hollow fibers with diameters 0.3–0.7 μm and length 3 cm have also
been used. The minimum diameter of 0.3 μm is smaller than the wavelength
(780 nm) of the light entering the core.

Figure 3.19a represents the relation between the frequency difference ν−ν0
and the measured flux of guided Rb atoms. The broken line parallel to the
horizontal axis represents the value of the atom flux, which is transmitted
through the hollow without an optical near field. This means that a small
fraction of the atoms can transmit in a ballistic manner. As compared with
this line, the solid curve represents a drastic increase in the guided flux for
ν > ν0, due to the repulsive dipole force of the optical near field. The value
of the flux on this curve is lower than that on the broken line for ν < ν0, due
to the attractive dipole force in addition to the above-mentioned adsorptive
force.

Figure 3.19b shows the relation between the light power introduced into
the fiber core and the measured flux of guided Rb atoms, where the condition
ν > ν0 is maintained. The area around the origin of this relation is magnified
and displayed in the inset. This inset shows that the atoms are not guided
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Fig. 3.19. Experimental results of Rb atom guidance. (a) Relation between the
frequency difference ν − ν0 and the measured flux of guided Rb atoms. The broken
line parallel to the horizontal axis represents the value of the atom flux transmitted
through the hollow without an optical near field. (b) Relation between the light
power introduced into the fiber core and the measured flux of guided Rb atoms.
The black arrow in the inset of this figure represents the guidance threshold

by the low light power, because the repulsive dipole force is weaker than the
adsorptive force. The black arrow in the inset represents the threshold for
guidance, i.e., the atom is guided when the light power is higher than this
threshold value. Above the threshold, the flux of guided atoms increases with
increasing light power and finally saturates, implying that atoms entering the
hollow are totally guided.

This method can be applied not only to Rb but also to most of the atoms
in the periodic table, if one can prepare a light source with emission frequency
around the value of ν0 for the guided atom. Table 3.1 shows typical atoms
and their resonance wavelengths in vacuum, which are inversely proportional
to ν0. Several popular atoms can be seen in this table, e.g., Si and Ga, which
are used in the electronics industry. It should be noted that the values of
ν0 in this table lie between the ultraviolet and near-infrared regions. Since
lasers emitting coherent light in these regions have already been developed,
this method can be applied to a variety of atoms from now onwards.

The atom guidance experiments may be considered as a preliminary study
to the one in Fig. 3.17. However, a variety of applications have been found.
For example, by noting that atom guidance is based on a resonance interac-
tion between the optical near field and an atom, species of guided atoms can
be selected, as shown in Table 3.1. Further, by tuning the optical frequency ν
within a narrower range than that given in this table, isotope separation, con-
trol of atom flux, and atom deposition become possible. This will be reviewed
below.
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Table 3.1. Examples of atoms to be guided by the optical near field. Their reso-
nance wavelengths are also given

Atom Resonance wavelength Atom Resonance wavelength
[nm] [nm]

Ag 328.1 K 766.5
Al 394.4 Li 670.8
Au 267.6 Mg 285.2
B 249.7, 249.8 Na 589.0
Be 234.9 O 777.5
Ca 422.7 Pb 368.4
Cs 852.1 Rb 780.0
Cu 327.4 Si 252.4
Ga 403.3 Sr 460.7
Hg 253.7

Isotope Separation

Natural Rb contains two isotopes, i.e., 85Rb and 87Rb with the fractional
ratio of 7:3. Their resonance frequencies ν0 differ because of the difference
in their masses, i.e., the value of ν0 for 85Rb is about 1 GHz higher than
that of 87Rb. By fixing the value of the laser frequency ν in-between these
two values, the dipole force due to the optical near field is attractive for
85Rb, while it is repulsive for 87Rb. Thus, only the 87Rb is guided through
the hollow fiber while 85Rb is adsorbed onto the hollow surface. This is the
principle of isotope separation.

Curves A and B in Fig. 3.20 represent the spectral emission profiles of 85Rb
and 87Rb measured at the exit and entrance of the hollow fiber, respectively.
Comparison of these curves shows that the spectral peak of 85Rb on curve A
is much lower than that on curve B. This represents the fact that 85Rb was
adsorbed onto the hollow surface by the attractive dipole force.

This method of isotope separation is applicable to a variety of isotopes.
One interesting example may be separation of carbon isotopes, which have
been used as a medical tracer for diagnosing respiratory diseases. For this
purpose, CO2 molecules have to be guided through the hollow fiber. Intensive
research into controlling the thermal motion of gaseous CO2 molecules by the
optical near field may open a new field of carbon isotope separation in the
future.

Atom Flux Control and Atom Deposition

Isotope separation reviewed above was realized by tuning the laser frequency
ν with respect to the atomic resonance frequency ν0. Since the value of ν
was accurately controlled to reduce its fluctuations to less than 100 kHz, it
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Fig. 3.20. Experimental results of isotope separation of Rb atoms. (a) Curves A
and B represent the spectral emission profiles of 85Rb and 87Rb measured at the
exit and entrance of the hollow fiber, respectively

is possible to fix ν at one point on the linear part of the curve in Fig. 3.19a,
which has a slope of 50 atoms/s Hz. From the product of the magnitude of
frequency fluctuations and the slope, the inaccuracy in the guided atom flux
can be made as low as 5 × 10−3 atoms/s, which means that very accurate
atomic flux control is possible.

Such high accuracy also suggests the possibility of atom deposition by
spraying guided atoms onto a cold substrate. Preliminary experiments have
estimated that the deposition rate is 0.2 nm/min. Further experiments are in
progress and a new field of atom photonics is expected to develop.

3.4 New Areas of Optical Science
Exploiting Optical Near Fields

The topics reviewed in the previous sections suggest the possibility of de-
veloping a new technology of nanophotonics and even atom photonics using
the optical near field. However, apart from these new technologies, a new
field of science can also be created by studying the nature of the optical near
field. For this study, it is necessary to investigate the elementary process
of local electromagnetic interaction between light and matter in a space of
sub-wavelength dimension. For example, as was shown in Fig. 2.6b, the ap-
proach of the sphere P varies the orientations and positions of the electric
dipole moments in the sphere S, so that the distribution of electric lines of
force varies from its original configuration, as shown in Fig. 2.3. In contrast
to these variations, note that the refractive index is an intrinsic physical con-
stant in conventional optics, determined by the orientations and positions of
the electric dipole moments in matter. However, since the above-mentioned
variations mean that the refractive index of the sphere S is no longer an invari-
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ant physical constant, a unique approach is required to describe the optical
properties of this matter, differing from the theory of conventional optics.

On the other hand, as described at the end of Sect. 2.1, the description of
optical-near-field generation involves a hierarchical model, which is a unique
feature of the mesoscopic scale. Since the interaction between light and mat-
ter in the mesoscopic range takes place within a surrounding macroscopic
system, a novel theoretical model is required to describe the microscopic sys-
tem in a macroscopic heat bath.13 Furthermore, novel interface and device
concepts are required to transfer the optical near field energy generated in
the microscopic system to the macroscopic system.14

In relation to the comments given above, several basic problems have
been pointed out, e.g., the problem of regarding optical-near-field detection as
photon tunneling, the problem of signal transmission utilizing optical energy
transfer from the light source to the photodetector via the sample and probe,
and so on. Since they will be discussed in Sect. 9.3, the remainder of this
section presents some comments concerning application of the optical near
field to measurement and fabrication [3.24]. This will serve as an introduction
to the theories presented in Chaps. 4–8.

First, it should be noted that the system composed of the spheres S and P
and the optical near field has nanometric size, much smaller than the wave-
length of the light and much larger than the size of atoms. Further, the light
and matter are mutually dependent because the spheres are connected by
electric lines of force of the optical near field. Therefore, one has to study the
combined system of light and matter in the mesoscopic region, as described
at the end of Sect. 2.1. Such light–matter interaction and its applications has
never been studied in conventional optical science. An especially important
point is that the information required is obtained by carefully filtering the
detected signals. Actually, in the case of near-field optical microscopy, the
shape and size of the fiber probe are designed to fulfill the conditions of an
optimum band-pass filter (see Fig. 3.2b), so as to obtain a sample image with
high resolution and contrast. Such filtering is a method inherent to meso-
scopic science and technology. In contrast, conventional optics observes the
sample only in the far field, after passing through a low-pass filter due to the
diffraction of light.

Second, the nature of the optical near field is discussed with regard to
the optical response of matter. For example, Fig. 2.3 shows that light illumi-
nation generates electric dipole moments in a dielectric, and that these are
connected by the generated electric lines of force. However, this connection
is broken at the surface of the matter, whereby polarized electric charges are
induced to generate the optical near field. Since the dielectric must be electri-
13 This theoretical model is presented in Chap. 8.
14 As described in Sect. 3.2, the tapered part of the fiber probe plays the role of in-

terface device. In addition, the second requirement mentioned there corresponds
to the function of interfacing.
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cally neutral, the rear surface induces polarized electric charges with opposite
sign. As a result, these charges generate an electric field in a direction oppo-
site to the electric field of the incident light. Therefore, the magnitude of the
local electric field inducing electric dipole moments in the matter is the differ-
ence between the electric field of the incident light and that generated from
the surrounding electric dipole moments. Thus, the magnitude of the electric
dipole moment in the matter is determined by the internal electromagnetic
interaction, i.e., the sum of the local response of the electric dipole moment
to the incident light and contributions from surrounding electric dipole mo-
ments. This means that the magnitude of the response of the matter to the
incident light is obtained if the spatial distribution of induced electric dipole
moments and the electric field are determined in a consistent manner. Such a
consistently determined electric field is called a self-consistent field. Even the
nonlocal optical response can be observed if one observes part of the matter
whose size is as small as the spread of the electron wave function [3.25].

Third, the hierarchy presented at the end of Sect. 2.1 is discussed again,
i.e., the hierarchy into which the optical response is organised by interactions
in the matter. For this discussion, Fig. 3.21a illustrates the electric dipole mo-
ments generated by illuminating a nanometric material with incident light.
Dividing this matter into parts A and B as shown in Fig. 3.21b, the optical
response of this matter to the incident light can be expressed as the sum of
the contributions from parts A and B, and the contribution from the interac-
tion between A and B. A and B generate self-consistent fields depending on
their shapes and sizes. Here, the sum of their magnitudes is smaller than that
of the self-consistent field of the undivided matter (i.e., A+B) because of the
interaction between A and B. It is thus found that the optical response of
matter has a hierarchy, i.e., the optical response of a larger piece of matter is
the sum of the responses of the smaller pieces and their interactions. There-
fore, various characteristics of the interaction can be observed, depending on
how one divides the matter up. An iterative method of calculation has been
proposed to derive the magnitude of the self-consistent field by summing the
magnitudes of the optical responses and interactions between homogeneously
divided smaller parts [3.26].

Detection of the optical near field corresponds to extracting specific in-
teractions by bringing the probe towards the sample instead of dividing the
sample, as shown in Fig. 3.21b. That is, the spheres S and P correspond to
the parts A and B in Fig. 3.21b. This means that detection of the optical
near field amounts to inducing an interaction between the spheres S and P.
Measurement and fabrication beyond the diffraction limit can be realized by
exploiting this interaction. In other words, interaction between spheres S and
P can be extracted by measuring IS+P − IS − IP, where IS+P, IS, and IP are
the light intensities scattered from S + P, S, and P, respectively. If the shape
and size of the probe P are optimized, and if control of its position is also op-
timized, the interaction between S and P is correlated to the optical near field
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Fig. 3.21. Schematic explanation of hierarchy. (a) Electric dipole moments in a
nanometric material, generated by the incident light. (b) Optical response to the
incident light as a sum of contributions from parts A and B, and a contribution
from the interaction between A and B

on the surface of S which existed before the approach of P. Thus, the optical
near field is reconstructed by analyzing the optical responses measured while
scanning P. This is the operation principle of a near-field optical microscope.

As described above, the optical near field is detected through the near-
field electromagnetic interaction induced by bringing P towards S. In order to
use the optical near field for measurement and fabrication, it is necessary to
induce this interaction efficiently, to collect the scattered light selectively, and
to increase the contrast between the collected signal and the background sig-
nal. This requirement can be met by optimizing the shape, size, and position
of the probe P, depending on the properties of S. This optimization corre-
sponds to adjusting the characteristics of the band-pass filtering, as shown
in Fig. 3.2b. In particular, all the light except the optical near field under
consideration must be screened to achieve high contrast. This can be done
using the screen in Fig. 2.7 or the fiber probe in Fig. 2.8.

It is also possible to enhance the optical-near-field energy by a resonance
effect of matter. Since electronic systems in a nanometric material exhibit
various quantum effects, a novel probe can be realized exhibiting the above-
mentioned band-pass filtering and resonance characteristics [3.8, 3.11]. Fur-
ther, novel transitions and interactions can be induced by the optical near
field such as are inhibited in macroscopic systems [3.25, 3.27]. One such
novel transition has already contributed to photochemical vapor deposition
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(see Sect. 3.3). Thus, the interaction between light and electronic systems in
the mesoscopic region has great scope for versatile applications.

Further, it should be noted that light can have a mechanical action on
matter originating in its electric and magnetic components. The former is due
to the transfer of photon momentum to matter. This transfer has been applied
to control the thermal motion of atoms, as described in Sect. 3.3.5. The latter
is due to the transfer of photon angular momentum to the orbital angular
momentum of electronic systems and due to the spin–orbit interaction of
electronic systems.

Since the optical near field is coupled to matter, definitions of momentum
and angular momentum as well as their conservation laws become approxi-
mate and depend strongly on the shape and size of the matter. Therefore,
these momenta are called pseudo-momenta. For example, in the case of con-
ventional propagating light in free space, the direction of its intensity gradient
is parallel to that of the wave number, while they are perpendicular for the
optical near field.15 Further, since it is possible for the localized optical near
field to exert a large mechanical force on the matter, a novel mechanical phe-
nomenon inherent in the optical near field can be expected. Experimental
work to measure such mechanical effects has been carried out [3.28].

It is known that a local interaction can be induced between closely spaced
pieces of matter which originates from the polarization of matter and vacuum
fluctuations. It is induced even in the absence of the incident light, and hence
generates a van der Waals force (see Sect. 5.3). In contrast to this, the me-
chanical action of the optical near field can be considered as an atomic force
which can be controlled by adjusting external parameters. Applications of
such mechanical action intrinsic to the optical near field include fabrication,
control of thermal motion of atoms, and others, as described in the present
chapter. A variety of other applications, e.g., manipulation of biological spec-
imens, also become possible.

Problems

Problem 3.1

Is it advantageous to use a diffraction grating as a standard sample to evaluate
the resolution of a near-field optical microscope?

Problem 3.2

A fiber probe is used for the illumination mode in order to generate the
optical near field on the probe tip. Is high resolution obtained if the light
scattered from the sample is collected by a convex lens when the sample is
illuminated by the optical near field?
15 For example, refer to (2.6) in the supplement to Sect. 2.1.



4 Dipole–Dipole Interaction Model
of Optical Near Field

Although one can acquire some information about the optical near field by
solving the approximated Maxwell and Schrödinger equations simultaneously,
this derivation requires numerical calculations with a very long computation
time. Even though numerical results are possible, it is very difficult to obtain
an intuitive physical picture of the optical near field. In order to overcome
this difficulty, Chaps. 4–9 seek to review theoretical models that offer intuitive
concepts to analyze the physical meaning of the optical near field and the
relevant experimental results. The present chapter presents the simplest the-
oretical model to describe the phenomena presented in Chap. 2. Section 4.1
imposes a condition on the size of material systems in which the optical near
field is investigated. Under this condition, Sect. 4.2 describes the basic role
of a probe from the viewpoint of the dipole–dipole interaction. Section 4.3
discusses the characteristics of fiber probes, which depend on their shape and
composition.

4.1 Near-Field Condition for Detecting Scattered Light

This section treats light scattering by a small object. For simplicity, the
material object is assumed to be composed of two particles, as shown in
Fig. 4.1. Their separation b can be regarded as the size of the material object.
In this figure, the vector r represents the distance between the detection
point and material object. The following equations are used to determine the
value of b (= |b|) from the scattered light intensity measured at r. Since the
two particles can be regarded as point light sources for light scattering, the
electric field vector E(r, t) of the scattered light at time t and the position r
is expressed as

E(r, t) = E0
e−iωt+ik|r+b/2|

|r + b/2|m + E0
e−iωt+ik|r−b/2|

|r − b/2|m , (4.1)

where E0, ω and k are the electric field vector of the incident light, the
angular frequency (= 2πν) and the wave number (= 2π/λ, where λ is the
wavelength) of the incident light, respectively. Since the travel time Δt of
the light from the light source to the detection point is given by |r ± b/2|/c,

M. Ohtsu et al., Optical Near Fields
© Springer-Verlag Berlin Heidelberg 2004
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Point light source 1 Point light source 2
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r + b
2

r - b
2

r

b
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- b
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Fig. 4.1. Configuration for optical measurement of the separation b between two
point light sources

the quantity k|r ± b/2| in this equation represents the phase delay ωΔt. The
integer m represents the exponent originating from (A.28) of Appendix A,
which takes values 1, 2, or 3. Three possible cases can be considered to derive
the value of b, depending on the values of b and r(= |r|).

Case 1: 1 � kb � kr

In this case we are observing a super-wavelength-sized object in the far field.
Since 1 � kr, the term proportional to r−1 in (A.28) is larger than those
proportional to r−2 and r−3. The ratio of their magnitudes is (kr)2 : kr : 1.
Hence, the value of m in (4.1) can be fixed at unity. Further, by noting that
r � b, (4.1) approximates to

E(r, t) ≈ 2E0
e−iωt+ikr

r
cos

kb(n · nb)
2

, (4.2)

where n(= r/|r|) and nb(= b/|b|) represent unit vectors oriented along r
and b, respectively. The symbol · represents the scalar product of the two
vectors. In order to estimate the value b from this equation, assume that
|E(r, t)| has maximum value at the position r0 at which (n0·nb) = 0 (n0 =
r0/|r0|, see Fig. 4.2). If one can find the second position r1 at which |E(r, t)|
has the maximum value again while the value |r| is constant, the relation
kb(n1·nb)/2 = π is valid, and n1 = r1/|r1|. From this relation, the value of
b is derived as b = 2π/k(n1·nb).

The reason why the value of b can be obtained as above is that the product
kb is much larger than unity, i.e., the detection point is located sufficiently far
from the two light sources, so that the phase difference of the light waves trav-
eling from the two light sources is larger than π. Imaging by a conventional
optical microscope is a case in point.

Case 2: kb � 1 � kr

In this case we are observing a sub-wavelength-sized object in the far field.
The value of m in (4.1) takes the value unity again in this case. In or-
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r1

b

r0

Point light source 1 Point light source 2

Fig. 4.2. |E(r, t)| reaches its maximum at points r0 and r1

der to estimate the value b from (4.2) under this condition, the inequality
kb|n · nb| ≥ 2π has to be satisfied, i.e., at the detection point the phase dif-
ference between the light waves of the two light sources must be larger than
π. Since |n · nb| ≤ 1, the above requirement corresponds to kb ≥ 2π, which
represents the diffraction limit. However, this requirement is not met because
kb � 1, and thus the value of b cannot be obtained, i.e., the spatial distribu-
tion of the position of the sub-wavelength-sized object cannot be measured
in the far field. This is because the phase difference between the two light
waves is negligibly small at any detection point r. Rayleigh scattering is a
case in point.1

Case 3: kb < kr � 1

In this case we are observing a sub-wavelength-sized object in the near field.
Since kr � 1, the term proportional to r−3 in (A.28) is larger than those
proportional to r−2 and r−1. Their ratio is (kr)−2 : (kr)−1 : 1, and therefore
m = 3. Further, since the phase delay k|r ± b/2| is negligibly small, (4.1)
approximates to

E(r, t) = E0e−iωt

(
1

|r + b/2|3 +
1

|r − b/2|3
)

. (4.3)

We assume that the amplitude of the electric field measured at the detection
point r0 is |E1|, and that r0 is normal to the line connecting the two particles,
i.e., (n0·nb) = 0. Then the value b is derived as

1 It is a light-scattering phenomenon observed when the light is incident upon sub-
wavelength particles. Equation (A.35) of AppendixA shows that the scattered
light intensity is proportional to λ−4 or ν4, where λ and ν are the wavelength
and frequency of the incident light, respectively. Light scattering by gaseous
molecules is an example of this phenomenon, and is the origin of the blue color
of the daytime sky.
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b = 2

[(
2|E0|
|E1|

)2/3

− r2
0

]1/2

,

from the relation |E1| = 2|E0|/
[
r2
0 +(b/2)2

]3/2. This means that the value of
b can be determined by the near-field measurement. The relation kb < kr � 1
is called the near-field condition [4.1].2 The topics to be discussed in this book
are the phenomena observed under this condition.

4.2 Role of Probes

The optical near field is used for imaging, fabrication, manipulation, and so
on, under the near-field condition. In this section a simple case is considered
to elucidate the role of probes, namely, the case where both the sample and
the probe are treated as spherical particles.

4.2.1 Strength of Dipole Interaction

Figure 4.3 shows the light incident on the sphere S used as a sample. Simul-
taneously, the sphere P used as a probe is also illuminated by the incident
light because it is close enough to the sphere S. Therefore, we can discuss
not only the collection mode, but also the illumination mode, using this
figure.

Incident light

Sphere P

Sphere S

Scattered light 

pp
(E0)

ps

Fig. 4.3. Electric dipole moments induced in spheres S and P which are located
close to each other

The electric field E0 of the incident light induces electric dipoles in the
spheres, whose magnitude and orientation are represented by the electric
dipole moments of (A.25) in Appendix A, and they are represented as pS

2 The range of r satisfying the condition kr � 1 is called the near field. On the
other hand, the one satisfying kr � 1 is called the far field.
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and pP in spheres S and P, respectively.3 The electric dipole moment pS in
the sphere S generates an electric field which induces the change ΔpP in the
electric dipole moment of the sphere P. Similarly, the electric field generated
by pP induces the change ΔpS in the electric dipole moment of the sphere
S. Further, ΔpP and ΔpS generate electric fields which induce changes in
the electric dipole moments in the spheres S and P, respectively. The process
will be repeated infinitely. This electromagnetic interaction, which mutually
induces electric dipole moments in the two spheres, is called the dipole–dipole
interaction [4.2]. All the electric dipole moments induced by this interaction
can generate scattered light, which is the scattered light 2 of Fig. 2.6. We now
elucidate the details of the dipole–dipole interaction.

Equation (A.28) in Appendix A represents the electric field E generated
by the electric dipole moment p. In the case of the near-field condition (kr �
1), the main contribution comes from the term proportional to r−3 in this
equation. It is given by

E =
3n(n · p) − p

4πε0r3 , (4.4)

where eikr is approximated as unity because kr � 1. It corresponds to the
static component of the electric field generated by the electric dipole mo-
ment.4 When r is parallel to p (i.e, r ‖ p), (4.4) is expressed as

E =
2p

4πε0r3 . (4.5)

On the other hand, when r is perpendicular to p (i.e., r ⊥ p), it is

E = − p

4πε0r3 . (4.6)

These equations represent the optical near field generated around the sphere
S. The dipole–dipole interaction induced by bringing the sphere P towards
the sphere S is used to measure its magnitude.

When we assume that the spheres S and P are dielectrics for simplicity,
the electric dipole moment pS of S induced by the incident electric field E0
is expressed as

pS = αSE0 , (4.7)

where αS is the polarizability of the dielectric. When the separation R be-
tween the two spheres satisfies the conditions kR � 1 and R ‖ p, the

3 The spheres shown in Figs. 2.3 and 2.6b correspond to the ensemble of these
spheres. They contain large numbers of electric dipole moments. Hence, the dis-
cussion in the present section can be used to make the discussions in Sects. 2.1
and 2.2 more quantitative.

4 In the case when the near-field condition does not hold, the terms proportional
to r−2 and r−1, and also the term eikr in (A.28), have to be taken into account.
More details are given in Sect.A.1.2.
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electric field at the sphere P generated by pS is expressed by (4.5) as
ES = 2pS/4πε0R

3.5 Thus, the change in the electric dipole moment of the
sphere P is given by

ΔpP = αPES =
2αPαS

4πε0R3 E0 . (4.8)

By representing the change in (4.8) as ΔαPE0, the change in the polarizabil-
ity of the sphere P is given by6

ΔαP =
αPαS

2πε0R3 . (4.9a)

Here, αS and αP are given by

αi = gia
3
i , (4.9b)

gi = 4πε0
εi − ε0

εi + 2ε0
, (4.9c)

for i = S, P, where aS, aP, εS and εP are the radii and dielectric constants of
the spheres S and P, respectively.7

Even if the suffix S is replaced by P, the above discussion is still valid,
i.e., the electric dipole moment pP (= αPE0) generates the electric field EP
(= 2pP/4πε0R

3) at the position of the sphere S, and induces the change
ΔpS (≡ ΔαSE0) in the electric dipole moment. As a result, one finds that
the expression for the change ΔαS in the polarizability is the same as (4.9a).
Thus, ΔαS and ΔαP are given by

ΔαS = ΔαP = Δα . (4.10)

In the following discussion, multiple scattering is neglected for simplicity, i.e.,
further changes in the electric dipole moments of the spheres S and P, induced
by ΔpP and ΔpS, respectively, are neglected.

Since the two spheres are close enough to each other, they are recognized
as a single scatterer for far-field detection, i.e., the scattered light generated
5 The discussion below can be made similarly for the case R ⊥ p.
6 In conventional optics, the polarizability α and refractive index n of a material

object are regarded as invariant constants. They are related to each other by
n =
√

1 +Nα/ε0, where N and ε0 are the numbers of electric dipole moments
in a unit volume and the dielectric constant in vacuum, respectively. However,
(4.9a) shows that the polarizability of the sphere P depends on the separation
R as the result of dipole–dipole interaction with the sphere S. This means that
the refractive index is no longer an invariant constant in near-field optics. (The
boundary condition is also regarded as invariant in conventional optics, and this
turns out to be effective in near-field optics as well. For a detailed discussion on
the boundary condition, refer to Sect. 7.1.1.)

7 For derivation, refer to Problem 4.3
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ap
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Fig. 4.4. Schematic diagram of spheres P and S with separation R

from the total electric dipole moment pP + ΔpP + pS + ΔpS is detected. Its
intensity IS is given by

IS ∝ |(pP + ΔpP) + (pS + ΔpS)|2
≈ (αP + αS)2|E0|2 + 4Δα(αP + αS)|E0|2 . (4.11)

The first term (αP + αS)2|E0|2 represents the intensity of the light scattered
directly by the spheres S and P, which corresponds to the scattered light 1
of Fig. 2.1. The contribution of this term will be discussed in Sect. 4.2.3. The
second term 4Δα(αP+αS)|E0|2 represents the intensity of the scattered light
as the result of dipole–dipole interactions, which corresponds to the scattered
light 2 of Fig. 2.6.

Combining (4.9) and (4.10) we obtain

Δα =
gPgS

2πε0

a3
Pa3

S

R3 . (4.12)

For convenience, the right-hand side of this equation is transformed as
(gPgS/2πε0)f(x), where the function f(x) denotes a3

Pa3
S/R3 and x is the

horizontal component of the separation R. For simplicity, we assume that
sphere P remains close to sphere S during scanning (see Fig. 4.4). Under this
assumption, the orientations of the electric dipole moments in the two spheres
can be maintained parallel to one another while scanning the sphere P, and
thus (4.5) is valid.

Since the separation R is given by
√

x2 + (aP + aS)2, f(x) can be written
by

f(x) ≡ a3
Pa3

S[
x2 + (aP + aS)2

]3/2 . (4.13)

Figure 4.5 shows the profile of the function f(x). The value of f(x) reaches
a maximum fm at x = 0 (see Fig. 4.5), given by

fm =
a3
Pa3

S

(aP + aS)3
≡ a3

S

(
AP

AP + 1

)3

, (4.14)

where AP = aP/aS. The following sections discuss the characteristics of sev-
eral quantities derived from the above results.
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Fig. 4.5. Dependence of f(x) on x/(aP + aS), where xh is the half width at half
maximum

4.2.2 Signal Intensity and Resolution

The signal intensity fm of (4.14) increases with increasing aP (see Fig. 4.6)
and approaches a3

S for aP → ∞. On the other hand, the half width xh at the
half maximum of the function f(x) (see Fig. 4.5) is given by

xh =
√

41/3 − 1(aP + aS) ≈ 0.77(aP + aS) = 0.77aS(AP + 1) , (4.15)

which is utilized as a parameter representing the resolution.8 It should be
noted that this value of xh is independent of the wavelength of the incident
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Fig. 4.6. Dependence of fm and xh on AP(= aP/aS)

8 An alternative parameter for representing the resolution is xh − aS, i.e., the
difference between xh and the radius aS of the sphere S.
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light. Further, Fig. 4.5 illustrates that the signal intensity increases dramat-
ically when the separation R becomes smaller than

√
x2

h + (aP + aS)2, i.e.,
1.26(aP + aS). These characteristics mean that the use of the dipole–dipole
interaction can achieve high resolution with a view to measuring, fabricating,
and manipulating sub-wavelength-sized object.

The value of xh in (4.15) increases with increasing aP, as shown in Fig. 4.6.
This means that one must use a smaller sphere P to realize higher resolution,
and this provides the basis for satisfying the first requirement on the sphere
P presented in Sect. 3.2. For aP → 0, the value of xh becomes 0.77aS, which
is approximately equal to aS. It also provides the basis for ensuring that the
spatial distribution of the optical near field is the same as the radius of the
sphere S.

In the above discussion, it was assumed that the probe touches the sphere
S at x = 0 during the scanning (see Fig. 4.4). Next, let us assume a different
case in which the sphere P is kept at a distance z from the top surface of
the sphere S during scanning. In this case, the separation R is expressed as√

x2 + (aP + aS + z)2. Also, fm is (a3
Pa3

S)/(aP + aS + z)3, which is less than
the value in (4.14). On the other hand, xh is given by 0.77(aP +aS +z), which
is larger than the value in (4.15). This reveals that an increase in the distance
z between the spheres P and S deteriorates the sensitivity and resolution of
the measurement.

Figures 4.7a and b show an example of the deterioration in resolution.
In this figure, flagellar filaments of salmonella bacteria fixed on a glass sub-
strate, whose diameters are about 25 nm, are imaged by the collection mode
of the near-field optical microscope [4.3]. The fiber probe used has the same

(a) (b)

Fig. 4.7. Flagellar filaments of salmonella bacteria on a glass plate, observed by
near-field optical microscope in collection mode. The foot radius af and tip radius
a of the fiber probe were 15 nm and 1.5 nm, respectively. The incident light was
s-polarized. Sample–probe separations z for (a) and (b) were 15 nm and 65 nm,
respectively. Image size 5 μm × 5 μm
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profile as shown in Fig. 2.8, where the tip radius a and foot diameter af are
1.5 nm and 15 nm, respectively. Although the images shown in Figs. 4.7a and
b were taken at the same positions on the substrate, the distance z between
the probe and sample were different, viz., 15 nm in Fig. 4.7a and 65 nm in
Fig. 4.7b. Many flagellar filaments are observed in both figures. It is clear
that the widths of the flagellar filaments in Fig. 4.7b are broader than those
in Fig. 4.7a. This results from the deterioration in resolution with distance z.

In addition, it should be noted that the black strings represent the flagellar
filaments, i.e., the images in these figures are reversed. We will discuss this
and other features of the images in Sect. 4.2.4.

4.2.3 Contrast to Background Light

In this section, we discuss the contribution of the first term (αP + αS)2|E0|2
in (4.11). This term represents the scattered light 1, which contributes to
the background signal to the scattered light 2 [the second term 4Δα(αP +
αS)|E0|2 in (4.11)]. The contrast C of the image is defined as the ratio of the
intensities of the scattered light 2 to that of 1, i.e., the ratio of the second
and first terms, which yields C = 4Δα/(αP + αS). With the help of (4.9a)
and (4.9b), it is expressed as

C = 4
1

2πε0R3

αPαS

αP + αS

=
2

πε0
gPgS

1[
x2 + (aP + aS)2

]3/2

a3
Pa3

S

gPa3
P + gSa3

S
, (4.16)

where the distance z is fixed at 0 for simplicity. From this equation, one finds
that the contrast C has maximum value Cm at x = 0, given by

Cm =
2

πε0
gPgS

1
(aP + aS)3

a3
Pa3

S

gPa3
P + gSa3

S
. (4.17)

In order to evaluate Cm, this equation is transformed to

Cm =
2gS

πε0
F (GP, AP) , (4.18a)

where GP = gP/gS and AP = aP/aS. The function F (GP, AP) is defined by

F (GP, AP) =
GPA3

P

(AP + 1)3(GPA3
P + 1)

, (4.18b)

which has the maximum value GP/(1+G
1/4
P )4 at AP = G

−1/4
P . Figure 4.8 de-

picts the profile of F (GP, AP) in the case GP = 1 for simplicity. For aP = aS,
F (GP, AP) has maximum value 1/16. This means that the highest contrast is
obtained when aP = aS. This phenomenon is called size-dependent resonance.
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Fig. 4.8. Dependence of F (GP, AP) on AP for GP = 1

Section 4.2.2 showed that an increase in aP improves signal intensity, while
deteriorating resolution. On the other hand, in this section we explained
that the contrast has maximum value at aP = G

−1/4
P aS. Therefore, we can

conclude that the optimum radius of the sphere P is G
−1/4
P aS for high signal

intensity, high resolution, and high contrast. This is the first requirement
described in Sect. 3.2.

The contrast Cm has maximum value Cmm at aP = G
−1/4
P aS, which is

expressed as (2gS/πε0)GP/(1 + G
1/4
P )4. In other words, when the dielectric

spherical probe is used, one cannot get higher contrast than this value. In
order to increase the value of Cmm, one solution is to increase the value of gP,
because Cmm increases with increasing GP. For this purpose, we will suggest
a method in Sect. 4.3.3. For GP → ∞, Cmm tends to 2gS/πε0. Section 4.3
suggests that one can get the value of Cmm larger than 2gS/πε0 by using a
non-spherical probe.

4.2.4 Dependence on Incident Light Polarization

This section describes the dependence of image characteristics on the polar-
ization of the incident light in order to explain the image reversal shown in
Fig. 4.7 [4.4, 4.5]. Figure 4.7 shows images measured by near-field optical
microscope in collection mode. The incident light arrives at an oblique in-
cidence angle from the rear surface of the substrate (see Fig. 3.3a). In this
situation, the incident light can have two polarization states, as shown in
Figs. 4.9a and b. They are called s- and p-polarized light. Their electric field
vectors are oriented normal and parallel to the xz plane, respectively.9 The
characteristics of the images taken for these polarizations are discussed in the
following.

9 See Sect. 6.2.2 for further discussion of the dependence on the incident light
polarization
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Fig. 4.9. Schematic diagram of spheres S and P for measurement with the near-
field optical microscope in collection mode. Incident light is s- and p-polarized in
(a) and (b), respectively

S-Polarized Light

First, assume that the sphere P is above the sphere S. Since the electric
field vector of the s-polarized incident light is oriented along the y-axis as
shown in Fig. 4.10, the electric dipole moments pS and pP are also oriented
along the y-axis. In the figure, one can see the electric lines of force, i.e., the
electric fields which are generated by pS and pP. (These electric lines of force
represent the near-field component of the electric field generated from the
oscillating electric dipole moment. The illustration is based on the results of
Sect. A.1.2 and Fig. A.1c in Appendix A.) The electric dipole moments ΔpS
and ΔpP are generated by these electric fields. (The orientation of ΔpP is
determined by the direction of electric lines of force generated by pS. Thus,
one can find the orientation of ΔpP by examining the directions of these
electric lines of force at the center of the sphere P. The orientation of ΔpS
can also be found in a similar manner.) However, the orientations of ΔpS and
ΔpP are opposite to pS and pP, because they are generated by the electric
field of the counterpart electric dipole moment, i.e., pP and pS, respectively.
Therefore, the total electric dipole moment in each sphere will be decreased
by the opposite dipole moment generated by the counterpart.

Next assume that the sphere P is slightly displaced from the top of the
sphere S. In this case, the orientations of pP and ΔpP are not perfectly
opposite to each other. Similarly, the orientations of pS and ΔpS are not
perfectly opposite. This means that when the sphere P is located above the
sphere S, the magnitudes of the total electric dipole moments in each sphere
will take the minimum value and the intensity of the scattered light 2 will be
decreased. This is the reason why the inverted image was obtained in Fig. 4.7.
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Fig. 4.10. Schematic diagram showing pP, pS, ΔpP, and ΔpS in the case of s-
polarized incident light. Aspects of electric lines of force generated by pP and pS

are also shown
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Fig. 4.11. Schematic diagrams illustrating how image characteristics depend on
the scanning direction of sphere P: (a) along the x-axis and (b) along the y-axis

In the following, we will discuss the dependence of image characteristics
on the scanning direction of the sphere P. Figure 4.11a shows that the sphere
P is scanned along the x-axis. The electric dipole moment pP and the electric
field generated by it are oriented along the y-axis, whereas they are oriented
along the tangential direction on the surface of the sphere S. This means that
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the electric dipole moment ΔpS is also oriented in the tangential direction.
Therefore, when the sphere P is scanned along the x-axis, the value of ΔpS
is insensitive to the discontinuity in the dielectric constant on the surface of
the sphere S. In contrast, when the sphere P is scanned along the y-axis as
shown in Fig. 4.11b, the electric dipole moment ΔpS induced by the electric
field from pP is oriented in the normal direction to the surface of the sphere
S. Consequently, when the sphere P is scanned along the y-axis, the value of
ΔpS is sensitively affected by the discontinuity in the dielectric constant at
the surface of the sphere S. In other words, when the sphere P is at the edge
of the sphere S, the scattered light intensity becomes higher than when it is
above the sphere S. This phenomenon is called the edge effect. It depends
on the scanning direction. It is this effect that produces the bright line seen
along the flagellar filaments in Fig. 4.7.

Figures 4.12a and b show the image of a biological specimen called a mi-
crotubule, obtained from a fresh pig brain [4.4], as a clearer example revealing
image inversion and the edge effect shown in Fig. 4.7. The electron micro-
scope observation revealed that its diameter was 30 nm. Figure 4.12a is the
topographical image measured by the shear-force microscope (see Sect. 3.3.3).
The white line and small white spot in the figure represent the microtubule
and a protein aggregate, respectively. Figure 4.12b shows the region inside
the square magnified and imaged using a collection-mode near-field optical
microscope. In this figure, the images of the microtuble and the protein ag-
gregate are dark, due to image inversion as illustrated in Fig. 4.10. Further,
Fig. 4.12c shows the cross-sectional profile of the light intensity along the two
white arrows in Fig. 4.12b. It clearly shows that the intensity is higher at the
edges, which is due to the edge effect described above.

P -Polarized Light

Assume that the sphere P is above the sphere S. In contrast to the s-polarized
case, the electric field vector of the incident light is oriented along the z-axis,
and the electric dipole moments pS and pP are also along the z-axis (see
Fig. 4.13). By examining the directions of the electric lines of force of the
electric field generated by pS and pP, it can be observed that ΔpP and ΔpS
induced by the electric fields in the spheres P and S are also oriented along
the z-axis. Hence, pS, pP, ΔpS, and ΔpP are all parallel and the scattered
light intensity reaches its maximum when the sphere P is above the sphere
S. The image is not reversed in this case, in contrast to the situation with
s-polarized light.

Since both ΔpS and ΔpP are oriented along the z-axis, the electric lines of
force generated by these electric dipole moments have bow-tie-shaped profiles
spreading to the left and right of the spheres S and P. This means that the
generated scattered light propagates along the x- and y-axes.10 The scattered
10 See Fig.A.3 in Sect.A.1.2 in AppendixA
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Fig. 4.12. Microtubule from a fresh pig brain on a glass plate [4.4]. (a) Topographi-
cal image measured by a shear-force microscope. The small white circle represents a
protein aggregate. Image size 2 μm×2 μm. (b) Magnified image of the white square
in the center of (a) measured by near-field optical microscope in collection mode.
Image size 550 nm × 550 nm. (c) Cross-sectional profile of the light intensity along
the two white arrows in (b). Black circles and solid curves represent experimental
and theoretical values, respectively

light intensity measured thus reaches its minimum when the sphere P is
above the sphere S. The highest intensity is measured when the sphere P
is displaced from above the sphere S. This phenomenon is known as the
polarization-dependent edge effect.

In order to demonstrate this effect, we show the image of flagellar filaments
of salmonella bacteria in Fig. 4.14. Experimental conditions are the same as in
Fig. 4.7a, except that the incident light is p-polarized. The images in Fig. 4.14
are not reversed. Pairs of lines caused by the polarization-dependent edge
effect can be seen.
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Fig. 4.13. Schematic diagrams of pP, pS, ΔpP, and ΔpS in the case of p-polarized
incident light. The electric lines of force generated by pP and pS are also shown

Fig. 4.14. Images of flagellar filaments of salmonella bacteria on a glass plate,
observed by near-field optical microscope in collection mode. Apart from the fact
that the incident light was p-polarized, the other experimental conditions are the
same as in Fig. 4.7a. Image size 5 μm × 5 μm
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4.3 Characteristics of Fiber Probes

In this section, we discuss a more practical case in which tapered fiber probes
are used instead of the spherical probe.

4.3.1 Visibility and its Dependence on Cone Angle

When using a fiber probe, as shown in Figs. 2.8 and 2.10b, one has to consider
the dipole–dipole interaction between the sample and the tapered part of the
probe in addition to that due to the sample and probe tip. In order to consider
this interaction, the profile of the fiber probe is approximated as shown in
Fig. 4.15. In this figure, the fiber probe is composed of two spheres P and
T, which represent the probe tip and tapered part, respectively, as shown in
Fig. 3.2a. The relation between the cone angle θ and their radii aP, aT is

aT =
1 + sin(θ/2)
1 − sin(θ/2)

aP , (4.19)

where aP < aT.
In addition to the dipole–dipole interaction between the spheres S and

P, that between the spheres S and T must also be considered. Referring to
(4.12), the change in polarizability of the sphere T due to this interaction is
given by

ΔαT =
gTgS

2πε0

a3
Ta3

S

R3
T

, (4.20)

where RT =
√

x2 + (2aP + aS + aT)2. Since the spheres P and T are made
from the same material (i.e., gT = gP), (a3

Ta3
S)/R3

T is transformed to fT(x, θ)
by the definition of f(x) in (4.13), where fT(x, θ) is given by

Scanning

Sphere T

Sphere P

Sphere S

x

at

ap

as

Fig. 4.15. Fiber probe approximated by two spheres S and T. θ is the cone angle
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Fig. 4.16. Plots of fT(x, θ) and f(x), where GP = 1 and aP = aS. Curves A and B
represent the contributions from spheres T and P, respectively. Curve C is the sum
of curves A and B. The values of θ in (a) and (b) are 80◦ and 20◦, respectively

fT(x, θ) ≡ a3
Ta3

S[
x2 + (2aP + aS + aT)2

]3/2 . (4.21)

Curves A in Figs. 4.16a and b, based on (4.19) and (4.21), represent the profile
of fT(x, θ) for larger and smaller cone angles θ, respectively. In the figure, the
value of GP (≡ gP/gS) was unity, and aP was equal to aS in order to obtain
the maximum value in the curve shown in Fig. 4.8. Curves B represent f(x)
of (4.13), the contribution from the sphere P. Curves C represents the total
change in polarizability of the fiber probe, i.e., the sum of curves A and B,
where the dipole–dipole interaction between the spheres P and T is neglected.

Comparing the curves C in Figs. 4.16a and b, one finds that the contribu-
tion from the sphere T is larger for larger cone angle θ, so that the curve C
in Fig. 4.16a is wider than that in Fig. 4.16b. For a near-field optical micro-
scope used in collection mode, the reason is as follows. In Sect. 4.2.2 it was
explained that the resolution is determined by the radius aP of the sphere P
irrespective of the value of the cone angle θ, because the optical near field on
the sample surface is scattered by P. However, in the case of the fiber probe,
the contribution from scattering by the sphere T has to be taken into account.
The magnitude of this contribution is larger for larger θ than that for smaller
θ, because the radius of the sphere T is greater. This can be understood by
plotting fm as shown in Fig. 4.6. The curve C thus becomes wider for larger
θ due to the larger contribution from the curve A. This is caused by the fact
that light scattered by the sphere T for larger θ veils the light scattered by
the sphere P.
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Fig. 4.17. Dependence of V on θ, where GP = 1 and aP = aS

The value fm/fT(0, θ) [see (4.14) and (4.21)] represents the ratio between
the light intensities scattered by the sphere P and the sphere T, and this
corresponds to the ratio between the heights of curves A and B. This ratio
can be defined as the visibility, because it represents how clearly the high-
resolution image measured by the sphere P can be seen in the low-resolution
image measured by the sphere T.11 After normalizing this ratio to unity at
θ = 0 (i.e., aT = aP), the visibility is defined by

V =
fm/fT(0, θ)
fm/fT(0, 0)

=
fT(0, 0)
fT(0, θ)

. (4.22)

By using (4.14) and (4.21), it can be transformed to

V =
(

aP

aT

)3(2aP + aS + aT

3aP + aS

)3

. (4.23)

Further, when GP = 1 and aP = aS, as shown in Fig. 4.16, equation (4.19)
gives

V =
1
8

[
2 − sin(θ/2)
1 + sin(θ/2)

]3
. (4.24)

This value decreases with increasing θ, as shown in Fig. 4.17.
Consider the case of measuring an arbitrarily shaped sample with a near-

field optical microscope in collection mode. In this case, the sample shape is
not always spherical, but tends to be irregular. In this situation, the optical
near field on the sample surface has various spatial components depending
on the sample topography. Using a tapered fiber probe, the minimum size
of the spatial spread of the scattered optical near field is determined by the
11 It should be noted that this ratio differs from the contrast C of (4.16). The

contrast C is defined as the ratio with respect to the background light intensity.
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Fig. 4.18. Spatial power spectral densities of the light intensities in the images of
Fig. 4.7. Curves A and B correspond to the images of Fig. 4.7a and b, respectively.
The spatial Fourier frequency at the arrow corresponds to the reciprocal of the
measured diameter of the flagellar filaments

radius aP of the sphere P. On the other hand, the optical near field is also
scattered by the sphere T, and its size depends on the size of the sphere
T. Thus the intensity of the smaller-sized optical near field scattered by the
sphere P is easily veiled by that of the larger-sized one scattered by the
sphere T. However, if the former is sufficiently larger than the latter, the
smaller-sized component can be clearly observed in the image, thus allowing
high-resolution imaging.12 The clarity is represented by the visibility V of
(4.22), which is larger for smaller θ. The relation between V and θ described
above is also valid for the illumination mode.

Increasing the sample–probe separation deteriorates the visibility. This is
because the scattering efficiency of the optical near field by the smaller sphere
P decreases more rapidly with increasing sample–probe separation than the
case for the larger sphere T. The dependence of the visibility on the sample–
probe separation is illustrated in Fig. 4.18. The curves A and B represent
the spatial power spectral density of the light intensities shown in Figs. 4.7a
and b, respectively.13 The profiles of these curves depend on the band-pass
filtering characteristics of Fig. 3.2b and the sizes of the flagellar filaments.
The value of the spatial Fourier frequency fx at the sharp peaks (indicated
by an arrow) corresponds to the reciprocal of the measured diameter of the
flagellar filaments. The values of the curves A and B are nearly constant in
12 Note that this corresponds to the discussion on the band-pass filtering charac-

teristics of Fig. 3.2b.
13 Similar curves are shown in Fig. 3.2b. However, the horizontal axis of Fig. 4.18

is the reciprocal of that in Fig. 3.2b. It represents what is known as the spatial
Fourier frequency, which corresponds to the value fx in the solution to Problem
1.1.
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the region fx < 106 m−1. However, in the region fx > 106 m−1 they decrease
with increasing fx, which means that the scattering efficiency of the smaller-
sized optical near field is lower. The visibility is thus inversely proportional to
the slope of these curves when fx > 106 m−1. The slope of curve B is greater
than that of curve A, because the sample–probe separation in Fig. 4.7b is
greater than that in Fig. 4.7a. The difference in the slopes of the curves in
Fig. 4.18 thus reveals that the visibility decreases with increasing sample–
probe separation.

4.3.2 Effect of Coating an Opaque Film

The third requirement in Sect. 3.2 can be satisfied by coating the foot of
the tapered part of the fiber probe with an opaque film. This is because the
opaque film coating of the sphere T can screen the transmission and emission
of light propagating into the fiber probe in the case of collection mode and
from the fiber probe in the case of illumination mode, respectively.14 Thus,
the contribution of the scattered light 1 in Fig. 2.1 can be reduced, resulting
in increased contrast, as discussed in Sect. 4.2.3.

Coating with an opaque film provides further advantages. For example,
the visibility can be increased by reducing the contribution of the tapered
part of the fiber probe. This can be explained by replacing fT(x, θ) of (4.21)
by κfT(x, θ), where κ(≤ 1) is the quantity representing the light screening
effect. Figures 4.19a and b show the contribution of the tapered part for the
uncoated case (κ = 1) and coated case (κ = −5 dB), respectively, where
GP = 1 and aP = aS. The peak of the curve A in Fig. 4.19b is lower than
the same in Fig. 4.19a, revealing that the contribution of the tapered part
is decreased by coating with an opaque film, i.e., the visibility is increased.
As a result of this decrease, the line width of curve C in Fig. 4.19b becomes
narrower than that in Fig. 4.19a.

Figure 4.20 demonstrates the decrease in visibility caused by increasing
the radius af of the foot, at which the sharpened fiber core protrudes from
the opaque film. The figure represents an image taken under the same exper-
imental conditions as Fig. 4.7a, except for the increase in af to 50 nm. In this
figure, the profiles of the flagellar filaments cannot be seen as clearly as in
Fig. 4.7a. This is due to the increased contribution of the optical near field
scattered by the tapered part.

14 The second requirement in Sect. 3.2 depends on the structure of the tapered part
of the fiber probe. Analyzing the transmission mode through the tapered optical
waveguide, one can estimate the transmission efficiency of the scattered light
from the probe tip to the foot of the fiber probe for the collection mode. The
same for the incident light from the foot of the fiber probe to the probe tip can
also be estimated for the illumination mode. This mode analysis can be carried
out using conventional waveguide theory.
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Fig. 4.19. Plots of fT(x, θ) and f(x), where GP = 1 and aP = aS. The value of
θ is fixed to satisfy the relation aT = 3aP. (a) Uncoated probe. (b) Probe coated
with an opaque film with κ = −5 dB. Curves A and B represent the contributions
from spheres T and P, respectively. Curve C is the sum of curves A and B

Fig. 4.20. Images of the flagellar filaments of salmonella bacteria on a glass plate,
observed by a near-field optical microscope in collection mode. Apart from the fact
that the foot radius af of the fiber probe has been increased to 50 nm, the other
experimental conditions are the same as in Fig. 4.7a. Image size 5 μm × 5 μm

4.3.3 Sensitivity

The efficiency of detection and generation of an optical near field can be
increased by increasing the value of gP, because Δα of (4.12) is proportional
to gP. The sensitivity of the measurement is thereby increased. Further, the
maximum value Cmm of the contrast increases with increasing gP, as discussed
in Sect. 4.2.3. Equation (4.9c) shows that the value of gP depends on the
dielectric constant εP of the probe material. Since εP is proportional to the
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square of the refractive index nP, gP is expressed as

gP = 4πε0
n2

P − 1
n2

P + 2
, (4.25)

where the relation εP/ε0 = n2
P has been used. For n2

P = −2, the equation
yields gP = −∞ and gP increases with increasing n2

P. Here, in order to
increase the absolute value of gP, we suggest two available methods:

• Using a material with large refractive index to make the probe. A silicon
is an advantageous probe material because its refractive index can be as
high as 3.4, much higher than that of a glass (≈ 1.5). An example of a
probe made of silicon is shown in Fig. 3.15.

• Using a metal when making the probe. It is advantageous to coat the
probe tip with a metallic film because the value of n2

P for a metal can be
negative, e.g., −2 (see Appendix B). An example of such a fiber probe is
shown in Fig. 3.1e. Its tip is coated with a metal, and so is its foot, in
order to fulfill the third requirement of Sect. 3.2.

Problems

Problem 4.1

Derive the electric field at the position r generated by a static electric dipole
moment p. Confirm that it is equal to the one obtained by substituting k = 0
into (A.28) of Appendix A, viz.,

E =
1

4πε0

[
k2(n × p) × n

(
1
r

)
+
[
3n(n · p) − p

](− ik
r2 +

1
r3

)
eikr

]
,

(4.26)
where n = r/|r| = (x/r, y/r, z/r).

Problem 4.2

Derive the electric potential at r generated by a static electric dipole moment
p.

Problem 4.3

Prove that the polarizability of a sphere with radius a and refractive index ε
is given by

α = 4πε0

(
ε − ε0

ε + 2ε0

)
a3 ,

where it is assumed that the sphere is installed in vacuum.
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Problem 4.4

Assuming that the sphere P of Fig. 4.4 is scanned over the sphere S at constant
elevation z, derive the maximum value of z to obtain a half width at half
maximum xh less than twice that of (4.15).



5 Electrodynamics
of Oscillating Electric Dipoles

Emission spectroscopy of nanometric material systems is an important ap-
plication of the optical near field (see Sect. 3.3.2), in which emission spectra
are measured by a probe brought close enough to the light-emitting object.
The present chapter aims to investigate the basic spectral properties of a sin-
gle atom or molecule as the nanometric material system. If a conducting or
dielectric probe approaches the nanomaterial, the emission properties of the
atom or molecule are substantially modified. This phenomenon is discussed
by treating the atom or molecule as an oscillating electric dipole moment.
After presenting the basic concepts in Sect. 5.1, Sect. 5.2 gives an analyti-
cal method in which the probe tip is approximated as a planar mirror. The
results of a quantum mechanical approach are described in Sect. 5.3.

5.1 Oscillating Electric Dipoles
in Free Space or in a Cavity

In Sects. 5.1 and 5.2, we employ the classical model of an atom [5.1] in which
an electron in the atom is considered as a classical particle with mass m and
charge −e. In order to discuss the emission from the atom, we assume that
the electron is oscillating with small displacement a = a0e−iω0t, where ω0 is
the angular oscillation frequency. In this notation, it is understood that the
physical displacement is the real part of the complex one. The corresponding
electric dipole moment is pe−iω0t with p = ea0.

5.1.1 Oscillating Electric Dipole in Free Space

When the oscillating electric dipole moment pe−iω0t (simply called the dipole
from now on) is located in free space at position x′, the resultant electric field
at position x is

E0(r, t) = E0(r)e−iω0t , (5.1)

where r = x − x′. The exact expression for E0(r) is given by (A.28) in
Appendix A, which is

M. Ohtsu et al., Optical Near Fields
© Springer-Verlag Berlin Heidelberg 2004
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E0(r) =
1

4πε0

[
k2(n × p) × n

(
1
r

)
+
[
3n(n · p) − p

](− ik
r2 +

1
r3

)]
eikr ,

(5.2)
where n = r/|r| is used. It is useful to write down the electric field for the
two special cases when p is parallel to r (n ‖ p):

E0(r) =
pk3

2πε0
n

[
− i

(kr)2
+

1
(kr)3

]
eikr , (5.3)

and when p is perpendicular to r (n ⊥ p):

E0(r) =
k3

4πε0
p

[
1
kr

+
i

(kr)2
− 1

(kr)3

]
eikr , (5.4)

with p = |p|.
The average power radiated from the dipole into free space is obtained

by integrating the flux of the far field over the surface of a large sphere, and
the result is given as (see (A.34) in Appendix A)

P0 =
p2k3ω0

12πε0
. (5.5)

The power dissipated by the motion of the charge amounts exactly to the
radiated power calculated in this equation and provides an explanation for
the mechanism transferring energy from the dipole to the electromagnetic
field. The corresponding radiative damping rate γ0 is P0/U0, where U0 =
m(a0ω0)2/2 is the oscillating energy of the dipole. It follows that

γ0 =
p2k3

6πε0mω0a2
0

. (5.6)

5.1.2 Oscillating Electric Dipole in a Cavity

In order to study the phenomena induced by bringing the probe towards the
atom, assume that metallic or dielectric boundaries exist close to the dipole.
These boundaries are considered as a cavity even if they do not fully enclose
the atom. The lowest-order perturbation approximation will be made for a
low-Q cavity, in which the dipole is not strongly modified by the presence of
the cavity. In that case, the cavity field Ec can be expressed as a sum of the
free-space field E0 in the absence of a cavity and the reflected field Er by the
charges and currents induced in the walls of the cavity, i.e., Ec = E0 +Er. It
is possible to define a linear reflected field because the latter is in turn linearly
induced by the dipole. This can be done by analogy with the free-space field
in (5.1):

Er(r, t) = Er(r)e−iω0t . (5.7)

The precise form of this reflected field depends on the specific space and the
material of the cavity. However, it should be noted that the sources are in
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the walls of the cavity, so the reflected field is free of divergences except at
the walls.

In this perturbative approach, the angular frequency ω0 and damping rate
γ0 found in the free space are employed as the zeroth-order approximation.
When the dipole is placed in the cavity, it is perturbed by a driving force
eEr(r = 0) due to the reflected field, so that the displacement a(= |a|)
satisfies the equation

d2a

dt2
+ γ0

da

dt
+ ω2

0a =
1

ma2
0
p · Er(r = 0)a

=
6πε0ω0γ0

p2k3 p · Er(r = 0)a , (5.8)

when we assume γ0 � ω0. The second line of this equation was rewritten
by using (5.6). Solving to first order in Er(r = 0) by assuming a solution of
the form a0e−iωt−(γ/2)t, the perturbed decay rate γ and angular oscillation
frequency ω are obtained as

γ = γ0 +
6πε0γ0

p2k3 Im
{
p · Er(r = 0)

}
, (5.9)

ω = ω0 − 3πε0γ0

p2k3 Re
{
p · Er(r = 0)

}
. (5.10)

The symbols Im{ } and Re{ } in these equations represent the imaginary and
real parts of the quantity inside the brackets, respectively.

Suppose that the cavity is initially far away, so that the dipole is regarded
as existing in free space. As it is moved towards the cavity, the angular
oscillation frequency shifts and, provided the change is adiabatically slow,
the action U/ω is conserved. Hence, the final energy is U = ωU0/ω0 or, using
(5.10) and U0 = m(a0ω0)2/2, we obtain

U = U0 − ma2
0ω0

2
3πε0γ0

p2k3 Re
{
p · Er(r = 0)

}
. (5.11)

This can be rewritten in the form

U − U0 = −1
4

Re
{
p · Er(r = 0)

}
, (5.12)

by using (5.6). It expresses the cycle-averaged interaction energy of the dipole
with the reflection of its own field from the cavity walls.

5.2 Oscillating Electric Dipoles
in Front of a Planar Mirror

In this section, we discuss the change in spectral properties induced when
the probe approaches the light-emitting material object. This change can be
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induced because the probe surface acts as a cavity surface for the reflected
field. For simplicity, the probe surface is assumed to be an infinite perfectly
conducting plane, which we shall call a mirror. The mirror image of the
dipole, given in Problem 5.1, is used as the source of the reflected field Er.
Equations (5.9)–(5.12) can be used for this approach.

Case I: Dipole Parallel to a Perfectly Conducting Mirror Surface

Figure 5.1a shows that the dipole pp is parallel to the mirror surface. In this
case, the field to the right of the mirror is most easily found by the method of
images, in which the conducting boundary is replaced by a fictitious dipole
−pp situated at distance z behind the mirror, where z is the separation
between the physical dipole and the mirror surface. The reflected field is just
the field radiated from this image dipole. Referring to (5.4), one can express
the reflected field at the site of the physical dipole as

Erp(r = 0) = − k3

4πε0
pp

(
1
φ

+
i

φ2 − 1
φ3

)
eiφ , (5.13a)

with φ = 2kz. The modified decay rate, angular frequency, and energy are
obtained by substituting this into (5.9)–(5.11):

γp = γ0 − 3
2
γ0

(
sin φ

φ
+

cos φ

φ2 − sin φ

φ3

)
, (5.13b)

ωp = ω0 +
3
4
γ0

(
cos φ

φ
− sin φ

φ2 − cos φ

φ3

)
, (5.13c)

Up = U0 +
p2k3

16πε0

(
cos φ

φ
− sin φ

φ2 − cos φ

φ3

)
, (5.13d)

where p in (5.13d) represents |pp|.

Case II: Dipole Normal to a Perfectly Conducting Mirror Surface

For the electric dipole ps normal to the mirror, as shown in Fig. 5.1b, the
image dipole is +ps. The reflected field is given by (5.3) and is expressed as

Ers(r) =
k3

2πε0
ps

(
− i

φ2 +
1
φ3

)
eiφ . (5.14a)

Thus, using (5.9)–(5.12),

γs = γ0 − 3γ0

(
cos φ

φ2 − sin φ

φ3

)
, (5.14b)

ωs = ω0 − 3
2
γ0

(
sin φ

φ2 +
cos φ

φ3

)
, (5.14c)

Us = U0 − p2k3

8πε0

(
sin φ

φ2 +
cos φ

φ3

)
, (5.14d)

where p in (5.14d) represents |ps|.
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z z

r r

Mirror Mirror

(a) (b)

-pp pp

ps ps

Fig. 5.1. Schematic explanation of the method of mirror images. (a) and (b)
correspond to the cases when the electric dipole moment is parallel and normal to
the mirror surface, respectively

Dependence of γ on Distance z

Figure 5.2 shows the radiation rates γp and γs (normalized to γ0) as a function
of distance z from the mirror (normalized to wavelength λ). These were drawn
by using (5.13b) and (5.14b), respectively. When the dipole is located at
many wavelengths away from the mirror, the reflected field is weak and the
radiation rate is therefore close to the free-space value. As the distance from
the mirror decreases, the cavity effect becomes appreciable and the radiation
rate is alternatively raised and lowered as the dipole and the reflected field
Er come in and out of phase with each other.

At short range, the radiation rate γp is suppressed while γs is twice the
free-space value. This is due to the interference between Im(Er) and Im(E0),
which is destructive in the first case and constructive in the second. From
another point of view, the parallel dipole pp and its mirror image −pp are
out-of-phase antennae. When their separation is much less than a wavelength,
the far field interferes destructively. The Poynting vector vanishes, and hence
no energy is radiated.

By contrast, the far field from the perpendicular dipole ps and its mirror
image +ps interfere constructively when their separation is zero to produce
four times the energy flux of the free dipole over the hemisphere in front of
the mirror, i.e., twice the radiated power.

Dependence of ω on Distance z

The shifts in the angular oscillation frequencies ωp and ωs (normalized to
ω0) shown in Fig. 5.3 behave in a qualitatively similar way at long range to
the shifts in the radiation rates. The angular frequencies are very strongly
modified at distances within λ/4 of the surface, where the electric dipole is
influenced by its image.
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Fig. 5.2. Radiation rate as a function of distance z from the mirror. Solid and
broken curves represent the values for γp and γs, respectively
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Fig. 5.3. Angular oscillation frequency as a function of distance z from the mirror.
Solid and broken curves represent the values for ωp and ωs, respectively

Dependence of U on Distance z

At short range, the propagation delay of the reflected field is much less than
an oscillation period (i.e., φ � 2π), so that the interaction between the
dipole and the mirror is just that of a dipole with its instantaneous image.
The energy shift is

Ui − U0 ∝ z−3 (i = p, s) , (5.15)
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as derived from (5.13) and (5.14), which causes a z−4 attractive force between
the dipole and the surface. This corresponds to a classical version of the well-
known van der Waals interaction between an atom and a surface.1

Discussions given above were for the case of a perfect conducting mirror
approaching the atom or molecule. The field reflected from a real mirror has
a phase shift that is not exactly 0 or π. Formally, it should be multiplied by a
reflection coefficient ζeiδ, where ζ < 1. This has the effect in (5.13) and (5.14)
of replacing cos φ and sin φ by ζ cos(φ + δ) and ζ sin(φ + δ), respectively.

5.3 Cavity Quantum Electrodynamics
of Oscillating Electric Dipoles

In order to discuss the topics of the previous sections in the context of quan-
tum theory, one has to include the excited and ground states of the electronic
energy of the atom or molecule into the theory. This is called cavity quantum
electrodynamics. The main results of this theory are reviewed in this section,
while the reader can refer to [5.1] for the details.

Figure 5.4 shows the calculated energy shift ΔEg of the sodium ground
state as a function of distance z from a plane mirror.2 The decrease in ΔEg
caused by decreasing z in this figure represents the decrease in the angular
frequency of light emission. This corresponds to the characteristics of the
curves in Fig. 5.3. At short range (z/λ � 1), the magnitude of ΔEg tends to
be proportional to z−3, as shown by the broken line in Fig. 5.4. It corresponds
to the instantaneous van der Waals interaction. The magnitude of the shift
exactly equals that of a classical dipole with the same mean square strength.
At long range, the magnitude of ΔEg tends to be proportional to z−4, as
shown by the dotted line in Fig. 5.4. This corresponds to the Casimir–Polder
potential. The behavior shown in Fig. 5.4 bears no resemblance at all to the
oscillatory shift of a classical dipole shown in Fig. 5.3. This lack of oscillation
emphasizes the fact that a ground-state atom is fundamentally different from
a classical dipole, in that its mean square dipole moment is nonzero and yet
it cannot radiate.

By contrast, when the atom is in an excited state, the magnitude of ΔEg
tends to be proportional to z−3 at short range, and one finds once again the
van der Waals shift. Excited states and ground states have the same behavior.
At long range, however, the broadband Casimir–Polder shift is completely
1 In the supplement to Sect. 3.3.1 it was pointed out that the magnitude of the

potential energy of the interaction between the two atoms was proportional to
z−6. In contrast to this, an atom is replaced by a mirror for the present discussion.
Since an infinite number of atoms are arranged on the mirror surface, the total
potential energy is the superposition of the energies of interaction with these
arranged atoms. Its magnitude is then proportional to z−3, as shown by (5.15).

2 This figure was produced by the authors by revising Fig. 10 of [5.1].
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Fig. 5.4. Calculated energy shift ΔEg of the sodium ground state as a function
of distance z from a plane mirror. The solid curve represents the calculated result
derived quantum mechanically. The broken and dotted lines are fitted to the solid
curves, which are proportional to z−3 (van der Waals shift) and z−4 (Casimir–
Polder shift), respectively

overwhelmed in excited states by the resonant shift. The variation of this
shift with distance is identical to that of the classical dipole.

To summarize, the energy shift of an atom in front of a mirror exhibits
asymptotically three physically distinct phenomena: the van der Waals shift,
the Casimir–Polder shift, and the resonant radiative shift. The first phe-
nomenon is found when the atom is close to the mirror and is a purely semi-
classical effect, being due to fluctuations in the instantaneous electric dipole
moment of the atom. The second phenomenon is found in ground-state atoms
far from the mirror and is purely quantum electrodynamic, being due to fluc-
tuations in the vacuum field. The third phenomenon occurs in excited atoms
far from the mirror and closely resembles the interaction of a classical dipole
with its reflected field.

Problems

Problem 5.1

Consider a planar dielectric with dielectric constant ε and a point charge
+q at position A(a, 0, 0) in vacuum, as shown in Fig. 5.5. In order to derive
the electric field in vacuum, the dielectric is replaced by a fictitious mirror
image −q′, which is fixed at position B(−a, 0, 0). This replacement can make
the derivation easier because a boundary condition on the planar dielectric
surface is removed. To derive the electric field in the dielectric, on the other
hand, the charge +q at position A is replaced by a fictitious charge +q′′.
Derive the values of −q′ and +q′′.
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Fig. 5.5. Planar dielectric with dielectric constant ε located in x ≤ 0. The charge
+q is at the position A(a, 0, 0) and its fictitious mirror image −q′ at the position
B(−a, 0, 0). The charge +q′′ at position A is also fictitious



6 Self-Consistent Method Using a Propagator

In Chap. 4, we derived the change in the polarizability of the sphere P, which
was induced by the electric field from an electric dipole in the sphere S.
In this derivation, the effect of multiple scattering was neglected, i.e., we ne-
glected the changes in the polarizability of the sphere S induced by the above-
mentioned change in the polarizability of the sphere P. The present chapter
discusses the effect of multiple scattering for the more precise investigation
of an optical near field. A propagator, i.e., the transfer function, is derived
in Sect. 6.1, in order to evaluate the electric field at an arbitrary position
generated by a light source at another position. The result of this deriva-
tion is applied to collection-mode near-field optical microscopy in Sect. 6.2.
It should be noted that these results can be applied, not only to the two
spheres S and P, but also to arbitrarily shaped material objects. However,
a long computation time is required to derive quantitative results in such
numerical analysis.

6.1 Propagator

This section studies the temporal and spatial characteristics of the electric
field E of light generated from the induced electric dipole moments in the
spheres S and P based on the formalism of classical electromagnetism. The
polarization P (i.e., the vectorial sum of the electric dipole moments) is used
for a more general discussion, instead of a single electric dipole moment.

6.1.1 Propagator in Free Space

By assuming a sinusoidally oscillating electric field E and the polarization P
(which are represented by e−iωt), (A.17) in Appendix A can be expressed as
to

∇ × ∇ × E(r) − k2E(r) = μ0ω
2P (r) , (6.1)

where we used the formula ∂2/∂t2 = −ω2.1 This equation represents the
temporal and spatial characteristics of E. On the other hand, P is expressed
1 The differential operator ∇ in this equation is defined in Sect.A.1.

M. Ohtsu et al., Optical Near Fields
© Springer-Verlag Berlin Heidelberg 2004
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by using the electric susceptibility χ(r, r′) of the material object under study,
which is given by

P (r) =
∫

χ(r, r′)δ(r − r′)E(r′)d3r′ . (6.2)

The integral in this equation is taken over the whole volume of the material
object, whilst the delta function δ(r, r′) is used to express the fact that P is
generated locally.

Equation (6.1) shows that E is generated by P , while (6.2) shows that
P is induced by E. Thus, one has to solve these equations in a consistent
manner [6.1, 6.2], using the so-called self-consistent method. Assuming a
homogeneous electric field in the material object for simplicity, the right-
hand side of (6.2) is proportional to

∫
χ(r′)d3r′ which can be replaced by the

polarizability αi. Since the polarizability for a sphere of radius ri is expressed
as

αi = 4πε0

(
ε − ε0

ε + 2ε0

)
r3
i , (6.3)

as given in Problem 4.3 of Chap. 4, (6.2) is transformed to P (r) = αiE(r),
with which (6.1) is solved simultaneously.

Supplement: Green Function

The Green function G(r, r′) has been popularly used in order to obtain a
solution φ(r) of the differential equation

(∇2 + k2)φ(r) = − 1
ε0

g(r) , (6.4)

when g(r) is a known function. It is defined by

G(r, r′) =
exp(ik|r − r′|)

4πε0|r − r′| , (6.5)

which satisfies the equation

(∇2 + k2)G(r, r′) = − 1
ε0

δ(r − r′) , (6.6)

where δ(r − r′) is the delta function. Noting that (6.6) leads to

(∇2 + k2)
∫

G(r, r′)g(r′)d3r′ = −
∫

1
ε0

δ(r − r′)g(r′)d3r′

= − 1
ε0

g(r) , (6.7)

it is found that the solution φ(r) of (6.4) is given by
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T(r, r')

E(r)

P(r')
Fig. 6.1. Schematic explanation of the prop-
agator T (r, r′)

φ(r) = φ0(r) +
∫

G(r, r′)g(r′)d3r′ , (6.8)

where the function φ0(r) is the solution of the homogeneous differential equa-
tion, i.e., (∇2 +k2)φ0(r) = 0. One can confirm that (6.8) is a solution of (6.4)
as follows. By applying the differential operator (∇2 + k2) to both sides of
(6.8), one obtains

(∇2 + k2)φ(r) = (∇2 + k2)φ0(r) + (∇2 + k2)
∫

G(r, r′)g(r′)d3r′ . (6.9)

The first term (∇2 + k2)φ0(r) in this equation is 0, and the second term is
equal to −(1/ε0)g(r) by referring to (6.7). Thus, φ(r) is a solution to (6.4).

In order to derive the solution E(r) of (6.1), the Green function

T (r, r′) ≡ (k2I + ∇∇)G(r, r′) (6.10)

is used. Here, G(r, r′) is defined by (6.5). The unit operator I acts by Ix = x
for any vector x. Using this function and (6.10), the solution of (6.1) is
expressed as

E(r) = E0(r) +
∫

T (r, r′)P (r′)d3r′ , (6.11)

where E0(r) is the solution of the homogeneous differential equation. The
Green function T (r, r′) is called the propagator because it describes the
relation between an electric field E at one position r and a field locally
generated from a unit polarization P at the other position r′, as shown in
Fig. 6.1. It is a member of the family of Green functions, but it is a tensor,
while G(r, r′) is a scalar function.

The propagator T (r, r′) satisfies the equation2

∇ × ∇ × T (r, r′) − k2T (r, r′) = μ0ω
2δ(r − r′) . (6.12)

Further, it can be expressed as3

T (r, r′) =
1

4πε0

[
k2(I − nn)

1
R

+ (3nn − I)
(

− ik
R2 +

1
R3

)]
eikR

≡ [T 1(r, r′) + T 2(r, r′) + T 3(r, r′)
]
eikR , (6.13)

where n is the unit vector R/|R| with R = r − r′ and R = |R|.
2 See Problem 6.1
3 See Problem 6.2
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The terms T 1(r, r′), T 2(r, r′), and T 3(r, r′) in this equation are propor-
tional to R−1, R−2, and R−3, respectively, and are given by

T 1(r, r′) =
1

4πε0
k2(I − nn)

1
R

, (6.14a)

T 2(r, r′) = − 1
4πε0

(3nn − I)
ik
R2 , (6.14b)

T 3(r, r′) =
1

4πε0
(3nn − I)

1
R3 . (6.14c)

The term T 3(r, r′) is a near-field component because its magnitude is larger
than those of T 2(r, r′) and T 1(r, r′) if kR � 1. Their ratio is (kR)−2 :
(kR)−1 : 1.

By using a Cartesian coordinate, T 3(r, r′) can also be expressed as

T (r, r′) = [Tαβ ] , (α, β = x, y, z) , (6.15)

with

Tαβ =
1

4πε0

[
k2(δαβ − nαnβ)

1
R

+ (3nαnβ − δαβ)
(

− ik
R2 +

1
R3

)]
eikR ,

(6.16)
where δαβ is the Kronecker delta, and we denote

n = (nx, ny, nz) =
(

x − x′

R
,
y − y′

R
,
z − z′

R

)
,

and R =
√

(x − x′)2 + (y − y′)2 + (z − z′)2.

6.1.2 Propagator in Close Proximity to a Planar Substrate

Now that the propagator in free space has been introduced, the polarization
will hereafter be replaced by a single electric dipole moment for simplicity.
With this replacement, the present section describes the case in which a pla-
nar dielectric substrate with dielectric constant ε is placed in close proximity
to an electric dipole moment at position r′ = (x′, y′, z′) (see Fig. 6.2). Fol-
lowing the solution to Problem 5.1, a mirror image dipole can be assumed
at position r′

M = (x′
M, y′

M, z′
M) = (x′, y′,−z′). The propagator T M(r, r′

M) for
this mirror image dipole is given as

T M(r, r′
M) =

(
ε − ε0

ε + ε0

)
T 3(r, r′

M)M , (6.17)

by using (6.13). Only the near-field component T 3(r, r′
M) is employed on the

right-hand side of this equation because the substrate surface is close to the
electric dipole moment. The term (ε − ε0)/(ε + ε0) represents the magnitude
of the mirror image dipole in the dielectric substrate, as given in (Q5.7) of
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Fig. 6.2. Schematic explanation of the propagator in close proximity to the planar
substrate with dielectric constant ε

the solution to Problem 5.1. The matrix M represents coordinate inversion,
which is expressed as

M =

⎛
⎝−1, 0, 0

0, −1, 0
0, 0, +1

⎞
⎠ . (6.18)

With the help of (6.15), (6.16) and (6.18), cartesian components of (6.17) are
written as

T M(r, r′) =
1

4πε0

ε − ε0

ε + ε0

1
R3 eikR

⎛
⎝−3n2

Mx + 1 −3nMxnMy 3nMxnMz

−3nMynMx −3n2
My + 1 3nMynMz

−3nMznMx −3nMznMy 3n2
Mz − 1

⎞
⎠ ,

(6.19)
where we used the following notation

nM = (nMx, nMy, nMz)

=
(

x − x′
M

R
,
y − y′

M

R
,
z − z′

M

R

)
=
(

x − x′

R
,
y − y′

R
,
z + z′

R

)
.

6.2 Application
to Collection-Mode Near-Field Optical Microscopy

In this section we study collection-mode near-field optical microscopy using
the self-consistent method. As explained schematically in Fig. 6.3, the fiber
probe is assumed to be an ensemble of N spheres (i = 1, . . . , N). On the other
hand, the sample is assumed to be a two dimensional array of M spheres
(i = N + 1, . . . , N +M) on the substrate. Further, these spheres are assumed
to have polarizability αi (i = 1, . . . , N + M) at their centers ri, where αi is
given by (6.3). Incident light impinges upon the rear surface of the substrate.
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Fig. 6.3. Calculation model for collection-mode near-field optical microscopy

6.2.1 Formulation

The electric field at position r in the fiber probe is expressed as

E(r) = E0(r) +
N+M∑
i=1

T t(r, r′
i)αiE(r′

i) , (6.20)

by summing over all the dipole–dipole interactions among the N +M spheres,
i.e., by summing the multiple scattering effects between spheres. Here, E0(r)
is the electric field of the incident light and T t(r, r′) is the propagator given
by

T t(r, r′
i) = T (r, r′

i) + T M(r, r′
iM) . (6.21)

Replacing E(r′
i) by E0(r′

i) on the right-hand side of (6.20), this equation is
approximated as4

E(r) = E0(r) +
N+M∑
i=1

T t(r, r′
i)αiE0(r′

i) . (6.22)

Several quantities can be derived from this equation [6.3]. For example,
the measurable intensity of the scattered light can be derived as

I(θ) =
∫ θ

0
R2dΩ|Ef(R + RP)|2 , (6.23)

where θ is the cone angle of the fiber probe. This is the intensity of the
light propagatedto position R in the fiber probe after the optical near field
is converted to scattered light at the position RP of the probe tip.5 It is thus
4 This is called Born approximation, in which the generated electric field E(r′

i) on
the right-hand side is replaced by E0(r′

i) for the incident light. This approxima-
tion is valid if the magnitude of the second term on the right-hand side of (6.20)
is assumed to be sufficiently smaller than the magnitude of the first term.
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expressed as

Ef(R + RP) = T 1(R + RP,RP)αPE(RP) , (6.24)

assuming that all the polarizabilities αi have the same value αP. In polar
coordinates, dΩ and R in (6.23) are given by

dΩ = sin θ′dθ′dφ and R = (R sin θ′ cos φ, R sin θ′ sin φ, R cos θ′) .

By using the explicit form of T 1(r, r′) in (6.14a), (6.24) is transformed to

Ef(R + RP) = − 1
4πε0

k2

R
αPs , (6.25)

where we denote

s =

⎛
⎝ sin2 θ′ cos2 φ − 1 sin2 θ′ sin φ cos φ sin θ′ cos θ′ cos φ

sin2 θ′ sin φ cos φ sin2 θ′ sin2 φ − 1 sin θ′ cos θ′ sin φ
sin θ′ cos θ′ cos φ sin θ′ cos θ′ sin φ cos2 θ′ − 1

⎞
⎠E(RP) .

(6.26)
Substituting (6.25) and (6.26) into (6.23), one obtains

I(θ) =
(

k2

4πε0

)2

|αP|2
∫ 2π

0
dφ

∫ θ

0
sin θ′dθ′|s|2

=
(

k2

4πε0

)2

|αP|2
{[|Ex(RP)|2 + |Ey(RP)|2](16 − 15 cos θ − cos 3θ)

+|Ez(RP)|2(16 − 18 cos θ + 2 cos 3θ)
}

, (6.27)

where Ex(RP), Ey(RP), and Ez(RP) are the components of E(RP) along
the x-, y-, and z-axes, respectively.

For further discussion, the scattered light intensity IE at the probe tip
is defined as IE = |E(RP)|2 with E(r) given by (6.22). Then, the relation
between IE and I(θ) of (6.27) is found to be

IE =
I(θ = 90◦)

16(k2/4πε0)2|αP|2 . (6.28)

The main advantages of the self-consistent method reviewed above are:

• It can be applied for an arbitrarily shaped three-dimensional probe and
sample. This is because (6.22) is valid for an ensemble of spheres.

• The effect of polarization, i.e., the vectorial feature of the electric field, can
be evaluated. This is because (6.11) introduced the electric field as a vector.

5 All scattered light is assumed to be converted to the guided modes of the optical
fiber.) The quantity Ef(R + RP) in this equation represents the electric field of
the light propagated to the far-field position R. [Note that this equation employs
T 1(r, r′) of (6.14) because k|R+RP| � 1. It is the far-field component of (6.13),
which has the largest value in the region kR � 1.]
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• A range of experimental results can be discussed. This is because (6.22)–
(6.28) treat the electric field in the fiber probe and the light intensity
scattered by the fiber probe, which are measurable quantities.

However, the disadvantage is that numerical calculations with a long compu-
tation time are required to derive numerical results when Born approximation
cannot be applied, and it is not easy to obtain physically intuitive concepts
and perspectives.

6.2.2 Example Applications

In order to demonstrate the simplest application of the self-consistent method,
the numbers N and M are fixed at unity, i.e., the sample and probe are as-
sumed to be single spheres.

Dependence of IE on the Polarization of the Incident Light

Figures 6.4a and b represent the values of IE for s-polarized and p-polarized
incident light, respectively. They are calculated from (6.28) in order to demon-
strate the second advantage listed above. The sample and probe are assumed
to be single spheres with radius 15 nm. These figures show that the values of
IE for s- and p-polarized incident light have minimum and maximum values
at the center, respectively, consistent with the characteristics explained in
Figs. 4.10 and 4.13. These features mean that the image is inverted in the
case of s-polarized incident light, while it is not for p-polarized light.
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Fig. 6.4. Calculated values of IE . The spherical sample and probe each have radius
15 nm. (a) The incident light is s-polarized. Solid and broken curves represent the
results when the probe scans along the x- and y-axes, respectively. (b) The incident
light is p-polarized
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The solid and broken curves in Fig. 6.4a are the results when the probe
scans along the x- and y-axes, respectively, as explained in Figs. 4.11a and
b. The broken curve has two peaks at the edges of the sample, i.e., the edge
effect depends on the direction of scanning, which explains the feature shown
in Figs. 4.12b and c.

Dependence of I(θ) on the Cone Angle θ of the Probe

Figures 6.5a–d represent the values of I(θ) in the case of p-polarized incident
light, calculated by using (6.23). Sample and probe sizes are the same as for
Fig. 6.4. When θ ≥ 45◦, the curves take the maximum value at the center,
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Fig. 6.5. Calculated values of I(θ) for p-polarized incident light. The spherical
sample and probe each have radius 15 nm. The values of the cone angle θ are 60◦

(a), 45◦ (b), 30◦ (c), and 15◦ (d), respectively
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corresponding to Fig. 6.4b. However, they have the minimum value at the
center and peaks appear at the two edges of the sample for θ < 45◦. This
corresponds to the polarization-dependent edge effect shown in Fig. 4.14. This
effect can be explained as follows. Since the scattered light generated by
the p-polarized light propagates along the x- and y-axes, detection efficiency
is low when the light is collected by a probe with small θ fixed above the
sample. Efficiency becomes higher when the probe is displaced from the top,
whereupon peaks appear at the two edges. However, efficiency becomes less
dependent on the position of the probe for larger θ, and the peaks disappear.

In the case of s-polarized incident light, features of the curves I(θ) are
similar to those of IE for s-polarized incident light, which have been shown in
Fig. 6.4a. Although the value of I(θ) depends on θ, the profile of the curve I(θ)
is almost independent of θ. This is because the electric force lines originating
from the sample lie along the horizontal direction (i.e., the y-axis) above the
sample, as shown in Fig. 4.10. The scattered light thus propagates along the
z-axis.

Problems

Problem 6.1

Derive (6.12).

Problem 6.2

Derive (6.13).

Problem 6.3

Equation (A.28) of Appendix A represents the electric field E(r) generated
by an electric dipole moment p. Derive this equation using the propagator
T (r, r′) of (6.10).

Problem 6.4

Derive (6.15).



7 Picture of Optical Near Field
Based on Electric Charges
Induced on the Surface and Polarized Currents

Although the self-consistent method of Chap. 6 can deal with a sample and
probe with arbitrary shapes, it is not straightforward to obtain physically in-
tuitive concepts and perspectives because it relies on numerical analyses with
long computation times to derive quantitative results. In order to overcome
this difficulty, the present chapter transforms the basic formulas of electro-
magnetism and presents a novel theoretical model by introducing a dual
vector potential and a scalar potential. This model is useful for a systematic
analysis of the three cases listed in Sect. 4.1. In order to demonstrate this ad-
vantage, Sect. 7.1 describes the case in which the near-field condition is met,
i.e., the sizes of the material systems under study and their separation are
sufficiently smaller than the wavelength of the incident light. Section 7.2 de-
scribes the case of the quasi-near-field condition, i.e., the near-field condition
is not met with sufficiently high accuracy.

7.1 Description under Near-Field Condition

This section describes Case 3 of Sect. 4.1, in which the near-field condition is
met [7.1, 7.2].

7.1.1 Derivation of Electric Field
Based on Static Electromagnetism

Consider detecting the electric field of light around sub-wavelength-sized
dielectric materials in vacuum under the near-field condition. Comparing
(A.15a) and (A.16a) of Appendix A, the polarization P (r, t) induced in the
dielectric materials to be used as a sample for near-field optical microscopy
can be expressed as

P (r, t) =
[
ε(r) − ε0

]
E(r, t) , (7.1)

where the dielectric constant ε(r) is

ε(r) =
{

ε1 inside the sample ,
ε0 outside the sample ,

(7.2)

M. Ohtsu et al., Optical Near Fields
© Springer-Verlag Berlin Heidelberg 2004
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and ε0 is the dielectric constant in vacuum. Since the time delay is negligible
under the near-field condition (kb < kr � 1) as pointed out in Sect. 4.1,
the light-scattering problem can be restricted to static electromagnetism. In
particular, since true charges do not exist in the dielectric materials, the
problem can be solved using Gauss’s law, which is expressed by (A.3) of
Appendix A. For the present discussion, the right-hand side of (A.3) is fixed
at 0 (i.e., ∇·E = 0), which means that the electric field is derived from
Maxwell’s equations neglecting the effect of time delay, i.e., neglecting the
factor e−iωt. Thus, it also means that the electric field is derived at t = 0.

Note that D = εE and substitute (A.16a) into ∇·D = 0 in order to apply
Gauss’s law to the dielectric. Then, the equation ∇·E(r) = (−1/ε0)∇·P (r)
is derived. Next, using (7.1) and the relation E = −∇φ (where φ is a scalar
potential), (A.3) is transformed to1

−Δφ(r) =
1
ε0

∇·P (r) = ∇·
[
ε(r) − ε0

ε0

]
∇φ(r)

= ∇
[
ε(r) − ε0

ε0

]
·∇φ(r) +

[
ε(r) − ε0

ε0

]
Δφ(r) . (7.3)

Rearranging this equation, one obtains

−Δφ(r) =
∇ε(r)
ε(r)

·∇φ(r) , (7.4)

which corresponds to Poisson’s equation as in (A.4) of Appendix A. Com-
paring with the right-hand side of (A.4), it is found that the right-hand side
of (7.4) corresponds to the electric charge density, i.e., the (surface density
of electric charges induced on the surface)/ε0, because the quantity ∇ε(r)
is nonzero only on the dielectric surface. This nonzero value shows that the
present electromagnetic system has a singularity on the surface, which corre-
sponds to the boundary condition associated with Maxwell’s equations. This
means that the concept of the boundary is still valid under the near-field
condition, while the time delay is neglected.

Noting that ∇φ(r) is equal to −E(r) and employing Born approximation
[i.e., E(r) ≈ E0(r), the electric field of the incident light], (7.4) can be
approximated as

−Δφ(r) ≈
(

ε1 − ε0

ε0

)
ns·E0(r)

∫
S

δ3(r − s)d2s , (7.5)

where ns is the unit vector normal to the surface and directed outward, δ is
the delta function, and s is the vector identifying the position on the dielectric
surface.2 It should be noted that the right-hand side of this equation includes
1 See Problem 7.1
2 Since the quantity {[∇ε(r)]/ε0}·∇φ(r) on the right-hand side of (7.4) is a prod-

uct of distributions, it is transformed in order to reproduce the boundary condi-
tion associated with Maxwell’s equations. The right-hand side of (7.5) represents
the result of this transformation.
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+- nsns

E0

Fig. 7.1. Schematic representation of the electric field E0 of the incident light,
the surface electric charges induced on a cubic piece of dielectric matter, and the
electric lines of force illustrating the direction of the electric flux, where ns is the
unit vector normal to the surface and directed outward

the surface integral, where the region of integration is the whole dielectric
surface.

Under this approximation, the electric field δE(r)(= −∇φ) of the scat-
tered light generated by electric charges induced on the surface can be de-
rived from Gauss’s law, i.e., its electric lines of force can be derived from
(7.5). Figure 7.1 shows the surface electric charges induced on the dielectric
cube surface and the electric lines of force representing the direction of the
electric flux, which were illustrated by the method given above. This figure
shows that the positive electric charges (identified by + in the figure) are
induced on the surface with the unit vector ns parallel to E0. The negative
electric charges (identified by − in the figure) are on its rear surface. The
electric lines of force are directed from positive to negative electric charges.
The normalized light intensity is defined as

I(r) ≡ |E0(r) + δE(r)|2 − |E0(r)|2
|E0(r)|2

=
2E0(r)·δE(r) + |δE(r)|2

|E0(r)|2 . (7.6)

Because |E0(r)| � |δE(r)|, the principal term in the numerator on the
second line of this equation is 2E0(r)·δE(r), which represents interference
between the incident and scattered light.3 It should be noted that the incident
and scattered light interferes under the near-field condition. The interfering
term 2E0(r)·δE(r) has a negative value if the directions of the electric fields

3 In Cases 1 and 2 of Sect. 4.1, on the other hand, the scattered light intensities
measured are expressed as I(r) = |δE(r)|2/|E0(r)|2. This is because the incident
light does not illuminate the photodetector placed in the far field.
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Fig. 7.2. Schematic explanation of how to derive and illustrate the spatial distribu-
tion of the light intensity I(r) on the dielectric surface. (a), (b), and (c) correspond
to steps (1), (2), and (3), respectively. (d) represents the result of numerical cal-
culation based on (7.5) [7.3]. The value of I is given on each contour in order to
compare the values in Fig. 1a of [7.4]. The relation between this value and I(r) of
(7.6) is I(r) = 0.25I − 0.17

E0(r) and δE(r) are opposite, and as a result, the intensity is lower than
that of the background light.

As an example of the application of this formulation, the spatial distri-
bution of the light intensity I(r) on the dielectric surface is derived and
illustrated by the following steps (refer to Fig. 7.2):

(1) The surface density of the surface electric charges is derived from the
quantity

[
(ε1 − ε0)/ε0

]
ns·E0(r) and illustrated (see Fig. 7.2a).

(2) The spatial distribution of the electric field δE(r) of the scattered light
is derived and illustrated (see Fig. 7.2b). Note that the electric lines of
force representing the electric field δE(r) are directed from the positive
to negative surface electric charges.

(3) The spatial distribution of the intensity I(r) is derived and illustrated (see
Fig. 7.2c). The positive or negative sign of the scalar product E0(r)·δE(r)
determines whether the intensity I(r) is higher or lower than that of the
background light.

Equation (7.5) is used for numerical analysis to illustrate this spatial dis-
tribution quantitatively. For reference, Fig. 7.2d shows the result of such
a quantitative illustration [7.3], which agrees with the result obtained by
the self-consistent method presented in Chap. 6 [7.4]. An advantage of the
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present method is that the computation time is much shorter than by the
self-consistent method.4

7.1.2 Signal Intensity Detected by a Fiber Probe

In this section we discuss collection-mode near-field optical microscopy.5 Then
(7.6) is replaced by

I⊥(r) ≡ |[E0(r) + δE(r)]⊥|2 − |E0⊥(r)|2
|E0(r)|2

=
2E0⊥(r)·δE⊥(r) + |δE⊥(r)|2

|E0(r)|2 , (7.7)

where the symbol ⊥ represents the direction normal to the fiber axis. We
now discuss the dependence of I⊥(r) on the polarization of the light incident
upon the dielectric sample.

S-Polarized Incident Light

The direction of the electric field E0(r) of the s-polarized incident light
is normal to the fiber axis, as shown in the upper part of Fig. 7.3a, i.e.,
E0⊥(r) = E0(r). Noting also that |E0⊥(r)| � |δE⊥(r)|, (7.7) can be
approximated by I⊥(r) ≈ 2E0(r)·δE⊥(r)/|E0(r)|2. The quantity I⊥(r)
reaches its minimum value above the dielectric sample, as shown in the lower
part of Fig. 7.3a, because δE⊥(r) is antiparallel to E0(r). As a result, the
cross-sectional profile of I⊥(r) has a negative value with minimum at the
center. This represents image inversion, which agrees with the characteristics
described in Sect. 4.2.4.
4 Agreement can be confirmed by comparing Fig. 7.2d with Fig. 1a of [7.4]. The

numerical values I on the curves in Fig. 7.2d are consistent with those in Fig. 1a
of [7.4]. The relation between I of Fig. 7.2d and I(r) of (7.6) is I(r) = 0.25I −
0.17. Thus the value of I(r) is positive in the case I ≥ 0.68, which means that
the light intensity is higher than the background and the image looks brighter.
Figures 1b–d of [7.4] show the results for a different case from Fig. 1a, which also
agree with the results obtained by the present method [7.3]. The computation
time required to illustrate the curves in Fig. 7.2d was only about 1 second on
a personal computer (student version). In contrast to this, [7.4] explains that
the computation time for Fig. 1a was as long as 5.5 min using the IBM RISC
system/6000 model work station.

5 We assume that the polarization of the light guided through the fiber is normal
to the fiber axis, i.e., that the electric field of the guided light wave is transverse
to the fiber axis, so that we have what is called a TE wave.
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Fig. 7.3. Schematic explanation of the dependence of I⊥(r) on the polarization of
the incident light. (a) and (b) show s- and p-polarized incident light, respectively

P -Polarized Incident Light

The direction of the electric field E0(r) of the p-polarized incident light
is parallel to the fiber axis, as shown in the upper part of Fig. 7.3b, i.e.,
E0⊥(r) = 0 and thus (7.7) is I⊥(r) = |δE⊥(r)|2/|E0(r)|2. It is found from
this figure that the value of δE⊥(r) is also 0 on the top of the dielectric
sample. On the other hand, δE(r) is horizontal at the edge of the dielectric
sample, at which the value of |δE⊥(r)| takes the maximum. As a result, the
cross-sectional profile of I⊥(r) has peaks at the two edges, as shown in the
lower part of Fig. 7.3b. It represents the polarization-dependent edge effect,
which agrees with the characteristics demonstrated by Figs. 4.13 and 4.14.

7.2 Systematic Description
of Optical Near and Far Fields

This section presents a physically intuitive concept for describing the quasi-
near-field condition (kb ≤ kr ≤ 1), which is the transition from near-field
(kb < kr � 1) to far-field (1 � kb � kr) conditions. In other words, the
quasi-near-field condition describes the case of relatively poor conditions for
near-field optics, in which the sizes of the sample and probe are not sufficiently
small. The effect of the time delay cannot be neglected under this condition.
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7.2.1 Dual Vector Potential

Conventional optics defines the vector potential A and the scalar potential
φ by (A.7) and (A.18) of Appendix A, respectively. They have been widely
used to solve electromagnetic problems for matter with a magnetic response
(M �= 0) and without electric response (P = 0).6 For such matter, (A.19)
is valid with A(r, t) = 0 and φ(r, t) = 0. Further, the magnetic current
∇×M(r, t) on the right-hand side of (A.19) acts as the source for the vector
potential A(r, t).

The problem to be solved in this section concerns matter which is opposite
to that described above, i.e., matter with an electric response (P �= 0) and
without magnetic response (M = 0). Noting the duality of Maxwell’s equa-
tions [(A.12)–(A.16) of Appendix A], it is convenient to introduce a vector
potential C and a scalar potential χ for the system composed of dielectrics
and light. They are defined by

D = ∇ × C , (7.8a)

H =
∂C

∂t
+ ∇χ . (7.8b)

Replacing A, φ, and M in (A.19) by C, χ, and P , respectively, one obtains
a wave function

∇ × ∇ × C(r, t) + ε0μ0
∂2C(r, t)

∂t2
= ∇ × P (r, t) , (7.9)

where

∇·C(r, t) = 0 , (7.10a)
χ(r, t) = 0 . (7.10b)

Equation (7.9) shows that the source of the vector potential C(r, t) is the
quantity ∇ × P (r, t). This is called the polarized current and corresponds to
the magnetic current ∇×M(r, t) of the right-hand side of (A.19). Thus, after
substituting the polarization P (r, t) of (7.1) into (7.9), (7.8) is substituted
into the relation P = {[ε(r) − ε0]/ε(r)}D, which is derived from (7.1) and
(A.15a). As a result, the right-hand side of (7.9) is transformed to7

∇ × P = ∇ ×
{[

1 − ε0

ε(r)

]
∇ × C

}

=
[
1 − ε0

ε(r)

]
∇ × ∇ × C + ∇

[
1 − ε0

ε(r)

]
× ∇ × C

=
[
1 − ε0

ε(r)

]
∇ × ∇ × C +

[
ε0∇ε(r)
ε2(r)

]
× ∇ × C . (7.11)

6 It is not easy to find this kind of matter, except for superconductors.
7 See Problem 7.2
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Further, using ∂/∂t = −iω and taking the value at t = 0 as in the previous
section, (7.9) is transformed to

∇ × ∇ × C(r) − k2C(r) (7.12)

=
[
1 − ε0

ε(r)

]
∇ × ∇ × C(r) +

[
ε0∇ε(r)
ε2(r)

]
× ∇ × C(r) .

After rearranging several terms, one obtains

∇ × ∇ × C(r) − k2C(r) = −V s(r) − V v(r) , (7.13)

where

V s(r) = −∇ε(r)
ε(r)

× ∇ × C(r) , (7.14a)

V v(r) = −
[
ε(r)
ε0

− 1
]

k2C(r) . (7.14b)

Equation (7.13) shows that the sources of the electromagnetic field are V s(r)
and V v(r), whose physical identities are:

V s(r): surface polarized current, whose value is determined in such a way
that the boundary condition associated with Maxwell’s equation is satis-
fied.

V v(r): volume polarized current, which represents the effect of time delay
because (7.14) depends on the wave number k.8

Equations (7.9)–(7.14) are valid for conditions ranging from the near field
(kb < kr � 1) to the far field (1 � kb � kr), and can thus be applied to
general systems composed of dielectrics and light.

7.2.2 Dual Ampere Law

In this section we investigate near-field (kb < kr � 1) and quasi-near-field
(kb ≤ kr ≤ 1) conditions, which correspond to the cases of kb � 1 and
kb ≤ 1, respectively, for the size of the dielectric matter.

Near-Field Condition

By applying Born approximation, i.e., by substituting C0 for the incident
light into k2C(r), V s(r), and V v(r), equation (7.13) reduces to

∇ × D(r) = −V s0(r) − V v0(r) + k2C0(r) , (7.15)

8 The effect of time delay is also contained in the second term −k2C(r) on the
left-hand side of (7.13). It represents the effect of diffraction.
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where (7.8) was used to derive the left-hand side. The suffix 0 on Vs0(r) and
V v0(r) indicates that C is replaced by C0 in (7.14a) and (7.14b), respectively.
Because kb � 1, the quantities V v0(r) and k2C0(r) can be neglected and
removed from (7.15). Representing D(r) as D0(r) + δD(r) and substituting
the relation ∇ × D0(r) = k2C0(r) into (7.15), one obtains

∇ × δD(r) = −V s0(r) . (7.16)

This equation means that the surface polarized current is the source of the
electric flux density, and hence represents the dual Ampere law.9

Since the right-hand side of (7.16) contains a negative sign, the directions
of V s0(r) and δD(r) correspond to those of the thumb and four fingers of
the left hand, respectively. Noting that ε0 × (surface polarized current) ≈
(ε1/ε0 − 1)ns × D0, V s0(r) can be approximated as

V s0(r) ≈ −
[∇ε(r)

ε(r)

]
× ∇ × C0(r)

≈
(

ε1

ε0
− 1
)

ns × D0

∫
S

δ3(r − s)d2s , (7.17)

where a transformation similar to the one from (7.4) to (7.5) was used. As
an example, Fig. 7.4a shows the relation between ns, D0, and the surface
polarized current for the dielectric cube at t = 0. The surface polarized
current is represented by bold arrows normal to ns and D0 and flows on the
surface of the cube. As a result of this flow, δD(r) is generated along the
direction given by (7.16), which is shown by solid curves in this figure. That
is, the thumb of the left hand represents the direction of δD(r), while the
other four fingers represent the polarized current as shown in Fig. 7.4b. The
direction of δD(r) is the same as the direction of δE(r) in Fig. 7.1, which
gives the same spatial distribution for the normalized light intensity I(r) as
was obtained by the method of Sect. 7.1.

As an example of numerical analysis, Fig. 7.4c shows the calculated results
for the dielectric cube with size kb = 0.01 and dielectric constant ε1/ε0 =
2.25. This figure illustrates the spatial distribution of I(r) at height 0.2b
above the dielectric surface [7.2], which agrees with the result calculated by
the method of Sect. 7.1.

The profile of the spatial distribution of I(r) is independent of kb, as
long as the condition kb � 1 is met and time delay effects can be neglected.
This means that the phenomenon observed under near-field conditions is
9 Equation (A.13) for the conventional Ampere law represents the magnetic field

generated by an electric current. The generated magnetic field is directed along
the axis of rotation of the clockwise screw if the electric current is along the
driving direction of the screw. Thus the directions of the electric current and
magnetic field correspond to those of the thumb and four fingers of the right
hand, respectively.
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Fig. 7.4. Polarized current, electrical flux density, and spatial distribution of I(r)
on the surface of a dielectric cube. (a) Bold arrows and solid curves represent the
polarized current and the electric flux density δD(r), respectively. (b) Photograph
of a left hand. The thumb and other four fingers represent the directions of δD(r)
and polarized current, respectively. (c) Calculated results of the spatial distribution
of I(r) at height 0.2b from the surface of the dielectric cube, where kb = 0.01 and
ε1/ε0 = 2.25. The square at the center represents the position of the cube. Solid
and broken curves represent I(r) > 0 and I(r) < 0, respectively. The thicker curve
represents the larger absolute value of I(r)

independent of the wavelength of the incident light and thus free from the
diffraction limit.

Quasi-Near-Field Condition

Figure 7.5a shows the spatial distribution of I(r) calculated without neglect-
ing the quantities V v0(r) and k2C0(r) in (7.15) [7.2], where kb = 1.00. Other
numerical values used are the same as those for Fig. 7.4c. This figure shows
that I(r) < 0 in front of the cube, i.e., the light intensity is lower than the
incident light intensity. This means that a kind of shadow appears in front
of the cube due to the effect of time delay.

In Fig. 7.5b, the dielectric cube is replaced by a slab (thickness b, dielec-
tric constant ε1) placed on the xy-plane in order to obtain a more intuitive
understanding [7.2]. The direction of k (i.e., the direction of the incident light
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Fig. 7.5. Spatial distribution of I(r) on the surface of the dielectric cube and
its schematic explanation. (a) Calculated results for I(r), where kb = 1.00. Other
numerical values are the same as those of Fig. 7.4c. The square at the center rep-
resents the position of the cube. Solid and broken curves represent the contours
with I(r) > 0 and I(r) < 0, respectively. The thicker curve represents the larger
absolute value of I(r). (b) Calculated results for the z-axis dependence of the in-
tensity I(z) for a dielectric slab (thickness b, dielectric constant ε1). The slab is
placed on the xy-plane and the wave vector k of the incident light is parallel to
the z-axis. The surroundings are assumed to be a vacuum with dielectric constant
ε0 (< ε1). The direction of the electric field E0 of the incident light is assumed
to be parallel to the xy-plane. The shaded band represents the position of the slab
(i.e., −b/2 ≤ z ≤ b/2), where b = 1.0 and ε1 = 2.25ε0. Curves A, B, and C are the
results for kb = 0.01, 0.10, and 1.00, respectively

propagation) is parallel to the z-axis. The surroundings are assumed to be a
vacuum with dielectric constant ε0 (< ε1). The direction of the electric field
E0(r) of the incident light is assumed to be parallel to the xy-plane. Noting
that the value of the surface polarized current V s(r) of (7.14) is 0 in this
case, while those of the volume polarized current V v(r) of (7.14) and the
effect of time delay k2C(r) are nonzero, equation (7.14) transforms to

∂2s(z)
∂z2 = −ε(z)

ε0
k2s(z) , (7.18)

where the quantity s(z) is defined by C(r) = ∇ × ys(z), y is a unit vector
along the y-axis, and

ε(z) =
{

ε1 −b/2 ≤ z ≤ b/2 (inside the slab) ,
ε0 z < −b/2, b/2 < z (outside the slab) .

(7.19)

It is straightforward to solve this equation by noting the continuity at the
slab surface (z = ±b/2). Since s(z) is proportional to the electric field ampli-
tude, the normalized light intensity I(z) can be derived if the electric field is
replaced by s(z).
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Figure 7.5b shows the calculation results for b = 1.0 and ε1/ε0 = 2.25.
Curves A, B, and C represent the value of I(z) for kb = 0.01, 0.10, and 1.00,
respectively. Although the value of I(z) is independent of z if the value of kb
is sufficiently small, it becomes smaller in front of the slab by increasing kb.
This is because the incident light is reflected on the front surface of the slab
and thus the amplitude of the electric field is decreased around the surface.
This is analogous to a conventional optical phenomenon, i.e., a decrease in
light intensity due to destructive interference between the incident light and
the phase-inverted reflected light in front of the material surface.

Although it is not easy to evaluate the effect of the time delay in the case
of a dielectric cube, the spatial distribution I(r) of Fig. 7.5a also contains the
effect of reflection, as demonstrated in Fig. 7.5b. This means that the light
intensity is lower in front of the cube under the quasi-near-field condition,
because the surface effect of (7.16) and the effect of time delay exist due to
reflection. As a result, the shadow appears.

To summarize the above discussions, the characteristics of the spatial
distribution of light intensity can be understood as a superposition of the
boundary effect governed by Ampere’s law and the effect of time delay due
to reflection. By increasing the material size from the near field to the quasi-
near-field condition, the front surface of the matter becomes darker. By fur-
ther increasing the material size, the quasi-near-field condition can no longer
be met. In this case, the shadow appears behind the matter, which is a con-
ventional optical phenomenon.

Problems

Problem 7.1

Transform the first line of (7.3) and derive the second line.

Problem 7.2

Transform the first line of (7.11) and derive the second line.



8 Picture of Optical Near Field
as a Virtual Cloud
Around a Nanometric System
Surrounded by a Macroscopic System

Previous chapters used classical electromagnetism to describe a nanometric
system composed of a sample, a probe, and an optical near field. This chap-
ter presents a quantum mechanical model based on a projection operator
method to describe the interaction between nanometric material systems via
an optical near field surrounded by a macroscopic system. This model can
also be used to describe the interaction between an atom and a probe, and its
application to atom photonics is discussed in Chap. 9. Appendices C and D
provide supplementary explanations of the concepts to be used in this chap-
ter. An outstanding advantage of this model is its ability to systematically
describe the light–matter interactions in nanometric material and atomic sys-
tems. This is because the model is based on concepts developed in the fields
of elementary particle physics, statistical mechanics, quantum chemistry, and
quantum optics. Furthermore, the model provides an intuitive physical pic-
ture in which the localized optical near field can be described in the same
way as an electron cloud localized around an atomic nucleus.

8.1 Basic Concept

In the case of a collection-mode near-field optical microscope, there is a sub-
strate under a sample and incident light from the light source, as shown in
Fig. 8.1a. Further, behind the probe tip, there is a tapered part, the main
body of the fiber, and a photodetector. Figure 8.1b shows that the illumi-
nation mode has incident light, the main body of the fiber, and a tapered
part behind the probe tip. Behind the sample, there is a substrate and a
photodetector. In both modes, there is a macroscopic system (composed of
incident light, substrate, the main body of the fiber, a tapered part, and a
photodetector) around the nanometric system (composed of sample, probe
tip, and optical near field). Therefore, it should be noted that the nanometric
tip of the probe (hereafter referred to as the probe for simplicity) and the
sample interact electromagnetically via an optical near field surrounded by
the macroscopic system.

The nanometric system is called subsystem (N), while the surrounding
macroscopic system is called subsystem (M) (the first letters of ‘nanometric’

M. Ohtsu et al., Optical Near Fields
© Springer-Verlag Berlin Heidelberg 2004
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Fig. 8.1. Schematic configuration of subsystems (N) and (M) in a near-field optical
microscope. (a) Collection mode. (b) Illumination mode

and ‘macroscopic’, respectively). All the effects and influences from subsys-
tem (M) to subsystem (N) are described by modifying the magnitude of the
electromagnetic interaction between the sample and probe. The idea is to
avoid the complexity of describing all the behavior of subsystems (N) and
(M) rigorously. Since we are interested only in the behavior of subsystem
(N), it does not make sense to describe all the behavior.

In order to describe the quantum mechanical state of matter in subsystems
(N) and (M), energy eigenstates of the sample and probe in the subsystem
(N) are expressed as |s〉 and |p〉, respectively. Further, suffices g and e are
added to express the ground and excited states, respectively, i.e., |sg〉, |se〉,
|pg〉, and |pe〉.

The tapered part, the main body of the fiber, and the substrate in the
subsystem (M) are made of crystals, amorphous materials, and so on, in
which there is incident and scattered light. Therefore, it is most reasonable
to express the subsystem (M) as an exciton–polariton, which is a mixed state
of material excitation and electromagnetic fields (see Appendix C for more
detailed explanation). It can be represented by the state |m(M); k, Ω(k)〉,
where k and Ω(k) are the wave vector and angular frequency of the exciton–
polariton, respectively. The integer m(M) represents the number of quanta
of the exciton–polariton. [The wave vector k and angular frequency Ω(k) of
the exciton–polariton are proportional to the eigenvalues of its momentum
h̄k and energy h̄Ω(k), respectively.]
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Since the sample or the probe is excited by electromagnetic interaction,
the state of the subsystem (N) can be expressed as |se〉|pg〉 or |sg〉|pe〉. By com-
bining the states of the subsystem (N) and the vacuum state |0(M); k, Ω(k)〉
of the subsystem (M), we define a P -space = {|φ1〉, |φ2〉}, where |φ1〉 =
|se〉|pg〉|0(M); k, Ω(k)〉 and |φ2〉 = |sg〉|pe〉|0(M); k, Ω(k)〉. The supplementary
space is called a Q-space, which is the space composed of other states. From
now onwards, an arbitrary state |Ψ〉 of the total system (i.e., the P -space plus
the Q-space) will be described in the P -space [8.1]. This method of descrip-
tion is called a projection operator method. (See Sect. D.4.1 for the definition
and mathematical treatment of the projection operator.)

The reason why |φ1〉 and |φ2〉 contain the vacuum state |0(M); k, Ω(k)〉 is
to introduce the effect of the subsystem (M) by eliminating its degree of free-
dom. As a result, subsystem (N) can be expressed as if it were independent
of subsystem (M). This treatment is useful for deriving a consistent expres-
sion, in which subsystem (N) is regarded as being isolated from subsystem
(M) while the functional form and the magnitude of effective interactions
between the elements in subsystem (N) are affected by subsystem (M). (See
also Sect. D.4.2 for the meaning of ‘effective’.) By this treatment, one avoids
having to consider all interactions between elements of subsystems (N) and
(M).

8.2 Effective Interaction Between Sample and Probe

The quantum mechanical Hamiltonian for the interaction between a sam-
ple or a probe and electromagnetic fields is expressed as (see Sect. D.1 of
Appendix D for derivation)

V̂ = − 1
ε0

[
p̂S·D̂(rS) + p̂P·D̂(rP)

]
, (8.1)

where ε0 is the dielectric constant of vacuum. The subscript S in the first
term stands for the sample, and p̂S is the quantum-mechanical operator rep-
resenting an electric dipole induced in the sample, r̂S a vector representing
the position of the sample, and D̂(rS) the quantum mechanical operator for
the electric flux density, respectively. The subscript P in the second term
stands for the probe.

The operator D̂(rS) is represented in terms of the annihilation and cre-
ation operators of the incident light, âλ(k) and â†

λ(k), respectively. Then we
have (see Sect. D.2 for details of the derivation)

D̂(r) =
∑
k

2∑
λ=1

i
(

ε0h̄ωk

2V

)1/2

eλ(k)
[
âλ(k)eik·r − â†

λ(k)e−ik·r
]

, (8.2)

where the two polarization states of the incident light are identified by the
subscript λ = 1, 2. In these relations, k is the wave vector of the photon,
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ωk the angular frequency of the photon, V the volume of the space in which
the electromagnetic fields exist, and eλ(k) a unit vector representing the
direction of polarization of the photon, respectively.

The incident light is affected by the structures and shapes of the mate-
rials in subsystem (M) because it transmits through subsystem (M) before
it reaches the sample and probe of subsystem (N). Thus, the state of the
incident light should be expressed as an exciton–polariton, which means that
the operators âλ(k) and â†

λ(k) in (8.2) should be replaced by the annihilation
and creation operators, ξ̂λ(k) and ξ̂†

λ(k), of the exciton–polariton. After this
replacement, substitution of (8.2) into (8.1) gives (see Sect. D.3 for details of
the derivation)

V̂ = −i
(

h̄

2ε0V

)1/2 P∑
α=S

[
B̂(rα) + B̂†(rα)

]∑
k

[
Kα(k)ξ̂(k) − K∗

α(k)ξ̂†(k)
]

,

(8.3)
where B̂(rα) and B̂†(rα) denote the annihilation and creation operators for
the electronic excitation in the sample or probe (α = S, P), and Kα(k) des-
ignates the coefficient representing the coupling strength between subsystem
(N) and (M) while K∗

α(k) represents the complex conjugate of Kα(k). The
coefficient Kα(k) is given by

Kα(k) =
2∑

λ=1

{
pα·eλ(k)

}
f(k)eik·rα

=
3∑

j=1

2∑
λ=1

pαj

{
ej·eλ(k)

}
f(k)eik·rα , (8.4a)

and

f(k) =
ck√
Ω(k)

√
Ω2(k) − Ω2

2Ω2(k) − (ck)2 − Ω2 , (8.4b)

where the electric dipole moment induced in the sample or probe is pα, and
its x-, y-, and z-component is pαj (j = x, y, z). Note that the electric dipole
operator p̂α = pα[B̂(rα) + B̂†(rα)] was substituted in (8.1). The absolute
value of the wave vector k and the unit vector along the x-, y-, and z-axis are
denoted as k and ej , respectively. In (8.4b), c is the speed of light in vacuum,
Ω(k) is the angular frequency proportional to the exciton-polariton energy
h̄Ω(k), and Ω is the angular frequency proportional to the exciton energy
h̄Ω in the material of the subsystem (M).

An effective interaction operator V̂eff in the P -space is derived by includ-
ing the contribution of the subsystem (M). (The meaning of ‘effective’ is
explained in Sect. D.4.2.) It is expressed as

V̂eff = (P Ĵ†ĴP )−1/2(P̂ Ĵ†V̂ ĴP )(P ĴĴP )−1/2, (8.5)
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where the projection operator method was applied to V̂ of (8.3)1. The projec-
tion operator P in this equation is given by (D.35) in Appendix D, in terms
of |φ1〉 and |φ2〉 as

P = |φ1〉〈φ1| + |φ2〉〈φ2| . (8.6)

The operator Ĵ is given by (D.50) in Appendix D. Its approximate expression
is given by (D.78).

In order to derive an explicit functional form of the effective interaction
between the sample and probe, two states |φ1〉 = |se〉|pg〉|0(M); k, Ω(k)〉 and
|φ2〉 = |sg〉|pe〉|0(M); k, Ω(k)〉 of Sect. 8.1 are employed as the initial and final
states of the P -space before and after the interaction, respectively. Then, the
magnitude of the effective interaction is evaluated from (8.5) as

Veff(ps) = 〈φ2|V̂eff |φ1〉 . (8.7)

Approximating Ĵ in (8.5) by Ĵ (1) = (E0
P − E0

Q)−1QV̂ P (see Sect. D.5 for the
details), we can rewrite (8.7) in the approximate form as

Veff(ps) = 〈φ2|[PV̂ Q(E0
P − E0

Q)−1V̂ P + PV̂ (E0
P − E0

Q)−1QV̂ P ]|φ1〉
= 2〈φ2|PV̂ Q(E0

P − E0
Q)−1V̂ P |φ1〉

= 2
∑
m

〈φ2|PV̂ Q|m〉〈m|Q(E0
P − E0

Q)−1V̂ P |φ1〉 , (8.8)

where the operator Q is defined by 1−P . The quantities E0
P and E0

Q represent
the eigenvalues of the unperturbed Hamiltonian Ĥ0 in the P - and Q-spaces,
respectively. The matrix element 〈m|Q(E0

P − E0
Q)−1V̂ P |φ1〉 in (8.8) repre-

sents the virtual transition from the initial state |φ1〉 in the P -space to the
intermediate state |m〉 in the Q-space, while the matrix element 〈φ2|PV̂ Q|m〉
represents the successive virtual transition from the intermediate state |m〉
to the final state |φ2〉 in the P -space. To calculate these matrix elements,
it should be noted that the operator V̂ of (8.3) contains a term composed
of B̂(rα) and B̂†(rα), which are operated to the subsystem (N). Further,
it contains a term composed of ξ̂λ(k) and ξ̂†

λ(k), which are operated to the
subsystem (M). Then, one can transform (8.8) to2

Veff(ps) = − 1
(2π)3ε0

∫
d3k

[
KP(k)K∗

S(k)
Ω(k) − Ω0(s)

+
KS(k)K∗

P(k)
Ω(k) + Ω0(p)

]
, (8.9)

by noting also that Veff(ps) takes a nonzero value only when the intermedi-
ate state |m〉 in the Q-space is the state |1(M); k, Ω(k)〉, in which the single
exciton–polariton quantum with momentum h̄k exists in the subsystem (M).

The following three points should be noted for further evaluation of (8.9):

1 See Sect.D.4 for the derivation details
2 See Sect.D.6 for details
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(a) Eigenvalues of the excited energy in the probe and sample are represented
by Ω0(p) and Ω0(s), respectively, which are assumed to be the lowest
eigenvalues of the electron energy in the infinitely deep potential wells
with widths aP and aS, respectively. These eigenvalues are expressed as

h̄Ω0(p) =
3h̄2

2meP

(
π

aP

)2

, (8.10a)

h̄Ω0(s) =
3h̄2

2meS

(
π

aS

)2

, (8.10b)

respectively, where meP and meS are the effective masses of an electron
in the sample and probe, respectively.

(b) By approximating a parabolic dispersion relation [the relation between k
and Ω(k)] for the exciton–polariton, the energy of the exciton–polariton
is expressed as

h̄Ω(k) = h̄Ω +
(h̄k)2

2mP
, (8.11)

where mP represents the effective mass of the exciton–polariton. [See Ap-
pendix C for the derivation of (8.11). The effective mass approximation
was employed, i.e., the upper branch of the curve in Fig. C.1, which cor-
responds to the positive term of (C.13), was approximated as a parabolic
function of k.]

(c) Since f(k) of (8.4b) can be approximated by a constant, all the quantities
in (8.4a) are also treated as constant except for exp(ik · rα).

Following the three points (a)–(c) presented above, the integral of (8.9) can
be carried out analytically, and the result is (see Sect. D.7)

Veff(ps) ∝ exp(−πμPr/aP)
r

+
exp(iπμSr/aS)

r
, (8.12)

where

r = |rP − rS| , μP =
√

3mP

meP
, μS =

√
3mP

meS
. (8.13)

Here the position vectors rP and rS represent arbitrary points in a probe and
a sample, respectively. The first term of (8.12) is represented by a Yukawa
function with the form exp(−κx)/x, which decays with increasing x, as shown
in Fig. 8.2. The decay length can be defined as the position x = 1/κ at which
exp(−κx) takes the value e−1. The decay length of the first term of (8.12)
is aP/πμP, which is proportional to the probe size aP. Equation (8.12) thus
shows that there are optical electromagnetic fields around the probe whose
extent of spatial distribution is equivalent to the probe size. This is none
other than the optical near field, which is localized around the probe like an
electron cloud around an atomic nucleus. (Although the optical near field was
compared to a thin optical film in Chap. 2, the present discussion shows that
it is more appropriate to compare it to an electron cloud around the atomic
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Fig. 8.2. Profiles of a Yukawa function e−κx/x (curve A) and an exponential
function e−κx (curve B), where κ = 1

nucleus. However, it should be noted that the real photon does not form a
localized optical field, while the real electron forms a cloud localized around
the atomic nucleus.)

Further, this term corresponds to the process in which an exciton–
polariton with energy eigenvalue h̄Ω(k) emitted from the probe in the ground
state is absorbed into the sample in the excited state (see Fig. 8.3a). This
is a nonresonant process because it does not follow the energy conserva-
tion law. On the other hand, the second term of (8.12) represents conven-
tional propagating light. It corresponds to the resonant process in which an
exciton–polariton emitted from the sample in the excited state is absorbed
into the probe in the ground state (see Fig. 8.3b), following the energy conser-
vation law. However, it should be noted that both cases represent the virtual
transition process mediated by a virtual polariton, which does not follow
the energy conservation law. This is well explained by the fact that such a
virtual transition process is a quantum mechanical phenomenon, occurring
within a sufficiently short period Δt while satisfying the uncertainty principle
ΔEΔt ≥ h̄/2. The reason why the optical near field, i.e., the localized field,
could be successfully derived above was that such a virtual transition process
was included in the theoretical model.

In an equivalent way to the discussion from (8.7) to (8.13), the states
|φ2〉 = |sg〉|pe〉|0(M); k, Ω(k)〉〉 and |φ1〉 = |se〉|pg〉|0(M); k, Ω(k)〉 of Sect. 8.1
are employed as the initial and final states before and after interaction, respec-
tively. Then the magnitude of interaction Veff(sp) is evaluated by exchanging
the subscripts S and P in (8.8)–(8.12), and is given by

Veff(sp) ∝ exp(−πμSr/aS)
r

+
exp(iπμPr/aP)

r
. (8.14)

The first term of this equation represents the nonresonant process in which an
exciton–polariton emitted from the sample in the ground state is absorbed
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Fig. 8.3. Schematic explanation of energy transfer between the sample and probe.
Thick arrows represent the absorbed or emitted exciton–polariton. Thin arrows
represent the transition between energy levels. (a) Nonresonant process in which
the exciton–polariton is emitted from the probe in the ground state and absorbed
into the sample in the excited state. (b) Resonant process in which the exciton–
polariton is emitted from the sample in the excited state and absorbed into the
probe in the ground state. (c) Nonresonant process in which the exciton–polariton
is emitted from the sample in the ground state and absorbed into the probe in the
excited state. (d) Resonant process in which the exciton–polariton is emitted from
the probe in the excited state and absorbed into the sample in the ground state

into the probe in the excited state (see Fig. 8.3c). The second term is the
resonant process in which an exciton–polariton emitted from the probe in the
excited state is absorbed into the sample in the ground state (see Fig. 8.3d).

Summing (8.12) and (8.14), the total magnitude of interaction Veff is given
by

Veff = Veff(ps) + Veff(sp) (8.15)

∝ exp(−πμPr/aP)
r

+
exp(iπμSr/aS)

r

+
exp(−πμSr/aS)

r
+

exp(iπμPr/aP)
r

.

The first term of this equation shows that the probe has an optical near
field in its vicinity, with decay length equivalent to the probe size. The third
term represents that there is an optical near field in the vicinity of the sample.
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These two terms are also called Yukawa potentials because they are expressed
by a Yukawa function. On the other hand, the second and fourth terms rep-
resent that there is a conventional propagating light. Therefore, as the sum
of the four terms, (8.15) shows that the optical near field and the propagat-
ing scattered light are generated around the two particles, as illustrated in
Fig. 2.6 of Chap. 2.

The above discussion can also be applied to a variety of different types of
matter, such as gaseous atoms, molecules, quantum dots, and so on, if (8.10a)
and (8.10b) are replaced by their energy eigenvalues. The magnitude of inter-
action can also be expressed by a sum of Yukawa functions. In summary, the
present theoretical model, called the Yukawa potential model, can be applied
systematically to a variety of materials, ranging from atoms to nanometric
materials, in a common theoretical framework.

8.3 Optical Near Field and its Characteristics

Equation (8.15) shows that the electromagnetic interaction between the sam-
ple and probe contains a decaying component around them, which is the op-
tical near field, represented by a Yukawa function. Therefore, in the case of
a spherical sample or probe with radius a, we may say that a source of such
an interaction exists at every position r in the sample and probe. The scalar
potential φ(r) of the electromagnetic fields at an arbitrary position r outside
the sphere is given by integrating these sources, and is expressed as

φ(r) ∝
∫

sphere

exp(−μ|r − r′|)
|r − r′| d3r′ . (8.16)

From (8.13) and (8.15), μ and μα are given by

μ =
πμα

a
, μα =

√
3mP

meα
, (8.17)

respectively, where meα is the effective mass of an electron in the sphere.
Carrying out the integration in (8.16), one obtains

φ(r) =
2π

μ3

{
(1 + μa)

exp[−μ(r + a)]
r

− (1 − μa)
exp[−μ(r − a)]

r

}
, (8.18)

for r = |r| > a. The right-hand side is given by the difference of two Yukawa
functions. (Refer to Problem 8.1 at the end of this chapter for the derivation.)
The decay length rn of the optical near field can be defined in the same way
as the decay length of (8.12) and is expressed by (8.17) and (8.18) as

rn =
1
μ

=
a

πμα
, (8.19)

which corresponds to the size of the sphere.
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Fig. 8.4. Calculated results for the relation between the ratio aP/aS and the signal
intensity I(aP, aS, R, z) detected while scanning the sphere P at z = 1 nm

Let us give several examples as an application of the present theory. First,
Fig. 4.4 shows the simplest model of a near-field optical microscope. The
sample sphere S (radius aS) is fixed at the origin of the coordinate system,
while the height of the probe sphere P (radius aP) is maintained at z from
the top of the sphere S during scanning, unlike the case in Fig. 4.4. The
signal intensity at position r in the sphere P is derived from (8.18), and
its integral over the sphere P corresponds to the detectable signal intensity
I(aP, aS, R, z), where R is the distance between the two sphere centers (i.e.,
the centers of P and S). Therefore, the signal intensity can be expressed by
the Yukawa function, as in (8.18). Figure 8.4 shows the calculated result of
the relation between the ratio aP/aS and the signal intensity detected while
scanning the sphere P at z = 1 nm. The signal intensity reaches its maximum
at aP = aS, which corresponds to the size-dependent resonance given in
Fig. 4.8.

Second, the system shown in Fig. 4.15 is employed in order to express the
profile of a tapered fiber probe in an approximate manner. The radius of the
sphere T in the tapered part is given by (4.19), which depends on the cone
angle θ. Assume that the probe is scanning whilst maintaining its height z,
as in Fig. 8.4. Figures 8.5a and b show the calculated signal intensities for
θ = 80◦ and 20◦, respectively, as a function of the position of the sphere P
along the x-axis, which correspond to Fig. 4.16. Comparing Figs. 8.5a and b,
it is found that the signal intensity detected by the sphere T is larger than
that detected by the sphere P for large θ. Curve C is therefore broader in
Fig. 8.5a than in Fig. 8.5b. This means that the visibility defined in Sect. 4.3.1
is low. The magnitude of the interaction between the spheres T and S becomes
lower for smaller θ. Therefore, the signal intensity is mainly contributed from
the sphere P. In consequence, higher visibility can be obtained, as shown in
Fig. 8.5b. This is attributed to the facts that the optical near-field interaction
is effective only within the spatial range of the sphere sizes and that the
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Fig. 8.5. Calculated signal intensities for (a) θ = 80◦ and (b) 20◦ as a function
of the position of the sphere P along the x-axis. Curves A and B represent the
contributions from spheres T and P, respectively. Curve C is the total intensity

magnitude of interaction decreases rapidly with increasing distance between
the spheres.

The visibility also depends on the height z. If z becomes larger than the
effective range of interaction between the spheres P and S, the signal intensity
is mainly contributed by the interaction between the spheres T and S. In such
a case, the sphere T is the main contributor to the signal intensity because
the radius of the sphere T is larger than that of the sphere S. It therefore
leads to lower visibility. Hence, the values of θ and z must be maintained
sufficiently small in order to achieve higher visibility. In order to improve the
visibility, it is more effective to coat the tapered part with an opaque film,
since it may eliminate the effect of the tapered part.

Finally, the dependence of the signal intensity on the polarization state
of the incident light is discussed by noting the numerator of (D.87) in Ap-
pendix D, which is given by

2∑
λ=1

3∑
i=1

3∑
j=1

pSj [ej·eλ(k)] pPi [p · eλ(k)] eik·(rS−rP) (8.20)

=
[
pS·pP +

(pS·∇)(pP·∇)
k2

]
eik·(rS−rP) .

The second term on the right-hand side contains a spatial differential operator
∇, which is responsible for the dependence on the polarization state of the
incident light. Although this term was neglected for simplicity in deriving Veff
in (8.12), (8.14), and (8.15), it must be considered for the present numerical
calculation of the spatial distribution of the signal intensity.

Figure 8.6a shows a schematic configuration for the calculation, where
the sphere P (radius aP = 10 nm) scans two-dimensionally on a circular
aperture (aS = 10 nm) at height z = 1 nm. Figure 8.6b shows the calculated
result when the incident light is polarized along the x-axis. The x- and y-
axes represent the position of the sphere P. This figure clearly shows that
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Fig. 8.6. (a) Schematic configuration for the calculation, where sphere P (radius
aP = 10 nm) scans two-dimensionally on a circular aperture (aS = 10 nm) whilst
maintaining the height z = 1 nm. (b) Calculated result when the incident light is
polarized along the x-axis. Values on the x- and y-axes represent the position of
sphere P. (c) Calculated result when sphere P scans in the xz-plane at y = 0

the spatial distribution of the signal intensity has two peaks at the edges
of the aperture, which correspond to the edge effect occurring in the case
of s-polarized incident light, as described in Sect. 4.2.4. Figure 8.6c shows
the calculated result when the sphere P scans in the xz-plane at y = 0.
The rapid decay of the signal intensity can be clearly seen with increasing
distance between the sphere P and the aperture. The decay length is several
nanometers.

Problems

Problem 8.1

Starting from (8.16), derive (8.18).



9 Application to Nanophotonics
and Atom Photonics

Utilizing the theoretical basis presented in Chaps. 4–8, the present chapter
discusses the possibility of creating new fields in nanophotonics and atom
photonics, which shift the paradigm of optical science and technology.

9.1 Energy Transfer Between Molecules
and Application to Optical Near-Field Measurement

One important aim in molecular spectroscopy is to obtain high spatial resolu-
tion images of the light emitted from one molecule using an adjacent molecule
as an illuminating light source. For this purpose, numerous experiments have
been carried out over the past half century. The ultimate goal is to discrimi-
nate molecules with resolution down to molecular sizes. The present section
reviews optical-near-field technology aiming to achieve the goal.

9.1.1 Radiative Energy Transfer

Consider two dye molecules close to each other, as shown in Fig. 9.1a. The
frequency dependence of their absorption and emission spectra is shown in
Fig. 9.1b, in which νda, νde, νaa, and νae represent the center frequencies of
absorption and emission spectra of the first and second dye molecules, known
as acceptor and donor molecules, respectively. It is assumed that they satisfy
the relation νae < νaa ≈ νde < νda, i.e., the emission spectrum of the donor
overlaps with the absorption spectrum of the acceptor on the frequency axis.

If the two dye molecules are illuminated by light with frequency νex, and
νda < νex, the donor will be excited by absorbing the light. After the ab-
sorption, energy is transferred from the excited donor to the acceptor due to
the dipole–dipole interaction reviewed in Chap. 4. This phenomenon is called
energy transfer [9.1–9.3]. Such energy transfer is possible when νaa ≈ νde.
Furthermore, when the acceptor radiates light involving the excitation by
energy transfer, such a phenomenon is called radiative energy transfer. Ra-
diative energy transfer is applicable to optical-near-field measurement when
the distance between two molecules is within the Förster dipole–dipole energy
transfer radius R0, i.e., several nanometers [9.3].

M. Ohtsu et al., Optical Near Fields
© Springer-Verlag Berlin Heidelberg 2004



122 9 Application to Nanophotonics and Atom Photonics

Electric dipole moment

Incident light 

Energy transfer

Emitted light 

The first dye molecule 
(Donor)

The second dye molecule 
(Acceptor)

(a)

(b)

The first dye molecule 
(Donor)

The second dye molecule 
(Acceptor)

Frequency

A
bs

or
pt

io
n 

or
 

em
is

si
on

 in
te

ns
ity

Frequency

Energy transfer

A
bs

or
pt

io
n 

or
 

em
is

si
on

 in
te

ns
ity

Fig. 9.1. Energy transfer and its application. (a) Principle of energy transfer. (b)
Relation between the absorption and emission spectra of two dye molecules, where
νex and νdet are the frequencies of the incident light and detected component of the
emission from the acceptor, respectively

Figure 9.2 shows an example of such measurements, in which an acceptor
molecule is installed on the apex of a fiber probe for collection-mode near-
field optical measurement. The molecule emits the light via radiative energy
transfer from the donor molecule, and its frequency component νdet is selec-
tively detected using a band-pass filter. When νdet < νae, the incident light
and the emitted light from the donor cannot pass through the filter, which
means that the contrast C can be dramatically enhanced by excluding back-
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Fig. 9.2. Application of radiative energy
transfer to collection-mode near-field optical
microscopy

ground signals, as shown in Sect. 4.2.3. Since emission from the acceptor is
detected only when the sample–probe separation is less than R0, the image
of the donor molecule is obtained with high resolution. The tapered part of
the fiber probe does not give any contributions because the acceptor is fixed
only on its apex, which results in the dramatic increase in the visibility V of
Sect. 4.3.1.

The measurement described above is also applicable in the illumination
mode, i.e., by installing a donor dye molecule at the apex of the fiber probe.

9.1.2 Non-Radiative Energy Transfer

Frequency conversion is used for the measurements mentioned in Sect. 9.1.1,
using the energy transfer between the donor and acceptor. However, it is not
technically straightforward to install an acceptor molecule at the apex of the
fiber probe. As an easy technique, it is advantageous to use non-radiative
energy transfer by installing a metal particle at the apex of the fiber probe.
Energy is transferred from the excited donor to the metal particle by the
principle shown in Fig. 9.1. However, the metal dissipates the transferred
energy thermally instead of emitting light. This is why this energy transfer
is called non-radiative energy transfer. Therefore, when a probe is scanned
over a donor, the center of the image becomes dark, i.e., we have an inverted
image. High resolution, down to several nanometers, can also be obtained
in this imaging, as was the case using radiative energy transfer (Fig. 9.2).
Comparing with radiative energy transfer, non-radiative energy transfer is
easy to measure because the metal-coated fiber probe in Fig. 3.1e is used for
the measurement, and this can be reproducibly fabricated.
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Fig. 9.3. Application of non-radiative energy transfer to collection-mode near-
field optical microscopy. (a) Explanation of the principle. Left : emission from the
dye molecule when the tip of a sharpened fiber core is located right over the dye
molecule. Right : non-radiative energy transfer takes place when the metallic film
coated on the fiber probe is located right over the dye molecule. (b) Experimental
results. Right : SEM image of the fiber probe tip used for the experiment, equiv-
alent to the left-hand figure of Fig. 3.1d. The diameter of the black circle at the
center corresponds to 2af (= 20 nm). Left : spatial distribution of the light intensity
emitted from a single Cy5.5 dye molecule, whose cross-sectional profile along the
line indicated by two white arrows is represented by the lower curve

A method for obtaining non-inverted images has been demonstrated using
the fiber probe shown in Fig. 3.1d, in which the tip of the sharpened fiber
core is buried into the metallic film. When the fiber probe is located right
over the dye molecule (see the left-hand part of Fig. 9.3a), the dye molecule
is excited by the incident light and emits light which is efficiently detected
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through the fiber probe. When the fiber probe is moved horizontally (see the
right-hand part of Fig. 9.3a), non-radiative energy transfer takes place from
the dye molecule (donor) to the metallic film (acceptor) coated on the fiber
probe, and light emission is prohibited. A non-inverted image can thus be
obtained by scanning the metal-coated fiber probe. The spatial distribution of
the emitted light intensity obtained by scanning is governed by the diameter
2af of the central hole on the metallic top surface. Thus, a higher-resolution
image of the dye molecule is expected using a fiber probe with smaller af .

The left-hand image in Fig. 9.3b shows an example of such a non-inverted
image of the light intensity emitted from a single Cy5.5 dye molecule [9.4].
The fiber probe used here is the same as in Fig. 3.1d, where af = 10 nm (see
the SEM picture on the right in Fig. 9.3b). The diameter of the image is about
15 nm (see the cross-sectional profile shown in the inset of Fig. 9.3b), which
is comparable to the diameter 2af (= 20 nm). However, it should be noted
that the value of af was measured through the SEM image, as pointed out
in relation to Fig. 3.1d. The light can transmit through a very thin metallic
film around the rim of the central hole on the metallic top surface. Therefore,
the optically effective diameter 2af is larger than 20 nm. The reason why the
image diameter is as small as 15 nm is attributed to the non-radiative energy
transfer taking place around the rim of the central hole. Thus, the image
diameter of 15 nm is much smaller than the optically effective diameter of
the central hole. A recent experiment has obtained an image with diameter
as small as 8 nm, using the same fiber probe as shown in Fig. 3.1d [9.5].

As an example similar to the measurement shown in Fig. 9.3a, the depen-
dence of the emission intensity and lifetime has been measured as a function
of the position of the fiber probe [9.6].

9.2 Atom Manipulation

Following the review on the development of atom photonics in Sect. 3.3.5, this
section describes the basic concepts in terms of the theories of Chaps. 4–8.
Concepts are formulated for controlling and manipulating the thermal motion
of a neutral atom in vacuum by means of an optical near field. Section 9.2.1
presents the formulation based on the conventional theory [9.7]. It should
be noted that it is an approximate formulation which becomes less accurate
when the material size is decreased to as small as several nanometers. In
order to overcome this difficulty, Sect. 9.2.2 provides a rigorous formulation
based on the theory in Chap. 8.

9.2.1 Formulation by Conventional Theory

Dipole Force

When an atom absorbs light whose frequency corresponds to the energy dif-
ference Eu − El between the two atomic energy levels (Eu and El are the
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Fig. 9.4. Relation between the detuning δ and the magnitude of the dipole force

energies of the upper and lower levels, respectively), an electric dipole is in-
duced in the atom. The dipole force F d is generated when the gradient of the
electric field of the light acts on the electric dipole. If the distribution of the
light intensity is spatially inhomogeneous, the atom is driven by the dipole
force.1

The direction of the dipole force F d depends on the detuning δ
(= ωL − ω0), i.e., the difference between the angular frequency ωL of light
and the atomic resonant angular frequency ω0 = (Eu − El)/h̄.2 Here, a two-
energy-level approximation is used for simplicity. This is valid for the alkali
atoms such as Rb given in Sect. 3.3.5. If the electric field E of the light in-
duces the electric dipole moment p in the two-energy-level atom, the dipole
force on the atom is given by

F d = − h̄δ∇Ω2

4δ2 + γ2 + 2Ω2 , (9.1)

where ∇ represents the differential operator given in Sect. A.1 and Ω = pE/h̄
is called the Rabi angular frequency of the atom. The relaxation constant γ
is inversely proportional to the time constant τ of the relaxation from the
upper energy level of the atom, i.e., γ = 2π/τ .

Figure 9.4 shows the magnitude of F d given by (9.1). It follows from (9.1)
that F d is parallel to the direction of decreasing light intensity when δ > 0,
i.e., it is a repulsive force, so that the atom would be flicked out of the optical
field. In the case of δ < 0, on the other hand, F d is parallel to the direction
of increasing light intensity, i.e., it is an attractive force, so that the atom
would be drawn into the optical field. It should be noted that the curve in
Fig. 3.19a corresponds to that of Fig. 9.4.
1 This force is also called a gradient force because its magnitude is proportional

to the gradient of the light intensity.
2 To simplify the notation, an angular frequency is used here instead of the fre-

quency. Since the angular frequency is 2π times the frequency, the atomic reso-
nance frequency ν0 is expressed as ω0/2π = (Eu − El)/h.
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Atom Reflection Using the Optical Near Field
on a Planar Surface

An atom in vacuum can be reflected by the repulsive dipole force induced
by an optical near field on a planar surface of a dielectric material such as a
glass, as explained schematically in Fig. 9.5. The optical near field on a planar
surface is also called evanescent light, as described in Sect. 2.1. Its intensity
decreases with increasing distance from the planar surface. Therefore, if an
atom approaches the dielectric surface, it is reflected by the optical near field
with δ > 0, i.e., the dielectric surface works as a kind of atomic mirror to
reflect the atom.

The intensity and wavelength of the incident light on a material surface
and the refractive index of the dielectric are expressed by I0, λ, and nm,
respectively. Total reflection takes place if the incidence angle θ1 is larger
than the critical angle θc of (2.2). Since (2.6) represents the electric field
amplitude of the optical near field generated under this condition, the optical-
near-field intensity can be obtained as a function of the distance r from
the dielectric surface. It is expressed as I(r) = I0 exp(−2r/Λ), where Λ =
(λ/2π)

√
n2 sin2 θ1 − 1 is the decay length of the electric field amplitude given

by (2.7). The absolute value of F d in (9.1) is then given by

F d =
2h̄ΔΩ2(r)/Λ

4Δ2 + γ2 + 2Ω2(r)
, (9.2)

where Δ = ωL −Ω0 − ktνz is the detuning, which includes the Doppler effect
due to the thermal velocity component of an atom νz along the dielectric sur-
face, and kt = n(ωL/c) sin θ1 is the wave number. The Rabi angular frequency
Ω(r) depends on the distance r, which is defined by Ω(r) = γ

√
I(r)/(2Is),

where Is = h̄γω3
L/(12πc2) is called the saturation intensity for the electric

dipole transition.
The first experiment on atom reflection using the optical near field was

successfully carried out with Na atoms [9.8]. This kind of experiment has re-

Incident light Reflected light

Glass prism

Atom
Optical near field

Fig. 9.5. Atom deflection by the optical near field on a planar surface
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cently been utilized to observe the van der Waals interaction between ground
state Cs atoms and a dielectric material surface [9.9].

Atom Guidance Using the Optical Near Field
on the Inner Wall of a Hollow Optical Fiber

When using an optical near field on a planar dielectric surface, the in-surface
component of the trajectories of the reflected atoms cannot be controlled, i.e.,
the degree of freedom of the residual thermal motion of the reflected atoms
is two-dimensional. In contrast, if atoms are guided through a hollow optical
fiber using the optical near field generated on the inner surface, the atoms
show one-dimensional movement, as was described in Sect. 3.3.5. Thus the
controllability of the trajectory of the transmitted atom can be improved.
This atom guidance is formulated in the following.

The modes of light guided through the core of a hollow optical fiber
depend on the diameters and refractive indices of the core and cladding, and
the wavelength of the light. Assume that Rb atoms are guided through the
hollow optical fiber shown in Fig. 3.18. The angular frequency of the light
(wavelength λ = 780 nm) is close to that of the atomic resonance ω0. It
has been found that there exists a guided mode named LPm1 mode (m =
0, 1, 2, . . .) for this optical fiber.3 The cross-sectional spatial distribution of
the light intensity of the LPm1 mode is expressed using a polar coordinate
(ρ, φ) as [9.10]

I(ρ, φ) =

⎧⎪⎨
⎪⎩

αB2
1I2

m(vρ) cos2(mφ + ψ) ρ < a ,

α
[
B2Jm(uρ) + B3Nm(uρ)

]2 cos2(mφ + ψ) a ≤ ρ ≤ a + d ,

αB2
4K2

m(wρ) cos2(mφ + ψ) (a + d < ρ) ,
(9.3)

where a is the hollow radius, d the thickness of the doughnut-shaped core, m
an integer, and ψ an arbitrary phase constant. The constant α is defined as
β/ωLμ0, β is the propagation constant, and Bi (i = 1, . . . , 4) are the constants
to be determined by boundary conditions at ρ = a and ρ = a + d. Functions
Jm(uρ), Nm(uρ), Im(vρ), and Km(wρ) are the m th order Bessel and modified
Bessel functions of the first and second kinds, respectively. Assuming that
the refractive indices of the core and cladding are n1 and n2, respectively,
three transverse characteristic constants are expressed as u =

√
n2

1k
2 − β2,

v =
√

β2 − k2, and w =
√

β2 − n2
2k

2. Equation (9.3) shows that the cross-
sectional spatial distribution of the light intensity of the LP01 (m = 0), LP11
(m = 1), and LP21 (m = 2) modes are doughnut-shaped without any nodes,

3 Exact analysis has found that there exist several guided modes named TE01,
TM01, HE11, HE21, HE31, and EH11. However, this chapter employs the weak
guiding approximation (WGA) for simpler analysis [9.10]. The LPm1 mode is
obtained under this approximation.
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butterfly-shaped with two nodes (at φ = 0 and π), and four-leaved-clover-
shaped with four nodes (at φ = 0, π/2, π, and 3π/2), respectively.

The optical-near-field intensity on the inner wall surface of the hollow
optical fiber is given by the first line on the right-hand side of (9.3):

Inf(ρ, φ) =
β

2ωLμ0
B2

1I2
m(vρ) cos2(mφ) , (9.4)

where ψ is fixed at 0 for simplicity. For a large detuning δ, i.e., for the angular
frequency of the light ωL that is sufficiently detuned from that of the atomic
resonance ω0, the spontaneous emission rate from the atom is so low that
alkaline atoms such as Rb can be regarded as two-level atoms with sufficient
accuracy. Under this approximation, the optical potential for reflecting atoms
against the inner wall surface is given by

Uopt(ρ, φ) =
h̄Δ

2
ln
[
1 +

Inf(ρ, φ)
Is

γ2

4Δ2 + γ2

]
, (9.5)

where Δ = ωL − ω0 − βvz is the detuning including the magnitude of the
Doppler effect due to the fiber-axis component vz of the thermal velocity
of the atom. In the case of the D2 spectral line of the Rb atom, typical
numerical values of Is and γ are 1.6 mW/cm2 and 2π×6.1 MHz, respectively.
The magnitude of the optical potential due to the LPm1 mode is obtained
by substituting (9.4) into (9.5). The LP01 mode is used for atom guidance
because its doughnut-shaped profile without any nodes can confine the atom
in a stable manner.

Stable atom guidance is disturbed if the atoms are attracted and adsorbed
onto the inner wall surface of the hollow optical fiber due to the attractive
van der Waals force. The effect of adsorption is described as a cavity quantum
electrodynamic (QED) effect when an atom exists in a small cavity [9.11].
The cavity QED effect originates from the interaction between an atom and
the vacuum modified by the cavity [9.12], which yields two kinds of attractive
force: the van der Waals force (see Fig. 5.4) and the Casimir–Polder force.
The latter gives rise to a position-dependent Lamb shift of the atomic energy
levels.

In spite of the importance for a deeper understanding of the nature of
the vacuum, few experimental results on the cavity QED effect have been
reported except for some simple cases for a plane or a planar cavity. The
difficulty lies in the fact that the cavity QED effect is so small that special
delicacy is required for the measurement. However, this effect has to be dis-
cussed because it is important for atom manipulation by the optical near
field. The cavity QED effect gives rise to an energy shift in an atomic state
(see Fig. 5.4). In general, the formulae for the atomic energy shifts in the
case of curved dielectric surfaces are very complicated, so that their analy-
sis requires considerable computation time. Here, for simplicity, we adopt an
approximate method using a formula for a planar conductor cavity in order
to analyze the case of the inner wall surface of a hollow optical fiber.
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The cavity potential Ucav(ρ) on an atom inside a planar conductor cavity
with a space interval 2a is written in a simple analytical form as [9.11]

Ucav(ρ) = −
∑
e

π|deg|2
48ε0a3

∫ ∞

0

r2 cosh(πrρ/a)
sinh(πr)

tan−1
(

rλeg

4a

)
dr , (9.6)

where deg and λeg are matrix elements of electric dipole transitions from a
ground state and wavelengths corresponding to the transitions, respectively.
The symbol

∑
e represents summation over all relevant excited states. Con-

sider an atom guided through a hollow optical fiber with hollow radius a by
a blue-detuned (δ > 0) optical near field with LP01 mode. Then, the total
potential Ut(ρ) is given by summing the optical potential Uopt(ρ) and the
modified cavity potential fUcav(ρ): Ut(ρ) = Uopt(ρ)+fUcav(ρ), where a scal-
ing coefficient f is introduced to approximate the dielectric cylinder case. In
addition, it is assumed that the scaling coefficient f can be the product of
a dielectric factor ξ and a geometric factor η. Moreover, since the inner wall
is considered to be approximately planar for an atom near the surface, the
dielectric factor ξ can be written as ξ = (n2

1 − 1)/(n2
1 + 1), where n1 is the

refractive index of the core.4 The geometric factor η is used to convert from
a planar to a curved surface. The magnitude of the cavity potential increases
with decreasing hollow radius.

Figure 9.6 shows a potential barrier, plotted as a function of the distance
R (= a − ρ) from the inner wall surface, for reflecting 85Rb atoms. The solid
curve shows the total potential Ut(ρ), which is composed of a cavity potential
Ucav(ρ) with f = 1 and an optical potential Uopt(ρ) under excitation of the
LP01 mode with a power of 100 mW and a blue detuning of +1 GHz. The
broken curve shows an optical potential Uopt(ρ). Comparison between the two
curves shows that the potential barrier is greatly reduced due to the cavity
potential near the surface. Therefore, if the trajectory of the atomic motion
is not parallel to the fiber axis, the atom may jump over the potential barrier
and be adsorbed on the inner wall surface. In order to avoid this kind of
phenomenon, the trajectory of the atomic motion must be carefully aligned
with the fiber axis.

Since the magnitude of the optical potential is proportional to the op-
tical power, it is lower than the magnitude of the cavity potential, i.e.,
Uopt(ρ) < fUcav(ρ) for a low optical power, and atoms are adsorbed on the
inner wall surface. This means that there exists a threshold optical power for
atom guidance. The black arrow in the inset of Fig. 3.19b indicates the thresh-
old optical power. The total potential Ut(ρ) is zero at this threshold, and
from this condition, the scaling factor f is derived as f = |Uopt(ρ)/Ucav(ρ)|.
Equations (9.4)–(9.6) and the black arrow in the inset of Fig. 3.19b lead to
the estimate f ≈ 1.3, which implies a geometric factor η ≈ 3.7. This is a
4 This equation corresponds to (ε − ε0)/(ε + ε0) in (Q5.7) for the solution to

Problem 5.1.
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reasonable value because qualitative theoretical analysis has shown that the
geometrical factor should be between 1 and 10.

Two kinds of force contribute to the cavity potential of (9.6). The van
der Waals force is dominant in the sub-wavelength region, but the Casimir–
Polder force is dominant in the super-wavelength region. It follows that the
former acts in close proximity to the material surface, while the latter acts
in the far-field region. Since the wavelength of light for guiding Rb atoms is
780 nm, a hollow optical fiber with a = 300 nm and 1.4 μm corresponds to
the van der Waals and Casimir–Polder cases, respectively.

9.2.2 Deflecting and Trapping an Atom
Using the Optical Near Field Generated at a Fiber Probe Tip

Higher controllability of the thermal motion of an atom can be obtained
by using the optical near field on the inner wall of a hollow optical fiber
(the third method described in Sect. 9.2.1) than by using the optical near
field on a planar surface (the second method described in Sect. 9.2.1). This
is because in the third method the degree of freedom in the thermal motion
of an atom is one-dimensional, whereas it is two-dimensional in the second
method. However, it should be noted that, even in the third method, the
decay length of the optical near field is of the order of the light wavelength,
as described by (9.4).

For further accuracy in controlling the thermal motion of an atom, we
now discuss the deflection and trapping of an atom, as explained schemat-
ically in Figs. 9.7a and b, respectively. For the illumination-mode near-field
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Fig. 9.7. Atom manipulation by the optical near field generated on a fiber probe
tip. (a) Atom deflection. θ is the deflection angle and x is the displacement due to
deflection at position z downstream from the fiber probe. (b) Atom trapping

optical microscope, deflection and trapping of an atom are accomplished by
the dipole force due to the optical near field generated by a fiber probe tip. In
particular, a dramatic increase in accuracy is expected in the case shown in
Fig. 9.7b, because the degree of freedom in the residual thermal motion of an
atom is zero-dimensional due to the nanometric confinement effect imposed
by the optical near field.

However, the three theoretical models described in Sect. 9.2.1 are not ac-
curate enough to describe the mechanical interactions between atoms and the
optical near field localized in a space of sub-wavelength dimensions.5 Instead
of using these theoretical models, we adopt the one described in Chap. 8,
i.e., the Yukawa potential model, to overcome this difficulty. Using the def-
inition of μl and μh of (D.88) in Appendix D, two kinds of effective masses
are defined, viz.,

ΔP± =

√
2mP[Ω ± Ω0(p)]

h̄
, ΔS± =

√
2mP[Ω ± Ω0(s)]

h̄
, (9.7)

5 The discussion in previous sections employed Ehrenfest’s theorem from quantum
mechanics. This theorem claims that the rules of classical mechanics are effective
even for quantum mechanics if the classical physical quantities are replaced by
quantum mechanical expectation values. For sufficiently accurate calculations
of the expectation values, the range of the spatial integral must be sufficiently
larger than the optical wavelength. However, for the case discussed in the present
section, this range is not large enough because of the sub-wavelength size of the
fiber probe tip, which drastically decreases the accuracy of calculation.
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where the excitation energies of a probe, a sample, and a macroscopic material
system are h̄Ω0(p), h̄Ω0(s), and h̄Ω, respectively, and the effective mass of
the exciton–polariton is denoted by mP. Equation (8.15) is transformed using
these effective masses, and the magnitude of the effective interaction Veff is
written as a function of the inter-central distance r between the sample (atom
in the present case) and probe, which is expressed by the sum of Yukawa
functions Y as [9.13]

Veff(r) = P+Y (ΔP+r) − P−Y (ΔP−r) + S+Y (ΔS+r) − S−Y (ΔS−r) ,

(9.8a)

Y (κr) ≡ e−κr

r
. (9.8b)

Since we consider atom manipulation using the optical near field, only the
terms representing the optical near fields, i.e., the first and third terms of
(8.15), have been used to derive these equations. Constants P± and S± are
independent of r and are expressed as

P± ∝ ± h̄[Ω ± Ω0(p)][Ω ± Ω0(p)]2

[Ω0(p) ± W+Ω][Ω0(p) ± W−Ω]
, (9.9a)

S± ∝ ± h̄[Ω ± Ω0(s)][Ω ± Ω0(s)]2

[Ω0(s) ± W+Ω][Ω0(s) ± W−Ω]
, (9.9b)

where the constants W± are independent of energies. Since |ΔP+| > |ΔP−|
and |ΔS+| > |ΔS−|, the interaction ranges of the terms Y (ΔP+r) and
Y (ΔS+r) are shorter than those of Y (ΔP−r) and Y (ΔS−r), respectively.

For a quantitative discussion of the magnitude of the interaction Veff(r)
and its r dependence, the transition from the 5S1/2 to 5P3/2 levels in 85Rb is
taken as an example. The energy difference between these levels is 1.59 eV,
which corresponds to h̄Ω0(s). Assuming the use of semiconductors, the values
of h̄Ω0(p) and h̄Ω are varied in the ranges 1.0 eV ≤ h̄Ω0(p) ≤ 1.2 eV and
1.0 eV ≤ h̄Ω ≤ 1.8 eV in order to calculate the value of Veff(r). Figures 9.8a–c
show the results of this calculation. Curves A and B in Fig. 9.8a represent the
terms P+Y (ΔP+r) and S+Y (ΔS+r) of (9.8a), respectively. Curve C is their
sum, i.e., Veff(r). They are derived for h̄Ω0(p) = 1.2 eV, h̄Ω = 1.0 eV, and
for red detuning δ = Ω − Ω0(s) < 0. In this case, it is found from (9.9a) and
(9.9b) that P+ and S+ are negative, and thus, Veff(r) is also negative. This
means that Veff(r) forms a potential attracting an atom toward the probe tip.

On the other hand, curves A, B, and C in Figs. 9.8b and c represent
the terms S+Y (ΔS+r) − S−Y (ΔS−r), P+Y (ΔP+r) − P−Y (ΔP−r), and their
sum Veff(r), respectively. Figure 9.8b shows these curves for the case of
h̄Ω0(p) = 1.0 eV, h̄Ω = 1.8 eV, and blue detuning δ > 0. Figure 9.8c is
for h̄Ω0(p) = 1.2 eV, h̄Ω = 1.8 eV, and blue detuning δ > 0. The two fig-
ures show that the value of Veff(r) depends on the value of each term of
(9.8a). The negative S+Y (ΔS+r) − S−Y (ΔS−r) term (see curve A in both
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Fig. 9.8. Magnitude of the potential due to an optical near field. (a) Calcu-
lated results for h̄Ω0(p) = 1.0 eV, h̄Ω = 1.0 eV, and δ < 0. Curves A and B
represent the terms P+Y (ΔP+r) and S+Y (ΔS+r) of (9.8a), respectively. Curve
C is Veff(r). (b) Calculated results for h̄Ω0(p) = 1.0 eV, h̄Ω = 1.8 eV, and
δ > 0. Curves A, B, and C represent the terms S+Y (ΔS+r) − S−Y (ΔS−r),
P+Y (ΔP+r) − P−Y (ΔP−r), and their sum Veff(r) in (9.8a), respectively. (c) Cal-
culated results for h̄Ω0(p) = 1.2 eV, h̄Ω = 1.8 eV, and δ > 0. Curves A, B, and C
represent the terms S+Y (ΔS+r) − S−Y (ΔS−r), P+Y (ΔP+r) − P−Y (ΔP−r), and
their sum Veff(r) in (9.8a), respectively

figures) shows that the atom is attracted to the probe. On the other hand, the
positive P+Y (ΔP+r) − P−Y (ΔP−r) term (curve B) shows that the atom is
repelled from the probe. Since |S+Y (ΔS+r)−S−Y (ΔS−r)| > |P+Y (ΔP+r)−
P−Y (ΔP−r)| in the case of Fig. 9.8b, the magnitude of the total interac-
tion Veff(r) (curve C) corresponds to an attractive potential. In the case of
Fig. 9.8c, since |S+Y (ΔS+r) − S−Y (ΔS−r)| > |P+Y (ΔP+r) − P−Y (ΔP−r)|
and |S+Y (ΔS+r) − S−Y (ΔS−r)| < |P+Y (ΔP+r) − P−Y (ΔP−r)| for larger
and smaller r, respectively, the value of Veff(r) takes its minimum at a certain
r, i.e., a potential well is formed.

The above discussions suggest that the potential profile, i.e., the depen-
dence of Veff(r) on r, can be tailored by selecting the materials and sizes of
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the probe tip in order to control the thermal motion of an atom. This means
that the potential profile can be tailored to trap a single atom in the near-
field region of the probe tip. According to such tailoring capability, atom
trapping and also deflection can be discussed by approximating the probe tip
as a sphere with radius a for simplicity. By the same concept as was used to
derive (8.16), the magnitude of the potential at the position rA of an atom
due to the probe sphere P at rP is derived. It is expressed as the sum of
Yukawa functions [9.13]:

V (r) =
1

4πa3/3

∫
Veff
[|rA − (r′ + rP)|]d3r′

= Y0

S∑
G=P

S∑
g=P

+∑
j=−

jGj

Δ3
gj

[
(1 + aΔgj)e−Δgja − (1 − aΔgja)

]
Y (Δgjr)

≡
S∑

G=P

S∑
g=P

+∑
j=−

jZ0jGjY (Δgjr) , (9.10)

where Y0 and Z0j are constants.

Deflection of an Atom

Slowly moving atoms, which are prepared by the method of laser cooling,
are used for atom deflection experiments. When the equivalent temperature
of the atomic thermal motion is cooled down to 10 mK, the velocity of the
atoms is as low as 1 m/s. Such atoms are scattered by the potential described
in (9.10). As an observable physical quantity, the differential scattering cross-
section σ(θ) is derived using quantum mechanics. It represents the fractional
flux of atoms scattered in the deflection angle θ. For this derivation, the
momentum transfer K is defined as

K = 2
Mv

h̄
sin

θ

2
, (9.11)

in terms of the mass M and velocity v of an incident atom. By applying the
Born approximation to the wave function of an atomic beam, σ(θ) is given
by [9.14]

σ(θ) =
∣∣∣∣− 1

4π

(
8πM

Kh̄2

)∫ ∞

a

rdrV (r) sin(Kr)
∣∣∣∣
2

. (9.12)

Substituting (9.10) into this equation, one derives [9.15]

σ(θ) =

∣∣∣∣∣∣
(

2M

Kh̄2

) S∑
G=P

S∑
g=P

+∑
j=−

jZ0jGj

∫ ∞

a

dre−Δgjr sin(Kr)

∣∣∣∣∣∣
2

(9.13)

=

∣∣∣∣∣∣
(

2M

Kh̄2

) S∑
G=P

S∑
g=P

+∑
j=−

jZ0jGj
K cos(Ka) + Δgj sin(Ka)

K2 + Δ2
gj

∣∣∣∣∣∣
2

.
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Fig. 9.9. Calculated differential cross-section for 85Rb atom scattering. (a) and
(b) represent the calculated results for scattering by the potential of curve C in
Figs. 9.8a and b, respectively. The curves A, B, and C in (a) and (b) are the results
for the probe sphere P with radius a = 10, 30, and 50 nm, respectively

Figures 9.9a and b show the value of σ(θ) for 85Rb atoms with an incident
velocity of 1 m/s, injected into the potentials expressed by the curves C in
Figs. 9.8a and b, respectively. The curves A, B, and C in the figures repre-
sent the results for sphere P of radius a = 10, 30, and 50 nm, respectively.
In both figures, three curves have periodic structures due to the finite size
of the probe, whose period is inversely proportional to a. The value of the
deflection angle θ at the first local minimum of the differential cross-section
also increases with decreasing a. The difference in the profiles of the curves
in Figs. 9.8a and b depends on whether all the terms in V (r) of (9.10) take
the same sign or not. That is, each term has the same sign for Fig. 9.9a when
summing over G and j (G = P , S, j = +,−) in (9.13), which results in a
larger deflection angle θ for the first local minimum. For Fig. 9.9b, this angle
is smaller because the signs of the terms are opposite to each other.

To estimate typical values of the deflection angle θ and displacement x (see
Fig. 9.7a for their definitions), the incident atomic beam flux N and minimum
detectable flux Nd are assumed to be 1010 cm−2s−1 and 103 s−1, respectively.
To detect the signal, the condition Nσ(θ) ≥ Nd must be satisfied. In the case
a = 10 nm, the curve A in Fig. 9.9b shows that this condition is satisfied if
θ ≤ 1◦. If z = 10 cm in Fig. 9.7a, this deflection angle leads to x = 1.8 mm,
which is sufficiently large to be measured by a conventional atom detector.

Trapping an Atom

Figure 9.7b shows how to trap an atom using a potential well, which is plotted
as the curve C in Fig. 9.8c. In this case, the atom and the probe tip form a
system which is equivalent to a diatomic molecule. The atom receives the
attractive and repulsive forces simultaneously in this system. By balancing
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Fig. 9.10. Profile of the potential well for a 85Rb atom due to an optical near field
generated by the probe sphere P with radius a = 10 nm. The center of sphere P
corresponds to r = 0, which means that the hatched area is inside the probe

the two forces, the atom can exist at the bottom of the potential well and is
thereby trapped. This trapping mechanism is similar to the balance between
the attractive dipole force and repulsive cavity QED force discussed using
conventional propagating light.

Figure 9.10 shows the profile of a potential well for a 85Rb atom generated
by the probe sphere (a = 10 nm). Here the transition from the 5S1/2 level
to the 5P3/2 level is assumed, whose transition energy is 1.59 eV = h̄Ω0(s).
The excitation energies of the sphere P and the macroscopic material system
were taken as h̄Ω0(p) = 1.51 eV and h̄Ω = 2.0 eV, respectively. This figure
shows that the potential has a minimum at the position 2a from the probe
tip surface. Three horizontal lines in the potential well represent the vibra-
tional energy levels with quantum numbers n = 0, 1, and 2 of the equivalent
harmonic oscillator calculated by approximating the bottom of the potential
well as a parabola. The equivalent temperatures of the thermal motion of
these vibration energies are several tens of μK, which means that if a 85Rb
atom is coded down to these equivalent temperatures, it can be trapped by
the optical near field generated at the probe tip.

Future Development

Various developments are expected from the atom manipulation discussed
above. For example, experimental results on the atom deflection provide in-
teresting information about the atom–optical-near-field interaction. The pro-
file of the optical near field on the fiber probe tip has usually been measured
via destructive methods using a fiber probe (see Fig. 2.6 of Chap. 2). However,
using atoms instead of the fiber probe as the secondary probe, non-destructive
measurement of the optical near field is possible. The scheme for this non-
destructive measurement enables one to examine the atom–optical-near-field
interaction as a scattering problem or an inverse scattering problem. At the
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same time, the validity of the Yukawa potential model of Sect. 8.2 can be as-
sessed through this measurement, which is important for understanding the
local electromagnetic interaction in a nanometric space.

The cavity QED effect in the near-field region is also an important factor,
but remains an open question. Single-molecule spectroscopy and atom ma-
nipulation discussed in Sects. 9.1 and 9.2, respectively, try to study the cavity
QED effect experimentally using a fiber probe. The atom deflection scheme
described above can be used as a powerful tool for investigating attractive
forces due to the cavity QED effect, comparing it with the dipole force.

Precise control of atomic thermal motion gives rise to fruitful studies in
related areas. As one can bring atoms to any position on a substrate using
a hollow optical fiber, it becomes feasible to deposit a single atom, which is
also useful in surface science and the semiconductor industry. For example,
it is possible to grow an atomic-scale silicon crystal with optical-near-field
devices using light tuned to the guide wavelength of 252 nm. In addition,
near-field optical devices for atom manipulation are excellent tools for isotope
separation, as seen in Sect. 3.3.5. This technique is a powerful way to obtain
high accuracy in controlling the number and purity of neutral atoms in the
isotope separation process.

Moreover, the optical near field generated at a fiber probe tip can be
used as a quantum tweezer for an atom, which can be applied to novel ma-
terial fabrication. These advanced techniques in atom manipulation using an
optical near field will thus open new areas of scientific research, with quan-
tum mechanical and optical objectives, and industrial applications including
nanofabrication.

9.3 Nanophotonic Switching

Miniaturization of optical devices beyond the diffraction limit of light is
not possible as long as propagating light is used, which was pointed out in
Sect. 1.3. In order to realize this miniaturization to ensure progress in optical
technology, the development of nanophotonics is indispensable [9.16]. Fig-
ure 9.11 shows the concept and structure of a nanophotonic integrated circuit.
It is composed of a variety of nanoparticles which work as a nanolight emit-
ter, a nanophotonic switch, and so on. Plasmon waveguides with nanometric
width are also implemented for input/output terminals [9.17]. The nanopho-
tonic switch is one of the essential ingredients in a nanophotonic integrated
circuit. However, in the case of conventional optical switches, miniaturiza-
tion of devices is limited by diffraction because it uses propagating light as
a signal carrier. However, if one uses the optical near field as a signal car-
rier, miniaturization of optical devices can be achieved beyond the diffraction
limit. Here it should be noted that several considerations, e.g., unidirectional
signal transmission and reduced cross-talk between input and output signals,
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Fig. 9.11. Concept and structure of a nanophotonic integrated circuit
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must be guaranteed when designing nanophotonic devices due to the non-
propagating nature of the optical near field. Noting these considerations, this
section reviews the function of a nanophotonic switch, based on the theory
of Chap. 8 [9.16,9.18–9.20].

9.3.1 Interaction and Energy Transfer Between Quantum Dots
via Optical Near Field

This section compares interactions between quantum dots (QDs) via a con-
ventional propagating light field and via an optical near field.6 When a QD is
excited by propagating light, classical theory explains that an electric dipole
is induced at the center of the QD (refer to Chaps. 4 and 5) and the electric
field generated from this electric dipole is detected in the far-field region.
Quantum theory explains that an electron in the QD is excited from the
ground state to an excited state due to the interaction between the electric
dipole and electric field of the propagating light, which is called an electric
dipole transition. A photon is then emitted by the transition from the excited
state to the ground state, and detected in the far-field region.

In the following discussion, to distinguish the interaction via an optical
near field from the one via a propagating far field, it is assumed that two
anti-parallel electric dipoles are induced in a QD, as shown in Fig. 9.12a.7 In
this situation, the electric field generated by one electric dipole is cancelled
by the other in the far-field region, and thus the transition from the excited
state cannot take place. Then, the transition and excited state are said to be
dipole-forbidden.

Interaction Between Quantum Dots

In order to investigate the interaction between two QDs via an optical near
field, we assume that one quantum dot S (QD-S) with two anti-parallel elec-
tric dipoles is located near the other dot P (QD-P) within its near field
region, as explained schematically in Fig. 9.12b. An electric dipole is induced
in QD-P by the optical near field due to the dipoles in QD-S and generates
another optical near field. One can detect the transition in QD-S by measur-
ing the optical near field using the method described in Sect. 2.2, which is
the dipole-forbidden transition in the case mediated by propagating light. Its
quantum mechanical description is that QD-P changes the spatial distribu-
tion of the electric field around QD-S and induces an additional interaction
whose magnitude is proportional to the gradient of the electric field.8 Due
6 Note that, although quantum dots are used as an example of a nanometric ma-

terial in this discussion, the quantum dot may be replaced by any relevant nano-
metric material for more general discussions.

7 This pair of electric dipoles is called an electric quadrupole, as explained in
Sect. D.1.
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Fig. 9.12. Arrangements of electric dipoles (white ar-
rows) induced in quantum dots. (a) Two anti-parallel
electric dipoles induced in a quantum dot S. (b) When
a quantum dot P is located near S, an electric dipole is
induced in P, which is anti-parallel to one of the electric
dipoles in S

to this change, the transition from the dipole-forbidden state in QD-S to the
ground state can take place. This is a unique interaction attributed to the
optical near field.

In order to estimate the magnitude of the effective interaction between
QD-P and QD-S on the basis of the theory of Chap. 8, the two QDs are
regarded as the subsystem (N), in which they correspond to the probe and
the sample, respectively. Here we consider a case that the transition from the
ground state to the dipole-forbidden excited state in QD-S. It is the inverse
process of the one discussed above. Assuming that QD-P interacts with the
macroscopic subsystem (M) via the incident light, the situation corresponds
to those represented by Figs. 8.3c and d because QD-P is locally excited by
the exciton–polariton. Therefore, as is the case when deriving (9.8a) and
(9.8b), the magnitude of the effective interaction9 Veff(r) between the two
QDs is expressed by two Yukawa functions Y (ΔS+r) and Y (ΔP−r) :

Veff(r) = S+Y (ΔS+r) − P−Y (ΔP−r) , (9.14)

where r, ΔS+, ΔP−, S+, and P− are the distance between the centers of the
two QDs, and constants given in (9.7), (9.9a), and (9.9b), respectively. This
expression includes the dipole-forbidden interaction described above.

Excitation Energy Transfer

This section describes intrinsic phenomena due to the effective interaction
Veff(r), i.e., excitation energy transfer and nutation. First, we study the case

8 In fact it corresponds to the interaction due to the 2l-pole moment (l = 2)
described in Sect. D.1.

9 The discussion in Chap. 8 explains that this effective interaction originates in the
exchange of a virtual exciton–polariton between the two QDs.
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Fig. 9.13. A system composed of two quantum dots P and S with resonant energy
levels

where the two QDs are isolated from each other. State vectors of the ground
state and excited state of the electron in QD-P are expressed as |pg〉 and
|pe〉, respectively, as shown in Fig. 9.13.10 Ground and excited states in QD-S
are expressed as |sg〉 and |se〉. These state vectors are assumed to form an
orthonormal set. Energy eigenvalues for |pg〉 and |sg〉 are expressed as Eg,
while those for |pe〉 and |se〉 are expressed as Ee. The states |pg〉 and |sg〉 are
said to be resonant with each other or resonant levels because of their equal
energy eigenvalues. The states |pe〉 and |se〉 are also resonant with each other.

When two isolated QDs are placed close enough to induce the effective
interaction Veff(r), the energy eigenvalues and state vectors are modified.
They are expressed as

E± = Eg + Ee ± Veff(r) , (9.15a)

|ϕ±〉 =
1√
2

(|pe〉|sg〉 ± |pg〉|se〉) , (9.15b)

respectively. It follows that the states |ϕ±〉 of (9.15b) also form an orthonor-
mal set. The state vector for the system |Ψ(t)〉 at time t is expressed by the
superposition of |ϕ±〉 as

|Ψ(t)〉 =
1√
2

[
exp
(

− iE+t

h̄

)
|ϕ+〉 + exp

(
− iE−t

h̄

)
|ϕ−〉
]

. (9.16)

It is assumed that |Ψ(0)〉 is orthonormalized and that the electron in QD-P
occupies the excited state at t = 0, while the electron in QD-S occupies the
ground state, i.e.,

|Ψ(0)〉 = |pe〉|sg〉 . (9.17)

Substituting this and (9.15) into (9.16), one obtains

10 Although the behavior of an electron is discussed here, the electron may be
replaced by an exciton, as will be done in the next section.
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|Ψ(t)〉 = exp
(

− iĒt

h̄

)[
cos
(

Veff(r)t
h̄

)
|pe〉|sg〉 − i sin

(
Veff(r)t

h̄

)
|pg〉|se〉

]
,

(9.18a)

Ē =
E+ + E−

2
= Eg + Ee . (9.18b)

From these equations, the probability that the electrons in QD-P and QD-S
occupy the excited and ground states, respectively, is expressed as

ρpesg(t) = |〈sg|〈pe|Ψ(t)〉|2 = cos2
(

Veff(r)t
h̄

)
. (9.19)

Similarly, the probability that the electrons in QD-P and QD-S occupy the
ground and excited states, respectively, is written as

ρpgse(t) = |〈se|〈pg|Ψ(t)〉|2 = sin2
(

Veff(r)t
h̄

)
. (9.20)

These equations show that the probability varies periodically with period t =
πh̄/Veff(r). In other words, the excitation energy of this system is periodically
transferred between the two QDs. This is called nutation.11

Guaranteeing Unidirectional Signal Transmission

Unidirectional transmission of the input signal from QD-P to QD-S can be
disturbed by the nutation discussed above.12 To guarantee unidirectivity, a
fast mechanism is required to dissipate part of the excitation energy after
it is transferred to QD-S. This mechanism can be realized by using the fact
that the electron in a QD has discrete energy levels due to the quantum
confinement effect.

In the case of a semiconductor QD, Eg and Ee represent the electron
energies in the valence and conduction bands, respectively, where Ee is one
of the discrete energies. By the interaction between the electron and phonon,
the energy in the conduction band can be dissipated to a state with lower
energy eigenvalue than Ee. Since the relaxation time for this dissipation is
as short as about 1 ps, unidirectional signal transmission can be guaranteed
by appropriately adjusting this relaxation time and the time constant of the
interaction between the two QDs via the optical near field.

9.3.2 Principle and Operation of a Nanophotonic Switch

A nanophotonic switch is composed of three cubic quantum dots (QD1, 2,
and 3). As explained schematically in Fig. 9.14a, the sides of these cubes
11 The term ‘excitation energy transfer’ is equivalent to transfer of ‘the electron

energy difference in the excited and ground states between QD-S and QD-P’.
12 Indeed, the term ‘unidirectional’ means that the excitation energy is transferred

only from QD-P to QD-S.
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are a/2, a/
√

2, and a, respectively, i.e., their ratio is 1 :
√

2 : 2. Further,
the distances between adjacent QDs are maintained shorter than a in order
to induce a sufficiently strong interaction via the optical near field, called
the optical-near-field interaction. The behavior of electrons was discussed in
the previous section, and we now investigate that of excitons. Because the
distance between the electron and hole is shorter than the QD size in the case
of CuCl to be discussed in the next section, it is more convenient to treat the
electron–hole pair as an exciton. The energy levels of the exciton are shown
in Fig. 9.14b. The energy eigenvalues in the QD with size a are expressed as

E(a; nx, ny, nz) =
π2h̄2

2Ma2 (n2
x + n2

y + n2
z) , nx, ny, nz = 1, 2, . . . , (9.21)

which represent the discrete energy levels described in the previous section.13

Since the size ratio of the three QDs is 1 :
√

2 : 2, there are several en-
ergy levels which are resonant between adjacent QDs, e.g., the energy level
E(a/2, nx = ny = nz = 1) of QD1 is resonant with E(a/

√
2, nx = 2, ny =

nz = 1) of QD2 and E(a, nx = ny = nz = 2) of QD3. From now onward,
QD1, 2, and 3 will be referred to as the input QD (QD-I), output QD (QD-O),
and control QD (QD-C), respectively.

An exciton can be transferred from level E(a/2, nx = ny = nz = 1) of
QD-I to level E(a/

√
2, nx = 2, ny = nz = 1) of QD-O by near-field optical

interaction, as described in Sect. 9.3.1. Similar transfer is also possible, e.g.,

E(a/2, nx = ny = nz = 1) of QD-I
−→ E(a, nx = ny = nz = 2) of QD-C ,

E(a/
√

2, nx = 2, ny = nz = 1) of QD-O
−→ E(a, nx = ny = nz = 2) of QD-C ,

E(a/
√

2, nx = ny = nz = 1) of QD-O
−→ E(a, nx = 2, ny = nz = 1) of QD-C ,

as indicated by solid arrows in Fig. 9.14b. The signal is transferred in the
form of energy transfer.

However, unidirectional signal transmission is not guaranteed because an
exciton can be transferred in the opposite direction due to nutation between
the resonant levels. In order to avoid this back-transfer, a relaxation process
is used which originates in the interaction between the exciton and phonon.
Broken arrows in Fig. 9.14b represent this process. Since its time constant is
rather short, the exciton energies in level E(a/

√
2, nx = 2, ny = nz = 1) of

QD-O and level E(a, nx = ny = nz = 2) of QD-C are immediately dissipated
to the phonon system, and the exciton transits to a lower energy level. As
a result of this transition, back-transfers of the exciton from the QD-O to
13 The bulk exciton energy EB is subtracted from this energy.
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Fig. 9.14. Structure of a nanophotonic switch. (a) Three cubic quantum dots
used for the switch and their arrangements. (b) Energy levels of the exciton and
their quantum numbers (nx, ny, nz) in each quantum dot. Solid and broken arrows
represent the transition by optical-near-field interaction and relaxation due to the
interaction with a phonon, respectively
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QD-I, and from QD-C to QD-I (or QD-O) are avoided. Further, cross-talk
between input and output signals is also avoided due to the difference in the
exciton energies between QD-I and QD-O, i.e., due to frequency conversion.

Control and modulation of signals for switching are carried out by apply-
ing the optical near field to QD-C. Because this optical near field, i.e., the
control signal, excites an exciton in QD-C to its E(a, nx = ny = nz = 1)
level, excitons in QD-I or QD-O cannot be transferred to QD-C. Due to this
state filling, optical-near-field interactions between QD-C, QD-I, and QD-O
are prohibited, and as a result the exciton in QD-I can only transfer to QD-
O. After this transfer, the exciton in QD-O generates the optical near field,
which is detected and transferred to the external photonic system. This sit-
uation corresponds to the ‘on’ state of the switch, i.e., the switch is closed.
On the other hand, the situation in which the optical near field is not applied
to QD-C corresponds to the ‘off’ state, i.e., the switch is open, because the
exciton energy is transferred to the lowest level of QD-C and the optical near
field is not obtained from the QD-O.

In order to investigate the switching described above, the energies
E(a/2, nx = ny = nz = 1) of QD-I, E(a/

√
2, nx = 2, ny = nz = 1)

of QD-O, and E(a/
√

2, nx = 2, ny = nz = 1) of QD-O are expressed
as E3, E2, and E3, respectively, for simplicity. It follows from (9.21) that
the energies E(a, nx = ny = nz = 1), E(a, nx = 2, ny = nz = 1), and
E(a, nx = ny = nz = 2) of QD-C can also be expressed as E1, E2, and E3,
respectively. We use a differential equation describing the temporal behavior
of the probability P j

n(t), representing the fact that the energy level En in
QD-j is occupied by an exciton. It is expressed as⎧⎪⎪⎨

⎪⎪⎩
dP j

n(t)
dt

= −
[

1
τn

+ (U ij
n )2
]

P j
n(t) + (U jk

n )2P k
n (t) ,

U ij
n =

Y1

h̄

exp[−meff(n)rij ]
meff(n)rij

,

(9.22)

where τn represents the relaxation time of the transition of the exciton from
level En of one QD to the lower level En−1 due to the interaction with
phonons. We denote Y1 as a constant and (U ij

n )2 as the energy transfer rate
between the resonant levels En of the adjacent QDs due to the optical-near-
field interaction. The rate (U ij

n )2 is expressed as a Yukawa function using the
effective mass meff(n) of the exciton–polariton for the transition between the
resonant levels En of QD-i and QD-j. The distance between the centers of
the two QDs is represented by rij . The effective mass meff(n) determines the
effective range in which the optical-near-field interaction can excert.

To investigate the temporal behavior of the probability P j
n(t), CuCl QDs

are a good example because their emission efficiency is very high. Assuming
that a = 10 nm, rij = 10 nm, and τn = 1 ps for CuCl QDs, the temporal be-
havior of the probability P 2

2 (t) of occupying the level E2 of QD-O is obtained
using the initial condition P 1

3 (0) = 1 (i.e., the exciton occupies level E3 of
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Fig. 9.15. Temporal behavior of the probability P 2
2 (t). Curves A and B represent

the calculated results in the respective cases when the optical near field is or is not
applied to the control quantum dot (QD-C)

QD-I at t = 0). Figure 9.15 shows the calculated result. Curve A in this fig-
ure shows that the value of P 2

2 (t) saturates within about 60 ps after applying
the optical-near-field signal to QD-C. Curve B shows that P 2

2 (t) approaches
0 within 60–70 ps after turning the signal off. A typical switching time is
estimated to be several 10–100 ps. Similarly to the case of CuCl, switching
characteristics are also expected for ZnO, GaAs, and GaN. The readers who
are interested in the details are referred to [9.21, 9.22], where the dynamic
properties are discussed by using a quantum master equation.

9.3.3 Experiments to Confirm Nanophotonic Switching

In order to fabricate the nanophotonic switch described in the previous sec-
tion, the QDs have to be deposited on a substrate, controlling their sizes and
positions. Photochemical vapor deposition by an optical near field is a promis-
ing method for this purpose, as was reviewed in Sect. 3.3.3. Experiments have
been carried out using QDs fabricated by a conventional technique as a pre-
liminary study for confirming principles of the switching. Such experiments
should:

• identify the sizes and positions of the QDs,
• confirm the optical-near-field energy transfer between the QDs,14

• confirm the switching operation.

These experiments have been carried out for CuCl QDs fabricated in a NaCl
host crystal by photoluminescence spectroscopy at low temperature, as de-
scribed in Sect. 3.3.2.

14 Although the exciton energy is transferred in the case of CuCl QDs, other transfer
mechanisms are also expected in different nanometric materials.
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Experiment (1)

Figure 9.16a shows photoluminescence spectral profiles at 18 K measured
using a 325 nm wavelength He–Cd laser to excite the CuCl QDs. Curve A
is a photoluminescence spectrum measured by means of conventional spec-
troscopy using propagating light for excitation. It shows inhomogeneous
broadening due to the distributed sizes of the QDs. On the other hand, curve
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Fig. 9.16. Photoluminescence spectra emitted from CuCl quantum dots fabricated
in a NaCl host crystal. (a) Photoluminescence spectral profile. Curve A shows a
photoluminescence spectrum of the CuCl quantum dots measured by means of
conventional spectroscopy using propagating light for excitation. Curve B is a pho-
toluminescence spectrum measured using near-field-optical spectroscopy, which was
described in Sect. 3.3.2. (b) Spatial distribution of the photoluminescence intensity
emitted from a QD of size 3.0 nm. The photoluminescence energy is indicated as
the peak X in (a). (c) Spatial distribution of the photoluminescence intensity for
a QD of size 4.9 nm. The photoluminescence energy is indicated as the peak Y in
(a). Image sizes in (b) and (c) are both 600 nm × 600 nm
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B is a photoluminescence spectrum measured using near-field-optical spec-
troscopy, which shows fine structures due to the discrete energy levels of
individual CuCl QDs.

Figures 9.16b and c show the spatial distributions of the two kinds of CuCl
QDs in the size ratio 1 :

√
2. Figure 9.16b shows the spatial distribution of

the photoluminescence intensity emitted from a QD with size 3.0 nm, whose
photoluminescence energy is indicated as the peak X in Fig. 9.16a. Similarly,
Fig. 9.16c shows the spatial distribution of the photoluminescence intensity
for a QD with size 4.9 nm, whose photoluminescence energy is indicated as
the peak Y in Fig. 9.16a. Noting that the size ratio of these QDs is 1 :

√
2,

these results indicate that we can identify the sizes and positions of QDs.

Experiment (2)

Figures 9.17a and b show the spatial distribution of the photoluminescence
intensities measured from two kinds of CuCl QDs with sizes 3.9 nm and
5.6 nm, respectively. Note that the size ratio is also 1 :

√
2, as was the case

in Figs. 9.16b and c. The areas surrounded by broken curves in Fig. 9.17a are
dark (i.e., photoluminescence is not observed), while the corresponding areas
in Fig. 9.17b are bright. This anti-correlation feature means that excitons are
transferred from the CuCl QDs with size 3.9 nm to those with size 5.6 nm,
and as a result only the photoluminescence from the 5.6 nm CuCl QDs is
detected. This feature corresponds to the transfer of an exciton from level E3
of QD-I to level E3 of QD-O, due to the optical-near-field interaction. Then
QD-O emits light after relaxation to level E2, due to the interaction with
phonons, as shown in Fig. 9.14b.

(a) (b)

Fig. 9.17. Spatial distribution of the photoluminescence intensities emitted from
CuCl quantum dots fabricated in a NaCl host crystal. Image sizes are both 200 nm×
200 nm. (a) and (b) represent the measured results for CuCl quantum dots with
sizes 3.9 nm and 5.6 nm, respectively



150 9 Application to Nanophotonics and Atom Photonics

Experiment (3)

Time-resolved pump–probe spectroscopy is carried out using pulsed lasers.
The switching time was measured as 62 ps in the case of CuCl QDs [9.23].
This agrees with the theoretical results obtained in the previous section.

Problems

Problem 9.1

Derive (9.2) from (9.1).

Problem 9.2

Derive (9.5) from (9.1).



A Basic Formulae of Electromagnetism

We will present the basic formulae of electromagnetism used throughout this
book. Readers are referred to the textbooks on electromagnetism for the
details concerning derivations.

A.1 Maxwell’s Equations and Related Formulae

A.1.1 Static Electric and Magnetic Fields

An electric field E is a gradient of a scalar potential φ, i.e.,

E = −∇φ . (A.1)

The operator ∇ called nabla is given by

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
,

in the case of a Cartesian coordinate system. Unit vectors along x, y, and z
axes are represented by i, j, and k, respectively. The potential φ generated by
true electric charges with volume density ρ in vacuum is given by Coulomb’s
law, viz.,

φ(r) =
1

4πε0

∫
ρ(r′)

|r − r′|d
3r′ , (A.2)

where ε0 is the dielectric constant in vacuum (= 8.85418782 × 10−12 F/m).
Gauss’s law is

∇·E =
ρ

ε0
, (A.3)

which represents the fact that the electric lines of force originate from a
positive charge and terminate on a negative charge. The quantity ∇·E on
the left-hand side of (A.3) is the scalar product of the operator ∇ and the
electric field E, which is given by

∇·E =
∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂z
,
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where E is expressed as (Ex, Ey, Ez) in the Cartesian coordinate system. In
an arbitrary medium, this equation is modified to ∇·D = ρ, where D is the
electric flux density described in (A.15).

A differential equation for φ is derived from (A.1) and (A.3):

Δφ = − ρ

ε0
. (A.4)

This is Poisson’s equation. The operator Δ is ∇·∇ or ∇2, which is called the
Laplacian. In a Cartesian coordinate system, Δφ is expressed as

Δφ =
(

∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)
φ .

In the absence of charges (ρ = 0), (A.4) is called Laplace’s equation.
The law of conservation of electric charge is

∂ρ

∂t
+ ∇·j = 0 , (A.5)

where j is the electric current density. This equation, which is called the con-
tinuity equation, represents conservation and continuity of electric charges.

In order to present the basic formulas for the magnetic field, a vector
potential A is defined by

A ≡ μ0

4π

∫
j(r′)

|r − r′|d
3r′ , (A.6)

where j acts as the source of the magnetic field. It is easily understood that
the magnetic flux density B can be written in the form

B = ∇ × A , (A.7)

since substituting (A.6) into (A.7) leads to the Biot–Savart law. The quantity
∇× A is the vector product of the operator ∇ and vector A. It is defined by

∇ × A = i

(
∂Az

∂y
− ∂Ay

∂z

)
+ j

(
∂Ax

∂z
− ∂Az

∂x

)
+ k

(
∂Ay

∂x
− ∂Ax

∂y

)

in the Cartesian coordinate system, where A is expressed as (Ax, Ay, Az).
The forms of (A.6) and (A.7) for the magnetic field are analogous to those

of (A.2) and (A.1) for the electric field, respectively. Further, (A.7) is valid
even when A is replaced by the sum of A and an arbitrary scalar function
ψ because ∇ × ∇ψ = 0. This is called gauge invariance. Given this freedom,
one can select an appropriate scalar function ψ for the static magnetic field
so that the relation

∇·A = 0 (A.8)

is valid.
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Ampere’s law is expressed as

∇ × B = μ0j , (A.9)

for the magnetic field generated by j, where μ0 is the magnetic permeability in
vacuum (= 1.25663706×10−6 H/m). By substituting (A.7) into this equation
and using the mathematical formula ∇ × (∇ × A) = −ΔA + ∇(∇·A), one
derives

ΔA − ∇(∇·A) = −μ0j . (A.10)

Using (A.8), this transforms to

ΔA = −μ0j , (A.11)

which has the same form as Poisson’s equation (A.4) for the scalar potential.

A.1.2 Dynamic Electric and Magnetic Fields

Faraday’s law of electromagnetic induction is

∇ × E = −∂B

∂t
, (A.12)

which says that variation of the magnetic field generates an electric field.
Ampere’s law tells us that an electric current generates a magnetic field H :

∇ × H = j +
∂D

∂t
, (A.13)

which is a more general form than (A.9). The second term on the right-hand
side is called the displacement current and D is an electric flux density. The
spatial profile of the magnetic flux is illustrated schematically as a closed
loop because magnetic monopoles do not exist. It is expressed as

∇·B = 0 . (A.14)

The set of four equations (A.12)–(A.14) together with (A.3) are called
Maxwell’s equations. Further, electric and magnetic properties of a medium
are given by

D = εE , (A.15a)
B = μH , (A.15b)

where ε and μ are the dielectric constant and magnetic permeability of the
medium, respectively. These equations are called the medium equations. Fur-
ther, (A.15a) and (A.15b) can be written

D = ε0E + P , (A.16a)
B = μ0(H + M) , (A.16b)
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by introducing the polarization P and magnetic charge M , respectively.
The electric field generated by P is

∇ × ∇ × E + ε0μ0
∂2E

∂t2
= −μ0

∂2P

∂t2
, (A.17)

where (A.12), (A.13), and (A.16a) are used under the condition B = μ0H
and j = 0. Equation (A.1) must be modified for the case of dynamic electric
and magnetic fields because the relation ∇ × E = 0 derived from (A.1) is
inconsistent with (A.12). However, the relation E + ∂A/∂t = −∇φ is valid
because substitution of (A.7) into (A.12) leads to ∇ × (E + ∂A/∂t) = 0.
(This relation is derived by noting an identical equation ∇ × ∇φ = 0 for an
arbitrary scalar function φ.) Thus, (A.1) can be modified to

E = −∂A

∂t
− ∇φ . (A.18)

In the case of a medium in which j = 0, P = 0, and M �= 0, note that

∇ × ∇ × A + ε0μ0
∂2A

∂t2
= μ0∇ × M . (A.19)

This is derived by applying ∇× to (A.16b) and using (A.7), (A.13), (A.16a),
and (A.18), where ∇φ is assumed to be zero. This equation is used in Chap. 7.

A.1.3 Electromagnetic Fields Generated by an Electric Dipole

The temporal and spatial variation of the dynamic electric and magnetic fields
are assumed to take the form exp(−iωt + ikr), where ω and k are angular
frequency and wave number, respectively. They are expressed as ω = 2πν and
k = 2π/λ in terms of the frequency ν and wavelength λ. Further, the phase
velocity v of the electromagnetic fields is expressed as v = νλ = ω/k. Noting
that the relations j = 0, D = ε0E, and B = μ0H are valid in vacuum, we
transform (A.13) to

E = i
c2

ω
∇ × B = i

c

k
∇ × ∇ × A , (A.20)

where the relations ∂/∂t = −iω and c = 1/
√

μ0ε0 (the phase velocity of the
electromagnetic fields in vacuum, viz., 2.99792458×108 m/s) have been used.
Further, (A.7) was used to transform from the middle to the right-hand side.

For electromagnetic fields with the form exp(−iωt + ikr), (A.6) becomes

A =
μ0

4π

∫
j(r′)eik|r−r′|

|r − r′| d3r′ , (A.21)

which can be transformed to
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A =
μ0

4π

eikr

r

∫
j(r′)d3r′ . (A.22)

Since the relation ∫
j(r′)d3r′ = −

∫
r′(∇r′·j)d3r′ (A.23)

is valid, where ∇r′ is the differential operator with respect to r′, substitution
of (A.5) into this equation gives∫

j(r′)d3r′ = −iω
∫

r′ρ(r′)d3r′ . (A.24)

Here ∂/∂t = −iω has been used. Defining the electric dipole moment p by

p ≡
∫

r′ρ(r′)d3r′ , (A.25)

(A.22)–(A.24) lead to

A = − iωμ0

4π
p

eikr

r
. (A.26)

Equation (A.25) describes the case of a continuous spatial distribution of
electric charge with volume density ρ(r′). In the case of a pair of positive
and negative point charges +q and −q separated by a distance d, the electric
dipole moment is given by p = qd. (The reader is recommended to refer
to the solution to Problem 4.1 of Chap. 4 and Fig. Q4.1 for the derivation).
Substituting (A.26) into (A.7), one derives

B =
ωμ0k

4π
(n × p)

eikr

r

(
1 − 1

ikr

)
, (A.27)

where n is a unit vector along r, i.e., n = r/|r| = (x/r, y/r, z/r). Substituting
this into (A.20), one arrives at

E =
1

4πε0

{
k2(n × p) × n

(
1
r

)
+
[
3n(n · p) − p

](− ik
r2 +

1
r3

)}
eikr .

(A.28)
The first, second, and third terms on the right-hand side of this equation
are proportional to (kr)−1, (kr)−2, and (kr)−3, respectively. The first term
represents the component that dominates in the far-field region, because its
magnitude is the largest among the three terms when kr � 1. On the other
hand, the third term represents the electric field component which dominates
in the proximity of p, because its magnitude is the largest among the three
terms when kr � 1. In order to investigate the characteristics of the electric
field represented by this equation, it is assumed that p is fixed at the origin in
the Cartesian coordinate system (xyz) and is oriented along the y-axis, i.e.,
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Fig. A.1. Electric field generated by an electric dipole p in its near-field region
(kr � 1), where p is fixed at the origin and oriented along the y-axis. (a) Absolute
value of the vector 3n(n · p) − p. (b) Direction of the vector 3n(n · p) − p. The
direction of each arrow represents the direction of this vector at each position. The
length of the arrow represents the absolute value of the vector, as illustrated in
(a). (c) Electric lines of force. Horizontal and vertical axes represent kx and ky,
respectively

p = (0, p, 0). The characteristics of this equation are investigated in the xy-
plane for simplicity, because the electric field is symmetric around the y-axis.
Under this condition, r is assumed to lie in the xy-plane with orientation
angle θ relative to the x-axis, i.e., r = r(cos θ, sin θ, 0).

First, the vector in the third term of (A.28) is expressed as 3n(n · p)−p =
p(3 cos θ sin θ, 3 sin2 θ − 1, 0). Its absolute value is p

√
3 sin2 θ + 1, which is

illustrated in Fig. A.1a as a function of θ. The arrows in Fig. A.1b represent
the direction of the vector 3n(n · p) − p, which is illustrated on a circle by
noting that its orientation angle is tan−1[(1−3 cos 2θ)/3 sin 2θ]. The curves in
Fig. A.1c represent the electric lines of force illustrated using Figs. A.1a and
b. The direction of the tangential line on each curve represents the direction
of the electric field, whilst the density of curves represents the magnitude of
the electric field.

Second, because the vector in the first term of (A.28) is expressed as
(n×p)×n = p(− sin θ cos θ, cos2 θ, 0), Fig. A.2a represents its absolute value
p| cos θ| plotted as a function of θ. Arrows in Fig. A.2b represent the direction
of this vector, which is illustrated on a circle by noting that its orientation
angle is θ − π/2.

Finally, Fig. A.3 shows the electric lines of force illustrated using all the
terms on the right-hand side of (A.28). Curves near the origin are butterfly-
shaped with two wings directed along the ±x-axes, while curves in the outer
region are closed loops. This means that the former and latter represent a non-
propagating optical near field and propagating far-field light, respectively.

It should be noted that there exist electric lines of force on the y-axis of
Fig. A.1c whose directions lie along the y-axis, whereas Fig. A.3 does not have
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x
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x
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(a) (b)

Fig. A.2. Electric field generated by an electric dipole p in its far-field region
(kr � 1). The direction of p is the same as in Fig.A.1. (a) Absolute value of the
vector (n × p) × n. (b) Direction of the vector (n × p) × n. The definition of the
arrows is the same as in Fig.A.1b

2

4

4

-2

-4

2-2-4

ky

kx

Fig. A.3. Electric lines of force of the total electric field generated by an electric
dipole p. Horizontal and vertical axes are represented by kx and ky, respectively.
Note that the scale is different from the one in Fig. A.1c

these electric lines of force. This difference is due to the fact that the vector
(n×p)×n in the first term of (A.28), representing the far-field electric field,
is zero when n is parallel to p. In other words, when the electric dipole p is
observed from a distance along the y-axis, the positive and negative charges
appear to cancelled each other and so the electric lines of force disappear.

Substituting k = 0 into (A.28), all the terms vanish except for
[3n(n · p) − p](1/r3). The non-vanishing term represents the static electric
field, so the electric lines of force in Fig. A.1c are equivalent to those of the
static electric field derived in Problem 4.1 of Chap. 4.

A.1.4 Power Radiated from an Electric Dipole

In order to obtain the time-averaged power P radiated from an oscillating
electric dipole into the circumambient space, note that its value per unit solid
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angle is given by
dP

dΩ
=

1
2μ0

Re(r2n · E × B∗) , (A.29)

where Re and ∗ represent the real part of the complex value in brackets and
the complex conjugate, respectively. Since this power is detected in the far-
field region of the electric dipole, the values of E and B are substituted into
this equation under the approximation kr � 1. The approximate value of B
given by (A.27) is

B ≈ ωμ0k

4π
(n × p)

eikr

r
, (A.30)

whilst that of E given by (A.28) is

E ≈ k2

4πε0
(n × p) × n

eikr

r
. (A.31)

Substituting (A.30) and (A.31) into (A.29), one derives

dP

dΩ
=

k3ω

32π2ε0
|(n × p) × n|2 . (A.32)

The polarization of the radiated light is represented by the vector in | |,
whose angular distribution is shown in Fig. A.2a. Substituting |(n×p)×n| =
p| cos θ|, (A.32) becomes

dP

dΩ
=

k3ω

32π2ε0
p2 cos2 θ . (A.33)

Since dΩ = cos θdθdφ, (A.33) can be expressed as an integral, i.e.,

P =
∫ 2π

0
dφ

∫ π/2

−π/2

k3ω

32π2ε0
p2 cos3 θdθ =

p2k3ω

12πε0
. (A.34)

Noting that the wave number k is inversely proportional to the velocity of
light c (i.e., k = ω/c), one obtains the result of integration as

P =
p2ω4

12πε0c3 . (A.35)

It shows that the radiated power is proportional to ω4, which corresponds to
the frequency dependence of the Rayleigh scattering intensity.



B Refractive Index of a Metal

Matter is generally composed of atoms, which possess positively charged nu-
clei attracting negatively charged electrons by a Coulomb force. Due to the
attractive force of the nucleus, electrons hardly move around. However, in
the case of atoms in a metal, the Coulomb force is screened due to the large
number of electrons, so that electrons become free from the attractive force
of the nucleus and move freely in the metal. This free movement of electrons
in a metal makes it electrically conductive. Such electrons are called free elec-
trons. This appendix derives the refractive index of a metal by analyzing the
motion of free electrons due to the electric field of incident light.

The Drude model is the most popular theoretical model used for this anal-
ysis. It expresses the motion of an electron within the framework of classical
mechanics. The equation of motion is given by

m
d2x

dt2
= −γ

dx

dt
− eE0e−iωt , (B.1)

where m is the mass, x the displacement, γ the damping constant due to
scattering, and −e the charge of the electron, respectively. The electric field
of the incident light is expressed as E0e−iωt, where ω is the angular frequency.

Assuming an oscillatory displacement of the form x = x0e−iωt and sub-
stituting it into (B.1), we have the amplitude x0 as

x0 =
eE0/m

ω2 + i(γ/m)ω
. (B.2)

Due to this displacement, an electric dipole moment −ex0 is induced in each
atom. Summing over all the electric dipole moments, the polarization −ex0N
is generated in the metal, where N is the number of electrons per unit volume
of the metal. This polarization is also expressed as P = (ε − ε0)E0, where ε
and ε0 are the dielectric constants of the metal and the vacuum, respectively.
Thus the dielectric constant ε of the metal is derived from (B.2) as

ε = ε0 − e2N/m

ω2 + i(ω/τ)
, (B.3)

where τ is defined by m/γ. Since ε/ε0 is equal to the square of the refractive
index n, one obtains from (B.3) the relation
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n2

Fig. B.1. Relation between the angular frequency ω of incident light and the square
of the refractive index n of a metal, where ωp is the plasma angular frequency

n2 = 1 − ω2
pτ

ω(ωτ + i)
, (B.4)

where ωp is a constant called the plasma angular frequency given by

ωp =

√
e2N

ε0m
. (B.5)

The quantity ωp/2π is called the plasma frequency.
The value of ωτ is much larger than unity because the plasma frequency

is higher than 2π × 1015 Hz (i.e., in the visible or ultraviolet region) and the
value of τ is about 1×10−14 s. Therefore the imaginary part of the right-hand
side of (B.4) is negligible and one derives

n2 = 1 −
(ωp

ω

)2
. (B.6)

Figure B.1 shows the relation between ω and n2 of (B.6). Note that n2 is
negative if ω < ωp, which means that the refractive index n takes a purely
imaginary value. This also means that the incident light is totally reflected
on the surface of the metal. Since the approximation ωτ � 1 is valid for most
metals, they have a high reflectivity and appear shiny.



C Exciton–Polariton

An exciton is the state in which an electron removed from a neutral atom
stays in an orbit around the positively charged atom in a crystal, which is
similar to the state of an electron in a free hydrogen atom. In the case of a
semiconductor, a Coulomb force acts between an electron in the conduction
band and a hole in the valence band. Therefore, an electron–hole pair behaves
like a single particle. This pair is also called an exciton. When the distance
between the electron and the hole (called the Bohr radius of the exciton)
is shorter than the distance to adjacent atoms in the crystal, it is called a
Frenkel exciton. When it is longer, the pair is called a Wannier exciton.

This appendix uses quantum theory to analyze the light–matter interac-
tion based on the exciton concept. When light (photons) impinges on matter,
it is absorbed and an exciton is created. This exciton is subsequently annihi-
lated to create a photon. These processes are repeated in matter. Since pho-
ton creation and exciton annihilation take place repeatedly, a mixed state of
photons and excitons must be described in order to analyze the light–matter
interaction.

The repeated process means that a new stationary state is formed as a
result of the interaction between a photon and an exciton. This state has
an intrinsic energy dispersion relation. (A dispersion relation is a relation
between the momentum and energy of a particle.) This state is regarded as
a polarization field, which is an elementary excitation mode, and is called a
polariton. Since we study a mixed state of the photon and exciton, it is called
an exciton–polariton [C.1–C.5]. It is a coupled state of the electromagnetic
field and the polarization field. Since the polarization with angular frequency
ω1 and the photon with angular frequency ω2 are coupled, this state is similar
to obtain a new oscillation with angular frequencies Ω1 and Ω2 by combining
two harmonic oscillators.

The Hamiltonian of the exciton–polariton can be derived by representing
the Hamiltonian of the light–electron interaction in the exciton picture. It is
expressed as

Ĥ =
∑

k

h̄ωkâ†
kâk +

∑
k

h̄εkb̂†
kb̂ +

∑
k

h̄D(âk + â†
−k)(b̂†

k + b̂−k) . (C.1)

The first, second, and third terms represent the photon energy (energy eigen-
value h̄ωk and angular frequency ωk corresponds to ω1), the exciton energy
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(energy eigenvalue h̄εk and angular frequency εk corresponds to ω2), and
the interaction energy between the photon and exciton (magnitude of the
interaction corresponds to h̄D), respectively. The creation and annihilation
operators of the photon are â†

k and âk, respectively. For the exciton, these
operators are b̂†

k and b̂k, respectively, which are derived as follows. Operators
ĉl,v and ĉ†

l,c annihilate an electron in the valence band and create an elec-
tron in the conduction band, respectively, at lattice site l. Then the creation
operator of an exciton at lattice site l is expressed as b̂†

l = ĉ†
l,cĉl,v. Similarly,

the annihilation operator is expressed as b̂l = ĉ†
l,vĉl,c. Taking all the lattice

sites into account, b̂†
k and b̂k are expressed as (1/

√
N)
∑

l exp(ik·l)b̂†
l , and

(1/
√

N)
∑

l exp(−ik · l)b̂l, respectively, where N represents the total num-
ber of lattice sites.

In order to obtain the eigenenergy of the exciton–polariton, the third term
of (C.1) is expanded and the terms âkb̂†

k (annihilating the photon and creating
the exciton) and â†

kb̂k (annihilating the exciton and creating the photon) are
kept while the terms â†

kb̂†
−k and âkb̂−k (creating or annihilating the photon

and the exciton simultaneously) are dropped. Under this approximation (a
rotating wave approximation), Ĥ is expressed as

Ĥ =
∑

k

Ĥk , (C.2)

where
Ĥk = h̄(ωkâ†

kâk + εkb̂†
kb̂k) + h̄D(b̂†

kâk + â†
kb̂k) . (C.3)

In (C.3), the term Ĥk is assumed to be diagonalized as

Ĥk = h̄(Ωk,1ξ̂
†
1ξ̂1 + Ωk,2ξ̂

†
2ξ̂2) = h̄(b̂†

k, â†
k)A
(

b̂k

âk

)

= h̄(a11b̂
†
kb̂k + a12b̂

†
kâk + a21â

†
kb̂k + a22â

†
kâk) , (C.4)

using the creation (annihilation) operators ξ̂†
1 and ξ̂†

2 (ξ̂1 and ξ̂2) for two
kinds of exciton–polaritons with angular frequencies Ω1 and Ω2, respectively.
Comparing with (C.3), we can express the 2 × 2 matrix A in (C.4) as

A =
(

a11 a12
a21 a22

)
=
(

εk D
D ωk

)
. (C.5)

After unitary transformation U of(
b̂k

âk

)
= U

(
ξ̂1

ξ̂2

)
=
(

u11 u12
u21 u22

)(
ξ̂1

ξ̂2

)
, (C.6)

and substitution of (C.6) into the right-hand side of (C.4), one has

h̄(b̂†
k, â†

k)A
(

b̂k

âk

)
= h̄(ξ̂†

1, ξ̂
†
2)U†AU

(
ξ̂1

ξ̂2

)
= h̄(ξ̂†

1, ξ̂
†
2)U−1AU

(
ξ̂1

ξ̂2

)
. (C.7)
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(Note that a unitary transformation is characterized by the relation U†U = 1
or U† = U−1.) Since the middle of (C.4) can be transformed to

h̄(Ωk,1ξ̂
†
1ξ̂1 + Ωk,2ξ̂

†
2ξ̂2) = h̄(ξ̂†

1, ξ̂
†
2)
(

Ωk,1 0
0 Ωk,2

)(
ξ̂1

ξ̂2

)
, (C.8)

we obtain

U−1AU =
(

Ωk,1 0
0 Ωk,2

)
≡ Λ , (C.9)

by equating (C.7) and (C.8). Then multiplying U from the left on both sides
of this equation, it follows that AU = UΛ, which is expressed as{

(εk − Ωk,j)u1j + Du2j = 0 ,
Du1j + (ωk − Ωk,j)u2j = 0 ,

(C.10)

for j = 1, 2, or (
εk − Ωk,1 D

D ωk − Ωk,j

)(
u1j
u2j

)
= 0 . (C.11)

Since (u1j , u2j) on the left-hand side of (C.11) is a nonzero vector, the deter-
minant of the 2 × 2 matrix on this side must be zero. From this requirement,
one derives the secular equation

(Ωk,j − εk)(Ωk,j − ωk) − D2 = 0 . (C.12)

The eigenenergies of the exciton–polariton are obtained by solving this equa-
tion to give

h̄Ωk,j = h̄

[
εk + ωk

2
±
√

(εk − ωk)2 + 4D2

2

]
. (C.13)

Substituting the dispersion relation ωk = ck between the photon energy ωk

and momentum h̄k (k = |k|) into (C.13), one derives the dispersion relation
of an exciton–polariton, i.e., the relation between an eigenenergy and mo-
mentum of the exciton–polariton. This relation is represented schematically
in Fig. C.1, in which the eigenvalue h̄εk of the exciton energy is assumed to
be constant h̄Ω for simplicity.

It is found from (C.10) that the components u1j and u2j of the eigenvector
satisfy the equation

u2j = −εk − Ωk,j

D
u1j . (C.14)

Substituting this into u2
1j + u2

2j = 1 (which holds because U is unitary), one
has [

1 +
(

εk − Ωk,j

D

)2
]

u2
1j = 1 . (C.15)
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k

Fig. C.1. Dispersion relation of the exciton–polariton. The angular frequency Ω
is proportional to the eigenenergy h̄Ω of the exciton

Thus the eigenvector of the exciton–polariton is represented by⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u1j =

[
1 +
(

εk − Ωk,j

D

)2
]−1/2

,

u2j = −
(

εk − Ωk,j

D

)[
1 +
(

εk − Ωk,j

D

)2
]−1/2

,

(C.16)

for j = 1, 2. The exciton–polariton, i.e., the stationary state of the light–
matter interaction, can be described by (C.13) and (C.16).



D Derivation of Equations in Chapter 8

Several key equations in Chap. 8 are derived in this appendix. For the details
of basic concepts used in this appendix, the reader is recommended to refer
to the related references and papers [D.1–D.14].

D.1 Derivation of (8.1)

Consider a system consisting of charged particles which is localized in a mi-
croscopic space. For convenience, it is called a molecule in this section. To
avoid confusion, an electric dipole moment is represented by μ, not by p.
The electric charge, mass, position, velocity, and momentum of the charged
particle are represented by e, m, q, q̇, and p, respectively. In order to derive
an interaction Hamiltonian of (8.1) for a two-molecule system, the following
four approximations are made:

1. In the case when the wavelength of the electromagnetic fields is longer
than the size of the molecule, the vector potential A is approximated
as a constant irrespective of the position q of the electric charge in the
molecule. Under this approximation, the vector potential is represented
by the value at the center of gravity R of the molecule, i.e.,

A(q) = A(R) . (D.1)

2. The interaction between the molecule and the magnetic field is neglected
because B (= ∇ × A) is zero [see (1)].

3. Only the electric dipole interacts with the electromagnetic fields, i.e., the
higher-order multipoles are neglected.

4. The interaction between the molecules due to electron exchange is ne-
glected.

Under these approximations, the Lagrangian L for the two-molecule system
is given by [D.1–D.3]

L = Lmol + Lrad + Lint , (D.2a)

where
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Lmol =
∑
ζ

[∑
α

mαq̇2
α(ζ)

2
− V (ζ)

]
, (D.2b)

Lrad =
ε0

2

∫ [
Ȧ

2 − c2(∇ × A)2
]

d3r , (D.2c)

Lint =
∑
ζ

∑
α

eq̇α(ζ)·A(Rζ) − Vinter . (D.2d)

Greek letters ζ and α are used in (D.2b) and (D.2d) in order to discriminate
the two molecules and electric charges, respectively. The Lagrangian Lmol
of (D.2b) represents the difference between the kinetic energy and potential
energy of the Coulomb force. On the other hand, Lrad of (D.2c) and Lint of
(D.2d) represent the electromagnetic field energy in the free space and the
interaction energy between the electric charge and the electromagnetic fields,
respectively. Using the electric dipole moments μ(1) and μ(2) of the two
molecules, the intermolecular Coulomb interaction energy Vinter in (D.2d) is
expressed as [D.3,D.4]

Vinter =
1

4πε0R3

{
μ(1)·μ(2) − 3

[
μ(1)·eR

][
μ(2)·eR

]}
, (D.3)

where R (= |R| = |R2 − R1|) is the distance between the two molecules and
eR is a unit vector along R.

In order to derive a simple form of the interaction Hamiltonian Hint, the
original Lagrangian L of (D.2a) is transformed by

Lmult = L − d
dt

∫
P ⊥(r)·A(r)d3r , (D.4)

where P ⊥(r) is the transverse component of the polarization P (r),

P (r) =
∑
ζ,α

e
[
qα(ζ) − Rζ

]
δ(r − Rζ)

= μ(1)δ(r − R1) + μ(2)δ(r − R2) . (D.5)

Here, the term ‘transverse’ indicates that the vector under consideration is
vertical with respect to the wave vector k, i.e., only the transverse photons
to the relevant process.

By noting that the transverse component j⊥(r) of the current density
j(r), viz.,

j(r) =
∑
ζ,α

eq̇αδ(r − Rζ) , (D.6)

satisfies the relation
dP ⊥(r)

dt
= j⊥(r) , (D.7)
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equation (D.2d) can be transformed to

Lint =
∫

j⊥(r)·A(r)d3r − Vinter =
∫

dP ⊥(r)
dt

·A(r)d3r − Vinter , (D.8)

so that (D.4) reduces to

Lmult = L −
∫

dP ⊥

dt
·A(r)d3r −

∫
P ⊥(r)·Ȧ(r)d3r

= Lmol + Lrad −
∫

P ⊥(r)·Ȧ(r)d3r − Vinter . (D.9)

Further, the momenta pα and Π(r), which are conjugate to qα and A(r),
respectively, are given as

pα =
∂Lmult

∂q̇α

=
∂Lmol

∂q̇α

= mαq̇α , (D.10)

and

Π(r) =
∂Lmult

∂Ȧ(r)
=

∂Lrad

∂Ȧ(r)
− ∂

∂Ȧ(r)

∫
P ⊥(r)·Ȧ(r)d3r

= ε0Ȧ(r) − P ⊥(r) = −ε0E
⊥(r) − P ⊥(r) . (D.11)

Using the electric flux density D(r) defined by (A.16a) of Appendix A,

D(r) = ε0E(r) + P (r) , (D.12)

the conjugate momentum Π(r) is written as

Π(r) = −D⊥(r) . (D.13)

Thus, by eliminating q̇α and Ȧ(r) with the help of (D.9)–(D.11), the Hamil-
tonian Hmult is represented by

Hmult =
∑
ζ,α

pα(ζ)·q̇α(ζ) +
∫

Π(r)·Ȧ(r)d3r − Lmult

=
∑
ζ

[∑
α

p2
α(ζ)

2mα
+ V (ζ) +

1
2ε0

∫
|P ⊥

ζ (r)|2d3r

]

+
{

1
2

∫ [
Π2(r)

ε0
+ ε0c

2[∇ × A(r)
]2]d3r

}

+
1
ε0

∫
P ⊥(r)·Π(r)d3r , (D.14)

where the relation
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Vinter +
1
ε0

∫
P ⊥

1 (r)·P ⊥
2 (r)d3r = 0 (D.15)

has been used. To see this, note that P 2(r) = P
‖
2(r) + P ⊥

2 (r),∫
P ⊥

1 (r)·P 2(r)d3r =
∫

P ⊥
1 ·[P ‖

2(r) + P ⊥
2 (r)

]
d3r =

∫
P ⊥

1 (r)·P ⊥
2 (r)d3r ,

and use (D.5) that the polarization is expressed as

P (r) = μ(1)δ(r − R1) + μ(2)δ(r − R2) ,

to obtain
1
ε0

∫
P ⊥

1 (r)·P ⊥
2 (r)d3r =

1
ε0

∫
P ⊥

1 (r)·P 2(r)d3r

=
μi(1)μj(2)

ε0

∫
δ⊥
ij(r − R1)·δ(r − R2)d3r

=
μi(1)μj(2)

ε0
δ⊥
ij(R1 − R2)

=
1

4πε0R3 μi(1)μj(2)(3êRiêRj − δij)

=
1

4πε0R3

{
3
[
μ(1)·eR

][
μ(2)·eR

]− μ(1)·μ(2)
}

.

This is equal to (D.3) except that the sign is opposite. Thus, the right-hand
side of (D.15) is found to be zero.

Returning to (D.14), the first and second terms on the right-hand side rep-
resent the motion of charged particles in each molecule and the electromag-
netic fields in the free space, respectively. The third term represents the inter-
action between the charged particles and the electromagnetic fields. A Hamil-
tonian of the form given by (D.14) is called a multipolar Hamiltonian because
the polarization P (r) on the right-hand side of (D.14) can be expressed by
a dipole, quadrupole, . . ., and the 2l th pole moment (l = 1, 2, 3, . . .).

The last term of (D.14) can be transformed by using (D.5) and (D.13),
and is expressed as

1
ε0

∫
P ⊥(r)·Π(r)d3r = − 1

ε0

∫
P ⊥(r)·D⊥(r)d3r (D.16)

= − 1
ε0

∫
P (r)·D⊥(r)d3r

= − 1
ε0

[
μ(1)·D⊥(R1) + μ(2)·D⊥(R2)

]
.

Since the system under study is quantized, the quantities μ(1), μ(2), D⊥(R1),
and D⊥(R2) of (D.16) must be replaced by the quantum mechanical opera-

tors μ̂(1), μ̂(2), D̂
⊥

(R1), and D̂
⊥

(R2). Then the second line of (D.16) can
be regarded as an interaction Hamiltonian operator V̂ , which is expressed as
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V̂ = − 1
ε0

[
μ̂(1)·D̂⊥

(R1) + μ̂(2)·D̂⊥
(R2)

]
. (D.17)

From the approximation (1) mentioned at the beginning of this section,

D̂
⊥

(R1) and D̂
⊥

(R2) can be replaced by the electric flux density operators
D̂(rS) and D̂(rP) at the positions rS and rP of electric charges, respectively.
Further, by representing μ̂(1) and μ̂(2) as pS and pP, respectively, (D.17)
can be reduced to (8.1).

Equation (8.1), i.e., representation by the multipolar Hamiltonian, has
several advantages:

• it can describe the molecular interaction induced via a photon of the trans-
verse wave, because the static Coulomb interaction is not included,

• retardation effect is included,
• the Hamiltonian is expressed in a simple form.

D.2 Derivation of (8.2)

In the quantum theory of the electromagnetic field, the vector potential,
its conjugate momentum, the electric field, and the electric flux density are
quantum mechanical operators Â, Π̂, Ê, and D̂, respectively. Among them,
Â and Π̂ are represented by analogy with the mode expansion in the classical
theory as

Â(r) =
∑

k

2∑
λ=1

(
h̄

2ε0V ωk

)1/2

eλ(k)
[
âλ(k)eik·r + â†

λ(k)e−ik·r] , (D.18)

and

Π̂(r) = ε0
∂Â

∂t
(D.19)

= −i
∑

k

2∑
λ=1

(
h̄ε0ωk

2V

)1/2

eλ(k)
[
âλ(k)eik·r − â†

λ(k)e−ik·r] ,

respectively. Since the relation between the electric field Ê and the electric
flux density D̂ is expressed by using the polarization P̂ as [see (A.16a) of
Appendix A]

D̂(r) = ε0Ê(r) + P̂ (r) , (D.20)

the relation between the conjugate momentum Π̂ and the electric flux density
D̂ for the Hamiltonian of (D.14) is given from (D.11) and (D.13) as

Π̂(r) = ε0
∂Â

∂t
− P̂ (r) = −ε0Ê

⊥
(r) − P̂

⊥
(r) = −D̂

⊥
(r) . (D.21)
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Thus, using (D.19) and (D.21), one obtains

D̂(r) =
∑

k

2∑
λ=1

i
(

ε0h̄ωk

2V

)1/2

eλ(k)
[
âλ(k)eik·r − â†

λ(k)e−ik·r] ,

which is identical to(8.2).

D.3 Derivation of (8.3)

Substituting (8.2) and an electric dipole operator p̂α = [B̂(rα) + B̂†(rα)]pα

into (8.1), one derives

V̂ = − i
ε0

P∑
α=S

∑
k

2∑
λ=1

[
B̂(rα) + B̂†(rα)

]
pα·eλ(k)

(
ε0h̄ωk

2V

)1/2

. (D.22)

In order to transform this equation, we use the following relations between
annihilation and creation operators for photons (âλ(k), â†

λ(k)) and exciton–
polaritons (ξ̂(k), ξ̂†(k)) as

âλ(k) = wλ(k)ξ̂(k) − yλ(k)ξ̂†(−k) , (D.23a)

â†
λ(k) = wλ(k)ξ̂†(k) − yλ(k)ξ̂(−k) , (D.23b)

b̂λ(k) = Xλ(k)ξ̂(k) − Zλ(k)ξ̂†(−k) , (D.23c)

b̂†
λ(k) = Xλ(k)ξ̂†(k) − Zλ(k)ξ̂(−k) . (D.23d)

The relations represented by (D.23a–d) correspond to (C.6) of Appendix C.
However, the creation and the annihilation operators of exciton–polaritons
are both required here because the rotating wave approximation is not em-
ployed. Elements of the matrix U in (C.6) correspond to the coefficients
wλ(k), yλ(k), Xλ(k), and Zλ(k). By deriving the inverse matrix of U , the
creation and annihilation operators of the exciton–polariton can be expressed
in terms of those of the photon and exciton as

ξ̂†(k) =
∑
λ

[
wλ(k)â†(k) + yλ(k)âλ(−k)

]
+
∑
λ′

[
Xλ′(k)b̂†

λ′(k) + Zλ′(k)b̂λ′(−k)
]

, (D.24a)

ξ̂(k) =
∑
λ

[
wλ(k)âλ(k) + yλ(k)â†

λ(−k)
]

+
∑
λ′

[
Xλ′(k)b̂λ′(k) + Zλ′(k)b̂†

λ′(−k)
]

, (D.24b)

respectively. The coefficients wλ(k), yλ(k), Xλ(k), and Zλ(k) are derived by
solving a secular equation based on (D.24a) and (D.24b), as shown in (C.10)
of Appendix C. The results are [D.5–D.9]
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wλ(k) =
Ω(k) + ωk

2
√

Ω(k)ωk

Ω2(k) − Ω2√[
Ω2(k) − Ω2

]2 +
[
Ω2(k) − ω2

k

][
Ω2(k) − Ω2

] ,

(D.25a)

yλ(k) = −Ω(k) − ωk

Ω(k) + ωk
wλ(k) . (D.25b)

Thus it follows

wλ(k) + yλ(k) =
√

wk

Ω(k)
Ω2(k) − Ω2√[

Ω2(k) − Ω2
]2 +

[
Ω2(k) − ω2

k

][
Ω2(k) − Ω2

] .

(D.26)

On the other hand, (D.22) is transformed to

V̂ = −i
P∑

α=S

∑
k

2∑
λ=1

[
B̂(rα) + B̂†(rα)

][
pα·eλ(k)

]√ h̄ωk

2ε0V

×
{

[wλ(k)ξ̂(k) − yλ(k)ξ̂†(−k)]eik·rα

−[wλ(k)ξ̂†(k) − yλ(k)ξ̂(−k)]e−ik·rα

}
, (D.27)

by using (D.23a) and (D.23b). Swapping −k and k in { } in (D.27) and
using the relations wλ(k) = wλ(−k), yλ(k) = yλ(−k), Xλ(k) = Xλ(−k),
and Zλ(k) = Zλ(−k), (D.27) can be rewritten as

V̂ = −i
P∑

α=S

∑
k

2∑
λ=1

(
h̄ωk

2ε0V

)1/2 [
B̂(rα) + B̂†(rα)

][
pα·eλ(k)

]
×
{

[wλ(k) + yλ(k)][ξ̂(k)eik·rα − ξ̂†(k)e−ik·rα ]
}

, (D.28)

with ωk = ck. Substituting (D.26) into this equation, one has

V̂ = −i
p∑

α=s

∑
k

2∑
λ=1

√
h̄

2ε0V

[
B̂(rα) + B̂†(rα)

][
pα·eλ(k)

]
(D.29)

× ck√
Ω(k)

Ω2(k) − Ω2√[
Ω2(k) − Ω2

]2 +
[
Ω2(k) − (ck)2

][
Ω2(k) − Ω2

] .

Further, substituting the following relations into (D.29),

Kα(k) =
2∑

λ=1

[
pα·eλ(k)

]
f(k)eik·rα ,

K∗
α(k) =

2∑
λ=1

[
pα·eλ(k)

]
f(k)e−ik·rα ,

(D.30)
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and

f(k) =
ck√
Ω(k)

Ω2(k) − Ω2√[
Ω2(k) − Ω2

]2 +
[
Ω2(k) − Ω2

][
Ω2(k) − (ck)2

]
=

ck√
Ω(k)

√
Ω2(k) − Ω2

2Ω2(k) − (ck)2 − Ω2 , (D.31)

which correspond to (8.4a) and (8.4b), one finally obtains

V̂ = −i
√

h̄

2ε0V

P∑
α=S

[
B̂(rα) + B̂†(rα)

]∑
k

[
Kα(k)ξ̂(k) − K∗

α(k)ξ̂†(k)
]

,

(D.32)
which is none other than (8.3). For more details about the derivation of (8.3),
the reader is referred to [D.5–D.9].

D.4 Projection Operator Method
and Derivation of (8.5)

D.4.1 Definition of a Projection Operator

When a material system interacts with electromagnetic fields, the total
Hamiltonian Ĥ can be expressed as the sum of the Hamiltonian for the iso-
lated system Ĥ0 and the interaction Hamiltonian V̂ , viz.,

Ĥ = Ĥ0 + V̂ . (D.33)

Eigenstates |ψj〉 of Ĥ satisfy the following eigenequation with eigenvalues Ej

as
Ĥ|Ψj〉 = Ej |Ψj〉 . (D.34)

The eigenstate of Ĥ0 is represented by |φj〉, which corresponds to |φ1〉 and
|φ2〉 of Sect. 8.1. Using these eigenstates, the operator P is defined as

P =
N∑

j=1

|φj〉〈φj | , (D.35)

which is called a projection operator. In Sect. 8.2, the projection operator
was defined by fixing N = 2, i.e., by using two states |φ1〉 and |φ2〉. Applying
this operator to an arbitrary state |Ψ〉, one derives

P |Ψ〉 =
N∑

j=1

|φj〉〈φj |Ψ〉 . (D.36)



D.4 Projection Operator Method and Derivation of (8.5) 173

Since the inner product 〈φj |Ψ〉 is a constant denoted by cj , the right-hand
side of this equation is expressed as

∑N
j=1 cj |φj〉. This means that the oper-

ator P projects the arbitrary state |Ψ〉 onto the state vector space (P -space)
composed of the states |φj〉 (j = 1, . . . , N). The reason why the P -space is
composed of only two states |φ1〉 and |φ2〉 is to make the discussion as simple
as possible by limiting the number of energy eigenstates of the sample and
probe in the subsystem (N). The states of the subsystem (M) are taken into
account implicitly by the form of the effective operator.

Using the operator P , one can derive an operator Ôeff in the P -space
which is used to calculate the expectation value 〈Ψ |Ô|Ψ〉 of the arbitrary
operator Ô and state |Ψ〉, i.e., to represent it in the form 〈φi|Ôeff |φj〉. This
operator Ôeff is called an effective operator because it is equivalent to the
original operator Ô as long as it is used in the P -space [D.9–D.14]. Several
characteristics of the operator P are listed in the following as a preparation
for deriving the effective operator Ôeff in Sect. D.4.2.

Since |φj〉 is orthonormal, the relations

P = P † , P 2 = P (D.37)

hold, where P † is the Hermitian conjugate operator of P . Since P = P † [see
(D.37)], P is a Hermitian operator.

The projection operator onto the complementary space of P (Q-space) is
given by

Q = 1 − P , (D.38)

and the relations
Q = Q† , Q2 = Q (D.39)

then hold. Further, since any states in the P -space are mutually orthogonal
to any states in the Q-space, the relation

PQ = QP = 0 (D.40)

must hold. Since |φj〉 is an eigenstate of Ĥ0, the commutator of the projection
operator and Ĥ0 vanishes:

[P, Ĥ0] = PĤ0 − Ĥ0P , [Q, Ĥ0] = QĤ0 − Ĥ0Q = 0 (D.41)

D.4.2 Derivation of an Effective Operator

This section is concerned with the effective operator Ôeff derived by using
the operators P and Q. Since an arbitrary state |Ψ〉 is expressed as a linear
superposition of the eigenstates |Ψj〉 of Ĥ, the following discussions are made
not for |Ψ〉 but for |Ψj〉.

Using the eigenstate |Ψj〉, the states |Ψ (1)
j 〉 and |Ψ (2)

j 〉 in the P - and Q-
spaces, respectively, are defined by
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|Ψ (1)
j 〉 = P |Ψj〉 , |Ψ (2)

j 〉 = Q|Ψj〉 . (D.42)

Noting that P + Q = 1, one derives

|Ψj〉 = (P + Q)|Ψj〉 = P |Ψj〉 + Q|Ψj〉 = |Ψ (1)
j 〉 + |Ψ (2)

j 〉 . (D.43)

On the other hand, using the relations P 2 = P and Q2 = Q [see (D.37) and
(D.39)], one finds

P |Ψ (1)
j 〉 = PP |Ψj〉 = P |Ψj〉 = |Ψ (1)

j 〉 , (D.44a)

Q|ψ(2)
j 〉 = QQ|ψj〉 = Q|ψj〉 = |ψ(2)

j 〉 . (D.44b)

Substituting (D.44a) and (D.44b) into (D.43), one has

|Ψj〉 = P |Ψ (1)
j 〉 + Q|Ψ (2)

j 〉 . (D.45)

Since the relation (Ej − Ĥ0)|Ψj〉 = V̂ |Ψj〉 holds due to (D.33) and (D.34),
substitution of (D.45) into this relation leads to

(Ej − Ĥ0)P |Ψ (1)
j 〉 + (Ej − Ĥ0)Q|Ψ (2)

j 〉 = V̂ P |Ψ (1)
j 〉 + V̂ Q|Ψ (2)

j 〉 . (D.46)

Applying the operator P from the left on (D.46) and using (D.40) and the
relation P 2 = P , we obtain

(Ej − Ĥ0)P |Ψ (1)
j 〉 = PV̂ P |Ψ (1)

j 〉 + PV̂ Q|Ψ (2)
j 〉 . (D.47)

Similarly, applying the operator Q from the left on (D.46) and using (D.40)
and the relation Q2 = Q, one derives

(Ej − Ĥ0)Q|Ψ (2)
j 〉 = QV̂ P |Ψ (1)

j 〉 + QV̂ Q|Ψ (2)
j 〉 . (D.48)

Moving the second term on the right-hand side to the left-hand side, (D.48)
can be transformed to

Q|Ψ (2)
j 〉 = (Ej − Ĥ0 − QV̂ )−1QV̂ P |Ψ (1)

j 〉

=
{

(Ej − Ĥ0)[1 − (Ej − Ĥ0)−1QV̂ ]
}−1

QV̂ P |Ψ (1)
j 〉

= Ĵ(Ej − Ĥ0)−1QV̂ P |Ψ (1)
j 〉 , (D.49)

where
Ĵ =
[
1 − (Ej − Ĥ0)−1QV̂

]−1
. (D.50)

Equation (D.49) shows that Q|Ψ (2)
j 〉 is formally expressed by |Ψ (1)

j 〉.
Substitution of (D.49) into (D.47) gives

(Ej − Ĥ0)P |Ψ (1)
j 〉 = PV̂ P |Ψ (1)

j 〉 + PV̂ Ĵ(Ej − Ĥ0)−1QV̂ P |Ψ (1)
j 〉

= PV̂ Ĵ
[
Ĵ−1 + (Ej − Ĥ0)−1QV̂

]
P |Ψ (1)

j 〉 . (D.51)



D.4 Projection Operator Method and Derivation of (8.5) 175

Since (D.50) leads to

Ĵ−1 = 1 − (Ej − Ĥ0)−1QV̂ , (D.52)

substituting it into the square brackets on the right-hand side of (D.51) we
have

(Ej − Ĥ0)P |Ψ (1)
j 〉 = PV̂ ĴP |Ψ (1)

j 〉 . (D.53)

This is the equation for |Ψ (1)
j 〉. On the other hand, by substituting (D.49)

into the second term on the right-hand side of (D.45), one finds

|Ψj〉 = P |Ψ (1)
j 〉 + Ĵ(Ej − Ĥ0)−1QV̂ P |Ψ (1)

j 〉
= Ĵ
[
Ĵ−1 + (Ej − Ĥ0)−1QV̂

]
P |Ψ (1)

j 〉
= ĴP |Ψ (1)

j 〉 , (D.54)

in which (D.52) was used to derive the last line.
Substituting (D.54) into the normalization condition 〈Ψj |Ψj〉 = 1, one

derives
〈Ψ (1)

j |P Ĵ†ĴP |Ψ (1)
j 〉 = 1 . (D.55)

This reads
〈Ψ (1)

j |(P Ĵ†ĴP )1/2(P Ĵ†ĴP )1/2|Ψ (1)
j 〉 = 1 , (D.56)

which shows that |Ψ (1)
j 〉 can also be normalized if (P Ĵ†ĴP )−1/2|Ψ (1)

j 〉 is

defined as |Ψ (1)
j 〉. Therefore, substituting (P Ĵ†ĴP )−1/2|Ψ (1)

j 〉 into |Ψ (1)
j 〉 of

(D.54), this equation becomes

|Ψj〉 = ĴP (P Ĵ†ĴP )−1/2|Ψ (1)
j 〉 , (D.57)

in which all the states are normalized.
Equation (D.57) expresses |Ψj〉 in terms of |Ψ (1)

j 〉. The effective operator
Ôeff can be derived by using this equation and equating the expectation
values of the operators Ô and Ôeff . Hence, the operator Ôeff satisfying

〈Ψi|Ô|Ψj〉 = 〈Ψ (1)
i |Ôeff |Ψ (1)

j 〉 (D.58)

is found by comparing both sides of (D.58) after substituting (D.57) into the
left-hand side of (D.58). As a final result, we have

Ôeff = (P Ĵ†ĴP )−1/2(P Ĵ†ÔĴP )(P Ĵ†ĴP )−1/2 . (D.59)

Having obtained the effective operator Ôeff of (D.59), an effective inter-
action operator V̂eff in the P -space can be derived if Ô in (D.59) is replaced
by V̂ . It can be written as

V̂eff = (P Ĵ†ĴP )−1/2(P Ĵ†V̂ ĴP )(P Ĵ†ĴP )−1/2 ,

leading to (8.5). As expected, V̂eff is defined so as to operate only on the
states in the P -space.



176 D Derivation of Equations in Chapter 8

D.5 Approximation of Ĵ in (8.5) by Ĵ (1)

In order to obtain an explicit expression for Ĵ , let us consider an operator
[Ĵ , Ĥ0]P and apply it to |φj〉. This yields

[Ĵ , Ĥ0]P |Ψj〉 = (ĴĤ0 − Ĥ0Ĵ)P |Ψj〉
=
[
(Ej − Ĥ0)Ĵ − Ĵ(Ej − Ĥ0)

]
P |Ψj〉 . (D.60)

Replacing (Ej − Ĥ0) in this equation by V̂ with the help of (D.33), (D.34),
and (D.54), one derives

[Ĵ , Ĥ0]P |Ψj〉 = V̂ ĴP |Ψj〉 − Ĵ(Ej − Ĥ0)P |Ψj〉 . (D.61)

The second term of the right-hand side is transformed to

(Ej − Ĥ0)P |Ψj〉 = (Ej − Ĥ0)P |Ψ (1)
j 〉

= PV̂ P |Ψ (1)
j 〉 + PV̂ Q|Ψ (2)

j 〉 , (D.62)

by using (D.44a) and (D.47). Further, by substituting (D.49) into Q|Ψ (2)
j 〉 in

the second term on the right-hand side, this equation can be rewritten as

(Ej − Ĥ0)P |Ψj〉 = PV̂ P |Ψ (1)
j 〉 + PV̂ Ĵ(Ej − Ĥ0)−1QV̂ P |Ψ (1)

j 〉
= PV̂ Ĵ

[
Ĵ−1 + (Ej − Ĥ0)−1QV̂

]
P |Ψ (1)

j 〉 , (D.63)

or, by substituting (D.52) into the right-hand side, this equation reduces to

(Ej − Ĥ0)P |Ψj〉 = PV̂ ĴP |Ψ (1)
j 〉 . (D.64)

Making use of (D.44a) to rewrite the right-hand side, one finds the relation

(Ej − Ĥ0)P |Ψj〉 = PV̂ ĴP |Ψj〉 . (D.65)

Substituting this equation into the second term on the right-hand side of
(D.61), we finally obtain

[Ĵ , Ĥ0]P |Ψj〉 = V̂ ĴP |Ψj〉 − ĴP V̂ ĴP |Ψj〉 . (D.66)

From this equation, it follows that

[Ĵ , Ĥ0]P = V̂ ĴP − ĴP V̂ ĴP . (D.67)

Since this equation is expressed by known operators Ĥ0, P , and V̂ , we can
determine the operator Ĵ , solving the equation. Here we follow a perturbative
method with respect to the magnitude of the interaction. For this derivation,
let us assume
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Ĵ =
∞∑

n=0

g(n)Ĵ (n) , (D.68)

where the n th term Ĵ (n) contains n V̂ s and

Ĵ (0) = P . (D.69)

Equation (D.69) can be derived by noting that the first term of (D.50) is 1
and 1 = P + Q due to (D.38).

We successively obtain Ĵ (1), Ĵ (2), . . ., Ĵ (n), substituting (D.68) and (D.69)
into (D.67) and equating terms of order g(n) on both sides of (D.67). For Ĵ (1),
as an example, Q is applied from the left to both sides of (D.67) to have

Q[Ĵ (1), Ĥ0]P = QV̂ Ĵ (0)P − QĴ (0)PV̂ Ĵ (0)P . (D.70)

By substituting (D.69) into this equation, it reads

Q[Ĵ (1), Ĥ0]P = QV̂ P 2 − QP 2V̂ P 2 = QV̂ P , (D.71)

where the last term was obtained by using (D.37) and (D.40). Taking the
matrix element of (D.71) with 〈Ψi| and |Ψj〉, we obtain

〈Ψi|Q[Ĵ (1), Ĥ0]P |Ψj〉 = 〈Ψi|QV̂ P |Ψj〉 . (D.72)

Further, noting that

Ĥ0P |Ψj〉 = Ĥ0P |Ψ (1)
j 〉 = PĤ0|Ψ (1)

j 〉 = PE0
P |Ψ (1)

j 〉 = E0
P P |Ψj〉 (D.73)

and

Ĥ0Q|Ψj〉 = Ĥ0Q|Ψ (2)
j 〉 = QĤ0|Ψ (2)

j 〉 = QE0
Q|Ψ (2)

j 〉 = E0
QQ|Ψj〉 , (D.74)

we can transform the left-hand side of (D.72) to

〈Ψi|Q(Ĵ (1)Ĥ0 − Ĥ0Ĵ
(1))P |Ψj〉 = 〈Ψi|(QĴ (1)E0

P P − QE0
QĴ (1)P )|Ψj〉

= 〈Ψi|(QĴ (1)(E0
P − E0

Q)P )|Ψj〉 . (D.75)

On the other hand, the right-hand side of (D.72) is rewritten as

〈Ψi|QV̂ P |Ψj〉 = 〈Ψi|Q2V̂ P 2|Ψj〉 , (D.76)

by using (D.37) and (D.39). Substituting (D.75) and (D.76) into (D.72) and
comparing both sides, one finds

QĴ (1)(E0
P − E0

Q)P = Q2V̂ P 2 . (D.77)

Thus, one derives
Ĵ (1) = (E0

P − E0
Q)−1QV̂ P , (D.78)

which is proportional to V̂ . The operator Ĵ (2) can be obtained similarly. It
is proportional to V̂ 2. The n th term Ĵ (n) can be derived by repeating this
procedure.
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D.6 Derivation of (8.9)

We begin with the two states in the P -space{
|φ1〉 = |se〉|pg〉|0(M); k, Ω(k)〉 ,

|φ2〉 = |sg〉|pe〉|0(M); k, Ω(k)〉 ,
(D.79)

and the effective interaction

V̂eff = 2PV̂ Q(E0
P − E0

Q)−1V̂ P . (D.80)

With the help of (D.79) and (D.80), (8.8) is transformed to

Veff(ps) = 2
∑
m

〈0(M); k, Ω(k)|〈pe|〈sg|PV̂ Q|m〉

×〈m|Q(E0
P − E0

Q)−1V̂ P |se〉|pg〉|0(M); k, Ω(k)〉 . (D.81)

Note that, as has been shown in (8.3), V̂ contains two terms:

• the term composed of B̂(rα) and B̂†(rα) to be applied to |s〉|p〉 of the
subsystem (N),

• the term composed of ξ̂(k) and ξ̂†(k) to be applied to |0(M); k, Ω(k)〉 of
the subsystem (M).

Furthermore, due to the orthogonality of the state, Veff(ps) corresponds to
nonzero only when the subsystem (M) in the intermediate state |m〉 is the
state |1(M); k, Ω(k)〉, in which one exciton–polariton exists. Then, since only
the state |sg〉|pg〉|1(M); k, Ω(k)〉 or |se〉|pe〉|1(M); k, Ω(k)〉 in the Q-space can
contribute to the interaction with a state of the P -space, (D.81) can be
rewritten as

Veff(ps) = 2
∑

k

NKP(k)〈pe|〈sg|B̂†(rP)|sg〉|pg〉

×〈0(M); k, Ω(k)|ξ̂(k)|1(M); k, Ω(k)〉(E0
P − E0

Q)−1

×(−K∗
S(k)N)〈pg|〈sg|B̂(rS)|se〉|pg〉

×〈1(M); k, Ω(k)|ξ̂†(k)|0(M); k, Ω(k)〉
+2
∑

k

NKS(k)〈pe|〈sg|B̂(rS)|se〉|pe〉

×〈0(M); k, Ω(k)|ξ̂(k)|1(M); k, Ω(k)〉(E0
P − E0

Q)−1

×(−K∗
P(k)N)〈pe|〈se|B̂†(rP)|se〉|pg〉

×〈1(M); k, Ω(k)|ξ̂†(k)|0(M); k, Ω(k)〉 , (D.82)

where N is derived from (8.3) and given by

N = −i
(

h̄

2ε0V

)1/2

. (D.83)
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Noting that the state vectors are normalized, i.e.,

〈sg|sg〉 = 〈pg|pg〉 = 〈pe|pe〉 = 〈se|se〉 = 1 ,

〈pe|B̂†(rP)|pg〉 = 〈sg|B̂(rS)|se〉 = 1 ,

〈0(M); k, Ω(k)|ξ̂(k)|1(M); k, Ω(k)〉 = 〈1(M); k, Ω(k)|ξ̂(k)†|1(M); k, Ω(k)〉 = 1 ,
(D.84)

we can express Veff(ps) in the following form:

Veff(ps) = 2
∑

k

[
NKP(k)

][− K∗
S(k)N

][
E(s∗) + E(p)

]− [E(s) + E(p) + h̄Ω(k)
]

+2
∑

k

[
NKS(k)

][− K∗
P(k)N

][
E(s∗) + E(p)

]− [E(s∗) + E(p∗) + h̄Ω(k)
]

=
∑

k

2N2

h̄

[
KP(k)K∗

S(k)
Ω(k) − Ω0(s)

+
KS(k)K∗

P(k)
Ω(k) + Ω0(p)

]
. (D.85)

The ground and excited eigenenergies of the state |s〉 are expressed as E(s)
and E(s∗), respectively, in this equation in order to calculate the values of
E0

P or E0
Q. On the other hand, those for the |p〉 state are expressed as E(p)

and E(p∗), respectively. Differences between the excited and ground state
energies are expressed as h̄Ω0(s) = E(s∗)−E(s) and h̄Ω0(p) = E(p∗)−E(p).
Substitution of (D.83) and usual transformation from

∑
k to

∫
d3k gives

(D.85)

Veff(ps) = − 1
(2π)3ε0

∫
d3k

[
KP(k)K∗

S(k)
Ω(k) − Ω0(s)

+
KS(k)K∗

P(k)
Ω(k) + Ω0(p)

]
, (D.86)

which is none other than (8.9).

D.7 Derivation of (8.12)

One should note the three points (a)–(c) given in Sect. 8.2 in order to integrate
(8.9). That is, (8.10a), (8.10b), and (8.11) are used. Further, with respect
to KP(k) and KS(k), all the terms in (8.4) except for the term eik·rα are
approximated as constants because f(k) of (8.11) is nearly constant. (It has
been confirmed by more detailed analyses that the results given in this section
can be derived without using this approximation [D.9].) Then (8.9) becomes
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Veff(ps) = − 1
(2π)3ε0

∫
d3k

×

⎡
⎢⎢⎢⎢⎢⎣

2∑
λ=1

3∑
i=1

3∑
j=1

pPi

[
ei·eλ(k)

]
pSj

[
ej·eλ(k)

]
eik·(rP−rS)

(
h̄k2

2mP
+ Ω

)
− 3h̄

2meS

(
π

aS

)2

+

2∑
λ=1

3∑
i=1

3∑
j=1

pSj

[
ej·eλ(k)

]
pPi

[
ei·eλ(k)

]
eik·(rS−rP)

(
h̄k2

2mP
+ Ω

)
− 3h̄

2meP

(
π

aP

)2

⎤
⎥⎥⎥⎥⎥⎦

= − 1
(2π)3ε0

2∑
λ=1

3∑
i=1

3∑
j=1

pPipSj ×
∫

d3k
[
ei·eλ(k)

][
ej·eλ(k)

]

eik·r

⎧⎪⎪⎨
⎪⎪⎩

1
h̄

2mP

[
k2 −

(
3π2mP

meSa2
S

− 2mPΩ

h̄

)]

+
1

h̄

2mP

[
k2 +

(
3π2mP

mePa2
P

− 2mPΩ

h̄

)]
⎫⎪⎪⎬
⎪⎪⎭ . (D.87)

Define μl and μh by

μl =
(

3π2mP

meSa2
S

− 2mPΩ

h̄

)1/2

, μh =
(

3π2mP

mePa2
P

+
2mPΩ

h̄

)1/2

. (D.88)

Since this equation shows that μl < μh, the suffixes l and h are used, which are
the first letters of ‘light’ and ‘heavy’, respectively. We then use the formula

1
(2π)3

∫
exp(ik · r)
k2 + m2 d3k =

exp(−mr)
4πr

,

which is derived as follows. Cartesian coordinates (kx, ky, kz) are fixed by
taking the direction of kz along that of r, as shown in Fig. D.1. Transforming
this to spherical coordinates, one derives relations d3k = k2 sin θdkdθdφ and
k = (k sin θ cos φ, k sin θ sin φ, k cos θ). The right-hand side of the formula
becomes
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1
(2π)3

∫
exp(ik · r)
k2 + m2 d3k =

1
(2π)3

∫ 2π

0
dφ

∫ π

0
sin θdθ

∫ ∞

0
dk

k2 exp(ikr cos θ)
k2 + m2

=
1

(2π)2

∫ ∞

0
dk

∫ π

0
sin θdθeikr cos θ k2

k2 + m2

by using these relations. Carrying out the integral with respect to θ, one
derives

1
(2π)2

∫ ∞

0
dk

∫ π

0
sin θdθeikr cos θ k2

k2 + m2

=
1

(2π)2

∫ ∞

0
dk

k2

k2 + m2

[
eikr − e−ikr

ikr

]

=
1

(2π)2ir

[∫ ∞

0
dk

keikr

k2 + m2 +
∫ 0

−∞
dk

keikr

k2 + m2

]

=
1

(2π)2ir

∫ ∞

−∞
dk

keikr

k2 + m2 .

The integral with respect to k in the last line is reduced to obtain residues
of the complex integral. Noting that the residue at k = im is e−mr/2, one
derives ∫ ∞

−∞
dk

keikr

k2 + m2 = 2πi
e−mr

2
= πie−mr .

Substituting it into the equation given above, one has the required integration
formula. Similarly, one can also derive the relation

1
(2π)3

∫
exp(ik · r)
k2 − m2 d3k =

exp(imr)
4πr

.

It follows that

1
(2π)3

∫
d3keik·r

(
1

k2 − μ2
l

+
1

k2 + μ2
h

)
=

exp(iμlr)
4πr

+
exp(−μhr)

4πr
. (D.89)

Thus, neglecting the second term of the following equation

2∑
λ=1

[
ei·eλ(k)

][
ej·eλ(k)

]
= δij(ei · ej) −

(
ei · k

k

)(
ej · k

k

)

= ei · ei +
(ei · ∇)(ei · ∇)

k2 ,

Veff(ps) is given by

Veff(ps) = − 1
4πε0

3∑
i,j=1

pPipSjδij

[
exp(−μhr)

r
+

exp(iμlr)
r

]

∝ exp(−μhr)
r

+
exp(iμlr)

r
. (D.90)
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r k

ky

kx

kz

Fig. D.1. Spherical coordinate system in the k-space

Since the eigenenergies of the probe and sample [h̄Ω0(p) and h̄Ω0(s) of (8.10a)
and (8.10b), respectively] are larger than that of the macroscopic matter h̄Ω,
μl and μh of (D.88) are approximated as

μl ≈
√

3π2mP

meSa2
S

, μh ≈
√

3π2mP

mePa2
P

. (D.91)

Finally, it follows that

Veff(ps) ∝ exp(−μPπr/aP)
r

+
exp(iμSπr/aS)

r
, (D.92)

which is none other than (8.12).



Solutions to Problems

Chapter 1

Problem 1.1

(a) The magnitude of the electric field of a spherical light wave propagating
from the point P to Q is expressed as u0[exp(ikr)/r] cos ψ, where u0 is a
constant proportional to the amplitude and k is the wave number (≡ 2π/λ).
Since point P can be located everywhere in the slit area, the total ampli-
tude u(x2, z) of the cylindrical light wave diverging from the slit is given by
integrating u0[exp(ikr)/r] cos ψ over the slit, i.e.,

u(x2, z) =
∫ a/2

−a/2
u0

exp(ikr)
r

cos ψdx1 . (Q1.1)

Several approximations have to be made in order to carry out this integra-
tion. First, cos ψ is approximated as unity because ψ ≈ 0. Second, r in the
denominator of exp(ikr)/r can be approximated as z because ψ ≈ 0. How-
ever, kr in the numerator must not be approximated as kz because r � λ.
For kr, a more accurate approximation must be made by expanding r as

r = z

√
1 +
(

x2 − x1

z

)2

= z

[
1 +

1
2

(
x2 − x1

z

)2

+ · · ·
]

= z +
x2

2

2z
− x2x1

z
+

x2
1

2z
+ · · · . (Q1.2)

The formula
√

1 + x = 1 + x/2 + · · · has been used to transform from the
first to the second line.

Using the first three terms in (Q1.2) to approximate kr, the final form of
(Q1.1) is

u(x2, z) = A0(x2, z)
∫ a/2

−a/2
u0 exp

(
−i

kx2

z
x1

)
dx1 , (Q1.3)



184 Solutions to Problems
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Fig. Q1.1. Relation between ax2/λz and I(x2, z) given by (Q1.7)

where A0(x2, z) is a quantity independent of x1. The upper and lower limits
of the integral in (Q1.3) can be extended to +∞, and −∞, respectively
because u0 is zero outside the slit. Furthermore, defining the variable fx by
fx ≡ x2/λz, (Q1.3) is transformed to

u(x2, z) = A0(x2, z)
∫ ∞

−∞
u0 exp(−i2πfxx1)dx1 . (Q1.4)

Note that this integral represents the Fourier transform from the space x1 to
the space fx, where fx is called a spatial Fourier frequency. This means that
the spatial distribution of amplitude u(x2, z) on

∑′ is the Fourier transform
of the amplitude u0 on

∑
.

Performing the integration in (Q1.3) gives

u(x2, z) = A0(x2, z)u0 sinc
(ax2

λz

)
, (Q1.5)

where
sincX ≡ sin πX

πX
. (Q1.6)

The diffraction pattern, i.e., the spatial distribution of the light intensity
I(x2, z) to be observed on

∑′ is proportional to |u(x2, z)|2, which is derived
from (Q1.5) and is expressed as

I(x2, z) = I0 sinc2
(ax2

λz

)
, (Q1.7)

where I0 ≡ |A0(x2, z)u0|2. This distribution represents the diffraction pat-
tern, and gives the solution to part (a) of the problem. Figure Q1.1 shows
the dependence of I(x2, z) on x2.

(b) The variable x2 representing the point Q on
∑′ is expressed as x2 =

z tan θ in polar coordinates, where the center of the slit on
∑

is taken as the
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origin for these coordinates. Using a paraxial approximation, i.e., θ ≈ 0 and
tan θ ≈ θ, the horizontal axis in Fig. Q1.1 is transformed from x2 to θ using
the relation

ax2

λz
≈ aθ

λ
. (Q1.8)

After this transformation, the full width at half maximum Δθh of the light
intensity in Fig. Q1.1 is given by

Δθh =
0.89λ

a
. (Q1.9)

This is the solution to problem (b) because Δθh can be considered as the
divergence angle.

This equation shows that the divergence angle is proportional to λ/a,
which implies that the diffraction effect is more prominent for longer wave-
lengths and smaller slit sizes. This is valid not only for a slit but also for
rectangular, circular or other shapes of aperture.

Problem 1.2

When light is focused by a lens, the spot size suffers from the effects of
diffraction because the lens diameter is finite. By considering a of (Q1.9)
as the width of the cylindrical lens, the full width at half maximum of the
diffraction pattern on the focal plane is expressed as

Δxh ≈ fΔθh =
0.89λ

a
=

0.45λ

sin α
, (Q1.10)

where f is the focal length and sin α is defined by (a/2)/
√

f2 + (a/2)2. In
terms of the numerical aperture NA, Δxh of (Q1.10) is given approximately
by λ/NA. This representation is valid not only for the cylindrical lens but
also for a circular convex lens.

Chapter 2

Problem 2.1

The answer is ‘no’. Even though the fiber probe has the profile of Fig. 2.11,
it has a finer structure which is observed if the profile is magnified as shown
in Fig. Q2.1a. Thus, when using this fiber probe in illumination mode, it
generates various optical near fields whose spatial distributions depend on
the size of the finer structure. Therefore, bringing the fiber probe to within
a distance equivalent to this size from the sample, a higher resolution is
obtained, indeed, much higher than that determined by af . Figures Q2.1b and
2.8 show the protruded-type fiber probe devised as a result of this discussion.
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Incident light

Sharpened fiber Metallic film

Optical near field

Incident light

Sharpened fiber Metallic film

Optical near field

2a

2af

(a) (b)

Fig. Q2.1. Schematic diagrams used to discuss the characteristics of the fiber probe
in Fig. 2.11. (a) Magnified drawing of the top of the fiber probe in Fig. 2.11. (b)
Profile of a fiber probe designed to realize higher resolution

Since the sharpened core with small tip radius a protrudes from the metallic
film, one can obtain high resolution determined by a. The metallic film on
the foot of the fiber probe is used to screen the scattered light 1, whose foot
radius af does not determine the resolution.

Figure 2.11 illustrates the output light as flowing out from the fiber probe
in a way analogous to tap water. However, it corresponds to the scattered
light 1. The optical near field must be illustrated as a bubble hanging down
from a straw, as shown in Figs. Q2.1a and b.

Problem 2.2

The wavelength of light is not directly correlated to color. The color is cor-
related to the photon energy, which is proportional to the frequency of light.
The optical near field and scattered light 2 shown in Fig. 2.6b have the same
frequency as that of the incident light as long as resonance interaction, pho-
ton emission, and changes in electronic energy states are not involved in the
electromagnetic interaction between spheres S and P. Thus, the color of the
optical near field is the same as that of the incident light.

Chapter 3

Problem 3.1

The answer is ‘no’. This is because the process of optical-near-field detection
involves light scattering between two closely spaced particles, as shown in
Fig. 2.6b. Since the diffraction grating has a periodic structure, the light
scattering becomes a many-body phenomenon because adjacent corrugations
are involved. Thus, evaluation of resolution becomes complicated.
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The conventional optical microscope has low-pass filtering characteristics
due to the diffraction limit, as shown in Fig. 3.2b, while the near-field optical
microscope has band-pass characteristics. Thus, evaluation of the resolution
of a near-field optical microscope requires a novel method which differs from
the one used for conventional optical microscopes. It is most suitable to define
the resolution as the reciprocal of the high frequency cutoff of the spatial
power spectral density calculated from the Fourier transform of the image
profile. For such calculations, the optimum sample is the one corresponding
to the spatially white noise, i.e., mutually isolated randomly-sized particles
fixed at random positions on a substrate.

Since the diffraction grating has a specific spatial Fourier frequency com-
ponent, its spatial power spectral density corresponds to the line spectrum,
and so is not suitable for evaluating the resolution. Further, since the resolu-
tion and efficiency of optical-near-field detection depends on the character-
istics of the probe, the standard sample for evaluating the resolution should
be determined as a function of the probe. A universal standard sample does
not exist for the near-field optical microscope.

Problem 3.2

The answer is ‘no’. High resolution cannot always be obtained. When mea-
suring photoluminescence from a semiconductor, photons are emitted after
the carriers diffuse for about 1 μm, even though the semiconductor surface
is locally excited by the optical near field. Thus, the image size is as large
as the diffusion length if the emitted photons are collected by a convex lens.
The emitted photons must be collected through the probe in order to avoid
the effects of carrier diffusion on the resolution. By this detection, resolu-
tion as high as the size of the probe tip is obtained. This is the reason why
the experimental setup in Fig. 3.10 combines the illumination and collection
modes.

Chapter 4

Problem 4.1

Figure Q4.1 shows that the two particles with charges +q and −q are fixed
with separation d. Their positions are expressed as (0, 0, d/2) and (0, 0,−d/2),
respectively. We calculate here the electric field at the position A(x, y, z)
generated by these particles, where r =

√
x2 + y2 + z2 � d. The vectors r1

and r2 oriented from these particles to the position A are given by

r1 =
(

x, y, z − d

2

)
and r2 =

(
x, y, z +

d

2

)
. (Q4.1)

Using these vectors, the electric field derived from Coulomb’s law is
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A

Fig. Q4.1. Configuration of the two particles with charges +q and −q

E(r) =
q

4πε0

(
r1

r3
1

− r2

r3
2

)
, (Q4.2)

where r1 = |r1| and r2 = |r2|. Noting that r � d, r1 and r2 can be approxi-
mated by

r−3
1 ≈ r−3

(
1 +

3
2

zd

r2

)
and r−3

2 ≈ r−3
(

1 − 3
2

zd

r2

)
. (Q4.3)

Substituting (Q4.1) and (Q4.3) into (4.2), the z-component of the electric
field E(r) is derived as

Ez(r) =
1

4πε0

qd

r3

(
3z2

r2 − 1
)

. (Q4.4)

The x-component can also be derived as

Ex(r) =
1

4πε0

qd

r3

3xz

r2 . (Q4.5)

The y-component Ey(r) is derived if x in (Q4.5) is replaced by y.
The above result shows that the magnitude of the electric field is propor-

tional to the product of the charge and the separation qd. Thus, using a unit
vector n = r/|r| and the electric dipole moment defined by

p = (0, 0, qd) , (Q4.6)

equations (Q4.4) and (Q4.5) give

E(r) =
1

4πε0

[
3(p · n)n − p

] 1
r3 . (Q4.7)

This is equivalent to (A.28) with k = 0.
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a

0
x

E0

Fig. Q4.2. Sphere with radius a and dielectric constant ε illuminated by a homo-
geneous electric field E0 in vacuum

Problem 4.2

Using the same symbols as in Problem 4.1, the sum of the electric potential
at position A generated by the two charged particles is given by

V =
1

4πε0

(
q

r3
1

− q

r3
2

)
. (Q4.8)

Using (Q4.3), this approximates to

V ≈ 1
4πε0

qd

r2

z

r
. (Q4.9)

Using the electric dipole moment p of (Q4.6) and the unit vector n, it is
transformed to

V =
1

4πε0

p · n

r2 . (Q4.10)

Problem 4.3

Figure Q4.2 shows a sphere with radius a and dielectric constant ε illumi-
nated by a homogeneous electric field E0 in vacuum. In spherical coordi-
nates (r, θ, φ: x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ), the solution of
Laplace’s equation [ρ = 0 in (A.4)] gives the electric potential outside the
sphere, viz.,

Vout = Ar cos θ +
B

r2 cos θ . (Q4.11)

The potential inside the sphere is given by
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Vin = Cr cos θ +
D

r2 cos θ . (Q4.12)

Since the electric potential Vout is independent of the sphere at r → ∞, the
constant A in (Q4.11) is

A = −E0 , (Q4.13)

where E0 ≡ |E0|. Then, in order to avoid the value of Vin diverging at the
center of the sphere, the constant D in (Q4.12) must be

D = 0 . (Q4.14)

Further, since the electric potential is continuous (Vin = Vout) at the surface
of the sphere (r = a), the relation

Aa +
B

a2 = Ca (Q4.15)

is valid. On the other hand, the normal component of the electric flux density
D is also continuous at r = a and can be expressed as

−ε0
∂Vout

∂r

∣∣∣∣
r=a

= −ε
∂Vin

∂r

∣∣∣∣
r=a

(Q4.16)

using the relation D = εE = −ε∇V , where ∇ is as defined in Sect. A.1.
Substituting (Q4.11) and (Q4.12) into this equation, one obtains

ε0A +
2ε0

a3 B = −εC . (Q4.17)

The values of B and C can be obtained by solving (Q4.13), (Q4.15), and
(Q4.17) simultaneously. They are

B =
ε − ε0

ε + 2ε0
a3E0 , (Q4.18a)

C = − 3ε0

ε + 2ε0
E0 . (Q4.18b)

In summary, the values of Vin, Ein, and Din in the sphere are

Vin = − 3ε0

ε + 2ε0
E0r cos θ , (Q4.19)

Ein =
3ε0

ε + 2ε0
E0 , (Q4.20)

and
Din = εEin =

3ε

ε + 2ε0
D0 . (Q4.21)

They indicate that |Ein| < |Eout| and |Din| > |Dout| for ε < ε0. On the
other hand, the value of Vout outside the sphere is
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Vout = −E0r cos θ +
ε − ε0

ε + 2ε0
E0

a3

r2 cos θ . (Q4.22)

It is equal to the sum of the electric potential due to the applied electric field
E0 and that of the electric dipole moment

p = 4πε0

(
ε − ε0

ε + 2ε0

)
a3E0 , (Q4.23)

at the center of the sphere, which is given by

Vout = −E0r cos θ +
1

4πε0

p

r2 cos θ . (Q4.24)

(The electric potential due to an electric dipole moment is given in Prob-
lem 4.2.) Equation (Q4.23) indicates that the polarizability α of the sphere
is

α = 4πε0

(
ε − ε0

ε + 2ε0

)
a3 . (Q4.25)

Problem 4.4

Since Sect. 4.2.2 shows that the value of the half width at half maximum xh
is 0.77(aP + aS + z) when scanning the sphere P at elevation z, the relation
z ≤ aP + aS must be valid in order to obtain a value of xh less than twice
that of (4.15). This means that the maximum allowable value of z is aP +aS.

Chapter 5

Problem 5.1

The electric potential Vvac in vacuum can be derived by summing the contri-
butions from the physical charge +q at A and the fictitious charge −q′ at B,
which gives

Vvac =
1

4πε0

[
q√

(x − a)2 + y2 + z2
− q′√

(x + a)2 + y2 + z2

]
. (Q5.1)

Due to the contribution from the fictitious charge +q′′ at A, the electric
potential Vdiel in the dielectric is given by

Vdiel =
1

4πε0

q′′√
(x − a)2 + y2 + z2

. (Q5.2)

By the continuity of the electric potential at the boundary between the vac-
uum and dielectric, i.e., Vvac(x = 0) = Vdiel(x = 0), equations (Q5.1) and
(Q5.2) give
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q − q′ = q′′ . (Q5.3)

In order to represent the continuity of the normal component (the x-
component) Dx of the electric flux density at the boundary, (Q5.1) is substi-
tuted into the relation Ex = −∂V/∂x [refer to (A.1) of Appendix A] at x = 0.
As a result, one obtains

(Dx)vac = ε0(Ex)vac

= − 1
4π

[
aq

(a2 + y2 + z2)3/2 +
aq′

(a2 + y2 + z2)3/2

]
. (Q5.4)

Similarly, substituting (Q5.2) at x = 0, one obtains

(Dx)diel = ε(Ex)diel = − ε

4πε0

aq′′

(a2 + y2 + z2)3/2 . (Q5.5)

By these equations, continuity is expressed as

q + q′ =
ε

ε0
q′′ . (Q5.6)

Finally from (Q5.3) and (Q5.6), one obtains

q′ =
ε − ε0

ε + ε0
q , (Q5.7a)

q′′ =
2ε0

ε + ε0
q . (Q5.7b)

In summary, fictitious charges −q′ and +q′′ can be used to derive the electric
field in vacuum and in the dielectric, respectively, and the boundary condition
can then be removed.

Chapter 6

Problem 6.1

The right-hand side of (6.12) can be obtained by substituting T (r, r′) of
(6.10) into the left-hand side of (6.12). Here, note that G(r, r′) of (6.5) sat-
isfies (6.6), and use the formula ∇ × ∇ × T = ∇(∇·T ) − ∇2T .

Problem 6.2

Note that the differential operator ∇R is expressed as (R/R)(d/dR). Then
(6.13) is derived by substituting (6.5) into (6.10). Here, use the relation
∇R

[
exp(ikR)/R

]
=
{

ik
[

exp(ikR)/R
] − [ exp(ikR)/R2

]}
(R/R), and calcu-

late ∇R

{∇R

[
exp(ikR)/R

]}
.
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Problem 6.3

The electric field of (A.28) is given by T (r, r′)p(r′). Further, note that r′ = 0
and R = r because the electric dipole in (A.28) is fixed at the origin. Then,
abbreviating p(0) to p, one can derive the electric field from (6.13) as

E(r) = T (r, 0)p (Q6.1)

=
1

4πε0

[
k2[p − n(n · p)

]1
r

+
[
3n(n · p) − p

](− ik
r2 +

1
r3

)]
eikr

=
1

4πε0

[
k2(n × p) × n

(
1
r

)
+
[
3n(n · p) − p

](− ik
r2 +

1
r3

)]
eikr ,

which is equal to (A.28). The formula (n×p) ×n = (n · n)p− (n · p)n was
used to derive the last term on the right-hand side of this equation.

Problem 6.4

The single electric dipole moment p(r′) at the position r′ is taken as the
simplest source of electromagnetic fields and the propagator T (r, r′) is ap-
plied to it. Then the generated electric field E(r) is expressed by (6.11) as
T (r, r′)p(r′). Using this expression and (6.13), the x-component of the elec-
tric field is

Ex =
1

4πε0

[
k2(px − nxn · p)

1
R

+ (3nxn · p − px)
(

− ik
R2 +

1
R3

)]
eikR

=
1

4πε0

[
k2[px − nx(nxpx + nypy + nzpz)

] 1
R

+
[
3nx(nxpx + nypy + nzpz) − px

](− ik
R2 +

1
R3

)]
eikR . (Q6.2)

Thus, comparing this equation with Ex = Txxpx +Txypy +Txzpz, one derives

Txx =
1

4πε0

[
k2(1 − n2

x)
1
R

+ (3n2
x − 1)

(
− ik

R2 +
1

R3

)]
eikR , (Q6.3a)

Txy =
1

4πε0
nxny

[
−k2 1

R
+ 3
(

− ik
R2 +

1
R3

)]
eikR , (Q6.3b)

Txz =
1

4πε0
nxnz

[
−k2 1

R
+ 3
(

− ik
R2 +

1
R3

)]
eikR. (Q6.3c)

Equation (6.15) can be obtained once other elements have been derived in a
similar manner.
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Chapter 7

Problem 7.1

Substitute Φ = [ε(r)−ε0]/ε0 and A = ∇φ(r) into the vector analysis formula
∇·(ΦA) = Φ∇·A + A·∇Φ.

Problem 7.2

Substitute Φ = 1 − ε0/ε(r) and A = ∇ × C into the vector analysis formula
∇ × (ΦA) = Φ∇ × A + ∇Φ × A.

Chapter 8

Problem 8.1

To carry out the integral in (8.16), the Cartesian coordinate system (x′, y′, z′)
is defined by taking the z′-axis along the vector r. Then transforming to a
spherical coordinate system (r′, θ′, φ′), one has d3r′ = r′2 sin θ′dθ′ cos φ′dφ′,
r = (0, 0, r), and r′ = (r′ sin θ′ cos φ′, r′ sin θ′ sin φ′, r′ cos θ′). Noting that
r = |r| > a and r′ = |r′| < a, (8.16) becomes∫

sphere
d3r′ exp(−μ|r − r′|)

|r − r′|

=
∫ a

0
r′2dr′

∫ π

0
sin θ′dθ′

∫ 2π

0
dφ′

exp
[
−μ
√

r′2 sin2 θ′ + (r − r′ cos θ′)2
]

√
r′2 sin2 θ′ + (r − r′ cos θ′)2

= 2π

∫ a

0
r′2dr′

∫ r+r′

r−r′

ξdξ

rr′
exp(−μξ)

ξ

=
2π

r

∫ a

0
r′dr′

∫ r+r′

r−r′
dξ exp(−μξ) , (Q8.1)

where the integration over θ′ is transformed to an integration over ξ using
relations ξ2 = r′2 sin2 θ′ + (r − r′ cos θ′)2 = r2 + r′2 − 2rr′ cos θ′ and ξdξ =
rr′ sin θ′dθ′. Further, carrying out the integration over ξ in the last term of
(Q8.1), one derives

∫ r+r′

r−r′
dξe−μξ =

[
exp(−μξ)

−μ

]r+r′

r−r′
=

1
μ

[
e−μ(r−r′) − e−μ(r+r′)

]
. (Q8.2)

On the other hand, noting that
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0
r′dr′e±μr′

=
[
r′ exp(±μr′)

±μ

]a
0

−
∫ a

0
dr′ exp(±μr′)

±μ

= ±a

μ
e±μa ∓

[
exp(±μr′)

±μ

]a
0

= ±a

μ
e±μa − 1

μ2 (e±μa − 1) , (Q8.3)

substituting (Q8.2) and (Q8.3) into the last line of (Q8.1) leads to∫
sphere

d3r′ exp(−μ|r − r′|)
|r − r′|

=
2π

μ3

{
(1 + μa)

exp[−μ(r + a)]
r

− (1 − μa)
exp[−μ(r − a)]

r

}
,

which gives (8.18).

Chapter 9

Problem 9.1

The Rabi angular frequency Ω(r) in (9.2) depends on the distance r from
the planar surface and is expressed as γ

√
I(r)/2Is. Since the optical-near-

field intensity I(r) depends on r and is expressed as I0 exp(−2r/Λ), Ω2(r) is
γ2I0 exp(−2r/Λ)/2Is, implying dΩ2(r)/dr = (−2/Λ)Ω2(r). Equation (9.2)
follows if the gradient ∇Ω2(r) and the detuning δ of (9.1) are replaced by
this relation and by the detuning Δ including the Doppler effect, respectively.

Problem 9.2

The optical potential Uopt(ρ, φ) is given by the spatial integral of the dipole
force F d, which is expressed as

Uopt(ρ, φ) =
∫∫∫

(−F d)d3r . (Q9.1)

Noting that ∇Ω2 of (9.1) is a spatial derivative of the square of the Rabi
angular frequency Ω2, ∇Ω2d3r is expressed as dΩ2. Using this expression
and (9.1), (Q9.1) becomes

Uopt(ρ, φ) =
∫

h̄Δ2

4Δ2 + γ2 + 2Ω2 dΩ2 , (Q9.2)

where the detuning δ is replaced by the detuning Δ including the Doppler
effect. Setting Uopt(ρ, φ) = 0 at Ω = 0, the integral of (Q9.2) gives
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Uopt(ρ, φ) =
h̄Δ

2
ln
(

1 +
2Ω2

4Δ2 + γ2

)
. (Q9.3)

Equation (9.5) is derived by substituting the relation

Ω2(r) = γ2 I0

2Is
exp(−2r/Λ)

into this equation.
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optical response 48
optically effective diameter 125
opto-electronics 2
orbital angular momentum 51
output 144

particle 1
phase delay 54
phase velocity 154
phase-change medium 41
phonon 40, 143, 144
photochemical reaction 38
photochemical vapor deposition 38,

147
photolithography 5
photon 1
photon momentum 51
photon tunneling 48
photonics 2
piezoelectric transducer 32
Planck’s constant 2
plane light wave 6
plasma angular frequency 160
plasma frequency 160
plasmon waveguides 138
Poisson’s equation 98, 152
polariton 161
polarizability 57, 75, 88
polarization 63, 87, 97, 154
polarization state 119
polarization-dependent edge effect 67,

96, 102
polarized current 103
potential energy 166
potential wells 114
power 19, 78, 157
p-polarized light 66
pre-dissociation 38
probability 146
probe 22, 56, 109
projection operator 111, 172
propagation constant 128
propagator 89
pseudo-momenta 51
P -space 111
pump–probe spectroscopy 150

Q-space 111
quanta 110

quantum confinement effect 143
quantum dot 36, 140
quantum effects 50
quantum mechanical operators 168
quantum mechanical state 110
quasi-near-field condition 102

Rabi angular frequency 126, 127
radiative damping rate 78
radiative energy transfer 121
Raman spectroscopy 38
Rayleigh scattering 55, 158
readout 41
red detuning 133
reflected field 78
refractive index 7, 58, 75, 159
relaxation constant 126
relaxation time 143, 146
reproducibility 26
repulsive force 126
resolution 22, 37, 60
resonance effect 50
resonant angular frequency 126
resonant frequency 43
resonant process 115
resonant radiative shift 84
resonant states 142
rotating wave approximation 162, 170
rubidium 43

salmonella bacteria 61
sample 22, 56
sample–probe separation 32
saturation intensity 127
scalar potential 98, 117, 151
scaling coefficient 130
scanning 22
scanning probe microscope 34
scanning tunneling microscope 34
scattered light 11, 58
screening capability 26
self-consistent field 49
self-consistent method 88
SEM image 26
semiconductor lasers 4
sensitivity 74
shadow 106
shear force 32
size-dependent resonance 62
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Snell’s law 16
spatial Fourier frequency 72
spatial power spectral density 72, 187
spatial resolution 38
speed of light 1
spherical lightwave 9
spin–orbit interaction 51
s-polarized light 64
spot size 7
standard sample 51
stationary state 164
storage 41
storage density 3
sub-wavelength-sized matter 54
subsystem 109
super-wavelength-sized matter 54
supplementary space 111
surface polarized current 104
switching time 147

tapered part 26, 69
TE wave 101
thermal velocity 127
threshold 45
threshold optical power 130
time constant 126
time delay 98, 106
tip radius 21, 26, 186
topographical image 33
total potential 130
total reflection 16, 127
transverse component of polarization

166
triple-tapered fiber probe 27

true electric charges 151
tunneling current 34
two-energy-level approximation 126
two-energy-level atom 126

ultraviolet light 38
uncertainty principle 115
unidirectional transmission 143
unidirectivity 138
unitary transformation 162
UV light 38

vacuum 129
vacuum fluctuations 51
vacuum state function 111
valence band 36
van der Waals force 35, 43, 51, 129
van der Waals interaction 83
van der Waals shift 83
vector potential 103, 152
virtual polariton 115
virtual transition 113
virtual transition process 115
visibility 71, 118, 123
volume polarized current 104

Wannier exciton 161
wave 1
wave number 17
wavelength 1
weak guiding approximation 128

Yukawa function 114, 133
Yukawa potentials 117


