

Operating	Systems

Principles	&	Practice

Volume	IV:	Persistent	Storage
Second	Edition

Thomas	Anderson
University	of	Washington

Mike	Dahlin
University	of	Texas	and	Google

Recursive	Books

recursivebooks.com

Operating	Systems:	Principles	and	Practice	(Second	Edition)	Volume	IV:	Persistent
Storage	by	Thomas	Anderson	and	Michael	Dahlin
Copyright	©Thomas	Anderson	and	Michael	Dahlin,	2011-2015.

ISBN	978-0-9856735-6-7
Publisher:	Recursive	Books,	Ltd.,	http://recursivebooks.com/	
Cover:	Reflection	Lake,	Mt.	Rainier	
Cover	design:	Cameron	Neat	
Illustrations:	Cameron	Neat	
Copy	editors:	Sandy	Kaplan,	Whitney	Schmidt	
Ebook	design:	Robin	Briggs	
Web	design:	Adam	Anderson

SUGGESTIONS,	COMMENTS,	and	ERRORS.	We	welcome	suggestions,	comments	and
error	reports,	by	email	to	suggestions@recursivebooks.com

Notice	of	rights.	All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a
retrieval	system,	or	transmitted	in	any	form	by	any	means	—	electronic,	mechanical,
photocopying,	recording,	or	otherwise	—	without	the	prior	written	permission	of	the
publisher.	For	information	on	getting	permissions	for	reprints	and	excerpts,	contact
permissions@recursivebooks.com

Notice	of	liability.	The	information	in	this	book	is	distributed	on	an	“As	Is”	basis,	without
warranty.	Neither	the	authors	nor	Recursive	Books	shall	have	any	liability	to	any	person	or
entity	with	respect	to	any	loss	or	damage	caused	or	alleged	to	be	caused	directly	or
indirectly	by	the	information	or	instructions	contained	in	this	book	or	by	the	computer
software	and	hardware	products	described	in	it.

Trademarks:	Throughout	this	book	trademarked	names	are	used.	Rather	than	put	a
trademark	symbol	in	every	occurrence	of	a	trademarked	name,	we	state	we	are	using	the
names	only	in	an	editorial	fashion	and	to	the	benefit	of	the	trademark	owner	with	no
intention	of	infringement	of	the	trademark.	All	trademarks	or	service	marks	are	the
property	of	their	respective	owners.

http://recursivebooks.com/

To	Robin,	Sandra,	Katya,	and	Adam
Tom	Anderson

To	Marla,	Kelly,	and	Keith
Mike	Dahlin

Contents

	Preface

I:	Kernels	and	Processes
1.	Introduction

2.	The	Kernel	Abstraction

3.	The	Programming	Interface

II:	Concurrency
4.	Concurrency	and	Threads

5.	Synchronizing	Access	to	Shared	Objects

6.	Multi-Object	Synchronization

7.	Scheduling

III:	Memory	Management
8.	Address	Translation

9.	Caching	and	Virtual	Memory

10.	Advanced	Memory	Management

IV	Persistent	Storage
11	File	Systems:	Introduction	and	Overview

11.1	The	File	System	Abstraction

11.2	API

11.3	Software	Layers

						11.3.1	API	and	Performance
						11.3.2	Device	Drivers:	Common	Abstractions
						11.3.3	Device	Access
						11.3.4	Putting	It	All	Together:	A	Simple	Disk	Request

11.4	Summary	and	Future	Directions

	Exercises

12	Storage	Devices

12.1	Magnetic	Disk

						12.1.1	Disk	Access	and	Performance
						12.1.2	Case	Study:	Toshiba	MK3254GSY
						12.1.3	Disk	Scheduling

12.2	Flash	Storage

12.3	Summary	and	Future	Directions

	Exercises

13	Files	and	Directories

13.1	Implementation	Overview

13.2	Directories:	Naming	Data

13.3	Files:	Finding	Data

						13.3.1	FAT:	Linked	List
						13.3.2	FFS:	Fixed	Tree
						13.3.3	NTFS:	Flexible	Tree	With	Extents
						13.3.4	Copy-On-Write	File	Systems

13.4	Putting	It	All	Together:	File	and	Directory	Access

13.5	Summary	and	Future	Directions

	Exercises

14	Reliable	Storage

14.1	Transactions:	Atomic	Updates

						14.1.1	Ad	Hoc	Approaches
						14.1.2	The	Transaction	Abstraction
						14.1.3	Implementing	Transactions
						14.1.4	Transactions	and	File	Systems

14.2	Error	Detection	and	Correction

						14.2.1	Storage	Device	Failures	and	Mitigation
						14.2.2	RAID:	Multi-Disk	Redundancy	for	Error	Correction
						14.2.3	Software	Integrity	Checks

14.3	Summary	and	Future	Directions

	Exercises

	References

	Glossary

	About	the	Authors

Preface

Preface	to	the	eBook	Edition

Operating	Systems:	Principles	and	Practice	is	a	textbook	for	a	first	course	in
undergraduate	operating	systems.	In	use	at	over	50	colleges	and	universities	worldwide,
this	textbook	provides:

A	path	for	students	to	understand	high	level	concepts	all	the	way	down	to	working
code.
Extensive	worked	examples	integrated	throughout	the	text	provide	students	concrete
guidance	for	completing	homework	assignments.
A	focus	on	up-to-date	industry	technologies	and	practice

The	eBook	edition	is	split	into	four	volumes	that	together	contain	exactly	the	same
material	as	the	(2nd)	print	edition	of	Operating	Systems:	Principles	and	Practice,
reformatted	for	various	screen	sizes.	Each	volume	is	self-contained	and	can	be	used	as	a
standalone	text,	e.g.,	at	schools	that	teach	operating	systems	topics	across	multiple
courses.

Volume	1:	Kernels	and	Processes.	This	volume	contains	Chapters	1-3	of	the	print
edition.	We	describe	the	essential	steps	needed	to	isolate	programs	to	prevent	buggy
applications	and	computer	viruses	from	crashing	or	taking	control	of	your	system.
Volume	2:	Concurrency.	This	volume	contains	Chapters	4-7	of	the	print	edition.	We
provide	a	concrete	methodology	for	writing	correct	concurrent	programs	that	is	in
widespread	use	in	industry,	and	we	explain	the	mechanisms	for	context	switching	and
synchronization	from	fundamental	concepts	down	to	assembly	code.
Volume	3:	Memory	Management.	This	volume	contains	Chapters	8-10	of	the	print
edition.	We	explain	both	the	theory	and	mechanisms	behind	64-bit	address	space
translation,	demand	paging,	and	virtual	machines.
Volume	4:	Persistent	Storage.	This	volume	contains	Chapters	11-14	of	the	print
edition.	We	explain	the	technologies	underlying	modern	extent-based,	journaling,	and
versioning	file	systems.

A	more	detailed	description	of	each	chapter	is	given	in	the	preface	to	the	print	edition.

Preface	to	the	Print	Edition

Why	We	Wrote	This	Book

Many	of	our	students	tell	us	that	operating	systems	was	the	best	course	they	took	as	an
undergraduate	and	also	the	most	important	for	their	careers.	We	are	not	alone	—	many	of
our	colleagues	report	receiving	similar	feedback	from	their	students.

Part	of	the	excitement	is	that	the	core	ideas	in	a	modern	operating	system	—	protection,
concurrency,	virtualization,	resource	allocation,	and	reliable	storage	—	have	become

widely	applied	throughout	computer	science,	not	just	operating	system	kernels.	Whether
you	get	a	job	at	Facebook,	Google,	Microsoft,	or	any	other	leading-edge	technology
company,	it	is	impossible	to	build	resilient,	secure,	and	flexible	computer	systems	without
the	ability	to	apply	operating	systems	concepts	in	a	variety	of	settings.	In	a	modern	world,
nearly	everything	a	user	does	is	distributed,	nearly	every	computer	is	multi-core,	security
threats	abound,	and	many	applications	such	as	web	browsers	have	become	mini-operating
systems	in	their	own	right.

It	should	be	no	surprise	that	for	many	computer	science	students,	an	undergraduate
operating	systems	class	has	become	a	de	facto	requirement:	a	ticket	to	an	internship	and
eventually	to	a	full-time	position.

Unfortunately,	many	operating	systems	textbooks	are	still	stuck	in	the	past,	failing	to	keep
pace	with	rapid	technological	change.	Several	widely-used	books	were	initially	written	in
the	mid-1980’s,	and	they	often	act	as	if	technology	stopped	at	that	point.	Even	when	new
topics	are	added,	they	are	treated	as	an	afterthought,	without	pruning	material	that	has
become	less	important.	The	result	are	textbooks	that	are	very	long,	very	expensive,	and	yet
fail	to	provide	students	more	than	a	superficial	understanding	of	the	material.

Our	view	is	that	operating	systems	have	changed	dramatically	over	the	past	twenty	years,
and	that	justifies	a	fresh	look	at	both	how	the	material	is	taught	and	what	is	taught.	The
pace	of	innovation	in	operating	systems	has,	if	anything,	increased	over	the	past	few	years,
with	the	introduction	of	the	iOS	and	Android	operating	systems	for	smartphones,	the	shift
to	multicore	computers,	and	the	advent	of	cloud	computing.

To	prepare	students	for	this	new	world,	we	believe	students	need	three	things	to	succeed	at
understanding	operating	systems	at	a	deep	level:

Concepts	and	code.	We	believe	it	is	important	to	teach	students	both	principles	and
practice,	concepts	and	implementation,	rather	than	either	alone.	This	textbook	takes
concepts	all	the	way	down	to	the	level	of	working	code,	e.g.,	how	a	context	switch
works	in	assembly	code.	In	our	experience,	this	is	the	only	way	students	will	really
understand	and	master	the	material.	All	of	the	code	in	this	book	is	available	from	the
author’s	web	site,	ospp.washington.edu.

Extensive	worked	examples.	In	our	view,	students	need	to	be	able	to	apply	concepts
in	practice.	To	that	end,	we	have	integrated	a	large	number	of	example	exercises,
along	with	solutions,	throughout	the	text.	We	uses	these	exercises	extensively	in	our
own	lectures,	and	we	have	found	them	essential	to	challenging	students	to	go	beyond
a	superficial	understanding.

Industry	practice.	To	show	students	how	to	apply	operating	systems	concepts	in	a
variety	of	settings,	we	use	detailed,	concrete	examples	from	Facebook,	Google,
Microsoft,	Apple,	and	other	leading-edge	technology	companies	throughout	the
textbook.	Because	operating	systems	concepts	are	important	in	a	wide	range	of
computer	systems,	we	take	these	examples	not	only	from	traditional	operating
systems	like	Linux,	Windows,	and	OS	X	but	also	from	other	systems	that	need	to
solve	problems	of	protection,	concurrency,	virtualization,	resource	allocation,	and
reliable	storage	like	databases,	web	browsers,	web	servers,	mobile	applications,	and
search	engines.

Taking	a	fresh	perspective	on	what	students	need	to	know	to	apply	operating	systems
concepts	in	practice	has	led	us	to	innovate	in	every	major	topic	covered	in	an
undergraduate-level	course:

Kernels	and	Processes.	The	safe	execution	of	untrusted	code	has	become	central	to
many	types	of	computer	systems,	from	web	browsers	to	virtual	machines	to	operating
systems.	Yet	existing	textbooks	treat	protection	as	a	side	effect	of	UNIX	processes,	as
if	they	are	synonyms.	Instead,	we	start	from	first	principles:	what	are	the	minimum
requirements	for	process	isolation,	how	can	systems	implement	process	isolation
efficiently,	and	what	do	students	need	to	know	to	implement	functions	correctly	when
the	caller	is	potentially	malicious?

Concurrency.	With	the	advent	of	multi-core	architectures,	most	students	today	will
spend	much	of	their	careers	writing	concurrent	code.	Existing	textbooks	provide	a
blizzard	of	concurrency	alternatives,	most	of	which	were	abandoned	decades	ago	as
impractical.	Instead,	we	focus	on	providing	students	a	single	methodology	based	on
Mesa	monitors	that	will	enable	students	to	write	correct	concurrent	programs	—	a
methodology	that	is	by	far	the	dominant	approach	used	in	industry.

Memory	Management.	Even	as	demand-paging	has	become	less	important,
virtualization	has	become	even	more	important	to	modern	computer	systems.	We
provide	a	deep	treatment	of	address	translation	hardware,	sparse	address	spaces,
TLBs,	and	on-chip	caches.	We	then	use	those	concepts	as	a	springboard	for
describing	virtual	machines	and	related	concepts	such	as	checkpointing	and	copy-on-
write.

Persistent	Storage.	Reliable	storage	in	the	presence	of	failures	is	central	to	the
design	of	most	computer	systems.	Existing	textbooks	survey	the	history	of	file
systems,	spending	most	of	their	time	ad	hoc	approaches	to	failure	recovery	and	de-
fragmentation.	Yet	no	modern	file	systems	still	use	those	ad	hoc	approaches.	Instead,
our	focus	is	on	how	file	systems	use	extents,	journaling,	copy-on-write,	and	RAID	to
achieve	both	high	performance	and	high	reliability.

Intended	Audience

Operating	Systems:	Principles	and	Practice	is	a	textbook	for	a	first	course	in
undergraduate	operating	systems.	We	believe	operating	systems	should	be	taken	as	early
as	possible	in	an	undergraduate’s	course	of	study;	many	students	use	the	course	as	a
springboard	to	an	internship	and	a	career.	To	that	end,	we	have	designed	the	textbook	to
assume	minimal	pre-requisites:	specifically,	students	should	have	taken	a	data	structures
course	and	one	on	computer	organization.	The	code	examples	are	written	in	a	combination
of	x86	assembly,	C,	and	C++.	In	particular,	we	have	designed	the	book	to	interface	well
with	the	Bryant	and	O’Halloran	textbook.	We	review	and	cover	in	much	more	depth	the
material	from	the	second	half	of	that	book.

We	should	note	what	this	textbook	is	not:	it	is	not	intended	to	teach	the	API	or	internals	of
any	specific	operating	system,	such	as	Linux,	Android,	Windows	8,	OS	X,	or	iOS.	We	use
many	concrete	examples	from	these	systems,	but	our	focus	is	on	the	shared	problems	these

systems	face	and	the	technologies	these	systems	use	to	solve	those	problems.

A	Guide	to	Instructors

One	of	our	goals	is	enable	instructors	to	choose	an	appropriate	level	of	depth	for	each
course	topic.	Each	chapter	begins	at	a	conceptual	level,	with	implementation	details	and
the	more	advanced	material	towards	the	end.	The	more	advanced	material	can	be	omitted
without	compromising	the	ability	of	students	to	follow	later	material.	No	single-quarter	or
single-semester	course	is	likely	to	be	able	to	cover	every	topic	we	have	included,	but	we
think	it	is	a	good	thing	for	students	to	come	away	from	an	operating	systems	course	with
an	appreciation	that	there	is	always	more	to	learn.

For	each	topic,	we	attempt	to	convey	it	at	three	levels:

How	to	reason	about	systems.	We	describe	core	systems	concepts,	such	as
protection,	concurrency,	resource	scheduling,	virtualization,	and	storage,	and	we
provide	practice	applying	these	concepts	in	various	situations.	In	our	view,	this
provides	the	biggest	long-term	payoff	to	students,	as	they	are	likely	to	need	to	apply
these	concepts	in	their	work	throughout	their	career,	almost	regardless	of	what
project	they	end	up	working	on.

Power	tools.	We	introduce	students	to	a	number	of	abstractions	that	they	can	apply	in
their	work	in	industry	immediately	after	graduation,	and	that	we	expect	will	continue
to	be	useful	for	decades	such	as	sandboxing,	protected	procedure	calls,	threads,	locks,
condition	variables,	caching,	checkpointing,	and	transactions.

Details	of	specific	operating	systems.	We	include	numerous	examples	of	how
different	operating	systems	work	in	practice.	However,	this	material	changes	rapidly,
and	there	is	an	order	of	magnitude	more	material	than	can	be	covered	in	a	single
semester-length	course.	The	purpose	of	these	examples	is	to	illustrate	how	to	use	the
operating	systems	principles	and	power	tools	to	solve	concrete	problems.	We	do	not
attempt	to	provide	a	comprehensive	description	of	Linux,	OS	X,	or	any	other
particular	operating	system.

The	book	is	divided	into	five	parts:	an	introduction	(Chapter	1),	kernels	and	processes
(Chapters	2-3),	concurrency,	synchronization,	and	scheduling	(Chapters	4-7),	memory
management	(Chapters	8-10),	and	persistent	storage	(Chapters	11-14).

Introduction.	The	goal	of	Chapter	1	is	to	introduce	the	recurring	themes	found	in	the
later	chapters.	We	define	some	common	terms,	and	we	provide	a	bit	of	the	history	of
the	development	of	operating	systems.

The	Kernel	Abstraction.	Chapter	2	covers	kernel-based	process	protection	—	the
concept	and	implementation	of	executing	a	user	program	with	restricted	privileges.
Given	the	increasing	importance	of	computer	security	issues,	we	believe	protected
execution	and	safe	transfer	across	privilege	levels	are	worth	treating	in	depth.	We
have	broken	the	description	into	sections,	to	allow	instructors	to	choose	either	a	quick
introduction	to	the	concepts	(up	through	Section	2.3),	or	a	full	treatment	of	the	kernel
implementation	details	down	to	the	level	of	interrupt	handlers.	Some	instructors	start

with	concurrency,	and	cover	kernels	and	kernel	protection	afterwards.	While	our
textbook	can	be	used	that	way,	we	have	found	that	students	benefit	from	a	basic
understanding	of	the	role	of	operating	systems	in	executing	user	programs,	before
introducing	concurrency.

The	Programming	Interface.	Chapter	3	is	intended	as	an	impedance	match	for
students	of	differing	backgrounds.	Depending	on	student	background,	it	can	be
skipped	or	covered	in	depth.	The	chapter	covers	the	operating	system	from	a
programmer’s	perspective:	process	creation	and	management,	device-independent
input/output,	interprocess	communication,	and	network	sockets.	Our	goal	is	that
students	should	understand	at	a	detailed	level	what	happens	when	a	user	clicks	a	link
in	a	web	browser,	as	the	request	is	transferred	through	operating	system	kernels	and
user	space	processes	at	the	client,	server,	and	back	again.	This	chapter	also	covers	the
organization	of	the	operating	system	itself:	how	device	drivers	and	the	hardware
abstraction	layer	work	in	a	modern	operating	system;	the	difference	between	a
monolithic	and	a	microkernel	operating	system;	and	how	policy	and	mechanism	are
separated	in	modern	operating	systems.

Concurrency	and	Threads.	Chapter	4	motivates	and	explains	the	concept	of
threads.	Because	of	the	increasing	importance	of	concurrent	programming,	and	its
integration	with	modern	programming	languages	like	Java,	many	students	have	been
introduced	to	multi-threaded	programming	in	an	earlier	class.	This	is	a	bit	dangerous,
as	students	at	this	stage	are	prone	to	writing	programs	with	race	conditions,	problems
that	may	or	may	not	be	discovered	with	testing.	Thus,	the	goal	of	this	chapter	is	to
provide	a	solid	conceptual	framework	for	understanding	the	semantics	of
concurrency,	as	well	as	how	concurrent	threads	are	implemented	in	both	the
operating	system	kernel	and	in	user-level	libraries.	Instructors	needing	to	go	more
quickly	can	omit	these	implementation	details.

Synchronization.	Chapter	5	discusses	the	synchronization	of	multi-threaded
programs,	a	central	part	of	all	operating	systems	and	increasingly	important	in	many
other	contexts.	Our	approach	is	to	describe	one	effective	method	for	structuring
concurrent	programs	(based	on	Mesa	monitors),	rather	than	to	attempt	to	cover
several	different	approaches.	In	our	view,	it	is	more	important	for	students	to	master
one	methodology.	Monitors	are	a	particularly	robust	and	simple	one,	capable	of
implementing	most	concurrent	programs	efficiently.	The	implementation	of
synchronization	primitives	should	be	included	if	there	is	time,	so	students	see	that
there	is	no	magic.

Multi-Object	Synchronization.	Chapter	6	discusses	advanced	topics	in	concurrency
—	specifically,	the	twin	challenges	of	multiprocessor	lock	contention	and	deadlock.
This	material	is	increasingly	important	for	students	working	on	multicore	systems,
but	some	courses	may	not	have	time	to	cover	it	in	detail.

Scheduling.	This	chapter	covers	the	concepts	of	resource	allocation	in	the	specific
context	of	processor	scheduling.	With	the	advent	of	data	center	computing	and
multicore	architectures,	the	principles	and	practice	of	resource	allocation	have
renewed	importance.	After	a	quick	tour	through	the	tradeoffs	between	response	time
and	throughput	for	uniprocessor	scheduling,	the	chapter	covers	a	set	of	more

advanced	topics	in	affinity	and	multiprocessor	scheduling,	power-aware	and	deadline
scheduling,	as	well	as	basic	queueing	theory	and	overload	management.	We	conclude
these	topics	by	walking	students	through	a	case	study	of	server-side	load
management.

Address	Translation.	Chapter	8	explains	mechanisms	for	hardware	and	software
address	translation.	The	first	part	of	the	chapter	covers	how	hardware	and	operating
systems	cooperate	to	provide	flexible,	sparse	address	spaces	through	multi-level
segmentation	and	paging.	We	then	describe	how	to	make	memory	management
efficient	with	translation	lookaside	buffers	(TLBs)	and	virtually	addressed	caches.
We	consider	how	to	keep	TLBs	consistent	when	the	operating	system	makes	changes
to	its	page	tables.	We	conclude	with	a	discussion	of	modern	software-based
protection	mechanisms	such	as	those	found	in	the	Microsoft	Common	Language
Runtime	and	Google’s	Native	Client.

Caching	and	Virtual	Memory.	Caches	are	central	to	many	different	types	of
computer	systems.	Most	students	will	have	seen	the	concept	of	a	cache	in	an	earlier
class	on	machine	structures.	Thus,	our	goal	is	to	cover	the	theory	and	implementation
of	caches:	when	they	work	and	when	they	do	not,	as	well	as	how	they	are
implemented	in	hardware	and	software.	We	then	show	how	these	ideas	are	applied	in
the	context	of	memory-mapped	files	and	demand-paged	virtual	memory.

Advanced	Memory	Management.	Address	translation	is	a	powerful	tool	in	system
design,	and	we	show	how	it	can	be	used	for	zero	copy	I/O,	virtual	machines,	process
checkpointing,	and	recoverable	virtual	memory.	As	this	is	more	advanced	material,	it
can	be	skipped	by	those	classes	pressed	for	time.

File	Systems:	Introduction	and	Overview.	Chapter	11	frames	the	file	system
portion	of	the	book,	starting	top	down	with	the	challenges	of	providing	a	useful	file
abstraction	to	users.	We	then	discuss	the	UNIX	file	system	interface,	the	major
internal	elements	inside	a	file	system,	and	how	disk	device	drivers	are	structured.

Storage	Devices.	Chapter	12	surveys	block	storage	hardware,	specifically	magnetic
disks	and	flash	memory.	The	last	two	decades	have	seen	rapid	change	in	storage
technology	affecting	both	application	programmers	and	operating	systems	designers;
this	chapter	provides	a	snapshot	for	students,	as	a	building	block	for	the	next	two
chapters.	If	students	have	previously	seen	this	material,	this	chapter	can	be	skipped.

Files	and	Directories.	Chapter	13	discusses	file	system	layout	on	disk.	Rather	than
survey	all	possible	file	layouts	—	something	that	changes	rapidly	over	time	—	we
use	file	systems	as	a	concrete	example	of	mapping	complex	data	structures	onto
block	storage	devices.

Reliable	Storage.	Chapter	14	explains	the	concept	and	implementation	of	reliable
storage,	using	file	systems	as	a	concrete	example.	Starting	with	the	ad	hoc	techniques
used	in	early	file	systems,	the	chapter	explains	checkpointing	and	write	ahead
logging	as	alternate	implementation	strategies	for	building	reliable	storage,	and	it
discusses	how	redundancy	such	as	checksums	and	replication	are	used	to	improve
reliability	and	availability.

We	welcome	and	encourage	suggestions	for	how	to	improve	the	presentation	of	the
material;	please	send	any	comments	to	the	publisher’s	website,
suggestions@recursivebooks.com.

Acknowledgements

We	have	been	incredibly	fortunate	to	have	the	help	of	a	large	number	of	people	in	the
conception,	writing,	editing,	and	production	of	this	book.

We	started	on	the	journey	of	writing	this	book	over	dinner	at	the	USENIX	NSDI
conference	in	2010.	At	the	time,	we	thought	perhaps	it	would	take	us	the	summer	to
complete	the	first	version	and	perhaps	a	year	before	we	could	declare	ourselves	done.	We
were	very	wrong!	It	is	no	exaggeration	to	say	that	it	would	have	taken	us	a	lot	longer
without	the	help	we	have	received	from	the	people	we	mention	below.

Perhaps	most	important	have	been	our	early	adopters,	who	have	given	us	enormously
useful	feedback	as	we	have	put	together	this	edition:

Carnegie-Mellon David	Eckhardt	and	Garth	Gibson

Clarkson Jeanna	Matthews

Cornell Gun	Sirer

ETH	Zurich Mothy	Roscoe

New	York	University Laskshmi	Subramanian

Princeton	University Kai	Li

Saarland	University Peter	Druschel

Stanford	University John	Ousterhout

University	of	California	Riverside Harsha	Madhyastha

University	of	California	Santa	Barbara Ben	Zhao

University	of	Maryland Neil	Spring

University	of	Michigan Pete	Chen

University	of	Southern	California Ramesh	Govindan

University	of	Texas-Austin Lorenzo	Alvisi

Universtiy	of	Toronto Ding	Yuan

University	of	Washington Gary	Kimura	and	Ed	Lazowska

In	developing	our	approach	to	teaching	operating	systems,	both	before	we	started	writing
and	afterwards	as	we	tried	to	put	our	thoughts	to	paper,	we	made	extensive	use	of	lecture
notes	and	slides	developed	by	other	faculty.	Of	particular	help	were	the	materials	created
by	Pete	Chen,	Peter	Druschel,	Steve	Gribble,	Eddie	Kohler,	John	Ousterhout,	Mothy
Roscoe,	and	Geoff	Voelker.	We	thank	them	all.

Our	illustrator	for	the	second	edition,	Cameron	Neat,	has	been	a	joy	to	work	with.	We
would	also	like	to	thank	Simon	Peter	for	running	the	multiprocessor	experiments
introducing	Chapter	6.

We	are	also	grateful	to	Lorenzo	Alvisi,	Adam	Anderson,	Pete	Chen,	Steve	Gribble,	Sam
Hopkins,	Ed	Lazowska,	Harsha	Madhyastha,	John	Ousterhout,	Mark	Rich,	Mothy	Roscoe,
Will	Scott,	Gun	Sirer,	Ion	Stoica,	Lakshmi	Subramanian,	and	John	Zahorjan	for	their
helpful	comments	and	suggestions	as	to	how	to	improve	the	book.

We	thank	Josh	Berlin,	Marla	Dahlin,	Rasit	Eskicioglu,	Sandy	Kaplan,	John	Ousterhout,
Whitney	Schmidt,	and	Mike	Walfish	for	helping	us	identify	and	correct	grammatical	or
technical	bugs	in	the	text.

We	thank	Jeff	Dean,	Garth	Gibson,	Mark	Oskin,	Simon	Peter,	Dave	Probert,	Amin	Vahdat,
and	Mark	Zbikowski	for	their	help	in	explaining	the	internal	workings	of	some	of	the
commercial	systems	mentioned	in	this	book.

We	would	like	to	thank	Dave	Wetherall,	Dan	Weld,	Mike	Walfish,	Dave	Patterson,	Olav
Kvern,	Dan	Halperin,	Armando	Fox,	Robin	Briggs,	Katya	Anderson,	Sandra	Anderson,
Lorenzo	Alvisi,	and	William	Adams	for	their	help	and	advice	on	textbook	economics	and
production.

The	Helen	Riaboff	Whiteley	Center	as	well	as	Don	and	Jeanne	Dahlin	were	kind	enough
to	lend	us	a	place	to	escape	when	we	needed	to	get	chapters	written.

Finally,	we	thank	our	families,	our	colleagues,	and	our	students	for	supporting	us	in	this
larger-than-expected	effort.

	IV
Persistent	Storage

11.	File	Systems:	Introduction	and	Overview

Memory	is	the	treasury	and	guardian	of	all	things.	—Marcus	Tullius	Cicero

Computers	must	be	able	to	reliably	store	data.	Individuals	store	family	photos,	music	files,
and	email	folders;	programmers	store	design	documents	and	source	files;	office	workers
store	spreadsheets,	text	documents,	and	presentation	slides;	and	businesses	store	inventory,
orders,	and	billing	records.	In	fact,	for	a	computer	to	work	at	all,	it	needs	to	be	able	to
store	programs	to	run	and	the	operating	system,	itself.

For	all	of	these	cases,	users	demand	a	lot	from	their	storage	systems:

Reliability.	A	user’s	data	should	be	safely	stored	even	if	a	machine’s	power	is	turned
off	or	its	operating	system	crashes.	In	fact,	much	of	this	data	is	so	important	that
users	expect	and	need	the	data	to	survive	even	if	the	devices	used	to	store	it	are
damaged.	For	example,	many	modern	storage	systems	continue	to	work	even	if	one
of	the	magnetic	disks	storing	the	data	malfunctions	or	even	if	a	data	center	housing
some	of	the	system’s	servers	burns	down!

Large	capacity	and	low	cost.	Users	and	companies	store	enormous	amount	of	data,
so	they	want	to	be	able	to	buy	high	capacity	storage	for	a	low	cost.	For	example,	it
takes	about	350	MB	to	store	an	hour	of	CD-quality	losslessly	encoded	music,	4	GB
to	store	an	hour-long	high-definition	home	video,	and	about	1	GB	to	store	300	digital
photos.	As	a	result	of	these	needs,	many	individuals	own	1	TB	or	more	of	storage	for
their	personal	files.	This	is	an	enormous	amount:	if	you	printed	1	TB	of	data	as	text
on	paper,	you	would	produce	a	stack	about	20	miles	high.	In	contrast,	for	less	than
$100	you	can	buy	1	TB	of	storage	that	fits	in	a	shoebox.

High	performance.	For	programs	to	use	data,	they	must	be	able	to	access	it,	and	for
programs	to	use	large	amounts	of	data,	this	access	must	be	fast.	For	example,	users
want	program	start-up	to	be	nearly	instantaneous,	a	business	may	need	to	process
hundreds	or	thousands	of	orders	per	second,	or	a	server	may	need	to	stream	a	large
number	of	video	files	to	different	users.

Named	data.	Because	users	store	a	large	amount	of	data,	because	some	data	must
last	longer	than	the	process	that	creates	it,	and	because	data	must	be	shared	across
programs,	storage	systems	must	provide	ways	to	easily	identify	data	of	interest.	For
example,	if	you	can	name	a	file	(e.g.,	/home/alice/assignments/hw1.txt)	you	can	find
the	data	you	want	out	of	the	millions	of	blocks	on	your	disk,	you	can	still	find	it	after
you	shut	down	your	text	editor,	and	you	can	use	your	email	program	to	send	the	data
produced	by	the	text	editor	to	another	user.

Controlled	sharing.	Users	need	to	be	able	to	share	stored	data,	but	this	sharing	needs
to	be	controlled.	As	one	example,	you	may	want	to	create	a	design	document	that
everyone	in	your	group	can	read	and	write,	that	people	in	your	department	can	read
but	not	write,	and	that	people	outside	of	your	department	cannot	access	at	all.	As
another	example,	it	is	useful	for	a	system	to	be	able	to	allow	anyone	to	execute	a

program	while	only	allowing	the	system	administrator	to	change	the	program.

Nonvolatile	storage	and	file	systems.	The	contents	of	a	system’s	main	DRAM	memory
can	be	lost	if	there	is	an	operating	system	crash	or	power	failure.	In	contrast,	non-volatile
storage	is	durable	and	retains	its	state	across	crashes	and	power	outages;	non-volatile
storage	is	also	called	or	persistent	storage	or	stable	storage.	Nonvolatile	storage	can	also
have	much	higher	capacity	and	lower	cost	than	the	volatile	DRAM	that	forms	the	bulk	of
most	system’s	“main	memory.”

However,	non-volatile	storage	technologies	have	their	own	limitations.	For	example,
current	non-volatile	storage	technologies	such	as	magnetic	disks	and	high-density	flash
storage	do	not	allow	random	access	to	individual	words	of	storage;	instead,	access	must	be
done	in	more	coarse-grained	units	—	512,	2048,	or	more	bytes	at	a	time.

Furthermore,	these	accesses	can	be	much	slower	than	access	to	DRAM;	for	example,
reading	a	sector	from	a	magnetic	disk	may	require	activating	a	motor	to	move	a	disk	arm
to	a	desired	track	on	disk	and	then	waiting	for	the	spinning	disk	to	bring	the	desired	data
under	the	disk	head.	Because	disk	accesses	involve	motors	and	physical	motion,	the	time
to	access	a	random	sector	on	a	disk	can	be	around	10	milliseconds.	In	contrast,	DRAM
latencies	are	typically	under	100	nanoseconds.	This	large	difference	—	about	five	orders
of	magnitude	in	the	case	of	spinning	disks	—	drives	the	operating	system	to	organize	and
use	persistent	storage	devices	differently	than	main	memory.

File	systems	are	a	common	operating	system	abstraction	to	allow	applications	to	access
non-volatile	storage.	File	systems	use	a	number	of	techniques	to	cope	with	the	physical
limitations	of	non-volatile	storage	devices	and	to	provide	better	abstractions	to	users.	For
example,	Figure	11.1	summarizes	how	physical	characteristics	motivate	several	key
aspects	of	file	system	design.

Goal Physical	Characteristic Design	Implication

High
performance

Large	cost	to	initiate	IO
access

Organize	data	placement	with	files,	directories,
free	space	bitmap,	and	placement	heuristics	so
that	storage	is	accessed	in	large	sequential	units

Caching	to	avoid	accessing	persistent	storage

Named	data

Storage	has	large
capacity,	survives
crashes,	and	is	shared
across	programs

Support	files	and	directories	with	meaningful
names

Controlled
sharing

Device	stores	many
users’	data Include	access-control	metadata	with	files

Reliable
storage

Crash	can	occur	during
update Use	transactions	to	make	a	set	of	updates	atomic

Storage	devices	can	fail Use	redundancy	to	detect	and	correct	failures

Flash	memory	cells	can
wear	out

Move	data	to	different	storage	locations	to	even
the	wear

Figure	11.1:	Characteristics	of	persistent	storage	devices	affect	the	design	of	an	operating
system’s	storage	abstractions.

Performance.	File	systems	amortize	the	cost	of	initiating	expensive	operations	—
such	as	moving	a	disk	arm	or	erasing	a	block	of	solid	state	memory	—	by	grouping
where	its	placement	of	data	so	that	such	operations	access	large,	sequential	ranges	of
storage.

Naming.	File	systems	group	related	data	together	into	directories	and	files	and
provide	human-readable	names	for	them	(e.g.,	/home/alice/Pictures/summer-
vacation/hiking.jpg.)	These	names	for	data	remain	meaningful	even	after	the	program
that	creates	the	data	exits,	they	help	users	organize	large	amounts	of	storage,	and	they
make	it	easy	for	users	to	use	different	programs	to	create,	read,	and	edit,	their	data.

Controlled	sharing.	File	systems	include	metadata	about	who	owns	which	files	and
which	other	users	are	allowed	to	read,	write,	or	execute	data	and	program	files.

Reliability.	File	systems	use	transactions	to	atomically	update	multiple	blocks	of
persistent	storage,	similar	to	how	the	operating	system	uses	critical	sections	to
atomically	update	different	data	structures	in	memory.

To	further	improve	reliability,	file	systems	store	checksums	with	data	to	detect
corrupted	blocks,	and	they	replicate	data	across	multiple	storage	devices	to	recover
from	hardware	failures.

Impact	on	application	writers.	Understanding	the	reliability	and	performance	properties
of	storage	hardware	and	file	systems	is	important	even	if	you	are	not	designing	a	file
system	from	scratch.	Because	of	the	fundamental	limitations	of	existing	storage	devices,
the	higher-level	illusions	of	reliability	and	performance	provided	by	the	file	system	are
imperfect.	An	application	programmer	needs	to	understand	these	limitations	to	avoid
having	inconsistent	data	stored	on	disk	or	having	a	program	run	orders	of	magnitude
slower	than	expected.

For	example,	suppose	you	edit	a	large	document	with	many	embedded	images	and	that
your	word	processor	periodically	auto-saves	the	document	so	that	you	would	not	lose	too
many	edits	if	the	machine	crashes.	If	the	application	uses	the	file	system	in	a
straightforward	way,	several	of	unexpected	things	may	happen.

Poor	performance.	First,	although	file	systems	allow	existing	bytes	in	a	file	to	be
overwritten	with	new	values,	they	do	not	allow	new	bytes	to	be	inserted	into	the
middle	of	existing	bytes.	So,	even	a	small	update	to	the	file	may	require	rewriting	the
entire	file	either	from	beginning	to	end	or	at	least	from	the	point	of	the	first	insertion
to	the	end.	For	a	multi-megabyte	file,	each	auto-save	may	end	up	taking	as	much	as	a
second.

Corrupt	file.	Second,	if	the	application	simply	overwrites	the	existing	file	with
updated	data,	an	untimely	crash	can	leave	the	file	in	an	inconsistent	state,	containing
a	mishmash	of	the	old	and	new	versions.	For	example,	if	a	section	is	cut	from	one
location	and	pasted	in	another,	after	a	crash	the	saved	document	may	end	up	with
copies	of	the	section	in	both	locations,	one	location,	or	neither	location;	or	it	may	end
up	with	a	region	that	is	a	mix	of	the	old	and	new	text.

Lost	file.	Third,	if	instead	of	overwriting	the	document	file,	the	application	writes
updates	to	a	new	file,	then	deletes	the	original	file,	and	finally	moves	the	new	file	to
the	original	file’s	location,	an	untimely	crash	can	leave	the	system	with	no	copies	of
the	document	at	all.

Programs	use	a	range	of	techniques	to	deal	with	these	types	of	issues.	For	example,	some
structure	their	code	to	take	advantage	of	the	detailed	semantics	of	specific	operating
systems.	Some	operating	systems	guarantee	that	when	a	file	is	renamed	and	a	file	with	the
target	name	already	exists,	the	target	name	will	always	refer	to	either	the	old	or	new	file,
even	after	a	crash	in	the	middle	of	the	rename	operation.	In	such	a	case,	an
implementation	can	create	a	new	file	with	the	new	version	of	the	data	and	use	the	rename
command	to	atomically	replace	the	old	version	with	the	new	one.

Other	programs	essentially	build	a	miniature	file	system	over	the	top	of	the	underlying
one,	structuring	their	data	so	that	the	underlying	file	system	can	better	meet	their
performance	and	reliability	requirements.

For	example,	a	word	processor	might	use	a	sophisticated	document	format,	allowing	it	to,
for	example,	add	and	remove	embedded	images	and	to	always	update	a	document	by
appending	updates	to	the	end	of	the	file.

As	another	example,	a	data	analysis	program	might	improve	its	performance	by
organizing	its	accesses	to	input	files	in	a	way	that	ensures	that	each	input	file	is	read	only
once	and	that	it	is	read	sequentially	from	its	start	to	its	end.

Or,	a	browser	with	a	1	GB	on-disk	cache	might	create	100	files,	each	containing	10	MB	of
data,	and	group	a	given	web	site’s	objects	in	a	sequential	region	of	a	randomly	selected
file.	To	do	this,	the	browser	would	need	to	keep	metadata	that	maps	each	cached	web	site
to	a	region	of	a	file,	it	would	need	to	keep	track	of	what	regions	of	each	file	are	used	and
which	are	free,	it	would	need	to	decide	where	to	place	a	new	web	site’s	objects,	and	it
would	need	to	have	a	strategy	for	growing	or	moving	a	web	site’s	objects	as	additional
objects	are	fetched.

Roadmap.	To	get	good	performance	and	acceptable	reliability,	both	application	writers
and	operating	systems	designers	must	understand	how	storage	devices	and	file	systems
work.	This	chapter	and	the	next	three	discuss	the	key	issues:

API	and	abstractions.	The	rest	of	this	chapter	introduces	file	systems	by	describing
a	typical	API	and	set	of	abstractions,	and	it	provides	an	overview	of	the	software
layers	that	provide	these	abstractions.

Storage	devices.	The	characteristics	of	persistent	storage	devices	strongly	influence
the	design	of	storage	system	abstractions	and	higher	level	applications.	Chapter	12
therefore	explores	the	physical	characteristics	of	common	storage	devices.

Implementing	files	and	directories.	Chapter	13	describes	how	file	systems	keep
track	of	data	by	describing	several	widely	used	approaches	to	implementing	files	and
directories.

Reliable	storage.	Although	we	would	like	storage	to	be	perfectly	reliable,	physical
devices	fall	short	of	that	ideal.	Chapter	14	describes	how	storage	systems	use
transactional	updates	and	redundancy	to	improve	reliability.

11.1	The	File	System	Abstraction

Today,	almost	anyone	who	uses	a	computer	is	familiar	with	the	high-level	file	system
abstraction.	File	systems	provide	a	way	for	users	to	organize	their	data	and	to	store	it	for
long	periods	of	time.	For	example,	Bob’s	computer	might	store	a	collection	of	applications
such	as	/Applications/Calculator	and	/Program	Files/Text	Edit	and	a	collection	of	data	files
such	as	/home/Bob/correspondence/letter-to-mom.txt,	and	/home/Bob/Classes/OS/hw1.txt.

More	precisely,	a	file	system	is	an	operating	system	abstraction	that	provides	persistent,
named	data.	Persistent	data	is	stored	until	it	is	explicitly	deleted,	even	if	the	computer
storing	it	crashes	or	loses	power.	Named	data	can	be	accessed	via	a	human-readable
identifier	that	the	file	system	associates	with	the	file.	Having	a	name	allows	a	file	to	be
accessed	even	after	the	program	that	created	it	has	exited,	and	allows	it	to	be	shared	by
multiple	applications.

There	are	two	key	parts	to	the	file	system	abstraction:	files,	which	define	sets	of	data,	and
directories,	which	define	names	for	files.

File.	A	file	is	a	named	collection	of	data	in	a	file	system.	For	example,	the	programs
/Applications/Calculator	or	/Program	Files/Text	Edit	are	each	files,	as	are	the	data
/home/Bob/correspondence/letter-to-mom.txt	or	/home/Bob/Classes/OS/hw1.txt.

Files	provide	a	higher-level	abstraction	than	the	underlying	storage	device:	they	let	a
single,	meaningful	name	refer	to	an	(almost)	arbitrarily-sized	amount	of	data.	For	example
/home/Bob/Classes/OS/hw1.txt	might	be	stored	on	disk	in	blocks	0x0A713F28,
0xB3CA349A,	and	0x33A229B8,	but	it	is	much	more	convenient	to	refer	to	the	data	by	its
name	than	by	this	list	of	disk	addresses.

A	file’s	information	has	two	parts,	metadata	and	data.	A	file’s	metadata	is	information
about	the	file	that	is	understood	and	managed	by	the	operating	system.	For	example,	a
file’s	metadata	typically	includes	the	file’s	size,	its	modification	time,	its	owner,	and	its
security	information	such	as	whether	it	may	be	read,	written,	or	executed	by	the	owner	or
by	other	users.

A	file’s	data	can	be	whatever	information	a	user	or	application	puts	in	it.	From	the	point	of

view	of	the	file	system,	a	file’s	data	is	just	an	array	of	untyped	bytes.	Applications	can	use
these	bytes	to	store	whatever	information	they	want	in	whatever	format	they	choose.	Some
data	have	a	simple	structure.	For	example,	an	ASCII	text	file	contains	a	sequence	of	bytes
that	are	interpreted	as	letters	in	the	English	alphabet.	Conversely,	data	structures	stored	by
applications	can	be	arbitrarily	complex.	For	example,	a	.doc	files	can	contain	text,
formatting	information,	and	embedded	objects	and	images,	an	ELF	(Executable	and
Linkable	File)	files	can	contain	compiled	objects	and	executable	code,	or	a	database	file
can	contain	the	information	and	indices	managed	by	a	relational	database.

Executing	“untyped”	files

Usually,	an	operating	system	treats	a	file’s	data	as	an	array	of	untyped	bytes,	leaving	it	up
to	applications	to	interpret	a	file’s	contents.	Occasionally,	however,	the	operating	system
needs	to	be	able	to	parse	a	file’s	data.

For	example,	Linux	supports	a	number	of	different	executable	file	types	such	as	the	ELF
and	a.out	binary	files	and	tcsh,	csh,	and	perl	scripts.	You	can	run	any	of	these	files	from
the	command	line	or	using	the	exec()	system	call.	E.g.,	
>	a.out	
Hello	world	from	hello.c	compiled	by	gcc!	
>	hello.pl	
Hello	world	from	hello.pl,	a	perl	script!	
>	echo	‘‘Hello	world	from	/bin/echo,	a	system	binary!’’	
Hello	world	from	/bin/echo,	a	system	binary!

To	execute	a	file,	the	operating	system	must	determine	whether	it	is	a	binary	file	or	a
script.	If	it	is	the	former,	the	operating	system	must	parse	the	file	to	determine	where	in
the	target	process’s	memory	to	load	code	and	data	from	the	file	and	which	instruction	to
start	with.	If	it	is	the	latter,	the	operating	system	must	determine	which	interpreter
program	it	should	launch	to	execute	the	script.

Linux	does	this	by	having	executable	files	begin	with	a	magic	number	that	identifies	the
file’s	format.	For	example,	ELF	binary	executables	begin	with	the	four	bytes	0x7f,	0x45,
0x4c,	and	0x46	(the	ASCII	characters	DEL,	E,	L,	and	F);	once	an	executable	is	known	to
be	an	ELF	file,	the	ELF	standard	defines	how	the	operating	system	should	parse	the	rest
of	the	file	to	extract	and	load	the	program’s	code	and	data.	Similarly,	script	files	begin
with	#!	followed	by	the	name	of	the	interpreter	that	should	be	used	to	run	the	script	(e.g.,
a	script	might	begin	with	#!	/bin/sh	to	be	executed	using	the	Bourne	shell	or	#!
/usr/bin/perl	to	be	executed	using	the	perl	interpreter.

Alternative	approaches	include	determining	a	file’s	type	by	its	name	extension	—	the
characters	after	the	last	dot	(.)	in	the	file’s	name	(e.g.,	.exe,	.pl,	or	.sh)	—	or	including
information	about	a	file’s	type	in	its	metadata.

Multiple	data	streams

For	traditional	files,	the	file’s	data	is	a	single	logical	sequence	of	bytes,	and	each	byte	can

be	identified	by	its	offset	from	the	start	of	the	sequence	(e.g.,	byte	0,	byte	999,	or	byte
12481921	of	a	file.)
Some	file	systems	support	multiple	sequences	of	bytes	per	file.	For	example,	Apple’s
MacOS	Extended	file	system	supports	multiple	forks	per	file	—	a	data	fork	for	the	file’s
basic	data,	a	resource	fork	for	storing	additional	attributes	for	the	file,	and	multiple	named
forks	for	application-defined	data.	Similarly,	Microsoft’s	NTFS	supports	alternate	data
streams	that	are	similar	to	MacOS’s	named	forks.

In	these	systems,	when	you	open	a	file	to	read	or	write	its	data,	you	specify	not	only	the
file	but	also	the	fork	or	stream	you	want.

Directory.	Whereas	a	file	contains	system-defined	metadata	and	arbitrary	data,	directories
provide	names	for	files.	In	particular,	a	file	directory	is	a	list	of	human-readable	names	and
a	mapping	from	each	name	to	a	specific	underlying	file	or	directory.	One	common
metaphor	is	that	a	directory	is	a	folder	that	contains	documents	(files)	and	other	folders
(directories).

Figure	11.2:	Example	of	a	hierarchical	organization	of	files	using	directories.

As	Figure	11.2	illustrates,	because	directories	can	include	names	of	other	directories,	they
can	be	organized	in	a	hierarchy	so	that	different	sets	of	associated	files	can	be	grouped	in
different	directories.	So,	the	directory	/bin	may	include	binary	applications	for	your
machine	while	/home/tom	(Tom’s	“home	directory”)	might	include	Tom’s	files.	If	Tom	has
many	files,	Tom’s	home	directory	may	include	additional	directories	to	group	them	(e.g.,
/home/tom/Music	and	/home/tom/Work.)	Each	of	these	directories	may	have
subdirectories	(e.g.,/home/tom/Work/Class	and	/home/tom/	Work/Docs)	and	so	on.

The	string	that	identifies	a	file	or	directory	(e.g.,	/home/tom/Work/Class/OS/hw1.txt	or
/home/tom)	is	called	a	path.	Here,	the	symbol	/	(pronounced	slash)	separates	components
of	the	path,	and	each	component	represents	an	entry	in	a	directory.	So,	hw1.txt	is	a	file	in
the	directory	OS;	OS	is	a	directory	in	the	directory	Work;	and	so	on.

If	you	think	of	the	directory	as	a	tree,	then	the	root	of	the	tree	is	a	directory	called,
naturally	enough,	the	root	directory.	Path	names	such	as	/bin/ls	that	begin	with	/	define
absolute	paths	that	are	interpreted	relative	to	the	root	directory.	So,	/home	refers	to	the
directory	called	home	in	the	root	directory.

Path	names	such	as	Work/Class/OS	that	do	not	begin	with	/	define	relative	paths	that	are
interpreted	by	the	operating	system	relative	to	a	process’s	current	working	directory.	So,	if
a	process’s	current	working	directory	is	/home/tom,	then	the	relative	path	Work/Class/OS
is	equivalent	to	the	absolute	path	/home/tom/Work/Class/OS.

When	you	log	in,	your	shell’s	current	working	directory	is	set	to	your	home	directory.
Processes	can	change	their	current	working	directory	with	the	chdir(path)	system	call.	So,
for	example,	if	you	log	in	and	then	type	cd	Work/Class/OS,	your	current	working	directory
is	changed	from	your	home	directory	to	the	subdirectory	Work/Class/OS	in	your	home
directory.

Figure	11.3:	Example	of	a	directed	acyclic	graph	directory	organization	with	multiple	hard	links	to	a	file.

.	and	..	and	~

You	may	sometimes	see	path	names	in	which	directories	are	named	.,	..,	or	~.	For
example,	
>	cd	~/Work/Class/OS	
>	cd	..	
>	./a.out

.,	..,	and	~	are	special	directory	names	in	Unix.	.	refers	to	the	current	directory,	..	refers	to
the	parent	directory,	~	refers	to	the	current	user’s	home	directory,	and	~name	refers	to	the
home	directory	of	user	name.

So,	the	first	shell	command	changes	the	current	working	directory	to	be	the	Work/
Class/OS	directory	in	the	user’s	home	directory	(e.g.,	/home/tom/Work/Class/OS).	The
second	command	changes	the	current	working	directory	to	be	the	Work/	Class	directory
in	the	user’s	home	directory	(e.g.,	~/Work/Class	or	/home/	tom/Work/Class.)	The	third
command	executes	the	program	a.out	from	the	current	working	directory	(e.g.,
~/Work/Class/a.out	or	/home/tom/Work/Class/	a.out.)

If	each	file	or	directory	is	identified	by	exactly	one	path,	then	the	directory	hierarchy
forms	a	tree.	Occasionally,	it	is	useful	to	have	several	different	names	for	the	same	file	or
directory.	For	example,	if	you	are	actively	working	on	a	project,	you	might	find	it
convenient	to	have	the	project	appear	in	both	your	“todo”	directory	and	a	more	permanent
location	(e.g.,	/home/tom/todo/hw1.txt	and	/home/tom/Work/Class/OS/hw1.txt	as
illustrated	in	Figure	11.3.)

The	mapping	between	a	name	and	the	underlying	file	is	called	a	hard	link.	If	a	system
system	allows	multiple	hard	links	to	the	same	file,	then	the	directory	hierarchy	may	no
longer	be	a	tree.	Most	file	systems	that	allow	multiple	hard	links	to	a	file	restrict	these
links	to	avoid	cycles,	ensuring	that	their	directory	structures	form	a	directed	acyclic	graph
(DAG.)	Avoiding	cycles	can	simplify	management	by,	for	example,	ensuring	that
recursive	traversals	of	a	directory	structure	terminate	or	by	making	it	straightforward	to
use	reference	counting	to	garbage	collect	a	file	when	the	last	link	to	it	is	removed.

In	addition	to	hard	links,	many	systems	provide	other	ways	to	use	multiple	names	to	refer
to	the	same	file.	See	the	sidebar	for	a	comparison	of	hard	links,	soft	links,	symbolic	links,
shortcuts,	and	aliases.

Hard	links,	soft	links,	symbolic	links,	shortcuts,	and	aliases

A	hard	link	is	a	directory	mapping	from	a	file	name	directly	to	an	underlying	file.	As	we
will	see	in	Chapter	13,	directories	will	be	implemented	by	storing	mappings	from	file
names	to	file	numbers	that	uniquely	identify	each	file.	When	you	first	create	a	file	(e.g.,
/a/b),	the	directory	entry	you	create	is	a	hard	link	the	the	new	file.	If	you	then	use	link()	to
add	another	hard	link	to	the	file	(e.g.,	link(“/a/b”,	“/c/d”),)	then	both	names	are	equally
valid,	independent	names	for	the	same	underlying	file.	You	could,	for	example,

unlink(“/a/b”),	and	/c/d	would	remain	a	valid	name	for	the	file.

Many	systems	also	support	symbolic	links	also	known	as	soft	links.	A	symbolic	link	is	a
directory	mappings	from	a	file	name	to	another	file	name.	If	a	file	is	opened	via	a
symbolic	link,	the	file	system	first	translates	the	name	in	the	symbolic	link	to	the	target
name	and	then	uses	the	target	name	to	open	the	file.	So,	if	you	create	/a/b	,	create	a
symbolic	link	from	/c/d/	to	/a/b,	and	then	unlink	/a/b,	the	file	is	no	longer	accessible	and
open(“/c/d”)	will	fail.

Although	the	potential	for	such	dangling	links	is	a	disadvantage,	symbolic	links	have	a
number	of	advantages	over	hard	links.	First,	systems	usually	allow	symbolic	links	to
directories,	not	just	regular	files.	Second,	a	symbolic	link	can	refer	to	a	file	stored	in	a
different	file	system	or	volume.

Some	operating	systems	such	as	Microsoft	Windows	also	support	shortcuts,	which	appear
similar	to	symbolic	links	but	which	are	interpreted	by	the	windowing	system	rather	than
by	the	file	system.	From	the	file	system’s	point	of	view,	a	shortcut	is	just	a	regular	file.
The	windowing	system,	however,	treats	shortcut	files	specially:	when	the	shortcut	file	is
selected	via	the	windowing	system,	the	windowing	system	opens	that	file,	identifies	the
target	file	referenced	by	the	shortcut,	and	acts	as	if	the	target	file	had	been	selected.

A	MacOS	file	alias	is	similar	to	a	symbolic	link	but	with	an	added	feature:	if	the	target
file	is	moved	to	have	a	new	path	name,	the	alias	can	still	be	used	to	reference	the	file.

Volume.	Each	instance	of	a	file	system	manages	files	and	directories	for	a	volume.	A
volume	is	a	collection	of	physical	storage	resources	that	form	a	logical	storage	device.

A	volume	is	an	abstraction	that	corresponds	to	a	logical	disk.	In	the	simplest	case,	a
volume	corresponds	to	a	single	physical	disk	drive.	Alternatively,	a	single	physical	disk
can	be	partitioned	and	store	multiple	volumes	or	several	physical	disks	can	be	combined
so	that	a	single	volume	spans	multiple	physical	disks.

A	single	computer	can	make	use	of	multiple	file	systems	stored	on	multiple	volumes	by
mounting	multiple	volumes	in	a	single	logical	hierarchy.	Mounting	a	volume	on	an
existing	file	system	creates	a	mapping	from	some	path	in	the	existing	file	system	to	the
root	directory	of	the	mounted	volume’s	file	system	and	lets	the	mounted	file	system
control	mappings	for	all	extensions	of	that	path.

Figure	11.4:	This	USB	disk	holds	a	volume	that	is	the	physical	storage	for	a	file	system.

Figure	11.5:	A	volume	can	be	mounted	to	another	file	system	to	join	their	directory	hierarchies.	For	example,	when	the
USB	drive	is	connected	to	Alice’s	computer,	she	can	access	the	vacation.mov	movie	using	the	path
/Volumes/usb1/Movies/vacation.mov,	and	when	the	drive	is	connected	to	Bob’s	computer,	he	can	access	the	movie
using	the	path	/media/disk-1/Movies/vacation.mov.

For	example,	suppose	a	USB	drive	contains	a	file	system	with	the	directories	/Movies	and
/Backup	as	shown	in	Figure	11.4.	If	Alice	plugs	that	drive	into	her	laptop,	the	laptop’s
operating	system	might	mount	the	USB	volume’s	file	system	with	the	path	/Volumes/usb1/
as	shown	in	Figure	11.5.	Then,	if	Alice	calls	open(“/Volumes/usb1/
Movies/vacation.mov”),	she	will	open	the	file	/Movies/vacation.mov	from	the	file	system
on	the	USB	drive’s	volume.	If,	instead,	Bob	plugs	that	drive	into	his	laptop,	the	laptop’s
operating	system	might	mount	the	volume’s	file	system	with	the	path	/media/disk-1,	and
Bob	would	access	the	same	file	using	the	path	/media/disk-1/Movies/	vacation.mov.

11.2	API

Creating	and	deleting	files

create
(pathName) Create	a	new	file	with	the	specified	name.

link
(existingName,
newName)

Create	a	hard	link	—	a	new	path	name	that	refers	to	the	same
underlying	file	as	an	existing	path	name.

unlink
(pathName)

Remove	the	specified	name	for	a	file	from	its	directory;	if	that	was	the
only	name	for	the	underlying	file,	then	remove	the	file	and	free	its
resources.

mkdir
(pathName) Create	a	new	directory	with	the	specified	name.

rmdir
(pathName) Remove	the	directory	with	the	specified	name.

Open	and	close

fileDescriptor
open
(pathName)

Prepare	to	access	to	the	specified	file	(e.g.,	check	access	permissions
and	initialize	kernel	data	structures	for	tracking	per-process	state	of
open	files).

close
(fileDescriptor) Release	resources	associated	with	the	specified	open	file.

File	access

read
(fileDescriptor,
buf,	len)

Read	len	bytes	from	the	process’s	current	position	in	the	open	file
fileDescriptor	and	copy	the	results	to	a	buffer	buf	in	the	application’s
memory.

write
(fileDescriptor,
len,	buf)

Write	len	bytes	of	data	from	a	buffer	buf	in	the	process’s	memory	to	the
process’s	current	position	in	the	open	file	fileDescriptor.

seek
(fileDescriptor,
offset)

Change	the	process’s	current	position	in	the	open	file	fileDescriptor	to
the	specified	offset.

dataPtr	mmap
(fileDescriptor,
off,	len)

Set	up	a	mapping	between	the	data	in	the	file	fileDescriptor	from	off	to
off	+	len	and	an	area	in	the	application’s	virtual	memory	from	dataPtr	to
dataPtr	+	len.

munmap
(dataPtr,	len)

Remove	the	mapping	between	the	application’s	virtual	memory	and	a
mapped	file.

fsync
(fileDescriptor)

Force	to	disk	all	buffered,	dirty	pages	for	the	file	associated	with
fileDescriptor.

Figure	11.6:	A	simple	API	for	accessing	files.

For	concreteness,	Figure	11.6	shows	a	simple	file	system	API	for	accessing	files	and
directories.

Creating	and	deleting	files.	Processes	create	and	destroy	files	with	create()	and	unlink().
Create()	does	two	things:	it	creates	a	new	file	that	has	initial	metadata	but	no	other	data,
and	it	creates	a	name	for	that	file	in	a	directory.

Link()	creates	a	hard	link	—	a	new	path	name	for	an	existing	file.	After	a	successful	call	to
link(),	there	are	multiple	path	names	that	refer	to	the	same	underlying	file.

Unlink()	removes	a	name	for	a	file	from	its	directory.	If	a	file	has	multiple	names	or	links,
unlink()	only	removes	the	specified	name,	leaving	the	file	accessible	via	other	names.	If
the	specified	name	is	the	last	(or	only)	link	to	a	file,	then	unlink()	also	deletes	the
underlying	file	and	frees	its	resources.

Mkdir()	and	rmdir()	create	and	delete	directories.

EXAMPLE:	Linking	to	files	vs.	linking	to	directories.	Systems	such	as	Linux	support	a
link()	system	call,	but	they	do	not	allow	new	hard	links	to	be	created	to	a	directory.	E.g.,
existingPath	must	not	be	a	directory.	Why	does	Linux	mandate	this	restriction?

ANSWER:	Preventing	multiple	hard	links	to	a	directory	prevents	cycles,	ensuring	that	the

directory	structure	is	always	a	directed	acyclic	graph	(DAG).

Additionally,	allowing	hard	links	to	a	directory	would	muddle	a	directory’s	parent
directory	entry	(e.g.,	“..”	as	discussed	in	the	sidebar).	□

Open	and	close.	To	start	accessing	a	file,	a	process	calls	open()	to	get	a	file	descriptor	it
can	use	to	refer	to	the	open	file.	File	descriptor	is	Unix	terminology;	in	other	systems	the
descriptor	may	be	called	a	file	handle	or	a	file	stream.

Operating	systems	require	processes	to	explicitly	open()	files	and	access	them	via	file
descriptors	rather	than	simply	passing	the	path	name	to	read()	and	write()	calls	for	two
reasons.	First,	path	parsing	and	permission	checking	can	be	done	just	when	a	file	is
opened	and	need	not	be	repeated	on	each	read	or	write.	Second,	when	a	process	opens	a
file,	the	operating	system	creates	a	data	structure	that	stores	information	about	the
process’s	open	file	such	as	the	file’s	ID,	whether	the	process	can	write	or	just	read	the	file,
and	a	pointer	to	the	process’s	current	position	within	the	file.	The	file	descriptor	can	thus
be	thought	of	as	a	reference	to	the	operating	system’s	per-open-file	data	structure	that	the
operating	system	will	use	for	managing	the	process’s	access	to	the	file.

When	an	application	is	done	using	a	file,	it	calls	close(),	which	releases	the	open	file
record	in	the	operating	system.

File	access.	While	a	file	is	open,	an	application	can	access	the	file’s	data	in	two	ways.
First,	it	can	use	the	traditional	procedural	interface,	making	system	calls	to	read()	and
write()	on	an	open	file.	Calls	to	read()	and	write()	start	from	the	process’s	current	file
position,	and	they	advance	the	current	file	position	by	the	number	of	bytes	successfully
read	or	written.	So,	a	sequence	of	read()	or	write()	calls	moves	sequentially	through	a	file.
To	support	random	access	within	a	file,	the	seek()	call	changes	a	process’s	current	position
for	a	specified	open	file.

Rather	than	using	read()	and	write()	to	access	a	file’s	data,	an	application	can	use	mmap()
to	establish	a	mapping	between	a	region	of	the	process’s	virtual	memory	and	some	region
of	the	file.	Once	a	file	has	been	mapped,	memory	loads	and	stores	to	that	virtual	memory
region	will	read	and	write	the	file’s	data	either	by	accessing	a	shared	page	from	the
kernel’s	file	cache,	or	by	triggering	a	page	fault	exception	that	causes	the	kernel	to	fetch
the	desired	page	of	data	from	the	file	system	into	memory.	When	an	application	is	done
with	a	file,	it	can	call	munmap()	to	remove	the	mappings.

Finally,	the	fsync()	call	is	important	for	reliability.	When	an	application	updates	a	file	via	a
write()	or	a	memory	store	to	a	mapped	file,	the	updates	are	buffered	in	memory	and
written	back	to	stable	storage	at	some	future	time.	Fsync()	ensures	that	all	pending	updates
for	a	file	are	written	to	persistent	storage	before	the	call	returns.	Applications	use	this
function	for	two	purposes.	First,	calling	fsync()	ensures	that	updates	are	durable	and	will
not	be	lost	if	there	is	a	crash	or	power	failure.	Second,	calling	fsync()	between	two	updates
ensures	that	the	first	is	written	to	persistent	storage	before	the	second.	Note	that	calling
fsync()	is	not	always	necessary;	the	operating	system	ensures	that	all	updates	are	made
durable	by	periodically	flushing	all	dirty	file	blocks	to	stable	storage.

Modern	file	access	APIs

The	API	shown	in	Figure	11.6	is	similar	to	most	widely	used	file	access	APIs,	but	it	is
somewhat	simplified.

For	example,	each	of	the	listed	calls	is	similar	to	a	call	provided	by	the	POSIX	interface,
but	the	API	shown	in	Figure	11.6	omits	some	arguments	and	options	found	in	POSIX.
The	POSIX	open()	call,	for	example,	includes	two	additional	arguments	one	to	specify
various	flags	such	as	whether	the	file	should	be	opened	in	read-only	or	read-write	mode
and	the	other	to	specify	the	access	control	permissions	that	should	be	used	if	the	open()
call	creates	a	new	file.

In	addition,	real-world	file	access	APIs	are	likely	to	have	a	number	of	additional	calls.
For	example,	the	Microsoft	Windows	file	access	API	includes	dozens	of	calls	including
calls	to	lock	and	unlock	a	file,	to	encrypt	and	decrypt	a	file,	or	to	find	a	file	in	a	directory
whose	name	matches	a	specific	pattern.

11.3	Software	Layers

Figure	11.7:	Layered	abstractions	provide	access	to	I/O	systems	such	as	storage	systems.

As	shown	in	Figure	11.7,	operating	systems	implement	the	file	system	abstraction	through
a	series	of	software	layers.	Broadly	speaking,	these	layers	have	two	sets	of	tasks:

API	and	performance.	The	top	levels	of	the	software	stack	—	user-level	libraries,
kernel-level	file	systems,	and	the	kernel’s	block	cache	—	provide	a	convenient	API
for	accessing	named	files	and	also	work	to	minimize	slow	storage	accesses	via
caching,	write	buffering,	and	prefetching.

Device	access.	Lower	levels	of	the	software	stack	provide	ways	for	the	operating
system	to	access	a	wide	range	of	I/O	devices.	Device	drivers	hide	the	details	of

specific	I/O	hardware	by	providing	hardware-specific	code	for	each	device,	and
placing	that	code	behind	a	simpler,	more	general	interfaces	that	the	rest	of	the
operating	system	can	use	such	as	a	block	device	interface.	The	device	drivers	execute
as	normal	kernel-level	code,	using	the	systems’	main	processors	and	memory,	but
they	must	interact	with	the	I/O	devices.	A	system’s	processors	and	memory
communicate	with	its	I/O	devices	using	Memory-Mapped	I/O,	DMA,	and	Interrupts.

In	the	rest	of	this	section,	we	first	talk	about	the	file	system	API	and	performance	layers.
We	then	discuss	device	access.

11.3.1	API	and	Performance

The	top	levels	of	the	file	system	software	stack	—	divided	between	application	libraries
and	operating	system	kernel	code	—	provide	the	file	system	API	and	also	provide	caching
and	write	buffering	to	improve	performance.

System	calls	and	libraries.	The	file	system	abstraction	such	as	the	API	shown	in
Figure	11.6	can	be	provided	directly	by	system	calls.	Alternatively,	application	libraries
can	wrap	the	system	calls	to	add	additional	functionality	such	as	buffering.

For	example,	in	Linux,	applications	can	access	files	directly	using	system	calls	(e.g.,
open(),	read(),	write(),	and	close().)	Alternatively,	applications	can	use	the	stdio	library
calls	(e.g.,	fopen(),	fread(),	fwrite(),	and	fclose()).	The	advantage	of	the	latter	is	that	the
library	includes	buffers	to	aggregate	a	program’s	small	reads	and	writes	into	system	calls
that	access	larger	blocks,	which	can	reduce	overheads.	For	example,	if	a	program	uses	the
library	function	fread()	to	read	1	byte	of	data,	the	fread()	implementation	may	use	the
read()	system	call	to	read	a	larger	block	of	data	(e.g.,	4	KB)	into	a	buffer	maintained	by
the	library	in	the	application’s	address	space.	Then,	if	the	process	calls	fread()	again	to
read	another	byte,	the	library	just	returns	the	byte	from	the	buffer	without	needing	to	do	a
system	call.

Block	cache.	Typical	storage	devices	are	much	slower	than	a	computer’s	main	memory.
The	operating	system’s	block	cache	therefore	caches	recently	read	blocks,	and	it	buffers
recently	written	blocks	so	that	they	can	be	written	back	to	the	storage	device	at	a	later
time.

In	addition	to	improving	performance	by	caching	and	write	buffering,	the	block	cache
serves	as	a	synchronization	point:	because	all	requests	for	a	given	block	go	through	the
block	cache,	the	operating	system	includes	information	with	each	buffer	cache	entry	to,
for	example,	prevent	one	process	from	reading	a	block	while	another	process	writes	it	or
to	ensure	that	a	given	block	is	only	fetched	from	the	storage	device	once,	even	if	it	is
simultaneously	read	by	many	processes.

Prefetching.	Operating	systems	use	prefetching	to	improve	I/O	performance.	For
example,	if	a	process	reads	the	first	two	blocks	of	a	file,	the	operating	system	may
prefetch	the	next	ten	blocks.

Such	prefetching	can	have	several	beneficial	effects:

Reduced	latency.	When	predictions	are	accurate,	prefetching	can	help	the	latency	of
future	requests	because	reads	can	be	serviced	from	main	memory	rather	than	from
slower	storage	devices.

Reduced	device	overhead.	Prefetching	can	help	reduce	storage	device	overheads	by
replacing	a	large	number	of	small	requests	with	one	large	one.

Improved	parallelism.	Some	storage	devices	such	as	Redundant	Arrays	of
Inexpensive	Disks	(RAIDs)	and	Flash	drives	are	able	to	process	multiple	requests	at
once,	in	parallel.	Prefetching	provides	a	way	for	operating	systems	to	take	advantage
of	available	hardware	parallelism.

Prefetching,	however,	must	be	used	with	care.	Too-aggressive	prefetching	can	cause
problems:

Cache	pressure.	Each	prefetched	block	is	stored	in	the	block	cache,	and	it	may
displace	another	block	from	the	cache.	If	the	evicted	block	is	needed	before	the
prefetched	one	is	used,	prefetching	is	likely	to	hurt	overall	performance.

I/O	contention.	Prefetch	requests	consume	I/O	resources.	If	other	requests	have	to
wait	behind	prefetch	requests,	prefetching	may	hurt	overall	performance.

Wasted	effort.	Prefetching	is	speculative.	If	the	prefetched	blocks	end	up	being
needed,	then	prefetching	can	help	performance;	otherwise,	prefetching	may	hurt
overall	performance	by	wasting	memory	space,	I/O	device	bandwidth,	and	CPU
cycles.

11.3.2	Device	Drivers:	Common	Abstractions

Device	drivers	translate	between	the	high	level	abstractions	implemented	by	the	operating
system	and	the	hardware-specific	details	of	I/O	devices.

An	operating	system	may	have	to	deal	with	many	different	I/O	devices.	For	example,	a
laptop	on	a	desk	might	be	connected	to	two	keyboards	(one	internal	and	one	external),	a
trackpad,	a	mouse,	a	wired	ethernet,	a	wireless	802.11	network,	a	wireless	bluetooth
network,	two	disk	drives	(one	internal	and	one	external),	a	microphone,	a	speaker,	a
camera,	a	printer,	a	scanner,	and	a	USB	thumb	drive.	And	that	is	just	a	handful	of	the
literally	thousands	of	devices	that	could	be	attached	to	a	computer	today.	Building	an
operating	system	that	treats	each	case	separately	would	be	impossibly	complex.

Layering	helps	simplify	operating	systems	by	providing	common	ways	to	access	various
classes	of	devices.	For	example,	for	any	given	operating	system,	storage	device	drivers
typically	implement	a	standard	block	device	interface	that	allows	data	to	be	read	or	written
in	fixed-sized	blocks	(e.g.,	512,	2048,	or	4096	bytes).

Such	a	standard	interface	lets	an	operating	system	easily	use	a	wide	range	of	similar
devices.	A	file	system	implemented	to	run	on	top	of	the	standard	block	device	interface
can	store	files	on	any	storage	device	whose	driver	implements	that	interface,	be	it	a
Seagate	spinning	disk	drive,	an	Intel	solid	state	drive,	a	Western	Digital	RAID,	or	an
Amazon	Elastic	Block	Store	volume.	These	devices	all	have	different	internal

organizations	and	control	registers,	but	if	each	manufacturer	provides	a	device	driver	that
exports	the	standard	interface,	the	rest	of	the	operating	system	does	not	need	to	be
concerned	with	these	per-device	details.

Challenge:	device	driver	reliability

Because	device	drivers	are	hardware-specific,	they	are	often	written	and	updated	by	the
hardware	manufacturer	rather	than	the	operating	system’s	main	authors.	Furthermore,
because	there	are	large	numbers	of	devices	—	some	operating	systems	support	tens	of
thousands	of	devices	—	device	driver	code	may	represent	a	large	fraction	of	an	operating
system’s	code.

Unfortunately,	bugs	in	device	drivers	have	the	potential	to	affect	more	than	the	device.	A
device	driver	usually	runs	as	part	of	the	operating	system	kernel	since	kernel	routines
depend	on	it	and	because	it	needs	to	access	the	hardware	of	its	device.	However,	if	the
device	driver	is	part	of	the	kernel,	then	a	device	driver’s	bugs	have	the	potential	to	affect
the	overall	reliability	of	a	system.	For	example,	in	2003	it	was	reported	that	drivers
caused	about	85%	of	failures	in	the	Windows	XP	operating	system.

To	improve	reliability,	operating	systems	are	increasingly	using	protection	techniques
similar	to	those	used	to	isolate	user-level	programs	to	isolate	device	drivers	from	the
kernel	and	from	each	other.

11.3.3	Device	Access

How	should	an	operating	system’s	device	drivers	communicate	with	and	control	a	storage
device?	At	first	blush,	a	storage	device	seems	very	different	from	the	memory	and	CPU
resources	we	have	discussed	so	far.	For	example,	a	disk	drive	includes	several	motors,	a
sensor	for	reading	data,	and	an	electromagnet	for	writing	data.

Memory-mapped	I/O.	As	Figure	11.8	illustrates,	I/O	devices	are	typically	connected	to
an	I/O	bus	that	is	connected	to	the	system’s	memory	bus.	Each	I/O	device	has	controller
with	a	set	of	registers	that	can	be	written	and	read	to	transmit	commands	and	data	to	and
from	the	device.	For	example,	a	simple	keyboard	controller	might	have	one	register	that
can	be	read	to	learn	the	most	recent	key	pressed	and	another	register	than	can	be	written	to
turn	the	caps-lock	light	on	or	off.

Figure	11.8:	I/O	devices	are	attached	to	the	I/O	bus,	which	is	attached	to	the	memory	bus.

To	allow	I/O	control	registers	to	be	read	and	written,	systems	implement	memory-mapped
I/O.	Memory-mapped	I/O	maps	each	device’s	control	registers	to	a	range	of	physical
addresses	on	the	memory	bus.	Reads	and	writes	by	the	CPU	to	this	physical	address	range
do	not	go	to	main	memory.	Instead,	they	go	to	registers	on	the	I/O	devices’s	controllers.
Thus,	the	operating	system’s	keyboard	device	driver	might	learn	the	value	of	the	last	key
pressed	by	reading	from	physical	address,	say,	0xC00002000.

Figure	11.9:	Physical	address	map	for	a	system	with	2	GB	of	DRAM	and	3	memory-mapped	I/O	devices.

The	hardware	maps	different	devices	to	different	physical	address	ranges.	Figure	11.9
shows	the	physical	address	map	for	a	hypothetical	system	with	a	32	bit	physical	address
space	capable	of	addressing	4	GB	of	physical	memory.	This	system	has	2	GB	of	DRAM	in
it,	consuming	physical	addresses	0x00000000	(0)	to	0x7FFFFFFF	(231	-	1).	Controllers	for
each	of	its	three	I/O	devices	are	mapped	to	ranges	of	addresses	in	the	first	few	kilobytes
above	3	GB.	For	example,	physical	addresses	from	0xC0001000	to	0xC0001FFF	access
registers	in	the	disk	controller.

Port	mapped	I/O

Today,	memory-mapped	I/O	is	the	dominant	paradigm	for	accessing	I/O	device’s	control
registers.	However	an	older	style,	port	mapped	I/O,	is	still	sometimes	used.	Notably,	the
x86	architecture	supports	both	memory-mapped	I/O	and	port	mapped	I/O.

Port	mapped	I/O	is	similar	to	memory-mapped	I/O	in	that	instructions	read	from	and
write	to	specified	addresses	to	control	I/O	devices.	There	are	two	differences.	First,	where
memory-mapped	I/O	uses	standard	memory-access	instructions	(e.g.,	load	and	store)	to
communicate	with	devices,	port	mapped	I/O	uses	distinct	I/O	instructions.	For	example,
the	x86	architecture	uses	the	in	and	out	instructions	for	port	mapped	I/O.	Second,	whereas
memory-mapped	I/O	uses	the	same	physical	address	space	as	is	used	for	the	system’s

main	memory,	the	address	space	for	port	mapped	I/O	is	distinct	from	the	main	memory
address	space.
For	example,	in	x86	I/O	can	be	done	using	either	memory-mapped	or	port	mapped	I/O,
and	the	low-level	assembly	code	is	similar	for	both	cases:

Memory	mapped	I/O

Port	mapped	I/O

Port	mapped	I/O	can	be	useful	in	architectures	with	constrained	physical	memory
addresses	since	I/O	devices	do	not	need	to	consume	ranges	of	physical	memory
addresses.	On	the	other	hand,	for	systems	with	sufficiently	large	physical	address	spaces,
memory-mapped	I/O	can	be	simpler	since	no	new	instructions	or	address	ranges	need	to
be	defined	and	since	device	drivers	can	use	any	standard	memory	access	instructions	to
access	devices.	Also,	memory-mapped	I/O	provides	a	more	unified	model	for	supporting
DMA	—	direct	transfers	between	I/O	devices	and	main	memory.

DMA.	Many	I/O	devices,	including	most	storage	devices,	transfer	data	in	bulk.	For
example,	operating	systems	don’t	read	a	word	or	two	from	disk,	they	usually	do	transfers
of	at	least	a	few	kilobytes	at	a	time.	Rather	than	requiring	the	CPU	to	read	or	write	each
word	of	a	large	transfer,	I/O	devices	can	use	direct	memory	access.	When	using	direct
memory	access	(DMA),	the	I/O	device	copies	a	block	of	data	between	its	own	internal
memory	and	the	system’s	main	memory.

To	set	up	a	DMA	transfer,	a	simple	operating	system	could	use	memory-mapped	I/O	to
provide	a	target	physical	address,	transfer	length,	and	operation	code	to	the	device.	Then,
the	device	copies	data	to	or	from	the	target	address	without	requiring	additional	processor
involvement.

After	setting	up	a	DMA	transfer,	the	operating	system	must	not	use	the	target	physical
pages	for	any	other	purpose	until	the	DMA	transfer	is	done.	The	operating	system
therefore	“pins”	the	target	pages	in	memory	so	that	they	cannot	be	reused	until	they	are
unpinned.	For	example,	a	pinned	physical	page	cannot	be	swapped	out	to	disk	and	then
remapped	to	some	other	virtual	address.

Advanced	DMA

Although	a	setting	up	a	device’s	DMA	can	be	as	simple	as	providing	a	target	physical

address	and	length	and	then	saying	“go!”,	more	sophisticated	interfaces	are	increasingly
used.
For	example	rather	than	giving	devices	direct	access	to	the	machine’s	physical	address
space,	some	systems	include	an	I/O	memory	management	unit	(IOMMU)	that	translates
device	virtual	addresses	to	main	memory	physical	addresses	similar	to	how	a	processor’s
TLB	translates	processor	virtual	addresses	to	main	memory	physical	addresses.	An
IOMMU	can	provide	both	protection	(e.g.,	preventing	a	buggy	IO	device	from
overwriting	arbitrary	memory)	and	simpler	abstractions	(e.g.,	allowing	devices	to	use
virtual	addresses	so	that,	for	example,	a	long	transfer	can	be	made	to	a	range	of
consecutive	virtual	pages	rather	than	a	collection	of	physical	pages	scattered	across
memory.)

Also,	some	devices	add	a	level	of	indirection	so	that	they	can	interrupt	the	CPU	less
often.	For	example,	rather	than	using	memory	mapped	I/O	to	set	up	each	DMA	request,
the	CPU	and	I/O	device	could	share	two	lists	in	memory:	one	list	of	pending	I/O	requests
and	another	of	completed	I/O	requests.	Then,	the	CPU	could	set	up	dozens	of	disk
requests	and	only	be	interrupted	when	all	of	them	are	done.

Sophisticated	I/O	devices	can	even	be	configured	to	take	different	actions	depending	the
data	they	receive.	For	example,	some	high	performance	network	interfaces	parse
incoming	packets	and	direct	interrupts	to	different	processors	based	on	the	network
connection	to	which	a	received	packet	belongs.

Interrupts.	The	operating	system	needs	to	know	when	I/O	devices	have	completed
handling	a	request	or	when	new	external	input	arrives.	One	option	is	polling,	repeatedly
using	memory-mapped	I/O	to	read	a	status	register	on	the	device.	Because	I/O	devices	are
often	much	slower	than	CPUs	and	because	inputs	received	by	I/O	devices	may	arrive	at
irregular	rates,	it	us	usually	better	for	I/O	devices	to	use	an	interrupt	to	notify	the
operating	system	of	important	events.

11.3.4	Putting	It	All	Together:	A	Simple	Disk	Request

When	a	process	issues	a	system	call	like	read()	to	read	data	from	disk	into	the	process’s
memory,	the	operating	system	moves	the	calling	thread	to	a	wait	queue.	Then,	the
operating	system	uses	memory-mapped	I/O	both	to	tell	the	disk	to	read	the	requested	data
and	to	set	up	DMA	so	that	the	disk	can	place	that	data	in	the	kernel’s	memory.	The	disk
then	reads	the	data	and	DMAs	it	into	main	memory;	once	that	is	done,	the	disk	triggers	an
interrupt.	The	operating	system’s	interrupt	handler	then	copies	the	data	from	the	kernel’s
buffer	into	the	process’s	address	space.	Finally,	the	operating	system	moves	the	thread	the
ready	list.	When	the	thread	next	runs,	it	will	returns	from	the	system	call	with	the	data
now	present	in	the	specified	buffer.

11.4	Summary	and	Future	Directions

The	file	system	interface	is	a	stable	one,	and	small	variations	of	interface	described	here
can	be	found	in	many	operating	systems	and	for	many	storage	devices.

Yet,	the	file	system	abstraction	is	imperfect,	and	application	writers	need	to	use	it	carefully
to	get	acceptable	performance	and	reliability.	For	example,	if	an	application	write()s	a	file,
the	update	may	not	be	durable	when	the	write()	call	returns;	application	writers	often	call
fsync()	to	ensure	durability	of	data.

Could	better	file	system	APIs	simplify	programming?	For	example,	if	file	systems	allowed
users	to	update	multiple	objects	atomically,	that	might	simplify	many	applications	that
currently	must	carefully	constrain	the	order	that	their	updates	are	stored	using	crude
techniques	such	as	using	fsync	as	a	barrier	between	one	set	of	updates	and	the	next.

Could	better	file	system	APIs	improve	performance?	For	example,	one	proposed	interface
allows	an	application	to	direct	the	operating	system	to	transfer	a	range	of	bytes	from	a	file
to	a	network	connection.	Such	an	interface	might,	for	example,	reduce	overheads	for	a
movie	server	that	streams	movies	across	a	network	to	clients.

Exercises

1.	 Discussion	Suppose	a	process	successfully	opens	an	existing	file	that	has	a	single
hard	link	to	it,	but	while	the	process	is	reading	that	file,	another	process	unlinks	that
file.	What	should	happen	to	subsequent	reads	by	the	first	process?	Should	they
succeed?	Should	they	fail?	Why?

2.	 In	Linux,	suppose	a	process	successfully	opens	an	existing	file	that	has	a	single	hard
link	to	it,	but	while	the	process	is	reading	that	file,	another	process	unlinks	that	file?
What	happens	to	subsequent	reads	by	the	first	process?	Do	they	succeed?	Do	they
fail?	(Answer	this	problem	by	consulting	documentation	or	by	writing	a	program	to
test	the	behavior	of	the	system	in	this	case.)

3.	 Write	a	program	that	creates	a	new	file,	writes	100KB	to	it,	flushes	the	writes,	and
deletes	it.	Time	how	long	each	of	these	steps	takes.

Hint	You	may	find	the	POSIX	system	calls	creat(),	write(),	fflush(),	close(),	and
gettimeofday()	useful.	See	the	manual	pages	for	details	on	how	to	use	these.

4.	 Consider	a	text	editor	that	saves	a	file	whenever	you	click	a	save	button.	Suppose	that
when	you	press	the	button,	the	editor	simply	(1)	animates	the	button	“down”	event
(e.g.,	by	coloring	the	button	grey),	(2)	uses	the	write()	system	call	to	write	your	text
to	your	file,	and	then	(3)	animates	the	button	“up”	event	(e.g.,	by	coloring	the	button
white).	What	bad	thing	could	happen	if	a	user	edits	a	file,	saves	it,	and	then	turns	off
her	machine	by	flipping	the	power	switch	(rather	than	shutting	the	machine	down
cleanly)?

5.	 Write	a	program	that	times	how	long	it	takes	to	issue	100,000	one-byte	writes	in	each
of	two	ways.	First,	time	how	long	it	takes	to	use	the	POSIX	system	calls	creat(),
write(),	and	close()	directly.	Then	see	how	long	these	writes	take	if	the	program	uses
the	stdio	library	calls	(e.g.,	fopen(),	fwrite(),	and	fclose())	instead.	Explain	your
results.

12.	Storage	Devices

Treat	disks	like	tape.	—John	Ousterhout

Although	today’s	persistent	storage	devices	have	large	capacity	and	low	cost,	they	have
drastically	worse	performance	than	volatile	DRAM	memory.

Not	only	that,	but	the	characteristics	are	different	and	are	peculiar	to	specific	persistent
storage	devices.	For	example,	although	programs	can	access	random	individual	words	of
DRAM	with	good	performance,	programs	can	only	access	today’s	disk	and	flash	storage
devices	hundreds	or	thousands	of	bytes	at	a	time.	Furthermore,	even	if	an	application
restricts	itself	to	supported	access	sizes	(e.g.,	2	KB	per	read	or	write),	if	the	application
access	pattern	is	random,	the	application	may	be	slower	by	a	factor	of	several	hundred
than	if	the	application	accessed	the	same	amount	of	data	sequentially.

To	cope	with	the	limitations	and	to	maximize	the	performance	of	storage	devices,	both	file
system	designers	and	application	writers	need	to	understand	the	physical	characteristics	of
persistent	storage	devices.

Chapter	roadmap.	This	chapter	discusses	two	types	of	persistent	storage:	magnetic	disks
and	flash	memory.	Both	are	widely	used.	Magnetic	disks	provide	persistent	storage	for
most	servers,	workstations,	and	laptops.	Flash	memory	provides	persistent	storage	for
most	smart	phones,	tablets,	and	cameras	and	for	an	increasing	fraction	of	laptops.

12.1	Magnetic	Disk

Figure	12.1:	A	partially-disassembled	magnetic	disk	drive.

Magnetic	disk	is	a	non-volatile	storage	technology	that	is	widely	used	in	laptops,	desktops,
and	servers.	Disk	drives	work	by	magnetically	storing	data	on	a	thin	metallic	film	bonded
to	a	glass,	ceramic,	or	aluminum	disk	that	rotates	rapidly.	Figure	12.1	shows	a	disk	drive
without	its	protective	cover,	and	Figure	12.2	shows	a	schematic	of	a	disk	drive,	identifying
key	components.

Figure	12.2:	Key	components	of	a	magnetic	disk	drive.

Each	drive	holds	one	or	more	platters,	thin	round	plates	that	hold	the	magnetic	material.
Each	platter	has	two	surfaces,	one	on	each	side.	When	the	drive	powers	up,	the	platters	are
constantly	spinning	on	a	spindle	powered	by	a	motor.	In	2011,	disks	commonly	spin	at
4200–15000	RPM	(70–250	revolutions	per	second.)

A	disk	head	is	the	component	that	reads	and	writes	data	by	sensing	or	introducing	a
magnetic	field	on	a	surface.	There	is	one	head	per	surface,	and	as	a	surface	spins
underneath	a	head,	the	head	reads	or	writes	a	sequence	of	bits	along	a	circle	centered	on
the	disk’s	spindle.	As	a	disk	platters	spins,	it	creates	a	layer	of	rapidly	spinning	air,	and	the
disk	head	floats	on	that	layer,	allowing	the	head	to	get	extremely	close	to	the	platter

without	contacting	it.	A	head	crash	occurs	when	the	disk	head	breaks	through	this	layer
with	enough	force	to	damage	the	magnetic	surface	below;	head	crashes	can	be	caused	by
excessive	shock	such	as	dropping	a	running	drive.

To	reach	the	full	surface,	each	disk	head	attaches	to	an	arm,	and	all	of	a	disk’s	arms	attach
to	a	single	arm	assembly	that	includes	a	motor	that	can	move	the	arms	across	the	surfaces
of	the	platters.	Note	that	an	assembly	has	just	one	motor,	and	all	of	its	arms	move	together.

Data	bits	are	stored	in	fixed-size	sectors;	typically,	sectors	are	512	bytes.	The	disk
hardware	cannot	read	or	write	individual	bytes	or	words;	instead,	it	must	always	read	or
write	at	least	an	entire	sector.	This	means	that	to	change	one	byte	in	a	sector,	the	operating
system	must	read	the	old	sector,	update	the	byte	in	memory,	and	rewrite	the	entire	sector
to	disk.	One	reason	for	this	restriction	is	that	the	disk	encodes	each	sector	with	additional
error	correction	code	data,	allowing	it	to	fix	(or	at	least	detect)	imperfectly	read	or	written
data,	which,	in	turn	allows	higher	density	storage	and	higher	bandwidth	operation.

A	circle	of	sectors	on	a	surface	is	called	a	track.	The	disk	can	read	or	write	all	of	the	data
on	a	track	without	having	to	move	the	disk	arm,	so	reading	or	writing	a	sequence	of
sectors	on	the	same	track	is	much	faster	than	reading	or	writing	sectors	on	different	tracks.

To	maximize	sequential	access	speed,	logical	sector	zero	on	each	track	is	staggered	from
sector	zero	on	the	previous	track	by	an	amount	corresponding	to	time	it	takes	the	disk	to
move	the	head	from	one	track	to	another	or	to	switch	from	the	head	on	one	surface	to	the
head	on	another	one.	This	staggering	is	called	track	skewing.

To	increase	storage	density	and	disk	capacity,	disk	manufacturers	make	tracks	and	sectors
as	thin	and	small	as	possible.	If	there	are	imperfections	in	a	sector,	then	that	sector	may	be
unable	to	reliably	store	data.	Manufacturers	therefore	include	spare	sectors	distributed
across	each	surface.	The	disk	firmware	or	the	file	system’s	low-level	formatting	can	then
use	sector	sparing	to	remap	sectors	to	use	spare	sectors	instead	of	faulty	sectors.	Slip
sparing	helps	retain	good	sequential	access	performance	by	remapping	all	sectors	from	the
bad	sector	to	the	next	spare,	advancing	each	logical	sector	in	that	range	by	one	physical
sector	on	disk.

Disk	drives	often	include	a	few	MB	of	buffer	memory,	memory	that	the	disk’s	controller
uses	to	buffer	data	being	read	from	or	written	to	the	disk,	for	track	buffering,	and	for	write
acceleration.

Track	buffering	improves	performance	by	storing	sectors	that	have	been	read	by	the	disk
head	but	have	not	yet	been	requested	by	the	operating	system.	In	particular,	when	a	disk
head	moves	to	a	track,	it	may	have	to	wait	for	the	sector	it	needs	to	access	to	rotate	under
the	disk	head.	While	the	disk	is	waiting,	it	reads	unrequested	sectors	to	its	rack	buffer	so
that	if	the	operating	system	requests	those	sectors	later,	they	can	be	returned	immediately.

Write	acceleration	stores	data	to	be	written	to	disk	in	the	disk’s	buffer	memory	and
acknowledges	the	writes	to	the	operating	system	before	the	data	is	actually	written	to	the
platter;	the	disk	firmware	flushes	the	writes	from	the	track	buffer	to	the	platter	at	some
later	time.	This	technique	can	significantly	increase	the	apparent	speed	of	the	disk,	but	it
carries	risks	—	if	power	is	lost	before	buffered	data	is	safely	stored,	then	data	might	be
lost.

Server	drives	implementing	the	SCSI	or	Fibre	Channel	interfaces	and	increasing	numbers
of	commodity	drives	with	the	Serial	ATA	(SATA)	interface	implement	a	safer	form	of
write	acceleration	with	tagged	command	queueing	(TCQ)	(also	called	native	command
queueing	(NCQ)	for	SATA	drives.)	TCQ	allows	an	operating	system	to	issue	multiple
concurrent	requests	to	the	disk	and	for	the	disk	to	process	those	requests	out	of	order	to
optimize	scheduling,	and	it	can	be	configured	to	only	acknowledge	write	requests	when
the	blocks	are	safely	on	the	platter.

12.1.1	Disk	Access	and	Performance

Operating	systems	send	commands	to	a	disk	to	read	or	write	one	or	more	consecutive
sectors.	A	disk’s	sectors	are	identified	with	logical	block	addresses	(LBAs)	that	specify
the	surface,	track,	and	sector	to	be	accessed.

To	service	a	request	for	a	sequence	of	blocks	starting	at	some	sector,	the	disk	must	first
seek	to	the	right	track,	wait	for	the	first	desired	sector	to	rotate	to	the	head,	and	then
transfer	the	blocks.	Therefore,	the	time	for	a	disk	access	is:

disk	access	time = seek	time	+	rotation	time	+	transfer	time

Seek.	The	disk	must	first	seek	—	move	its	arm	over	the	desired	track.	To	seek,	the
disk	first	activates	a	motor	that	moves	the	arm	assembly	to	approximately	the	right
place	on	disk.	Then,	as	arm	stops	vibrating	from	the	motion	of	the	seek,	the	disk
begins	reading	positioning	information	embedded	in	the	sectors	to	determine	exactly
where	it	is	and	to	make	fine-grained	positioning	corrections	to	settle	on	the	desired
track.	Once	the	head	has	settled	on	the	right	track,	the	disk	uses	signal	strength	and
positioning	information	to	make	minute	corrections	in	the	arm	position	to	keep	the
head	over	the	desired	track.

A	request’s	seek	time	depends	on	how	far	the	disk	arm	has	to	move.

A	disk’s	minimum	seek	time	is	the	time	it	takes	for	the	head	to	move	from	one	track
to	an	adjacent	one.	For	short	seeks,	disks	typically	just	“resettle”	the	head	on	the	new
track	by	updating	the	target	track	number	in	the	track-following	circuitry.	Minimum
seek	times	of	0.3–1.5	ms	are	typical.

If	a	disk	is	reading	the	tth	track	on	one	surface,	its	head	switch	time	is	the	time	it
would	take	to	begin	reading	the	tth	track	on	a	different	surface.	Tracks	can	be	less
than	a	micron	wide	and	tracks	on	different	surfaces	are	not	perfectly	aligned.	So,	a
head	switch	between	the	same	tracks	on	different	surfaces	has	a	cost	similar	to	a
minimum	seek:	the	disk	begins	using	the	sensor	on	a	different	head	and	then	resettles
the	disk	on	the	desired	track	for	that	surface.

A	disk’s	maximum	seek	time	is	the	time	it	takes	the	head	to	move	from	the	innermost
track	to	the	outermost	one	or	vice	versa.	Maximum	seek	times	are	typically	over	10

ms	and	can	be	over	20	ms.

A	disk’s	average	seek	time	is	the	average	across	seeks	between	each	possible	pair	of
tracks	on	a	disk.	This	value	is	often	approximated	as	the	time	to	seek	one	third	of	the
way	across	the	disk.

Beware	of	“average	seek	time”

Although	the	name	average	seek	time	makes	it	tempting	to	use	this	metric	when
estimating	the	time	it	will	take	a	disk	to	complete	a	particular	workload,	it	is	often
the	wrong	metric	to	use.	Average	seek	time	—	the	average	across	seeks	between
each	possible	pair	of	tracks	on	disk	—	was	defined	this	way	to	make	it	a	well-
defined,	standard	metric,	not	because	it	is	representative	of	common	workloads.

The	definition	of	average	seek	time	essentially	assumes	no	locality	in	a	workload,	so
it	is	very	nearly	a	worst-case	scenario.	Many	workloads	access	sectors	that	are	likely
to	be	near	one	another;	for	example,	most	operating	systems	attempt	to	place	files
sequentially	on	disk	and	to	place	different	files	in	a	directory	on	the	same	track	or	on
tracks	near	one	another.	For	these	(common)	workloads,	the	seek	times	observed
may	be	closer	to	the	disk’s	minimum	seek	time	than	its	“average”	seek	time.

The	demise	of	the	cylinder

A	cylinder	on	a	disk	is	a	set	of	tracks	on	different	surfaces	with	the	same	track	index.
For	example,	on	a	2-platter	drive,	the	8th	tracks	on	surfaces	0,	1,	2,	and	3	would
form	the	8th	cylinder	of	the	drive.

Some	early	file	systems	put	related	data	on	different	surfaces	but	in	the	same
cylinder.	The	idea	was	that	data	from	the	different	tracks	in	the	cylinder	could	be
read	without	a	requiring	a	seek.	Once	a	cylinder	was	full,	the	file	system	would	start
placing	data	in	one	of	the	adjacent	cylinders.

As	disk	densities	have	increased,	the	importance	of	the	cylinder	has	declined.	Today,
a	disk’s	tracks	can	be	less	than	a	micron	wide.	To	follow	a	track	at	these	densities,	a
controller	monitors	the	signals	from	a	disk’s	head	to	control	the	disk	arm	assembly’s
motor	to	keep	the	head	centered	on	a	track.	Furthermore,	at	these	densities,	the
tracks	of	a	cylinder	may	not	be	perfectly	aligned.	As	a	result,	when	a	disk	switches
disk	heads,	the	new	head	must	center	itself	over	the	desired	track.	So,	switching
heads	within	a	cylinder	ends	up	being	similar	to	a	short	1-track	seek:	the	controller
chooses	the	new	cylinder/track	and	the	disk	head	settles	over	the	target	track.	Today,
accessing	different	tracks	within	the	same	cylinder	costs	about	the	same	as	accessing
adjoining	tracks	on	the	same	platter.

Rotate.	Once	the	disk	head	has	settled	on	the	right	track,	it	must	wait	for	the	target
sector	to	rotate	under	it.	This	waiting	time	is	called	the	rotational	latency.	Today,
most	disks	rotate	at	4200	RPM	to	15,000	RPM	(15	ms	to	4	ms	per	rotation),	and	for

many	workloads	a	reasonable	estimate	of	rotational	latency	is	one-half	the	time	for	a
full	rotation	—	7.5	ms–2	ms.

Once	a	disk	head	has	settled	on	a	new	track,	most	disks	immediately	begin	reading
sectors	into	their	buffer	memory,	regardless	of	which	sectors	have	been	requested.
This	way,	if	there	is	a	request	for	one	of	the	sectors	that	have	already	passed	under
the	disk	head,	the	data	can	be	transferred	immediately,	rather	than	having	to	delay	the
request	for	nearly	a	full	rotation	to	reread	the	data.

Transfer.	Once	the	disk	head	reaches	a	desired	sector,	the	disk	must	transfer	the	data
from	the	sector	to	its	buffer	memory	(for	reads)	or	vice	versa	(for	writes)	as	the
sectors	rotate	underneath	the	head.	Then,	for	reads,	it	must	transfer	the	data	from	its
buffer	memory	to	the	host’s	main	memory.	For	writes,	the	order	of	the	transfers	is
reversed.

To	amortize	seek	and	rotation	time,	disk	requests	are	often	for	multiple	sequential
sectors.	The	time	to	transfer	one	or	more	sequential	sectors	from	(or	to)	a	surface
once	the	disk	head	begins	reading	(or	writing)	the	first	sector	is	the	surface	transfer
time.

On	a	modern	disk,	the	surface	transfer	time	for	a	single	sector	is	much	smaller	than
the	seek	time	or	rotational	latency.	For	example,	disk	bandwidths	often	exceed	100
MB/s,	so	the	surface	transfer	time	for	a	512-byte	sector	is	often	under	5	microseconds
(0.005	ms).

Because	a	disk’s	outer	tracks	have	room	for	more	sectors	than	its	inner	tracks	and
because	a	given	disk	spins	at	a	constant	rate,	the	surface	transfer	bandwidth	is	often
higher	for	the	outer	tracks	than	the	inner	tracks.

For	a	disk	read,	once	sectors	have	been	transferred	to	the	disk’s	buffer	memory,	they
must	be	transferred	to	the	host’s	memory	over	some	connection	such	as	SATA	(serial
ATA),	SAS	(serial	attached	SCSI),	Fibre	Channel,	or	USB	(universal	serial	bus).	For
writes,	the	transfer	goes	in	the	other	direction.	The	time	to	transfer	data	between	the
host’s	memory	and	the	disk’s	buffer	is	the	host	transfer	time.	Typical	bandwidths
range	from	60	MB/s	for	USB	2.0	to	2500	MB/s	for	Fibre	Channel-20GFC.

For	multi-sector	reads,	disks	pipeline	transfers	between	the	surface	and	disk	buffer
memory	and	between	buffer	memory	and	host	memory;	so	for	large	transfers,	the
total	transfer	time	will	be	dominated	by	whichever	of	these	is	the	bottleneck.
Similarly,	for	writes,	disks	overlap	the	host	transfer	with	the	seek,	rotation,	and
surface	transfer;	again,	the	total	transfer	time	will	be	dominated	by	whichever	is	the
bottleneck.

12.1.2	Case	Study:	Toshiba	MK3254GSY

Figure	12.3	shows	some	key	parameters	for	a	recent	2.5-inch	disk	drive	for	laptop
computers.

Size

Platters/Heads 2/4

Capacity 320	GB

Performance

Spindle	speed 7200	RPM

Average	seek	time	read/write 10.5	ms	/	12.0	ms

Maximum	seek	time 19	ms

Track-to-track	seek	time 1	ms

Transfer	rate	(surface	to	buffer) 54–128	MB/s

Transfer	rate	(buffer	to	host) 375	MB/s

Buffer	memory 16	MB

Power

Typical 16.35	W

Idle 11.68	W

Figure	12.3:	Hardware	specifications	for	a	laptop	disk	(Toshiba	MK3254GSY)
manufactured	in	2008.

This	disk	stores	320	GB	of	data	on	two	platters,	so	it	stores	80	GB	per	surface.	The
platters	spin	at	7200	revolutions	per	minute,	which	is	8.3	ms	per	revolution;	since	each
platter’s	diameter	is	about	6.3	cm,	the	outer	edge	of	each	platter	is	moving	at	about	85
km/hour!

The	disk’s	data	sheet	indicates	an	average	seek	time	for	the	drive	of	10.5	ms	for	reads	and
12.0	ms	for	writes.	The	seek	time	for	reads	and	writes	differs	because	the	disk	starts
attempting	to	read	data	before	the	disk	arm	has	completely	settled,	but	it	must	wait	a	bit
longer	before	it	is	safe	to	write.

When	transferring	long	runs	of	contiguous	sectors,	the	disk’s	bandwidth	is	54-128	MB/s.
The	bandwidth	is	expressed	as	a	range	because	the	disk’s	outer	tracks	have	more	sectors
than	its	inner	tracks,	so	when	the	disk	is	accessing	data	on	its	outer	tracks,	sectors	sweep
past	the	disk	head	at	a	higher	rate.

Once	the	data	is	transferred	off	the	platter,	the	disk	can	send	it	to	the	main	memory	of	the

computer	at	up	to	375	MB/s	via	a	SATA	(Serial	ATA)	interface.

Random	vs.	sequential	performance.	Given	seek	and	rotational	times	measured	in
milliseconds,	small	accesses	to	random	sectors	on	disk	are	much	slower	than	large,
sequential	accesses.

EXAMPLE:	Random	access	workload.	For	the	disk	described	in	Figure	12.3,	consider	a
workload	consisting	of	500	read	requests,	each	of	a	randomly	chosen	sector	on	disk,
assuming	requests	are	serviced	in	FIFO	order.	How	long	will	servicing	these	requests
take?

ANSWER:	Disk	access	time	is	seek	time	+	rotation	time	+	transfer	time.

Seek	time.	Each	request	requires	a	seek	from	a	random	starting	track	to	a	random	ending
track,	so	the	disk’s	average	seek	time	of	10.5	ms	is	a	good	estimate	of	the	cost	of	each
seek.

Rotation	time.	Once	the	disk	head	settles	on	the	right	track,	it	must	wait	for	the	desired
sector	to	rotate	under	it.	Since	there	is	no	reason	to	expect	the	desired	sector	to	be
particularly	near	or	far	from	the	disk	head	when	it	settles,	a	reasonable	estimate	for
rotation	time	is	4.15	ms,	one	half	of	the	time	that	it	takes	a	7200	RPM	disk	to	rotate	once.

Transfer	time.	The	disk’s	surface	bandwidth	is	at	least	54	MB/s,	so	transferring	512	bytes
takes	at	most	9.5	μS	(0.0095	ms).

Total	time.	10.5	+	4.15	+	.0095	=	14.66	ms	per	request,	so	500	requests	will	take	about
7.33	seconds.	□

EXAMPLE:	Sequential	access	workload.	For	the	disk	described	in	Figure	12.3,
consider	a	workload	consisting	of	a	read	request	for	500	sequential	sectors	on	the	same
track.	How	long	will	servicing	these	requests	take?

ANSWER:	Disk	access	time	is	seek	time	+	rotation	time	+	transfer	time.

Seek	time.	Since	we	do	not	know	which	track	we	are	starting	with	or	which	track	we	are
reading	from,	we	use	the	average	seek	time,	10.5	ms,	as	an	estimate	for	the	seek	time.

Rotation	time.	Since	we	don’t	know	the	position	of	the	disk	when	the	request	is	issued,	a
simple	and	reasonable	estimate	for	the	time	for	the	first	desired	block	to	rotate	to	the	disk
head	is	4.15	ms,	one	half	of	the	time	that	it	takes	a	7200	RPM	disk	to	rotate	once.

Transfer	time.	A	simple	estimate	is	that	500	sectors	can	be	transferred	in	4.8	to	2.0	ms,
depending	on	whether	they	are	on	the	inner	or	outer	tracks.

500	sectors	×	512	bytes/sector

×	1	/	(54	×106	bytes/second) = 4.8	ms

500	sectors	×	512	bytes/sector

×	1	/	(128	×106	bytes/second) = 2	ms

(Too)	simple	answer.	These	three	estimates	give	us	a	range	from

10.5	+	4.15	+	2 = 16.7	ms

10.5	+	4.15	+	4.8 = 19.5	ms

More	precise	answer.	However,	this	simple	answer	ignores	the	track	buffer.	Since	the
transfer	time	is	a	large	fraction	of	the	rotation	time	(about	1/4	to	1/2	of	the	time	for	a	full
rotation),	we	know	that	the	request	covers	a	significant	fraction	of	a	track.	This	means	that
there	is	a	good	chance	that	after	the	seek	and	settle	time,	the	disk	head	will	be	in	the
middle	of	the	region	to	be	read.	In	this	case,	the	disk	will	immediately	read	some	of	the
track	into	the	track	buffer;	then	it	will	wait	for	the	first	track	to	rotate	around;	then	it	will
read	the	remainder	of	the	desired	data.

We	can	estimate	that	for	the	outer	track,	there	is	a	one	in	four	chance	that	the	initial	seek
and	settle	will	finish	while	the	head	is	within	the	desired	range	of	sectors,	and	that	when
that	happens,	we	read	an	average	of	1⁄8th	of	the	desired	data	before	we	arrive	at	the	first
desired	sector.	So,	for	the	outer	track,	this	overlap	will	save	us	1⁄4	×	1⁄8	=	1⁄32	of	a
rotation	for	the	average	transfer.	This	effect	slightly	reduces	the	average	access	time:	16.7
ms	-	(1⁄32)	×	8.3	ms	=	16.4	ms.

Similarly,	for	the	inner	tracks,	there	is	about	a	one	in	two	chance	that	the	initial	seek	will
settle	in	the	middle	of	the	desired	data,	saving	on	average	1⁄2	×	1⁄4	=	1⁄8.	This	reduces	the
average	access	time:	19.5	ms	-	(1⁄8)	×	8.3	ms	=	18.5	ms.

So,	we	estimate	that	such	an	access	would	take	between	16.4	ms	and	18.5	ms.	□

Notice	that	the	sequential	workload	takes	vastly	less	time	than	the	random	workload	(less
than	20	milliseconds	vs.	5.5	seconds).	This	orders	of	magnitude	disparity	between
sequential	and	random	access	performance	influences	many	aspects	of	file	system	design
and	use.

Still,	even	for	a	500	sector	request,	a	non-trivial	amount	of	the	access	time	is	spent	seeking
and	rotating	rather	than	transferring.

EXAMPLE:	Effective	bandwidth.	For	the	transfer	of	500	sequential	sectors	examined	in
the	previous	example,	what	fraction	of	the	disk’s	surface	bandwidth	is	realized?

ANSWER:	The	effective	bandwidth	ranges	from

500	sectors	×	512	bytes/sector	×	(1/18.5	ms) = 13.8
MB/s

500	sectors	×	512	bytes/sector	×	(1/16.4	ms) = 15.6
MB/s

This	gives	us	a	range	of	13.8	MB/s	/	54	MB/s	=	26%	to	15.6	MB/s	/	128	MB/s	=	12%	of
the	maximum	bandwidth	from	the	inner	to	the	outer	tracks.	□

So,	even	a	fairly	large	request	(500	sectors	or	250	KB	in	this	case)	can	incur	significant
overheads	from	seek	and	rotational	latency.

EXAMPLE:	Efficient	access.	For	the	disk	described	in	Figure	12.3,	how	large	must	a
request	that	begins	on	a	random	disk	sector	be	to	ensure	that	the	disk	gets	at	least	80%	of
its	advertised	maximum	surface	transfer	bandwidth?

ANSWER:	When	reading	a	long	sequence	of	logically	sequential	blocks,	the	disk	will
read	an	entire	track,	then	do	a	1	track	seek	(or	a	head	switch	and	resettle,	which	amounts
to	the	same	thing)	and	then	read	the	next	track.	Notice	that	track	buffering	allows	the	disk
to	read	an	entire	track	in	one	rotation	regardless	of	which	sector	the	head	is	over	when	it
settles	on	the	track	and	starts	successfully	reading.	So,	for	the	outer	tracks,	it	reads	for	one
rotation	(8.4	ms)	and	then	does	a	minimum	seek	(1	ms).

Thus,	to	achieve	80%	of	peak	bandwidth	after	a	random	seek	(10.5	ms),	we	need	to	read
enough	rotations	worth	of	data	to	ensure	that	we	spend	80%	of	the	total	time	reading.	If	x
is	the	number	of	rotations	we	will	read,	then	we	have:

0.8	totalTime = x	rotationTime

0.8(10.5	ms	+	(1	+	8.4)	x	ms) = 8.4	x	ms

x = 9.09

We	therefore	need	to	read	at	least	9.09	rotations	worth	of	data	to	reach	an	efficiency	of
80%.	Since	each	rotation	takes	8.4	ms	and	transfers	data	at	128	MB/s,	9.09	rotations
transfers	9.77	MB	of	data,	or	about	19,089	sectors.	□

12.1.3	Disk	Scheduling

Because	moving	the	disk	arm	and	waiting	for	the	platter	to	rotate	is	so	expensive,
performance	can	be	significantly	improved	by	optimizing	the	order	in	which	pending
requests	are	serviced.	Disk	scheduling	can	be	done	by	the	operating	system,	by	the	disk’s

firmware,	or	both.

FIFO.	The	simplest	thing	to	do	is	to	process	requests	in	first-in-first-out	(FIFO)	order.
Unfortunately,	a	FIFO	scheduler	can	yield	poor	performance.	For	example,	a	sequence	of
requests	that	alternate	between	the	outer	and	inner	tracks	of	a	disk	will	result	in	many	long
seeks.

SPTF/SSTF.	An	initially	appealing	option	is	to	use	a	greedy	scheduler	that,	given	the
current	position	of	the	disk	head	and	platter,	always	services	the	pending	request	that	can
be	handled	in	the	minimum	amount	of	time.	This	approach	is	called	shortest	positioning
time	first	(SPTF)	(or	shortest	seek	time	first	(SSTF)	if	rotational	positioning	is	not
considered.)

SPTF	and	SSTF	have	two	significant	limitations.	First,	because	moving	the	disk	arm	and
waiting	for	some	rotation	time	affects	the	cost	of	serving	subsequent	requests,	these
greedy	approaches	are	not	guaranteed	to	optimize	disk	performance.	Second,	these	greedy
approaches	can	cause	starvation	when,	for	example,	a	continuous	stream	of	requests	to
inner	tracks	prevents	requests	to	outer	tracks	from	ever	being	serviced.

EXAMPLE:	SPTF	is	not	optimal.	Suppose	a	disk’s	head	is	just	inside	the	middle	track
of	a	disk	so	that	seeking	to	the	inside	track	would	cost	9.9	ms	while	seeking	to	the	outside
track	would	cost	10.1	ms.	Assume	that	for	the	disk	in	question,	seeking	between	the	outer
and	inner	track	costs	15	ms	and	that	a	rotation	takes	10	ms.

Also	suppose	that	the	disk	has	two	sets	of	pending	requests.	The	first	set	is	1000	requests
to	read	each	of	the	1000	sectors	on	the	inner	track	of	the	disk;	the	second	set	is	2000
requests	to	read	each	of	the	2000	sectors	on	the	outer	track	of	the	disk.

Compare	the	average	response	time	per	request	for	the	SPTF	schedule	(first	read	the
“nearby”	inner	track	and	then	read	the	outer	track)	and	the	alternative	of	reading	the	outer
track	first	and	then	the	inner	track.

ANSWER:	The	total	amount	of	time	taken	to	complete	all	requests	is	slightly	shorter	by
seeking	first	to	the	inside	track	and	then	to	the	outside.	However,	the	average	response
time	per	request	is	less	in	the	opposite	order.

To	service	either	set	of	requests,	the	disk	must	seek	to	the	appropriate	track	and	then	wait
for	one	full	rotation	while	all	of	the	track’s	data	sweeps	under	the	arm.	For	either	set,	the
average	response	time	for	a	request	in	that	set	will	be	the	delay	until	the	seek	completes
plus	one	half	the	disk’s	rotation	time.	Notice	that	the	set	handled	second	must	wait	until
the	first	one	is	completely	done	before	it	can	start,	adding	to	the	response	time	observed
for	requests	in	that	set.

If	we	follow	SPTF	and	read	the	sectors	on	the	inner	track	first,	the	response	time	of	the
average	request	is	the	weighted	average	of	the	response	time	of	the	inner	requests	and	the
outer	requests:

(1000	(9.9	+	5)	+	2000	(9.9	+	10	+	15	+	5))	/	3000 = 31.6	ms

If,	instead,	we	read	the	outer	tracks	first,	the	weighted	average	is:

(2000	(10.1	+	5)	+	1000	(10.1	+	10	+	15	+	5))	/	3000 = 23.3	ms

In	this	case,	seeking	to	the	nearest	sector	moves	the	disk	head	away	from	the	majority	of
the	requests,	increasing	the	overall	average	response	time	by	8.3	ms.	□

Elevator,	SCAN,	and	CSCAN.	Elevator-based	algorithms	like	SCAN	and	CSCAN	have
good	performance	and	also	ensure	fairness	in	that	no	request	is	forced	to	wait	for	an
inordinately	long	time.	The	basic	approach	is	similar	to	how	an	elevator	works:	when	an
elevator	is	going	up,	it	keeps	going	up	until	all	pending	requests	to	go	to	floors	above	it
have	been	satisfied;	then,	when	an	elevator	is	going	down,	it	keeps	going	down	until	all
pending	requests	to	go	to	floors	below	it	have	been	satisfied.

Figure	12.4:	Elevator-based	scheduling	algorithms:	(left)	SCAN,	(center)	CSCAN,	and
(right)	R-CSCAN.	The	numbering	represents	the	order	that	each	algorithm	services
requests	1-4	and	then	5-7.

The	SCAN	scheduler	works	in	the	same	way.	The	disk	arm	first	sweeps	from	the	inner	to
the	outer	tracks,	servicing	all	requests	that	are	between	the	arm’s	current	position	and	the

outer	edge	of	the	disk.	Then,	the	arm	sweeps	from	the	outer	to	the	inner	tracks.	Then	the
process	is	repeated.	Figure	12.4-(left)	illustrates	the	SCAN	algorithm	travelling	from
outer-to-inner	tracks	to	service	four	pending	requests	and	then	travelling	from	inner-to-
outer	tracks	to	service	three	additional	requests.
The	CSCAN	(circular	SCAN)	scheduler	is	a	slight	variation	on	SCAN	in	which	the	disk
only	services	requests	when	the	head	is	traveling	in	one	direction	(e.g.,	from	inner	tracks
to	outer	ones).	When	the	last	request	in	the	direction	of	travel	is	reached,	the	disk
immediately	seeks	to	where	it	started	(e.g.,	the	most	inner	track	or	the	most	inner	track
with	a	pending	request)	and	services	pending	requests	by	moving	the	head	in	the	same
direction	as	the	original	pass	(e.g.,	from	inner	tracks	to	outer	ones	again.)	Figure	12.4-
(center)	illustrates	the	CSCAN	algorithm	travelling	from	outer-to-inner	tracks	to	service
four	pending	requests	and	then	skipping	to	the	outer	track	and	travelling	from	outer-to-
inner	tracks	to	service	three	additional	requests.

The	advantage	of	CSCAN	over	SCAN	is	that	if	after	a	pass	in	one	direction,	the	disk	head
were	to	just	switch	directions	(as	in	SCAN),	it	will	encounter	a	region	of	the	disk	where
pending	requests	are	sparse	(since	this	region	of	the	disk	was	just	serviced).	Seeking	to	the
opposite	side	of	the	disk	(as	in	CSCAN)	moves	the	disk	head	to	an	area	where	pending
requests	are	likely	to	be	denser.	In	addition,	CSCAN	is	more	fair	than	SCAN	in	that
seeking	to	the	opposite	side	of	the	disk	allows	it	to	begin	servicing	the	requests	that	likely
been	waiting	longer	than	requests	near	but	“just	behind”	the	head.

Rather	than	pure	seek-minimizing	SCAN	or	CSCAN,	schedulers	also	take	into	account
rotation	time	and	allow	small	seeks	“in	the	wrong	direction”	to	avoid	extra	rotational
delays	using	the	rotationally-aware	R-SCAN	or	R-CSCAN	variations.	For	example,	if	the
disk	head	is	currently	over	sector	0	of	track	0	and	there	are	pending	requests	at	sector	1000
of	track	0,	sector	500	of	track	1,	and	sector	0	of	track	10,000,	a	R-CSCAN	scheduler
might	service	the	second	request,	then	the	first,	and	then	the	third.	Figure	12.4-(right)
illustrates	the	R-CSCAN	algorithm	handling	a	request	on	the	outer	track,	then	one	a	few
tracks	in,	then	another	request	on	the	outer	track,	and	a	request	near	the	center	on	the
arm’s	first	sweep.	The	arm’s	second	sweep	is	the	same	as	for	CSCAN.

EXAMPLE:	Effect	of	disk	scheduling.	For	the	disk	described	in	Figure	12.3,	consider	a
workload	consisting	of	500	read	requests,	each	to	a	randomly	chosen	sector	on	disk,
assuming	that	the	disk	head	is	on	the	outside	track	and	that	requests	are	serviced	in
CSCAN	order	from	outside	to	inside.	How	long	will	servicing	these	requests	take?

ANSWER:	Answering	a	question	like	this	requires	making	some	educated	guesses;
different	people	may	come	up	with	different	reasonable	estimates	here.

Seek	time.	We	first	note	that	with	500	pending	requests	spread	randomly	across	the	disk,
the	average	seek	from	one	request	to	the	next	will	seek	0.2%	of	the	way	across	the	disk.
With	four	surfaces,	most	of	these	seeks	will	also	require	a	head	switch.	We	don’t	know	the
exact	time	for	a	seek	0.2%	of	the	way	across	the	disk,	but	we	can	estimate	it	by
interpolating	between	the	time	for	a	1	track	seek	(1	ms)	and	the	time	for	a	33.3%	seek
(10.5	ms	for	reads.)	(Disk	seek	time	is	not	actually	linear	in	distance,	but	as	we	will	see	in
a	moment,	the	exact	seek	time	seems	unlikely	to	affect	our	answer	much.)

estimated	.2%	seek	time = (1	+	10.5	×	.2/33.3)	ms

= 1.06	ms

Rotation	time.	Since	we	don’t	know	the	position	of	the	disk	when	the	seek	finishes	and
since	sectors	are	scattered	randomly,	a	simple	and	reasonable	estimate	for	the	time	after
the	seek	finishes	for	the	desired	block	to	rotate	to	the	disk	head	is	4.15	ms,	one	half	of	the
time	that	it	takes	a	7200	RPM	disk	to	rotate	once.

Transfer	time.	Similar	to	the	example	with	FIFO	servicing	of	the	same	requests,	the
transfer	time	for	each	sector	is	at	most	0.0095	ms.

Total	time.	1.06	+	4.15	+	.0095	=	5.22	ms	per	request,	so	500	requests	will	take	about	2.6
s.	Notice	that	the	time	for	the	SCAN	scheduled	time	is	less	than	half	the	7.8	s	time	for
FIFO	servicing	of	the	same	requests.	□

12.2	Flash	Storage

Over	the	past	decade,	flash	storage	has	become	a	widely	used	storage	medium.	Flash
storage	is	the	dominant	storage	technology	for	handheld	devices	from	phones	to	cameras
to	thumb	drives,	and	it	is	used	in	an	increasing	fraction	of	laptop	computers	and	machine
room	servers.

Flash	storage	is	a	type	of	solid	state	storage:	it	has	no	moving	parts	and	stores	data	using
electrical	circuits.	Because	it	has	no	moving	parts,	flash	storage	can	have	much	better
random	IO	performance	than	disks,	and	it	can	use	less	power	and	be	less	vulnerable	to
physical	damage.	On	the	other	hand,	flash	storage	remains	significantly	more	expensive
per	byte	of	storage	than	disks.

Figure	12.5:	A	floating	gate	transistor.

Each	flash	storage	element	is	a	floating	gate	transistor.	As	Figure	12.5	illustrates,	an	extra
gate	in	such	a	transistor	“floats”	—	it	is	not	connected	to	any	circuit.	Since	the	floating
gate	is	entirely	surrounded	by	an	insulator,	it	will	hold	an	electrical	charge	for	months	or
years	without	requiring	any	power.	Even	though	the	floating	gate	is	not	electrically
connected	to	anything,	it	can	be	charged	or	discharged	via	electron	tunneling	by	running	a
sufficiently	high-voltage	current	near	it.	The	floating	gate’s	state	of	charge	affects	the
transistor’s	threshold	voltage	for	activation.	Thus,	the	floating	gate’s	state	can	be	detected
by	applying	an	intermediate	voltage	to	the	transistor’s	control	gate	that	will	only	be
sufficient	to	activate	the	transistor	if	the	floating	gate	is	changed.

In	single-level	flash	storage,	the	floating	gate	stores	one	bit	(charge	or	not	charged);	in
multi-level	flash	storage,	the	floating	gate	stores	multiple	bits	by	storing	one	of	several
different	charge	levels.

NOR	flash	storage	is	wired	to	allow	individual	words	to	be	written	and	read.	NOR	flash
storage	is	useful	for	storing	device	firmware	since	it	can	be	executed	in	place.	NAND
flash	storage	is	wired	to	allow	reads	and	writes	of	a	page	at	a	time,	where	a	page	is
typically	2	KB	to	4	KB.	NAND	flash	is	denser	than	NOR	flash,	so	NAND	is	used	in	the
storage	systems	we	will	consider.

Flash	storage	access	and	performance.	Flash	storage	is	accessed	using	three	operations.

Erase	erasure	block.	Before	flash	memory	can	be	written,	it	must	be	erased	by
setting	each	cell	to	a	logical	“1”.	Flash	memory	can	only	be	erased	in	large	units
called	erasure	blocks.	Today,	erasure	blocks	are	often	128	KB	to	512	KB.	Erasure	is
a	slow	operation,	usually	taking	several	milliseconds.

Erasing	an	erasure	block	is	what	gives	flash	memory	its	name	for	its	resemblance	to
the	flash	of	a	camera.

Write	page.	Once	erased,	NAND	flash	memory	can	be	written	on	a	page-by-page
basis,	where	each	page	is	typically	2048-4096	bytes.	Writing	a	page	typically	takes
tens	of	microseconds.

Read	page.	NAND	flash	memory	can	be	read	on	a	page	by	page	basis.	Reading	a
page	typically	takes	tens	of	microseconds.

Notice	that	to	write	a	page,	its	entire	erasure	block	must	first	be	erased.	This	is	a	challenge
both	because	erasure	is	slow	and	because	erasure	affects	a	large	number	of	pages.	Flash
drives	implement	a	flash	translation	layer	(FTL)	that	maps	logical	flash	pages	to	different
physical	pages	on	the	flash	device.	Then,	when	a	single	logical	page	is	overwritten,	the
FTL	writes	the	new	version	to	some	free,	already-erased	physical	page	and	remaps	the
logical	page	to	that	physical	page.

Write	remapping	significantly	improves	flash	performance.

EXAMPLE:	Remapping	flash	writes.	Consider	a	flash	drive	with	a	4	KB	pages,	512	KB
erasure	blocks,	3	ms	flash	times,	and	50	μs	read-page	and	write-page	times.	Suppose
writing	a	page	is	done	with	a	naive	algorithm	that	reads	an	entire	erasure	block,	erases	it,
and	writes	the	modified	erasure	block.	How	long	would	each	page	write	take?

ANSWER:	This	naive	approach	would	require:

((512	KB/erasure	block)	/	4	KB/page)	×	(page	read	time	+	page	write	time)	+	block	erase
time

=	128	×	(50	+	50)	μs	+	3	ms

=	15.8	ms	per	write

□

Suppose	remapping	is	used	and	that	a	flash	device	always	has	at	least	one	unused	erasure
block	available	for	a	target	workload.	How	long	does	an	average	write	take	now?

ANSWER:	With	remapping,	the	cost	of	flashing	an	erasure	block	is	amortized	over	512/4
=	128	page	writes.	This	scenario	gives	a	cost	of	(3	ms⁄128)	+	50	μs	=	73.4	μs	per	write.	□

In	practice,	there	is	likely	to	be	some	additional	cost	per	write	under	the	remapping
scheme	because	in	order	to	flash	an	erasure	block	to	free	it	for	new	writes,	the	firmware
may	need	to	garbage	collect	live	pages	from	that	erasure	block	and	copy	those	live	pages
to	a	different	erasure	block.

Internally,	a	flash	device	may	have	multiple	independent	data	paths	that	can	be	accessed	in
parallel.	Therefore,	to	maximize	sustained	bandwidth	when	accessing	a	flash	device,
operating	systems	issue	multiple	concurrent	requests	to	the	device.

Durability.	Normally,	flash	memory	can	retain	its	state	for	months	or	years	without

power.	However,	over	time	the	high	current	loads	from	flashing	and	writing	memory
causes	the	circuits	to	degrade.	Eventually,	after	a	few	thousand	to	a	few	million	program-
erase	cycles	(depending	on	the	type	of	flash),	a	given	cell	may	wear	out	and	no	longer
reliably	store	a	bit.

In	addition,	reading	a	flash	memory	cell	a	large	number	of	times	can	cause	the
surrounding	cells’	charges	to	be	disturbed.	A	read	disturb	error	can	occur	if	a	location	in
flash	memory	is	read	to	many	times	without	the	surrounding	memory	being	written.

To	improve	durability	in	the	face	of	wear	from	writes	and	disturbs	from	reads,	flash
devices	make	use	of	a	number	of	techniques:

Error	correcting	codes.	Each	page	has	some	extra	bytes	that	are	used	for	error
correcting	codes	to	protect	against	bit	errors	in	the	page.

Bad	page	and	bad	erasure	block	management.	If	a	page	or	erasure	block	has	a
manufacturing	defect	or	wears	out,	firmware	on	the	device	marks	it	as	bad	and	stops
storing	data	on	it.

Wear	leveling.	As	noted	above,	rather	than	overwrite	a	page	in	place,	the	flash
translation	layer	remaps	the	logical	page	to	a	new	physical	page	that	has	already	been
erased.	This	remapping	ensures	that	a	hot	page	that	is	overwritten	repeatedly	does	not
prematurely	wear	out	a	particular	physical	page	on	the	flash	device.

Wear	leveling	moves	a	flash	device’s	logical	pages	to	different	physical	pages	to
ensure	that	no	physical	page	gets	an	inordinate	number	of	writes	and	wears	out
prematurely.	Some	wear	leveling	algorithms	also	migrate	unmodified	pages	to	protect
against	read	disturb	errors.

Spare	pages	and	erasure	blocks.	Flash	devices	can	be	manufactured	with	spare
pages	and	spare	erasure	blocks	in	the	device.	This	spare	capacity	serves	two
purposes.

First,	it	provides	extra	space	for	wear	leveling:	even	if	the	device	is	logically	“full”
the	wear	leveling	firmware	can	copy	live	pages	out	of	some	existing	erasure	blocks
into	a	spare	erasure	block,	allowing	it	to	flash	those	existing	erasure	blocks.

Second,	it	allows	bad	page	and	bad	erasure	block	management	to	function	without
causing	the	logical	size	of	the	device	to	shrink.

In	addition	to	affecting	reliability,	wear	out	affects	a	flash	device’s	performance	over	time.

First,	as	a	device	wears	out,	accesses	may	require	additional	retries,	slowing	them.
Second,	as	spare	pages	and	erasure	blocks	are	consumed	by	bad	ones,	the	wear	leveling
algorithms	have	less	spare	space	and	have	to	garbage	collect	live	pages	—	copying	them
out	of	their	existing	erasure	blocks	—	more	frequently.

Size

Capacity 300	GB

Page	Size 4	KB

Performance

Bandwidth	(Sequential	Reads) 270	MB/s

Bandwidth	(Sequential	Writes) 210	MB/s

Read/Write	Latency 75	μs

Random	Reads	Per	Second 38,500

Random	Writes	Per	Second 2,000

2,400	with	20%	space	reserve

Interface SATA	3	Gb/s

Endurance

Endurance 1.1	PB

1.5	PB	with	20%	space	reserve

Power

Power	Consumption	Active/Idle 3.7	W	/	0.7	W

Figure	12.6:	Key	parameters	for	an	Intel	710	Series	Solid	State	Drive	manufactured	in
2011.

Example:	Intel	710	Series	Solid-State	Drive.	Figure	12.6	shows	some	key	parameters
for	an	Intel	710	Series	solid	state	drive	manufactured	in	2011.	This	drive	uses	multi-level
NAND	flash	to	get	high	storage	densities.	Normally,	multi-level	flash	is	less	durable	than
single-level,	but	this	Intel	drive	uses	sophisticated	wear	leveling	algorithms	and	a	large
amount	of	spare	space	to	provide	high	durability.

The	sequential	performance	of	this	drive	is	very	good,	with	peak	sustained	read	and	write
bandwidths	of	270	MB/s	and	210	MB/s	respectively.	In	comparison,	a	high-end	Seagate
Cheetah	15K.7	drive	manufactured	in	2010	spins	at	15,000	revolutions	per	minute	and
provides	122	MB/s	to	204	MB/s	of	sustained	bandwidth.

Random	read	performance	is	excellent.	The	latency	for	a	single	random	4	KB	read	is	just
75	μs,	and	when	multiple	concurrent	requests	are	in	flight,	the	drive	can	process	38,500

random	reads	per	second	—	one	every	26	μs.	This	is	orders	of	magnitude	better	than	the
random	read	performance	of	a	spinning	disk	drive.

Random	write	performance	is	also	very	good,	but	not	as	good	as	random	read
performance.	The	latency	for	a	single	random	4	KB	write	is	75	μs;	the	drive	reduces	write
latency	by	buffering	writes	in	volatile	memory,	and	it	has	capacitors	that	store	enough
charge	to	write	all	buffered	updates	to	flash	storage	if	a	power	loss	occurs.

When	multiple	concurrent	writes	are	in	flight,	the	drive	can	process	2,000	random	writes
per	second	when	it	is	full;	if	it	is	less	than	80%	full,	that	number	rises	to	2,400.	Random
write	throughput	increases	when	the	drive	has	more	free	space	because	the	drive	has	to
garbage	collect	live	pages	from	erasure	blocks	less	often	and	because	when	the	drive
eventually	does	do	that	garbage	collection,	the	erasure	blocks	are	less	full.

The	drive’s	is	rated	for	1.1	PB	(1.1	×	1015	bytes)	of	endurance	(1.5	PB	if	it	is	less	than
80%	full.)	For	many	workloads,	this	endurance	suffices	for	years	or	decades	of	use.
However,	solid	state	drives	may	not	always	be	a	good	match	for	high-bandwidth	write
streaming.	In	the	extreme,	an	application	constantly	streaming	writes	at	200	MB/s	could
wear	this	drive	out	in	64	days.

Technology	affects	interfaces	—	the	TRIM	command

Historically,	when	a	file	system	deleted	a	file	stored	on	a	spinning	disk,	all	it	needed	to	do
was	to	update	the	file’s	metadata	and	the	file	system’s	free	space	bitmap.	It	did	not	need
to	erase	or	overwrite	the	file’s	data	blocks	on	disk	—	once	the	metadata	was	updated,
these	blocks	could	never	be	referenced,	so	there	was	no	need	to	do	anything	with	them.

When	such	file	systems	were	used	with	flash	drives,	users	observed	that	their	drives	got
slower	over	time.	As	the	amount	of	free	space	fell,	the	drives’	flash	translation	layer	was
forced	to	garbage	collect	erasure	blocks	more	frequently;	additionally,	each	garbage
collection	pass	became	more	expensive	because	there	were	more	live	pages	to	copy	from
old	erasure	blocks	to	the	new	ones.

Notice	that	this	slowing	could	occur	even	if	the	file	system	appeared	to	have	a	large
amount	of	free	space.	For	example,	if	a	file	system	moves	a	large	file	from	one	range	of
blocks	to	another,	the	storage	hardware	has	no	way	to	know	that	the	pages	in	the	old
range	are	no	longer	needed	unless	the	file	system	can	tell	it	so.

The	TRIM	command	was	introduced	into	many	popular	operating	systems	between	2009
and	2011	to	allow	file	systems	to	inform	the	underlying	storage	when	the	file	system	has
stopped	using	a	page	of	storage.	The	TRIM	command	makes	the	free	space	known	to	the
file	system	visible	to	the	underlying	storage	layer,	which	can	significantly	reduce	garbage
collection	overheads	and	help	flash	drives	retain	good	performance	as	they	age.

EXAMPLE:	Random	read	workload.	For	the	solid	state	disk	described	in	Figure	12.6,
consider	a	workload	consisting	of	500	read	requests,	each	of	a	randomly	chosen	page.
How	long	will	servicing	these	requests	take?

ANSWER:	The	disk	can	service	random	read	requests	at	a	rate	of	38,500	per	second,	so

500	requests	will	take	500/38500	=	13	ms.	In	contrast,	for	the	spinning	disk	example,	the
same	500	requests	would	take	7.33	seconds.	□

EXAMPLE:	Random	vs.	sequential	reads.	How	does	this	drive’s	random	read
performance	compare	to	its	sequential	read	performance?

ANSWER:	The	effective	bandwidth	in	this	case	is	500	requests	×	(4	KB/request)	/	13
milliseconds	=	158	MB/s.	The	random	read	bandwidth	is	thus	158/270	=	59%	of	the
sequential	read	bandwidth.	□

EXAMPLE:	Random	write	workload.	For	the	solid	state	disk	described	in	Figure	12.6,
consider	a	workload	consisting	of	500	write	requests,	each	of	a	randomly	chosen	page.
How	long	will	servicing	these	requests	take?

ANSWER:	The	disk	can	service	random	write	requests	at	a	rate	of	2000	per	second
(assuming	the	disk	is	nearly	full),	so	500	requests	will	take	500/2000	=	250	ms.	□

EXAMPLE:	Random	vs.	sequential	writes.	How	does	this	random	write	performance
compare	to	the	drive’s	sequential	write	performance?

ANSWER:	The	effective	bandwidth	in	this	case	is	500	requests	×	(4	KB/request)	/	250	ms
=	8.2	MB/s.	The	random	write	bandwidth	is	thus	8.2/210	=	3.9%	of	the	sequential	write
bandwidth.	□

12.3	Summary	and	Future	Directions

Today,	spinning	disk	and	flash	memory	dominate	storage	technologies,	and	each	has
sufficient	advantages	to	beat	the	other	for	some	workloads	and	environments.

Spinning	disk	vs.	flash	storage.	Spinning	disks	are	often	used	when	capacity	is	the
primary	goal.	For	example,	spinning	disk	is	often	used	for	storing	media	files	and	home
directories.	For	workloads	limited	by	storage	capacity,	spinning	disks	can	often	provide
much	better	capacity	per	dollar	than	flash	storage.	For	example,	in	October	2011,	a	2	TB
Seagate	Barracuda	disk	targeted	at	workstations	cost	about	$80	and	a	300	GB	Intel	320
Series	solid	state	drive	targeted	at	laptops	cost	about	$600,	giving	the	spinning	disk	about
a	50:1	advantage	in	GB	per	dollar.

Both	spinning	disks	and	flash	storage	are	viable	when	sequential	bandwidth	is	the	goal.	In
October	2011,	flash	drives	typically	have	modestly	higher	per-drive	sequential	bandwidths
than	spinning	drives,	but	the	spinning	drives	typically	have	better	sequential	bandwidth
per	dollar	spent	than	flash	drives.	For	example,	the	same	Seagate	disk	has	a	sustained
bandwidth	of	120	MB/s	(1.5	MB/s	per	dollar)	while	the	same	Intel	SSD	has	a	read/write
bandwidth	of	270/205	MB/s	(about	0.4	MB/s	per	dollar.)

Flash	storage	is	often	used	when	good	random	access	performance	or	low	power
consumption	is	the	goal.	For	example,	flash	storage	is	frequently	used	in	database
transaction	processing	servers,	in	smart	phones,	and	in	laptops.	For	example,	the	Seagate
drive	described	above	rotates	at	5900	RPM,	so	it	takes	about	5	ms	for	a	half	rotation.	Even
with	good	scheduling	and	even	if	data	is	confined	to	a	subset	of	tracks,	it	would	be	hard	to
get	more	than	200	random	I/Os	per	second	from	this	drive	(about	2.5	random	I/Os	per
second	per	dollar.)	Conversely,	the	Intel	SSD	can	sustain	23,000	random	writes	and

39,500	random	reads	per	second	(about	38	or	66	random	writes	or	reads	per	second	per
dollar.)

With	respect	to	power,	spinning	disks	typically	consume	10-20W	depending	on	whether	it
is	just	spinning	or	actively	reading	and	writing	data,	while	a	flash	drive	might	consume
0.5W-1W	when	idle	and	3-5W	when	being	accessed.	Flash	drives’	power	advantage
makes	them	attractive	for	portable	applications	such	as	laptop	and	smartphone	storage.

Figure	12.7:	In	2011,	flash	storage	“keys”	such	as	this	one	can	store	as	much	as	256	GB
in	a	device	that	is	a	few	centimeters	long,	and	1-2	cm	wide	and	tall.

Flash	memory	can	also	have	a	significant	form	factor	advantage	with	respect	to	physical
size	and	weight.	Although	some	flash	drives	are	designed	as	drop-in	replacements	for
spinning	disks	and	so	are	similar	in	size,	flash	storage	can	be	much	smaller	than	a	typical
spinning	disk.	For	example,	in	2011,	a	USB	flash	storage	“key”	such	as	the	one	in
Figure	12.7	can	store	as	much	as	256	GB	in	a	device	that	is	not	much	larger	than	a	house
key.

Metric Spinning	Disk Flash

Capacity	/	Cost Excellent Good

Sequential	BW	/	Cost Good Good

Random	I/O	per	Second	/	Cost Poor Good

Power	Consumption Fair Good

Physical	Size Good Excellent

Figure	12.8:	Relative	advantages	and	disadvantages	of	spinning	disk	and	flash	storage.

Figure	12.8	summarizes	these	advantages	and	disadvantages;	of	course,	many	systems
need	to	do	well	on	multiple	metrics,	so	system	designers	may	need	to	compromise	on
some	metrics	or	use	combinations	of	technologies.

Technology	trends.	Over	the	past	decades,	the	cost	of	storage	capacity	has	fallen	rapidly
for	both	spinning	disks	and	solid	state	storage.	Compare	the	2	TB	disk	drive	for	$80	in
2011	to	a	15	MB	drive	costing	$113	in	1984	(or	about	$246	in	2011	dollars):	the	cost	per
byte	has	improved	by	a	factor	of	about	400,000	over	27	years	—	over	50%	per	year	for
nearly	3	decades.

The	first	disk	drive

Prior	to	the	invention	of	magnetic	disks,	magnetic	cylinders,	called	drums,	were	used	for
on-line	storage.	These	drums	spun	on	their	axes	and	typically	had	one	head	per	track.	So,
there	was	no	seek	time	to	access	a	block	of	data;	one	merely	waited	for	a	block	to	rotate
underneath	its	head.

By	using	spinning	disks	instead	of	drums,	the	magnetic	surface	area,	and	hence	the
storage	capacity,	could	be	increased.

The	first	disk	drive,	the	IBM	350	Disk	System	(two	are	shown	in	the	foreground	of	this
photograph),	was	introduced	in	1956	as	part	of	the	IBM	RAMAC	(“Random	Access
Method	of	Accounting	and	Control”)	305	computer	system.	The	350	Disk	system	stored
about	3.3	MB	on	50	platters,	rotated	its	platters	at	1200	RPM,	had	an	average	seek	time
of	600	ms,	and	weighed	about	a	ton.	The	RAMAC	305	computer	system	with	its	350	disk
system	could	be	leased	for	$3,200	per	month.	Assuming	a	useful	life	of	5	years	and
converting	to	2011	dollars,	the	cost	was	approximately	$1.3	million	for	the	system	—
about	$400,000	per	megabyte.

Recent	rates	of	improvement	for	flash	storage	have	been	even	faster.	For	example,	in
2001,	the	Adtron	S35PC	14	GB	flash	drive	cost	$42,000.	Today’s	Intel	320	costs	70	times
less	for	21	times	more	capacity,	an	improvement	of	about	2x	per	year	over	the	past
decade.

Similar	capacity	improvements	for	spinning	disk	and	flash	are	expected	for	at	least	the
next	few	years.	Beyond	that,	there	is	concern	that	we	will	be	approaching	the	physical
limits	of	both	magnetic	disk	and	flash	storage,	so	the	longer-term	future	is	less	certain.
(That	said,	people	have	worried	that	disks	were	approaching	their	limits	several	times	in
the	past,	and	we	will	not	be	surprised	if	the	magnetic	disk	and	flash	industries	continue
rapid	improvements	for	quite	a	few	more	years.)

In	contrast	to	capacity,	performance	is	likely	to	improve	more	slowly	for	both
technologies.	For	example,	a	mid-range	spinning	disk	in	1991	might	have	had	a	maximum
bandwidth	of	1.3	MB/s	and	an	average	seek	time	of	17	ms.	Bandwidths	have	improved	by
about	a	factor	of	90	in	two	decades	(about	25%	per	year)	while	seek	times	and	rotational
latencies	have	only	improved	by	about	a	factor	of	two	(less	than	4%	per	year.)	Bandwidths
have	improved	more	quickly	than	rotational	latency	and	seek	times	because	bandwidth
benefits	from	increasing	storage	densities,	not	just	increasing	rotational	rates.

For	SSDs,	the	story	is	similar,	though	recent	increases	in	volumes	have	helped	speed	the
pace	of	improvements.	For	example,	in	2006	a	BitMicro	E-Disk	flash	drive	could	provide
9,500	to	11,700	random	reads	per	second	and	34-44	MB/s	sustained	bandwidth.	Compared
to	the	Intel	320	SSD	from	2011,	bandwidths	have	improved	by	about	40%	per	year	and
random	access	throughput	has	improved	by	about	25%	per	year	over	the	past	5	years.

New	technologies.	This	is	an	exciting	time	for	persistent	storage.	After	decades	of
undisputed	reign	as	the	dominant	technology	for	on-line	persistent	storage,	spinning
magnetic	disks	are	being	displaced	by	flash	storage	in	many	application	domains,	giving
both	operating	system	designers	and	application	writers	an	opportunity	to	reexamine	how
to	best	use	storage.	Looking	forward,	many	researchers	speculate	that	new	technologies
may	soon	be	nipping	at	the	heels	and	even	surpassing	flash	storage.

For	example,	phase	change	memory	(PCM)	uses	a	current	to	alter	the	state	of
chalcogenide	glass	between	amorphous	and	crystalline	forms,	which	have	significantly
different	electrical	resistance	and	can	therefore	be	used	to	represent	data	bits.	Although
PCM	does	not	yet	match	the	density	of	flash,	researchers	speculate	that	the	technology	is
fundamentally	more	scalable	and	will	ultimately	be	able	to	provide	higher	storage
densities	at	lower	costs.	Furthermore,	PCM	is	expected	to	have	much	better	write
performance	and	endurance	than	flash.

As	another	example,	a	memristor	is	a	circuit	element	whose	resistance	depends	on	the
amounts	and	directions	of	currents	that	have	flowed	through	it	in	the	past.	A	number	of
different	memristor	constructions	are	being	pursued,	and	some	have	quite	promising
properties.	For	example,	in	2010	Hewlett	Packard	labs	described	a	prototype	memristor
constructed	of	a	thin	titanium	dioxide	film	with	3	nm	by	3	nm	storage	elements	that	can
switch	states	in	1	ns.	These	densities	are	similar	to	contemporary	flash	memory	devices
and	these	switching	times	are	similar	to	contemporary	DRAM	chips.	The	devices	also

have	write	endurance	similar	to	flash,	and	extremely	long	(theoretically	unlimited)	storage
lifetimes.	Furthermore,	researchers	believe	that	these	and	others	memristors’	densities	will
scale	well	in	the	future.	For	example,	a	design	for	3-D	stacking	of	memristors	was
published	in	2009	in	the	Proceedings	of	National	Academy	of	Sciences	by	Dmitri	Strukov
and	R.	Stanley	Williams	of	HP	Labs.	http://www.pnas.org/content/106/48/20155.abstract
If	technologies	such	as	these	pan	out	as	hoped,	operating	system	designers	will	have
opportunities	to	rethink	our	abstractions	for	both	volatile	and	nonvolatile	storage:	how
should	we	make	use	of	word-addressable,	persistent	memory	with	densities	exceeding
current	flash	storage	devices	and	with	memory	access	times	approaching	those	of	DRAM?
What	could	we	do	if	each	core	on	a	32	core	processor	chip	had	access	to	a	few	gigabytes
of	stacked	memristor	memory?

Exercises

Size

Form	factor 2.5	inch

Capacity 320	GB

Performance

Spindle	speed 5400	RPM

Average	seek	time 12.0	ms

Maximum	seek	time 21	ms

Track-to-track	seek	time 2	ms

Transfer	rate	(surface	to	buffer) 850	Mbit/s	(maximum)

Transfer	rate	(buffer	to	host) 3	Gbit/s

Buffer	memory 8	MB

Figure	12.9:	Hardware	specifications	for	a	320	GB	SATA	disk	drive.

1.	 Discussion.	Some	high-end	disks	in	the	1980s	had	multiple	disk	arm	assemblies	per
disk	enclosure	in	order	to	allow	them	to	achieve	higher	performance.	Today,	high-
performance	server	disks	have	a	single	arm	assembly	per	disk	enclosure.	Why	do	you
think	disks	so	seldom	have	multiple	disk	arm	assemblies	today?

http://www.pnas.org/content/106/48/20155.abstract

2.	 For	the	disk	described	in	Figure	12.3:

a.	 What	is	the	range	of	the	number	of	sectors	per	track	on	the	disk?

b.	 Estimate	the	number	of	tracks	on	the	disk.
c.	 Estimate	the	distance	from	the	center	of	one	track	to	the	center	of	the	next	track.

3.	 A	disk	may	have	multiple	surfaces,	arms,	and	heads,	but	when	you	issue	a	read	or
write,	only	one	head	is	active	at	a	time.	It	seems	like	one	could	greatly	increase	disk
bandwidth	for	large	requests	by	reading	or	writing	with	all	of	the	heads	at	the	same
time.	Given	the	physical	characteristics	of	disks,	can	you	figure	out	why	no	one	does
this?

4.	 For	the	disk	described	in	Figure	12.3,	consider	a	workload	consisting	of	500	read
requests,	each	of	a	randomly	chosen	sector	on	disk,	assuming	that	the	disk	head	is	on
the	outside	track	and	that	requests	are	serviced	in	P-CSCAN	order	from	outside	to
inside.	How	long	will	servicing	these	requests	take?

Note:	Answering	this	question	will	require	making	some	estimates.

5.	 Suppose	I	have	a	disk	such	as	the	320	GB	SATA	drive	described	in	Figure	12.9	and	I
have	a	workload	consisting	of	10000	reads	to	sectors	randomly	scattered	across	the
disk.	How	long	will	these	10000	requests	take	(total)	assuming	the	disk	services
requests	in	FIFO	order?

6.	 Suppose	I	have	a	disk	such	as	the	320	GB	SATA	drive	described	in	Figure	12.9	and	I
have	a	workload	consisting	of	10000	reads	to	10000	sequential	sectors	on	the	outer-
most	tracks	of	the	disk.	How	long	will	these	10000	requests	take	(total)	assuming	the
disk	services	requests	in	FIFO	order?

7.	 Suppose	I	have	a	disk	such	as	the	320	GB	SATA	drive	described	in	Figure	12.9	and	I
have	a	workload	consisting	of	10000	reads	to	sectors	randomly	scattered	across	the
disk.	How	long	will	these	10000	requests	take	(total)	assuming	the	disk	services
requests	using	the	SCAN/Elevator	algorithm.

8.	 Suppose	I	have	a	disk	such	as	the	320	GB	SATA	drive	described	in	Figure	12.9	and	I
have	a	workload	consisting	of	10000	reads	to	sectors	randomly	scattered	across	a	100
MB	file,	where	the	100	MB	file	is	laid	out	sequentially	on	the	disk.	How	long	will
these	10000	requests	take	(total)	assuming	the	disk	services	requests	using	the
SCAN/Elevator	algorithm?

9.	 Write	a	program	that	creates	a	100	MB	file	on	your	local	disk	and	then	measures	the
time	to	do	each	of	four	things:

a.	 Sequential	overwrite.	Overwrite	the	file	with	100	MB	of	new	data	by	writing
the	file	from	beginning	to	end	and	then	calling	fsync()	(or	the	equivalent	on	your
platform).

b.	 Random	buffered	overwrite.	Do	the	following	50,000	times:	choose	a	2	KB-
aligned	offset	in	the	file	uniformly	at	random,	seek	to	that	location	in	the	file,
and	write	2	KB	of	data	at	that	position.	Then,	once	all	50,000	writes	have	been
issued,	call	fsync()	(or	the	equivalent	on	your	platform).

c.	 Random	buffered	overwrite.	Do	the	following	50,000	times:	choose	a	2	KB-
aligned	offset	in	the	file	uniformly	at	random,	seek	to	that	location	in	the	file,
write	2	KB	of	data	at	that	position,	and	call	fsync()	(or	the	equivalent	on	your
platform)	after	each	individual	write.

d.	 Random	read.	Do	the	following	50,000	times:	choose	a	2	KB-aligned	offset	in
the	file	uniformly	at	random,	seek	to	that	location	in	the	file,	and	read	2	KB	of
data	at	that	position.

Explain	your	results.

10.	 Write	a	program	that	creates	three	files,	each	of	100	MB,	and	then	measures	the	time
to	do	each	of	three	things:

a.	 fopen()/fwrite().	Open	the	first	file	using	fopen()	and	issue	256,000	sequential
four-byte	writes	using	fwrite().

b.	 open()/write().	Open	the	second	file	using	open()	and	issue	256,000	sequential
four-byte	writes	using	write().

c.	 mmap()/store.	Map	the	third	file	into	your	program’s	memory	using	mmap()
and	issue	256,000	sequential	four-byte	writes	by	iterating	through	memory	and
writing	to	each	successive	word	of	the	mapped	file.

Explain	your	results.

Size

Usable	capacity 2	TB	(SLC	flash)

Cache	Size 64	GB	(Battery-backed	RAM)

Page	Size 4	KB

Performance

Bandwidth	(Sequential	Reads	from
flash) 2048	MB/s

Bandwidth	(Sequential	Writes	to	flash) 2048	MB/s

Read	Latency	(cache	hit) 15	μs

Read	Latency	(cache	miss) 200	μs

Write	Latency 15	μs

Random	Reads	(sustained	from	flash) 100,000	per	second

Random	Writes	(sustained	to	flash) 100,000	per	second

Interface 8	Fibre	Channel	ports	with	4	Gbit/s	per
port

Power

Power	Consumption 300	W

Figure	12.10:	Key	parameters	for	a	hypothetical	high-end	flash	drive	in	2011.

11.	 Suppose	that	you	have	a	256	GB	solid	state	drive	that	the	operating	system	and	drive
both	support	the	TRIM	command.	To	evaluate	the	drive,	you	do	an	experiment	where
you	time	the	system’s	write	performance	for	random	page-sized	when	the	file	system
is	empty	compared	to	its	performance	when	the	file	system	holds	255	GB	of	data,
and	you	find	that	write	performance	is	significantly	worse	in	the	latter	case.

What	is	the	likely	reason	for	this	worse	performance	as	the	disk	fills	despite	its
support	for	TRIM?

What	can	be	done	to	mitigate	this	slowdown?

12.	 Suppose	you	have	a	flash	drive	such	as	the	one	described	in	Figure	12.10	and	you
have	a	workload	consisting	of	10000	4	KB	reads	to	pages	randomly	scattered	across
the	drive.	Assuming	that	you	wait	for	request	i	to	finish	before	you	issue	request	i	+
1,	how	long	will	these	10000	requests	take	(total)?

13.	 Suppose	you	have	a	flash	drive	such	as	the	one	described	in	Figure	12.10	and	you
have	a	workload	consisting	of	10000	4	KB	reads	to	pages	randomly	scattered	across
the	drive.	Assuming	that	you	issue	requests	concurrently,	using	many	threads,	how
long	will	these	10000	requests	take	(total)?

14.	 Suppose	you	have	a	flash	drive	such	as	the	one	described	in	Figure	12.10	and	you
have	a	workload	consisting	of	10000	4	KB	writes	to	pages	randomly	scattered	across
the	drive.	Assuming	that	you	wait	for	request	i	to	finish	before	you	issue	request	i	+
1,	how	long	will	these	10000	requests	take	(total)?

15.	 Suppose	you	have	a	flash	drive	such	as	the	one	described	in	Figure	12.10	and	you
have	a	workload	consisting	of	10000	4	KB	writes	to	pages	randomly	scattered	across
the	drive.	Assuming	there	are	a	large	number	of	threads	to	issue	writes	concurrently,
how	long	will	these	10000	requests	take	(total)?

16.	 Suppose	you	have	a	flash	drive	such	as	the	one	described	in	Figure	12.10	and	you
have	a	workload	consisting	of	10000	4	KB	reads	to	10000	sequential	pages.	How
long	will	these	10000	request	take	(total)?

13.	Files	and	Directories

What’s	in	a	name?	That	which	we	call	a	rose
By	any	other	name	would	smell	as	sweet.	—Juliet
Romeo	and	Juliet	(II,	ii,	1-2)
(Shakespeare)

Recall	from	Chapter	11	that	file	systems	use	directories	to	provide	hierarchically	named
files,	and	that	each	file	contains	metadata	and	a	sequence	of	data	bytes.	However,	as
Chapter	12	discussed,	storage	devices	provide	a	much	lower-level	abstraction	—	large
arrays	of	data	blocks.	Thus,	to	implement	a	file	system,	we	must	solve	a	translation
problem:	How	do	we	go	from	a	file	name	and	offset	to	a	block	number?

A	simple	answer	is	that	file	systems	implement	a	dictionary	that	maps	keys	(file	name	and
offset)	to	values	(block	number	on	a	device).	We	already	have	many	data	structures	for
implementing	dictionaries,	including	hash	tables,	trees,	and	skip	lists,	so	perhaps	we	can
just	use	one	of	them?

Unfortunately,	the	answer	is	not	so	simple.	File	system	designers	face	four	major
challenges:

Performance.	File	systems	need	to	provide	good	performance	while	coping	with	the
limitations	of	the	underlying	storage	devices.	In	practice,	this	means	that	file	systems
strive	to	ensure	good	spatial	locality,	where	blocks	that	are	accessed	together	are
stored	near	one	another,	ideally	in	sequential	storage	blocks.

Flexibility.	One	major	purpose	of	file	systems	is	allowing	applications	to	share	data,
so	file	systems	must	be	jacks-of-all-trades.	They	would	be	less	useful	if	we	had	to	use
one	file	system	for	large	sequentially-read	files,	another	for	small	seldom-written
files,	another	for	large	random-access	files,	another	for	short-lived	files,	and	so	on.

Persistence.	File	systems	must	maintain	and	update	both	user	data	and	their	internal
data	structures	on	persistent	storage	devices	so	that	everything	survives	operating
system	crashes	and	power	failures.

Reliability.	File	systems	must	be	able	to	store	important	data	for	long	periods	of
time,	even	if	machines	crash	during	updates	or	some	of	the	system’s	storage
hardware	malfunctions.

This	chapter	discusses	how	file	systems	are	organized	to	meet	the	first	three	challenges.
Chapter	14	addresses	reliability.

13.1	Implementation	Overview

File	systems	must	map	file	names	and	offsets	to	physical	storage	blocks	in	a	way	that
allows	efficient	access.	Although	there	are	many	different	file	systems,	most
implementations	are	based	on	four	key	ideas:	directories,	index	structures,	free	space

maps,	and	locality	heuristics.

Figure	13.1:	File	systems	map	file	names	and	file	offsets	to	storage	blocks	in	two	steps.	First,	they	use	directories	to
map	names	to	file	numbers.	Then	they	use	an	index	structure	such	as	a	persistently	stored	tree	to	find	the	block	that
holds	the	data	at	any	specific	offset	in	that	file.

Directories	and	index	structures.	As	Figure	13.1	illustrates,	file	systems	map	file	names
and	file	offsets	to	specific	storage	blocks	in	two	steps.

First,	they	use	directories	to	map	human-readable	file	names	to	file	numbers.	Directories
are	often	just	special	files	that	contain	lists	of	file	name	→file	number	mappings.

Second,	once	a	file	name	has	been	translated	to	a	file	number,	file	systems	use	a
persistently	stored	index	structure	to	locate	the	blocks	of	the	file.	The	index	structure	can
be	any	persistent	data	structure	that	maps	a	file	number	and	offset	to	a	storage	block.
Often,	to	efficiently	support	a	wide	range	of	file	sizes	and	access	patterns,	the	index
structure	is	some	form	of	tree.

Free	space	maps.	File	systems	implement	free	space	maps	to	track	which	storage	blocks
are	free	and	which	are	in	use	as	files	grow	and	shrink.	At	a	minimum,	a	file	system’s	free
space	map	must	allow	the	file	system	to	find	a	free	block	when	a	file	needs	to	grow,	but
because	spatial	locality	is	important,	most	modern	file	systems	implement	free	space	maps
that	allow	them	to	find	free	blocks	near	a	desired	location.	For	example,	many	file	systems
implement	free	space	maps	as	bitmaps	in	persistent	storage.

Locality	heuristics.	Directories	and	index	structures	allow	file	systems	to	locate	desired
file	data	and	metadata	no	matter	where	they	are	stored,	and	free	space	maps	allow	them	to
locate	the	free	space	near	any	location	on	the	persistent	storage	device.	These	mechanisms
allow	file	systems	to	employ	various	policies	to	decide	where	a	given	block	of	a	given	file
should	be	stored.

These	policies	are	embodied	in	locality	heuristics	for	grouping	data	to	optimize
performance.	For	example,	some	file	systems	group	each	directory’s	files	together	but
spread	different	directories	to	different	parts	of	the	storage	device.	Others	periodically
defragment	their	storage,	rewriting	existing	files	so	that	each	file	is	stored	in	sequential
storage	blocks	and	so	that	the	storage	device	has	long	runs	of	sequential	free	space	so	that
new	files	can	be	written	sequentially.	Still	others	optimize	writes	over	reads	and	write	all
data	sequentially,	whether	a	given	set	of	writes	contains	updates	to	one	file	or	to	many
different	ones.

Implementation	details.	In	this	chapter,	we	first	discuss	how	directories	are	implemented.
Then,	we	look	at	the	details	of	how	specific	file	systems	handle	the	details	of	placing	and
finding	data	in	persistent	storage	by	implementing	different	index	structures,	free	space
maps,	and	locality	heuristics.

13.2	Directories:	Naming	Data

As	Figure	13.1	indicates,	to	access	a	file,	the	file	system	first	translates	the	file’s	name	to
its	number.	For	example,	the	file	called	/home/tom/foo.txt	might	internally	known	as	file
66212871.	File	systems	use	directories	to	store	their	mappings	from	human-readable
names	to	internal	file	numbers,	and	they	organize	these	directories	hierarchically	so	that
users	can	group	related	files	and	directories.

Figure	13.2:	A	directory	is	a	file	that	contains	a	collection	of	file	name	→file	number	mappings.

Implementing	directories	in	a	way	that	provides	hierarchical,	name-to-number	mappings
turns	out	to	be	simple:	use	files	to	store	directories.	So,	if	the	system	needs	to	determine	a
file’s	number,	it	can	just	open	up	the	appropriate	directory	file	and	scan	through	the	file
name/file	number	pairs	until	it	finds	the	right	one.

For	example,	illustrates	Figure	13.2	the	contents	of	a	single	directory	file.	To	open	file
foo.txt,	the	file	system	would	scan	this	directory	file,	find	the	foo.txt	entry,	and	see	that
file	foo.txt	has	file	number	66212871.

Figure	13.3:	Directories	can	be	arranged	hierarchically	by	having	one	directory	contain	the	file	name	→file	number
mapping	for	another	directory.

Of	course,	if	we	use	files	to	store	the	contents	of	directories	such	as	/home/tom,	we	still
have	the	problem	of	finding	the	directory	files,	themselves.	As	Figure	13.3	illustrates,	the
file	number	for	directory	/home/tom	can	be	found	by	looking	up	the	name	tom	in	the
directory	/home,	and	the	file	number	for	directory	/home	can	be	found	by	looking	up	the
name	home	in	the	root	directory	/.

Recursive	algorithms	need	a	base	case	—	we	cannot	discover	the	root	directories	file
number	by	looking	in	some	other	directory.	The	solution	is	to	agree	on	the	root	directory’s
file	number	ahead	of	time.	For	example,	the	Unix	Fast	File	System	(FFS)	and	many	other
Unix	and	Linux	file	systems	use	two	as	the	predefined	file	number	for	the	root	directory	of
a	file	system.

So,	to	read	file	/home/tom/foo.txt	in	Figure	13.3,	we	first	read	the	root	directory	by
reading	the	file	with	the	well-known	root	number	two.	In	that	file,	we	search	for	the	name
home	and	find	that	directory	/home	is	stored	in	file	88026158.	By	reading	file	88026158
and	searching	for	the	name	tom,	we	learn	that	directory	/home/tom	is	stored	in	file
5268830.	Finally,	by	reading	file	5268830	and	searching	for	the	name	foo.txt,	we	learn
that	/home/tom/foo.txt	is	file	number	66212871.

Although	looking	up	a	file’s	number	can	take	several	steps,	we	expect	there	to	be	locality
(e.g.,	when	one	file	in	a	directory	is	accessed,	other	files	in	the	directory	are	often	likely	to
be	accessed	soon),	so	we	expect	that	caching	will	reduce	the	number	of	disk	accesses

needed	for	most	lookups.

Directory	API.	If	file	systems	use	files	to	store	directory	information,	can	we	just	use	the
standard	open/close/read/write	API	to	access	them?

No.	Directories	use	a	specialized	API	because	they	must	control	the	contents	of	these	files.
For	example,	file	systems	must	prevent	applications	from	corrupting	the	list	of	name
→file	number	mappings,	which	could	prevent	the	operating	system	from	performing
lookups	or	updates.	As	another	example,	the	file	system	should	enforce	the	invariant	that
each	file	number	in	a	valid	directory	entry	refers	to	a	file	that	actually	exists.

File	systems	therefore	provide	special	system	calls	for	modifying	directory	files.	For
example,	rather	than	using	the	standard	write	system	call	to	add	a	new	file’s	entry	to	a
directory,	applications	use	the	create	call.	By	restricting	updates,	these	calls	ensure	that
directory	files	can	always	be	parsed	by	the	operating	system.	These	calls	also	bind
together	the	creation	or	removal	of	a	file	and	the	file’s	directory	entry,	so	that	directory
entries	always	refer	to	actual	files	and	that	all	files	have	at	least	one	directory	entry.

In	the	API	described	in	Chapter	11,	the	other	calls	that	modify	directory	files	are	mkdir,
link,	unlink,	and	rmdir.

So,	for	example,	for	the	file	system	illustrated	in	Figure	13.3,	Tom	could	rename	foo.txt	to
hw1.txt	in	his	home	directory	by	running	a	process	that	makes	the	following	two	system
calls

Processes	can	simply	read	directory	files	with	the	standard	read	call.

EXAMPLE:	Reading	directories.	It	is	useful	for	programs	to	be	able	to	get	a	list	of	all
file	names	in	a	directory	to,	for	example,	recursively	traverse	a	hierarchy	from	some	point.
However,	the	file	system	API	described	in	Chapter	11	does	not	have	call	specifically	for
reading	directories.

Given	just	the	system	call	API	in	that	figure,	how	could	a	process	learn	the	names	of	files
in	the	process’s	current	working	directory?

ANSWER:	Processes	can	read	the	contents	of	directory	files	using	the	standard	file
read	system	call	used	to	read	the	contents	of	“normal”	files.

Although	operating	systems	must	restrict	writes	to	directory	files	to	ensure	invariants	on
directory	structure,	they	need	not	restrict	applications	from	reading	the	contents	of
directory	files	(that	they	have	permission	to	read).	For	simplicity,	applications	would
access	this	function	via	a	standard	library	that	also	includes	routines	for	parsing	directory
files.	□

Although	it	is	not	fundamentally	necessary	to	have	dedicated	system	calls	for	reading
directories,	it	can	be	convenient.	For	example,	Linux	includes	a	getdents	(“get	directory
entries”)	system	call	that	reads	a	specified	number	of	directory	entries	from	an	open	file.

Directory	internals.	Many	early	implementations	simply	stored	linear	lists	of	file	name,
file	number	pairs	in	directory	files.	For	example,	in	the	original	version	of	the	Linux	ext2

file	system,	each	directory	file	stored	a	linked	list	of	directory	entries	as	illustrated	in
Figure	13.4.

Figure	13.4:	A	linked	list	implementation	of	a	directory.	This	example	shows	a	directory	file	containing	five	entries:
Music,	Work,	and	foo.txt,	along	with	.	(the	current	directory)	and	..	(the	parent	directory).

Simple	lists	work	fine	when	the	number	of	directory	entries	is	small,	and	that	was	the
expected	case	for	many	early	file	systems,	but	systems	occasionally	encounter	workloads
that	generate	thousands	of	files	in	a	directory.	Once	a	directory	has	a	few	thousand	entries,
simple	list-based	directories	become	sluggish.

To	efficiently	support	directories	with	many	entries,	many	recent	file	systems	including
Linux	XFS,	Microsoft	NTFS,	and	Oracle	ZFS	organize	a	directory’s	contents	as	a	tree.
Similarly,	newer	versions	of	ext2	augment	the	underlying	linked	list	with	an	additional
hash-based	structure	to	speed	searches.

(a)	Logical	view

(b)	Physical	storage

Figure	13.5:	Tree-based	directory	structure	similar	to	the	one	used	in	Linux’s	XFS	file
system.

For	example,	Figure	13.5-(a)	illustrates	a	tree-based	directory	structure	similar	to	the	one
used	in	Linux	XFS,	and	Figure	13.5-(b)	illustrates	how	these	records	are	physically
arranged	in	a	directory	file.

In	this	example,	directory	records	mapping	file	names	to	file	numbers	are	stored	in	a
B+tree	that	is	indexed	by	the	hash	of	each	file’s	name.	To	find	the	file	number	for	a	given
file	name	(e.g.,	out2),	the	file	system	first	computes	a	hash	of	the	name	(e.g.,
0x0000c194).	It	then	uses	that	hash	as	a	key	to	search	for	the	directory	entry	in	the	tree:

starting	at	the	B+tree	root	at	a	well-known	offset	in	the	file	(BTREE_ROOT_PTR),	and
proceeding	through	the	B+tree’s	internal	nodes	to	the	B+tree’s	leaf	nodes.	At	each	level,	a
tree	node	contains	an	array	of	(hash	key,	file	offset)	pairs	that	each	represent	a	pointer	to
the	child	node	containing	entries	with	keys	smaller	than	hash	key	but	larger	than	the
previous	entry’s	hash	key.	The	file	system	searches	the	node	for	the	first	entry	with	a	hash
key	value	that	exceeds	the	target	key,	and	then	it	follows	the	corresponding	file	offset
pointer	to	the	correct	child	node.	The	file	offset	pointer	in	the	record	at	the	leaf	nodes
points	to	the	target	directory	entry.

In	the	XFS	implementation,	directory	entries	are	stored	in	the	first	part	of	the	directory
file.	The	B+tree’s	root	is	at	a	well-known	offset	within	file	(e.g.,	BTREE_ROOT_PTR).
The	fixed-size	internal	and	leaf	nodes	are	stored	after	the	root	node,	and	the	variable-size
directory	entries	are	stored	at	the	start	of	the	file.	Starting	from	the	root,	each	tree	node
includes	pointers	to	where	in	the	file	its	children	are	stored.

Hard	and	soft	links.	Many	file	systems	allow	a	given	file	to	have	multiple	names.	For
example,	/home/tom/Work/Classes/OS/hw1.txt	and	/home/tom/todo/hw1.txt	may	refer	to
the	same	file,	as	Figure	13.6	illustrates.

Figure	13.6:	Example	of	a	directed	acyclic	graph	directory	organization	with	multiple	hard	links	to	a	file	(figure
repeated	from	Chapter	11).

Hard	links	are	multiple	file	directory	entries	that	map	different	path	names	to	the	same	file
number.	Because	a	file	number	can	appear	in	multiple	directories,	file	systems	must	ensure
that	a	file	is	only	deleted	when	the	last	hard	link	to	it	has	been	removed.

To	properly	implement	garbage	collection,	file	systems	use	reference	counts	by	storing
with	each	file	the	number	of	hard	links	to	it.	When	a	file	is	created,	it	has	a	reference	count
of	one,	and	each	additional	hard	link	made	to	the	file	(e.g.,	link(existingName,	newName))
increments	its	reference	count.	Conversely,	each	call	to	unlink(name)	decrements	the	file’s
reference	count,	and	when	the	reference	count	falls	to	zero,	the	underlying	file	is	removed
and	its	resources	marked	as	free.

Rather	than	mapping	a	file	name	to	a	file	number,	soft	links	or	symbolic	links	are	directory
entries	that	map	one	name	to	another	name.

Figure	13.7:	In	this	directory,	the	hard	links	foo.txt	and	bar.txt	and	the	soft	link	baz.txt	all	refer	to	the	same	file.

For	example,	Figure	13.7	shows	a	directory	that	contains	three	names	that	all	refer	to	the
same	file.	The	entries	foo.txt	and	bar.txt	are	hard	links	to	the	same	file	—	number
66212871;	baz.txt	is	a	soft	link	to	foo.txt.

Notice	that	if	we	remove	entry	foo.txt	from	this	directory	using	the	unlink	system	call,	the
file	can	still	be	opened	using	the	name	bar.txt,	but	if	we	try	to	open	it	with	the	name
baz.txt,	the	attempt	will	fail.

EXAMPLE:	File	metadata.	Most	file	systems	store	a	file’s	metadata	(e.g.,	a	file’s	access
time,	owner	ID,	permissions,	and	size)	in	a	file	header	that	can	be	found	with	the	file
number.	One	could	imagine	storing	that	metadata	in	a	file’s	directory	entry	instead.	Why	is
this	seldom	done?

ANSWER:	In	file	systems	that	support	hard	links,	storing	file	metadata	in	directory
entries	would	be	problematic.	For	example,	whenever	a	file’s	attribute	like	its	size
changed,	all	of	a	file’s	directory	entries	would	have	to	be	located	and	updated.	As	another
example,	if	file	metadata	were	stored	in	directory	entries,	it	would	be	hard	to	maintain	a
file	reference	count	so	that	the	file’s	resources	are	freed	when	and	only	when	the	last	hard
link	to	the	file	is	removed.

The	venerable	Microsoft	FAT	file	system	stores	file	metadata	in	directory	entries,	but	it
does	not	support	hard	links.	□

13.3	Files:	Finding	Data

Once	a	file	system	has	translated	a	file	name	into	a	file	number	using	a	directory,	the	file
system	must	be	able	to	find	the	blocks	that	belong	to	that	file.	In	addition	to	this	functional
requirement,	implementations	of	files	typically	target	five	other	goals:

Support	sequential	data	placement	to	maximize	sequential	file	access

Provide	efficient	random	access	to	any	file	block

Limit	overheads	to	be	efficient	for	small	files

Be	scalable	to	support	large	files

Provide	a	place	to	store	per-file	metadata	such	as	the	file’s	reference	count,	owner,
access	control	list,	size,	and	access	time

File	system	designers	have	a	great	deal	of	flexibility	to	meet	these	goals.	Recall	from
Section	13.1	that

A	file’s	index	structure	provides	a	way	to	locate	each	block	of	the	file.	Index
structures	are	usually	some	sort	of	tree	for	scalability	and	to	support	locality.

A	file	system’s	free	space	map	provides	a	way	to	allocate	free	blocks	to	grow	a	file.
When	files	grow,	choosing	which	free	blocks	to	use	is	important	for	providing	good
locality.	A	file	system’s	free	space	map	is	therefore	often	implemented	as	a	bitmap	so
that	it	is	easy	to	find	a	desired	number	of	sequential	free	blocks	near	a	desired
location.

A	file	system’s	locality	heuristics	define	how	a	file	system	groups	data	in	storage	to
maximize	access	performance.

FAT FFS NTFS ZFS

Index	structure linked
list

tree	(fixed,
assymmetric) tree	(dynamic) tree	(COW,	dynamic)

Index	structure
granularity block block extent block

Free	space
management

FAT
array bitmap	(fixed) bitmap	in	file

(file)
space	map	(log-
structured)

Locality	heuristics defrag. block	groups best	fit write-anywhere

reserve	space defrag. block	groups

Figure	13.8:	Summary	of	key	ideas	discussed	for	four	common	file	systems	approaches.

Within	this	framework,	the	design	space	for	file	systems	is	large.	To	understand	the	trade-
offs	and	to	understand	the	workings	of	common	file	systems,	we	will	examine	four	case
study	designs	that	illustrate	important	implementation	techniques	and	that	represent
approaches	that	are	in	wide	use	today.

FAT.	The	Microsoft	File	Allocation	Table	(FAT)	file	system	traces	its	roots	to	the	late
1970s.

Techniques:	The	FAT	file	system	uses	an	extremely	simple	index	structure	—	a	linked
list	—	so	it	is	a	good	place	to	discuss	our	discussion	of	implementation	techniques.

Today:	The	FAT	file	system	is	still	widely	used	in	devices	like	flash	memory	sticks
and	digital	cameras	where	simplicity	and	interoperability	are	paramount.

FFS.	The	Unix	Fast	File	System	(FFS)	was	released	in	the	mid	1980s,	and	it	retained
many	of	the	data	structures	in	Ritchie	and	Thompson’s	original	Unix	file	system	from
the	early	1970s.

Techniques:	FFS	uses	a	tree-based	multi-level	index	for	its	index	structure	to	improve
random	access	efficiency,	and	it	uses	a	collection	of	locality	heuristics	to	get	good
spatial	locality	for	a	wide	range	of	workloads.

Today:	In	Linux,	the	popular	ext2	and	ext3	file	systems	are	based	on	the	FFS	design.

NTFS.	The	Microsoft	New	Technology	File	System	(NTFS)	was	introduced	in	the
early	1990s	as	a	replacement	for	the	FAT	file	system.

Techniques:	Like	FFS,	NTFS	uses	a	tree-based	index	structure,	but	the	tree	is	more
flexible	than	FFS’s	fixed	tree.	Additionally,	NTFS	optimizes	its	index	structure	for
sequential	file	layout	by	indexing	variable-sized	extents	rather	than	individual	blocks.

Today:	NTFS	remains	the	primary	file	system	for	Microsoft	operating	systems	such
as	Windows	7.	In	addition,	the	flexible	tree	and	extent	techniques	are	representative
of	several	widely	used	file	systems	such	as	the	Linux	ext4,	XFS,	and	Reiser4	file
systems,	the	AIX/Linux	Journaled	File	System	(JFS),	and	the	Apple	Hierarchical	File
Systems	(HFS	and	HFS+).

COW/ZFS.	Copy-on-write	(COW)	file	systems	update	existing	data	and	metadata
blocks	by	writing	new	versions	to	free	disk	blocks.	This	approach	optimizes	write
performance:	because	any	data	or	metadata	can	be	written	to	any	free	space	on	disk,
the	file	system	can	group	otherwise	random	writes	into	large,	sequential	group	writes.

To	see	how	these	ideas	are	implemented,	we	will	examine	the	open-source	ZFS,	a
prominent	copy-on-write	file	system	that	was	introduced	in	the	early	2000’s	by	Sun
Microsystems.	ZFS	is	designed	to	scale	to	file	systems	spanning	large	numbers	of
disks,	to	provide	strong	data	integrity	guarantees,	and	to	optimize	write	performance.

Figure	13.8	summarizes	key	ideas	in	these	systems	that	we	will	detail	in	the	sections	that
follow.

Sectors	vs.	pages;	blocks	vs.	clusters;	extents	vs.	runs

Although	storage	hardware	arranges	data	in	sectors	(for	magnetic	disk)	or	pages	(for
flash),	file	systems	often	group	together	a	fixed	number	of	disk	sectors	or	flash	pages	into
a	larger	allocation	unit	called	a	block.	For	example,	we	might	format	a	file	system
running	on	a	disk	with	512	byte	sectors	to	use	4	KB	blocks.	Aggregating	multiple	sectors
into	a	block	can	reduce	the	overheads	of	allocating,	tracking,	and	de-allocating	blocks,

but	it	may	increase	space	overheads	slightly.

FAT	and	NTFS	refer	to	blocks	as	clusters,	but	for	consistency	we	will	use	the	term	block
in	our	discussions.

Finally,	some	file	systems	like	NTFS,	ext4,	and	btrfs	store	data	in	variable-length	arrays
of	contiguous	tracks	called	extents	in	most	file	systems	and	runs	in	NTFS.	For
consistency,	we	will	use	the	term	extent	in	our	discussions.

13.3.1	FAT:	Linked	List

The	Microsoft	File	Allocation	Table	(FAT)	file	system	was	first	implemented	in	the	late
1970s	and	was	the	main	file	system	for	MS-DOS	and	early	versions	of	Microsoft
Windows.	The	FAT	file	system	has	been	enhanced	in	many	ways	over	the	years.	Our
discussion	will	focus	on	the	most	recent	version,	FAT-32,	which	supports	volumes	with	up
to	228	blocks	and	files	with	up	to	232	-	1	bytes.

Index	structures.	The	FAT	file	system	is	named	for	its	file	allocation	table,	an	array	of
32-bit	entries	in	a	reserved	area	of	the	volume.	Each	file	in	the	system	corresponds	to	a
linked	list	of	FAT	entries,	with	each	FAT	entry	containing	a	pointer	to	the	next	FAT	entry
of	the	file	(or	a	special	“end	of	file”	value).	The	FAT	has	one	entry	for	each	block	in	the
volume,	and	the	file’s	blocks	are	the	blocks	that	correspond	to	the	file’s	FAT	entries:	if
FAT	entry	i	is	the	jth	FAT	entry	of	a	file,	then	storage	block	i	is	the	jth	data	block	of	the
file.

Figure	13.9:	A	FAT	file	system	with	one	5-block	file	and	one	2-block	file.

Figure	13.9	illustrates	a	FAT	file	system	with	two	files.	The	first	begins	at	block	9	and
contains	five	blocks.	The	second	begins	at	block	12	and	contains	two	blocks.

Directories	map	file	names	to	file	numbers,	and	in	the	FAT	file	system,	a	file’s	number	is
the	index	of	the	file’s	first	entry	in	the	FAT.	Thus,	given	a	file’s	number,	we	can	find	the
first	FAT	entry	and	block	of	a	file,	and	given	the	first	FAT	entry,	we	can	find	the	rest	of	the
file’s	FAT	entries	and	blocks.

Free	space	tracking.	The	FAT	is	also	used	for	free	space	tracking.	If	data	block	i	is	free,
then	FAT[i]	contains	0.	Thus,	the	file	system	can	find	a	free	block	by	scanning	through	the
FAT	to	find	a	zeroed	entry.

Locality	heuristics.	Different	implementations	of	FAT	may	use	different	allocation
strategies,	but	FAT	implementations’	allocation	strategies	are	usually	simple.	For	example,
some	implementations	use	a	next	fit	algorithm	that	scans	sequentially	through	the	FAT
starting	from	the	last	entry	that	was	allocated	and	that	returns	the	next	free	entry	found.

Simple	allocation	strategies	like	this	may	fragment	a	file,	spreading	the	file’s	blocks	across
the	volume	rather	than	achieving	the	desired	sequential	layout.	To	improve	performance,
users	can	run	a	defragmentation	tool	that	reads	files	from	their	existing	locations	and
rewrites	them	to	new	locations	with	better	spatial	locality.	The	FAT	defragmenter	in
Windows	XP,	for	example,	attempts	to	copy	the	blocks	of	each	file	that	is	spread	across
multiple	extents	to	a	single,	sequential	extent	that	holds	all	the	blocks	of	a	file.

Discussion	The	FAT	file	system	is	widely	used	because	it	is	simple	and	supported	by
many	operating	systems.	For	example,	many	flash	storage	USB	keys	and	camera	storage
cards	use	the	FAT	file	system,	allowing	them	to	be	read	and	written	by	almost	any
computer	running	almost	any	modern	operating	system.

Variations	of	the	FAT	file	system	are	even	used	by	applications	for	organizing	data	within
individual	files.	For	example,	Microsoft	.doc	files	produced	by	versions	of	Microsoft
Word	from	1997	to	2007	are	actually	compound	documents	with	many	internal	pieces.
The	.doc	format	creates	a	FAT-like	file	system	within	the	.doc	file	to	manage	the	objects	in
the	.doc	file.

The	FAT	file	system,	however,	is	limited	in	many	ways.	For	example,

Poor	locality.	FAT	implementations	typically	use	simple	allocation	strategies	such	as
next	fit.	These	can	lead	to	badly	fragmented	files.

Poor	random	access.	Random	access	within	a	file	requires	sequentially	traversing
the	file’s	FAT	entries	until	the	desired	block	is	reached.

Limited	file	metadata	and	access	control.	The	metadata	for	each	file	includes
information	like	the	file’s	name,	size,	and	creation	time,	but	it	does	not	include	access
control	information	like	the	file’s	owner	or	group	ID,	so	any	user	can	read	or	write
any	file	stored	in	a	FAT	file	system.

No	support	for	hard	links.	FAT	represents	each	file	as	a	linked	list	of	32-bit	entries
in	the	file	allocation	table.	This	representation	does	not	include	room	for	any	other
file	metadata.	Instead,	file	metadata	in	stored	with	directory	entries	with	the	file’s
name.	This	approach	demands	that	each	file	be	accessed	via	exactly	one	directory
entry,	ruling	out	multiple	hard	links	to	a	file.

Limitations	on	volume	and	file	size.	FAT	table	entries	are	32	bits,	but	the	top	four
bits	are	reserved.	Thus,	a	FAT	volume	can	have	at	most	228	blocks.	With	4	KB
blocks,	the	maximum	volume	size	is	limited	(e.g.,	228	blocks/volume	×	212

bytes/block	=	240	bytes/volume	=	1	TB).	Block	sizes	up	to	256	KB	are	supported,	but
they	risk	wasting	large	amounts	of	disk	space	due	to	internal	fragmentation.

Similarly,	file	sizes	are	encoded	in	32	bits,	so	no	file	can	be	larger	than	232	-	1	bytes
(just	under	4	GB).

Lack	of	support	for	modern	reliability	techniques.	Although	we	will	not	discuss
reliability	until	Chapter	14,	we	note	here	that	FAT	does	not	support	the	transactional
update	techniques	that	modern	file	systems	use	to	avoid	corrupting	critical	data
structures	if	the	computer	crashes	while	writing	to	storage.

13.3.2	FFS:	Fixed	Tree

The	Unix	Fast	File	System	(FFS)	illustrates	important	ideas	for	both	indexing	a	file’s
blocks	so	they	can	be	located	quickly	and	for	placing	data	on	disk	to	get	good	locality.

In	particular,	FFS’s	index	structure,	called	a	multi-level	index,	is	a	carefully	structured	tree
that	allows	FFS	to	locate	any	block	of	a	file	and	that	is	efficient	for	both	large	and	small
files.

Given	the	flexibility	provided	by	FFS’s	multi-level	index,	FFS	employs	two	locality
heuristics	—	block	group	placement	and	reserve	space	—	that	together	usually	provide
good	on-disk	layout.

Index	structures.	To	keep	track	of	the	data	blocks	that	belong	to	each	file,	FFS	uses	a
fixed,	asymmetric	tree	called	a	multi-level	index,	as	illustrated	in	Figure	13.10.

Figure	13.10:	An	FFS	inode	is	the	root	of	an	asymmetric	tree	whose	leaves	are	the	data	blocks	of	a	file.

Each	file	is	a	tree	with	fixed-sized	data	blocks	(e.g.,	4	KB)	as	its	leaves.	Each	file’s	tree	is
rooted	at	an	inode	that	contains	the	file’s	metadata	(e.g.,	the	file’s	owner,	access	control

permissions,	creation	time,	last	modified	time,	and	whether	the	file	is	a	directory	or	not).

FFS	access	control

The	FFS	inode	contains	information	for	controlling	access	to	a	file.	Access	control	can	be
specified	for	three	sets	of	people:

User	(owner).	The	user	that	owns	the	file.

Group.	The	set	of	people	belonging	to	a	specified	Unix	group.	Each	Unix	group	is
specified	elsewhere	as	a	group	name	and	list	of	users	in	that	group.

Other.	All	other	users.

Access	control	is	specified	in	terms	of	three	types	of	activities:

Read.	Read	the	regular	file	or	directory.

Write.	Modify	the	regular	file	or	directory.

Execute.	Execute	the	regular	file	or	traverse	the	directory	to	access	files	or
subdirectories	in	it.

Each	file’s	inode	stores	the	identities	of	the	file’s	user	(owner)	and	group	as	well	as	9
basic	access	control	bits	to	specify	read/write/execute	permission	for	the	file’s	user
(owner)/group/other.	For	example,	the	command	ls	-ld	/	shows	the	access	control
information	for	the	root	directory:

>	ls	-ld	/	
drwxr-xr-x		40	root		wheel		1428	Feb		2	13:39	/	

This	means	that	the	file	is	a	directory	(d),	owned	by	the	user	root	the	group	wheel.	The
root	directory	can	be	read,	written,	and	executed	(traversed)	by	the	owner	(rwx),	and	it
can	be	read	and	executed	(traversed)	but	not	written	by	members	of	group	wheel	(r-x)	and
all	other	users	(r-x).

Setuid	and	setgid	programs

In	addition	to	the	9	basic	access	control	bits,	the	FFS	inode	stores	two	important
additional	bits:

Setuid.	When	this	file	is	executed	by	any	user	(with	execute	permission)	it	will	be
executed	with	the	file	owner’s	(rather	than	the	user’s)	permission.	For	example,	the
lprm	program	allows	a	user	to	remove	a	job	from	a	printer	queue.	The	print	queue	is
implemented	as	a	directory	containing	files	to	be	printed,	and	because	we	do	not
want	users	to	be	able	to	remove	other	users’	jobs,	this	directory	is	owned	by	and	may
only	be	modified	by	the	root	user.	So,	the	lprm	program	is	owned	by	the	root	user

with	the	setuid	bit	set.	It	can	be	executed	by	anyone,	but	when	it	runs,	it	executes
with	root	permissions,	allowing	it	to	modify	the	print	queue	directory.	E.g.,

-rwsr-xr-x	1	root	root	507674	2010-07-05	12:39	/lusr/bin/lprm*	

Of	course,	making	a	program	setuid	is	potentially	dangerous.	Here,	for	example,	we
rely	on	the	lprm	program	to	verify	that	actual	user	is	deleting	his	own	print	jobs,	not
someone	else’s.	A	bug	in	the	lprm	program	could	let	one	user	remove	another’s
printer	jobs.	Worse,	if	the	bug	allows	the	attacker	to	execute	malicious	code	(e.g.,	via
a	buffer	overflow	attack),	a	bug	in	lprm	could	give	an	attacker	total	control	of	the
machine.	http://www.linuxjournal.com/article/6701

Setgid.	The	setguid	bit	is	similar	to	the	setuid	bit,	execept	that	the	file	is	executed
with	the	file’s	group	permission.	For	example,	on	some	machines,	sendmail	executes
as	a	member	of	group	smmsp	so	that	it	can	access	a	mail	queue	file	accessible	to
group	smmsp.	E.g.,

-r-xr-sr-x	1	root	smmsp	2264923	2011-06-23	14:51	/lusr/opt/sendmail-
8.14.4/lib/mail/sendmail*	

A	file’s	inode	(root)	also	contains	array	of	pointers	for	locating	the	file’s	data	blocks
(leaves).	Some	of	these	pointers	point	directly	to	the	tree’s	data	leaves	and	some	of	them
point	to	internal	nodes	in	the	tree.	Typically,	an	inode	contains	15	pointers.	The	first	12
pointers	are	direct	pointers	that	point	directly	to	the	first	12	data	blocks	of	a	file.

The	13th	pointer	is	an	indirect	pointer,	which	points	to	an	internal	node	of	the	tree	called
an	indirect	block;	an	indirect	block	is	a	regular	block	of	storage	that	contains	an	array	of
direct	pointers.	To	read	the	13th	block	of	a	file,	you	first	read	the	inode	to	get	the	indirect
pointer,	then	the	indirect	block	to	get	the	direct	pointer,	then	the	data	block.	With	4	KB
blocks	and	4-byte	block	pointers,	an	indirect	block	can	contain	as	many	as	1024	direct
pointers,	which	allows	for	files	up	to	a	little	over	4	MB.

The	14th	pointer	is	a	double	indirect	pointer,	which	points	to	an	internal	node	of	the	tree
called	a	double	indirect	block;	a	double	indirect	block	is	an	array	of	indirect	pointers,	each
of	which	points	to	an	indirect	block.	With	4	KB	blocks	and	4-byte	block	pointers,	a	double
indirect	block	can	contain	as	many	as	1024	indirect	pointers.	Thus,	a	double	indirect
pointer	can	index	as	many	as	(1024)2	data	blocks.

Finally,	the	15th	pointer	is	a	triple	indirect	pointer	that	points	to	a	triple	indirect	block	that
contains	an	array	of	double	indirect	pointers.	With	4	KB	blocks	and	4-byte	block	pointers,
a	triple	indirect	pointer	can	index	as	many	as	(1024)3	data	blocks	containing	4	KB	×	10243

=	212	×	230	=	242	bytes	(4	TB).

All	of	a	file	system’s	inodes	are	located	in	an	inode	array	that	is	stored	in	a	fixed	location
on	disk.	A	file’s	file	number,	called	an	inumber	in	FFS,	is	an	index	into	the	inode	array:	to

http://www.linuxjournal.com/article/6701

open	a	file	(e.g.,	foo.txt),	we	look	in	the	file’s	directory	to	find	its	inumber	(e.g.,	91854),
and	then	look	in	the	appropriate	entry	of	the	inode	array	(e.g.,	entry	91854)	to	find	its
metadata.

FFS’s	multi-level	index	has	four	important	characteristics:

1.	 Tree	structure.	Each	file	is	represented	as	a	tree,	which	allows	the	file	system	to
efficiently	find	any	block	of	a	file.

2.	 High	degree.	The	FFS	tree	uses	internal	nodes	with	many	children	compared	to	the
binary	trees	often	used	for	in-memory	data	structures	(i.e.,	internal	nodes	have	high
degree	or	fan	out).	For	example,	if	a	file	block	is	4	KB	and	a	blockID	is	4	bytes,	then
each	indirect	block	can	contain	pointers	to	1024	blocks.

High	degree	nodes	make	sense	for	on-disk	data	structures	where	(1)	we	want	to
minimize	the	number	of	seeks,	(2)	the	cost	of	reading	several	kilobytes	of	sequential
data	is	not	much	higher	than	the	cost	of	reading	the	first	byte,	and	(3)	data	must	be
read	and	written	at	least	a	sector	at	a	time.

High	degree	nodes	also	improve	efficiency	for	sequential	reads	and	writes	—	once	an
indirect	block	is	read,	hundreds	of	data	blocks	can	be	read	before	the	next	indirect
block	is	needed.	Runs	between	reads	of	double	indirect	blocks	are	even	larger.

3.	 Fixed	structure.	The	FFS	tree	has	a	fixed	structure.	For	a	given	configuration	of
FFS,	the	first	set	of	d	pointers	always	point	to	the	first	d	blocks	of	a	file;	the	next
pointer	is	an	indirect	pointer	that	points	to	an	indirect	block;	etc.

Compared	to	a	dynamic	tree	that	can	add	layers	of	indirection	above	a	block	as	a	file
grows,	the	main	advantage	of	the	fixed	structure	is	implementation	simplicity.

4.	 Asymmetric.	To	efficiently	support	both	large	and	small	files	with	a	fixed	tree
structure,	FFS’s	tree	structure	is	asymmetric.	Rather	than	putting	each	data	block	at
the	same	depth,	FFS	stores	successive	groups	of	blocks	at	increasing	depth	so	that
small	files	are	stored	in	a	small-depth	tree,	the	bulk	of	medium	files	are	stored	in	a
medium-depth	tree,	and	the	bulk	of	large	files	are	stored	in	a	larger-depth	tree.	For
example,	Figure	13.11	shows	a	small,	4-block	file	whose	inode	includes	direct
pointers	to	all	of	its	blocks.	Conversely,	for	the	large	file	shown	in	Figure	13.10,	most
of	the	blocks	must	be	accessed	via	the	triple	indirect	pointer.

Figure	13.11:	A	small	FFS	file	whose	blocks	are	all	reachable	via	direct	pointers	in	the	inode.

In	contrast,	if	we	use	a	fixed-depth	tree	and	want	to	support	reasonably	large	files,
small	files	would	pay	high	overheads.	With	triple	indirect	pointers	and	4	KB	blocks,
storing	a	4	KB	file	would	consume	over	16	KB	(the	4	KB	of	data,	the	small	inode,
and	3	levels	of	4	KB	indirect	blocks),	and	reading	the	file	would	require	reading	five
blocks	to	traverse	the	tree.

The	FFS	principles	are	general;	many	file	systems	have	adopted	variations	on	its	basic
approach.

EXAMPLE:	FFS	variation.	Suppose	BigFS	is	a	variation	of	FFS	that	includes	in	each
inode	12	direct,	1	indirect,	1	double	indirect,	1	triple	indirect,	and	1	quadruple	indirect
pointers.	Assuming	4	KB	blocks	and	8-byte	pointers,	what	is	the	maximum	file	size	this
index	structure	can	support?

ANSWER:	12	direct	pointers	can	index	12	×	4	KB	=	48	KB.

When	used	as	an	internal	node,	each	storage	block	can	contain	as	many	as	4	KB/block	/	8
bytes/pointer	=	512	pointers/block	=	29	pointers/block.

So,	the	indirect	pointer	points	to	an	indirect	block	with	29	pointers,	referencing	as	much	as

29	blocks	×	212	bytes/block	=	221	bytes	=	2	MB.

Similarly,	the	double	indirect	pointer	references	as	much	as	29	×	29	×	212	=	230	bytes	=	1
GB,	the	triple	indirect	pointer	references	as	much	as	29	×	29	×	29	×	212	=	239	bytes	=	512
GB,	and	the	quadruple	indirect	pointer	references	as	much	as	29	×	29	×	29	×	29	×	212	=	248
bytes	=	256	TB.

So,	BigFS	can	support	files	a	bit	larger	than	256.5	TB.	□

Sparse	files.	Tree-based	index	structures	like	FFS’s	can	support	sparse	files	in	which	one
or	more	ranges	of	empty	space	are	surrounded	by	file	data.	The	ranges	of	empty	space
consume	no	disk	space.

For	example,	if	we	create	a	new	file,	write	4	KB	at	offset	0,	seek	to	offset	230,	and	write
another	4	KB,	as	Figure	13.12	illustrates,	an	FFS	system	with	4	KB	blocks	will	only
consume	16	KB	—	two	data	blocks,	a	double	indirect	block,	and	a	single	indirect	block.

Figure	13.12:	A	sparse	FFS	file	with	two	4	KB	bocks,	one	at	offset	0	and	one	at	offset	230.

In	this	case,	if	we	list	the	size	of	the	file	using	the	ls	command,	we	see	that	the	file’s	size	is
1.1	GB.	But,	if	we	check	the	space	consumed	by	the	file,	using	the	du	command,	we	see
that	it	consumes	just	16	KB	of	storage	space.

>ls	-lgGh	sparse.dat	
-rwx––	1	1.1G	2012-01-31	08:45	sparse.dat*	
>du	-hs	sparse.dat	
16K	sparse.dat	

If	we	read	from	a	hole,	the	file	system	produces	a	zero-filled	buffer.	If	we	write	to	a	hole,
the	file	system	allocates	storage	blocks	for	the	data	and	any	required	indirect	blocks.

Similar	to	efficient	support	for	sparse	virtual	memory	address	spaces,	efficient	support	of
sparse	files	is	useful	for	giving	applications	maximum	flexibility	in	placing	data	in	a	file.
For	example,	a	database	could	store	its	tables	at	the	start	of	its	file,	its	indices	at	1	GB	into
the	file,	its	log	at	2	GB,	and	additional	metadata	at	4	GB.

Sparse	files	have	two	important	limitations.	First,	not	all	file	systems	support	them,	so	an
application	that	relies	on	sparse	file	support	may	not	be	portable.	Second,	not	all	utilities
correctly	handle	sparse	files,	which	can	lead	to	unexpected	consequences.	For	example,	if
I	read	a	sparse	file	from	beginning	to	end	and	write	each	byte	to	a	different	file,	I	will
observe	runs	of	zero-filled	buffers	corresponding	to	holes	and	write	those	zero-filled
regions	to	the	new	file.	The	result	is	a	new	non-sparse	file	whose	space	consumption
matches	its	size.

>cat	sparse.dat	>	/tmp/notSparse.dat	
>ls	-lgGh	/tmp/notSparse.dat	
-rw-r—r—	1	1.1G	2012-01-31	08:54	/tmp/notSparse.dat	
	>	
>du	-hs	/tmp/notSparse.dat	
1.1G	/tmp/notSparse.dat	

Free	space	management.	FFS’s	free	space	management	is	simple.	FFS	allocates	a	bitmap
with	one	bit	per	storage	block.	The	ith	bit	in	the	bitmap	indicates	whether	the	ith	block	is
free	or	in	use.	The	position	of	FFS’s	bitmap	is	fixed	when	the	file	system	is	formatted,	so
it	is	easy	to	find	the	part	of	the	bitmap	that	identifies	free	blocks	near	any	location	of
interest.

Locality	heuristics.	FFS	uses	two	important	locality	heuristics	to	get	good	performance
for	many	workloads:	block	group	placement	and	reserved	space.

Block	group	placement.	FFS	places	data	to	optimize	for	the	common	case	where	a	file’s
data	blocks,	a	file’s	data	and	metadata,	and	different	files	from	the	same	directory	are
accessed	together.

Conversely,	because	everything	cannot	be	near	everything,	FFS	lets	different	directories’
files	be	far	from	each	other.

Figure	13.13:	FFS	divides	a	disk	into	block	groups,	splits	free	space	and	inode	metadata	across	block	groups,	and	puts
data	blocks	for	the	files	in	a	directory	in	the	same	block	group.

This	placement	heuristic	has	four	parts:

Divide	disk	into	block	groups.	As	Figure	13.13	illustrates,	FFS	divides	a	disk	in	to
sets	of	nearby	tracks	called	block	groups.	The	seek	time	between	any	blocks	in	a
block	group	will	be	small.

Distribute	metadata.	Earlier	multi-level	index	file	systems	put	the	inode	array	and
free	space	bitmap	in	a	contiguous	region	of	the	disk.	In	such	a	centralized	metadata
arrangement,	the	disk	head	must	often	make	seeks	between	a	file’s	data	and	its
metadata.

In	FFS,	the	inode	array	and	free	space	bitmap	are	still	conceptually	arrays	of	records,
and	FFS	still	stores	each	array	entry	at	a	well-known,	easily	calculable	location,	but
the	array	is	now	split	into	pieces	distributed	across	the	disk.	In	particular,	each	block
group	holds	a	portion	of	these	metadata	structures	as	Figure	13.13	illustrates.

For	example,	if	a	disk	has	100	block	groups,	each	block	group	would	store	1%	of	the
file	system’s	inodes	and	the	1%	portion	of	the	bitmap	that	tracks	the	status	of	the	data
blocks	in	the	block	group.

Place	file	in	block	group.	FFS	puts	a	directory	and	its	files	in	the	same	block	group:
when	a	new	file	is	created,	FFS	knows	the	inumber	of	the	new	file’s	directory,	and
from	that	it	can	determine	the	range	of	inumbers	in	the	same	block	group.	FFS
chooses	an	inode	from	that	group	if	one	is	free;	otherwise,	FFS	gives	up	locality	and
selects	an	inumber	from	a	different	block	group.

In	contrast	with	regular	files,	when	FFS	creates	a	new	directory,	it	chooses	an
inumber	from	a	different	block	group.	Even	though	we	might	expect	a	subdirectory	to
have	some	locality	with	its	parent,	putting	all	subdirectories	in	the	same	block	group
would	quickly	fill	it,	thwarting	our	efforts	to	get	locality	within	a	directory.

Figure	13.13	illustrates	how	FFS	might	groups	files	from	different	directories	into
different	block	groups.

Place	data	blocks.	Within	a	block	group,	FFS	uses	a	first-free	heuristic.	When	a	new
block	of	a	file	is	written,	FFS	writes	the	block	to	the	first	free	block	in	the	file’s	block
group.

Although	this	heuristic	may	give	up	locality	in	the	short	term,	it	does	so	to	improve
locality	in	the	long	term.	In	the	short	term,	this	heuristic	might	spread	a	sequence	of
writes	into	small	holes	near	the	start	of	a	block	group	rather	than	concentrating	them
to	a	sequence	of	contiguous	free	blocks	somewhere	else.	This	short	term	sacrifice
brings	long	term	benefits,	however:	fragmentation	is	reduced,	the	block	will	tend	to
have	a	long	run	of	free	space	at	its	end,	subsequent	writes	are	more	likely	to	be
sequential.

The	intuition	is	that	a	given	block	group	will	usually	have	a	handful	of	holes
scattered	through	blocks	near	the	start	of	the	group	and	a	long	run	of	free	space	at	the
end	of	the	group.	Then,	if	a	new,	small	file	is	created,	its	blocks	will	likely	go	to	a
few	of	the	small	holes,	which	is	not	ideal,	but	which	is	acceptable	for	a	small	file.
Conversely,	if	a	large	file	is	created	and	written	from	beginning	to	end,	it	will	tend	to
have	the	first	few	blocks	scattered	through	the	holes	in	the	early	part	of	the	block,	but
then	have	the	bulk	of	its	data	written	sequentially	at	the	end	of	the	block	group.

If	a	block	group	runs	out	of	free	blocks,	FFS	selects	another	block	group	and
allocates	blocks	there	using	the	same	heuristic.

Figure	13.14:	FFS’s	block	placement	heuristic	is	to	put	each	new	file	block	in	the	first	free	block	in	that	file’s	block
group

Reserved	space.	Although	the	block	group	heuristic	can	be	effective,	it	relies	on	there
being	a	significant	amount	of	free	space	on	disk.	In	particular,	when	a	disk	is	nearly	full,
there	is	little	opportunity	for	the	file	system	to	optimize	locality.	For	example,	if	a	disk	has
only	a	few	kilobytes	of	free	sectors,	most	block	groups	will	be	full,	and	others	will	have
only	a	few	free	blocks;	new	writes	will	have	to	be	scattered	more	or	less	randomly	around
the	disk.

FFS	therefore	reserves	some	fraction	of	the	disk’s	space	(e.g.,	10%)	and	presents	a	slightly
reduced	disk	size	to	applications.	If	the	actual	free	space	on	the	disk	falls	below	the
reserve	fraction,	FFS	treats	the	disk	as	full.	For	example,	if	a	user’s	application	attempts	to
write	a	new	block	in	a	file	when	all	but	the	reserve	space	is	consumed,	that	write	will	fail.
When	all	but	the	reserve	space	is	full,	the	super	user’s	processes	will	still	be	able	to
allocate	new	blocks,	which	is	useful	for	allowing	an	administrator	to	log	in	and	clean
things	up.

The	reserved	space	approach	works	well	given	disk	technology	trends.	It	sacrifices	a	small
amount	of	disk	capacity,	a	hardware	resource	that	has	been	improving	rapidly	over	recent
decades,	to	reduce	seek	times,	a	hardware	property	that	is	improving	only	slowly.

13.3.3	NTFS:	Flexible	Tree	With	Extents

The	Microsoft	New	Technology	File	System	(NTFS),	released	in	1993,	improved	on
Microsoft’s	FAT	file	system	with	many	new	features	including	new	index	structures	to
improve	performance,	more	flexible	file	metadata,	improved	security,	and	improved
reliability.

We	will	discuss	some	of	NTFS’s	reliability	features	in	Chapter	14.	Here,	we	will	focus	on
how	NTFS	stores	data	and	metadata.

Index	structures.	Whereas	FFS	tracks	file	blocks	with	a	fixed	tree,	NTFS	and	many	other
recent	file	systems	such	as	Linux	ext4	and	btrfs	track	extents	with	flexible	trees.

Extents.	Rather	than	tracking	individual	file	blocks,	NTFS	tracks	extents,	variable-
sized	regions	of	files	that	are	each	stored	in	a	contiguous	region	on	the	storage
device.

Flexible	tree	and	master	file	table.	Each	file	in	NTFS	is	represented	by	a	variable-
depth	tree.	The	extent	pointers	for	a	file	with	a	small	number	of	extents	can	be	stored
in	a	shallow	tree,	even	if	the	file,	itself,	is	large.	Deeper	trees	are	only	needed	if	the
file	becomes	badly	fragmented.

The	roots	of	these	trees	are	stored	in	a	master	file	table	that	is	similar	to	FFS’s	inode	array.
NTFS’s	master	file	table	(MFT)	stores	an	array	of	1	KB	MFT	records,	each	of	which
stores	a	sequence	of	variable-size	attribute	records.	NTFS	uses	attribute	records	to	store
both	data	and	metadata	—	both	are	just	considered	attributes	of	a	file.

Some	attributes	can	be	too	large	to	fit	in	an	MFT	record	(e.g.,	a	data	extent)	while	some
can	be	small	enough	to	fit	(e.g.,	a	file’s	last	modified	time).	An	attribute	can	therefore	be
resident	or	non-resident.	A	resident	attribute	stores	its	contents	directly	in	the	MFT	record
while	a	non-resident	attribute	stores	extent	pointers	in	its	MFT	record	and	stores	its
contents	in	those	extents.

Figure	13.15:	NTFS	index	structures	and	data	for	a	basic	file	with	two	data	extents.

Figure	13.15	illustrates	the	index	structures	for	a	basic	NTFS	file.	Here,	the	file’s	MFT
record	includes	a	non-resident	data	attribute,	which	is	a	sequence	of	extent	pointers,	each
of	which	specifies	the	starting	block	and	length	in	blocks	of	an	extent	of	data.	Because
extents	can	hold	variable	numbers	of	blocks,	even	a	multi-gigabyte	file	can	be	represented
by	one	or	a	few	extent	pointers	in	an	MFT	record,	assuming	file	system	fragmentation	is
kept	under	control.

Figure	13.16:	A	small	file’s	data	can	be	resident,	meaning	that	the	file’s	data	is	stored	in	its	MFT	record.

If	a	file	is	small,	the	data	attribute	may	be	used	to	store	the	file’s	actual	contents	right	in	its
MFT	record	as	a	resident	attribute	as	Figure	13.16	illustrates.

An	MFT	record	has	a	flexible	format	that	can	include	range	of	different	attributes.	In
addition	to	data	attributes,	three	common	metadata	attribute	types	include:

Standard	information.	This	attribute	holds	standard	information	needed	for	all	files.
Fields	include	the	file’s	creation	time,	modification	time,	access	time,	owner	ID,	and
security	specifier.	Also	included	is	a	set	of	flags	indicating	basic	information	like
whether	the	file	is	a	read	only	file,	a	hidden	file,	or	a	system	file.

File	name.	This	attribute	holds	the	file’s	name	and	the	file	number	of	its	parent
directory.	Because	a	file	can	have	multiple	names	(e.g.,	if	there	are	multiple	hard
links	to	the	file),	it	may	have	multiple	file	name	attributes	in	its	MFT	record.

Attribute	list.	Because	a	file’s	metadata	may	include	a	variable	number	of	variable
sized	attributes,	a	file’s	metadata	may	be	larger	than	a	single	MFT	record	can	hold.
When	this	case	occurs,	NTFS	stores	the	attributes	in	multiple	MFT	records	and
includes	an	attribute	list	in	the	first	record.	When	present,	the	attribute	list	indicates
which	attributes	are	stored	in	which	MFT	records.	For	example,	Figure	13.17	shows
MFT	records	for	two	files,	one	whose	attributes	are	contained	in	a	single	MFT	record
and	one	of	whose	attributes	spans	two	MFT	records.

Figure	13.17:	Most	NTFS	files	store	their	attributes	in	a	single	MFT	record,	but	a	file’s	attributes	can	grow	to	span
multiple	MFT	records.	In	those	cases,	the	first	MFT	record	includes	an	attribute	list	attribute	that	indicates	where	to
find	each	attribute	record.

As	Figure	13.18	illustrates,	a	file	can	go	through	four	stages	of	growth,	depending	on	its
size	and	fragmentation.	First,	a	small	file	may	have	its	contents	included	in	the	MFT
record	as	a	resident	data	attribute.	Second,	more	typically,	a	file’s	data	lies	in	a	small
number	of	extents	tracked	by	a	single	non-resident	data	attribute.	Third,	occasionally	if	a
file	is	large	and	the	file	system	fragmented,	a	file	can	have	so	many	extents	that	the	extent
pointers	will	not	fit	in	a	single	MFT	record.	In	this	case,	as	a	file	can	have	multiple	non-
resident	data	attributes	in	multiple	MFT	records,	with	the	attribute	list	in	the	first	MFT
record	indicating	which	MFT	records	track	which	ranges	of	extents.	Fourth	and	finally,	if
a	file	is	huge	or	the	file	system	fragmentation	is	extreme,	a	file’s	attribute	list	can	be	made
non-resident,	allowing	almost	arbitrarily	large	numbers	of	MFT	records.

Figure	13.18:	An	NTFS	file’s	data	attribute	can	be	in:	(i)	a	resident	data	attribute,	(ii)	extents	tracked	by	a	single	non-
resident	data	attribute,	(iii)	extents	tracked	by	multiple	non-resident	data	attributes	in	multiple	MFT	entries	tracked	by
a	resident	attribute	list	attribute,	or	(iv)	extents	tracked	by	multiple	non-resident	data	attributes	stored	in	multiple	MFT
entries	tracked	by	a	non-resident	attribute	list	attribute.

Metadata	files.	Rather	than	doing	ad-hoc	allocation	of	special	regions	of	disk	for	file
system	metadata	like	free	space	bitmaps,	NTFS	stores	almost	all	of	its	metadata	in	about	a
dozen	ordinary	files	with	well-known	low-numbered	file	numbers.	For	example,	file
number	5	is	the	root	directory,	file	number	6	is	the	free	space	bitmap,	and	file	number	8
contains	a	list	of	the	volume’s	bad	blocks.

File	number	9,	called	$Secure,	contains	security	and	access	control	information.	NTFS	has
a	flexible	security	model	in	which	a	file	can	be	associated	with	a	list	of	users	and	groups,
with	specific	access	control	settings	for	each	listed	principal.	In	early	versions	of	NTFS,
such	an	access	control	list	was	stored	with	each	file,	but	these	lists	consumed	a	nontrivial
amount	of	space	and	many	lists	had	identical	contents.	So,	current	implementations	of
NTFS	store	each	unique	access	control	list	once	in	the	special	$Secure	file,	indexed	by	a
fixed-length	unique	key.	Each	individual	file	just	stores	the	appropriate	fixed-length	key	in
its	MFT	record,	and	NTFS	uses	a	file’s	security	key	to	find	the	appropriate	access	control

list	in	the	$Secure	file.

Even	the	master	file	table,	itself,	is	stored	as	a	file,	file	number	0,	called	$MFT.	So,	we
need	to	find	the	first	entry	of	the	MFT	in	order	to	read	the	MFT!	To	locate	the	MFT,	the
first	sector	of	an	NTFS	volume	includes	a	pointer	to	the	first	entry	of	the	MFT.

Storing	the	MFT	in	a	file	avoids	the	need	to	statically	allocate	all	MFT	entries	as	a	fixed
array	in	a	predetermined	location.	Instead,	NTFS	starts	with	a	small	MFT	and	grows	it	as
new	files	are	created	and	new	entries	are	needed.

Locality	heuristics.

Most	implementations	of	NTFS	use	a	variation	of	best	fit,	where	the	system	tries	to	place	a
newly	allocated	file	in	the	smallest	free	region	that	is	large	enough	to	hold	it.	In	NTFS’s
variation,	rather	than	trying	to	keep	the	allocation	bitmap	for	the	entire	disk	in	memory,
the	system	caches	the	allocation	status	for	a	smaller	region	of	the	disk	and	searches	that
region	first.	If	the	bitmap	cache	holds	information	for	areas	where	writes	recently
occurred,	then	writes	that	occur	together	in	time	will	tend	to	be	clustered	together.

An	important	NTFS	feature	for	optimizing	its	best	fit	placement	is	the	SetEndOfFile()
interface,	which	allows	an	application	to	specify	the	expected	size	of	a	file	at	creation
time.	In	contrast,	FFS	allocates	file	blocks	as	they	are	written,	without	knowing	how	large
the	file	will	eventually	grow.

To	avoid	having	the	master	file	table	file	($MFT)	become	fragmented,	NTFS	reserves	part
of	the	start	of	the	volume	(e.g.,	the	first	12.5%	of	the	volume)	for	MFT	expansion.	NTFS
does	not	place	file	blocks	in	the	MFT	reserve	area	until	the	non-reserved	area	is	full,	at
which	point	it	halves	the	size	of	the	MFT	reserve	area	and	continues.	As	the	volume
continues	to	fill,	NTFS	continues	to	halve	the	reserve	area	until	it	reaches	the	point	where
the	remaining	reserve	area	is	more	than	half	full.

Finally,	Microsoft	operating	systems	with	NTFS	include	a	defragmentation	utility	that
takes	fragmented	files	and	rewrites	them	to	contiguous	regions	of	disk.

13.3.4	Copy-On-Write	File	Systems

When	updating	an	existing	file,	copy-on-write	(COW)	file	systems	do	not	overwrite	the
existing	data	or	metadata;	instead,	they	write	new	versions	to	new	locations.

Figure	13.19:	An	update-in-place	file	system	(left)	updates	data	and	metadata	in	their	existing	locations,	while	a	copy-
on-write	file	system	(right)	makes	new	copies	of	data	and	metadata	whenever	they	are	updated.

COW	file	systems	do	this	to	optimize	writes	by	transforming	random	I/O	updates	to
sequential	ones.	For	example,	when	appending	a	block	to	a	file,	a	traditional,	update-in-
place	file	system	might	seek	to	and	update	its	free	space	bitmap,	the	file’s	inode	in	the
inode	array,	the	file’s	indirect	block,	and	the	file’s	data	block.	In	contrast,	a	COW	file
system	might	just	find	a	sequential	run	of	free	space	and	write	the	new	bitmap,	inode,
indirect	block,	and	data	block	there	as	illustrated	in	Figure	13.19.

Several	technology	trends	are	driving	widespread	adoption	of	COW	file	systems:

Small	writes	are	expensive.	Disk	performance	for	large	sequential	writes	is	much
better	than	for	small	random	writes.	This	gap	is	likely	to	continue	to	grow	because
bandwidth	generally	improves	faster	than	seek	time	or	rotational	latency:	increasing
storage	density	can	increase	bandwidth	even	if	the	rotational	speed	does	not	increase.

As	a	result	the	benefits	of	converting	small	random	writes	to	large	sequential	ones	is
large	and	getting	larger.

Small	writes	are	especially	expensive	on	RAID.	Redundant	arrays	of	inexpensive
disks	(RAIDs)	are	often	used	to	improve	storage	reliability.	However,	as	we	will
discuss	in	the	next	chapter,	updating	a	single	block	stored	with	parity	on	a	RAID
requires	four	disk	I/Os:	we	must	read	the	old	data,	read	the	old	parity,	write	the	new
data,	and	write	the	new	parity.	In	contrast,	RAIDs	are	efficient	when	an	entire	stripe
—	all	of	the	blocks	sharing	the	same	parity	block	—	are	updated	at	once.	In	that	case,
no	reads	are	needed,	each	new	data	block	is	written,	and	the	parity	update	is
amortized	across	the	data	blocks	in	the	stripe.

Widespread	use	of	RAIDs	magnifies	the	benefits	of	converting	random	writes	to
sequential	ones.

Caches	filter	reads.	For	many	workloads,	large	DRAM	caches	can	handle
essentially	all	file	system	reads.	But	our	ability	to	use	DRAM	to	buffer	writes	is
limited	by	the	need	to	durably	store	data	soon	after	it	is	written.

Thus,	the	cost	of	writes	often	dominates	performance,	so	techniques	that	optimize
write	performance	are	appealing.

Widespread	adoption	of	flash	storage.	Flash	storage	has	two	properties	that	make
the	COW	techniques	important.	First,	in	order	to	write	a	small	(e.g.,	4	KB)	flash
page,	one	must	first	clear	the	large	(e.g.,	512	KB)	erasure	block	on	which	it	resides.
Second,	each	flash	storage	element	can	handle	a	limited	number	of	write-erase	cycles
before	wearing	out,	so	wear	leveling	—	spreading	writes	evenly	across	all	cells	—	is
important	for	maximizing	flash	endurance.

A	flash	drive’s	flash	translation	layer	uses	COW	techniques	to	virtualize	block
addresses,	allowing	it	to	present	a	standard	interface	to	read	and	write	specific	logical
pages	while	internally	redirecting	writes	to	pages	on	already-cleared	erasure	blocks
and	while	moving	existing	data	to	new	physical	pages	so	that	their	current	erasure
blocks	can	be	cleared	for	future	writes.

Note	that	a	flash	drive’s	flash	translation	layer	operates	below	the	file	system	—
standard	update	in	place	or	COW	file	systems	are	still	used	over	that	layer.	But,	flash
translation	layers	are	constructed	using	the	same	basic	principles	as	the	COW	file
systems	discussed	here.

Growing	capacity	enables	versioning.	Large	storage	capacities	make	it	attractive
for	file	systems	to	provide	interfaces	by	which	users	can	access	old	versions	of	their
files.

Since	updates	in	COW	systems	do	not	overwrite	old	data	with	new,	supporting
versioning	is	relatively	straightforward,	as	we	discuss	below.

Figure	13.20:	A	traditional,	update-in-place	file	system,	such	as	FFS.

Figure	13.21:	A	simple	copy-on-write	(COW)	file	system.

Implementation	principles.	Figures	13.20	and	13.21	illustrate	the	core	idea	of	COW	file
systems	by	comparing	a	traditional	file	system	(FFS	in	this	case)	with	a	COW
implementation	that	uses	the	same	basic	index	structures.

In	the	traditional	system	(Figure	13.20),	a	file’s	indirect	nodes	and	data	blocks	can	be
located	anywhere	on	disk,	and	given	a	file’s	inumber,	we	can	find	its	inode	in	a	fixed
location	on	disk.

In	the	COW	version	(Figure	13.21),	we	do	not	want	to	overwrite	inodes	in	place,	so	we
must	make	them	mobile.	A	simple	way	to	do	that	is	to	store	them	in	a	file	rather	than	in	a
fixed	array.	Of	course,	that	is	not	quite	the	end	of	the	story	—	we	still	need	to	be	able	to
find	the	inode	file’s	inode,	called	the	root	inode.

The	simplest	thing	to	do	would	be	to	store	the	root	inode	in	a	fixed	location.	If	we	did	that,
then	we	could	find	any	file’s	inode	by	using	the	root	inode	to	read	from	a	computed	offset
in	the	inode	file,	and	from	that	we	could	find	its	blocks.

However,	it	is	useful	to	make	even	the	root	inode	copy-on-write.	For	example,	we	do	not
want	to	risk	losing	the	root	inode	if	there	is	a	crash	while	it	is	being	written.	A	solution	is
to	include	a	monotonically	increasing	version	number	and	a	checksum	in	the	root	inode
and	to	keep	a	small	array	of	slots	for	the	current	and	recent	root	inodes,	updating	the
oldest	one	when	a	write	occurs.	After	a	crash,	we	scan	all	of	the	slots	to	identify	the
newest	root	inode	that	has	a	correct	checksum.

Figure	13.22:	In	a	COW	file	system,	writing	a	data	block	causes	the	system	to	allocate	new	blocks	for	and	to	write	the
data	block	and	all	nodes	on	the	path	from	that	data	block	to	the	root	inode.

In	this	design,	all	the	file	system’s	contents	are	stored	in	a	tree	rooted	in	the	root	inode,
when	we	update	a	block,	we	write	it	—	and	all	of	the	blocks	on	the	path	from	it	to	the	root
—	to	new	locations.	For	example,	Figure	13.22	shows	what	happens	when	one	block	of	a
file	is	updated	in	our	simple	COW	system.

ZFS	index	structures.	To	better	understand	how	copy-on-write	file	systems	are
implemented,	we	will	look	at	the	open	source	ZFS	file	system.

Figure	13.23:	ZFS	index	structures.	Note	that	this	diagram	is	slightly	simplified.	In	reality,	there	are	a	few	more	levels
of	indirection	between	the	uberblock	and	a	file	system’s	root	dnode.

As	Figure	13.23	illustrates,	the	root	of	a	ZFS	storage	system	is	called	the	uberblock.	ZFS
keeps	an	array	of	256	uberblocks	in	a	fixed	storage	location	and	rotates	successive
versions	among	them.	When	restarting,	ZFS	scans	the	uberblock	array	and	uses	the	one
with	a	valid	checksum	that	has	the	highest	sequence	number.

The	current	uberblock	conceptually	includes	a	pointer	to	the	current	root	dnode,	which
holds	the	dnode	array	for	a	ZFS	file	system.	(We	say	“conceptually”	because	we	are
simplifying	things	a	bit	here.	Once	you	have	read	this	description,	see	the	sidebar	if	you
want	the	gory	details.)

The	basic	metadata	object	in	ZFS	is	called	a	dnode,	and	it	plays	a	role	similar	to	an	inode
in	FFS	or	an	MFT	entry	in	NTFS:	a	file	is	represented	by	variable-depth	tree	whose	root	is
a	dnode	and	whose	leaves	are	its	data	blocks.	A	dnode	has	space	for	three	block	pointers,
and	it	has	a	field	that	specifies	the	tree’s	depth:	zero	indicates	that	the	dnode	stores	the
file’s	data;	one	means	that	the	pointers	are	direct	pointers	to	data	blocks;	two	means	that

the	dnode’s	pointers	point	to	indirect	blocks,	which	point	to	data	blocks;	three	means	that
the	dnode’s	pointers	point	to	double	indirect	blocks;	and	so	on,	up	to	six	levels	of
indirection.

Data	block	and	indirect	block	sizes	are	variable	from	512	bytes	to	128KB	and	specified	in
a	file’s	dnode.	Note,	however,	that	even	a	128	KB	indirect	node	holds	fewer	block	pointers
than	you	might	expect	because	each	block	pointer	is	a	128	byte	structure.

ZFS’s	block	pointers	are	relatively	large	structures	because	they	include	fields	to	support
advanced	features	like	large	storage	devices,	block	compression,	placing	copies	of	the
same	block	on	different	storage	devices,	file	system	snapshots,	and	block	checksums.
Fortunately,	we	can	ignore	these	details	and	just	treat	each	block	pointer	structure	as	a
(rather	large)	pointer.

Figure	13.24:	Updating	a	block	of	a	ZFS	file

Figure	13.24	shows	what	happens	when	we	update	the	last	block	in	a	2-level	ZFS	file.	We
allocate	a	new	data	block	and	store	the	new	data	in	it,	but	that	means	that	we	need	to
update	the	indirect	block	that	points	to	it.	So,	we	allocate	a	new	indirect	block	and	store
the	version	with	the	updated	pointer	there,	but	that	means	we	need	to	update	the	indirect
pointer	that	points	to	it.	And	so	on,	up	through	the	file’s	dnode,	the	indirect	blocks	that
track	the	dnode	array,	the	root	dnode,	and	the	uberblock.

ZFS	uberblock,	meta-root	dnode,	and	root	dnodes

For	simplicity,	the	body	of	the	text	describes	the	uberblock	as	pointing	directly	to	the	file
system’s	root	dnode.

In	reality,	there	are	a	few	additional	levels	of	indirection	to	allow	multiple	file	systems
and	snapshots	to	share	a	ZFS	storage	pool	under	a	single	uberblock.	The	uberblock	has	a
pointer	to	a	meta-root	dnode	(called	the	Meta	Object	Store	dnode	in	ZFS	terminology).

The	meta-root	dnode	tracks	the	meta-root	dnode	array.	The	meta-root	dnode	array	is	used
by	what	is	essentially	a	little	file	system	with	hierarchical	directories	that	provide
mappings	from	the	names	of	file	systems	to	“files”	that	store	the	metadata	for	each	file
system,	including	a	pointer	to	the	block	where	the	file	system’s	root	dnode	is	(currently)
stored.
So,	a	more	complete	picture	looks	like	this:

ZFS	space	map.	ZFS’s	space	maps	track	free	space	in	a	way	designed	to	scale	to
extremely	large	storage	systems.

One	concern	the	ZFS	designers	had	with	bitmaps	was	that	the	size	of	a	bitmap	grows
linearly	with	storage	capacity	and	can	become	quite	large	for	large-scale	systems.	For
example,	with	4	KB	block	size,	a	file	server	with	1	PB	of	disk	space	would	have	32	GB	of
bitmaps.

Large	bitmaps	affect	both	a	server’s	memory	requirements	and	the	time	needed	to	read	the
bitmaps	on	startup.	Although	one	might	attempt	to	cache	a	subset	of	the	bitmap	in
memory	and	only	allocate	from	the	currently	cached	subset,	we	cannot	control	when
blocks	are	freed.	For	workloads	in	which	frees	have	poor	locality,	caching	will	be
ineffective.

ZFS’s	space	maps	use	three	key	ideas	to	scale	to	large	storage	systems:

Per	block	group	space	maps.	ZFS	maintains	a	space	map	for	each	block	group,	it
restricts	allocation	of	new	blocks	to	a	subset	of	block	groups	at	any	given	time,	and	it
keeps	those	block	groups’	space	maps	in	memory.

Tree	of	extents.	Each	block	group’s	free	space	is	represented	as	an	AVL	tree	of
extents.	The	tree	allows	ZFS	to	efficiently	find	a	free	extent	of	a	desired	size,	and	its
search	performance	does	not	degrade	as	the	block	group	becomes	full.

Log-structured	updates.	As	noted	above,	caching	a	portion	of	a	space	map	works
for	allocations	but	it	may	not	help	frees.	Therefore,	rather	than	directly	updating	the
on-disk	spacemap,	ZFS	simply	appends	spacemap	updates	to	a	log.	When	a	block
group	is	activated	for	allocation,	ZFS	reads	in	the	most	recently	stored	spacemap	and
then	it	reads	all	subsequently	logged	updates	to	bring	the	space	map	up	to	date.	After
applying	updates	to	the	in-memory	spacemap,	ZFS	can	store	the	new	spacemap	to
limit	the	length	of	its	update	log.

ZFS	locality	heuristics.	We	started	the	discussion	of	COW	file	systems	by	saying	that
they	are	designed	to	optimize	write	performance,	but	the	example	in	Figure	13.24	make	it
sound	like	ZFS	does	a	lot	of	work	just	to	update	a	block.	ZFS	does	two	important	things	to
optimize	write	behavior:

Sequential	writes.	Because	almost	everything	in	ZFS	is	mobile,	almost	all	of	these
updates	can	be	grouped	into	a	single	write	to	a	free	range	of	sequential	blocks	on
disk.	Only	the	uberblock	needs	to	go	elsewhere.	Because	sequential	writes	are	much
faster	than	random	ones,	ZFS	and	other	COW	file	systems	can	have	excellent	write
performance	even	though	they	write	more	metadata	than	update-in-place	file	systems.

Batched	updates.	Figure	13.24	shows	what	happens	when	we	update	a	single	block
of	a	single	file,	but	ZFS	does	not	typically	write	one	update	at	a	time.	Instead,	ZFS
updates	several	seconds	of	updates	and	writes	them	to	disk	as	a	batch.	So,	updates	to
a	file’s	dnode	and	indirect	nodes	may	be	amortized	over	many	writes	to	the	file,	and
updates	to	the	uberblock,	root	dnode,	and	the	dnode	array’s	indirect	blocks	may	be
amortized	over	writes	to	many	files.

When	it	is	time	to	write	a	batch	of	writes,	ZFS	needs	to	decide	where	to	write	the	new
block	versions.	It	proceeds	in	three	steps:

Choose	a	device.	A	ZFS	storage	pool	may	span	multiple	devices,	so	the	first	step	is
to	choose	which	device	to	use.	To	maximize	throughput	by	spreading	load	across
devices,	ZFS	uses	a	variation	of	round	robin	with	two	tweaks.	First,	to	even	out	space
utilization,	ZFS	biases	selection	towards	devices	with	large	amounts	of	free	space.
Second,	to	maintain	good	locality	for	future	reads,	ZFS	places	about	512	KB	on	one
device	before	moving	on	to	the	next	one.

Choose	a	block	group.	ZFS	divides	each	device	into	several	hundred	groups	of
sequential	blocks.	ZFS’s	first	choice	for	is	to	continue	to	use	the	block	group	it	used
most	recently.	However,	if	that	group	is	so	full	or	fragmented	that	its	largest	free
region	is	smaller	than	128	KB,	ZFS	selects	a	new	block	group.

New	block	group	selection	is	biased	towards	groups	that	have	more	free	space,	that
are	nearer	the	outer	edge	of	a	disk	(to	improve	bandwidth),	and	that	have	recently
been	used	to	store	some	data	(to	limit	the	range	of	tracks	across	which	the	disk	head
must	seek).

Choose	a	block	within	the	group.	To	maximize	opportunities	to	group	writes
together,	ZFS	uses	first	fit	allocation	within	a	block	group	until	the	group	is	nearly
full.	At	that	point,	it	falls	back	on	best	fit	to	maximize	space	utilization.

Partitioning,	Formatting,	and	Superblocks

How	does	an	operating	system	know	where	to	find	FFS’s	inode	array,	NTFS’s	MFT,	or
ZFS’s	uberblock?	How	does	it	know	how	large	these	structures	are?	How	does	it	even
know	what	type	of	file	system	is	on	a	disk?

A	disk	device’s	space	can	be	divided	into	multiple	partitions,	each	of	which	appears	a

separate	(smaller)	virtual	storage	device	that	can	be	formatted	as	a	separate	file	system.
To	partition	a	disk,	an	operating	system	writes	a	special	record	(e.g.,	a	master	boot	record
(MBR)	or	GUID	partition	table	(GPT))	in	the	first	blocks	of	the	disk.	This	record	includes
the	disk’s	unique	ID,	size,	and	the	list	of	the	disk’s	partitions.	Each	partition	record	stores
the	partition’s	type	(e.g.,	general	file	system	partition,	swap	partition,	RAID	partition,
bootable	partition),	partition	ID,	partition	name,	and	the	partition’s	starting	and	ending
blocks.
To	improve	reliability,	operating	systems	store	multiple	copies	of	a	disk’s	partition	table
—	often	in	the	first	few	and	last	few	of	a	disk’s	blocks.

Once	a	disk	has	been	partitioned,	the	operating	system	can	format	some	or	all	of	the
partitions	by	initializing	the	partition’s	blocks	according	to	the	requirements	of	the	type	of
file	system	being	created.

Formatting	a	file	system	includes	writing	a	superblock	that	identifies	the	file	system’s
type	and	its	key	parameters	such	as	its	type,	block	size,	and	inode	array	or	MBR	location
and	size.	Again,	for	reliability,	a	file	system	typically	stores	multiple	copies	of	its
superblock	at	several	predefined	locations.

Then,	when	an	operating	system	boots,	it	can	examine	a	disk	to	find	its	partitions,	and	it
can	examine	each	partition	to	identify	and	configure	its	file	systems.

13.4	Putting	It	All	Together:	File	and	Directory	Access

In	Section	13.2	we	saw	that	directories	are	implemented	as	files,	containing	file	name	to
file	number	mappings,	and	in	Section	13.3	we	saw	that	files	are	implemented	using	an
index	structure	—	typically	a	tree	of	some	sort	—	to	track	the	file’s	blocks.

In	this	section,	we	walk	through	the	steps	FFS	takes	to	read	a	file,	given	that	file’s	name.
The	steps	for	the	other	file	systems	we	have	discussed	are	similar.

Figure	13.25:	The	circled	numbers	identify	the	steps	required	to	read	/foo/bar/baz	in	the	FFS	file	system.

Suppose	we	want	to	read	the	file	/foo/bar/baz.

First,	we	must	read	the	root	directory	/	to	determine	/foo’s	inumber.	Since	we	already
know	the	root	directory’s	inumber	(it	is	a	pre-agreed	number	compiled	into	the	kernel,
e.g.,	2),	we	open	and	read	file	2’s	inode	in	step	1	in	Figure	13.25.	Recall	that	FFS	stores
pieces	of	the	inode	array	at	fixed	locations	on	disk,	so	given	a	file’s	inumber	it	is	easy	to
find	and	read	the	file’s	inode.

From	the	root	directory’s	inode,	we	extract	the	direct	and	indirect	block	pointers	to
determine	which	block	stores	the	contents	of	the	root	directory	(e.g.,	block	48912	in	this

example).	We	can	then	read	that	block	of	data	to	get	the	list	of	name	to	inumber	mappings
in	the	root	directory	and	discover	that	directory	file	/foo	has	inumber	231	(step	2).

Now	that	we	know	/foo’s	inumber,	in	step	3	we	can	read	inode	231	to	find	where	/foo’s
data	blocks	are	stored	—	block	1094	in	the	example.	We	can	then	read	those	blocks	of
data	to	get	the	list	of	name	to	inumber	mappings	in	the	/foo	directory	and	discover	that
directory	file	/foo/bar	has	inumber	731	(step	4).

We	follow	similar	steps	to	read	/foo/bar’s	inode	(step	5)	and	data	block	30991	(step	6)	to
determine	/foo/bar/baz	inumber	402.

Finally,	in	step	7,	we	read	/foo/bar/baz’s	inode	(402),	and	in	step	8,	we	read	its	data	blocks
(89310,	14919,	and	23301):	“I	hear	and	I	forget.	I	see	and	I	remember.	I	do	and	I
understand.”

This	may	seem	like	a	lot	of	steps	just	to	read	a	file.	Most	of	the	time,	we	expect	much	of
this	information	to	be	cached	so	that	some	steps	can	be	avoided.	For	example,	if	the
inodes	and	blocks	for	/	and	/foo	are	cached,	then	we	would	skip	steps	1	to	4.	Also,	once
file	/foo/bar/baz	has	been	opened,	the	open	file	data	structure	in	the	operating	system	will
include	the	file’s	inumber	so	that	individual	reads	and	writes	of	the	file	can	skip	steps	1	to
6	(and	step	7	while	the	inode	is	cached).

EXAMPLE:	Reading	a	file.	What	would	you	get	if	you	read	the	file	/foo/fie	in	the	FFS
file	system	illustrated	in	Figure	13.25?

ANSWER:	First	we	read	the	root	inode	(inode	2)	and	file	(block	48912),	then	/foo’s	inode
(inode	231)	and	file	(block	1094),	and	then	/foo/fie’s	inode	(inode	402	again)	and	file
(blocks	89310,	14919,	and	23301	again)	—	/foo/bar/baz	and	/foo/fie	are	hard	links	to	the
same	file.	□

13.5	Summary	and	Future	Directions

We	are	seeing	significant	shifts	in	the	technologies	and	workloads	that	drive	file	system
design.

Practical	solid	state	storage	technologies	like	flash	memory	change	the	constraints	around
which	file	systems	can	be	designed.	Random	access	performance	that	is	good	both	in
relative	terms	compared	to	sequential	access	performance	and	in	absolute	terms	provide
opportunities	to	reconsider	many	aspects	of	file	system	design	—	directories,	file	metadata
structures,	block	placement	—	that	have	been	shaped	by	the	limitations	of	magnetic	disks.
Promising	future	solid	state	storage	technologies	like	phase	change	memory	or	memristors
may	allow	even	more	dramatic	restructuring	of	file	systems	to	take	advantage	of	their
even	better	performance	and	their	support	for	fine-grained	writes	of	a	few	bytes	or	words.

On	the	other	hand,	the	limited	lifetime	and	capacity	of	many	solid	state	technologies	may
impose	new	constraints	on	file	system	designs.	Perhaps	we	should	consider	hybrid	file
systems	that,	for	example,	store	metadata	and	the	content	of	small	files	in	solid	state
storage	and	the	contents	of	large	files	on	magnetic	disks.

Even	the	venerable	spinning	disk	continues	to	evolve	rapidly,	with	capacity	increases
continuing	to	significantly	outpace	performance	improvements,	making	it	more	and	more

essential	to	organize	file	systems	to	maximize	sequential	transfers	to	and	from	disk.

Workloads	are	also	evolving	rapidly,	which	changes	demands	on	file	systems.	In	servers,
the	rising	popularity	of	virtual	machines	and	cloud	computing	pressure	operating	systems
designers	to	provide	better	ways	to	share	storage	devices	with	fair	and	predictable
performance	despite	variable	and	mixed	workloads.	At	clients,	the	increasing	popularity	of
apps	and	specialized	compute	appliances	are	providing	new	ways	for	organizing	storage:
rather	than	having	users	organize	files	into	directories,	apps	and	appliances	often	manage
their	own	storage,	providing	users	with	a	perhaps	very	different	way	of	identifying	stored
objects.	For	example,	rather	than	requiring	users	to	create	different	directories	for
different,	related	sets	of	photos	into	different	directories,	many	photo	organizing
applications	provide	an	interface	that	groups	related	photos	into	events	that	may	or	may
not	reflect	where	in	the	file	system	the	events	are	stored.	Perhaps	our	reliance	on
directories	for	naming	and	locality	will	need	to	be	rethought	in	the	coming	years.

Exercises

1.	 Why	do	many	file	systems	have	separate	system	calls	for	removing	a	regular	file
(e.g.,	unlink)	and	removing	a	directory	(e.g.,	rmdir)?

2.	 In	Figure	13.4,	suppose	we	create	a	new	file	z.txt	and	then	unlink	work,	removing
that	entry.	Draw	a	figure	similar	to	Figure	13.4	that	shows	the	new	contents	of	the
directory.

3.	 What	effect	will	doubling	the	block	size	in	the	UNIX	Fast	File	System	have	on	the
maximum	file	size?

4.	 Is	there	a	limit	on	the	maximum	size	of	a	file	in	an	extent-based	file	system?	Why	or
why	not?

5.	 Suppose	a	variation	of	FFS	includes	in	each	inode	12	direct,	1	indirect,	1	double
indirect,	2	triple	indirect,	and	1	quadruple	indirect	pointers.	Assuming	6	KB	blocks
and	6-byte	pointers

a.	 What	is	the	largest	file	that	can	be	accessed	via	direct	pointers	only?

b.	 To	within	1%,	what	is	the	maximum	file	size	this	index	structure	can	support?

6.	 On	a	Unix	or	Linux	system,	use	the	ls	-l	command	to	examine	various	directories.
After	the	first	ten	characters	that	define	each	file’s	access	permissions,	there	is	a	field
that	indicates	the	number	of	hard	links	to	the	file.	For	example,	here	we	have	two
files,	bar	with	two	links	and	foo	with	just	one.

drwxr-sr-x	2	dahlin	prof	4096	2012-02-03	08:37	bar/	
-rw-r—r—	1	dahlin	prof				0	2012-02-03	08:36	foo	

For	directories,	what	is	the	smallest	number	of	links	you	can	observe?	Why?

For	directories,	even	though	regular	users	cannot	make	hard	links	to	directories,	you
may	observe	some	directories	with	high	link	counts.	Why?

7.	 In	NTFS,	a	master	file	table	entry	maximizes	the	number	of	extent	pointers	it	can
store	by	storing	extent	pointers	as	a	sequence	of	variable-length	records:	the	first	four
bits	encode	the	size	used	to	store	pointer	to	the	start	of	the	extent	and	the	next	four
bits	encode	the	size	used	to	store	the	extent	length.	To	further	reduce	record	size,	the
extent-start	pointer	is	stored	as	an	offset	from	the	previous	extent’s	pointer.	Thus,	if
we	have	a	10	block	extent	starting	at	block	0x20000	and	then	a	5	block	extent
starting	at	block	0x20050,	then	the	first	(absolute)	starting	address	(0x200000)	will
be	stored	in	three	bytes	while	the	second	(relative)	starting	address	will	be	stored	in
one	byte	(0x20050	-	0x20000	=	0x50).

An	apparent	disadvantage	of	this	approach	is	that	seeking	to	a	random	offset	in	a	file
requires	sequentially	scanning	all	of	the	extent	pointers.	Given	your	understanding	of
NTFS	and	disk	technology	trends,	explain	why	this	apparent	disadvantage	may	not
be	a	problem	in	practice.

8.	 When	user	tries	to	write	a	file,	the	file	system	needs	to	detect	if	that	file	is	a	directory
so	that	it	can	restrict	writes	to	maintain	the	directory’s	internal	consistency.

Given	a	file’s	name,	how	would	you	design	each	file	system	listed	below	to	keep
track	of	whether	each	file	is	a	regular	file	or	a	directory?

a.	 The	FAT	file	system

b.	 FFS

c.	 NTFS

9.	 Why	would	it	be	difficult	to	add	hard	links	to	the	FAT	file	system?

10.	 For	the	FFS	file	system	illustrated	in	Figure	13.25,	what	reads	and	writes	of	inodes
and	blocks	would	occur	to	create	a	new	file	/foo/sparse	and	write	blocks	1	and
2,000,000	of	that	file.	Assume	that	inodes	have	pointers	for	11	direct	blocks,	1
indirect	block,	1	double-indirect	block,	and	1	triple	indirect	block,	and	assume	4KB
blocks	with	4-byte	block	pointers.

11.	 Give	a	formula	for	the	minimum	and	maximum	number	of	disk	blocks	that	must	be
read	in	the	UNIX	Fast	File	System	to	fetch	the	first	block	of	a	file,	as	a	function	of
the	number	of	“/”	characters	in	the	file	name	(in	other	words,	the	depth	of	the	file	in
the	directory	tree).	Assume	that	nothing	is	in	the	file	cache.

12.	 A	web	client	and	web	server	are	running	on	the	same	uniprocessor	computer.	They
have	an	open	connection	and	are	ready	to	send/receive	web	requests.	List	a	possible
sequence	of	user-mode/kernel-mode	boundary	crossings	(counting	one	for	each
direction,	and	including	interrupts)	needed	for	the	client	to	issue	a	simple	web
request,	the	server	to	receive	the	request	and	fetch	the	data	from	the	file	system,	and
for	the	server	to	send	the	data	to	the	client.

Assume	that	there	is	a	low	priority	background	task	running	on	the	processor,	the
current	directory	is	cached,	but	the	requested	file	is	not	in	the	server	cache	or	the	file
system	cache.	Also	assume	that	both	the	request	and	the	requested	file	data	are	small
(e.g.,	they	fit	inside	a	single	disk	block).	You	may	assume	any	of	the	file	systems
described	in	this	chapter,	provided	you	label	which	one	you	are	assuming.

14.	Reliable	Storage

A	stitch	in	time	saves	nine.	—English	Proverb

Highly	reliable	storage	is	vitally	important	across	a	wide	range	of	applications	from
businesses	that	need	to	know	that	that	their	billing	records	are	safe	to	families	that	have
photo	albums	they	would	like	to	last	for	generations.

So	far,	we	have	treated	disk	and	flash	as	ideal	non-volatile	storage:	stored	data	will	remain
forever	or	until	it	is	overwritten.	Physical	devices	cannot	achieve	such	perfection	—	they
may	be	defective,	they	may	wear	out,	or	they	may	be	damaged	so	they	may	lose	some	or
all	of	their	data.

Unfortunately,	the	limits	of	physical	devices	are	not	merely	abstract	concerns.	For
example,	some	large	organizations	have	observed	annual	disk	failure	rates	of	2%	to	4%,
meaning	that	an	organization	with	10,000	disks	might	expect	to	see	hundreds	of	failures
per	year	and	that	important	data	stored	on	a	single	disk	by	a	naive	storage	system	might
have	more	than	a	30%	chance	of	disappearing	within	a	decade.

The	central	question	of	this	chapter	is:	How	can	we	make	a	storage	system	more	reliable
than	the	physical	devices	out	of	which	it	is	built?

A	system	is	reliable	if	it	performs	its	intended	function.	Reliability	is	related	to,	but
different	from,	availability.	A	system	is	available	if	it	currently	can	respond	to	a	request.

In	the	case	of	storage,	a	storage	system	is	reliable	as	long	as	it	continues	to	store	a	given
piece	of	data	and	as	long	as	its	components	are	capable	of	reading	or	overwriting	that	data.
We	define	a	storage	system’s	reliability	as	the	probability	that	it	will	continue	to	be
reliable	for	some	specified	period	of	time.	A	storage	system	is	available	at	some	moment
if	a	read	or	write	operation	could	be	completed	at	that	time,	and	we	define	a	storage
system’s	availability	as	the	probability	that	the	system	will	be	available	at	any	given	time.

Figure	14.1:	The	Voyager	“Golden	Record,”	a	highly	reliable	but	highly	unavailable	storage	device.	Photo	Credit:
NASA.

To	see	the	difference	between	reliability	and	availability,	consider	the	highly	reliable	but
highly	unavailable	storage	device	shown	in	Figure	14.1.	In	the	1970’s,	the	two	Voyager
spacecraft	sent	out	of	our	solar	system	each	included	a	golden	record	on	which	various

greetings,	diagrams,	pictures,	natural	sounds,	and	music	were	encoded,	as	stated	on	each
record	by	President	Carter,	as	“a	present	from	a	small,	distant	world,	a	token	of	our
sounds,	our	science,	our	images,	our	music,	our	thoughts	and	our	feelings.”	To	protect
against	erosion,	the	record	is	encased	in	an	aluminum	and	uranium	cover.	This	storage
device	is	highly	reliable	—	it	is	expected	to	last	for	many	tens	of	thousands	of	years	in
interstellar	space	—	but	it	is	not	highly	available	(at	least,	not	to	us).

To	take	a	more	pedestrian	example,	suppose	a	storage	system	required	each	data	block	to
be	written	to	a	disk	on	each	of	100	different	machines	physically	distributed	across	100
different	machine	rooms	spread	across	the	world.	Such	a	system	would	be	highly	reliable,
since	it	would	take	a	spectacular	catastrophe	to	wipe	out	all	of	the	copies	of	any	data	that
is	stored.	It	would	be	highly	available	for	reads,	since	there	are	100	different	locations	to
read	from.	But	it	would	not	be	highly	available	for	writes,	since	new	writes	cannot
complete	if	any	one	of	100	machines	is	unavailable.

Two	problems.	Broadly	speaking,	storage	systems	must	deal	with	two	threats	to
reliability.

Operation	interruption.	A	crash	or	power	failure	in	the	middle	of	a	series	of	related
updates	may	leave	the	stored	data	in	an	inconsistent	state.

For	example,	suppose	that	a	user	has	asked	an	operating	system	to	move	a	file	from
one	directory	to	another:	
>	mv	drafts/really-important.doc	final/really-important.doc

As	we	discussed	in	Chapter	13,	such	a	move	may	entail	many	low-level	operations:
writing	the	drafts	directory	file	to	remove	really-important.doc,	updating	the	last-
modified	time	of	the	drafts	directory,	growing	the	final	directory’s	file	to	include
another	block	of	storage	to	accommodate	a	new	directory	entry	for	really-
important.doc,	writing	the	new	directory	entry	to	the	directory	file,	updating	the	file
system’s	free	space	bitmap	to	note	that	the	newly	allocated	block	is	now	in	use,	and
updating	the	size	and	last-modified	time	of	the	final	directory.

Suppose	that	the	system’s	power	fails	when	the	updates	to	the	drafts	directory	are
stored	in	non-volatile	storage	but	when	the	updates	to	the	final	directory	are	not;	in
that	case,	the	file	really-important.doc	may	be	lost.	Or,	suppose	that	the	operating
system	crashes	after	updating	the	drafts	and	final	directories	but	before	updating	the
file	system’s	free	space	bitmap;	in	that	case,	the	file	system	will	still	regard	the	new
block	in	the	final	directory	as	free,	and	it	may	allocate	that	block	to	be	part	of	some
other	file.	The	storage	device	then	ends	up	with	a	block	that	belongs	to	two	files,	and
updates	intended	for	one	file	may	corrupt	the	contents	of	the	other	file.

Loss	of	stored	data.	Failures	of	non-volatile	storage	media	can	cause	previously
stored	data	to	disappear	or	be	corrupted.	Such	failures	can	affect	individual	blocks,
entire	storage	devices,	or	even	groups	of	storage	devices.

For	example,	a	disk	sector	may	be	lost	if	it	is	scratched	by	a	particle	contaminating
the	drive	enclosure;	a	flash	memory	cell	might	lose	its	contents	when	large	numbers
of	reads	of	nearby	cells	disturb	its	charge;	a	disk	drive	can	fail	completely	because
bearing	wear	causes	the	platters	to	vibrate	too	much	to	be	successfully	read	or

written;	or	a	set	of	drives	might	be	lost	when	a	fire	in	a	data	center	destroys	a	rack	of
storage	servers.

Two	solutions.	Fortunately,	system	designers	have	developed	two	sets	of	powerful
solutions	to	these	problems,	and	the	rest	of	the	chapter	discusses	them.

Transactions	for	atomic	updates.	When	a	system	needs	to	make	several	related
updates	to	non-volatile	storage,	it	may	want	to	ensure	that	the	state	is	modified
atomically:	even	if	a	crash	occurs	the	state	reflects	either	all	of	the	updates	or	none	of
them.	Transactions	are	a	fundamental	technique	to	provide	atomic	updates	of	non-
volatile	storage

Transactions	are	simple	to	implement	and	to	use,	and	they	often	have	as	good	or
better	performance	than	ad-hoc	approaches.	The	vast	majority	of	widely	used	file
systems	developed	over	the	past	two	decades	have	used	transactions	internally,	and
many	applications	implement	transactions	of	their	own	to	keep	their	persistent	state
consistent.

Redundancy	for	media	failures.	To	cope	with	data	loss	and	corruption,	storage
systems	use	several	forms	of	redundancy	such	as	checksums	to	detect	corrupted
storage	and	replicated	storage	to	recover	from	lost	or	corrupted	sectors	or	disks.

Implementing	sufficient	redundancy	at	acceptably	low	cost	can	be	complex.	For
example,	a	widely	used,	simple	model	of	RAID	(Redundant	Array	of	Inexpensive
Disks)	paints	an	optimistic	picture	of	reliability	that	can	be	off	by	orders	of
magnitude.	Modern	storage	systems	often	make	use	of	multiple	levels	of	checksums
(e.g.,	both	in	storage	device	hardware	and	file	system	software),	include	sufficient
redundancy	to	survive	two	or	more	hardware	failures	(e.g.,	keeping	three	copies	of	a
file	or	two	parity	disks	with	a	RAID),	and	rely	on	software	that	to	detect	failures	soon
after	they	occur	and	to	repair	failures	quickly	(e.g.,	background	processes	that
regularly	attempt	to	read	all	stored	data	and	algorithms	that	parallelize	recovery	when
a	device	fails).	Systems	that	fail	to	properly	use	these	techniques	may	be	significantly
less	reliable	than	expected.

14.1	Transactions:	Atomic	Updates

When	a	system	makes	several	updates	to	non-volatile	storage	and	a	crash	occurs,	some	of
those	updates	may	be	stored	and	survive	the	crash	and	others	may	not.	Because	a	crash
may	occur	without	warning,	storage	systems	and	applications	need	to	be	constructed	so
that	no	matter	when	the	crash	occurs,	the	system’s	non-volatile	storage	is	left	in	some
sensible	state.

This	problem	occurs	in	many	contexts.	For	example,	if	a	crash	occurs	while	you	are
installing	an	update	for	a	suite	of	applications,	upon	recovery	you	would	like	to	be	able	to
use	either	the	old	version	or	the	new	version,	not	be	confronted	with	a	mishmash	of
incompatible	programs.	For	example,	if	you	are	moving	a	subdirectory	from	one	location
to	another	when	a	crash	occurs,	when	you	recover	you	want	to	see	the	data	in	one	location
or	the	other;	if	the	subdirectory	disappears	because	of	an	untimely	crash,	you	will	be

(justifiably)	upset	with	the	operating	system	designer.	Finally,	if	a	bank	is	moving	$100
from	Alice’s	account	to	Bob’s	account	when	a	crash	occurs,	it	wants	to	be	certain	that
upon	recovery	either	the	funds	are	in	Alice’s	account	and	records	show	that	the	transfer	is
still	to	be	done	or	that	the	funds	are	in	Bob’s	account	and	the	records	show	that	the
transfer	has	occurred.

This	problem	is	quite	similar	to	the	critical	section	problem	in	concurrency.	In	both	cases,
we	have	several	updates	to	make	and	we	want	to	avoid	having	anyone	observe	the	state	in
an	intermediate,	inconsistent	state.	In	addition,	we	have	no	control	when	other	threads
might	try	to	access	the	state	in	the	first	case	or	when	a	crash	might	occur	in	the	second	—
we	must	develop	a	structured	solution	that	works	for	any	possible	execution.	The	solution
is	similar,	too;	we	want	to	make	the	set	of	updates	atomic.	However,	because	we	are
dealing	with	non-volatile	storage	rather	than	main	memory,	the	techniques	for	achieving
atomicity	differ	in	significant	ways.

Transactions	extend	the	concept	of	atomic	updates	from	memory	to	stable	storage,
allowing	systems	to	atomically	update	multiple	persistent	data	structures.

14.1.1	Ad	Hoc	Approaches

Until	the	mid-1990’s,	many	file	systems	used	ad	hoc	approaches	to	solving	the	problem	of
consistently	updating	multiple	on-disk	data	structures.

For	example,	the	Unix	fast	file	system	(FFS)	would	carefully	control	the	order	that	its
updates	were	sent	to	disk	so	that	if	a	crash	occurred	in	the	middle	of	a	group	of	updates,	a
scan	of	the	disk	during	recovery	could	identify	and	repair	inconsistent	data	structures.
When	creating	a	new	file,	for	example,	FFS	would	first	update	the	free-inode	bitmap	to
indicate	that	the	previously	free	inode	was	now	in	use.	After	making	sure	this	update	was
on	disk,	it	would	initialize	the	new	file’s	inode,	clear	all	of	the	direct,	indirect,	double-
indirect,	and	other	pointers,	set	the	file	length	to	0,	and	set	the	file’s	ownership	and	access
control	list.	Finally,	once	the	inode	update	was	safely	on	disk,	the	file	system	would
update	the	directory	to	contain	an	entry	for	the	newly	created	file,	mapping	the	file’s	name
to	its	inode.

If	a	system	running	FFS	crashed,	then	when	it	rebooted	it	would	use	a	program	called	fsck
(file	system	check)	to	scan	all	of	the	file	system’s	metadata	(e.g.,	all	inodes,	all	directories,
and	all	free	space	bitmaps)	to	make	sure	that	all	metadata	items	were	consistent.	If,	for
example,	fsck	discovered	an	inode	that	was	marked	as	allocated	in	the	free-inode	bitmap
but	that	did	not	appear	in	any	directory	entry,	it	could	infer	that	the	inode	was	part	of	a	file
in	the	process	of	being	created	(or	deleted)	when	the	crash	occurred.	Since	the	create	had
not	finished	or	the	delete	had	started,	fsck	could	mark	the	inode	as	free,	undoing	the
partially	completed	create	(or	completing	the	partially	completed	delete).

Similar	logic	was	used	for	other	file	system	operations.

This	approach	of	careful	ordering	of	operations	with	scanning	and	repair	of	on-disk	data
structures	was	widespread	until	the	1990’s,	when	it	was	largely	abandoned.	In	particular,
this	approach	has	three	significant	problems:

1.	 Complex	reasoning.	Similar	to	trying	to	solve	the	multi-threaded	synchronization
problem	with	just	atomic	loads	and	stores,	this	approach	requires	reasoning	carefully
about	all	possible	operations	and	all	possible	failure	scenarios	to	make	sure	that	it	is
always	possible	to	recover	the	system	to	a	consistent	state.

2.	 Slow	updates.	To	ensure	that	updates	are	stored	in	an	order	that	allowed	the	system’s
state	to	be	analyzed,	file	systems	are	forced	to	insert	sync	operations	or	barriers
between	dependent	operations,	reducing	the	amount	of	pipelining	or	parallelism	in
the	stream	of	requests	to	storage	devices.

For	example,	in	the	file	creation	example	above	to	ensure	that	the	individual	updates
hit	disk	in	the	required	order,	the	system	might	suffer	three	full	rotations	of	the	disk
to	update	three	on-disk	data	structures	even	though	those	data	structures	may	be	quite
near	each	other.

3.	 Extremely	slow	recovery.	When	a	machine	reboots	after	a	crash,	it	has	to	scan	all	of
its	disks	for	inconsistent	metadata	structures.

In	the	1970’s	and	1980s,	it	was	possible	to	scan	the	data	structures	on	most	servers’
disks	in	a	few	seconds	or	minutes.	However,	by	the	1990’s	this	scanning	could	take
tens	of	minutes	to	a	few	hours	for	large	servers	with	many	disks,	and	technology
trends	indicated	that	scan	times	would	rapidly	grow	worse.

Although	the	first	two	were	significant	disadvantages	of	the	approach,	it	was	the	third	that
finally	made	depending	on	careful	ordering	and	fsck	untenable	for	most	file	systems.	New
file	systems	created	since	the	late	1980’s	almost	invariably	use	other	techniques	—
primarily	various	forms	of	transactions	that	we	discuss	in	the	rest	of	this	section.

fsck	lives

Although	few	file	systems	today	rely	on	scanning	disks	when	recovering	from	a	crash,
fsck	and	other	similar	programs	are	often	still	used	as	an	“emergency	fix”	when	on-disk
data	structures	are	corrupted	for	other	reasons	(e.g.,	due	to	software	bug	or	storage	device
failure).

Application-level	approaches.	Although	modern	file	systems	often	use	transactions
internally,	some	standard	file	system	APIs	such	as	the	POSIX	API	provide	only	weaker
abstractions,	forcing	applications	to	take	their	own	measures	if	they	want	to	atomically
apply	a	set	of	updates.	Many	use	application-level	transactions,	but	some	continue	to	use
ad	hoc	approaches.

For	example,	suppose	that	a	user	has	edited	several	parts	of	a	text	file	and	then	wants	to
save	the	updated	document.	The	edits	may	have	inserted	text	at	various	points	in	the
document,	removed	text	at	others,	and	shifted	the	remaining	text	forwards	or	backwards
—	even	a	small	insertion	or	deletion	early	in	the	document	could	ripple	through	the	rest	of
the	file.

If	the	text	editor	application	were	simply	to	use	the	updated	file	in	its	memory	to	overwrite
the	existing	file,	an	untimely	crash	could	leave	the	file	in	an	incomprehensible	state.	The

operating	system	and	disk	schedulers	may	choose	any	order	to	send	the	updated	blocks	to
non-volatile	storage,	so	after	the	crash	the	file	may	be	an	arbitrary	mix	of	old	and	new
blocks,	sometimes	repeating	sections	of	text,	sometimes	omitting	them	entirely.

To	avoid	this	problem,	the	text	editor	may	take	advantage	of	the	semantics	of	the	POSIX
rename	operation,	which	renames	the	file	called	sourceName	to	be	called	targetName
instead.	POSIX	promises	that	if	a	file	named	targetName	already	exists,	rename’s	shift
from	having	targetName	refer	to	the	old	file	to	having	it	refer	to	the	new	one	will	be
atomic.	(This	atomicity	guarantee	may	be	provided	by	transactions	within	the	file	system
or	by	ad	hoc	means.)

Therefore,	to	update	an	existing	file	design.txt,	the	text	editor	first	writes	the	updates	to	a
new,	temporary	file	such	as	#design.txt#.	Then	it	renames	the	temporary	file	to	atomically
replace	the	previously	stored	file.

14.1.2	The	Transaction	Abstraction

Transactions	provide	a	way	to	atomically	update	multiple	pieces	of	persistent	state.

For	example,	suppose	you	are	updating	a	web	site	and	you	want	to	replace	the	current
collection	of	documents	in	/server/live	with	a	new	collection	of	documents	you	have
created	in	/development/ready.	You	don’t	want	users	to	see	intermediate	steps	when	some
of	the	documents	have	been	updated	and	others	have	not	—	they	might	encounter	broken
links	or	encounter	new	descriptions	referencing	old	pages	or	vice	versa.	Transactional	file
systems	like	Windows	Vista’s	TxF	(Transactional	NTFS)	provide	an	API	that	lets
applications	apply	all	of	these	updates	atomically,	allowing	the	programmer	to	write
something	like	the	pseudo-code	in	Figure	14.2.

Figure	14.2:	Pseudo-code	for	using	a	transactional	file	system.

Notice	that	a	transaction	can	finish	in	one	of	two	ways:	it	can	commit,	meaning	all	of	its
updates	occur,	or	it	can	roll	back	meaning	that	none	of	its	updates	occur.

Here,	if	the	transaction	commits,	we	are	guaranteed	that	all	of	the	updates	will	be	seen	by
all	subsequent	reads,	but	if	it	encounters	and	error	and	rolls	back	or	crashes	without
committing	or	rolling	back,	no	reads	outside	of	the	transaction	will	see	any	of	the	updates.

More	precisely,	a	transaction	is	a	way	to	perform	a	set	of	updates	while	providing	the
following	ACID	properties:

Atomicity.	Updates	are	“all	or	nothing.”	If	the	transaction	commits,	all	updates	in	the
transaction	take	effect.	If	the	transaction	rolls	back,	then	none	of	the	updates	in	the
transaction	have	any	effect.

In	the	website	update	example	above,	doing	the	updates	within	a	transaction
guarantees	that	each	of	the	update	is	only	stored	or	readable	if	all	of	the	updates	are
stored	and	readable.

Consistency.	The	transaction	moves	the	system	from	one	legal	state	to	another.	A
system’s	invariants	on	its	state	can	be	assumed	to	hold	at	the	start	of	a	transaction	and
must	hold	when	the	transaction	commits.

In	the	example	above,	by	using	a	transaction	we	can	maintain	the	invariant	that	every
link	from	one	document	to	another	on	the	server	references	a	valid	file.

Isolation.	Each	transaction	appears	to	execute	on	its	own,	and	is	not	affected	by	other
in-progress	transactions.	Even	if	multiple	transactions	execute	concurrently,	for	each
pair	of	transactions	T	and	T′,	it	either	appears	that	T	executed	entirely	before	T′	or
vice	versa.

By	executing	the	web	site	update	in	a	transaction,	we	guarantee	that	each	transaction
to	read	from	the	web	site	occurs	against	either	the	old	set	of	web	pages	or	the	new
set,	not	some	mix	of	the	two.

Of	course,	if	each	individual	read	of	an	object	is	in	its	own	transaction,	then	a	series
of	reads	to	assemble	a	web	page	and	its	included	elements	could	see	the	old	web	page
and	a	mix	of	old	and	new	elements.	If	web	protocols	were	changed	to	allow	a
browser	to	fetch	a	page	and	its	elements	in	a	single	transaction,	then	we	could
guarantee	that	the	user	would	see	either	the	old	page	and	elements	or	the	new	ones.

Durability.	A	committed	transaction’s	changes	to	state	must	survive	crashes.	Once	a
transaction	is	committed,	the	only	way	to	change	the	state	it	produces	is	with	another
transaction.

In	our	web	update	example,	the	system	must	not	return	from	the	commitTransaction()
call	until	all	of	the	transaction’s	updates	have	been	safely	stored	in	persistent	storage.

Transactions	vs.	Critical	Sections.	The	ACID	properties	are	closely	related	to	the
properties	of	critical	sections.	Critical	sections	provide	a	way	to	update	state	that	is
atomic,	consistent,	and	isolated	but	not	durable.	Adding	the	durability	requirement
significantly	changes	how	we	implement	atomic	updates.

Battling	terminology

In	operating	systems,	we	use	the	term	consistency	in	two	ways.	In	the	context	of	critical
sections	and	transactions,	we	use	“consistency”	to	refer	to	the	idea	of	a	system’s
invariants	being	maintained	(e.g.,	“are	my	data	structures	consistent?”)	In	the	context	of
distributed	memory	machines	and	distributed	systems,	we	use	“consistency”	to	refer	to
the	memory	model	—	the	order	in	which	updates	can	become	visible	to	reads	(e.g.,	“are
my	system’s	reads	at	different	caches	sequentially	consistent?”).

Where	there	is	potential	confusion,	we	will	use	the	terms	transaction	consistency	or
memory	model	consistency.

14.1.3	Implementing	Transactions

The	challenge	with	implementing	transaction	is	that	we	want	a	group	of	related	writes	to
be	atomic,	but	for	persistent	storage	hardware	like	disks	and	flash,	the	atomic	operation	is
a	single-sector	or	single-page	write.	Therefore,	we	must	devise	a	way	for	a	group	of
related	writes	to	take	effect	when	a	single-sector	write	occurs.

If	a	system	simply	starts	updating	data	structures	in	place,	then	it	is	vulnerable	to	a	crash
in	the	middle	of	a	set	of	updates:	the	system	has	neither	the	complete	set	of	old	items	(to
roll	back)	nor	a	complete	set	of	new	items	(to	commit),	so	an	untimely	crash	can	force	the
system	to	violate	atomicity.

Instead,	a	transactional	system	can	persistently	store	all	of	a	transaction’s	intentions,	the
updates	that	will	be	made	if	the	transaction	commits,	in	some	separate	location	of
persistent	storage.	Only	when	all	intentions	are	stored	and	the	transaction	commits	should
the	system	begin	overwriting	the	target	data	structures;	if	the	overwrites	are	interrupted	in
the	middle,	then	on	recovery	the	system	can	complete	the	transaction’s	updates	using	the
persistently	stored	intentions.

Redo	Logging

A	common	and	very	general	way	to	implement	transactions	is	redo	logging.	Redo	logging
uses	a	persistent	log	for	recording	intentions	and	executes	a	transaction	in	four	stages:

1.	 Prepare.	Append	all	planned	updates	to	the	log.

This	step	can	happen	all	at	once,	when	the	transaction	begins	to	commit,	or	it	can
happen	over	time,	appending	new	updates	to	the	log	as	the	transaction	executes.
What	is	essential	is	that	all	updates	are	safely	stored	in	the	log	before	proceeding	to
the	next	step.

2.	 Commit.	Append	a	commit	record	to	the	log,	indicating	that	the	transaction	has
committed.

Of	course,	a	transaction	may	roll	back	rather	than	commit.	In	this	case,	a	roll-back
record	may	be	placed	in	the	log	to	indicate	that	the	transaction	was	abandoned.
Writing	a	roll-back	record	is	optional,	however,	because	a	transaction	will	only	be
regarded	as	committed	if	a	commit	record	appears	in	the	log.

3.	 Write-back.	Once	the	commit	record	is	persistent	in	the	log,	all	of	a	transaction’s
updates	may	be	written	to	their	target	locations,	replacing	old	values	with	new	ones.

4.	 Garbage	collect.	Once	a	transaction’s	write-back	completes,	its	records	in	the	log
may	be	garbage	collected.

The	moment	in	step	2	when	the	sector	containing	the	commit	record	is	successfully	stored
is	the	atomic	commit:	before	that	moment,	the	transaction	may	safely	be	rolled	back;	after
that	moment,	the	transaction	must	take	effect.

Recovery.	If	a	system	crashes	in	the	middle	of	a	transaction,	it	must	execute	a	recovery
routine	before	processing	new	requests.	For	redo	logging,	the	recovery	routine	is	simple:
scan	sequentially	through	the	log,	taking	the	following	actions	for	each	type	of	record:

1.	 Update	record	for	a	transaction.	Add	this	record	to	a	list	of	updates	planned	for	the
specified	transaction.

2.	 Commit	record	for	a	transaction.	Write-back	all	of	the	transaction’s	logged	updates
to	their	target	locations.

3.	 Roll-back	record	for	a	transaction.	Discard	the	list	of	updates	planned	for	the
specified	transaction.

When	the	end	of	the	log	is	reached,	the	recovery	process	discards	any	update	records	for
transactions	that	do	not	have	commit	records	in	the	log.

Example.	Consider,	for	example,	a	transaction	that	transfers	$100	from	Tom’s	account	to
Mike’s	account.	Initially,	as	Figure	14.3-(a)	shows,	data	stored	on	disk	and	in	the	volatile
memory	cache	indicates	that	Tom’s	account	has	$200	and	Mike’s	account	has	$100.

Figure	14.3:	Example	transaction	with	redo	logging.

Then,	the	cached	values	are	updated	and	the	updates	are	appended	to	the	non-volatile	log
(b).	At	this	point,	if	the	system	were	to	crash,	the	updates	in	cache	would	be	lost,	the
updates	for	the	uncommitted	transaction	in	the	log	would	be	discarded,	and	the	system
would	return	to	its	original	state.

Once	the	updates	are	safely	in	the	log,	the	commit	record	is	appended	to	the	log	(c).	This
commit	record	should	be	written	atomically	based	on	the	properties	of	the	underlying
hardware	(e.g.,	by	making	sure	it	fits	on	a	single	disk	sector	and	putting	a	strong	checksum
on	it).	This	step	is	the	atomic	commit:	prior	to	the	successful	storage	of	the	commit	record,
a	crash	would	cause	the	transaction	to	roll	back;	the	instant	the	commit	record	is
persistently	stored,	the	transaction	has	committed	and	is	guaranteed	to	be	visible	to	all
reads	in	the	future.	Even	if	a	crash	occurs,	the	recovery	process	will	see	the	committed
transaction	in	the	log	and	apply	the	updates.

Now,	the	records	in	persistent	storage	for	Tom	and	Mike’s	accounts	can	be	updated	(d).

Finally,	once	Tom	and	Mike’s	accounts	are	updated,	the	transaction’s	records	in	the	log
may	be	garbage	collected	(e).

Implementation	details.	A	few	specific	techniques	and	observations	are	important	for

providing	good	performance	and	reliability	for	transactions	with	redo	logs.

Logging	concurrent	transactions.	Although	the	previous	example	shows	a	single
transaction,	multiple	transactions	may	be	executing	at	once.	In	these	cases,	each
record	in	the	log	must	identify	the	transaction	to	which	it	belongs.

Asynchronous	write-back.	Step	3	of	a	transaction	(write-back)	can	be	asynchronous
—	once	the	updates	and	commit	are	in	the	log,	the	write-back	can	be	delayed	until	it
is	convenient	or	efficient	to	perform	it.

This	flexibility	yields	two	advantages.	First,	it	minimizes	the	latency	from	when	a
transaction	calls	commit	to	when	the	call	returns.	As	soon	as	the	commit	is	appended
to	the	sequential	log,	the	call	can	return.	Second,	the	throughput	for	write-back	is
higher	because	the	disk	scheduler	can	operate	on	large	batches	of	updates.

Two	things	limit	the	maximum	write-back	delay,	but	both	are	relatively	loose
constraints.	First,	larger	write-back	delays	mean	that	crash	recovery	may	take	longer
because	there	may	be	more	updates	to	read	and	apply	from	the	log.	Second,	the	log
takes	space	in	persistent	storage,	which	may	in	some	cases	be	constrained.

Repeated	write-backs	are	OK.	Some	of	the	updates	written	back	during	recovery
may	already	have	been	written	back	before	the	crash	occurred.	For	example,	in
Figure	14.4	all	of	the	records	from	the	persistent	log-head	pointer	to	the	volatile	one
have	already	been	written	back,	and	some	of	the	records	between	the	volatile	log-
head	pointer	may	have	been	written	back.

It	is	OK	to	reapply	an	update	from	a	redo	log	multiple	times	because	these	updates
are	(and	must	be)	idempotent	—	they	have	the	same	effect	whether	executed	once	or
multiple	times.	For	example,	if	a	log	record	says	“write	42	to	each	byte	of	sector	74”
then	it	doesn’t	matter	whether	that	value	is	written	once,	twice,	or	a	hundred	times	to
sector	74.

Conversely,	redo	log	systems	cannot	permit	non-idempotent	records	such	as	“add	42
to	each	byte	in	sector	74.”

Restarting	recovery	is	OK.	What	happens	if	another	crash	occurs	during	recovery?
When	the	system	restarts,	it	simply	begins	recovery	again.	The	same	sequence	of
updates	to	committed	transactions	will	be	discovered	in	the	log,	and	the	same	write-
backs	will	be	issued.	Some	of	the	write-backs	may	already	have	finished	before	the
first	crash	or	during	some	previous,	but	repeating	them	causes	no	problems.

Garbage	collection	constraints.	Once	write-back	completes	and	is	persistently
stored	for	a	committed	transaction,	its	space	in	the	log	can	be	reclaimed.

For	concreteness,	Figure	14.4	illustrates	a	transaction	log	with	an	area	of	the	log	that
is	in	use,	an	area	that	is	no	longer	needed	because	it	contains	only	records	for
transactions	whose	write-backs	have	completed,	and	an	area	that	is	free.

In	this	example,	the	system’s	volatile	memory	maintains	pointers	to	the	head	and	tail
of	the	log;	new	transaction	records	are	appended	to	the	log’s	tail	and	cached	in
volatile	memory;	a	write-back	process	asynchronously	writes	pending	write-backs	for
committed	transactions	to	their	final	locations	in	persistent	storage;	and	a	garbage

collection	process	periodically	advances	a	persistent	log-head	pointer	so	that
recovery	can	skip	at	least	some	of	the	transactions	whose	write-backs	are	complete.

Ordering	is	essential.	It	is	vital	to	make	sure	that	all	of	a	transaction’s	updates	are	on
disk	in	the	log	before	the	commit	is,	that	the	commit	is	on	disk	before	any	of	the
write-backs	are,	and	that	all	of	the	write-backs	are	on	disk	before	a	transaction’s	log
records	are	garbage	collected.

In	Linux,	an	application	can	call	sync()	or	fsync()	to	tell	the	operating	system	to	force
buffered	writes	to	disk.	These	calls	return	only	once	the	updated	blocks	are	safely
stored.	Within	the	operating	system,	a	request	can	be	tagged	with	a
BIO_RW_BARRIER	tag,	which	tells	the	device	driver	and	storage	hardware	to
ensure	that	all	preceding	writes	and	no	subsequent	ones	are	stored	before	the	tagged
request	is.

Figure	14.4:	Volatile	and	persistent	data	structures	for	a	transactional	system	based	on	a	replay	log.

EXAMPLE:	New	writes	vs.	garbage	collection.	Suppose	we	have	a	circular	log
organized	like	the	one	in	Figure	14.4.	We	must	ensure	that	new	records	do	not	overwrite
records	that	we	may	read	during	recovery,	so	we	must	ensure	that	the	log-tail	does	not
catch	the	log-head.	But	there	are	two	log-heads,	one	in	volatile	memory	and	another	in
persistent	storage.	Which	log-head	represents	the	barrier	that	the	log-tail	must	not	cross?

ANSWER:	The	log-tail	must	not	catch	the	persistent	log-head	pointer.	Even	though
the	records	between	the	persistent	and	volatile	log-heads	have	already	been	written	back,
during	crash	recovery,	the	recovery	process	will	begin	reading	the	log	from	the	location
indicated	by	the	persistent	log-head	pointer.	As	long	as	the	records	are	intact,	recovering

from	the	persistent	log-head	pointer	rather	than	the	volatile	one	may	waste	some	work,	but
it	will	not	affect	correctness.	□

Undo	logging

Although	transactions	are	often	implemented	with	redo	logging	in	which	updates	and	the
commit	are	written	to	the	log	and	then	the	updates	are	copied	to	their	final	locations,
transactions	can	also	be	implemented	with	undo	logging.

To	update	an	object,	a	transaction	first	writes	the	old	version	of	the	object	to	the	log.	It
then	writes	the	new	version	to	its	final	storage	location.	When	the	transaction	completes,
it	simply	appends	commit	to	the	log.	Conversely,	if	the	transaction	rolls	back,	the	updates
are	undone	by	writing	the	old	object	versions	to	their	storage	locations.

The	recovery	process	takes	no	action	for	committed	transactions	it	finds	in	the	log,	but	it
undoes	uncommitted	transactions	by	rewriting	the	original	object	versions	stored	in	the
log.

Undo	logging	allows	writes	to	objects	to	be	sent	to	their	final	storage	locations	when	they
are	generated	and	requires	them	to	be	persistently	stored	before	a	transaction	is
committed.	This	pattern	is	similar	to	update-in-place	approaches,	so	in	some	cases	it	may
be	easier	to	add	undo	logging	than	redo	logging	to	legacy	systems.	On	the	other	hand,	for
storage	systems	like	disks	whose	sequential	bandwidth	dominates	their	random	I/O
performance,	undo	logging	may	require	more	random	I/Os	before	a	transaction	is
committed	(hurting	latency)	and	by	writing	each	transaction’s	updates	immediately,	it
gives	up	chances	to	improve	disk-head	scheduling	by	writing	large	numbers	of
transaction	updates	as	a	batch.

Undo/redo	logging	stores	both	the	old	and	new	versions	of	an	object	in	the	log.	This
combination	allows	updated	objects	to	be	written	to	their	final	storage	locations	whenever
convenient,	whether	before	or	after	the	transaction	is	committed.	If	the	transaction	rolls
back,	any	modified	objects	can	be	restored	to	the	proper	state,	and	if	the	system	crashes,
any	committed	transactions	can	have	their	updates	redone	and	any	uncommitted
transactions	can	have	their	updates	undone.

Isolation	and	concurrency	revisited.	Redo	logging	provides	a	mechanism	for	atomically
making	multiple	updates	durable,	but	if	there	are	concurrent	transactions	operating	on
shared	state,	we	must	also	ensure	isolation	—	each	transaction	must	appear	to	execute
alone,	without	interference	from	other	transactions.

A	common	way	to	enforce	isolation	among	transactions	is	two-phase	locking,	which
divides	a	transaction	into	two	phases.	During	the	expanding	phase,	locks	may	be	acquired
but	not	released.	Then,	in	the	contracting	phase,	locks	may	be	released	but	not	acquired.
In	the	case	of	transactions,	because	we	want	isolation	and	durability,	the	second	phase
must	wait	until	after	the	transaction	commits	or	rolls	back	so	that	no	other	transaction	sees
updates	that	later	disappear.

As	we	discussed	in	Chapter	6,	two	phase	locking	ensures	a	strong	form	of	isolation	called
serializability.	Serializability	across	transactions	ensures	that	the	result	of	any	execution	of

the	program	is	equivalent	to	an	execution	in	which	transactions	are	processed	one	at	a	time
in	some	sequential	order.	So,	even	if	multiple	transactions	are	executed	concurrently,	they
can	only	produce	results	that	they	could	have	produced	had	they	been	executed	one	at	a
time	in	some	order.

Although	acquiring	multiple	locks	in	arbitrary	orders	normally	risks	deadlock,	transactions
provide	a	simple	solution.	If	a	set	of	transactions	deadlocks,	one	or	more	of	the
transactions	can	be	forced	to	roll	back,	release	their	locks,	and	restart	at	some	later	time.

Multiversion	concurrency	control

An	alternative	to	enforcing	transaction	isolation	with	locks	is	to	enforce	it	with
multiversion	concurrency	control.	In	multiversion	concurrency	control	each	write	of	an
object	x	creates	new	version	of	x,	the	system	keeps	multiple	versions	of	x	and	directs
each	read	to	a	specific	version	of	x.	By	keeping	multiple	versions	of	objects,	the	system
can	allow	transaction	A	to	read	a	version	of	x	that	has	been	overwritten	by	transaction	B
even	if	B	needs	to	be	serialized	after	A.

Several	multiversion	concurrency	control	algorithms	ensure	serializability.	A	simple	one
is	multiversion	timestamp	ordering	(MVTO).	MVTO	processes	concurrent	transactions,
enforces	serializability,	never	blocks	a	transaction’s	reads	or	writes,	but	may	cause	a
transaction	to	roll	back	if	it	detects	that	a	read	of	a	later	transaction	(based	on	the
serializable	schedule	MVTO	is	enforcing)	was	executed	before	—	and	therefore	did	not
observe	—	the	write	of	an	earlier	transaction	(in	serialization	order).

MVTO	assigns	each	transaction	T	a	logical	timestamp.	Then,	when	T	writes	an	object	x,
MVTO	creates	a	new	version	of	x	labeled	with	T	’s	timestamp	tT,	and	when	T	reads	an
object	y,	MVTO	returns	the	version	of	y,	yv	with	the	highest	timestamp	that	is	at	most	T
’s	timestamp;	MVTO	also	makes	note	that	yv	was	read	by	transaction	tT.	Finally,	when	T
attempts	to	commit,	MVTO	blocks	the	commit	until	all	transactions	with	smaller
timestamps	have	committed	or	aborted.

MVTO	rolls	back	a	transaction	rather	than	allowing	it	to	commit	in	three	situations.	First,
if	MVTO	aborts	any	transaction,	it	removes	the	object	versions	written	by	that	transaction
and	rolls	back	any	transactions	that	read	those	versions.	Notice	that	a	transaction	that
reads	a	version	must	have	a	higher	timestamp	than	the	one	that	wrote	it,	so	no	committed
transactions	need	to	be	rolled	back.

Second,	if	a	transaction	T	writes	an	object	that	has	already	been	read	by	a	later	transaction
T′	that	observed	the	version	immediately	prior	to	T	’s	write,	T	MVTO	rolls	back	T	.	It
does	this	because	if	T	were	to	commit,	T′’s	read	must	return	T	’s	write,	but	that	did	not
occur.

Third,	if	MVTO	garbage	collects	old	versions	and	transaction	T	reads	an	object	for	which
the	last	write	by	an	earlier	transaction	has	been	garbage	collected,	then	MVTO	rolls	back
T	.

Relaxing	isolation

In	this	book	we	focus	on	the	strong	and	relatively	simple	isolation	requirement	of
serializability:	no	matter	how	much	concurrency	there	is,	the	system	must	ensure	that	the
results	of	any	execution	of	the	program	is	equivalent	to	an	execution	in	which
transactions	are	processed	one	at	a	time	in	some	sequence.	However,	strong	isolation
requirements	sometimes	force	transactions	to	block	(e.g.,	when	waiting	to	acquire	locks)
or	roll	back	(e.g.,	when	fixing	a	deadlock	or	encountering	a	“late	write”	under
multiversion	concurrency	control).

Relaxing	the	isolation	requirement	can	allow	effectively	higher	levels	of	concurrency	by
reducing	the	number	of	cases	in	which	transactions	must	block	or	roll	back.	The	cost,	of
course,	is	potentially	increased	complexity	in	reasoning	about	concurrent	programs,	but
several	relaxed	isolation	semantics	have	proven	to	be	sufficiently	strong	to	be	widely
used.

For	example,	snapshot	isolation	requires	each	transaction’s	reads	appear	to	come	from	a
snapshot	of	the	system’s	committed	data	taken	when	the	transaction	starts.	Each
transaction	is	buffered	until	the	transaction	commits,	at	which	point	the	system	checks	all
of	the	transaction’s	updates	for	write-write	conflicts.	A	write-write	conflict	occurs	if
transaction	T	reads	an	object	o	from	a	snapshot	at	time	tstart	and	tries	to	commit	at	time
tcommit	but	some	other	transaction	T′	commits	an	update	to	o	between	T	’s	read	at	tstart
and	T	’s	attempted	commit	at	tcommit.	If	a	write-write	conflict	is	detected	for	any	object
being	committed	by	T	,	T	is	rolled	back.

Snapshot	isolation	is	weaker	than	serializability	because	each	transaction’s	reads	logically
happen	at	one	time	and	its	writes	logically	happen	at	another	time.	This	split	allows,	for
example,	write	skew	anomalies	where	one	transaction	reads	object	x	and	updates	object	y
and	a	concurrent	transaction	reads	object	y	and	updates	object	x.	If	there	is	some
constraint	between	x	and	y,	it	may	now	be	violated.	For	example,	if	x	and	y	represent	the
number	of	hours	two	managers	have	assigned	you	to	work	on	each	of	two	tasks	with	a
constraint	that	x	+	y	≤	40.	Manager	1	could	read	x	=	15	and	y	=	15,	attempt	to	assign	10
more	hours	of	work	on	task	x,	and	verify	that	x	+	y	=	25	+	15	≤	40.	In	the	mean	time
manager	2	could	read	x	=	15	and	y	=	15,	attempt	to	assign	10	more	hours	of	work	on	task
y,	verify	that	that	x	+	y	=	15	+	25	≤	40,	and	successfully	commit	the	update,	setting	y	=
25.	Finally,	manager	1	could	successfully	commit	its	update,	set	x	=	25,	and	ruin	your
weekend.

Performance	of	redo	logging.	It	might	sound	like	redo	logging	will	impose	a	significant
performance	penalty	compared	to	simply	updating	data	in	place:	redo	logging	writes	each
update	twice	—	first	to	the	log	and	then	to	its	final	storage	location.

Things	are	not	as	bad	as	they	initially	seem.	Redo	logging	can	have	excellent	performance
—	often	better	than	update	in	place	—	especially	for	small	writes.	Four	factors	allow
efficient	implementations	of	redo	logging:

Log	updates	are	sequential.	Because	log	updates	are	sequential,	appending	to	the
log	is	fast.	With	spinning	disks,	large	numbers	of	updates	can	be	written	as	a

sequential	stream	without	seeks	or	rotational	delay	once	the	write	begins.	Many	high-
performance	systems	dedicate	a	separate	disk	for	logging	so	that	log	appends	never
require	seeks.	For	flash	storage,	sequential	updates	are	often	significantly	faster	than
random	updates,	though	the	advantage	is	not	as	pronounced.

Write-back	is	asynchronous.	Because	write-back	can	be	delayed	until	some	time
after	a	transaction	has	been	committed,	transactions	using	redo	logs	can	have	good
response	time	(because	the	transaction	commit	only	requires	appending	a	commit
record	to	the	log)	and	can	have	good	throughput	(because	batched	write-backs	can	be
scheduled	more	efficiently	than	individual	or	small	groups	of	writes	that	must	occur
immediately).

Fewer	barriers	or	synchronous	writes	are	required.	Some	systems	avoid	using
transactions	by	carefully	ordering	updates	to	data	structures	so	that	they	can	ensure
that	if	a	crash	occurs,	a	recovery	process	will	be	able	to	scan,	identify,	and	repair
inconsistent	data	structures.	However,	these	techniques	often	require	large	number	of
barrier	or	synchronous	write	operations,	which	reduce	opportunities	to	pipeline	or
efficiently	schedule	updates.

In	contrast,	transactions	need	a	relatively	small	number	of	barriers:	one	after	the
updates	are	logged	and	before	the	commit	is	logged,	another	after	the	commit	is
logged	but	before	the	transaction	is	reported	as	successful	(and	before	write-backs
begin),	and	one	after	a	transaction’s	write-backs	complete	but	before	the	transaction’s
log	entries	are	garbage	collected.

Group	commit.	Group	commit	can	further	improve	transaction	performance.	Group
commit	combines	a	set	of	transaction	commits	into	one	log	write	to	amortize	the	cost
of	initiating	the	write	(e.g.,	seek	and	rotational	delays).	Group	commit	techniques	can
also	be	used	to	reduce	the	number	of	barrier	or	sync	operations	needed	to	perform	a
group	of	transactions.

EXAMPLE:	Performance	of	small-write	transactions.	Suppose	you	have	a	1	TB	disk
that	rotates	once	every	10	ms,	that	has	a	maximum	sustained	platter	transfer	rate	of	50
MB/s	for	inner	tracks	and	100	MB/s	for	outer	tracks,	and	that	has	a	5	ms	average	seek
time,	a	0.5	ms	minimum	seek	time,	and	a	10	ms	maximum	seek	time.

Consider	updating	100	randomly	selected	512-byte	sectors;	assume	that	the	updates	must
be	ordered	for	safety	(e.g.,	update	i	must	be	on	disk	before	update	i	+	1	is	applied).

Compare	the	total	time	to	complete	these	updates	using	a	simple	update	in	place	approach
with	the	cost	when	using	transactions	implemented	with	a	redo	log.

ANSWER:	Using	a	simple	update	in	place	approach,	we	need	to	use	FIFO	scheduling	to
ensure	updates	hit	the	disk	in	order,	so	the	time	for	each	update	is	approximately:

time	per	update = average	seek	time	+	0.5	rotation	time	+	transfer	time

= 5	ms	+	5	ms	+	transfer	time

Transfer	time	will	be	at	most	512	/	(50	×	106)	seconds,	which	will	be	negligible	compared
to	the	other	terms.	Thus,	we	have	10	ms	per	request	or	1	s	for	100	requests	for	update	in
place.

For	transactions,	we	first	append	the	100	writes	to	the	log.	We	will	conservatively	assume
that	each	update	consumes	2	sectors	(one	for	the	data	and	the	other	for	metadata	indicating
the	transaction	number	and	the	target	sector	on	disk).	So,	assuming	that	the	disk	head	is	at
a	random	location	when	the	request	arrives,	our	time	to	log	the	requests	is:

time	to	write	log = average	seek	time	+	0.5	rotation	time	+	transfer	time

= 5	ms	+	5	ms	+	transfer	time

= 5	ms	+	5	ms	+	(200	×	512)	/	(100	×	106)	s

= 11.0	ms

Next,	we	need	to	append	the	commit	record	to	the	transaction.	If	the	disk	hardware
supports	a	barrier	instruction	to	enforce	ordering	of	multiple	in-progress	requests,	the
operating	system	can	issue	this	request	along	with	the	100	writes.	Here,	we	will	be
conservative	and	assume	that	the	system	does	not	issue	the	commit’s	write	until	after	the
100	writes	in	the	body	of	the	transaction	are	in	the	log.	Thus,	we	will	likely	have	to	wait
one	full	revolution	of	the	disk	to	finish	the	commit:	10	ms.

Finally,	we	need	to	write	the	100	writes	to	their	target	locations	on	disk.	Unlike	the	case
for	update	in	place,	ordering	does	not	matter	here,	so	we	can	schedule	them	and	write
them	more	efficiently.	Estimating	this	time	takes	engineering	judgment,	and	different
people	are	likely	to	make	different	estimates.	For	this	example,	we	will	assume	that	the
disk	uses	a	variant	of	shortest	service	time	first	(SSTF)	scheduling	in	which	the	scheduler
looks	at	the	four	requests	on	the	next	nearest	tracks	and	picks	the	one	with	the	shortest
predicted	seek	time	+	rotational	latency	from	the	disk	head’s	current	position.	Because	the
scheduler	gets	to	choose	from	four	requests,	we	will	estimate	that	the	average	rotational
latency	will	be	one	fourth	of	a	rotation,	2.5	ms.	This	may	be	conservative	since	it	ignores
the	fact	that	request	i	will	always	remove	from	the	four	requests	being	considered	the	one
that	would	have	been	rotationally	farthest	away	if	it	were	an	option	for	request	i	+	1.
Because	we	initially	have	100	requests	and	because	we	are	considering	the	four	requests
on	the	nearest	tracks,	the	farthest	seek	should	be	around	4%	of	the	way	across	the	disk,
and	the	average	one	to	a	member	of	the	group	being	considered	should	be	around	2%.	We
will	estimate	that	seeking	2-4%	of	the	way	across	disk	costs	twice	the	minimum	seek	time:
1	ms.

Putting	these	estimates	for	write-back	time	together,	the	write-backs	of	the	100	sectors

should	take	about:

per-request	write-back	time = seek	time	+	rotational	latency

= 1.0	ms	+	2.5	ms

= 3.5	ms

giving	us	a	total	of	350	ms	for	100	requests.

Adding	the	logging,	commit,	and	write-back	times,	we	have:

total	write	time = log	time	+	commit	time	+	write-back	time

= 11.0	ms	+	10	ms	+	350	ms

= 371	ms

The	transactional	approach	is	almost	three	times	faster	even	though	it	writes	the	data	twice
and	even	though	it	provides	the	stronger	atomic-update	semantics.	□

EXAMPLE:	For	the	same	two	approaches,	compare	the	response	time	latency	from	when
a	call	issuing	these	requests	is	issued	until	that	call	can	safely	return	because	all	of	the
updates	are	durable.

ANSWER:	The	time	for	update	in	place	is	the	same	as	above:	1	s.	The	time	for	the
transactional	approach	is	the	time	for	the	first	two	steps:	logging	the	updates	and	then
logging	the	commit:	10.24	ms	+	10	ms	=	20.24	ms.	□

Although	small	writes	using	redo	logging	may	actually	see	performance	benefits
compared	to	update	in	place	approaches,	large	writes	may	see	significant	penalties.

EXAMPLE:	Performance	of	large-write	transactions.	Considering	the	same	disk	and
approaches	as	in	the	example	above,	compare	the	total	time	to	for	100	writes,	but	now
assume	that	each	of	the	100	writes	updates	a	randomly	selected	1	MB	range	of	sequential
sectors.

ANSWER:	For	the	update	in	place	approach,	the	time	for	each	update	is	approximately
average	seek	time	+	0.5	rotation	time	+	transfer	time	=	5	ms	+	5	ms	+	transfer	time.	We
will	assume	that	the	bandwidth	for	an	average	transfer	is	75	MB/s	—	between	the	50
MB/s	and	100	MB/s	inner	and	out	tracks’	transfer	rates.	Thus,	we	estimate	the	average
transfer	time	to	be	100	MB/75	MB/s	=	1.333	s,	giving	a	total	time	of	.005	s	+	.005	s	+

1.333	s	=	1.343	s	per	request	and	134.3	s	for	100	requests.

For	the	transactional	approach,	our	time	will	be	time	to	log	updates	+	time	to	commit	+
time	to	write	back.

For	logging	the	updates,	we	assume	a	reasonably	efficient	encoding	of	metadata	that
makes	the	size	of	the	metadata	for	a	100	MB	sequential	update	negligible	compared	to	the
data.	Thus,	logging	the	data	will	take	seek	time	+	rotational	latency	+	transfer	time	=	5
ms	+	5	ms	+	100	×	100	MB/100	MB/s	=	.005	s	+	.005	s	+	100	s	≈	100	s.

Writing	the	commit	adds	another	10	ms	as	in	the	above	example.

Finally,	as	above,	doing	the	write-backs	estimated	scheduled	seek	time	+	estimated
scheduled	latency	+	transfer	time	=	1.0	ms	+	2.5	ms	+	100	MB/75	MB/s,	giving	a	total	of
1.337	s	per	request	and	133.7	s	for	100	requests.

Adding	the	data	logging,	commit,	and	write-back	times	together,	the	transactional
approach	takes	about	233	s	while	the	update	in	place	approach	takes	about	134	s.	In
this	case,	transactions	do	impose	a	significant	cost,	nearly	doubling	the	total	time	to
process	these	updates.	□

EXAMPLE:	Now	compare	the	latency	from	when	the	call	making	the	100	writes	is
issued	until	it	may	safely	return.

ANSWER:	Under	the	update	in	place	approach,	we	can	only	return	when	everything	is
written,	while	under	the	transactional	approach,	we	can	return	once	the	commit	is
complete.	Thus,	we	have	comparable	times:	134	s	for	update	in	place	and	100	s	for
transactions.	□

One	way	to	reduce	transaction	overheads	for	large	writes	is	to	add	a	level	of	indirection:
write	the	large	data	objects	to	a	free	area	of	the	disk,	but	not	in	the	circular	log.	Then,	the
update	in	the	log	just	needs	to	be	a	reference	to	that	data	rather	than	the	data	itself.	Finally,
after	the	transaction	commits,	perform	the	write-back	by	updating	a	pointer	in	the	original
data	structure	to	point	to	the	new	data.

14.1.4	Transactions	and	File	Systems

File	systems	must	maintain	internal	consistency	when	updating	multiple	data	structures.
For	example,	when	a	file	system	like	FFS	creates	a	new	file,	it	may	need	to	update	the
file’s	inode,	the	free	inode	bitmap,	the	parent	directory,	the	parent	directory’s	inode,	and
the	free	space	bitmap.	If	a	crash	occurs	in	the	middle	of	such	a	group	of	updates,	the	file
system	could	be	left	in	an	inconsistent	state	with,	say,	the	new	file’s	inode	allocated	and
initialized	but	without	an	entry	in	the	parent	directory.

As	discussed	in	Section	14.1.1,	some	early	file	systems	used	ad-hoc	solutions	such	as
carefully	ordering	sequences	of	writes	and	scanning	the	disk	to	detect	and	repair
inconsistencies	when	restarting	after	a	crash.	However,	these	approaches	suffered	from
complexity,	slow	updates,	and	—	as	disk	capacity	grew	—	unacceptably	slow	crash
recovery.

To	address	these	problems,	most	modern	file	systems	use	transactions.

Traditional	file	systems.	Transactions	are	added	to	traditional,	update-in-place	file
systems	like	FFS	and	NTFS	using	either	journaling	or	logging	.

Journaling.	Journaling	file	systems	apply	updates	to	the	system’s	metadata	via
transactions,	but	they	update	the	contents	of	users’	files	in	place.

By	protecting	metadata	updates,	these	systems	ensure	consistency	of	their	persistent
data	structures	(e.g.,	updates	to	inodes,	bitmaps,	directories,	and	indirect	blocks).
Journaling	file	systems	first	write	metadata	updates	to	a	redo	log,	then	commit	them,
and	finally	write	them	back	to	their	final	storage	locations.

Updates	to	the	contents	of	regular	(non-directory)	files	are	not	logged,	they	are
applied	in	place.	This	avoids	writing	file	updates	twice,	which	can	be	expensive	for
large	updates.	On	the	other	hand,	updating	file	contents	in	place	means	that
journaling	file	systems	provide	few	guarantees	when	a	program	updates	a	file:	if	a
crash	occurs	in	the	middle	of	the	update,	the	file	may	end	up	in	an	inconsistent	state
with	some	blocks	but	not	others	updated.	If	a	program	using	a	journaling	file	system
requires	atomic	multi-block	updates,	it	needs	to	provide	them	itself.

Logging.	Logging	file	systems	simply	include	all	updates	to	disk	—	both	metadata
and	data	—	in	transactions.

Today,	journaling	file	systems	are	common:	Microsoft’s	NTFS,	Apple’s	HFS+,	and
Linux’s	XFS,	JFS,	and	ReiserFS	all	use	journaling;	and	Linux’s	ext3	and	ext4	use
journaling	in	their	default	configurations.

Logging	file	systems	are	also	widely	available,	at	least	for	Linux.	In	particular,	Linux’s
ext3	and	ext4	file	systems	can	be	configured	to	use	either	journaling	or	logging.

Copy-on-write	file	systems.	Copy-on-write	file	systems	like	the	open	source	ZFS	are
designed	from	the	ground	up	to	be	transactional.	They	do	not	overwrite	data	in	place;
updating	the	root	inode	or	ZFS	uberblock	is	an	atomic	action	that	commits	a	set	of
updates.

Figure	14.5:	In	a	copy-on-write	file	system,	intermediate	states	of	an	update	such	as	(top)	and	(center)	are	not
observable;	they	atomically	take	effect	when	the	root	inode	is	updated	(bottom).

For	example,	suppose	we	update	just	a	file’s	data	block	or	just	its	indirect	blocks,	its
inode,	and	the	indirect	blocks	for	the	inode	file,	leaving	the	state	as	shown	in
Figure	14.5(a)	or	(b).	If	the	system	were	to	crash	in	such	an	intermediate	state,	before	the
root	inode	is	updated,	none	of	these	changes	would	be	included	in	the	file	system’s	tree,
and	they	would	have	no	effect.	Only	when	the	root	inode	is	updated	as	in	Figure	14.5(c)
do	all	of	these	changes	take	effect	at	once.

The	implementations	of	ZFS	and	other	copy-on-write	file	systems	often	add	two
performance	optimizations.

Batch	updates.	Rather	than	applying	each	update	individually,	ZFS	buffers	several
seconds	worth	of	updates	before	writing	them	to	stable	storage	as	a	single	atomic
group.

Batching	yields	two	advantages.

First,	it	allows	the	system	to	transform	many	small,	random	writes	into	a	few	large,
sequential	writes,	which	improves	performance	for	most	storage	devices	including
individual	magnetic	disks,	RAIDs	(Redundant	Arrays	of	Inexpensive	Disks),	and
even	some	flash	storage	devices.

Figure	14.6:	With	batch	updates	in	a	COW	file	system,	updates	of	inodes	and	indirect	blocks	are	amortized
across	updates	of	multiple	data	blocks.

Second,	not	only	does	batching	make	writing	each	block	more	efficient,	it	actually
reduces	how	many	blocks	must	be	written	by	coalescing	multiple	updates	of	the	same
indirect	blocks	and	inodes.	For	example,	Figure	14.6	illustrates	how	updates	of
inodes	and	indirect	blocks	are	amortized	across	updates	of	multiple	data	blocks.

Intent	log.	ZFS	typically	accumulates	several	seconds	of	writes	before	performing	a
large	batch	update,	but	some	applications	need	immediate	assurance	that	their

updates	are	safely	stored	on	non-volatile	media.	For	example,	when	a	word
processor’s	user	saves	a	file,	the	program	might	call	fsync()	to	tell	the	file	system	to
make	sure	the	updates	are	stored	on	disk.	Forcing	the	user	to	wait	several	seconds	to
save	a	file	is	not	acceptable.

ZFS’s	solution	is	the	ZFS	Intent	Log	(ZIL),	which	is	essentially	a	redo	log.	The	ZIL
is	a	linked	list	of	ZFS	blocks	that	contain	updates	that	have	been	forced	to	disk	but
whose	batch	update	may	not	yet	have	been	stored.	The	ZIL	is	replayed	when	the	file
system	is	mounted.

ZFS	includes	several	optimizations	in	the	ZIL	implementation.	First,	by	default
writes	are	buffered	and	committed	in	their	batch	update	without	being	written	to	the
ZIL;	only	writes	that	are	explicitly	forced	to	disk	are	written	to	the	ZIL.	Second,	the
ZIL	may	reside	on	a	separate,	dedicated	logging	device;	this	allows	us	to	use	a	fast
device	(e.g.,	flash)	for	the	ZIL	and	slower,	high-capacity	devices	(e.g.,	disks)	for	the
main	pool;	if	no	separate	ZIL	device	is	provided,	ZFS	uses	the	main	block	pool	for
the	ZIL.	Finally,	the	contents	of	small	data	writes	are	included	in	the	ZIL’s	blocks
directly,	but	the	contents	of	larger	writes	are	written	to	separate	blocks	that	are
referenced	by	the	ZIL;	then,	the	subsequent	batch	commit	can	avoid	rewriting	those
large	blocks	by	updating	metadata	to	point	to	the	copies	already	on	disk.

14.2	Error	Detection	and	Correction

Because	data	storage	hardware	is	imperfect,	storage	systems	must	be	designed	to	detect
and	correct	errors.	Storage	systems	take	a	layered	approach:

Storage	hardware	detects	many	failures	with	checksums	and	device-level	checks,	and
it	corrects	small	corruptions	with	error	correcting	codes

Storage	systems	include	redundancy	using	RAID	architectures	to	reconstruct	data
lost	by	individual	devices

Many	recent	file	systems	include	additional	end-to-end	correctness	checks

These	techniques	are	essential.	Essentially	all	persistent	storage	devices	include	internal
redundancy	to	achieve	high	storage	densities	with	acceptable	error	rates.	This	internal
redundancy	is	insufficient	on	its	own.	Storage	systems	for	important	data	add	additional
redundancy	for	error	correction,	and	it	is	hard	to	think	of	a	significant	file	system
developed	in	the	last	decade	that	does	not	include	higher-level	checksums.

Though	essential	and	widespread,	there	are	significant	pitfalls	in	designing	and	using	these
techniques.	In	our	discussions,	we	will	point	out	issues	that,	if	not	handled	carefully,	can
drastically	reduce	reliability.

The	rest	of	this	section	examines	error	detection	and	correction	for	persistent	storage,
starting	with	the	individual	storage	devices,	then	examining	how	RAID	replication	helps
tolerate	failures	by	individual	storage	devices,	and	finally	looking	at	the	end-to-end	error
detection	in	many	recent	file	systems.

14.2.1	Storage	Device	Failures	and	Mitigation

Storage	hardware	pushes	the	limits	of	physics,	material	sciences,	and	manufacturing
processes	to	maximize	storage	capacity	and	performance.	These	aggressive	designs	leave
little	margin	for	error,	so	manufacturing	defects,	contamination,	or	wear	can	cause	stored
bits	to	be	lost.

Individual	spinning	disks	and	flash	storage	devices	exhibit	two	types	of	failure.	First,
isolated	disk	sectors	or	flash	pages	can	lose	existing	data	or	degrade	to	the	point	where
they	cannot	store	new	data.	Second,	an	entire	device	can	fail,	preventing	access	to	all	of	its
sectors	or	pages.	We	discuss	each	of	these	in	turn	to	understand	the	problems	higher-level
techniques	need	to	deal	with.

Sector	and	Page	Failures

Disk	sector	failures	occur	when	data	on	one	or	more	individual	sectors	of	a	disk	are	lost,
but	the	rest	of	the	disk	continues	to	operate	correctly.	Flash	page	failures	are	the
equivalent	for	flash	pages.

Storage	devices	use	two	techniques	to	mitigate	sector	or	page	failures:	error	correcting
codes	and	remapping.

What	causes	sector	or	page	failures?

For	spinning	disks,	permanent	sector	failures	can	be	caused	by	a	range	of	faults	such	as
pits	in	the	magnetic	coating	where	a	contaminant	flaked	off	the	surface,	scratches	in	the
coating	where	a	contaminant	was	dragged	across	the	surface	by	the	head,	or	smears	of
machine	oil	across	some	sectors	of	a	disk	surface.

Transient	sector	faults	occur	when	a	sector’s	stored	data	is	corrupted	but	new	data	can
still	be	successfully	written	to	and	read	from	the	sector.	These	can	be	caused	by	factors
such	as	write	interference	where	writes	to	one	track	disturb	bits	stored	on	nearby	tracks
and	“high	fly	writes”	where	the	disk	head	gets	too	far	from	the	surface,	producing
magnetic	fields	too	weak	to	be	accurately	read.

For	flash	storage,	permanent	page	failures	can	be	caused	by	manufacturing	defects	or	by
wear-out	when	a	page	experience	a	large	number	of	write/erase	cycles.

Transient	flash	storage	failures	can	be	caused	by:	(i)	write	disturb	errors	where	charging
one	bit	also	causes	a	nearby	bit	to	be	charged;	(ii)	read	disturb	errors	where	repeatedly
reading	one	page	changes	values	stored	on	a	nearby	page;	(iii)	over-programming	errors
where	too	high	a	voltage	is	used	to	write	a	cell,	which	may	cause	incorrect	reads	or
writes;	and	(iv)	data	retention	errors	where	charge	may	leak	out	of	or	into	a	flash	cell	over
time,	changing	its	value.	Wear-out	from	repeated	write/erase	cycles	can	make	devices
more	susceptible	to	data	retention	errors.

Mitigation:	Error	correcting	codes.	Error	correcting	codes	deal	with	failures	when	some
of	the	bits	in	a	sector	or	page	are	corrupted.	When	the	device	stores	data,	it	encodes	the

data	with	additional	redundancy.	Then,	if	a	small	number	of	bits	are	corrupted	in	a	sector
or	page	being	read,	the	hardware	automatically	corrects	the	error,	and	the	read	successfully
completes.	If	the	damage	is	more	extensive,	then	with	high	likelihood	the	read	fails	and
returns	an	error	code.	Being	told	that	the	device	has	lost	data	is	not	a	perfect	solution,	but
it	is	better	than	having	the	device	silently	return	the	wrong	data.

Manufacturers	balance	storage	space	overheads	against	error	correction	capabilities	to
achieve	acceptable	advertised	sector	or	page	failure	rate,	typically	expressed	as	the
expected	number	of	bits	that	can	be	read	before	encountering	an	unreadable	sector	or
page.	In	2011,	advertised	disk	and	flash	non-recoverable	read	error	rates	typically	range
between	one	sector/page	per	1014	to	1016	bits	read.	The	non-recoverable	read	error	rate	is
sometimes	called	the	bit	error	rate.

Mitigation:	Remapping.	Disks	and	flash	are	manufactured	with	some	number	of	spare
sectors	or	pages	so	that	they	can	continue	to	function	despite	some	number	of	permanent
sector	or	page	failures	by	remapping	failed	sectors	or	pages	to	good	ones.	Before	shipping
hardware	to	users,	manufacturers	scan	devices	to	remap	bad	sectors	or	pages	caused	by
manufacturing	defects.	Later,	if	additional	permanent	failures	are	detected,	the	operating
system	or	device	firmware	can	remap	the	failed	sectors	or	pages	to	good	ones.

Pitfalls.	Although	devices’	non-recoverable	read	rate	specifications	are	helpful,	designers
must	avoid	a	number	of	common	pitfalls:

Assuming	that	non-recoverable	read	error	rates	are	negligible.	Storage	devices’
advertised	error	rates	sound	impressive,	but	with	the	large	capacities	of	today’s
storage,	these	error	rates	are	non-negligible.	For	example,	if	you	completely	read	a	2
TB	disk	with	a	bit	error	rate	of	one	sector	per	1014	bits,	there	may	be	more	than	a
10%	chance	of	encountering	at	least	one	error.

Assuming	non-recoverable	read	error	rates	are	constant.	Although	a	device	may
specify	a	single	number	as	its	unrecoverable	read	error	rate,	many	factors	can	affect
the	rate	at	which	such	errors	manifest.	A	given	device’s	actual	bit	error	rate	may
depend	on	its	load	(e.g.,	some	faults	may	be	caused	by	device	activity),	its	age	(e.g.,
some	faults	may	become	more	likely	as	a	device	ages),	or	even	its	specific	workload
(e.g.,	faults	in	some	sectors	or	pages	may	be	caused	by	reads	or	writes	to	nearby
sectors	or	pages).

Assuming	independent	failures.	Errors	may	be	correlated	in	time	or	space:	finding
an	error	in	one	sector	may	make	it	more	likely	that	you	will	find	one	in	a	nearby
sector	or	that	you	will	to	find	a	fault	in	another	sector	soon.

Assuming	uniform	error	rates.	The	relative	contributions	of	different	causes	of
non-recoverable	read	errors	can	vary	across	models	and	different	generations	or
production	runs	of	the	same	model.	For	example,	one	model	of	disk	drive	might	have
many	of	its	sector	read	errors	caused	by	contaminants	damaging	its	recording
surfaces	while	another	model	might	have	most	of	its	errors	caused	by	write
interference	where	writes	to	one	track	perturb	data	stored	on	nearby	tracks.	The	first
might	see	its	error	rate	rise	over	time,	while	the	second	might	have	an	error	rate	that
increases	as	its	write/read	ratio	increases.

Failure	rates	can	even	vary	across	different	individual	devices.	If	you	deploy	several
outwardly	identical	disks,	some	may	exhibit	tens	of	non-recoverable	read	errors	in	a
year,	while	others	operate	flawlessly.

EXAMPLE:	Unrecoverable	read	errors.	Suppose	that	the	nearly-full	500	GB	disk	on
your	laptop	has	just	stopped	working.	Fortunately,	you	have	a	recent,	full	backup	on	a	500
GB	USB	drive	with	an	unrecoverable	read	error	rate	of	one	sector	per	1014	bits	read.
Estimate	the	probability	of	successfully	reading	the	entire	USB	backup	disk	when
restoring	your	data	to	a	replacement	laptop	disk.

ANSWER:	We	need	to	read	500	GB,	so	the	expected	number	of	failures	is	500	GB	×	8	×
(109	bits/GB)	×	(10-14	errors/bit)	=	0.04.	The	probability	of	encountering	at	least	one
failure	might	be	a	bit	lower	than	that	(since	we	may	encounter	multiple	failures	as	we	scan
the	entire	disk),	but	there	appears	to	be	a	chance	of	at	least	a	few	percent	that	the
restoration	will	not	be	fully	successful.

We	can	approach	the	problem	in	a	slightly	different	way	by	interpreting	the	unrecoverable
read	rate	as	meaning	that	each	bit	has	a	10-14	chance	of	being	wrong	and	that	failures	are
independent	(both	somewhat	dubious	assumptions,	but	probably	OK	for	a	ballpark
estimate).	Then	each	bit	has	a	1	-	10-14	chance	of	being	correct,	and	the	chance	of	reading
all	bits	successfully	is	PS	=	(1	-	10-14)8×500×10

9	=	0.9608.	Under	this	calculation,	we
estimate	that	there	is	slightly	less	than	a	4%	chance	of	encountering	a	failure	during	the
full-disk	read	of	the	backup	disk.

As	noted	in	the	sidebar,	these	calculations	ignore	some	important	factors,	so	the	results
may	not	be	precise.	But,	even	if	they	are	off	by	as	much	as	an	order	of	magnitude,	then	it
is	still	reasonable	to	conclude	that	the	rate	of	non-recoverable	read	errors	is	likely	to	be
non-negligible.	□

Note	that	the	impact	of	a	small	number	of	lost	sectors	may	be	modest	(e.g.,	the	backup
software	succeeds	in	restoring	all	but	a	file	or	two)	or	it	may	be	severe	(e.g.,	no	data	is
restored).	For	example,	if	the	sector	failure	corrupts	the	root	directory,	a	significant
fraction	of	the	data	may	be	lost.

Device	Failures

A	full	disk	failure	occurs	when	a	device	stops	being	able	to	service	reads	or	writes	to	all
disk	sectors;	a	full	flash	drive	failure	is	the	equivalent	for	a	flash	device.

What	causes	whole-device	failures?

Disk	failures	can	be	caused	by	a	range	of	faults	such	as	a	disk	head	being	damaged,	a
capacitor	failure	or	power	surge	that	damages	the	electronics,	or	mechanical	wear-out	that
makes	it	difficult	for	the	head	to	stay	centered	over	a	track.

Common	causes	of	flash	device	failures	include	wear-out,	when	enough	individual	pages
fail	that	the	device	runs	out	of	spare	pages	to	use	for	remapping,	and	failures	of	the
device’s	electronics	such	as	having	a	capacitor	fail.

When	a	whole	device	fails,	the	host	computer’s	device	driver	will	detect	the	failure,	and
reads	and	writes	to	the	device	will	return	error	codes	rather	than,	for	example,	returning
incorrect	data.	This	explicit	failure	notification	is	important	because	it	reduces	the	amount
of	cross-device	redundancy	needed	to	correct	failures.

Full	device	failure	rates	are	typically	characterized	by	an	annual	failure	rate,	the	fraction
of	disks	expected	to	fail	each	year,	or	its	inverse,	the	mean	time	to	failure	(MTTF).	In
2011,	specified	annual	failure	rates	(or	MTTFs)	for	spinning	disks	typically	range	from
0.5%	(1.7	×	106	hours)	to	0.9%	(1	×	106	hours);	specified	failure	rates	for	flash	solid	state
drives	are	similar.

Pitfalls.	Storage	system	designers	must	consider	several	pitfalls	when	considering
advertised	device	failure	rates.

Relying	on	advertised	failure	rates.	Studies	across	several	large	collections	of
spinning	disks	have	found	significantly	variability	in	failure	rates.	In	these	studies,
many	systems	experienced	failure	rates	of	2%,	4%,	or	higher,	despite	advertised
failure	rates	of	less	than	1%.

Some	of	the	discrepancy	may	be	due	to	different	definitions	of	“failure”	by
manufacturers	and	users,	some	may	be	due	to	challenging	field	conditions,	and	some
may	be	due	to	the	limitations	of	the	accelerated-aging	and	predictive	techniques	used
by	manufacturers	to	estimate	MTTF.

Assuming	uncorrelated	failures.	Evidence	from	deployed	systems	suggests	that
when	one	fault	occurs,	other	nearby	devices	are	more	likely	to	fail	soon.	Many
factors	can	cause	such	correlation.	For	example,	manufacturing	irregularities	can
cause	a	batch	of	disks	to	be	substandard,	and	an	organization	that	purchases	disks	in
bulk	may	find	an	entire	batch	of	disks	failing	at	the	same	time.	As	another	example,
disks	in	the	same	machine	or	rack	may	be	of	a	similar	age,	may	experience	similar
environmental	stress	and	workloads,	and	may	wear	out	at	a	similar	time.

Confusing	a	device’s	MTTF	with	its	useful	life.	If	a	device	has	an	MTTF	of	one
million	or	more	hours,	it	does	not	mean	that	it	is	expected	to	last	for	100	years	or
more.	Disks	are	designed	to	be	operated	for	some	finite	lifetime,	perhaps	5	years.	A
disk’s	advertised	annual	failure	rate	(i.e.,	1/MTTF)	applies	during	the	disk’s	intended
service	life.	As	that	lifetime	is	approached,	failure	rates	may	rise	as	the	device	wears
out.

Assuming	constant	failure	rates.	A	device	may	have	different	failure	rates	over	its
lifetime.	Some	devices	exhibit	disk	infant	mortality,	where	their	failure	rate	may	be
higher	than	normal	during	their	first	few	weeks	of	use	as	latent	manufacturing	defects
are	exposed.	Others	exhibit	disk	wear	out,	where	their	failure	rate	begins	to	rise	after
some	years.

Figure	14.7:	Bathtub	model	of	device	lifetimes.

A	simple	model	for	understanding	infant	mortality	and	wear	out	is	the	bathtub	model
illustrated	in	Figure	14.7.

Ignoring	warning	signs.	Some	device	failures	happen	without	warning,	but	others
are	preceded	by	increasing	rates	of	non-fatal	anomalies.	Many	storage	devices
implement	the	SMART	(Self-Monitoring,	Analysis,	and	Reporting	Technology)
interface,	which	provides	a	way	for	the	operating	system	to	monitor	events	that	may
be	useful	in	predicting	failures	such	as	read	errors,	sector	remappings,	inaccurate
seek	attempts,	or	failures	to	spin	up	to	the	target	speed.

Assuming	devices	behave	identically.	Different	device	models	or	even	different
generations	of	the	same	model	may	have	significantly	different	failure	behaviors.
One	generation	might	exhibit	significantly	higher	failure	rates	than	expected	and	the
next	might	exhibit	significantly	lower	rates.

EXAMPLE:	Disk	failures	in	large	systems.	Suppose	you	have	a	departmental	file	server
with	100	disks,	each	with	an	estimated	MTTF	of	1.5	×	106	hours.	Estimate	the	expected
time	until	one	of	those	disks	fails.	For	simplicity,	assume	that	each	disk	has	a	constant
failure	rate	and	that	disks	fail	independently.

ANSWER:	If	each	disk	has	a	MTTF	of	1.5	×	106	hours,	then	100	disks	fail	at	a	100	times
greater	rate,	giving	us	a	MTTF	of	1.5	×	104	hours.	So,	although	the	annual	failure	rate	of	a
single	disk	is	(1	failure	/	1.5	×	106	hours)	×	24	hours/day	×	365	days/year	=	0.00585
failures/year,	the	annual	failure	rate	of	the	100	disk	system	is	0.585	=	58.5%.	□

EXAMPLE:	Pitfalls.	Given	the	pitfalls	discussed	above,	is	this	calculation	above	likely
to	overestimate	or	underestimate	the	failure	rate	of	the	system?

ANSWER:	Of	the	factors	listed	above,	the	pitfall	of	relying	on	advertised	failure	rates
seems	most	significant,	and	it	could	lead	us	to	significantly	underestimate	the	failure	rate
of	the	system.

This	solution	does	assume	constant	failure	rates.	If	the	disks	are	very	new	or	very	old,
they	may	suffer	higher	failure	rates	than	expected,	which	might	cause	us	to	underestimate
the	failure	rate	of	the	system.

Because	we	are	only	interested	in	the	average	rate,	the	correlation	pitfall	is	probably	not
particularly	relevant	to	our	analysis.	□

The	exponential	distribution

When	—	as	in	the	example	—	device	failures	occur	at	a	constant	rate,	the	number	of
failure	events	in	a	fixed	time	period	can	be	mathematically	modeled	as	a	Poisson	process,
and	the	interarrival	time	between	failure	events	follows	an	exponential	distribution.

The	exponential	distribution	is	memoryless	—	since	the	rate	of	failure	events	is	constant
across	time,	then	the	expected	time	to	the	next	failure	event	is	the	same	—	no	matter	what
the	current	time	and	no	matter	how	long	it	has	been	since	the	last	failure.	Thus,	if	a	device
has	an	annual	failure	rate	of	0.5	and	thus	a	mean	time	to	failure	of	2	years,	and	we	have
been	operating	the	device	without	a	failure	for	a	year,	the	expected	time	from	the	current
time	to	the	next	failure	is	still	2	years.

If	random	variable	T	represents	the	time	between	failures	and	has	an	exponential
distribution	with	λ	representing	the	average	number	of	failure	events	per	unit	of	time,
then	the	probability	density	function	fTt	is:

fT(t) =	λe-λt if	t	≥	0

=	0 if	t	<	0

The	mean	time	to	failure	is	MTTF	=	1	/	λ.

Exponential	distributions	have	a	number	of	convenient	mathematical	properties.	For
example,	because	the	failure	rate	is	constant,	the	mean	time	to	failure	is	the	inverse	of	the
failure	rate;	this	is	why	it	is	easy	to	convert	between	MTTF	and	annual	failure	rates	in
storage	specifications.	Also,	if	the	expected	number	of	failures	is	given	for	one	duration
(e.g.,	0.1	failures	per	year),	it	can	easily	be	converted	to	the	expected	number	for	a
different	duration	(e.g.,	0.0003	failures	per	day).	Finally,	if	we	have	k	independent	failure
processes	with	rates	of	λ1,	λ2,	…	,	λk,	then	the	aggregate	failure	function	—	the	rate	at
which	failures	of	any	of	the	k	kinds	occurs	—	is

λtot = λ1	+	λ2	+	…	+	λk

and	the	mean	time	to	the	next	failure	of	any	kind	is	MTTFtot	=	1	/	λtot.	For	example,	if

we	have	100	disks,	each	with	a	MTTFdisk	=	1.5	×	106	hours	or,	equivalently,	each	failing
at	a	rate	of	0.00585	failures	per	year,	then	the	overall	100-disk	system	suffers	failures	at	a
rate	of	100	×	0.00585	=	0.585	failures	per	year	or,	equivalently,	the	100-disk	system	has
MTTF100disks	=	1.5	×	104	hours.

Warning.	Because	the	exponential	distribution	is	so	mathematically	convenient,	is
tempting	to	use	it	even	when	it	is	not	appropriate.	Remember	that	failures	in	real	systems
may	be	correlated	(i.e.,	they	are	not	independent)	and	may	vary	over	time	(i.e.,	they	are
not	constant).

14.2.2	RAID:	Multi-Disk	Redundancy	for	Error	Correction

Given	the	limits	of	physical	storage	devices,	storage	systems	use	additional	techniques	to
get	acceptable	end-to-end	reliability.	In	particular,	rather	than	trying	to	engineer	perfectly
reliable	(and	extremely	expensive)	storage	devices,	storage	systems	use	Redundant	Arrays
of	Inexpensive	Disks	(RAIDs)	so	that	a	partial	or	total	failure	of	one	device	will	not	cause
data	to	be	lost.

Basic	RAIDs

A	Redundant	Array	of	Inexpensive	Disks	(RAID)	is	a	system	that	spreads	data	redundantly
across	multiple	disks	in	order	to	tolerate	individual	disk	failures.	Note	that	the	term	RAID
traditionally	refers	to	redundant	disks,	and	for	simplicity,	we	will	discuss	RAID	in	the
context	of	disks.	The	principles,	however,	apply	equally	well	to	other	storage	devices	like
flash	drives.

Figure	14.8:	RAID	1	with	mirroring.

Figure	14.9:	RAID	5	with	rotating	parity.

Figures	14.8	and	14.9	illustrate	two	common	RAID	architectures:	mirroring	and	rotating
parity.

Mirroring.	In	RAIDs	with	mirroring	(also	called	RAID	1),	the	system	writes	each
block	of	data	to	two	disks	and	can	read	any	block	of	data	from	either	disk	as
Figure	14.8	illustrates.	If	one	of	the	disks	suffers	a	sector	or	whole-disk	failure,	no
data	is	lost	because	the	data	can	still	be	read	from	the	other	disk.

Rotating	parity.	In	RAIDs	with	rotating	parity	(also	called	RAID	5),	the	system
reduces	replication	overheads	by	storing	several	blocks	of	data	on	several	disks	and
protecting	those	blocks	with	one	redundant	block	stored	on	yet	another	disk	as
Figure	14.9	illustrates.

In	particular,	this	approach	uses	groups	of	G	disks,	and	writes	each	of	G	-	1	blocks	of
data	to	a	different	disk	and	1	block	of	parity	to	the	remaining	disk.	Each	bit	of	the
parity	block	is	produced	by	computing	the	exclusive-or	of	the	corresponding	bits	of
the	data	blocks:

parity = data0	⊕	data1	⊕	…	⊕	dataG-1

If	one	of	the	disks	suffers	a	sector	or	whole-disk	failure,	lost	data	blocks	can	be
reconstructed	using	the	corresponding	data	and	parity	blocks	from	the	other	disks.
Note	that	because	the	system	already	knows	which	disk	has	failed,	parity	is	sufficient
for	error	correction,	not	just	error	detection.	For	example,	if	the	disk	containing	block
data0	fails,	the	block	can	be	reconstructed	by	computing	the	exclusive-or	of	the	parity
block	and	the	remaining	data	blocks:

data0 = parity	⊕	data1	⊕	…	⊕	dataG-1

To	maximize	performance,	rotating	parity	RAIDs	carefully	organize	their	data	layout
by	rotating	parity	and	striping	data	to	balance	parallelism	and	sequential	access:

Rotating	parity.	Because	the	parity	for	a	given	set	of	blocks	must	be	updated
each	time	any	of	the	data	blocks	are	updated,	the	average	parity	block	tends	to
be	accessed	more	often	than	the	average	data	block.	To	balance	load,	rather	than
having	G-1	disks	store	only	data	blocks	and	1	disk	store	only	parity	blocks,	each
disk	dedicates	1	/	Gth	of	its	space	to	parity	and	is	responsible	for	storing	1	/	Gth
of	the	parity	blocks	and	(G	-	1)	/	G	of	the	data	blocks.

Striping	data.	To	balance	parallelism	versus	sequential-access	efficiency,	a	strip
of	several	sequential	blocks	is	placed	on	one	disk	before	shifting	to	another	disk
for	the	next	strip.	A	set	of	G	-	1	data	strips	and	their	parity	strip	is	called	a	stripe.

By	striping	data,	requests	larger	than	a	block	but	smaller	than	a	strip	require	just

one	disk	to	seek	and	then	read	or	write	the	full	sequential	run	of	data	rather	than
requiring	multiple	disks	to	seek	and	then	read	smaller	sequential	runs.
Conversely,	the	RAID	can	service	more	widely	spaced	requests	in	parallel.

Combining	rotating	parity	and	striping,	we	have	the	arrangement	shown	in
Figure	14.9.

EXAMPLE:	Updating	a	RAID	with	rotating	parity.	For	the	rotating	parity	RAID	in
Figure	14.9,	suppose	you	update	data	block	21.	What	disk	I/O	operations	must	occur?

ANSWER:	The	challenge	is	that	we	must	not	only	update	data	block	21,	we	must	also
update	the	corresponding	parity	block.	Since	data	block	21	is	block	1	of	its	strip	and	the
strip	is	part	of	stripe	1,	we	need	to	update	parity	block	1	of	the	parity	strip	for	stripe	1
(Parity	(1,1,1)	in	the	figure).

It	takes	4	I/O	operations	to	update	both	the	data	and	parity.	First	we	read	the	old
data	D21	and	parity	P1,1,1	and	“remove”	the	old	data	from	the	parity	calculation	Ptmp	=
P1,1,1	⊕	D21.	Then	we	can	compute	the	new	parity	from	the	new	data	P′1,1,1	=	Ptmp	⊕D′21.
Finally,	we	can	write	the	new	data	D′21	and	parity	P′1,1,1	to	disks	2	and	1,	respectively.
□

Atomic	update	of	data	and	parity

A	challenge	in	implementing	RAID	is	atomically	updating	both	the	data	and	the	parity	(or
both	data	blocks	in	a	RAID	with	mirroring).

Consider	what	would	happen	if	the	RAID	system	in	Figure	14.9	crashes	in	the	middle
updating	block	21,	after	updating	the	data	block	on	disk	2	but	before	updating	the	parity
block	on	disk	1.	Now,	if	disk	2	fails,	the	system	will	reconstruct	the	wrong	(old)	data	for
block	21.

The	situation	may	be	even	worse	if	a	write	to	a	mirrored	RAID	is	interrupted.	Because
reads	can	be	serviced	by	either	disk,	reads	of	the	inconsistent	block	may	sometimes	return
the	new	value	and	sometimes	return	the	old	one.

Solutions.	Three	solutions	and	one	non-solution	are	commonly	used	to	solve	(or	not)	the
atomic	update	problem.

Non-volatile	write	buffer.	Hardware	RAID	systems	often	include	a	battery-backed
write	buffer.	An	update	is	removed	from	the	write	buffer	only	once	it	is	safely	on
disk.	The	RAID’s	startup	procedures	ensure	that	any	data	in	the	write	buffer	is
written	to	disk	after	a	crash	or	power	outage.

Transactional	update.	RAID	systems	can	use	transactions	to	atomically	update
both	the	data	block	and	the	parity	block.	For	example,	Oracle’s	RAID-Z	integrates
RAID	striping	with	the	ZFS	file	system	to	avoid	overwriting	data	in	place	and	to
atomically	update	data	and	parity.

Recovery	scan.	After	a	crash,	the	system	can	scan	all	of	the	blocks	in	the	system
and	update	any	inconsistent	parity	blocks.	Note	that	until	that	scan	is	complete,	some

parity	blocks	may	be	inconsistent,	and	incorrect	data	may	be	reconstructed	if	a	disk
fails.	The	Linux	md	(multiple	device)	software	RAID	driver	uses	this	approach.
Cross	your	fingers.	Some	software	and	hardware	RAID	implementations	do	not
ensure	that	the	data	and	parity	blocks	are	in	sync	after	a	crash.	Caveat	emptor.

RAIDs	with	rotating	parity	have	high	overheads	for	small	writes.	Their	overheads	are	far
smaller	for	reads	and	for	full-stripe	writes.

RAID	levels

An	early	paper	on	RAIDs,	“A	Case	for	Redundant	Arrays	of	Inexpensive	Disks	(RAID)”
by	David	Patterson,	Garth	Gibson,	and	Randy	Katz	http://dl.acm.org/citation.cfm?
id=50214	described	a	range	of	possible	RAID	organizations	and	named	them	RAID	0,
RAID	1,	RAID	2,	RAID	3,	RAID	4,	and	RAID	5.	Several	of	these	RAID	levels	were
intended	to	illustrate	key	concepts	rather	than	for	real-world	deployment.

Today,	three	of	these	variants	are	in	wide	use:

RAID	0:	JBOD.	RAID	level	0	spreads	data	across	multiple	disks	without
redundancy.	Any	disk	failure	results	in	data	loss.	For	this	reason,	the	term	RAID	is
somewhat	misleading,	and	this	organization	is	often	referred	to	as	JBOD	(Just	a
Bunch	Of	Disks).

RAID	1:	Mirroring.	RAID	level	1	mirrors	identical	data	to	two	disks.

RAID	5:	Rotating	Parity.	RAID	level	5	stripes	data	across	G	disks.	G	-	1	of	the
disks	in	a	stripe	store	G-1	different	blocks	of	data	and	the	remaining	disk	stores	a
parity	block.	The	role	of	storing	the	parity	block	for	different	data	blocks	is	rotated
among	the	disks	to	balance	load.

Subsequent	to	the	“Case	for	RAID”	paper,	new	organizations	emerged,	and	many	of	them
were	named	in	the	same	spirit.	Some	of	these	names	have	become	standard.

RAID	6:	Dual	Redundancy.	RAID	level	6	is	similar	to	RAID	level	5,	but	instead	of
one	parity	block	per	group,	two	redundant	blocks	are	stored.	These	blocks	are
generated	using	erasure	codes	such	as	Reed-Solomon	codes	that	allow
reconstruction	of	all	of	the	original	data	as	long	as	at	most	two	disks	fail.

RAID	10	and	RAID	50:	Nested	RAID.	RAID	10	and	RAID	50	were	originally
called	RAID	1+0	and	RAID	5+0.	They	simply	combine	RAID	0	with	RAID	1	or
RAID	5.	For	example,	a	RAID	10	system	mirrors	pairs	of	disks	for	redundancy
(RAID	1),	treats	each	pair	of	mirrored	disks	as	a	single	reliable	logical	disk,	and	then
stripes	data	non-redundantly	across	these	logical	disks	(RAID	0).

Many	other	RAID	levels	have	been	proposed.	In	some	cases,	these	new	“levels”	have
more	to	do	with	marketing	than	technology.	(“Our	company’s	RAID	99+	is	much	better
than	your	company’s	puny	RAID	14.”)	In	any	event,	we	regard	the	particular
nomenclature	used	to	describe	exotic	RAID	organizations	as	relatively	unimportant;	our

http://dl.acm.org/citation.cfm?id=50214

discussion	focuses	on	mirroring	(RAID	1),	rotating	parity	(RAID	5),	and	dual	redundancy
(RAID	6).	Other	organizations	can	be	analyzed	using	principles	from	these	approaches.

Recovery.	In	either	RAID	arrangement,	if	a	disk	suffers	a	sector	failure,	the	disk	reports
an	error	when	there	is	an	attempt	to	read	the	sector	and,	if	necessary,	remaps	the	damaged
sector	to	a	spare	one.	Then,	the	RAID	system	reconstructs	the	lost	sector	from	the	other
disk(s)	and	rewrites	it	to	the	original	disk.

If	a	disk	suffers	a	whole-disk	failure,	an	operator	replaces	the	failed	disk,	and	the	RAID
system	reconstructs	all	of	the	disk’s	data	from	the	other	disk(s)	and	rewrites	the	data	to	the
replacement	disk.	The	average	time	from	when	a	disk	fails	until	it	has	been	replaced	and
rewritten	is	called	the	mean	time	to	repair	(MTTR).

RAID	Reliability

A	RAID	with	one	redundant	disk	per	group	(e.g.,	mirroring	or	rotating	parity	RAIDs)	can
lose	data	in	three	ways:	two	full	disk	failures,	a	full	disk	failure	and	one	or	more	sector
failures	on	other	disks,	and	overlapping	sector	failures	on	multiple	disks.	The	expected
time	until	one	of	these	events	occurs	is	called	the	mean	time	to	data	loss	(MTTDL).

Two	full-disk	failures.	If	two	disks	fail,	the	system	will	be	unable	to	reconstruct	the
missing	data.

To	get	a	sense	of	how	serious	a	problem	this	might	be,	suppose	that	a	system	has	N	disks
with	one	parity	block	per	G	blocks,	and	suppose	that	disks	fail	independently	with	a	mean
time	to	failure	of	MTTF	and	a	mean	time	to	replace	a	failed	disk	and	recover	its	data	of
MTTR.

Then,	when	the	system	is	operating	properly,	the	expected	time	until	the	first	failure	is
MTTF	/	N.	Assuming	MTTR	<<	MTTF	,	there	is	essentially	a	race	to	replace	the	disk	and
reconstruct	its	data	before	a	second	disk	fails.	We	lose	this	race	and	hit	the	second	failure
before	the	repair	is	done	with	probability	MTTF	/	((G	-	1)	×	MTTR),	giving	us	a	mean
time	to	data	loss	from	multiple	full-disk	failures	of

MTTDLtwo-full-disk = MTTF2	/	(N	×	(G	-	1)	×	MTTR)

EXAMPLE:	Mean	time	to	double-disk	failure.	Suppose	you	have	100	disks	organized
into	groups	of	10,	with	one	disk	storing	a	parity	block	per	nine	disks	storing	data	blocks.
Assuming	that	disk	failures	are	independent	and	the	per-disk	mean	time	to	failure	is	106
hours	and	assuming	that	the	mean	time	to	repair	a	failed	disk	is	10	hours,	estimate	the
expected	mean	time	to	data	loss	due	to	a	double-disk	failure.

ANSWER:	Because	failures	are	assumed	to	occur	independently	and	at	a	constant	rate,
we	can	use	the	equation	above:

MTTDLtwo-full-disk = MTTF2	/	(N	×	(G	-	1)	×	MTTR)

= (106	hours)2	/	(102	×	9	×	10	hours)

≈ 108	hours

Thus,	assuming	independent	failures	at	the	expected	rate	and	assuming	no	other	sources	of
data	loss,	this	organization	appears	to	have	raised	the	mean	time	to	data	loss	from	about
100	years	(for	a	single	disk)	to	about	10,000	years	(for	90	disks	worth	of	data	and	10	disks
worth	of	parity).	□

One	full-disk	failure	and	a	sector	failure.	If	one	or	more	disks	suffer	sector	failures	and
another	disk	suffers	a	full-disk	failure,	the	RAID	system	cannot	recover	all	of	its	data.
Assuming	independent	failures	that	arrive	at	a	constant	rate,	we	can	estimate	probability
of	data	loss	over	some	interval	as	the	probability	of	suffering	a	disk	failure	times	the
probability	that	we	will	fail	to	read	all	data	needed	to	reconstruct	the	lost	disk’s	data:

PlostDataFromDiskAndSector = PDiskFailure	×	PRecoveryError

= (N	/	MTTF)	×	Pfail_recovery_read

If	this	gives	us	the	probability	of	losing	data	over	some	period	of	time	or	equivalently	the
rate	of	data-loss	failures,	then	inverting	this	equation	gives	us	the	mean	time	to	data	loss
(MTTDL).	Thus,	we	can	estimate	the	mean	time	to	data	loss	from	this	failure	mode	based
on	the	expected	time	between	full	disk	failures	divided	by	the	odds	of	failing	to	read	all
data	needed	to	reconstruct	the	lost	disk’s	data.

MTTDLdisk+sector = (MTTF	/	N)	×	(1	/	Pfail_recovery_read)

EXAMPLE:	Mean	time	to	failed	disk	and	failed	sector.	Assuming	that	during	recovery,
latent	sector	errors	are	discovered	at	a	rate	of	1	per	1015	bits	read	and	assuming	that	the
mean	time	to	failure	for	each	of	100	1	TB	disks	organized	into	groups	of	10	is	106	hours,

what	is	the	expected	mean	time	to	data	loss	due	to	full-disk	failure	combined	with	a	sector
failure?

ANSWER:

MTTDLdisk+sector = (MTTF	/	N)	×	(1	/	Pfail_recovery_read)

= (106	/	100)	×	(1	/	Pfail_recovery_read)

To	estimate	Pfail_recovery_read	we	will	assume	that	each	bit	fails	independently	and	is
successfully	read	with	probability	(1/(1	-	10-15)).	Then	the	probability	of	reading	1	TB
from	each	of	9	disks	is:

So,	there	is	roughly	a	93%	chance	that	recovery	will	succeed	and	a	7%	chance	that
recovery	will	fail.	We	then	have

MTTDLdisk+sector = (106	/	100)	×	(1	/	.07)

= 1.4	×105	hours

Notice	that	this	rate	of	data	loss	is	much	higher	than	the	rate	from	double	disk	failures
calculated	above.	Of	course,	the	relative	contributions	of	each	failure	mode	will	depend	on
disks’	MTTF,	size,	and	bit	error	rates	as	well	as	the	system’s	MTTR.	□

Failure	of	two	sectors	sharing	a	redundant	sector.	In	principle,	it	is	also	possible	to	lose
data	because	the	corresponding	sectors	fail	on	different	disks.	However,	with	billions	of
distinct	sectors	on	each	disk	and	small	numbers	of	latent	failures	per	disk,	this	failure
mode	is	likely	to	be	a	negligible	risk	for	most	systems.

Overall	data	loss	rate.	If	we	assume	independent	failures	and	constant	failure	rates,	then
we	can	add	the	failure	rates	from	the	two	significant	failure	modes	to	estimate	the
combined	failure	rate:

The	total	failure	rate	is	thus	the	rate	that	the	first	disk	fails	times	the	rate	that	either	a
second	disk	in	the	group	fails	before	the	repair	is	completed	or	a	sector	error	is
encountered	when	the	disks	are	being	read	to	rebuild	the	lost	disk.

We	label	the	above	FailureRateindep+const	to	emphasize	the	strong	assumptions	of
independent	failures	and	constant	failure	rates.	As	noted	above,	failures	are	likely	to	be
correlated	in	many	environments	and	failure	rates	of	some	devices	may	increase	over
time.	Both	of	these	factors	may	result	significantly	higher	failure	rates	than	expected.

EXAMPLE:	Combined	failure	rate.	For	the	system	described	in	the	previous	examples
(100	disks,	rotating	parity	with	a	group	size	of	10,	mean	time	to	failure	of	106	hours,	mean
time	to	repair	of	10	hours,	and	non-recoverable	read	error	rate	of	one	sector	per	1015	bits)
assuming	that	all	failures	are	independent,	estimate	the	MTTDL	when	both	double-disk
and	single-disk-and-sector	failures	are	considered.

ANSWER:

Inverting	the	failure	rate	gives	the	mean	time	to	data	loss:

MTTDLconst+indep =
1	/
FailureRateindep+const

= 1.44	×	105	hours/failure

= 16.4	years/failure

□

Two	things	in	the	example	above	are	worth	special	note.	First,	for	these	parameters,	the

dominant	cause	of	data	loss	is	likely	to	be	a	single	disk	failure	combined	with	a	non-
recoverable	read	error	during	recovery.	Second,	for	these	parameters	and	this
configuration,	the	resulting	6%	chance	of	losing	data	per	year	may	be	unacceptable	for
many	environments.	As	a	result,	systems	use	various	techniques	to	improve	the	MTTDL
in	RAID	systems.

Improving	RAID	Reliability

What	can	be	done	to	further	improve	reliability?	Broadly	speaking,	we	can	do	three
things:	(1)	increase	redundancy,	(2)	reduce	non-recoverable	read	error	rates,	and	(3)
reduce	mean	time	to	repair.	All	of	these	approaches,	in	various	combinations,	are	used	in
practice.

Here	are	some	common	approaches:

Increasing	redundancy	with	more	redundant	disks.	Rather	than	having	a	single
redundant	block	per	group	(e.g.,	using	two	mirrored	disks	or	using	one	parity	disk	for	each
stripe)	systems	can	use	double	redundancy	(e.g.,	three	disk	replicas	or	two	error	correction
disks	for	each	stripe).	In	some	cases,	systems	may	use	even	more	redundancy.	For
example,	the	Google	File	System	(GFS)	is	designed	to	provide	highly	reliable	and
available	storage	across	thousands	of	disks;	by	default,	GFS	stores	each	data	block	on
three	different	disks.

A	dual	redundancy	array	ensures	that	data	can	be	reconstructed	despite	any	two	failures	in
a	stripe	by	generating	two	redundant	blocks	using	erasure	codes	such	as	Reed-Solomon
codes.	This	approach	is	sometimes	called	RAID	6.

A	system	with	dual	redundancy	can	be	much	more	reliable	than	a	simple	single
redundancy	RAID.	With	dual	redundancy,	the	most	likely	data	loss	scenarios	are	(a)	three
full-disk	failures	or	(b)	a	double-disk	failure	combined	with	one	or	more	non-recoverable
read	errors.

If	we	optimistically	assume	that	failures	are	independent	and	occur	at	a	constant	rate,	a
system	with	two	redundant	disks	per	stripe	has	a	potentially	low	combined	data	loss	rate:

This	data	loss	rate	is	nearly	MTTF	/	(MTTR	×	(G	-	1))	times	better	than	the	single-parity
data	loss	rate;	for	disks	with	MTTFs	of	over	one	million	hours,	MTTRs	of	less	than	10
hours,	and	group	sizes	of	ten	or	fewer	disks,	double	parity	improves	the	estimated	rate	by
about	a	factor	of	10,000.

We	emphasize,	however,	that	the	above	equation	almost	certainly	underestimates	the
likely	data	loss	rate	for	real	systems,	which	may	suffer	correlated	failures,	varying	failure
rates,	higher	failure	rates	than	advertised,	and	so	on.

Reducing	non-recoverable	read	errors	with	scrubbing.	A	storage	device’s	sector-level

error	rate	is	typically	expressed	as	a	single	non-recoverable	read	rate,	suggesting	that	the
rate	is	constant.	The	reality	is	more	complex.	Depending	on	the	device,	errors	may
accumulate	over	time	and	heavier	workloads	may	increase	the	rate	at	which	errors
accumulate.

An	important	technique	for	reducing	a	disk’s	non-recoverable	read	rate	is	scrubbing:
periodically	reading	the	entire	contents	of	a	disk,	detecting	sectors	with	unrecoverable
read	errors,	reconstructing	the	lost	data	from	the	remaining	disks	in	the	RAID	array,	and
attempting	to	write	and	read	the	reconstructed	data	to	and	from	the	suspect	sector.	If	writes
and	reads	succeed,	then	the	error	was	caused	by	a	transient	fault,	and	the	disk	continues	to
use	the	sector,	but	if	the	sector	cannot	be	successfully	accessed,	the	error	is	permanent,
and	the	system	remaps	that	sector	to	a	spare	and	writes	the	reconstructed	data	there.

Reducing	non-recoverable	read	error	rates	with	more	reliable	disks.	Different	disk
models	promise	significantly	different	non-recoverable	read	error	rates.	In	particular,	in
2011,	many	disks	aimed	at	laptops	and	personal	computers	claim	unrecoverable	read	error
rates	of	one	per	1014	bits	read,	while	disks	aimed	at	enterprise	servers	often	have	lower
storage	densities	but	can	promise	unrecoverable	read	error	rates	of	one	per	1016	bits	read.
This	two	order	of	magnitude	improvement	greatly	reduces	the	probability	that	a	RAID
system	loses	data	from	a	combination	of	a	full	disk	failure	and	a	non-recoverable	read
error	during	recovery.

Reducing	mean	time	to	repair	with	hot	spares.	Some	systems	include	“hot	spare”	disk
drives	that	are	idle,	but	plugged	into	a	server	so	that	if	one	of	the	server’s	disks	fails,	the
hot	spare	can	be	automatically	activated	to	replace	the	lost	disk.

Note	that	even	with	hot	spares,	the	mean	time	to	repair	a	disk	is	limited	by	the	time	it
takes	to	write	the	reconstructed	data	to	it,	and	this	time	is	often	measured	in	hours.	For
example,	if	we	have	a	1	TB	disk	and	can	write	at	100	MB/s,	the	mean	time	to	repair	for
the	disk	will	be	at	least	104	seconds	—	about	3	hours.	In	practice,	repair	time	may	be	even
larger	if	the	bandwidth	achieved	is	less	than	assumed	here.

Reducing	mean	time	to	repair	with	declustering.	Disks	with	hundreds	of	gigabytes	to	a
few	terabytes	can	take	hours	to	fully	write	with	reconstructed	data.	Declustering	splits
reconstruction	of	a	failed	disk	across	multiple	disks.	Declustering	thus	allows	parallel
reconstruction,	thus	speeding	up	reconstruction	and	reducing	MTTR.

For	example,	the	Hadoop	File	System	(HDFS)	is	a	cluster	file	system	that	writes	each	data
block	to	three	out	of	potentially	hundreds	or	thousands	of	disks.	It	chooses	the	three	disks
for	each	block	more	or	less	randomly.	If	one	disk	fails,	it	re-replicates	the	lost	blocks
approximately	randomly	across	the	remaining	disks.	If	we	have	N	disks	each	with	a
bandwidth	of	B,	total	reconstruction	bandwidth	can	approach	(N	/	2)	×	B;	for	example,	if
there	are	1000	disks	with	100	MB/s	bandwidths,	reconstruction	bandwidth	can
theoretically	approach	500	GB/s,	allowing	re-replication	of	a	1	TB	disk’s	data	in	a	few
seconds.

In	practice,	re-replication	will	be	slower	than	this	for	at	least	three	reasons.	First,	resources
other	than	the	disk	(e.g.,	the	network)	may	bottleneck	recovery.	Second,	the	system	may
throttle	recovery	speed	to	avoid	starving	user	requests.	Third,	if	a	server	crashes	and	its
disks	become	inaccessible,	the	system	may	delay	starting	recovery	—	hoping	that	the

server	will	soon	recover	—	to	avoid	imposing	extra	load	on	the	system.

Pitfalls

When	constructing	a	reliable	storage	system,	it	is	not	enough	to	plug	provide	enough
redundancy	to	tolerate	a	target	number	of	failures.	We	also	need	to	consider	how	failures
are	likely	to	occur	(e.g.,	they	may	be	correlated)	and	what	it	takes	to	correct	them	(e.g.,
successfully	reading	a	lot	of	other	data).	More	specifically,	be	aware	of	the	following
pitfalls:

Assuming	uncorrelated	failures..	It	is	easy	to	get	gaudy	MTTDL	numbers	by
adding	a	redundant	device	or	two	and	multiplying	the	devices’	MTTFs.	But	the
simple	equation	for	MTTDL	we	derived	above	only	applies	when	failures	are
uncorrelated.	Even	a	1%	chance	of	correlated	failures	dramatically	changes	the
estimate.	Unfortunately,	it	is	often	difficult	to	estimate	correlation	rates	a	priori,	so
designers	must	sometimes	just	add	a	significant	safety	margin	and	hope	that	it	is
enough.

Ignoring	the	risk	from	latent	errors..	It	is	not	uncommon	to	see	analyses	of	RAID
reliability	that	considers	full	device	failures	but	not	non-recoverable	read	failures.	As
we	have	seen	above,	non-recoverable	read	errors	can	dramatically	reduce	the
probability	of	successfully	recovering	data	after	a	disk	failure.

Not	implementing	scrubbing..	Periodically	scrubbing	disks	to	detect	and	correct
latent	errors	can	significantly	reduce	the	risk	of	data	loss.	Although	it	can	be	difficult
to	predict	the	appropriate	scrubbing	frequency	a	priori,	a	system	that	uses	scrubbing
can	monitor	the	rate	at	which	non-correctable	read	errors	are	found	and	corrected	and
use	the	measured	rate	to	adjust	the	scrubbing	frequency.

Not	having	a	backup..	The	techniques	discussed	in	this	section	can	protect	a	system
against	many,	but	not	all,	faults.	For	example,	a	widespread	correlated	failure	(e.g.,	a
building	burning	down),	an	operator	error	(e.g.,	“rm	-r	*”),	or	a	software	bug	could
corrupt	or	delete	data	stored	across	any	number	of	redundant	devices.

A	backup	system	provides	storage	that	is	separate	from	a	system’s	main	storage.
Ideally,	the	separation	is	both	physical	and	logical.

Physical	separation	means	that	backup	storage	devices	are	in	different	locations	than
the	primary	storage	devices.	For	example,	some	systems	achieve	physical	separation
by	copying	data	to	tape	and	storing	the	tapes	in	a	different	building	than	the	main
storage	servers.	Other	systems	achieve	physical	separation	by	storing	data	to	remote
disk	arrays	such	as	those	provided	by	cloud	backup	and	disaster	recovery	services.

Logical	separation	means	that	the	interface	to	the	backup	system	is	restricted	to
prevent	premature	deletion	of	data.	For	example,	some	backup	systems	provide	an
interface	that	allows	a	user	to	read	but	not	write	old	versions	of	a	file	(e.g.,	the	file	as
it	existed	one	hour,	two	hours,	four	hours,	one	day,	one	week,	one	month,	and	one
year	ago).

Modeling	real	systems

The	equations	in	the	main	text	for	estimating	a	system’s	mean	time	to	data	loss	are	only
applicable	if	failure	rates	are	constant	and	if	failures	are	uncorrelated.	Unfortunately,
empirical	studies	often	observe	correlation	among	full-disk	failures,	among	sector-level
failures,	and	between	sector-level	and	full-disk	failures,	and	they	frequently	find	failure
rates	that	vary	significantly	with	disks’	ages.	Unfortunately,	if	failure	rates	vary	over	time
or	failures	are	correlated,	the	failure	arrival	distribution	is	no	longer	described	by	an
exponential	distribution,	and	the	math	quickly	gets	difficult.

One	solution	is	to	use	randomized	simulation	to	estimate	the	probability	of	data	loss	over
some	duration	of	interest.	For	example,	we	might	want	to	estimate	the	probability	of
losing	data	over	10	years	for	a	1000-disk	system	organized	in	groups	of	10	disks	with
rotating	parity.

To	do	this,	our	simulation	would	track	which	disks	are	functioning	normally,	which	have
latent	sector	errors,	and	which	have	suffered	full	disk	failures.	The	transitions	between
states	could	be	based	on	measurement	studies	or	field	data	on	key	factors:	(a)	the	rate	that
disks	suffer	full	disk	failures	(possibly	dependent	on	the	disks’	ages,	the	number	of	recent
full	disk	failures,	or	the	number	of	individual	sector	failures	a	disk	has	had);	(b)	the	rate	at
which	sector	failures	arise	(possibly	dependent	on	the	age	of	the	disk,	workload	of	the
disk,	and	recent	frequency	of	sector	failures);	(c)	the	repair	time	when	a	disk	fails;	and	(d)
the	expected	time	for	scrubbing	to	detect	and	repair	a	sector	error.

To	estimate	the	probability	of	data	loss,	we	would	repeatedly	simulate	the	system	for	a
decade	and	count	the	number	of	times	the	system	enters	a	state	in	which	data	is	lost	(i.e.,
a	group	has	two	full	disk	failures	or	has	both	a	full	disk	failure	and	a	sector	failure	on
another	disk).

14.2.3	Software	Integrity	Checks

Although	storage	devices	include	sector-	or	page-level	checksums	to	detect	data
corruption,	many	recent	file	systems	have	included	additional,	higher-level,	checksums
and	other	integrity	checks	on	their	data.

These	checks	can	catch	a	range	of	errors	that	hardware-level	checksums	can	miss.	For
example,	they	can	detect	wild	writes	or	lost	writes	where	a	bug	in	the	operating	system
software,	device	driver	software,	or	device	firmware	misdirects	a	write	to	the	wrong	block
or	page	or	fails	to	complete	an	intended	write.	They	can	also	detect	rare	ECC	false
negatives	when	the	hardware-level	error	correcting	codes	fail	to	detect	a	multi-bit
corruption.

When	a	software	integrity	check	fails	on	a	block	read	or	during	latent-error	scrubbing,	the
system	reconstructs	the	lost	or	corrupted	block	using	the	redundant	storage	in	the	RAID.

Two	examples	of	software	integrity	checks	used	today	are	block	integrity	metadata	and
file	system	fingerprints.

Block	integrity	metadata.	Some	file	systems,	like	Network	Appliance’s	WAFL	file

system,	include	block	integrity	metadata	that	allows	the	software	to	validate	the	results	of
each	block	it	reads.

Figure	14.10:	To	improve	reliability	Network	Appliance’s	WAFL	file	system	stores	a	64	byte	data	integrity	segment
(DIS)	with	each	4	KB	data	block.

As	Figure	14.10	illustrates,	WAFL	stores	a	64	byte	data	integrity	segment	(DIS)	with	each
4	KB	data	block.	The	DIS	contains	a	checksum	of	the	data	block,	the	identity	of	the	data
block	(e.g.,	the	ID	of	the	file	to	which	it	belongs	and	the	block’s	offset	in	that	file),	and	a
checksum	of	the	DIS,	itself.

Then,	when	a	block	is	read,	the	system	performs	three	checks.	First,	it	checks	the	DIS’s
checksum.	Second,	it	verifies	that	the	data	in	the	block	corresponds	to	the	checksum	in	the
block’s	data	integrity	segment.	Third,	it	verifies	that	the	identity	in	the	block’s	DIS
corresponds	to	the	file	block	it	was	intending	to	read.	If	all	of	these	checks	pass,	the	file
system	can	be	confident	it	is	returning	the	correct	data;	if	not,	the	file	system	can
reconstruct	the	necessary	data	from	redundant	disks	in	the	RAID.

File	system	fingerprints.	Some	file	systems,	like	Oracle’s	ZFS,	include	file	system
fingerprints	that	provide	a	checksum	across	the	entire	file	system	in	a	way	that	allows
efficient	checks	and	updates	when	individual	blocks	are	read	and	written.

Figure	14.11:	ZFS	stores	all	data	in	a	Merkle	tree	so	that	each	node	of	the	tree	includes	both	a	pointer	to	and	a
checksum	of	each	of	its	children	(Chk	and	Ptr	in	the	figure).	On	an	update,	all	nodes	from	the	updated	block	(I’)	to	the
root	(u’)	are	changed	to	reflect	the	new	pointer	and	checksum	values.

As	illustrated	in	Figure	14.11,	all	of	ZFS’s	data	structures	are	arranged	in	a	tree	of	blocks
with	a	root	node	called	the	uberblock.	At	each	internal	node	of	the	tree,	each	reference	to	a
child	node	includes	both	a	pointer	to	and	a	checksum	of	the	child.	Thus,	the	reference	to
any	subtree	includes	a	checksum	that	covers	all	of	that	subtree’s	contents,	and	the
uberblock	holds	a	checksum	that	covers	the	entire	file	system.

When	ZFS	reads	data	(i.e.,	leaves	of	the	tree)	or	metadata	(i.e.,	internal	nodes	of	the	tree),
it	follows	the	pointers	down	the	tree	to	find	the	right	block	to	read,	computing	a	checksum
of	each	internal	or	leaf	block	and	comparing	it	to	the	checksum	stored	with	the	block
reference.	Similarly,	as	Figure	14.11	illustrates,	when	ZFS	writes	a	block,	it	updates	the
references	from	the	updated	block	to	the	uberblock	so	that	each	includes	both	the	new
checksum	and	(since	ZFS	never	updates	data	structures	in	place)	new	block	pointer.

Layers	upon	layers	upon	layers	In	this	chapter	we	focus	on	error	detection	and	correction
at	three	levels:	the	individual	storage	devices	(e.g.,	disks	and	flash),	storage	architectures
(e.g.,	RAID),	and	file	systems.

Today,	storage	systems	with	important	data	often	include	not	just	these	layers,	but
additional	ones.	Enterprise	and	cloud	storage	systems	distribute	data	across	several

geographically	distributed	sites	and	may	include	high-level	checksums	on	that
geographically	replicated	data.	Within	a	site,	they	may	replicate	data	across	multiple
servers	using	what	is	effectively	a	distributed	file	system.	At	each	server,	the	distributed
file	system	may	store	data	using	a	local	file	system	that	includes	file-system-level
checksums	on	the	locally	stored	data.	And,	invariably,	the	local	server	will	use	storage
devices	that	detect	and	sometimes	correct	low-level	errors.
Although	we	do	not	discuss	cross-machine	and	geographic	replication	in	any	detail,	the
principles	described	in	this	chapter	also	apply	to	these	systems.

14.3	Summary	and	Future	Directions

Although	individual	storage	devices	include	internal	error	correcting	codes,	additional
redundancy	for	error	detection	and	correction	is	often	needed	to	provide	acceptably
reliable	storage.	In	fact,	today,	it	is	seldom	acceptable	to	store	valuable	data	on	a	single
device	without	some	form	of	RAID-style	redundancy.	By	the	same	token,	many	if	not
most	file	systems	designed	over	the	past	decade	have	included	software	error	checking	to
catch	data	corruption	and	loss	occurrences	that	are	not	detectable	by	device-level
hardware	checks.

Increasingly	now	and	in	the	future,	systems	go	beyond	just	replicating	data	across	multiple
disks	on	a	single	server	to	distributed	replication	across	multiple	servers.	Sometimes	these
replicas	are	configured	to	protect	data	even	if	significant	physical	disasters	occur.

For	example,	Amazon’s	Simple	Storage	Service	(S3)	allows	customers	to	pay	a	monthly
fee	to	store	data	on	servers	run	by	Amazon.	Amazon	states	that	the	system	is	“designed	to
provide	99.999999999%	durability	of	objects	over	a	given	year.”	To	provide	such	high
reliability,	S3	stores	data	at	multiple	data	centers,	quickly	detects	and	repairs	lost
redundancy,	and	validates	checksums	of	stored	data.

Exercises

1.	 Suppose	that	a	text	editor	application	uses	the	rename	technique	for	safely	saving
updates	by	saving	the	updated	file	to	a	new	filed	(e.g.,	#doc.txt#	and	then	calling
rename(“#doc.txt#”,	“doc.txt”)	to	change	the	name	of	the	updated	file	from	#doc.txt#
to	doc.txt.	POSIX	rename	promises	that	the	update	to	doc.txt	will	be	atomic	—	even
if	a	crash	occurs,	doc.txt	will	refer	to	either	the	old	file	or	the	new	one.	However,
POSIX	does	not	guarantee	that	the	entire	rename	operation	will	be	atomic.	In
particular,	POSIX	allows	implementations	in	which	there	is	a	window	in	which	a
crash	could	result	in	a	state	where	both	doc.txt	and	#doc.txt#	refer	to	the	same,	new
document.

a.	 How	should	a	text-editing	application	react	if,	on	startup,	it	sees	both	doc.txt	and
doc.txt	and	(i)	both	refer	the	same	file	or	(ii)	each	refers	to	a	file	with	different
contents?

b.	 Why	might	POSIX	permit	this	corner	case	(where	we	may	end	up	with	two
names	that	refer	to	the	same	file)	to	exist?

c.	 Explain	how	an	FFS-based	file	system	without	transactions	could	use	the	“ad
hoc”	approach	discussed	in	Section	14.1.1	to	ensure	that	(i)	doc.txt	always	refers
to	either	the	old	or	new	file,	(ii)	the	new	file	is	never	lost	–	it	is	always	available
as	at	least	one	of	doc.txt	or	#doc.txt#,	and	(iii)	there	is	some	window	where	the
new	file	may	be	accessed	as	both	doc.txt	and	#doc.txt#.

d.	 Section	14.1.1	discusses	three	reasons	that	few	modern	file	systems	use	the	“ad-
hoc”	approach.	However,	many	text	editors	still	do	something	like	this.	Why
have	the	three	issues	had	less	effect	on	applications	like	text	editors	than	on	file
systems?

2.	 Above,	we	defined	two-phase	locking	for	basic	mutual	exclusion	locks.	Extend	the
definition	of	two-phase	locking	for	systems	that	use	readers-writers	locks.

3.	 Suppose	that	x	and	y	represent	the	number	of	hours	two	managers	have	assigned	you
to	work	on	each	of	two	tasks	with	a	constraint	that	x	+	y	≤	40.	Earlier,	we	showed
that	snapshot	isolation	could	allow	one	transaction	to	update	x	and	another
concurrent	transaction	to	update	y	in	a	way	that	would	violate	the	constraint	x	+	y	≤
40.	Is	such	an	anomaly	possible	under	serializability?	Why	or	why	not?

4.	 Suppose	you	have	transactional	storage	system	tStore	that	allows	you	to	read	and
write	fixed-sized	2048-byte	blocks	of	data	within	transactions,	and	you	run	the	code
in	Figure	14.12.

Figure	14.12:	Sample	code	for	a	transactional	storage	system.

The	system	crashes	at	the	point	indicated	above.

a.	 Assume	that	ALL_ONES,	ALL_TWOS,	etc.	are	each	arrays	of	2048	bytes	with
the	indicated	value.	Assume	that	when	the	program	is	started,	all	blocks	in	the
tStore	have	the	value	ALL_ZEROS.

Just	before	the	system	crashes,	what	is	the	value	of	b1	and	what	is	the	value	of
b2?

b.	 In	the	program	above,	just	before	the	system	crashes,	what	is	the	value	of	b3	and
what	is	the	value	of	b4?

c.	 Suppose	that	after	the	program	above	runs	and	crashes	at	the	indicated	point.
After	the	system	restarts	and	completes	recovery	and	all	write-backs,	what	are
the	values	stored	in	each	of	blocks	1,	2,	3,	4,	and	5	of	the	tStore?

5.	 Go	to	an	on-line	site	that	sells	hard	disk	drives,	and	find	the	largest	capacity	disk	you
can	buy	for	less	than	$200.	Now,	track	down	the	spec	sheet	for	the	disk	and,	given
the	disk’s	specified	bit	error	rate	(or	unrecoverable	read	rate),	estimate	the	probability
of	encountering	an	error	if	you	read	every	sector	on	the	disk	once.

6.	 Suppose	we	define	a	RAID’s	access	cost	as	the	number	disk	accesses	divided	by	the
number	of	data	blocks	read	or	written.	For	each	of	following	configurations	and
workloads,	what	is	the	access	cost?

a.	 Workload:	a	series	of	random	1-block	writes
Configuration:	mirroring

b.	 Workload:	a	series	of	random	1-block	writes	
Configuration:	distributed	parity

c.	 Workload:	a	series	of	random	1-block	reads
Configuration:	mirroring

d.	 Workload:	a	series	of	random	1-block	reads
Configuration:	distributed	parity

e.	 Workload:	a	series	of	random	1-block	reads
Configuration:	distributed	parity	with	group	size	G	and	one	failed	disk

f.	 Workload:	a	long	sequential	write	
Configuration:	mirroring

g.	 Workload:	a	long	sequential	write	
Configuration:	distributed	parity	with	a	group	size	of	G

Figure	14.13:	Example	of	a	poor	design	choice	for	the	content	of	redundant	blocks.

7.	 Suppose	that	an	engineer	who	has	not	taken	this	class	tries	to	create	a	disk	array	with
dual-redundancy	but	instead	of	using	an	appropriate	error	correcting	code	such	as
Reed-Solomon,	the	engineer	simply	stores	a	copy	of	each	parity	block	on	two	disks,
as	in	Figure	14.13.

Give	an	example	of	how	a	two-disk	failure	can	cause	a	stripe	to	lose	data	in	such	a
system.	Explain	why	data	cannot	be	reconstructed	in	that	case.

8.	 Some	RAID	systems	improve	reliability	with	intra-disk	redundancy	to	protect	against
non-recoverable	read	failures.	For	example,	each	individual	disk	on	such	a	system
might	reserve	one	4KB	parity	block	in	every	32	KB	extent	and	then	store	28KB	(7
4KB	blocks)	of	data	and	4	KB	(1	4KB	block)	of	parity	in	each	extent.

In	this	arrangement,	each	data	block	is	protected	by	two	parity	blocks:	one	interdisk
parity	block	on	a	different	disk	and	one	intradisk	parity	block	on	the	same	disk.

This	approach	may	reduce	a	disk’s	effective	non-recoverable	read	error	rate	because
if	one	block	in	an	extent	is	lost,	it	can	be	recovered	from	the	remaining	sectors	and
parity	on	the	disk.	Of	course,	if	multiple	blocks	in	the	same	extent	are	lost,	the	system
must	rely	on	redundancy	from	other	disks.

a.	 Assuming	that	a	disk’s	non-recoverable	read	errors	are	independent	and	occur	at
a	rate	of	one	lost	512	byte	sector	per	1015	bits	read,	what	is	the	effective	non-
recoverable	read	error	rate	if	the	operating	system	stores	one	parity	block	per
seven	data	blocks	on	the	disk?

Hint:	You	may	find	the	bc	or	dc	arbitrary-precision	calculators	useful.	These
programs	are	standard	in	many	Unix,	Linux,	and	OSX	distributions.	See	the	man
pages	for	instructions.

b.	 Why	is	the	above	likely	to	significantly	overstate	the	impact	of	intra-disk
redundancy?

9.	 Many	RAID	implementations	allow	on-line	repair	in	which	the	system	continues	to
operate	after	a	disk	failure,	while	a	new	empty	disk	is	inserted	to	replace	the	failed
disk,	and	while	regenerating	and	copying	data	to	the	new	disk.

Sketch	a	design	for	a	2-disk,	mirrored	RAID	that	allows	the	system	to	remain	on-line
during	reconstruction,	while	still	ensuring	that	when	the	data	copying	is	done,	the
new	disk	is	properly	reconstructed	(i.e.,	it	is	an	exact	copy	of	other	disk.)

In	particular,	specify	(1)	what	is	done	by	a	recovery	thread,	(2)	what	is	done	on	a	read
during	recovery,	and	(3)	what	is	done	on	a	write	during	recovery.	Also	explain	why
your	system	will	operate	correctly	even	if	a	crash	occurs	in	the	middle	of
reconstruction.

10.	 Suppose	you	are	willing	to	sacrifice	no	more	than	1%	of	a	disk’s	bandwidth	to
scrubbing.	What	is	maximum	frequency	at	which	you	could	scrub	a	1	TB	disk	with
100	MB/s	bandwidth?

11.	 Suppose	a	3	TB	disk	in	a	mirrored	RAID	system	crashes.	Assuming	the	disks	used	in
the	system	can	sustain	100MB/s	sequential	bandwidth,	what	is	the	minimum	mean
time	to	repair	that	can	be	achieved?	Why	might	a	system	be	configured	to	perform

recovery	slower	than	this?

Size

Platters/Heads 2/4

Capacity 320	GB

Performance

Spindle	speed 7200	RPM

Average	seek	time	read/write 10.5	ms/	12.0	ms

Maximum	seek	time 19	ms

Track-to-track	seek	time 1	ms

Transfer	rate	(surface	to	buffer) 54–128	MB/s

Transfer	rate	(buffer	to	host) 375	MB/s

Buffer	memory 16	MB

Reliability

Nonrecoverable	read	errors	per	sectors	read 1	sector	per	1014

MTBF 600,000	hours

Product	life 5	years	or	20,000	power-on	hours

Power

Typical 16.35	W

Idle 11.68	W

Figure	14.14:	Disk	specification

12.	 Suppose	I	have	a	disk	such	as	the	one	described	in	Figure	14.14	and	a	workload
consisting	of	a	continuous	stream	of	updates	to	random	blocks	of	the	disk.

Assume	that	the	disk	scheduler	uses	the	SCAN/Elevator	algorithm.

a.	 What	is	the	throughput	in	number	of	requests	per	second	if	the	application	issues
one	request	at	a	time	and	waits	until	the	block	is	safely	stored	on	disk	before
issuing	the	next	request?

b.	 What	is	the	throughput	in	number	of	requests	per	second	if	the	application
buffers	100	MB	of	writes,	issues	those	100	MB	worth	of	writes	to	disk	as	a
batch,	and	waits	until	those	writes	are	safely	on	disk	before	issuing	the	next
100	MB	batch	of	requests?

Suppose	that	we	must	ensure	that	–	even	in	the	event	of	a	crash	–	the	ith	update
can	be	observed	by	a	read	after	crash	recovery	only	if	all	updates	that	preceded
the	ith	update	can	be	read	after	the	crash.	That	is,	we	have	a	FIFO	property	for
updates	–	the	i+1’st	update	cannot	“finish”	until	the	ith	update	finishes.	(1)
Design	an	approach	to	get	good	performance	for	this	workload.	(2)	Explain	why
your	design	ensures	FIFO	even	if	crashes	occur.	(3)	Estimate	your	approach’s
throughput	in	number	of	requests	per	second.	(For	comparison	with	the	previous
part	of	the	problem,	your	solution	should	not	require	significantly	more	than
100MB	of	main-memory	buffer	space.)

c.	 Design	an	approach	to	get	good	performance	for	this	workload.	(Be	sure	to
explain	how	writes,	reads,	and	crash	recovery	work.)

d.	 Explain	why	your	design	ensures	FIFO	even	if	crashes	occur.

e.	 Estimate	your	approach’s	throughput	in	number	of	requests	per	second.

References

[1]	

Keith	Adams	and	Ole	Agesen.	A	comparison	of	software	and	hardware	techniques	for
x86	virtualization.	In	Proceedings	of	the	12th	International	conference	on
Architectural	Support	for	Programming	Languages	and	Operating	Systems,	ASPLOS-
XII,	pages	2–13,	2006.

[2]	
Thomas	E.	Anderson,	Brian	N.	Bershad,	Edward	D.	Lazowska,	and	Henry	M.	Levy.
Scheduler	activations:	effective	kernel	support	for	the	user-level	management	of
parallelism.	ACM	Trans.	Comput.	Syst.,	10(1):53–79,	February	1992.

[3]	

Thomas	E.	Anderson,	Henry	M.	Levy,	Brian	N.	Bershad,	and	Edward	D.	Lazowska.
The	interaction	of	architecture	and	operating	system	design.	In	Proceedings	of	the
fourth	International	conference	on	Architectural	Support	for	Programming	Languages
and	Operating	Systems,	ASPLOS-IV,	pages	108–120,	1991.

[4]	
Andrew	W.	Appel	and	Kai	Li.	Virtual	memory	primitives	for	user	programs.	In
Proceedings	of	the	fourth	International	conference	on	Architectural	Support	for
Programming	Languages	and	Operating	Systems,	ASPLOS-IV,	pages	96–107,	1991.

[5]	
Amittai	Aviram,	Shu-Chun	Weng,	Sen	Hu,	and	Bryan	Ford.	Efficient	system-enforced
deterministic	parallelism.	In	Proceedings	of	the	9th	USENIX	conference	on	Operating
Systems	Design	and	Implementation,	OSDI’10,	pages	1–16,	2010.

[6]	
Özalp	Babaoglu	and	William	Joy.	Converting	a	swap-based	system	to	do	paging	in	an
architecture	lacking	page-referenced	bits.	In	Proceedings	of	the	eighth	ACM
Symposium	on	Operating	Systems	Principles,	SOSP	’81,	pages	78–86,	1981.

[7]	

David	Bacon,	Joshua	Bloch,	Jeff	Bogda,	Cliff	Click,	Paul	Haahr,	Doug	Lea,	Tom	May,
Jan-Willem	Maessen,	Jeremy	Manson,	John	D.	Mitchell,	Kelvin	Nilsen,	Bill	Pugh,
and	Emin	Gun	Sirer.	The	“double-checked	locking	is	broken”	declaration.
http://www.cs.umd.	edu/~pugh/java/memoryModel/DoubleCheckedLocking.html.

[8]	

Gaurav	Banga,	Peter	Druschel,	and	Jeffrey	C.	Mogul.	Resource	containers:	a	new
facility	for	resource	management	in	server	systems.	In	Proceedings	of	the	third
USENIX	symposium	on	Operating	Systems	Design	and	Implementation,	OSDI	’99,
pages	45–58,	1999.

[9]	

Paul	Barham,	Boris	Dragovic,	Keir	Fraser,	Steven	Hand,	Tim	Harris,	Alex	Ho,	Rolf
Neugebauer,	Ian	Pratt,	and	Andrew	Warfield.	Xen	and	the	art	of	virtualization.	In
Proceedings	of	the	nineteenth	ACM	Symposium	on	Operating	Systems	Principles,
SOSP	’03,	pages	164–177,	2003.

[10]	 Blaise	Barney.	POSIX	threads	programming.
http://computing.llnl.gov/tutorials/pthreads/,	2013.

[11]	 Joel	F.	Bartlett.	A	nonstop	kernel.	In	Proceedings	of	the	eighth	ACM	Symposium	on
Operating	Systems	Principles,	SOSP	’81,	pages	22–29,	1981.

[12]	

Andrew	Baumann,	Paul	Barham,	Pierre-Evariste	Dagand,	Tim	Harris,	Rebecca	Isaacs,
Simon	Peter,	Timothy	Roscoe,	Adrian	Schüpbach,	and	Akhilesh	Singhania.	The
multikernel:	a	new	OS	architecture	for	scalable	multicore	systems.	In	Proceedings	of
the	22nd	ACM	Symposium	on	Operating	Systems	Principles,	SOSP	’09,	pages	29–44,
2009.

http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html

[13]	 A.	Bensoussan,	C.	T.	Clingen,	and	R.	C.	Daley.	The	multics	virtual	memory:	concepts
and	design.	Commun.	ACM,	15(5):308–318,	May	1972.

[14]	
Tom	Bergan,	Nicholas	Hunt,	Luis	Ceze,	and	Steven	D.	Gribble.	Deterministic	process
groups	in	dOS.	In	Proceedings	of	the	9th	USENIX	conference	on	Operating	Systems
Design	and	Implementation,	OSDI’10,	pages	1–16,	2010.

[15]	

B.	N.	Bershad,	S.	Savage,	P.	Pardyak,	E.	G.	Sirer,	M.	E.	Fiuczynski,	D.	Becker,
C.	Chambers,	and	S.	Eggers.	Extensibility	safety	and	performance	in	the	SPIN
operating	system.	In	Proceedings	of	the	fifteenth	ACM	Symposium	on	Operating
Systems	Principles,	SOSP	’95,	pages	267–283,	1995.

[16]	
Brian	N.	Bershad,	Thomas	E.	Anderson,	Edward	D.	Lazowska,	and	Henry	M.	Levy.
Lightweight	remote	procedure	call.	ACM	Trans.	Comput.	Syst.,	8(1):37–55,	February
1990.

[17]	
Brian	N.	Bershad,	Thomas	E.	Anderson,	Edward	D.	Lazowska,	and	Henry	M.	Levy.
User-level	interprocess	communication	for	shared	memory	multiprocessors.	ACM
Trans.	Comput.	Syst.,	9(2):175–198,	May	1991.

[18]	 Andrew	Birrell.	An	introduction	to	programming	with	threads.	Technical	Report	35,
Digital	Equipment	Corporation	Systems	Research	Center,	1991.

[19]	 Andrew	D.	Birrell	and	Bruce	Jay	Nelson.	Implementing	remote	procedure	calls.	ACM
Trans.	Comput.	Syst.,	2(1):39–59,	February	1984.

[20]	

Silas	Boyd-Wickizer,	Austin	T.	Clements,	Yandong	Mao,	Aleksey	Pesterev,	M.	Frans
Kaashoek,	Robert	Morris,	and	Nickolai	Zeldovich.	An	analysis	of	Linux	scalability	
many	cores.	In	Proceedings	of	the	9th	USENIX	conference	on	Operating	Systems
Design	and	Implementation,	OSDI’10,	pages	1–8,	2010.

[21]	
Lee	Breslau,	Pei	Cao,	Li	Fan,	Graham	Phillips,	and	Scott	Shenker.	Web	caching	and
Zipf-like	distributions:	evidence	and	implications.	In	INFOCOM,	pages	126–134,
1999.

[22]	 Thomas	C.	Bressoud	and	Fred	B.	Schneider.	Hypervisor-based	fault	tolerance.	ACM
Trans.	Comput.	Syst.,	14(1):80–107,	February	1996.

[23]	
Sergey	Brin	and	Lawrence	Page.	The	anatomy	of	a	large-scale	hypertextual	web
search	engine.	In	Proceedings	of	the	seventh	International	conference	on	the	World
Wide	Web,	WWW7,	pages	107–117,	1998.

[24]	 Max	Bruning.	ZFS	on-disk	data	walk	(or:	Where’s	my	data?).	In	OpenSolaris
Developer	Conference,	2008.

[25]	
Edouard	Bugnion,	Scott	Devine,	Kinshuk	Govil,	and	Mendel	Rosenblum.	Disco:
running	commodity	operating	systems	on	scalable	multiprocessors.	ACM	Trans.
Comput.	Syst.,	15(4):412–447,	November	1997.

[26]	 Brian	Carrier.	File	System	Forensic	Analysis.	Addison	Wesley	Professional,	2005.

[27]	

Miguel	Castro,	Manuel	Costa,	Jean-Philippe	Martin,	Marcus	Peinado,	Periklis
Akritidis,	Austin	Donnelly,	Paul	Barham,	and	Richard	Black.	Fast	byte-granularity
software	fault	isolation.	In	Proceedings	of	the	22nd	ACM	Symposium	on	Operating
Systems	Principles,	SOSP	’09,	pages	45–58,	2009.

[28]	
J.	Chapin,	M.	Rosenblum,	S.	Devine,	T.	Lahiri,	D.	Teodosiu,	and	A.	Gupta.	Hive:	fault
containment	for	shared-memory	multiprocessors.	In	Proceedings	of	the	fifteenth	ACM

Symposium	on	Operating	Systems	Principles,	SOSP	’95,	pages	12–25,	1995.

[29]	
Jeffrey	S.	Chase,	Henry	M.	Levy,	Michael	J.	Feeley,	and	Edward	D.	Lazowska.
Sharing	and	protection	in	a	single-address-space	operating	system.	ACM	Trans.
Comput.	Syst.,	12(4):271–307,	November	1994.

[30]	
J.	Bradley	Chen	and	Brian	N.	Bershad.	The	impact	of	operating	system	structure	on
memory	system	performance.	In	Proceedings	of	the	fourteenth	ACM	Symposium	on
Operating	Systems	Principles,	SOSP	’93,	pages	120–133,	1993.

[31]	 Peter	M.	Chen	and	Brian	D.	Noble.	When	virtual	is	better	than	real.	In	Proceedings	of
the	Eighth	Workshop	on	Hot	Topics	in	Operating	Systems,	HOTOS	’01,	2001.

[32]	 David	Cheriton.	The	V	distributed	system.	Commun.	ACM,	31(3):314–333,	March
1988.

[33]	
David	R.	Cheriton	and	Kenneth	J.	Duda.	A	caching	model	of	operating	system	kernel
functionality.	In	Proceedings	of	the	1st	USENIX	conference	on	Operating	Systems
Design	and	Implementation,	OSDI	’94,	1994.

[34]	 David	D.	Clark.	The	structuring	of	systems	using	upcalls.	In	Proceedings	of	the	tenth
ACM	Symposium	on	Operating	Systems	Principles,	SOSP	’85,	pages	171–180,	1985.

[35]	

Jeremy	Condit,	Edmund	B.	Nightingale,	Christopher	Frost,	Engin	Ipek,	Benjamin	Lee,
Doug	Burger,	and	Derrick	Coetzee.	Better	I/O	through	byte-addressable,	persistent
memory.	In	Proceedings	of	the	22nd	ACM	Symposium	on	Operating	Systems
Principles,	SOSP	’09,	pages	133–146,	2009.

[36]	 Fernando	J.	Corbató.	On	building	systems	that	will	fail.	Commun.	ACM,	34(9):72–81,
September	1991.

[37]	 Fernando	J.	Corbató	and	Victor	A.	Vyssotsky.	Introduction	and	overview	of	the
Multics	system.	AFIPS	Fall	Joint	Computer	Conference,	27(1):185–196,	1965.

[38]	 R.	J.	Creasy.	The	origin	of	the	VM/370	time-sharing	system.	IBM	J.	Res.	Dev.,
25(5):483–490,	September	1981.

[39]	

Michael	D.	Dahlin,	Randolph	Y.	Wang,	Thomas	E.	Anderson,	and	David	A.	Patterson.
Cooperative	caching:	using	remote	client	memory	to	improve	file	system	performance.
In	Proceedings	of	the	1st	USENIX	conference	on	Operating	Systems	Design	and
Implementation,	OSDI	’94,	1994.

[40]	 Robert	C.	Daley	and	Jack	B.	Dennis.	Virtual	memory,	processes,	and	sharing	in
Multics.	Commun.	ACM,	11(5):306–312,	May	1968.

[41]	
Wiebren	de	Jonge,	M.	Frans	Kaashoek,	and	Wilson	C.	Hsieh.	The	logical	disk:	a	new
approach	to	improving	file	systems.	In	Proceedings	of	the	fourteenth	ACM
Symposium	on	Operating	Systems	Principles,	SOSP	’93,	pages	15–28,	1993.

[42]	
Jeffrey	Dean	and	Sanjay	Ghemawat.	MapReduce:	simplified	data	processing	on	large
clusters.	In	Proceedings	of	the	6th	USENIX	Symposium	on	Operating	Systems	Design
&	Implementation,	OSDI’04,	2004.

[43]	 Peter	J.	Denning.	The	working	set	model	for	program	behavior.	Commun.	ACM,
11(5):323–333,	May	1968.

[44]	 P.J.	Denning.	Working	sets	past	and	present.	Software	Engineering,	IEEE	Transactions
on,	SE-6(1):64	–	84,	jan.	1980.

[45]	 Jack	B.	Dennis.	Segmentation	and	the	design	of	multiprogrammed	computer	systems.
J.	ACM,	12(4):589–602,	October	1965.

[46]	 Jack	B.	Dennis	and	Earl	C.	Van	Horn.	Programming	semantics	for	multiprogrammed
computations.	Commun.	ACM,	9(3):143–155,	March	1966.

[47]	 E.	W.	Dijkstra.	Solution	of	a	problem	in	concurrent	programming	control.	Commun.
ACM,	8(9):569–,	September	1965.

[48]	 Edsger	W.	Dijkstra.	The	structure	of	the	“THE”-multiprogramming	system.	Commun.
ACM,	11(5):341–346,	May	1968.

[49]	

Mihai	Dobrescu,	Norbert	Egi,	Katerina	Argyraki,	Byung-Gon	Chun,	Kevin	Fall,
Gianluca	Iannaccone,	Allan	Knies,	Maziar	Manesh,	and	Sylvia	Ratnasamy.
Routebricks:	exploiting	parallelism	to	scale	software	routers.	In	Proceedings	of	the
22nd	ACM	Symposium	on	Operating	Systems	Principles,	SOSP	’09,	pages	15–28,
2009.

[50]	 Alan	Donovan,	Robert	Muth,	Brad	Chen,	and	David	Sehr.	Portable	Native	Client
executables.	Technical	report,	Google,	2012.

[51]	 Fred	Douglis	and	John	Ousterhout.	Transparent	process	migration:	design	alternatives
and	the	Sprite	implementation.	Softw.	Pract.	Exper.,	21(8):757–785,	July	1991.

[52]	

Richard	P.	Draves,	Brian	N.	Bershad,	Richard	F.	Rashid,	and	Randall	W.	Dean.	Using
continuations	to	implement	thread	management	and	communication	in	operating
systems.	In	Proceedings	of	the	thirteenth	ACM	Symposium	on	Operating	Systems
Principles,	SOSP	’91,	pages	122–136,	1991.

[53]	 Peter	Druschel	and	Larry	L.	Peterson.	Fbufs:	a	high-bandwidth	cross-domain	transfer
facility.	SIGOPS	Oper.	Syst.	Rev.,	27(5):189–202,	December	1993.

[54]	
George	W.	Dunlap,	Samuel	T.	King,	Sukru	Cinar,	Murtaza	A.	Basrai,	and	Peter	M.
Chen.	ReVirt:	enabling	intrusion	analysis	through	virtual-machine	logging	and	replay.
SIGOPS	Oper.	Syst.	Rev.,	36(SI):211–224,	December	2002.

[55]	

Petros	Efstathopoulos,	Maxwell	Krohn,	Steve	VanDeBogart,	Cliff	Frey,	David	Ziegler,
Eddie	Kohler,	David	Mazières,	Frans	Kaashoek,	and	Robert	Morris.	Labels	and	event
processes	in	the	Asbestos	operating	system.	In	Proceedings	of	the	twentieth	ACM
Symposium	on	Operating	Systems	Principles,	SOSP	’05,	pages	17–30,	2005.

[56]	
D.	R.	Engler,	M.	F.	Kaashoek,	and	J.	O’Toole,	Jr.	Exokernel:	an	operating	system
architecture	for	application-level	resource	management.	In	Proceedings	of	the	fifteenth
ACM	Symposium	on	Operating	Systems	Principles,	SOSP	’95,	pages	251–266,	1995.

[57]	

Dawson	Engler,	David	Yu	Chen,	Seth	Hallem,	Andy	Chou,	and	Benjamin	Chelf.	Bugs
as	deviant	behavior:	a	general	approach	to	inferring	errors	in	systems	code.	In
Proceedings	of	the	eighteenth	ACM	Symposium	on	Operating	Systems	Principles,
SOSP	’01,	pages	57–72,	2001.

[58]	 R.	S.	Fabry.	Capability-based	addressing.	Commun.	ACM,	17(7):403–412,	July	1974.

[59]	
Jason	Flinn	and	M.	Satyanarayanan.	Energy-aware	adaptation	for	mobile	applications.
In	Proceedings	of	the	seventeenth	ACM	Symposium	on	Operating	Systems	Principles,
SOSP	’99,	pages	48–63,	1999.

[60]	

Christopher	Frost,	Mike	Mammarella,	Eddie	Kohler,	Andrew	de	los	Reyes,	Shant
Hovsepian,	Andrew	Matsuoka,	and	Lei	Zhang.	Generalized	file	system	dependencies.

In	Proceedings	of	twenty-first	ACM	Symposium	on	Operating	Systems	Principles,
SOSP	’07,	pages	307–320,	2007.

[61]	
Gregory	R.	Ganger,	Marshall	Kirk	McKusick,	Craig	A.	N.	Soules,	and	Yale	N.	Patt.
Soft	updates:	a	solution	to	the	metadata	update	problem	in	file	systems.	ACM	Trans.
Comput.	Syst.,	18(2):127–153,	May	2000.

[62]	 Simson	Garfinkel	and	Gene	Spafford.	Practical	Unix	and	Internet	security	(2nd	ed.).
O’Reilly	&	Associates,	Inc.,	1996.

[63]	

Tal	Garfinkel,	Ben	Pfaff,	Jim	Chow,	Mendel	Rosenblum,	and	Dan	Boneh.	Terra:	a
virtual	machine-based	platform	for	trusted	computing.	In	Proceedings	of	the
nineteenth	ACM	Symposium	on	Operating	Systems	Principles,	SOSP	’03,	pages	193–
206,	2003.

[64]	

Kirk	Glerum,	Kinshuman	Kinshumann,	Steve	Greenberg,	Gabriel	Aul,	Vince
Orgovan,	Greg	Nichols,	David	Grant,	Gretchen	Loihle,	and	Galen	Hunt.	Debugging	in
the	(very)	large:	ten	years	of	implementation	and	experience.	In	Proceedings	of	the
22nd	ACM	Symposium	on	Operating	Systems	Principles,	SOSP	’09,	pages	103–116,
2009.

[65]	 R.P.	Goldberg.	Survey	of	virtual	machine	research.	IEEE	Computer,	7(6):34–45,	June
1974.

[66]	

Kinshuk	Govil,	Dan	Teodosiu,	Yongqiang	Huang,	and	Mendel	Rosenblum.	Cellular
Disco:	resource	management	using	virtual	clusters	on	shared-memory	multiprocessors.
In	Proceedings	of	the	seventeenth	ACM	Symposium	on	Operating	Systems	Principles,
SOSP	’99,	pages	154–169,	1999.

[67]	
Jim	Gray.	The	transaction	concept:	virtues	and	limitations	(invited	paper).	In
Proceedings	of	the	seventh	International	conference	on	Very	Large	Data	Bases,	VLDB
’81,	pages	144–154,	1981.

[68]	 Jim	Gray.	Why	do	computers	stop	and	what	can	be	done	about	it?	Technical	Report
TR-85.7,	HP	Labs,	1985.

[69]	
Jim	Gray,	Paul	McJones,	Mike	Blasgen,	Bruce	Lindsay,	Raymond	Lorie,	Tom	Price,
Franco	Putzolu,	and	Irving	Traiger.	The	recovery	manager	of	the	System	R	database
manager.	ACM	Comput.	Surv.,	13(2):223–242,	June	1981.

[70]	 Jim	Gray	and	Andreas	Reuter.	Transaction	Processing:	Concepts	and	Techniques.
Morgan	Kaufmann,	1993.

[71]	 Jim	Gray	and	Daniel	P.	Siewiorek.	High-availability	computer	systems.	Computer,
24(9):39–48,	September	1991.

[72]	

Diwaker	Gupta,	Sangmin	Lee,	Michael	Vrable,	Stefan	Savage,	Alex	C.	Snoeren,
George	Varghese,	Geoffrey	M.	Voelker,	and	Amin	Vahdat.	Difference	engine:
harnessing	memory	redundancy	in	virtual	machines.	In	Proceedings	of	the	8th
USENIX	conference	on	Operating	Systems	Design	and	Implementation,	OSDI’08,
pages	309–322,	2008.

[73]	 Hadoop.	http://hadoop.apache.org.

[74]	
Steven	M.	Hand.	Self-paging	in	the	Nemesis	operating	system.	In	Proceedings	of	the
third	USENIX	Symposium	on	Operating	Systems	Design	and	Implementation,	OSDI
’99,	pages	73–86,	1999.

[75]	 Per	Brinch	Hansen.	The	nucleus	of	a	multiprogramming	system.	Commun.	ACM,
13(4):238–241,	April	1970.

[76]	
Mor	Harchol-Balter	and	Allen	B.	Downey.	Exploiting	process	lifetime	distributions
for	dynamic	load	balancing.	In	Proceedings	of	the	fifteenth	ACM	Symposium	on
Operating	Systems	Principles,	SOSP	’95,	pages	236–,	1995.

[77]	

Kieran	Harty	and	David	R.	Cheriton.	Application-controlled	physical	memory	using
external	page-cache	management.	In	Proceedings	of	the	fifth	International	conference
on	Architectural	Support	for	Programming	Languages	and	Operating	Systems,
ASPLOS-V,	pages	187–197,	1992.

[78]	 Rober	Haskin,	Yoni	Malachi,	and	Gregory	Chan.	Recovery	management	in
QuickSilver.	ACM	Trans.	Comput.	Syst.,	6(1):82–108,	February	1988.

[79]	 John	L.	Hennessy	and	David	A.	Patterson.	Computer	Architecture	-	A	Quantitative
Approach	(5.	ed.).	Morgan	Kaufmann,	2012.

[80]	 Maurice	Herlihy.	Wait-free	synchronization.	ACM	Trans.	Program.	Lang.	Syst.,
13(1):124–149,	January	1991.

[81]	 Maurice	Herlihy	and	Nir	Shavit.	The	Art	of	Multiprocessor	Programming.	Morgan
Kaufmann,	2008.

[82]	 Dave	Hitz,	James	Lau,	and	Michael	Malcolm.	File	system	design	for	an	NFS	file
server	appliance.	Technical	Report	3002,	Network	Appliance,	1995.

[83]	 C.	A.	R.	Hoare.	Monitors:	An	operating	system	structuring	concept.	Communications
of	the	ACM,	17:549–557,	1974.

[84]	 C.	A.	R.	Hoare.	Communicating	sequential	processes.	Commun.	ACM,	21(8):666–
677,	August	1978.

[85]	 C.	A.	R.	Hoare.	The	emperor’s	old	clothes.	Commun.	ACM,	24(2):75–83,	February
1981.

[86]	
Thomas	R.	Horsley	and	William	C.	Lynch.	Pilot:	A	software	engineering	case	study.	
Proceedings	of	the	4th	International	conference	on	Software	engineering,	ICSE	’79,
pages	94–99,	1979.

[87]	 Raj	Jain.	The	Art	of	Computer	Systems	Performance	Analysis.	John	Wiley	&	Sons,
1991.

[88]	

Asim	Kadav	and	Michael	M.	Swift.	Understanding	modern	device	drivers.	In
Proceedings	of	the	seventeenth	international	conference	on	Architectural	Support	for
Programming	Languages	and	Operating	Systems,	ASPLOS	’12,	pages	87–98,	New
York,	NY,	USA,	2012.	ACM.

[89]	
Paul	A.	Karger,	Mary	Ellen	Zurko,	Douglas	W.	Bonin,	Andrew	H.	Mason,	and
Clifford	E.	Kahn.	A	retrospective	on	the	VAX	VMM	security	kernel.	IEEE	Trans.
Softw.	Eng.,	17(11):1147–1165,	November	1991.

[90]	
Yousef	A.	Khalidi	and	Michael	N.	Nelson.	Extensible	file	systems	in	Spring.	In
Proceedings	of	the	fourteenth	ACM	Symposium	on	Operating	Systems	Principles,
SOSP	’93,	pages	1–14,	1993.

[91]	

Gerwin	Klein,	Kevin	Elphinstone,	Gernot	Heiser,	June	Andronick,	David	Cock,	Philip
Derrin,	Dhammika	Elkaduwe,	Kai	Engelhardt,	Rafal	Kolanski,	Michael	Norrish,
Thomas	Sewell,	Harvey	Tuch,	and	Simon	Winwood.	sel4:	formal	verification	of	an

OS	kernel.	In	Proceedings	of	the	ACM	SIGOPS	22nd	Symposium	on	Operating
Systems	Principles,	SOSP	’09,	pages	207–220,	2009.

[92]	 L.	Kleinrock	and	R.	R.	Muntz.	Processor	sharing	queueing	models	of	mixed
scheduling	disciplines	for	time	shared	system.	J.	ACM,	19(3):464–482,	July	1972.

[93]	
Leonard	Kleinrock.	Queueing	Systems,	Volume	II:	Computer	Applications.	Wiley
Interscience,	1976.

[94]	 H.	T.	Kung	and	John	T.	Robinson.	On	optimistic	methods	for	concurrency	control.
ACM	Trans.	Database	Syst.,	6(2):213–226,	June	1981.

[95]	 Leslie	Lamport.	A	fast	mutual	exclusion	algorithm.	ACM	Trans.	Comput.	Syst.,
5(1):1–11,	January	1987.

[96]	 B.	W.	Lampson.	Hints	for	computer	system	design.	IEEE	Softw.,	1(1):11–28,	January
1984.

[97]	 Butler	Lampson	and	Howard	Sturgis.	Crash	recovery	in	a	distributed	data	storage
system.	Technical	report,	Xerox	Palo	Alto	Research	Center,	1979.

[98]	 Butler	W.	Lampson	and	David	D.	Redell.	Experience	with	processes	and	monitors	in
Mesa.	Commun.	ACM,	23(2):105–117,	February	1980.

[99]	 Butler	W.	Lampson	and	Howard	E.	Sturgis.	Reflections	on	an	operating	system
design.	Commun.	ACM,	19(5):251–265,	May	1976.

[100]	 James	Larus	and	Galen	Hunt.	The	Singularity	system.	Commun.	ACM,	53(8):72–79,
August	2010.

[101]	 Hugh	C.	Lauer	and	Roger	M.	Needham.	On	the	duality	of	operating	system	structures.
In	Operating	Systems	Review,	pages	3–19,	1979.

[102]	
Edward	D.	Lazowska,	John	Zahorjan,	G.	Scott	Graham,	and	Kenneth	C.	Sevcik.
Quantitative	system	performance:	computer	system	analysis	using	queueing	network
models.	Prentice-Hall,	Inc.,	1984.

[103]	
Will	E.	Leland,	Murad	S.	Taqqu,	Walter	Willinger,	and	Daniel	V.	Wilson.	On	the	self-
similar	nature	of	Ethernet	traffic	(extended	version).	IEEE/ACM	Trans.	Netw.,	2(1):1–
15,	February	1994.

[104]	 N.	G.	Leveson	and	C.	S.	Turner.	An	investigation	of	the	Therac-25	accidents.Computer,	26(7):18–41,	July	1993.

[105]	 H.	M.	Levy	and	P.	H.	Lipman.	Virtual	memory	management	in	the	VAX/VMS
operating	system.	Computer,	15(3):35–41,	March	1982.

[106]	 J.	Liedtke.	On	micro-kernel	construction.	In	Proceedings	of	the	fifteenth	ACMSymposium	on	Operating	Systems	Principles,	SOSP	’95,	pages	237–250,	1995.

[107]	 John	Lions.	Lions’	Commentary	on	UNIX	6th	Edition,	with	Source	Code.	Peer-to-PeerCommunications,	1996.

[108]	 J.	S.	Liptay.	Structural	aspects	of	the	System/360	model	85:	ii	the	cache.	IBM	Syst.	J.,
7(1):15–21,	March	1968.

[109]	

David	E.	Lowell,	Subhachandra	Chandra,	and	Peter	M.	Chen.	Exploring	failure
transparency	and	the	limits	of	generic	recovery.	In	Proceedings	of	the	4th	conference
on	Symposium	on	Operating	Systems	Design	and	Implementation,	OSDI’00,	pages
20–20,	2000.

[110]	 David	E.	Lowell	and	Peter	M.	Chen.	Free	transactions	with	Rio	Vista.	In	Proceedings
of	the	sixteenth	ACM	Symposium	on	Operating	Systems	Principles,	SOSP	’97,	pages
92–101,	1997.

[111]	 P.	McKenney.	Is	parallel	programming	hard,	and,	if	so,	what	can	be	done	about	it?
http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.2011.05.30a.pdf.

[112]	
Paul	E.	McKenney,	Dipankar	Sarma,	Andrea	Arcangeli,	Andi	Kleen,	Orran	Krieger,
and	Rusty	Russell.	Read-copy	update.	In	Ottawa	Linux	Symposium,	pages	338–367,
June	2002.

[113]	 Marshall	K.	McKusick,	William	N.	Joy,	Samuel	J.	Leffler,	and	Robert	S.	Fabry.	A	fast
file	system	for	UNIX.	ACM	Trans.	Comput.	Syst.,	2(3):181–197,	August	1984.

[114]	
Marshall	Kirk	McKusick,	Keith	Bostic,	Michael	J.	Karels,	and	John	S.	Quarterman.
The	design	and	implementation	of	the	4.4BSD	operating	system.	Addison	Wesley
Longman	Publishing	Co.,	Inc.,	1996.

[115]	
John	M.	Mellor-Crummey	and	Michael	L.	Scott.	Algorithms	for	scalable
synchronization	on	shared-memory	multiprocessors.	ACM	Trans.	Comput.	Syst.,
9(1):21–65,	February	1991.

[116]	 Scott	Meyers	and	Andrei	Alexandrescu.	C++	and	the	perils	of	double-checked
locking.	Dr.	Dobbs	Journal,	2004.

[117]	 Jeffrey	C.	Mogul	and	K.	K.	Ramakrishnan.	Eliminating	receive	livelock	in	an
interrupt-driven	kernel.	ACM	Trans.	Comput.	Syst.,	15(3):217–252,	August	1997.

[118]	
Jeffrey	C.	Mogul,	Richard	F.	Rashid,	and	Michael	J.	Accetta.	The	packet	filter:	An
efficient	mechanism	for	user-level	network	code.	In	In	the	Proceedings	of	the	eleventh
ACM	Symposium	on	Operating	Systems	Principles,	pages	39–51,	1987.

[119]	
C.	Mohan,	Don	Haderle,	Bruce	Lindsay,	Hamid	Pirahesh,	and	Peter	Schwarz.	ARIES:
a	transaction	recovery	method	supporting	fine-granularity	locking	and	partial	rollbacks
using	write-ahead	logging.	ACM	Trans.	Database	Syst.,	17(1):94–162,	March	1992.

[120]	 Gordon	E.	Moore.	Cramming	more	components	onto	integrated	circuits.	Electronics,
38(8):114–117,	1965.

[121]	

Madanlal	Musuvathi,	Shaz	Qadeer,	Thomas	Ball,	Gerard	Basler,
Piramanayagam	Arumuga	Nainar,	and	Iulian	Neamtiu.	Finding	and	reproducing
Heisenbugs	in	concurrent	programs.	In	Proceedings	of	the	8th	USENIX	conference	on
Operating	Systems	Design	and	Implementation,	OSDI’08,	pages	267–280,	2008.

[122]	 Kai	Nagel	and	Michael	Schreckenberg.	A	cellular	automaton	model	for	freeway
traffic.	J.	Phys.	I	France,	1992.

[123]	
George	C.	Necula	and	Peter	Lee.	Safe	kernel	extensions	without	run-time	checking.	
Proceedings	of	the	second	USENIX	Symposium	on	Operating	Systems	Design	and
Implementation,	OSDI	’96,	pages	229–243,	1996.

[124]	 Edmund	B.	Nightingale,	Kaushik	Veeraraghavan,	Peter	M.	Chen,	and	Jason	Flinn.
Rethink	the	sync.	ACM	Trans.	Comput.	Syst.,	26(3):6:1–6:26,	September	2008.

[125]	 Elliott	I.	Organick.	The	Multics	system:	an	examination	of	its	structure.	MIT	Press,
1972.

[126]	

Steven	Osman,	Dinesh	Subhraveti,	Gong	Su,	and	Jason	Nieh.	The	design	and
implementation	of	Zap:	a	system	for	migrating	computing	environments.	In

Proceedings	of	the	fifth	USENIX	Symposium	on	Operating	Systems	Design	and
Implementation,	OSDI	’02,	pages	361–376,	2002.

[127]	
John	Ousterhout.	Scheduling	techniques	for	concurrent	systems.	In	Proceedings	of
Third	International	Conference	on	Distributed	Computing	Systems,	pages	22–30,
1982.

[128]	 John	Ousterhout.	Why	aren’t	operating	systems	getting	faster	as	fast	as	hardware?	In
Proceedings	USENIX	Conference,	pages	247–256,	1990.

[129]	
John	Ousterhout.	Why	threads	are	a	bad	idea	(for	most	purposes).	In	USENIX	Winter
Technical	Conference,	1996.

[130]	
Vivek	S.	Pai,	Peter	Druschel,	and	Willy	Zwaenepoel.	Flash:	an	efficient	and	portable
web	server.	In	Proceedings	of	the	annual	conference	on	USENIX	Annual	Technical
Conference,	ATEC	’99,	1999.

[131]	
Vivek	S.	Pai,	Peter	Druschel,	and	Willy	Zwaenepoel.	IO-lite:	a	unified	I/O	buffering
and	caching	system.	In	Proceedings	of	the	third	USENIX	Symposium	on	Operating
Systems	Design	and	Implementation,	OSDI	’99,	pages	15–28,	1999.

[132]	
David	A.	Patterson,	Garth	Gibson,	and	Randy	H.	Katz.	A	case	for	redundant	arrays	of
inexpensive	disks	(RAID).	In	Proceedings	of	the	1988	ACM	SIGMOD	International
conference	on	Management	of	Data,	SIGMOD	’88,	pages	109–116,	1988.

[133]	
L.	Peterson,	N.	Hutchinson,	S.	O’Malley,	and	M.	Abbott.	RPC	in	the	x-Kernel:
evaluating	new	design	techniques.	In	Proceedings	of	the	twelfth	ACM	Symposium	on
Operating	Systems	Principles,	SOSP	’89,	pages	91–101,	1989.

[134]	 Jonathan	Pincus	and	Brandon	Baker.	Beyond	stack	smashing:	recent	advances	inexploiting	buffer	overruns.	IEEE	Security	and	Privacy,	2(4):20–27,	July	2004.

[135]	
Eduardo	Pinheiro,	Wolf-Dietrich	Weber,	and	Luiz	André	Barroso.	Failure	trends	in	a
large	disk	drive	population.	In	Proceedings	of	the	5th	USENIX	conference	on	File	and
Storage	Technologies,	FAST	’07,	pages	2–2,	2007.

[136]	

Vijayan	Prabhakaran,	Lakshmi	N.	Bairavasundaram,	Nitin	Agrawal,	Haryadi	S.
Gunawi,	Andrea	C.	Arpaci-Dusseau,	and	Remzi	H.	Arpaci-Dusseau.	IRON	file
systems.	In	Proceedings	of	the	twentieth	ACM	Symposium	on	Operating	Systems
Principles,	SOSP	’05,	pages	206–220,	2005.

[137]	

Richard	Rashid,	Robert	Baron,	Alessandro	Forin,	David	Golub,	Michael	Jones,	Daniel
Julin,	Douglas	Orr,	and	Richard	Sanzi.	Mach:	A	foundation	for	open	systems.	In
Proceedings	of	the	Second	Workshop	on	Workstation	Operating	Systems(WWOS2),
1989.

[138]	

Richard	F.	Rashid,	Avadis	Tevanian,	Michael	Young,	David	B.	Golub,	Robert	V.
Baron,	David	L.	Black,	William	J.	Bolosky,	and	Jonathan	Chew.	Machine-independent
virtual	memory	management	for	paged	uniprocessor	and	multiprocessor	architectures.
IEEE	Trans.	Computers,	37(8):896–907,	1988.

[139]	 E.S.	Raymond.	The	Cathedral	and	the	Bazaar:	Musings	On	Linux	And	Open	Source
By	An	Accidental	Revolutionary.	O’Reilly	Series.	O’Reilly,	2001.

[140]	
David	D.	Redell,	Yogen	K.	Dalal,	Thomas	R.	Horsley,	Hugh	C.	Lauer,	William	C.
Lynch,	Paul	R.	McJones,	Hal	G.	Murray,	and	Stephen	C.	Purcell.	Pilot:	an	operating
system	for	a	personal	computer.	Commun.	ACM,	23(2):81–92,	February	1980.

[141]	 Dennis	M.	Ritchie	and	Ken	Thompson.	The	UNIX	time-sharing	system.	Commun.
ACM,	17(7):365–375,	July	1974.

[142]	 Mendel	Rosenblum	and	John	K.	Ousterhout.	The	design	and	implementation	of	a	log-
structured	file	system.	ACM	Trans.	Comput.	Syst.,	10(1):26–52,	February	1992.

[143]	 Chris	Ruemmler	and	John	Wilkes.	An	introduction	to	disk	drive	modeling.	Computer,
27(3):17–28,	March	1994.

[144]	 J.	H.	Saltzer,	D.	P.	Reed,	and	D.	D.	Clark.	End-to-end	arguments	in	system	design.ACM	Trans.	Comput.	Syst.,	2(4):277–288,	November	1984.

[145]	
Jerome	H.	Saltzer.	Protection	and	the	control	of	information	sharing	in	Multics.
Commun.	ACM,	17(7):388–402,	July	1974.

[146]	
M.	Satyanarayanan,	Henry	H.	Mashburn,	Puneet	Kumar,	David	C.	Steere,	and
James	J.	Kistler.	Lightweight	recoverable	virtual	memory.	ACM	Trans.	Comput.	Syst.,
12(1):33–57,	February	1994.

[147]	
Stefan	Savage,	Michael	Burrows,	Greg	Nelson,	Patrick	Sobalvarro,	and	Thomas
Anderson.	Eraser:	a	dynamic	data	race	detector	for	multithreaded	programs.	ACM
Trans.	Comput.	Syst.,	15(4):391–411,	November	1997.

[148]	
Bianca	Schroeder	and	Garth	A.	Gibson.	Disk	failures	in	the	real	world:	what	does	an
MTTF	of	1,000,000	hours	mean	to	you?	In	Proceedings	of	the	5th	USENIX
conference	on	File	and	Storage	Technologies,	FAST	’07,	2007.

[149]	 Bianca	Schroeder	and	Mor	Harchol-Balter.	Web	servers	under	overload:	How
scheduling	can	help.	ACM	Trans.	Internet	Technol.,	6(1):20–52,	February	2006.

[150]	
Michael	D.	Schroeder,	David	D.	Clark,	and	Jerome	H.	Saltzer.	The	Multics	kernel
design	project.	In	Proceedings	of	the	sixth	ACM	Symposium	on	Operating	Systems
Principles,	SOSP	’77,	pages	43–56,	1977.

[151]	 Michael	D.	Schroeder	and	Jerome	H.	Saltzer.	A	hardware	architecture	for
implementing	protection	rings.	Commun.	ACM,	15(3):157–170,	March	1972.

[152]	 D.	P.	Siewiorek.	Architecture	of	fault-tolerant	computers.	Computer,	17(8):9–18,August	1984.
[153]	 E.	H.	Spafford.	Crisis	and	aftermath.	Commun.	ACM,	32(6):678–687,	June	1989.
[154]	 Structured	Query	Language	(SQL).	http://en.wikipedia.org/wiki/SQL.

[155]	 Michael	Stonebraker.	Operating	system	support	for	database	management.	Commun.
ACM,	24(7):412–418,	July	1981.

[156]	
Michael	M.	Swift,	Muthukaruppan	Annamalai,	Brian	N.	Bershad,	and	Henry	M.	Levy.
Recovering	device	drivers.	ACM	Trans.	Comput.	Syst.,	24(4):333–360,	November
2006.

[157]	 K.	Thompson.	Unix	implementation.	Bell	System	Technical	Journal,	57:1931–1946,1978.

[158]	 Ken	Thompson.	Reflections	on	trusting	trust.	Commun.	ACM,	27(8):761–763,	August
1984.

[159]	 Paul	Tyma.	Thousands	of	threads	and	blocking	i/o.http://www.mailinator.com/tymaPaulMultithreaded.pdf,	2008.
Robbert	van	Renesse.	Goal-oriented	programming,	or	composition	using	events,	or

[160]	 threads	considered	harmful.	In	ACM	SIGOPS	European	Workshop	on	Support	for
Composing	Distributed	Applications,	pages	82–87,	1998.

[161]	 Joost	S.	M.	Verhofstad.	Recovery	techniques	for	database	systems.	ACM	Comput.
Surv.,	10(2):167–195,	June	1978.

[162]	

Michael	Vrable,	Justin	Ma,	Jay	Chen,	David	Moore,	Erik	Vandekieft,	Alex	C.
Snoeren,	Geoffrey	M.	Voelker,	and	Stefan	Savage.	Scalability,	fidelity,	and
containment	in	the	Potemkin	virtual	honeyfarm.	In	Proceedings	of	the	twentieth	ACM
Symposium	on	Operating	Systems	Principles,	SOSP	’05,	pages	148–162,	2005.

[163]	
Robert	Wahbe,	Steven	Lucco,	Thomas	E.	Anderson,	and	Susan	L.	Graham.	Efficient
software-based	fault	isolation.	In	Proceedings	of	the	fourteenth	ACM	Symposium	on
Operating	Systems	Principles,	SOSP	’93,	pages	203–216,	1993.

[164]	 Carl	A.	Waldspurger.	Memory	resource	management	in	VMware	ESX	server.	SIGOPS
Oper.	Syst.	Rev.,	36(SI):181–194,	December	2002.

[165]	
Andrew	Whitaker,	Marianne	Shaw,	and	Steven	D.	Gribble.	Scale	and	performance	in
the	Denali	isolation	kernel.	In	Proceedings	of	the	fifth	USENIX	Symposium	on
Operating	Systems	Design	and	Implementation,	OSDI	’02,	pages	195–209,	2002.

[166]	
J.	Wilkes,	R.	Golding,	C.	Staelin,	and	T.	Sullivan.	The	HP	AutoRAID	hierarchical
storage	system.	In	Proceedings	of	the	fifteenth	ACM	Symposium	on	Operating
Systems	Principles,	SOSP	’95,	pages	96–108,	1995.

[167]	

Alec	Wolman,	M.	Voelker,	Nitin	Sharma,	Neal	Cardwell,	Anna	Karlin,	and	Henry	M.
Levy.	On	the	scale	and	performance	of	cooperative	web	proxy	caching.	In	Proceedings
of	the	seventeenth	ACM	Symposium	on	Operating	Systems	Principles,	SOSP	’99,
pages	16–31,	1999.

[168]	
W.	Wulf,	E.	Cohen,	W.	Corwin,	A.	Jones,	R.	Levin,	C.	Pierson,	and	F.	Pollack.	Hydra:
the	kernel	of	a	multiprocessor	operating	system.	Commun.	ACM,	17(6):337–345,	June
1974.

[169]	

Bennet	Yee,	David	Sehr,	Gregory	Dardyk,	J.	Bradley	Chen,	Robert	Muth,	Tavis
Ormandy,	Shiki	Okasaka,	Neha	Narula,	and	Nicholas	Fullagar.	Native	Client:	a
sandbox	for	portable,	untrusted	x86	native	code.	In	Proceedings	of	the	2009	30th	IEEE
Symposium	on	Security	and	Privacy,	SP	’09,	pages	79–93,	2009.

[170]	 Nickolai	Zeldovich,	Silas	Boyd-Wickizer,	Eddie	Kohler,	and	David	Mazières.	Making
information	flow	explicit	in	HiStar.	Commun.	ACM,	54(11):93–101,	November	2011.

Glossary

absolute	path
A	file	path	name	interpreted	relative	to	the	root	directory.

abstract	virtual	machine
The	interface	provided	by	an	operating	system	to	its	applications,	including	the
system	call	interface,	the	memory	abstraction,	exceptions,	and	signals.

ACID	properties
A	mnemonic	for	the	properties	of	a	transaction:	atomicity,	consistency,	isolation,	and
durability.

acquire-all/release-all
A	design	pattern	to	provide	atomicity	of	a	request	consisting	of	multiple	operations.
A	thread	acquires	all	of	the	locks	it	might	need	before	starting	to	process	a	request;	it
releases	the	locks	once	the	request	is	done.

address	translation
The	conversion	from	the	memory	address	the	program	thinks	it	is	referencing	to	the
physical	location	of	the	memory.

affinity	scheduling
A	scheduling	policy	where	tasks	are	preferentially	scheduled	onto	the	same	processor
they	had	previously	been	assigned,	to	improve	cache	reuse.

annual	disk	failure	rate
The	fraction	of	disks	expected	to	failure	each	year.

API
See:	application	programming	interface.

application	programming	interface
The	system	call	interface	provided	by	an	operating	system	to	applications.

arm
An	attachment	allowing	the	motion	of	the	disk	head	across	a	disk	surface.

arm	assembly
A	motor	plus	the	set	of	disk	arms	needed	to	position	a	disk	head	to	read	or	write	each
surface	of	the	disk.

arrival	rate
The	rate	at	which	tasks	arrive	for	service.

asynchronous	I/O
A	design	pattern	for	system	calls	to	allow	a	single-threaded	process	to	make	multiple
concurrent	I/O	requests.	When	the	process	issues	an	I/O	request,	the	system	call
returns	immediately.	The	process	later	on	receives	a	notification	when	the	I/O
completes.

asynchronous	procedure	call
A	procedure	call	where	the	caller	starts	the	function,	continues	execution
concurrently	with	the	called	function,	and	later	waits	for	the	function	to	complete.

atomic	commit
The	moment	when	a	transaction	commits	to	apply	all	of	its	updates.

atomic	memory
The	value	stored	in	memory	is	the	last	value	stored	by	one	of	the	processors,	not	a
mixture	of	the	updates	of	different	processors.

atomic	operations
Indivisible	operations	that	cannot	be	interleaved	with	or	split	by	other	operations.

atomic	read-modify-write	instruction
A	processor-specific	instruction	that	lets	one	thread	temporarily	have	exclusive	and
atomic	access	to	a	memory	location	while	the	instruction	executes.	Typically,	the
instruction	(atomically)	reads	a	memory	location,	does	some	simple	arithmetic
operation	to	the	value,	and	stores	the	result.

attribute	record
In	NTFS,	a	variable-size	data	structure	containing	either	file	data	or	file	metadata.

availability
The	percentage	of	time	that	a	system	is	usable.

average	seek	time
The	average	time	across	seeks	between	each	possible	pair	of	tracks	on	a	disk.

AVM
See:	abstract	virtual	machine.

backup
A	logically	or	physically	separate	copy	of	a	system’s	main	storage.

base	and	bound	memory	protection
An	early	system	for	memory	protection	where	each	process	is	limited	to	a	specific
range	of	physical	memory.

batch	operating	system
An	early	type	of	operating	system	that	efficiently	ran	a	queue	of	tasks.	While	one
program	was	running,	another	was	being	loaded	into	memory.

bathtub	model
A	model	of	disk	device	failure	combining	device	infant	mortality	and	wear	out.

Belady’s	anomaly
For	some	cache	replacement	policies	and	some	reference	patterns,	adding	space	to	a
cache	can	hurt	the	cache	hit	rate.

best	fit
A	storage	allocation	policy	that	attempts	to	place	a	newly	allocated	file	in	the
smallest	free	region	that	is	large	enough	to	hold	it.

BIOS
The	initial	code	run	when	an	Intel	x86	computer	boots;	acronym	for	Basic
Input/Output	System.	See	also:	Boot	ROM.

bit	error	rate
The	non-recoverable	read	error	rate.

bitmap
A	data	structure	for	block	allocation	where	each	block	is	represented	by	one	bit.

block	device
An	I/O	device	that	allows	data	to	be	read	or	written	in	fixed-sized	blocks.

block	group
A	set	of	nearby	disk	tracks.

block	integrity	metadata
Additional	data	stored	with	a	block	to	allow	the	software	to	validate	that	the	block
has	not	been	corrupted.

blocking	bounded	queue

A	bounded	queue	where	a	thread	trying	to	remove	an	item	from	an	empty	queue	will
wait	until	an	item	is	available,	and	a	thread	trying	to	put	an	item	into	a	full	queue	will
wait	until	there	is	room.

Bohrbugs
Bugs	that	are	deterministic	and	reproducible,	given	the	same	program	input.	See	also:
Heisenbugs.

Boot	ROM
Special	read-only	memory	containing	the	initial	instructions	for	booting	a	computer.

bootloader
Program	stored	at	a	fixed	position	on	disk	(or	flash	RAM)	to	load	the	operating
system	into	memory	and	start	it	executing.

bounded	queue
A	queue	with	a	fixed	size	limit	on	the	number	of	items	stored	in	the	queue.

bounded	resources
A	necessary	condition	for	deadlock:	there	are	a	finite	number	of	resources	that
threads	can	simultaneously	use.

buffer	overflow	attack
An	attack	that	exploits	a	bug	where	input	can	overflow	the	buffer	allocated	to	hold	it,
overwriting	other	important	program	data	structures	with	data	provided	by	the
attacker.	One	common	variation	overflows	a	buffer	allocated	on	the	stack	(e.g.,	a
local,	automatic	variable)	and	replaces	the	function’s	return	address	with	a	return
address	specified	by	the	attacker,	possibly	to	code	“pushed”	onto	the	stack	with	the
overflowing	input.

bulk	synchronous
A	type	of	parallel	application	where	work	is	split	into	independent	tasks	and	where
each	task	completes	before	the	results	of	any	of	the	tasks	can	be	used.

bulk	synchronous	parallel	programming
See:	data	parallel	programming.

bursty	distribution
A	probability	distribution	that	is	less	evenly	distributed	around	the	mean	value	than
an	exponential	distribution.	See:	exponential	distribution.	Compare:	heavy-tailed
distribution.

busy-waiting
A	thread	spins	in	a	loop	waiting	for	a	concurrent	event	to	occur,	consuming	CPU
cycles	while	it	is	waiting.

cache
A	copy	of	data	that	can	be	accessed	more	quickly	than	the	original.

cache	hit
The	cache	contains	the	requested	item.

cache	miss
The	cache	does	not	contain	the	requested	item.

checkpoint
A	consistent	snapshot	of	the	entire	state	of	a	process,	including	the	contents	of
memory	and	processor	registers.

child	process
A	process	created	by	another	process.	See	also:	parent	process.

Circular	SCAN
See:	CSCAN.

circular	waiting
A	necessary	condition	for	deadlock	to	occur:	there	is	a	set	of	threads	such	that	each
thread	is	waiting	for	a	resource	held	by	another.

client-server	communication
Two-way	communication	between	processes,	where	the	client	sends	a	request	to	the
server	to	do	some	task,	and	when	the	operation	is	complete,	the	server	replies	back	to
the	client.

clock	algorithm
A	method	for	identifying	a	not	recently	used	page	to	evict.	The	algorithm	sweeps
through	each	page	frame:	if	the	page	use	bit	is	set,	it	is	cleared;	if	the	use	bit	is	not
set,	the	page	is	reclaimed.

cloud	computing
A	model	of	computing	where	large-scale	applications	run	on	shared	computing	and
storage	infrastructure	in	data	centers	instead	of	on	the	user’s	own	computer.

commit
The	outcome	of	a	transaction	where	all	of	its	updates	occur.

compare-and-swap
An	atomic	read-modify-write	instruction	that	first	tests	the	value	of	a	memory
location,	and	if	the	value	has	not	been	changed,	sets	it	to	a	new	value.

compute-bound	task
A	task	that	primarily	uses	the	processor	and	does	little	I/O.

computer	virus
A	computer	program	that	modifies	an	operating	system	or	application	to	copy	itself
from	computer	to	computer	without	the	computer	owner’s	permission	or	knowledge.
Once	installed	on	a	computer,	a	virus	often	provides	the	attacker	control	over	the
system’s	resources	or	data.

concurrency
Multiple	activities	that	can	happen	at	the	same	time.

condition	variable
A	synchronization	variable	that	enables	a	thread	to	efficiently	wait	for	a	change	to
shared	state	protected	by	a	lock.

continuation
A	data	structure	used	in	event-driven	programming	that	keeps	track	of	a	task’s	current
state	and	its	next	step.

cooperating	threads
Threads	that	read	and	write	shared	state.

cooperative	caching
Using	the	memory	of	nearby	nodes	over	a	network	as	a	cache	to	avoid	the	latency	of
going	to	disk.

cooperative	multi-threading
Each	thread	runs	without	interruption	until	it	explicitly	relinquishes	control	of	the
processor,	e.g.,	by	exiting	or	calling	thread_yield.

copy-on-write
A	method	of	sharing	physical	memory	between	two	logically	distinct	copies	(e.g.,	in

different	processes).	Each	shared	page	is	marked	as	read-only	so	that	the	operating
system	kernel	is	invoked	and	can	make	a	copy	of	the	page	if	either	process	tries	to
write	it.	The	process	can	then	modify	the	copy	and	resume	normal	execution.

copy-on-write	file	system
A	file	system	where	an	update	to	the	file	system	is	made	by	writing	new	versions	of
modified	data	and	metadata	blocks	to	free	disk	blocks.	The	new	blocks	can	point	to
unchanged	blocks	in	the	previous	version	of	the	file	system.	See	also:	COW	file
system.

core	map
A	data	structure	used	by	the	memory	management	system	to	keep	track	of	the	state	of
physical	page	frames,	such	as	which	processes	reference	the	page	frame.

COW	file	system
See:	copy-on-write	file	system.

critical	path
The	minimum	sequence	of	steps	for	a	parallel	application	to	compute	its	result,	even
with	infinite	resources.

critical	section
A	sequence	of	code	that	operates	on	shared	state.

cross-site	scripting
An	attack	against	a	client	computer	that	works	by	compromising	a	server	visited	by
the	client.	The	compromised	server	then	provides	scripting	code	to	the	client	that
accesses	and	downloads	the	client’s	sensitive	data.

cryptographic	signature
A	specially	designed	function	of	a	data	block	and	a	private	cryptographic	key	that
allows	someone	with	the	corresponding	public	key	to	verify	that	an	authorized	entity
produced	the	data	block.	It	is	computationally	intractable	for	an	attacker	without	the
private	key	to	create	a	different	data	block	with	a	valid	signature.

CSCAN
A	variation	of	the	SCAN	disk	scheduling	policy	in	which	the	disk	only	services
requests	when	the	head	is	traveling	in	one	direction.	See	also:	Circular	SCAN.

current	working	directory
The	current	directory	of	the	process,	used	for	interpreting	relative	path	names.

data	breakpoint
A	request	to	stop	the	execution	of	a	program	when	it	references	or	modifies	a
particular	memory	location.

data	parallel	programming
A	programming	model	where	the	computation	is	performed	in	parallel	across	all
items	in	a	data	set.

deadlock
A	cycle	of	waiting	among	a	set	of	threads,	where	each	thread	waits	for	some	other
thread	in	the	cycle	to	take	some	action.

deadlocked	state
The	system	has	at	least	one	deadlock.

declustering
A	technique	for	reducing	the	recovery	time	after	a	disk	failure	in	a	RAID	system	by
spreading	redundant	disk	blocks	across	many	disks.

defense	in	depth
Improving	security	through	multiple	layers	of	protection.

defragment
Coalesce	scattered	disk	blocks	to	improve	spatial	locality,	by	reading	data	from	its
present	storage	location	and	rewriting	it	to	a	new,	more	compact,	location.

demand	paging
Using	address	translation	hardware	to	run	a	process	without	all	of	its	memory
physically	present.	When	the	process	references	a	missing	page,	the	hardware	traps	to
the	kernel,	which	brings	the	page	into	memory	from	disk.

deterministic	debugging
The	ability	to	re-execute	a	concurrent	process	with	the	same	schedule	and	sequence
of	internal	and	external	events.

device	driver
Operating	system	code	to	initialize	and	manage	a	particular	I/O	device.

direct	mapped	cache
Only	one	entry	in	the	cache	can	hold	a	specific	memory	location,	so	on	a	lookup,	the
system	must	check	the	address	against	only	that	entry	to	determine	if	there	is	a	cache
hit.

direct	memory	access
Hardware	I/O	devices	transfer	data	directly	into/out	of	main	memory	at	a	location
specified	by	the	operating	system.	See	also:	DMA.

dirty	bit
A	status	bit	in	a	page	table	entry	recording	whether	the	contents	of	the	page	have
been	modified	relative	to	what	is	stored	on	disk.

disk	buffer	memory
Memory	in	the	disk	controller	to	buffer	data	being	read	or	written	to	the	disk.

disk	infant	mortality
The	device	failure	rate	is	higher	than	normal	during	the	first	few	weeks	of	use.

disk	wear	out
The	device	failure	rate	rises	after	the	device	has	been	in	operation	for	several	years.

DMA
See:	direct	memory	access.

dnode
In	ZFS,	a	file	is	represented	by	variable-depth	tree	whose	root	is	a	dnode	and	whose
leaves	are	its	data	blocks.

double	indirect	block
A	storage	block	containing	pointers	to	indirect	blocks.

double-checked	locking
A	pitfall	in	concurrent	code	where	a	data	structure	is	lazily	initialized	by	first,
checking	without	a	lock	if	it	has	been	set,	and	if	not,	acquiring	a	lock	and	checking
again,	before	calling	the	initialization	function.	With	instruction	re-ordering,	double-
checked	locking	can	fail	unexpectedly.

dual	redundancy	array
A	RAID	storage	algorithm	using	two	redundant	disk	blocks	per	array	to	tolerate	two
disk	failures.	See	also:	RAID	6.

dual-mode	operation

Hardware	processor	that	has	(at	least)	two	privilege	levels:	one	for	executing	the
kernel	with	complete	access	to	the	capabilities	of	the	hardware	and	a	second	for
executing	user	code	with	restricted	rights.	See	also:	kernel-mode	operation.	See	also:
user-mode	operation.

dynamically	loadable	device	driver
Software	to	manage	a	specific	device,	interface,	or	chipset,	added	to	the	operating
system	kernel	after	the	kernel	starts	running.

earliest	deadline	first
A	scheduling	policy	that	performs	the	task	that	needs	to	be	completed	first,	but	only
if	it	can	be	finished	in	time.

EDF
See:	earliest	deadline	first.

efficiency
The	lack	of	overhead	in	implementing	an	abstraction.

erasure	block
The	unit	of	erasure	in	a	flash	memory	device.	Before	any	portion	of	an	erasure	block
can	be	over-written,	every	cell	in	the	entire	erasure	block	must	be	set	to	a	logical	“1.”

error	correcting	code
A	technique	for	storing	data	redundantly	to	allow	for	the	original	data	to	be	recovered
even	though	some	bits	in	a	disk	sector	or	flash	memory	page	are	corrupted.

event-driven	programming
A	coding	design	pattern	where	a	thread	spins	in	a	loop;	each	iteration	gets	and
processes	the	next	I/O	event.

exception
See:	processor	exception.

executable	image
File	containing	a	sequence	of	machine	instructions	and	initial	data	values	for	a
program.

execution	stack
Space	to	store	the	state	of	local	variables	during	procedure	calls.

exponential	distribution
A	convenient	probability	distribution	for	use	in	queueing	theory	because	it	has	the
property	of	being	memoryless.	For	a	continuous	random	variable	with	a	mean	of	1⁄λ,
the	probability	density	function	is	f(x)	=	λ	times	e	raised	to	the	-λx.

extent
A	variable-sized	region	of	a	file	that	is	stored	in	a	contiguous	region	on	the	storage
device.

external	fragmentation
In	a	system	that	allocates	memory	in	contiguous	regions,	the	unusable	memory
between	valid	contiguous	allocations.	A	new	request	for	memory	may	find	no	single
free	region	that	is	both	contiguous	and	large	enough,	even	though	there	is	enough
free	memory	in	aggregate.

fairness
Partitioning	of	shared	resources	between	users	or	applications	either	equally	or
balanced	according	to	some	desired	priorities.

false	sharing

Extra	inter-processor	communication	required	because	a	single	cache	entry	contains
portions	of	two	different	data	structures	with	different	sharing	patterns.

fate	sharing
When	a	crash	in	one	module	implies	a	crash	in	another.	For	example,	a	library	shares
fate	with	the	application	it	is	linked	with;	if	either	crashes,	the	process	exits.

fault	isolation
An	error	in	one	application	should	not	disrupt	other	applications,	or	even	the
operating	system	itself.

file
A	named	collection	of	data	in	a	file	system.

file	allocation	table
An	array	of	entries	in	the	FAT	file	system	stored	in	a	reserved	area	of	the	volume,
where	each	entry	corresponds	to	one	file	data	block,	and	points	to	the	next	block	in
the	file.

file	data
Contents	of	a	file.

file	descriptor
A	handle	to	an	open	file,	device,	or	channel.	See	also:	file	handle.	See	also:	file
stream.

file	directory
A	list	of	human-readable	names	plus	a	mapping	from	each	name	to	a	specific	file	or
sub-directory.

file	handle
See:	file	descriptor.

file	index	structure
A	persistently	stored	data	structure	used	to	locate	the	blocks	of	the	file.

file	metadata
Information	about	a	file	that	is	managed	by	the	operating	system,	but	not	including
the	file	contents.

file	stream
See:	file	descriptor.

file	system
An	operating	system	abstraction	that	provides	persistent,	named	data.

file	system	fingerprint
A	checksum	across	the	entire	file	system.

fill-on-demand
A	method	for	starting	a	process	before	all	of	its	memory	is	brought	in	from	disk.	If
the	first	access	to	the	missing	memory	triggers	a	trap	to	the	kernel,	the	kernel	can	fill
the	memory	and	then	resume.

fine-grained	locking
A	way	to	increase	concurrency	by	partitioning	an	object’s	state	into	different	subsets
each	protected	by	a	different	lock.

finished	list
The	set	of	threads	that	are	complete	but	not	yet	de-allocated,	e.g.,	because	a	join	may
read	the	return	value	from	the	thread	control	block.

first-in-first-out

A	scheduling	policy	that	performs	each	task	in	the	order	in	which	it	arrives.
flash	page	failure

A	flash	memory	device	failure	where	the	data	stored	on	one	or	more	individual	pages
of	flash	are	lost,	but	the	rest	of	the	flash	continues	to	operate	correctly.

flash	translation	layer
A	layer	that	maps	logical	flash	pages	to	different	physical	pages	on	the	flash	device.
See	also:	FTL.

flash	wear	out
After	some	number	of	program-erase	cycles,	a	given	flash	storage	cell	may	no	longer
be	able	to	reliably	store	information.

fork-join	parallelism
A	type	of	parallel	programming	where	threads	can	be	created	(forked)	to	do	work	in
parallel	with	a	parent	thread;	a	parent	may	asynchronously	wait	for	a	child	thread	to
finish	(join).

free	space	map
A	file	system	data	structure	used	to	track	which	storage	blocks	are	free	and	which	are
in	use.

FTL
See:	flash	translation	layer.

full	disk	failure
When	a	disk	device	stops	being	able	to	service	reads	or	writes	to	all	sectors.

full	flash	drive	failure
When	a	flash	device	stops	being	able	to	service	reads	or	writes	to	all	memory	pages.

fully	associative	cache
Any	entry	in	the	cache	can	hold	any	memory	location,	so	on	a	lookup,	the	system
must	check	the	address	against	all	of	the	entries	in	the	cache	to	determine	if	there	is	a
cache	hit.

gang	scheduling
A	scheduling	policy	for	multiprocessors	that	performs	all	of	the	runnable	tasks	for	a
particular	process	at	the	same	time.

Global	Descriptor	Table
The	x86	terminology	for	a	segment	table	for	shared	segments.	A	Local	Descriptor
Table	is	used	for	segments	that	are	private	to	the	process.

grace	period
For	a	shared	object	protected	by	a	read-copy-update	lock,	the	time	from	when	a	new
version	of	a	shared	object	is	published	until	the	last	reader	of	the	old	version	is
guaranteed	to	be	finished.

green	threads
A	thread	system	implemented	entirely	at	user-level	without	any	reliance	on	operating
system	kernel	services,	other	than	those	designed	for	single-threaded	processes.

group	commit
A	technique	that	batches	multiple	transaction	commits	into	a	single	disk	operation.

guest	operating	system
An	operating	system	running	in	a	virtual	machine.

hard	link
The	mapping	between	a	file	name	and	the	underlying	file,	typically	when	there	are

multiple	path	names	for	the	same	underlying	file.
hardware	abstraction	layer

A	module	in	the	operating	system	that	hides	the	specifics	of	different	hardware
implementations.	Above	this	layer,	the	operating	system	is	portable.

hardware	timer
A	hardware	device	that	can	cause	a	processor	interrupt	after	some	delay,	either	in
time	or	in	instructions	executed.

head
The	component	that	writes	the	data	to	or	reads	the	data	from	a	spinning	disk	surface.

head	crash
An	error	where	the	disk	head	physically	scrapes	the	magnetic	surface	of	a	spinning
disk	surface.

head	switch	time
The	time	it	takes	to	re-position	the	disk	arm	over	the	corresponding	track	on	a
different	surface,	before	a	read	or	write	can	begin.

heap
Space	to	store	dynamically	allocated	data	structures.

heavy-tailed	distribution
A	probability	distribution	such	that	events	far	from	the	mean	value	(in	aggregate)
occur	with	significant	probability.	When	used	for	the	distribution	of	time	between
events,	the	remaining	time	to	the	next	event	is	positively	related	to	the	time	already
spent	waiting	—	you	expect	to	wait	longer	the	longer	you	have	already	waited.

Heisenbugs
Bugs	in	concurrent	programs	that	disappear	or	change	behavior	when	you	try	to
examine	them.	See	also:	Bohrbugs.

hint
A	result	of	some	computation	whose	results	may	no	longer	be	valid,	but	where	using
an	invalid	hint	will	trigger	an	exception.

home	directory
The	sub-directory	containing	a	user’s	files.

host	operating	system
An	operating	system	that	provides	the	abstraction	of	a	virtual	machine,	to	run	another
operating	system	as	an	application.

host	transfer	time
The	time	to	transfer	data	between	the	host’s	memory	and	the	disk’s	buffer.

hyperthreading
See:	simultaneous	multi-threading.

I/O-bound	task
A	task	that	primarily	does	I/O,	and	does	little	processing.

idempotent
An	operation	that	has	the	same	effect	whether	executed	once	or	many	times.

incremental	checkpoint
A	consistent	snapshot	of	the	portion	of	process	memory	that	has	been	modified	since
the	previous	checkpoint.

independent	threads
Threads	that	operate	on	completely	separate	subsets	of	process	memory.

indirect	block
A	storage	block	containing	pointers	to	file	data	blocks.

inode
In	the	Unix	Fast	File	System	(FFS)	and	related	file	systems,	an	inode	stores	a	file’s
metadata,	including	an	array	of	pointers	that	can	be	used	to	find	all	of	the	file’s
blocks.	The	term	inode	is	sometimes	used	more	generally	to	refer	to	any	file	system’s
per-file	metadata	data	structure.

inode	array
The	fixed	location	on	disk	containing	all	of	the	file	system’s	inodes.	See	also:
inumber.

intentions
The	set	of	writes	that	a	transaction	will	perform	if	the	transaction	commits.

internal	fragmentation
With	paged	allocation	of	memory,	the	unusable	memory	at	the	end	of	a	page	because
a	process	can	only	be	allocated	memory	in	page-sized	chunks.

interrupt
An	asynchronous	signal	to	the	processor	that	some	external	event	has	occurred	that
may	require	its	attention.

interrupt	disable
A	privileged	hardware	instruction	to	temporarily	defer	any	hardware	interrupts,	to
allow	the	kernel	to	complete	a	critical	task.

interrupt	enable
A	privileged	hardware	instruction	to	resume	hardware	interrupts,	after	a	non-
interruptible	task	is	completed.

interrupt	handler
A	kernel	procedure	invoked	when	an	interrupt	occurs.

interrupt	stack
A	region	of	memory	for	holding	the	stack	of	the	kernel’s	interrupt	handler.	When	an
interrupt,	processor	exception,	or	system	call	trap	causes	a	context	switch	into	the
kernel,	the	hardware	changes	the	stack	pointer	to	point	to	the	base	of	the	kernel’s
interrupt	stack.

interrupt	vector	table
A	table	of	pointers	in	the	operating	system	kernel,	indexed	by	the	type	of	interrupt,
with	each	entry	pointing	to	the	first	instruction	of	a	handler	procedure	for	that
interrupt.

inumber
The	index	into	the	inode	array	for	a	particular	file.

inverted	page	table
A	hash	table	used	for	translation	between	virtual	page	numbers	and	physical	page
frames.

kernel	thread
A	thread	that	is	implemented	inside	the	operating	system	kernel.

kernel-mode	operation
The	processor	executes	in	an	unrestricted	mode	that	gives	the	operating	system	full
control	over	the	hardware.	Compare:	user-mode	operation.

LBA

See:	logical	block	address.
least	frequently	used

A	cache	replacement	policy	that	evicts	whichever	block	has	been	used	the	least	often,
over	some	period	of	time.	See	also:	LFU.

least	recently	used
A	cache	replacement	policy	that	evicts	whichever	block	has	not	been	used	for	the
longest	period	of	time.	See	also:	LRU.

LFU
See:	least	frequently	used.

Little’s	Law
In	a	stable	system	where	the	arrival	rate	matches	the	departure	rate,	the	number	of
tasks	in	the	system	equals	the	system’s	throughput	multiplied	by	the	average	time	a
task	spends	in	the	system:	N	=	XR.

liveness	property
A	constraint	on	program	behavior	such	that	it	always	produces	a	result.	Compare:
safety	property.

locality	heuristic
A	file	system	block	allocation	policy	that	places	files	in	nearby	disk	sectors	if	they
are	likely	to	be	read	or	written	at	the	same	time.

lock
A	type	of	synchronization	variable	used	for	enforcing	atomic,	mutually	exclusive
access	to	shared	data.

lock	ordering
A	widely	used	approach	to	prevent	deadlock,	where	locks	are	acquired	in	a	pre-
determined	order.

lock-free	data	structures
Concurrent	data	structure	that	guarantees	progress	for	some	thread:	some	method	will
finish	in	a	finite	number	of	steps,	regardless	of	the	state	of	other	threads	executing	in
the	data	structure.

log
An	ordered	sequence	of	steps	saved	to	persistent	storage.

logical	block	address
A	unique	identifier	for	each	disk	sector	or	flash	memory	block,	typically	numbered
from	1	to	the	size	of	the	disk/flash	device.	The	disk	interface	converts	this	identifier
to	the	physical	location	of	the	sector/block.	See	also:	LBA.

logical	separation
A	backup	storage	policy	where	the	backup	is	stored	at	the	same	location	as	the
primary	storage,	but	with	restricted	access,	e.g.,	to	prevent	updates.

LRU
See:	least	recently	used.

master	file	table
In	NTFS,	an	array	of	records	storing	metadata	about	each	file.	See	also:	MFT.

maximum	seek	time
The	time	it	takes	to	move	the	disk	arm	from	the	innermost	track	to	the	outermost	one
or	vice	versa.

max-min	fairness

A	scheduling	objective	to	maximize	the	minimum	resource	allocation	given	to	each
task.

MCS	lock
An	efficient	spinlock	implementation	where	each	waiting	thread	spins	on	a	separate
memory	location.

mean	time	to	data	loss
The	expected	time	until	a	RAID	system	suffers	an	unrecoverable	error.	See	also:
MTTDL.

mean	time	to	failure
The	average	time	that	a	system	runs	without	failing.	See	also:	MTTF.

mean	time	to	repair
The	average	time	that	it	takes	to	repair	a	system	once	it	has	failed.	See	also:	MTTR.

memory	address	alias
Two	or	more	virtual	addresses	that	refer	to	the	same	physical	memory	location.

memory	barrier
An	instruction	that	prevents	the	compiler	and	hardware	from	reordering	memory
accesses	across	the	barrier	—	no	accesses	before	the	barrier	are	moved	after	the
barrier	and	no	accesses	after	the	barrier	are	moved	before	the	barrier.

memory	protection
Hardware	or	software-enforced	limits	so	that	each	application	process	can	read	and
write	only	its	own	memory	and	not	the	memory	of	the	operating	system	or	any	other
process.

memoryless	property
For	a	probability	distribution	for	the	time	between	events,	the	remaining	time	to	the
next	event	does	not	depend	on	the	amount	of	time	already	spent	waiting.	See	also:
exponential	distribution.

memory-mapped	file
A	file	whose	contents	appear	to	be	a	memory	segment	in	a	process’s	virtual	address
space.

memory-mapped	I/O
Each	I/O	device’s	control	registers	are	mapped	to	a	range	of	physical	addresses	on
the	memory	bus.

memristor
A	type	of	solid-state	persistent	storage	using	a	circuit	element	whose	resistance
depends	on	the	amounts	and	directions	of	currents	that	have	flowed	through	it	in	the
past.

MFQ
See:	multi-level	feedback	queue.

MFT
See:	master	file	table.

microkernel
An	operating	system	design	where	the	kernel	itself	is	kept	small,	and	instead	most	of
the	functionality	of	a	traditional	operating	system	kernel	is	put	into	a	set	of	user-level
processes,	or	servers,	accessed	from	user	applications	via	interprocess
communication.

MIN	cache	replacement

See:	optimal	cache	replacement.
minimum	seek	time

The	time	to	move	the	disk	arm	to	the	next	adjacent	track.
MIPS

An	early	measure	of	processor	performance:	millions	of	instructions	per	second.
mirroring

A	system	for	redundantly	storing	data	on	disk	where	each	block	of	data	is	stored	on
two	disks	and	can	be	read	from	either.	See	also:	RAID	1.

model
A	simplification	that	tries	to	capture	the	most	important	aspects	of	a	more	complex
system’s	behavior.

monolithic	kernel
An	operating	system	design	where	most	of	the	operating	system	functionality	is
linked	together	inside	the	kernel.

Moore’s	Law
Transistor	density	increases	exponentially	over	time.	Similar	exponential
improvements	have	occurred	in	many	other	component	technologies;	in	the	popular
press,	these	often	go	by	the	same	term.

mount
A	mapping	of	a	path	in	the	existing	file	system	to	the	root	directory	of	another	file
system	volume.

MTTDL
See:	mean	time	to	data	loss.

MTTF
See:	mean	time	to	failure.

MTTR
See:	mean	time	to	repair.

multi-level	feedback	queue
A	scheduling	algorithm	with	multiple	priority	levels	managed	using	round	robin
queues,	where	a	task	is	moved	between	priority	levels	based	on	how	much	processing
time	it	has	used.	See	also:	MFQ.

multi-level	index
A	tree	data	structure	to	keep	track	of	the	disk	location	of	each	data	block	in	a	file.

multi-level	paged	segmentation
A	virtual	memory	mechanism	where	physical	memory	is	allocated	in	page	frames,
virtual	addresses	are	segmented,	and	each	segment	is	translated	to	physical	addresses
through	multiple	levels	of	page	tables.

multi-level	paging
A	virtual	memory	mechanism	where	physical	memory	is	allocated	in	page	frames,
and	virtual	addresses	are	translated	to	physical	addresses	through	multiple	levels	of
page	tables.

multiple	independent	requests
A	necessary	condition	for	deadlock	to	occur:	a	thread	first	acquires	one	resource	and
then	tries	to	acquire	another.

multiprocessor	scheduling	policy
A	policy	to	determine	how	many	processors	to	assign	each	process.

multiprogramming
See:	multitasking.

multitasking
The	ability	of	an	operating	system	to	run	multiple	applications	at	the	same	time,	also
called	multiprogramming.

multi-threaded	process
A	process	with	multiple	threads.

multi-threaded	program
A	generalization	of	a	single-threaded	program.	Instead	of	only	one	logical	sequence
of	steps,	the	program	has	multiple	sequences,	or	threads,	executing	at	the	same	time.

mutual	exclusion
When	one	thread	uses	a	lock	to	prevent	concurrent	access	to	a	shared	data	structure.

mutually	recursive	locking
A	deadlock	condition	where	two	shared	objects	call	into	each	other	while	still	holding
their	locks.	Deadlock	occurs	if	one	thread	holds	the	lock	on	the	first	object	and	calls
into	the	second,	while	the	other	thread	holds	the	lock	on	the	second	object	and	calls
into	the	first.

named	data
Data	that	can	be	accessed	by	a	human-readable	identifier,	such	as	a	file	name.

native	command	queueing
See:	tagged	command	queueing.

NCQ
See:	native	command	queueing.

nested	waiting
A	deadlock	condition	where	one	shared	object	calls	into	another	shared	object	while
holding	the	first	object’s	lock,	and	then	waits	on	a	condition	variable.	Deadlock
results	if	the	thread	that	can	signal	the	condition	variable	needs	the	first	lock	to	make
progress.

network	effect
The	increase	in	value	of	a	product	or	service	based	on	the	number	of	other	people
who	have	adopted	that	technology	and	not	just	its	intrinsic	capabilities.

no	preemption
A	necessary	condition	for	deadlock	to	occur:	once	a	thread	acquires	a	resource,	its
ownership	cannot	be	revoked	until	the	thread	acts	to	release	it.

non-blocking	data	structure
Concurrent	data	structure	where	a	thread	is	never	required	to	wait	for	another	thread
to	complete	its	operation.

non-recoverable	read	error
When	sufficient	bit	errors	occur	within	a	disk	sector	or	flash	memory	page,	such	that
the	original	data	cannot	be	recovered	even	after	error	correction.

non-resident	attribute
In	NTFS,	an	attribute	record	whose	contents	are	addressed	indirectly,	through	extent
pointers	in	the	master	file	table	that	point	to	the	contents	in	those	extents.

non-volatile	storage
Unlike	DRAM,	memory	that	is	durable	and	retains	its	state	across	crashes	and	power
outages.	See	also:	persistent	storage.	See	also:	stable	storage.

not	recently	used
A	cache	replacement	policy	that	evicts	some	block	that	has	not	been	referenced
recently,	rather	than	the	least	recently	used	block.

oblivious	scheduling
A	scheduling	policy	where	the	operating	system	assigns	threads	to	processors	without
knowledge	of	the	intent	of	the	parallel	application.

open	system
A	system	whose	source	code	is	available	to	the	public	for	modification	and	reuse,	or
a	system	whose	interfaces	are	defined	by	a	public	standards	process.

operating	system
A	layer	of	software	that	manages	a	computer’s	resources	for	its	users	and	their
applications.

operating	system	kernel
The	kernel	is	the	lowest	level	of	software	running	on	the	system,	with	full	access	to
all	of	the	capabilities	of	the	hardware.

optimal	cache	replacement
Replace	whichever	block	is	used	farthest	in	the	future.

overhead
The	added	resource	cost	of	implementing	an	abstraction	versus	using	the	underlying
hardware	resources	directly.

ownership	design	pattern
A	technique	for	managing	concurrent	access	to	shared	objects	in	which	at	most	one
thread	owns	an	object	at	any	time,	and	therefore	the	thread	can	access	the	shared	data
without	a	lock.

page	coloring
The	assignment	of	physical	page	frames	to	virtual	addresses	by	partitioning	frames
based	on	which	portions	of	the	cache	they	will	use.

page	fault
A	hardware	trap	to	the	operating	system	kernel	when	a	process	references	a	virtual
address	with	an	invalid	page	table	entry.

page	frame
An	aligned,	fixed-size	chunk	of	physical	memory	that	can	hold	a	virtual	page.

paged	memory
A	hardware	address	translation	mechanism	where	memory	is	allocated	in	aligned,
fixed-sized	chunks,	called	pages.	Any	virtual	page	can	be	assigned	to	any	physical
page	frame.

paged	segmentation
A	hardware	mechanism	where	physical	memory	is	allocated	in	page	frames,	but
virtual	addresses	are	segmented.

pair	of	stubs
A	pair	of	short	procedures	that	mediate	between	two	execution	contexts.

paravirtualization
A	virtual	machine	abstraction	that	allows	the	guest	operating	system	to	make	system
calls	into	the	host	operating	system	to	perform	hardware-specific	operations,	such	as
changing	a	page	table	entry.

parent	process

A	process	that	creates	another	process.	See	also:	child	process.
path

The	string	that	identifies	a	file	or	directory.
PCB

See:	process	control	block.
PCM

See:	phase	change	memory.
performance	predictability

Whether	a	system’s	response	time	or	other	performance	metric	is	consistent	over
time.

persistent	data
Data	that	is	stored	until	it	is	explicitly	deleted,	even	if	the	computer	storing	it	crashes
or	loses	power.

persistent	storage
See:	non-volatile	storage.

phase	change	behavior
Abrupt	changes	in	a	program’s	working	set,	causing	bursty	cache	miss	rates:	periods
of	low	cache	misses	interspersed	with	periods	of	high	cache	misses.

phase	change	memory
A	type	of	non-volatile	memory	that	uses	the	phase	of	a	material	to	represent	a	data
bit.	See	also:	PCM.

physical	address
An	address	in	physical	memory.

physical	separation
A	backup	storage	policy	where	the	backup	is	stored	at	a	different	location	than	the
primary	storage.

physically	addressed	cache
A	processor	cache	that	is	accessed	using	physical	memory	addresses.

pin
To	bind	a	virtual	resource	to	a	physical	resource,	such	as	a	thread	to	a	processor	or	a
virtual	page	to	a	physical	page.

platter
A	single	thin	round	plate	that	stores	information	in	a	magnetic	disk,	often	on	both
surfaces.

policy-mechanism	separation
A	system	design	principle	where	the	implementation	of	an	abstraction	is	independent
of	the	resource	allocation	policy	of	how	the	abstraction	is	used.

polling
An	alternative	to	hardware	interrupts,	where	the	processor	waits	for	an	asynchronous
event	to	occur,	by	looping,	or	busy-waiting,	until	the	event	occurs.

portability
The	ability	of	software	to	work	across	multiple	hardware	platforms.

precise	interrupts
All	instructions	that	occur	before	the	interrupt	or	exception,	according	to	the	program
execution,	are	completed	by	the	hardware	before	the	interrupt	handler	is	invoked.

preemption

When	a	scheduler	takes	the	processor	away	from	one	task	and	gives	it	to	another.
preemptive	multi-threading

The	operating	system	scheduler	may	switch	out	a	running	thread,	e.g.,	on	a	timer
interrupt,	without	any	explicit	action	by	the	thread	to	relinquish	control	at	that	point.

prefetch
To	bring	data	into	a	cache	before	it	is	needed.

principle	of	least	privilege
System	security	and	reliability	are	enhanced	if	each	part	of	the	system	has	exactly	the
privileges	it	needs	to	do	its	job	and	no	more.

priority	donation
A	solution	to	priority	inversion:	when	a	thread	waits	for	a	lock	held	by	a	lower
priority	thread,	the	lock	holder	is	temporarily	increased	to	the	waiter’s	priority	until
the	lock	is	released.

priority	inversion
A	scheduling	anomaly	that	occurs	when	a	high	priority	task	waits	indefinitely	for	a
resource	(such	as	a	lock)	held	by	a	low	priority	task,	because	the	low	priority	task	is
waiting	in	turn	for	a	resource	(such	as	the	processor)	held	by	a	medium	priority	task.

privacy
Data	stored	on	a	computer	is	only	accessible	to	authorized	users.

privileged	instruction
Instruction	available	in	kernel	mode	but	not	in	user	mode.

process
The	execution	of	an	application	program	with	restricted	rights	—	the	abstraction	for
protection	provided	by	the	operating	system	kernel.

process	control	block
A	data	structure	that	stores	all	the	information	the	operating	system	needs	about	a
particular	process:	e.g.,	where	it	is	stored	in	memory,	where	its	executable	image	is
on	disk,	which	user	asked	it	to	start	executing,	and	what	privileges	the	process	has.
See	also:	PCB.

process	migration
The	ability	to	take	a	running	program	on	one	system,	stop	its	execution,	and	resume	it
on	a	different	machine.

processor	exception
A	hardware	event	caused	by	user	program	behavior	that	causes	a	transfer	of	control
to	a	kernel	handler.	For	example,	attempting	to	divide	by	zero	causes	a	processor
exception	in	many	architectures.

processor	scheduling	policy
When	there	are	more	runnable	threads	than	processors,	the	policy	that	determines
which	threads	to	run	first.

processor	status	register
A	hardware	register	containing	flags	that	control	the	operation	of	the	processor,
including	the	privilege	level.

producer-consumer	communication
Interprocess	communication	where	the	output	of	one	process	is	the	input	of	another.

proprietary	system
A	system	that	is	under	the	control	of	a	single	company;	it	can	be	changed	at	any	time

by	its	provider	to	meet	the	needs	of	its	customers.
protection

The	isolation	of	potentially	misbehaving	applications	and	users	so	that	they	do	not
corrupt	other	applications	or	the	operating	system	itself.

publish
For	a	read-copy-update	lock,	a	single,	atomic	memory	write	that	updates	a	shared
object	protected	by	the	lock.	The	write	allows	new	reader	threads	to	observe	the	new
version	of	the	object.

queueing	delay
The	time	a	task	waits	in	line	without	receiving	service.

quiescent
For	a	read-copy-update	lock,	no	reader	thread	that	was	active	at	the	time	of	the	last
modification	is	still	active.

race	condition
When	the	behavior	of	a	program	relies	on	the	interleaving	of	operations	of	different
threads.

RAID
A	Redundant	Array	of	Inexpensive	Disks	(RAID)	is	a	system	that	spreads	data
redundantly	across	multiple	disks	in	order	to	tolerate	individual	disk	failures.

RAID	1
See:	mirroring.

RAID	5
See:	rotating	parity.

RAID	6
See:	dual	redundancy	array.

RAID	strip
A	set	of	several	sequential	blocks	placed	on	one	disk	by	a	RAID	block	placement
algorithm.

RAID	stripe
A	set	of	RAID	strips	and	their	parity	strip.

R-CSCAN
A	variation	of	the	CSCAN	disk	scheduling	policy	in	which	the	disk	takes	into
account	rotation	time.

RCU
See:	read-copy-update.

read	disturb	error
Reading	a	flash	memory	cell	a	large	number	of	times	can	cause	the	data	in
surrounding	cells	to	become	corrupted.

read-copy-update
A	synchronization	abstraction	that	allows	concurrent	access	to	a	data	structure	by
multiple	readers	and	a	single	writer	at	a	time.	See	also:	RCU.

readers/writers	lock
A	lock	which	allows	multiple	“reader”	threads	to	access	shared	data	concurrently
provided	they	never	modify	the	shared	data,	but	still	provides	mutual	exclusion
whenever	a	“writer”	thread	is	reading	or	modifying	the	shared	data.

ready	list

The	set	of	threads	that	are	ready	to	be	run	but	which	are	not	currently	running.
real-time	constraint

The	computation	must	be	completed	by	a	deadline	if	it	is	to	have	value.
recoverable	virtual	memory

The	abstraction	of	persistent	memory,	so	that	the	contents	of	a	memory	segment	can
be	restored	after	a	failure.

redo	logging
A	way	of	implementing	a	transaction	by	recording	in	a	log	the	set	of	writes	to	be
executed	when	the	transaction	commits.

relative	path
A	file	path	name	interpreted	as	beginning	with	the	process’s	current	working
directory.

reliability
A	property	of	a	system	that	does	exactly	what	it	is	designed	to	do.

request	parallelism
Parallel	execution	on	a	server	that	arises	from	multiple	concurrent	requests.

resident	attribute
In	NTFS,	an	attribute	record	whose	contents	are	stored	directly	in	the	master	file
table.

response	time
The	time	for	a	task	to	complete,	from	when	it	starts	until	it	is	done.

restart
The	resumption	of	a	process	from	a	checkpoint,	e.g.,	after	a	failure	or	for	debugging.

roll	back
The	outcome	of	a	transaction	where	none	of	its	updates	occur.

root	directory
The	top-level	directory	in	a	file	system.

root	inode
In	a	copy-on-write	file	system,	the	inode	table’s	inode:	the	disk	block	containing	the
metadata	needed	to	find	the	inode	table.

rotating	parity
A	system	for	redundantly	storing	data	on	disk	where	the	system	writes	several	blocks
of	data	across	several	disks,	protecting	those	blocks	with	one	redundant	block	stored
on	yet	another	disk.	See	also:	RAID	5.

rotational	latency
Once	the	disk	head	has	settled	on	the	right	track,	it	must	wait	for	the	target	sector	to
rotate	under	it.

round	robin
A	scheduling	policy	that	takes	turns	running	each	ready	task	for	a	limited	period
before	switching	to	the	next	task.

R-SCAN
A	variation	of	the	SCAN	disk	scheduling	policy	in	which	the	disk	takes	into	account
rotation	time.

safe	state
In	the	context	of	deadlock,	a	state	of	an	execution	such	that	regardless	of	the
sequence	of	future	resource	requests,	there	is	at	least	one	safe	sequence	of	decisions

as	to	when	to	satisfy	requests	such	that	all	pending	and	future	requests	are	met.
safety	property

A	constraint	on	program	behavior	such	that	it	never	computes	the	wrong	result.
Compare:	liveness	property.

sample	bias
A	measurement	error	that	occurs	when	some	members	of	a	group	are	less	likely	to	be
included	than	others,	and	where	those	members	differ	in	the	property	being
measured.

sandbox
A	context	for	executing	untrusted	code,	where	protection	for	the	rest	of	the	system	is
provided	in	software.

SCAN
A	disk	scheduling	policy	where	the	disk	arm	repeatedly	sweeps	from	the	inner	to	the
outer	tracks	and	back	again,	servicing	each	pending	request	whenever	the	disk	head
passes	that	track.

scheduler	activations
A	multiprocessor	scheduling	policy	where	each	application	is	informed	of	how	many
processors	it	has	been	assigned	and	whenever	the	assignment	changes.

scrubbing
A	technique	for	reducing	non-recoverable	RAID	errors	by	periodically	scanning	for
corrupted	disk	blocks	and	reconstructing	them	from	the	parity	block.

secondary	bottleneck
A	resource	with	relatively	low	contention,	due	to	a	large	amount	of	queueing	at	the
primary	bottleneck.	If	the	primary	bottleneck	is	improved,	the	secondary	bottleneck
will	have	much	higher	queueing	delay.

sector
The	minimum	amount	of	a	disk	that	can	be	independently	read	or	written.

sector	failure
A	magnetic	disk	error	where	data	on	one	or	more	individual	sectors	of	a	disk	are	lost,
but	the	rest	of	the	disk	continues	to	operate	correctly.

sector	sparing
Transparently	hiding	a	faulty	disk	sector	by	remapping	it	to	a	nearby	spare	sector.

security
A	computer’s	operation	cannot	be	compromised	by	a	malicious	attacker.

security	enforcement
The	mechanism	the	operating	system	uses	to	ensure	that	only	permitted	actions	are
allowed.

security	policy
What	operations	are	permitted	—	who	is	allowed	to	access	what	data,	and	who	can
perform	what	operations.

seek
The	movement	of	the	disk	arm	to	re-position	it	over	a	specific	track	to	prepare	for	a
read	or	write.

segmentation
A	virtual	memory	mechanism	where	addresses	are	translated	by	table	lookup,	where
each	entry	in	the	table	is	to	a	variable-size	memory	region.

segmentation	fault
An	error	caused	when	a	process	attempts	to	access	memory	outside	of	one	of	its	valid
memory	regions.

segment-local	address
An	address	that	is	relative	to	the	current	memory	segment.

self-paging
A	resource	allocation	policy	for	allocating	page	frames	among	processes;	each	page
replacement	is	taken	from	a	page	frame	already	assigned	to	the	process	causing	the
page	fault.

semaphore
A	type	of	synchronization	variable	with	only	two	atomic	operations,	P()	and	V().	P
waits	for	the	value	of	the	semaphore	to	be	positive,	and	then	atomically	decrements
it.	V	atomically	increments	the	value,	and	if	any	threads	are	waiting	in	P,	triggers	the
completion	of	the	P	operation.

serializability
The	result	of	any	program	execution	is	equivalent	to	an	execution	in	which	requests
are	processed	one	at	a	time	in	some	sequential	order.

service	time
The	time	it	takes	to	complete	a	task	at	a	resource,	assuming	no	waiting.

set	associative	cache
The	cache	is	partitioned	into	sets	of	entries.	Each	memory	location	can	only	be	stored
in	its	assigned	set,	by	it	can	be	stored	in	any	cache	entry	in	that	set.	On	a	lookup,	the
system	needs	to	check	the	address	against	all	the	entries	in	its	set	to	determine	if	there
is	a	cache	hit.

settle
The	fine-grained	re-positioning	of	a	disk	head	after	moving	to	a	new	track	before	the
disk	head	is	ready	to	read	or	write	a	sector	of	the	new	track.

shadow	page	table
A	page	table	for	a	process	inside	a	virtual	machine,	formed	by	constructing	the
composition	of	the	page	table	maintained	by	the	guest	operating	system	and	the	page
table	maintained	by	the	host	operating	system.

shared	object
An	object	(a	data	structure	and	its	associated	code)	that	can	be	accessed	safely	by
multiple	concurrent	threads.

shell
A	job	control	system	implemented	as	a	user-level	process.	When	a	user	types	a
command	to	the	shell,	it	creates	a	process	to	run	the	command.

shortest	job	first
A	scheduling	policy	that	performs	the	task	with	the	least	remaining	time	left	to	finish.

shortest	positioning	time	first
A	disk	scheduling	policy	that	services	whichever	pending	request	can	be	handled	in
the	minimum	amount	of	time.	See	also:	SPTF.

shortest	seek	time	first
A	disk	scheduling	policy	that	services	whichever	pending	request	is	on	the	nearest
track.	Equivalent	to	shortest	positioning	time	first	if	rotational	positioning	is	not
considered.	See	also:	SSTF.

SIMD	(single	instruction	multiple	data)	programming
See	data	parallel	programming

simultaneous	multi-threading
A	hardware	technique	where	each	processor	simulates	two	(or	more)	virtual
processors,	alternating	between	them	on	a	cycle-by-cycle	basis.	See	also:
hyperthreading.

single-threaded	program
A	program	written	in	a	traditional	way,	with	one	logical	sequence	of	steps	as	each
instruction	follows	the	previous	one.	Compare:	multi-threaded	program.

slip	sparing
When	remapping	a	faulty	disk	sector,	remapping	the	entire	sequence	of	disk	sectors
between	the	faulty	sector	and	the	spare	sector	by	one	slot	to	preserve	sequential
access	performance.

soft	link
A	directory	entry	that	maps	one	file	or	directory	name	to	another.	See	also:	symbolic
link.

software	transactional	memory	(STM)
A	system	for	general-purpose	transactions	for	in-memory	data	structures.

software-loaded	TLB
A	hardware	TLB	whose	entries	are	installed	by	software,	rather	than	hardware,	on	a
TLB	miss.

solid	state	storage
A	persistent	storage	device	with	no	moving	parts;	it	stores	data	using	electrical
circuits.

space	sharing
A	multiprocessor	allocation	policy	that	assigns	different	processors	to	different	tasks.

spatial	locality
Programs	tend	to	reference	instructions	and	data	near	those	that	have	been	recently
accessed.

spindle
The	axle	of	rotation	of	the	spinning	disk	platters	making	up	a	disk.

spinlock
A	lock	where	a	thread	waiting	for	a	BUSY	lock	“spins”	in	a	tight	loop	until	some
other	thread	makes	it	FREE.

SPTF
See:	shortest	positioning	time	first.

SSTF
See:	shortest	seek	time	first.

stable	property
A	property	of	a	program,	such	that	once	the	property	becomes	true	in	some	execution
of	the	program,	it	will	stay	true	for	the	remainder	of	the	execution.

stable	storage
See:	non-volatile	storage.

stable	system
A	queueing	system	where	the	arrival	rate	matches	the	departure	rate.

stack	frame

A	data	structure	stored	on	the	stack	with	storage	for	one	invocation	of	a	procedure:
the	local	variables	used	by	the	procedure,	the	parameters	the	procedure	was	called
with,	and	the	return	address	to	jump	to	when	the	procedure	completes.

staged	architecture
A	staged	architecture	divides	a	system	into	multiple	subsystems	or	stages,	where	each
stage	includes	some	state	private	to	the	stage	and	a	set	of	one	or	more	worker	threads
that	operate	on	that	state.

starvation
The	lack	of	progress	for	one	task,	due	to	resources	given	to	higher	priority	tasks.

state	variable
Member	variable	of	a	shared	object.

STM
See:	software	transactional	memory	(STM).

structured	synchronization
A	design	pattern	for	writing	correct	concurrent	programs,	where	concurrent	code	uses
a	set	of	standard	synchronization	primitives	to	control	access	to	shared	state,	and
where	all	routines	to	access	the	same	shared	state	are	localized	to	the	same	logical
module.

superpage
A	set	of	contiguous	pages	in	physical	memory	that	map	a	contiguous	region	of	virtual
memory,	where	the	pages	are	aligned	so	that	they	share	the	same	high-order
(superpage)	address.

surface
One	side	of	a	disk	platter.

surface	transfer	time
The	time	to	transfer	one	or	more	sequential	sectors	from	(or	to)	a	surface	once	the
disk	head	begins	reading	(or	writing)	the	first	sector.

swapping
Evicting	an	entire	process	from	physical	memory.

symbolic	link
See:	soft	link.

synchronization	barrier
A	synchronization	primitive	where	n	threads	operating	in	parallel	check	in	to	the
barrier	when	their	work	is	completed.	No	thread	returns	from	the	barrier	until	all	n
check	in.

synchronization	variable
A	data	structure	used	for	coordinating	concurrent	access	to	shared	state.

system	availability
The	probability	that	a	system	will	be	available	at	any	given	time.

system	call
A	procedure	provided	by	the	kernel	that	can	be	called	from	user	level.

system	reliability
The	probability	that	a	system	will	continue	to	be	reliable	for	some	specified	period	of
time.

tagged	command	queueing
A	disk	interface	that	allows	the	operating	system	to	issue	multiple	concurrent

requests	to	the	disk.	Requests	are	processed	and	acknowledged	out	of	order.	See	also:
native	command	queueing.	See	also:	NCQ.

tagged	TLB
A	translation	lookaside	buffer	whose	entries	contain	a	process	ID;	only	entries	for	the
currently	running	process	are	used	during	translation.	This	allows	TLB	entries	for	a
process	to	remain	in	the	TLB	when	the	process	is	switched	out.

task
A	user	request.

TCB
See:	thread	control	block.

TCQ
See:	tagged	command	queueing.

temporal	locality
Programs	tend	to	reference	the	same	instructions	and	data	that	they	had	recently
accessed.

test	and	test-and-set
An	implementation	of	a	spinlock	where	the	waiting	processor	waits	until	the	lock	is
FREE	before	attempting	to	acquire	it.

thrashing
When	a	cache	is	too	small	to	hold	its	working	set.	In	this	case,	most	references	are
cache	misses,	yet	those	misses	evict	data	that	will	be	used	in	the	near	future.

thread
A	single	execution	sequence	that	represents	a	separately	schedulable	task.

thread	context	switch
Suspend	execution	of	a	currently	running	thread	and	resume	execution	of	some	other
thread.

thread	control	block
The	operating	system	data	structure	containing	the	current	state	of	a	thread.	See	also:
TCB.

thread	scheduler
Software	that	maps	threads	to	processors	by	switching	between	running	threads	and
threads	that	are	ready	but	not	running.

thread-safe	bounded	queue
A	bounded	queue	that	is	safe	to	call	from	multiple	concurrent	threads.

throughput
The	rate	at	which	a	group	of	tasks	are	completed.

time	of	check	vs.	time	of	use	attack
A	security	vulnerability	arising	when	an	application	can	modify	the	user	memory
holding	a	system	call	parameter	(such	as	a	file	name),	after	the	kernel	checks	the
validity	of	the	parameter,	but	before	the	parameter	is	used	in	the	actual
implementation	of	the	routine.	Often	abbreviated	TOCTOU.

time	quantum
The	length	of	time	that	a	task	is	scheduled	before	being	preempted.

timer	interrupt
A	hardware	processor	interrupt	that	signifies	a	period	of	elapsed	real	time.

time-sharing	operating	system

An	operating	system	designed	to	support	interactive	use	of	the	computer.
TLB

See:	translation	lookaside	buffer.
TLB	flush

An	operation	to	remove	invalid	entries	from	a	TLB,	e.g.,	after	a	process	context
switch.

TLB	hit
A	TLB	lookup	that	succeeds	at	finding	a	valid	address	translation.

TLB	miss
A	TLB	lookup	that	fails	because	the	TLB	does	not	contain	a	valid	translation	for	that
virtual	address.

TLB	shootdown
A	request	to	another	processor	to	remove	a	newly	invalid	TLB	entry.

TOCTOU
See:	time	of	check	vs.	time	of	use	attack.

track
A	circle	of	sectors	on	a	disk	surface.

track	buffer
Memory	in	the	disk	controller	to	buffer	the	contents	of	the	current	track	even	though
those	sectors	have	not	yet	been	requested	by	the	operating	system.

track	skewing
A	staggered	alignment	of	disk	sectors	to	allow	sequential	reading	of	sectors	on
adjacent	tracks.

transaction
A	group	of	operations	that	are	applied	persistently,	atomically	as	a	group	or	not	at	all,
and	independently	of	other	transactions.

translation	lookaside	buffer
A	small	hardware	table	containing	the	results	of	recent	address	translations.	See	also:
TLB.

trap
A	synchronous	transfer	of	control	from	a	user-level	process	to	a	kernel-mode	handler.
Traps	can	be	caused	by	processor	exceptions,	memory	protection	errors,	or	system
calls.

triple	indirect	block
A	storage	block	containing	pointers	to	double	indirect	blocks.

two-phase	locking
A	strategy	for	acquiring	locks	needed	by	a	multi-operation	request,	where	no	lock	can
be	released	before	all	required	locks	have	been	acquired.

uberblock
In	ZFS,	the	root	of	the	ZFS	storage	system.

UNIX	exec
A	system	call	on	UNIX	that	causes	the	current	process	to	bring	a	new	executable
image	into	memory	and	start	it	running.

UNIX	fork
A	system	call	on	UNIX	that	creates	a	new	process	as	a	complete	copy	of	the	parent
process.

UNIX	pipe
A	two-way	byte	stream	communication	channel	between	UNIX	processes.

UNIX	signal
An	asynchronous	notification	to	a	running	process.

UNIX	stdin
A	file	descriptor	set	up	automatically	for	a	new	process	to	use	as	its	input.

UNIX	stdout
A	file	descriptor	set	up	automatically	for	a	new	process	to	use	as	its	output.

UNIX	wait
A	system	call	that	pauses	until	a	child	process	finishes.

unsafe	state
In	the	context	of	deadlock,	a	state	of	an	execution	such	that	there	is	at	least	one
sequence	of	future	resource	requests	that	leads	to	deadlock	no	matter	what	processing
order	is	tried.

upcall
An	event,	interrupt,	or	exception	delivered	by	the	kernel	to	a	user-level	process.

use	bit
A	status	bit	in	a	page	table	entry	recording	whether	the	page	has	been	recently
referenced.

user-level	memory	management
The	kernel	assigns	each	process	a	set	of	page	frames,	but	how	the	process	uses	its
assigned	memory	is	left	up	to	the	application.

user-level	page	handler
An	application-specific	upcall	routine	invoked	by	the	kernel	on	a	page	fault.

user-level	thread
A	type	of	application	thread	where	the	thread	is	created,	runs,	and	finishes	without
calls	into	the	operating	system	kernel.

user-mode	operation
The	processor	operates	in	a	restricted	mode	that	limits	the	capabilities	of	the
executing	process.	Compare:	kernel-mode	operation.

utilization
The	fraction	of	time	a	resource	is	busy.

virtual	address
An	address	that	must	be	translated	to	produce	an	address	in	physical	memory.

virtual	machine
An	execution	context	provided	by	an	operating	system	that	mimics	a	physical
machine,	e.g.,	to	run	an	operating	system	as	an	application	on	top	of	another
operating	system.

virtual	machine	honeypot
A	virtual	machine	constructed	for	the	purpose	of	executing	suspect	code	in	a	safe
environment.

virtual	machine	monitor
See:	host	operating	system.

virtual	memory
The	illusion	of	a	nearly	infinite	amount	of	physical	memory,	provided	by	demand
paging	of	virtual	addresses.

virtualization
Provide	an	application	with	the	illusion	of	resources	that	are	not	physically	present.

virtually	addressed	cache
A	processor	cache	which	is	accessed	using	virtual,	rather	than	physical,	memory
addresses.

volume
A	collection	of	physical	storage	blocks	that	form	a	logical	storage	device	(e.g.,	a
logical	disk).

wait	while	holding
A	necessary	condition	for	deadlock	to	occur:	a	thread	holds	one	resource	while
waiting	for	another.

wait-free	data	structures
Concurrent	data	structure	that	guarantees	progress	for	every	thread:	every	method
finishes	in	a	finite	number	of	steps,	regardless	of	the	state	of	other	threads	executing
in	the	data	structure.

waiting	list
The	set	of	threads	that	are	waiting	for	a	synchronization	event	or	timer	expiration	to
occur	before	becoming	eligible	to	be	run.

wear	leveling
A	flash	memory	management	policy	that	moves	logical	pages	around	the	device	to
ensure	that	each	physical	page	is	written/erased	approximately	the	same	number	of
times.

web	proxy	cache
A	cache	of	frequently	accessed	web	pages	to	speed	web	access	and	reduce	network
traffic.

work-conserving	scheduling	policy
A	policy	that	never	leaves	the	processor	idle	if	there	is	work	to	do.

working	set
The	set	of	memory	locations	that	a	program	has	referenced	in	the	recent	past.

workload
A	set	of	tasks	for	some	system	to	perform,	along	with	when	each	task	arrives	and
how	long	each	task	takes	to	complete.

wound	wait
An	approach	to	deadlock	recovery	that	ensures	progress	by	aborting	the	most	recent
transaction	in	any	deadlock.

write	acceleration
Data	to	be	stored	on	disk	is	first	written	to	the	disk’s	buffer	memory.	The	write	is	then
acknowledged	and	completed	in	the	background.

write-back	cache
A	cache	where	updates	can	be	stored	in	the	cache	and	only	sent	to	memory	when	the
cache	runs	out	of	space.

write-through	cache
A	cache	where	updates	are	sent	immediately	to	memory.

zero-copy	I/O
A	technique	for	transferring	data	across	the	kernel-user	boundary	without	a	memory-
to-memory	copy,	e.g.,	by	manipulating	page	table	entries.

zero-on-reference
A	method	for	clearing	memory	only	if	the	memory	is	used,	rather	than	in	advance.	If
the	first	access	to	memory	triggers	a	trap	to	the	kernel,	the	kernel	can	zero	the
memory	and	then	resume.

Zipf	distribution
The	relative	frequency	of	an	event	is	inversely	proportional	to	its	position	in	a	rank
order	of	popularity.

About	the	Authors

Thomas	Anderson	holds	the	Warren	Francis	and	Wilma	Kolm	Bradley	Chair	of
Computer	Science	and	Engineering	at	the	University	of	Washington,	where	he	has	been
teaching	computer	science	since	1997.

Professor	Anderson	has	been	widely	recognized	for	his	work,	receiving	the	Diane	S.
McEntyre	Award	for	Excellence	in	Teaching,	the	USENIX	Lifetime	Achievement	Award,
the	IEEE	Koji	Kobayashi	Computers	and	Communications	Award,	the	ACM	SIGOPS
Mark	Weiser	Award,	the	USENIX	Software	Tools	User	Group	Award,	the	IEEE
Communications	Society	William	R.	Bennett	Prize,	the	NSF	Presidential	Faculty
Fellowship,	and	the	Alfred	P.	Sloan	Research	Fellowship.	He	is	an	ACM	Fellow.	He	has
served	as	program	co-chair	of	the	ACM	SIGCOMM	Conference	and	program	chair	of	the
ACM	Symposium	on	Operating	Systems	Principles	(SOSP).	In	2003,	he	helped	co-found
the	USENIX/ACM	Symposium	on	Networked	Systems	Design	and	Implementation
(NSDI).

Professor	Anderson’s	research	interests	span	all	aspects	of	building	practical,	robust,	and
efficient	computer	systems,	including	operating	systems,	distributed	systems,	computer
networks,	multiprocessors,	and	computer	security.	Over	his	career,	he	has	authored	or	co-
authored	over	one	hundred	peer-reviewed	papers;	nineteen	of	his	papers	have	won	best
paper	awards.

Michael	Dahlin	is	a	Principal	Engineer	at	Google.	Prior	to	that,	from	1996	to	2014,	he
was	a	Professor	of	Computer	Science	at	the	University	of	Texas	in	Austin,	where	he
taught	operating	systems	and	other	subjects	and	where	he	was	awarded	the	College	of
Natural	Sciences	Teaching	Excellence	Award.

Professor	Dahlin’s	research	interests	include	Internet-	and	large-scale	services,	fault
tolerance,	security,	operating	systems,	distributed	systems,	and	storage	systems.

Professor	Dahlin’s	work	has	been	widely	recognized.	Over	his	career,	he	has	authored
over	seventy	peer	reviewed	papers;	ten	of	which	have	won	best	paper	awards.	He	is	both
an	ACM	Fellow	and	an	IEEE	Fellow,	and	he	has	received	an	Alfred	P.	Sloan	Research
Fellowship	and	an	NSF	CAREER	award.	He	has	served	as	the	program	chair	of	the	ACM
Symposium	on	Operating	Systems	Principles	(SOSP),	co-chair	of	the	USENIX/ACM
Symposium	on	Networked	Systems	Design	and	Implementation	(NSDI),	and	co-chair	of
the	International	World	Wide	Web	conference	(WWW).

	Contents
	Preface
	11 File Systems: Introduction and Overview
	12 Storage Devices
	13 Files and Directories
	14 Reliable Storage
	References
	Glossary
	About the Authors

