

Operating	Systems

Principles	&	Practice

Volume	II:	Concurrency
Second	Edition

Thomas	Anderson
University	of	Washington

Mike	Dahlin
University	of	Texas	and	Google

Recursive	Books

recursivebooks.com

Operating	Systems:	Principles	and	Practice	(Second	Edition)	Volume	II:	Concurrency	by
Thomas	Anderson	and	Michael	Dahlin
Copyright	©Thomas	Anderson	and	Michael	Dahlin,	2011-2015.

ISBN	978-0-9856735-4-3
Publisher:	Recursive	Books,	Ltd.,	http://recursivebooks.com/	
Cover:	Reflection	Lake,	Mt.	Rainier	
Cover	design:	Cameron	Neat	
Illustrations:	Cameron	Neat	
Copy	editors:	Sandy	Kaplan,	Whitney	Schmidt	
Ebook	design:	Robin	Briggs	
Web	design:	Adam	Anderson

SUGGESTIONS,	COMMENTS,	and	ERRORS.	We	welcome	suggestions,	comments	and
error	reports,	by	email	to	suggestions@recursivebooks.com

Notice	of	rights.	All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a
retrieval	system,	or	transmitted	in	any	form	by	any	means	—	electronic,	mechanical,
photocopying,	recording,	or	otherwise	—	without	the	prior	written	permission	of	the
publisher.	For	information	on	getting	permissions	for	reprints	and	excerpts,	contact
permissions@recursivebooks.com

Notice	of	liability.	The	information	in	this	book	is	distributed	on	an	“As	Is”	basis,	without
warranty.	Neither	the	authors	nor	Recursive	Books	shall	have	any	liability	to	any	person	or
entity	with	respect	to	any	loss	or	damage	caused	or	alleged	to	be	caused	directly	or
indirectly	by	the	information	or	instructions	contained	in	this	book	or	by	the	computer
software	and	hardware	products	described	in	it.

Trademarks:	Throughout	this	book	trademarked	names	are	used.	Rather	than	put	a
trademark	symbol	in	every	occurrence	of	a	trademarked	name,	we	state	we	are	using	the
names	only	in	an	editorial	fashion	and	to	the	benefit	of	the	trademark	owner	with	no
intention	of	infringement	of	the	trademark.	All	trademarks	or	service	marks	are	the
property	of	their	respective	owners.

http://recursivebooks.com/

To	Robin,	Sandra,	Katya,	and	Adam
Tom	Anderson

To	Marla,	Kelly,	and	Keith
Mike	Dahlin

Contents

	Preface

I:	Kernels	and	Processes
1.	Introduction

2.	The	Kernel	Abstraction

3.	The	Programming	Interface

II	Concurrency
4	Concurrency	and	Threads

4.1	Thread	Use	Cases

						4.1.1	Four	Reasons	to	Use	Threads

4.2	Thread	Abstraction

						4.2.1	Running,	Suspending,	and	Resuming	Threads
						4.2.2	Why	“Unpredictable	Speed”?

4.3	Simple	Thread	API

						4.3.1	A	Multi-Threaded	Hello	World
						4.3.2	Fork-Join	Parallelism

4.4	Thread	Data	Structures	and	Life	Cycle

						4.4.1	Per-Thread	State	and	Thread	Control	Block	(TCB)
						4.4.2	Shared	State

4.5	Thread	Life	Cycle

4.6	Implementing	Kernel	Threads

						4.6.1	Creating	a	Thread
						4.6.2	Deleting	a	Thread
						4.6.3	Thread	Context	Switch

4.7	Combining	Kernel	Threads	and	Single-Threaded	User	Processes

4.8	Implementing	Multi-Threaded	Processes

						4.8.1	Implementing	Multi-Threaded	Processes	Using	Kernel	Threads
						4.8.2	Implementing	User-Level	Threads	Without	Kernel	Support
						4.8.3	Implementing	User-Level	Threads	With	Kernel	Support

4.9	Alternative	Abstractions

						4.9.1	Asynchronous	I/O	and	Event-Driven	Programming
						4.9.2	Data	Parallel	Programming

4.10	Summary	and	Future	Directions

						4.10.1	Historical	Notes

	Exercises

5	Synchronizing	Access	to	Shared	Objects

5.1	Challenges

						5.1.1	Race	Conditions
						5.1.2	Atomic	Operations
						5.1.3	Too	Much	Milk
						5.1.4	Discussion
						5.1.5	A	Better	Solution

5.2	Structuring	Shared	Objects

						5.2.1	Implementing	Shared	Objects
						5.2.2	Scope	and	Roadmap

5.3	Locks:	Mutual	Exclusion

						5.3.1	Locks:	API	and	Properties
						5.3.2	Case	Study:	Thread-Safe	Bounded	Queue

5.4	Condition	Variables:	Waiting	for	a	Change

						5.4.1	Condition	Variable	Definition
						5.4.2	Thread	Life	Cycle	Revisited
						5.4.3	Case	Study:	Blocking	Bounded	Queue

5.5	Designing	and	Implementing	Shared	Objects

						5.5.1	High	Level	Methodology
						5.5.2	Implementation	Best	Practices
						5.5.3	Three	Pitfalls

5.6	Three	Case	Studies

						5.6.1	Readers/Writers	Lock
						5.6.2	Synchronization	Barriers
						5.6.3	FIFO	Blocking	Bounded	Queue

5.7	Implementing	Synchronization	Objects

						5.7.1	Implementing	Uniprocessor	Locks	by	Disabling	Interrupts
						5.7.2	Implementing	Uniprocessor	Queueing	Locks
						5.7.3	Implementing	Multiprocessor	Spinlocks
						5.7.4	Implementing	Multiprocessor	Queueing	Locks
						5.7.5	Case	Study:	Linux	2.6	Kernel	Mutex	Lock
						5.7.6	Implementing	Condition	Variables
						5.7.7	Implementing	Application-level	Synchronization

5.8	Semaphores	Considered	Harmful

5.9	Summary	and	Future	Directions

						5.9.1	Historical	Notes

	Exercises

6	Multi-Object	Synchronization

6.1	Multiprocessor	Lock	Performance

6.2	Lock	Design	Patterns

						6.2.1	Fine-Grained	Locking
						6.2.2	Per-Processor	Data	Structures
						6.2.3	Ownership	Design	Pattern
						6.2.4	Staged	Architecture

6.3	Lock	Contention

						6.3.1	MCS	Locks
						6.3.2	Read-Copy-Update	(RCU)

6.4	Multi-Object	Atomicity

						6.4.1	Careful	Class	Design
						6.4.2	Acquire-All/Release-All
						6.4.3	Two-Phase	Locking

6.5	Deadlock

						6.5.1	Deadlock	vs.	Starvation
						6.5.2	Necessary	Conditions	for	Deadlock
						6.5.3	Preventing	Deadlock
						6.5.4	The	Banker’s	Algorithm	for	Avoiding	Deadlock
						6.5.5	Detecting	and	Recovering	From	Deadlocks

6.6	Non-Blocking	Synchronization

6.7	Summary	and	Future	Directions

	Exercises

7	Scheduling

7.1	Uniprocessor	Scheduling

						7.1.1	First-In-First-Out	(FIFO)
						7.1.2	Shortest	Job	First	(SJF)
						7.1.3	Round	Robin
						7.1.4	Max-Min	Fairness
						7.1.5	Case	Study:	Multi-Level	Feedback
						7.1.6	Summary

7.2	Multiprocessor	Scheduling

						7.2.1	Scheduling	Sequential	Applications	on	Multiprocessors
						7.2.2	Scheduling	Parallel	Applications

7.3	Energy-Aware	Scheduling

7.4	Real-Time	Scheduling

7.5	Queueing	Theory

						7.5.1	Definitions
						7.5.2	Little’s	Law
						7.5.3	Response	Time	Versus	Utilization
						7.5.4	“What	if?”	Questions
						7.5.5	Lessons

7.6	Overload	Management

7.7	Case	Study:	Servers	in	a	Data	Center

7.8	Summary	and	Future	Directions

	Exercises

III:	Memory	Management
8.	Address	Translation

9.	Caching	and	Virtual	Memory

10.	Advanced	Memory	Management

IV:	Persistent	Storage
11.	File	Systems:	Introduction	and	Overview

12.	Storage	Devices

13.	Files	and	Directories

14.	Reliable	Storage

	References

	Glossary

	About	the	Authors

Preface

Preface	to	the	eBook	Edition

Operating	Systems:	Principles	and	Practice	is	a	textbook	for	a	first	course	in
undergraduate	operating	systems.	In	use	at	over	50	colleges	and	universities	worldwide,
this	textbook	provides:

A	path	for	students	to	understand	high	level	concepts	all	the	way	down	to	working
code.
Extensive	worked	examples	integrated	throughout	the	text	provide	students	concrete
guidance	for	completing	homework	assignments.
A	focus	on	up-to-date	industry	technologies	and	practice

The	eBook	edition	is	split	into	four	volumes	that	together	contain	exactly	the	same
material	as	the	(2nd)	print	edition	of	Operating	Systems:	Principles	and	Practice,
reformatted	for	various	screen	sizes.	Each	volume	is	self-contained	and	can	be	used	as	a
standalone	text,	e.g.,	at	schools	that	teach	operating	systems	topics	across	multiple
courses.

Volume	1:	Kernels	and	Processes.	This	volume	contains	Chapters	1-3	of	the	print
edition.	We	describe	the	essential	steps	needed	to	isolate	programs	to	prevent	buggy
applications	and	computer	viruses	from	crashing	or	taking	control	of	your	system.
Volume	2:	Concurrency.	This	volume	contains	Chapters	4-7	of	the	print	edition.	We
provide	a	concrete	methodology	for	writing	correct	concurrent	programs	that	is	in
widespread	use	in	industry,	and	we	explain	the	mechanisms	for	context	switching	and
synchronization	from	fundamental	concepts	down	to	assembly	code.
Volume	3:	Memory	Management.	This	volume	contains	Chapters	8-10	of	the	print
edition.	We	explain	both	the	theory	and	mechanisms	behind	64-bit	address	space
translation,	demand	paging,	and	virtual	machines.
Volume	4:	Persistent	Storage.	This	volume	contains	Chapters	11-14	of	the	print
edition.	We	explain	the	technologies	underlying	modern	extent-based,	journaling,	and
versioning	file	systems.

A	more	detailed	description	of	each	chapter	is	given	in	the	preface	to	the	print	edition.

Preface	to	the	Print	Edition

Why	We	Wrote	This	Book

Many	of	our	students	tell	us	that	operating	systems	was	the	best	course	they	took	as	an
undergraduate	and	also	the	most	important	for	their	careers.	We	are	not	alone	—	many	of
our	colleagues	report	receiving	similar	feedback	from	their	students.

Part	of	the	excitement	is	that	the	core	ideas	in	a	modern	operating	system	—	protection,
concurrency,	virtualization,	resource	allocation,	and	reliable	storage	—	have	become

widely	applied	throughout	computer	science,	not	just	operating	system	kernels.	Whether
you	get	a	job	at	Facebook,	Google,	Microsoft,	or	any	other	leading-edge	technology
company,	it	is	impossible	to	build	resilient,	secure,	and	flexible	computer	systems	without
the	ability	to	apply	operating	systems	concepts	in	a	variety	of	settings.	In	a	modern	world,
nearly	everything	a	user	does	is	distributed,	nearly	every	computer	is	multi-core,	security
threats	abound,	and	many	applications	such	as	web	browsers	have	become	mini-operating
systems	in	their	own	right.

It	should	be	no	surprise	that	for	many	computer	science	students,	an	undergraduate
operating	systems	class	has	become	a	de	facto	requirement:	a	ticket	to	an	internship	and
eventually	to	a	full-time	position.

Unfortunately,	many	operating	systems	textbooks	are	still	stuck	in	the	past,	failing	to	keep
pace	with	rapid	technological	change.	Several	widely-used	books	were	initially	written	in
the	mid-1980’s,	and	they	often	act	as	if	technology	stopped	at	that	point.	Even	when	new
topics	are	added,	they	are	treated	as	an	afterthought,	without	pruning	material	that	has
become	less	important.	The	result	are	textbooks	that	are	very	long,	very	expensive,	and	yet
fail	to	provide	students	more	than	a	superficial	understanding	of	the	material.

Our	view	is	that	operating	systems	have	changed	dramatically	over	the	past	twenty	years,
and	that	justifies	a	fresh	look	at	both	how	the	material	is	taught	and	what	is	taught.	The
pace	of	innovation	in	operating	systems	has,	if	anything,	increased	over	the	past	few	years,
with	the	introduction	of	the	iOS	and	Android	operating	systems	for	smartphones,	the	shift
to	multicore	computers,	and	the	advent	of	cloud	computing.

To	prepare	students	for	this	new	world,	we	believe	students	need	three	things	to	succeed	at
understanding	operating	systems	at	a	deep	level:

Concepts	and	code.	We	believe	it	is	important	to	teach	students	both	principles	and
practice,	concepts	and	implementation,	rather	than	either	alone.	This	textbook	takes
concepts	all	the	way	down	to	the	level	of	working	code,	e.g.,	how	a	context	switch
works	in	assembly	code.	In	our	experience,	this	is	the	only	way	students	will	really
understand	and	master	the	material.	All	of	the	code	in	this	book	is	available	from	the
author’s	web	site,	ospp.washington.edu.

Extensive	worked	examples.	In	our	view,	students	need	to	be	able	to	apply	concepts
in	practice.	To	that	end,	we	have	integrated	a	large	number	of	example	exercises,
along	with	solutions,	throughout	the	text.	We	uses	these	exercises	extensively	in	our
own	lectures,	and	we	have	found	them	essential	to	challenging	students	to	go	beyond
a	superficial	understanding.

Industry	practice.	To	show	students	how	to	apply	operating	systems	concepts	in	a
variety	of	settings,	we	use	detailed,	concrete	examples	from	Facebook,	Google,
Microsoft,	Apple,	and	other	leading-edge	technology	companies	throughout	the
textbook.	Because	operating	systems	concepts	are	important	in	a	wide	range	of
computer	systems,	we	take	these	examples	not	only	from	traditional	operating
systems	like	Linux,	Windows,	and	OS	X	but	also	from	other	systems	that	need	to
solve	problems	of	protection,	concurrency,	virtualization,	resource	allocation,	and
reliable	storage	like	databases,	web	browsers,	web	servers,	mobile	applications,	and
search	engines.

Taking	a	fresh	perspective	on	what	students	need	to	know	to	apply	operating	systems
concepts	in	practice	has	led	us	to	innovate	in	every	major	topic	covered	in	an
undergraduate-level	course:

Kernels	and	Processes.	The	safe	execution	of	untrusted	code	has	become	central	to
many	types	of	computer	systems,	from	web	browsers	to	virtual	machines	to	operating
systems.	Yet	existing	textbooks	treat	protection	as	a	side	effect	of	UNIX	processes,	as
if	they	are	synonyms.	Instead,	we	start	from	first	principles:	what	are	the	minimum
requirements	for	process	isolation,	how	can	systems	implement	process	isolation
efficiently,	and	what	do	students	need	to	know	to	implement	functions	correctly	when
the	caller	is	potentially	malicious?

Concurrency.	With	the	advent	of	multi-core	architectures,	most	students	today	will
spend	much	of	their	careers	writing	concurrent	code.	Existing	textbooks	provide	a
blizzard	of	concurrency	alternatives,	most	of	which	were	abandoned	decades	ago	as
impractical.	Instead,	we	focus	on	providing	students	a	single	methodology	based	on
Mesa	monitors	that	will	enable	students	to	write	correct	concurrent	programs	—	a
methodology	that	is	by	far	the	dominant	approach	used	in	industry.

Memory	Management.	Even	as	demand-paging	has	become	less	important,
virtualization	has	become	even	more	important	to	modern	computer	systems.	We
provide	a	deep	treatment	of	address	translation	hardware,	sparse	address	spaces,
TLBs,	and	on-chip	caches.	We	then	use	those	concepts	as	a	springboard	for
describing	virtual	machines	and	related	concepts	such	as	checkpointing	and	copy-on-
write.

Persistent	Storage.	Reliable	storage	in	the	presence	of	failures	is	central	to	the
design	of	most	computer	systems.	Existing	textbooks	survey	the	history	of	file
systems,	spending	most	of	their	time	ad	hoc	approaches	to	failure	recovery	and	de-
fragmentation.	Yet	no	modern	file	systems	still	use	those	ad	hoc	approaches.	Instead,
our	focus	is	on	how	file	systems	use	extents,	journaling,	copy-on-write,	and	RAID	to
achieve	both	high	performance	and	high	reliability.

Intended	Audience

Operating	Systems:	Principles	and	Practice	is	a	textbook	for	a	first	course	in
undergraduate	operating	systems.	We	believe	operating	systems	should	be	taken	as	early
as	possible	in	an	undergraduate’s	course	of	study;	many	students	use	the	course	as	a
springboard	to	an	internship	and	a	career.	To	that	end,	we	have	designed	the	textbook	to
assume	minimal	pre-requisites:	specifically,	students	should	have	taken	a	data	structures
course	and	one	on	computer	organization.	The	code	examples	are	written	in	a	combination
of	x86	assembly,	C,	and	C++.	In	particular,	we	have	designed	the	book	to	interface	well
with	the	Bryant	and	O’Halloran	textbook.	We	review	and	cover	in	much	more	depth	the
material	from	the	second	half	of	that	book.

We	should	note	what	this	textbook	is	not:	it	is	not	intended	to	teach	the	API	or	internals	of
any	specific	operating	system,	such	as	Linux,	Android,	Windows	8,	OS	X,	or	iOS.	We	use
many	concrete	examples	from	these	systems,	but	our	focus	is	on	the	shared	problems	these

systems	face	and	the	technologies	these	systems	use	to	solve	those	problems.

A	Guide	to	Instructors

One	of	our	goals	is	enable	instructors	to	choose	an	appropriate	level	of	depth	for	each
course	topic.	Each	chapter	begins	at	a	conceptual	level,	with	implementation	details	and
the	more	advanced	material	towards	the	end.	The	more	advanced	material	can	be	omitted
without	compromising	the	ability	of	students	to	follow	later	material.	No	single-quarter	or
single-semester	course	is	likely	to	be	able	to	cover	every	topic	we	have	included,	but	we
think	it	is	a	good	thing	for	students	to	come	away	from	an	operating	systems	course	with
an	appreciation	that	there	is	always	more	to	learn.

For	each	topic,	we	attempt	to	convey	it	at	three	levels:

How	to	reason	about	systems.	We	describe	core	systems	concepts,	such	as
protection,	concurrency,	resource	scheduling,	virtualization,	and	storage,	and	we
provide	practice	applying	these	concepts	in	various	situations.	In	our	view,	this
provides	the	biggest	long-term	payoff	to	students,	as	they	are	likely	to	need	to	apply
these	concepts	in	their	work	throughout	their	career,	almost	regardless	of	what
project	they	end	up	working	on.

Power	tools.	We	introduce	students	to	a	number	of	abstractions	that	they	can	apply	in
their	work	in	industry	immediately	after	graduation,	and	that	we	expect	will	continue
to	be	useful	for	decades	such	as	sandboxing,	protected	procedure	calls,	threads,	locks,
condition	variables,	caching,	checkpointing,	and	transactions.

Details	of	specific	operating	systems.	We	include	numerous	examples	of	how
different	operating	systems	work	in	practice.	However,	this	material	changes	rapidly,
and	there	is	an	order	of	magnitude	more	material	than	can	be	covered	in	a	single
semester-length	course.	The	purpose	of	these	examples	is	to	illustrate	how	to	use	the
operating	systems	principles	and	power	tools	to	solve	concrete	problems.	We	do	not
attempt	to	provide	a	comprehensive	description	of	Linux,	OS	X,	or	any	other
particular	operating	system.

The	book	is	divided	into	five	parts:	an	introduction	(Chapter	1),	kernels	and	processes
(Chapters	2-3),	concurrency,	synchronization,	and	scheduling	(Chapters	4-7),	memory
management	(Chapters	8-10),	and	persistent	storage	(Chapters	11-14).

Introduction.	The	goal	of	Chapter	1	is	to	introduce	the	recurring	themes	found	in	the
later	chapters.	We	define	some	common	terms,	and	we	provide	a	bit	of	the	history	of
the	development	of	operating	systems.

The	Kernel	Abstraction.	Chapter	2	covers	kernel-based	process	protection	—	the
concept	and	implementation	of	executing	a	user	program	with	restricted	privileges.
Given	the	increasing	importance	of	computer	security	issues,	we	believe	protected
execution	and	safe	transfer	across	privilege	levels	are	worth	treating	in	depth.	We
have	broken	the	description	into	sections,	to	allow	instructors	to	choose	either	a	quick
introduction	to	the	concepts	(up	through	Section	2.3),	or	a	full	treatment	of	the	kernel
implementation	details	down	to	the	level	of	interrupt	handlers.	Some	instructors	start

with	concurrency,	and	cover	kernels	and	kernel	protection	afterwards.	While	our
textbook	can	be	used	that	way,	we	have	found	that	students	benefit	from	a	basic
understanding	of	the	role	of	operating	systems	in	executing	user	programs,	before
introducing	concurrency.

The	Programming	Interface.	Chapter	3	is	intended	as	an	impedance	match	for
students	of	differing	backgrounds.	Depending	on	student	background,	it	can	be
skipped	or	covered	in	depth.	The	chapter	covers	the	operating	system	from	a
programmer’s	perspective:	process	creation	and	management,	device-independent
input/output,	interprocess	communication,	and	network	sockets.	Our	goal	is	that
students	should	understand	at	a	detailed	level	what	happens	when	a	user	clicks	a	link
in	a	web	browser,	as	the	request	is	transferred	through	operating	system	kernels	and
user	space	processes	at	the	client,	server,	and	back	again.	This	chapter	also	covers	the
organization	of	the	operating	system	itself:	how	device	drivers	and	the	hardware
abstraction	layer	work	in	a	modern	operating	system;	the	difference	between	a
monolithic	and	a	microkernel	operating	system;	and	how	policy	and	mechanism	are
separated	in	modern	operating	systems.

Concurrency	and	Threads.	Chapter	4	motivates	and	explains	the	concept	of
threads.	Because	of	the	increasing	importance	of	concurrent	programming,	and	its
integration	with	modern	programming	languages	like	Java,	many	students	have	been
introduced	to	multi-threaded	programming	in	an	earlier	class.	This	is	a	bit	dangerous,
as	students	at	this	stage	are	prone	to	writing	programs	with	race	conditions,	problems
that	may	or	may	not	be	discovered	with	testing.	Thus,	the	goal	of	this	chapter	is	to
provide	a	solid	conceptual	framework	for	understanding	the	semantics	of
concurrency,	as	well	as	how	concurrent	threads	are	implemented	in	both	the
operating	system	kernel	and	in	user-level	libraries.	Instructors	needing	to	go	more
quickly	can	omit	these	implementation	details.

Synchronization.	Chapter	5	discusses	the	synchronization	of	multi-threaded
programs,	a	central	part	of	all	operating	systems	and	increasingly	important	in	many
other	contexts.	Our	approach	is	to	describe	one	effective	method	for	structuring
concurrent	programs	(based	on	Mesa	monitors),	rather	than	to	attempt	to	cover
several	different	approaches.	In	our	view,	it	is	more	important	for	students	to	master
one	methodology.	Monitors	are	a	particularly	robust	and	simple	one,	capable	of
implementing	most	concurrent	programs	efficiently.	The	implementation	of
synchronization	primitives	should	be	included	if	there	is	time,	so	students	see	that
there	is	no	magic.

Multi-Object	Synchronization.	Chapter	6	discusses	advanced	topics	in	concurrency
—	specifically,	the	twin	challenges	of	multiprocessor	lock	contention	and	deadlock.
This	material	is	increasingly	important	for	students	working	on	multicore	systems,
but	some	courses	may	not	have	time	to	cover	it	in	detail.

Scheduling.	This	chapter	covers	the	concepts	of	resource	allocation	in	the	specific
context	of	processor	scheduling.	With	the	advent	of	data	center	computing	and
multicore	architectures,	the	principles	and	practice	of	resource	allocation	have
renewed	importance.	After	a	quick	tour	through	the	tradeoffs	between	response	time
and	throughput	for	uniprocessor	scheduling,	the	chapter	covers	a	set	of	more

advanced	topics	in	affinity	and	multiprocessor	scheduling,	power-aware	and	deadline
scheduling,	as	well	as	basic	queueing	theory	and	overload	management.	We	conclude
these	topics	by	walking	students	through	a	case	study	of	server-side	load
management.

Address	Translation.	Chapter	8	explains	mechanisms	for	hardware	and	software
address	translation.	The	first	part	of	the	chapter	covers	how	hardware	and	operating
systems	cooperate	to	provide	flexible,	sparse	address	spaces	through	multi-level
segmentation	and	paging.	We	then	describe	how	to	make	memory	management
efficient	with	translation	lookaside	buffers	(TLBs)	and	virtually	addressed	caches.
We	consider	how	to	keep	TLBs	consistent	when	the	operating	system	makes	changes
to	its	page	tables.	We	conclude	with	a	discussion	of	modern	software-based
protection	mechanisms	such	as	those	found	in	the	Microsoft	Common	Language
Runtime	and	Google’s	Native	Client.

Caching	and	Virtual	Memory.	Caches	are	central	to	many	different	types	of
computer	systems.	Most	students	will	have	seen	the	concept	of	a	cache	in	an	earlier
class	on	machine	structures.	Thus,	our	goal	is	to	cover	the	theory	and	implementation
of	caches:	when	they	work	and	when	they	do	not,	as	well	as	how	they	are
implemented	in	hardware	and	software.	We	then	show	how	these	ideas	are	applied	in
the	context	of	memory-mapped	files	and	demand-paged	virtual	memory.

Advanced	Memory	Management.	Address	translation	is	a	powerful	tool	in	system
design,	and	we	show	how	it	can	be	used	for	zero	copy	I/O,	virtual	machines,	process
checkpointing,	and	recoverable	virtual	memory.	As	this	is	more	advanced	material,	it
can	be	skipped	by	those	classes	pressed	for	time.

File	Systems:	Introduction	and	Overview.	Chapter	11	frames	the	file	system
portion	of	the	book,	starting	top	down	with	the	challenges	of	providing	a	useful	file
abstraction	to	users.	We	then	discuss	the	UNIX	file	system	interface,	the	major
internal	elements	inside	a	file	system,	and	how	disk	device	drivers	are	structured.

Storage	Devices.	Chapter	12	surveys	block	storage	hardware,	specifically	magnetic
disks	and	flash	memory.	The	last	two	decades	have	seen	rapid	change	in	storage
technology	affecting	both	application	programmers	and	operating	systems	designers;
this	chapter	provides	a	snapshot	for	students,	as	a	building	block	for	the	next	two
chapters.	If	students	have	previously	seen	this	material,	this	chapter	can	be	skipped.

Files	and	Directories.	Chapter	13	discusses	file	system	layout	on	disk.	Rather	than
survey	all	possible	file	layouts	—	something	that	changes	rapidly	over	time	—	we
use	file	systems	as	a	concrete	example	of	mapping	complex	data	structures	onto
block	storage	devices.

Reliable	Storage.	Chapter	14	explains	the	concept	and	implementation	of	reliable
storage,	using	file	systems	as	a	concrete	example.	Starting	with	the	ad	hoc	techniques
used	in	early	file	systems,	the	chapter	explains	checkpointing	and	write	ahead
logging	as	alternate	implementation	strategies	for	building	reliable	storage,	and	it
discusses	how	redundancy	such	as	checksums	and	replication	are	used	to	improve
reliability	and	availability.

We	welcome	and	encourage	suggestions	for	how	to	improve	the	presentation	of	the
material;	please	send	any	comments	to	the	publisher’s	website,
suggestions@recursivebooks.com.

Acknowledgements

We	have	been	incredibly	fortunate	to	have	the	help	of	a	large	number	of	people	in	the
conception,	writing,	editing,	and	production	of	this	book.

We	started	on	the	journey	of	writing	this	book	over	dinner	at	the	USENIX	NSDI
conference	in	2010.	At	the	time,	we	thought	perhaps	it	would	take	us	the	summer	to
complete	the	first	version	and	perhaps	a	year	before	we	could	declare	ourselves	done.	We
were	very	wrong!	It	is	no	exaggeration	to	say	that	it	would	have	taken	us	a	lot	longer
without	the	help	we	have	received	from	the	people	we	mention	below.

Perhaps	most	important	have	been	our	early	adopters,	who	have	given	us	enormously
useful	feedback	as	we	have	put	together	this	edition:

Carnegie-Mellon David	Eckhardt	and	Garth	Gibson

Clarkson Jeanna	Matthews

Cornell Gun	Sirer

ETH	Zurich Mothy	Roscoe

New	York	University Laskshmi	Subramanian

Princeton	University Kai	Li

Saarland	University Peter	Druschel

Stanford	University John	Ousterhout

University	of	California	Riverside Harsha	Madhyastha

University	of	California	Santa	Barbara Ben	Zhao

University	of	Maryland Neil	Spring

University	of	Michigan Pete	Chen

University	of	Southern	California Ramesh	Govindan

University	of	Texas-Austin Lorenzo	Alvisi

Universtiy	of	Toronto Ding	Yuan

University	of	Washington Gary	Kimura	and	Ed	Lazowska

In	developing	our	approach	to	teaching	operating	systems,	both	before	we	started	writing
and	afterwards	as	we	tried	to	put	our	thoughts	to	paper,	we	made	extensive	use	of	lecture
notes	and	slides	developed	by	other	faculty.	Of	particular	help	were	the	materials	created
by	Pete	Chen,	Peter	Druschel,	Steve	Gribble,	Eddie	Kohler,	John	Ousterhout,	Mothy
Roscoe,	and	Geoff	Voelker.	We	thank	them	all.

Our	illustrator	for	the	second	edition,	Cameron	Neat,	has	been	a	joy	to	work	with.	We
would	also	like	to	thank	Simon	Peter	for	running	the	multiprocessor	experiments
introducing	Chapter	6.

We	are	also	grateful	to	Lorenzo	Alvisi,	Adam	Anderson,	Pete	Chen,	Steve	Gribble,	Sam
Hopkins,	Ed	Lazowska,	Harsha	Madhyastha,	John	Ousterhout,	Mark	Rich,	Mothy	Roscoe,
Will	Scott,	Gun	Sirer,	Ion	Stoica,	Lakshmi	Subramanian,	and	John	Zahorjan	for	their
helpful	comments	and	suggestions	as	to	how	to	improve	the	book.

We	thank	Josh	Berlin,	Marla	Dahlin,	Rasit	Eskicioglu,	Sandy	Kaplan,	John	Ousterhout,
Whitney	Schmidt,	and	Mike	Walfish	for	helping	us	identify	and	correct	grammatical	or
technical	bugs	in	the	text.

We	thank	Jeff	Dean,	Garth	Gibson,	Mark	Oskin,	Simon	Peter,	Dave	Probert,	Amin	Vahdat,
and	Mark	Zbikowski	for	their	help	in	explaining	the	internal	workings	of	some	of	the
commercial	systems	mentioned	in	this	book.

We	would	like	to	thank	Dave	Wetherall,	Dan	Weld,	Mike	Walfish,	Dave	Patterson,	Olav
Kvern,	Dan	Halperin,	Armando	Fox,	Robin	Briggs,	Katya	Anderson,	Sandra	Anderson,
Lorenzo	Alvisi,	and	William	Adams	for	their	help	and	advice	on	textbook	economics	and
production.

The	Helen	Riaboff	Whiteley	Center	as	well	as	Don	and	Jeanne	Dahlin	were	kind	enough
to	lend	us	a	place	to	escape	when	we	needed	to	get	chapters	written.

Finally,	we	thank	our	families,	our	colleagues,	and	our	students	for	supporting	us	in	this
larger-than-expected	effort.

	II
Concurrency

4.	Concurrency	and	Threads

Many	hands	make	light	work.	—John	Heywood	(1546)

In	the	real	world	—	outside	of	computers	—	different	activities	often	proceed	at	the	same
time.	Five	jazz	musicians	play	their	instruments	while	reacting	to	each	other;	one	car
drives	north	while	another	drives	south;	one	part	of	a	drug	molecule	is	attracted	to	a	cell’s
receptor,	while	another	part	is	repelled;	a	humanoid	robot	walks,	raises	its	arms,	and	turns
its	head;	you	fetch	one	article	from	the	New	York	Times	website	while	someone	else
fetches	another;	or	millions	of	people	make	long	distance	phone	calls	on	Mother’s	Day.

We	use	the	word	concurrency	to	refer	to	multiple	activities	that	can	happen	at	the	same
time.	The	real	world	is	concurrent,	and	internally,	modern	computers	are	also	concurrent.
For	example,	a	high-end	server	might	have	more	than	a	dozen	processors,	10	disks,	and	4
network	interfaces;	a	workstation	might	have	a	dozen	active	I/O	devices	including	a
screen,	keyboard,	mouse,	camera,	microphone,	speaker,	wireless	network	interface,	wired
network	interface,	printer,	scanner,	and	disk	drive.	Today,	even	mobile	phones	often	have
multi-core	processors.

Correctly	managing	concurrency	is	a	key	challenge	for	operating	system	developers.	To
manage	hardware	resources,	to	provide	responsiveness	to	users,	and	to	run	multiple
applications	simultaneously,	the	operating	system	needs	a	structured	way	of	keeping	track
of	the	various	actions	it	needs	to	perform.	Over	the	next	several	chapters,	we	will	present	a
set	of	abstractions	for	expressing	and	managing	concurrency.	These	abstractions	are	in
widespread	use	in	commercial	operating	systems	because	they	reduce	implementation
complexity,	improve	system	reliability,	and	improve	performance.

Concurrency	is	also	a	concern	for	many	application	developers.	Although	the	abstractions
we	discuss	were	originally	developed	to	make	it	easier	to	write	correct	operating	system
code,	they	have	become	widely	used	in	applications:

Network	services	need	to	be	able	to	handle	multiple	requests	from	their	clients;	a
Google	that	could	handle	only	one	search	request	at	a	time,	or	an	Amazon	that	could
only	allow	one	book	to	be	bought	at	a	time,	would	be	much	less	useful.

Most	applications	today	have	user	interfaces;	providing	good	responsiveness	to	users
while	simultaneously	executing	application	logic	is	much	easier	with	a	structured
approach	to	concurrency.

Parallel	programs	need	to	be	able	to	map	work	onto	multiple	processors	to	get	the
performance	benefits	of	multicore	architectures.

Data	management	systems	need	concurrency	to	mask	the	latency	of	disk	and	network
operations.

From	the	programmer’s	perspective,	it	is	much	easier	to	think	sequentially	than	to	keep
track	of	many	simultaneous	activities.	For	example,	when	reading	or	writing	the	code	for	a

procedure,	you	can	identify	an	initial	state	and	a	set	of	pre-conditions,	think	through	how
each	successive	statement	changes	the	state,	and	from	that	determine	the	post-conditions.
How	can	you	write	a	correct	program	with	dozens	of	events	happening	at	once?

Figure	4.1:	The	operating	system	provides	the	illusion	that	programmers	can	create	as	many	threads	as	they	need,	and
each	thread	runs	on	its	own	dedicated	virtual	processor.	In	reality,	of	course,	a	machine	only	has	a	finite	number	of
processors,	and	it	is	the	operating	system’s	job	to	transparently	multiplex	threads	onto	the	actual	processors.

The	key	idea	is	to	write	a	concurrent	program	—	one	with	many	simultaneous	activities	—
as	a	set	of	sequential	streams	of	execution,	or	threads,	that	interact	and	share	results	in
very	precise	ways.	Threads	let	us	define	a	set	of	tasks	that	run	concurrently	while	the	code
for	each	task	is	sequential.	Each	thread	behaves	as	if	it	has	its	own	dedicated	processor,	as
illustrated	in	Figure	4.1.	As	we	will	see	later,	using	the	thread	abstraction	often	requires
the	programmer	to	write	additional	code	for	coordinating	multiple	threads	accessing
shared	data	structures;	we	will	discuss	this	topic	in	much	more	detail	in	Chapter	5.

The	thread	abstraction	lets	the	programmer	create	as	many	threads	as	needed	without
worrying	about	the	exact	number	of	physical	processors,	or	exactly	which	processor	is
doing	what	at	each	instant.	Of	course,	threads	are	only	an	abstraction:	the	physical
hardware	has	a	limited	number	of	processors	(and	potentially	only	one!).	The	operating
system’s	job	is	to	provide	the	illusion	of	a	nearly	infinite	number	of	virtual	processors
even	while	the	physical	hardware	is	more	limited.	It	sustains	this	illusion	by	transparently
suspending	and	resuming	threads	so	that	at	any	given	time	only	a	subset	of	the	threads	are
actively	running.

This	chapter	will	define	the	thread	abstraction,	illustrate	how	a	programmer	can	use	the
abstraction,	and	explain	how	the	operating	system	can	implement	threads	on	top	of	a
limited	number	of	processors.	Chapter	5	explains	how	to	coordinate	threads	when	they
operate	on	shared	data,	and	Chapter	6	covers	advanced	issues	when	programming	with
threads.	Chapter	7	discusses	the	policy	question:	how	should	the	operating	system	choose
which	thread	to	run	next	when	there	are	more	things	to	run	than	processors	on	which	to
run	them.

Chapter	roadmap:	The	rest	of	this	chapter	discusses	these	topics	in	detail:

Thread	Use	Cases.	What	are	threads	useful	for?	(Section	4.1)

Thread	Abstraction.	What	is	the	thread	abstraction	as	seen	by	a	programmer?
(Section	4.2)

Simple	Thread	API.	How	can	programmers	use	threads?	(Section	4.3)

Thread	Data	Structures.	What	data	structures	does	the	operating	system	use	to
manage	threads?	(Section	4.4)

Thread	Life	Cycle.	What	states	does	a	thread	go	through	between	initialization	and
completion?	(Section	4.5)

Implementing	Kernel	Threads.	How	do	we	implement	the	thread	abstraction	inside
the	operating	system	kernel?	(Section	4.6)

Combining	Kernel	Threads	and	Single-Threaded	User	Processes.	How	do	we
extend	the	implementation	of	kernel	threads	to	support	simple	single-threaded
processes?	(Section	4.7)

Implementing	Multi-threaded	Processes.	How	do	we	implement	the	thread
abstraction	for	multi-threaded	applications?	(Section	4.8)

Alternative	Abstractions.	What	other	abstractions	can	we	use	to	express	and
implement	concurrency?	(Section	4.9)

Deja	vu	all	over	again?

Threads	are	widely	used,	and	several	modern	programming	languages	directly	support
writing	programs	with	multiple	threads.	You	may	have	programmed	with	threads	before
or	have	taken	classes	that	talk	about	using	threads.	What	is	new	here?

The	discussion	in	this	book	is	designed	to	make	sense	even	if	you	have	never	seen	threads
before.	If	you	have	seen	threads	before,	great!	But	we	still	think	you	will	find	the
discussion	useful.

Beyond	describing	the	basic	thread	abstraction,	we	emphasize	two	points	in	this	chapter
and	the	following	ones.

Implementation.	We	will	describe	how	operating	systems	implement	threads	both
for	their	own	use	and	for	use	by	user-level	applications.	It	is	important	to	understand
how	threads	really	work	so	that	you	can	understand	their	costs	and	performance
characteristics	and	can	use	them	effectively.

Practice.	We	will	present	a	methodology	for	writing	correct	multi-threaded
programs.	Concurrency	is	increasingly	important	in	many	programming	tasks,	but
writing	correct	multi-threaded	programs	requires	much	more	care	and	discipline	than
writing	correct	single-threaded	programs.	That	said,	following	a	few	simple	rules
that	we	will	describe	can	greatly	simplify	the	process	of	writing	robust	multi-
threaded	code.

Multithreaded	programming	has	a	well-deserved	reputation	for	being	difficult,	but	we

believe	the	ideas	in	this	chapter	and	the	subsequent	ones	can	help	almost	anyone	become
better	at	programming	with	threads.

4.1	Thread	Use	Cases

The	intuition	behind	the	thread	abstraction	is	simple:	in	a	program,	we	can	represent	each
concurrent	task	as	a	thread.	Each	thread	provides	the	abstraction	of	sequential	execution
similar	to	the	traditional	programming	model.	In	fact,	we	can	think	of	a	traditional
program	as	single-threaded	with	one	logical	sequence	of	steps	as	each	instruction	follows
the	previous	one.	The	program	executes	statements,	iterates	through	loops,	and
calls/returns	from	procedures	one	after	another.

A	multi-threaded	program	is	a	generalization	of	the	same	basic	programming	model.	Each
individual	thread	follows	a	single	sequence	of	steps	as	it	executes	statements,	iterates
through	loops,	calls/returns	from	procedures,	etc.	However,	a	program	can	now	have
several	such	threads	executing	at	the	same	time.

When	is	it	appropriate	to	use	multiple	threads	within	the	same	program?	Threads	have
become	widely	used	in	both	operating	system	and	application	code,	and	based	on	that
experience,	we	can	identify	several	common	themes.	We	illustrate	these	themes	by
describing	one	application	in	some	detail,	to	show	how	and	why	it	leverages	threads.

Figure	4.2:	In	the	Earth	Visualizer	example,	two	threads	each	draw	part	of	the	scene,	a	third	thread	manages	the	user
interface	widgets,	and	a	fourth	thread	fetches	new	data	from	a	remote	server.	Satellite	Image	Credit:	NASA	Earth
Observatory.

EXAMPLE:	Consider	an	Earth	Visualizer	application	similar	to	Google	Earth
(http://earth.google.com/).	This	application	lets	a	user	virtually	fly	anywhere	in	the	world,
see	aerial	images	at	different	resolutions,	and	view	other	information	associated	with	each
location.	A	key	part	of	the	design	is	that	the	user’s	controls	are	always	operable:	when	the
user	moves	the	mouse	to	a	new	location,	the	image	is	redrawn	in	the	background	at
successively	better	resolutions	while	the	program	continues	to	let	the	user	adjust	the	view,
select	additional	information	about	the	location	for	display,	or	enter	search	terms.

To	implement	this	application,	as	Figure	4.2	illustrates,	the	programmer	might	write	code
to	draw	a	portion	of	the	screen,	display	user	interface	(UI)	widgets,	process	user	inputs,
and	fetch	higher	resolution	images	for	newly	visible	areas.	In	a	sequential	program,	these
functions	would	run	in	turn.	With	threads,	they	can	run	concurrently	so	that	the	user
interface	is	responsive	even	while	new	data	is	being	fetched	and	the	screen	being	redrawn.

4.1.1	Four	Reasons	to	Use	Threads

Using	threads	to	express	and	manage	concurrency	has	several	advantages:

Program	structure:	expressing	logically	concurrent	tasks.	Programs	often	interact
with	or	simulate	real-world	applications	that	have	concurrent	activities.	Threads	let
you	express	an	application’s	natural	concurrency	by	writing	each	concurrent	task	as	a
separate	thread.

In	the	Earth	Visualizer	application,	threads	let	different	activities	—	updating	the
screen,	fetching	additional	data,	and	receiving	new	user	inputs	—	run	at	the	same
time.	For	example,	to	get	mouse	input	while	also	re-drawing	the	screen	and	sending
and	receiving	packets	off	the	network,	the	physical	processors	need	to	split	their	time
among	these	tasks.

Although	one	could	imagine	manually	writing	a	program	that	interleaves	these
activities	(e.g.,	draw	a	few	pixels	on	the	screen,	then	check	to	see	if	the	user	has
moved	the	mouse,	then	check	to	see	if	new	image	data	have	arrived	on	the	network,
…),	using	threads	greatly	simplifies	concurrent	code.

Another	example	is	on	the	server	side	of	the	Earth	Visualizer.	The	server	needs	to
manage	the	requests	of	a	large	number	of	clients,	each	focused	on	a	different	point	on
the	planet.	Since	the	clients	are	likely	behind	a	wide	variety	of	access	link
technologies	(e.g.,	from	dialup	to	gigabit	Ethernet),	it	would	slow	everyone	down	if
each	request	needed	to	be	completely	handled	before	the	server	could	start	on	the
next	one.	By	creating	a	separate	thread	for	each	client,	the	computation	and
networking	needed	for	that	client	can	be	intermixed	with	other	clients,	without
affecting	the	logical	structure	of	the	program.	This	design	pattern	—	one	server
thread	per	client	—	is	common;	for	example,	the	popular	Apache	web	server	assigns
each	client	its	own	thread	when	it	first	connects	to	the	server.

Responsiveness:	shifting	work	to	run	in	the	background.	To	improve	user
responsiveness	and	performance,	a	common	design	pattern	is	to	create	threads	to
perform	work	in	the	background,	without	the	user	waiting	for	the	result.	This	way,

http://earth.google.com/

the	user	interface	can	remain	responsive	to	further	commands,	regardless	of	the
complexity	of	the	user	request.	In	a	web	browser,	for	example,	the	cancel	button
should	continue	to	work	even	(or	especially!)	if	the	downloaded	page	is	gigantic	or	a
script	on	the	page	takes	a	long	time	to	execute.

How	does	this	work?	Many	applications	have	a	loop:	get	a	user	command,	then
execute	the	command,	then	get	the	next	command.	If	some	commands	take	a	long
time	to	perform,	however,	an	application	that	executes	everything	sequentially	will
not	be	able	to	check	for	the	next	operation	until	the	previous	one	completes.	To	keep
the	interface	responsive,	we	can	use	threads	to	split	each	command	into	two	parts:
anything	that	can	be	done	instantly	can	be	done	in	the	main	event	loop,	and	a	separate
thread	can	perform	the	rest	of	the	task	in	the	background.	In	the	Earth	Visualizer
example,	we	used	threads	to	move	the	computationally	difficult	parts	of	the
application	logic	—	rendering	the	display	—	out	of	the	main	loop.

Operating	system	kernels	make	extensive	use	of	threads	to	preserve	responsiveness.
Many	operating	systems	are	designed	so	that	the	common	case	is	fast.	For	example,
when	writing	a	file,	the	operating	system	stores	the	modified	data	in	a	kernel	buffer,
and	returns	immediately	to	the	application.	In	the	background,	the	operating	system
kernel	runs	a	separate	thread	to	flush	the	modified	data	out	to	disk.	Another	example
is	on	file	reads:	the	kernel	can	have	a	thread	which	attempts	to	anticipate	which
blocks	are	likely	to	be	read	next	(e.g.,	if	the	application	is	reading	a	large	file	from
beginning	to	end),	and	to	bring	those	blocks	from	disk	before	the	application	asks	for
them.

Performance:	exploiting	multiple	processors.	Programs	can	use	threads	on	a
multiprocessor	to	do	work	in	parallel;	they	can	do	the	same	work	in	less	time	or	more
work	in	the	same	elapsed	time.	Today,	a	server	might	have	more	than	a	dozen
processors;	a	desktop	or	laptop	may	include	eight	processor	cores;	even	most
smartphones	are	multicore	machines.	Looking	forward,	Moore’s	law	makes	it	likely
that	the	number	of	processors	per	system	will	continue	to	increase.	An	advantage	to
using	threads	for	parallelism	is	that	the	number	of	threads	need	not	exactly	match	the
number	of	processors	in	the	hardware	on	which	it	is	running.	The	operating	system
transparently	switches	which	threads	run	on	which	processors.

For	an	8-processor	machine,	you	could	parallelize	the	Earth	Visualizer	application	by
splitting	the	demanding	job	of	rendering	different	portions	of	the	image	on	the	screen
across	six	threads.	Then,	the	operating	system	could	run	those	six	rendering	threads
on	six	processors	and	run	the	various	other	threads	on	the	two	remaining	processors
to	update	the	on-screen	navigation	widgets,	construct	the	network	messages	needed
to	fetch	additional	images	from	the	distant	servers,	and	parse	reply	messages.

Performance:	managing	I/O	devices.	To	do	useful	work,	computers	must	interact
with	the	outside	world	via	I/O	devices.	By	running	tasks	as	separate	threads,	when
one	task	is	waiting	for	I/O,	the	processor	can	make	progress	on	a	different	task.

The	benefit	of	concurrency	between	the	processor	and	the	I/O	is	two-fold:	First,
processors	are	often	much	faster	than	the	I/O	systems	with	which	they	interact,	so
keeping	the	processor	idle	during	I/O	would	waste	much	of	its	capacity.	For	example,

the	latency	to	read	from	disk	can	be	tens	of	milliseconds,	enough	to	execute	more
than	10	million	instructions	on	a	modern	processor.	After	requesting	a	block	from
disk,	the	operating	system	can	switch	to	another	program,	or	another	thread	within
the	same	program,	until	the	disk	completes	and	the	original	thread	is	ready	to	resume.

Second,	I/O	provides	a	way	for	the	computer	to	interact	with	external	entities,	such	as
users	pressing	keys	on	a	keyboard	or	a	remote	computer	sending	network	packets.
The	arrival	of	this	type	of	I/O	event	is	unpredictable,	so	the	processor	must	be	able	to
work	on	other	tasks	while	still	responding	quickly	to	these	external	events.

In	the	Earth	Visualizer	application,	a	snappy	user	interface	is	essential,	but	much	of
the	imagery	is	stored	on	remote	servers	and	fetched	by	the	application	only	when
needed.	The	application	provides	a	responsive	experience	when	a	user	changes
location	by	first	downloading	a	small,	low-resolution	view	of	the	new	location.	While
rendering	those	images	with	one	thread,	another	thread	simultaneously	fetches
progressively	higher-resolution	images,	allowing	the	rendering	thread	to	update	the
view	as	the	higher-resolution	images	arrive.

Threads	vs.	processes

In	Chapter	2,	we	described	a	process	as	the	execution	of	a	program	with	restricted	rights.
A	thread	is	an	independent	sequence	of	instructions	running	within	a	program.	Perhaps
the	best	way	to	see	how	these	concepts	are	related,	is	to	see	how	different	operating
systems	combine	them	in	different	ways:

One	thread	per	process.	A	simple	single-threaded	application	has	one	sequence	of
instructions,	executing	from	beginning	to	end.	The	operating	system	kernel	runs
those	instructions	in	user	mode	to	restrict	access	to	privileged	operations	or	system
memory.	The	process	performs	system	calls	to	ask	the	kernel	to	perform	privileged
operations	on	its	behalf.

Many	threads	per	process.	Alternately,	a	program	may	be	structured	as	several
concurrent	threads,	each	executing	within	the	restricted	rights	of	the	process.	At	any
given	time,	a	subset	of	the	process’s	threads	may	be	running,	while	the	rest	are
suspended.	Any	thread	running	in	a	process	can	make	system	calls	into	the	kernel,
blocking	that	thread	until	the	call	returns	but	allowing	other	threads	to	continue	to
run.	Likewise,	when	the	processor	gets	an	I/O	interrupt,	it	preempts	one	of	the
running	threads	so	the	kernel	can	run	the	interrupt	handler;	when	the	handler
finishes,	the	kernel	resumes	that	thread.

Many	single-threaded	processes.	As	recently	as	twenty	years	ago,	many	operating
systems	supported	multiple	processes	but	only	one	thread	per	process.	To	the	kernel,
however,	each	process	looks	like	a	thread:	a	separate	sequence	of	instructions,
executing	sometimes	in	the	kernel	and	sometimes	at	user	level.	For	example,	on	a
multiprocessor,	if	multiple	processes	perform	system	calls	at	the	same	time,	the
kernel,	in	effect,	has	multiple	threads	executing	concurrently	in	kernel	mode.

Many	kernel	threads.	To	manage	complexity,	shift	work	to	the	background,	exploit
parallelism,	and	hide	I/O	latency,	the	operating	system	kernel	itself	can	benefit	from

using	multiple	threads.	In	this	case,	each	kernel	thread	runs	with	the	privileges	of	the
kernel:	it	can	execute	privileged	instructions,	access	system	memory,	and	issue
commands	directly	to	I/O	devices.	The	operating	system	kernel	itself	implements	the
thread	abstraction	for	its	own	use.

Because	of	the	usefulness	of	threads,	almost	all	modern	operating	systems	support	both
multiple	threads	per	process	and	multiple	kernel	threads.

4.2	Thread	Abstraction

Thus	far,	we	have	described	what	a	thread	is	and	why	it	is	useful.	Before	we	go	farther,	we
must	define	the	thread	abstraction	and	its	properties	more	precisely.

A	thread	is	a	single	execution	sequence	that	represents	a	separately	schedulable	task.

Single	execution	sequence.	Each	thread	executes	a	sequence	of	instructions	—
assignments,	conditionals,	loops,	procedures,	and	so	on	—	just	as	in	the	familiar
sequential	programming	model.

Separately	schedulable	task.	The	operating	system	can	run,	suspend,	or	resume	a
thread	at	any	time.

4.2.1	Running,	Suspending,	and	Resuming	Threads

Threads	provide	the	illusion	of	an	infinite	number	of	processors.	How	does	the	operating
system	implement	this	illusion?	It	must	execute	instructions	from	each	thread	so	that	each
thread	makes	progress,	but	the	underlying	hardware	has	only	a	limited	number	of
processors,	and	perhaps	only	one!

To	map	an	arbitrary	set	of	threads	to	a	fixed	set	of	processors,	operating	systems	include	a
thread	scheduler	that	can	switch	between	threads	that	are	running	and	those	that	are	ready
but	not	running.	For	example,	in	the	previous	Figure	4.1,	a	scheduler	might	suspend	thread
1	from	processor	1,	move	it	to	the	list	of	ready	threads,	and	then	resume	thread	5	by
moving	it	from	the	ready	list	to	run	on	processor	1.

Switching	between	threads	is	transparent	to	the	code	being	executed	within	each	thread.
The	abstraction	makes	each	thread	appear	to	be	a	single	stream	of	execution;	this	means
the	programmer	can	pay	attention	to	the	sequence	of	instruction	within	a	thread	and	not
whether	or	when	that	sequence	may	be	(temporarily)	suspended	to	let	another	thread	run.

Threads	thus	provide	an	execution	model	in	which	each	thread	runs	on	a	dedicated	virtual
processor	with	unpredictable	and	variable	speed.	From	the	point	of	view	of	a	thread’s
code,	each	instruction	appears	to	execute	immediately	after	the	preceding	one.	However,
the	scheduler	may	suspend	a	thread	between	one	instruction	and	the	next	and	resume
running	it	later.	It	is	as	if	the	thread	were	running	on	a	processor	that	sometimes	becomes
very	slow.

Figure	4.3:	Three	possible	ways	that	a	thread	might	execute,	all	of	which	are	equivalent	to	the	programmer.

Figure	4.3	illustrates	a	programmer’s	view	of	a	simple	program	and	three	(of	many)
possible	ways	the	program	might	be	executed,	depending	on	what	the	scheduler	does.
From	the	thread’s	point	of	view,	other	than	the	speed	of	execution,	the	alternatives	are
equivalent.	Indeed,	the	thread	would	typically	be	unaware	of	which	of	these	(or	other)
executions	actually	occurs.

Figure	4.4:	Some	of	the	many	possible	ways	that	three	threads	might	be	interleaved	at	runtime.

How	threads	are	scheduled	affects	a	thread’s	interleavings	with	other	threads.	Figure	4.4
shows	some	of	the	many	possible	interleavings	of	a	program	with	three	threads.	Thread
programmers	should	therefore	not	make	any	assumptions	about	the	relative	speed	with
which	different	threads	execute.

Cooperative	vs.	preemptive	multi-threading

Although	most	thread	systems	include	a	scheduler	that	can	—	at	least	in	principle	—	run
any	thread	at	any	time,	some	systems	provide	the	abstraction	of	cooperative	threads.	In
these	systems,	a	thread	runs	without	interruption	until	it	explicitly	relinquishes	control	of
the	processor	to	another	thread.	An	advantage	of	cooperative	multi-threading	is	increased
control	over	the	interleavings	among	threads.	For	example,	in	most	cooperative	multi-
threading	systems,	only	one	thread	runs	at	a	time,	so	while	a	thread	is	running,	no	other
thread	can	run	and	affect	the	system’s	state.

Unfortunately,	cooperative	multi-threading	has	significant	disadvantages.	For	example,	a
long-running	thread	can	monopolize	the	processor,	starving	other	threads	and	making	the
system’s	user	interface	sluggish	or	non-responsive.	Additionally,	modern	multiprocessor
machines	run	multiple	threads	at	a	time,	so	one	would	still	have	to	reason	about	the
possible	interactions	between	threads	even	if	cooperative	multi-threading	were	used.
Thus,	although	cooperative	multi-threading	was	used	in	some	significant	systems	in	the
past,	including	early	versions	of	Apple’s	MacOS	operating	system,	it	is	less	often	used
today.

The	alternative	we	describe	in	this	book	is	sometimes	called	preemptive	multi-threading
since	running	threads	can	be	switched	at	any	time.	Whenever	the	book	uses	the	term
“multi-threading,”	it	means	preemptive	multi-threading	unless	we	explicitly	state
otherwise.

4.2.2	Why	“Unpredictable	Speed”?

It	may	seem	strange	to	require	programmers	to	assume	that	a	thread’s	virtual	processor
runs	at	an	unpredictable	speed	and	that	any	interleaving	with	other	threads	is	possible.
Surely,	the	programmer	should	be	able	to	take	advantage	of	the	fact	that	some
interleavings	are	more	likely	than	others?

The	thread	programming	model	adopts	this	assumption	as	a	way	to	guide	programmers
when	reasoning	about	correctness.	Rather	than	assuming	that	one	thread	runs	at	the	same
speed	as	another	(or	faster	or	slower)	and	trying	to	write	programs	that	coordinate	threads
based	on	their	relative	speed	of	execution,	multi-threaded	programs	should	make	no
assumptions	about	the	behavior	of	the	thread	scheduler.	In	turn,	the	kernel’s	scheduling
decisions	—	when	to	assign	a	thread	to	a	processor,	and	when	to	preempt	it	for	a	different
thread	—	can	be	made	without	worrying	whether	they	might	affect	program	correctness.

If	threads	are	completely	independent	of	each	other,	sharing	no	memory	or	other
resources,	then	the	order	of	execution	will	not	matter	—	any	schedule	will	produce	the
same	output	as	any	other.	Most	multi-threaded	programs	share	data	structures,	however.	In
this	case,	as	Chapter	5	describes,	the	programmer	must	use	explicit	synchronization	to
ensure	program	correctness	regardless	of	the	possible	interleaving	of	instructions	of
different	threads.

Even	if	we	could	ignore	the	issue	of	scheduling	—	e.g.,	if	there	are	more	processors	than
threads	so	that	each	thread	is	assigned	its	own	physical	processor	—	the	physical	reality	is

that	the	relative	execution	speed	of	different	threads	can	be	significantly	affected	by
factors	outside	their	control.	An	extreme	example	is	that	the	programmer	may	be
debugging	one	thread	by	single-stepping	it,	while	other	threads	run	at	full	speed	on	other
processors.	If	the	programmer	is	to	have	any	hope	of	understanding	concurrent	program
behavior,	the	program’s	correctness	cannot	depend	on	which	threads	are	being	observed.

Variability	in	execution	speed	occurs	during	normal	operation	as	well.	Accessing	memory
can	stall	a	processor	for	hundreds	or	thousands	of	cycles	if	a	cache	miss	occurs.	Other
factors	include	how	frequently	the	scheduler	preempts	the	thread,	how	many	physical
processors	are	present	on	a	machine,	how	large	the	caches	are,	how	fast	the	memory	is,
how	the	energy-saving	firmware	adjusts	the	processors’	clock	speeds,	what	network
messages	arrive,	or	what	input	is	received	from	the	user.	Execution	speeds	for	the	different
threads	of	a	program	are	hard	to	predict,	can	vary	on	different	hardware,	and	can	even
vary	from	run	to	run	on	the	same	hardware.	As	a	result,	we	must	coordinate	thread	actions
through	explicit	synchronization	rather	than	by	trying	to	reason	about	their	relative	speed.

EXAMPLE:	Is	a	kernel	interrupt	handler	a	thread?

ANSWER:	No,	an	interrupt	handler	is	not	a	thread.	A	kernel	interrupt	handler	shares
some	resemblance	to	a	thread:	it	is	a	single	sequence	of	instructions	that	executes	from
beginning	to	end.	However,	an	interrupt	handler	is	not	independently	schedulable:	it	is
triggered	by	a	hardware	I/O	event,	rather	than	a	decision	by	the	thread	scheduler	in	the
kernel.	Once	started,	the	interrupt	handler	runs	to	completion,	unless	preempted	by
another	(higher	priority)	interrupt.	□

4.3	Simple	Thread	API

Simple	Threads	API

void
thread_create
(thread,	func,
arg)

Create	a	new	thread,	storing	information	about	it	in	thread.	Concurrently
with	the	calling	thread,	thread	executes	the	function	func	with	the
argument	arg.

void
thread_yield	()

The	calling	thread	voluntarily	gives	up	the	processor	to	let	some	other
thread(s)	run.	The	scheduler	can	resume	running	the	calling	thread
whenever	it	chooses	to	do	so.

int	thread_join
(thread)

Wait	for	thread	to	finish	if	it	has	not	already	done	so;	then	return	the
value	passed	to	thread_exit	by	that	thread.	Note	that	thread_join	may	be
called	only	once	for	each	thread.

void Finish	the	current	thread.	Store	the	value	ret	in	the	current	thread’s	data

thread_exit
(ret)

structure.	If	another	thread	is	already	waiting	in	a	call	to	thread_join,
resume	it.

Figure	4.5:	Simplified	API	for	using	threads.

Figure	4.5	shows	a	simple	API	for	using	threads.	This	simplified	API	is	based	on	the
POSIX	standard	pthreads	API,	but	it	omits	some	POSIX	options	and	error	handling	for
simplicity.	Most	other	thread	packages	are	quite	similar;	if	you	understand	how	to
program	with	this	API,	you	will	find	it	easy	to	write	code	with	most	standard	thread	APIs.

A	good	way	to	understand	the	simple	threads	API	is	that	it	provides	a	way	to	invoke	an
asynchronous	procedure	call.	A	normal	procedure	call	passes	a	set	of	arguments	to	a
function,	runs	the	function	immediately	on	the	caller’s	stack,	and	when	the	function	is
completed,	returns	control	back	to	the	caller	with	the	result.	An	asynchronous	procedure
call	separates	the	call	from	the	return:	with	thread_create,	the	caller	starts	the	function,	but
unlike	a	normal	procedure	call,	the	caller	continues	execution	concurrently	with	the	called
function.	Later,	the	caller	can	wait	for	the	function	completion	(with	thread_join).

In	Chapter	3,	we	saw	similar	concepts	in	the	UNIX	process	abstraction.	thread_create	is
analogous	to	UNIX	process	fork	and	exec,	while	thread_join	is	analogous	to	UNIX
process	wait.	UNIX	fork	creates	a	new	process	that	runs	concurrently	with	the	process
calling	fork;	UNIX	exec	causes	that	process	to	run	a	specific	program.	UNIX	wait	allows
the	calling	process	to	suspend	execution	until	the	completion	of	the	new	process.

4.3.1	A	Multi-Threaded	Hello	World

Figure	4.6:	Example	multi-threaded	program	using	the	simple	threads	API	that	prints
“Hello”	ten	times.	Also	shown	is	the	output	of	one	possible	run	of	this	program.

To	illustrate	how	to	use	the	simple	threads	API,	Figure	4.6	shows	a	very	simple	multi-
threaded	program	written	in	’C’.	The	main	function	uses	thread_create	to	create	10
threads.	The	interesting	arguments	are	the	second	and	third.

The	second	argument,	go,	is	a	function	pointer	—	where	the	newly	created	thread
should	begin	execution.

The	third	argument,	i,	is	passed	to	that	function.

Thus,	thread_create	initializes	the	i’th	thread’s	state	so	that	it	is	prepared	to	call	the
function	go	with	the	argument	i.

When	the	scheduler	runs	the	i’th	thread,	that	thread	runs	the	function	go	with	the	value	i	as
an	argument	and	prints	Hello	from	thread	i.	The	thread	then	returns	the	value	(i	+	100)	by
calling	thread_exit.	This	call	stores	the	specified	value	in	a	field	in	the	thread_t	object	so
that	thread_join	can	retrieve	it.

The	main	function	uses	thread_join	to	wait	for	each	of	the	threads	it	created.	As	each
thread	finishes,	code	in	main	reads	the	thread’s	exit	value	and	prints	it.

EXAMPLE:	Why	might	the	“Hello”	message	from	thread	2	print	after	the	“Hello”

message	for	thread	5,	even	though	thread	2	was	created	before	thread	5?

ANSWER:	Creating	and	scheduling	threads	are	separate	operations.	Although
threads	are	usually	scheduled	in	the	order	that	they	are	created,	there	is	no	guarantee.
Further,	even	if	thread	2	started	running	before	thread	5,	it	might	be	preempted	before	it
reaches	the	printf	call.

Rather,	the	only	assumption	the	programmer	can	make	is	that	each	of	the	threads	runs	on
its	own	virtual	processor	with	unpredictable	speed.	Any	interleaving	is	possible.	□

EXAMPLE:	Why	must	the	“Thread	returned”	message	from	thread	2	print	before	the
Thread	returned	message	from	thread	5?

ANSWER:	Since	the	threads	run	on	virtual	processors	with	unpredictable	speeds,	the
order	in	which	the	threads	finish	is	indeterminate.	However,	the	main	thread	checks	for
thread	completion	in	the	order	they	were	created.	It	calls	thread_join	for	thread	i	+1
only	after	thread_join	for	thread	i	has	returned.	□

EXAMPLE:	What	is	the	minimum	and	maximum	number	of	threads	that	could	exist	when
thread	5	prints	“Hello?”

ANSWER:	When	the	program	starts,	a	main	thread	begins	running	main.	That	thread
creates	NTHREADS	=	10	threads.	All	of	those	could	run	and	complete	before	thread	5
prints	“Hello.”	Thus,	the	minimum	is	two	threads	—	the	main	thread	and	thread	5.	On
the	other	hand,	all	10	threads	could	have	been	created,	while	5	was	the	first	to	run.	Thus,
the	maximum	is	11	threads.	□

4.3.2	Fork-Join	Parallelism

Although	the	interface	in	Figure	4.5	is	simple,	it	is	remarkably	powerful.	Many	multi-
threaded	applications	can	be	designed	using	only	these	thread	operations	and	no	additional
synchronization.	With	fork-join	parallelism,	a	thread	can	create	child	threads	to	perform
work	(“fork”,	or	thread_create),	and	it	can	wait	for	their	results	(“join”).	Data	may	be
safely	shared	between	threads,	provided	it	is	(a)	written	by	the	parent	before	the	child
thread	starts	or	(b)	written	by	the	child	and	read	by	the	parent	after	the	join.

If	these	sharing	restrictions	are	followed,	each	thread	executes	independently	and	in	a
deterministic	fashion,	unaffected	by	the	behavior	of	any	other	concurrently	executing
thread.	The	multiplexing	of	threads	onto	processors	has	no	effect	other	than	performance.

Figure	4.7:	Routine	to	zero	a	contiguous	region	of	memory	in	parallel	using	multiple
threads.	To	pass	two	arguments	(the	pointer	to	the	buffer	and	the	length	of	the	buffer)	to
the	child	thread,	the	program	passes	a	pointer	to	a	struct	holding	the	two	parameters.

EXAMPLE:	Parallel	block	zero.	A	simple	example	of	fork-join	parallelism	in	operating
systems	is	the	procedure	to	zero	a	contiguous	block	of	memory.	To	prevent	unintentional
data	leakage,	whenever	a	process	exits,	the	operating	system	must	zero	the	memory	that
had	been	allocated	to	the	exiting	process.	Otherwise,	a	new	process	may	be	re-assigned
the	memory,	enabling	it	to	read	potentially	sensitive	data.	For	example,	an	operating
system’s	remote	login	program	might	temporarily	store	a	user’s	password	in	memory,	but
the	next	process	to	use	the	same	physical	memory	might	be	a	memory-scanning	program
launched	by	a	different,	malicious	user.

For	a	large	process,	parallelizing	the	zeroing	function	can	make	sense.	Zeroing	1	GB	of
memory	takes	about	50	milliseconds	on	a	modern	computer;	by	contrast,	creating	and
starting	a	new	thread	takes	a	few	tens	of	microseconds.

Figure	4.7	illustrates	the	code	for	a	parallel	zero	function	using	fork-join	parallelism.	The
multi-threaded	blockzero	creates	a	set	of	threads	and	assigns	each	a	disjoint	portion	of	the
memory	region;	the	region	is	empty	when	all	threads	have	completed	their	work.

In	practice,	the	operating	system	will	often	create	a	thread	to	run	blockzero	in	the
background.	The	memory	of	an	exiting	process	does	not	need	to	be	cleared	until	the
memory	is	needed	—	that	is,	when	the	next	process	is	created.

To	exploit	this	flexibility,	the	operating	system	can	create	a	set	of	low	priority	threads	to
run	blockzero.	The	kernel	can	then	return	immediately	and	resume	running	application
code.	Later	on,	when	the	memory	is	needed,	the	kernel	can	call	thread_join.	If	the	zero	is
complete	by	that	point,	the	join	will	return	immediately;	otherwise,	it	will	wait	until	the
memory	is	safe	to	use.

4.4	Thread	Data	Structures	and	Life	Cycle

As	we	have	seen,	each	thread	represents	a	sequential	stream	of	execution.	The	operating
system	provides	the	illusion	that	each	thread	runs	on	its	own	virtual	processor	by
transparently	suspending	and	resuming	threads.	For	the	illusion	to	work,	the	operating
system	must	precisely	save	and	restore	the	state	of	a	thread.	However,	because	threads	run
either	in	a	process	or	in	the	kernel,	there	is	also	shared	state	that	is	not	saved	or	restored
when	switching	the	processor	between	threads.

Thus,	to	understand	how	the	operating	system	implements	the	thread	abstraction,	we	must
define	both	the	per-thread	state	and	the	state	that	is	shared	among	threads.	Then	we	can
describe	a	thread’s	life	cycle	—	how	the	operating	system	can	create,	start,	stop,	and
delete	threads	to	provide	the	abstraction.

Figure	4.8:	A	multi-threaded	process	or	operating	system	kernel	has	both	per-thread	state	and	shared	state.	The	thread
control	block	stores	the	per-thread	state:	the	current	state	of	the	thread’s	computation	(e.g.,	saved	processor	registers
and	a	pointer	to	the	stack)	and	metadata	needed	to	manage	the	thread	(e.g.,	the	thread’s	ID,	scheduling	priority,	owner,
and	resource	consumption).	Shared	state	includes	the	program’s	code,	global	static	variables,	and	the	heap.

4.4.1	Per-Thread	State	and	Thread	Control	Block	(TCB)

The	operating	system	needs	a	data	structure	to	represent	a	thread’s	state;	a	thread	is	like
any	other	object	in	this	regard.	This	data	structure	is	called	the	thread	control	block
(TCB).	For	every	thread	the	operating	system	creates,	it	creates	one	TCB.

The	thread	control	block	holds	two	types	of	per-thread	information:

1.	 The	state	of	the	computation	being	performed	by	the	thread.

2.	 Metadata	about	the	thread	that	is	used	to	manage	the	thread.

Per-thread	Computation	State.	To	create	multiple	threads	and	to	be	able	to	start	and	stop
each	thread	as	needed,	the	operating	system	must	allocate	space	in	the	TCB	for	the	current
state	of	each	thread’s	computation:	a	pointer	to	the	thread’s	stack	and	a	copy	of	its
processor	registers.

Stack.	A	thread’s	stack	is	the	same	as	the	stack	for	a	single-threaded	computation	—
it	stores	information	needed	by	the	nested	procedures	the	thread	is	currently	running.
For	example,	if	a	thread	calls	foo(),	foo()	calls	bar(),	and	bar()	calls	bas(),	then	the
stack	would	contain	a	stack	frame	for	each	of	these	three	procedures;	each	stack
frame	contains	the	local	variables	used	by	the	procedure,	the	parameters	the
procedure	was	called	with,	and	the	return	address	to	jump	to	when	the	procedure
completes.

Because	at	any	given	time	different	threads	can	be	in	different	states	in	their
sequential	computations	—	each	can	be	in	a	different	place	in	a	different	procedure
called	with	different	arguments	from	a	different	nesting	of	enclosing	procedures	—
each	thread	needs	its	own	stack.	When	a	new	thread	is	created,	the	operating	system
allocates	it	a	new	stack	and	stores	a	pointer	to	that	stack	in	the	thread’s	TCB.

Copy	of	processor	registers.	A	processor’s	registers	include	not	only	its	general-
purpose	registers	for	storing	intermediate	values	for	ongoing	computations,	but	they
also	include	special-purpose	registers,	such	as	the	instruction	pointer	and	stack
pointer.

To	be	able	to	suspend	a	thread,	run	another	thread,	and	later	resume	the	original
thread,	the	operating	system	needs	a	place	to	store	a	thread’s	registers	when	that
thread	is	not	actively	running.	In	some	systems,	the	general-purpose	registers	for	a
stopped	thread	are	stored	on	the	top	of	the	stack,	and	the	TCB	contains	only	a	pointer
to	the	stack.	In	other	systems,	the	TCB	contains	space	for	a	copy	of	all	processor
registers.

How	big	a	stack?

An	implementation	question	for	thread	systems	is:	how	large	a	stack	should	be	allocated
for	each	thread?	A	stack	grows	and	shrinks	as	procedure	calls	are	made	and	those	calls
return.	The	size	of	the	stack	must	be	large	enough	to	accommodate	the	deepest	nesting
level	needed	during	in	the	thread’s	lifetime.	With	hundreds	or	thousands	of	threads,	it	can
be	wasteful	to	allocate	more	than	the	minimum	needed.

Most	modern	operating	systems	allocate	kernel	stacks	in	physical	memory,	putting	space
at	a	premium.	However,	the	maximum	procedure	nesting	depth	in	the	kernel	is	usually
small.	Thus,	kernels	typically	allocate	a	very	small	fixed	sized	region	for	each	thread
stack,	e.g.,	8	KB	by	default	in	Linux	on	an	Intel	x86.	The	kernel	stays	within	this	bound

due	to	an	important	kernel	coding	convention:	buffers	and	data	structures	are	always
allocated	on	the	heap	and	never	as	procedure	local	variables.	Although	most
programming	languages	allow	arbitrary	data	structures	to	be	defined	as	procedure	local	or
“automatic”	—	allocated	when	a	procedure	starts	and	de-allocated	when	the	procedure
exits	—	that	can	cause	problems	when	the	stack	is	of	limited	size.
User-level	stacks	are	allocated	in	virtual	memory	and	so	there	is	less	need	for	a	tight
space	constraint.	In	a	single	threaded	process,	the	stack	is	located	at	the	top	end	of	the
address	space,	where	it	can	grow	nearly	without	bound.	To	catch	program	errors,	most
operating	systems	will	trigger	an	error	if	the	user	program	stack	grows	too	large	too
quickly,	as	that	is	usually	an	indication	of	unbounded	recursion,	rather	than	something
that	was	the	programmer’s	intent.

In	a	multi-threaded	user	application,	it	is	not	possible	to	have	each	stack	grow	without
constraint.	Although	some	programming	languages,	such	as	Google’s	Go,	will
automatically	grow	the	stack	as	needed,	this	is	still	uncommon.	POSIX	allows	the	default
stack	size	to	be	library	dependent	(e.g.,	larger	on	a	desktop	machine,	smaller	on	a
smartphone).	As	one	POSIX	thread	tutorial	put	it	dryly,	“Exceeding	the	default	stack	limit
is	often	very	easy	to	do,	with	the	usual	results:	program	termination	and/or	corrupted
data.”	[10].	Most	implementations	try	to	detect	when	programs	exceed	the	default	stack
limit	by	placing	a	known	value	at	the	very	top	and	bottom	of	the	stack	to	serve	as	a	guard.
The	guard	values	can	be	checked	on	every	context	switch;	if	the	value	changes,	it	is	likely
the	thread	exceeded	its	stack.

To	support	application	portability,	the	POSIX	thread	standard	allows	the	user	to	redefine
the	default	stack	size	to	whatever	is	needed	for	the	correct	execution	of	a	particular
program.	The	thread	library	provided	with	the	textbook	sets	the	default	stack	size	to	1
MB.	This	is	almost	certainly	large	enough	provided	you	adopt	the	kernel	approach	of
never	putting	large	data	objects	on	the	stack.

Per-thread	Metadata.	The	TCB	also	includes	per-thread	metadata	—	information	for
managing	the	thread.	For	example,	each	thread	might	have	a	thread	ID,	scheduling
priority,	and	status	(e.g.,	whether	the	thread	is	waiting	for	an	event	or	is	ready	to	be	placed
onto	a	processor).

4.4.2	Shared	State

As	opposed	to	per-thread	state	that	is	allocated	for	each	thread,	some	state	is	shared
between	threads	running	in	the	same	process	or	within	the	operating	system	kernel
(Figure	4.8).	In	particular,	program	code	is	shared	by	all	threads	in	a	process,	although
each	thread	may	be	executing	at	a	different	place	within	that	code.	Additionally,	statically
allocated	global	variables	and	dynamically	allocated	heap	variables	can	store	information
that	is	accessible	to	all	threads.

Other	per-thread	state:	Thread-local	variables

In	addition	to	the	per-thread	state	that	corresponds	to	execution	state	in	the	single-

threaded	case,	some	systems	include	additional	thread-local	variables.	These	variables
are	similar	to	global	variables	in	that	their	scope	spans	different	procedures,	but	they
differ	in	that	each	thread	has	its	own	copy	of	these	variables.

Consider	these	examples:

Errno.	In	UNIX,	the	return	value	of	system	calls	is	intentionally	kept	simple.	For
example,	the	UNIX	read	system	call	returns	either	the	number	of	bytes	read	(if
successful)	or	-1	(if	there	was	a	problem).	Often,	an	application	needs	additional
information	about	the	cause	of	the	error	(e.g.,	permission	error,	disk	offline,	etc.).	To
provide	this,	the	kernel	sets	a	variable	in	the	application	memory,	the	errno,	with	a
diagnostic	code	for	the	most	recent	system	call.	As	UNIX	originally	had	only	one
thread	per	process,	there	was	no	confusion:	the	errno	referred	to	the	most	recent
system	call	of	that	process.

In	a	multi-threaded	program,	however,	multiple	threads	can	perform	system	calls
concurrently.	Rather	than	redefine	the	entire	UNIX	system	call	interface	for	a	multi-
threaded	environment,	errno	is	now	a	macro	that	maps	to	a	thread-local	variable
containing	the	error	code	for	that	thread’s	most	recent	system	call.

Heap	internals.	Although	a	program’s	heap	is	logically	shared	—	it	is	acceptable
for	one	thread	to	allocate	an	object	on	the	heap	and	then	pass	a	pointer	to	that	object
to	another	thread	—	for	performance	reasons	heaps	may	internally	subdivide	their
space	into	per-thread	regions.	The	advantage	of	subdividing	the	heap	is	that	multiple
threads	can	each	allocate	objects	at	the	same	time	without	interfering	with	one
another.	Further,	by	allocating	objects	used	by	the	same	thread	from	the	same
memory	region,	cache	hit	rates	may	improve.	To	implement	these	optimizations,
each	subdivision	of	the	heap	has	thread-local	variables	that	track	what	parts	of	the
thread-local	heap	are	in	use,	what	parts	are	free,	and	so	on.	Then,	the	code	that
allocates	new	memory	(e.g.,	malloc	and	new)	is	written	to	use	these	thread-local	data
structures	and	only	take	memory	from	the	shared	heap	if	the	local	heap	is	empty.

Thread-local	variables	are	often	useful,	but,	for	simplicity,	the	rest	of	our	discussion
focuses	only	on	the	TCB,	registers,	and	stack	as	the	core	pieces	of	per-thread	state.

WARNING:	Although	there	is	an	important	logical	division	between	per-thread	state	and
shared	state,	the	operating	system	typically	does	not	enforce	this	division.	Nothing
prevents	one	buggy	thread	from	accessing	another	thread’s	(conceptually	private)	per-
thread	state.	Writing	to	a	bad	pointer	in	one	thread	can	corrupt	the	stack	of	another.	Or	a
careless	programmer	might	pass	a	pointer	to	a	local	variable	on	one	thread’s	stack	to
another	thread,	giving	the	second	thread	a	pointer	to	a	stack	location	whose	contents	may
change	as	the	first	thread	calls	and	returns	from	various	procedures.	Or	the	first	thread	can
exit	after	handing	out	a	pointer	to	a	variable	on	its	stack;	the	heap	will	reassign	that
memory	to	an	unrelated	purpose.	Because	these	bugs	can	depend	on	the	specific
interleavings	of	the	threads’	executions,	they	can	be	extremely	hard	to	locate	and	correct.

To	avoid	unexpected	behaviors,	it	is	therefore	important	when	writing	multi-threaded
programs	to	know	which	variables	are	designed	to	be	shared	across	threads	(global

variables,	objects	on	the	heap)	and	which	are	designed	to	be	private	(local/automatic
variables).

4.5	Thread	Life	Cycle

It	is	useful	to	consider	the	progression	of	states	as	a	thread	goes	from	being	created,	to
being	scheduled	and	de-scheduled	onto	and	off	of	a	processor,	and	then	to	exiting.
Figure	4.9	shows	the	states	of	a	thread	during	its	lifetime.

Figure	4.9:	The	states	of	a	thread	during	its	lifetime.

INIT.	Thread	creation	puts	a	thread	into	its	INIT	state	and	allocates	and	initializes	per-
thread	data	structures.	Once	that	is	done,	thread	creation	code	puts	the	thread	into	the
READY	state	by	adding	the	thread	to	the	ready	list.	The	ready	list	is	the	set	of	runnable
threads	that	are	waiting	their	turn	to	use	a	processor.	In	practice,	as	discussed	in	Chapter	7,
the	ready	list	is	not	in	fact	a	“list”;	the	operating	system	typically	uses	a	more
sophisticated	data	structure	to	keep	track	of	runnable	threads,	such	as	a	priority	queue.
Nevertheless,	following	convention,	we	will	continue	to	refer	to	it	as	the	ready	list.

READY.	A	thread	in	the	READY	state	is	available	to	be	run	but	is	not	currently	running.
Its	TCB	is	on	the	ready	list,	and	the	values	of	its	registers	are	stored	in	its	TCB.	At	any
time,	the	scheduler	can	cause	a	thread	to	transition	from	READY	to	RUNNING	by
copying	its	register	values	from	its	TCB	to	a	processor’s	registers.

RUNNING.	A	thread	in	the	RUNNING	state	is	running	on	a	processor.	At	this	time,	its
register	values	are	stored	on	the	processor	rather	than	in	the	TCB.	A	RUNNING	thread
can	transition	to	the	READY	state	in	two	ways:

The	scheduler	can	preempt	a	running	thread	and	move	it	to	the	READY	state	by:	(1)
saving	the	thread’s	registers	to	its	TCB	and	(2)	switching	the	processor	to	run	the
next	thread	on	the	ready	list.

A	running	thread	can	voluntarily	relinquish	the	processor	and	go	from	RUNNING	to
READY	by	calling	yield	(e.g.,	thread_yield	in	the	thread	library).

Notice	that	a	thread	can	transition	from	READY	to	RUNNING	and	back	many	times.
Since	the	operating	system	saves	and	restores	the	thread’s	registers	exactly,	only	the	speed
of	the	thread’s	execution	is	affected	by	these	transitions.

WARNING:	By	convention	in	this	book,	a	thread	that	is	RUNNING	is	not	on	the	ready
list;	the	ready	list	is	for	READY	and	not	RUNNING	threads.	However,	some	operating
systems,	such	as	Linux,	use	a	different	convention,	where	the	RUNNING	thread	is
whichever	thread	is	at	the	front	of	the	ready	list.	Either	convention	is	equivalent	as	long	as
it	used	consistently.

WAITING.	A	thread	in	the	WAITING	state	is	waiting	for	some	event.	Whereas	the
scheduler	can	move	a	thread	in	the	READY	state	to	the	RUNNING	state,	a	thread	in	the
WAITING	state	cannot	run	until	some	action	by	another	thread	moves	it	from
WAITING	to	READY.

The	threadHello	program	in	Figure	4.6	provides	an	example	of	a	WAITING	thread.	After
creating	its	children	threads,	the	main	thread	must	wait	for	them	to	complete,	by	calling
thread_join	once	for	each	child.	If	the	specific	child	thread	is	not	yet	done	at	the	time	of
the	join,	the	main	thread	goes	from	RUNNING	to	WAITING	until	the	child	thread	exits.

While	a	thread	waits	for	an	event,	it	cannot	make	progress;	therefore,	it	is	not	useful	to	run
it.	Rather	than	continuing	to	run	the	thread	or	storing	the	TCB	on	the	scheduler’s	ready
list,	the	TCB	is	stored	on	the	waiting	list	of	some	synchronization	variable	associated	with
the	event.	When	the	required	event	occurs,	the	operating	system	moves	the	TCB	from	the
synchronization	variable’s	waiting	list	to	the	scheduler’s	ready	list,	transitioning	the	thread
from	WAITING	to	READY.	We	describe	synchronization	variables	in	Chapter	5.

FINISHED.	A	thread	in	the	FINISHED	state	never	runs	again.	The	system	can	free	some
or	all	of	its	state	for	other	uses,	though	it	may	keep	some	remnants	of	the	thread	in	the
FINISHED	state	for	a	time	by	putting	the	TCB	on	a	finished	list.	For	example,	the
thread_exit	call	lets	a	thread	pass	its	exit	value	to	its	parent	thread	via	thread_join.
Eventually,	when	a	thread’s	state	is	no	longer	needed	(e.g.,	after	its	exit	value	has	been
read	by	the	join	call),	the	system	can	delete	and	reclaim	the	thread’s	state.

State	of	Thread Location	of	Thread	Control	Block	(TCB) Location	of	Registers

INIT Being	Created TCB

READY Ready	List TCB

RUNNING Running	List Processor

WAITING Synchronization	Variable’s	Waiting	List TCB

FINISHED Finished	List	then	Deleted TCB	or	Deleted

Figure	4.10:	Location	of	thread’s	per-thread	state	for	different	life	cycle	stages.

One	way	to	understand	these	states	is	to	consider	where	a	thread’s	TCB	and	registers	are
stored,	as	shown	in	Figure	4.10.	For	example,	all	threads	in	the	READY	state	have	their
TCBs	on	the	ready	list	and	their	registers	in	the	TCB.	All	threads	in	the	RUNNING	state
have	their	TCBs	on	the	running	list	and	their	register	values	in	hardware	registers.	And	all
threads	in	the	WAITING	state	have	their	TCBs	on	various	synchronization	variables’
waiting	lists.

The	idle	thread

If	a	system	has	k	processors,	most	operating	systems	ensure	that	there	are	exactly	k
RUNNING	threads,	by	keeping	a	low	priority	idle	thread	per	processor	for	when	there	is
nothing	else	to	run.

On	old	machines,	the	idle	thread	would	spin	in	a	tight	loop	doing	nothing.

Today,	the	idle	thread	still	spins	in	a	loop,	but	to	save	power,	on	each	iteration	it	puts	the
processor	into	a	low-power	sleep	mode.	In	sleep	mode,	the	processor	stops	executing
instructions	until	a	hardware	interrupt	occurs.	Then,	the	processor	wakes	up	and	handles
the	interrupt	in	the	normal	way	—	saving	the	state	of	the	currently	running	thread	(the
idle	thread)	and	running	the	handler.	After	running	the	handler,	a	thread	waiting	for	that
I/O	event	may	now	be	READY.	If	so,	the	scheduler	runs	that	thread	next;	otherwise,	the
idle	thread	resumes	execution,	putting	the	processor	to	sleep	again.

Having	a	low-power	idle	thread	also	helps	when	running	the	operating	system	inside	a
virtual	machine.	Obviously,	it	would	be	inefficient	for	an	idle	operating	system	to
consume	processing	cycles	that	could	be	better	used	by	another	virtual	machine	on	the
same	system.	Putting	the	processor	into	sleep	mode	is	a	privileged	instruction,	so	if	the
operating	system	is	running	inside	a	virtual	machine,	the	hardware	will	trap	to	the	host
kernel.	The	host	kernel	can	then	switch	to	a	different	virtual	machine.

EXAMPLE:	For	the	threadHello	program	in	Figure	4.6,	when	thread_join	returns	for
thread	i,	what	is	thread	i’s	thread	state?

ANSWER:	When	join	returns,	thread	i	has	finished	running	and	exited.	The	runtime
system	saved	the	exit	value	in	the	TCB	and	moved	the	TCB	to	the	finished	list	(so	that	its
exit	value	can	be	found	by	the	parent	thread).	The	thread	is	thus	in	the	FINISHED	state.
□

EXAMPLE:	For	the	threadHello	program,	what	is	the	minimum	and	maximum	number
of	times	that	the	main	thread	enters	the	READY	state	on	a	uniprocessor?

ANSWER:	The	main	thread	must	go	into	the	READY	state	when	it	is	first	created;
otherwise,	it	would	never	be	scheduled.	On	a	uniprocessor,	it	must	also	give	up	the
processor	(e.g.,	due	to	a	time	slice	or	in	thread_join)	in	order	for	its	children	threads	to
run.	The	children	threads	could	then	completely	run	before	the	main	thread	is	re-

scheduled.	Once	the	children	have	finished,	the	main	thread	can	run	to	completion.	Thus,
the	minimum	number	of	times	is	two.

The	maximum	number	of	times	is	(near)	infinite.	A	running	thread	can	be	preempted
and	re-scheduled	many	times,	without	affecting	the	correctness	of	the	execution.	In	the
limit,	the	thread	could	conceivably	be	preempted	after	each	instruction!	□

Where	is	my	TCB?

A	remarkably	tricky	implementation	question	is	how	to	find	the	current	thread’s	TCB.
The	thread	library	needs	access	to	the	current	TCB	for	a	number	of	reasons,	e.g.,	to
change	its	priority	or	to	access	thread-local	variables.

One	might	think	finding	the	TCB	would	be	simple:	just	store	a	pointer	to	the	TCB	in	a
global	variable.	However,	recall	that	every	thread	running	in	the	same	process	uses
exactly	the	same	code,	and	therefore	each	thread	would	look	in	exactly	the	same	place	for
the	TCB.	On	a	uniprocessor,	this	works:	the	global	variable	can	hold	the	value	of	the
current	TCB,	and	the	library	can	change	the	value	whenever	it	switches	between	threads.

This	does	not	work	on	a	multiprocessor,	however.	Some	systems,	such	as	the	Intel	x86,
have	hardware	support	for	fetching	the	ID	of	the	current	processor.	In	these	systems,	the
thread	library	can	maintain	a	global	array	of	pointers,	with	the	i’th	entry	pointing	to	the
TCB	of	the	thread	running	on	the	i’th	processor.	A	running	thread	can	then	find	its	TCB
by	looking	up	its	processor	ID	and	then	finding	the	corresponding	entry	in	the	array.

For	systems	without	this	feature,	however,	there	is	another	approach:	the	stack	pointer	is
always	unique	to	each	thread.	The	thread	library	can	store	a	pointer	to	the	thread	TCB	at
the	very	bottom	of	the	stack,	underneath	the	procedure	frames.	(Some	systems	take	this
one	step	farther,	and	put	the	entire	TCB	at	the	bottom	of	the	stack.)	As	long	as	thread
stacks	are	aligned	to	start	at	a	fixed	block	boundary,	the	low	order	bits	of	the	current	stack
pointer	can	be	masked	to	locate	the	pointer	to	the	current	TCB.

4.6	Implementing	Kernel	Threads

So	far,	we	have	described	the	basic	data	structures	and	operation	of	threads.	We	now
describe	how	to	implement	them.	The	specifics	of	the	implementation	vary	depending	on
the	context:

Figure	4.11:	A	multi-threaded	kernel	with	three	kernel	threads	and	two	single-threaded	user-level	processes.	Each
kernel	thread	has	its	own	TCB	and	its	own	stack.	Each	user	process	has	a	stack	at	user-level	for	executing	user	code	and
a	kernel	interrupt	stack	for	executing	interrupts	and	system	calls.

Figure	4.12:	A	multi-threaded	kernel	with	three	kernel	threads	and	two	user-level	processes,	each	with	two	threads.
Each	user-level	thread	has	a	user-level	stack	and	an	interrupt	stack	in	the	kernel	for	executing	interrupts	and	system
calls.

Kernel	threads.	The	simplest	case	is	implementing	threads	inside	the	operating
system	kernel,	sharing	one	or	more	physical	processors.	A	kernel	thread	executes
kernel	code	and	modifies	kernel	data	structures.	Almost	all	commercial	operating
systems	today	support	kernel	threads.

Kernel	threads	and	single-threaded	processes.	An	operating	system	with	kernel
threads	might	also	run	some	single-threaded	user	processes.	As	shown	in	Figure	4.11,
these	processes	can	invoke	system	calls	that	run	concurrently	with	kernel	threads
inside	the	kernel.

Multi-threaded	processes	using	kernel	threads.	Most	operating	systems	provide	a
set	of	library	routines	and	system	calls	to	allow	applications	to	use	multiple	threads
within	a	single	user-level	process.	Figure	4.12	illustrates	this	case.	These	threads
execute	user	code	and	access	user-level	data	structures.	They	also	make	system	calls
into	the	operating	system	kernel.	For	that,	they	need	a	kernel	interrupt	stack	just	like
a	normal	single-threaded	process.

User-level	threads.	To	avoid	having	to	make	a	system	call	for	every	thread
operation,	some	systems	support	a	model	where	user-level	thread	operations	—
create,	yield,	join,	exit,	and	the	synchronization	routines	described	in	Chapter	5	—
are	implemented	entirely	in	a	user-level	library,	without	invoking	the	kernel.

We	first	describe	the	implementation	for	the	baseline	case	of	kernel	threads.	In
Section	4.8,	we	explain	how	to	extend	the	model	to	support	application	multi-threading
implemented	with	kernel	threads	or	with	a	user-level	library.

4.6.1	Creating	a	Thread

Figure	4.13:	Pseudo-code	for	thread	creation.	The	specifics	of	initializing	the	stack	and
the	conventions	for	passing	arguments	to	the	initial	function	are	machine-dependent.	On
the	Intel	x86	architecture,	the	stack	starts	at	high	addresses	and	grows	down,	while
arguments	are	passed	on	the	stack.	On	other	systems,	the	stack	can	grow	upwards	and/or
arguments	can	be	passed	in	registers.	Figure	4.14	provides	pseudo-code	for
thread_dummySwitchFrame.

Figure	4.13	shows	the	pseudo-code	to	allocate	a	new	thread.	The	goal	of	thread_create	is

to	perform	an	asynchronous	procedure	call	to	func	with	arg	as	the	argument	to	that
procedure.	When	the	thread	runs,	it	will	execute	func(arg)	concurrently	with	the	calling
thread.

There	are	three	steps	to	creating	a	thread:

1.	 Allocate	per-thread	state.	The	first	step	in	the	thread	constructor	is	to	allocate	space
for	the	thread’s	per-thread	state:	the	TCB	and	stack.	As	we	have	mentioned,	the	TCB
is	the	data	structure	the	thread	system	uses	to	manage	the	thread.	The	stack	is	an	area
of	memory	for	storing	data	about	in-progress	procedures;	it	is	allocated	in	memory
like	any	other	data	structure.

2.	 Initialize	per-thread	state.	To	initialize	the	TCB,	the	thread	constructor	sets	the	new
thread’s	registers	to	what	they	need	to	be	when	the	thread	starts	RUNNING.	When
the	thread	is	assigned	a	processor,	we	want	it	to	start	running	func(arg).	However,
instead	of	having	the	thread	start	in	func,	the	constructor	starts	the	thread	in	a	dummy
function,	stub,	which	in	turn	calls	func.

We	need	this	extra	step	in	case	the	func	procedure	returns	instead	of	calling
thread_exit.	Without	the	stub,	func	would	return	to	whatever	random	location	is
stored	at	the	top	of	the	stack!	Instead,	func	returns	to	stub	and	stub	calls
thread_exit	to	finish	the	thread.

To	start	at	the	beginning	of	stub,	the	thread	constructor	sets	up	the	stack	as	if	stub
was	just	called	by	normal	code;	the	specifics	will	depend	on	the	calling	convention	of
the	machine.	In	the	pseudo-code,	we	push	stub’s	two	arguments	onto	the	stack:	func
and	arg.	When	the	thread	starts	running,	the	code	in	stub	will	access	its	arguments
just	like	a	normal	procedure.

In	addition,	we	also	push	a	dummy	stack	frame	for	thread_switch	onto	the	stack;	we
defer	an	explanation	of	this	detail	until	we	discuss	the	implementation	of	thread
switching.

3.	 Put	TCB	on	ready	list.	The	last	step	in	creating	a	thread	is	to	set	its	state	to
READY	and	put	the	new	TCB	on	the	ready	list,	enabling	the	thread	to	be	scheduled.

4.6.2	Deleting	a	Thread

When	a	thread	calls	thread_exit,	there	are	two	steps	to	deleting	the	thread:

Remove	the	thread	from	the	ready	list	so	that	it	will	never	run	again.

Free	the	per-thread	state	allocated	for	the	thread.

Although	this	seems	easy,	there	is	an	important	subtlety:	if	a	thread	removes	itself	from
the	ready	list	and	frees	its	own	per-thread	state,	then	the	program	may	break.	For	example,
if	a	thread	removes	itself	from	the	ready	list	but	an	interrupt	occurs	before	the	thread
finishes	de-allocating	its	state,	there	is	a	memory	leak:	that	thread	will	never	resume	to	de-
allocate	its	state.

Worse,	suppose	that	a	thread	frees	its	own	state?	Can	the	thread	finish	running	the	code	in

thread_exit	if	it	does	not	have	a	stack?	What	happens	if	an	interrupt	occurs	just	after	the
running	thread’s	stack	has	been	de-allocated?	If	the	context	switch	code	tries	to	save	the
current	thread’s	state,	it	will	be	writing	to	de-allocated	memory,	possibly	to	storage	that
another	processor	has	re-allocated	for	some	other	data	structure.	The	result	could	be
corrupted	memory,	where	the	specific	behavior	depends	on	the	precise	sequence	of	events.
Needless	to	say,	such	a	bug	would	be	very	difficult	to	locate.

Fortunately,	there	is	a	simple	fix:	a	thread	never	deletes	its	own	state.	Instead,	some	other
thread	must	do	it.	On	exit,	the	thread	transitions	to	the	FINISHED	state,	moves	its	TCB
from	the	ready	list	to	a	list	of	finished	threads	the	scheduler	should	never	run.	The	thread
can	then	safely	switch	to	the	next	thread	on	the	ready	list.	Once	the	finished	thread	is	no
longer	running,	it	is	safe	for	some	other	thread	to	free	the	state	of	the	thread.

4.6.3	Thread	Context	Switch

To	support	multiple	threads,	we	also	need	a	mechanism	to	switch	which	threads	are
RUNNING	and	which	are	READY.

A	thread	context	switch	suspends	execution	of	a	currently	running	thread	and	resumes
execution	of	some	other	thread.	The	switch	saves	the	currently	running	thread’s	registers
to	the	thread’s	TCB	and	stack,	and	then	it	restores	the	new	thread’s	registers	from	that
thread’s	TCB	and	stack	into	the	processor.

We	need	to	answer	several	questions:

What	triggers	a	context	switch?

How	does	a	voluntary	context	switch	(e.g.,	a	call	to	thread_yield)	work?

How	does	an	involuntary	context	switch	differ	from	a	voluntary	one?

What	thread	should	the	scheduler	choose	to	run	next?

We	discuss	these	in	turn,	but	we	defer	the	last	question	to	Chapter	7.	The	mechanisms	we
discuss	in	this	Chapter	work	regardless	of	the	policy	the	scheduler	uses	when	choosing
threads.

Separating	mechanism	from	policy

Separating	mechanism	from	policy	is	a	useful	and	widely	applied	principle	in	operating
system	design.	When	mechanism	and	policy	are	cleanly	separated,	it	is	easier	to	introduce
new	policies	to	optimize	a	system	for	a	new	workload	or	new	technology.

For	example,	the	thread	context	switch	abstraction	cleanly	separates	mechanism	(how	to
switch	between	threads)	from	policy	(which	thread	to	run)	so	that	the	mechanism	works
no	matter	what	policy	is	used.	Some	systems	can	elect	to	do	something	simple	(e.g.,	FIFO
scheduling);	other	systems	can	optimize	scheduling	to	meet	their	goals	(e.g.,	a	periodic
scheduler	to	smoothly	run	real-time	multimedia	streams	for	a	media	device,	a	round-robin
scheduler	to	balance	responsiveness	and	throughput	for	a	server,	or	a	priority	scheduler
that	devotes	most	resources	to	the	visible	application	on	a	smartphone).

We	will	see	this	principle	many	times	in	this	book.	For	example,	thread	synchronization
mechanisms	work	regardless	of	the	scheduling	policy;	file	metadata	mechanisms	for
locating	a	file’s	blocks	work	regardless	of	the	policy	for	where	to	place	the	file’s	blocks
on	disk;	and	page	translation	mechanisms	for	mapping	virtual	to	physical	addresses	work
regardless	of	which	physical	pages	the	operating	system	assigns	to	each	process.

What	Triggers	a	Kernel	Thread	Context	Switch?	A	thread	context	switch	can	be
triggered	by	either	a	voluntary	call	into	the	thread	library,	or	an	involuntary	interrupt	or
processor	exception.

Voluntary.	The	thread	could	call	a	thread	library	function	that	triggers	a	context
switch.	For	example,	most	thread	libraries	provide	a	thread_yield	call	that	lets	the
currently	running	thread	voluntarily	give	up	the	processor	to	the	next	thread	on	the
ready	list.	Similarly,	the	thread_join	and	thread_exit	calls	suspend	execution	of	the
current	thread	and	start	running	a	different	one.

Involuntary.	An	interrupt	or	processor	exception	could	invoke	an	interrupt	handler.
The	interrupt	hardware	saves	the	state	of	the	running	thread	and	executes	the
handler’s	code.	The	handler	can	decide	that	some	other	thread	should	run,	and	then
switch	to	it.	Alternatively,	if	the	current	thread	should	continue	running,	the	handler
restores	the	state	of	the	interrupted	thread	and	resumes	execution.

For	example,	many	thread	systems	are	designed	to	ensure	that	no	thread	can
monopolize	the	processor.	To	accomplish	this,	they	set	a	hardware	timer	to	interrupt
the	processor	periodically	(e.g.,	every	few	milliseconds).	The	timer	interrupt	handler
saves	the	state	of	the	running	thread,	chooses	another	thread	to	run,	and	runs	that
thread	by	restoring	its	state	to	the	processor.

Other	I/O	hardware	events	(e.g.,	a	keyboard	key	is	pressed,	a	network	packet	arrives,
or	a	disk	operation	completes)	also	invoke	interrupt	handlers.	In	these	cases	as	well,
the	handlers	save	the	state	of	the	currently	running	thread	so	that	it	can	be	restored
later.	They	then	execute	the	handler	code,	and	when	the	handler	is	done,	they	either
restore	the	state	of	the	current	thread,	or	switch	to	a	new	thread.	A	new	thread	will	be
run	if	the	I/O	event	moves	a	thread	onto	the	ready	list	with	a	higher	priority	than	the
previously	running	thread.

Regardless,	the	thread	system	must	save	the	current	processor	state,	so	that	when	the
current	thread	resumes	execution,	it	appears	to	the	thread	as	if	the	event	never	occurred
except	for	some	time	having	elapsed.	This	provides	the	abstraction	of	thread	execution	on
a	virtual	processor	with	unpredictable	and	variable	speed.

To	keep	things	simple,	we	do	not	want	to	do	an	involuntary	context	switch	while	we	are	in
the	middle	of	a	voluntary	one.	When	switching	between	two	threads,	we	need	to
temporarily	defer	interrupts	until	the	switch	is	complete,	to	avoid	confusion.	Processors
contain	privileged	instructions	to	defer	and	re-enable	interrupts;	we	make	use	of	these	in
our	implementation	below.

Why	is	it	necessary	to	turn	off	interrupts	during	thread	switch?

Our	implementation	of	thread_yield	defers	any	interrupts	that	might	occur	during	the
procedure,	until	the	yield	is	complete.	This	might	seem	unnecessary:	after	all,	even	if	the
thread	context	switch	is	interrupted,	the	state	of	the	switch	will	be	saved	onto	the	stack.
Eventually	the	kernel	will	re-schedule	the	thread,	restore	its	state,	and	complete	the	thread
switch.

However,	a	subtle	inconsistency	might	arise.	Suppose	a	low	priority	thread	(e.g.,	the	idle
thread)	is	about	to	voluntarily	switch	to	a	high	priority	thread.	It	pulls	the	high	priority
thread	off	the	ready	list,	and	at	that	precise	moment,	an	interrupt	occurs.	Supppose	the
interrupt	moves	a	medium	priority	thread	from	WAITING	to	READY.	Since	it	appears
that	the	processor	is	still	running	the	low	priority	thread,	the	interrupt	handler
immediately	switches	to	the	new	thread.	The	high	priority	thread	is	in	limbo!	It	is	ready
to	run,	but	unable	to	do	so	until	the	low	priority	thread	is	re-scheduled.	And	that	may	not
happen	for	a	long	time.

Of	course,	this	sequence	of	events	would	not	occur	very	often,	but	when	it	does,	it	would
be	difficult	to	locate	or	debug.

Voluntary	Kernel	Thread	Context	Switch.	Because	a	voluntary	switch	is	simpler	to
understand,	we	start	there.	Figure	4.14	shows	pseudo-code	for	a	simple	implementation	of
thread_yield	for	the	Intel	x86	hardware	architecture.	A	thread	calls	thread_yield	to
voluntarily	relinquish	the	processor	to	another	thread.	The	calling	thread’s	registers	are
copied	to	its	TCB	and	stack,	and	it	resumes	running	later,	when	the	scheduler	chooses	it.

Figure	4.14:	Pseudo-code	for	thread_switch	and	thread_yield	on	the	Intel	x86
architecture.	Note	that	thread_yield	is	a	no-op	if	there	are	no	other	threads	to	run.
Otherwise,	it	saves	the	old	thread	state	and	restores	the	new	thread	state.	When	the	old
thread	is	re-scheduled,	it	returns	from	thread_switch	as	the	running	thread.

The	pseudo-code	for	thread_yield	first	turns	off	interrupts	to	prevent	the	thread	system
from	attempting	to	make	two	context	switches	at	the	same	time.	The	pseudo-code	then
pulls	the	next	thread	to	run	off	the	ready	list	(if	any),	and	switches	to	it.

The	thread_switch	code	may	seem	tricky,	since	it	is	called	in	the	context	of	the	old	thread
and	finishes	in	the	context	of	the	new	thread.	To	make	this	work,	thread_switch	saves	the
state	of	the	registers	to	the	stack	and	saves	the	stack	pointer	to	the	TCB.	It	then	switches	to
the	stack	of	the	new	thread,	restores	the	new	thread’s	state	from	the	new	thread’s	stack,
and	returns	to	whatever	program	counter	is	stored	on	the	new	stack.

A	twist	is	that	the	return	location	may	not	be	to	thread_yield!	The	return	is	to	whatever	the
new	thread	was	doing	beforehand.	For	example,	the	new	thread	might	have	been
WAITING	in	thread_join	and	is	now	READY	to	run.	The	thread	might	have	called
thread_yield.	Or	it	might	be	a	newly	created	thread	just	starting	to	run.

It	is	essential	that	any	routine	that	causes	the	thread	to	yield	or	block	call	thread_switch	in
the	same	way.	Equally,	to	create	a	new	thread,	thread_create	must	set	up	the	stack	of	the
new	thread	to	be	as	if	it	had	suspended	execution	just	before	performing	its	first
instruction.	Then,	if	the	newly	created	thread	is	the	next	thread	to	run,	a	thread	can	call
thread_yield,	switch	to	the	newly	created	thread,	switch	to	its	stack	pointer,	pop	the
register	values	off	the	stack,	and	“return”	to	the	new	thread,	even	though	it	had	never
called	switch	in	the	first	place.

EXAMPLE:	Suppose	two	threads	each	loop,	calling	thread_yield	on	each	iteration.

What	is	the	sequence	of	steps	as	seen	by	the	physical	processor	and	by	each	thread?

ANSWER:	From	the	processor’s	point	of	view,	one	instruction	follows	the	next,	but	now
the	instructions	from	different	threads	are	interleaved	(as	they	must	be	if	they	are
multiplexed).

Figure	4.15	shows	the	interleaving:	thread_yield	is	called	by	one	thread	but	returns	in	a
different	thread.	thread_yield	deliberately	violates	the	procedure	call	conventions
compilers	normally	follow	by	manipulating	the	stack	and	program	counter	to	switch
between	threads.

However,	the	threads	themselves	can	ignore	this	complexity.	From	their	point	of	view,
they	each	run	this	loop	on	their	own	(variable-speed)	virtual	processor.	□

Logical	View

Thread	1 Thread	2

go(){ go(){

		while(1){ 		while(1){

thread_yield(); thread_yield();

		} 		}

} }

Physical	Reality

Thread	1’s	instructions Thread	2’s	instructions Processor’s	instructions

“return”	from	thread_switch “return”	from	thread_switch

		into	stub 		into	stub

call	go call	go

call	thread_yield call	thread_yield

choose	another	thread choose	another	thread

call	thread_switch call	thread_switch

save	thread	1	state	to	TCB save	thread	1	state	to	TCB

load	thread	2	state load	thread	2	state

“return”	from	thread_switch “return”	from	thread_switch

		into	stub 		into	stub

call	go call	go

call	thread_yield call	thread_yield

choose	another	thread choose	another	thread

call	thread_switch call	thread_switch

save	thread	2	state	to	TCB save	thread	2	state	to	TCB

load	thread	1	state load	thread	1	state

return	from	thread_switch return	from	thread_switch

return	from	thread_yield return	from	thread_yield

call	thread_yield call	thread_yield

choose	another	thread choose	another	thread

call	thread_switch call	thread_switch

save	thread	1	state	to	TCB save	thread	1	state	to	TCB

load	thread	2	state load	thread	2	state

return	from	thread_switch return	from	thread_switch

return	from	thread_yield return	from	thread_yield

call	thread_yield call	thread_yield

choose	another	thread choose	another	thread

call	thread_switch call	thread_switch

save	thread	2	state	to	TCB save	thread	2	state	to	TCB

load	thread	1	state load	thread	1	state

return	from	thread_switch return	from	thread_switch

return	from	thread_yield return	from	thread_yield

… … …

Figure	4.15:	Interleaving	of	instructions	when	two	threads	loop	and	call	thread_yield().

A	zero-thread	kernel

Not	only	can	we	have	a	single-threaded	kernel	or	a	multi-threaded	kernel,	it	is	actually
possible	to	have	a	kernel	with	no	threads	of	its	own	—	a	zero-threaded	kernel!	In	fact,
this	used	to	be	quite	common	[107].

Consider	the	simple	picture	of	the	operating	system	described	in	Chapter	2.	Once	the
system	has	booted,	initialized	its	device	drivers,	and	started	some	user-level	processes
like	a	login	shell,	everything	else	the	kernel	does	is	event-driven,	i.e.,	done	in	response	to
an	interrupt,	processor	exception,	or	system	call.

In	a	simple	operating	system	like	this,	there	is	no	need	for	a	“kernel	thread”	or	“kernel
thread	control	block”	to	keep	track	of	an	ongoing	computation.	Instead,	when	an
interrupt,	trap,	or	exception	occurs,	the	stack	pointer	gets	set	to	the	base	of	the	interrupt
stack,	and	the	instruction	pointer	gets	set	to	the	address	of	the	handler.	Then,	the	handler
executes	and	either	returns	immediately	to	the	interrupted	user-level	process	or	suspends
the	user-level	process	and	“returns”	to	some	other	user-level	process.	In	either	case,	the
next	event	(interrupt,	processor	exception,	or	system	call)	starts	this	process	anew.

Involuntary	Kernel	Thread	Context	Switch.	Chapter	2	explained	what	happens	when	an
interrupt,	exception,	or	trap	interrupts	a	running	user-level	process:	hardware	and	software
work	together	to	save	the	state	of	the	interrupted	process,	run	the	kernel’s	handler,	and
restore	the	state	of	the	interrupted	process.

The	mechanism	is	almost	identical	when	an	interrupt	or	trap	triggers	a	thread	switch
between	threads	in	the	kernel.	The	three	steps	described	in	Chapter	2	are	slightly	modified
(changes	are	written	in	italics):

1.	 Save	the	state.	Save	the	currently	running	thread’s	registers	so	that	the	handler	can
run	code	without	disrupting	the	interrupted	thread.

Hardware	saves	some	state	when	the	interrupt	or	exception	occurs,	and	software
saves	the	rest	of	the	state	when	the	handler	runs.

2.	 Run	the	kernel’s	handler.	Run	the	kernel’s	handler	code	to	handle	the	interrupt	or
exception.	Since	we	are	already	in	kernel	mode,	we	do	not	need	to	change	from	user
to	kernel	mode	in	this	step.	We	also	do	not	need	to	change	the	stack	pointer	to	the
base	of	the	kernel’s	interrupt	stack.	Instead,	we	can	just	push	saved	state	or	handler
variables	onto	the	current	stack,	starting	from	the	current	stack	pointer.

3.	 Restore	the	state.	Restore	the	next	ready	thread’s	registers	so	that	the	thread	can
resume	running	where	it	left	off.

In	short,	comparing	a	switch	between	kernel	threads	to	what	happens	on	a	user-mode
transfer:	(1)	there	is	no	need	to	switch	modes	(and	therefore	no	need	to	switch	stacks)	and
(2)	the	handler	can	resume	any	thread	on	the	ready	list	rather	than	always	resuming	the
thread	or	process	that	was	just	suspended.

Implementation	Details.	On	most	processor	architectures,	a	simple	(but	inefficient)	way
to	swap	to	the	next	thread	from	within	an	interrupt	handler	is	to	call	thread_switch	just
before	the	handler	returns.	As	we	have	already	seen,	thread_switch	saves	the	state	of	the
current	thread	(that	is,	the	state	of	the	interrupt	handler)	and	switches	to	the	new	kernel
thread.	When	the	original	thread	resumes,	it	will	return	from	thread_switch,	and
immediately	pop	the	interrupt	context	off	the	stack,	resuming	execution	at	the	point	where
it	was	interrupted.

Most	systems,	such	as	Linux,	make	a	small	optimization	to	improve	interrupt	handling
performance.	The	state	of	the	interrupted	thread	is	already	saved	on	the	stack,	albeit	in	the
format	specified	by	the	interrupt	hardware.	If	we	modify	thread_switch	to	save	and	restore
registers	exactly	as	the	interrupt	hardware	does,	then	returning	from	an	interrupt	and
resuming	a	thread	are	the	same	action:	they	both	pop	the	interrupt	frame	off	the	stack	to
resume	the	next	thread	to	run.

For	example,	to	be	compatible	with	x86	interrupt	hardware,	the	software	implementation
of	thread_switch	would	simulate	the	hardware	case,	saving	the	return	instruction	pointer
and	eflags	register	before	calling	pushad	to	save	the	general-purpose	registers.	After
switching	to	the	new	stack,	it	would	call	iret	to	resume	the	new	thread,	whether	the	new
thread	was	suspended	by	a	hardware	event	or	a	software	call.

4.7	Combining	Kernel	Threads	and	Single-Threaded	User	Processes

Previously,	Figure	4.11	illustrated	a	system	with	both	kernel	threads	and	single-threaded
user	processes.	A	process	is	a	sequential	execution	of	instructions,	so	each	user-level
process	includes	the	process’s	thread.	However,	a	process	is	more	than	just	a	thread
because	it	has	its	own	address	space.	Process	1	has	its	own	view	of	memory,	its	own	code,
its	own	heap,	and	its	own	global	variables	that	differ	from	those	of	process	2	(and	from	the
kernel’s).

Because	a	process	contains	more	than	just	a	thread,	each	process’s	process	control	block
(PCB)	needs	more	information	than	a	thread	control	block	(TCB)	for	a	kernel	thread.	Like
a	TCB,	a	PCB	for	a	single-threaded	process	must	store	the	processor	registers	when	the
process’s	thread	is	not	running.	In	addition,	the	PCB	has	information	about	the	process’s
address	space;	when	a	context	switch	occurs	from	one	process	to	another,	the	operating

system	must	change	the	virtual	memory	mappings	as	well	as	the	register	state.

Since	the	PCB	and	TCB	each	represent	one	thread,	the	kernel’s	ready	list	can	contain	a
mix	of	PCBs	for	processes	and	TCBs	for	kernel	threads.	When	the	scheduler	chooses	the
next	thread	to	run,	it	can	pick	either	kind.	A	thread	switch	is	nearly	identical	whether
switching	between	kernel	threads	or	switching	between	a	process’s	thread	and	a	kernel
thread.	In	both	cases,	the	switch	saves	the	state	of	the	currently	running	thread	and	restores
the	state	of	the	next	thread	to	run.

As	we	mentioned	in	Chapter	2,	most	operating	systems	dedicate	a	kernel	interrupt	stack
for	each	process.	This	way,	when	the	process	needs	to	perform	a	system	call,	or	on	an
interrupt	or	processor	exception,	the	hardware	traps	to	the	kernel,	saves	the	user-level
processor	state,	and	starts	running	at	a	specific	handler	in	the	kernel.	Once	inside	the
kernel,	the	process	thread	behaves	exactly	like	a	kernel	thread	—	it	can	create	threads	(or
other	processes),	block	(e.g.,	in	UNIX	process	wait	or	on	I/O),	and	even	exit.	While	inside
the	kernel,	the	process	can	be	pre-empted	by	a	timer	interrupt	or	I/O	event,	and	a	higher
priority	process	or	kernel	thread	can	run	in	its	place.	The	PCB	and	kernel	stack	for	the
preempted	process	stores	both	its	current	kernel	state,	as	well	as	the	user-level	state	saved
when	the	process	initiated	the	system	call.

We	can	resume	a	process	in	the	kernel	using	thread_switch.	However,	when	we	resume
execution	of	the	user-level	process	after	the	completion	of	a	system	call	or	interrupt,	we
must	restore	its	state	precisely	as	it	was	beforehand:	with	the	correct	value	in	its	registers,
executing	in	user	mode,	with	the	appropriate	virtual	memory	mappings,	and	so	forth.

An	important	detail	is	that	many	processor	architectures	have	extra	co-processor	state,
e.g.,	floating	point	registers,	for	user-level	code.	Typically,	the	operating	system	kernel
does	not	make	use	of	floating	point	operations.	Therefore,	the	kernel	does	not	need	to	save
those	registers	when	switching	between	kernel	threads,	but	it	does	save	and	restore	them
when	switching	between	processes.

One	small	difference

You	may	notice	that	a	mode	switch	in	Chapter	2	caused	the	x86	hardware	to	save	not	just
the	instruction	pointer	and	eflags	register	but	also	the	stack	pointer	of	the	interrupted
process	before	starting	the	handler.	For	mode	switching,	the	hardware	changes	the	stack
pointer	to	the	kernel’s	interrupt	stack,	so	it	must	save	the	original	user-level	stack	pointer.

In	contrast,	when	switching	from	a	kernel	thread	to	a	kernel	handler,	the	hardware	does
not	switch	stacks.	Instead,	the	handler	runs	on	the	current	stack,	not	on	a	separate
interrupt	stack.	Therefore,	the	hardware	does	not	need	to	save	the	original	stack	pointer;
the	handler	just	saves	the	stack	pointer	with	the	other	registers	as	part	of	the	pushad
instruction.

Thus,	x86	hardware	works	slightly	differently	when	switching	between	a	kernel	thread
and	a	kernel	handler	than	when	doing	a	mode	switch:

Entering	the	handler.	When	an	interrupt	or	exception	occurs,	if	the	processor
detects	that	it	is	already	in	kernel	mode	(by	inspecting	the	eflags	register),	it	just
pushes	the	instruction	pointer	and	eflags	registers	(but	not	the	stack	pointer)	onto	the

existing	stack.	On	the	other	hand,	if	the	hardware	detects	that	it	is	switching	from
user-mode	to	kernel-mode,	then	the	processor	also	changes	the	stack	pointer	to	the
base	of	the	interrupt	stack	and	pushes	the	original	stack	pointer	along	with	the
instruction	pointer	and	eflags	registers	onto	the	new	stack.
Returning	from	the	handler.	When	the	iret	instruction	is	called,	it	inspects	both	the
current	eflags	register	and	the	value	on	the	stack	that	it	will	use	to	restore	the	earlier
eflags	register.	If	the	mode	bit	is	identical,	then	iret	just	pops	the	instruction	pointer
and	eflags	register	and	continues	to	use	the	current	stack.	On	the	other	hand,	if	the
mode	bit	differs,	then	the	iret	instruction	pops	not	only	the	instruction	pointer	and
eflags	register,	but	also	the	saved	stack	pointer,	thus	switching	the	processor’s	stack
pointer	to	the	saved	one.

4.8	Implementing	Multi-Threaded	Processes

So	far,	we	have	described	how	to	implement	multiple	threads	that	run	inside	the	operating
system	kernel.	Of	course,	we	also	want	to	be	able	to	run	user	programs	as	well.	Since
many	user	programs	are	single-threaded,	we	start	with	the	simple	case	of	how	to	integrate
kernel	threads	and	single-threaded	processes.	We	then	turn	to	various	ways	of
implementing	multi-threaded	processes,	processes	with	multiple	threads.	All	widely	used
modern	operating	systems	support	both	kernel	threads	and	multi-threaded	processes.	Both
programming	languages,	such	as	Java,	and	standard	library	interfaces	such	as	POSIX	and
simple	threads,	use	this	operating	system	support	to	provide	the	thread	abstraction	to	the
programmer.

4.8.1	Implementing	Multi-Threaded	Processes	Using	Kernel	Threads

The	simplest	way	to	support	multiple	threads	per	process	is	to	use	the	kernel	thread
implementation	we	have	already	described.	When	a	kernel	thread	creates,	deletes,
suspends,	or	resumes	a	thread,	it	can	use	a	simple	procedure	call.	When	a	user-level	thread
accesses	the	thread	library	to	do	the	same	things,	it	uses	a	system	call	to	ask	the	kernel	to
do	the	operation	on	its	behalf.

As	shown	earlier	in	Figure	4.12,	a	thread	in	a	process	has:

A	user-level	stack	for	executing	user	code.

A	kernel	interrupt	stack	for	when	this	thread	makes	system	calls,	causes	a	processor
exception,	or	is	interrupted.

A	kernel	TCB	for	saving	and	restoring	the	per-thread	state.

To	create	a	thread,	the	user	library	allocates	a	user-level	stack	for	the	thread	and	then	does
a	system	call	into	the	kernel.	The	kernel	allocates	a	TCB	and	interrupt	stack,	and	arranges
the	state	of	the	thread	to	start	execution	on	the	user-level	stack	at	the	beginning	of	the
requested	procedure.	The	kernel	needs	to	store	a	pointer	to	the	TCB	in	the	process	control
block;	if	the	process	exits,	the	kernel	must	terminate	any	other	threads	running	in	the

process.

After	creating	the	thread,	the	kernel	puts	the	new	thread	on	the	ready	list,	to	be	scheduled
like	any	other	thread,	and	returns	unique	identifier	for	the	user	program	to	use	when
referring	to	the	newly	created	thread	(e.g.,	for	join).

Thread	join,	yield,	and	exit	work	the	same	way:	by	calling	into	the	kernel	to	perform	the
requested	function.

4.8.2	Implementing	User-Level	Threads	Without	Kernel	Support

It	is	also	possible	to	implement	threads	as	a	library	completely	at	user	level,	without	any
operating	system	support.	Early	thread	libraries	took	this	pure	user-level	approach	for	the
simple	reason	that	few	operating	systems	supported	multi-threaded	processes.	Even	once
operating	system	support	for	threads	became	widespread,	pure	user-level	threads	were
sometimes	used	to	minimize	dependencies	on	specific	operating	systems	and	to	maximize
portability;	for	example,	the	earliest	implementations	of	Sun’s	Java	Virtual	Machine
(JVM)	implemented	what	were	called	green	threads,	a	pure	user-level	implementation	of
threads.

The	basic	idea	is	simple.	The	thread	library	instantiates	all	of	its	data	structures	within	the
process:	TCBs,	the	ready	list,	the	finished	list,	and	the	waiting	lists	all	are	just	data
structures	in	the	process’s	address	space.	Then,	calls	to	the	thread	library	are	just
procedure	calls,	akin	to	how	the	same	functions	are	implemented	within	a	multi-threaded
kernel.

To	the	operating	system	kernel,	a	multi-threaded	application	using	green	threads	appears
to	be	a	normal,	single-threaded	process.	The	process	as	a	whole	can	make	system	calls,	be
time-sliced,	etc.	Unlike	with	kernel	threads,	when	a	process	using	green	threads	is	time-
sliced,	the	entire	process,	including	all	of	its	threads,	is	suspended.

A	limitation	of	green	threads	is	that	the	operating	system	kernel	is	unaware	of	the	state	of
the	user-level	ready	list.	If	the	application	performs	a	system	call	that	blocks	waiting	for
I/O,	the	kernel	is	unable	to	run	a	different	user-level	thread.	Likewise,	on	a	multiprocessor,
the	kernel	is	unable	to	run	the	different	threads	running	within	a	single	process	on
different	processors.

Preemptive	User-level	Threads.	However,	it	is	possible	on	most	operating	systems	to
implement	preemption	among	user-level	threads	executing	within	a	process.	As	we
discussed	in	Chapter	2,	most	operating	systems	provide	an	upcall	mechanism	to	deliver
asynchronous	event	notification	to	a	process;	on	UNIX	these	are	called	signal	handlers.
Typical	events	or	signals	include	the	user	hitting	“Escape”	or	on	UNIX	“Control-C”;	this
informs	the	application	to	attempt	to	cleanly	exit.	Another	common	event	is	a	timer
interrupt	to	signal	elapsed	real	time.	To	deliver	an	event,	the	kernel	suspends	the	process
execution	and	then	resumes	it	running	at	a	handler	specified	by	the	user	code,	typically	on
a	separate	upcall	or	signal	stack.

To	implement	preemptive	multi-threading	for	some	process	P	:

1.	 The	user-level	thread	library	makes	a	system	call	to	register	a	timer	signal	handler

and	signal	stack	with	the	kernel.

2.	 When	a	hardware	timer	interrupt	occurs,	the	hardware	saves	P	’s	register	state	and
runs	the	kernel’s	handler.

3.	 Instead	of	restoring	P	’s	register	state	and	resuming	P	where	it	was	interrupted,	the
kernel’s	handler	copies	P	’s	saved	registers	onto	P	’s	signal	stack.

4.	 The	kernel	resumes	execution	in	P	at	the	registered	signal	handler	on	the	signal	stack.

5.	 The	signal	handler	copies	the	processor	state	of	the	preempted	user-level	thread	from
the	signal	stack	to	that	thread’s	TCB.

6.	 The	signal	handler	chooses	the	next	thread	to	run,	re-enables	the	signal	handler	(the
equivalent	of	re-enabling	interrupts),	and	restores	the	new	thread’s	state	from	its	TCB
into	the	processor.	execution	with	the	state	(newly)	stored	on	the	signal	stack.

This	approach	virtualizes	interrupts	and	processor	exceptions,	providing	a	user-level
process	with	a	very	similar	picture	to	the	one	the	kernel	gets	when	these	events	occur.

4.8.3	Implementing	User-Level	Threads	With	Kernel	Support

Today,	most	programs	use	kernel-supported	threads	rather	than	pure	user-level	threads.
Major	operating	systems	support	threads	using	standard	abstractions,	so	the	issue	of
portability	is	less	of	an	issue	than	it	once	was.

However,	various	systems	take	more	of	a	hybrid	model,	attempting	to	combine	the
lightweight	performance	and	application	control	over	scheduling	found	in	user-level
threads,	while	keeping	many	of	the	advantages	of	kernel	threads.

Hybrid	Thread	Join.	Thread	libraries	can	avoid	transitioning	to	the	kernel	in	certain
cases.	For	example,	rather	than	always	making	a	system	call	for	thread_join	to	wait	for	the
target	thread	to	finish,	thread_exit	can	store	its	exit	value	in	a	data	structure	in	the
process’s	address	space.	Then,	if	the	call	to	thread_join	happens	after	the	targeted	thread
has	exited,	it	can	immediately	return	the	value	without	having	to	make	a	system	call.
However,	if	the	call	to	thread_join	precedes	the	call	to	thread_exit,	then	a	system	call	is
needed	to	transition	to	the	WAITING	state	and	let	some	other	thread	run.	As	a	further
optimization,	on	a	multiprocessor	it	can	sometimes	make	sense	for	thread_join	to	spin	for
a	few	microseconds	before	entering	the	kernel,	in	the	hope	that	the	other	thread	will	finish
in	the	meantime.

Per-Processor	Kernel	Threads.	It	is	possible	to	adapt	the	green	threads	approach	to	work
on	a	multiprocessor.	For	many	parallel	scientific	applications,	the	cost	of	creating	and
synchronizing	threads	is	paramount,	and	so	an	approach	that	requires	a	kernel	call	for
most	thread	operations	would	be	prohibitive.	Instead,	the	library	multiplexes	user-level
threads	on	top	of	kernel	threads,	in	exactly	the	same	way	that	the	kernel	multiplexes
kernel	threads	on	top	of	physical	processors.

When	the	application	starts	up,	the	user-level	thread	library	creates	one	kernel	thread	for
each	processor	on	the	host	machine.	As	long	as	there	is	no	other	activity	on	the	system,	the
kernel	will	assign	each	of	these	threads	a	processor.	Each	kernel	thread	executes	the	user-

level	scheduler	in	parallel:	pull	the	next	thread	off	the	user-level	ready	list,	and	run	it.
Because	thread	scheduling	decisions	occur	at	user	level,	they	can	be	flexible	and
application-specific;	for	example,	in	a	parallel	graph	algorithm,	the	programmer	might
adjust	the	priority	of	various	threads	based	on	the	results	of	the	computation	on	other	parts
of	the	graph.

Of	course,	most	of	the	downsides	of	green	threads	are	still	present	in	these	systems:

Any	time	a	user-level	thread	calls	into	the	kernel,	its	host	kernel	thread	blocks.	This
prevents	the	thread	library	from	running	a	different	user-level	thread	on	that
processor	in	the	meantime.

Any	time	the	kernel	time-slices	a	kernel	thread,	the	user-level	thread	it	was	running	is
also	suspended.	The	library	cannot	resume	that	thread	until	the	kernel	thread
resumes.

Scheduler	Activations.	To	address	these	issues,	some	operating	systems	have	added
explicit	support	for	user-level	threads.	One	such	model,	implemented	most	recently	in
Windows,	is	called	scheduler	activations.	In	this	approach,	the	user-level	thread	scheduler
is	notified	(or	activated)	for	every	kernel	event	that	might	affect	the	user-level	thread
system.	For	example,	if	one	thread	blocks	in	a	system	call,	the	activation	informs	the	user-
level	scheduler	that	it	should	choose	another	thread	to	run	on	that	processor.	Scheduler
activations	are	like	upcalls	or	signals,	except	that	they	do	not	return	to	the	kernel;	instead,
they	directly	perform	user-level	thread	suspend	and	resume.

Various	operations	trigger	a	scheduler	activation	upcall:

1.	 Increasing	the	number	of	virtual	processors.	When	a	program	starts,	it	receives	an
activation	to	inform	the	program	that	it	has	been	assigned	a	virtual	processor:	that
activation	runs	the	main	thread	and	any	other	threads	that	might	be	created.	To	assign
another	virtual	processor	to	the	program,	the	kernel	makes	another	activation	upcall
on	the	new	processor;	the	user-level	scheduler	can	pull	a	waiting	thread	off	the	ready
list	and	run	it.

2.	 Decreasing	the	number	of	virtual	processors.	When	the	kernel	preempts	a	virtual
processor	(e.g.,	to	give	the	processor	to	a	different	process),	the	kernel	makes	an
upcall	on	one	of	the	other	processors	assigned	to	the	parallel	program.	The	thread
system	can	then	move	the	preempted	user-level	thread	onto	the	ready	list,	so	that	a
different	processor	can	run	it.

3.	 Transition	to	WAITING.	When	a	user-level	thread	blocks	in	the	kernel	waiting	for
I/O,	the	kernel	similarly	makes	an	upcall	to	notify	the	user-level	scheduler	that	it
needs	to	take	action,	e.g.,	to	choose	another	thread	to	run	while	waiting	for	the	I/O	to
complete.

4.	 Transition	from	WAITING	to	READY.	When	the	I/O	completes,	the	kernel	makes
an	upcall	to	notify	the	scheduler	that	the	suspended	thread	can	be	resumed.

5.	 Transition	from	RUNNING	to	idle.	When	a	user-level	activation	finds	an	empty
ready	list	(i.e.,	it	has	no	more	work	to	do),	it	can	make	a	system	call	into	the	kernel	to

return	the	virtual	processor	for	use	by	some	other	process.

As	a	result,	most	thread	management	functions	—	thread_create,	thread_yield,
thread_exit,	and	thread_join,	as	well	as	the	synchronization	functions	described	in
Chapter	5	—	are	implemented	as	procedure	calls	within	the	process.	Yet	the	user-level
thread	system	always	knows	exactly	how	many	virtual	processors	it	has	been	assigned	and
is	in	complete	control	of	what	runs	on	those	processors.

4.9	Alternative	Abstractions

Although	threads	are	a	common	way	to	express	and	manage	concurrency,	they	are	not	the
only	way.	In	this	section,	we	describe	two	popular	alternatives,	each	targeted	at	a	different
application	domain:

Asynchronous	I/O	and	event-driven	programming.	Asynchronous	I/O	and	events
allow	a	single-threaded	program	to	cope	with	high-latency	I/O	devices	by
overlapping	I/O	with	processing	and	other	I/O.

Data	parallel	programming.	With	data	parallel	programming,	all	processors
perform	the	same	instructions	in	parallel	on	different	parts	of	a	data	set.

In	each	case,	the	goal	is	similar:	to	replace	the	complexities	of	multi-threading	with	a
deterministic,	sequential	model	that	is	easier	for	the	programmer	to	understand	and	debug.

4.9.1	Asynchronous	I/O	and	Event-Driven	Programming

Asynchronous	I/O	is	a	way	to	allow	a	single-threaded	process	to	issue	multiple	concurrent
I/O	requests	at	the	same	time.	The	process	makes	a	system	call	to	issue	an	I/O	request	but
the	call	returns	immediately,	without	waiting	for	the	result.	At	a	later	time,	the	operating
system	provides	the	result	to	the	process	by	either:	(1)	calling	a	signal	handler,	(2)	placing
the	result	in	a	queue	in	the	process’s	memory,	or	(3)	storing	the	result	in	kernel	memory
until	the	process	makes	another	system	call	to	retrieve	it.

An	example	use	of	asynchronous	I/O	is	to	overlap	reading	from	disk	with	other
computation	in	the	same	process.	Reading	from	disk	can	take	tens	of	milliseconds.	In
Linux,	rather	than	issuing	a	read	system	call	that	blocks	until	the	requested	data	has	been
read	from	disk,	a	process	can	issue	an	aio_read	(asynchronous	I/O	read)	system	call;	this
call	tells	the	operating	system	to	initiate	the	read	from	disk	and	then	to	immediately	return.
Later,	the	process	can	call	aio_error	to	determine	if	the	disk	read	has	finished	and
aio_return	to	retrieve	the	read’s	results,	as	shown	in	Figure	4.16.

Figure	4.16:	An	asynchronous	file	read	on	Linux.	The	application	calls	aio_read	to	start	the	read;	this	system	call
returns	immediately	after	the	disk	read	is	initialized.	The	application	may	then	do	other	processing	while	the	disk	is
completing	the	requested	operation.	The	disk	interrupts	the	processor	when	the	operation	is	complete;	this	causes	the
kernel	disk	interrupt	handler	to	run.	The	application	at	any	time	may	ask	the	kernel	if	the	results	of	the	disk	read	are
available,	and	then	retrieve	them	with	aio_return.

One	common	design	pattern	lets	a	single	thread	interleave	different	I/O-bound	tasks	by
waiting	for	different	I/O	events.	Consider	a	web	server	with	10	active	clients.	Rather	than
creating	one	thread	per	client	and	having	each	thread	do	a	blocking	read	on	the	network
connection,	an	alternative	is	for	the	server	to	have	one	thread	that	processes,	in	turn,	the
next	message	to	arrive	from	any	client.

For	this,	the	server	does	a	select	call	that	blocks	until	any	of	the	10	network	connections
has	data	available	to	read.	When	the	select	call	returns,	it	provides	a	list	of	connection
with	available	data.	The	thread	can	then	read	from	those	connections,	knowing	that	the
read	will	always	return	immediately.	After	processing	the	data,	the	thread	then	calls	select
again	to	wait	for	the	next	data	to	arrive.	Figure	4.17	illustrates	this	design	pattern.

Figure	4.17:	A	server	managing	multiple	concurrent	connections	using	select.	The	server	calls	select	to	wait	for	data	to
arrive	on	any	connection.	The	server	then	reads	all	available	data,	before	returning	to	select.

Asynchronous	I/O	allows	progress	by	many	concurrent	operating	system	requests.	This
approach	gives	rise	to	an	event-driven	programming	pattern	where	a	thread	spins	in	a
loop;	each	iteration	gets	and	processes	the	next	I/O	event.	To	process	each	event,	the
thread	typically	maintains	for	each	task	a	continuation,	a	data	structure	that	keeps	track	of
a	task’s	current	state	and	next	step.

For	example,	handling	a	web	request	can	involve	a	series	of	I/O	steps:	(a)	make	a	network
connection,	(b)	read	a	request	from	the	network	connection,	(c)	read	the	requested	data
from	disk,	and	(d)	write	the	requested	data	to	the	network	connection.	If	a	single	thread	is
handling	requests	from	multiple	different	clients	at	once,	it	must	keep	track	of	where	it	is
in	that	sequence	for	each	client.

Further,	the	network	may	divide	a	client’s	request	into	several	packets	so	that	the	server
needs	to	make	several	read	calls	to	assemble	the	full	packet.	The	server	may	be	doing	this
request	assembly	for	multiple	clients	at	once.	Therefore,	it	needs	to	keep	several	per-client
variables	(e.g.,	a	request	buffer,	the	number	of	bytes	expected,	and	the	number	of	bytes
received	so	far).	When	a	new	message	arrives,	the	thread	uses	the	network	connection’s
port	number	to	identify	which	client	sent	the	request	and	retrieves	the	appropriate	client’s
variables	using	this	port	number/client	ID.	It	can	then	process	the	data.

Event-Driven	Programming	vs.	Threads

Although	superficially	different,	overlapping	I/O	is	fundamentally	the	same	whether	using
asynchronous	I/O	and	event-driven	programming	or	synchronous	I/O	and	threads.	In
either	case,	the	program	blocks	until	the	next	task	can	proceed,	restores	the	state	of	that
task,	executes	the	next	step	of	that	task,	and	saves	the	task’s	state	until	it	can	take	its	next
step.	The	differences	are:	(1)	whether	the	state	is	stored	in	a	continuation	or	TCB	and	(2)
whether	the	state	save/restore	is	done	explicitly	by	the	application	or	automatically	by	the
thread	system.

Consider	a	simple	server	that	collects	incoming	data	from	several	clients	into	a	set	of	per-
client	buffers.	The	pseudo-code	for	the	event-driven	and	thread-per-client	cases	is	similar:

When	these	programs	execute,	the	system	performs	nearly	the	same	work,	as	shown	in
Figure	4.18.	With	events,	the	code	uses	select	to	determine	which	connection’s	packet	to
retrieve	next.	With	threads,	the	kernel	transparently	schedules	each	thread	when	data	has
arrived	for	it.

The	state	in	both	cases	is	also	similar.	In	the	event-driven	case,	the	application	maintains	a
hash	table	containing	the	buffer	state	for	each	client.	The	server	must	do	a	lookup	to	find
the	buffer	each	time	a	packet	arrives	for	a	particular	client.	In	the	thread-per-client	case,
each	thread	has	just	one	buffer,	and	the	operating	system	keeps	track	of	the	different
threads’	states.

Figure	4.18:	Two	alternate	implementations	of	a	server.	In	the	upper	picture,	a	single	thread	uses	a	hash	table	to	keep
track	of	connection	state.	In	the	lower	picture,	each	thread	keeps	a	pointer	to	the	state	for	one	connection.

To	compare	the	two	approaches,	consider	again	the	various	use	cases	for	threads	from
Section	4.1:

Performance:	Coping	with	high-latency	I/O	devices.	Either	approach	—	event-
driven	or	threads	—	can	overlap	I/O	and	processing.	Which	provides	better
performance?

The	common	wisdom	has	been	that	the	event-driven	approach	was	significantly
faster	for	two	reasons.	First,	the	space	and	context	switch	overheads	of	this	approach
could	be	lower	because	a	thread	system	must	use	generic	code	that	allocates	a	stack
for	each	thread’s	state	and	that	saves	and	restores	all	registers	on	each	context	switch,
while	the	event-driven	approach	lets	programmers	allocate	and	save/restore	just	the
state	needed	for	each	task.	Second,	some	past	operating	systems	had	inefficient	or
unscalable	implementations	of	their	thread	systems,	making	it	important	not	to	create
too	many	threads	for	each	process.

Today,	the	comparison	is	less	clear	cut.	Many	systems	now	have	large	memories,	so
the	cost	of	allocating	a	thread	stack	for	each	task	is	less	critical.	For	example,
allocating	1000	threads	with	an	8	KB	stack	per	thread	on	a	machine	with	1	GB	of
memory	would	consume	less	than	1%	of	the	machine’s	memory.	Also,	most
operating	systems	now	have	efficient	and	scalable	threads	libraries.	For	example,
while	the	Linux	2.4	kernel	had	poor	performance	when	processes	had	many	threads,
Linux	2.6	revamped	the	thread	system,	improving	its	scalability	and	absolute
performance.

Anecdotal	evidence	suggests	that	the	performance	gap	between	the	two	approaches
has	greatly	narrowed.	For	some	applications,	highly	optimized	thread	management
code	and	synchronous	I/O	paths	can	out-perform	less-optimized	application	code	and
asynchronous	I/O	paths.	In	most	cases,	the	performance	difference	is	small	enough
that	other	factors	(e.g.,	code	simplicity	and	ease	of	maintenance)	are	more	important
than	raw	performance.	If	performance	is	crucial	for	a	particular	application,	then,	as
is	often	the	case,	there	is	no	substitute	for	careful	benchmarking	before	making	your
decision.

Performance:	Exploiting	multiple	processors.	By	itself,	the	event-driven	approach
does	not	help	a	program	exploit	multiple	processors.	In	practice,	event-driven	and
thread	approaches	are	often	combined:	a	program	that	uses	n	processors	can	have	n
threads,	each	of	which	uses	the	event-driven	pattern	to	multiplex	multiple	I/O-bound
tasks	on	each	processor.

Responsiveness:	Shifting	work	to	run	in	the	background.	While	event-driven
programming	can	be	effective	when	tasks	are	usually	short-lived,	threads	can	be
more	convenient	when	there	is	a	mixture	of	foreground	and	background	tasks.	At
some	cost	in	coding	complexity,	the	event-driven	model	can	be	adapted	to	this	case,
e.g.,	by	cutting	long	tasks	into	smaller	chunks	whose	state	can	be	explicitly	saved
when	higher	priority	work	is	pending.

Program	structure:	Expressing	logically	concurrent	tasks.	Whenever	there	are
two	viable	programming	styles,	there	are	strong	advocates	for	each	approach.	The
situation	is	no	different	here,	with	some	advocates	of	event-driven	programming

arguing	that	the	synchronization	required	when	threads	share	data	makes	threads
more	complex	than	events.	Advocates	for	threads	argue	that	they	provide	a	more
natural	way	to	express	the	control	flow	of	a	program	than	having	to	explicitly	store	a
computation’s	state	in	a	continuation.

In	our	opinion,	there	remain	cases	where	both	styles	are	appropriate,	and	we	use	both
styles	in	our	own	programs.	That	said,	for	most	I/O-intensive	programs,	threads	are
preferable:	they	are	often	more	natural,	reasonably	efficient,	and	simpler	when	running	on
multiple	processors.

4.9.2	Data	Parallel	Programming

Another	important	application	area	is	parallel	computing,	and	there	is	an	ongoing	debate
as	to	the	effectiveness	of	threads	versus	other	models	for	expressing	and	managing
parallelism.

One	popular	model	is	data	parallel	programming,	also	known	as	SIMD	(single	instruction
multiple	data)	programming	or	bulk	synchronous	parallel	programming.	In	this	model,	the
programmer	describes	a	computation	to	apply	in	parallel	across	an	entire	data	set	at	the
same	time,	operating	on	independent	data	elements.	The	work	on	every	data	item	must
complete	before	moving	onto	the	next	step;	one	processor	can	use	the	results	of	a	different
processor	only	in	some	later	step.	As	a	result,	the	behavior	of	the	program	is	deterministic.
Rather	than	having	programmers	divide	work	among	threads,	the	runtime	system	decides
how	to	map	the	parallel	work	across	the	hardware’s	processors.

For	example,	taking	the	earlier	example	of	zeroing	a	buffer	in	parallel	in	Figure	4.7,	a	data
parallel	program	to	zero	an	N	item	array	can	be	as	simple	as:

The	runtime	system	would	divide	the	array	among	processors	to	execute	the	computation
in	parallel.	Of	course,	the	runtime	system	itself	might	be	implemented	using	threads,	but
this	is	invisible	to	the	programmer.

Large	data-analysis	tasks	often	use	data	parallel	programming.	For	example,	Hadoop	is	an
open	source	system	that	can	process	and	analyze	terabytes	of	data	spread	across	hundreds
or	thousands	of	servers.	It	applies	an	arbitrary	computation	to	each	data	element,	such	as
to	update	the	popularity	of	a	web	page	based	on	a	previous	estimate	of	the	popularity	of
the	pages	that	refer	to	it.	Hadoop	applies	the	computation	in	parallel	across	all	web	pages,
repeatedly,	until	the	popularity	of	every	page	has	converged.	A	search	engine	can	then	use
the	results	to	decide	which	pages	should	be	returned	in	response	to	a	search	query.

Another	example	is	SQL	(Structured	Query	Language).	SQL	is	a	standard	language	for
accessing	databases	in	which	programmers	specify	the	database	query	to	perform,	and	the
database	maps	the	query	to	lower-level	thread	and	disk	operations.

Multimedia	streams	(e.g.,	audio,	video,	and	graphics)	often	have	large	amounts	of	data	on
which	similar	operations	are	repeatedly	performed,	so	data	parallel	programming	is
frequently	used	for	media	processing;	specialized	hardware	to	support	this	type	of	parallel
processing	is	common.	Because	they	are	optimized	for	highly	structured	data	parallel
programs,	GPUs	(Graphical	Processing	Units)	can	provide	significantly	higher	rates	of
data	processing.	For	example,	in	2013	a	mid-range	Radeon	7850	GPU	was	capable	of	1.69
TFLOPS	(Trillion	FLoating	point	Operations	Per	Second	(double-precision));	for
comparison,	an	Intel	i7	3960	CPU	(a	high-end,	six	core	general-purpose	processor)	was
capable	of	0.19	double-precision	TFLOPS.

Considerable	effort	is	currently	going	towards	developing	and	using	General	Purpose
GPUs	(GPGPUs)	—	GPUs	that	better	support	a	wider-range	of	programs.	It	is	still	not
clear	which	classes	of	programs	can	work	well	with	GPGPUs	and	which	require	more
traditional	CPU	architectures,	but	for	those	programs	that	can	be	ported	to	the	more
restrictive	GPGPU	programming	model,	performance	gains	could	be	dramatic.

4.10	Summary	and	Future	Directions

Concurrency	is	ubiquitous	—	not	only	do	most	smartphones,	servers,	desktops,	laptops,
and	tablets	have	multiple	cores,	but	users	have	come	to	expect	a	responsive	interface	at	all
times,	I/O	latencies	have	become	gigantic	compared	to	computer	instruction	cycle	times,
and	servers	must	be	able	to	process	large	numbers	of	simultaneous	requests.

Although	threads	are	not	the	only	possible	solution	to	these	issues,	they	are	a	general-
purpose	technique	that	can	be	applied	to	a	wide	range	of	concurrency	issues.	In	our	view,
multi-threaded	programming	is	a	skill	that	every	professional	programmer	must	master.

In	this	chapter,	we	have	discussed:

The	thread	abstraction.	Threads	are	a	set	of	concurrent	activities,	each	of	which
executes	sequentially	at	unpredictable	speed.

A	simple	thread	API.	Thread	libraries,	whether	for	use	in	the	operating	system
kernel	or	in	application	code,	provide	the	ability	to	perform	an	asynchronous
procedure	call.

Thread	implementations.	The	core	of	any	implementation	of	preemptive	multi-
threading	is	the	ability	to	save	one	thread’s	state	and	restore	another’s.	The	thread
system	keeps	track	of	the	saved	state	of	all	threads	not	currently	running;	it	switches
threads	between	READY	and	RUNNING	as	needed.	The	implementation	of	multi-
threading	can	be	in	the	kernel	or	at	user-level,	depending	on	the	goals	of	the	system.
In	our	view,	most	systems	in	the	future	will	have	both	a	kernel-level	thread	system
for	managing	concurrency	in	the	operating	system,	and	a	lightweight	thread	system
for	expressing	parallelism	at	the	application	level.

Alternative	abstractions.	Practical	alternatives	to	threads	exist	for	two	important
domains:	event-driven	programming	for	servers	as	well	as	data	parallel	programming
for	multiprocessors.

Technology	trends	suggest	that	concurrent	programming	will	only	increase	in	importance

over	time.	After	several	decades	in	which	computer	architects	were	able	to	make
individual	processor	cores	run	faster	and	faster,	we	have	reached	a	point	where	the
performance	of	individual	cores	is	leveling	off	and	where	further	speedups	will	have	to
come	from	parallel	processing.

The	best	programming	model	for	expressing	and	managing	parallelism	is	still	an	active
area	of	research,	but	it	seems	likely	that	threads	will	remain	an	important	option	for
decades	to	come.

4.10.1	Historical	Notes

The	extreme	engineering	complexity	and	bugginess	of	commercial	operating	systems	in
the	1960’s	led	researchers	to	investigate	alternatives.	One	direct	result	of	this	experience
was	modern	software	engineering:	the	systematic	management	of	complex
implementation	tasks	through	the	careful	control	of	feature	lists,	module	testing,
assertions,	and	so	forth.

Another	consequence	was	the	use	of	threads	for	managing	concurrency.	One	of	the	most
influential	papers	in	computer	science	history	is	Dijkstra’s	description	of	his	THE
system	[48].	Dijkstra	argued	for	constructing	operating	systems	as	a	series	of	layered
abstractions,	with	communicating	threads	implementing	each	layer.	Within	a	decade,	the
research	community	was	convinced.	When	Xerox	PARC	built	the	Alto	in	the	late	1970’s,
the	Alto’s	operating	system	was	built	from	the	ground	up	using	threads.	The	Alto
demonstrated	most	of	the	technology	we	now	take	for	granted	with	personal	computers:
bit-mapped	display,	menus,	windowing,	mice,	Ethernet,	and	email.	We	base	much	of	our
description	of	thread	programming	on	the	experiences	from	that	project	[98].

Widespread	commercial	adoption	of	threads	took	much	longer,	however.	By	the	early
1990’s,	the	widespread	adoption	of	client-server	computing	led	to	several	commercially
important	operating	systems	written	from	scratch	using	threads,	including	Microsoft’s
Windows	NT,	SUN	Microsystems	Solaris,	and	Linux.	Client	operating	systems	followed,
and	by	the	late	1990’s,	with	Apple’s	introduction	of	OS	X,	all	major	commercial	operating
systems	were	based	on	threads.	At	about	the	same	time,	the	interface	to	thread	libraries
became	standardized,	starting	with	POSIX	in	1995.	Likewise,	modern	programming
languages	such	as	Java	were	designed	with	constructs	for	creating	and	synchronizing
threads.

The	increasing	importance	of	parallel	processing	led	to	the	development	of	very
lightweight	user-level	thread	implementations,	as	there	is	little	point	to	parallelizing	an
application	unless	it	improves	performance.	By	the	early	90’s,	scheduler	activations	were
developed	to	integrate	user-level	and	kernel	threads	[2].

Even	so,	the	topic	of	whether	threads	are	a	better	programming	model	than	the	alternatives
remains	an	active	one	[159].	Several	prominent	operating	systems	researchers	have	argued
that	normal	programmers	should	almost	never	use	threads	because	(a)	it	is	just	too	hard	to
write	multi-threaded	programs	that	are	correct	and	(b)	most	things	that	threads	are
commonly	used	for	can	be	accomplished	in	other,	safer	ways	[129,	160].	These	are
important	arguments	to	understand	—	even	if	you	disagree	with	them,	they	point	out
pitfalls	with	using	threads	that	are	important	to	avoid.

Exercises

For	some	of	the	following	problems,	you	will	need	to	download	the	thread	library
from	http://ospp.cs.washington.edu/instructor.html.	The	comment	at	the	top	of
threadHello.c	explains	how	to	compile	and	run	a	program	that	uses	this	library.

1.	 Download	threadHello.c,	compile	it,	and	run	it	several	times.	What	happens	when
you	run	it?	Do	you	get	the	same	result	if	you	run	it	multiple	times?	What	if	you	are
also	running	some	other	demanding	processes	(e.g.,	compiling	a	big	program,	playing
a	Flash	game	on	a	website,	or	watching	streaming	video)	when	you	run	this	program?

2.	 For	the	threadHello	program	in	Figure	4.6,	suppose	that	we	delete	the	second	for	loop
so	that	the	main	routine	simply	creates	NTHREADS	threads	and	then	prints	“Main
thread	done.”	What	are	the	possible	outputs	of	the	program	now.	Hint:	Fewer	than
NTHREADS+1	lines	may	be	printed	in	some	runs.	Why?

3.	 How	expensive	are	threads?	Write	a	program	that	times	how	long	it	takes	to	create
and	then	join	1000	threads,	where	each	thread	simply	calls	thread_exit(0)	as	soon	as
it	starts	running.

4.	 Write	a	program	that	has	two	threads.	Make	the	first	thread	a	simple	loop	that
continuously	increments	a	counter	and	prints	a	period	(“.”)	whenever	the	value	of
that	counter	is	divisible	by	10,000,000.	Make	the	second	thread	repeatedly	wait	for
the	user	to	input	a	line	of	text	and	then	print	“Thank	you	for	your	input.”	On	your
system,	does	the	first	thread	makes	rapid	progress?	Does	the	second	thread	respond
quickly?

Figure	4.19:	Matrix	multiplication.

5.	 Write	a	program	that	uses	threads	to	perform	a	parallel	matrix	multiply.	To	multiply
two	matrices,	C	=	A	*	B,	the	result	entry	C(i,j)	is	computed	by	taking	the	dot	product
of	the	ith	row	of	A	and	the	jth	column	of	B:	Ci,j	=	Σk=0N-1A(i,k)B(k,j).	We	can	divide
the	work	by	creating	one	thread	to	compute	each	value	(or	each	row)	in	C,	and	then
executing	those	threads	on	different	processors	in	parallel,	as	shown	in	Figure	4.19.

6.	 Write	a	program	that	uses	threads	to	perform	a	parallel	merge	sort.

7.	 For	the	threadHello	program	in	Figure	4.6,	the	procedure	go()	has	the	parameter	np
and	the	local	variable	n.	Are	these	variables	per-thread	or	shared	state?	Where	does
the	compiler	store	these	variables’	states?

http://ospp.cs.washington.edu/instructor.html

8.	 For	the	threadHello	program	in	Figure	4.6,	the	procedure	main()	has	local	variables
such	as	i	and	exitValue.	Are	these	variables	per-thread	or	shared	state?	Where	does
the	compiler	store	these	variables?

9.	 In	the	thread-local	variables	sidebar,	we	described	how	many	thread	systems	have
this	type	of	per-thread	state.

Describe	how	you	would	implement	thread-local	variables.	Each	thread	should	have
an	array	of	1024	pointers	to	its	thread-local	variables.

a.	 What	would	you	add	to	the	TCB?
b.	 How	would	you	change	the	thread	creation	procedure?	(For	simplicity,	assume

that	when	a	thread	is	created,	all	1024	entries	should	be	initialized	to	NULL.)
c.	 How	would	a	running	thread	allocate	a	new	thread-local	variable?
d.	 In	your	design,	how	would	a	running	thread	access	a	particular	thread-local

variable?

10.	 For	the	threadHello	program,	what	is	the	minimum	and	maximum	number	of	times
that	the	main	thread	enters	the	WAITING	state?

11.	 Using	simple	threads,	write	a	program	that	creates	several	threads	and	then
determines	whether	the	threads	package	on	your	system	allocates	a	fixed-size	stack
for	each	thread	or	whether	each	thread’s	stack	starts	at	some	small	size	and
dynamically	grows	as	needed.

Hints:	You	probably	want	to	write	a	recursive	procedure	that	you	can	use	to	consume
a	large	amount	of	stack	memory.	You	may	also	want	to	examine	the	addresses	of
variables	allocated	to	different	threads’	stacks.	Finally,	you	may	want	to	be	able	to
determine	how	much	memory	has	been	allocated	to	your	process;	most	operating
systems	have	a	command	or	utility	that	can	show	the	resource	consumption	of
currently	running	processes	(e.g.,	top	in	Linux,	Activity	Monitor	in	OSX,	or	Task
Manager	in	Windows).

5.	Synchronizing	Access	to	Shared	Objects

It	is	not	enough	to	be	industrious.	So	are	the	ants.	The	question	is:	What	are	we
industrious	about?	—Henry	David	Thoreau

Multi-threaded	programs	extend	the	traditional,	single-threaded	programming	model	so
that	each	thread	provides	a	single	sequential	stream	of	execution	composed	of	familiar
instructions.	If	a	program	has	independent	threads	that	operate	on	completely	separate
subsets	of	memory,	we	can	reason	about	each	thread	separately.	In	this	case,	reasoning
about	independent	threads	differs	little	from	reasoning	about	a	series	of	independent,
single-threaded	programs.

However,	most	multi-threaded	programs	have	both	per-thread	state	(e.g.,	a	thread’s	stack
and	registers)	and	shared	state	(e.g.,	shared	variables	on	the	heap).	Cooperating	threads
read	and	write	shared	state.

Sharing	state	is	useful	because	it	lets	threads	communicate,	coordinate	work,	and	share
information.	For	example,	in	the	Earth	Visualizer	example	in	Chapter	4,	once	one	thread
finishes	downloading	a	detailed	image	from	the	network,	it	shares	that	image	data	with	a
rendering	thread	that	draws	the	new	image	on	the	screen.

Unfortunately,	when	cooperating	threads	share	state,	writing	correct	multi-threaded
programs	becomes	much	more	difficult.	Most	programmers	are	used	to	thinking
“sequentially”	when	reasoning	about	programs.	For	example,	we	often	reason	about	the
series	of	states	traversed	by	a	program	as	a	sequence	of	instructions	is	executed.	However,
this	sequential	model	of	reasoning	does	not	work	in	programs	with	cooperating	threads,
for	three	reasons:

1.	 Program	execution	depends	on	the	possible	interleavings	of	threads’	access	to
shared	state.	For	example,	if	two	threads	write	a	shared	variable,	one	thread	with	the
value	1	and	the	other	with	the	value	2,	the	final	value	of	the	variable	depends	on
which	of	the	threads’	writes	finishes	last.

Although	this	example	is	simple,	the	problem	is	severe	because	programs	need	to
work	for	any	possible	interleaving.	In	particular,	recall	that	thread	programmers
should	not	make	any	assumptions	about	the	relative	speed	at	which	their	threads
operate.

Worse,	as	programs	grow,	there	is	a	combinatorial	explosion	in	the	number	of
possible	interleavings.

How	can	we	reason	about	all	possible	interleavings	of	threads’	actions	in	a	multi-
million	line	program?

2.	 Program	execution	can	be	nondeterministic.	Different	runs	of	the	same	program
may	produce	different	results.	For	example,	the	scheduler	may	make	different
scheduling	decisions,	the	processor	may	run	at	a	different	frequency,	or	another
concurrently	running	program	may	affect	the	cache	hit	rate.	Even	common	debugging
techniques	—	such	as	running	a	program	under	a	debugger,	recompiling	with	the	-g
option	instead	of	-O,	or	adding	a	printf	—	can	change	how	a	program	behaves.

Jim	Gray,	the	1998	ACM	Turing	Award	winner,	coined	the	term	Heisenbugs	for	bugs
that	disappear	or	change	behavior	when	you	try	to	examine	them.	Multi-threaded
programming	is	a	common	source	of	Heisenbugs.	In	contrast,	Bohrbugs	are
deterministic	and	generally	much	easier	to	diagnose.

How	can	we	debug	programs	with	behaviors	that	change	across	runs?

3.	 Compilers	and	processor	hardware	can	reorder	instructions.	Modern	compilers
and	hardware	reorder	instructions	to	improve	performance.	This	reordering	is
generally	invisible	to	single-threaded	programs;	compilers	and	processors	take	care
to	ensure	that	dependencies	within	a	single	sequence	of	instructions	—	that	is,	within
a	thread	—	are	preserved.	However,	reordering	can	become	visible	when	multiple
threads	interact	through	accessing	shared	variables.

For	example,	consider	the	following	code	to	compute	q	as	a	function	of	p:

Although	it	seems	that	p	is	always	initialized	before	anotherComputation(p)	is	called,
this	is	not	the	case.	To	maximize	instruction	level	parallelism,	the	hardware	or
compiler	may	set	pInitialized	=	true	before	the	computation	to	compute	p	has
completed,	and	anotherComputation(p)	may	be	computed	using	an	unexpected	value.

How	can	we	reason	about	thread	interleavings	when	compilers	and	processor
hardware	may	reorder	a	thread’s	operations?

Why	do	compilers	and	processor	hardware	reorder	operations?

We	often	find	that	students	are	puzzled	by	the	notion	that	a	compiler	might	produce	code,
or	a	processor	might	execute	code,	in	a	way	that	is	correct	for	a	single	thread	but
unpredictable	for	a	multi-threaded	program	without	synchronization.

For	compilers,	the	issue	is	simple.	Modern	processors	have	deep	pipelines;	they	execute
many	instructions	simultaneously	by	overlapping	the	instruction	fetch,	instruction
decode,	data	fetch,	arithmetic	operation,	and	conditional	branch	of	a	sequence	of
instructions.	The	processor	stalls	when	necessary	—	e.g.,	if	the	result	of	one	instruction	is
needed	by	the	next.	Modern	compilers	will	reorder	instructions	to	reduce	these	stalls	as
much	as	possible,	provided	the	reordering	does	not	change	the	behavior	of	the	program.

The	difficulty	arises	in	what	assumptions	the	compiler	can	make	about	the	code.	If	the
code	is	single-threaded,	it	is	much	easier	to	analyze	possible	dependencies	between
adjacent	instructions,	allowing	more	optimization.	By	contrast,	variables	in
(unsynchronized)	multi-threaded	code	can	potentially	be	read	or	written	by	another	thread
at	any	point.	As	the	example	in	the	text	demonstrated,	the	precise	sequence	of	seemingly
unrelated	instructions	can	potentially	affect	the	behavior	of	the	program.	To	preserve
semantics,	instruction	re-ordering	may	no	longer	be	feasible,	resulting	in	more	processor
stalls	and	slower	code	execution.

As	long	as	the	programmer	uses	structured	synchronization	for	protecting	shared	data,	the
compiler	can	reorder	instructions	as	needed	without	changing	program	behavior,	provided
that	the	compiler	does	not	reorder	across	synchronization	operations.	A	compiler	making
the	more	conservative	assumption	that	all	memory	is	shared	would	produce	slow	code
even	when	it	was	not	necessary.

For	processor	architectures,	the	issue	is	also	performance.	Certain	optimizations	are
possible	if	the	programmer	is	using	structured	synchronization	but	not	otherwise.	For
example,	modern	processors	buffer	memory	writes	to	allow	instruction	execution	to
continue	while	the	memory	is	written	in	the	background.	If	two	adjacent	instructions
issue	memory	writes	to	different	memory	locations,	they	can	occur	in	parallel	and
complete	out	of	order.	This	optimization	is	safe	on	a	single	processor,	but	potentially
unsafe	if	multiple	processors	are	simultaneously	reading	and	writing	the	same	locations
without	intervening	synchronization.	Some	processor	architectures	make	the	conservative
assumption	that	optimizations	should	never	change	program	behavior	regardless	of	the
programming	style	—	in	this	case,	they	stall	to	prevent	reordering.	Others	make	a	more
optimistic	assumption	that	the	programmer	is	using	structured	synchronization.	For	your
code	to	be	portable,	you	should	assume	that	the	compiler	and	the	hardware	can	reorder
instructions	except	across	synchronization	operations.

Given	these	challenges,	multi-threaded	code	can	introduce	subtle,	non-deterministic,	and
non-reproducible	bugs.	This	chapter	describes	a	structured	synchronization	approach	to
sharing	state	in	multi-threaded	programs.	Rather	than	scattering	access	to	shared	state

throughout	the	program	and	attempting	ad	hoc	reasoning	about	what	happens	when	the
threads’	accesses	are	interleaved	in	various	ways,	a	better	approach	is	to:	(1)	structure	the
program	to	facilitate	reasoning	about	concurrency,	and	(2)	use	a	set	of	standard
synchronization	primitives	to	control	access	to	shared	state.	This	approach	gives	up	some
freedom,	but	if	you	consistently	follow	the	rules	we	describe	in	this	chapter,	then
reasoning	about	programs	with	shared	state	becomes	much	simpler.

The	first	part	of	this	chapter	elaborates	on	the	challenges	faced	by	multi-threaded
programmers	and	on	why	it	is	dangerous	to	try	to	reason	about	all	possible	thread
interleavings	in	the	general,	unstructured	case.	The	rest	of	the	chapter	describes	how	to
structure	shared	objects	in	multi-threaded	programs	so	that	we	can	reason	about	them.
First,	we	structure	a	multi-threaded	program’s	shared	state	as	a	set	of	shared	objects	that
encapsulate	the	shared	state	as	well	as	define	and	limit	how	the	state	can	be	accessed.
Second,	to	avoid	ad	hoc	reasoning	about	the	possible	interleavings	of	access	to	the	state
variables	within	a	shared	object,	we	describe	how	shared	objects	can	use	a	small	set	of
synchronization	primitives	—	locks	and	condition	variables	—	to	coordinate	access	to
their	state	by	different	threads.	Third,	to	simplify	reasoning	about	the	code	in	shared
objects,	we	describe	a	set	of	best	practices	for	writing	the	code	that	implements	each
shared	object.	Finally,	we	dive	into	the	details	of	how	to	implement	synchronization
primitives.

Multi-threaded	programming	has	a	reputation	for	being	difficult.	We	agree	that	it	takes
care,	but	this	chapter	provides	a	set	of	simple	rules	that	anyone	can	follow	to	implement
objects	that	can	be	safely	shared	by	multiple	threads.

Chapter	roadmap:

Challenges.	Why	is	it	difficult	to	reason	about	multi-threaded	programs	with
unstructured	use	of	shared	state?	(Section	5.1)

Structuring	Shared	Objects.	How	should	we	structure	access	to	shared	state	by
multiple	threads?	(Section	5.2)

Locks:	Mutual	Exclusion.	How	can	we	enforce	a	logical	sequence	of	operations	on
shared	state?	(Section	5.3)

Condition	Variables:	Waiting	for	a	Change.	How	does	a	thread	wait	for	a	change
in	shared	state?	(Section	5.4)

Designing	and	Implementing	Shared	Objects.	Given	locks	and	condition	variables,
what	is	a	good	way	to	write	and	reason	about	the	code	for	shared	objects?
(Section	5.5)

Three	Case	Studies.	We	illustrate	our	methodology	by	using	it	to	develop	solutions
to	three	concurrent	programming	challenges.	(Section	5.6)

Implementing	Synchronization	Primitives.	How	are	locks	and	condition	variables
implemented?	(Section	5.7)

Semaphores	Considered	Harmful.	What	other	synchronization	primitives	are
possible,	and	how	do	they	relate	to	locks	and	condition	variables?	(Section	5.8)

5.1	Challenges

We	began	this	chapter	with	the	core	challenge	of	multi-threaded	programming:	a	multi-
threaded	program’s	execution	depends	on	the	interleavings	of	different	threads’	access	to
shared	memory,	which	can	make	it	difficult	to	reason	about	or	debug	these	programs.	In
particular,	cooperating	threads’	execution	may	be	affected	by	race	conditions.

5.1.1	Race	Conditions

A	race	condition	occurs	when	the	behavior	of	a	program	depends	on	the	interleaving	of
operations	of	different	threads.	In	effect,	the	threads	run	a	race	between	their	operations,
and	the	results	of	the	program	execution	depends	on	who	wins	the	race.

Reasoning	about	even	simple	programs	with	race	conditions	can	be	difficult.	To	appreciate
this,	we	now	look	at	three	extremely	simple	multi-threaded	programs.

The	world’s	simplest	cooperating-threads	program.	Suppose	we	run	a	program	with
two	threads	that	do	the	following:

Thread	A Thread	B

x	=	1; x	=	2;

EXAMPLE:	What	are	the	possible	final	values	of	x?

ANSWER:	The	result	can	be	x	=	1	or	x	=	2	depending	on	which	thread	wins	or	loses	the
“race”	to	set	x.	□

That	was	easy,	so	let’s	try	one	that	is	a	bit	more	interesting.

The	world’s	second-simplest	cooperating-threads	program.	Suppose	that	initially	y	=
12,	and	we	run	a	program	with	two	threads	that	do	the	following:

Thread	A Thread	B

x	=	y	+	1; y	=	y	*	2;

EXAMPLE:	What	are	the	possible	final	values	of	x?

ANSWER:	The	result	is	x	=	13	if	Thread	A	executes	first	or	x	=	25	if	Thread	B
executes	first.	More	precisely,	we	get	x	=	13	if	Thread	A	reads	y	before	Thread	B	updates

y,	or	we	get	x	=	25	if	Thread	B	updates	y	before	Thread	A	reads	y.	□

The	world’s	third-simplest	cooperating-threads	program.	Suppose	that	initially	x	=	0
and	we	run	a	program	with	two	threads	that	do	the	following:

Thread	A Thread	B

x	=	x	+	1; x	=	x	+	2;

EXAMPLE:	What	are	the	possible	final	values	of	x?

ANSWER:	Obviously,	one	possible	outcome	is	x	=	3.	For	example,	Thread	A	runs	to
completion	and	then	Thread	B	starts	and	runs	to	completion.	However,	we	can	also	get	x
=	2	or	x	=	1.	In	particular,	when	we	write	a	single	statement	like	x	=	x	+	1,	compilers	on
many	processors	produce	multiple	instructions,	such	as:	(1)	load	memory	location	x	into	a
register,	(2)	add	1	to	that	register,	and	(3)	store	the	result	to	memory	location	x.	If	we
disassemble	the	above	program	into	simple	pseudo-assembly-code,	we	can	see	some	of
the	possibilities.

One	Interleaving

Thread	A Thread	B

load	r1,	x

add	r2,	r1,	1

store	x,	r2

load	r1,	x

add	r2,	r1,	2

store	x,	r2

final:	x	==	3

Another	Interleaving

Thread	A Thread	B

load	r1,	x

load	r1,	x

add	r2,	r1,	1

add	r2,	r1,	2

store	x,	r2

store	x,	r2

final:	x	==	2

Yet	Another	Interleaving

Thread	A Thread	B

load	r1,	x

load	r1,	x

add	r2,	r1,	1

add	r2,	r1,	2

store	x,	r2

store	x,	r2

final:	x	==	1

□

Even	for	this	2-line	program,	the	complexity	of	reasoning	about	race	conditions	and
interleavings	is	beginning	to	grow.	Not	only	would	one	have	to	reason	about	all	possible
interleavings	of	statements,	but	one	would	also	have	to	disassemble	the	program	and
reason	about	all	possible	interleavings	of	assembly	instructions.	(And	if	the	compiler	and
hardware	can	reorder	instructions,	there	are	even	more	possibilities	to	consider.)

The	Case	of	the	Therac-25

The	Therac-25	was	a	cancer	therapy	device,	designed	to	deliver	very	high	doses	of
radiation	to	a	targeted	region	of	the	body	in	an	attempt	to	eliminate	cancer	cells	before
they	had	a	chance	to	spread.	Over	a	several	year	period	in	the	mid-1980’s,	a	computer
malfunction	caused	six	separate	patients	to	receive	an	estimated	100	times	the	intended
dose	of	radiation.	Three	of	the	patients	later	died	as	a	result;	the	others	sustained	serious
but	non-fatal	injuries.

Although	there	were	many	contributing	factors	to	the	malfunction,	a	race	condition	was	at
the	heart	of	both	the	overdose	and	the	delay	in	recognizing	and	repairing	the	problem.
The	Therac-25	was	designed	to	check	in	software	that	the	entered	dosage	was	medically
safe	before	using	it	to	configure	the	radiation	beam.	However,	the	software	was	also
concurrent:	the	operator	interface	code	could	run	at	the	same	time	that	the	dosage	was
being	checked	and	used,	with	no	locking	or	other	synchronization.	In	rare	cases,	the
dosage	could	be	changed	after	the	check	and	before	the	use,	and	due	to	a	separate	user
interface	bug,	the	operator	could	enter	an	overdose	without	either	intending	or	realizing
it.

Because	the	problem	required	a	rare	sequence	of	events,	the	machine	appeared	to	work
successfully	for	almost	all	patients.	Years	elapsed	between	the	first	incident	and	the	final
one,	and	during	this	period,	the	manufacturer	repeatedly	insisted	that	no	overdose	was
possible	and	that	the	patient	injuries	must	be	due	to	some	other	factor.	It	took	the	second
occurrence	of	the	race	condition	at	the	same	hospital	to	help	reveal	the	system’s	design
flaw.

5.1.2	Atomic	Operations

When	we	disassembled	the	code	in	last	example,	we	could	reason	about	atomic
operations,	indivisible	operations	that	cannot	be	interleaved	with	or	split	by	other
operations.

On	most	modern	architectures,	a	load	or	store	of	a	32-bit	word	from	or	to	memory	is	an
atomic	operation.	So,	the	previous	analysis	reasoned	about	interleaving	of	atomic	loads
and	stores	to	memory.

Conversely,	a	load	or	store	is	not	always	an	atomic	operation.	Depending	on	the	hardware
implementation,	if	two	threads	store	the	value	of	a	64-bit	floating	point	register	to	a
memory	address,	the	final	result	might	be	the	first	value,	the	second	value,	or	a	mix	of	the
two.

5.1.3	Too	Much	Milk

Although	one	could,	in	principle,	reason	carefully	about	the	possible	interleavings	of
different	threads’	atomic	loads	and	stores,	doing	so	is	tricky	and	error-prone.	Later,	we
present	a	higher	level	abstraction	for	synchronizing	threads,	but	first	we	illustrate	the
problems	with	using	atomic	loads	and	stores	using	a	simple	problem	called,	“Too	Much

Milk.”	The	example	is	intentionally	simple;	real-world	concurrent	programs	are	often
much	more	complex.	Even	so,	the	example	shows	the	difficulty	of	reasoning	about
interleaved	access	to	shared	state.

The	Too	Much	Milk	problem	models	two	roommates	who	share	a	refrigerator	and	who	—
as	good	roommates	—	make	sure	the	refrigerator	is	always	well	stocked	with	milk.	With
such	responsible	roommates,	the	following	scenario	is	possible:

		Roommate	1’s	actions 		Roommate	2’s	actions

3:00 		Look	in	fridge;	out	of	milk. 	

3:05 		Leave	for	store. 	

3:10 		Arrive	at	store. 		Look	in	fridge;	out	of	milk.

3:15 		Buy	milk. 		Leave	for	store.

3:20 		Arrive	home;	put	milk	away. 		Arrive	at	store.

3:25 	 		Buy	milk.

3:30 	 		Arrive	home;	put	milk	away.

3:35 	 		Oh	no!

We	can	model	each	roommate	as	a	thread	and	the	number	of	bottles	of	milk	in	the	fridge
with	a	variable	in	memory.	If	the	only	atomic	operations	on	shared	state	are	atomic	loads
and	stores	to	memory,	is	there	a	solution	to	the	Too	Much	Milk	problem	that	ensures	both
safety	(the	program	never	enters	a	bad	state)	and	liveness	(the	program	eventually	enters	a
good	state)?	Here,	we	strive	for	the	following	properties:

Safety:	Never	more	than	one	person	buys	milk.

Liveness:	If	milk	is	needed,	someone	eventually	buys	it.

WARNING:	Simplifying	Assumption.	Throughout	the	analysis	in	this	section,	we
assume	that	the	instructions	are	executed	in	exactly	the	order	written,	i.e.,	neither	the
compiler	nor	the	architecture	reorders	instructions.	This	assumption	is	crucial	for
reasoning	about	the	order	of	atomic	load	and	store	operations,	but	many	modern	compilers
and	architectures	violate	it,	so	be	extremely	careful	applying	the	style	of	analysis	we
present	here	to	your	own	programs.

Solution	1.	The	basic	idea	is	for	a	roommate	to	leave	a	note	on	the	fridge	before	going	to

the	store.	The	simplest	way	to	leave	this	note	—	given	our	programming	model	that	we
have	shared	memory	on	which	we	can	perform	atomic	loads	and	stores	—	is	to	set	a	flag
when	going	to	buy	milk	and	to	check	this	flag	before	going	to	buy	milk.	Each	thread
might	run	the	following	code:

Unfortunately,	this	implementation	can	violate	safety.	For	example,	the	first	thread	could
execute	everything	up	to	and	including	the	check	of	the	milk	value	and	then	get	context
switched.	Then,	the	second	thread	could	run	through	all	of	this	code	and	buy	milk.	Finally,
the	first	thread	could	be	re-scheduled,	see	that	note	is	zero,	leave	the	note,	buy	more	milk,
and	remove	the	note,	leaving	the	system	with	milk	==	2.

This	“solution”	makes	the	problem	worse!	The	preceding	code	usually	works,	but	it	may
fail	occasionally	when	the	scheduler	does	just	the	right	(or	wrong)	thing.	We	have	created
a	Heisenbug	that	causes	the	program	to	occasionally	fail	in	ways	that	may	be	very	difficult
to	reproduce	(e.g.,	probably	only	when	the	grader	is	looking	at	it	or	when	the	CEO	is
demonstrating	a	new	product	at	a	trade	show).

Solution	2.	In	solution	1,	the	roommate	checks	the	note	before	setting	it.	This	opens	up
the	possibility	that	one	roommate	has	already	made	a	decision	to	buy	milk	before
notifying	the	other	roommate	of	that	decision.	If	we	use	two	variables	for	the	notes,	a

roommate	can	create	a	note	before	checking	the	other	note	and	the	milk	and	making	a
decision	to	buy.	For	example,	we	can	do	the	following:

Path	A

Path	B

If	the	first	thread	executes	the	Path	A	code	and	the	second	thread	executes	the	Path	B
code,	this	protocol	is	safe;	by	having	each	thread	write	a	note	(“I	might	buy	milk”)	before
deciding	to	buy	milk,	we	ensure	the	safety	property:	at	most	one	thread	buys	milk.

Although	this	intuition	is	solid,	proving	the	safety	property	without	enumerating	all
possible	interleavings	requires	care.

Safety	Proof.	Assume	for	the	sake	of	contradiction	that	the	algorithm	is	not	safe	—	both
A	and	B	buy	milk.	Consider	the	state	of	the	two	variables	(noteB,	milk)	when	thread	A	is
at	the	line	marked	A1,	at	the	precise	moment	when	the	atomic	load	of	noteB	from	shared
memory	to	A’s	register	occurs.	There	are	three	cases	to	consider:

Case	1:	(noteB	=	1,	milk	=	any	value).	This	state	contradicts	the	assumption	that
thread	A	buys	milk	and	reaches	A3.

Case	2:	(noteB	=	0,	milk	>	0).	In	this	simple	program,	the	property	milk	>	0	is	a
stable	property	—	once	it	becomes	true,	it	remains	true	forever.	Thus,	if	milk	>	0	is
true	when	A	is	at	A1,	A’s	test	at	line	A2	will	fail,	and	A	will	not	buy	milk,
contradicting	our	assumption.

Case	3:	(noteB	=	0,	milk	=	0).	We	know	that	thread	B	must	not	currently	be
executing	any	of	the	lines	marked	B1-B5.	We	also	know	that	either	noteA	==	1	or
milk	>	0	will	be	true	from	this	time	forward	(noteA	OR	milk	is	also	a	stable
property).	This	means	that	B	cannot	buy	milk	in	the	future	(either	the	test	at	B1	or	B2
must	fail),	which	contradicts	our	assumption	that	both	A	and	B	buy	milk.

Since	every	case	contradicts	the	assumption,	the	algorithm	is	safe.	□

Liveness.	Unfortunately,	Solution	2	does	not	ensure	liveness.	In	particular,	it	is	possible
for	both	threads	to	set	their	respective	notes,	for	each	thread	to	check	the	other	thread’s
note,	and	for	both	threads	to	decide	not	to	buy	milk.

This	brings	us	to	Solution	3.

Solution	3.	Solution	2	was	safe	because	a	thread	would	avoid	buying	milk	if	there	were
any	chance	that	the	other	thread	might	buy	milk.	For	Solution	3,	we	ensure	that	at	least
one	of	the	threads	determines	whether	the	other	thread	has	bought	milk	or	not	before
deciding	whether	or	not	to	buy.	In	particular,	we	do	the	following:

Path	A

Path	B

We	can	show	that	Solution	3	is	safe	using	an	argument	similar	to	the	one	we	used	for
Solution	2.

To	show	that	Solution	3	is	live,	observe	that	code	path	B	has	no	loops,	so	eventually
thread	B	must	finish	executing	the	listed	code.	Eventually,	noteB	==	0	becomes	true	and
remains	true.	Therefore,	thread	A	must	eventually	reach	line	M	and	decide	whether	to	buy
milk.	If	it	finds	M	==	1,	then	milk	has	been	bought.	If	it	finds	M	==	0,	then	it	will	buy
milk.	Either	way,	the	liveness	property	—	that	if	needed,	some	milk	is	bought	—	is	met.

5.1.4	Discussion

Assuming	that	the	compiler	and	processor	execute	instructions	in	program	order,	the
preceding	proof	shows	that	it	is	possible	to	devise	a	solution	to	Too	Much	Milk	that	is
both	safe	and	live	using	nothing	but	atomic	load	and	store	operations	on	shared	memory.

Although	the	solution	we	presented	only	works	for	two	roommates,	there	is	a
generalization,	called	Peterson’s	algorithm,	which	works	with	any	fixed	number	of	n
threads.	More	details	on	Peterson’s	algorithm	can	be	found	elsewhere	(e.g.,
http://en.wikipedia.org/wiki/Peterson’s_algorithm).

However,	our	solution	for	Too	Much	Milk	(and	likewise	Peterson’s	algorithm)	is	not
terribly	satisfying:

The	solution	is	complex	and	requires	careful	reasoning	to	be	convinced	that	it	works.

The	solution	is	inefficient.	In	Too	Much	Milk,	while	thread	A	is	waiting,	it	is	busy-
waiting	and	consuming	CPU	resources.	In	Peterson’s	generalized	solution,	all	n
threads	can	busy-wait.	Busy-waiting	is	particularly	problematic	on	modern	systems
with	preemptive	multi-threading,	as	the	spinning	thread	may	be	holding	the	processor
waiting	for	an	event	that	cannot	occur	until	some	preempted	thread	is	re-scheduled	to
run.

The	solution	may	fail	if	the	compiler	or	hardware	reorders	instructions.	This
limitation	can	be	addressed	by	using	memory	barriers	(see	sidebar).	Adding	memory
barriers	would	further	increase	the	implementation	complexity	of	the	algorithm;
barriers	do	not	address	the	other	limitations	just	mentioned.

Memory	barriers

Suppose	you	are	writing	low-level	code	that	must	reason	about	the	ordering	of	memory
operations.	How	can	this	be	done	on	modern	hardware	and	with	modern	compilers?

A	memory	barrier	instruction	prevents	the	compiler	and	hardware	from	reordering
memory	accesses	across	the	barrier	—	no	accesses	before	the	barrier	are	moved	after	the
barrier	and	no	accesses	after	the	barrier	are	moved	before	the	barrier.	One	can	add
memory	barriers	to	the	Too	Much	Milk	solution	or	to	Peterson’s	algorithm	to	get	code
that	works	on	modern	machines	with	modern	compilers.	Of	course,	this	makes	the	code
even	more	complex.

Details	of	how	to	issue	a	memory	barrier	instruction	depend	on	hardware	and	compiler
details.	However,	a	good	example	is	gcc’s	__sync_synchronize()	builtin,	which	tells	the
compiler	not	to	reorder	memory	accesses	across	the	barrier	and	to	issue	processor-
specific	instructions	that	the	underlying	hardware	treats	as	a	memory	barrier.

5.1.5	A	Better	Solution

The	next	section	describes	a	better	approach	to	writing	programs	in	which	multiple	threads
access	shared	state.	We	write	shared	objects	that	use	synchronization	objects	to	coordinate
different	threads’	access	to	shared	state.

Suppose,	for	example,	we	had	a	primitive	called	a	lock	that	only	one	thread	at	a	time	can
own.	Then,	we	can	solve	the	Too	Much	Milk	problem	by	defining	the	class	for	a	Kitchen
object	with	the	following	method:

http://en.wikipedia.org/wiki/Peterson's_algorithm

After	outlining	a	strategy	for	managing	synchronization	in	the	next	section,	we	define
locks	and	condition	variables	(another	type	of	synchronization	object)	in	Sections	5.3	and
5.4.

5.2	Structuring	Shared	Objects

Figure	5.1:	In	a	multi-threaded	program,	threads	are	separate	from	and	operate	concurrently	on	shared	objects.	Shared
objects	contain	both	shared	state	and	synchronization	variables,	used	for	controlling	concurrent	access	to	shared	state.

Decades	of	work	have	developed	a	much	simpler	approach	to	writing	multi-threaded
programs	than	using	just	atomic	loads	and	stores.	This	approach	extends	the	modularity	of
object-oriented	programming	to	multi-threaded	programs.	As	Figure	5.1	illustrates,	a
multi-threaded	program	is	built	using	shared	objects	and	a	set	of	threads	that	operate	on
them.

Shared	objects	are	objects	that	can	be	accessed	safely	by	multiple	threads.	All	shared	state
in	a	program	—	including	variables	allocated	on	the	heap	(e.g.,	objects	allocated	with
malloc	or	new)	and	static,	global	variables	—	should	be	encapsulated	in	one	or	more

shared	objects.

Programming	with	shared	objects	extends	traditional	object-oriented	programming,	in
which	objects	hide	their	implementation	details	behind	a	clean	interface.	In	the	same	way,
shared	objects	hide	the	details	of	synchronizing	the	actions	of	multiple	threads	behind	a
clean	interface.	The	threads	using	shared	objects	need	only	understand	the	interface;	they
do	not	need	to	know	how	the	shared	object	internally	handles	synchronization.

Like	regular	objects,	programmers	can	design	shared	objects	for	whatever	modules,
interfaces,	and	semantics	an	application	needs.	Each	shared	object’s	class	defines	a	set	of
public	methods	on	which	threads	operate.	To	assemble	the	overall	program	from	these
shared	objects,	each	thread	executes	a	“main	loop”	written	in	terms	of	actions	on	public
methods	of	shared	objects.

Since	shared	objects	encapsulate	the	program’s	shared	state,	the	main	loop	code	that
defines	a	thread’s	high-level	actions	need	not	concern	itself	with	synchronization	details.
The	programming	model	thus	looks	very	similar	to	that	for	single-threaded	code.

Shared	objects,	monitors,	and	syntactic	sugar

We	focus	on	shared	objects	because	object-oriented	programming	provides	a	good	way	to
think	about	shared	state:	hide	shared	state	behind	public	methods	that	provide	a	clean
interface	to	threads	and	that	handle	the	details	of	synchronization.

Although	we	use	object-oriented	terminology	in	our	discussion,	the	ideas	are	equally
applicable	to	non-object-oriented	languages.	For	example,	where	a	C++	program	might
define	a	class	of	shared	objects	with	public	methods,	a	C	program	might	define	a	struct
with	synchronization	variables	and	state	variables	as	fields.	Rather	than	scattering	the
code	that	accesses	the	struct’s	fields,	a	well-designed	C	program	will	have	a	fixed	set	of
functions	that	operate	on	the	struct’s	fields.

Conversely,	some	programming	languages	build	in	even	more	support	for	shared	objects
than	we	describe	here.	When	a	programming	language	includes	support	for	shared
objects,	a	shared	object	is	often	called	a	monitor.	Early	languages	with	monitors	include
Brinch	Hansen’s	Concurrent	Pascal	and	Xerox	PARC’s	Mesa;	today,	Java	supports
monitors	via	the	synchronized	keyword.

We	regard	the	distinctions	between	procedural	languages,	object-oriented	languages,	and
languages	with	built-in	support	for	monitors	as	relatively	unimportant	syntactic	sugar	—
they	are	just	a	different	way	of	writing	the	same	thing.	We	use	the	terms	“shared	objects”
or	“monitors”	broadly	to	refer	to	a	conceptual	approach	that	can	and	should	be	used	to
manage	concurrency	regardless	of	the	particular	programming	language.

In	this	book,	our	code	and	pseudo-code	are	based	on	C++’s	syntax.	We	believe	provides
the	right	level	of	detail	for	teaching	the	shared	objects	or	monitors	approach.	We	prefer
teaching	with	C++	to	Java	because	we	want	to	explicitly	show	where	locks	and	condition
variables	are	allocated	and	accessed	rather	than	relying	on	operations	hidden	by	a
language’s	built	in	monitor	syntax.	Conversely,	we	prefer	C++	to	C	because	we	think
C++’s	support	for	object-oriented	programming	may	help	you	internalize	the	underlying
philosophy	of	the	shared	object	approach.

5.2.1	Implementing	Shared	Objects

Of	course,	internally	the	shared	objects	must	handle	the	details	of	synchronization.	As
Figure	5.2	shows,	shared	objects	are	implemented	in	layers.

Figure	5.2:	Multi-threaded	programs	are	built	with	shared	objects.	Shared	objects	are	built	using	synchronization
variables	and	state	variables.	Synchronization	variables	are	implemented	using	specialized	processor	instructions	to
manage	interrupt	delivery	and	to	atomically	read-modify-write	memory	locations.

Shared	object	layer.	As	in	standard	object-oriented	programming,	shared	objects
define	application-specific	logic	and	hide	internal	implementation	details.	Externally,
they	appear	to	have	the	same	interface	as	you	would	define	for	a	single-threaded
program.

Synchronization	variable	layer.	Rather	than	implementing	shared	objects	directly
with	carefully	interleaved	atomic	loads	and	stores,	shared	objects	include
synchronization	variables	as	member	variables.	Synchronization	variables,	stored	in
memory	just	like	any	other	object,	can	be	included	in	any	data	structure.

A	synchronization	variable	is	a	data	structure	used	for	coordinating	concurrent	access
to	shared	state.	Both	the	interface	and	the	implementation	of	synchronization

variables	must	be	carefully	designed.	In	particular,	we	build	shared	objects	using	two
types	of	synchronization	variables:	locks	and	condition	variables.	We	define	these
and	describe	how	to	construct	them	in	Sections	5.3	and	5.4.

Synchronization	variables	coordinate	access	to	state	variables,	which	are	just	the
normal	member	variables	of	an	object	that	you	are	familiar	with	from	single-threaded
programming	(e.g.,	integers,	strings,	arrays,	and	pointers).

Using	synchronization	variables	simplifies	implementing	shared	objects.	In	fact,	not
only	do	shared	objects	externally	resemble	traditional	single-threaded	objects,	but,	by
implementing	them	with	synchronization	variables,	their	internal	implementations	are
quite	similar	to	those	of	single-threaded	programs.

Atomic	instruction	layer.	Although	the	layers	above	benefit	from	a	simpler
programming	model,	it	is	not	turtles	all	the	way	down.	Internally,	synchronization
variables	must	manage	the	interleavings	of	different	threads’	actions.

Rather	than	implementing	synchronization	variables,	such	as	locks	and	condition
variables,	using	atomic	loads	and	stores	as	we	tried	to	do	for	the	Too	Much	Milk
problem,	modern	implementations	build	synchronization	variables	using	atomic
read-modify-write	instructions.	These	processor-specific	instructions	let	one	thread
have	temporarily	exclusive	and	atomic	access	to	a	memory	location	while	the
instruction	executes.	Typically,	the	instruction	atomically	reads	a	memory	location,
does	some	simple	arithmetic	operation	to	the	value,	and	stores	the	result.	The
hardware	guarantees	that	any	other	thread’s	instructions	accessing	the	same	memory
location	will	occur	either	entirely	before,	or	entirely	after,	the	atomic	read-modify-
write	instruction.

5.2.2	Scope	and	Roadmap

As	Figure	5.2	indicates,	concurrent	programs	are	built	on	top	of	shared	objects.	The	rest	of
this	chapter	focuses	on	the	middle	layers	of	the	figure	—	how	to	build	shared	objects
using	synchronization	objects	and	how	to	build	synchronization	objects	out	of	atomic
read-modify-write	instructions.	Chapter	6	discusses	issues	that	arise	when	composing
multiple	shared	objects	into	a	larger	program.

5.3	Locks:	Mutual	Exclusion

A	lock	is	a	synchronization	variable	that	provides	mutual	exclusion	—	when	one	thread
holds	a	lock,	no	other	thread	can	hold	it	(i.e.,	other	threads	are	excluded).	A	program
associates	each	lock	with	some	subset	of	shared	state	and	requires	a	thread	to	hold	the	lock
when	accessing	that	state.	Then,	only	one	thread	can	access	the	shared	state	at	a	time.

Mutual	exclusion	greatly	simplifies	reasoning	about	programs	because	a	thread	can
perform	an	arbitrary	set	of	operations	while	holding	a	lock,	and	those	operations	appear	to
be	atomic	to	other	threads.	In	particular,	because	a	lock	enforces	mutual	exclusion	and
threads	must	hold	the	lock	to	access	shared	state,	no	other	thread	can	observe	an
intermediate	state.	Other	threads	can	only	observe	the	state	left	after	the	lock	release.

EXAMPLE:	Locking	to	group	multiple	operations.	Consider,	for	example,	a	bank
account	object	that	includes	a	list	of	transactions	and	a	total	balance.	To	add	a	new
transaction,	we	acquire	the	account’s	lock,	append	the	new	transaction	to	the	list,	read	the
old	balance,	modify	it,	write	the	new	balance,	and	release	the	lock.	To	query	the	balance
and	list	of	recent	transactions,	we	acquire	the	account’s	lock,	read	the	recent	transactions
from	the	list,	read	the	balance,	and	release	the	lock.	Using	locks	in	this	way	guarantees
that	one	update	or	query	completes	before	the	next	one	starts.	Every	query	always	reflects
the	complete	set	of	recent	transactions.

Another	example	of	grouping	is	when	printing	output.	Without	locking,	if	two	threads
called	printf	at	the	same	time,	the	individual	characters	of	the	two	messages	could	be
interleaved,	garbling	their	meaning.	Instead,	on	modern	multi-threaded	operating	systems,
printf	uses	a	lock	to	ensure	that	the	group	of	characters	in	each	message	prints	as	a	unit.

It	is	much	easier	to	reason	about	interleavings	of	atomic	groups	of	operations	rather	than
interleavings	of	individual	operations	for	two	reasons.	First,	there	are	(obviously)	fewer
interleavings	to	consider.	Reasoning	about	interleavings	on	a	coarser-grained	basis	reduces
the	sheer	number	of	cases	to	consider.	Second,	and	more	important,	we	can	make	each
atomic	group	of	operations	correspond	to	the	logical	structure	of	the	program,	which
allows	us	to	reason	about	invariants	not	specific	interleavings.

In	particular,	shared	objects	usually	have	one	lock	guarding	all	of	an	object’s	state.	Each
public	method	acquires	the	lock	on	entry	and	releases	the	lock	on	exit.	Thus,	reasoning
about	a	shared	class’s	code	is	similar	to	reasoning	about	a	traditional	class’s	code:	we
assume	a	set	of	invariants	when	a	public	method	is	called	and	re-establish	those	invariants
before	a	public	method	returns.	If	we	define	our	invariants	well,	we	can	then	reason	about
each	method	independently.

5.3.1	Locks:	API	and	Properties

A	lock	enables	mutual	exclusion	by	providing	two	methods:	Lock::acquire()	and
Lock::release().	These	methods	are	defined	as	follows:

A	lock	can	be	in	one	of	two	states:	BUSY	or	FREE.

A	lock	is	initially	in	the	FREE	state.

Lock::acquire	waits	until	the	lock	is	FREE	and	then	atomically	makes	the	lock
BUSY.

Checking	the	state	to	see	if	it	is	FREE	and	setting	the	state	to	BUSY	are	together	an
atomic	operation.	Even	if	multiple	threads	try	to	acquire	the	lock,	at	most	one	thread
will	succeed.	One	thread	observes	that	the	lock	is	FREE	and	sets	it	to	BUSY;	the
other	threads	just	see	that	the	lock	is	BUSY	and	wait.

Lock::release	makes	the	lock	FREE.	If	there	are	pending	acquire	operations,	this
state	change	causes	one	of	them	to	proceed.

We	describe	how	to	implement	locks	with	these	properties	in	Section	5.7.	Using	locks
makes	solving	the	Too	Much	Milk	problem	trivial.	Both	threads	run	the	following	code:

EXAMPLE:	Many	routines	in	an	operating	system	kernel	need	to	allocate	and	de-allocate
memory	blocks.	Assuming	you	are	given	the	code	for	a	single-threaded	kernel	memory
allocator,	explain	how	to	implement	a	thread-safe	memory	allocator.

ANSWER:	Using	C	malloc	and	free	as	an	example,	we	can	convert	them	to	be	thread-
safe	by	acquiring	a	lock	before	accessing	the	heap,	and	releasing	it	after	the	block	has
been	allocated	or	freed.	Since	malloc	and	free	read	and	modify	the	same	data	structures,	it
is	essential	to	use	the	same	lock	in	both	procedures,	heaplock.

□

Formal	properties.	A	lock	can	be	defined	more	precisely	as	follows.	A	thread	holds	a
lock	if	it	has	returned	from	a	lock’s	acquire	method	more	often	than	it	has	returned	from	a
lock’s	release	method.	A	thread	is	attempting	to	acquire	a	lock	if	it	has	called	but	not	yet
returned	from	a	call	to	acquire	on	the	lock.

A	lock	should	ensure	the	following	three	properties:

1.	 Mutual	Exclusion.	At	most	one	thread	holds	the	lock.

2.	 Progress.	If	no	thread	holds	the	lock	and	any	thread	attempts	to	acquire	the	lock,
then	eventually	some	thread	succeeds	in	acquiring	the	lock.

3.	 Bounded	waiting.	If	thread	T	attempts	to	acquire	a	lock,	then	there	exists	a	bound	on
the	number	of	times	other	threads	can	successfully	acquire	the	lock	before	T	does.

Mutual	exclusion	is	a	safety	property	because	locks	prevent	more	than	one	thread	from
accessing	shared	state.

Progress	and	bounded	waiting	are	liveness	properties.	If	a	lock	is	FREE,	some	thread	must
be	able	to	acquire	it.	Further,	any	particular	thread	that	wants	to	acquire	the	lock	must
eventually	succeed	in	doing	so.

If	these	definitions	sound	stilted,	it	is	because	we	have	carefully	crafted	them	to	avoid
introducing	subtle	corner	cases.	For	example,	if	a	thread	holding	a	lock	never	releases	it,
other	threads	cannot	make	progress,	so	we	define	the	bounded	waiting	condition	in	terms
of	successful	acquire	operations.

WARNING:	Non-property:	Thread	ordering.	The	bounded	waiting	property	defined
above	guarantees	that	a	thread	will	eventually	get	a	chance	to	acquire	the	lock.	However,	it
does	not	promise	that	waiting	threads	acquire	the	lock	in	FIFO	order.	Most
implementations	of	locks	that	you	will	encounter	—	for	example	with	POSIX	threads	—
do	not	provide	FIFO	ordering.

5.3.2	Case	Study:	Thread-Safe	Bounded	Queue

As	in	standard	object-oriented	programming,	each	shared	object	is	an	instance	of	a	class
that	defines	the	class’s	state	and	the	methods	that	operate	on	that	state.

The	class’s	state	includes	both	state	variables	(e.g.,	ints,	floats,	strings,	arrays,	and
pointers)	and	synchronization	variables	(e.g.,	locks).	Every	time	a	class	constructor
produces	another	instance	of	a	shared	object,	it	allocates	both	a	new	lock	and	new
instances	of	the	state	protected	by	that	lock.

A	bounded	queue	is	a	queue	with	a	fixed	size	limit	on	the	number	of	items	stored	in	the
queue.	Operating	system	kernels	use	bounded	queues	for	managing	interprocess
communication,	TCP	and	UDP	sockets,	and	I/O	requests.	Because	the	kernel	runs	in	a
finite	physical	memory,	the	kernel	must	be	designed	to	work	properly	with	finite
resources.	For	example,	instead	of	a	simple,	infinite	buffer	between	a	producer	and	a
consumer	thread,	the	kernel	will	instead	use	a	limited	size	buffer,	or	bounded	queue.

A	thread-safe	bounded	queue	is	a	type	of	a	bounded	queue	that	is	safe	to	call	from
multiple	concurrent	threads.	Figure	5.3	gives	an	implementation;	it	lets	any	number	of
threads	safely	insert	and	remove	items	from	the	queue.	As	Figure	5.4	illustrates,	a	program
can	allocate	multiple	such	queues	(e.g.,	queue1,	queue2,	and	queue3),	each	of	which
includes	its	own	lock	and	state	variables.

Figure	5.3:	A	thread-safe	bounded	queue.	For	implementation	simplicity,	we	assume	the
queue	stores	integers	(rather	than	arbitrary	objects)	and	the	total	number	of	items	stored	is
modest.

Figure	5.4:	Three	shared	objects,	each	an	instance	of	class	TSQueue.

The	queue	stores	only	a	fixed	number,	MAX,	of	items.	When	the	queue	is	full,	an	insert
request	returns	an	error.	Similarly,	when	the	queue	is	empty,	a	remove	request	returns	an
error.	Section	5.4	shows	how	condition	variables	let	the	calling	thread	wait	instead	of
returning	an	error.	On	insert,	the	thread	waits	until	the	queue	has	space	to	store	the	item
and,	on	remove,	it	waits	until	the	queue	has	at	least	one	item	queued	before	returning	it.

The	TSQueue	implementation	defines	a	circular	queue	that	stores	data	in	a	fixed	size
array,	items[MAX].	The	state	variable,	front	is	the	next	item	in	the	queue	to	be	removed,	if
any;	nextEmpty	is	the	next	location	for	a	new	item,	if	any.	To	keep	the	example	as	simple
as	possible,	only	items	of	type	int	can	be	stored	in	and	removed	from	the	queue,	and	we
assume	the	total	number	of	items	stored	fits	within	a	64	bit	integer.

All	of	these	variables	are	as	they	would	be	for	a	single-threaded	version	of	this	object.	The
lock	allows	tryInsert	and	tryRemove	to	atomically	read	and	write	multiple	variables	just	as
a	single-threaded	version	would.

EXAMPLE:	What	constraints	are	true	of	TSQueue	at	the	moment	immediately	after	the
lock	is	acquired?	What	constraints	hold	immediately	before	the	lock	is	released?

ANSWER:	Because	the	lock	enforces	mutual	exclusion	and	is	always	held	whenever	a
thread	modifies	a	state	variable,	when	the	lock	is	acquired	the	object’s	state	variables	must
be	either:	(i)	in	the	initial	state	or	(ii)	in	the	state	left	by	a	previous	thread	when	it	released
the	lock.	These	constraints	are	the	same	as	for	single-threaded	code	using	a	bounded
queue:

The	total	number	of	items	ever	inserted	in	the	queue	is	nextEmpty.

The	total	number	of	items	ever	removed	from	the	queue	is	front.

front	<=	nextEmpty

The	current	number	of	items	in	the	queue	is	nextEmpty	-	front.

nextEmpty	-	front	<=	MAX

The	lock	holder	always	re-establishes	these	constraints	before	releasing	the	lock.	□

EXAMPLE:	Are	these	constraints	also	true	if	the	lock	is	not	held?

ANSWER:	No.	It	seems	intuitive	that	if	the	constraints	hold	immediately	before	the	lock
is	released,	then	they	must	also	hold	immediately	after	the	lock	is	released.	However,	this
is	not	the	case.	In	the	meantime,	some	other	thread	may	have	acquired	the	lock	and	may
be	in	the	process	of	modifying	the	state	variables.	In	general,	if	the	lock	is	not	held,	one
cannot	say	anything	about	the	object’s	state	variables.	□

Critical	Sections

A	critical	section	is	a	sequence	of	code	that	atomically	accesses	shared	state.	By	ensuring
that	a	thread	holds	the	object’s	lock	while	executing	any	of	its	critical	sections,	we	ensure
that	each	critical	section	appears	to	execute	atomically	on	its	shared	state.	There	is	a
critical	section	in	each	of	the	methods	tryInsert	and	tryRemove.

Notice	two	things:

Each	class	can	define	multiple	methods	that	operate	on	the	shared	state	defined	by
the	class,	so	there	may	be	multiple	critical	sections	per	class.	However,	for	each
instance	of	the	class	(i.e.,	for	each	object),	only	one	thread	holds	the	object’s	lock	at	a
time,	so	only	one	thread	actively	executes	any	of	the	critical	sections	per	shared
object	instance.	For	the	TSQueue	class,	if	one	thread	calls	queue1.tryInsert	and
another	calls	queue1.tryRemove,	the	insert	occurs	either	before	the	remove	or	vice
versa.

A	program	can	create	multiple	instances	of	a	class.	Each	instance	is	a	shared	object,
and	each	shared	object	has	its	own	lock.	Thus,	different	threads	may	be	active	in	the
critical	sections	for	different	shared	object	instances.	For	the	TSQueue	class,	if	one
thread	calls	queue1.tryInsert,	another	thread	calls	queue2.tryRemove,	and	a	third
thread	calls	queue3.tryInsert,	all	three	threads	may	be	simultaneously	executing
critical	section	code	operating	on	different	instances	of	the	TSQueue	class.

Using	Shared	Objects

Shared	objects	are	allocated	in	the	same	way	as	other	objects.	They	can	be	dynamically
allocated	from	the	heap	using	malloc	and	new,	or	they	can	be	statically	allocated	in	global
memory	by	declaring	static	variables	in	the	program.

Multiple	threads	must	be	able	to	access	shared	objects.	If	shared	objects	are	global

variables,	then	a	thread’s	code	can	refer	to	an	object’s	global	name	to	reference	it;	the
compiler	computes	the	corresponding	address.	If	shared	objects	are	dynamically	allocated,
then	each	thread	that	uses	an	object	needs	a	pointer	or	reference	to	it.

Two	common	ways	to	provide	a	thread	a	pointer	to	a	shared	object	are:	(1)	provide	a
pointer	to	the	shared	object	when	the	thread	is	created,	and	(2)	store	references	to	shared
objects	in	other	shared	objects	(e.g.,	containers).	For	example,	a	program	might	have	a
global,	shared	(and	synchronized!)	hash	table	that	threads	can	use	to	store	and	retrieve
references	to	other	shared	objects.

Figure	5.5	shows	a	simple	program	that	creates	three	queues	and	then	creates	some	threads
that	insert	into	these	queues.	It	then	removes	20	items	from	each	queue	and	prints	the
values	it	removes.	The	initial	main	thread	allocates	the	shared	queues	on	the	heap	using
new,	and	provides	each	worker	thread	a	pointer	to	one	of	the	shared	queues.

Figure	5.5:	This	code	creates	three	TSQueue	objects	and	then	adds	and	removes	some
items	from	these	queues.	We	use	thread_create_p	instead	of	thread_create	so	that	we	can
pass	to	the	newly	created	thread	a	pointer	to	the	queue	it	should	use.

WARNING:	Put	shared	objects	on	the	heap,	not	the	stack.	While	nothing	prevents	you
from	writing	a	program	that	allocates	a	shared	object	as	an	automatic	variable	in	a
procedure	or	method,	you	should	not	write	programs	that	do	this.	The	compiler	allocates
automatic	variables	(sometimes	called	“local	variables”,	with	good	reason)	on	the	stack
during	procedure	invocation.	If	one	thread	passes	a	pointer	or	reference	to	one	of	its
automatic	variables	to	another	thread	and	later	returns	from	the	procedure	where	the
automatic	variable	was	allocated,	then	that	second	thread	now	has	a	pointer	into	a	region
of	the	first	thread’s	stack	that	may	be	used	for	other	purposes.	To	prevent	this	error,	a	few
garbage-collected	languages,	such	as	Google’s	Go,	automatically	convert	all	automatic
data	to	being	heap-allocated	if	the	data	can	be	referenced	outside	of	the	procedure.

You	might	be	tempted	to	argue	that,	for	a	particular	program,	you	know	that	the	procedure
will	never	return	until	all	of	the	threads	with	which	it	is	sharing	an	object	are	done	using
that	object,	and	that	therefore	sharing	one	of	the	procedure’s	local	variables	is	safe.	The
problem	with	this	argument	is	that	the	code	may	change	over	time,	introducing	a
dangerous	and	subtle	bug.	When	sharing	dynamically	allocated	variables,	it	is	best	to	stay
in	the	habit	of	sharing	variables	only	from	the	heap	—	and	never	sharing	variables	from
the	stack	—	across	threads.

5.4	Condition	Variables:	Waiting	for	a	Change

Condition	variables	provide	a	way	for	one	thread	to	wait	for	another	thread	to	take	some
action.	For	example,	in	the	thread-safe	queue	example	in	Figure	5.3,	rather	than	returning
an	error	when	we	try	to	remove	an	item	from	an	empty	queue,	we	might	wait	until	the
queue	is	non-empty,	and	then	always	return	an	item.

Similarly,	a	web	server	might	wait	until	a	new	request	arrives;	a	word	processor	might
wait	for	a	key	to	be	pressed;	a	weather	simulator’s	coordinator	thread	might	wait	for	the
worker	threads	calculating	temperatures	in	each	region	to	finish;	or,	in	our	Earth
Visualizer	example,	a	thread	in	charge	of	rendering	part	of	the	screen	might	wait	for	a	user
command	or	for	new	data	to	update	the	view.

In	all	of	these	cases,	we	want	a	thread	to	wait	for	some	action	to	change	the	system	state
so	that	the	thread	can	make	progress.

Figure	5.6:	A	polling-based	implementation	of	TSQueue::remove.	The	code	retries	in	a
loop	until	it	succeeds	in	removing	an	item.

One	way	for	a	thread	to	wait	would	be	to	poll	—	to	repeatedly	check	the	shared	state	to
see	if	it	has	changed.	As	shown	in	Figure	5.6,	a	polling	implementation	of	remove	would
have	a	simple	wrapper	that	repeatedly	calls	tryRemove	until	it	returns	success.
Unfortunately,	this	approach	is	inefficient:	the	waiting	thread	continually	loops,	or	busy-
waits,	consuming	processor	cycles	without	making	useful	progress.	Worse,	busy-waiting
can	delay	the	scheduling	of	other	threads	—	perhaps	exactly	the	thread	for	which	the
looping	thread	is	waiting.

The	sleep	fix?

We	often	find	that	students	want	to	“fix”	the	polling-based	approach	by	adding	a	delay.
For	example,	in	Figure	5.6,	we	could	add	a	call	to	sleep	to	yield	the	processor	for	(say)
100	ms	after	each	unsuccessful	tryRemove	call.	This	would	allow	some	other	thread	to
run	while	the	waiting	thread	is	waiting.

This	approach	has	two	problems.	First,	although	it	reduces	the	inefficiency	of	polling,	it
does	not	eliminate	it.	Suspending	and	scheduling	a	thread	imposes	non-trivial	overheads,
and	a	program	with	many	polling	threads	would	still	waste	significant	resources.	Second,
periodic	polling	adds	latency.	In	our	Earth	Visualizer	example,	if	the	thread	waiting	for
keyboard	input	waited	100	ms	between	each	check,	the	application	might	become
noticeably	more	sluggish.

As	an	extreme	example,	one	of	the	authors	once	had	an	employee	implement	a	network
server	that	provided	several	layers	of	processing,	where	each	layer	had	a	thread	that
received	work	from	the	layer	above	and	sent	the	work	to	the	layer	below.	Measurements
of	the	server	showed	surprisingly	bad	performance;	we	expected	each	request	to	take	a
few	milliseconds,	but	instead	each	took	just	over	half	a	second.	Fortunately,	the
performance	was	so	poor	that	it	was	easy	to	track	down	the	problem:	layers	passed	work
to	each	other	through	bounded	queues	much	like	TSQueue,	but	the	queue	remove	method
was	implemented	as	a	polling	loop	with	a	100	ms	delay.	With	five	such	layers	of
processing,	the	server	became	unusable.	Fortunately,	the	fix	was	simple:	use	condition
variables	instead.

5.4.1	Condition	Variable	Definition

A	condition	variable	is	a	synchronization	object	that	lets	a	thread	efficiently	wait	for	a
change	to	shared	state	that	is	protected	by	a	lock.	A	condition	variable	has	three	methods:

CV::wait(Lock	*lock).	This	call	atomically	releases	the	lock	and	suspends	execution
of	the	calling	thread,	placing	the	calling	thread	on	the	condition	variable’s	waiting
list.	Later,	when	the	calling	thread	is	re-enabled,	it	re-acquires	the	lock	before
returning	from	the	wait	call.

CV::signal().	This	call	takes	one	thread	off	the	condition	variable’s	waiting	list	and
marks	it	as	eligible	to	run	(i.e.,	it	puts	the	thread	on	the	scheduler’s	ready	list).	If	no
threads	are	on	the	waiting	list,	signal	has	no	effect.

CV::broadcast().	This	call	takes	all	threads	off	the	condition	variable’s	waiting	list
and	marks	them	as	eligible	to	run.	If	no	threads	are	on	the	waiting	list,	broadcast	has
no	effect.

WARNING:	Note	that	condition	variable	wait	and	signal	are	different	from	the	UNIX
system	calls	wait	and	signal.	The	nomenclature	is	unfortunate	but	longstanding.	In	this
book,	we	always	use	the	terms,	UNIX	wait	and	UNIX	signal,	to	refer	to	the	UNIX
variants,	and	simple	wait	and	signal	to	refer	to	condition	variable	operations.

A	condition	variable	is	used	to	wait	for	a	change	to	shared	state,	and	a	lock	must	always
protect	updates	to	shared	state.	Thus,	the	condition	variable	API	is	designed	to	work	in
concert	with	locks.	All	three	methods	(wait,	signal,	and	broadcast)	should	only	be
called	while	the	associated	lock	is	held.

Figure	5.7:	Design	patterns	for	waiting	using	a	condition	variable	(top)	and	for	waking
up	a	waiter	(bottom).	Since	many	critical	sections	need	to	both	wait	and	signal,	these
two	design	patterns	are	often	combined	in	one	method.

The	standard	design	pattern	for	a	shared	object	is	a	lock	and	zero	or	more	condition
variables.	A	method	that	waits	using	a	condition	variable	works	as	shown	on	the	top	in
Figure	5.7.	In	this	code,	the	calling	thread	first	acquires	the	lock	and	can	then	read	and
write	the	shared	object’s	state	variables.	To	wait	until	testOnSharedState	succeeds,	the
thread	calls	wait	on	the	shared	object’s	condition	variable	cv.	This	atomically	puts	the
thread	on	the	waiting	list	and	releases	the	lock,	allowing	other	threads	to	enter	the	critical
section.	Once	the	waiting	thread	is	signaled,	it	re-acquires	the	lock	and	returns	from	wait.
The	monitor	can	then	safely	test	the	state	variables	to	see	if	testOnSharedState	succeeds.	If
so,	the	monitor	performs	its	tasks,	releases	the	lock,	and	returns.

The	bottom	of	Figure	5.7	shows	the	complementary	code	that	causes	a	waiting	thread	to
wake	up.	Whenever	a	thread	changes	the	shared	object’s	state	in	a	way	that	enables	a
waiting	thread	to	make	progress,	the	thread	must	signal	the	waiting	thread	using	the
condition	variable.

A	thread	waiting	on	a	condition	variable	must	inspect	the	object’s	state	in	a	loop.	The
condition	variable’s	wait	method	releases	the	lock	(to	let	other	threads	change	the	state	of
interest)	and	then	re-acquires	the	lock	(to	check	that	state	again).

Similarly,	the	only	reason	for	a	thread	to	signal	(or	broadcast)	is	that	it	has	just	changed
the	shared	state	in	a	way	that	may	be	of	interest	to	a	waiting	thread.	To	make	a	change	to
shared	state,	the	thread	must	hold	the	lock	on	the	state	variables,	so	signal	and
broadcast	are	also	always	called	while	holding	a	lock.

Discussion.	Condition	variables	have	been	carefully	designed	to	work	in	tandem	with
locks	and	shared	state.	The	precise	definition	of	condition	variables	includes	three
properties	worth	additional	comment:

A	condition	variable	is	memoryless.

The	condition	variable,	itself,	has	no	internal	state	other	than	a	queue	of	waiting
threads.	Condition	variables	do	not	need	their	own	state	because	they	are	always	used
inside	shared	objects	that	have	their	own	state.

If	no	threads	are	currently	on	the	condition	variable’s	waiting	list,	a	signal	or
broadcast	has	no	effect.	No	thread	calls	wait	unless	it	holds	the	lock,	checks	the
state	variables,	and	finds	that	it	needs	to	wait.	Thus,	the	condition	variable	has	no
“memory”	of	earlier	calls	to	signal	or	broadcast.	After	signal	is	called,	if
sometime	later	another	thread	calls	wait,	it	will	block	until	the	next	signal	(or
broadcast)	is	called,	regardless	of	how	many	times	signal	has	been	called	in	the
past.

CV::wait	atomically	releases	the	lock.

A	thread	always	calls	wait	while	holding	a	lock.	The	call	to	wait	atomically	releases
the	lock	and	puts	the	thread	on	the	condition	variable’s	waiting	list.	Atomicity

ensures	that	there	is	no	separation	between	checking	the	shared	object’s	state,
deciding	to	wait,	adding	the	waiting	thread	to	the	condition	variable’s	queue,	and
releasing	the	lock	so	that	some	other	thread	can	access	the	shared	object.

If	threads	released	the	lock	before	calling	wait,	they	could	miss	a	signal	or	broadcast
and	wait	forever.	Consider	the	case	where	thread	T1	checks	an	object’s	state	and
decides	to	wait,	so	it	releases	the	lock	in	anticipation	of	putting	itself	on	the	condition
variable’s	waiting	list.	At	that	precise	moment,	T2	preempts	T1.	T2	acquires	the	lock,
changes	the	object’s	state	to	what	T1	wants,	and	calls	signal,	but	the	waiting	list	is
empty	so	the	call	to	signal	has	no	effect.	Finally,	T1	runs	again,	puts	itself	on	the
waiting	list,	and	suspends	execution.	The	lack	of	atomicity	means	that	T1	missed	the
signal	and	is	now	waiting,	potentially	forever.

Once	wait	releases	the	lock,	any	number	of	threads	might	run	before	wait	re-
acquires	the	lock	after	a	signal.	In	the	meantime,	the	state	variables	might	have
changed	—	in	fact,	they	are	almost	certain	to	have	changed.	Code	must	not	assume
just	because	something	was	true	before	wait	was	called,	it	remains	true	when
wait	returns.	The	only	assumption	you	should	make	on	return	from	wait	is	that	the
lock	is	held,	and	the	normal	invariants	that	hold	at	the	start	of	the	critical	section	are
true.

When	a	waiting	thread	is	re-enabled	via	signal	or	broadcast,	it	may	not	run
immediately.

When	a	waiting	thread	is	re-enabled,	it	is	moved	to	the	scheduler’s	ready	queue	with
no	special	priority,	and	the	scheduler	may	run	it	at	some	later	time.	Furthermore,
when	the	thread	finally	does	run,	it	must	re-acquire	the	lock,	which	means	that	other
threads	may	have	acquired	and	released	the	lock	in	the	meantime,	between	when	the
signal	occurs	and	when	the	waiter	re-acquires	the	lock.	Therefore,	even	if	the	desired
predicate	were	true	when	signal	or	broadcast	was	called,	it	may	no	longer	be	true
when	wait	returns.

This	may	seem	like	a	small	window	of	vulnerability,	but	concurrent	programs	must
work	with	all	possible	schedules.	Otherwise,	programs	may	fail	sometimes,	but	not
always,	making	debugging	very	difficult.	See	the	sidebar	on	Mesa	vs.	Hoare
semantics	for	a	discussion	of	the	history	behind	this	property.

WARNING:	The	points	above	have	an	important	implication	for	programmers:	wait	must
always	be	called	from	within	a	loop.

Because	wait	releases	the	lock,	and	because	there	is	no	guarantee	of	atomicity	between
signal	or	broadcast	and	the	return	of	a	call	to	wait,	there	is	no	guarantee	that	the
checked-for	state	still	holds.	Therefore,	a	waiting	thread	must	always	wait	in	a	loop,
rechecking	the	state	until	the	desired	predicate	holds.	Thus,	the	design	pattern	is:

and	not:

There	are	two	fundamental	reasons	why	condition	variables	impose	this	requirement:	to
simplify	the	implementation	and	to	improve	modularity.

Simplifying	the	implementation.	When	a	waiting	thread	is	re-enabled,	it	may	not
run	immediately.	Other	threads	may	access	the	shared	state	before	it	runs,	and	the
desired	predicate	on	the	shared	state	may	no	longer	hold	when	wait	finally	does
return.

This	behavior	simplifies	the	implementation	of	condition	variables	without	increasing
the	complexity	of	the	code	that	uses	them.	No	special	code	is	needed	for	scheduing;
signal	puts	the	signaled	thread	onto	the	ready	list	and	lets	the	scheduler	choose
when	to	run	it.	Similarly,	no	special	code	is	needed	to	re-acquire	the	lock	at	the	end
of	wait.	The	woken	thread	calls	acquire	when	it	is	re-scheduled.	As	with	any
attempt	to	acquire	a	lock,	it	may	succeed	immediately,	or	it	may	wait	if	some	other
thread	acquired	the	lock	first.

Some	implementations	go	even	further	and	warn	that	a	call	to	wait	may	return	even
if	no	thread	has	called	signal	or	broadcast.	So,	not	only	is	it	possible	that	the
desired	predicate	on	the	state	is	no	longer	true,	it	is	possible	that	the	desired	predicate
on	the	state	was	never	true.	For	example,	the	Java	definition	of	condition	variables
allows	for	“spurious	wakeups”:

When	waiting	upon	a	Condition,	a	“spurious	wakeup”	is	permitted
to	occur,	in	general,	as	a	concession	to	the	underlying	platform
semantics.	This	has	little	practical	impact	on	most	application
programs	as	a	Condition	should	always	be	waited	upon	in	a	loop,
testing	the	state	predicate	that	is	being	waited	for.	An
implementation	is	free	to	remove	the	possibility	of	spurious
wakeups	but	it	is	recommended	that	applications	programmers
always	assume	that	they	can	occur	and	so	always	wait	in	a	loop.
(From	https://docs.oracle.com/javase/8/docs/api/)

Improving	modularity.	Waiting	in	a	loop	that	checks	the	shared	state	makes	shared
objects’	code	more	modular	because	we	can	reason	about	when	the	thread	will
continue	by	looking	only	at	the	wait	loop.	In	particular,	we	do	not	need	to	examine
the	rest	of	the	shared	object’s	code	to	understand	where	and	why	calls	to	signal	and
broadcast	are	made	to	know	the	post-condition	for	the	wait	loop.	For	example,	in

https://docs.oracle.com/javase/8/docs/api/

Figure	5.7,	we	know	the	assert	call	will	never	fail	without	having	to	look	at	any	other
code.

Not	only	does	waiting	in	a	loop	simplify	writing	and	reasoning	about	the	code	that
waits,	it	simplifies	writing	and	reasoning	about	the	code	that	signals	or	broadcasts.
Signaling	at	the	wrong	time	will	never	cause	a	waiting	thread	to	proceed	when	it
should	not.	Signal	and	broadcast	can	be	regarded	as	hints	that	it	might	be	a	good
time	to	proceed;	if	the	hints	prove	to	be	wrong,	no	damage	is	done.	You	can	always
convert	a	signal	to	a	broadcast,	or	add	any	number	of	signal	or	broadcast	calls,
without	changing	the	semantics	of	a	shared	object.	Avoiding	extra	signal	and
broadcast	calls	may	matter	for	performance,	but	not	for	correctness.

Bottom	line:	Given	the	range	of	possible	implementations	and	the	modularity	benefits,
wait	must	always	be	done	from	within	a	loop	that	tests	the	desired	predicate.

Mesa	vs.	Hoare	semantics

In	modern	condition	variables,	signal	or	broadcast	calls	take	waiting	threads	from	a
condition	variable’s	waiting	list	and	put	them	on	the	ready	list.	Later,	when	these	threads
are	scheduled,	they	may	block	for	some	time	while	they	try	to	re-acquire	the	lock.	Thus,
modern	condition	variables	implement	what	are	often	called	Mesa	Semantics	(for	Mesa,
an	early	programming	language	at	Xerox	PARC	that	implemented	these	semantics).
Despite	the	name,	Mesa	was	not	the	first	system	to	use	“Mesa”	semantics;	Brinch	Hansen
had	proposed	their	use	five	years	earlier.	However,	PARC	was	the	first	to	use	Mesa
semantics	extensively	in	a	very	large	operating	system,	and	the	name	stuck.

C.A.R.	“Tony”	Hoare	proposed	a	different	definition	for	condition	variables.	Under
Hoare	semantics,	when	a	thread	calls	signal,	execution	of	the	signaling	thread	is
suspended,	the	ownership	of	the	lock	is	immediately	transferred	to	one	of	the	waiting
threads,	and	execution	of	that	thread	is	immediately	resumed.	Later,	when	the	resumed
thread	releases	the	lock,	ownership	of	the	lock	reverts	to	the	signaling	thread,	whose
execution	continues.

Under	Hoare	semantics,	signaling	is	atomic	with	the	resumption	of	a	waiting	thread,	and
a	signaled	thread	may	assume	that	the	state	has	not	changed	since	the	signal	that	woke	it
up	was	issued.	Under	Mesa	semantics,	waiting	is	always	done	in	a	loop:	while
(predicate())	{cv.wait(&lock);}.	Under	Hoare	semantics,	waiting	can	be	done	with	a
simple	conditional:	if	(predicate())	{cv.wait(&lock);}.

Mesa	semantics	are	much	more	widely	used,	but	some	argue	that	the	atomicity	of
signaling	and	resuming	a	waiting	process	makes	it	easier	to	prove	liveness	properties	of
programs	under	Hoare	semantics.	If	we	know	that	one	thread	is	waiting	on	a	condition,
and	we	do	a	signal,	we	know	that	the	waiting	thread	(and	not	some	other	late-arriving
thread)	will	resume	and	make	progress.

The	authors	of	this	book	come	down	strongly	on	the	side	of	Mesa	semantics.	The
modularity	advantages	of	Mesa	greatly	simplify	reasoning	about	an	object’s	core	safety
properties.	For	the	properties	we	care	most	about	(i.e.,	the	safety	properties	that	threads
proceed	only	when	they	are	supposed	to)	and	for	large	programs	where	modularity

matters,	Mesa	semantics	seem	vastly	preferable.	Later	in	this	chapter,	we	will	explain
how	to	implement	FIFO	queueing	with	Mesa	semantics,	for	where	liveness	concerns	are
paramount.
As	a	practical	matter	the	debate	has	been	settled:	essentially	all	systems,	including	both
Java	and	POSIX,	use	Mesa	semantics.	We	know	of	no	widely	used	system	that
implements	Hoare	semantics.	Programmers	that	assume	the	weaker	Mesa	semantics	—
always	writing	while	(predicate())	—	will	write	programs	that	work	under	either
definition.	The	overhead	of	the	“extra”	check	of	the	predicate	upon	return	from	wait	in	a
while	loop	is	unlikely	to	be	significant	compared	to	the	signaling	and	scheduling
overheads.	As	a	programmer,	you	will	not	go	wrong	if	you	write	your	code	assuming
Mesa	semantics.

5.4.2	Thread	Life	Cycle	Revisited

Chapter	4	discussed	how	a	thread	can	switch	between	the	READY,	WAITING,	and
RUNNING	states.	We	now	explain	the	WAITING	state	in	more	detail.

A	RUNNING	thread	that	calls	wait	is	put	in	the	WAITING	state.	This	is	typically
implemented	by	moving	the	thread	control	block	(TCB)	from	the	ready	list	to	the
condition	variable’s	list	of	waiting	threads.	Later,	when	some	RUNNING	thread	calls
signal	or	broadcast	on	that	condition	variable,	one	(if	signal)	or	all	(if	broadcast)	of
the	TCBs	on	that	condition	variable’s	waiting	list	are	moved	to	the	ready	list.	This	changes
those	threads	from	the	WAITING	state	to	the	READY	state.	At	some	later	time,	the
scheduler	selects	a	READY	thread	and	runs	it	by	moving	it	to	the	RUNNING	state.
Eventually,	the	signaled	thread	runs.

Locks	are	similar.	A	lock	acquire	on	a	busy	lock	puts	the	caller	into	the	WAITING	state,
with	the	caller’s	TCB	on	a	list	of	waiting	TCBs	associated	with	the	lock.	Later,	when	the
lock	owner	calls	release,	one	waiting	TCB	is	moved	to	the	ready	list,	and	that	thread
transitions	to	the	READY	state.

Notice	that	threads	that	are	RUNNING	or	READY	have	their	state	located	at	a	pre-
defined,	“global”	location:	the	CPU	(for	a	RUNNING	thread)	or	the	scheduler’s	list	of
ready	threads	(for	a	READY	thread).	However,	threads	that	are	WAITING	typically	have
their	state	located	on	some	per-lock	or	per-condition-variable	queue	of	waiting	threads.
Then,	a	signal,	broadcast,	or	release	call	can	easily	find	and	re-enable	a	waiting	thread
for	that	particular	condition	variable	or	lock.

Figure	5.8:	A	thread-safe	blocking	bounded	queue	using	Mesa-style	condition	variables.

5.4.3	Case	Study:	Blocking	Bounded	Queue

We	can	use	condition	variables	to	implement	a	blocking	bounded	queue,	one	where	a
thread	trying	to	remove	an	item	from	an	empty	queue	will	wait	until	an	item	is	available,
and	a	thread	trying	to	put	an	item	into	a	full	queue	will	wait	until	there	is	room.	Figure	5.8
defines	the	blocking	bounded	queue’s	interface	and	implementation.

As	in	TSQueue,	we	acquire	and	release	the	lock	at	the	beginning	and	end	of	the	public
methods	(e.g.,	insert	and	remove).	Now,	however,	we	can	atomically	release	the	lock	and
wait	if	there	is	no	room	in	insert	or	no	item	in	remove.	Before	returning,	insert	signals	on
itemAdded	since	a	thread	waiting	in	remove	may	now	be	able	to	proceed;	similarly,
remove	signals	on	itemRemoved	before	it	returns.

We	signal	rather	than	broadcast	because	each	insert	allows	at	most	one	remove	to
proceed,	and	vice	versa.

EXAMPLE:	What	invariants	hold	when	wait	returns	in	BBQ:remove?	Is	an	item
guaranteed	to	be	in	the	queue?	Why	or	why	not?

ANSWER:	Exactly	the	same	invariants	hold	when	wait	returns	as	when	the	thread
first	acquired	the	lock.	These	are	the	same	constraints	as	listed	earlier	for	the	thread-safe
(non-blocking)	bounded	queue	TSQueue.

In	particular,	although	there	is	always	an	item	in	the	queue	when	insert	calls	signal,	there
is	no	guarantee	that	the	item	is	still	in	the	queue	when	wait	returns.	Even	if	the	language
runtime	avoids	spurious	wakeups,	some	other	thread	may	have	run	between	the
signal	and	the	return	from	wait.	That	thread	may	perform	a	remove,	acquire	the
BBQ::lock,	find	the	item,	and	empty	the	queue,	all	before	wait	returns.	□

5.5	Designing	and	Implementing	Shared	Objects

Although	multi-threaded	programming	has	a	reputation	for	being	difficult,	shared	objects
provide	a	basis	for	writing	simple,	safe	code	for	multi-threaded	programs.	In	this	section,
we	provide	a	methodology	for	writing	correct	multi-threaded	code	using	shared	objects.

We	first	define	a	high-level	approach	to	designing	shared	objects.	Given	a	concurrent
problem,	where	do	you	start?	(Section	5.5.1)

We	provide	six	specific	rules,	or	best	practices,	that	you	should	always	follow	when
writing	multi-threaded	shared	objects.	(Section	5.5.2)

We	describe	three	common	pitfalls	to	multi-threading	in	C,	C++,	and	Java	code.
(Section	5.5.3)

Our	experience	is	that	following	this	approach	and	these	rules	makes	it	much	more	likely
that	you	will	write	code	that	is	not	only	correct	but	also	easy	for	others	to	read,
understand,	and	maintain.

On	simplicity

One	of	the	themes	running	through	this	textbook	is	the	importance	of	simple	abstractions
in	building	robust,	reliable	operating	systems.	Operating	systems	place	a	premium	on

reliability;	if	the	operating	system	breaks,	the	computer	becomes	temporarily	unusable,	or
worse.	And	yet,	it	is	nearly	impossible	to	fully	test	whether	some	piece	of	multi-threaded
operating	system	code	works	under	all	possible	conditions	and	all	possible	schedule
interleavings.	This	places	a	premium	on	designing	solutions	that	work	the	first	time	they
are	run,	by	keeping	code	simple.
Particularly	with	concurrent	code,	it	is	not	enough	for	the	code	to	work.	It	also	needs	to
be	simple	enough	to	understand.	We	often	find	students	write	intricate	concurrent	code	in
solutions	to	our	homework	assignments	and	exams.	Perhaps	the	difficulty	of	the	topic
suggests	to	students	that	their	solutions	must	also	be	difficult	to	understand!	Sometimes
these	solutions	work;	more	often	the	complexity	hides	a	design	flaw.

Even	if	your	code	is	literally	correct,	we	would	like	to	encourage	you	to	not	stop	there.	Is
it	easy	to	understand	why	your	code	works?	If	not,	try	again.	Even	if	you	can	get	the	code
to	work	this	time,	someone	else	may	need	to	come	along	later	and	change	it.	For
concurrent	code	to	be	maintainable	over	time,	it	is	essential	that	the	next	developer	to
work	on	the	code	be	able	to	understand	it.

Yet,	often	in	technology	circles,	simplicity	is	considered	an	insult.	Someone	might	say,
“Anyone	could	have	done	that!”,	meaning	it	as	a	put	down.	We	take	the	other	side:	a
simple	design	should	be	seen	as	a	complement.	Complexity	should	be	introduced	only
where	it	is	absolutely	necessary.	Consider	three	possible	states	for	one	of	your	designs
(hat	tip	to	John	Ousterhout	for	this	list):

The	code	is	simple	enough	that	anyone	can	understand	it.	If	someone	says	this	to
you,	the	appropriate	response	is	to	take	it	as	a	complement	and	reply,	“Thank	you.”

The	code	is	so	complicated	that	only	the	author	can	understand	it.	While	this	might
be	useful	in	the	short-term	as	a	strategy	to	keep	the	author	employed	(after	all,	no
one	else	can	fix	or	improve	code	without	understanding	it	first),	it	is	not	such	a	good
idea	over	the	long	term.	Eventually,	you	will	want	to	work	on	something	new!

The	code	is	so	complicated	not	even	the	author	can	understand	it.	Concurrent	code
often	lands	in	this	category,	unnecessarily	in	our	view.	Using	the	rules	we	introduce
in	this	section	will	help	put	your	code	in	the	first	and	not	the	last	bucket.

Of	course,	writing	individual	shared	objects	is	not	enough.	Most	programs	have	multiple
shared	objects,	and	new	issues	arise	when	combining	them.	But,	before	trying	to	compose
multiple	shared	objects,	we	must	make	sure	that	each	individual	object	works.	Chapter	6
discusses	the	issues	that	arise	when	programs	use	multiple	shared	objects.

5.5.1	High	Level	Methodology

A	shared	object	has	public	methods,	private	methods,	state	variables,	and	synchronization
variables;	its	synchronization	variables	include	a	lock	and	one	or	more	condition	variables.
At	this	level,	shared	object	programming	resembles	standard	object-oriented
programming,	except	that	we	have	added	synchronization	variables	to	each	shared	object.
This	similarity	is	deliberate:	the	interfaces	to	locks	and	condition	variables	have	been

carefully	defined	so	that	we	can	continue	to	apply	familiar	techniques	for	programming
and	reasoning	about	objects.

Therefore,	most	high-level	design	challenges	for	a	shared	object’s	class	are	the	same	as	for
class	design	in	single-threaded	programming:

Decompose	the	problem	into	objects.

For	each	object:

Define	a	clean	interface.

Identify	the	right	internal	state	and	invariants	to	support	that	interface.

Implement	methods	with	appropriate	algorithms	to	manipulate	that	state.

These	steps	require	creativity	and	sound	engineering	judgment	and	intuition.	Going	from
single-threaded	to	multi-threaded	programming	does	not	make	these	steps	much	more
difficult.

Compared	to	how	you	implement	a	class	in	a	single-threaded	program,	the	new	steps
needed	for	the	multi-threaded	case	for	shared	objects	are	straightforward:

1.	 Add	a	lock.

2.	 Add	code	to	acquire	and	release	the	lock.

3.	 Identify	and	add	condition	variables.

4.	 Add	loops	to	wait	using	the	condition	variables.

5.	 Add	signal	and	broadcast	calls.

We	discuss	each	of	these	steps	in	turn.

Other	than	these	fairly	mechanical	changes,	writing	the	rest	of	your	code	proceeds	as	in
the	single-threaded	case.

1.	 Add	a	lock.	Each	shared	object	needs	a	lock	as	a	member	variable	to	enforce
mutually	exclusive	access	to	the	object’s	shared	state.

This	chapter	focuses	on	the	simple	case	where	each	shared	object	includes	exactly
one	lock.	In	Chapter	6,	we	will	talk	about	more	advanced	variations,	such	as	an
ownership	design	pattern	where	higher-level	program	structure	enforces	mutual
exclusion	by	ensuring	that	at	most	one	thread	at	a	time	owns	and	can	access	an
object.

2.	 Add	code	to	acquire	and	release	the	lock.	All	code	accessing	the	object’s	shared
state	—	any	state	shared	across	more	than	one	thread	—	must	hold	the	object’s	lock.
Typically,	all	of	an	object’s	member	variables	are	shared	state.

The	simplest	and	most	common	approach	is	to	acquire	the	lock	at	the	start	of	each
public	method	and	release	it	at	the	end	of	each	public	method.	Doing	so	makes	it	easy
to	inspect	your	code	to	verify	that	a	lock	is	always	held	when	needed.	It	also	means
that	the	lock	is	already	held	when	each	private	method	is	called,	and	you	do	not	need

to	re-acquire	it.

WARNING:	You	may	be	tempted	to	try	to	avoid	acquiring	the	lock	in	some	methods
or	parts	of	some	methods.	Do	not	be	tempted	by	this	“optimization”	until	you	are	an
experienced	programmer	and	have	done	sufficient	profiling	of	the	code	to	verify	that
the	optimization	will	significantly	speed	up	your	program,	and	you	fully	understand
the	hazards	posed	by	compiler	and	architecture	instruction	re-ordering.

Acquiring	an	uncontended	lock	is	a	relatively	inexpensive	operation.	By	contrast,
reasoning	about	memory	interleavings	can	be	quite	difficult	—	and	the	instruction
reordering	done	by	modern	compilers	and	processors	makes	it	even	harder.	Later	in
this	section,	we	discuss	one	commonly	used	(and	abused)	“optimization,”	double-
checked	locking,	that	is	outright	dangerous	to	use.

3.	 Identify	and	add	condition	variables.	How	do	you	decide	what	condition	variables
a	shared	object	needs?

A	systematic	way	to	approach	this	problem	is	to	consider	each	method	and	ask,
“When	can	this	method	wait?”	Then,	you	can	map	each	situation	in	which	a	method
can	wait	to	a	condition	variable.

You	have	considerable	freedom	in	deciding	how	many	condition	variables	a	class
should	have	and	what	each	should	represent.	A	good	option	is	to	add	a	condition
variable	for	each	situation	in	which	the	method	must	wait.

EXAMPLE:	Blocking	bounded	queue	with	two	condition	variables.	In	our
blocking	bounded	queue	example,	if	the	queue	is	full,	insert	must	wait	until	another
thread	removes	an	item,	so	we	created	a	condition	variable	itemRemoved.	Similarly,
if	the	queue	is	empty,	remove	must	wait	until	another	thread	inserts	an	item,	so	we
created	a	condition	variable	itemAdded.	It	is	natural	in	this	case	to	create	two
condition	variables,	itemAdded	to	wait	until	the	queue	has	items,	and	itemRemoved
to	wait	until	the	queue	has	space.

Alternatively,	a	single	condition	variable	can	often	suffice.	In	fact,	early	versions	of
Java	defined	a	single	condition	variable	per	object	and	did	not	let	programmers
allocate	additional	ones.	Using	this	approach,	any	thread	that	waits	for	any	reason
uses	that	condition	variable;	if	the	condition	variable	is	used	by	different	threads
waiting	for	different	reasons,	then	any	thread	that	wakes	up	a	thread	must
broadcast	on	the	condition	variable.

EXAMPLE:	Blocking	bounded	queue	with	one	condition	variable.	It	is	also
possible	to	implement	the	blocking	bounded	queue	with	a	single	condition	variable,
i.e.,	somethingChanged,	on	which	threads	in	both	insert	or	threads	in	remove	can
wait.	With	this	approach,	both	insert	and	remove	need	to	broadcast	rather	than
signal	to	ensure	that	the	right	threads	get	a	chance	to	run.

Programs	that	are	more	complex	make	these	trade-offs	more	interesting.	For
example,	imagine	a	ResourceManager	class	that	allows	a	calling	thread	to	request
exclusive	access	to	any	subset	of	n	distinct	resources.	One	could	imagine	creating	2n
condition	variables;	this	would	let	a	requesting	thread	wait	on	a	condition	variable
representing	exactly	its	desired	combination.	However,	it	would	be	simpler	to	have	a

single	condition	variable	on	which	requesting	threads	wait	and	to	broadcast	on	that
condition	whenever	a	resource	is	freed.	Depending	on	the	number	of	resources	and
the	expected	number	of	waiting	threads,	this	simpler	approach	may	even	be	more
efficient.

The	bottom	line	is	that	there	is	no	hard	and	fast	rule	for	how	many	condition
variables	to	use	in	a	shared	object.	Selecting	condition	variables	requires	thought,	and
different	designers	may	use	different	numbers	of	condition	variables	for	a	given
class.	Like	many	other	design	decisions,	this	is	a	matter	of	programmer	taste,
judgment,	and	experience.	Asking	“When	can	this	method	wait?”	will	help	you
identify	what	is	for	you	a	natural	way	of	thinking	about	a	shared	object’s	condition
variables.

4.	 Add	loops	to	wait	using	the	condition	variables.	Add	a	while(…)	{cv.wait()}	loop
into	each	method	that	you	identified	as	potentially	needing	to	wait	before	returning.

Remember	that	every	call	to	wait	must	be	enclosed	in	a	while	loop	that	tests	an
appropriate	predicate.	Modern	implementations	almost	invariably	provide	Mesa
semantics	and	often	allow	for	spurious	wakeups	(i.e.,	a	thread	can	return	from
wait	even	if	no	thread	called	signal	or	broadcast).	Therefore,	a	thread	must	always
check	the	condition	before	proceeding.	Even	if	the	condition	was	true	when	the
signal	or	broadcast	call	occurred,	it	may	no	longer	be	true	when	the	waiting	thread
resumes	execution.

Modularity	benefits.	If	you	always	wait	in	a	while	loop,	your	code	becomes	highly
modular.	You	can	look	at	the	code	that	waits,	and	when	it	proceeds,	know	without
examining	any	other	code	that	the	condition	holds.	Even	erroneous	calls	to	signal	or
broadcast	will	not	change	how	the	waiting	code	behaves.

For	example,	consider	the	assertion	in	the	following	code:

We	know	that	the	assertion	holds	by	local	inspection	without	knowing	anything	about
the	code	that	calls	signal	or	broadcast.

Waiting	in	a	while	loop	also	makes	the	signal	and	broadcast	code	more	robust.
Adding	an	extra	signal,	or	changing	a	signal	to	a	broadcast,	will	not	introduce
bugs.

HINT:	Top-down	design.	As	you	start	writing	your	code,	you	may	know	that	a
method	needs	to	include	a	wait	loop,	but	you	may	not	know	exactly	what	the
predicate	should	be.	In	this	situation,	it	is	often	useful	to	name	a	private	method
function	that	will	perform	the	test	(e.g.,	workAvailable	in	the	preceding	example)	and

write	the	code	that	defines	the	function	later.

5.	 Add	signal	and	broadcast	calls.	Just	as	you	must	decide	when	methods	can	wait,
you	must	decide	when	methods	can	let	other	waiting	threads	proceed.	It	is	usually
easy	to	ask,	“Can	a	call	to	this	method	allow	another	thread	to	proceed?”	and	then
add	a	signal	or	broadcast	call	if	the	answer	is	yes.	But	which	call	should	you	use?

CV::signal	is	appropriate	when:	(1)	at	most	one	waiting	thread	can	make	progress,
and	(2)	any	thread	waiting	on	the	condition	variable	can	make	progress.	In	contrast,
broadcast	is	needed	when:	(1)	multiple	waiting	threads	may	all	be	able	to	make
progress,	or	(2)	different	threads	are	using	the	same	condition	variable	to	wait	for
different	predicates,	so	some	of	the	waiting	threads	can	make	progress	but	others
cannot.

EXAMPLE:	Consider	the	n-resource	ResourceManager	problem	described	earlier.
For	the	solution	with	a	single	condition	variable,	we	must	broadcast	on	the
condition	variable	whenever	a	resource	is	freed.	We	do	not	know	which	thread(s)	can
make	progress,	so	we	tell	them	all	to	check.	If,	instead,	we	used	signal,	then	the
“wrong”	thread	might	receive	the	signal,	and	a	thread	that	could	make	progress
might	remain	blocked.

It	is	always	safe	to	use	broadcast.	Even	in	cases	where	signal	would	suffice,	at
worst,	all	of	the	waiting	threads	would	run	and	check	the	condition	in	the	while	loop,
but	only	one	would	continue	out	of	the	loop.	Compared	to	signal,	this	would
consume	some	additional	resources,	but	it	would	not	introduce	any	bugs.

5.5.2	Implementation	Best	Practices

Above,	we	described	the	basic	thought	process	you	should	follow	when	designing	a
shared	object.	To	make	things	more	concrete,	we	next	give	a	set	of	six	simple	rules	that	we
strongly	advocate	you	follow;	these	are	a	set	of	“best	practices”	for	writing	code	for
shared	objects.

Coding	standards,	soapboxes,	and	preaching

Some	programmers	rebel	against	coding	standards.	We	do	not	understand	their	logic.	For
concurrent	programming	in	particular,	a	few	good	design	patterns	have	stood	the	test	of
time	(and	many	unhappy	people	who	have	departed	from	those	patterns).	For	concurrent
programming,	debugging	does	not	work.	You	must	rely	on:	(a)	writing	correct	code,	and
(b)	writing	code	that	you	and	others	can	read	and	understand	—	not	just	for	now,	but	also
over	time	as	the	code	changes.	Following	the	rules	we	provide	will	help	you	write
correct,	readable	code.

When	we	teach	multi-threaded	programming,	we	treat	the	six	rules	described	in	this
section	as	required	coding	standards	for	all	multi-threaded	code	that	students	write	in	our
course.	We	say,	“We	cannot	control	what	you	do	when	you	leave	this	class,	but	while	you
are	in	this	class,	any	solution	that	violates	these	standards	is,	by	definition,	wrong.”

In	fact,	we	feel	so	strongly	about	these	rules	that	one	of	us	actually	presents	them	in	class

by	standing	on	a	table	and	pronouncing	them	as	the	Six	Commandments	of	multi-
threaded	programming:

1.	Thou	shalt	always	do	things	the	same	way.

and	so	on.

The	particular	formulation	(and	presentation)	of	these	rules	evolved	from	our	experience
teaching	multi-threaded	programming	dozens	of	times	to	hundreds	of	students	and
identifying	common	mistakes.	We	have	found	that	when	we	insist	that	students	follow
these	rules,	the	vast	majority	find	it	easy	to	write	clear	and	correct	code	for	shared
objects.	Conversely,	in	earlier	versions	of	the	course,	when	we	phrased	these	items	as
“strong	suggestions,”	many	students	found	themselves	adrift,	unable	to	write	code	for
even	the	simplest	shared	objects.

Our	advice	to	those	learning	multi-threaded	programming	is	to	treat	these	rules	as	a	given
and	follow	them	strictly	for	a	semester	or	so,	until	writing	shared	objects	is	easy.	At	that
point,	you	most	likely	will	understand	concurrent	programming	well	enough	to	decide
whether	to	continue	to	follow	the	rules.

We	also	believe	that	experienced	programmers	benefit	from	adhering	closely	to	these
rules.	Since	we	began	teaching	them,	we	have	also	disciplined	ourselves	to	follow	them
unless	there	is	a	very	good	reason	not	to.	We	have	found	exceptions	to	be	rare.
Conversely,	when	we	catch	ourselves	being	tempted	to	deviate	from	the	rules,	the	vast
majority	of	the	time	our	code	improves	if	we	force	ourselves	to	rewrite	the	code	to	follow
the	rules.

Although	the	rules	may	come	across	as	opinionated	(and	they	are),	they	are	far	from
novel.	Over	three	decades	ago,	Lampson	and	Redell’s	paper,	“Experience	with	Processes
and	Monitors	in	Mesa,”	provided	similar	advice	(in	a	more	measured	tone).

1.	 Consistent	structure.	The	first	rule	is	a	meta-rule	that	underlies	the	other	five	rules:
follow	a	consistent	structure.	Although	programming	with	a	clean,	consistent
structure	is	always	useful,	it	is	particularly	important	to	strictly	follow	tried-and-true
design	patterns	for	shared	objects.

At	a	minimum,	even	if	one	way	is	not	inherently	better	than	another,	following	the
same	strategy	every	time:	(1)	frees	you	to	focus	on	the	core	problem	because	the
details	of	the	standard	approach	become	a	habit,	and	(2)	makes	it	easier	for	those	who
follow	to	review,	maintain,	and	debug	your	code.	(And	it	will	make	it	easier	for	you
to	maintain	and	debug	your	code.)

As	an	analogy,	electricians	follow	standards	for	the	colors	of	wire	they	use	for
different	tasks.	White	is	neutral.	Black	or	red	is	hot.	Copper	is	ground.	An	electrician
does	not	have	to	decide	“Hm.	I	have	a	bit	more	white	on	my	belt	today	than	black,
should	I	use	white	or	black	for	my	grounds?”	When	an	electrician	walks	into	a	room
she	wired	last	month,	she	does	not	have	to	spend	time	trying	to	remember	which
color	is	which.	If	an	electrician	walks	into	a	room	she	has	never	seen	before,	she	can
immediately	determine	what	the	wiring	is	doing,	without	having	to	trace	it	back	into
the	switchboard.	Similar	advantages	apply	to	coding	standards.

However,	for	concurrent	programs,	the	evidence	is	that	the	abstractions	we	describe
are	better	than	almost	all	others.	Until	you	become	a	very	experienced	concurrent
programmer,	take	advantage	of	the	hard-won	experience	of	those	that	have	come
before	you.	Once	you	are	a	concurrency	guru,	you	are	welcome	to	invent	a	better
mousetrap.

Sure,	you	can	cut	corners	and	occasionally	save	a	line	or	two	of	typing	by	departing
from	the	standards.	However,	you	will	have	to	spend	a	few	minutes	thinking	to
convince	yourself	that	you	are	right	on	a	case-by-case	basis	(and	another	few	minutes
typing	comments	to	convince	the	next	person	to	look	at	the	code	that	you	are	right),
and	a	few	hours	or	weeks	tracking	down	bugs	when	you	are	wrong.	It	is	just	not
worth	it.

2.	 Always	synchronize	with	locks	and	condition	variables.

Many	operating	systems,	such	as	Linux,	Windows,	and	MacOS,	provide	a	diversity
of	synchronization	primitives.	At	the	end	of	this	chapter,	we	will	describe	one	such
primitive,	semaphores,	which	is	particularly	widely	used	in	operating	system	kernel
implementations.	Compared	to	locks	and	condition	variables,	semaphores	are	equally
powerful:	you	can	build	condition	variables	using	semaphores	and	vice	versa.	If	so,
why	pick	one	over	the	other?

We	recommend	that	you	be	able	to	read	and	understand	semaphores	so	you	can
understand	legacy	code,	but	that	you	only	write	new	code	using	locks	and	condition
variables.	Almost	always,	code	using	locks	and	condition	variables	is	clearer	than	the
equivalent	code	using	semaphores	because	it	is	more	“self-documenting.”	If	the	code
is	well	structured,	what	each	synchronization	action	is	doing	should	be	obvious.
Admittedly,	semaphores	sometimes	seem	to	fit	what	you	are	doing	perfectly	because
you	can	map	the	object’s	invariants	exactly	onto	the	internal	state	of	the	semaphore;
for	example,	you	can	write	an	extremely	concise	version	of	our	blocking	bounded
queue	using	semaphores.	But	what	happens	when	the	code	changes	next	month?	Will
the	fit	remain	as	good?	For	consistency	and	simplicity,	choose	one	of	the	two	styles
and	stick	with	it.	In	our	opinion,	the	right	one	is	to	use	locks	and	condition	variables.

3.	 Always	acquire	the	lock	at	the	beginning	of	a	method	and	release	it	right	before
the	return.

This	extends	the	principle	of	consistent	structure:	pick	one	way	to	do	things	and
always	follow	it.	The	benefit	here	is	that	it	is	easy	to	read	code	and	see	where	the
lock	is	or	is	not	held	because	synchronization	is	structured	on	a	method-by-method
basis.	Conversely,	if	acquire	and	release	calls	are	buried	in	the	middle	of	a	method,
it	is	harder	to	quickly	inspect	and	understand	the	code.

Taking	a	step	back,	if	there	is	a	logical	chunk	of	code	that	you	can	identify	as	a	set	of
actions	that	require	a	lock,	then	that	section	should	probably	be	its	own	procedure:	it
is	a	set	of	logically	related	actions.	If	you	find	yourself	wanting	to	acquire	a	lock	in
the	middle	of	a	procedure,	that	is	usually	a	red	flag	that	you	should	break	the	piece
you	are	considering	into	a	separate	procedure.	We	are	all	sometimes	lazy	about
creating	new	procedures	when	we	should.	Take	advantage	of	this	signal,	and	the
result	will	be	clearer	code.

There	are	two	corollaries	to	this	rule.	First,	if	your	code	is	well	structured,	all	shared
data	will	be	encapsulated	in	an	object,	and	therefore	all	accesses	to	shared	data	will
be	protected	by	a	lock.	Since	compilers	and	processors	never	re-order	instructions
across	lock	operations,	this	rule	guarantees	instruction	re-ordering	is	not	a	concern
for	your	code.

Second,	from	time	to	time,	we	see	students	attempting	to	acquire	a	lock	in	one
procedure,	and	release	it	in	another	procedure,	or	worse,	in	a	completely	different
thread.	(One	popular	idea	is	to	acquire	a	lock	in	a	parent	thread,	pass	it	in	thread_fork
to	a	child,	and	have	the	child	release	the	lock	after	it	has	started.)	Do	not	do	this.	For
one,	it	can	make	it	very	difficult	for	someone	reading	your	code	to	determine	which
shared	variables	are	protected	by	which	lock;	by	acquiring	at	the	beginning	of	the
procedure	and	releasing	at	the	end,	which	variables	go	with	which	locks	is	obvious.

While	some	early	thread	systems	allowed	lock	passing,	most	recently	designed
systems	prohibit	it.	For	example,	in	POSIX,	lock	release	is	“undefined”	when	called
by	a	different	thread	than	the	thread	that	acquired	the	lock.	In	other	words,	it	might
work	on	some	systems,	but	it	is	not	portable.	In	Java,	it	is	completely	prohibited.

4.	 Always	hold	the	lock	when	operating	on	a	condition	variable.

The	reason	you	signal	on	a	condition	variable	—	after	manipulating	shared	state	—	is
that	another	thread	is	waiting	in	a	loop	for	some	test	on	shared	state	to	become	true.
Condition	variables	are	useless	without	shared	state,	and	shared	state	should	only	be
accessed	while	holding	a	lock.

Many	libraries	enforce	this	rule	—	that	you	cannot	call	condition	variable	methods
unless	you	hold	the	corresponding	lock.	However,	some	run-time	systems	and
libraries	allow	sloppiness,	so	take	care.

5.	 Always	wait	in	a	while()	loop

The	pattern	should	always	be:

and	never:

Here,	predicateOnStateVariables(…)	is	code	that	looks	at	the	state	variables	of	the

current	object	to	decide	if	the	thread	should	proceed.

You	may	be	tempted	to	guard	a	wait	call	with	an	if	conditional	rather	than	a	while
loop	when	you	can	deduce	from	the	global	structure	of	the	program	that,	despite
Mesa	semantics,	any	time	a	thread	returns	from	wait,	it	can	proceed.	Avoid	this
temptation.

While	works	any	time	if	does,	and	it	works	in	situations	when	if	does	not.	By	the
principle	of	consistent	structure,	do	things	the	same	way	every	time.	But	there	are
three	additional	issues.

Using	if	breaks	modularity.	In	the	preceding	example,	to	know	whether	using	if
will	work,	you	must	consider	the	global	structure	of	the	program:	what	threads
there	are,	where	signal	is	called,	etc.	The	problem	is	that	a	change	in	code	in
one	method	(say,	adding	a	signal)	can	then	cause	a	bug	in	another	method
(where	the	wait	is).	Using	while	is	self-documenting;	anyone	can	look	at	the
wait	and	see	exactly	when	a	thread	may	proceed.

Always	using	while	gives	you	incredible	freedom	about	where	to	put	a	signal.
In	fact,	signal	becomes	a	hint	—	you	can	add	a	signal	to	an	arbitrary	place	in	a
correct	program	and	have	it	remain	correct.

Using	if	breaks	portability.	Some	implementations	of	condition	variables	allow
spurious	wakeups,	while	others	do	not.	For	example,	implementations	of
condition	variables	in	both	Java	and	the	POSIX	pthreads	library	are	allowed	to
return	from	wait	even	though	no	thread	called	signal	or	broadcast.

6.	 (Almost)	never	use	thread_sleep.

Many	thread	libraries	have	a	thread_sleep	function	that	suspends	execution	of	the
calling	thread	for	some	period	of	wall	clock	time.	Once	that	time	passes,	the	thread	is
returned	to	the	scheduler’s	ready	queue	and	can	run	again.

Never	use	thread_sleep	to	have	one	thread	wait	for	another	thread	to	perform	a	task.
The	correct	way	to	wait	for	a	condition	to	become	true	is	to	wait	on	a	condition
variable.

In	general,	thread_sleep	is	appropriate	only	when	there	is	a	particular	real-time
moment	when	you	want	to	perform	some	action,	such	as	a	timeout	for	when	to
declare	a	remote	server	non-responsive.	If	you	catch	yourself	writing
while(testOnObjectState())	{thread_sleep();},	treat	this	as	a	red	flag	that	you	are
probably	making	a	mistake.

Similarly,	if	a	thread	must	wait	for	an	object’s	state	to	change,	it	should	wait	on	a
condition	variable,	and	not	just	call	thread_yield.	Use	thread_yield	only	when	a	low-
priority	thread	that	can	still	make	progress	wants	to	let	a	higher-priority	thread	to	run.

5.5.3	Three	Pitfalls

We	next	describe	three	common	pitfalls.	The	first,	double-checked	locking,	is	a	problem	in
many	different	programming	languages,	including	C,	C++	and	Java.	The	second	and	third

pitfalls	are	specific	to	Java.	Java	is	a	modern	type-safe	language	that	included	support	for
threads	from	its	inception.	This	built-in	support	makes	multi-threaded	programming	in
Java	convenient.	However,	some	aspects	of	the	language	are	too	flexible	and	can
encourage	bad	practices.	We	highlight	those	pitfalls	here.

1.	 Double-Checked	Locking.

We	strongly	advise	holding	a	shared	object’s	lock	across	any	method	that	accesses
the	object’s	member	variables.	Programmers	are	often	tempted	to	avoid	some	of	these
lock	acquire	and	release	operations.	Unfortunately,	such	efforts	often	result	in	code
that	is	complex,	wrong,	or	both.

To	illustrate	the	challenges,	consider	the	double-checked	locking	design	pattern.	The
canonical	example	is	an	object	that	is	allocated	and	initialized	lazily	the	first	time	it	is
needed	by	any	thread.	(This	example	and	analysis	is	taken	from	Meyers	and
Alexandrescu,	“C++	and	the	Perils	of	Double-Checked	Locking.”
http://www.aristeia.com/Papers/DDJ_Jul_	Aug_2004_revised.pdf)	Being	good
programmers,	we	can	hide	the	lazy	allocation	inside	an	object,	Singleton,	which
returns	a	pointer	to	the	object,	creating	it	if	needed.

The	“optimization”	is	to	acquire	the	lock	if	the	object	has	not	already	been	allocated,
but	to	avoid	acquiring	the	lock	if	the	object	already	exists.	Because	there	can	be	a
race	condition	between	the	first	check	and	acquiring	the	lock,	the	check	must	be
made	again	inside	the	lock.

http://www.aristeia.com/Papers/DDJ_Jul_Aug_2004_revised.pdf

Although	the	intuition	is	appealing,	this	code	does	not	work.	The	problem	is	that	the
statement	pInstance	=	new	Instance()	is	not	an	atomic	operation;	in	fact,	it	comprises
at	least	three	steps:

1.	 Allocate	memory	for	a	Singleton	object.

2.	 Initialize	the	Singleton	object’s	memory	by	running	the	constructor.

3.	 Make	pInstance	point	to	this	newly	constructed	object.

The	problem	is	that	modern	compilers	and	hardware	architectures	can	reorder	these
events.	Thus,	it	is	possible	for	thread	1	to	execute	the	first	step	and	then	the	third
step;	then	thread	2	can	call	instance,	see	that	pInstance	is	non-null,	return	it,	and
begin	using	this	object	before	thread	1	finishes	initializing	it.

Discussion.	This	is	just	an	example	of	dangers	that	lurk	when	you	try	to	elide	locks;
the	lesson	applies	more	broadly.	This	example	is	extremely	simple	—	fewer	than	10
lines	of	code	with	very	simple	logic	—	yet	a	number	of	published	solutions	have
been	wrong.	As	Meyers	and	Alexandrescu	note,	some	tempting	solutions	using
temporary	variables	and	the	volatile	keyword	do	not	work.	Bacon	et	al.’s	“The
’Double-Checked	Locking	is	Broken’	Declaration”	discusses	a	range	of	non-solutions
in	Java.
http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html

This	type	of	optimization	is	risky	and	often	does	not	provide	significant	performance
gains	in	practice.	Most	programmers	should	not	consider	them.	Even	expert
programmers	should	habitually	stick	to	simpler	programming	patterns,	like	the	ones
we	have	discussed,	and	only	consider	optimizations	like	double-checked	locking
when	performance	measurements	and	profiling	indicate	that	the	optimizations	would
significantly	improve	overall	performance.

2.	 Avoid	defining	a	synchronized	block	in	the	middle	of	a	method.

Java	provides	built	in	language	support	for	shared	objects.	The	base	Object	class,
from	which	all	classes	inherit,	includes	a	lock	and	a	condition	variable	as	members.
Any	method	declaration	can	include	the	keyword	synchronized	to	indicate	that	the
object’s	lock	is	to	be	automatically	acquired	on	entry	to	the	method	and	automatically
released	on	any	return	from	the	method.	For	example:

This	syntax	is	useful	—	it	follows	rule	#2	above,	and	it	frees	the	programmer	from
having	to	worry	about	details,	like	making	sure	the	lock	is	released	before	every
possible	return	point	including	exceptions.	The	pitfall	is	that	Java	also	allows	a
synchronized	block	in	the	middle	of	a	method.	For	example:

http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html

This	construct	violates	rule	#3	from	Section	5.5.2	and	suffers	from	the	disadvantages
listed	there.	The	solution	is	the	same	as	discussed	above:	when	you	find	yourself
tempted	to	write	a	synchronized	block	in	the	middle	of	a	Java	method,	treat	that	as	a
strong	hint	that	you	should	define	a	separate	method	to	more	clearly	encapsulate	the
logical	chunk	you	have	identified.

3.	 Keep	shared	state	classes	separate	from	thread	classes.

Java	defines	a	class	called	Thread	that	implements	an	interface	called	Runnable	that
other	classes	can	implement	in	order	to	be	treated	as	threads	by	the	runtime	system.
To	write	the	code	that	represents	a	thread’s	“main	loop,”	you	typically	extend	the
Thread	class	or	implement	a	class	that	implements	Runnable.

The	pitfall	is	that,	when	extending	the	Thread	class	(or	writing	a	new	class	that
implements	Runnable),	you	may	be	tempted	to	include	not	only	the	thread’s	main
loop	but	also	state	to	be	shared	across	multiple	threads,	blurring	the	lines	between	the
threads	and	the	shared	objects.	This	is	almost	always	confusing.

For	example,	for	a	blocking	bounded	queue,	rather	than	defining	two	classes,	BBQ
for	the	shared	queue	and	WorkerThread	for	the	threads,	you	may	be	tempted	to
combine	the	two	into	a	single	class	—	for	example,	a	queue	with	an	associated
worker	thread.	If	this	sounds	confusing,	it	is,	but	it	is	a	pitfall	that	we	frequently	see
in	student	code.

The	solution	is	simple.	Always	make	sure	threads	and	shared	objects	are	defined	in
separate	classes.	State	that	can	be	accessed	by	multiple	threads,	locks,	and	condition
variables	should	never	appear	in	any	Java	class	that	extends	Thread	or	implements
Runnable.

5.6	Three	Case	Studies

The	best	way	to	learn	how	to	program	concurrently	is	to	practice.	Multithreaded
programming	is	an	important	skill,	and	we	anticipate	that	almost	everyone	reading	this
book	will	over	time	need	to	write	many	multi-threaded	programs.	To	help	get	you	started,
this	section	walks	through	several	examples.

5.6.1	Readers/Writers	Lock

First,	we	implement	a	readers/writers	lock.	Like	a	normal	mutual	exclusion	lock,	a
readers/writers	lock	(RWLock)	protects	shared	data.	However,	it	makes	the	following
optimization.	To	maximize	performance,	an	RWLock	allows	multiple	“reader”	threads	to

simultaneously	access	the	shared	data.	Any	number	of	threads	can	safely	read	shared	data
at	the	same	time,	as	long	as	no	thread	is	modifying	the	data.	However,	only	one	“writer”
thread	may	hold	the	RWLock	at	any	one	time.	(While	a	“reader”	thread	is	restricted	to
only	read	access,	a	“writer”	thread	may	read	and	write	the	data	structure.)	When	a	writer
thread	holds	the	RWLock,	it	may	safely	modify	the	data,	as	the	lock	guarantees	that	no
other	thread	(whether	reader	or	writer)	may	simultaneously	hold	the	lock.	The	mutual
exclusion	is	thus	between	any	writer	and	any	other	writer,	and	between	any	writer	and	the
set	of	readers.

Optimizing	for	the	common	case

Reader/writer	locks	are	an	example	of	an	important	principle	in	the	design	of	computer
systems:	optimizing	for	the	common	case.	Performance	optimizations	often	have	the	side
effect	of	making	the	code	more	complex	to	understand	and	reason	about.	Code	that	is
more	complex	is	more	likely	to	be	buggy,	and	more	likely	to	have	new	bugs	introduced	as
features	are	added.	How	do	we	decide	when	an	optimization	is	worth	the	cost?

One	approach	is	to	profile	your	code.	Then,	and	only	then,	optimize	the	code	paths	that
are	frequently	used.

In	the	case	of	locks,	it	is	obviously	simpler	to	use	a	regular	mutual	exclusion	lock.
Replacing	a	mutual	exclusion	lock	with	a	reader-writer	lock	is	appropriate	when	both	of
the	following	are	true:	(i)	there	is	substantial	contention	for	the	mutual	exclusion	lock	and
(ii)	a	substantial	majority	of	the	accesses	are	read-only.	In	other	words,	it	is	only
appropriate	to	use	if	it	would	make	a	significant	difference.

Reader-writer	locks	are	very	commonly	used	in	databases,	where	they	are	used	to	support
faster	search	queries	over	the	database,	while	also	supporting	less	frequent	database
updates.	Another	common	use	is	inside	the	operating	system	kernel,	where	core	data
structures	are	often	read	by	many	threads	and	only	infrequently	updated.

To	generalize	our	mutual	exclusion	lock	into	a	readers/writers	lock,	we	implement	a	new
kind	of	shared	object,	RWLock,	to	guard	access	to	the	shared	data	and	to	enforce	these
rules.	The	RWLock	is	implemented	using	our	standard	synchronization	building	blocks:
mutual	exclusion	locks	and	condition	variables.

A	thread	that	wants	to	(atomically)	read	the	shared	data	proceeds	as	follows:

Similarly,	a	thread	that	wants	to	(atomically)	write	the	shared	data	does	the	following:

To	design	the	RWLock	class,	we	begin	by	defining	its	interface	(already	done	in	this	case)
and	its	shared	state.	For	the	state,	it	is	useful	to	keep	enough	data	to	allow	a	precise
characterization	of	the	object;	especially	when	debugging,	having	too	much	state	is	better
than	having	too	little.	Here,	the	object’s	behavior	is	fully	characterized	by	the	number	of
threads	reading	or	writing	and	the	number	of	threads	waiting	to	read	or	write,	so	we	have
chosen	to	keep	four	integers	to	track	these	values.	Figure	5.9	shows	the	members	of	and
interface	to	the	RWLock	class.

Figure	5.9:	The	interface	and	member	variables	for	our	readers/writers	lock.

Next,	we	add	synchronization	variables	by	asking,	“When	can	methods	wait?”	First,	we
add	a	mutual	exclusion	lock:	the	RWLock	methods	must	wait	whenever	another	thread	is
accessing	the	RWLock	state	variables.	Next,	we	observe	that	startRead	or	startWrite	may
have	to	wait,	so	we	add	a	condition	variable	for	each	case:	readGo	and	writeGo.

RWLock::doneRead	and	doneWrite	do	not	wait	(other	than	to	acquire	the	mutual
exclusion	lock).	Therefore,	these	methods	do	not	need	any	additional	condition	variables.

We	can	now	implement	RWLock.	Figure	5.10	shows	the	complete	solution,	which	we
develop	in	a	few	simple	steps.	Much	of	what	we	need	to	do	is	almost	automatic.

Since	we	always	acquire/release	mutual	exclusion	locks	at	the	beginning/end	of	a
method	(and	never	in	the	middle),	we	can	write	calls	to	acquire	and	release	the

mutual	exclusion	lock	at	the	start	and	end	of	each	public	method	before	even	thinking
in	detail	about	what	these	methods	do.

At	this	point,	startRead	and	doneRead	look	like	this:

RWLock::startWrite	and	RWLock::doneWrite	are	similar.

Since	we	know	startRead	and	startWrite	may	have	to	wait,	we	can	write	a	while(…)
{wait(…);}	loop	in	the	middle	of	each.	In	fact,	we	can	defer	thinking	about	the
details	by	inserting	a	private	method	to	be	defined	later,	as	the	predicate	for	the	while
loop	(e.g.,	readShouldWait	and	writeShouldWait).

At	this	point,	startRead	looks	like	this:

RWLock::StartWrite()	looks	similar.

Now	things	get	a	bit	more	complex.	We	can	add	code	to	track	activeReaders,
activeWriters,	waitingReaders,	and	waitingWriters.	Since	we	hold	mutual	exclusion	locks
in	all	of	the	public	methods,	this	is	easy	to	do.	For	example,	a	call	to	startRead	initially
increments	the	number	of	waiting	readers;	when	the	thread	gets	past	the	while	loop,	the
number	of	waiting	readers	is	decremented,	but	the	number	of	active	readers	is
incremented.

When	reads	or	writes	finish,	it	may	become	possible	for	waiting	threads	to	proceed.	We

therefore	need	to	add	signal	or	broadcast	calls	to	doneRead	and	doneWrite.	The
simplest	solution	would	be	to	broadcast	on	both	readGo	and	writeGo	in	each	method,	but
that	would	be	both	inefficient	and	(to	our	taste)	less	clear	about	how	the	class	actually
works.

Instead,	we	observe	that	in	doneRead,	when	a	read	completes,	there	are	two	interesting
cases:	(a)	no	writes	are	pending,	and	nothing	needs	to	be	done	since	this	read	cannot
prevent	other	reads	from	proceeding,	or	(b)	a	write	is	pending,	and	this	is	the	last	active
read,	so	one	write	can	proceed.	In	case	(b),	we	use	signal	since	at	most	one	write	can
proceed,	and	any	write	waiting	on	the	condition	variable	can	proceed.

Our	code	for	startRead	and	doneRead	is	now	done:

Code	for	startWrite	and	doneWrite	is	similar.	For	doneWrite,	if	there	are	any	pending
writes,	we	signal	on	writeGo.	Otherwise,	we	broadcast	on	readGo.

Finally,	we	need	to	define	the	readShouldWait	and	writeShouldWait	predicates.	Here,	we
implement	a	writers	preferred	solution:	reads	should	wait	if	there	are	any	active	or
pending	writers,	while	writes	wait	only	while	there	are	active	readers	or	active	writers.
Otherwise,	a	continuous	stream	of	new	readers	could	starve	a	write	request	and	prevent	if
from	ever	being	serviced.

The	code	for	writeShouldWait	is	similar.

Since	readShouldWait	and	writeShouldWait	are	private	methods	that	are	always	called
from	public	methods	that	hold	the	mutual	exclusion	lock,	they	do	not	need	to	acquire	the
lock.

Figure	5.10	gives	the	full	code.	This	solution	may	not	be	to	your	taste.	You	may	decide	to
use	more	or	fewer	condition	variables,	use	different	state	variables	to	implement	different
invariants,	or	change	when	to	call	signal	or	broadcast.	The	shared	object	approach
allows	designers	freedom	in	these	dimensions.

Figure	5.10:	An	implementation	of	a	readers/writers	lock.

Single	stepping	and	model	checking	your	code

Suppose	you	have	written	some	concurrent	code,	and	you	would	like	to	verify	that	the
solution	behaves	as	you	expect.	One	thing	you	should	always	do	—	whether	for
sequential	or	concurrent	code	—	is	to	use	a	debugger	to	single	step	through	the	code	on
various	inputs,	to	verify	that	the	program	logic	is	doing	what	you	expect	it	to	do,	and	do
the	variables	have	the	values	you	expect.

This	is	especially	useful	for	concurrent	programs.	Since	the	program	must	work	for	any
possible	thread	schedule,	you	can	use	the	debugger	to	consider	what	happens	when
threads	are	interleaved	in	different	ways.	Does	your	program	logic	still	do	what	you
expect?

For	example,	for	the	RWLock	class,	you	can:

Start	a	single	reader.	Does	it	go	all	the	way	through?	Obviously,	it	should	not	wait,
since	no	one	has	the	lock	and	there	are	no	writers.	When	it	finishes	readDone,	are
the	state	variables	back	to	their	initial	state?

Start	a	writer,	and	after	it	acquires	the	mutual	exclusion	lock,	start	a	reader.	Does	it
wait	for	the	lock?	When	the	writer	finishes	startWrite,	does	the	reader	proceed	and
then	wait	for	the	writer	to	call	doneWrite?	Does	the	reader	proceed	after	that?

Start	a	reader,	followed	by	a	writer,	followed	by	another	reader.	And	so	forth.

We	encourage	you	to	do	this	for	the	examples	in	this	section.	The	examples	are	short
enough	that	you	can	execute	them	by	hand,	but	we	also	provide	code	if	you	want	to	try
this	in	a	debugger.

A	more	systematic	approach	is	called	model	checking.	To	fully	verify	that	a	concurrent
program	does	what	it	was	designed	to	do,	a	model	checker	enumerates	all	possible
sequences	of	operations,	and	tries	each	one	in	turn.	Since	this	could	result	in	a	nearly
infinite	number	of	possible	tests	even	for	a	fairly	simple	program,	to	be	practical	model
checking	needs	to	reduce	the	search	space.	For	code	that	follows	our	guidelines	—	with
locks	to	protect	shared	data	—	the	exact	ordering	of	instructions	is	no	longer	important.
For	example,	preempting	a	thread	that	holds	a	lock	is	immaterial	to	the	behavior	of	the
program.

Rather,	the	behavior	of	the	program	depends	on	the	sequence	of	synchronization
instructions:	which	thread	is	first	to	acquire	the	lock,	which	thread	waits	on	a	condition
variable,	and	so	forth.	Thus,	a	model	checker	can	proceed	in	two	steps:	first	verify	that
there	are	no	unlocked	accesses	to	shared	data,	and	then	enumerate	various	sequences	of
synchronization	operations.	Even	with	this,	the	number	of	possibilities	can	be
prohibitively	large,	and	so	typically	the	model	checker	will	verify	however	many
different	interleavings	it	can	within	some	time	limit.

5.6.2	Synchronization	Barriers

With	data	parallel	programming,	as	we	explained	in	Chapter	4,	the	computation	executes
in	parallel	across	a	data	set,	with	each	thread	operating	on	a	different	partition	of	the	data.
Once	all	threads	have	completed	their	work,	they	can	safely	use	each	other’s	results	in	the
next	(data	parallel)	step	in	the	algorithm.	MapReduce	is	an	example	of	data	parallel
programming,	but	there	are	many	other	systems	with	the	same	structure.

For	this	to	work,	we	need	an	efficient	way	to	check	whether	all	n	threads	have	finished
their	work.	This	is	called	a	synchronization	barrier.	It	has	one	operation,	checkin.	A
thread	calls	checkin	when	it	has	completed	its	work;	no	thread	may	return	from
checkin	until	all	n	threads	have	checked	in.	Once	all	threads	have	checked	in,	it	is	safe	to
use	the	results	of	the	previous	step.

Note	that	a	synchronization	barrier	is	different	from	a	memory	barrier,	defined	earlier	in
the	chapter.	A	synchronization	barrier	is	called	concurrently	by	many	threads;	the	barrier
prevents	any	thread	from	proceeding	until	all	threads	reach	the	barrier.	A	memory	barrier
is	called	by	one	thread,	to	prevent	the	thread	from	proceeding	until	all	memory	operations
that	occur	before	the	barrier	have	completed	and	are	visible	to	other	threads.

An	implementation	of	MapReduce	using	a	synchronization	barrier	might	look	like	the
code	in	Figure	5.11.

Figure	5.11:	An	implementation	of	MapReduce	using	synchronization	barriers.

An	alternative	to	using	a	synchronization	barrier	would	be	to	create	n	threads	at	each	step;
the	main	thread	could	then	call	thread_join	on	each	thread	to	ensure	its	completion.	While
this	would	be	correct,	it	might	be	inefficient.	Not	only	would	n	new	threads	need	to	be
started	at	each	step,	the	partitioning	of	work	among	threads	would	also	need	to	be	redone
each	time.	Frequently,	each	thread	in	a	data	parallel	computation	can	work	on	the	same
data	repeatedly	over	many	steps,	maximizing	the	efficiency	of	the	hardware	processor
cache.

We	can	derive	an	implementation	for	a	synchronization	barrier	in	the	same	way	as	we
described	above	for	the	readers/writers	lock.

We	create	a	Barrier	class,	with	a	lock	to	protect	its	internal	state	variables:	how	many
have	checked	in	so	far	(count),	and	how	many	we	are	expecting	(numThreads).

We	acquire	the	lock	at	the	beginning	of	checkin,	and	we	release	it	at	the	end.

Since	threads	may	have	to	wait	in	checkin,	we	need	a	condition	variable,
allCheckedIn.

We	put	the	wait	in	a	while	loop,	checking	if	all	n	threads	have	checked	in	yet.

The	last	thread	to	checkin	does	a	broadcast	to	wake	up	all	of	the	waiters.

Figure	5.12	gives	the	full	implementation.	Note	that	we	still	use	a	while	loop,	even	though
the	signal	means	that	the	thread	can	safely	exit	checkin.	There	is	no	harm	in	using	a	while
statement,	and	it	protects	against	the	possibility	of	the	runtime	library	issuing	spurious
wakeups.

Figure	5.12:	Candidate	implementation	of	a	synchronization	barrier.	With	this
implementation,	each	instance	of	a	barrier	can	be	safely	used	only	one	time.

The	design	is	straightforward,	but	a	problem	is	that	the	barrier	can	only	be	used	once.	One
way	to	see	this	is	that	the	state	of	the	barrier	does	not	revert	to	the	same	state	it	had	when
it	was	created.	Implementing	a	reusable	barrier	is	a	bit	more	subtle.

The	first	thread	to	leave	(the	one	that	wakes	up	the	other	threads)	cannot	reset	the
state,	because	until	the	other	threads	have	woken	up,	the	state	is	needed	so	that	they
know	to	exit	the	while	loop.

The	last	thread	to	leave	the	barrier	cannot	reset	the	state	for	the	next	iteration,
because	there	is	a	possible	race	condition.	Suppose	a	thread	finishes	checkin	and
calls	checkin	on	the	next	barrier	before	the	last	thread	wakes	up	and	leaves	the
previous	barrier.	In	that	case,	the	thread	would	find	that	n	threads	have	already
checked	in	(because	the	state	hasn’t	been	reset),	and	so	it	would	think	it	is	“ok	to
proceed!”

A	simple	way	to	implement	a	re-usable	barrier	is	to	use	two	single-use	barriers.	The	first
barrier	ensures	that	all	threads	are	checked	in,	and	the	second	ensures	that	all	threads	have
woken	up	from	allCheckedIn.wait.	The	nth	thread	to	leave	can	safely	reset
numCheckedIn;	the	nth	thread	to	call	checkin	can	safely	reset	numLeaving.	Figure	5.13
gives	the	result.

Figure	5.13:	Implementation	of	a	re-usable	synchronization	barrier.

5.6.3	FIFO	Blocking	Bounded	Queue

Assuming	Mesa	semantics	for	condition	variables,	our	implementation	of	the	thread-safe
blocking	bounded	queue	in	Figure	5.8	does	not	guarantee	freedom	from	starvation.	For
example,	a	thread	may	call	remove	and	wait	in	the	while	loop	because	the	queue	is	empty.

Starvation	would	occur	if	every	time	another	thread	inserts	an	item	into	the	queue,	a
different	thread	calls	remove,	acquires	the	lock,	sees	that	the	queue	is	full,	and	removes	the
item	before	the	waiting	thread	resumes.

Often,	starvation	is	not	a	concern.	For	example,	if	we	have	one	thread	putting	items	into
the	queue,	and	n	equivalent	worker	threads	removing	items	from	the	queue,	it	may	not
matter	which	of	the	worker	threads	goes	first.	Even	if	starvation	is	a	concern,	as	long	as
calls	to	insert	and	remove	are	infrequent,	or	the	buffer	is	rarely	empty	or	full,	every	thread
is	highly	likely	to	make	progress.

Suppose,	however,	we	do	need	a	thread-safe	bounded	buffer	that	does	guarantee	progress
to	all	threads.	We	can	more	formally	define	the	liveness	constraint	as:

Starvation-freedom.	If	a	thread	waits	in	insert,	then	it	is	guaranteed	to	proceed	after
a	bounded	number	of	remove	calls	complete,	and	vice	versa.

First-in-first-out	(FIFO).	A	stronger	constraint	is	that	the	queue	is	first-in-first-out,
or	FIFO.	The	nth	thread	to	acquire	the	lock	in	remove	retrieves	the	item	inserted	by
the	nth	thread	to	acquire	the	lock	in	insert.

Under	Hoare	semantics,	the	implementation	in	Figure	5.8	is	FIFO,	and	therefore	also
starvation-free,	provided	that	signal	wakes	up	the	thread	waiting	the	longest.

Here	we	consider	a	related	question:	can	we	implement	a	starvation-free	or	FIFO	bounded
buffer	using	Mesa	semantics?	We	need	to	ensure	that	when	one	thread	signals	a	waiter,	the
waiting	thread	(and	not	any	other)	removes	the	item.

Figure	5.14:	An	implementation	of	FIFO	Blocking	Bounded	Buffer	using	Mesa
semantics.	ConditionQueue	is	a	linked	list	of	condition	variables.

The	easiest	way	to	do	this	is	to	create	a	condition	variable	for	each	separate	waiting
thread.	Then,	you	can	be	precise	as	to	which	thread	to	wake	up!	Although	you	might	be
worried	that	this	would	be	space	inefficient,	on	modern	computer	systems	a	condition
variable	(or	lock)	takes	up	just	a	few	words	of	DRAM;	it	is	small	compared	to	the	rest	of
the	storage	needed	per	thread.

The	outline	of	the	solution	is	as	follows:

Create	a	condition	variable	for	every	waiter.

Put	condition	variables	on	a	queue	in	FIFO	order.

Signal	wakes	up	the	thread	at	the	front	of	the	queue.

Be	CAREFUL	about	spurious	wakeups!

We	give	an	implementation	of	FIFOBBQ::remove	in	Figure	5.14;	insert	is	similar.

The	implementation	easily	extends	to	the	case	where	we	want	the	queue	to	be	last	in	first
out	(LIFO)	rather	than	FIFO,	or	if	want	it	to	wake	up	threads	in	some	priority	order.	With
Hoare	semantics,	this	is	not	as	easy;	we	would	need	to	have	a	different	implementation	of
CV	for	each	different	queueing	discipline,	rather	than	leaving	it	to	those	few	applications
where	the	specific	order	matters.

5.7	Implementing	Synchronization	Objects

Now	that	we	have	described	locks	and	condition	variables	and	shown	how	to	use	them	in
shared	objects,	we	turn	to	how	to	implement	these	important	building	blocks.

Recall	from	Chapter	4	that	threads	can	be	implemented	in	the	kernel	or	at	user	level.	We
start	by	describing	how	to	implement	synchronization	for	kernel	threads;	at	the	end	of	this
section	we	discuss	the	changes	needed	to	support	these	abstractions	for	user-level	threads.

Both	locks	and	condition	variables	have	state.	For	locks,	this	is	the	state	of	the	lock
(FREE	or	BUSY)	and	a	queue	of	zero	or	more	threads	waiting	for	the	lock	to	become
FREE.	For	condition	variables,	the	state	is	the	queue	of	threads	waiting	to	be	signaled.
Either	way,	the	challenge	is	to	atomically	modify	those	data	structures.

The	Too	Much	Milk	discussion	showed	that	it	is	both	complex	and	costly	to	implement
atomic	actions	with	just	memory	reads	and	writes.	Therefore,	modern	implementations	use
more	powerful	hardware	primitives	that	let	us	atomically	read,	modify,	and	write	pieces	of

state.	We	use	two	hardware	primitives:

Disabling	interrupts.	On	a	single	processor,	we	can	make	a	sequence	of	instructions
atomic	by	disabling	interrupts	on	that	single	processor.

Atomic	read-modify-write	instructions.	On	a	multiprocessor,	disabling	interrupts	is
insufficient	to	provide	atomicity.	Instead,	architectures	provide	special	instructions	to
atomically	read	and	update	a	word	of	memory.	These	instructions	are	globally	atomic
with	respect	to	the	instructions	on	every	processor.

Each	of	these	primitives	also	serves	as	a	memory	barrier;	they	inform	the	compiler	and
hardware	that	all	prior	instructions	must	complete	before	the	atomic	instruction	is
executed.

5.7.1	Implementing	Uniprocessor	Locks	by	Disabling	Interrupts

On	a	uniprocessor,	any	sequence	of	instructions	by	one	thread	appears	atomic	to	other
threads	if	no	context	switch	occurs	in	the	middle	of	the	sequence.	So,	on	a	uniprocessor,	a
thread	can	make	a	sequence	of	actions	atomic	by	disabling	interrupts	(and	refraining	from
calling	thread	library	functions	that	can	trigger	a	context	switch)	during	the	sequence.

This	observation	suggests	a	trivial	—	but	seriously	limited	—	approach	to	implementing
locks	on	a	uniprocessor:

This	implementation	does	provide	the	mutual	exclusion	property	we	need	from	locks.
Some	uniprocessor	kernels	use	this	simple	approach,	but	it	does	not	suffice	as	a	general
implementation	for	locks.	If	the	code	sequence	the	lock	protects	runs	for	a	long	time,
interrupts	will	be	disabled	for	that	long.	This	will	prevent	other	threads	from	running,	and
it	will	make	the	system	unresponsive	to	handling	user	inputs	or	other	real-time	tasks.
Furthermore,	although	this	approach	can	work	in	the	kernel	where	all	code	is
(presumably)	carefully	crafted	and	trusted	to	release	the	lock	quickly,	we	cannot	let
untrusted	user-level	code	run	with	interrupts	turned	off	since	a	malicious	or	buggy
program	could	then	monopolize	the	processor.

5.7.2	Implementing	Uniprocessor	Queueing	Locks

A	more	general	solution	is	based	on	the	observation	that	if	the	lock	is	BUSY,	there	is	no
point	in	running	the	acquiring	thread	until	the	lock	is	free.	Instead,	we	should	context
switch	to	the	next	ready	thread.

The	implementation	briefly	disables	interrupts	to	protect	the	lock’s	data	structures,	but	re-
enables	them	once	a	thread	has	acquired	the	lock	or	determined	that	the	lock	is	BUSY.	The

Lock	implementation	shown	in	Figure	5.15	illustrates	this	approach.	If	a	lock	is
BUSY	when	a	thread	tries	to	acquire	it,	the	thread	moves	its	TCB	onto	the	lock’s	waiting
list.	The	thread	then	suspends	itself	and	switches	to	the	next	runnable	thread.	The	call	to
suspend	does	not	return	until	the	thread	is	put	back	on	the	ready	list,	e.g.,	until	some
thread	calls	Lock::release.

Figure	5.15:	Pseudo-code	for	a	uniprocessor	queueing	lock.	Temporarily	disabling
interrupts	provides	atomic	access	to	the	data	structures	implementing	the	lock.
suspend(oldTCB,	newTCB)	switches	from	the	current	thread	to	the	next	to	be	run.	It
returns	only	after	some	other	thread	calls	release	and	moves	it	to	the	ready	list.

In	our	implementation,	if	a	thread	is	waiting	for	the	lock,	a	call	to	release	does	not	set
value	to	FREE.	Instead,	it	leaves	value	as	BUSY.	The	woken	thread	is	guaranteed	to	be	the
next	that	executes	the	critical	section.	This	arrangement	ensures	freedom	from	starvation.

WARNING:	This	optimization	is	specific	to	this	implementation.	Users	of	locks	should
not	make	assumptions	about	the	order	in	which	waiting	threads	acquire	a	lock.

EXAMPLE:	In	Lock::acquire,	thread_switch	is	called	with	interrupts	turned	off.	Who
turns	them	back	on?

ANSWER:	The	next	thread	to	run	re-enables	interrupts.	In	particular,	most
implementations	of	thread	systems	enforce	the	invariant	that	a	thread	always	disables
interrupts	before	performing	a	context	switch.	As	a	result,	interrupts	are	always	disabled
when	the	thread	runs	again	after	a	context	switch.	Thus,	whenever	a	thread	returns	from	a
context	switch,	it	must	re-enable	interrupts.	For	example,	the	Lock::acquire	code	in
Figure	5.15	re-enables	interrupts	before	returning;	the	yield	implementation	in	Chapter	4
disables	interrupts	before	the	context	switch	and	then	re-enables	them	afterwards.	□

5.7.3	Implementing	Multiprocessor	Spinlocks

On	a	multiprocessor,	however,	disabling	interrupts	is	insufficient.	Even	when	interrupts
are	turned	off	on	one	processor,	other	threads	are	running	concurrently.	Operations	by	a
thread	on	one	processor	are	interleaved	with	operations	by	other	threads	on	other
processors.

Since	turning	off	interrupts	is	insufficient,	most	processor	architectures	provide	atomic
read-modify-write	instructions	to	support	synchronization.	These	instructions	can	read	a
value	from	a	memory	location	to	a	register,	modify	the	value,	and	write	the	modified	value
to	memory	atomically	with	respect	to	all	instructions	on	other	processors.

Implementing	read-modify-write	instructions

Students	often	ask	at	this	point	how	the	processor	hardware	implements	atomic
instructions	such	as	test-and-set.	If	each	processor	has	its	own	cache,	what	is	to	keep	two
processors	from	reading	and	updating	the	same	location	at	the	same	time?	Although	a
complete	explanation	is	beyond	the	scope	of	this	textbook,	the	hardware	uses	the	same
mechanism	as	it	uses	for	cache	coherence.

Every	entry	in	a	processor	cache	has	a	state,	either	exclusive	or	read-only.	If	any	other
processors	have	a	cached	copy	of	the	data,	it	must	be	read-only	everywhere.	To	modify	a
shared	memory	location,	the	processor	must	have	an	exclusive	copy	of	the	data;	no	other
cache	is	allowed	to	have	a	copy.	Otherwise,	one	processor	could	read	an	out-of-date	value
for	some	location	that	another	processor	has	already	updated.	To	read	or	write	a	location
that	is	stored	exclusive	in	some	other	cache,	the	processor	needs	to	fetch	the	latest	value
from	that	cache.

Read-modify-write	instructions	piggyback	on	this	mechanism.	To	execute	one	of	these
instructions,	the	hardware	acquires	an	exclusive	copy	of	the	memory,	removing	copies
from	all	other	caches.	Then	the	instruction	executes	on	the	local	copy;	after	the

instruction	completes,	other	processors	are	allowed	to	read	the	result	by	fetching	the	latest
value.

As	an	example,	some	architectures	provide	a	test-and-set	instruction,	which	atomically
reads	a	value	from	memory	to	a	register	and	writes	the	value	1	to	that	memory	location.

Figure	5.16:	A	multiprocessor	spinlock	implementation	using	test-and-set.

Figure	5.16	implements	a	lock	using	test_and_set.	This	lock	is	called	a	spinlock	because	a
thread	waiting	for	a	BUSY	lock	“spins”	(busy-waits)	in	a	tight	loop	until	some	other	lock
releases	the	lock.	This	approach	is	inefficient	if	locks	are	held	for	long	periods.	However,
for	locks	that	are	only	held	for	short	periods	(i.e.,	less	time	than	a	context	switch	would
take),	spinlocks	make	sense.

Interrupt	handlers	and	spinlocks

Whenever	an	interrupt	handler	accesses	shared	data,	that	data	must	be	protected	by	a
spinlock	instead	of	a	queueing	lock.	As	we	explained	in	Chapter	2	and	Chapter	4,
interrupt	handlers	are	not	threads:	they	must	run	to	completion	without	blocking	so	that
the	hardware	can	deliver	the	next	interrupt.	With	a	queueing	lock,	the	lock	might	be	held
when	the	interrupt	handler	starts,	making	it	impossible	for	the	interrupt	handler	to	work
correctly.

Whenever	any	thread	acquires	a	spinlock	used	within	an	interrupt	handler,	the	thread	must
disable	interrupts	first.	Otherwise,	deadlock	can	result	if	the	interrupt	arrives	at	an
inopportune	moment.	The	handler	could	spin	forever	waiting	for	a	lock	held	by	the	thread
it	interrupted.	Most	likely,	the	system	would	need	to	be	rebooted	to	clear	the	problem.

To	avoid	these	types	of	errors,	most	operating	systems	keep	interrupt	handlers	extremely
simple.	For	example,	many	interrupt	handlers	simply	wake	up	a	thread	to	do	the	heavy
lifting	of	managing	the	I/O	device.	Waking	up	a	thread	requires	mutually	exclusive	access
to	the	ready	list,	protected	by	a	spinlock	that	is	never	used	without	first	disabling
interrupts.

5.7.4	Implementing	Multiprocessor	Queueing	Locks

Often,	we	need	to	support	critical	sections	of	varying	length.	For	example,	we	may	want	a
general	solution	that	does	not	make	assumptions	about	the	running	time	of	methods	that
hold	locks.

Figure	5.17:	Pseudo-code	for	a	multiprocessor	queueing	lock.	Both	the	scheduler	and	the
lock	use	spinlocks	to	protect	their	internal	data	structures.	Any	thread	that	tries	to	acquire
the	lock	when	it	is	BUSY	is	put	on	a	queue	for	later	wakeup.	Care	is	needed	to	prevent
the	waiting	thread	from	being	put	back	on	the	ready	list	before	it	has	completed	the
thread_switch.

We	cannot	completely	eliminate	busy-waiting	on	a	multiprocessor,	but	we	can	minimize
it.	As	we	mentioned,	the	scheduler	ready	list	needs	a	spinlock.	The	scheduler	holds	this
spinlock	for	only	a	few	instructions;	further,	if	the	ready	list	spinlock	is	BUSY,	there	is	no
point	in	trying	to	switch	to	a	different	thread,	as	that	would	require	access	to	the	ready	list.

To	reduce	contention	on	the	ready	list	spinlock,	we	use	a	separate	spinlock	to	guard
access	to	each	lock’s	internal	state.	Once	a	thread	holds	the	lock’s	spinlock,	the	thread	can
inspect	and	update	the	lock’s	state.	If	the	lock	is	FREE,	the	thread	sets	the	value	and
releases	its	spinlock.	If	the	lock	is	BUSY,	more	work	is	needed:	we	need	to	put	the	current
thread	on	the	waiting	list	for	the	lock,	suspend	the	current	thread,	and	switch	to	a	new
thread.

Careful	sequencing	is	needed,	however,	as	shown	in	Figure	5.17.	To	suspend	a	thread	on	a
multiprocessor,	we	need	to	first	disable	interrupts	to	ensure	the	thread	is	not	preempted
while	holding	the	ready	list	spinlock.	We	then	acquire	the	ready	list	spinlock,	and	only
then	is	it	safe	to	release	the	lock’s	spinlock	and	switch	to	a	new	thread.	The	ready	list
spinlock	is	released	by	the	next	thread	to	run.	Otherwise,	a	different	thread	on	another
processor	might	put	the	waiting	thread	back	on	the	ready	list	(and	start	it	running)	before
the	waiting	thread	has	completed	its	context	switch.

Later,	when	the	lock	is	released,	if	any	threads	are	waiting	for	the	lock,	one	of	them	is
moved	off	the	lock’s	waiting	list	to	the	scheduler’s	ready	list.

EXAMPLE:	What	might	happen	if	we	released	the	Lock’s	spinlock	before	the	call	to

suspend?

ANSWER:	The	basic	issue	is	that	we	want	to	make	sure	the	acquiring	thread	finishes
suspending	itself	before	a	thread	releasing	the	lock	tries	to	reschedule	it.	If	we	allowed
makeReady	to	run	before	suspend,	makeReady	would	mark	the	acquring	thread	READY,
but	suspend	would	then	change	the	thread’s	state	to	WAITING.	The	acquiring	thread
would	then	be	stuck	in	the	WAITING	state	forever.	Since	this	sequence	would	happen
very	rarely,	it	would	be	extremely	difficult	to	locate	the	problem.	□

NOTE:	In	the	implementation	in	Figure	5.17,	the	single	scheduler	spinlock	can	become	a
bottleneck	as	the	number	of	processors	increases.	Instead,	as	we	explain	in	Chapter	6,
most	systems	have	one	ready	list	per	processor,	each	protected	by	a	different	spinlock.
Different	processors	can	then	simultaneously	add	and	remove	threads	to	different	lists.
Typically,	the	WAITING	thread	is	placed	on	the	ready	list	of	the	same	processor	where	it
had	previously	been	RUNNING;	this	improves	cache	performance	as	that	processor’s
cache	may	still	contain	code	and	data	from	the	last	time	the	thread	ran.	Putting	the	thread
back	on	the	same	ready	list	also	prevents	the	thread	from	being	run	by	any	other	processor
before	the	thread	has	completed	its	context	switch.	Once	it	is	READY,	any	idle	processor
can	run	the	thread	by	acquiring	the	spinlock	of	the	ready	list	where	it	is	enqueued,
removing	the	thread,	and	releasing	the	spinlock.

5.7.5	Case	Study:	Linux	2.6	Kernel	Mutex	Lock

We	illustrate	how	locks	are	implemented	in	practice	by	examining	the	Linux	2.6	kernel.
The	Linux	code	closely	follows	the	approach	we	described	above,	except	that	it	is
optimized	for	the	common	case.

In	Linux,	most	locks	are	FREE	most	of	the	time.	Further,	even	if	a	lock	is	BUSY,	it	is
likely	that	no	other	thread	is	waiting	for	it.	The	alternative,	that	locks	are	often	BUSY,	or
have	long	queues	of	threads	waiting	for	them,	means	that	any	thread	that	needs	the	lock
will	usually	need	to	wait,	slowing	the	system	down.

The	Linux	implementation	of	locks	takes	advantage	of	this	by	providing	an	extremely	fast
path	for	the	case	when	the	thread	does	not	need	to	wait	for	the	lock	in	acquire,	and	when
there	is	no	thread	not	need	to	wake	up	a	thread	in	release.	A	slow	path,	similar	to
Figure	5.17,	is	used	for	all	other	cases.

Further,	having	a	fast	path	for	acquiring	a	FREE	lock,	and	releasing	a	lock	with	no	waiting
thread,	is	also	a	concern	for	user-level	thread	libraries,	discussed	below.

To	optimize	the	common	case	path,	Linux	takes	advantage	of	hardware-specific	features
of	the	x86.	The	x86	supports	a	large	number	of	different	read-modify-write	instructions,
including	atomic	decrement	(subtract	one	from	the	memory	location,	returning	the
previous	value),	atomic	increment,	atomic	exchange	(swap	the	value	of	the	memory
location	with	the	value	stored	in	a	register),	and	atomic	test-and-set.

The	key	idea	is	to	design	the	lock	data	structures	to	allow	the	lock	to	be	acquired	and
released	on	the	fast	path	without	first	acquiring	the	spinlock	or	disabling	interrupts.	The
slowpath	does	require	acquiring	the	spinlock.	Instead	of	being	binary,	the	lock	value	is	an
integer	count	with	three	states:

The	Linux	lock	acquire	code	is	a	macro	(to	avoid	making	a	procedure	call	on	the	fast	path)
that	translates	to	a	short	sequence	of	instructions.	The	x86	lock	prefix	before	the	decl
instruction	signifies	to	the	processor	that	the	instruction	should	be	executed	atomically.

lock	decl	(%eax)		//	atomic	decrement	of	a	memory	location
																							//	address	in	%eax	is	pointer	to	lock->count
					jns	1f												//	jump	if	not	signed	(if	value	is	now	0)						call	slowpath_acquire		1:

If	the	lock	was	FREE,	the	lock	is	acquired	with	only	two	instructions;	if	the	lock	was
BUSY,	the	code	leaves	count	<	0	and	invokes	a	separate	routine	to	handle	the	slow	path.
The	slow	path	disables	preemption,	acquires	the	spinlock,	puts	the	thread	on	the	lock	wait
queue,	and	then	re-checks	whether	the	lock	has	been	released	in	the	meantime.	For	this,	it
uses	the	atomic	exchange	instruction:

If	successful,	the	lock	is	acquired.	If	unsuccessful,	the	thread	releases	the	spinlock	and
switches	to	the	next	ready	thread.	When	the	thread	returns	from	suspend,	unlike	in
Figure	5.17,	the	lock	may	not	be	FREE,	and	so	the	thread	must	try	again.

Eventually,	the	thread	breaks	out	of	the	loop,	which	means	that	it	found	a	moment	when
the	lock	was	FREE	(lock->count	=	1),	and	at	that	moment	it	set	the	lock	to	the	“busy,
possible	waiters”	state	(by	setting	count	=	-1).	The	thread	now	has	the	lock,	and	it	cleans
up	by	resetting	count	=	0	if	there	are	no	other	waiters.

It	then	releases	the	spinlock	and	re-enables	preemptions.

On	release,	the	fast	path	is	two	inlined	instructions	if	the	lock	value	was	0	(the	lock	has	no
waiters).

lock	incl	(%eax)					//	atomic	increment						jg	1f								//	jump	if	new	value	is	1
					call	slowpath_release		1:

On	the	slow	path,	count	was	negative.	The	increment	instruction	leaves	the	lock	BUSY.
Then,	the	thread	acquires	the	spinlock,	sets	the	count	to	be	FREE,	and	wakes	up	one	of	the
waiting	threads.

Notice	that	this	function	always	sets	count	to	1,	even	if	there	are	waiting	threads.	As	a
result,	a	new	thread	may	swoop	in	and	acquire	the	lock	on	its	fast	path,	setting	count	=	0.
In	this	case,	the	waiting	thread	is	still	woken	up,	and	when	it	eventually	runs,	the	main
loop	above	will	set	count	=	-1.

This	example	demonstrates	that	acquiring	and	releasing	a	lock	can	be	inexpensive.
Programmers	sometimes	go	to	great	lengths	to	avoid	acquiring	a	lock	in	a	particular
situation.	However,	the	reasoning	in	such	cases	can	be	subtle,	and	omitting	needed	locks	is
dangerous.	In	cases	where	there	is	little	contention,	avoiding	locks	is	unlikely	to
significantly	improve	performance,	so	it	is	usually	better	just	to	keep	things	simple	and
rely	on	locks	to	ensure	mutual	exclusion	when	accessing	shared	state.

5.7.6	Implementing	Condition	Variables

We	can	implement	condition	variables	using	a	similar	approach	to	the	one	used	to
implement	locks,	with	one	simplification:	since	the	lock	is	held	whenever	the	wait,

signal,	or	broadcast	is	called,	we	already	have	mutually	exclusive	access	to	the
condition	wait	queue.	As	with	locks,	care	is	needed	to	prevent	a	waiting	thread	from	being
put	back	on	the	ready	list	until	it	has	completed	its	context	switch;	we	can	accomplish	this
by	acquiring	the	scheduler	spinlock	before	we	release	the	monitor	lock.	Another	thread
may	acquire	the	monitor	lock	and	start	to	signal	the	waiting	thread,	but	it	will	not	be	able
to	complete	the	signal	until	the	scheduler	lock	is	released	immediately	after	the	context
switch.

Figure	5.18:	Pseudo-code	for	implementing	a	condition	variable.	suspend	and
makeReady	are	defined	in	Figure	5.17.

Figure	5.18	shows	an	implementation	with	Mesa	semantics	—	when	we	signal	a	waiting
thread,	that	thread	becomes	READY,	but	it	may	not	run	immediately	and	must	still	re-
acquire	the	monitor	lock.	It	is	possible	for	another	thread	to	acquire	the	monitor	lock	first
and	to	change	the	state	guarded	by	the	lock	before	the	waiting	thread	returns	from
CV::wait.

5.7.7	Implementing	Application-level	Synchronization

The	preceding	discussion	focused	on	implementing	locks	and	condition	variables	for
kernel	threads.	In	that	case,	everything	(code,	shared	state,	lock	data	structures,	thread
control	blocks,	and	the	ready	list)	is	in	kernel	memory,	and	all	threads	run	in	kernel	mode.
Fortunately,	although	some	details	change,	the	same	basic	approach	works	when	we
implement	locks	and	condition	variables	for	use	by	threads	that	run	at	user	level.

Recall	from	Chapter	4	that	there	are	two	ways	of	supporting	application-level
concurrency:	via	system	calls	to	access	kernel	thread	operations	or	via	a	user-level	thread
scheduler.

Kernel-Managed	Threads.	With	kernel-managed	threads,	the	kernel	provides	threads	to
a	process	and	manages	the	thread	ready	list.	The	kernel	scheduler	needs	to	know	when	a
thread	is	waiting	for	a	lock	or	condition	variable	so	that	it	can	suspend	the	thread	and
switch	to	the	next	ready	thread.

In	the	simplest	case,	we	can	place	the	lock	and	condition	variable	data	structures,
including	the	waiting	lists,	in	the	kernel’s	address	space.	Each	method	call	on	the
synchronization	object	translates	to	a	system	call.	Then,	the	implementations	described
above	for	kernel-level	locks	and	condition	variables	can	be	used	without	significant
change.

A	more	sophisticated	approach	splits	the	lock’s	state	and	implementation	into	a	fast	path
and	slow	path,	similar	to	the	Linux	lock	described	above.	For	example,	each	lock	has	two
data	structures:	(i)	the	process’s	address	space	holds	something	similar	to	the	count	field
and	(ii)	the	kernel	holds	the	spinlock	and	wait_list	queue.

Then,	acquiring	a	FREE	lock	or	releasing	a	lock	with	no	waiting	threads	takes	a	few
instructions	at	user	level,	with	no	system	call.	The	slow	path	still	needs	a	system	call	(e.g.,
when	a	waiting	thread	needs	to	suspend	execution).	We	leave	the	details	of	the
implementation	as	an	exercise	for	the	reader.

User-Managed	Threads.	In	a	thread	library	that	operates	completely	at	user	level,	the
library	creates	multiple	kernel	threads	to	serve	as	virtual	processors,	and	then	multiplexes
user-level	threads	over	those	virtual	processors.	This	situation	is	similar	to	kernel	threads,
except	operating	inside	the	process’s	address	space	rather	than	in	the	kernel’s	address
space.	In	particular,	the	code,	shared	state,	lock	and	condition	variable	data	structures,
thread	control	blocks,	and	the	ready	list	are	in	the	process’s	address	space.

The	only	significant	change	has	to	do	with	disabling	interrupts.	Obviously,	a	user-level
thread	package	cannot	disable	system-level	interrupts;	the	kernel	cannot	allow	an
untrusted	process	to	disable	interrupts	and	potentially	run	forever.

Fortunately,	the	thread	library	only	needs	to	disable	upcalls	from	the	operating	system;
these	are	used	to	trigger	thread	preemption	and	other	operations	in	the	user-level
scheduler,	and	they	could	cause	inconsistency	if	they	occur	while	the	library	is	modifying
scheduler	data	structures.	Most	modern	operating	systems	have	a	way	to	temporarily
disable	upcalls,	and	then	to	deliver	those	upcalls	once	it	is	safe	to	do	so.	By	ensuring	the
user-level	scheduler	and	upcall	handler	cannot	run	at	the	same	time,	the	fast	path	mutex
implementation	described	above	can	be	used	here	as	well.

5.8	Semaphores	Considered	Harmful

“During	system	conception	it	transpired	that	we	used	the	semaphores	in
two	completely	different	ways.	The	difference	is	so	marked	that,
looking	back,	one	wonders	whether	it	was	really	fair	to	present	the	two
ways	as	uses	of	the	very	same	primitives.	On	the	one	hand,	we	have	the
semaphores	used	for	mutual	exclusion,	on	the	other	hand,	the	private
semaphores.”
(From	Dijkstra	“The	structure	of	the	’THE’-Multiprogramming	System”
Communications	of	the	ACM	v.	11	n.	5	May	1968.)

This	book	focuses	on	constructing	shared	objects	using	locks	and	condition	variables	for
synchronization.	However,	over	the	years,	many	different	synchronization	primitives	have
been	proposed,	including	communicating	sequential	processes,	event	delivery,	message
passing,	and	so	forth.	It	is	important	to	realize	that	none	of	these	are	more	powerful	than
using	locks	and	condition	variables;	a	program	using	any	of	these	paradigms	can	be
mapped	to	monitors	using	straightforward	transformations.

One	type	of	synchronization,	a	semaphore,	is	worth	discussing	in	detail	since	it	is	still
widely	used.	Semaphores	were	introduced	by	Dijkstra	to	provide	synchronization	in	the
THE	operating	system,	which	(among	other	advances)	explored	structured	ways	of	using
concurrency	in	operating	system	design.

Semaphores	are	defined	as	follows:

A	semaphore	has	a	non-negative	value.

When	a	semaphore	is	created,	its	value	can	be	initialized	to	any	non-negative	integer.

Semaphore::P()	waits	until	the	value	is	positive.	Then,	it	atomically	decrements	value
by	1	and	returns.

Semaphore::V()	atomically	increments	the	value	by	1.	If	any	threads	are	waiting	in	P,
one	is	enabled,	so	that	its	call	to	P	succeeds	at	decrementing	the	value	and	returns.

No	other	operations	are	allowed	on	a	semaphore;	in	particular,	no	thread	can	directly
read	the	current	value	of	the	semaphore.

Note	that	Semaphore::P	is	an	atomic	operation:	the	read	that	observes	the	positive	value	is
atomic	with	the	update	that	decrements	it.	As	a	result,	semaphores	can	never	have	a
negative	value,	even	when	multiple	threads	call	P	concurrently.

Likewise,	if	V	occurs	when	there	is	a	waiting	thread	in	P,	then	P’s	increment	and	V’s
decrement	of	value	are	atomic:	no	other	thread	can	observe	the	incremented	value,	and	the
thread	in	P	is	guaranteed	to	decrement	the	value	and	return.

Given	this	definition,	semaphores	can	be	used	for	either	mutual	exclusion	(like	locks)	or
general	waiting	for	another	thread	to	do	something	(a	bit	like	condition	variables).

To	use	a	semaphore	as	a	mutual	exclusion	lock,	initialize	it	to	1.	Then,	Semaphore::P	is
equivalent	to	Lock::acquire,	and	Semaphore::V	is	equivalent	to	Lock::release.

Using	a	semaphore	for	more	general	waiting	is	trickier.	A	useful	analogy	for	semaphores
is	thread_join.	With	thread_join,	the	precise	order	of	events	does	not	matter:	if	the	forked
thread	finishes	before	the	parent	thread	calls	thread_join,	then	the	call	returns	right	away.
On	the	other	hand,	if	the	parent	calls	thread_join	first,	then	it	waits	until	the	thread
finishes,	and	then	returns.

Semaphore	P	and	V	can	be	set	up	to	behave	similarly.	Typically	(but	not	always),	you
initialize	the	semaphore	to	0.	Then,	each	call	to	Semaphore::P	waits	for	the	corresponding
thread	to	call	V.	If	the	V	is	called	first,	then	P	returns	immediately.

The	difficulty	comes	when	trying	to	coordinate	shared	state	(needing	mutual	exclusion)
with	general	waiting.	From	a	distance,	Semaphore::P	is	similar	to	CV::wait(&lock)	and
Semaphore::V	is	similar	to	CV::signal.	However,	there	are	important	differences.	First,
CV::wait(&lock)	atomically	releases	the	monitor	lock,	so	that	you	can	safely	check	the
shared	object’s	state	and	then	atomically	suspend	execution.

By	contrast,	Semaphore::P	does	not	release	an	associated	mutual	exclusion	lock.
Typically,	the	lock	is	released	before	the	call	to	P;	otherwise,	no	other	thread	can	access
the	shared	state	until	the	thread	resumes.	The	programmer	must	carefully	construct	the
program	to	work	properly	in	this	case.	Second,	whereas	a	condition	variable	is	stateless,	a
semaphore	has	a	value.	If	no	threads	are	waiting,	a	call	to	CV::signal	has	no	effect,	while	a
call	to	Semaphore::V	increments	the	value.	This	causes	the	next	call	to	Semaphore::P	to
proceed	without	blocking.

Semaphores	considered	harmful.	Our	view	is	that	programming	with	locks	and
condition	variables	is	superior	to	programming	with	semaphores.	We	advise	you	to	always
write	your	code	using	those	synchronization	variables	for	two	reasons.

First,	using	separate	lock	and	condition	variable	classes	makes	code	more	self-
documenting	and	easier	to	read.	As	the	quote	from	Dijkstra	notes,	two	different
abstractions	are	needed,	and	code	is	clearer	when	the	role	of	each	synchronization	variable
is	made	clear	through	explicit	typing.	For	example,	it	is	much	easier	to	verify	that	every
lock	acquire	is	paired	with	a	lock	release,	if	they	are	not	mixed	with	other	calls	to	P	and	V
for	general	waiting.

Second,	a	stateless	condition	variable	bound	to	a	lock	is	a	better	abstraction	for
generalized	waiting	than	a	semaphore.	By	binding	a	condition	variable	to	a	lock,	we	can
conveniently	wait	on	any	arbitrary	predicate	on	an	object’s	state.	In	contrast,	semaphores
rely	on	the	programmer	to	carefully	map	the	object’s	state	to	the	semaphore’s	value	so	that
a	decision	to	wait	or	proceed	in	P	can	be	made	entirely	based	on	the	value,	without
holding	a	lock	or	examining	the	rest	of	the	shared	object’s	state.

Although	we	do	not	recommend	writing	new	code	with	semaphores,	code	based	on
semaphores	is	not	uncommon,	especially	in	operating	systems.	So,	it	is	important	to
understand	the	semantics	of	semaphores	and	be	able	to	read	and	understand	semaphore-
based	code	written	by	others.

NOTE:	Semaphores	in	interrupt	handlers.	In	one	situation,	semaphores	are	superior	to
condition	variables	and	locks:	synchronizing	communication	between	an	I/O	device	and
threads	waiting	for	I/O	completion.	Typically,	the	hardware	communicates	with	the	device
driver	via	a	shared	in-memory	data	structure.	This	data	structure	is	read	and	written

concurrently	by	both	hardware	and	the	kernel,	but	the	shared	access	cannot	be	coordinated
with	a	software	lock.	Instead,	the	hardware	and	device	drivers	use	carefully	designed
atomic	memory	operations.

If	a	hardware	device	needs	attention,	e.g.,	because	a	network	packet	has	arrived	that	needs
handling,	or	a	disk	request	has	completed,	the	hardware	updates	the	shared	data	structure
and	starts	an	interrupt	handler.	The	interrupt	handler	is	often	simple:	it	just	wakes	up	a
waiting	thread	and	returns.	For	this,	one	might	consider	using	a	condition	variable	and
calling	signal	without	holding	the	lock	(this	is	sometimes	called	a	naked	notify).
Unfortunately,	there	is	a	corner	case:	suppose	that	the	operating	system	thread	first	checks
the	data	structure,	sees	that	no	work	is	currently	needed,	and	is	just	about	to	call	wait	on
the	condition	variable.	At	that	moment,	the	hardware	updates	the	data	structure	with	the
new	work	and	triggers	the	interrupt	handler	to	call	signal.	Because	the	thread	has	not
called	wait	yet,	the	signal	has	no	effect.	Thus,	when	the	thread	calls	wait,	the	signal	has
already	occurred,	and	the	thread	waits	—	possibly	for	a	long	time.

A	common	solution	is	for	device	interrupts	to	use	semaphores	instead.	Because
semaphores	are	stateful,	it	does	not	matter	whether	the	thread	calls	P	or	the	interrupt
handler	calls	V	first:	the	result	is	the	same,	the	V	cannot	be	lost.

To	help	illustrate	the	difference	between	semaphores	and	condition	variables,	we	consider
four	candidate	implementations	of	condition	variables	using	semaphores.

EXAMPLE:	Suppose	you	are	writing	concurrent	application	software	on	an	operating
system	that	only	provides	semaphores.	Does	the	following	code	correctly	implement
condition	variables?

ANSWER:	No.	Condition	variables	are	stateless,	while	semaphores	have	state.	We
can	illustrate	this	difference	with	a	counterexample.

What	happens	if	a	thread	calls	signal	and	no	one	is	waiting?	Nothing.	What	happens	if
another	thread	later	calls	wait?	The	thread	waits.

By	contrast,	consider	what	happens	with	a	semaphore.	What	happens	if	a	thread	calls	V
and	no	one	is	waiting?	The	value	of	the	semaphore	is	incremented.	What	happens	if	a
thread	later	calls	P?	The	value	of	the	semaphore	is	decremented,	and	the	thread	continues.

In	other	words,	P	and	V	are	commutative.	The	result	is	the	same	no	matter	what	order	they
occur.	Condition	variables	are	not	commutative:	wait	does	not	return	until	the	next
signal.	This	is	why	condition	variables	must	be	accessed	while	holding	a	lock	—	code

using	a	condition	variable	needs	to	access	shared	state	variables	to	do	its	job.

With	condition	variables,	if	a	thread	calls	signal	a	thousand	times,	when	no	one	is
waiting,	the	next	wait	will	still	go	to	sleep.	With	the	above	code,	the	next	thousand
threads	that	wait	will	return	immediately.	□

EXAMPLE:	What	about	the	following	code?

ANSWER:	Closer,	but	still	no.	For	one,	the	definition	of	a	semaphore	does	not	allow
users	of	the	semaphore	to	look	at	the	contents	of	the	semaphore	queue.	But	more
importantly,	there	is	a	race	condition.	Once	the	lock	is	released,	some	other	thread	can	slip
in,	acquire	the	lock	and	call	signal	before	the	waiting	thread	gets	to	call	P.	In	that	case,
the	queue	is	empty,	so	the	waiter	never	exits	the	while	loop.

Instead,	the	definition	of	CV::wait	is	that	the	lock	is	released	and	the	thread	goes	to	sleep
atomically.	□

EXAMPLE:	What	about	the	following	code?

ANSWER:	Very	close	but	still	no.	There	is	still	a	race	condition.	Suppose	a	thread	calls
wait,	and	releases	the	lock.	Then	another	thread	acquires	the	lock	and	calls	signal.	With
condition	variables,	the	waiter	should	wake	up,	but	with	the	implementation	above,	a	third
thread	could	swoop	in,	acquire	the	lock,	call	wait,	and	decrement	the	semaphore	before
the	first	waiter	has	a	chance	to	run.

For	some	programs,	this	difference	would	not	be	noticeable,	but	for	others,	it	could	cause

problems.	□

EXAMPLE:	Is	it	possible	to	implement	condition	variables	using	semaphores?

ANSWER:	Yes,	using	the	technique	we	outlined	for	implementing	the	FIFO	bounded
buffer:	create	a	semaphore	for	each	waiter	and	then	wake	up	exactly	the	right	waiter.
This	solution	was	developed	by	Andrew	Birrell	in	order	to	implement	condition	variables
on	top	of	Microsoft	Windows	before	it	supported	them	natively.

□

5.9	Summary	and	Future	Directions

This	chapter	advocates	using	a	systematic,	structured	approach	to	writing	multi-threaded
code	that	shares	state	across	threads.	The	approach,	shared	objects	with	concurrent	access
managed	with	locks	and	condition	variables,	has	stood	the	test	of	time.	Using	shared
objects	makes	reasoning	about	multi-threaded	programs	vastly	simpler	than	it	would	be	if
we	tried	to	reason	about	the	possible	interleavings	of	individual	loads	and	stores.	Further,
by	following	a	systematic	approach,	we	make	it	possible	for	others	to	read,	understand,
maintain,	and	change	the	multi-threaded	code	we	write.

In	this	chapter,	we	have	discussed:

Race	conditions.	The	fundamental	challenge	to	writing	multi-threaded	code	that	uses
shared	data	is	that	the	behavior	of	the	program	may	depend	on	the	precise	ordering	of
operations	executed	by	each	thread.	This	non-deterministic	behavior	is	difficult	to
reason	about,	reproduce,	and	debug.

Locks	and	condition	variables.	Two	useful	sychronization	abstractions	are	locks,
providing	mutual	exclusion,	and	condition	variables,	for	waiting	for	shared	state	to
change.

A	methodology	for	writing	shared	objects.	Using	locks	and	condition	variables,	we
outlined	a	sequence	of	steps	to	writing	correct	synchronization	code	for	coordinating
access	to	shared	objects.	Following	this	methodology	has	proven	enormously	helpful

for	students	in	our	classes	by	reducing	the	likelihood	of	design	errors.

Implementations	of	synchronization.	Locks	and	condition	variables	can	be
efficiently	implemented	using	hardware	support	for	atomic	read-modify-write
instructions	and,	where	necessary,	the	ability	to	temporarily	defer	hardware
interrupts.	In	particular,	we	showed	that	the	overhead	of	acquiring	and	releasing	a
non-contested	lock	can	be	as	low	as	four	instructions.

Semaphores.	Semaphores	are	a	widely	implemented	alternative	to	locks	and
condition	variables,	with	a	constructive	role	in	managing	hardware	I/O	interrupts.

In	short,	this	chapter	defines	a	set	of	core	skills	that	almost	any	programmer	will	use	over
and	over	again	during	the	coming	decade	or	longer.

That	is	not	the	whole	story.	As	the	next	chapter	will	discuss,	complex	systems	often
include	many	shared	objects	and	threads.	This	poses	new	challenges:	synchronizing
operations	that	span	multiple	shared	objects,	avoiding	deadlocks	in	which	a	set	of	threads
are	all	waiting	for	each	other	to	do	something,	and	maximizing	performance	when	large
numbers	of	threads	are	contending	for	a	single	object.

5.9.1	Historical	Notes

Once	researchers	accepted	the	need	to	explicitly	manage	concurrency	using	threads,	the
challenge	became	how	best	to	coordinate	multi-threaded	access	to	shared	data.	A	large
number	of	different	abstractions	were	proposed,	and	it	took	some	time	to	work	out	the
different	strengths	and	weaknesses	of	the	various	approaches.

Monitors	—	that	is,	managing	shared	data	structures	with	locks	and	condition	variables	—
were	proposed	in	the	early	1970’s	in	separate	papers	by	Tony	Hoare	[83]	and	Per	Brinch
Hansen	[75].	One	early	advantage	of	monitors	was	the	ability	to	formally	prove	properties
about	multi-threaded	code;	for	example	with	Hoare-style	semantics	for	condition
variables,	any	statement	which	is	true	of	the	shared	object	immediately	before	a	signal	is
also	true	of	the	object	immediately	after	the	return	from	wait.	As	we	saw	with	the	Too
Much	Milk	example,	without	explicit	synchronization,	it	can	be	quite	difficult	to	reason
about	concurrent	execution.

By	the	early	1980’s,	Xerox	PARC	had	built	the	first	personal	computer,	the	Alto,	with	all
of	its	system	software	written	using	threads	(called	lightweight	processes	at	the	time)	and
monitors.	The	methodology	we	present	in	this	chapter	originated	with	that	project	[98].	It
is	hard	to	overstate	how	radical	an	approach	this	was;	almost	all	widely	used	operating
systems	of	the	time,	including	UNIX,	were	built	using	semaphores.

An	alternative	line	of	work	advocated	completely	prohibiting	access	by	threads	to	shared
data,	as	a	way	of	eliminating	race	conditions.	Instead	of	shared	data,	all	data	was	private	to
a	single	thread;	as	a	result,	locks	were	never	needed.	An	early	example	of	this	approach
was	Communicating	Sequential	Processes	(CSP),	also	developed	by	Tony	Hoare	[84].
Google’s	Go	language	for	concurrent	web	programming	is	a	modern	language	that
supports	both	monitors	and	the	CSP	style	of	programming.	With	CSP	and	Go,	a	thread	that
needs	to	perform	an	operation	on	some	other	thread’s	data	sends	it	a	message;	the

receiving	thread	can	either	reply	with	the	result,	or	in	data-flow	style,	forward	the	result
onto	some	other	thread.

While	there	was	considerable	and	vigorous	debate	at	the	time	as	to	whether	message-
passing	or	shared-memory	were	better	models	for	programming	concurrency,	the	debate
was	largely	resolved	by	a	simple	observation	made	by	Lauer	and	Needham	[101].	Any
program	using	monitors	can	be	recast	into	CSP	using	a	simple	transformation,	and	vice
versa.	The	execution	of	a	procedure	with	a	monitor	lock	is	equivalent	to	processing	a
message	in	CSP;	a	monitor	is,	in	effect,	single-threaded	while	it	is	holding	the	lock.	Thus,
the	choice	of	which	style	to	use	is	largely	a	matter	of	taste	and	convention,	and	most
programmers	have	chosen	to	use	threads	and	monitors.

Exercises

1.	 True	or	False:	If	a	multi-threaded	program	runs	correctly	in	all	cases	on	a	single	time-
sliced	processor,	then	it	will	run	correctly	if	each	thread	is	run	on	a	separate	processor
of	a	shared-memory	multiprocessor.	Justify	your	answer.

2.	 Show	that	solution	3	to	the	Too	Much	Milk	problem	is	safe	—	that	it	guarantees	that
at	most	one	roommate	buys	milk.

3.	 Precisely	describe	the	set	of	possible	outputs	that	could	occur	when	the	program
shown	in	Figure	5.5	is	run.

4.	 Suppose	that	you	mistakenly	create	an	automatic	(local)	variable	v	in	one	thread	t1
and	pass	a	pointer	to	v	to	another	thread	t2.	Is	it	possible	that	a	write	by	t1	to	some
variable	other	than	v	will	change	the	state	of	v	as	observed	by	t2?	If	so,	explain	how
this	can	happen	and	give	an	example.	If	not,	explain	why	not.

5.	 Suppose	that	you	mistakenly	create	an	automatic	(local)	variable	v	in	one	thread	t1
and	pass	a	pointer	to	v	to	another	thread	t2.	Is	it	possible	that	a	write	by	t2	to	v	will
cause	t1	to	execute	the	wrong	code?	If	so,	explain	how.	If	not,	explain	why	not.

6.	 Assuming	Mesa	semantics	for	condition	variables,	our	implementation	of	the
blocking	bounded	queue	in	Figure	5.8	does	not	guarantee	freedom	from	starvation:	if
a	continuous	stream	of	threads	makes	insert	(or	remove)	calls,	a	waiting	thread	could
wait	forever.	For	example,	a	thread	may	call	insert	and	wait	in	the	while	loop	because
the	queue	is	full.	Starvation	would	occur	if	every	time	another	thread	removes	an
item	from	the	queue	and	signals	the	waiting	thread,	a	different	thread	calls	insert,	sees
that	the	queue	is	not	full,	and	inserts	an	item	before	the	waiting	thread	resumes.

Prove	that	under	Hoare	semantics	and	assuming	that	signal	wakes	the	longest-waiting
thread,	our	implementation	of	BBQ	ensures	freedom	from	starvation.	More	precisely,
prove	that	if	a	thread	waits	in	insert,	then	it	is	guaranteed	to	proceed	after	a	bounded
number	of	remove	calls	complete,	and	vice	versa.

7.	 As	noted	in	the	previous	problem,	our	implementation	of	the	blocking	bounded	queue
in	Figure	5.8	does	not	guarantee	freedom	from	starvation.	Modify	the	code	to	ensure
freedom	from	starvation	so	that	if	a	thread	waits	in	insert,	it	is	guaranteed	to	proceed
after	a	bounded	number	of	remove()	calls	complete,	and	vice	versa.	Note:	Your

implementation	must	work	under	Mesa	semantics	for	condition	variables.

8.	 Wikipedia	provides	an	implementation	of	Peterson’s	algorithm	to	provide	mutual
exclusion	using	loads	and	stores	at	http://en.wikipedia.org/wiki/Peterson’s_algorithm.
Unfortunately,	this	code	is	not	guaranteed	to	work	with	modern	compilers	or
hardware.	Update	the	code	to	include	memory	barriers	where	necessary.	(Of	course,
you	could	add	a	memory	barrier	before	and	after	each	instruction;	your	solution
should	instead	add	memory	barriers	only	where	necessary	for	correctness.)

9.	 Linux	provides	a	sys_futex()	system	call	to	assist	in	implementing	hybrid	user-
level/kernel-level	locks	and	condition	variables.

A	call	to	long	sys_futex(void	*addr1,	FUTEX_WAIT,	int	val1,	NULL,	NULL,	0)
checks	to	see	if	the	memory	at	address	addr1	has	the	same	value	as	val1.	If	so,	the
calling	thread	is	suspended.	If	not,	the	calling	thread	returns	immediately	with	the
error	return	value	EWOULDBLOCK.	In	addition,	the	system	call	returns	with	the
value	EINTR	if	the	thread	receives	a	signal.

A	call	to	long	sys_futex(void	*addr1,	FUTEX_WAKE,	1,	NULL,	NULL,	0)	causes
one	thread	waiting	on	addr1	to	return.

Consider	the	following	simple	implementation	of	a	hybrid	user-level/kernel-level
lock.

There	are	three	problems	with	this	code.

a.	 Performance.	The	goal	of	this	code	is	to	avoid	making	expensive	system	calls
in	the	uncontested	case	of	an	acquire	on	a	FREE	lock	or	a	release	of	a	lock
with	no	other	waiting	threads.	This	code	fails	to	meet	this	goal.	Why?

b.	 Performance.	A	subtle	corner	case	occurs	when	multiple	threads	try	to	acquire

http://en.wikipedia.org/wiki/Peterson's_algorithm

the	lock	at	the	same	time.	It	can	show	up	as	occasional	slowdowns	and	bursts	of
CPU	usage.	What	is	the	problem?

c.	 Correctness.	A	corner	case	can	cause	the	mutual	exclusion	correctness
condition	to	be	violated,	allowing	two	threads	to	both	believe	they	hold	the	lock.
What	is	the	problem?

10.	 In	the	readers/writers	lock	example	for	the	function	RWLock::doneRead,	why	do	we
use	writeGo.Signal	rather	than	writeGo.Broadcast?

11.	 Show	how	to	implement	a	semaphore	by	generalizing	the	multi-processor	lock
implementation	shown	in	Figure	5.17.

12.	 In	Section	5.1.3,	we	presented	a	solution	to	the	Too	Much	Milk	problem.	To	make	the
problem	more	interesting,	we	will	also	allow	roommates	to	drink	milk.

Implement	in	C++	or	Java	a	Kitchen	class	with	a	drinkMilkAndBuyIfNeeded().	This
method	should	randomly	(with	a	20%	probability)	change	the	value	of	milk	from	1	to
0.	Then,	if	the	value	just	became	0,	it	should	buy	milk	(incrementing	milk	back	to	1).
The	method	should	return	1	if	the	roommate	bought	milk	and	0	otherwise.

Your	solution	should	use	locks	for	synchronization	and	work	for	any	number	of
roommates.	Test	your	implementation	by	writing	a	program	that	repeatedly	creates	a
Kitchen	object	and	varying	numbers	of	roommate	threads;	each	roommate	thread
should	call	drinkMilkAndBuyIfNeeded()	multiple	times	in	a	loop.

Hint:	You	will	probably	write	a	main()	thread	that	creates	a	Kitchen	object,	creates
multiple	roommate	threads,	and	then	waits	for	all	of	the	roommates	to	finish	their
loops.	If	you	are	writing	in	C++	with	the	POSIX	threads	library,	you	can	use
pthread_join()	to	have	one	thread	wait	for	another	thread	to	finish.	If	you	are	writing
in	Java	with	the	java.lang.Thread	class,	you	can	use	the	join()	method.

13.	 For	the	solution	to	Too	Much	Milk	suggested	in	the	previous	problem,	each	call	to
drinkMilkAndBuyIfNeeded()	is	atomic	and	holds	the	lock	from	the	start	to	the	end
even	if	one	roommate	goes	to	the	store.	This	solution	is	analogous	to	the	roommate
padlocking	the	kitchen	while	going	to	the	store,	which	seems	a	bit	unrealistic.

Implement	a	better	solution	to	drinkMilkAndBuyIfNeeded()	using	both	locks	and
condition	variables.	Since	a	roommate	now	needs	to	release	the	lock	to	the	kitchen
while	going	to	the	store,	you	will	no	longer	acquire	the	lock	at	the	start	of	this
function	and	release	it	at	the	end.	Instead,	this	function	will	call	two	helper-functions,
each	of	which	acquires/releases	the	lock.	For	example:

In	this	function,	waitThenDrink()	should	wait	if	there	is	no	milk	(using	a	condition
variable)	until	there	is	milk,	drink	the	milk,	and	if	the	milk	is	now	gone,	return	a
nonzero	value	to	flag	that	the	caller	should	buy	milk.	BuyMilk()	should	buy	milk	and
then	broadcast	to	let	the	waiting	threads	know	that	they	can	proceed.

Again,	test	your	code	with	varying	numbers	of	threads.

14.	 Before	entering	a	priority	critical	section,	a	thread	calls	PriorityLock::enter(priority).
When	the	thread	exits	the	critical	section,	it	calls	PriorityLock::exit().	If	several
threads	are	waiting	to	enter	a	priority	critical	section,	the	one	with	the	numerically
highest	priority	should	be	the	next	one	allowed	in.	Implement	PriorityLock	using
monitors	(locks	and	condition	variables)	and	following	the	programming	standards
defined	in	this	chapter.

a.	 Define	the	state	and	synchronization	variables	and	describe	the	purpose	of	each.

b.	 Implement	PriorityLock::enter(int	priority).

c.	 Implement	PriorityLock::exit().

15.	 Implement	a	priority	condition	variable.	A	priority	condition	variable	(PCV)	has
three	public	methods:

These	methods	are	similar	to	those	of	a	standard	condition	variable.	The	one
difference	is	that	a	PCV	enforces	both	priority	and	ordering.

In	particular,	signal(Lock	*lock)	causes	the	currently	waiting	thread	with	the	highest
priority	to	return	from	wait;	if	multiple	threads	with	the	same	priority	are	waiting,
then	the	one	that	is	waiting	the	longest	should	return	before	any	that	have	been
waiting	a	shorter	amount	of	time.

Similarly,	broadcast(Lock	*lock,	int	priority)	causes	all	currently	waiting	threads
whose	priority	equals	or	exceeds	priority	to	return	from	wait.

For	full	credit,	you	must	follow	the	thread	coding	standards	described	in	this	chapter.

16.	 A	synchronous	buffer	is	one	where	the	thread	placing	an	item	into	the	buffer	waits
until	the	thread	retrieving	the	item	has	gotten	it,	and	only	then	returns.

Implement	a	synchronous	buffer	using	Mesa-style	locks	and	condition	variables,	with
the	following	routines:

Any	number	of	threads	can	concurrently	call	SyncBuf::get	and	SyncBuf::put;	the
module	pairs	off	puts	and	gets.	Each	item	should	be	returned	exactly	once,	and	there
should	be	no	unnecessary	waiting.	Once	the	item	is	retrieved,	the	thread	that	called
put	with	the	item	should	return.

17.	 You	have	been	hired	by	a	company	to	do	climate	modelling	of	oceans.	The	inner	loop
of	the	program	matches	atoms	of	different	types	as	they	form	molecules.	In	an
excessive	reliance	on	threads,	each	atom	is	represented	by	a	thread.

a.	 Your	task	is	to	write	code	to	form	water	out	of	two	hydrogen	threads	and	one
oxygen	thread	(H2O).	You	are	to	write	the	two	procedures:	HArrives()	and
OArrives().	A	water	molecule	forms	when	two	H	threads	are	present	and	one	O
thread;	otherwise,	the	atoms	must	wait.	Once	all	three	are	present,	one	of	the
threads	calls	MakeWater(),	and	only	then,	all	three	depart.

b.	 The	company	wants	to	extend	its	work	to	handle	cloud	modelling.	Your	task	is
to	write	code	to	form	ozone	out	of	three	oxygen	threads.	Each	of	the	threads
calls	OArrives(),	and	when	three	are	present,	one	calls	MakeOzone(),	and	only
then,	all	three	depart.

c.	 Extending	the	product	line	into	beer	production,	your	task	is	to	write	code	to
form	alcohol	(C2H6O)	out	of	two	carbon	atoms,	six	hydrogens,	and	one	oxygen.

You	must	use	locks	and	Mesa-style	condition	variables	to	implement	your	solutions,
using	the	best	practices	as	defined	in	this	chapter.	Obviously,	an	atom	that	arrives
after	the	molecule	is	made	must	wait	for	a	different	group	of	atoms	to	be	present.
There	should	be	no	busy-waiting	and	you	should	correctly	handle	spurious	wakeups.
There	must	also	be	no	useless	waiting:	atoms	should	not	wait	if	there	is	a	sufficient
number	of	each	type.

6.	Multi-Object	Synchronization

When	two	trains	approach	each	other	at	a	crossing,	both	shall	come	to	a	full	stop	and
neither	shall	start	up	again	until	the	other	has	gone.	—Kansas	state	law,	early	1900s

In	the	previous	chapter,	we	described	a	key	building	block	for	writing	concurrent
programs:	how	to	design	an	object	that	can	be	shared	between	multiple	threads.	In	this
chapter,	we	need	to	go	one	step	further:	what	happens	as	programs	become	more	complex,
with	multiple	shared	objects	and	multiple	locks?	To	answer	this,	we	need	to	reason	about
the	interactions	between	shared	objects.

Several	considerations	arise	in	this	context:

Multiprocessor	performance.	Modern	computers	have	increasing	numbers	of
processors	because	of	the	difficulty	of	improving	single	CPU	performance.	The
design	of	shared	objects	can	have	a	large	impact	on	multiprocessor	performance.	For
example,	a	lock	protecting	a	frequently	accessed	shared	object	can	become	a
bottleneck,	since	only	one	thread	can	hold	the	lock	at	a	time.

Correctness.	Performance	considerations	often	cause	designers	to	re-engineer	their
data	structures	for	increased	concurrency.	Splitting	a	single	shared	object	into	a	set	of
related	objects	each	with	their	own	lock	can	improve	performance.	However,	it	also
raises	issues	of	correctness.	For	programs	with	multiple	shared	objects,	we	face	a
problem	similar	to	the	one	faced	when	reasoning	about	atomic	loads	and	stores:	even
if	each	individual	operation	on	a	shared	object	is	atomic,	we	must	reason	about
interactions	of	sequences	of	operations	across	objects.

Deadlock.	One	way	to	help	reason	about	the	behavior	of	operations	across	multiple
objects	is	to	hold	multiple	locks.	This	approach	raises	the	possibility	of	deadlock,
where	threads	are	permanently	stuck	waiting	for	each	other	in	a	cycle.

No	cookbook	recipe	always	works	for	addressing	these	challenges.	In	particular,	current
techniques	have	two	basic	limitations.	First,	they	pose	engineering	trade-offs.	Some
solutions	are	general	but	complex	or	expensive;	others	are	simple	but	slow;	still	others	are
simple	and	cheap	but	not	general.	Second,	many	solutions	are	inherently	non-modular:
they	require	reasoning	about	the	global	structure	of	the	system	and	internal
implementation	details	of	modules	to	understand	or	restrict	how	different	modules	can
interact.

Chapter	roadmap:

Multiprocessor	Lock	Performance.	Can	we	predict	when	a	lock	will	become	a
bottleneck	on	a	multiprocessor?	(Section	6.1)

Lock	Design	Patterns.	If	a	lock	is	a	bottleneck,	can	we	restructure	the	program	to
reduce	the	problem?	(Section	6.2)

Lock	Contention.	If	a	lock	is	still	a	bottleneck	after	re-structuring,	what	then?
(Section	6.3)

Multi-Object	Atomicity.	How	can	we	make	a	sequence	of	operations	across
multiple	objects	appear	atomic	to	other	threads?	(Section	6.4)

Deadlock.	What	causes	deadlock	in	multi-threaded	programs,	and	what	solutions
exist	to	prevent	or	break	deadlocks?	(Section	6.5)

Non-Blocking	Synchronization.	Are	there	ways	to	eliminate	locks	in	complex
multi-object	programs?	(Section	6.6)

6.1	Multiprocessor	Lock	Performance

Client-server	applications	often	have	ample	parallelism	for	modern	multicore	architectures
with	dozens	of	processors.	Each	separate	client	request	can	be	handled	by	a	different
thread	running	on	a	different	processor;	this	is	called	request	parallelism.	Likewise,	server
operating	systems	often	have	ample	parallelism	–	applications	with	large	numbers	of
threads	can	make	a	large	number	of	concurrent	system	calls	into	the	kernel.

Even	with	ample	request	parallelism,	however,	performance	can	often	be	disappointing.
Once	locks	and	condition	variables	are	added	to	a	server	application	to	allow	it	to	process
requests	concurrently,	throughput	may	be	only	slightly	faster	on	a	fifty-way
multiprocessor	than	on	a	uniprocessor.	Most	often,	this	can	be	due	to	three	causes:

1.	 Locking.	A	lock	implies	mutual	exclusion	—	only	one	thread	at	a	time	can	hold	the
lock.	As	a	result,	access	to	a	shared	object	can	limit	parallelism.

2.	 Communication	of	shared	data.	The	performance	of	a	modern	processor	can	vary
by	a	factor	of	ten	(or	more)	depending	on	whether	the	data	needed	by	the	processor	is
already	in	its	cache	or	not.	Modern	processors	are	designed	with	large	caches,	so	that
almost	all	of	the	data	needed	by	the	processor	will	already	be	stored	in	the	cache.	On
a	uniprocessor,	it	is	rare	that	the	processor	needs	to	wait.

However,	on	a	multiprocessor,	the	situation	is	different.	Shared	data	protected	by	a
lock	will	often	need	to	be	copied	from	one	cache	to	another.	Shared	data	is	often	in
the	cache	of	the	processor	that	last	held	the	lock,	and	it	is	needed	in	the	cache	of	the
processor	that	is	next	to	acquire	the	lock.	Moving	data	can	slow	critical	section
performance	significantly	compared	to	a	uniprocessor.

3.	 False	sharing.	A	further	complication	is	that	the	hardware	keeps	track	of	shared	data
at	a	fixed	granularity,	often	in	units	of	a	cache	entry	of	32	or	64	bytes.	This	reduces
hardware	management	overhead,	but	it	can	cause	performance	problems	if	multiple
data	structures	with	different	sharing	behavior	fit	in	the	same	cache	entry.	This	is
called	false	sharing.

Fortunately,	these	effects	can	be	reduced	through	careful	design	of	shared	objects.	We
caution,	however,	that	you	should	keep	your	shared	object	design	simple	until	you	have
proven,	through	detailed	measurement,	that	a	more	complex	design	is	necessary	to	achieve
your	performance	target.

The	evolution	of	Linux	kernel	locking

The	first	versions	of	Linux	ran	only	on	uniprocessor	machines.	To	allow	Linux	to	run	on
multiprocessors,	version	2.0	introduced	the	Big	Kernel	Lock	(BKL)	—	a	single	lock	that
protected	all	of	the	kernel’s	shared	data	structures.	The	BKL	allowed	the	kernel	to
function	on	multiprocessor	machines,	but	scalability	and	performance	were	limited.	So,
over	time,	different	subsystems	and	different	data	structures	got	their	own	locks,	allowing
them	to	be	accessed	without	holding	the	BKL.

By	version	2.6,	Linux	has	been	highly	optimized	to	run	well	on	multiprocessor	machines.
It	now	has	thousands	of	different	locks,	and	researchers	have	demonstrated	scalability	for
a	range	of	benchmarks	on	a	48	processor	machine.	Still,	the	BKL	remains	in	use	in	a	few
—	mostly	less	performance-critical	—	parts	of	the	Linux	kernel,	like	the	reboot	system
call,	some	older	file	systems,	and	some	device	drivers.

To	illustrate	these	concepts,	consider	a	web	server	with	an	in-memory	cache	of	recently
fetched	pages.	It	is	often	faster	to	simply	return	a	page	from	memory	rather	than
regenerating	it	from	scratch.	For	example,	Google	might	receive	a	large	number	of
searches	for	election	results	on	election	night,	and	there	is	little	reason	to	do	all	of	the
work	of	a	general	search	in	that	case.

To	implement	caching	of	web	pages,	the	server	might	have	a	shared	data	structure,	such	as
a	hash	table	on	the	search	terms,	to	point	to	the	cached	page	if	it	exists.	The	hash	table	is
shared	among	the	threads	handling	client	requests,	and	therefore	needs	a	lock.	The	hash
table	is	updated	whenever	a	thread	generates	a	new	page	that	is	not	in	the	cache.	The	code
might	also	mark	pages	that	have	been	recently	fetched,	to	keep	them	in	memory	in
preference	to	other	requests	that	do	not	occur	as	frequently.

An	important	question	in	this	design	is	whether	the	single	lock	on	the	hash	table	will
significantly	limit	server	parallelism.	How	can	we	tell	if	the	lock	on	a	shared	object	is
going	to	be	a	problem?

A	convenient	approach	is	to	derive	a	bound	on	the	performance	of	a	parallel	program	by
assuming	that	the	rest	of	the	program	is	perfectly	parallelizable	—	in	other	words,	that	the
only	limiting	factor	is	that	only	one	thread	at	a	time	can	hold	the	shared	lock.

EXAMPLE:	Suppose	that,	on	average,	a	web	server	spends	5%	of	each	request	accessing
and	manipulating	its	hash	table	of	recently	used	web	pages.	If	the	hash	table	is	protected
by	a	single	lock,	what	is	the	maximum	possible	throughput	gain?

ANSWER:	The	time	spent	in	the	critical	section	is	inherently	sequential.	If	we	assume	all
other	parts	of	the	server	are	perfectly	parallelizable,	then	the	maximum	speedup	is	a	factor
of	20	regardless	of	how	many	processors	are	used.	□

As	we	mentioned	earlier,	a	further	complication	is	that	it	can	take	much	longer	to	fetch
shared	data	on	a	multiprocessor	because	the	data	is	unlikely	to	be	in	the	processor	cache.
If	the	portion	of	the	program	holding	the	lock	is	slower	on	a	multiprocessor	than	on	a
uniprocessor,	the	potential	gain	in	throughput	can	be	severely	limited.

EXAMPLE:	In	the	example	above,	what	is	the	maximum	throughput	improvement	if	the

hash	table	code	runs	four	times	slower	on	a	multiprocessor	due	to	the	need	to	move	shared
data	between	processor	caches?
ANSWER:	The	potential	throughput	improvement	would	be	small	even	if	a	large	number
of	processors	are	used.

Throughput	gain ≤ 1⁄4	×
0.05 = 5

□

We	can	study	the	effect	of	cache	behavior	on	multiprocessor	performance	with	a	simple
experiment.	The	experiment	is	a	intended	only	as	an	illustration;	it	is	not	meant	a
reflection	of	normal	program	behavior,	but	rather	as	a	way	of	isolating	the	effect	of
hardware	on	the	performance	of	code	using	shared	objects.

Suppose	we	set	up	an	array	of	a	thousand	shared	objects,	where	each	object	is	a	simple
integer	counter	protected	by	a	spinlock.	(We	use	a	spinlock	rather	than	a	lock	to	avoid
measuring	context	switch	time.)	The	program	iterates	through	the	array.	For	each	item,	it
acquires	the	lock,	increments	the	counter,	and	releases	the	lock.	We	repeat	the	loop	a
thousand	times	to	improve	measurement	precision.

Consider	the	following	scenarios:

One	thread,	one	array.	When	one	thread	iterates	through	the	array,	incrementing
each	counter	in	turn,	the	test	gives	the	time	it	takes	to	acquire	and	release	an	array	of
uncontended	locks.

Two	threads,	two	arrays.	When	two	threads	iterate	through	disjoint	arrays,	this
gives	the	slowdown	when	doing	work	in	parallel.	On	most	architectures,	there	is	little
to	no	slowdown	to	parallel	execution.

Two	threads,	one	array.	When	two	threads	iterate	through	the	same	array,	each	lock
is	acquired	by	a	thread	running	on	one	processor,	and	then,	shortly	afterwards,
acquired	by	a	different	thread	running	on	a	different	processor.	Thus,	the	performance
illustrates	the	added	cost	of	moving	the	shared	object	data	from	one	processor	to
another.

Two	threads,	alternate	elements	of	one	array.	To	measure	the	impact	of	false
sharing,	one	thread	can	iterate	through	the	array	acquiring	the	odd	entries,	and	the
other	thread	can	iterate	through	the	array	acquiring	the	even	entries.	If	there	was	no
effect	to	false	sharing,	this	would	be	identical	to	the	two	array	case	—	the	threads
never	use	the	same	data.

One	thread,	one	array 51.2

Two	threads,	two	arrays 52.5

Two	threads,	one	array 197.4

Two	threads,	alternating 127.3

Figure	6.1:	Number	of	CPU	cycles	to	execute	a	simple	critical	section	to	increment	a
counter.	Measurements	taken	on	a	64-core	AMD	Opteron	6262,	with	threads	assigned	to
processor	cores	that	do	not	share	a	cache.	The	performance	difference	between	these
cases	largely	disappears	when	threads	are	assigned	to	cores	that	share	an	L2	cache.

Table	6.1	shows	example	results	for	a	single	multiprocessor,	a	64-core	AMD	Opteron;	the
performance	on	different	machines	will	vary.	The	threads	were	assigned	to	cores	that	do
not	share	a	cache.

On	this	machine,	there	is	very	little	slowdown	in	critical	section	performance	when
threads	access	disjoint	locks.	However,	critical	section	execution	time	slows	down	by	a
factor	of	four	when	multiple	processors	access	the	same	data.	The	slowdown	is	also
significant	when	false	sharing	occurs.

6.2	Lock	Design	Patterns

We	next	discuss	a	set	of	approaches	that	can	reduce	the	impact	of	locking	on
multiprocessor	performance.	Often,	the	best	practice	is	to	start	simple,	with	a	single	lock
per	shared	object.	If	an	object’s	interface	is	well	designed,	then	refactoring	its
implementation	to	increase	concurrency	and	performance	can	be	done	once	the	system	is
built	and	performance	measurements	can	identify	any	bottlenecks.	An	adage	to	follow	is:
“It	is	easier	to	go	from	a	working	system	to	a	working,	fast	system	than	to	go	from	a	fast
system	to	a	fast,	working	system.”

We	discuss	four	design	patterns	to	increase	concurrency	when	it	is	necessary:

Fine-Grained	Locking.	Partition	an	object’s	state	into	different	subsets	each
protected	by	a	different	lock.

Per-Processor	Data	Structures.	Partition	an	object’s	state	so	that	all	or	most
accesses	are	performed	by	threads	running	on	the	same	processor.

Ownership	Design	Pattern.	Remove	a	shared	object	from	a	shared	container	so	that
only	a	single	thread	can	read	or	modify	the	object.

Staged	Architecture.	Divide	system	into	multiple	stages,	so	that	only	those	threads
within	each	stage	can	access	that	stage’s	shared	data.

6.2.1	Fine-Grained	Locking

A	simple	and	widely	used	approach	to	decrease	contention	for	a	shared	lock	is	to	partition

the	shared	object’s	state	into	different	subsets,	each	protected	by	its	own	lock.	This	is
called	fine-grained	locking.

The	web	server	cache	discussed	above	provides	an	example.	The	cache	can	use	a	shared
hash	table	to	store	and	locate	recently	used	web	pages;	because	the	hash	table	is	shared,	it
needs	a	lock	to	provide	mutual	exclusion.	The	lock	is	acquired	and	released	at	the	start	and
end	of	each	of	the	hash	table	methods:	put(key,	value),	value	=	get(key),	and	value	=
remove(key).

If	the	single	lock	limits	performance,	an	alternative	is	to	have	one	lock	per	hash	bucket.
The	methods	acquire	the	lock	for	bucket	b	before	accessing	any	record	that	hashes	to	that
bucket.	Provided	that	the	number	of	buckets	is	large	enough,	and	no	single	bucket	receives
a	large	fraction	of	requests,	then	different	threads	can	use	and	update	the	hash	table	in
parallel.

However,	there	is	no	free	lunch.	Dividing	an	object’s	state	into	different	pieces	protected
by	different	locks	can	significantly	increase	the	object’s	complexity.	Suppose	we	want	to
implement	a	hash	table	whose	number	of	hash	buckets	grows	as	the	number	of	objects	it
stores	increases.	If	we	have	a	single	lock,	this	is	easy	to	do.	But,	what	if	we	use	fine-
grained	locking?	Then,	the	design	becomes	more	complex	because	we	have	some
methods,	like	put	and	get,	that	operate	on	one	bucket	and	other	methods,	like	resize,	that
operate	across	multiple	buckets.

Several	solutions	are	possible:

1.	 Introduce	a	readers/writers	lock.	Suppose	we	have	a	readers/writers	lock	on	the
overall	structure	of	the	hash	table	(e.g.,	the	number	of	buckets	and	the	array	of
buckets)	and	a	mutual	exclusion	lock	on	each	bucket.	Methods	that	work	on	a	single
bucket	at	a	time,	such	as	put	and	get,	acquire	the	table’s	readers/writers	lock	in	read
mode	and	also	acquire	the	relevant	bucket’s	mutual	exclusion	lock.	Methods	that
change	the	table’s	structure,	such	as	resize,	must	acquire	the	readers/writers	lock	in
write	mode;	the	readers/writers	lock	prevents	any	other	threads	from	using	the	hash
table	while	it	is	being	resized.

2.	 Acquire	every	lock.	Methods	that	change	the	structure	of	the	hash	table,	such	as
resize,	must	first	iterate	through	every	bucket,	acquiring	its	lock,	before	proceeding.
Once	resize	has	a	lock	on	every	bucket,	it	is	guaranteed	that	no	other	thread	is
concurrently	accessing	or	modifying	the	hash	table.

3.	 Divide	the	hash	key	space.	Another	solution	is	to	divide	the	hash	key	space	into	r
regions,	to	have	a	mutual	exclusion	lock	for	each	region,	and	to	allow	each	region	to
be	resized	independently	when	it	becomes	heavily	loaded.	Then,	get,	put,	and
resizeRegion	each	acquire	the	relevant	region’s	mutual	exclusion	lock.

Which	solution	is	best?	It	is	not	obvious.	The	first	solution	is	simple	and	appears	to	allow
high	concurrency,	but	acquiring	the	readers/writers	lock	even	in	read	mode	may	have	high
overhead.	For	example,	we	gave	an	implementation	of	a	readers/writers	lock	in	Chapter	5
where	acquiring	a	read-only	lock	involves	acquiring	a	mutual	exclusion	lock	on	both
entrance	and	exit.	Access	to	the	underlying	mutual	exclusion	lock	may	become	a
bottleneck.

The	second	solution	makes	resize	expensive,	but	if	resize	is	a	rare	operation,	that	may	be
acceptable.	The	third	solution	balances	concurrency	for	get/put	against	the	cost	of	resize,
but	it	is	more	complex	and	may	require	tuning	the	number	of	groups	to	get	good
performance.

Further,	these	trade-offs	may	change	as	the	implementation	becomes	more	complex.	For
example,	to	trigger	resize	at	appropriate	times,	we	probably	need	to	maintain	an	additional
nObjects	count	of	the	number	of	objects	currently	stored	in	the	hash	table,	so	whatever
locking	approach	we	use	would	need	to	be	extended	to	cover	this	information.

EXAMPLE:	How	might	you	use	fine-grained	locking	to	reduce	contention	for	the	lock
protecting	the	shared	memory	heap	in	malloc/free	or	new/delete?

ANSWER:	One	approach	would	be	to	partition	the	heap	into	separate	memory
regions,	each	with	its	own	lock.	For	example,	a	fast	implementation	of	a	heap	on	a
uniprocessor	uses	n	buckets,	where	the	ith	bucket	contains	blocks	of	size	2i,	and	serves
requests	of	size	2i-1	+	1	to	2i.	If	there	are	no	free	blocks	in	the	ith	bucket,	an	item	from	the
next	larger	bucket	i	+	1	is	split	in	two.	Using	fine-grained	locking,	each	bucket	can	be
given	its	own	lock.	□

6.2.2	Per-Processor	Data	Structures

A	related	technique	to	fine-grained	locking	is	to	partition	the	shared	data	structure	based
on	the	number	of	processors	on	the	machine.	For	example,	instead	of	one	shared	hash
table	of	cached	pages,	an	alternative	design	would	have	N	separate	hash	tables,	where	N	is
the	number	of	processors.	Each	thread	uses	the	hash	table	based	on	the	processor	where	it
is	currently	running.	Each	hash	table	still	needs	its	own	lock	in	case	a	thread	is	context
switched	in	the	middle	of	an	operation,	but	in	the	common	case,	only	threads	running	on
the	same	processor	contend	for	the	same	lock.

Often,	this	is	combined	with	a	per-processor	ready	list,	ensuring	that	each	thread
preferentially	runs	on	the	same	processor	each	time	it	is	context	switched,	further
improving	execution	speed.

An	advantage	of	this	approach	is	better	hardware	cache	behavior;	as	we	saw	in	the
previous	section,	shared	data	that	must	be	communicated	between	processors	can	slow
down	the	execution	of	critical	sections.	Of	course,	the	disadvantage	is	that	the	hash	tables
are	now	partitioned,	so	that	a	web	page	may	be	cached	in	one	processor’s	hash	table,	and
needed	in	another.	Whether	this	is	a	performance	benefit	depends	on	the	relative	impact	of
reducing	communication	of	shared	data	versus	the	decreased	effectiveness	of	the	cache.

EXAMPLE:	How	might	you	use	per-processor	data	structures	to	reduce	contention	for
the	memory	heap?	Under	what	conditions	would	this	work	well?

ANSWER:	The	heap	can	be	partitioned	into	N	separate	memory	regions,	one	for
each	processor.	Calls	to	malloc/new	would	use	the	local	heap;	free/delete	would	return
the	data	to	the	heap	where	it	was	allocated.	This	would	perform	well	provided	that	(i)
rebalancing	the	heaps	was	rare	and	(ii)	most	allocated	data	is	freed	by	the	thread
that	acquires	it.	□

6.2.3	Ownership	Design	Pattern

A	common	synchronization	technique	in	large,	multi-threaded	programs	is	an	ownership
design	pattern.	In	this	pattern,	a	thread	removes	an	object	from	a	container	and	can	then
access	the	object	without	holding	a	lock:	the	program	structure	guarantees	that	at	most	one
thread	owns	an	object	at	a	time.

Figure	6.2:	A	multi-stage	server	based	on	the	ownership	pattern.	In	the	first	stage,	one	thread	exclusively	owns	each
network	connection.	In	later	stages,	one	thread	parses	and	renders	a	given	object	at	a	time.

As	an	example,	a	single	web	page	can	contain	multiple	objects,	including	HTML	frames,
style	sheets,	and	images.	Consider	a	multi-threaded	web	browser	whose	processing	is
divided	into	three	stages:	receiving	an	object	via	the	network,	parsing	the	object,	and
rendering	the	object	(see	Figure	6.2).	The	first	stage	has	one	thread	per	network
connection;	the	other	stages	have	several	worker	threads,	each	of	which	processes	one
object	at	a	time.

The	work	queues	between	stages	coordinate	object	ownership.	Objects	in	the	queues	are
not	being	accessed	by	any	thread.	When	a	worker	thread	in	the	parse	stage	removes	an
object	from	the	stage’s	work	queue,	it	owns	the	object	and	has	exclusive	access	to	it.
When	the	thread	is	done	parsing	the	object,	it	puts	it	into	the	second	queue	and	stops
accessing	it.	A	worker	thread	from	the	render	stage	then	removes	it	from	the	second
queue,	gaining	exclusive	access	to	it	to	render	it	to	the	screen.

EXAMPLE:	How	might	you	use	the	ownership	design	pattern	to	reduce	contention	for
the	memory	heap?

ANSWER:	Ownership	can	be	seen	as	an	extension	of	per-processor	data	structures;
instead	of	one	heap	per	processor,	we	can	have	one	heap	per	thread.	Provided	that	the
same	thread	that	allocates	memory	also	frees	it,	the	thread	can	safely	use	its	own	heap
without	a	lock	and	only	return	to	the	global	heap	when	the	local	heap	is	out	of	space.	□

Commutative	interface	design

Class	and	interface	design	can	often	constrain	implementations	in	ways	that	require
locking.	An	example	is	the	UNIX	API.	Like	most	operating	systems,	the	UNIX	open
system	call	returns	a	file	handle	that	is	used	for	further	operations	on	the	file;	the	same

system	call	is	also	used	to	initialize	a	network	socket.	The	open	call	gives	the	operating
system	the	ability	to	allocate	internal	data	structures	to	track	the	current	state	of	the	file	or
network	socket,	and	more	broadly,	which	files	and	sockets	are	in	use.

UNIX	also	specifies	that	each	successive	call	to	open	returns	the	next	integer	file	handle;
as	we	saw	in	Chapter	3,	the	UNIX	shell	uses	this	feature	when	redirecting	stdin	and
stdout	to	a	file	or	pipe.

A	consequence	of	the	design	of	the	UNIX	API	is	that	the	implementation	of	open	requires
a	lock.	For	early	UNIX	systems,	this	was	not	an	issue,	but	modern	multi-threaded	web
servers	open	extremely	large	numbers	of	network	sockets	and	files.	Because	of	the
semantics	of	the	API,	the	implementation	of	open	cannot	use	fine-grained	locking	or	a
per-processor	data	structure.

A	better	choice,	where	possible,	is	to	design	the	API	to	be	commutative:	the	result	of	two
calls	is	the	same	regardless	of	which	call	was	made	first.	For	example,	if	the
implementation	can	return	any	unique	integer	as	a	file	handle,	rather	than	the	next
successive	one,	then	the	implementation	could	allocate	out	of	a	per-processor	bucket	of
open	file	handles.	The	implementation	would	then	need	a	lock	only	for	the	special	case	of
allocating	specific	handles	such	as	stdin	and	stdout.

6.2.4	Staged	Architecture

Figure	6.3:	A	staged	architecture	for	a	simple	web	server.

The	staged	architecture	pattern,	illustrated	in	Figure	6.3,	divides	a	system	into	multiple
subsystems,	called	stages.	Each	stage	includes	state	private	to	the	stage	and	a	set	of	one	or
more	worker	threads	that	operate	on	that	state.	Different	stages	communicate	by	sending
messages	to	each	other	via	shared	producer-consumer	queues.	Each	worker	thread
repeatedly	pulls	the	next	message	from	a	stage’s	incoming	queue	and	then	processes	it,
possibly	producing	one	or	more	messages	for	other	stages’	queues.

Figure	6.3	shows	a	staged	architecture	for	a	simple	web	server	that	has	a	first	connect
stage	that	uses	one	thread	to	set	up	network	connections	and	that	passes	each	connection
to	a	second	read	and	parse	stage.

The	read	and	parse	stage	has	several	threads,	each	of	which	repeatedly	gets	a	connection
from	the	incoming	queue,	reads	a	request	from	the	connection,	parses	the	request	to
determine	what	web	page	is	being	requested,	and	checks	to	see	if	the	page	is	already
cached.

Assuming	the	page	is	not	already	cached,	if	the	request	is	for	a	static	web	page	(e.g.,	an
HTML	file),	the	read	and	parse	stage	passes	the	request	and	connection	to	the	read	static
page	stage,	where	one	of	the	stage’s	threads	reads	the	specified	page	from	disk.	Otherwise,
the	read	and	parse	stage	passes	the	request	and	connection	to	the	generate	dynamic	page
stage,	where	one	of	the	stage’s	threads	runs	a	program	that	dynamically	generates	a	page
in	response	to	the	request.

Once	the	page	has	been	fetched	or	generated,	the	page	and	connection	are	passed	to	the
send	page	stage,	where	one	of	the	threads	transmits	the	page	over	the	connection.

The	key	property	of	a	staged	architecture	is	that	the	state	of	each	stage	is	private	to	that
stage.	This	improves	modularity,	making	it	easier	to	reason	about	each	stage	individually
and	about	interactions	across	stages.

As	an	example	of	the	modularity	benefits,	consider	a	system	where	different	stages	are
produced	by	different	teams	or	even	different	companies.	Each	stage	can	be	designed	and
tested	almost	independently,	and	the	system	is	likely	to	work	as	expected	when	the	stages
are	brought	together.	For	example,	it	is	common	practice	for	a	web	site	to	use	a	web	server
from	one	company	and	a	database	from	another	company	and	for	the	two	to	communicate
via	messages.

Another	benefit	is	improved	cache	locality.	A	thread	operating	on	a	subset	of	the	system’s
state	may	have	better	cache	behavior	than	a	thread	that	accesses	state	from	all	stages.	On
the	other	hand,	for	some	workloads,	passing	a	request	from	stage	to	stage	could	hurt	cache
behavior	compared	to	doing	all	of	the	processing	for	a	request	on	one	processor.

Also	note	that	for	good	performance,	the	processing	in	each	stage	must	be	large	enough	to
amortize	the	cost	of	sending	and	receiving	messages.

The	special	case	of	exactly	one	thread	per	stage	is	event-driven	programming,	described	in
Chapter	4.	With	event-driven	programming,	there	is	no	concurrency	within	a	stage,	so	no
locking	is	required.	Each	message	is	processed	atomically	with	respect	to	that	stage’s
state.

One	challenge	with	staged	architectures	is	dealing	with	overload.	System	throughput	is
limited	by	the	throughput	of	the	slowest	stage.	If	the	system	is	overloaded,	the	slowest
stage	will	fall	behind,	and	its	work	queue	will	grow.	Depending	on	the	system’s
implementation,	two	bad	things	could	happen.	First,	the	queue	could	grow	indefinitely,
consuming	more	and	more	memory	until	the	system	memory	heap	is	exhausted.	Second,	if
the	queue	is	limited	to	a	finite	size,	once	that	size	is	reached,	earlier	stages	must	either
discard	work	for	the	overloaded	stage	or	block	until	the	queue	has	room.	Notice	that	if
they	block,	then	the	backpressure	will	limit	the	throughput	of	earlier	stages	to	that	of	the

bottleneck	stage,	and	their	queues	in	turn	may	begin	to	grow.

One	solution	is	to	dynamically	vary	the	number	of	threads	per	stage.	If	a	stage’s	incoming
queue	is	growing,	the	program	can	shift	processing	resources	to	it	by	reducing	the	number
of	threads	for	a	lightly-loaded	stage	in	favor	of	more	threads	for	the	stage	that	is	falling
behind.

6.3	Lock	Contention

Sometimes,	even	after	applying	the	techniques	described	in	the	previous	section,	locking
may	remain	a	bottleneck	to	good	performance	on	a	multiprocessor.	For	example,	with
fine-grained	locking	of	a	hash	table,	if	a	bucket	contains	a	particularly	popular	item,	say
the	cached	page	for	Justin	Bieber,	then	the	lock	on	that	bucket	can	be	a	source	of
contention.

In	this	section,	we	discuss	two	alternate	implementations	of	the	lock	abstraction	that	work
better	for	locks	that	are	bottlenecks:

MCS	Locks.	MCS	is	an	implementation	of	a	spinlock	optimized	for	the	case	when
there	are	a	significant	number	of	waiting	threads.

RCU	Locks.	RCU	is	an	implementation	of	a	reader/writer	lock,	optimized	for	the
case	when	there	are	many	more	readers	than	writers.	RCU	reduces	the	overhead	for
readers	at	a	cost	of	increased	overhead	for	writers.	More	importantly,	RCU	has
somewhat	different	semantics	than	a	normal	reader/writer	lock,	placing	a	burden	on
the	user	of	the	lock	to	understand	its	dangers.

Although	both	approaches	are	used	in	modern	operating	system	kernels,	we	caution	that
neither	is	a	panacea.	They	should	only	be	used	once	profiling	has	shown	that	the	lock	is	a
source	of	contention	and	no	other	options	are	available.

6.3.1	MCS	Locks

Recall	that	the	lock	implementation	described	in	Chapter	5	was	tuned	for	the	common
case	where	the	lock	was	usually	FREE.	Is	there	an	efficient	implementation	of	locks	when
the	lock	is	usually	BUSY?

Unfortunately,	the	overhead	of	acquiring	and	releasing	a	lock	can	increase	dramatically
with	the	number	of	threads	contending	for	the	lock.	For	a	contended	lock,	this	can	further
increase	the	number	of	threads	waiting	for	the	lock.	Consider	again	the	example	we	used
earlier,	of	a	spinlock	protecting	a	shared	counter:

Even	if	many	threads	try	to	increment	the	same	counter,	only	one	thread	at	a	time	can
execute	the	critical	section;	the	other	threads	must	wait	their	turn.	As	we	observed	earlier,
because	the	counter	value	must	be	communicated	from	one	lock	holder	to	the	next,	the
critical	section	will	take	significantly	longer	on	a	multiprocessor	than	on	a	single
processor.

Figure	6.4:	The	overhead	of	three	alternative	lock	implementations	as	a	function	of	the	number	of	processors
contending	for	the	lock:	(a)	test-and-set,	(b)	test	and	test-and-set,	and	(c)	MCS.	Measurements	taken	on	a	64-core	AMD
Opteron	6262.	The	non-smooth	curves	are	typical	of	measurements	of	real	systems.

However,	the	situation	with	multiple	waiting	threads	is	even	worse.	The	time	to	execute	a
critical	section	protected	by	a	spinlock	increases	linearly	with	the	number	of	spinning
processors.	Figure	6.4	illustrates	this	effect.	The	problem	is	that	before	a	processor	can
execute	an	atomic	read-modify-write	instruction,	the	hardware	must	obtain	exclusive
access	to	that	memory	location.	Any	other	read-modify-write	instruction	must	occur	either
before	or	afterwards.

Thus,	if	a	number	of	processors	are	executing	a	spin	loop,	they	will	all	be	trying	to	gain
exclusive	access	to	the	memory	location	of	the	lock.	The	store	instruction	to	clear	the	lock
also	needs	exclusive	access,	and	the	hardware	has	no	way	to	know	that	it	should	prioritize
the	lock	release	ahead	of	the	competing	requests	to	see	if	the	lock	is	free.

One	might	think	that	it	would	help	to	check	that	the	lock	is	free	before	trying	to	acquire	it
with	a	test-and-set;	this	is	called	test	and	test-and-set:

However,	it	turns	out	this	does	not	help.	When	the	lock	is	released,	the	new	value	of	the
lock,	FREE,	must	be	communicated	to	the	other	waiting	processors.	On	modern	systems,
each	processor	separately	fetches	the	data	into	its	cache.	Eventually	one	of	them	gets	the
new	value	and	acquires	the	lock.	If	the	critical	section	is	not	very	long,	the	other
processors	will	still	be	busy	fetching	the	new	value	and	trying	to	acquire	the	lock,
preventing	the	lock	release	from	completing.

One	approach	is	to	adjust	the	frequency	of	polling	to	the	length	of	time	that	the	thread	has
been	waiting.	A	more	scalable	solution	is	to	assign	each	waiting	thread	a	separate	memory
location	where	it	can	spin.	To	release	a	lock,	the	bit	is	set	for	one	thread,	telling	it	that	it	is
the	next	to	acquire	the	lock.

The	most	widely	used	implementation	of	this	idea	is	known	as	the	MCS	lock,	after	the
initials	of	its	authors,	Mellor-Crummey	and	Scott.	The	MCS	lock	takes	advantage	of	an
atomic	read-modify-write	instruction	called	compare-and-swap	that	is	supported	on	most
modern	multiprocessor	architectures.	Compare-and-swap	tests	the	value	of	a	memory
location	and	swaps	in	a	new	value	if	the	old	value	has	not	changed.

Figure	6.5:	Pseudo-code	for	an	MCS	queueing	lock,	where	each	waiting	thread	spins	on
a	separate	memory	location	in	its	thread	control	block	(myTCB).	The	operation,	compare-
and-swap,	atomically	inserts	the	TCB	at	the	tail	of	the	queue.

Figure	6.6:	The	behavior	of	the	MCS	queueing	lock.	Initially	(a),	tail	is	NULL	indicating	that	the	lock	is	FREE.	To
acquire	the	lock	(b),	thread	A	atomically	sets	tail	to	point	to	A’s	TCB.	Additional	threads	B	and	C	queue	by	adding
themselves	(atomically)	to	the	tail	(c)	and	(d);	they	then	spin	on	their	respective	TCB’s	needToWait	flag.	Thread	A
hands	the	lock	to	B	by	clearing	B’s	needToWait	flag	(e);	B	hands	the	lock	to	C	by	clearing	C’s	needToWait	fla	(f).	C
releases	the	lock	by	setting	tail	back	to	NULL	(a)	iff	no	one	else	is	waiting	—	that	is,	iff	tail	still	points	to	C’s	TCB.

Compare-and-swap	can	be	used	to	build	a	queue	of	waiting	threads,	without	a	separate
spinlock.	A	waiting	thread	atomically	adds	itself	to	the	tail	of	the	queue,	and	then	spins	on
a	flag	in	its	queue	entry.	When	a	thread	releases	the	lock,	it	sets	the	flag	in	the	next	queue
entry,	signaling	to	the	thread	that	its	turn	is	next.	Figure	6.5	provides	an	implementation,
and	Figure	6.6	illustrates	the	algorithm	in	action.

Because	each	thread	in	the	queue	spins	on	its	own	queue	entry,	the	lock	can	be	passed
efficiently	from	one	thread	to	another	along	the	queue.	Of	course,	the	overhead	of	setting
up	the	queue	means	that	an	MCS	lock	is	less	efficient	than	a	normal	spinlock	unless	there
are	a	large	number	of	waiting	threads.

6.3.2	Read-Copy-Update	(RCU)

Read-copy-update	(RCU)	provides	high-performance	synchronization	for	data	structures
that	are	frequently	read	and	occasionally	updated.	In	particular,	RCU	optimizes	the	read
path	to	have	extremely	low	synchronization	costs	even	with	a	large	number	of	concurrent
readers.	However,	writes	can	be	delayed	for	a	long	time	—	tens	of	milliseconds	in	some

implementations.

Why	Not	Use	a	Readers/Writers	Lock?

Standard	readers/writers	locks	are	a	poor	fit	for	certain	types	of	read-dominated
workloads.	Recall	that	these	locks	allow	an	arbitrary	number	of	concurrent	active	readers,
but	when	there	is	an	active	writer,	no	other	writer	or	reader	can	be	active.

The	problem	occurs	when	there	are	many	concurrent	reads	with	short	critical	sections.
Before	reading,	each	reader	must	acquire	a	readers/writers	lock	in	read	mode	and	release	it
afterwards.	On	both	entrance	and	exit,	the	reader	must	update	some	state	in	the
readers/writers	synchronization	object.	Even	when	there	are	only	readers,	the
readers/writers	synchronization	object	can	become	a	bottleneck.	This	limits	the	rate	at
which	readers	can	enter	the	critical	section,	because	they	can	only	acquire	the	lock	one	at	a
time.	For	critical	sections	of	less	than	a	few	thousand	cycles,	and	for	programs	with
dozens	of	threads	simultaneously	reading	a	shared	object,	the	standard	readers/writers	lock
can	limit	performance.

While	the	readers/writers	synchronization	object	could	be	implemented	with	an	MCS	lock
and	thereby	reduce	some	of	the	effects	of	lock	contention,	it	does	not	change	the	inherent
serial	access	of	the	readers/writers	control	structure.

The	RCU	Approach

How	can	concurrent	reads	access	a	data	structure	—	one	that	can	also	be	written	—
without	having	to	update	the	state	of	a	synchronization	variable	on	each	read?

To	meet	this	challenge,	an	RCU	lock	retains	the	basic	structure	of	a	reader/writers	lock:
readers	(and	writers)	surround	each	critical	section	with	calls	to	acquire	and	release	the
RCU	lock	in	read-mode	(or	write-mode).	An	RCU	lock	makes	three	important	changes	to
the	standard	interface:

1.	 Restricted	update.	With	RCU,	the	writer	thread	must	publish	its	changes	to	the
shared	data	structure	with	a	single,	atomic	memory	write.	Typically,	this	is	done	by
updating	a	single	pointer,	as	we	illustrate	below	by	using	RCU	to	update	a	shared	list.

Although	restricted	updates	might	seem	to	severely	limit	the	types	of	data	structure
operations	that	are	possible	under	RCU,	this	is	not	the	case.	A	common	pattern	is	for
the	writer	thread	to	make	a	copy	of	a	complex	data	structure	(or	a	portion	of	it),
update	the	copy,	and	then	publish	a	pointer	to	the	copy	into	a	shared	location	where	it
can	be	accessed	by	new	readers.

2.	 Multiple	concurrent	versions.	RCU	allows	any	number	of	read-only	critical
sections	to	be	in	progress	at	the	same	time	as	the	update.	These	read-only	critical
sections	may	see	the	old	or	new	version	of	the	data	structure.

3.	 Integration	with	the	thread	scheduler.	Because	there	may	be	readers	still	in
progress	when	an	update	is	made,	the	shared	object	must	maintain	multiple	versions
of	its	state,	to	guarantee	that	an	old	version	is	not	freed	until	all	readers	have	finished
accessing	it.	The	time	from	when	an	update	is	published	until	the	last	reader	is	done

with	the	previous	version	is	called	the	grace	period.	The	RCU	lock	uses	information
provided	by	the	thread	scheduler	to	determine	when	a	grace	period	ends.

Figure	6.7:	Timeline	for	an	update	concurrent	with	several	reads	for	a	data	structure	accessed	with	read-copy-update
(RCU)	synchronization.

Figure	6.7	shows	the	timeline	for	the	critical	sections	of	a	writer	and	several	reader	threads
under	RCU.	If	a	function	that	reads	the	data	structure	completes	before	a	write	is
published,	it	sees	the	old	version	of	the	data	structure;	if	a	reader	begins	after	a	write	is
published,	it	sees	the	new	version.	But,	if	a	reader	begins	before	and	ends	after	a	write	is
published,	it	may	see	either	the	old	version	or	the	new	one.	If	it	reads	the	updated	pointer
more	than	once,	it	may	see	the	old	one	and	then	the	new	one.	Which	version	it	sees
depends	on	which	version	of	the	single,	atomically-updated	memory	location	it	observes.
However,	the	system	guarantees	that	the	old	version	is	not	deleted	until	the	grace	period
expires.	The	deletion	of	the	old	version	must	be	delayed	until	all	reads	that	might	observe
the	old	version	have	completed.

RCU	API	and	Use

RCU	is	a	synchronization	abstraction	that	allows	concurrent	access	to	a	data	structure	by
multiple	readers	and	a	single	writer	at	a	time.	Figure	6.8	shows	a	typical	API.

Reader	API

readLock() Enter	read-only	critical	section.

readUnlock() Exit	read-only	critical	section.

Writer	API

writeLock() Enter	read-write	critical	section.

publish() Atomically	update	shared	data	structure.

writeUnlock() Exit	read-write	critical	section.

synchronize() Wait	for	all	currently	active	readers	to	exit	critical	section,	to	allow	for
garbage	collection	of	old	versions	of	the	object.

Scheduler	API

quiescentState() Of	the	read-only	threads	on	this	processor	who	were	active	during	themost	recent	RCU::publish,	all	have	exited	the	critical	section.

Figure	6.8:	Sample	programming	interface	for	read-copy-update	(RCU)	synchronization.
In	Java’s	implementation	of	RCU	locks,	synchronize	and	quiescentState	are	not	needed
because	the	language-level	garbage	collector	automatically	detects	when	old	versions	can
no	longer	be	accessed.	In	the	implementation	of	RCU	in	the	Linux	kernel,	synchronize	is
split	into	two	calls:	one	to	start	the	grace	period,	and	one	to	wait	until	the	grace	period
completes.

A	reader	calls	RCU::readLock	and	RCU::readUnlock	before	and	after	accessing	the	shared
data	structure.	A	writer	calls:	RCU::writeLock	to	exclude	other	writers;	RCU::publish	to
issue	the	write	that	atomically	updates	the	data	structure	so	that	reads	can	see	the	updates;
RCU::writeUnlock	to	let	other	writers	proceed;	and	RCU::synchronize	to	wait	for	the
grace	period	to	expire	so	that	the	old	version	of	the	object	can	be	freed.

As	Figure	6.9	illustrates,	writes	are	serialized	—	only	one	write	can	proceed	at	a	time.
However,	a	write	can	be	concurrent	with	any	number	of	reads.	A	write	can	also	be
concurrent	with	another	write’s	grace	period:	there	may	be	any	number	of	versions	of	the
object	until	multiple	overlapping	grace	periods	expire.

Figure	6.9:	RCU	allows	one	write	at	a	time,	and	it	allows	reads	to	overlap	each	other	and	writes.	The	initial	version	is
v0,	and	overlapping	writes	update	the	version	to	v1,	v2,	and	then	v3.

EXAMPLE:	For	each	read	in	Figure	6.9,	which	version(s)	of	the	shared	state	can	the	read
observe?

ANSWER:	If	a	read	overlaps	a	publish,	it	can	return	the	published	value	or	the	previous
value:

Read Value	Returned Reason

read1 v0	or	v1 Overlaps	publish	v1.

read2 v2 After	publish	v2,	before	publish	v3.

read3 v3 After	publish	v3.

read4 v0	or	v1 Overlaps	publish	v1.

read5 v1	or	v2 Overlaps	publish	v2.

read6 v0,	v1,	or	v2 Overlaps	publish	v1	and	v2.

read7 v3 After	publish	v2.

□

Figure	6.10:	Declaration	of	data	structures	and	API	for	a	linked	list	that	uses	RCU	for
synchronization,	and	the	implementation	of	a	read-only	method	for	searching	the	linked
list	using	RCU.

EXAMPLE:	RCU	linked	list.	Figures	6.10	and	6.11	show	how	to	use	RCU	locks	to
implement	a	linked	list	that	can	be	accessed	concurrently	by	many	readers,	while	also
being	updated	by	one	writer.

The	list	data	structure	comprises	an	RCU	lock	and	a	pointer	to	the	head	of	the	list.	Each
entry	in	the	list	has	two	data	fields	—	key	and	value	—	as	well	as	a	pointer	to	the	next
record	on	the	list.

The	search	method	is	read-only:	after	registering	with	readLock,	it	scans	down	the	list
until	it	finds	an	element	with	a	matching	key.	If	the	element	is	found,	the	method	uses	the
parameter	to	return	the	value	field	and	then	returns	TRUE.	Otherwise,	the	method	returns
FALSE	to	indicate	that	no	matching	record	was	found.

The	methods	to	update	the	list	are	more	subtle.	Each	of	them	is	arranged	so	that	a	single
pointer	update	is	sufficient	to	publish	the	new	version	of	the	list	to	the	readers.	In
particular,	it	is	important	that	insert	initialize	the	data	structure	before	updating	the	head
pointer	to	make	the	new	element	visible	to	readers.

Figure	6.11:	Implementation	of	a	linked	list	using	RCU	for	synchronization.

Implementing	RCU

When	implementing	RCU,	the	central	goal	is	to	minimize	the	cost	of	read	critical	sections:
the	system	must	allow	an	arbitrary	number	of	concurrent	readers.	Conversely,	writes	can
have	high	latency.	In	particular,	grace	periods	can	be	long,	with	tens	of	milliseconds	from
when	an	update	is	published	until	the	system	can	guarantee	that	no	readers	are	still	using
the	old	version.	Even	so,	write	overhead	—	the	CPU	time	needed	per	write	—	should	be
modest.

A	common	technique	for	achieving	these	goals	is	to	integrate	the	RCU	implementation
with	that	of	the	thread	scheduler.	This	is	in	contrast	with	the	readers/writers	lock	described
in	the	previous	chapter,	which	makes	no	assumptions	about	the	thread	scheduler,	but
which	must	track	exactly	how	many	readers	are	active	at	any	given	time.

In	particular,	the	implementation	we	present	requires	two	things	from	the	scheduler:	(1)
read-only	critical	sections	complete	without	being	interrupted	and	(2)	whenever	a	thread
on	a	processor	is	interrupted,	the	scheduler	updates	some	per-processor	RCU	state.	Then,
once	a	write	completes,	RCULock::Synchronize	simply	waits	for	all	processors	to	be
interrupted	at	least	once.	At	that	point,	the	old	version	of	the	object	is	known	to	be
quiescent	—	no	thread	has	access	to	the	old	version	(other	than	the	writer	who	changed	it).

Figure	6.12:	A	quiescence-based	RCU	implementation.	The	code	assumes	that	spinlock
acquire/release	and	interrupt	enable/disable	trigger	a	memory	barrier.	Credit:	This
pseudo-code	is	based	on	an	implementation	by	Paul	McKenney	in	“Is	Parallel
Programming	Hard,	And,	If	So,	What	Can	be	Done	About	It?”

Figure	6.12	shows	an	implementation	of	RCU	based	on	quiescent	states.	Notice	first	that
readLock	and	readUnlock	are	inexpensive:	they	update	no	state	and	merely	ensure	that	the
read	is	not	interrupted.	RCU::writeLock	and	writeUnlock	are	also	inexpensive.	They
acquire	and	release	a	spinlock	to	ensure	that	at	most	one	write	per	RCULock	can	proceed
at	a	time.

RCU::publish	is	also	simple.	It	executes	a	memory	barrier	so	that	all	modifications	to	the
shared	object	are	completed	before	the	pointer	is	updated.	It	then	updates	the	pointer,	and
then	executes	another	memory	barrier	so	that	other	processors	observe	the	update.

RCU::synchronize	and	quiescentState	work	together	to	ensure	that	when	synchronize

returns,	all	threads	are	guaranteed	to	be	done	with	the	old	version	of	the	object.
RCU::synchronize	increments	a	global	counter	and	then	waits	until	all	processors’	match
the	new	value	of	that	counter.	RCU::quiescentState	is	called	by	the	scheduler	whenever
that	processor	is	interrupted.	It	updates	that	processor’s	quiescentCount	to	match	the
current	globalCounter.	Thus,	once	quiescentCount	is	at	least	as	large	as	c,	on	every
processor,	synchronize	knows	that	no	remaining	readers	can	observe	the	old	version.

6.4	Multi-Object	Atomicity

Once	a	program	has	multiple	shared	objects,	it	becomes	both	necessary	and	challenging	to
reason	about	interactions	across	objects.	For	example,	consider	a	system	storing	a	bank’s
accounts.	A	reasonable	design	choice	might	be	for	each	customer’s	account	to	be	a	shared
object	with	a	lock	(either	a	mutual	exclusion	lock	or	a	readers/writers	lock,	as	described	in
Chapter	5).	Consider,	however,	transferring	$100	from	account	A	to	account	B,	as	follows:

Although	each	individual	action	is	atomic,	the	sequence	of	actions	is	not.	As	a	result,	there
may	be	a	time	where,	say,	A	tells	B	that	the	money	has	been	sent,	but	the	money	is	not	yet
in	B’s	account.

Similarly,	consider	a	bank	manager	who	wants	to	answer	a	question:	“How	much	money
does	the	bank	have?”	If	the	manager’s	program	simply	reads	from	each	account,	the
calculation	may	exclude	or	double-count	money	“in	flight”	between	accounts,	such	as	in
the	transfer	from	A	to	B.

These	examples	illustrate	a	general	problem	that	arises	whenever	a	program	contains
multiple	shared	objects.	Even	if	the	object	guarantees	that	each	method	operates
atomically,	sequences	of	operations	by	different	threads	can	be	interleaved.	The	same
issues	of	managing	multiple	locks	also	apply	to	fine-grained	locking	within	an	object.

6.4.1	Careful	Class	Design

Sometimes	it	is	possible	to	address	this	issue	through	careful	class	and	interface	design.
This	includes	the	design	of	individual	objects	(e.g.,	specifying	clean	interfaces	that	expose
the	right	abstractions).	It	also	includes	the	architecture	of	how	those	objects	interact	(e.g.,
structuring	a	system	architecture	in	well-defined	layers).

For	example,	you	would	face	the	same	issues	if	you	tried	to	solve	Too	Much	Milk	problem
with	a	Note	object	that	has	two	methods,	readNote	and	writeNote,	and	a	Fridge	object
with	two	methods,	checkForMilk	and	addMilk.	Atomicity	of	these	individual	operations	is
not	sufficient	to	provide	the	desired	behavior	without	considerable	programming	effort.

On	the	other	hand,	if	we	refactor	the	objects	so	that	we	have:

Then,	the	problem	becomes	straightforward.

This	advice	may	seem	obvious:	of	course,	you	should	strive	for	elegant	designs	for	both
single-	and	multi-threaded	code.	Nonetheless,	we	emphasize	that	the	choices	you	make	for
your	interfaces,	abstractions,	and	software	architecture	can	dramatically	affect	the
complexity	or	feasibility	of	your	designs.

6.4.2	Acquire-All/Release-All

Better	interface	design	has	limits,	however.	Sometimes,	multiple	locks	are	needed	for
program	structure	or	for	greater	concurrency.	Is	there	a	general	technique	to	perform	a	set
of	operations	that	require	multiple	locks,	so	that	the	group	of	operations	appears	atomic?
For	clarity,	we	will	refer	to	a	group	of	operations	as	a	request.

One	approach,	called	acquire-all/release-all	is	to	acquire	every	lock	that	may	be	needed	at
any	point	while	processing	the	entire	set	of	operations	in	the	request.	Then,	once	the
thread	has	all	of	the	locks	it	might	need,	the	thread	can	execute	the	request,	and	finally,
release	the	locks.

EXAMPLE:	Consider	a	hash	table	with	one	lock	per	hash	bucket.	To	move	an	item	from
one	bucket	to	another,	the	hash	table	supports	a	changeKey(item,	k1,	k2)	operation.	With
acquire-all/release-all,	this	function	could	be	implemented	to	first	acquire	both	the	locks
for	k1	and	k2,	then	remove	the	item	under	k1	and	insert	it	under	k2,	and	finally	release
both	locks.

Acquire-all/release-all	allows	significant	concurrency.	When	individual	requests	touch
non-overlapping	subsets	of	state	protected	by	different	locks,	they	can	proceed	in	parallel.

A	key	property	of	this	approach	is	serializability	across	requests:	the	result	of	any	program
execution	is	equivalent	to	an	execution	in	which	requests	are	processed	one	at	a	time	in
some	sequential	order.	Serializability	allows	one	to	reason	about	multi-step	tasks	as	if	each
task	executed	alone.

As	Figure	6.13	illustrates,	requests	that	access	non-overlapping	data	can	proceed	in
parallel.	The	result	is	the	same	as	if	the	system	first	executed	one	request	and	then	the
other	(or	equivalently,	the	reverse).	On	the	other	hand,	if	two	requests	touch	the	same	data,
then	the	fact	that	all	locks	are	acquired	at	the	beginning	and	released	at	the	end	implies
that	one	request	is	completed	before	the	other	one	begins.

Figure	6.13:	Locking	multiple	objects	using	an	acquire-all/release-all	pattern	results	in	a	serializable	execution	that	is
equivalent	to	an	execution	where	requests	are	executed	sequentially	in	some	order.

One	challenge	to	using	this	approach	is	knowing	exactly	what	locks	will	be	needed	by	a
request	before	beginning	to	process	it.	A	potential	solution	is	to	conservatively	acquire
more	locks	than	needed	(e.g.,	acquire	any	locks	that	may	be	needed	by	a	particular
request),	but	this	may	be	difficult	to	determine.	Without	first	executing	the	request,	how
can	we	know	which	locks	will	be	needed?

6.4.3	Two-Phase	Locking

Two	phase	locking	refines	the	acquire-all/release-all	pattern	to	address	this	concern.
Instead	of	acquiring	all	locks	before	processing	the	request,	locks	can	be	acquired	as
needed	for	each	operation.	However,	locks	are	not	released	until	all	locks	needed	by	the
request	have	been	acquired.	Most	implementations	simply	release	all	locks	at	the	end	of
the	request.

Two-phase	locking	avoids	needing	to	know	what	locks	to	grab	a	priori.	Therefore,
programs	can	avoid	acquiring	locks	they	do	not	need,	and	they	may	not	need	to	hold	locks
as	long.

EXAMPLE:	The	changeKey(item,	k1,	k2)	function	for	a	hash	table	with	per-bucket	locks
could	be	implemented	to	acquire	k1’s	lock,	remove	the	item	using	key	k1,	acquire	k2’s
lock,	insert	the	item	using	key	k2,	and	release	both	locks.

Like	acquire-all/release-all,	two-phase	locking	is	serializable.	If	two	requests	have	non-
overlapping	data,	they	are	commutative	and	therefore	serializable.	Otherwise,	there	is
some	overlapping	data	between	the	two	requests,	protected	by	one	or	more	locks.
Provided	a	request	completes,	it	must	have	acquired	all	of	those	locks,	and	made	its
changes	to	the	overlapping	data,	before	releasing	any	of	them.	Thus,	any	overlapping
request	must	have	read	or	modified	the	data	in	the	overlap	either	entirely	before	or	after
the	other	request.

Unlike	acquire-all/release-all,	however,	two-phase	locking	can	in	some	cases	lead	to
deadlock,	the	topic	of	the	next	section.

EXAMPLE:	Suppose	one	thread	starts	executing	changeKey(item,	k1,	k2)	and	another
thread	simultaneously	tries	to	move	a	different	item	in	the	other	direction	from	k2	to	k1.	If
the	first	thread	acquires	k1’s	lock	and	the	second	thread	acquires	k2’s	lock,	neither	will	be
able	to	make	progress.

6.5	Deadlock

A	challenge	to	constructing	complex	multi-threaded	programs	is	the	possibility	of
deadlock.	A	deadlock	is	a	cycle	of	waiting	among	a	set	of	threads,	where	each	thread	waits
for	some	other	thread	in	the	cycle	to	take	some	action.

Deadlock	can	occur	in	many	different	situations,	but	one	of	the	simplest	is	mutually
recursive	locking,	shown	in	the	code	fragment	below:

Suppose	two	shared	objects	with	mutual	exclusion	locks	can	call	into	each	other	while
holding	their	locks.	Deadlock	can	occur	when	one	thread	holds	the	lock	on	the	first	object,
and	another	thread	holds	the	lock	on	the	second	object.	If	the	first	thread	calls	into	the
second	object	while	still	holding	onto	its	lock,	it	will	need	to	wait	for	the	second	object’s
lock.	If	the	other	thread	does	the	same	thing	in	reverse,	neither	will	be	able	to	make
progress.

We	can	also	get	into	deadlock	with	two	locks	and	a	condition	variable,	shown	below:

In	nested	waiting,	one	shared	object	calls	into	another	shared	object	while	holding	the	first
object’s	lock,	and	then	waits	on	a	condition	variable.	CV::wait	releases	the	lock	of	the
second	object,	but	not	the	first.	Deadlock	results	if	the	thread	that	can	signal	the	condition
variable	needs	the	first	lock	to	make	progress.

The	problem	of	deadlock	is	much	broader	than	just	locks	and	condition	variables.
Deadlock	can	occur	anytime	a	thread	waits	for	an	event	that	cannot	happen	because	of	a
cycle	of	waiting	for	a	resource	held	by	the	first	thread.	As	in	the	examples	above,
resources	can	be	locks,	but	they	can	also	be	any	other	scarce	quantity:	memory,	processing
time,	disk	blocks,	or	space	in	a	buffer.

Suppose	we	have	two	bounded	buffers,	where	one	thread	puts	a	request	into	one	buffer,
and	gets	a	response	out	of	the	other.	Deadlock	can	result	if	another	thread	does	the	reverse.

If	the	buffers	are	almost	full,	both	threads	will	need	to	wait	for	there	to	be	room,	and	so
neither	will	be	able	to	reach	the	point	where	they	can	pull	data	out	of	the	other	buffer	to
allow	the	other	thread	to	make	progress.

Figure	6.14:	An	example	of	deadlock	where	three	tractor-trailer	trucks	enter	an	intersection	without	first	checking
whether	they	can	clear	the	intersection.

Deadlocks	also	occur	in	real	life.	We	encourage	you	to	develop	your	intuition	about
deadlocks	by	considering	why	deadlocks	occur	and	how	we	might	prevent	them.	For
example,	if	we	lived	in	a	world	without	stop	signs,	we	might	see	the	deadlock	in
Figure	6.14	more	often.

Figure	6.15:	In	this	example	of	the	dining	philosophers	problem,	there	are	5	philosophers,	5	plates,	and	5	chopsticks.

The	scarce	resource	leading	to	deadlock	can	even	be	a	chopstick.	The	Dining	Philosophers
problem	is	a	classic	illustration	of	both	the	challenges	and	solutions	to	deadlock;	an
example	is	shown	in	Figure	6.15.	There	is	a	round	table	with	n	plates	alternating	with	n
chopsticks	around	the	circle.	A	philosopher	sitting	at	a	plate	requires	two	chopsticks	to	eat.
Suppose	that	each	philosopher	proceeds	by	picking	up	the	chopstick	on	the	left,	picking	up
the	chopstick	on	the	right,	eating,	and	then	putting	down	both	chopsticks.	If	every
philosopher	follows	this	approach,	there	can	be	a	deadlock:	each	philosopher	takes	the
chopstick	on	the	left	but	can	be	stuck	waiting	for	the	philosopher	on	the	right	to	release	the
chopstick.

Note	that	mutually	recursive	locking	is	equivalent	to	Dining	Philosophers	with	n	=	2.

The	rest	of	this	section	addresses	the	following	questions:

Deadlock	vs.	Starvation.	How	does	deadlock	relate	to	the	concepts	of	liveness	and
starvation?

Necessary	Conditions	for	Deadlock.	What	conditions	are	required	for	deadlock	to
be	possible?

Preventing	Deadlock.	What	techniques	can	be	used	to	prevent	deadlock?

The	Banker’s	Algorithm	for	Avoiding	Deadlock.	The	Banker’s	Algorithm	is	a
general-purpose	mechanism	for	preventing	deadlock	by	exploiting	knowledge	of
what	resources	may	be	needed	in	the	future.

Detecting	and	Recovering	From	Deadlock.	In	some	systems,	deadlock	is	not
prevented	but	repaired	when	it	occurs.	How	can	we	detect	deadlock	and	then
recover?

6.5.1	Deadlock	vs.	Starvation

Deadlock	and	starvation	are	both	liveness	concerns.	In	starvation,	a	thread	fails	to	make
progress	for	an	indefinite	period	of	time.	Deadlock	is	a	form	of	starvation	but	with	the
stronger	condition:	a	group	of	threads	forms	a	cycle	where	none	of	the	threads	make
progress	because	each	thread	is	waiting	for	some	other	thread	in	the	cycle	to	take	action.
Thus,	deadlock	implies	starvation	(literally,	for	the	dining	philosophers),	but	starvation
does	not	imply	deadlock.

For	example,	recall	the	readers/writers	example	discussed	in	Section	5.6.1.	A	writer	only
waits	if	a	reader	or	writer	is	active.	In	the	writers-preferred	solution	we	gave,	waiting
readers	can	starve	if	new	writers	arrive	sufficiently	frequently;	likewise,	waiting	writers
can	starve	if	there	is	an	active	reader,	and	new	readers	arrive	and	become	active	before	the
last	one	completes.	Note	that	such	starvation	would	not	be	deadlock	because	there	is	no
cycle.	The	waiting	readers	are	waiting	on	the	active	writers	to	finish,	and	the	waiting
writers	are	waiting	on	the	active	readers	to	finish,	but	no	active	thread	is	waiting	on	a
waiting	reader	or	writer.

Just	because	a	system	can	suffer	deadlock	or	starvation	does	not	mean	that	it	always	will.
A	system	is	subject	to	starvation	if	a	thread	could	starve	in	some	circumstances.	A	system
is	subject	to	deadlock	if	a	group	of	threads	could	deadlock	in	some	circumstances.	Here,
the	circumstances	that	affect	whether	deadlock	or	starvation	occurs	could	include	a	broad
range	of	factors,	such	as:	the	choices	made	by	the	scheduler,	the	number	of	threads
running,	the	workload	or	sequence	of	requests	processed	by	the	system,	which	threads	win
races	to	acquire	locks,	and	which	threads	are	enabled	in	what	order	when	signals	or
broadcasts	occur.

A	system	that	is	subject	to	starvation	or	deadlock	may	be	live	in	many	or	most	runs	and
starve	or	deadlock	only	for	particular	workloads	or	“unlucky”	interleavings.	For	example,
in	mutually	recursive	locking,	the	deadlock	only	occurs	if	both	threads	obtain	the	outer
locks	at	about	the	same	time.	For	the	Dining	Philosophers	problem,	philosophers	may
succeed	in	eating	for	a	long	time	before	hitting	the	unlucky	sequence	of	events	that	causes
them	to	deadlock.	Similarly,	in	the	readers/writers	example,	the	writers-preferred	solution
will	allow	some	reads	to	complete	as	long	as	the	rate	of	writes	stays	below	some
threshold.

Since	testing	may	not	discover	deadlock	problems,	it	is	important	to	construct	systems	that

are	deadlock-free	by	design.

6.5.2	Necessary	Conditions	for	Deadlock

There	are	four	necessary	conditions	for	deadlock	to	occur.	Knowing	these	conditions	is
useful	for	designing	solutions:	if	you	can	prevent	any	one	of	these	conditions,	then	you
can	eliminate	the	possibility	of	deadlock.

1.	 Bounded	resources.	There	are	a	finite	number	of	threads	that	can	simultaneously	use
a	resource.

2.	 No	preemption.	Once	a	thread	acquires	a	resource,	its	ownership	cannot	be	revoked
until	the	thread	acts	to	release	it.

3.	 Wait	while	holding.	A	thread	holds	one	resource	while	waiting	for	another.	This
condition	is	sometimes	called	multiple	independent	requests	because	it	occurs	when	a
thread	first	acquires	one	resource	and	then	tries	to	acquire	another.

4.	 Circular	waiting.	There	is	a	set	of	waiting	threads	such	that	each	thread	is	waiting
for	a	resource	held	by	another.

Figure	6.16:	Graph	representation	of	the	state	of	a	deadlocked	Dining	Philosophers	system.	Circles	represent	threads,
boxes	represent	resources,	an	arrow	from	a	box/resource	to	a	circle/thread	represents	an	owned	by	relationship,	and	an
arrow	from	a	circle/thread	to	a	box/resource	represents	a	waiting	for	relationship.

EXAMPLE:	Show	that	the	Dining	Philosophers	meet	all	four	conditions	for	deadlock.

ANSWER:	To	see	that	all	four	conditions	are	met,	observe	that

1.	 Bounded	resources.	Each	chopstick	can	be	held	by	a	single	philosopher	at	a	time.

2.	 No	preemption.	Once	a	philosopher	picks	up	a	chopstick,	she	does	not	release	it
until	she	is	done	eating,	even	if	that	means	no	one	will	ever	eat.

3.	 Wait	while	holding.	When	a	philosopher	needs	to	wait	for	a	chopstick,	she	continues
to	hold	onto	any	chopsticks	she	has	already	picked	up.

4.	 Circular	waiting.	Figure	6.16	maps	the	state	of	a	deadlocked	Dining	Philosophers
implementation	to	an	abstract	graph	that	shows	which	resources	are	owned	by	which
threads	and	which	threads	wait	for	which	resources.	In	this	type	of	graph,	if	there	is
one	instance	of	each	type	of	resource	(e.g.,	a	particular	chopstick),	then	a	cycle

implies	deadlock	assuming	the	system	does	not	allow	preemption.

□

The	four	conditions	are	necessary	but	not	sufficient	for	deadlock.	When	there	are	multiple
instances	of	a	type	of	resource,	there	can	be	a	cycle	of	waiting	without	deadlock	because	a
thread	not	in	the	cycle	may	return	resources	that	enable	a	waiting	thread	to	proceed.

Figure	6.17:	Graph	representation	of	the	state	of	a	Dining	Philosophers	system	that	includes	a	cycle	among	waiting
threads	and	resources	but	that	is	not	deadlocked.	Circles	represent	threads,	boxes	represent	resources,	dots	within	a	box
represent	multiple	instances	of	a	resource,	an	arrow	from	a	dot/resource	instance	to	a	circle/thread	represents	an	owned
by	relationship	and	an	arrow	from	a	circle/thread	to	a	box/resource	represents	a	waiting	for	relationship.

Suppose	we	have	5	philosophers	at	a	table	with	5	chopsticks,	but	the	chopsticks	are	placed
in	a	tray	at	the	center	of	the	table	when	not	in	use.	We	could	be	in	the	state	illustrated	in
Figure	6.17,	where	philosopher	1	has	two	chopsticks,	philosophers	2,	3,	and	4	each	have
one	chopstick	and	are	waiting	for	another	chopstick,	while	philosopher	5	has	no
chopsticks.	In	this	state,	we	have	bounded	resources	(five	chopsticks),	no	preemption	(we
cannot	forcibly	remove	a	chopstick	from	a	hungry	philosopher’s	hand),	wait	while	holding
(philosophers	2,	3	and	4	are	holding	a	chopstick	while	waiting	for	another),	and	circular
waiting	(each	of	philosophers	2,	3,	and	4	are	waiting	for	a	resource	held	by	another	of
them).	However,	we	do	not	have	deadlock.	Eventually,	philosopher	1	will	release	its	two
chopsticks,	which	may,	for	example,	allow	philosophers	2	and	3	to	eat	and	release	their

chopsticks.	In	turn,	this	would	allow	philosophers	4	and	5	to	eat.

Although	the	system	shown	in	Figure	6.17	is	not	currently	deadlocked,	it	is	still	subject	to
deadlock.	For	example,	if	philosopher	1	returns	two	chopsticks,	philosopher	5	picks	up
one,	and	philosopher	1	picks	up	the	other,	then	the	system	would	deadlock.

6.5.3	Preventing	Deadlock

Preventing	deadlock	can	be	challenging.	For	example,	consider	a	system	with	three
resources	—	A,	B,	and	C	—	and	two	threads	that	access	them.	Thread	1	acquires	A	then	C
then	B,	and	thread	2	acquires	B	then	C	then	A.	The	following	sequence	can	lead	to
deadlock:

Thread	1 Thread	2

1 Acquire	A

2 Acquire	B

3 Acquire	C

4 Wait	for	C

5 Wait	for	B

How	could	we	avoid	this	deadlock?	The	deadlock’s	circular	waiting	occurs	when	we	reach
step	5,	but	our	fate	was	sealed	much	earlier.	In	particular,	once	we	complete	step	2	and
thread	2	acquires	B,	deadlock	is	inevitable.	To	prevent	the	deadlock,	we	have	to	realize	at
step	2	that	it	will	occur	at	step	5.	Once	step	1	completes	and	thread	1	acquires	A,	we
cannot	let	thread	2	complete	step	2	and	acquire	B	or	deadlock	will	follow.

This	example	illustrates	that	for	an	arbitrary	program,	preventing	deadlock	can	take	one	of
three	approaches:

1.	 Exploit	or	limit	the	behavior	of	the	program.	Often,	we	can	change	the	behavior	of
a	program	to	prevent	one	of	the	four	necessary	conditions	for	deadlock,	and	thereby
eliminate	the	possibility	of	deadlock.	In	the	above	example,	we	can	eliminate
deadlock	by	changing	the	program	to	never	wait	for	B	while	holding	C.

2.	 Predict	the	future.	If	we	can	know	what	threads	may	or	will	do,	then	we	can	avoid
deadlock	by	having	threads	wait	(e.g.,	thread	2	can	wait	at	step	2	above)	before	they
would	head	into	a	possible	deadlock.

3.	 Detect	and	recover.	Another	alternative	is	to	allow	threads	to	recover	or	“undo”

actions	that	take	a	system	into	a	deadlock;	in	the	above	example,	when	thread	2	finds
itself	in	deadlock,	it	can	recover	by	reverting	to	an	earlier	state.

We	discuss	these	three	options	in	this	and	the	following	two	sub-sections.

Section	6.5.2	listed	four	necessary	conditions	for	deadlock.	These	conditions	are	useful
because	they	suggest	approaches	for	preventing	deadlock:	if	a	system	is	structured	to
prevent	at	least	one	of	the	conditions,	then	the	system	cannot	deadlock.	Considering	these
conditions	in	the	context	of	a	given	system	often	points	to	a	viable	deadlock	prevention
strategy.	Below,	we	discuss	some	commonly	used	approaches.

Bounded	resources:	Provide	sufficient	resources.	One	way	to	ensure	deadlock	freedom
is	to	arrange	for	sufficient	resources	to	satisfy	all	threads’	demands.	A	simple	example
would	be	to	add	a	single	chopstick	to	the	middle	of	the	table	in	Dining	Philosophers;	that
is	enough	to	eliminate	the	possibility	of	deadlock.	As	another	example,	thread
implementations	often	reserve	space	in	the	TCB	for	the	thread	to	be	inserted	into	a	waiting
list	or	the	ready	list.	While	it	would	be	theoretically	possible	to	dynamically	allocate	space
for	the	list	entry	only	when	it	is	needed,	that	could	open	up	the	chance	that	the	system
would	run	out	of	memory	at	exactly	the	wrong	time,	leading	to	deadlock.

No	preemption:	Preempt	resources.	Another	technique	is	to	allow	the	runtime	system	to
forcibly	reclaim	resources	held	by	a	thread.	For	example,	an	operating	system	can	preempt
a	page	of	memory	from	a	running	process	by	copying	it	to	disk	in	order	to	prevent
applications	from	deadlocking	as	they	acquire	memory	pages.

Wait	while	holding:	Release	lock	when	calling	out	of	module.	For	nested	modules,	each
of	which	has	its	own	lock,	waiting	on	a	condition	variable	in	an	inner	module	can	lead	to	a
nested	waiting	deadlock.	One	solution	is	to	restructure	a	module’s	code	so	that	no	locks
are	held	when	calling	other	modules.	For	example,	we	can	change	the	code	on	the	left	to
the	code	on	the	right,	provided	that	the	program	does	not	depend	on	the	three	steps
occurring	atomically:

Deadlock	and	kernel	paging

Early	operating	systems	were	often	run	on	machines	with	very	limited	amounts	of	main
memory.	In	response,	going	back	at	least	as	far	as	Multics,	portions	of	the	kernel	(both
code	and	data)	could	be	swapped	to	disk	in	order	to	save	space.	Then,	when	the	code	and
data	was	needed,	they	could	be	brought	into	main	memory,	swapping	with	some	other
portion	of	the	kernel	that	was	not	currently	in	use.

A	challenge	to	making	this	work	was	deadlock.	The	code	to	swap	in	or	out	portions	of	the
kernel	needed	to	be	kept	in	memory,	along	with	any	code	or	data	it	might	touch	along	any
possible	execution	path.	Without	very	strict	module	layering,	it	would	be	easy	to	miss	a
dependency	that	would,	in	rare	cases,	trigger	a	latent	deadlock.	Often,	the	only	possible
repair	would	be	to	reboot.

Because	of	the	inherent	complexity	of	this	approach,	most	modern	operating	systems
keep	all	kernel	code	and	almost	all	data	structures	memory	resident;	the	one	exception	is
that	some	kernels	still	swap	the	page	tables	for	application	virtual	memory,	a	topic	we
will	discuss	in	Chapter	9.

In	theory,	one	could	eliminate	the	risk	of	deadlocks	due	to	nested	monitors	by	always
releasing	locks	when	calling	code	outside	of	a	module.	In	practice,	doing	so	is	likely	to	be
cumbersome,	not	only	from	the	extra	code	needed	to	acquire	and	release	locks,	but	also
because	of	the	extra	thought	needed	to	transform	a	single	atomic	method	that	holds	a	lock
across	a	series	of	actions	to	a	sequence	of	atomic	methods	that	each	acquire	and	release
the	lock.	As	a	result,	programmers	often	take	the	decidedly	non-modular	and	admittedly
unsatisfying	approach	of	considering	whether	the	outside	module	being	called	is	likely	to
wait	on	something	that	depends	on	enclosing	monitor	lock.	If	such	waiting	is	unlikely,	the
call	can	made	with	the	enclosing	lock	held.

Circular	waiting:	Lock	ordering.	An	approach	used	in	many	systems	is	to	identify	an
ordering	among	locks	and	only	acquire	locks	in	that	order.

For	example,	C	printf	acquires	a	lock	to	ensure	printed	messages	appear	atomic	rather	than
mixed	up	with	those	of	other	threads.	Because	waiting	for	that	lock	does	not	lead	to
circular	waiting,	printf	can	be	safely	called	while	holding	most	kernel	locks.

For	a	hash	table	with	per-bucket	locks	and	an	operation	changeKeys(item,	k1,	k2)	to	move
an	item	from	one	bucket	to	another,	we	can	avoid	deadlock	by	always	acquiring	the	lock
for	the	lower-numbered	bucket	before	the	one	for	the	higher-numbered	bucket.	This
prevents	circular	waiting	since	a	thread	only	waits	for	threads	holding	higher-numbered
locks.	Those	threads	can	be	waiting	as	well,	but	only	for	threads	with	even	higher-
numbered	locks,	and	so	forth.

Likewise,	we	can	eliminate	deadlock	among	the	dining	philosophers	if	—	instead	of
always	picking	up	the	chopstick	on	the	left	and	then	the	one	on	the	right	—	the
philosophers	number	the	chopsticks	from	1	to	n	and	always	pick	up	the	lower-numbered
chopstick	before	the	higher-numbered	one.

6.5.4	The	Banker’s	Algorithm	for	Avoiding	Deadlock

A	general	technique	to	eliminate	wait-while-holding	is	to	wait	until	all	needed	resources
are	available	and	then	to	acquire	them	atomically	at	the	beginning	of	an	operation,	rather
than	incrementally	as	the	operation	proceeds.	We	saw	this	earlier	with	acquire-all/release-
all;	it	cannot	deadlock	as	long	as	the	implementation	acquires	all	of	the	locks	atomically
rather	than	one	at	a	time.	As	another	example,	a	dining	philosopher	might	wait	until	the
two	neighboring	chopsticks	are	available	and	then	simultaneously	pick	them	both	up.

Of	course,	a	thread	may	not	know	exactly	which	resources	it	will	need	to	complete	its
work,	but	it	can	still	acquire	all	resources	that	it	might	need.	Consider	an	operating	system
for	mobile	phones	where	memory	is	constrained	and	cannot	be	preempted	by	copying	it	to
disk.	Rather	than	having	applications	request	additional	memory	as	needed,	we	might
instead	have	each	application	state	its	maximum	memory	needs	and	allocate	that	much
memory	when	it	starts.

Disadvantages	of	this	approach	include:	the	effect	on	program	modularity,	the	challenge	of
having	applications	accurately	estimate	their	worst-case	needs,	and	the	cost	of	allocating
significantly	more	resources	than	may	be	necessary	in	the	common	case.

Dijkstra	developed	the	Banker’s	Algorithm	as	a	way	to	improve	on	the	performance	of
acquire-all.	Although	few	systems	use	it	in	its	full	generality,	we	include	the	discussion
because	simplified	versions	of	the	algorithm	are	common.	The	Banker’s	Algorithm	also
sheds	light	on	the	distinction	between	safe	and	unsafe	states	and	how	the	occurrence	of
deadlocks	often	depends	on	a	system’s	workload	and	sequence	of	operations.

In	the	Banker’s	Algorithm,	a	thread	states	its	maximum	resource	requirements	when	it
begins	a	task,	but	it	then	acquires	and	releases	those	resources	incrementally	as	the	task
runs.	The	runtime	system	delays	granting	some	requests	to	ensure	that	the	system	never
deadlocks.

The	insight	behind	the	algorithm	is	that	a	system	that	may	deadlock	will	not	necessarily	do
so:	for	some	interleavings	of	requests	it	will	deadlock,	but	for	others	it	will	not.	By
delaying	when	some	resource	requests	are	processed,	a	system	can	avoid	interleavings	that
could	lead	to	deadlock.

Figure	6.18:	A	process	can	be	in	a	safe,	unsafe,	or	deadlocked	state.	The	dashed	line	illustrates	a	sequence	of	states
visited	by	a	thread	—	some	are	safe,	some	are	unsafe,	and	the	final	state	is	a	deadlock.

A	deadlock-prone	system	can	be	in	one	of	three	states:	a	safe	state,	an	unsafe	state,	and	a
deadlocked	state	(see	Figure	6.18.)

In	a	safe	state,	for	any	possible	sequence	of	resource	requests,	there	is	at	least	one
safe	sequence	of	processing	the	requests	that	eventually	succeeds	in	granting	all
pending	and	future	requests.

In	an	unsafe	state,	there	is	at	least	one	sequence	of	future	resource	requests	that	leads
to	deadlock	no	matter	what	processing	order	is	tried.

In	a	deadlocked	state,	the	system	has	at	least	one	deadlock.

A	system	in	a	safe	state	controls	its	own	destiny:	for	any	workload,	it	can	avoid	deadlock
by	delaying	the	processing	of	some	requests.	In	particular,	the	Banker’s	Algorithm	delays
any	request	that	takes	it	from	a	safe	to	an	unsafe	state.	Once	the	system	enters	an	unsafe
state,	it	may	not	be	able	to	avoid	deadlock.

Notice	that	an	unsafe	state	does	not	always	lead	to	deadlock.	A	system	in	an	unsafe	state
may	remain	that	way	or	return	to	a	safe	state,	depending	on	the	specific	interleaving	of
resource	requests	and	completions.	However,	as	long	as	the	system	remains	in	an	unsafe
state,	a	bad	workload	or	unlucky	scheduling	of	requests	can	force	it	to	deadlock.

The	Banker’s	Algorithm	keeps	a	system	in	a	safe	state.	The	algorithm	is	based	on	a	loose
analogy	with	a	small-town	banker	who	has	a	maximum	amount,	total,	that	can	be	loaned
at	one	time	and	a	set	of	businesses	that	each	have	a	credit	line,	max[i],	for	business	i.	A
business	borrows	and	pays	back	amounts	of	money	as	various	projects	start	and	end,	so
that	business	i	always	has	an	outstanding	loan	amount	between	0	and	max[i].	If	all	of	a
business’s	requests	within	the	credit	line	are	granted,	the	business	eventually	reaches	a

state	where	all	current	projects	are	finished,	and	the	loan	balance	returns	to	zero.

A	conservative	banker	might	issue	credit	lines	only	until	the	sum	is	at	most	the	total	funds
that	the	banker	has	available.	This	approach	is	analogous	to	acquire-all	or	provide
sufficient	resources.	It	guarantees	that	the	system	remains	in	a	safe	state.	All	businesses
with	credit	lines	eventually	complete	their	projects.

However,	a	more	aggressive	banker	can	issue	more	credit	as	long	as	the	bank	can	cover	its
commitment	to	each	business	—	i.e.,	to	provide	a	loan	of	max[i]	if	business	i	requests	it.
The	algorithm	assumes	the	bank	is	permitted	to	delay	requests	to	increase	a	loan	amount.
For	example,	the	bank	might	lose	the	paperwork	for	a	few	hours,	days,	or	weeks.

By	delaying	loan	requests,	the	bank	remains	in	a	safe	state	—	a	state	for	which	there	exists
at	least	one	series	of	loan	fulfillments	by	which	every	business	i	can	eventually	receive	its
maximal	loan	max[i],	complete	its	projects,	and	pay	back	all	of	its	loan.	The	bank	can	then
use	that	repaid	money	to	grant	pending	loans	to	other	businesses.

Figure	6.19:	State	maintained	by	the	Banker	Algorithm’s	resource	manager.	Resource
manager	code	is	in	Figures	6.20	and	6.21.

Figure	6.20:	High-level	pseudo-code	for	the	Banker’s	Algorithm.	The	state	maintained
by	the	algorithm	is	defined	in	Figure	6.19.	The	methods	isSafe	and	wouldBeSafe	are
defined	in	Figure	6.21.

Figure	6.21:	Pseudo-code	for	the	Banker’s	Algorithm	test	whether	the	next	state	would
be	safe	to	enter.	If	not,	the	system	delays	until	it	would	be	safe.

Figure	6.20	shows	pseudo-code	for	a	version	of	the	Banker’s	Algorithm	that	manages	a	set
of	r	resources	for	a	set	of	t	threads.	To	simplify	the	discussion,	threads	request	each	unit	of
resource	separately,	but	the	algorithm	can	be	extended	to	allow	multiple	resources	to	be
requested	at	the	same	time.

The	high-level	idea	is	simple:	when	a	request	arrives,	wait	to	grant	the	request	until	it	is
safe	to	do	so.	As	Figure	6.19	shows,	we	can	realize	this	high-level	approach	by	tracking:
(i)	the	current	allocation	of	each	resource	to	each	thread,	(ii)	the	maximum	allocation
possible	for	each	thread,	and	(iii)	the	current	set	of	available,	unallocated	resources.

Figure	6.21	shows	how	to	test	whether	a	state	is	safe.	Recall	that	a	state	is	safe	if	some
sequence	of	thread	executions	allows	each	thread	to	obtain	its	maximum	resource	need,
finish	its	work,	and	release	its	resources.	We	first	see	if	the	currently	free	resources	suffice
to	allow	any	thread	to	finish.	If	so,	then	the	resources	held	by	that	thread	will	eventually
be	released	back	to	the	system.	Next,	we	see	if	the	currently	free	resources	plus	any
resources	held	by	the	thread	identified	in	the	first	step	suffice	to	allow	any	other	thread	to
finish;	if	so,	the	second	thread’s	resources	will	also	eventually	be	released	back	to	the
system.	We	continue	this	process	until	we	have	identified	all	threads	guaranteed	to	finish,
provided	we	serve	requests	in	a	particular	order.	If	that	set	includes	all	of	the	threads,	the
state	is	safe.

EXAMPLE:	Page	allocation	with	the	Banker’s	Algorithm.	Suppose	we	have	a	system
with	8	pages	of	memory	and	three	processes:	A,	B,	and	C,	which	need	4,	5,	and	5	pages	to
complete,	respectively.

If	they	take	turns	requesting	one	page	each,	and	the	system	grants	requests	in	order,	the
system	deadlocks,	reaching	a	state	where	each	process	is	stuck	until	some	other	process
releases	memory:

Process Allocation

A 		0 		1 		1 		1 		2 		2 		2 		3 		3 		3 		wait 		wait

B 		0 		0 		1 		1 		1 		2 		2 		2 		3 		3 		3 		wait

C 		0 		0 		0 		1 		1 		1 		2 		2 		2 		wait 		wait 		wait

Total 		0 		1 		2 		3 		4 		5 		6 		7 		8 		8 		8 		8

On	the	other	hand,	if	the	system	follows	the	Banker’s	Algorithm,	then	it	can	delay	some
processes	and	guarantee	that	all	processes	eventually	complete:

Process Allocation

A 		0 		1 		1 		1 		2 		2 		2 		3 		3 		3 		4 		0 		0 		0 		0 		0 		0 		0 		0

B 		0 		0 		1 		1 		1 		2 		2 		2 		wait 		wait 		wait 		wait 		3 		4 		4 		5 		0 		0 		0

C 		0 		0 		0 		1 		1 		1 		2 		2 		2 		wait 		wait 		wait 		3 		3 		wait 		wait 		4 		5 		0

Total 		0 		1 		2 		3 		4 		5 		6 		7 		7 		7 		8 		4 		6 		7 		7 		8 		4 		5 		0

By	delaying	B	and	C	in	the	ninth	through	twelfth	steps,	A	can	complete	and	release	its
resources.	Then,	by	delaying	C	in	the	fifteenth	and	sixteenth	steps,	B	can	complete	and
release	its	resources.

The	Banker’s	Algorithm	is	noticeably	more	involved	than	other	approaches	we	discuss.
Although	it	is	rarely	used	in	its	entirety,	understanding	the	distinction	between	safe,
unsafe,	and	deadlocked	states	and	how	deadlock	events	depend	on	request	ordering	are
key	to	preventing	deadlock.

Additionally,	understanding	the	Banker’s	Algorithm	can	help	to	design	simple	solutions
for	specific	problems.	For	example,	if	we	apply	the	Banker’s	Algorithm	to	the	Dining
Philosopher’s	problem,	then	it	is	safe	for	a	philosopher	to	pick	up	a	chopstick	provided
that	afterwards	(a)	some	philosopher	will	have	two	chopsticks	or	(b)	a	chopstick	will
remain	on	the	table.	In	case	(a),	eventually	that	philosopher	will	finish	eating	and	the	other
philosophers	will	be	able	to	proceed.	In	case	(b),	the	philosopher	can	pick	up	the	chopstick
because	deadlock	can	still	be	avoided	in	the	future.

EXAMPLE:	Use	the	Banker’s	Algorithm	to	devise	a	rule	for	when	it	is	safe	for	a	thread
to	acquire	a	pair	of	locks,	A	and	B,	with	mutually	recursive	locking.

ANSWER:	Suppose	a	thread	needs	to	acquire	locks	A	and	B,	in	that	order,	while	another
thread	needs	to	acquire	lock	B	first,	then	A.	A	thread	is	always	allowed	to	acquire	its
second	lock.	It	may	acquire	its	first	lock	provided	the	other	thread	does	not	already
hold	its	first	lock.	□

6.5.5	Detecting	and	Recovering	From	Deadlocks

Rather	than	preventing	deadlocks,	some	systems	allow	deadlocks	to	occur	and	recover
from	them	when	they	arise.

Why	allow	deadlocks	to	occur	at	all?	Sometimes,	it	is	difficult	or	expensive	to	enforce
sufficient	structure	on	the	system’s	data	and	workloads	to	guarantee	that	deadlock	will
never	occur.	If	deadlocks	are	rare,	why	pay	the	overhead	in	the	common	case	to	prevent
them?

For	this	approach	to	work,	we	need:	(i)	a	way	to	recover	from	deadlock	when	it	occurs,
ideally	with	minimal	harm	to	the	goals	of	the	user,	and	(ii)	a	way	to	detect	deadlock	so
that	we	know	when	to	invoke	the	recovery	mechanism.	We	discuss	recovery	first	because
it	provides	context	for	understanding	the	tradeoffs	in	implementing	detection.

Recovering	From	Deadlocks

Recovering	from	a	deadlock	once	it	has	occurred	is	challenging.	A	deadlock	implies	that
some	threads	hold	resources	while	waiting	for	others,	and	that	progress	is	impossible.

Because	the	resources	are	by	definition	not	revocable,	forcibly	taking	resources	away	from
some	or	all	of	the	deadlocked	threads	is	not	an	ideal	solution.	As	a	simple	example,	if	a

process	is	part	of	a	deadlock,	some	operating	systems	give	the	user	the	option	to	kill	the
process	and	release	the	process’s	resources.	Although	this	sounds	drastic,	if	a	deadlocked
process	cannot	make	any	progress,	killing	it	does	not	make	the	user	much	worse	off.

However,	under	the	lock-based	shared	object	programming	abstractions	we	have
discussed,	killing	all	of	the	threads	in	a	given	process	can	be	dangerous.	If	a	deadlocked
thread	holds	a	lock	on	a	shared	kernel	object,	killing	the	thread	and	marking	the	lock	as
free	could	leave	the	kernel	object	in	an	inconsistent	state.

Instead,	we	need	some	systematic	way	to	recover	when	some	required	resource	is
unavailable.	Two	widely	used	approaches	have	been	developed	to	deal	with	this	issue:

Proceed	without	the	resource.	Web	services	are	often	designed	to	be	resilient	to
resource	unavailability.	A	rule	of	thumb	for	the	web	is	that	a	significant	fraction	of	a
web	site’s	customers	will	give	up	and	go	elsewhere	if	the	site’s	latency	becomes	too
long,	for	whatever	reason.	Whether	the	problem	is	a	hardware	failure,	software
failure,	or	deadlock,	does	not	really	matter.	The	web	site	needs	to	be	designed	to
quickly	respond	back	to	the	user,	regardless	of	the	type	of	problem.

Amazon’s	web	site	is	a	good	example	of	this	design	paradigm.	It	is	designed	as	an
interlocking	set	of	modules,	where	any	individual	module	can	be	offline	because	of	a
failure.	Thus,	all	other	parts	of	the	web	site	must	be	designed	to	be	able	to	cope	when
some	needed	resource	is	unavailable.	For	example,	under	normal	operation,
Amazon’s	software	will	check	the	inventory	to	ensure	that	an	item	is	in	stock	before
completing	an	order.	However,	if	a	deadlock	or	failure	causes	the	inventory	server	to
delay	responding	beyond	some	threshold,	the	front-end	web	server	will	give	up,
complete	the	order,	and	then	queue	a	background	check	to	make	sure	the	item	was	in
fact	in	the	inventory.	If	the	item	was	in	fact	not	available	(e.g.,	because	some	other
customer	purchased	it	in	the	meantime),	an	apology	is	sent	to	the	customer.	As	long
as	that	does	not	happen	often,	it	can	be	better	than	making	the	customer	wait,
especially	in	the	case	of	deadlock,	where	the	wait	could	be	indefinite.

Because	deadlocks	are	rare	and	hard	to	test	for,	this	requires	coding	discipline	to
handle	error	conditions	systematically	throughout	the	program.

Optimistic	concurrency	control

Transactions	can	also	be	used	to	avoid	deadlocks.	Optimistic	concurrency	control
lets	transactions	execute	in	parallel	without	locking	any	data,	but	it	only	lets	a
transaction	commit	if	none	of	the	objects	accessed	by	the	transaction	have	been
modified	since	the	transaction	began.	Otherwise,	the	transaction	must	abort	and
retry.

To	implement	transactions	with	optimistic	concurrency	control,	Each	transaction
keeps	track	of	which	versions	of	which	objects	it	reads	and	updates.	All	updates	are
applied	to	a	local	copy.	Then,	before	a	transaction	commits,	the	system	verifies	that
no	object	the	transaction	accessed	has	been	modified	in	the	meantime;	if	there	is	a
conflict,	the	transaction	must	abort.	Of	course,	committing	a	transaction	may
invalidate	other	transactions	that	are	in	progress	(ones	that	use	data	modified	by	this

transaction).	Those	conflicts	will	be	detected	when	the	later	transactions	try	to
commit.
Optimistic	concurrency	control	works	well	when	different	transactions	most
commonly	use	different	subsets	of	data.	In	these	cases,	the	approach	not	only
eliminates	deadlock,	but	it	also	maximizes	concurrency	since	threads	do	not	wait	for
locks.	On	the	other	hand,	many	conflicting,	concurrent	transactions	increase
overhead	by	repeatedly	rolling	back	and	re-executing	transactions.

Transactions:	rollback	and	retry.	A	more	general	technique	is	used	by	transactions;
transactions	provide	a	safe	mechanism	for	revoking	resources	assigned	to	a	thread.
We	discuss	transactions	in	detail	in	Chapter	14;	they	are	widely	used	in	both
databases	and	file	systems.	For	deadlock	recovery,	transactions	provide	two
important	services:

1.	 Thread	rollback.	Transactions	ensure	that	revoking	locks	from	a	thread	does
not	leave	the	system’s	objects	in	an	inconsistent	state.	Instead,	we	rollback,	or
undo,	the	deadlocked	thread’s	actions	to	a	clean	state.	To	fix	the	deadlock,	we
can	choose	one	or	more	victim	threads,	stop	them,	undo	their	actions,	and	let
other	threads	proceed.

2.	 Thread	restarting.	Once	the	deadlock	is	broken	and	other	threads	have
completed	some	or	all	of	their	work,	the	victim	thread	is	restarted.	When	these
threads	complete,	the	system	behaves	as	if	the	victim	threads	never	caused	a
deadlock	but,	instead,	just	had	their	executions	delayed.

A	transaction	defines	a	safe	point	for	rollback	and	restart.	Each	transaction	has	a
beginTransaction	and	endTransaction	statement;	rollback	undoes	all	changes	back	to
beginTransaction.	After	a	rollback,	the	thread	can	be	safely	restarted	at	the
beginTransaction.

A	key	feature	of	transactions	is	that	no	other	thread	is	allowed	to	see	the	results	of	a
transaction	until	the	transaction	completes.	That	way,	if	the	changes	a	transaction
makes	need	to	be	rolled	back	due	to	a	deadlock,	only	that	one	thread	is	affected.	This
can	be	accomplished	with	two-phase	locking,	provided	locks	are	not	released	until
after	the	transaction	is	complete.	If	the	transaction	is	successful,	it	commits,	the
transaction’s	locks	are	released,	and	the	transaction’s	changes	to	shared	state	become
visible	to	other	threads.

If,	however,	a	transaction	fails	to	reach	its	endTransaction	statement	(e.g.,	because	of
a	deadlock	or	because	some	other	exception	occurred),	the	transaction	aborts.	The
system	can	reset	all	of	the	state	modified	by	the	transaction	to	what	it	was	when	the
transaction	began.	One	way	to	support	this	is	to	maintain	a	copy	of	the	initial	values
of	all	state	modified	by	each	transaction;	this	copy	can	be	discarded	when	the
transaction	commits.

If	a	transactional	system	becomes	deadlocked,	the	system	can	abort	one	or	more	of
the	deadlocked	transactions.	Aborting	these	transactions	rolls	back	the	system’s	state
to	what	it	would	have	been	if	these	transactions	had	never	started	and	releases	the
aborted	transactions’	locks	and	other	resources.	If	aborting	the	chosen	transactions

releases	sufficient	resources,	the	deadlock	is	broken,	and	the	remaining	transactions
can	proceed.	If	not,	the	system	can	abort	additional	transactions.

A	related	question	that	arises	in	transactional	systems	is	which	thread	to	abort	and
which	threads	to	allow	to	proceed.	An	important	consideration	is	liveness.	Progress
can	be	ensured,	and	starvation	avoided,	by	prioritizing	the	oldest	transactions.	Then,
when	the	system	needs	to	abort	some	transaction,	it	can	abort	the	youngest.	This
ensures	that	some	transaction,	e.g.,	the	oldest,	will	eventually	complete.	The	aborted
transaction	eventually	becomes	the	oldest,	and	so	it	also	will	complete.

An	example	of	this	approach	is	wound	wait.	With	wound	wait,	a	younger	transaction
may	wait	for	a	resource	held	by	an	older	transaction.	Eventually,	the	older	transaction
will	complete	and	release	the	resource,	so	deadlock	cannot	result.	However,	if	an
older	transaction	needs	to	wait	on	a	resource	held	by	a	younger	transaction,	the
resource	is	preempted	and	the	younger	transaction	is	aborted	and	restarted.

Detecting	Deadlock

Once	we	have	a	general	way	to	recover	from	a	deadlock,	we	need	a	way	to	tell	if	a
deadlock	has	occurred,	so	we	know	when	to	trigger	the	recovery.	An	important
consideration	is	that	the	detection	mechanism	can	be	conservative:	it	can	trigger	the	repair
if	we	might	be	in	a	deadlock	state.	This	approach	risks	a	false	positive	where	a	non-
deadlocked	thread	is	incorrectly	classified	as	deadlocked.	Depending	on	the	overhead	of
the	repair	operation,	it	can	sometimes	be	more	efficient	to	use	a	simpler	mechanism	for
detection	even	if	that	leads	to	the	occasional	false	positive.

For	example,	a	program	can	choose	to	wait	only	briefly	(or	not	to	wait	at	all)	before
declaring	that	recovery	is	needed.	We	saw	an	example	earlier	with	how	Amazon’s	web	site
is	designed.	As	another	example,	in	old-style,	circuit-switched	telephone	networks,	a	call
reserved	a	circuit	at	a	series	of	switches	along	its	path.	If	the	connection	setup	failed	to
find	a	free	circuit	at	any	hop,	rather	than	wait	for	a	circuit	at	the	next	hop	to	become	free,
it	cancelled	the	connection	attempt	and	gave	the	user	an	error	message,	“All	circuits	are
busy.	Please	try	again	later.”

A	modern	analogue	is	the	Internet.	When	a	router	is	overloaded	and	runs	out	of	packet
buffers,	it	simply	drops	incoming	packets.	An	alternative	would	be	for	each	router	to	wait
to	send	a	packet	until	it	knows	the	next	router	has	room	—	an	approach	that	could	lead	to
deadlock.	Precisely	identifying	whether	deadlock	has	occurred	would	incur	more	overhead
than	simply	dropping	and	resending	some	packets.

Figure	6.22:	Example	graphs	used	for	deadlock	detection.	Left:	single	instance	of	each
resource.	Right:	multiple	instances	of	one	resource.	Threads	and	resources	are	nodes;
directed	edges	represent	the	owned	by	and	waiting	for	relationships	among	them.

There	are	various	ways	to	identify	deadlocks	more	precisely.

If	there	are	several	resources	and	only	one	thread	can	hold	each	resource	at	a	time	(e.g.,
one	printer,	one	keyboard,	and	one	audio	speaker	or	several	mutual	exclusion	locks),	then
we	can	detect	a	deadlock	by	analyzing	a	simple	graph.	In	the	graph,	shown	on	the	left	in
Figure	6.22,	each	thread	and	each	resource	is	represented	by	a	node.	There	is	a	directed
edge	(i)	from	a	resource	to	a	thread	if	the	resource	is	owned	by	the	thread	and	(ii)	from	a
thread	to	a	resource	if	the	thread	is	waiting	for	the	resource.	There	is	a	deadlock	if	and
only	if	there	is	a	cycle	in	such	a	graph.

If	there	are	multiple	instances	of	some	resources,	then	we	represent	a	resource	with	k
interchangeable	instances	(e.g.,	k	equivalent	printers)	as	a	node	with	k	connection	points.
This	is	illustrated	by	the	right	graph	in	Figure	6.22.	Now,	a	cycle	is	a	necessary	but	not
sufficient	condition	for	deadlock.

Another	solution,	described	by	Coffman,	Elphick,	and	Shoshani	in	1971	is	a	variation	of
Dijkstra’s	Banker’s	Algorithm.	In	this	algorithm,	we	assume	we	no	longer	know	max[][],
so	we	cannot	assess	whether	the	current	state	is	safe	or	whether	some	future	sequence	of
requests	can	force	deadlock.	However,	we	can	look	at	the	current	set	of	resources,	granted
requests,	and	pending	requests	and	ask	whether	it	is	possible	for	the	current	set	of	requests
to	eventually	be	satisfied	assuming	no	more	requests	come	and	all	threads	eventually
complete.	If	so,	there	is	no	deadlock	(although	we	may	be	in	an	unsafe	state);	otherwise,
there	is	a	deadlock.

Figure	6.23:	Coffman	et	al.’s	test	for	deadlock.	This	algorithm	is	similar	to	the	isSafe()
test	of	the	Banker’s	Algorithm	shown	in	Figure	6.21.

Figure	6.23	shows	the	pseudo-code	for	the	isDeadlocked	method,	a	variation	of	the	isSafe
method	shown	in	Figure	6.21	for	the	Banker’s	Algorithm.

One	might	hope	that	we	could	avoid	deadlock	by	asking,	“Will	satisfying	the	current
request	put	us	in	a	deadlocked	state?”	and	then	blocking	any	request	that	does.	The
Coffman	et	al.	algorithm	highlights	that	deadlock	is	determined	not	just	by	what	requests
are	granted	but	also	by	what	requests	are	waiting.	The	request	that	triggers	deadlock
(“circular	wait”)	will	be	a	request	that	waits,	not	one	that	is	granted.

6.6	Non-Blocking	Synchronization

Chapter	5	described	a	core	abstraction	for	synchronization	—	shared	objects,	with	one
lock	per	object.	This	abstraction	works	well	for	building	multi-threaded	programs	the	vast
majority	of	the	time.	As	concurrent	programs	become	more	complicated,	however,	issues
of	lock	contention,	the	semantics	of	operations	that	span	multiple	objects,	and	deadlock
can	arise.	Worse,	the	solutions	to	these	issues	often	require	us	to	compromise	modularity;
for	example,	whether	a	particular	program	can	deadlock	requires	understanding	in	detail
how	the	implementations	of	various	shared	objects	interact.

Some	researchers	have	posed	a	radical	question:	would	it	be	better	to	write	complex
concurrent	programs	without	locks?	By	eliminating	locking,	we	would	remove	lock
contention	and	deadlock	as	design	considerations,	fostering	a	more	modular	program
structure.	However,	these	techniques	can	be	much	more	complex	to	use.	To	date,

concurrent	implementations	without	locks	have	only	been	used	for	a	few	carefully
designed	runtime	library	modules	written	by	expert	programmers.	We	sketch	the	ideas
because	there	is	a	chance	that	they	will	become	more	important	as	the	number	of
processors	per	computer	continues	to	increase.

Today,	the	cases	where	these	approaches	are	warranted	are	rare.	These	advanced
techniques	should	only	be	considered	by	experienced	programmers	who	have	mastered	the
basic	lock-based	approaches.	Many	of	you	will	probably	never	need	to	use	these
techniques.	If	you	are	tempted	to	do	so,	take	extra	care.	Measure	the	performance	of	your
system	to	ensure	that	these	techniques	yield	significant	gains,	and	seek	out	extra	peer
review	from	trusted	colleagues	to	help	ensure	that	the	code	works	as	intended.

Programmers	often	assume	that	acquiring	a	lock	is	an	expensive	operation,	and	therefore
try	to	reduce	locking	throughout	their	programs.	The	most	likely	result	from	premature
optimization	is	a	program	that	is	buggy,	hard	to	maintain,	no	faster	than	a	clean
implementation,	and,	ironically,	harder	to	tune	than	a	cleanly	architected	program.	On
most	platforms,	acquiring	or	releasing	a	lock	is	a	highly	tuned	primitive	—	acquiring	an
uncontended	lock	is	often	nearly	free.	If	there	is	contention,	you	probably	needed	the	lock!

In	Section	6.3,	we	saw	an	example	of	synchronization	without	locks.	RCU	lets	reads
proceed	without	acquiring	a	lock	or	updating	shared	synchronization	state,	but	it	still
requires	updates	to	acquire	locks.	If	the	thread	that	holds	the	lock	is	interrupted,	has	a	bug
that	causes	it	to	stop	making	progress,	or	becomes	deadlocked,	other	threads	can	be
delayed	for	a	long	—	perhaps	unlimited	—	period	of	time.

It	is	possible	to	build	data	structures	that	are	completely	non-blocking	for	both	read	and
write	operations.	A	non-blocking	method	is	one	where	one	thread	is	never	required	to	wait
for	another	thread	to	complete	its	operation.	Acquiring	a	lock	is	a	blocking	operation:	if
the	thread	holding	the	lock	stops,	is	delayed,	or	deadlocks,	all	other	threads	must	wait	for
it	to	finish	the	critical	section.

More	formally,	a	wait-free	data	structure	is	one	that	guarantees	progress	for	every	thread:
every	method	finishes	in	a	finite	number	of	steps,	regardless	of	the	state	of	other	threads
executing	in	the	data	structure	or	their	rate	of	execution.	A	lock-free	data	structure	is	one
that	guarantees	progress	for	some	thread:	some	method	will	finish	in	a	finite	number	of
steps.

A	common	building	block	for	wait-free	and	lock-free	data	structures	is	the	atomic
compare-and-swap	instruction	available	on	most	modern	processors.	We	saw	a	taste	of
this	in	the	implementation	of	the	MCS	lock	in	Section	6.3.	There,	we	used	compare-and-
swap	to	atomically	append	to	a	linked	list	of	waiting	threads	without	first	acquiring	a	lock.

Wait-free	and	lock-free	data	structures	apply	this	idea	more	generally	to	completely
eliminate	the	use	of	locks.	For	example,	a	lock-free	hash	table	could	be	built	as	an	array	of
pointers	to	each	bucket:

Lookup.	A	lookup	de-references	the	pointer	and	checks	the	bucket.

Update.	To	update	a	bucket,	the	thread	allocates	a	new	copy	of	the	bucket,	and	then
uses	compare-and-swap	to	atomically	replace	the	pointer	if	and	only	if	it	has	not	been
changed	in	the	meantime.	If	two	threads	simultaneously	attempt	to	update	the	bucket

(for	example,	to	add	a	new	entry),	one	succeeds	and	the	other	must	retry.

The	logic	can	be	much	more	complex	for	more	intricate	data	structures,	and	as	a	result,
designing	efficient	wait-free	and	lock-free	data	structures	remains	the	domain	of	experts.
Nonetheless,	non-blocking	algorithms	exist	for	a	wide	range	of	data	structures,	including
FIFO	queues,	double-ended	queues,	LIFO	stacks,	sets,	and	balanced	trees.	Several	of	these
can	be	found	in	the	Java	Virtual	Machine	runtime	library.

In	addition,	considerable	effort	has	also	gone	into	studying	ways	to	automate	the
construction	of	wait-free	and	lock-free	data	structures.	For	example,	transactions	with
optimistic	concurrency	control	provide	a	very	flexible	approach	to	implementing	lock-free
applications.	Recall	that	optimistic	concurrency	control	lets	transactions	proceed	without
locking	the	data	they	access.	Transactions	abort	if,	at	commit-time,	any	of	their	accessed
data	has	changed	in	the	meantime.	Most	modern	databases	use	a	form	of	optimistic
concurrency	control	to	provide	atomic	and	fault-tolerant	updates	of	on-disk	data
structures.

EXAMPLE:	Is	optimistic	concurrency	control	lock-free,	wait-free,	or	both?

ANSWER:	To	see	that	optimistic	concurrency	control	is	lock-free,	consider	two
conflicting	transactions	executing	at	the	same	time.	The	first	one	to	commit	succeeds,	and
the	second	must	abort	and	retry.	An	implementation	is	wait-free	if	it	uses	wound	wait
or	some	other	mechanism	to	bound	the	number	of	retries	for	a	transaction	to
successfully	commit.	□

Extending	this	idea,	software	transactional	memory	(STM)	is	a	promising	approach	to
support	general-purpose	transactions	for	in-memory	data	structures.	Unfortunately,	the
cost	of	an	STM	transaction	is	often	significantly	higher	than	that	of	a	traditional	critical
section;	this	is	because	of	the	need	to	maintain	the	state	required	to	check	dependencies
and	the	state	required	either	to	update	the	object	if	there	is	no	conflict	or	to	roll	back	its
state	if	a	conflict	is	detected.	It	is	an	open	question	whether	the	overhead	of	STM	can	be
reduced	to	where	it	can	be	used	more	widely.	In	situations	where	STM	can	be	used,	it
provides	a	way	to	compose	different	modules	without	having	to	lock	contention	or
deadlock	concerns.

6.7	Summary	and	Future	Directions

Advanced	synchronization	techniques	should	be	approached	with	caution.	Your	first	goal
should	be	to	construct	a	program	that	works,	even	if	doing	so	means	putting	“one	big
lock”	around	everything	in	a	data	structure	or	even	in	an	entire	program.

Resist	the	temptation	to	do	anything	more	complicated	unless	you	know	that	doing	so	is
necessary.	How	do	you	know?	Do	not	guess.	Measure	your	system’s	performance.
Measuring	the	“before”	and	“after”	performance	of	a	program	and	its	subsystems	not	only
helps	you	make	good	decisions	about	the	program	on	which	you	are	working,	but	it	also
helps	you	develop	good	intuition	for	the	programs	you	write	in	the	future.

Spend	time	early	in	the	design	process	developing	a	clean	structure	for	your	program.
Given	that	issues	with	multi-object	synchronization	often	blur	module	boundaries,	it	is

vital	to	have	an	overall	structure	that	lets	you	reason	about	how	the	different	pieces	of
your	program	will	interact.	Strive	for	a	strict	layering	or	hierarchy	of	modules.	It	is	easier
to	make	such	programs	deadlock-free,	and	it	is	easier	to	test	them	as	well.

Although	performance	is	important,	it	is	usually	easier	to	start	with	a	clean,	simple,	and
correct	design,	measure	it	to	identify	its	bottlenecks,	and	then	optimize	the	bottlenecks
than	to	start	with	a	complex	design	and	try	to	tune	its	performance,	let	alone	fix	its	bugs.

In	this	chapter,	we	have	presented	a	set	of	conceptual	tools	and	techniques	for	managing
complex,	multi-object	concurrent	programs.	We	have	addressed:	estimating	the	impact	of
locks	on	multiprocessor	performance,	design	patterns	to	reduce	contention	for	locks,
implementation	techniques	such	as	MCS	and	RCU	for	high-contention	locks,	strategies
for	achieving	atomicity	across	multiple	operations	on	the	same	object	or	across	objects,
and	algorithms	for	deadlock	prevention	and	recovery.

Yet,	writing	concurrent	programs	remains	frustratingly	complex.	We	believe	that	an
important	area	for	future	work	will	be	to	develop	better	tools	for	managing	and	reducing
that	complexity.	The	last	decade	has	seen	the	development	of	a	new	generation	of	tools	for
helping	programmers	improve	software	reliability,	by	automatically	identifying	test
coverage,	memory	leaks,	reuse	of	de-allocated	data,	buffer	overflows,	and	bad	pointer
arithmetic.

Extending	this	approach	to	concurrent	programs	is	a	grand	challenge.	A	promising	avenue
is	to	use	automated	tools	for	detecting	memory	races;	a	well-written	program	should	have
no	reads	or	writes	to	shared	memory	without	holding	the	lock	that	protects	that	data
structure.	Once	a	program	has	been	shown	to	be	without	races,	model	checking	can	be
used	to	systematically	test	that	shared	objects	work	for	all	possible	thread	interleavings.

Exercises

1.	 Figure	6.13	shows	the	parallel	execution	of	some	requests	and	an	equivalent
sequential	execution	—	request	1	then	request	2	then	request	3.	Two	other	sequential
executions	are	also	equivalent	to	the	parallel	execution	shown	in	the	figure.	What	are
these	other	equivalent	sequential	executions?

2.	 Generalize	the	rules	for	two-phase	locking	to	include	both	mutual	exclusion	locks
and	readers/writers	locks.	What	can	be	done	in	the	expanding	phase?	What	can	be
done	in	the	contracting	phase?

3.	 Consider	the	variation	of	the	Dining	Philosophers	problem	shown	in	Figure	6.17,
where	all	unused	chopsticks	are	placed	in	the	center	of	the	table	and	any	philosopher
can	eat	with	any	two	chopsticks.

One	way	to	prevent	deadlock	in	this	system	is	to	provide	sufficient	resources.	For	a
system	with	n	philosophers,	what	is	the	minimum	number	of	chopsticks	that	ensures
deadlock	freedom?	Why?

4.	 If	the	queues	between	stages	are	finite,	is	it	possible	for	a	staged	architecture	to
deadlock	even	if	each	individual	stage	is	internally	deadlock	free?	If	so,	give	an
example.	If	not,	prove	it.

5.	 Suppose	you	build	a	system	using	a	staged	architecture	with	some	fixed	number	of
threads	operating	in	each	stage.	Assuming	each	stage	is	individually	deadlock	free,
describe	two	ways	to	guarantee	that	your	system	as	a	whole	cannot	deadlock.	Each
way	should	eliminate	a	different	one	of	the	4	necessary	conditions	for	deadlock.

6.	 Consider	a	system	with	four	mutual	exclusion	locks	(A,	B,	C,	and	D)	and	a
readers/writers	lock	(E).	Suppose	the	programmer	follows	these	rules:

a.	 Processing	for	each	request	is	divided	into	two	parts.

b.	 During	the	first	part,	no	lock	may	be	released,	and,	if	E	is	held	in	writing	mode,
it	cannot	be	downgraded	to	reading	mode.	Furthermore,	lock	A	may	not	be
acquired	if	any	of	locks	B,	C,	D,	or	E	are	held	in	any	mode.	Lock	B	may	not	be
acquired	if	any	of	locks	C,	D,	or	E	are	held	in	any	mode.	Lock	C	may	not	be
acquired	if	any	of	locks	D	or	E	are	held	in	any	mode.	Lock	D	may	not	be
acquired	if	lock	E	is	held	in	any	mode.	Lock	E	may	always	be	acquired	in	read
mode	or	write	mode,	and	it	can	be	upgraded	from	read	to	write	mode	but	not
downgraded	from	write	to	read	mode.

c.	 During	the	second	part,	any	lock	may	be	released,	and	lock	E	may	be
downgraded	from	write	mode	to	read	mode;	releases	and	downgrades	can
happen	in	any	order;	by	the	end	of	part	2,	all	locks	must	be	released;	and	no
locks	may	be	acquired	or	upgraded.

Do	these	rules	ensure	serializability?	Do	they	ensure	freedom	from	deadlock?	Why?

7.	 In	RCUList::remove,	a	possible	strategy	to	increase	concurrency	would	be	to	hold	a
read	lock	while	searching	for	the	target	item,	and	to	grab	the	write	lock	once	it	is
found.	Specifically:	(i)	replace	the	writeLock	and	writeUnlock	calls	with	readLock
and	readUnlock	calls,	and	(ii)	insert	new	writeLock	and	writeUnlock	calls	at	the
beginning	and	end	of	the	code	that	is	executed	when	the	if	conditional	test	succeeds.
Will	this	work?

8.	 Implement	a	highly	concurrent,	multi-threaded	file	buffer	cache.	A	buffer	cache
stores	recently	used	disk	blocks	in	memory	for	improved	latency	and	throughput.
Disk	blocks	have	unique	numbers	and	are	fixed	size.	The	cache	provides	two
routines:

These	routines	read/write	complete,	block-aligned,	fixed-size	blocks.	blockread	reads
a	block	of	data	into	x;	blockwrite	(eventually)	writes	the	data	in	x	to	disk.	On	a	read,
if	the	requested	data	is	in	the	cache,	the	buffer	will	return	it.	Otherwise,	the	buffer
must	fetch	the	data	from	disk,	making	room	in	the	cache	by	evicting	a	block	as
necessary.	If	the	evicted	block	is	modified,	the	cache	must	first	write	the	modified
data	back	to	disk.	On	a	write,	if	the	block	is	not	already	in	the	buffer,	it	must	make
room	for	the	new	block.	Modified	data	is	stored	in	the	cache	and	written	back	later	to

disk	when	the	block	is	evicted.

Multiple	threads	can	call	blockread	and	blockwrite	concurrently,	and	to	the	maximum
degree	possible,	those	operations	should	be	allowed	to	complete	in	parallel.	You
should	assume	the	disk	driver	has	been	implemented;	it	provides	the	same	interface
as	the	file	buffer	cache:	diskblockread	and	diskblockwrite.	The	disk	driver	routines
are	synchronous	(the	calling	thread	blocks	until	the	disk	operation	completes)	and	re-
entrant	(while	one	thread	is	blocked,	other	threads	can	call	into	the	driver	to	queue
requests).

9.	 Suppose	we	have	a	version	of	the	Dining	Philosopher’s	problem	where	the
chopsticks	are	placed	in	the	middle	of	the	table,	each	Philosopher	needs	three
chopsticks	before	she	will	start	to	eat,	and	every	Philosopher	will	return	all	of	their
chopsticks	to	the	shared	pool	when	done	eating.	(For	example,	the	Philosopher	needs
two	chopsticks	to	eat	with	and	one	to	point	at	the	white	board.)

a.	 Using	the	Banker’s	Algorithm,	devise	a	rule	for	when	is	it	safe	for	a	Philosopher
to	pick	up	a	chopstick.	Explain	why.

b.	 Now	suppose	each	Philosopher	needs	k	chopsticks,	for	k	>	3.	Generalize	the
rule	you	developed	above	to	work	for	any	k.

7.	Scheduling

Time	is	money	—Ben	Franklin

The	best	performance	improvement	is	the	transition	from	the	non-working	state	to	the
working	state.	That’s	infinite	speedup.	—John	Ousterhout

When	there	are	multiple	things	to	do,	how	do	you	choose	which	one	to	do	first?	In	the	last
few	chapters,	we	have	described	how	to	create	threads,	switch	between	them,	and
synchronize	their	access	to	shared	data.	At	any	point	in	time,	some	threads	are	running	on
the	system’s	processor.	Others	are	waiting	their	turn	for	a	processor.	Still	other	threads	are
blocked	waiting	for	I/O	to	complete,	a	condition	variable	to	be	signaled,	or	for	a	lock	to	be
released.	When	there	are	more	runnable	threads	than	processors,	the	processor	scheduling
policy	determines	which	threads	to	run	first.

You	might	think	the	answer	to	this	question	is	easy:	just	do	the	work	in	the	order	in	which
it	arrives.	After	all,	that	seems	to	be	the	only	fair	thing	to	do.	Because	it	is	obviously	fair,
almost	all	government	services	work	this	way.	When	you	go	to	your	local	Department	of
Motor	Vehicles	(DMV)	to	get	a	driver’s	license,	you	take	a	number	and	wait	your	turn.
Although	fair,	the	DMV	often	feels	slow.	There’s	a	reason	why:	as	we’ll	see	later	in	this
chapter,	doing	things	in	order	of	arrival	is	sometimes	the	worst	thing	you	can	do	in	terms
of	improving	user-perceived	response	time.	Advertising	that	your	operating	system	uses
the	same	scheduling	algorithm	as	the	DMV	is	probably	not	going	to	increase	your	sales!

You	might	think	that	the	answer	to	this	question	is	unimportant.	With	the	million-fold
improvement	in	processor	performance	over	the	past	thirty	years,	it	might	seem	that	we
are	a	million	times	less	likely	to	have	anything	waiting	for	its	turn	on	a	processor.	We
disagree!	Server	operating	systems	in	particular	are	often	overloaded.	Parallel	applications
can	create	more	work	than	processors,	and	if	care	is	not	taken	in	the	design	of	the
scheduling	policy,	performance	can	badly	degrade.	There	are	subtle	relationships	between
scheduling	policy	and	energy	management	on	battery-powered	devices	such	as
smartphones	and	laptops.	Further,	scheduling	issues	apply	to	any	scarce	resource,	whether
the	source	of	contention	is	the	processor,	memory,	disk,	or	network.	We	will	revisit	the
issues	covered	in	this	chapter	throughout	the	rest	of	the	book.

Scheduling	policy	is	not	a	panacea.	Without	enough	capacity,	performance	may	be	poor
regardless	of	which	thread	we	run	first.	In	this	chapter,	we	will	also	discuss	how	to	predict
overload	conditions	and	how	to	adapt	to	them.

Fortunately,	you	probably	have	quite	a	bit	of	intuition	as	to	impact	of	different	scheduling
policies	and	capacity	on	issues	like	response	time,	fairness,	and	throughput.	Anyone	who
waits	in	line	probably	wonders	how	we	could	get	the	line	to	go	faster.	That’s	true	whether
we’re	waiting	in	line	at	the	supermarket,	a	bank,	the	DMV,	or	at	a	popular	restaurant.
Remarkably,	in	each	of	these	settings,	there	is	a	different	approach	to	how	they	deal	with
waiting.	We	will	try	to	answer	why.

There	is	no	one	right	answer;	rather,	any	scheduling	policy	poses	a	complex	set	of

tradeoffs	between	various	desirable	properties.	The	goal	of	this	chapter	is	not	to	enumerate
all	of	the	interesting	possibilities,	explore	the	full	design	space,	or	even	to	identify	specific
useful	policies.	Instead,	we	describe	some	of	the	trade-offs	and	try	to	illustrate	how	a
designer	can	approach	the	problem	of	selecting	a	scheduling	policy.

Consider	what	happens	if	you	are	running	the	web	site	for	a	company	trying	to	become	the
next	Facebook.	Based	on	history,	you’ll	be	able	to	guess	how	much	server	capacity	you
need	to	be	able	to	keep	up	with	demand	and	still	have	reasonable	response	time.	What
happens	if	your	site	appears	on	Slashdot,	and	suddenly	you	have	twice	as	many	users	as
you	had	an	hour	ago?	If	you	are	not	careful,	everyone	will	think	your	site	is	terribly	slow,
and	permanently	go	elsewhere.	Google,	Amazon,	and	Yahoo	have	each	estimated	that	they
lose	approximately	5-10%	of	their	customers	if	their	response	time	increases	by	as	little	as
100	milliseconds.	If	faced	with	overload:

Would	quickly	implementing	a	different	scheduling	policy	help,	or	hurt?

How	much	worse	will	your	performance	be	if	the	number	of	users	doubles	again?

Should	you	turn	away	some	users	so	that	others	will	get	acceptable	performance?

Does	it	matter	which	users	you	turn	away?

If	you	run	out	to	the	local	electronics	store	and	buy	a	server,	how	much	better	will
performance	get?

Do	the	answers	change	if	you	are	under	a	denial-of-service	attack	by	a	competitor?

In	this	chapter,	we	will	try	to	give	you	the	conceptual	and	analytic	tools	to	help	you
answer	these	questions.

Performance	terminology

In	Chapter	1	we	defined	some	performance-related	terms	we	will	use	throughout	this
chapter	and	the	rest	of	the	book;	we	summarize	those	terms	here.

Task.	A	user	request.	A	task	is	also	often	called	a	job.	A	task	can	be	any	size,	from
simply	redrawing	the	screen	to	show	the	movement	of	the	mouse	cursor	to
computing	the	shape	of	a	newly	discovered	protein.	When	discussing	scheduling,	we
use	the	term	task,	rather	than	thread	or	process,	because	a	single	thread	or	process
may	be	responsible	for	multiple	user	requests	or	tasks.	For	example,	in	a	word
processor,	each	character	typed	is	an	individual	user	request	to	add	that	character	to
the	file	and	display	the	result	on	the	screen.

Response	time	(or	delay).	The	user-perceived	time	to	do	some	task.

Predictability.	Low	variance	in	response	times	for	repeated	requests.

Throughput.	The	rate	at	which	tasks	are	completed.

Scheduling	overhead.	The	time	to	switch	from	one	task	to	another.

Fairness.	Equality	in	the	number	and	timeliness	of	resources	given	to	each	task.

Starvation.	The	lack	of	progress	for	one	task,	due	to	resources	given	to	a	higher
priority	task.

Chapter	roadmap:

Uniprocessor	Scheduling.	How	do	uniprocessor	scheduling	policies	affect	fairness,
response	time,	and	throughput?	(Section	7.1)

Multiprocessor	Scheduling.	How	do	scheduling	policies	change	when	we	have
multiple	processor	cores	per	computer?	(Section	7.2)

Energy-Aware	Scheduling.	Many	new	computer	systems	can	save	energy	by	turning
off	portions	of	the	computer,	slowing	the	execution	speed.	How	do	we	make	this
tradeoff	while	minimizing	the	impact	on	user	perceived	response	time?	(Section	7.3)

Real-Time	Scheduling.	More	generally,	how	do	we	make	sure	tasks	finish	in	time?
(Section	7.4)

Queueing	Theory.	In	a	server	environment,	how	are	response	time	and	throughput
affected	by	the	rate	at	which	requests	arrive	for	processing	and	by	the	scheduling
policy?	(Section	7.5)

Overload	Management.	How	do	we	keep	response	time	reasonable	when	a	system
becomes	overloaded?	(Section	7.6)

Case	Study:	Servers	in	a	Data	Center.	How	do	we	combine	these	technologies	to
manage	servers	a	data	center?	(Section	7.7)

7.1	Uniprocessor	Scheduling

We	start	by	considering	one	processor,	generalizing	to	multiprocessor	scheduling	policies
in	the	next	section.	We	begin	with	three	simple	policies	—	first-in-first-out,	shortest-job-
first,	and	round	robin	—	as	a	way	of	illustrating	scheduling	concepts.	Each	approach	has
its	own	the	strengths	and	weaknesses,	and	most	resource	allocation	systems	(whether	for
processors,	memory,	network	or	disk)	combine	aspects	of	all	three.	At	the	end	of	the
discussion,	we	will	show	how	the	different	approaches	can	be	synthesized	into	a	more
practical	and	complete	processor	scheduler.

Before	proceeding,	we	need	to	define	a	few	terms.	A	workload	is	a	set	of	tasks	for	some
system	to	perform,	along	with	when	each	task	arrives	and	how	long	each	task	takes	to
complete.	In	other	words,	the	workload	defines	the	input	to	a	scheduling	algorithm.	Given
a	workload,	a	processor	scheduler	decides	when	each	task	is	to	be	assigned	the	processor.

We	are	interested	in	scheduling	algorithms	that	work	well	across	a	wide	variety	of
environments,	because	workloads	will	vary	quite	a	bit	from	system	to	system	and	user	to
user.	Some	tasks	are	compute-bound	and	only	use	the	processor.	Others,	such	as	a
compiler	or	a	web	browser,	mix	I/O	and	computation.	Still	others,	such	as	a	BitTorrent
download,	are	I/O-bound,	spending	most	of	their	time	waiting	for	I/O	and	only	brief
periods	computing.	In	the	discussion,	we	start	with	very	simple	compute-bound	workloads
and	then	generalize	to	include	mixtures	of	different	types	of	tasks	as	we	proceed.

Some	of	the	policies	we	outline	are	the	best	possible	policy	on	a	particular	metric	and
workload,	and	some	are	the	worst	possible	policy.	When	discussing	optimality	and
pessimality,	we	are	only	comparing	to	policies	that	are	work-conserving.	A	scheduler	is
work-conserving	if	it	never	leaves	the	processor	idle	if	there	is	work	to	do.	Obviously,	a
trivially	poor	policy	has	the	processor	sit	idle	for	long	periods	when	there	are	tasks	in	the
ready	list.

Our	discussion	also	assumes	the	scheduler	has	the	ability	to	preempt	the	processor	and
give	it	to	some	other	task.	Preemption	can	happen	either	because	of	a	timer	interrupt,	or
because	some	task	arrives	on	the	ready	list	with	a	higher	priority	than	the	current	task,	at
least	according	to	some	scheduling	policy.	We	explained	how	to	switch	the	processor
between	tasks	in	Chapter	2	and	Chapter	4.	While	much	of	the	discussion	is	also	relevant	to
non-preemptive	schedulers,	there	are	few	such	systems	left,	so	we	leave	that	issue	aside
for	simplicity.

7.1.1	First-In-First-Out	(FIFO)

Perhaps	the	simplest	scheduling	algorithm	possible	is	first-in-first-out	(FIFO):	do	each
task	in	the	order	in	which	it	arrives.	(FIFO	is	sometimes	also	called	first-come-first-
served,	or	FCFS.)	When	we	start	working	on	a	task,	we	keep	running	it	until	it	finishes.
FIFO	minimizes	overhead,	switching	between	tasks	only	when	each	one	completes.
Because	it	minimizes	overhead,	if	we	have	a	fixed	number	of	tasks,	and	those	tasks	only
need	the	processor,	FIFO	will	have	the	best	throughput:	it	will	complete	the	most	tasks	the
most	quickly.	And	as	we	mentioned,	FIFO	appears	to	be	the	definition	of	fairness	—	every
task	patiently	waits	its	turn.

Figure	7.1:	Completion	times	with	FIFO	(top)	and	SJF	(bottom)	scheduling	when	several	short	tasks	(2-5)	arrive
immediately	after	a	long	task	(1).

Unfortunately,	FIFO	has	a	weakness.	If	a	task	with	very	little	work	to	do	happens	to	land
in	line	behind	a	task	that	takes	a	very	long	time,	then	the	system	will	seem	very	inefficient.
Figure		7.1	illustrates	a	particularly	bad	workload	for	FIFO;	it	also	shows	SJF,	which	we
will	discuss	in	a	bit.	If	the	first	task	in	the	queue	takes	one	second,	and	the	next	four	arrive
an	instant	later,	but	each	only	needs	a	millisecond	of	the	processor,	then	they	will	all	need
to	wait	until	the	first	one	finishes.	The	average	response	time	will	be	over	a	second,	but
the	optimal	average	response	time	is	much	less	than	that.	In	fact,	if	we	ignore	switching
overhead,	there	are	some	workloads	where	FIFO	is	literally	the	worst	possible	policy	for
average	response	time.

FIFO	and	memcached

Although	you	may	think	that	FIFO	is	too	simple	to	be	useful,	there	are	some	important
cases	where	it	is	exactly	the	right	choice	for	the	workload.	One	such	example	is
memcached.	Many	web	services,	such	as	Facebook,	store	their	user	data	in	a	database.
The	database	provides	flexible	and	consistent	lookups,	such	as,	which	friends	need	to	be
notified	of	a	particular	update	to	a	user’s	Facebook	wall.	In	order	to	improve
performance,	Facebook	and	other	systems	put	a	cache	called	memcached	in	front	of	the
database,	so	that	if	a	user	posts	two	items	to	her	Facebook	wall,	the	system	only	needs	to
lookup	the	friend	list	once.	The	system	first	checks	whether	the	information	is	cached,
and	if	so	uses	that	copy.

Because	almost	all	requests	are	for	small	amounts	of	data,	memcached	replies	to	requests
in	FIFO	order.	This	minimizes	overhead,	as	there	is	no	need	to	time	slice	between
requests.	For	this	workload	where	tasks	are	roughly	equal	in	size,	FIFO	is	simple,
minimizes	average	response	time,	and	even	maximizes	throughput.	Win-win!

7.1.2	Shortest	Job	First	(SJF)

If	FIFO	can	be	a	poor	choice	for	average	response	time,	is	there	an	optimal	policy	for
minimizing	average	response	time?	The	answer	is	yes:	schedule	the	shortest	job	first
(SJF).

Suppose	we	could	know	how	much	time	each	task	needed	at	the	processor.	(In	general,	we
will	not	know,	so	this	is	not	meant	as	a	practical	policy!	Rather,	we	use	it	as	a	thought
experiment;	later	on,	we	will	see	how	to	approximate	SJF	in	practice.)	If	we	always
schedule	the	task	that	has	the	least	remaining	work	to	do,	that	will	minimize	average
response	time.	(For	this	reason,	some	call	SJF	shortest-remaining-time-first	or	SRTF.)

To	see	that	SJF	is	optimal,	consider	a	hypothetical	alternative	policy	that	is	not	SJF,	but
that	we	think	might	be	optimal.	Because	the	alternative	is	not	SJF,	at	some	point	it	will
choose	to	run	a	task	that	is	longer	than	something	else	in	the	queue.	If	we	now	switch	the
order	of	tasks,	keeping	everything	the	same,	but	doing	the	shorter	task	first,	we	will	reduce
the	average	response	time.	Thus,	any	alternative	to	SJF	cannot	be	optimal.

Figure	7.1	illustrates	SJF	on	the	same	example	we	used	for	FIFO.	If	a	long	task	is	the	first
to	arrive,	it	will	be	scheduled	(if	we	are	work-conserving).	When	a	short	task	arrives	a	bit
later,	the	scheduler	will	preempt	the	current	task,	and	start	the	shorter	one.	The	remaining
short	tasks	will	be	processed	in	order	of	arrival,	followed	by	finishing	the	long	task.

What	counts	as	“shortest”	is	the	remaining	time	left	on	the	task,	not	its	original	length.	If
we	are	one	nanosecond	away	from	finishing	an	hour-long	task,	we	will	minimize	average
response	time	by	staying	with	that	task,	rather	than	preempting	it	for	a	minute	long	task
that	just	arrived	on	the	ready	list.	Of	course,	if	they	both	arrive	at	about	the	same	time,
doing	the	minute	long	task	first	will	dramatically	improve	average	response	time.

Starvation	and	sample	bias

Systems	that	might	suffer	from	starvation	require	extra	care	when	being	measured.
Suppose	you	want	to	compare	FIFO	and	SJF	experimentally.	You	set	up	two	computers,
one	running	each	scheduler,	and	send	them	the	same	sequence	of	tasks.	After	some
period,	you	stop	and	report	the	average	response	time	of	completed	tasks.	If	some	tasks
starve,	however,	the	set	of	completed	tasks	will	be	different	for	the	two	policies.	We	will
have	excluded	the	longest	tasks	from	the	results	for	SJF,	skewing	the	average	response
time	even	further.	Put	another	way,	if	you	want	to	manipulate	statistics	to	“prove”	a	point,
this	is	a	good	trick	to	use!

How	might	you	redesign	the	experiment	to	provide	a	valid	comparison	between	FIFO	and
SJF?

Does	SJF	have	any	other	downsides	(other	than	being	impossible	to	implement	because	it
requires	knowledge	of	the	future)?	It	turns	out	that	SJF	is	pessimal	for	variance	in
response	time.	By	doing	the	shortest	tasks	as	quickly	as	possible,	SJF	necessarily	does
longer	tasks	as	slowly	as	possible	(among	policies	that	are	work-conserving).	In	other
words,	there	is	a	fundamental	tradeoff	between	reducing	average	response	time	and
reducing	the	variance	in	average	response	time.

Worse,	SJF	can	suffer	from	starvation	and	frequent	context	switches.	If	enough	short	tasks
arrive,	long	tasks	may	never	complete.	Whenever	a	new	task	on	the	ready	list	is	shorter
than	the	remaining	time	left	on	the	currently	scheduled	task,	the	scheduler	will	switch	to
the	new	task.	If	this	keeps	happening	indefinitely,	a	long	task	may	never	finish.

Suppose	a	supermarket	manager	reads	a	portion	of	this	textbook	and	decides	to	implement
shortest	job	first	to	reduce	average	waiting	times.	The	manager	tells	herself:	who	cares
about	variance!	A	benefit	is	that	there	would	no	longer	be	any	need	for	express	lanes	—	if
someone	has	only	a	few	items,	she	can	be	immediately	whisked	to	the	front	of	the	line,
interrupting	the	parent	shopping	for	eighteen	kids.	Of	course,	the	wait	times	of	the
customers	with	full	baskets	skyrockets;	if	the	supermarket	is	open	twenty-four	hours	a
day,	customers	with	the	largest	purchases	might	have	to	wait	until	3am	to	finally	get
through	the	line.	This	would	probably	lead	their	best	customers	to	go	to	the	supermarket
down	the	street,	not	exactly	what	the	manager	had	in	mind!

Customers	could	also	try	to	game	the	system:	if	you	have	a	lot	of	items	to	purchase,
simply	go	through	the	line	with	one	item	at	a	time	—	you	will	always	be	whisked	to	the
front,	at	least	until	everyone	else	figures	out	the	same	dodge.

Shortest	Job	First	and	bandwidth-constrained	web	service

Although	SJF	may	seem	completely	impractical,	there	are	circumstances	where	it	is
exactly	the	right	policy.	One	example	is	in	a	web	server	for	static	content.	Many	small-
scale	web	servers	are	limited	by	their	bandwidth	to	the	Internet,	because	it	is	often	more
expensive	to	pay	for	more	capacity.	Web	pages	at	most	sites	vary	in	size,	with	most	pages
being	relatively	short,	while	some	pages	are	quite	large.	The	average	response	time	for
accessing	web	pages	is	dominated	by	the	more	frequent	requests	to	short	pages,	while	the
bandwidth	costs	are	dominated	by	the	less	frequent	requests	to	large	pages.

This	combination	is	almost	ideal	for	using	SJF	for	managing	the	allocation	of	network
bandwidth	by	the	server.	With	static	pages,	it	is	possible	to	predict	from	the	name	of	the
page	how	much	bandwidth	each	request	will	consume.	By	transferring	short	pages	first,
the	web	server	can	ensure	that	its	average	response	time	is	very	low.	Even	if	most
requests	are	to	small	pages,	the	aggregate	bandwidth	for	small	pages	is	low,	so	requests	to
large	pages	are	not	significantly	slowed	down.	The	only	difficulty	comes	when	the	web
server	is	overloaded,	because	then	the	large	page	requests	can	be	starved.	As	we	will	see
later,	overload	situations	need	their	own	set	of	solutions.

7.1.3	Round	Robin

A	policy	that	addresses	starvation	is	to	schedule	tasks	in	a	round	robin	fashion.	With
Round	Robin,	tasks	take	turns	running	on	the	processor	for	a	limited	period	of	time.	The
scheduler	assigns	the	processor	to	the	first	task	in	the	ready	list,	setting	a	timer	interrupt
for	some	delay,	called	the	time	quantum.	At	the	end	of	the	quantum,	if	the	task	has	not
completed,	the	task	is	preempted	and	the	processor	is	given	to	the	next	task	in	the	ready
list.	The	preempted	task	is	put	back	on	the	ready	list	where	it	can	wait	its	next	turn.	With
Round	Robin,	there	is	no	possibility	that	a	task	will	starve	—	it	will	eventually	reach	the
front	of	the	queue	and	get	its	time	quantum.

Figure	7.2:	Completion	times	with	Round	Robin	scheduling	when	short	tasks	arrive	just	after	a	long	task,	with	a	time
quantum	of	1	ms	(top)	and	100	ms	(bottom).

Of	course,	we	need	to	pick	the	time	quantum	carefully.	One	consideration	is	overhead:	if
we	have	too	short	a	time	quantum,	the	processor	will	spend	all	of	its	time	switching	and
getting	very	little	useful	work	done.	If	we	pick	too	long	a	time	quantum,	tasks	will	have	to
wait	a	long	time	until	they	get	a	turn.	Figure	7.2	shows	the	behavior	of	Round	Robin,	on
the	same	workload	as	in	Figure	7.1,	for	two	different	values	for	the	time	quantum.

A	good	analogy	for	Round	Robin	is	a	particularly	hyperkinetic	student,	studying	for
multiple	finals	simultaneously.	You	won’t	get	much	done	if	you	read	a	paragraph	from	one
textbook,	then	switch	to	reading	a	paragraph	from	the	next	textbook,	and	then	switch	to
yet	a	third	textbook.	However,	if	you	never	switch,	you	may	never	get	around	to	studying

for	some	of	your	courses.

What	is	the	overhead	of	a	Round	Robin	time	slice?

One	might	think	that	the	cost	of	switching	tasks	after	a	time	slice	is	modest:	the	cost	of
interrupting	the	processor,	saving	its	registers,	dispatching	the	timer	interrupt	handler,	and
restoring	the	registers	of	the	new	task.	On	a	modern	processor,	all	these	steps	can	be
completed	in	a	few	tens	of	microseconds.

However,	we	must	also	include	the	impact	of	time	slices	on	the	efficiency	of	the
processor	cache.	Each	newly	scheduled	task	will	need	to	fetch	its	data	from	memory	into
cache,	evicting	some	of	the	data	that	had	been	stored	by	the	previous	task.	Exactly	how
long	this	takes	will	depend	on	the	memory	hierarchy,	the	reference	pattern	of	the	new
task,	and	whether	any	of	its	state	is	still	in	the	cache	from	its	previous	time	slice.	Modern
processors	often	have	multiple	levels	of	cache	to	improve	performance.	Reloading	just
the	first	level	on-chip	cache	from	scratch	can	take	several	milliseconds;	reloading	the
second	and	third	level	caches	takes	even	longer.	Thus,	it	is	typical	for	operating	systems
to	set	their	time	slice	interval	to	be	somewhere	between	10	and	100	milliseconds,
depending	on	the	goals	of	the	system:	better	responsiveness	or	reduced	overhead.

One	way	of	viewing	Round	Robin	is	as	a	compromise	between	FIFO	and	SJF.	At	one
extreme,	if	the	time	quantum	is	infinite	(or	at	least,	longer	than	the	longest	task),	Round
Robin	behaves	exactly	the	same	as	FIFO.	Each	task	runs	to	completion	and	then	yields	the
processor	to	the	next	in	line.	At	the	other	extreme,	suppose	it	was	possible	to	switch
between	tasks	with	zero	overhead,	so	we	could	choose	a	time	quantum	of	a	single
instruction.	With	fine-grained	time	slicing,	tasks	would	finish	in	the	order	of	length,	as
with	SJF,	but	slower:	a	task	A	will	complete	within	a	factor	of	n	of	when	it	would	have
under	SJF,	where	n	is	the	maximum	number	of	other	runnable	tasks.

Simultaneous	multi-threading

Although	zero	overhead	switching	may	seem	far-fetched,	most	modern	processors	do	a
form	of	it	called	simultaneous	multi-threading	(SMT)	or	hyperthreading.	With	SMT,	each
processor	simulates	two	(or	more)	virtual	processors,	alternating	between	them	on	a
cycle-by-cycle	basis.	Since	most	threads	need	to	wait	for	memory	from	time	to	time,
another	thread	can	use	the	processor	during	those	gaps,	or	vice	versa.	In	normal
operation,	neither	thread	is	significantly	slowed	when	running	on	an	SMT.

You	can	test	whether	your	computer	implements	SMT	by	testing	how	fast	the	processor
operates	when	it	has	one	or	more	tasks,	each	running	a	tight	loop	of	arithmetic	operations.
(Note	that	on	a	multicore	system,	you	will	need	to	create	enough	tasks	to	fill	up	each	of
the	cores,	or	physical	processors,	before	the	system	will	begin	to	use	SMT.)	With	one	task
per	physical	processor,	each	task	will	run	at	the	maximum	rate	of	the	processor.	With	a
two-way	SMT	and	two	tasks	per	processor,	each	task	will	run	at	somewhat	less	than	the
maximum	rate,	but	each	task	will	run	at	approximately	the	same	uniform	speed.	As	you
increase	the	number	of	tasks	beyond	the	SMT	level,	however,	the	operating	system	will
begin	to	use	coarse-grained	time	slicing,	so	tasks	will	progress	in	spurts	—	alternating

time	on	and	off	the	processor.

Figure	7.3:	Completion	times	with	Round	Robin	(top)	versus	FIFO	and	SJF	(bottom)	when	scheduling	equal	length
tasks.

Unfortunately,	Round	Robin	has	some	weaknesses.	Figure	7.3	illustrates	what	happens	for
FIFO,	SJF,	and	Round	Robin	when	several	tasks	start	at	roughly	same	time	and	are	of	the
same	length.	Round	Robin	will	rotate	through	the	tasks,	doing	a	bit	of	each,	finishing	them
all	at	roughly	the	same	time.	This	is	nearly	the	worst	possible	scheduling	policy	for	this
workload!	FIFO	does	much	better,	picking	a	task	and	sticking	with	it	until	it	finishes.	Not
only	does	FIFO	reduce	average	response	time	for	this	workload	relative	to	Round	Robin,
no	task	is	worse	off	under	FIFO	—	every	task	finishes	at	least	as	early	as	it	would	have
under	Round	Robin.	Time	slicing	added	overhead	without	any	benefit.	Finally,	consider
what	SJF	does	on	this	workload.	SJF	schedules	tasks	in	exactly	the	same	order	as	FIFO.
The	first	task	that	arrives	will	be	assigned	the	processor,	and	as	soon	as	it	executes	a	single
instruction,	it	will	have	less	time	remaining	than	all	of	the	other	tasks,	and	so	it	will	run	to
completion.	Since	we	know	SJF	is	optimal	for	average	response	time,	this	means	that	both
FIFO	and	Round	Robin	are	optimal	for	some	workloads	and	pessimal	for	others,	just
different	ones	in	each	case.

Round	Robin	and	streaming	video

Round	Robin	is	sometimes	the	best	policy	even	when	all	tasks	are	roughly	the	same	size.

An	example	is	managing	the	server	bandwidth	for	streaming	video.	When	streaming,
response	time	is	much	less	of	a	concern	than	achieving	a	predictable,	stable	rate	of
progress.	For	this,	Round	Robin	is	nearly	ideal:	all	streams	progress	at	the	same	rate.	As
long	as	Round	Robin	serves	the	data	as	fast	or	faster	than	the	viewer	consumes	the	video
stream,	the	time	to	completely	download	the	stream	is	unimportant.

Depending	on	the	time	quantum,	Round	Robin	can	also	be	quite	poor	when	running	a
mixture	of	I/O-bound	and	compute-bound	tasks.	I/O-bound	tasks	often	need	very	short
periods	on	the	processor	in	order	to	compute	the	next	I/O	operation	to	issue.	Any	delay	to
be	scheduled	onto	the	processor	can	lead	to	system-wide	slowdowns.	For	example,	in	a
text	editor,	it	often	takes	only	a	few	milliseconds	to	echo	a	keystroke	to	the	screen,	a	delay
much	faster	than	human	perception.	However,	if	we	are	sharing	the	processor	between	a
text	editor	and	several	other	tasks	using	Round	Robin,	the	editor	must	wait	several	time
quanta	to	be	scheduled	for	each	keystroke	—	with	a	100	ms	time	quantum,	this	can
become	annoyingly	apparent	to	the	user.

Figure	7.4:	Scheduling	behavior	with	Round	Robin	when	running	a	mixture	of	I/O-bound	and	compute-bound	tasks.
The	I/O-bound	task	yields	the	processor	when	it	does	I/O.	Even	though	the	I/O	completes	quickly,	the	I/O-bound	task
must	wait	to	be	reassigned	the	processor	until	the	compute-bound	tasks	both	complete	their	time	quanta.

Figure	7.4	illustrates	similar	behavior	with	a	disk-bound	task.	Suppose	we	have	a	task	that
computes	for	1	ms	and	then	uses	the	disk	for	10	ms,	in	a	loop.	Running	alone,	the	task	can
keep	the	disk	almost	completely	busy.	Suppose	we	also	have	two	compute	bound	tasks;
again,	running	by	themselves,	they	can	keep	the	processor	busy.	What	happens	when	we
run	the	disk-bound	and	compute-bound	tasks	at	the	same	time?	With	Round	Robin	and	a
time	quantum	of	100	ms,	the	disk-bound	task	slows	down	by	nearly	a	factor	of	twenty	—
each	time	it	needs	the	processor,	it	must	wait	nearly	200	ms	for	its	turn.	SJF	on	this
workload	would	perform	well	—	prioritizing	short	tasks	at	the	processor	keeps	the	disk-
bound	task	busy,	while	modestly	slowing	down	the	compute-bound	tasks.

If	you	have	ever	tried	to	surf	the	web	while	doing	a	large	BitTorrent	download	over	a	slow
link,	you	can	see	that	network	operations	visibly	slow	during	the	download.	This	is	even
though	your	browser	may	need	to	transfer	only	a	very	small	amount	of	data	to	provide
good	responsiveness.	The	reason	is	quite	similar.	Browser	packets	get	their	turn,	but	only
after	being	queued	behind	a	much	larger	number	of	packets	for	the	bulk	download.
Prioritizing	the	browser’s	packets	would	have	only	a	minimal	impact	on	the	download
speed	and	a	large	impact	on	the	perceived	responsiveness	of	the	system.

7.1.4	Max-Min	Fairness

In	many	settings,	a	fair	allocation	of	resources	is	as	important	to	the	design	of	a	scheduler
as	responsiveness	and	low	overhead.	On	a	multi-user	machine	or	on	a	server,	we	do	not
want	to	allow	a	single	user	to	be	able	to	monopolize	the	resources	of	the	machine,
degrading	service	for	other	users.	While	it	might	seem	that	fairness	has	little	value	in
single-user	machines,	individual	applications	are	often	written	by	different	companies,
each	with	an	interest	in	making	their	application	performance	look	good	even	if	that
comes	at	a	cost	of	degrading	responsiveness	for	other	applications.

Another	complication	arises	with	whether	we	should	allocate	resources	fairly	among
users,	applications,	processes,	or	threads.	Some	applications	may	run	inside	a	single
process,	while	others	may	create	many	processes,	and	each	process	may	involve	multiple
threads.	Round	robin	among	threads	can	lead	to	starvation	if	applications	with	only	a
single	thread	are	competing	with	applications	with	hundreds	of	threads.	We	can	be
concerned	with	fair	allocation	at	any	of	these	levels	of	granularity:	threads	within	a
process,	processes	for	a	particular	user,	users	sharing	a	physical	machine.	For	example,	we
could	be	concerned	with	making	sure	that	every	thread	within	a	process	makes	progress.
For	simplicity,	however,	our	discussion	will	assume	we	are	interested	in	providing	fairness
among	processes	—	the	same	principles	apply	if	the	unit	receiving	resources	is	the	user,
application,	or	thread.

Fairness	is	easy	if	all	processes	are	compute-bound:	Round	Robin	will	give	each	process
an	equal	portion	of	the	processor.	In	practice,	however,	different	processes	consume
resources	at	different	rates.	An	I/O-bound	process	may	need	only	a	small	portion	of	the
processor,	while	a	compute-bound	process	is	willing	to	consume	all	available	processor
time.	What	is	a	fair	allocation	when	there	is	a	diversity	of	needs?

One	possible	answer	is	to	say	that	whatever	Round	Robin	does	is	fair	—	after	all,	each
process	gets	an	equal	chance	at	the	processor.	As	we	saw	above,	however,	Round	Robin
can	result	in	I/O-bound	processes	running	at	a	much	slower	rate	than	they	would	if	they
had	the	processor	to	themselves,	while	compute-bound	processes	are	barely	affected	at	all.
That	hardly	seems	fair!

While	there	are	many	possible	definitions	of	fairness,	a	particularly	useful	one	is	called
max-min	fairness.	Max-min	fairness	iteratively	maximizes	the	minimum	allocation	given
to	a	particular	process	(user,	application	or	thread)	until	all	resources	are	assigned.

If	all	processes	are	compute-bound,	the	behavior	of	max-min	is	simple:	we	maximize	the
minimum	by	giving	each	process	exactly	the	same	share	of	the	processor	—	that	is,	by
using	Round	Robin.

The	behavior	of	max-min	fairness	is	more	interesting	if	some	processes	cannot	use	their
entire	share,	for	example,	because	they	are	short-running	or	I/O-bound.	If	so,	we	give
those	processes	their	entire	request	and	redistribute	the	unused	portion	to	the	remaining
processes.	Some	of	the	processes	receiving	the	extra	portion	may	not	be	able	to	use	their
entire	revised	share,	and	so	we	must	iterate,	redistributing	any	unused	portion.	When	no
remaining	requests	can	be	fully	satisfied,	we	divide	the	remainder	equally	among	all
remaining	processes.

Consider	the	example	in	the	previous	section.	The	disk-bound	process	needed	only	10%	of
the	processor	to	keep	busy,	but	Round	Robin	only	gave	it	0.5%	of	the	processor,	while
each	of	the	two	compute-bound	processes	received	nearly	50%.	Max-min	fairness	would
assign	10%	of	the	processor	to	the	I/O-bound	process,	and	it	would	split	the	remainder
equally	between	the	two	compute-bound	processes,	with	45%	each.

A	hypothetical	but	completely	impractical	implementation	of	max-min	would	be	to	give
the	processor	at	each	instant	to	whichever	process	has	received	the	least	portion	of	the
processor.	In	the	example	above,	the	disk-bound	task	would	always	be	scheduled	instantly,
preempting	the	compute-bound	processes.	However,	we	have	already	seen	why	this	would
not	work	well.	With	two	equally	long	tasks,	as	soon	as	we	execute	one	instruction	in	one
task,	it	would	have	received	more	resources	than	the	other	one,	so	to	preserve	“fairness”
we	would	need	to	instantly	switch	to	the	next	task.

We	can	approximate	a	max-min	fair	allocation	by	relaxing	this	constraint	—	to	allow	a
process	to	get	ahead	of	its	fair	allocation	by	one	time	quantum.	Every	time	the	scheduler
needs	to	make	a	choice,	it	chooses	the	task	for	the	process	with	the	least	accumulated	time
on	the	processor.	If	a	new	process	arrives	on	the	queue	with	much	less	accumulated	time,
such	as	the	disk-bound	task,	it	will	preempt	the	process,	but	otherwise	the	current	process
will	complete	its	quantum.	Tasks	may	get	up	to	one	time	quantum	more	than	their	fair
share,	but	over	the	long	term	the	allocation	will	even	out.

The	algorithm	we	just	described	was	originally	defined	for	network,	and	not	processor,
scheduling.	If	we	share	a	link	between	a	browser	request	and	a	long	download,	we	will	get
reasonable	responsiveness	for	the	browser	if	we	have	approximately	fair	allocation	—	the
browser	needs	few	network	packets,	and	so	under	max-min	its	packets	will	always	be
scheduled	ahead	of	the	packets	from	the	download.

Even	this	approximation,	though,	can	be	computationally	expensive,	since	it	requires	tasks
to	be	maintained	on	a	priority	queue.	For	some	server	environments,	there	can	be	tens	or
even	hundreds	of	thousands	of	scheduling	decisions	to	be	made	every	second.	To	reduce
the	computational	overhead	of	the	scheduler,	most	commercial	operating	systems	use	a
somewhat	different	algorithm,	to	the	same	goal,	which	we	describe	next.

7.1.5	Case	Study:	Multi-Level	Feedback

Most	commercial	operating	systems,	including	Windows,	MacOS,	and	Linux,	use	a
scheduling	algorithm	called	multi-level	feedback	queue	(MFQ).	MFQ	is	designed	to
achieve	several	simultaneous	goals:

Responsiveness.	Run	short	tasks	quickly,	as	in	SJF.

Low	Overhead.	Minimize	the	number	of	preemptions,	as	in	FIFO,	and	minimize	the
time	spent	making	scheduling	decisions.

Starvation-Freedom.	All	tasks	should	make	progress,	as	in	Round	Robin.

Background	Tasks.	Defer	system	maintenance	tasks,	such	as	disk	defragmentation,
so	they	do	not	interfere	with	user	work.

Fairness.	Assign	(non-background)	processes	approximately	their	max-min	fair
share	of	the	processor.

As	with	any	real	system	that	must	balance	several	conflicting	goals,	MFQ	does	not
perfectly	achieve	any	of	these	goals.	Rather,	it	is	intended	to	be	a	reasonable	compromise
in	most	real-world	cases.

MFQ	is	an	extension	of	Round	Robin.	Instead	of	only	a	single	queue,	MFQ	has	multiple
Round	Robin	queues,	each	with	a	different	priority	level	and	time	quantum.	Tasks	at	a
higher	priority	level	preempt	lower	priority	tasks,	while	tasks	at	the	same	level	are
scheduled	in	Round	Robin	fashion.	Further,	higher	priority	levels	have	shorter	time	quanta
than	lower	levels.

Tasks	are	moved	between	priority	levels	to	favor	short	tasks	over	long	ones.	A	new	task
enters	at	the	top	priority	level.	Every	time	the	task	uses	up	its	time	quantum,	it	drops	a
level;	every	time	the	task	yields	the	processor	because	it	is	waiting	on	I/O,	it	stays	at	the
same	level	(or	is	bumped	up	a	level);	and	if	the	task	completes	it	leaves	the	system.

Figure	7.5:	Multi-level	Feedback	Queue	when	running	a	mixture	of	I/O-bound	and	compute-bound	tasks.	New	tasks
enter	at	high	priority	with	a	short	quantum;	tasks	that	use	their	quantum	are	reduced	in	priority.

Figure	7.5	illustrates	the	operation	of	an	MFQ	with	four	levels.	A	new	compute-bound
task	will	start	as	high	priority,	but	it	will	quickly	exhaust	its	time	quantum	and	fall	to	the
next	lower	priority,	and	then	the	next.	Thus,	an	I/O-bound	task	needing	only	a	modest
amount	of	computing	will	almost	always	be	scheduled	quickly,	keeping	the	disk	busy.

Compute-bound	tasks	run	with	a	long	time	quantum	to	minimize	switching	overhead
while	still	sharing	the	processor.

So	far,	the	algorithm	we	have	described	does	not	achieve	starvation	freedom	or	max-min
fairness.	If	there	are	too	many	I/O-bound	tasks,	the	compute-bound	tasks	may	receive	no
time	on	the	processor.	To	combat	this,	the	MFQ	scheduler	monitors	every	process	to
ensure	it	is	receiving	its	fair	share	of	the	resources.	At	each	level,	Linux	actually	maintains
two	queues	—	tasks	whose	processes	have	already	reached	their	fair	share	are	only
scheduled	if	all	other	processes	at	that	level	have	also	received	their	fair	share.
Periodically,	any	process	receiving	less	than	its	fair	share	will	have	its	tasks	increased	in
priority;	equally,	tasks	that	receive	more	than	their	fair	share	can	be	reduced	in	priority.

Adjusting	priority	also	addresses	strategic	behavior.	From	a	purely	selfish	point	of	view,	a
task	can	attempt	to	keep	its	priority	high	by	doing	a	short	I/O	request	immediately	before
its	time	quantum	expires.	Eventually	the	system	will	detect	this	and	reduce	its	priority	to
its	fair-share	level.

Our	previously	hapless	supermarket	manager	reads	a	bit	farther	into	the	textbook	and
realizes	that	supermarket	express	lanes	are	a	form	of	multi-level	queue.	By	limiting
express	lanes	to	customers	with	a	few	items,	the	manager	can	ensure	short	tasks	complete
quickly,	reducing	average	response	time.	The	manager	can	also	monitor	wait	times,	adding
extra	lanes	to	ensure	that	everyone	is	served	reasonably	quickly.

7.1.6	Summary

We	summarize	the	lessons	from	this	section:

FIFO	is	simple	and	minimizes	overhead.

If	tasks	are	variable	in	size,	then	FIFO	can	have	very	poor	average	response	time.

If	tasks	are	equal	in	size,	FIFO	is	optimal	in	terms	of	average	response	time.

Considering	only	the	processor,	SJF	is	optimal	in	terms	of	average	response	time.

SJF	is	pessimal	in	terms	of	variance	in	response	time.

If	tasks	are	variable	in	size,	Round	Robin	approximates	SJF.

If	tasks	are	equal	in	size,	Round	Robin	will	have	very	poor	average	response	time.

Tasks	that	intermix	processor	and	I/O	benefit	from	SJF	and	can	do	poorly	under
Round	Robin.

Max-min	fairness	can	improve	response	time	for	I/O-bound	tasks.

Round	Robin	and	Max-min	fairness	both	avoid	starvation.

By	manipulating	the	assignment	of	tasks	to	priority	queues,	an	MFQ	scheduler	can
achieve	a	balance	between	responsiveness,	low	overhead,	and	fairness.

In	the	rest	of	this	chapter,	we	extend	these	ideas	to	multiprocessors,	energy-constrained
environments,	real-time	settings,	and	overloaded	conditions.

7.2	Multiprocessor	Scheduling

Today,	most	general-purpose	computers	are	multiprocessors.	Physical	constraints	in	circuit
design	make	it	easier	to	add	computational	power	by	adding	processors,	or	cores,	onto	a
single	chip,	rather	than	making	individual	processors	faster.	Many	high-end	desktops	and
servers	have	multiple	processing	chips,	each	with	multiple	cores,	and	each	core	with
hyperthreading.	Even	smartphones	have	2-4	processors.	This	trend	is	likely	to	accelerate,
with	systems	of	the	future	having	dozens	or	perhaps	hundreds	of	processors	per	computer.

This	poses	two	questions	for	operating	system	scheduling:

How	do	we	make	effective	use	of	multiple	cores	for	running	sequential	tasks?

How	do	we	adapt	scheduling	algorithms	for	parallel	applications?

7.2.1	Scheduling	Sequential	Applications	on	Multiprocessors

Consider	a	server	handling	a	very	large	number	of	web	requests.	A	common	software
architecture	for	servers	is	to	allocate	a	separate	thread	for	each	user	connection.	Each
thread	consults	a	shared	data	structure	to	see	which	portions	of	the	requested	data	are
cached,	and	fetches	any	missing	elements	from	disk.	The	thread	then	spools	the	result	out
across	the	network.

How	should	the	operating	system	schedule	these	server	threads?	Each	thread	is	I/O-bound,
repeatedly	reading	or	writing	data	to	disk	and	the	network,	and	therefore	makes	many
small	trips	through	the	processor.	Some	requests	may	require	more	computation;	to	keep
average	response	time	low,	we	will	want	to	favor	short	tasks.

A	simple	approach	would	be	to	use	a	centralized	multi-level	feedback	queue,	with	a	lock
to	ensure	only	one	processor	at	a	time	is	reading	or	modifying	the	data	structure.	Each	idle
processor	takes	the	next	task	off	the	MFQ	and	runs	it.	As	the	disk	or	network	finishes
requests,	threads	waiting	on	I/O	are	put	back	on	the	MFQ	and	executed	by	the	network
processor	that	becomes	idle.

There	are	several	potential	performance	problems	with	this	approach:

Contention	for	the	MFQ	lock.	Depending	on	how	much	computation	each	thread
does	before	blocking	on	I/O,	the	centralized	lock	may	become	a	bottleneck,
particularly	as	the	number	of	processors	increases.

Cache	Coherence	Overhead.	Although	only	a	modest	number	of	instructions	are
needed	for	each	visit	to	the	MFQ,	each	processor	will	need	to	fetch	the	current	state
of	the	MFQ	from	the	cache	of	the	previous	processor	to	hold	the	lock.	On	a	single
processor,	the	scheduling	data	structure	is	likely	to	be	already	loaded	into	the	cache.
On	a	multiprocessor,	the	data	structure	will	be	accessed	and	modified	by	different
processors	in	turn,	so	the	most	recent	version	of	the	data	is	likely	to	be	cached	only
by	the	processor	that	made	the	most	recent	update.	Fetching	data	from	a	remote	cache
can	take	two	to	three	orders	of	magnitude	longer	than	accessing	locally	cached	data.
Since	the	cache	miss	delay	occurs	while	holding	the	MFQ	lock,	the	MFQ	lock	is	held

for	longer	periods	and	so	can	become	even	more	of	a	bottleneck.

Limited	Cache	Reuse.	If	threads	run	on	the	first	available	processor,	they	are	likely
to	be	assigned	to	a	different	processor	each	time	they	are	scheduled.	This	means	that
any	data	needed	by	the	thread	is	unlikely	to	be	cached	on	that	processor.	Of	course,
some	of	the	thread’s	data	will	have	been	displaced	from	the	cache	during	the	time	it
was	blocked,	but	on-chip	caches	are	so	large	today	that	much	of	the	thread’s	data	will
remain	cached.	Worse,	the	most	recent	version	of	the	thread’s	data	is	likely	to	be	in	a
remote	cache,	requiring	even	more	of	a	slowdown	as	the	remote	data	is	fetched	into
the	local	cache.

Figure	7.6:	Per-processor	scheduling	data	structures.	Each	processor	has	its	own	(multi-level)	queue	of	ready	threads.

For	these	reasons,	commercial	operating	systems	such	as	Linux	use	a	per-processor	data
structure:	a	separate	copy	of	the	multi-level	feedback	queue	for	each	processor.	Figure	7.6
illustrates	this	approach.

Each	processor	uses	affinity	scheduling:	once	a	thread	is	scheduled	on	a	processor,	it	is
returned	to	the	same	processor	when	it	is	re-scheduled,	maximizing	cache	reuse.	Each
processor	looks	at	its	own	copy	of	the	queue	for	new	work	to	do;	this	can	mean	that	some
processors	can	idle	while	others	have	work	waiting	to	be	done.	Rebalancing	occurs	only	if
the	queue	lengths	are	persistent	enough	to	compensate	for	the	time	to	reload	the	cache	for
the	migrated	threads.	Because	rebalancing	is	possible,	the	per-processor	data	structures
must	still	be	protected	by	locks,	but	in	the	common	case	the	next	processor	to	use	the	data
will	be	the	last	one	to	have	written	it,	minimizing	cache	coherence	overhead	and	lock
contention.

7.2.2	Scheduling	Parallel	Applications

A	different	set	of	challenges	occurs	when	scheduling	parallel	applications	onto	a
multiprocessor.	There	is	often	a	natural	decomposition	of	a	parallel	application	onto	a	set

of	processors.	For	example,	an	image	processing	application	may	divide	the	image	up	into
equal	size	chunks,	assigning	one	to	each	processor.	While	the	application	could	divide	the
image	into	many	more	chunks	than	processors,	this	comes	at	a	cost	in	efficiency:	less
cache	reuse	and	more	communication	to	coordinate	work	at	the	boundary	between	each
chunk.

If	there	are	multiple	applications	running	at	the	same	time,	the	application	may	receive
fewer	or	more	processors	than	it	expected	or	started	with.	New	applications	can	start	up,
acquiring	processing	resources.	Other	applications	may	complete,	releasing	resources.
Even	without	multiple	applications,	the	operating	system	itself	will	have	system	tasks	to
run	from	time	to	time,	disrupting	the	mapping	of	parallel	work	onto	a	fixed	number	of
processors.

Oblivious	Scheduling

One	might	imagine	that	the	scheduling	algorithms	we	have	already	discussed	can	take	care
of	these	cases.	Each	thread	is	time	sliced	onto	the	available	processors;	if	two	or	more
applications	create	more	threads	in	aggregate	than	processors,	multi-level	feedback	will
ensure	that	each	thread	makes	progress	and	receives	a	fair	share	of	the	processor.	This	is
often	called	oblivious	scheduling,	as	the	operating	system	scheduler	operates	without
knowledge	of	the	intent	of	the	parallel	application	—	each	thread	is	scheduled	as	a
completely	independent	entity.	Figure		7.7	illustrates	oblivious	scheduling.

Figure	7.7:	With	oblivious	scheduling,	threads	are	time	sliced	by	the	multiprocessor	operating	system,	with	no	attempt
to	ensure	threads	from	the	same	process	run	at	the	same	time.

Unfortunately,	several	problems	can	occur	with	oblivious	scheduling	on	multiprocessors:

Bulk	synchronous	delay.	A	common	design	pattern	in	parallel	programs	is	to	split
work	into	roughly	equal	sized	chunks;	once	all	the	chunks	finish,	the	processors
synchronize	at	a	barrier	before	communicating	their	results	to	the	next	stage	of	the
computation.	This	bulk	synchronous	parallelism	is	easy	to	manage	—	each	processor
works	independently,	sharing	its	results	only	with	the	next	stage	in	the	computation.

Google	MapReduce	is	a	widely	used	bulk	synchronous	application.

Figure	7.8:	Bulk	synchronous	design	pattern	for	a	parallel	program;	each	processor	computes	on	local	data	and
waits	for	every	other	processor	to	complete	before	proceeding	to	the	next	step.	Preempting	one	processor	can
stall	all	processors	until	the	preempted	process	is	resumed.

Figure	7.8	illustrates	the	problem	with	bulk	synchronous	computation	under
oblivious	scheduling.	At	each	step,	the	computation	is	limited	by	the	slowest
processor	to	complete	that	step.	If	a	processor	is	preempted,	its	work	will	be	delayed,
stalling	the	remaining	processors	until	the	last	one	is	scheduled.	Even	if	one	of	the
waiting	processors	picks	up	the	preempted	task,	a	single	preemption	can	delay	the
entire	computation	by	a	factor	of	two,	and	possibly	even	more	with	cache	effects.
Since	the	application	does	not	know	that	a	processor	was	preempted,	it	cannot	adapt
its	decomposition	for	the	available	number	of	processors,	so	each	step	is	similarly
delayed	until	the	processor	is	returned.

Producer-consumer	delay.	Some	parallel	applications	use	a	producer-consumer
design	pattern,	where	the	results	of	one	thread	are	fed	to	the	next	thread,	and	the
output	of	that	thread	is	fed	onward,	as	in	Figure	7.9.	Preempting	a	thread	in	the
middle	of	a	producer-consumer	chain	can	stall	all	of	the	processors	in	the	chain.

Figure	7.9:	Producer-consumer	design	pattern	for	a	parallel	program.	Preempting	one	stage	can	stall	the
remainder.

Figure	7.10:	Critical	path	of	a	parallel	program;	delays	on	the	critical	path	increase	execution	time.

Critical	path	delay.	More	generally,	parallel	programs	have	a	critical	path	—	the
minimum	sequence	of	steps	for	the	application	to	compute	its	result.	Figure	7.10
illustrates	the	critical	path	for	a	fork-join	parallel	program.	Work	off	the	critical	path
can	occur	in	parallel,	but	its	precise	scheduling	is	less	important.	Preempting	a	thread
on	the	critical	path,	however,	will	slow	down	the	end	result.	Although	the	application
programmer	may	know	which	parts	of	the	computation	are	on	the	critical	path,	with
oblivious	scheduling,	the	operating	system	will	not;	it	will	be	equally	likely	to
preempt	a	thread	on	the	critical	path	as	off.

Preemption	of	lock	holder.	Many	parallel	programs	use	locks	and	condition
variables	for	synchronizing	their	parallel	execution.	Often,	to	reduce	the	cost	of
acquiring	locks,	parallel	programs	will	use	a	“spin-then-wait”	strategy	—	if	a	lock	is
busy,	the	waiting	thread	spin-waits	briefly	for	it	to	be	released,	and	if	the	lock	is	still
busy,	it	blocks	and	looks	for	other	work	to	do.	This	can	reduce	overhead	in	the
common	case	that	the	lock	is	held	for	only	short	periods	of	time.	With	oblivious
scheduling,	however,	the	lock	holder	can	be	preempted	—	other	tasks	will	spin-then-
wait	until	the	lock	holder	is	re-scheduled,	increasing	overhead.

I/O.	Many	parallel	applications	do	I/O,	and	this	can	cause	problems	if	the	operating
system	scheduler	is	oblivious	to	the	application	decomposition	into	parallel	work.	If	a
read	or	write	request	blocks	in	the	kernel,	the	thread	blocks	as	well.	To	reuse	the
processor	while	the	thread	is	waiting,	the	application	program	must	have	created
more	threads	than	processors,	so	that	the	scheduler	can	have	an	extra	one	to	run	in
place	of	the	blocked	thread.	However,	if	the	thread	does	not	block	(e.g.,	on	a	file	read
when	the	file	is	cached	in	memory),	that	means	that	the	scheduler	has	more	threads

than	processors,	and	so	needs	to	do	time	slicing	to	multiplex	threads	onto	processors
—	causing	all	of	the	problems	we	have	listed	above.

Gang	Scheduling

One	possible	approach	to	some	of	these	issues	is	to	schedule	all	of	the	tasks	of	a	program
together.	This	is	called	gang	scheduling.	The	application	picks	some	decomposition	of
work	into	some	number	of	threads,	and	those	threads	run	either	together	or	not	at	all.	If	the
operating	system	needs	to	schedule	a	different	application,	if	there	are	insufficient	idle
resources,	it	preempts	all	of	the	processors	of	an	application	to	make	room.	Figure	7.11
illustrates	an	example	of	gang	scheduling.

Figure	7.11:	With	gang	scheduling,	threads	from	the	same	process	are	scheduled	at	exactly	the	same	time,	and	they	are
time	sliced	together	to	provide	a	chance	for	other	processes	to	run.

Because	of	the	value	of	gang	scheduling,	commercial	operating	systems,	such	as	Linux,
Windows,	and	MacOS,	have	mechanisms	for	dedicating	a	set	of	processors	to	a	single
application.	This	is	often	appropriate	on	a	server	dedicated	to	a	single	primary	use,	such	as
a	database	needing	precise	control	over	thread	assignment.	The	application	can	pin	each
thread	to	a	specific	processor	and	(with	the	appropriate	permissions)	mark	it	to	run	with
high	priority.	The	system	reserves	a	small	subset	of	the	processors	to	run	other
applications,	multiplexed	in	the	normal	way	but	without	interfering	with	the	primary
application.

Figure	7.12:	Performance	as	a	function	of	the	number	of	processors,	for	some	typical	parallel	applications.	Some
applications	scale	linearly	with	the	number	of	processors;	others	achieve	diminishing	returns.

For	multiplexing	multiple	parallel	applications,	however,	gang	scheduling	can	be
inefficient.	Figure	7.12	illustrates	why.	It	shows	the	performance	of	three	example	parallel
programs	as	a	function	of	the	number	of	processors	assigned	to	the	application.	While
some	applications	have	perfect	speedup	and	can	make	efficient	use	of	many	processors,
other	applications	reach	a	point	of	diminishing	returns,	and	still	others	have	a	maximum
parallelism.	For	example,	if	adding	processors	does	not	decrease	the	time	spent	on	the
program’s	critical	path,	there	is	no	benefit	to	adding	those	resources.

An	implication	of	Figure	7.12	is	that	it	is	usually	more	efficient	to	run	two	parallel
programs	each	with	half	the	number	of	processors,	than	to	time	slice	the	two	programs,
each	gang	scheduled	onto	all	of	the	processors.	Allocating	different	processors	to	different
tasks	is	called	space	sharing,	to	differentiate	it	from	time	sharing,	or	time	slicing	—
allocating	a	single	processor	among	multiple	tasks	by	alternating	in	time	when	each	is
scheduled	onto	the	processor.	Space	sharing	on	a	multiprocessor	is	also	more	efficient	in
that	it	minimizes	processor	context	switches:	as	long	as	the	operating	system	has	not
changed	the	allocation,	the	processors	do	not	even	need	to	be	time	sliced.	Figure	7.13
illustrates	an	example	of	space	sharing.

Figure	7.13:	With	space	sharing,	each	process	is	assigned	a	subset	of	the	processors.

Space	sharing	is	straightforward	if	all	tasks	start	and	stop	at	the	same	time;	in	that	case,	we
can	just	allocate	evenly.	However,	the	number	of	available	processors	is	often	a	dynamic
property	in	a	multiprogrammed	setting,	because	tasks	start	and	stop	at	irregular	intervals.
How	does	the	application	know	how	many	processors	to	use	if	the	number	changes	over
time?

Scheduler	Activations

A	solution,	recently	added	to	Windows,	is	to	make	the	assignment	and	re-assignment	of
processors	to	applications	visible	to	applications.	Applications	are	given	an	execution
context,	or	scheduler	activation,	on	each	processor	assigned	to	the	application;	the
application	is	informed	explicitly,	via	an	upcall,	whenever	a	processor	is	added	to	its
allocation	or	taken	away.	Blocking	on	an	I/O	request	also	causes	an	upcall	to	allow	the
application	to	repurpose	the	processor	while	the	thread	is	waiting	for	I/O.

As	we	noted	in	Chapter	4,	user-level	thread	management	is	possible	with	scheduler
activations.	The	operating	system	kernel	assigns	processors	to	applications,	either	evenly
or	according	to	some	priority	weighting.	Each	application	then	schedules	its	user-level
threads	onto	the	processors	assigned	to	it,	changing	its	allocation	as	the	number	of
processors	varies	due	to	external	events	such	as	other	processes	starting	or	stopping.	If	no
other	application	is	running,	an	application	can	use	all	of	the	processors	of	the	machine;
with	more	contention,	the	application	must	remap	its	work	onto	a	smaller	number	of
processors.

Scheduler	activations	defines	a	mechanism	for	informing	an	application	of	its	processor
allocation,	but	it	leaves	open	the	question	of	the	multiprocessor	scheduling	policy:	how
many	processors	should	we	assign	each	process?	This	is	an	open	research	question.	As	we
explained	in	our	discussion	of	uniprocessor	scheduling	policies,	there	is	a	fundamental
tradeoff	between	policies	(such	as	Shortest	Job	First)	that	improve	average	response	time
and	those	(such	as	max-min	fairness)	that	attempt	to	achieve	fair	allocation	of	resources
among	different	applications.	In	the	multiprocessor	setting,	average	response	time	may	be
improved	by	giving	extra	resources	to	parallel	interactive	tasks	provided	this	did	not	cause
long-running	compute	intensive	parallel	tasks	to	starve	for	resources.

7.3	Energy-Aware	Scheduling

Another	important	consideration	for	processor	scheduling	is	its	impact	on	battery	life	and
energy	use.	Laptops	and	smartphones	compete	on	the	basis	of	battery	life,	and	even	for
servers,	energy	usage	is	a	large	fraction	of	the	overall	system	cost.	Choices	that	the
operating	system	makes	can	have	a	large	effect	on	these	issues.

One	might	think	that	processor	scheduling	has	little	role	to	play	with	respect	to	system
energy	usage.	After	all,	each	application	has	a	certain	amount	of	computing	that	needs	to
be	done,	computing	that	requires	energy	whether	we	are	running	on	a	direct	power	line	or
off	of	a	battery.	Of	course,	the	operating	system	should	delay	background	or	system
maintenance	tasks	(such	as	software	upgrades)	for	when	the	system	is	connected	to	power,
but	this	is	likely	to	be	a	relatively	minor	effect	on	the	overall	power	budget.

In	part	because	of	the	importance	of	battery	life	to	computer	users,	modern	architectures
have	developed	a	number	of	ways	of	trading	reduced	computation	speed	for	lower	energy
use.	In	other	words,	the	mental	model	of	each	computation	taking	a	fixed	amount	of
energy	is	no	longer	accurate.	There	is	quite	a	bit	of	flux	in	the	types	of	hardware	support
available	on	different	systems,	and	systems	five	years	from	now	are	likely	to	make	very
different	tradeoffs	than	those	in	place	today.	Thus,	our	goal	in	this	section	is	not	to	provide
a	set	of	widely	used	algorithms	for	managing	power,	but	rather	to	outline	the	design	issues
energy	management	poses	for	the	operating	system.

Several	power	optimizations	are	possible,	provided	hardware	support:

Processor	design.	There	can	be	several	orders	of	magnitude	difference	between	one
processor	design	and	another	with	respect	to	power	consumption.	Often,	making	a
processor	faster	requires	extra	circuitry,	such	as	out	of	order	execution,	that	itself
consumes	power;	low	power	processors	are	slower	and	simpler.	Likewise,	processors
designed	for	lower	clock	speeds	can	tolerate	lower	voltage	swings	at	the	circuit	level,
reducing	power	consumption	dramatically.	Some	systems	have	begun	to	put	this
tradeoff	under	the	control	of	the	operating	system,	by	including	both	a	high	power,
high	performance	multiprocessor	and	a	low	power,	lower	performance	uniprocessor
on	the	same	chip.	High	power	is	appropriate	when	response	time	is	at	a	premium	and
low	power	when	power	consumption	is	more	important.

Processor	usage.	For	systems	with	multiple	processor	chips,	or	multiple	cores	on	a
single	chip,	lightly	used	processors	can	be	disabled	to	save	power.	Processors	will
typically	draw	much	less	power	when	they	are	completely	idle,	but	as	we	mentioned
above,	many	parallel	programs	achieve	some	benefit	from	using	extra	processors,	yet
also	reach	a	point	of	diminishing	returns.	Thus,	there	is	a	tradeoff	between	somewhat
faster	execution	(e.g.,	by	using	all	available	resources)	and	lower	energy	use	(e.g.,	by
turning	off	some	processors	even	when	using	them	would	slightly	decrease	response
time).

I/O	device	power.	Devices	not	in	use	can	be	powered	off.	Although	this	is	most
obvious	in	terms	of	the	display,	devices	such	as	the	WiFi	or	cellphone	network
interface	also	consume	large	amounts	of	power.	Power-constrained	embedded
systems	such	as	sensors	will	turn	on	their	network	interface	hardware	periodically	to

send	or	receive	data,	and	then	go	back	to	quiescence.	For	this	to	work,	the	senders
and	receivers	need	to	synchronize	their	periods	of	transmission,	or	the	hardware
needs	to	have	a	low	power	listening	mode.

Heat	dissipation

A	closely	related	topic	to	energy	use	is	heat	dissipation.	In	laptop	computers,	you	can
save	weight	by	not	including	a	fan	to	cool	the	processor.	However,	a	modern	multicore
chip	will	consume	up	to	150	Watts,	or	more	than	a	very	bright	incandescent	light	bulb.
Just	as	with	a	light	bulb,	the	heat	generated	has	to	go	somewhere.	Making	things
significantly	more	complicated,	the	processor	will	also	break	permanently	if	it	runs	at	too
high	a	temperature.	Thus,	the	operating	system	increasingly	must	monitor	and	manage	the
temperature	of	the	processor	to	ensure	it	stays	within	its	operating	region.	Much	like	a
cheetah,	portable	computers	are	now	capable	of	running	at	very	fast	speeds	for	short
periods	of	time,	before	they	need	to	take	a	break	to	cool	down.	Or	they	can	amble	at
much	slower	speeds	for	a	longer	period	of	time.

The	laptop	one	of	us	used	to	write	this	book	illustrates	this.	Formatting	this	textbook
takes	about	a	minute	when	the	computer	is	cold,	but	the	same	formatting	request	will	stall
in	the	middle	of	the	build	for	several	minutes	if	run	immediately	after	a	previous	build
request.

At	times,	different	power	optimizations	interact	in	subtle	ways.	For	example,	running
application	code	quickly	can	sometimes	improve	power	efficiency,	by	enabling	the
network	interface	hardware	to	be	turned	off	more	quickly	once	the	application	finishes.
Because	context	switching	consumes	both	time	and	energy	to	reload	processor	caches,
affinity	scheduling	improves	both	performance	and	energy	efficiency.

In	most	cases,	however,	there	is	a	tradeoff:	how	should	the	operating	system	balance
between	competing	demands	for	timeliness	and	energy	efficiency?	If	the	user	has
requested	maximum	responsiveness	or	maximum	battery	life,	the	choice	is	easy,	but	often
the	user	wants	a	reasonable	tradeoff	between	the	two.

Figure	7.14:	Example	relationship	between	response	time	and	user-perceived	value.	For	most	applications,	faster
response	time	is	valuable	within	a	range.	Below	some	threshold,	users	will	not	be	able	to	perceive	the	difference.	Above
some	threshold,	users	will	perform	other	activities	while	waiting	for	the	result.

One	approach	would	be	to	consider	the	value	that	the	user	places	on	fast	response	time	for
a	particular	application:	quickly	updating	the	display	after	a	user	interface	command	is
probably	more	important	than	transferring	files	quickly	in	the	background.	We	can	capture
the	relationship	between	response	time	and	value	in	Figure	7.14.	Although	the	precise
shape	and	magnitude	will	vary	from	user	to	user	and	application	to	application,	the	curve
will	head	down	and	to	the	right	—	the	longer	something	takes,	the	less	useful	it	is.	Often,
the	curve	is	S-shaped.	Human	perception	is	unable	to	tell	the	difference	between	a	few
tens	of	milliseconds,	so	adding	a	short	delay	will	not	matter	that	much	for	most	tasks;
likewise,	if	a	protein	folding	computation	has	already	taken	a	few	minutes,	it	won’t	matter
much	if	it	takes	a	few	more	seconds.	Not	everything	will	be	S-shaped:	in	high	frequency
stock	trading,	value	starts	high	and	plummets	to	zero	within	a	few	milliseconds.

Response	time	predictability	affects	this	relationship	as	well.	An	online	video	that	cuts	out
for	a	few	seconds	every	minute	is	much	less	watchable	than	one	that	is	lower	quality	on
average	but	more	predictable.

If	we	combine	Figure	7.14	with	the	fact	that	increased	energy	use	often	provides
diminishing	returns	in	terms	of	improved	performance,	this	suggests	a	three	prong	strategy
to	spend	the	system’s	energy	budget	where	it	will	make	the	most	difference:

Below	the	threshold	of	human	perception.	Optimize	for	energy	use,	to	the	extent
that	tasks	can	be	executed	with	greater	energy	efficiency	without	the	user	noticing.

Above	the	threshold	of	human	perception.	Optimize	for	response	time	if	the	user
will	notice	any	slowdown.

Long-running	or	background	tasks.	Balance	energy	use	and	responsiveness
depending	on	the	available	battery	resources.

Battery	life	and	the	kernel-user	boundary

An	emerging	issue	on	smartphones	is	that	application	behavior	can	have	a	significant
impact	on	battery	life,	e.g.,	by	more	intensive	use	of	the	network	or	other	power-hungry
features	of	the	architecture.	If	a	user	runs	a	mix	of	applications,	how	can	she	know	which
was	most	responsible	for	their	smartphone	running	out	of	power?	Among	the	resources
we	will	discuss	in	this	book,	energy	is	almost	unique	in	being	a	non-virtualizable
resource.	When	an	application	drains	the	battery,	the	energy	lost	is	no	longer	available	to
any	other	applications.

How	can	we	prevent	a	misbehaving	or	greedy	application	from	using	more	than	its	share
of	the	battery?	One	model	is	to	let	the	user	decide:	for	the	kernel	to	measure	and	record
how	much	energy	was	used	by	each	application,	so	the	user	can	determine	if	each
application	is	worth	it.	Apple	has	taken	a	different	approach	with	the	iPhone.	Because
Apple	controls	which	applications	can	run	on	the	system,	it	can	and	has	barred
applications	that	(in	its	view)	unnecessarily	drain	the	battery.	It	will	be	interesting	to	see
which	of	these	models	wins	out	over	time.

7.4	Real-Time	Scheduling

On	some	systems,	the	operating	system	scheduler	must	account	for	process	deadlines.	For
example,	the	sensor	and	control	software	to	manage	an	airplane’s	flight	path	must	be
executed	in	a	timely	fashion,	if	it	is	to	be	useful	at	all.	Similarly,	the	software	to	control
anti-lock	brakes	or	anti-skid	traction	control	on	an	automobile	must	occur	at	a	precise	time
if	it	is	to	be	effective.	In	a	less	life	critical	domain,	when	playing	a	movie	on	a	computer,
the	next	frame	must	be	rendered	in	time	or	the	user	will	perceive	the	video	quality	as	poor.

Figure	7.15:	With	real-time	constraints,	the	value	of	completing	some	task	drops	to	zero	if	the	deadline	is	not	met.

These	systems	have	real-time	constraints:	computation	that	must	be	completed	by	a
deadline	if	it	is	to	have	value.	Real-time	constraints	are	a	special	case	of	Figure	7.14,
shown	in	Figure	7.15,	where	the	value	of	completing	a	task	is	uniform	up	to	the	deadline,
and	then	drops	to	zero.

How	do	we	design	a	scheduler	to	ensure	deadlines	are	met?

We	might	start	by	assigning	real-time	tasks	a	higher	priority	than	any	less	time	critical
tasks.	We	could	then	run	the	system	under	a	variety	of	different	of	different	workloads,
and	see	if	the	system	continues	to	comfortably	meet	its	deadlines	in	all	cases.	If	not,	the
system	may	need	a	faster	processor	or	other	hardware	resources	to	speed	up	the	real-time
tasks.

Unfortunately,	testing	alone	is	insufficient	for	guaranteeing	real-time	constraints.	Recall
that	the	specific	ordering	of	execution	events	can	sometimes	lead	to	different	execution
sequences	—	e.g.,	sometimes	a	thread	will	need	to	wait	for	a	lock	held	another	thread,	and
other	times	the	lock	will	be	FREE.

One	option	is	that,	instead	of	threads,	we	should	use	a	completely	deterministic	and
repeatable	schedule	that	ensures	that	the	deadlines	are	met.	This	can	work	if	the	real-time
tasks	are	periodic	and	fixed	in	advance.	However,	in	dynamic	systems,	it	is	difficult	to
account	for	all	possible	variations	affecting	how	long	different	parts	of	the	computation

will	take.

There	are	three	widely	used	techniques	for	increasing	the	likelihood	that	threads	meet	their
deadlines.	These	approaches	are	also	useful	whenever	timeliness	matters	without	a	strict
deadline,	e.g.,	to	ensure	responsiveness	of	a	user	interface.

Over-provisioning.	A	simple	step	is	to	ensure	that	the	real-time	tasks,	in	aggregate,
use	only	a	fraction	of	the	system’s	processing	power.	This	way,	the	real-time	tasks
will	be	scheduled	quickly,	without	having	to	wait	for	higher-priority,	compute-
intensive	tasks.	The	equivalent	step	in	college	is	to	avoid	signing	up	for	too	many
hard	courses	in	the	same	semester!

Earliest	deadline	first.	Careful	choice	of	the	scheduling	policy	can	also	help	meet
deadlines.	If	you	have	a	pile	of	homework	to	do,	neither	shortest	job	first	nor	round
robin	will	ensure	that	the	assignment	due	tomorrow	gets	done	in	time.	Instead,	real-
time	schedulers,	mimicking	real	life,	use	a	policy	called	earliest	deadline	first	(EDF).
EDF	sorts	tasks	by	their	deadline	and	performs	them	in	that	order.	If	it	is	possible	to
schedule	the	required	work	to	meet	their	deadlines,	and	the	tasks	only	need	the
processor	(and	not	I/O,	locks	or	other	resources),	EDF	will	ensure	that	all	tasks	are
done	in	time.

For	complex	tasks,	however,	EDF	can	produce	anomalous	behavior.	Consider	two
tasks.	Task	A	is	I/O-bound	with	a	deadline	at	12	ms,	needing	1	ms	of	computation
followed	by	10	ms	of	I/O.	Task	B	is	compute-bound	with	a	deadline	at	10	ms,	but
needing	5	ms	of	computation.	Although	there	is	a	schedule	that	will	meet	both
deadlines	(run	task	A	first),	EDF	will	run	the	compute-bound	task	first,	causing	the
I/O-bound	task	to	miss	its	deadline.

This	limitation	can	be	addressed	by	breaking	tasks	into	shorter	units,	each	with	its
own	deadline.	In	the	example,	the	true	deadline	for	the	compute	portion	of	the	I/O-
bound	task	is	at	2	ms,	because	if	it	is	not	completed	by	then,	the	overall	task	deadline
will	be	missed.	If	your	homework	next	week	needs	a	book	from	the	library,	you	need
to	put	that	on	hold	first,	even	if	that	slightly	delays	the	homework	you	have	due
tomorrow.

Priority	donation.	Another	problem	can	occur	through	the	interaction	of	shared	data
structures,	priorities,	and	deadlines.	Suppose	we	have	three	tasks,	each	with	a
different	priority	level.	The	real-time	task	runs	at	the	highest	priority,	and	it	has
sufficient	processing	resources	to	meet	its	deadline,	with	some	time	to	spare.
However,	the	three	tasks	also	access	a	shared	data	structure,	protected	by	a	lock.

Suppose	the	low	priority	acquires	the	lock	to	modify	the	data	structure,	but	it	is	then
preempted	by	the	medium	priority	task.	The	relative	priorities	imply	that	we	should
run	the	medium	priority	task	first,	even	though	the	low	priority	task	is	in	the	middle
of	a	critical	section.	Next,	suppose	the	real-time	task	preempts	the	medium	task	and
proceeds	to	access	the	shared	data	structure.	It	will	find	the	lock	busy	and	wait.
Normally,	the	wait	would	be	short,	and	the	real-time	task	would	be	able	to	meet	its
deadline	despite	the	delay.	However,	in	this	case,	when	the	high	priority	task	waits
for	the	lock,	the	scheduler	will	pick	the	medium	priority	task	to	run	next,	causing	an
indefinite	delay.	This	is	called	priority	inversion;	it	can	occur	whenever	a	high

priority	task	must	wait	for	a	lower	priority	task	to	complete	its	work.

A	commonly	used	solution,	implemented	in	most	commercial	operating	systems,	is
called	priority	donation:	when	a	high	priority	task	waits	on	a	shared	lock,	it
temporarily	donates	its	priority	to	the	task	holding	the	lock.	This	allows	the	low
priority	task	to	be	scheduled	to	complete	the	critical	section,	at	which	point	its
priority	reverts	to	its	original	state,	and	the	processor	is	re-assigned	to	the	high
priority,	waiting,	task.

7.5	Queueing	Theory

Suppose	you	build	a	new	web	service,	and	the	week	before	you	are	to	take	it	live,	you	test
it	to	see	whether	it	will	have	reasonable	response	time.	If	your	tests	show	that	the
performance	is	terrible,	what	then?	Is	it	because	the	implementation	is	too	slow?	Perhaps
you	have	the	wrong	scheduler?	Quick,	let’s	re-implement	that	linked	list	with	a	hash	table!
And	add	more	levels	to	the	multi-level	feedback	queue!	Our	advice:	don’t	panic.	In	this
section,	we	consider	a	third	possibility,	an	effect	that	often	trumps	all	of	the	others:
response	time	depends	non-linearly	on	the	rate	that	tasks	arrive	at	a	system.	Understanding
this	relationship	is	the	topic	of	queueing	theory.

Fortunately,	if	you	have	ever	waited	in	line	(and	who	hasn’t?),	you	have	an	intuitive
understanding	of	queueing	theory.	Its	concepts	apply	whenever	there	is	a	queue	waiting
for	a	turn,	whether	it	is	tasks	waiting	for	a	processor,	web	requests	waiting	for	a	turn	at	a
web	server,	restaurant	patrons	waiting	for	a	table,	cars	waiting	at	a	busy	intersection,	or
people	waiting	in	line	at	the	supermarket.

While	queueing	theory	is	capable	of	providing	precise	predictions	for	complex	systems,
our	interest	is	providing	you	the	tools	to	be	able	to	do	back	of	the	envelope	calculations
for	where	the	time	goes	in	a	real	system.	For	performance	debugging,	coarse	estimates	are
often	enough.	For	this	reason,	we	make	two	simplifying	assumptions	for	this	discussion.
First,	we	assume	the	system	is	work-conserving,	so	that	all	tasks	that	arrive	are	eventually
serviced;	this	will	normally	be	the	case	except	in	extreme	overload	conditions,	a	topic	we
will	discuss	in	the	next	section	of	this	chapter.	Second,	although	the	scheduling	policy	can
affect	a	system’s	queueing	behavior,	we	will	keep	things	simple	and	assume	FIFO
scheduling.

7.5.1	Definitions

Because	queueing	theory	is	concerned	with	the	root	causes	of	system	performance,	and
not	just	its	observable	effects,	we	need	to	introduce	a	bit	more	terminology.	A	simple
abstract	queueing	system	is	illustrated	by	Figure	7.16.	In	any	queueing	system,	tasks
arrive,	wait	their	turn,	get	service,	and	leave.	If	tasks	arrive	faster	than	they	can	be
serviced,	the	queue	grows.	The	queue	shrinks	when	the	service	rate	exceeds	the	arrival
rate.

To	begin,	we	will	consider	single-queue,	single-server,	work-conserving	systems.	Later,
we	will	introduce	more	complexity	such	as	multiple	queues,	multiple	servers,	and	finite
queues	that	can	discard	some	requests.

Figure	7.16:	An	abstract	queueing	system.	Tasks	arrive,	wait	their	turn	in	the	queue,	get	service,	and	leave.

Server.	A	server	is	anything	that	performs	tasks.	A	web	server	is	obviously	a	server,
performing	web	requests,	but	so	is	the	processor	on	a	client	machine,	since	it
executes	application	tasks.	The	cashier	at	a	supermarket	and	a	waiter	in	a	restaurant
are	also	servers.

Queueing	delay	(W)	and	number	of	tasks	queued	(Q).	The	queueing	delay,	or	wait
time,	is	the	total	time	a	task	must	wait	to	be	scheduled.	In	a	time	slicing	system,	a
task	might	need	to	wait	multiple	times	for	the	same	server	to	complete	its	task;	in	this
case	the	queueing	delay	includes	all	of	the	time	a	task	spends	waiting	until	it	is
completed.

Service	time	(S).	The	service	time	S,	or	execution	time,	is	the	time	to	complete	a	task
assuming	no	waiting.

Response	time	(R).	The	response	time	is	the	queueing	delay	(how	long	you	wait	in
line)	plus	the	service	time	(how	long	it	takes	once	you	get	to	the	front	of	the	line).

R = W	+	S

In	the	web	server	example	we	started	with,	the	poor	performance	can	be	due	to	either
factor	—	the	system	could	be	too	slow	even	when	no	one	is	waiting,	or	the	system
could	be	too	slow	because	each	request	spends	most	of	its	time	waiting	for	service.

We	can	improve	the	response	time	by	improving	either	factor.	We	can	reduce	the
queueing	delay	by	buying	more	servers	(for	example,	by	having	more	processors	than
ready	threads	or	more	cashiers	than	customers),	and	we	can	reduce	service	time	by
buying	a	faster	server	or	by	engineering	a	faster	implementation.

Arrival	rate	(λ)	and	arrival	process.	The	arrival	rate	λ	is	the	average	rate	at	which
new	tasks	arrive.

More	generally,	the	arrival	process	describes	when	tasks	arrive	including	both	the
average	arrival	rate	and	the	pattern	of	those	arrivals	such	as	whether	arrivals	are
bursty	or	spread	evenly	over	time.	As	we	will	see,	burstiness	can	have	a	large	impact

on	queueing	behavior.

Service	rate	(μ).	The	service	rate	μ	is	the	number	of	tasks	the	server	can	complete
per	unit	of	time	when	there	is	work	to	do.	Notice	that	the	service	rate	μ	is	the	inverse
of	the	service	time	S.

Utilization	(U).	The	utilization	is	the	fraction	of	time	the	server	is	busy	(0	≤	U	≤	1).
In	a	work-conserving	system,	utilization	is	determined	by	the	ratio	of	the	average
arrival	rate	to	the	service	rate:

U = λ	/	μ if	λ	<	μ

= 1 if	λ	≥	μ)

Notice	that	if	λ	>	μ,	tasks	arrive	more	quickly	than	they	can	be	serviced.	Such	an
overload	condition	is	unstable;	in	a	work-conserving	system,	the	queue	length	and
queueing	delay	grow	without	bound.

Throughput	(X).	Throughput	is	the	number	of	tasks	processed	by	the	system	per
unit	of	time.	When	the	system	is	busy,	the	server	processes	tasks	at	the	rate	of	μ,	so
we	have:

X = U	μ

Combining	this	equation	with	the	previous	one,	we	can	see	that	when	the	average
arrival	rate	λ	is	less	than	the	service	rate	μ,	the	system	throughput	matches	the	arrival
rate.	We	can	also	see	that	the	throughput	can	never	exceed	μ	no	matter	how	quickly
tasks	arrive.

X = λ if	U	<	1

= μ if	U	=	1

Number	of	tasks	in	the	system	(N).	The	average	number	of	tasks	in	the	system	is
just	the	number	queued	plus	the	number	receiving	service:

N = Q	+	U

7.5.2	Little’s	Law

Little’s	Law	is	a	theorem	proved	by	John	Little	in	1961	that	applies	to	any	stable	system
where	the	arrival	rate	matches	the	departure	rate.	It	defines	a	very	general	relationship
between	the	average	throughput,	response	time,	and	the	number	of	tasks	in	the	system:

N = X	R

Although	this	relationship	is	simple	and	intuitive,	it	is	powerful	because	the	“system”	can
be	anything	with	arriving	and	departing	tasks,	provided	the	system	is	stable	—	regardless
of	the	arrival	process,	number	of	servers,	or	queueing	order.

EXAMPLE:	Suppose	we	have	a	queueing	system	like	the	one	shown	in	Figure	7.16	and
we	observe	over	the	course	of	an	hour	that	an	average	of	100	requests	arrive	and	depart
each	second	and	that	the	average	request	is	completed	50	ms	after	it	arrives.	On	average,
how	many	requests	are	being	handled	by	the	system?

ANSWER:	Since	the	arrival	rate	matches	the	departure	rate,	the	system	is	stable	and	we
can	use	Little’s	Law.	We	have	a	throughput	X	=	100	requests/second	and	a	response	time
R	=	50	ms	=	0.05	seconds:

N = X	R

= 100	requests/second	×	0.05
seconds

= 5	requests

In	this	system	there	are,	on	average,	5	requests	waiting	in	the	queue	or	being	served.	□

We	can	also	zoom	in	to	see	what	is	happening	at	the	server,	ignoring	the	queue.	The	server
itself	is	a	system,	and	Little’s	Law	applies	there,	too.

EXAMPLE:	Suppose	we	have	a	server	that	processes	one	request	at	a	time	and	we
observe	that	an	average	of	100	requests	arrive	and	depart	each	second	and	that	the	average
request	completes	5	ms	after	it	arrives.	What	is	the	average	utilization	of	the	server?

ANSWER:	The	utilization	of	the	server	is	the	fraction	of	time	the	server	is	busy
processing	a	request.	Because	the	server	handles	one	request	at	a	time,	its	utilization
equals	the	average	number	of	requests	in	the	server-only	system.	Using	Little’s	Law:

U = N = X	R

= 100	requests/second	×	0.005	seconds

= 0.5	requests

The	average	utilization	is	0.5	or	50%.	□

We	can	also	look	at	the	subsystem	comprising	just	the	queue.

EXAMPLE:	For	the	system	described	in	the	previous	two	examples,	how	long	does	an
average	request	spend	in	the	queue,	and	on	average	how	many	requests	are	in	the	queue?

ANSWER:	We	know	that	an	average	task	takes	50	ms	to	get	through	the	queue	and	server
and	that	it	spends	5	ms	at	the	server,	so	it	must	spend	45	ms	in	the	queue.	Similarly,	we
know	that	on	average	the	system	holds	5	tasks	with	0.5	of	them	in	the	server,	so	the
average	queue	length	is	4.5	tasks.

We	can	get	the	same	result	with	Little’s	Law.	One	hundred	tasks	pass	through	the	queue
per	second	and	spend	an	average	of	45	ms	in	the	queue,	so	the	average	number	of	tasks	in
the	queue	is:

N = X	R

= 100	requests/second	×	0.045	seconds

= 4.5	requests

□

Although	Little’s	Law	is	useful,	remember	that	it	only	provides	information	about	the
system’s	averages	over	time.

EXAMPLE:	One	thing	might	puzzle	you.	In	the	previous	example,	if	the	average	number
of	tasks	in	the	queue	is	4.5	and	processing	a	request	takes	5	ms,	how	can	the	average
queueing	delay	for	a	request	be	45	ms	rather	than	4.5	×	5	ms	=	22.5	ms?

ANSWER:	The	average	number	of	requests	in	the	queue	is	4.5.	Sometimes	there	are
more;	sometimes	there	are	fewer.	Queues	will	grow	during	bursts	of	arrivals,	and	they	will

shrink	when	tasks	are	arriving	slowly.

In	fact,	from	the	0.5	server	utilization	rate	calculated	above,	we	know	that	the	queue	is
empty	half	the	time.	To	make	up	for	the	empty	periods,	there	must	be	periods	with	longer-
than-average	queue	lengths.

Unfortunately,	the	queues	tend	to	be	full	during	busy	periods	and	they	tend	to	be	empty
during	idle	periods,	so	relatively	few	requests	enjoy	short	or	empty	queues	and	relatively
many	suffer	long	queues.	So,	the	average	request	sees	a	longer	queue	than	the	average
queue	length	over	time	might	suggest,	and	the	(per-request)	average	queueing	delay
exceeds	the	(time)	average	queue	length	times	the	(per-request)	average	service	time.	□

Not	only	can	we	apply	Little’s	Law	to	a	simple	queueing	system	or	its	subcomponents,	we
can	apply	it	to	more	complex	systems,	even	those	whose	internal	structure	we	do	not	fully
understand.

EXAMPLE:	Suppose	there	is	a	complex	web	service	like	Google,	Facebook,	or	Amazon,
and	we	know	that	the	average	request	takes	100	milliseconds	and	that	the	service	handles
an	average	of	10,000	queries	per	second.	How	many	requests	are	pending	in	the	system	on
average?

ANSWER:	Applying	Little’s	Law:

N = X	R

= 10000	requests/second	×	0.1	seconds

= 1000	requests

Note	that	this	is	true	regardless	of	the	internal	structure	of	the	web	service.	It	may	have
many	load	balancers,	processors,	network	switches,	and	databases,	each	with	separate
queues,	and	each	with	different	queueing	policies,	but	in	aggregate	in	steady	state	the
number	of	requests	being	handled	must	be	equal	to	the	product	of	the	response	time	and
the	throughput.	□

7.5.3	Response	Time	Versus	Utilization

Because	having	more	servers	(whether	processors	on	chip	or	cashiers	in	a	supermarket)	or
faster	servers	is	costly,	you	might	think	that	the	goal	of	the	system	designer	is	to	maximize
utilization.	However,	in	most	cases,	there	is	no	free	lunch:	as	we	will	see,	higher
utilization	normally	implies	higher	queueing	delay	and	higher	response	times.

Operating	a	system	at	high	utilization	also	increases	the	risk	of	overload.	Suppose	you
plan	to	minimize	costs	by	operating	a	web	site	at	95%	utilization,	but	your	service	turns
out	to	be	a	little	more	popular	than	you	expected.	You	can	quickly	find	yourself	operating

in	the	unstable	regime	where	requests	are	arriving	faster	than	you	can	service	them	(λ	>	μ)
and	where	your	queues	and	waiting	times	are	growing	without	bound.

As	a	designer,	you	need	to	find	an	appropriate	tradeoff	between	higher	utilization	and
better	response	time.	Fifty	years	ago,	computer	designers	made	the	tradeoff	in	favor	of
higher	utilization:	when	computers	are	wildly	expensive,	it	is	annoying	but	understandable
to	make	people	wait	for	the	computer.	Now	that	computers	are	much	cheaper,	our	lives	are
better!	We	now	usually	make	the	computer	do	the	waiting.

We	can	predict	a	queueing	system’s	average	response	time	from	its	arrival	process	and
service	time,	but	the	relationship	is	more	complex	than	the	relationships	discussed	so	far.

To	provide	intuition,	we	start	with	some	extreme	scenarios	that	bound	the	behavior	of	a
queueing	system;	we	will	introduce	more	realistic	scenarios	as	we	proceed.

Broadly	speaking,	higher	arrival	rates	and	burstier	arrival	patterns	tend	to	yield	longer
queue	lengths	and	response	times	than	lower	arrival	rates	and	smoother	arrival	patterns.

Best	case:	Evenly	spaced	arrivals.	Suppose	we	have	a	set	of	fixed-sized	tasks	that	arrive
equally	spaced	from	one	another.	For	As	long	as	the	rate	at	which	tasks	arrive	is	less	than
the	rate	at	which	the	server	completes	the	tasks,	there	will	be	no	queueing	at	all.
Perfection!	Each	server	finishes	the	previous	customer	in	time	for	the	next	arrival.

Figure	7.17:	Best	case	response	time	and	throughput	as	a	function	of	the	task	arrival	rate	relative	to	the	service	rate.
These	graphs	assume	arrivals	are	evenly	spaced	and	service	times	are	fixed-size.

Figure	7.17	illustrates	the	relationship	between	arrival	rate	and	response	time	for	this	best
case	scenario	of	evenly	spaced	arrivals.	There	are	three	regimes:

λ	<	μ.	If	the	arrival	rate	is	below	the	service	rate,	there	is	no	queueing	and	the
response	time	equals	the	service	time.

For	example,	suppose	we	have	a	server	that	can	handle	1000	requests	per	second,	and	one

request	arrives	every	1000,	100,	or	10	milliseconds.	The	server	finishes	processing	request
i-	1	before	request	i	arrives,	and	request	i	completes	1	ms	after	it	arrives,	clearing	the	way
for	request	i	+	1.

The	situation	remains	the	same	if	arrivals	are	more	closely	spaced	at	1.1,	1.01,	1.001,	and
so	on	down	to	1.0	ms,	where	each	request	arrives	at	the	moment	the	previous	request
completes.

λ	=	μ.	If	the	arrival	rate	matches	the	service	rate,	the	system	is	in	a	precarious
equilibrium.	If	the	queues	are	initially	empty,	they	will	stay	empty,	but	if	the	queues
are	initially	full,	they	will	remain	full.

Suppose	arrivals	are	coming	every	1.0	ms,	and	at	some	point	during	the	day	a	single	extra
request	arrives;	that	request	must	wait	until	the	previous	one	completes,	but	the	server	will
then	be	busy	when	the	next	request	arrives.	That	single	extra	request	produces	queueing
delay	for	every	subsequent	request.

λ	>	μ.	If	the	arrival	rate	exceeds	the	service	rate,	queues	will	grow	without	bound.	In
this	case,	the	system	is	not	in	equilibrium,	and	the	steady	state	response	time	is
undefined.

Suppose	the	task	arrival	rate	is	one	per	0.999	ms	so	that	tasks	arrive	slightly	faster	than
they	can	be	processed?	If	a	system’s	arrival	rate	exceeds	its	service	rate,	then	under	our
simple	model	its	queues	will	grow	without	bound,	and	its	queueing	delay	is	undefined.	In
practice,	memory	is	finite;	once	the	queue’s	capacity	is	reached,	the	system	must	discard
some	of	the	arriving	requests.

Figure	7.17	also	shows	the	relationship	between	arrival	rate	and	throughput.	When	the
arrival	rate	is	less	than	the	service	rate,	increasing	the	arrival	rate	increases	throughput.
Once	the	arrival	rate	matches	or	exceeds	the	service	rate,	faster	arrivals	just	grow	the
queues	more	quickly,	they	do	not	increase	useful	throughput.

Figure	7.18:	Response	time	for	a	server	that	can	handle	10	requests	per	second	as	we	vary	arrival	rate	of	fixed-size
tasks	in	two	scenarios:	evenly	spaced	arrivals	and	bursty	arrivals	where	all	of	a	second’s	requests	arrive	in	a	group	at
the	start	of	the	second.

Worst	case:	Bursty	arrivals.	Now	consider	the	opposite	case.	Suppose	a	group	of	tasks
arrive	at	exactly	the	same	time.	The	average	wait	time	increases	linearly	as	more	tasks
arrive	together	—	one	task	in	a	group	can	be	serviced	right	away,	but	others	must	wait.

Figure	7.18	considers	a	hypothetical	server	with	a	maximum	throughput	of	10	tasks	per
second	as	we	vary	the	number	of	tasks	that	arrive	per	second.	The	graph	shows	two	cases:
one	where	requests	are	evenly	spaced	as	in	Figure	7.17	and	the	other	where	requests	arrive
in	a	burst	at	the	start	of	each	second.

Even	when	the	request	rate	is	below	the	server’s	service	rate,	bursty	arrivals	suffer
queueing	delays.	For	example,	when	five	requests	arrive	as	a	group	at	the	start	of	each
second,	the	first	request	is	served	immediately	and	finishes	0.1	seconds	later.	The	server
can	then	start	processing	the	second	request,	finishing	it	0.2	seconds	after	the	start	of	the
interval.	The	third,	fourth,	and	fifth	requests	finish	at	0.3,	0.4,	and	0.5	seconds	after	the
start	of	the	second,	giving	an	average	response	time	of	(0.1	+	0.2	+	0.3	+	0.4	+	0.5)/5	=	0.3
seconds.	By	the	same	logic,	if	ten	requests	arrive	as	a	group,	the	average	response	time	is
(0.1	+	0.2	+	0.3	+	0.4	+	0.5	+	0.6	+	0.7	+	0.8	+	0.9	+	1.0)/10	=	0.55	seconds.	If	the	same
requests	had	arrived	evenly	spaced,	their	average	response	time	would	have	been	over	five
times	better!

Exponential	arrivals.	Most	systems	are	somewhere	in	between	this	best	case	and	worst
case.	Rather	than	being	perfectly	synchronized	or	perfectly	desynchronized,	task	arrivals
in	many	systems	are	random.	For	example,	different	customers	in	a	supermarket	do	not
coordinate	with	each	other	as	to	when	they	arrive.

Likewise,	service	times	are	not	perfectly	equal	—	there	is	randomness	there	as	well.	At	a
doctor’s	office,	everyone	has	an	appointment,	so	it	may	seem	like	that	should	be	the	best
case	scenario,	and	no	one	should	ever	have	to	wait.	Even	so,	there	is	often	queueing!
Why?	If	the	amount	of	time	the	doctor	takes	with	each	patient	is	sometimes	shorter	and
sometimes	longer	than	the	appointment	length,	then	random	chance	will	cause	queueing.

A	particularly	useful	model	for	understanding	queueing	behavior	is	to	use	an	exponential
distribution	to	describe	the	time	between	tasks	arriving	and	the	time	it	takes	to	service
each	task.	Once	you	get	past	a	bit	of	math,	the	exponential	provides	a	stunningly	simple
approximate	description	of	most	real-life	queueing	systems.	We	do	not	claim	that	all	real
systems	always	obey	the	exponential	model	in	detail;	in	fact,	most	do	not.	However,	the
model	is	often	accurate	enough	to	provide	insight	on	system	behaviors,	and	as	we	will
discuss,	it	is	easy	to	understand	the	circumstances	under	which	it	is	inaccurate.

Model	vs.	reality

When	trying	to	understand	a	complex	system,	it	is	often	useful	to	construct	a	model	of	its
behavior.	A	model	is	a	simplification	that	tries	to	capture	the	most	important	aspects	of	a
more	complex	system’s	behavior.	Models	are	neither	true	nor	false,	but	they	can	be	useful
or	not	for	a	particular	purpose.	It	is	often	the	case	that	a	more	complex	model	will	yield	a

closer	approximation;	whether	the	added	complexity	is	useful	or	gets	in	the	way	depends
on	how	the	model	is	being	used.
We	often	find	it	useful	to	use	simple	workload	models	when	debugging	early	system
implementations.	Using	the	types	of	analysis	described	in	this	chapter	and	an
understanding	of	the	system	being	built,	it	is	usually	possible	to	predict	how	the	system
should	behave	under	simple	workloads.	If	measured	behavior	deviates	from	these
predictions,	there	is	a	bug	in	our	understanding	or	implementation	of	the	system.	Simple
workloads	can	help	us	improve	our	understanding	if	it	is	the	former	and	track	down	the
bug	if	it	is	the	latter.

We	could,	instead,	evaluate	early	implementations	by	feeding	them	more	realistic
workloads.	For	example,	if	we	are	building	a	new	web	server,	we	could	feed	it	a
workload	trace	captured	at	some	other	server.	However,	this	approach	is	often	more
complex.	For	example,	to	test	our	system	under	a	range	of	conditions,	we	need	to	gather	a
range	of	traces	—	some	with	low	load,	some	with	high;	some	with	bursty	loads,	some
with	smooth;	etc.

Worst,	even	though	this	approach	is	more	complex,	it	may	yield	less	insight	because	it	is
harder	to	predict	the	expected	system	behavior.	If	we	run	a	simulation	with	a	trace	and	get
worse	performance	than	we	expected,	is	it	because	we	do	not	understand	our	system	or
because	we	do	not	understand	the	trace?

This	is	not	to	suggest	that	simple	models	are	always	superior	to	more	complex,	more
realistic	ones.	Once	we	are	satisfied	with	our	new	system’s	behavior	for	workloads	we
understand,	we	should	test	it	for	workloads	we	do	not	understand	or	control.	There	may
be	(and	probably	are)	important	behaviors	not	captured	in	our	simple	models.	We	might
find,	for	example,	that	bursts	of	interest	in	particular	topics	create	“hot	spots”	of	load	that
we	did	not	anticipate.	Evaluation	under	more	realistic	models	might	make	us	realize	that
we	need	to	implement	more	aggressive	caching	of	recently	popular	pages.

Selecting	the	right	model	for	system	evaluation	is	a	delicate	balance	between	complexity
and	accuracy.	If	after	abstracting	away	detail,	we	can	still	provide	approximately	correct
predictions	of	system	behavior	under	a	variety	of	scenarios,	then	it	is	likely	the	model
captures	the	most	important	aspects	of	the	system.	If	the	model	is	inaccurate	in	some
important	respect,	then	it	means	our	explanation	for	how	the	system	behaves	is	too
coarse,	and	to	improve	the	prediction	we	need	to	revise	the	model.

Figure	7.19:	Exponential	probability	distribution.

First,	the	math.	An	exponential	distribution	of	a	continuous	random	variable	with	a	mean
of	1	/	λ	has	the	probability	density	function,	shown	in	Figure	7.19:

f(x) = λe-λx

Fortunately,	you	need	not	understand	that	equation	in	any	detail,	except	for	the	following.
A	useful	property	of	an	exponential	distribution	is	that	it	is	memoryless.	A	memoryless
distribution	for	the	time	between	two	events	means	that	the	likelihood	of	an	event
occurring	remains	the	same,	no	matter	how	long	we	have	already	waited	for	the	event,	or
what	other	events	may	have	already	happened.	For	example,	on	a	web	server,	web
requests	from	different	users	(usually)	arrive	independently.	Sometimes,	two	requests	will
arrive	close	together	in	time;	sometimes	there	will	be	more	of	a	delay.	For	example,
suppose	a	web	server	receives	a	request	from	a	new	user	on	average	every	10	ms.	If	you
want	to	predict	how	long	until	the	next	request	arrives,	it	probably	does	not	matter	when
the	last	request	arrived:	0,	1,	5,	or	50	ms	ago.	The	expected	time	to	the	next	request	is	still
probably	about	10	ms.

Not	every	distribution	is	memoryless.	A	Gaussian,	or	normal,	distribution	for	the	time
between	events	is	closer	to	the	best	case	scenario	described	above	—	arrivals	occur
randomly,	but	they	tend	to	occur	at	regular	intervals,	give	or	take	a	bit.

Some	probability	distributions	work	the	other	way.	With	a	heavy-tailed	distribution,	the

longer	you	have	waited	for	some	event,	the	longer	you	are	likely	to	still	need	to	wait.	This
is	closer	to	the	worst	case	behavior	above,	as	it	means	that	most	events	are	clustered
together.

For	example,	a	ticket	seller’s	web	site	might	see	bursty	workloads.	For	long	periods	of
time	the	site	might	see	little	traffic,	but	when	tickets	for	a	popular	concert	of	sporting
event	go	on	sale,	the	traffic	may	be	overwhelming.	Here,	external	factors	introduce
synchronization	across	different	users’	activities	so	that	requests	from	different	users	do
not	arrive	independently.	Such	a	workload	is	unlikely	to	be	memoryless;	if	you	look	at	a
ticket	seller’s	web	site	at	a	random	moment	and	see	that	it	has	been	a	long	time	since	the
last	request	arrived,	you	probably	arrived	during	a	lull,	and	you	can	predict	that	it	will
likely	be	a	long	time	until	the	next	request	arrives.	On	the	other	hand,	if	the	last	request
just	arrived,	you	probably	arrived	during	a	burst,	and	the	next	request	will	arrive	soon.

With	a	memoryless	distribution,	the	behavior	of	queueing	systems	becomes	simple	to
understand.	One	can	think	of	the	queue	as	a	finite	state	machine:	with	some	probability,	a
new	task	arrives,	increasing	the	queue	by	one.	If	the	queue	length	is	non-zero,	with	some
other	probability,	a	task	completes,	decreasing	the	queue	by	one.	With	a	memoryless
distribution	of	arrivals	and	departures,	the	probability	of	each	transition	is	constant	and
independent	of	the	other	transitions,	as	illustrated	in	Figure	7.20.

Figure	7.20:	State	machine	representing	a	queue	with	exponentially	distributed	arrivals	and	departures.	λ	is	the	rate	of
arrivals;	μ	is	the	rate	at	which	the	server	completes	each	task.	With	an	exponential	distribution,	the	probability	of	a	state
transition	is	independent	of	how	long	the	system	has	been	in	any	given	state.

Assuming	that	λ	<	μ,	the	system	is	stable	Assuming	stability	and	exponential	distributions
for	the	arrival	and	departure	processes,	we	can	solve	the	model	to	determine	the	average
response	time	R	as	a	function	of	the	utilization	U	and	service	time	S:

R = S	/	(1	-	U)

Recall	that	the	utilization,	the	fraction	of	time	that	the	server	is	busy,	is	simply	the	ratio
between	λ	and	μ.

Figure	7.21:	Relationship	between	response	time	and	utilization,	assuming	exponentially	distributed	arrivals	and
departures.	Average	response	time	goes	to	infinity	as	the	system	approaches	full	utilization.

This	equation	is	graphed	in	Figure	7.21.	When	utilization	is	low,	there	is	little	queueing
delay	and	response	time	is	close	to	the	service	time.	Furthermore,	when	utilization	is	low,
small	increases	in	the	arrival	rate	result	in	small	increases	in	queueing	delay	and	response
time.

As	utilization	increases,	queueing	and	response	time	also	increase,	and	the	relationship	is
non-linear.	At	high	utilizations,	the	queueing	delay	is	high,	and	small	increases	in	the
arrival	rate	can	drastically	increase	queueing	delay	and	response	time.

EXAMPLE:	Suppose	a	queueing	system	with	exponentially	distributed	arrivals	and	task
sizes	is	20%	utilized	and	the	load	increases	by	5%,	by	how	much	does	the	response	time
increase?	How	does	that	increase	compare	to	the	case	when	utilization	goes	from	90%	to
95%?

ANSWER:	At	20%	utilization,	the	response	time	is:

R = S	/	(1	-	U)

= S	/	(1	-	0.2)

= 1.25	S

At	25%	utilization,	the	response	time	is:

R = S	/	(1	-	U)

= S	/	(1	-	0.25)

= 1.33	S

The	5%	increase	in	load	increases	response	time	by	about	8%.

Using	the	same	equation,	at	90%	utilization	we	have	R	=	10S	and	at	95%	we	have	R	=
20S,	the	5%	increase	in	load	increases	response	time	by	a	factor	of	two.	□

The	response	time	of	a	system	becomes	unbounded	as	the	system	approaches	full
utilization.	Although	it	might	seem	that	full	utilization	is	an	achievable	goal,	if	there	is	any
randomness	in	arrivals	or	any	randomness	in	service	times,	full	utilization	cannot	be
achieved	in	steady	state	without	making	some	tasks	wait	unbounded	amounts	of	time.

In	most	systems,	well	before	a	system	reaches	full	utilization,	average	response	time	will
become	unbearably	long.	In	the	next	section,	we	discuss	some	of	the	steps	system
designers	can	take	in	response	to	overload.

Variance	in	the	response	time	increases	even	faster	as	the	system	approaches	full
utilization,	proportional	to	1	/	(1	-	U)2.	Even	with	99%	utilization,	1%	of	the	time	there	is
no	queue	at	all;	random	chance	means	that	while	sometimes	a	large	number	of	customers
arrive	at	nearly	the	same	time,	at	other	times	the	server	will	be	able	to	work	through	all	of
the	backlog.	If	you	are	lucky	enough	to	arrive	at	just	that	moment,	you	can	receive	service
without	waiting.	If	you	are	unlucky	enough	to	arrive	immediately	after	a	burst	of	other
customers,	your	wait	will	be	quite	long.

Exponential	arrivals	are	burstier	than	the	evenly	spaced	ones	we	considered	in	Figure	7.17
and	less	bursty	than	the	ones	we	considered	in	Figure	7.18.	The	response	time	line	for	the
exponential	arrivals	is	higher	than	the	one	for	evenly	spaced	arrivals,	which	was	flat
across	the	entire	stable	range	form	U	=	0	to	U	=	1,	and	the	line	is	lower	than	the	one	for
more	bursty	arrivals,	which	rose	rapidly	even	when	utilization	was	low.	In	general	burstier
arrivals	will	produce	worse	response	time	for	a	given	level	of	load.

7.5.4	“What	if?”	Questions

Queueing	theory	is	particularly	useful	for	answering	“what	if?”	questions:	what	happens	if
we	change	some	design	parameter	of	the	system.	In	this	section,	we	consider	a	selection	of
these	questions,	as	a	way	of	providing	you	a	bit	more	intuition.

Scheduling	Policy

What	happens	to	the	response	time	curve	for	other	scheduling	policies?	It	depends	on	the
burstiness	and	predictability	of	the	workload.

If	the	distribution	of	arrivals	or	service	times	is	less	bursty	than	an	exponential	(e.g.,
evenly	spaced	or	Gaussian),	FIFO	will	deliver	nearly	optimal	response	times,	while	Round
Robin	will	perform	worse	than	FIFO.

If	task	service	times	are	exponentially	distributed	but	individual	task	times	are
unpredictable,	the	average	response	time	is	the	exactly	the	same	for	Round	Robin	as	for
FIFO.	With	a	memoryless	distribution,	every	queued	task	has	the	same	expected
remaining	service	time,	so	switching	among	tasks	has	no	impact	other	than	to	increase
overhead.

On	the	other	hand,	if	task	lengths	can	be	predicted	and	there	is	variability	of	service	times,
Shortest	Job	First	can	improve	average	response	time,	particularly	if	arrivals	are	bursty.

Many	real-world	systems	exhibit	more	bursty	arrivals	or	service	times	than	an	exponential
distribution.	A	bursty	distribution	is	sometimes	called	heavy-tailed	because	it	has	more
very	long	tasks;	since	the	mean	rate	is	the	same,	this	also	implies	that	the	distribution	has
even	more	very	short	tasks.	For	example,	web	page	size	is	heavy-tailed;	so	is	the
processing	time	per	web	page.	Process	execution	times	on	desktop	computers	are	also
heavy-tailed.	For	these	types	of	systems,	burstiness	results	in	worse	average	response	time
than	would	be	predicted	by	an	exponential	distribution.	That	said,	for	these	types	of
systems,	there	is	an	even	greater	benefit	to	approximating	SJF	to	avoid	stalling	small
requests	behind	long	ones,	and	Round	Robin	will	outperform	FIFO.

Using	SJF	(or	an	approximation)	to	improve	average	response	time	comes	at	a	cost	of	an
increase	in	response	time	for	long	tasks.	At	low	utilization,	this	increase	is	small,	but	at
high	utilization	SJF	can	result	in	a	massive	increase	in	average	response	time	for	long
tasks.

To	see	this,	note	that	any	server	alternates	between	periods	of	being	idle	(when	the	queue
is	empty)	and	periods	of	being	busy	(when	the	queue	is	non-empty).	If	we	ignore
switching	overhead,	the	scheduling	discipline	has	no	impact	on	these	periods	—	they	are
only	affected	by	when	tasks	arrive.	Scheduling	can	only	affect	which	tasks	the	server
handles	first.

With	SJF,	a	long	task	will	only	complete	immediately	before	an	idle	period;	it	is	always
the	last	thing	in	the	queue	to	complete.	As	utilization	increases,	these	idle	periods	become
increasingly	rare.	For	example,	if	the	server	is	99%	busy,	the	server	will	be	idle	only	1%
of	the	time.	Further,	idle	periods	are	not	evenly	distributed	—	a	server	is	much	more	likely
to	be	idle	if	it	was	idle	a	second	ago.	This	means	that	the	long	jobs	are	likely	to	wait	for	a
long	time	under	SJF	under	high	load.

Workloads	That	Vary	With	the	Queueing	Delay

So	far,	we	have	assumed	that	arrival	rates	and	service	times	are	independent	of	queueing
delay.	This	is	not	always	the	case.

For	example,	suppose	a	system	has	10	users.	Each	repeatedly	issues	one	request,	waits	for
the	result,	thinks	about	the	results,	and	issues	the	next	request.	In	such	a	system,	the	arrival

rate	will	generally	be	lower	during	periods	when	many	tasks	are	queued	than	during
periods	when	few	are.	In	the	limit,	during	periods	when	10	tasks	are	queued,	no	new	tasks
can	arrive	and	the	arrival	rate	is	zero.

Or,	consider	an	online	store	that	becomes	overloaded	and	sluggish	during	a	holiday
shopping	season.	Rather	than	continuing	to	browse,	some	customers	may	get	fed	up	and
leave,	reducing	the	number	of	active	browsing	sessions	and	thereby	reducing	the	arrival
rate	of	requests	for	individual	web	pages.

Another	example	is	a	system	with	a	finite	queue.	If	there	is	a	burst	of	load	that	fills	the
queue,	subsequent	requests	will	be	turned	away	until	there	is	space.	This	heavy-load
behavior	can	be	modeled	as	either	a	reduced	arrival	rate	or	a	reduced	average	service	time
(some	tasks	are	“processed”	by	being	discarded).

Multiple	Servers

Many	real	systems	have	not	just	one	but	multiple	servers.	Does	it	matter	whether	there	is	a
single	queue	for	everyone	or	a	separate	queue	per	server?	Real	systems	take	both
approaches:	supermarkets	tend	to	have	a	separate	queue	per	cashier;	banks	tend	to	have	a
single	shared	queue	for	bank	tellers.	Some	systems	do	both:	airports	often	have	a	single
queue	at	security	but	have	separate	queues	for	the	parking	garage.	Which	is	better	for
response	time?

Clearly,	there	are	often	efficiency	gains	from	having	separate	queues.	Multiprocessor
schedulers	use	separate	queues	for	affinity	scheduling	and	to	reduce	switching	costs;	in	a
supermarket,	it	may	not	be	practical	to	have	a	single	queue.	On	the	other	hand,	users	often
consider	a	single	(FIFO)	queue	to	be	fairer	than	separate	queues.	It	often	seems	that	we
always	end	up	in	the	slowest	line	at	the	supermarket,	even	if	that	cannot	possibly	be	true
for	everyone.

If	we	focus	on	average	response	time,	however,	a	single	queue	is	always	better	than
separate	queues,	provided	that	users	are	not	allowed	to	jump	lanes.	The	reason	is	simple:
because	of	variations	in	how	long	each	task	takes	to	service,	one	server	can	be	idle	while
another	server	has	multiple	queued	tasks.	Likewise,	a	single	fast	server	is	always	better	for
response	time	than	a	large	number	of	slower	servers	of	equal	aggregate	capacity	to	the	fast
server.	There	is	no	difference	when	all	servers	are	busy,	but	the	single	fast	server	will
process	requests	faster	when	there	are	fewer	active	tasks	than	servers.

Secondary	Bottlenecks

If	a	processor	is	90%	busy	serving	web	requests,	and	we	add	another	processor	to	reduce
its	load,	how	much	will	that	improve	average	response	time?	Unfortunately,	there	is	not
enough	information	to	say.	You	might	like	to	believe	that	it	will	reduce	response	time	by	a
considerable	amount,	from	R	=	S	/	(1	-	0.9)	=	10S	to	R	=	S	/	(1	-	0.45)	=	1.8S.

However,	suppose	each	web	request	needs	not	only	processing	time,	but	also	disk	I/O	and
network	bandwidth.	If	the	disk	was	80%	busy	beforehand,	it	will	appear	that	the	processor
utilization	was	the	primary	problem.	Once	you	add	an	extra	processor,	however,	the	disk
becomes	the	new	limiting	factor	to	good	performance.

In	some	cases,	queueing	theory	can	make	a	specific	prediction	as	to	the	impact	of
improving	one	part	of	a	system	in	isolation.	For	example,	if	arrival	times	are	exponentially
distributed	and	independent	of	the	system	response	time,	and	if	the	service	times	at	the
processor,	disk,	and	network	are	also	exponentially	distributed	and	independent	of	one
another,	then	the	overall	response	time	for	the	system	is	just	the	sum	of	the	response	times
of	the	components:

R = ∑	i 		Si	/	(1	-	Ui)

In	this	case,	improving	one	part	of	the	system	will	affect	just	its	contribution	to	the
aggregate	system	response	time.	Even	though	these	conditions	may	not	always	hold,	this
is	often	useful	as	an	approximation	to	what	will	occur	in	real	life.

7.5.5	Lessons

To	summarize,	almost	all	real-world	systems	exhibit	some	randomness	in	their	arrival
process	or	their	service	times,	or	both.	For	these	systems:

Response	time	increases	with	increased	load.

System	performance	is	predictable	across	a	range	of	load	factors	if	we	can	estimate
the	average	service	time	per	request.

Burstiness	increases	average	response	time.	It	is	mathematically	convenient	to
assume	an	exponential	distribution,	but	many	real-world	systems	exhibit	more
burstiness	and	therefore	worse	user	performance.

7.6	Overload	Management

Many	systems	operate	without	any	direct	control	over	their	workload.	In	the	previous
section,	we	explained	that	good	response	time	and	low	variance	in	the	response	time	are
both	predicated	on	operating	well	below	peak	utilization.	If	your	web	service	generates
interest	on	Slashdot,	however,	you	can	suddenly	receive	a	ton	of	traffic	from	new	users.
Success!	Except	that	the	new	users	discover	your	service	has	horrible	performance.
Disaster!

More	sophisticated	scheduling	can	help	at	low	to	moderate	load,	but	if	the	load	is	more
than	system	can	handle,	response	time	will	spike,	even	for	short	tasks.

The	key	idea	in	overload	management	is	to	design	your	system	to	do	less	work	when
overloaded.	This	will	seem	strange!	After	all,	you	want	your	system	to	work	a	particular
way;	how	can	you	cripple	the	user’s	experience	just	when	your	system	becomes	popular?
Under	overload	conditions,	however,	your	system	is	incapable	of	serving	all	of	the
requests	in	the	normal	way.	The	only	question	is:	do	you	choose	what	to	disable,	or	do	you

let	events	choose	for	you?

An	obvious	step	is	to	simply	reject	some	requests	in	order	to	preserve	reasonable	response
time	for	the	remaining	ones.	While	this	can	seem	harsh,	it	is	also	pragmatic.	Under
overload,	the	only	way	to	give	anyone	good	service	is	to	reduce	or	eliminate	service	for
others.

The	approach	of	turning	away	requests	under	overload	conditions	is	common	in	streaming
video	applications.	An	overloaded	movie	service	will	reject	requests	to	start	new	streams
so	that	it	can	continue	to	provide	good	streaming	service	to	users	that	have	already	started.
Likewise,	during	the	NCAA	basketball	tournament	or	during	the	Olympics,	the
broadcaster	will	turn	requests	away,	rather	than	giving	everyone	poor	service.

An	apt	analogy,	perhaps,	is	that	of	a	popular	restaurant.	Why	not	set	out	acres	of	tables	so
that	everyone	who	shows	up	at	the	restaurant	can	be	seated?	If	the	waiters	Round	Robin
among	the	various	tables,	you	can	be	seated,	but	wait	an	hour	to	get	a	menu,	then	wait
another	hour	to	make	an	order,	and	so	forth.	That	is	one	way	of	dealing	with	a	persistent
overload	situation	—	by	making	the	user	experience	so	unpleasant	that	none	of	your
customers	will	return!	As	absurd	as	this	scenario	is,	however,	it	is	close	to	how	we	allocate
scarce	space	on	congested	highways	—	by	making	everyone	wait.

A	less	obvious	step	is	to	somehow	reduce	the	service	time	per	request	under	overload
conditions.	A	good	example	of	this	happened	on	September	11,	2001	when	CNN’s	web
page	was	overwhelmed	with	people	trying	to	get	updates	about	the	terrorist	attacks.	To
make	the	site	usable,	CNN	shifted	to	a	static	page	that	was	less	personalized	and
sophisticated	but	that	was	faster	to	serve.	As	another	example,	when	experiencing
unexpected	load,	EBay	will	update	its	auction	listings	less	frequently,	saving	work	that	can
be	used	for	processing	other	requests.	Finally,	an	overloaded	movie	service	can	reduce	the
bit	rate	for	everyone	in	order	to	serve	more	simultaneous	requests	at	slightly	lower	quality.

Amazon	has	designed	its	web	site	to	always	return	a	result	quickly,	even	when	the
requested	data	is	unavailable	due	to	overload	conditions.	Every	backend	service	has	both	a
normal	interface	and	a	fallback	to	use	if	its	results	are	not	ready	in	time.	For	example,	this
means	a	user	can	be	told	that	their	purchase	will	be	shipped	shortly,	even	when	the	book	is
actually	out	of	stock.	This	is	a	strategic	decision	that	it	is	better	to	give	a	wrong	answer
quickly,	and	apologize	later,	rather	than	to	wait	to	give	the	right	answer	more	slowly.

Unfortunately,	many	systems	have	the	opposite	problem:	they	do	more	work	per	request
as	load	increases.	A	simple	example	of	this	would	be	using	a	linked	list	to	manage	a	queue
of	requests:	as	more	requests	are	queued,	more	processing	time	is	used	maintaining	the
queue	and	not	getting	useful	work	done.	If	amount	of	work	per	task	increases	as	the	load
increases,	then	response	times	will	soar	even	faster	with	increased	utilization,	and
throughput	can	decrease	as	we	add	load.	This	makes	overload	management	even	more
important.

Figure	7.22:	Measured	throughput	(cars	per	hour)	versus	occupancy	(percentage	of	the	road	covered	with	vehicles).
Each	data	point	represents	a	separate	observation.	At	low	load,	throughput	increases	linearly;	once	load	passes	a	critical
point,	adding	vehicles	decreases	average	throughput.	As	each	vehicle	moves	more	slowly,	it	takes	more	time	on	the
highway	to	complete	its	journey,	increasing	load.	Data	reprinted	from	Nagel	and	Schreckenberg	[122].

A	real-life	example	of	this	phenomenon	is	with	highway	traffic.	Figure	7.22	provides
measured	data	of	throughput	versus	load	for	one	stretch	of	highway.	As	you	add	cars	to	an
empty	highway,	it	increases	the	rate	that	cars	traverse	a	given	point	on	the	highway.
However,	at	very	high	loads,	the	density	of	cars	causes	a	transition	to	stop	and	go	traffic,
where	the	rate	of	progress	is	much	slower	than	when	there	were	fewer	cars.	A	common
solution	for	highways	is	to	use	onramp	limiters	—	to	limit	the	rate	that	new	cars	can	enter
the	highway	if	the	system	is	close	to	overload.

Time-slicing	in	the	presence	of	caches	has	similar	behavior.	When	load	is	low,	there	are
few	time	slices,	and	every	task	uses	its	cache	efficiently.	As	more	tasks	are	added	to	the
system,	there	are	more	time	slices	and	fewer	cache	hits,	slowing	down	the	processor	just
when	we	need	it	to	be	running	at	peak	efficiency.	In	networks,	packets	are	dropped	when
the	network	is	overloaded.	Without	careful	protocol	design,	this	can	cause	the	sender	to
retransmit	packets,	further	overloading	the	network.	TCP	congestion	control,	now	a
common	part	of	almost	every	Internet	connection,	was	developed	precisely	to	deal	with
this	effect.

You	may	have	even	experienced	this	issue.	Some	students,	as	homework	piles	up,	become

less,	rather	than	more,	efficient.	After	all,	it	is	hard	to	concentrate	on	one	project	if	you
know	that	you	really	ought	to	be	also	working	on	a	different	one.	But	if	you	decide	to	take
the	lessons	of	this	textbook	to	heart	and	decide	to	blow	off	some	of	your	homework	to	get
the	rest	of	your	assignments	done,	let	us	suggest	that	you	choose	some	class	other	than
operating	systems!

7.7	Case	Study:	Servers	in	a	Data	Center

We	can	illustrate	the	application	of	the	ideas	discussed	in	this	chapter,	by	considering	how
we	should	manage	a	collection	of	servers	in	a	data	center	to	provide	responsive	web
service.	Many	web	services,	such	as	Google,	Facebook,	and	Amazon,	are	organized	as	a
set	of	front-end	machines	that	redirect	incoming	requests	to	a	larger	set	of	back-end
machines.	We	illustrate	this	in	Figure	7.23.	This	architecture	isolates	clients	from	the
architecture	of	the	back-end	systems,	so	that	more	capacity	can	be	added	to	the	back-end
simply	by	changing	the	configuration	of	the	front-end	systems.	Back-end	servers	can	also
be	taken	off-line,	have	their	software	upgraded,	and	so	forth,	completely	transparently	to
clients.

To	provide	good	response	time	to	the	clients	of	the	web	service:

When	clients	first	connect	to	the	service,	the	front-end	node	assigns	each	customer	to
a	back-end	server	to	balance	load.	Customers	can	be	spread	evenly	across	the	back-
end	servers	or	they	can	be	assigned	to	a	node	with	low	current	load,	much	as
customers	at	a	supermarket	select	the	shortest	line	for	a	cashier.

Additional	requests	from	the	same	client	can	be	assigned	to	the	same	back-end
server,	as	a	form	of	affinity	scheduling.	Once	a	server	has	fetched	client	data,	it	will
be	faster	for	it	to	handle	additional	requests.

We	need	to	prevent	individual	users	from	hogging	resources,	because	that	can	disrupt
performance	for	other	users.	A	back-end	server	can	favor	short	tasks	over	long	ones;
they	can	also	keep	track	of	the	total	resources	used	by	each	client,	reducing	the
scheduling	priority	of	any	client	consuming	more	than	their	fair	share	of	resources.

It	is	often	crucial	to	the	usability	of	a	web	service	to	keep	response	time	small.	This
requires	monitoring	both	the	rate	of	arrivals	and	the	average	amount	of	computing,
disk,	and	network	resources	consumed	by	each	request.	Back-end	servers	should	be
added	before	average	server	utilization	gets	too	high.

Since	it	often	takes	considerable	time	to	bring	new	servers	online,	we	need	to	predict
future	load	and	have	a	backup	plan	for	overload	conditions.

7.8	Summary	and	Future	Directions

Resource	scheduling	is	an	ancient	topic	in	computer	science.	Almost	from	the	moment
that	computers	were	first	multiprogrammed,	operating	system	designers	have	had	to
decide	which	tasks	to	do	first	and	which	to	leave	for	later.	This	decision	—	the	system’s
scheduling	policy	—	can	have	a	significant	impact	on	system	responsiveness	and	usability.

Fortunately,	the	cumulative	effect	of	Moore’s	Law	has	shifted	the	balance	towards	a	focus
on	improving	response	time	for	users,	rather	than	on	efficient	utilization	of	resources	for
the	computer.	At	the	same	time,	the	massive	scale	of	the	Internet	means	that	many	services
need	to	be	designed	to	provide	good	response	time	across	a	wide	range	of	load	conditions.
Our	goal	in	this	chapter	is	to	give	you	the	conceptual	basis	for	making	those	design
choices.

Several	ongoing	trends	pose	new	and	interesting	challenges	to	effective	resource
scheduling.

Multicore	systems.	Although	almost	all	new	servers,	desktops,	laptops	and
smartphones	are	multicore	systems,	relatively	few	widely	used	applications	have
been	redesigned	to	take	full	advantage	of	multiple	processors.	This	is	likely	to	change
over	the	next	few	years	as	multicore	systems	become	ubiquitous	and	as	they	scale	to
larger	numbers	of	processors	per	chip.	Although	we	have	the	concepts	in	place	to
manage	resource	sharing	among	multiple	parallel	applications,	commercial	systems
are	only	just	now	starting	to	deploy	these	ideas.	It	will	be	interesting	to	see	how	the
theory	works	out	in	practice.

Cache	affinity.	Over	the	past	twenty	years,	processor	architects	have	radically
increased	both	the	size	and	number	of	levels	of	on-chip	caches.	There	is	little	reason
to	believe	that	this	trend	will	reverse.	Although	processor	clock	rates	are	improving
slowly,	transistor	density	is	still	increasing	at	a	rapid	rate.	This	will	make	it	both
possible	and	desirable	to	have	even	larger,	multi-level	on-chip	caches	to	achieve	good
performance.	Thus,	it	is	likely	that	scheduling	for	cache	affinity	will	be	an	even
larger	factor	in	the	future	than	it	is	today.	Balancing	when	to	respect	affinity	and
when	to	migrate	is	still	somewhat	of	an	open	question,	as	is	deciding	how	to	spread
or	coalesce	application	threads	across	caches.

Energy-aware	scheduling.	The	number	of	energy-constrained	computers	such	as
smartphones,	tablets,	and	laptops,	now	far	outstrips	powered	computers	such	as
desktops	and	servers.	As	a	result,	we	are	likely	to	see	the	development	of	hardware	to
monitor	and	manage	energy	use	by	applications,	and	the	operating	system	will	need
to	make	use	of	that	hardware	support.	We	are	likely	to	see	operating	systems	sandbox
application	energy	use	to	prevent	faulty	or	malicious	applications	from	running	down
the	battery.	Likewise,	just	as	applications	can	adapt	to	changing	numbers	of
processors,	we	are	likely	to	see	applications	that	adapt	their	behavior	to	energy
availability.

Figure	7.23:	A	web	service	often	consists	of	a	number	of	front-end	servers	who	redirect	incoming	client	requests	to	a
larger	set	of	back-end	servers.

Exercises

1.	 For	shortest	job	first,	if	the	scheduler	assigns	a	task	to	the	processor,	and	no	other
task	becomes	schedulable	in	the	meantime,	will	the	scheduler	ever	preempt	the
current	task?	Why	or	why	not?

2.	 Devise	a	workload	where	FIFO	is	pessimal	—	it	does	the	worst	possible	choices	—
for	average	response	time.

3.	 Suppose	you	do	your	homework	assignments	in	SJF-order.	After	all,	you	feel	like
you	are	making	a	lot	of	progress!	What	might	go	wrong?

4.	 Given	the	following	mix	of	tasks,	task	lengths,	and	arrival	times,	compute	the
completion	and	response	time	for	each	task,	along	with	the	average	response	time	for
the	FIFO,	RR,	and	SJF	algorithms.	Assume	a	time	slice	of	10	milliseconds	and	that
all	times	are	in	milliseconds.

Task Length Arrival	Time Completion	Time Response	Time

0 85 0

1 30 10

2 35 15

3 20 80

4 50 85

Average:

5.	 Is	it	possible	for	an	application	to	run	slower	when	assigned	10	processors	than	when
assigned	8?	Why	or	why	not?

6.	 Suppose	your	company	is	considering	using	one	of	two	candidate	scheduling
algorithms.	One	is	Round	Robin,	with	an	overhead	of	1%	of	the	processing	power	of
the	system.	The	second	is	a	wizzy	new	system	that	predicts	the	future	and	so	it	can
closely	approximate	SJF,	but	it	takes	an	overhead	of	10%	of	the	processing	power	of
the	system.

Assume	randomized	arrivals	and	random	task	lengths.	Under	what	conditions	will	the
simpler	algorithm	outperform	the	more	complex,	and	vice	versa?

7.	 Are	there	non-trivial	workloads	for	which	Multi-level	Feedback	Queue	is	an	optimal
policy?	Why	or	why	not?	(A	trivial	workload	is	one	with	only	one	or	a	few	tasks	or
tasks	that	last	a	single	instruction.)

8.	 If	a	queueing	system	with	one	server	has	a	workload	of	1000	tasks	arriving	per
second,	and	the	average	number	of	tasks	waiting	or	getting	service	is	5,	what	is	the
average	response	time	per	task?

9.	 Is	it	possible	for	a	system	in	equilibrium	to	have	both	bounded	average	response	time
and	100%	utilization?	Why	or	why	not?

10.	 For	a	queueing	system	with	random	arrivals	and	service	times,	how	does	the	variance
in	the	service	time	affect	the	system	response	time?	Briefly	explain.

11.	 Most	round-robin	schedulers	use	a	fixed	size	quantum.	Give	an	argument	in	favor	of
and	against	a	small	quantum.

12.	 Which	provides	the	best	average	response	time	when	there	are	multiple	servers	(e.g.,
bank	tellers,	supermarket	cash	registers,	airline	ticket	takers):	a	single	FIFO	queue	or
a	FIFO	queue	per	server?	Why?	Assume	that	you	cannot	predict	how	long	any
customer	is	going	to	take	at	the	server,	and	that	once	you	have	picked	a	queue	to	wait
in,	you	are	stuck	and	cannot	change	queues.

13.	 Three	tasks,	A,	B,	and	C	are	run	concurrently	on	a	computer	system.

Task	A	arrives	first	at	time	0,	and	uses	the	CPU	for	100	ms	before	finishing.

Task	B	arrives	shortly	after	A,	still	at	time	0.	Task	B	loops	ten	times;	for	each
iteration	of	the	loop,	B	uses	the	CPU	for	2	ms	and	then	it	does	I/O	for	8	ms.

Task	C	is	identical	to	B,	but	arrives	shortly	after	B,	still	at	time	0.

Assuming	there	is	no	overhead	to	doing	a	context	switch,	identify	when	A,	B	and	C
will	finish	for	each	of	the	following	CPU	scheduling	disciplines:

a.	 FIFO
b.	 Round	robin	with	a	1	ms	time	slice
c.	 Round	robin	with	a	100	ms	time	slice
d.	 Multilevel	feedback	with	four	levels,	and	a	time	slice	for	the	highest	priority

level	is	1	ms.
e.	 Shortest	job	first

14.	 For	each	of	the	following	processor	scheduling	policies,	describe	the	set	of	workloads
under	which	that	policy	is	optimal	in	terms	of	minimizing	average	response	time
(does	the	same	thing	as	shortest	job	first)	and	the	set	of	workloads	under	which	the
policy	is	pessimal	(does	the	same	thing	as	longest	job	first).	If	there	are	no	workloads
under	which	a	policy	is	optimal	or	pessimal,	indicate	that.

a.	 FIFO
b.	 Round	robin
c.	 Multilevel	feedback	queues

15.	 Explain	how	you	would	set	up	a	valid	experimental	comparison	between	two
scheduling	policies,	one	of	which	can	starve	some	jobs.

16.	 As	system	administrator	of	a	popular	social	networking	website,	you	notice	that
usage	peaks	during	working	hours	(10am	–	5pm)	and	the	evening	(7	–	10pm)	on	the
US	east	coast.	The	CEO	asks	you	to	design	a	system	where	during	these	peak	hours
there	will	be	three	levels	of	users.	Users	in	level	1	are	the	center	of	the	social
network,	and	so	they	are	to	enjoy	better	response	time	than	users	in	level	2,	who	in
turn	will	enjoy	better	response	time	than	users	in	level	3.	You	are	to	design	such	a
system	so	that	all	users	will	still	get	some	progress,	but	with	the	indicated	preferences
in	place.

a.	 Will	a	fixed	priority	scheme	with	pre-emption	and	three	fixed	priorities	work?
Why,	or	why	not?

b.	 Will	a	UNIX-style	multi-feedback	queue	work?	Why,	or	why	not?

17.	 Consider	the	following	preemptive	priority-scheduling	algorithm	based	on
dynamically	changing	priorities.	Larger	numbers	imply	higher	priority.	Tasks	are
preempted	whenever	there	is	a	higher	priority	task.	When	a	task	is	waiting	for	CPU
(in	the	ready	queue,	but	not	running),	its	priority	changes	at	a	rate	of	a:

P(t)	=	P0	+	a	×	(t	-	t0)

where	t0	is	the	time	at	which	the	task	joins	the	ready	queue	and	P0	is	its	initial
priority,	assigned	when	the	task	enters	the	ready	queue	or	is	preempted.	Similarly,
when	it	is	running,	the	task’s	priority	changes	at	a	rate	b.	The	parameters	a,	b	and	P0
can	be	used	to	obtain	many	different	scheduling	algorithms.

a.	 What	is	the	algorithm	that	results	from	P0	=	0	and	b	>	a	>	0?
b.	 What	is	the	algorithm	that	results	from	P0	=	0	and	a	<	b	<	0?
c.	 Suppose	tasks	are	assigned	a	priority	0	when	they	arrive,	but	they	retain	their

priority	when	they	are	preempted.	What	happens	if	two	tasks	arrive	at	nearly	the
same	time	and	a	>	0	>	b?

d.	 How	should	we	adjust	the	algorithm	to	eliminate	this	pathology?

18.	 For	a	computer	with	two	cores	and	a	hyperthreading	level	of	two,	draw	a	graph	of	the
rate	of	progress	of	a	compute-intensive	task	as	a	function	of	time,	depending	on
whether	it	is	running	alone,	or	with	1,	2,	3,	or	4	other	tasks.

19.	 Implement	a	test	on	your	computer	to	see	if	your	answer	to	the	previous	problem	is
correct.

20.	 A	countermeasure	is	a	strategy	by	which	a	user	(or	an	application)	exploits	the
characteristics	of	the	processor	scheduling	policy	to	get	as	much	of	the	processing
time	as	possible.	For	example,	if	the	scheduler	trusts	users	to	give	accurate	estimates
of	how	long	each	task	will	take,	it	can	give	higher	priority	to	short	tasks.	However,	a
countermeasure	would	be	for	the	user	to	tell	the	system	that	the	user’s	tasks	are	short
even	when	they	are	not.

Devise	a	countermeasure	strategy	for	each	of	the	following	processor	scheduling
policies;	your	strategy	should	minimize	an	individual	application’s	response	time
(even	if	it	hurts	overall	system	performance).	You	may	assume	perfect	knowledge	—
for	example,	your	strategy	can	be	based	on	which	jobs	will	arrive	in	the	future,	where
your	application	is	in	the	queue,	and	how	long	the	tasks	ahead	of	you	will	run	before
blocking.	Your	strategy	should	also	be	robust	—	it	should	work	properly	even	if	there
are	no	other	tasks	in	the	system,	there	are	only	short	tasks,	or	there	are	only	long
running	tasks.	If	no	strategy	will	improve	your	application’s	response	time,	then
explain	why.

a.	 Last	in	first	out

b.	 Round	robin,	assuming	tasks	are	put	at	the	end	of	the	ready	list	when	they
become	ready	to	run

c.	 Multilevel	feedback	queues,	where	tasks	are	put	on	the	highest	priority	queue
when	they	become	ready	to	run

21.	 Consider	a	computer	system	running	a	general-purpose	workload.	Measured
utilizations	(in	terms	of	time,	not	space)	are	given	in	Figure	7.24.

Processor	utilization 20.0%

Disk 99.7%

Network 5.0%

Figure	7.24:	Measured	utilizations	of	a	computer	system.

For	each	of	the	following	changes,	say	what	its	likely	impact	will	be	on	processor
utilization,	and	explain	why.	Is	it	likely	to	significantly	increase,	marginally	increase,
significantly	decrease,	marginally	decrease,	or	have	no	effect	on	the	processor

utilization?

a.	 Get	a	faster	CPU

b.	 Get	a	faster	disk

c.	 Increase	the	degree	of	multiprogramming

d.	 Get	a	faster	network

References

[1]	

Keith	Adams	and	Ole	Agesen.	A	comparison	of	software	and	hardware	techniques	for
x86	virtualization.	In	Proceedings	of	the	12th	International	conference	on
Architectural	Support	for	Programming	Languages	and	Operating	Systems,	ASPLOS-
XII,	pages	2–13,	2006.

[2]	
Thomas	E.	Anderson,	Brian	N.	Bershad,	Edward	D.	Lazowska,	and	Henry	M.	Levy.
Scheduler	activations:	effective	kernel	support	for	the	user-level	management	of
parallelism.	ACM	Trans.	Comput.	Syst.,	10(1):53–79,	February	1992.

[3]	

Thomas	E.	Anderson,	Henry	M.	Levy,	Brian	N.	Bershad,	and	Edward	D.	Lazowska.
The	interaction	of	architecture	and	operating	system	design.	In	Proceedings	of	the
fourth	International	conference	on	Architectural	Support	for	Programming	Languages
and	Operating	Systems,	ASPLOS-IV,	pages	108–120,	1991.

[4]	
Andrew	W.	Appel	and	Kai	Li.	Virtual	memory	primitives	for	user	programs.	In
Proceedings	of	the	fourth	International	conference	on	Architectural	Support	for
Programming	Languages	and	Operating	Systems,	ASPLOS-IV,	pages	96–107,	1991.

[5]	
Amittai	Aviram,	Shu-Chun	Weng,	Sen	Hu,	and	Bryan	Ford.	Efficient	system-enforced
deterministic	parallelism.	In	Proceedings	of	the	9th	USENIX	conference	on	Operating
Systems	Design	and	Implementation,	OSDI’10,	pages	1–16,	2010.

[6]	
Özalp	Babaoglu	and	William	Joy.	Converting	a	swap-based	system	to	do	paging	in	an
architecture	lacking	page-referenced	bits.	In	Proceedings	of	the	eighth	ACM
Symposium	on	Operating	Systems	Principles,	SOSP	’81,	pages	78–86,	1981.

[7]	

David	Bacon,	Joshua	Bloch,	Jeff	Bogda,	Cliff	Click,	Paul	Haahr,	Doug	Lea,	Tom	May,
Jan-Willem	Maessen,	Jeremy	Manson,	John	D.	Mitchell,	Kelvin	Nilsen,	Bill	Pugh,
and	Emin	Gun	Sirer.	The	“double-checked	locking	is	broken”	declaration.
http://www.cs.umd.	edu/~pugh/java/memoryModel/DoubleCheckedLocking.html.

[8]	

Gaurav	Banga,	Peter	Druschel,	and	Jeffrey	C.	Mogul.	Resource	containers:	a	new
facility	for	resource	management	in	server	systems.	In	Proceedings	of	the	third
USENIX	symposium	on	Operating	Systems	Design	and	Implementation,	OSDI	’99,
pages	45–58,	1999.

[9]	

Paul	Barham,	Boris	Dragovic,	Keir	Fraser,	Steven	Hand,	Tim	Harris,	Alex	Ho,	Rolf
Neugebauer,	Ian	Pratt,	and	Andrew	Warfield.	Xen	and	the	art	of	virtualization.	In
Proceedings	of	the	nineteenth	ACM	Symposium	on	Operating	Systems	Principles,
SOSP	’03,	pages	164–177,	2003.

[10]	 Blaise	Barney.	POSIX	threads	programming.
http://computing.llnl.gov/tutorials/pthreads/,	2013.

[11]	 Joel	F.	Bartlett.	A	nonstop	kernel.	In	Proceedings	of	the	eighth	ACM	Symposium	on
Operating	Systems	Principles,	SOSP	’81,	pages	22–29,	1981.

[12]	

Andrew	Baumann,	Paul	Barham,	Pierre-Evariste	Dagand,	Tim	Harris,	Rebecca	Isaacs,
Simon	Peter,	Timothy	Roscoe,	Adrian	Schüpbach,	and	Akhilesh	Singhania.	The
multikernel:	a	new	OS	architecture	for	scalable	multicore	systems.	In	Proceedings	of
the	22nd	ACM	Symposium	on	Operating	Systems	Principles,	SOSP	’09,	pages	29–44,
2009.

http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html

[13]	 A.	Bensoussan,	C.	T.	Clingen,	and	R.	C.	Daley.	The	multics	virtual	memory:	concepts
and	design.	Commun.	ACM,	15(5):308–318,	May	1972.

[14]	
Tom	Bergan,	Nicholas	Hunt,	Luis	Ceze,	and	Steven	D.	Gribble.	Deterministic	process
groups	in	dOS.	In	Proceedings	of	the	9th	USENIX	conference	on	Operating	Systems
Design	and	Implementation,	OSDI’10,	pages	1–16,	2010.

[15]	

B.	N.	Bershad,	S.	Savage,	P.	Pardyak,	E.	G.	Sirer,	M.	E.	Fiuczynski,	D.	Becker,
C.	Chambers,	and	S.	Eggers.	Extensibility	safety	and	performance	in	the	SPIN
operating	system.	In	Proceedings	of	the	fifteenth	ACM	Symposium	on	Operating
Systems	Principles,	SOSP	’95,	pages	267–283,	1995.

[16]	
Brian	N.	Bershad,	Thomas	E.	Anderson,	Edward	D.	Lazowska,	and	Henry	M.	Levy.
Lightweight	remote	procedure	call.	ACM	Trans.	Comput.	Syst.,	8(1):37–55,	February
1990.

[17]	
Brian	N.	Bershad,	Thomas	E.	Anderson,	Edward	D.	Lazowska,	and	Henry	M.	Levy.
User-level	interprocess	communication	for	shared	memory	multiprocessors.	ACM
Trans.	Comput.	Syst.,	9(2):175–198,	May	1991.

[18]	 Andrew	Birrell.	An	introduction	to	programming	with	threads.	Technical	Report	35,
Digital	Equipment	Corporation	Systems	Research	Center,	1991.

[19]	 Andrew	D.	Birrell	and	Bruce	Jay	Nelson.	Implementing	remote	procedure	calls.	ACM
Trans.	Comput.	Syst.,	2(1):39–59,	February	1984.

[20]	

Silas	Boyd-Wickizer,	Austin	T.	Clements,	Yandong	Mao,	Aleksey	Pesterev,	M.	Frans
Kaashoek,	Robert	Morris,	and	Nickolai	Zeldovich.	An	analysis	of	Linux	scalability	
many	cores.	In	Proceedings	of	the	9th	USENIX	conference	on	Operating	Systems
Design	and	Implementation,	OSDI’10,	pages	1–8,	2010.

[21]	
Lee	Breslau,	Pei	Cao,	Li	Fan,	Graham	Phillips,	and	Scott	Shenker.	Web	caching	and
Zipf-like	distributions:	evidence	and	implications.	In	INFOCOM,	pages	126–134,
1999.

[22]	 Thomas	C.	Bressoud	and	Fred	B.	Schneider.	Hypervisor-based	fault	tolerance.	ACM
Trans.	Comput.	Syst.,	14(1):80–107,	February	1996.

[23]	
Sergey	Brin	and	Lawrence	Page.	The	anatomy	of	a	large-scale	hypertextual	web
search	engine.	In	Proceedings	of	the	seventh	International	conference	on	the	World
Wide	Web,	WWW7,	pages	107–117,	1998.

[24]	 Max	Bruning.	ZFS	on-disk	data	walk	(or:	Where’s	my	data?).	In	OpenSolaris
Developer	Conference,	2008.

[25]	
Edouard	Bugnion,	Scott	Devine,	Kinshuk	Govil,	and	Mendel	Rosenblum.	Disco:
running	commodity	operating	systems	on	scalable	multiprocessors.	ACM	Trans.
Comput.	Syst.,	15(4):412–447,	November	1997.

[26]	 Brian	Carrier.	File	System	Forensic	Analysis.	Addison	Wesley	Professional,	2005.

[27]	

Miguel	Castro,	Manuel	Costa,	Jean-Philippe	Martin,	Marcus	Peinado,	Periklis
Akritidis,	Austin	Donnelly,	Paul	Barham,	and	Richard	Black.	Fast	byte-granularity
software	fault	isolation.	In	Proceedings	of	the	22nd	ACM	Symposium	on	Operating
Systems	Principles,	SOSP	’09,	pages	45–58,	2009.

[28]	
J.	Chapin,	M.	Rosenblum,	S.	Devine,	T.	Lahiri,	D.	Teodosiu,	and	A.	Gupta.	Hive:	fault
containment	for	shared-memory	multiprocessors.	In	Proceedings	of	the	fifteenth	ACM

Symposium	on	Operating	Systems	Principles,	SOSP	’95,	pages	12–25,	1995.

[29]	
Jeffrey	S.	Chase,	Henry	M.	Levy,	Michael	J.	Feeley,	and	Edward	D.	Lazowska.
Sharing	and	protection	in	a	single-address-space	operating	system.	ACM	Trans.
Comput.	Syst.,	12(4):271–307,	November	1994.

[30]	
J.	Bradley	Chen	and	Brian	N.	Bershad.	The	impact	of	operating	system	structure	on
memory	system	performance.	In	Proceedings	of	the	fourteenth	ACM	Symposium	on
Operating	Systems	Principles,	SOSP	’93,	pages	120–133,	1993.

[31]	 Peter	M.	Chen	and	Brian	D.	Noble.	When	virtual	is	better	than	real.	In	Proceedings	of
the	Eighth	Workshop	on	Hot	Topics	in	Operating	Systems,	HOTOS	’01,	2001.

[32]	 David	Cheriton.	The	V	distributed	system.	Commun.	ACM,	31(3):314–333,	March
1988.

[33]	
David	R.	Cheriton	and	Kenneth	J.	Duda.	A	caching	model	of	operating	system	kernel
functionality.	In	Proceedings	of	the	1st	USENIX	conference	on	Operating	Systems
Design	and	Implementation,	OSDI	’94,	1994.

[34]	 David	D.	Clark.	The	structuring	of	systems	using	upcalls.	In	Proceedings	of	the	tenth
ACM	Symposium	on	Operating	Systems	Principles,	SOSP	’85,	pages	171–180,	1985.

[35]	

Jeremy	Condit,	Edmund	B.	Nightingale,	Christopher	Frost,	Engin	Ipek,	Benjamin	Lee,
Doug	Burger,	and	Derrick	Coetzee.	Better	I/O	through	byte-addressable,	persistent
memory.	In	Proceedings	of	the	22nd	ACM	Symposium	on	Operating	Systems
Principles,	SOSP	’09,	pages	133–146,	2009.

[36]	 Fernando	J.	Corbató.	On	building	systems	that	will	fail.	Commun.	ACM,	34(9):72–81,
September	1991.

[37]	 Fernando	J.	Corbató	and	Victor	A.	Vyssotsky.	Introduction	and	overview	of	the
Multics	system.	AFIPS	Fall	Joint	Computer	Conference,	27(1):185–196,	1965.

[38]	 R.	J.	Creasy.	The	origin	of	the	VM/370	time-sharing	system.	IBM	J.	Res.	Dev.,
25(5):483–490,	September	1981.

[39]	

Michael	D.	Dahlin,	Randolph	Y.	Wang,	Thomas	E.	Anderson,	and	David	A.	Patterson.
Cooperative	caching:	using	remote	client	memory	to	improve	file	system	performance.
In	Proceedings	of	the	1st	USENIX	conference	on	Operating	Systems	Design	and
Implementation,	OSDI	’94,	1994.

[40]	 Robert	C.	Daley	and	Jack	B.	Dennis.	Virtual	memory,	processes,	and	sharing	in
Multics.	Commun.	ACM,	11(5):306–312,	May	1968.

[41]	
Wiebren	de	Jonge,	M.	Frans	Kaashoek,	and	Wilson	C.	Hsieh.	The	logical	disk:	a	new
approach	to	improving	file	systems.	In	Proceedings	of	the	fourteenth	ACM
Symposium	on	Operating	Systems	Principles,	SOSP	’93,	pages	15–28,	1993.

[42]	
Jeffrey	Dean	and	Sanjay	Ghemawat.	MapReduce:	simplified	data	processing	on	large
clusters.	In	Proceedings	of	the	6th	USENIX	Symposium	on	Operating	Systems	Design
&	Implementation,	OSDI’04,	2004.

[43]	 Peter	J.	Denning.	The	working	set	model	for	program	behavior.	Commun.	ACM,
11(5):323–333,	May	1968.

[44]	 P.J.	Denning.	Working	sets	past	and	present.	Software	Engineering,	IEEE	Transactions
on,	SE-6(1):64	–	84,	jan.	1980.

[45]	 Jack	B.	Dennis.	Segmentation	and	the	design	of	multiprogrammed	computer	systems.
J.	ACM,	12(4):589–602,	October	1965.

[46]	 Jack	B.	Dennis	and	Earl	C.	Van	Horn.	Programming	semantics	for	multiprogrammed
computations.	Commun.	ACM,	9(3):143–155,	March	1966.

[47]	 E.	W.	Dijkstra.	Solution	of	a	problem	in	concurrent	programming	control.	Commun.
ACM,	8(9):569–,	September	1965.

[48]	 Edsger	W.	Dijkstra.	The	structure	of	the	“THE”-multiprogramming	system.	Commun.
ACM,	11(5):341–346,	May	1968.

[49]	

Mihai	Dobrescu,	Norbert	Egi,	Katerina	Argyraki,	Byung-Gon	Chun,	Kevin	Fall,
Gianluca	Iannaccone,	Allan	Knies,	Maziar	Manesh,	and	Sylvia	Ratnasamy.
Routebricks:	exploiting	parallelism	to	scale	software	routers.	In	Proceedings	of	the
22nd	ACM	Symposium	on	Operating	Systems	Principles,	SOSP	’09,	pages	15–28,
2009.

[50]	 Alan	Donovan,	Robert	Muth,	Brad	Chen,	and	David	Sehr.	Portable	Native	Client
executables.	Technical	report,	Google,	2012.

[51]	 Fred	Douglis	and	John	Ousterhout.	Transparent	process	migration:	design	alternatives
and	the	Sprite	implementation.	Softw.	Pract.	Exper.,	21(8):757–785,	July	1991.

[52]	

Richard	P.	Draves,	Brian	N.	Bershad,	Richard	F.	Rashid,	and	Randall	W.	Dean.	Using
continuations	to	implement	thread	management	and	communication	in	operating
systems.	In	Proceedings	of	the	thirteenth	ACM	Symposium	on	Operating	Systems
Principles,	SOSP	’91,	pages	122–136,	1991.

[53]	 Peter	Druschel	and	Larry	L.	Peterson.	Fbufs:	a	high-bandwidth	cross-domain	transfer
facility.	SIGOPS	Oper.	Syst.	Rev.,	27(5):189–202,	December	1993.

[54]	
George	W.	Dunlap,	Samuel	T.	King,	Sukru	Cinar,	Murtaza	A.	Basrai,	and	Peter	M.
Chen.	ReVirt:	enabling	intrusion	analysis	through	virtual-machine	logging	and	replay.
SIGOPS	Oper.	Syst.	Rev.,	36(SI):211–224,	December	2002.

[55]	

Petros	Efstathopoulos,	Maxwell	Krohn,	Steve	VanDeBogart,	Cliff	Frey,	David	Ziegler,
Eddie	Kohler,	David	Mazières,	Frans	Kaashoek,	and	Robert	Morris.	Labels	and	event
processes	in	the	Asbestos	operating	system.	In	Proceedings	of	the	twentieth	ACM
Symposium	on	Operating	Systems	Principles,	SOSP	’05,	pages	17–30,	2005.

[56]	
D.	R.	Engler,	M.	F.	Kaashoek,	and	J.	O’Toole,	Jr.	Exokernel:	an	operating	system
architecture	for	application-level	resource	management.	In	Proceedings	of	the	fifteenth
ACM	Symposium	on	Operating	Systems	Principles,	SOSP	’95,	pages	251–266,	1995.

[57]	

Dawson	Engler,	David	Yu	Chen,	Seth	Hallem,	Andy	Chou,	and	Benjamin	Chelf.	Bugs
as	deviant	behavior:	a	general	approach	to	inferring	errors	in	systems	code.	In
Proceedings	of	the	eighteenth	ACM	Symposium	on	Operating	Systems	Principles,
SOSP	’01,	pages	57–72,	2001.

[58]	 R.	S.	Fabry.	Capability-based	addressing.	Commun.	ACM,	17(7):403–412,	July	1974.

[59]	
Jason	Flinn	and	M.	Satyanarayanan.	Energy-aware	adaptation	for	mobile	applications.
In	Proceedings	of	the	seventeenth	ACM	Symposium	on	Operating	Systems	Principles,
SOSP	’99,	pages	48–63,	1999.

[60]	

Christopher	Frost,	Mike	Mammarella,	Eddie	Kohler,	Andrew	de	los	Reyes,	Shant
Hovsepian,	Andrew	Matsuoka,	and	Lei	Zhang.	Generalized	file	system	dependencies.

In	Proceedings	of	twenty-first	ACM	Symposium	on	Operating	Systems	Principles,
SOSP	’07,	pages	307–320,	2007.

[61]	
Gregory	R.	Ganger,	Marshall	Kirk	McKusick,	Craig	A.	N.	Soules,	and	Yale	N.	Patt.
Soft	updates:	a	solution	to	the	metadata	update	problem	in	file	systems.	ACM	Trans.
Comput.	Syst.,	18(2):127–153,	May	2000.

[62]	 Simson	Garfinkel	and	Gene	Spafford.	Practical	Unix	and	Internet	security	(2nd	ed.).
O’Reilly	&	Associates,	Inc.,	1996.

[63]	

Tal	Garfinkel,	Ben	Pfaff,	Jim	Chow,	Mendel	Rosenblum,	and	Dan	Boneh.	Terra:	a
virtual	machine-based	platform	for	trusted	computing.	In	Proceedings	of	the
nineteenth	ACM	Symposium	on	Operating	Systems	Principles,	SOSP	’03,	pages	193–
206,	2003.

[64]	

Kirk	Glerum,	Kinshuman	Kinshumann,	Steve	Greenberg,	Gabriel	Aul,	Vince
Orgovan,	Greg	Nichols,	David	Grant,	Gretchen	Loihle,	and	Galen	Hunt.	Debugging	in
the	(very)	large:	ten	years	of	implementation	and	experience.	In	Proceedings	of	the
22nd	ACM	Symposium	on	Operating	Systems	Principles,	SOSP	’09,	pages	103–116,
2009.

[65]	 R.P.	Goldberg.	Survey	of	virtual	machine	research.	IEEE	Computer,	7(6):34–45,	June
1974.

[66]	

Kinshuk	Govil,	Dan	Teodosiu,	Yongqiang	Huang,	and	Mendel	Rosenblum.	Cellular
Disco:	resource	management	using	virtual	clusters	on	shared-memory	multiprocessors.
In	Proceedings	of	the	seventeenth	ACM	Symposium	on	Operating	Systems	Principles,
SOSP	’99,	pages	154–169,	1999.

[67]	
Jim	Gray.	The	transaction	concept:	virtues	and	limitations	(invited	paper).	In
Proceedings	of	the	seventh	International	conference	on	Very	Large	Data	Bases,	VLDB
’81,	pages	144–154,	1981.

[68]	 Jim	Gray.	Why	do	computers	stop	and	what	can	be	done	about	it?	Technical	Report
TR-85.7,	HP	Labs,	1985.

[69]	
Jim	Gray,	Paul	McJones,	Mike	Blasgen,	Bruce	Lindsay,	Raymond	Lorie,	Tom	Price,
Franco	Putzolu,	and	Irving	Traiger.	The	recovery	manager	of	the	System	R	database
manager.	ACM	Comput.	Surv.,	13(2):223–242,	June	1981.

[70]	 Jim	Gray	and	Andreas	Reuter.	Transaction	Processing:	Concepts	and	Techniques.
Morgan	Kaufmann,	1993.

[71]	 Jim	Gray	and	Daniel	P.	Siewiorek.	High-availability	computer	systems.	Computer,
24(9):39–48,	September	1991.

[72]	

Diwaker	Gupta,	Sangmin	Lee,	Michael	Vrable,	Stefan	Savage,	Alex	C.	Snoeren,
George	Varghese,	Geoffrey	M.	Voelker,	and	Amin	Vahdat.	Difference	engine:
harnessing	memory	redundancy	in	virtual	machines.	In	Proceedings	of	the	8th
USENIX	conference	on	Operating	Systems	Design	and	Implementation,	OSDI’08,
pages	309–322,	2008.

[73]	 Hadoop.	http://hadoop.apache.org.

[74]	
Steven	M.	Hand.	Self-paging	in	the	Nemesis	operating	system.	In	Proceedings	of	the
third	USENIX	Symposium	on	Operating	Systems	Design	and	Implementation,	OSDI
’99,	pages	73–86,	1999.

[75]	 Per	Brinch	Hansen.	The	nucleus	of	a	multiprogramming	system.	Commun.	ACM,
13(4):238–241,	April	1970.

[76]	
Mor	Harchol-Balter	and	Allen	B.	Downey.	Exploiting	process	lifetime	distributions
for	dynamic	load	balancing.	In	Proceedings	of	the	fifteenth	ACM	Symposium	on
Operating	Systems	Principles,	SOSP	’95,	pages	236–,	1995.

[77]	

Kieran	Harty	and	David	R.	Cheriton.	Application-controlled	physical	memory	using
external	page-cache	management.	In	Proceedings	of	the	fifth	International	conference
on	Architectural	Support	for	Programming	Languages	and	Operating	Systems,
ASPLOS-V,	pages	187–197,	1992.

[78]	 Rober	Haskin,	Yoni	Malachi,	and	Gregory	Chan.	Recovery	management	in
QuickSilver.	ACM	Trans.	Comput.	Syst.,	6(1):82–108,	February	1988.

[79]	 John	L.	Hennessy	and	David	A.	Patterson.	Computer	Architecture	-	A	Quantitative
Approach	(5.	ed.).	Morgan	Kaufmann,	2012.

[80]	 Maurice	Herlihy.	Wait-free	synchronization.	ACM	Trans.	Program.	Lang.	Syst.,
13(1):124–149,	January	1991.

[81]	 Maurice	Herlihy	and	Nir	Shavit.	The	Art	of	Multiprocessor	Programming.	Morgan
Kaufmann,	2008.

[82]	 Dave	Hitz,	James	Lau,	and	Michael	Malcolm.	File	system	design	for	an	NFS	file
server	appliance.	Technical	Report	3002,	Network	Appliance,	1995.

[83]	 C.	A.	R.	Hoare.	Monitors:	An	operating	system	structuring	concept.	Communications
of	the	ACM,	17:549–557,	1974.

[84]	 C.	A.	R.	Hoare.	Communicating	sequential	processes.	Commun.	ACM,	21(8):666–
677,	August	1978.

[85]	 C.	A.	R.	Hoare.	The	emperor’s	old	clothes.	Commun.	ACM,	24(2):75–83,	February
1981.

[86]	
Thomas	R.	Horsley	and	William	C.	Lynch.	Pilot:	A	software	engineering	case	study.	
Proceedings	of	the	4th	International	conference	on	Software	engineering,	ICSE	’79,
pages	94–99,	1979.

[87]	 Raj	Jain.	The	Art	of	Computer	Systems	Performance	Analysis.	John	Wiley	&	Sons,
1991.

[88]	

Asim	Kadav	and	Michael	M.	Swift.	Understanding	modern	device	drivers.	In
Proceedings	of	the	seventeenth	international	conference	on	Architectural	Support	for
Programming	Languages	and	Operating	Systems,	ASPLOS	’12,	pages	87–98,	New
York,	NY,	USA,	2012.	ACM.

[89]	
Paul	A.	Karger,	Mary	Ellen	Zurko,	Douglas	W.	Bonin,	Andrew	H.	Mason,	and
Clifford	E.	Kahn.	A	retrospective	on	the	VAX	VMM	security	kernel.	IEEE	Trans.
Softw.	Eng.,	17(11):1147–1165,	November	1991.

[90]	
Yousef	A.	Khalidi	and	Michael	N.	Nelson.	Extensible	file	systems	in	Spring.	In
Proceedings	of	the	fourteenth	ACM	Symposium	on	Operating	Systems	Principles,
SOSP	’93,	pages	1–14,	1993.

[91]	

Gerwin	Klein,	Kevin	Elphinstone,	Gernot	Heiser,	June	Andronick,	David	Cock,	Philip
Derrin,	Dhammika	Elkaduwe,	Kai	Engelhardt,	Rafal	Kolanski,	Michael	Norrish,
Thomas	Sewell,	Harvey	Tuch,	and	Simon	Winwood.	sel4:	formal	verification	of	an

OS	kernel.	In	Proceedings	of	the	ACM	SIGOPS	22nd	Symposium	on	Operating
Systems	Principles,	SOSP	’09,	pages	207–220,	2009.

[92]	 L.	Kleinrock	and	R.	R.	Muntz.	Processor	sharing	queueing	models	of	mixed
scheduling	disciplines	for	time	shared	system.	J.	ACM,	19(3):464–482,	July	1972.

[93]	
Leonard	Kleinrock.	Queueing	Systems,	Volume	II:	Computer	Applications.	Wiley
Interscience,	1976.

[94]	 H.	T.	Kung	and	John	T.	Robinson.	On	optimistic	methods	for	concurrency	control.
ACM	Trans.	Database	Syst.,	6(2):213–226,	June	1981.

[95]	 Leslie	Lamport.	A	fast	mutual	exclusion	algorithm.	ACM	Trans.	Comput.	Syst.,
5(1):1–11,	January	1987.

[96]	 B.	W.	Lampson.	Hints	for	computer	system	design.	IEEE	Softw.,	1(1):11–28,	January
1984.

[97]	 Butler	Lampson	and	Howard	Sturgis.	Crash	recovery	in	a	distributed	data	storage
system.	Technical	report,	Xerox	Palo	Alto	Research	Center,	1979.

[98]	 Butler	W.	Lampson	and	David	D.	Redell.	Experience	with	processes	and	monitors	in
Mesa.	Commun.	ACM,	23(2):105–117,	February	1980.

[99]	 Butler	W.	Lampson	and	Howard	E.	Sturgis.	Reflections	on	an	operating	system
design.	Commun.	ACM,	19(5):251–265,	May	1976.

[100]	 James	Larus	and	Galen	Hunt.	The	Singularity	system.	Commun.	ACM,	53(8):72–79,
August	2010.

[101]	 Hugh	C.	Lauer	and	Roger	M.	Needham.	On	the	duality	of	operating	system	structures.
In	Operating	Systems	Review,	pages	3–19,	1979.

[102]	
Edward	D.	Lazowska,	John	Zahorjan,	G.	Scott	Graham,	and	Kenneth	C.	Sevcik.
Quantitative	system	performance:	computer	system	analysis	using	queueing	network
models.	Prentice-Hall,	Inc.,	1984.

[103]	
Will	E.	Leland,	Murad	S.	Taqqu,	Walter	Willinger,	and	Daniel	V.	Wilson.	On	the	self-
similar	nature	of	Ethernet	traffic	(extended	version).	IEEE/ACM	Trans.	Netw.,	2(1):1–
15,	February	1994.

[104]	 N.	G.	Leveson	and	C.	S.	Turner.	An	investigation	of	the	Therac-25	accidents.Computer,	26(7):18–41,	July	1993.

[105]	 H.	M.	Levy	and	P.	H.	Lipman.	Virtual	memory	management	in	the	VAX/VMS
operating	system.	Computer,	15(3):35–41,	March	1982.

[106]	 J.	Liedtke.	On	micro-kernel	construction.	In	Proceedings	of	the	fifteenth	ACMSymposium	on	Operating	Systems	Principles,	SOSP	’95,	pages	237–250,	1995.

[107]	 John	Lions.	Lions’	Commentary	on	UNIX	6th	Edition,	with	Source	Code.	Peer-to-PeerCommunications,	1996.

[108]	 J.	S.	Liptay.	Structural	aspects	of	the	System/360	model	85:	ii	the	cache.	IBM	Syst.	J.,
7(1):15–21,	March	1968.

[109]	

David	E.	Lowell,	Subhachandra	Chandra,	and	Peter	M.	Chen.	Exploring	failure
transparency	and	the	limits	of	generic	recovery.	In	Proceedings	of	the	4th	conference
on	Symposium	on	Operating	Systems	Design	and	Implementation,	OSDI’00,	pages
20–20,	2000.

[110]	 David	E.	Lowell	and	Peter	M.	Chen.	Free	transactions	with	Rio	Vista.	In	Proceedings
of	the	sixteenth	ACM	Symposium	on	Operating	Systems	Principles,	SOSP	’97,	pages
92–101,	1997.

[111]	 P.	McKenney.	Is	parallel	programming	hard,	and,	if	so,	what	can	be	done	about	it?
http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.2011.05.30a.pdf.

[112]	
Paul	E.	McKenney,	Dipankar	Sarma,	Andrea	Arcangeli,	Andi	Kleen,	Orran	Krieger,
and	Rusty	Russell.	Read-copy	update.	In	Ottawa	Linux	Symposium,	pages	338–367,
June	2002.

[113]	 Marshall	K.	McKusick,	William	N.	Joy,	Samuel	J.	Leffler,	and	Robert	S.	Fabry.	A	fast
file	system	for	UNIX.	ACM	Trans.	Comput.	Syst.,	2(3):181–197,	August	1984.

[114]	
Marshall	Kirk	McKusick,	Keith	Bostic,	Michael	J.	Karels,	and	John	S.	Quarterman.
The	design	and	implementation	of	the	4.4BSD	operating	system.	Addison	Wesley
Longman	Publishing	Co.,	Inc.,	1996.

[115]	
John	M.	Mellor-Crummey	and	Michael	L.	Scott.	Algorithms	for	scalable
synchronization	on	shared-memory	multiprocessors.	ACM	Trans.	Comput.	Syst.,
9(1):21–65,	February	1991.

[116]	 Scott	Meyers	and	Andrei	Alexandrescu.	C++	and	the	perils	of	double-checked
locking.	Dr.	Dobbs	Journal,	2004.

[117]	 Jeffrey	C.	Mogul	and	K.	K.	Ramakrishnan.	Eliminating	receive	livelock	in	an
interrupt-driven	kernel.	ACM	Trans.	Comput.	Syst.,	15(3):217–252,	August	1997.

[118]	
Jeffrey	C.	Mogul,	Richard	F.	Rashid,	and	Michael	J.	Accetta.	The	packet	filter:	An
efficient	mechanism	for	user-level	network	code.	In	In	the	Proceedings	of	the	eleventh
ACM	Symposium	on	Operating	Systems	Principles,	pages	39–51,	1987.

[119]	
C.	Mohan,	Don	Haderle,	Bruce	Lindsay,	Hamid	Pirahesh,	and	Peter	Schwarz.	ARIES:
a	transaction	recovery	method	supporting	fine-granularity	locking	and	partial	rollbacks
using	write-ahead	logging.	ACM	Trans.	Database	Syst.,	17(1):94–162,	March	1992.

[120]	 Gordon	E.	Moore.	Cramming	more	components	onto	integrated	circuits.	Electronics,
38(8):114–117,	1965.

[121]	

Madanlal	Musuvathi,	Shaz	Qadeer,	Thomas	Ball,	Gerard	Basler,
Piramanayagam	Arumuga	Nainar,	and	Iulian	Neamtiu.	Finding	and	reproducing
Heisenbugs	in	concurrent	programs.	In	Proceedings	of	the	8th	USENIX	conference	on
Operating	Systems	Design	and	Implementation,	OSDI’08,	pages	267–280,	2008.

[122]	 Kai	Nagel	and	Michael	Schreckenberg.	A	cellular	automaton	model	for	freeway
traffic.	J.	Phys.	I	France,	1992.

[123]	
George	C.	Necula	and	Peter	Lee.	Safe	kernel	extensions	without	run-time	checking.	
Proceedings	of	the	second	USENIX	Symposium	on	Operating	Systems	Design	and
Implementation,	OSDI	’96,	pages	229–243,	1996.

[124]	 Edmund	B.	Nightingale,	Kaushik	Veeraraghavan,	Peter	M.	Chen,	and	Jason	Flinn.
Rethink	the	sync.	ACM	Trans.	Comput.	Syst.,	26(3):6:1–6:26,	September	2008.

[125]	 Elliott	I.	Organick.	The	Multics	system:	an	examination	of	its	structure.	MIT	Press,
1972.

[126]	

Steven	Osman,	Dinesh	Subhraveti,	Gong	Su,	and	Jason	Nieh.	The	design	and
implementation	of	Zap:	a	system	for	migrating	computing	environments.	In

Proceedings	of	the	fifth	USENIX	Symposium	on	Operating	Systems	Design	and
Implementation,	OSDI	’02,	pages	361–376,	2002.

[127]	
John	Ousterhout.	Scheduling	techniques	for	concurrent	systems.	In	Proceedings	of
Third	International	Conference	on	Distributed	Computing	Systems,	pages	22–30,
1982.

[128]	 John	Ousterhout.	Why	aren’t	operating	systems	getting	faster	as	fast	as	hardware?	In
Proceedings	USENIX	Conference,	pages	247–256,	1990.

[129]	
John	Ousterhout.	Why	threads	are	a	bad	idea	(for	most	purposes).	In	USENIX	Winter
Technical	Conference,	1996.

[130]	
Vivek	S.	Pai,	Peter	Druschel,	and	Willy	Zwaenepoel.	Flash:	an	efficient	and	portable
web	server.	In	Proceedings	of	the	annual	conference	on	USENIX	Annual	Technical
Conference,	ATEC	’99,	1999.

[131]	
Vivek	S.	Pai,	Peter	Druschel,	and	Willy	Zwaenepoel.	IO-lite:	a	unified	I/O	buffering
and	caching	system.	In	Proceedings	of	the	third	USENIX	Symposium	on	Operating
Systems	Design	and	Implementation,	OSDI	’99,	pages	15–28,	1999.

[132]	
David	A.	Patterson,	Garth	Gibson,	and	Randy	H.	Katz.	A	case	for	redundant	arrays	of
inexpensive	disks	(RAID).	In	Proceedings	of	the	1988	ACM	SIGMOD	International
conference	on	Management	of	Data,	SIGMOD	’88,	pages	109–116,	1988.

[133]	
L.	Peterson,	N.	Hutchinson,	S.	O’Malley,	and	M.	Abbott.	RPC	in	the	x-Kernel:
evaluating	new	design	techniques.	In	Proceedings	of	the	twelfth	ACM	Symposium	on
Operating	Systems	Principles,	SOSP	’89,	pages	91–101,	1989.

[134]	 Jonathan	Pincus	and	Brandon	Baker.	Beyond	stack	smashing:	recent	advances	inexploiting	buffer	overruns.	IEEE	Security	and	Privacy,	2(4):20–27,	July	2004.

[135]	
Eduardo	Pinheiro,	Wolf-Dietrich	Weber,	and	Luiz	André	Barroso.	Failure	trends	in	a
large	disk	drive	population.	In	Proceedings	of	the	5th	USENIX	conference	on	File	and
Storage	Technologies,	FAST	’07,	pages	2–2,	2007.

[136]	

Vijayan	Prabhakaran,	Lakshmi	N.	Bairavasundaram,	Nitin	Agrawal,	Haryadi	S.
Gunawi,	Andrea	C.	Arpaci-Dusseau,	and	Remzi	H.	Arpaci-Dusseau.	IRON	file
systems.	In	Proceedings	of	the	twentieth	ACM	Symposium	on	Operating	Systems
Principles,	SOSP	’05,	pages	206–220,	2005.

[137]	

Richard	Rashid,	Robert	Baron,	Alessandro	Forin,	David	Golub,	Michael	Jones,	Daniel
Julin,	Douglas	Orr,	and	Richard	Sanzi.	Mach:	A	foundation	for	open	systems.	In
Proceedings	of	the	Second	Workshop	on	Workstation	Operating	Systems(WWOS2),
1989.

[138]	

Richard	F.	Rashid,	Avadis	Tevanian,	Michael	Young,	David	B.	Golub,	Robert	V.
Baron,	David	L.	Black,	William	J.	Bolosky,	and	Jonathan	Chew.	Machine-independent
virtual	memory	management	for	paged	uniprocessor	and	multiprocessor	architectures.
IEEE	Trans.	Computers,	37(8):896–907,	1988.

[139]	 E.S.	Raymond.	The	Cathedral	and	the	Bazaar:	Musings	On	Linux	And	Open	Source
By	An	Accidental	Revolutionary.	O’Reilly	Series.	O’Reilly,	2001.

[140]	
David	D.	Redell,	Yogen	K.	Dalal,	Thomas	R.	Horsley,	Hugh	C.	Lauer,	William	C.
Lynch,	Paul	R.	McJones,	Hal	G.	Murray,	and	Stephen	C.	Purcell.	Pilot:	an	operating
system	for	a	personal	computer.	Commun.	ACM,	23(2):81–92,	February	1980.

[141]	 Dennis	M.	Ritchie	and	Ken	Thompson.	The	UNIX	time-sharing	system.	Commun.
ACM,	17(7):365–375,	July	1974.

[142]	 Mendel	Rosenblum	and	John	K.	Ousterhout.	The	design	and	implementation	of	a	log-
structured	file	system.	ACM	Trans.	Comput.	Syst.,	10(1):26–52,	February	1992.

[143]	 Chris	Ruemmler	and	John	Wilkes.	An	introduction	to	disk	drive	modeling.	Computer,
27(3):17–28,	March	1994.

[144]	 J.	H.	Saltzer,	D.	P.	Reed,	and	D.	D.	Clark.	End-to-end	arguments	in	system	design.ACM	Trans.	Comput.	Syst.,	2(4):277–288,	November	1984.

[145]	
Jerome	H.	Saltzer.	Protection	and	the	control	of	information	sharing	in	Multics.
Commun.	ACM,	17(7):388–402,	July	1974.

[146]	
M.	Satyanarayanan,	Henry	H.	Mashburn,	Puneet	Kumar,	David	C.	Steere,	and
James	J.	Kistler.	Lightweight	recoverable	virtual	memory.	ACM	Trans.	Comput.	Syst.,
12(1):33–57,	February	1994.

[147]	
Stefan	Savage,	Michael	Burrows,	Greg	Nelson,	Patrick	Sobalvarro,	and	Thomas
Anderson.	Eraser:	a	dynamic	data	race	detector	for	multithreaded	programs.	ACM
Trans.	Comput.	Syst.,	15(4):391–411,	November	1997.

[148]	
Bianca	Schroeder	and	Garth	A.	Gibson.	Disk	failures	in	the	real	world:	what	does	an
MTTF	of	1,000,000	hours	mean	to	you?	In	Proceedings	of	the	5th	USENIX
conference	on	File	and	Storage	Technologies,	FAST	’07,	2007.

[149]	 Bianca	Schroeder	and	Mor	Harchol-Balter.	Web	servers	under	overload:	How
scheduling	can	help.	ACM	Trans.	Internet	Technol.,	6(1):20–52,	February	2006.

[150]	
Michael	D.	Schroeder,	David	D.	Clark,	and	Jerome	H.	Saltzer.	The	Multics	kernel
design	project.	In	Proceedings	of	the	sixth	ACM	Symposium	on	Operating	Systems
Principles,	SOSP	’77,	pages	43–56,	1977.

[151]	 Michael	D.	Schroeder	and	Jerome	H.	Saltzer.	A	hardware	architecture	for
implementing	protection	rings.	Commun.	ACM,	15(3):157–170,	March	1972.

[152]	 D.	P.	Siewiorek.	Architecture	of	fault-tolerant	computers.	Computer,	17(8):9–18,August	1984.
[153]	 E.	H.	Spafford.	Crisis	and	aftermath.	Commun.	ACM,	32(6):678–687,	June	1989.
[154]	 Structured	Query	Language	(SQL).	http://en.wikipedia.org/wiki/SQL.

[155]	 Michael	Stonebraker.	Operating	system	support	for	database	management.	Commun.
ACM,	24(7):412–418,	July	1981.

[156]	
Michael	M.	Swift,	Muthukaruppan	Annamalai,	Brian	N.	Bershad,	and	Henry	M.	Levy.
Recovering	device	drivers.	ACM	Trans.	Comput.	Syst.,	24(4):333–360,	November
2006.

[157]	 K.	Thompson.	Unix	implementation.	Bell	System	Technical	Journal,	57:1931–1946,1978.

[158]	 Ken	Thompson.	Reflections	on	trusting	trust.	Commun.	ACM,	27(8):761–763,	August
1984.

[159]	 Paul	Tyma.	Thousands	of	threads	and	blocking	i/o.http://www.mailinator.com/tymaPaulMultithreaded.pdf,	2008.
Robbert	van	Renesse.	Goal-oriented	programming,	or	composition	using	events,	or

[160]	 threads	considered	harmful.	In	ACM	SIGOPS	European	Workshop	on	Support	for
Composing	Distributed	Applications,	pages	82–87,	1998.

[161]	 Joost	S.	M.	Verhofstad.	Recovery	techniques	for	database	systems.	ACM	Comput.
Surv.,	10(2):167–195,	June	1978.

[162]	

Michael	Vrable,	Justin	Ma,	Jay	Chen,	David	Moore,	Erik	Vandekieft,	Alex	C.
Snoeren,	Geoffrey	M.	Voelker,	and	Stefan	Savage.	Scalability,	fidelity,	and
containment	in	the	Potemkin	virtual	honeyfarm.	In	Proceedings	of	the	twentieth	ACM
Symposium	on	Operating	Systems	Principles,	SOSP	’05,	pages	148–162,	2005.

[163]	
Robert	Wahbe,	Steven	Lucco,	Thomas	E.	Anderson,	and	Susan	L.	Graham.	Efficient
software-based	fault	isolation.	In	Proceedings	of	the	fourteenth	ACM	Symposium	on
Operating	Systems	Principles,	SOSP	’93,	pages	203–216,	1993.

[164]	 Carl	A.	Waldspurger.	Memory	resource	management	in	VMware	ESX	server.	SIGOPS
Oper.	Syst.	Rev.,	36(SI):181–194,	December	2002.

[165]	
Andrew	Whitaker,	Marianne	Shaw,	and	Steven	D.	Gribble.	Scale	and	performance	in
the	Denali	isolation	kernel.	In	Proceedings	of	the	fifth	USENIX	Symposium	on
Operating	Systems	Design	and	Implementation,	OSDI	’02,	pages	195–209,	2002.

[166]	
J.	Wilkes,	R.	Golding,	C.	Staelin,	and	T.	Sullivan.	The	HP	AutoRAID	hierarchical
storage	system.	In	Proceedings	of	the	fifteenth	ACM	Symposium	on	Operating
Systems	Principles,	SOSP	’95,	pages	96–108,	1995.

[167]	

Alec	Wolman,	M.	Voelker,	Nitin	Sharma,	Neal	Cardwell,	Anna	Karlin,	and	Henry	M.
Levy.	On	the	scale	and	performance	of	cooperative	web	proxy	caching.	In	Proceedings
of	the	seventeenth	ACM	Symposium	on	Operating	Systems	Principles,	SOSP	’99,
pages	16–31,	1999.

[168]	
W.	Wulf,	E.	Cohen,	W.	Corwin,	A.	Jones,	R.	Levin,	C.	Pierson,	and	F.	Pollack.	Hydra:
the	kernel	of	a	multiprocessor	operating	system.	Commun.	ACM,	17(6):337–345,	June
1974.

[169]	

Bennet	Yee,	David	Sehr,	Gregory	Dardyk,	J.	Bradley	Chen,	Robert	Muth,	Tavis
Ormandy,	Shiki	Okasaka,	Neha	Narula,	and	Nicholas	Fullagar.	Native	Client:	a
sandbox	for	portable,	untrusted	x86	native	code.	In	Proceedings	of	the	2009	30th	IEEE
Symposium	on	Security	and	Privacy,	SP	’09,	pages	79–93,	2009.

[170]	 Nickolai	Zeldovich,	Silas	Boyd-Wickizer,	Eddie	Kohler,	and	David	Mazières.	Making
information	flow	explicit	in	HiStar.	Commun.	ACM,	54(11):93–101,	November	2011.

Glossary

absolute	path
A	file	path	name	interpreted	relative	to	the	root	directory.

abstract	virtual	machine
The	interface	provided	by	an	operating	system	to	its	applications,	including	the
system	call	interface,	the	memory	abstraction,	exceptions,	and	signals.

ACID	properties
A	mnemonic	for	the	properties	of	a	transaction:	atomicity,	consistency,	isolation,	and
durability.

acquire-all/release-all
A	design	pattern	to	provide	atomicity	of	a	request	consisting	of	multiple	operations.
A	thread	acquires	all	of	the	locks	it	might	need	before	starting	to	process	a	request;	it
releases	the	locks	once	the	request	is	done.

address	translation
The	conversion	from	the	memory	address	the	program	thinks	it	is	referencing	to	the
physical	location	of	the	memory.

affinity	scheduling
A	scheduling	policy	where	tasks	are	preferentially	scheduled	onto	the	same	processor
they	had	previously	been	assigned,	to	improve	cache	reuse.

annual	disk	failure	rate
The	fraction	of	disks	expected	to	failure	each	year.

API
See:	application	programming	interface.

application	programming	interface
The	system	call	interface	provided	by	an	operating	system	to	applications.

arm
An	attachment	allowing	the	motion	of	the	disk	head	across	a	disk	surface.

arm	assembly
A	motor	plus	the	set	of	disk	arms	needed	to	position	a	disk	head	to	read	or	write	each
surface	of	the	disk.

arrival	rate
The	rate	at	which	tasks	arrive	for	service.

asynchronous	I/O
A	design	pattern	for	system	calls	to	allow	a	single-threaded	process	to	make	multiple
concurrent	I/O	requests.	When	the	process	issues	an	I/O	request,	the	system	call
returns	immediately.	The	process	later	on	receives	a	notification	when	the	I/O
completes.

asynchronous	procedure	call
A	procedure	call	where	the	caller	starts	the	function,	continues	execution
concurrently	with	the	called	function,	and	later	waits	for	the	function	to	complete.

atomic	commit
The	moment	when	a	transaction	commits	to	apply	all	of	its	updates.

atomic	memory
The	value	stored	in	memory	is	the	last	value	stored	by	one	of	the	processors,	not	a
mixture	of	the	updates	of	different	processors.

atomic	operations
Indivisible	operations	that	cannot	be	interleaved	with	or	split	by	other	operations.

atomic	read-modify-write	instruction
A	processor-specific	instruction	that	lets	one	thread	temporarily	have	exclusive	and
atomic	access	to	a	memory	location	while	the	instruction	executes.	Typically,	the
instruction	(atomically)	reads	a	memory	location,	does	some	simple	arithmetic
operation	to	the	value,	and	stores	the	result.

attribute	record
In	NTFS,	a	variable-size	data	structure	containing	either	file	data	or	file	metadata.

availability
The	percentage	of	time	that	a	system	is	usable.

average	seek	time
The	average	time	across	seeks	between	each	possible	pair	of	tracks	on	a	disk.

AVM
See:	abstract	virtual	machine.

backup
A	logically	or	physically	separate	copy	of	a	system’s	main	storage.

base	and	bound	memory	protection
An	early	system	for	memory	protection	where	each	process	is	limited	to	a	specific
range	of	physical	memory.

batch	operating	system
An	early	type	of	operating	system	that	efficiently	ran	a	queue	of	tasks.	While	one
program	was	running,	another	was	being	loaded	into	memory.

bathtub	model
A	model	of	disk	device	failure	combining	device	infant	mortality	and	wear	out.

Belady’s	anomaly
For	some	cache	replacement	policies	and	some	reference	patterns,	adding	space	to	a
cache	can	hurt	the	cache	hit	rate.

best	fit
A	storage	allocation	policy	that	attempts	to	place	a	newly	allocated	file	in	the
smallest	free	region	that	is	large	enough	to	hold	it.

BIOS
The	initial	code	run	when	an	Intel	x86	computer	boots;	acronym	for	Basic
Input/Output	System.	See	also:	Boot	ROM.

bit	error	rate
The	non-recoverable	read	error	rate.

bitmap
A	data	structure	for	block	allocation	where	each	block	is	represented	by	one	bit.

block	device
An	I/O	device	that	allows	data	to	be	read	or	written	in	fixed-sized	blocks.

block	group
A	set	of	nearby	disk	tracks.

block	integrity	metadata
Additional	data	stored	with	a	block	to	allow	the	software	to	validate	that	the	block
has	not	been	corrupted.

blocking	bounded	queue

A	bounded	queue	where	a	thread	trying	to	remove	an	item	from	an	empty	queue	will
wait	until	an	item	is	available,	and	a	thread	trying	to	put	an	item	into	a	full	queue	will
wait	until	there	is	room.

Bohrbugs
Bugs	that	are	deterministic	and	reproducible,	given	the	same	program	input.	See	also:
Heisenbugs.

Boot	ROM
Special	read-only	memory	containing	the	initial	instructions	for	booting	a	computer.

bootloader
Program	stored	at	a	fixed	position	on	disk	(or	flash	RAM)	to	load	the	operating
system	into	memory	and	start	it	executing.

bounded	queue
A	queue	with	a	fixed	size	limit	on	the	number	of	items	stored	in	the	queue.

bounded	resources
A	necessary	condition	for	deadlock:	there	are	a	finite	number	of	resources	that
threads	can	simultaneously	use.

buffer	overflow	attack
An	attack	that	exploits	a	bug	where	input	can	overflow	the	buffer	allocated	to	hold	it,
overwriting	other	important	program	data	structures	with	data	provided	by	the
attacker.	One	common	variation	overflows	a	buffer	allocated	on	the	stack	(e.g.,	a
local,	automatic	variable)	and	replaces	the	function’s	return	address	with	a	return
address	specified	by	the	attacker,	possibly	to	code	“pushed”	onto	the	stack	with	the
overflowing	input.

bulk	synchronous
A	type	of	parallel	application	where	work	is	split	into	independent	tasks	and	where
each	task	completes	before	the	results	of	any	of	the	tasks	can	be	used.

bulk	synchronous	parallel	programming
See:	data	parallel	programming.

bursty	distribution
A	probability	distribution	that	is	less	evenly	distributed	around	the	mean	value	than
an	exponential	distribution.	See:	exponential	distribution.	Compare:	heavy-tailed
distribution.

busy-waiting
A	thread	spins	in	a	loop	waiting	for	a	concurrent	event	to	occur,	consuming	CPU
cycles	while	it	is	waiting.

cache
A	copy	of	data	that	can	be	accessed	more	quickly	than	the	original.

cache	hit
The	cache	contains	the	requested	item.

cache	miss
The	cache	does	not	contain	the	requested	item.

checkpoint
A	consistent	snapshot	of	the	entire	state	of	a	process,	including	the	contents	of
memory	and	processor	registers.

child	process
A	process	created	by	another	process.	See	also:	parent	process.

Circular	SCAN
See:	CSCAN.

circular	waiting
A	necessary	condition	for	deadlock	to	occur:	there	is	a	set	of	threads	such	that	each
thread	is	waiting	for	a	resource	held	by	another.

client-server	communication
Two-way	communication	between	processes,	where	the	client	sends	a	request	to	the
server	to	do	some	task,	and	when	the	operation	is	complete,	the	server	replies	back	to
the	client.

clock	algorithm
A	method	for	identifying	a	not	recently	used	page	to	evict.	The	algorithm	sweeps
through	each	page	frame:	if	the	page	use	bit	is	set,	it	is	cleared;	if	the	use	bit	is	not
set,	the	page	is	reclaimed.

cloud	computing
A	model	of	computing	where	large-scale	applications	run	on	shared	computing	and
storage	infrastructure	in	data	centers	instead	of	on	the	user’s	own	computer.

commit
The	outcome	of	a	transaction	where	all	of	its	updates	occur.

compare-and-swap
An	atomic	read-modify-write	instruction	that	first	tests	the	value	of	a	memory
location,	and	if	the	value	has	not	been	changed,	sets	it	to	a	new	value.

compute-bound	task
A	task	that	primarily	uses	the	processor	and	does	little	I/O.

computer	virus
A	computer	program	that	modifies	an	operating	system	or	application	to	copy	itself
from	computer	to	computer	without	the	computer	owner’s	permission	or	knowledge.
Once	installed	on	a	computer,	a	virus	often	provides	the	attacker	control	over	the
system’s	resources	or	data.

concurrency
Multiple	activities	that	can	happen	at	the	same	time.

condition	variable
A	synchronization	variable	that	enables	a	thread	to	efficiently	wait	for	a	change	to
shared	state	protected	by	a	lock.

continuation
A	data	structure	used	in	event-driven	programming	that	keeps	track	of	a	task’s	current
state	and	its	next	step.

cooperating	threads
Threads	that	read	and	write	shared	state.

cooperative	caching
Using	the	memory	of	nearby	nodes	over	a	network	as	a	cache	to	avoid	the	latency	of
going	to	disk.

cooperative	multi-threading
Each	thread	runs	without	interruption	until	it	explicitly	relinquishes	control	of	the
processor,	e.g.,	by	exiting	or	calling	thread_yield.

copy-on-write
A	method	of	sharing	physical	memory	between	two	logically	distinct	copies	(e.g.,	in

different	processes).	Each	shared	page	is	marked	as	read-only	so	that	the	operating
system	kernel	is	invoked	and	can	make	a	copy	of	the	page	if	either	process	tries	to
write	it.	The	process	can	then	modify	the	copy	and	resume	normal	execution.

copy-on-write	file	system
A	file	system	where	an	update	to	the	file	system	is	made	by	writing	new	versions	of
modified	data	and	metadata	blocks	to	free	disk	blocks.	The	new	blocks	can	point	to
unchanged	blocks	in	the	previous	version	of	the	file	system.	See	also:	COW	file
system.

core	map
A	data	structure	used	by	the	memory	management	system	to	keep	track	of	the	state	of
physical	page	frames,	such	as	which	processes	reference	the	page	frame.

COW	file	system
See:	copy-on-write	file	system.

critical	path
The	minimum	sequence	of	steps	for	a	parallel	application	to	compute	its	result,	even
with	infinite	resources.

critical	section
A	sequence	of	code	that	operates	on	shared	state.

cross-site	scripting
An	attack	against	a	client	computer	that	works	by	compromising	a	server	visited	by
the	client.	The	compromised	server	then	provides	scripting	code	to	the	client	that
accesses	and	downloads	the	client’s	sensitive	data.

cryptographic	signature
A	specially	designed	function	of	a	data	block	and	a	private	cryptographic	key	that
allows	someone	with	the	corresponding	public	key	to	verify	that	an	authorized	entity
produced	the	data	block.	It	is	computationally	intractable	for	an	attacker	without	the
private	key	to	create	a	different	data	block	with	a	valid	signature.

CSCAN
A	variation	of	the	SCAN	disk	scheduling	policy	in	which	the	disk	only	services
requests	when	the	head	is	traveling	in	one	direction.	See	also:	Circular	SCAN.

current	working	directory
The	current	directory	of	the	process,	used	for	interpreting	relative	path	names.

data	breakpoint
A	request	to	stop	the	execution	of	a	program	when	it	references	or	modifies	a
particular	memory	location.

data	parallel	programming
A	programming	model	where	the	computation	is	performed	in	parallel	across	all
items	in	a	data	set.

deadlock
A	cycle	of	waiting	among	a	set	of	threads,	where	each	thread	waits	for	some	other
thread	in	the	cycle	to	take	some	action.

deadlocked	state
The	system	has	at	least	one	deadlock.

declustering
A	technique	for	reducing	the	recovery	time	after	a	disk	failure	in	a	RAID	system	by
spreading	redundant	disk	blocks	across	many	disks.

defense	in	depth
Improving	security	through	multiple	layers	of	protection.

defragment
Coalesce	scattered	disk	blocks	to	improve	spatial	locality,	by	reading	data	from	its
present	storage	location	and	rewriting	it	to	a	new,	more	compact,	location.

demand	paging
Using	address	translation	hardware	to	run	a	process	without	all	of	its	memory
physically	present.	When	the	process	references	a	missing	page,	the	hardware	traps	to
the	kernel,	which	brings	the	page	into	memory	from	disk.

deterministic	debugging
The	ability	to	re-execute	a	concurrent	process	with	the	same	schedule	and	sequence
of	internal	and	external	events.

device	driver
Operating	system	code	to	initialize	and	manage	a	particular	I/O	device.

direct	mapped	cache
Only	one	entry	in	the	cache	can	hold	a	specific	memory	location,	so	on	a	lookup,	the
system	must	check	the	address	against	only	that	entry	to	determine	if	there	is	a	cache
hit.

direct	memory	access
Hardware	I/O	devices	transfer	data	directly	into/out	of	main	memory	at	a	location
specified	by	the	operating	system.	See	also:	DMA.

dirty	bit
A	status	bit	in	a	page	table	entry	recording	whether	the	contents	of	the	page	have
been	modified	relative	to	what	is	stored	on	disk.

disk	buffer	memory
Memory	in	the	disk	controller	to	buffer	data	being	read	or	written	to	the	disk.

disk	infant	mortality
The	device	failure	rate	is	higher	than	normal	during	the	first	few	weeks	of	use.

disk	wear	out
The	device	failure	rate	rises	after	the	device	has	been	in	operation	for	several	years.

DMA
See:	direct	memory	access.

dnode
In	ZFS,	a	file	is	represented	by	variable-depth	tree	whose	root	is	a	dnode	and	whose
leaves	are	its	data	blocks.

double	indirect	block
A	storage	block	containing	pointers	to	indirect	blocks.

double-checked	locking
A	pitfall	in	concurrent	code	where	a	data	structure	is	lazily	initialized	by	first,
checking	without	a	lock	if	it	has	been	set,	and	if	not,	acquiring	a	lock	and	checking
again,	before	calling	the	initialization	function.	With	instruction	re-ordering,	double-
checked	locking	can	fail	unexpectedly.

dual	redundancy	array
A	RAID	storage	algorithm	using	two	redundant	disk	blocks	per	array	to	tolerate	two
disk	failures.	See	also:	RAID	6.

dual-mode	operation

Hardware	processor	that	has	(at	least)	two	privilege	levels:	one	for	executing	the
kernel	with	complete	access	to	the	capabilities	of	the	hardware	and	a	second	for
executing	user	code	with	restricted	rights.	See	also:	kernel-mode	operation.	See	also:
user-mode	operation.

dynamically	loadable	device	driver
Software	to	manage	a	specific	device,	interface,	or	chipset,	added	to	the	operating
system	kernel	after	the	kernel	starts	running.

earliest	deadline	first
A	scheduling	policy	that	performs	the	task	that	needs	to	be	completed	first,	but	only
if	it	can	be	finished	in	time.

EDF
See:	earliest	deadline	first.

efficiency
The	lack	of	overhead	in	implementing	an	abstraction.

erasure	block
The	unit	of	erasure	in	a	flash	memory	device.	Before	any	portion	of	an	erasure	block
can	be	over-written,	every	cell	in	the	entire	erasure	block	must	be	set	to	a	logical	“1.”

error	correcting	code
A	technique	for	storing	data	redundantly	to	allow	for	the	original	data	to	be	recovered
even	though	some	bits	in	a	disk	sector	or	flash	memory	page	are	corrupted.

event-driven	programming
A	coding	design	pattern	where	a	thread	spins	in	a	loop;	each	iteration	gets	and
processes	the	next	I/O	event.

exception
See:	processor	exception.

executable	image
File	containing	a	sequence	of	machine	instructions	and	initial	data	values	for	a
program.

execution	stack
Space	to	store	the	state	of	local	variables	during	procedure	calls.

exponential	distribution
A	convenient	probability	distribution	for	use	in	queueing	theory	because	it	has	the
property	of	being	memoryless.	For	a	continuous	random	variable	with	a	mean	of	1⁄λ,
the	probability	density	function	is	f(x)	=	λ	times	e	raised	to	the	-λx.

extent
A	variable-sized	region	of	a	file	that	is	stored	in	a	contiguous	region	on	the	storage
device.

external	fragmentation
In	a	system	that	allocates	memory	in	contiguous	regions,	the	unusable	memory
between	valid	contiguous	allocations.	A	new	request	for	memory	may	find	no	single
free	region	that	is	both	contiguous	and	large	enough,	even	though	there	is	enough
free	memory	in	aggregate.

fairness
Partitioning	of	shared	resources	between	users	or	applications	either	equally	or
balanced	according	to	some	desired	priorities.

false	sharing

Extra	inter-processor	communication	required	because	a	single	cache	entry	contains
portions	of	two	different	data	structures	with	different	sharing	patterns.

fate	sharing
When	a	crash	in	one	module	implies	a	crash	in	another.	For	example,	a	library	shares
fate	with	the	application	it	is	linked	with;	if	either	crashes,	the	process	exits.

fault	isolation
An	error	in	one	application	should	not	disrupt	other	applications,	or	even	the
operating	system	itself.

file
A	named	collection	of	data	in	a	file	system.

file	allocation	table
An	array	of	entries	in	the	FAT	file	system	stored	in	a	reserved	area	of	the	volume,
where	each	entry	corresponds	to	one	file	data	block,	and	points	to	the	next	block	in
the	file.

file	data
Contents	of	a	file.

file	descriptor
A	handle	to	an	open	file,	device,	or	channel.	See	also:	file	handle.	See	also:	file
stream.

file	directory
A	list	of	human-readable	names	plus	a	mapping	from	each	name	to	a	specific	file	or
sub-directory.

file	handle
See:	file	descriptor.

file	index	structure
A	persistently	stored	data	structure	used	to	locate	the	blocks	of	the	file.

file	metadata
Information	about	a	file	that	is	managed	by	the	operating	system,	but	not	including
the	file	contents.

file	stream
See:	file	descriptor.

file	system
An	operating	system	abstraction	that	provides	persistent,	named	data.

file	system	fingerprint
A	checksum	across	the	entire	file	system.

fill-on-demand
A	method	for	starting	a	process	before	all	of	its	memory	is	brought	in	from	disk.	If
the	first	access	to	the	missing	memory	triggers	a	trap	to	the	kernel,	the	kernel	can	fill
the	memory	and	then	resume.

fine-grained	locking
A	way	to	increase	concurrency	by	partitioning	an	object’s	state	into	different	subsets
each	protected	by	a	different	lock.

finished	list
The	set	of	threads	that	are	complete	but	not	yet	de-allocated,	e.g.,	because	a	join	may
read	the	return	value	from	the	thread	control	block.

first-in-first-out

A	scheduling	policy	that	performs	each	task	in	the	order	in	which	it	arrives.
flash	page	failure

A	flash	memory	device	failure	where	the	data	stored	on	one	or	more	individual	pages
of	flash	are	lost,	but	the	rest	of	the	flash	continues	to	operate	correctly.

flash	translation	layer
A	layer	that	maps	logical	flash	pages	to	different	physical	pages	on	the	flash	device.
See	also:	FTL.

flash	wear	out
After	some	number	of	program-erase	cycles,	a	given	flash	storage	cell	may	no	longer
be	able	to	reliably	store	information.

fork-join	parallelism
A	type	of	parallel	programming	where	threads	can	be	created	(forked)	to	do	work	in
parallel	with	a	parent	thread;	a	parent	may	asynchronously	wait	for	a	child	thread	to
finish	(join).

free	space	map
A	file	system	data	structure	used	to	track	which	storage	blocks	are	free	and	which	are
in	use.

FTL
See:	flash	translation	layer.

full	disk	failure
When	a	disk	device	stops	being	able	to	service	reads	or	writes	to	all	sectors.

full	flash	drive	failure
When	a	flash	device	stops	being	able	to	service	reads	or	writes	to	all	memory	pages.

fully	associative	cache
Any	entry	in	the	cache	can	hold	any	memory	location,	so	on	a	lookup,	the	system
must	check	the	address	against	all	of	the	entries	in	the	cache	to	determine	if	there	is	a
cache	hit.

gang	scheduling
A	scheduling	policy	for	multiprocessors	that	performs	all	of	the	runnable	tasks	for	a
particular	process	at	the	same	time.

Global	Descriptor	Table
The	x86	terminology	for	a	segment	table	for	shared	segments.	A	Local	Descriptor
Table	is	used	for	segments	that	are	private	to	the	process.

grace	period
For	a	shared	object	protected	by	a	read-copy-update	lock,	the	time	from	when	a	new
version	of	a	shared	object	is	published	until	the	last	reader	of	the	old	version	is
guaranteed	to	be	finished.

green	threads
A	thread	system	implemented	entirely	at	user-level	without	any	reliance	on	operating
system	kernel	services,	other	than	those	designed	for	single-threaded	processes.

group	commit
A	technique	that	batches	multiple	transaction	commits	into	a	single	disk	operation.

guest	operating	system
An	operating	system	running	in	a	virtual	machine.

hard	link
The	mapping	between	a	file	name	and	the	underlying	file,	typically	when	there	are

multiple	path	names	for	the	same	underlying	file.
hardware	abstraction	layer

A	module	in	the	operating	system	that	hides	the	specifics	of	different	hardware
implementations.	Above	this	layer,	the	operating	system	is	portable.

hardware	timer
A	hardware	device	that	can	cause	a	processor	interrupt	after	some	delay,	either	in
time	or	in	instructions	executed.

head
The	component	that	writes	the	data	to	or	reads	the	data	from	a	spinning	disk	surface.

head	crash
An	error	where	the	disk	head	physically	scrapes	the	magnetic	surface	of	a	spinning
disk	surface.

head	switch	time
The	time	it	takes	to	re-position	the	disk	arm	over	the	corresponding	track	on	a
different	surface,	before	a	read	or	write	can	begin.

heap
Space	to	store	dynamically	allocated	data	structures.

heavy-tailed	distribution
A	probability	distribution	such	that	events	far	from	the	mean	value	(in	aggregate)
occur	with	significant	probability.	When	used	for	the	distribution	of	time	between
events,	the	remaining	time	to	the	next	event	is	positively	related	to	the	time	already
spent	waiting	—	you	expect	to	wait	longer	the	longer	you	have	already	waited.

Heisenbugs
Bugs	in	concurrent	programs	that	disappear	or	change	behavior	when	you	try	to
examine	them.	See	also:	Bohrbugs.

hint
A	result	of	some	computation	whose	results	may	no	longer	be	valid,	but	where	using
an	invalid	hint	will	trigger	an	exception.

home	directory
The	sub-directory	containing	a	user’s	files.

host	operating	system
An	operating	system	that	provides	the	abstraction	of	a	virtual	machine,	to	run	another
operating	system	as	an	application.

host	transfer	time
The	time	to	transfer	data	between	the	host’s	memory	and	the	disk’s	buffer.

hyperthreading
See:	simultaneous	multi-threading.

I/O-bound	task
A	task	that	primarily	does	I/O,	and	does	little	processing.

idempotent
An	operation	that	has	the	same	effect	whether	executed	once	or	many	times.

incremental	checkpoint
A	consistent	snapshot	of	the	portion	of	process	memory	that	has	been	modified	since
the	previous	checkpoint.

independent	threads
Threads	that	operate	on	completely	separate	subsets	of	process	memory.

indirect	block
A	storage	block	containing	pointers	to	file	data	blocks.

inode
In	the	Unix	Fast	File	System	(FFS)	and	related	file	systems,	an	inode	stores	a	file’s
metadata,	including	an	array	of	pointers	that	can	be	used	to	find	all	of	the	file’s
blocks.	The	term	inode	is	sometimes	used	more	generally	to	refer	to	any	file	system’s
per-file	metadata	data	structure.

inode	array
The	fixed	location	on	disk	containing	all	of	the	file	system’s	inodes.	See	also:
inumber.

intentions
The	set	of	writes	that	a	transaction	will	perform	if	the	transaction	commits.

internal	fragmentation
With	paged	allocation	of	memory,	the	unusable	memory	at	the	end	of	a	page	because
a	process	can	only	be	allocated	memory	in	page-sized	chunks.

interrupt
An	asynchronous	signal	to	the	processor	that	some	external	event	has	occurred	that
may	require	its	attention.

interrupt	disable
A	privileged	hardware	instruction	to	temporarily	defer	any	hardware	interrupts,	to
allow	the	kernel	to	complete	a	critical	task.

interrupt	enable
A	privileged	hardware	instruction	to	resume	hardware	interrupts,	after	a	non-
interruptible	task	is	completed.

interrupt	handler
A	kernel	procedure	invoked	when	an	interrupt	occurs.

interrupt	stack
A	region	of	memory	for	holding	the	stack	of	the	kernel’s	interrupt	handler.	When	an
interrupt,	processor	exception,	or	system	call	trap	causes	a	context	switch	into	the
kernel,	the	hardware	changes	the	stack	pointer	to	point	to	the	base	of	the	kernel’s
interrupt	stack.

interrupt	vector	table
A	table	of	pointers	in	the	operating	system	kernel,	indexed	by	the	type	of	interrupt,
with	each	entry	pointing	to	the	first	instruction	of	a	handler	procedure	for	that
interrupt.

inumber
The	index	into	the	inode	array	for	a	particular	file.

inverted	page	table
A	hash	table	used	for	translation	between	virtual	page	numbers	and	physical	page
frames.

kernel	thread
A	thread	that	is	implemented	inside	the	operating	system	kernel.

kernel-mode	operation
The	processor	executes	in	an	unrestricted	mode	that	gives	the	operating	system	full
control	over	the	hardware.	Compare:	user-mode	operation.

LBA

See:	logical	block	address.
least	frequently	used

A	cache	replacement	policy	that	evicts	whichever	block	has	been	used	the	least	often,
over	some	period	of	time.	See	also:	LFU.

least	recently	used
A	cache	replacement	policy	that	evicts	whichever	block	has	not	been	used	for	the
longest	period	of	time.	See	also:	LRU.

LFU
See:	least	frequently	used.

Little’s	Law
In	a	stable	system	where	the	arrival	rate	matches	the	departure	rate,	the	number	of
tasks	in	the	system	equals	the	system’s	throughput	multiplied	by	the	average	time	a
task	spends	in	the	system:	N	=	XR.

liveness	property
A	constraint	on	program	behavior	such	that	it	always	produces	a	result.	Compare:
safety	property.

locality	heuristic
A	file	system	block	allocation	policy	that	places	files	in	nearby	disk	sectors	if	they
are	likely	to	be	read	or	written	at	the	same	time.

lock
A	type	of	synchronization	variable	used	for	enforcing	atomic,	mutually	exclusive
access	to	shared	data.

lock	ordering
A	widely	used	approach	to	prevent	deadlock,	where	locks	are	acquired	in	a	pre-
determined	order.

lock-free	data	structures
Concurrent	data	structure	that	guarantees	progress	for	some	thread:	some	method	will
finish	in	a	finite	number	of	steps,	regardless	of	the	state	of	other	threads	executing	in
the	data	structure.

log
An	ordered	sequence	of	steps	saved	to	persistent	storage.

logical	block	address
A	unique	identifier	for	each	disk	sector	or	flash	memory	block,	typically	numbered
from	1	to	the	size	of	the	disk/flash	device.	The	disk	interface	converts	this	identifier
to	the	physical	location	of	the	sector/block.	See	also:	LBA.

logical	separation
A	backup	storage	policy	where	the	backup	is	stored	at	the	same	location	as	the
primary	storage,	but	with	restricted	access,	e.g.,	to	prevent	updates.

LRU
See:	least	recently	used.

master	file	table
In	NTFS,	an	array	of	records	storing	metadata	about	each	file.	See	also:	MFT.

maximum	seek	time
The	time	it	takes	to	move	the	disk	arm	from	the	innermost	track	to	the	outermost	one
or	vice	versa.

max-min	fairness

A	scheduling	objective	to	maximize	the	minimum	resource	allocation	given	to	each
task.

MCS	lock
An	efficient	spinlock	implementation	where	each	waiting	thread	spins	on	a	separate
memory	location.

mean	time	to	data	loss
The	expected	time	until	a	RAID	system	suffers	an	unrecoverable	error.	See	also:
MTTDL.

mean	time	to	failure
The	average	time	that	a	system	runs	without	failing.	See	also:	MTTF.

mean	time	to	repair
The	average	time	that	it	takes	to	repair	a	system	once	it	has	failed.	See	also:	MTTR.

memory	address	alias
Two	or	more	virtual	addresses	that	refer	to	the	same	physical	memory	location.

memory	barrier
An	instruction	that	prevents	the	compiler	and	hardware	from	reordering	memory
accesses	across	the	barrier	—	no	accesses	before	the	barrier	are	moved	after	the
barrier	and	no	accesses	after	the	barrier	are	moved	before	the	barrier.

memory	protection
Hardware	or	software-enforced	limits	so	that	each	application	process	can	read	and
write	only	its	own	memory	and	not	the	memory	of	the	operating	system	or	any	other
process.

memoryless	property
For	a	probability	distribution	for	the	time	between	events,	the	remaining	time	to	the
next	event	does	not	depend	on	the	amount	of	time	already	spent	waiting.	See	also:
exponential	distribution.

memory-mapped	file
A	file	whose	contents	appear	to	be	a	memory	segment	in	a	process’s	virtual	address
space.

memory-mapped	I/O
Each	I/O	device’s	control	registers	are	mapped	to	a	range	of	physical	addresses	on
the	memory	bus.

memristor
A	type	of	solid-state	persistent	storage	using	a	circuit	element	whose	resistance
depends	on	the	amounts	and	directions	of	currents	that	have	flowed	through	it	in	the
past.

MFQ
See:	multi-level	feedback	queue.

MFT
See:	master	file	table.

microkernel
An	operating	system	design	where	the	kernel	itself	is	kept	small,	and	instead	most	of
the	functionality	of	a	traditional	operating	system	kernel	is	put	into	a	set	of	user-level
processes,	or	servers,	accessed	from	user	applications	via	interprocess
communication.

MIN	cache	replacement

See:	optimal	cache	replacement.
minimum	seek	time

The	time	to	move	the	disk	arm	to	the	next	adjacent	track.
MIPS

An	early	measure	of	processor	performance:	millions	of	instructions	per	second.
mirroring

A	system	for	redundantly	storing	data	on	disk	where	each	block	of	data	is	stored	on
two	disks	and	can	be	read	from	either.	See	also:	RAID	1.

model
A	simplification	that	tries	to	capture	the	most	important	aspects	of	a	more	complex
system’s	behavior.

monolithic	kernel
An	operating	system	design	where	most	of	the	operating	system	functionality	is
linked	together	inside	the	kernel.

Moore’s	Law
Transistor	density	increases	exponentially	over	time.	Similar	exponential
improvements	have	occurred	in	many	other	component	technologies;	in	the	popular
press,	these	often	go	by	the	same	term.

mount
A	mapping	of	a	path	in	the	existing	file	system	to	the	root	directory	of	another	file
system	volume.

MTTDL
See:	mean	time	to	data	loss.

MTTF
See:	mean	time	to	failure.

MTTR
See:	mean	time	to	repair.

multi-level	feedback	queue
A	scheduling	algorithm	with	multiple	priority	levels	managed	using	round	robin
queues,	where	a	task	is	moved	between	priority	levels	based	on	how	much	processing
time	it	has	used.	See	also:	MFQ.

multi-level	index
A	tree	data	structure	to	keep	track	of	the	disk	location	of	each	data	block	in	a	file.

multi-level	paged	segmentation
A	virtual	memory	mechanism	where	physical	memory	is	allocated	in	page	frames,
virtual	addresses	are	segmented,	and	each	segment	is	translated	to	physical	addresses
through	multiple	levels	of	page	tables.

multi-level	paging
A	virtual	memory	mechanism	where	physical	memory	is	allocated	in	page	frames,
and	virtual	addresses	are	translated	to	physical	addresses	through	multiple	levels	of
page	tables.

multiple	independent	requests
A	necessary	condition	for	deadlock	to	occur:	a	thread	first	acquires	one	resource	and
then	tries	to	acquire	another.

multiprocessor	scheduling	policy
A	policy	to	determine	how	many	processors	to	assign	each	process.

multiprogramming
See:	multitasking.

multitasking
The	ability	of	an	operating	system	to	run	multiple	applications	at	the	same	time,	also
called	multiprogramming.

multi-threaded	process
A	process	with	multiple	threads.

multi-threaded	program
A	generalization	of	a	single-threaded	program.	Instead	of	only	one	logical	sequence
of	steps,	the	program	has	multiple	sequences,	or	threads,	executing	at	the	same	time.

mutual	exclusion
When	one	thread	uses	a	lock	to	prevent	concurrent	access	to	a	shared	data	structure.

mutually	recursive	locking
A	deadlock	condition	where	two	shared	objects	call	into	each	other	while	still	holding
their	locks.	Deadlock	occurs	if	one	thread	holds	the	lock	on	the	first	object	and	calls
into	the	second,	while	the	other	thread	holds	the	lock	on	the	second	object	and	calls
into	the	first.

named	data
Data	that	can	be	accessed	by	a	human-readable	identifier,	such	as	a	file	name.

native	command	queueing
See:	tagged	command	queueing.

NCQ
See:	native	command	queueing.

nested	waiting
A	deadlock	condition	where	one	shared	object	calls	into	another	shared	object	while
holding	the	first	object’s	lock,	and	then	waits	on	a	condition	variable.	Deadlock
results	if	the	thread	that	can	signal	the	condition	variable	needs	the	first	lock	to	make
progress.

network	effect
The	increase	in	value	of	a	product	or	service	based	on	the	number	of	other	people
who	have	adopted	that	technology	and	not	just	its	intrinsic	capabilities.

no	preemption
A	necessary	condition	for	deadlock	to	occur:	once	a	thread	acquires	a	resource,	its
ownership	cannot	be	revoked	until	the	thread	acts	to	release	it.

non-blocking	data	structure
Concurrent	data	structure	where	a	thread	is	never	required	to	wait	for	another	thread
to	complete	its	operation.

non-recoverable	read	error
When	sufficient	bit	errors	occur	within	a	disk	sector	or	flash	memory	page,	such	that
the	original	data	cannot	be	recovered	even	after	error	correction.

non-resident	attribute
In	NTFS,	an	attribute	record	whose	contents	are	addressed	indirectly,	through	extent
pointers	in	the	master	file	table	that	point	to	the	contents	in	those	extents.

non-volatile	storage
Unlike	DRAM,	memory	that	is	durable	and	retains	its	state	across	crashes	and	power
outages.	See	also:	persistent	storage.	See	also:	stable	storage.

not	recently	used
A	cache	replacement	policy	that	evicts	some	block	that	has	not	been	referenced
recently,	rather	than	the	least	recently	used	block.

oblivious	scheduling
A	scheduling	policy	where	the	operating	system	assigns	threads	to	processors	without
knowledge	of	the	intent	of	the	parallel	application.

open	system
A	system	whose	source	code	is	available	to	the	public	for	modification	and	reuse,	or
a	system	whose	interfaces	are	defined	by	a	public	standards	process.

operating	system
A	layer	of	software	that	manages	a	computer’s	resources	for	its	users	and	their
applications.

operating	system	kernel
The	kernel	is	the	lowest	level	of	software	running	on	the	system,	with	full	access	to
all	of	the	capabilities	of	the	hardware.

optimal	cache	replacement
Replace	whichever	block	is	used	farthest	in	the	future.

overhead
The	added	resource	cost	of	implementing	an	abstraction	versus	using	the	underlying
hardware	resources	directly.

ownership	design	pattern
A	technique	for	managing	concurrent	access	to	shared	objects	in	which	at	most	one
thread	owns	an	object	at	any	time,	and	therefore	the	thread	can	access	the	shared	data
without	a	lock.

page	coloring
The	assignment	of	physical	page	frames	to	virtual	addresses	by	partitioning	frames
based	on	which	portions	of	the	cache	they	will	use.

page	fault
A	hardware	trap	to	the	operating	system	kernel	when	a	process	references	a	virtual
address	with	an	invalid	page	table	entry.

page	frame
An	aligned,	fixed-size	chunk	of	physical	memory	that	can	hold	a	virtual	page.

paged	memory
A	hardware	address	translation	mechanism	where	memory	is	allocated	in	aligned,
fixed-sized	chunks,	called	pages.	Any	virtual	page	can	be	assigned	to	any	physical
page	frame.

paged	segmentation
A	hardware	mechanism	where	physical	memory	is	allocated	in	page	frames,	but
virtual	addresses	are	segmented.

pair	of	stubs
A	pair	of	short	procedures	that	mediate	between	two	execution	contexts.

paravirtualization
A	virtual	machine	abstraction	that	allows	the	guest	operating	system	to	make	system
calls	into	the	host	operating	system	to	perform	hardware-specific	operations,	such	as
changing	a	page	table	entry.

parent	process

A	process	that	creates	another	process.	See	also:	child	process.
path

The	string	that	identifies	a	file	or	directory.
PCB

See:	process	control	block.
PCM

See:	phase	change	memory.
performance	predictability

Whether	a	system’s	response	time	or	other	performance	metric	is	consistent	over
time.

persistent	data
Data	that	is	stored	until	it	is	explicitly	deleted,	even	if	the	computer	storing	it	crashes
or	loses	power.

persistent	storage
See:	non-volatile	storage.

phase	change	behavior
Abrupt	changes	in	a	program’s	working	set,	causing	bursty	cache	miss	rates:	periods
of	low	cache	misses	interspersed	with	periods	of	high	cache	misses.

phase	change	memory
A	type	of	non-volatile	memory	that	uses	the	phase	of	a	material	to	represent	a	data
bit.	See	also:	PCM.

physical	address
An	address	in	physical	memory.

physical	separation
A	backup	storage	policy	where	the	backup	is	stored	at	a	different	location	than	the
primary	storage.

physically	addressed	cache
A	processor	cache	that	is	accessed	using	physical	memory	addresses.

pin
To	bind	a	virtual	resource	to	a	physical	resource,	such	as	a	thread	to	a	processor	or	a
virtual	page	to	a	physical	page.

platter
A	single	thin	round	plate	that	stores	information	in	a	magnetic	disk,	often	on	both
surfaces.

policy-mechanism	separation
A	system	design	principle	where	the	implementation	of	an	abstraction	is	independent
of	the	resource	allocation	policy	of	how	the	abstraction	is	used.

polling
An	alternative	to	hardware	interrupts,	where	the	processor	waits	for	an	asynchronous
event	to	occur,	by	looping,	or	busy-waiting,	until	the	event	occurs.

portability
The	ability	of	software	to	work	across	multiple	hardware	platforms.

precise	interrupts
All	instructions	that	occur	before	the	interrupt	or	exception,	according	to	the	program
execution,	are	completed	by	the	hardware	before	the	interrupt	handler	is	invoked.

preemption

When	a	scheduler	takes	the	processor	away	from	one	task	and	gives	it	to	another.
preemptive	multi-threading

The	operating	system	scheduler	may	switch	out	a	running	thread,	e.g.,	on	a	timer
interrupt,	without	any	explicit	action	by	the	thread	to	relinquish	control	at	that	point.

prefetch
To	bring	data	into	a	cache	before	it	is	needed.

principle	of	least	privilege
System	security	and	reliability	are	enhanced	if	each	part	of	the	system	has	exactly	the
privileges	it	needs	to	do	its	job	and	no	more.

priority	donation
A	solution	to	priority	inversion:	when	a	thread	waits	for	a	lock	held	by	a	lower
priority	thread,	the	lock	holder	is	temporarily	increased	to	the	waiter’s	priority	until
the	lock	is	released.

priority	inversion
A	scheduling	anomaly	that	occurs	when	a	high	priority	task	waits	indefinitely	for	a
resource	(such	as	a	lock)	held	by	a	low	priority	task,	because	the	low	priority	task	is
waiting	in	turn	for	a	resource	(such	as	the	processor)	held	by	a	medium	priority	task.

privacy
Data	stored	on	a	computer	is	only	accessible	to	authorized	users.

privileged	instruction
Instruction	available	in	kernel	mode	but	not	in	user	mode.

process
The	execution	of	an	application	program	with	restricted	rights	—	the	abstraction	for
protection	provided	by	the	operating	system	kernel.

process	control	block
A	data	structure	that	stores	all	the	information	the	operating	system	needs	about	a
particular	process:	e.g.,	where	it	is	stored	in	memory,	where	its	executable	image	is
on	disk,	which	user	asked	it	to	start	executing,	and	what	privileges	the	process	has.
See	also:	PCB.

process	migration
The	ability	to	take	a	running	program	on	one	system,	stop	its	execution,	and	resume	it
on	a	different	machine.

processor	exception
A	hardware	event	caused	by	user	program	behavior	that	causes	a	transfer	of	control
to	a	kernel	handler.	For	example,	attempting	to	divide	by	zero	causes	a	processor
exception	in	many	architectures.

processor	scheduling	policy
When	there	are	more	runnable	threads	than	processors,	the	policy	that	determines
which	threads	to	run	first.

processor	status	register
A	hardware	register	containing	flags	that	control	the	operation	of	the	processor,
including	the	privilege	level.

producer-consumer	communication
Interprocess	communication	where	the	output	of	one	process	is	the	input	of	another.

proprietary	system
A	system	that	is	under	the	control	of	a	single	company;	it	can	be	changed	at	any	time

by	its	provider	to	meet	the	needs	of	its	customers.
protection

The	isolation	of	potentially	misbehaving	applications	and	users	so	that	they	do	not
corrupt	other	applications	or	the	operating	system	itself.

publish
For	a	read-copy-update	lock,	a	single,	atomic	memory	write	that	updates	a	shared
object	protected	by	the	lock.	The	write	allows	new	reader	threads	to	observe	the	new
version	of	the	object.

queueing	delay
The	time	a	task	waits	in	line	without	receiving	service.

quiescent
For	a	read-copy-update	lock,	no	reader	thread	that	was	active	at	the	time	of	the	last
modification	is	still	active.

race	condition
When	the	behavior	of	a	program	relies	on	the	interleaving	of	operations	of	different
threads.

RAID
A	Redundant	Array	of	Inexpensive	Disks	(RAID)	is	a	system	that	spreads	data
redundantly	across	multiple	disks	in	order	to	tolerate	individual	disk	failures.

RAID	1
See:	mirroring.

RAID	5
See:	rotating	parity.

RAID	6
See:	dual	redundancy	array.

RAID	strip
A	set	of	several	sequential	blocks	placed	on	one	disk	by	a	RAID	block	placement
algorithm.

RAID	stripe
A	set	of	RAID	strips	and	their	parity	strip.

R-CSCAN
A	variation	of	the	CSCAN	disk	scheduling	policy	in	which	the	disk	takes	into
account	rotation	time.

RCU
See:	read-copy-update.

read	disturb	error
Reading	a	flash	memory	cell	a	large	number	of	times	can	cause	the	data	in
surrounding	cells	to	become	corrupted.

read-copy-update
A	synchronization	abstraction	that	allows	concurrent	access	to	a	data	structure	by
multiple	readers	and	a	single	writer	at	a	time.	See	also:	RCU.

readers/writers	lock
A	lock	which	allows	multiple	“reader”	threads	to	access	shared	data	concurrently
provided	they	never	modify	the	shared	data,	but	still	provides	mutual	exclusion
whenever	a	“writer”	thread	is	reading	or	modifying	the	shared	data.

ready	list

The	set	of	threads	that	are	ready	to	be	run	but	which	are	not	currently	running.
real-time	constraint

The	computation	must	be	completed	by	a	deadline	if	it	is	to	have	value.
recoverable	virtual	memory

The	abstraction	of	persistent	memory,	so	that	the	contents	of	a	memory	segment	can
be	restored	after	a	failure.

redo	logging
A	way	of	implementing	a	transaction	by	recording	in	a	log	the	set	of	writes	to	be
executed	when	the	transaction	commits.

relative	path
A	file	path	name	interpreted	as	beginning	with	the	process’s	current	working
directory.

reliability
A	property	of	a	system	that	does	exactly	what	it	is	designed	to	do.

request	parallelism
Parallel	execution	on	a	server	that	arises	from	multiple	concurrent	requests.

resident	attribute
In	NTFS,	an	attribute	record	whose	contents	are	stored	directly	in	the	master	file
table.

response	time
The	time	for	a	task	to	complete,	from	when	it	starts	until	it	is	done.

restart
The	resumption	of	a	process	from	a	checkpoint,	e.g.,	after	a	failure	or	for	debugging.

roll	back
The	outcome	of	a	transaction	where	none	of	its	updates	occur.

root	directory
The	top-level	directory	in	a	file	system.

root	inode
In	a	copy-on-write	file	system,	the	inode	table’s	inode:	the	disk	block	containing	the
metadata	needed	to	find	the	inode	table.

rotating	parity
A	system	for	redundantly	storing	data	on	disk	where	the	system	writes	several	blocks
of	data	across	several	disks,	protecting	those	blocks	with	one	redundant	block	stored
on	yet	another	disk.	See	also:	RAID	5.

rotational	latency
Once	the	disk	head	has	settled	on	the	right	track,	it	must	wait	for	the	target	sector	to
rotate	under	it.

round	robin
A	scheduling	policy	that	takes	turns	running	each	ready	task	for	a	limited	period
before	switching	to	the	next	task.

R-SCAN
A	variation	of	the	SCAN	disk	scheduling	policy	in	which	the	disk	takes	into	account
rotation	time.

safe	state
In	the	context	of	deadlock,	a	state	of	an	execution	such	that	regardless	of	the
sequence	of	future	resource	requests,	there	is	at	least	one	safe	sequence	of	decisions

as	to	when	to	satisfy	requests	such	that	all	pending	and	future	requests	are	met.
safety	property

A	constraint	on	program	behavior	such	that	it	never	computes	the	wrong	result.
Compare:	liveness	property.

sample	bias
A	measurement	error	that	occurs	when	some	members	of	a	group	are	less	likely	to	be
included	than	others,	and	where	those	members	differ	in	the	property	being
measured.

sandbox
A	context	for	executing	untrusted	code,	where	protection	for	the	rest	of	the	system	is
provided	in	software.

SCAN
A	disk	scheduling	policy	where	the	disk	arm	repeatedly	sweeps	from	the	inner	to	the
outer	tracks	and	back	again,	servicing	each	pending	request	whenever	the	disk	head
passes	that	track.

scheduler	activations
A	multiprocessor	scheduling	policy	where	each	application	is	informed	of	how	many
processors	it	has	been	assigned	and	whenever	the	assignment	changes.

scrubbing
A	technique	for	reducing	non-recoverable	RAID	errors	by	periodically	scanning	for
corrupted	disk	blocks	and	reconstructing	them	from	the	parity	block.

secondary	bottleneck
A	resource	with	relatively	low	contention,	due	to	a	large	amount	of	queueing	at	the
primary	bottleneck.	If	the	primary	bottleneck	is	improved,	the	secondary	bottleneck
will	have	much	higher	queueing	delay.

sector
The	minimum	amount	of	a	disk	that	can	be	independently	read	or	written.

sector	failure
A	magnetic	disk	error	where	data	on	one	or	more	individual	sectors	of	a	disk	are	lost,
but	the	rest	of	the	disk	continues	to	operate	correctly.

sector	sparing
Transparently	hiding	a	faulty	disk	sector	by	remapping	it	to	a	nearby	spare	sector.

security
A	computer’s	operation	cannot	be	compromised	by	a	malicious	attacker.

security	enforcement
The	mechanism	the	operating	system	uses	to	ensure	that	only	permitted	actions	are
allowed.

security	policy
What	operations	are	permitted	—	who	is	allowed	to	access	what	data,	and	who	can
perform	what	operations.

seek
The	movement	of	the	disk	arm	to	re-position	it	over	a	specific	track	to	prepare	for	a
read	or	write.

segmentation
A	virtual	memory	mechanism	where	addresses	are	translated	by	table	lookup,	where
each	entry	in	the	table	is	to	a	variable-size	memory	region.

segmentation	fault
An	error	caused	when	a	process	attempts	to	access	memory	outside	of	one	of	its	valid
memory	regions.

segment-local	address
An	address	that	is	relative	to	the	current	memory	segment.

self-paging
A	resource	allocation	policy	for	allocating	page	frames	among	processes;	each	page
replacement	is	taken	from	a	page	frame	already	assigned	to	the	process	causing	the
page	fault.

semaphore
A	type	of	synchronization	variable	with	only	two	atomic	operations,	P()	and	V().	P
waits	for	the	value	of	the	semaphore	to	be	positive,	and	then	atomically	decrements
it.	V	atomically	increments	the	value,	and	if	any	threads	are	waiting	in	P,	triggers	the
completion	of	the	P	operation.

serializability
The	result	of	any	program	execution	is	equivalent	to	an	execution	in	which	requests
are	processed	one	at	a	time	in	some	sequential	order.

service	time
The	time	it	takes	to	complete	a	task	at	a	resource,	assuming	no	waiting.

set	associative	cache
The	cache	is	partitioned	into	sets	of	entries.	Each	memory	location	can	only	be	stored
in	its	assigned	set,	by	it	can	be	stored	in	any	cache	entry	in	that	set.	On	a	lookup,	the
system	needs	to	check	the	address	against	all	the	entries	in	its	set	to	determine	if	there
is	a	cache	hit.

settle
The	fine-grained	re-positioning	of	a	disk	head	after	moving	to	a	new	track	before	the
disk	head	is	ready	to	read	or	write	a	sector	of	the	new	track.

shadow	page	table
A	page	table	for	a	process	inside	a	virtual	machine,	formed	by	constructing	the
composition	of	the	page	table	maintained	by	the	guest	operating	system	and	the	page
table	maintained	by	the	host	operating	system.

shared	object
An	object	(a	data	structure	and	its	associated	code)	that	can	be	accessed	safely	by
multiple	concurrent	threads.

shell
A	job	control	system	implemented	as	a	user-level	process.	When	a	user	types	a
command	to	the	shell,	it	creates	a	process	to	run	the	command.

shortest	job	first
A	scheduling	policy	that	performs	the	task	with	the	least	remaining	time	left	to	finish.

shortest	positioning	time	first
A	disk	scheduling	policy	that	services	whichever	pending	request	can	be	handled	in
the	minimum	amount	of	time.	See	also:	SPTF.

shortest	seek	time	first
A	disk	scheduling	policy	that	services	whichever	pending	request	is	on	the	nearest
track.	Equivalent	to	shortest	positioning	time	first	if	rotational	positioning	is	not
considered.	See	also:	SSTF.

SIMD	(single	instruction	multiple	data)	programming
See	data	parallel	programming

simultaneous	multi-threading
A	hardware	technique	where	each	processor	simulates	two	(or	more)	virtual
processors,	alternating	between	them	on	a	cycle-by-cycle	basis.	See	also:
hyperthreading.

single-threaded	program
A	program	written	in	a	traditional	way,	with	one	logical	sequence	of	steps	as	each
instruction	follows	the	previous	one.	Compare:	multi-threaded	program.

slip	sparing
When	remapping	a	faulty	disk	sector,	remapping	the	entire	sequence	of	disk	sectors
between	the	faulty	sector	and	the	spare	sector	by	one	slot	to	preserve	sequential
access	performance.

soft	link
A	directory	entry	that	maps	one	file	or	directory	name	to	another.	See	also:	symbolic
link.

software	transactional	memory	(STM)
A	system	for	general-purpose	transactions	for	in-memory	data	structures.

software-loaded	TLB
A	hardware	TLB	whose	entries	are	installed	by	software,	rather	than	hardware,	on	a
TLB	miss.

solid	state	storage
A	persistent	storage	device	with	no	moving	parts;	it	stores	data	using	electrical
circuits.

space	sharing
A	multiprocessor	allocation	policy	that	assigns	different	processors	to	different	tasks.

spatial	locality
Programs	tend	to	reference	instructions	and	data	near	those	that	have	been	recently
accessed.

spindle
The	axle	of	rotation	of	the	spinning	disk	platters	making	up	a	disk.

spinlock
A	lock	where	a	thread	waiting	for	a	BUSY	lock	“spins”	in	a	tight	loop	until	some
other	thread	makes	it	FREE.

SPTF
See:	shortest	positioning	time	first.

SSTF
See:	shortest	seek	time	first.

stable	property
A	property	of	a	program,	such	that	once	the	property	becomes	true	in	some	execution
of	the	program,	it	will	stay	true	for	the	remainder	of	the	execution.

stable	storage
See:	non-volatile	storage.

stable	system
A	queueing	system	where	the	arrival	rate	matches	the	departure	rate.

stack	frame

A	data	structure	stored	on	the	stack	with	storage	for	one	invocation	of	a	procedure:
the	local	variables	used	by	the	procedure,	the	parameters	the	procedure	was	called
with,	and	the	return	address	to	jump	to	when	the	procedure	completes.

staged	architecture
A	staged	architecture	divides	a	system	into	multiple	subsystems	or	stages,	where	each
stage	includes	some	state	private	to	the	stage	and	a	set	of	one	or	more	worker	threads
that	operate	on	that	state.

starvation
The	lack	of	progress	for	one	task,	due	to	resources	given	to	higher	priority	tasks.

state	variable
Member	variable	of	a	shared	object.

STM
See:	software	transactional	memory	(STM).

structured	synchronization
A	design	pattern	for	writing	correct	concurrent	programs,	where	concurrent	code	uses
a	set	of	standard	synchronization	primitives	to	control	access	to	shared	state,	and
where	all	routines	to	access	the	same	shared	state	are	localized	to	the	same	logical
module.

superpage
A	set	of	contiguous	pages	in	physical	memory	that	map	a	contiguous	region	of	virtual
memory,	where	the	pages	are	aligned	so	that	they	share	the	same	high-order
(superpage)	address.

surface
One	side	of	a	disk	platter.

surface	transfer	time
The	time	to	transfer	one	or	more	sequential	sectors	from	(or	to)	a	surface	once	the
disk	head	begins	reading	(or	writing)	the	first	sector.

swapping
Evicting	an	entire	process	from	physical	memory.

symbolic	link
See:	soft	link.

synchronization	barrier
A	synchronization	primitive	where	n	threads	operating	in	parallel	check	in	to	the
barrier	when	their	work	is	completed.	No	thread	returns	from	the	barrier	until	all	n
check	in.

synchronization	variable
A	data	structure	used	for	coordinating	concurrent	access	to	shared	state.

system	availability
The	probability	that	a	system	will	be	available	at	any	given	time.

system	call
A	procedure	provided	by	the	kernel	that	can	be	called	from	user	level.

system	reliability
The	probability	that	a	system	will	continue	to	be	reliable	for	some	specified	period	of
time.

tagged	command	queueing
A	disk	interface	that	allows	the	operating	system	to	issue	multiple	concurrent

requests	to	the	disk.	Requests	are	processed	and	acknowledged	out	of	order.	See	also:
native	command	queueing.	See	also:	NCQ.

tagged	TLB
A	translation	lookaside	buffer	whose	entries	contain	a	process	ID;	only	entries	for	the
currently	running	process	are	used	during	translation.	This	allows	TLB	entries	for	a
process	to	remain	in	the	TLB	when	the	process	is	switched	out.

task
A	user	request.

TCB
See:	thread	control	block.

TCQ
See:	tagged	command	queueing.

temporal	locality
Programs	tend	to	reference	the	same	instructions	and	data	that	they	had	recently
accessed.

test	and	test-and-set
An	implementation	of	a	spinlock	where	the	waiting	processor	waits	until	the	lock	is
FREE	before	attempting	to	acquire	it.

thrashing
When	a	cache	is	too	small	to	hold	its	working	set.	In	this	case,	most	references	are
cache	misses,	yet	those	misses	evict	data	that	will	be	used	in	the	near	future.

thread
A	single	execution	sequence	that	represents	a	separately	schedulable	task.

thread	context	switch
Suspend	execution	of	a	currently	running	thread	and	resume	execution	of	some	other
thread.

thread	control	block
The	operating	system	data	structure	containing	the	current	state	of	a	thread.	See	also:
TCB.

thread	scheduler
Software	that	maps	threads	to	processors	by	switching	between	running	threads	and
threads	that	are	ready	but	not	running.

thread-safe	bounded	queue
A	bounded	queue	that	is	safe	to	call	from	multiple	concurrent	threads.

throughput
The	rate	at	which	a	group	of	tasks	are	completed.

time	of	check	vs.	time	of	use	attack
A	security	vulnerability	arising	when	an	application	can	modify	the	user	memory
holding	a	system	call	parameter	(such	as	a	file	name),	after	the	kernel	checks	the
validity	of	the	parameter,	but	before	the	parameter	is	used	in	the	actual
implementation	of	the	routine.	Often	abbreviated	TOCTOU.

time	quantum
The	length	of	time	that	a	task	is	scheduled	before	being	preempted.

timer	interrupt
A	hardware	processor	interrupt	that	signifies	a	period	of	elapsed	real	time.

time-sharing	operating	system

An	operating	system	designed	to	support	interactive	use	of	the	computer.
TLB

See:	translation	lookaside	buffer.
TLB	flush

An	operation	to	remove	invalid	entries	from	a	TLB,	e.g.,	after	a	process	context
switch.

TLB	hit
A	TLB	lookup	that	succeeds	at	finding	a	valid	address	translation.

TLB	miss
A	TLB	lookup	that	fails	because	the	TLB	does	not	contain	a	valid	translation	for	that
virtual	address.

TLB	shootdown
A	request	to	another	processor	to	remove	a	newly	invalid	TLB	entry.

TOCTOU
See:	time	of	check	vs.	time	of	use	attack.

track
A	circle	of	sectors	on	a	disk	surface.

track	buffer
Memory	in	the	disk	controller	to	buffer	the	contents	of	the	current	track	even	though
those	sectors	have	not	yet	been	requested	by	the	operating	system.

track	skewing
A	staggered	alignment	of	disk	sectors	to	allow	sequential	reading	of	sectors	on
adjacent	tracks.

transaction
A	group	of	operations	that	are	applied	persistently,	atomically	as	a	group	or	not	at	all,
and	independently	of	other	transactions.

translation	lookaside	buffer
A	small	hardware	table	containing	the	results	of	recent	address	translations.	See	also:
TLB.

trap
A	synchronous	transfer	of	control	from	a	user-level	process	to	a	kernel-mode	handler.
Traps	can	be	caused	by	processor	exceptions,	memory	protection	errors,	or	system
calls.

triple	indirect	block
A	storage	block	containing	pointers	to	double	indirect	blocks.

two-phase	locking
A	strategy	for	acquiring	locks	needed	by	a	multi-operation	request,	where	no	lock	can
be	released	before	all	required	locks	have	been	acquired.

uberblock
In	ZFS,	the	root	of	the	ZFS	storage	system.

UNIX	exec
A	system	call	on	UNIX	that	causes	the	current	process	to	bring	a	new	executable
image	into	memory	and	start	it	running.

UNIX	fork
A	system	call	on	UNIX	that	creates	a	new	process	as	a	complete	copy	of	the	parent
process.

UNIX	pipe
A	two-way	byte	stream	communication	channel	between	UNIX	processes.

UNIX	signal
An	asynchronous	notification	to	a	running	process.

UNIX	stdin
A	file	descriptor	set	up	automatically	for	a	new	process	to	use	as	its	input.

UNIX	stdout
A	file	descriptor	set	up	automatically	for	a	new	process	to	use	as	its	output.

UNIX	wait
A	system	call	that	pauses	until	a	child	process	finishes.

unsafe	state
In	the	context	of	deadlock,	a	state	of	an	execution	such	that	there	is	at	least	one
sequence	of	future	resource	requests	that	leads	to	deadlock	no	matter	what	processing
order	is	tried.

upcall
An	event,	interrupt,	or	exception	delivered	by	the	kernel	to	a	user-level	process.

use	bit
A	status	bit	in	a	page	table	entry	recording	whether	the	page	has	been	recently
referenced.

user-level	memory	management
The	kernel	assigns	each	process	a	set	of	page	frames,	but	how	the	process	uses	its
assigned	memory	is	left	up	to	the	application.

user-level	page	handler
An	application-specific	upcall	routine	invoked	by	the	kernel	on	a	page	fault.

user-level	thread
A	type	of	application	thread	where	the	thread	is	created,	runs,	and	finishes	without
calls	into	the	operating	system	kernel.

user-mode	operation
The	processor	operates	in	a	restricted	mode	that	limits	the	capabilities	of	the
executing	process.	Compare:	kernel-mode	operation.

utilization
The	fraction	of	time	a	resource	is	busy.

virtual	address
An	address	that	must	be	translated	to	produce	an	address	in	physical	memory.

virtual	machine
An	execution	context	provided	by	an	operating	system	that	mimics	a	physical
machine,	e.g.,	to	run	an	operating	system	as	an	application	on	top	of	another
operating	system.

virtual	machine	honeypot
A	virtual	machine	constructed	for	the	purpose	of	executing	suspect	code	in	a	safe
environment.

virtual	machine	monitor
See:	host	operating	system.

virtual	memory
The	illusion	of	a	nearly	infinite	amount	of	physical	memory,	provided	by	demand
paging	of	virtual	addresses.

virtualization
Provide	an	application	with	the	illusion	of	resources	that	are	not	physically	present.

virtually	addressed	cache
A	processor	cache	which	is	accessed	using	virtual,	rather	than	physical,	memory
addresses.

volume
A	collection	of	physical	storage	blocks	that	form	a	logical	storage	device	(e.g.,	a
logical	disk).

wait	while	holding
A	necessary	condition	for	deadlock	to	occur:	a	thread	holds	one	resource	while
waiting	for	another.

wait-free	data	structures
Concurrent	data	structure	that	guarantees	progress	for	every	thread:	every	method
finishes	in	a	finite	number	of	steps,	regardless	of	the	state	of	other	threads	executing
in	the	data	structure.

waiting	list
The	set	of	threads	that	are	waiting	for	a	synchronization	event	or	timer	expiration	to
occur	before	becoming	eligible	to	be	run.

wear	leveling
A	flash	memory	management	policy	that	moves	logical	pages	around	the	device	to
ensure	that	each	physical	page	is	written/erased	approximately	the	same	number	of
times.

web	proxy	cache
A	cache	of	frequently	accessed	web	pages	to	speed	web	access	and	reduce	network
traffic.

work-conserving	scheduling	policy
A	policy	that	never	leaves	the	processor	idle	if	there	is	work	to	do.

working	set
The	set	of	memory	locations	that	a	program	has	referenced	in	the	recent	past.

workload
A	set	of	tasks	for	some	system	to	perform,	along	with	when	each	task	arrives	and
how	long	each	task	takes	to	complete.

wound	wait
An	approach	to	deadlock	recovery	that	ensures	progress	by	aborting	the	most	recent
transaction	in	any	deadlock.

write	acceleration
Data	to	be	stored	on	disk	is	first	written	to	the	disk’s	buffer	memory.	The	write	is	then
acknowledged	and	completed	in	the	background.

write-back	cache
A	cache	where	updates	can	be	stored	in	the	cache	and	only	sent	to	memory	when	the
cache	runs	out	of	space.

write-through	cache
A	cache	where	updates	are	sent	immediately	to	memory.

zero-copy	I/O
A	technique	for	transferring	data	across	the	kernel-user	boundary	without	a	memory-
to-memory	copy,	e.g.,	by	manipulating	page	table	entries.

zero-on-reference
A	method	for	clearing	memory	only	if	the	memory	is	used,	rather	than	in	advance.	If
the	first	access	to	memory	triggers	a	trap	to	the	kernel,	the	kernel	can	zero	the
memory	and	then	resume.

Zipf	distribution
The	relative	frequency	of	an	event	is	inversely	proportional	to	its	position	in	a	rank
order	of	popularity.

About	the	Authors

Thomas	Anderson	holds	the	Warren	Francis	and	Wilma	Kolm	Bradley	Chair	of
Computer	Science	and	Engineering	at	the	University	of	Washington,	where	he	has	been
teaching	computer	science	since	1997.

Professor	Anderson	has	been	widely	recognized	for	his	work,	receiving	the	Diane	S.
McEntyre	Award	for	Excellence	in	Teaching,	the	USENIX	Lifetime	Achievement	Award,
the	IEEE	Koji	Kobayashi	Computers	and	Communications	Award,	the	ACM	SIGOPS
Mark	Weiser	Award,	the	USENIX	Software	Tools	User	Group	Award,	the	IEEE
Communications	Society	William	R.	Bennett	Prize,	the	NSF	Presidential	Faculty
Fellowship,	and	the	Alfred	P.	Sloan	Research	Fellowship.	He	is	an	ACM	Fellow.	He	has
served	as	program	co-chair	of	the	ACM	SIGCOMM	Conference	and	program	chair	of	the
ACM	Symposium	on	Operating	Systems	Principles	(SOSP).	In	2003,	he	helped	co-found
the	USENIX/ACM	Symposium	on	Networked	Systems	Design	and	Implementation
(NSDI).

Professor	Anderson’s	research	interests	span	all	aspects	of	building	practical,	robust,	and
efficient	computer	systems,	including	operating	systems,	distributed	systems,	computer
networks,	multiprocessors,	and	computer	security.	Over	his	career,	he	has	authored	or	co-
authored	over	one	hundred	peer-reviewed	papers;	nineteen	of	his	papers	have	won	best
paper	awards.

Michael	Dahlin	is	a	Principal	Engineer	at	Google.	Prior	to	that,	from	1996	to	2014,	he
was	a	Professor	of	Computer	Science	at	the	University	of	Texas	in	Austin,	where	he
taught	operating	systems	and	other	subjects	and	where	he	was	awarded	the	College	of
Natural	Sciences	Teaching	Excellence	Award.

Professor	Dahlin’s	research	interests	include	Internet-	and	large-scale	services,	fault
tolerance,	security,	operating	systems,	distributed	systems,	and	storage	systems.

Professor	Dahlin’s	work	has	been	widely	recognized.	Over	his	career,	he	has	authored
over	seventy	peer	reviewed	papers;	ten	of	which	have	won	best	paper	awards.	He	is	both
an	ACM	Fellow	and	an	IEEE	Fellow,	and	he	has	received	an	Alfred	P.	Sloan	Research
Fellowship	and	an	NSF	CAREER	award.	He	has	served	as	the	program	chair	of	the	ACM
Symposium	on	Operating	Systems	Principles	(SOSP),	co-chair	of	the	USENIX/ACM
Symposium	on	Networked	Systems	Design	and	Implementation	(NSDI),	and	co-chair	of
the	International	World	Wide	Web	conference	(WWW).

	Contents
	Preface
	4 Concurrency and Threads
	5 Synchronizing Access to Shared Objects
	6 Multi-Object Synchronization
	7 Scheduling
	References
	Glossary
	About the Authors

