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Introduction to the series

The problems of modern society are both complex and interdisciplinary. Despite the
apparent diversity of problems, tools developed in one context are often adaptable to an
entirely different situation. For example, consider the Lyapunov’s well known second
method. This interesting and fruitful technique has gained increasing significance and
has given a decisive impetus for modern development of the stability theory of differential
equations. A manifest advantage of this method is that it does not demand the knowledge of
solutions and therefore has great power in application. It is now well recognized that the
concept of Lyapunov-like functions and the theory of differential and integral inequalities
can be utilized to investigate qualitative and quantitative properties of nonlinear dynamic
systems. Lyapunov-like functions serve as vehicles to transform the given complicated
dynamic systems into a relatively simpler system and therefore it is sufficient to study the
properties of this simpler dynamic system. It is also being realized that the same versatile
tools can be adapted to discuss entirely different nonlinear systems, and that other tools,
such as the variation of parameters and the method of upper and lower solutions provide
equally effective methods to deal with problems of a similar nature. Moreover, interesting
new ideas have been introduced which would seem to hold great potential.

Control theory, on the other hand, is that branch of application-oriented mathematics that
deals with the basic principles underlying the analysis and design of control systems. To
control an object implies the influence of its behavior so as to accomplish a desired goal. In
order to implement this influence, practitioners build devices that incorporate various math-
ematical techniques. The study of these devices and their interaction with the object being
controlled is the subject of control theory. There have been, roughly speaking, two main
lines of work in control theory which are complementary. One is based on the idea that
a good model of the object to be controlled is available and that we wish to optimize its
behavior, and the other is based on the constraints imposed by uncertainty about the model
in which the object operates. The control tool in the latter is the use of feedback in order to
correct for deviations from the desired behavior. Mathematically, stability theory, dynamic
systems and functional analysis have had a strong influence on this approach.

Volume 1, Theory of Integro-Differential Equations, is a joint contribution by
V. Lakshmikantham (USA) and M. Rama Mohana Rao (India).

Volume 2, Stability Analysis: Nonlinear Mechanics Equations, is by A.A. Martynyuk
(Ukraine).

Volume 3, Stability of Motion of Nonautonomous Systems: The Method of Limiting
Equations, is a collaborative work by J. Kato (Japan), A.A. Martynyuk (Ukraine) and
A.A. Shestakov (Russia).
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Volume 4, Control Theory and its Applications, is by E.O. Roxin (USA).
Volume 5, Advances in Nonlinear Dynamics, is edited by S. Sivasundaram (USA) and
A.A. Martynyuk (Ukraine) and is a multiauthor volume dedicated to Professor S. Leela.
Volume 6, Solving Differential Problems by Multistep Initial and Boundary Value Methods,
is a joint contribution by L. Brugnano (Italy) and D. Trigiante (Italy).

Volume 7, Dynamics of Machines with Variable Mass, is by L. Cveticanin (Yugoslavia).

Volume 8, Optimization of Linear Control Systems: Analytical Methods and Computational
Algorithms, is a joint work by FA. Aliev (Azerbaijan) and V.B. Larin (Ukraine).

Volume 9, Dynamics and Control, is edited by G. Leitmann (USA), F.E. Udwadia (USA) and
A.V. Kryazhimskii (Russia) and is a multiauthor volume.

Volume 10, Volterra Equations and Applications, is edited by C. Corduneanu (USA) and
[.W. Sandberg (USA) and is a multiauthor volume.

Volume 11, Nonlinear Problems in Aviation and Aerospace, is edited by S. Sivasundaram
(USA) and is a multiauthor volume.

Volume 12, Stabilization of Programmed Motion, is by E.Ya. Smirnov (Russia).

Volume 13, Advances in Stability Theory at the end of the 20th Century, is edited by
A.A. Martynyuk (Ukraine) and is a multiauthor volume.

Due to the increased interdependency and cooperation among the mathematical sciences
across the traditional boundaries, and the accomplishments thus far achieved in the areas of
stability and control, there is every reason to believe that many breakthroughs await us, offer-
ing existing prospects for these versatile techniques to advance further. It is in this spirit that
we see the importance of the ‘Stability and Control’ series, and we are immensely thankful
to Taylor & Francis publishers for their interest and cooperation in publishing this series.



Preface

The development of stability theory in the twentieth century has been closely con-
nected with the solution of major problems of science and engineering and also with
the modelling and investigation of more complex phenomena of the real world. The
peculiar features of progress in this field of the natural sciences are:

* the variety of engineering and scientific problems whose solution by the
methods of motion stability theory has allowed numerous projects to be
carried out in aviation, rocket engineering, submarine dynamics, economics,
traffic, construction, etc.

* the intensive development of the ideas and methods proposed by the cre-
ators of stability theory such that Euler, Poincaré, and Lyapunov within
the framework of modern achievements of the analytical and qualitative
theory of equations;

* the integration of the efforts of scientists world-wide in solving the concrete
scientific, engineering and general problems of stability theory.

The main idea of the present volume of the International Series of Scientific
monographs is to present surveys and research papers from the various branches
of the modern theory of stability written by scientists from around the world.
Meanwhile, the application areas of stability theory are very diverse and an attempt
to embrace as many of them as possible would inevitably result in the creation of
several volumes. So, this volume presents only some of the applications of motion
stability theory.

The papers collected in this volume are written by the scientists who are deeply
involved in current research and they provide a general insight into the present-day
state of stability theory.

This volume consists of four sections presenting the following areas of the devel-
opment of stability theory.

Part 1. Progress in Stability Theory by the First Approximation.

Part 2. Contemporary Development of Lyapunov’s Idea of the Direct Method.

Part 3. Stability of Solutions to Periodic Differential Systems.

Part 4. Selected Applications.

This volume is of considerable importance to young investigators in the field and
should give an impetus to the statement of new problems in stability theory.

xi
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An Overview

The results of the development of science at the end of the twentieth century are in
no way a gathering of memorial tablets over the buried-for-ever ideas of prominent
scholars. Most likely they are a collection of incomplete architectural ensembles
many of which remain unfinished not because of the imperfection of the concepts
but due to their engineering or economic prematurity.

The present volume introduces the reader to the further developments of out-
standing ideas of the creators of the qualitative theories of equations and nonlinear
dynamics of systems in a modern interpretation and provides a unique picture of
the world-wide development of stability theory at the end of the twentieth century.

Thirty-five scientists from 12 countries have contributed to this volume. In result
the volume contains 6 surveys and 14 research papers arranged in 4 sections.

In their surveys and papers the authors have formulated many open problems
of different complexities which would seem to be inspiring starting points for new
investigations by beginners and experts in the field. The lists of references to the
papers comprise titles of papers and monographs by authors who have contributed
to the development of stability theory and related directions.

Below we outline the contents of the volume.

Survey of Part 1

In Section 1.1, B. Aulbach and T. Wanner consider differential equations which
explicitly but discontinuously depend on time and are rarely studied objects. Even
so, they promise important applications, e.g. in control theory or in the theory of
random dynamical systems. The authors continue a previous study of qualitative
properties of so-called Carathéodory type differential equations whose feature is a
measurable dependence of the right-hand side on time. In fact, they show that
the fundamental theorem on the existence of integral manifolds can be generalized
to a result providing two complete foliations of the extended state space by in-
tegral manifolds. This detailed information about the dynamical structure of the
extended state space, on the other hand, can be used to construct transforma-
tions establishing the topological equivalence between certain weakly coupled and
completely decoupled systems.

In Section 1.2, C. Corduneanu and Yizeng Li considered stability of perturbed
functional differential equations which involve abstract Volterra (causal) operators.

xiii



xiv AN OVERVIEW

The unperturbed system is assumed to be linear, while the perturbations are-
generally-nonlinear. The exponential asymptotic stability is mainly discussed.

In Section 1.3, N.A. Izobov presents a survey which contains a rather complete
description of the results related to the Lyapunov problems on the exponential sta-
bility of the zero solution of differential systems under higher-order perturbations.
He considers both the special and the general Lyapunov problems as well as their
linear analogs.

Survey of Part 2

In Section 2.1 by P. Borne, M. Dambrine, W. Perruquetti and J.P. Richard the
considered comparison approach constitutes an alternative or, at least, an interest-
ing complement to the standard Lyapunov method. It involves the use of a simpler
model with the aim of obtaining conclusions available for a more complex one.
This investigation sums up several recent results concerning comparison systems,
and puts them into a more general framework: both ordinary and functional dif-
ferential equations are dealt with, using a unified writing. The work is divided into
six parts. The first three parts introduce the context and some notations. Part IV
defines the comparison systems for general functional differential equations. Part
V applies this concept to the analysis of some qualitative properties of sets (such
as, for instance, stability or positive invariance). The last part concerns exclusively
the case of ordinary differential systems, and provides some stability criteria that
are easy to check.

In Section 2.2, A. D’Anna discusses the problem of stability properties when
the vector function f in the system & = f(¢,z) is not defined on a closed set M of
R™. Also the case of perturbations acting along the motion is considered and new
conditions of stability and asymptotic behavior for M are obtained. The results
attained are illustrated by an example concerning the two-body problem, when the
motion takes place in an atmosphere and the reference frame is non-inertial.

Section 2.3 by F. Dannan, S. Elaydi and P. Li provides a survey of recent results
and trends in the stability of Volterra difference equations of both convolution and
nonconvolution type. The resolvent matrix and a variation of constants formula
will be developed.

In Section 2.4 by Ly.T. Gruyitch a new physical principle ~ the Physical Conti-
nuity and Uniqueness Principle is combined with the nature of time by expressing
the continuous nature of physical variables relative to time. Their features are
reflected in the mathematical model used in the Cauchy form. The new Lyapunov
methodology for nonlinear systems called the consistent Lyapunov methodology
is broadened in this paper to the exponential stability of compact connected in-
variant sets of such time-invariant nonlinear mathematical models. It provides the
new necessary and sufficient conditions for the exponential stability of a compact
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connected invariant set A. The conditions are also necessary and sufficient for the
accurate single-step construction of a system of Lyapunov functions proving the
set of exponential stability.

In Section 2.5 by V. Lakshmikantham and S. Leela some new concepts are
discussed that have appeared in stability theory in recent years. It is recognized
that the concept of Lyapunov-like functions together with the general comparison
principles offer versatile tools to investigate the qualitative properties of solutions
of differential equations. Furthermore, some new ideas and approaches which might
provide an exciting prospect of further advancement are still in the initial stages
of investigation.

In Section 2.6 by A.A. Martynyuk a version of the matrix Lyapunov function
method to analyse motion stability of dynamical systems is proposed. New re-
sults for stability, asymptotic stability, exponential stability and instability are
established. In the case large-scale system the matrix-valued Lyapunov function is
applied and a new stability conditions are obtained.

In Section 2.7 by A.A. Martynyuk, J.H. Shen and LP. Stavroulakis consid-
ered the system of impulsive functional differential equations with infinite delay
and nonlinear impulsive perturbations. The authors extended a uniform asymp-
totic stability result by Burton and Zhang by employing the Lyapunov functional
and examine the persistence of uniform asymptotic stability under the impulsive
perturbations. Also obtained an impulsive stabilization result by employing the
Lyapunov function and the Razumikhin technique.

Section 2.8 by T. Taniguchi discusses the sufficient conditions for EW (¢, X (t))
to approach zero as t — 0o, where X (¢) denotes a solution of a stochastic functional
differential equation with finite delay 7 > 0 and W denotes a so-called Lyapunov
function. As the application the author considers the almost sure Lyapunov expo-
nent liin sup +log|X(t)| of the solutions under more general assumptions than in

00

Taniguchi (see Report, 58 (1996), 191-208). In this paper he uses the Lyapunov-
Razumikhin method. Then, the difficulty of the constructions of the Lyapunov
functionals is avoided.

In Section 2.9, V.A. Vuji¢i¢ proves the general invariant criterion of the bal-
anced state stability and mechanical system motion. Lagrange’s theorem about
the system’s balanced state stability is generalized while its application to one
characteristic instance of the rheonomic system is shown.

Survey of Part 3

In Section 3.1, Y.A. Mitropol’skii, A.A. Martynyuk and V.I. Zhukovskii survey
Starzhinskii’s works on the stability of periodic motions and nonlinear oscillations.
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The paper contains the following sections: stability of periodic motions; the math-
ematical theory of parametric resonance and its applications; oscillations in sub-
stantially nonlinear systems. Six open problems for investigation in this area are
formulated.

Section 3.2 by J.S. Muldowney provides a survey of results which use the at-
traction of an orbit for its neighbors to detect an omega limit which is a stable
equilibrium or a periodic orbit.

Section 3.3 by V.N. Pilipchuk deals with so-called homogeneous mechanical
systems and some related ideas in nonlinear mechanics. The simplest homogeneous
system such as a nonlinear oscillator of power form characteristic was considered
by Lyapunov in the theory of stability of motion to be a special degenerated case.
The ideas and methods growing around the homogeneous systems appeared to be
of more general sense then the systems themselves.

In Section 3.4 by A.A. Zevin new stability criteria for a periodic solution lying
on a convex energy surface of a Hamiltonian and associated with the minimum of
a dual functional are found. Other conditions (feasible also for nonconvex Hamil-
tonians) guarantee the unique continuation and stability of Lyapunov families of
periodic solutions within a given region. All conditions are checked through the
Hessian of the Hamiltonian.

Survey of Part 4

In Section 4.1, H.I.Freedman, M. Solomonovich, L.P. Apedaile and A. Haily con-
sidered a system of three ordinary differential equations as a model of agricultural
and industrial wealth interacting with the environment. Two subsystems repre-
senting agriculture-industry and agriculture-environment are discussed. Criteria
for the existence and stability of equilibria are given for each model.

In Section 4.2, V.I. Gouliaev scrutinizes some problems of bifurcation state
modelling and modification of periodic orbits of bounded three body problems.
Investigated are the stability of periodic solutions and the stability of triangular
libration points in an elliptic bounded problem of three bodies. The appearance of
chaotic solutions of the plane bounded problem of three bodies is discussed.

In Section 4.8 by A.Yu. Ishlinsky, V.A. Storozhenko and M.E. Temchenko a
survey is made of research carried out mainly at the Institute of Mathematics of
the National Academy of Sciences of the Ukraine. The works deal with the motion
investigation of mechanical systems. Major attention is paid to the new direction
of rational mechanics which has recently been developed. It presents the motion
investigation of an absolute solid suspended on an inextensible inertialess thread
being a string and a “string” suspension composed of freely joint weighted rods.
Alongside the theoretical problems such as the investigation of stationary motions,
their stability and bifurcation, problems associated with the practical application
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of the obtained results are discussed. In particular, the application areas are the
creation of large-size centrifuges, balancing techniques, the experimental determi-
nation of the dynamical characteristics of a solid of arbitrary form.

In Section 4.4, Xinzhi Liu establishes some stability criteria for impulsive diffe-
rential systems. It is shown that impulses do contribute to yield stability properties

even when the corresponding differential system without impulses does not enjoy
any stability behavior.






Part 1

PROGRESS IN STABILITY
THEORY BY THE FIRST
APPROXIMATION






1.1 INVARIANT FOLIATIONS FOR
CARATHEODORY TYPE
DIFFERENTIAL EQUATIONS IN
BANACH SPACES*

B. AULBACH! and T. WANNER?

! Department of Mathematics, University of Augsburg, Augsburg, Germany
2 Department of Mathematics and Statistics, University of Maryland,
Baltimore, USA

1 Introduction

Throughout this paper we consider systems of differential equations of the form

T = A}(t)zl + F (t,$1,z2),

1
:i;2=A2(t)x2+F2(t,$1a$2), ( )

where x; and z; are elements of some Banach spaces A and A%, respectively, and
At R -5L(X;) and F;: R x Xy x Xp — X;, i = 1,2, are mappings satisfying the
following two sets of hypotheses:

(H1) Hypothesis on linear part: The mappings 4;: R -L(X;), i = 1,2, are
locally integrable and there exist real constants K > 1 and o < 8 such
that the evolution operators ®;(t, s) of the homogeneous linear equations
i; = Ai(t)z;, respectively, satisfy the estimates

|2:(¢, 8)]| < Ke*=%) forall t>s,

|82, 8)|] < Kt~} forall t<s.

(H2) Hypothesis on nonlinear part: The mappings F;: R x X} x X2 = X},

* Advances in Stability Theory (Ed.: A.A. Martynyuk). Stability and Control: Theory, Me-
thods and Applications, Taylor & Francis, London, 13 (2003) 1-14.
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2 B. AULBACH and T. WANNER

i = 1,2, have the Carathéodory property! and they satisfy the identities
F;(t,0,0) = 0 for all ¢t € R. Furthermore, there exists a constant L > 0
such that the estimates

|Fi(t, z1,z2) — Fi(t, 31, Z2)|] < Lz — || + L ||z2 — 22|

hold for all t € R and z;, T; € A3, 1 =1,2.

For the concept of solutions as well as other properties of this type of equations
we refer to Aulbach and Wanner [1]. We also adopt the notation introduced in this
paper such as

/\(t§7'75:7/) = ()‘1 (tu T, §7 77)1)\2(757 7,5777)) €X = Xl X XZ

for the so-called cocycle of (1), the solution satisfying the initial condition z,(r) =
&, x2(7) = 1. As shown in [1] this cocycle exists for all ¢ € R if system (1) satisfies
the standing hypotheses (H1) and (H2).

The analysis of the present paper is based on the so-called Fundamental Ex-
istence Theorem for Integral Manifolds (see [1, Theorem 4.1]) which — roughly
speaking - says the following: System (1) has two global integral manifolds of the
form z = so(t,z1) and z; = ro(t,x2) with so(¢,0) = 0 and ro(¢,0) = 0 if the
coupling of the two equations in (1) is small in the sense that the Lipschitz con-
stant L satisfies the estimate L < %}—a. Moreover, those integral manifolds may
be characterized by the asymptotic behaviour of the solutions they are made of.
This asymptotic behaviour can be described in terms of the so-called quasibound-
edness which also plays a crucial role in the present paper. We therefore recall
that a function g from the reals to some Banach space is called v -quasibounded
if sup;s, [|g(t)lle™7 < oo for some 7 € R. Accordingly, the function g is called
~~ -quasibounded or v*-quasibounded if sup,., ||g(t)]e""" < oo for some 7 € R
or sup,ep llg(t)lle™* < oo, respectively. -

It is the purpose of this paper to extend the Fundamental Existence Theorem
for Integral Manifolds to a result establishing invariant foliations of the extended
state space R x A} x X2 of system (1) by integral manifolds. This result, on the
other hand, allows to prove that (under a suitably strengthened coupling condition)
system (1) is topologically equivalent to a decoupled system whose two equations
are completely independent of each other.

!That means that for each ¢ € R the mappings F;(t,-,-) are continuous and that for each
(z1,%2) € X) X Xo the mappings F;(-,z1,z2) are strongly measurable, ¢ = 1,2 (see [1, Defini-
tion 2.1j).
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2 Integral Manifolds through Solutions

As mentioned in the previous section there exist two integral manifolds for system
(1) having the zero solution in common. In the present section we extend this result
by showing that any solution of system (1) is associated with a pair of integral
manifolds which intersect along this (and no other) solution. The proof of this
extension is very simple thanks to the fact that we are working in a nonautonomous
setting. Indeed, we simply transform the given solution in a canonical way to the
zero solution of an equation which traditionally is called the differential equation
of perturbed motion. We then apply the previous result.

It is worth mentioning here that this simple trick does not work in a purely
autonomous context because the differential equation of perturbed motion is not
autonomous if the perturbed motion is not constant.

Theorem 2.1 Consider a differential equation of the form (1) on a Banach
space X = Xy X Xo satisfying the assumplions (H1) and (H2) involving the growth
constants K > 1, a < 3 and the Lipschitz constant L > 0. We assume that for a
fized § with 0 < 6 < ég—a the Lipschitz constant L satisfies the estimate

)
<L < —.
0< <2K

Then for every choice of v € [a+ 6, B — 8] we get the following:

(a) There exists a uniquely determined mapping s: Rx X1 x Rx X — Ay such
that for every point (7.,&.) € R x X' the graph

S, ={(n&,8(1, 6,1, &) ERX X x Xp: T €R, & € X1}
of the mapping s(-, -, 7v, &) R x Xy = Xy allows the representation
Sroe. = {18 € Rx X: A(57,6) = A(57w, &) 45 7 -quasibounded}.
Moreover, the estimate

2

(7,61, 7e060) = s(rm i m o)l < 2o e -
holds for all 7, 7, € R, &, & € Xy and &, € X, and the mapping s is con-
tinuous. Finally, S;, ¢, is an integral manifold for system (1), the so-called
S-manifold through the point (7., &.) or through the solution A(-; 7., &,).

(b) There is a uniquely determined mapping 7: R x X x R x X — X, such
that for every (7«,&) € Rx X the graph

Rﬂ,{; = {(TvT(77£27T*a§*)7€2) ERXxA xAy:T€ER, &€ Xz}
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of the mapping r(-,-, T, &) may be represented in the form
Ree. ={(r,) e RXX: A(57,&) — AM57e, &) is v -quasibounded }.
Moreover, the estimate

K2L(§ — KL)

||7"(T7§27T*a€*) - T(T,EQVT’”{*)” S m

llg2 — &l

holds for all 7,7, €R, &, & € Xy and & € X, and r is continuous. Fi-
nally, R, ¢, is an integral manifold for system (1), the so-called R-manifold
through the point (74, &) or through the solution A(:; 7., &4).

Proof For every (7.,&.) € R x X we consider the system

= Al(t)xl + ﬁl(taIL‘l?ZQ’T*?g*),

i? = AZ(t):KQ + Fz(tle):E?:T*’f*)

where the functions on the right-hand side are defined by

Fi(t, 21, 22,7, 64) 1 = Fi(t, 20+ A (t 7, 64), 02 + Aa(t; 7a, 60))
‘Fi(ty)‘l(t;T*:é‘*)’)‘Z(t;T*vé*))» i = ]-a27

A = (A1, A2) denoting the cocycle of system (1). That system (2) indeed satisfies
the assumptions of the Fundamental Existence Theorem for Integral Manifolds ([1,
Theorem 4.1]) can be seen as follows:

e Due to the continuity of the cocycle the mapping (Fy, F3): Rx Xy x X x Rx
A — X) x Ay is continuous. The parameter space is given by P := Rx X.
o We have F(t,0,0,7.,6) =0 and Fy(t,0,0,7.,6,) =0 on Rx R x X.
e The remaining assumptions of {1, Theorem 4.1] follow immediately from
the above assumptions (H1) and (H2).
Applying Part (a) of [1, Theorem 4.1] to system (2) we get a uniquely determined

mapping so: Rx A3 xRx A — A, describing an integral manifold for this system.
Now we define the function

S(T7 glvT*af*) = SO(T, El - >‘1(T;T*>£*)7T*7€*) + /\2(7-;7—*76*)

which is obviously continuous. Moreover, the estimate claimed in (a) follows im-
mediately from the corresponding estimate in [1, Theorem 4.1].

In order to prove the claimed representation of the graph of s let us fix an
arbitrary point (7.,&.) € R x X. Moreover, let (1,€) = (7,61,&%) € Rx X be a
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point such that p:= A(;; 7, &) —A(; 7w, &) 1s v -quasibounded. Then y is a solution
of (2) which is y*-quasibounded. Therefore we have us(7) = so(7, p1(7), 7w, & ).
Together with

m(r) =& — M(m7, &) and  pa(r) = & — X7, &)

this yields the relation

&2 = p2(7) + Aa(73 7, &) = so(T, pa (1), 7, &) + Ao (757, &)
= SO(Tagl - AI(T;TMé*)?T*?g*) + AQ(T;ﬂHf*) = 8(7—76177_*75*)-

This means that (7,£) € Sr_¢.. Conversely, let (7, &) be an arbitrary point belong-
ing to Sr.¢,. Then for p:= A(-;7,&) — A(:; 7+, &) we deduce that u is a solution
of (2) with

m(r) =& = A(77,6) and pa(7) = & — Aao(75 7, &)

The identity & = s(7,&, 7+, ) now implies

NQ(T)::§2"A2(TFR,€J ::503§1fn,§*)‘“A2(TF&,§J
= So(T,§1 - AI(T§ T*vf*)77_*’£*) - 30(7-91“'1(7-)17-*76*)7

ie. pu=A7,8) — A7, &) i yT-quasibounded. Since the invariance of S,
can easily be deduced as in the proof of [1, Theorem 4.1], this concludes the proof
of (a). Part (b) can be proved analogously.

Remark 2.1 If in hypothesis (H1) we additionally assume that the mappings
[|A1 ()] and [|A2()|| are locally bounded, then the mappings s(-,-, 7, &) and
r{-,-, T, &) are even Lipschitz continuous. This follows from [1, Remark 4.2]
and the fact that in this case the solution A(-;7., &) of system (1) is Lipschitz
continuous. In order to see the latter we abbreviate system (1) in the form
i = A(t)x + F(t,z) and notice that for arbitrary ¢, s € U, where U C R is
bounded, we have

t
/(HA(T)II AN+ [1F (s A dr
S———

$ S2L[IAMI

< (sup A +2L) - sup NI} - |t — 8],
TeU TEU

1A = A()l] <

proving the desired Lipschitz continuity.



6 B. AULBACH and T. WANNER

Theorem 2.1 provides two partitions of the extended phase space R x X' into
disjoint unions of S- and R-manifolds, respectively. In order to see this we consider
the following two equivalence relations on the set of all solutions of (1):

u~s v &= p—vis vy -quasibounded,
W ~RV &< u-—vis v -quasibounded.
The characterization of the S- and R-manifolds in terms of the asymptotic be-
haviour of the solutions of which they are made implies the following:
e For any (7,,&.) € R x X the equivalence class of A(+;7.,&.) with respect
to ~g is exactly the S-manifold through (7., ).
e For any (7,,&) € R x X the equivalence class of A(-; 7., &) with respect
to ~p is exactly the R-manifold through (7., &).

Thus, two arbitrary S-manifolds are either disjoint or they coincide, i.e. the whole
extended phase space can be partitioned into S-manifolds. An analogous statement
is true for the set of R-manifolds.

3 Invariant Foliations of the Extended Phase Space

In the previous section we have seen that Theorem 2.1 enables us to partition the
extended phase space of (1) into S- and R-manifolds and that the integral manifolds
occurring in those two partitions are exactly the equivalence classes of the two
equivalence relations ~g and ~pg. It is our next aim to find two suitable systems
of representatives for those partitions. To this end we exploit our knowledge on
the geometric structure of the extended phase space of (1) and show that the Rg-
manifold is a system of representatives for the partition into S-manifolds, and that
the Sp-manifold is a system of representatives for the partition into R-manifolds.

Definition 3.1 Employing the above notation we define:
(a) The mapping fu: R Xx X x R X Xy — X5 defined by

fH(T7 glyT*ré-;) = S(Tv 5177*77‘0(7—*7@-;)’5;)’

is called the horizontal foliation of (1), and for each (v*,£;) € R x &> the
set

FH(T*’gg) = {(77617 fH(TaélvT*agg)): TE Rv £1 € Xl}

is called the horizontal fiber through (7*,€3).
(b) The mapping fy: R x Xy x R x X — X; defined by

fV(T7 52»7'*’{;) = T(Tv 5277-*75;,30(7—*’6;))5
is called the vertical foliation of (1), and for each (7%,&;) € Rx X; the set
FV(T*aSI) = {(T’ fV(T7§2yT*’€1*),£2): TE R? 52 c X?}
is called the vertical fiber through (7*,&7).
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In order to make this definition geometrically transparent we consider an arbi-
trary point (7*,£7) € R x A;. Then the point (7*,£*) := (7*,&],s0(7%,£})) is
contained in the Sp-manifold of equation (1) and we have the following;:

e According to Theorem 2.1 the S-manifold through the point (7*, £*) consists
exactly of those solutions g of (1) for which the difference p — A(:;7*,£*)
is yT-quasibounded for some v € [a + 8, B — §]. Since A(:;7*,€*) is +*-
quasibounded as well, the S-manifold through (7*,£*) consists of all *-
quasibounded solutions of (1), i.e. it actually is the Sp-manifold of (1).

e Due to Definition 3.1 the R-manifold through the above point (7*,£*) is
exactly the vertical fiber Fy (7%, &7).

Analogous statements are true for points on the Rg-manifold of equation (1).

For autonomous, finite-dimensional differential equations the above-defined ver-
tical foliation generalizes the corresponding notion used in Kirchgraber and
Palmer [2], where the real parts of the eigenvalues of the matrix A; are supposed
to be less than or equal to zero, and the real parts of the eigenvalues of A4, are
assumed strictly positive. Our horizontal foliation, however, differs from the notion
of horizontal foliation used in [2].

In order to prove that the horizontal and vertical fibers introduced in Defini-
tion 3.1 in fact foliate the extended phase space R x X of (1) we first examine
whether two different fibers are indeed disjoint.

Lemma 3.1 Suppose system (1) satisfies the assumptions (H1) and (H2) as
well as the condition 0 < L < 567. Then for any T € R we have:
(a) For all &, m2 € Xo with & # m2 the horizontal fibers Fy(r,6) and
Fy(7,m2) are disjoint.
(b) Forall &, m € Xy with & # 1 the vertical fibers Fy (1,£1) and Fy(7,n1)
are disjoint.

Proof In order to prove (a) we choose an arbitrary v € [a + 4, 8 — §] and
suppose there is a {; € A} such that

(7—7 Clny(Tv ClvTa 52)) - (T» Clfo(Tv C],T, 772))

Let G = fu(7, (1, 7,6) = fu(7, G, mm2), & = ro{7,&) and ny := ro(7,72). Then
the mappings A(;7,() — A(;;7,€) and A(7,() — A(;7,7n) are yF-quasibounded
according to Theorem 2.1, and thus A(:;7,7) — A(;7,€) is y*-quasibounded as
well. On the other hand, A(-;7,7) and A(+; 7. ) are v -quasibounded according to
our construction, and so A(:;7,7) — A(;7,£) is vy~ -quasibounded.

Altogether we see that A(;;7,n) — A(+;7,€) is a v*-quasibounded solution of
the differential equation of perturbed motion of (1) with respect to the solution
A(57,€). Then [1, Theorem 4.1(c)] yields the identity A(t;7,n) — A(t;7,€) =0 on
R and consequently we get &£ = 72. This contradicts the above assumption.
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Part (b) of the Lemma can be proved analogously.

Lemma 3.1 allows to draw the conclusion that every point of the extended phase
space of (1) lies on at most one horizontal fiber and on at most one vertical fiber.
It is our next aim to show that each point (7*,£*) € R x A’ in fact lies on ezactly
one horizontal and on ezactly one vertical fiber. Obviously, this is the case if and
only if the S-manifold through (7*, £*) intersects the Rg-manifold of (1) and the R-
manifold through (7%, £*) intersects the Sp-manifold of (1). That this is indeed the
case is not obvious because even though the integral manifolds under consideration
satisfy global Lipschitz conditions they might not have points in common if the
Lipschitz constants are greater than 1.

This problem, however, can be overcome by noticing that the common Lipschitz
constant % for the mappings sg, ro, s and r (cf. [1, Theorem 4.1] and
Theorem 2.1 of the present paper) converge to 0 as L tends to 0. As the following
theorem and its proof show, the desired result can be derived by means of an
application of the uniform contraction principle.

Theorem 3.1 Consider a differential equation of the form (1) on a Banach
space X = Xy x Xy satisfying the assumptions (H1) and (H2) involving the growth
constants K > 1, a < B and the Lipschitz constant L > 0. We assume that for
some fized § with 0 < § < ﬁ%a the Lipschitz constant L satisfies the estimate

0<L<C(K,b) = 2;5(2 (K +2-VK?+4). (3)

Then we get the following:

(a) There exists a uniquely determined mapping
Fr=(Fi1, F12) Rx X 5 X =4 x A
such that for any (7*,£*) € R x X' the inclusion
(7%,€") € Fv (v, Fu(r", &) N Fu(r", Fra(7",£7))

holds. Hence, every point of the extended phase space of (1) lies on exactly
one horizontal and on exactly one vertical fiber. Furthermore, the mapping
F1 is continuous, for all 7 € R we have Fi(1,0) = 0, and for all 7 € R
and &€ € X the estimate

1A O < — 2|l (4)

1-C(L)
holds with C(L) := %%I(KLJ;)‘ Finally, suppose that p is an arbitrary
solution of (1). Then F1(-, u(-)) is a solution of the decoupled system
&= Ay () + Pt 21, s0(t, 71), 5)
5

Ty = Ap(t)z2 + Falt,ro(t, z2),22).
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(b) There is a continuous mapping F: R x X — X such that for every
(7%,€") € R x X the point (7%, Fa(7%,£*)) is the uniquely determined
intersection point of the horizontal fiber Fy(7*,&3) with the vertical fiber
Fy(77,£5) in the hyperplane t = 7. This in particular yields F2(7,0) =0
for all 7 € R. Moreover, for every solution v of the decoupled system (5)
the mapping Fo(-,v(-)) is a solution of (1), and the estimate

1Rl )l < — 2 el (6)

1-C(L)

holds for all T € R and € € X with C(L) as above.

(c) For every T € R the mappings F1(7,-) and Fy(7,-) are inverse to each
other, hence homeomorphisms on X. Thus we call the two systems (1) and
(5) topologically equivalent.

(d) If the right-hand side of (1) is periodic in t with period © > 0, then so are
the mappings F1 and Fo. In particular, if the right-hand side of equation
(1) is autonomous, the mappings Fy and F» are independent of t, hence
homeomorphisms on X.

Remark 3.1 Condition (3) is stronger than the condition on L required in
Theorem 2.1, since for every K > 1 we have

L
2K

Moreover, condition (3) has been chosen in such a way that the estimate

C(K,§)

_ K?L(6 - KL)

L)y=——"————-<1 7
O =553k < M
is satisfied. This latter estimate is crucial for the following proof of Theorem 3.1.

Proof The proof of Theorem 3.1 extensively uses the uniform contraction prin-
ciple (cf. [1, Theorem B.2]).

(a) Let (r*,&*) € R x X be arbitrary. We begin by showing that (7*,£*) lies on
exactly one vertical fiber Fy (7*,&;). To this end we consider the mapping
A xRxAX — X
1
({177—*76*) = T(T*aso(T*agl)vT*yg*)'

Due to the continuity of r and s¢ also the mapping 77 is continuous. Furthermore,
forany 7 € R, £ € X and &, m € Ay [1, Theorem 4.1} and Theorem 2.1 provide
the estimate

170 (&, 7, &%) = Ti(m, 7, )l < C(L) [Iso (7", &1) — so (7™, m)|

8
< CLY* & = mll. ®
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According to (7), Ty is a uniform contraction and [1, Theorem B.2] implies that for
any (77,£") there is a uniquely determined fixed point Fi;(7*,£*) in X}, and that
the mapping F1: is continuous. Moreover, & € X} is a fixed point of T (-, 7%, &%)
if and only if

{1 = T(T*780(7*7€1)77*7€*) — (T*,flaso(T*7£1)) € RT*,{*
= (17,87) € Fy (77, 6).

In other words, & is a fixed point of 71 (-, 7*,£*) if and only if (7*,£™) lies on the
vertical fiber Fy (7*,&;). Obviously, for £* = 0 this fixed point is & = 0, and this
implies ]:11(’]'*,0) =0.

Now let us fix any point (7,£) € R x X. Then [1, Theorems 4.1 and B.2], (8)
and Theorem 2.1 imply with C'(L) as in (7)

[Fia(r, O = [|F11(7, &) — Fia (7, 0)]]
1

< =G M0, €) - TuFialr,0), 7,0
= 1=y T 0. m9 = Ti0. 0 = T3 I 0.7 0 o
< t=g (I 0m 8 —rln e, m &) + sl
=&
< s egp CONEN+ Il S T—grps el < Tz el

Similarly it can be shown that every point (7%,£*) € R X X lies on exactly
one horizontal fiber Fyy (7%, Fi2(7*,£*)), where Fi is a continuous mapping with
_7:12(7'*,0) =0 and

1

1F12(m, Ol < =00 11318
Altogether we obtain the desired estimate
1Ol = 17 (Ol + IFia(r. ] < 7=z N

It remains to verify that F; maps solutions of equation (1) onto solutions of
the decoupled equation (5). To this end let p be an arbitrary solution of (1) with
& = p(r*), and let

& o=Fu(rn,€) and  v(t) = At 75, &, s0(77, 61)).

According to the construction of Fj; the mapping v is a v -quasibounded solution
of (1) and pu — v is vy -quasibounded, for any v € [ + 4,8 —¢]. Now let 7 € R
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be arbitrary. Then 7y := Fi1(7, (7)) is the uniquely determined point in A} for
which the difference

p— A7, s0(T, M)

is vy~ -quasibounded. Due to the above definition of v as a solution on the Sp-
manifold of (1) and the v~ -quasiboundedness of p — v we therefore get v =
)\(‘;T’ n, 50(T1 771))7 i.e. we have

vi(r) = Fii(m,p(r)) for every 7€R.
Since v is contained in the Sp-manifold of (1), we additionally have
va(7) = so(1,v1(7)) for every Té€R.
This implies that v; = F11 (-, u(*)) is a solution of equation
1 = A (t)x + Fi(t, 21, s0(t, 1))
Analogously it can be shown that Fi2(-, u(-)) solves
To = As(t)z2 + Fa(t, ro(t, x2), Z2).

This concludes the proof of (a).

(b) Let (7*,&*) € Rx X be arbitrary. In order to prove that the fibers Fy (77,&7)
and Fy(7*,&;) have exactly one common point within the hyperplane ¢t = 7* we
define the mapping

T.{XXRXX - MxX=X
. (677_*’{*) — (fV(T*,é%T*aél*):fH(T*yflvT*ygg))'

Due to the continuity of fy and fg the mapping 7> is continuous, too, and for any
7 € R and &%, &, n € X Theorem 2.1 implies

]|T2(£1T*v§*) - TZ(T/:T*?g*)” = |1fV(7'*7§277—*,£;) - fV(T*an%T*ng)H
+ 1 (™ 6,77, 6) = fa (™ m, 7 601 < CL)(16 — mll + 1162 — n21])
= C(D)I€ = nli-

According to (7) the mapping T is a uniform contraction. Hence [1, Theorem B.2]
provides for every (7%, £*) a uniquely determined fixed point Fo(7*,£*) in . More-
over, F; is continuous and £ is a fixed point of T5(-, 7*,€*) if and only if

lefV(T*,@:T*»ff) and 52:fH(T*7€1»T*:£;)
= (M eFv(r,¢g) and (77,8 € Fu(r",&),
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ie. if and only if (r*,£) is an intersection point of the fibers Fy(r*,&F) and
Fy(r*,£5) in the hyperplane ¢t = 7*.
Now we choose any 7 € R and £ € A'. Then as in the proof of (a) we get

H]:?(Tvg)“ < ||T2(f2(7_70)57_7€) - TQ(}—Q(TrO)vT’O)”

1
1-C(D)

= 1 I 0l + (0,7, 0

< Tgg v 0mé) = frnsa(r 6,76 11+ 161
=&
+||fH(T707T,€2) - fH(T7T0(7-7€2)aT7 52) || + Hg?”)

=£2

< 1_;0@) (CI)Iso(r, €0 + &1]] + CL)ro(r, €] + 1E2l])

< 1_1% (CL2al + 6 + CIPlIE] + &)
2 2
< m (&)l + 1&=1) = 1_70@) 1]

The remaining claims of (b) can be proved similarly to (a).

(c) Due to our construction Fp(7*,£*) is the uniquely determined intersection
point of the fibers Fy (7*,£}) and Fy(7*,&;) in the hyperplane t = 7*. On the
other hand, for every (7, £*) in the extended phase space Fy (7*, F11(7*,£*)) and
Fy(r*, Fio(r*,£*)) are the uniquely determined vertical and horizontal fibers con-
taining (7%,€*).  This immediately implies that Fj(r,F3(7,€)) = £ and
Folr,Fi(r,€)) =€ forall 7€ R and £ € X.

(d) This part of Theorem 3.1 can be deduced as in the proof of {1, Corollary 4.4].

Remark 3.2 It can readily be seen that the differential equation
i] ZAl(t)$1 +F1(t,l’1,30(t,.2‘1)) (10)

describes the behaviour of the solutions of system (1) on the Sp-manifold in the
following sense:

e Suppose that u: R — A is a solution of (1) on the Sp-manifold. Then the
mapping gy R — A) is a solution of (10).

e Conversely, assume that v: R — X} is asolution of (10). Then the mapping
(w()ys0( V()N R = A x Ay = X is a solution of (1) which obviously
lies on the Sp-manifold of this system.
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Similarly, equation
T = Ao (t)iL‘z + Fz(t, To (t, Ig), Iz)

describes the behaviour of (1) on the Rp-manifold. With these interpretations in
mind, Theorem 3.1 states that — loosely speaking — the behaviour of system (1) is
completely determined by its behaviour on the Sp- and the Ry-manifold.

In order to conclude this paper we want to mention that the invariant folia-
tions we have constructed have some interesting applications. First of all, it is
possible to obtain detailed information about the asymptotic behaviour of all so-
lutions of system (1), in particular, one can derive the so-called reduction principle
which for finite-dimensional autonomous systems has been established by Pliss 3]
and Kelley [4], and for nonautonomous systems by Aulbach [5]. Furthermore, the
precise information about the extended phase space of (1) makes it possible to
construct topological mappings which — in addition to the decoupling achieved in
this paper — allows to linearize at least one of the two equations of system (1). Fi-
nally, we can prove the generalizations of the theorems of Hartman-Grobman-type
(cf. Grobman [6,7], Hartman [8—10], Palmer [11,12], and Sositaigvili [13]) to our
general nonautonomous setting in Banach spaces. All of this will be done in the
forthcoming paper [14].
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1.2 ON EXPONENTIAL ASYMPTOTIC
STABILITY FOR FUNCTIONAL
DIFFERENTIAL EQUATIONS
WITH CAUSAL OPERATORS*

C. CORDUNEANU and YIZENG LI

Department of Mathematics, University of Texas at Arlington, Arlington, USA

1 Introduction

The notations used below are those found in our preceding papers [4,5,9].
The following linear (unperturbed) system is considered:

.’E(t) = (L.’L‘)(t), te R+a (1)

with L a causal (abstract Volterra) operator acting on the space L? (R4, R"™).
We assume L to be a continuous operator. For a general discussion of (1) and its
nonhomogeneous counterpart, see the book [3].

The perturbed system has the form

&(t) = (Lz)(t) + (Fz)(t), t€ Ry, ()

with F: L% (R4, R™) — L2, (R4, R"). Other choices for the underlying space are
possible (see, for instance, [1,10,12]).

Assuming the zero solution to (1) (solution is understood in Carathéodory sense)
has a particular kind of stability, it is desirable to find adequate conditions on the
perturbing term (F'z)(t), such that same kind of stability (or a weaker one) is
valid for the zero solution of (2). One may regard this problem as a stability
problem in the first approximation, or, as a problem of preservation of stability
under perturbations.

* Advances in Stability Theory (Ed.: A.A. Martynyuk). Stability and Control: Theory, Me-
thods and Applications, Taylor & Francis, London, 13 (2003) 15-23.
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2 Definitions and Statement of Problems
In regard to the functional differential system
£(t) = (Va)(t), te Ry, (3)

in which V is a causal operator on the space L2 (R,,R"), such that
Loc\ U+

(Vo) t) =6, teRy, (4)
8 € R™ being the zero vector, the initial value problem we shall consider is
z(t) =zo(t), te€[0,to), =z(to) =2’ (5)

with zo € L2([0, %], R"), and z° € R™.
The definition of various types of Liapunov stability for the zero solution of (3)
can be formulated as follows:

Stability.  For each ¢ > 0 and ¢y > 0, there exists § = 6(e, tp) such that
[z°) <6 and |zoly <& imply |z(t;to, 2%, 30)] < e (6)

for t > to. Of course, z(t; to, 2°, 7o) denotes the solution of (3), with initial data (5).

Uniform stability. The number &(e,tg) in the definition of stability must be
independent of to: &(¢,t0) = d(e).

Asymptotic stability. The solution 2z = @ is stable, and there exists 7n(ts) > 0
such that
lim |z(t;to, 2%, 20) =0 as t — oo, (7)
as soon as

|2°] + |zol2 < n(to). (8)

Uniform asymptotic stability. The solution z = @ is uniformly stable, and for
each € > 0, there exists T'(e) > 0, such that

|z(t; to, 20, z0)] < e for t>to+T(e), (9)

as soon as =¥ and x¢ satisfy (8), with some 7(¢o) = const.

Exponential asymptotic stability. There exist two positive numbers K and A,
such that
|z (t; to, 2%, @o)| < K (2°] + [aol2)e 1), (10)

for t > tq.
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When V is a nonlinear operator, conditions (10) must be satisfied only for |z°|
and |zg|» sufficiently small.

It is obvious that each type of stability, defined above, implies the preceding
types, excepting the case of asymptotic stability which does not imply, in general,
the uniform stability (see, for instance, [2]).

The problems we shall investigate in this paper are concerned with perturbed
systems of the form (2), and we shall be primarily dealing with uniform stability
and exponential asymptotic stability. More precisely, we shall search under what
conditions on the perturbing term (Fz)(t), these two types of stability are preserved
when we substitute (2) to (1).

The case of ordinary differential equations being a special case of the equations
with causal operators, we cannot expect better results in the latter than those
available in the first.

There are many open problems in the theory of stability of systems with causal
operators. One such problem is to investigate the relationship between uniform
asymptotic stability and the exponential asymptotic stability in the linear case.
For ordinary differential systems, these concepts are equivalent under rather general
assumptions. There are cases when the answer is positive for integro-differential
systems, especially of the autonomous type (see, for instance [8], Theorems 2.2.1
and 2.2.2, and [13]).

Also, it is unknown how to characterize the various concepts of stability in
terms of Liapunov functionals, excepting perhaps some particular cases (see again
[8], Theorem 3.3.1). Even in case of linear systems, this problem is far from being
solved.

Let us deal now with systems (1) and (2), and state conditions on (Fz)(t) that
will allow preservation of stability.

3 Two Results for Systems (1) and (2)
Let us begin with the case of uniform stability for the systems (1) and (2). The
following result holds true.

Theorem 3.1 Assume that L in (1) is a continuous causal operator on
L} (R4, R™Y), and F is continuous on L2 (Ry,R"), taking bounded sets into
bounded sets; moreover F' is such that

|(Fz)(®)] < v(@lz(®)], ae for te€ Ry, (11)

with v € L(R+, R).
Then, the solution = =6 of the system (2) is also uniformly stable.

Proof Since the solution of the initial value problem

z(t) = (Le)(t) + (1), te Ry, (12)
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with conditions (5), can be represented by the formula

to

z(t) = X(t, to)x / (t,s;t0)zo(s) ds+/X (t,s)f(s)ds, (13)

0 to

assuming f € L% (Ry,R"™), where X(t,s) is the Cauchy matrix attached to the
operator L, we will consider now the integral equation

z(t) = X(t,to)x +/X(t,s,t0)zo s)ds+/X (t,s)(Fz)(s)ds. (14)

to

This equation is equivalent to the initial value problem (2), (5). Taking into account
the properties of the matrices X (¢,s) and X (¢, s;t0), as shown in [9], the following
estimate is immediately obtained from (14):

t
|lz(t)] < M (2] + |zo]2) + M/V(S)II(S)Ids, (15)

which holds true for ¢ > ¢;. The constant M > 0 in (15) exists on behalf of our
assumption of uniform stability for the zero solution of (1), and is such that

|X(tto)) < M for t>1t >0, (16)
and

/ (t,s:t0)|2ds < M? for t >ty > 0. (17)
0

It is now easy to process the inequality (15) for |z(t)], since it is of classical
Gronwall type. One obtains the estimate

(o)

2(O)] < M(|2°] + |zol2) exp {M/V(S) dS}» (18)

0

which is valid for all ¢t > tp, provided z(t) is defined on the whole semi-axis. But
(18) shows that any solution of (2) is bounded on each compact interval of R.. This
implies the boundedness of the derivative ©(t) on any compact interval. Therefore,
if we assume z(t) defined only on some interval (to,7T), (T < +00), we find out
based on Cauchy’s criterion for the existence of the limit that lim z(¢) does exist
as t T T. Then, the conclusion comes from the fact that such a solution can be
continued to the right.
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It is an elementary fact that the uniform stability of the zero solution of (2)
follows from the estimate (18), valid on the whole semi-axis ¢ > ¢;.

Remark 3.1 The result stated in Theorem 3.1 is a straightforward extension of
the classical result for ordinary differential equations (see, for instance, [2]). The
condition (11) on F is, in the case of systems with causal operators, much more
restrictive than it is in case of ordinary differential equations. A more reasonable
assumption would be

(F)(®)] < v®lels, (19)
with
lzle = sup {|z(s)], 0 < s < ¢} (20)

We leave to the reader (as an open problem) the task of discussing the inequality
similar to (15), when estimate (11) is replaced by (19), or pursue another approach
to see if the theorem remains valid.

Remark 8.2 There are nontrivial examples of causal operators satisfying (11).
For instance, one may choose

t -1
(Fz)(t) = (t) <m " / j2(s)] ds> (1), (21)
0

with m > 0 and ~(¢) as above.
We shall consider now the perturbed system (2), under the basic assumption
that the zero solution of (1) is exponentially asymptotically stable.

Theorem 3.2 Consider the system (2), and assume that the zero solution of
(1) is exponentially asymptotically stable.

Further, assume that the causal operator F is continuous on L%oc(R+,R”), and
moreover, let F' satisfy the estimate

I(Fa)(®)] < plz(B)], (22)

with p > 0 sufficiently small.
Then, the solution © =8 of (2) is also exponentially asymptotically stable.

Proof of Theorem 3.2 has been actually given in [9], under the assumption that
F is a Nemytzky type operator: (Fz)(t) = f(¢,z(t)). An estimate like (22) has
been assumed. The proof is also a direct application of Theorem 1.5 in [11].

Of course, the result is valid without the assumption that F' is a Nemytzky
operator but the proof goes exactly on the same lines as in [9]. The formula
for (21), with 4(¢) = 1 and large m provides an example of a causal operator
satisfying (22).
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4 Further Discussion

As mentioned above, in the section “Definitions and Statement of Problems”, the
question of whether or not uniform asymptotic stability of the zero solution of (1) is
implying exponential asymptotic stability has been considered by various authors
(8, 13] for special types of causal operators. The answer to this question is positive,
under various sets of assumptions. Generally, speaking, the answer is negative.

We shall refer here to a result of Murkami [13]. We can illustrate the nature
of the problem limiting our considerations to a particular case of that dealt with
in [13].

Let us assume that

(La)(t) = Aast)+/Bt—s s) ds, (23)

with A a constant matrix of type n x n, and B(¢), ¢t € Ry, a function matrix
satisfying {B| € L(R+, R). By B(s) one denotes the Laplace transform of B, i.e.,

oo

/e’“B (24)

0

which is surely defined for Res > 0.

The condition of asymptotic stability for the zero solution of (1), with L given
by (2.2) is then (see [3], Theorem 6.3.1)

det(sI—A—B(s)) #0 for Res> 0. (25)

As shown by Murakami [13], the exponential asymptotic stability occurs only in

case
0

/|B(t)|e’\t dt < oo, (26)
0
for some positive number .
Let us point out that the asymptotic stability for (1), with L given by (23), is
actually uniform asymptotic stability, L being autonomous (time invariant).
Hence, even in rather special cases for L, such as (23), the uniform asymptotic
stability and the exponential asymptotic stability are different concepts in the class
of equations with causal operators.
There are many problems of stability theory of equations with causal operators
that can be discussed based on the theory of integral inequalities. We shall illustrate
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this assertion considering again the system (2), but replacing the assumption (22)
by the following ones:

[(Fz)(®) — (Fy)(t)] < plz(t) —y(B)], (27)
(FO)(t) € L(Ry,R™), (28)

where p is a sufficiently small positive number.

We will rely on the Theorem 1.5 in the book [11], by Martynyuk, et al. Let
us consider the inequality derived from the formula (14), taking into account (27)
and (28):

t
|#(t)] < K(|2°} + [zol2)e M%) + L/e’*(t’s)[ulw(ﬂl +Alds. (29)

We have assumed that the zero solution of (1) is exponentially asymptotically
stable. We denoted |F6| = A.
The above mentioned theorem in [11] leads to the estimate

o] < K (12" + faola)e V0010 4 21— e O] o> (30)
The first conclusion we can draw from (30) is that all solutions of (2) are bounded
on Ry if p <A

Actually, one can easily prove, based on the same Theorem 1.5 in [11], that each
solution of (2) is exponentially asymptotically stable.

Indeed, if z(¢) and y(t) are two solutions of (2), corresponding to the initial data
(20, 20) resp. (¥°,yo), then the following estimate holds true for ¢ > to:

|2(8) = y(O)] < K(|2° = y°| + |20 — yol2)e” A7+t (31)

The conditions (27) and (28) are used to derive the estimate (31). It shows that
each solution of (2), whom we know to be bounded on R under condition (27)
and (28), is exponentially asymptotically stable.

5 Some Open Problems

We want to call the reader’s attention on some open problems related to the above
discussed topics.

Presently, we are not aware of any stability result concerning the perturbation of
(1), in case of uniform asymptotic stability (again, there are several results which
regard only special cases of causal equations).
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So far, to the best of our knowledge, no converse theorems on stability have been
obtained in general case of causal equations.

A very important topic is stability theory is that of partial stability (or, stability
with respect of part of the variables). The book [14] by Vorotnikov may serve as a
source of inspiration. In the linear case, the system (1) should be rewritten as

y(t) = (Ay)(t) + (B2)(t),  2(t) = (Cy)(t) + (Dz)(1),

in which A, B, C, D are linear causal operators on a given function space. The
behaviour of y-variables is the main concern.

The case of neutral functional differential equations with causal operators is
another important aspect of stability theory. The recent paper [7} by Kurbatov
contains several ideas conducing towards stability results for systems that can be

represented by

d
7 (Vo)) = (Wz2)(1), (32)
with both V' and W causal operators acting on convenient function spaces. See
also [6].

Finally, a development of the Liapunov’s function(al) method is still a matter
of the future. As pointed out in [1], the study of stability in the nonlinear case
is presenting some serious difficulties. See [4,5] for a few considerations in this
regard, related to comparison method.
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1.3 LYAPUNOV PROBLEMS ON
STABILITY BY LINEAR
APPROXIMATION*

N.A. IZOBOV

Institute of Mathematics, Academy of Sciences of Belorusia, Minsk, Belorusia

0 Introduction

Foundations of stability theory was laid by A.M.Lyapunov, the outstanding Rus-
sian mathematician. The first Lyapunov method for investigation of exponen-
tial stability of differential systems by linear approximation is based on the no-
tion of the characteristic Lyapunov exponent [1, p.27] (see also [2, p.17)) A[f] =
t_l?w t=!In || f(#)||, where a vector-valued or matrix-valued function f is piecewise

continuous on [0, +00).

Notation. Problems. We shall consider n-dimensional real differential systems:
the linear approximation system

&= A(t):l,‘, T € R", n 2> 2, t >0, (lA)

with piecewise continuous (measurable) bounded (||A(¢)|| < a < +o0 for t > 0)
coefficients and the perturbed nonlinear systems

y=Aly+ft,y), yeR", t20, 2)

with piecewise continuous in ¢ > 0 and continuous in y € U, = {y € R™ : |ly|| <
p = p(f)} m-perturbations f(¢,y) of class

Fn= {f “f(tyy)” < Cf“y“ms Cf = const, (tyy) € [07 +OO) X Up(f)}a

* Advances in Stability Theory (Ed.: A.A. Martynyuk). Stability and Control: Theory, Me-
thods and Applications, Taylor & Francis, London, 13 (2003) 25-48.
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with fixed m > 1. This class of perturbations is most important in applications,
it, evidently, contains the Lyapunov class [1, p.16] of the second order holomorphic
perturbations

feyy = > ok OuF oy B0, (3)
ki+-+k, 22
with continuous and bounded coefficients fx, k., : [0,+00) = B™, y = (y1,...,yn)

€ R™

Along with non-linear systems (2) we also consider the perturbed linear systems
(Lat+g) with any piecewise continuous and exponentially decreasing (as t — +00)
n x n - matrices Q(¢) of class E, = {Q: A\Q] < —o}, ¢ = const > 0. These
matrices are called o-matrices (similarly to m-perturbations).

Let [1-5] : Ay (A) <--- < Ap(A) denote the characteristic Lyapunov cxponents
of (14) forming the characteristic aggregate of this system with the lower A;(A)
and the higher A, (A4) exponents; o1 (A), 0g(A) and op(A) Lyapunov, Grobman [6],
and Perron [7] irregularity coefficients of system (14), respectively; oy the Mil-
lionshchikov [8] asymptotic number of (14); Xa(t,7) the Cauchy matrix of (14);
MA, f) = yloi_go Ay(-,y0)] the higher exponent [9] of system (2), where Aly(-, yo)] is

the Lyapunov exponent of a solution y: [0,,) — U, \ {0} when ¢, = 400 and it
is equal to +oo when t, is finite [10]. If A(4, f) < 0, then this exponent defines
the exact asymptotics for the norms of solutions of (2) as ¢t — +o0.

To solve the stability problem by linear approximation is, as a rule, to investigate
exponential stability of the zero solution of a differential system under considera-
tion. Since the days of Lyapunov the following definition is universally recognized.

Definition 0.1 The solution y = 0 of system (2) is called ezponentially stable
if this solution is Lyapunov’s stable and A(A4, f) < 0 (it is evident that to define
the exponential stability of the solution x = 0 of linear system (1,4) it suffices to
require A,(A) < 0).

Due to Lyapunov (1, p.52-55] the distinction is made [2, p.232-238; 5; 11]
between the general and special Lyapunov problems on exponential stability of
(2) by linear approximation (14). We also consider their linear analogs: the gen-
eral and special Lyapunov problems on exponential stability of (144¢) by linear
approximation (14). So we formulate these problems simultaneously.

The special Lyapunov problem (linear problem) is to obtain a necessary and
sufficient condition for exponential stability of the zero solution to perturbed system
(2) with any perturbation f € Ejy9 = |J F,. (perturbed system (14:¢) with

m>1
any matrix Q € E;g = |J E,) via linear approximation system (14) and then
>0
to calculate the exact in Fy4 asymptotics Q150 = sup A(A, f) for the solution
fE€F140
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y(t, yo) starting from some sufficiently small neighborhood of the origin at the initial

moment t =0 (the exact in E o asymptotics sup Ap(A+ Q) of the solutions of
QeE ¢
(Lavo)). i+0(A) is called [12] the higher order central exponent of system (14).

The general Lyapunov problem (linear problem) is to obtain a necessary and
sufficient condition for exponential stability of the zero solution to perturbed system
(2) with any m-perturbation f € Fy, with fixed m > 1 (perturbed system (14.¢)
with any o-matrix @ € E,, ¢ = fix > 0) via linear approximation system (14)
and then to calculate the exact in Fy, asymptotics Q,,(4) = sup A(A, f) for the

fEFm

solution y(¢,yo) starting from some sufficiently small neighborhood of the origin at
the initial moment ¢ = 0 (the exact in E, asymptotics sup A, (A + Q) for the
QcE

o

solutions of (14+¢)). The quantity Q,,(A4) was introduced in [9]. We call Q2,,(A)
the a priori m-exponent of (14) according to [13,14].

These four problems are connected by the methods of their solving. The meth-
ods for solving the special and general linear problems on exponential stability of
(la+q) with the matrix Q € E.o and @ € E,, ¢ > 0, are used, with necessary
modifications, for solving the special and general Lyapunov problems on exponen-
tial stability of (2) with perturbations f € Fi,o9 and f € F,,, m > 1.

The simplified form of the general Lyapunov problem (see [13,14]) is to find,
when the higher exponent A,(A) of the system of linear approximation (14) is
negative, the minimal value my = mo(A) > 1 for m-perturbation f € F,, such
that the zero solution of (2) is exponential stable for any f € F,,, and m > mg.
In the linear case the problem is to find the maximal value —og = —g¢(A) < 0 for
o-matrix Q, Q € E, such that the zero solution of (14,¢) is exponential stable
for any Q € E, and o > og.

History of the problems. The complete solution of the special Lyapunov problem
on exponential stability of system (2) by linear approximation (14) when the latter
is a regular [1, p.38] linear system is that A,(A) < 0 and A4, f) = A, (4).
This solution was given: 1) by Lyapunov [1, p.52] in class F5 of holomorphic
perturbations (3); 2) by Massera (essentially later) [15] in class F}. o of the higher
order perturbation.

In solving the general Lyapunov problem on exponential stability by linear ap-
proximation (14) the main classical achievements are the conditions of exponential
stability of the zero solution of (2) with perturbations f € F,,, m > 1, and the
conditions of the realization of the equality A(A, f) = A,(4) (or a corresponding
estimate). These conditions are that the value L,,(0) = (m — D)A,(A) + o (orits
strict analog) is negative for m > 1 and various ¢ > 0. These conditions are:

1) Lyaponov’s condition [1, p.54-55] La(op(A4)) < 0 in class Fy of holomor-
phic perturbations (3);
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2} Massera’s condition [15] Ly, (or(A)) < 0;
Grobman’s condition [6] Ly, (oc(A)) < 0;
Bolshakov — Prokhorova’s condition L., (op(A4)) <0 for n =2 [17, 18] (the
condition is not valid [18] for n > 3);
Malkin’s condition [16, p.379] (m — 1)R+r < 0;
¢

=~ W
N4

[>T
I

Vinograd’s condition [2, p.233] tm = fl(m — D)R(s) + r(s)]ds < 0,
—00 0

where the piecewise continuous functions r(s) and R(s), s > 0, and their
constant values r > 0 and R < 0 give the estimate In||X4(t,7)| <

T t
const+ [7(s)ds+ [ R(s)ds, 0 < 7 < t, where X 4(t,7) is Cauchy’s matrix
0 T

¢
of 14) (MA, ) < tﬁfﬁ t71 [ R(s)ds for both the conditions).
—o00 o

For mo(A) > 1 the following estimate mg(A) < +0g(A)/|An(4)] (or the esti-
mate mo(A) <1+ r/|R| for Malkin’s condition) is valid.
For linear systems (144¢), the Grobman theorem [6] holds:

AQ] < —og(A) = AMA+ Q) = MA). (4)

This theorem gives the solution of the special Lyapunov problem on exponential
stability of (144.¢) by regular linear approximation, i.e. the condition A,{4) < 0.
The Grobman theorem gives the sufficient condition for the solution of the general
linear Lyapunov problem. For the Perron perturbations the statement n = 2,
AQ] < —op(A) = A(A+ Q) = X2(A) holds [19].
The asymptotic number oy of Millionshchikov [8] (see also [3]) gives the exact
correspondence between the solutions z(¢) and y(t) of systems (14) and (1a4g):
1) Q] < —ou(4) = lyt) — 2@l < alle@ll, g <1, ¢ > to;
2) for any x(t) there exist a system (144¢) with A[Q] < —0, 0 < op(4),
such that for any solution y(t) of (144¢) the previous relation is not valid.

The essential advances in solving the special and general Lyapunov problems
and their linear analogs are connected with the rotation method proposed by Mil-
lionshchikov ([20, 21], see also the survey [3]). For the first time this method was
applied to systems (2) with m-perturbations f of the order m > 1 by to Vino-
grad [22]. The necessary conditions of the criteria stated below in Sections 1-5
and the attainability of estimates from many theorems of this survey were proved
by Millionshchikov’s rotation method. Moreover, the rotation method initiates the
rapid development of the theory of Lyapunov’s exponents over the last 30 years.
Using this method Millionshchikov solved many problems of long standing: the
problem on attainability of the central Vinograd exponents, Perron’s problem on
the stability of characteristic exponents, Erugin’s problem on the existence of the
linear quasi-periodic and almost periodic irregular systems and so on.
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The following exponents calculated from the Cauchy matrix X 4(¢,7) of linear
approximation system (14) are the basic tools for solving of these problem. These
exponents are: 1) the estimating m-exponent {2,(A) proposed by Vinograd [22[;
2) the lower Ag(A) and the higher Vo(A) exponential indices, the higher sigma-
exponent V,(A), ¢ > 0, and the constructive m-exponent proposed by the author
of this survey [3,4,9,11-14, 23, 24]. In this connection we have the following struc-
ture of our review. The first three sections deal with definitions of these exponents
and investigations of their properties. In the next two sections we consider the ap-
plications of the exponents for solving four Lyapunov’s problems formulated above.
The last section contains some unsolved problems.

Remark 0.1 Note that, in general, system (2) with m-perturbation f € F,,
m > 1 (including an exponential stable system), has not the property of uniqueness
of its solutions at any moment ¢ = to > 0 and on an arbitrary small neighborhood
of the origin y = 0 (see [25]). But this phenomenon has not an essential effect on
the investigation of the stability because the zero solution of (2) is unique.

Remark 0.2 This review does not contain the results by Bogdanov on stability
by essentially non-linear approximation (see [3]) and the recent results of Mil-
lionshchikov on conditional stability announced in the journal “Differentsial’nye
Uravneniya”.

Remark 0.8 Lyapunov characteristic exponents theory for linear systems is sur-
veyed in [3], some parts of this theory is treated in surveys [4] and [5]. However,
the stability by linear approximation is touched very slightly in these our papers.

1 Exponential Indices of Linear Systems

Using Cauchy’s matrix X 4(¢,7) of linear system (14) we define [23] the lower and
the higher exponential indices of (14) as

k
Vo(A) = lim  Tim 675 In | XA(6%,6" 1),

6-—1+0 k—oco e
i=1

k

Ao(A) = — i lim 7% In|| X716, 6.

o) =~ lim  lim ;nll Pt )l

The existence of . 1i11n o is proved in [23], so our exponential indices are well defined.
-1+

Since the matrix A(t) is bounded by a on the semiaxis ¢t > 0 we have —a <
No(A) £ Vo(4) <a.
The following theorem gives the first basic property of the exponential indices.
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Theorem 1.1 [23] The relations Ag(A) = ir}Ef M(A 4+ Q), Vo(4) =
sup Ap(A + Q) are valid. QEFro
QeEro
The second basic property of the higher exponential index V(A) of (14) gives
the relation between Vo(A) and the central exponent ©14.9(A) of the higher order.

Theorem 1.2 {12] Vy(A4) < 0= Qi0(A) = Vo(4); Vo(4) > 0= Q140(A4)
= +x.

For the relation between Ag(A) and the exponent wiio(4) = fi?f
€Fi40

lim A[y(,y0)] (this exponent is used to investigate conditional stability and insta-
Yo—0

bility of the zero solution of (2) with perturbations f € Fjq) see Problem 8. If
system (14) is regular, then Ag(A) = A\ (A) and Vo(A) = A,(4). In general, these
relations are not valid for irregular system (14). The inequalities A;(A4) > Ag(A4)
and A, (A4) < Vo(A) are valid, e.g., for the following two-dimensional system (1 4):
A(t) = diag[a(t), —a(t)], where a: [1, +o0) — {—1,1} is a piecewise-constant func-
tion such that a(t) = (1) for t € [#%+ g%+ 9 = const > 1, ¢ = 0,1,
k > 0. For this system we have A (A) = X2(A) = (0 —1)/(6 +1) and —Ay(A4) =
Vo(A) = 1.

Note that as well as for Vinograd’s central exponents the equalities Ag(P) =
ANog(Py), Vo(P) = Vo(Py) hold [26] for triangle system (1p) and its diagonal
approximation (1p, ). Millionshchikov [27] and Agafonov [28, 29] establish one more
important property of exponential indices, namely that Ag(+) and V(-) belong to
the second Baire class and do not belong to the first one.

In general case it is very difficult problem to give a complete description of
the mutual position of the exponential indices Ag(A), Vo(A), the characteristic
Lyapunov exponents Aj(A) < --- < A, (A), the lower and the higher central Vino-
grad exponents [2, p.116-117] w(A4) < Q(4), and the general Bohl exponents [30]
wo(A) < 20(A). The solution of this problem for the two-dimensional case is given
by the following theorem.

Theorem 1.3 [31,32] Arbitrary real numbers A1 and A2, A and V, w and
Q, wo and Qo are, respectively, the lower and the higher characteristic exponents,
exponential indices, central, reqular exponents of some two-dimensional system (14)
ifandonlyifw0§w§A§A1 S/\zSVSQSQo, UJo+QSmiH{)\1+A2,A+
V},’ A< w+ L A+ =w+Q=w+ Q= A=A

The following relations give the complete description of the mutual position
of the exponential indices and two other exponents of two-dimensional system
(14) [31]:

1) w(A4) < Ag(A4) < M(4) < A (A4) < Vo(4) < Q(A4) and 24(4) S w(A4) +
Q(A);
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2) wo(A4) < Ao(4) < Ai(A4) < A2(4) < Vo(4) < Qo(A); wolA) + Vo(A)
A (A) + A2(A) and Ag(A) = A\ (A4) in the case A;(A4) + A2 (A4) = wo(A)
Vo (A) = wo(A) -+ Qo(A)
For the set of two-dimensional systems (14) the following inequalities and only
they describe the mutual position of characteristic exponents and the exponential
indices: Ag(A) < A1(A4) < Az(4) < Vo(A).
For the complete description of the mutual position of characteristic, central,
general exponents and exponential indices of n-dimensional linear systems see [33].
The higher exponential index Vg(A) of system (14) is used in solving the spe-
cial linear problem on exponential stability of system (latg) with any matrix
@ € E4 and the Lyapunov problem on exponential stability of the zero solution
of nonlinear systems (2) with the perturbations f € Fi.o by the same lincar
approximation (14).

<
+

2 The Sigma-Exponent of a Linear System

As in Section 1, using the Cauchy matrix X 4(t, 7) of system (14), we define for (14)
so-called the higher sigma exponent V,(A4). In Section 5 this exponent will be used
in solving the general Lyapunov problem formulated in Introduction. In Section 3
the algorithm of calculating of the sigma-exponent will be used (with necessary
modifications) for calculating of the constructive m-exponent ! (A), which is one
of the basic tools to solve the general Lyapunov problem in the non-critical case
(Section 5).

Definition 2.1 [24] We say that V,(A) = kﬁﬁ &(0)/k, 0 > 0 is the higher
—00

sigma-exponent of system (14) if the recurrent sequence {£i(c)} is defined as
(o) = max {Inl|Xa(k ) + &(0) — 0i), &o(0) =0, ke N.

The following theorem gives the basic property of the higher sigma-exponent.

Theorem 2.1 [24] The relation V,(A) = sup A (A+Q), 0 >0 is valid.
QEE,

If we consider the higher sigma-exponent V,(A) of system (14) as a function of
the parameter o, o € (0, +00), then:
1) the image of (0,+o00) under the map V,(4) is [A.(4),Vo(4)) and
lim V,(A4) = Vo(A4) [23,24];
o—+0
2) V,(A) is a non-increasing continuous function that is strictly decreasing
on the interval (0,01), o1 < og(4), and A\, (A) = V,, (4) < V,(A4) for all
0 € (0,01), o1 <og(A) [24].
By the above it follows that V,(A) = A,(A) for all o > a;.
The following theorem gives the complete description of the properties of the
sigma-exponent V,(A) as the function of ¢ € (0,+00) on the set of linear sys-
tems (14).
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Theorem 2.2 [34] A function ¢: [0,+00) — R is the sigma-ezponent V,(A)
of some system (14) if and only if

(1) ¢ is bounded;

(2) ¢ is convex;

(3) there exist a constant o1 > 0 such that ¢(o) = const for all 0 > o1 > 0.

Note that the necessity of condition (2) of Theorem 2.2 were established indepen-
dently in [35] and [36]. Since the sigma-exponent is a continuous and non-increasing
function [24], Theorem 2.1 and the Grobman theorem (4) yield V,(A4) = A (A)
for 0 < oy.

Barabanov proved [37] that the sets of functions represented by the higher order
sigma-exponents of general linear systems (14) and of systems corresponding to
n-order linear homogeneous differential equation coincide. If we replace the set of
general linear systems by the set of Hamiltonian systems then the set {¢(o)} that
can be presented by the higher sigma-exponents Hamiltonian systems is completely
characterized [38] by the properties (1)-(3) of Theorem 2.2 and the following
additional condition:

(4) o1 <28, where 8 = ll)gl_l (o), and o1 =inf{oc > 0: p(o) = 3}

The following theorem gives the complete description of the dependence between
the higher sigma-exponents V,(P) of triangular system (1p) and V,(FPy) of its
diagonal approximation (1p,).

Theorem 2.3 [39,40] Functions @1 : (0,+00) = R and ¢o: (0,+00) = R
are the higher sigma-exponents of triangular system (1p) and its diagonal appro-
zimation (1p,), respectively, if and only if

(1) the functions @;(0), i = 0,1, are bounded, convez, and they are constant

on some interval infinite to the right;

(2) »1(o) 2 polo) for all o> 0;

(3) lim ¢o(0) = lim ¢1(0);

(4) there exists a constant c, € [0,n — 1) such that the inequality yo(o) >

a+ (nk —cy)o holds for all ¢ > 0 provided that I(c) = a+ko is a line of
support for the graph of ¢1(0), o > 0.

Later Makarov [41] established that condition (4) in Theorem 2.3 is equivalent to
the simpler condition that (o) > ¢1(no) —ceo for all ¢ > 0 and some constant
¢y € [0,n—1).

One more interesting and important property of the higher sigma-exponent
V. () as a function of the matrix of coefficients A: The higher sigma-exponent
belong to the second Baire class (Bykov [42])and does not belong to the first class
(Vetokhin [43]).

Since the higher order sigma-exponent V,(A4) is continuous in ¢ > 0 [24] it can
be calculated by the estimating method:
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Theorem 2.4 [24] Let R,(A) = {r(t)} be the set of piecewise continuous
functions r: [0,+00) = R such that In||Xa(t,7)|] < const + r(t) — r(7) + o7,
0 <7<t 0> 0, where Xa(t,7) is Cauchy’s matriz of system (14). Then

V. (A) regif;A) tlg?o r(t)/t, o > 0.

To investigate conditional stability of linear differential system (141¢), the quan-
tity A,(4) = sup A (A + Q) is used. Prokhorova established [44] that this
QEE,

quantity essentially differs from the higher sigma-exponent V,(A4) : the latter is a
continuous function of the parameter ¢ > 0, whereas the function A, (A) is dis-
continuous in general. For example, it is discontinuous at the point ¢ = op for the
system (14) constructed in [44] (here op(A) is the Perron irregularity coefficient).

See Section 5 for applications the higher sigma-exponent V,(A) of system (14)
in solving the general linear problem on exponential stability of the zero solution
of system (1layg) with any matrix Q € E,, o > 0.

3 Estimating and Constructive m-exponents of a Linear System

As in the first two sections, using the Cauchy matrix of system (14), we define
for this system two new exponents mentioned in the title of this section. These
exponents are used for solving the special and general Lyapunov problems on ex-
ponential stability.

3.1 The estimating m-exponent of a linear system

Definition 3.1 [22,14] We attribute any pair (w,r) of a number w € R
and a piecewise continuous function r: [0,+00) — (~00,0] to a class G,,(A)
if In|Xa(t, )] Sw(t—7)+r{t)—mr(r), 0 <7 <t, m>1, where X4(¢,7) is
Cauchy’s matrix of system (14).

We define the estimating m-exponent of system (14) as

a(A) = { Am(A)=  inf o Jm r@®/t i wn(4) <O,
+00, £ wn(4) > 0,

where wp,(A4) = Gin(ff}){w} is an index of stability.

If r(¢) and w € R make the pair (w,r) € G;n(4), m > 1, then r(¢) is nonpositive
for all ¢ > 0, so the inclusion G, (4) C Gy, (A4) is valid for all ma > my > 1. It
follows that the estimating m-exponent 2, (A4) is not less than the higher exponent
An(A) of (14) and is a non-increasing function of the argument m > 1, where m
is an order of the perturbations f € F},, in system (2).

If wy,(A) <0 then the estimating m-exponent Q) (A) = A, (A) is [14] a finite

negative number. The following two theorems give the properties of this exponent
regarded as the function of the parameter m > 1.
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Theorem 3.1 [14] The estimating m-exponent Q.. (A) of (14) is a continuous
function for all m such that Q. (A4) < 0.

Theorem 3.2 [14] The estimating m-ezponent Q. (A) of system (14) is a
strictly decreasing function on the set {m > 1: X\, (A) < Q. (A) < 0}.

The basic property of the estimating m-exponent is given by

Theorem 3.3 [14] The a priori m-ezponent Q. (A) of system (14) is not more
than the estimating m-exponent Q0 (A) on the domain of Q) (A).

The estimating m-exponent 2] (A) of system (14) is used for solving the general
Lyapunov problem on exponential stability of the zero solution of system (2) with
perturbations f € Fy,, m > 1, by linear approximation (14).

3.2 The constructive m-exponent of a linear system

We modify the definition of V,(A) of system (14) to define the notion of the
constructive m-exponent of (14).

Definition 3.2 [9,14] We say that the quantity
QU (A) = lim Lm &(m,a)/k, m>1,
a——00 k—0co

is the constructive m-ezponent of system (14). Here the sequence {&(m, )} is
determined by the following equalities

x(m, ) = max {InXa(k )| + méi(m. )},

&o(m,a) =a, keN.

The existence of lim follows [14] from the inequalities & (m,a1) < & (m, as),
a—r—0Q

which are valid for all a; < as and k € N, so the constructive m-exponent is well
defined.

The following theorems give some properties of the constructive m-expo-
nent 7 (A).

Theorem 3.4 [9,14] Let Q! (A) be the constructive m-ezponent 1) (A) of sys-
tem (14) with the higher exponent A\,(A). The set of images of Q1 (A) regarded
as a function of m (m > 1 is an order of perturbations) is 400 if A,(A) > 0, and
belongs to the set +oo [J[An(A),0] if A, (A4) <0.

Theorem 3.5 [14] The constructive m-exponent Q1 (4) of system (14) coin-
cides with its estimating m-ezponent Q. (A) on the domain of definition of Q! (A).

In the certain sense the next theorem gives the converse result.
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Theorem 3.6 [14] The estimating m-ezponent Q) (A) of system (14) coincides
with its constructive m-ezponent Q) (A), if the latter is either positive or essentially
negative (Q, (A) is essentially negative at point m = mo if dmy € (1,mz2) such
that Q7 (A) <0).

The basic property of I/ (A) is given by the following theorem.

Theorem 8.7 [9,14] The a priori m-ezponent Q,,(A) of system (14) is not
less than the constructive m-exponent QI (A) for all m > 1.

The constructive m-exponent 2, (A4) of system (14)are used for solving the
special (see Section 4) and the general (see Section 5) Lyapunov problems on ex-
ponential stability of systems (2) with perturbations f € Fii¢ and f € F,,
respectively.

3.3 The complete description of m-exponents regarded as functions of
the parameter m, m > 1

The m-exponents of system (14) are essentially used for solving the special and
the general Lyapunov problems on exponential stability of systems (2) with per-
turbations f € Fi4o and f € F,,. We also need calculate the exact in class Fj,
asymptotics 3, (A4). In this connection, the important problem arises to give the
complete description of the m-exponents of linear systems (1,4) regarded as func-
tions of the argument m > 1 on the domain (m;,+c0), m; > 1, where all these
exponents are negative. Theorems 3.3, 3.5 - 3.7 give the important corollary on the
coincidence of all m-exponents.

Corollary 3.1 [14] The a priori Q,(A), estimating 0, (A) and constructive
Qr (A) m-exponents, m > 1, of system (14) are equal:
(1) and they are equal to +00 if at least one of them is positive;
(2) for all m > 1 such that the estimating m-ezponent 2, (A) is defined;
(3) for all m > 1 such that the constructive m-ezponent Q. (A) is either posi-
tive or essentially negative.

From Corollary 3.1 it follows that if at least one of the m-exponents is negative
on the whole interval (mi,ms] C (1,+00) then all the m-exponents are equal on
this interval. We keep the symbol §2,,,(A4) for this common value of the m-exponents
as well as for the value Q,,(A) = 400, and say that Q,,(A) is the m-exponents
of system (14). Note that from Grobman’s theorem (4) it follows that for some
mgo > 1 the equality £,,(4) = A, (A4) <0 is valid for all m > my.

To give the complete description of the set of functions that can be represented

by negative m-exponents {,,(A4) of linear systems on some interval (m;,ms}, we
N(e) )

introduce convergent power series R(m,c) = Y. 7;i(c)m' depending on the pa-
i=0

rameter ¢ € (my,ms], polynomials of degree N(c) > 0 being including. We say
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that these power series are uniformly convergent in a two-dimensional domain M

of variables m > 1 and ¢ > 1 if for any £ > 0 there exist a number n = n(e)
N(c) )
> ri(eym!
i=k

Theorem 3.8 [41,42] A function ¢(m) < const < 0 s the m-ezponent {1, (A)
of some linear system (14) on the half-opened interval (mi,ms], my > 1, if and
only if there exists a power series R(m,c) uniformly convergent in the any region
M, ={{m,c) € R*: my <m < c€ [p,ma]}, p€ (1, m2), such that

(1) R(c,c) = (c) for all ¢ € (my, ms];

(2) there exist €9 € (0,1) and 6;(c) € (0,1 —e9) (i1 =1,...,N(c)), Bolc) =1

and Oy(y+1(c) =0 for finite N(c), such that the inequalities

such that the inequality < ¢ holds for all (m,c) € M and k > n.

1 k
olri(e)] < J] 0:(e) = vile) < @ <er(c>mfﬂ' - %vm(c)m““)

Jj=0 j=i
hold for all m, ¢ € (m1,m2] and all finite 0 <i <k < N(c).

The corollaries of this general criterion establish new properties of the m-expo-
nent ,,(A) = ¢(m) < const < 0 as a function of the argument m € (my,m.],
my > 1.

Corollary 3.2 [45,46] D~ ¢(m) < Dygp(m) at any point m € (mq,ma),
where D~™@(m) and Di@(m) are upper left and lower right Dini derivatives of
the m-ezponent o(m).

Corollary 3.3 [45,46] The m-exponent p(m) is differentiable at all points
where it 1s concave.

Corollary 3.4 [47} The polynomial p(m) of degree ¢ € N in the neighborhood
of some point m = mg > 1 is the m-exponent 4., (A) of some linear system (14,)
if and only if w(mg) <0, ¢ (mgy) < 0.

One more interesting and important property of the series R{m,c) is given by
the following corollary.

Corollary 3.5 [46] Let the series R(m, c) satisfy the conditions of Theorem 3.8.
Then R(m,c) is convergent in m on some non-empty right neighborhood (c,c1) of
any point ¢ € (my, ma).

Examples of the m-exponents of (14):

1) convex non-increasing negative on [mi,ms], m1 > 1, function (note that
the set of the higher sigma-exponents V,(A) of linear systems (14) is ex-
hausted by convex non-increasing functions of the argument ¢ > 0 (see
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Theorem 2.2), but this fact is not valid for the set of the m-exponents
Qi (A4));

2) a convex negative on [my,mz], my > 1, polynomial P;(m) of degree ¢ > 0
with nonpositive coeflicients.

4 Special Linear Problem and Lyapunov Problem on Exponential
Stability

In this section we solve the problems indicated in the heading of the section by
means of the higher exponential index Vo(A) and the higher constructive m-
exponent §2 (A) for linear approximation system (14) (Vo(A) is introduced in
Section 1 and /), (A) in Section 3). We also establish the relation between expo-
nential stability of the zero solutions for linear system (144¢) with any exponen-
tially decreasing matrix Q(-) and for nonlinear system (2) with any perturbations
of higher order.

4.1 The solution of the special linear problem on exponential stability
of linear system {1a+¢) by linear approximation (14) is given by

Theorem 4.1 [11] Let Q € E¢ be any exponentially decreasing as t — +oo
matriz. The zero solution of linear system (1ayg) is exponentially stable iff the
higher characteristic exponent M\, (A) and the higher exponential index Vo(A) of
(14) satisfy the inequalities A\,(A) < 0, Vo(A) < 0. Moreover, the exact in the

class Eo asymptotics sup A,(A+Q) for solutions of (1a+q) equals to the higher
QEFE o
exponential index Vo(A) of (14) in this case.

Theorem 4.2 [11] Let Q € E4q be any exponentially decreasing as t — 400
matriz. The zero solution of linear system (1440) is exponentially stable and the
exact in the class Eig asymptotics sup Ap(A + Q) for solutions of (layg) is

Q€E

+0

negative iff the higher ezponential index Vo(A) of (14) is negative. Under this
condition the mentioned asymptotics coincides with the index Vo(A).

Remark 4.1[11,23] Let us say that the zero solution of linear system (141¢)
is exponentially unstable if the higher exponent A, (A + Q) of (144¢) is positive.
The following statements are valid:

(1) Vo(4) > 0 = 3Q € E,yp, such that the solution y = 0 of (144¢) is
exponentially unstable;

(2) A¢(A) > 0 = the solution y = 0 of (144+¢) with any @ € Eq is expo-
nentially unstable.

4.2 The solution of the special linear problem on exponential stability
of nonlinear system (2) with any perturbation f € Fiio by linear approximation
(14) is given by
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Theorem 4.3 [11,14] Let f € Fiyo be any perturbation of higher order. The
zero solution of (2) is exponentially stable iff the m-exponent Q. (A) of (14) s
negative for all m > 1. In addition, the following statements are valid:

(1) Qm(A) = Q) (A) = QL(A), where Q. (A) is estimating m-exponent and
QU (A) is constructive m-exponent of (14);

(ii) the exact in the class Fio asymptotics o = sup A(A, f) for solutions
fEF140
of (2) equals to the higher exponential index Vo(A) of linear approzimation

system (L4).

Theorem 4.4 [11,12] Let f € Fiio be any perturbation of higher order. The
zero solution of (2) is exponentially stable and the exact in the class Fyyo asymp-
totics Q4o is negative iff the higher exponential index Vo(A) of (14) is negative.
In addition, the equality Q149 = Vo(A) holds.

Remark 4.2 [12] If Vo(A) > 0, then 3 f € Fi19, such that the zero solution of
(2) with this f is unstable.

4.3 Relation between exponential stability of the zero solutions of linear
system (layo) with any matrix @ € E.o and nonlinear system (2) with any
perturbation f € Fiiq is given by

Theorem 4.5 [11] If the zero solution of nonlinear system (2) with any per-
turbation f € Fiio is exponentially stable, then the zero solution of linear system
(Layq) with any matriz Q € Ey¢ is exponentially stable.

The reverse statement is no more valid (see [11]), i.e. exponential stability of
the zero solution of (144¢) with all matrix Q € Eio does not imply, in general,
exponential stability of the zero solution of (2) with any perturbation f € Fjiq.
This fact can be established by means of the following example. Let a,(t) = 0,
t €[04 0%F171) G =const > 1, k€ N, i =1,2; a1(t) +ax(t) = -1, t > 1.
Then for the system & = A(t)z = diaglai(t),a2(t)]z, = € R?, ¢t > 1, we have
A (A4) = —=(1+6)7! and Vo(A) = 0. Hence by Theorem 4.1, the zero solution of
(Latq) with arbitrary @ € E4o is exponentially stable. On the other hand, for
the Cauchy matrix X 4(¢,7) of (14) and for any numbers a < 0 and m € (1,6),
the condition 6~ *[am® + i mF = n || X (65,607 1)|] = 0 as k — oo holds, ie.
Qr (A) >0 forall m € (1, Z0)1 Thus, the conditions of Theorem 4.3 are not satisfied
and, therefore, there exists a perturbation f € Fj;o such that the zero solution of
(2) with the perturbation f is not exponentially stable.
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5 General Lyapunov Problem on Exponential Stability and its Linear
Analog

In this section we state the solution of the general linear problem on exponen-
tial stability of linear systems (14.4¢) with arbitrary matrices @ € E, by linear
approximation (14). This solution use the notion of higher o-exponent V,(A) in-
troduced in Section 2. In addition, we give the complete solution of the general
Lyapunov problem on exponential stability in the following cases:

1) when the linear approximation is diagonal,
2) for the simplified form of the problem (see Introduction);
3) in non-critical case, i.e. for all m > 1 such that at least one of the following
conditions holds:
i) the estimating m-exponent £, (A4) of (14) is defined and negative;
ii) 2) the constructive m-exponent 2!/ (A) is essentially negative at m >
1 (3my € (1,m): Q) (A) <0).
We also investigate in detail the cases when the clasical conditions by Lyapunov,
Grobman and Massera degenerate as well as the critical case of the general Lya-
punov problem.

5.1 Solution of the general linear problem on exponential stability of
systems (144+¢) with matrices @ € E, by arbitrary linear approximation (1,4) is
given by

Theorem 5.1 [24] The zero solution of perturbed linear system (layq) with
any piecewise continuous matrix Q € E, is exponentially stable iff the higher
o-exponent V,(A) of (14) s negative. In this case the exact in E, asymptotics
sup A (A4 Q) for all solutions of systems (1atq) coincides with V,(A).

QEE,

Remark 5.1 By means of the notion of exponential instability introduced in
Subsection 4.1 the following criterion can be stated. The zero solution of perturbed
system (1a1g) with some @ € E, is exponentially unstable iff the o-exponent
V. (A) of original system (14) is positive.

5.2 Solution of general Lyapunov problem on exponential stability in
non-critical case

Vinograd [22] has obtained the following sufficient condition for exponential sta-
bility of system (2) under perturbations f € F,.

Theorem 5.2 [22] If the estimating m-ezponent 1 (A) < 0, then for each
m-perturbation f € Fy,, the zero solution of (2) is exponentially stable and QU (A)
is the common exponent of asymptotics, i.e. for any € > 0 there exist § = §(g) >
0 and B = B(g) > 0 such that all solutions of (2) beginning at t = 0 in
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d-neighborhood of the origin admits the common estimation ||ly(t)]] < Blly(0)]|
exp[Q,(A) + €]t for all t > 0. This ezponent can not be diminished since for any
Q < Q¥ (A) one can find an m-perturbation f such that the previous estimation
with small € > 0 is not valid whatever § >0 and B > 0 are given.

Remark 5.2 [22] If the estimating m-exponent 2 (A) of (14) is positive, then
there exist m-perturbations f € F,, such that the zero solution of (2) under this
f 1s unstable.

Theorem 5.2 do not allow us to evaluate the exact in F,, asymptotics for solutions
of (2) under m-perturbations, i.e. the a priori m-exponent ,,(A) of (14). So,
we can not use this Theorem in order to solve the second part of the general
Lyapunov problem on exponential stability. This defect can be removed by means of
Theorem 3.7 stating that the a priori ,,,(A) and constructive Q! (A4) m-exponents
of (14) m > 1 satisfy the inequality Q,,(4) > O (4) for all m > 1. Thus,
Theorems 3.3 and 3.5 enable us to complete Theorem 5.2 by the necessary equality
0 (A) = 01, (A).

Some properties of constructive m-exponent enable us to obtain the following
sufficient condition for exponential stability.

Theorem 5.3 {9,14] If the constructive m-exponent QU (A) of (14) is essen-
tially negative, then the zero solution of (2) with any m-perturbation f € fn,,
m > 1, is exponentially stable and the a priori m-ezponent O, (A) of (14) coin-
cides with the constructive m-exponent QU (A) of (14).

Remark 5.3 [12] If €2/ (A) > 0, then there exist m-perturbations f € F,,
m > 1, such that the zero solution of (2) under these perturbations is unstable.

In the proof of the main theorem of [9] (see also Theorem 4 of joint paper [14])
when the constructive m-exponent ! (A) of (14) is nonpositive, we construct
some fixed perturbation f € F,,, m > 1 such that A(4, f) > Q) (A4) for the
higher exponent A(A, f) of (2). Hence we have the following necessary condition
of exponential stability.

Theorem 5.4 [9,14,25] If the zero solution of (2) with any perturbation f €
Fn, m > 1, is exponentially stable, then the constructive m-exponent Q' (A) of
(14) is negative.

Theorems 5.2 and 5.4 are irreversible. This fact is established in the next Sub-
section 5.3 of this Section.
Theorems 5.3 and 5.4 yield

Theorem 5.5 (on complete solution of the general Lyapunov problem in sim-
plified form) Let mo = inf{m > 1: Q) (A) < 0}. Then
(1) for m > myg, the zero solution of (2) with any perturbation f € F,, is

exponentially stable and the a priori m-ezponent Q,,(A) = sup A(A, f) of
feFm
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(14) coincides with the constructive m-exponent QU (A) (note that ) (A)
is calculated on the base of the Cauchy matriz X 4(t, 7));
(2) for m € (1,mo), there exists a perturbation f € F,, such that the solution
=0 of (2) is not exponentially stable.

5.3 Critical cases

We start from the classical critical cases arising when the original inequalities are
replaced by equalities in 1) Grobman Theorem (4) on coincidence of characteristic
aggregates A(A) = (A (A4),...,\,(A)) € R™ of the original system and A(A+Q) €
R™ of perturbed system (144+¢); 2) Lyapunov, Massera, and Grobman condi-
tions for exponential stability of the solution y = 0 of (2) with any m-perturba-
tion f € F,.

5.8.1 Generalized Grobman perturbations critical case. These perturbations are of
the class E,, (4 = {Q: AQ] < —0c(A)},01(A) = 0g(A4) > 0. Here we have the
following problems:
1) on determination of the whole class of systems (14) such that the charac-
teristic aggregates Aq of (14) and A(A + @) of (144¢) are the same for all
Q € By, (a);
2) on existence of systems (14) and perturbations @ € E,,4), such that
MA+Q) # MA);
3) on stability of characteristic exponents of systems (14) under generalized
Grobman perturbations;
4) on the structure of so-called Grobman spectral sets T',(A) = {A (A + Q) €
R": Q € E, (4} of (14), including the problem on existing of system
(14) of arbitrary order n > 2 such that the Lebesgue measure of I',(4) is
positive.

Let Xa(t) = [X1(t),...,Xn(t)] be some normal fundamental solutions system
of (14). In order to solve Problem 1) we define angular irregularity coefficient [48,
49] 05(A) > 0 of system (14) by oo(A) = 1r<nka<xn{/\{1/04k]}, where ay (1) is the angle
(see [8]) between the solution X (t) and the linear hull of the other n — 1 solutions
Xi(t) € X4(t). Obviously, the angular irregularity coefficient oo(A) equals to zero
for a diagonal system and do not exceed the Grobman irregularity coefficient o (A4)
in the general case. Now we have the following statement.

Theorem 5.6 [48-50] Let Q € E, (4). Characteristic aggregates A(A) of (14)
and A(A + Q) of (1at+q) are the same if og(A) < a1(A).

Thus, the inequality oq(A) < 01(A) describes a class of systems (14) such that
AA) = MA+Q) for all Q € E,,(4y. This class is complete in the following sense.
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Theorem 5.7 [49] For any numbers 2<n € N, A\ <--- < Ay, a € [A,Ay],
o > 0 there exist n-dimensional system (14) with characteristic exponents \;(A) =
Ai, 1 =1,...,n, and with coinciding angular irregularity coefficient and Grobman
irreqularity coefficient oo(A) = 01(A) = o, and a matriz Q € E, (4) such that o
is one of the characteristic exponents of perturbed system (144q).

This theorem give also a solution for Problem 2) on existence of system (14) and
amatrix @ € E,, (4 such that A(A+@Q) # A(A). Other corollaries of Theorem 5.7
are the following: the lower exponent A1 (A) of (14) is upward unstable; each expo-
nent A(A4) € (A1(A), A\, (A)) is unstable (upward as well as downward) if it is not
multiple; the lower multiple exponent Ai(A) > A (A4) is downward unstable; The
higher multiple exponent A;(A) < A,(A) is upward unstable. These statements
give a partial solution for Problem 3).

The next theorem establishes that for any Lyapunov irregular system (14) the
lower exponent A; (4) is stable downward and the higher exponent A, (A) is stable
upward under generalized Grobman perturbations.

Theorem 5.8 [51] If Q € E, (4) and o1(A) >0, then \(A) < M(A+Q) <
An(4), i=1,...,n

In [51] we prove that there exists system (1 4) such that its higher and lower char-
acteristic exponents are simultaneously unstable under perturbations Q € E,, (4
This result completes the solution of Problem 3).

The next theorems give solution for Problem 4) on existence of linear systems
(14) such that their Grobman spectral sets I';,(A) has a positive Lebesgue m-
measure:

Theorem 5.9.1 [51,52] For any parameters o > 0, Ay < XAz, 0 € (1,1 +
/(X2 — A1), there exists 2n-dimensional, n € N, system (14) such that X\ (A) =
AL, Aon(4) = Xz, 0o(A) = 01(A4) = o, and T2,(A) C R¥™ consists of all points
i with coordinates w1 < -+ < pap, such that each point (poi—1, poi), 1 =1,...,n,
lies in the triangle {(p1,p2): p1 — A1 > 6%(Aa — p2) > 0> py — po}. This set has

W(l +0H)172 (N — AP, nEN.

Theorem 5.9.2 [52,53] For any odd n > 3 and any parameters Az > Ay,
4o € (0, 3 ~ A1), there exists system (14) with A\ (A) = M A (4) = A3, 00(4A) =
a1(A) = o such that the set T',,(A) has the inner Lebesgue measure mes, I';,(A) >
[(As = M) /4] /n! with some number v > 4.

the measure mesq, ['op(A4) =

5.3.2 Critical cases by Lyapunov La(o(A)) = 0, Massera L,,(cr(A)) =0, and
Grobman Ly, (0g(4)) = 0, m > 1. The main question arising here is the follow-
ing. Are the indicated equalities still sufficient for exponential stability of the zero
solution of (2) under any perturbation f € Fp,, m =14 o/|A,(A)}, or there exist
systems (2) with these perturbations and with unstable zero solution?
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The next theorem affirms the second alternative and establishes that the con-
ditions of exponential stability by Lyapunov, Massera, and Grobman can not be
improved if the whole set of linear systems (14) is considered.

Theorem 5.10 [25] For any natural n > 2 and any constants A < 0, 0 > 0,
there ezist system (14) with A\(A) = A, or(4) = 0g(4) = o and perturbation
f € Fy with m=1-—0/A>1 such that the zero solution of (2) is unstable.

Remark 5.4 [25] The m-perturbation f constructed in the proof of Theorem 5.10
when ¢ = —X and m =2 is polynomial f(¢,y) = 30(y3,y%,0,...,0) € R*, t > 0.
Hence, the equality A,(A)+o0L(A) =0 provides also the system (2) with holomor-
phic perturbation (3) and with unstable zero solution, i.e. the Lyapunov condition
An(A) 4+ o (A) <0 can not be improved in the set of all linear systems (1,4) with
holomorphic perturbations (3).

5.3.8 Critical case of the general Lyapunov Problem. As follows from Remark 5.2
and Theorems 5.5, 5.4, and 5.2, this case is determined by a single value mgy =
inf{m > 1: Q,(A) < 0} > 1, such that: 1) constructive mq-exponent ;,, (A) is
negative; 2) estimating mg-exponent €, (A) is not defined. In this critical case
for each m = mo > 1, we construct the following systems: 1) system (14) such
that the zero solution of (2) with any perturbation f € F,, is exponentially stable;
2) system (14) such that the zero solution of (2) with some perturbation f € F,,
is exponentially unstable. Simultaneously we state that the condition Q) (A) <0
with estimating m-exponent is not necessary for exponential stability of the zero
solution of (2) under any perturbation f € F,,, and the condition 2, (4) < 0 with
constructive m-exponent is not sufficient for stability of this kind. These results
follow from the next two theorems.

Theorem 5.11 [25] For any numbers m > 1 and 2 <n € N there exists n-
dimensional linear system (14) with undefined estimating m-exponent Q. (A) such
that the zero solution of (2) with any m-perturbation f is exponentially stable.

Theorem 5.12 {25] For any numbers m > 1 and 2 < n € N there exists n-
dimensional linear system (14) with negative constructive m-ezponent Q. (A) and
a perturbation f € Fn, such that the zero solution of the perturbed system (2) is
unstable.

Remark 5.5 (25] In the proof of Theorem 5.12 we use the so-called triangular
m-perturbations. If we construct perturbations f € F,, of exponentially stable
system (14) by means of rotations of solutions, we can obtain only exponentially
stable systems (2) such that all their solutions with sufficiently small initial vectors
have Lyapunov exponents < I/ (4) < 0.
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5.4 Solution of general Lyapunov problem by diagonal approximation

In this Subsection we give the complete solution for the general Lyapunov problem

on exponential stability of the zero solution of (2) with any perturbation f €

F,, for linear approximation system (14) with diagonal coefficient matrix A(¢) =

diaglai(t), ..., an(t)]. To this effect we introduce new m-exponent [25] 7, (A) =
lim Hm k7 !ln ||££,?)(k)|| for diagonal system (14) where f}na)(k) is n-dimensional

a—+0 k— oo

vector function of k£ > 0 with consecutively computing components

k
€§2206) = max{a, (6, 0622) + 16O [ a3 o iy ar

i<k i

¢
where €2 (0) = o > 0, z;(t,7) = exp [a;(s)ds, j,{ = 1,...,n. This exponent

satisfies the inequalities [25] Q0 (A) < v, (A) for all m > 1 and v, (4) < Q) (4)
on the domain of the estimating m-exponent Q. (A).

Theorem 5.13 [25] The zero solution of perturbed system (2) with any per-
turbation f € F,, s exponentially stable iff the m-exponent v, (A) of linear di-
agonal approzimation (14) is negative. In this case v,,(A) equals to the a priori
m-ezponent Q,,,(A) of (14).

The m-exponent v, (A) of diagonal (14) can be also computed via estimates [25].
Let R.,(A) be the class of all piecewise continuous on semiaxis ¢ > 0 n-dimensional
vector functions r(t) with components r;(¢) > 0 such that the following estimates

¢
are valid r;(s)x;(t,s) + ri™(s) [z; (¢, 7)™ (7, 8)dr < r;(t), 5,1 =1,...,n, L # 3,
s
for all t —s > 1. Th = i Alr].
or a s> en 7y, (A) reIl%I}nf(A) [r]
We also obtain the following generalization of the preceding theorem.

Theorem 5.14 {54] The zero solution of (2) with diagonal approzimation (14)
and with any [ € F,, is asymptotically stable and all solutions y(t) of (14) with

400
sufficiently small y(0) satisfy the condition [ [ly(s)||™ 'ds < +oo iff there exists
0

a piecewise continuous for t > 0 n-dimensional vector function r(t) with compo-
nents r;(t) > 0 such that the above estimates are valid for all t > s > 0 and the

F oo
condition [ [lr(s)[|™ " ds < +oo holds.
0

The statement and the proof of Theorem 5.13 ensure

Corollary 5.1 [25] The zero solution of (2) with any f € Fy, is exponentially
stable iff the a priori m-exponent ., (A) of the diagonal approzimation system (14)
s negative.
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6 Problems for Investigation

1. The condition oo(A) < o1(A4) is sufficient for coincidence of characteristic
aggregates A(A) and AM(A + Q) of (14) and (1a4q) for each Q € E,,(4y. Are this
condition exact in the following sense: for any vector A € R™ with increasingly
ordered components and any numbers o1 > og > 0 there exists system (14) with
AMA) = A, 09(A) = 00, 01(A) = 51 such that for any sufficiently small € > 0 one
can find a matrix Q. € E, (4)_c, satisfying the inequality A(A + Q.) # A(A)?

2. Construct an algorithm to compute the lower g-exponent A,(4) =
Qieng M(A+Q), 0 >0, of system (1,4) and describe the properties of A, (A).

3. Investigate the structure of characteristic o-sets S,(4) = {AM4 + Q) €
R": Q € E,;}, 0 >0, of systems (14) including Grobman spectral sets T',,(A4). Are
these sets convex or, at least, connected? Study the dependence of o-set S, (4) on
parameter o > 0.

4. For the critical case A,(A) = 0, create the similar theory for investigation of
asymptotic stability of the zero solution of perturbed system (2) via characteristic
degrees by B.P.Demidovich.

5. Are the conditions (m — 1)A,(A4) + 0 = 0 and A\, (A) > A\,_1(4), n > 2,
sufficient for exponential stability of the zero solution of (2) with any perturbation
fE€Fyn, m>1, when: 1) 0 =0g(A) >0;2) 6 =0,(4) >0;3) 0 =0.(4) >0,
m = 2 and F} is the set of holomorphic perturbations (3)?

6. Obtain a criterion for exponential stability of the zero solution of (2) under
any perturbation f € F,, in the critical case of the general Lyapunov problem on
exponential stability when mg > 1, 7, (A) <0, and Q, (A) is undefined.

7. Ts the following statement valid: A(4,f) <0, Vf€ F,, m>1=Q,(4)=
sup A(4, f) <07
fEFm

8. By analogy with the higher exponent A(A4, f) of (2), let us consider the lower

exponent Aj(A4,f) = lim Aly(:,y0)]. Compute the value w110 = inf A (A4, f)
llyoll—+0 fEF1 4o
by means of the lower exponential index Ag(A4) of linear approximation system

(14). Study the properties of w,,(4) = fing M(A, f) as function of m > 1.
€Fm

9. Let us define the set of combined perturbations by F., = {f: {|f(t )| <
cre ™, y € Uyypy, t > 0}, m > 1, o > 0 [14]. Investigate exponential
stability of the zero solution of (2) with f € F,, in the critical case (m—1)\,(4)+
og(A) —o =0.

10. Give a complete description for functions of two variables m > 1 and
o > 0 representable by om-exponents ,,,(A) = sup A(A4, f) of linear approxi-
mation system (14). f&¥me
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2.1 VECTOR LYAPUNOV FUNCTIONS:
NONLINEAR, TIME-VARYING,
ORDINARY AND FUNCTIONAL
DIFFERENTIAL EQUATIONS*

P. BORNE, M. DAMBRINE, W. PERRUQUETTI
and J.P. RICHARD

Ecole Centrale de Lille, LAIL (CNRS), Lille, France

1 Introduction

When dealing with the qualitative analysis of solutions of complex large scale func-
tional differential equations (or ordinary differential equations) the seminal results
of Lyapunov can be used and, more precisely, the second Lyapunov method in-
troducing Lyapunov functions. Unfortunately, the more complex the considered
dynamical system, the more difficult it is to find a Lyapunov function.

When faced with such a complex problem, the following general remarks can be
made:

R1) Some of the complex aspects can be reduced to simpler connected problems.
For example, this principle is used for the study of nonlinear dynamical systems:
the linearized system provides some knowledge of the original system (under well-
known conditions).

R2) Following Descartes’ precepts, it can be relevant to split the problem into
several components in order to extract an easier understanding of the initial prob-
lem through the understanding of each obtained components.

According to these remarks, it is interesting to apply the approach which con-
sists in transforming a complex, large-scale dynamical system into several more
simple dynamical systems of reduced dimensions. Let us examine these remarks
by applying them to two examples: the first example will illustrate R1) and the
second one R2).

* Advances in Stability Theory (Ed.: A.A. Martynyuk). Stability and Control: Theory, Me-
thods and Applications, Taylor & Francis, London, 13 (2003) 49-73.
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Ezxample 1.1 Consider the system

dgzi =2z(-2+sin(t)+2z), teR, ze€R (1)
Introducing the variable z = sign (z)z, this gives®

dz

i 2z2(=2 +sin(t) + z), ifz #0, (2)
Z—: < 2z(-1+2z), (3)
2() < & (4)

20 + (1 — 20) exp(2(t — to)) -

It can be deduced that the origin of system (1) is asymptotically stable and an
estimate of its domain of attraction is (—oo0,1).

In this first example, a comparison system (CS) was implicitly used, since the
solution of (3) has been upperbounded by the solution of the ordinary differential
equation

v=2y(-1+y).
Such a comparison system presents several interesting properties:

e [ts solutions overestimate the actual system behaviour.

e It may infer a qualitative property P for the initial system, in this case the
CS will be a P-comparison system (P-CS) with respect to the property P.
For instance, in Example 1.1, P is the exponential stability property.

e It may not depend on disturbances or time variable: this takes much of the
hard work out of the study.

e [t can be described by lower-order dynamical systems. In order to illustrate
this last property, let us examine the following example:

Ezample 1.2 Consider the system

de <~2 +sin(t) + §(a? + 23) — sin(t) )
dt sin(t) =2+ sin(t) + 3(a3 + 23)

teR, zeR?

! As the derivative of the sign function at z = 0 has no meaning in the usual sense, we exclude
this case in a first stage. In fact, using a more general notion of derivative (see [9]), a similar
result can be directly obtained. Note that (4) is still valid for = 0.
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introducing the variable v = §(«% + #3), this gives

d

d—l’ =2(-2+sin(t) +v), teR, veR,. (6)
Then, using Example 1.1, one can conclude that the original system (5) is asymptot-
ically stable and an estimate of its domain of attraction is {z € R?: (2% +z3) < 4}.

However, this reduction of dimension may not be an advantage in all situations.
In fact, using a standard Lyapunov function (v) always leads to a first order com-
parison system, which may represent a drastic cut-down. It thus seems interesting
to reduce the loss of information by using not one but several Lyapunov func-
tions: this leads to the notion of vector Lyapunov function (VLF) for which each
component provides information about a part of the dynamics.

Finally, these introductory examples show that comparison techniques [2-4, 10,
25,30-32,37,50] combined with VLF [1,10,20, 21,23, 25,32, 33,37, 42] are cer-
tainly an interesting alternative for tackling the study of stability properties of
dynamical systems.

Therefore the paper will be divided as follows:

e Section 2 briefly presents the notations used throughout the paper.

e Section 3 sets up the general framework for the considered dynamical sys-
tems, i.e. nonlinear, time-varying, ordinary and/or functional differential
equations.

e Section 4 concerns the notion, the construction and the properties of CS. We
shall see that, among VLF, the particular case of convex ones, illustrated by
the vector norms (VN), provides a very convenient tool for the construction
of CS.

e Section 5 presents different results concerning qualitative set properties for
the considered dynamical systems: stability, attractivity, positive invari-
ance. The definitions are recalled at the beginning of the section.

e Section 6 concerns the application of some results of the previous parts to
the particular case of ordinary differential systems.

2 Notations

o C = C([-7,0],R"), the set of continuous maps from {—7,0] into R";

o C{D) = C([-7,0],D), the set of continuous maps from [—7,0] into D;

e Cr={yeC:y(s)20,s€[-7,0}

e z; element of C associated with a map z: R — R™ by z;(s) = z(t +s), for
all s e [-7,0];

e , element of C, defined by ¢, (s) =z, for all s € [-7,0];
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e B(x,e) is an e-ball centered at z in the metric space from which z is defined
with the distance function p(-,-);

e p(A) is the matrix measure of the square matrix A;

e aRb, elementwise relation R (a and b are vectors or matrices): for example
a < b (vectors) means Vi: a; < b;.

3 Framework
A large number of processes can be modelled by a functional differential equation:

I(t) = f(t:x(t)7xt7d)7 (7)

Tt =@ € Ca (8)

where ¢ € R is the time variable, d € Sy is either a vector or a function representing

disturbances or parameter uncertainties of the system, Sy is a set of vector or

functions for which some bounds are usually supposed to be known, z(t) € R" is
a set of internal variables, z, is the map defined by

x4z [-7,0] - R",
s a(t+s). (9)

In the paper, when the case 7 = 0 is considered, we shall use 2, £ z(t) for the
sake of simplicity. In this case, (7) can be directly rewritten as

#(t) = f(t,z(t),d), (10)
zt, = x(to) = p € R™. (11)

This represents a slight misuse of terminology since, in (7), f is a functional, z,
is a function and in (10), f is a function, z, is a vector.

Assumption 3.1 It is assumed that system (7) has solutions (for example f
satisfies Carathéodory conditions: see [26]) defined over a maximal interval denoted
by Ti7y(to, p) where to is the initial time and ¢ is the initial function defined over
[—=7,0] (most of the time ¢ is supposed to belong to C).

4 Comparison Systems

As seen in Example 1.1 of the introduction, it is interesting to obtain information
about a complex system through a simpler one whose solutions overvalue the solu-
tions of the initial system. Wazewski’s contribution [50] is probably one of the most
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important in this field: it concerns differential inequalities and gives necessary and
sufficient hypotheses ensuring that the solution of & = f(¢,z), with initial state
xg at time to and function f satisfying the inequality f(t,z) < g(t,z) is overval-
ued by the solution of the so-called “comparison system” 2z = g(t, z), with initial
state zgp > z¢ at time g, or, in other words, conditions on function g that ensure
z(t) < z(t) for t > to. These results were extended to many different classes of
dynamical systems ([2, 10, 23, 30, 33, 48]).

In the next subsection, we first define the notions of comparison system (CS)
and of P-comparison system (P-CS). The next subsection is then devoted to the
construction of such CS.

4.1 Definitions

Focusing on the two systems:
z(t) = f(t,z(t),zr), z(t) €R?, (12)
2(t) = g(t, z(), z1), 2(t) € R?, (13)

we respectively note z(t;to,¢2) and x(t;to, 1) the solutions of (13) with initial
condition ¢, and of (12) with initial condition ¢;.

Definition 4.1 System (13) is said to be a comparison system of (12) over
QcCc if

YV {(p1,92) € 0 I= I(lg)(to,gol) 02(13)@0,@2) is not reduced to {to},
w2 > 1 = z(tto,02) > z(tito, 1), Ve
Obviously, one can go beyond this concept to derive a qualitative analysis for

positive solutions. For example, if z(t;to,w2) > x(t; o, v1) > 0 and if solution 2(t)
converges to zero, so does z(¢). For this reason, we introduce the following notion:

Definition 4.2 System (13) is a P-comparison system of (12) for property (P)
if
[(P) holds for (13) = (P) holds for (12)].

Ezample 4.1 If we consider a nonlinear system

i(t) = f(z(t)), (14)
then a P-comparison system for the property of uniform asymptotic stability of the

zero solution is given by the first order approximation

2(t) = Az(1), (15)

9z

where A = (Qi)z:o'

A question naturally arises concerning properties of the function g ensuring
that (13) is a comparison system of (12) over Q). For this, the following notion is
required:
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Definition 4.3 A functional

g: Rx R"xC —» R”
(t,z,y) — g(t, z,y)

(1) is quasi-monotone non-decreasing in x iff:

VteR, Vyel, V(z,z')eR*xR": (16)
Vie{l,...,n}(z;=z)A(z <)
= gi(t,z,y) < gi(t, 2, y)], (17)
(2) is non-decreasing in y iff:
VteR, VzeR®, V(y,y) €CxC: [y <y']= gt zy) <gltzy), (18)
(3) is mized quasi-monotone non-decreasing in x, non-decreasing in y iff:

VteR, V(z,z)eR*xR* V(y,y)clxC(: (19)
Vie (L.l =2 A (@ <) Ay <o)
= gl(t7zay) Sgi(tymlvy/)]' (20)

Remark 4.1 The latter definition is a special case of mixed quasimonotonicity
given in [30]. More general versions also exist (see 2, 3,25, 32, 33]) and additional
conditions are sometimes given (see [25,23], or [50]).

The following result may easily be proved:

Lemma 4.1 A functional g: (¢t,z,y) — g(t,z,y) is quasi-monotone non-de-
creasing in x and non-decreasing in y iff it is mized quasi-monotone non-decreasing
in x, non-decreasing in y.

Proof Omitted because obvious.

FEzample 4.2 1f we consider

g: RxR*xC —» R"

au(xl) alz(t) bll(t) blZ(t)
(b2, 2e) ( az1(t) a22(x2)> er <b21(t) bzz(t)> =t =), )

with Vt € R, ai(t) > 0, ai2(t) > 0, V(i,j) € {1,2}%: b;;(t) > 0, then g is
quasi-monotone non-decreasing in z and non-decreasing in ;.
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Lemma 4.2 If g is continuously differentiable with respect to x and y, and

YteR, VzeR® Vyel

Vi#j ng >0, (22)
7

V(i, 5): g;“ >0, (23)
J

then g(t,z,y) is mized quasi-monotone non-decreasing in x, non-decreasing in y.

Proof Using Lemma 4.1, let us first prove that g is quasi-monotone non-decrea-
sing in z.

Let y € C, and consider any (z,z') € R® x R* such that 3¢ € {1,... ,n}:
(z; = 2}) A (z < z'). Define O as:

0:[0,1] - R*
0z +6(z' —z).

Naturally g;(¢, ©(8),y) is continuously differentiable in its second variable, so

gi(t! @(1),]/) - gi(tv 9(0)79)
1
_ - Ogi(t, =,y
B 0/ Z ( Oz )

j=1

(24)
(z) —z;)df <0.
r=z+8(z'—zx)

The fact that g is non-decreasing in y may be proved in the same way.

Remark 4.2 In (23), y; is a function and the map g; is a functional.
It is now possible to state the main result of this subsection: a comparison
principle for functional differential equations

Theorem 4.1 Assume that:

Hl) VteR, Vz e R*, VyeC: f(t,z,y) < g(t,z,y),

H2) g(t,z,y) is mized quasi-monotone non-decreasing in x, non-decreasing in y,

H3) g(t,z,y) is sufficiently smooth for (13) to possess, for every z,, € 2 C C
and for every to € R, a unique solution z(t) for all t > tq.

Cl) For any z, € §, the inequality

z(t) < (1), (25)

holds for every t >ty whenever it is satisfied for t € [to — 7,t0]. In other
words, (138) is a comparison system of (12) over Q.
C2) Moreover, if ¥t > to: 0 < g(t,0,p0) and z;, >0, then 0 < z(t).
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Proof Let z* be a solution of the system

() = gt (1), 2£) + 6., (26)

with the initial condition
28 =240 + 95, (27)
z, €QCC, (28)

where 6y, is the n-vector each component of which is equal to (%)k, and 5, is the
constant function defined on [—7,0] of value &.

By H3) z*(t) is defined and continuous with respect to time for all ¢ > t4, and
naturally, the sequence z*(¢) converges uniformly towards the solution z(t) of (13)
with the initial condition z,, € Q C C.

Cl) z(t) < 2*(t) holds for every t > tq if z, >, (bothin Q C C): otherwise,
there would be a time ¢; > ¢y and an index ig € {1,...,n} such that

i (1) = 25 (). (29)

Then, let t, = inf{t > to: 3i € {1,...,k}: 2;(t) = 2F(¢)}. By continuity and
(27), we have t; > ty. By denoting &(t) = 2*(t) — z(t), we then obtain from (26)
and H1):

1 k
é’i(tZ) 2 g(tZazk(h)azg) - g(t27m(t2)7xt2) + (5) b (30)

But, at time ¢t = {3, we have:
_ Lk
Tig (tZ) = Zi (t2)7
2 () 2 zilts), Vi io, (31)

k
Zg, 2 Tty-

According to H2), we have g(t2,2%(t2), 2f) — g(ta, z(t2),24,) > 0

Ets) > (%)k > 0. (32)

Tt follows that function €;(t) is increasing on a neighborhood of ¢;. But, by defini-
tion of to, we have:

€ip (ta +6) — €4y (t2)

fulty) = Jim ) <o, (33)

which leads to a contradiction and completes the proof.
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C2) In the same way: zF(t2) = g(t2, 2%(42), 28)) + (%)k using H2) and vt >
to: 0 < g(t,0,p0) leads to zF(t2) > (%)k > 0, which contradicts

2E (ty +6) — zfo(tz)

20

<0.

Remark 4.3 One can refine the definitions given above by considering local
comparison system and thus obtain a local version of this theorem (see [37,39]).

Remark 4.4 Note that for ordinary differential systems, one can see that the
given conditions are reduced to the well-known Wazewski conditions (see [50]).

Corollary 4.1 Assume that:
Hl) Vte R, Vo € R}, Vy € €. = {y € C:y(s) > 0,s € [-7,0]}: 0 <

g(t3 O? 0)?
H2) g(t,z,y) is mized quasi-monotone non-decreasing in x, non-decreasing in

y’
H3) g(t,z,y) is sufficiently smooth for (13) to possess, for every z, € & C C
and for every to € R, a unique solution z(t) for all t > t.

Then, for any z, € C4, the inequality
0<z(), (34)

holds for every t > tg.

4.2 Vector Lyapunov functions

The concept of vector Lyapunov function (VLF) ([1,31-33, 37}) and vector norms
(VN) ({4, 6, 8]) have been widely developed in the literature. Here, we shall consider
only the following definitions.

Definition 4.4 V is said to be a vector Lyapunov function if:

V:R* - R
z = V() = [vi(e),..., ()], (35)

where v;(x) are continuous, semi-positive definite functions and [V(z) = 0
Sz =0].

If there is a scalar ¢ > 0 such that, for all vector z € R™, [|[V(@)||x > l|z]|a,
where || - |[¢ (respectively || -||,) denotes any given norm on RF (resp. R™), then
V is said to be radially unbounded.
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Example 4.8 The map
V:R* 5 R
o Vi) =[2? + 22, (z2 — z3)* + I%]T (36)
is a VLF whereas [z? + 22125 + 72, (22 — 23)?]T is not a VLF.

In the following definitions, it is assumed that

R* =PE, (37)

where E; are vector subspaces of R™ with dim (E;) = n,.
Definition 4.5 P is said to be a regular vector norm if:
P:R" - RE
z s P(z) = [pi(zl]), ... pi(z*))7, (38)
where p;(z!) are vector norms (in the classical sense) on E; and zld = Pry(z) is

the projection of z onto E;. If the sum (37) is not direct, then P is said to be a
vector norm.

Remark 4.5 If P is a vector norm, then it is also a vector Lyapunov function.
Moreover, vector norms satisfy properties similar to those of classical scalar norms.

Ezample 4.4 Consider
PR R
z - V(z) = [lo1] + [z2] + |zs], |221]7, (39)
is a VN whereas [|z1| + |22], |z3]]T is a regular VN.

Lemma 4.3 P(z) is radially unbounded and for ¢ > 0, X, = {z € R":
P(z) < c¢} are compact connected sets.

4.3 Construction of comparison systems

One of the main advantages in using regular vector norms as particular vector
Lyapunov functions is to allow for the computation of comparison systems in an
easy and systematic way for a wide class of systems (7).

In this section, we assume that the mapping f appearing in (7) has the form:

f(t,z(t),:ct,d) = A(t,m(t),xt,d)x(t) + B(tzx(t)axtad) Ty + C(t,.’lﬁ(t),:tt,d), (40)
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where for any given (¢, x(t),z:,d) (which will be shortened to (.) in the sequel),
A()) is a (n X n)-matrix with real entries, the map

B():C—->R"
e B(yp

is linear in ¢ and bounded, and ¢(.) is a n-vector.

4.8.1 General expressions. Let us calculate the right-hand Dini derivative of
ps (2l (1)) with respect to time for 1< i <k

D pi(all(8)) = (grad pi(a(1))741 (1) = (grad pi(e(1)))T Pr; ()
= (grad py(2l(1)))" PrilA() 2(t) + B() 2 + ()]

k
rad p; z[’] T pr, A() Pr; zUl(¢
; grad p;(z'%(t))) () Pr; 2Vi(t) a1)

k
+ > (grad pi(z!1(1)))" Pr; B(.) Pr; oz,
j=1

+ (grad pi(z?(8)7 Pric(),

Let us consider each term separately.

First term: If p;(zl(t)) # 0, then

(grad p;(z(2)))T Pr; A() Pr; 2l (t)

_ (rad O PR AO P SO g 8

p;(z;(t))
where . .
Y= grad p;(ulhT Pr; A() Pr;ul
my;(.) = use]}f,, { p; (ul)) } - (43)

Note that the previous inequality still holds if p;(zl(£)) = 0.

Second term: The mapping ¢ — (grad p;(z(4(¢)))” Pr; B(.) Prj 0 is a bounded
functional. So, using Riesz’s representation of linear functional by Stieljes integral
[44], we have

(grad pi(:())T Pri B() Prj o = Z / Wit ()(s) pa(s)  (44)
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where k;j;(.) are real-valued functions of bounded variation defined on [—7, 0], and
where ¢; = [@;1,...,¢sn,]T denotes Pr;oy. Each function k;;(.) may be written
as the difference between two non-decreasing functions [44]:

kiji(0) = ag () — Biju (L)

By defining &i;;(.) = as(.) + Byi(.), we have the inequalities
|(grad pi(a(£)))" Pr; B(.) Prjop| < Z / ki () (s) lps(s)l

/dem $)  max fe(s)]

and then, since norms on E; are equivalent, for each j, there is a real number
oj > 0 such that

((grad pi(zli (1)) Pr B() Pr; o] < / Zo—] a1 ()(5) p3 (5(5))-

Denoting n;;(.) the functional defined on C([—7,0], R) by

0
ni ()i Y g (Y = / > oy dki;()(s) w(s), (45)
2=l
we have '
[(grad pi(zl(£)))” Pr; B() Prjo 9| < nyj()pj o ¢;.
Third term: Let us denote
gi(.) = |(grad pi(2l1(£)))” Pr;c()], (46)

Then, summarizing the previous steps, the vector Dt P(z(t)) satisfies the fol-
lowing inequality:

DT P(x(t)) < M() P(z(t)) + N() Po z¢ +q(),
where M(. ) = {m” )} isa (kx k) matrix, N(.) is the mapping C - R* given by

T
E n1;()p; © ;- - z ;i ()p; © <p]] and ¢(.) denotes the k-vector
J=1
(@ (). ,qk(~)]T-
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It only remains to be proved that the system
2t)=M()z(t) + N() z +q()

is a comparison system for the initial one: according to Theorem 4.1, it is enough to
prove that the function ¢(t,z,y) = M{(.) z+ N(.)y+¢(.) is mixed quasi-monotone
non-decreasing in z, non-decreasing in y. This is obvious if we observe that the
off-diagonal elements of M (.) are non-negative (in expression (43), the subvectors
ul? and u¥) can be chosen freely).

4.3.2 Particular cases for the construction of comparison systems. Simpler expres-
sions may be found under stronger assumptions about the choice of the norms and
the initial system.

Let us now consider a system of the form

m

(t) = A(t, z(t), x¢, d) z(t) + Z B*(t,(t), x4, d) o(t — 7x(t))
. (47)

0
+/K(s,t,$(t),mt,d)z(t+s) ds + c(t, z(t), 2, d),

where A(.) and B*(.) (for k=1,... ,m) and K (s,t,z(t), z;,d) are n x n matrices,
and 74(t) are positive, bounded and piecewise-continuous functions such that

0<mp(t) <7, Vix>to, Vk=1,...,m.

To simplify, we consider here that the subspaces FE; of the partition (37) are
given by
E; =span{e;: jeI;}, i=1,...,k,

where {ej,es,...,e,} denotes the canomical basis of R and where the Z;’s are
disjoint subsets of N, = {1,2,...,n} such that

N, =T (48)

The norm p; on the subspace E; will be defined by p;(zl?) = ||z(?|);, where 29 is
the n;-vector of components z; for j € Z; and || -||; is a given norm on R™.

According to the previous partition (48), we associate with a given matrix A =
{a;;} € R™", the k? matrices A;; defined by

Ay = {aim} = for (i,5) € (Np)*.

meL;
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Then, a comparison system for system (47) is

2(t) = T(A(t, z(t), 2, d) 2(8) + ) AB*(t,2(t), 20, d)) 2(¢ — (1))

k=1

0 (49)

+ / A(K (s, t,z(t), 2, d)) 2(t + 8) ds + Plc(t, z(t), 7, d)),

with the following notations
e ['(A) is the (k x k)-matrix associated with A = {a;;} € R**™ by

wi(Au) for [=m
D(A)m = _ A1l (50)

NAmilim = Oiryneaécnm T for 1 #m,

where p;(Ay) is the measure of the matrix A; associated with the norm
[l -1l and is defined by the expression

M +eAulli =1

p(Ay) = lim . (51)
(we refer to [15] for more details about properties of matrix measures).
e A(A) is the (k x k)-matrix associated with A = {a;;} € R™*" by
AA) i = [Apllim  for Lm=1,... k. (52)

This result may be found in another form in {46] or [47] and generalizes the
formulas given in [13] (see also [12] and [10]).
We only outline the proof of this result. By continuity, we have

Dtpi(z¥(¥)) = lim pi(zl(t + 2)) — pu(=li(#))

e—01 £
. . . (53)
i 1290 + 20 @)~ 1 @)l
e—0t £ ’
Then, from (47) and the properties of the norm || - ||;, this gives
Drputatl(0) < i (M=) oo,
e—0* £
+ > 1A Ollgll=? ()1l
J#i
; 54
+ ST UBS Ollsllat (¢ - ()1 (59
kg

+ 30 [ 1K Ollslia® e+ 5}l ds + €Ol

i
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The result follows from definition (51).

There are simple and explicit expressions of the terms appearing in (50) and (52)
in the case of usual norms. Let A = {a;;} denote a (m x n)-matrix, B = {b;;} a
(n x n)-matrix, z a n-vector and y a m-vector.

With py(2) = |jzlly = 3 |z, pa(@) = |2/l 2 max |;|, we have:
i=1 <i<n
m m k23
[Alln = max " Al <D0 lagl,

je{l1,..., n} Py =1 1

liAll22 = e Z lagsl,  NlAllz = max Jagl, (55)
1<]<n

pi(B) = max { bj;) + Z |b”|} u2(B) = max |:§R(bu) + z |bz]|]

i#] J#i

It is possible to obtain other and simpler comparison systems at the expense of
stronger estimations. Indeed, for any matrix M(.), any mapping N (): C(RF) —
R¥, and any k-vector 4(.) such that:

M(.) > M(),
N()e = N()p, VpeCRE), (56)
g > q(),

the system
(1) = M()2(8) + N() z + ()

is also a comparison system of (47). For instance, when ¢ does not appear explicitly,
one can find a neighbourhood N of the origin (0,0) € R¥ x C(R*) and a map g
mixed quasi-monotone non-decreasing in P(z(¢)), non-decreasing in P o z;, such
that

9(P(z(t)), P o z) 2 M(z(t),z) P(z(t)) + N(x(t), &) P oz + q(z(t), )  (57)

holds on A, thus leading to a local CS 2(t) = g(z(t), 21).
Note that when M (constant) is Hurwitz (that is, all eigenvalues are in the

open left-half plane), the opposite of M then belongs to the class of M-matrices
(see [17]).
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5 Qualitative Properties of Sets

In this part, A denotes a non-empty compact set which can be restricted to a point.
5.1 Stability, attractivity

5.1.1 Definitions. In this subsection, we formally define or recall different quali-
tative properties of sets such as stability, attractivity and so on. Moreover, as the
dynamical description of the system is time-dependent, the same should be true
for the definition (as mentioned and illustrated in [19]). Lastly, we will stress the
importance of having information about initial conditions leading to a qualitative
property for a solution: this is the notion of domain relative to a property.

Definition 5.1 The set A C C is said to be stable w.r.t. {to} for system (7) if
Ve >0,3d8(to, ) > 0:
(25 B(A75(t076)) = Zt(t07<p) € B('A7€)7 vt Z to,

holds, stable w.r.t. T if Py(T): [Vto € T,Ps(to)] holds, stable if Ps(R): [Vto €
IR, Ps(to)] holds. These properties are said to be uniform if in P,(to), 8(tg,e) =
d(e) does not depend on tq, and the corresponding properties are denoted by P,(.),
where (.) is respectively o, 7, R.

Pslto): (58)

Definition 5.2 The set A C C, is said to be ezponentially stable w.r.t. {to}
for system (7) if

36(to) > 0, Ja(ty) >0, IB(te) > 0:

Pes(to): § ¢ € B(A,8(tg)) = z4(to, ©) € B(A, Bexp(—alt — to))p(p, A)), (59)
Yi>to

holds, exponentially stable w.r.t. T if Peo(T): [Vto € T,Pes(to)] holds, expo-
nentially stable if P.s(R): [Vig € R,Ps(to)] holds. These properties are said to
be uniform if in Py(to), 6(to) = J, a{is) = o, and B(ty) = B, i.e., they do not
depend on ty, the corresponding properties are denoted by P..(.), where (.) is
respectively to, 7, R.

Definition 5.3 The set A C C, is said to be attractive w.r.t. {¢y} for system
(7)if

Ve >0, Bé(to,!—:) > 0, HT(to,E) >t
Palto): (60)
P e B(.A,(S(tg,&‘)) = Zt(t0790) € B(A76)7 A2’ Z T(t075)
holds, attractive w.r.t. T if Po(T): [Vto € T, Palto)] holds, attractive if P,(R):
[Vto € R,Pu(to)] holds. These properties are said to be uniform if in P, (to),
6(to,€) = 6(e) and T(to,e) = T(e) does not depend on tg, the corresponding
properties are denoted by P,,(.), where (.) is respectively to, 7, R.
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Definition 5.4 The set A C C is said to be asymptotically stable w.r.t. {to}
(respectively asymptotically stable w.r.t. T, asymptotically stable) for system (7) if
A is stable w.r.t. {{9} and attractive w.r.t. {to} (respectively stable w.r.t. 7 and
attractive w.r.t. T, stable and attractive). These properties are said to be uniform
if attractivity and stability are uniform.

From a practical point of view, it is crucial in engineering sciences to have
concrete knowledge of the initial sets implied in these definitions (in other words,
to have information about the number 4 appearing in the previous definitions).
This induces the concept of domain relative to some property (see [19,22]). The
proposed definitions are inspired by those given for the equilibrium point of an
ordinary differential equation ([19,22]) and extended to sets in the case of ordinary
differential equations [37]: here, we define them for the general class of functional
differential equations.

Definition 5.5 The domain of stability Ds(to, A) C C of a non-empty compact
set A CC w.rt {to} for system (7) is defined by:

(1) Ve > 0,z:(to, @) € B(A,g), Yt > to, iff vz, € Ds(to, A),

(2) Ds(to,.A) is a neighbourhood of A.

The domain of stability Ds(T, A) C C of a non-empty compact set A C C w.r.t.
T is defined by:

(1) Yto € T,Ds(to, A) exists,

(2) D(T, A) = Niye7Ds(t0, A).-

The domain of stability of a non-empty compact set 4 C C is D (R, A).

The other domains of uniform stability Dys(., A) are similarly defined, where (.)
stands for ¢9, 7, or R.

The other domains corresponding to all the previously mentioned qualitative
properties can be defined in a similar way and are omitted for sake of brevity. Note
that Das(., A) = Ds(., A) N Dy(., A), where (.) is respectively to, T, R.

5.1.2 Results. This part concerns the qualitative properties defined in the previ-
ous part that can be deduced from the construction of a comparison system, as
described in Section 4. Thus, we consider that the techniques described above lead
to the following functional differential inequality

D*P(x) < g(P(a(1)), P(z)), (61)
with which we associate
#(t) = g(z(t), z1). (62)
Note that this is at least possible locally (see Section 4.3).
Let us recall that in that case if ¢(0,0) > 0, then Corollary 4.1 can be applied

and the estimating relation 0 < P(z(t)) < z(¢) holds for ¢ > ty as soon as it is
satisfied for t € {tog — 7,1p]. Using this fact, we obtain:
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Theorem 5.1 Let P be one of the properties defined in the previous subsection.
Assume that system (62) has a positive equilibrium point z. with a non-empty do-
main Dp(p.,), then A= {p € C: P(p(s)) < z., Vs € [—7,0]} has property P with
the associated domain estimated by Dp(A) = {¢ € C: P(p(s)) € Dp(z), Vs €
[—7,0]}.

Remark 5.1 For VLF, one can obtain a result similar to Theorem 5.1, as soon
as g in (61) is mixed quasi-monotone non-decreasing in V (z(t)), non-decreasing in
V(zy) and V is radially unbounded.

Ezample 5.1 Consider the system defined by

t
I = (1 — Z% -~ x%)xl + dn(t)&?g + f du(S)(E] (S) ds,
t—1

(63)

t
j,‘2 = (1 - 1’% - JJ%)IQ + dgl(t)l'l + f dzg(s)xz(s) dS,
t—7
where d;;(t) are continuous functions, bounded in magnitude by 1, and let us

consider the vector norm ]
z
P(z) = . 64
(=) (f@l) (64)
We then have

(1 - P(z) — P¥(x)) 1

p*pie) < ( I (1~ P2a) - Pf(m))) Ple)

. (65)
+ [ P(x(s)) ds.
J
We can consider
o (1= 1 /
=gz = (1L Yo [ @

t—1

to be a comparison system (g satisfies the hypotheses of Corollary 4.1). System
(66) has an equilibrium point defined by

ze=v2+ (1,17 (67)
A change of variable (y + z, = 2) leads to the system
i) = <—(5+3T)#3\/2+7’y1 -3 (t) 1 ) ®
v = 1 —(5+37) - 3V2+ 1y —¥2(t) Y

t
+/y(s) ds. (68)

t
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Let us consider the function v(y) = max(|y1|,|yz!) and, following Razumikhin’s
method [41], assume that:

v(y(t+s)) < (1+¢e)v(y®), Vse[-7,0]

with € > 0.
There is an index ¢ € {1,2}, such that v(y(¢)) = |y:(¢)] and o(y(t)) =
sign (y;(t)) g:(t). It follows that

o(y(t) < (~(4+27) +e = 3vV2+ 7y — i (1) vly(1)).

For any y(t) such that y; > —+/(24+ 1) and y2 > —/(2+ 7), it is possible to
choose ¢ such that o(y(¢)) < 0.

This proves that z. is asymptotically stable with Dgs(p,.) = C4 \ {0}. Then,
according to Theorem 5.1, the set A4 = {¢ € C: P(p(s)) < z., Vs € [-7,0]} is
globally asymptotically stable.

Note that in the particular, ordinary, case 7 = 0 we find again the results
proved in [37,39], stating that A4 = {z € R": P(z) < v2(1,1)T} is globally
asymptotically stable for the corresponding ordinary differential system:

i}l = (1 — .’E2 — 1’%)1?1 + dlg(t).’l!g
; : (69)
i‘g = (1 — Z% — III%)CCQ + d21(t)$1
Theorem 5.2 Assume that:
1) there is a reqular VN P(z), such that
2(t)y = Mz(t) + Nzt + g, (70)

(with ¢ > 0), is a linear time-invariant comparison system of (7);
2) there is a vector d > 0 such that (Md+ Ny¢g) < 0.

Then A= {p € C: P(p(s)) < z., Vs € [-7,0]}, where z.: Mz.+Np,, +q =0,
is globally uniformly exponentially stable.

Ezample 5.2 Considering system (63) and using (64) one can obtain:

t
D.P(z) < (—15 _15) P(z) + /P(m(s))ds+4\/§(1). (71)
t—1
The associated comparison system has an equilibrium point defined by
4+/2
Ze = V2 (1,17, (72)

T 4—7
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Let d = §(1,1)T. One can easily check that condition 2) of Theorem 5.2 holds if

V2
=

allows us to conclude that if 7 < 4, then the set

A= {cp €C: Pp(s)) < i(1 DT, vse [~T,O]}

T < 4. Considering any ¢ >

is uniformly exponentially stable.

Note that in the particular case 7 = 0 we once more obtain the results proved
in [37,39): the set A = {z € R": P(z) < v2(1,1)T} is uniformly exponentially
stable for the corresponding ordinary differential system (69).

5.2 Positive invariance

In this part, we define the notion of positive invariant sets for general, functional
systems (7) and show how this property can be investigated by means of comparison
systems.

Definition 5.6 A set M C C is said to be positively invariant with respect to
(7) and tq if, for any element ¢ € M, the solution z(¢, o, ) of (7) is defined on
[to,00) and zt(to, ) € M for all ¢ > to.

Let us assume that
2(t) = glt, 2(t), z1) (73)

is a comparison system of (7) with respect to some vector Lyapunov function V.
Then, the following result is obtained:

Theorem 5.3 If there is a k-vector z, with non-negative components such that
g(t, ze, 0e) <0, Vit>to,

where @, € C(R¥) is defined by p.(s) = 2, for all s in [—7,0], then the set C(A),
with A= {z € R*: V(z) < z.}, is positively invariant for (7).

Proof The function g is non-decreasing in its third argument, so the system

u(t) = g(t,y(t), w.) (74)

is a comparison system of (73) as long as y(t) < z.. System (74) is a nonlinear,
ordinary differential system, and applying Lemma 6 of [39] completes the proof.

Such a vector z, may be proved to exist in some particular cases. For instance,
consider a linear comparison system of the form

2(t) = Maz(t) +ZN1 t—nt))—}—/K z(t + s) ds.
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0
If the matrix Z = M + i Nt + [ K(s)ds is the opposite of an irreducible
i=1 =
M-matrix, it is then possible to choose the vector z, as a non-negative eigenvec-
tor associated with the importance eigenvalue of Z (i.e., the eigenvalue with the
greatest real part). Proof of this result can be found in [10], and this reference
also contains other results with less restrictive assumptions about the comparison
system.

The positive invariance property is a standard tool in the problems of constrained
control, we refer interested readers to the books [7,43] and the papers [11, 14, 39].

6 Some Corollaries in the Ordinary Case

We recall here some results previously presented in {7], that appear as corollaries
of the present study in the particular case of ordinary differential equations.

Let us consider the ordinary differential system (10) and suppose that the choice
of some regular vector norm leads, for state vector in ! C R™, to an inequality
such as

DY P(x(t) < At 2(t), P(a(t)).
Several classes of functions h are investigated in the following results.

Theorem 6.1 If it is possible to define a linear, time-invariant comparison
system of (10) in a neighborhood Q C R™ of the equilibrium point z = 0 relative
to a regular vector norm P:

DYP(z(t)) < M P(z(t)), Yt>ty, Vz€Q

for which the (constant) matric M is irreducible and of the Hurwitz type, then
z =0 is locally asymptotically stable and its domain of asymptotic stability D,(0)
includes the biggest domain D which is included in Q and defined by one of the
three following types of sets (or their union):

1. D=D, = {z € R*: PT(z)up(MT) < 0} C Q,

2. D=Dy ={z € R": P(z) < Bun(M)} CQ,

3. D=D,={x € R": P(z) < c} C N, where c€ RE is such that Mc <0,
in which o and B are constant scalars and un,,(A) denotes a positive impor-
tance eigenvector of the M-matriz A corresponding to its importance eigen-
value Ap(A)(<0).

Moreover, the convergence in this domain is exponential (in e (M)t)
If Q C R™, the property is global.
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Theorem 6.2 If it is possible to define a nonlinear and/or time-varying com-
parison system of (10) in a neighborhood Q@ C R™ of the equilibrium point x = 0,
relative to a regular vector norm P:

DYP(z(t)) < M(t,z(t)) P(z(t)), Vt>ty, Vze

for which the matriz M{t,z(t)) verifies the following properties:
1. M(t,z(t)) is irreducible ¥Vt > to, Vo € Q;
2. 3e >0 such that M(t,z(t)) +eli, is the opposite of an M-matriz;
3. the non-constant elements of M (t,z(t)) are grouped in one single column.

Then z =0 is locally exponentially stable for (10) (in e~t) and its domain of
asymptotic stability D,s(0) includes the biggest domain D of the type:

D={z c R*: PT(2)un(MT) < a}, with DCH,

in which (M7 is a common importance eigenvector of the matrices M (t, z(t)).

Theorem 6.3 If it is possible to define a non-homogeneous, linear, time-inva-
riant comparison system of (10) in the neighborhood @ C R™ of z = 0, relative to
a regular vector norm P:

DYP(z(t)) < MP(z(t))+q, Vi>t,, Yze

such that

1. M is a constant matriz of Hurwitz type,
2. q is a constant, non-negative vector,
3. the set L2 {z € R": P(z) < —M~'q} is strictly included in Q.

Then, the set L is asymptotically stable for system (10). Moreover, the sets
Di,Doo or D. (Theorem 6.1) are estimates of the domain of asymptotic stability
Deos(L) of L for any scalar a or vector ¢ such that L C D; C Q (with i = 1,00
or c).

7 Conclusion

As shown in this paper, the comparison principle method is a general and useful
tool in the investigation of the asymptotic behavior of many dynamical systems. It
does not replace Lyapunov’s second method but it may be seen as an intermediate
step allowing for the construction of a Lyapunov function. In order to be efficient,
tools have to be developed which facilitate the construction of comparison systems.
One of the aims of this paper is to present such a tool, developed in the frame-
work of stability study, by our team since the 1970’s. Initial applications of this
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method concerned discrete or continuous nonlinear systems. The present chapter
extends this works to a large family of systems — the class of functional differential
equations.

Using the attractive topological properties of vector norms, and with slight re-
strictions on the structure of the obtained comparison systems, we have stated
stability conditions that are easy to check (this is an important point for a prac-
tical use of the method). In addition, some means for estimating the domains of
stability have been provided. Of course, there may be some cases which require
arrangements the user to make some in order to reduce the conservatism of the
methods. As a result, there are some works that have not been presented in this
chapter and which may be useful: we refer the interested reader to the papers
[5,8]. Besides, analogous results are available for discrete-time systems (see [7])
and systems of neutral type ([45]).
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1 Introduction

The Liapunov’s classical theorem on asymptotic stability of the zero solution of a
differential equation & = f(z,¢) in "™ employs an auxiliary function v(z,t) that
satisfies some conditions. One of these obliges the derivative along the solutions
9(z, t) to be definite negative, i.e. there exists a definite positive function u(x) such
that o(z,t) < —u(z).

Several authors have explored different ways to weaken this condition that hap-
pens rather restrictive; at first the set £ = {z: u(z) = 0} has been supposed
composed by more than the unique point £ = 0. Barbashin and Krasovskii, and
later, La Salle were the first to investigate in this field assuming suitable conditions
both on the set E and on the solutions of the differential equation [1, 2].

The comparison principle has been fruitfully employed in dealing with several
qualitative problems [4].

Another direction many efforts have been directed to, was to consider in a neigh-
bourhood of the set E one or several auxiliary functions endowed with suitable
properties [3,6-19)].

This last method was used to deduce stability properties when the vector func-
tion f is not defined on a closed set M of ®™ [11,15,18,19].

In this paper we come back to this last problem considering also the case of
perturbations acting along the motions and we look for new conditions of stability
and asymptotic behaviour for M. The results attained are illustrated by an example

* Advances in Stability Theory (Ed.: A.A. Martynyuk). Stability and Control: Theory, Me-
thods and Applications, Taylor & Francis, London, 13 (2003) 75-88.
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concerning the two-body problem when the motions take place in an atmosphere
and the reference frame is non-inertial.

2 Notations, Definitions and Preliminary Results

2.1 Let R™ be the usual Euclidean n-space and I denote the interval 0 <t < +o0.
For z € "™, |z| will indicate any norm in R"™; if y € B, £ > 0, B(y, ) will be
the open ball {z € ™, |z — y| < £}. For aset G C R"*, G and HG will denote
respectively its closure and its frontier; further d(z, G) is the distance of the point
z from G.

In the following we refer to a closed set M C R™ and, considering the numbers
§, A, 0 <6 < A, define

My={zeR", dlz,M) <A}, Msy={xeR", §<dz, M)<A}.
Consider now the systems of differential equations

&= f(z,t), (2.1)
&= f(z,t) + p(t). (2.2)

We call respectively unperturbed and perturbed system; we suppose f is an n-vector
defined and continuous on the set (R™\M) x I, while p: I — R" is defined and
continuous on I. As it is well known, for every point (zg,t0) € (R*\M) x I there
exists at least one non-continuable solution z(¢) of equation (2.1) or (2.2) defined
on the interval J(zg,%0) = (w',w) and such that z(ty) = zo; w' and w depend on
2o and tg. It may happen that ' = —oc and w = +00. We shall also sometimes
write this solution as z(t;to, o).

2.2 For a function v(z,t): (R*\M)xI — R we consider the upper right-hand de-
rivative computed along the solutions of system (2.1) or (2.2), denoted by D¥v(z, t)
or D u(z,t) respectively, and defined as limsup{v(z(t + k), t + h) — v(z(t),t)]/h
for h — 0. It is well known if v satisfies a local Lipschitz condition this derivative
can be computed without knowing the solution z(t) {5].

A function a: I — R is said to be of class K (in the sense of Hahn) if it is
continuous, strictly increasing, and with a(0) = 0. For such a function we shall
write a € K.

2.3 Let E be a non-empty set of My, ENAIM # 0, and {W,(z,t)} be a family
of functions, Wy : B(y,&,) x I =R, y € R, § > 0.
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Definition 2.1 The family of function {Wy,(z,t)} is said to be definitely neg-
ative on E if there are two numbers £ > 0 and 8 > 0 such that for y € E it is
&y > ¢ and moreover the function Wy (z,t) satisfies

Wy(z,t) < =8 for =z € B(y,&)N(M\M) and tel.

2.4 In the next sections we shall discuss some stability properties of the set M
with respect to the solutions of system (2.2) and, therefore, we give the following
definitions.

Definition 2.2 M is a total-stable set of equation (2.1) if there exists a point
z* € OM and for any € > 0, p >0 and ty € I there are §(c,p) > 0, nl(e,p) >0
such that if it is d(zo, M) < 8, zy € B(z*,p) and |p(t)| < n, then the solution
z(t;to, o) of system (2.2) satisfies z(¢;tg,x0) € M, for all t € J(zo,to)N[to, +00).

Definition 2.3 M is a total-asymptotically stable set of equation (2.1) if it is
total-stable and total-attractor, i.e. for any p > 0 and v > 0 there exist A(p) > 0,
n(p,v) > 0 such that if d(zo, M) < A, z¢ € B(z*,p) and |p(t)| < n, then the
solution z(t;to, zo) of system (2.2) satisfies z(¢;t0,z0) € M, forall t € [to+T,w),
where T =T (p, v, to, o).

At last we shall employ the following Lemma the proof of which may be found
in [14]. Denoting by V the gradient operator with respect to z, we have

Lemma 2.1 Let £ > 0 and E be a non-empty set of R™. Then, there exist
two numbers 8 € (0,€), ¢ € (0,6), a countable family {B;} of open balls of R"™
having all the same radius 6 and centres in points of E, and for each i a function
a;: R"™ = [0,1] of class T such that:

(i) {B} is a covering of the set Ey = {z € R": d(z, E) < ¥};
(i1} each ball B; has a non-empty intersection with a number of other balls not
greater than a fized number n' (independent of i);
(iii) suppa; € By, Sai(z) =1 for x € Ey, 0 < Y au(z) <1 for = € UB;,
B i
Sai(z) =0 for d(z,E)>T1, T =0+,
i

(iv) the gradients Vo, are uniformly bounded.
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3 Two Lemmas

Lemma 3.1 Let ¢(d) and a(d) be two functions of class K, q and p two positive
parameters, h, m, 3 and @ positive constants. Admit the function y(d) = —c(d) +
a(d) satisfies:

(1) y(d)y>0 as de (0,dy), y(d1) =0;

(if) y(d) <0 as d> dy.

Then the function g: I — I defined by

g9(d) = —he(d) + qa(d) + u(— 38 +mq) for del0,x), x>0,

(3.1)
g(d) = —he(d) + qa(d) + plp +mq) for d>x,
satisfies
g(d) <~y for d>0 and q€[0,7], (3.2)
when
(a) ¢=wp+08/4,
(b) n =minfh/3, uB/4j, 5/4m],
(c) §=max{y(d),d >0}, (3.3)
(d) u=he(x)/6¢,
(&) ~=up/4

Proof Given h, m, 3 and p, we choose g satisfying mq < /4 and define ¢ and
g as in (3.3)(a) and (3.3)(c). Consequently, referring to the function g(d) defined
by (3.1), we note that for d € [0, x) it results

9(d) < q§ — (h — g)e(d) — pB/2.
Therefore, if we choose
q < min(h, uB/43, 8/4m], (3.4)
we get g(d) < —pB/4 which implies (3.2). On the other hand, for d > x it is
9(d) < g — (h — g)e(d) + pé

and hence, considering
g < min[h/3, he(x) /6], (3.5)
and assuming p verifying (3.3)(d) it follows g¢(d) < ~he(x)/3. Using (3.4) and
(3.3)(d) we derive
he(x)/6 = pg > pB/4 (3.6)

and therefore (3.2) is verified under hypotheses (3.3).
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Lemma 3.2 Suppose for the system (2.1) there are a continuous function
v(z,t): (MA\M) x I - R, a bounded set E C My\M, ENOM # 0, and a
family of functions {wy(z,t)}, wy(z,t): Bly,&) x I = R, such that:

{()) Dru(z,t) < —he(d(z,E)), c€ K, h >0 constant, t € M\\M, teI;

() Dyv(z,t) < D¥o(z,t) + a(d(z, B)p(t)], a € K, 2 € M\\M, tel,
where the functions a and ¢ verify hypotheses of Lemma 3.1;

(Jii) wy(z,t) =0 as d(z, E) = 0 uniformly for yc E, t € I;

(V) Vwy(z,t) uniformly bounded for y € E, z € B(y,§,), t€I;

(v) the family of functions {wy(z,t)} is definitely negative on E;

(vj) for each o € (0,)) and for each compact set S C M, there is a positive

constant K, such that |f(z,t)l < K, for z €S and t € 1.

Then there exist the constant H > 0, 7 > 0 and for every o > 0 three numbers

o) =ps >0, (o) =1,>0 v(6) =7 >0, s + 1 +7 = 0 as 0 = 0, and
a function Vi (x,t): (MA\M) x I = R verifying

Volz,t) > v(z,t) —pu.H, z€ M\M, tcl (3.7)
Volz,t) Sv(z,t) + u-H, z€M\M, tel; (3.8)
D;,"V,,(x,t) <=7, for |p(t)] <ny and z€M,,, tel, (3.9)

or d(z,E)>1, ze€M,\M, tcl.

Proof According to Definition 2.1, hypothesis (v) implies the existence of two
numbers § >0 and B > 0 such that if y € E the function wy(z, ) satisfies

wy(z,t) < = for =z € By, ) N(M\M), tel (3.10)

By employing Lemma 2.1 we get two positive numbers @ and ¢, € > 8 > ¢, a
countable family {B;} of open balls of R™ having all the same radius # and centres
yi € Ey and using hypotheses (jjj) - (jv) we can suppose the radius 8 is such that
the functions w; = w,, fulfil

|wi(z,t)] + |Vw(z,t)| <w forall y,€FEy, z€B;, tel, (3.11)

where w is a positive constant.

For a point € UB; we denote by I(z) the collection of the indices 7 satisfying
the property B; N {z} # @ whose number is at the most n’ 4 1.

Let us now consider the function

h(z,t) = Z a(w)wi(z,t), z€M\M, tel. (3.12)
icl(z)
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Employing again Lemma 2.1 it is easy to verify A(z, t) is of class C! and moreover
fulfils

hiz,t) =0 for xe€ M\\M, dz,E)>71, 7=0+1v¢, tel, (3.13)

furthermore, from (3.11) we deduce that for the function (3.12) there exist two
positive constants H = (n’ + 1)w and m such that

Ih(z,t)| <H, z€M\M, tel (3.14)
[Vi(z, )] <m, =x€M\M, tel. (3.15)
It easy to show along the solutions of system (2.2) it results

Dih(z,t)= Y {Vai- fw; +anvi} + Vh p. (3.16)
iel(x)

Property (iv) of Lemma 2.1, hypotheses (jjj) and (vj) imply that for every o > 0
there exists a number x, € (0,min(¢y, o)) such that

> Vai- fw

where  has been assigned in (3.10). Besides, owing to the conditions (iii) of
Lemma 2.1 and (3.10), it results

<pB/4 for z€ M, and d(z,E)<x,, tel,

> aii <~ aif=-p, €My, d,E)<x,, tel (3.17)
1 1

Employing (3.15), (3.17), formula (3.16) becomes
DYh(z,t) < -38+mip(t)l, =€ M,, d(=z,E)<x, tel. (3.18)

Using again the properties of functions a;, the hypothesis (vj) and (3.10), (3.11)
we get a constant ¢, > 0 satisfying

S {Vai- fwitonin} <o, TE€ Moy, d@,E)>x,, tel (3.19)

Therefore, by means of (3.15) and (3.19), (3.16) implies
DFh(z,t) < g5 +mip(t)],x € Mos, d(@,E) > xo, t€L (3.20)

Now, choosing suitably the positive numbers u(o), v(o) and 7n(o), we are able
to show the function
Vol(z,t) = v(z,1) + p(o)h(z, t) (3.21)



SOME RESULTS ON TOTAL STABILITY PROPERTIES 81

fulfils the conditions (3.7) - (3.9). In fact, the first two are a consequence of (3.14)
for every p > 0. For the last one hypotheses (j) and (jj) imply that along the
solutions of system (2.2) it is

Dy Vs(z,t) < —he(d(z, E)) + ald(, E))|p(t)| + p(o) Dy h(z, t); (3.22)
from here, writing for simplicity ¢ = |p(t)}, d = d(z,E) and using (3.18) and
(3.20), for every = € M, », t € I it follows

D:Va(xvt) S _hc(d) + qa(d) + iu(o-)[ - %/6 + mQ]
(3.23)
as d€(0,x,),
Dy Vy(z,t) < —he(d) + qa(d) + p(0)[¢s +mg]
(3.24)
as d> xo.

Formulas (3.23) and (3.24) show the second member of D}V, (z,t) has the
properties of the function g(d) of Lemma 3.1. Therefore, considering (3.3), where
X = Xo and ¢ = ¢,, we get u(o), v(o), n{c) defined as

(a) 6p(a)lps + /4] = he(xo),
(b) (o) = u(0)B/4, (3.25)
(¢) nlo) = min[h/3, u(o)B/47, B/4m]
and such that the function (3.21) verifies
DfVy(z,t) < —v(o) as z€ M, tel and |p(t)] <nlo). (3.26)

Moreover, when d(z,E) > 7, ¢ € My, t € I, it is V,(x,t) = v(z,t) and hence,
considering the function y(d) = —c(d) + a(d), formula (3.22) becomes

Dy Vy(z,t) < —(h = g)c(d) + gy(d).

Referring to the properties (i), (i) of y(d) quoted in Lemma 3.1, suppose 7 < d;.
As 7> x, and ¢ < h/3 and moreover by (3.25)(c), (3.6) it results qy < pB/4 <
he(xs)/6 and therefore we derive

D;Vo(m,t) < =2he(x0)/3 + he(xo)/6 = —he(xs) /2.
If 7> d;, it is y(d) <0 and therefore
DV, (2,1) < ~(h — eld) < ~2helxs)/3.

In both these possibilities (3.9) is obtained by virtue of (3.6) and by (3.25)(b).
Finally, the property u(o) +n(c) +~v(c) = 0 as ¢ — 0 is a direct consequence of
definitions (3.25).

Thus the proof is achieved.
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4 Stability Theorems

Theorem 4.1 Suppose for the system (2.1) there exist the constants H > 0,
T > 0, the functions s € K and (d), a(d) strictly decreasing in (0,7) such
that 0 < a(d) < B(d), a = +oo for d — 07, and a bounded set E C M,,
OM N E # 0. Moreover, admit for every o > 0 there exist the numbers j, > 0,
e > 0, po +15 = 0 for 0 = 0, and a function V,(z,t): (MO\M) x I - R
satisfying the following conditions:

(i) Vo(z,t) > —p(d(z,M)) — peH for x € M, , t€l;

(ii) Vo(x,t) < —ald(z,M)) + s(d(x,E)) + uoH for 2 € M, 5, t€l;

(iii) D;Va(z,t) <0 for |p(t)] € ny, when t € I and further x € M, or

x € M \M and d(z,E) > 7.

Then M is uniform-total stable set of system (2.1).
Proof Consider a point z* € M N E and choose p > 0, ¢ € (0,\) and
5€ (0,2 1(B(e) + s(p + 1))). Owing to the strict decreasing of a(d), it is
a(d) > BE)+s(p+71)
and therefore for some p > 0 we get

a(d) > By +s(p+ 1)+ 2uH. (4.1)

On the other hand, there exist a o € (0,4) and a function V,(z,t) verifying the
hypotheses of theorem with g, < u. Therefore, from (4.1} it results «(d) >
Ble) + s(p+7) + 2u, H and also

—-B(e) — peH > —(6) + s(p+ 1) + po H. (4.2)

Now we show that the solution z(t) of system (2.2), corresponding to the per-
turbation term |p(t)] < 1, and to the initial condition ¢y € I, z¢ € (Ms\M) N
B(z*, p), fulfils

z(t) € M., Vi€ [to,w).

On the contrary, suppose there exist the instants t2 > t; > o satisfying the
properties d(z(t1), M) =4, d(z(t2), M) =¢ and § < d(z(t), M) <e for t; <t <
ta. From hypothesis (i) we derive

Vo((t2), t2) 2 —f(d(x(t2), M) — po H = —B(e) — poH. (4.3)

Let us set
ts =sup {t <t1: z(t) € [E- UB(z*,p)] N Ms}.
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If it is t3 = ¢1, then x(t3) = z(t;) € OM;s and moreover z(t3) € E, or z(t3) €
B(z*,p) and therefore d(z(t3), E) < p + 7. Hence, using hypotheses (iii), (ii) and
(4.2), it follows

Vo(z(ta), ta) < Vo(z(tr), t1) < —a(d(z(tr), M)) + s(d(z(tr), E)) + po H

<=al8) +s(p+ 1)+ pH < —ple) — po H

that contradicts (4.3).
In the case t3 < t; it results d(z(t3), M) < § and further for t3 <t < t; we get
z(t) ¢ E- N M; and thus (iii) holds. Consequently, by (ii) and (4. 2), we deduce

Volz(ta), t2) < Vo(z(ty), t1) < Vo(x(ts), t3)
< —a(d(z(ts), M)) + s(d(z(ts), E)) + po H
<—a@)+s(p+7)+p.H < —Be) — u H

and again we have a contradiction for (4.3).

Theorem 4.2 Suppose for the system (2.1):

(I) there are a function v: (MA\M)xI —= R, a bounded set E C M)\M with
ENOM # 0, a family of functions {wy}, wy: By, &) x I = R, so that
all the hypotheses of Lemma 8.2 are verified;

(IT) there exist the functions s € K, a(d) and B(d) strictly decreasing on (0, )),
0 < a(d) < B(d) and a = +oo for d — 07, such that for v(z,t) it is

v(z,t) > —B(d(z, M)),
U(I,t) S —a(d(z,M)) + S(d(I,E)),

(IIT) v(z,t) = +oo as z = oo, z € My\M,, t € I, where o is any constant
satisfying 0 < o < A.

Then M is a total-asymptotically stable set of (2.1).

Proof By Lemma 3.2 and hypotheses (I) - (1I) for every o we get a function V,
satisfying the hypotheses of Theorem 4.1. Consequently M is a total-uniform-stable
set of system (2.1). Therefore, given €9 > 0 and for any p > 0 there exist two
positive numbers 6(eg, p) = A, 1(e0) = no such that if o € I, zp € MaANB(z*, p)
and z* € OM N E, |p(t)| < no, then the solution z(t): J — R, z(tg) = =zq, of
equation (2.2) satisfies

d(z(t), M) < e forall t€ [tg,+o0)NNJ.

Owing to the properties of functions «, 3, s quoted in (II), given v > 0, p > 0,
7 > 0 there is a v/ € (0,v) satisfying the inequality a(v') > B(v) + s(p + 7);
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from here, corresponding to the number H > 0 obtained in Lemma 3.2, there is a
i > 0 such that

a@') > B(v) +s(p+7) + 2uH. (4.4)

Referring to the results and symbols of Lemma 3.2, we consider the property
po = 0 for 0 — 01 of the function p(c) and therefore there is a o(v,p) < v/
satisfying u, < p. As the function « is decreasing, from (4.4) we obtain

alo) > Bv) +s(p+71) + 2u.H. (4.5)

Furthermore, from (3.3) we derive the function n{(co(v,p)) = n(v,p) and conse-
quently we consider in equation (2.2) that p(t) satisfies

|p(t)] < min [n(v, p), no]. (4.6)

We show for any v >0, p > 0 and for ¢, € I, zg € Ma N B(z*,p), there is a
T =T(xo,to,v,p) > 0 such that the solution z(t) of (2.2) satisfying (4.6) and the
initial conditions z(tg) = zo fulfils

dz(t),M) <v foral t>t,+7T, teJ (4.7

For this purpose, we discuss the following alternative involving z(¢).
A — There is a t € J such that z(f) =z € (M,\M) N (B(z*,p) U E,). We have
x(t;to, o) = 2(t; 2(t; o, 20),E) = z(t; &, 1) = Z(t). We claim Z(t) verifies condition
(4.7). Assume, on the contrary, that there are ¢, > ¢; >t satisfying
d(i(tl))M):U7 d(fi(tQ):M) =V, and
o <d(Z(t),M)<v for t <t<t.

By Lemma 3.2 we get a number H > 0 and a function V, verifying conditions
(3.7)-(3.9). In our hypotheses it results

Vo (2(t2), t2) 2 =B(d(2(t2), M)) —~ po H. (4.8)

Now we set t3 = sup {t < t1: Z(t) € M, N [B(z*,p) U E,;]} and observe that the
possibilities 3 = ¢, t3 <t < t; can be examined employing the same arguments
used in the proof of Theorem 4.1. Thus (4.8) is violated and hence (4.7) holds.

B - For every t € J it results z(t) ¢ (M,\M) N [B(z*,p) U E;]. Given ¢ € [o,V]
suppose there is a t' € J such that

d(z(t),M) >e, Vtel[t w). (4.9
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We examine the following possibilities involving w. If it is w < +00, z(t) cannot
be bounded. Suppose that z(t) lies for ¢ € [to,w) on a compact set of M., then
z(t) is continuable to ¢ = w and this is clearly a contradiction. Then z(t) might
be unbounded. Consequently there is a sequence {t;} — w as j — +oo such
that {z(t;)} — oo. According to Lemma 3.2 we get a function V,(z,t) satisfying
conditions (3.7)—(3.9). By (III) and (4.9) for some t, >t it results

Vo (z(tn), tn) > Vo (z(t'),t)

and this is a contradiction since V,(z(t),t) is decreasing.

Suppose now w = +o00. Again we are able to obtain a function V, (z,t) inferiorly
bounded in M, ., satisfying (3.9) and thus V,(z(t),t) = —oc as t — +oo and
this again leads to a contradiction. Then there exists a t" € [t',w) such that

d(z(¢"), M) < ¢. (4.10)

As ¢ is arbitrary, we deduce M is a weak attractor.

If for ¢ > t" it is d(z(t"), M) < v, then the theorem is proved. Otherwise,
according to (4.10), there exist two sequences {t}} and {t]} with #j <t} <t;,, <
-+ < w such that
o <d(z(t),M)<v for tj<t<t] and d(=z(t)),M)=0, dz(t]),M)=v.
Setting v* = {z € R"/z = z(t), t € [tp,w)}, we show v+ N M, is bounded.
Suppose that it is not so. By (III) for a given k > 0 there is a 6, > 0 such that

d(z,E) > 6, z€ MM, tel = ov(z,t)>k

Therefore, there is a sequence {t;} — w as j — +oo such that {z(¢;)} - oo.
Consequently, for some j the function V,(z,t) fulfils

Va(x(tj),tj) > k= Vd(x(tl),tl)

and this inequality contradicts the decreasing of V,(z(t),t). Thus there is a com-
pact set S of M, » such that y* N M,, C S. From (vj) of Lemma 3.2 there is a
constant K, satisfying |f(z,t)] < K, for (z,t) € S x I, and therefore we have
t! —t; > (v —0)/K, and hence w = +o00. Consequently

[

Vo la(t)), t]) — Vo (a(t)),t;) = /D+Va(x(t)zt) dt < —y(o)(v — o)/ Ko
¢
3

and hence

‘ Y Wela)), ) = Valalt)), )] < —ny(o) (v — o) /K.
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From here, owing to the inequality Vo (x(j),t]) > Vo(z(tj;1),t51,) we get

Vo (x(th), t20) ~ Vo (z(t)), 1)) < —ny(0)(v—0)/K, and thus we deduce V, (z(¢]1), )
— —o0 as n — +oo which contradicts the boundedness of V, on S x I derived
from (II). Thus the proof is complete.

5 Example

Consider in some reference frame Ozyz a particle P of unitary mass subject to a
friction force arising from an atmosphere at rest in Ozyz and attracted towards
the centre O by the Newton force. We denote by r = OP the vector joining O to
the position P of P, by v the velocity of P and by r and v the respective Euclidean
norms. Moreover, let Ozyz be rotating uniformly in the inertial frame O¢n¢ around
the fixed axis z = ¢ with angular velocity Q. In our model —f(r,v)v/v and
—gMr~3r are respectively the dissipative and the Newton forces. We suppose
f(r,v) > hei(v), where h is a positive constant and ¢; € X, g is the gravitational
constant and M is the mass of centre O. Furthermore, on P are acting the forces
12QP, QP is the vector joining the orthogonal projection Q of P on z to P, and
~2{2 x v because Ozyz is a non inertial reference frame. The motions of P satisfy
the differential equations

T =,
(5.1)
= —gMr73r + Q°QP — 2Q x v — f(r,v)v.
We consider as Liapunov function the total energy
V= —0%z® +4%)/2 — gM/r +v?/2. (5.2)

The system (5.1) and the function (5.2) are not defined on the set M =
{(rm,vm): 7 = 0, vyr = v}. Let us introduce the set E = {(rg,vg): rg =
7, 7 < A vg = 0} and observe that it is d[(r,v),M] = inf [|r — rp|? +
lv — 'vM|2]1/2 =r and d[(r,v),E] = inf [|r —rp|* + [v - vE|2]1/2 = v; thus
EnNM = {0,0}. Now we suppose it is acting on P an additional force written,
without loss of generality, in the form p(t): I — R3. Therefore, we associate to

(5.1) the perturbed system
T =,

(5.3)

D= —gMr73r + Q°QP — 20 x v — f(r,v)v + p(t).

Along the solutions of (5.3) it results

V=—f(rvv+pt) v
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We choose a constant A € (0, (gMQ~2)!/3), introduce the function w(r,v) = v
and remark that by (5.1) it is || > gM 772 = Q?QP >0 for v =0 and r < A.
Therefore, it is possible to associate to every point (rg,vg) € E a non vanish-
ing component of w. Thus we obtain a family of (scalar) functions {w(,, )}
verifying conditions (jjj) - (v) of Lemma 3.2. Moreover, setting 8(d|(r,v), M]) =
Q2r2 )24+ gM/r, a(d[(r,v), M]) = gM/r, s(d[(r,v), E]) = v?/2, all the conditions
of Theorem 4.2 are fulfilled. Therefore, the set M is total-asymptotically stable
of (5.1).

If we compute A supposing the Sun as point O we have A = 30 x 10°km.
Therefore, the region of attraction of the Sun is of the same order of size of its
distance from Mercury (58 x 10%km). This result may give a simple explanation
of the absence of any planet within Mercury orbit.

References

[1] Barbashin, E.A. and Krasovskii, N.N. (1952). On the stability of a motion in the
large. Dokl. Akad. Nauk SSSR, 86, 453-456 (Russian).

[2] La Salle, J.P. (1962). Asymptotic stability criteria. Proc. Symp. Appl. Math., 13,
299-303.

[3] Matrosov, V.M. (1962). On the stability of motion. Prikl. Mat. Mekh., 26, 885-895
(Russian).

[4] Corduneanu, C. (1960). Application of differential inequalities to theory of stability.
An. Sti. Unw. “Al. I. Cuza” Iasi, Sect. Ia Mat., 6, 47-58.
[5] Yoshizawa, T. (1969). Stability Theory by Liapunov’s Second Method. The Math.
Society of Japan.
[6] Rouche, N. (1968). On the stability of motion. Int. J. Non-Linear Mech., 3, 295
306.
[7] Salvadori, L. (1968). Sulla stabilita del movimento. Le Matematiche, XXIV, 218-
239.
[8] Salvadori, L. (1971). Famiglie ad un parametro di funzioni di Liapunov nello studio
della stabilita. Ist. Naz. Alta Mat., VI, 309-330.
[9] Matrosov, V.M. (1971). Vector Liapunov functions in the analysis of nonlinear
interconnected systems. Istituto Naz. Alta. Mat., VI, 209-242.
[10] Gambardella, L. and Tenneriello, L. (1971). On a theorem of N. Rouche. Rend.
Acc. Scienze Fis. e Mat. Napoli, serie 4, XXXVIII, 145-150.
[11] Rouche, N. (1971). Attractivity of certain sets proved by using several Liapunov
functions. Istituto Naz. Alta. Mat., VI, 331-343.
{12] Fergola, P. and Moauro, V. (1972). On the stability of a set with respect to one of
its subsets. Ricerche di Matematica, XXI, 161-175.
[13] D’Anna, A. (1973). Asymptotic stability proved by using vector Liapunov functions.
Ann. Soc. Sei. Bruzelles, II, 87, 119-139.
[14] Salvadori, L. (1974). Some contributions to asymptotic stability theory. Ann. Soc.
Sci. Bruzelles, I, 88, 183-194.
[15] Corne, J.L. and Rouche, N. (1973). Attractivity of closed sets proved by using a
family of Liapunov functions. J. Diff. Egns, 13, 231-246.



88 A. D’ANNA

[16] Habets, P. and Risito, C. (1973). Stability criteria for systems with first integrals
generalizing theorems of Routh and Salvadori. Egqua-Diff. 73, Bruxelles Louvain-
La-Neuve Hermann, 569-580.

[17] Habets, P. and Peiffer, K. (1975). Attractivity concepts and vector Liapunov func-
tions. Nonlin. Vibr. Problems, 16, 35-52.

[18] D’Anna, A. (1977). Proving conditional attractivity of a close set with a family of
Liapunov functions. Int. J. Non-Linear Mech., 12, 103-111.

[19] D’Anna, A. (1993). Stability properties for perturbed singular systems. 7th Conf.
on Waves and Stability in Continuous Media, Bologna 4-9 ottobre 1998, Series on
Adv. for Appl. Sci., 23, 110-117.



2.3 STABILITY THEORY OF

VOLTERRA DIFFERENCE
EQUATIONS*

F. DANNAN!, S, ELAYDI! and P. LI?

! Department of Mathematics, Trinity University, San Antonio, USA
2 Department of Mathematics and Statistics, The Flinders University of
South Australia, Adelaide, Australia

1 Introduction

Stability theory of Volterra differential and integro-differential equations has been
extensively investigated in the literature {1, 3,4, 10, 21, 22, 23, 26, 28, 29]. A parallel
theory for Volterra difference equations is still under development. In this survey,
we present the current state of affairs of this theory. In a series of papers, the
first author and his collaborators made an earnest effort to build a solid founda-
tion for Volterra difference equations [12-18]. Among other things, the use of the
z-transform methods for equations with convolutions has been very fruitful and
has produced some of the most beautiful results in the subject. A resolvent matrix
has been defined and a variation of constants formula has been developed. Signifi-
cant results were produced by Kolmanovskii and his collaborators in [6-9]. Their
results include interesting applications to numerical methods of Volterra integral
equations. In [5] the authors developed a resolvent matrix different from ours and
used it to construct a variation of constants formula. Relevant results may also be
found in {19, 20,30-33]. A readable introductory account on the subject may be
found in [12,24,25]. Although applications to numerical methods are important,
we chose not to include them in this article. We refer the interested reader to the
references [2,26,27]. We end the paper with some open problems (see Section 8).
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2 Z-transform Methods

Consider the Volterra difference equation of convolution type

z(n+1) = Az(n) + » B(n-r)z(r), neZt (2.1)
r=0
and its perturbation

n
y(n+1)=Ay(n) + Y Bn—r)y(r) +g(n), nez, (2.2)
=0
where A is a k X k nonsingular matrix, B(n) € £}(Z%) is a k x k matrix function,
and g(n) is a vector function in R*.
To obtain a variation of constants formula for equation (2.2), we define the re-
solvent matrix R(n) of equation (2.1} as the unique solution of the matrix equation
n—1
R(n+1)=AR(n) + Y _ B(n—j)R(j), nez* (2.3)
§=0
with R(0) = I, the identity matrix.

Note that R(n) is the counterpart of the fundamental matrix in ordinary differ-
ence and differential equations; its columns are the vector solutions z;(n), 1 <i <
k of equation (2.1) with z;(0) = e;, where e; is the standard i-th unit vector in
R*. The Z-transform [12] of a sequence z(n) is defined as

o0
E(n) = 2[z(n)] = Y _a(n)z™", 2| >d, (2.4)
n=0
where z € C, and d is the radius of convergence of Z.
Taking the z-transform of both sides of equation (2.3) yields

(2] - A-B(2)]R(z) = 2, |2|>d.
Since zI is nonsingular, it follows that
R(z)=z[zI — A~ B()]™", lz| > d. (2.5)
Now taking the Z transform of both sides of equation (2.2) and using equation
(2.5) yields
§(2) = Rowo + 5 RE)3G), el > d.

And by taking the inverse z-transform we obtain the promised variation of constants

formula,
n—1

y(n,0,50) = R(n)yo + 3 R(n = j — 1)g(j). (2.6)
7=0
We are now ready to present the Fundamental Theorem of Stability of Equations
of Convolution type.
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Theorem 2.1 [16,17] The following statements are equivalent for equa-
tion (2.1).
1. det(zI — A — B(2)) #0, for |z] > 1;
2. R(n) € 1(ZT);
3. The zero solution is uniformly asymptotically stable [12];
4. Both R(n) and h{n) tend to zero as n approaches infinity, where

!
—

n

h(n) = Rn—j—-1)B{G+i+1)|.

e

s
1l
)
Sa.
Il
o

A word of caution is now in order. Although the resolvent matrix R(n) shares
many nice features of fundamental matrices, it fails however in satisfying an impor-
tant property namely, the semigroups property. It was pointed out in Lemma 3 of
[17] that the statement R(n—s)R(s) = R(n) is in general false, and it is true if and
only if B(n) =0 (which makes equation (2.1) an ordinary difference equation).

Such a failure of the semigroups property paved the way to conclude that for
Equation (2.1) uniform asymptotic stability does not imply exponential stabil-
ity. The question now is when are these latter notions equivalent. For integro-
differential equations, the same question was raised by Corduneanu and Laksh-
mikanthan [4] and was successfully answered for the scalar case by Murakami [29].
The following result is the discrete analogue.

Theorem 2.2 [17] Suppose that the zero solution of equation (2.1) is uniformly
asymptotically stable. Then it is exponentially stable if and only if B(n) decays
exponentially, i.e., ||B(n)l] < Mv™, n € Z*, for some M >0 and v € (0,1).

Explicit criteria for stability using Theorem 2.1(1) may be found in [12, 14]. Here
is one of the main results in this direction.

Theorem 2.3 Let A= (aiy;) and B(n) = (bi;(n)) such that
Bij = Z |bi; (n)] < oo.
n=0

Then the zero solution of equation (2.1) is uniformly asymptotically stable if either
one of the following conditions hold.

k

@ > (layl+8;) <1, 1<i<k, 2.7)
7j=1
k

() D (el +8) <1, 1<j<k (2.8)

i=1
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Note that if A and B(n) are scalar, then condition (2.7) reads as
o0
4+ > 1B()| < 1. (2.9)
n=0

Criterion (2.9) provides us with a useful tool to illustrate the intriguing Theo-
rem 2.2. Consider the scalar difference equation

- z(7)
S n—j+lm—-j+3)

zn+1) = %z(n) + (2.10)

()
Then A=}, B(n) = m € (Y(Z*). Moreover, A+nZ::OB(n) =t+3<1,

which implies by criterion (2.9) that the zero solution of equation (2.10) is uniformly
asymptotically stable.
But by Theorem 2.1, the zero solution is not exponentially stable. For a negative

statement about stability we have the following result from [14]. Let us assume
that

Vij = Z b”(n) < 0.
n=0

Theorem 2.4 Suppose that the following statements hold:
1. a;+vy >1, IS’LSIC,

1 !
2. (a“- + Vi — 1)((1]']‘ + Vi — 1) > Z |a‘ir + ViT' Z |ajT + VjT|r
T T

where
! k
g Qjr = E Ay — Qs -
T r=1

Then if k is odd, the zero solution of equation (2.1) is not asymptotically stable.
If k is even, then the zero solution of equation (2.1) may or may not be asympto-
tically stable.

In the scalar case there are much more powerful results which we now report.

Theorem 2.5 [14] Suppose that A and B(n) are scalar. Then the zero solution

of equation (2.1) is not asymptotically stable if any one of the following conditions
hold:

2. A+ > B(n)< -1 and Y B(n)>0,
n=0 n=0
3. A+ Y B(n)< -1, 3 B(n) <0, and 3, B(n) is sufficiently small.
n=0

n=0 n=0
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3 Renewal Equations

Consider a sequence of repeated trials with possible outcomes E; (j = 1,2,...). We
agree that the expression “¢ occurs at the n-th place in the sequence Ej1, Ejs,...7
is an abbreviation for “the subsequence Eji, Ej,... has the attribute £.” This
convention implies that the occurrence of £ at the n-th trial depends solely on the
outcome of the first n trials. We adopt the following notation from Feller [20]. Let

z(n) = P{{ occurs at the n-th trial},

b(n) = P{€ occurs for the first time at the n-th trial}.

It is convenient to set b(0) = 0 and z(0) = 1. Then the probability that £
occurs for the first time at trial number and then again at a later trial n > j is, by
definition, b(j)z(n - j). Moreover, the probability that & occurs at the n-th trial
for the first time is b(n) = b(n)z(0). Since these cases are mutually exclusive,

a(n) =D bl - ), w2l (3.1)

To proceed further, we need a couple of definitions from Feller [20].

o0
Definition 3.1 A recurrent event £ will be called persistentif b= 3" b(n) =1

n=1
and transient if b < 1. It is periodic if there exists an integer m > 1 such that &
can occur only at trials number m,2m,3m,..., i.e. z(n) = 0 whenever n is not

divisible by m. The greatest m with this property is called the period of £.

Theorem 3.1 [20] The following statements hold true.

(a) For ¢ to be transient, it is necessary and sufficient that

[ee]

z = Zm(n)

n=0

is finite.

jeo]
(b) Let & be persistent and not periodic and denote it by u = Y jb(5). Then

j=1

z(n) > =t as n — oo.

(c) If & is persistent and has period s, then z(ns) = > while z(k) = 0 for
every k not divisible by s.
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Proof The proof by Feller was accomplished via the use of generating func-
tions. Since we have already used the z-transform in Section 2, we found it more
appropriate to adapt the proof to our methods. Notice that z(n) in the left side

of equation (3.1) misses z(0). Hence Z(z) = {:; z(§)z79 + z(0) = § z(j)z77 + 1.

=1 i=1
Now taking the z-transform of both sides of equation (3.1) yields
1
T(z) = —. 3.2
0= 1755 (32)

Observe that Z(z) increases monotonically as z decreases to one. Hence for each N

iz(n) < ll_’lri z(z) < ix(n) =z
n=0 n=0

Now if ¢ is transient, #(z) approaches (1 — b)~! as z approaches one. Hence
o0
z =3 z(n) = 1. On the other hand, if ¢ is persistent, i.e., b = 1, then &(z)

n=0
approaches infinity as z approaches one. This completes the proof of part (a). The
proofs of pats (b) and (c) will be omitted.

A more general equation was also introduced by Feller [20]. This equation takes
the form

y(n) = g(n) + Z b(7y(n - J) (3.3)
with the assumption

b(n)>0, b= ib(n) < 00;
" (3.4)

o

gn) >0, g= Zg(n) < 00.

n=0
Theorem 3.2 [20] Suppose that equation (3.3) holds and that b(n) is not pe-
riodic.
1. If b< 1, then y(n) - 0 as n — oo and

(o]

g
> un) =1
n=0
2. If b=1, then y(n) — gu~'.
3. If b> 1, there exists a unique positive Toot zo of the equation b(z) =1, and

~§(20)

2o "y(n) = —
o y(n) 200 (20)

as n — 00.



STABILITY THEORY OF VOLTERRA DIFFERENCE EQUATIONS 95

(Clearly zo > 1 and hence V(z0) is finite. Then y(n) behaves like a geometric
sequence with ration % > 1 and consequently, y(n) = o as n — ).

Proof See [20].

4 Liapunov Functions

For equations of nonconvolution type or when the matrix A is not constant, z-
transform techniques are not effective in detecting stability. In this situation, the
method of Liapunov functions comes to the rescue. A hybrid of Liapunov and
z-transform techniques was used successfully by Raffoul [30].

Consider the following difference system of nonconvolution type

z(n+1) = A(n)z(n) + Y B(n, j)a(j) (4.1)
j=0
and its perturbation
n—1
y(n+1) = An)y(n) + Y B(n, j)y(j) + g(n). (42)
j=0

We now define the resolvent matrix of equation (3.1) as the unique solution R(n,m)
of the matrix equation

R(n+1,m) = A(n)R(n,m) + i B(n,m)R(r,m), n>m, (4.3)

r=m

with R(m,m) = I. Using equation (4.3) yields the following variation of constants
formula.

Lemma 4.1 [13] The unigue solution y(n,no,yo) of equation (4{.2) with
y(no) = yo 1s given by

n—1

y(n,n0,0) = R(n,no)yo + Z R(n,j + L)g(j). (44)

Jj=no

It is a good exercise to show that y(n, ng, yo) in equation (4.4) is indeed a solution
of equation (4.2).
In our first application of Liapunov method we assume that

Bij(n) = |bij(s,n)| < o0, (4.5)
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and for any ng >0

no—1 oo

sup Z Z jbij(s,7) <00, 1<4, j<k. (4.6)

r=0 s=ngp

k
We use here the vector norm |z| = Y |z;|. For any no € Z* and initial function
i=1

#: [0,m0] — R*, there is a unique solution y(n,ne, ¢) = y(n) which satisfies equa-
tion (4.1) on [ng,o0) and y(n) = ¢(n) on [0,ne]. Note that all of our intervals
are discrete.

Theorem 4.1 [13] Suppose that for 1 <1<k, n > ng,

k
> llaj(m)+ ()] <1-c (4.7)
i=1

for some ¢ € (0,1). If in addition, conditions (4.5) and (4.6) hold, then the zero
solution of equation (4.1) is globally uniformly asymptotically stable, and in fact,
is exponentially stable.

Proof Define the Liapunov functional as
k k n—1 oo
=D |l + 303D bils iz (r)] |-
i=1 j=1r=0s=n
Then we show that
AVisay(n,2()) < —cjz(n)| < —cV(n, z()).

Hence
lz(n)] < Vi(n,z(-) < (1-¢)"V(no,¢())) < M(L-c)"|4l,
where

14ll = sup{|¢(s)|: s € [0, o]}

A second approach to study stability is through the use of vector Liapunov
functions. To simplify our notation let us rewrite equation (4.1) in the form

z(n+1) = chy (4.8)

where C(n,m) = A(n) + B(n,m) and C(n,j) = B(n,j) for n # j. We define the
absolute value of a matrix A = (a;;) as the matrix |A| = (|a;;|), where entries of
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|A] are the absolute values of the entries of A. We say that A < C if a;; < ¢y
for 1 <4, j<k.
We make the following assumption:

(o]
(H) For each n e Z*, 3 C(i,n) is absolutely convergent, and if
=0

C= ig%{ZlC(i,n)l},

then |);| < 1 for all eigenvalues A; of C.

Theorem 4.2 [15] Assume that assumption (H) holds. Then the zero solution
of equation (8.1) is globally uniformly asymptotically stable.

Proof Use the vector Liapunov functional

Vin,z() = -C)” { I+ZZICSTII:U(TI]

r=0s=n

oo
We observe that the matrix series S C™ converges to (I — C)~! if and only if
n=0
|A;] <1 for all eigenvalues A; of C. Moreover, if C' >0, then (I —C)™! > 0.
We now turn our attention to the method of Kolmanovskii and his collaborators

[6—-9]. The authors consider the scalar equation
n
z(n+1) Za (1), neztr. (4.9)
=0

They defined a n x n matrix M to be positive definite if
2TMz> ez foral z=(z1,22,...,2:)7 €R™ (4.10)

Let B(n) = (bij(n)), C(n) = (ci;(n)), 0 <14, j <n be defined by

bij(n) = a(n — 1,i+j —n),
cij(n)=a(n,i+j—n+1)—an—14i+j—n).

Theorem 4.3 [9] Suppose that the coefficients a(n,1) can be ertended in such
a way that
(1) 0<a(n,n+1), and supa(n,n+1) < 2.
n<0
(2) The matriz B(n) is positive definite as defined by equation ({.10).
(3) The matriz C(n) is negative semidefinite.
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Then the zero solution on equation ({.9) is asymptotically stable. Moreover, if in
(1), supa(n,n + 1) < 2, then the zero solution of equation (4.9) is stable.
n<0

Proof Use the Liapunov functional

n

ZZa n—1,n—i-jz(n—1z(n —j).

1=0 7=0

Observe that if a matrix M is positive definite in the traditional sense, then it
is positive definite in the sense of equation (4.10).

5 A Comparison of Stability Notions

Let us consider the linear Volterra difference equations

n

z(n+1) = A(n)z(n) + > _ B(n,j)a(j), nezL, (5.1)
=0

u(n+1) = A(n)u(n) + Z B(n, j)u(s) + p(n), (5.2)
7=0

y(n+1) = A(n)y(n) + Z B(n,j)y(), neZ'. (5.3)
]——“00

We make the following assumptions on the k x k matrices A(n) and B(n, j).

(&) sup{lIA Wi+ 3 B} < .

]————OO

(C2) For any £ > 0 there exists jo = jo(e) € ZT such that
n—jo

> IiB(n,j)ll<e forall neZ.

j=—co

Define (4, B) := {(A, B): there exists a sequence {n;} in Z% with n; = oo
as j — oo such that (A(n+n;), B(n+n;,s+n;)) = (A(n), B(n,s))} as nj; - oo.

It is not hard to see that conditions (C;) and (C3) hold true for any (4, B) ¢
Q(A, B). Associated with (A4, B) € (A4, B) is the limiting equation

z(n4+1) = A(n)z(n) + Z B(n, j)z (5.4)

]_*OO
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Definition 5.1 The zero solution of equation (5.3) is said to be

(a) collectively uniformly stable if for any ¢ > 0 there exists § = 6(g) > 0 such
that if 7 € Z and ¢ is an initial function on (—oc,7] with [|@l(_oc ) < &
and if (4, B) € Q(4, B), then |z(n,7,¢| < ¢ for all n > 7, where z(n, 7, ¢)
is the solution of equation (5.4).

collectively uniformly asymptotically stable if it is collectively uniformly sta-
ble, and if in addition there exists p > 0 such that for any ¢ > 0 there
exists N = N(¢) € Z such that if 7 € Z and ¢ is an initial function on
(=00, 7] with [{¢|l(—co,s] < ¢ and if (A,B) € Q(A, B), then |z(n,7,¢| < ¢
forall n > 7+ N,

(b

uid

Definition 5.2 The zero solution of equation (5.1) is said to be totally stable
(TS) if for any € > 0 there exists § = §(¢) > 0 such that if s € Z* and ¢ is an
initial function on [0,s] with (|¢lljp,s) < & and if p: {s,00) — R¥ is any function
with [|p|ls,00) < 6(€), then |u(n,s, ¢,p)| < e for all n > s, where u(n, s, ¢,p) is a
solution of equation (5.2).

With some obvious modification of Definition 5.2 we extend the notion of total
stability to equation (5.3).

We are now ready to present the main theorem of this section. We adopt the
notation “US” for uniformly stable and “UAS” for uniformly asymptotically stable.

Theorem 5.1 [17] The following statements are equivalent:

1. The zero solution of equation (5.1) is UAS.

2. The zero solution of equation (5.3) is UAS.

The zero solution of equation (5.1) is TS.

The zero solution of equation (5.8) is TS.

The zero solution of equation (5.8) is collectively UAS.

Gt

The next theorem utilizes the resolvent matrix of equation (5.1) to provide a
criterion for UAS.

Theorem 5.2 [17] The zero solution of equation (5.1) is UAS if and only if

SR m, )] < . (5.5)

sup
nezt =0
6 The Methods of Kolmanovskii

Consider the general Volterra difference equation

y(n + 1) = F(n,y(n _é)vy(n -+ 1)’ T ,y(n)7f(n7y(0)7y(1)7 s )y(n)))7 (61)
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with £, n € Zt, y(n) € R*, where F: Z1 x RET2DE L RE - £(n.0,...,0) =0 for
all n € Z*.

Kolmanovskii’s procedure {7] for constructing a Liapunov function is as follows.

1. We write the function F' in either the form

F:Fl(nzy(n_’r)vy(n-’r"]r1)7"'7?/(”))

(6.2)

+F2(n)y(n - Z)ay(n -+ 1)7 e >y(n))7

with F1(n,0,...,0) = F3(n,0,...,0) =0 or the form
F=Fmnyn-7),yn-—71+1),...,y(n)) (6.3)

+AF2(n,y(—Z),y(—€+1),,y(n)), .
where 7 > 0 is any fixed integer.
2. For the associated difference equation

z(n+1) = Fi(n,z(n —7),z(n —7+1),...,z(n)). (6.4)
We construct a Liapunov functional v(n,z(n—r7),...,z(n)) satisfying cer-

tain stability conditions to be specified.

3. The sought for Liapunov functional V is now written in the form V =
Vi + V,, where Vi depends on the representation used for F'. For if we use
the representation (6.2), then

U1 (n7 y(_€)7 BN y(n)) = v(n, y(n - T)l ce ,y(TL)) (65)
and if we use the representation (6.3), then

‘/1(77'7 y(_f)’ e 7y(n)) = U(nvy(n - T)a s ,y(n))

6.6
—F(n,y(=0),...,y(n)). 0

4. We choose V5 in such a way that the functional V = Vi 4 Vo will satisfy
sufficient conditions for asymptotic stability.

Let us now apply the preceding procedure to the following Volterra difference
equation

yln+1) an—] ), neZt (6.7)
i=0

Using 7 =1 and representation (6.2) we obtain the following result [7].
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Theorem 6.1 Suppose that the following conditions hold.

1. |6(1)] < 1, |b(0) < —b(1) +1,
2. agldiz + b(0)daz| < 1, and ag|dae + |b1} + 71| < 1, where

Qg = Z BG), = ldiz + b(0)doal + daz[b(1)] + a2,

with

diy = 1+ 6 ()daa,  doy = b(1)b(0)(1 — b(1)) ‘dao,
daa = 2(1 = b(1))(1 +b(1)) (1 - b(1))* - b*(0)] .

Then the zero solution of equation (6.7) is asymptotically stable.

Proof We let Fi(n,y(n —1),y(n)) = b(0)y(n) + 6(1)y(n — 1), and
Fa(n,y(0),...,y(n)) = > b()y(n - j).
j=2

Put Vi = [y(n — 1),y(n)]D[y(n — 1),y(n)]7, where D is a positive definite 2 x 2
matrix that satisfies

ATDA-D =1, A:( 0 1).

b(1) b(0)
We take
Va(n,y(0), ., y(m) =m D _v*(n—0) D [b(5)].
=2 =t

Another result may be obtained if one uses 7 =7 and representation (6.3). We
omit the details and refer the interested reader to [7].
The above procedure has been applied to the more general equation

y(n+1) = b(n, j)y(n - j). (6.8)
=0

For more details, see [7].
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7 Noulinear Equations

Consider the nonlinear system
n
g(n+1) =Y K(n,jz(j), (7.1)
3=0

where K (n,j,z) is a function from Z%* x Z* x R* — R* continuous in z and such
that K(n,j,0) = 0 for all n, j > 0. For the first result we make the following
assumptions.

(4;) For every x € R*, j, n >0,

|K(n,j,z)] < B(n,j)lz|, B(n,j)>0, (7.2)
where | - | is any vector norm on R¥.
(42)
:ZB(s,n) <l-¢ c€(0,1), neZ'. (7.3)

We associate with equation (6.1) the scalar equation

y(n+1) iB (7.4)

Jj=0

Lemma 7.1 Suppose that assumptions (A1) and (As) hold. If z(n) and y(n)
are solutions of equations (7.1) and (7.4), respectively, with |x(0)| < y(0), then
|z(n)] < y(n) for all ne Z+.

Using this lemma, Elaydi [12] proved the following result.

Theorem 7.1 If assumptions (A1) and (Az) hold, then the zero solution of
equation (7.1) is globally asymptotically stable.

Proof Use Lemma 7.1 and Theorem 4.1.

An alternative approach to determine global stability is the use of vector Lia-
punov functions. This approach produced Theorem 4.2 which we will now exploit to
accomplish the task at hand. In the sequel we will make the following assumptions.

(Hy) For j, n > 0, there exists nonnegative k x k matrices B(n,j) such that
|K(n,j,z)| < B(n,j)lzi,

where we adopt the notation and terminology used in Theorem 4.2.
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o0
) > B(i,n) converges for all n € Z*. Furthermore, all the eigenvalues of

the matrix

= sup (ZB(z n)

n>0

lie inside the complex unit circle.

We now associate to equation (7.1) the linear system

y(n+1) iB (7.5)

7=0

Theorem 7.2 [15] Suppose that assumptions (Hy) and (Hz) hold. Then the
zero solution of equation (7.1) is globally asymptotically stable.

Proof The proof is based on a comparison between solutions of equations (7.1)
and (7.5) and an application of Theorem 4.2.

If one specializes Theorem 7.2 to scalar equations of convolution type, then
assumptions (H;) and (Hs) may be greatly simplified.
Consider the scalar equation

n

z(n+1)=>_ B(n - j)f(z(j)) (7.6)

7=0
such that the following assumptions hold.
(Hs) B = E |B(n)| < oo, and
(Hy) f e C[R R, f(0) =0, [f(uw)] < |u] for all u€R.

Theorem 7.3 [15] If assumptions (H3) and (Hy) hold, then the zero solution
of equation (7.6) is globally asymptotically stable provided that B < 1.

8 Open Problems

We now present some open problems pertaining to both scalar and vector difference
equations.

8.1 Scalar difference equations

Consider the scalar equation

z(n+ 1) :Ax(n)+2n:B(n—j)z(j). (8.1)

=0
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Open Problem ! Determine the stability of equation (8.1) when
oo [
A+> B(n)=-1 and Y B(n)<0.
n=0 n=0

Open Problem 2 Determine the stability of the zero solution of equation (8.1)
when

-1<A+> Bn)<1

n=0

oo
Open Problem 8 In Theorem 2.5 (3), can we omit the assumption that Y B(n)
n=0
is sufficiently small?

Open Problem 4 If in Theorem 2.4 ay; + vy < 1, for 1 < @ < k, what can we
conclude about the stability of the zero solution of equation (8.1)7

8.2 Vector difference equations

Here we assume that A and B(n) are k x k matrices.

Open Problem 5 Suppose that any one of the conditions in Theorem 2.1 holds.
Then by Theorem 2.2 the zero solution of equation (8.1) is exponentially stable if
and only if B(n) is of exponential decay. Find an estimate of the rate of decay of
solutions of equation (8.1) if B(n) is not of exponential decay.
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2.4 CONSISTENT LYAPUNOV
METHODOLOGY FOR
EXPONENTIAL STABILITY:
PCUP APPROACH*

Ly.T. GRUYITCH

University of Technology Belfort-Montbeliard, Belfort, France

1 Introduction

Exponential stability (of an equilibrium, of a motion or of a set) ensures a higher
system motions quality than asymptotic stability (of an equilibrium, of a motion or
of a set, respectively). The former provides information about both an upper bound
of an overshoot of an accepted norm of any system motion and the rate of motions
convergence that is exponential, while the latter fails to provide such information.
Like asymptotic stability, exponential stability properties of nonlinear systems were
studied by employing Lyapunov’s original methodology for nonlinear systems [1] to
be called the classical Lyapunov methodology (for nonlinear systems). It is charac-
terized by stability conditions expressed in terms of existence of a positive definite
function with appropriate properties. In this framework, Krasovskii resolved the
problem of the necessary and sufficient conditions for exponential stability [2].

The problem of an exact single-step direct construction of a system Lyapunov
function, which has been a fundamental problem of the stability theory and its
effective applications, has been solved for different classes of systems as reviewed
and originally contributed in [3]. The solution reflects a new Lyapunov stability
methodology called the consistent Lyapunov methodology (for nonlinear systems)
[3], which was developed also for exponential stability of an equilibrium state of
a time-varying nonlinear system with differentiable motions [4] or with continu-
ous motions [5], and for global exponential stability of sets of the systems with
differentiable motions [6).

* Advances in Stability Theory (Ed.: A.A. Martynyuk). Stability and Control: Theory, Me-
thods and Applications, Taylor & Francis, London, 13 (2003) 107-120.
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The purpose of this paper is to further develop the consistent Lyapunov metho-
dology to (non-global and global) exponential stability of sets of time-varying non-
linear systems obeying a recently discovered Physical Continuity and Uniqueness
Principle [7T—-9].

The consistent Lyapunov methodology applied to exponential stability starts
with an arbitrary choice of a function e(.) from a well defined functional family E(.).
It continues with a test of the necessary and sufficient conditions for exponential
stability, which are imposed on a solution function v(.) to DYwv(t,z) = —e(t, ).
The result is decisive. If it is positive, then the system possesses the requested
exponential stability property. Otherwise, it does not.

2 Notation

The letter A will denote a compact connected invariant set, exponential stability
of which is studied. In the special case of a study of exponential stability of a
state z*, the set A is singleton: A = {z*}. In the case of exponential stability of
a closed trajectory (of an orbit) T the set A = T. A neighborhood of A will be
denoted by N(4) or by S(A). A distance of a point z from the set A is denoted
by d(z,A) = inf{]|z — y||: y € A} with ||.||: R® - Ry being a norm on R",
where Ry = [0,00) = {y: v € R, 00 >~ > 0}. The norm can be Euclidean norm.
Besides RT = (0,00) = {v: ¥ € R, 00 > v > 0}. Let Ry = [to,00). Notice that
A C N(A). The boundary, closure and interior of the set A are designated by 04,
Cl A and In A, respectively.

A motion of a system, which passes through an initial state 2 € R™ at an
initial moment tq is denoted by z(.; to; zg). Its vector value at a moment ¢ € R is
z(t;to; zo), o(t) = z(t;to;zo). If to is fixed then z(¢;to;z0) = z(t;z0). If v(.): Rx
R™ —» R is continuous then its total time right-hand upper derivative along z(.) is
its Dini derivative DT v(t, z) = lim sup{[v[t+0,z(t+6;t,z)]—v(t,z)]071: 6 — O }.
Other notation is explained in the sequel.

3 Physical Continuity and Uniqueness Principle [7-9]

Newton’s explication [10] of the nature of time has been recently broadened by
leading to a new time-space co-ordinate transformation that generalizes the Lorentz
transformation and leads to new results on the time relativity [11]. In order to avoid
any ambiguity, time is understood in the sequel in the following sense:

Time is an independent physical variable the value of which is strictly monoto-
nously continuously increasing independently of all other (physical and mathemat-
ical) variables, processes and events, which is used to uniquely determine the order
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of events happening. The value of time is called moment or instant and it is de-
noted by ¢ or 7 and a subscript: ¢ or 7,. An arbitrary instant will be denoted as
time itself by ¢ or by 7.

A physical variable can take only unique value at a fixed point at one moment
and can change its value at the fixed point only continuously in terms of time.
These facts have led to the following principle:

Physical Continuity and Uniqueness Principle (PCUP):

I Scalar form [7-9]
a) Physical Continuity Principle
A physical variable can change its value from one value to another
one only by passing through all intermediate values.
b) Physical Uniqueness Principle
A physical variable possesses a unique local instantaneous real value
at any place (in any being or in any object) at any moment.
II Vector form
A vector variable obeys the Physical Continuity and Uniqueness Prin-
ciple if and only if all its entries obey the Principle.

In view of this principle and the nature of time we may conclude that a necessary
condition (but not suflicient) for a mathematical model of a physical system to
be an adequate description of the physical system is that all its variables satisfy
the PCUP.

4 System Description

Large classes of overall control systems and of other dynamical systems are de-
scribed by (1),
dz
— = f(t 1
= 1t0), 1)
and by their property to obey the PCUP as explained in what follows.
Smoothness Property:

(i) There is an open connected neighbourhood S(A4) of a compact connected
invariant set A of system (1), S(A4) C R", such that for every zo € S(A):
a) system (1) has a unique solution z(.;tg, zo) through zo at t = ¢, € R
on a largest interval Iy, Iy = Io(to,z0), I C R, In # 0, 0 is the
empty set, and
b) z(t;to,20) obeys the PCUP on Iy x R x S(A): z(t; to,z0) € C[lo x
R x S(4)].
(ii) For every (to,z0) € Rx[R™—S(4)] and every motion z(.; 2, zo) of system
(1), z(t;to, zo) obeys the PCUP on Iy, Iy = Io[to, zo;z(.)], where Iy = 0
is permitted.



110 LY. T. GRUYITCH

5 Problems Statement

The following problems are considered and will be solved:
What are the necessary and sufficient conditions, which are not expressed in
terms of existence of a Lyapunov function, for:
a) the invariant compact connected nonempty set A to be exponential stable,
b) for system motions to obey the following estimates for some numbers a; €
R* and b, € R*, i = 1,2, and on some open connected neighborhood
N(A) of the set A, N(A4) C S(A):
a1d(zo, A) exp[—bi(t — to)] < d[z(t;t0, 20), A] < azd(z0, A) exp[—ba(t — to)],
V(t,to,xo) € Ry x R x N(A),

c) for a direct single step exact construction of a system Lyapunov function
for exponential stability of the set A?
d) What are possible conceptual applications?
It will be said that the estimates (2) hold globally if and only if they hold for
N(A) = R™

6 Family E(A;S; f) of Functions e(.). Lyapunov Functions Generation

A characteristic advantage of the consistent Lyapunov methodology compared with
the classical one is a well determination of a family E(A; S; f) of functions denoted
by e(.), each of which can be selected arbitrarily to generate a system Lyapunov
function.

Definition 6.1 A function e(.): Rx R™ — R, belongs to the functional family
E(A;S; f) if and only if:
1) e(.) obeys the PCUP on S(A): e(t,z) € C(R x S,R4), and
2) there are numbers n; € RY, n; = n;i(e; A; S), ¢ = 1,2, and a natural number
k such that

mdk(z, A) <elt,z) <md*(z, A), V(t,z)€ R x S(A). (3)
Functions belonging to the functional family E(A;S; f) are inherent for con-

structing a system Lyapunov function v(.) via the equations (4) with (4a) taken
along motions of system (1)

D*u(t,z) = —e(t,z),  e() € E(4;S; f), (12)
and with (4b) as the boundary condition,
v(t,z) =0, V(t,z) € RxIA. (4b)

6.1 The basic solution

At first a general result will be presented. It will be used to deduce specific criteria.
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Theorem 6.1 Let system (1) possess the smoothness property.

(a)

In order for the solutions of the system to obey the exponential estimates (2)
on some neighborhood N(A) of A, N(A) C S(A), of the invariant compact
connected nonempty set A, for the set A to be exponential stable, and for
a direct single exact construction of a system Lyapunov function v(.) it is
necessary and sufficient that

flt,z) #£0 forall (t,z) € Rx[N(A) - A],

and that for an arbitrary function e(.) € E(A;S; f) there exists a unique
solution function v(.) to Lyapunov’s like equations (4 ), which belongs to the
functional family E(A; N f).

In order for the solutions of the system to obey globally the exponential
estimates (2), for the invariant compact connected nonempty set A to be
global exponential stable, and for a direct single exact construction of a
system Lyapunov function v(.) it is necessary and sufficient that

flt,z) =0 onlyif (t,z) € Rx A,

and that for an arbitrary function e(.) € E(A4; R™; f) there exists a unique
solution function v(.) to Lyapunov’s like equations (4), which belongs to the
functional family E(A; R™; f).

Proof Let system (1) possess the smoothness property.

(a) At first the statement under (a) will be proved.

Necessity. Let the solutions of the system obey the exponential estimates (2) on
some neighborhood N(A), N(A4) C S(A), of the invariant compact connected
nonempty set A. Hence, the set A is exponential stable. The inequalities (2) show
that there is not a system equilibrium state in N(A), which implies

ft,z) #0 forall (¢,z) € Rx[N(A) - A].

Let the solutions of the system obey the exponential estimates (2) on some neigh-
borhood N(A) of A. Hence, the equation (4a) integrated from t = t5 to ¢ = oo
becomes

v[oo, z(oo; o, 20)] — v(to, o) = — /e[t,x(t; to, Zo)] dt,

to

W(to, 7o) = /e[t,z(t; o, 20)] dt,
to
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where e(.) € E(4;S; f) that together with (i) of the smoothness property ensures
uniqueness and continuity of v(.) and

nerd®(z, A) < e(t,2) < nead®(x, 4), VY (t,z) € R x S(A).
The last equation, inequalities (2) and the preceding inequalities prove that:
Ne1d*(z, A) < v(t, ) < mad®(x, 4), VY (t,z) € Ry x N(A),
in view of arbitrariness of (¢,z) € R x N(A4) and for
Ni = b, 'neiay, i =1,2.

Hence, all the conditions of the theorem statement are necessary.

Sufficiency. Let all the conditions of the theorem statement hold. Hence, there
are:

k€{172a"~7n7"'} and Neis nvi€R+7i:1;27
such that both
Nerd®(z, A) < e(t, z) < nead®(z,4), V(t,z) € R x S(A)

and
nvldk(sz) S U(tvz) S T]Ugdk(JIJ,A), V(t, III) € R+ X N(A)

hold. These inequalities and the equations (4) imply (2) for

-1 -1 -1 _ -1
a1 = Mu1Tya s A2 = T2l by = Ne2My1 » by = Ne1ly2 »

a;, b €RT, i=1,2,
which completes the proof.
b) The statement under b) results from N(A) = S(A4) = R".

6.2 Conceptual applications: E-functions f(.)

A function f(.) is said to be E-function (to belongs to the E-class of functions) if
and only if ||f()]|*> € E(A; M; f), where M is some open connected neighborhood
of A, M(A) C S(A). It is global E-function if and only if M = S(A) = R™.
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Theorem 6.2 Let system (1) possess the smoothness property.

(a)

(b)

Let A = {z*}. If f(.) is an E-function then in order for the solutions of
the system to obey the exponential estimates (2) and for the set A to be
exponential stable it is necessary and sufficient that both

flt, ) 20 forall (t,z) € Rx[N(A) — A],
and the function v(.) defined by:

T T

ot 2) = —/fT(t,a:) dx:—% / [(do)T £ (t,2) + T (¢, z) de],
z = z(t),

is a unique solution to Lyapunov’s like equations (4), which is also an E-
function.

Let A ={x*}. If f(.) is a global E-function then in order for the solutions
of the system to obey globally the exponential estimates (2) and for the set
A to be global exponential stable it is necessary and sufficient that both

ft,z) =0 onlyif (t,z)e Rx A,
and the function v(.) defined by:

T
1

v(t,z) = —/fT(t,a:) dz = ~3 / [(dz)Tf(t, o)+ fT(t,z) dz],

*

z = z(t),

is a unique solution to Lyapunov’s like equations (4), which is also a global
E-function.

Proof Theorem 6.2 results from Theorem 6.1 for e(.,.) = || (., ) = fT()F()

= f7() .

6.3 Conceptual application: power and energy approach

It is now possible to present the necessary and sufficient exponential stability con-

ditions in terms of the system power P(.) and energy E(.).
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Theorem 6.3 Let system (1) possess the smoothness property.

(a) Let A = {z*}. Let the system power P(.) € E(A;S;f) and be negative
definite with respect to A on S(A). In order for the set A to be global
exponential stable it is necessary and sufficient that both

ft,z)#0 forall (t,z) € Rx[N(A)—A]

and the system energy E(.,.) obeys that [E(.,.)—E(.,z*)] is positive definite
function with respect to A on N(A) and it belongs to E(A; N; f) for some
neighborhood N(A) of A.

(b) Let A = {z*}. Let the system power P(.) € E(A;R™; f) and be global
negative definite with respect to A. In order for the set A to be global
ezponential stable it is necessary and sufficient that both

fit,z) =0 onlyif (t,z) € Rx A,

and the system energy E(.,.) obeys that [E(.,.) — E(.,z*)] s global positive
definite function with respect to A and it belongs to E(A; R™; f).

Proof Theorem 6.3 results from Theorem 6.1 for e(.,.) = P(.,.) and v(.,.) =
(E(,.) = E(,z)].

6.4 Conceptual application: exponential absolute stability

Absolute stability has attracted a lot of interest since 1944 [12] in general {13-17],
and in particular as exponential absolute stability {18, 19]. Let the system (1) take
the form of a Lur’e-Postnykov (for short: Lur’e) system:

dz _
dt
C(t): R— R™", £=C()z, T=(01,05,...,0m)"

Az + B(t)g(t,%), A(t): R —» R™™, B(t): R —» R™™,

1

where the vector nonlinearity g(.),
9() =191()g2() .- gm()]": Rx R™ — R™,
satisfies the Lur’e conditions on the Lurie sector L, L = Ly x Ly X -+ X Ly,:

a) g(.) fulfils the PCUP, i.e. g(t,%) € C(R x R™),
b) ¢(t,0) =0 forall ¢eR,

o) MeLi, V(t,S) € RxR™, 0;#0, Yi=1,2,...,m,

g

d) |[A(t)z + B(t)g[t,C(t)z]]l =0 ifandonlyif z=0, t€R.
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Theorem 6.4 Let system (1) be of the Lur’e form and let it possess the smooth-
ness property.

Let ||A(). + B()g[.C().]II? be a global E-function for every Lur’e vector non-
linearity g(.) on the Lur’e sector L, and let A = {0}. In order for the set A to
be exponential absolute stable on L it is necessary and sufficient that the solution
function v(.) to Lyapunov’s like equations, which is defined by:

z

o(t,z) = — / [A(t)z + B(t)glt,C(t)z)] " dz

0

[N

/ {[A®z + B)glr. C(0a]) " do + da” (A1) + B(o)glt, C 1)z} }
x = z(t),

is global positive definite and global E-function for every Lur’e vector nonlinearity
g(.) in the Lur’e sector L.

Proof Theorem 6.4 results from Theorem 6.3 for f(t,z) = A(t)z+D(t)g[t, C(t)z]

7 Example

Let system (1) take the next specific form of a third nonlinear dynamic system
obeying the PCUP globally, i.e. S = R%:

.’i‘l fl(z)
dx .
E: By | = f(z) = | foz) |
T3 fs(2)
i & —j = (—z1 + 423 + 4x3) Th@) h(z) = 627 + 1223 + 2§,
dz 1 h(z) — 10
T9 2 d_t2 = (—]}1 - 51‘2 +2IIZ§) ——]_L‘(T,
.A de 3 1 7 h(.’L’) - 10
L8 (B — 1228 ~ S gl) el T T
3 = — (—6x1 — 1223 ) z3) e

The system has the next invariant connected compact set:

A= {z: h(z) = 62% + 1225 + 2§ < 10}.
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The distance function is defined by
d(z, A) = [h(z) — 10].

Let

so that

which yields

mdf(z, A) < e(z) < mdt(z,A), Vze R

Tt follows now that
e(.) € E(A;5;f).

Theorem 6.1 application continues with solving the equations (4):

dv(z)
dt

= —e(z) = —2[h(z) — 10]
and
v(z) =0 Vz € JA.
It is easy to verify that the function v(.):
v(z) = [A{z) — 10] = [622 + 1224 + 25 — 10)
obeys both
v(iz) =0 < z€dA

and
nSdk(va) S U(.II) S 774dk(17A)7 Vze Rn: m=1m= 17 k=1
Theorem 6.1, all the conditions of which are satisfied, enables us to conclude that
the set A,
A={z: h(z) = 6z} + 1223 + 2§ < 10}

is global exponential stable.
Simulation results are presented in Figure 7.1 through Figure 7.4.
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8 Conclusion

A new physical principle called the Physical Continuity and Uniqueness Principle
has been explained. It reflects the essential, but simple (obvious) physical proper-
ties of physical variables.

A new understanding of the real nature and meaning of time, which slightly
generalizes that by Newton and which led to new results in the relativity the-
ory incorporating those by Lorentz and Einstein as special cases, has been also
explained.

The Physical Continuity and Uniqueness Principle shows it full usefulness when
it is linked with the new understanding of time as shown in the paper.

The paper presents a development of the consistent Lyapunov methodology (for
nonlinear systems) to non-global and global exponential stability of invariant com-
pact connected nonempty sets of time varying nonlinear systems obeying the Phys-
ical Continuity and Uniqueness Principle.

The main theorem presents the complete solution to the problem of the necessary
and sufficient conditions for exponential stability of the sets and for a direct single
exact construction of a system Lyapunov function. Its conceptual applications are
shown to particular classes of the systems described by (1) including time-varying
Lur’e-Postnykov systems. Besides, the conditions are presented in terms of the
system power and energy.
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2.5 ADVANCES IN STABILITY

THEORY OF LYAPUNOYV:
OLD AND NEW*

V. LAKSHMIKANTHAM! and S. LEELA?

! Department of Applied Mathematics, Florida Institute of Technology,
Melbourne, USA
2 Department of Mathematics, SUNY at Geneseo, Geneseo, USA

1 Introduction

It is well known that Lyapunov’s second method is an interesting and fruitful
technique that has gained increasing significance and has given decisive impetus for
modern development of stability theory of dynamic systems. A manifest advantage
of this method is that it does not require the knowledge of solutions of differential
equations and thus has exhibited a great power in real world applications. There are
several books available expounding the main ideas of Lyapunov’s second method.

It is now well recognized that the concept of Lyapunov functions can be utilized
to investigate various qualitative and quantitative properties of nonlinear differen-
tial equations. Lyapunov functions serve as vehicles to transform a given compli-
cated differential system into a relatively simpler system, and therefore, it is enough
to investigate the properties of this simpler system (8,10, 13, 14, 16, 18,25, 26, 27,
29). It is also being realized that the same versatile tools are adaptable to study
entirely different nonlinear systems, and these effective methods offer an exciting
prospect for further advancement.

2 Lyapunov Stability

Consider the differential system

fl—f = f(t,z), z(to) =z, to >0, (1)

* Advances in Stability Theory (Ed.: A.A. Martynyuk). Stability and Control: Theory, Me-
thods and Applications, Taylor & Francis, London, 13 (2003) 121-134.
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where f € C[R; x S,,R"] and S, = [z € R": |z| < p]. Assume, for convenience,
that the solutions z(t) = z(t, o, zo) of (1) exist, and are unique for ¢ > to.

The well known original theorems of Lyapunov for stability and asymptotic
stability of the trivial solution of (1) have been refined, extended and generalized in
various aspects. We shall discuss below some important trends that have occurred
in recent years.

2.1 Loss of decrescentness

Let us first consider loss of decrescentness, which needs boundedness of f(t,z) to
vield asymptotic stability and is due to Marachkov. An interesting generalization
of this result due to Salvadori uses two Lyapunov functions, see [11,13]. The first
Lyapunov function V serves to derive stability and the second relates suitably
to the first one. The advantage is that one can utilize the monotone character
of V(t,z(t)).
Theorem 2.1 Assume that
(i) Ve 'Ry x S,,Ry), V is positive definite, V(t,0) =0 and V'({,z) <
—c(W(t,x)) on Ry x S,, where c € K;
(i) W e C'[Ry x S,,Ry], W is positive definite and W'(t,z) is bounded from
above or from below on Ry x S,.
Then z =0 of (1) is asymptotically stable.
Here and later, the class K = [a € C[Ry,Ry]: a(u) is strictly increasing in u
and a(0) = 0].
Theorem 2.1 may be generalized in different ways. The following is a typical
result which shows the ideas involved.
Theorem 2.2 Suppose that
(i) Vi, Va € C[Ry x S(p), R4], Vi, Vo are locally Lipschitzian in z, V(t,0) =
Vo(t,0) = 0, V) is positive definite and DTV (¢,z) < —=A()C(Vi(t,z)) on
Ry x S(p), where V. =V, + V2 and X € C[Ry, Ry] is integrally positive,
o0
that is [ A(s)ds = oo whenever I = |J{as, B8], o < Bi < i1 ond
7 i=1
Bi—a; 20>0;
(i) for every o, a1 > 0 and for every y € C[Ry,S(p)], the inequalities
V(t,yt) <a, Vit,y(t)) > o1, imply that the function

¢
/D*VZ 5,y(8)))+— ds 1is uniformly continuous on Ry,
0

where [-]+— means that either the positive part []4 or the negative part []_.
is considered for all s € Ry.
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Then x =0 asymptotically stable and Va(t,z(t)) has a finite limit as t — oo.

Setting W = V4 and V = Vi + V5 so that Vo, = V — V;, we see that ,
satisfies condition (ii) and hence if A(¢) = 1, Theorem 2.2 reduces to Theorem 2.1.
Furthermore, one can modify Theorem 2.2 to yield partial asymptotic stability
with the additional gain of showing the rest of the components of z(#) tend to a
finite limit as ¢ — oo. This has a good application in mechanical systems. See
Hatvani {3, 4] for details.

2.2 Loss of negative definiteness

The loss of negative definiteness in Lyapunov’s second theorem needs compensating
conditions to guarantee asymptotic stability. If f(¢,z) is autonomous one has the
invariance principle of LaSalle [18,27] which followed Krasovskii’s result of periodic
systems {10]. For extensions to general systems, see Matrosov [10, 18,27].

A stability property may be considered as a family of properties depending on
some parameters. As a result, when we employ a single Lyapunov function to
prove a given stability property, the Lyapunov function used is assumed to play
the role for every choice of these parameters. Consequently, if we utilize a family
of Lyapunov functions instead of a single one, it is natural to expect that each
member of the family has to satisfy weaker requirements. This is precisely the idea
of using a perturbing family of Lyapunov functions.

Theorem 2.3 Assume that
(i) Vi € C[R4+ x S(p),R+], Vi is locally Lipschitzian in z, Vi(t,0) =0 and
D™Vi(t,z) <0 on Ry x S(p);
(ii) for every 0 < mn < p, there exzist a family Va, € C[Ry X S(p) N S°(n), Ry],
Vay is locally Lipschitzian in © and for (t,z) € Ry xS(p)NSe(n), b(|lzl]) <
Van(t,z) <a(llz]]), a, b€ K, DYVi(t,z) + DTVa,(t,z) < 0.

Then x = 0 is equistable.

Of course if V7 = 0, Theorem 2.3 yields uniform stability showing the advantage
of utilizing a family of Lyapunov functions in proving uniform stability properties.
For details, see [7,13].

2.3 Practical stability

Complete stability (global asymptotic stability) is a more desirable feature in ap-
plications. Sometimes, even instability may be good enough. Since the desired
state of a system may be mathematically unstable but the system may oscillate
sufficiently near this state so that its performance is considered acceptable. For
example, aircrafts, missiles, chemical processes or space vehicles.
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Definition 2.1 The system (1) is said to be practically stable, if given (A, A)
with 0 < XA < A, we have |zo| < A implies |z(t)] < A, for t > ty. See [14] for
further details.

2.4 Eventual stability

When the trivial solution of (1) does not exist, we may still have stability eventually,
which generalizes Lyapunov stability. See {10].

Definition 2.2' The system (1) is said to be eventually stable, if, for each
€ > 0, there exist d(e) > 0, 7(e) > 0 such that

|zo| < & implies |z(t)] <€, t > 7(e).

A generalization of eventual stability is known as Mo-stability discussed in [13].

Here we have an estimate of solutions as |z (¢, o, Z0)| < |2o| + A(to), t > to, where
to+1

J A(s)ds =0 as tg > co. If AM(to) — 0 as to — oo, we get eventual stability.
to

3 Stability in Terms of Two Measures

The concept of Lyapunov stability has given rise to several other new notions of
stability that are important in applications. For example, partial stability, condi-
tional stability orbital stability, stability of invariant sets, Lagrange stability and
boundedness concepts to name a few. In order to unify a variety known concepts of
stability and boundedness, it is found beneficial to employ two different measures
and obtain criteria in terms of these distinct measures [16]. Let us define such a
concept.

Definition 3.1 Let ' = [h € C[Ry x R*,Ry]: inf h(t,z) = 0 for (t,z) €
Ry x R*] and hg, h € T. Then the differential system (1) is said to be (hg, h)-
stable, if for each € > 0 and t; € Ry, there exists a § = d(to,€e) > 0 such that
ho(to, o) < & implies h(t,z(t)) <e, t > tp.

For this concept to make sense, we need to have a relationship between the two
measures. We say that hg is finer than h if there exists a p > 0 and a function
¢ € K such that h(t,z) < p(ho(t,z)) whenever ho(t,z) < p.

A few choices of the two measures given below will demonstrate the generality
of Definition 3.1, which reduces to

(1) the stability of the trivial solution of (1) if h{t,z) = ho(t,z) = |z|;

'Remark of Editors. See T.Yoshizawa, Stability Theory by Liapunov’s Second Method, The
Math. Soc. of Japan, 1966 for details.
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(2) the partial stability of the trivial solution of (1) if A(t,z) =|z|s, L < s<n
and ho(t,x) = |zl;

(3) the eventual stability of (1) if A(t,z) = |z| and ho(t,z) = |z| + o(t), where
o € L = [0 € C[Ry,Ry]: o(t) is strictly decreasing in ¢ with o(t) — 0
as t = oo];

(4) the stability of the invariant set A C R", if h(t,z) = ho(t,z) = d(z, A),
where d is the distance function;

(5) the conditional stability of the trivial solution of (1) if ho(t,z) = |zl +
d(z, M), h(t,z) = |z|, where M is the k-dimensional manifold containing
origin;

(6) the stability of conditionally invariant set B with respect to A, A C B C
R", if A(t,z) = d(z, B), ho(t,z) = d(z, A).

To find sufficient conditions for any type of stability concepts to hold, the use of
comparison principle offers the most general setup. It is well known that one can
achieve this by employing a single or a vector Lyapunov function [10,18,27]. The
method of vector Lyapunov functions offers a very flexible and effective mechanism
to investigate qualitative properties of nonlinear differential equations, including
large scale systems [30, 31].

We have seen that using the technique of perturbing Lyapunov functions and
employing a family of Lyapunov functions are helpful in discussing nonuniform
properties of solutions of differential systems under weaker assumptions.

In [15], a new approach is initiated to the method of vector Lyapunov func-
tions by combining the ideas involved in the foregoing techniques and this helps
in distributing the burden between groups of components of the vector Lyapunov
function and the comparison function. As a result, this approach contributes to the
enrichment of the method of vector Lyapunov functions by including and improving
earlier known results and enhancing the applicability of the method.

Since the method of variation of parameters and the comparison principles via
Lyapunov-like functions are both extremely useful, it is natural to combine these
two approaches in order to exploit the benefits of the two important methods.

Consider the known differential system

dy
— =F(t,y), ylto) = =0, (2)
dt

where F € C[Ry xR™, R"]. Let y(t, {0, zo) be the unique solution of (2) existing for
t > to. Then we can formulate the comparison principle in terms of the variational
Lyapunov method with inequalities between vectors being component-wise [17].

Theorem 3.1 Assume that

(A1) V € C[Ry x R*,RY], V(t,z) and |y(t,s,z)| are locally Lipschitzian in =
for each (t,s);
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(Az2) for to <s <t

D_V(t,s,z) = lihm(i)nf -:;[V(s +h,y(t, s + h,z + hf(s,z)) — V(s,y(t,s,))]
S0
< gt s, V(s y(t,5,2)));

(43) g € C[RZ x Rf,RN], g(t, s,u) is quasimonotone nondecreasing in u for
each (t,s) and r(t,s,to,uo) is the mazimal solution of

W) — gt s,uls)),  ulto) =02 0,

existing on tp <s <t < o0.

Then V(to,y(t,to,z0)) = ug implies
V(t,z(t, to, z0)) < rol(t, to, V (to, y(t, 2o, 0))), t 2> to,

where ro(t, to,ug) = r(t,to, uog)-

For various choices of (2), one gets several special results. For example, F =0
in (2) yields the well known comparison theorem in terms of vector Lyapunov
function. N =1 gives the comparison result with a single Lyapunov function.

Once we have this comparison result, it is not difficult to investigate stability
properties of (1), see [17]. However, in this set up, to prove a result analogous to
the second theorem of Lyapunov, one needs the concept of strict stability which
we define now.

Definition 3.2 The trivial solution of (1) is said to be strictly stable if given
€1 > 0 and ty € Ry, there exists a §; > 0 such that |zo| < é; implies |z(¢,to, Zo)]
< €1, t; > tg, and for every 83 < 41, there exists an ey < § such that dy < |zo]
implies €2 < |z(¢,to,z0)| for t > to.

For further discussion on strict stability, see [19].

4 Cone Valued Lyapunov Functions

An unpleasant fact in the method of vector Lyapunov functions is the requirement
of a quasimonotone nondecreasing property of the comparison system, which is
defined as z < y and z; = y; for some 1 < i < N implies g¢;(t,z) < g:(t,v).
Since the comparison systems with the desired property like stability exist without
satisfying the quasimonotone property, the limitation of the method of vector Lya-
punov functions is obvious. To circumvent this unpleasant requirement, one needs
to employ arbitrary cones rather than the standard cone Rf , which is used in the
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method of vector Lyapunov functions. We shall develop the method of cone valued
functions now [5,8,20]. See for matrix-valued Lyapunov functions [25, 26].

Let K C RM be a cone, that, is, K is closed, convex with AK C K for all
A >0 and KN {-K} = {0} with interior K° # §. For any z,y € R", we
let z <y if y—z€ K. Let K* =[p € RVN:¢(z) >0 for all 2 € K] and
K§ = K* — {0}. Then we can define the quasimonotone property of a function
F:RY — RY relative to K as follows:

z<y and p(y—-2)=0 for
v € K§ == ¢(F(y) — F(z)) 2 0.
Then we can state a general set of criteria for (ho, h)-stability unifying several
concepts.
Theorem 4.1 Assume that
(Ao) ho, h €T and hgy is finer than h;
(A1) V € C[Ry x R™, K] and V(t,z) is locally Lipschitzian in x relative to K;
(A2) @0, Q € £ = [Q € CIK,Ry]: Q(0) = 0 and Q(w) is increasing in w
relative to K] and Qo is finer than Q;
(43) g € C[Ry x K,RN] and for (t,z) € S(h,p), DYV(t,2) < g,V (¢, 1)),
where g(t,w) is quasimonotone in w relative to K,
(Ag) b(h(t,z)) < QV(E,x) if h(t,z) < p and Qo(V(t,z)) < alho(t, z)) of
ho(t,z) < po, where a, be K.
Then the (Qo, Q)-stability properties of
dw
dt
imply the corresponding (ho, h)-stability properties of (1) respectively.

= g(taw)v w(to) =wp 2 Oa

N
The special case K = RY, Q(w) = Qo(w) = 3 wi, h(t,z) = ho(t,z) = |z| is
i=1

the method of vector Lyapunov functions.
0 1

g2 —2[3)7 k,3 >0 so
that Aw is not quasimonotone relative to cone R%. But the cone K = [u:u =

£

b = B8 > k, will satisfy the conditions of the method of cone valued Lyapunov
functions. See [5,8,20] for details.

Consider the example g(w) = Aw, where A = <

—-

diywy + dowy, w; > 0, ¢ = 1,2], where d; = (—1b , dy = ((IJ), we find,

5 Analysis of Invariant Sets

In the notion of eventual stability, we note that, although {0} is not an invariant
set of (1) (the trivial solution), it is so asymptotically. Hence eventual stability is
nothing but Lyapunov stability of asymptotically invariant set {0}. See [10].
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Definition 5.1 The set © = 0 is asymptotically invariant relative to (1) if
given any decreasing sequence {ep}, €, = 0 as p — oo, there exists an increasing
sequence {7p}, 7, = 00 as p = oo such that |z(,t,0)] < €5, t > 75, to > 7p.

This leads to the idea that once a different kind of invariant set is introduced,
the consideration of its stability properties runs parallel to the known results of
standard invariant sets. Thus one can think of analyzing various invariant sets
whose study blends the qualitative and quantitative properties of systems yielding
several different stability concepts [6].

Let A, B € C[Ry,Q] such that A(t) ¢ B(t) for ¢ € Ry, where Q denotes
all nonempty closed subsets of R™, which together with the Hausdorff distance
becomes a metric space.

Definition 5.2 The set B(t) is said to be
(i) conditionally invariant relative to A(t) and (1) if for certain tq > 0, zo €
A(to) implies z(t) € B(t), t > to;
(i1) conditionally quasi-invariant relative to A(t) and (1) if for certain to > 0,
zo € A(to), there exists a T > 0 such that z(t) € B(t) for t > to+ T

In this terminology, we can have uniform concepts as well if they don’t depend
on ty. Moreover, if A(t) = B(t), one gets self-invariant sets. What we consider in
the theory of Lyapunov stability can be called uniform self-invariant sets.

One can consider moving invariant sets when the system (1) depends on a pa-
rameter, see [1,2,9,21]. Consider the differential system

d
S = fta ), o) =z, 1020, 3)
where f € C[Ry x R* x R4, R"] and A € R? is an uncertain parameter.

Also consider the comparison equation

du
it =g(t,u,p), ulto) =uo >0, (4)
where g € C[R%,R] and p = p(X) > 0 is a parameter depending on A. We
assume, for convenience, that the solutions of (3) and (4) exist and unique for
t > tp. We need the following definition with respect to moving invariant set of the
system (3).

Definition 5.3 Let pp < 79 < r < p depending on A. Then we say that
the set B = {& € R™: p < |z| < p} is conditionally invariant with respect to
A={z € R": rp <lz| <7} and is uniformly asymptotically stable (UAS) relative
to (3) if

() ro <lzol 7 = po < z(t)] < p, > to;

(ii) given € > 0, and ¢y € Ry
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(a) there exists a & = d(e) > 0 such that 7o — 6 < |zo] < 7+ 6 =
po—€e<|z(t)] <p+e t>to;
(b) there exists a do > 0 and a T = T'(¢) > 0 such that ro — Jp < |zo| <
r+d=po—e<|z(t)| <pt+e t>t+T,
where z(t) = z(t, to, zo) is the solution of (3).

Definition 5.4 Relative to the comparison equation (4), we say that Q@ = {u €
R: Ry <u < R} is invariant and is UAS relative to (4) if
(i) Ro<up < R= Ry <u(t) <R, t>1
(i) given € > 0 and tg € R,
(a) there exists a 6 = §(¢) > 0 such that

Ry—0<ug<R+6 = Ro—e<ult)<R+e¢, 2>t
(b) there exists a §p > 0 and a T =T(e) > 0 such that
Ro—dp<ug< R+ = Ro—e<u(t)<R+e t2t+T;
where u(t) = u(t, to, o) is the solution of (4).
Now we are in a position to state our needed result.

Theorem 5.1 Assume that

(Ao) for each X € R?, there exist r = r(X), ro = r(A) >0, ro < r satisfying
r—=0 as [A] 20 and rg = © as |A| = oo;

(A1) there exists a V € C[Ry x R™, Ry, V(t,z) is locally Lipschitzian in x for
each t € Ry, and for a, b€ K, b(|z|) <V(t,z) if |z] > r, V(t,z) < allz])
if |o| < ro;

(As2) D+V(tv$) <9t Vitz),r(A)) o |z] >,

DYV (t,z) > g(t,z,ro(N) of lz| <r;

(As3) for each 1o < r, there exist Ry < R such that R = a(r) = b(p), Ry =
b(ro) = al(po), where po <o <r<p and R—0 as r - 0 and Ry — oo
as o — 00;

(A4) Q is invariant and is UAS.

Then B is conditionally invariant with respect to A and 1s UAS relative to (3).

As an application of Theorem 5.1, we shall consider the control of uncertain
differential system of the form

2—? = fo(t,z, ) + B(t,z)F(t,z,u,A), z(to) =zo, to >0, (5)

under the following assumptions:
(Ag) fo € C[Ry x R™ x Qo,R"], B € C[R} x R*,R™"™] and F € C[R; x
R"™ x R™ x Qp, R™), where 0y C R? is a nonempty set and u € R™ is the
control function;
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(A;) there exist ro = 7o(A) <7 =r(A) such that

Vi (tz) < —e1(V(t,z)) if |z] >,
Vf'(t,z) > —co(V(t, )y if |z| <7,

where V € C'[Ry x R*, Ry], Vy (t,z) = Vi(t,z) + Vi(t,2) folt, 2, A) and
¢, ¢ € K

(A2) b(|z)) < V(t,z) if |z| > 7, V(t,z) <a(lz]) if |z| < 7o, where a, b€ K

(A3) for |z| > r, uTF(t,z,u,)) > —Fi(t,z)|u| + B2(t, )|ul®, where B;, B2 €
C[R+ X RnaRJr]: /81 < ﬂ2ﬁ7 ﬂl <K, ﬁa K€ C[R+ X Rn7R+];

(Aq) for [z| < ro, uTF(t,2,u,0) < =71t 2)|ul + 72(t,2)|ul?, where 11,72 €
ClRy x RM Ri), 1 2 72p, M 2 &

(A5) P = [p, € C[Ry x R™, R™], u > 0] is the stabilizing family of controllers
satisfying [1]

lalp, = —|pula, where o = BTV and 5 = ke,

and if n >0, |z| >r, |pul > ﬁ(l - |11;QT)

We are now in a position to prove the following result.

Theorem 5.2 Assume thal the conditions (Ag) to (As) hold. Suppose further
that ¢;'(u) < ¢7(u). Then the set B is conditionally invariant with respect to A
and is UAS relative to (5).

Proof Let us consider the case [z| > r. Then we have
V;O (t7 CI}) <-a (V(tz l’))

and

Ot(t,.’L‘)F(t,I,pu,)\) = _%F(tvm:puﬂ\)pu
< laft, z)|[B1(t,x) — Ba(t, z)|pu(t, z)])
smmmgmwwﬂmwmmm@—ﬁﬂ

SM@@W&JH%Sn

and consequently,

Visy(t:z) < —cr(V(t,2) +r, if |z] >
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Similarly, if |z| < rg, we get
Vis(t:2) > —ea(V (2, 2)),
and
_ la(t,2)|
|Pu(t, )|
2 ]a(t7x)|[71 (t7x) - 72(tax)|pu(ta$)”

> la(t, 2)| | (t ) - Wz(twm)ﬁ(t»”)(l Bl |1;7_0|)}

at, z)F(t,z,pu, A) = F(t,z,pu, \)pu

> lalt, z)ln (t, @) =% > ro,

7]
and, as a result, we have
Visy(tz) 2 —e2(V(t,2)) + 7o, if |z] < ro.
This implies that

g(t,u,r) = _CZ(U) +r,
g(t,U,To) = —C2(U) + 7o,

and therefore u = ¢ (r) = R, u = ¢; ' (rg) = Ro. Hence, in view of the properties
of a, b, c1, ¢z, we can find pgp < ro < r < p such that R = a{r) = b(p), Ry =
b(ro) = a(po) and Ry < R.

To apply Theorem 5.1, we have to show that theset @ = [u € Ry : Ry < u < R}
is invariant and is UAS. In view of the specific nature of the function g, it is not
difficult to show this following the proof of Theorem 5.1. See [2,9,21,22,3]1] for
details.

6 New Meaning of Stability

Lyapunov stability compares the phase-space positions of solutions at exactly si-
multaneous instants, namely
sup |z(t) — zo(t)] < €, (6)
>0
where as orbital stability compares at any two unrelated instants, namely,
sup inf |z(t) — zo(s)] < e (7)
t>0 SER4
Clearly (6) seems too stringent a requirement and (7) seems too loose a requirement.
This suggests a middle of the road topology between (7) and (6).
Let CL be the space of all functions from Ry — R4 each function s(t) rep-
resenting a clock and s(t) = ¢ being the perfect clock. Let 7 be any topology
in CL.
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Definition 6.1 The motion z(-,zq) is 7-stable if given ¢ > 0 and 7T-neighbor-
hood U of the perfect clock, there exists a 6 > 0 such that for each y, with
lzo — yo| < 9, there is a clock s(-) € U with |z(¢,y0) — z(s(t),z0)| <€, ¢ > 0.

As examples, one can consider the topologies

(O) the chaotic topology, where open sets are solely ¢ and the entire clock space;
(U) the topology defined by the base U = [s(-): sup|s(t) — so(t)| < €];
>0

(L) the discrete topology, where every set in CL is open;
(S) the topology defined by the base

S = [s(-): 1s(0) — 50(0)| < e, sup{|ta — t:]|™*[s(t2) ~ s(t1) — so(t2) + so(t:)|:
t1, b2 € Ry, b1 # 12} <.

See [28] for further details.

In the investigation of IVPs of differential equations, we have been partial to
initial time all along in the sense that only perturb or change the dependent vari-
able or space variable and keep the initial time unchanged. Tt appears, however,
important to vary the starting time as well since it is impossible not to make er-
rors in the starting time. If we do change the initial time for each solution, then
we are faced with the problem of comparing any two solutions which differ in the
initial starting time. There may be several ways of comparing and to each choice
of measuring the difference, we may end up with a different result. In [23], this
approach is initiated. Let z(t,t0,y0) be the given solution relative which stability
is to be considered. Then one can define the stability as follows:

The solution x(t,to,y0) is stable if given € > 0, there exists §, ¢ > 0 such
that |zo — yo| < 8, {to — 70| < o implies |z(t + 10 — 0,70, 20) — z(t, Lo, yo)| < ¢,
t > to. For details see [12,23]. It would be interesting to absorb this approach in
T-stability and obtain sufficient conditions.
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2.6 MATRIX LIAPUNOV FUNCTIONS
AND STABILITY ANALYSIS OF

DYNAMICAL SYSTEMS*

A A MARTYNYUK

Institute of Mechanics of National Academy of Sciences of Ukraine, Kiev, Ukraine

1 Introduction

One can hardly name a branch of natural science or technology in which the prob-
lems of stability do not claim the attention of scholars, engineers, and experts who
investigate natural phenomena or operate designed machines or systems. If, for a
process or a phenomenon, for example, atom oscillations or a supernova explosion,
a mathematical model is constructed in the form of a system of differential equa-
tions, the investigation of the latter is possible either by a direct (numerical as a
rule) integration of the equations or by its analysis by qualitative methods.

The direct Liapunov method based on scalar auxiliary function proves to be a
powerful technique of qualitative analysis of the real world phenomena (see [9, 10]).

This paper examines new generalizations of the matrix-valued auxiliary func-
tion. Moreover the matrix-valued function is a structure the elements of which
compose both scalar and vector Liapunov functions applied in the stability analy-
sis of nonlinear systems (see [4, 5]).

Due to the concept of matrix-valued function developed in the paper, the di-
rect Liapunov method becomes yet more versatile in performing the analysis of
nonlinear systems dynamics.

2 Relationship Between the Reference Motion and the Zero Solution

Let 2k be the order of the system and y;, i = 1,2,...,2k, beitsi-th state variable.
Using basic physical laws (e.g. the law of the energy conservation and the law of

* Advances in Stability Theory (Ed.: A.A. Martynyuk). Stability and Control: Theory, Me-
thods and Applications, Taylor & Francis, London, 13 (2003) 135-151.
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the material conservation) we can for a large class of systems get state differential
equations in the following scalar form

dy;

p =Yilt, y1, .- Y2k), 1=1,2,...,2k, (2.1)

or in the equivalent vector form

dy _

=Y (), 22)

where y = (y1,y2,...,y21)" € R and ¥ = (V1,Ya,...,Yar)", Y: TxR* = R%.
A motion of (2.2) is denoted by n(t;to,y0), 17(to;to,¥%0) = yo, and the reference
motion 7,(t;to, yro). From the physical point of view the reference motion should
be realizable by the system. From the mathematical point of view this means that
the reference motion is a solution of (2.2),

dnr (o, yro) _

I Y[t, 1. (t; to, yro)]- (2.3)

Let the Liapunov transformation of coordinates be used,
T =Y - Yr (2.4)

where y.(t) = n.(t;to,yr0). Let f: T x R%* — R?* be defined by

Ft,z) = Y[ty (t) + 2] — YTt, . (2.5)
It is evident that
£(t,0) = 0. (2.6)
Now (2.2)— (2.5) yield
% = f(t,2). (2.7)

In this way, the behavior of perturbed motions related to the reference motion (in
total coordinates) is represented by the behavior of the state deviation z with
respect to the zero state deviation. The reference motion in the total coordinates
y; 1is represented by the zero deviation z = 0 in state deviation coordinates z;.

3 Main Results

As already mentioned in the introduction the application of matrix Liapunov func-
tions make it possible to establish easily verified stability conditions for the state
z = 0 of system (2.7) in terms of the property having a fixed sign of special ma-
trices. The results presented in this section demonstrate the opportunities of the
matrix Liapunov functions technique.
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Theorem 3.1 Let the vector-function f in system (2.7) be continuous on R X
N (on T, x N'). If there exist

(1) an open connected time-invariant neighborhood G C N of the point © =0;

(2) a matriz-valued function U € C (R x N,R™ ™) and a vector y € R™
such that the function v(t,z,y) = y"U(t,z)y is locally Lipschitzian in x
forall te R (t€7T;);

(3) functions i1, iz, ¥z € K, Yin €CK, i=1,2,...,m;

(4) m x m matrices A;(y), 7 =1,2,3, As(y) such that

W(21)Ar @) (l2) < vt 2,y) < b3 el Ao (y)a (2, 2l

(@) V(t,z,y) e RxGXx R™ (V(t,z,y) €T, xGxR™);
) Sl AL @) () < o(t z,9) < b3 (llel)) A2 () (llll)

V(t,z,y) ERxGx R™ (V(t,z,9) €T xGx R™);
© Do(t,z,y) < s (llzll) As(y)ws(||«l)

V(t,z,y) E RxGx R™ (V(t,z,y) € T xGx R™).

Then, if the matrices A1(y), As(y), As(y), (y # 0) € R™ are positive definite
and A;z(y) is negative semi-definite, then
(a) the state =0 of system (2.7) is stable (on T;), provided condition (4)(a)
is satisfied;
(b) the state x = O of system (2.7) is uniformly stable (on T;), provided con-
dition (4)(b) is satisfied.

Proof We shall prove assertion (a). Since matrices A;(y) and gz(y) Yy #
0) € R™ are positive definite, then A, (A4;) > 0 and /\M(;fg) > 0, where A, (")
and Aps(-) are minimal and maximal eigenvalues of matrices 4;(y) and As(y) re-
spectively.

Condition (3) of Theorem 3.1 provides the existence of functions = € K and
p € CK such that

w(llzll) < wi (el (1)

and

p(tllzll) > B3t |zl ea e, [l2l)-
Consequently,

Am(A)w(llzl) So(t,zy) VYt z,y) € RxGxR™

(V(t,2,y) € T x G x R™) 3.1)



138 A.A. MARTYNYUK

and
U(t,.’t,y) S )‘M(A2)p(t, ”IL‘H) V(t,l‘,y) € R x g x R™ (3 2)
(V(t,z,y) € T, xG x R™). '
Since matrix A3(y) is negative semi-definite, then
DYu(t,z,y) <0  V{t,z,yZ0) € RxGx R™ (3.3)

(V({t,z,y #0) € T x G x R™).

Taking into account (3.1) - (3.3) one can easily see that all conditions of Theorem 5
from (2] are satisfied and the state z =0 of system (2.7) is stable (on 7;).
The proof of assertion (b) of the Theorem 3.1 is the same, seeing that ¥ € K.
Theorem 3.2 Let the vector-function f in system (2.7) be continuous on R X
R™ (on T, x R"). If there exist
(1) a matriz-valued function U € C (R x R*, R™*™) (U € C(T, xR™, R™*™))
and a vector y € R™ such that the function v(t,z,y) = y U (t,z)y is locally
Lipschitzian inz for all t€e R (t € T;);
(2) functions V14, P21, P3i € KR, 621' € CKR, i = 1,2,...,my
(3) m x m matrices B;(y), j =1,2,3, Bs(y) such that

e1(lzl)Br@)erlzll) < vt 2, y) < (8, 12l) B2 (@)@ (¢, [l

a
@ V(t,z,y) € Rx R* x R™  (V(t,z,y) € Tr x R* x R™);

b) el (DB ()er (llzl)) < v(t,z,y) < @3 (|2l Ba(y)e2 (|2l
Y(t,z,y) € Rx R®" x R™ (¥V{t,z,y) € T, x R* x R™);
(© D*u(t,z,y) < @3 (2l Bs(y)es (i)
Y (t,z,y) € Rx R®"x R™ (V({t,z,y) € T x R® x R™).
Then, provided that matrices By(y), Ba(y) and Bsy(y), V(y # 0) € R™ are posi-
tive definite and matriz B3(y) is negative definite,
(a) under condition (8)(a) the state x = O of system (2.7) is stable in the whole
(on T7);
(b) under condition (3)(b) the state x =0 of system (2.7) is uniformly stable
in the whole (on T;).

Proof Under conditions (1)-(3)(a) of Theorem 3.2 the function v(t,z,y) is
radially unbounded positive definite in the whole (on 7;) and weakly decreasing
in the whole (on 7;). Since the matrix Bs(y), V(y # 0) € R™ is negative semi-
definite, then we have in consequence of condition (3)(c) of Theorem 3.2

Dto(t,z,y) <0  V(tz,y #0) € Rx R* x R™
V{t,z,y#0) € T- x R® x R™).
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According to Theorem 6 from (2] the state z = 0 of system (2.7) is stable in the
same manner taking into account conditions (1) -(3)(b) and (3)(c).

Theorem 3.3 Let the vector-function f in system (2.7) be continuous on RxN
(on T; x N). If there exist

(1) an open connected time-invariant neighborhood G C N of the point z = 0;

(2) a matriz-valued function U € C (R x Ny, R™*™} (U € C(T, x N, R"™*™))
and a vector y € R™ such that the function v(t,z,y) = vy U{t,z)y is
locally Lipschitzian in z for all t € R (t € T;);

(3) functions mi, M, 13 € K, 0; €CK, i =1,2, ..., m;

(4) m x m matrices Cj(y), j=1,2,3, Ca(y) such that

n(lzDCL@)m (2]l < v(t,z,y) < T, |12])Coy)ia(, |l2l)

() V({t,z,y) ERxGx R™ (V(t,z,y) € T, xGx R™);
) i (lzNCry)m lzll) < v(t,z,y) < ny(l2l)Caly)na(llz])

V(t,z,y) e RxGxR™ (V(t,z,y) € T x G x R™);
© D*u(t,z,y) < ng (l21)Cs(y)ns () + m (&, ns((|=]]))

V(t,z,y) e RxGXR™ (V(t,z,y) € Tr x G x R™),
where function m(t,-) satisfies the condition

b (el |
lImsll
uniformly in t € R (t € T;).
Then, provided the matrices C:(y), Ca(y), Cy (y) are positive definite and ma-
triz Cs3(y) (y #0) € R™ is negative definite, then
(a) under condition (4)(a) the state x = 0 of the system (2.7) is asymptotically
stable (on T );
(b) under condition ({)(b) the state x = 0 of the system (2.7) is uniformly
asymptotically stable (on T, ).

=0 as |ms]| =0

Proof Following the arguments from the proof of Theorem 3.1 under conditions
(1)~ (4)(a) the function v(t, z,y) is positive definite on G (on 7, x G) and weakly
decreasing on G (on 7; x G). Consider condition (4)(c). Since n3; € K, i =
1,2, ..., m there exists a function w € K such that

w(lizll) > n5(l2hns (ll))- (34)

Due to matrix Cs(y) (y # 0) € R™ being negative definite all its eigenvalues are
negative so that Apr(Cs) < 0. Therefore, we get in view of (3.4)

Dro(t, z,y) < Ap(Ca)w(llzl]) +m (¢, ns(llll))

Vit,z,y #0) e RxGx R™ (V(t,z,y#0)€ T, x G x R™). (3:5)
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Under condition (3.2) for the given neighborhood ¢ C N of point z = 0 a
0 < p <1 can be taken so that
Imd(t, n(llzl)] < —pAn (Ca)ns (|lz])ms ([]2])
Vit,z,y Z0) € Rx Gx R™ (V(t,z,y#0) € T, xG x R™).
Together with inequalities (3.5) condition (3.6) yields the estimate
Do(t,z,y) < (1 - w)Am(Ca)w(llzl)),  Am(Cs) <O.

Thus, function D*u(t,z,y) is negative definite on G (on T x G). Therefore, all
conditions of Theorem 7 from [2] are satisfied and the state z = 0 of the system
(2.7) is asymptotically stable (on 7).

Assertion (b) of Theorem 3.3 is proved in the same manner taking into account
that condition (4)(b) ensures function v(t,«,y) decreasing on G (on 7, x G).

(3.6)

Theorem 3.4 Let the vector-function f in system (2.7) be continuous on R X
R™ (on T; x R™) and conditions (1)—(3) of Theorem 3.2 are satisfied.
Then, provided that matrices By(y), B2(y) and Ez(y) are positive definite and
matriz Bs(y) V(y # 0) € R™ is negative definite,
(a) under condition (3)(a) of Theorem 3.2 the state = 0 of system (2.7) is
asymptotically stable in the whole (on T, );
(b) under condition (8)(b) of Theorem 3.2 the state x = 0 of system (2.7) is
uniformly asymptotically stable in the whole (on T; ).

Proof Under conditions (1)-(3)(a) of Theorem 3.2 the function v(t,z,y) is
radially unbounded positive definite in the whole (on 7).

Because matrix Bs(y) V(y # 0) € R™ is negative definite, proceeding as in the
proof of Theorem 3.2 we arrive at the estimate

D*u(t,2,y) < A (Bs)es (llzl)es (i)
V(t,z,y) € Rx R* x R™ (¥Y(t,z,y) € T, x R x R™).
Since ¢3; € CK, i =1,2, ..., m, there exist a function 8(||z||) € KR such that

ollzll) > w3 (lz)es(llz))-
Therefore,

D*u(t,z,y) < Am(Bs)0(llzll),  Am(Bs) <0
Y, z,y#0) € RXxR*"xR™ (V(t,z,y #0) € T, x R* x R™).

Thus, function D*v(t,z,y) is negative definite in the whole (on 77).

According to Theorem 8 from [2] the state = = 0 of system (2.7) is asympto-
tically stable in the whole (on 77).

The proof of assertion (b) of Theorem 3.4 is similar to the above and takes into
account the fact that by conditions (2) and (3) of Theorem 3.2 the function v(¢, z,y)
is radially unbounded positive definite and decreasing in the whole (on 77).
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Theorem 3.5 Let the vector-function f in system (2.7) be continuous on RxN
(on T x N'). If there exist

(1) an open connected time-invariant neighborhood G C N of the point =0

(2) a matriz-valued function U € C (R x N,R™ ™) and a vector y € R™
such that the function v(t,z,y) = y™U(t,z)y is locally Lipschitzian in x
forallte R (t€T;);

(3) functions o9, 03; € K, i = 1,2, ..., m, a positive real number A; and
positive integer p, m x m matrices Fy(y), F3(y) such that

ArflzllP < w(t,2,y) < o3 (2l P2 (y)o=(llzl)

@) ey £0) € RxGXR™ (Y(ta,y#£0)€To x G x R™):

D*u(t,z,y) < o3 (|2l Fs(y)os (llel))

b
() V(t,z,y#0) e RxGxR™ (V(t,z,y#0)€ T, xGx R™).

Then, provided that the matrices Fo(y) (y # 0) € R™ are positive definite, the
matriz F3(y) (y #0) € R™ is negative definite and functions a;, 03; are the same
magnitude, then the state x =0 of system (2.2) is exponentially stable (on T, ).

Proof Under conditions (1)~ (4)(a) function v(¢,,y) is positive definite and
decreasing (on 7). In fact, we have the estimate

vlt,z,y) < Am(Fa)os(lzlDozlzll),  A(F2) >0
V(t,z,y) e RxGx R™ (¥V(t,z,y#0) € T xG x R™).

Since the functions o3; € K, i = 1,2, ..., m, there exists a function s € K such
that

s(lzll) 2 oz (lzl)oz(llel)-

Therefore

Aallz|P <ot z,y) < Am(Fo)a(ll=f)),  Am(F2) >0

3.7
V(t,z,y) e RxGx R™ (V(t,z,y#0) €T, xG x R™). 3.1

We reduce condition (4)(b) of Theorem 3.5 to the form
Dru(t,z,y) < Am(Fs)m(lizll),  Am(F3) <0 (3.8)

V(t,z,y) E RxGx R™ (V(t,z,y) €T xGxR™),

where m € K 1is such that

a(llzl)) > o5 (lllos (|2l
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Since functions s and 7 are of the same magnitude, there exist constants k; > 0
and ks > 0 such that

ku(ll=]]) < m(llell) < kgse(l|2]])-
We get from inequalities (3.7) and (3.8)

D*U(t7 z’ y) S A/U(t7 x’ y)

3.9
V(t,z,y#Z0) ERxGxR™ (V(t,z,y#0) €T, xGx R™), (3:9)
where A = Ay (F3)A3t (Fa), A < 0.
In view of the estimate from the left in (3.7) we obtain from (3.9)
U(ta w,y) < U(t07 any) exXp (/\(t - tO))
and \
[x(tstozo)l| < A7 7 A, (F)3ev (llzoll) exp (;(t - to)) : (3.10)

We designate (cf. [3])
11 A
a:AIP)\Xl(Fz), ﬂ:]_), B<0
From (3.10) we obtain

Ix(t tozo)ll < ase? (|lzoll) exp (B(t —to)) Vi€ To. Vio€ T

This proves Theorem 3.5.

Theorem 3.6 Let the vector-function f in system (2.7) be continuous on R X
R™ (on T, x R"). If there exist

(1) a matriz-valued function U € C(Rx R™,R™*™) (U € C(T, x R*, R™*™))
and a vector y € R™ such that the function v(t,z,y) = yTU(t, )y is
locally Lipschitzian in x for oll t€ R (Vt € T;);

(2) functions ve, v3; € KR, i = 1,2, ..., m, a positive real number Ay > 0
and a positive integer q;

(3) m x m matrices Ho, Hy such that

Dollzll? < v(t,2,y) < vy (llzl) Ha(y)va(llzl)

@) oy £0) e Rx R*x B (V(taoy) € T x R x R™):

D*o(t,z,y) < vy (lzll) Ha(y)va(llel)
V(t,z,y#0) € RxR"xR™ (V(t,z,y#0) € T, xR*xR™).
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Then, if the matriz Hy(y) V{(y # 0) € R™ is positive definite, the matriz H3(y)
V(y #0) € R™ is negative definite and functions va;, vs; are of the same magni-
tude, the state © =0 of system (2.7) is exponentially stable in the whole (on T, ).

Proof of this Theorem is similar to that of Theorem 3.5 taking into account
the fact that under conditions of Theorem 3.6 the function v(¢,z,y) is radially
unbounded (on 7;). Inequality (3.10) is replaced by

1
q

L 1 A
Ix(t: tozo)ll < Ay XL, (Ha)g (laol) exp (—qio: - t0)>

where g(||zl}) € KR and g(l|z[) > v (l|z]})v2(]l2l]),

A=A (H)k A (Ha), k>0, M\ <O

We designate 8 = A1¢~! and define function ®(A) = A,
ever [|zol] < A, A = +cc. Then

o =

Af, (Hy)ge (A) when-

Ix(& tozo)ll < ®(A) exp (Bt —t0)),  B<0 VteTo, Vio€T
This proves Theorem 3.6.

Theorem 3.7 Let the vector-function f in system (2.7) be continuous on RxN
(on T, x N). If there exist

(1) an open connected time-invariant neighborhood G C N of the point x = 0;

(2) a matriz-valued function U € CH{Rx N, R™*™) (U € C*(T; x N, R™*™))
and a vector y € R™;

(3) functions i, Yo, Y3 € K, 1 = 1,2,...,m, m X m matrices A(y),
Ax(y), Gly) and a constant A > 0 such that

i (llell) A (W) (lzl) < vty 2,y) < 931zl Az (y)e (=)

(&) V(t,z,y) ERxGXR™ (V(t,z,y) €T xG x R™);

Du(t,z,y) > 5|zl G(y)es (lll)

b
() V(t,z,y) e RxGXx R™ (V(t,z,y) €T, xG x R™);

(4) point x =0 belong to 9G;

(5) v(t,z,y) =0 on To x (8G N Ba), where Ba = {z: ||z|| < A}.
Then, if matrices Ai1(y), A2(y) and G(y) Y(y #0) € R™ are positive definite,
the state © =0 of system (2.7) is unstable (on T;).

Proof Under conditions (1)-(3)(a) of Theorem 3.7 it is easy to obtain for
function v(t, z,y) the estimate

Am(A)Y(ll=l) < vt z,y) < A (A2)C(I2])

V(t,o,y) € RxGx B™ (¥ (tz,y) € T, x G x R™). (3.11)
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Here

veK and ~(llzll) < izl el
¢eK and ((lzll) > ¢ (lllDw(llal)-

Since Aa(41) > 0, Am(Az) > 0, then by estimate (3.11) function v(t,z,y) is
positive and bounded (on 7;). Hence, for every § > 0 an zp € GN Ba and a
a > 0 can be found such that a > v(to,x0,y) >0 V(y #0) € R™.

Condition (3)(b) of Theorem 3.7 is reduced to the form

Do(t,z,y) 2 An(G)E(ll]),  Am(G) >0,

V(t,z,y #0) € Rx G x B™ (Y(t,z,y) € T» x G x R™). (3.12)

Here ¢ € K and € <3 (llzlDvs(ll2])).
In view of (3.11) and (3.12) we have for x(t;%0,20 € G

t
a > v(t, x(t; to, zy,y) = v(to, o, y) + /DU(T,X(T; to, To)y) dT

to

2 v(to, T0,¥) + Am(G)E([zol)(E —t0)  Vi€eTo (VEe€T).

Hence, it follows that the solution x(¢;to,2o) must leave neighborhood G some
time later. But because of condition (5) it cannot leave G through G € Ba.
Consequently, x(t;to,zo) leaves the domain Ba and the state z = 0 of system
(2.7) is unstable (on 7;).

4 Stability Analysis of Autonomous Large Scale Systems

We consider a large scale systems be decomposed into three subsystems

E o de .2,

d

d—‘z = By +g(z,y, 2), (4.1)
dz

% =Cz+ h(x’y7z)7

where z € R™, y € R™, z € R™, n; +ny+n3 =n; A, B and C are constant
matrices of the corresponding dimensions

feC(R™ x R™ x R", R™);

g€ C(R™ x R™ x R™, R™);
heC(R™ x R™ x R™, R™).
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Moreover, the vector-functions f, g and h vanish for z = y = z = 0 and contain
variables z, y and z in first power, i.e. the subsystems

dx

dy

—~ = Buy; .
i Y; (4.3)
dz

— =Cz 4
I Cz; (4.4)

are not complete linear approximation of the system (4.1). Physically speaking this
corresponds to the situation when the connections between subsystems (4.2) — (4.4)
are carried out by time-invariant linear blocks. For different dynamical properties
of subsystems (4.2) - (4.4) sufficient total stability conditions will be established for
the state « =y = 2 = 0 of the system (4.1).

The solution algorithm for this problem is based on actual construction of the
matrix-valued function

Ulz,y,z) = [vi;()), vy =v; Y(i#j) (4.5)
with the elements
’U11(CE) = .’ETPHZ',
vaa(y) = yTPmy,
1)33(2) = ZTP 325
’ (46)

vi2(z,y) = 93TP12y:
vis(z, 2) = 27 Pp3z,
va3(y, 2) = yTP2327

where Fj;, i = 1,2,3, are symmetrical and positive definite matrices, P2, Pi3
and P»3 are constant matrices. It can be easily verified that for the functions (4.6)
there exist estimates

v11(2) > A (Pry) |}z |2 V (z #£0) € Ny;
vaa(y) > Am(Po2)llyll® Y (y #0) € Ny
v33(2) > A (Ps3)]|2||2 V(z#£0)eN,;

via(z,y) > =AY (P2 PR) lialllyl]
via(@,2) > A7 (PsPS) =iz

vaa(y, 2) > =Ny (Paa PG) llyllll=l

V{z#0,y#0) e N, x Ny;
V(z#0,2#£0) €N, x Ny
V{y#0,2z#0) €N, x N,

(4.7)
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where A, (P;;) are minimal eigenvalues of matrices Py, 1 = 1,2, 3, )\}\42 (P12P1T2),
/\}‘f (P13P11;), /\}\42 (Pos PE) are norms of matrices Py, P13 and Py3 respectively.
By means of the function
vir(z)  wve(z,y) wviz(z, 2)
Ul@,y,2) = | vi2(z,y)  va2(y)  vaa(y,2)
via(r,2) vy, 2)  wvas(z)

and the vector n € R3, n; > 0, i = 1,2,3 we introduce the function
n 3 N

v(z,y,2,m) = n"U(z,y, 2)n. (4.8)
Proposition 4.1 Let for system ({.1) there exists matriz-valued function (4.5)
with elements (4.6) and estimates (4.7). Then for function ({.8) the estimate

v(z,y,z,1) > w"HPHu

V(@ #£0,y#0,2#0)€ Ny x Ny x N, (4.9)
is satisfied, where u" = (|z|l, [lyll, |=I)); H = diag[m,n2,7s],
An(P) =M (PePE) N (PisP)
P=| X (P Ph) Am(Pa2) M (Pes P)
A (PaPE) —A0 (PesPl) A(Pss)
Together with function (4.8) we shall consider its total derivative
Du(z,y,2,1) = nT DU(z,y, 2)n (4.10)

by virtue of system (4.1).

Proposition 4.2 Let for system (4.1) there exist matriz-valued function ({.5)
with elements ({.6). For total derivatives of functions (4.6) by virtue of subsystems
(4.2) - (4.4) the following estimates are satisfied

1) (Vo) Az < puljall> Ve e Ny,

(2) (Vovi2)T Az < puollzllllyll ¥ (z,y) € Na x Ny;
(3) (Vavis)' Az < pisllallllzl] ¥ (xz,2) € Ny x N
(4) (Vyu) By < pmllyll® Vy € Ny;
(5) (Vyvar)' By < pmollzllllyll ¥ (z,9) € Nz x Ny;
(6) (Vyvas)' By < pasllullllzll ¥ (y,2) € Ny x N2
(1) (Vavzs) Cz < paill2l® VzeN;

(8) (Vivs1)' Cz < pallllllzll ¥ (z,2) € Ny x N
9) (VzU32)TCZ < pasllyllllzll ¥ (y,2) € Ny x N3,
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where V,, = 0/0u and

P11 = Amax [Pr1A + ATPy1],
P21 = Amax |Pa2B + BTPy],
P31 = Amax |P33C + CTP33],

pr2 = [|ATPra|,
p1s = ||ATPis]|,
p22 = || P12 B,
pas = || B P,
ps2 = ||P3C|,
p3z = || P2sCl]

respectively, pia, pis, P22, P23, P32, P33z are norms of matrices ATP,, ATPs,
Pi3B, BTPy;, Pi3C, PasC.

Assumption 4.1 There exist constants p;;, 1 =1,2,3, j =4,5,...,12, such
that in open connected neighborhoods Ny C R™, N, C R™, N, C R™ or in its
product there exist the estimates

(1)
2
3
(4)
(8
(6%
(7)
(&)
(9)

(Vavi1)" £ < prallell? + pusllzllyll + prsllzll|=l);
(Vav12)" £ < prallyll® + pusllzlllyll + prollyllll=ll;
(Vevis)" f < priollll® + prallallllzll + prazllylllizll;
(Vyv22) " g < poallyll? + pasllzllllyll + pasllyll]|=]];
(Vyv21)" g < parllell® + pasllzllllyll + posollzll]|2]l;
(Vyv23)" g < paollzll® + paanllzllllz]l + porallylllizll;
(V2v33)"h < psallzl® + pssllellllzl] + pasllylll=ll;
(Vav13)" b < parllll® + paslizllllyl] + paollellllz]l;
(V2v23) " b < s sollyll? + panallzllllyll + psazllyllllz]l-

Proposition 4.3 If estimates (1) —(9) and (1') —(9') are satisfied, then for all
total derivatives of function ({.8) by virtue of system (4.1) the inequality

Du(z,y,z,1m) < uTSu V (2,y,2) € Np X Ny x N, (4.11)

takes place, where

S =[oy], 0y =05 VY (i,5) €[1,3];
o11 = 15 (p11 + p1a) + 2m1(m2par + n3par);
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022 = 15 (a1 + p2a) + 2n2 (M1 p17 + M3ps.10);
2
3

7
o33 = N3 (p31 + p3a) + 203(M1p1.10 + M2P2.10);

1, 1,
012 = 5771P15 + 57}2/)25 +mmna(p12 + p22 + p1s + pas)

+n3(mp3s + M2p3.11);

1, 1,
13 = 5MP16 + 5M3p3s + MmNs(p1s + ps2 + pray + pas)
+ m2(mp2e + M3p2.11);

1 1
023 = 57731026 + 5”%/’36 + nan3(p23 + p33 + pa.12 + p3.12)
+ 1 (n2p1o + N3p1.12).

Remark 4.1 The dynamical properties of subsystems (4.2) - (4.4) influence only
the sign of coefficients p11, p21 and ps;. The constants pia, pi13, p22, P23, P32,
pa3 can always be taken positive and the rest of the constants are independent of
matrices A, B and C.

In view of the above remark we introduce the following designations

11 = 03 p1a + 2m(n2par + n3par);
c22 = Mapaa + 2m2(mpr7 + M3p3.10);
¢33 = M3 p3a + 203(Mp1.10 + M2p2.10)-

Hence we have

_ 2 . _ 2 . _ .2
11 = Mpu1 +Ci1; 022 = 1N3p21 +Ca2; 033 = M3031 + C33.

Proposition 4.4 The matriz S is negative definite if and only if
(1) nip1+en <0;

(2) nindpripar + nip1icaz + MEparcrr + cricon — 0Fy > 0;

(3) 77%911 (ﬁ%ﬁ%/’mpsl + 77%;&1033 =+ ﬂ§p31022 + co9C33 — 033)
+ n3pat (TI§P31011 + C11C33 — 0%3) + 73P31 (011622 - 0%2)
+ C11622C33 + 201201323 — C11053 — Co2025 — C330%, < 0.

Remark 4.2 If subsystems (4.2) - (4.4) are nonasymptotically stable, i.e. py1 =
p21 = p31 = 0, the conditions of Proposition 4.4 become

(1) en <G

(2,) C11C2o — 0'%2 > 0;

/ 2 2 2
(3") cricazcas + 2012013093 — C11053 — Ca2074 — €3307, < 0
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Remark 4.3 If subsystem (4.2) is nonasymptotically stable, subsystem (4.3) is
asymptotically stable and (1.7.11) is unstable, i.e. p13 =0, p21 <0, p31 > 0, the
conditions of Proposition 4.4 become

(1"} e < 0;

(2") mparcit + cricos — 02y > 0;

(3") m3pm (n§p31611 “+ Ci11C33 — 0'%3) + 75 p31 (611022 - 0%2) + C11C22C33

+ 2012013023 — €11023 — €220%, — c330%, < 0.

Proposition 4.5 Matriz S is negative semi-definite iff the inequality signs <
and > in Proposition 4.4 are replaced by > and < correspondingly.

Function (4.8) and its total derivative (4.10) together with estimates (4.9) and
(4.11) allows us to establish sufficient conditions of stability (in the whole) and
asymptotic stability (in the whole) for system (4.1).

Theorem 4.1 Suppose that the system (4.1) be such that

(1) in product N = Ny x Ny x N, there is the mairiz-valued function U: N —
R3x3 .
(2) there exist the vector n € R3, n; >0, 1 € [1,3);
(3) the matriz P is positive definite;
(4) the matriz S is negative semi-definite or equals to zero.
Then the state © =y = z = 0 of the system (4.1) is uniformly stable.
If all estimates mentioned in conditions of Theorem 4.1 are satisfied for A, =

R™, N, = R™, N, = R™ and function (4.8) is radially unbounded, the state
z =y =z =0 of the system (4.1) is uniformly stable in the whole.

Proof Under all conditions of Theorem 4.1 the conditions of well-known Barba-
shin-Krasovskii’s theorem are satisfied, and hence, the corresponding type of sta-
bility of state =y = 2z = 0 of the system (4.1) takes place (see Theorem 3.2).

Let there exists the domain = {(z,y,2z) € N, 0 < v(z,y,2,m) < a, a €

R,} ¢ R™ where Dv(z,y,2,n) <0.
We designate by M the largest invariant set in  where

D’U(w7 y’ Z’ 77) = 0'

Theorem 4.2 Suppose that the system (4.1) be such that

(1) the conditions (1)-(3) of Theorem 4.1 be satisfied;
(2) on the set @ Du(z,y,z,m) <0 i.e. the matriz S is negative semi-definite.

Then the set M is attractive relative to the domain §, i.e. all motions of system
(4.1) starting on set ¥ tend to the set M as t = +00.

Proof of this Theorem is similar to that of Theorem 26.1 by Hahn [11].
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Theorem 4.3 Suppose that the system (4.1) is such that

(1) the conditions (1)—(3) of Theorem 4.1 are satisfied;

(2) the matriz S is negative semi-definite.
Then the equilibrium state x =y = z = 0 of the system (4.1) is uniformly asymp-
totically stable.

If all estimates mentioned in conditions of Theorem 4.3 are satisfied for N, =
R™, N, = R™, N, = R™ and function (4.8) is radially unbounded, the state
z =y =z = 0 of the system (4.1) is uniformly asymptotically stable in the whole.

The proof is similar to that of Theorem 25.2 by Hahn [11].

5 Conclusion

Effective applications of the dynamical systems stability theory is crucially depen-
dent on solving the next three qualitative problems (cf. [2]).

1. How to construct a matrix-valued Liapunov function for a given dynamical
system?

2. Which comparison functions mostly relax majorizations of the aggregation
procedure, requirements on interactions and stability conditions of the over-
all large-scale system by assuring simultaneously the order reduction of its
aggregation matrix at last to the number of its subsystems?

3. What is the best possible effective estimation of the attraction and/or
asymptotic stability domain of an equilibrium state?

The above mentioned results together with [1, 7, 8] enable the progress in solution
of all enumerated problems.

The readers can find general results obtained in the direction in the new mono-
graph [6,12].
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1 Introduction and Preliminaries

It is now being recognized that the theory of impulsive differential equations is
not only richer than the theory of differential equations without impulses but also
represents a more natural framework for mathematical modelling of many real
world phenomena (cf. [18,25]). The stability theory of impulsive differential equa-
tions goes back to the work of Mil’'man and Myshkis [22]. In the last few decades
the stability theory of impulsive differential equations marked a rapid develop-
ment, and most research focuses on impulsive ordinary differential equations. See,
for example, [5,18,25] and the references cited therein. Now there also exists a
well-developed stability theory of functional differential equations (cf. [6-10,12~
17,26, 32, 35,37, 38]). However, not so much has been developed in the direction
of the stability theory of impulsive functional differential equations. In the few
publications dedicated to this subject, earlier works were done by Anokhin [1] and
Gopalsamy and Zhang [11]. Recently, stability problems on some linear impulsive
delay differential equations are systematically investigated in several papers. See,
for example, [2-4,34,36]. However, so far stability problems on impulsive func-
tional differential equations in more general form attracted little attention, and the
well-known Lyapunov’s second method applied to such equations remain neglected
unlike in functional differential equations and impulsive ordinary differential equa-
tions.

* Advances in Stability Theory (Ed.: A.A. Martynyuk). Stability and Control: Theory, Me-
thods and Applications, Taylor & Francis, London, 13 (2003) 153-174.

153



154 A.A. MARTYNYUK, J.H. SHEN and I.P. STAVROULAKIS

Recall that during the past 30 years or so, the stability theory of finite and infi-
nite delay functional differential equations based on Lyapunov’s direct method has
received much attention. See, for example, [6-10,12-16,26,32,35,37,38]. The
earliest results on Lyapunov’s direct method for such equations tended to be pat-
terned on those for ordinary differential equations with the norm in R™ replaced
by the supremum norm in the continuous functions space C (see Krasovskii [17]).
Stimulated by the applications of Krasovskii’s results, two different directions have
taken shape: one is to improve the conditions of Krasovskii’s theorems, which
is mainly directed toward finding a good formulation for a replacement of the
boundedness of vector fields (see Burton [6], Burton and Hatvani [7], Burton and
Zhang [8], Busenberg and Cooke (9], Kato [15] and Zhang [37] and the references
cited therein); Another is considering Lyapunov function on R x R™ taking the
place of Lyapunov functional on RxC. Such a method was due to Razumikhin [24],
which does not need the boundedness of vector fields and is somewhat more con-
venient in applications. Razumikhin technique including its various variation has
also been widely used in the treatment of stability for various functional differen-
tial equations (cf. [10,12—-14,16, 17,26, 32, 38]). It is well-known that Lyapunov’s
direct method applied to infinite delay equations is more complicated than to finite
delay equations (cf. [8,10,12,14,15, 26, 38]). On the other hand, Lyapunov’s direct
method applied to impulsive ordinary differential equations has also attracted grow-
ing attention, see Bainov [5] and Samoilenko and Perestyuk [25] and the references
cited therein.

This is valid for the investigation of stability properties of impulsive functional
differential equations. In [20,21,23,28], by using Lyapunov functionals, the au-
thors studied some systems with finite delay and impulsive Volterra type integro-
differential equations. In [30, 31, 33], by employing Lyapunov function and Razu-
mikhin technique, stability problems are discussed for a class of impulsive functional
differential equations with finite delay. The results in [30, 31] established the exten-
sion of Krasovskii-Razumikhin type theorems and which also imply the persistence
of the stability properties of functional differential equations with finite delay under
certain impulsive perturbations. The results in [33] make an attempt to achieve
a class of impulsive stabilization results which depict the difference between equa-
tions with impulses and equations without impulses. An impulsive stabilization
result on ordinary differential systems can be found in [19].

In this paper, we consider the system of impulsive functional differential equa-
tions with infinite delay of the form

z'(t) = F{t,z(-)), t>t*, z€R", (1.1)
Az = Ip(t,z(t™)), t=ty, keZT. (1.2)

We extend a uniform asymptotic stability result of Burton and Zhang [8] (for
finite delay equations, see Burton [6]) by employing the Lyapunov functional and
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examine the persistence of uniform asymptotic stability of (1.1) under the impulsive
perturbations (1.2). We also obtain an impulsive stabilization result by employing
the Lyapunov function and the Razumikhin technique. It should be noted that it
is somewhat more difficult and interesting to derive such an impulsive stabilization
result and that, in general, it cannot be achieved by employing an alternative
Lyapunov functional.

Let R = (—o0,00), R = [0,00). For z € R", || denotes the Euclidean
norm of z. For t > t* > a > ~oo, F(t,z(s);a < s < t) or F(t,z(")) is a
Volterra type functional (cf. [10]), its values are in R™ and are determined by
t > t* and the values of z(s) for [a,t]. In the case when a = —oo, the interval
{a,t] is understood to be replaced by (—o0,¢]. In (1.1), '(t) denotes the right-
hand derivative of z at t. In (1.2), Z* := {1,2,---}, Az = z(t) — z(t~), where
z(t™) = sgmoz(s). It is assumed that t* < g < ty41 with tx — 00 as k — oo,
and I;(¢,z): [t*,00) x R™ = R™ is some known functions.

Let I C R be any interval. Define PC(I,R") = {a:: I — R", z is continuous
everywhere except at the points t = t; € I and z(t;) and z(t]) = t_l)itr:1+0:c(t)

exist with z(t}) = z(tx)}. For any ¢t > t*, PC([a,t],R") will be written as
PC(t). Define PCB(t) = {z € PC(t): z is bounded }. For any ¢ € PCB(t), the
norm of ¢ is defined by

il = [l = sup |¢(s)].
a<s<t

For given o > t* and ¢ € PCB(o), with (1.1) and (1.2), one associates an initial
condition of the form

z(t) = ¢(t), a<t<o. (1.3)

Definition 1.1 A function z(t) is called a solution corresponding to ¢ of the
initial value problem (1.1)-(1.3) if z: [a,8) — R™ (for some t* < 8 < o0) is
continuous for ¢ € [o, B)\{tx, k = 1,2,...}, z(t]) and z(¢;) exist and z(t]) =
z(ty), and satisfies (1.1)-(1.3). We denote by z(¢, 0, ¢) the solution of the initial
value problem (1.1)-(1.3).

We suppose that the following conditions (H;) - (Hy4) hold, so that the initial
value problem (1.1)-(1.3) exists with unique solution (cf. [29]). The existence
results for impulsive functional differential equations can be established based on
the considering of piecewise continuous (bounded) initial values functions space
PC(PCB) (cf. [10,27,29,33,34]). We also assume that F(t,0) =0, I(¢,0) =0
so that z(t) =0 is a solution of (1.1) and (1.2), which we call the zero solution.

(H1) F is continuous on [tx_1,t;) x PC(t) for k =1,2,..., where ty = t*. For

all ¢ € PC(t) and k € Z*, the limit lim  F(t,¢) = F(t_,p) exists.
(t,9)—= ()
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(Hs) Fislocally Lipschitzian in ¢ in each compact set in PC B(t). More precisely,
for every v € {t*, ) and every compact set G C PCB(t) there exists a
constant L = L(y,G) such that

IF(t, () = F(t, ()] < Ll — 9|9

whenever t € [t*,7] and p,¢ € G.
(Hs) For each k € Z*+, Ii(t,z) € C([t*,00) x R*, R™).
(H,) For any z(t) € PC([a, ), R™), F(t,z(-)) € PC([t*,00), R™).
For any t > t* and p > 0, let

PCB,(t) = {¢ € PCB(t): ||¢ll < p}.

Definition 1.2 The zero solution of (1.1) and (1.2) is said to be

(S1) uniformly stable (US for short), if for any ¢ > t* and ¢ > 0, there is a
6 = () > 0 such that ¢ € PCBs(o) implies |z(t,o,¢)] <¢ for t > 0.

(S2) uniformly asymptotically stable (UAS), if it is US, and there exists a § > 0
such that for any € > 0 there isa T = T'(¢) > 0 such that ¢ > t* and
¢ € PCBs(o) imply |z(t,0,¢)| <e for t > o+ T.

Let S(H) = {z € R": |z] < H}. We denote the following Lyapunov like
functions and functionals.

Definition 1.3 A function V(t,z): [t*,00) X S(H) — R™ belongs to class vy
if
(A;) V is continuous on each of the sets [ty—1,tx) X S(H) and for all = € S(H)
and k € Z*, the limit lim  V(t,y) = V() exists.
(ty) = (8 @)
(A2) V is locally Lipschitzian in z and V (¢,0) = 0.

Definition 1.4 A functional V(t,¢) : [t*,00) x PCB(t) = R* belongs to class
vo(-) if
(B1) V is continuous on each of the sets [tx—1,¢) X PCB(t) and for all ¢ €
PCB(t) and k € Z*, the limit lim V(i ¢) =V(t;,») exists.
(.8} (t; )
(B2) V is locally Lipschitzian in ¢ and V(¢,0) = 0.

Definition 1.5 A functional V(t,$) belongs to class vj(-) if V € vy(-) and for
any z € PC([a, ), R™), V(t,2(-)) is continuous for ¢t > ¢*.

Remark 1.1 The class v is an analogue of Lyapunov functions as introduced
in [5]. The class vo(-) is an analogue of Lyapunov functionals. It is noted that the
class v3 () will play an important role in the application of Lyapunov functional
method to impulsive functional differential equations. Since it is difficult for one
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to depict the impulsive perturbations in (1.2) by using the functionals in the class
vo(-), one has to introduce the class 3 (-) so that it is possible to use the functions
in the class vy to depict the impulsive perturbations. A function class which is
similar to vg(-) was introduced in [28]. It should be pointed out that such a class
v§(-) is common in applications.

Let V € vy, for any (t,z) € [tk—1,tk) X S(H), the right hand derivative V'(t, x)
along the solution z(t) of (1.1) and (1.2) is defined by

V'(t,z(t)) = li;n sup{V (¢t + h,z(t + h)) — V(t,z(t))} /h.
—0+

Let V € wo(:), for any (¢,4) € [tg—1,tx) x PCB(t), the right hand derivative
V'(t, ¢) along the solution z(t) of (1.1) and (1.2) is defined by

V'(t,z(-)) = limsup{V(t + h,z(")) = V(t,2(-))}/h.
h—0+

We say a function W: [0,00) = [0, 00) belongs to class R if W is continuous and
strictly increasing and satisfies W (0) = 0. We say a function 7: [t*,00) — [0, c0)
belongs to class PIM if 1 is measurable function such that for any { > 0 and every

€ > 0, there exist 7' > ¢* and ¢ > 0 such that {t > 7T,Q C [t — I, ¢], a measurable
set, and p(Q) > €] imply

[ntera 2,
Q
where u(Q) is the measure of the set Q.

Throughout this paper, we assume that there exists H, € (0,H) such that
x € S(H,) implies that z + Ix(tx,z) € S(H) for k€ Z+.

2 Main Results

Our first result employs a Lyapunov functional which belongs to class vo(+) and is
of the form V(t,¢(-)) = Vi(t,¢(t)) + Va(t,4(-)), where V1 € vy and Vi € p3(-).
This result extends a result by Burton and Zhang [8] and examines the persistence
of uniform asymptotic stability of (1.1) under the impulsive perturbations (1.2).
The proof of this result requires the following lemma.

Lemma 2.1 Let {x,} be a sequence of Lebesgue integrable functions, ,,: [0,1]
— [0,1]. Let n(t) € PIM and g:[0,00) — [0,00) be continuous, g(0) = 0,
g(r) > 0 for r > 0, and let g be nondecreasing. If there exists a > 0 such that

1 1
Jan(t)dt > « for all n, then there exists 8 > 0 such that [ n(t)g(zn(t))dt > 8
0 0

for all n.
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Proof Let Ay = {t € [0,1]: zx(t) > «/2}, A§ be the complement of A; on
[0,1], and let px be the measure of Ax. Then pg > a/2. To see this, if ur < /2,
then

1
a< /mk(t)dt:/mk(t)dt+/zk(t)dt<%+%,
0 Ay, Ag

a contradiction. (The first «/2 follows from px < @/2 and z(t) < 1. The second
a/2 follows from A§ <1 and zx(t) < «/2). Hence, for any k, we have

/ n(6)g(wx(6)) dt > / n(t)glex(2)) d > / n(t)g(a/2) dt

Ax A

= g(a/2) / n(t)dt > gla/2)6 = B,
A

where § = §(a) > 0 is some constant. This completes the proof.

Remark 2.1 We note that Lemma 2.1 extends the Lemma in {6] where the se-
quence {z, } was assumed to be continuous functions having continuous derivatives.

Theorem 2.1 Let Vi(t,z) € vy, Va(t,d) € v5(-), Wi e R (i=1,...,5) and
n € PIM. Let the function ® € C(R*,R") be bounded and satisfy ® € L'(R™).
Assume that the following conditions hold:

() Wall6(Ol) < Vit 6()) < Wa6(O) + Wa ( [ 8t )Wa(6(s)]) ds ), where
V(t,¢() = Vi(t, 6(1)) + Va(t, () € wo(');
(i) for k€ ZT and = € S(H1),
Vilte, = + I (ty, %)) < ve(Vi (2, 2)),

where i (s) € C(RY, RY), ¢i(s) > s for s >0, ¥r(s1 + s2) > he(s1) +
Yr(s2) for si, s2 > 0, Yi(s)/s are nondecreasing for s > 0, and there
exists a constant M > 1 such that for a > 0,

izpk(a(z "9 Ve (Yr—1(- - (¥1(a))---)) <M, keZt
k=1

a

(iil) iof z(t) = z(t,0,¢) is a solution of (1.1) and (1.2) with o > t* and ¢ €
PCB(o), then

VIt z() < =n@)Ws(lz(H)))-
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Then the zero solution of (1.1) and (1.2) is uniformly asymptotically stable.
Proof Let € >0 (¢ < Hy) be given and choose a positive number § < & such

that MW,(8) < Wi(e)/2 and MW3(JW4(8)) < Wi(e)/2, where J = [ &(u) du.
0

Let ¢ > t*, ¢ € PCBs(o) and z(t) = z(t,0,9). Set Vi(t) = Vi(t,z(t)), Va(t) =

Va(t,z(-)) and V() = Vi(t) + Va(t). Let 0 € [tm—1,tm) for some m € ZT, where

tg = t*. Then for « <t < o we have

t

Wi(lz()]) < V(8) < Wa(8) + Ws <w4(é> / B(t - s) ds)

«

= Wg(d) + Wy <W4(5) / ‘I>(u) du)

\8

= o

= Wa(0) + Wa(JWa(8)) < MW (e).

From (iii) we have V'(t) < 0 for ¢ < t < tp, which implies V() < V(o) <
M='Wy(e) for o <t < tp. Thus, by condition (ii) we have
Vtm) = Viltn) + Valtn) = Viltm, 2(t) + In(tm, 2(T))) + Va(tm)
S Pm(Vi(t, 2(t))) + Ym(Va(Em))

S Ym(Vilty) +Va(tn) = ¥m(V (E5))
< Pm(V(0)) < Y (M7 Wi (e)) < Wile).-

Similarly,
V(t) S V(tm) S ¢m(V(O‘)), tm S t< tm+1,
V{tms1) < Ymi1($m(V(0)) € Ymst @m(M TWi(e))) < Wi(e).
By induction, one can prove in general that for i =0,1,...,
V() < Ymri(- - (@m(V(0))) ) SWi(e)y s St <tmpigr,
V(tmriv1) € Ympir1 (- (@m(V(0))) -+ ) < Wile).

Thus
Wi(lz(®)]) V() < Wile), t=>o,

or |z(t)] <e for t > 0. This proves the uniform stability (US).
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Next we will prove UAS. For £ = ¢; < min{H,;,W, (1)} find § of uniform
stability. Then V(t) < Wi(eq) for t > 0 and |z(t)] < &1 for t > . Let ¢ > 0(e <
€1) be given. We must find T > 0 such that [0 > t*, ¢ € PCBs(0), t > o + T

imply that |z(t,0,¢)| <e.
For this £ > 0, find 6 > 0 such that

Wo[W; ' (8/K)] + W5 (26) < MWy (e), (2.1)
where we let ®(¢) < K for ¢ > 0. Now, find r > 1 with
fee]
(2.2)

W4(51)/<I>(u) du < 8.

T

For t > o + r, we have
¢

Wi(l2(t)]) < V(E,2() < Wa(lz(B)]) + Ws (/‘I’(t - 8)W4(II(S)|)d8>

«

t—r t

gwmmm+m</¢wﬂmqm@+/¢wﬂmmmﬂmg

[o3 t—r
t—a

< Wa(lz(®)]) + Ws (Wuel) /

r

< Wallz(®))) + We <W4<el> [owax [ W4<|z<s>|)ds>

@@@+/Kmm@wg

—_T

-7

< Walle(®)]) + W (9 +K / Wi(la(s)) ds) .

We will find a s; such that
(2.3)

|z(s1)| < Wi (6/Kr) = e,

/ Wi(|z(s)|) ds < % (2.4)

For any r; > o, from V'(¢,z(-)) < —n(t)Ws(|z(t)|), we have for ¢ > rq,
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t

V(t,2()) < V(r,a()) - / nOWallo(s))ds + S [Vit) - V(E)]

r r1<t;i <t

t

SWik)+ 3 14 - Vi) - [ n(s)Wa(la(o)) ds

ri<t; <t I

A ‘
<witen+ 3 ) (HEED 1) < [aoms e as

ri<ti <t e

< Wilen) + S Waten) (LD 1) [y, et ds
W1(61)

i=1 I

= Wi(en)[1 + G(Wh (e1))] - / () Ws(lz(s))) ds,
where we let

G(Wi(e1)) Z[wl Wi(e1)) — Wailen)]/Wiler).

i=1

Thus, there exists a Ty > r such that |z(t)] > W, (8/Kr) = e, fails for some
value of ¢ on every interval of length T. Hence, there exists {s,} — o0 as n — oo
such that |z(sn,0,9)| < £2. In particular, we choose

€lo+(n-1T1,04+nTh], n=23,....

The length of the intervals is independent of ¢ and .
Now, we claim that there exists some s; such that

/ KWy(|z(s)|) ds < 9.
Otherwise, for all s,
[ KW@ 26, n=23,... 25)
Sn—T

Set z,(t) = Wy(lz(—rt + sn)|) (then 0 < z,(t) < 1) so that by Lemma 2.1 we

have
8n

n(s)Ws(lz(s)[) ds > 8

Sn—T
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for some 8 = f(r, K,6) > 0. Then, for ¢ > s, we have

VI(t,z())) < —n(t)Ws(|2(t)])
so that

t

V(t,2()) < Vio,p) - /n(S)Ws(Iz(S)I)dS + ) W) - V)]

s o<t; <t

n S$2i

< Wil + Wi ()] - 3 / ()W (J2(s)) ds

=lagior

< Wl(El)[l + G(W1 (61))] -nf<0

n > Wl(El)[l'JrG(Wl(El))]/ﬂ (26)

Hence, if (2.6) holds, then s, fails to exist with (2.5) holding. We choose n as the
smallest integer such that (2.6) holds. Then, we have

[Z(sn,0,9)| < €2,

and

/ KWy(|z(s)]) ds < 6.

This s, may be seen as s; in (2.3) and (2.4).
Set ¢ =min{k € Z*: tx > s,}. Then, we have for s, <t < t,,

Wa(2(®))) < V(t,2()) < V(sm ()
/ Wa(ja(s)) ds>

Sp—T

< Wo (W, (0/K7)) + W3(20) < MWy (e).

< Wa(lz(sn)|) + W3 (0 + K

By condition (ii) and similar arguments as in the proof of uniform stability, we can
prove that for 1 =0,1,...,

V(1) < Yqui(grioi (- Wo(MTWL()) ), tgwi <t <tgrita.
Thus, by condition (ii} we obtain that

Wi(jz(@)]) < V(Ez()) < Wile), 2 sn.
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Now, let T' = 2nT;. Then t > o + T implies |z(t,0,¢)| < &. The proof for UAS
is complete.

Our second result employs a Lyapunov function which belongs to class vy to-
gether with certain Razumikhin techniques. This result shows that certain im-
pulsive perturbations may make an unstable system uniformly stable and even
uniformly asymptotically stable. It should be pointed out that, in general, such a
result cannot be achieved by employing Lyapunov functionals.

Theorem 2.2 Suppose that there are functions V € vy, Wi, Wy € R, ¢(s),
H(s), P(s) € C(R™,R") such that g is nonincreasing with q(s) > 0 for s > 0,
HO) =0, H(s) > 0 for s > 0, P(s) is strictly increasing with P(0) = 0,
P(s) > s for s > 0. Assume that the following conditions hold:

() Wh(lzl) S V(t,z) < Wa(lz]), (t,2) € [t*,00) x S(H);

(i) for any solution z(t) of (1.1) and (1.2), V(s,z(s)) < P(V(t,z(t))) for

max{a,t — q(V{t,z(1)))} < s <t, implies that

V'(t,2(t) < g HV (¢, (1)),

where g: [t*,00) = RY, locally integrable;
(ili) for k€ Z* and z € S(H,),

Vite, o + L(te, ) < oe(V(t,,2)),

where ¥, € C(RT,RT) with ¢r(s) < P7Y(s) for s > 0 and k € Z7,
where P~! denotes the inverse of the function P;

(iv) there exist constants A1 > 0, Ag >0 and A > 0, such that for all k€ Z*
and p >0,

A St —t < Ag,  and
(p) g1

/ d(z) - [ oasza

!

=

t

Then the zero solution of (1.1) and (1.2) is UAS.

Proof We first prove US. For given ¢ > 0 (¢ < H;), we may choose a § =
d(e) > 0 such that P(W2(d)) < Wi(e). For ¢ > t*, ¢ € PCB;s(o), let z(t) =
z(t,0,¢) be the solution of (1.1) and (1.2) and let V() = V(¢,z(t)). Let o €
[tm—1,tm) for some m € Z*, where t; = t*. Then we have for a« <t < o,

Wi(lz(®)]) < V(1) < Wa(l2(8)]) < Wa(8) < P(W2(5)).

We claim that
V(t) < P(W2(8), o<t<tn. (2.7)
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Indeed, if (2.7) does not hold, then there exists a s; € (0,t,,) such that
V(s1) > P(W2(6)) > W2(é) > V(o).
This implies that there exists a sq € (0, 1) such that
Vi(sz) = P(W2(d)), V() < P(W(d)), o <t<so,
and also there exists a s3 € [0, s2) such that
Viss) = Wa(d), V() 2W2(d), s3<t<ss.

Thus, for s3 <t < s, we have

V(s) < PWa(8)) S P(V(Y), max{ayt—q(V(t)} <s<t.
In view of condition (ii) we have

VI(t) <gHV (), s3<t< s,

and so
V(s2) 4 52 tm
U
< < .
i < [o@as< [ ot
V(s3) s3 tm—1

On the other hand, let u = W)(§) in condition (iv) we have

V(s2 P(W3(8)) V(s2)
/ / / gs)ds+ A > / _du_

H(u H( u) - H(u)’
V(ss3}) tm—1 V{s3)

This is a contradiction and so (2.7) holds. From (2.7) and condition (iii) we have
Vitm) < ¥m(V (5, 2(t5)) = ¥m(V(t5) < PTHV(EL)) < Wa(8). (2.8)
Similarly, we have
V() < P(W2(0)), tm <t <lmi1, Vtms1) < Wa().

By induction, we can prove that

V(t) < P(W2(8)), tmei <t <tmyirr,
Vitmeic1) S W2(6), +=0,1,....
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Thus, we have
Wi(lz(8)]) <V (t) < P(W2(8)) < Wile), t>o,

which shows that the zero solution of (1.1} and (1.2) is US.
Next, we will prove UAS. For ¢ = H; find § of uniform stability such that
P(Wy(6)) = W1(H;y) and ¢ > t*, ¢ € PCBs(o) imply

V(t,z(t) < P(Wa(8)), la()l < Hy, t2o,

where z(t) = z(t, 0, ).

Now let € > 0 (¢ < Hy) be given. We will prove that there exists a T'=T'(g) >
0 such that ¢ € PCBs(o) implies that |z(t)] <e for t > o+ T. Since 4 > 0, we
can find a smallest positive integer N such that

P(W»(6)) < P71 (Wi(e)) + ANH (P~ (Wi (e))). (2.9)

This N is independent of o and ¢.
Let v = v(e) = ¢(P7H(PI(W1(e)))). Let o € [tm—1,tm) for some m € Z7
and let
m;=min{k € Zt 1ty —tm,_, >}, i=12,...,N,

where we let mg = m. We consider all the intervals J;: = [t ,,tm:], T =
1,2,...,N. In view of the piecewise continuous properties of V(t) on .J; and

Vite) = Vb, 2(t) + Li(te, ()
<ee(V(t) S PTHV(E) S V),
we see that sup{V (t): ¢t € J;} := L; exists and satisfies either L; = V(¢,,,_,) or
L; =V (r;) for some 7r; € (tm,_,,tm;]. Without loss of the generality, we assume

that L; = V(r7), i = 1,2,...,N. For the case when L; = V(tm,_,) for some
J € {1,2,...,N}, the proof is similar and is omitted. Let m* = m*(e) be the

N
smallest positive integer such that m*A; > +. It is easy to see that > (ty, —
i=1

i) SN(M*A + A2). Let T =T(e) = N(m*A1 + A2) + A\o. We will prove that
lz(t)| <e, t>o+T.
To this end, we first prove that if
V(r;) < PY(Wi(e)) forsome i€ {1,2,...,N}, (2.10)

then
V(t) < W (5)7 t> tmN' (211)
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From (2.10) we have
V(1) < PHWi(e)) < Wile), tmi , <t < b, (2.12)

We claim that
V() S Wile),  tmy <t <tmig1 (2.13)

If (2.13) does not hold, then there exists a s1 € (tp,,fm,+1) such that
V(s1) > Wile) > P7H(Wi(e)) > V(tm,).
This implies that there exists a sz € (tm,,$1) such that
V(sa) =Wile), V() <Wile), tm, <t<ss (2.14)
and also there exists a sz € [t,,, s2) such that
V(ss) = PY(Wi(e), V(t) > P Y (Wi(e)), s3<t< ss. (2.15)
From (2.12), (2.14) and (2.15) we have for s3 <t < ss,
V(s) SWi(e) < P(V(1)), t—v<s<t
and so by the definition of v we have
V(s) < P(V(?), max{o,t—q(V(t)} <s<t.
By condition (ii) we have
VI(t) <g)H(V (1), s5<1t< 50,

This yields

V(s2) d 82 bm 41
H(Z) < /g(s) ds < g(s)ds + A
V(ss) s3 tm;
Wi(e) V{s2)
< du / du
- Hu) H(u)
P-1(Wy(e)) Viss)

This is a contradiction and so (2.13) holds. From (2.13) and condition (iii) we have

V(tmi+1) € Ymop1(Vitg 41)) < PHV(t,00)) < PTHWL(e)).
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By induction, we can prove in general that

V(t) < (6)7 itk ST < tmitkti,

(2.16)
V(tmoare1) < P Wi(e), k=0,1,2,....

This shows that if (2.10) holds for some ¢ € {1,2,..., N} then (2.11) holds.

Next we will prove that there exists a i € {1,2,..., N} such that (2.10) holds.
Otherwise, assume that for all ¢ = 1,2,...,N, V(r7) > P"1(Wi(g)). In the
following we will prove that this assumption leads to a contradiction. To this end,
we show that

V(ry) S V(rg) —iAH(P~'(Wi(e))), i=0,1,...,N, (2.17);

where V(ry) := P(W(d)). Clearly (2.17)¢ holds. Now suppose (2.17); holds for
some j (0 < j < N). We must prove that (2.17);,, holds. We first claim that

V(rig) SVI(ry). (2.18)
In fact, since V(t) < V(r;) for tm; , <t <ty it follows that
Vitm,) < ¥m, (V(t5,) < PTHV(t5,)) S PTHV (7)) <V (r))-
By similar arguments to that of the proof of (2.16), we can obtain
V(t) < V(T_/,_)ﬂ tmj“"k <t < tmj+k+1»
V(tmj+k+l) SP_I(V(T]_)): k:O717"'a

and so (2.18) holds. Next, we consider two possible cases:
Case 1. P71 (Wi(e)) < V(rj,) < P7HV(r))
In this case, by condition (iv) we have

P(V(T;+1))

V(ri)
and so

V(rj) < P(V(rj,)) — AH(P (Wi(e)))
S V(ry) = AH(PTH(Wi(e)) < V(rg) — (5 + DAH(PTH (Wi (e))).
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Case 2. P_I(V(T;)) <V(rjja) < V(r;).

Let 7j41 € (tm;+k,tm;+k+1) for some k € Z+ U {0}. Then for k =0, we have
Vitm,+1) = V(tm,) < ¥m,(V(t5,)) < P71V (r;)), and for k # 0 we also have

J

Vitm+1) < Ymen(V(ty, ) < PTHV(r,)) < P7H(V(r;)). Therefore, there

exists a r* € [ty +4,7j4+1) such that
V) = PRV,

and
P’I(V(rj_)) <V(t) < P(W2(8), r* <t<rjpr.

From (2.18) and (2.20) we have for r* <t < rj;1,
V(s) <V(ry) < P(V(1), t-v<s<t,
and so for " <t <7rjq
V(s) < P(V(1)), max{a,t—q(V()} <s<t
By condition (ii) we have

Vi) <gHV (), r* <t <rj,

which implies

Vir.) Ti+1 bmjtkd
d

| dm< [awss [ awas

V(r*) ™ Lo 4k
This, together with (2.19) and condition (iv), yields
Vi(ria) Viry)
du du
< —
R B

PV PEAV(T))

Accordingly, we obtain

Viry)
du
— > A.
/ H(u) ~
Vi(riiy)

This leads to

(2.19)

(2.20)

V(rj) SV7) = AHPTH(Wi(e))) S V(rg) — (5 + DAH(PH(W1(e))).

J+1
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By combining the cases 1 and 2, we may conclude that (2.17),4, holds. By induc-
tion, we see that (2.17); hold for all i = 0,1,..., N. Therefore, we obtain

V(ry) <V(rg) - NAH(P™ (Wi (e)))
= P(Wa(8)) - NAH(P™' (Wi (e))) < PTH(Wi(e)).  (by (2.9))

This contradicts the assumption that V(r]) > P71 (Wi (¢)) forall 1 = 1,2,..., N.
Thus, there is a i € {1,2,..., N} such that (2.10) holds and so (2.11) holds. Since
0+ T =0+ Nm* A\ + A2) + A2 >ty it follows that

Wi(lz()) V(@) <Waile), t2o0+T.

The proof is now complete.

Remark 2.2 In Theorem 2.2 if 9i(s) = ¥(s), k = 1,2,..., where 9(s) €
C(R*,R™), strictly increasing with (s) < s for s > 0, then we may let the
function P(s) = ¢ ~!(s) without structuring another P-function.

From the proof of uniform stability part in Theorem 2.2, we see that in the
following weaker conditions uniform stability is achieved.

Theorem 2.3 Let functions V(t,z), Wi, Ws, P, ¥, g and H as in Theo-
rem 2.2. Assume that conditions (i) and (ii) in Theorem 2.2 hold and that

(ili) for any solution z(t) of (1.1) and (1.2), V(s,z(s)) < P(V(t,z(t))) for
a < s <t implies that

Vi(t,z(t) < g H(V (¢, 2(1)));

(iv) for any u >0 and k€ Z+

P(u) J trs1

U
/H(u) > /g(s)ds.
I3 ti

Then the zero solution of (1.1) and (1.2) is US.

3 Examples

In this section, two illustrative examples are given. In particular, we describe by
Example 3.2 the significance of impulsive stabilization.
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Exzample 3.1 Consider the equation

t

z'(t) = —A@)z(t) + k(2) / C(t—s)z(s)ds, t>0, (3.1)

Az =bpz(t™), t=ty, keZT, (3.2)

where A(t) € C(R*,R%), k,C € C(R*,R), {bs} is a sequence of numbers.
Assume that the following conditions are satisfied:

(1) ofo|C’(u)|du < oo, ®(t) := T|k(u)| |C(u)|du € L'[0,00) and ®(t) < K for
0 t

some constant K > 0;
(i1} there exists constants v > 0, 3 > 0 such that v|k(t)| < |k(t—s)| for ¢t > 0,

~00 < s <t, Bxy > 1,and n(t) := A(t)=B[|k(u—1t)| |C(u—t)|du € PIM;
o0 t
(iii) Y |bg| < oo.
k=1
Then the zero solution of (3.1) and (3.2) is UAS.
In fact, let V(t,z(-)) = Vi(t,z(t)) + Va(t, z(-)), where

t oo
Vilt,z) = |z, Va(t()) = 8 / / k(s — )] [Cu — )| dufe(s)] ds.
—o0 t
Let ¥i(s) = (1 + |bx])s and M = IO—O[ (1 + |bg]). It is not difficult to see that
k=1

conditions (1) and (ii) of Theorem 2.1 are satisfied. If z(¢) is any solution of (3.1)
and (3.2), then

t
Vit z()) < —A@)|z()] + k)] / |C(t = 8)[|=(s)| ds

+ﬁ/ k(s — )] |Clu — £)] dulz(2)| - B / k(t ~ )] [C(t — )| |2(5)| ds

<- (A(t) - ﬂ/ k(u = 8)[1C(u - t)|dU> |lz(t)] = —n(8)|2(2)].

Thus, condition (iii) of Theorem 2.1 is satisfied. By Theorem 2.1, the zero solution
of (3.1) and (3.2) is UAS.
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Ezample 3.2 Consider the equation

0
z'(t) = A@®)z(t) + B(t)z(t — 7) + / Ct,u,z(t +u))du, t>0, (3.3)

Az =Lyt z(t7)), t=ty, ke 27, (3.4)

where 7 > 0, A(t), B(t) € C(RT,R), A(t) < a, |B(t)] < b, C(t,u,v) is continuous
on RT x (—00,0] x R, I;(t,z) € C([R* x R,R), and |z + I;(tx, )| < c|z|, k =
1,2,..., where c is a constant. Let the following conditions be satisfied:

(1) 1C(¢t,u,v)] < m(u)lv], t >0, and

0

/m(u)duSM;

—o0
(il) 0 < ¢ < 1, and there exist constants Ay > Ay > 0 such that

Inc

———— 7t
a+bc !+ Mc™V’ ke

A Stppr —tr A < —

Then the zero solution of (3.3) and (3.4) is UAS.
In fact, let V(t,z) = V(z) = 32, ¢r(s) = ¢(s) = c?s, H(s) =s. Then

ca? = (V(x)).

DO =

Ve + Li(ty, 7)) = %[97*' I (g, 2)]” <

From (ii) we can choose a positive constant A such that

2lnc+ A

tppr — by < — ke Zt. 3.5
BT S T e b T Mo A C (3:5)

From (i) we see that there exists a continuous function ¢: (0, 00) = (0,00), ¢(s) >
7 for s > 0, ¢ is nonincreasing, such that

—q(s)
/ m(u) du < AvZs.
—o0

By Theorem 2.3, we can easily obtain the uniform stability. Thus, without loss
of generality, we may assume that [|z()||("°% < 1. Let P(s) = 4~!(s). Then
P(s) > s for s >0. If

V(S,ZL’(S)) < P(V(t,.??(t))), max{—oo,t-— q(V(t,iL'(t)))} <s<t,
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then we have

t
VI'(t,z(t)) < az®(t) + |B@)] |z@®)] |2(t — )| + |(t)] / m(v — t)|z(v)| dv
—q(V{(t,z(1)))
< az(t) + be 2 (t) + [2(2)] / m(v — £)]z(v)| dv

o~

@l [ mE- o)
t—g(V(t,z(t)))
—q(V(£,2(8))) 0
< (a+bc M)z (t) + |z(2)] / m(u) du + ¢ 22 (t) / m(u) du
< (a+bct + Mc V)2 (t) + Alz(t)|\/2V (¢, z(t))
=(a+bct+ Mt + A)2?(t)
=g(OHV (t,2(1))),

where g(t) = 2(a + bc™! 4+ Mc™! 4+ A). From (3.5) we see that for all u > 0
and ke Z+

P(p)  tesr c”
/ / (s)ds = / ——2/ (@+bc '+ Mc™t + A)dt

=—2Inc—2(a+bc™t + Mc™ + A)(tpe1 — ) > A

Thus, we may conclude from Theorem 2.2 that the zero solution of (3.3) and (3.4)
is UAS.

Remark 3.1 We note that in the above Example 3.2 the uniform asymptotic
stability may be caused by the impulsive perturbations. To see this, we note
the fact that under those conditions on equation (3.3) given in this example, it is
possible that the zero solution of (3.3) is unstable (because we may allow A(t) > 0);
another fact is that impulsive equations (3.3) and (3.4) reduce to equation (3.3)
without impulses if and only if all Ix(¢,z) = 0, however, in this case condition
0 < ¢ < 1 in this example will not be satisfied.
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1 Introduction

In this paper we consider the moment asymptotic behaviors of solutions to a sto-
chastic functional differential equation with finite delay r > 0 by the Lyapunov-
Razumikhin method:

dX(t) = f(t, Xe)dt + g(t, X¢)dB(t), t>to >0, 1
Xto =, ( )

where f: [-r,00)xC — R® and g: [-r,00) xC — R**" are continuous functions,
B(t) is the n-dimensional standard Brownian motion and ¢: [-7,0] x @ — R¢
is a continuous process with ¢(s): § — R® a F;,-measurable function for all
s € [-r,0] and E||¢||% < oo. See below for the definition of C and || - ||c. We
obtain Theorems 3.4-3.6 as the main theorems. Regarding application we discuss
the almost sure asymptotic behaviors of solutions to (1). See Theorems 4.2 and 4.3.
The stability theorems of solutions to a deterministic functional differential equa-
tion with finite delay have been studied by many authors using the Lyapunov func-
tionals and it has been shown that finite delays cause many interesting phenomena

*Advances in Stability Theory (Ed.: A.A. Martynyuk). Stability and Control: Theory, Me-
thods and Applications, Taylor & Francis, London, 13 (2003) 175-188.
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(see [1] and [2]). On the other hand, what about the solutions to the stochastic
FDE with finite delay (e.g. Mackey and Nechaeva [7])? Unfortunately, however, it
seems that there are not many papers on the asymptotic stability of solutions by
the Lyapunov functionals, except very special cases, for the case of the stochastic
FDE with finite delay. Moreover, it would seem in general, very difficult to con-
struct Lyapunov functionals that satisfy the conditions in the asymptotic stability
theorems of the solutions to a stochastic FDE with finite delay (see Kolmanovskii
and Myshkis [4], and Kolmanovskii and Nosov [5]). In this paper we consider
the stochastic version of the asymptotic behavior theorems [14, 15] of solutions to
the functional differential equation with finite delay and we generalize the theorems
of [16]. Then, since the theorems presented are based on the Lyapunov-Razumikhin
method which is given by two Lyapunov functions, we can avoid the difficulty of
the constructions of the Lyapunov functionals.

The contents of this paper are as follows. In Section 2 we cover preliminaries.
In Section 3 we consider the convergence of EW (¢, X (¢)) as t — oo. In Section 4
we discuss the almost sure Lyapunov exponent. In Section 5 we present examples.

2 Preliminaries

Let R? be the d-dimensional Euclidian space and let Rt be a set of all nonnegative
real numbers. For a continuous function z: [~r,00) — R? we define the continuous
function z,: [-r,0] & R? by setting z:(s) = z(t + s), s € [-r,0]. Let C =
C([-r,0], R%) be the space of all continuous functions 4: [-r,0] - R® with norm
[l¥llc = sup{|¥(s)|: s € [-r,0]} < oo, where | - | is the Euclidian norm.

Let (Q, F, {Fi}t>0, P) be the complete probability space with a right continuous
increasing family {Fi}¢»>o of sub-c-algebra of F, where each F; contains all the
P-null sets and let MC(t) be the space of all F;-measurable C-valued functions
w: Q@ = C with seminorm Ellpl|Z = E sup [¢(w)(s)|? < co. For a continuous

—r<s<0

Fi-adapted stochastic process X (t): @ — R%, t > ty—r we have the continuous Fj-
adapted C-valued stochastic process X¢: @ — C, ¢t > tp > 0 by setting X (w)(s) =
X(t+s)(w), se€[~r0], t >t [10].

In this paper we assume that the functions f and g satisfy enough additional
smoothness conditions to ensure the unique, global solution of (1). A continuous
function V: [-r,00) x R? - R* is said to belong to the space C(2)([—r, 00) x
RY RY) if OV (t,2)/0t, Vo(t,x) = (OV (¢, 2)/0x1,...,0V (t,2)/0zq), and V,(t, z)
= [62V(t,z)/ (O, 6.’1,']')];1,3»:1 exist and are continuous on [-r,00) x R%.  Let
LV(t, X(t) = Vi(t, X(@) + Va(t, X@)F(t, Xt) + (1/2) tr{Voo(t, X (£)g(t, X})
g(t, X)T} to equation (1).

Throughout this paper let X (t) = X (¢;t,¢) denote the unique, global solution
of (1) for any initial value (to,¢), ¢ € MC(tg), to > 0 and we always assume that
E|LV(t,X(t))| is locally bounded in t € [tg, o0).
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Definition 2.1 A continuous function p: [0,00) = R* is said to be integrally
[ee]

m=1

am < b < Gmy1y by —am 28>0 (m=1,2,3,...) for some fixed § > 0.

positive if [ p(s)ds = oo holds on every set J = |J (am,bn) such that 0 < ay,
J

3 The Convergence of EV (t, X (t))

In this section we discuss the convergence of EV (¢, X(t)) as t - oo and we
consider under what conditions EV (¢, X (t)) approaches zero as ¢ — oo. In this
paper we assume that any solution to (1) exists globally and is unique. Thus, from
the proof of Theorem 3.2 [16] we have the following theorem.

Theorem 3.1 Suppose that there exists a continuous function V € C12
([-r,00) x R4, RY), and the following condition is satisfied:
(a) there exists an integrable function v: [—r,00) = Rt such that ELV (t, X (t))

<A(t), t > to, whenever EV (¢, X(t)) = sup EV(t+s,X(t+s)), t > 1.
—r<s<0

Then, for each solution X (t) = X (t;to,p) of (1)

sup EV(u+s,X(u+s)+ /'y(r)d'rz sup EV(t+s,X(t+53))
—r<s<0 —r<s<0
u—r

at any time t > u > to.

Throughout this paper let ||Vi||p := sup EV(t+s,X(t+s)). Then, we have
—r<s<0

Theorem 3.2 Suppose that all the conditions of Theorem 3.1 are satisfied.
Then tIim [[Vellp exists.
— 0

Proof By Theorem 3.1 we have the set {|{Vi||p, t > to} is bounded. Now
suppose that lim; . ||Vi||p does not exist. Then there exist two sequences {uy},
{t»} and real numbers a > 0, 8 > 0 such that wu,, t, — co and ”Vun “D -
and Hth “D — 3 as n = oo with 0 < a < 8 < co. Without loss of generality we
may assume that up, <itp <upy1 (n=1,2,3,...).

Then, by Theorem 3.1

oo

Weclp+ [ ) 2 Wil

Uy —T

Since v € L'(0,00), there exists an N > 0 such that [ ~(r)dr < (8—a)/2 for

Up —T
all integers n > N. Thus, letting n — oo, we have (8 —a)/2 > f — a > 0, which
is a contradiction. Therefore, the proof of the theorem is complete.
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Theorem 3.3 Suppose that all the conditions of Theorem 3.1 are satisfied.
Furthermore, suppose that there exist an integrable function ¢ : [0,00) = RY and
for every € > 0 a continuous function h = h(e): [0,00) = RY with h(u) > u for
u>0 and h(0) =0, a K = K(¢) >0 and a time T = T(e) > to such that for
any solution X (t) = X (t;to,9) of (1)

ELV(t,X(1) < Ky(t), t>T,

whenever HVtHD <2, EV(t,X(t)) > ¢ and |V
Then, tlim EV(t,X(t)) exists.
00

I, < WEV(ELX®), t > T.

Proof By Theorem 3.2, there exists an a > 0 such that tlim IVillp = @ Thus
— 00

we get a sequence {t,} with t, & o0 as n = oo such that EV(t,, X (t,)) = «
as n — oo. If a =0, then the proof of the theorem is complete.

Next, assume « > 0. Now, suppose that the conclusion of the theorem does
not hold. Then, there exists a sequence {r,} with 7, = o0 as n — oo such
that {EV(rn, X (7))} converges as n — oo to some a; > 0 with a; # o.
Here, without loss of generality, we may moreover assume 7, < t, < Th1 (n =
1,2,3,...). Then, by Theorem 3.1,

oo

HthHD+ / Y(r)ydr > EV(rpt1, X(Tnt1))-

tn—T

Thus we have a; < a. Hence, let A > 0 be a real number such that 0 < A < a <
2X and let 6(A) = min{}h(u) — u|: A < u < 2A}, where h = h(X). Without loss
of generality we may suppose A < oy < @ and 0 < a — a; < 6(A)/3 . Then, we
can choose a sufficiently large natural integer NV and two new sequences {7} and
{t..} with 7, <t <7, and 75, = 00 as n — oo such that EV(r),, X (7)) =
(@ +201)/3, EV(t,, X(t,)) = 20+ 01)/3 and (a +20)/3 < EV(t, X(t)) <
(200 + @1)/3 for all t € (r},¢,) with n > N. Furthermore, we may assume that
|HVt||D - a| < 6(A)/3 and X < {|Vi|lp < 2X for all ¢t > 1), without loss of
generality. Thus we obtain that

IVillo — EV(t,X(8)) < [IVillp — a| + e — BV (7, X (7,))]
5 L 80 L 6
3

+|EV(r,, X(r})) — EV(t, X ()] < 3 3

SHEV(E, X(8) - BV(t, X (1))

for all t e (7},,t)) with n > N, which implies that ||Vi||p < R(EV (¢, X(t))) for
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all t € (r),#,) with n > N. Thus, by the condition of the theorem we have that

n'n

(@ —ay)

tn
S2 = BV, X (W) - BV, X () < [ Kumdr, 2N,

which yields a contradiction letting n — oo because 1 € L'(0, 00). Therefore, the
proof of the theorem is complete.

Theorem 3.4 Let ¢ > 0 and &£: [0,00) = R be a positive real number and
an integrable function, respectively. Suppose that there exrist continuous functions
V, We C12)([—r,00) x R*, Rt) and V satisfies condition (a) of Theorem 8.1.
And assume that for every € > 0, there exists an H = H(e) > 0, a continuous
function h = h(e): [0,00) & RT with h(u) > u for u >0, h(0) =0, and a time
T =T(e) >ty such that

(a) there exists a nondecreasing, integrable function m(t) > 0 such that

ELW(t,X(t)) <m(t) for all t > T whenever ||Vi||p < 2¢, EV (¢, X (1)) >
e and |Villp < h(EV(t,X(t))) forall t > T;

o0
(b) for any sequence {1y} with T7x — oo as k — 00, Y, m—(lnc—) = 00;
k=1

(¢) ELV(t, X (£)) < —HcEW (t, X (t)) + £(t) for all t > T whenever |V||p <
2e, EV({t,X(#)) > ¢ and |Vi|lp S R(EV(t, X(t))) forall t > T.
Furthermore, assume that if EW (¢, X (t)) does not approach zero as t — oo, then
EV(t,X(t)) also does not approach zero as t = co. Then EW (¢, X (t)) approaches
zero as t — oo for any solution X (t) of (1).

Proof Suppose that there exists a solution X (t) of (1) such that EW (¢, X (¢))
does not approach zero as t — oo. Then, by Theorem 3.3 and the hypothesis
there exists a f# > 0 such that EV(t, X(¢)) approaches 8 as t — oco. Because
of B > 0, we can choose a A > 0 with A < 8 < 2A. Let h = h{\) and let
o(A) = min{h(u) = u: A < u < 2)A}. Then we can take a Top = T(A) > to such
that [[Villp < B+ o(N)/2, IVillp < 2A, EV(t,X(t)) > X and [EV(t, X(2)) -
Bl < ag(A)/2 for all t > Ty. Thus, for all ¢t > Ty, [[Villp < 8+ 0(A)/2 <
o(A) + EV(t,X(t)) < h(EV(t,X(t))) since A < EV(t,X(t)) < 2A. First, assume
that there exist two sequences {t}}, {t;} with &}, t; = o0 as j — oo, t; <
th <t (G = 1,2,3,...) and some § > 0 such that EW(t;, X(t;)) = /2,
EW(t, X(t;)) = ¢ and 6/2 < EW(t,X(t)) < ¢ for all ¢t € (t;,#}). Then, by
condition (a) of Theorem 3.4 we have that

)
2

g = EW({;, X(#))) - EW(t;, X(t;)) = /ELW(S,X(S))ds <m(t)(t; — t;)-
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Thus, we have that §/[2m(t})] < (¢ — t;). Moreover, by condition (c) of Theo-
rem 3.4

EV(t,, X(t})) < EW(t1, X (t;) )+Z —H—C(Sds+/§s)ds

J=1 0

. Hes? T
BV, X(0) = Y s+ [ s

j=1 J 2

oo
which yields a contradiction letting k — oo since [ £(7)dr < o0.

0
Next, suppose that there exists a time 77 > t¢ and &y > 0 such that EW (¢, X (¢))
> dg for all ¢t > Ty. Then, let T = max{7y,T(\)} and

EV(t, X () = EV(Ty, X(Ty)) + E /LV(s,X(s))ds
T
< EV(Ty, X(Ty)) - Hedo(t - T) + /f(s)ds, t> T,
T

which yields a contradiction as t — oo because £ € L*(0,00). Therefore the proof
of the theorem is complete.

Theorem 3.5 Let p: [0,00) = R™ and £:[0,00) — R be an integrally
positive function and an integrable function, respectively. Suppose that there exist
continuous functions V, W € C2)([~r 00) x R4, RY) and V satisfies condition
(a) of Theorem 3.1. And assume that for every € > 0, there exist an H = H(e) >
0, a continuous function h = h(e): [0,00) = RT with h(u) > u for u > 0,
h(0) =0 and a time T = T{e) >ty such that

(a) there exists a positive real number M > 0 such that ELW (¢, X(t)) < M

for all t > T whenever |Vi|lp < 2¢, EV(t,X(t)) > ¢ and |Vi]lp <
h(EV (t, X (t)) forall t > T},
(b) ELV(t, X (t)) < —Hp(t)EW (t, X (t)) + &(t) for all t > T whenever |{Vi|Ip
<2, EV(t,X(t)) > ¢ and ||Vi||p < R(EV (¢, X(t))) forall t > T.
Furthermore, assume that if EW (t, X (t)) does not approach zero as t — oo, then

EV(t, X (t)) also does not approach zero as t — oo. Then EW (t, X (t)) approaches
zero as t — oo for any solution X (t) of (1).

Proof The proof of the theorem is carried out by the same method as in The-
orem 3.4, noting that the function p: [0,00) — R is integrally positive.
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Ezample 3.1 Let r be a positive constant. Consider the equation
dX (t) = —[t? sin® )X (t — r) dt + £(t) dB(t), t > tqg,

where 3(t) is the one-dimensional standard Brownian motion and &: [0,00) —» Rt
is an integrable function. Then, since 2 sin¢, t > 0 is integrally positive, we
have that E|X(#)|> = 0 as ¢ — oo, by Theorem 3.5.

Theorem 3.6 Suppose that all the conditions of Theorem 3.8 are satisfied and
there exists a closed set Q in R® with 0 € Q. Furthermore suppose that the following
conditions are satisfied:

(a) for any €1, € > 0 there exist a 6 = d(e1,¢), a T = T(e1,e) > to and
&€ LY0,00) with £(t) > 0 such that at any time t > T satisfying €,/2 <
d(Q1EX(t)) < €1,

ELV(t, X (8)) < —6E[f(¢, Xy)| + £(2), ¢ 2T,

whenever ||Villp < 2¢, EV(t,X(t)) > ¢ and ||Villp < h(EV(t, X (1)),
t>T;

(b) if EV(t,X(t)) = 0 as t = oo, then EX(t) = 0 as t — oo;

(c) if there exist a v > 0 and for every € > 0 there exists a T* =T(e) > tg
such that dis(Q,EX(t)) > v for all t > T* and

/ELV(T,X(T))dT = —00
to

whenever |\Villp < 2¢, EV(t,X(t)) > e and ||Vi|lp < R(EV (¢, X(t))) for
all t > T*.

Then, EX (t) approaches the set Q as t — oo, where X (t) = X (t;t0,¢) is any
solution of (1).

Proof By Theorem 3.3 we have a constant 3 > 0 such that EV (¢, X(t)) = 8
as t — oo. If 8 =0, then the proof is complete.

Suppose 8 > 0.

If there exists a solution X (t) of (1) such that EX (t) does not approach the set
Q as t — oo, then we have two cases as follows:

Case 1. There exist two sequences {t;}, {tj} with ¢;, t; — co as j — oo,
ty <ti <tjy1 (j=1,2.3,...) and some 7, >0 such that

dis(Q, EX(tj)) =m, dis(Q,BEX(t) = 7?1

2 <dis(Q EX() <m
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for all t € (tj,tg). Then, because of 8 > 0, we can take a A > 0 such that
A< B <2X Let 0 = o(A) = min{|h(u) —ul: A < u < 2X}, where h = h(}N).
From the proof of Theorem 3.4 we have a time Ty = T'(\) such that |Vi]|p < 2,
EV(t, X(t)) > X and h(EV (¢, X(t))) > ||[Villp for all ¢ > T,. Thus, by condition
(a) of Theorem 3.6 we have a § = §(v1,A) and a Ty = T'(y1,A) > Ty such that

ELV(t, X(t)) < —0E|f(t, X){ +£(t), t2T)

at any time t > T7 satisfying v /2 < dis{(Q, EX(t)) < 7;. Hence without loss of

generality, we can suppose that ¢; > 77 (i = 1,2,3,...). Thus, by using the condi-
Y

tion of Theorem 3.3, and noting that v/2 = |EX (t}) - EX(t;)| < [E|f(r, X;)|dr,
ty
t,
BV(6, X(6) < BV (t, X(0)) + E [ LV X()dr

t1

t

s

< EV(t, X(t1)) +

k
j=

(=SBIf(r, Xo) + &) dr + [ Kuir)dr
L i
k o
< BV(0, X(0) - 5 + [IK9() + &l ar
t1
where K = K(\), which yields a contradiction letting & — oo since ¥, £ €
L'(0,00), ¥ >0 and & > 0.

Case 2. There exist some € > 0 and some time T5 > T'(A) such that EX(t) €
U(Q,e)¢ for all t > Ty, where U(Q,e) = {z € R%: dis(Q,z) < €}. Then by
condition (¢) of Theorem 3.6 we have that

t
EV(t,X(t)) < EV(Ty, X(T%)) + /ELV(T,X(T)) dr,
T

which yields a contradiction as t — oo. Therefore, the proof of the theorem is
complete.

4 The Almost Sure Lyapunov Exponent

In this section we discuss almost sure asymptotic behavior of solutions of the sto-
chastic functional differential equation with finite delays (1). First we prove
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Theorem 4.1 Suppose that there erists a continuous function V € CL2)
([-7,0] x R%, RT) and the following conditions are satisfied:

(a) there exist positive real numbers ¢, A > 0 and a continuous function 6:
[0,00) — RT such that 0 < A < ¢ and eM@(t) is an integrable function,
and

ELV(t,X(t)) < —cEV(t, X (8)) + 0(t), t>to,
whenever eMEV (¢, X(t)) > sup EV(t+s,X(t+s)), t > to;
—r<s<0

(b) there exist a real number q > 1 and a continuous function &: [0,00) - R*
such that eME(t) is an integrable function, and for every £ > 0 there eists
a T =T(e) > max{to,r} such that

ELV(t, X(t)) < —cEV(t, X(1)) +£(8), t2T(e),
whenever |Villp < 2, EV(t,X(t) > ee ™ and [|[Villp < g’
EV(t, X (1)), t > T(e).
Then, eMEV(t, X(t)) — 0 as t — oo, that is, there exists a B = B(tg, ) <
such that BV (¢, X (1)) < BE||p||Z e (1) for all t > tq.
Proof Let U(t,z) = eV (t,x), = € R* t > —r with 0 < A < ¢ If
EU(t,X(t)) = ||U|p, t > to holds, then e} EV(t, X (t)) > ||Vilip, t > to. There-
fore, by condition (a) of Theorem 4.1, we obtain that

ELU(t, X (t) < eMAEV(t, X (1) — cEV(t, X (1)) + 8(t)) < eMO(t), t>to.

Therefore U satisfies condition (a) of Theorem 3.1. Next, for every £ > 0, whenever
HWUlp < 2¢, BU(E, X(t)) > ¢ and ||Uillp < gEU(t, X (¢t)) for all t > T(e), we
get that ||Vi||p < 2¢, EV(t, X(t)) > ee ™ and ||Vi|lp < qe* EV (¢, X(t)) for all
t > T'(¢). Thus, by condition (b) of Theorem 4.1 we obtain for all ¢ > T'(¢)

ELU(#, X(t)) < —~(c ~ NEU(t, X(t)) + e &(1).

Thus, since all the conditions of Theorem 3.4 are satisfied, the proof of the theorem
is complete.

Next we present two theorems on almost sure Lyapunov exponent of solutions
to equation (1).
Theorem 4.2 Suppose that all the conditions of Theorem 4.1 and the following
conditions are satisfied:
(a) there exists a c; > 0 such that ci|z|? <V (t,x) for all x € R? and ¢ > to;
(b) there exists a positive real number Q > 0 and a positive continuous function
¢:0,00) = RT with 0 < ((t) < Bie™, t > to (B; >0 is a constant)
such that for any solution X(t) = X (t;t0,¢) of (1)

E|f(t, X0))> + Elg(t, Xo)I* < QXI5 + (1), t> to.
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Then, there exists a positive real number A1 = Ajy(to,p) > 0 such that
E| X% < Aje™ Mt g > g 4
and limsup(1/¢) log | X (t; to, )| < —A/2, almost surely.
t—ro0

Proof Tirst of all, by simple calculations we have

Bl Xellz < 3EIX(t =) +3(1+7) /[QIIXuII% + ()] du.

T

Therefore, by Theorem 4.1

3B T —
BllXille < = Elg||2, eMrtto) gt

B 1
+3(1+7) (Qc_ e/\(r+to)E”(pHZc + Bl) 3 e e At
1

Thus we have the first desired conclusion. Next, let £ > 0. Then, by the condition
and the Chebyshev inequality we have a positive real number Bz = Ba(tg,¢) > 0
such that

B
P( sup | X ()] > ak) < 22 g Mkto)
k<t<k+1 Ek

Set £ = Boe A =P)k—to) for each positive integer k > to + r, where p is any real
number with 0 < p < A. Thus, by the Borel-Cantelli lemma we have the second
desired conclusion.

Theorem 4.3 Suppose that all the conditions of Theorem 4.1, condition (a) of
Theorem 4.2 and the following condition are satisfied.

(a) There exist real numbers Q@ > 0 and p > 0 with 0 < p < A < ¢ and
a positive continuous function (: [0,00) — RT with 0 < ((t) < Bie™™,
t>0 (B; >0 is a constant) such that for any solution X (t) of (1)

E|f(t, X)) + Elg(t, Xo)|* < Qe"™||X¢||p + C(2), t>to.

Then, limsup (1/t)log|X (¢;to, @)l < —(A — p)/2, almost surely.
t— oo

5 Example

Let r > 0 be a real number and let rq, r5: [0,00) = RT be continuous functions
with 0 < r(¢), r2(t) <7 < co. For a matrix G = (gi;), set

m
G2 := > g2

i,j=1
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Example 5.1 Let A, B and C be dxd-matrices. Suppose that all the eigenvalues
of A have negative real parts.

Then it is well-known that there exists a positive definite and symmetric matrix
D such that ATD+DA = —I (I = identity matrix). Let o; (i =1,2,3,...,d) be
the eigenvalues of D. Since D is positive definite and symmetric, 8y := min{o;} >
0 f2 := max{a;} > 0 and it holds that 8 |z|> < 27 D2 < fa|z|? for all z € R%.
Now consider the stochastic delay differential equation:

dX(t) =[AX () + BX(t —r1(t)) + 0@)]dt + [CX(t — r2(t)) + £E(t)]dB(E), (2)

where 6(t), £(t) are d-dimensional continuous vector functions and 3(¢) is the one-
dimensional standard Brownian motion. Let d; > 0 be the solution of the equation
1= 4+ 2e8/827 D||(B2/B) (1Bl + |IC)1?) + || D|| and assume that e(®1/82)t|g())2
and e{%2/82)t)¢(¢)]2 are integrable, bounded functions. Then,

1 &1
limsup — log | X (t)] < ——-,
msup - log | X (£)] < s
almost surely.

Proof We prove only the case where 6(t) > 0 for all ¢t > 5. Let § > 0
be a real number such that 0 < § < d;. Then, we can choose a ¢ = ¢(6) > 1
such that 0 < < 1 — 2¢e/#2)7||D||(B2/B)(|B|| + lICI1?) — {|D||. Let ¢ = [1 —
2¢e* || DI|(82/B) (1B + IICII?) = IDII}/ Bz, where X :=&/f.

Let V(t,z) = V(z) = 27Dz for x € R%. Thus, whenever sup EV(X(t+
—r<s<0

s)) < ge*EV(X(t)), we have that B1E|X(t + 5)2 < Baqe E|X (1)} for all s €
[=7,0]. Therefore,
ELV(X(t)) = E{X®)TATDX(t) + X(t)TDAX (¢)
+ Xt —r()TBTDX () + X()TDBX(t — r1(t)) +20(t)' DX ()
+tr{D(CX(t —r2(t)) + EWNCX(t —ra(1)) + €))7 }}

< -BIX(MP +2/q 2—2 2| DI BIIEIX ()]
1
+2D| [qe”ucng %EIXW + |¢<t)|2] 2D EIX (1)

<- [1 — 2D 2 (1311 + 1) - ||Dn} EIX ()2
1

+ DI (61 + 21€(®)1*)
< —cEV(X(®)) + 1D (91 + 20,



186 T. TANIGUCHI

which implies that condition (b) of Theorem 4.1 is satisfied. Condition (a) of

Theorem 4.1 holds also since ELV(X(t)) < —cEV (X (1)) + 2||DI (10 +|£@®)|*)

whenever e’ EV(X(t)) > sup EV(X(t+s)). Therefore by Theorem 4.2 we
—r<s<0

have that limsup (1/t)log | X (t)] < —8/(28,), almost surely. Thus, letting § — d1,
t—=o0
the proof of the example is complete.

Example 5.2 Let a, b: [0,00) = {0,00) be continuous functions such that a; >
a(t) > a > b(t)? > 0 for all ¢+ >0 with constants a;, @ > 0. Let 0 <r < 1 and
let 83 > 0 be the solution of the equation 1 = § 4+ 72e?*%”. Consider the stochastic
delay differential equation

0

b() /X(t+u)du+§(t)] a8, t>0, (3)

—ri(t)

dX(t) = —a(t) X (t)dt +

where £:[0,00) = (—oc,00) is continuous and |£(t)|2e2@%t is an integrable,
bounded function. Then, for any solution X (¢) of (3),

hmsup log | X (t)] € —ads,

almost surely.

Proof Let § > 0 be a real number such that 0 < § < §3. Then, we can choose
a real number ¢ = q(6) > 1 such that 1 — gr2e?®™ > § > 0.

Let V(z) = 2%/2, = € R'. Let ¢ = 2a(l — qr?e?*®"). Then, ¢ > 2ad. And
whenever EV (X (t +s)) < ge**"EV(X(t)) for all s € [-7,0],

ELV(X(t)) = —a(t) EX (t)? + qr2e®® (1) EX (1)? + £(1)?
< —2a(1 — gr2®®T)EV (X (1)) + £(t)* = —cEV (X (t)) + £(t)%.

Thus condition (b) of Theorem 4.1 is satisfied. Since condition (a) of Theorem 4.1
also holds, by Theorem 4.2 we obtain that hm sup(l/t) log | X (t)] € —ad, almost
surely. Thus, letting A — As, the proof of the example is complete.

Ezample 5.3 Let 7:[-r,0] = RT be a nondecreasing, continuous function, and
let, the matrix A be the same as in Example 5.1 and the function ¢: [0,00) — R4
be continuous. Consider the stochastic functional differential equation

dX(t) = AX(t) dt + [aa(t, X) + EB)] dB(E), >0, (4)

where ay: [0,00) x C([-r,0], R¥) — R? is a continuous function with the global
Lipschitz condition in ¢ € C' and condition

las (6,9 < / p(s) 2 dr(s).
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Set 719 := 7(0) — 7(—r). Let &4 > 0 be the solution of the equation 1 =6 +
270(B82/B1)||D|jet®/%2)7 | where 3, and S, are the same as in Example 5.1. Suppose
that |£(¢)[2e(%/P2) is an integrable, bounded function. Then, for any solution X ()
of (4)

1 4
limsup — log | X (t)| < ——-,
msup 7 1og X (8)] <~

almost surely.

Proof Let V(z) = 27Dz, = € R?, where the matrix D is the same as in Ex-
ample 5.1. Let 6 > 0 be a real number such that 0 < § < §4. Then we can choose
a ¢ =q(6) > 1 such that 0 < § < 1—2¢||D||70(82/B1)el®/827. Let ¢ = (1/82)(1—
2q||D||70(B2/51)el®/B2)7). Then, whenever EV (X (t+s)) < qel¥/82)" EV (X (t)) for
all s € [-r,0], we get that £ E|X (t435)|? < Bage®/P"E|X (2)|? for all s € [-7,0].
Thus,

ELV(X(t)) € —E\X(®)* + 2E|\D||(laz(t, X)) + |€@)]?)
< —(1 - 2q|[Dl|7o (B2/51) /P EIX (£)[* + 2|| DIIIE()|?
< —cEV(X(t) + 2| DIIE() 2.

Therefore, by Theorem 4.2 we have that limsup(1/t)log|X ()] < —8/(282), almost
t—o0

surely. Thus, letting & — d4, the proof is complete.
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2.9 A NON-STANDARD APPROACH
TO THE STUDY OF THE

DYNAMIC SYSTEM STABILITY*

V.A. VUJICIC

Mathematical Institute SANU, Beograd, Yugoslavia

0 Introduction

An important difference between the study of the dynamic system stability in math-
ematics and the dynamic systems in mechanics is pointed out here. Regarding the
fact that all the differential equations of the mechanical system motion as well as
the differential equations of the disturbed motion can be reduced to the general
form of the dynamic system’s differential equations it is argued and proved that
such generalized equations are neither invariant with respect to punctual transfor-
mations, while they are being mapped from a set of rectilinear coordinates into
a set of curvilinear ones. This is simple to prove by comparing the differential
equations of motion of the same object with respect to the rectilinear and curvilin-
ear coordinate system in the Euclidean space as well as respective equations upon
the tangent and cotangent manifolds. The thesis is set forth that the mechanical
system stability cannot be reliably estimated unless the corresponding differential
equations of motion, especially the disturbance equations, exactly describe the ob-
served motion. The general invariant criterion of the balanced state stability and
the mechanical system motion is proved. Lagrange’s theorem about the system’s
balanced state stability is generalized while its application to one characteristic
instance of the rheonomic system is shown.

* Advances in Stability Theory (Ed.: A.A. Martynyuk). Stability and Control: Theory, Me-
thods and Applications, Taylor & Francis, London, 13 (2003) 189-200.
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1 On Covariant Differential Equations of the Mechanical System
Motion

The concept of the dynamic system stability is not unanimously determined. The
words “stability”, “dynamics” and “systems”, taken separately, have a general
meaning, while the motion stability theory asks for an exact unambiguous deter-
mination. At the mathematical base of the “dynamic system” concept there are
the following differential equations

Z—f = f(z,t), z € R™ (1.1)
In mechanics the notion “dynamics” implies that part of mechanics in which
forces and their mutual relations are studied. All the differential equations of
the mechanical system motion can be formally reduced to form (1.1), but such
equations are not invariant with respect to various coordinate systems; thus, they
do not speak about the same attributes of the objects’ motion, let alone about their
stability. This is very clearly shown in the case of a free material point’s motion
of constant mass m acted upon by force Y. With respect to the orthonormal
coordinate system y := (y',y2,y®) € E® the differential equations of motion

. dy _p

= = — 2
Y= , (1.2)
p=Y(y,p,t) (1.3)

are in accordance with the basic theorem of mechanics or Newton’s law stating that
impulse derivative p is equal to force Y. However, if the same motion is described
by means of any curvilinear coordinates = = (z!,z2,2°) equations (1.3) obtain a
different form:

&' = a’(z)p;, (1.4)
. aki
Pi= = pipi t Xs, (1.5)
0
where X are forces Y expressed by means of coordinates z, that is X = v 1

z
becomes obvious that p = X, as is the case in equation (1.3). Equations (1.3) and
Ay
oz

Dp;  (dp; j dz*
dt T (dt Flk(m)p] dt |- (16)

(1.5) are invariant with respect to transformation X =Y
covariant derivative

only by means of
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A similar, but much more general statement can be derived for the mechanical
system motion from N material points with holonomic scleronomic constraints.
Lagrange’s equations of motion of the first kind

n
dt = Ay*
v (1.7)
fulyts 9 =0,
Mm3i—2 = M34-1 = M3
are not equivalent to Hamilton’s equations [9]
OH . OH
h = —— + QF, = , 1.8
Di dgi Qz q Op: ( )
ge MPN"F =M, (pjq) € T"M,
where ¢ = (¢',...,¢™7 are Lagrange’s independent generalized coordinates; T* M
g

is cotangent configuration manifold. By means of these standard Hamilton’s equa-
tions the balanced state stability of the system balance is most often discussed.
In further study of the motion stability of one and the same mechanical system
described by equations (1.8) we will point to two non-equivalent system of the
disturbance differential equations. Disturbed equations of motion of Syng [5]

D2€i

a2 T Riud'etd = viQ'¢ (1.9)

are not equivalent to covariant differential equations of disturbance [7].

D,

%4; — qiin,, (1.11)

where are £ = dq and n = dp.

It is logical that the conclusions concerning stability or instability of the null
solutions of differential equations (1.9) and equations (1.10) will not be identical.

All the forces present in mechanics are formulated by means of real vector func-
tions with accuracy up to a certain constant. But those constants, involving the
gravitational one, do not have only one single numerical value. Instead, they have
values of a limited set of real numbers whose value depends on the nature of an
object as well as on the medium that its moves through. The influence of these
parameters upon the motion stability has a more essential importance than that of
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the initial conditions of phase variables. Due to this it is of primary importance to
know both the origin and the invariant form of the differential equations of motion
as well as the way of determining disturbances. On the basis of such covariant
equations it is also possible to prove a general invariant criterion of stability.

In order to do this, let’s observe N material points of mass m,, (v =1,...,N)
whose radius vectors are r,, v = 1,... N. Let material points be connected by k
independent constraints

Fululoy2yd, (1) = fu(% 0% ¥¥Y) =0, ' =7(1), (1.12)

where the notations are introduced
yo =970 =y W=, =) (113)

Mechanics reliably starts from the D’Alembert’s principle of dynamic balance and
the Newton-Laplace’s principle of determinacy that the known differential equa-
tions of motion result from:

dv,
P _F 4R, 1.14
p + (1.14)

fy(Fl,...,FN,T):O, T:T(t)’

my

k
where are R, = > A, grad, f, main vectors of the smooth constraints reactions
p=1
forces. The configurational manifold is generated by matrix relation

Ofu
Oy

#0. (1.15)

On the basis of the implicit function theorem in the domain allowed for by relations
(1.15) the holonomic constraint equations can be written in parametric form {8, 9]

rV:TV(q()?ql,"',qn)a ﬂ:3N—k,

0 n n+l 0 (1'16)
g:=(¢",....q") e M™™; ¢’ =7(t).

T . . or .
Scalar multiplication of equations (1.14) by coordinate vectors 8—:‘ and adding
q
with respect to index v these equations projections upon the coordinate directions
of manifold M in the covariant form are obtained

D¢?
aaﬁd—i = Qa, (@, 8=0,1,...,n), (117)
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or
Dgb
ap e = Qi (i=1,...,n), (1.17a)
dt
D¢?

aog d—(i = QO, (1.17b)

or
& = 4 (g)pe, (118)

Dpa

= 1.19
dt QCU ( )
where aqg(g) are coordinates of inertia tensor [9], ang = aga{¢®,q*,...,¢q") are

generalized impulses, whereas () denotes generalized forces that may also explicitly
depend on time only if forces F' in (1.14) are time functions.

2 Invariant Criterion of the Balanced Position Stability

The concept of the system’s equilibrium state implies rest of the observed bodies
in particular position g% = ¢§ and all the generalized velocities are equal to zero so
that. The equilibrium state equations, consequently, spring from equations (1.19),
that is,

Qu(@, )], =0 (2.1)

so that the solutions of equations (2.1) determine the equilibrium state of the
material system.

Definition 2.1 The equilibrium state of the mechanical system implies a set
of solutions ¢ of equations (2.1) and ¢(t) = 0. The equilibrium position of the
mechanical system implies a position ¢% = ¢§ on the coordinate manifolds whose
coordinates satisfy equations (2.1).

Definition 2.2 If at any randomly given number A > 0, regardless of how
small it is not, such a real number A can be chosen for which all the initial distur-
bances are constrained by the relation

3apq™ (ta)q” (to) + 6°“pa(to)ps(ta) < A, (2.2)
and for every t > ¢y the inequality is satisfied
5050°q° + %P paps < A, (2.3)

the undisturbed equilibrium state ¢* = ¢§, ¢* = 0 is stable; otherwise, it is
unstable. As in the previous proposition, 6,5 and §*° are Kronecker’s symbols.
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Stability Criterion If for the differential equations of motion of the sclero-
nomic system (1.17) the positively definite function W (t,q',...q") could be found,

such that it is
6W
+ (@

the equilibrium state ¢ = qo, ¢ = 0 is stable.

W)qigo (G=1,...,n), (2.4)

Proof With the conjunction that there is function W, the function

1
V=35ai(d, . qNdd Wi a1 (2.5)

is positively definite since kinetic energy

1 i
Bp =35 aijq*q’

is, by its definition, positively definite. The derivative with respect to time of
function (2.5) is since it is

D oW oW

V=uq
Rl Sy A
av. DV
hile V = =
e dr T dt
If equations (1.17a), ¢° = 0 are kept in mind, the previous derivative is reduced
to the form
ow i 0w 6W ow
O+ @+ S avpy = T+ (@4 5 ) 2.6

and the criterion is proved by this. If the system is autonomous, function W
should be looked for only depending upon the coordinates, so that condition (2.6)
is reduced to

ow
(@ G )i <o 27)
The previous theorem is also valid for mechanical systems with rheonomic con-
straints. Condition (2.7) changes only if indices 4, j = 1,...,n take on values

a, 8=0,1,...,n. Therefore, three additional addends are obtained:

(Qa+ Z—W> (Ql aw)q n (Qo+ 8—”5)4“ <0 (2.8)
q* dq

The proof is identical to the previous one, except for the fact that the indices in
equations (1.17) remain in the range 0,1,...,n.
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3 Generalization of Lagrange’s Theorem

For the mechanical system whose motion is described by Lagrange’s equations of
the second kind

d OF OE OFE

4 9B, 9B _ _ Poi=1,...,n (3.1)
dt 9qt oqt Jqt

Lagrange’s theorem states that the mechanical conservative system balance position

is stable in some domain A if potential energy E, has isolated minimum there. On

the basis of the criterion (2.8) Lagrange’s theorem can be generalized for non-

conservative systems as well. Indeed, if generalized forces consist of conservative,
oF
P

9q

, and non-conservative @Q* forces, that is,

dE,

Qo= g

+ Q% (32)

Lagrange’s theorem can be formulated in a more general way.

Theorem 3.1 The position of balance in domain A of a non-conservative sys-
tem is stable if potential energy E, has isolated minimum in the balanced position,
while power Q%4* of non-conservative forces Q* is not positive.

Proof 1 Starting from the fact that E,(¢° q',...,q") is a positively definite
function, for W can be chosen function E,. Substituting (3.2) in relation (2.8), it

follows oW
(Qa + T)Qa <0, (3.3)

which proves the above-stated generalized theorem.
Proof 2 In the case taken into consideration, the differential equations of motion
(3.1) can be written in the form

DB, 0F,
dt 8¢> ~  0¢°

+ Q% (3.4)

Since V = Ej, + E, a positive definite function, the functions derivative along
the solution of equations (3.4) is

Qa4" <0 (3.9)

which is in accordance with the first proof.

Rheonomic Systems. The motion stability of the dynamic system theory,s
rheonomic system (1.1) comprises the non-autonomous system concept. In this
area there is an even greater difference between the mathematical dynamic systems
and the corresponding systems in mechanics; thus it can be said that this area of
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[ Je

Figure 3.1. Bead on a rotating circle.

stability in mechanics is still open. As a proof of this statement, it is enough
to stress that some authors describe one and the same system by means of n
independent Lagrange’s generalized coordinates ¢ € M™, while others do it by
means of n + 1 coordinates (g,q°) € M7™*!. This further assumes that some
authors observe kinetic energy as a homogeneous square positively-definitive form
of the generalized energy, while others regard it as a sum of three forms T =
o3_,Ts, where s is homogeneity degree. Hence it further follows that the basic
matrix tensors of manifold M™ and M™t!, those that are relevant for the motion
stability, are different. In this approach, the question of stability with respect to
the rheonomic coordinate ¢° and corresponding generalized impulse pq is not clear
enough. For this reason we are here quoting an example from the current and very
important book [2] and [4].

Ezample 3.1 Considered the motion of a bead along a vertical circle of radius »
which rotates with angular velocity w around the vertical axis passing through the
center O of the circle. The manifold M™*t! is the sphere.

Let z,y and z be cartesian coordinates in E® with origin O and vertical axis z.
Let ¢ be the angle of the plane of the circle with the plane zOz. By hypothesis,
@ = wt; w is constant. For constraint f; = r — const = 0 and condition ¢ =
wt =: q°, the point position at M™*! and E® is mutually mapped by the relations
y! =rsingcosq®, y? = rsingsing®, y® = r cosq. Kinetic energy is

E = 2, 2 -2_”1_7‘2‘2.-02~2
v=5 (01 +92 +93) = <~ (¢ +(¢°)sin’ g) > 0.

0| 3
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The generalized force @, by its definition, is
0 0z .
= —mg - = mgsin
g dq g q,

while force Qg is determined by means of equation (1.17b), that is,
DOEy D, .. ..,
Ea—qd:a(mr ¢"sin"q) = Qo
From balance equation @ = 0 and (¢ = 0 balance positions g = 0, @ are obtained.
Stability is investigated by means of criteria (2.4). For W let’s choose, upon
interval [0, 7], the function

W = mgr(1l — cosq)
The stable balance positions satisfy the relations
ow AW\ . . . . .
Q+ 5 )i+ Qo+ 5= )¢ = (2mgrsing +mr?(¢®)?sin2¢)) g < 0,
9q aq°
that is, mr(g + rw? cosq))¢sing < 0. Since singq is positive upon interval [0, 7], it
should be that
(g + rw?cosq)g < 0.
Therefore, balance state (§ =0, g =7) is stable if g > rws.
The same results is achieved by the generalized Lagrange’s theorem. Indeed, the
potential energy is
D
Vi=E,=- /(qu + Qodg®) = —/ (m'rg sin gdq + % dqo)

8 8

=mgr(cosq—1) — /aoo(q)quqo,

$

since
Dpy = D(aped®) = age D" = mr? sin? ¢D¢".

The condition
v
dg*
determines the stable in positions ¢ = .

= —mr(g cosq + rw? cos 2g),

4 Invariant Criterion of Motion Stability

The concept of the “invariant criterion” implies general measurement standard in
all the coordinate systems for estimating stability of some undisturbed mechanical
system’s motion. As such, it comprises stability of the equilibrium position and
state, stability of stationary motions and, in general, of motion of mechanical
systems whose disturbance equations are of coordinate shape (1.10).
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Theorem 4.1 If for the differential equations of disturbance (1.10) there is
such a positively definitive function W of disturbance €°,€1,... €™ and time t that
the expression is

ot oge

smaller or equal to zero, the undisturbed state of the mechanical system’s motion
is stable.

oW +a%8 (\Ila + 6—W)77[3 <0 (4.1)

Proof As can be seen from equation

N
* 61/
\IJ'y ::Z(Fy _Fl/) 8—; :\Pv(éﬂht)

v=1

functions ¥, for undisturbed motion £* = 0, 1, = 0 are equal to zero, that is,
¥,(0,0,t) = 0. The function

1
V= b aaﬁnanﬁ +W(, 1) (42)

is positively definite, since it is g bositively definite matrix of the functions upon
M, while W is a positively definite function of disturbance €% and ¢. As a scalar

. . . . . . .4V,
invariant, V' is a tensor of zero order. That is why ordinary derivative o is equal

to the natural derivative

DV Dnyq oW D¢~ oW
= =g g + 5= —
at dt oee at T ot

(4.3)

which necessarily has to be smaller or identical to zero. By substitution of the
natural derivatives from equations (1.10) in (4.3) it is obtained that

DV W

ow
W—W-f—a"‘ﬁ\ﬂanﬂ-{——a“ﬁng

oge
and this, along with the criterion requirement, is reduced to

ow ow
W -+ aaﬁ (\I/a -+ @)ﬂﬁ S 0. (44)

Therefore, the stability criterion is proved. If functions ¥, are explicitly inde-
pendent of £, then function W should also be looked for only in its dependence on
disturbances £%, that is, W = W(£°,£1,...£%), so that expressions (4.4) is reduced
to

. ow
a 8 <‘I’a + 5@;) ng < 0. (45)
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If the mechanical system’s constraints do not depend on time, ¢°, £°, 19 and ¥4
vanish, so that expression (4.4), is reduced to

W il L IV,
W-Fa (‘I’l-l-a{i)njgo, (4.6)

while expression (4.5) is reduced to

Iy ow
a¥ (‘I’q_ + 8_@'>m <0. (4.7)
All the expressions of the previously given criterion for the equilibrium state sta-
bility appear as consequences of expression (4.1) if £ and 7 are regarded as dis-
turbances of motion or if ¢ and p are regarded as disturbances of equilibrium
state ¢ = qo; p=0.

5 Comments and References

The expression “the stability of the mechanical system motion” is used in the
sense of the classical analytical mechanics of Lagrange and Hamilton [2,9]. The
attribute “nonstandard” points to our approach to the theory about body motion
is different from standard analytical dynamics, especially with the rheonomic con-
straint systems [8,9]. It also stresses that the “dynamic systems” (1.1) are different
in the sense of invariance and determination of the differential equations of the sys-
tem motion (1.19) as well as from the differential equations of disturbance (1.10).
If the differential equations of motion of the material points or bodies are not well
composed, neither they nor their disturbance equations are the ones to base reliable
conclusions about undisturbed motions or undisturbed balance state upon. The
general invariant criterion about the balance stability and the mechanical system
motion on the basis of the Liapunov’s theory is derived. However, function W is
introduced in the criterion expression, namely, the function dependent only upon
the position, that is, of twice less variables than Liapunov’s function V. On the
basis of this criterion the Lagrange-Dirichlet’s theorem is generalized. The example
are given in order to state more clearly the differences between our approach and
the known standard approaches from the mechanical system stability [2].
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1 V.M.Starzhinskii’s life

Viacheslav Mikhailovich Starzhinskii died on December, 1993 at the age of 76. He
was a world-wide known specialist in the field of theory of stability and nonlinear
oscillations. He was also a leader in the scientific community, unselfish with his
time and always concerned with the general welfare of his colleagues.

Viacheslav Mikhailovich was born into teacher’s family on March 10, 1918 in
Lemeshevichi village of the Pinsk region of Belorussia. His gift for mathematics
was evident early in his childhood.

In 1941 he graduated from the Mechanical and Mathematical Department of
Moscow University. During the Second World War he worked for several military
research institutions. In 1945 Starzhinskii entered the post-graduate course of
the Scientific Research Institute of Mechanics of Moscow University and in 1948
he brilliantly defended his master’s thesis entitled “Some problems of theory of
servosystems”. After that he joined the All-Union (now Russian) Correspondence
Institute of Textile and Light Industry (Moscow) where he held the professorship of
theoretical mechanics till the end of his life. In 1957 V.M.Starzhinskii defended his
doctor’s thesis entitled “Some problems of stability of periodic motions”. This work
was published in complete form in the Proceedings of the American Mathematical
Society.

*Advances in Stability Theory (Ed.: A.A. Martynyuk). Stability and Control: Theory, Me-
thods and Applications, Taylor & Francis, London, 13 (2003) 201-215.
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Professor V.M.Starzhinskii was an Honoured Scientist of the Russian Federative
Republic and Member of the editorial boards of several publishers.

* 3k %k

V.M.Starzhinskii published more than 150 works (including 27 monographs and
textbooks). His works cover the following fields:

1. The second Lyapunov method: first, second, third and fourth order equations;

2. The stability of periodic motions: estimations of characteristic constants in
the second and n-th order systems; the theory of parametric resonance Maté and
Hill equations;

3. Oscillations of substantially nonlinear systems, combination of the Lyapunov
and Poincaré methods, oscillating chains, energy jump, damped oscillating systems,
computation of normal modes; normal modes for third, fourth and sixth order
systems;

4. Application of parametric resonance theory to acoustic and electromagnetic
waveguides;

5. Dynamics of a solid body: dimensionless form of the Euler-Poisson equations,
oscillations of a heavy body with a fixed point, exclusive cases of Kovalevskaya
gyroscope motion, QP-procedure for Kovalevskaya’s case.

6. Applied problems: calculation of thread tension, elastic shaft, dynamical
stability of rods, problem of three bodies, torsion oscillations of crank-shafts, pen-
dulum on spring, thread mechanics, servosystems, cyclical accelerators.

In the present review we consider some problems of stability of periodic mo-
tions, the mathematical theory of parametric resonance, the theory of vibration
of substantially nonlinear systems, the use of the theory of normal modes of an-
alytical autonomous systems of ordinary differential equations, and the problems
of application. Within the above-mentioned areas a number of unsolved problems
are formulated.

2 Stability of Periodic Motions

This problem is the subject of many profound investigations. Here we point out,
following (9, 24, 25], the sufficient conditions of asymptotic stability of the trivial
solution of linear differential equations with constant coefficients. These conditions
are nonimprovable within the framework of the second method of Lyapunov [24/]
and for V-functions which are quadratic forms with constant coefficients. For
example, for the equation

Z+s(t)e +pt)z =0 (2.1)

with real piecewise continuous bounded coefficients satisfying the inequalities

0<i<s(t)<L; 0<m<p(t)<M (t <t<oo), (2.2)
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these conditions become

< M +2vVMm+5m

L \/M—-\/—ﬁ 3

t>VM - m. (2.3)

In particular, for s(¢) = a only the second inequality (2.3) remains, and becomes
a > vM —/m. The conditions (2.3) remain valid also for the nonlinear equation
(2.1) with the functions s = s(t,z,2) and p = p(¢, z, &), satisfying the inequalities
(2.2) for all values of ¢, z, . Similar conditions (see [4,9]) are obtained for equations
of the third and fourth orders.

The Lyapunov method of estimating the characteristic constant is extended in
[31] to systems of linear differential equations with periodic coefficients. To begin
with, let the equations of the first approximation of the perturbed motion of a
dynamical system be given in the form

déEl

— =pu )z + pr2(t)ze;

dx
5= 5 = (o +pn(t)as, (24)

d
where pi; (4, j = 1,2) are real, piecewise continuous periodic functions of ¢ with
a period T'.

In [2,3,5-7,9] and [C] (Section VIL.3) it is shown that an orthogonal transfor-
mation with T-periodic coefficients can reduce any system (2.4) to a form where
the functions p12 and po1 are of constant sign. This is in fact assumed below. We
denote

T T
/pu(t)dt:a, /pzz(t)dt”—‘ﬂ
0 0

and without loss of generality, put o > 3. For a+§ > 0 the nonperturbed motion
is unstable in view of the Liouville expression. In what follows we shall assume
that a+ 3 < 0. Taking into account a — 3 > 0, we write the estimate for « in the
form

B<a<-4 (BL0).

The following Theorems (see [9] and [C], Section VIL3) hold.

Let in the system (2.4) the functions p12 and pg; be of constant sign (i.e. with
preservation of the sign they can become zero, but so that their product is not
identical to zero on [0,77) and furthermore, of the same sign. If, besides, the aver-
age value of one of the functions pj; or pg2 is nonnegative, then the nonperturbed
motion is unstable.

Corollary 2.1 If in the equation

F+s®)t+p)x =0, (s@E+T)=s(t), plt+T)=p) (2.5)
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the periodic coefficient p(t) is nonpositive for all values of t (0 <t < T), then the
trivial solution of (2.5) is unstable regardless of the behaviour of the second periodic
coefficient s(t).

In the case when the conditions of the theorem are not satisfied a number of
criteria defining the regions of stability and instability of the nonperturbed motion
in a parameter space are presented in [8,9,14 and [C], Section VIL3]. Similar
criteria are given in [9] and [C] (Section VIL3) for critical cases [16'], but only
for the stability and instability of the trivial solution of the system (2.4). There
yet another way of investigating the stability of the trivial solution of the system
(2.4) is indicated, namely, the transformation of (2.4) into a Hill equation with a
nonnegative periodic coefficient. Thus the method of estimating the characteristic
constant is made applicable in the form proposed by Lyapunov (see [31]}.

Article [8] is devoted to extending the above-mentioned Lyapunov method to
systems of linear differential equations with periodic coefficients of an arbitrary
order. A series of stability and instability criteria are presented there. In particular,
the following theorem holds.

If in the vector equation

J+Pl)y=0 (Pt+T)=P) (2.6)

all elements of the matrix P(t) are nonpositive for 0 < ¢ < T, then the trivial
solution of the system (2.6) is unstable.

In the scalar case we obtain the well-known theorem of Lyapunov (see [24]).

Another extension of the Lyapunov method of estimating the characteristic con-
stant to systems of an arbitrary order is proposed by Yakubovich [46']. Among
contemporary investigations in the theory of stability of motion the monographs by
Chetaev [9'], Harris and Milles [14'], Kamenkov [17'], Krasovskii [20'], Lakshmikan-
tham, et al. [23'], Malkin [26'], Martynyuk [29', 30'], Martynyuk and Gutowski [31'],
Mel'nikov {32], Rumyantsev {41'], and Zubov [48'] should be mentioned.

3 The Mathematical Theory of Parametric Resonance and
Its Applications

The fundamentals of the mathematical theory of parametric resonance are pre-
sented in the basic investigations by Krein [21'], Malkin [27'], and Yakubovich
(see [47'] and [C], Chapter V, and [A]). These principles are based on the develop-
ment of methods of investigation of systems of linear Hamiltonian equations with
periodic coeflicients (see the survey by Yakubovich [46'] and [C], Chapter III, {20},
and [22,36']). For a parametric resonance in systems close to the canonical ones
Starzhinskii [20] has established specific regions of the principal resonance which



A SURVEY OF STARZHINSKII’'S WORKS 205

precede the regions of the fundamental and combined resonances, as well as spe-
cific regions of combined-difference resonances. The construction of these regions
is based on the expressions of Yakubovich (see [8] and [C], Chapter IV) for the
calculation of the characteristic indices.

We consider the vector equation

My +eQ(It,e)g + [Po + e P(¥t,e)]y = 0.

Here y is a k-dimensional vector; P and ) are k X k matrix functions which
are analytic with respect to € and 2w-periodic with respect to 9¢; M and Py are
constant positive (in the sense of the quadratic form) symmetric matrices and
0 < wf < -+ < w? are the eigenvalues of the matrix M ~'P,. We number its
eigenvectors ay,...,a; as follows:

2
—w,(Ma,,an) = 8,0 (e, A=1,...,k).
Jo

We determine the integers m; and the numbers v;;, and oj, according to the
expressions

wj = wp + m]'190; W_j = —Wj;  Yjp = (th signj;
1 —m; [ Wy —m;
o = =57 (P™ ™ ay, aw) + Bl = 52 (@™ ay, am)
0 0 0
(j1 h= j17 ce va)a
where j1,...,jr are some of the numbers =1,..., k; Pl(m), ng) are the Fourier

matrix coefficients for the matrix function
P(1,0) ~ S P™;  Q(it,0) ~ DeIQ™.

We set up the equation

det [lojn + vvinlljr,...5. = O- (3.1)
Principal Resonance. The class {wj,,...,w; } consists of the single number
wj; i.e. wj is incommensurable with the remaining w_g,...,w_1,wi,..., W t0

modulo ¥4. The region of instability is determined by the inequality

Im (o;; signj) > 0.

The Fundamental and Combined Resonances. The class {wj,,...,w;,}
consists of two numbers: w;, and w;,. Then
1

g = — S — W = m. . .
0 m (“Jn w]l) (m My, Mgy > 0)
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Equation (3.1) becomes
94?2 = 2(a 4+ iB)0%v — (v + i) =0,

where
atiff= —5(01'1]'1 sign j1 + 0,5, sign j2)9g;

Y+ 16 = (04,5,0j2i1 — Tirir Tiaja ¥y Sign(j152).
The regions of instability are determined by one of the inequalities
B<0; B=0;6#0 f=6=0; v<-—a’
or by the inequalities
B>0; 8% +4aBs—45%y > 0.

The applications refer to stability of bending vibrations of coaxial shafts
(see [20]).

In [20,22] and [C] (Chapter VI) a series of problems concerning parametric
resonance in mechanical systems is considered. Now we turn to the papers by
Koroze and Starzhinskii [18',26] (see also [C], Section VL5 and VL.6) dwelling on
applications in physics. The boundary-value problem for the Helmholtz equation
has the form

Au+ k2u = 0; [g—z + au] =0 (a = const), (3.2)
hii

where u(z,y, 2) is the velocity potential; k is the wavenumber; n is the outer normal
to the surface of the waveguide II. It is reduced by the Ritz—Kantorovich method
[18'] to the canonical vector equation

dh 0 -I
J o = H{a)h J_<I 0).

We assume that the surface II differs little from the surface of a right circular
cylinder, i.e. it is given by the equation

r=all +eg(92)] (9(¥z +2m) = g(¥2), gay = 0).

Then
II(9z) = g+ eH (¥2) + ... .
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The blocking bands of the waveguide in the plane £ are determined according to
the theorem of Yakubovich (see [47] and [C], Chapter V). These bands are adjacent
to the axis points (critical frequencies)

wj + wh

ﬁghl = I

(5, h=0,1,...,8 1=1,2,...)
and are given in the first approximation with respect to £ by the inequalities
Oy = O+ <9 <Oy + Dy +

Here

2
19;111 =17 )(Hfl)cfﬁch)‘;

H l(l) is the matrix coefficient of the Fourier series
Hi(92) ~ Ze™*HY,

iwp and fw_, = ~iw, are the eigenvalues of the matrix; J~! Hy, while ¢, and c_,
are the corresponding eigenvectors, normalized by the conditions

i(Jcp,cq) = bpg signp  (p, g = £0,%1,..., %s).

The blocking bands for acoustic waveguides with a periodic filling are determined
in the same way in [C] (Section VI.5) and expressions of the second approximation
are presented as well.

In [C] (Section VI.6) a problem on wave propagation in periodic electromag-
netic waveguides is considered. Maxwell equations with the boundary conditions
of M. A .Leontovich are the initial equations instead of (3.2). The resonances arising
in this case are much more numerous than in the equivalent scalar case. The un-
solved problems in the application of methods of the vibration theory to problems
of wave propagation in guide structures are as follows.

Open problem 1. In the formulation of the problem (see [18']) the solution cor-
responds to the physical level of strictness; the problem of limit transition in the
application of the Ritz—Kantorovich method is not discussed. It is of interest to
apply to these problems the methods worked out by Yakubovich (see [C], Sec-
tion V1.7), Fomin [11'], and Neimark [38'] for systems with an infinite number of
degrees of freedom.

Open problem 2. For the problems thus formulated it is expedient to consider
the case of almost-periodic coefficients and coeflicients which are close to periodic
[5',10',19',45', 48').
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Open problem 3. Certain problems of wave propagation in guide structures in-
volve nonlinear and, in particular, quasilinear systems. The application of asymp-
totic methods [2, 3, 33' - 35], and the method of parametric resonance in nonlinear
systems (see [43']) proves to be useful.

4. Oscillations in Substantially Nonlinear Systems

Substantially nonlinear systems are of considerable interest, as systems in which
a pre-assigned small parameter is absent. An electric servodrive, subjected to the
effect of a clearance and Coulomb friction, is an example of nonanalytic systems of
such type. In the book by Starzhinskii [1] the method of integration by intervals
of such systems was applied; the conditions for the emergence of self-excited vibra-
tions were determined and their stability was investigated by the method of point
transformations (see [1']). Also forced vibrations of a follow-up electric drive were
considered. The method of point transformations, developed by Neimark [8', 38'],
is effective for substantially nonlinear systems subjected to the forces with charac-
teristics of Coulomb friction, clearance, and hysteresis type.

We proceed to analytical autonomous substantially nonlinear systems. What
analytical methods can be proposed here in addition to the method of successive
approximations?

In the first place we point out the method of Lyapunov (see [24'], Chapter II,
and [25]) for the determination of periodic solutions, which was developed by Lya-
punov when investigating the critical case of a pair of purely imaginary roots. The
Lyapunov method for vibrations of systems close to Lyapunov systems is developed
by Malkin [26',27']. Kamenkov (see [17'], Vol. II) has presented a method for the
construction of periodic solutions by means of the Lyapunov-Chetaev functions
[24',9'], but for quasilinear systems.

Periodic solutions provided by the Lyapunov method can depend only on two
arbitrary constants. However some classes are known (for example, the problem of
energy jump) when the Lyapunov method does not work.

Starzhinskii (see [24, 25], and [B]) proposed a method of investigation of Lya-
punov systems, which, however, reverts back to Lyapunov. Namely, a transforma-
tion of the original system of the (2k+ 2)-th order to a nonautonomous quasilinear
system of the 2k-th order is indicated, and linear and quadratic terms are writ-
ten out with respect to the powers of a small parameter being the square root of
the constant energy integral. The Poincaré method of determining periodic solu-
tions, the method of averaging as well as asymptotic methods can be applied to
the transformed system.

The proposed method turned out to be effective for the problem of energy jump.
The general formulation of such problems proceeds from the determination of the
vibrating chains (see [24], Part I and [B], Chapter II). Its first stage is to establish
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the initial periodic regime and to determine its regions of instability in the space
of the system parameters on the basis of the mathematical theory of parametric
resonance. The second stage consists of finding periodic regimes which arise in
the case of critical values of the parameter and differ of course, from the initial
regime. This stage is in fact based on the proposed method of determining periodic
solutions. The third stage is the investigation of the process of transition from the
initial periodic regime to that found in the second stage.

Among the unsolved problems on energy jump the stability of the periodic mo-
tion other then the initial motion has not been investigated. Apparently, in all
known problems we deal with the critical case of stability of high order. If stability
prevails, then the jump process is in essence a capture process.

In addition, if the instability of the periodic motion differs from the initial mo-
tion, then what is the probability of capture or return to the initial periodic regime,
or motion for which neither will occur? How are the regions of conditional stability
determined then? It may be advisable to investigate stability with respect to a
part of variables.

We now go over to the application of the theory of perturbations for substan-
tially nonlinear systems. We assume that the unperturbed nonlinear autonomous
Lyapunov type system of the (2k + 2)-th order is perturbed by analytical damping
which is sufficiently small with respect to the norm (see {24], Part IT and [B], Chap-
ter IV). The perturbed system is transformed so that the unperturbed system can
be transformed into a quasilinear autonomous system of the 2k-th order. The so-
lution of the latter is assumed as known for sufficiently small values of the system.
For the first and the subsequent corrections of the corresponding (i.e. with the
same initial conditions) solution of the perturbed system we set up the complete
system of equations in variations with respect to the parameter, namely, a sequence
of nonhomogeneous systems of linear differential equations of the (2k+ 1)-th order
with variable coefficients. The complete system is written in operator form for the
general finite-dimensional case of the analytical perturbation theory. If the gen-
eral solution of the unperturbed system is known, then according to Poincaré the
integration of the complete system is reduced to quadratures.

In conclusion, we consider the application of the theory of normal modes of
analytical autonomous systems of ordinary differential equations to substantially
nonlinear systems. We shall assume that this system under the assumption on
the existence of simple elementary divisors of the matrix of its linear part (for the
general case see [B], Chapter V.3.7), is brought to a diagonal form with respect to
the linear part and is written in terms of symmetrical complex coefficients

dz,
dt

=Ny + Y ahTizh + Y b Timamk + ... (v=1,...,n).  (41)

Here and below the summation is carried out twice with respect to the input indices



210 YU.A. MITROPOL’SKII, A.A. MARTYNYUK and V.I. ZHUKOVSKII

taking the values 1,...,n, while the coefficients are symmetrical, i.e.

Qh; = Gy b'{’jhk} =idem (v, h, k=1,...,n).

Besides {87} is everywhere any permutation of the indices «, 8 and .
According to the fundamental theorem of Bryuno (see [6'], Part I), there ex-

ists the inverse (but generally non-single-valued and in certain cases diverging)

normalizing transformation with complex coefficients

T =y + Za{mylym + Z,Bl]mpylymyp +... (4=1,...,n) (4.2)
(o, =af ; ﬁ{lmp} =idem; 4, l{,m,p=1,...,n),

bringing the system (4.1) into the normal form

d
LNt Y gy oy (v =1,m). (4.3)
(A,Q)=0
Here A and @ are vectors with the components Ay,..., A, and ¢, ..., ¢n, respec-

tively. Moreover, the latter are the integers
@w2>-1 ¢200#v); at-+am=1l

In (4.3) the summation is only over the resonance terms which satisfy the reso-
nance equation

AQ) =X+ + g = 0.
We symmetrize the coefficients of the normal form (4.3) and write it in the form

dy, v
pral Ay + Zcp}’mylym + Z Xlmplt¥m¥p + ... (v =1,...,n). (4.4)

In the representation (4.4) the nonzero terms ¢, X, are given by the
form (3.3).
We introduce the symbols
. :{1 (A =X+ Am);
0 (A # X+ An);
A :{1 (AV:)‘l+)‘m+)\p)§
0 (A N+ A + Ap).
Then for the coefficients of the normal form (4.4) and the normalizing transforma-
tion (4.2) we obtain the expression (see [B], Section V.3)
Lp;/m = Afma;/m; X;/‘mp = A;,mpBlep;
—AY 1- A}
v 1 Alm v ﬁlump — imp Blump

Ym = X A — Ay N+ A+ A — Ay

W, l,m,p=1,...,n),
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where
9 n
v v < v o j v 7 v 3 _ v Y Jo__ v J
Blmp — Yimp + 3 Z [ajlamp + ajmapl + ajpalm (ajl<pmp ajm‘ﬁpl ajp@[m)]v
=1

and the symbols A are playing the part of a guard.

Indeed, for A, # A + A 0or Ay # X + A + Ap (nonresonance terms) we have
Wl =0 or xp,, =0 This shows that the expansions in the normal form contain
only resonance terms. On the other hand, for A, = A+ A, or Ay =N+ A+ Ay
(resonance terms) the expressions for aj,, or 8}, yield the indeterminacy of % type.
This means that in a resonance case the coefficients of the normalizing transfor-
mation can be chosen arbitrarily (hence non-single-valuedness of the normalizing
transformation). In vibration problems such coefficients are chosen either with
respect to the continuity of the really entering parameters or are assumed to be
Zero.

n [46'], Section V.3 expressions are presented for the calculation of the coef-
ficients of an arbitrary order. After the coefficients of the normal form and the
normalizing transformation are calculated completely, there arises a problem of
effective application of the normal forms to the problems of nonlinear vibrations.

First of all we singled out the class of problems in which the normal form con-
tains only linear terms (the Poincaré theorem) and the representation of the Cauchy
problem in the general form is determined by an effective inversion of the normal-
izing transformation. With respect to damped vibrating systems with analytical
nonlinearities of the general form (see [24], Part II and [B], Chapter VI). Then
investigated were the third order systems with two purely imaginary eigenvalues
of the linear part and the third negative or zero one (see [24], Part IIT and [B],
Chapter VII). Vibrations in electromechanical systems “with one and half degrees
of freedom” are referred to these problems (cf. [44'] and [32]). Finally, normal
modes and resonances were investigated in analytical autonomous systems of the
fourth and sixth orders (see [24], Part IT and [B], Chapter VIII) having respectively
two and three pairs of different purely imaginary eigenvalues of the matrix of the
linear part. Vibrations in gyroscopic systems considered by Ishlinskii (see [15'] and
[24], Part II, and [B], Section VIIL.2) and vibrations of a heavy body with a fixed
point close to the lower equilibrium state (see [B], Chapter IX, and [49']) relate in
these problems.

We note certain unsolved problems which are of considerable interest.

Open problem 4. The sufficient conditions of convergence and divergence of
normalizing transformation (see Bryuno [6'], Part I} fail in the majority of problems
of the theory of vibrations. Consequently, the construction of effective existence
conditions for finite smooth transformations has assumed greater importance.

Open problem 5. Estimation of the accuracy of approximate integration in ap-
plications of the theory of normal modes to nonlinear vibration problems.
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Open problem 6. Normal modes, of course, do not exhaust the potentialities
of the local method. The subsequent development of the local method (seminor-
mal modes and related integral manifolds (see [4']) as well as its interpretation in
nonlinear vibration problems are essential.
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3.2 IMPLICATIONS OF THE
STABILITY OF AN ORBIT

FOR ITS OMEGA LIMIT SET*

J.S. MULDOWNEY

Department of Mathematical Sciences, University of Alberta, Edmonton, Canada

1 Introduction

In dynamics, it is natural to enquire how much of the nontransient behaviour can
be detected from an analysis of an individual orbit and its relationship with its
neighbours. Can the dynamical properties of some attractors be deduced from
a single trajectory? In differential equations, even when the algebraic equations
yielding the equilibria cannot be solved explicitly, is it possible to detect a stable
equilibrium in this way? Similar questions regarding periodic orbits and more
complicated structures are of interest.

For autonomous 2-dimensional differential equations, the Poincaré-Bendixson
theory [1,2] shows that a bounded orbit which does not get close to any equilib-
rium has a periodic orbit as its omega limit set. Similarly, Massera’s Theorem [3)
infers the existence of a periodic solution to a nonautonomous time-periodic scalar
differential equation from the existence of a bounded solution. In this spirit, Sell [4]
shows for a general semiflow on a metric space that a Lagrange stable orbit has as
its omega limit set a phase asymptotically stable periodic orbit if it is itself phase
asymptotically stable. Good expositions of Sell’s results may be found in Saper-
stone [5] Chapter III and Cronin [6] Chapter 6. Yoshizawa [7] also discusses these
results and extends the applications to functional differential equations. Pliss, in [8]
Theorem 1.6, establishes a closely related result for autonomous differential equa-
tions in IR™ where the stability requirements are somewhat different from those
of Sell: Lyapunov stability is not required but a certain uniformity is imposed on
the manner in which the orbit attracts its neighbours. More recently these results

* Advances in Stability Theory (Ed.: A.A. Martynyuk). Stability and Control: Theory, Me-
thods and Applications, Taylor & Francis, London, 13 (2003) 217-229.
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have been extended by Li and Muldowney [9] and in Muldowney [10] with greatly
simplified proofs.

There are many papers which deduce the existence of a periodic orbit solely
from the existence of a bounded orbit. These do so without any a priori restriction
on the attraction of this orbit for its neighbours; there is however always some form
of attraction inherent in the dynamical requirements as in the Poincaré-Bendixson
theory when the orbit and its limit cycle are both orbitally stable at least from
one side. For example, Hirsch [11] and H.L. Smith [12] show that 3-dimensional
order-preserving flows have this classical Poincaré-Bendixson property. Mallet-
Paret and H.L. Smith develop the theory for monotone cyclic feedback systems in
[13]. R.A. Smith [14-16] is the author of a higher dimensional theory based on
guiding functions to show that systems which behave asymptotically in a sufficiently
2-dimensional fashion also have the Poincaré-Bendixson property. This paper gives
an exposition and extension of those results that guarantee the existence of stable
equilibria or periodic orbits in the spirit of [4,8-10]. The general approach is to
express the orbital stability for an equilibrium or periodic orbit in such a way that,
when this definition of stability is applied instead to a bounded orbit, its omega
limit set is a similarly stable equilibrium or periodic orbit. In Section 2, such results
are explored for discrete and continuous semiflows on a metric space. Sections 3, 4
and 5 deal with hyperbolic stable equilibria for smooth systems in IR™.

2 Discrete and Continuous Semiflows

Let {X,d} be a metric space and let T, = Z, or IRy, the nonnegative integers
or real numbers respectively. A map ¢ with domain T, x X and range in X is a
semiflow on {X,d} if, for each z € X and ¢,s€ T,

(i) ¢(0,2) ==

(i) o(t +s,2) = (t, (5, 7))

(iii) (¢,z) — ¢(¢,x) is continuous.

The semiflow is discrete if Ty = Zy and continuous if T4 = IR4. In the case
of a discrete semiflow, ¢(t,z) = ¢*(zx), where ¢(z) = ¢(1,2), ¢°(z) = = and
¢+ (z) = $(¢'(x), t=0,1,2,....

Definition 2.1

(a) For any z € X, the (positive) orbit of z is Cy(z) = {¢(t,z): t € T+} and

the omega limit set is Q(z) = [} c£Ci(¢(t z)), where cf denotes the
topological closure. T
(b) C4(z) is a periodic orbit of period w and x is a w-periodic point if ¢(w,z) =
z for some 0 < w € Ty. It is an equilibrium if ¢(w,z) =z for all w e T,.
(¢) The semiflow is Lagrange stable at z if ¢£ C.(z) is compact.
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(d) The semiflow is Lyapunov stable at S C X if, for each € > 0, there exists
& > 0 such that z9 € S and d[zg, 7] < § implies d[¢(t,z0), d(t,z)] < & for
all t € To. When S = (4, an orbit, this is the usual concept of uniform
Lyapunov stability of C;.

(e) The semiflow is asymptotic at S C X if there exists p > 0 such that
2o € S and d[zo,z] < p implies tlgrolo d[é(t, zo), ¢(t, )] = 0.

(f) The semiflow is phase asymptotic at S C X if there exist p, n > 0 such
that zo € S and d[zo,2] < p implies there is a real-valued function
(zo,2) — h(zo,z), with > |h(zo,z)| € T4, such that tli{go dle(t, x0),
¢(t + h,z)] = 0. While the phase h depends on (z¢,z) in general, the
dependence will frequently be suppressed in the notation.

Lemma 2.1 Suppose the semiflow ¢ is Lagrange stable at x.. Then ¢ is Lya-
punov stable, asymptotic or phase asymptotic at Cy(z.) if and only if it has the
same property at Q(z.).

Proof We prove the statement with respect to the phase asymptotic property.
Proofs for the other two properties are similar. Suppose ¢ is phase asymptotic at
Cy(z.) and z¢ € Q(z.). There exists z; € Cy(z.) such that d[zy,z0] < p/2. If
d[zg,z] < p/2, then d[zq,z] < p and tl;rgo d[é(t,z1), ¢(t + h(z1,2),2)] = 0 so
that

Jim d[@(t,20), ¢ (t + h(x1,2) = h(z1,%0),z)]

= tl—1>n§o d[¢(t + h($17$0)7xo)7 ¢(t + h(m1,$),z)} =0,
and
Jlim d[g(t, o), ¢(t + h,2)] = 0,

where h = h(z1,z) — h(z1,T0), |h| < 2n. Thus ¢ is phase asymptotic at §(z.)
with p, 1 replaced by p/2, 2n respectively. A similar argument shows conversely
that ¢ is phase asymptotic at C, (z.) if it is phase asymptotic at Q(z.).

In the following theorems the phrase in square brackets may be included or
omitted throughout.

Theorem 2.1 Suppose that (t,z) — ¢(t,z) is a semiflow which is Lagrange
stable at z,. Then (a) and (b) are equivalent.

(a) ¢ is asymptotic [and Lyapunov stable] at C(z.).
(b) Q(z.) is a periodic orbit at which ¢ is asymptotic [end Lyapunov stable].
The periodic orbit is an equilibrium if the semiflow is continuous.
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Proof Suppose that (a) is satisfied. We may choose 1, z2 € C4(z.) so that
d[z1,22] < p and z2 = ¢(w,x1), w > 0. Then tli,rgo d[¢(t, z1), ¢(w, 8t z1))] =
tl_l)rgo dl¢(t, z1), ¢(t, z2)] = 0, since ¢ is asymptotic at C'y (z4). If 7o € Q(z.), choose
t =t, = o0, so that ¢(tn,z1) = 2o, n — oco. We find d[zo, ¢(w,z0)] = 0 so
that zo = ¢{w,z0) and zg is w-periodic. The lemma implies that the semifiow
is asymptotic at Cy(zo) C Q(z.). It therefore attracts all nearby orbits including
Cy(z.) so that Ci(mo) = Q(z.). Then Lemma 2.1 also shows that (b) implies
(a) and that the statement on Lyapunov stability may be included. Finally, if the
semiflow is continuous, we may choose any w in [0,¢] in the preceding argument
and zo = ¢(w, o), 0 < w < ¢, implies xo = ¢(¢, o) for all ¢ > 0.

Theorem 2.2 Suppose ¢ is a semiflow which is Lagrange stable at z.. Then
(a) and (b) are equivalent

(a) ¢ is phase asymptotic [and Lyapunov stable] at Cy(x.)
(b) Qz.) is a periodic orbit at which ¢ is phase asymptotic [and Lyapunov
stable].

Proof If (a) is satisfied, then we may choose zi, o € C.(z«) such that
d[z1,z2] < p and zo = ¢(t1, 1), where ¢; may be arbitrarily large, in particular
t1 > 1. Then, with w =% +h > 0 since |h| <7, tlim [q&(t,xl),qb(w,d)(t,ml))] =

oo

tli)rn dlg(t,z1), 0t + h,z2)] = 0. If 2o € Q(z.), choose t = t, — oo so that

(tn,z1) = To, N — 00. It follows that zo = ¢(w, o) and zg is w-periodic. Since
the semiflow is phase asymptotic at C4 (o) C Q(z.) from the lemma, it attracts
all orbits nearby including C (z,). Therefore C,(z¢) = Q(z.) and (b) is estab-
lished. Again Lemma 2.1 allows us to deduce that (b) implies (a) and to include
the statement on Lyapunov stability.

Remark 2.1

(i) Equally brief proofs of Theorems 2.1, 2.2 may be based on the observation
that a nonempty omega limit set at which the semiflow is phase asymptotic
consists of exactly one orbit.

(i1) Theorem 2.2 is due to Li and Muldowney [9]. It generalizes Pliss [8] Theo-
rem 1.6 and Sell [3] Theorem 1. Pliss’ result is proved for flows in IR and
the condition imposed is equivalent to the phase asymptotic concept used
here with an additional requirement of uniformity on the rate at which an
orbit attracts its neighbours. Sell’s theorem has Lyapunov stability as a
requirement rather than an option.

(iii) A theorem of Deysach and Sell shows that if, in the terminology of this
paper, the semiflow is Lagrange stable at z, and Lyapunov stable at C (z.),
then ©(z.) is a minimal set of almost periodic motions. It is interesting to
speculate on conditions which ensure these motions are quasi-periodic.
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3 Discrete Semiflows in IR™

We are now in a position to characterize in terms of their stability properties those
Lagrange stable motions in a discrete C'! semiflow in IR™ which limit to a stable
hyperbolic periodic orbit. Consider the semiflow

(t,7) = ¢(t,7) = ¢'(z), t€Zy, z€R", (3.1)
where ¢(-) is a C* function and ¢°(z) = z, ¢"*'(z) = ¢(¢*(z)). The linearization
of the flow with respect to the motion at zg is the nonautonomous recursion

a
pr = 58 @y, o= lm), 1€ Ty (32

A solution y; of (3.2) is uniquely determined by ys and satisfies

ad N a 1o}
Y= 5% (z1-1) 5% (ti—2) - a_i (zs)ys = aab“s(ws)ys, t>s. (3.3)

However y; is not uniquely determined by y; if %ﬁ (z;) is singular for some j, s <
j < t. The recursion (3.2) is uniformly asymptotically stable if there exist constants
1< K, 0 < o <1 such that solutions to (3.2) satisfy |y;| < |ys|Kal™%, s < t,
which from (3.3) is equivalent to ]59—1 5 (zs)| < Kat=s, t > s, or

o ¢'(2)] < Kat, (3.4)

if ¢ > O, T € C+(£Eg).

The recursion (3.2) is autonomous if zg = ¢(x¢), an equilibrium of (3.1). The
equilibrium is said to be stable hyperbolic if every eigenvalue A of %f (zo) satisfies
[Al < 1. This is equivalent to the (uniform) asymptotic stability of (3.2) and implies
that ¢ is Lyapunov stable and asymptotic at zp.

Similarly, a w-periodic point zg = ¢“(z¢) is an equilibrium of ¢“(-) and is
said to be stable hyperbolic if every eigenvalue A of g—z ¢“(zo) satisfies [A} < 1 or
equivalently la% ¢S (xo)| < MB%, s € Z,, for constants 0 < M, 0 < 3 < 1; see
Szlenk [17, p.39]. It is an exercise to show that, since C(zo) is a finite set, this
is equivalent to (3.4) so that the periodic orbit Cy(zo) is stable hyperbolic if and
only if (3.2) is uniformly asymptotically stable.

Lemma 3.1 Suppose the discrete semiflow is Lagrange stable at z. and (3.4)
is satisfied if t > 0, z € Cy(z.). If L > K and a < v < 1, there exists a
neighbourhood U of c€Cy(z.) and 6 > 0 such that y € U, |y — z| < & implies
|6t (y) — ot (2)| < Lt |ly—z2| for all t € Zy . In particular, the semiflow is asymptotic
and Lyapunov stable at U.

Proof Since ¢ is C!, (3.4) is satisfied if t > 0, z € c€Cy(z.). Choose f,
a < 8 < v, and a positive integer s such that L(8/v)® < 1. There exists § > 0
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such that, if zo € ¢/Cy(z.) and |z — zo| < 26, then |2 ¢*(z)| < LB, 0<t <.
It follows that, if |y —zo| <6, [y—2/ <é and z(A) = (1 —A)z+ Ay, 0< A< 1

then
7 d
— )) dA
=/ &
0

1 P t
O/ = 4 @)y — 2) A

|6 (v)

< LBy — 2],

0<t<s.

In particular |¢*(y) — ¢°(zo)| < 6, |¢°(2) ~ ¢°(x0)| < 6 and by induction |¢**(y) —
¢F* (20)| < 8, [¢**(2) — ¢*(z0)| < 8. Therefore |55 (y) — pT52(2)| < LB!|¢** (y)
— ¢*(2)], 0 <t <s. Thus, if ks <t < (k+ 1)s,

|¢t(y) _ ¢t(2’)| < Lﬂt_kstﬂks < L’yt|y _ Zl
since (LB%)% < 4% and Bi=Fks < yt—ks,

Theorem 3.1 Let (t,z) — ¢'(z) be a discrete C' semifiow on IR™ which is
Lagrange stable ot z.. Then (a) and (b) are equivalent.

(a) The linearization (3.2) of the semiflow with respect to the motion at z, is
uniformly asymptotically stable.
(b) Q(z.) is a stable hyperbolic periodic orbit.

Proof Suppose that (a) is satisfied. Lemma 3.1 shows that the semiflow is
asymptotic and Lyapunov stable at ¢/ C,(z.) from which we infer that Q(xz.) is
a periodic orbit at which the semiflow is asymptotic and Lyapunov stable, from
Theorem 2.1. Indeed Lemma 3.1 implies ‘5‘% ¢‘(z)] < LAt for all z in a neighbour-
hood U of ¢£Cy(z.) D Q(z.). Thus Q(z.) is a stable hyperbolic periodic orbit as
asserted in (b). Conversely if (b) is satisfied, the lemma again implies an inequality
of the form (3.4) holds for z in a neighbourhood U of Q(z,) and ¢t > 0. We may
assume C4(z.) C U so that the assertion (a) holds.

Remark 8.1

(i) Less general forms of Theorem 3.1 are proved in Li and Muldowney [9]
Theorem 5.1 and Muldowney [10] Theorem 2.1, where it is assumed that
%f is invertible. Those proofs use the variation of parameters formula for
difference equations and a discrete version of Gronwall’s inequality.

(ii) Theorem 3.1 may be stated equivalently as follows: In a smooth discrete
dynamical system on IR™, the set of orbits that limit to a periodic orbit
which attracts its neighbours exponentially consists precisely of those orbits
that are bounded and attract their neighbours exponentially.
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4 Periodic Differential Equations in IR™

Let (t,z) — f(t,z) be a continuous function from IR**! to IR™ such that f(t+
w,z) = f(t,z) for each ¢t € IR, x € IR™, where w > 0. Suppose that a solution
z(t) of

= f(t,x) (4.1)

is uniquely determined for ¢ > s by z(s) if s > 0. Massera [3] Theorem 1 shows
that the existence of a bounded solution implies that of a periodic solution when
n = 1. When n > 1, this result is no longer valid. When n = 2 however, it is
shown in [3] Theorem 2 that the conclusions still holds if the additional assumption
is satisfied that all solutions exist on rays of the form [s, c0). But this assumption
is no longer sufficient for n > 2 except for special equations. For example, Massera,
shows in [3] Theorem 4 that when f(¢t,z) = A(t)z + b(t), where A(-), b(-) are
n X n, n x 1 w-periodic matrix-valued functions respectively, the existence of a
bounded solution implies the existence of a w-periodic solution. Yoshizawa gives
a comprehensive discussion of Massera’s work in [18] Chapter VII. Yoshizawa also
surveys other work in this area in [7] and gives useful brief descriptions of the
results; in particular there is a discussion of the work of Sell for (4.1) and extension
of those results to functional equations. Saperstone [5] Chapter III also has a good
exposition on Sell’s results as does Cronin [6] Chapter 6.
Let ¢(t; s,z0) denote the solution z(t) of (4.1) such that z(s) = z.

Definition 4.1

(a) A solution z(t) of (4.1) is uniformly Lyapunov stable if, for each ¢ > 0, there
exists 6 > 0 such that s > 0, |z —x(s)] < & implies |¢(¢; s, z0) —z(t)] < €
for all ¢t > s.

(b) A solution z(t) is asymptotic if there exists do > 0 such that s > 0,
|zo ~ z(s)| < §p implies |@(t;s,x0) — z(t)] = 0 as t — oo.

(c) A solution x(t) is uniformly asymptotically stable if it is uniformly Lyapunov
stable and asymptotic.

(d) A solution z(t) is harmonic if it is periodic of period mw, where m is a
positive integer.

Sell [4] Theorem 4 shows that, if there exists a solution z(t) of (4.1) which is
bounded and uniformly asymptotically stable, then there is a harmonic solution
which is also uniformly asymptotically stable.

By considering the Poincaré map x — ¢(z) = ¢(w;0,z), we see that (t,z) —
@' (z), t € Z, defines a discrete semiflow on X C IR™, where X is the set of z
such that ¢(¢;0,z) exists for all ¢ > 0. Evidently a solution z(t) is bounded if and
only if the discrete semiflow is Lagrange stable at z(0). Moreover z(t) is uniformly
Lyapunov stable or asymptotic if and only if Cy(z(0)) is Lyapunov stable or
asymptotic respectively with respect to ¢*. Finally z(¢) is w-periodic if and only if
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z(0) is an equilibrium of the discrete flow and it is harmonic if and only if z(0) is
periodic. Theorem 2.1 therefore shows that the uniform Lyapunov stability of z(t)
in Sell’s theorem is not an essential requirement for the existence of a harmonic
solution. It is the asymptotic property which establishes the existence of a harmonic
solution and the Lyapunov stability may be either included or excluded in both
the hypothesis and conclusion.

Theorem 4.1 Suppose that x(t) is a bounded solution of (4.1). Then z(t)
is asymptotic [and uniformly Lyapunov stable] if and only if there exists a har-
monic solution zo(t) which is asymptotic [and uniformly Lyapunov stable] and such
that tlirglo |z(t) — zo(t)] = 0.

When f(t,-) is C* the Poincaré map ¢ is also smooth. The matrix 2 ¢(¢; s, z(s))
is a fundamental matrix for the linearized system
of

g = 3z (t,z(t))y. (4.2)

This equation is said to be uniformly asymptotically stable if there exist constants
K, 8 > 0 such that |5‘95 B(t;s,2(s))] < Ke P30 < s < t; see Coppel [19,
p-54]. This condition is equivalent to

|2 (50,0)| < ke, 0 < (4.3)

if z € {z(s): 0 < s < oo} which in turn implies ’8‘9—1 dlkw;0,z;)] < Kok, 0 <k, j,
where z; = z(jw). This is the condition (3.4) for the Poincaré map and, from
Theorem 3.1, if z(t) is bounded, Q(zo) is a stable hyperbolic m-periodic orbit for
this map and some m > 0. It follows that, if z € Q(z¢), z(t) = ¢(¢;0,z) is a
harmonic solution of (4.1). Since ©(t;s,-) is C1, (4.3) is also satisfied if z(t) is
the harmonic solution and so (4.2) is uniformly asymptotically stable in this case
also. Finally, it may be argued as in the proof of Lemma 3.1 that when z(t) is a
bounded solution of (4.1) such that (4.2) is uniformly asymptotically stable, there
is a neighbourhood U of {z(s): 0 < s < oo} and K, 8, > 0 such that xy € U,
|z — x| < & implies |p(t;s,2) — ¢(t;s,20)| < Ke P9z — g4]. We can now
synthesize these observations in the following theorem.

Theorem 4.2 Suppose that «(t) is a bounded solution of the periodic system
(4.1), where f(t,") is C1. Then there exists a harmonic solution zo(t) such that
tlim lz(t) — zo(t)] =0 and constants K, 8, 6 > 0 for which
—00

[p(t; s, z) — 2z (t)| < Ke™ P3|z —zq(s)], 0<s<t,

when |z — zo(s)| < 4, if and only if the linearized equation ({.2) is uniformly
asymptotically stable.

Earlier forms of both results in this section appear in [9].
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5 Autonomous Differential Equations

We now consider an autonomous differential equation

&= f(z), (5.1)

where z — f(z) is a C'! function from IR™ to IR™. This defines a semiflow (¢,z) —
¢(t,z) on the set X of points z in IR™ such that the solution z(t) = ¢(¢,z)
satisfying z(0) = = exists for all ¢+ > 0. Necessary and sufficient conditions are
given for an omega limit set to be a stable hyperbolic equilibrium or a phase stable
hyperbolic periodic orbit.

The linearization of (5.1) with respect to a solution z(t) is

o (52)

This equation is uniformly asymptotically stable if and only if there exist constants
K, a > 0 such that
7]
‘ 52 0t z)‘ < Ke®, t>0, (5.3)
if z € Cy(z(0)).
Definition 5.1 An equilibrium zg, f(zo) = 0, is stable hyperbolic if Re A < 0

for every eigenvalue A of %ﬁ (o). This is equivalent to the uniform asymptotic
stability of (5.2) with z(t) = xo.

Theorem 5.1 Suppose z(t) is a bounded solution of (5.1) then tlim z(t) = xo,
— 00

where o is a hyperbolic stable equilibrium, if and only if the linearization (5.2) of
(5.1) with respect to z(t) is uniformly asymptotically stable.

Proof This may be established using Theorem 2.1 but a more direct proof is
possible. First observe that y(t) = @(t) = f(z(t)) is a solution of (5.2). Suppose
now that (5.2) is uniformly asymptotically stable. Then tlim flz(t)) =0 and

—0co

To is an equilibrium if zo € Q(x(0)). Thus an inequality of the form (5.3) is
satisfied with x = zg; this equilibrium is stable hyperbolic and therefore isolated.
In particular tgrgo z(t) = xo. Conversely, if zp is a stable hyperbolic equilibrium,
then (5.4) is satisfied with z = z¢. It may be argued as in the proof of Lemma 3.1
that this implies the existence of a neighbourhood U of zy and constants L > K,
0 < v < « such that |8% ¢(t,x)] < Le ™ if t >0, x € U. Thus (5.2) is uniformly
asymptotically stable if tllglo z(t) = xo.

We conclude this section with a discussion of a result of Li and Muldowney [9],
extended in [10] on the existence of a stable hyperbolic limit cycle for (5.1). When
z(t) 1s a w-periodic solution, the linear equation (5.2) has w-periodic coefficient
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matrix. A nontrivial periodic solution of (5.2) is y;(t) = 2(t) so the system has a
Floquet multiplier A\; = 1; see Guckenheimer and Holmes [20, p.25]. The remaining
Floquet multipliers Az,..., A, are the eigenvalues of the linearized Poincaré map
T = ¢(w,z) at a point z in the periodic orbit Cy(z(0)). When |X;| < 1, i =
2,...,n, the periodic orbit is said to be stable hyperbolic. In that case, there exist
constants K, o, § > 0 such that zo € C1(2(0)), |z — 20} < & implies that for
some h

|6(t + b, 2) — 6(t,20)] < Ke™ ) — o). (5.4)

In particular, the semiflow is Lyapunov stable and phase asymptotic at C. (I(O))
Details may be found in Coppel [19, p.82] Theorem 14.

We now reformulate the condition of hyperbolic stability of a periodic orbit so
that it can be applied to a general bounded orbit and, in the spirit of the present
discussion, provide a criterion for the omega limit set to be a stable hyperbolic
periodic orbit. The second compound equation of (5.2) is

(2]
Z = g—i (x())=, (5.5)

the equation whose solution set is the space spanned by the exterior products
z(t) = y1(t) A ya(t), where y1 (), y2(f) are solutions of (5.2). The matrix %[2]
is N x N, n=(}), the second additive compound matrix of %ﬁ. A discussion
of compound matrices may be found in Fiedler [21], Marshall and Olkin {22]; see
also the Appendix. The relevance of (5.5) to (5.1) is discussed in [23]. When
z(t) is w-periodic, (5.5) is also a w-periodic system and its Floquet multipliers are
the products A;A;, @ # 4, where Ay,..., )\, are the Floquet multipliers of (5.2).
Since Ay = 1 is a multiplier, it follows that A; = A );, j = 2,...,n are also
Floquet multipliers of (5.5) and |X;] < 1, j =2,...,n is equivalent to the uniform
asymptotic stability of (5.5). We conclude that the periodic solution z(¢) of (5.1)
is stable hyperbolic if and only if (5.5) is uniformly asymptotically stable. This

generalizes the Poincaré condition for stability when n = 2: [ div f(z(t))dt < 0.
0
The Poincaré condition is equivalent to the uniform asymptotic stability of the
Liouville equation ¢ = div f(z(t))z, which is (5.5) when n = 2.
The following theorem follows from Li and Muldowney [9] Theorem 4.1 and
Muldowney [10] Theorem 2.2.

Theorem 5.2 Suppose that z(t) is a bounded solution of (5.1) whose omega
limit set Q contains no equilibrium. Then Q is a stable hyperbolic periodic orbit if
and only if the second compound equation (5.5) is uniformly asymptotically stable.

The sufficiency of the stability of (5.5) is proved in [9] and the necessity in [10].
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6 Discussion

It is interesting to speculate on the type of stability conditions which would im-
ply the existence of more complex dynamical objects than equilibria and periodic

orbits. For example, the k-th compound equation of (5.2), z = %ﬁm (z(2)) 2,
is the equation whose solution set is the span of all exterior products z(t) =
y+1(t) A - Ayg(t), where y1(t),...,yx(t) are solutions of (5.1). Li and Mul-
downey [24] show that, if z(¢) is a quasi-periodic solution of (5.1) with m basic
frequencies, then it is orbitally asymptotically stable with asymptotic phase pro-
vided the (m+1)-th compound equation of (5.2) is uniformly asymptotically stable.
Comparing this with Theorem 5.2 a natural question arises: when z(#) is simply
a bounded solution of (5.1), does stability of this compound equation imply that
the omega limit set is the orbit closure of a stable quasi-periodic solution? This
appears to be not necessarily the case; some additional conditions are required.
However it appears to be a promising direction for investigation.

Appendix

If A = [ai;] is an 7 xn matrix, its second additive compound A® is the (3) x (3)

matrix defined as follows. For any integer ¢ = 1,...,(}), let (i) = (i1,i2) be the
i-th member in the lexicographic ordering of the integer pairs (i1,42) such that
1 <4y < iz < n. Then the element in the i-row and j-column of A is

Qiyiy t Qiyiy, if (.7) = (l)

(=1)*5a; ., if exactly one entry i, or (i) does not occur in (j)

and j, does not occur in ()

0, if neither entry from (i) occurs in (j).

Table 1 gives A in the cases n = 2,3,4,5.
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3.3 SOME CONCEPTS OF PERIODIC
MOTIONS AND STABILITY
ORIGINATED BY ANALYSIS OF
HOMOGENEOUS SYSTEMS*

V.N. PILIPCHUK

Department of Mechanical Engineering, Wayne State University, Detroit, USA

1 Introduction

Theory of periodic motions of nonlinear mechanical systems is a quite general field
in pure and applied Mathematics and Mechanics. The related treatments and
references can be found in survey [1]. As follows from the Floquet’s theory [2]
the periodic solutions have a special meaning for linear differential equations with
periodic coefficients. As a rule, the periodic solutions separate regions of stability
and instability in a space of parameters, and hence give us a complete enough
information about the space structure. The present paper is focused on some
ideas concerning periodic solutions initiated by the investigation of homogeneous
oscillators. Probably A.M.Lyapunov was the first who has paid his attention for
special meaning nonlinear oscillator with homogeneous power form characteristic.
He obtained the homogeneous oscillator when dealing with stability problems in
general formulation and considering so-called degenerated case [3] (see also in [4]).
Later on, within approximately last 35 years (the references are given below in
the text), the homogeneous systems were under consideration from different points
of view in applied mathematics, mechanics and theoretical physics. These studies
generated an interesting circle of ideas, some of which came back into the stability
theory.

* Advances in Stability Theory (Ed.: A.A. Martynyuk). Stability and Control: Theory, Me-
thods and Applications, Taylor & Francis, London, 13 (2003) 231-242.
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2 Homogeneous Oscillator

Let us consider a family of one degree of freedom oscillators described by the
differential equation

#4+2"71=0; zeR, (1)

where 7 is positive integer.

When n = 1 one has the simplest linear (harmonic) oscillator, however when
n > 1 the system becomes essentially nonlinear and can not be linearized in the
class of vibrating systems. From a point of view of mechanics this situation may
correspond to a critical loading applied to an elastic system. For example, in
appropriate variables, vibration of a one-mode model of linear beam on nonlinear
elastic foundation loaded by axial force T is described by the differential equation
of motion with respect to the modal coordinate z(t) as

T
F+ (1—F>z+x3:0,

where T is a certain critical (by Euler) value of the axial force.

At critical value T = T* the linear term in the last equation vanish, and one
obtains oscillator (1) with cubic characteristic (n = 2). Oscillator (1) can be
found in physical literature and also in different fields of applied mathematics and
mechanics [5-13]. On the other hand, there is a purely mathematical reason
to consider equation (1) as a family of oscillators with power form characteristic
including both linear and strongly nonlinear cases.

For arbitrary positive integer n, general solution of equation (1) can be expressed
in terms of special Lyapunov’s function [4] such as ¢nf (another version of special
functions for equation (1) was considered in [8]). The pair of periodic functions,
snf and cné, are defined by expressions

snf
1-2n
6= / (1-n2®) ™ dz, en®"0+nsn*h=1
0

and possesses the properties

dsnf
dg

dent

cs0 ,  sn0 R P

n-lg, —sné.

Now, the general solution of equation (1) can be written as z = Aen (A" 't + a),
where A and o are arbitrary constants. For n = 1 the functions snf and cné give
the standard pair of trigonometric functions sin# and cos@ respectively. Inter-
estingly enough, the strongly nonlinear limit n — oo gives a quite simple pair of
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periodic functions too. This case can be interpreted by means of the first integral
of motion

2z 1

T Ty @
where the right-hand side (total energy) is given by the initial conditions z(0) =0
and #(0) = 1. Taking into account that the coordinate of the oscillator reaches
its amplitude value at zero kinetic energy, one obtains z(t) € [ — nt/(2n) pl/(n)]
at any time ¢. Since n'/(?*™ — 1, when n — oo, the oscillator’s motion will be
restricted by the interval [—1,1]. Inside of this interval, the second term at the
left-hand side of expression (2) vanishes and hence, £ = £1 or z = +t+ a4 where
a4+ are constants. Manipulating with the constants one can construct a periodic
piece-wise linear sawtooth function as (sawtooth sine)

(t) =

{ t, -1<i<y, ) L4 +1). ®)

—t+2, 1<t<3,

One should expect that cnt —% 7(t + 1) when n — co. However there is a
question remains in terms of the differential equation, namely, will the sawtooth
function, 7(t), satisfy the differential equation (1) when n — oo and what sense
one should provide the limit solution with? Indeed, one has 7(t) € C(R), whereas
a classic solution of the differential equation (1) has to be of class C%(R). The prob-
lem is that a definition of solution in terms of distributions (generalized functions)
is well formulated in the linear case, but it requires a more special treatment for
nonlinear differential equations [15]. This kind of problems will not be considered
here. From the point of view of the below treatments, the most important remark
is that the family of oscillators (1) includes the two simple cases associated with
the boundaries of the interval 1 < n < co. Respectively, one has the two pair of
periodic functions

{z, &} = {sint, cost}, if n=1 (4)

and
{z, 2} = {r(t), 7(¢)}, if n — oo, (5)

where 7(t) is a generalized derivative of the sawtooth sine and will be named as a
rectangular cosine. It is an important to note that the piece-wise linear periodic
functions (5) did not come as an abstract artificial construction. It is treated
as a special representative of the family of periodic functions generated by the
homogeneous oscillator (1). From that point of view functions (5) and (4) possess
the “equal rights.”
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3 Sawtooth Time Variable

There are many mathematical techniques and methods exist based on suitable
mathematical properties of trigonometric pair (4). It would be enough to mention
the Fourier analysis. Now, in addition to (4), is it possible to employ the obvious
simplicity of the sawtooth sine and its first generalized derivative (5) in order to
develop an analytical technique for oscillating processes? The reason of construc-
tion of alternative techniques to the Fourier analysis is clear. Indeed, if a process to
be investigated has a sawtooth time history, say & = 7(t), then one should keep a
large number of terms in the related Fourier expansion when trying to describe the
discontinuities of slope. This well known problem of the Fourier analysis initiated
a series of investigations aimed on construction of expansions for a local analysis
of functions. One should mention the Haar system [16] and the relatively new
wavelets theory (an introductory articles can be found in [17]). An advantage of
this kind of analysis is that any localized perturbation of the function affects the
only few number of coefficients of the expansion. The local expansions appeared to
be very suitable for different problems of signal processing while its applications to
differential still remains quite limited. In fact, a broad applicability of the Fourier
series to partial and ordinary differential equations is provided, first of all, by the
remarkable property of the Fourier basic functions to be eigen-functions of the dif-
ferentiating operator, (e““"’t); = tkwe*t, Unfortunately, as a rule, it is not so in
the above mentioned theory of local expansions. Differentiation of the local basic
functions may even bring them into a worse class of functions. This is a fact of
quite general nature, namely, since a function becomes localized its derivative is
getting worse. Now, it will be shown that there is another way to adopt the non-
smooth basic functions such as (5) for different problems of mechanics described
by the differential equations. Our attempt is inspired by the fact that functions
(5) itself generated by the special limiting case of the differential equation (1). All
illustrations will be done on the periodic processes (some generalizations can be
found in the references).

First, note that the period of the pair (5) is normalized to four in order to provide
the following suitable relationship for the generalized derivative 7(¢) = e(t)

[e@®}* =1 for almost all t. (6)

Now, let us reproduce the following proposition {18]:

Proposition 3.1 Any periodic function x(t) whose period has been normalized
to T =4, can be represented as

z(t) = X[r(t)] + Y[r(t)]e(t), ()
where X (1) = [z(7) + (2~ 7)]/2 and Y (1) = [z(7) — z(2 — 7)]/2.
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Ezample 3.1

Cy sin %t + C cos %t = (sin {g T(t):| + (5 cos [g T(t)] e(t).

Expression (7) can be understood as a “complex” value with real X and “imag-
inary” Y components, where basic “imaginary” element e creates a circling group:
e? =1, ¢ = e, e* = 1, .... This remark significantly simplifies all operations
with the representation, when transforming a differential equation of motion. For
example, one has relationship

exp (X + Ye) = exp (X)[coshY + esinh Y] (8)

which follows from the more general one
FX+Ye) = S+ Y) 4 (X = V)] + L (X +Y) — £(X - V)]e

An important feature is that the algebraic structure of the representation (7)
is not changed after differentiation if necessary conditions of continuity for func-
tion under the differentiation is provided. For first two derivative the result of
differentiation and the conditions related are

d=Y' +X'e if Y]|op =0, 9)
E=X"+Y"e ifalso X'|;—4; =0, (10)

where prime denotes differentiation with respect to .

The above listed relations enables one to introduce an oscillating time parameter
t — 7 into differential equations on the manifold of periodic solutions. In this case,
the inverted transformation of time over the period —1 <t <3 is

t=1+ (7 - 1e. (11)

A role of new unknown functions is played by the pair X(r) and Y(r). In
many cases one of the two components can be identically equal to zero. Manip-
ulating with the transformed equations using different successive approximations
techniques, one can construct periodic solutions of linear and nonlinear differential
equations [19,20]. A special case based on the one-component (X) representation
can be found in [10], where an approximate general solution of the homogeneous
differential equation (1) for arbitrary n was obtained in a power series form with
respect to the oscillating time 7.

To this end let us reproduce two alternative expansions. The first one is simply
the Fourier series for the sawtooth sine, i.e. it expresses the sawtooth functions
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in terms of the trigonometric ones, whereas the second expansion represents the
trigonometric sine in terms of the sawtooth function:

8 . 7t 1 . 3«t 1 | 5wt
T(t):F(sm?—zﬁ—smT-{—E’—QsmT—...), (12)
3 5
., . FT _TT 1 /w7 1 [#nT _ 2t
s1nt—51n7——§——§(7) +5(7) -, T—T(;). (13)

So one has the two different kind of expansions associated with the boundaries
of interval 1 < n < co, where n is the parameter of the homogeneous oscillator (1).
Any truncated series of the expansions (12) is smooth function, whereas approx-
imated function 7(¢) is non-smooth. On other hand, any truncated series of the
expansion (13) is non-smooth, whereas the approximated function sint is smooth.

4 Differential Equations with Periodic Coefficients

Let us show what relation the above illustrated sawtooth transformation of time
may have to the problem of stability.
Consider the following second order differential equation with periodic coefficient

F+q)e=0; z€R, qt+T)Zq0). (14)

Let us introduce the oscillating time parameter as 7 = 7(wt), were w = 4/T (the
numerical factor 4 appeared instead of 27 due to normalization for the period of the
sawtooth sine). Being interested in periodic solutions of the period T and taking
into account the remarks of Section 1, the periodic coefficient of the equation and
the solution to be found are represented respectively as

q(t) = Q[r(wt)] + P[r(wt)]e(wt) and

(15)
z(t) = X[r(wt)] + Y([r(wt)]e(wt),

where the components @ and P are defined by (7), X and Y are the components
of unknown function to be found.

Substituting (15) into differential equation (14), and taking into account the
“multiplication table” e?> =1 and the differentiation rules (9) - (10), one obtains

W X"(7) + Q(NX (1) + P(NY (1) + WY " (1) + P(1)X(7) + Q(1)Y (r)]e = 0.

Equating separately the “real” and “imaginary” parts of this expression to zero,
one keeping in mind (9) - (10), one obtains the homogeneous boundary value prob-
lem

w2X”+QX+PYZO> X’|T:i1:07
(16)
WY"+PX4+QY =0, Y|z, =0.
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Now the new independent variable is bounded as |7| < 1, and hence one can
seek the general solutions in the power series form with respect to T after the
coefficient Q(7) and P(7) have been expressed by its Maclaurin series. Substituting
the solutions into the boundary conditions in (16) one will get the relations for
parameters at which the periodic solutions exist. Note that the system becomes
decoupled with respect to X and Y if P = 0. The above transformation will be
still valid in the multidimensional case, when z € R™ and ¢(t) is n x n-matrix.

The most reasonable cases to apply the sawtooth transformation of time are
those when the periodic coeflicient ¢(¢) is expressed through the functions 7 and e
in a simple manner.

For example, consider the case of parametric step-wise periodic excitation of the
one degree of freedom harmonic oscillator

&+ wi[l + ee(wt)]z = 0, (17)

where wy, w and ¢ are constants and the parameter ¢ is not necessarily small.
In this case @ = w3 and P = ew?, and one obtains the boundary value problem
for linear system with constant coefficients

RT3 R
where 1 = wp /w.

More details and examples handled by this kind of analysis can be found in
previous work [21].

One should note that the above transformation can be implemented for a broad
class of periodic systems and the transformed equations possess a relatively sim-
ple structure due to some special properties of the pair (5). An essential physical
feature of the transformation is that the oscillating time, 7, is introduced in such
a manner that it does not affect the metrical properties of the time, namely, the
metric remains constant after the transformation: [dr(2)]? = dt? due to (6). This
defines a special role of the saw-tooth transformation among other periodic trans-
formations of time. Due to this property the transformed differential equations
of motion remain in the framework of Newton’s formulation. Another important
feature is that one has an inverted transformation of time in a simple form (11) of
the algebraic structure with the basic elements {1,e}. Finely, the transformation
is suitable to apply to different non-autonomous cases of the non-smooth external
excitation.

Now let us discuss a possibility of introduction of an oscillating time parameter,
say z, in a more general manner as z = z(t), where z(t) is periodic function, not
necessarily the saw-tooth sine. One could consider trigonometric sine, elliptic sine,
and others specially selected functions dependently on a problem investigated. The
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transformation becomes physically reasonable if the variable coefficients appear to
be functions of the new time parameter z over all period of the oscillation. For
example, let us consider equation (14), when ¢(¢) = a + bcos2t (the Matheu’s
equation). In this case one can introduce the new independent variable z = sint.
Indeed, q(t) = a + bcos2t = a + b — 2bz2, and the equation can be written with
respect to = = X (z(t)) as

d?x dX
Y — —2022)X = <1. 1
57 z - + (a+ b — 2bz*%) 0, |z/<1 (19)

(1-2%

This transformation is known as Ince algebraization [22]. It can be realized in

those cases when the periodic coefficient is represented as a function of sint, i.e.

g(t) = Q(sint). Future investigation is based on the fact that the new independent
variable is bounded [23].

5 Stability of Normal Modes in Two Degrees of Freedom Homogeneous
System

The above sections show an interesting role of homogeneous oscillator (1) from the
point of view theory of stability.

In this section, an attention will brought to the nonlinear normal modes (NNMs)
theory from the point of view special meaning of the homogeneous systems for the
theory. Extending the classic concept of linear normal modes on nonlinear situ-
ation, the NNMs can be understood as synchronous periodic particular solutions
of the nonlinear equations of motion. The linear superposition principle becomes
inapplicable, however the NNMs should be understood as a natural motions of a
nonlinear system and that is why this kind of particular solutions remains still
important in nonlinear theory. A quasi-linear formulation of the NNMs theory
started from the classic Lyapunov's works [24, 25]. However, is there any possible
way exist to make use the idea of normal modes when rigidities of a many degrees of
freedom system do not include linear components at all? H. Kauderer [26] showed
that a common language for both linear and nonlinear systems is given by geome-
try of the configurational space. Namely, one can focus an analysis on trajectories
of the normal modes in the configurational spaces without seeking any connection
to either superposition principle or time history of such motions. Considering the
many degrees of freedom homogeneous from such viewpoint, R. Rosenberg [7,27]
developed essentially nonlinear formulation of the normal modes theory. More his-
torical data, references and details concerning the NNMs theory and applications
can be found in [11] and recent monograph [29].

Now basic ideas of NNMs, including stability problems, will be illustrated on
the symmetric case of two degree of freedom homogeneous system. The differential
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equation of motion can be written as (m = 2n — 1)

&+l + el —ax2)™ =0,
Fa + 23 + ez —21)™ = 0. (20
Differential equations (20) describe two identical homogeneous oscillators (1)
coupled by the nonlinear spring of the homogeneous characteristic. The character-
istic (nonlinear rigidity) of the connecting spring differs from the characteristic of
oscillators by the constant coefficient ¢. Note that system (20) is conservative with
homogeneous potential function of m + 1 degree. When m = 1 the differential
equations become linear and the system possesses the special periodic regimes, such
as in-phase and out-of-phase normal modes, on which at any time # one has respec-
tively z2(t) = z1(¢) and z2(t) = —z1(t). Geometrically this is two perpendicular
straight lines on the plane of configurations z;z2. A unique property of the linear
system is that an appropriate combination of the two normal modes completely
define any possible motion of the system (linear superposition principle). When
m > 1, the system is not linearizable, i.e. elimination of the nonlinear terms from
the system takes it outside the class of vibrating systems. The above mentioned
superposition principle does not work as well. Surprisingly enough, the system
still possesses the two periodic solutions on which the equalities z2(¢) = z1(¢) and
Z9(t) = —z1(t) hold for any ¢ (the in-phase and out-of-phase NNMs respectively;
in case of n degrees of freedom, at least n NNMs exist [28]). Moreover the system
may possess another periodic solutions with straight line trajectories on the plane
z123. Indeed, suppose that

22(t) = kx1(¢t) for any ¢, (21)

where k is a slope of the trajectory to be defined (obviously, k can be equal to zero
if only ¢ is zero, i.e. the system is decoupled).

Substituting (21) into (20), and multiplying the first equation by k gives
kiiy + k[ — c(k — )™z = 0,

.. (22)

kE, + k™ 4+ c(k — 1)™zT = 0.

Equating the coefficients followed by z7* in the two equations (compatibility con-
dition), one obtain the algebraic equation with respect to the slope k of the form

(k= 1)™(k+1) + k™ — k = 0. (23)

To simplify the illustration, let us m = 3. In this case equation (23) admits
exact solutions

ko = +1, (24)

k3.4 :1—-%(1:1:\/1—4@. (25)
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The first two roots give the in-phase and out-of-phase modes predicted by the
physical symmetry of the system. Another two roots are real if the parameter
of coupling between the oscillators, ¢, is sufficiently small: ¢ < 1/4. These two
new nonlinear modes arise as a result of branching of the aut-of-phase mode at
¢ = 1/4. This branching indicates a loosing of stability by the out-phase mode with
respect to any small perturbation of the in-phase mode. More complete stability
analysis could be done by investigation of the variational equations around the
NNMs. An appropriate techniques can be found in [29]. For example, the Ince-
algebraization (mentioned at the end of Section 4) was employed for transformation
of the variational equations in [30,31]. Special qualitative method was presented
in [32].

In present, the theory of NNMs is not restricted by the homogeneous systems,
and not even conservative ones. One can consider the NNMs with curvilinear
trajectories in the configurational space as well. However, the first qualitative
and quantitative results were originated by the investigation of the homogeneous
systems.

6 Conclusion

Family of mechanical systems with a homogeneous potential function includes the
linear systems as a particular case. Due to the superposition principle, the linear
systems have played a uniquely general role in modern period of mathematical and
physical sciences. This role was finalized by development of a very powerful Fourier
series/transforms method and the linear (and weakly non-linear) theory of oscilla-
tions and waves. A role of the nonlinear representatives of the homogeneous system
is relatively shadowed. However, it was shown above that a careful examination of
all class of the homogeneous systems brings some ideas applicability of which is not
restricted by that class only. For example, the limiting case n — oo of the one de-
gree of freedom oscillator gives, in certain meaning an alternative to {sint, cost},
pair of non-smooth periodic functions, {7(t),7(t)}. The two degrees of freedom
homogeneous system (20) admits a family of the straight line periodic solutions on
the configurational plane. This geometrical simplicity allowed to develop the basic
ideas of the NNMs. Now, combining the two mentioned results, one can formulate a
reasonable question about the limit m — oo in the (at least) two-dimensional case
(20). In this case, one has a free moving unit-mass point under the constraints con-
ditions: |z1} <1, |z; — 22| <1 and |z2] < 1. In this case many (not the straight
line only) solutions can be constructed by purely geometrical manipulations. What
will happen to these solutions when m < o0?
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3.4 STABILITY CRITERIA FOR
PERIODIC SOLUTIONS OF
AUTONOMOUS HAMILTONIAN
SYSTEMS*

AA. ZEVIN

Transmag Research Institute, Dnepropetrovsk, Ukraine

1 Introduction and Results

We consider the autonomous Hamiltonian system

. 0 I
& = JH,(x), J= ['—In 6’] , (1.1)
where z € R*™ and I,, is the identity matrix of order n; the Hamiltonian H(z) is
supposed to be twice differentiable.

It is known that linear stability of a T-periodic solution z(t) is determined by
the corresponding variational equation

y=JAM)y, Alt)=A(t+T) = Hea(z(t). (1.2)

Let pi, k=1,...,2n be the Floquet multipliers of equation (1.2). Since equa-
tion (1.1) is autonomous and admits the integral

H(z(t)) = h = const, (1.3)

there always exists a double multiplier p =1 such that y,(¢) = £(¢) is one of the
related solutions (Poincaré [1]). The solution z(t) is called elliptic [2, 3], if other
multipliers lie on the unit circle, and the corresponding solutions yg (t) are bounded
on the interval (0, c0). If these multipliers are Krein definite [4], the solution z(t)
is called stable or strongly stable.

* Advances in Stability Theory (Ed.: A.A. Martynyuk). Stability and Control: Theory, Me-
thods and Applications, Taylor & Francis, London, 13 (2003) 243-253.
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For some fixed h, the expression H(z) = h defines the energy surface M =
H~1(h). The known results on stability of the periodic solutions on M relate to a
surface which bounds the convex compact region . According to Ekeland theorem
[2], such a surface carries at least one elliptic orbit, provided that for z € M the
pinching condition holds,

QR Iy < Hyplz) < 20720, =5 <2, (Hy)

where A < B means that (Ay,y) < (By,y) for any y € R?"; (a,b) is the scalar
product of the vectors a and b.

It is clear that aj(z)len < Hyp(z) < azn(x)lan, where ag(z) (0 < ag(z) <
are1(z), k=1,...,2n) are the eigenvalues of the matrix Hy, (). Thus, condition
(H1) is equivalent to the inequality

2 <, (H})

where a_ = mina;(z) and oy = maxaz,(z) for z € M.

Condition (H;) can be dropped, when the Hamiltonian is symmetric (H(z) =
H(-1)) (Dell’Antonio, D’Onofrio and Ekeland [5]).

Note that these conditions establish stability of the solution z(t) associated with
a minimum of the dual functional introduced by Clarke [6]. The results of the first
part of this paper also relate to this solution. It will be shown (Theorem 2.1) that
condition (Hj) can be relaxed as follows

g (z)

<2 for z€eM. H.
) (Ha)

The second part of the paper deals with stability analysis of Lyapunov families
of the periodic solutions emanating from the equilibrium point z = 0 of system
(1.1) (H,(0) = H(0) = 0). It is assumed that, for some region € in the vicinity of
zero, the relation holds,

A_ < Hy(z) <Ay, z€Q, (H3)

where A_ and A, are symmetric matrices. In terms of the eigenvalues of the
matrices JA_ and JA4, the corresponding conditions guarantee that Lyapunov
family zg(t,h) (zk(t,h) — 0 as h — 0) is uniquely continuable in h and remains
stable within Q (Theorem 3.1). Such approach was utilized first in [7] for convex
Hamiltonians (Hz.(z) > 0 for z € ©); here, it is extended to nonconvex Hamil-
tonians. (Note that for n = 2, some stability criteria feasible also for indefinite
Hamiltonians were obtained in [8].)
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Using this approach, new stability criteria for the solution z(t) € M = H~!(h)
associated with the minimum of the dual functional are obtained. Namely, it is
found that the conditions of stability of the solutions z, (¢, k), corresponding to the
largest natural frequency of the linearized system, guarantee also stability of the
solution z(t) even though they hold for x € M only.

Note that conditions (H;) and (Hj) are satisfied when the surface M is suffi-
ciently close to a sphere. This implies the multipliers pr # 1 of different Krein
types to lie on different open semicircles. The stability criteria obtained under
condition (H3) admit an arbitrary disposition of the multipliers on the unit circle.

2 Stability of a Solution on a Convex Energy Surface

Let M be a convex compact energy surface of the Hamiltonian H(z). In this
Section, we consider the solution z(t) € M associated with the minimum of the
dual functional

T
T(v) :/[% (1u,Pv)+H*(v)] dt, (2.1)
0

where v(t) is a T-periodic function, Pv is its primitive value of zero mean, and
H~(v) is the Legendre transform of H(z). Clarke [6] showed that, if v (t) is a critical
point of ¥(v), then z(t) = JPug(t)+( is a T-periodic solution of (1.1); conversely,
a solution of (1.1), zx(t), yields a critical point of (2.1), vg(t) = —J&x(¢).

For homogeneous Hamiltonian H'(z) (H'(sz) = s*H'(z)) with a € (1, 2),
functional (2.1) reaches its minimum at v.(t) # 0 (Ekeland [2]). This implies the
existence of the corresponding T-periodic solution z'(t) and, therefore, existence of
the family of 7'(s)-periodic solutions z(t,s) = sz'(s* 2¢). If H'(z) has the same
energy surface (H'(M) = h), then z(t,s) € M for some s. It is known that orbits
of different Hamiltonians on the same energy surface coincide, whence it follows
the existence of the required periodic solution z(¢t) € M [2,6].

Further, we assume that the multiplicity of the unit multiplier of equation (1.2)
corresponding to this solution is equal two. (Note that this is a generic property
for an individual periodic solution z(t).)

First, let us establish an auxiliary result. Consider the eigenvalue problem

¥ =AMy, y(0)=y(T) (2.2)

Due to A(¢) > 0, problem (2.2) is of positive type [9]. It follows that the
corresponding eigenvalues ), are real; let Aq, Ao, ... (Ax < Ag+1) be the positive
ones. Since the T-periodic function #(¢) satisfies equation (1.2), there exists an
eigenvalue Ap, = 1 such that &(t) is the related eigenfunction. The following lemma
determines the number p of this eigenvalue.
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Lemma 2.1 If functional (2.1) attains its minimum at v = —J&, then p=1;
otherwise, p = 2.

Proof Let v = —Jz be the minimum of ¥(v). Then the associated quadratic
form
T
/ [(Jw, Pw) + (w, A(t) 1w)] dt (2.3)
0

is nonnegative [2].

By contradiction, suppose that p > 1, then the first positive eigenvalue of prob-
lem (2.2) A; < 1. Let y1(¢) be the corresponding eigenfunction. Setting w = Jy;
in (2.3) and taking into account that g1 = A1 JA(t)y: and A(t) > 0, we find

T
Qw) = (02 — ) / (A1 (8), 91 (1)) dt < 0.
[0

The contradiction obtained shows that in the case considered p = 1.

Now, let us suppose that v = —J¢ is not a minimum of ¥(v). Consider a family
of Hamiltonians H(z, s) such that H(M,s) = h for s € [0,1], H(z,1) = H(z) and
H(z,0) = H'(z), where H'(z) is a homogeneous Hamiltonian of order « € (1,2).
The respective trajectories on M and, therefore, a Poincaré map G(v) do not
depend on s. It is known that eigenvalues of the matrix of the partial derivatives
Gy (vo), where vy corresponds to the periodic solution considered, coincide with
the multipliers py # 1 of system (1.2). It follows that the multiplicity of the unit
multiplier holds double for s € [0,1]. The related solutions can be taken in the
form

vilt,s) =t s),  wa(t,s) = f(t,s) + k(s)tyi (2, 5)), (2.4)
where f(t,s)) = f(t + T(s),s)), and k(s) = 0 when the respective elementary
divisors are simple.

The solutions associated with the rest of the multipliers, pg, can be represented
as follows

yi(t, 8) = exp [ (s)t] filt,s), wi(s) = lnpk(s)7 (2.5)

where fi(t, s) are either periodic functions or, in the case of nonsimple elementary
divisors, linear combinations of such functions with polynomial, with respect to ¢,
coefficients [9]. Taking into account expressions (2.4) and (2.5), and also known
identity (Jyp(t),yx(t)) = cpr = const, we obtain

(Jyi(t,s),yx(t,8)) =0, k#2. (2.6)

Since the solutions yx(t), k = 1,...,2n are linearly independent, it follows from
(2.6) that (Jy1,y2) = (Jy1, f) # 0. We assume that

(Ju(t, ), f(t,8) = 1. (2.7)
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Note that this condition determines the value k(s) in (2.4).
For k(s) # 0, the eigenvalue A(s) = 1 is simple; thus, the number p(s) holds.
Let us put

Ao(t,s) = A(t,s) — k(s)R(t,s), R(t,s) = Juyl J, (2.8)

where the index 7 means transposition. Clearly, the matrix R(t,s) is symmet-
ric (JT =-J).

Due to equality (2.6), we have R(t,s)yr(t,s) =0 for k # 2, hence, the solutions
yi(t,s), k # 2 satisfy also equation (1.2) with A = Ag(t,s). Substituting y2(t, s)
in (1.2) and taking into account that ¢ = JAy;, we obtain

f=JA(8)f - K(s)w. (2.9)

From (2.7), (2.8) and (2.9), it follows that f(¢,s) is a periodic solution of equa-
tion (1.2) with 4 = Ag(t,s). Thus, the multiplicity of the unit eigenvalue of the
corresponding problem (2.2) equals two.

Since R(t,s)yx(t,s) = 0 for k # 2, the matrix R(t,s) has a (2n — 1)-multiple
zero eigenvalue; the last eigenvalue is (2, = — (31 (¢, 8), 11 (t,8)) < 0 with Jy (t,s)
being the corresponding eigenfunction. Therefore, R(t,s) < 0, and hence, Aq(t,s)
< A(t,s) for k(s) < 0, whereas Agy(t,s) > A(t,s) for k(s) > 0. The positive
eigenvalues of problem (2.2) with A > 0 are decreasing under the increase in A [4].
As a result, p(s) is increased by one when k(s) changes its sign. Having observed
that p(0) = 1, we obtain p(l) < 2. Since, by supposition, v = —J& is not a
minimum of ¥(v), then p(1) > 1, i.e. p(1) = 2. The lemma is proved.

The theorem below establishes stability of the solution z(t) under condition (Hs)
which is more weak than (H,).

Theorem 2.1 Under condition (Hs), the solution z(t) is strongly stable.

Proof Having set T =t/T, we consider the eigenvalue problem

y = MA(Ty,  y(0)=y(1), (2.10)
A(T) = AT 4+ 1) = Hpo(2(7T)), ‘= L.
Clearly, the corresponding eigenvalues A, = TAg, k=1,2,..., hence, ] =T
or Ay =T by Lemma 2.1.
Since ay(z)lon < Hpz(z) < asn(z)lon, then

A_(r) = a1 (r) o < A(7) < Ay (1) = a2n(7) I2n, (2.11)

where a;(7) = ay (z(7T")), and as,(7) = az,(z(7T)).
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For A = A _(t) and A = A, (f), the multipliers of the first type of equation
(2.10) are [9]

pr (V) =exp(iad)), pF(d) =exp(iad,N), k=1,...,n, (2.12)
1

1
al = /al(r) dr, a3, = /a2n(T) dr,
0

0

whereas the multipliers of the second type are p, = 1/p; and an =1/p}.

By (Hs), o3,/a? < 2,50 for A = X* = n/a + ¢ under sufficiently small € > 0,
the multipliers p; () and p;()\), k =1,...,n lie on the open lower semicircle.
The multipliers of the first type, pi()), k = 1,...,n, of equation (2.10) move
along the unit circle counterclockwise with an increase in A(7) [4]. Thus, in view
of (2.11), the corresponding arguments satisfy the inequality

I\ <argpr(N) € af A (2.13)

Therefore, for A = A*, the multipliers of different types of equation (2.10) lie
on different open semicircles. Clearly, A\* < Al; let us follow the behavior of the
multipliers as A increases. For A = M|, the vanguard multipliers of different types
p1(A) and pp+1(A) = 1/p1(X) meet each other at the point p = 1. If A} =T, then
the multipliers of the first type, px(T), 1 < k < n, lie on the lower semicircle, so
that solution z(t) is strongly stable.

Let 7" = X, > M|, then the multiplier p(A]) = 1 corresponds to a Jordan
block of order m = 2 (in the case m > 2, some of the related multipliers would
be located outside the unit circle for A < A} [9]). Therefore, further increase of A
shifts the multipliers p; () and pp1(A) from the unit circle to the real axis, so that
p1(A) € (0,1), and pp41(A) € (1,00). Let us prove that precisely those multipliers
will meet again at the point p = 1 for A = T. Really, otherwise p1(T) € (0,1),
because a multiplier can get either on or off the interval (0,1) only together with
a conjugate multiplier. It is seen from the proof of the Lemma that there exists
a homogeneous Hamiltonian with a T"-periodic solution z'(t) € M, for which
A = T’ is the first eigenvalue; the multipliers for H(z) and H'(z) are identical.
Let us follow the behavior of the multipliers as A decreases from T to zero. For
A > 0 and small A, all the multipliers of the first type lie on the upper semicircle [4].
Therefore, the multiplier p; (A) finds itself at the point p =1 for some A < T' what
is impossible, because T is the first eigenvalue of the problem. The contradiction
obtained shows that p1(\) = pp+1(A) =1 for A =T = A},. Thus, in this case, the
multipliers of different types, pr(T) and pr4n(T), k = 2,...,n, also lie on different
open semicircles. The theorem is completely proved.

Remark 2.1 Taking into account that argp; = 27 for A = T, we obtain ofT <
21 < a3, T due to inequality (2.13). Therefore, the period of the solution considered
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satisfies the following bilateral bounds,
Lccr< = (2.14)

In particular, if the strong inequality is true in (H;), one can take A_ =
2R %I, and A, = 2r 2L, then a_ = 2R™% a, = 2r~%, and, therefore,
ar? < T < 7RZ.

3 Stability of Lyapunov Families of Periodic Solutions

Let us suppose that = = 0 is an equilibrium point of system (1.1) (H,(0) = H(0) =
0) and inequality (H3) with some symmetric matrices A_ and Ay is true for
z € 1, where Q is a compact region (0 € Q). If the frequency w9 of the linearized
equation & = JH,,(0)z satisfies the nonresonance condition wQ # wg/m, p#k,
m =1,2,..., then, according to the Lyapunov theorem [10], for sufficiently small A,
there exists a family of the T (h)-periodic solutions zg (¢, h) such that zx(¢,h) — 0,
Ti(h) = 2n/w?, as h — 0.

It was shown in [11] that, under some condition involving the eigenvalues of the
matrices JA_ and JA,, the family z(t, k) is uniquely continuable in h within §;
so that zx(t,h) € Q for 0 < h < hy and zg(tg, hy) € 09 for some t and hy. Our
immediate aim is to find out the additional conditions, which guarantee stability
of zx(t,h) for 0 < h < hy.

Let us assume that the eigenvalues of the matrix JA(A), where A(A) = A_ +
A(A;L — A), are purely imaginary for A € [0,1]; denote them +iw,(A) (p
1,...,n; wp(A) > 0); let z,(A) be the corresponding eigenfunctions (iw,(A)zp(A)
JA(A) x z,(N)). Having assigned a period T to the matrix A(A), we denote the
multipliers of the equation & = JA(A)z as

(M T) = expliwp,(MNT] and  rpn(NT) = 15(N) = exp [—iw,(MNT]. (3.1)

According to the classification of Krein [4], r, (A, T") is either of the first or second
type if, respectively, either I, = i(zp, Jz,) > 0 or I, < 0. As known [9], a type
of the multiplier holds, as the matrix A is changing; the multipliers r,(A,T") and
75(A, T) are of different types. If A_ and, therefore, A4 are positive definite, then
rp(MT), p=1,...,n are of the first type.

Since A(A) increases with A, the multipliers of the first (second) type are mov-
ing counterclockwise (clockwise) along the unit circle [4], i.e., the values wy(A)
are monotonically changing. We denote w, = min [w,(0),w,(1)] and wi =
max [wp(0),wp(1)]. With no loss of generality, we assume that w, < w,,;.

For A € [0,1} and T € [2n/w],2m /w ], the multipliers 7,(), T) and rpipn(A,T)
=7p(AT), p=1,...,n lie on the arcs, G, = [exp(i¢, ),exp (i¢f] and Gpyn =
G, of the unit circle, where ¢ = 2nw, /w} and ¢f = 2mw, /wy .
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Let us suppose that
GpoNGy=0 for p,g#k k+n, (Hy)

when the corresponding multipliers 7,(X, T} and r4(X, T} are of different types.

If k < n, condition (Hy) implies that w;/w; < 2 for p > k; otherwise,

L€ G, NG, for p> k. If k=n, we assume a prior: that
i < 2. (Hs)
Wn

Moreover, we assume that, on the upper semicircle, the arc Gy, may have common
points only with arcs G, associated with the multipliers of one type only.

Note that condition (H,) implies that the arcs Gp and Gg, p,¢ # k, k+n
corresponding to multipliers of different types, have no common points (to check it,
it is sufficient to consider the upper semicircle only). The rest conditions guarantee
that the interval between such arcs is not completely overlapped by the arc Gy.

From condition (Hy) it, in particular, follows that 1 ¢ Gp, p # k, so

mm;&% for A, €[0,1], m=1,2.... (3.2)

As shown in [11], under condition (3.2), the family (¢, h) is uniquely continu-
able in h within © and the corresponding period Tx(k) € (27/wy, 27 /wy ).

Theorem 3.1 The solutions zx(t,h) € ) are strongly stable.

Proof The multipliers of the linearized equation p) = exp(2miwd/w]) € Gp,
hence, zx(t, h) is stable for small A. Suppose that zx(¢,h) € Q is unstable for
some hi. Under condition (3.2), the multiplicity of the unit multiplier equals two
[11], so that no multiplier can leave the unit circle at the point p = 1. Therefore, for
some hy < hi, the multipliers of the different types, p, and py, p, ¢ # k, k+n, of
equation (1.2) meet each other at some point of the unit circle. As was mentioned
above, there are points between the arcs, G, and G, where no multiplier, r, (A, T,
p=1,...,2n, finds itself for A € [0,1] and T € [27/w], 27 /w; ]. Therefore, one of
the multipliers, either p, or pg, lies at such a point p, for some h, < ho; let y. (¢, h.)
be the corresponding solution (y.(t + Tk, hs) = pays(t, hs)), where Ty = Ti(h.).

Consider the eigenvalue problem

v =JA-+ MR - Ay, y(Th) = puy(0), (3.3)

where R(t) > A_. Due to this inequality, the problem is of positive type {9];
let Ay < A2 < ... be the positive eigenvalues. By supposition, for A = 1

= A.(t) = A(z(t, ha)), equation (1.2) has the solution y.(t,h.) satis-
fying boundary condition (3.3); hence, A = 1 is the corresponding eigenvalue.
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The positive eigenvalues are decreasing with an increase in R(t) [4]; therefore,
for R(t) = Ay > A., problem (3.3) has an eigenvalue X, € (0,1), hence, the
equation § = JA(Ap)y has the multiplier p, for T = T.. Meanwhile, as shown
above, no multiplier of this equation finds itself at the point p. for A € [0,1] and
T € [2n/w}, 2r/w;]. The contradiction obtained shows that the multipliers of
different types cannot meet on the unit circle, when zx(t, h) € Q. The theorem is
proved.

4 Discussion

The conditions of Theorem 3.1 involve the eigenvalues of the matrices A_ and A,.
In the general case, A_ and A, can be obtained as follows. Let (Hsz,z) be the
quadratic part of H(z), then Hy + B_Is, < Hy,(x) < Hy + 4 1a,, where S_ and
B4 are, respectively, the smallest and largest eigenvalues of the matrix H,,(x)— Ho
for z € Q. So one can set A_ = Hy 4+ (8- — €)I, and Ay = Ho + (B4 + €) Loy,
where € > 0 is an arbitrary small value. Note that S_(f2), 5+(2) — 0 as Q goes
to 0, so that w, and w;r become close to w). Therefore, if the linearized system
i = JH,,(0)x is strongly stable, one can find a finite region, €, such that the
solutions z(t, h) is also strongly stable as long as =4 (t, h) € Q.

To illustrate the use of Theorem 3.1, let us obtain some stability conditions
for the family z,(t, h) corresponding to the largest natural frequency w? of the
linearized system. For the sake of certainty, we assume that the Hamiltonian is
convex; then the matrix A_ can be taken as positive definite in (H3), so that
the multipliers r,(X,T) for p < n are of the first type, and wi(0) = w, and
wi(1) = wi.

Let us suppose that argry(0,27/wl) = ¢, = 27w, /wt > 7 for p < n. Clearly,
if ¢ = 2mwit/w, < 2m, then the arcs, Gp, p < n and Gpyn, corresponding to
the multipliers of the first and second type lie, respectively, on the lower and upper
semicircles, so that condition (Hy4) holds. Thus, under condition (Hs), the solutions
zTp(t,h) € Q are certainly stable, provided that

w, > WT", wy <wy,, (Hg)
Analogously, if ¢;f < 7w for p < n, then the arcs Gp, p < n and Gpip lie,

respectively, on the upper and lower semicircles, so the stability of z,(t,h) € Q is

guaranteed by the inequality

Wn

-

For n = 2, the stability conditions are reduced to the above inequalities.

wi < (H7)
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For n = 3, stability is also possible, when there are multipliers of different types
on each of the semicircles. Let ¢; < 2m—~¢; < 7, then G; and G4 lie on the upper
semicircle. The condition G; NGy = @ is satisfied, if (;5'1" < 27 — ¢F. The interval
between G and G4 is not overlapped by Gs, if 27 — ¢4 > ¢4 = 2nw; fw; — 2.
Therefore, the solutions z,(¢, h) €  are stable if

wi +wf <wy, Wi+t <2w;. (Hsg)

If 27 ~ ¢, < @] < m, the required conditions hold when ¢ < 7, ¢F < ¢,
and ¢>2+ < 2m, that implies the following stability conditions

- + -
Wi o W Wi

¥

, < <1, w; <wj. (Hg)
2 Wy wg

Wy +wy >w§', wf’ <

In both cases, the multipliers of different types, p; and p4, of equation (1.2)
lie on the upper semicircles; however, argp; < argps and argp; > argps under
conditions (Hs) and (Hy), respectively.

To this end, let us consider again stability of a solution lying on the convex
compact energy surface M bounding the region . If inequality (H3) is true for
x € Q, then the above conditions guarantee the stability of the solutions z,(t, h) €
Q1 and, thereby, existence of the stable solution z(t,h,) € M. Suppose now that
(Hs) is true for z € M only; let us show that the same conditions guarantee
stability of the periodic solution (¢) € M associated with the minimum of dual
functional (2.1).

Clearly, in the corresponding eigenvalue problem (2.10), A_ < A(r,s) < Ay, so

that we have
2w 2w

/\}L:/\'{:—+<z\1, A <Al =X, = —
Wn w

Taking into account that the period of the solution considered T = A; or T =
Az, we find that T € (27 /w], 27 /wy)).

Let Ax(s), £k =1,2,..., be the positive eigenvalues of problem (3.3) with T\ =
T, p. =1 and R = R(t,s) = Ay + s[A(t) — AL]; by Lemma 2.1, \(1) =1 or
A2(1) =1 (R(t,1) = A(t)). Setting A = A1(s) in equation (3.3), let us follow the
behavior of the corresponding multipliers, as s increases on [0, 1].

Clearly, pp(0) € Gp, pn(s) = pan(s) = 1 (Ai(s) = 1); as it is seen from the
proof of Theorem 3.1, for s € [0,1], the multiplier p, cannot leave the arc G,.
Therefore, for s = 1, equation (3.3) is stable that concludes the proof in the case
Ai(1) = 1. Otherwise, we put s = 1 and increase A from A; to 1. As it is seen
from the proof of Lemma 2.1, the multipliers p,, and pa,, are shifting along the real
axis and meeting again at the point p=1 for A =1.

Note that (H4) requires, in particular, that 1 ¢ G,, p # n, 2n (otherwise
1€ G, N Gpyn). It appears that this condition is no longer necessary for stability
of the solution considered.
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Really, suppose that p,(s1) = pp+n(s1) =1, p # n for some s; < 1; generically,
the multiplicity of the multiplier p(s;) =1, m = 4. As it is seen from the proof
of Lemma 2.1, in view of A = A;(s), the multipliers p,(s) and ppyn(s) cannot be
shifted on the real axis as s increases. Therefore, for s = 1, they lie on the unit
circle, and pp(1), pp+n(1) # 1; by supposition, m(1) = 2.

In particular, the last inequality could be dropped in (Hg) provided that 1 ¢ G.
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1 Introduction

In previous work, the interactions between agricultural wealth, industrial wealth,
and the environment have been modelled and analyzed. In Apedaile, et al. [1], the
environment was held constant and only direct interactions between agriculture
and industry were considered. In Solomonovich, et al. [2] the environment was
introduced with a minimum threshold. In Solomonovich, et al. [3], the environment
was allowed to degenerate or recover, either through farming, adding of nutrient,
or through natural causes.

Previously, wealth was measured in dollars, where a dollar value to environ-
mental quality was assigned. However, it is believed that total assets, rather than
dollars, would be a better measure of agricultural and industrial wealth. As to the
environment, a better measure of quality would be a pure number between zero
and one given by (yield level - catastrophic level)/(maximum possible yield level —
catastrophic level). This causes several fundamental changes in the model.
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The first change is that, whereas in the previous models agricultural and indus-
trial wealth influence on their growth must of necessity saturate, here that is no
longer true. This is because now the land is part of the agricultural assets, and
for all practical purposes, through the purchase of more land, agricultural wealth
may increase significantly. As to industry, it may acquire machinery, property, etc.
which increases its assets.

The importance of the environment in economic growth is given in Smulders [4].
Since now, under the assumption that a catastrophic environment cannot recover
on its own, the equation for the change in environment no longer will have either
thresholds or source terms.

The organization of the paper is as follows. In the next section we develop
our modes. In Section 3, we discuss the agriculture-industry system (constant
environment), followed by the agriculture environment submodel in Section 4. The
last section will contain a brief discussion of our results.

We leave the analysis of the full three dimensional model to a future paper.

2 The Models
2.1 Two dimensional agriculture-industry model

It is assumed throughout that agricultural assets may increase and decrease both
in the absence of the particular industry and due to interaction with industry.
In the absence of agricultural interactions, the industrial assets will decline, but
interaction with agriculture would have a positive feedback on the industrial assets.
This leads to a model of the form

A=aA - A% +vAI, A(0)= A >0 (1a)
I=—¢l—nl? +6AI, I(0)=1I, >0, (1b)
ai ﬁ? E’ T]! 6 > 0

Here A represents the (scaled) assets of agriculture and I the (scaled) assets of
industry.

The terms oA — 3A% represent the growth of agricultural wealth in the absence
of industrial interaction, and, of course, is limited. The term yAI represents the
net rate of change of agricultural wealth due to interaction of A with I. ~y can be
<0,00r >0.

In the case that v < 0, then industrial influence causes a net decrease in agri-
cultural assets. Unfortunately, this is all too often the case [1]. If v = 0, then
the cost of dealing with industry exactly equals any benefits obtained. However, if
v > 0, then there is a net benefit to agriculture. Of course soil, etc; may recover
on its own [5].
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For the I equation, the terms —&7 — nlI? represent the reduction rate of indus-
trial assets in the absence of agricultural interactions. However interacting with
agriculture will give rise to a positive change in industrial wealth as given by the
term §AI. For an interpretation of the constants (with v — & replaced by ~ here),
we refer the reader to [1).

The above model (1) is a Lotka-Volterra system (see Freedman [6]). If v < 0,
it is of predator-prey type and if v > 0 is a cooperative system.

2.2 Three dimensional model

We now modify system (1) so as to include environmental influence on agricultural
wealth, both without and with industrial interactions. We also include an equation
for the change of environmental quality.

This leads to a model of the form

A=aEA-BA* +yEAI - 6,1 - E)A (2a)
I=—¢l—nI? +§AI, (2b)
E =¢E(e— E)—vEA +6,(1 — E)A, (2¢)

A(0) = 49>0, I(0)=1I >0, E(0)=FEo, 0<Ep<l,
a7ﬁ76,§an>0) 579130220~

The term 6;(1 — E)A represents the cost rate of agricultural wealth to improve
the environment, whereas 65(1 ~ E)A represents the corresponding rate of quality
increase of the environment. The term eFE(e — E) represents the ability of the
environment to restore itself, in the absence of agricultural activity, to its natural
wild state (see [6]), e, where 0 < e < 1.

We note that since EHE:O =6,A >0 and E“E:l =¢e(le—~1)—vA <0, then
0 < Ep <1 implies that 0 < E(t) <1, t > 0.

2.3 Agriculture-environment submodel

If interaction with industry is not present, then model (2) becomes

A=aFEA-BA?-6,(1- E)A (3a)
E=¢E(e— E)—-vEA+6,(1 — E)A. (3b)

This would represent interactions between self-sustaining agricultural groups with
the environment.
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3 Agriculture-Industry Model

In this section we analyze model (1). There are three possible equilibria which are
of the forms Fo(0,0), F1(F,0) and F(A,T), where A, I > 0. Clearly Fy and Fy
exist. Setting the right hand sides of (1) equal to zero and solving, gives

E:C”)—’)f f:a(s*ﬁé.
Bn—~s’ Bn — s

Hence in order for ,;f, 7> 0, we need the inequalities
(an —vE)(Bn —v6) >0, (ad — BE)(Bn —v5) >0 (4)

to be satisfied. We consider the cases v < 0, and v > 0.

(i) v < 0. In this case, fn — v > 0 automatically holds. Then an — vy > 0
also. Hence inequalities (4) reduce to

ad > fE. (5)

(i1) v > 0. There are two subcases.
(iia): Inequality (5) holds. Then we require

0<7<min{%,°‘£—"}. (6)
(iib): ad < BE. (7
Then we require
Bn on
’y>max{7,?}. (8)

As a consequence, we have the following theorem.
Theorem 3.1 System (1) has an equilibrium in the positive A — I plane pro-
vided one of the following hold: (Figure 3.1).
(i) ¥<0, ad>pg;
(if) ad > B¢, 0 <y <min {4, 22},
(iii) ad < B¢, v > max {%’1, %’1}

We now obtain the stability of the three equilibria when they exist.
Let M be the variational matrix of system (1) about an equilibrium. Then

a—20A+~I ~vA

M= .
51 —¢—2nI +6A



(a):y=-1; a=3 b):v=-1, a=1
I, I,
T, T,
/5 a/p A O afB £/
() y=1; a=3 I (d):y=2.5; a=3
L;
y
£/8 a/p A O
I
(e): y=3; a=1
O ofp £/ A
Figure 3.1. Modes of a steady-state.
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Using similar notation as for the equilibria, we get

oy

_|a O I = _[-84 ~A
MO_[O —5]’ Ml_[o %‘5—5]’ M‘{af —nf}‘

Clearly Fp is a saddle point, whereas Fj is a saddle point if (5) holds and asymp-
totically stable if (7) holds.
To determine the eigenvalues of M , we consider its characteristic equation which
reduces to
X4 (BA+ DA+ (Bn —v8)AT = 0. 9)

In the most likely case that 8n — 4§ > 0, there are no eigenvalues with positive
real parts, so that Fis locally asymptotically stable.

If, however, ffn — ~vd < 0, there is exactly one positive and one negative eigen-
value, and F is a saddle point.

The following are clear.

() If y>0, 2<% and
(i) If v >0, ot
Further, there is a separatrix curve such that all solutions initiating beneath the

curve with A > 0 approach (%, 0) and all solutions initiating above the curve
with Ag, Iy > 0 become unbounded.

(i) I v >0, & > % and £ < 2, then all solutions with Ay > 0, Iy > 0
become unbounded.
(iv) Iy >0, §>% and 2> & thenif Ao, Io >0, lim (A(t),1(1)) = (4,7).
t—o0

Ap > 0, then tllglo (A@t), I(t)) = (%, 0).

g
" b
2 then F exists.

wR WIR
R 2@

<% and 2>

Finally, we consider the case that v < 0. From Figure 3.1a,b, clearly if v <0
and % > %, all positive solutions approach (%,O).

Hence we consider the final possibility, namely v < 0, % < % Then the unique

equilibrium F exists. If we choose
~ ~ A ~ =~ T
VA, )=u A—A—Alnj + v I—I—Iln; ,

where u, v > 0, then V(A,I) is a positive definite function about F.
If we compute the derivative of V along solutions of (1) and simplify, we get
V(A D) = —fu(A - A)? + (yu+ 6v)(A — A)(I = I) — qu(I - T)2.

If v+ <0, choose u =46 and v = —v and get

det V(A T) = —B8(A— A2 4 yp(I-D* <0 forall A, I>0.
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If v =0,then V(A,I) = —fu(A—A)2 +v(A— AYT -T)—nu(I = 1T). If we

choose v =1 and u > 4%27—], then V is again negative definite.

In either case the Liapunov Theory, tells us that Tis globally stable.

4 Agriculture-Environment Submodel

In this section we consider the agriculture-environment submodel obtained from
system (2) by setting J = 7 = 0. Such a submodel could be construed as helping
to understand how self-sufficient farm communities (e.g. Amish, Hutterites, etc.)
interact with their environments.

This model takes the form

A=aFEA—- A% —0,(1- E)A (10a)
E =¢E(e— E)— vEA +6,(1 — E)A, (10b)
A0)=A0>0, E(0)=E;>0.
The equilibria for this system are obtained by solving the equations
AlaE - A—-60:(1-E)]=0 (11a)
eEle— E)—vEA+0:(1- E)A=0. (11b)

Clearly from (11), G(0,0) and G4 (0, e) are equilibria.
To examine the feasibility of a positive equilibrium of the form G( A, E ), where
A >0, E >0, write (11a) as

A=8""aE -6,(1-E)) (12)

and substitute into (11b). After simplifying, we get that F must satisfy the qua-
dratic equation

[Be + (o + 01)(v + 62)E% — [Bee + (0 + 01)02 + 0, (v + 8,)]E+ 6,6, =0.  (13)

Equation (13) has real roots (which must be nonnegative) if and only if the dis-
criminant is nonnegative, or on simplifying, if and only if

[ﬁse e (1/91 + Olez + 20102)]2 - 4556102 2 0. (14)

Then one must solve for the E values, substitute into (12) and check to see if 4 > 0.

Condition (14), though straightforward to check, does not lead to any insight
as to when G exists. It is, however, possible to obtain a sufficient condition for G
geometrically.
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Let A; be the graph of
A= a+6)E 6] (15)
obtained by setting (11a) equal to zero. Let Ay be the graph of

eE(e— F)

S+ 0)E—6, (16)

obtained by setting (11b) equal to zero.
Ay is a straight line with E intercept at —4— a+9 and slope O‘—}'fl (see Figure 4.1a).

To discuss Ag, we first note that equation (16) can be written as

_ €k + elve+8x(e —1)]  ebove +83(e —1)]
- v+ 6, (V+92)2 (1/+02)2[(1/+92)E—‘92]
(17a)
when
_ —ck 02 _
=i 6 when e (17b)

From (17) it is easy to see that in either case, the graph of A, asymptotically
approaches a straight line with negative slope as F — +o00. Of course, we are only

<0
interested in the case 0 < F < 1. Note that ve +0:(e —1) =0 if e § foez,
>0

respectively.
We now construct As. There are three cases to consider.

i) e < =% In this case A, is given in Figure 4.1b. Clearly from Figures 4.1a
v4-02 g
<e.

(when E # e). Clearly G

and 4.1b, G clearly exists in this case if af—lé)

(ii) e= +€
does not exist in t his case.

(iii) e > =% u+9 . In this case A, is given as in Figure 4.1d. Here one can easily

see that G exists if and only if Ele_ <e.

The above is summarized in the following theorem.

Theorem 4.1 System (10) has a unique positive equilibrium in the E — A
plane provided e # #9— and
61

Oé+01

<e. (18)

In the case that e > EBL’ condition (18) is also necessary.

We now investigate the stability of the equilibria, and this leads to yet another
set of criteria for G to exist.
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A A
A, A,
Q,
v+0,
(0,0) : 0,0
0, 1 E 0.0 \/ e E
a+Q,
.
a b
A A
AZ
0,0) (0,0) ¢
E 0, E
A, A, v+Q,
c d

Figure 4.1. Modes of a steady-state.

The variational matrix, M, about a general point of system 10 is
aF —28A-0:(1-E) (a+61)A ]
—vE+6,(1-F) ce—2eE—(v+6)A]"
Hence the variational matrices about G and G respectively are
Mo:[_el 0]’ Ml___{(a+91)e—91 O’].
0y ee O — (v +b2)e —ce

Clearly the eigenvalue of My are —6; and ee, showing that Gy is a hyperbolic
saddle point, unstable locally in the E direction, provided e > 0. Similarly the

|
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eigenvalues of G; are (o +61)e — 6, and —ce. If (o +6;)e —6; < 0, then G, is
locally asymptotically stable, whereas if the reverse inequality holds, M is unstable
locally in the A direction (except in case (ii) where A, is undefined). Hence using
persistence theory (see [7—-9]) in cases (i) and (iii), one may conclude the existence
of G provided inequality (18) holds.

We now consider the interior of the £ — A plane. System (10) can be written

in the form }
A= f(AE)

. (19)
E=g(A E),

where f(A,E) = (a+6;)EA-BA?*+614 and g(A, E) =cE(e—E)—(v+6;)FA+
02A. Let D(AE) = 4 [AT'E7 (A, E)|+ £ [A~* E~'g(A, E)]. Then we obtain
that

for E, A > 0. Hence by Dulac’s theorem {10, p. 137] there are no periodic solutions
in the interior of the first quadrant. Hence if G exists uniquely, it must be globally
stable.

5. Discussion

In this paper we have developed a new model for the interaction of agriculture
with industry and the environment, where agriculture and industry are measured
in terms of their assets and environment in terms of its quality. We then analyzed
the agriculture-industry and agriculture-environment submodels. Due to limitation
of size, we leave the analysis of the full model to a future paper.

In both cases, we have established criteria for the existence of a positive equilib-
rium, and have shown that in these models, periodic solutions cannot occur. We
suspect that in the full model, there may very well be limit cycles.
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4.2 BIFURCATIONS OF PERIODIC
SOLUTIONS OF THE THREE
BODY PROBLEM*

V.I. GOULIAEV

Ukrainian Transport University, Kiev, Ukraine

1 Introduction

The problem of three bodies occupies the central place in analytical dynamics,
celestial mechanics and cosmodynamics. Notwithstanding the great interest paid
to it by many scientists over a protracted period of time, up till now it has not only
remained unsolved but even the quantitative behaviour of this system has not been
understood. In the general form the three body problem is formulated as follows
in [3,6,12,13]. Three particles of arbitrary masses are attracted to one another
according to Newton’s gravity law. Their initial motion is predetermined and they
can occupy any position in space. It is necessary to find their motion.

In this form the three body problem is very difficult. Numerous attempts to
simplify it through the use of the ten first integrals stemming from the theorems
on a mass center motion and rotation around it, as well as the law of conservation
of total mechanical energy turned out to be unsuccessful. Moreover, the established
theorems on non-existence of any additional analytical integrals not connected with
the ten classical ones lent evidence to the view that this method of construction of
particular solutions of the problem is unpromising,.

The restricted problem of three bodies is the most important modification of the
classical problem of three bodies moving under the action of their mutual gravity.
Interest in it has increased significantly owing to intensive study and mastering
of outer space. Inasmuch as the equations of the theory of three bodies are not
integrable in the general form, the major part of the investigations are dedicated
to the study of the particular solutions, corresponding to the points of libration of
the three body problem.

* Advances in Stability Theory (Ed.: A.A. Martynyuk). Stability and Control: Theory, Me-
thods and Applications, Taylor & Francis, London, 13 (2003) 267-287.
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During investigation of periodic orbits within the framework of the three body
problem, different kinds of simplifying assumptions are introduced. For example,
the body of infinitesimal mass is located in the plane of orbits of the principal
gravitating masses always during the motion (the plane restricted problem of three
bodies), the body of less mass is moving in circular orbit around the body of greater
mass (the circular restricted problem of three bodies). Below the questions of com-
puter simulation of bifurcation states of the considered system and transformation
of its periodic orbits are considered.

2 Techniques for Construction of Periodic Orbits within the Framework
of the Restricted Problem of Three Bodies

Bring forward the techniques for construction of periodic orbits of the spatial ellip-
tical restricted problem of three bodies and investigation of their stability. Consider
a problem on the motion of a system, consisting of three particles My, My, My mu-
tually gravitating according to Newton’s law. Assume that the particles My and
M, are of finite masses myp, m; and the particle My has an infinitesimal (“zero”)
mass and does not practically influence the motion of the two finite masses mg, my.
The problem named the restricted problem of three bodies comprises investigation
of the motion of the infinitesimal mass body M; under the action of gravity of the
bodies Mgy, M; of finite masses.

Motion of the body relative the body M; is determined stemming from the
problem of two bodies. In doing so the particle My orbit is described by the
equation

p

T EE ———
1+ecosv’

(2.1)
where r is the distance between the particles My and My; p is the parameter; e is
the eccentricity of its Kepler’s orbit; v is the apparent anomaly. The body M;’s
orbit may be a circle (e = 0), ellipse (0 < e < 1), parabola (e = 1) or hyperbola
(e > 0) depending upon the values of the initial velocity of the particle M; with
respect to the particle Mg.

In celestial mechanics the following three cases are separated: the circular re-
stricted problem, when the particle M;’s orbit is a circle with its center at the
point Mp; the elliptical restricted problem, when the particle M;’s orbit in an el-
lipse with its focus located at the point Mp; the hyperbolic restricted problem, when
the particle M;’s trajectory is a hyperbola with its focus located at the point Mj.

If the “zero mass” body My is located during its motion in the plane containing
the principal gravitating masses Mg, M, the problem is termed a plane one. In
the case when the particle M» can leave the plane of the particles My, M;’s orbits,
one has to deal with the spatial restricted problem of three bodies.
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Figure 2.1. Geometrical scheme of the three body problem

Let us construct the equations of motion of the “zero mass” particle M, within
the framework of the spatial elliptical restricted problem of three bodies. To accom-
plish this we introduce the coordinate system Ozyz (Figure 2.1) rotating around
the axis O¢ of the immovable coordinate system O¢&n¢ with its origin at the bodies
My, Mi’s mass center’s in such a manner that the axis Oz passes through the
points My and M;.

The body M2 coordinates in the rotating reference frame are determined by the
following equations [3]

Pa_ydvdy () L 0w
dt dt

dt? dt dt " oz’
dy dvde  (dv\® v W (2.2)
PR (a) VYT By
dz_ oW
2~ 0z’
where W is the force function
W=f<@+ﬁ), (2.3)
To Ty

ro, 71 are the distances from the “zero mass” Mj till the basical gravitating bod-
ies Mo, M 1;

ro = [(z —z0)* +¢° +z2]1/2, ro=[@—2)? + 92 zz]l/z;

the coordinates o, z; are specified by the formulae

myr moT

o= ———, Ty = ——3
mg + 1My mo + my
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the position-vector r is expressed through the parameter p and eccentricity e of the
elliptical orbits of the bodies My, M7 by the equality

:—p -
1+ecosv’

v is the apparent anomaly of the Kepler orbit of the bodies My and M, (Figure 2.1).
Taking into account that the derivatives of the apparent anomaly are calculated
through the expressions

&
dt?

dv

i 1%(1+e cosv)?,

2¢?
= —— sinv(l + e cosv)?,
p

the equations (2.2) are reduced to the form

d’z 2esinv dx 2dy N 2e sinwv pt (1+ e cosn) ow

- T 2 gy T gy =5 e cosv) Tt ——

dv?  1+ecosv dv dv Ttecosv’ & or’
d*y dzx 2e sinv  dy 2e sinwv pt ow

L paind pal-A —y=21(1 -4 77

dv? dv  l+ecosv dv 1+ecosvz Y c2( e cosv) oy’
d*z 2esinv dz  pt 4L OW

-_ =7 *_£ 0 iy 2.4
dv? l+4ecosvdv (2 (1+e cosv) Oz (24)

In construction of the periodic solutions to the nonlinear differential equations
(2.4) for the spatial elliptical problem of three bodies, we assume that a 27-periodic
solution z*(v), y*(v), z*(v) to the system (2.4) for some value of the eccentricity e*
is predetermined. Then in line with the approach proposed in [7], the 27-periodic
solution to the motion equations (2.4) for the parameter value e + Ae may be
represented in the form

z(v) = 2% (v) + Az(v), yv) =y" W)+ Ay(v), z(v)=2z"@W)+ Az(v), (2.5)

where Az, Ay, Az are the components of the 2n-periodic solution to the equation
system

2 2e* si 2¢e* si
d e* sinv iAz—2(—§—)Ay—Am+ e*sinv

S A= e v
dv? 1+ e*cosv dv 1+ e*cosv

4
% (1+e*cosv)™ % AW + (1 + e* cos v)_Q{ [2 sinv(1 + e* cosv)

dz* 4p* ow™
— e*sin 2v] ( ;} —y*) - c% cosv(l + e cosv)™® 3z }Ae,

ﬁAy+2iAm 2e*sinv  d 2e* sinv

dv? dv T T+e*cosv dv y_1+e*cosv T = Ay (2.6)
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4
:p—2(1+e*cosv)'4éa—AW-I—(l-f-e*cosv)‘Z{[Z sinv(l + e* cosv)
C Y
dy* 4p* oWw*
— e*sin 2v] (j’u +z*) - c% cosv(1 +e" cosv)™® By }Ae,
d? 2e*sinv  d A _ . 4 0 A . Ly
PR prse——— z—c—2(l+e cos v) 5 W 4+ (14 e*cosv)

dz*  4pt ow*
X< 2 sinv(1l 4 e* cosv) — e*sin 2v — — cosv(l +e*cosv)? =— VAe
{[ ( ) ] dv c? ( ) 0z
linearized in the vicinity of the parameter value e*, corresponding to the incre-
ment Ae.
In equations (2.6) the derivatives of the force function W with respect the co-
ordinates z, y, z are represented in the form

ow*

5 = ~H{mole —ap)[@" — ) + ) + (7]
+mi(e” - o) - 22+ )+ (7)) e
ow- . . y2]-3/2
= = f{mol(@" - 25)* + ")* + (=")?
5 {mo[(z" - 25 ] .
[ =)+ 67 + P by
o = —1{mol(e e 4 ()7 + (272

+my[(g* —2})? + (1) + (z*)Q]*s/z}z*,

where the coordinates x§, 7 and the position-vector r* corresponding to the ellip-
tical orbit parameter value e* equal

myr* mor*
Ty= ) oz = (2.8)
mo + my mo + my
p
e — 2.9
1+ e*cosw (2.9)

The force function derivatives increments are expressed through the “zero mass”
My coordinates Az, Ay, Az increments with the use of the correlations

AW =~ {mo[(a” ~ 55) + (") + (7] (Ax — Ag)

~ 3mo(z” — o) [(2* — 35)* + (v")* + (=)2] *[(e" - 23)(Az — Aao)
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+y Ay + z*Az] +my [(x* —- 1)+ (y) + (z*)z] _S/Q(Az — Azp)
= 3m(e” — a])[(a" - 50)% + (1) + (7))
x [(&* — z})(Ax — Azy) + y* Ay + 27 Az] }Az, (2.10)

% AW =3f{mo[(z* —5)* + (u")* + ()] [(e" — w3)(Aa ~ Az)

+yt Ay + 2" A +ma (@ - 20)? + (v7)2 + (27)2] P @ - 2l)(Az — Azy)
+y Ay + 28z = f{mo[@ - ap)* + () + (7))
(e - o) + () + (7] 7 Ay,

O aw = 3{ma(@* —a5) + (5 + ) [0 - ) (A — Azo)

0z
+y Ay + 2 Az] Fmy (@ — 2] + (1) + ()2 TP - o) (Az ~ Axy)
+y by + 2 Az} - f{mo[(@ - 25)? + () + ()27
e~ ot + () + ()7 A

Here the increments of the coordinates Axg, Aye and the position-vector Ar are
represented with the help of the formulae

m1Ar moAr
Awg= ——ET 1 pg = BT
mgo + my mo + my
cosvAe
Ar = — p

(14 e*cosv)?’

The 27-periodic solution Az, Ay, Az to the linearized equations (2.6) of the
elliptical restricted problem of three bodies is looked for in the form

6
Ax = ZAzici + Az,
i=1
6
Ay =" Ayic; + Aye, (2.11)

i=1

6
Az = Z Aziep + Az,

i=1

where Az;, Ay;, Az; are the elements of the normalized fundamental matrix of
solutions to the equations system (2.6) transformed to the homogeneous form;
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Az, Ay, Az, are the Cauchy problem solution for the linearized system (2.6)
under the nullified initial conditions; ¢; are the constants determined from the
periodicity conditions

Az(0) = Az(27), Ay(0) = Ay(2w), Az(0) = Az(2x), (2.12)
% Az(0) = % Az(27), % Ay(0) = Edz; Ay(2m), % Az(0) = div Az(2m).

At realization of the calculation, the solutions Az;(v), Ay;(v), Az (v), Az.(v),
Aye(v), Az.(v) are constructed with the use of numerical methods.

Investigation of stability of the motion equations solutions of the elliptic re-
stricted problem of three bodies (2.4) is carried out on the basis of analysis of the
eigen-values p; of the monodromy matrix which is deduced as the result of the unit
matrix E subtraction from the matrix of coefficients of the left-hand member of
the linear algebraic equation system

[Azy(27) — 1]cy + Aza(2m)ca + -+ - + Azg(27)ce = — Az (27),
Ay1(2m)er + [Aya(2m) — es + -+ + Ays(2m)cs = ~Aye(2m),
.............................................................................................. (2.13)

% Az (27m)er + % Azg(2m)e + -+ + [% Azg(2m) — 1] ce = —% Az, (27),
constructed on the basis of the conditions (2.12) with allowance made for the
correlations (2.11).

The outlined approach permits us to find critical states of the considered sys-
tems, to separate the equation (2.4) stable solutions from the unstable ones, to
establish possibilities of the solution bifurcations, to continue the solutions along
the bifurcated directions and to construct the “zero mass” motion trajectories cor-
responding to the precritical and postcritical states [7].

3 Periodic Solutions of the Plane Elliptical Problem of Three Bodies

We perform the numerical construction of periodic trajectories of the plane elliptic
restricted problem of three bodies: the Earth, the Moon, a space-craft with the help
of the technique described in Section 2. The generating orbits for the considered
problem are found through prescription e = 0 in equations (2.2). Then (2.2) are
transformed into the motion equations of the classical circular restricted problem
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of three bodies (3]
d2
dz o, W _
dt? dt dx
d%y dr 00
SV Lo 2
a " E T dy
d*z _ 8Q
de2 — dz’
where Q = "72 22+ )+ W, n = 5= —dd—’;—, a is the radius of the body M;’s
circular orbit.
Inasmuch as 2 depends only on the particle M; coordinates, the system (3.1)
has a first integral, called the Jacobian integral, which looks like

dr\* (A" (dz 2—n2($2+ Dpof( 204 T fop
dt dt at) = Y ro | 11 ’

or V?=2P+2h, (3.2)

(3.1)

where V = \/(%)2 + (%)2 + (%)2 is the particle My’s relative velocity; the
coordinates zg, £; of the particles My, M; are the constant values;

mia mopa
o = —

—————e L= ——"——5 (3~3)
mg + my Mo + My

h is the arbitrary constant, which is entirely determined by an initial position and
velocity of the particle M.

r Y .01, - 14 .
X,=07 Jo==1,822 %=0,8 Jo==1,764

{ian w0
-10 & ‘X -0 &ﬂx

0 Q < 0
-0l i =10
-1,0 0 10

1
>
[\
(-
Pl Y
S

70 0 1.0

Figure 3.1. Generating trajectories of the “zero mass” body
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Perturbed trajectories of the “zero mass” body
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In Figure 3.1 are shown some generating orbits of the plane restricted problem

of three bodies for different initial positions zo and initial velocities 3, = %’tﬂ

(ic = %‘1 =0, yo = O) of the body M, gained as the result of the system (3.1)
numerical solution.

The periodic orbits of the body M; within the framework of the elliptical re-
stricted problem of three bodies are found with the help of the procedure outlined
above (2.4)—-(2.13), imparting increments to the eccentricity e of the bodies M,
M ’s elliptical orbits. Some of the results obtained are represented in Figure 3.2.

Special interest is caused by the orbits with the close passing, when the particle
periodically passes near the less (or near the both) of the two gravitating masses. In
these cases accuracy of the calculation methods falls drastically and it is necessary
to use special numerical procedures in order to achieve adequate satisfaction with
the periodicity conditions (2.13). Thus, integration of equations of (2.6) type is
performed with the use of the Everhart 11-15 order accuracy method [4].

4 Stability of Triangular Points of Libration in the Elliptical Restricted
Problem of Three Bodies

Consider the problem of stability of triangular points of libration in the elliptical
restricted problem of three bodies (particles) moving under the action of their
mutual gravitational attraction (Figure 2.1).

The three body problem has five particular solutions corresponding to the li-
bration points L; (1 = 1,2,...,5), where Ly, Ly, L3 are located in the straight
line passing through My and M; (Figure 2.1) and the points Ly and Ls make up
equilateral triangles with the bodies My and M;.

Inasmuch as the gravitational and centripetal accelerations experienced by the
particle M, located at the libration point are counterbalanced it remains immovable
(in the rotating reference frame).

The most important issues of the problem of the libration points are the ques-
tions of stability of the points L, and periodic orbits in their vicinity [1,3,12,13].

It is known that in the circular restricted problem of three bodies the “rectilin-
ear” points of libration are unstable, but the triangular ones are stable, if the ratio
of the masses p = m, /(mo + m,) is sufficiently small [1, 3], that is the inequality

0<27u(l—p) <1 (4.1)

is satisfied.

On strict investigation of stability it is proved [12] that the triangular points
of libration of the plane circular restricted problem of three bodies are stable in
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Liapunov’s sense in the region of the linear approximation (4.1) for all values of y,
except for two

_ 45-/1833
- 90

15— v213

= 0.0242
938, 30

I o = =0.013516, (4.2)
for which instability takes place.

We outline the numerical technique for stability investigation in linear approx-
imation and construction of the triangular points periodic orbits in the elliptical
restricted problem of three bodies. Consider the linearized fourth order system
with periodic coefficients. The mathematical problem is set by the system of equa-

tions [3]

dz_x_Qd_y hat —

dv? dv  l4ecosv 4.3)
@+2d_$ — hl—m —

dv? dv 1l+ecosv

where hy o = % [1 +4/1-3u(1 - u)] ; e is the eccentricity of the orbit of the two
masses mg, my; i is the ratio between the smaller mass and sum of both masses.

The linear equation (4.3) describes the motion of a particle near a triangular
point in the restricted problem of three bodies. Consider the possibility of motion
stability loss with the periods 27, 37, 4w, etc. We solve the equation system in the
segments 0 < v < 27, 0 <wv < 4w, 0 < v < 67, etc. under the following initial
conditions

1(0) =1, :1(0)=0, %(0)=0, 5(0)=0,
z2(0) =0, 22(0) =1, u2(0)=0, %(0)=0 (4.4)
r3(0) =0, 3(0)=0, y3(0)=1, ¢3(0)=0,
24(0) =0, 24(0) =0, va(0) =0, 7s(0) =1

The system (4.3) has a T-periodical solution z(v), y(v) for some values of e and
u according to Floquet’s theory if and only if the equality

z1(T) =1 zo(T)

1 (T)
n(T)
n(T)

I =det

occurs.

:Bg(T)

i(T) =1 23(7)

ya2(T)
Y2(T)

ys(T) — 1 ya(T)

93(T)

z4(T)

£4(T) —0 (4.5)

y4(T) =1

At e = 0 the points are found, where I = 0. Proceeding from these points
the curves, representing boundaries between the stable and unstable regions and
resonant lines are constructed. To accomplish this the parameters e and p are
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imparted such small increments Ae, Ap that the equality (4.5) remains true. In
this case the correlation
oI oI
Al = =— A — A ~0 4.6
allows us to establish an approximate relationship between them. Using it, one can
find new values of the parameters e + Ae, p+ Ay, for which

r=1=0.

Continuing further the process of the parameters e and p variation with al-
lowance made for the residual r in equation (4.5), we find the approximate relation

oI oI

—Ae+ —Ap—-r=0, 4.7

e et g AT (4.7)
on the basis of which it is possible to construct the curves approximately satisfy-
ing the periodic solutions to equations (4.3) in the plane e — y. Equation (4.7)
coefficients are calculated using the formulae {7]

g_"auJT
de

7=1

7

oI oul (T)
8u - ;

7=1

where Bl is the adjunct of the corresponding element of the matrix (4.5).

The functions @% and 8"6( ) are found as the solutions to the equations

h h
A&}—2A§j———2Ax _N2® COSU e=0,
1+ecosv (14 e cosv)?
Aj+oni— — T,y yCosY g
1+ e cosv 1+ e cosv
“ . hz x 6h2
AZ — 204y — Az — — Ap=0
v Yo Tfecoso ° 1tecosw o =5 (4.9)
.. . hy Yy Jhy
Aj + 2A% — Ay — — Ap=0
yteas Ttecosv 7 Ttecosw o p=5
Bhl_g 2p—1 6h2__g 2u—1
O 2\/1-3u(l-p) Op  4/1-3u(l-p)
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Figure 4.1. Diagram of stability

issuing from the system (4.3) variation with respect to e and p under the nullified
initial conditions.

Using the equality (4.7) and specifying one of the parameters e or u as leading
the increment of the other one finds the following

oI ar\ ™ a1 or\ !
Ae-—(aAu—i-r)(E) or Ap_—(—a—EAe+r>(E> .

At construction of resonance curves obtained in dependence on the period mul-
tiplicity with the value 2w, the eigen-values of (4.5) should be analysed. If all of
them but one corresponding to the specified period are less then unit, the resonant
line is in the boundary of stability, in the case of exceeding the unit value at least
by one of the matrix eigen-values the considered point is unstable.

Note that the first completed results in the investigation of stability of the
libration triangular points in the elliptical problem were obtained by Danby [1].
In the plane e — u he built up the stability domain with the use of a numerical
technique. It is located inside two curvilinear triangles connected by adjacent
vertices of angles at the basical point of principal parametrical resonance.

Markeev [12] investigated this problem by the application of a nonlinear set up.
Using analytical and numerical methods he separated the curves inside the stability
domain, where the resonant correlations of the third and fourth orders are satisfied.

If is found by us that the stability domain of the considered problem turned out
to be wider. It is established that the manifold of these solutions has a continuation
in the form of a narrowing belt proceeding from the upper angle of the right triangle
and adjoining presumably the vertex e =1, p =0 of the left triangle.

Figure 4.1 shows the diagram reflecting the correlation between e and p. The
curves correspond to the periodic solutions to the equation (4.3) system. It should
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Figure 4.2. Periodic trajectories of the “zero mass” body at critical states

be noted that in the diagram only some resonant lines are presented because most
of them are depicted in [12]. Us of the elaborated technique allowed us to continue
the right branch of the curve e — g from the point e = 0.3500, p = 0.04898 up
to the point e = 0.9500, 1 = 0.03491. In this segment of the curve, convergence
of the numerical process significantly deteriorates. As the straight line e = 1 is
approached, the calculational procedure begins to diverge.

The region of the parameter p negative values is also investigated on the basis
of the proposed technique. The results of these investigations may be used in
quantum mechanics for analysis of the libration points stability under conditions
of availability of both attraction and repulsion between interacting particles.

In Figure 4.2 the orbit geometry is shown for different points in the curves of
correlation between e and pg (Figure 4.1), where solutions to the equation system
(4.3) are periodic. In their construction allowance was made for the fact that the
determinant of the periodicity matrix (4.5) equals zero in the specified curves. This
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fact permits us to remove one of the equations (for example, j-th) expressing the
periodicity conditions and to consider the corresponding j-th unknown ¢; as being
freely variated. Imparting some value to it, the remaining unknown parameters
¢; (i # j) can be found from the intact system of equations. Thereafter the

coordinates
4 4
= E ZiCi, Y= E YiCi
i=1 i=1

of points of the periodic trajectories are calculated.

5 Chaotization of Solutions of the Plane Restricted Problem of Three
Bodies through the Sequence of Period-Doubling Bifurcations

It is shown in the papers [5,10], that in the simplest nonlinear mechanical sys-
tem with dissipation under the action of periodic time disturbances, generation
of chaotic vibrations as the result of an infinite sequence of period-doubling bi-
furcations is possible. The availability of universal by Feigenbaum cascades of
period-doubling bifurcations is found for series of conservative mechanical systems
modelled by two-dimensional Hamilton maps [8,10]. The specified cascades con-
verge geometrically to some limit point. In its vicinity all the 2"T-periodic circles,
including n = oo, are unstable. Other converging sequences of bifurcations are
found for mappings alongside the period-doubling bifurcations.

Note, that in the papers [5,10] basical objects of investigation are one- and
two-dimensional mappings. Below are the results of investigations of evolution of
periodic solutions to the nonlinear Hamiltonian system of fourth-order differential
equations, describing the “zero mass” body motion for the plane restricted problem
of three bodies when the eccentricity of gravitating centres motion trajectory is
changing. A regular sequence of period-doubling bifurcations with the velocity
distinct from the geometrical one is found. The obtained results [9] allow us to
conclude that initiation of chaotic modes through the sequence of period-doubling
bifurcations not possessing the universal properties is possible in multidimensional
nonlinear conservative systems [3, 8, 10].

The method of attack outlined below is based on consecutive linearization of
equations of motion, continuation solutions by parameter and methods of bifurca-
tion theory [7].

We follow the evolution of periodic solutions to the system of nonlinear ordinary
differential equations

& = f(z, A\ t), (5.1)

when the scalar parameter A changes. Here f is the n-dimensional T-periodic
relative t vector function differentiable the necessary number of times with respect
to z and A.
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Assuming that the solution z(¢) to the system (5.1) continuously depends on the
initial condition z(0) and the parameter J, it is possible to deduce the following
form of the T-periodicity conditions

2(0) = z(z(0), A, T). (5.2)

Let the system (5.1) have a T-periodic solution zo(t), satisfying conditions (5.2)
at some value of the parameter A = Ag. Then both parts of (5.2) being variated in
the vicinity of the state A = Ao, z(t) = zo(t) and the value of the increment AXg
being specified, the appropriate increments of the initial conditions Az (0) could
be found as the solutions to the linear system of equations

(Y(T) — ElAzo(0) = —ya(T) Ao (5.3)

Here Y(T) = 8z(T")/8z(0) is the monodromy matrix determined as the solution
to the homogeneous matrix equation

V=LY (Y(0)=E), (5.4)

E is the unit matrix; yx(T) = dz(T)/OX is the n-dimensional vector determined
from the particular solution to the nonhomogeneous system of variated equations

= fan+ o (wa(0) =0).

Refinement of the initial conditions z1(0) = z0(0) + Aze(0) at A = Ao+ AXg
is produced via use of the Newton-Kantorovich technique.

Continuing further the parameter A varying, one can find the system (5.1) ap-
proximate T-periodic solutions z,,(t) corresponding to the values A, .

The monodromy matrix Y(T) calculated at every step of the continuation pro-
cedure characterizes the conditions of existence and uniqueness of the periodic
solution to the linearized system in the considered vicinity and permits us to anal-
yse its stability [2,11]. The state, when the conditions {p;| =1, argp; = 27 /n are
satisfied at least for one of the matrix Y (T') multiplicators, is bifurcational and the
appropriate point in the state space is the furcation point. The nT-periodic solu-
tion to equation (5.1) furcating from this point can be constructed only through
the use of a bifurcation equation, because at the considered point

det (Y (nT) — E) = 0.

To construct the approximate bifurcation equation take into account the smaller
quantities with higher order in (5.3).



BIFURCATIONS OF THREE BODY PROBLEM SOLUTIONS 283

With allowance made for the small quantities with the second order in (5.3), the
approximate equations of bifurcation take the form

[¥ (nT) - E]Az(0) + ya(nT)AN + % (Z(nT)Az(0), Az(0))

(5.5)
+{Z,\(nT)Az(0), AN} + % {za(nT)AX, AN} = 0.
Z(nT) = —'——agg%?% Z\(nT) = -——‘9Y$T); a(nT) = —&%(ZT). (5.6)

For the three-index functional matrix to be constructed, differentiate both the
matrix equations (5.4) with respect to z(0), taking into consideration the assumed
designations (5.6). In consequence of this we can write

Z={fuV, Y} + fu . (5.7)

By this means the matrix Z(nT) may be generated through the solution of the
Cauchy problem for equations (5.7) with the initial conditions Z(0) = 0.

In a similar manner the equations for Zy(t), zx(t) are constructed. They are as
follows

Zxn = {(foayr + for), Y} + fo 2, (2(0) = 0),
= {(fzzyk+fm>\)7y>\}+fzz>\+f)\)n (Z)\(O) :O)‘

The approximate equations of furcations represent a system of nonlinear alge-
braic equations. Their solutions are constructed by the Newton method.

If the system (5.5) has no solutions or there are multiple ones among its roots,
it is necessary to take into account the successive terms of expansion and to iterate
the calculations. Furthermore, the nT-periodic solution may be continued along
every found branch by the outlined technique. At every step of the continuation
procedure, analysis of the matrix Y (nT') multiplicators allows us to find the next
point of furcation with m-tuple increase of the period (if there is any), etc.

To ensure the high accuracy required in the construction of long period solutions
and analysis of their furcation possibilities, the 11— 15 order method of Everhart [4]
is used.

Using the described technique, numerical investigation of the “zero mass” body
of the plane restricted problem of three bodies was performed. In the rotating
barycentric reference frame, motion of a particle is determined by the following
nonlinear equations [3]

1 1 ow
" _opl —
¢ " 1-|—ecosv5 1+ecosv B¢’
e - L 1 W

Ttecosv T1tecosv o’
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stemming from (2.2). Here, as previously, e is the eccentricity of orbit of the
masses mg and mq, v is the apparent anomaly, the prime denotes differentiation
with respect to v,

1—
[/[/':__’u_+.ﬂ7
To 1

1/2

ro=[(€+m*+n°] ", V2,

r= [(E+n~1)%+19]
As an initial 2#-periodic solution assumed at ey = 0, the stable stationary state
of the “zero mass” body at the triangular libration point Ls (§ = (1 — 2p)/2,

no = V3/2) was selected. It will be recalled, that the “rectilinear” points of
libration are unstable and the “triangular” ones are stable for the circular restricted

Table 5.1. Bifurcational values of periodic orbit eccentricity

and initial conditions of the “zero mass” particle vibrations

7 E(i)

S¢a)

£)(0) — &o3 £, (0)

(i) (0) — mo; 71(;,(0)

-0.010073702719872

1 0.549 12.768439 0 0
9 0 0
2 10.580602800415764 | 7.305849 | 0.204154462402339 | -0.112725297847557
-0.013967041009111 |-0.091265331421095
3 [0.583077871761819 | 11.73717 | 0.204367815046881 |-0.110244997700553
8 -0.011574655593698 | -0.092876179936714
41 0.583416651188409 | 86.20768 | 0.201337751179594 |-0.107219825814351

-0.091866609210255

5 1 0.583445514976422

0.201150117317916
-0.009973804064603

-0.107024639206067
-0.091817185567852

6 | 0.583445849792199

0.201136063209813
-0.009971084985379

-0.107014666859876
-0.091809932228831

7 | 0.583446043767878

0.201133970681293
-0.009969171554483

-0.107011904772506
-0.091809376528804

problem of three bodies if the value p = mi/(mo +my) is sufficiently small, that
is to say, the inequality (4.1) is satisfied.

The investigation of the periodic solutions evolution at the varying of the pa-
rameter of eccentricity e was fulfilled for the case p = 0.005. It is established
that the “zero mass” body remains at the stationary state with the parameter e
changing from 0 to e(;) (see Table 5.1).

At e = e(;) the stationary state becomes unstable and in response to the
Andronov-Hopf bifurcation accompanied by the concurrent period-doubling the
stable 4m-periodic vibrations come into being in the vicinity of the triangular point
of libration. Further increase of eccentricity causes enlargement of the “zero mass”
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Figure 5.1. Motion trajectories of the “zero mass” body with periods
27~ (a), 47 -(b), 87 —-(c), 16w —(d), 327 —(e), 647 —(f) for the eccentricity
e(;) (1 = T,6) bifurcational values

body vibration amplitude. At e = e(;y the periodic trajectory endures the next bi-
furcation of period-doubling with generation of a stable 8m-periodic trajectory and
so on. The sequence of six period-doubling bifurcations of the particle vibrations
at eccentricity change was constructed. At e = e(7) the 128m-periodic trajectory
loses its stability and a pair of conjugate complex multiplicators of the monodromy
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matrix Y (1287) falls outside the unit circumference |p; ;| = 1. The bifurcational
values of eccentricity eg;) (i = 1,7), the initial conditions of 2¢m-periodic solutions
at the furcation point and the values of the parameter §(;) characterizing rate of the
sequence e(;) convergence are listed in Table 5.1. Note, that the maximum period
of the investigated periodic solutions makes up 128w. All of the 2*zm-periodic tra-
jectories are stable inside the intervals e;_;) < e < e(;). In Figure 5.1(a) - (f) are
presented the 27-periodic trajectories of the “zero mass” body for the bifurcational
values of the parameter e;; (i =1,6). Shown in Figure 5.2 is the “furcation tree”
representing a section of the subspace (£(v),e, &' (v)) by the plane &'(v) = 0. It
constitutes the extremal values £(v) dependence on eccentricity e at 0.5 < e < 0.6.
The sequence of period-doubling bifurcations found does not possess the univer-
sal properties [5, 8] established for the second order differential equations, but the
complicating of the “zero mass” body trajectory and the “furcation tree” struc-
ture permits us to conclude that a regime of chaotic motion is developing in the
mechanical system considered.

a6 e
NS R L AR LI

0,525

a5
05 -025 0 825w

Figure 5.2. The tree of bifurcations
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