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Preface

This book explains the applied mathematical and
physical principles of medical imaging and image pro-
cessing. It gives a complete survey, accompanied by
more than 300 illustrations in color, of how medical
images are obtained and how they can be used for
diagnosis, therapy, and surgery.

It has been written principally as a course text on
medical imaging intended for graduate and final-year
undergraduate students with a background in physics,
mathematics, or engineering. However, I have made
an effort tomake the textbook readable for biomedical
scientists and medical practitioners as well by delet-
ing unnecessary mathematical details, without giving
up the depth needed for physicists and engineers.
Mathematical proofs are highlighted in separate para-
graphs and can be skipped without hampering a fluent
reading of the text.

Although a large proportion of the book covers
the physical principles of imaging modalities, the
emphasis is always on how the image is computed.
Equipment design, clinical considerations, and diag-
nosis are treated in less detail. Premature techniques
or topics under investigation have been omitted.

Presently, books on medical imaging fall into two
groups, neither of which is suitable for this read-
ership. The first group is the larger and comprises
books directed primarily at the less numerate pro-
fessions such as physicians, surgeons, and radiologic
technicians. These books cover the physics andmathe-
matics of all themajormedical imagingmodalities, but
mostly in a superficial way. They do not allow any real
understanding of these imaging modalities. The sec-
ond group comprises books suitable for professional
medical physicists or researchers with expertise in the
field. Although these books have anumerate approach,
they tend to cover the topics too deeply for the
beginner and to have a narrower scope than this book.

The text reflects what I teach in class, but there is
somewhat more material than I can cover in a module
of 30 contact hours. This means that there is scope for

the stronger student to read around the subject and
also makes the book a useful purchase for those going
on to do research.

In Chapter 1, an introduction to digital image pro-
cessing is given. It summarizes the jargon used by
the digital image community, the components defin-
ing image quality, and basic image operations used
to process digital images. The theory of linear sys-
tems, described in Chapter 2 of the first edition, has
been moved to an appendix. It is too high-level for
the medical reader and a significant part of the engi-
neering readers of the previous edition considered it
as redundant. However, many students in physics or
engineering are not familiar with linear system theory
and will welcome this appendix.

Chapters 2–6 explain how medical images are
obtained. The most important imaging modalities
today are discussed: radiography, computed tomogra-
phy, magnetic resonance imaging, nuclear medicine
imaging, and ultrasonic imaging. Each chapter
includes (1) a short history of the imaging modality,
(2) the theory of the physics of the signal and its inter-
action with tissue, (3) the image formation or recon-
struction process, (4) a discussion of the image quality,
(5) the different types of equipment in use today, (6)
examples of the clinical use of the modality, (7) a brief
descriptionof the biologic effects and safety issues, and
(8) some future expectations. The imaging modalities
havemade an impressive evolution in a short timewith
respect to quality, size and applicability. This part of
the book provides up-to-date information about these
systems.

Chapters 7 and 8 deal with image analysis and
visualization for diagnosis, therapy and surgery once
images are available. Medical images can, for example,
be analyzed to obtain quantitative data, or they can
be displayed in three dimensions and actively used
to guide a surgical intervention. Most courses sepa-
rate the imaging theory from the postprocessing, but
I strongly believe that they should be taken together
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because the topics are integrated. The interest in clin-
ical practice today goes beyond the production and
diagnosis of two-dimensional images, and the objec-
tive then is to calculate quantitative information or
to use the images during patient treatment. The field
of medical image analysis is in full progress and has
become more mature during the last decade. This
evolution has been taken into account in this second
edition. The chapter on image-guided interventions of
the first edition has been rewritten with a new focus.
The emphasis now is on three-dimensional image
visualization, not only to guide interventions, but also
for diagnostic purposes.

Medical imaging and image processing can also
be approached from the perspective of information
and communication and the supporting technology,
such as hospital information systems, the electronic

patient record, and PACS (picture archiving and
communication systems). However, this focus would
put the emphasis on informatics, such as databases,
networking, internet technology and information
security, which is not the purpose of this book.

New also in this second edition is an appendix with
exercises. By solving these exercises the student can
test his or her insight into the matter of this book.
Furthermore an ancillary website (www.cambridge.
org/suetens) with three-dimensional animations has
been produced which contains answers to the
exercises.

In the bibliography, references to untreated top-
ics can be found as well as more specialized works on
a particular subdomain and some other generic text-
books related to thefield ofmedical imaging and image
processing.

viii



Acknowledgments

My colleagues of the Medical Imaging Research Cen-
ter have directly and indirectly contributed to the
production of this book. This facility is quite a
unique place where engineers, physicists, computer
scientists, and medical doctors collaborate in an
interdisciplinary team. It has a central location in
the University Hospital Leuven and is surrounded
by the clinical departments of radiology, nuclear
medicine, cardiology, and radiotherapy. Research
is focused on clinically relevant questions. This
then explains the emphasis in this book, which
is on recent imaging technology used in clinical
practice.

The following colleagues and former colleagues
contributed to the first edition of the book: Bruno
DeMan, Jan D’hooge, Frederik Maes, JohanMichiels,
Johan Nuyts, Johan Van Cleynenbreugel and Koen
Vande Velde.

This second edition came about with substan-
tial input from Hilde Bosmans (radiography), Bruno
De Man (computed tomography), Stefan Sunaert
(magnetic resonance imaging), Johan Nuyts (nuclear
medicine), Jan D’hooge (ultrasound), Frederik Maes

and Dirk Vandermeulen (image analysis), Dirk
Loeckx (exercises), Christophe Deroose, Steven
Dymarkowski, Guy Marchal and Luc Mortelmans
(clinical use). They provided me with pieces of text,
relevant clinical images and important literature; and
I had indispensable discussions with them concerning
content and structure.

A final reading was done by Kristof Baete,
Bart De Dobbelaer, An Elen, Johannes Keuster-
mans, Florence Kremer, Catherine Lemmens, Ronald
Peeters, Janaki Rangarajan, Annemie Ribbens, Lies-
bet Roose, Kristien Smans, Dirk Smeets and Kevin
Suetens.

I would like to express my gratitude to Walter
Coudyzer for his assistance in collecting radiological
data. Special thanks are due to Dominique Delaere,
the information manager of the Medical Imaging
Research Center, who assisted me for both this and
the previous edition with the figures, illustrations
and animations, consistency checking, and the web-
pages associated with this textbook. Thanks to his
degree in biomedical engineering, he alsomade several
improvements to the content.





Chapter

1 Introduction to digital image processing

Digital images
Visible light is essentially electromagnetic radiation
with wavelengths between 400 and 700 nm. Each
wavelength corresponds to a different color. On the
other hand, a particular color does not necessarily
correspond to a single wavelength. Purple light, for
example, is a combination of red and blue light. In
general, a color is characterized by a spectrum of
different wavelengths.

The human retina contains three types of photore-
ceptor cone cells that transform the incident light with
different color filters. Because there are three types of
cone receptors, three numbers are necessary and suf-
ficient to describe any perceptible color. Hence, it is
possible to produce an arbitrary color by superimpos-
ing appropriate amounts of three primary colors, each
with its specific spectral curve. In an additive color
reproduction system, such as a color monitor, these
three primaries are red, green, and blue light. The
color is then specified by the amounts of red, green,
and blue. Equal amounts of red, green, and blue give
white (see Figure 1.1(a)). Ideal white light has a flat
spectrum inwhich allwavelengths arepresent. Inprac-
tice, white light sources approximate this property.
In a subtractive color reproduction system, such as
printing or painting, these three primaries typically are

(a) (b)

Figure 1.1 Color mixing: (a) additive color mixing, (b) subtractive
color mixing.

cyan, magenta, and yellow. Cyan is the color of amate-
rial, seen in white light, that absorbs red but reflects
green and blue, and can thus be obtained by additive
mixing of equal amounts of green and blue light. Sim-
ilarly, magenta is the result of the absorption of green
light and consists of equal amounts of red and blue
light, and yellow is the result of the absorption of blue
and consists of equal amounts of red and green light.
Therefore, subtractive mixing of cyan and magenta
gives blue, subtractive mixing of cyan and yellow
gives green, and subtractive mixing of yellow and
magenta gives red. Subtractive mixing of yellow, cyan,
and magenta produces black (only absorption and no
reflection) (see Figure 1.1(b)).

Note that equal distances in physical intensity are
not perceived as equal distances in brightness. Inten-
sity levels must be spaced logarithmically, rather than
linearly, to achieve equal steps in perceived bright-
ness. Hue refers to the dominant wavelength in the
spectrum, and represents the different colors. Satu-
ration describes the amount of white light present in
the spectrum. If no white light is present, the satura-
tion is 100%. Saturation distinguishes colorful tones
from pastel tones at the same hue. In the color cone
of Figure 1.2, equal distances between colors by no

Hue

Brightness

Saturation

Figure 1.2 Hue, brightness, and saturation.



Chapter 1: Introduction to digital image processing

means correspond to equal perceptual differences. The
Commission Internationale de l’Eclairage (CIE) has
defined perceptually more uniform color spaces like
L∗u∗v∗ and L∗a∗b∗. A discussion of pros and cons
of different color spaces is beyond the scope of this
textbook.

While chromatic light needs three descriptors or
numbers to characterize it, achromatic light, as pro-
duced by a black-and-white monitor, has only one
descriptor, its brightness or gray value. Achromatic
light is light with a saturation of 0%. It contains only
white light.

Given a set of possible gray levels or colors and
a (rectangular) grid, a digital image attributes a gray
value (i.e., brightness) or a color (i.e., hue, saturation
and brightness) to each of the grid points or pixels. In
a digital image, the gray levels are integers. Although
brightness values are continuous in real life, in a digital
image we have only a limited number of gray levels
at our disposal. The conversion from analog sam-
ples to discrete-valued samples is called quantization.
Figure 1.3 shows the same image using two different
quantizations.When too few gray values are used, con-
touring appears. The image is reduced to an artificial
looking heightmap. Howmany gray values are needed
to produce a continuous looking image? Assume that
n + 1 gray values are displayed with corresponding
physical intensities I0, I1, . . . , In . I0 is the lowest attain-
able intensity and In themaximum intensity. The ratio
In/I0 is called the dynamic range. The human eye can-
not distinguish subsequent intensities Ij and Ij+1 if
they differ less than 1%, i.e., if Ij+1 ≤ 1.01 Ij . In
that case In ≤ 1.01nI0 and n ≥ log1.01(In/I0). For
a dynamic range of 100 the required number of gray
values is 463 and a dynamic range of 1000 requires
694 different gray values for a continuous looking
brightness.Most digitalmedical images todayuse 4096

gray values (12 bpp). The problemwith toomany gray
values, however, is that small differences in brightness
cannot be perceived on the display. This problem can
be overcome for example by expanding a small gray
value interval into a larger one by using a suitable gray
value transformation, as discussed on p. 4 below.

In the process of digital imaging, the continuous
looking world has to be captured onto the finite num-
ber of pixels of the image grid. The conversion from a
continuous function to a discrete function, retaining
only the values at the grid points, is called sampling
and is discussed in detail in Appendix A, p. 228.

Much information about an image is contained in
its histogram. The histogram h of an image is a prob-
ability distribution on the set of possible gray levels.
The probability of a gray value v is given by its relative
frequency in the image, that is,

h(v) = number of pixels having gray value v

total number of pixels
. (1.1)

Image quality
The resolution of a digital image is sometimes wrongly
defined as the linear pixel density (expressed in dots
per inch). This is, however, only an upper bound for
the resolution. Resolution is also determined by the
imaging process. The more blurring, the lower is the
resolution. Factors that contribute to the unsharpness
of an image are (1) the characteristics of the imag-
ing system, such as the focal spot and the amount of
detector blur, (2) the scene characteristics and geom-
etry, such as the shape of the subject, its position and
motion, and (3) the viewing conditions.

Resolution can be defined as follows. When imag-
ing a very small, bright point on a dark background,
this dot will normally not appear as sharp in the image

(a) (b)

Figure 1.3 The same image quantized
with (a) 8 bpp and (b) 4 bpp.

2



Chapter 1: Introduction to digital image processing

(a) (b)

Figure 1.4 (a) Sharp bright spot on a
dark background. (b) Typical image of (a).
The smoothed blob is called the point
spread function (PSF) of the imaging
system.

as it actually is. It will be smoothed, and the obtained
blob is called the point spread function (PSF) (see
Figure 1.4). An indicative measure of the resolution is
the full width at half maximum (FWHM) of the point
spread function. When two such blobs are placed at
this distance or shorter from each other, they will no
longer be distinguishable as two separate objects. If the
resolution is the same in all directions, the line spread
function (LSF), i.e., the actual image of a thin line, may
be more practical than the PSF.

Instead of using the PSF or LSF it is also pos-
sible to use the optical transfer function (OTF) (see
Figure 1.5). The OTF expresses the relative amplitude
and phase shift of a sinusoidal target as a function of
frequency. The modulation transfer function (MTF)
is the amplitude (i.e. MTF = |OTF|) and the phase
transfer function (PTF) is the phase component of the
OTF. For small amplitudes the lines may no longer
be distinguishable. An indication of the resolution is
the number of line pairs per millimeter (lp/mm) at a
specified small amplitude (e.g., 10%).

|OTF|

lp/mm

(a) (b)

1

Figure 1.5 (a) Point spread function (PSF). (b) Corresponding
modulation transfer function (MTF). The MTF is the amplitude of
the optical transfer function (OTF), which is the Fourier transform
(FT) of the PSF.

As explained inAppendixA, theOTF is the Fourier
transform (FT) of the PSF or LSF.

Contrast is the difference in intensity of adja-
cent regions of the image. More accurately, it is the
amplitude of the Fourier transform of the image as a
function of spatial frequency. Using the Fourier trans-
form, the image is unraveled in sinusoidal patterns
with corresponding amplitude and these amplitudes
represent the contrast at different spatial frequencies.

3



Chapter 1: Introduction to digital image processing

The contrast is defined by (1) the imaging process,
such as the source intensity and the absorption effi-
ciency or sensitivity of the capturing device, (2) the
scene characteristics, such as the physical properties,
size and shape of the object, and the use of contrast
agents, and (3) the viewing conditions, such as the
room illumination and display equipment. Because
the OTF drops off for larger frequencies, the con-
trast of very small objects will be influenced by the
resolution as well.

A third quality factor is image noise. The emission
anddetectionof light andall other types of electromag-
netic waves are stochastic processes. Because of the
statistical nature of imaging, noise is always present.
It is the random component in the image. If the noise
level is high compared with the image intensity of an
object, the meaningful information is lost in the noise.
An important measure, obtained from signal theory,
is therefore the signal-to-noise ratio (SNR or S/N). In
the terminology of images this is the contrast-to-noise
ratio (CNR). Both contrast and noise are frequency
dependent. An estimate of the noise can be obtained
by making a flat-field image, i.e., an image without
an object between the source and the detector. The
noise amplitude as a function of spatial frequency can
be calculated from the square root of the so-called
Wiener spectrum, which is the Fourier transform of
the autocorrelation of a flat-field image.

Artifacts are artificial image features such as dust or
scratches in photographs. Examples inmedical images
are metal streak artifacts in computed tomography
(CT) images and geometric distortions in magnetic
resonance (MR) images. Artifacts may also be intro-
duced by digital image processing, such as edge
enhancement. Because artifacts may hamper the diag-
nosis or yield incorrect measurements, it is important
to avoid them or at least understand their origin.

In the following chapters, image resolution, noise,
contrast, and artifacts will be discussed for each of the
imaging modalities.

Basic image operations
In this section a number of basic mathematical opera-
tions on images are described. They can be employed
for image enhancement, analysis and visualization.

The aim of medical image enhancement is to allow
the clinician to perceive better all the relevant diag-
nostic information present in the image. In digital
radiography for example, 12-bit imageswith 4096 pos-
sible gray levels are available. As discussed above, it is

physically impossible for the human eye to distinguish
all these gray values at once in a single image. Conse-
quently, not all the diagnostic information encoded in
the image may be perceived. Meaningful details must
have a sufficiently high contrast to allow the clinician
to detect them easily.

The larger the number of gray values in the image,
the more important this issue becomes, as lower
contrast features may become available in the image
data. Therefore, image enhancement will not become
less important as the quality of digital image captur-
ing systems improves. On the contrary, it will gain
importance.

Gray level transformations
Given a digital image I that attributes a gray value
(i.e., brightness) to each of the pixels (i, j), a gray level
transformation is a function g that transforms each
gray level I (i, j) to another value I ′(i, j) independent
of the position (i, j). Hence, for all pixels (i, j)

I ′(i, j) = g (I (i, j)). (1.2)

In practice, g is an increasing function. Instead of
transforming gray values it is also possible to oper-
ate on color (i.e., hue, saturation and brightness). In
that case three of these transformations are needed to
transform colors to colors.

Note that, in this textbook, the notation I is used
not only for the physical intensity but also for the gray
value (or color), which are usually not identical. The
gray value can represent brightness (logarithm of the
intensity, see p. 1), relative signal intensity or any other
derived quantity. Nevertheless the terms intensity and
intensity image are loosely used as synonyms for gray
value and gray value image.

If pixel (i1, j1) appears brighter than pixel (i2, j2) in
the original image, this relation holds after the gray
level transformation. The main use of such a gray
level transformation is to increase the contrast in some
regions of the image. The price to be paid is a decreased
contrast in other parts of the image. Indeed, in a region
containing pixels with gray values in the range where
the slope of g is larger than 1, the difference between
these gray values increases. In regions with gray val-
ues in the range with slope smaller than 1, gray values
come closer together and different values may even
become identical after the transformation. Figure 1.6
shows an example of such a transformation.

4
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Figure 1.6 A gray level transformation that increases the contrast in dark areas and decreases the contrast in bright regions. It can be used
when the clinically relevant information is situated in the dark areas, such as the lungs in this example: (b) the original image, (c) the
transformed image.
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(a) (b)

Figure 1.7 (a) Window/leveling with
l = 1500,w = 1000. (b) Thresholding with
tr = 1000.

A particular and popular transformation is the
window/level operation (see Figure 1.7(a)). In this oper-
ation, an interval or window is selected, determined by
the window center or level l , and the window width w .
Explicitly

gl ,w(t ) =




0 for t < l − w

2
M

w

(
t − l + w

2

)
for l − w

2
≤ t ≤ l + w

2
M for t > l + w

2
,

(1.3)

where M is the maximal available gray value. Con-
trast outside the window is lost completely, whereas
the portion of the range lying inside the window is
stretched to the complete gray value range.

An even simpler operation is thresholding
(Figure 1.7(b)). Here all gray levels up to a certain
threshold tr are set to zero, and all gray levels above
the threshold equal the maximal gray value

gtr(t ) = 0 for t ≤ tr

gtr(t ) = M for t > tr . (1.4)

These operations can be very useful for images with a
bimodal histogram (see Figure 1.8).

Multi-image operations
A simple operation is adding or subtracting images in
a pixelwise way. For two images I1 and I2, the sum I+
and the difference I− are defined as

I+(i, j) = I1(i, j)+ I2(i, j) (1.5)

I−(i, j) = I1(i, j)− I2(i, j). (1.6)

If these operations yield values outside the available
gray value range, the resulting image can be brought
back into that range by a linear transformation. The
average of n images is defined as

Iav(i, j) = 1
n

(I1(i, j)+ · · · + In(i, j)). (1.7)

Averaging can be useful to decrease the noise in a
sequence of images of amotionless object (Figure 1.9).
The random noise averages out, whereas the object
remains unchanged (if the images match perfectly).

5
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Bone

white

black

histogram

Lung

(a) (b)

(c) (d)

Figure 1.8 Original CT image (a) with
bimodal histogram (b). (c, d) Result of
window/leveling using a bone window
(dashed line in (b)) and lung window
(solid line in (b)), respectively.

(a) (b)

Figure 1.9 (a) Magnetic resonance
image of a slice through the brain. This
image was obtained with a T1-weighted
EPI sequence (see p. 82) and therefore
has a low SNR. (b) To increase the SNR, 16
subsequent images of the same slice
were acquired and averaged. (Courtesy of
Professor S. Sunaert, Department of
Radiology.)

Thismethod can also be used for color images by aver-
aging the different channels independently like gray
level images. Subtraction can be used to get rid of the
background in two similar images. For example, in
blood vessel imaging (angiography), two images are

made, one without a contrast agent and another with
contrast agent injected in the blood vessels. Subtrac-
tion of these two images yields a pure image of the
blood vessels because the subtraction deletes the other
anatomical features. Figure 1.10 shows an example.6
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(a) (b) (c)

Figure 1.10 (a) Radiographic image after injection of a contrast agent. (b) Mask image, that is, the same exposure before contrast injection.
(c) Subtraction of (a) and (b), followed by contrast enhancement. (Courtesy of Professor G. Wilms, Department of Radiology.)

Geometric operations
It is often necessary to perform elementary geometric
operations on an image, such as scaling (zooming),
translation, rotation, and shear. Examples are the reg-
istration of images (see p. 173) and image-to-patient
registration for image-guided surgery (see p. 211). A
spatial or geometric transformation assigns each point
(x , y) to a new location (x ′, y ′) = S(x , y). The most
common two-dimensional (2D) transformations can
be written using homogeneous coordinates:

scaling


x ′

y ′
1


 =


sx 0 0
0 sy 0
0 0 1




x

y
1




translation


x ′

y ′
1


 =


1 0 tx

0 1 ty

0 0 1




x

y
1




shear


x ′

y ′
1


 =


 1 ux 0

uy 1 0
0 0 1




x

y
1




rotation


x ′

y ′
1


 =


cos θ −sin θ 0
sin θ cos θ 0
0 0 1




x

y
1




general affine


x ′

y ′
1


 =


a11 a12 tx

a21 a22 ty

0 0 1




x

y
1


 .

(1.8)

Composition of two such transformations amounts to
multiplying the corresponding matrices.

A general affine 2D transformation depends on six
parameters and includes scaling, translation, shear,

and rotation as special cases. Affine transforma-
tions preserve parallelism of lines but generally not
lengths and angles. Angles and lengths are preserved
by orthogonal transformations (e.g., rotations and
translations)

orthogonal


x ′

y ′
1


 =


r11 r12 tx

r21 r22 ty

0 0 1




x

y
1


 , (1.9)

where the 2× 2 matrix R = (r11 r12
r21 r22

)
is subject to the

constraint RTR = 1.
A pixel (x , y) = (i, j) of image I (i, j) will be

mapped onto (x ′, y ′) and x ′ and y ′ are usually no
longer integer values. To obtain a new image I ′(i′, j ′)
on a pixel grid, interpolation is used. For each (i′, j ′)
the gray value I ′(i′, j ′) is then calculated by simple (e.g.,
bilinear) interpolation between the gray values of the
pixels of I lying closest to the inverse transformation
of (i′, j ′), i.e., S−1(i′, j ′).

Today the majority of medical images are three
dimensional (3D). The above matrices can easily
be extended to three dimensions. For example, the
general affine 3D transformation can be written as

general affine




x ′
y ′
z ′
1


 =




a11 a12 a13 tx

a21 a22 a23 ty

a31 a32 a33 tz

0 0 0 1






x
y
z
1


 .

(1.10)

While most medical images are three dimensional,
interventional imaging is often still two dimensional.

7
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To map the 3D image data onto the 2D image a pro-
jective transformation is needed. Assuming a pinhole
camera, such as an X-ray tube, any 3D point (x , y , z)

is mapped onto its 2D projection point (u, v) by the
projective matrix (more details on p. 216)


u′

v ′
w ′


 =


 fx κx u0 0

κy fy v0 0
0 0 1 0






x
y
z
1





u

v
1


 =




u′
w ′
v ′
w ′
1


 . (1.11)

Using homogeneous coordinates the above geo-
metric transformations can all be represented by
matrices. In some cases, however, it might be neces-
sary to use more flexible transformations. For exam-
ple, the comparison of images at different moments,
such as in follow-up studies, may be hampered due
to patient movement, organ deformations, e.g., dif-
ferences in bladder and rectum filling, or breathing.
Another example is the geometric distortion of mag-
netic resonance images resulting from undesired devi-
ations of the magnetic field (see p. 92). Geometric
transformations are discussed further in Chapter 7.

Filters
Linear filters
From linear system theory (see Eq. (A.22)), we know
that an image I (i, j) can be written as follows:

I (i, j) =
∑
k,l

I (k, l)δ(i − k, j − l). (1.12)

For a linear shift-invariant transformation L (see also
Eq. (A.31)),

L(I )(i, j) =
∑
k,l

I (k, l)L(δ)(i − k, j − l)

=
∑
k,l

I (k, l)f (i − k, j − l)

=
∑
k,l

f (k, l)I (i − k, j − l)

= f ∗ I (i, j), (1.13)

where f is called the kernel or filter, and the linear
transformation on the digital image I is the discrete
convolution with its kernel f = L(δ).

In practice, the flipped kernel h defined as h(i, j) =
f (−i,−j) is usually used. Hence, Eq. (1.13) can be
rewritten as

L(I )(i, j) = f ∗ I (i, j)

=
∑
k,l

f (k, l)I (i − k, j − l)

=
∑
k,l

h(k, l)I (i + k, j + l)

= h • I (i, j), (1.14)

where h•I is the cross-correlation of h and I . If the filter
is symmetric, which is often the case, cross-correlation
and convolution are identical.

A cross-correlation of an image I (i, j) with a ker-
nel h has the following physical meaning. The kernel
h is used as an image template or mask that is shifted
across the image. For every image pixel (i, j), the tem-
plate pixel h(0, 0), which typically lies in the center of
the mask, is superimposed onto this pixel (i, j), and
the values of the template and image that correspond
to the same positions are multiplied. Next, all these
values are summed. A cross-correlation emphasizes
patterns in the image similar to the template.

Often local filters with only a few pixels in diam-
eter are used. A simple example is the 3 × 3 mask
with values 1/9 at each position (Figure 1.11). This
filter performs an averaging on the image, making it
smoother and removing some noise. The filter gives
the same weight to the center pixel as to its neighbors.
A softer way of smoothing the image is to give a high
weight to the center pixel and less weight to pixels fur-
ther away from the central pixel. A suitable filter for

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

(b)(a)

Figure 1.11 (a) 3× 3 averaging filter. (b) The filter as floating image
template or mask.
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(a) (b) (c)

Figure 1.12 (a) Radiography of the skull.
(b) Low-pass filtered image with a
Gaussian filter (20× 20 pixels, σ = 15).
(c) High-pass filtered image obtained by
subtracting (b) from (a).

this operation is the discretized Gaussian function

g (�r ) = 1
2πσ 2 e(−r2/2σ 2) �r = (i, j). (1.15)

Small values are put to zero in order to produce a
local filter. The Fourier transform of the Gaussian is
again Gaussian. In the Fourier domain, convolution
with a filter becomes multiplication. Taking this into
account, it is clear that a Gaussian filter attenuates
the high frequencies in the image. These averaging
filters are therefore also called low-pass filters. In
contrast, filters that emphasize high frequencies are
called high-pass filters. A high-pass filter can be con-
structed simply from a low-pass one by subtracting
the low-pass filter g from the identity filter δ. A
high-pass filter enhances small-scale variations in the
image. It extracts edges and fine textures. An exam-
ple of low-pass and high-pass filtering is shown in
Figure 1.12.

Other types of linear filters are differential opera-
tors such as the gradient and the Laplacian. However,
these operations are not defined on discrete images.
Because derivatives are defined on differentiable func-
tions, the computation is performed by first fitting a
differentiable function through the discrete data set.
This can be obtained by convolving the discrete image
with a continuous function f . The derivative of this
result is evaluated at the points (i, j) of the origi-
nal sampling grid. For the 1D partial derivative this
sequence of operations can be written as follows:

∂

∂x
I (i, j) ≈


 ∂

∂x


∑

k,l
I (k, l)f (x − k, y − l)






x=i,y=j

=

∑

k,l

∂f

∂x
(i − k, j − l)I (k, l)


 . (1.16)

Hence, the derivative is approximated by a convolu-
tion with a filter that is the sampled derivative of some
differentiable function f (�r). This procedure can now
be used further to approximate the gradient and the
Laplacian of a digital image:

∇I = ∇f ∗ I

∇2I = ∇2f ∗ I ,
(1.17)

where it is understood that we use the discrete convo-
lution. If f is a Gaussian g , the following differential
convolution operators are obtained:

∇g (�r) = − 1
σ 2 g (�r) · �r

∇2g (�r) = 1
σ 4 (r2 − 2σ 2) · g (�r).

(1.18)

For σ = 0.5, this procedure yields approximately the
following 3× 3 filters (see Figure 1.13):

Gaussian
0.01 0.08 0.01
0.08 0.64 0.08
0.01 0.08 0.01

∂

∂x

0.05 0 −0.05
0.34 0 −0.34
0.05 0 −0.05

∂

∂y

0.05 0.34 0.05
0 0 0
−0.05 −0.34 −0.05

∇2
0.3 0.7 0.3
0.7 −4 0.7
0.3 0.7 0.3

(1.19)
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y
x

z

y
x

z

y
x

z
y

x

z
(a) (b)

(c) (d)

Figure 1.13 (a) A Gaussian function.
(b) Derivative of the Gaussian in the x-direction.
(c) Derivative of the Gaussian in the y-direction.
(d) Laplacian of the Gaussian.

Note that integration of a Gaussian over the whole
spatial domain must be 1, and for the gradient and
Laplacian this must be 0. To satisfy this condition, the
numbers in the templates above, which are spatially
limited, were adapted.

The Laplacian of a Gaussian is sometimes approx-
imated by a difference of Gaussians with different
values of σ . This can be derived from Eq. (1.18).
Rewriting it as

(
r2

σ 4 +
2
σ 2

)
g (�r)− 4

σ 2 g (�r) (1.20)

shows us that the second term is proportional to the
originalGaussian g , while the first termdrops offmore
slowly because of the r2 and acts as if it were aGaussian
with a larger value of σ (the 2/σ 2 added to the r2/σ 4

makes it a monotonically decreasing function in the
radial direction).

Popular derivative filters are the Sobel operator
for the first derivative, and the average - δ for the
Laplacian, which use integer filter elements:

Sobel
1 0 − 1
2 0 − 2
1 0 − 1

average - δ

1 1 1
1 − 8 1
1 1 1

(1.21)

Note that, if we compute the convolution of an image
with a filter, it is necessary to extend the image at
its boundaries because pixels lying outside the image
will be addressed by the convolution algorithm. This
is best done in a smooth way, for example by repeat-
ing the boundary pixels. If not, artifacts appear at the
boundaries after the convolution.

As an application of linear filtering, let us discuss
edge enhancement using unsharp masking . Figure 1.14
shows an example. As already mentioned, a low-pass
filter g can be used to split an image I into two parts: a
smooth part g ∗ I , and the remaining high-frequency
part I − g ∗ I containing the edges in the image or
image details. Hence

I = g ∗ I + (I − g ∗ I ). (1.22)

Note that I − g ∗ I is a crude approximation of the
Laplacian of I . Unsharp masking enhances the image
details by emphasizing the high-frequency part and
assigning it a higher weight. For some α > 0, the
output image I ′ is then given by

I ′ = g ∗ I + (1+ α)(I − g ∗ I )

= I + α(I − g ∗ I )

= (1+ α)I − α g ∗ I . (1.23)

The parameter α controls the strength of the enhance-
ment, and the parameter σ is responsible for the size

10



Chapter 1: Introduction to digital image processing

(a) (b)

(c) (d)

Figure 1.14 Radiography of a hand. (a)
Original image I. (b) Smoothed image g ∗ I
with g a 3× 3 averaging filter. (c) Edges
I − g ∗ I of the image. (d) Unsharp masked
image (α = 5).

(a) (b) (c)

Figure 1.15 (a) Original karyotype (chromosome image). (b) Image smoothed with a Gaussian filter. (c) Image filtered with a median filter.

of the frequency band that is enhanced. The smaller
the value of σ , the more unsharp masking focuses on
the finest details.

Nonlinear filters
Not every goal can be achieved by using linear filters.
Many problems are better solvedwith nonlinearmeth-
ods. Consider, for example, the denoising problem.
As explained above, the averaging filter removes noise

in the image. The output image is, however, much
smoother than the input image. In particular, edges
are smeared out and may even disappear. To avoid
smoothing, it can therefore be better to calculate the
median instead of the mean value in a small window
around each pixel. This procedure better preserves
the edges (check this with paper and pencil on a step
edge). Figure 1.15 shows an example on a chromosome
image.
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(a) (b)

(c) (d)

Figure 1.16 The effect of the filter size
in unsharp masking. (a) Original image
(1024× 1248 pixels). Unsharp masking
with filter size (b) 10, (c) 60, and (d) 125.
Image (b) shows enhanced fine details
but an overall reduction of the contrast.
In image (d), large-scale variations, which
correspond to the lungs and the
mediastinum, are enhanced, and most of
the small details are suppressed. Image
(c) shows a case somewhere between (b)
and (d).

Multiscale image processing
In the previous sections a number of basic image
operations have been described that can be employed
for image enhancement and analysis (see for example
Figures 1.6 and 1.14).

Gray value transformations (Figure 1.6), such
as the widespread window/level operation, increase
the contrast in a subpart of the gray value scale.
They are quite useful for low-contrast objects situ-
ated in the enhanced gray value band. Unfortunately,
features outside this gray value interval are attenu-
ated instead of enhanced. In addition, gray value
transformations do not make use of the spatial rela-
tionship among object pixels and therefore equally
enhance meaningful and meaningless features such as
noise.

Spatial operations overcome this problem. Dif-
ferential operations, such as unsharp masking
(Figure 1.14), enhance gray value variations or edges,
whereas other operations, such as spatial averaging
and median filtering, reduce the noise. However, they
focus on features of a particular size because of the

fixed size of the mask, which is a parameter that must
be chosen. Figure 1.16 shows the effect of the filter size
for unsharpmasking. Using a low-pass filter, the image
is split into a low-pass and a remaining high-pass part.
Next, the high-pass part is emphasized, both parts are
added again (Eq. (1.23)), and the result is normalized
to the available gray value range. If the filter size is
small, this procedure emphasizes small-scale features
and suppresses gray value variations that extend over
larger areas in the image. With a large-size filter, large
image features are enhanced at the expense of the small
details. With this method, the following problems are
encountered.
• The image operation is tuned to a particular fre-

quency band that is predetermined by the choice
of the filter size. However, diagnostic information
is available at all scales in the image and is not
limited to a particular frequency band.

• Gray value variations in the selected frequency
band are intensified equally. This is desired for low-
contrast features but unnecessary for high-contrast
features that are easily perceivable.
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It is clear that a method is needed that is inde-
pendent of the spatial extent or scale of the image
features and emphasizes the amplitude of only the
low-contrast features.Multiscale image processing has
been studied extensively, not only by computer scien-
tists but also by neurophysiologists. It is well known
that the human visual systemmakes use of amultiscale
approach. However, this theory is beyond the scope of

this textbook. More about multiscale image analysis
can be found, for example, in [1].

[1] B. M. ter Haar Romeny. Front-End Vision and Multi-Scale Image
Analysis: Multi-Scale Computer Vision Theory and Applications writ-
ten in Mathematica, Volume 27 of Computational Imaging and
Vision. Springer, 2003.
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Chapter

2 Radiography

Introduction
X-rays were discovered by Wilhelm Konrad Röntgen
in 1895 while he was experimenting with cathode
tubes. In these experiments, he used fluorescent
screens, which start glowingwhen struck by light emit-
ted from the tube. To Röntgen’s surprise, this effect
persisted even when the tube was placed in a carton
box. He soon realized that the tube was emitting not
only light, but also a new kind of radiation, which he
called X-rays because of their mysterious nature. This
new kind of radiation could not only travel through
the box. Röntgen found out that it was attenuated
in a different way by various kinds of materials and
that it could, like light, be captured on a photographic
plate. This opened up the way for its use in medicine.
The first “Röntgen picture” of a hand was made soon
after the discovery of X-rays. No more than a few
months later, radiographswere already used in clinical
practice. The nature of X-rays as short-wave electro-
magnetic radiation was established by Max von Laue
in 1912.

X-rays
X-rays are electromagnetic waves. Electromagnetic
radiation consists of photons. The energy E of a
photon with frequency f and wavelength λ is

E = hf = hc

λ
, (2.1)

where h is Planck’s constant and c is the speed of light
in vacuum; hc = 1.2397 × 10−6 eVm. The electro-
magnetic spectrum (see Figure 2.1) can be divided
into several bands, starting with very long radio
waves, used inmagnetic resonance imaging (MRI) (see
Chapter 4), extending over microwaves, infrared, vis-
ible and ultraviolet light, X-rays, used in radiography,
up to the ultrashort-wave, high energetic γ-rays, used
in nuclear imaging (see Chapter 5). The wavelength
for X-rays is on the order of Angstrøms (10−10 m) and,

consequently, the corresponding photon energies are
on the order of keV (1 eV= 1.602× 10−19 J).

X-rays are generated in an X-ray tube, which con-
sists of a vacuum tube with a cathode and an anode
(Figure 2.2(a)). The cathode current J releases elec-
trons at the cathode by thermal excitation. These
electrons are accelerated toward the anode by a voltage
U between the cathode and the anode. The elec-
trons hit the anode and release their energy, partly
in the form of X-rays, i.e., as bremsstrahlung and
characteristic radiation. Bremsstrahlung yields a con-
tinuous X-ray spectrum while characteristic radiation
yields characteristic peaks superimposed onto the
continuous spectrum (Figure 2.2(b)).

Brehmsstrahlung
The energy (expressed in eV) and wavelength of the
bremsstrahlung photons are bounded by

E ≤ Emax = qU , λ ≥ λmin = hc

qU
, (2.2)

where q is the electric charge of an electron. For
example, if U = 100 kV, then Emax = 100 keV.

Characteristic radiation
The energy of the electrons at the cathode can release
an orbital electron from a shell (e.g., the K-shell), leav-
ing a hole. This hole can be refilled when an electron
of higher energy (e.g., from the L-shell or the M-shell)
drops into the hole while emitting photons of a very
specific energy. The energy of the photon is the differ-
ence between the energies of the two electron states;
for example, when an electron from the L-shell (with
energy EL) drops into the K-shell (getting energy EK)
a photon of energy

E = EL − EK (2.3)

is emitted. Such transitions therefore yield character-
istic peaks in the X-ray spectrum.
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Figure 2.1 The electromagnetic spectrum.
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Figure 2.2 (a) Scheme of an X-ray tube. (b) Intensity distribution in the Röntgen spectrum of molybdenum for different voltages. The
excitation potential of the K-series is 20.1 kV. This series appears as characteristic peaks in the 25 kV curve. The peaks Kα and Kβ are due to
L-shell and M-shell drops respectively.
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The important parameters of an X-ray source are
the following.

• The amount of electrons hitting the anode and,
consequently, the amount of emitted photons con-
trolled by the cathode current multiplied by the
time the current is on (typically expressed inmAs).
Typical values range from 1 to 100 mAs.

• The energy of the electrons hitting the anodes
and, consequently, the energy of the emitted pho-
tons (typically expressed in keV), controlled by
the voltage between cathode and anode (typically
expressed in kV). For most examinations the val-
ues vary from 50 to 125 kV. For mammography
the voltage is 22–34 kV. The energy of the atom
defines the upper limit of the photon energy.

• The total incident energy (typically expressed in
joules, 1 J = 1 kVmA s) at the anode, defined by
the product of the voltage, the cathode current and
the time the current is on. Note that almost all of
this energy is degraded to heat within the tube. Less
than 1% is transmitted into X-rays.

Interaction withmatter
Interaction of photons with matter
X-rays andγ-rays are ionizingwaves. Suchphotons are
able to ionize an atom, i.e., to release an electron from
the atom. Photons with energy less than 13.6 eV are
nonionizing. These photons cannot eject an electron
from its atom, but are only able to raise it to a higher
energy shell, a process called excitation. Ionizing
photons can interact with matter in different ways.

• The energy of X-ray photons can be absorbed by an
atom and immediately released again in the form
of a new photonwith the same energy but traveling
in a different direction. This nonionizing process
is called Rayleigh scattering or coherent scattering
and occurs mainly at low energies (<30 keV). The
lower the energy the higher is the scattering angle.
In most radiological examinations it does not play
a major role because the voltage used is typically
in the range from 50 to 125 kV. For mammogra-
phy, however, the voltage is lower (22–34 kV) and
Rayleigh scatter cannot be neglected.

• A photon can be absorbed by an atom while
its energy excites an electron. The electron then
escapes from its nucleus in the same direction as

the incoming photon was traveling. This mecha-
nism is called photoelectric absorption.

• A second possibility is that the photon transfers
only part of its energy to eject an electron with a
certain kinetic energy. In that case, a photon of the
remaining lower energy is emitted and its direction
deviates from the direction of the incoming pho-
ton. The electron then escapes in another direction.
This process is called Compton scattering.

• A thirdmechanism is pair production. If the energy
of a photon is at least 1.02 MeV, the photon can
be transformed into an electron and a positron
(electron–positron pair). A positron is the antipar-
ticle of an electron, with equal mass but opposite
charge. Soon after its formation, however, the
positron will meet another electron, and they will
annihilate each other while creating two photons
of energy 511 keV that fly off in opposite direc-
tions. This process finds its application in nuclear
medicine.

• At still higher energies, photonsmay cause nuclear
reactions. These interactions are not used for
medical applications.

Interaction of an X-ray beamwith tissue
Consider an X-ray beam and a material of thickness
d = xout − xin (see Figure 2.3(a)). Inside the mate-
rial, the beam is attenuated by the different types of
interaction explained above. Although the individual
interactions are of statistical nature, the macroscopic
intensity of the beam follows a deterministic expo-
nential law: The intensity of the outgoing beam Iout is
related to the intensity of the incoming beam Iin by

Iout = Iin e−µ d , (2.4)

whereµ is called the linear attenuation coefficient (typ-
ically expressed in cm−1). This simple law is only valid
when the material is homogeneous and the beam con-
sists of photons of a single energy. Actually, µ is a
function of both the photon energy and the material,
that is, µ = µ(E , material), for example:

µ(10 keV,H2O) = 5 cm−1

µ(100 keV,H2O) = 0.17 cm−1
(2.5)

µ(10 keV, Ca) = 144 cm−1

µ(100 keV, Ca) = 0.40 cm−1.

Equation (2.4) can be generalized as follows.
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Figure 2.3 (a) X-ray beam traveling through a slab of material. (b) Linear attenuation coefficient for photons in aluminum and lead. The solid
curves represent the total linear attenuation coefficient. The dashed lines show the partial linear attenuation coefficient for each of the three
effects: I for photoelectric absorption, dominant at low energies; II for Compton scattering, dominant at higher energies; III for pair production,
dominant at very high energies.

• When a beam of single-energy photons trav-
els through a nonhomogeneous medium, Iout is
related to Iin by

Iout = Iin e
− ∫ xout

xin
µ(x) dx . (2.6)

• A real X-ray beamdoes not contain a single photon
energy but a whole spectrum of energies. Making
the intensity distribution of the incoming beam a
function of the energy, that is, Iin =

∫∞
0 σ(E) dE ,

the intensity of the outgoing beam is equal to

Iout =
∫ ∞
0

σ(E) e−
∫ xout

xin
µ(E ,x) dx dE . (2.7)

Figure 2.3(b) shows that at low energies photoelectric
absorption is most prominent while at intermediate
energies the Compton scattering dominates. Pair pro-
duction exists only at very high energies. Photoelectric
absorption occurs at photon energies higher than the
binding energy of K-shell electrons. Hence, the atten-
uation coefficient suddenly increases at this energy,
knownas theK-edge. Figure 2.3(b) also shows thatwith
increasing energy, photoelectric absorption decreases
more rapidly than Compton scattering. Note also that
the linear attenuation coefficient increases with the

atomic number Z . With increasing Z , photoelectric
absorption increases more rapidly than Compton
scattering.

Often the mass attenuation coefficient (µm) is used
instead of the linear attenuation coefficient:

µm = µ/ρ, (2.8)

whereρ is themass density of the attenuatingmedium.
For example, for water ρ = 1 g/cm3 and for calcium
ρ = 1.55 g/cm3. Hence,

µm(10 keV,H2O) = 5 cm2/g

µm(100 keV,H2O) = 0.17 cm2/g
(2.9)

µm(10 keV, Ca) = 93 cm2/g

µm(100 keV, Ca) = 0.258 cm2/g.

X-ray detectors
To produce an image from the attenuated X-ray beam,
the X-rays need to be captured and converted to
image information. Some detectors for digital radio-
graphy are relatively recent developments. Older but
still in use are the screen–film detector and the image
intensifier.
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Screen–film detector
Screen
Photographic film is very inefficient for capturing
X-rays. Only 2% of the incoming X-ray photons con-
tribute to the output image on a film. This percentage
of contributing photons corresponds to the probabil-
ity that an X-ray photon (quantum) is absorbed by
the detector. It is known as the absorption efficiency.
The low sensitivity of film for X-rays would yield
prohibitively large patient doses. Therefore, an inten-
sifying screen is used in front of the film. This type of
screen contains a heavy chemical element that absorbs
most of the X-ray photons. When an X-ray photon
is absorbed, the kinetic energy of the released elec-
tron raises many other electrons to a higher energy
state. When returning to their initial state they pro-
duce a flash of visible light, called a scintillation. Note
that these light photons are scattered in all directions.
Consequently, two intensifying screens can be used,
i.e., one in front and one behind the film, to increase
the absorption efficiency further. The portion of the
light that is directed toward the film contributes to the
exposure of the film. In this way, the absorption effi-
ciency can be increased to more than 50% instead of
the 2% for film. Because the light is emitted in all direc-
tions, a smooth light spot (the PSF, see p. 3) instead of
a sharp peak hits the film and causes image blurring.

X-ray intensifying screens consist of scintillating
substances that exhibit luminescence. Luminescence is
the ability of a material to emit light after excitation,
either immediately or delayed.

• Fluorescence is the prompt emission of light when
excited by X-rays and is used in intensifying
screens. A material is said to fluoresce when light
emission begins simultaneously with the exciting
radiation and light emission stops immediately
after the exciting radiation has stopped. Initially,
calcium tungstate (CaWO4) was most commonly
used for intensifying screens. Advances in tech-
nology have now resulted in the use of rare
earth compounds, such as gadolinium oxysulfide
(Gd2O2S). A more recent scintillator material is
thallium-doped cesium iodide (CsI:Tl), which has
not only an excellent absorption efficiency but also
a good resolution because of the needle-shaped or
pillarlike crystal structure, which limits lateral light
diffusion.

• Phosphorescence or afterglow is the continuation
of light emission after the exciting radiation has

stopped. If the delay to reach peak emission is
longer than 10−8 seconds or if the material con-
tinues to emit light after this period, it is said to
phosphoresce. Phosphorescence in screens is an
undesirable effect, because it causes ghost images
and occasionally film fogging.

Film
The film contains an emulsion with silver halide crys-
tals (e.g., AgBr). When exposed to light, the silver
halide grains absorb optical energy and undergo a
complex physical change. Each grain that absorbs
a sufficient amount of photons contains dark, tiny
patches of metallic silver called development centers.
It is important to note that the amount of photons
required is independent of the grain size. When the
film is developed, the development centers precipi-
tate the change of the entire grain to metallic silver.
The more light reaching a given area of the film, the
more grains are involved and the darker the area after
development. In this way a negative is formed. After
development, the film is fixed by chemically removing
the remaining silver halide crystals.

In radiography, the negative image is the final
output image. In photography, the same procedure
has to be repeated to produce a positive image. The
negative is then projected onto a sensitive paper car-
rying silver halide emulsion similar to that used in the
photographic film.

Typical characteristics of a film are its graininess,
speed , and contrast.

• Graininess The image derived from the silver crys-
tals is not continuous but grainy. This effect is
most prominent in fast films. Indeed, because the
amount of photons needed to change a grain into
metallic silver upon development is independent
of the grain size, the larger the grains, the faster the
film becomes dark.

• Speed The speed of a film is inversely propor-
tional to the amount of light needed to produce
a given amount of metallic silver on develop-
ment. The speed is mainly determined by the
silver halide grain size. The larger the grain size
the higher the speed because the number of pho-
tons needed to change the grain intometallic silver
upon development is independent of the grain size.
Speed is expressed in ASA (American Standards
Association) or in ISO (International Standards
Organization). These units are the same.
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For X-ray imaging with a screen–film combina-
tion, it makes more sense to speak about the speed
of the screen–film combination: how many X-ray
photons are needed to produce a certain density
on the film. The speed then depends on the prop-
erties of the intensifying screen and the film, but
also on the quality of film–screen contact, and on a
good match between the emission spectrum of the
screen and the spectral sensitivity of the film used.

Because light is emitted in all directions, a sig-
nificant proportion, about 50%, of that light is
not directed toward the film. A reflective layer
behind the screen–film–screen redirects it toward
the film, ensuring that it contributes to expo-
sure. This has the advantage of increasing the
speed of the screen–film–screen combination with
a corresponding reduction in patient dose.

• Contrast The most widely used description of the
photosensitive properties of a film is the plot of
the optical density D versus the logarithm of the
exposure E . This curve is called the sensitometric
curve. The exposure is the product of incident light
intensity and its duration. The optical density is
defined by

D = log
Iin
Iout

, (2.10)

where Iin and Iout are the incoming and outgoing
light intensity when exposing the developed film
with a light source. Note that Iin and Iout are
different from the incident light intensity in the
definition of the exposure E , in which it refers to
the light emitted by the intensifying screen during
X-ray irradiation.

Figure 2.4 shows a typical sensitometric curve.
It is S-shaped. In low- and high-density areas, con-
trast is low and there is little information. Only the
linear part is really useful and its slope character-
izes the film contrast. The maximal slope of the
curve is known as the gamma of the film. Note that
a larger slope implies a higher contrast at the cost
of a smaller useful exposure range.∗

∗ Double contrast films also exist. Their sensitometric curve con-
tains two linear parts with a different slope, i.e., a high-contrast part
as usual, continued by a low-contrast part at high optical densities.
This increases the perceptibility in hyperdense regions, such as in
mammography at the border of the breast.

0

0.5

1

1.5

2

2.5

3

3.5

4
D

log E

Figure 2.4 Typical sensitometric curve for radiographic film. D is
the optical density and E the exposure.

Image intensifier
An image intensifier works as follows (see Figure 2.5).
A fluorescent screen converts the X-rays into visible
light. The emitted light hits a photocathode, and the
energy of the photons releases electrons from this cath-
ode. A large potential difference between the cathode
and the output accelerates the ejected electrons. The
resulting electron beam is directed onto a small flu-
orescent screen by electrostatic or magnetic focusing
and converted to light photons again. This focusing
makes the system suitable to be coupled to a camera
without any loss of light. The main advantage of an
image intensifier system is that it is capable of pro-
ducing dynamic image sequences in real time at video
rate, a process known as fluoroscopy. However, when
compared with film–screen systems, the images are
degraded in three ways.

• The spatial resolution will generally be less than
that of a film–screen system because of the limited
camera resolution.

• Because of the additional conversions (light →
electrons→ light), the noise increases slightly.

• Geometric distortion occurs, called pin-cushion
distortion, particularly toward the borders of the
image.

Detectors for digital radiography
Storage phosphors
A special case of phosphorescence is when part of
the absorbed energy is not released immediately in
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Figure 2.5 Scheme of an image
intensifier. The camera is placed against
the output screen to minimize light loss.
(Reprinted with permission of Kieran
Maher.)

the form of light. The temporarily stored energy
can be released upon stimulation by other forms of
energy such as laser light. This phenomenon is called
photostimulated luminescence and is used in digital
radiography. This type of scintillator is called a storage
phosphor or photostimulable phosphor . The screen–
film combination is then replaced by a screen coated
with such a scintillator. When X-rays are absorbed
by the phosphor, electrons are pumped up from the
valence band to the conduction band. In a classical
scintillator plate such an electron falls back to the
valence band while releasing its energy in the form of
a light photon. In a storage phosphor, however, these
electrons are trappedby electron traps, which are impu-
rities in the scintillator. In this way, the incident X-ray
energy is converted into stored energy. After expo-
sure a latent image is trapped in the scintillator. The
latent image can be stored in the phosphor plate for a
considerable period after exposure. It takes 8 hours to
decrease the stored energy by about 25%. The stored
energy can be extracted by pixelwise scanning with a
laser beam. This way the trapped electrons receive a
new energy shot that allows them to escape from their
trap and fall back into the valence band. The latent
image information is thereby released as visible light,
which is captured by an optic array and transmitted
to a photomultiplier. The photomultiplier converts
the detected light into an analog electrical signal. This
analog signal is then converted in an A/D converter to
a digital bit stream. The residual information on the
scintillator screen is erased by a strong light source,
after which the screen can be reused for new X-ray

Figure 2.6 This system scans the latent image with a laser beam
and erases the residual image on the storage phosphor after which
the screen can be reused for new X-ray exposure.

exposure. As soon as the radiologic technician puts the
cassette into the scanner (Figure 2.6), this whole laser
scanning and cleaning process is done automatically.

Storage phosphor screens provide a much wider
useful exposure range than conventional film–screen
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systems. Moreover, the storage phosphor is a linear
detector. This means there is no contrast reduction
in the low- and high-density areas of the image, as is
the case with the S-shaped sensitometric curve. Con-
sequently, the system is much more tolerant to over-
exposure and underexposure, and retakes caused by
suboptimal exposure settings (mA s, kV) are reduced.
In theory, a reduction of the radiation dose per image
is also possible because of the available contrast at low
exposure. However, dose reduction adversely affects
the SNR of the resulting image. Therefore, reduc-
ing the dose per examination must be considered in
relationship to the diagnostic information required.
Often, the greed for diagnostic detail slightly increases
the dose rather than reducing it.

A second advantage of digital radiography is that
the image is available for computer postprocessing
such as image enhancement and quantification. More-
over, the image can easily be stored and transported
in digital form, making the images more accessible
and making large film archives unnecessary. Today,
digital picture archiving and communication systems
(PACS) are part of hospital information systems, mak-
ing the medical images immediately available through
the digital network in the sameway as the other patient
information.

Active matrix flat panel detectors
Newer detector technologies for digital radiography
are flat panel detectors with fast-imaging capability.
These systems produce nearly real time images, as
opposed to storage phosphor systems which require a
readout scan on the order of a minute and a workflow
similar to that for screen–film systems.

Traditional electronic capturing devices, including
CCDs (charge-coupleddevices), are almost exclusively
based upon Si-crystal technology, and for manufac-
turing reasons this restricts the devices to small areas.
This is because it is difficult and expensive to create a
large defect-free semiconductor crystal. A flat, large-
area integrated circuit, called an active matrix array,
can easily bemade bydepositing a 2Darray of identical
semiconductor elements onto an amorphousmaterial,
such as hydrogenated amorphous silicon (a-Si:H).

A light-sensitive active matrix array can be pro-
duced by depositing an array of photodiodes onto the
a-Si:H substrate. By coupling it to a fluorescent plate it
functions as a large and fast flat panel X-ray detector.

In spite of the technological progress in scintilla-
tor materials, the conversion of X-ray radiation into

light photons negatively influences the PSF because of
the light distribution in different directions. A more
recent technique eliminates the need for a scintillator
by using a photoconductor, such as amorphous sele-
nium (a-Se) or cadmium telluride (CdTe), instead of
a phosphor. When exposed to radiation, the photo-
conductor converts the energy of the X-ray photons
directly into an electrical conductivity proportional to
the intensity of the radiation. To scan this latent image,
the photoconductor layer is placed upon an active
matrix array that consists of a 2D array of capacitors
(instead of photodiodes) deposited onto the amor-
phous substrate. These capacitors store the electric
charge produced by detected X-ray photons until it
is read out by the electronic circuit of the active matrix
array. This technology is known as direct radiography
as against the indirect approach where light is pro-
duced by a scintillator as an intermediate step in the
transformation of X-rays to a measurable signal.

Active matrix flat panel detectors have become an
accepted technology for mammography because of
their overall performance (see p. 24 below on DQE).∗

Dual-energy imaging
By taking two radiographic images, each capturing
a different energy spectrum, the image of substances
with a high atomic number (e.g., bone, calcifications,
stents) can be separated from that of the soft tissue
by proper image processing. This way two different
selective images are obtained, for example, a soft-
tissue image and a bone image. Several methods have
been proposed to calculate tissue selective images.
The method explained here is also used in computed
tomography (p. 48).

Two system configurations have been used. The
first captures two radiographic images in a short time
interval (e.g., 200 ms) and at different X-ray tube volt-
ages (e.g., peaks at 110–150 kV and at 60–80 kV). The
second configuration contains two layers of scintillator
detectors and acquires the images in a single expo-
sure. The top layer detects and filters most low-energy
photons, while the bottom layer detects primarily
high-energy photons. A third configuration is promis-
ing but immature. It uses photon counting detectors

∗ Commercial mammography systems exist that are able to count
the individual X-ray photons with a very high absorption effi-
ciency. To obtain their unsurpassed DQE they make use of
crystalline silicon strip detectors in combinationwith a slit-scanning
technology.
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Figure 2.7 Linear attenuation coefficient as a function of the
energy for calcium (Ca), water and the contrast agent iodine (I) in
water (10 mg/ml). Note the K-edge discontinuity of I at 33.2 keV.

that count and measure the energy of the photons.
This multi-energy technique has an improved spectral
sensitivity, needs only one radiographic image and is
insensitive to patient motion.

Dual-energy imaging relies on the dependence
of the attenuation coefficient µ on the energy E
(Figure 2.7). In the absence of K-edge discontinu-
ities in the used energy range [Emin, Emax] the linear
attenuation coefficient can be approximated as

µ(E) ≈ µp(E)+ µC(E)

≈ ap
1

Em
+ aCfKN(E). (2.11)

The two components express the attenuation due to
photoelectric interaction andCompton scatter respec-
tively. The exponent m is an empirically defined
parameter (e.g., m = 3 [2]). fKN(E) is the so-called
Klein–Nishina function. The tissue-dependent coeffi-
cients ap and aC are related to the physical material
properties:

ap ≈ Kp
ρ

A
Z n , n ≈ 4

aC ≈ KC
ρ

A
Z

(2.12)

where Kp and KC are constants, ρ is the mass density,
A the mass number and Z the atomic number of the
attenuating medium [2].

Using Eq. (2.11) it can easily be shown that the
attenuation coefficient of an arbitrary substance S can

[2] R. E. Alvarez and A. Macovski. Energy-selective reconstructions
in x-ray computerized tomography. Physics in Medicine and Biology,
21(5): 733–744, 1976.

be written as a linear combination of the attenuation
coefficient of two selected materials, provided that
the attenuation properties of both basis materials are
sufficiently different (e.g., bone and soft tissue)

µS(E) = a1 · µ1(E)+ a2 · µ2(E). (2.13)

Substituting Eq. (2.13) in Eq. (2.7) for a spectrumwith
energy range [Emin, Emax] yields

I (x , y) =
∫ Emax

Emin

σ(E) e−
∫

Lx ,y µ(E ,s) ds dE

=
∫ Emax

Emin

σ(E) e−
∫

Lx ,y (a1(s)·µ1(E)+a2(s)·µ2(E)) ds dE ,

(2.14)

where Lx ,y is the projection line arriving at pixel (x , y)
of the radiographic image. When taking images, the
tissue-dependent coefficients a1 and a2 are unknown.
Defining

A1(x , y) =
∫

Lx ,y

a1(s) ds

A2(x , y) =
∫

Lx ,y

a2(s) ds,
(2.15)

Eq. (2.14) can be written as

I (x , y)

=
∫ Emax

Emin

σ(E) e−(A1(x ,y)·µ1(E)+A2(x ,y)·µ2(E)) dE .

(2.16)

A1(x , y) and A2(x , y) represent the equivalent thick-
ness of the basis materials along ray Lx ,y . In this
equation A1(x , y) and A2(x , y) are unknown, but they
can be retrieved. Indeed, if two radiographic images
are acquired, each at a different energy with corre-
sponding spectra σLE and σHE, the following system
of two nonlinear equations must be solved to calculate
A1(x , y) and A2(x , y) in pixel (x , y)

IHE(x , y)

=
∫ Emax

Emin

σLE(E) e−(A1(x ,y)·µ1(E)+A2(x ,y)·µ2(E)) ds dE

ILE(x , y)

=
∫ Emax

Emin

σHE(E) e−(A1(x ,y)·µ1(E)+A2(x ,y)·µ2(E)) ds dE .

(2.17)
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In case of a single exposure with spectrum σLE and two
detector layers, the second spectrum σHE is defined as

σHE(E) = σLE(E) e−µf (E) tf , (2.18)

where µf (E) and tf are the known attenuation coef-
ficient and thickness of the filtering top detector
layer.

Various approaches exist to solve Eqs. (2.17). For
example, the inverse relationship can be modeled by a
second- or third-order polynomial. If more than two
measurements and corresponding equations are avail-
able, an optimization strategy is required to solve the
overdetermined system. This is for example the case
when photon-counting detectors can be used. More
information on numerical optimization can be found
in [3].

Using the obtained values of A1(x , y) and A2(x , y)

the original radiographic image can be separated
into two material equivalent images (e.g., bone and
soft tissue). Note that the above theory needs some
modification in the presence of a substance with an
observable K-edge in the energy range [Emin, Emax]. In
that case Eqs. (2.11) and (2.13) have to be extended
with a third component and corresponding coeffi-
cients aK and a3 respectively. This yields a third
unknownA3 in Eq. (2.16) and, hence, requires amulti-
energy approach with at least three different measure-
ments [4]. The original image is then separated into
three instead of two basis images, the third being an
image of the substance with K-edge. The strength of
K-edge imaging is that the energy dependence of a
material with K-edge is very different around its K-
edge, resulting in a high sensitivity for multi-energy
imaging. K-edge imaging is immature but offers
opportunities for target-specific contrast agents and
drugs, particularly in multi-energy CT (see p. 48).

Image quality
Resolution
The image resolution of a radiographic system
depends on several factors.

[3] J. Nocedal and S.Wright. Numerical Optimization, Volume XXII
of Springer Series in Operations Research and Financial Engineering.
Springer, second edition, 2006.
[4] E. Roessl and R. Proksa. K-edge imaging in x-ray computed
tomography using multi-bin photon counting detectors. Physics in
Medicine and Biology, 52: 4679–4696, 2007.

• The size of the focal spot. The anode tip should
make a large angle with the electron beam to
produce a nicely focused X-ray beam.

• The patient. Thicker patients cause more X-
ray scattering, deteriorating the image resolution.
Patient scatter can be reduced by placing a collima-
tor grid in front of the screen (see p. 24). The grid
allows only the photons with low incidence angle
to reach the screen.

• The light scattering properties of the fluorescent
screen.

• The film resolution, which is mainly determined
by its grain size.

• For image intensifier systems and digital radiogra-
phy, the sampling step at the end of the imaging
chain is an important factor.

The resolving power (i.e., the frequency where
the MTF is 10%) of clinical screen–film combinations
varies from 5 up to 15 lp/mm. In most cases, spatial
resolution is not a limiting factor in reader perfor-
mance with film. For images with storage phosphors,
a resolving power of 2.5 up to 5 lp/mm (at 10% con-
trast) is obtained. This corresponds to a pixel size of
200 to 100 µm, which is mostly sufficient except for
mammography, for which more recent detector tech-
nology (see active matrix flat panel detectors, p. 21) is
needed. Depending on the size of the object, it is clear
that images with 2000 by 2000 pixels and even more
are needed to obtain an acceptable resolution.

Contrast
The contrast is the intensity difference in adjacent
regions of the image. According to Eq. (2.7) the
image intensity depends on the attenuation coeffi-
cients µ(E , x) and thicknesses of the different tissue
layers encountered along the projection line. Because
the attenuation coefficient depends on the energy of
the X-rays, the spectrum of the beam has an important
influence on the contrast. Soft radiation, as used in
mammography, yields a higher contrast than hard
radiation.

Another important factor that influences the con-
trast is the absorption efficiency of the detector, which
is the fraction of the total radiation hitting the detec-
tor that is actually absorbed by it. A higher absorption
efficiency yields a higher contrast.

In systems with film, the contrast is strongly deter-
mined by the contrast of the photographic film. The
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higher the contrast, the lower the useful exposure
range. In digital radiography, contrast can be adapted
after the image formationbyusing a suitable gray value
transformation (see p. 4). Note however that such a
transformation also influences the noise, thus keeping
the CNR unchanged.

Noise
Quantum noise, which is due to the statistical nature
of X-rays, is typically the dominant noise factor. A
photon-detecting process is essentially a Poisson pro-
cess (the variance is equal to the mean). Therefore,
the noise amplitude (standard deviation) is propor-
tional to the square root of the signal amplitude, and
the SNR also behaves as the square root of the sig-
nal amplitude. This explains why the dose cannot be
decreased unpunished. Doing so would reduce the
SNR to an unacceptable level. Further conversions
during the imaging process, such as photon–electron
conversions, will add noise and further decrease
the SNR.

To quantify the quality of an image detector the
measure detective quantum efficiency (DQE) is often
used. The image detector is one element in the imag-
ing chain and to quantify its contribution to the SNR,
the DQE is used, which expresses the signal-to-noise
transfer through the detector. The DQE can be cal-
culated by taking the ratio of the squared SNR at the
detector output to the squared SNR of the input signal
as a function of spatial frequency:

DQE = SNR2
out(f )

SNR2
in(f )

. (2.19)

It is a measure of how the available signal-to-noise
ratio is degraded by the detector. Several factors

Figure 2.8 DQE of four digital X-ray detection systems, obtained
under standardized measurement conditions. The DQE curve is cut
off at a frequency close to the Nyquist frequency, i.e., half of the
sampling frequency. (Courtesy of Agfa HealthCare.)

influence the DQE, particularly the absorption effi-
ciency of the detector, the point spread function of
the detector and the noise introduced by the detector.
Figure 2.8 shows an example of the DQE as a function
of frequency for three different detector technologies.

Artifacts
Although other modalities suffer more from severe
artifacts than radiography, X-ray images are generally
not artifact free. Scratches in the detector, dead pixels,
unread scan lines, inhomogeneous X-ray beam inten-
sity (heel effect), afterglow, etc., are not uncommon
and deteriorate the image quality.

Equipment
Let us now take a look at the complete radiographic
imaging chain, which is illustrated schematically in
Figure 2.9. It consists of the following elements.

• The X-ray source.
• An aluminumfilter, often complemented by a cop-

per filter. This filter removes low-energy photons,
thus increasing the mean energy of the photon
beam. Low-energy photons deliver doses to the
patient but are useless for the imaging process
because they do not have enough energy to travel
through the patient and never reach the detector.
Because low-energy photons are called soft radia-
tion and high-energy photons hard radiation, this
removal of low-energy photons from the beam is
called beam hardening.

• A collimator to limit the patient area to be
irradiated.

X-ray source

low-energy 
absorbing
filter

collimator

collimating
scatter grid

detector

Figure 2.9 Schematic representation of the radiographic imaging
chain.
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• The patient, who attenuates the X-ray beam and
produces scatter.

• A collimating scatter grid. This is a collimator
that absorbs scatter photons. It stops photons with
large incidence angle, whereas photons with small
incidence angle can pass right through the grid.
The grid can be made of lead, for example. Note
that a scatter grid is not always used in paediatrics
because in small children the scatter is limited.

• The detector. This can be a screen–film combina-
tion in which a film is sandwiched between two
screens (see p. 18), an image intensifier coupled to
a camera (see p. 19), a cassette containing a storage-
phosphor plate (see p. 19), or an active matrix flat
panel detector (see p. 21) or dual-layer detector
(see p. 21).

Figure 2.10 shows a general purpose radiographic
room. The table can be tilted in any orientation, from
the horizontal to the vertical position. The X-ray sys-
tem contains a tray for a conventional film-based or a

storage phosphor cassette, as well as an image inten-
sifier beneath the table. More recent X-ray systems
contain an active matrix flat panel detector with fast-
imaging capability, which replaces the cassette and
image intensifier (Figure 2.11).

Figure 2.12 shows a 3D rotational angiography sys-
tem (3DRA). Images of the blood vessels can be made
from any orientation by rotating the C-arm on which
the X-ray tube and image detector are mounted at
both ends. By continuously rotating the C-arm over
a large angle (180◦ and more), sufficient projection
images are obtained to reconstruct the blood vessels
in three dimensions (3D) (Figure 2.13). The mathe-
matical procedure used to calculate a 3D image from
its projections is also used in computed tomography
(CT) and is explained in Chapter 3.

Clinical use
Today, the majority of the radiographic examinations
in a modern hospital are performed digitally. X-ray
images can be static or dynamic. Static or still images

(a) (b)

Figure 2.10 Multipurpose radiographic room. The table can be tilted in any orientation. Both an image intensifier and a storage phosphor
are available.
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Figure 2.11 In more recent X-ray systems the cassette and image
intensifier are replaced by an active matrix flat panel detector. This
picture shows a Siemens system with large-area amorphous silicon
detector coupled to a CsI scintillator plate.

aremade with a film–screen combination or with digi-
tal radiography, whereas dynamic images are obtained
with an image intensifier or an active matrix flat panel
detector and viewed in real time on a TV monitor
or computer screen. Dynamic image sequences are
commonly known as fluoroscopic images as against
radiographic images, which refer to static images.

In X-ray images, the attenuation differences of
various nonbonymatter are usually too small to distin-
guish them. A contrast agent or dye (i.e., a substance
with a high attenuation coefficient) may overcome
this problem. It is especially useful for intravascu-
lar (blood vessels, heart cavities) and intracavitary
(kidney, bladder, etc.) purposes.

Following are a number of typical examples of fre-
quently used examinations. They are subdivided into
radiographic images and fluoroscopic images.

Radiographic images
These are made of all parts of the human body. They
are still responsible for the majority of radiologi-
cal examinations. The most common investigations
include the following.

• skeletal X-rays (see Figure 2.14),
• chest images (radiographs of the thoracic cavity

and heart, see Figure 2.15),
• mammography (images of the breasts, see

Figure 2.16),
• dental X-rays (images of the teeth and jaw).

Fluoroscopic images
These are image sequences produced in real time.
Consequently, their application field focuses on inves-
tigations in which motion or the instant availability of
the images, or both, are crucial. This application field
is obviously narrower than that of radiographic exam-
inations, which explains why the number of fluoro-
scopic guided examinations is an order of magnitude
lower. The most typical applications, in decreasing
order of occurrence, include the following.

• Interventional fluoroscopy (see Figure 2.17). This
application is responsible for the majority of fluo-
roscopic sequences. Typically, the images are used
to guide and quickly verify surgical actions, partic-
ularly in bone surgery, such as for osteosynthesis
(traumatology, orthopedics).

• Angiography (see Figure 2.18), which takes images
of blood vessels through the injection of an iodine-
containing fluid into the arteries or veins. Usually,
subtraction images are made by mathematically
subtracting postcontrast and precontrast images
followed by a simple gray level transformation to
increase the image contrast of the vessels. The
result is an image in which the blood vessels appear
as contrasting line patterns on a homogeneous
background. Obviously, it is essential that the
patient does not move during the imaging pro-
cedure, to avoid motion blurring and subtraction
artifacts in the images. Traditionally, angiogra-
phy has been used for diagnosis of conditions
such as heart ischemiae caused by plaque buildup.
However, today radiologists, cardiologists, and
vascular surgeons also use the X-ray angiography
procedure to guide minimally invasive interven-
tions of the blood vessels, such as for vascular
repermeabilization (Figure 2.12).
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(a) (b)

Figure 2.12 3D rotational angiography (3DRA). (a) C-arm with X-ray tube and image intensifier at both ends. (b) More recent system in which
the image intensifier has been replaced by an active matrix flat panel detector with an acquisition frame rate of up to six 2048× 2048 images
(12 bbp) per second. By rotating the C-arm on a circular arc (e.g., 240◦ in 4 s) around the patient, a series of projection images are acquired
that can be used to compute a 3D image of the blood vessels. (Courtesy of Professor G. Wilms, Department of Radiology.)

Figure 2.13 3D image of the cerebral blood vessels reconstructed
from a series of 2D projection images around the patient, obtained
with the 3DRA system shown in Figure 2.12(b). Selective injection of
the right internal carotid artery in a patient with a subarachnoid
hemorrhage showing an aneurysm of the anterior communicating
artery. (Courtesy of Professor G. Wilms, Department of Radiology.)

• Barium fluoroscopy of the gastrointestinal tract
after the patient swallows barium contrast solu-
tion and/or where the contrast is instilled via the
rectum (see Figure 2.19).

• Urography (image of the kidneys and bladder)
using an iodine-containing contrast fluid.

Biologic effects and safety
Even at very low X-ray doses the energy deposited by
ionizing radiation, such as X-rays, may be sufficient
to damage or destroy cells. Although this generally
has no negative consequence, the probability always
exists that modifications in single cells could lead to
malignancy (cancer) or genetic changes. There is no
evidence of a threshold dose below which the proba-
bility would be zero. If the X-ray dose increases, the
frequency of cell damage and the occurrence of cancer
increases, but not the severity of the cancer.

Malignant disease and heritable effects, for which
the probability but not the severity is proportional to
the dose, without any threshold, are stochastic effects of
radiation. Deterministic effects of radiation also exist.
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(a) (b)

Figure 2.14 (a) Double mandibular fracture with strong displacement to the left. (b) Solitary humeral bone cyst known as ‘‘fallen leaf sign’’.
(Courtesy of Dr. L. Lateur, Department of Radiology.)

(a) (b)

Figure 2.15 Radiographic chest image showing multiple lung metastases. (Courtesy of Professor J. Verschakelen, Department of Radiology.)
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(a) (b)

Figure 2.16 (a) Dense opacity with spicular border in the cranial part of the right breast; histological proven invasive ductal carcinoma.
(b) Cluster of irregular microcalcifications suggesting a low differentiated carcinoma. (Courtesy of Dr. Van Ongeval, Department. of Radiology.)

Figure 2.17 Postoperative fluoroscopic control of bone fixation
with plate and screws after a complete fracture of the humerus.
(Courtesy of Dr. L. Lateur, Department of Radiology.)

They are injuries to a large population of cells where
repair mechanisms fail and the complete tissue is
damaged. Deterministic effects are characterized by
a threshold dose and an increase in the severity of the
tissue reaction with increasing dose.

The SI unit of absorbed dose, D, is the gray (Gy).
One Gy is one joule per kilogram of irradiated mate-
rial. If the average absorbed dose, DT , in organ or
tissueT is known, it is, for example, possible to predict
the onset of deterministic effects. Tables of threshold
values can be found in the literature. For example, a
dose of 5 Gy in a single exposure at the level of the eye
lens can cause visual impairment due to cataract. In
clinical practice deterministic effects are rare.

The probability of stochastic effects from radiation
depends heavily on the type of radiation. Some types
of radiation aremore detrimental per unit of absorbed
dose than others. To assess the risk of the stochastic
effects of radiation in a particular organ or tissue T ,
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Figure 2.18 Cerebral angiogram showing an aneurysm or saccular
dilation of a cerebral artery. (Courtesy of Professor G. Wilms,
Department of Radiology.)

the equivalent dose, HT , is used:

HT = �R (wR · DT ,R), (2.20)

where DT ,R is the average absorbed dose from radi-
ation of type R in tissue or organ T and wR is the
radiation weighted factor, which is a measure of its
relative biological impact per unit of absorbed dose.
The SI unit of equivalent dose is the sievert (Sv). The
radiation weighting factor for X-rays, electrons and
muons is 1, for protons and charged pions it is 2, and
for heavier particles 20. For neutrons there is no sin-
gle value but the weighting factor is a function of the
neutron energy. Inmostmedical imaging applications
only X-rays are involved and wR is simply 1. In the lit-
erature, factors can be found that relate the equivalent
organ or tissue dose to the risk of stochastic effects. For
example, lung cancer occurs on average in 114 cases
per 10 000 persons per sievert, yielding a so-called
nominal risk coefficient ∗ of lung cancer induction of
1.14%/Sv.

∗ “Nominal risk coefficients are derived by averaging sex and age-
at-exposure lifetime risk estimates in representative populations”
(Annals of the ICRP, publication 103, 2007).

To assess the overall radiation detriment † from
stochastic effects, the effective dose,†† also expressed
in sieverts (Sv), is used. The effective dose is the tis-
sue weighted sum of equivalent doses in all irradiated
tissues or organs of the body, that is,

E = �T (wT ·HT ), (2.21)

where HT is the equivalent dose in tissue or organ
T and wT the tissue weighting factor. The weights wT

represent the (rounded) relative radiation detriments
of the individual organs and tissues. The sum of all
weights equals 1:

�T wT = 1. (2.22)

For example, the nominal risk coefficient, expressed in
cases per 10 000 persons per sievert, for the liver is 30.
The detriment, i.e., the radiation detriment adjusted
nominal risk coefficient, is 26.6. Given a total detri-
ment for all organs and tissues of 574, the relative
detriment is 0.046 (rounded: wliver = 0.04).

Tissue weighting factors can be found in the “2007
Recommendations of the International Commission
on Radiological Protection” (Annals of the ICRP, pub-
lication 103). They are averaged over all ages and both
sexes and therefore do not apply to particular indi-
viduals. Red bone marrow, colon, lung, stomach and
breast have a tissue weighting factor of 0.12. Gonads
have 0.08; bladder, oesophagus, liver and thyroid have
0.04; bone surface, brain, salivary glands and skin have
0.01. Thirteen remainder tissues have been defined,
i.e., adrenals, extrathoracic region, gall bladder, heart,
kidneys, lymphatic nodes, muscle, oral mucosa, pan-
creas, prostate (male), small intestine, spleen, thymus
and uterus/cervix (female). Because the sum of all

† “Radiation detriment is a concept used to quantify the harmful
effects of radiation exposure in different parts of the body. It is
determined from nominal risk coefficients, taking into account the
severity of the disease in terms of lethality and years of life lost.
Total detriment is the sum of the detriment for each part of the
body (tissues and/or organs)” (Annals of the ICRP, publication 103,
2007).
†† “The concept of “effective dose” associated with a given expo-
sure involves weighting individual organs and tissues of interest
by the relative detriments for these parts of the body. In such a
system, the weighted sum of the tissue-specific dose equivalents,
called the effective dose, should be proportional to the total esti-
mated detriment from the exposure, whatever the distribution of
equivalent dose within the body. The components of detriment are
essentially the same for cancer and heritable disease and, if desired,
these detrimentsmay be combined” (Annals of the ICRP, publication
103, 2007).
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(a) (b)

Figure 2.19 (a) Double contrast (barium + gas insufflation) enema with multiple diverticula in the sigmoid colon (arrows). (b) Polypoid mass
proliferating intraluminally (arrowhead on the spotview). (Courtesy of Professor E. Ponette, Department of Radiology.)

weights equals 1, the weight for the remainder tissues
is 0.12. It must be applied to the arithmetic mean dose
of the 13 organs and tissues.

Effective dose is a valuablemeasure to compare dif-
ferent examinations. Examples of effective doses for
some typical radiographic examinations are: dental
0.005–0.02 mSv; chest 0.01–0.05 mSv; skull 0.1–
0.2mSv; pelvis 0.7–1.4mSv; lumbar spine 0.5–1.5mSv.
Note that many examinations require more than one
or a continuous X-ray exposure, which increases
the dose. The use of fluoroscopy for diagnostic and
therapeutic reasons may yield doses around 5 mSv.
Examples are intravenous urography (3 mSv), barium
enema (8 mSv) and endoscopic retrograde cholan-
giopancreatography (4 mSv). Interventional proce-
dures, such as performed in the angiography room
or in the catheterization lab, may have much higher
doses, and occasionally even skin doses that reach
the thresholds for deterministic effects. Relatively low
doses are seen with cerebral angiography (5 mSv)
and much higher doses for transjugular intrahep-
atic portosystemic shunt procedures (TIPS) (70 mSv).
Compare this to the dose equivalent due to natural
sources, which is 2–3 mSv per year.

According to the International Commission on
Radiological Protection (ICRP) the relative radiation
detriment adjusted nominal risk coefficient for cancer
is 5.5%/Sv and for heritable effects up to the second
generation is 0.2%/Sv. For adults (18 to 64 years), these
risk factors are a little lower, i.e., 4.1%/Sv and 0.1%/Sv
respectively.

Because of the potential risk of medical irradia-
tion, the ICRP recommends keeping the magnitude
of individual examination doses as low as reason-
ably achievable (ALARA principle). There are no dose
limits for patients, but every exposure should be jus-
tified. This is, to a large extent, a medical decision.
The physician should have as much knowledge as
possible about previous examinations of the patient
and about the patient’s condition. Pregnancy, for
example, is a state where risks are increased. Most
countries have now introduced diagnostic reference
levels and can verify in this way whether the X-ray
doses for typical examinations in medical centers are
too high or too low. Particular attention is given to
screening examinations because they are performed
on asymptomatic people. In this regard, there is a lot of
experience in breast cancer screening programs, where
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EuropeanGuidelines arewidely applied. Special atten-
tion should also be given to children and to high-dose
imaging, such as interventional radiology.

Furthermore, the ICRP recommends limiting all
exposed workers from regulated radiation practices to
20 mSv per year when averaged over five years and
the public to 1 mSv per year. In particular, physicians
may receive a significant exposure when doing proce-
dures under fluoroscopy, but they toomust not exceed
20 mSv per year. There are strict protection protocols
they have to follow, among which is the protection of
the body and the thyroid gland with a lead apron and
collar. A dosimeter, which is a small device clipped
to the personnel’s clothing, measures the cumulative
absorbed dose.

Future expectations
Today, other imaging modalities, such as ultra-
sound, CT, and MRI, have largely replaced a number
of X-ray examinations. Examples are arthrography
(joints), myelography (spinal cord), cholangiogra-
phy (bile ducts), cholecystography (gall bladder), and
pyelography (urinary tract). Although radiography
will remain an important imaging modality, this
evolution can be expected to continue.

Flat panel detectors for a large field of view and
with a fast readout capability will become available
for 3D imaging. Hence, 2D projective imaging will
further be augmented by 3D volumetric imaging (see
also Chapter 3).

It can also be expected that the DQE of the
detectors will continue to improve, yielding reduced
radiation doses or images with enhanced contrast-to-
noise ratio. Furthermore, photon counting detectors,
which count the number of photons and measure
their energy, will become commercially available by
employing direct radiography with very fast readout
capability.

Currently allmedical images canbe fully integrated
into the hospital information system. The images can
be interpreted on screen by the radiologist and elec-
tronically transmitted to the referring physician. It
can be expected that manual interventions during the
image acquisition process, such as cassette handling
and parameter setting, will be further reduced. This
will have a strong impact on the work flow in a med-
ical imaging department. Furthermore, the computer
will behave as an intelligent assistant for the radiolo-
gist and will improve his/her performance. Computer
aided diagnosis (CAD) is discussed in more detail in
Chapter 7.
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3 X-ray computed tomography

Introduction
X-ray computed tomography or CT (Figure 3.1) is
an imaging modality that produces cross-sectional
images representing the X-ray attenuation properties
of the body. Theword tomography originates from the
Greek words τoµoς (slice) and γραφειν (to write).
Image formation of a cross-section is based on the fol-
lowing procedure. X-rays are produced by an X-ray
tube, attenuated by the patient andmeasured by an X-
ray detector. Using thin X-ray beams, a set of lines is
scanned covering the entire field of view (Figure 3.2(a)
shows a parallel-beam geometry and Figure 3.2(b)
shows a fan-beam geometry). This process is repeated
for a large number of angles (Figure 3.2(c) and (d)),
yielding line attenuation measurements for all pos-
sible angles and for all possible distances from the
center. Based on all these measurements, the actual
attenuation at each point of the scanned slice can
be reconstructed. Although the imaging modalities of
Chapters 4 and 5 (MR, PET, and SPECT) also rep-
resent a kind of computed tomography, the term CT
(originally CAT) is allocated for X-ray comput(eriz)ed
(axial) tomography. The physics of X-rays, their

(a) (b)

Figure 3.1 (a) Schematic representation, and (b) photograph of a CT scanner. (Courtesy of GE Healthcare.)

production, and interactions with tissue have already
been discussed in Chapter 2.

The history of CT began in 1895, when Wilhelm
Konrad Röntgen reported the discovery of what he
called “a new kind of rays.” Röntgen received the
first Nobel Prize in Physics in 1901. Reconstruction
of a function from its projections was first formu-
lated by Johann Radon in 1917. Before the invention
of computed tomography, other kinds of tomography
existed.

• Linear tomography (Figure 3.3(a)) The X-ray source
and filmmove at constant speed in opposite direc-
tions. Under these circumstances, one section of
the patient (plane P1–P2) is always projected at
the same position on the film, whereas the rest
of the body is averaged out. In addition to linear
tube and detector movement, curved paths (circu-
lar, elliptical, hypocycloidal, . . .) have been used as
well.

• Axial transverse tomography (Figure 3.3(b)) The film
is positioned horizontally in front of the patient
and slightly below the focal plane. Both the patient
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and the film rotate at the same fixed speed around
a vertical axis while the X-ray source remains sta-
tionary. Under these circumstances, the focal plane
in the patient remains in sharp focus throughout
the rotation, whereas all other planes are averaged
out.

The first CT scanner (the EMI scanner) was devel-
oped by Godfrey N. Hounsfield in 1972. His work
was based on mathematical and experimental meth-
ods developed by A. M. Cormack a decade earlier.
Hounsfield and Cormack shared the Nobel Prize in
Physiology or Medicine in 1979. The first whole-body
CT scanner (the ACTA scanner) was developed by

(a)

(c)

(b)

(d)

Figure 3.2 Basic scanning procedure in CT. A set of lines is
scanned covering the entire field of view: (a) parallel-beam
geometry and (b) fan-beam geometry. This process is repeated for a
large number of angles (c and d).

Robert S. Ledley in 1974. Since the introduction of
helical and multi-slice CT (respectively in 1989 and
1998), CThas opened theway to 3D images of theheart
and has brought dynamic (4D) studies within reach.

In modern CT scanners, the images consist of
512× 512 pixels representing the CT number, which
is expressed in Hounsfield units (HU). The CT number
is defined as

CT number (in HU) = µ− µH2O
µH2O

· 1000, (3.1)

whereµ is the linear attenuation coefficient. With this
definition, air and water have a CT number of, respec-
tively,−1000 HU and 0 HU. Bone falls on the positive
side of the scale, but has no unique CT number. This
value ranges from several hundreds to over 1000 HU.
The reason is that µ of bone (and all other tissues)
depends on its composition and structure, e.g., cortical
or trabecular, as well as on the energy of the absorbed
X-rays (see Figure 2.3).

Some clinical applications look at air–tissue or
tissue–bone contrasts on the order of 1000 HU, but
other clinical exams focus on small soft tissue contrasts
of a fewHU. An optimal perception requires a suitable
gray level transformation. In clinical practice, this is
done by a real time window/level operation. The win-
dow and level respectively define the width and center
of the displayed gray level interval. Figure 3.4 shows an
example of a CT image of the chest with two different
window/level settings, the first to visualize the lungs
(a), and the second to emphasize the soft tissues (b).

X-ray detectors in CT
Energy integrating detectors
Most recent commercial CT detectors consist of a
scintillator crystal (CdWO4, Y2O3, CsI, Gd2O2S)
in combination with a photodiode. The scintillator

P1 P2

 Film

(a) (b)

x-ray tube

Figure 3.3 (a) Linear tomography. The
X-ray source and film move at constant
speed in opposite directions. (b) Axial
transverse tomography. The film is
positioned horizontally in front of the
patient and slightly below the focal
plane. Both the patient and the film
rotate at the same fixed speed around a
vertical axis while the X-ray source
remains stationary.
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(a) (b)

Figure 3.4 CT image of the chest with
different window/level settings: (a) for the
lungs (window 1500 and level−500), and (b)
for the soft tissues (window 350 and level 50).

material converts X-rays into visible light (scintilla-
tions), which then hits the photodiode, causing it
to produce an electric current. Individual scintilla-
tor pieces are assembled into a reflector matrix in
order to define the detector cells. The scintillators are
produced with high optical quality so that the few
millimeters thickness necessary to have a very high
absorption efficiency (96%) also has good transfer of
light to the photodiode. Recent scintillators also offer
a very fast response time (on the order of microsec-
onds). Due to the finite thickness of the septa in
the antiscatter grid, the absorption efficiency of the
detector is limited by the area fill fraction, typically
on the order of 80%. The multichannel readout elec-
tronics or data acquisition system (DAS) connects to
the photodiode. The DAS integrates the photocurrent
from the diode and converts the electric charge sig-
nal to voltage using a transimpedance amplifier. The
DAS also performs the analog to digital conversion
with typical sample rates on the order of a couple
of kilohertz. One limitation of these detectors is the
susceptibility to electronic noise introduced by the
transimpedance amplifier. For detectors using scin-
tillator/photodiodes, electronic noise dominates the
quantum noise at low signal levels, leading to noise
streaks (see p. 50) in the images.

Photon counting detectors
Recently photon counting detectors are receiving
increased attention for CT. They are based on direct
conversion (see direct radiography, p. 21). A direct con-
version material such as cadmium telluride (CdTe)
or cadmium-zinc-telluride (CZT) converts an X-ray
photon into a certain electronic charge proportional to
its energy. The charge produced in direct conversion
is about ten times that produced by the scintillator/

photodiode combination and the electronic noise no
longer dominates the signal from individual X-rays.
This difference allows an electronic circuit to detect
these charge packages and count the number of pho-
tons. The fact that these detectors count the number of
photons instead of integrating their energy improves
the CNR by 10 to 20%. First, carefully defining a
detection threshold eliminates the impact of electronic
noise. Second, the difference in attenuation between
two tissues is generally larger for low-energy X-rays.
Hence, the total CNR can be increased by assign-
ing a higher weight to the detected low-energy X-ray
photons.

Yet, the main reason to consider photon count-
ing detectors is their ability to measure the amount
of charge, and hence the energy, of the correspond-
ing X-ray. The energy resolution can be much better
than for example that of dual layer scintillator detec-
tors, or evendual kVmethods for dual-energy imaging
(see p. 21). Remaining challenges for commercial
introduction of direct conversion detectors for CT
applications include stability and the count rate limits,
and therefore it will be several years before scintillator-
based detectors will be replaced on commercial CT
scanners.

Imaging
Data acquisition
Projection and Radon transform
Consider the 2D parallel-beam geometry in Figure
3.5(a) in which µ(x , y) represents the distribution of
the linear attenuation coefficient in the xy-plane. It
is assumed that the patient lies along the z-axis and
that µ(x , y) is zero outside a circular field of view
with diameter FOV. The X-ray beams make an angle
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Figure 3.5 (a) Parallel-beam geometry
with coordinate systems. The X-ray
beams make an angle θ with the y-axis
and are at distance r from the origin. (b)
An intensity profile Iθ (r) is measured for
every view (defined by an angle θ ). I0 is
the unattenuated intensity. (c) The
attenuation profiles pθ (r), obtained by
log-converting the intensity profiles Iθ (r),
are the projections of the function µ(x , y)
along the angle θ .

θ with the y-axis. The unattenuated intensity of the
X-ray beams is I0. A new coordinate system (r , s) is
defined by rotating (x , y) over the angle θ . This gives
the following transformation formulas:

[
r
s

]
=
[
cos θ sin θ

−sin θ cos θ

] [
x
y

]
[

x
y

]
=
[
cos θ −sin θ

sin θ cos θ

] [
r
s

]
.

(3.2)

For a fixed angle θ , the measured intensity profile as a
function of r is shown in Figure 3.5(b) and is given by

Iθ (r) = I0 · e−
∫

Lr ,θ
µ(x ,y) ds

= I0 · e−
∫

Lr ,θ
µ(r ·cos θ−s·sin θ ,r ·sin θ+s·cos θ) ds ,

(3.3)

where Lr ,θ is the line that makes an angle θ with the
y-axis at distance r from the origin. Actually, the spec-
trum of the X-ray tube and the attenuation depend on
the energy, yielding (see Eq. (2.7))

Iθ (r)

=
∫ ∞
0

σ(E) · e−
∫

Lr ,θ
µ(E ,r ·cos θ−s·sin θ ,r ·sin θ+s·cos θ) dsdE.

(3.4)

However, in practice it is typically assumed that the
X-rays are monochromatic, and Eq. (3.3) is used as an
approximation.∗

Each intensity profile is transformed into an atten-
uation profile:

pθ (r) = −ln Iθ (r)

I0

=
∫

Lr ,θ

µ(r · cos θ − s · sin θ , r · sin θ + s · cos θ) ds,

(3.5)

where pθ (r) is the projection of the function µ(x , y)

along the angle θ (Figure 3.5(c)). Note that pθ (r) is
zero for |r | ≥ FOV/2.

pθ (r) can be measured for θ ranging from 0 to
2π . Because concurrent beams coming from oppo-
site sides theoretically yield identical measurements,
attenuation profiles acquired at opposite sides contain
redundant information. Therefore, as far as parallel-
beamgeometry is concerned, it is sufficient tomeasure
pθ (r) for θ ranging from 0 to π .

Stacking all these projections pθ (r) results in a
2D dataset p(r , θ) called a sinogram (see Figure 3.6).
Assume a distribution µ(x , y) containing a single
dot, as in Figure 3.7(a) and (b). The corresponding

∗ Dual-energy CT is a recent development and is introduced
on p. 48.
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projection function p(r , θ) (Figure 3.7(c)) has a sinu-
soidal shape, which explains the origin of the name
sinogram. In mathematics, the transformation of any
function f (x , y) into its sinogram p(r , θ) is called the
Radon transform:

p(r , θ) = R{f (x , y)}

=
∫ ∞
−∞

f (r · cos θ − s · sin θ , r · sin θ + s · cos θ) ds.

(3.6)

r

u Figure 3.6 A
sinogram is a 2D
dataset p(r , θ)

obtained by
stacking the 1D
projections pθ (r).

Sampling
Until now, we have assumed that data are available for
all possible angles θ and distances r . In practice, we
have a limited number M of projections or views and
a limited number N of detector samples. Hence, the
discrete sinogram p(nr ,mθ) can be represented as
amatrix withM rows andN columns;r is the detec-
tor sampling distance, and θ is the rotation interval
between subsequent views. Taking into account that
p(r , θ) becomes zero for |r | ≥ FOV/2, and assuming
a beam width s, the minimum number of detector
samples can be calculated.

Figure 3.8 shows a projection (a) and its Fourier
transform (FT) (b). Assuming a block-shaped beam
aperture (c), the projection is convolved with this
block, resulting in a smoothed projection (e). Cor-
respondingly, the FT (b) is multiplied with a sinc
function (d), resulting in an FT (f) with strongly
reduced high-frequency content. The discrete nature
of the measurements resulting from the limited num-
ber of detector samples is modeled by multiplying
the convolved data (e) with a pulse train (g), yielding
the sampled signal (i). This corresponds to convolv-
ing the FT (f) with a reciprocal pulse train (h). The
resulting spectrum (j) is obtained by shifting and
adding spectrum (f). A certain amount of aliasing is
unavoidable.

To limit aliasing, the contributions of (f) in (j)must
be separated as far as possible or at least far enough
to let the first zero-crossings coincide. Let s be the

1

2

4

3

(a) (b) (c)

(e) (f)(d)

1

2

3

4

3

2

4

1 Figure 3.7 (a and b) Image and surface
plot of a distribution µ(x , y) containing
one single dot. The arrows indicate four
arbitrary projection directions.
(c) 360◦-sinogram obtained by projecting
µ(x , y). The arrows indicate the views that
correspond to the four projection
directions in (a). (d) Backprojection (see
p. 38) of the four views chosen in (a).
(e and f) Surface plot and image of the
straightforward backprojection of the
entire sinogram in (c).
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Figure 3.8 Illustration of required detector sampling: (a) projection,
(c) beam aperture, (e) smoothed projection, (g) pulse train, (i)
sampled signal; (b, d, f, h, j) corresponding FTs.

beam width (see (c)); then, the width of the main lobe
in (d) and in (f) is 2/s. This means that the distance
between the pulses in (h), which is 1/r , must be at
least equal to 2/s

1
r
≥ 2

s
(3.7)

or

r ≤ s

2
, (3.8)

that is, the sampling distance r must not exceed
s/2, or at least two samples per beam width are

required. Equation (3.8) also follows from the Nyquist
criterion, which is explained inAppendixA, p. 228. For
example, a field of view of 50 cm and a beam width of
1 mm requires about 1000 detector channels.

A rigorous determination of the minimum num-
ber of views is less straightforward [5]. Typically the
number of views per 360◦ is on the order of the num-
ber of detector channels. For example, GE scanners
with 888 detector channels acquire 984 views per rota-
tion and Siemens scanners with 768 detector cells use
1056 views per 360◦.

Means to improve sampling include quarter detec-
tor offset and in-plane focal spot wobble or deflection.

2D image reconstruction
Backprojection
Given the sinogram p(r , θ), the question is how to
reconstruct the distribution µ(x , y) (or, generically,
the function f (x , y)). Intuitively, one could think of
the following procedure. For a particular line (r , θ),
assign the value p(r , θ) to all points (x , y) along that
line. Repeat this (i.e., integrate) for θ ranging from
0 to π . This procedure is called backprojection and is
given by

b(x , y) = B{p(r , θ)}

=
∫ π

0
p(x · cos θ + y · sin θ , θ) dθ . (3.9)

Figure 3.7(d–f) illustrates backprojection for a dot. By
backprojecting only a few projections, the image in
Figure 3.7(d) is obtained. The backprojection of all
the projections is shown in Figure 3.7(e) and (f). The
image is blurred when compared to the original. The
narrow peak of the original dot has a conelike shape
after reconstruction. From this example, it is clear that
a simple backprojection is unsatisfactory.

Thediscrete versionof the backprojectionbecomes

b(xi , yj) = B{p(rn , θm)}

=
M∑

m=1
p(xi cos θm + yj sin θm , θm) θ .

(3.10)

Note, however, that the values (xi cos θm+yj sin θm)

generally donot coincidewith thediscrete positions rn .

[5] P. M. Joseph and R. A. Schulz. View sampling requirements in
fan beam computed tomography. Medical Physics, 7(6): 692–702,
November 1980.
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Figure 3.9
Discrete
backprojection with
interpolation. For
each view, a
projection line
through each pixel
is drawn. The
intersection of this
line with the
detector array is
computed and the
corresponding
projection value is
calculated by
interpolation
between its
neighboring
measured values.

Interpolation is therefore required. Figure 3.9
illustrates this. For each view, a projection line through
each pixel is drawn. The intersection of this line
with the detector array is then computed, and the
corresponding projection value is calculated by inter-
polation between its neighboring measured values.
This is called pixel-driven or voxel-driven backpro-
jection with linear interpolation. In 3D, the principle
is the same, but the interpolation becomes bilinear.

Projection theorem
Weneed amathematical instead of an intuitive answer
to the question “given the sinogram p(r , θ), what is
the original function f (x , y)”? This means that we
need a mathematical expression for the inverse Radon
transform

f (x , y) = R−1{p(r , θ)}. (3.11)

The projection theorem, also called the central slice the-
orem, gives an answer to this question. Let F(kx , ky ) be
the 2D FT of f (x , y)

F(kx , ky ) =
∞∫∫
−∞

f (x , y) e−2π i(kx x+ky y) dx dy (3.12)

and Pθ (k) the 1D FT of pθ (r)

Pθ (k) =
∫ ∞
−∞

pθ (r) e−2π i(k·r) dr . (3.13)

Let θ be variable. Then Pθ (k) becomes a 2D function
P(k, θ). The projection theorem now states that

P(k, θ) = F(kx , ky ) (3.14)

with




kx = k · cos θ
ky = k · sin θ

k =
√

k 2
x + k 2

y ,
(3.15)

that is, the 1D FT with respect to variable r of the
Radon transform of a 2D function is the 2D FT of that
function. Hence, it is possible to calculate f (x , y) for
each point (x , y) based on all its projections pθ (r), θ

varying between 0 and π .
Proof of Eq. (3.14)
By definition, the 2D FT of f (x , y) is

F(kx , ky ) =
∞∫∫
−∞

f (x , y) e−2π i(kx x+ky y) dx dy . (3.16)

Using Eq. (3.15) this becomes

F(kx , ky ) =
∞∫∫
−∞

f (x , y) e−2π i(k·cos θ ·x+k·sin θ ·y) dx dy .

(3.17)

For any choice of θ we can define a change in coordi-
nates using Eq. (3.2) and the Jacobian determinant

J =
∣∣∣∣cos θ −sin θ

sin θ cos θ

∣∣∣∣ = 1, (3.18)

to transform the Cartesian coordinates x and y to the
polar coordinates r and s:

F(kx , ky ) =
∞∫∫
−∞

f (r · cos θ − s · sin θ , s · cos θ + r · sin θ)

· e−2π i(k·cos θ(r ·cos θ−s·sin θ)+k·sin θ(s·cos θ+r ·sin θ)) ds dr .

(3.19)

Because cos2 θ + sin2 θ = 1, this can be reduced to

F(kx , ky ) =
∞∫∫
−∞

f (r · cos θ − s · sin θ , s · cos θ + r · sin θ)

· e−2π i(k·r) ds dr . (3.20)
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The function e−2π i(k·r) is independent of s and can be
placed outside the inner integral:

F(kx , ky ) =
∫ ∞
−∞

[∫ ∞
−∞

f (r · cos θ − s · sin θ , s · cos θ

+ r · sin θ) ds

]
e−2π i(k·r) dr .

(3.21)

From Eq. (3.6) it is clear that the inner integral is the
projection p(r , θ):

F(kx , ky ) =
∫ ∞
−∞

p(r , θ) e−2π i(k·r) dr . (3.22)

By definition the right-hand side is the 1D FT of
p(k, θ), that is, P(k, θ).

Direct Fourier reconstruction
Based on the projection theorem, we can use the
following algorithm to calculate f (x , y).

1. Calculate the 1D FT F1 of all the projections
pθ (r):

F1{pθ (r)} = Pθ (k). (3.23)

2. Put all the values of the 1D function Pθ (k) on a
polar grid to obtain the 2D function P(k, θ)

(Figure 3.10(a)). The data samples need to be
interpolated to a Cartesian grid (Figure 3.10(b))
in order to obtain F(kx , ky ).

3. Calculate the 2D IFT F−12 of F(kx , ky ):

F−12 {F(kx , ky )} = f (x , y). (3.24)

P(u,k)
ky ky

kx

kx

k
u

(a) (b)

F(kx,ky)

Figure 3.10 (a) The function P(k , θ) is sampled on a polar grid. (b)
Samples of the function F(kx , ky) on a Cartesian grid are required for
direct Fourier reconstruction.

The interpolation in step 2 can cause artifacts, making
direct Fourier reconstruction less popular than recon-
structionbyfilteredbackprojection, which is discussed
below.

Filtered backprojection (FBP)
To avoid interpolation, the polar version of the 2D
inverse FT (Eq. (A.74)) can be used:

f (x , y) =
∫ π

0

∫ ∞
−∞

P(k, θ) |k| ei2πkr dk dθ , (3.25)

with r = x cos θ + y sin θ . Defining

P∗(k, θ) = P(k, θ) · |k| (3.26)

and

p∗(r , θ) =
∫ +∞
−∞

P∗(k, θ) ei2πkr dk, (3.27)

Eq. (3.25) becomes

f (x , y) =
∫ π

0
p∗(r , θ) dθ . (3.28)

Hence, the function f (x , y) can be reconstructed by
backprojecting p∗(r , θ), which is the inverse 1D FT
with respect to k of P∗(k, θ). The function P∗(k, θ) is
obtained by multiplying P(k, θ) by the ramp filter |k|.
This explains the name filtered backprojection. Because
a multiplication in the Fourier domain can be written
as a convolution in the spatial domain, p∗(r , θ) can
also be written as

p∗(r , θ) =
∫ +∞
−∞

p(r ′, θ) q(r − r ′) dr ′ (3.29)

with

q(r) = F−1{|k|}

=
∫ +∞
−∞
|k| ei2πkr dk. (3.30)

The function q(r) is called the convolution kernel.
This yields the following reconstruction scheme.

1. Filter the sinogram p(r , θ):

∀θ p∗θ (r) = pθ (r) ∗ q(r), or

P∗θ (k) = Pθ (k) · |k|. (3.31)40
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Figure 3.11 (a) For a discrete
implementation, the ramp filter |k| is cut
off at frequency kmax. The resulting filter is
the difference of a block function (b) and a
triangular function (c).
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Figure 3.12 (a) Hamming window with α = 0.54 and Hanning
window (dashed line) with α = 0.5. (b) Ramp filter and its products
with a Hamming window and a Hanning window (dashed line).

2. Backproject the filtered sinogram p∗(r , θ):

f (x , y) =
∫ π

0
p∗(x cos θ + y sin θ , θ) dθ . (3.32)

Because of its divergent nature, the continuous
filter |k| is not useful in practice. However, from
Figure 3.8(j) it follows that for discrete projection data,
the useful Fourier content is limited to frequencies
smaller than kmax = 1/s = 1/2r . Therefore, the
ramp filter |k| can be limited to these frequencies and
is cut off at kmax (Figure 3.11(a)). This filter, called the
Ram–Lak filter after its inventors Ramachandran and
Lakshiminarayanan, can be written as the difference
of a block and a triangle (Figure 3.11(b) and (c)). Their
inverse FTs yield

q(r) = kmax sin(2πkmaxr)

πr
− 1− cos(2πkmaxr)

2π2r2
.

(3.33)

Usually, frequencies slightly below kmax are unreli-
able because of aliasing and noise. Application of

a smoothing window (Hanning, Hamming, Shepp-
Logan, Butterworth) suppresses the highest spatial
frequencies and reduces these artifacts. For example,
the window

H (k) =



α + (1− α) cos
(

πk

kmax

)
for |k| < kmax

0 for |k| ≥ kmax
(3.34)

with α = 0.54 is the Hamming window, and with
α = 0.5 the Hanning window (Figure 3.12(a)).

Figure 3.12(b) shows the products of a ramp filter
and a Hamming–Hanning window.

Fan-beam FBP
The previous reconstruction algorithms are all based
on the assumption that the data have been acquired in
a parallel-beam geometry. In third and fourth genera-
tion CT scanners, the acquired data are not ordered in
parallel subsets but in fans (Figure 3.2). Figure 3.13(a)
shows the coordinates (r , θ) used in parallel-beam
geometries together with the coordinates (γ ,β) used
in fan-beam geometries with the detectors placed
along a circular arc; β is the angle between the source
and the y-axis, and γ is the angle between the ray
through (x , y) and the center line of the associated
fan. The fan-angle is the angle formed by the fan.
As can be seen in Figure 3.13(b), measurements for
β ranging from 0 to π do not include all possible
line measurements in the case of a fan-beam geom-
etry. For example, if the X-ray tube starts above the
patient (β = 0) and rotates clockwise over 180◦,
the vertical line with accompanying question mark in
Figure 3.13(b) is not measured. Actually, a range from
0 to (π + fan-angle) is required in order to include 41
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Figure 3.13 (a) Fan-beam geometry
with detectors placed on a circular arc: β
is the angle between the center line of
the fan and the y-axis, γ is the angle
between the center line and the ray
through point (x , y). L is the distance
from the source to (x , y). (b) With the
fan-beam geometry a measurement
range from β = 0 to (π + fan-angle) is
required to acquire all the projection
lines.

all line measurements. For simplicity, we will assume
that data forβ ranging from0 to 2π are available (360◦
acquisition). Two possible reconstruction approaches
exist.

• Rebinning involves the reordering of the data into
parallel data and requires interpolation.

• An adapted equation for filtered backprojection
can be used.

Substituting Eq. (3.29) in Eq. (3.28) and limiting r ′ in
the integration to [−FOV/2, FOV/2] yields

f (x , y) =1
2

∫ 2π

0

∫ +FOV/2

−FOV/2
p(r ′, θ)

· q(x cos θ + y sin θ − r ′) dr ′ dθ . (3.35)

The factor 1/2 compensates for themodification of
the integration limits from 0 to 2π . Using the coordi-
nates (γ ,β) for a fan-beam geometry (Figure 3.13(a)),
the following coordinate transformations can be
derived:

θ = γ + β

r = R sin γ ,
(3.36)

where R is the distance from the top of the fan, i.e.
the position of the source, to the center of the FOV.

Introducing these new coordinates in Eq. (3.35) yields

f (x , y) =1
2

∫ 2π

0

∫ + fan-angle
2

− fan-angle
2

p(γ ′,β)

· q(x cos(γ + β)+ y sin(γ + β)− R sin γ ′)
· R cos γ ′ dγ ′ dβ . (3.37)

After a few calculations [6] the following fan-beam
reconstruction formula can be derived:

f (x , y) =
∫ 2π

0

1
L2

∫ + fan-angle
2

− fan-angle
2

[R cos γ ′ · p(γ ′,β)]

· 1
2

(
γ − γ ′

sin(γ − γ ′)

)2
q(γ − γ ′) dγ ′ dβ ,

(3.38)

where L is the distance from the image point (x , y)

to the top of the fan. Note that this expression is a
modified FBP weighted with 1/L2. The inner integral
is a convolution of p(γ ,β), weighted with R cos γ ,
with a modified filter kernel 1

2 (γ /sin γ )2q(γ ).
A similar equation can be derived for the case that

the detectors lie on a straight line perpendicular to the
center line of the fan. In this configuration the coor-
dinates (t ,β) are used (Figure 3.14); t is the distance
from the origin to the ray through (x , y) measured

[6] A. C. Kak andM. Slaney. Principles of Computerized Tomographic
Imaging. New York: IEEE Press, 1987.
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Figure 3.14 Fan-beam geometry with collinear detectors: β is the
angle between the center line of the fan and the y-axis. t is the
distance from the origin to the ray through point (x , y) measured in
the direction parallel to the detector array. U is the projection of the
source-to-point distance onto the central fan ray.

parallel to the detector array. It can be shown [6] that
the weighted FBP can now be written as

f (x , y) =
∫ 2π

0

1
(U/R)2

∫ +∞
−∞

[
R√

R2 + t ′2
· p(t ′,β)

]

· 1
2

q(t − t ′) dt ′ dβ , (3.39)

where U is the projection of the source-to-point
distance onto the central ray of the fan.

In dynamic applications, such as cardiac CT, dis-
cussed below, it is important to keep the scan segment
as short as possible, to minimize motion blur. Since
Eqs. (3.38) and (3.39) are based on 360◦ worth of data,
a different reconstruction formula is desired for car-
diac imaging. A widespread (approximate) method
is the so-called Parker weighting, which uses 180◦
plus fan-angle worth of data and applies a weighting
term todownweight projection lines that aremeasured
twice [7].

Imaging in three dimensions
Single-slice CT
Circular CT
The most straightforward way to image an entire vol-
ume is to scan a number of consecutive slices by
circular tube–detector rotations alternated with small

[7] D. L. Parker. Optimal short scan convolution reconstruction for
fan beam CT. Medical Physics, 9(2): 254–257, March 1982.

table shifts. This is also known as axial scanning. To
acquire a complete 3D data set and not lose any res-
olution by this axial sampling, the Nyquist criterion
should be satisfied (see p. 38 and Figure 3.8). Themax-
imum distance between consecutive slices depends on
the effective slice thickness, which is typically repre-
sented by the full width at half maximum (FWHM)
of the slice sensitivity profile (SSP) at the center of
the field of view (FOV). If we assume a rectangular
SSP of width z , the data are to be convolved with a
block functionwithwidthz . Themaximumdistance
between two slices is then z/2, that is, at least two
slices per slice thickness must be acquired in order to
minimize aliasing from axial sampling (cf. Eq. (3.8)).

Helical CT
A technique that is widely used nowadays is helical
CT. The X-ray tube rotates continuously around the
patient, just as in 2D CT. At the same time, the patient
is slowly translated through the gantry. Hence, the
tube describes a helical orbit (like a screw) with respect
to the patient. This explains the origin of the term
helical CT.While the term helical CT ismathematically
more accurate, spiral CT is also in common use as a
synonym.

The table feed (TF) is the axial distance over which
the table translates during a complete tube rotation of
360◦. The pitch ratio – or simply pitch – is the ratio
between the table feed and the slice thickness.

Figure 3.15 compares circular and helical CT; β

is the angular position of the X-ray tube and z its
axial position relative to the patient. In circular CT
(Figure 3.15(a)) the data are acquired for discrete axial
positions {z1, z2, . . .} and for angular tube positions β

ranging from 0 to 2π . In helical CT (Figure 3.15(b)
and (c)) the data are acquired while β and z increase
simultaneously.

Assume we want to reconstruct a slice at a partic-
ular axial position z1. Data for β ranging from 0 to π

(plus fan-angle) are needed at this position, while only
one viewat angleβ∗ is available. This problem is solved
by interpolation from measurements at adjacent axial
positions. The dots in Figure 3.15(b) illustrate this for
360◦ linear interpolation.

Now consider only the views at angle βi . The axial
sampling distance for such views is TF. As in circular
CT, the real data are convolved with the axial SSP.
Assuming a rectangular SSPofwidthz and following
the same reasoning as for circular CT, we come to the
conclusion that the maximum sampling distance is
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Figure 3.15 (a) In circular CT, data are acquired at discrete axial positions {z1, z2, . . .} and for angular tube positions β ranging from 0 to 2π .
(b and c) In helical CT, data are acquired while β and z increase simultaneously. In (b) 360◦ linear interpolation is used and in (c) 180◦ linear
interpolation is used to obtain a complete dataset at one particular axial position z1.

(a) (b)

Figure 3.16 (a) Single-slice CT versus (b)
multi-slice CT: a multi-slice CT scanner can
acquire multiple slices simultaneously by using
multiple adjacent detector arrays. (Reprinted
with permission of RSNA.)

z/2. Hence, for a slice thickness z , the maximum
table feed is TF = z/2 (pitch= 0.5).

Taking into account that concurrent but opposite
rays yield identicalmeasurements (Figure 3.15(c)), the
axial sampling density can be doubled by using 180◦
interpolation. The sampling distance then becomes
TF/2, and the maximum table feed TF = z (pitch=
1.0). Increasing the pitch to a value above one reduces
the scan time, however, at the cost of image quality.∗
Note that with a fan-beam geometry, opposite rays are
not separated exactly by TF/2, and the axial distance
from a particular ray to an opposite ray depends on its
position within the fan.

Multi-slice CT
In modern CT scanners, the detector array consists
of multiple detector rows, in order to measure several

∗ Theoretically, the patient dosewould reduce as the pitch increases,
but in practice the dose is often kept constant by increasing themA s
to maintain the CNR.

slices per rotation of the X-ray tube (Figure (3.16)).
The number of slices can also be boosted by combining
multiple detector rows with longitudinal focal spot
wobble, providing interlaced slices. This way, for
example, a 32-rowCT scanner ismarketed as a 64-slice
scanner.

The pitch can be defined here as the ratio of the
table feed to the total X-ray beam thickness, i.e.,
the thickness of the complete stack of slices. Using
the same pitch values as in single-slice CT yields a
reduction of the scan time by the number of detector
rows, resulting in reduced motion artifacts.† Using,

† For multi-slice CT scanners, the maximum pitch can be deter-
mined intuitively as follows. In order to reconstruct any single slice,
the minimum required view angle range is 180◦ plus the fan-angle.
Simplistically this can be used to define the time during which
the patient can translate by an amount equal to the longitudinal
coverage of the beam at isocenter. The pitch by definition equals
the translation for 360◦ of rotation, so the pitch cannot be larger
than 360/(180 + fan-angle) or about 1.5. Note that this calculation
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for example, a 64-row system with 0.5 mm detectors
(referred to the isocenter), a pitch of 1.0 and a 0.33 sec-
ond rotation, it is possible to obtain a CT of the lungs
(e.g., 40 cm) in about 4 seconds.

If the distance between the X-ray tube and the
detector array is large, or the axial width of the detec-
tors is limited, or both, all the projection lines can
be assumed to be parallel to the central plane. In this
case, the problem reduces to the reconstruction of a
series of 2D images. This is the case, for example, if
there are only four adjacent detector rows. For 16-slice
scanners, however, this assumption does not hold any-
more. An approximate solution then consists of tilting
each image plane to minimize its mean z-distance to
the X-ray source positions involved in the reconstruc-
tion of that plane. After 2D reconstruction of the tilted
imageplanes, axial slices are achievedby interpolation.
This technique is called tilted plane reconstruction.

As the number of detector rows increases (64 and
higher), artifacts becomemore visible. Fully 3D recon-
struction methods are then recommended (discussed
below).

Note that with a multi-slice CT scanner, the oper-
ator is able to specify slices thicker than the detector
width. Thicker slices have a higher SNR. They can be
obtained by convolving the measured projection val-
ues along the z-axis with a smoothing filter. This is
called z-filtering. Reconstruction of thick slices using
thinner detector arrays has the advantage that the
nonlinear partial volume effect is reduced (see p. 51).

Volumetric CT
An increased number of detector rows is good for
reduced scan time and cardiac imaging in particular.
An entire volume may even be acquired in one single
orbit of the X-ray tube. However, it also comes with
an increased cone angle. Unfortunately, except for the
central plane, the in-plane data required for 2D recon-
struction are notmeasured and true 3D reconstruction
is required.

In three dimensions, the projection theorem states
that the 3D Fourier transform of a function in the
direction of 	k equals the 1D Fourier transform along
the same direction of the plane integrals perpendicu-
lar to that direction. From this the 3D inverse Radon
transform can be derived. The connection between

does not take the Nyquist criterion for optimal z-resolution into
consideration and yields only an upper bound for the pitch.

cone-beam measurements and planar integrals was
made by Grangeat [8].

The projection theorem provides a mathematical
solution to true 3D reconstruction in cases where
source trajectories are sufficient to provide all Radon
plane integrals andwhere there is no truncation on the
detector. However, axial truncation cannot be avoided
in clinical CT where patients are much larger than the
longitudinal extent of the detector. Furthermore, the
number of scan configurations is limited for practical
reasons. Typically used in clinical routine are circular
and helical scanning.

Circular cone-beam reconstruction
For circular trajectories the source and detector make
a circular orbit around the patient (Figure 3.17). For
this configuration stable exact reconstruction is theo-
retically impossible except for voxels on the midplane.
There is simply not sufficient information in the mea-
surements. So we have to rely on an approximate
reconstruction algorithm. The most famous algo-
rithm is the so-called FDK algorithm proposed in
1984 by Feldkamp et al. [9]. It essentially extends the
2D weighted FBP (Eq. (3.39)) to three dimensions,
that is,

f (x , y , z)

=
∫ 2π

0

1
(U/R)2

∫ +∞
−∞

[
R√

R2 + t ′2 + ζ 2
· p(t ′, ζ ,β)

]

· 1
2

q(t − t ′) dt ′ dβ , (3.40)

where ζ is the height of the tilted fan above the rotation
center of the source and U is the projection of the
source-to-point distance onto the central ray of the
untilted fan (see Figure 3.17).

Because the algorithm offers only an approxi-
mate solution, cone-beam artifacts are unavoidable.
They can become severe for larger cone angles and
challenging phantoms.

[8] P. Grangeat. Mathematical framework of cone beam 3d recon-
struction via the first derivative of the radon transform. In G. T.
Herman, A. K. Louis, and F. Natterer, editors, Mathematical Meth-
ods in Tomography, Number 1497 of Lecture Notes in Mathematics,
pages 66–97, Berlin: Springer–Verlag, 1990.
[9] L. A. Feldkamp, L. C.Davis, and J.W.Kress. Practical cone-beam
algorithm. Journal of the Optical Society of America A, 1(6): 612–619,
1984.
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Figure 3.17 Circular cone-beam geometry.
This is a 3D extension of the 2D fan-beam
geometry shown in Figure 3.14. The source and
detector make a circular orbit around the z-axis.
The tilted fan through point (x , y , z) intersects
the z-axis at height ζ . t is defined as in the 2D
case. U is the projection of the source-to-point
distance onto the central ray of the untilted fan.

Helical cone-beam reconstruction
Unlike for circular scanning, a helical cone-beam
acquisition results in a complete data set, provided
the helical pitch is not too large (≤ 1.3). The first exact
FBP algorithm for helical cone beam was proposed by
Katsevich [10]. Other exact FBP-type algorithms have
also been developed including the derivative back-
projection (DBP) approach. The DBP approach can
provide accurate reconstruction in some cases even in
the presence of axial truncation.

Despite the existence of exact helical cone-beam
reconstruction algorithms, most manufacturers use
approximate algorithms, like FDK based approaches,
because they are preferable in terms of noise, noise
uniformity and other quality characteristics.

Iterative reconstruction
Although widely used in nuclear medicine (PET and
SPECT), iterative reconstruction has only recently
been introduced in commercial CT scanners. There
are several reasons for this. First, the data sets in CT
are much larger than in nuclear medicine and iter-
ative reconstruction then becomes computationally
very intensive. Second, many iterative algorithms have
a statistical basis. Count rates have been much lower
in nuclear medicine, resulting in increased noise. This
explains the stronger need for a statistical approach in
nuclear medicine. However, CT has evolved towards
lower dose and volumetric acquisition. Iterativemeth-
ods can copewithnoisy data, which ismore prominent

[10] A. Katsevich. Analysis of an exact inversion algorithm for spiral
cone-beam ct. Physics in Medicine and Biology, 47: 2583–2597, 2002.

in low-dose CT, and they are directly applicable to
3D reconstruction. Furthermore, the ever-increasing
computer capacity brings iterative reconstruction
within reach. Iterative reconstruction is discussed in
more detail in Chapter 5 on nuclear medicine.

Cardiac CT
The full heart can be imaged in a few seconds by per-
forming a low-pitch helical scan or by combining a
limited number of large-coverage circular scans, also
known as axial scanning. A particular cardiac phase is
reconstructed by collecting its projection data from
subsequent heart cycles, which requires a synchro-
nization with the ECG signal. Dynamic 3D images
(often called 4D images) of the heart can be obtained
by subdividing the cardiac cycle into different phases.

Axial scanning is the most straightforward acqui-
sition mode. Contiguous volume slabs at a selected
phase of the cardiac cycle are scanned and recon-
structed in subsequent heart beats at one slab per
heart beat. This acquisition mode is also known as
the step-and-shoot method. Note that systems that
acquire data of the complete heart in less than a single
rotation (180◦ plus fan-angle) are also commercially
available. For example, a 320-row scanner with a
detector size of 0.5 mm is able to scan a volume of
16 cm. If the X-ray beam coverage is large enough to
measure an entire organ in one rotation, axial scan-
ning eliminates the dose due to helical overscan, and
it also enables dynamic phenomena to be imaged for
one single organ (perfusion, cardiac cine). A draw-
back of circular cone-beam scanning, however, is the
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Figure 3.18 Principle of data acquisition for helical cardiac CT. The oblique lines represent the z-interval of the multidetector array as a
function of time or angular tube position β .

fundamental incompleteness of the data, leading to
cone-beam artifacts.

Figure 3.18 shows the acquisitionprinciple for heli-
cal scanning. A particular phase of the heart cycle is
selected in the ECG signal. To guarantee the recon-
struction of contiguous volume slabs and avoid gaps
in the z-direction, care has to be taken to collect suffi-
cient projection data for each z-value. This can only be
obtained by decreasing the slope of the oblique lines,
which corresponds to a pitch reduction. If the pro-
jection data needed for each particular z-value can be
collected during one heart cycle, the shaded regions
must be contiguous in the z-direction. Using, for
example, a 128-row system with 0.5 mm detectors
(referred to the isocenter) and a 0.33 second rotation
time, a heart rate of 60 bpm requires a reduced pitch
of 0.25, and a coronary angiogram with a scan length
around 20 cm is obtained in about 4 seconds.

To avoid motion artifacts the heart should be
scanned during its short quiescent intervals, say dur-
ing one fourth of the heart cycle. During this time,
projection data spread around 180◦ plus fan-angle
must be collected. For example, a rotation time of
0.33 seconds and a fan-angle of 50◦ results in a scan

time of 0.21 seconds per slab. Hence, one fourth of the
heart cycle should take at least 0.21 seconds.∗ This
corresponds to a maximum heart rate of 71 bpm.
Ultrashort scan algorithms add the fan-angle of only
the cardiac region, i.e., about 30◦. This reduces the
scan time to 0.19 seconds per slab and increases the
maximumheart rate slightly to 78 bpm. A dual-source
CTscanner, with twoX-ray tubes positioned90◦ apart,
relaxes this limitation. For this configuration the half-
scan interval is 90◦ plus 30◦, giving a scan time of only
0.11 seconds per slab and a maximum heart rate of
136 bpm.

The importance of a good selection of the qui-
escent phase is clear knowing that some coronary
arteries can reach speeds well over 40 mm per sec-
ond, so even in the dual source example the motion
blur could rise to 4.4 mm and more without ECG
synchronization. Unfortunately, different parts of the
heart have different optimal phases, and the motion
is never completely zero. Hence, strategies for fur-
ther improving temporal resolution are desired and

∗ Beta-blockers are often used to reduce the heart rate.
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algorithmic motion correction approaches are being
widely researched.

Dual-energy CT
Dual-energy imaging [2] (see also p. (21)) opens the
way to tissue characterization. It requires that two
energy spectra are captured. Different spectra can be
obtained in several different ways.

• A conventional CT scanner can perform two
consecutive rotations at different kV.

• The kV can be quicklymodulated between low and
highkVwhile a single circular or helical acquisition
is performed. This requires a special high-voltage
generator and a very fast detector.

• The dual-source CT scanner has two X-ray tubes
that are positioned 90◦ apart, which can be oper-
ated at different kV.

• A detector with two separate layers of scintilla-
tors acquires two different spectra since the top
layer will absorb most low-energy photons, and
the bottom layer will detect more high-energy
photons.

• Aphoton-counting detector counts the X-ray pho-
tons in different energy bins, by comparing the
signal with certain energy thresholds. This multi-
energy approach also offers the possibility of using
and visualizing substances with K-edge (see p. 23,
K-edge imaging).

The method is similar to that described in
Chapter 2 for dual-energy radiography. It starts from
the knowledge that the attenuation coefficient of an
arbitrary substance can be written as a linear combi-
nation of the attenuation coefficient of two selected
materials (e.g., water and iodine∗) in the absence
of K-edge discontinuities in the used energy range
[Emin, Emax]. Hence

µ(E , x , y) = a1(x , y) · µ1(E)+ a2(x , y) · µ2(E).
(3.41)

[2] R. E. Alvarez and A. Macovski. Energy-selective reconstructions
in x-ray computerized tomography. Physics in Medicine and Biology,
21(5): 733–744, 1976.∗ Iodine has a relatively low K-edge energy of 33.2 keV, which is
too low to play a role in general purpose CT. For dedicated CT
operating at lower kV, such as breast CT or small animal CT, it
cannot be neglected.

Substituting Eq. (3.41) in Eq. (3.4) for a spectrumwith
energy range [Emin, Emax] yields

Iθ (r) =
∫ Emax

Emin

σ(E) e−
∫

Lr ,θ
µ(E ,x ,y) ds dE

=
∫ Emax

Emin

σ(E) e−
∫

Lr ,θ
(a1(x ,y)·µ1(E)+a2(x ,y)·µ2(E)) ds dE ,

(3.42)

where Lr ,θ is the projection line. In dual-energy CT
the unknown tissue-dependent coefficients a1(x , y)

and a2(x , y) can be reconstructed from A1(r , θ) and
A2(r , θ), which are defined as

A1(r , θ) =
∫

Lr ,θ

a1(x , y) ds

A2(r , θ) =
∫

Lr ,θ

a2(x , y) ds. (3.43)

Reconstruction can be performed by, for example,
filtered backprojection. Although A1 and A2 are
unknown, they can be retrieved in a similar way as
in dual-energy radiography: Eq. (3.42) is rewritten as

Iθ (r) =
∫ Emax

Emin

σ(E) e−(A1(r ,θ)·µ1(E)+A2(r ,θ)·µ2(E)) dE .

(3.44)

Two different spectra σLE and σHE yield a system of
two nonlinear equations (see Eq. (2.17)) from which
A1 and A2 can be solved.

Thebasismaterial decompositionprocess described
above is performed in the projection domain, but it
can be done in the image domain as well, i.e., after
the image reconstruction. The coefficients A1(r , θ)
and A2(r , θ) in Eq. (3.44) must simply be replaced
by a1(x , y) and a2(x , y). The main advantage of the
projection domain approach is that it eliminates beam
hardening artifacts. Beam hardening causes a shift in
average energy and corresponding attenuation coeffi-
cient along the X-ray path as it penetrates tissue (see
p. 51).

It is important to notice that dual-energy CT does
not just yield equivalent thicknesses (A1 and A2) of
two basis materials as in dual-energy radiography,
but the tissue-specific coefficients a1(x , y) and a2(x , y)

are obtained for each pixel (Figure 3.19). From these
valuesmonochromatic images at any energy or single-
substance images can be calculated. Applications of
dual-energy CT include:
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Figure 3.19 Using multi-energy imaging each pixel can be
represented as a linear combination of the attenuation coefficient
of two basis materials. In conventional CT, different materials with
the same average attenuation cannot be distinguished. In
dual-energy imaging the material dependence of each tissue is
characterized and therefore true tissue characterization can be
performed. (Courtesy of GE Healthcare.)

• elimination of beam hardening artifacts,
• automatic segmentation, for example automatic

bone removal,
• retrospective generation of (virtual) monochro-

matic images at any possible energy,
• tissue characterization,
• virtual unenhanced images. Dual kV examination

with contrast agent allows an image to be produced
as if there were no contrast agent. This elimi-
nates the need for two scans, i.e., a precontrast
(unenhanced) and a contrast scan.

Two important criteria for dual-energy CT are the
energy separation and the co-registration. The mea-
surements need to occur at very different effective
energies in order to do an effective material decom-
position. If the effective energies are too similar, the
noise will be amplified. In this respect, the dual-layer
solution is the least favorable and the photon-counting

Layered
detector

Fast kVp
switching

Dual-source
CT

Photon-counting
detector

Switch kVp
between rotations

immature

limited FOV
(e.g. no liver)

no helical scanning

0 ms

1 ms

80 ms

300 ms

immunity
to motion

spectral separation

dose efficiency

Figure 3.20 Multi-energy: comparison of different
implementations. Photon-counting detectors have the best
performance. (Courtesy of GE Healthcare.)

approach is the most favorable, but the technol-
ogy is still under development (Figure 3.20). For
dynamic imaging, it is important that two measure-
ments of the same projection line at different energies
occur simultaneously. In this respect, the detector-
based methods and the fast switching method are
the most favorable, while the rotate–rotate method
and the dual-source method simply do not allow
projection-based decomposition for dynamic imaging
(Figure 3.20). Furthermore, the dual-source method
may be limited to a reduced field of view if the second
detector is smaller.

Image quality
Resolution
The spatial resolution in a CT image depends on a
variety of factors.

• The size of the focal spot. The focal spot is the area
on which the electrons hit the anode and where
the X-rays originate. It is usually positioned at a
small angle relative to the imaging plane so that the
thermal length (physical) can be much larger than
the optical length (projected) in order to spread the
heat production over a larger thermal area.

• The size of the detector channels, as well as the
amount of channel-to-channel crosstalk.

• The X-ray beam width is a combination of the
above two factors. For locations closer to the focal
spot, the focal spot size dominates the beamwidth.
For locations closer to the detector, the detector
cell size dominates the beam width.
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• The continuous rotation of the tube–detector
introduces a certain amount of azimuthal blur,
which increases linearly with distance from the
center of rotation. Hence, azimuthal blur can be
significant at the periphery of the field of view.

• The reconstruction kernel or convolution filter,
which can be tuned to enhance high frequencies for
the sharpest images or to suppress high frequencies
for reduction of noise and aliasing.

• The interpolation process inherent to backprojec-
tion. This depends on the available sample density,
which in turn depends on the channel size, the heli-
cal pitch, the detector quarter offset and focal spot
wobble or deflection.

• The voxel size. Normally, the voxel size is chosen
smaller than the spatial resolution of the system, as
defined by the above factors. Only if the voxel size
is chosen larger, for example to save computation
time, does it become the bottleneck and determine
the spatial resolution.

The in-plane spatial resolution in CT is typically
defined as the value at which the MTF reaches a given
percentage of its maximum. Current clinical CT scan-
ners have an in-plane spatial resolution between 5
lp/cm and 15 lp/cm (at 10% MTF), depending on
the reconstruction kernel. The effective slice thickness
(FWHM of the SSP at the center of the field of view)
can be as low as 0.5 mm.

Noise
Three types of noise can be distinguished in CT: quan-
tum noise or statistical noise, electronic noise, and
round-off or quantization noise that results from the
limited dynamic range of the detector. The main con-
tribution is from quantum noise, which is due to the
statistical nature of X-rays. It can be represented as a
Poisson distribution: the variance is equal to the mean
and the probability of measuring n photons when λ

photons are expected is P(n | λ) = (e−λ · λn)/n!. The
amount of noise depends on the following.

• The total exposure. Increasing the mA s increases
the SNR, thus reducing the relative quantum noise
at the expense, however, of patient dose and tube
load.

• The reconstruction algorithm. Both the applied fil-
ters and the interpolation methods influence the
image noise.

Typically, the standard deviation because of noise is
a few HU. In high-contrast applications higher noise
levels (lower dose) can be tolerated.

The reconstruction algorithm transforms mea-
sured signal noise into structured image noise. In
the presence of metal objects, this results in alternat-
ing dark and bright thin streaks radiating from the
metal objects. A phantom simulation illustrates this.
Figure 3.21(a) shows an artifact-free reconstructed
section of a water bowl with an iron rod. Adding Pois-
son noise to the simulated intensities results in streak
artifacts, as shown in Figure 3.21(b).

Contrast
The contrast between an object and its background
depends primarily on the respective attenuation prop-
erties, but also on a variety of physical factors such
as the spectrum of the X-ray tube, the amount of
beam hardening and scatter, and the detection non-
linearity. Because the images are digital, the displayed
contrast is modulated by the gray level transforma-
tion (e.g., window/level) after the image formation.
This makes noise the main limitation on the percep-
tion of low-contrast details. Note that the ability to
detect low-contrast details is much higher in CT than
in radiography. The main reason is that radiography
delivers projection images in which multiple struc-
tures are superimposed into the image, while CT scans
are images of thin body slices.

Image artifacts
Undersampling
As discussed on p. 37, a minimum number of detec-
tor samples and views are required. Taking too few
samples results in the following phenomena.

• If the number of detector samples is too small,
aliasing occurs. In particular, a sharp edge in a
projection will be badly approximated, resulting in
a high-frequency damped oscillation around the
edge. During reconstruction, this error is back-
projected along the line tangent to the edge in
the image. This results in several types of arti-
facts, as illustrated by the phantom simulation in
Figure 3.21(c). Aliasing artifacts can be prevented
by increasing the number of detector samples, by
increasing the beam width (at the expense of spa-
tial resolution), or by giving an offset of r/4 (r
is the sampling distance) to the detectors in order
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Figure 3.21 (a) Artifact-free reconstruction of a simulated water bowl with iron rod. (b) Same slice reconstructed after noise was added to
the simulated sinogram. (c) Aliasing artifacts occur when the number of detector samples is too small. (d) Peripheral streaks occur when the
number of views is too small. (e) Artifact-free reconstruction of a plexiglass plate with three amalgam fillings. (f) Beam hardening artifacts occur
when a polychromatic spectrum is simulated. (g) Same section after the addition of scatter. (h) Strong gradients in the image result in partial
volume artifacts. This effect was artificially eliminated in all the other images. (i) Motion artifacts caused by a short movement of the iron rod.

to obtain two interleaved sets of detector samples
separated by 180◦.

• If the number of views is too small, alternating dark
and bright streaks occur in the peripheral image
region where the sampling density is smallest. This
is illustrated in Figure 3.21(d).

Beam hardening
Low-energy photons are preferentially absorbed.
Therefore, an X-ray beam hardens as it passes through
tissue. The harder a beam, the less it is further
attenuated. All beams passing through a particular
pixel follow different paths and therefore experience a
different degree of beam hardening. Hence, they per-
ceive different attenuation values in that pixel. This
phenomenon causes beam hardening artifacts such
as a reduced attenuation toward the center of an
object (cupping) and streaks that connect objects with
strong attenuation. Figure 3.21(e) shows an artifact-
free section of a phantom that consists of a plexiglass

(polymethyl methacrylate) plate and three amalgam
fillings. Simulating the same section using a polychro-
matic spectrum results in beam hardening artifacts
shown in Figure 3.21(f).

Scatter
Not all photons that arrive at the detector follow a
straight path from theX-ray tube. Typically, up to 30%
of the detected radiation is due to scatter. The contri-
bution of scatter to the measured intensity profile is
very smooth. Because of the scattered photons, the
attenuation of a particular beam is underestimated.
The larger the integrated attenuation along a par-
ticular projection line, the smaller is the theoretical
intensity and thus the larger the relative error resulting
from scatter. Scatter yields streak artifacts, as shown
in Figure 3.21(g).

Nonlinear partial volume effect
Because of the finite beam width, every measurement
represents an intensity averaged over this beamwidth.
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(a) (b)

Figure 3.22 The stairstep artifact is
visible in 3D images as a helical winding
along inclined surfaces. (Courtesy of
Professor M. H. Smet, Department of
Radiology and Professor J. Van
Cleynenbreugel, Lab. Medical Image
Computing.)

Afterwards, this measured intensity is log-converted
to calculate the integrated linear attenuation along the
beam (Eq. (3.5)). However, it can be shown that this
value is always an underestimation of the integrated
averaged attenuation. The larger the attenuation dif-
ferences across the beam width, the larger this under-
estimation. This results in the streaks tangent to edges
shown in Figure 3.21(h).

Motion
A short movement of an object during the acquisition
results in inconsistent measurements and causes two
streaks, that is, a streak that connects the object and
the position of theX-ray tube at themoment the object
moves, and a streak that connects the object and the
X-ray tube at its start–stop position. The simulation
in Figure 3.21(i) shows the streak artifacts that result
from a short movement of the iron rod. More gradual
movement, such as cardiac motion, may also cause
streak artifacts but will result primarily in a blurred
representation of the moving parts.

Stairstep artifact
In helical CT, the representation of a 3D surface
involves longitudinal interpolation in the reconstruc-
tion step as well as in the surface rendering step.
Stairstep artifacts occur when the helical pitch is too
large or when the reconstruction interval is too small.
This artifact is visible in longitudinal reslices as reg-
ular stairstep disruptions along inclined edges and in
3D images as a black or white helical winding along
inclined surfaces, such as the skull (Figure 3.22), dense
ribs and contrast filled coronaries.

Figure 3.23 The windmill artifact, also called the bearclaw artifact,
is visible as a pattern of black and white spokes originating from
positions with a high z-gradient. (Courtesy of GE Healthcare.)

Windmill artifact
The windmill artifact (also called bearclaw artifact)
is a z-aliasing artifact that occurs primarily in helical
cone-beam CT. The helical cone-beam reconstruction
process involves interpolation between detector rows.
The amount of blur introduced by this interpolation
process changes as a function of view angle due to the
helicalmotion. This results in a typical pattern of black
and white spokes originating from a strong z-gradient
(Figure 3.23).
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(b)(a)

Figure 3.24 CT scan of a patient with a
prosthetic hip implant, obtained with a
multi-slice CT scanner. (a) Topogram, that
is, an image of the projections pθ (r) for a
particular angle θ and varying depth z .
This image looks like a radiograph. It is
typically used as an overview image to
define the region for subsequent
scanning. (b) CT image of a slice through
the prosthesis showing streak artifacts
due to the metallic implant. (Courtesy of
Professor G. Marchal, Department of
Radiology.)

Other artifacts
A variety of other artifacts is due to poor calibration
or system failure such as detector failure, noisy cal-
ibration, a change of the detector efficiency between
the calibration and the actual measurement, irregu-
lar table translation, and mechanical instability of the
tube–detector unit.

Figure 3.24 shows a practical example of the metal
streak artifact caused by a hip prosthesis. Metal arti-
facts are due to a combination of beam hardening,
scatter, nonlinear partial volume effect, and noise.

The blooming artifact is a very common artifact
that typically occurs when imaging calcified plaque.
It is caused by a combination of beam hardening and
limited spatial resolution and leads to an overestima-
tion of the plaque size and an underestimation of the
vessel lumen.

A more detailed overview of CT image artifacts is
given in [11].

Equipment
Tomosynthesis
Radiography andCT can be seen as two ends of a spec-
trum: radiography gives one projection image without
depth information; CT uses a thousand projection
images to image an entire volume, voxel by voxel,
i.e., with perfect depth information. Tomosynthesis
can be seen as a compromise between radiography

[11] J. Hsieh. Computed Tomography: Principles, Design, Artifacts,
and Recent Advances. Cambridge: Cambridge University Press, SPIE
Publications, SPIE Monograph, Volume PM114, 2003.

and CT: a low number (typically tens) of projection
images are combined to compute 3D images with
limited depth information. Tomosynthesis recon-
struction techniques include simple backprojection
(also called shift-and-add), which is intrinsically the
principle used in linear tomography (Figure 3.3(a)),
filtered backprojection, and iterative reconstruction.

Figure 3.25 Second generation Digital Breast Tomosynthesis
prototype installed at the University of Michigan for clinical
research. (Courtesy of GE Healthcare.)
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(a) (b)

Figure 3.26 The external design of a
multi-slice scanner is not significantly
different from that of a single-slice
scanner. (a) Philips Brilliance CT
64-channel with 64 detector rows. (b) GE
Lightspeed VCT with 64 detector rows.

In nonmedical applications, tomosynthesis is usually
called laminography. The most prominent medical
applications of tomosynthesis are in chest imaging
and mammography. Tomosynthesis was enabled by
the introduction of digital flat panel detector tech-
nologies; chest tomosynthesis became commercially
available in 2004. The firstDigital Breast Tomosynthe-
sis research prototype was completed in 1999 by GE
Global Research in collaboration with Massachusetts
General Hospital. Figure 3.25 shows a second genera-
tion Digital Breast Tomosynthesis prototype installed
at the University of Michigan for clinical research.

General purpose scanners
General purpose scanners (Figure 3.26) typically con-
tainmultiple detector rows. Because of their large FOV
(≥ 50 cm) and high rotation speed (up to 3 rota-
tions per second) active matrix flat panel detectors
are typically not useful. Although large size flat panel
detectors exist (p. 21), their frame rate is still too low
for most radiological examinations, including cardiac
and dynamic studies.

Multi-slice CT with helical acquisition was intro-
duced in 1998. Initially these scanners contained only
four detector rows, but rapidly this number increased
to 16, 64, 128, 256, and even 320. With a 320-row
scanner and a detector size of 0.5 mm referred to the
isocenter, for example, a total volume of 16 cm is cov-
ered, making this system suitable for operation in the
axial scan mode and for performing a cardiac scan in
one single rotation (0.35 s). Until recently allmanufac-
turers were competing to have the largest number of
detector rows, also referred to as the slice wars. Today,
most manufacturers believe this comes with too many
image quality tradeoffs and prefer to focus on other
performance improvements.

The basic geometry is shown in Figure 3.27(a)
and (b). In front of the X-ray tube is a collimator
(Figure 3.27(a) and (c)), which limits the transmitted
X-rays to the detector and prevents useless irradiation
of the patient. A post-patient collimator or antiscat-
ter grid consisting of many small attenuating plates
between the detector cells (Figure 3.27(a) and (d)) is
used to limit the detected scattered radiation. The cir-
cle inscribed by the tube–detector fan determines the
field of view (FOV). Data and power are transmitted
from and to the rotating tube–detector unit through
slip rings (not shown). The power is transmitted
through a brush slip ring and the data are transmitted
via an RF or optical slip ring. Slip rings eliminate the
mechanical problems that would be implied by cables
connecting fixed and rotating parts. The gantry (this
is the part of the CT scanner that contains the rotating
parts) can be tilted over a limited angle for imaging
oblique slices (Figure 3.28).

Dedicated scanners
Today several special purpose CT scanners exist. They
are typically cheaper and smaller than general pur-
pose systems. They make use of the principle of
circular cone-beam scanning and acquire volumet-
ric data in a single orbit of the X-ray tube. In many
applications the field of view can be limited and/or
the scan time is not critical. This opens the way to
use flat panel digital X-ray detectors (FPDs) yielding
high spatial resolution images. Current commercial
systems acquire the data in seconds to tens of seconds.
Below are some examples.

Oral andmaxillofacial CT
A variety of in-office scanners for the maxillofacial
area are commercially available today. Figure 3.29
shows two of them with an open design. The patient
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Figure 3.27 (a) and (b) The basic
internal geometry of a multi-slice helical
CT scanner. Collimators are placed in
front of the X-ray tube and the detectors.
Because the patient’s body attenuates
primarily the X-rays of the interior part of
the beam, a bow-tie shaped filter
compensates for this by mainly
attenuating the exterior X-rays, this way
ensuring a more uniform signal at the
detectors. (c) X-ray tube with adjustable
collimating split. This particular scanner
has no bow-tie filter. (d) Detector array
with post-patient collimator.

(a) (b)

Figure 3.28 Schematic views of a helical CT scanner showing
gantry tilt and table translation.

sits comfortably on a chair and the tube–detector
frame rotates in a horizontal plane. This technology
has been the onset of new diagnostic and inter-
ventional procedures such as oral implant surgery
planning (see, for example, Figure 8.42 in Chapter 8),
orthodontic treatment planning, and quantitative
analysis of bone and joint morphology and function.

Interventional CT
ModernC-arm systems for interventional fluoroscopy
and angiography with flat panel detector, such as the

3DRA system shown in Figure 2.12, are able to recon-
struct a 3D image from the acquired projection data.
Figure 3.30 shows a mobile scanner dedicated to spine
and orthopedic surgery. The system can be used in
combinationwith an intraoperative navigation system
(Chapter 8, p. 208) to navigate accurately through the
CT images with the surgical instruments. Figure 3.31
shows a portable system dedicated to intraoperative
imaging of sinuses, skull base, and temporal bones.

Breast CT
A few research groups [12] have developed dedicated
breast CT scanners. The patient is typically placed in
the prone position, and the gantry is positioned hor-
izontally underneath the patient (Figure 3.32). The
X-ray tube and flat panel detector system then rotate
around the pendant breast, acquiring the cone-beam

[12] K. K. Lindfors, J. M. Boone, T. R. Nelson, K. Yang, A. L. C.
Kwan, and D. F. Miller. Dedicated breast CT: initial clinical
experience. Radiology, 246(3): 725–733, 2008.
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(a) (b)

Figure 3.29 Cone-beam CT scanners for the oral and maxillofacial area. (a) Iluma CT (Imtec). (Courtesy of Dr. G. Swennen, AZ Sint-Jan,
Brugge.) (b) i-CAT CT (Imaging Sciences International). (Courtesy of Dr. N. Nadjmi, Eeuwfeestkliniek, Antwerpen.)

(a) (b)

Figure 3.30 O-arm imaging system (Medtronic). (a) A mobile gantry enables lateral patient access. (b) Once in place the gantry closes
around the patient into an ‘‘O’’-shaped gantry that can be tilted in any orientation.

projections which allow reconstruction of the 3D vol-
ume data set of the breast. The principal benefit of
this approach is that the 3D data set allows the radi-
ologist to avoid overlapping anatomy, and the hope
is that more breast cancers will be detected using this
3D technique, compared to 2D mammography. One
of the main challenges is to image the complete breast,
and not miss any portion due to the proximity to the
chest wall or into the axillary tail. Even if breast CT is
not found to be useful for breast cancer screening, it

is likely that it will have a role to play as a secondary
imaging device during the diagnostic breast examina-
tion. In this role, it can rule out so-called summation
artifacts and be used for image guided robotic biopsy
guidance.

Electron beam tomography
In electron beam tomography (EBT), sometimes
called ultrafast CT or cardiovascular CT, the X-ray
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Figure 3.31 Portable CT with an open design (xCAT ENT, Xoran
Technologies), dedicated to head and neck imaging (sinuses, skull
base and temporal bones).

tube – formerly a compact unit – has become an inte-
grated part of the system (Figure 3.33). Electrons,
produced by an electron gun, pass through an elec-
tromagnetic focusing coil and are bent electromagnet-
ically onto one of four tungsten target rings lying in
the gantry below the patient. The impact of electrons
on the target rings produces X-rays that are directed
onto a double ring of cadmium tungstate detector ele-
ments located in the gantry above the patient. The
X-rays are tightly collimated before passing through
the patient. Each sweep of a target ring requires 50ms,
and there is an 8 ms delay to reset the beam. This pro-
vides a temporal resolution of 17 frames per second.
Each frame consists of two slices, one for each detector
ring. The images produced by the EBT scanner have a
resolution of 0.25–0.5 mm in the imaging plane. The
axial resolution is 1.5–10.0 mm, depending on the
collimation selected by the operator. These features
make the EBT scanner useful to produce images of the
beating heart. However, at this moment, the number

Figure 3.32 Breast CT prototype by John Boone et al. The patient
is placed in prone position and the X-ray tube and detector rotate
around the pendant breast. (Courtesy of UC Davis Health Systems.)

electron gun

electron beam

target rings

data acquisition
 system

patient table

Figure 3.33 Schematic representation of an electron beam
tomographic scanner. The impact of electrons on the target rings
produces X-rays that are collimated and directed onto the
detectors. (Courtesy of GE Healthcare.)

of installed EBT scanners around the world is rather
limited.

Multiple X-ray tubes
Most commercial clinical scanners are based on the
so-called third generation architecture. A single X-
ray tube and a single detector assembly are positioned
face-to-face and rotated jointly around the patient.
Berninger and Redington presented the idea of repli-
cating the source and detector, as illustrated in
Figure 3.34.
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Figure 3.34 CT architecture with three sources and three
detectors. Berninger and Redington first proposed replicating the
X-ray tube and detector assembly.

The dynamic spatial reconstructor (DSR)
(Figure 3.35(a)) may have been the first real multi-
source prototype. It is a unique experimental 4DX-ray
CT scanner developed at the Mayo Clinic by Richard
Robb et al. [13]. It allows simultaneous scanning of up
to240 cross-sections at amaximumframe rate of 60Hz
(60 volumes per second). TheDSR consists of 14X-ray
tubes and 14 2D detectors (Figure 3.35(b)). The X-ray
tubes are placed on a 160◦ circular arc with very large
diameter and are pulsed sequentially over a period of
11 ms (hence 60 Hz). The detectors are located dia-
metrically opposed to the X-ray tubes. Each detector
consists of an image intensifier and a high-definition
television camera. Because of the large diameter, the
X-rays in different slices can be considered to be paral-
lel, and the 3D reconstruction problem reduces to the
2D reconstruction of a series of 2D slices.

About 25 years later, Siemens developed the first
commercial two-tube scanner, also known as dual-
source CT. The main advantage of this architecture
is its improved temporal resolution. In today’s state-
of-the-art CT scanners, the gantry rotation time is
reduced to about 0.35 s, but it ismechanically challeng-
ing to reduce that time even further, which justifies the

[13] R. A. Robb. The dynamic spatial reconstructor: an x-ray video-
fluoroscopic ct scanner for dynamic volume imaging of moving
organs. IEEE Transactions on Medical Imaging, 1(1): 22–33, July
1982.

renewed interest in multi-source architectures. The
dual-source CT system almost doubles the tempo-
ral resolution. However, the cross-scatter from the
second source into the first detector is reported to
result in a scatter-to-primary ratio as high as 100%
for obese patients, corresponding to a severe dose
penalty. Therefore, more research will be needed on
both hardware (scatter rejection) and software (scatter
correction) methods for dual-source CT.

X-rays tubes with multiple spots
Almost all modern CT architectures are based on one
or more single-spot X-ray tubes possibly with focal
spot wobble.

Another class of X-ray sources has multiple spots
distributed along the longitudinal axis in the z-
direction. It has been shown that the combined
information from themultiple spots in the z-direction
effectively eliminates cone-beam artifacts.

Another example of a distributed X-ray source
with a deflected electron beam is the transmission X-
ray source developed by NovaRay, formerly known as
Cardiac Mariners, and Nexray, Palo Alto, California,
USA, with thousands of focal spots. This area source
was first used to demonstrate the concept of inverse-
geometry CT. In addition to eliminating cone-beam
artifacts, this architecture has the benefit of a small
photon-counting detector and very good absorption
efficiency.

A related architecture is based on discrete electron
emitters, resulting in a 2D array source with tens of
focal spots (see Figure 3.36). This source architecture
is more compact than the above and perhaps more
compatiblewith the concept of a virtual bow-tie, where
the operation of each spot is modulated in real time to
optimize image quality andminimize dose, depending
on the patient anatomy.

In recent decades, advances in detector technolo-
gies defined the so-called “slice wars.” We expect that
in the next decade dramatic advances in distributed
X-ray sources may define a new revolution in CT and
give birth to awide class of newmulti-sourceCT archi-
tectures, including line sources, inverse-geometry CT,
and ultimately a rebirth of stationaryCT,whichmeans
that neither the source nor the detector is in motion
during the data acquisition process.

Clinical use
The main virtue of X-ray computed tomography is its
ability to produce a series of cross-sectional images
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160°

television cameras

X-ray tubes

Figure 3.35 Schematic view of the
dynamic spatial reconstructor (DSR). 14
X-ray tubes are placed on a 160◦ circular
arc and 14 television cameras are located
diametrically opposite to the X-ray tubes.
Image provided courtesy of Richard A.
Robb, Ph.D., Biomedical Imaging
Resource, Mayo Clinic.
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Figure 3.36 An inverse-geometry architecture with tens of spots
combining the benefits of a line source in z , a small
photon-counting detector, and a virtual bow tie. Reproduced with
permission from Bruno De Man and SPIE.

of the human body. As compared with the projection
images in radiography, true 3D images and a better
contrast between different tissues are obtained.

CT is applied to obtain anatomical images of
all parts of the human body. The most common
investigations include the following:
• head and neck (brain, maxillofacial structures,

inner ear, soft tissues of the neck (Figure 3.37)),
• thorax (lungs, chest wall and mediastinum, heart

and great vessels (Figure 3.38)),
• urogenital tract (kidneys, adrenals, urinary blad-

der, prostate, female genital organs, retroperi-
toneal cavity (Figure 3.39)),

• abdomen (gastrointestinal tract, liver, pancreas,
peritoneal cavity, spleen (Figure 3.40)),

• musculoskeleton system (bone fractures, cal-
cium studies, soft tissue tumors, muscle tissue
(Figure 3.41)).

Because CT is based on X-ray attenuation, the same
contrast agents as in radiographic imaging can be
used. However, CT is more sensitive to small intensity
differences than radiographic projection images and,
consequently, contrast agents in small concentrations
can also benoticedoutside the bloodvessels or cavities.
This way anatomical differences from an increased
or decreased vascularization or diffusion volume and
functional diffusion of perfusion differences can be
visualized. Figure 3.42 shows an example in which
the contrast dye is used to identify tumoral brain tis-
sue and to visualize the cerebral blood vessels. More
details about perfusion and diffusion images are given
in Chapters 4 and 5.

Biologic effects and safety
Radiation doses are relatively high inCT. For example,
the effective dose of a CT of the head is 1–2mSv and of
the chest, abdomen or pelvis on the order of 5–8 mSv
each. A low-dose lungCT is responsible for an effective
dose of 1.5–2 mSv and a whole-body screening for
7 mSv or more. This is on the order of 10 to 100 times
higher than a radiographic image of the same region.

The possible harm is too high to be neglected, and
the patient dosemust be kept as lowas possible. Taking
the required image quality into account, this can be
done by a correct use of the equipment and by keeping
the equipment in optimal condition. The dose can be
limited by a low integrated tube current (mA s) and
a limited scan range. Some scanners apply a modu-
lated tube current to reduce the dose. They use a larger
tube current in viewswith higher attenuation. Optimal
condition of the equipment requires a daily calibration
of the CT scanner by performing a number of blank
scans (i.e., scanswith only air inside the gantry). Image
quality and constancy must be checked by phantom
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Figure 3.37 Subsequent CT slices through the brain show a subdural hemorrhage as a hyperdense region along the inner skull wall (short
arrows). This blood collection causes an increased pressure on the brain structures with an important displacement of the midsagittal line
(long arrows). (Courtesy of Professor G. Wilms, Department of Radiology.)

(a) (b) (c)

Figure 3.38 CT of the chest. (a) Mediastinal and (b) lung window/level settings, and (c) coronal resliced image. The images show a congenital
malformation of the lung located in the left lower lobe. Notice the two components of the lesion: a dense multilobular opacity (arrow)
surrounded by an area of decreased lung attenuation (arrow heads). (Courtesy of Professor J. Verschakelen, Department of Radiology.)

(a) (b)

Figure 3.39 (a) Axial CT slice through
the kidney showing a perirenal
liposarcoma in the nephrographic phase
after intravenous injection of contrast
medium. (b) Reformatted coronal CT slice
at the level of the aorta of the same
patient. (Courtesy of Professor R. Oyen,
Department of Radiology.)

measurements. Maintenance and safety inspections
must occur several times a year.

A useful indicator of the absorbed dose before
starting an examination with a specific scanning pro-
tocol is the CT dose index (CTDI). It is defined as the

dose absorbed by a standard cylindric acrylic phantom
for one 360◦ rotation of the X-ray tube

CTDI = 1
n z

∫ ∞
−∞

D(z) dz . (3.45)60
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(a) (b)

Figure 3.40 (a) A CT slice through the
colon shows a polyp (arrow). (b) A virtual
colonoscopy program creates a depth
view of the colon with polyp (arrow) and
allows the clinician to navigate
automatically along the inner wall.
(Courtesy of Dr. M. Thomeer,
Department of Radiology, and G. Kiss,
Lab. Medical Image Computing.) 3D
visualization is discussed further in
Chapter 8.

(a) (b)

Figure 3.41 (a) On a sagittal reformatted
CT image, an anteroposterior course of an
acetabular fracture is visible. (b) A 3D view
on the acetabular surface more clearly
localizes the transtectal course of the
fracture extending into the posterior
column. (Courtesy of Professor M. H.
Smet, Department of Radiology, and
Professor J. Van Cleynenbreugel, Lab.
Medical Image Computing.)

D(z) is the radiation dose profile along the z-axis, n
the number of detector rows and n z the total detec-
tor width. Two different standard phantoms exist,
i.e., a head phantom with a diameter of 16 cm and
a body phantom with a diameter of 32 cm. By using a
large integration interval the scattered radiation out-
side the scanned slab is taken into account as well.
Hence, the CTDI value also reflects the absorbed
dose obtained by circular scanning a series of adjacent
slices.

For practical reasons the measurement along the
z-axis is typically limited to 100mm, yielding the stan-
dardized CTDI100 value. It is assumed that the scatter
is negligible beyond this integration interval. This is a
valuable assumption for older systems. For cone-beam
CT, however, an integration interval of 100 mm is not
sufficient.

The CTDI varies across the image plane and is
higher at the periphery than in the center of the
FOV. Therefore a weighted CT dose index CTDIw was

introduced

CTDIw = 1
3
CTDIc + 2

3
CTDIp, (3.46)

where CTDIc and CTDIp are the CTDI values in the
center and at the periphery respectively. The relative
areas of the center and the periphery are approximated
by one third and two thirds.

The CTDI value was originally defined for circu-
lar scan protocols. For helical scanning, however, the
pitch influences the absorbeddose and should be taken
into account. The volume CT dose index CTDIvol was
introduced as the weighted CTDI divided by the pitch

CTDIvol = CTDIw
pitch

. (3.47)

Note that in practice the CTDIvol value does not nec-
essarily change with the pitch because the mA s per
rotation is often increased proportional to the pitch to 61
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(a) (b)

(c) (d)

Figure 3.42 CT images through the brain used for neurosurgical planning. (a) CT slice immediately after contrast injection. The arrows show
brain lesions surrounded by oedema. The nine bright spots around the patient are markers used for surgical planning. (More details are
presented in Chapter 8.) (b) Late postcontrast image. After 10 minutes the tumoral lesions have absorbed the contrast and light up in the
image. (c) By subtracting the CT images before and immediately after contrast injection, the cerebral blood vessels are visualized. In this
image, the whole vessel tree is shown by a maximum intensity projection (MIP), explained in Chapter 4, p. 87. (d) All these images are used
subsequently to calculate a safe trajectory (long arrow) through the blood vessels and toward one of the lesions in order to take a biopsy of
the tumoral tissue. (Courtesy of Professor B. Nuttin, Department of Neurosurgery.)

maintain the CNR. A few examples of CTDIvol values
are given in Table 3.1.

The CTDIvol is an indication of the absorbed dose,
expressed in Gy, i.e., J/kg. This value is independent of
the scan length. Therefore, dose-length product (DLP)

is often used. It multiplies the CTDIvol with the scan
length L

DLP = CTDIvol · L. (3.48)62
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Table 3.1 Examples of the tube charge (C), volume CT dose index (CTDIvol), scan length (L), dose-length product
(DLP), normalized effective dose per DLP (k) for adults (from different literature sources), and effective dose (E); the
exams were chosen arbitrarily during clinical routine on a 64-slice CT scanner

Exam C
(mAs/rotation)

CTDIvol
(mGy)

L
(cm)

DLP
(mGy cm)

k
(mSv/mGy cm)

E
(mSv)

Head 380 55.75 10.8 602 0.0021–0.0023 1.26–1.38

Neck 185 14.20 25.8 367 0.0054–0.0059 1.98–2.17

222 17.00 28.8 490 0.0054–0.0059 2.65–2.89

Chest 135 10.36 35.6 369 0.014–0.019 5.17–7.01

140 10.69 29.2 312 0.014–0.019 4.37–5.93

Abdomen 150 11.57 30.3 350 0.015–0.017 5.25–5.95

175 13.49 25.6 345 0.015–0.017 5.18–5.87

Pelvis 164 19.60 26.6 522 0.015–0.019 7.83–9.92

Table 3.1 gives some examples of DLP values.
Although the DLP is a better indication of the bio-
logical sensitivity for a particular examination than
the CTDIvol, it does not distinguish between different
organs. To determine the effective dose, the individual
organ doses should be multiplied with their corre-
sponding radiation weighting factors. In the literature
average regional conversion factors k exist that relate
DLP to effective dose. Table 3.1 shows examples of
such conversion factors for an adult. An estimated
effective dose E can then be calculated as

E = k · DLP. (3.49)

Note that these values are valid for standard phan-
toms but they do not distinguish between individual
patients.

Future expectations
CT will remain an important modality for the visu-
alization of the skeleton, calcifications, the lungs and
the gastrointestinal tract. To a certain extent, CT will

also be the only alternative for patients with implants
(e.g., intracranial aneurysm clip, pacemaker, cochlear
stimulator) who are not allowed to enter the MR
room (p. 103). An increased use can be expected for
screening (heart, chest, colon), perfusion imaging and
vascular and cardiac imaging.

Until recently allmanufacturerswere competing to
have the largest number of detector rows, also referred
to as the slice wars. Today the different vendors
have slightly different priorities and pursue different
solutions.

From a technical viewpoint the tendency is toward
dose reduction, increased volume coverage, higher
contrast-to-noise ratio and improved spatial and tem-
poral resolution. Progress in multi-source technolo-
gies may lead to dramatic changes in CT architec-
tures. Newdevelopments inmulti-energy imagingwill
enhance tissue characterization, automatic segmen-
tation, monochromatic imaging and improved beam
hardening correction (e.g., blooming). Ultimately
photon counting at higher count rates and with high-
energy resolution will be exploited for multi-energy
CT with optimal dose efficiency.
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4Magnetic resonance imaging

Introduction
Magnetic resonance imaging (MRI) is a relatively
recent medical imaging modality. Although the phys-
ical phenomenon of nuclear magnetic resonance
(NMR) has been known since the early 1940s [14, 15],
its practical application to the field of medical imag-
ing was only realized in 1973 when Paul C. Lauterbur
made the first NMR image [16] by introducing gra-
dients in the magnetic field. In 1974 Peter Mansfield
presented the mathematical theory for fast scanning
and image reconstruction, needed in clinical practice,
and showed how extremely rapid imaging could be
obtained by very fast gradient variations. Lauterbur
and Mansfield shared the Nobel Prize in Medicine or
Physiology in 2003.

Adifficulty is thatNMRcannot totally be explained
using “classical” physics (i.e., the physical theories
based on the laws of Newton and Maxwell). In 1905,
Einstein demonstrated in his special theory of relativ-
ity that Newton’s laws are only approximately valid.
Later in the twentieth century the theory of quantum
mechanicswas developed to explain physical phenom-
ena on the atomic and subatomic scale. A concise
description of the basis of NMR, the property of spin
angular momentum, needs the theory of quantum
electrodynamics, which combines the special theory
of relativity and quantum mechanics. This theory is
beyond the scope of this text. A simplified discussion
of NMR based on classical and quantum mechanics
suffices to explain the principles of MRI.

Physics of the transmitted signal
In essence, MRI measures a magnetic property of tis-
sue. The following section describes the behavior of a

[14] F. Bloch. Nuclear induction. Physical Review, 70(7–8): 460–473,
1946.
[15] F. Bloch, W. Hansen, and M. Packard. The nuclear induction
experiment. Physical Review, 70(7–8): 474–485, 1946.
[16] P. Lauterbur. Image formation by induced local interactions:
examples employing nuclearmagnetic resonance. Nature, 242: 190–
191, 1973.

single particle with angular momentum and magnetic
moment in an external magnetic field. This problem is
studied from the viewpoints of classical and quantum
mechanics. The next section (p. 67) discusses what
happens when matter (such as human tissue), which
contains a huge quantity of particles, is placed in an
external magnetic field.

Angular momenta and magnetic moments
A qualitative description
In classical mechanics, angular momentum is
employed when discussing the rotation of an object
about an axis. For example, as shown in Figure 4.1, in
celestial mechanics, the description of the motion of
the Earth involves two angular momenta: one corre-
sponding to the rotation of the Earth about the Sun,
and a second corresponding to its rotation about its
own axis (spinning). When at the end of the nine-
teenth century it became clear that the atom has an
inner structure, physicists used mechanical models
to explain the atomic phenomena. Hence, in Ruther-
ford’smodel of the atom, an orbital angular momentum
is assigned to the orbital motion of the electron about
the nucleus. Furthermore, because the electron is a
charged particle, its orbital motion implies the exis-
tence of a current loop and thus a magnetic moment.

orbital

spin

Figure 4.1 In celestial mechanics, a spin and an orbital angular
momentum are associated with the Earth’s motion about the Sun.
In the classical theory, electron and nucleus replace Earth and Sun,
respectively. Because the electron is a charged particle, it also has a
magnetic moment. Unfortunately, the classical model is incorrect:
spin of elementary particles has no classical analog.
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Table 4.1 Spin values of several nuclei of biomedical
interest.
A given nucleus is characterized by a unique spin value
(the values are explained on p. 66). Note that the
biomedically important nuclei 126 C and 16

8 O have no
spin and thus no NMR sensitivity [18].

Nucleus Spin γ
2π

(MHz/T)
1
1H

1
2 42.57

2
1H 1 6.54
12
6 C 0
13
6 C

1
2 10.71

14
7 N 1 3.08
15
7 N

1
2 −4.31

16
8 O 0
17
8 O

5
2 −5.77

31
15P

1
2 17.23

33
16S

3
2 3.27

43
21Ca

7
2 −2.86

However, to explain certain experimental facts
observed in atomic spectra, Uhlenbeck and Goudsmit
postulated in 1925 that the electron must also have
a spin angular momentum (or spin for short) with an
associatedmagnetic moment. However, attempting to
give the electron a spatial extension, as in Figure 4.1,
and associating this spin with rotation about its own
axis, is incorrect. The spin has no classical analog; its
origin can only be explained correctly by combining
special relativity theorywith quantummechanics [17].

The electron is not theonly elementaryparticle that
has spin. The proton and the neutron also possess this
property. Consequently, the spin of an atomic nucleus
is the vector sum of the spins of its constituent pro-
tons and neutrons. The value of the spin thus depends
on both the mass number and the atomic number
[18]. Because an atomic nucleus is a distribution of
charge, a net spin angular momentum is associated
with a magnetic moment. Table 4.1 lists the spin val-
ues of a number of biomedically important isotopes
and shows that the property of spin is more the rule
than the exception in nature.

Classical description
NMR studies the behavior of atomic nuclei with spin
angular momentum and associatedmagnetic moment

[17] P. Dirac. The Principles of Quantum Mechanics. Oxford:
Clarendon Press, fourth edition, 1958.
[18]P. Morris. Nuclear Magnetic Resonance Imaging in Medicine and
Biology. Oxford: Oxford University Press, first edition, 1986.
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Figure 4.2 If a
particle with angular
momentum �J and
magnetic moment �µ is
suspended without
friction in an external
magnetic field �B, a
precession about �B
occurs. The angular
frequency ω0 of this
precession is
proportional to B 0. For
positive γ , the
precession is clockwise.

in an externalmagnetic field. Throughout this text, the
direction of the external magnetic field �B is defined as
the z-axis of the coordinate system: �B = (0, 0,B 0).

Let �J be a spin angular momentum and �µ its asso-
ciated magnetic moment. The vectors �J and �µ have
the same orientation and their relationship can be
written as

�µ = γ �J , (4.1)

where γ is the gyromagnetic ratio, which is a constant
for a particular nucleus (see Table 4.1). The interaction
between �B and �µ yields a precession motion and a
potential energy (Figure 4.2).

Motion equation
In classical mechanics, �J satisfies

d �J
dt
= �τ , (4.2)

where �τ is the net external torque acting on the system
being studied. In this case,

�τ = �µ× �B, (4.3)

which, combined with Eqs. (4.2) and (4.1), yields

d �µ
dt
= �µ× γ �B. (4.4)

The solution of this equation is

µx(t ) = µx(0) cos(ω0t )+ µy (0) sin(ω0t )

µy (t ) = −µx(0) sin(ω0t )+ µy (0) cos(ω0t ) (4.5)

µz (t ) = µz (0),
65
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with

ω0 = γ B 0. (4.6)

The constants µx(0), µy (0), and µz (0) are the values
of the components at t = 0. Let µxy (t ) = µx(t ) +
iµy (t ) and µxy (0) = µx(0) + iµy (0). The transverse
component can then be written as

µxy (t ) = µxy (0)e−iω0t . (4.7)

Equations (4.5) and (4.7) show that the transverse
component of �µ rotates about the z-axis with angu-
lar frequencyω0 and the longitudinal or z-component
is time independent. Hence, the motion of �µ is a pre-
cession about the z-axis with precession frequency ω0.
For positive γ , the rotation is clockwise.

We can further simplify the description by intro-
ducing a reference frame with coordinate axes x ′, y ′, z ′
that rotates clockwise about the z ′ = z-axis with angu-
lar frequency ω0. In this rotating frame, �µ stands still.
Assuming that the stationary and rotating coordinate
frames coincide at t = 0, Eq. (4.5) becomes

µx ′(t ) = µx(0)

µy ′(t ) = µy (0) (4.8)

µz ′(t ) = µz (0).

Therefore, in the rotating frame the effectivemagnetic
field perceived by �µ is zero. In the remainder of the text
the physical phenomena are described in this rotating
reference frame unless explicitly stated otherwise.

Energy
The potential energy E is

E = −�µ · �B = −µB 0 cos θ = −γ JB 0 cos θ . (4.9)

E is minimal if �µ and �B are parallel. In the classical
theory, J and θ can have any value, so Eq. (4.9) implies
that there are no restrictions on the allowed energy
values. Consequently, the atomic axis can have any
spatial orientation, and Jz can have any value in the
interval [−J ,+J ].

Unfortunately, the classical description is wrong.
In 1921, Stern andGerlachperformeda series of exper-
iments with silver atoms that demonstrated that Jz

can only have a limited number of values and the
atomic axis can apparently have only a finite number
of directions. For silver atoms, only two values are pos-
sible. This phenomenon was called space quantization.

The correct description of the events on the atomic
and subatomic scale requires the use of quantum
mechanics.

Quantummechanical description
Motion equation
Quantummechanics shows that the expectation values
of the components of themagnetization vector behave
as a classical magnetic moment, that is, they satisfy
Eq. (4.6) and Figure 4.2.

Energy
One of the major differences between classical and
quantummechanics is quantization (i.e., the outcome
of a measurement of a physical variable is a multiple
of a basic amount (quantum)). When measuring the
energy, the quantum theory predicts that the possible
energy values are restricted to

E = −m γ h̄B 0, with m = −j ,−j + 1, . . . , j − 1, j .
(4.10)

By definition h̄ = h/2π , with h the Planck constant.
The energy quantum is γ h̄B 0. The constant j is the
spin quantum number. Depending on the number of
protons and neutrons in the nucleus, its value can be
0, 1/2, 1, 3/2, . . . (seeTable 4.1). For particleswith spin
j = 1/2, such as the proton (nucleus of 11H), there are
two possible energy values:

E↑ = −1
2
γ h̄B 0

E↓ = +1
2
γ h̄B 0.

(4.11)

This phenomenon of quantized energy states in the
presence of an external magnetic field is known as the
Zeeman effect (Figure 4.3). The two states are called
“spin up” (↑) and “spin down” (↓), respectively.

The “spin up” state has the lowest energy and will
preferentially be occupied, but quantum mechanics
prohibits all spins from being in this state. A proton
in the state E↑ can switch to the state E↓ by absorbing
a photon with energy equal to

E↓ − E↑ = h̄γB 0. (4.12)

For a photon with energy E = h̄ωRF, the reso-
nance condition is described by the Larmor (angular)
frequency :

ωRF = γB 0. (4.13)66
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Figure 4.3 The Zeeman effect for particles with spin j = 1/2. In
the presence of a time-independent external magnetic field �B of
magnitude B 0, the particle can occupy two different energy states,
“spin up” (↑) and “spin down” (↓). The energy difference between
the two states is proportional to B 0.

Comparing Eq. (4.13) with Eq. (4.6) shows that
the Larmor angular frequency is exactly the angular
frequency of the precessing magnetic moment, that is,

ωRF = ω0. (4.14)

If B 0 = 1 tesla (T), the Larmor frequency is approxi-
mately 42.6MHz forhydrogen (11H). IfB 0 = 1.5T, this
value becomes approximately 63.85 MHz. The Lar-
mor frequency of this and some other elements can
be found in Table 4.1. Electromagnetic waves in this
frequency range are called radio-frequency (RF)waves
or radio waves for short.

Because hydrogen is abundantly available in the
human body, MRI focuses on the visualization of
hydrogen-containing tissues (muscles, brain, kidney,
CSF, edema, fat, bone marrow, etc.). Other elements
are also used for imaging, such as 13C, 19F and 23Na,
but not commonly in clinical practice and only for spe-
cific applications. Most of these isotopes are present in
the body in low concentrations and they are used pri-
marily to label metabolites or pharmaceuticals that are
administered to the patient. Hence, the remainder of
this chapter deals with the visualization of hydrogen
(11H), also referred to as protons.

Note that the Larmor frequency slightly depends
on the molecular structure the protons 1

1H belong to.

Fat molecules are large and surrounded by many elec-
trons, which reduce the effective external field. This
way the Larmor frequency of fat is roughly 150 Hz
lower at 1 T (220 Hz at 1.5 T) than that of water. This
difference normalized to the Larmor frequency of a
reference element ((CH3)4Si), expressed in parts per
million (ppm), is called the chemical shift. Hence, the
chemical shift between fat and water is about 3.5 ppm.

Dynamic equilibrium: the net
magnetization vector of matter
In imaging, each volume element (voxel) is still large
enough to contain a huge amount of protons, each
proton having its own spin with its associated mag-
netic moment. In each voxel, a dynamic equilibrium
exists in which the spins are distributed over the two
possible energy levels. Referring to Figure 4.2, in the
spin-up state the magnetic moments point upwards,
that is, µz (t ) > 0, whereas in the spin-down state, the
magnetic moments point downward (i.e., µz (t ) < 0).

The correct description of this dynamic equilib-
rium must in principle be obtained from statistical
quantummechanics. Fortunately, it can be shown that
the expected behavior of a large number of spins is
equivalent to the classical behavior of a net magneti-
zation vector representing the sum of all individual
magnetic moments [14, 19]. In dynamic equilib-
rium, each voxel has a net macroscopic magnetization
vector �M 0:

�M 0 =
ns∑

i=1
�µi , (4.15)

where ns is the number of spins in the voxel. Because
the spin-up state has the lowest energy, more spins
occupy this energy level, yielding a net polarization in
the direction of the external magnetic field. Hence, the
z-component of the net magnetization vector and the
external field point in the same direction. The larger
the external magnetic field, the larger the net magne-
tization vector (see Eq. (4.102) below) and the signal
will be.∗ A statistical distribution of a large number of

[19] C. Cohen-Tannoudji, B. Diu, and F. Laloë. Quantum Mechanics.
New York: John Wiley & Sons, first edition, 1977.∗ Instead of placing spins in a strong external magnetic field to
obtain a sufficient polarization, they can also be premagnetized
(hyperpolarized) to produce a high signal, even in a small magnetic
field. In MRI this principle is applied to the gases 129Xe and 3He,
which can be used for perfusion and ventilation studies respectively.
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spins has transverse components in all possible direc-
tions of the xy-plane. On average, the sum of all these
components is zero and, consequently, the net mag-
netization vector has no xy-component in dynamic
equilibrium:

�M 0 = (0, 0,M 0). (4.16)

Because all spin vectors possess an angular momen-
tum, it can further be shown that the net macroscopic
magnetization precesses about the axis of the external
magnetic field and �M 0 satisfies Eq. (4.4):

d �M 0
dt
= �M 0 × γ �B. (4.17)

Figure 4.2 still holds but now for the special case θ = 0.
As in the classical description of single spin behavior,
�M 0 stands still in a reference frame rotating at the
Larmor angular frequency.

Interaction with tissue
The net magnetization �M 0 in a voxel is proportional
to the number of spins in that voxel. Unfortunately,
direct measurement of the magnitude M 0 is impossi-
ble for technical reasons. Only the transverse compo-
nent of the magnetization can be measured. This can
be obtained by disturbing the equilibrium.

Disturbing the dynamic equilibrium:
the RF field
The dynamic equilibrium is disturbed via transmis-
sion of photons with the appropriate energy, as
prescribed by the Larmor equation (Eq. (4.13)). In
the case of a magnetic field of 1 T, this can be real-
ized with an electromagnetic wave at a frequency of
42.57 MHz (see Table 4.1). This is an RF wave. The
photons are absorbed by the tissue, and the occupancy
of the energy levels changes. The result of this distur-
bance is that the net magnetization vector has both a
longitudinal and a transverse component.

The electromagnetic RFwave is generated by send-
ing alternating currents in two coils positioned along
the x- and y-axes of the coordinate system. This con-
figuration is known in electronics as a quadrature
transmitter. The magnetic component of the electro-
magnetic wave is �B1; in the stationary reference frame,
it can be written as

�B1(t ) = B1(cos(ω0t ),− sin(ω0t ), 0). (4.18)

The longitudinal component of �B1(t ) is zero and the
transverse component can be written as

B1xy (t ) = B1 cos(ω0t )− iB1 sin(ω0t )

= B1 e−iω0t . (4.19)

The net magnetization vector in nonequilibrium
conditions is further denoted by �M . With �M 0 replaced
by �M and �B by �B + �B1(t ), Eq. (4.17) becomes

d �M
dt
= �M × γ ( �B + �B1(t )). (4.20)

To solve this equation, that is, to find themotion of �M ,
we resort directly to the rotating reference frame with
angular frequency ω0. The effective field perceived by
�M is the stationaryfield �B1. Consequently, �M precesses
about �B1 with precession frequency

ω1 = γ B1. (4.21)

At t = 0 the effective magnetic field lies along the
x ′-axis, and it rotates �M away from the z-axis to the
y ′-axis (Figure 4.4(a)).

The angle between the z-axis and �M is called the
flip angle α:

α =
∫ t

0
γ B1 dτ = γ B1t = ω1t . (4.22)

By an appropriate choice of B1 and t , any flip angle
can be obtained. The trade-off between these two is
important. If the up-time of the RF field is halved, B1
has to double in order to obtain the same flip angle.
Doubling B1 implies a quadrupling of the delivered
power, which is proportional to the square of B1. Via
the electric component of the RF wave, a significant
amount of the delivered power is transformed to heat,
and an important increase in tissue temperature may
occur.

In practical imaging, there are two important flip
angles.
• The 90◦ pulse This RF pulse brings �M along the

y ′-axis (Figure 4.4(b)):

�M = (0,M 0, 0). (4.23)

There is no longitudinal magnetization. When RF
transmission is stopped after a 90◦ pulse, �M rotates
clockwise in the transverse plane in the stationary
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Figure 4.4 (a) �M precesses about �B1 and is rotated away from the z-axis to the y′-axis. The angle α between the z-axis and �M is called the flip
angle. (b) α = 90◦ , which is obtained by a 90◦ RF-pulse. (c) α = 180◦ , which is obtained by a 180◦ RF-pulse, also called an inversion pulse.

reference frame, whereas in the rotating reference
frame, it stands still.

• The 180◦ or inversion pulse This RF pulse rotates
�M to the negative z-axis (Figure 4.4(c)):

�M = (0, 0,−M 0). (4.24)

Due to theRFpulse all the individual spins rotate in
phase. This phase coherence explains why in nonequi-
librium conditions the net magnetization vector can
have a transverse component. When the RF field is
switched off, the system returns to its dynamic equi-
librium. The transverse component returns to zero,
and the longitudinal component becomes M 0 again.
This return to equilibrium is called relaxation.

Return to dynamic equilibrium: relaxation
Spin–spin relaxation
Spin–spin relaxation is the phenomenon that causes
the disappearance of the transverse component of the
net magnetization vector. Physically, each spin vector
experiences a slightly different magnetic field because
of the different chemical environment (protons can
belong to H2O,−OH,−CH3,…). As a result of these
so-called spin–spin interactions, the spins rotate at
slightly differing angular frequencies (Figure 4.5),
which results in a loss of the phase coherence (dephas-
ing) and a decrease of the transverse component
Mtr(t ). The dephasing process can be described

by a first-order model. The time constant of the
exponential decay is called the spin–spin relaxation
time T2:

Mtr(t ) = M 0 sin α e−t/T2 . (4.25)

M 0 sin α is the value of the transverse component
immediately after the RF pulse.

T2 depends considerably on the tissue. For exam-
ple, for fat,T2 ≈ 100ms; for cerebrospinal fluid (CSF),
T2 ≈ 2000 ms (Figure 4.6(a)). Molecules are continu-
ously in motion and change their motion rapidly. For
free protons in fluids, such as CSF, the experienced
magnetic field differences are averaged out, yielding
little dephasing and longT2 values. For protons bound
to large molecules, on the other hand, the magnetic
field inhomogeneity is relatively stable, which explains
the short T2 relaxation time. Spin–spin relaxation can
be considered as an entropy phenomenon and is irre-
versible. The disorder of the system increases, but
there is no change in the energy because the occupancy
of the two energy levels does not change.

Spin–lattice relaxation
Spin–lattice relaxation is the phenomenon that causes
the longitudinal component of the net magnetization
vector to increase from M 0 cosα (i.e., the value of
the longitudinal component immediately after the RF
pulse) toM 0. Physically, this is the result of the interac-
tions of the spins with the lattice (i.e., the surrounding
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t = 0

(a) (b) (c)

t = T2 t = ∞

Figure 4.5 Dephasing of the transverse
component of the net magnetization vector
with time. (a) At t = 0, all spins are in phase
(phase coherence). (b) At t = T2, dephasing
results in a decrease of the transverse
component to 37‰ of its initial value. (c)
Ultimately, the spins are isotropically
distributed and no net magnetization is left.
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Figure 4.6 The spin–spin relaxation process for CSF and fat (for α = 90 ◦). At t = T2, the transverse magnetization has decreased to 37‰ of
its value at t = 0. At t = 5T2, only 0.67‰ of the initial value remains. (b) The spin–lattice relaxation process for water and fat at 1.5 T. At t = T1,
the longitudinal magnetization has reached 63‰ of its equilibrium value. At t = 5T1, it has reached 99.3‰.

macromolecules). The spin–lattice relaxation is an
energy phenomenon. The energy transferred to the
lattice causes an increase of the lattice molecule vibra-
tions, which are transformed into heat (which is much
smaller than the heat coming from the RF absorp-
tion). The spins then return to their preferred lower
energy state, and the longitudinal component of the
net magnetization grows toward its equilibrium value.
Again, the process can be described by a first-order
model with spin–lattice relaxation time T1:

Ml(t ) = M 0 cosα e−t/T1 +M 0
(
1− e−t/T1

)
. (4.26)

Like T2, T1 is a property that depends considerably on
the tissue type. For example, for fat, T1 ≈ 200 ms;
for CSF, T1 ≈ 3000 ms at 1.5 T. (Figure 4.6(b)). Note
that T1 depends on the value of the external magnetic
field: the higher the field, the higher T1. Furthermore,
for each tissue type T1 is always larger than T2.
Inversion recovery (IR)
Figure 4.7 shows the T1 relaxation for a flip angle
α = 180 ◦ (inversion pulse). After about 70% of T1,
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Figure 4.7 Spin–lattice relaxation for water and fat after an
inversion pulse (180◦). Negative values are inverted because the
magnitude is typically used. After about 70‰ of T1, called the
inversion time (TI), the longitudinal magnetization is nulled.
Consequently, for fat (T1 ≈ 200 ms at 1.5 T) TI≈ 140 ms and for CSF
(T1 ≈ 3000 ms at 1.5 T) TI≈ 2100 ms.

called the inversion time (TI), the longitudinal mag-
netization is nulled. Because TI depends on T1 the
signal of a particular tissue type can be suppressed by
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Figure 4.8 Schematic overview of an NMR
experiment. The RF pulse creates a net
transverse magnetization due to energy
absorption and phase coherence. After the
RF pulse, two distinct relaxation phenomena
ensure that the dynamic (thermal)
equilibrium is reached again.

a proper choice of TI. Basic acquisition schemes for
imaging (see p. 77) that are preceded by an inversion
pulse and inversion time (180◦–TI) are called inversion
recovery (IR) pulse sequences. Suppression of fatty tis-
sue yields so-called STIR images (short TI inversion
recovery). Fluid suppression, such as CSF, requires a
FLAIR sequence (fluid attenuated inversion recovery),
which is characterized by a long TI.

Signal detection and detector
Figure 4.8 illustrates schematically the relaxation phe-
nomena for an excitation with a 90◦ pulse. The
transverse component of the net magnetization vector
in each voxel rotates clockwise at the precession fre-
quency in the stationary reference frame and induces
an alternating current in an antenna (coil) placed
around the sample in the xy-plane. To increase the
SNR, a quadrature detector (i.e., two coils in quadra-
ture) is used in practice. As illustrated in Figure 4.9,
the coils detect signals sx(t ) and sy (t ), respectively:

sx(t ) = M0 e−t/T2 cos(−ω0t )
(4.27)

sy (t ) = M0 e−t/T2 sin(−ω0t ).

Using the complex notation,

s(t ) = sx(t )+ isy (t )

= M0 e−t/T2 e−iω0t . (4.28)

This is the signal in the stationary reference frame.
The description in the rotating reference frame cor-
responds technically to demodulation and Eq. (4.28)
becomes

s(t ) = M0 e−t/T2 . (4.29)

If the experiment is repeated after a repetition time TR,
the longitudinal component of the net magnetization
vector has recovered to a value that is expressed by
Eq. (4.26), that is,

Ml(TR) = M 0
(
1− e−TR/T1

)
. (4.30)

After a new excitation with a 90◦ pulse the detected
signal becomes

s(t ) = M0
(
1− e−TR/T1

)
e−t/T2 , (4.31)

which depends on the amount of spins or protons
and the strength B0 of the external magnetic field (see
Eq. (4.102) below), T1, T2, TR and themoment t of the
measurement. Note that the amount of spins, T1 and
T2 are tissue dependent parameters while B0, TR and
t are system or operator dependent. Equation (4.31)
holds for a flip angle of 90◦. For smaller flip angles
it must be modified and becomes dependent on α as
well, an additional operator dependent parameter.

The signal s(t ) contains no positional information.
Equation (4.31) does not allow us to recover the signal
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Figure 4.9 The rotation of the net magnetization vector is detected by means of a quadrature detector. (a) The coil along the horizontal axis
measures a cosine, and (b) the coil along the vertical axis measures a sine.

contribution of each voxel. The next section explains
how positional information can be encoded in the sig-
nal in order to acquire images of the spin distribution
in the human body.

Imaging
Introduction
In this section, we show that spatial information can be
encoded in the detected signal bymaking themagnetic
field spatially dependent. This is done by superim-
posing a series of linear magnetic field gradients in
the x-, y-, and z-directions onto the z-component of
the main field. The purposes of the magnetic field
gradients are slice selection (or volume selection)
and position encoding within the selected slice (or
volume).

Slice or volume selection
In this text, we explain the encoding for a trans-
verse (i.e., perpendicular to the z-axis) slice or slab.∗
Note however that a slice in any direction can be
selected as well. To select a slice perpendicular to the
z-axis, a magnetic field that varies linearly with z is
superimposed onto the main magnetic field �B. It is

∗ A slab is a (very) thick slice. In MRI jargon, slice is usually used
for 2D imaging and slab (or volume) for 3D imaging (see p. 79).

called a linear magnetic field gradient :

�G = (Gx ,Gy ,Gz ) =
(
0, 0,

∂Bz

∂z

)
, (4.32)

where Gz is the constant amplitude of the slice-
selection gradient. The dimension of a magnetic field
gradient is tesla/meter but in practice, millitesla/meter
is used, which shows that the value of the superim-
posed magnetic field is on the order of 1000 times
smaller than the value of the main magnetic field. The
Larmor frequency now becomes

ω(z) = γ (B 0 + Gz z). (4.33)

A slice or slab with thickness �z contains a well-
defined range of precession frequencies around γ B 0

�ω = γ Gz�z . (4.34)

Let the middle of the slice be at position z0. An RF
pulse with nonzero bandwidth BW = �ω and cen-
tered around the frequency γ (B 0 + Gz z0) is needed
to excite the spins (Figure 4.10). A rectangular slice
sensitivity profile requires the RF pulse to be a sinc
function (cf. example 1 in Appendix A). However,
this is impossible because a sinc function has an infi-
nite extent. Therefore, the sinc function is truncated.
The resulting slice sensitivity profile will of course no
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longer be a perfect rectangle, implying that spins from
neighboring slices will also be excited. Note that by
changing the center frequency of the RF pulse, a slice
at a different spatial position is selected; table motion
is not required.

The thickness of the selected slice or slab is

�z = �ω

γ Gz
= BW

γ Gz
, (4.35)

which shows that the slice thickness is proportional to
the bandwidth of the RF pulse and inversely propor-
tional to the gradient in the slice- or volume-selection
direction (Figure 4.10). Equation (4.35) shows that any
value for �z can be chosen; in practice, however, very
thin slices cannot be selected for the following reasons.

• For technical and safety reasons, there is an upper
limit to the gradient strength (50–80 mT/m).

• An RF pulse with a (very) small bandwidth is dif-
ficult to generate electronically: a small bandwidth

z

∆z

∆z

BW = ∆v

gGz

z0

v
BW 

=

Figure 4.10 Principle of slice selection. A narrow-banded RF pulse
with bandwidth BW = �ω is applied in the presence of a
slice-selection gradient. The same principle applies to slab selection,
but the bandwidth of the RF pulse is then much larger. Slabs are
used in 3D imaging (see p. 79).

implies a large main lobe of the sinc function,
which requires a long on-time.

• A very thin slice would imply that few spins were
selected. Thus, the signal-to-noise ratio (SNR)
would become too small. The SNR could be
increased by increasing the field strength. How-
ever, there is an upper limit (7 T) to this external
magnetic field for technical, safety, and economic
reasons.

In practical imaging, the minimum slice thickness
(FWHM) used is typically 2 mm on a 1.5 T imaging
system and 1 mm on a 3 T imaging system.

Position encoding: the �k-theorem
To encode the position within the slice, additional
magnetic field gradients are used. We will first
show what happens if a constant gradient in the x-
direction is applied, before the general case, called the
�k-theorem, is discussed.

We have already shown that the rotating frame
is more convenient for our discussion. We therefore
continue to use the frame that rotates with angular
frequency ω0. In this frame, the effective magnetic
field does not include B 0.
After a 90◦ RF pulse, the transverse component of the
net magnetization at every position (x , y) in the slice
is (see Eq. (4.31))

Mtr(x , y , t ) = M0(x , y)
(
1− e−TR/T1

)
e−t/T2 . (4.36)

If a constant gradient Gx in the x-direction is applied
at t = TE (Figure 4.11(a)), the transverse component
of the net magnetization does not stand still in the
rotating frame but rotates at a temporal frequency that
differs with x :

ω(x) = γ Gx x , for t ≥ TE. (4.37)

TE

Gx
ky

kx

t

0

(a) (b)

Figure 4.11 When a positive gradient in
the x-direction is applied (a), the spatial
frequency kx increases (b).
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For t ≥ TE this circularmotion can be described using
complex notation:

Mtr (x , y , t ) = M0(x , y)
(
1− e−TR/T1

)
· e−t/T2e−iγ Gx x(t−TE). (4.38)

The receiver measures a signal from the excited
spins in the whole plane, which corresponds to an
integration over the entire xy-space for (t ≥ TE):

s(t ) =
+∞∫∫
−∞

ρ(x , y)
(
1− e−TR/T1

)
e−t/T2

· e−iγ Gx x(t−TE) dx dy ,

(4.39)

where ρ(x , y) is the netmagnetization density in (x , y)

at time t = 0, which is proportional to the spin or
proton density in (x , y). For ease of reading, we will
call ρ simply the spin or proton density.

It can be shown that the measured signal s(t )
describes a trajectory in the Fourier domain of the
image f (x , y) to be reconstructed, that is,

s(t ) = F{f (x , y)}(kx , 0), for t ≥ TE, (4.40)

if kx is defined as

kx = γ

2π
Gx(t − TE) (4.41)

and f (x , y) is the weighted spin density, defined as

f (x , y) = ρ(x , y)
(
1− e−TR/T1

)
e−TE/T2 . (4.42)

Figure 4.11 shows how the application of a gradient
Gx changes the spatial frequency kx (Eq. (4.41)) over
time.

Proof of Eq. (4.40)
Using thedefinitionof kx givenbyEq. (4.41), Eq. (4.39)
becomes (for t ≥ TE)

s(t )=
+∞∫∫
−∞

ρ(x , y)
(
1− e−TR/T1

)
e−t/T2 e−2π ikx x dx dy .

(4.43)

Compare this equation with the 2D Fourier trans-
form of a function f (x , y) (Eq. (A.49))

F(kx , ky ) =
+∞∫∫
−∞

f (x , y)e−2π i(kx x+ky y) dx dy . (4.44)

The two equations are equivalent if ky = 0 and if
f (x , y) is defined as

f (x , y) ≡ ρ(x , y)
(
1− e−TR/T1

)
e−t/T2 . (4.45)

However, this equivalence holds only if e−t/T2 is
constant because the Fourier transform requires that
f (x , y) is time independent. This means that, dur-
ing the short time of the measurement, s(t ) must not
be influenced by the T2 relaxation, yielding the defi-
nition given by Eq. (4.42). Under this condition s(t )
describes the trajectory along the kx -axis of the Fourier
transform of f (x , y) as defined in Eq. (4.40).

To reconstruct f (x , y) from the measured signal,
values in the Fourier domain for nonzero ky are also
needed. They can be obtained by applying a gradient
in the y-direction. To understand how and in which
order the different gradients have to be applied to sam-
ple the whole Fourier space, the �k-theorem is needed.
The �k-theorem is a generalization of the special case
discussed above. It is not restricted to planar data, but
can be applied to signals measured from 3D volumes,
i.e., in the case of slab or volume selection (see p. 72),
as well.

�k-theorem
The position vector �r = (x , y , z) and the magnetiza-
tion density are 3D functions. The angular frequency
can be written as

ω(�r , t ) = γ �G(t ) · �r(t ), (4.46)

and the measured signal therefore becomes

s(t ) =
+∞∫∫∫
−∞

ρ(x , y , z)
(
1− e−TR/T1

)
e−t/T2

· e−iγ
∫ t
0
�G(τ )·�r(τ ) dτ dx dy dz . (4.47)

The �k-theorem states that the time signal s(t ) is equiv-
alent to the Fourier transform of the image f (x , y , z)

to be reconstructed, that is,

s(t ) = F{f (x , y , z)}(kx , ky , kz ), (4.48)

if �k(t ) is defined as

�k(t ) = γ

2π

∫ t

0
�G(τ ) dτ (4.49)74
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(a) (b)

Figure 4.12 Illustration of the
�k-theorem. (a) Modulus of the raw data
measured by the MR imaging system (for
display purposes, the logarithm of the
modulus is shown). (b) Modulus of the
image obtained from a 2D inverse FT of
the raw data in (a).

and

f (x , y , z) = ρ(x , y , z)
(
1− e−TR/T1

)
e−TE/T2 , (4.50)

where ρ(x , y , z) is the spin or proton density and
f (x , y , z) is the weighted spin density. Note that
f (x , y , z) is a real image, i.e., the phase image is
theoretically zero.

Equation (4.48) holds only for static spins, i.e.,
�r(t ) = �r . As will be explained below, motion yields
signal loss and other artifacts.

Proof of Eq. (4.48)
Using the definition of �k(t ) (Eq. (4.49)), Eq. (4.47) can
be rewritten as

s(t ) =
+∞∫∫∫
−∞

ρ(x , y , z)
(
1− e−TR/T1

)

· e−t/T2 e−2π i �k·�r dx dy dz (4.51)

if �r(t ) = �r , which implies that the spins to be imaged
do not move as a consequence of breathing, blood
flow, and so forth.
Compare this equation with the 3D FT of a function

f (x , y , z) (Eq. (A.49))

F(kx , ky , kz ) =
+∞∫∫∫
−∞

f (x , y , z) e−2π i �k·�r dx dy dz .

(4.52)

Equations (4.51) and (4.52) are equivalent if f (x , y , z)

is defined as

f (x , y , z) ≡ ρ(x , y , z)
(
1− e−TR/T1

)
e−t/T2 . (4.53)

Because f (x , y , z) must be time independent, e−t/T2

must be constant. Hence, e−t/T2 = e−TE/T2 during the
short readout period around t = TE, which implies
that the T2 relaxation can be neglected during the
period the receiver coil measures the signal.

When all the data have been collected in the
Fourier space (or �k-space), the inverse FT yields
the reconstructed image f (x , y , z), which represents
the weighted spin or proton density distribution in
the selected slice or volume (Figure 4.12). The spin
density ρ∗ is weighted by multiplying it with two
functions; the former describes the growth of the
longitudinal component, and the latter describes the
decay of the transverse component. Hence,MR images
are not “pure” proton density images but represent a
weighted proton density that depends on the tissue
dependent parameters T1 and T2, and the operator
dependent parameters TR (repetition time) and TE
(moment of the measurement). If a short TR is cho-
sen, the image is said to be T1 weighted. If TE is long,
it is said to be T2 weighted. A long TR and short TE
yield a ρ-weighted or proton density weighted image.

Note that we have assumed a 90◦ RF pulse. For flip
angles α smaller than 90◦ the above equations must be
modified and the reconstructed image will depend on
α as well, which can also be modified by the operator.

Dephasing phenomena
The net magnetization vector is the sum of a large
number of individual magnetic moments (Eq. (4.15)).
If different spin vectors experience a different

∗ Actually ρ is the net magnetization density, which depends not
only on the spin density, but also on the strength B0 of the external
magnetic field (see Eq. (4.102) below).
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Figure 4.13 Immediately after the 90◦ pulse
the signal dephases due to spin–spin
interactions and magnetic field
inhomogeneities. In (b) only the influence of
the magnetic field inhomogeneities is shown.
This part of the dephasing is restored by the
application of a 180◦ pulse at t = TE/2, which
reverses the phases. Because the spins
continue to dephase, their dephasing due to
magnetic field inhomogeneities is undone at
t = TE. The signal is measured around T = TE.
At that moment it is only affected by the T2
relaxation, which is irreversible. The time
between two 90◦ RF excitations is the
repetition time TR.

magnetic field, they precess with a different Larmor
frequency. The resulting dephasing destroys the phase
coherence, and the receiver may detect a small and
noisy signal! Consequently, it is important to mini-
mize the dephasing phenomena.

Three types of dephasing can be distinguished.
• Dephasing by spin–spin interactions. This is an

irreversible process described by the time constant
T2, as explained on p. 69.

• Dephasing by magnetic field inhomogeneities. As
will be shown below, this is a reversible process
expressed by the time constantT ∗2 < T2. The inho-
mogeneities are due to an inhomogeneous main
magnetic field and to differences in the magnetic
susceptibility of the tissues.†

† Themagnetic susceptibility indicates howwell a certain substance
can be magnetized. The higher this value, the more the substance
is able to disturb the homogeneity of the local magnetic field. Iron

• Dephasing by magnetic field gradients. By defini-
tion a gradient causes an inhomogeneousmagnetic
field, which further reduces T ∗2 . It is a reversible
process.

Undo dephasing of magnetic field inhomogeneities
Toundo this kindof dephasing, a 180◦ pulse is applied.
If this pulse is applied at t = TE/2, an echo-signal,
the so-called spin-echo (SE), is created at t = TE
(Figure 4.13). Because of the irreversible T2 dephas-
ing, the maximum of the spin-echo is lower than the
maximum at t = 0. The measurement of a trajectory
in �k-spacemust take place during a short time interval
around t = TE. Because of this short time interval,
several excitations are typically needed to sample the

is a well-known example. It is a so-called ferromagnetic substance
and can be magnetized extremely well. Consequently, iron particles
in the body are able to disturb the homogeneity of the local field
significantly.
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complete �k-space. A new excitation starts after a time
TR, the repetition time, which can be much longer
than the time between excitation and data collection.
In the wasted time after the measurement and before
TR the same procedure can be repeated to excite other
slices and acquire information on their spin distribu-
tion. This way trajectories of multiple slices can be
measured within one TR. This acquisition method
is called multi-slice imaging. The number of slices
depends on both TR and TE. Note that in practice
the slice sensitivity profile is not a perfect rectangle
and spins from neighboring slices will also be partially
excited. Consequently, these spins are excited twice
without giving them the time TR to relax in between,
yielding a reduced signal. This phenomenon is called
cross-talk. It can be avoided by introducing a physical
gap between neighboring slices.

Undo dephasing of magnetic field gradients
This type of dephasing is necessary to sample the �k-
space. The phase shift due to a magnetic gradient at
the time of themeasurement (TE) can be calculated by
integrating Eq. (4.46) between excitation and readout:


(TE) =
∫ TE

0
γ �G(t ) · �r(t ) dt . (4.54)

Assuming static spins, i.e., �r(t ) = �r , this equation can
be rewritten as


(TE) = �r ·
∫ TE

0
γ �G(t ) dt

= 2π �r · �k(TE) (4.55)

The dephasing is undone at t = TE if 
(TE) = 0.
Consequently, �k(TE) = 0 and the measurements
are spread around the origin of the �k-space, yielding
the best SNR (Figure 4.12). To undo the dephasing
effect of a magnetic field gradient, the integral in
Eq. (4.55) must be zero, which can be obtained by
applying another gradient with the same duration but
with opposite polarity. This creates an echo signal at
t = TE, called the gradient-echo (GE), illustrated in
Figure 4.14.

Basic pulse sequences
Based on the �k-theorem, several practical acquisi-
tion schemes have been developed to measure the
�k-space. Two basic classes are the spin-echo (SE) pulse
sequence and the gradient-echo (GE) pulse sequence.

Signal

Dephasing

echo

Rephasing

Phase

Gradient

Figure 4.14 Gradient dephasing can be undone by applying a
second gradient with the same amplitude but opposite polarity.
The plot labeled “phase” describes the phase behavior at two
different spatial positions and shows phase dispersal and recovery
that occurs by applying the two gradient pulses.

The spin-echo pulse sequence
Two-dimensional Fourier transform SE imaging is the
mainstay of clinical MRI because SE pulse sequences
are very flexible and allow the user to acquire images
in which either T1 or T2 (dominantly) influences the
signal intensity displayed in the MR images (see also
p. 90 below).

The 2D SE pulse sequence is illustrated in
Figure 4.15 and consists of the following components.

• A slice-selection gradient Gz is applied togetherwith
a 90◦ and a 180◦ RF pulse. Because the second
slice-selection gradient pulse is symmetric around
t = TE/2, its initial dephasing effect is automati-
cally compensated after the RF pulse. To undo the
dephasing of the first slice-selection gradient, the
polarity of this gradient can be reversed during its
application. For technical reasons, however, it is
easier to apply the second gradient a little longer.
Indeed, a positive gradient after the 180◦ pulse has
the same effect as a negative gradient before the
180◦ pulse.

• The “ladder” in Figure 4.15 represents Gy , which
is called the phase-encoding gradient. Applying
Gy before the measurement yields a y-dependent
temporal phase shift φ(y) of s(t ):

φ(y) = γ Gy yTph, (4.56)

where Tph is a constant time interval, representing
the on-time of the phase-encoding gradient Gy . In
practical imaging, Gy has a variable amplitude:

Gy = mgy , (4.57)
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Figure 4.15 (a) Schematic illustration of a 2D spin-echo pulse sequence. (b) Associated trajectory of the �k-vector for one positive
phase-encoding gradient value Gy . By modifying this value, a different line in �k-space is traversed.

where m is a positive or negative integer and gy is
constant. Using Eq. (4.49) yields

ky = γ

2π
mgy Tph. (4.58)

Each rung of the ladder thus prepares themeasure-
ment of a different trajectory in the �k-space. Note
that the dephasing of this gradient must not be
compensated because it is mandatory for position
encoding.

• During the application of Gx , which is called the
frequency-encoding gradient, the signal s(t ) is mea-
sured. To undo the dephasing effect of Gx during
readout, a compensating gradient is applied before
the measurement, typically before the 180◦ pulse,
which reverses the sign of �k (see Figure 4.15(b)).
This way, a horizontal line centered around kx = 0
is measured.

An image is obtained by sampling the complete �k-
space and calculating the inverse Fourier transform.
This way the acquired raw data form a matrix of, say,
512 by 512 elements (lower and higher values are also
possible). By applying 512 different gradients Gy =
mgy , m ∈ [−255,+256], 512 rows of the �k-space can
be measured. Per row 512 samples are taken during
the application of the gradientGx . Each position in the
�k-space corresponds to a unique combination of the
gradientsGx ,Gy and the time theyhave been applied at
themoment of themeasurement. Hence, the gradients
Gx and Gy are in-plane encoding gradients for the
position in the �k-space.

kx
kx

ky

(a) (b)

ky

Figure 4.16 (a) Truncated Fourier and (b) half Fourier imaging.
Only the parallel horizontal lines are measured. In practice, half
Fourier imaging acquires a few lines of the upper half-plane as well
and requires a phase-correction algorithm during reconstruction. A
detailed discussion is beyond the scope of this book.

Physically, the gradients encode by means of the
angular frequency and initial phase of the magnetiza-
tion vector during the measurement. The relationship
between a gradient and the angular frequency ω is
given by Eq. (4.46). From this equation the initial
phase can be derived (Eq. (4.56)). Application of a
gradient Gx during the measurement yields an angu-
lar frequency ω that depends on x . A gradient Gy is
applied before the measurement starts, which causes
an initial phase shift dependent on y . This explains
why Gy is called the phase-encoding gradient and Gx

the frequency-encoding gradient.
To shorten the acquisition time, fewer phase-

encoding steps could be applied (e.g., 384 instead of
512 with m ∈ [−192,+191]). This is called truncated
Fourier imaging (see Figure 4.16(a)). A drawback of
acquiring less rows is that the reconstructed images
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(< 90°)

Figure 4.17 For (very) short repetition times, the steady-state
signal formed by low flip angles exceeds that recovered with 90◦
pulses.

have a lower spatial resolution in the phase-encoding
direction.

The image f (x , y , z) (Eq. (4.50)) to be recon-
structed is a real function and, according to Eq. (A.66),
the Fourier transform of a real function is Hermi-
tian. Hence, it is in principle sufficient to measure
half of the �k-space, for example, for m ∈ [−255, 0]
(see Figure 4.16(b)). This is called half Fourier imaging.
Although half Fourier imaging halves the acquisition
time, it reduces the SNR of the reconstructed images.

The gradient-echo pulse sequence
As explained below on p. 90, themajor drawback of SE
imaging is its need for relatively long imaging times,
particularly in ρ- and T2-weighted imaging protocols
whose TR is long to minimize the influence of the T1
relaxation. One approach to overcome this problem is
the use of GE pulse sequences. As compared with SE
sequences, they differ in two respects, which have a
profound impact on the resulting images.

• Their flip angle is typically smaller than 90◦ Usu-
ally, a value between 20◦ and 60◦ is used. Neverthe-
less, it can be shown that for (very) short TR, the
steady-state signal is larger than the signal obtained
with 90◦ pulses (Figure 4.17). The flip angle can
be used to influence the contrast in the image, as
shown on p. 90 below.

• They have no spin-echo because there is no 180◦
pulse Rephasing is done by means of gradient
reversal only. This implies that the signal charac-
teristics are influenced by T ∗2 (Figure 4.18).

The GE sequences could in principle be used with the
same TR and TE values as in SE sequences. However,
in that case, there is no difference in acquisition time.
Moreover, because of the absence of the 180◦ pulse
and the resulting T ∗2 dephasing effect, T ∗2 -weighted
images would be obtained and the signal may be too

low. Therefore, GE sequences are primarily used for
fast 2D and 3D acquisition of T1-weighted images.

An example of a 2D GE sequence is the fast
low-angle shot (FLASH) pulse sequence shown in
Figure 4.19. The feature that distinguishes FLASH
from the basic GE sequence is the variable ampli-
tude gradient pulse, called spoiler, applied after the
data collection. The purpose of the spoiler pulse is to
destroy (i.e., dephase) any transverse magnetization
that remains after the data collection.† Note that the
sign of the rephasing gradients in the slice-selection
and readout direction is the opposite of that in the SE
pulse sequence (see Figure 4.15) because there is no
180◦ pulse.

Three-dimensional imaging
On p. 73 we saw that very thin slices cannot be
selected. However, several radiological examinations
(e.g., wrist, ankle, knee) require thin slices, and 3D
imaging offers the solution to this problem. In 3D
imaging techniques, a volume or slab instead of a slice
is selected. The z-position is then encoded in the signal
by a second phase-encoding gradient ladder ngz ,

φ(y , z) = γ (mgy yTph + ngz zTss), (4.59)

where Tss is the on-time of the phase-encoding gra-
dient in the slab-selection direction. Different values
of n correspond to different planes in the �k-space.
The most important difference between 2D and 3D
pulse sequences is that 3D sequences have two phase-
encoding gradient tables, whereas 2D sequences have
only one (Figure 4.20). In 3D imaging, reconstruction
is done by means of a 3D inverse Fourier transform,
yielding a series of 2D slices (16, 32, 100, …). For
example, if a slab with thickness 32mm is divided into
32 partitions, an effective slice thickness of 1 mm is
obtained. Such thin slices are impossible in 2D imag-
ing. The SNR of 3D imaging is also better than in 2D
imaging because each excitation selects all the spins in
the whole volume instead of in a single slice.

The drawback of 3D imaging is an increase in
acquisition time, as will be shown on p. 81 below. It
will be shown that 3D SE sequences are much slower
than 3D GE pulse sequences.

† The reasons for the variability of the amplitude are beyond the
scope of this book.
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(a) (b)

Figure 4.18 The effect of the 180◦ pulse.
(a) Sagittal spin-echo image of a knee in
which a small ferromagnetic particle causes
local magnetic field inhomogeneities. The
180◦ pulse of the SE compensates for the
resulting dephasing. Note, however, that the
magnetic field deviation still causes a
geometric distortion in the area of the
particle (white patterns). (b) Gradient-echo
image of the same slice. There is no
compensation for magnetic field
inhomogeneities (T ∗2 instead of T2) causing a
complete signal loss in the area of the
ferromagnetic substance. (Courtesy of Dr. P.
Brys, Department of Radiology.)
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Figure 4.19 The 2D FLASH pulse sequence is a GE sequence in
which a spoiler gradient is applied immediately after the data
collection in order to dephase the remaining transverse
magnetization.
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Figure 4.20 The characteristic feature of any 3D pulse sequence is
the presence of two phase-encoding gradient tables. Here a 3D GE
sequence is shown, as there is no 180◦ pulse.

Chemical shift imaging
Expression (4.47) for the measured signal s(t ) can be
written as

s(t ) =
∫
�r
ρ∗(�r) e−i
(�r ,t ) d�r (4.60)

where

ρ∗(�r) = ρ(�r) (1− e−TR/T1
)
e−TE/T2 (4.61)

and the phase shift
(�r , t ) is the integral of the angular
frequency ω(�r , t ) (Eq. (4.46)) over time, that is,


(�r , t ) =
∫ t

0
ω(�r , t )dt =

∫ t

0
γ �G(τ ) dτ · �r (4.62)

for stationary tissue. Remember that this equation
implicitly assumes the use of a rotating coordinate
frame at angular frequency ω0, i.e., the Larmor
frequency in the static magnetic field B0.

However, the Larmor frequency slightly depends
on themolecular structure the protons belong to. This
(normalized) frequency difference is called the chem-
ical shift. Taking the frequency shifts ωs ≡ 2π fs into
account, Eq. (4.62) has to be rewritten as


(�r ,ωs , t ) =
∫ t

0
γ �G(τ ) dτ · �r + t · ωs . (4.63)

Substituting Eq. (4.49) into Eq. (4.63) yields


(�r ,ωs , t ) = 2π( �k(t ) · �r + t · fs). (4.64)

The signal s(t ) can still be written as a Fourier
transform of ρ∗(�r , fs)

s(t ) = F{ρ∗(�r , fs)}( �k, t ) (4.65)

and the �k-theorem can still be used. As compared
to Eq. (4.48), the dimension of the functions has
increased by one. The variable fs has been added to
the spatial domain and the variable t to the �k-space.80
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This way multiple images can be obtained for differ-
ent frequencies fs , a technique known as chemical shift
imaging (CSI).

Unfortunately, because the time t continuously
increases, samples of the �k-space for all the differ-
ent values of �k at a particular t -value can be obtained
only from repeated excitations with different values
of the gradient �G. For example, the reconstruction of
a 2D chemical shift image needs two phase-encoding
gradient ladders (for Gx and Gy ) before the measure-
ment, while for regular imaging only one ladder is
needed (see Figure 4.15). 3D imaging would require
three such ladders (for Gx , Gy and Gz ) instead of two
(see Figure 4.20). Consequently, the acquisition time
for CSI is an order of magnitude larger than for regu-
lar imaging. To reduce this acquisition time, the voxel
size in CSI can be increased and the FOV reduced.

Acquisition and reconstruction time
High-quality images are useless if tens of minutes are
required to obtain them. Both acquisition time and
reconstruction timemust be short. The reconstruction
time can be neglected in clinical practice because cur-
rent computers calculate the inverse Fourier transform
in real time.

Obviously, the acquisition time TA equals the
number of excitations times the interval between two
successive excitations. Hence,
• for 2D pulse sequences

TA2D = NphTR; (4.66)

• for 3D pulse sequences

TA3D = NphNssTR, (4.67)

where Nph is the number of in-plane phase-encoding
steps and Nss is the number of phase-encoding steps
in the slab-selection direction.

For example, for a T2-weighted 3D SE sequence
withTR = 2000ms, one acquisition and32 slices, each
having 256 phase-encoding steps, TA is more than 4
hours! For a T1-weighted pulse sequence with TR =
500 ms, TA is still more than an hour. Obviously,
this is practically infeasible because no-one can remain
immobile during that time. Three-dimensional imag-
ing is mostly done with GE pulse sequences. For
example, if TR is 40 ms, TA reduces to less than
six minutes, which is quite acceptable for many
examinations.

Very fast imaging sequences
Multiple echoes per excitation
Very fast imaging sequences have been developed for
multi-slice imaging and have in common that multi-
ple echoes are generated and sampled within the same
excitation. Equation (4.66) should thus be modified as

TA2D = NphTR
ETL

, (4.68)

where ETL is the echo train length (i.e., the number
of echoes per excitation). Equation (4.68) shows that
the acquisition time can be reduced by (1) decreas-
ing TR (cf. GE versus SE sequences), (2) decreasing
Nph (cf. truncated and half Fourier imaging), and (3)
increasing ETL.

If ETL > 1, the rows of the �k-space are sampled
at different echo times. The dephasing effect resulting
from T2 for SE or from T ∗2 for GE sequences cannot be
neglected between two different echoes, and the mea-
sured signal S′(kx , ky ) is therefore a filtered version
of the signal S(kx , ky ) that would have been obtained
with an acquisition with ETL = 1:

S′(kx , ky ) = H (kx , ky )S(kx , ky ), (4.69)

where H (kx , ky ) is the filter function. Although the
conditions of the �k-theorem are violated, in prac-
tice the inverse Fourier transform is straightforwardly
employed to reconstruct the raw data. A consequence
is that the spatial resolution degrades because the
reconstructed image is a convolution with the inverse
FT of H (kx , ky ) (see Figure 4.21).

Examples
Below are two well-known acquisition schemes that
are currently used in clinical practice.

• TurboSE and turboGE The TurboSE and turboGE
sequences are sequences in which 2–128 echoes
are generated within the same excitation. Hence,
immediately after the first echo, a new phase-
encoding gradient is applied to select a different
line in the �k-space, a new echo is generated, and
so on. The �k-space is divided into 2–128 distinct
segments. Within a single excitation, one line of
each segment is sampled.
TurboSE sequences are regularly used for
T2-weighted imaging of the brain. For a 256× 256
T2-weighted image (TR = 2500 ms) with four
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Figure 4.21 Multiple echoes per excitation cause blurring. Assume that the image to be reconstructed is a Dirac impulse in the origin with
amplitude equal to 1. (a) Modulus of the measured data in the �k-space. Although the raw data are more or less constant in the readout
direction, dephasing clearly affects the measurements in the phase-encoding direction. Without T∗2 (or T2, depending on the sequence) the
modulus of the raw data would have been constant. (b) One column of the modulus of the reconstructed image, which clearly shows that the
Dirac impulse has been blurred.

RF

Gx

Gy

Gz

Signal

(a) (b)

TE

a° ky

kx
0

Figure 4.22 (a) Schematic representation of the T∗2 -weighted blipped GE EPI sequence. A series of gradient-echoes are created and

sampled. (b) Corresponding trajectory in �k-space. Each “blip” in the phase-encoding direction selects a new row in the raw data matrix.

echoes, for example, the acquisition time TA is

TA = 256× 2.5
4

= 160 seconds < 3 minutes.
(4.70)

• Echo planar imaging (EPI) This is the fastest 2D
imaging sequence currently available. It is a SE

or GE sequence, and the absence of 180◦ pulses
explains the time gain. All echoes are generated
in one excitation (Figures 4.22 and 4.23). Because
of the T ∗2 dephasing, however, there is a limit to
the number of echoes that can be measured above
noise level. A typical size of the raw data matrix of
EPI images is 128 × 128. The acquisition time TA
for one image is 100 ms and even lower! The EPI
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180°90° Figure 4.23 For a T2-weighted SE EPI
sequence, a single 180◦ RF pulse is
applied between the 90◦ RF pulse and the
gradient-echo train to sample the �k-space.

sequence is used, for example, in functional MRI
(see p. 89) and diffusion and perfusion imaging
(see p. 87 and p. 89).

Imaging of moving spins
Introduction
In the previous sections we have assumed that the spa-
tial position of the spins does not change. In practice,
however, there are many causes of spin motion in the
human body such as swallowing, breathing, the beat-
ing heart, and blood flow. With adapted MR pulse
sequences, motion such as blood flow, diffusion, and
perfusion can be visualized (see Table 4.2).

Whenmagnetic field gradients are applied, moving
spins experience a change inmagnetic field strength, in
contrast to the stationary tissues. The total phase shift
can be calculated by integrating the angular frequency
ω(�r , t ) (Eq. (4.46)) over time:


(�r , t ) =
∫ t

0
γ �G(τ ) · �r(τ ) dτ . (4.71)

Unlike in Eq. (4.55) �r(t ) is not time independent for
moving spins. It can be shown that Eq. (4.47) in case
of motion can be written as

s(t ) =
∫
�r
ρ∗(�r) e−i(�v(�r)· �m1(t )+�a(�r)· �m2(t )+··· )

· e−i�r · �m0(t ) d�r (4.72)

where

ρ∗(�r) = ρ(�r) (1− e−TR/T1
)
e−TE/T2 (4.73)

and

�ml(t ) ≡
∫ t

0
γ �G(τ )

τ l

l! dτ l = 0, 1, 2, . . . . (4.74)

�ml is the lth order gradient moment.

Proof of Eq. (4.72)
The exact path �r(t ) followed by the moving spin
is unknown. However, any physical motion can be
expanded in a Taylor series around t = 0. Hence,

�r(t ) = �r(0)+ d�r
dt

(0)t + · · · + dl �r
dt l

(0)
t l

l! + · · · .
(4.75)

The position �r , the velocity �v(�r) and the acceleration
�a(�r) of the spin at time t = 0 can be introduced in this
equation:

�r(t ) = �r + �v(�r) t + �a(�r) t 2

2
+ · · · . (4.76)

Substituting Eq. (4.76) in Eq. (4.71) yields:


(�r , t ) = �r ·
∫ t

0
γ �G(τ ) dτ + �v(�r) ·

∫ t

0
γ �G(τ )τ dτ

+ �a(�r) ·
∫ t

0
γ �G(τ )

τ 2

2
dτ + · · · 83
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Table 4.2 List of motions in the body and their
corresponding velocities that can be visualized
using appropriate pulse sequences

Motion type Velocity range

Diffusion 10 µm/s – 0.1 mm/s

Perfusion 0.1 mm/s – 1 mm/s

CSF flow 1 mm/s – 1 cm/s

Venous flow 1 cm/s – 10 cm/s

Arterial flow 10 cm/s – 1 m/s

Stenotic flow 1 m/s – 10 m/s

Notes: MR is capable of measuring six orders of
magnitude of flow [20].

or, using the gradient moments as defined in
Eq. (4.74),


(�r , t ) = �r · �m0(t )+ �v(�r) · �m1(t )

+ �a(�r) · �m2(t )+ · · · . (4.77)

Rewriting Eq. (4.47) as

s(t ) =
∫
�r
ρ∗(�r) e−i
(�r ,t ) d�r , (4.78)

and substituting Eq. (4.77) into Eq. (4.78), yields
Eq. (4.72).

Without motion, only the first-order moment
�m0(t ) in Eq. (4.72) causes a phase shift. This phase
shift is needed for position encoding when using the
�k-theorem. Motion introduces additional dephasing
of the signal s(t ). The receiver then detects a smaller
and noisier signal. This motion-induced dephasing is a
fourth cause of dephasing (see also p. 75). If this phase
shift is relatively small and almost coherent within a
single voxel, it also yields position artifacts such as
ghosting (see p. 94 and Figure 4.36).

Magnetic resonance angiography (MRA)
In the previous section it was shown thatmotion yields
additional dephasing and a corresponding signal loss.
However, as we will see, motion-induced dephas-
ing can be reduced by back-to-back symmetric bipolar
pulses of opposite polarity. They are able to restore

[20] L. Crooks andM. Haacke. Historical overview of MR angiogra-
phy. In J. Potchen, E. Haacke, J. Siebert, and A. Gottschalk, editors,
Magnetic Resonance Angiography: Concepts and Applications, pages
3–8. St. Louis, MN: Mosby – Year Book, Inc., first edition, 1993.

hyperintense vessel signals for blood flowing at a con-
stant velocity. In case of constant velocity Eq. (4.72)
becomes

s(t ) =
∫
�r
ρ∗(�r) e−i�v(�r)· �m1(t ) e−i�r · �m0(t ) d�r (4.79)

and contains only two dephasing factors, one neces-
sary for position encoding and the other introduced
by the blood velocity �v(�r).

Equation (4.55) shows that for stationary spins
(�v(�r) = 0) the net phase shift due to simple bipo-
lar gradient pulses (Figure 4.24(a)) is zero. This is
the case at t = TE in the frequency-encoding and
slice-selection directions. For moving spins (�v(�r) �=
0), however, a simple bipolar pulse sequence as in
Figure 4.24(a) introduces a phase shift because its first
gradient moment �m1 at t = TE is nonzero:

m1(TE) = −γ �G (�t )2 �= 0. (4.80)

Back-to-back symmetric bipolar pulses of opposite
polarity on the other hand (Figure 4.24(b)) remove the
velocity-induced phase shift at t = TE while they have
no net effect on static spins. Both their zeroth and first-
order gradientmomentsm0(TE) andm1(TE) are zero.
Higher order motion components are not rephased,
however, and will still cause dephasing.

The rephasing gradients are applied in the fre-
quency-encoding and slice-selection directions. This
technique is known as gradient moment nulling, gradi-
ent moment rephasing or flow compensation. A diagram
of a 3D FLASH sequence with first-order flow com-
pensation is shown in Figure 4.25. Technical consid-
erations limit the flow compensation to the first-order
or at most the second-order gradient moments. Very
complex motion patterns, such as the turbulence in
the aortic arch, continue to produce signal dephasing.

Time-of-flight (TOF) MRA
Time-of-flight (TOF) MRA is a technique that com-
bines motion rephasing with the inflow effect. This
phenomenon is easy to visualize. First consider a
slice or slab with only stationary tissues. With a GE
sequence with a very short TR (25–35 ms), the lon-
gitudinal component of the magnetization vectors
becomes very small after a few excitations because it
is not given the time to relax. The signal will be low –
an effect called saturation. Assume now that the slice
is oriented perpendicular to a blood vessel. As blood
flows inward, the blood in the slice is not affected by
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Figure 4.24 (a) Simple bipolar pulses cannot
provide a phase-coherent signal for moving
spins. (b) Back-to-back symmetric bipolar
pulses of opposite polarity on the other hand
restore the phase coherence completely for
spins moving at a constant velocity.
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Figure 4.25 Schematic illustration of a 3D FLASH sequence.
First-order flow rephasing gradients are applied in the
volume-selection and frequency-encoding directions to prevent
the dephasing that otherwise would be caused by the
corresponding original gradients.

the saturating effect of the RF pulses. Its longitudi-
nal component remains large and yields a high signal.
However, if the blood vessel lies inside the slice or
slab, the flowing blood experiences several RF pulses,
becomes partly saturated, and yields a lower signal.
Hence, the vascular contrast is generated by the dif-
ference in saturation between the inflowing spins of
the blood and the stationary spins of the tissues in the
acquisition volume. The blood vessels appear bright
and the stationary tissues dark.

Both 2D and 3D GE-based sequences are used for
TOF MRA. They are equipped with rephasing gra-
dients for first- or second-order flow, or both. As
long as the refreshment of the spins is significant and
the blood flow pattern can be described adequately by

RF

Gx

Gy

Gz

t

a°

Figure 4.26 Schematic illustration of a PC MRA sequence. Bipolar
pulses of opposite polarity are sequentially applied along the three
main directions, which requires six different acquisitions.

first- and second-order motions, the blood vessels are
visible as hyperintense patterns. 3D TOF MRA is for
example very suited to visualize the cerebral arteries
(as shown in Figure 4.28(b) below).

Phase-contrast (PC) MRA
In phase-contrast (PC) MRA two subsequent
sequences are applied, one with an additional bipo-
lar pulse sequence and another with a reversed bipolar
pulse sequence, both before the readout (Figure 4.26).

In case of stationary spins, the reconstructed image
ρ∗(�r) (Eq. (4.73)) is a real function and is not influ-
enced by bipolar pulses. Moving spins, however,
experience an additional phase shift. If the velocity
�v(�r) is constant, the image that will be reconstructed
becomes ρ∗(�r)e−i�v(�r)· �m1(TE) (see Eq. (4.79)), which is
a complex function consisting of themagnitude image
ρ∗(�r) and the phase image 
(�r , TE) = �v(�r) · �m1(TE).
Using a bipolar pulse sequence as in Figure 4.24(a) the
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phase image can be written as (see Eq. (4.80))


↑(�r , TE) = −γ (�t )2 �v(�r) · �G. (4.81)

For a bipolar pulse with reversed polarity (i.e., − �G
followed by+ �G) the phase image is inverted:


↓(�r , TE) = + γ (�t )2�v(�r) · �G. (4.82)

Subtracting both phase images yields

�
(�r , TE) = 
↑(�r , TE)−
↓(�r , TE)

= 2 γ (�t )2�v(�r) · �G. (4.83)

Hence, by subtracting the phase images of the two
subsequent acquisitions, an image of the phase differ-
ence�
 is obtained fromwhich the blood velocity can

be derived (Figure 4.27). However, Eq. (4.83) shows
that only the velocity in the direction of the gradient
can be calculated from the measured phase difference.
For example, a blood velocity perpendicular to the
gradient yields no phase shift at all. To overcome this
problem, it is necessary to apply bipolar pulses sequen-
tially along the three gradient axes (Figure 4.26) with
the disadvantage of increasing the acquisition time.
On the other hand, 3D PC MRA yields better con-
trast images than 3D TOF MRA in case of slow flow
because 3D TOF MRA partly saturates blood flowing
at low velocity.

Contrast-enhanced (CE) MRA
CEMRA relies on the effects of a contrast agent in the
blood. It is largely independent of the flow pattern
in the vessels. As compared with CT, the physical

(a) (b)

(c) (d)

Figure 4.27 2D phase-contrast image showing a cross-section of the ascending and descending aorta. The direction of the bipolar
gradients is perpendicular to the image slice in line with the aortic flow. (a) Magnitude image. (b) Phase difference image. (c) The phase
difference, which is proportional to the blood velocity in the aorta, is mapped in color onto the magnitude image. The red color is used for
ascending flow while blue shows the descending flow. The brightness of the colored pixels represents the local velocity, ranging from 33 up
to 106 cm/s. In regions where the velocity is below 33 the magnitude image is shown. (d) By acquiring a time series of images, the flux (in
ml/s) in the outlined regions is calculated as a function of time. (Courtesy of Professor S. Sunaert, Department of Radiology.)
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principle of the contrast agent is different. In MRI,
paramagnetic, superparamagnetic, and ferromagnetic
substances are used. Chelates of the rare earth metal
gadolinium are superparamagnetic and are used most
often. Because of their high magnetic susceptibility,
they disturb the local magnetic field and decrease T ∗2 .
Furthermore, they have the characteristic of decreas-
ingT1 andT2 of the surroundinghydrogen-containing
matter. Depending on the pulse sequence, the contrast
generates hypointense (for a T ∗2 -weighted sequence)
or hyperintense (for a T1-weighted sequence) pix-
els. Contrast-enhanced (CE) MRA employs a 3D GE
sequence with short TE and TR, in which the effect of
T1 shortening dominates.

Proper timing is important in CE MRA. First, the
concentration of the contrast agent in the arteriesmust
be highest at themoment of themeasurement. Second,
when the contrast agent arrives at the arteries, the
central region of the �k-space should be sampled first
to obtain the best image contrast. Indeed, a property of
the �k-space is that the area around the origin primarily
determines the low-frequency contrast, whereas the
periphery is responsible for the high-frequency details
in the image.

Visualization of MRA images
In MRA images, the vessels are bright as compared
with the surrounding stationary tissues. Although 3D
image data can be analyzed by sequential observa-
tion of individual 2D slices, considerable experience
and training are required to reconstruct mentally the

anatomy of the vessels from the large number of slices.
Postprocessing can be used to integrate the 3D vessel
information into a single image.

Currently, maximum intensity projections (MIP)
are widely used to produce projection views similar
to X-ray angiograms. The principle of this method
is illustrated in Figure 4.28. The measured volume
is penetrated by a large number of parallel rays or
projection lines. In the image perpendicular to these
projection lines, each ray corresponds to a single voxel
whose gray value is defined as the maximum inten-
sity encountered along the projection ray. Projection
images can be calculated for any orientation of the
rays. A 3D impression is obtained by calculatingMIPs
from subsequent directions around the vascular tree
and quickly displaying them one after the other.

Diffusion
Because of thermal agitation, molecules are in con-
stantmotion known as Brownianmotion. InMRI, this
diffusion process can be visualized with an adapted
pulse sequence that emphasizes the dephasing caused
by random thermal motion of spins in a gradient field.
A spin-echo EPI sequence, called pulsed gradient spin-
echo (PGSE) (see Figure 4.29), is applied to obtain
diffusion-weighted images. Because the net magneti-
zation is the vector sumof a large number of individual
spin vectors, each with a different motion, the phase
incoherence causes signal loss. If S0 represents the sig-
nal if no diffusion were present, the signal S in the

Projection Image

Original Volume
(a) (b)

Figure 4.28 (a) Illustration of the MIP algorithm. A projection view of a 3D dataset is obtained by taking the maximum signal intensity along
each ray perpendicular to the image. (b) MIP of a 3D MRA dataset of the brain.
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Figure 4.29 An EPI sequence supplemented with two strong
gradient pulses around a 180◦ RF pulse yields a diffusion-weighted
image. The additional pulses have no effect on static spins, but
moving spins experience an extra strong dephasing.

presence of diffusion in an isotropic medium is

S(b) = S0 e−bD

b = γ 2δ2
(

�− δ

3

)
G2. (4.84)

In this equation, G is the gradient amplitude, δ is the
on-time of each of the gradients, and � is the time
between the application of the two gradients. D is the
diffusion coefficient. Figure 4.30 illustrates how it can
be calculated from a few values of b and correspond-
ing signal S(b). Note that at least two measurements
are needed to calculate D, typically one without (i.e.,
b = 0) and one with a pulsed gradient pair. In prac-
tice the measured diffusion coefficient is influenced
by contributions from other movement sources, such
as microcirculation in the capillaries. The term appar-
ent diffusion coefficient (ADC) is therefore used. If it
is calculated for every pixel, a so-called ADC map is
obtained.

In anisotropic media the mean diffusion distances
depend on the orientation. In mathematical terminol-
ogy D is a tensor, which extends the notion of vector.
The imaging technique used to acquire this tensor for
every pixel is called diffusion tensor imaging (DTI). D
is a 3× 3 symmetric matrix, which can be understood
as follows. Typically the Brownian random motion
can be described by a multivariate normal conditional
probability density function expressing the probabil-
ity that a species displaces from r0 to r after a diffusion

0 100 200 300 400 500 600 700 800
3.0

3.5

4.0

ln(S)

b

Figure 4.30 The diffusion coefficient D is found by acquiring a
series of images with different b values and calculating the slope of
ln(S) versus b. (Reprinted with permission of Mosby – Year
Book, Inc.)

time τ

p(r|r0, τ) = 1
(4πτ)3/2

√|D| · e
−(1/4τ)(r−r0)

TD−1(r−r0)

(4.85)

with D a covariance matrix describing the displace-
ment in each direction. Isosurfaces of this multivari-
ate Gaussian probability function have an ellipsoidal
shape. Assume for a moment that the principal axes
of this ellipsoid are oriented along the axes of the 3D
coordinate system, then D can be written as

D =  =

λ1 0 0

0 λ2 0
0 0 λ3


 . (4.86)

If the ellipsoid has a different orientation, D changes
into a symmetric matrix, that is,

D =

Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz .


 . (4.87)

The relationship between Eq. (4.87) and Eq. (4.86) is

D = Q · · QT (4.88)

where Q = [q1 q2 q3] is the 3 × 3 unitary matrix of
eigenvectors qk of D, and  is the diagonal matrix of
corresponding eigenvalues λk (with λ1 ≥ λ2 ≥ λ3).
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For anisotropic diffusion, Eq. (4.84) can now be
generalized as follows:

S(b) = S0 e−b gTDg

b = γ 2δ2
(

�− δ

3

)
|G|2 (4.89)

with g = G/|G| the unit vector in the direction of
G. Because matrix D has six degrees of freedom, its
calculation requires measurements of S(b) in at least
six different noncollinear directions g, together with
the blank measurement S0. Increasing the number
of measurements improves the accuracy of D. The
eigenvalues λk and eigenvectors qk can be calculated
usingprincipal component analysis (PCA).Moredetails
about PCA are given in Chapter 7, p. 180.

A popular representation of the anisotropic diffu-
sion in each voxel is its principal direction q1 and the
so-called fractional anisotropy (FA)

FA = 1√
2

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ1 − λ3)2√

λ21 + λ22 + λ23

.

(4.90)

Using color coding both the principal direction q1 and
the fractional anisotropy FA can be visualized by the

Figure 4.31 Color coded fractional anisotropy (FA) map. The hue
represents the main direction of the diffusion and the brightness
the fractional anisotropy. (Courtesy of Professor S. Sunaert,
Department of Radiology.)

hue and brightness respectively. Figure 4.31 shows a
color image of the anisotropic diffusion in the white
matter fibers of the brain. These fibers can also be
tracked (see Figure 7.16) and visualized as 3D bundles
(see Figure 8.9). This technique, called tractography, is
particularly useful for showing connectivities between
different brain regions.†

Perfusion
Blood perfusion of tissues refers to the activity of the
capillary network, where exchanges between blood
and tissues are optimized. Oxygen and nutrients are
transported to the cells, and the waste products are
eliminated. The blood flow is therefore the important
parameter for perfusion. As we have seen, blood can
be visualized using a contrast agent such as gadolin-
ium chelate, which is injected intravenously as a bolus.
It disturbs the local magnetic field and decreases T ∗2
in the neighborhood. T1 and T2 of the surround-
ing hydrogen-containing matter are also decreased.
A large signal drop can be obtained when the pas-
sage of contrast agent through brain gray matter is
imaged using a T2 or T ∗2 sensitive EPI sequence (see
Figure 4.48 below). Figure 4.49 shows another exam-
ple of a perfusion study, this time using T1-weighted
images. In these images perfused regions appear bright
because of their decreased T1.

Quantification of perfusion is still an active area of
research. Parameters of interest are the time-to-peak
(signal loss), the maximum signal loss, the area under
the curve, and so on. However, as in nuclearmedicine,
there is a strong tendency to describe the behavior of
the capillary network via a multicompartment model
and to relate its parameters to the obtained perfusion
curve. This yields a more objective assessment of the
performance of the capillary network. These models
are beyond the scope of this book.

Functional imaging
In 1990, investigators demonstrated the depen-
dence of brain tissue relaxation on the oxygenation
level in the blood, which offers a way to visual-
ize the brain function. The brain’s vascular system

† The tensor model does not hold for fibers crossing, bending,
or twisting within a single voxel. High angular resolution diffu-
sion imaging (HARDI) such as diffusion spectrum imaging (DSI)
and Q-ball imaging (QBI) have been proposed to resolve multiple
intravoxel fiber orientations. These methods require hundreds of
measurements, which is more than is used typically in DTI. More
details of these pulse schemes are beyond the scope of this textbook.
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provides oxygen to satisfy the metabolic needs of
brain cells. The oxygen is transported through the
blood vessels by means of hemoglobin molecules.
In the arteries, each hemoglobin molecule carries a
maximum of four oxygen molecules and is called
oxyhemoglobin (oxygen-rich hemoglobin). At the
capillary level, the hemoglobin molecule delivers part
of its oxygen molecules to the neurons and becomes
deoxyhemoglobin (oxygen-poor hemoglobin). Oxyhe-
moglobin is diamagnetic, whereas deoxyhemoglobin
is a paramagnetic substance that produces micro-
scopic magnetic field inhomogeneities that decrease
the transverse relaxation time of the blood and the
surrounding tissue. This implies that the oxygen con-
centration in the blood influences the MR signal. This
phenomenon is called the BOLD (blood oxygenation-
level dependent ) effect. When brain cells are activated,
the blood flow has to increase in order to meet the
higher oxygen consumption rate of the neurons. Actu-
ally, the blood flow overcompensates the neuronal
need for oxygen and, as a consequence, the oxygen
concentration increases in the capillaries, venules, and
veins. Hence, the transverse relaxation time T ∗2 of
brain tissue is longer when it is active than when it
is at rest. Gradient-echo images, such as EPI, are very
sensitive to changes inT ∗2 and arewidely used to detect
brain activation.

In a typical functional MRI (fMRI) investigation,
the brain function is activated when the patient in
the MR scanner performs a certain task. For exam-
ple, when the subject’s hand repeatedly opens and
closes, the primary motor cortex is activated. Two
image sequences are acquired, one during the task and
one during rest (i.e., when the hand does not move).
The active brain areas become visible after subtraction
of the two images. However, the result is very noisy
because of the low sensitivity of the method. The dif-
ference in MR signal between task and rest is only 2 to
5% of the local image intensity. To increase the SNR,
longer periods of activation (e.g., 30 s) are alternated
with equally long periods of rest, and during the whole
length of the investigation (e.g., 6 min), images are
taken every few seconds (2–10 s). This dataset is pro-
cessed statistically (see Chapter 7), leaving only those
brain areas that show statistically significant activa-
tion. Any functional brain area can be visualized by
fMRI, such as the sensorimotor cortex (Figure 4.47)
and the visual cortex, but also areas responsible
for higher order processes such as memory, object
recognition, or language.

Table 4.3 The values of TR and TE determine whether the
resulting images are ρ , T1, or T2 weighted

Type Repetition time TR Echo time TE
ρ-weighted long short

T1-weighted short short

T2-weighted long long

Image quality
Contrast
For a SE sequence, Eq. (4.50) shows that the signal is
proportional to

ρ
(
1− e−TR/T1

)
e−TE/T2 . (4.91)

Although exceptions exist, we have assumed here
that α = 90◦. The parameters in this equation that
influence the image contrast can be subdivided into
tissue-dependent and technical parameters. The tissue-
dependent parameters are the relaxation times T1 and
T2 and the spin or proton densityρ.† They are physical
and cannot be changed. The technical parameters are
the repetition time TR and the echo time TE. They are
the pulse sequence parameters and can be tuned by the
operator in order to adapt the contrast in the image to
the specific application. By varying TR and TE, ρ-, T1-
or T2-weighted images are obtained. Table 4.3 sum-
marizes the parameter settings and their weighting
effect.

Commonly used values at 1 T for TR lie between
2000 and 2500 ms for ρ- and T2-weighted images and
between 400 and 800 ms for T1-weighted images. The
echo time TE varies between less than 1 and 20 ms for
T1- andρ-weighted images andbetween80 and120ms
for T2-weighted images. Remember that T1 increases
with increasing field strength.

For GE sequences with α < 90◦, the signal also
depends on α and on T ∗2 . For example, the signal
intensity for the FLASH sequence in steady state is
proportional to

ρ e−TE/T ∗2

(
1− e−TR/T1

)
sin α

1− e−TR/T1 cosα
. (4.92)

Figure 4.32 illustrates this equation. More details can
be found in the specialized literature.

† Actually ρ is the net magnetization density, which depends not
only on the spin density, but also on the strength B0 of the external
magnetic field (see Eq. (4.102) below).90
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Figure 4.32 Relative signal of the FLASH sequence as a function of
the flip angle for T1 values ranging from 200 to 2000 ms. Note that
for each T1, there is a maximum signal for α < 90◦ .

Resolution
Resolution in the Fourier space
Let �kx denote the sampling distance in the kx -
direction of the Fourier space. To avoid aliasing in the
image space, the Nyquist criterion (see Appendix A,
p. 228) must be satisfied. It states that

�kx ≤ 1
2xmax

, (4.93)

where xmax is the border of the FOV in the x-direction:

xmax = FOVx

2
. (4.94)

Combining both equations yields

�kx ≤ 1
FOVx

. (4.95)

The �k-theorem relates �kx to Gx�t :

�kx = γ

2π
Gx�t . (4.96)

Hence, Gx�t is restricted to

Gx�t ≤ 2π
γ FOVx

. (4.97)

In practice, �t is fixed and Gx is scaled to the field of
view. An example of aliasing in the readout direction
is shown in Figure 4.33.

y

–xmax xmax x

Figure 4.33 In this simulation the distance kx in the �k-space was
chosen too large, yielding aliasing in the readout direction.

For �ky and Tph, a similar restriction can be
derived:

�ky ≤ 1
FOVy

,

�ky = γ

2π
gy Tph,

gy Tph ≤ 2π
γ FOVy

.

(4.98)

Hence, gy Tph must be sufficiently small. In practice,
Tph is fixed and gy is scaled to the field of view.

Resolution in the image space
The spatial resolution can be described by the FWHM
of the PSF: the smaller the width of the PSF, the larger
the spatial resolution. Currently, the FWHM of the
PSF is less than 1mm for conventional sequences. The
resolution of fast imaging sequences (EPI, HASTE)
is worse because multiple echoes per excitation cause
blurring (see Figure 4.21).

The PSF defines the highest frequency kmax avail-
able in the signal. When sampling the �k-space, the
highestmeasured frequencymust preferably be at least
as high. Using the �k-theorem in the x-direction, this
means that

kmax ≤ γ

2π
Gx

Tro
2
= γ

2π
Gx

Nx�t

2
. (4.99)

As discussed above, Gx is scaled with the field of view
and �t is fixed. Hence, the only remaining variable
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which influences the resolution in the x-direction is
the number of samples Nx .

In the y-direction, a similar conclusion can be
derived:

kmax ≤ γ

2π
Nph gy

Tph

2
. (4.100)

In practice, Tph is fixed and gy is scaled to the field
of view; Nph is variable but it is proportional to the
acquisition time and is thus limited as well.

Noise
Let n↑ and n↓ denote the number of spins with energy
E↑ and E↓, respectively. It can be shown that [18]

n↑ − n↓ ≈ ns
γ h̄B 0
2kBT

= 3.3× 10−6ns, (4.101)

where ns = n↑ + n↓, kB is Boltzmann’s constant, and
T is the absolute temperature of the object. Hence,
n↑ > n↓, but the fractional excess in the low-energy
state is very small. It can be shown that the amplitude
of the net magnetization vector is quite small:

M ≈ (h̄γ )2nsB 0
4kBT

. (4.102)

To get an idea of the magnitude of M , for a bot-
tle of water of 1 L at T = 310 K and B 0 = 1 T,
ns ≈ 6.7 × 1025 and M ≈ 3 × 10−6J/T. Hence, it is
not surprising that MR images suffer from noise. The
most important noise sources are the thermal noise in
the patient and in the receiver part of the MR imag-
ing system. Consequently, the lower the temperature,
the less the noise. From Eq. (4.102) it follows that
cooling the subject would also yield a higher signal.
Unfortunately, this cannot be applied to patients.

Remember that 3D imaging has a better SNR than
2D imaging (p. 79). Furthermore, the SNR of very fast
imaging sequences (multiple echoes per excitation, see
p. 81) is worse as compared with the conventional
sequences.

Artifacts
Artifacts find their origin in technical imperfections,
inaccurate assumptions about the data and numerical
approximations.
• The external magnetic field �B is assumed to

be homogeneous to avoid unnecessary dephas-
ing. Dephasing causes signal loss and geometric

Figure 4.34 Image obtained with a T2-weighted TurboSE
sequence on a 1.5 T system. The circular rods of the reference frame,
used for stereotactic neurosurgery (see Chapter 8), should lie on
straight lines. Nonlinearities of the magnetic field have caused a
pronounced geometric distortion. It can be shown that the
distortion is inversely proportional to the gradient strength. For
stereotactic surgery, geometric accuracy is of utmost importance,
and this image is therefore useless. (Courtesy of Professor B. Nuttin,
Department of Neurosurgery and Professor S. Sunaert,
Department of Radiology.)

deformations (Figure 4.34) as will be explained
below.

The flip angle should be constant through-
out the entire image volume to ensure a spatially
homogeneous signal. If the RF field is inhomoge-
neous, the flip angle α slowly varies throughout the
image space, causing a low-frequency signal inten-
sity modulation. In Figure 4.35, this bias field was
separated and removed from the image by postpro-
cessing for proper segmentation of the white brain
matter.

In practice the slice sensitivity profile (SSP) is
not rectangular, yielding cross-talk between neigh-
boring slices in multi-slice imaging. This can be
avoided by introducing a sufficiently large gap
(e.g., 10% of the slice width, which is defined
as the FWHM of the SSP) between subsequent
slices.

Other less common artifacts are due to sys-
tem failure, inappropriate shielding of the magnet
room or interaction with unshielded monitoring
equipment. With proper care they can be avoided.
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(a) (b)

(c) (d)

Figure 4.35 (a) Sagittal image of the
brain obtained with a 3D GE pulse
sequence. RF field inhomogeneities
cause a bias field shown in (b), which is a
low-frequency intensity variation
throughout the image. This bias field was
separated from (a) by image processing.
(c and d) Result of white brain matter
segmentation (see Chapter 7) before and
after bias field correction, respectively.
The result shown in (d) is clearly superior
to that in (c). (Images obtained as part of
the EC-funded BIOMED-2 program under
grant BMH4-CT96-0845 (BIOMORPH).)

Figure 4.36 Ghosting is a characteristic artifact caused by periodic
motion. In this T1-weighted SE image of the heart, breathing, heart
beats, and pulsating blood vessels yield ghosting and blurring.

• The data are assumed to be independent of the
T2 relaxation during the measurements. If this
is not the case, for example when using multi-
ple echoes per excitation, the spatial resolution
decreases (Eq. (4.69)).

Tissues are assumed to be stationary. Motion
yields dephasing artifacts (Figure 4.36).

Similar to an inhomogeneous external mag-
netic field, the magnetic susceptibility of tissues
or foreign particles and implants yields dephasing
(Figure 4.18).

• Digital image reconstruction implies discretization
and truncation errors thatmay produce visual arti-
facts. Inadequate sampling yields aliasing, known
as the wrap-around artifact (Figure 4.33). A trun-
cated Fourier transform implies a convolution of
the image with a sinc function and yields ripples
at high-contrast boundaries. This is the Gibbs arti-
fact or ringing artifact. A similar truncation artifact
is caused in CE MRA when the contrast agent
suddenly arrives in the selected slab during the 93
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(a) (b)

Figure 4.37 Phase cancellation artifact. (a) T1-weighted image (GE sequence) in which fat and water are exactly out of phase (i.e., for a
specific TE) in voxels that contain both elements. This yields the typical dark edges at water/fat boundaries. (b) Phase cancellation is undone
by changing the TE to a value where water and fat are in phase. (Courtesy of Professor S. Sunaert, Department of Radiology.)

acquisition of the �k-space. If, for example, the
low frequencies in the �k-space are sampled first,
when the contrast agent has not yet arrived in the
selected volume, and the high-frequency informa-
tion is acquired next when the blood vessels are
filled with contrast, ringing occurs at the blood
vessel edges.

The consequences of involuntary phase shifts and
dephasing need somemore attention. Aswe have seen,
phase shifts are necessary to encode position. Con-
sequently, intervoxel dephasing is unavoidable but
yields signal loss. This is particularly the case in the
outer regions of the �k-space, where the measured sig-
nal is low and noisy. However, during the readout all
the spins within a single voxel should precess in phase
and with the correct phase, dictated by the spatial
position of the voxel.

• If the spins precess in phase, but this phase is
not the predicted one, the voxel information is
represented at a different spatial position in the
reconstructed image.

• In case of intravoxel dephasing, i.e., the spins
within the voxel do not precess in phase, the signal
detected from this voxel drops down and its assign-
ment is distributed throughout the image domain
after reconstruction.

The consequences of phase errors can be summarized
as signal loss and position errors, visible as spatial
deformation and ghost patterns.

• Signal loss is notable if the effective external mag-
netic field yields intravoxel dephasing. This is for
example the case if magnetic particles are present
in the body (Figure 4.18). Another example is the
dark edge at water–fat transitions (Figure 4.37).
Due to the chemical shift between water and fat,
these elements precess at a slightly different Lar-
mor frequency. Consequently, the spins in voxels
that contain both elements, can go out of phase,
yielding signal loss. Note that this kind of signal
loss can be largely undone with a 180◦ pulse, i.e. by
using a SE sequence.

Velocity induced dephasing is another cause
of signal loss, which occurs in blood vessels.
Motion compensation can undo this effect for
nonturbulent flow.

• Geometric distortions are caused by deviations of
the main magnetic field, nonlinear magnetic field
gradients (Figure 4.34) andmagnetic susceptibility
of the tissue. Another cause is the chemical shift
between water and fat, yielding a phase difference
of 150Hz per tesla between both and consequently,
a mutual spatial misregistration. This is called the
chemical shift artifact (Figure 4.38).
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• Ghosting is due to periodic spin motion, such
as breathing (Figure 4.36), heart beats, blood
vessel pulsation and repeated patient twitches.
Because the sampling periods in the phase- and
frequency-encoding directions differ substantially
(TR versus �t ), motion artifacts appear partic-
ularly in the phase-encoding direction. Ghosting
can be explained as follows. Consider a fixed voxel
in the image space. The net magnetization in this
voxel is not constant but time dependent and peri-
odic as the object moves. In general, any periodic

Figure 4.38 The chemical shift artifact can be seen along the
spinal canal. The fat that surrounds the spinal canal, is shifted in the
phase-encoding direction with respect to the CSF. (Courtesy of
Professor S. Sunaert, Department of Radiology.)

function can be written as a Fourier series of sinu-
soids. According to the �k-theorem, the time can
be replaced by the spatial frequency ky . Conse-
quently, the net magnetization in the fixed voxel
can be written as a function of ky , represented by
a sum of sinusoids. The inverse Fourier transform
of each sinusoid translates the signal some distance
�y away from the voxel. The result is a number of
ghosts in the y-direction (see Figure 4.36).
If the motion is relatively slow, but not periodic,
such as continuous patient movements and peri-
stalsis, the images appear blurred. Often, motion
cannot simply be represented as purely periodic
or continuous, and ghosting and blurring appear
simultaneously.

Equipment
Unlike CT imaging, it is unusual to talk about MR
scanner generations. Rather, the image quality has
continuously been improved through technical evo-
lutions of the magnets, gradient systems, RF systems,
and computer hardware and software.

Throughout the years, improved magnets have
resulted in more compact designs with higher main
field homogeneities. Superconducting magnets are
exclusively used for high field strengths (Figure
4.39(a)).

For lower field strengths, permanent and resistive
magnets are employed. They are cheaper than super-
conductingmagnets but have a lower SNRand thefield

(a) (b)

Figure 4.39 (a) Whole-body 3 T scanner, designed to visualize every part of the body. This system has a superconducting magnet with a
horizontal, solenoid main field. The patient is positioned in the center of the tunnel, which sometimes causes problems for children or for
people suffering from claustrophobia. (b) C-shaped 1.5 T open MR system with vertical magnetic field. The open design minimizes the risk of
claustrophobia. The increased patient space and detachable table greatly improve handling. The system can also be used for MR-guided
procedures. (Courtesy of Philips Healthcare.)
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homogeneity is relatively poor. Figure 4.39(b) shows
a C-shaped open MR scanner with a vertical magnetic
field.

Open MR systems can be used for MR-guided
procedures. Interventional MRI (iMRI) (Figure 4.40)
provides real time images during surgery or therapy.
This way the surgeon is able to follow the surgical
instrument during its manipulation. This instrument
can be, for example, a biopsy needle, a probe for cyst
drainage, a catheter to administer antibiotics, or a
laser or a cryogenic catheter for thermotherapy (i.e.,
to destroy pathological tissue locally by either heating

Figure 4.40 The Medtronic PoleStar® iMRI Navigation Suite, an
intra-operative MR image-guidance system, operating at 0.15 T
(gradient strength 25 mT/m) suitable for an existing operating
room. (Courtesy of Professor B. ter Haar Romeny, AZ Maastricht and
TU Eindhoven.)

or freezing it). Note that introduction of an MR unit
into an operating room requires some precautions.

• MR-compatible materials must be used for all sur-
gical instruments. Ferromagnetic components are
dangerous because they are attracted by the mag-
netic field and useless because they produce large
signal void artifacts in the images.

• Electronic equipment that generates RF radiation
must be shielded from the RF field of the MR
imaging system and vice versa.

• The combination of electrical leads with the RF
field can produce hot spots, which may cause
skin burns. Fiberoptic technology is therefore
recommended.

The gradient system is characterized by its degree of
linearity, its maximum amplitude, and its rise time
(i.e., the time needed to reach the maximum gra-
dient amplitude). Linearity is mandatory for correct
position-encoding. The nonlinearity is typically 1–
2% in a FOV with diameter 50 cm. It is worst at
the edge of the FOV. The maximum amplitude has
increased from 3 mT/m in the early days to 50 mT/m
for the current state-of-the-art imaging systems with-
out significant increase in rise time. This is one of
the important factors in the breakthrough of ultrafast
imaging.

The RF system has improved significantly as well.
The sensitivity and in-plane homogeneity of signal
detection have increased. Currently, there are special
coils for almost every anatomical region (Figure 4.41).
They are all designed to detect the weakest MR

(a) (b)

Figure 4.41 (a) Head coil and (b) body coil, used to detect optimally the RF signals received from the surrounded body part.
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signal possible. The demands on the RF ampli-
fier have also increased. Whereas, for the conven-
tional SE sequences, it was activated twice every
TR, ultrafast SE-based sequences such as HASTE
(half Fourier single shot turbo spin-echo) require a
much higher amplifier performance. Present imag-
ing systems also monitor the deposition of RF
power.

As forall digitalmodalities,MRIhasbenefited from
the hardware and software evolution. Much effort has
been spent on decreasing the manipulation time and
increasing the patient throughput. Additionally, the
diagnosis of dynamic 3D datasets is currently assisted
bypowerful postprocessing for analysis (e.g., statistical
processing of fMRI) and visualization (e.g., MIP of an
MRA or reslicing along an arbitrary direction).

(a) (b) (c)

Figure 4.42 Sagittal proton density image (a), and sagittal (b) and coronal (c) T2 fat-suppressed images of the knee joint, showing a tear in
the posterior horn of the medial meniscus (arrow) and a parameniscal cyst (arrowhead). (Courtesy of Dr. S. Pans, Department of Radiology.)

(a) (b)

Figure 4.43 (a) MR image obtained with a T2-weighted TurboSE sequence (TE = 120 ms, TR = 6 s) through the prostate. (b) CT image of the
same cross-section. The images of both modalities were geometrically registered with image fusion software (see Chapter 7). The contour of
the prostate was manually outlined in both images (see lower right corner; MRI red contour, CT yellow contour). CT systematically
overestimates the prostate volume because of the low contrast between prostate tissue and adjacent periprostatic structures, which can only
be differentiated in the MR image. (Courtesy of Professor R. Oyen, Department of Radiology.)
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(a) (b) (c)

(d) (e) (f)

Figure 4.44 To some extent MRI makes tissue characterization feasible. (a) and (d) show anatomical images through the liver obtained with a
2D T1-weighted GE sequence. Both detected lesions (arrows) are equally dark. To characterize them, a T2-weighted sequence (HASTE) is used
to obtain an image with an early TE train centered around 60 ms ((b) and (e)) and an image with a late TE train centered around 378 ms ((c) and
(f)). The intensity of the lesion in (b) is only slightly higher than the intensity of the lesion in (e). When measuring around TE = 378 ms,
however, the intensity in (c) remains almost as high as in (b), but the intensity of the lesion in (f) clearly decreases as compared with (e). This
intensity decay is characteristic for the type of lesion. (a–c) show a biliary cyst and (d and f ) a hemangioma. (Courtesy of Professor D.
Vanbeckevoort, Department of Radiology.)

Clinical use
Magnetic resonance imaging can be applied to obtain
anatomical images of all parts of the human body that
contain hydrogen, that is, soft tissue, cerebrospinal
fluid, edema, and so forth (see Figure 4.42) without
using ionizing radiation. Theρ-, T1-, andT2-weighted
images can be acquired with a variety of acquisi-
tion schemes. This flexibility offers the possibility of
obtaining a better contrast between different soft tis-
sues than with CT (see Figure 4.43). To a certain
extent, the availability of ρ-, T1-, and T2-weighted
images makes tissue characterization feasible (see
Figure 4.44).

As mentioned on p. 89, contrast agents are also
used in MRI. There are two biochemically different

types of contrast agents. Thefirst type, such as gadolin-
ium compounds, has the same biodistribution as
contrast agents for CT and is not captured by the cells.
An example is shown in Figure 4.45. The second type,
such as iron oxide, is taken up by specific cells, as is
the case with contrast agents (radioactive tracers) in
nuclear medicine (Chapter 5).

As discussed in the previous sections, special
sequences have been developed for blood vessel imag-
ing, functional imaging, perfusion, and diffusion
imaging.

Unlike radiography or CT, MRI is able to acquire
an image of the blood vessels without contrast
injection. However, contrast agents are still used for
the visualization of blood with a reduced inflow or98
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Figure 4.45 T1-weighted 2D SE image after contrast injection
(Gd–DTPA) shows a hyperintense area (arrow) in the left frontal
cortical region because of abnormality of the blood–brain barrier
after stroke. (Courtesy of Dr. S. Dymarkowski, Department of
Radiology.)

with complex motion patterns such as turbulence
(Figure 4.46).

The SNR of functional MRI is usually too small
simply to visualize the acquired images. Statistical
image analysis (see Chapter 7) is then performed on
a time series of 3D image stacks obtained with EPI.
This way more than a hundred 64 × 64 × 32 image
volumes can be acquired in a few minutes. After
statistical analysis, significant parameter values are
visualized and superimposed on the corresponding
T1- or T2-weighted anatomical images (Figure 4.47).

Perfusion images are also time series of 2D or 3D
image stacks. Figure 4.48 shows a perfusion study after
brain tumor resection to exclude tumor residue or
recurrence and Figure 4.49 is an example of a perfu-
sion study after myocardial infarction to assess tissue
viability.

Diffusion images reflect microscopically small dis-
placements of hydrogen-containing fluid. A high
signal reflects a decreased diffusion (less dephasing).
Two examples of impaired diffusion in the brain are
shown in Figures 4.50 and 4.51.

(a) (b)

(c) (d)

Figure 4.46 Contrast-enhanced 3D MR angiography of the thoracic vessels: (a) axial, (b) sagittal, (c) coronal view, and (d) maximum intensity
projection. (Courtesy of Professor J. Bogaert and Dr. S. Dymarkowski, Department of Radiology.)
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(a)

(b)

Figure 4.47 (a) T2-weighted TurboSE
axial scan with a hyperintense parietal
tumoral lesion. Along the left–central
sulcus an “inverted omega" shape (arrow)
can be identified, which corresponds to
the motor cortex of the hand. This
landmark is no longer visible in the right
hemisphere because of the mass effect of
the parietal lesion. (b) Using fMRI of
bilateral finger tapping alternated with
rest, a parametric color image was
obtained and superimposed on the
T2-weighted axial sections. The
sensorimotor cortex has clearly been
displaced in front of the lesion. (Courtesy
of Professor S. Sunaert, Department of
Radiology.)

(a)

(b)

Figure 4.48 (a) Typical curve of a perfusion study. A time sequence of T∗2 sensitive echo planar images (EPI) is acquired. The decrease in T ∗2
upon the first passage of the contrast agent produces dephasing and a significant signal drop. The smooth yellow line represents the average
intensity in the slice as a function of time, while the noisy blue curve shows the intensity in a single pixel. The origin corresponds to the start of
the bolus injection in a cubital vein. (b) From the curve shown in (a), several color maps can be calculated, such as the cerebral blood volume
(CBV), the cerebral blood flow (CBF) and the mean transit time (MTT). In this image the cerebral blood volume (CBV) is shown. (Courtesy of
Professor S. Sunaert, Department of Radiology.)
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Figure 4.49 Example of anteroseptal myocardial infarction. (a) The patency of the coronary arteries can be assessed by means of a first-pass
T1-weighted MR image after injection of a contrast agent (Gd–DTPA). Residual obstruction of coronary vessels in this patient yields a large area
of hypoperfusion subendocardially in the anteroseptal part of the left ventricular myocardium (region A). (b) Integrated intensity of the two
regions outlined in (a). The lower curve shows that in region A the signal intensity does not increase anymore, in contrast to the signal increase
in the normal myocardium (upper curve). Instead of 1D plots, it is clear that parametric images as in Figure 4.48 can also be created. (Courtesy
of Professor J. Bogaert and Professor S. Dymarkowski, Department of Radiology, and Professor F. Rademakers, Department of Cardiology.)

(a) (b)

Figure 4.50 Example of acute stroke. (a) Native diffusion-weighted image (b = 1000 s/mm2) showing a hyperintense area in the posterior
watershed area due to restricted diffusion. (b) Corresponding ADC map (see p. 88), showing hypointense signal in the same area, confirming
the restricted diffusion. The diffusion is restricted due to cytotoxic edema. (Courtesy of Professor S. Sunaert, Department of Radiology.)
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(a) (b)

Figure 4.51 (a) A T2-weighted transverse
TurboSE image does not show any
abnormalities in a patient with recent
dementia. (b) Diffusion-weighted image
shows that this patient has Creutzfeldt–Jakob
disease. The hyperintense signal (arrows) in
the left cortical hemisphere is due to a
decreased water diffusion and reflects the
spongiform changes in the gray matter with
an increased intracellular water content
(swollen cells) following inflow from the
extracellular space. (Courtesy of Professor P.
Demaerel, Department of Radiology.)

(a) (b) (c)

(e) (f)(d)

Figure 4.52 Liver MR examination six months after surgery of bronchial carcinoid. (a,b) On the T1- and T2-weighted images a large lesion
(arrows) can be seen anterior in the liver and a small nodule is visible at the right lateral side (arrowhead). (c,d) The large lesion is visible on
both the arterial (c) and venous (d) phase images after contrast application, while the small nodule is nearly invisible. (e,f) Diffusion-weighted
MR images acquired with respectively b = 50 s/mm2 (e) and b = 1000 s/mm2 (f ). Signal loss is visible in the large lesion when b increases,
while the small lesion remains almost unchanged due to a restricted diffusion. For the large lesion an ADC value of 0.00120 mm2/s was found
and it was classified as benign. The small lesion, however, presented a low ADC value of 0.00069 mm2/s and was therefore classified as
malignant. Histology later confirmed the diagnosis of benign focal nodular hyperplasia in the large lesion, and metastasis of carcinoid tumor
in the smaller lesion. (Courtesy of Dr. V. Vandecaveye, Department of Radiology.)

Diffusion imaging is also used to character-
ize tumoral tissues. In malignant tumoral deposits,
the cells are generally more closely spaced than in
normal tissues, leading to an increased restriction
of molecular diffusion. An example is shown in
Figure 4.52.

Biologic effects and safety
Biologic effects
RF waves
In normal operating conditions, MRI is a safe medi-
cal imaging modality. For example, pregnant women

102



Chapter 4: Magnetic resonance imaging

may undergo an MRI examination, but not a CT or
PET scan. This is because MRI employs nonionizing
RFwaves, and the energy of RF photons is much lower
than that of ionizing X-ray photons (see Figure 2.1).
The absorbed RF energy increases the vibrations of
atoms and molecules, which results in small increases
of tissue temperature. Furthermore, in conductive ele-
ments, such as electrodes, the magnetic component of
the RF waves induces a current if not appropriately
insulated.

The RF power that can safely be absorbed, is pre-
scribed by the specific absorption rate or SAR value,
expressed inwatts per kilogrambodyweight. Based on
the body mass entered upon patient registration, the
MR system calculates the SAR of each pulse sequence
selected by the operator. If the value is too high, the
pulse sequence will not start. The user must then
change the sequence parameters (e.g., by increasing
TR or decreasing the number of slices) until the RF
power deposition is within SAR limits. As a rule
of thumb the core body temperature rise should be
limited to 1◦C. Average SAR limits are on the order of
2 to 10 W/kg.

Magnetic gradients
Themagnetic flux dB/dt of a switchingmagnetic field
induces a low-frequency electrical current in conduct-
ing material. Fast switching of high-gradient fields
may generate a current in tissues such as blood vessels,
muscles and particularly nerves, if their stimulation
threshold is exceeded. Therefore, modern MRI sys-
tems contain a stimulation monitor, and the pulse
sequence starts only if the peripheral nerve stimula-
tion threshold is not exceeded. Cardiac stimulation or
ventricular fibrillation would requiremuch larger gra-
dient induced electrical fields than currently present
and are therefore very unlikely.

Magnetic gradient pulses are obtained by applying
pulsed currents in coils. These currents in combina-
tion with the static magnetic field yield Lorentz forces.
Consequently, the coils make repetitive movements,
causing the typical high-frequency drill noise. The
loudness should be kept below 100 dB. It can indi-
rectly be reduced by ear plugs or a noise canceling
headphone.

Static magnetic field
Ferromagnetic objects experience a translational force
and torque when placed in a magnetic field. Conse-
quently, they can undergo a displacement or cause

malfunction of equipment that contains magnetic
components.

Another effect of a static magnetic field is a change
in the electrocardiogram (ECG) when the patient is
inside the magnet. Because of the external main mag-
netic field, ions in the blood stream experience Lorentz
forces that separate positively and negatively charged
ions in opposite directions. This creates a small electric
field and a potential difference, which modifies the
normal charge distribution. The ECG becomes con-
taminated (T-wave elevation) by a blood flow related
surface potential. This phenomenon is always present
but is most obvious when imaging the heart. In these
examinations, the pulse sequence is usually triggered,
that is, via leads on the patient’s chest, the ECG is
measured, and the RF excitation is always started at
the same time as the heart cycle (this minimizes ghost-
ing from the pulsating heart).When the patient is back
out of themagnetic field, the ECGreturns to its normal
value. As far as is presently known, this small ECGdis-
tortion has no negative biological effects for external
magnetic fields up to 4 T.

Safety
Ferromagnetic objects must not be brought into the
MR examination room because the strong static mag-
netic field would attract such objects toward the center
of the magnetic field. This would destroy the coil
and may seriously harm a patient inside the coil.
One must be absolutely certain that all materials
and equipment (e.g., artificial respirator, scissors,
hair pins, paper clips) brought inside the MR exam-
ination room are fully MR-compatible. Nonferro-
magnetic metallic compounds are safe. For example,
an aluminum ladder can safely be used when a
light bulb inside the MR examination room must be
replaced.

Metallic objects inside the body are not unusual
(e.g., orthopedic fixation screws, hip prostheses,
stents, dental fillings, heart valves, pacemakers, and
surgical clips). Patients with heart valves, pacemak-
ers, and recent surgical clips (present for less than
3 months) must not be scanned using MRI. Patients
with very old prostheses or orthopedic fixation screws
must not be scanned if the exact metallic compound
is unknown. However, if the implants are recent, it is
safe to scan the patient. Caution is particularly needed
for patients with a metallic foreign body in the eye or
with an intracranial aneurysm clip or coil as even a
small movement may lead to hemorrhage.
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Conductive elements, such as electrodes, may pro-
duce burn lesions due to the induced current andmust
be insulated. Similarly, when positioning the patient,
conducting loops should be avoided. An example is a
patient with his or her hands folded over the abdomen.
The RF pulses will cause electrical currents in those
conducting loops, which may cause burns. Exam-
ples of serious burns caused by improper positioning
have already been reported in the specialized MR
literature.

Patients with implanted devices with magnetic
or electronic activation should in principle not be
examined using MRI. For example, the RF pulses can
reset or modify the pacing of a pacemaker, which
may be life threatening for the patient. A cochlear
stimulator can be severely damaged.

Future expectations
Although the contribution of MRI to the total num-
ber of radiological examinations is currently lim-
ited to only a few percent, it can be expected
that this amount will increase continuously in the
future because MRI yields high-resolution images
of anatomy and function with high specificity
and without using harmful ionizing electromagnetic
waves.
• With the exception of bone (e.g., skeleton, cal-

cifications) and air (e.g., lungs, gastrointestinal
tract) human tissues abundantly contain hydrogen
and they can optimally be distinguished by MRI

because of the flexibility of contrast adjustment
with proper pulse sequences.

• Other nuclei, such as the isotopes 13C, 19F and
23Na, which are visible in MRI at different reso-
nance frequencies, can be used to label metabolic
or pharmaceutical tracers.

• Quantitative analysis of function, perfusion, and
diffusion with high resolution and contrast will
progress continuously. An example is diffusion-
weighted imaging for detection, quantification and
therapy response in oncology.

• New contrast agents will become routinely avail-
able to study the morphology and function (e.g.,
hyperpolarized 3He for dynamic ventilation stud-
ies) as well as molecular processes (e.g., fer-
ritin to show gene expressions in vivo (see
Figure (5.26)).

From a technical point of view, the development of
MRI will focus on a better image quality (higher reso-
lution, better SNR) and shorter acquisition times. This
will be obtained with higher external magnetic fields,
higher gradients (e.g., gradient head insert coils to
avoid cardiac stimulation) in each direction, multiple
coils, and reconstruction algorithms that are not based
on Fourier theory. As usual in the history of MRI, new
pulse sequences will continue to be developed in the
future. It can also be expected that the hybrid PET/MR
scanner, which exists today and acquires PET andMR
images simultaneously, will becomean important clin-
ical imaging modality because of its higher specificity
than a stand-alone PET or MRI unit.
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5 Nuclear medicine imaging

Introduction
The use of radioactive isotopes for medical purposes
has been investigated since 1920, and since 1940
attempts have been undertaken to image radionuclide
concentration in the human body. In the early 1950s,
BenCassen introduced the rectilinear scanner, a “zero-
dimensional” scanner, which (very) slowly scanned in
two dimensions to produce a projection image, like
a radiograph, but this time of the radionuclide con-
centration in the body. In the late 1950s, Hal Anger
developed the first “true” gamma camera, introducing
an approach that is still being used in the design of all
modern cameras: the Anger scintillation camera [21],
a 2D planar detector to produce a 2D projection image
without scanning.

The Anger camera can also be used for tomog-
raphy. The projection images can then be used
to compute the original spatial distribution of the
radionuclide within a slice or a volume, in a pro-
cess similar to reconstruction in X-ray computed
tomography. Already in 1917, Radon published the
mathematical method for reconstruction from projec-
tions, but only in the 1970s was the method applied
in medical applications – first to CT, and then to
nuclear medicine imaging. At the same time, itera-
tive reconstruction methods were being investigated,
but the application of those methods had to wait until
the 1980s for sufficient computer power.

The preceding tomographic system is called a
SPECT scanner. SPECT stands for single-photon
emission computed tomography. Anger also showed
that two scintillation cameras could be combined to
detect photon pairs originating after positron emis-
sion. This principle is the basis of PET (i.e., positron
emission tomography), which detects photon pairs.
Ter-Pogossian et al. built the first dedicated PET
system in the 1970s, which was used for phantom

[21] S. R. Cherry, J. Sorenson, and M. Phelps. Physics in Nuclear
Medicine. Philadelphia, PA: W. B. Saunders Company, 3rd edition,
2003.

studies. Soon afterward, Phelps, Hoffman et al. built
the first PET scanner (also called PET camera) for
human studies [22]. The PET camera has long been
considered almost exclusively as a research system. Its
breakthrough as a clinical instrument dates only from
the last decade.

Radionuclides
In nuclear medicine, a tracer molecule is adminis-
tered to the patient, usually by intravenous injection.
A tracer is a particular molecule carrying an unstable
isotope – a radionuclide. In the body this molecule is
involved in ametabolic process. Meanwhile the unsta-
ble isotopes emit γ-rays, which allow us to measure
the concentration of the tracer molecule in the body
as a function of position and time. Consequently,
in nuclear medicine the function or metabolism is
measured. With CT, MRI, and ultrasound imaging,
functional images can also be obtained, but nuclear
medicine imaging provides measurements with an
SNR that is orders of magnitude higher than that of
any other modality.

Radioactive decay modes
During its radioactive decay a radionuclide loses
energy by emitting radiation in the form of particles
and electromagnetic rays. These rays are called γ-rays
or X-rays. In nuclear medicine, the photon energy
ranges roughly from 60 to 600 keV. Usually, electro-
magnetic rays that originate from nuclei are called
γ-rays, although they fall into the same frequency
range as X-rays and are therefore indistinguishable.

There are many ways in which a radionuclide
can decay. In general, the radioactive decay modes
can be subdivided into two main categories: decays

[22] M. Ter-Pogossian. Instrumentation for cardiac positron
emission tomography: background and historical perspective. In
S. Bergmann and B. Sobel, editors, Positron Emission Tomography of
the Heart. New York: Futura Publishing Company, 1992.
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with emission or capture of nucleons, i.e., neutrons
and protons, and decays with emission or capture of
β-particles, i.e, electrons and positrons.

Nucleon emission or capture
Nucleon emission or capture is not used in imaging
because these particles cause heavy damage to tissue
due to their high kinetic energy. Instead they can be
used in radiotherapy for tumor irradiation.

An example is neutron capture therapy, which
exploits the damaging properties of α-particles. An
α-particle is a helium nucleus, which consists of two
protons and two neutrons. It results from the decay of
an unstable atom X into atom Y as follows:

A
ZX→A−4

Z−2 Y +4
2 He2+. (5.1)

If X hasmass number∗ A and atomic number† Z , then
Y has mass number A − 4 and atomic number Z − 2.
The α-particle 4

2He2+ is a heavy particle with a typ-
ical kinetic energy of 3–7 MeV. This kinetic energy
is rapidly released when interacting with tissue. The
range of an α-particle is only 0.01 to 0.1 mm in water
and soft tissue. In order to irradiate a deeply located
tumor, neutron capture therapy can be applied. Neu-
trons, produced by a particle accelerator, penetrate
deeply into the tissue until captured by a chemical
component injected into the tumor. At that moment
α-particles are released:

A
ZX + n→ A+1

ZX + γ→A−3
Z−2 Y +4

2 He2+. (5.2)

The radioactive decay modes discussed below are
all used in nuclear medicine imaging. Depending on
the decay mode, a β-particle is emitted or captured
and one or a pair of γ-rays is emitted in each event.

∗ The mass number is the sum of the number of nucleons, i.e.,
neutrons and protons.
† The atomic number is the number of protons. Isotopes of a chem-
ical element have the same atomic number (number of protons in
the nucleus) but have different mass numbers (from having differ-
ent numbers of neutrons in the nucleus). Examples are 12C and 14C
(6 protons and 6 respectively 8 neutrons). Different isotopes of the
same element cannot have the same mass number, but isotopes of
different elements often do have the same mass number. Examples
are 99Mo and 99Tc, 14C (6 protons and 8 neutrons) and 14N (7
protons and 7 neutrons).

Electron β− emission
In this process, a neutron is transformed essentially
into a proton and an electron (called a β−-particle):

A
ZX→ A

Z+1 Y + e−

n→ p+ + e−. (5.3)

Because the number of protons is increased, this trans-
mutation process corresponds to a rightward step in
Mendelejev’s table.

In some cases the resulting daughter product of the
preceding transmutation can still be in a metastable
state AmY. In that case it decays further with a certain
delay to a more stable nuclear arrangement, releas-
ing the excess energy as one or more γ-photons. The
nucleons are unchanged, thus there is no additional
transmutation in decay from excited to ground state.

Because β-particles damage the tissue and have no
diagnostic value, preference in imaging is given to
metastable radionuclides, which are pure sources of
γ-rays. The most important single-photon tracer,
99mTc, is an example of this mode. 99mTc is a
metastable daughter product of 99Mo (half-life =
66 hours). 99mTc decays to 99Tc (half-life = 6 hours)
by emitting a photon of 140 keV. The half-life is the
time taken to decay to half of its initial quantity.

Electron capture (EC)
Essentially, an orbital electron is captured and com-
bined with a proton to produce a neutron:

A
ZX + e− → A

Z−1 Y
p+ + e− → n. (5.4)

Note that EC causes transmutation toward the left-
most neighbor in Mendelejev’s table. An example of
a single-photon tracer of this kind used in imaging is
123I with a half-life of 13 hours.

The daughter emits additional energy as γ-
photons. Similar to β− emission it can be metastable,
which is characterized by a delayed decay.

Positron emission (β+ decay)
Aproton is transformed essentially into a neutron and
a positron (or anti-electron):

A
ZX→ A

Z−1 Y + e+

p+ → n+ e+. (5.5)106
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After a very short time (∼10−9 s) and within a few
millimeters of the site of its origin, the positron hits an
electron and annihilates (Figure 5.1). The mass of the
twoparticles is converted into energy, which is emitted
as two photons. These photons are emitted in oppo-
site directions. Each photon has an energy of 511 keV,
which is the rest mass of an electron or positron.
This physical principle is the basis of positron emis-
sion tomography (PET). An example of a positron
emitter used in imaging is 18F with a half-life of
109 minutes.

As in β− emission and EC, the daughter nucleus
may further emit γ-photons, but they have no diag-
nostic purpose in PET.

As a rule of thumb, light atoms tend to emit
positrons, and heavy ones tend to prefer other modes,
but there are exceptions.

Statistics
In nuclear medicine imaging, the number of detected
photons is generally much smaller than in X-ray

511 keV

511 keV

Figure 5.1 Schematic representation of a positron–electron
annihilation. When a positron comes in the neighborhood of an
electron, the two particles are converted into a pair of photons,
each of 511 keV, which travel in opposite directions.

t

N(t)

37%

50%

T1/2
t

N(0)

Figure 5.2 Exponential decay. τ is the time constant and T1/2 the
half-life.

imaging. Consequently, noise plays a more important
role here, and the imaging process is often considered
to be stochastic.

The exactmoment at which an atomdecays cannot
be predicted. All that is known is its decay probability
per time unit, which is an isotope dependent constant
α. Consequently, the decay per time unit is

dN (t )

dt
= −αN (t ), (5.6)

where N (t ) is the number of radioactive isotopes
at time t . Solving this differential equation yields
(see Figure 5.2)

N (t ) = N (t0)e−α(t−t0) = N (t0)e−(t−t0)/τ . (5.7)

τ = 1/α is the time constant of the exponential decay.
Note that N (t ) is the expected value. During a mea-
surement a different value may be found because the
process is statistical. The larger N is, the better the
estimate will be. Using Eq. (5.7) and replacing t by
the half-life T1/2 and t0 by 0 yields

N (T1/2) = N (0)e−T1/2/τ = 1
2

N (0)

−T1/2/τ = ln
1
2
= − ln 2

T1/2 = τ ln 2 = 0.69τ . (5.8)

Depending on the isotope the half-life varies between
fractions of seconds and billions of years.

Note that the presence of radioactivity in the body
depends not only on the radioactive decay but also on
biological excretion. Assuming a biological half-life
TB, the effective half-life TE can be calculated as

1
TE
= 1

TB
+ 1

T1/2
. (5.9)

Currently the preferred unit of radioactivity is the
becquerel (Bq). The curie (Ci) is the older unit.∗ One
Bqmeans one expected event per second and 1mCi =
37 MBq. Typical doses in imaging are on the order of
102 MBq.

It can be shown that the probability of measuring
n photons when r photons are expected, equals

pr (n) = e−r rn

n! . (5.10)

∗ Marie and Pierre Curie and Antoine Becquerel received the Nobel
Prize in 1903 for their discovery of radioactivity in 1896.
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This is a Poisson distribution in which r is the average
number of expected photons and

√
r is the stan-

dard deviation. r is also the value with the highest
probability. Hence, the signal-to-noise ratio (SNR)
becomes

SNR = r√
r
= √r . (5.11)

Obviously, the SNR becomes larger with longer
measurements.

For large r , a Poisson distribution can be well
approximated by a Gaussian with the same mean and
standard deviation. For small values of r , the distribu-
tion becomes asymmetrical, because the probability is
always zero for negative values.

Interaction ofγ-photons and particles
withmatter
Interaction of particles with matter
Particles, such as α- and β-particles, interact with
tissue by losing their kinetic energy along a straight
trajectory through the tissue (Figure 5.3). This straight
track is called the rangeR. In tissueRα is on theorder of
0.01 to 0.1 mm, while Rβ is typically a fewmillimeters.

Interaction ofγ-photons with matter
As in X-ray imaging, the twomost important photon–
electron interactions (i.e., Compton scatter and pho-
toelectric absorption) attenuate the emitted γ-rays.

If initiallyN (a) photons are emitted in point s = a
along the s-axis, the number of photons N (d) in the
detector at position s = d along the s-axis is

N (d) = N (a) e−
∫ d

a µ(s) ds , (5.12)

whereµ is the linear absorption coefficient. Obviously,
the attenuation of a photon depends on the position
s = a where it is emitted. Note that it also depends
on the attenuating tissue and on the energy of the
photons. For example, for photons emitted by 99mTc

(140 keV) themedianof the penetrationdepth inwater
is about 4.5 cm.

In PET, a pair of photons of 511 keV each has to be
detected. Because both photons travel independently
through the tissue, the detection probabilities must
be multiplied. Assume that one detector is positioned
in s = d1, the second one in s = d2, and a point
source is located in s = a somewhere between the two
detectors. Assume further that during a measurement
N (a) photon pairs are emitted along the s-axis. The
number of detected pairs then is

N (d1, d2) = N (a)e−
∫ a

d1
µ(s) dse−

∫ d2
a µ(s) ds

= N (a)e−
∫ d2

d1
µ(s) ds . (5.13)

In contrast to SPECT, the attenuation in PET is
identical for each point along the projection line.

Data acquisition
Photon detection hardware in nuclear medicine dif-
fers considerably from that used in CT. In CT, a large
number of photons must be acquired in a very short
measurement. In emission tomography, a very small
number of photons is acquired in a longer time inter-
val. Consequently, emission tomography detectors are
optimized for sensitivity.

The detector
Detecting the photon
Photomultiplier tubes coupled to a scintillation crystal
are still very common today. Newer detectors are pho-
todiodes, coupled to a scintillator, and photoconductors
(e.g., CZT), which directly convert X-ray photons into
an electrical conductivity (see also p. 35).

A scintillation crystal absorbs the photon via pho-
toelectric absorption. The resulting electron travels
through the crystalwhile distributing its kinetic energy
over a few thousand electrons in multiple collisions.
These electrons release their energy in the form of
a photon of a few electronvolts. These photons are

e–
a, b, ...

e–
a, b, ... a, b, ......

kinetic energy kinetic energy kinetic energy

R = range (straight track)

e–
a + 2e– He4

2

Figure 5.3 Interaction of particles with
matter. The particles are slowed down
along a straight track while releasing their
kinetic energy.
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Figure 5.4 Photomultiplier. Left: the
electrical scheme. Right: scintillation
photons from the crystal initiate an
electric current to the dynode, which is
amplified in subsequent stages.

visible to the human eye, which explains the term
“scintillation.”

Because the linear attenuation coefficient increases
with the atomic number Z (see Eq. (2.12)), the scin-
tillation crystal must have a high Z . Also, the higher
the photon energy, the higher Z should be because
theprobability of interactiondecreaseswith increasing
energy. In single-photon imaging, 99mTc is the tracer
used most often. It has an energy of 140 keV, and
the gamma camera performance is often optimized
for this energy. Obviously, PET cameras have to be
optimized for 511 keV. Many scintillators exist and
extensive research on new scintillators is still going
on. The crystals that are most often used today are
NaI(Tl) for single photons (140 keV) in gamma cam-
era and SPECT, and BGO (bismuth germanate), GSO
(gadolinium silicate) and LSO (lutetium oxyorthosili-
cate) for annihilation photons (511 keV) in PET.

A photomultiplier tube (PMT) consists of a pho-
tocathode on top, followed by a cascade of dynodes
(Figure 5.4). The PMT is glued to the crystal. Because
the light photons should reach the photocathode of
the PMT, the crystal must be transparent to the vis-
ible photons. The energy of the photons hitting the
photocathode releases some electrons from the cath-
ode. These electrons are then accelerated toward the
positively charged dynode nearby. They arrive with
higher energy (the voltage difference × the charge),
activating additional electrons. Because the voltage
becomes systematically higher for subsequent dyn-
odes, the number of electrons increases in every stage,

finally producing a measurable signal. Because the
multiplication in every stage is constant, the final
signal is proportional to the number of scintillation
photons, which in turn is proportional to the energy
of the original photon. Hence, a γ-photon is detected,
and its energy can also be measured.

Collimation
In radiography and X-ray tomography, the position
of the point source is known and every detected pho-
ton provides information about a line that connects
the source with the detection point. This is called
the projection line. In nuclear medicine, the source
has an unknown spatial distribution. Unless some
collimation is applied, the detected photons do not
contain information about this distribution.

In single-photon detection (SPECT), collimation is
donewith amechanical collimator, which is essentially
a thick lead plate with small holes (Figure 5.5(a)). The
metal plate absorbs all the photons that do not prop-
agate parallel to the axis of the holes. Obviously, most
photons are absorbed, and the sensitivity suffers from
this approach.

In PET, mechanical collimation is not needed.
Both photons are detected with an electronic coin-
cidence circuit (Figure 5.5(b)), and because they
propagate in opposite directions, their origin must lie
along the line that connects the detection points. This
technique is called “coincidence detection” or “elec-
tronic collimation.” Although in PET two photons
instead of one must resist the absorption process, the
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(a) (b)

Figure 5.5 Principle of collimation in (a)
SPECT and (b) PET. In SPECT collimation is
done with mechanical collimators, while
in PET photon pairs are detected by
electronic coincidence circuits
connecting pairs of detectors.

(a) (b)

Figure 5.6 Raw PET data organized as
projections (a) and as a sinogram (b).
Typically, there are a few hundred
projections, one for each projection
angle, and about a hundred sinograms,
one for each slice through the patient’s
body. (Courtesy of the Department of
Nuclear Medicine.)

sensitivity in PET is higher than that of single-photon
imaging systems because no photons are absorbed by
a lead collimator.

In summary, both in PET and in SPECT, informa-
tion about lines is acquired. As in CT, these projection
lines are used as input to the reconstruction algorithm.
Figure 5.6 shows an example of the rawdata, which can
be organized as projections or as sinograms.

Photon position
To increase the sensitivity, the detector area around
the patient should be as large as possible. A large detec-
tor can be constructed by covering one side of a single
large crystal (e.g., 50× 40× 1 cm) with a densematrix
(30 to 70) of PMTs (a few centimeters width each).
Light photons from a single scintillation are picked up
bymultiple PMTs. The energy is thenmeasured as the
sum of all PMT outputs. The position (x , y) where the

photon hits the detector is recovered as

x =
∑

i xiSi∑
i Si

, y =
∑

i yiSi∑
i Si

, (5.14)

where i is the PMT index, (xi , yi) the position of the
PMT, and Si the integral of the PMT output over
the scintillation duration. In this case, the spatial
resolution is limited by statistical fluctuations in the
PMT output.

In a single large crystal design, all PMTs contribute
to the detection of a single scintillation. Consequently,
two photons hitting the crystal simultaneously yield
an incorrect position and energy. Hence, the maxi-
mum count rate is limited by the decay time of the
scintillation event. Multiple, optically separated, crys-
tal modules (e.g., 50mm×50mm), connected to a few
(e.g. 2×2) PMTs, offer a solution to this problem. The
differentmodules operate in parallel, this way yielding
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much higher count rates than a single crystal design.
PET detectors typically use separate crystal modules
while in SPECT, where the count rates are typically
lower than in PET, most detectors consist of a single
large crystal. More details are given in the section on
equipment below (p. 117).

Number of photons detected
Assume a spatial distribution of tracer activity λ(s)
along the s-axis. In Eqs. (5.12) and (5.13), N (a) must
then be replaced by λ(s) ds and integrated along the
projection line s. For SPECT, we obtain

N (d) =
∫ +∞
−∞

λ(s)e−
∫ d

s µ(ξ) dξ ds, (5.15)

and for PET,

N (d1, d2) = e−
∫ d2

d1
µ(s) ds

∫ +∞
−∞

λ(s) ds. (5.16)

In PET the attenuation is identical for each point along
the projection line. Hence, the measured projections
are a simple scaling of the unattenuated projections.
In SPECT, however, attenuation is position depen-
dent, and no simple relation exists between attenuated
and unattenuated projections. Image reconstruction
is therefore more difficult in SPECT than in PET, as
will be explained on p. 112.

Energy resolution
As mentioned earlier, an estimate of the energy of
the impinging photon is computed by integrating the
output of the PMTs. The precision of that estimate is
called the “energy resolution.” The number of elec-
trons activated in a scintillation event is subject to
statistical noise. The time delay after which each elec-
tron releases the scintillation light photon is also a
random number. Also, the direction in which these
light photons are emitted is unpredictable. Conse-
quently, the PMT output is noisy and limits the energy
resolution. The energy resolution is usually quanti-
fied as the FWHM of the energy distribution and is
expressed as a percentage of the photopeak value. It
ranges from 10% FWHM in NaI(Tl) to 15% FWHM
in LSO andGSO, to over 20% FWHM in BGO. Hence,
the energy resolution is 14 keV for a 140 keV photon
detected in NaI(Tl) and 130 keV for a 511 keV photon
detected in BGO.

Count rate
In nuclearmedicine, radioactive doses are kept low for
the patient because of the long exposure times. The
detectors have been designed to measure low activ-
ity levels and detect individual photons. On the other
hand, these devices cannot be used for high activity
levels even if this would be desirable. Indeed, the
probability that two or more photons arrive at the
same time increases with increasing activity. In that
case, the localization electronics compute an incorrect
single position somewhere between the actual scintil-
lation points. Fortunately, the camera also computes
the total energy, which is higher than normal, and
these events are discarded. Hence, a photon can only
be detected successfully if no other photon arrives
while the first one is being detected. The probability
that no other photon arrives can be calculated from
the Poisson expression (5.10):

p(0|ηN τ) = e−ηN τ , (5.17)

where η represents the overall sensitivity of the
camera, N the activity in becquerels, and τ is the
detection time in seconds. The detection probability
thus decreases exponentially with increasing activity
in front of the camera!

Obviously, a high value for η is preferred. There-
fore, it is important to keep τ as small as possible.
The gamma camera and PET camera must therefore
process the incoming photons very quickly. For typ-
ical medical applications, the current machines are
sufficiently fast.

Imaging
Planar imaging
Planar images are simply the raw single-photon pro-
jection data. Hence, each pixel corresponds to the
projection along a line s (see Eq. (5.15)). Its gray value
is proportional to the total amount of attenuated activ-
ity along that line. To some extent a planar image can
be comparedwith anX-ray image because all the depth
information is lost. Figure 5.7 shows an anterior and
posterior whole-body (99mTc-MDP) image acquired
with a dual-head gamma camera.

Fourier reconstruction and filtered
backprojection
Assume a spatial distribution of tracer activity λ(s)
along the s-axis. Hence, the number of detected
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Figure 5.7 99mTc-MDP study acquired with a dual-head gamma
camera. The detector size is about 40× 50 cm, and the whole-body
images are acquired with slow translation of the patient bed. MDP
accumulates in bone, yielding images of increased bone
metabolism. As a result of the attenuation, the spine is more visible
in the lower, posterior image. (Courtesy of Department of Nuclear
Medicine.)

photons for SPECT is given by Eq. (5.15) and for PET
by Eq. (5.16). In both equations, there is an attenu-
ation factor that prevents straightforward application
of Fourier reconstruction or filtered backprojection
(which are very successful in CT). For example, at 140
keV, every 5 cmof tissue absorbs about 50%of the pho-
tons. Hence, in order to apply the projection theorem,
this attenuation effect must be corrected.

In Chapter 3 on CT, we have already seen how
to measure and calculate the linear attenuation coef-
ficient µ by means of a transmission scan. In order
to measure the attenuation, an external radioactive
source that rotates around the patient can be used. The
SPECT or PET system thus performs a transmission
measurement just like a CT scanner. If the external
source in position d1 emits N0 photons along the s-
axis, the detected fraction of photons at the other side
of the patient in position d2 is

N (d2)

N0
= e−

∫ d2
d1

µ(s) ds . (5.18)

This is exactly the attenuation factor for PET in
Eq. (5.16). It means that a correction for the atten-
uation in PET can be performed by multiplying
the emission measurement N (d1, d2) with the factor
N0/N (d2). Consequently, Fourier reconstruction or
filtered backprojection can be applied.

For SPECT, however, this is not possible. In
the literature it has been shown that under certain
conditions, the projection theorem can still be used

(i.e., if the attenuation is assumed to be a known
constant within a convex body contour (such as the
head)). Often, a fair body contour can be obtained by
segmenting a reconstructed image obtained without
attenuation correction. An alternative solution is to
use iterative reconstruction, as discussed below. How-
ever, in clinical practice, attenuation is often simply
ignored, and filtered backprojection is straightfor-
wardly applied. This results in severe reconstruction
artifacts. Nevertheless, it turns out that these images
still provide very valuable diagnostic information for
an experienced physician.

Iterative reconstruction
The attenuation problem in SPECT is not the only
reason to approach the reconstruction as an iterative
procedure. Indeed, the actual acquisition data dif-
fer considerably from ideal projections because they
suffer from a significant amount of Poisson noise,
yielding hampering streak artifacts (cf. Figure 3.21(b)
for CT).

Several iterative algorithms exist. In this text,
a Bayesian description of the problem is assumed,
yielding the popular maximum-likelihood (ML) and
maximum-a-posteriori (MAP) algorithms. It is fur-
ther assumed that both the solution and the measure-
ments are discrete values.

Bayesian approach
Assume that a reconstructed image � is computed
from the measurement Q. Bayes’ rule states

p(�|Q) = p(Q |�)p(�)

p(Q)
. (5.19)

The function p(�|Q) is the posterior probability, p(�)

the prior probability and p(Q|�) the likelihood. Max-
imizing p(�|Q) is called the maximum-a-posteriori
probability (MAP) approach. It yields the most likely
solution given a measurement Q.

When maximizing p(�|Q), the probability p(Q)

is constant and can be ignored. Because it is not
trivial to find good mathematical expressions for
the prior probability p(�), it is often also assumed
to be constant (i.e., it is assumed that a priori all
possible solutions have the same probability to be
correct). Maximizing p(�|Q) is then reduced to max-
imizing the likelihood p(Q |�). This is called the
maximum-likelihood (ML) approach.
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Maximum likelihood (ML)
The measurements Q are measurements qi of the
attenuated projections ri in detector position i. The
reconstruction image � is the regional activity λj in
each pixel j . The numerical relation between ri and λj

can be written as

ri =
∑
j=1,J

cijλj , i = 1, I . (5.20)

The value cij represents the sensitivity of detector i
for activity in j , which includes the attenuation of
the γ-rays from j to i. If we have a perfect collima-
tion, cij is zero everywhere except for the pixels j that
are intersected by projection line i, yielding a sparse
matrix C . This notation is very general, and allows
us, for example, to take the finite acceptance angle of
the mechanical collimator into account, which would
increase the fraction of nonzero cij . Similarly, if the
attenuation is known, it can be taken into account
when computing cij .

Because it can be assumed that the data are samples
from a Poisson distribution, the likelihood of mea-
suring qi if ri photons on average are expected (see
Eq. (5.10)) can be computed as

p(qi |ri) = e−ri r
qi
i

qi ! . (5.21)

Because the history of one photon (emission, tra-
jectory, possible interaction with electrons, possible
detection) is independent of that of the other photons,
the overall probability is the product of the individual
probabilities:

p(Q |�) =
∏

i

e−ri r
qi
i

qi ! . (5.22)

Obviously, this is a very small number: for example,
for ri = 15 the maximum value of p(qi |ri) is 0.1. For
larger ri , the maximum value of p is even smaller.
In a measurement for a single slice, we have on the
order of 10 000 detector positions i, and themaximum
likelihood value is on the order of 10−10 000.

When calculating the argument � that maximizes
p(Q|�), the data qi ! are constant and can be ignored.
Hence,

arg max
�

p(Q |�) = arg max
�

∏
i

e−ri r
qi
i . (5.23)

Because the logarithm is monotonically increasing,
maximizing the log-likelihood function also maxi-
mizes p(Q|�), that is,

arg max
�

p(Q |�) = arg max
�

ln p(Q |�)

= arg max
�

∑
i

(qi ln(ri)− ri)

= arg max
�

∑
i


qi ln(

∑
j

cijλj)−
∑

j

cijλj


 .

(5.24)

It turns out that the Hessian (the matrix of second
derivatives) is negative definite if the matrix cij has
maximum rank. In practice, this means that the like-
lihood function has a single maximum, provided that
a sufficient number of different detector positions i
are used.

To solve Eq. (5.24) and calculate λj , the partial
derivatives are put to zero:

∂

∂λj

∑
i


qi ln(

∑
j

cijλj)−
∑

j

cijλj




=
∑

i

cij

(
qi∑

j cijλj
− 1

)
= 0, ∀j = 1, J .

(5.25)

This system can be solved iteratively. A popu-
lar method with guaranteed convergence is the
expectation-maximization (EM) algorithm. Although
the algorithm is simple, the underlying theory is not
and is beyond the scope of this textbook.

Because the amount of radioactivity must be kept
low, the number of detected photons is also low,
yielding a significant amount of Poisson noise, which
strongly deteriorates the projection data. Although the
ML–EM algorithm takes Poisson noise into account,
it attempts to find the most likely solution, which is
an image whose calculated projections are as similar
as possible to the measured projections. The conse-
quence is that it converges to a noisy reconstructed
image.

To suppress the noise, the measured projections
must not be smoothedbecause thiswoulddestroy their
Poisson nature used by the reconstruction algorithm.
Several alternatives exist as follows.
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Figure 5.8 Reconstruction obtained
with filtered backprojection (top) and
maximum-likelihood
expectation-maximization (34 iterations)
(bottom). The streak artifacts in the
filtered backprojection image are due to
the statistical Poisson noise on the
measured projection (cf. Figure 3.21(b)
for X-ray CT.) (Courtesy of the
Department of Nuclear Medicine.)

• The reconstructed image can be smoothed.
• Another approach is to interrupt the iterations

before convergence. The ML–EM algorithm has
the remarkable characteristic that low frequencies
converge faster than high ones. Terminating early
has an effect comparable to low-pass filtering. This
approach was applied to obtain the image shown
in Figure 5.8.

• It is also possible to define some prior probability
function that encourages smooth solutions. This
yields a maximum-a-posteriori (MAP) algorithm,
discussed below.

Maximum-a-posteriori probability (MAP)
The ML approach assumes that the prior probabil-
ity p(�) is constant. Consequently, the argument �

that maximizes the posterior probability p(�|Q) also
maximizes the likelihood p(Q |�). However, if prior
knowledge of the tracer activity � is known, it can
be used to improve the quality of the reconstructed
image. Starting from Eq. (5.19) the goal then is to find

arg max
�

p(� |Q) = arg max
�

(ln p(Q |�)+ ln p(�))

(5.26)

where ln p(Q |�) is defined in Eq. (5.24). ln p(�) can
be defined as

p(�) = e−E(�)∑
� e−E(�)

. (5.27)

where E(�) is the so-called Gibbs energy (see also
p. 176). Equation (5.26) then becomes

arg max
�

p(� |Q) = arg max
�

(ln p(Q |�)− E(�)).

(5.28)

If, for example, neighboring pixels have similar
activity, E(�) can be defined as

E(�) =
∑

j

∑
k∈Nj

�(λj , λk) (5.29)

where Nj is a small neighborhood of j and�(λj , λk) is
a function that increases with the amount of dissimi-
larity between λj and λk . This way Eq. (5.28) yields a
smooth solution.

Prior anatomical knowledge can also be taken
into account this way. For example, in Figure 5.9
a high-resolution anatomical image was segmented
into different tissue classes (gray matter, white matter,
cerebrospinal fluid, etc.) using the method of statisti-
cal pixel classification explained in Chapter 7, p. 167.
During the iterative reconstruction process it can be
required that pixels belonging to the same tissue class
have a similar tracer activity. This can be obtained by
restricting Nj in Eq. (5.29) to the local neighborhood
of j with an identical tissue label as that of pixel j .
This way the tracer activity, measured at low reso-
lution, is iteratively forced back within its expected
high-resolution tissue boundaries.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.9 (a) T1 MRI image of the brain
with overlaid color subtraction SPECT (i.e.,
ictal minus interictal). The colored
patterns are potential indications of
epileptic activity. An ictal SPECT shows
the brain perfusion during and an
interictal SPECT in between epileptic
seizures. (b,c,d) Segmented images of
respectively the gray matter, white
matter and CSF. (e) PET image obtained
by conventional reconstruction. (f) PET
image obtained by anatomy based MAP
reconstruction. (Courtesy of Dr. K. Baete,
Department of Nuclear Medicine.)

3D reconstruction
In SPECT with parallel hole collimation and in
2D PET the reconstruction problem is two dimen-
sional and the above methods can be applied
directly. However, there exist acquisition config-
urations that do not allow the problem to be
reduced to a slice-by-slice reconstruction without
approximations.

• There aremany different geometries ofmechanical
collimators in SPECT. One example is the cone-
beam collimator. It has a single focal point. Hence,
all the projection lines that arrive at the 2Ddetector
intersect in this point, and exact reconstruction
from cone-beam data requires true 3D methods.

• In 3D PET all possible projection lines that inter-
sect the detector surface (coincidence lines) are
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used, both parallel and oblique to the transaxial
plane. This 3D acquisition has the advantage that
more data are obtained fromeach radioactive pixel,
thus reducing the noise.

In these cases, the reconstruction program needs to
compute the entire volume using all data simulta-
neously. This is often called true 3D reconstruction.
Three currently used 3D reconstruction approaches
are discussed below.

Filtered backprojection
Filtered backprojection can be extended to true 3D
reconstruction for PET. This is only possible if the
sequence of projection and backprojection results in
a shift-invariant point spread function. That is only
true if every point in the reconstruction volume is
intersected by the same configuration of measured
projection lines, which is not the case in practice.
Points near the edge of the field of view are intersected
by fewer measured projection lines. In this case, the
datamay be completed by computing themissing pro-
jections as follows. First, a subset of projections that
meets the requirement is selected and reconstructed
to compute an initial, relatively noisy, reconstruction
image. Next, this reconstruction is forward projected
along the missing projection lines to compute an esti-
mate of the missing data. Then, the computed and
measured data are combined into a single set of data
that now meets the requirement of shift-invariance.
Finally, this completed dataset is reconstructed with
true 3D filtered backprojection.

ML reconstruction
The ML approach can be applied to the 3D dataset
directly. The formulation is very general, and the coef-
ficients cij in Eq. (5.20) can be used to describe true 3D
projection lines. Because the number of calculations in
each iteration increases with the number of projection
lines, the computational burden becomes quite heavy
for a true 3D reconstruction.

Fourier rebinning
Fourier rebinning converts a set of 3D data into a set
of 2D projections. It is based on a property of the
Fourier transform of the sinograms. It has also been
shown that the Poisson nature of the data is more
or less preserved. The resulting 2D set can then be
reconstructedwith the 2DML–EMalgorithm. In prac-
tice, however, the exact rebinning algorithm is not
used. Instead, an approximate expression is employed

because it is much faster and is sufficiently accurate
for most configurations.

Image quality
Contrast
The contrast is mainly determined by the character-
istics of the tracer and the amount of scatter. The
specificity of a tracer for a particularmetabolic process
is usually not 100%. For example, for most tracers
the blood concentration decreases rapidly but is typ-
ically not zero during the study. Consequently, the
blood concentration produces a “background” tracer
uptake, which decreases the contrast. Scattered pho-
tons also produce a background radiation that reduces
the contrast.

Spatial resolution
In nuclearmedicine the resolution is mostly expressed
as the full width at halfmaximum (FWHM)of the PSF.

In PET, the overall FWHM in the reconstructed
image is about 4 to 8 mm. The spatial resolution is
mainly limited by the following factors.

• The positron range A positron can only annihilate
when its kinetic energy is sufficiently low. While
reducing its energy by collisions with the electrons
of surrounding atoms, the positron travels over a
certain distance. The average distance depends on
the isotope and is on the order of 0.2 to 2 mm.

• The deviation from 180◦ The annihilation pho-
tons are not emitted in exactly opposite direc-
tions. There is a deviation of about 0.3◦, which
corresponds to 2.8 mm for a camera of 1 m
diameter.

• The detector resolution This is often called the
“intrinsic” resolution. The size of the individual
detector crystals is currently about 4mm× 4mm.
This limits the intrinsic resolution to about 2 to
3 mm. If the detection is done with a single large
crystal, the resolution is usually about 4 mm.

In SPECT, the overall FWHM in the reconstructed
image is about 1 to 1.5 cm. The spatial resolution is
affected by the following.

• The detector resolution This is comparable to PET.
• The collimator resolution The collimator is

designed to select photons that propagate along a
thin line. However, it has finite dimensions and, as
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a result, it accepts all the photons that arrive from
within a small solid angle. Therefore, the FWHM
of the PSF increases linearly with increasing dis-
tance to the collimator. At 10 cm, the FWHM is on
the order of 1 cm, and in the image center around
1.5 cm. The collimator resolution dominates the
SPECT spatial resolution.

Noise
We have already seen that Poisson noise contributes
significantly to the measurements. The ML–EM
reconstruction algorithm takes this into account and
inherently limits the influence of this noise by termi-
nating the procedure after a few tens of iterations.

Another noise factor is due to Compton scatter.
It produces a secondary photon that is deflected from
the original trajectory into a new direction. Some of
the scattered photons reach the detector via this bro-
ken line. Such a contribution to the measurement is
undesired, and a good camera suppresses this as much
as possible. The system can reject scattered photons
based on their energy. As compared to primary pho-
tons, the scattered photons have a lower energy, which
is measured by the detector electronics. However, the
energy resolution is finite (10% for Na(Tl)), and some
of the scatter is unavoidably accepted. The remaining
scatter has a negative effect on the image contrast and
the accuracy of quantitative measurements.

Artifacts
There are many possible causes of artifacts in SPECT
and PET. Malfunction of the camera is an important
cause and quality control procedures are mandatory
to prevent this. However, some artifacts are inherent
to the imaging and reconstruction process. The most
important influencing factors are attenuation, scatter,
noise, and patient motion.
• Attenuation Accurate correction for attenuation

is only possible if a transmission scan is avail-
able. Previously, in stand-alone PET, these were
obtained by rotating line sources containing the
positron-emitting germanium. This procedurewas
time consuming and was not performed in some
centers. The reconstruction process then assumes
that there is no attenuation, which yields severe
artifacts. A striking artifact in images which are
not corrected for attenuation is the apparent high
tracer uptake in the lungs and the skin. There will
also be a nonhomogenous distribution in organs

in which the real distribution is homogenous. In
modern combined PET/CT scanners, a whole-
body CT scan is obtained and used to construct
a 511 keV attenuationmap which is used for atten-
uation correction. This correctionmight introduce
artifacts by itself, specifically if there is a mis-
alignment between the emission data and the CT.
Figure 5.10 shows a coronal slice of a whole-body
study reconstructed without and with attenuation
correction. The study was done to find regions
of increased FDG uptake (“hot spots”). Although
both images clearly show the hot spots, the con-
tours of the tumor and organs are less accurately
defined in the study without attenuation correc-
tion. A striking artifact in Figure 5.10(a) is the
apparent high tracer uptake in the lungs and the
skin.

• Compton scatter Scattered photons yield a rela-
tively smooth but nonuniformbackground uptake.

• Poisson noise Using filtered backprojection the
statistical noise yields streak artifacts, compara-
ble to those in CT (see Figure 3.21(b)). Iterative
reconstruction (p. 112) on the other hand tends
to keep the spatial extent of such artifacts quite
limited.

• Patient motion SPECT and PET are more sub-
ject to patient motion than the other imaging
modalities because of the longer acquisition time.
Pure blurring because of motion appears only
if all the projections are acquired simultane-
ously (i.e., in PET without preceding transmis-
sion scan). In attenuation-corrected PET, patient
motion destroys the required registration between
the emission and transmission data, which results
in additional artifacts at the edges of the trans-
mission image (Figure 5.10(c)). In SPECT, patient
motion yields inconsistent projections and severe
artifacts as well. Many researchers have inves-
tigated motion correction algorithms, but the
problem is difficult, and so far no reliable method
has emerged that can be applied in clinical routine.

Equipment
Gamma camera and SPECT scanner
Most gamma cameras use one or more large NaI(Tl)
crystals (Figure 5.11). A lead collimator is positioned
in front of the crystal. It collimates and also protects
the fragile and very expensive crystal. Note, however,
that the collimator is fragile as well, and the thin lead
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Figure 5.10 Coronal slice of a whole-body PET/CT study reconstructed without (a) and with (c) attenuation correction based on whole-body
CT (b). The relative intensity of the subcutaneous metastasis (small arrow) compared to the primary tumor (large arrow) is much higher in the
noncorrected image than in the corrected one, because the activity in this peripheral lesion is much less attenuated than the activity in the
primary tumor. A striking artifact in (a) is the apparent high uptake in the skin and the lungs. Note also that regions of homogenous uptake,
such as the heart (thick arrow), are no longer homogenous, but show a gradient. Attenuation correction can lead to artifacts if the
correspondence between the emission and transmission data is not perfect. The uptake in the left side of the brain (dotted arrow) is
apparently lower than in the contralateral one in (c). The fused data set (d) representing the attenuation-corrected PET image registered on
the CT image shows that the head did move between the acquisition of the CT and the emission data, resulting in an apparent decrease in
activity in the left side of the brain. Courtesy of the Department of Nuclear Medicine

(a) (b)

Figure 5.11 (a) Gamma camera and SPECT scanner with two large crystal detectors. (b) System with three detector heads. If the gamma
camera rotates around the patient it behaves like a SPECT scanner. Today, the difference between gamma units and SPECT systems has
therefore become rather artificial. (Courtesy of the Department of Nuclear Medicine.)
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Front end Computer

Figure 5.12 Schematic representation of a gamma camera with a
single large scintillation crystal (52× 37 cm) and parallel hole
collimator.

septa are easily deformed. At the other side of the
crystal, an array of PMTs is typically attached to it.
Front end electronics interface this PMT array to the
computer (Figure 5.12).

For SPECT the detectors are mounted on a flexible
gantry (Figure 5.11) since theymust rotate over at least
180◦ around the patient. In addition, the detectors
must be as close to the patient as possible because the
spatial resolution decreases with the distance from the
collimator. Obviously, the sensitivity is proportional
to the number of detector heads, and the acquisi-
tion time can be decreased with increasing number of
detector heads. For some examinations, the body part
is too large to be measured in a single scan. Similar to
CT, the computer then controls the table and slowly
shifts the patient to scan the complete volume.

A camera cannot detect more than one photon at
a time, because all PMTs together contribute to that
single detection. From the PMT outputs, the front end
electronics calculate four values, usually called x , y , z ,
and t .

• (x , y) are the position coordinates. They are com-
puted using Eq. (5.14).

• z is a measure of the photon energy and is com-
puted as

∑
i Si . Because the PMT output is a

pulse with a duration of a few hundred nanosec-
onds, Si is the integration of this pulse over time:
Si =

∫ t1
t0

si(t ) dt .
The energy z of detected photons is compared

with an energywindow [zmin, zmax], whichdepends
on the tracer used. If z > zmax, two or more pho-
tons hit the crystal simultaneously, messing up the
computation of (x , y). If z < zmin, the photon is
due to Compton scatter and must be discarded.

Figure 5.13 PET scanner. A movable table shifts the patient
through the circular hole in the gantry. The external design is similar
to that of a CT scanner and to some extent to that of an MRI
scanner. (Courtesy of the Department of Nuclear Medicine.)

Some tracers emit photons at two or a few dif-
ferent energy peaks. In this case, multiple energy
windows are used.

• t is the detection time and is computed as the
moment when the integration of

∑
i

∫ t
t0

si(t ) dt
reaches a predefined fraction of z .

PET scanner
Most PET cameras (Figure 5.13) consist of a complete
ring (diameter ≈ 1 m) of BGO, GSO or LSO crystal
modules. In PET, no detector rotation is therefore
required. Table motion, however, may still be needed
and is comparable to that of a gamma camera.

The detectors are typically small scintillation crys-
tals (e.g., 4 mm × 4 mm) glued together in modular
2D arrays (e.g., 13× 13) and connected to PMTs (e.g.,
2 × 2, a few centimeters width each). These mod-
ules are packed on a ring around the field of view. A
PET scanner can contain multiple neighboring rings
of modules, this way increasing the axial field of view.
For example, three rings of 13 × 4 mm each yield an
axial FOV of about 16 cm.

The computation of the crystal coordinates (x , y),
the energy z and the time t is comparable to that for a
large single-crystal detector but is restricted to a single
module. This way multiple photons can be detected at
the same time by different crystal modules. The detec-
tion time t is determinedwith an accuracy in the range
of 1 to 10 ns (in 1 ns light travels about 30 cm), which is
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short as compared to the scintillation decay constant∗
(300 ns for BGO, 30–60 ns for GSO and 40 ns for LSO;
230ns forNaI(Tl) in SPECT). The events are discarded
only if a single photon is detected or if more than two
photons hit the camerawithin the uncertainty interval.
For example, if two photon pairs arrive simultane-
ously (i.e., within the coincidence timing resolution)
at four different modules, they are rejected. Note
that, if two photons are detected by the same mod-
ule within the scintillation decay interval, they are also
rejected. This last situation, however, does not hap-
pen frequently because of the large amount of crystal
modules.

An important problem is the presence of so-called
randoms. Randoms are photon pairs that do not
originate from the same positron but nevertheless
hit the camera within the short time interval dur-
ing which the electronic detection circuit considers
this as a coincidence (≈ 1–10 ns). The probabil-
ity of a random increases with the square of the
radioactivity and cannot be ignored. The number of
randoms can be estimated with the delayed window
technique, shown schematically in Figure 5.14. The
camera counts the number of detected photon pairs
that are obtained with a minimal delay. This short
delay time is chosen sufficiently large to guarantee that
the two photons do not belong to a single annihilation.
This number of guaranteed randoms can be consid-
ered independent of the time delay. Consequently, the
same amount of randoms can be assumed to appear

g

g

delay

de
te

ct
io

nd1

d2

Figure 5.14 Schematic representation of a random and its
detection. One of the two photons is detected with a small time
delay.

∗ Time constant assuming exponential decay, i.e., themomentwhen
the light intensity has returned to e−1 of its maximum value.

(b)(a)

Figure 5.15 Schematic representation of a PET detector ring cut in
half. (a) When septa are in the field of view, the camera can be
regarded as a series of separate 2D systems. (b) Retracting the septa
increases the number of projection lines and hence the sensitivity of
the system, but true 3D reconstruction is required.

during the measurement of true annihilation pairs
and must be subtracted in order to calculate the true
coincidences.

Older PET cameras are usually equipped with
retractable septa (see Figure 5.15(a)). When the septa
are in the field of view, the camera operates in the so-
called “2D-mode,” and the detector is considered to
be a concatenation of independent rings. Only pro-
jection lines within parallel planes can be accepted,
as the septa absorb photons with oblique trajectories.
Recent systems do not contain septa and all the avail-
able projection lines are accepted (see Figure 5.15(b)).
Reconstruction from these data requires true 3D
reconstruction algorithms.

Hybrid systems
PET and SPECT systems can be combined with a
CT or even a MR system. Among these combina-
tions, the PET/CT system (Figure 5.16) is currently
the most popular and has become quite common in
clinical practice. In this case the CT image is used
for attenuation correction. A potential problem is the
registration mismatch between the transmission and
the emission image due to patient motion during the
long duration of the examination (half an hour and
more). Nonrigid registration may offer a solution (see
Chapter 7, p. 183) but is not straightforward. Another,
technical, problem is due to the energy dependence of
the linear attenuation coefficient. In PET, for example,
the photon energy is 511 keV while an X-ray source
in CT transmits an energy spectrum with a maximum
energy defined by the tube voltage. For example, a
tube with a voltage of 140 kV yields X-ray photons
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(a) (b)

Figure 5.16 A CT and a PET system are linked and integrated into a single gantry and share a common patient bed. Two hybrid PET/CT
scanners are shown here. (Courtesy of the Department of Nuclear Medicine.)
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Figure 5.17 Approximate relationship between the linear
attenuation coefficient in CT, operating at 140 kV, and PET. The
energy spectrum of the X-ray photons is approximated by a single
effective energy of 70 keV. The energy of the PET photons is 511
keV. Tissue is assumed to be a linear mixture of either air and water,
or water and bone. The result is a piecewise linear conversion
function.

with energy 140 keV and lower. To calculate the atten-
uation coefficient for the emission image, the X-ray
energy spectrum is typically approximated by a single
average or effective energy. For example, for a volt-
age of 140 kV the maximum X-ray photon energy is
140 keV and the effective energy is assumed to be 70
keV. Furthermore, the relationship between the atten-
uation coefficient at 70 keV and at 511 keV is assumed
to be piecewise linear (Figure 5.17).

Time-of-flight (TOF) PET
If the uncertainty inmeasuring thedifference in arrival
times of a photon pair is limited to 1 ns or less, it
becomes interesting to use this timedifference to local-
ize the position of the annihilation along the line of
response (LOR). The uncertainty 	x in the position
along the LOR can be calculated from the uncertainty
	t in measuring the coincidence, that is,

	x = 1
2

c 	t . (5.30)

More specifically, 	t and 	x are the FWHM
of the uncertainty distributions in time and space
respectively (Figure 5.18). A coincidence timing
uncertainty 	t of 600 ps, for example, yields a posi-
tional uncertainty 	x of 9 cm along the LOR. Further
reducing 	t to 100 ps reduces this positional uncer-
tainty	x to 1.5 cm. This information can be fed to the
reconstruction algorithm to improve the image qual-
ity. Indeed, instead of knowing that the annihilation
took place somewhere along the LOR, the expected
position along that LOR can now be expressed within
a range defined by the spatial uncertainty distribution
(FWHM = 	x).

TOF PET requires proper reconstruction tools.
Although ML-based statistical reconstruction can still
be used, other algorithms have been developed such as
3D list-mode TOF reconstruction and algorithms that
place the events directly into the image space rather
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FWHM

t 2t 1

Figure 5.18 Principle of TOF PET. The position of the annihilation
can be calculated from the difference between the arrival times of
both photons. The uncertainty in measuring this time difference
can be represented by a statistical distribution with FWHM = 	t .
The relationship between 	t and 	x (FWHM of the spatial
uncertainty distribution) is given by Eq. (5.30).

than into the projection space. This theory was pio-
neered in the 1980s and has recently resurged due to
the improvements in detector materials (LSO, LYSO,
LaBr3) and electronic stability. A detailed discussion
of these advances, however, is beyond the scope of this
textbook.

Clinical use
Nuclear medicine is based on the tracer principle.
Small amounts of radioactive-labeled molecules are
administered tomeasure functional parameters of dif-
ferent organs selectively (e.g., perfusion, metabolism,
innervation). Many different tracers exist, and the
number is still increasing.While gamma cameras need
gamma-emitting tracers, PET needs positron emit-
ters. Single-photon emitting atoms tend to be quite
heavy. Typical organic molecules do not contain such
atoms and must therefore be modified by binding
the radioactive atom to the organic molecule. Most
molecules are labeled with 99mTc (half-life 6 hours)
because it is inexpensive and has ideal physical charac-
teristics (short half-life; daughter of 99Mo, which has
a half-life of 66 hours and is continuously available;
ideal γ-ray energy of 140 keV, which is high enough to
leave the body but not too high to penetrate the crys-
tal). Other importantγ-emitting radionuclides are 123I

(half-life 13 hours), 131I (half-life 8 days), 111In (half-
life 3 days), 201Tl (half-life 3 days), and 67Ga (half-life 3
days). Positron emitting tracers are light, have a short
half-life, and can be included in organic molecules
without modifying their chemical characteristics. The
most used in nuclear medicine are 11C (half-life 20
min), 13N (half-life 10 min), 15O (half-life 2 min), and
18F (half-life 109 min). With the exception of 18F they
have to be produced by a cyclotron in the hospital
because of their short half-life.

The most important clinical applications in
nuclear medicine are studies of bone metabolism,
myocardial perfusion and viability, lung embolism,
tumors, and thyroid function.

• Bone metabolism For the exploration of bone
metabolism a 99mTc labeled phosphonate can
be used. It accumulates in proportion to bone
turnover, which is increased by several pathologies,
such as tumors, fractures (Figure 5.19), inflamma-
tions, and infections. A SPECT/CT scanner, com-
bining metabolic information of the SPECT and
anatomic information of the CT, further improves
the diagnostic accuracy of bone disorders.

Planar

Right Lateral

(a) (b)

Figure 5.19 Left: whole-body scintigraphy after injection of
25 mCi 99mTc-labeled methylene diphosponate. This patient suffers
from a stress fracture of the right foot. Right: control scans show an
increased uptake in the metatarsal bone II compatible with a local
stress fracture. (Courtesy of Professor L. Mortelmans, Department of
Nuclear Medicine.)122
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Figure 5.20 Myocardial perfusion SPECT scan. Rows 1, 3, and 5 show the myocardial perfusion during a typical stress test. Rows 2, 4, and 6
show the rest images acquired 3 hours later. The first two rows are horizontal long-axis slices, the middle two rows are vertical long-axis slices,
and the bottom two rows are short-axis slices. This study shows a typical example of transient hypoperfusion of the anterior wall. On the stress
images, there is a clear perfusion defect on the anterior wall (horizontal-axis slice 9, vertical long-axis 16 to 18, short-axis slice 13 to 18). The
perfusion normalizes on the corresponding rest images. (Courtesy of Professor L. Mortelmans, Department of Nuclear Medicine.)

• Myocardial perfusion and viability For myocardial
perfusion, tracers are used that are accumulated in
the myocardium in proportion to the blood flow.
Examples of such tracers are the γ-emitting tracers
201Tl and 99mTc-Mibi, and the PET tracers 13NH3
andH15

2 O. The choice of the imagingmodality and
tracer depends on factors, such as half-life, image
quality, cost, and availability. Often, the imaging
process is repeated after several hours to com-
pare the tracer distribution after stress and at rest
(Figure 5.20). This procedure answers the question
whether there is a transient ischemia during stress.
By comparing myocardial perfusion with glucose
metabolism, PET is the gold standard to evaluate
myocardial viability.

• Lung embolism In order to detect lung embolism,
99mTc-labeled human serum albumin is injected
intravenously. This tracer with a mean diame-
ter of 10–40 µm sticks in the first capillaries it
meets (i.e., in the lungs). Areas of decreased or
absent tracer deposit correspond to a patholog-
ical perfusion, which is compatible with a lung
embolism. The specificity of the perfusion scan
can be increased by means of a ventilation scan

(Figure 5.21). Under normal conditions a gas or
an aerosol with 99mTc-labeled particles is spread
homogeneously in the lungs by inhalation. Lung
embolism is typically characterized by a mismatch
(i.e., a perfusion defect with a normal ventilation).
A perfusion CT scan of the lungs has become
the first choice technique for diagnosis of lung
embolism.

• Tumors A very successful tracer for measur-
ing metabolic activity is 18FDG (fluoro-deoxy-
glucose). Thismolecule traces glucosemetabolism.
The uptake of this tracer is similar to that of
glucose. However, unlike glucose, FDG is only
partially metabolized and is trapped in the cell.
Consequently, FDG accumulates proportionally to
glucose consumption. A tumor is shown as an
active area or “hot spot” (Figure 5.22), as in most
tumors glucose metabolism is considerably higher
than in the surrounding tissue. Whole-body FDG
has become a standard technique for the staging
of oncologic patients and also for the therapeutic
evaluation of chemotherapy and/or radiotherapy.

• Thyroid function Captation of 99mTc pertechne-
tate or 123I iodide shows the tracer distribution 123
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Figure 5.21 Lung perfusion (Q) and ventilation (V) scan. The second and fourth columns show six planar projections of a ventilation SPECT
scan obtained after the inhalation of radioactive pertechnegas distributed homogeneously throughout both lungs. The first and third columns
show the corresponding lung perfusion images obtained after injection of 99mTc-labeled macroaggregates. Several triangular-shaped
defects (arrows) are visible in the perfusion scan with a normal ventilation at the same site. This mismatch between perfusion and ventilation
is typical for lung embolism. The fifth column shows a coronal section of the SPECT data set with triangular defects (arrowheads) in the
perfusion (upper row) and a normal ventilation (lower row). (Courtesy of Professor L. Mortelmans, Department of Nuclear Medicine.)

within the thyroid, which is a measure of the
metabolic function (Figure 5.23). 131I iodide with
a half-life of 8 days is mainly used for treat-
ment of hyperthyroidism (thyroid hyperfunction)
or thyroid cancer.

• Neurological disorders Brain disorders can be diag-
nosed using SPECT perfusion scans and PET FDG
scans measuring brain metabolism. FDG PET
brain scans play an important role in the early and
differential diagnosis of dementia (Figure 5.24).
New tracers are used for the evaluation of neu-
roreceptors, transporters, enzymes, etc., allowing
more specific diagnosis of several brain disorders.
A typical example is the presynaptic dopamine
transporter (DAT) scan, measuring the amount of
dopamine-producing cells in the substantia nigra
and facilitating early and differential diagnosis of
Parkinson disease, possibly in combination with
postsynaptic dopamine receptor (D2) imaging
(Figure 5.25).

Biologic effects and safety
Unfortunately, tracer molecules are not completely
specific for the investigated function and are accumu-
lated in other organs, such as the liver, the kidneys,
and the bladder. Furthermore, the radioactive prod-
uct does not disappear immediately after the imaging
procedure but remains in the body for hours or
days after the clinical examination is finished. The
amount of radioactivity in the body decreases with
time because of two effects.

• Radioactive decay This decay is exponential. Every
half-life, the radioactivity decreases by a factor of
two.

• Biologic excretion Many tracers are metabolized, and
the biologic excretion is often significant as com-
pared with the radioactive decay. It can be inten-
sified with medication. This also means that the
bladder receives a high radiation dose, which can124
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Figure 5.22 18FDG PET scan of a patient suffering from a
lymphoma in the mediastinum and the left axilla (left column). The
pathological 18FDG uptake in the lymphomatous lymph nodes
(arrows) disappeared after chemotherapy (right column). (Courtesy
of Professor L. Mortelmans, Department of Nuclear Medicine.)

amount to more than 50% of the patient’s effective
dose.

The radiation exposure of a particular organ is a
function of the activity in the entire body. Simula-
tion software exists that is based on models for the
human body (e.g., the MIRD model (medical inter-
nal radiation dosimetry) of the Society of Nuclear

Figure 5.23 99mTc pertechnetate thyroid scan of a patient with a
multinodular goiter. The irregularly enlarged thyroid is delineated.
Several zones of normal and increased uptake are visible.
Hyperactive zones are seen in the upper and lower pole of the right
thyroid lobe. In the right interpolar region there is a zone of relative
hypoactivity. (Courtesy of Professor L. Mortelmans, Department of
Nuclear Medicine.)

Medicine). Initial tracer concentrations, tracer accu-
mulation, and excretion times must be entered in the
simulator, which then computes the radiation load to
each organ and derives the effective dose in millisiev-
erts. For the input data, typical values can be used.
These values can be defined by repeatedly scanning an
injected subject until the radioactivity becomes negli-
gible. Typical doses for a large number of tracers are
published by the International Commission on Radi-
ological Protection (ICRP). For example, the effective
patient doses of a study of the lung are 0.1–0.5mSv, the
thyroid 0.4–0.7 mSv, bone 1.3 mSv, the myocardium
around 5 mSv, and tumors studied with FDG around
6 mSv and gallium 13.0 mSv. Roughly speaking, they
have the sameorder ofmagnitude as the effective doses
for diagnostic radiographic imaging (see p. 31) or CT
(see p. 59).

For the patient’s entourage, for example the per-
sonnel of the nuclear medicine department, it is
important to take into account that the radiation dose
decreases with the square of the distance to the source
and increases with the exposure time. It is therefore
recommended that medical personnel stay at a cer-
tain distance from radioactive sources, including the
patient. Contamination of tracers must be avoided.

Future expectations
Although continuous technical improvements can
be expected (improved TOF and hybrid systems,
new detectors, removal of motion artifacts, etc.) 125
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Figure 5.24 Deviation of FDG uptake with respect to a normal database for different types of ‘‘dementias.’’ In the upper left corner, an
anatomical MR reference image is shown. AD Alzheimer disease; DLBD Lewy body disease; FTD frontal lobe dementia; PSP progressive
supranuclear palsy; MID multi infarct dementia; NPH normal pressure hydrocephalus. (Courtesy of Professor K. Van Laere, Department of
Nuclear Medicine.)

Figure 5.25 Upper row: 123I-FP-CIT SPECT scan for presynaptic
dopamine transporter (DAT) imaging. Lower row: 11C-raclopride
PET scan for postsynaptic dopamine receptor (D2) imaging. (a)
Healthy subject. (b,c) In an early Parkinson patient a decrease of the
dopamine transporter (DAT) is seen in the basal ganglia while the
postsynaptic dopamine receptor (D2) is still normal. (d) Parkinson
patient with multi-system atrophia (MSA). The postsynaptic part of
the dopaminergic synapse is also impaired. (Courtesy of Professor K.
Van Laere, Department of Nuclear Medicine.)

progression will particularly be stimulated by the
development of new generations of tracers.

More clinical indications will be created by label-
ing new compounds with PET tracers. There is a clear
shift from rather aspecific tracers such as FDG tomore
specific biomarkers that bind to specific receptors.
There are also newpotentials for therapywith radioac-
tive tracers, especially for the treatment of hematolog-
ical diseases by means of radioimmunotherapy with
labeled antibodies.

Medical imaging is further evolving towards the
visualization of biological processes at the cell level.
This way cellular function and molecular pathways
in vivo can be studied, such as imaging of gene
regulation, protein–protein interactions and stem
cell tracking. This new discipline, which combines
imaging with molecular biology, is called molecular
imaging . It shifts the focus from imaging the anatomy
and function of organs towards imaging the behavior
and interaction of molecules. Early disease detec-
tion and tracking of gene therapy are among the
future applications. Figure 5.26 shows the basic prin-
ciple of imaging gene expression in vivo. Although
this evolution is not limited to nuclear medicine,
theoretically emission tomography has the largest
potential due to the variety of tracers that can be
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(transcribed) into a messenger RNA (mRNA) molecule. The mRNA moves from the nucleus to the cytoplasm where its code is used during the
synthesis of a protein (translation of mRNA into protein). Depending on the nature of the reporter gene the fusion protein is a reporter protein
that is fluorescent (produces light), captures iron (visible in MRI) or interacts with a radioactive tracer (visible in SPECT or PET). (Courtesy of
Prof. C. Deroose, Dept. of Nuclear Medicine.)
(a) Reprinted from G. Genove, U. DeMarco, H. Xu, W. F. Goins, and E. T. Ahrens. A new transgene reporter for in vivo magnetic resonance
imaging, Nature Medicine, 11(4): 450–454, 2005.
(b) Reprinted from C. M. Deroose, A. De, A. M. Loening, P. L. Chow, P. Ray, A. F. Chatziioannou, and S. S. Gambhir. Multimodality imaging of
tumor xenografts and metastases in mice with combined small-animal PET, small-animal CT, and bioluminescence imaging, Journal of Nuclear
Medicine, 48(2): 295–303, 2007.

developed. Today most of these techniques are sub-
ject to fundamental research. Adapted systems have
been developed for imaging small animals, such as

mice and rats, in vivo. Because of their small size these
scanners are typically labeled with the prefix “micro”
(micro-PET/SPECT/CT/MRI/US).
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6 Ultrasound imaging

Introduction
Ultrasound imaging has been used in clinical prac-
tice for more than half a century. It is noninvasive,
relatively inexpensive, portable, and has an excellent
temporal resolution. Imaging by means of acoustic
waves is not restricted tomedical imaging. It is used in
several other applications such as in the field of nonde-
structive testing of materials to check for microscopic
cracks in, for example, airplane wings or bridges, in
sound navigation ranging (SONAR) to locate fish, in
the study of the seabed or to detect submarines, and
in seismology to locate gas fields.

The basic principle of ultrasound imaging is
simple. A propagating wave partially reflects at the
interface between different tissues. If these reflections
are measured as a function of time, information is
obtained on the position of the tissue if the veloc-
ity of the wave in the medium is known. However,
besides reflection, other phenomena such as diffrac-
tion, refraction, attenuation, dispersion, and scat-
tering appear when ultrasound propagates through
matter. All these effects are discussed below.

Ultrasound imaging is used not only to visualize
morphology or anatomy but also to visualize func-
tion by means of blood andmyocardial velocities. The
principle of velocity imaging was originally based on
the Doppler effect and is therefore often referred to
as Doppler imaging. A well-known example of the
Doppler effect is the suddenpitch changeof awhistling
train when passing a static observer. Based on the
observed pitch change, the velocity of the train can
be calculated.

Historically, the first practical realization of ultra-
sound imaging was born during World War I in the
quest for detecting submarines. Relatively soon these
attempts were followed by echographic techniques
adapted to industrial applications for nondestructive
testing of metals. Essential to these developments
were the publication of The Theory of Sound by Lord
Rayleigh in 1877 and the discovery of the piezoelec-
tric effect by Pierre Curie in 1880, which enabled easy

generation and detection of ultrasonic waves. The first
use of ultrasound as a diagnostic tool dates back to
1942 when two Austrian brothers used transmission
of ultrasound through the brain to locate tumors. In
1949, the first pulse-echo system was described, and
during the 1950s 2D gray scale images were produced.
The first publication on applications of the Doppler
technique appeared in 1956. The first 2D gray scale
image was produced in real time in 1965 by a scan-
ner developed by Siemens. A major step forward was
the introduction in 1968 of electronic beam steering
using phased-array technology. Since the mid-1970s,
electronic scanners have been available from many
companies. Image quality steadily improved during
the 1980s, with substantial enhancements since the
mid-1990s.

Physics of acoustic waves
What are ultrasonic waves?
Ultrasonic waves are progressive longitudinal compres-
sion waves. For longitudinal waves the displacement of
the particles in the medium is parallel to the direc-
tion of wave motion, as opposed to transverse waves,
such as waves on the sea, for which this displacement
is perpendicular to the direction of propagation. For
compression waves, regions of high and low parti-
cle density are generated by the local displacement of
the particles. This is illustrated in Figure 6.1. Com-
pression regions and rarefaction regions correspond
to high and low pressure areas, respectively.

Wave propagation is possible thanks to both the
elasticity and the inertia of the medium: elasticity
counteracts a local compression followedby a return to
equilibrium. However, because of inertia, this return
will be too large, resulting in a local rarefaction,
which elasticity counteracts again. After a few itera-
tions, depending on the characteristics of the medium
and of the initial compression, equilibrium is reached
because each iteration is accompanied by damping. As
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Figure 6.1 Schematically, a longitudinal
wave can be represented by particles
connected by massless springs that are
displaced from their equilibrium position.
(From T.G. Leighton, The Acoustic Bubble,
Academic Press, 1994. Reprinted with
permission of Academic Press, Inc.)

a consequence of these phenomena, the compression
wave propagates.

The word “ultrasonic” relates to the wave frequen-
cies. Sound in general is divided into three ranges:
subsonic, sonic and ultrasonic. A sound wave is said
to be sonic if its frequency is within the audible spec-
trum of the human ear, which ranges from 20 to
20 000 Hz (20 kHz). The frequency of subsonic waves
is less than 20Hz and that of ultrasonic waves is higher
than20kHz. Frequencies used in (medical) ultrasound
imaging are about 100–1000 times higher than those
detectable by humans.

Generation of ultrasonic waves
Usually ultrasonic waves are both generated and
detectedby apiezoelectric crystal. These crystals deform
under the influence of an electric field and, vice versa,
induce an electric field over the crystal upon deforma-
tion. As a consequence, when an alternating voltage is
applied over the crystal, a compression wave with the
same frequency is generated. A device converting one
form of energy into another form (in this case electric
to mechanical energy) is called a transducer.

Wave propagation in homogeneous media
This paragraph briefly discusses the physical phenom-
ena observed during wave propagation through any
homogeneous medium. It is characterized by its spe-
cific acoustic impedance Z . As with any impedance in
physics, this is the ratio of the driving force (acoustic
pressure p) to the particle velocity response (v), i.e.,
p/v . For plane, progressing waves it can be shown that

Z = ρc , (6.1)

where ρ is the mass density and c the acoustic wave
velocity in the medium. Table 6.1 illustrates that c and
consequently also Z typically increase with ρ.

Table 6.1 Values of the acoustic wave velocity c and
acoustic impedance Z of some substances

Substance c (m/s) Z = ρ c
(106 kg/m2 s)

Air (25◦ C) 346 0.000410

Fat 1450 1.38

Water (25◦ C) 1493 1.48

Soft tissue 1540 1.63

Liver 1550 1.64

Blood (37◦ C) 1570 1.67

Bone 4000 3.8 to 7.4

Aluminum 6320 17.0

Linear wave equation
Assuming small-amplitude waves (small acoustic
pressures p) traveling through a nonviscous and
acoustically homogeneous medium, the linear wave
equation holds

∇2p − 1
c2

∂2p

∂t 2
= 0, (6.2)

where ∇2 is the Laplacian. The velocity c of sound in
soft tissue is very close to that in water and is approx-
imately 1540 m/s. In air the sound velocity is approx-
imately 300 m/s and in bone approximately 4000 m/s.

Equation (6.2) is the basic differential equation for
the mathematical description of wave propagation. A
general solution of the linear wave equation in one
dimension is

p(x , t ) = A1f1(x − ct )+ A2f2(x + ct ), (6.3)

where f1(x) and f2(x) are arbitrary functions of x
that are twice differentiable. This can easily be veri-
fied by substituting Eq. (6.3) into the wave equation
Eq. (6.2). This solution is illustrated in Figure 6.2 for
f1(x) = f2(x) = f (x) and A 1 = A 2. It represents the
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x

p(x,t )

t

2f (x)

f (x – c0t ) f (x + c0t ) 

Figure 6.2 Schematic representation of a solution of the linear
wave equation. This solution represents the superposition of a left
and right propagating wave.

superposition of a left and right progressive wave with
velocity c .

The shape of the waveform is irrelevant for the
wave equation. In other words, any waveform that can
be generated can propagate through matter. A simple
example is the following sinusoidal plane wave

p(x , t ) = p0 sin
(
2πx

λ
− 2π t

T

)

= p0 sin
(
2π
λ

(x − ct )

)
, (6.4)

where x is the direction of the acoustic wave propaga-
tion, λ the wavelength, andT the period (c = λ/T ). In
practice, the shape of the propagating wave is defined
by the characteristics of the transducer.

Acoustic intensity and loudness
The acoustic intensity I (in units W/m2) of a wave is
the average energy per time unit through a unit area
perpendicular to the propagation direction. Hence,

I = 1
T

T∫
0

p(t ) · v(t ) dt . (6.5)

For the plane progressive wave of Eq. (6.4), the
acoustic intensity is

I = 1
Z · T

T∫
0

p2(t ) dt

= p20
Z · T

T∫
0

sin2
(
2πx

λ
− 2π t

T

)
dt

= p20
2Z

. (6.6)

A tenfold increase in intensity sounds a little more
than twice as loud to the human ear. To express the
sound level L (in decibels (dB)) a logarithmic scale was
therefore introduced

L = 10 log10
I

I0
, with I0 = 1012 W/m2. (6.7)

Using Eq. (6.6) L can also be written as

L = 20 log10
p

p0
, with p0 = 20µPa. (6.8)

I0 is the threshold at 1000 Hz of human hear-
ing. Hence, absolute silence for humans corresponds
to 0 dB. Increasing the intensity by a factor of ten
corresponds to an increase in sound level of 10 dB
and approximately twice the perceived loudness in
humans. Doubling the intensity causes an increase of
3 dB.

The wave frequency also has an effect on the per-
ceived loudness of sound. To compensate for this
effect, the phon scale, shown in Figure 6.3, is used.
The phon is a unit of the perceived loudness level for
pure, i.e., single-frequency, tones. By definition, the
number of phons equals the number of decibels at a
frequency of 1 kHz. In practice, such as in measur-
ing equipment, the isophones are often approximated
by simplified weighting curves. For example, the
A-weighting, shown in Figure 6.3(b), is an approxi-
mation of the isophones in the range 20–40 phons.
A-weighted measurements are expressed in dB(A).

Interference
Interference between waves is a well-known phe-
nomenon. For an infinite (or a very large) number of
coherent sources (i.e., sourceswith the same frequency
anda constant phase shift) the resulting complex inter-
ference pattern is called diffraction. The shape of this
3D pattern is closely related to the geometry of the
acoustic source.

Figure 6.4 shows how two coherent point sources
interfere in an arbitrary point P. They can inter-
fere constructively or destructively, depending on the
difference in traveled distance with respect to the
wavelength.

Figure 6.5 shows the simulated spatial distribu-
tion of the maximal pressure generated with a pulse
of 5 MHz by a circular source with a diameter of
10 mm. When the point of observation is located far
away from the source and on its symmetry axis, the

130



Chapter 6: Ultrasound imaging

10

–10
10 100 10k

(a) (b)

1000 100k

0

20

30
40
50
60
70
80
90

100
110
120
130

40

80

60

100 phon

20

Frequency (Hz)

S
o

u
n

d
 P

re
ss

u
re

 L
ev

el
 (

d
B

)

S
o

u
n

d
 le

ve
l s

h
if

t 
(d

B
)

10 100 1000 100k

Frequency (Hz)

10k

0

–40

–30

–20

+10

–50

+20

–10

Figure 6.3 (a) The phon scale compensates for the effect of frequency on the perceived loudness in humans. By definition, x phon is equal
to x dB at a frequency of 1 kHz. 0 phon corresponds to the threshold of audibility for humans, and 120 phon to the pain threshold. An increase
of 10 phon corresponds approximately to twice the perceived loudness. (b) A-weighting. This curve is an approximation of the isophones in
the range 20–40 phons, shown in (a). It expresses the shift of the sound level (in dB) as a function of frequency to obtain an approximation of
the perceived loudness level in dB(A).

d

P

O1

O2

Figure 6.4 Two coherent point sources, originating from positions
O1 and O2 respectively, travel in all directions, but only the direction
towards position P is shown. When the waves meet in P, they can
amplify each other, i.e., interfere constructively, or depress each
other, i.e., interfere destructively. Maximal constructive interference
is the case when δ = nλ with λ the wavelength, while complete
destructive interference happens when δ = (n+ 1

2 )λ.

contributions of all wavelets from all point sources
will interfere constructively because their phase differ-
ence is negligible. Moreover, at such a large distance,
moving away from the symmetry axis does not signif-
icantly influence the phase differences, and variations
in maximal pressure occur slowly. However, when
the point of observation comes closer to the source,
contributions of different point sources interfere in a
complexway because phase differences become signif-
icant. This results in fast oscillations of the maximal
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Figure 6.5 Simulated spatial distribution of the maximal pressure
generated by a circular, planar source with a diameter of 10 mm,
transmitting a pulse with a center frequency of 5 MHz. (Courtesy of
Professor J. D’hooge, Department of Cardiology. Reprinted with
permission of Leuven University Press.)

pressure close to the source. Points that are at least at a
distance where all contributions start to interfere con-
structively are located in the so-called far field, whereas
closer points are in the near field.

Attenuation
Attenuation refers to the loss of acoustic energy of
the ultrasonic wave during propagation. In tissues,
attenuation ismainly due to the conversion of acoustic
energy into heat because of viscosity. It results in an
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exponential decay of the amplitude of the propagating
wave.

Typically, the attenuation is a function of the wave
frequency. Therefore, it is often modeled as a function
of the form

H (f , z) = e−αz ≡ e−α0f nz , (6.9)

where f is the frequency and z the distance propagated
through the medium with attenuation coefficient α,
which is expressed in nepers (Np) per centimeter. A
neper is a dimensionless unit used to express a ratio.
The value of a ratio in nepers is given by ln(p z/p 0)
where p z and p 0 are the amplitudes of the wave at the
distances z and 0, respectively.

In the literature, the unit dB/cm is often used.
According to Eq. (6.8) the value in decibels is given
by 20 log10(p z/p 0). To use expression (6.9) the con-
version from dB/cm to Np/cm needs to be done by
dividing α by a factor 20 log10(e)= 8.6859.

It has been observed that, within the frequency
range used for medical ultrasound imaging, most tis-
sues have an attenuation coefficient that is linearly
proportional to the frequency (hence, n = 1). The
constant α0 can thus be expressed in Np/(cm MHz)
or dB/(cm MHz). If α0 is 0.5 dB/(cm MHz) a 2 MHz
wave will approximately halve its amplitude after 6 cm
of propagation. Some typical values of α0 for different
substances are given in Table 6.2.

Nonlinearity
The derivation of the wave equation Eq. (6.2), assumes
that the acoustic pressure p is only an infinitesimal
disturbance of the static pressure. In that case, the
linear wave equation can be derived, which shows
that any waveform propagates through a medium
without changing its shape (cf. Figure 6.2). However,
if the acoustic pressure increases, this approximation
is no longer valid, and wave propagation is associ-
ated with distortion of the waveform. This effect is
visible in the frequency domain by the generation of
higher harmonics (i.e., integermultiples of the original
frequency).

To illustrate this phenomenon, a propagatingwave
was measured as a function of time. Figure 6.6 repre-
sents these recorded time signals and their spectra.
The origin of the time axis (time = 0) is the moment
at which the pulse was generated. The distortion of
the waveform and the introduction of harmonic fre-
quencies increase with increasing pressure amplitude,
which can be noticed by comparing the top row with

Table 6.2 Some typical values of
α0 for different substances

Substance α0 (dB/(cmMHz))
Lung 41

Bone 20

Kidney 1.0

Liver 0.94

Brain 0.85

Fat 0.63

Blood 0.18

Water 0.0022

the central row in the diagram. Furthermore, because
nonlinear wave distortion is induced during propa-
gation, the effect increases with propagation distance.
This is visible when comparing the bottom and central
rows in the diagram, which show the measurement
of an identical pulse at a different distance from the
source.

The rate of harmonics generation at constant pres-
sure amplitude is different for different media. The
nonlinearity of a medium is described by its nonlin-
earity parameter B/A . Table 6.3 gives an overview of
some B/A values for different biologic tissues. The
larger the value of B/A is, the more pronounced the
nonlinearity of the medium.

Physical meaning of A and B
The acoustic pressure p can be expressed as a function
of the density ρ using a Taylor expansion around the
static density ρ0

p =
(

∂p

∂ρ

)
�ρ + 1

2

(
∂2p

∂ρ2

)
�ρ2 + · · · (6.10)

where �ρ = ρ − ρ0 is the acoustic density. For small
amplitudes of �ρ (and, consequently, of p), a first-
order approximation of the previous equation can be
used:

p =
(

∂p

∂ρ

)
�ρ. (6.11)

In this case, which is used to derive the linear wave
equation, a linear relationship exists between the
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Figure 6.6 (a) The nonlinear propagation of a wave yields a distortion of the original waveform. (b) This distortion is visible in the frequency
domain as higher harmonics. The amount of distortion depends on both the amplitude (central versus top row) and the propagation distance
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Table 6.3 Nonlinearity parameter B/A
of some biologic tissues

Medium B/A Medium B/A

Pig blood 6.2 Liver 7.5

Spleen 7.8 Kidney 7.2

Muscle 6.5 Fat 11.0

H2O 5.0

acoustic pressure and the acoustic density. However,
if the amplitude of �ρ is not small, the second- and
higher order terms cannot be neglected. Defining

A ≡ ρ0

(
∂p

∂ρ

)
(6.12)

and

B ≡ ρ2
0

(
∂2p

∂ρ2

)
. (6.13)

Eq. (6.10) can be rewritten as

p =
(

∂p

∂ρ

)
�ρ + 1

2

(
∂2p

∂ρ2

)
�ρ2 + · · ·

= A

(
�ρ

ρ0

)
+ B

2

(
�ρ

ρ0

)2
+ · · · . (6.14)

The larger B/A is, the stronger the nonlinearity effect.

Wave propagation in inhomogeneous
media
Tissues are inhomogeneous media. When inhomo-
geneities are present, additional phenomena occur,
which can be explained using Huygens’ principle, as
shown in Figure 6.7. This states that any point on a
wavefront canbe considered as the sourceof secondary
waves, and the surface tangent to these secondary
waves determines the future position of the wavefront.
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Figure 6.7 Schematic representation of Huygens’ principle. The
concentric lines in this figure represent the wavefronts, i.e., surfaces
where the waves have the same phase. Any point on a wavefront
can be considered as the source of secondary waves and the
surface tangent to these secondary waves determines the future
position of the wavefront.

Awavefront is a surface where the waves have the same
phase.

Reflection and refraction
When a wave propagating in a medium with den-
sity ρ1 and sound velocity c1 meets another medium
with density ρ2 and sound velocity c2, as illustrated
in Figures 6.8 and 6.9, part of the energy of the wave
is reflected and part is transmitted. The frequency of
both the reflected and refractedwaves is the sameas the
incident frequency. Using Huygens’ principle, it can
easily be shown that the angles of the traveling (pla-
nar) waves with respect to the planar interface have
the following relationship, which is Snell’s law :

sin θi
c1
= sin θr

c1
= sin θt

c2
, (6.15)

with θi, θr and θt the angles of incidence, reflection,
and transmission, respectively. The transmitted wave
does not necessarily propagate in the same direction
as the incident wave. Therefore, the transmitted wave
is also called the refracted wave. From Eq. (6.15) it

incident
wavefront 

reflected
wavefront

c1

c2

c1 = l1.f 
c2 = l2.f 

urui
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21 3 4

Figure 6.8 Schematic representation of reflection of an incident
wave at a planar interface of two different media. The relationships
between the angles θi is given in Eq. (6.15).
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Figure 6.9 Schematic representation of refraction of an incident
wave at a planar interface of two different media. The relationships
between the angles θi is given in Eq. (6.15).

follows that

cos θt =
√
1−

(
c2
c1

sin θi

)2
. (6.16)

If c2 > c1 and θi > sin−1(c1/c2), cos θt becomes a
complex number. In this case, it can be shown that the
incident and reflected waves are out of phase.

Not only does the direction of propagation at the
interface between two media change, but also the
amplitude of the waves. In the case of a smooth pla-
nar interface, it can be shown that these amplitudes
relate as

T ≡ At
Ai
= 2Z2 cos θi

Z2 cos θi + Z1 cos θt
(6.17)134
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and

R ≡ Ar
Ai
= Z2 cos θi − Z1 cos θt

Z2 cos θi + Z1 cos θt
, (6.18)

where Ai, Ar, and At are the incident, reflected, and
transmitted amplitudes and Z1 and Z2 the specific
acoustic impedances of the two media. The parame-
ters T and R are called the transmission coefficient and
the reflection coefficient and relate as

R = T − 1. (6.19)

The reflection is large if Z1 and Z2 differ strongly,
such as for tissue/bone and air/tissue transitions (see
Table 6.1). This is the reason why in diagnostic imag-
ing a gel is used that couples the transducer and the
patient’s skin. Note that when a wave propagates from
medium 1 into medium 2, T and R are different
than when the same wave travels from medium 2
into medium 1. Both coefficients can therefore be
assigned indices to indicate in which direction the
wave propagates (e.g., T12 or R21).

The type of reflections discussed in this paragraph
are pure specular reflections. They occur at perfectly
smooth surfaces, which is rarely the case in practice.
Reflections are significant in a cone centered around
the theoretical direction θr. This is the reason why a
single transducer can be used for the transmission and
measurement of the ultrasonic waves.

Scattering
From the previous discussion, it must not be con-
cluded that reflections only occur at tissue boundaries
(e.g., blood–muscle). In practice, individual tissues
are inhomogeneous owing to local deviations of den-
sity and compressibility. Scatter reflections therefore
contribute to the signal, as is illustrated in Figure 6.10.

The smallest possible inhomogeneity is a point and
is called a point scatterer. A point scatterer retrans-
mits the incident wave equally in all directions as if
it were a source of ultrasonic waves (Huygens’ prin-
ciple). Waves scattered in the opposite direction to
the incident pulse are called backscatter. The char-
acteristics of a finite scatterer can be understood by
considering it as a collection of point scatterers. Since
each point scatterer retransmits the received pulse in
all directions, the scattered pulse from a finite scatterer
is the interference between the wavelets from the con-
stituting point scatterers. Obviously, this interference
pattern depends on the shape and size of the scatterer.
Because this pattern is the result of the interference of a
very large number of coherent (secondary) sources, it
is also known as the diffraction pattern of the scatterer.

If the scatterer is much smaller than the wave-
length, all contributions interfere constructively, inde-
pendently of the shape of the scatterer or of the
point of observation P (as long as it is far enough
from the scatterer). This is illustrated schematically
in Figure 6.11(a). On the other hand, if the size of the
object is comparable to thewavelength, there is a phase

20

(a) (b)

30 40 50 60 70 80 90 100 110

A
m

pl
itu

de
 (

m
V

)

Time (ms)

20 30 40 50 60 70 80 90 100 110

A
m

pl
itu

de
 (

m
V

)

Time (ms)

–5

–4

–3

–2

–1

0

1

2

3

4

–20

–15

–10

–5

0

5

10

15

20

Figure 6.10 (a) Reflected signal as a function of time for a homogeneous object in water. Obviously, a large reflection occurs at the
interfaces between the two matters. The other apparent reflections within the water and object are caused by acquisition noise (note their
small amplitude). (b) Reflected signal as a function of time for an inhomogeneous object in water. The reflections show an exponential decay.
Deeper regions in the scattering object have a smaller amplitude. This is due to attenuation. Note the different scales in both diagrams.
(Courtesy of Professor J. D’hooge, Department of Cardiology. Reprinted with permission of Leuven University Press.)
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Figure 6.11 A scatterer can be represented by a collection of point scatterers. Each point scatterer retransmits the incident pressure field in
all directions. (a) These wavelets interfere constructively at the point P of observation if the scatterer is much smaller than the wavelength. (b)
They interfere in a complex manner when the size of the scatterer is comparable to or larger than the wavelength.

shift between the retransmitted wavelets, and the
interference pattern depends on the shape of the scat-
terer and the point of observation (see Figure 6.11(b)).

Wave propagation and motion:
the Doppler effect
If an acoustic source moves relative to an observer,
the frequencies of the observed and transmitted waves
are different. This is the Doppler effect. A well-known
example is that of awhistling train passing anobserver.
The observed pitch of the whistle is higher when the
train approaches than when it moves in the other
direction.

Consider the schematic representation of a trans-
ducer, a transmitted pulse, and a point scatterer in
Figure 6.12. Assume that the scatterer moves away
from the static transducer with an axial velocity com-
ponent va = |�v| · cos θ . If fT is the frequency of the
pulse transmitted by the transducer, the moving scat-
terer reflects this pulse at a different frequency fR. The
frequency shift fD = fR − fT is the Doppler frequency
and can be written as

fD = fR − fT = − 2va
c + va

fT. (6.20)

Proof of Eq. (6.20)
The position Ps(t ) of the start point of the transmitted
pulse at time t can be written as

Ps(t ) = ct , (6.21)

Transducer
va

v

u

Pe

d  + v  . t0

l

Ps P

a

Figure 6.12 Geometry used to derive an expression for the
frequency shift due to the motion of the scatterer (i.e., the Doppler
frequency).

where c is the sound velocity within the medium and
t the time since the pulse was transmitted.
The position P(t ) of the scatterer can be written as

P(t ) = d0 + vat , (6.22)

where d0 is the distance from the transducer to the
scatterer at time t = 0.
The start point of the ultrasonic pulse meets the scat-
terer when Ps(t ) = P(t ), say at time tis. Hence,
Ps(tis) = P(tis). From Eqs. (6.21) and (6.22) it follows
that

ctis = d0 + vatis

tis = d0
c − va

.
(6.23)

Without loss of generality, assume that the pulse
length equals one wavelength λ. If T is the period
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of the transmitted pulse, the position Pe(t ) of the end
point can be written as

Pe(t ) = ct − λ

= c(t − T ).
(6.24)

Point Pe meets the scatterer if Pe(t ) = P(t ), say at
time tie. Hence, Pe(tie) = P(tie). From Eqs. (6.24) and
(6.22) it then follows that

c(tie − T ) = d0 + vatie

tie = d0 + cT

c − va

= tis + c

c − va
T . (6.25)

The scatterer reflects the pulse back to the receiver.
The position where the points Ps and Pe meet the
scatterer are respectively Ps(tis) and Pe(tie). These are
also the distances these points have to travel back to
the transducer. The corresponding travel times trs and
tre are

trs = Ps(tis)

c
= tis

tre = Pe(tie)

c
= tie − T , (6.26)

which have to be added to tis and tie respectively to
calculate the travel time back and forth of Ps and Pe,
that is, ts = tis + trs and te = tie + tre respectively.
Hence,

ts = 2tis

te = 2tie − T .
(6.27)

Consequently, the durationTR = te−ts of the received
pulse can easily be obtained from Eq. (6.25):

TR = 2
c

c − va
T − T

=
(

c + va
c − va

)
T .

(6.28)

SubstitutingTR by 1/fR andT by 1/fT in this equation,
yields the Doppler frequency fD

fD = fR − fT = − 2va
c + va

fT. (6.29)

In practice, the velocity of the scatterer is much
smaller than the velocity of sound and the Doppler
frequency can be approximated as

fD ≈ −2|�v| cos θ
c

fT. (6.30)

For example, if a scatterer moves away from the
transducer with a velocity of 0.5 m/s and the pulse
frequency is 2.5 MHz, the Doppler shift is approxi-
mately −1.6 kHz. Note that for θ = 90◦ the Doppler
frequency is zero.

Generation and detection of
ultrasound
Ultrasonic waves are both generated and detected by
a piezoelectric crystal, which deforms under the influ-
ence of an electric field and, vice versa, induces an
electric field over the crystal after deformation. This
crystal is embedded in a so-called transducer that
serves both as a transmitter and as a detector. Two
piezoelectric materials that are often used are PZT
(lead zirconate titanate) and PVDF (polyvinylidene
fluoride), which are both polymers.

If a piezoelectric crystal is driven with a sinusoidal
electrical signal, its surfaces move, and a compres-
sion wave at the same frequency is generated and
propagates through the surrounding media. How-
ever, Eqs. (6.17) and (6.18) show that the transmission
and reflection coefficients at the interface between
two media depend on the acoustic impedances of
the media. Therefore, part of the energy produced
by the transducer is reflected inside the crystal and
propagates toward the opposite surface. Because this
reflected (compression) wave in turn induces elec-
trical fields that interfere with the driving electrical
force, it can be shown that the amplitude of the vibra-
tion is maximal when the thickness of the crystal is
exactly half the wavelength of the induced wave. This
phenomenon is called resonance, and the correspond-
ing frequency is called the fundamental resonance
frequency.

Obviously, asmuch of the acoustic energy as possi-
ble should emerge from the crystal through the surface
on the image side. Therefore, appropriate materials
with totally different acoustic impedance than that of
the crystal are used as a backing at the other surface
(Figure 6.13). As such, almost all energy is reflected
into the crystal. At the front side of the crystal, as
much energy as possible should be transmitted into the
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Figure 6.13
Schematic
illustration of the
cross-section of an
ultrasonic
transducer, which
consists of four
important elements
(i.e., a backing layer,
electrodes, a
piezoelectric crystal,
and a matching
layer).

medium. However, because the acoustic impedance of
solids is very different from that of fluids (which is a
good model for biologic tissue), part of the energy is
reflected into the crystal again. This problem is solved
by using a so-called matching layer (Figure 6.13),
which has an acoustic impedance equal to

√
ZcZt, with

Zc and Zt being the acoustic impedance of the crystal
and the tissue, respectively. It can be shown that if
this layer has a thickness equal to an odd number of
quarter wavelengths, complete transmission of energy
from the crystal to the tissue can be obtained.

An ultrasonic transducer can only generate and
receive a limited band of frequencies. This band is
called the bandwidth of the transducer.

Gray scale imaging
Data acquisition
Instead of applying a continuous electrical signal to the
crystal, pulses are used to obtain spatial information.
Data acquisition is done in three different ways.

A-mode
Immediately after the transmission of the pulse, the
transducer is used as a receiver. The reflected (both
specular and scattered) waves are recorded as a func-
tion of time. An example has already been shown
in Figure 6.10. Note that time and depth are equiv-
alent in echography because the sound velocity is
approximately constant throughout the tissue. In
other words, c multiplied by the travel time of the
pulse equals twice the distance from the transducer to
the reflection point. This simplest form of ultrasound
imaging, based on the pulse–echo principle, is called
A-mode (amplitude) imaging. The detected signal is
often called the radiofrequency (RF) signal because

the frequencies involved are in the MHz range and
correspond to the frequencies of radio waves in the
electromagnetic spectrum.

M-mode
The A-mode measurement can be repeated. For a
static transducer and object, all the acquired lines are
identical, but if the object moves, the signal changes.
This kind of imaging is calledM-mode (motion) imag-
ing and yields a 2D image with depth and line number
as the dimensions (see Figures 6.14 and 6.15).

B-mode
A 2D image (e.g., Figure 6.16) can be obtained
by translating the transducer between two A-mode
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Figure 6.14 Repeated A-mode measurement yields M-mode
imaging. (Courtesy of Professor J. D’hooge, Department of
Cardiology. Reprinted with permission of Leuven University Press.)

Line number

Depth

Figure 6.15 M-mode image of the heart wall for assessment of
cardiac wall motion during contraction. The black region is blood,
the bright reflection is the pericardium (i.e., a membrane around the
heart), and the gray region in between is the heart muscle itself.
(Courtesy of Professor J. D’hooge, Department of Cardiology.
Reprinted with permission of Leuven University Press.)
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(a) (b)

Figure 6.16 (a) B-mode image of a fetus. The dark region is the uterus, which is filled with fluid. (Courtesy of Professor M. H. Smet,
Department of Radiology) (b) B-mode image of a normal heart in a four-chamber view showing the two ventricles (LV left ventricle; RV right
ventricle), the two atria (LA left atrium; RA right atrium) and the origin of the aorta (outflow tract). Besides the anatomy of the whole heart, the
morphology of the valves (e.g., mitral valve) can be visualized. (Courtesy of the Department of Cardiology.)

Transducer

Object

Transducer

Transducer

Object

Transducer

Figure 6.17 B-mode image acquisition
can be done by either translating (a) or
tilting (b) the transducer. (Courtesy of
Professor J. D’hooge, Department of
Cardiology. Reprinted with permission of
Leuven University Press.)

acquisitions. This is illustrated in Figure 6.17(a). This
kind of imaging is called B-mode imaging, where B
stands for brightness (see also p. 140). If this mea-
surement is repeated over time, an image sequence is
obtained.

Because bone has a high attenuation coefficient,
transmission of sound through bone is minimal. For
example, the waves can approach the heart only
through the small space between the ribs. This space is
often called the acoustic window. Because the acoustic
window for the heart is relatively small, the transla-
tion technique described above cannot be applied to
cardiac applications. A possible solution is to scan a
sector by tilting the transducer rather than translating
it (see Figure 6.17(b)).

The same imaging modes are also used for sec-
ond harmonic imaging. The difference with traditional
imaging is that the complete bandwidth of the trans-
ducer is not used during transmission but only a
low-frequency part. Higher harmonics are generated
during wave propagation and are detected with the
remaining high-frequency part of the sensitive band-
width of the transducer. The bandwidth used during
transmission can be changed by modifying the prop-
erties of the electrical pulses that excite the crystals.

Image reconstruction
Reconstructing ultrasound images based on the
acquired RF data as shown in Figure 6.14, involves

139



Chapter 6: Ultrasound imaging

the following steps: filtering, envelope detection,
attenuation correction, log-compression, and scan
conversion. All of these steps arenowbrieflydiscussed.

Filtering
First, the received RF signals are filtered in order to
remove high-frequency noise. In second harmonic
imaging, the transmitted low-frequency band is also
removed, leaving only the received high frequencies
in the upper part of the bandwidth of the transducer.
The origin of these frequencies, which were not trans-
mitted, is nonlinear wave propagation (see p. 132).
Figure 6.18 shows fundamental and second harmonic
images of the heart.

Envelope detection
Because the very fast fluctuations of the RF signal
(as illustrated in Figure 6.19(a)) are not relevant for
gray scale imaging, the high-frequency information is
removed by envelope detection. Usually this is done
by means of a quadrature filter or a Hilbert transfor-
mation. A detailed discussion, however, is beyond the
scope of this text.

Figure 6.19(a) shows an example of an RF signal
and its envelope. If each amplitude along the envelope
is represented as a gray value or brightness, and dif-
ferent lines are scanned by translating the transducer,
a B-mode (B stands for brightness) image is obtained.
Figure 6.19(b) shows an example. Bright pixels corre-
spond to strong reflections, and the white lines in the
image represent the two boundaries of the scanned
object.

To construct an M-mode image, the same proce-
dure with a static transducer is applied. The result
is a gray value image with depth and time as the
dimensions, as illustrated in Figure 6.15.

Attenuation correction
Identical structures should have the same gray value
and, consequently, the same reflection amplitudes.
However, the amplitude of the incident and reflected
wave decreases with depth because of attenuation
of the acoustic energy of the ultrasonic wave dur-
ing propagation (see Eq. (6.9)). To compensate for
this effect, the attenuation is estimated. Because time

LVRV

RA LA

(a) (b)

Figure 6.18 B-mode image of the heart
in fundamental (a) and second
harmonic (b) imaging modes. The two
ventricular and the two atrial cavities are
shown as dark regions. The heart muscle
itself is situated between the cavities and
the bright specular reflection. Second
harmonic imaging yields a better image
quality in corpulent patients. (Courtesy of
the Department of Cardiology.)
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Figure 6.19 Plotting the amplitudes of
the envelope (a) as gray values yields an
ultrasound image (b). (Courtesy of the
Department of Cardiology.)
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Figure 6.20 Processing the original gray
values as indicated in (a) results in a better
visualization of the scatter reflections (b).
This is an example of a gray level
transformation, as discussed in Chapter 1,
p. 4. (Courtesy of the Department of
Cardiology.)

and depth are linearly related in echography, attenua-
tion correction is often called time gain compensation.
Typically, a simple model is used – for example,
an exponential decay – but in practice several tis-
sueswithdifferent attenuationproperties are involved.
Most ultrasound scanners therefore enable the user to
modify the gain manually at different depths.

Log-compression
Figure 6.19(b) mainly shows the specular reflections.
However, the scatter reflections are almost invisible.
The reason is the largedifference in amplitudebetween
the specular and the scatter reflections, yielding a large
dynamic range. In order to overcome this problem, a
suitable gray level transformation can be applied (see
Chapter 1, p. 4). Typically, a logarithmic function is
used (Figure 6.20(a)). The log-compressed version of
the image in Figure 6.19(b) is shown in Figure 6.20(b).
The scatter or speckle can now easily be perceived.
Note that different tissues generate different speckle
patterns.

Scan conversion
If the image is acquired by tilting the transducer
instead of translating it, samples on a polar grid are
obtained. Converting the polar into a rectangular
grid needs interpolation. This process is called scan
conversion or sector reconstruction.

Acquisition and reconstruction time
To have an idea of the acquisition time of a typ-
ical ultrasound image, a simple calculation can be
made. Typically, each line in the image corresponds
to a depth of 20 cm. Because the velocity of sound is
approximately 1540m/s and the travel distance to and
from the transducer is 40 cm, the acquisition of each
line takes 267µs. A typical image with 120 image lines

then requires an acquisition time of about 32 ms. The
reconstruction of the images can be done in real time.
Consequently, a temporal resolution of 30 Hz (i.e.,
30 images per second) can be obtained. This temporal
resolution can be increased at the cost of spatial resolu-
tion by decreasing the number of scan lines. However,
current clinical scanners are able to acquire multiple
scan lines simultaneously with little influence on the
spatial resolution (see p. 150 below). This way, frame
rates of 70–80 Hz can be obtained.

Doppler imaging
Doppler imaging is a general term used to visual-
ize velocities of moving tissues. Data acquisition and
reconstruction are different from gray scale imaging.
Furthermore, theDoppler principle is not always used.

Data acquisition
In Doppler imaging data acquisition is done in three
different ways.

• Continuous wave (CW) Doppler A continuous
sinusoidal wave is transmitted by a piezoelectric
crystal, and the reflected signal is received by a sec-
ond crystal. Usually, both crystals are embedded
in the same transducer. CW Doppler is the only
exception to the pulse–echo principle for ultra-
sound data acquisition. It does not yield spatial
(i.e., depth) information.

• Pulsed wave (PW) Doppler Pulsed waves are trans-
mitted along a particular line through the tissue at
a constant pulse repetition frequency (PRF). How-
ever, rather than acquiring the complete RF signal
as a function of time, as in the M-mode acquisi-
tion (see p. 138), only one sample of each reflected
pulse is taken at a fixed time, the so-called range
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gate, after the transmission of the pulse. Conse-
quently, information is obtained from one specific
spatial position.

• Color flow (CF) imaging This is the Doppler
equivalent of the B-mode acquisition (see p. 138).
However, for each image line, several pulses (typi-
cally 3–7) instead of one are transmitted. The result
is a 2D image in which the velocity information is
visualized by means of color superimposed onto
the anatomical gray scale image.

Reconstruction
From the acquired data the velocity must be calcu-
lated and visualized. This is different for each of the
acquisition modes.

Continuous wave Doppler
To calculate the velocity of a scattering object in front
of the transducer, the frequency of the received wave
fR is compared with that of the transmitted wave fT.
Equation (6.30) gives the relation between theDoppler
frequency fD = fR − fT and the velocity va of the tis-
sue. Note that only the axial component of the object’s
motion can be measured this way.

Cardiac and blood velocities cause a Doppler shift
in the sonic range. Therefore, the Doppler frequency
is often made audible to the user. A high pitch cor-
responds to a high velocity, whereas a low pitch
corresponds to a low velocity.

If the received signal is subdivided into segments,
the frequency spectrum at subsequent time inter-
vals can be obtained from their Fourier transform.
The spectral amplitude can then be encoded as a
gray value in an image. This picture is called the
spectrogram or sonogram. Typically, scatterers with
different velocities are present in one segment, yield-
ing a range of Doppler shifts and a broad instead of
a sparse peaked spectrum. Moreover, segmentation
of the received signal corresponds to a multiplication
with a rectangular function and a convolution of the
true spectrum with a sinc function. Consequently, the
spectrum appears smoother than it actually should
be. This kind of broadening is called intrinsic broad-
ening because it has no physical origin but is due
purely to signal processing. An example of a con-
tinuous wave spectrogram is given in Figure 6.21. It
is clear that a compromise has to be made between
the amount of intrinsic spectral broadening and the
time between two spectra in the spectrogram. In other
words, a compromise has to be made between the

Figure 6.21 CW Doppler spectrogram showing the velocity
profile of the blood flow through a heart valve. (Courtesy of the
Department of Cardiology.)

velocity resolution and temporal resolution of the
spectrogram.

Pulsed wave doppler
Pulsed wave (PW) Doppler does not make use of
the Doppler principle. Instead, the received signal
is assumed to be a scaled, delayed replica with the
same frequency (i.e., fR = fT) as the transmitted pulse.
Effects such as diffraction and nonlinearity are also
neglected. Assume a transmitted sinusoidal wave

p(t ) = ymax sin(2π fTt ). (6.31)

The received signal then is

s(t ) = A sin(2π fT(t −�t )). (6.32)

The interval �t is the time between the transmission
and the reception of the pulse and depends on the
distance d from the transducer to the scatterer, i.e.,
�t = 2d/c . The PW Doppler system takes only one
sample of each of the received pulses at a fixed range
gate tR (Figure 6.22), that is,

s(tR) = A sin(2π fT(tR −�t ))

= A sin(2π fT(tR − 2d/c)). (6.33)

If the scattering object moves away from the trans-
ducer with a constant axial velocity va, the distance
d increases between subsequent pulses with vaTPRF,
where TPRF is the pulse repetition period, TPRF =
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Figure 6.22 Pulsed wave Doppler uses the M-mode acquisition
scheme (see Figure (6.14)) and samples the subsequent reflected
pulses at a fixed range gate tR to calculate the Doppler frequency fD.
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Figure 6.23 Schematic representation of the PW Doppler
principle. Pulses are transmitted at a fixed pulse repetition
frequency (PRF). They are reflected at a scatterer in motion. Because
of this motion, the reflected pulses are dephased. Measuring each
reflected pulse at the range gate tR yields a sampled sinusoidal
signal with frequency fD.

1/PRF (see Figure 6.23). Consequently, Eq. (6.33) can
be written as

sj(tR) = A sin
(
−2π fT

(
2(d0 + j · va · TPRF)

c

)
+ tR

)

= A sin
(
−2π fT

(
j · 2 · va · TPRF

c

)
+ φ

)

(6.34)

where sj(tR) is the sample of the jth pulse. Hence,
the values sj(tR) in Eq. (6.34) are samples of a slowly

time-varying sinusoidal function with frequency

fD = −2va
c

fT, (6.35)

which is exactly the Doppler frequency defined in
Eq. (6.30). Hence, the velocity of the scattering object
at a specific depth, defined by the range gate, can be
calculated from the sampled signal sj(tR). As in CW
Doppler, this signal can be made audible or can be
represented as a spectrogram. Often, the spectrogram
is displayed together with a B-mode gray scale image
in which the position of the range gate is indicated.
Such a combined scan is called a duplex.

Note that a PWDoppler system as described above
is not able to detect the direction of motion of the
scattering object. To obtain directional information,
not one but two samples, a quarter of a wavelength or
less apart, have to be taken each time because this
completely determines the motion direction of the
waveform as illustrated schematically in Figure 6.24.

Similarly to CW Doppler, the received (sampled)
signal is subdivided into segments and their frequency
spectrum is obtained by calculating the Fourier trans-
form. The result is also visualized as a spectrogram.
An example is shown in Figure 6.25.

Color flow imaging
Similar to pulsed wave (PW), Doppler color flow
(CF) imaging uses ultrasonic pulses and makes the
same assumption that the received signal s(t ) is a
scaled, delayed replica with the same frequency (i.e.,
fR = fT) as the transmitted (sinusoidal) pulse. How-
ever, instead of calculating va from samples of a signal
with frequency fD (see Eq. (6.34)) color flow imag-
ing calculates the phase shift between two subsequent
received pulses. Equation (6.34) shows that this phase
shift can then be used to calculate the velocity va:

�φ = 2π fT
2vaTPRF

c
. (6.36)

The phase shift �φ can be derived by sampling two
subsequent pulses at two specific time instances tR1
and tR2. It can easily be shown that two samples of
a sinusoid completely determine its phase given that
they are no more than a quarter of a wavelength apart
(see Figure 6.24). Consequently, two such unique cou-
ples of samples are sufficient to determine completely
the phase shift �φ between two subsequent pulses.

Anotherway to calculate�φ is by cross-correlation
of the signals received from both pulses. This method
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Figure 6.24 If a single sample is acquired at the range gate, no directional information is obtained (a). However, if a second sample is
acquired slightly after the first one, the direction of motion is uniquely determined since a unique couple of samples within the cycle is
obtained (b).

Figure 6.25 Normal PW Doppler
spectrogram of blood flow through the
aortic valve. (Courtesy of the
Department of Cardiology.)

has the advantage that it does not suffer from alias-
ing (see Appendix A, p. 230). Moreover, cross-
correlation is not limited to one-dimensional signals.
It can also be applied to the subsequent ultrasound
images of a time sequence. This has the advan-
tage that the real velocity |�v| instead of the axial
velocity va = |�v| cos θ is calculated. However, cross-
correlation is not commonly available yet in clinical
practice.

In practice, the measurements are noisy. To
increase the accuracy, more than two pulses (typically
three to seven) are used and the results are averaged.
By dividing the whole acquired RF line into range
gates in which a few samples are taken, this method

permits calculations of the local velocity along the
complete line (i.e., for all depths). This process can
be repeated for different lines in order to obtain a
2D image. Usually, the velocity information is color
coded and displayed on top of the conventional gray
scale image (see Figure 6.26, for example), which can
be reconstructed simultaneously from the acquired RF
signals. Typically, red represents velocities toward the
transducer, and blue the opposite.

The color flow technique can also be applied to
data acquired along a single image line. In that case,
theM-modegray scale image canbedisplayed together
with the estimated local velocities. This is color flow
M-mode.
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(a) (b)

Figure 6.26 (a) Using color Doppler techniques, blood flow within the ventricles can be visualized. This image shows the flow in a normal left
ventricle at the beginning of diastole. Red colors represent flow toward the transducer, coming from the left atrium through the mitral valve
and into the left ventricle. Blue colors show the blood within the left ventricle flowing away from the transducer toward the aorta. (b) Doppler
techniques can be used to acquire the slower, regional velocities of the heart muscle itself. Local velocities in the direction of the transducer
are represented in red, and velocities away from the transducer are in blue. (Courtesy of the Department of Cardiology.)

Acquisition and reconstruction time
Continuous wave and pulsed wave Doppler require
a long transmission of either CW or PW ultrasound
in tissue. Reconstruction then consists of a simple
Fourier transform, which can be done in real time.
In practice, changes in velocities over time are investi-
gated, and the received signal is subdivided into small
(overlapping) segments whose spectral amplitudes
constitute the columns of a spectrogram. Figure 6.21
shows an example of a spectrogram of the heart. One
such complete spectrogram is typically acquired in 3
to 4 seconds, which corresponds to 3 to 4 heart cycles.

In color flow imaging, a few pulses are sent along
each image line. This means that the time needed to
acquire an image is the time required to obtain a B-
mode gray scale image times the number of pulses
sent along each line. If, for example, three pulses per
line are used, an image is obtained in approximately
100 ms. Velocity calculation can be done in real time,
resulting in a frame rate of 10 Hz. To increase this
frame rate, the field of view (FOV) is usually decreased.
The size of the FOV can be selected independent of
the FOV of the gray scale image. This way, the veloc-
ity calculations are limited to the regions that contain
relevant velocity information.

Image quality
Spatial resolution
The spatial resolution in ultrasound imaging distin-
guishes the axial, lateral, and elevation resolution, i.e.,
the resolution in thedirectionofwavepropagation, the
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Figure 6.27 Schematic representation of the axial, lateral and
elevation directions.

resolution perpendicular to the axial direction within
the image plane, and the resolution perpendicular to
the image plane (see Figure 6.27).

Axial resolution
Resolution can be expressed by the PSF, which deter-
mines the minimum distance between neighboring
details that can still be distinguished as separate
objects. In the axial direction, the width �x of the
PSF depends on the duration �T of the transmitted
pulse. Because the pulse has to travel back and forth, an
object point does not contaminate the received signal
of aneighboringpoint if thedistance�x between them
is larger than c�T/2 (Figure 6.28), which is a measure
of the resolution. A typical 2.5 MHz transducer has an
axial resolution �x of approximately 0.5 mm.

While in MRI a small bandwidth and, conse-
quently, a long RF pulse for slice selection is needed
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to obtain the best resolution (see Chapter 4, p. 73),
in ultrasound a short pulse with large bandwidth is
needed. For technical reasons beyond the scope of
this text, this bandwidth is limited by the transducer
and is proportional to the central frequency. Hence,
the resolution can be improved by increasing the
transmitted frequency (see for example Figure 6.41(a)
below). However, because the attenuation increases
with higher frequencies (see Eq. (6.9)), the penetra-
tion depth decreases. Hence, a compromise has to be
made between spatial resolution and penetration.

In Doppler imaging, the continuous wave (CW)
mode does not yield spatial information. The axial
resolution of pulsed wave (PW) and color flow (CF)
imaging theoretically can be the same as for gray
scale imaging. However, it can be shown that the
velocity resolution is improved by increasing the

∆xc.∆T

c.∆T

c.∆T

2∆x

Figure 6.28
Schematic
representation of a
pulse reflecting at
two surfaces �x
apart. The reflected
pulses can be
resolved if
2�x > c�T .

pulse length. Consequently, PW and CF Doppler
systems have to make a compromise, and in prac-
tice the axial resolution is somewhat sacrificed to
the velocity resolution. We note here that no such
compromise has to be made when cross-correlation
is used for reconstruction (see p. 143). However,
cross-correlation is not available in clinical practice
today.

Lateral and elevation resolution
The width of the PSF is determined by the width of
the ultrasonic beam, which in the first place depends
on the size and the shape of the transducer. Unlike a
planar crystal, a concave crystal focuses the ultrasonic
beam at a certain distance. At this position, the beam
is smallest and the lateral resolution is best.

Figure 6.29 shows an example of the sound field
produced by a planar and a curved transducer.
Figure 6.30(b) illustrates the finer speckle pattern
obtained with a concave crystal as compared with
Figure 6.30(a) produced with a planar crystal. Note
that focusing can also be obtained electronically by
means of a phased-array transducer, as explained on
p. 150 below.

It can further be shown that the beam width can
be reduced and, consequently, the lateral resolution
improved by increasing the bandwidth and the central
frequency of the transmitted pulse. Because gray scale
images are acquired with shorter pulses than PW and
CF Doppler images (see previous paragraph) their lat-
eral resolution is better. On the other hand, the lateral
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Figure 6.29 Experimentally measured lateral pressure field of a planar (a) and concave (b) circular transducer with a radius of 13 mm and a
central frequency of 5 MHz. Note the smaller shape in (b), which is due to focusing.

146



Chapter 6: Ultrasound imaging

(b)(a)

2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20

La
te

ra
l d

is
pl

ac
em

en
t (

m
m

)

50

45

40

35

30

25

20

15

10

5

La
te

ra
l d

is
pl

ac
em

en
t (

m
m

)

50

45

40

35

30

25

20

15

10

5

Time (�s) Time (�s)

Figure 6.30 Image obtained with (a) a
planar and (b) a concave transducer.
Because of beam focusing, the lateral
resolution in (b) is clearly superior to that
in (a). (Courtesy of Professor J. D’hooge,
Department of Cardiology. Reprinted
with permission of Leuven University
Press.)

resolution of pulsed Doppler systems is better than
that of a continuous wave (CW) system, which has a
smaller bandwidth.

Typically, the lateral and elevation resolution in
the focal region is on the order of a few millimeters
(i.e., an order of magnitude worse than the resolu-
tion in the axial direction). Outside this region the
beamwidth increases and the resolution becomes even
worse.

Noise
The noisy pattern as observed in Figure 6.30 is almost
completely due to scatter reflections. Acquisitionnoise
can be neglected compared with this so-called speckle
noise. It can be shown that if sufficient scatterers are
present per unit volume and if their position is com-
pletely random, the SNR equals 1.92. This is poor
compared with other imaging modalities. However,
the speckle pattern, here defined as noise, enables
the user to distinguish different tissues from each
other and thus contains useful information. There-
fore, defining the speckle pattern as noise is not very
relevant.

Image contrast
Strongly reflecting structures, such as calcifications or
tissue interfaces, yield bright reflections and are called
echogenic as opposed tohypogenic structureswithweak
reflections, such as blood. The received signal is not
only due to specular reflections but also to scatter. The
large-amplitude difference between the specular and
the scatter reflections yields a large dynamic range.
Typically, a logarithmic function is used to overcome
this problem (Figure 6.20).

It is important to note that in ultrasound imag-
ing the degree of perceptibility of tissues is not

Transducer

(a) (b)

Transducer

Figure 6.31 (a) A focusing transducer produces side lobes. (b) The
point scatterer in front of the transducer appears several times in
the reconstructed image, once for each lobe.

only defined by the contrast (i.e., the difference in
brightness in adjacent regions of the image), but also
by the difference in speckle pattern or texture.

Gray scale image artifacts
Side lobes
A closer look at the pressure field produced by a
focused transducer (see Figure 6.29(b)) reveals that
the lateral pressure profile shows a main lobe and side
lobes. The amplitudes of these side lobes are much
smaller but can nevertheless introduce image artifacts.
The reflections from the side lobes can contribute
significantly to the reflected signal and introduce
information from another direction in the received
signal. An extreme situation of a single point scatterer
is illustrated in Figure 6.31. Because of the side lobes,
two scatterers wrongly appear in the image.

Reverberations
If a reflected wave arrives at the transducer, part of
the energy is converted to electrical energy and part
is reflected again by the transducer surface. This latter
part starts propagating through the tissue in the same
way as the original pulse. Thatmeans that it is reflected
by the tissue and detected again. These higher order
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reflections are called reverberations and give rise to
phantom patterns if the amplitude of the wave is large
enough (see Figure 6.41 below). Because the length
of the completed trajectory for a reverberation is a
multiple n of the distance d between transducer and
tissue, they appear at a distance n · d .

Doppler image artifacts
Aliasing
A common artifact of pulsed Doppler methods (PW
and CF) is aliasing (see Figure 6.32). Aliasing is due
to undersampling (see Appendix A, p. 230). The
principle is shown schematically in Figure 6.33.

The following constraint between the range d0 and
the velocity va can be deduced:

|va| < c2

8d0fT
. (6.37)

For example, given a range gate at a depth of 6 cm
and an ultrasonic frequency of 5 MHz, the velocity
that can be measured without aliasing is restricted to
approximately 1 m/s.

Proof of Eq. (6.37)
According to the Nyquist criterion, the sampling fre-
quency PRF must be larger than twice the maximum

Figure 6.32 Aliased PW Doppler
spectrogram of blood flow through the
aortic valve. (Courtesy of the
Department of Cardiology.)
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Figure 6.33 Schematic representation of aliasing encountered in Doppler imaging. (a) Same as Figure 6.23. The reflected pulse is sampled
fast enough to avoid aliasing. (b) The scatterer moves faster than in (a) causing a larger phase difference of the subsequent reflected pulses.
Measuring this signal at the range gate tR results in exactly the same sampled sinusoidal function and Doppler frequency fD as in (a).
Sampling is clearly too slow and the calculated scatterer velocity is too low.
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spatial frequency present in the signal, that is,

PRF > 2|fD| = 4|va|
c

fT. (6.38)

Because the reflected ultrasonic pulsemust be received
before the next one can be transmitted, a pulse must
be able to travel to and from the range gate within the
period TPRF. Hence, the following relation between
TPRF and the depth d0 of the range gate holds:

2d0
c

< TPRF. (6.39)

Because TPRF = 1/PRF by definition, it follows that

c

2d0
> PRF. (6.40)

From Eqs. (6.38) and (6.40), it follows that

4|va|
c

fT < PRF <
c

2d0
(6.41)

or

|va| < c2

8d0fT
. (6.42)

Equipment
An ultrasound scanner is small and mobile. This is
an important advantage as compared with the other
imaging modalities. It consists of a transducer con-
nected to a signal processing box, which displays
the reconstructed images on a monitor in real time
(Figure 6.34). Laptop andpocket-size ultrasound scan-
ners are also being developed. The wide applicability
of these portable devices will certainly play an impor-
tant role in the further development of ultrasound
imaging.

A variety of transducers for 2D and 3D imaging
exist for different applications. The most important
characteristics are discussed below.

One-dimensional array transducers
A disadvantage of the acquisition method shown in
Figure 6.17 is that it involves a mechanical displace-
ment or rotation of the transducer. This yields several
practical difficulties. For example, the displacement
between two stepsmust be kept constant, and the con-
tact with the medium must not be lost. To reduce this

Figure 6.34 Example of a commercial echocardiographic scanner.
(Courtesy of the Department of Cardiology.)

mechanical motion, electronic scanning with an array
transducer can be used. An array transducer is a collec-
tion ofmany small identical crystals that can be excited
independently. Most common in medical imaging are
the linear-array and the phased-array transducers that
consist of a 1D array of crystals (Figure 6.35).

The linear-array transducer moves the ultrasonic
beam linearly by firing its elements sequentially. This
is the electronic representation of the mechanical
translation shown in Figure 6.17(a). Typically, lin-
ear arrays are used where the acoustic window is
large, which is, for example, often the case in vascular
imaging and obstetrics.

For applications in which the acoustic window
is small, such as in cardiology where the waves can
approach the heart only through the small space in
between the ribs, phased-array transducers can be
used. The crystals are then used to steer the direction
of propagation of the wave by tuning the phases of the
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(a) (b)

Figure 6.35 (a) Linear-array transducer.
(b) Phased-array transducer. (Courtesy of
Professor R. Oyen, Department of
Radiology.)

(a) (b)

Figure 6.36 By using an array of crystals, a sound beam can be
directed (a) or focused (b) without mechanical movement of the
transducer. A time delay is imposed on the electrical signals that
excite the crystals, causing a phase shift of the emitted pulse. This
yields the specific tilted or focusing wavefront as shown in this
diagram.

waves sent by the different crystals (Figure 6.36(a)).
This is the electronic equivalent of tilting the trans-
ducermechanically, as shown in Figure 6.17(b). At the
same time, the 1D array of crystals enables the beam to
be focused at an arbitrary point along each direction
(Figure 6.36(b)). This way the ultrasonic beam can
be steered and focused and a sector image is obtained.
Electronic focusing is also useful for linear arrays. This
can be obtained by firing multiple neighboring ele-
ments simultaneously (with phase shift) for each ultra-
sonic scan line. Because the distance between crystals
is relatively large, electronic focusing improves the
resolution.

The wavefronts as shown in Figure 6.36 are drawn
for the ideal case of an homogeneous medium. For
inhomogeneous tissue and in the case of multiple
tissues the velocity of the ultrasonic waves is not
constant and the wavefront becomes distorted. This

effect is called phase aberration. Commercial phased-
array devices typically use a constant sound velocity
of 1540 m/s. The consequence is a loss of contrast
and spatial resolution. Severalmethods have been pro-
posed for phase aberration correction, but they are not
yet used in clinical practice.

Theoretically the focus is a single point at a certain
depth. Consequently, an optimal resolution requires
many pulses along the same scan line, each focusing
at a different depth. In practice, the axial scan line
is subdivided into a few segments around a limited
number of focal points. The smaller the segments, the
better the spatial resolution, however, at the cost of the
temporal resolution. Small segments are unacceptable
in cardiac applications, but for static organs, such as
the liver, this method is very useful.

In principle, it is not necessary to transmit mul-
tiple pulses over time in order to change the focal
point. Indeed, the individual signals received by the
array of crystals can be virtually shifted over time after
their reception and before they are added together.
Consequently, their phase is artificially modified, and
the focal point during reception changes. If they
are changed dynamically as a function of time, the
focal point is artificially positioned at the depth from
which reflections are expected to arrive (because the
sound velocity in tissue is known). This technique is
called dynamic focusing. It improves the lateral reso-
lution significantly without influencing the temporal
resolution.

The same principle of virtually shifting and adding
the signals of the individual crystals can be used to
change the direction of the beam artificially. Different
scan lines can then be obtained simultaneously. This
way the temporal resolution can be increased from
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C-scans

C-scans

Rotating transducer

(a) (b)

Wobbling transducer
Figure 6.37 One way of acquiring 3D
datasets is by rotation (a) or wobbling
(b) of the transducer, resulting in a
sampled cone. By reslicing the 3D dataset,
C-mode images are obtained.

30 to 70–80 Hz, which is the standard frame rate of
current clinical scanners. Higher scan rates require
the acquisition of additional scan lines lying further
away from the symmetry axis of the emitted beam,
where the beam intensity falls off and, consequently,
the detected SNR is limited.

Transducers for 3D imaging
The easiest way to construct a 3D image is to rotate or
wobble a phased-array transducer and acquire images
sequentially from different scan planes as illustrated
in Figure 6.37. Three-dimensional imaging offers the
opportunity to obtain slices of any orientation through
the scanned volume. Images of planes parallel to the
surface of the transducer, as illustrated in Figure 6.37,
are known as C-scans. Obviously, the patient should
not move during the scanning process. An exception
is the cyclic rhythm of the cardiac contraction, which
can trigger the imaging process.

Again, the mechanical motion can be replaced
by its electronic representation using a 2D phased-
array transducer. The focal point can be positioned at
any point within a cone instead of a plane and a 3D
image can be obtained. However, the number of 2D
slices that can be acquired per second is limited by
the frame rate, which in turn is limited by the sound
velocity. This way a 3D acquisition cannot be accom-
plished in real time. Hence, a compromise needs
to be made between the spatial resolution and the
temporal resolutions. Moreover, because a 2D array
of crystals contains about 64 × 64 = 4096 crystals,
A/D conversion and cabling are technically difficult.

Figure 6.38 The shape of the transducer is adapted to the
application: (1) abdominal transducers – general purpose; (2)
intraoperative transducers; (3) small parts transducers (muscles,
tendons, skin, thyroid, breast, scrotum); (4) intrarectal transducer
(rectal wall, prostate); (5) intravaginal transducer (uterus, ovaries,
pregnancy); (6) infants (abdominal, brain). (Courtesy of Professor R.
Oyen, Department of Radiology.)

Nevertheless, commercial 3D scanners are already
available.

Special purpose transducers
Several transducers exist for a variety of applications,
such as intrarectal, intravaginal, transesophageal and
intravascular transducers (see Figure 6.38). Trans-
esophageal probes (Figure 6.39) are used to visualize
the heart through the esophagus. Intravascular probes
are inserted into an artery or vein to make intravascu-
lar ultrasound (IVUS) images. The crystal is mounted
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on top of a catheter (diameter 1 mm). Complete
phased arrays can be built on this small tip.

Clinical use
Echography is a safe, transportable, and relatively
cheap imaging technique that does not require any
special infrastructure. In addition, sequences of
images are obtained in real time. For these reasons,
ultrasound imaging is usually themethod of choice if it
is clinically relevant. It is useful if the ultrasonic waves
are able to reach the tissues under examination and
if the specular or scatter reflections, or both, are high
enough to be perceived in the image. Consequently,

Figure 6.39 Transesophageal transducer for cardiac imaging. This
transducer is swallowed by the patient and makes ultrasound
images of the heart from within the esophagus. (Courtesy of the
Department of Cardiology.)

this method is limited to soft tissues, fluids, and small
calcifications that are preferably close to the patient’s
body surface and not hidden by bony structures.

Gray scale imaging
The most common investigations include the
following.

• Head Although ultrasound does not completely
penetrate throughbone, the brain of a newborn can
be visualized (Figure 6.40) because a neonatal skull
is immature andnot fully ossified at the fontanelles.
To obtain images of the retina, high-resolution 20
MHz transducers are used (Figure 6.41). The gen-
eral drawbackof suchhigh-frequencywaves is their
limited depth penetration because of their high
attenuation coefficient. However, for tissues at the
surface of the body, such as the retina, this loss of
acoustic energy is negligible.

• Neck The soft tissues close to the surface, such
as the thyroid (Figure 6.42), salivary glands, and
lymph nodes, can easily be approached by the
ultrasonic waves.

• Thorax Air (lungs) and bone (ribs) limit echog-
raphy of the thorax to soft tissues that surround
the lungs, such as the pleura (Figure 6.43) and the
diaphragm.

• Breast Mammography (Figure 6.44) is mostly
combined with an ultrasound examination for
differential diagnosis.

(a) (b)

Figure 6.40 (a) Normal cranial ultrasound. (b) Fluid-filled cerebral cavities on both sides as a result of an intraventricular hemorrhage.
(Courtesy of Professor M. H. Smet, Department of Radiology.)
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Figure 6.41 (a) B-scans of the eye showing a malignant melanoma (arrow) with a localized retinal detachment (arrow head) in a 10 MHz (left)
and 20 MHz (right) scan. (b) A-scan of a patient with cataract (arrow). The dotted lines are automatically recognized as the borders of the
anterior chamber (AC), the lens (L), and the vitreous (V). The system calculates the length of each of these regions, taking the estimated sound
velocity in the different tissues into account. The total eye length is defined as TL = AC+ L+ V. The small peaks (arrow heads) in the vitreous
are due to reverberations. (Courtesy of Dr. J. Blanckaert, Department of Ophthalmology.)

• Abdomen In the abdominal region, all organs such
as the spleen, pancreas, and liver (Figure 6.45) are
well suited to be visualized by ultrasound
imaging.

• Urogenital tract (The kidney, bladder, prostate,
testicles, uterus, vagina, and ovaries.) Quite often
a transrectal transducer is used to visualize the
prostate (Figure 6.46(a)). The diagnosis of suspi-
cious lesions can be proved by ultrasound-guided
biopsy (Figure 6.46(b)). The visualization of the
uterus and ovaries can be optimized by transvagi-
nal scanning.

• Fetus Ultrasound imaging of pregnant women has
become daily routine and includes an investiga-
tion of the fetus (Figure 6.47), the uterus, and the
placenta.

• Vascular system Dilations (aneurysm, Figure 6.48)
and obstructions (stenosis, thrombosis) can be
recognized in gray scale images. Often Doppler
imaging yields complementary information (the
clinical use of Doppler imaging will be discussed
in the next section).

• Musculoskeletal system Echography can be used
to diagnose tears (Figure 6.49), calcifications, and
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acute inflammations with edema in the muscles,
tendinous, and capsular structures.

• Heart Cardiac ultrasound includes images of the
ventricles and atria (Figure 6.50), the aorta, the
valves, and the myocardium.

Note that ultrasound imaging is not only used
for diagnostic purposes but also as a guidance dur-
ing interventions, such as a biopsy of the kidney, the
prostate or the liver, and abscess drainage.

Doppler imaging
Besides static tissues, motion can be visualized and
velocities calculated by means of Doppler imaging.

Figure 6.42 Ultrasound image of the thyroid showing a mild
bilateral enlargement (arrows) suggesting an inflammatory disease
or hormonal inbalance. (Courtesy of Dr. D. Bielen, Department of
Radiology.)

• Flow imaging Obviously, Doppler imaging is
quite useful for measuring flow in the blood ves-
sels and the heart. Vascular diseases such as
atherosclerosis and clots (thrombi) in the big ves-
sels induce local flow disturbances (turbulence,
velocity changes) of the blood because of the local
stricture of the vessel. In the heart, leaking valves
(Figure 6.51) or interventricular shunts can be
demonstrated.

• Strain imaging This is amore recent application of
Doppler imaging. When neighboring pixels move
with a different velocity, the spatial velocity gra-
dient can be calculated. This gradient corresponds
to the strain rate (i.e., strain per time unit; the tis-
sue lengthening or shortening per time unit). The
strain rate can be estimated in real time. The strain
(i.e., the local deformation) of the tissue can then
be calculated as the integral of the strain rate over
time (Figure 6.52).

Contrast echography
Because the acoustic impedance of air is quite differ-
ent from that of tissue, ultrasonic waves are almost
completely reflected at a tissue–air interface. Conse-
quently, blood injected with microscopic air bubbles
significantly scatters and appears brighter than nor-
mal – even brighter than tissue (as can be noticed
in Figure 6.53). Ultrasound imaging using a solu-
tion with microscopic air bubbles (typical diameter
4 µm) injected into the blood circulation is called

lung

right
kidneydiaphragm

effusion

liver

acoustic  
shadow of the ribs

(a) (b)

Figure 6.43 Ultrasound image of thoracic base: (a) normal lung, (b) pleural effusion. (Courtesy of Dr. D. Bielen, Department of Radiology.)
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Figure 6.44 Ultrasound image (10 MHz) of a female breast,
showing a hyporeflective lesion with irregular borders, which
corresponds to a vast mass with the characteristics of a malignant
lesion. (Courtesy of Dr. Van Ongeval, Department of Radiology.)

contrast echography. It can be used, for example, to
visualize fluid cavities and for the assessment of organ
perfusion.

Biologic effects and safety
Some experimental animal studies in the late 1960s
reported that the genetic properties of irradiated tis-
sue change. However, these results have never been
confirmed, and in clinical practice the benefits of ultra-
sound imaging outweigh any potential side effects.
Although ultrasound is said to be safe, there are two
physical phenomena that can cause tissue damage (i.e.,
tissue heating and cavitation).

• Ultrasonic energy is absorbed by the tissue and
converted to heat. To prevent tissue damage, the
thermal index based on the transmitted power has
been introduced. This parameter is indicated on

shadowaerobily

(a) (b)

(c)

Figure 6.45 (a) B-mode image of a normal liver. The liver is an acoustically homogeneous, large organ. The boundary is visible as a bright line.
The little black holes (arrows) inside the liver are cross-sections of blood vessels. (b) Liver with cyst visible as a large black hole (arrow). Note the
so-called acoustic retroamplification, a hyperechoic region behind the cyst. The origin of this increased reflectivity is the reduced acoustic
attenuation in the fluid within the cyst. (c) The opposite effect of acoustic retroamplification is observed when air is present in the bile ducts,
as in a disease called aerobily. Because air is a perfect reflector for ultrasound, it is visible as a very bright reflection. Because of this extremely
high attenuation, deeper regions cannot be imaged and are said to be in the ‘‘acoustic shadow’’ of the air. (Courtesy of Dr. D. Bielen,
Department of Radiology.)
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Figure 6.46 Transrectal ultrasound study of the prostate showing a hypoechoic lesion (arrow) suspicious for cancer (a). Its nature is proven
by ultrasound-guided biopsy (b). (Courtesy of Professor R. Oyen, Department of Radiology.)

Figure 6.47 A transverse ultrasound image of the abdomen of this
fetus shows a fluid-filled and dilated collecting system of the left
kidney (arrows) resulting from a renal outflow obstruction. (Courtesy
of Dr. I. Witters, Department of Obstetrics and Gynecology, and
Professor M. H. Smet, Department of Radiology.)

the ultrasound scanner and must not exceed a
certain threshold.

• In areas of low local density resulting from a neg-
ative pressure (rarefaction regions), microscopic
gas bubbles can be formed. When the pressure
increases, these bubbles collapse. This can cause
tissue damage. A mechanical index based on the
peak negative pressure is shown by the system and
must be kept under a specified threshold.

In diagnostic imaging both effects are avoided as
much as possible. However, they can also be exploited

for therapy. Heating can be used for ultrasound surgery
to burn malignant tissue. Cavitation is the basis for
lithotripsers, which destroy kidney or bladder stones
by means of high-pressure ultrasound.

Future expectations
From a technical point of view 3D systems with full
2D-array transducers and real time 3D velocity and
strain imaging will become available. Increased reso-
lution and contrast-to-noise ratio can be expected for
all imaging modalities. In ultrasound imaging, sev-
eral technical improvements will contribute to a better
image quality, such as new silicon based transducer
technology and real time phase aberration correction.
Miniaturization of the transducers and the electron-
ics of high-end ultrasound devices is also a continuing
trend, making them useful for screening and diag-
nosis outside the practitioner’s office and for wireless
telemedicine.

Because the microstructure of tissue is defined by
the tissue type (e.g., heart muscle) and status (e.g.,
ischemic or infarcted) and because thismicrostructure
is closely related to the way ultrasonic waves are scat-
tered, backscattered signals contain information on
the tissue type, status, or both. Some initial methods
of tissue characterization based on backscatter have
becomecommercially available and sooner or later this
technique may be introduced into standard clinical
practice.
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Figure 6.48 Sagittal and transversal views of the abdominal aorta showing an aneurysm (3.1 cm versus a normal size of 1.5–2.0 cm).
(Courtesy of Dr. D. Bielen, Department of Radiology.)
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Figure 6.49 (a) Ultrasound image showing a complete tear of the pectoral muscle with large hematoma, contracted during a power training
session. (Courtesy of Dr. P. Brys, Department of Radiology.) (b) Ultrasound image showing an unsharply defined hyperreflective zone because
of a calcification (arrow) and a linear anechoic gap because of a partial thickness tear of 0.8 mm wide of the supraspinatus muscle. (Courtesy
of Dr. E. Geusens, Department of Radiology.)

Figure 6.50 Transesophageal echocardiographic (TEE) image
showing an atrial septal defect (ASD). (Courtesy of the
Department of Cardiology.)

Figure 6.51 Doppler color flow image of a patient with mitral
regurgitation in the left atrium. The bright green color corresponds
to high velocities in mixed directions because of very turbulent flow
leaking through a small hole in the mitral valve. (Courtesy of the
Department of Cardiology.)
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(a) (b) (c)

Figure 6.52 (a) Tissue velocity, represented by color, obtained by CF imaging. (b) By calculating the velocity difference between neighboring
points, a strain rate image is obtained. (c) The strain is calculated as the cumulative strain rate over time. (Courtesy of the Department of
Cardiology.)

(a) (b)

Figure 6.53 B-mode gray scale image of
the left ventricle of the heart in a
short-axis view before (a) and during (b)
pervenous injection of a contrast agent.
(Courtesy of the Department of
Cardiology.)

Further progress can also be expected in contrast
echography and its therapeutic application. In prac-
tice, air quickly dissolves in blood, and the contrast
obtained disappears almost immediately. To prevent
this, the gas can be encapsulated in a thin shell,
which decreases the amount of scattering but stabi-
lizes the bubbles for several hours, depending on the
material of the gas and the shell. Recently, attempts
have been made to load the encapsulated shells with

drugs with the intention that the ultrasonic pressure
will tear the shell and yield a local drug delivery.

Very promising is the use of microbubbles with
targeting ligands that bind specific receptors. This
technique, known as targeted contrast-enhanced ultra-
sound, has a great potential for ultrasound molecular
imaging (see Chapter 5, p. 126) and targeted drug and
gene delivery.
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7 Medical image analysis

Introduction
Advances in medical imaging technology have made
it possible routinely to acquire high-resolution, three-
dimensional images of human anatomy and function
using a variety of imagingmodalities. Today the num-
ber of acquired 2D images per exam varies from 150
images for screening up to 700 to 3000 for the diag-
nosis of complex cases. This large amount of images
per case together with the growing importance of
medical imaging in clinical practice, have continu-
ously increased the workload of the radiologist, which
explains the need for computer-assistedmedical image
analysis. Furthermore there is a quest for objective,
quantitative information from medical images. In
radiotherapy for instance, outlines of the irradiation
volume and the neighboring organs at risk are delin-
eated in 3D images and used to calculate a suitable
radiation therapy. In neurology, degenerative diseases
of the brain, such asmultiple sclerosis, Alzheimer’s, or
schizophrenia, are studied by measuring brain shape
and tissue changes in MR images. In cardiology, the
health condition of the heart is assessed by studying
the dynamics, the perfusion, and tissue characteristics
of the heart muscle as revealed by MR or ultrasound
images, and so forth.

Traditionally, medical images are interpreted by
visual inspection of the 2D images displayed slice by
slice. Such radiological protocol is necessarily sub-
jective, as it is based on the perception by a human
observer and is usually restricted to mere qualitative
statements and judgments. Moreover, the traditional
2D display of 3D images allows immediate inspec-
tion of anatomical structures in the two dimensions
of the image plane only, whereas the third dimension
has to be reconstructed mentally by the radiologist by
looking at adjacent image slices.

Today, most medical imaging modalities gener-
ate digital images, which can be easily manipulated
by computers. The use of 3D image processing and
visualization techniques makes direct inspection of

the scene in three dimensions feasible and greatly
facilitates the extraction of quantitative information
from the images. For example, when a radiologist
delineates the contour of a lesion of interest using
the computer mouse, the outlined volume can be
determined immediately and exactly. By measur-
ing the size of the same lesion in a second similar
image acquired at a later stage, a change of the
lesion volume can easily be assessed. However, the
outcome may be affected by inter- and intra-user
variability in the lesion delineation or by the contrast–
brightness settings on the screen. Appropriate com-
puting strategies explained in this chapter can be
applied to automate the measurement process so
that highly objective and reproducible results are
obtained. In brain research for instance, automated
procedures for image analysis that are capable of
accurately and reliably measuring brain morphology
in vivo from MR images offer new possibilities for
detecting and quantifying abnormal brain develop-
ment by comparing measurements in a group of
patients withmeasurements in a population of normal
controls.

Because of the rapid technical advances in medical
imaging technology and the introduction of new clin-
ical applications, medical image analysis has become a
highly active research field. Improvements in image
quality, changing clinical requirements, advances
in computer hardware, and algorithmic progress in
medical image processing all have a direct impact on
the state of the art in medical image analysis. Within
the limited space of this book, it is not possible to dis-
cuss all ongoing developments. Therefore, we restrict
this chapter to methods that are being used in clinical
practice. We first discuss the possibilities and limita-
tions of interactive analysis in which the delineation of
structures is done manually by the clinician. Next, the
challenges of automated analysis are introduced, and
the basic computational strategies in clinical practice
are explained and illustrated.
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Manual analysis
The most difficult subtask for a computer is the delin-
eation of tissue. This is known as image segmentation.
In principle, however, this can be performed by
the clinician on the computer screen provided that
the necessary hardware and software infrastructure is
available. Medical images are often multidimensional,
have a large dynamic range, are produced on dif-
ferent imaging modalities in the hospital, and make
high demands upon the software for visualization and
human–computer interaction.

• Hardware requirements The memory required to
store 3D image data is quite large. A high-
resolution MR image of the brain, for instance,
may consist of more than 200 slices of 512 × 512
pixels each, i.e., more than 50 million voxels in
total. Because the intensity of each pixel in dig-
ital medical images is represented by 2 bytes,
this corresponds to more than 100 MB. High-
resolution CT images, as used for instance for
bone surgery planning, may be as large as 1000
images of 512 × 512 pixels each, which requires
more than 250 million pixels or 500 MB storage
capacity per study. Even 2D digital radiography
already requires 2000 × 2000 pixels or 8 MB per
image. In clinical studies that involve the analy-
sis of time sequences or multiple scans of many
subjects, the amount of data to be processed can
easily exceed 10 GB. It is clear that storage and
visualization of such large datasets imply large disk
capacity and computermemory and that even sim-
ple image operations, such as navigation, zooming,
and reslicing, require fast computer hardware.

Medical image analysis usually requires a net-
work environment involving multiple computers
that communicate information with each other.
Typically, the images are reconstructed on the
scanner’s computer and are transferred to a medi-
cal image archive. In amodern hospital, a so-called
“Picture Archiving and Communication System”
(PACS) connects all the digital imaging modal-
ities via a communication network. The images
are stored in a standard format [23] in a (central
or decentralized) archive from where they can be
retrieved for display and analysis on any suitable
workstation. Without a PACS, the cumbersome

[23] Digital imaging and communications in medicine (DICOM)
version3.0. ACR-NEMAStandardsPublicationNo. 300-1999, 1999.

transfer of images is often an insurmountable
obstacle in the daily routine.

• Display requirements While 8 bits or 1 byte per
pixel is usually sufficient in digital photography,
most medical images need 12 bits per pixel (rep-
resented by 2 bytes in the computer memory).
When displaying such images on the computer
screen an appropriate gray value transformation is
needed to obtain the necessary brightness and con-
trast in the region of interest. However, changing
the brightness–contrast settings affects the appear-
ance of an object on the screen. Especially when
the intensity changes gradually from the object to
its background, small changes in the brightness–
contrast settings may result in significant dis-
placements of the apparent position of the object
boundary. This means that the perceived size of
a lesion varies with the display parameters, which
is an obvious problem for manual delineation. It
is therefore common in radiological practice to
define standard display protocols for each partic-
ular investigation, such as a “lung window” and
a “bone window” for CT images of the thorax.
However, even then the brightness–contrast of the
monitor together with the external light conditions
may affect the assessment of the size of an object.
Standardization of viewing conditions is therefore
recommended.

• Software requirements Interactive image analysis
requires extensive tools for 3D image navigation,
visualization, and human–computer interaction.
This includes drawing facilities to delineate object
contours in gray scale images. All of these func-
tional requirements put high demands on software
tools for medical image analysis.

Even if the necessary computer facilities are available,
manual delineation of tissue in 3D images can be very
tedious and time consuming and is therefore often
not feasible in clinical practice. Moreover, manual
analysis is highly subjective because it relies on the
observer’s perception. This results in intra- and inter-
observer variability in the measurements (Figure 7.1).
Automated analysis is the only way to overcome this
problem. Note, however, that manual intervention is
often still required to correct errors of the automated
algorithms.

Automated analysis
Different strategies for image analysis exist. However,
few of them are suited for medical applications. The
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Figure 7.1 Impression of intra- and
inter-observer variability of manual
delineations of a lesion in a CT image of
the liver. Three trained observers (two
radiologists and one radiotherapist)
delineated this lesion twice with an
interval of about one week (upper row
and bottom row, respectively). The area
delineated varies up to 10‰ per observer,
and the difference between observers
amounts to more than 20‰. (Courtesy of
the Departments of Radiology and
Radiotherapy.)

reason is that both the medical image data and the
model or prototype (i.e., the a priori description of the
features to be analyzed), are typically quite complex.

• Complexity of the image data Despite the ever-
improving quality of the images generated by the
various medical imaging modalities, the informa-
tion captured by medical images is not always
unambiguous because of technological and phys-
ical limitations of the imaging process, yield-
ing inadequate resolution, insufficient SNR, or
artifacts. For some applications involving accu-
rate quantification of small objects with complex
shapes, the resolution of the imaging modality
is still insufficient. Furthermore, clinical imag-
ing protocols often specify a lower imaging quality
than is technically achievable, for example, to limit
the patient radiation dose in CT or to constrain
the acquisition time in MRI. Three-dimensional
tomographic images that consist of a series of 2D
slices often have a higher resolution within each
slice (e.g., pixel size ≈ 1 mm2) than perpendicular
to the slice (e.g., slice distance≈ 5mm). Hence, the
location of the boundary of a globular object, for
example, can be determined accurately at places
where it is cut more or less orthogonally by the
image slices, but is vague at places where it is
more or less parallel to the slices. In the latter case,
the voxels near the object boundary contain both
object tissue and tissue of the surrounding area,
yielding an unsharp boundary. This is the so-called
linear partial volume effect or linear PVE (see also
the nonlinear PVE described in Chapter 3, p. 51).

Fast imaging sequences, such as those used
for functional or diffusion images in MRI, have
a low SNR and need statistical methods to distin-
guish the areaswith significant activation. Artifacts
such as geometric distortions (see Figure 4.34)
and intensity inhomogeneity (see Figure 4.35) have
a negative effect on the accuracy of quantitative
measurements.

• Complexity of the model or prototype Medical
image analysis involves the analysis of a large
variety of different structures or features in a
large range of different applications. The objects
of interest in medical image analysis can be
anatomical structures (e.g., spine, brain cortex,
coronary arteries), but also pathological tissue
(e.g., tumor, myocardial infarction, inflamma-
tion, edema), functional areas (e.g., motor cortex,
glucose metabolism), or artificial objects (e.g.,
implants, electrodes, catheter tips) and typically
show important biologic variability between sub-
jects. Modeling or prototyping, that is, describing
the object based on the available prior knowledge,
must cope with this large variability in appear-
ance, which is not an easy task. One possibility
is to impose only generic constraints that are gen-
eral enough to include each possible instance of a
particular object’s appearance, such as boundary
continuity or smoothness. Another useful mod-
eling approach that also takes the appearance
variability into account is obtained by statistical
analysis of a set of instances of the same object in
different subjects. This object is then represented
by an average expected shape and photometry and
some of its typical modes of variation that best
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characterize the variability in the set of appear-
ances from which the model was constructed. If
the training set is representative of the true bio-
logic variability, the model provides a complete
and concise description for each individual.

However, modeling object variability can fur-
ther be complicated by the complexity of the shape
of the anatomy, such as for the gyri and sulci of the
brain and the cerebral and coronary blood vessels.
The topological variability of the coronary blood
vessels, for instance, can be illustrated by the fol-
lowing rule [24]: “When the sinus node artery is
a branch of the left coronary, which happens in
41% of the cases, this vessel usually (4 times out
of 5) originates from the initial portion of the cir-
cumflex.” Hence, these complex shapes or shape
constraints cannot easily be described by a math-
ematical function. Likewise, statistical modeling
suffers from the excessive shape variability. To
establish thedesiredmodel, these structures should
rather be considered as a set of components that
must be assembled or hierarchically related.

Finally, for pathological objects such as tumors,
for which each instance is different from all others,
no such shape models can be constructed at all.
The lack of prior shape knowledge makes accurate
automated segmentation of pathological objects
highly complicated.

Inmedical practice awide variety of different imag-
ing modalities is at the disposal of the clinician, such
as digital radiography, CT,MRI, ultrasound, PET, and
SPECT as discussed in the previous chapters. Differ-
ent imaging modalities often capture complementary
information. The same modality can also be used to
assess the status of a certain pathology over time.Many
applications benefit from the ability to combine infor-
mation derived from multimodal or multitemporal
acquisitions.

• Multimodal analysis A typical example of multi-
modal analysis is the combination of functional
information about the brain derived from PET
or fMRI images with anatomical information pro-
vided byMRI. In radiotherapy treatment planning,
CT is required for dose calculations, whereas
the target volume and the surrounding organs
can often be defined more accurately using MRI

[24] G. G. Gensini. Coronary Arteriography. Mount Kisco, NY:
Futura Publishing Company, Inc., 1975.

because of its better soft tissue discrimination (see
Figure 7.2).

• Multitemporal analysis In longitudinal studies
multiple images of the samemodality and the same
patient acquired at differentmoments are analyzed
in order to detect and measure changes over time
because of an evolving process or a therapeutical
intervention. In multiple sclerosis, for instance,
comparison of MR images of the brain over time
allows the neurologist to assess the appearance and
disappearance of white matter lesions (Figure 7.3).
Whether a surgical implant has been inserted at the
position planned on the preoperative images can
be assessed by comparison with postoperatively
acquired images.
An essential prerequisite for the analysis of mul-

timodal or multitemporal images is that they be
aligned. This mostly requires a 3D geometric oper-
ation, known as image registration, image matching ,
or image fusion. The registration may be done inter-
actively by the radiologist assisted by visualization
software that supplies visual feedback of the quality of
the registration. Although such a subjective approach
may be sufficient to support clinical decisions in some
applications, a more objective and mathematically
correct registration procedure is often needed.

Automatic image matching may be simplified if
external markers are attached to the patient. If these
markers are clearly visible in the images, the problem
of image fusion is reduced to point matching, which is
quite simple (seeChapter 8, p. 211) and is often used in
surgical applications. However, the applicationof such
markers is time consuming, unpleasant for the patient,
and oftenmore or less invasive.Moreover, registration
basedonexternalmarkers is inaccurate if thestructures
of interest move with respect to the markers.

An alternative method to match images automat-
ically is to employ the image content itself. If the
geometric operation is restricted to a translation, rota-
tion, scaling and skew, or shear (see Chapter 1, p. 7),
the registration is called affine or rigid. Many appli-
cations require a rigid registration even if the internal
structures deformbetween two acquisitions, such as in
follow-up studies of evolving processes like multiple
sclerosis (MS) in the brain. Quite often, however, in
case of impeding deformations induced by breathing,
bladder filling, or posture, for example, nonrigid regis-
tration is needed. From a mathematical point of view,
a distinction must be made between rigid and non-
rigid image fusion as well as between unimodal or
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(a) (b)

Figure 7.2 Medical image analysis often benefits from the ability to combine complementary information provided by multimodal images,
as is illustrated here in the case of radiotherapy planning. (a) CT slice of the brain of a patient with a brain tumor. (b) MR image of the
same patient that was reformatted after 3D registration of CT with MRI so that pixels at the same position in both images are anatomically
identical. Although CT is needed for dose calculations, the lesion boundary can be located more accurately using MRI. After registration, the
lesion was delineated in the MR image and the outline transferred to the CT image. (Courtesy of the Departments of Radiology and
Radiotherapy.)

(a) (b)

Figure 7.3 In medical image analysis, it
is often necessary to combine image
information acquired at different
moments in time. This example shows
two T2-weighted MR images of the same
multiple sclerosis (MS) patient acquired
with a time interval of one year. Image (b)
was resliced after proper registration with
image (a) to compensate for differences
in patient positioning in the scanner.
After registration, corresponding pixels in
both images refer to the same
anatomical location in the patient and
can straightforwardly be compared. This
way the evolution of MS lesions over
time can be accurately inspected (arrow).

multimodal image matching. It is interesting but, for
the computer vision expert, not so surprising that the
computational strategies for image analysis can also be
used to solve this registration problem. For this rea-
son, the strategies for image registration and image
analysis are discussed simultaneously in this chapter.

Computational strategies for
automatedmedical image analysis
General problem statement A prerequisite of auto-
matic image analysis is to have a suitable prototype or
model available. Such a model is a description of the
prior knowledge about the photometry and the geom-
etry. Photometric properties are, for example, the

expected object intensity, contrast and texture. Geo-
metric features are, for example, the expected position,
size, shape, motion and deformation. The problem
then is to find the best model instance that describes
the image data. This is typically solved by optimizing
a suitable objective function that includes measures
to express how likely the model instance a priori is
and how similar the model instance and the data are.
Hence, the basic tasks in computer based image anal-
ysis are (1) representing and describing the prototype
or model, and (2) finding a suitable objective function
and optimizing it.

Different objective functions may need different
optimization strategies. In some cases a closed-form
solution is available. In general, however, search
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(a)

(b) (c)

Figure 7.4 Segmentation of an empty
colon in a CT image of the abdomen for
virtual endoscopy. (a) Original CT image
through the colon. (b) A 3D region
growing procedure initiated from a seed
point in the colon extracts all contiguous
pixels with CT intensity similar to air while
excluding nonconnected pixels with
similar intensity such as the background.
Segmented regions that are not
connected on this slice are effectively
connected in 3D. (c) 3D rendering of the
segmented colon. (Courtesy of Dr. G. Kiss,
Medical Imaging Research Center.)

algorithms are needed, such as relaxation, dynamic
programming, and gradient descent. Typically, proper
initialization of the model is required for the opti-
mization in order to allow convergence to the global
optimum. If the number of free parameters is large, the
searchmaybecomecomputationally expensive. In that
case, heuristics are often applied to limit the search
space and reduce the computation time at the possible
risk of finding a nonoptimal solution. In the remain-
der of this chapter the emphasis is on the modeling
and the definition of the objective function. The opti-
mization methods are considered beyond the scope of
this textbook. For details about optimization theory
we refer to [3].

Low-level methods
The simplest methods rely entirely on local image
operators and a heuristic grouping of pixels with sim-
ilar local photometric characteristics. Hence, these
methods do not incorporate a specific model of the

[3] J. Nocedal and S.Wright. Numerical Optimization, Volume XXII
of Springer Series in Operations Research and Financial Engineering.
Springer, second edition, 2006.

photometry or geometry and are therefore consid-
ered low level. They consist of the following steps.
First, a local image operator may be applied, yield-
ing a new image in which the local features are
emphasized. Examples of local image operators are
given in Chapter 1 p. 8. Second, pixels with similar
local photometric characteristics are grouped. Typical
examples of low-levelmethods are region growing and
edge detection.

• Region growing This partitions an image into
regions by grouping adjacent pixels with similar
gray values, thus creating boundaries between con-
trasting regions (Figure 7.4). It is often initiated
by indicating so-called seed points, which grow
by iteratively merging adjacent pixels with simi-
lar gray values. Gray value similarity is assessed
with simple measures that compare the gray val-
ues of neighboring regions. Two adjacent regions
are merged if, for example, their mean values
differ less than a specified value. In medical imag-
ing, the assumptions on which region growing
is based are usually violated. Object intensity
is often not homogeneous because of noise and
artifacts (see, e.g., Figure 4.35), and adjacent struc-
tures may not have sharp boundaries because of
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(a) (b)

(d) (e)

(c)

Figure 7.5 Delineation of the myocardial wall in an MR image of the heart by edge detection. (a) Original image. (b) Gradient magnitude
image. (c) Edges detected as local maxima of the gradient magnitude. (d) Edges converted into closed contours by considering the gradient
magnitude image as a topographic relief and computing watershed lines. This typically results in oversegmentation of the image into a large
number of small regions. (e) By interactively merging adjacent regions with similar intensity, only relevant boundaries corresponding to
prominent edges such as the epicardial and endocardial borders remain.

poor contrast or insufficient resolution. When
applied tomedical images region growing typically
results in regions that are either too small or too
large.

• Edge detection This is basically similar to region
growing, but instead of grouping pixels, boundary
points are linked or tracked. Boundaries are found
by first applying a local differential operator, such
as the gradient or Laplacian (see Chapter 1, p. 9),
and subsequently linking those pixels that aremost
sensitive to this operator. In the ideal case of images
with high contrast and without noise, the physi-
cal object boundary is found. Medical image data,
however, are typically complex. Consequently, the
output of a local differential operator does not
always reflect the expectedmeaningful edges, caus-
ing an automatic edge linking procedure to get lost
(Figure 7.5).

Despite the heuristic nature and the poor perfor-
mance of these low-level approaches, they are very
popular in most commercial image analysis tools. The
reason is that these approaches are simple to under-
stand and to implement, and they are very generic,
as they do not assume specific knowledge about the
objects to be analyzed. In the case of simple image
data, these methods can also be used initially to seg-
ment the image into subparts that are subsequently
organized into larger patterns corresponding tomean-
ingful objects. Hence, low-level methods are often the
starting point for more sophisticated, model-based
methods [25]. For complex image data, such as medi-
cal images, however, their usefulness is quite limited.
They will not be discussed further in this chapter.

[25] P. Suetens, P. Fua, and A. J. Hanson. Computational strategies
for object recognition. ACM Computing Surveys, 24(1): 5–61, 1992.
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Model-based methods
Effective image analysis methods must incorporate
prior knowledge of the photometry and/or geometry
of the considered structures. The nature of the
geometric and photometric properties can be phys-
ical, statistical and can be tissue dependent as well.
Such methods rely on a built-in conceptual model for
the objects they are looking for based on characteristic
features or patterns. Furthermore, these model-based
methods must be able to cope with complex image
data. This strongly limits the number of possible
problem-solving strategies. In the remainder of this
chapter the basic model-based methods for medical
images are discussed. The following categories are
distinguished:

• Pixel classification This category assigns pixels to
the most likely class based on a model of the pho-
tometry for each class. The apriori class probability
may be position dependent, which is represented
in a so-called statistical atlas. Unlike in the next
two categories, the size and shape of this geomet-
ric model as well as its position with respect to the
image are fixed and known.

• Geometric model matching using a transformation
matrix These strategies assume that the geomet-
ric variability of the appearance of the model can
be represented by a general geometric transfor-
mation matrix (using homogeneous coordinates,
see Chapter 1, p. 7), such as a translation, rota-
tion, scaling, shear, affine transformation and
perspective projection. The shape can be repre-
sented explicitly as a set of points, a curve or a
surface, or implicitly as a picture or image itself.

Photometric properties are, for example, a par-
ticular pattern, a probability distribution, or a
measure of the color, gradient, texture or any other
feature along or inside the contour.

Given the model and the image data, the
goal then is to find the best model instance that
describes these image data. This is typically solved
by optimizing a measure that expresses the simi-
larity between the model instance and the image
data.

• Flexible geometric model matching In many cases,
the model needs to be more flexible to take the
variability in appearance into account. Flexible
geometricmodels canbe represented as constraints
or penalties on the geometric properties of a
deformable curve or on a deformable picture or

image itself. Examples of geometric properties are
smoothness, curvature, rectilinearity, parallelism,
symmetry, elasticity and rigidity.

Fitting a flexible geometric model to the image
data then consists of finding the best model
instance that describes the image data. This prob-
lemcanbe solved by optimizing a suitable objective
function that includes measures to express how
likely themodel instance is a priori andhow similar
the model instance and the data are.

Pixel classification
Pixel classification is a special case of feature vector
classification. The feature vector strategy is well estab-
lished and has proved its usefulness inmany industrial
applications. It has been described extensively in the
literature [26, 27]. In this approach, objects are mod-
eled as vectors of characteristic features, such as mean
gray value or color, area, perimeter, compactness, and
so forth. Obviously, these features can only be calcu-
lated if the considered objects have been delineated in
the image. This segmentationprocess is typically based
on low-level operations and is therefore restricted to
simple image data. There is one exception. Pixels can
be considered as the smallest possible objects and do
not need to be outlined. Pixel features can simply be
calculated or are directly available as a single value,
such as the gray value, or, more generally, as a vec-
tor, such as the red-green-blue (RGB) values in color
images or (ρ,T1,T2) in MRI. Partly because of this
simplicity, pixel classification is very popular in medi-
cal image analysis. Based on their feature vector, pixels
can then be assigned, for example, to a vegetation type
in aerial images or a particular tissue type in medical
images.

If the set of features is well chosen, pixels of the
same type have similar feature vectors that contrast
with the feature vectors of pixels of a different type. If
the feature vectors are represented in a multidimen-
sional feature space, the classification strategy then
consists of partitioning the feature space into anumber
of classes (i.e., nonoverlapping regions that separate
the different pixel types). An unclassified pixel then
receives the label of its class in the feature space.

[26] R. O. Duda and P. E. Hart. Pattern Classification and Scene
Analysis. New York: John Wiley & Sons, 1973.
[27] J. T. Tou and R. C. Gonzales. Pattern Recognition Principles.
Reading, MA: Addison-Wesley, 1974.
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The boundaries between the regions in the fea-
ture space are constructed by means of a decision
criterion that is based on prior knowledge or assump-
tions about the different classes. A variety of decision
criteria exists. Most popular in medical imaging are
thresholding and statistical classification.

Thresholding
The simplest and most straightforward pixel classifi-
cation strategy is thresholding (see Figure 1.7(b)). It
is particularly useful for images with a bimodal his-
togram (see Figure 1.8). The threshold value partitions
the image into two classes, which typically correspond
to object pixels and background pixels. More than one
threshold value can also be used to model one or more
different classes, each corresponding to a distinctive
interval in the histogram.

Thresholding can also be extended to pixels that
are characterized by a feature vector instead of a single
value. A 2D feature space, for example, is then parti-
tioned into a number of rectangular regions, each of
which corresponds to a different class. Obviously, a
strong limitation is that the decision boundaries are
parallel or orthogonal lines or, in the general case,
parallel or orthogonal hyperplanes. Few structures in
medical images satisfy this assumption, which explains
the limited success of this strategy despite its wide
usage. An important positive exception is the seg-
mentation of bony structures in CT images. Because
bone is much denser than soft tissue, its CT values

are significantly higher, and a simple threshold oper-
ation is usually sufficient to separate bone from its
surrounding structures (see Figure 7.6).

Statistical pixel classification
Statistical pixel classification uses a statistical model
for the different classes. Pixels are then assigned to the
most likely class. The shape of the decision boundaries
in feature space is defined by the transitions where
one class becomes more likely than another. Often the
intensity variations within a given tissue class cj (e.g.,
white matter, gray matter, cerebrospinal fluid, and
so forth in the case of brain tissue classification) are
assumed to have a Gaussian distribution as a result of
noise and small tissue inhomogeneities, i.e.,

p(Ik |φk = cj ;µj , σj) = 1√
2πσj

· exp
(
− (Ik−µj)

2

2σ 2
j

)
,

(7.1)

where Ik is the intensity and φk the tissue label of pixel
k. µj and σj are the unknown mean and standard
deviation of class cj .

Supervised learning
The values of µj and σj for each class can be learned
froma representative set of pixel samples forwhich the
class they belong to is known. This can, for example, be
done by manually outlining several regions of pixels,
each corresponding to a different class. This process
is known as supervised learning. After this training

(a) (b) (c)

Figure 7.6 Segmentation of the skull and the mandibula in CT images using thresholding. (a) Original CT image of the head. (b) Result with a
threshold value of 276 Hounsfield units. The segmented bony structures are represented in color. (c) 3D rendering of the skull shows a
congenital growth deficiency of the mandibula in this 8-year-old patient. This information was used preoperatively to plan a repositioning of
the mandibula. (Courtesy of Nobel Biocare.)
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phase, unclassified pixels are assigned to the class cj

with the highest probability p(φk = cj |Ik). Assuming
that this probability does not depend on neighboring
class assignments φi , i �= k, it can be calculated using
Bayes’ rule:

p(φk = cj | Ik) = p(Ik |φk = cj)p(φk = cj)∑M
i=1 p(Ik |φk = ci)p(φk = ci)

,

(7.2)

where the likelihood p(Ik |φk = cj) is the Gaussian
class intensity model defined in Eq. (7.1) and p(φk =
cj) the prior probability that pixel k belongs to class cj .
Note that p(φk = cj) can be different for each pixel and
is assumed tobe known. If no suchprior information is
available, all classes are typically assumed to be equally
likely in each pixel (i.e., ∀k, j : p(φk = cj) = 1/M ).

Equation (7.2) computes a classification of the
pixels in the form of object class probability maps
p(φk = cj | Ik) with values ranging from 0 to 1 such
that

∑
i p(φk = ci | Ik) = 1. The pixels are then

assigned to themost probable class cj , i.e., the one with
themaximal posterior probability p(φk = cj | Ik). This
way the image is segmented into the different classes. It
is also possible to represent the a posteriori probabili-
ties p(φk = cj | Ik) as gray values in each pixel, yielding
a so-called fuzzy segmentation or classification.

Note that maximizing the a posteriori probabil-
ity p(φk = cj | Ik) is in principle not the same as
maximizing the likelihood p(Ik |φk = cj). The for-
mer finds the most probable model instance or class
that describes the image data, while the latter finds
the model instance or class that best explains the data
whatever the prior probability of that model instance
is. Only if thepriorp(φk = cj) is uniform for all classes,
i.e., p(φk = cj) = 1/M , will maximizing the posterior
probability also maximize the likelihood.

The problem of statistical pixel classification can
be stated more generally as finding the maximum of
p(�|I ) with � = {φk ; k = 1, . . . ,N } and I = {Ik ; k =
1, . . . ,N }. According to Bayes’ rule

p(�|I ) = p(I |�) · p(�)

p(I )
, (7.3)

where p(I |�) is the conditional probability or likeli-
hood and p(�) the prior probability. When maximiz-
ing p(�|I ), the probability p(I ) is constant and can be
ignored. Hence,

arg max
�

p(�|I ) = arg max
�

(p(I |�) · p(�)). (7.4)

Because the logarithm is monotonically increasing,
maximizing ln p(�|I ) corresponds to maximizing
p(�|I ):

arg max
�

ln p(�|I ) = arg max
�

(ln p(I |�)+ ln p(�)).

(7.5)

If a uniform prior distribution p(�) can be assumed,
the parameters � with the highest probability are
found by maximizing the log-likelihood, i.e.,

arg max
�

ln p(�|I ) = arg max
�

(ln p(I |�)). (7.6)

If the tissue labels of neighboring pixels are indepen-
dent, p(I |�) can be written as

p(I |�) =
∏

k

p(Ik |φk). (7.7)

Using Eq. (7.1) yields

p(I |�) = 1√
2π
∏

k σk
· exp

(
−1
2
∑

k

(Ik − µk)
2

σ 2
k

)

(7.8)

and

arg max
�

(ln p(I |�)) = arg min
�

∑
k

(Ik − µk)
2

σ 2
k

.

(7.9)

Hence, each pixel k is assigned to the tissue class cj for
which (Ik − µk)

2/σ 2
k is minimal. Note that a uniform

prior distribution p(�) was assumed. Instead, prior
knowledge about the spatial distribution of the vari-
ous tissue classes in the image can be derived from a
statistical atlas and used in Eq. (7.5) (see Figure 7.7).

IfmultispectralMRdata ormultimodal image data
are available, the model for each class can be extended
to a multivariate distribution with vector mean µj

and covariance matrix Sj . For the n-dimensional case
the likelihood p(I |�) then becomes (compare with
Eq. (7.8))

p(I |�) = 1
(2π)n/2√|S| · exp

(
−1
2
(I − µ)TS−1(I − µ)

)

(7.10)
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(a) (b)

Figure 7.7 Statistical images of (a) the
gray brain matter and (b) the white brain
matter. The intensity in each pixel is
proportional to its prior probability
p(φk = cj) of belonging to that particular
tissue class.

and the most likely tissue labels (compare with
Eq. (7.9))

arg max
�

(ln p(I |�)) = arg min
�

((I − µ)TS−1(I − µ)).

(7.11)

Unsupervised learning
The training phase in supervised learning typically
requires user interaction, which is too cumbersome
in clinical practice. For a fully automated procedure,
the values of the mean µj and standard deviation σj

can, for example, be considered as unknowns in the
optimizationprocess. This is calledunsupervised learn-
ing. Let � = {µj , σj ; j = 1, . . . ,M } be the unknown
mean and standard deviation of the tissue classes
C = {cj ; j = 1, . . . ,M }. The goal is to find {�,�}
with the highest probability given the data I , i.e.,
arg max�,� p(�,�|I ). According to Bayes’ rule

p(�,�|I ) = p(I ,�|�) · p(�)

p(I )
. (7.12)

When maximizing p(�,�|I ), the probability p(I ) is
constant and can be ignored. If the prior probability
p(�) is uniform, we obtain

arg max
�,�

p(�,�|I ) = arg max
�,�

p(I ,�|�) (7.13)

and

arg max
�,�

ln p(�,�|I ) = arg max
�,�

ln p(I ,�|�).

(7.14)

Maximizing the log-likelihood ln p(I ,�|�) can be
solved iteratively with the expectation-maximization
(EM) algorithm, but its theory is beyond the scope of
this textbook. Figure 7.8 shows an example.

Model extensions
• In order to account for the partial volume effect,

mixture classes canbe introducedwhose intensities
are a weighted sum of the intensities of the pure
tissue classes.

• A rejection class that collects all pixels that cannot
be classified into one of the modeled classes can be
included to cope with pathological areas, such as
MS lesions (see Figure 7.28 below).

• The intensities in real MR data can be modulated
by slowly varying intensity inhomogeneities (see
Figure 4.35). It can be shown that this bias field
can be taken into account in the Gaussian intensity
model.

• Tissue labels of neighboring pixels are not nec-
essarily independent. For example, neighboring
pixels can be expected to belong to the same
class. Employing this contextual knowledge yields
a smooth label image. Similarly, local geometric
knowledge can be incorporated in pixel classi-
fication. Consider for example the problem of
blood vessel classification, in which for each pixel
the probability that it belongs to a vessel needs
to be calculated. Blood vessels are smooth tubu-
lar structures. If the labels of neighboring pixels
were independent it would be sufficient to apply
a local image operator sensitive to bar-like prim-
itives to obtain a label image in which the gray
value is proportional to the likelihood that the pixel
belongs to a tubular structure. However, tubular
structures of neighboring pixels have a similar ori-
entation. This requirement should also be taken
into account. Because the classification of a pixel
depends on the labels of its neighboring pixels, iter-
ative optimization is typically needed to find the
global optimum. Although these examples show 169
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(a) (b)

(c) (d)

(e)

(f)

T2

ρ

Figure 7.8 Brain tissue segmentation in multispectral MR images using unsupervised pixel classification. (a and b) Original T2- and
ρ-weighted MR images. (c and d) Classification of white and gray matter represented in red and green, respectively. (e) The probabilities for
each point, shown in (c) and (d), are represented in a scatter plot as a function of ρ and T2 together with the 0.99 percentile contours of the
Gaussian class intensity model that was fitted using the EM algorithm. (f) 3D representation of the cortex obtained by volume rendering of
the gray matter segmentation (d). (Courtesy of K. Van Leemput, Medical Imaging Research Center.)

that limited spatial context can be included in pixel
classification, they should rather be considered as
special cases of flexible geometric model matching
using local properties (see p. 175 below).

In some applications, more sophisticated intensity
models are needed. Inperfusion studies, for example, a
time-dependent model for the contrast or tracer accu-
mulation in tissue is fitted to the observed intensity
changes. Another example is the statistical analysis of
fMRI data. In Figure 7.9, the intensity variation in a
time series of fMRI images acquired during brain stim-
ulation is modeled as a linear combination of time-
dependent functions that represent the stimulation
course in the experiment and the low-frequency signal
drift over time. A statistical test is then applied in each
voxel to calculate the statistical significance of the pho-
tometric response to the applied stimulus in that voxel.

Regions of voxels with a high significance are classified
as functional areas that respond to the stimulus.

Geometric model matching using a
transformationmatrix
Unlike the strategies used for pixel classification,
the strategies described in this and the next section
incorporate geometric variability in the model, which
make them potentially more powerful. In this section
the shape variability of the object to be recognized
is limited and represented by a general geometric
transformation matrix (using homogeneous coordi-
nates, see Chapter 1, p. 7), such as a translation,
rotation, scaling, shear, affine transformation and per-
spective projection. If more geometric variability is
required, flexible geometric models are needed (see
p. 175 below). The shape itself can be represented
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Activation
Rest Rest Rest Rest

Activation Activation Activation Activation

(a)

(b)

Figure 7.9 Statistical modeling of fMRI
signals. (a) The fMRI signal in each voxel
(green noisy line) is represented (red line)
as a linear combination of functions that
reflect the activation stimuli
(“activation–rest” step signal) and the
low-frequency signal drift. Clusters of
voxels with a significant response to the
applied stimulus are classified as brain
activation areas. (b) Activation areas
during a finger-tapping experiment in a
patient with a large extra-axial lesion in
the right frontal lobe. Three bilateral
functional areas are visible, which
correspond to the premotor cortex
(anterior), the sensory motor cortex
(middle), and the proprioceptive superior
parietal region (posterior). Note how the
lesion displaced these areas in the right
hemisphere by comparing them with the
same functional areas in the left
hemisphere. (Courtesy of Dr. S. Sunaert,
Department of Radiology.)

explicitly as a set of points, a curve or a surface, or
implicitly as a picture or image itself.

The photometric properties can be any measure
(e.g., homogeneity) or description (e.g., average and
statistical variation) of the color, gradient, texture or
any other feature along the boundary or inside the
object.

Rigid shape structures are naturally uncommon in
medical images, and more flexible models are mostly
needed. Among the few exceptions are a set of artifi-
cial markers or landmarks with known rigid topology,
or a prosthetic implant with known rigid geometry.
Quite often, multimodal or multitemporal images of
the same patient must be aligned for comparison, a
process known as image registration, image matching ,

or image fusion. One image can then be considered
as the model that has to be matched with the other
image. Rigid image registration has a large variety
of clinical applications and has become very popular
in medical imaging. The algorithms, discussed below,
can be implemented on the graphics processing unit
(GPU) of the computer, yielding a nearly real time
performance. The idea of using an image as a model
can be extended to multiple images represented by an
average image and some typical modes of variation
that characterize the variability of the appearance. For
this kind of modeling a learning or training phase is a
prerequisite.

Once themodel is available, a model instancemust
be found that best describes the image data. This
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Figure 7.10 Marker-based 3D-to-2D
registration for radiotherapy of prostate
tumors. Gold markers were inserted in the
prostate and are visible in the CT images
before and the 2D portal image (bottom
right image) during the treatment.
Registration was performed by minimizing
the root mean square error of the markers
projected in the portal image (yellow) and
their observed portal image positions
(blue). The isocenter of the linear
accelerator, i.e. the rotation point of the
irradiation source, is then shifted towards
the isocenter as calculated during the
planning.

is typically performed by optimizing a measure that
reflects the similarity between the model instance and
the image data while satisfying the model constraints.
The similarity measure can be expressed in terms of
a total penalty, cost or energy that should be mini-
mized, or the likelihood that should be maximized.
Below some well-known matching strategies are dis-
cussed for explicit and implicit shape representation
respectively.

Shape matching
Point matching
In some cases artificial markers or anatomical land-
marks can be used. For example, in image guided
interventions preoperative planning data must be
matched with the intraoperative instruments. If the
coordinates of three or more points in the 3D pre-
operative and 3D intraoperative space are known, the
geometric transformation, consisting of a rotation and
translation, can be calculated by simple 3D-to-3D
point matching. More details are given in Chapter 8,
Eqs. (8.12) through (8.15). Sometimes the point coor-
dinates are only known in a 2D projection space, such
as shown in Figure 7.10. In this case the geometric
transformation is not only a rotation and translation,
but also includes a perspective projection. The pro-
jective transformation is discussed in more detail in
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Figure 7.11 2D projection radiograph of a knee prosthesis (top)
and computer simulations of the 3D shape of the femoral and tibial
prosthetic implants (bottom).

Chapter 8, Eqs. (8.16) through (8.20). To find the best
match between the two sets of points ameasure such as
the sumof squared differences between corresponding
points must be optimized.
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(a) (b)

Figure 7.12 (a) Edge image of the
prosthesis obtained by segmentation
(edge detection) of the radiographic
image. (b) Projection of the prosthesis
onto its corresponding image after
3D-to-2D matching.

Contour matching
Figure 7.11 shows an example of a prosthetic knee
implant that consists of two subparts, a femoral
and tibial part, whose relative 3D poses have to be
calculated from a 2D projection radiograph. The
contours of the prosthesis are easily segmented in
the radiographic image due to the high contrast
between the prosthetic implant and its neighborhood
(Figure 7.12(a)). The objective then is to find the
best geometric transformation between the 3D model
surface and the 2D edge image using a suitable opti-
mization strategy, for example byminimizing the sum
of squared differences between the outer contour of
the projected model shape and the edges found in the
radiographic image (Figure 7.12(b)).

An efficient method to match rigid curves is the
Hough transform [28]. It detects curves whose shape
can be described as an analytic function with a set of
parameters, such as the slope and intercept of a straight
line. The method was generalized to detect arbitrary
shape templates represented as a list of contiguous
pixels.

Image registration
Correlation
The simplest class of metrics quantifies similarities
between two images by correlation measures (see
Chapter 1, p. 8). They assume that the gray values in

[28] J. Illingworth and J. V. Kittler. A survey of the Hough trans-
form. Computer Vision Graphics and Image Processing, 44(1): 87–116,
October 1988.

both images are similar. To detect photometric simi-
larities in both images, it is natural to use the raw image
data. When other object features are more indicative,
however, the raw image can be processed first, for
example, by performing a low-level operation such as
edge filtering or line filtering.

Mutual information
For images that are characterized by pronounced
mutual intensity differences, such as T1- and T2-
weighted images or CT and PET images, the corre-
lation approach is not appropriate. The strategy for
matching two such images is tomaximize theirmutual
information.

Image fusion by maximization of mutual informa-
tion assumes that the statistical dependence between
the intensities a and b of corresponding voxels in
images A and B or the information that one image
contains about the other is maximal at registration.
Mutual information I (A ,B) is a basic concept in
information theory [29] that is computed from thehis-
tograms p(a) and p(b) and from the joint histogram
p(a, b) of the images:

I (A ,B) =
∑
a,b

p(a, b) log2
p(a, b)

p(a).p(b)
. (7.15)

If the intensities are completely independent,
p(a, b) = p(a).p(b) and I (A ,B) = 0. However, if
the intensities are one-to-one related, then p(a, b) =
p(a) = p(b) and I (A ,B) is maximal.

[29] T. M. Cover and J. A. Thomas. Elements of Information Theory.
New York: John Wiley & Sons, 1991.
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Registration of both images is performed itera-
tively. During the matching procedure, samples taken
from one image with intensities ai are geometrically
transformed into the other image using the cur-
rent transformation parameters, and the correspond-
ing intensities bi are obtained by interpolation (see
Chapter 1, p. 7). The joint histogram for the current
registration position is then constructed by binning
the intensity pairs (ai , bi). Next, the mutual informa-
tion is computed, and the transformation parameters
are updated using an iterative optimization strategy in
order to maximize I (A ,B).

Because this approach does not rely on the absolute
value of the intensities but on their co-occurrences,
and because no limiting assumptions are imposed on
the photometric relationship between both images,
maximization of mutual information is a power-
ful method that has been applied successfully to a
wide range of different applications of image regis-
tration (Figure 7.13).

Eigenfaces
The idea of using an image as a model can be extended
to multiple images represented by an average image
and some typical modes of variation that characterize
the variability of the appearance. This is the so-called
eigenfaces technique [30], initially applied to images of
human faces for face modeling and face recognition.
For this kind of modeling a learning or training phase
is a prerequisite. Using principal component analysis
(PCA, more mathematical details are given on p. 180)
the image model can be represented as

I = Ī +
∑

i

ci · Ii , (7.16)

where Ī is the average intensity image of the training
set and Ii the eigenvectors, i.e., the principal modes
of variation, determined by statistical analysis of the
intensities in the set of training images. Each eigen-
vector Ii has a corresponding eigenvalue λi , which
is the variance of parameter ci in the set of training
images. If, for example, the values of the parame-
ters ci are Gaussian distributed, then 99.7% of the
training samples can be described by Eq. (7.16) if ci

is restricted to

−3√λi ≤ ci ≤ 3
√

λi . (7.17)

[30] M. Turk and A. P. Pentland. Eigenfaces for recognition. Journal
of Cognitive Neuroscience, 3(1): 71–96, 1991.

Because λ1 ≥ λ2 ≥ · · · , the foremost modes
of variation explain most of the variability in the
training set. By constraining the model to include
only the ν most important modes of variation, i.e.,
λ1, λ2, . . . , λν , the complexity of the model can be
reduced without significant restriction of its descrip-
tive power.

By varying the coefficients ci , the intensity pattern
of a model instance can be tuned to the intensities
of a given image. The goal is then to find the best
model instance in the image data by applying a suitable
geometric operation while varying the parameters ci .
If the parameters ci have a normal distribution, the
model instance with the highest probability is the one
that maximizes

ν∏
i=1

p(ci) = 1∏ν
i=1
√
2πλi

· exp
(
−1
2

ν∑
i=1

c2i
λi

)
. (7.18)

Because the exponential function is monotonically
decreasing as a function of c2i , maximizing

∏
p(ci)

yields the same result as minimizing
∑

ci
2/λi :

arg max
ci

ν∏
i=1

p(ci) = arg min
ci

ν∑
i=1

ci
2

λi
. (7.19)

Figure 7.14 shows an example. A drawback of this
approach is that it is negatively affected by pose or
shape differences between different images in the
training set from which the intensity model is con-
structed. Proper geometric and photometric normal-
ization of the training images is therefore required to
maximize the discriminative power of the eigenface
model.

Statistical atlas
On p. 168, in the section on statistical pixel classifi-
cation, it was mentioned that prior knowledge about
the spatial distribution of the various tissue classes in
the image can be derived from a statistical atlas p(�)

(Figure 7.7), while the goal was to maximize p(�| I )
(Eq. (7.4)), i.e.,

arg max
�

p(�|I ) = arg max
�

(p(I |�) · p(�)) (7.20)

or similarly (see Eq. (7.5))

arg max
�

ln p(�|I ) = arg max
�

(ln p(I |�)+ ln p(�)),

(7.21)174
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(a) (b)

Figure 7.13 Diagnosis of metastatic
lymph nodes in the mediastinum in a
lung cancer patient using image fusion.
(a) Detection of metastatic lymph nodes
is performed most easily with PET, but
anatomical localization is difficult because
of the lack of anatomical landmarks. (b) CT
on the other hand, clearly shows the
anatomy but does not differentiate the
affected lymph nodes. After registration
of the PET and CT images, the lesions,
delineated in the PET scans (a), were
displayed in the CT images (b). (Courtesy
of the Department of Nuclear Medicine.)

(b) (c) (d) (e)

(a)

(f)

Figure 7.14 Object recognition by template matching using the eigenfaces approach. (a) Radiographic image of the hand. (b) Template of
the first metacarpal bone constructed by averaging a set of similar training images. (c–e) The three most prominent modes of variation as
determined by statistical analysis of the intensity variation in the training set. The eigenface model is the sum of the average template (b) and
a linear combination of the modes (c), (d), and (e). (f ) Result of fitting the eigenface model to the image (a). This result provides a proper
initialization of the pose parameters of a flexible contour model used to delineate accurately the contour of the bone (see Figure 7.18 below).
(Courtesy of G. Behiels, Medical Imaging Research Center.)

which was to be solved without any geometric uncer-
tainty. However, if the position and scale of the atlas
are unknown, the affine transformation parameters
have to be taken into account as additional unknowns
in the optimization process.

Flexible geometric model matching
Flexible geometric models can be represented as geo-
metric constraints or penalties on a deformable curve
or on a deformable picture or image itself. Examples

are constraints or penalties on the smoothness, cur-
vature, rectilinearity, parallelism, symmetry, rigidity
and elasticity. These geometric models offer flexibility
to the geometry and are more suitable for modeling
biological variability than the geometric models of the
previous section, where the flexibility was limited to a
transformation matrix.

The model properties can be specified as physi-
cal or biomechanical characteristics, or as statistical
distributions obtained from a representative set of 175
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images during a training phase. Furthermore, they
can have a global nature (e.g., global elasticity) or a
local nature (e.g., local curvature) and they can be
tissue dependent, which has an important influence
on the behavior of the shape and on the complex-
ity of the optimization method. The more flexibility is
offered themore computationally expensive the search
may become and the higher the probability that the
optimization may converge to a local instead of the
global minimum. A proper initialization of the model
is therefore typically required.

As in the previous section, fitting a flexible geo-
metric model to the image data consists of finding the
bestmodel instance that describes the image data. This
problem can be solved by optimizing a suitable objec-
tive function while satisfying the model constraints.
This function includes measures to express how likely
the model instance is a priori and how similar the
model instance and the data are. The measure can be
expressed in terms of a total penalty, cost or energy
that should be minimized, or a probability that should
be maximized. Typically the objective function con-
sists of two components, which can easily be explained
using Bayes’ rule. If the optimization aims to find the
model instance � that maximizes the posterior prob-
ability of the model instance� given the image data I ,
Bayes’ rule states

p(�|I ) = p(I |�) · p(�)

p(I )
. (7.22)

When maximizing p(�|I ), the probability p(I ) is
constant and can be ignored. Hence

arg max
�

p(�|I ) = arg max
�

(p(I |�) · p(�)) (7.23)

and

arg max
�

ln p(�|I ) = arg max
�

(ln p(I |�)+ ln p(�)).

(7.24)

The log-likelihood ln p(I |�) expresses how well the
model instance � fits the image data I and the term
ln p(�) reflects how likely the model instance � is a
priori.

Instead of using probabilities it is commonpractice
to write the similarity criterion as an energy function.
In mathematics the Gibbs measure gives the prob-
ability of a system being in state X with associated

energy E(X):

p(X) = e−βE(X)∑
X e−βE(X)

, (7.25)

where β is a free parameter. Assume, for example, that
p(X) is a multivariate distribution with vector mean
µ and covariance matrix S, i.e., for the n-dimensional
case,

p(X) = 1
(2π)n/2√|S| · exp

(
−1
2
(X − µ)TS−1(X − µ)

)
.

(7.26)

The corresponding energy according to Eq. (7.25)
then is

E(X) = 1
2
(X − µ)TS−1(X − µ). (7.27)

If the elements xi of X are independent and have zero
mean and standard deviation σi , Eq. (7.26) becomes

∏
i

p(xi) = 1√
2π
∏

i σi
· exp

(
−1
2
∑

i

x2
i

σ 2
i

)
(7.28)

and the corresponding energy is

E(X) = 1
2
∑

i

x2
i

σ 2
i

. (7.29)

Using Eq. (7.25), Eq. (7.24) can be rewritten as

arg min
�

E(�|I ) = arg min
�

(E(I |�)+ E(�)) (7.30)

or

arg min
�

Etotal = arg min
�

(Eext + Eint). (7.31)

The term Eext is called the external energy, which
increases with the dissimilarity between the model
instance and the image data, andEint is called the inter-
nal energy, which reflects how unlikely the appearance
of the model instance is a priori.

In practice the internal and external energy func-
tions are typically not derived from their correspond-
ing probabilities. Instead, they are defined using
heuristic criteria about the expected model appear-
ance. A normalization factor γ is usually introduced
to weight the contribution of both energy terms:

arg min
�

Etotal = arg min
�

(Eext + γ Eint). (7.32)176
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For example, γ can be tuned to yield the optimal result
for a set of training samples.

Below some examples of well-known matching
strategies for flexible geometric models are dis-
cussed, for both explicit and implicit shape repre-
sentation. A further subdivision is made between
physical/biomechanical and statistical properties.

Shape matching
Physical/biomechanical properties
Global properties
In this strategy a curve or surface, such as the bound-
ary of an object, deforms from a given initial shape
to an optimal shape. Shape properties yield an inter-
nal energy Eint and include boundary smoothness
and curvature, rectilinearity, parallelism, and radial
symmetry. The photometric properties, yielding an
external energy Eext, attract the contour to relevant
image features, such as high image gradients. The
curve can also be attracted toward particular places
imposed by neighboring objects or components or
specified interactively by the user. The photometric
properties can also take the area enclosed by the curve
into account and, for example, force the curve to
circumscribe homogeneous regions.

Generally, the objective function has no closed-
form solution and iterative techniques are needed to
solve the optimization problem. During the itera-
tive optimization process, the flexible curve typically
behaves like a “snake” [31] (Figure 7.15).

The objective function can bewritten as a weighted
sum of an internal and an external energy:

Etotal = Eext + γ Eint. (7.33)

If v(s) = {x(s), y(s)}, s ∈ [0, 1], is the continuous
parameterization of the contour, these energy terms
can for example be defined as

Eint =
∫ 1

0

α

2
·
∣∣∣∣dv

ds

∣∣∣∣
2
+ β

2
·
∣∣∣∣d

2v

ds2

∣∣∣∣
2
ds (7.34)

Eext =
∫ 1

0
−|∇I (v)|2ds. (7.35)

Minimizing the first-order term in the internal energy
function Eint keeps the elasticity of the contour under

[31]M. Kass, A.Witkin, andD. Terzopoulos. Snakes: active contour
models. International Journal of Computer Vision, 1(4): 321–331,
September 1988.

control, and the second-order term controls its flexi-
bility. The parameters α and β arematerial properties,
to be specified by the user. Minimizing the external
energy term Eext attracts the contour to high-intensity
gradients ∇I (v), which correspond to edge points in
the image. Fitting the deformable model to the image
then implies finding the contour v∗ for which Etotal(v)

is minimal:

v∗ = arg min
v

Etotal(v). (7.36)

The optimization problem can be solved iteratively,
for example by gradient descent. This means that
the snake is stepwise displaced in the direction of
the descending gradient of the objective function,
which finally leads to a minimum of this function.
A necessary condition is that the initial contour lies
sufficiently close to the optimal one. Nevertheless, the
snake can still get stuck in a local optimum. A pos-
sible solution in that case is to pull the snake out
of its entrapped position interactively and restart the
optimization process.

Many variants of the preceding strategy have been
developed. They differ by the choice of the shape rep-
resentation, the definition of the external energy, and
the optimization method used.
• Alternative contour parameterizations are based

on splines or Fourier descriptors. As compared
with simple polygons, they have a smaller num-
ber of degrees of freedom and an intrinsic built-in
smoothness. Models with distributed parameters,
such as polygons and splines, facilitate the mod-
eling of local detail, while models with global
parameters, such as Fourier descriptors, are more
suited for modeling global shape. An interesting
feature of splines is that global smoothness ismain-
tained when displacing individual points, which
makes themwell suited for interactive editing. The
concept of 2D deformable contours has also been
extended to 3D deformable surfaces by replacing
the contour v(s) by the surface

S(u, v) = {x(u, v), y(u, v), z(u, v)}
defined on the 2D grid (u, v).

• To reduce the risk that the snake is trapped in a
weak local minimum far away from the global one,
additional external energy terms can be included,
such as a global inflating balloon energy that can be
counterbalanced only by strong image gradients.
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(a) (b)

Figure 7.15 Delineation of the myocardial
wall of the left ventricle in short axis
cross-sectional MR images using “snakes.” (a)
The heart wall was roughly outlined by the
user to initiate the deformation process. (b)
The snake is attracted to high image
gradients and is forced to be smooth.

• Optimization strategies other than gradient
descent have also beenused for deformablemodels,
such as genetic algorithms and simulated anneal-
ing. Optimization strategies are considered beyond
the scope of this textbook. See [3] for details about
optimization theory.

Local properties
This strategy assumes that the model can be repre-
sented as a trajectory or path of contiguous pixels and
that the objective function can be expressed in terms
of local properties along the path.

In contour tracking for instance, a high gradient
value in each path pixel is desired. For blood ves-
sel delineation, trajectory points are expected to lie
on the centerline of a tube-like structure. For fiber
tracking (Figure 7.16) neighboring trajectory points
have an anisotropic diffusion whose main directions
are in line. This kind of property yields an external
energy Eext.

Additional local properties, focusing on the shape
of the trajectory, can be added and yield the internal
energyEint. For example, smoothness canbe expressed
by charging local changes in the direction of the tra-
jectory course. Parallelism to a specified curve can be
forced by penalizing orientation differences between
both trajectories.

An energyEtotal(ri) = Eext(ri)+γ Eint(ri), assigned
to each pixel ri in the image, expresses how unlikely it
is that this pixel belongs to the trajectory. In contour
tracking, for example, a suitable choice for the external
energy Eext(ri) is (−|∇I (ri)|). To force parallelism, for
example, the internal energy Eint(ri) can be defined as
|d(ri)−d(ri−1)|, whered is thedistance to the specified
curve.

Figure 7.16 Schematic representation of fiber tracking. In each
voxel the diffusion is represented by an ellipsoid (see Chapter 4,
p. 88 for more details about MR diffusion tensor imaging). Along
each fiber trajectory, neighboring points have an anisotropic
diffusion whose main directions are in line.

The energy Etotal(P) of a path

P = {a = r0, r1, r2, . . . , rn−1, rn = b}

from a to b is defined as the sum of the local energy
along its trajectory:

Etotal(P) =
n∑

i=1
(Eext(ri)+ γ Eint(ri))

=
n∑

i=1
(−|∇I (ri)| + γ |d(ri)− d(ri−1)|).

(7.37)178
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The optimal path P∗ between a and b is then found by
minimizing this energy function over the set P of all
paths that connect a to b:

P∗ = arg min
P

Etotal(P). (7.38)

The number of possible paths in an image is very large,
and blind search can be computationally expensive.
Fortunately, this optimization problem can be solved
efficiently with the so-called F∗-algorithm, which
uses the principle of dynamic programming. Dynamic
programming is based on the observation that the
minimal energy path from a to b and passing through
c is the union of the minimal energy path from a to
c and from c to b. Hence, from all the trajectories
that arrive at point c during the search, it is sufficient
to keep the least expensive. This is typically imple-
mented by constructing a minimal energy matrix with
elements Etotal(c) for all pixels in a region of inter-
est that includes start point a and target point b. The
energy Etotal(c) of the minimal energy path from a

to c is computed iteratively by initializing the energy
of all pixels c to infinity (E(0)

total(c) = ∞), except for
pixel a whose initial energy is zero (E(0)

total(a) = 0),
and updating these values at iteration (m + 1) as
follows:

E(m+1)
total (c)

= min
{

E(m)

total(c), min
k∈N (c)

{
E(m)

total(k)+ Ek(c)
}}

,

(7.39)

where N (c) denotes the neighboring pixels k of c and
Ek(c) the energy to go from pixel k to pixel c . The
updating rule (7.39) is applied repeatedly to all pixels
c until ∀c E(m)

total(c) = E(m+1)
total (c) = Etotal(c), where

Etotal(c) is the minimal energy from a to c . The min-
imal energy path from a to b can simply be traced in
the minimal energy matrix with elements Etotal(c) as
the path of steepest descent from b to a.

(a)

(c)

(b)

Figure 7.17 Delineation of the left ventricle of the heart in PET images using dynamic programing. (a) An initial estimate of the centerline is
determined first by fitting an elliptic curve to the average intensity of a number of regularly spaced cross-section images through the long
axis of the ventricle. This can be done interactively or automatically. (b) Dynamic programming is then applied in a resampled region around
the centerline in each cross-section image. Two paths, nearly parallel to the centerline, were found, one with maximal positive and one with
maximal negative gradient values. These paths correspond to the inner and outer ventricular boundaries, respectively. (c) An efficient
implementation was obtained by first resampling the image in a small band along the centerline. Next, the elliptic centerline is updated and
the procedure is repeated iteratively a few times until it converges. Because of the shape model, the method can cope with low-contrast
regions, such as the infarcted area in the upper right part of the image. (Courtesy of Professor J. Nuyts, Department of Nuclear Medicine.) 179
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The F∗-algorithm is particularly suited to delin-
eate curves in the neighborhood of a specified shape
(see, e.g., Figure 7.17). This strategy is therefore very
appropriate for semiautomated, user-guided delin-
eation. The user can, for example, manually trace a
contour using the mouse, while the corresponding
optimal boundary contour will follow in real time.

Statistical shape properties
Global properties
The deformable curvemodels discussed above employ
physical or biomechanical shape constraints, such as
smoothness and elasticity. The models discussed in
this section, in the literature known as active shape
models [32] or active appearance models [33], are
constructed by learning the shape or appearance of
one specific object type from a representative set of
examples. This way, the number of degrees of freedom
of the model is significantly reduced, but the model
retains thenecessary flexibility to copewith thenormal
shape variability between different instances of this
object type. A shape model is built by examining the
statistics of the coordinates of corresponding points
in a training set of shapes. Each shape is described by
n labeled points and corresponding points in differ-
ent shape instances have the same label. The model
and image template are first aligned using the eigen-
faces method (see p. 174) to correct for differences
in pose. This way, m contours {vi , i = 1, 2, . . . ,m}
in the same reference frame are obtained. Each
contour can be written as a column vector of coor-
dinates (xik , yik), that is, vi = [xi1 yi1 xi2 yi2 · · · xin

yin]T.
The shape variations vi − v̄, where v̄ is the mean

shape and defined as

v̄ = 1
m

m∑
i=1

vi , (7.40)

can be represented in a 2n-dimensional feature space
whose axes correspond to the 2n labeled points along
the contour. The variations on different labels are
not necessarily uncorrelated. To work in an uncorre-
lated feature space, the theory of principal component
analysis (PCA) can be applied as follows. The shape

[32] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham. Active
shape models: Their training and application. Computer Vision and
Image Understanding, 61(1): 38–59, 1995.
[33] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appearance
models. IEEE Transactions on Medical Imaging, 23(6): 681–685, 2001.

variability in the training set is represented by the
2n×2n covariancematrix S of shape distortions vi− v̄
of all the shapes in the set

S = 1
m

m∑
i=1

(vi − v̄) · (vi − v̄)T. (7.41)

This matrix can also be written as

S = Q ·� · QT, (7.42)

whereQ = [r1 r2 · · · r2n] is the 2n×2n unitarymatrix
of eigenvectors rk of S, and� is the diagonal matrix of
corresponding eigenvalues λk (with λ1 ≥ λ2 ≥ · · · ).
The new axes rk in feature space correspond to the new
modes of variation, which are mutually uncorrelated
and are characteristic for the shape diversity in the
training set.

√
λk is the standard deviation along rk of

all the shapes in the learning set.
The shape model can then be written as

v = v̄ +
2n∑
k

ck · rk . (7.43)

Each eigenvector rk has a corresponding eigenvalue
λk , which is the variance of parameter ck in the set of
training shapes. Because λ1 ≥ λ2 ≥ · · · , the foremost
modes of variation explain most of the variability in
the training set. By constraining the model to include
only the ν most important modes of variation that
explain most of the variability in the training set, the
number of degrees of freedom of the model can be
significantly reduced without affecting much of its
descriptive power. Any contour instance v∗ can then
be written as

v∗ = v̄ +
ν∑
k

ck · rk . (7.44)

By varying the coefficients ck , the shape of a model
instance can be modified.

If the parameters ck have a normal distribution, the
internal energy is (see Eqs. (7.29) and (7.19))

Eint = 1
2

ν∑
k=1

ck
2

λk
. (7.45)180



Chapter 7: Medical image analysis

The external energy can for example be defined
heuristically as in Eq. (7.35):

Eext =
∫ 1

0
−|∇I (v)|2ds. (7.46)

An alternative is, for example, to maximize the simi-
larity with a statistical model of the image intensities
perpendicular to each characteristic contour point.

Finally the goal is to find the parameters ck by
minimizing the weighted sum of the external and
internal energies, i.e., Eext + γ Eint. Figure 7.18 shows
an example.

A drawback of the method is that a training phase
is needed for each new object type. This usually
involves amanual delineation of a sufficient number of
representative shapes and the identification of corre-
sponding points in the training set. This can be tedious
and time consuming but needs to be done carefully, as
differences in point coordinates resulting from incon-
sistencies in the labeling cannot be discriminated from
true shape variability. Thematching procedure further
assumes that the initialization is sufficiently accurate
for convergence to the correct optimum. The initial
pose can be specified interactively or obtained through
a separate procedure, such as the eigenfaces approach,
discussed on p. 174.

Local properties
As stated before, this strategy assumes that the model
can be represented as a trajectory or path of con-
tiguous pixels and that the objective function can be
expressed in terms of local properties along the path.
While before these properties had a physical or biome-
chanical meaning, in this section the local geometric
and photometric properties are obtained by learn-
ing the local shape and appearance from a training
set. Figure 7.19(a) shows an example of a thoracic
radiograph in which a radiologist delineated the lung
boundary by indicating a set of characteristic points,
which are connected by straight lines. Repeating this
procedure for a representative set of images yields a
training set of contours, characterized by the local
photometry around each point and by the direction
between neighbors.

The local photometry around each labeled point
can be modeled studying a small window around
this point and applying the theory of eigenfaces (see
Figure 7.14). After applying PCA this yields the fol-
lowing local external energy for each labeled point li
(see Eqs. (7.19) and (7.45))

Eext(li) = 1
2

ν∑
k=1

c i
k
2

λk
, (7.47)

(a) (b)

(c) (d)

Figure 7.18 Active shape model for
delineation of the finger bones in
radiographic images. The result can be
used to compare the shape of the bones
to their normal shape in order to
calculate the bone age of the patient. (a)
Manual delineation of the bones. (b)
Three principal modes of variation for the
first metacarpal bone in a database of
manually segmented training images. (c)
The mean shape is put on top of a new
image to initiate the optimization
process. (d) Result of the optimization.
While fitting the active shape model, the
contour is displaced iteratively to match
the intensity appearance observed in the
training images with that along the
contour. (Courtesy of G. Behiels, Medical
Imaging Research Center.)
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(a) (b)

(c) (d)

E1,1  E1,2      . . . E1, m

E3,1  E3,2      . . . E3, m

E4,1  E4,2      . . . E4, m

En,1  En,2      . . . En, m

E2,1  E2,2      . . . E2, m

. .
 . 

Figure 7.19 Illustration of lung segmentation using local statistical properties and the principle of dynamic programming. (a) Result of
manual delineation of the lung boundary as a set of characteristic labeled points, connected by straight lines. Repeating this procedure for a
representative set of images yields a training set of contours whose local properties are calculated and processed into a statistical model (see
text). (b) For each label li a predefined search area limits the number of candidates for this label. In each search area them best candidate
labels are retained based on their local energy Eext(li). In this picture three such search areas and their corresponding candidates are shown.
(c) For each candidate j = 1, . . . ,m of each label li its local energy Ei,j is put in a matrix. The trajectory that traverses the matrix from the top to
the bottom row, with minimal total energy, is found using dynamic programming. The energy to connect two neighboring matrix elements
in the path is given by the local internal energy Eint(li , li+1). (d) Lung contour through the optimal set of landmarks. The piecewise linear
contour, obtained by connecting the optimal landmarks by straight lines, is entered in the F∗-algorithm, which traces a contour in the
neighborhood of the straight lines that fits the high image gradients more accurately. This result can then be used to calculate thoracic
measurements such as the cardiothoracic ratio.
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assuming that the parameters ck have a normal distri-
bution. Further assuming photometric independence
between the labeled points li , the total external energy
is the summation along the contour of the local
external energies:

Eext =
∑

i

ν∑
k=1

(
1
2

c i
k
2

λk

)
. (7.48)

The local geometry can be trained by learning the
distribution of each orientation vector θi between
neighboring labels. Assume that this is a multivariate
normal distribution with vector mean µi and covari-
ancematrix Si , then the internal energy Eint to connect
point li with its neighbor li+1 can be written as (see
Eq. (7.27))

Eint(li , li+1) = 1
2
(θi − µi)

TSi
−1(θi − µi). (7.49)

Assuming independence between the subsequent ori-
entation vectors, the total internal energy is the
summationof the local internal energy along the curve:

Eint =
∑

i

Eint(li , li+1)

=
∑

i

1
2
(θi − µi)

TSi
−1(θi − µi). (7.50)

Finding the solution with the highest probability cor-
responds to minimizing the sum of the total internal
and external energy:

Etotal = 1
2
∑

i

(
(θi − µi)

TSi
−1(θi − µi)+

ν∑
k=1

c i
k
2

λk

)
.

(7.51)

Because all the energy terms are locally defined, the
principle of dynamic programming can be applied to
find the solution with minimal total energy, which is
also the solution with the highest probability. Note
that Eq. (7.51) does not contain a heuristic parameter
γ . However, this expression is correct only if all the
assumptions are satisfied, i.e., normal and indepen-
dent distributions. In practice this condition may not
hold and the internal and external energy terms may
not be equally weighted, which favors the introduction
of a normalization factor γ again (see Eq. (7.32)).

Figure 7.19 illustrates the subsequent steps of
the algorithm for lung segmentation in projection
radiographs.

Image registration
A flexible shape can be represented implicitly as a
picture or image itself with deformation properties.
Hence, an image is interpreted by fitting it to this
iconic representation.

Any pictorial representation or label image can
be used as the prototype. In the case of a statistical
atlas for example (Figure 7.7), the affine geometry (see
p. 175), can be extended to arbitrary deformations.
Equation (7.5) can then still be used, i.e.,

arg max
�

ln p(�|I ) = arg max
�

(ln p(I |�)+ ln p(�)).

(7.52)

However, the prior knowledge p(�) is now the proba-
bility of the flexibly deformed statistical atlas instance.
This expression can also be rewritten as (see Eq. (7.31))

arg min
�

Etotal = arg min
�

(Eext + Eint) (7.53)

where the internal energy is defined by the deformed
statistical atlas, i.e. by the given tissue class probabil-
ities (see Figure 7.7) together with the probability of
the displacement field, including pose and size.

The prototype can also be an image of the same
patient taken at a different time or with a different
acquisition system. Comparing both images is known
as nonrigid image fusion.

Deformations can be defined in different ways.
They should have a sufficient degree of freedom and
robustness in order to cope with the biologic variabil-
ity and pathological abnormalities. Below are some
examples.

Physical/biomechanical properties
Tissue independent deformations
Examples of biomechanical deformation properties
are rigidity, elasticity and compressibility (a measure
of the relative volume change). Figure 7.20 illustrates
an example of longitudinal registration of breast MRI
images. In this study breast tissue is considered as
incompressible elastic tissue. Furthermore, the stress
σ and strain ε are assumed to be linearly proportional
without distinction between muscles, skin, fatty tissue
and glandular tissue (Figure 7.21). Note that even then
there is no agreement in the literature on the value of
the degree of elasticity. In these conditions the inter-
nal energy Eint to deform a tissue volume V can be

183



Chapter 7: Medical image analysis
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Figure 7.20 (a) and (b) Breast MRI of the same patient acquired at different moments. (c) Schematic representation of stress and strain.
A force F is acting on a bar with length L and area A. The axial stress is σaxial = F/A, the axial strain is εaxial = �L/L and the lateral strain is
εlateral = �W/W . (d) Image (a) after nonrigid registration using a linear stress–strain relationship.
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Figure 7.21 Different relationships between stress and strain in breast tissue are found in the literature. (a) Some studies show a linear
relationship, i.e., σ = E · ε where Young’s modulus E is constant. (b) Other studies show a nonlinear relationship. At a high stress the tissue
stiffens. Note that more complex models also include viscoelasticity, growth and necrosis.
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Figure 7.22 Image registration in a
longitudinal PET study. One of the two
images is deformed and fit to the
reference image using different
deformation properties for bone and soft
tissue. The subtraction image and the
deformation field are also shown.
Courtesy of Professor J. Nuyts.
Department of Nuclear Medicine

defined as

Eint = 1
2

∫
V

σ ε dV . (7.54)

The external energy is a measure for the dissimilar-
ity between the image data and the prototype. In the
case of multimodal or multitemporal image fusion
the mutual information between images A and B,
which reflects the statistical dependence between both
images, is a popular measure, i.e.,

Eext = −I (A ,B). (7.55)

During the optimization the deformation can, for
example, be represented by a mathematical function,
such as a spline, which is a piecewise polynomial curve
with an implicit smooth behavior. An alternative, but
computationally much more demanding, approach is
to consider the deformable image as a fluid medium
with certain viscoelastic properties and to solve the dif-
ferential equations for viscoelastic motion as in fluid
dynamics. In this case, it can be shown that opti-
mizing the objective function is identical to solving
the Navier–Stokes equation. Figure 8.16 (Chapter 8)
shows another example of nonrigid registration with a
heuristic definition of the rigidity and compressibility
of the tissue. Precontrast CT images of the blood ves-
sels of head and neck are matched with postcontrast
CT images. This way the image deformation due to
patient movement between the two CT scans, can be
eliminated.

Tissue dependent deformations
Until now in this section we have seen that the model
can be either a specific or statistical deformable image,
or an object description in the form of a deformable
shape or label image (atlas). In the first case match-
ing is known asmultitemporal ormultimodality intra-

patient image fusion and in the second case as image
segmentation yielding tissue delineation. However,
from a methodological point of view we have not
made any difference between the two processes. Con-
sequently, nothing prevents us from building a model
that consists of a combination of, for example, a
deformable label image (atlas) and an explicit shape
description. Segmentation and image fusion are then
performed simultaneously. Note, however, that the
objective function as well as the optimization strategy
may become quite complex. Nevertheless, segmen-
tation may sometimes be required to perform image
fusion. This is the case if the deformation properties
are tissue dependent. The complexity of solving the
problem may be drastically reduced if the segmenta-
tion and image fusion can be performed sequentially.
Figure 7.22 shows an example of subtraction of two
whole-body PET bone scans of the same patient taken
at different times. Bone appears dark in the images
due to a high tracer uptake. Segmentation of bone and
soft tissue is then performed simply by thresholding.
Next, the internal energy Eint can be defined as (see
Figure 7.23)

Eint = �wij f (Lij − L0
ij), (7.56)

where wij is the stiffness of the rod L0
ij , which connects

pixel i with its neighbor j . L0
ij is deformed into the rod

Lij , yielding the deformation vector (Lij − L0
ij). The

stiffness wij is large for bone and small for soft tissue.
The external energy can be defined, for example, as in
the previous examples

Eext = −I (A ,B). (7.57)

Statistical deformation properties
Onp. 180, methods for statistical shape properties (see
Figure 7.18) were described. These methods can also
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Figure 7.23 Schematic representation of a deformation field
where L0ij is deformed into Lij .

be applied tomodel image deformation. In Figure 7.18,
for example, a statistical shape model was built by
examining the statistics of the coordinates of corre-
sponding points in a training set of curves. In the
case of image deformation the elements of the vec-
tors vi are the coordinates (xik , yik) of a number of
landmarks in the image. If two images per patient
are available in the training set, the deformation
between the two images can be described as �vi

with coordinates (�xik ,�yik). Using principal com-
ponent analysis (PCA) any deformation �v can then
be written as

�v = �v +
ν∑
k

ck · rk . (7.58)

As compared to Eq. (7.44) only the deformation is
expressed here, not the shape. If the deformation does
not show any bias, then �v ≈ 0. If the parameters ck

have a normal distribution, the internal energy is (see
Eq. (7.45))

Eint = 1
2

ν∑
k=1

ck
2

λk
. (7.59)

In the case of image fusion, the external energy can be
defined again as

Eext = −I (A ,B). (7.60)

Using, for example, an interpolating spline through
the landmarks, one image can be deformed into
another whileminimizing the total energy. Figure 7.24
shows the chosen landmarks in 2D chest radiographs
and examples of their deformation along the principal
modes of variation. They define a deformation model
that can be applied to temporal subtraction as shown
in Figure 7.25.

Again, nothing prevents us from combining a
deformation model with an explicit statistical shape
description (see, e.g., Figure 7.19) to analyze and regis-
ter subsequent images in a dynamic or time sequence.
Segmentation and image fusion are then performed
simultaneously. Examples of this integrated approach
have been described in the scientific literature, but this
approach is still the subject of fundamental research
and immature for clinical use.

Validation
A general problem in medical image analysis is that
validation of the algorithms requires a ground truth
or golden standard to which the outcome of the
analysis can be compared. In vivo measurements in
humans cannot be used in principle to obtain such a
ground truth. In vivo measurements in animals are
limited by ethical concerns. The lack of an in vivo
ground truth has resulted in three alternative meth-
ods for validating accuracy, that is, the use of software
simulations, phantoms, and cadaver studies. If possi-
ble, they are all used one after the other and in this
order.

• Software simulations Artificial images can be gen-
erated with programs that simulate the acquisition
process of the imagingmodality (Figure 7.26). This
way, the ground truth is known exactly. Validation
is highly flexible because the influence of acqui-
sition parameters, imaging artifacts, and various
appearances of the acquired structures can all be
investigated independently or together. Numerous
validation tests can be performed with little effort.
A drawback of software simulations, however, is
that they require substantial modeling and com-
puter power and are usually approximate, as in
practice a software simulator cannot adequately
take all factors into account that influence the
imaging process.

• Phantoms Because of the limitations of soft-
ware simulations, assessment of new algorithms
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Tx Ty sx sy rz breathing

7 8 9 10 11 12

Figure 7.24 2D chest radiographs deformed
along the axes of the principal modes of
variation of nine landmarks. In this example
the nine landmarks are defined as equidistant
grid points on the bounding rectangle of the
lungs.

(a) (b)

(c) (d)

Figure 7.25 (a,b) 2D chest radiographs of
the same patient taken at different times. (c)
Straightforward subtraction of images (a)
and (b). (d) Subtraction after nonrigid
registration using a statistical deformation
model. Note that a perfect subtraction is not
possible due to the nature of 2D
radiographs, which are projection images.

is also recommended by means of anthropomor-
phic phantoms (Figure 7.27) whose geometry and
material properties are known accurately and are
comparable to the in vivo properties. Because the
images are generated by the imaging modality,
phantom tests are in general more realistic than
simulations. On the other hand, they are labor

intensive and do not offer the flexibility of software
simulations.

• Cadaver studies After software simulations and
phantom tests, cadaver studies may be consid-
ered. The analysis results can then be compared
to the postmortem structures in the body. This
validation method best resembles the in vivo 187
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(a) (b)

Figure 7.26 Evaluation of MR tissue segmentation by pixel classification (see p. 167 and Figure 7.8) in artificial images. (a) Simulated
T1-weighted MR image of the brain obtained by simulating both the MR imaging process and a brain with known geometry and tissue
distribution. (b) Comparison between the white matter segmentation computed from (a) and the ground truth used to generate (a).
Misclassified pixels (bright) are primarily located at the interface between white and gray matter and can be attributed to the partial volume
artifact. By changing the parameters of the MR simulator the performance of the segmentation algorithm can be tested in a wide range of
controlled conditions. (Courtesy of Dr. K. Van Leemput, Medical Imaging Research Center, and Bruce Pike and Alan Evans, McConnell Brain
Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada.)

(a) (b)

(c)

Figure 7.27 Validation of image
segmentation using a phantom with
known geometry. (a) Mathematical model
of an anthropomorphic spine phantom.
(b) CT image of the phantom. (c) The
mathematical model was registered with
the CT images of the phantom. The
position of the image contours
segmented by edge detection can be
compared with their true location as
specified by the geometry of the model.
(Courtesy of Professor J. Van
Cleynenbreugel, Medical Imaging
Research Center.)
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(a) (b) (c)

Figure 7.28 Validation of automated MS lesion segmentation by comparison with manual analysis. (a) ρ-weighted MR image of an MS
patient showing the typical MS lesions as hyperintense blobs inside white matter. (b) Lesions detected using automated pixel classification
(see p. 167). (c) Lesions delineated by a trained radiologist. When comparing both segmentations the intra- and inter-observer variability in the
expert segmentation has to be taken into account. (Courtesy of K. Van Leemput, Medical Imaging Research Center.)

situation. However, the tissue characteristics of a
cadaver generally differ from those of a living per-
son. Hence, care must be taken when interpreting
the results. As compared with phantoms tests, the
internal shape and geometry are typically known
with less accuracy and the practical organization is
more cumbersome. Note also that cadaver studies
are not suited to assessing dynamic processes in the
body.

Because of the lack of an indisputable ground truth,
an alternative popular strategy used to assess the algo-
rithmic accuracy is to compare the outcome of the
algorithm with the solution generated by the estab-
lishedmethod used in daily clinical practice. Common
practice is validation by comparison with the results
obtained frommanual analysis by one ormore human
experts (Figure 7.28). The results of such a validation
should be critically reviewed because manual analysis
is highly subjective and variable (see Figure 7.1).

Future expectations
Today, the use of computer-aided image analy-
sis is often too time consuming. Faster comput-
ers, easy to use computer programs, and fast and
easy digital image transfer will change this. Pro-
grams for image registration and quantification will
be smoothly integrated in a PACS environment and
used in daily routine. Improved imaging modalities
and adapted image acquisition schemes will offer a
higher SNR and a better differential diagnosis capa-
bility, this way simplifying the automatic analysis
method.

From an algorithmic point of view, more accurate
and profound modeling can be expected. These mod-
elswill be partly based on statistical processing of static
and dynamic images of large normal and pathological
population studies. This will yield a variety of digital
atlases for automated quantitative analysis and more
reliable methods for nonrigid registration.
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Chapter

8 Visualization for diagnosis and therapy

Introduction
Medical images are typically generated as 2D projec-
tion images or sequences, as in radiography, or as
stacks of 2D image slices, as in tomographic imaging.
To use them for diagnostic or interventional pur-
poses, the image data can be visualized as such, but
they can also be shown as resliced images or as three-
dimensional (3D) images. This chapter discusses the
clinically relevant visualization methods.

Medical images are used not only for diagnos-
tic purposes, but also often serve as the basis for
a therapeutic or surgical intervention during which
the instruments are guided by and navigate through
the image content. Images can be obtained prior to
and during surgery. Preoperative images, such as CT,
MRI, and PET, can be used for accurate planning and
can be acquired with the available diagnostic imaging
modalities. However, the planning has to be accurately
applied to the patient in the operating room. This
requires a method to register geometrically the pre-
operative images and planning data with the surgical
instruments. A computer can assist in both this plan-
ning and the registration, a process known as computer
assisted intervention.

To plan or simulate an intervention, preoperative
images are imported in a 3D graphics computer work-
station andmanipulated as real 3D volumes. Planning
is surgery specific and typically consists of defining lin-
ear or curved trajectories to access a lesion, to position
an implant, to simulate ablations and resections, or to
reposition resected tissue.

Stereotactic∗ brain surgery played a pioneering
role in the development of computer assisted inter-
ventions. It is based on the principle that a predefined
area in the brain can be approached by a surgical
instrument, such as an electrode or a biopsy needle,
through a small burr hole in the skull. In order to

∗ The term stereotaxy is derived from the Greek words stereos and
taxis and can be translated as “three-dimensional (3D) ordering.”

realize this, a stereotactic frame (see Figure 8.1) with
inherent coordinate system was developed and fixed
to the brain. Images, planned trajectories, and instru-
ments are all defined in this coordinate space. The first
frame was built in 1908 by Horsley, a physician, and
Clarke, an engineer. This instrument allowed them
to reach a predefined area in the brain of a monkey
(Macacus rhesus) with an electrode guided through
a small burr hole in the skull. To define the target
location, a brain atlas was used. It consisted of a col-
lection of topographic maps with sketches of sagittal
and frontal intersections of a standard Macacus rhesus
brain. The stereotactic frame was designed to transfer
the 3D coordinate system of the atlas to the mon-
key mechanically, using anatomical landmarks on the
skull, such as the external auditory canals and the
inferior orbital rim.

The stereotactic frame quickly became an impor-
tant instrument for neurophysiologists and neuro-
anatomists in order to approach a desired target in the
brain of a living animalwith little damage to vital brain
tissue. In this early stage, the stereotactic approach did
not use images inwhich the target point could be local-
ized. Instead, the target was defined in an atlas andwas
transferred to the operating space bymeans of external
landmarks on a skull. However, the large intersubject
variability of the relative positions of deep intracere-
bral targets with respect to external skull landmarks,
particularly in humans, prevented accurate use of
this technique without proper images of the subject’s
brain.

With the use of radiographic images, intracerebral
landmarks became available by means of ventriculog-
raphy.† In 1947, the first image-guided stereotactic
intervention was applied to a human by Spiegel and
Wycis. Since then, much emphasis has been placed
on the topography of deep brain structures and

† Radiography of the ventricles filled with a contrast dye.
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(a) (b)

Figure 8.1 The stereotactic arc is mounted on top of the base ring. (a) Arc setup during the software planning. (b) Intraoperative view with
instrument holder and biopsy needle in the planned position. The stereotactic arc shown here is the BRW system of Radionics.

on techniques to guide a probe through predefined
human brain structures.

In its early years (1950–1970) stereotactic surgery
was used primarily to treat functional disorders, such
as certain persistent pain syndromes. During such
interventions, selective cerebral pathways of nuclei
were stimulated or destroyed. Such target structures
were invisible, however, with the imaging modali-
ties (X-rays, ultrasound) of that period. The nearest
internal brain structures that could be visualized in
a radiographic image were the ventricles. The target
point was then localized in an atlas of the brain with
respect to two anatomical reference points (i.e., the
commissura anterior (CA) and the commissura pos-
terior (CP)), which are characteristic points on the
third ventricle and visible in the radiographic images
as well. This way, the planning performed in an atlas
plate could easily be transferred to ventriculograms of
the patient. Because the ventriculogramswere taken in
stereotactic conditions (i.e., while the patient was fixed
into the stereotactic frame), the relationship between
the target point in the radiographic images and the
stimulating electrode could be calculated.

Soon after the introduction of CT in 1974 as a diag-
nostic modality, methods were developed to localize a
target point in a CT image volume and to approach it
stereotactically withmillimeter precision. New stereo-
tactic instruments became commercially available for
CT, PET, and MRI-guided neurosurgery. Since the
1980s image-guided procedures have vastly expanded
in orthopedics and traumatology. Like the brain, the

skeleton can be assumed to be a rigid structure, which
is a necessary condition for the use of preoperative
images. Planning bone surgery requires software for
complex user interaction, whereas in brain surgery
the planning typically consists of the definition of one
or more straight trajectories.

The use of preoperative images requires that the
tissue to be treated be rigid. Except for the brain
and skeleton, this condition is not the case for most
other anatomical structures. For soft tissue treatment,
interventional imaging is the obvious solution.

This chapter is built up as follows.

• It starts with a comprehensive overview of image
visualization methods for diagnosis and therapy.
The images delivered by the acquisition sys-
tems can be resliced into multiplanar reformatted
images (MPR) and curved slices; multimodal or
multitemporal image data can be visualized as co-
registered images; and stacks of 2D slices can be
rendered as 3D surfaces or as 3D volumes.

• 3D rendering yields depth perception by several
contributing factors, such as perspective projec-
tion, hidden surface removal and light reflections.
Object motion, head movement parallax∗ and
stereo vision offer additional depth cues. By inte-
grating them an immersive visualization technique
is obtained, known as virtual reality.

∗ Parallax is the perceptual change of the 3D scene when the viewer
moves.
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• Ways to interact with 3D images, useful for pre-
operative planning as well as for education and
training, are subsequently discussed.

• The next section explains how the surgical instru-
ments can navigate through these images and
preoperative planning data. To exploit the pre-
operative images during surgery and execute the
planning on the patient, their geometrical rela-
tionship with the surgical instruments has to be
established and maintained.

• Intraoperative images can also be integrated with
preoperative images and planning and other vir-
tual data into a single image. This visualization
technique, which combines virtual and real-world
elements, is known as augmented reality.

2D visualization
Typically 3D medical image data are stacks of 2D
images. Radiologists and nuclear medicine physi-
cians are trained to provide their diagnosis based on
these 2D images. These images show the anatomy
or function of thin slices through the body and are
mostly acquired directly from the imaging system. The
orientation of these slices is defined by the constraints
of the imaging modality. However, it is quite easy
to calculate slices of a different orientation from the

original stack of images by simple interpolation. This
reslicing process is known as multiplanar reformatting
(MPR). Curved slices are also useful but less common
than planar reslices. Figure 8.2 shows such a curved
slice through one of the main coronary arteries.

Due to the recent advances in multimodal acqui-
sition systems (e.g., PET-CT) and image registration
software, corresponding multimodal or multitempo-
ral images can be visualized together. Figure 8.3 shows
an example of a longitudinal study displayed in syn-
chronized windows. After nonlinear registration of
two 3D CT data sets of the same patient, taken at
a different times, corresponding spatial positions in
both data sets are known and can be shown simulta-
neously when the user points to one of them either in
the recent or in the reference data set.

3D rendering
3D rendering is the process of creating realistic
computer-generated images of a 3D scene. Photo-
realism is obtained by simulating the interaction
of light coming from one or more light sources
with the illuminated 3D scene (Figure 8.4). The
illumination can be ambient, i.e., coming equally from
all directions, or directional, i.e., coming from point
sources or from more extended sources. When the

Figure 8.2 Analysis of the coronary
arteries. The computer automatically
delineates the main arteries, the myocard
and heart chambers and a 3D image of
the delineated structures can be shown
(b). The centerline of the main coronary
arteries is automatically found and a
curved slice through each of these
arteries can be shown (a). The centerline
can be stretched and reslices along or
perpendicular to the centerline of the
blood vessel can then be visualized (c).
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Figure 8.3 This user interface shows
corresponding thoracic 2D slices of the
same patient over time after nonrigid
registration. When navigating through
one of the image stacks and pointing to a
position with the cursor, the
corresponding position in the
co-registered images is shown.
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Figure 8.4 Schematic representation of
the interaction of light with material.

light hits an object, part of the incident intensity is
absorbed, another part is reflected and the remainder is
transmitted.

• The energy of absorbed light photons is partly
transformed into heat. The remainder is scattered.
Part of the scattered light photons escape from
the material again and contribute to the reflected

or transmitted signal. Note that the amount of
absorption is frequency dependent.

• The reflected light defines the color of the object. It
is typically subdivided into a specular and a diffuse
component, or a combination of both. Specular
reflection occurs at flat transitions between two
media. In the specular direction the reflected pho-
tons are in phase and the diffraction pattern yields
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an intense signal that falls off sharply away from
this direction. Diffuse reflection is due to light
scattered back in many directions. The amount
of diffuse and specular reflection depends on the
material properties of the object. Dull materials
disperse the light equally in all directions while
shiny surfaces reflect the light directionally.

• Objects pervious to light are transparent (e.g.,
eye lens, some liquids, air) or translucent (e.g.,
human skin). Theoretically the transmitted rays in
a transparent object are refracted slightly, but this
property is often neglected for medical 3D visual-
ization. In translucent objects the incident light is
scattered through the material, giving it a specific
smooth appearance.
Note that not only the material properties are

responsible for the appearance of the object but also
the position and orientation of the object with respect
to the light sources and the viewer. The more oblique
the surface is to the light direction, the smaller the
incident intensity. The specular reflection depends
on the angles of the normal to the surface with
both the incident light and the view direction (see
Figure 8.4).

As a rule of thumb, the greater the photographic
realism the more computationally expensive the 3D
rendering process is. Multiple reflections and refrac-
tions, for example, require secondary light rays and ray
trees, which increase the computation time drastically.
Recursive ray tracing and radiosity methods are able
to cope with the interchange of light between objects.
However, these methods are beyond the scope of this
textbook. For diagnostic and therapeutic visualization,
simplified nonphysically basedmodels of illumination
and shading are mostly employed. Accuracy and real
time interaction are given priority at the cost of pho-
torealism. As we will see below (Figure 8.25), the use
of properties like specularity and shadowingmay even
deteriorate the interpretation of an image.

Three-dimensional medical images are acquired as
3D matrices of voxels. Two different approaches can
be distinguished to render them. The most straight-
forward method from a computer graphics point of
view is to extract objects from the 3D data and ren-
der their surfaces. This way the same 3D rendering
software can be used as employed in graphics for
entertainment. Surface rendering has a long-standing
tradition in computer science and graphics packages
are redundantly available. A problem, however, is that
object segmentation is often not straightforward, as

we have discussed in Chapter 7. An alternative is to
consider all the voxels as separate objects and render
them all. This technique is known as volume rendering.
More details about surface and volume rendering are
discussed below.

Surface rendering
Visualizing surfaces extracted from volumetric image
data requires object segmentation. As we have seen
in Chapter 7 this is not a trivial task except for
high-contrast structures such as bony structures in
CT images. Nevertheless 3D surface visualization has
become common practice today in medical imaging.
Figure 8.5 shows an example.

A 3D surface is described by its geometry and its
reflection and transmission properties, including its
intrinsic color pattern or texture.

Surface geometry
A surface of a segmented object can be represented
in different ways. Chapter 7 offers several potential
representations, such as a set of voxels, a polygon or
a spline. In computer graphics it is common practice,
however, to represent the surface as a triangular mesh.
This popularity can be explained by the availability of
standard software libraries that are based on this type
of surface description. In medical image analysis this
kind of representation is rather unusual.

Different methods exist to calculate a triangu-
lar mesh. A classical approach consists of joining
segmented planar contours in adjacent image slices
by triangles, a process known as tiling (Figure 8.6).
This method is quite useful for thick slices. It avoids
staircase artifacts arising from large shifts between
corresponding contour segments in adjacent slices.
Today, 3D scanners provide nearly isotropic voxels,
which reduces the practical value of tiling contours.

Another class of methods considers the image
data as a 3D lattice where the voxels constitute the
lattice points, lying inside or outside the object. A
popular approach is the so-called marching cubes algo-
rithm. It cleaves each elementary lattice or cell of
eight voxels (see Figure 8.7(a)) into internal and
external object parts. Each cutting surface consists
of one or more triangles. It can easily be shown
that there are only fifteen unique cleaving configura-
tions, including their rotated and symmetrical shapes
(Figure 8.7(b)).
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(a)

(c)

(b)

Figure 8.5 Intensity modulated
radiotherapy (IMRT) is a highly conformal
treatment technique routinely used in
certain cancers, such as head and neck
cancer. It allows the delivery of complex
dose distributions to the patient by
modulating the radiation beam intensity.
Three-dimensional representations are
common practice during treatment
planning for IMRT. (a) Delineated tumor
and malignant nodal tissue. (b) Organs at
risk including the salivary glands,
swallowing structures and spinal cord,
which should be avoided during
irradiation. (c) IMRT treatment plan with
the corresponding dose distribution for
this patient. This plan maximizes the dose
to the target (a) and minimizes the dose
to the organs at risk (b). Courtesy of the
Department of Radiotherapy

(a) (b)

Figure 8.6 Representation of a surface by planar contours joined
by tiling.

Illumination and shading
Illumination
Surfaces can be illuminated by ambient light, com-
ing equally from all directions, and one or more
directional point sources. More extended sources can

be considered as a set of point sources. Light is
reflected and transmitted at the surface of theobjects in
the scene. The reflection of light can be diffuse for dull
surfaces, specular for shiny surfaces, or a combination
of both for glossy surfaces.
• Ambient light If Ia is the intensity component of

the ambient light, the reflected intensity in any
direction from surface point r can be written as

I (r) = ka(r) Ia, (8.1)

where ka(r) is the ambient reflection coefficient, a
property of the material.

• Diffuse and specular reflection Diffuse reflection
coming from a point source with intensity Ip can
be expressed as

I (r) = (l · n(r)) kd(r) Ip. (8.2)
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(a) (b)

Figure 8.7 (a) A cell is an elementary hexahedral lattice of eight voxels. (b) Themarching cubes algorithm assigns each cell to one of the
fifteen unique cleaving configurations. Each cleaving surface consists of one or more triangles.

l is the direction to the light source and can be
assumed to be independent of r if the point source
is sufficiently distant from the surface. n(r) is the
surface normal in surface point r. kd(r) is the
material dependent diffuse reflection coefficient.
It represents the color of the surface∗ and is often
the same as the ambient light coefficient ka(r).

Perfect specular reflection or mirroring has
been explained in Chapter 6, p. 134 for ultrasound
waves. Light can be treated similarly. According
to Snell’s law, the angle of incidence θi equals the
angle of reflection θr (see Figure 6.8). However,
most shiny objects are imperfect reflectors because
their surface is not perfectly smooth. Their spec-
ular reflection is visible as a highlight observable
within a small angle around the direction of perfect
reflection, s. It can be approximated by

I (r) = (s(r) · v)n ks(r) Ip. (8.3)

In this equation I (r) is the intensity from spec-
ular reflection in the direction of the viewer, v;
ks(r) is the material dependent specular reflection
coefficient, and n the specular reflection exponent,
which is infinite for a perfect reflector (usually
between 1 and 200).

∗ The color of a surface is the color reflected from it when it is
illuminated by white light.

The effect of ambient light and multiple point
sourcesm can be approximated by adding the indi-
vidual contributions, expressed by Eqs. (8.1), (8.2)
and (8.3). Taking into account that the intensi-
ties and reflection coefficients for light spectra can
depend on the wavelength λ, yields

Iλ(r) = ka,λ(r) Ia,λ +
m∑

i=1

(
(li · n(r))kd,λ(r)

+ (si(r) · v)nks,λ(r)
)
Ipi ,λ. (8.4)

• The specular reflection coefficient, ks,λ(r), is
often independent of the wavelength λ and the
position r, that is, ks,λ(r) = ks. This means that
the color of the reflected light is the same as that
of the incident light and that the specularity of
the object is constant along its surface.

• The ambient reflection coefficient, ka,λ(r), is
often the same as the diffuse reflection coeffi-
cient, kd,λ(r).

• The diffuse reflection coefficient, kd,λ(r), is
position dependent, but independent of the
light direction and view direction. Conse-
quently, it can be precalculated. In computer
graphics it is still common practice to store
kd,λ(r) as a color image, called texture map.
Each surface point r can then be transformed
or mapped onto the texture map to retrieve its
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Figure 8.8 Cylindrical texture map of a face. It can be used to color
the 3D facial tissue segmented from a volumetric CT scan (see
Figure 8.32). By folding the texture map into a cylinder that
surrounds the 3D surface, each surface point can be projected or
mapped onto the texture map, this way defining the
correspondence between both coordinate systems.

intrinsic color. Figures 8.8 and 8.9 show two
examples.

• Transparency Transparent objects transmit part of
the incident light intensity, expressed by a trans-
mission coefficient kt, which varies from 0 for a
completely opaque material to 1 for a totally trans-
parent material. Assume a nonrefractive transpar-
ent surface with transmission coefficient kt1,λ and
a second surface behind it in the view direction.
The total reflected intensity in the direction of the
viewer can then be written as

Iλ(r) = I1,λ(r)+ kt1,λ(r) I2,λ(r), (8.5)

where I1,λ(r) and I2,λ(r) are obtainedwithEq. (8.4).
If several transparent objects lie behind each other,
Eq. (8.4) can be used recursively fromback to front.

• Depth cueing Distant objects have a lower intensity
thanobjects closer to the viewerdue to atmospheric
attenuation. If the distance z to the viewer varies

Figure 8.9 Textured diffusion tensor
image (DTI). The hue represents the main
direction and the brightness the fractional
anisotropy of the diffusion (see Chapter 4,
p. 89). In this example a tumor is
surrounded by the fibers of the motor
cortex. The mapping between the 3D
texture map and 3D rendered surface is
trivial because both use the same 3D
coordinate system. Courtesy of Professor
S. Sunaert, Department of Radiology.
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in the scene from zmin, i.e., closest to the viewer,
to zmax, i.e., most distant from the viewer, and
due to atmospheric conditions the intensity can
decrease from I at zmin to Ilow at zmax, the updated,
attenuated intensity Iatt(z) can be approximated by

Iatt(z)= zmax − z

zmax − zmin
I+ z − zmin

zmax − zmin
Ilow. (8.6)

Shading
Triangular and other polygonal meshes are usually
approximations of curved surfaces. Shading each
planar surface emphasizes this polygonal appearance
due to brightness discontinuities at the boundaries
between adjacent facets. Gouraud shading and Phong
shading, named after their inventors, are two popu-
lar methods used to obtain smoother transitions. In
both methods the vertex normals are first calculated
by averaging the normals of the polygons that share
this vertex.

Gouraud shading then calculates the reflected
intensity in each vertex by using for example Eq. (8.4).
Next, the vertex intensities are interpolated to calcu-
late the intensities in between.

Phong shading on the other hand first calculates
the surface normals in each point by interpolating
the vertex normals. Using these normals the reflected
intensities are subsequently calculated. Although
Phong shading is computationally more expensive
than Gouraud shading, it yields superior images.

Volume rendering
Surface rendering requires segmentation, which is typ-
ically not obvious. A straightforward alternative to
overcome this problem is to think of voxels as being
separate objectswith simply a color and a transparency

(or opacity). Besides its position a voxel obviously has
no other geometric properties and neither is a texture
map needed. Theoretically, each voxel can then be
visualized with a similar illumination model as used
for surface rendering.

Volume rendering looks quite attractive for visu-
alizing 3D image data. This is true if the 3D matrix
is sparse and naturally largely transparent. If the 3D
matrix is highly populated with meaningful informa-
tion, it has to be decided which voxels will be made
invisible by assigning them a high transparency. Actu-
ally this comes down again to image segmentation.

One of the early, but clinically still relevant, exam-
ples of volume rendering is the maximum intensity
projection (MIP), already explained in Chapter 4, p. 87.
For each projection line only the voxel with the max-
imum gray value (typically the brightest) along that
line is visualized. The other voxels along the projec-
tion line are considered to be totally transparent. This
method is well suited to visualizing sparse structures,
such as blood vessels inMRA(Figure 8.10), pulmonary
bronchi in CT and hot spots in PET. A disadvantage is
that keeping only the voxels with the maximum inten-
sity along each projection line can be considered as a
heuristic inaccurateway of segmentation. The remain-
ing voxels do not necessarily belong to meaningful
objects and, vice versa, meaningful voxels may have
become invisible. Another, minor disadvantage is that
in a pure MIP 3D perception can only be obtained by
motion or stereoscopy. A single static MIP does not
contain any depth cue.

Instead of keeping the brightest voxel along each
projection line, it is of course also possible to keep the
darkest voxel. This visualization mode, called mini-
mum intensity projection (mIP), is less popular but does
have some clinical relevance in cases of hyperintense
structures, such as lung emphysema.

(a) (b)

Figure 8.10 Maximum intensity projection (MIP) ((a) sagittal and (b) frontal view) of the cerebral blood vessels obtained by 3D
time-of-flight MRA.
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Today computers have become fast enough to cal-
culatemore natural 3D representationswith improved
depth perception. The current methods can be clas-
sified into two classes. The first category considers
voxels with identical gray values as identical objects.
Segmentation is not needed here, which is one of the
advantages of this kind of volume rendering as com-
pared to surface rendering. However, the applications
are rather limited. The second category ismore power-
ful but needs segmented objects again. Both methods
are now discussed in detail.

Position independent transfer functions
Thismethodassigns anopacity anda color to eachgray
value using gray value transformations (Figure 8.11).
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Figure 8.11
Gray value
transformations for
opacity and color.

An advantage of this kind of volume rendering is that
it does not necessarily require a segmentation as was
the case for surface rendering. A disadvantage is that
the handling of the transformation functions requires
a high degree of interaction. Note that three trans-
formation curves are needed for color, i.e., for red,
green and blue. In Chapter 1, p. 1 we have seen that it
is also possible to use hue, saturation and brightness
(Figure 1.2) instead of red, green and blue.

Figures 8.12 and 8.13 show a practical exam-
ple of volume rendering of a 3D cardiac ultrasound
image using gray value transformations. Ultrasound
imaging typically yields sparse matrices because of
the high reflection at the boundaries of neighboring
structures. Consequently the 3D images are naturally
highly transparent, which improves the perception of
deep structures. A similar result can be simulated in
images coming from other modalities by calculating
the spatial gradient, yielding high voxel values at the
boundaries and low values in the majority of the vox-
els. Instead of using pure gradient images, a weighted
mixture of the original gray value data and gradient
information is often used to enhance edges and silhou-
ettes. Edge enhancement can be obtained, for example,
by simply using the magnitude of the gradient, that is,

I ′(r) = I (r)+ γ ‖∇(r)‖, (8.7)

where I (r) is the original gray value, I ′(r) the enhanced
gray value in voxel r, and γ a user defined pos-
itive value. Alternatives for edge enhancement are
for example unsharp masking and multiscale image
enhancement (see Chapter 1). Instead of enhancing
all the edges, only the silhouette can be enhanced, giv-
ing the object a glass-like effect. This can be achieved
by emphasizing only the object boundaries whose
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Figure 8.12 Volume rendering of 3D cardiac ultrasound image using different opacity transformations. (Courtesy of the Department of
Cardiology.)
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Figure 8.13 Volume rendering of 3D cardiac ultrasound image. The images were obtained with different brightness transformations.
(Courtesy of the Department of Cardiology.)

gradient points away from the view direction, for
example

I ′(r) = I (r)+ γ ‖∇(r)× v‖, (8.8)

v being the normalized direction towards the viewer.
The above transfer functions yield a shading effect

of ambient light, which reflects equally in all direc-
tions. 3D perception in volume rendering is often
improved by adding illumination models that are
similar to those used in surface rendering. The sur-
face normal is then approximated by calculating the
normalized gradient. However, if transfer functions
are used in combination with additional illumination
models, the interpretation of colors and gray values
may become confusing. Indeed, the transfer functions
replace each original gray value by an opacity and
color, this way giving opacities and colors a specific
meaning related to the meaning of the gray values.
By adding illumination models, however, the opacity
and/or color are modified and no longer depend only
on the transfer functions but also on the other ren-
dering modes. Improving the 3D perception should
therefore be applied with caution andmust not be per-
formed at the cost of diagnostic certainty. Figure 8.26
in the next section shows an example. This problem
can be avoided if clearly distinguishable colors are
assigned to the different illumination contributions.
For example, in Figure 8.14 the transfer functions use
only the brightness scale while the depth is encoded by
the hue and saturation. Artificial colors are employed
for depth cueing. The color I (i.e., hue and satura-
tion) changes gradually with depth from one color
I (zmin) = I1 to another I (zmax) = I2, that is,

I (z) = zmax − z

zmax − zmin
I1 + z − zmin

zmax − zmin
I2. (8.9)

Highlighting surface orientation, obtained by diffuse
illumination, can also be obtained by color encoding
as follows

I (r) = 1
2

(
1+ l · ∇(r)

‖∇(r)‖
)

I1 + 1
2

(
1− l · ∇(r)

‖∇(r)‖
)

I2,

(8.10)

where∇(r) is the spatial gradient in voxel r and l is the
normalized direction to the light source.

Thresholding
Figure 8.15 shows a special case of volume rendering
using gray value transformations. The gray value scale
is subdivided intodifferent intervals, each correspond-
ing to a different structure. Each interval is subject
to different gray value transformations for opacity
and color, which can be specified independently by
the user. Of course, this approach is useful only if
the considered structures can be segmented by sim-
ple thresholding which is rarely the case. Figure 8.16
shows an example in which the bony structures and
the blood vessels, injected with contrast dye, can be
selected independently to assign them a different color
and opacity. This is a clinically useful application for
the assessment of the carotid arteries in case of a stroke,
as shown by the calcified stenosis in Figure 8.17.

Note however that this method assumes that dif-
ferent tissues have separated gray level intervals, which
is not actually the case for bone and blood filled with
contrast dye. Their gray value ranges in CT images
strongly overlap. To overcome this problem, the CT
numbers of bone are inverted (see Figure 8.18), which
requires a prior segmentation of bone and contrast
filled blood vessels. Instead of applying this somewhat
unnatural operation the problem could also be solved
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(a)

(b)

Figure 8.14 Volume rendering of 3D
cardiac ultrasound image with color used
to improve the depth impression. This is
possible because the gray value
transformation itself does not employ
color. (a) Artificial depth cueing is
obtained by changing color with depth.
(b) Stereoscopic red-green image.
(Courtesy of the Department of
Cardiology.)

gray value

opacity

object 1

object 2

object 3

Figure 8.15 The gray value scale is segmented into different
intervals, each of which is assumed to correspond to a different
structure. Each interval can then independently be assigned an
opacity and color transformation.

if position dependent gray value transformations were
used. This method is discussed in the next section.

Volume rendering of the blood vessels, using the
method explained in this section, clearly yields a more
realistic appearance than a maximum intensity pro-
jection (MIP) (see Figure 8.19). A static MIP does
not contain any depth cue. Nevertheless the MIP has
proved its usefulness in clinical practice. Figures 8.20
and 8.21 show two examples of its clinical relevance.

An interesting feature of volume rendering is that
the image segmentation does not have to be a binary
decision process. In Chapter 7, p. 168 we have already
seen that a posteriori probabilities can be represented
as gray values, yielding a so-called fuzzy segmentation.

201



Chapter 8: Visualization for diagnosis and therapy

Figure 8.16 Volume rendering of subtraction CT angiography (CTA). Bone and blood vessels can be treated independently. In the left image
the bone is removed, while it is shown as a transparent object in the right image. Due to nonlinear patient movement between postcontrast
and precontrast imaging, the subtraction is not straightforward. To solve this problem, nonrigid image registration was applied.

Figure 8.17 Assessment of the carotid arteries in case of a stroke.
By adding the bony structures to the image of the blood vessels, it
becomes apparent that the stenosis is due to a calcified plaque.

These probabilities can then be rendered by an opac-
ity and color. A fuzzy segmentation is a way to cope
with the unsharp boundaries due to the limited spatial
resolution of the acquisition system. Because of these

blood

bone bone

CT numbers0

Opacity

Figure 8.18 The gray values of bone are inverted. This way the
gray value ranges of bone and blood filled with contrast dye do not
overlap anymore.

unsharp edges a binary segmentation has difficulties
locating the exact position of the object surface. This
may for example yield holes in a 3D rendering of a
CT image of the thin nasal bones. Figure 8.22 shows
how volume rendering can cope with this problem. In
the CT slice the red pixels are potential boundary pix-
els of the skull. Their gray values are smaller than those
of the white skull pixels because of the unsharpness of
the point spread function of the acquisition system.
The smaller the gray value the less likely that bone is
contained within a voxel. The opacity transformation
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(a) (b)

Figure 8.19 CTA with aneurysm. (a) A static maximum intensity projection (MIP) image does not contain any depth information. (b) 3D
rendering using depth cues.

(a) (b)

Figure 8.20 Aneurysm in CTA. (a) In the MIP the aneurysm remains visible from all viewing directions. (b) The right image offers depth
perception, but the aneurysm disappears behind the left hemisphere.

curve in Figure 8.22 shows how the lower gray values
in the red area are assigned a smaller opacity. The less
likely it is that bone is contained within a voxel, the
more transparently the voxel is rendered, giving the
outer bone layer its translucent smooth appearance
(Figure 8.23).

Position dependent transfer functions
A disadvantage of the method described in the pre-
vious section is that different objects within the
same gray value range are treated identically. Posi-
tion dependent rendering solves this problem. This
is illustrated in Figures 8.24 and 8.25, which show a
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(a)

(b)

(c)

Figure 8.21 Cerebral blood vessels obtained with time-of-flight MRA. (a) The MIP shows smaller blood vessels than the images obtained by
more realistic rendering (b,c). The reason is that in (b,c) transfer functions are used with a global threshold between background and visible
structures. Decreasing this segmentation threshold as in (c), does not reveal the smallest vessels because other brain tissue shows up and
prevents the perception of less intense blood vessels.

gray values (HU)

opacity

edge
 pixels

Figure 8.22 CT slice of segmented skull.
The red pixels are considered to be edge
pixels and have a lower gray value due to
the limited spatial resolution. The opacity
transformation curve makes these voxels
partially transparent.
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probabilistic brain atlas. In the 3D image different col-
ors are assigned to different brain structures and the
opacity of a voxel is linearly proportional to the classifi-
cation probability. The 3D scene is exposed to ambient
light and no other illumination models were used.

Additional illumination models like point light
sources and specularity must be used carefully and

Figure 8.23 3D rendered skull showing the partially transparent
voxels at the boundary in red color. Note that the fiducial markers
(see Figure 8.37 below), used for stereotactic surgery, are also visible
because their gray values lie in the same interval as the bony edge
pixels.

should notmislead the diagnosis. Figure 8.26 shows an
example of how different the 3D brain atlas imagemay
look when applying different rendering modes. The
color and brightness depend not only on the classifi-
cation probability but also on the lighting and viewing
conditions. Note that, even if only ambient light is
used, the interpretation of color and brightness may
not be straightforward because each view is a projec-
tion image in which color and brightness values are
integrated along the projection lines.

Virtual reality
When rendering a 3D scene as explained above,
the depth impression can be obtained from several
contributing factors, such as perspective projection,
hidden-surface removal, directional light with diffuse
and specular reflection and shadowing, dimming of
distant objects, and surface texturing using a repet-
itive pattern that decreases with depth. This three-
dimensional perception canbe further improvedusing
additional depth cues, such as stereopsis (stereo
vision), object motion and head movement parallax.
Figure 8.27 shows one of the earliest integrated stereo-
scopic images of the cerebral blood vessels obtained
with traditional X-ray angiography, a tumor seg-
mented from CT images, and a simulated biopsy
needle. The stereoscopic depth perception is obtained
with red-green glasses. Several alternatives to red-
green images exist, such as LCD shutter glasses and
displays with filter arrays (see Figure 8.28).

Object motion can be used if a true 3D image is
available, as obtained with MRA. A 3D impression is

Figure 8.24 Statistical atlas. 2D sagittal, coronal and axial probabilistic atlas slices are shown in which the pixel color represents the most
likely brain structure and the pixel brightness represents the corresponding probability. This atlas was used to produce the 3D images shown
in Figure 8.25.
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(a) (b)

(c) (d)

Figure 8.25 (a) 3D rendering of the probabilistic brain atlas shown in Figure 8.24. Different colors are assigned to different brain structures
and the opacity of a voxel is linearly proportional to its classification probability. (b,c,d) The opacity can also be used to hide external structures,
so that central brain structures can be perceived more easily.

obtained by calculating views from consecutive ori-
entations around the brain and displaying them as
subsequent frames of a digital video.

Combining the principles of stereoscopy, object
motion, and head movement parallax yields the most
realistic 3D impression.

Figure 8.29 illustrates one of the early realizations
of these principles. Head movement parallax can be

obtained by attaching a sensor to the viewer in order
to measure the position and rotation of the head and
to show the expected view of the 3D scene. Today, this
immersive visualization technique is known as virtual
reality and the whole system is miniaturized into a
head mounted display (HMD), a helmet with two small
integrated screens in front of the eyes. However, this
system is not commonly used in clinical routine.
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Ambient light + diffuse reflection + specular reflection

+ point light source + point light source + specular reflection

Figure 8.26 Different 3D images of the same
probabilistic brain atlas using ambient light
and a point light source with diffuse and
specular reflection as additional illumination
models. Because the images are projection
images the meaning of color and brightness
is not obvious in static views. Adding depth
cues enhances the 3D perception but may
further complicate the diagnosis.

Figure 8.27 Angiogram of the cerebral blood vessels, CT view of a
tumor, and simulated biopsy trajectory integrated into one
stereoscopic red-green image. Its 3D impression can be obtained
with red-green glasses.

User interaction
In the early days user interaction was limited to the
calculation of multiplanar reformatted images (MPR)
(see p. 192) of the brain to plan a probe trajectory
for stereotactic neurosurgery. An accurate analysis of
the complete trajectory in the images, for example,
is clinically important in order not to damage any
critical structures. For this reason, it is quite useful
to reslice the image data along a plane, defined by
the surgeon, that contains the probe trajectory (see
Figure 8.30). Today, planning systems for bone inter-
ventions include tools for cutting curved surfaces and
for bone repositioning. An example of cutting and
repositioning during the planning of a maxillofacial
intervention is given in Figure 8.31. Figure 8.32 shows
a simulationof the corresponding changes in facial soft
tissue. Figure 8.33 illustrates collision detectionduring
the planning of oral implants. Cutting, repositioning
and collision detection are quite easy to implement if
surface rendering is used. This kind of interaction is
less obvious in combination with volume rendering.

Navigation through the virtual 3D scene is still
another type of user interaction, similar to what hap-
pens in a flight simulator. Well-known applications
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Backlight

(b)(a)

Parallax barrier

Figure 8.28 (a) Stereoscopic LCD
monitor (Sharp Electronics Corporation)
with filter arrays. (b) The backlight is
covered with a so-called parallax barrier,
i.e., a vertical grid filter that prevents the
perception of odd and even pixel
columns by the left and right eye
respectively.

Figure 8.29 True 3D visualization obtained with stereoscopic
glasses and a 3D head sensor to evoke head movement parallax. A
3D cursor allows the viewer to navigate the probe naturally through
the blood vessel tree. (Development of Lab. Medical Image
Computing, 1989).

Figure 8.30 MPR that includes the target and the simulated biopsy
needle. The access to the lesion is a straight trajectory.

are virtual bronchoscopy and virtual colonoscopy
(see Figure 8.34). The feeling of realism can be
even more enhanced by tactile and audio feedback.
Figure 8.35 shows four examples of training simulators
for practicing medical procedures.

Intraoperative navigation
The transfer of the image-based planning to the oper-
ating theater basically consists of establishing and
maintaining the geometrical correspondence between
the preoperative images and planning data on the
one hand and the patient and instruments during the
course of the intervention on the other hand. Such a
relationship can be established and maintained by a
point sensing device, also called a navigation system.
This way the actual position of the surgical instru-
ments can be shown in the images together with the
preoperatively planned data (Figure 8.36).

The operating principle is based on point match-
ing. In theory, it is sufficient to use three noncollinear
reference points, either anatomical landmarks or
artificial markers, typically attached to the patient’s
skin. The position of any other point can then be
defined uniquely with respect to these three points
(Figure 8.37(a)). The assumption is that the coordi-
nates of these points can be accurately defined both
in the preoperative images and in the operating room.
In practice, however, artificial markers are glued onto
the skin (Figure 8.37(b)) and, hence, they are sub-
ject to small shifts. To reduce the resulting matching
error, more than three reference points are usually
used. Similarly, the accuracy of localizing anatomical
reference points is limited and the use of more than
three anatomical markers is recommended.

The transfer problem can then be solved as follows.
The coordinates of at least three fiducialmarkers ui are
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Figure 8.31 Cutting and repositioning
during maxillofacial surgery. The maxillar
and mandibular bones are cut and
repositioned.

Figure 8.32 Soft tissue simulation during
bone repositioning. Several 2D photos are
matched to the 3D soft tissue surface of the
CT scan and this way compiled into an
integrated 3D photo of the face. The
system is able to simulate the effect of the
bone replacements on the facial soft tissue.

Figure 8.33 Example of collision
detection during oral implant planning.
Oral implants are small titanium screws that
are inserted in the maxilla and/or mandible.
Afterwards, a personalized prosthesis is
fixed onto these screws. A cylindrical safety
area around each trajectory, initially
colored light blue (left), changes to dark
blue (right) if both areas overlap.

known in the image space I . These markers must be
visible in the surgery space S .
• Find the 3D coordinates of the markers in the

surgery space (i.e., in S).
• Calculate the geometric transformation F : S → I

based on the coordinates of the markers in both
spaces.

Finding the coordinates in the surgery space
An intraoperative 3D position-sensing device
(Figure 8.38) with inherent coordinate space S can be
used to measure the position of any point. When this
system is used, the instrumentation (see Figure 8.39)
must be equipped with LEDs (light emitting diodes)
or with highly reflective markers whose 3D position is 209
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Figure 8.34 Virtual bronchoscopy
showing a fistula (left) and the result of a
lung transplant to check the sutures
(right).

(a) (b)

(c) (d)

Figure 8.35 Four different simulation
systems to practice procedures with
tactile and audio feedback: (a) needle stick
procedures, (b) cardiac pacing, cardiac
catheterization and interventional
radiological techniques, (c) knot tying and
suturing, and (d) laparoscopic
cholecystectomy.

measured by cameras. The coordinates of the fiducial
markers are defined by touching them with a pointer
that is also equipped with such LEDs or reflective
markers. Figure 8.40 shows a schematic representation
of the measuring principle known as triangulation.
Given the projections of a 3D point in two camera
images, its 3D coordinates can be obtained from the
intersection of the projection rays. Assume that both
cameras C1 and C2 have identical internal parameters
and are separated by a distance b along the x-axis of
S . Assume further that C1 coincides with the origin
and that both cameras have optical axes parallel to the
z-axis and have coplanar image planes z = f . The
coordinates (x , y , z) of a LED or reflective marker are
then calculated as the intersection of the projection

lines through (u1, v1) and (u2, v2). These two rays can
be represented by (su1, sv1, sf ) and (b + ru2, rv2, rf ).
They intersect if s = r = b/(u1 − u2). Hence, the
coordinates (x , y , z) are given by

x = b

u1 − u2
u1

y = b

u1 − u2
v1

z = b

u1 − u2
f .

(8.11)

Note that it is assumed that the fiducial markers
remain in place as soon as their coordinates in the
surgery spaceS have beenmeasured. In neurosurgery,
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Figure 8.36 Navigation through CT
images during the preparation of the
placement of an eye prosthesis. The red
cross lines show the position of one of
the instruments. Anatomical markers are
used to transfer the preoperative images
to the coordinate space of the navigation
system in the operating room. Courtesy
of Professor J. Schoenaers, Department of
Stomatology and Maxillofacial Surgery

(a) (b)

Figure 8.37 (a) Any point P can uniquely
be defined with respect to three
noncollinear reference points R1, R2, and
R3. (b) Noninvasive skin markers are
attached to the patient prior to
preoperative imaging (Reprinted with
permission of Radionics.) They are visible
in the images and remain in place until
the surgery is finished.

for example, the head is still immobilized on the
operating table using a so-called Mayfield clamp (see
Figure 8.38). For other applications this conditionusu-
ally does not hold. One way to solve this problem is to
attach a LED ormarker assembly, called a dynamic ref-
erence frame, to the moving structure (see for example
Figure 8.41), and track it in the same way the surgi-
cal instrument is tracked (see Figure 8.39). Obviously,
this trackingmethod is constrained to solid tissue such
as bone, which forms one rigid structure with the
attached markers. Registration and tracking of soft
tissue is a much more difficult problem for which
intraoperative imaging is the most elegant solution.

Calculating the geometric transformation
Once the coordinates of themarkers in both the image
space I and the surgery space S are known, the geo-
metric transformation F : S → I can be calculated.
Let ui , i = 1, . . . , n, be the coordinates of the markers
in I , and vi , i = 1, . . . , n, the corresponding coor-
dinates in S . The objective is to find F such that
ui = F(vi), i = 1, . . . , n. This problem is known
as point matching. As long as there is no geometric
deformation between the preoperative and the intra-
operative positions of the markers, F is an isometry.
In brain surgery, it is therefore assumed that the skin
and attached markers do not move with respect to 211
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cameras

skin markers

Light emitting diodes

Figure 8.38 Optical navigation system (with permission of Philips
Healthcare.). LEDs are attached to the probe operated by the
surgeon.

the brain. Because this is usually not the case in most
applications, more than three markers are used, this
way improving the accuracy of F .

Because F is an isometry, it can be decomposed
into a rotation followed by a translation. The problem
then consists of finding a 3× 3 rotation matrix R and
3× 1 translation matrix l such that

ui = Rvi + l , i = 1, . . . , n. (8.12)

Let uµ and vµ be the centers of mass of the set ui and
the set vi , respectively. Consequently

l = uµ − Rvµ. (8.13)

Defining

u′i = ui − uµ

v ′i = vi − vµ,
(8.14)

it follows that R must satisfy

u′i = Rv ′i , i = 1, . . . , n. (8.15)

The matrix R is a linear transformation and can
be determined using numerical linear algebra – for
example by “the orthogonal Procrustes problem” [34].

A useful extension of point matching can be
obtained with the iterative closest point (ICP) algo-
rithm [35]. It requires a cloud of points, in both the
image space and the surgery space, but the one-to-
one correspondence between the points is no longer
needed. The only restriction is that they belong to
the same anatomical surface in both the image and
the surgery space. In practice, the skin is segmented
in CT or MR images by simple thresholding, yield-
ing a large number nI of image points along the
skin surface. In the surgery space, nS points of the
skin surface are measured with a 3D position-sensing
device as described above. The major advantage of
this transfer method, also known as surface matching,
is that it does not require fiducial markers anymore.
In spine surgery, for example, it is clinically not feasi-
ble to attach artificial markers to the spine before the
intervention.

Typically, nS � nI (i.e., a few tens against several
thousands). Starting from a sufficiently good estimate
of the transformation, the principle of the ICP algo-
rithm is to select iteratively a subset of nS points in
I and to apply point matching between I and S .
The subset is chosen as the set of nS points in I
that are closest to points in S . Next, the geometric
transformation F is calculated and applied, yielding
a new position of I with respect to S . This proce-
dure of selecting nS points in I and applying point
matching is repeated until it converges according to
a certain stop criterion (e.g., root-mean-square error
less than a predefined value). A frequent problem
with the ICP approach is that it may stick in a local
minimum.

Instead of using a navigation system, other pro-
cedures have been developed during recent decades
to transfer the images and planning data to the oper-
ating space. In principle they suffice to perform the
intervention exactly as planned. However, navigation
with the instruments through the images is then not
feasible.
• In stereotactic neurosurgery it has been common

practice to use a reference frame fixed onto the

[34]G.Golub andC. vanLoan.Matrix Computations. London: Johns
Hopkins University Press Ltd., third edition, 1996.
[35] P. J. Besl and N. D. McKay. A method for registration of
3-d shapes. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 14(2): 239–256, 1992.
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(a) (b)

Figure 8.39 The instrumentation used
with an optical system is equipped with
LEDs (a) or highly reflective markers (b).
(Courtesy of Medtronic.) Specific LED or
marker assemblies must be designed for
specific instruments. The instrument
holder on the left is supported by a
semi-flexible arm that can be immobilized
when a proper alignment is obtained.

b
f

f
(u1,v1)

(u2,v2)

z m

y
x

C1

C2

Figure 8.40 Camera C1, i = 1, 2, projects the LED (or marker) m
onto (ui , vi) in its image plane. Knowing the geometry and the
intrinsics of the cameras (b and f in this simplified model), the
coordinates of m can be calculated from (ui , vi).

patient’s head (see Figure 8.1). This frame contains
markers that are visible in the preoperative images.
This way the images are geometrically related to
the frame coordinate system. The frame contains
a surgical instrument holder with known frame
coordinates. Its position is adjustable to align it
with the planned trajectory.

• Several attempts have been made to get rid of the
stereotactic frame. Screwing such a frame into the
skull is uncomfortable for the patient and incon-
venient for the surgeon. A framemay even prevent
deep lesions from being reached. Instead, a syn-
thetic nontoxic mold or template can be fabricated
(e.g., by stereolithography) that uniquely fits onto

Figure 8.41 A dynamic reference frame, containing LEDs, is
attached to the patient’s head during an eye prosthesis placement
(see also Figure 8.36). This way the moving head is dynamically
tracked and the coordinates of the fiducial markers in the surgery
space S are continuously updated.

the bone and contains precise information from
the planning, such as narrow cylindrical holes to
guide the surgical instrument. Figure 8.42 shows
the use of a template for oral implant surgery.
A drawback of a template is the inflexibility it
causes during surgery because the trajectories are
irrevocably fixed.

• The spatial relationship between the preoperative
image space and the operating space can also be
obtained by matching preoperative with intraop-
erative images. Methods for rigid 3D image fusion
have already been discussed in Chapter 7, p. 173.
Some cases of matching 3D preoperative CT or
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8.42 Oral rehabilitation based on implants. (a) 3D planning of oral implants to be screwed into the jawbone. A safety zone is drawn
around the implant to aid the surgeon in preventing problems such as bone fenestration and nerve damage. The yellow line represents the
mandibular canal of the inferior alveolar nerve. (b) A removable denture is also scanned and integrated into the 3D images. (c, d) The surgeon
uses this information to make sure that the oral implants can be covered aesthetically by the teeth of the final fixed prosthesis. (e) Using the
planning data, a surgical template is digitally designed. It fits on the soft tissues and is secured with anchor pins. (f) This patient specific design
is manufactured, and (g) temporarily fixed to the gum where it serves as a drill guide. (h) After insertion of the implants, (i) the final prosthesis is
fixed. Thanks to digital planning, minimally invasive surgery and immediate restoration is possible. This procedure decreases the failure rate
and enhances the patient comfort significantly. (Design and realization by Nobel Biocare.)

MR images with 2D intraoperative radiographs or
ultrasound images have also been reported. This
kind of 3D-to-2D matching is particularly useful
as a means for augmented reality, discussed below
(p. 216).

Augmented reality
An augmented reality (AR) system generates a com-
posite view that combines a real and a virtual scene.
The virtual scene, generated by the computer, aug-
ments the real scene with additional image data. In the214
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(a) (b)

Figure 8.43 Augmented reality image
showing an intraoperative video image
together with (a) the planned craniotomy
and (b) the underlying brain cortex
obtained from preoperative images.
(Reprinted from [36], with permission of
Professor A. Colchester, Kent Institute of
Medicine and Health Sciences, UK.)

(a) (b)

Figure 8.44 (a) A biopsy needle is directed toward a target in a breast under ultrasound image guidance. The physician holds the biopsy
needle in one hand and the ultrasound probe in the other and wears a HMD with two small integrated video screens. (b) The AR image
perceived in the HMD shows an integrated view of the operating field and the ultrasound image at its correct spatial position. (Reprinted with
permission of Professor H. Fuchs, University of North Carolina, Chapel Hill, NC.)

context of computer assisted surgery, the real scene
is typically an intraoperative 2D video or fluoroscopic
sequence, while the virtual scene is obtained from pre-
operative images, planning and measurements, and is
projected onto the intraoperative image.

Figure 8.43 is an example of how intraoperative
video images can be integrated with preoperative
images and planning data into a single image. Instead
of projecting this integrated image on a video screen,
it can also be represented in a head mounted dis-
play (HMD), which consists of a helmet with two
small screens in front of the eyes. The video images

can be abandoned if the HMD has transparent dis-
plays. In this case, the surgeon has a real image of
the patient together with preoperative images, plan-
ning data and possibly other intraoperative images
(e.g., ultrasound images, see Figure 8.44). Note that,
in order to keep a consistent integrated image, the

[36] A. C. F. Colchester, J. Zhao, K. S. Holton-Tainter, C. J. Henri,
N. Maitland, P. T. E. Roberts, C. G. Harris, and R. J. Evans. Devel-
opment and preliminary evaluation of VISLAN, a surgical planning
and guidance system using intra-operative video imaging. Medical
Image Analysis, 1: 73–90, 1996.
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Figure 8.45 To assist the
electrophysiologist during catheter
thermoablation of cardiac arrhythmias, a
3D model of the heart is constructed
from preoperative CT or MR data. The
model is fused with intraoperative
fluoroscopic images, such that catheter
measurements acquired during the
intervention can be mapped onto the
model. This allows for 3D visualization of
the electrical pathways of the heart,
which greatly facilitates the correct
interpretation of all available
electro-anatomical data.

see-through HMD needs to be tracked when the sur-
geon’s head moves. Head mounted displays are not
widely used yet. The question of whether a see-
through or video solution should be preferred still
remains to be answered. See-through is more natu-
ral but has the disadvantage that image slices are more
difficult to perceive while looking at the brightly lit
operating field.

Another example is electro-anatomical mapping
for radiofrequency (RF) catheter ablation to treat
cardiac arrhythmias (Figure 8.45). Instead of video
images, fluoroscopic images are augmented with a
3D surface rendered image of one or more heart
chambers. These images are obtained by segmenta-
tion of MRI or CT images. Next, this 3D image
is projected onto the 2D fluoroscopic images used
during treatment. In these fluoroscopic images, the
catheters are visible. At several places along the
catheters the time delays of generated pulses are
measured. These measured time delays are backpro-
jected onto the 3D surface and represented in color.
Based on the obtained color pattern the cardiolo-
gist can then identify the arrythmia and perform an
ablation.

A basic question in augmented reality is to trans-
fer a point from the 3D preoperative image space I
to the related 3D camera space C and correspond-
ing 2D intraoperative image space V . Assume that
the camera can be modeled as a perspective pinhole

camerawith its optical center located at c (Figure 8.46).
The geometric relation between I and C can then
be expressed by a rotation R and a translation l
as in Eq. (8.12). Once the coordinates of a point
p(x , y , z) in C are known, its projection (xp , yp , f )

in image V , i.e., in the plane z = f , can eas-
ily be calculated using the following equations (see
Figure 8.46):

x

xp
= z

f

y

yp
= z

f
.

(8.16)

This projection can be written in matrix form as
follows:

xp

yp

1


 ∼


f 0 0
0 f 0
0 0 1




1 0 0 0
0 1 0 0
0 0 1 0






x
y
z
1


 . (8.17)

Next, a computer image with coordinates (u, v) is
acquired from the projection image in the plane z = f .
This readout process is subject to a scaling, shear and
translation, which can be represented as a 3×3matrix
(see Eq. (1.8)). Hence,


u

v
1


 =


sx kx u0

ky sy v0
0 0 1




xp

yp

1


 . (8.18)
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p (x, y, z)

(u0, y0)
(u, y)

y

Figure 8.46 Schematic representation of the 3D preoperative
image space I , the 3D camera space C, and the 2D intraoperative
image space V . The camera is centered at c and projects a point
p(x , y , z) onto (u, v) in the 2D intraoperative image.

Combining Eq. (8.18) and Eq. (8.17) yields

u

v
1


 ∼


sx kx u0

ky sy v0
0 0 1




·

f 0 0
0 f 0
0 0 1




1 0 0 0
0 1 0 0
0 0 1 0






x
y
z
1


 .

(8.19)

For technical reasons that have to do with the camera
readout mechanism, ky = 0. Multiplying the matrices
in Eq. (8.19) and substituting sx · f , sy · f and kx · f by
fx , fy and κx , respectively, yields


u

v
1


 ∼


fx κx u0 0
0 fy v0 0
0 0 1 0






x
y
z
1


 . (8.20)

The transformation matrix in Eq. (8.20) contains five
parameters. When these parameters are known, the
camera is said to be calibrated internally. The camera
is calibrated externally if the six degrees of freedom
of l and R are known. Together, the whole cali-
bration process thus requires eleven parameters to
be defined. This can be done if the patient’s body
contains sufficient marker points with known pre-
operative and intraoperative image coordinates. Each
such point yields two equations. This means that at
least six points are needed to calculate the value of

Figure 8.47
Object for internal
calibration. It
contains many
markers and its
geometry is
accurately known. It
can be used for the
internal calibration
of the video or
fluoroscopic
equipment.

the eleven parameters. In practice, many more refer-
ence points are used in order to improve the accuracy
of the solution. Because the calibration accuracy is
very sensitive to the accuracy of the coordinates of
the reference markers, an alternative procedure con-
sists of an internal calibration with a calibration object
whose geometry is accurately known (see for example
Figure 8.47). The body markers are then used for the
external calibration, i.e., the six translation and rota-
tion parameters. Hence, three such reference points
are theoretically sufficient. In practice more markers
are helpful to increase the accuracy of the external
calibration.

The intraoperative image V can be augmented not
only with preoperative images I , but also with data
obtained from a navigation system measured in the
intraoperative navigation space S .

Co-registration of S and V can be performed with
the samemethod as explained in this section by replac-
ing the 3D preoperative image space I by the 3D
intraoperative navigation space S in Figure 8.46. S
and V can also be registered indirectly by transform-
ing S to I as explained on p. 211, and I to C as
explained in this section. Figure 8.48 shows a use-
ful practical example. The intraoperative fluoroscopic
image is augmented with a graphical representation
of the surgical instrument. The virtual image of the
instrument is continuously updated to its changing
position by tracking it with an optical navigation
system. Because this procedure makes a retake of
fluoroscopic images to check the instrument’s cur-
rent position superfluous, it strongly reduces patient
irradiation. 217
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Figure 8.48 Brainlab’s VectorVision
trauma system. Intraoperative
fluoroscopic images augmented with a
virtual image of the surgical instrument.
This procedure saves X-ray irradiation to
the patient compared to the method in
which fluoroscopic images need to be
taken to visualize the changing position
of the instrument. (Courtesy of Brainlab.)

Future expectations
Improved and fast visualization goes hand in hand
with computer power. Today, personal computers
contain powerful graphics processing units (GPU),
which are very effective for highly parallel cal-
culations such as available in image fusion and
3D rendering algorithms. This will stimulate the
use of challenging visualization methods in clinical
practice.

Surface rendering has become standard practice
for image guided therapy. Volume rendering is more
computationally expensive but offers more flexibil-
ity. Its usage will increase, for both diagnostic and
therapeutic purposes.

Image-guided surgery allows the surgeon to work
more accurately. Consequently, the success rate and
the quality of the intervention can be expected to
improve. Computer assistance may even modify the
operation procedure. Certain interventions, such as in
the field of maxillofacial and oral rehabilitation, will
largely depend on 3D image based planning. Plan-
ning systems will simulate the outcome of the surgery,
including soft tissue prediction.

Not only preoperative but also intraoperative
imaging, such as CT and MRI, provides assistance to
the surgeon. It can be expected that interventional fol-
low up and adjustment based on images will receive
increasing attention in the future.
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Appendix

A Linear system theory

Introduction
This appendix summarizes a number of fundamen-
tal definitions from linear system and Fourier theory.
Only what is relevant for this book is discussed. More
information can be found in the specific textbooks on
this topic [37, 38, 39].

Signals
Definitions and examples
A signal represents the measurable change of some
quantity with respect to one or more independent
variables such as time or spatial position. Mathemat-
ically, a signal can be represented as a function. In
medical imaging, the signals are multidimensional.
Modern acquisition systems acquire three- (3D) and
even four-dimensional (4D) data. The signal can then
be written as

s = f (�r , t ) = f (x , y , z , t )

∀ x , y , z , t ∈ R and s ∈ C. (A.1)

The value of the function is usually real, but it can be
complex.

Signals have some particular properties. The most
important for this book are defined as follows.
A signal is even if

s(−x) = s(x) ∀ x ∈ R. (A.2)

A signal is odd if

s(−x) = −s(x) ∀ x ∈ R. (A.3)

[37] R. N. Bracewell. The Fourier Transform and Its Applications. New
York: McGraw-Hill, second edition, 1986.
[38] E. Oran Brigham. The Fast Fourier Transform and its Appli-
cations. Englewood Cliffs, NJ: Prentice-Hall International, first
edition, 1988.
[39] A. Oppenheim, A. Willsky, and H. Nawab. Signals and Sys-
tems. Upper Saddle River, NJ: Prentice-Hall International, second
edition, 1997.

We denote even and odd signals by se(x) and so(x),
respectively. Obviously, the product of two even sig-
nals is even, the product of two odd signals is even,
and the product of an even and an odd signal is odd.
From the definition it is also clear that

∫ +∞
−∞

se(x) dx = 2
∫ +∞
0

se(x) dx (A.4)

and
∫ +∞
−∞

so(x) dx = 0. (A.5)

Any signal can be written as the sum of an even and
an odd part:

s(x) =
[

s(x)

2
+ s(−x)

2

]
+
[

s(x)

2
− s(−x)

2

]

= se(x)+ so(x). (A.6)

A signal is periodic if

s(x + X) = s(x) ∀ x ∈ R. (A.7)

The smallest finite X that satisfies this equation is
called the period. If no such X exists, the function is
aperiodic.

A complex function can be written in Cartesian
representation. For 2D signals, we have

s(x , y) = u(x , y)+ iv(x , y), (A.8)

where u(x , y) and v(x , y) are the real part and imag-
inary part, respectively. A complex function can also
be written in polar representation as

s(x , y) = |s(x , y)| eiφ(x ,y), (A.9)

where

|s(x , y)| =
√

u2(x , y)+ v2(x , y) (A.10)
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Figure A.1 Some of the most important
signals in linear system theory. (a) The
exponentials ex (solid) and e−x (dashed).
(b) sin(x) (dashed) and cos(x) (solid). (c)
Rectangular pulse. (d) Triangular pulse. (e)
Normalized Gaussian with µ = 0. (f)
sinc(x).

is the modulus or the amplitude and

φ(x , y) = arctan
(

v(x , y)

u(x , y)

)
(A.11)

is the argument or the phase of s.
A number of signals are used extensively in system

theory and are important enough to have a unique
name. Here are some of them (see also Figure A.1).

• Exponential (Figure A.1(a))

exp(ax) = eax . (A.12)

When the constant a > 0, the exponential func-
tion increases continuouslywith increasing x (solid
line); when a < 0, it decreases toward zero with
increasing x (dashed line).

• Complex exponential or sinusoid (Figure A.1(b))

A ei(2πkx+φ)

= A (cos(2πkx + φ)+ i sin(2πkx + φ)).
(A.13)

A sinusoid is characterized by three parameters: its
modulus or amplitude A , spatial frequency k, and
phase φ. The term i is the imaginary unit; that is220
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i2 = −1. The real and imaginary parts of a sinu-
soid are, respectively, a cosine (solid line) and sine
function (dashed line).

• Unit step function (also called Heaviside’s function)

u(x − x0) =




0 for x < x0
1
2

for x = x0

1 for x > x0.

(A.14)

The constant x0 denotes the location of the step.
The function is discontinuous at x0.

• Rectangular function (Figure A.1(c))

�
( x

2L

)
=




1 for |x| < L
1
2

for |x| = L

0 for |x| > L.

(A.15)

The constant 2L is the width of the rectangle.
Because the nonzero extent of the function is finite,
the function is also called a rectangular pulse.

• Triangular function (Figure A.1(d)):

�
( x

2L

)
=


1− |x|

L
for |x| < L

0 for |x| ≥ L.
(A.16)

Note that the base of the triangular pulse is
equal to 2L.

• Normalized Gaussian (Figure A.1(e))

Gn(x) = 1√
2πσ

e−(x−µ)2/2σ 2
. (A.17)

The Gaussian is normalized (i.e., its integral for all
x is 1). The constantsµ, σ , andσ 2 are themean, the
standard deviation, and the variance, respectively.

• Sinc function (Figure A.1(f))

sinc(x) = sin(x)

x
. (A.18)

According to L’Hôpital’s rule, sinc(0) = 1.

Note that the rectangular, the triangular, the normal-
ized Gaussian, and the sinc function are all even and
aperiodic. The step function is neither even nor odd

nor periodic. To be compatible with the theory of
single-valued functions, it is common to use the mean
of the value immediately left and right of the disconti-
nuity. For example, the values at the discontinuities of
the rectangular pulse equal 1/2. Formore information,
we refer to [37, 38].

The Dirac impulse
The Dirac impulse, also called impulse function or δ-
function, is a very important function in linear system
theory. It is defined as

δ(x − x0) = 0 for x �= x0,∫ +∞
−∞

δ(x − x0) dx = 1,
(A.19)

with x0 a constant. The value of a Dirac impulse is
zero for all x except in x = x0, where it is undefined.
However, the area under the impulse is finite and is by
definition equal to 1. A Dirac impulse can be consid-
ered as the limit of a rectangular pulse of magnitude
1/ε and spatial extent ε > 0 such that the area of the
pulse is 1:

δ(x) = lim
ε→0

1
ε

�

(
x

ε

)
. (A.20)

When ε becomes smaller, the spatial extent decreases,
the amplitude increases, but the area remains the same.
Clearly, theDirac impulse is not a function in the strict
mathematical sense. Its rigorous definition is given by
the theory of generalized functions or distributions,
which is beyond the scope of this text [40].

Using Eq. (A.20), it is clear that

∫ +∞
−∞

δ(x)s(x) dx = lim
ε→0

∫ +∞
−∞

1
ε

�

(
x

ε

)
s(x) dx ,

(A.21)

and consequently the following properties hold:

• sifting let s(x) be continuous at x = x0, then

∫ +∞
−∞

s(x) δ(x − x0) dx = s(x0); (A.22)

[40] R. F. Hoskins. Generalised Functions. New York: McGraw-Hill
Book Company, 1979. 221
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• scaling

∫ +∞
−∞

A δ(x) dx = A, (A.23)

this is a special case of sifting.

The definition of the impulse function can be extended
tomoredimensions by replacing x by �r . Theproperties
are analogous; for example, the sifting property in 2D
becomes

+∞∫∫
−∞

s(�r) δ(�r − �r0) d�r = s(�r0). (A.24)

The impulse function is crucial for a thorough under-
standing of sampling, as discussed on p. 228.

Systems
Definitions and examples
A system transforms an input signal (also called exci-
tation) into an output signal (also called response).
Mathematically this can be written as

so = L{si}, (A.25)

where si and so are the input andoutput signals, respec-
tively.∗ The term L is an operator and denotes the
action of the system. A system can be complex and it
can consist of many diverse parts. In system theory,
however, it is often considered as a black box, and the
detailed behavior of the different components is irrel-
evant. As a simple example, consider an amplifier. It
consists of many electrical and electronic parts, but
its essential action is to amplify any input signal by a
certain amount, say A. Hence,

so(t ) = L{si(t )} = A si(t ). (A.26)

The process of finding amathematical relationship
between the input and the output signal is calledmod-
eling. The simplest is an algebraic relationship, as in
the example of the amplifier. More difficult are con-
tinuous dynamic relationships that involve (sets of)
differential or integral equations, or both, and discrete

∗ We also use so to represent an odd signal. However, this should
cause no confusion because the exact interpretation is clear from
the context.

dynamic relationships that involve (sets of) difference
equations.

With respect to their model, systems can be linear
or nonlinear. A system is linear if the superposition
principle holds, that is,

L{c1s1 + c2s2} = c1L{s1} + c2L{s2}
∀ c1, c2 ∈ R, (A.27)

with s1 and s2 as arbitrary signals. For example, the
amplifier introduced above is linear because

L{c1s1 + c2s2} = A(c1s1 + c2s2)

= c1A s1 + c2A s2

= c1L{s1} + c2L{s2}. (A.28)

A system is nonlinear if the superposition principle
does not hold. For example, a system whose output is
the square of the input is nonlinear because

L{c1s1 + c2s2} = (c1s1 + c2s2)
2

�= (c1s1)
2 + (c2s2)

2. (A.29)

In this text, only linear systems are dealt with.
A system is time invariant if its properties do not

change with time. Hence, if so(t ) is the response to
the excitation si(t ), so(t − T ) will be the response to
si(t − T ). Analogously, a system is shift invariant if
its properties do not change with spatial position: if
so(x) is the response to the excitation si(x), so(x −
X) will be the response to si(x − X). We will denote
linear time-invariant systems asLTI systems and linear
shift-invariant systems as LSI systems.

The response to a Dirac impulse is called the
impulse response. From Eq. (A.22) it follows that

si(x) =
∫ +∞
−∞

si(ξ) δ(x − ξ) dξ . (A.30)

Leth(x)be the impulse response of a LSI system. Based
on the superposition principle (A.27), so(x) can then
be written as

so(x) = L{si} =
∫ +∞
−∞

si(ξ)L{δ(x − ξ)} dξ

=
∫ +∞
−∞

si(ξ) h(x − ξ) dξ . (A.31)222
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A similar equation holds for a LTI system:

so(t ) =
∫ +∞
−∞

si(τ ) h(t − τ) dτ . (A.32)

The integral in Eqs. (A.31) and (A.32) is a so-called
convolution and is often represented by an asterisk:

so = si ∗ h. (A.33)

The function h is also known as the point spread func-
tion or PSF (see Figure 1.4). Because of its importance
in this book, convolutionwill first be discussed in some
more detail.

Convolution
Given two signals s1(x) and s2(x), their convolution is
defined as follows:

s1(x) ∗ s2(x) =
∫ +∞
−∞

s1(x − ξ) s2(ξ) dξ , (A.34)

or equivalently

s2(x) ∗ s1(x) =
∫ +∞
−∞

s1(ξ) s2(x − ξ) dξ . (A.35)

The result of both expressions is identical, as is clear
when substituting ξ by x − ξ .

A graphical interpretation of convolution is given
in Figure A.2. The following steps can be discerned:
• mirroring , changing ξ to−ξ ,
• translation over a distance equal to x ,

• multiplication, the product of the mirrored and
shifted function s1(x − ξ) with s2(ξ) is the colored
part in Figure A.2(c),

• integration, the area of the colored part is the
convolution value in point x .

The convolution function is found by repeating the
previous steps for each value of x .

Convolution can also be defined for multidimen-
sional signals. For 2D (two-dimensional) signals,
we have

s1(x , y) ∗ s2(x , y)

=
+∞∫∫
−∞

s1(x − ξ , y − ζ ) s2(ξ , ζ ) dξ dζ , (A.36)

or equivalently

s2(x , y) ∗ s1(x , y)

=
+∞∫∫
−∞

s2(x − ξ , y − ζ ) s1(ξ , ζ ) dξ dζ . (A.37)

The graphical analysis shown above can be extended
to 2D. The convolution values are then represented by
volumes rather than by areas.

The convolution integrals (A.34)–(A.37) have
many properties. The most important in the context
of this book include the following.
• Commutativity

s1 ∗ s2 = s2 ∗ s1. (A.38)

1

s2(x)

s2(x–x) s1(x)

s1(x) *s2(x)

s2(–x)s1(x)

x

x x x

x

s1(x)

0

0

1

1 1 2

–1

–1 0–1

0 1–1

(a)

1

(b)

1

(c)

1/2

(d)

Figure A.2 Graphical interpretation of
the convolution of a rectangular pulse
s1(x) with a triangle s2(x). Changing the
independent variable to ξ does not
change the functions (a). After s2(ξ) is
mirrored (b), it is translated over a
distance x , both functions are multiplied
and the result is integrated (c). The area of
the overlapping part is the result for the
chosen x . The convolution s1(x) ∗ s2(x) is
shown in (d).
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• Associativity

(s1 ∗ s2) ∗ s3 = s1 ∗ (s2 ∗ s3) = s1 ∗ s2 ∗ s3.
(A.39)

• Distributivity

s1 ∗ (s2 + s3) = s1 ∗ s2 + s1 ∗ s3. (A.40)

Response of a LSI system
Let us first consider the response of a LSI system to a
sinusoid. Using Eq. (A.31) with si(x) = A e2π ikx yields

so(x) =
∫ +∞
−∞

A e2π ik(x−ξ) h(ξ) dξ

= A e2π ikx
∫ +∞
−∞

e−2π ikξ h(ξ) dξ

= A e2π ikx H (k), (A.41)

with H (k) the so-called Fourier transform of the PSF
h(x):

H (k) =
∫ +∞
−∞

e−2π ikξ h(ξ) dξ . (A.42)

The function H (k) is also called the transfer function.
It can be shown that any input signal si(x) can

be written as an integral of weighted sinusoids with
different spatial frequencies:

si(x) =
∫ +∞
−∞

Si(k) e2π ikx dk, (A.43)

where Si(k) is the Fourier transform of si(x). The
signal si(x) is the so-called inverse Fourier transform
(because of the + sign in the exponent instead of the
− sign in Eq. (A.42)) of Si(k).

Using Eq. (A.41) and the superposition principle,
the output signal so is then

so(x) =
∫ +∞
−∞

Si(k) H (k) e2π ikx dk. (A.44)

Summarizing, the output function so of a LSI system
can be calculated in two ways: either by convolving
the input function si with the PSF, that is, so = si ∗ h
(Eq. (A.33)), or in the k-space or frequency domain
by multiplying the Fourier transform of si with the

transfer function, that is, So(k) = Si(k)H (k), and
calculating the inverse Fourier transform of So(k).

In linear system theory, the transfer function H (k)

is often used instead of the PSF h(x) because of
its nice mathematical and interesting physical prop-
erties. The relationship between the PSF h(x) and
the transfer function H (k) is given by the Fourier
transform (A.42). Because of its importance in med-
ical imaging, the Fourier transform is discussed in
more detail in the next section. Note however that
the Fourier transform is not the only possible trans-
form. There are many others (Hilbert, Laplace, etc.),
although the Fourier transform is by far the most
important in the theory of medical imaging.

The Fourier transform
Definitions
Let k and r be the conjugate variables in the Fourier
domain and the original domain, respectively. The
forward Fourier transform (FT) of a signal s(r) is
defined as

S(k) = F{s(r)} =
∫ +∞
−∞

s(r) e−2π irk dr . (A.45)

The operator symbol F (calligraphic F) is used as the
notation for the transform. Uppercase letters are used
for the result of the forward transform. Analogously,
the inverse Fourier transform (IFT) is defined as

s(r) = F−1{S(k)} =
∫ +∞
−∞

S(k) e+2π irk dk. (A.46)

It can be shown that for continuous functions s,

s(r) = F−1{F{s(r)}}. (A.47)

From the definitions (A.45) and (A.46), it follows that
for an even function se(r),

F{se(r)} = F−1{se(r)}. (A.48)

If r is time with dimension seconds, k is the temporal
frequency with dimension hertz. Related to the tem-
poral frequency is the angular frequency ω = 2πk with
dimension radians per second. In this case, the base
function of the forward FT describes a rotation in the
clockwise direction with angular velocityω. If r is spa-
tial positionwithdimensionmm, k is spatial frequency
with dimension mm−1.
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In this definition, the original signal and the result
of the transform are one dimensional. In medical
imaging, however, the signals are often multidimen-
sional and vectors must be used in the definitions.
Forward:

S( �k) = F{s(�r)} =
∫ +∞
−∞

s(�r) e−2π i �k·�r d�r .

Inverse:

s(�r) = F−1{S( �k)} =
∫ +∞
−∞

S( �k) e+2π i �k·�r d �k. (A.49)

�r and �k are the conjugate variables, �r being spatial
position and �k spatial frequency. Although only one
integral sign is shown, it is understood that there are
as many as there are independent variables. The orig-
inal signal and its transform are known as a Fourier
transform pair denoted as

s(r)←→ S(k). (A.50)

In general, the result of the forward FT of a signal
is a complex function. The amplitude spectrum is the
modulus of its FT, while the phase spectrum is the
phase of its FT. Both spectra show how amplitude and
phase varywith spatial or temporal frequencies. Often,
the phase spectrum is considered irrelevant, and only
the amplitude spectrum is considered. Note, however,
that a signal is completely characterized if and only if
both the amplitude and phase spectrum are specified.

Examples
Example 1
The FT of a rectangular pulse (Eq. (A.15)), scaled with
amplitude A is

F
{

A �

(
x

2L

)}
=
∫ +∞
−∞

A �

(
x

2L

)
e−2π ikx dx

=
∫ +L

−L
A e−2π ikx dx

= − A

2π ik
(e−2π ikL − e+2π ikL).

(A.51)

Using Eqs. (A.13) and (A.18), we finally obtain

A �

(
x

2L

)
←→ 2AL sinc(2πkL). (A.52)

The forwardFTof a rectangular pulse is a sinc function
whose maximum amplitude is equal to the area of the
pulse. The first zero crossing occurs at

k = 1
2L

. (A.53)

Thus, the broader the width of the rectangular pulse in
the original domain, the closer the first zero-crossing
lies near the origin of the Fourier domain or the more
“peaked” the sinc function is (see FigureA.1(c) and(f)).

Example 2
The forward FT of the product of a step function
(Eq. (A.14)) and an exponential (Eq. (A.12)) (we
assume a > 0) is

F{u(x) e−ax} =
∫ +∞
−∞

u(x) e−ax e−2π ikx dx

=
∫ +∞
0

e−(a+2π ik)x dx

= 1
a + 2π ik

= a

a2 + 4π2k2
− i

2πk

a2 + 4π2k2
.

(A.54)

The result is complex; according to Eqs. (A.8) and
(A.9), we have the following.

Real part:
a

a2 + 4π2k2
.

Imaginary part: − 2πk

a2 + 4π2k2
.

Modulus:
1√

a2 + 4π2k2
.

Phase: −arctan
(
2πk

a

)
.

(A.55)

This transform pair is a mathematical model of the
filter shown in Figure 4.21.

Example 3
The forward FT of the Dirac impulse. Direct applica-
tion of the sifting property (A.22) gives

F{δ(x − x0)} =
∫ +∞
−∞

δ(x − x0) e−2π ikx dx

= e−2π ikx0 . (A.56) 225
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The FT of a Dirac impulse at x0 is complex: in the
amplitude spectrum, all spatial frequencies are present
with amplitude 1. The phase varies linearly with k with
slope−2πx0.

A difficulty arises when calculating the IFT:

s(x) =
∫ +∞
−∞

e−2π ikx0 e+2π ikx dk

=
∫ +∞
−∞

cos(2πk(x − x0)) dk

+ i
∫ +∞
−∞

sin(2πk(x − x0)) dk. (A.57)

Because its integrand is odd, the second integral is
zero. The first integral has no meaning, unless it is
interpreted according to the distribution theory. In
this case, it can be shown that
∫ +∞
−∞

cos(2πk(x − x0)) dk =
∫ +∞
−∞

e+2π ik(x−x0) dk

= δ(x − x0). (A.58)

Hence,

δ(x − x0)←→ e−2π ikx0 . (A.59)

Example 4
The forward FT of a cosine function is

F{cos(2πk0x)}

=
∫ +∞
−∞

cos(2πk0x) e−2π ikx dx

=
∫ +∞
−∞

(
e+2π ik0x + e−2π ik0x

2

)
e−2π ikx dx

= 1
2

∫ +∞
−∞

e−2π i(k−k0)x dx

+ 1
2

∫ +∞
−∞

e−2π i(k+k0)x dx

= 1
2

δ(k − k0)+ 1
2

δ(k + k0). (A.60)

The spectrum of a cosine function consists of two
impulses at spatial frequencies k0 and −k0. In gen-
eral it can be shown that a periodic function has a
discrete spectrum (i.e., not all spatial frequencies are
present), whereas an aperiodic function has a contin-
uous spectrum. Table A.1 shows a list of FT pairs used
in this book.

Table A.1 Important Fourier transform pairs
in linear system theory

Image space Fourier space
1 δ(k)

δ(x) 1

cos(2πk0x)
1
2 (δ(k + k0)+ δ(k − k0))

sin(2πk0x)
i
2 (δ(k + k0)− δ(k − k0))

�( x
2L ) 2L sinc(2πLk)

�( x
2L ) L sinc2(πLk)

Gn(x) e−2π2k2σ 2

Properties
• Linearity If s1←→ S1 and s2←→ S2, then

c1s1 + c2s2←→ c1S1 + c2S2 ∀c1, c2 ∈ C.
(A.61)

This can easily be extended to more than two
signals.

• Scaling If s(x)←→ S(k), then

s(ax)←→ 1
|a|S

(
k

a

)
a ∈ R0. (A.62)

• Translation If s(x)←→ S(k), then

s(x − x0)←→ e−2π ix0k S(k) x0 ∈ R. (A.63)

Thus, translating a signal over a distance x0 only
modifies its phase spectrum.

• Transfer function and impulse response (or PSF)
are a FT pair. Indeed, Eq. (A.42) shows that

h(x)←→ H (k). (A.64)

In imaging, the FT of the PSF is known as the
optical transfer function (OTF). Themodulus of the
OTF is the modulation transfer function (MTF). As
mentioned in Chapter 1, the PSF and OTF char-
acterize the resolution of the system. If the PSF is
expressed in mm, the OTF is expressed in mm−1.
Often, line pairs per millimeter (lp/mm) is used
instead of mm−1. The origin of this unit can easily
be understood if an image with sinusoidal inten-
sity lines at a frequency of 1 period per millimeter
or 1 lp/mm, that is, one dark and one bright line
per millimeter, is observed (Figure A.3). This line
pattern can be written as sin(2πx), x expressed in
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Figure A.3 Image with sinusoidal intensity lines at a frequency of
1 lp/mm.

mm. The Fourier transform of this function con-
sists of two impulses at spatial frequency 1 mm−1
and −1 mm−1. This then explains why the fre-
quency units mm−1 and lp/mm can be used as
synonyms.

The resolution of an imaging system is some-
times characterized by the distinguishable number
of line pairs per millimeter. It is clear now that
this is a limited and subjective measure, and that
it is preferable to show the complete OTF curve
when talking about the resolution. Nevertheless,
it is common practice in the technical documents
of medical imaging equipment and in the medical
literature simply to list an indication of the resolu-
tion in lp/mm at a specified small amplitude (in %)
of the OTF.

• Convolution On p. 224 it was concluded that an
output function so of a LSI system can be calculated
in two ways: (1) so = si ∗ h in the image domain
or (2) F−1{So(k) = Si(k)H (k)} in the Fourier
domain. In general, if s1 ←→ S1 and s2 ←→ S2,
then

s1 ∗ s2←→ S1 · S2
s1 · s2←→ S1 ∗ S2.

(A.65)

This is a very important property. The convolution
of two signals can be calculated via the Fourier
transform by calculating the forward–inverse FT
of both signals, multiplying the FT results, and
calculating the inverse–forward FT of the product.

• The FT of a real signal is Hermitian

S(−�k) = S̄( �k) if s(x) ∈ R, (A.66)

where S̄ denotes the complex conjugate of S (i.e.,
the real part is even and the imaginary part is odd).
From Eqs. (A.6), (A.13), and (A.45), we obtain

S(k) =
∫ +∞
−∞

s(x) e−2π ikx dx

=
∫ +∞
−∞
[se(x)+ so(x)]

· [cos(2πkx)− i sin(2πkx)] dx

=
∫ +∞
−∞

se(x) cos(2πkx) dx

− i
∫ +∞
−∞

so(x) sin(2πkx) dx . (A.67)

The first integral is the real even part of S(k),
and the second is the imaginary odd part of S(k).
Hence, to compute the FT of a real signal, it suffices
to know one half-plane. The other half-plane can
then be computed using Eq. (A.66).

Equation (A.67) further shows that if a function
is even (odd), its FT is even (odd). Consequently,
if a function is real and even, its FT is real and
even, whereas if a function is real and odd, its FT
is imaginary and odd.

• Parseval’s theorem

∫ +∞
−∞
|s(x)|2 dx =

∫ +∞
−∞
|S(k)|2 dk. (A.68)

• Separability In many cases, a 2D FT can be calcu-
lated as two subsequent 1D FTs. The transform is
then called separable. For example,

F{sinc(x) sinc(y)}

=
+∞∫∫
−∞

sin(x)

x

sin(y)

y
e−2π i(kx x+ky y) dx dy

=
∫ +∞
−∞

sin(x)

x
e−2π ikx x dx

·
∫ +∞
−∞

sin(y)

y
e−2π iky y dy

= F{sinc(x)} F{sinc(y)}. (A.69)
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• Another important property of a 2D FT is the
projection theorem or central-slice theorem. It
is discussed in Chapter 3 on X-ray computed
tomography.

Polar form of the Fourier transform
Using polar coordinates

x = r cos θ

y = r sin θ ,
(A.70)

Eq. (A.49)

S(kx , ky ) =
+∞∫∫
−∞

s(x , y) e−2π i(kx x+ky y) dx dy (A.71)

can be rewritten as

S(kx , ky )

=
∫ 2π

0

∫ +∞
0

s(r , θ) e−2π i(kx r cos θ+ky r sin θ) r dr dθ

=
∫ π

0

∫ +∞
−∞

s(r , θ) e−2π i(kx r cos θ+ky r sin θ) |r | dr dθ .

(A.72)

The factor r in the integrand is the Jacobian of the
transformation:

J
�=

∣∣∣∣∣∣∣∣

∂x

∂r

∂x

∂θ

∂y

∂r

∂y

∂θ
.

∣∣∣∣∣∣∣∣
=
∣∣∣∣cos θ −r sin θ

sin θ r cos θ

∣∣∣∣

= r (cos2 θ + sin2 θ) = r . (A.73)

The polar form of the inverse FT is obtained analo-
gously. Let

kx = k cosφ

ky = k sin φ,
(A.74)

then

s(x , y)

=
∫ π

0

∫ +∞
−∞

S(k,φ) e+2π i(xk cosφ+yk sin φ) |k| dk dφ.

(A.75)

Sampling
Equation (A.1) represents an analog continuous sig-
nal, which is defined for all spatial positions and can
have any (real or complex) value:

s(x) ∀ x ∈ R. (A.76)

In practice, the signal is often sampled, that is, only
discrete values at regular intervals are measured:

ss(x) = s(n�x) n ∈ Z. (A.77)

The constant�x is the samplingdistance. Information
maybe lost by sampling. However, under certain condi-
tions, a continuous signal can be completely recovered
from its samples. These conditions are specified by the
sampling theorem, which is also known as the Nyquist
criterion. If the Fourier transform of a given signal is
band limited and if the sampling frequency is larger
than twice the maximum spatial frequency present in
the signal, then the samples uniquely define the given
signal. Hence,

if




S(k) = 0 ∀ |k| > kmax and
1

�x
> 2kmax

then ss(x) = s(n�x) uniquely defines s(x).
(A.78)

To prove this theorem, sampling is defined as a
multiplication with an impulse train (see Figure A.4):

ss(x) = s(x) ·��(x), (A.79)

where ��(x) is the comb function or impulse train:

��(x) =
+∞∑

n=−∞
δ(x − n�x). (A.80)

The sampling distance�x is the distance between any
two consecutive Dirac impulses. Note that this for-
mula is a formal notation because the product is only
valid as an integrand.

Based on Eq. (A.80) and using the convolution the-
orem, the Fourier transform Ss(k) can be written as
follows:

Ss(k) = S(k) ∗ F{��(x)}. (A.81)228
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(a) (b)

(c) (d)

(f)(e)

s(x)

ss(x)

∆x

∆x
x

x

(x)

x kkmax

kmax

k

k

|s(k)|

|ss(k)|

III (x)}{ III

K =

K K

1

2

Figure A.4 A signal with an infinite spatial
extent (a) and its band-limited Fourier
transform (b). The sampled signal (e) is
obtained by multiplying (a) with the
impulse train (c). The spectrum (f) of the
sampled signal is found by convolving the
original spectrum (b) with the Fourier
transform of the impulse train (d). This
results in a periodic repetition of the
original spectrum.

It can be shown that

F{��(x)} = K
+∞∑

l=−∞
δ(k − lK ), (A.82)

which is again an impulse train with consecutive
impulses separated by the sampling frequency

K = 1
�x

. (A.83)

Hence,

Ss(k) = K (S(k)+ S(k −K )+ S(k +K )

+ S(k − 2K )+ S(k + 2K )+ · · · ). (A.84)

Because

S(k) = 0 ∀ |k| ≥ K

2
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(a) (b)

(c) (d)

(e) (f)

∆x

x

(x)

x

x

k

k

s(x) |s(k)|

ss(x) |ss(k)|

III (x)}{ III

∆x kK = 1

2∆x
 1

Figure A.5 A signal with a finite spatial
extent (a) is not band limited (b). The sampled
signal (e) is obtained by multiplying (a) with
the impulse train (c). The spectrum (f) of the
sampled signal is found by convolving the
original spectrum (b) with the Fourier
transform of the impulse train (d). This results
in a periodic repetition of the original
spectrum. Because of the overlap, aliasing
cannot be avoided.

it follows that

K S(k) = Ss(k) �

(
x

K

)
, (A.85)

and consequently s(x) can be recovered from Ss(k).
If the signal s(x) is not band limited or if it is

band limited but 1/�x ≤ 2kmax, the shifted replicas of
S(k) in Eq. (A.84) will overlap (see Figure A.5). In that
case, the spectrumof s(x) cannot be recovered bymul-
tiplicationwith a rectangular pulse. This phenomenon
is known as aliasing and is unavoidable if the origi-
nal signal s(x) is not band limited. As an important

example, note that a patient always has a limited spa-
tial extent, which implies that the FT of an image of the
body is never band limited and, consequently, aliasing
is unavoidable. Several practical examples of aliasing
are given in this textbook.

Numerical methods calculate the Fourier trans-
form for a limited number of discrete points in the
frequency band (−kN ,+kN ). Thismeans that not only
the signal but also its Fourier transform is sampled.
Sampling the Fourier data implies that it yields shifted
replicas in the signal s, which may overlap. To avoid
such overlap or aliasing of the signal, the sampling
distance �k must also be chosen small enough. It can
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easily be shown that this condition can be satisfied if
the number of samples in the Fourier domain is at least
equal to the number of samples in the signal domain.
In practice they are chosen equal.

Based on the preceding considerations, the discrete
Fourier transform (DFT) for 2D signals can be written
as (more details can be found in [38]):

S(m�kx , n�ky ) =
N−1∑
q=0

M−1∑
p=0

s(p�x , q�y) e−2π i
(

mp
M + nq

N

)
.

s(p�x , q�y) =
N−1∑
n=0

M−1∑
m=0

S(m�kx , n�ky ) e
2π i

(
mp
M + nq

N

)
.

(A.86)

In both cases, m, p = 0, 1, . . . ,M − 1 and n, q =
0, 1, . . . ,N − 1. Here, M and N need not be equal
because both directions can be sampled differently.
However, for a particular direction, the number of
samples in the spatial and the Fourier domain is
the same.

Direct computation of the DFT is a time-
consuming process. However, when the number of
samples is a power of two, a computationally very fast
algorithm can be employed: the fast Fourier transform
or FFT.TheFFTalgorithmhas becomevery important
in signal and image processing, and hardware versions
are frequently used in today’s medical equipment. The
properties and applications of the FFT are the subject
of [38].
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B Exercises

Basic image operations
1. Edge detection and edge enhancement.

(a) Specify a differential operator (high-pass fil-
ter) to detect the horizontal edges in an image.
Do the same for vertical edge detection.

(b) How can edges of arbitrary direction be
detected using the above two operators?

(c) How can these operators be exploited for edge
enhancement?

2. What is the effect of a convolution with the
following 3× 3 masks?

1 2 1
2 4 2
1 2 1

−1 0 1
−2 0 2
−1 0 1

0 −1 0
−1 4 −1
0 −1 0

0 −1 0
−1 5 −1
0 −1 0

Are these operators used in clinical practice?
Explain.

3. What is the effect of the following convolution
operators on an image?
• The Laplacian of a Gaussian: ∇2g (�r).
• The difference of two Gaussians:

g1(�r)− g2(�r) with different σ .

• The 3× 3 convolution mask

1 1 1
1 −8 1
1 1 1

4. Unsharp masking is defined as

(1+ α) I
(
x , y

)− α g ∗ I
(
x , y

)
,

with I
(
x , y

)
the image, g a Gaussian, and α a

parameter. The following convolution mask is an
approximation of unsharp masking:

−1/8 −2/8 −1/8
−2/8 ? −2/8
−1/8 −2/8 −1/8

Calculate the missing central value.

Radiography
1. X-rays.

(a) What is the physical difference between X-
rays, γ-rays, light and radio waves? How do
they interact with tissue (in the absence of a
magnetic field)?

(b) Draw the X-ray tube spectrum, i.e., the inten-
sity distribution of X-rays as a function of the
frequency of emitted X-ray photons (1) at the
exit of the X-ray tube before any filtering takes
place, and (2) after the filter but before the
X-rays have reached the patient.

(c) How does the tube voltage influence the
wavelength of the X-rays?

(d) Draw the linear attenuation coefficient (for
an arbitrary tissue type) as a function of the
energy.

2. What is the effect of the kV and mA s of an X-ray
tube on

(a) the patient dose, and
(b) the image quality?

3. A radiograph of a structure consisting of bone and
soft tissue (see Figure B.1) is acquired by a screen–
film detector.

The exposure time is 1 ms. The radiographic
film has a sensitometric curve D = 2 log E . The
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soft tissue
bone

air

1 cm

1 cm

A

B

C

D

E

A

B

C

D

E

screen-film

Figure B.1

film–screen system has an absorption efficiency
of 25%. Assume that the X-rays are monochro-
matic and the linear attenuation coefficients of
bone, soft tissue and air are respectively 0.50 cm−1,
0.20 cm−1, 0.00 cm−1.

(a) Calculate the optical density D in positions A
through E of the image.

(b) Calculate the contrast, i.e., the difference in
density, between positions B and C. How can
this contrast be improved?

4. Inmammography the breasts are compressed with
a paddle. Explain why.

X-ray computed tomography
1. Linear absorption coefficient.

(a) Although the linear absorption coefficient µ

depends on the energy, this dependence is not
taken into account in filtered backprojection.
Explain.

(b) What is the effect of this approximation on the
image quality?

2. Given are two different tissues a and b. Two
different detector sizes are used (Figure B.2).

In the first case the detector is twice as large as
in the second case.

(a) Calculate the linear attenuation coefficients
µa, µb, and µa+b from the input intensity Ii
and the output intensities Ioa and Iob.

Io

Io= Ioa+ Iob

Ioa

Iob

d = 1

{

{

{
ma

ma+b

mb

Ii

Ii/2

Ii/2

Figure B.2

(b) Show that µa+b is always an underestimate of
the mean linear attenuation (µa + µb)/2.

(c) What is the influence of this underestimate on
a reconstructed CT image? Explain.

3. Cardiac CT. The following conditions are given.
• A CT scanner with 128 detector rows.
• The detector width in the center of the FOV is

0.5 mm.
• A full rotation (360◦) of the X-ray tube takes

0.33 s.
• A full data set for reconstruction requires

projection values for a range of 210◦.
• Maximum 1/4 of the heart cycle can be used for

acquiring projection data.
• The heart rhythm is 72 bpm.
• The scan length is 20 cm.
(a) Calculate the duration of 1/4 heart cycle (in

seconds).
(b) Calculate (in seconds) the time needed to

obtain projection values for a range of 210◦.
(c) What can you conclude from (a) and (b)?
(d) Assume that the table shift per heart beat is

equal to the total width of the detector rows
(i.e., the total z-collimation). Calculate the
acquisition time.

(e) The assumption under (d) is approximate.
Explain why? How does this approximation
influence the acquisition time?

4. CT of the lungs on a 64-row scanner with detector
width 0.60 mm. Given are CTDIvol = 10 mGy,
120 kV, 90 mA s, pitch 1 360◦ rotation time 0.33 s,
slice thickness 1 mm, scan length 38.4 cm.
(a) Calculate the scan time.
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(b) Calculate the estimated effective dose. Cer-
tain organs are only partially and/or indirectly
(scatter) irradiated. The following table gives
for each of the irradiated organs (1) the per-
centage of irradiated tissue, and (2) the tissue
weighting factor wT .

Irradiated
tissues (%)

wT

colon 0.5 0.12

lungs 100 0.12

breast 100 0.12

stomach 50 0.12

bone marrow 25 0.12

thyroid gland 15 0.04

liver 50 0.04

esophagus 100 0.04

bladder 1 0.04

skin 25 0.01

bone surface 30 0.01

remainder 30 0.12

Magnetic resonance imaging
1. Assume an MRI spin-echo (SE) sequence with

B0 = 0.5 T (see Figure B.3).
The following conditions are given.

(a) SE: 2000/25 (b) SE: 2000/50

(c) SE: 2000/100 (d) SE: 2000/200

Figure B.3

• In all the images TR = 2000ms. From (a) to
(d) TE = 25ms, TE = 50ms, TE = 100ms, and
TE = 200ms respectively.

• T1 (white brain matter) ∼500 ms and T1 (gray
brain matter)∼650 ms.

• T2 (white brain matter) ∼90 ms and T2 (gray
brain matter)∼100 ms.

• T1 (CSF) >3000 ms and T2 (CSF) >2000 ms.
• The proton density of graymatter is 14%higher

than that of white matter.

The relative signal intensity canbe (approximately)
expressed by

s(t ) = ρ e−TE/T2 [1− e−TR/T1 ].

(a) First, draw (schematically) the longitudinal
magnetization (Mz ) as a function of time after
a 90◦ pulse for white and gray matter and for
CSF.

(b) Next, draw (schematically) the transverse
magnetization (Mxy ) as a functionof timeafter
a 90◦ pulse for white and gray matter and for
CSF (note that TR is 2000 ms).

(c) Explain now on this last diagramwhy the con-
trast between CSF (cerebrospinal fluid) and
surrounding white brain and brain matter
varies from (a) to (d).

2. The MR images in Figure B.4 were acquired with
a spin-echo (SE) sequence (90◦ pulse) at 1.5 T. For
the lower right image a so-called STIR (short tau
inversion recovery) pulse sequence was used. STIR
is an excellent sequence for suppressing the MR
signals coming from fatty tissues. STIR is thus a
fat saturation or fat suppression sequence. It is
characterized by a spin preparation module con-
taining an initial 180◦ RF pulse, which inverts the
magnetization Mz , followed after a time TI by the
standard RF pulse to tilt the z-magnetization into
the xy-plane.

T1 (CSF) >3000 ms and T2 (CSF) >2000 ms;
T1 (fat) = 200 ms and T2 (fat) = 100 ms.

(a) Draw the magnetization |Mz |as a function of
time for cerebrospinal fluid (CSF) and for
fat for a SE sequence without and with an
inversion pulse respectively.

(b) Calculate the inversion time TI.
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TR = 3000 TE = 30 TR = 3000 TE = 150

TR = 300 TE = 30 TR = 3000 TE = 150 TI = ?

Figure B.4

Figure B.5

(c) Draw the magnetization
∣∣Mxy

∣∣as a function
of time for CSF and for fat for each of the
images (i.e., for TR = 3000 with and with-
out saturation, and for TR = 300). Note that
in practice the magnitude of the complex sig-
nal is calculated. Hence, negative signals are
inverted.

(d) Explain the contrast between CSF and fat in
each of the four images.

3. Suggest one ormore categories for the lesion in the
images of Figure B.5.

4. Assume that the magnetic field B0 of an MRI mag-
net lies along the z-axis. In vector notation, this
is written as B = (0, 0,B0). The MRI system has
three orthogonal gradient systems. We know that
for protons γ /2π = 42.57 MHz/T.

(a) What is the precession frequency of protons
in a main magnetic field B0 = 1.5 T? Give the
result in Hz, not in rad/s.

(b) The strengths of the gradients at a certain
moment are Gx , Gy , Gz . What is the mag-
nitude and the direction of the total external
magnetic field in an arbitrary point (x , y , z)

inside the imaging volume?

5. A 2 mm slice perpendicular to the z-axis at posi-
tion z = 0.1 m is excited with a radiofrequency
pulse at frequency f . Assume B0 = 1.5 T and
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(a) (b) (c)

(d) (e) (f)

Figure B.6

Gz = 10 mT/m. What is the frequency f (in Hz)
of the RF pulse to excite this slice? And what is the
bandwidth (in Hz)?

6. Figure B.6 shows three MR images of the lumbar
spine and their �k-space in arbitrary order.

(a) Which �k-space accompanies each of the three
MR images? Explain.

(b) The bottom left image and the bottom right
image were combined using unsharp mask-
ing to obtain the image shown in Figure B.7.
Explain.

7. In order to reduce the acquisition time, mul-
tiple lines in the �k-space can be measured per
excitation.

(a) Assume that four lines per excitation are
measured. Draw these lines in the �k-space.

(b) What is the effect on the image quality (as
compared to measuring only one line per
excitation)

Figure B.7

• if the lowest frequencies aremeasured first,
• if the highest frequencies are measured

first?
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8. Image reconstruction in CT and in MRI is based
on Fourier theory. In both cases assumptions are
made to be able to apply this theory. In CT the
X-ray beam is assumed to be monochromatic. In
MRI the relaxation effect during the short read-
ing interval is neglected in the case of multiple
echoes per excitations. What is the influence of
these assumptions on the image quality in CT and
MRI respectively?

9. Consider the pulse sequence in Figure B.8 (sur-
face 2 equals two times surface 1). Draw the
trajectory of �k in the �k-space.

10. Draw the pulse scheme (i.e., RF pulses and mag-
netic gradient pulses) for the �k-space sampling
shown in Figure B.9.

11. Given

kx(t ) = y

2π
at cos(bt )

ky (t ) = y

2π
at sin(bt )

a, b > 0.

RF

Gx

Gy

Gz

t

1

2 2

1 2 2

Gz=Gss

Gy=Gph

Gx=Gro

Figure B.8

Figure B.9

(a) Draw the trajectory in the �k-space.
(b) Calculate the necessary gradients Gx (t)

and Gy (t).
(c) Draw the corresponding magnetic gradient

pulse sequence.

12. CT is based on the projection theorem stating
that the one-dimensional Fourier transform of the
projections equals the two-dimensional Fourier
transform of the image along a line in the 2D
Fourier space, i.e.,

P(k, θ) = F1{pθ (r)} ↔ F(kx , ky ) = F2{f (x , y)}.

Hence an image f (x , y) can be reconstructed by
calculating the inverse 2D Fourier transform.

(a) In MRI it is possible to sample along radial
lines in the �k-space (see Figure B.10(a)). Draw
a suitable pulse sequence in the diagram of
Figure B.10(b) to acquire samples from radial
lines.

(b) Can filtered backprojection be employed for
MRI reconstruction as well?

13. In molecular imaging research gene expressions
in vivo can be visualized by means of the marker
ferritin, which has the property of capturing iron.
Which imaging technique is used to visualize this
process? Explain.

14. A patient with thickness L is scanned using a coil
with bandwidth BW (in Hz). Note that the differ-
ent frequencies that are received by this coil are
defined by the range of precession frequencies of
the spins.

(a) What are the conditions necessary to avoid
aliasing artifacts in the readout direction?

(b) What is the maximal gradient amplitude as
a function of BW and L necessary to avoid
aliasing?

(c) What is the relationship between BW and�t ?

15. An image is acquired with FOV = 8 cm and 256
phase encoding gradient steps. Thephase encoding
gradient equals 10 mT/m. The radiologist prefers
an image with the highest resolution and without
artifacts. Calculate the pulse duration of the phase
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m(x,y)
r

x

r
p(r,�)

P(�,k)

kx

ky

k

�

F1{p�(r
)} 

RF

Gx

Gy

Gz

t

signal

(a)

(b)

�

Figure B.10

encoding gradient. You may assume that the pulse
has a rectangular shape.

16. The MR images in Figure B.11 were acquired with
a spin-echo (SE) sequence (90◦ pulse) at 1.5 T.

Explain the origin of the artifact in the right
image.

17. Most imaging modalities are very sensitive to
motion.

(a) Which artifact is caused by an abrupt patient
movement in CT?

(b) Which artifact is caused by breathing in MRI?
(c) How can artifacts due to respectively breath-

ing and the beating heart be avoided in CT?
(d) How can the additional phase shift inMRI due

to flowing blood be overcome?238
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(a) TR = 3000, TE = 10
      without artifact

(b) TR = 3000, TE = 10
      with artifact

Figure B.11

(e) Dephasing in MRI is exploited as a means
to obtain images of diffusion and perfusion.
Explain.

18. Given are a turboSE sequence with 10 echoes,
TR = 500 ms, TE (first echo) = 20 ms; image
size 240 × 160 pixels (hence, Nph = 160); slice
thickness 5 mm; the heart rate of the patient is
60 bpm.

(a) What is the acquisition time for one slice of
the liver?

(b) What is the acquisition time for one slice of the
heart? The measurements are synchronized
with the ECG.

Nuclear medicine imaging
1. Radioactivity.

(a) How can the half-life of a radioactive isotope
be calculated?

(b) Give a realistic value of the half-life for some
radioactive tracers.

(c) Which recommendations would you give to
the patient and his/her environment?

2. What is the problem when using filtered backpro-
jection in nuclear imaging?

3. Explain how the two images in Figure B.12 were
acquired.What is the difference between them and
why?

4. A colleague in a PET center would like to know
whether they should put on a lead apron to pro-
tect themselves against the irradiation from the
positron emitters. We know that the mass density
of lead is 11.35 g/cm3 and that its linear attenuation
coefficient for this kind of γ-rays is 1.75 cm−1.

Figure B.12

(a) An apron that absorbs 3/4 of the irradia-
tion would be satisfactory protection. What
is the thickness of lead (in cm) required
to obtain a transmission of 25% (i.e., 3/4 is
absorbed)? Assume a perpendicular incidence
of the radiation with the apron.

(b) What is the weight of this lead apron with a
transmission of 25% if about 1.5 m2 (flexi-
ble, but lead containing) material is needed?
Neglect the other material components in the
apron.

(c) What is your advice with respect to the ques-
tion of putting on a lead apron? Assume that
10 kg is the maximum bearable weight for an
apron.

5. Given is a positron emitting point source at posi-
tion x = x∗ in a homogeneously attenuating
medium (center x = 0, −L ≤ x ≤ L) with atten-
uation coefficient µ (Figure B.13). Detector 1 has
radiusR1 and detector 2 has radiusR2 = R1/2. The
detectors count all the incoming photons (i.e., the
absorption efficiency is 100%). Counter A counts
all photons independent of the detector, while
counter B counts only the coincidences. Because
D � L, D + L ≈ D. If µ = 0 detector 1 would
count N photons per time unit.

(a) Calculate the average number of photons per
time unit measured by counter A as func-
tion of µ, x and N . Calculate the standard
deviation for repeated measurements.

(b) Repeat these calculations for counter B.

6. How does a gamma camera react on a simultane-
ous (i.e., within a time window �T ) hit of two
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R1 R2 = 
R1

2

D D

m

x*

L L

Counter A Counter B

Figure B.13

r
m

y1

y2

y3

Figure B.14

photons of 140 keV each if the energy window is
[260 keV, 300 keV]?

What is the probability of a simultaneous
(i.e., within a time window �T ) hit of two pho-
tons as function of the activity A (i.e., average
number of photons per time unit) and the time
resolution �T ?

7. A positron emitting point source is positioned in
the center of a homogeneous attenuating cylin-
der with radius r and attenuation coefficient µ

(Figure B.14). Two opposing detectors, connected
by an electronic coincidence circuit, measure y1
photon pairs and two other single-photon detec-
tors measure y2 and y3 photons respectively. The
thickness of the detectors is sufficiently large to

coincidence
electronics 

Detector Detector

N1 counts

coincidence
electronics 

Detector Detector

N2 counts

coincidence
electronics

Detector Detector

N3 counts

m2

m2m1

1 cm

1 cm

1 cm

m1

2 cm

Positron emitting
Point source

Figure B.15
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detect all the incoming photons (i.e., the absorp-
tion efficiency is 100%). All the detectors have the
same size and distance to the point source.

Calculate the activity in the center of the cylin-
der from the measurements y1, y2 and y3 using
maximum likelihood reconstruction.

8. How does Compton scatter influence the spatial
resolution in SPECT and PET respectively?

9. Two opposing detectors, connected by an elec-
tronic coincidence circuit, perform three sub-
sequent measurements (Figure B.15). The only
difference between the measurements is that the
attenuation is modified by adding homogeneous
blocks between the positron emitting point source
and the detectors. The measurements N1, N2 and
N3 and the attenuation depths are given.

Calculate the linear absorption coefficients µ1
and µ2.

10. A radioactive point source is positioned in front of
two detectors (Figure B.16). After a measurement
time of one hour, two photons per second have
been captured by each of the detectors.

Next, an attenuating block with attenuation
depth 1 cm and an attenuation coefficient of
ln 2 cm−1 is added and a new measurement is
performed, this time during only one second.

What is the probability that during this mea-
surement of one second exactly one photon is
captured by detector 1 and four photons by
detector 2?

11. Given are a square detector with collimator with
known geometry, and a point source at distance x
(Figure B.17).

(a) Calculate the sensitivity of the point source at
distance x .

(b) Calculate the FWHM of the point spread
function at distance x .

Perform the calculations for both x ≤ T and
x ≥ T .

12. Given are a point source and two detectors
(Figure B.18). The efficiency of both detectors
is known and takes both the absorption effi-
ciency and the influence of the geometry (only
limited photons travel in the direction of a detec-
tor) into account. During a short measurement
exactly one photon is absorbed by each detec-
tor. What is the maximum likelihood of the total

Detector 1

Detector 2 

1 cm

m = ln2/cm

Figure B.16

Detector

d

h

k t

x

T

Figure B.17

radioactive
source

Detector A
efficiency 1/3000 

Detector B
efficiency 1/1000

Figure B.18

L

lm

L

lm

Single-photon
detection

Coincidence
detection

Figure B.19
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number of photons that were emitted during this
measurement?

13. Given a phantom with homogeneous attenuation
coefficient µ and homogeneous positron activity
λ per length unit (Figure B.19). A measurement
is performed with a single-photon detector and
another with a pair of opposing detectors con-
nected by an electronic coincidence circuit. The
efficiency of all the detectors is constant (S).

Calculate the expected number of measured
photons for both cases.

14. Given is a positron emitting point source in the
center of a detector pair connected by an elec-
tronic coincidence circuit (Figure B.20). The dis-
tance R from the point source to the detectors is
much larger than the detector size a. The detec-
tors consist of different materials. The absorption
efficiency of detector 1 is 3

4 and that of detector
2 is 2

3 .

(a) Calculate the fraction of emitted photon pairs
that yields a true coincidence event.

(b) Calculate the fraction of emitted photon pairs
that yields a single event.

a

a

a

a
�1= 3/4 �2= 2/3

RR

Figure B.20

L L L 4L

m3m2m1 �2P�1S

Figure B.21

h

m

P

L

Figure B.22

15. Given are two photon detectors (S and P), a point
source that emits A photons, and three blocks with
attenuation coefficientsµ1 = 1/L, µ2 = 1/2L and
µ3 = 1/L respectively (FigureB.21). The efficiency
of the detectors is known (ε1 and ε2 respec-
tively) and takes both the absorption efficiency and
the influence of the geometry (only limited pho-
tons travel in the direction of the detector) into
account.

(a) Calculate the expected number of detected
photons in S.

(b) Calculate the expected number of detected
photon pairs if S and P are connected by an
electronic coincidence circuit.

16. A positron emitting (18F) point source is posi-
tioned in front of a detector. 3600 photons are
counted during a first measurement of one hour.
Next, a second measurement is performed, this
time of only one second.

(a) Calculate the probability that exactly zero
photons are detected.

(b) Calculate the probability that exactly two
photons are detected.

17. Given is a point source with activity P = 1 mCi at
a distance L = 30 cm from a cube with size h =
5 cm and attenuation coefficient µ = 0.1 cm−1
(Figure B.22). The density of the cube is 1 kg/l, and
the half-life of the tracer is T1/2 = 2 h.

Calculate the absorbed dose (in mGy) of the
cube after several days. Note that 1 eV = 1.602 ×
10−19 J and 1 mCi = 3.7× 107 Bq.

Ultrasound imaging
1. Ultrasonic waves.

(a) What are reflection, refraction, scatter and
absorption? What is their effect on an ultra-
sound image?

(b) What is the effect of the acoustic impedance
on the reflection?

(c) What is the physical reason to avoid an air gap
between the transducer and the patient? How
can it be avoided?

(d) What is constructive interference? How is this
used to focus the ultrasonic beam? And how
is it used to sweep the ultrasonic beam?242
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2. What methods do you know to measure the
velocity of blood?

3. Given is an ultrasound scanner with the following
characteristics:

• 5 MHz phased array transducer;
• 16-bit, 20 MHz AD converter;
• 256 Mb image memory (RAM).
• operating mode: B-mode acquisition; 3000

transmittedultrasonic pulses per second; image
depth 10 cm; number of scan lines 60; sector
angle 60◦.

Given an ultrasound velocity of 1530 m/s.

(a) What is the image frequency (frame rate)?
(b) How long does it take to fill the complete

image memory with data?
(c) Howmany images can maximally be stored in

memory?

4. Using PW Doppler, samples sj , j = 1, 2, . . . are
taken of the following signal of a blood vessel:

sj = 18 sin( 25π j + 0.35) mV.

The pulse repetition frequency is 12 kHz. The fre-
quency of the transmitted pulse is 2.5 MHz. The
velocity of the ultrasonic signal in soft tissue is
1530 m/s.

(a) What is the velocity of blood (in the direction
of the transducer)?

(b) What is the maximal velocity vmax that can be
measured without artifacts?

(c) What is the maximal distance from the trans-
ducer required tomeasure thismaximal veloc-
ity vmax without artifacts?

(d) What is the measured velocity of blood if its
real velocity equals vmax + 1 m/s?

5. A radiologist would like to distinguish small details
in the vesselwall. Assume that thedistancebetween
these small details is 0.5 mm, and that the blood
vessel runs parallel to the surface of the tissue at
a depth of 5 cm. The attenuation of the ultrasonic
beam is 1 dB/(MHz cm). The maximum attenua-
tion to guarantee that the image is practically useful
is 100 dB. The ultrasonic pulse duration is 2 peri-
ods. Assume that the ultrasound velocity in tissue
is 1580 m/s.

(a) What is the minimal frequency required to
distinguish the small details along the ves-
sel wall?

(b) Given the maximum attenuation of 100 dB,
what is the maximum frequency that can be
used?

(c) Which ultrasonic frequency would you rec-
ommend to obtain the best image quality (i.e.,
high resolution and high SNR)?

6. Aliasing in CT, MRI and Doppler respectively.

(a) Explain the origin of aliasing.
(b) How does aliasing appear in an image?
(c) How can aliasing be reduced or avoided?

7. Which methods do you know to obtain images
of (a) blood vessels, (b) flow and (c) perfusion?
Explain.

8. Assume that the point spread function (PSF) in the
lateral direction is a sinc2 function.

(a) What is the physical principle behind this
pattern?

(b) What is the modulation transfer function
(MTF)?

(c) What is the maximal distance required
between two neighboring scan lines to avoid
aliasing?

(d) What is the minimal distance in the lateral
direction between two distinguishable small
calcifications?

Medical image analysis
1. Search, using the principle of dynamic program-

ming, the best edge from left to right in the
following gradient image:

1 1 1 1 0 0 0 1 3 3
3 3 5 4 3 2 3 3 5 4
4 5 4 4 5 4 5 5 2 2
3 3 2 2 5 5 3 3 0 0
1 2 1 3 1 2 4 1 4 4

The cost C(i) of connecting pixel (x , y1) with
pixel (x + 1, y2) is defined as follows:

C(i) = (5− grad(x + 1, y2)+ |y2 − y1|) 243
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Figure B.23

grad() is the gradient in the y-direction (these val-
ues are shown in the image matrix above), x is the
column number, y is the row number, y1 and y2
are arbitrary y values.

2. In images IA and IB in Figure B.23 two regions of
interests (ROI) A and B are shown. IA and IB are
geometrically aligned.

(a) Calculate the sum of squared differences (SSD)
and themutual information (MI) of the regions
of interest.

(b) Do the same when image IB is translated one
pixel to the right. Use matrix Bt instead of B
this time. What can you conclude?

A =



0 0 8 7 8 5 0 0
0 0 2 9 5 7 0 0
0 0 4 6 4 3 0 0
0 0 4 6 2 4 0 0




B =



9 9 1 5 6 3 9 9
9 9 1 1 3 4 9 9
9 9 2 3 2 8 9 9
9 9 2 3 1 2 9 9




Bt =



9 9 9 1 5 6 3 9
9 9 9 1 1 3 4 9
9 9 9 2 3 2 8 9
9 9 9 2 3 1 2 9




3. Calculate the mutual information (MI) of the
following arrays:

9 0 4 9 0 8 3 0
9 7 4 0 0 5 2 8
1 8 0 9 9 1 8 0
1 0 3 8 7 8 7 2

R

F

Figure B.24

4. To perform a pixel classification of a T1-weighted
brain scan, a digital atlas can be used as prior
knowledge. The atlas consists of a T2-weighted
brain image andan image inwhich each voxel value
expresses the probability that this voxel belongs
to white brain matter, gray brain matter or cere-
brospinal fluid (CSF). Explain the segmentation
method.

5. Consider the binary 20 × 8 image R and 16 × 8
image F in Figure B.24. Calculate their joint
histogram and mutual information (MI), given
that the upper left corner of the images coin-
cides. Repeat these calculations when image F
shifts to the right about 1, 2, 3 and 4 pixels
respectively.

Visualization for diagnosis and therapy
1. Augmented reality. A preoperative 3D CT or MR

image has to be registered with 2D endoscopic
video images. Assume that the endoscopic camera
was calibrated.

How can the video coordinates (u, v) of a point
(x , y , z) in the preoperative images be calculated
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(a) in the simple case of a static endoscope, and
(b) when the endoscope is inmotion?Assume that

the endoscope is a rigid instrument.

2. Image guided surgery. To perform a biopsy two
on-site radiographs of the lesion are taken from
two different directions. The positions of both the
X-ray tube and the detector are unknown. A navi-
gation system is used to localize the biopsy needle
geometrically in real time. A number of markers,
visible in both radiographs, are attached to the skin
and their 3D coordinates (x , y , z) can be measured
by the navigation system.

(a) Calculate the 3D coordinates (xl , yl , zl) of
the lesion based on its projection in both
radiographs. Note that these coordinates can-

not simply be measured with the naviga-
tion system like the 3D marker coordinates
(x , y , z).

(b) How many markers are minimally needed?

3. Preoperative maxillofacial CT images of a patient
were acquired together with one or more 2D pho-
tographs takenwith a digital camera. By projecting
the 2D photographs onto the 3D skin surface,
derived from the CT images, a textured 3D surface
of the head can be obtained.

(a) How can a 3D surface of the face be obtained
from CT images?

(b) How can the texture of a 2D photograph be
projected onto this 3D surface?
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Note: numerical headings (e.g. “3D”) are filed as spelled out (e.g “three dimensional”).

α-particles 106
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β− emissions 106
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abdomen, ultrasound 153
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X-rays 29–30

absorption efficiency 18
acoustic impedance 129
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