Dynamic
Meteorology:
A Basic Course

ADRIAN GORDON, WARWICK GRACE, PETER
SCHWERDTFEGER & ROLAND BYRON-SCOTT



DYNAMIC
METEOROLOGY:
A BASIC COURSE




This page intentionally left blank



DYNAMIC
METEOROLOGY:
A BASIC COURSE

Adrian Gordon
School of Earth Sciences, Flinders University, South Australia

Warwick Grace
Bureau of Meteorology, Australia

Peter Schwerdtfeger
School of Earth Sciences, Flinders University, South Australia

Roland Byron-Scott
School of Earth Sciences, Flinders University, South Australia

g ¥ Routledge

Taylor & Francis Group
LONDON AND NEW YORK



First published 1998 by Hodder Education

Co-published in the United States of America by
Oxford University Press Inc.,
198 Madison Avenue, New York, NY10016

Published 2016 by Routledge
2 Park Square, Milton Park, Abingdon, Oxon OX14 4RN
711 Third Avenue, New York, NY 10017, USA

Routledge is an imprint of the Taylor & Francis Group, an informa business
© 1998 Adrian Gordon, Warwick Grace, Peter Schwerdtfeger and Roland Byron-Scott

All rights reserved. No part of this book may be reprinted or reproduced or
utilised in any form or by any electronic, mechanical, or other means, now
known or hereafter invented, including photocopying and recording, or in any
information storage or retrieval system, without permission in writing from
the publishers.

The advice and information in this book are believed to be true and

accurate at the date of going to press, but neither the authors nor the publisher
can accept any legal responsibility or liability for any errors or omissions.
Every effort has been made to trace and acknowledge the owners of copyright.
The publishers will be glad to make suitable arrangements with any

copyright holders whom it has not been possible to contact.

British Library Cataloguing in Publication Data
A catalogue entry for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data
A catalog entry for this book is available from the Library of Congress

ISBN 13: 978-0-340-59503-9 (pbk)

Cover design: Terry Griffiths

Composition by Alden, Oxford



CONTENTS

Foreword xiii
Acknowledgements XV

Chapter | Introduction: units and dimensions I
1.1 Historical perspective of meteorology 1

1.2 Dimensions 3

1.3 Units 4

1.4 Problems 5

Chapter 2 The thermodynamics of dry clean air 7
2.1 Structure and composition of the atmosphere 7

22 The scientific method 8

2.3 The equation of state of a perfect gas 9

24 The universal gas constant 12

2.5 Mixture of gases 12

2.6 Molecular weight of dry air 13

2.7 Work 13

2.8 Heat 16

29 The first law of thermodynamics 17

2.10  Specific heats of gases 17

2.11  Adiabatic process 20

2.12  Potential temperature 21

2.13  Entropy 21

2.14  Problems 22

Chapter 3 The aerological diagram 24
3.1 Introduction 24

3.2 Different kinds of diagrams 24

33 The skew (T, —log p) diagram 27

34 The tephigram 27

29

3.5 Work and energy on the tephigram
3.6 Problems .-

30



vi CONTENTS

Chapter 4 The thermodynamics of moist air 32
4.1 Water substance and water vapour 32
4.2 Equation of state for water vapour 35
4.3 Specific heats of water substance 36
4.4 Change of phase 36
4.5 Variation of latent heat with temperature 37
4.6 Clapeyron’s equation 37
4.7 Clapeyron and global warming 42
4.8 Supercooled water 43
49 Moist air 44
4.10  The virtual temperature 46
4.11  Specific heats of moist air 46
4.12  Adiabatic process of unsaturated air 47
4.13  The adiabatic processes for moist saturated air 47
4.14  Exact equation for the rain stage of the 48

pseudo-adiabatic process
4.15  Exact equation of the reversible saturation 49
adiabatic process
4.16  Simplified equation of the adiabatic process 50
of saturated air
4.17 Isobaric warming and cooling 50
4.18 Hygrometric equation 51
4.19  Construction of saturation adiabats 52
420 Normand’s theorem 53
421  Some useful empirical relationships 53
4.22  Problems 54

Chapter 5 Hydrostatic equilibrium 55
5.1 What is hydrostatic equilibrium? 55
5.2 The hydrostatic equation 55
5.3 Definition of lapse rate 56
54 The thickness equation 57
5.5 Pressure—height formulae in model 57

atmospheres
5.51 Dry atmosphere with a constant 58
lapse rate
552 Height and lapse rate of a 58
homogeneous atmosphere
553 The dry adiabatic atmosphere 59
5.6 Stability and instability 61
5.7 Energy of displacement 65
5.8 Convective available potential energy 68
5.9 Lapse rate for unsaturated air 69
5.10  Lapse rate for saturated air 69
511 Problems 71



CONTENTS vii

Chapter 6 The equations of motion: | The Coriolis force 72

6.1 Introduction 72
6.2 Motion as observed with reference to a fixed 73
frame of coordinates

6.3 Motion as observed in a rotating frame of 74
coordinates
6.3.1 The bear and the penguin 74
6.3.2 The carousel or merry-go-round 75

6.3.3 A simple practical example of the 75
Coriolis force

6.3.4 Simple mathematical derivation of 76
the Coriolis force

6.3.5 The Foucault pendulum 77

6.4 Conclusion 78

6.5 Problems 78

Chapter 7 The equations of motion: 2 Derivation in various 79
coordinates

7.1 The pressure gradient force 79

7.2 The spherical earth 81

7.3 The equations of motion 82

7.4 Derivation of the components of the Coriolis ~ 83
force from the law of the conservation of
angular momentum

7.5 Derivation of the equations of motion in 84
plane coordinates from rotating axes

7.6 Derivation of the equations of motion in 86
rotating polar coordinates

7.7 Derivation of the three-dimensional 88

equations of motion in a spherical
coordinate system

7.8 Equations of motion in tangential 90

curvilinear coordinates
7.9 Problems 91
Chapter 8 Balanced flow 93
8.1 Introduction 93
8.2 The geostrophic equation 93
8.3 The gradient wind equation 95
8.3.1 Gradient wind solution for the 98

anticyclonic case

8.3.2 Gradient wind solution for the 99

cyclonic case
8.4 The cyclostrophic wind 99



viii  CONTENTS

8.5 The inertial wind 99
8.6 The ‘strange roots’ of the gradient wind 100
equation
8.7 The balance equation 101
8.8 Problems 101
Chapter 9 Unbalanced flow 103
9.1 Introduction 103
9.2 The ageostrophic wind 103
9.3 The isallobaric wind 104
9.4 Pressure changes 106
9.5 Divergence and convergence 108
9.6 Pressure changes in geostrophic flow 112
9.7 Measurement of divergence 115
9.8 Vertical motion 116
9.9 Problems 117
Chapter 10 Euler and Lagrange 118
10.1  Introduction 118
10.2  Geostrophic adjustment: example of the 119
Lagrangian method
10.3  The case of the anticyclone 122
10.4  The case of the variable Coriolis parameter 123
10.5 Divergence of parcels in a fluid 126
10.6  Streamlines 127
10.7  The stream function 128
10.8  Problems 128
Chapter 11 Vorticity 130
11.1  Introduction 130
11.2  Circulation 130
11.3  Vorticity 131
11.4  Derivation of expressions for vorticity 134
11.5 Relative and absolute vorticity 135
11.6  The divergence—vorticity relation 136
11.7 A simple wave pattern 139
11.8  Shear vorticity in a jet stream pattern 140
11.9 Constant absolute vorticity trajectories 141
11.10 Problems 143
Chapter 12 The long-wave equations 144
12.1  Introduction 144
12.2  Effects of curvature and latitude vorticity 144

on wave translation



CONTENTS ix

12.3  The Rossby long-wave equation 146
12.4  The long-wave theory 147
12.5 The stationary wavelength 148
12.6  Absolute vorticity of layer of constant mass 150
12.7  Potential vorticity 151
12.8  Problems 151
Chapter 13 The upper air synoptic chart 152
13.1 Introduction 152
13.2  Pressure as a vertical coordinate 152
13.3  The thermal wind 153
13.4  The thickness of a standard isobaric layer 154
13.5 Differential analysis of the upper air 155
synoptic chart
13.6  Barotropic and baroclinic structure 157
13.7  Advection of thickness lines 158
13.8  M.s.l. pressure maps versus topography of 160
1000 mb charts
13.9  Vorticity on isobaric surfaces 160
13.10 The velocity potential 161
13.11 Problems 162
Chapter 14 Friction in the boundary layer of the atmosphere 163
14.1  Introduction 163
14.2  The Guldberg—Mohn approximation 163
14.3  Balanced frictional flow 164
14.4  The Newtonian concept of friction 165
14.5  The surface layer 167
14.6  The spiral or Ekman layer 168
14.7  Problems 174
Chapter 15 Some more advanced equations 176
15.1  The divergence equation 176
15.2  The balance equation 177
15.3 The omega equation 178
154  Problems 181
Chapter 16 Synoptic observations and analysis 182
16.1 Introduction 182
16.2  Synoptic observations and plotting 183
16.3  Analysis methods 203
16.3.1  Objective analysis 204

16.3.2  Subjective analysis 205



x CONTENTS

16.3.3  Streamlines 206
16.3.4 Trends 207
16.4  Problems 209
Chapter 17 Simple synoptic models 210
17.1  Introduction 210
17.2  Some common synoptic patterns 210
17.3  Weather associated with synoptic systems 211
17.4  Definition of a front 212
17.5 Evolution of a wave depression 214
17.6  Frontal theory 216
17.7  Other depressions 221
17.8  Steering and development 225
17.9  Blocking 232
17.10 Tropics 233
17.11 Problems 233
Chapter 18 The tropical cyclone 235
18.1  Introduction 235
18.2  Structure and energy source 237
18.3  Genesis 244
18.4  Steering and development 246
18.4.1 Movement 247
18.4.2 Development 252
18.5  Forecasting skill 253
18.6  Problems 255
Chapter 19 Radiant energy transfer 256
19.1  Historical concepts, cavities and black 256
bodies
19.2  Thermodynamic cycles 264
19.3  The Stefan—Boltzmann law 268
19.4  The black body spectrum and Wien’s 270
displacement law
19.5 Wien’s expression for the frequency 275
distribution of radiation
19.6  Oscillators, radiators and spectra 275
19.7  Planck’s quantum theory 277
19.8  Relationship between the Stefan-Boltzmann, 280
Wien and Planck laws
Chapter 20 The radiation balance of the earth 283
20.1 Radiation at the earth’s surface 283
20.2  Net radiation and albedo 285



CONTENTS xi

20.3  Net fluxes of solar and terrestrial radiation 287
20.4 The wavelength separation of solar and 289
terrestrial radiation
20.5 The planetary temperature 290
20.6  Simple models of the greenhouse effect 292
20.7 Simpson’s theory of atmospheric radiation 294
transfer
Chapter 21 Climate change 299
21.1  Introduction 299
21.2  Definitions 299
21.3  Global warming 300
21.4  Climate variability 300
21.5 The greenhouse effect 301
21.6  The observed global temperature record 302
21.7 Random walks 303
21.8  The debate 305
21.9 The MSU data 305
21.10 The ENSO phenomenon 307
21.11 Numerical modelling of the climate 309
21.11.1 The equilibrium model 310
21.11.2 The transient model 311
21.12 The global warming debate continues 311
21.13 Climate prediction 312
21.14 Problems 313
Bibliography 314
Index 318



This page intentionally left blank



FOREWORD

In the first edition of this text Sir Graham Sutton, then Director General of the
UK Meteorological Office and formerly Bashforth Professor of Mathematical
Physics at the Royal Military College of Science, wrote in his foreword:

A course of study in science may take one of two shapes. It may spread
horizontally rather than vertically, with greater attention to the security of the
foundations than to the level attained, or it may be deliberately designed to
reach the heights by the quickest route possible. The tradition of scientific
education in this country has been in favour of the former method, and
despite the need to produce technologists quickly, I am convinced that the
traditional policy is still the sounder. Experience shows that the student who
has received a thorough unhurried training in the fundamentals reaches the
stage of productive or original work very little, if at all, behind the person who
has been persuaded to specialize at a much earlier stage, and in later life there
is little doubt who is the better educated.

Although I have always agreed with these comments I did not at the time fully
appreciate the real importance of their meaning.

Some 20 years later I read the cult novel Zen and the Art of Motor-Cycle
Maintenance by Robert Pirsig. This novel strongly influenced my thinking. In
the preambles to my PhD thesis I included the following extract:

the only real learning results from hang-ups, where instead of expanding the
branches you already know, you have to stop and drift laterally for a while
until you come across something that allows you to expand the roots of what
you already know.

Yet, I did not in any way relate, or connect, the latter quote with the ideas
expressed so concisely by Sir Graham Sutton in the 1962 edition. In fact it was
not until I reread the Foreword in the course of reconstructing the present text
that I realized that Sir Graham was really talking about an aspect of ‘lateral
thinking’, a concept often discussed in educational and research circles today.

The authors hope, and believe, that the tradition pioneered by Sir Graham
has been carried on in this newly constructed text, comprising three fundamental
courses in meteorology which have been taught to undergraduate students by the
authors in dynamic, synoptic and radiation meteorology. The authors are all
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internationally known in their individual fields. Not only is this author
diversity unusual in a book of this level, but diversity in content emphasizes
the importance of the contrast in motions between the southern and northern
hemispheres as determined by the differing sign of the angular velocity of
rotation of the planet relative to the observer.

I hope that this text will serve its purpose well.

Adrian Gordon
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INTRODUCTION:
UNITS AND DIMENSIONS

During the first part of the present century the term meteorology really meant the
study of all aspects of the atmosphere. But it tended to emphasize the weather in
allits variety of manifestations: the simple and the extreme, the sunny days we all
enjoy, the more extreme conditions we bear and suffer and swear at. The study
was particularly concerned with weather maps, or synoptic charts as they are
referred to by those who prepare and analyse them, and to forecasting the
weather using the weather map as a practical tool. The classic text in the early
days of the century was Sir Napier Shaw’s four-volume masterpiece Manual of
Meteorology, followed in the 1930s by Sir David Brunt’s Physical and Dynamic
Meteorology. Even in those comparatively early days the role of mathematics
was indispensable. Yet, it often seemed most difficult to follow the equations.
Meteorology was only taught at a few universities - Imperial College in London,
MIT (Massachusetts Institute of Technology) in the USA in the English-
speaking world, but it was also advancing rapidly in Scandinavia and other
European countries. It was mainly taught as a postgraduate specialist course
leading to Master and PhD degrees.

In the middle 1930s, in a time of recession and depression, meteorology
received a big boost. This was due to the demands of the rapidly expanding
airline industry, particularly in the USA. Jobs were offered to qualified
meteorologists to prepare flight weather forecasts for airline operations. A few
years later the outbreak of World War II intensified the demand for weather
forecasters. Training courses were established and filled by those who only had a
rudimentary background of mathematics and physical science. During the latter
half of this century the term meteorology tended to be displaced by the more
erudite term ‘atmospheric physics’ or ‘atmospheric science’. This transformation
was in part due to a certain elitism that meteorology was too much concerned
with weather maps and weather forecasting which, before the days of numerical
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prediction models, were thought by mathematicians and physicists to be a kind
of technical trade beneath their professional abilities. But in this work we will not
show disrespect to the original term, which is still useful when we wish to
subdivide the subject into more specialized fields of interest.

Thus a main field of interest here is called dynamic meteorology. The
word dynamic is used a great deal when it is desired to convey that
something has energy and movement. It is defined in the dictionary as
motive force, Thus, dynamic meteorology applies our knowledge of mathe-
matics and of physical processes to explain and describe the motions and
energy transformations which occur in the atmosphere to produce our
weather, and eventually, our climate. In turn it is convenient to subdivide
dynamic meteorology into headings which concern the thermodynamics and
the dynamics of the atmosphere. The former concerns the effect of the
influence of heat in its various forms on the vertical and horizontal structure
of the atmosphere while the latter concerns and describes the resulting
motions.

But we will also touch on synoptic meteorology. This heading covers the
scientific techniques used in forecasting the weather by means of the analysis
of synoptic charts of the surface and upper level patterns of barometric
pressure, temperature and humidity. A further subdivision is that of physical
meteorology which deals among other things with the heat budget, balancing
the short-wave radiation directly received from the sun with the long-wave
radiation emitted and received by the earth’s surface, by clouds and by the
atmosphere itself. This balance determines the mean temperature of our
planet.

Further branches of meteorology include mesometeorology, which covers the
study of meteorological processes and motions on a scale of the size of local
topographical or surface features or of thunderstorm or squall line size, and
micrometeorology, which covers processes and motions on the scale of a few
metres or even centimetres above the land or sea surface.

Finally, the heading which has a long classical history, but which has
recently undergone a rebirth to become the most important of all subhead-
ings, because it includes all, is climate. From its origins of presenting maps of
mean temperature and other observations for different parts of the world it
now embodies all of the physics and mathematics of the other branches in the
large numerical climate models which not only reproduce the actual climate
of the planet, but attempt to predict future climates within the broad concept
of ‘climate change’.

Once again, meteorology has a promising future. Now it is in the forefront
of discussion because it concerns the environment. The weather is part of our
environment. Climate change is in the minds of everyone because it directly
affects everyone. Hence the need for the scientific issues to be properly
understood. These issues all stem from the basic mathematical and physical
laws which govern our universe. These basic laws will be derived in an easy,
step-by-step manner and presented in the form of simplified mathematical
equations.
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In science generally, and in mathematics and physics particularly, it is most
important at all stages to keep track of the dimensions of the quantities being
manipulated. There are important practical reasons for doing this apart from
theoretical rigidity. For example, the reader may be finding the answer to a
problem which involves the derivation of a complicated set of equations. After
pages of work the state of the equations may seem to be leading to an impossible
solution. Rather than go back to the beginning and repeat all the operations a
simple check may be made of the dimensional value of each individual term and
expression on both sides of the equal sign in the equation. If any one term has a
dimension which differs from the remaining terms there is an error somewhere in
that term. The error can then be found more easily by tracking the earlier
development of that particular term.

In meteorology there are four dimensions of which the first three are
fundamental. These are usually denoted as

M mass
L length
T time

A fourth dimension appears in some physical quantities. It is denoted as

K temperature

The use of the capital letter K arises from the fundamental unit of tempera-
ture, the kelvin. The kelvin scale of temperature starts at 0K or absolute zero, at
which value there would in theory be a total absence of any heat energy in the
domain in which the temperature is being assessed.

All physical entities must have a dimension associated with them. Some
quantities, such as the ratio between two quantities having the same
dimensions, are non-dimensional or dimensionless. These are just pure
numbers.

Table 1.1 lists some of the more common quantities which occur in traditional
physics and therefore in meteorology, which is a branch of physics. The first
column gives the quantity, the second column lists the dimensions of the quantity
and the third column the method of expressing the numerical value of the
quantity, which we will discuss in the following section.

In order to understand the dimensions of the various quantities listed it is
necessary to appreciate the simple physical relationships such as

Force = mass x acceleration F = Ma
Pressure = force per unit area P = FA~!

Work = force x distance W =FL
Work = energy = heat W=E=H
Power = work = time P=wr™!

and other basic statements learned in elementary school physics.
We will now discuss the entries in the third column of Table 1.1.
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TasLE |.|1 Dimensions and units of quantities used in meteorology

Quantity =~ Dimension  Units(S)
Area"' - ‘ 2 3 ; " e :
Density o M/L3 S ke
Spedficvolume P 0 L !
Acceleration ot

_ dee: ot 0
"F"ré'svsqre’ e Py
Work o
Energy .
~Angular velocity rads!
Momentum - kgms™!
Divergence s
Vorticity g v
Power jol
Fréqdéncy cYcks o
Wavelength m
Lapserate Km!
‘Specific heat kg K
Latent heat: ke

In the past units have been defined in the c.g.s. or centimetre, gram, second
system. In this system the unit of force is the dyne, the force required to give a
mass of 1 gram an acceleration of 1cms™' s™!. The most commonly used unit of
pressure in this system is the millibar (mb) which is 1000 dynes cm™2. The unit of
work is the erg. In recent years the c.g.s. system has been replaced by the m.k.s. or
SI system (International System), in which the unit of force is the newton (N), the
force required to give a mass of 1 kg an acceleration of 1 ms™'s™!. The unit of
pressureis the pascal (Pa) whichis 1 N m 2. The unit of work is the joule. We will,
however, retain the unit of millibar in our discussions of synoptic charts and
upper air diagrams as this unit tends to be used more widely than kilopascals
or hectopascals (hPa). One hPa is numerically equivalent to 1 millibar so
nothing is lost by retaining the name of millibar. One watt is 1Js™'. We are
accustomed to think of a watt as a unit of electrical energy. Electric light
bulbs are labelled in watts, which measures their brightness, and is a guide to
the amount of electricity they use and so to the amount on the electricity bill
we have to pay. In meteorology and particularly in climate change sensitivity
studies we will find that the energy received from the sun is also measured in
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watts. This is an example of how different branches of science interrelate with
one another.

It is essential that all numerical quantities be labelled with their correct units.
An answer to a worked problem is not right unless it is expressed in the proper
units of measurement. The third column in Table 1.1 shows the manner in which
numbers should be identified by their units. If the units are correct so are the
dimensions.

The c.g.s. or, preferably, ST units must be used for all mathematical relation-
ships. Occasionally, for practical observational purposes, it may be more
convenient to use non-standard units such as knots for wind speed and degrees
Celsius for temperature. Degrees Fahrenheit and inches of rain are still widely
quoted in some countries.

Worked Example

You vaguely remember that the pressure ( p in Pa) of unit mass (1 kg) of a perfect
gas depends upon its specific gas constant (RinJ kg_1 K1), density (pinkgm ™)
and absolute temperature (T in K), but you have forgotten the exact form of the
perfect gas equation and now wish to reconstruct it!

Solution:
If [ ] denotes the dimensions of a quantity, then we have that
[p] =[force per unit area] = MLT 2L~2=ML~'T~?
[R]=ML’T M 'K !=L?T2K™!
[l =ML and [T]=K
Now suppose that the perfect gas equation has the form p = R9p"T°, where

g, rand s are to be found. Since the dimensions of each side of a physical equation
must be identical, it follows that

] = [RI"[oI"[TY

ML— 1 T—2 — MrLZq—3rT—2qKS—q

and hence that

Equating the indices of M yields r = 1,
of L yields 2¢q — 3r = —1, from which ¢ =1,
of T yields —2g = -2, from which ¢ = 1 (as above),
of K yields s — g = 0, from which s = 1.
It therefore follows that the perfect gas equation must have the form
p = pRT.
Note that this is not a physical proof of the perfect gas equation, for the latter
must be derived from Boyle’s and Charles’ laws.

1. What are the dimensions and units (SI) of

(a) wind speed
(b) the velocity of light
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(c) the rotation of the earth on its axis

(d) a kilowatt hour of electricity

(e) the logarithm of the absolute temperature (K)

(f) a number -

(g) salinity in the ocean

(h) the concentration of carbon dioxide in the atmosphere
(i) space

(j) the density of a ‘black hole’?

Note: In some of the above it may be convenient to express the answer also in
units of larger scale.

2. In micrometeorology (and aecrodynamics), it is assumed that the friction
velocity u, depends upon the stress 7 (in N'm~2) and the density p (inkgm™>)
in the fluid. Use variable dimensions to find a suitable relationship between
u,, 7 and p. [Hint: Suppose that u, = 77p’.]

3. Show that

(a) 1joule is equivalent to 10 million (107 ergs
(b) 1 newton is equivalent to 10° dynes
(c) 1 pascal is equivalent to 10dynescm™
(d) 100 pascals (1 hPa) = 1 millibar.

2

If you can easily master the transformations in problem 3 we may proceed to the
next chapter.



THE THERMODYNAMICS OF
DRY CLEAN AIR

The atmosphere is composed of a mixture of gases which in more popular
language is called air. It is made up of the entire body of gaseous substances
which cover our planet earth. The lower boundary is marked by land or liquid
water substances, the continents, oceans, lakes and rivers, and ice and snow
surfaces. The upper boundary extends into the fringes of outer space, but at great
heights the mass of the atmosphere is too small to be of consequence to our
weather. The region where weather occurs is the lower part of the atmosphere
distinguished by the important property that on a broad scale temperature
decreases with height. This region is called the troposphere and it is the region
which mainly concerns the meteorologist. Above the troposphere is the strato-
sphere which possesses the property that the temperature no longer decreases
with height, but remains the same (isothermal) or increases a little with
height, The discontinuity, or narrow zone, which divides the troposphere from
the stratosphere is called the tropopause. Upper air ascents which record the
temperature at different heights show a well-marked discontinuity at the
tropopause.

In the troposphere the mixture of clean air consists of approximately 78%
nitrogen and 21% oxygen by volume. The remaining 1% is made up of argon,
carbon dioxide, and other gases. The concentration of carbon dioxide (CO,) has
been increasing owing to human activities. When the first edition of this book
was published in 1962 the concentration of CO, was about 315 parts per million
by volume. It is now about 355 ppmv. CO, in these quantities is not in itself a
harmful gas, although an increase in concentration will probably eventually
cause a global warming. The magnitude of any such warming is at present a
question of some debate because of the compensating factors of clouds, and the
effect of aerosols (small particles) and of volcanic eruptions. Much more research
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is needed to give a reliable answer to the question of predicting a reliable increase
in mean temperature for the planet for the decades ahead of us.

However, we cannot be so easy on the release of other gases into the
atmosphere through human activities. Sulphur dioxide (SO,) reacts with water
(H,0) to form sulphuric acid (H,SO,), which falls out as acid rain. Carbon
monoxide, exuded from automobile exhausts, is lethal in quantity. Nitrous
oxide, methane, and the chloroftuorocarbons (CFCs) are other obnoxious gases
which are poured into the atmosphere. What appears as pollution in the
atmosphere is composed of particulate matter, small particles of soot (solid
carbon), sulphur compounds and other chemicals. In the last century, and up to
the middle of the present century, London was renowned for its ‘pea soup’ fogs,
caused by the burning of coal. These fogs smelled acrid and were harmful to the
human respiratory system. In December 1952 more than a thousand deaths were
attributed to a prolonged spell of such fog during a quiet period of anticyclonic
weather. In consequence laws were passed to prevent the burning of fuels which
caused such disastrous effects on the atmosphere and London became free from
the kind of fogs described in the opening page of Charles Dickens’ Bleak House.

However, the concentrations of effluent harmful gases are not large enough to
affect the broad-scale thermodynamics or dynamics of the atmosphere. There is
one other constituent of the atmosphere which must be mentioned at this stage,
and that is water vapour. Water vapour is also a strong ‘greenhouse gas’. Its
globally averaged concentration throughout the whole atmosphere is approxi-
mately 2.5 grams kg_l , that is about 0.25%, which is about one four-hundredth
of the total mass of air. It can be seen from the previously stated concentration of
CO, that there is on average seven times more water vapour than CO,. In the
surface layer in the tropics there is 45 times more water vapour than CO,. We will
discuss water vapour in more detail in the next chapter. However, in deriving the
thermodynamical equations we will consider clean dry air in the sense that it does
not contain any water substance, solid or liquid particles, but is composed
entirely of the elements mentioned above and listed in Table 2.1.

The method in which scientific knowledge is gathered has two components. The
first is observational. Observations of what happens in the natural world are

Table 2.1 Molecular weights and specific gas constants of components of dry air

o e

Mk

e dm
02318 6014
. ooig - D66

',‘0;5 0 S
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made, collected, and put in some kind of methodical order. Most observations
are made by some mechanical or electronic instrument or piece of equipment.
They may be made from observing the behaviour of the natural world or they
may be obtained from the results of artificially contrived experiments in
laboratories. The second component is analysis of the collected observations
and the search for a relation between individual observations within a space—
time framework; that is, within the dimensions defined in the previous chapter.
Such relationships may be called laws. Thus, it may be observed that objects
falling within a vacuum under the influence of gravity fall with a constant
acceleration which may be measured as g, about 9.8 m s>, From this result a law
may be postulated and this law may be expressed by a number of relationships,
that is by mathematical equations, such as

velocity = acceleration x time or — =gt

distance fallen = s = 1g7*

and so forth.

As we progress with our study of meteorology we shall find that there are a
number of laws which have been established as a consequence of observation
and/or controlled experiment. These laws, expressed as equations, govern all the
complex processes which occur in the atmosphere. They determine the con-
tinuous evolution of the weather, from the hour-by-hour development and decay
of cumulus clouds, to the changing patterns shown on daily weather maps and
satellite cloud images, to the seasonal changes of summer and winter and the
long-term evolution of the climate.

It is important that we understand the laws which are at work. This
understanding can best be attained by following the derivation of the
mathematical equations, or language, by which the laws are described. It is the
opinion of the authors that this approach is more rewarding than accepting an
equation on trust, just because it appears in print, or avoiding equations
altogether and simply accepting descriptive expositions of the dynamics. The
latter approach is not an acceptable alternative to a prospective career in
atmospheric science.

According to kinetic theory, fluids consist of millions of molecules moving
randomly and colliding often with one another and sometimes with the
molecules of their boundary. In the denser fluids, which are known as liquids,
the molecules take up a significant proportion of the space occupied by the
fluid and they are sufficiently close together (on the average) for the forces
between them to be easily called into play. At a certain critical distance, the
intermolecular forces between two molecules are zero but, at greater or lesser
distances, very large attractive or repulsive forces occur between the
molecules. Thus, if any attempt is made to compress or decompress a
liquid (i.e. to force the molecules closer or further apart, on the average),
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enormous intermolecular forces of repulsion or attraction tend to resist it and
the liquid is said to be almost incompressible.

In the less dense fluids, which are known as gases or vapours, the molecules
tend to be about 10 times further apart than in a liquid. They therefore take up
very little of the space occupied by the fluid and they are so far from one another
(on the average) that only very weak forces of attraction occur between
molecules over most of their random motions. As.a consequence of this, gases
and vapours are easily compressed. When a gas or vapour is so rarefied that the
proportion of space occupied by the molecules and the attractive forces between
the latter are negligible, we say that we are dealing with a perfect gas. Of
course, no real gas can be exactly perfect but, under natural conditions, the
mixture of gases which we refer to as air is sufficiently close to perfect for most
meteorological purposes.

Since even the behaviour of something as idealized as a perfect gas can only be
described by mathematics, we must now derive the equation of state for a perfect
gas, which is the first of a series of fundamental equations with which we
must become familiar. It involves three variables which we will call p, T, . The
notation T now signifies absolute temperature in K, and must not be confused
with the dimension of time, also denoted by T'. p is pressure in Pa, and « is the
specific volume. Specific volume is volume per unit mass. The symbol for density
is p. Thus,

a=1/p

The derivation of the equation of state for a perfect gas depends on combining
the results of two experimental laws. In science ‘laws’ or relationships between
variables must first depend on experimental observations. The first experimental
law we use is called Boyle’s law. It states that if the temperature (in K) is held
constant the volume is inversely proportional to the pressure. It merely says
that if the temperature is held constant and a gas is compressed by increasing the
pressure then the relation pa = constant is true for all stages of the process.
The second experimental relation we use is Charles’ law, which states that if the
pressure is held constant the specific volume is directly proportional to the
temperature. This law merely says that if the pressure is held constant and a gas is
heated, the gas will expand and the specific volume increase in proportion to the
increase in 7.

We now combine these two laws in the following manner:

pa = constant (2.1)
P10y = P20 = Pr0(p, T, (2.2)
The bracket under o, denotes that «, is at pressure p, and temperature 7.
Now, from equation (2.2) we know that
P1%p,.1)) (2.3)
P2

The above expression gives the specific volume at the original temperature T7.
The process was therefore carried out while maintaining a constant temperature.

Qp,,T)) =
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We now introduce Charles’ law which states that

T
— = constant
(87

2.4
T) _ %p1y) @4)
T, g,
Then
T\ag,T
a(,,z,Tl)=____]<j: ) (2.5)

The above relation expresses the specific volume at constant pressure p,. That
is, the process took place while keeping the pressure constant at p,. Equating the
two relations (2.3) and (2.5) we have

P&, 1)) — Tla(Pz»Tz)
)23 T,
Therefore
P _paoy
T, 7,
or
p_; = constant (2.6)

The constant may be determined experimentally by measuring the volume
occupied by unit mass of the gas at some selected pressure and temperature. It is
called the specific gas constant and is found to be 287J kg~ K~! for dry air. We
may now write the important relation

pa=RT (2.7)

Equation (2.7) is known as the equation of state of a perfect gas, referred to as
the equation of state. However, in using Charles’ law to derive the equation of
state it is important to recognize that the law only holds in the form of (2.7) for
those ranges of temperature and pressure for which the substance is in a gaseous
state. If, for example, the temperature is decreased beyond a certain limit the
gaseous state of a gas will be transformed to a liquid or solid state, for which the
equation of state is not valid. The best example of this is water, which freezes to a
solid state (ice) at atmospheric pressure (about 1013hPa or mb) at approxi-
mately 0°C, and boils at atmospheric pressure at about 100°C. Students will be
familiar with school experiments with liquid air, and everyone is familiar with
‘dry ice’ or solid carbon dioxide.

Equation (2.7) is the general form of the equation of state. For the case of dry
air it becomes

pa=RyT (2.8)

The equation of state is one of the basic equations used throughout
meteorology. The derivation we have worked through here is rigorous, but it
may seem a little complicated for the first mathematical relation developed.
Succeeding derivations will in many cases be simpler than this first one.
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Worked Example
What is the density of a sample of dry air at the 500hPa level if the
temperature is —20°C? Note that we will denote the gas constant for dry air as
R in the examples.

Solution:
The equation of state is
pa=RT
_r
P=RT
500 x 100 3

Remember that 1 mb (hPa) is 100 Pa, where 1 Pa is the unit of pressure in the SI
system. Pressure must always be expressed in equations in this way.

We have so far used two experimental laws, Boyle’s and Charles’, to derive a
mathematical relation, the equation of state. Another law which has been
established by experiment and observation was formulated by Avogadro. He
found that the molar volume of a gas at the same pressure and temperature was
the same for all permanent gases. The molar volume is the volume occupied by a
mass of gas equal to unit mass multiplied by the molecular weight of the gas.
Thus a 1 gram molecule is m grams where m is the molecular weight. The molar
volume is dependent on the pressure and temperature and so, multiplying both
sides of (2.8) by m,

pma=mRyT =R'T (2.9)
But ma = V, the molar volume (« is the specific volume, i.e. volume per unit
mass) which is the same for all gases. We will let mR = R™ where R” is called the

universal gas constant and is 8313.6 Jkg~! mol K™!. Substituting for R in (2.7)
we obtain the form

(2.10)

A fourth law based on experiment is known as Dalton’s law of partial pressures.
It states that in a mixture of perfect gases each gas completely occupies the
volume; each gas obeys its own equation of state; and the sum of the partial
pressures of each individual gas equals the total pressure of the mixture.

If there is a mixture of different gases such that ¥ cubic metres contains M; kg
of one gas, M, kg of a second gas and finally M| kg of another gas which have
molecular weights m;,m,,...,m, and specific gas constants Ry, R,,..., R,
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where each R, = R”/my, then Dalton’s law states that each constituent gas will
obey its equation of state as though the other constituents were not present. If the
partial pressures are py, p, ..., Ps

ka:MkRkT k=1,2,...,S (211)

> p=p

Summing the above equation, (2.11),

and

k=s

pv => MRT
k=1

If M denotes the total mass of the mixture and R is chosen such that

k=s
MR = M R, (2.12)
k=1
then
pV = MRT
pa = RT

which is the same as (2.7).

Thus, if R is defined as above, a mixture of perfect gases will have the same
equation of state as one perfect gas by itself. Formula (2.12) states that R is
simply a weighted average of all the R;, each R; being weighted according to the
mass of gas M present in the mixture.

A value for the specific gas constant for dry air may be obtained by considering
the molecular weights and specific gas constants of the constituent gases shown
in Table 2.1. The gas constants for the different gases in the atmosphere are
found from the relation stated in the previous section, Ry = R™/ny.

It is seen that the sum of the M R, values is 287 approximately. We may then
define the molecular weight of dry air by use of the formula mR = R* which was
obtained from (2.9):

R* 83136
=—=——-=12897
M4 =Ry T 2870
With this definition equation (2.8) may be used for dry air just as for any
hypothetical perfect gas of molecular weight my. In particular, we may consider a
mixture of dry air and water vapour as a perfect gas, using the value of R
appropriate to the mixture.

When a material particle under the action of a force F moves through the
distance ds in the direction of the force, the element of work dW done by the
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FiIGURE 2.1 Definition of work.

force is F ds. When the direction of movement makes an angle ¢ with the force,
only the displacement dscos@ in the direction of the force contributes to the
work, and the element of work

dW = Fdscosé (2.13)

We may consider the case of the amount of work done by a gas which expands
against its environment (Fig. 2.1). In considering an element of compressible
fluid such as a gas the force F = p d4 where d4 is an element of area upon which
the force is acting. The pressure p is the force per unit area exerted by the fluid
element on its boundaries.

Then

dW =pdAdscosf =pdV (2.14)

dV is the element of volume swept through as the element of boundary area d4
moves through ds to d4’. dW is thus the element of work done by the parcel of
gas as it expands its boundary from d4 to d4'.

The sign convention is that if work is done on the environment by the parcel
dW is positive. If work is done by the environment on the parcel dW is negative.
The environment is the mass of fluid surrounding the parcel under consideration.

0 do

AN

O w———e———

FiGURE 2.2 Path of an elementary process.
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Now the state of a gas may be represented by means of a diagram with
coordinates a, p in which pressure decreases upwards along a linear scale. We
may follow on this diagram the elementary processes by which the gas changesits
state as defined by successive pairs of values «, p. Each point on the diagram
represents a unique state.

Any change of state from a, p to o+ da, p+dp is called an elementary
physical process. A finite process is composed of a succession of elementary ones
and can be represented on the diagram by a continuous line, the path of the
process. Suppose that a perfect gas changes its state from that represented by
point C to that represented by point E in Fig. 2.2 by way of the various states
represented by all the points of which the curve CDD'E is composed.

In Fig. 2.2 the element of work dw = p da from (2.14), for unit mass of the gas.
This equals the area of the shaded strip. The width of the element da is, of course,
very small compared with the length of the strip.

Then w = fg pda for the whole process represented by the path CDD'E;
it is equal to the area bounded by the curve CDD'E, the specific volume
isopleths through C and E, and the upper boundary of the diagram, where p
is considered to be zero.

Figure 2.3 shows a cyclic process, so called because the gas eventually returns
toitsinitial state by way of a cycle of different states. Negative work is done on the
return path EGC since the element is being compressed and work is being done
on it. In this case the area bounded by the curve EGC and the upper boundary,
representing the negative work, must be subtracted from the total area above
CHE, representing the positive work, to obtain the area equivalent to the work
done by the element. This area is that enclosed by the cyclic curve CHEGC. Thus

W=?{pda=A (2.15)

where the integration is performed around the closed path, and A is the area
enclosed.

— o m o - - o

a——-——

FIGURE 2.3 Path of a cyclic process.
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T=T,
T=T,+dT=T,
4
* A B T=T,+dT=T,
C

FiGURE 2.4 Curves of state.

From the equation of state pa: = RT there must be a different curve of state
for each temperature as shown by the appropriate isotherm.

Suppose it is desired to heat the system in Fig. 2.4 from temperature T; to
temperature 75. This can be done in an infinite number of ways. The process AB
is isobaric (constant p) while the process AC is isosteric (constant «). It is noted
that no work is done in the isosteric process. The process BC is isothermal
(constant 7).

Worked Example
How much work is needed to lift 1kg of dry air from 1000 mb (hPa) to 900 mb
(hPa) if the temperature throughout the 1000-900 mb layer is 10°C?

W= ?{ pda
We can find this as follows.
Differentiate the equation of state

pda+adp=RdT =0

Solution:
Work is defined as

since the temperature remains constant. Integrate between the required limits

900 900 d 900
/ pdaz/ —RT £ = _RT [logp]’%,
1000 1000 P

W =287 x 273 x log (1.111) = 8479J

Heat must not be confused with temperature. Temperature measures how hot a
substance is on the kelvin scale. The temperature may range from absolute
zero to millions of degrees in the centres of hot stars. Now it is observed that
when two substances with different temperatures are brought into contact with
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one another the warmer substance gets cooler and the cooler substance gets
warmer. Heat is a form of energy and may be converted to work. It is therefore
expressed in joules. In the old c.g.s. system the unit of heat is expressed as a
calorie, which is defined as the amount of heat required to heat 1 gram of water
from 14.5 to 15.5°C. One calorie equals 4.185 J. In the m.k.s. system it therefore
takes 418517 to heat a kilogram of water 1°C. If dT is the change in temperature
of a mass of a substance and dQ the amount of heat required to effect the change
then dQ/dT is defined as the heat capacity of the substance. If dT"is the change in
temperature of unit mass of a substance, say 1kg, then dg is the amount of heat
imparted to unit mass of the substance to effect the change. dg/dT is defined as
the specific heat of the substance. Its units are Jkg™' K"

The first law of thermodynamics states that mechanical energy or work and heat
are equivalent to each other and so may be converted from one form to the other.
In a classical experiment in 1849 Joule produced heat by churning water. He
found the relation that 1 calorie = 4.185J as already stated. As for Boyle’s law,
Charles’ law, Avogadro’s law and Dalton’s law we establish a new law as a result
of a physical experiment in the laboratory. It is expressed

dQ = dU +dw (2.16)

This is a fundamental relationship in dynamic meteorology. We have already
defined dQ and dW. The quantity dU remains to be defined.

U is the internal energy of the system and dU represents a change in that
internal energy. U is a measure of the random molecular excitation and can be
shown to be dependent only on temperature. The relation (2.16) states that an
amount of heat added to or subtracted from a substance is used partly in
changing its internal energy and partly in doing work against external pressure
forces.

If (2.16) is divided by the mass of the system we obtain

dg =du+dw (2.17)

and this relation refers to unit mass of the system, where lower case letters have
replaced capitals in our notation.
One may also write (2.17) in the form

dg=du+pda (2.18)

The amount of heat required to change the temperature of a gas by any amount
depends on the conditions under which the change takes place. If the gas expands
during the warming some of the heat supplied will be used to do work on the
environment and so more heat will be required to warm the gas by the specified
amount than if the gas were at constant volume. Each process curve between T
and T; in Fig. 2.4 represents a different specific heat. Of the infinite number
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which are possible those represented by the processes AB and AC are of special
interest. The latter specific heat is at constant volume and the former at constant
pressure. Thus:

1. specific heat at constant volume

dg
== 2.19
o= (). (2.19)
2. specific heat at constant pressure
dg
¢ = (ﬁ)p (2.20)

Now if the process is isosteric, that is if it takes place at constant volume, (2.18)
becomes

dg =du (2.21)
dg du
(dT)L. =37 = (2.22)
Thus,
du = ¢, dT (2.23)
and
dg =¢,dT

It is seen therefore that for an isosteric process all heat added to or taken away
from a system goes to increase or decrease the temperature. If the process is not
isosteric (2.18) becomes

dg = ¢, dT + pda (2.24)
This is the energy equation for a perfect gas.
If we differentiate (2.7), for a perfect gas
pda+adp=RdAT (2.25)
and substituting in (2.24)
dg = ¢, dT + RdAT — adp (2.26)
Now consider an isobaric process; dp = 0 so that (2.26) reduces to
dg = (c, + R)dT

or

dg\ _
(ﬁ)p_ &+R=c¢, (2.27)

which is known as Mayer’s Formula. ¢, must be greater than c, since any heat
imparted to a gas at constant pressure must be used to expand the gas against the
environment and thus do work as well as increase its temperature. The values of
the specific heats for dry air are found to be

¢, =717Jkg ' K™!
¢, =1004Jkg ' K™
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Worked Example

The air in a room of 100m? and ceiling 5m from the floor is at a pressure of
1000 mb (hPa) and temperature 0°C. How much energy would be required to
heat all the air in the room to 20°C?

Solution:

The volume of the room is 500 m®.

The density = p/RT = 1.276kg m~?

The total mass is 500 x 1.276 = 638.15kg.

Heat = 638.15 x 20 x 717 = 9.15 x 10°J
Equation (2.24) may be written in the form
dg = (¢, — R)dT +pda
or from (2.25)
dg = (¢, —R)dT + RdT — adp
from which
dg=c¢,dT — adp (2.28)
If we divide (2.24) and (2.28) by T
%_ ¢, dT  pda cpdT_ adp

T T T T T (2.29)
whence it follows that from the equation of state (2.7)
%:cvdT Rda:cpdT_de (2.30)
T T o T p
and
dg _ d(InT%a®) = d(In Tp~R
T p ) (2.31)

To obtain an expression for dg/T which does not involve temperature the
equation of state may be differentiated logarithmically, giving

dp da dT

ota T (2.32)
From (2.32) we can substitute for d7°/T in (2.30). Then
d dp d d
dg _ Cv(_lq_a) - SN PSP SR
T o o o 4
d
7" = d(Inp®a) (2.34)

The expression dg/T is of considerable interest. It represents the change in the
entropy of the system per unit mass. It is discussed further in Section 2.12, but for
a full discussion of entropy the reader should refer to a standard textbook on
thermodynamics.
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If there is no exchange of heat between a system and its environment the

dynamical process by which a perfect gas is heated by compression or cooled

by expansion is called an adiabatic process. The gain or loss of heat to the system

in an adiabatic process is caused by the loss or gain of energy due to the work

which has been done by the environment on the system or by the system on the

environment as the system is compressed or as it expands, respectively.
Equation (2.17) may be written '

dg=du+dw=0
and thus
¢, dT +pda=0 (2.35)

We may set all the relationships in (2:30) and (2.33) and in (2.31) and (2.34) equal
to zero. Thus,

dg dr da ar dp dp do
o o ——_RE=-X —=0 2.36
T c1T+Ra o Rp c1p+cpa (2.36)

and
d—;,] =d(InT%a®) = d(In T%p~®) = d(Inp~a?] = 0 (2.37)

Integrating (2.37), we obtain
T*o® = constant
Tp R = constant (2.38)
p“a’ = constant

Equations (2.38) represent the various curves of state of different adiabatic
processes, as determined by the initial conditions for p, o, T. Let us define

R

—=kK (2.39)
Sp
and
p
—=n (2.40)
Cy
Then, from (2.38),
T = constant (p®/) = constant (p") (2.41)
and
p = constant (o~%/*) = constant (a )
or

@

pa’ = constant (2.42)
The values of « and 7 for dry air are
Kk = 0.286 n = 1.400
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Equation (2.42) represents the family of adiabatic curves on an «, p diagram;
when 1 = 74 the curves are called dry adiabats. Each point on a dry adiabatic
curve represents a temperature. The adiabatic lines are labelled according to the
temperature at the point where the curve intersects the 1000 mb isobar. This
temperature is called the potential temperature and it is denoted by 6. We may
define the potential temperature, therefore, as the temperature assumed by a
parcel of air when that parcel is expanded or compressed adiabatically to a
pressure of 1000 mb. A value of the potential temperature therefore defines a
given adiabatic process, and conversely for any adiabatic process the potential

temperature must be constant.
P (2]
T, 2

Thus, from (2.41),
If p, = 1000 mb and T, = 6, the potential temperature, as defined above, is
1000 Y°
=T —= .
0 <p (mb)> (2.43)

Equation (2.43) is sometimes called Poisson’s equation.

The potential temperature of a parcel of dry air at any pressure and
temperature ( p, T') can be calculated from (2.43), where k = «gq.

If we differentiate (2.43) logarithmically it follows that

d9_dT_xdp_dT_Rdp

7 T 5 T (2.44)
Multiplying by ¢,
dé dT dp
CPW——- CPT—R? (245)
Comparing this with (2.30) we get
d dé
== ¢y =d(c,In6) (2.46)

If dg = 0 then df = 0 and @ = constant. It is already known by definition that
the potential temperature is constant for an adiabatic process.

Worked Example
If the temperature at 500 mb (hPa) is —20°C, what is the potential temperature of
a parcel of air at that level?

Solution:

1 K
0= T(——Q;g) =253 x 29286 — 308.7°K = 35.7°C

It is seen from (2.31), (2.34) and (2.46) that the term dq/T is equal to a total
derivative of an expression which defines a state of a gas. The term dgq/T is thus
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called a differential of a function of state of a gas. If

_dqg
dop =1
d
¢ = / 7{] + constant = / d(c,log ) + constant (2.47)

¢ = c,logd + constant

The quantity ¢ is called specific entropy. It is seen that ¢ increases or decreases as
heat is absorbed or removed.

For adiabatic processes dg = 0 and ¢ = constant. Consequently adiabatic
processes are often called isentropic. Isentropic synoptic charts are sometimes
constructed. They are composed of contours of the heights of a selected
surface of constant potential temperature above mean sea level (m.s.l.), or of
isobars giving the pressures on such a surface. An isentropic process must be
reversible.

The quantity entropy is somewhat abstruse and often discussed in physics
and in cosmology (e.g. see A Brief History of Time by Stephen Hawking). It is
sometimes described as a measure of disorder of the universe. However, in
meteorology we will not delve into such esoteric concepts but only concern
ourselves with the physical meaning of the formulae for dg/T.

Isentropic analysis, which is actually analysis using lines of equal potential
temperatures (from equation (2.47)) is particularly useful in tracking air masses
as air tends to follow the dry adiabatic lines of constant potential temperature;
that is, if the air moves up or down it will cool or warm at the dry adiabatic lapse
rate and air parcels may therefore (in theory, assuming no diabatic or non-
adiabatic heating) be followed. The amount of warming and/or cooling which
occurs as the air moves up or down the dry adiabats may be determined from
reading the temperature at the intersection of the lines of constant potential
temperature and the isotherms on an aerological or upper air diagram. This will
be the subject of the next chapter.

What are the units and dimensions of the specific gas constant Ry?
Equation (2.6) was derived using Boyle’s law and then Charles’ law. Derive
(2.6) using the opposite sequence, that is Charles’ law and then Boyle’s law.
3. The pilot of an aircraft flying from Miami to Montreal in winter wishes to
know the air density for takeoff at the two terminals. At Miami the surface
pressure is 1000mb (hPa) and the temperature 30°C. At Montreal the
surface pressure is 1040 mb (hPa) and the temperature is —20°C. At what
pressure over Montreal would the density be the same as at Miami, assuming
there was no change of temperature with height at Montreal?
4. Find the amount of work performed in lifting a kilogram of dry air from
1000 hPa to some level where the pressure is p, if the potential temperature is
constant throughout the layer.

N —
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5. Using the mass—energy equivalence equation E = me?, how much would
1 kilogram of mass warm the global atmosphere if the heat was uniformly
distributed? Assume an average m.s.l. pressure of 1000 hPa.

6. Two parcels of air are at 1000 hPa and 10°C. One undergoes an isothermal
process and the other an adiabatic process. What is the ratio of their
densities at some higher level p? What is the ratio of the two constants in
the relations pa: = constant and pa” = constant?



THE AEROLOGICAL DIAGRAM

The thermodynamic or aerological diagram is an indispensable tool to the
meteorologist in the analysis of the temperature and humidity structure of the
column of air above us. The diagram can be used not only to explain and predict
sky conditions on quiet days when the pressure distribution on the weather map
is flat, when convection may take major control of the weather, but also on less
settled days, as long as an upper air ascent is available within the air mass which
is predicted to be overhead at the time it is desired to know the weather and state
of sky. The diagram can assist in the prediction and breakup of clouds, and
in estimating cloud amounts, cloud bases and tops, and whether showers or
thunderstorms are likely to develop or not. It is also particularly useful as a
tool to assist in the prediction of the formation and the morning clearance of
radiation fog.

The aerological diagram is simply a graph upon which observations of
temperature, pressure and moisture content are plotted. Various lines are
constructed from theoretical equations and drawn as a permanent backing to
the diagram. When curves of the actual temperature and moisture from a given
upper air radiosonde or aircraft ascent are plotted and compared with the
background lines certain conclusions may be drawn about the vertical structure
of the atmosphere. The diagram may look complicated at first because it seems to
have so many lines on it, but it is actually quite simple and this will become
apparent after some simple plotting exercises are done, perhaps with the current
day’s upper air ascent obtained from a nearby airport or weather office.
Current weather is like today’s newspaper: up to date and usually having
some points of special interest.

There are several different kinds of aerological diagrams. The simplest is
probably the pressure, volume ( p, ) or Clapeyron diagram. It is not a suitable
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one for practical use since one of the coordinate axes is specific volume. This is
not a quantity that can be physically measured by a radiosonde transmitting
instrument during its balloon flight into the troposphere, although it can be
derived from the equation of state. If one were to draw a ( p, &) diagram with an
eye to meteorological use it would look like Fig. 3.1. Since potential temperature
is conserved in an adiabatic process, the adiabats or isentropes can each be
labelled with a particular value of 4.

The figure exhibits several disadvantages of the (p, ) diagram. In the first
place, both the isotherms and the adiabats are excessively curved, and in the
second place, the angle between them is not very great, considering the wide
difference in character between isothermal and adiabatic processes. The diagram
has one advantage, however, in that it is an energy diagram in the sense that area
on it represents work or energy per unit mass. We will look at the criteria that are
needed in the design of an aerological diagram:

(a) The abscissa (x axis) should be temperature, if possible.

(b) The ordinate (y axis) should be a function of pressure, chosen so that it is
also approximately a height coordinate.

(c) If some function of pressure is not chosen for the ordinate the resultant
isobars should at least not be too curved or crowded together.

(d) The diagram should be an ‘equal-area’ diagram, in the sense that area is
proportional to energy/unit mass, although slow changes in the ‘constant’
of proportionality over the diagram can be tolerated for the sake of other
desirable features.

(¢) The adiabatic process for dry air should be well represented, that is the
dry adiabats should be fairly straight and nearly perpendicular to the
isotherms.

Since temperature and pressure are directly measured in both surface and
upper air meteorology it is not surprising to find that most meteorological

0 o

=

T = 0 on this isobar

1000 hPa
Ficure 3.1 Schematic form of the ( p, @) or Clapeyron diagram.
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diagrams are based upon the variables 7" and p. We will therefore briefly discuss
the merits or otherwise of the (T, —p®), (T, —p) and (T, —log p) diagrams, where
log of course denotes the natural logarithmic function In.

All of the above satisfy criteria (a) and the first part of (b). However, the
(T, —logp) diagram is the only one which satisfies the requirement that the
ordinate be approximately a height scale. Let us now determine which of
the diagrams (a)—(e) has the ‘equal-area energy property’ mentioned in (d).

In the case of isothermal heating, that is the addition of heat energy to a
kilogram of dry air, while holding its temperature constant, the last expression
on the right hand side of (2.30) reduces to

dg = —RT%'Z (3.1)

and it is easily shown (problem 2) that the latter can take the alternative forms

C
dg =22 Td(—p"
9= (=p")
R
dg = > Td(-p) (3.2)

dg = RT d(—logp)

Since T d(—p"), Td(—p) and T d(—logp) all denote elements of area upon
diagrams possessing these coordinate axes, it is clear that the scale factors
between area and energy per unit mass are respectively proportional to c,/p",
R/pand R. Only the (T, —log p) diagram has the ‘equal-area’ property (since Ris
a constant and p is a variable). However, since k = 0.286, the change in scale

'—loge p (mb)

1007—

Isotherm

&

1000 o T

FIGURE 3.2 Schematic form of the (T, — logp) diagram.
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factor with respect to p over the (7', —p®) range is sufficiently slow to be tolerable,
so the diagram is sometimes used and is known as the Stiive diagram.

Apart from the fact that the Stiive diagram alone has straight adiabats the dry
adiabats are not very well represented on any of the above diagrams, mainly
because they do not intersect the isotherms nearly at right angles. As an example
of this see the schematic version of the (7', —log p) diagram in Fig. 3.2.

From the above discussion it is clear that the (7', —logp) diagram satisfies
more of the criteria (a)—(e) above than the other two diagrams. For this reason it
is quite popular for displaying the results of radiosonde ascents and for
computing the heights of various pressure levels. In Europe, the diagram is
often known as the Viisdld diagram while in North America it is called the
Emagram (energy per unit mass diagram).

In Australia the Commonwealth Bureau of Meteorology uses theskew (7', —log p)
diagram or Herlofson diagram. The only difference between it and the (7', —log p)
diagram is that the temperature axis is skewed a further 45° from the —log p axis
to make an angle of 135° with the latter. This transformation allows the dry
adiabats to intersect the isotherms at an angle close to 90°. The adiabats are
slightly curved. The properties of the skew (7', —log p) diagram are quite similar
to those of the tephigram, the diagram used by the British Meteorological Office.

If we wished to design a meteorological diagram in which the distinction between
the two limiting processes for dry air, namely the adiabatic and isothermal

log 0

|

Isotherm

Dry adiabat

6,=Ty
at 1000 mb

Ficure 3.3 Schematic form of the tephigram.
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processes, is best exhibited, then we would probably choose both the adiabats
and the isotherms to be straight lines and we would insist that they intersect
everywhere at right angles. Such requirements can in fact be satisfied if we retain
temperature as the abscissa of our diagram but take the entropy of 1 kilogram of
dry air to be the ordinate. This gives rise to the so-called temperature—entropy
diagram, which is widely used by meteorologists, as well as by engineers in
non-meteorological contexts. We saw in the last chapter that in equation (2.47)
entropy was denoted by the Greek letter ¢, and that ¢ was proportional to the
logarithm of the potential temperature, denoted by 6. In view of these symbols it
is not surprising that a diagram constructed with the axes just mentioned should
be called a T—¢ gram or tephigram.

Figure 3.3 shows a tephigram in schematic form. Figure 3.4 is a replica of the
main working area of the diagram as it is used in practice. The axes have been
rotated so that pressure and height are represented as nearly as possible along the
vertical. Such an orientation of axes is useful since relative height can be judged
at a glance. The pressure lines slope very gently to the right. The isotherms slope
upwards at an angle of about 45° to the right and potential temperature lines or
dry adiabats at about 45° upwards to the left.

-70° -60° -50° -40°
d
l"
200 mb 4 4
A R ,—30°
0' l‘
ll
300 mb A ) Y / ,—20°
: - -10° e
400 mb | X \ s
. ,‘ 4 4
. 4 \ 10°
500 mb- o R4 'l
*, L4 ' P

l‘ ’I' o'
600 mb 4 ) ) o' ": \:/ ’,:’200
700 mb 1 02
800 mb N
900 mb 1

1000 mb 4

FiGure 3.4 Replica of the main working area of a tephigram.
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The lines of equal pressure are labelled in mb (hPa) at the left hand side of the
diagram. The isotherms are labelled in degrees Celsius. The mixing ratio lines are
the dotted lines and they are labelled in gkg ™! of water vapour (see next chapter).
The dry adiabatic lines of constant potential temperature which slope upwards
from right to left are not labelled but they may be designated by the value of
the temperature at the intersection with the 1000 mb (hPa) isobar. Finally, the
saturated adiabats are shown by the heavier curved lines. These lines are not
labelled but their value may be designated as for the dry adiabatic lines of
constant potential temperature. These lines will also be discussed in the next
chapter.

It will be noted that the origins of T and ¢ are well off the diagram. Figure 3.3
only shows a small portion of the full theoretical diagram, but it covers the
ranges of variables occurring in the lower atmosphere.

From (2.45) and (2.46)
dT dp
d(Cp 10g0) = CPT — R?
The equation of an isobar is then
dr
d(c,logb) =c,—

¢, log 6 = ¢,log T + constant
or

lo o _ constant
g T

The equation of a dry adiabat is already given in (2.43).

It is clear from (2.15) that the work performed in a cyclic process can be
represented on an { p, &) diagram by the area enclosed by the path of the process.

From (2.17)

]{dq:fdu—i—?{dw
=7{cl,dT+fdw

]{cl,dT =0 since cl.]{dT =0
because there is no change in temperature around a closed path. The integral

around a closed path of an exact differential representing a function of state must
be zero. The reader should refer to a textbook on calculus for a rigorous proof of

this theorem.
%dq = %dw (3.4)

but

Thus
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%dq:?{Td(cplogG)
%dw:}{Td(cplogO)

w= }{ T d(c,logh) (3.5)

and w = 4 where 4 is an area on the tephigram, since T d(c, log#) is obviously
an element of area on the tephigram. Thus the work performed by a cyclic
process can be represented by the area enclosed by the path of the process on a
tephigram. The application of this concept will be discussed in greater detail in a
later chapter. It has an important bearing on the use of the tephigram and other
diagrams since it enables a calculation to be made of the potential thermo-
dynamic energy of the air above us. This has come to be known by the acronym
CAPE (Convective Available Potential Energy). It is represented by an area on
the diagram produced by a cyclic process like that described by equation (3.5). It
is this particular feature of the diagram that enables the weather forecaster to
predict showers, thunderstorms, the breakup of radiation fog and low stratus
cloud. But to do this we must first study the properties of water vapour and the
behaviour of moist air, that is the mixture of dry air and water vapour. We will
discuss this subject in the next chapter.

and from (2.46)

Thus

1. Which equations enable us to plot values of 7" and 4 all over a Clapeyron
diagram and hence to construct isopleths of temperature and potential
temperature on the diagram?

2. Show that dQ = (c,/p")T d(—p~) reduces to dQ = —RT (dp/p).

Why are the isobars on a tephigram not straight lines?

4. The station-level pressure at Adelaide Airport is 1020 mb at the same time as
a barometer nearby at Mount Lofty Lookout reads 950 mb.

w

(a) Assuming that dry air, which has a temperature 0f 26.5°C at the Airport,
flows rapidly from there to the Lookout without undergoing any
diabatic (i.e. non-adiabatic) heating, find the temperature which it
would have at the Lookout.

(b) Assuming that this air then flows adiabatically into a valley where the
pressure at the valley floor is 980 mb, what would you expect the
temperature in the valley to be?

5. Itis perhaps not immediately obvious that the skew (T, —log, p) diagram is
an ‘equal-area’ energy diagram and a rather neat geometric proof of this is as
follows. Take a tephigram and dissect it into a large number of infinite-
simal isothermal strips. Slide these strips parallel to one another until the
isobars are straight lines (in the limit of finer and finer dissections). Since
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the ‘equal-area’ energy property of the original tephigram is preserved
under this transformation and the latter transforms a tephigram into a
skew (T, —log,p) diagram, it follows that the skew (T, —log,p) diagram
is itself an ‘equal-area’ energy diagram.

Piot the following points on an aerological diagram:

e p=1000mb, T = 15°C
e p=500mb, T = -21.2°C
e p=220mb, T = —56.5°C.

Obtain a current (or recent day’s) upper air ascent from your nearest major
airport or weather office. Plot the temperature and pressure for each pair of
coupled readings. Describe the curve.



THE THERMODYNAMICS OF
MOIST AIR

In the previous chapter our considerations have been confined to perfect gases
and subsequently to a mixture of perfect gases which is known as dry air. In the
atmosphere air is never completely dry. It may be relatively dry over deserts and
at very high altitudes but there is always some water vapour in it. The continuous
evaporation of water into the atmosphere from the vast oceans and inland waters
as well as from the ground and from vegetation is the source of all the clouds and
varied forms of condensation and precipitation which go to make up the weather
and climate of our globe.

Water vapour is a gas which behaves in the same way as other gases. It obeys
the various laws which we have already discussed. It is a constituent of the
earth’s atmosphere and obeys Dalton’s law in the same way as the other gaseous
constituents. However, a substance behaves according to the various gas laws
just as long as it is in a gaseous phase and does not liquefy or solidify.

Water substance, however, does liquefy and solidify within a range of
temperatures which commonly occur.

Now only a certain amount of water can exist in a given volume in the
gaseous phase. This amount varies according to the temperature. Thus, if water
is injected into a vacuum of given volume it will at first evaporate and exert a
vapour pressure e. After a while, if further water is injected, the additional water
will not evaporate and the vapour pressure e will remain constant. Any further
water which may be injected will remain in the liquid state. The space is then said
to be saturated and the pressure e of the vapour at the point when it no longer
increases, that is when evaporation ceases, is the saturation vapour pressure.
This saturation vapour pressure e, varies according to the temperature. It is, in
fact, a function of the temperature only and increases with the temperature.

The reason is that at higher temperatures the molecules of water at the surface
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Ficure 4.1 Curve of state of water vapour at 300 K.

of the liquid are moving more rapidly and more of them overcome the attraction
exerted on them by other molecules in the liquid state. These then escape into the
less dense gaseous state.

A vapour whose pressure is less than the saturation vapour pressure is said
to be unsaturated and if brought into contact with its own liquid, the latter will
evaporate until it has all gone or until the vapour has reached the saturation
pressure, or in other words, until the space occupied by the vapour has become
saturated.

Suppose now we have a cylinder containing a perfectly fitted piston. Let the
cylinder be filled with vapour and let it be unsaturated. Let the system remain
at a constant temperature 7', say 300 K. Now compress the gas by means of
the piston. The path of state of the water vapour will then be observed to follow a
curve as shown in Fig. 4.1. The first effect of an increase in pressure will be a
decrease of volume. This occurs along the path AB. At B the water vapour
reaches the saturation vapour pressure and it starts to condense; any further
compression by the piston will cause the remaining water vapour to condense to
liquid water. The volume in the cylinder thus decreases without any further
change in the vapour pressure e,. C represents the stage of the process where all
the vapour has condensed to water, which is virtually incompressible, so that
further compression by the piston does not change the volume significantly.

The above curve of state will be observed if the system is at about 300K.
Different curves will be observed for other temperatures. We may draw a
diagram showing the state of water in all its phases, solid, liquid and gas at all
temperatures. Such a diagram is shown in Fig. 4.2. The diagram is divided into
regions showing the states of vapour, combination of water and vapour,
combination of ice and vapour and water only. At very high temperatures the
water vapour never condenses, however great the pressure, and the curve of state
is similar to that of a perfect gas. This occurs for isotherms T > T.. The value T
is the temperature at which the vapour stage touches the water and vapour stage.
T, is called the critical temperature. The critical pressure e, is the highest pressure
at which liquid water and water vapour can exist in co-equilibrium.
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e
L)
e
]
= T>T,
and vapour
T=T,
A T, <T<T,
T Ice T=T,
/ and vapour T<T,

FIGURE 4.2 State of water in its three phases.

The critical specific volume « is the value of « observed at ¢, T.. The state
e.. o, T, is called the critical state. The values are

B ¢, =221 000 hPa = 218 atmospheres
m 7. =647K
mo.=31x10"mkg™ L.

At lower temperatures a state of coexistence between liquid water and
saturated water vapour occurs within the region bounded by ABC. Further
compression causes all the vapour to condense and the total liquid phase occurs
to the left of AC. When the temperature is reduced sufficiently a value is reached
where the water freezes. The temperature at which liquid water, ice and water
vapour exist in coequilibrium is called the triple state temperature and this state
of the water substance is called the triple state, or sometimes the triple point. It
occurs along the line AB. The triple state temperature is 7, — #,. % is the
temperature of a substance which is brought into equilibrium with a mixture
of ice and pure water at a pressure of 1 atmosphere (1013.2mb). This
temperature is 0°C. Also we may define ¢,y as the temperature of a substance
which is brought into thermal equilibrium with steam immediately over water
boiling at a pressure of one atmosphere (1013.2 hPa). This temperature is 100°C.
The values of e, T, and « at the triple state are

M e =6.11hPa
m 7 =0.0075°C
W o =1.0x10m*kg™! for water
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W o, = 1.091 x 1072 m® kg™’ for ice
B o, = 206.2m’ kg™! for water vapour.

At temperatures lower than T a state of ice and vapour occurs. At very great
pressures the ice is converted into water, which freezes again when the pressure is
released. This phenomenon is called regelation and accounts for the flow of
glaciers and our ability to ski and skate.

In the above discussion the subject of the supercooling of water, that is the
cooling of water below T}, has been omitted. This will be mentioned later.

We may now write the equation of state of a perfect gas for water vapour,
following the same form as (2.8) for dry air:

eay, = R, T (4.1)
where e, the pressure of the water vapour, replaces p and
R*

R, =—=461Jkg 'K
iy g
Worked Example
What is the density of water vapour at 25°C and vapour pressure 25 hPa? How
does this compare with dry air at the same pressure and temperature? Could you
have anticipated this result?

Solution:
We start with equation (4.1) in the form
e
"R, T
2500 5
= 361 x 208 <&M
=182gm™

)

For dry air under the same conditions we have
_ 2500
287 x 298kgm™?
We note that water vapour is about 0.62 times as heavy as dry air. This could
have been anticipated from the ratio of the molecular weights of water and dry

air.
Now

=292gm™

P

myR, = mgRy since mR = R”
and so
mgy 1
Ry="%Ry=-R
m, ¢ ¢

where e is the ratio of the molecular weight of water vapour to that of dry air and
equals 0.622.
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Equation (4.1) may be rewritten in the form
R
ey, = ?d T=R,T (4.2)

We may compare (4.2) with (2.8).

The specific heats of water and ice may be considered constant for atmospheric
problems. The values in m.k.s. mechanical units are:

W c, = 4185Jkg ' K™!
W =2060Fkg 'K

The specific heats of water vapour at constant pressure and constant volume
are, respectively,
W, = 1911Jkg 'K
moc, = 1450Jkg ' KL

These values may be up to 2% in error since water vapour does not always

behave as a perfect gas. However, ¢p, — ¢,y = R, =461J kg~! K~! which agrees
with the value previously given.

We have seen that it is possible for saturated vapour and its liquid to exist
together side by side in equilibrium through a range of pressures and tempera-
tures, and that the vapour pressure at which water and water vapour exist side by
side is the saturation vapour pressure, e;. We will now consider what happens
when water substance changes from one physical state or phase to another. Such
a change will involve a change in the total heat content of the system.

Let the two phases in equilibrium be 1 and 2. Then, from (2.18) and Section

2.12,

2 2 2 2
/ dq:/ Td¢>=/ du-l—/ esdo (4.3)
1 1 1 1

The first integral represents the total amount of heat absorbed by unit mass
of the substance in phase 1 to transform it to phase 2. It is known as the latent
heat of transformation and will be denoted by L;,. L, = —L,;; that is, it
also equals the amount of heat released by the substance during the
transformation from phase 2 to phase 1. By convention the change of heat
dg is positive if the heat is absorbed by the system and negative if it is
released. If we integrate (4.3), holding pressure and temperature constant during
the transformation we obtain

Li,=T(py— 1) =ty —uy +e5(az — ) (4.4)

L, , varies with the temperature and has a different value for each of the three
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phase transformations. These are
L., liquid water — vapour Latent heat of evaporation
L;,, ice « vapour Latent heat of sublimation
L; ., ice < liquid water Latent heat of melting

The values are

m L, =2500x10Tkg™!
wL,=284x10Tkg™! -
mL,=0334x10°Tkg".

Actually these latent heats do depend upon temperature, but they are often
taken to be constant within the atmospheric range of temperature. The three
cases stated above are all positive since heat must be absorbed to evaporate, to
sublimate or to melt water substance. When water substance condenses, or
freezes, heat is liberated and the values for the latent heats are negative.

The variation of latent heat with temperature is relatively small and may be
obtained as follows: we will take the case of L, ;. From (4.4)

Lw,v =Uy — Uy + es(av - O‘w)
= ety — e50y, + Uy — Uy,

ay = 1 and may be neglected in comparison with «,.
Now, e;a, = R, T from the equation of state; differentiating,

dL,, = R,dT +du, — du,, = R,dT + (cyy — ) dT

dev

dT‘ =R+ — Oy = Cpy — Cy (4.5)
dLy, _ o1

a7 = 1911 — 4185 = -2274Jkg” K

It is noted that 2274 is much smaller than 2.5 million, the value of L,,,. However,
it may be shown that over an atmospheric temperature range from —40°C to
+40°C the range undergoes a change of about 7%. Whilst the change is by no
means negligible for very accurate work, it does suggest that we can take L to be
constant in order to obtain a first approximate solution of the differential
equation which we will now derive.

The equation called the Clausius—Clapeyron equation is one of the most
important equations in the thermodynamic subheading of meteorology. It
shows the physical relation between the saturation vapour pressure and the
temperature. It is a little difficult to follow so we will develop it step by step.
The first law of thermodynamics for water substance may be written in the
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form
dQ=Td¢ =du+e,da (4.6)

This follows from equation (2.18) where p has been replaced by e, the saturation
vapour pressure of water vapour; du denotes the change in internal energy and
da is the change in specific volume which occurs when an amount of heat dq is
imparted to 1 kilogram of water substance. Let us suppose that the suffixes 1 and
2 represent any two phases of water substance which are in equilibrium with one
another at a temperature T, for example water vapour in contact with a water
surface. Then, if L, denotes the latent heat associated with the change from
phase 1 to phase 2, we have, from (4.6),

L, =dQ =du+e,da 4.7)

and since the pressure e, remains constant whilst the specific volume changes
during a change of phase, it follows that

Lyy=T(¢2— ¢1) =ty — uy + es(cry — 01) (4.8)
In classical thermodynamics, the combination of variables
G=u+ea—T¢ (4.9)

is called the Gibbs function and it is only a function of state of the water
substance. From (4.9) it is clear that

e —To=wmt+ea,—Tp, < G =G, (4.10)

during the isothermal change of phase under consideration.

We must include a word of caution here in dealing with this thermodynamic
principle. By phase we mean the physical state of a substance, that is gas, liquid
or solid. Where H,O substance is concerned, we commonly call the three phases
water vapour, water and ice. In addition to the physical state of a substance we
also have its thermodynamic state. This is the state we mean when we talk about
the equation of state which was introduced very early in this text (Section 2.2). It
is the state of a phase which is known if two variables of the three given in the
equation of state are known. Now that this distinction between state and phase is
defined we may continue with the derivation of our equation.

Suppose that G + dG represents the Gibbs function for a neighbouring state
(T +dT, e, + de,) of water substance. Then, for an isothermal change of phase
in this neighbouring state we would have G, + dG, = G, + dG,, according to
(4.10). Subtraction of the two equations above then tells us that dG, = dG,. Now
taking the differential of (4.10), we have that

dG =du+e,da— Tdo+ ade, — ¢dT (4.11)
where it must be emphasized that the derivative d( ) is associated with the change
to the neighbouring thermodynamic state rather than with the change of phase.
Since the differential form T d¢ = du + e, da of the first law of thermodynamics
is as valid for changes of state as it is for changes of phase, it may be used to
reduce (4.11) to

dG = ade, — ¢dT (4.12)
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Since dG; = dG, we have
[e4] des — ¢1 dT = Q) des - ¢2 dT
which can be written in the form

des _ (¢2 — d)l)
T (ay — o) (4.13)

Since we are not particularly interested in entropy and ¢, — ¢; = L,,/T as
defined by (4.8), a more useful form of (4.13) is

des L1 2

— = 4.14

dT T (052 - (11) ( )
which is the famous Clausius-Clapeyron equation which gives us the saturation
vapour pressure as a function of temperature. Applying the above to all of the
possible changes of phase of water substance, we find that for equilibrium
between

(a) water and water vapour

degy _ Ly,
dT ~ T(oy — ay) (415)

This equation covers the processes of evaporation and condensation. The
subscripts w, v refer to the liquid and gaseous phases of water substance
respectively.

(b) ice and water vapour

deg Ly

dT ~ T(a, — o) (4.16)

This equation covers the process of sublimation, the direct transformation
from the solid to the gaseous phase and vice versa. It occurs when the
temperature is less than the triple point although the process (a) may also
occur at temperatures below the triple point if water droplets are cooled
below 0°C without freezing to ice.

(c) ice and water

des Li,w

kT eom—— (4.17)

This equation covers melting, freezing and regelation.

We are now in a position to investigate quantitatively the dependence of
saturation vapour pressure upon temperature.

Since a, = 10° m* kg™! approximately and oy, is 1073 m® kg™! it is clear that
oy >> @y, and hence to a very good degree of approximation the equation (4.15)
reduces to

desw _ Lw,v
dT ~ To,
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which from (4.2) may be written in the form

deg, _ €Ly v\ [ esw
- (%)) @10

Assuming L, , to be independent of temperature, as argued in Section 4.5, the
differential equation separates immediately to

dey,  [€Ly,\dT
- (7)) 4
which, upon integration, yields
_ ELw.v
logeg, = — ( RdT) + constant (4.20)

In order to evaluate the constant of integration we make use of the triple point
values already given. We may then express the Clausius—Clapeyron equation in
the forms

esw(mb) = 6.11 exp[(%) (% - %)] (4.21)
eq(mb) = 6.11 exp [(ezd) (% - %)] (4.22)

A schematic diagram of the solutions of equations (4.21) and (4.22) is shown
in Fig. 4.3. The dashed line represents the equilibrium which can exist between

eS
| C (critical point)

FiGURE 4.3 Evaporation melting and sublimation curves.
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supercooled water and water vapour. The melting curve represents the
equilibrium between ice and water. Although of geological importance, as
for example in connection with the slow flow or creep of glaciers, it is not of
great interest to meteorologists (mainly because e, no longer represents vapour
pressure). However, skaters and skiers will be aware of the need to have a
slippery surface, and this results in part from the process of regelation, the
melting of ice under pressure, creating a film of liquid water. A more exact
diagram between the ranges —80°C to 60°C is given in Fig. 4.4. We note that
equation (4.20) may be plotted as a straight line on a graph with one axis scaled in
Ine, intervals and the other axis in 10° /K intervals. Such a linear relation is
shown in Fig. 4.5.

Worked Example

Compute the saturation vapour pressure at 20°C from Clapeyron’s equation.
Assume L = 2.5 x 10° Jkg .

Solution:
We know that ¢ is 6.11 hPa at 273 K. Then

log ( es ) (0.622L x 20)

6.11/ ~ (287 x 273 x 293)
e, = 23.7hPa
160
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FiGUReE 4.4 Curve of saturation vapour pressure against temperature allowing for the
change of latent heat with temperature.
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FiGure 4.5 Evaporation curve on a logarithmic scale with latent heat assumed
constant.
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We see that the higher the temperature the higher the saturation vapour pressure
which is in equilibrium with liquid water at that temperature. At ordinary
temperatures the increase in saturation vapour pressure is about 6% for a 1K
rise in temperature. Now there is no definite mathematical relation between the
saturation vapour pressure in equilibrium with a water surface at a given
temperature, and the actual vapour pressure in the air at some arbitrary distance
above it. Thus, we may know the saturation vapour pressure at the interface of
the ocean and atmosphere but this does not mean that we know the exact vapour
pressure at, say, 100 metres above the interface, and we would know even less
about the vapour pressure at higher levels. This is because the water vapour
content of different layers of the atmosphere depends on a number of factors,
such as the temperature structure of the layers, whether the air in the different
layers is rising or descending (subsiding), and on the rate of evaporation of water
from the ocean surface, which is dependent on several variables such as the
intensity of solar insolation, the wind strength and the existing moisture content
of the air which may have been advected from a dry continent. We have also
noted that the increase of saturation vapour pressure with temperature is not
linear but exponential. We sometimes use words such as ‘sultry’ or ‘close’ to
describe the unpleasant feeling induced by the combination of high temperature
and high humidity.

Numerical modellers have estimated that for every degree rise in temperature
resulting from a greenhouse gas other than water vapour, the temperature will
increase a further 0.7°C as a result of the additional water vapour held by the
atmosphere because of its higher temperature. That is, if the temperature of the
surface of the oceans and of the atmosphere is increased by 1K, the saturation
vapour pressure will have increased and the atmosphere will be capable of taking
up at least some extra water from the ocean interface. Since water vapour is a
strong greenhouse gas and there will be more of it, the net effect will be to
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increase the temperature by a further amount. This is what is known as a positive
feedback. It is a somewhat unstable process in which any impulse tends to
amplify. In the case of a negative feedback the opposite occurs and the system
will tend to return to its original state before it was perturbed. We also note from
the more accurate form of Clapeyron’s equation in which the value of L, is
allowed to vary in accordance with equation (4.5) that the value of the latent heat
of transformation decreases with temperature so that less heat is required to
evaporate water at higher than at lower temperatures. This is an additional
positive feedback, although a small one.

A word of warning should be given here. The conclusion that an increase
in temperature of the atmosphere leads to a positive feedback because of an
increase in water vapour is one that has been accepted by the majority of
atmospheric scientists. However, there are a minority who believe that the latter
conclusion is too simplistic, that there are complex compensations. This some-
what radical opinion suggests that an increase in water vapour in the atmosphere
will result in more clouds and that, in consequence, the albedo or reflective
property of the planet will be increased, thus decreasing the radiative equilibrium
temperature. Such a response would be a negative feedback, a result which
would tend to neutralize any increase, at least in the time scale encompassed by
global warming predictions.

Certainly, Clapeyron’s equation has taken on immense new importance as a
result of global concern about the ‘greenhouse effect’.

Water normally freezes at about 0°C. However, when it is in the form of tiny
droplets the surface tension inhibits the freezing process. Water droplets in
clouds are very small and may not freeze spontaneously. However, if they come
into contact with a solid surface, such as, for example, the wing of an aircraft, the
droplets will freeze. Aircraft icing used to present a great danger to aircraft,
particularly in winter, in days when aircraft flew at much lower heights than
today. Water which remains in the liquid state below 0°C is known as super-
cooled water. This is an unstable state, and should supercooled water come into
contact with ice or with certain other substances in the finely divided state (called
[freezing nuclei) solidification takes place very rapidly. Cloud droplets formed by
condensation above 0°C will normally assume this supercooled state on cooling
below 0°C. Most cloud elements are still liquid at —10°C and water droplets may
be found down to —40°C. When ice crystals are injected into such a cloud of
supercooled water drops at a fixed temperature the system is no longer in
equilibrium. The vapour is saturated with respect to the water drops and super-
saturated with respect to the ice particles. The result is condensation on the ice
particles. This reduces the vapour pressure in the air to below the saturation
vapour pressure over water. Water therefore evaporates. The net result of the
two processes is the growth of ice crystals at the expense of water drops. The
process goes on most rapidly near —12°C where the saturation vapour pressure
over water most greatly exceeds that over ice.
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The Bergeron—Findeisen theory of the mechanism of precipitation is based
on the above principle. When a relatively small number of ice crystals are
present in a cloud of supercooled water droplets the ice crystals grow to such
a size by evaporation from the water droplets that they can no longer remain
suspended in the air and start falling. The formation of the ice crystals depends
upon the existence of suitable condensation nuclei which are usually present in
the atmosphere in large concentrations; however, recent observations suggest
that ice-nucleating agents are not as efficient as the nuclei which initiate the
condensation of small water droplets. The ice nuclei require a considerable
degree of supersaturation of vapour with respect to ice before they become
effective in creating ice crystals.

It has been observed in recent years, particularly in tropical regions, that rain
can fall from clouds which are above the freezing point. A process of coalescence
has been postulated to explain this kind of rain, which is sometimes called ‘warm’
rain, in contrast to the so-called ‘cold’ rain formed by the ice crystal theory.

In the 1960s and 1970s a considerable amount of publicity was given to the
stimulation of the rain-producing mechanism. Experiments in this activity,
known as artificial precipitation, or more popularly, ‘rainmaking’, were carried
out by national meteorological services and by commercial organizations. A
favourite method was to ‘seed’ clouds with silver iodide crystals, dropped from
aircraft. The silver iodide acted as a surrogate for ice crystals, as a catalyst to
prime the evaporation of supercooled liquid droplets onto the crystals, where
they would freeze into ice crystals and subsequently fall out, melt on the way
down to the surface and turn to raindrops. It was hoped that these operations
would increase precipitation in arid zone countries and in periods of prolonged
dry spells or droughts. However, clearly rain could not be stimulated unless the
right kinds of clouds were present at the time of seeding. It was often difficult to
make useful comparisons between a selected control station and an operational
result. It was believed that the technique worked best in trying to increase
snowcover over mountains during the winter. However, these operations and
experiments could never be regarded as highly successful and interest in them has
waned during more recent years.

We have so far discussed only one parameter which is a measure of the water
vapour in the air, that is, the vapour pressure (and the saturation vapour
pressure). We have seen that the constituent gases of the atmosphere do not
affect these values, which are the same as they would be if only water vapour were
present. Thus, water vapour is a constituent of the atmosphere along with the
other gases; its presence in the atmosphere forms a mixture which we shall
call ‘moist air’. Although saturation vapour pressure is useful in deriving
Clapeyron’s equation, we also need a more practical measurement which
tells us the actual amount (mass) of water vapour present. We shall
therefore now introduce new parameters:
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1. The humidity mixing ratio (x) which is defined to be the mass of water
vapour per unit mass of dry air.

2. The specific humidity (s) which is defined to be the mass of water vapour per
unit mass of moist air.

3. The relative humidity (RH ) which is defined as the ratio of the observed
vapour pressure to the saturation vapour pressure at the observed
temperature, that is e/e;.

Now, if M’ grams of water vapour are mixed with My grams of dry air to give
M = M'+ My grams of moist air, then x = M'/My and s = M'/M. Since x
and s are usually less than 0.05, we use the SI unit of gkg™! when specifying
their values. Although x and s are usually numerically close, they are still
theoretically distinct. From the above definitions it follows that s = x/(1 + x)
and x = s/(1 — s). We will normally use the mixing ratio rather than the specific
humidity. Suppose that (1 + x) kilograms of moist air occupy a volume ¥ and
exert a pressure p. If pg and e denote the partial pressures of the dry air and water
vapour respectively, then

p=pste (4.23)

from Dalton’s law of partial pressures.
From the perfect gas law

Paca = RyT
and also
eay = R, T
and on dividing the latter by the former we get
e xR,
Pa R4
or
e X
(p—e) e
and
€e €e
=" 4.24
(p—e »p 42

Since (4.24) is true in the case where x and e take their saturation values x; and e,
it follows that

€e; €eg
(p—e) p
Taken together, Clapeyron’s equation and equation (4.9), recalling that ¢ is a
function of temperature and pressure, tell us that the saturation mixing ratio is a
known function of temperature and pressure, that is x; = x,(7', p). It is the
knowledge of this function which enables the isopleths of humidity mixing ratio
to be constructed on aerological diagrams. These lines may be identified on Fig.
3.3. They are the lightly dashed lines that slope upwards from left to right and
they are labelled in grams per kilogram along the lower boundary of the diagram.

X, =
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(Do not confuse with the more heavily marked dashed line for the freezing
temperature (0°C).)

We now introduce a corrected form of temperature which can be used when
applying ‘dry-air’ theory to moist-air problems. Although the correction is
not large and may not be needed in much of the work which is to follow,
nevertheless, bearing in mind the importance of accurate calculations in
climate change models, it is necessary to know in what circumstances to
use the corrected value.

We have already seen from (2.12) that for unit mass of moist air
IR = M4Ry + M R, where R is the gas constant for moist air, and R, is the
gas constant for water vapour. Then

R=(1-5)Ry+sR,

and
R=(1-5)Ry +%= Rd[l +s(%— 1)]
evaluating ' — 1 and using the approximate relation s = x we get
R=(1+40.61x)Ry (4.25)
Inserting the value of R above in the equation of state for moist air we get
pa=(14+0.61x)RyT (4.26)

Now we define the quantity (1 + 0.61x)7 as T*, the virtual temperature of the
moist air so that pa = RyT ™. Obviously, T is the temperature of dry air having
the same pressure and specific volume as the moist air. For many purposes moist
air may then be treated as dry air of temperature 7*.

S GRS

Let the quantity of heat dg be applied to a kilogram of moist air. The
moist air is then heated from temperature T to temperature T +d7. Then
1-dg = Mydgq + M,dq, where dgy is the amount of heat received by the
dry air per kilogram of dry air and dg, is the amount of heat received by the
water vapour per kilogram of water vapour.
Dividing both sides by d 7 and substituting in terms of specific humidity, s, it is
seen that
dg dgq , dgy
ﬁ = (1 d S) d_T + s 87
or

C,
¢p = (1 = 5)cpa + S¢py = Cpa [l +s(ﬁ— >]
de

Evaluating c,y/cpq We get ]
¢p = (1+0.90s5)cpq = (14 0.90x)cpq (4.27)
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and similarly
¢y = (1 4+ 1.025)cyq = (1 +1.02x)cyq (4.28)

We thus see how the specific heat of moist air can be expressed in terms of the
specific heat of dry air and the amount of water vapour contained in the air.

The adiabatic process for unsaturated air is a special case of the adiabatic process
of any perfect gas. Thus from (2.39) and (2.40) k = R/c, and ) = ¢, /c, for moist
air.

From (4.25) and (4.27)

T+ 090x)c, - (1+0.90x)

Since x < 1 we can expand the denominator as a geometric series giving
k= (1-0.29%)kq (4.29)
and similarly
' n=(1-0.12x)nq (4.30)

It can be shown that Poisson’s constant x for moist air will be lowered from its
dry-air value of 0.286 to a minimum of 0.283 for saturated air at the highest
temperature likely to be found in the atmosphere.

The equation (2.43) 6 = T(1000/p)" defines a family of unsaturated adiabats
each one of which is a function of an initial p, T and of a given value of . Since
varies with x there would be a different unsaturated adiabat for each value of x
for similar initial pressure and temperature values. However, « departs from «y
so little that unsaturated adiabats may be replaced by dry adiabats for all
practical purposes. An example would show that there would be a difference
of about 1°C in the potential temperature if a parcel of air was brought
down a dry adiabat instead of the steepest unsaturated adiabat from 400 mb
to 1000 mb.

In a dry or unsaturated adiabatic expansion, the work done to expand a parcel of
air is drawn solely from the internal energy of the gas. However, in a saturated
adiabatic expansion, the latent heat of condensation (or sublimation) of water
vapour is also available to help expand the parcel, so that a saturated parcel cools
less than an unsaturated one, for a given amount of decompression.

If the products of condensation do not escape from a parcel, they are available
for re-evaporation in the event of the parcel being compressed. This assumption
leads us to the idea of a

m reversible saturated adiabatic process, defined to be one in which none of the
products of condensation escape from the parcel.
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At the other extreme we have the

B pseudo-adiabatic process for saturated air, defined to be one in which all of
the products of condensation escape from the parcel.

Since an unknown fraction of the products of condensation escapes from a
real parcel of saturated air, the actual adiabatic processes for saturated air lie
somewhere between the extremes. However, because the heat capacity of the
products of condensation is very small compared with that of the moist air,
the two processes described above yield almost identical cooling rates and so
the actual adiabatic process for saturated air is represented equally well by the
reversible or the pseudo-adiabatic process (at least as far as cooling rates but not
necessarily as far as precipitation rates are concerned). The saturated adiabats on
the tephigram and the skew (7', —log p) diagram are therefore constructed using
the process which is the simpler from the point of view of computation, and this
happens to be the pseudo-adiabatic process. Furthermore, since the condensa-
tion of water vapour into water droplets is quite common above the freezing level
in the real atmosphere, the pseudo-adiabatic computations are carried out
assuming the product of condensation to be water.

Let us again take a parcel of saturated air at 7, p, x,. After a small pseudo-
adiabatic expansion the air is in the state (T +dT), (p+dp), (x,+ dx,).
Now consider a mass of 1 + x, kilograms of moist air made up of 1 kilogram
of dry air and x, kilograms of water vapour. In the pseudo-adiabatic process
the quantity —dx, of water vapour condenses and drops out as precipitation.
The condensation releases the quantity of heat

dQ = —Ldx, (4.31)
which is used to heat the moist air.
It follows from (2.28) that
dg=¢,dT — RT(;TP

This gives the heat absorbed by the moist air per unit mass.
Now
dQ = (1 4+ x,)dg (4.32)

Equating the heat released due to the latent heat of condensation of the water
vapour to the heat absorbed by the moist air we obtain

—Ldx; = (1 + xy) (cp dT — RT%) (4.33)
We may put (4.33) in the form

d
—Ldx, = (1+ 1.90x,)cp dT — (1 + 1.6lxs)RdT7p (4.34)
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by substituting ¢, and R in terms of ¢pq, Rq and x from (4.27) and (4.25) and
multiplying through, ignoring terms in x2.

In the reversible saturation adiabatic process the condensed water is retained in
the system in the form of cloud droplets.

Let x be the total mass of water substance in a saturated parcel containing unit
mass of dry air. The system will then consist of 1 4 x; kilograms of moist air and
x — x, kilograms of liquid water.

Let the saturated air be in a state T, p, x, and let it be expanded to a state
(T +dT), (p+dp), (xs+ dxy).

Then, as for the pseudo-adiabatic process, dQ; = —Ldx,. This is the heat
released by condensation which is used to heat the moist air, and also

dQ; = —cy(x — x)dT

This is the heat given off by the cooling of x — x, kilograms of liquid water
through d7T degrees as the system is cooled by this amount as a result of the
expansion. The total heat dQ = dQ; + dQ, is absorbed by the moist air:

dQ = —Ldx; — ¢y (x — x)dT

=1 —l—xs)(cpdT - RT%)

from (4.32); equating the two expressions, we have

—Ldx; — ¢y (x — x,)dT = (1 +xs)(cpdT—RT%p) (4.35)

It is seen that the above expression is the same as (4.33) for the pseudo-
adiabatic process apart from the addition of the second term on the left hand side
of the equation which is due to the cooling of the liquid water retained in the
system during the expansion.

If we convert ¢, and Rinto ¢,q, Rq and x; as before, (4.35) can be transformed
into the form

d
—Ldx, = [1+ 1.90x, + 4.17(x — x,)]cpg dT — (1 + 1.61x5)RdT;p (4.36)

It is seen that there is a different reversible saturation adiabat through T, p for
each value of x, the total water content. They only differ slightly from one
another and from the pseudo-adiabats.

A numerical solution of the above equations shows that the pseudo-adiabatic
process cools at a slightly faster rate than the reversible process because of the
loss of heat content of the precipitated water. The difference is very small and is
negligible compared with the effects of turbulence and radiation. Either equation
may be used to calculate the adiabatic process of saturated air, provided the
process is an expansion. The difference occurs when expansion is followed by
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compression. In the pseudo-adiabatic process the compression follows a dry
adiabat. In the reversible process the condensed water remains in the air and the
compression returns along the path of expansion.

In practice we need not use the exact forms of the equations of the adiabatic
processes. They can be replaced by a simpler form which will now be developed.

Let a parcel of 1 + x; kilograms of saturated moist air be in state p, T, x, and
expanded adiabatically to (p+dp), (T +dT), (x; + dx;) as before. We will
now make the slightly incorrect assumption that the latent heat —L dx; is used
exclusively to heat the kilogram of dry air, ignoring the heating of the water
vapour.

Then

dq = dedT - RdT-('iPE

from (2.28). Equating the latent heat released by condensation to the heat
absorbed by the dry air we have

—L dxs = de dT - Rd %E (437)

It can be seen that the exact equations derived in (4.34) and (4.36) reduce to
(4.37) when the correction factors to R4 and ¢4 are neglected.

Equation (4.37) can then be used to describe the saturation adiabatic process
rather than the exact forms.

We may write (4.37) in the form, from (2.45),

dé
de —0— = d¢

(4.38)

from (2.47). It is noted that a saturated adiabatic expansion involves a change in
entropy for the moist air.

In the preceding sections heating and cooling by adiabatic processes involving
expansion and compression have been discussed. It is also necessary to consider
heating and cooling at constant pressure. Such a process is called isobaric
heating and cooling.

Consider a parcel of air in a state T', p, x. Let vapour be condensed from or
water evaporated into the parcel. Let either process take place at constant
pressure, the latent heat being supplied to or taken from the air. In the case of
evaporation the change in mixing ratio is positive and the air provides the latent
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heat by cooling. In the case of condensation dx is negative and the air absorbs the
latent heat by warming. We assume, as in the preceding section, that the heat is
used exclusively to heat the kilogram of dry air. Then

dg = cpq(dT),
from (2.28), or
—Ldx = cpg(dT), (4.39)

Numerically, the above equation states that at constant pressure adiabatic
condensation of one part per thousand of water vapour will warm moist air
21°C. Similarly adiabatic evaporation will cool the air 2} °C.

The principle of isobaric cooling by the evaporation of liquid water, the latent
heat being supplied by the air, is the basis of the measurement of humidity by the
dry- and wet-bulb thermometer. If the air is cooled isobarically by the evapora-
tion of liquid water, until it becomes saturated, the temperature reached at the
saturation point is called the wet-bulb temperature. If this operation is
performed on 1 + x kilograms of moist air composed of 1 kilogram of dry air
and x kilograms of water vapour we have, from (4.39),

Ty Xy
/ cp(1+x)dT=—L/ dx
T X

where T, is the wet-bulb temperature and x,, is the saturation mixing ratio at 7.
Integrating,

(de + )?va)(Tw —T)=L(x - xy)

where X is the mean mixing ratio during the process; ¥c,, may be neglected
compared with ¢pq. Approximately

T-T, ___L(xw—x)
de
and
0.622¢
X =
p

approximately. Then

T—T, = (ew — €)(0.622L) (4.40)
PCpd

T — T, is the wet-bulb depression which is measured by a wet- and dry-bulb
thermometer or by a psychrometer. Since e,, is known for different temperatures
the vapour pressure e, and consequently the relative humidity, can be calculated.
Hygrometric tables of values of the humidity and the dewpoint have been
calculated for different values of the wet-bulb depression. Equation (4.40)
applies to the evaporation or condensation from the vapour to the liquid
phase. If the temperatures are below 0°C and sublimation from the solid to
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the vapour phase occurs the value of L will be that for the ice—vapour
transformation. In this case e,, would be replaced by e;, the saturation vapour
pressure over ice at the wet-bulb temperature.

Equation (4.39) can be used in constructing saturation adiabats on any
thermodynamic diagram. In Fig. 4.6 let saturated air be in state p, T, x; at a
point A. Let dx, be a fixed convenient quantity. We wish to find the point B
where the saturation adiabat through A crosses the saturation mixing ratio line
xs + dx,. We first follow the process AA’, heating the air at constant pressure by
the amount caused by the latent heat released by the condensation of —dx;
kilograms of water vapour. This amount may be calculated from (4.39) and the
resulting temperature defines a point A’. We then follow the dry adiabat through
A’ until the saturation value of the air is reached where the dry adiabat intersects
the saturation mixing ratio line x, + dx at point B. Note that in Fig. 4.6 dp,dT
and dx; are all negative. The saturation adiabat may then be constructed through
AB, and so on through BC, CD, etc.

It will be useful to define some further temperatures which can be found on
thermodynamic diagrams:

m The equivalent temperature is the temperature reached isobarically when all
the vapour in a sample of moist air has been condensed.

m The equivalent potential temperature is the temperature reached by expand-
ing a parcel of air along the saturated adiabatic line until it is completely dried
out and then compressing it along the dry adiabat to the pressure of 1000 hPa.

m The dewpoint temperature is the temperature at which a parcel of air would
become saturated if it were cooled isobarically without any change in the
mixing ratio.

m The wet-bulb temperature is the lowest temperature to which air may be
cooled by evaporating water into it.

T+dT T

0+do

Saturation ~”
adiabat

Ficure 4.6 Graphical construction of saturation adiabats.
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m The wet-bulb potential temperature is the wet-bulb temperature reached
when a parcel of air is brought along the saturated adiabat from its wet-bulb
temperature to a pressure of 1000 mb.

The preceding exercise describing the construction of saturation adiabats
illustrates an important principle. It is that the dry adiabatic line, the saturated
adiabatic line and the line of equal mixing ratio for a given parcel of air all
intersect at a common point, the lifting condensation level. This principle is
known as Normand’s theorem after Sir Charles Normand who first directed the
attention of meteorologists to it.

Although the hygrometric equation (4.40) is the basic equation for determining
humidity, it is not always immediately practical for calculations of dewpoint
temperature, relative humidity and mixing ratio. Below are some approximate
formulae from Abbott and Tabony (1985) linking the various quantities for use
if T,, > 0°C. We use T for temperatures (in degrees Celsius), Tp for dewpoint
temperature and 7, for wet-bulb temperature; e for vapour pressure and e, for
saturation vapour pressure; and p for pressure in hPa. Note that e is identically

€ ( TD) .
The Magnus equation is

e(T) = 6.107 exp ( 17.387 )

2390+ T
The Regnault equation is
e =e(T,) —0.000799p(T — T,,)

and the transposed Magnus equation is
239.0B
o = (m)
where
B =1n(e/6.107)
The relative humidity RH is
RH =e/e(T)
and the mixing ratio, x, in gkg ', is
e
p—e
Given T and T, one uses the Magnus equation (twice) to find the saturation

vapour pressure at 7 and at T, then the Regnault equation to find ¢,(Tp ), then
the transposed Magnus equation to find Tp, and the last two equations to

x =620
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determine relative humidity and mixing ratio. If T,, < 0°C then the coefficients
22.44 and 272.4 are used instead of 17.38 and 239.0 respectively in the above
equations.

bl

1. One sometimes hears the expression ‘it makes my blood boil” At what
pressure level in the atmosphere would this actually occur? Normal
temperature of the human body is about 37°C.

2. What would be the difference in the latent heat of transformation from water
vapour to liquid water if the temperature was 100°C instead of 0°C?

3. Using equation (2.5) derive a more accurate form of Clapeyron’s equation
than (4.14) and compute the saturation vapour pressure of water at 100°C.

4. From the definitions of mixing ratio and specific humidity show that
x=s/(1-5s).

5. Show that —(Ly,/T)dx, = cpq d(log,8), which can obviously form the basis
of saturated adiabat construction on a tephigram.

6. Construct the saturated adiabat through (1000mb, 22.5°C) between
1000 mb and 800 mb on an available aerological diagram.

7. Show how Fig. 4.6 illustrates Normand’s theorem.

8. Integrate the Clausius—Clapeyron equation for the equilibrium between
water and water vapour in the case where the latent heat depends upon
temperature, i.e. Ly, , = Ly — a(T — T,). Show that your answer reduces to
(4.21) as a — 0 and hence L, , — Ly.
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We have found that for meteorological purposes it is a close enough approxi-
mation to treat dry air as if it were a perfect gas. The atmosphere is therefore
compressible. The weight of the atmospheric column above some reference
height compresses, literally squashes, the column below the reference height so
that the mass of the latter column is squeezed together and occupies less space,
when averaged over the earth’s surface, than the upper layers above that
reference point. This is what is meant by hydrostatic equilibrium. It is a stable
state in which no vertical motion occurs. Numerical models of some aspects of
atmospheric motion are often described as hydrostatic or non-hydrostatic,
depending on whether the condition of hydrostatic equilibrium is maintained
at all stages of the calculations, or whether that condition is disobeyed and
vertical instabilities are allowed to generate. Such vertical instabilities might be
heavy showers and thunderstorms. These kinds of weather events usually occur
over a relatively small area at any given time. It has been estimated that unstable
upward vertical motion only occurs over about 1% of the earth’s surface at any
given moment. Much of the time there is very gentle subsidence or downward
motion of a few centimetres a second. This condition gives rise to quiet, fine
weather. Thus hydrostatic equilibrium is a very useful, simple and practical
condition to impose.

Thus, the atmospheric pressure measured by a barometer at any point in the
atmosphere represents the total weight of an air column of unit cross-section
above that point reaching to the outer limits of the earth’s atmosphere. We will
consider a thin slice of such a column (Fig. 5.1). If we denote the height and
pressure at the bottom of the slice by z,p and at the top by z +dz, p +dp,

respectively, the pressure difference dp is the weight of the unit air column of
thickness dz.
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z+dz

W AAAIAAAT)

p

FiGure 5.1 The hydrostatic equation.

It follows that dp = —pg dz where dp is the change of pressure along the
vertical height axis, p is the density and g is the acceleration of gravity; dp is
negative if the pressure decreases as the height increases. The z axis extends
vertically upwards from the earth’s surface and is normal to the plane tangent to
the earth’s surface at the point of intersection.

The relation dp = —pgdz is called the hydrostatic equation. It is usually
expressed in partial differential form

P (5.1)

The hydrostatic equation represents the balance between the weight of unit
mass of air on the one hand and its buoyancy on the other. If (5.1) is valid the
atmosphere is said to be in hydrostatic equilibrium.

If the term —(1/p)(8p/0z) is greater than g the air parcel will rise while if it is
smaller it will sink. The same principle governs whether an object will float or
sink in water or other liquid medium.

The lapse rate is defined as the change of temperature with height. The
temperature normally decreases with height in the troposphere. However,
sometimes in the boundary layer near the surface, and occasionally at other
levels of the atmosphere, the temperature may remain constant or increase with
height over short vertical distances. When the temperature increases with height,
we define the temperature plot with height an inversion. Inversions often occur in
the early morning after a clear cold night during which the air near the ground
cools faster than the overlying air. Inversions can be readily designated on an
aerological diagram as the slope is upwards and to the right of the isotherms
instead of to the left. Mathematically, we denote the lapse rate by the relation
—dT/dz = ~. Therefore, if the temperature decreases with height, which it
usually does, we have a positive lapse rate. If there is an inversion the lapse
rate would be negative.
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We will substitute in (5.1) the value of p obtained from the gas equation (2.7).
Using the total instead of the partial differential form we have

dp _ _gdz (52)
) RT
Eq. (5.2) may be integrated between specified limits if it is assumed that the

temperature remains constant with height. Then

gz
In p=- ﬁ -+ constant
(5.3)

where zg, py are the values of height and pressure, respectively, at the lower or
reference level of the layer considered. We see that the term In (p,/p) represents
the ‘squeezing’ of the layer by the pressure p exerted at the upper boundary. In
order to obtain a numerical result for the difference z — z,, which is clearly the
thickness of the layer, we must keep T constant. This is not strictly possible,
unless the layer is isothermal, which would be an unlikely condition. We know
from observations that temperature normally decreases with height. However,
we may manipulate the situation to our advantage by defining T in equation
(5.3) as a mean temperature of the layer. This may be found graphically from an
aerological diagram upon which an actual temperature ascent curve has been
plotted. We will return to that later. The dependence of the thickness on the
mean temperature T, is just a manifestation of Charles’ law, that the volume of a
given mass of gas will expand if the temperature is increased and contract if
the temperature is decreased. Thus the thickness of a layer is greater if the
temperature is higher and smaller if the temperature is lower than some
arbitrarily chosen reference value. Equation (5.3) is known as the thickness
equation and it is extremely important in the analysis of upper air synoptic
charts, a subject we will cover in a later chapter.

By a model atmosphere we mean one which is assumed to have an idealized
structure, as far as temperature and humidity are concerned. One of the simplest
models we can construct is that in which temperature is constant with respect to
height and from which water vapour is absent. One such model is the isothermal
model described by equation (5.3). Another form of (5.3) is

sl —2) 5.4

P = Po €Xp ( Ry T

T is specified and constant in equation (5.4), not a mean value such asis used in
(5.3) tocalculate the thickness of a selected layer in the atmosphere. It can be easily
seen from (5.4) that it would not be possible to have an isothermal atmosphere of
finite thickness, since at the top of the atmosphere p = 0. (See problem 1.)
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5.5.1 Dry atmosphere with a constant lapse rate

We have already seen that the lapse rate is defined by

oT
=—— 5.
T=-%; (5.5)
We may then express the temperature at any height z by the relation
T=Ty—~z (5.6)

where T, is the temperature at the reference level z = 0 and + is a constant lapse
rate. We may substitute (5.6) in (5.2). Thus
dp  —gdz
7 R(To—72)
Then the above equation may be separated. We obtain

d_P_id(T()*’YZ)

p Ry (Th-72)
and integrating,

Inp= 7% In (Ty — ~z) + constant

If we evaluate between limits pg, p and zy, z,

To —
mP_8 g0
po Ry Ty—nvz
At the surface z = z; = 0, p = py. Then
T —
P_8 0702
po Ry Ty

Th — 2\ &/®
p=p0< °T7> (5.7)
0

Equation (5.7) is the barometric equation for an atmosphere with a constant
lapse rate.

In

and

5.5.2 Height and lapse rate of a homogeneous atmosphere

One may also integrate the hydrostatic equation, assuming a homogeneous
atmosphere, that is an atmosphere in which density does not change with height.
In this case

dp
az ~Pog (5.8)

where g, is a constant density. Then

=z p=p d _
dz:—/ L and z—zO=‘D0 L4
p=po P08 Pog
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At the surface z =0, p = py and
_bo—p
Po8

The height of such an atmosphere may be computed. At the outer limits of the
atmosphere p = 0 so that

z

_ po _RT,
ZToPp — =

= 5.9
Po8 g (5.9)

where T, is the surface temperature.

If a value of 293 K is substituted in (5.9),
287 x 293
ZTop = —9—8—‘— ~ 86 km

Different values of the height of an atmosphere will be obtained if other values of
the surface temperature are assumed. The higher the value of surface tempera-
ture substituted in (5.9) the less will be the density and thus the greater the
height of the resulting homogeneous atmosphere. Of course, the homogeneous
atmosphere never exists in nature; it is purely a hypothetical concept.

If we multiply the hydrostatic equation (5.8) by dT" we have

dz

vdp = pogdT
Integrating as before since « is constant
(P = po) = pog(T — To)
P — o = po&T — pogTo
At the upper boundary p = 0 and therefore 7 = 0

5= Po8To _ 8 _ 4 034°Cm" = 34°Ckm . (5.10)
Po Rq
This is the lapse rate for a homogeneous atmosphere. It will be seen from the
following section that the lapse rate for a homogeneous atmosphere of constant
density is extremely high and unstable. No such lapse rate could exist in the free
troposphere.

Worked Example
What would be the height of an atmosphere of density 1kg m~ at all heights
within the air column? Assume surface pressure is 1012 hPa.

Solution:

z=1012 x % =10.326km

5.5.3 The dry adiabatic atmosphere

This is the most useful and practical of all the model atmosphere lapse rates
because it is close to the rate at which a parcel, or bubble, which might be a more
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visual concept, cools as it rises up through the atmosphere. We consider a parcel
of dry air which is rising adiabatically in this way. Remembering that the
potential temperature remains constant in a dry adiabatic process it follows
from (2.45) that

de dT dp
o7 =0
or
dT = K/dT@
p
Dividing through by dz,
dT _kapdp
dz p dz

The dry adiabatic lapse rate will be denoted

dr
~4 =Tla (5.11)

Substituting for dp/dz from the hydrostatic equation and using (2.8) and
(2.39)

Ty=—> (5.12)

If, as before, the lapse rate is considered to be a positive value for a decrease of
temperature with height

Iy =9.8°Ckm™"

Now the term dp/dz represents the decrease of pressure of the parcel as it
ascends. This must also equal the decrease of pressure of the environment since it
is assumed that there is no discontinuity of pressure at the boundary separating
the rising parcel or bubble of air from its surroundings.

If the temperature of the environment is not exactly the same as that of the
rising air parcel level for level we have

d7  —rqT g
dz  p
where p' is the density of the air in the surrounding atmosphere, that is in the
environment.
Since there is no discontinuity of pressure o' = p/RyT’ and
dr kaTp'g g T T
=W g = = L
dz PR4T" g T T

where 7' is now the temperature of the environment and 7 is the temperature of
the rising parcel. Normally 7/7’ = 1 to a close approximation. -y is the dry
environmental lapse rate for the case when T # T'.

The height of an atmosphere having a dry adiabatic lapse rate may be
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calculated from (5.11). Thus

ar _

dz — d

ar = - £ 4z
de

Integrating
C
z—2zg =—Z£(To— T)

At the upper boundary p = 0 and therefore 7 = 0, and at the lower boundary
2o = 0. Then
Cpd
ZToP = % Ty

If TO =293K, ZToP = 29.9 km.

A parcel of air is said to be stable, unstable or indifferent with respect to its
environment if, on being given an initial impulse, it returns to its original
position, continues its movement or stays where it is.

An example of the concept of stability may be taken from the world of
solid things. In the first case we assume that a marble rests at the bottom of a
symmetrical concave surface (Fig. 5.2). If the marble is given a flick with the
finger it will roll a short distance up the surface, soon returning to its initial
position. This is the stable case. In the second case it is assumed that the
marble rests on a small perch at the top of a symmetrical convex surface. A
flick of the finger will send the marble rolling away down the surface. This is
the unstable case. In the third case let it be assumed that the marble rests on
a perfectly flat horizontal surface. If the marble is flicked it will move a short
distance over the surface and then come to rest and remain where it is. This is
the indifferent case.

Now a parcel of air moving through its environment will, if unsaturated,
follow the dry adiabatic curve or, if saturated, follow the saturated adiabatic
curve. By thus following its path on an upper air diagram its density relative to its
surroundings may be seen at a glance. The assumption is made that there is no
mixing between the rising parcel and its environment.

Q

Stable Unstable Neutral
Marble in a valley Marble on a hill Marble on a tabletop

Ficure 5.2 Stable, unstable and neutral marble.
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From the hydrostatic equation (5.1)

op
9z —Pg

or

1 0p
; 5 +g=0 (513)
showing that the vertical acceleration is zero.
Now if the parcel is not in hydrostatic equilibrium it will have a vertical
acceleration

d’z 18p
In (5.14) the term
o _
9z =—Pg

where p' is the density of the surrounding air as distinguished from the density of
the rising parcel. If we substitute for dp/9z in (5.14) it is seen that

/
-Z~=Pg gp
p

2=g<%l—l> =g£”l—~;—‘-’2 (5.15)

If the air parcel is lighter than the environment p < p’ and Z is positive, that is
the vertical acceleration is directed upwards since —(1/p)(8p/9z), the buoyancy
acceleration, exceeds g. If p > o/, % is negative from (5.15) and is directed
downwards. In this case the buoyancy acceleration is less than g, and (5.14)
equates the vertical acceleration to the resultant buoyant force acting on unit
mass of the parcel.

As density is not directly available from aerological data the buoyant force
may be conveniently expressed in terms of the temperature. Substituting from
the gas equation in (5.15) and remembering that since p = p’ the parcel will adjust
its pressure to the pressure of the environment, we obtain

._g(T-T"
zZ= T 7
where T and T’ are the temperatures of the parcel and environment
respectively; strictly speaking 7, T’ should be replaced by the corresponding
virtual temperatures T*, T*' as derived in (4.26). In practical meteorology the
actual temperature is often used instead of the virtual temperature since the
difference between the two is small.
From (5.5) the lapse rate was defined as v = —(8T/0z). We may call v the
environment lapse rate and define vy = — (97T /9z) as the individual lapse rate. At
the reference level it is assumed that the parcel and its environment have the

or

(5.16)
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same thermodynamic properties. When the parcel is given an impulse it will
separate from its environment and its thermodynamic properties may then differ
from its environment in any new position it may take up.

Now
dT
2= —yz=T-T,
dz z vz 0
where T} is the temperature of the parcel at the lower reference level, and
dar’

! !
cz=—yz=T —T
dz Y 0
where it is assumed that the temperature of the environment at the lower
reference level is also Ty, that is it is the same as that of the parcel at the lower
reference level.
Subtracting,

(Y =y)z=T-T' (5.17)
Substituting in (5.16) we have
!/
g2\ -7
_(T’—) (5.18)
Thus the value of the vertical acceleration of a parcel of air is a function of the
difference between the environment and individual lapse rates. We may consider

the case where the reference level is at the ground. Then, if the parcel is given an
initial upward impulse,

m Z is positive and therefore directed further upwards if v’ > v

m Zis zero when v/ =7

W ? is negative and therefore directed downwards back to the reference level
when v’ < 7.

If the reference level is at a higher level, that is above the ground, the sign of Z
will be the same as above for an upward-directed impulse. The sign of Z will be
reversed for a downward-directed impulse. Thus, if +' >~ and the parcel is
given an impulse downwards it will continue to accelerate in that direction.

1> . .

Y=Y according to whether the lapse rate or decrease of temperature with
height in the environment is greater than, equal to or less than the decrease of
temperature with height undergone by the individual parcel when it is displaced
from the environment.

Now ~ represents the process curve lapse rate to which a parcel is subjected
during ascent or descent. This is Iy, the dry adiabatic lapse rate for dry air, and
s, the moist adiabatic lapse rate for saturated air.

We may now state the following conditions governing stability and instability
according to the criteria which were stated at the head of this section. We give a
parcel of air an initial impulse upwards; then if Z, the vertical acceleration, is
positive and directed upwards, that is if the parcel continues to rise, then the
atmosphere is unstable.

If Z is zero the atmosphere is in equilibrium, and if # is directed downwards,
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that is if the parcel returns to its initial position, the atmosphere is stable. The
sign of Z would be reversed for an initial downward impulse. Thus, we see from
our foregoing conclusions that, for dry air,

(i) if ¥’ > I'y the atmosphere as shown by the sounding curve is unstable,
(i) if v =Ty the sounding curve is indifferent, and
(iii) if 4’ < 'y the sounding curve is stable;

and, for saturated air,

(iv) if ¥’ > I the sounding curve is unstable,
(v) ify' =T, the sounding curve is indifferent or neutral, and
(vi) if 4" < T the sounding curve is stable.

If we refer to unsaturated air we say further that,

m if 7' > T’y the sounding curve is absolutely unstable
m if v/ = T4 the curve is dry indifferent. It is neutral for dry air and unstable for
saturated air.

If Ty < 74" < T4 the curve is conditionally unstable. It is stable for dry air but
unstable for saturated air.

If 4/ = I, the curve is saturated indifferent. It is neutral for saturated air but
stable for dry air.

If v < T the curve is absolutely stable. Figure 5.3 illustrates the stability
criteria.

If the reference level is stable the parcel will, as already stated, return towards
the equilibrium level after displacement. Its inertia will, however, cause it to pass
the reference level so that an oscillation will be set up.

We may define a positive number N such that

F _ /
N = g(dTi’ﬂ (5.19)
Equation (5.18) may then be written as

F=-Nz

Sa tur, atiOn
adiabat
(iii)
Dry "
adiabat (if)

@@

FIGURE 5.3 Stability criteria on the skew (7', —log, p) diagram or tephigram.
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a solution of which is
z = Asin Nt (5.20)

and the parcel will oscillate about the level z = 0 with amplitude 4 and period
27/N. Such an oscillation is known as a Brent-Viiséld oscillation, after the two
persons who first predicted its existence.

As an example, we may compute the period of oscillation of a dry isothermal
layer by substituting numerical values for N in (5.19):

To T()C d 27
t=2n =27 P — o Jeoa T
\/g(l“d -7 g gV
If Ty = 273K, t = 335 seconds.
However, since the lapse rate is normally nearer the dry adiabatic the period
of oscillation is usually considerably longer.

Equation (5.15) may be stated as
dw

P (At OB
ds P
where w = dz/dt is the vertical velocity. The left hand side is wdw = d(4w?).
This expression represents the change of kinetic energy per unit mass of the
particle while it moves through the height dz. When the buoyant force expressed
by the term (g/p)(p’ — p) is multiplied by dz one obtains

-
z

/ /
§() — p)dz =52, — pyaz = —gp L)
p pp pp (5.21)
dw ,
E-dz = —dp(a — o)

The term on the right hand side of (5.21). may be expressed as an area on
an (a,p) diagram. On the tephigram the element of area is given by the
small parallelograms bounded by the isobars and isotherms since a, o' are
proportional to T, T’ for a given pressure. The area on a tephigram also
represents work, (3.5). Equation (5.21) then represents the element of work
done by the buoyant force on unit mass of the parcel while it moves through the
height dz.

Integrating (5.21),

P2
A= - / (a—a')dp (5.22)
P

This area, A, is that bounded by the two pressure levels p; and p, and the process
and environment curves respectively (Fig. 5.4). If the process curve is warmer
than the environment curve the air is unstable and the area described represents
the positive latent energy of instability within the layer. This energy is released
when a suitable impulse or trigger action sets off the vertical motion. A rising
bubble of air may then remain warmer than the air through which it is ascending
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over a considerable height range. Convective weather phenomena such as
showers and thunderstorms arise in this way. If the process curve is colder
than the environment curve the atmosphere is stable and the area represents the
amount of work which must be performed on unit mass of the parcel to displace
it from level p; to level p, or vice versa. The energy is then negative. The
magnitude of the positive or negative latent energy in the atmosphere is a useful
means of judging its relative stability. Isopleths of such values may be plotted on
synoptic charts and the resultant patterns analysed and used as a further tool in
the complex technique of weather forecasting.

In Fig. 5.4 the energy is represented in schematic form by the shaded area. In
this example the air is dry. If it is unsaturated it may be assumed to be dry for
practical purposes. The process curve is the dry adiabatic line and the environ-
ment curve is the plot of the actual temperatures at different pressures or height
levels measured by a radiosonde instrument.

On occasions the lapse rate may be stable for dry air and unstable for
saturated air. The atmosphere is then called conditionally unstable. If, in
such a case, heating of relatively moist air at low levels during a warm day
forms a superadiabatic lapse rate the air at these levels may ascend until it
becomes saturated and then ascend further along the saturated curve.
Forcible lifting over a hill or mountain barrier may also give the required initial
impulse instead of solar heating. If the impulse is insufficient the air will
sink back to its original level. A conditionally unstable lapse rate is illustrated
in Fig. 5.5.

Charles Normand was an internationally known meteorologist who lived in
the first part of the twentieth century. He attempted to classify various types of
stratification on the basis of the energy principle inherent in the aerological
diagram. In Fig. 5.5 suppose that ACBEG is the process curve for a parcel of air
moving in an environment whose virtual temperature is given by ABDEF, and
let the lower negative area be of magnitude N and the upper positive area be
of magnitude P. Then, Normand’s classification of stability distinguishes the
following three cases:

log p

FIGURE 5.4 Area of latent energy.
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Saturated
abiabat

Dry
abiabat

Ficure 5.5 Schematic example for conditional instability: environment and
adiabatic lapse rate curves.

1. N >0, P =0 absolute stability

2. N =0, P > 0 absolute instability

3. N >0, P> 0conditional or latent instability, which can be subdivided into
P > N real latent instability
P < N pseudo-latent instability

In the case of absolute stability, there is just no energy available (positive area)
to start an initially stationary parcel moving upwards and, in the case of absolute
instability, there is no lower negative area to inhibit buoyant vertical motion.
The latently unstable cases are more complex, however.

In the real latent case, the amount of energy which must be supplied to a
parcel at A in Fig. 5.5 in order for it just to reach B is less than the amount
which can be released above B, and the difference (P — N) > 0 is taken to be
the amount of specific energy available for buoyant convection. In practice, the
latter energy appears to be only available on occasions when N is small and the
probability of convection occurring increases as N — 0 in this case. One might
be tempted to attribute this to the fact that some parcels would be bound to
penetrate a very thin lower negative layer as a result of external impulses. The
initial velocities required to overcome even a small N are quite large, however,
and it is thought to be more likely that, in situations where N is small above a
radiosonde station, there may exist nearby superheated areas where it is zero and
absolute instability is therefore present. In the pseudo-latent case (P — N) < 0
and so there is no net amount of specific energy available for buoyant convection.

In all cases where a parcel arrives at the level E with non-zero kinetic energy,
the assumption of the closed-parcel theory is that the parcel will ascend
sufficiently far into the upper negative region to lose that kinetic energy and
will then execute vertical oscillations about E with the Brunt—Vaisala frequency
expressed in equation (5.19). In practice, cloud tops do not usually reach the top
of the upper positive area unless they are powerful cumulo-nimbus clouds, when
wide anvils stretch out from the tops of the convective part of the clouds. In
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conclusion of the discussion, it should be borne in mind that there are better and
more exact theories of penetrative convection, such as the entrainment theory,
which allows for mixing of the convective element with the environment, and the
slice theory, which allows for the downward movement of the environment,
which must compensate the upward motion of the buoyant elements, if mass is
conserved. These more advanced ideas are beyond the scope of the thermo-
dymamics content of this text. They would be incorporated in numerical models.
However, for most practical analyses, particularly where the issue of weather
forecasts has to meet a time deadline, the parcel methods discussed here will be
sufficiently accurate.

Figures 5.3-5.5 show examples of different kinds of lapse rates in schematic
form. Real examples on an aerological diagram would also show the humidity
profile as shown by the mixing ratio lapse rate. In Fig. 5.4 it is assumed that the
air is dry, but in Fig. 5.5 it is assumed that the rising parcels of air become
saturated at the point C. Below C the parcels rise along the dry adiabat line, but
after C, the condensation level, the parcels follow the saturated adiabats. In Fig.
5.5 the area marked with plus signs represents the amount of latent or available
energy, as discussed in the preceding section. This energy may also be called
convective available potential energy (CAPE). We may define potential energy
per unit mass at some level z by the expression

g(z — zo)
where z; is a reference level. The potential energy of the (z,, z) layer is then
E,= /- pg(z — zp)dz (5.23)
o

For the whole atmosphere from z;, = 0 to oo, integration of (5.23) by parts yields

¢
E, = dz
) /) p
which may be rewritten as

1 [* 1 /0 R [0
E :—/ papgdz=—~/ ad =——/ Tdp.
P gJo g pop i g Jp

Since the internal energy of such a column is

0
S [ rap,
g Jm

it follows that its total potential energy (TPE) is

C 0
-2 [ Tdp. (5.24)
g Jpo

Now suppose that the TPE in our column is somehow minimized by means of
a virtual adiabatic re-arrangement of mass. The difference between the actual



LAPSE RATE FOR SATURATED AIR 69

TPE and the minimum TPE represents the amount of TPE available for
convection and may be regarded and defined as the CAPE. This is a very
important property of the atmosphere. In climatic studies and climatic models
sea surface temperature anomalies are regarded as very important indicators of
rainfall anomalies. Thus, high sea surface temperature anomalies are associated
or positively correlated with increases in rainfall and vice versa. It should be
borne in mind, however, that it is really CAPE anomalies that are the important
criteria. Thus, if sea surface temperatures increase and the upper level tempera-
tures remain constant then the amount of CAPE does increase. Overturning and
cloud and precipitation may increase. But if the upper level temperatures change
by the same amount as the sea surface temperatures the amount of CAPE will
not change much. There has been some debate as to the role of CAPE in climatic
change. Professor R. S. Lindzen at MIT has identified CAPE as a parameter
which can be used to help in the detection of climate change. He has referred to
the climate of 18 000 years ago in the midst of the last glaciation and suggests that
on the basis of observations of unicellular creatures called ‘forams’, the sea
surface temperature in the tropics was only about a degree colder than today.
However, the temperature at 5 km, estimated from evidence of the height of the
snowline on high mountains, was about 5°C colder than today. This meant that
there was much more CAPE, so that CAPE changes inversely with sea surface
temperature.

The adiabatic process for unsaturated air is given by (2.28)
¢, dT —adp=0

where
¢p = cpa(1 4+ 0.9x)
from (4.27). Then

ra;  YazT ¢
F:_d_T:_g_ (5.25)
dz ¢

14

The error arising in neglecting 0.9x compared with 1 is small. For all
practical purposes we may therefore consider the adiabatic lapse rate for moist
unsaturated air to be the same as that for dry air:

F=Ty== (5.26)

We may derive the lapse rate which expresses the rate at which moist air will cool
as it ascends when it is saturated.
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The saturated process is described by (4.33) as
—Ldx; = (14 x,)[c, dT — RT d(In p)]
—Ldx; = (1 + x,)(c,dT + g dz)

Dividing through by dz
dx dT
L5 -1 -
dz (I+x) (C” dz +g>
dx
- —d—ZS = (1 + xs)(_cp]-_‘s +g)
where I'; is the adiabatic lapse rate for saturated air,
L(dx,/dz)
Lo — g — 2\8Xs/92)
& 1+ x,
L(dx,/d
r. - Ldx/dz) - (5.27)

ol +x) ¢
Now x; = ee,/p from (4.47), and, differentiating (4.24),

dx; _ pe(des/dz) — ese(dp/dz) _ —el's de; | eseg
dz P? = p dT " pRT

Substituting for de,/dT from (4.18)

dx;, —eleJIs eeg  xLIs x.g

dz ~ R,T%» 'pRT  R,T* ' pRT

We assume that 1 + x; ~ 1 and R ~ Ry, c, ~ cpq. Then, from (5.27),

L LT,
psz_[_xs_2s+ xsg] L £
Cpd RvT RdT Cpd
stst _ xgL g
P paRT? cpaRaT
L2
. =£[1+XSLJ
deRVT Cpd RdT
_ Pd(l +XSL/RdT)
Y 14 xL%/cpqR,T?

(5.28)

Ty

It is seen that the saturated adiabatic lapse rate is a fraction of the dry
adiabatic lapse rate and that this fraction is a function of the amount of
water vapour in the air. When the air is quite dry x, = 0 and I'; = Iy, the dry
adiabatic lapse rate. The saturated adiabatic lapse rate at different levels may
be evaluated from (5.28) for given initial conditions of p, T. It is seen that at
very high levels the saturated adiabats on a tephigram approach the dry
adiabats.
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Show that p = py exp (—constant - z) for an isothermal atmosphere. Why is
such an atmosphere unlikely to exist?

Figures 5.4 and 5.5 are schematic. Construct ascents of actual cases of
temperature and humidity profiles and shade the areas of CAPE.

At a particular instant, a dry parcel of air has a temperature of 250K
and is moving vertically through a dry isothermal environment of the
same temperature. Under the assumption that the motion of the parcel is
adiabatic, find its period of oscillation about the initial reference level.
Suppose the environment lapse rate is dry adiabatic.

If a parcel has an initial upward velocity wy, what negative area can it
describe before its kinetic energy is consumed? Into what type of energy is
this kinetic energy converted?

Write a computer program to construct the saturated adiabatic lapse from
40°C to —40°C. Use tables to obtain the values of the saturation mixing
ratios at different temperatures.

If the lapse rate is constant how does the density change with height? What is
the lapse rate when the variation of density with height is zero?

Solve equation (5.7) for z, the height. What is the value of the height for
the case of a dry adiabatic lapse rate? Express this in terms of the potential
temperature, assuming p, = 1000 hPa.

Suppose the atmosphere has a constant lapse rate and surface tempera-
ture Ty. Suppose the temperature varies everywhere with time while p; is
constant. At what height is 0p/9¢ a maximum?

An atmospheric column with a dry adiabatic lapse rate is heated by 1°C
throughout. What is the maximum pressure change occurring within the
column? Assume py = 1000 hPa, T, = 293 K.
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THE CORIOLIS FORCE

So far, the only dynamical phenomenon with which we have dealt is that of
convection. In equation (5.14) we introduced the concept of a vertical accelera-
tion for a parcel which was not in hydrostatic equilibrium. We will now examine
the idea of force and acceleration in much more detail, concentrating on the way
in which horizontal motion of the atmosphere is generated.

The procession of weather changes which takes place from hour to hour,
from day to day and from month to month over the surface of our globe is
fundamentally the result of the motion of the air, a motion resulting from the
action of various forces upon the air parcels. The primary origin of these forces is
the energy received from the sun. This energy heats the atmosphere and drives
the atmospheric engine. Water vapour is evaporated into the air and subse-
quently precipitated as dew, frost, rain, hail or snow. The processes involved are
complex, but broadly speaking the general circulation of the atmosphere arises
as a result of the unequal seasonal and latitudinal and geographic heating of the
earth’s surface and atmosphere and of the rotation of the earth. The result is that
the radiant energy of the sun is transformed into kinetic energy of moving air or
wind. The vertical component of the wind is usually small and is often neglected
in comparison with the horizontal components. Nevertheless, vertical motion is
the prime cause of nearly all forms of cloud and measurable precipitation,
and of the absence of clouds, and therefore the main cause of all the weather
we experience.

In order to proceed with our arguments we must invoke Newton’s second
law of motion: the rate of change of momentum of a body is proportional to the
impressed force on that body and takes place in the direction of that force. We
may write this law in the form

—(mv)=F (6.1)
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where m is the mass of the body, v is its velocity and F is the resultant
impressed force. Note that in this introductory equation we have used v
where the bold type signifies that the velocity is a vector, that is the notation
implies that the velocity has both speed and direction. If we assume that the
mass of the body stays constant we may write (6.1) in the form

dv

F=m— 6.2

T (6.2)
As a special case of (6.2) we have Newton’s first law of motion: every body
continues in a state of rest or of uniform motion in a straight line, except in so far
as external impressed forces change that state.

We must first remember that Newton’s laws of motion are only valid for a fixed
system of coordinates. Such a frame of reference is known as an inertial frame.
Whilst we know from relativity that there does not exist an absolutely fixed frame
of reference, it turns out that a reference system based upon the ‘fixed’ stars is
sufficiently close to an inertial one for most geophysical purposes. In mathema-
tical physics the most commonly used system of coordinates is the rectangular or
Cartesian system of coordinates. In such a system the x, y axes are constructed at
right angles to one another on a horizontal plane. The z axis is constructed at
right angles and vertically upwards from the origin. In such a system we may
write (6.2) in its component forms

du

F,= ma (6.3a)
dv
dw

Fz = ma (63C)

where F,, F,, F. are the forces acting along the x, y, z axes and u, v, w are the wind
components along those axes. In meteorology u and v may be thought of as
westerly (i.e. eastwards) and southerly (i.e. northwards) wind components,
respectively, while w may be thought of as the vertical (upward) wind speed. x
and u are positive if measured to the right of the origin of the rectangular
coordinate system and negative if measured to the left of the origin. y and v are
positive if they are measured up in the horizontal plane, that is towards the north,
and negative if they are measured down in the horizontal plane, that is towards
the south. The vertical direction is positive if it is measured up and out of the
horizontal plane, and negative if it is measured down into the horizontal plane. It
is important to be clear about these basic definitions before proceeding further.
All of the equations of motion will contain these symbols. Incidentally, it might
be noted that the quantity ‘force’ is difficult to comprehend, except within
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Newtonian mechanics. We all think that we know what it signifies, but it can
really only be measured in terms of the acceleration it gives to unit mass. In
Chapter 5 we introduced the acceleration of gravity, g, in the hydrostatic
equation. g is measured as about 9.8 ms™2; that is, it imparts an acceleration
of 9.8 ms~2 to a body in free fall, without any retarding force such as friction of
the air. We cannot really identify force any more closely than this. In future we
will drop the symbol m in (6.1)—(6.3). The forces then become forces per unit
mass, that is they have the dimensions of acceleration.

In a fixed system of coordinates such as we have described the resulting
motions are fairly simple. However, the surface of the earth is not fixed in
space. It describes an orbit around the sun and this gives rise to our seasons
of summer and winter. But more important in the present context is the fact
that the earth rotates about its axis with an angular velocity Q equal to about
7.29 x 10 rads™! which, of course, is once every 24 sidereal hours. Thus,
motion cannot be described properly by (6.3), except at the equator; we shall see
the reason for this later. We have to adjust our equations by including another
term. This new term expresses an apparent force which arises in consequence of
the rotation of the frame of reference. In other words, we must write our
equations of motion with reference to a rotating reference frame, and not a
reference frame which is fixed in space. The new force is called the Coriolis force.
It is a factor which must be included whenever the motion of the air is the subject
of study, whether in day-to-day weather forecasting or in climate models. It may
only be neglected in studies of small-scale phenomena which do not last longer
than an hour or two and which are therefore not influenced a great deal by the
earth’s rotation. The Coriolis force is often difficult to visualize. Because of this
we will look at several simple ways of detecting its existence in everyday life.
After these examples we will derive the Coriolis force by several mathematical
methods. The examples will become more difficult as we proceed, but the results
are the same, although in some examples they show more detail.

6.3.1 The bear and the penguin

The very apt mathematical readers will be asked to excuse this first example. We
imagine a polar bear at the exact North Pole. The surface is solid ice and the
weather is clear and cloudless and it is the 21st of June. The bear has a good
watch and at exactly 12 noon starts to walk towards the sun. Let us assume that
2kmh™! is average bear walking speed. The bear continues to walk until the
watch does one complete revolution. The bear has now walked in a straight line
towards the sun for 12 hours and thinks it must be a long way from its starting
point. Imagine its surprise, that is if the bear does not possess any mathematical
ability, to find that as the hands of the watch point to 12 midnight 12 hours later,
there are bear footprints ahead, and these footprints look surprisingly like those
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of the walking bear. What are their origin? Actually the bear has completed a full
circle, what is called an inertial circle. Although the bear has walked in a straight
line towards the sun, which is a fixed star, the earth has rotated underneath.
The plane covering the North Pole has rotated in an anticlockwise direction, but
the bear has covered its inertial circle in a clockwise direction. To summarize, the
bear has walked in a straight line with reference to an observer fixed in space. But
to an observer on the earth, in a rotating frame of reference, the bear appears to
have walked in a circle.

Suppose we imagine a similar example in the southern hemisphere, at the
South Pole. This time a penguin conducts the same exercise. Conditions are
identical except now it is the 21st of December. The result is similar except
that the penguin will have described a circle in an anticlockwise direction
owing to the fact that the earth’s surface has rotated in a clockwise direction
around the South Pole.

The results of these two examples suggest that there is a force which acts at
right angles to the direction of motion. In the northern hemisphere it acts
perpendicular to and to the right of the direction of motion and in the southern
hemisphere perpendicular to and to the left of the direction of motion. Because
of this effect the Coriolis force is sometimes referred to as a deflective force. It
does not change the linear speed of the moving body, but changes its direction.

6.3.2 The carousel or merry-go-round

Two children, Jack and Jill, go for a ride on a merry-go-round, which is going
round in an anticlockwise direction. They are riding the horses. Jack gets on one
side and Jill on the exact opposite side. Jack has a tennis ball. When the carousel
is at full speed he throws the ball across to Jill and shouts at her to catch it. Jack
watches the ball and sees it career off to the right far out of Jill’s grasp. What has
happened? The ball has travelled in a straight line but Jack and Jill are rotating at
a relatively fast rate. Consequently, the ball appears to veer off to the right. It is
an example of the effect of the Coriolis force.

Suppose now the merry-go-round starts to rotate in a clockwise direction
and the same experiment is carried out. The tennis ball will now appear to have
veered off to the left as watched by Jack. This experiment simulates the effect of
the Coriolis force in the southern hemisphere.

6.3.3 A simple practical example of the Coriolis force

Take a sheet of paper and position it on a desk or table with a pin, in such a
way as to allow the paper to rotate. With one hand slowly rotate the sheet of
paper in an anticlockwise direction. With the other hand take a pen or pencil
and move the point towards a fixed object on the desk or opposite wall,
keeping the eye fixed on this object, not on the paper. In this example the
pencil is moving in a straight line in space, but the paper is rotating. The path
drawn by the pen or pencil will be a curve to the right (Fig. 6.1), another example
of the Coriolis or deflective force. The same experiment may be conducted with a
record turn-table.



76 THE EQUATIONS OF MOTION: |

Fixed
object
‘ Path followed
by pencil
/

Rotation
of paper

FiGuRe 6.1 Illustration of the deflective force.

6.3.4 Simple mathematical derivation of the Coriolis force

We will again return to the North Pole and imagine that we have there a human
observer. This observer can identify a specified object which is shot in a straight
line away from the observer with velocity V as illustrated in Fig. 6.2. In the
absence of friction or any other retarding force the object would obey Newton’s
second law and continue moving in a straight line along OA. However, the earth
is rotating anticlockwise with angular velocity €2, so that after an interval of time
(t) the observer is facing OA’. The observer would expect to see the object at
OA’ but, instead, sees it at OA, which is to the observer’s right. The object
appears to have been deflected from OA’ to OA. Now if AA’ is small compared

A/

Qt

Vo—t

FiGURE 6.2 Derivation of the expansion for the Coriolis force.
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with OA
AA’ = OA'Q) = (V1) x (i) = VQF2

AA' =laf

where a is acceleration, and
a=20V (6.4)

Equation (6.4) expresses the Coriolis force per unit mass acting on a body or
parcel of air moving over a plane surface which is rotating about a central axis
normal to the surface. We have obtained some additional information from (6.4).
It is that the deflective force is proportional to the velocity.

6.3.5 The Foucault pendulum

The action of the Coriolis force can be explicitly illustrated by a Foucault
pendulum which is suspended at the end of a very long cable attached to the roof
of the ceiling of a vaulted hall. Foucault pendulums are often exhibited in science
museums, such as the South Kensington Science Museum in London. Suppose a
visitor enters the museum in the morning and observes the pendulum swinging
from right to left. Suppose the visitor leaves the museum late in the afternoon
and passes the pendulum on the way out. The visitor will notice that now the
pendulum is swinging at a different angle, that is in a different vertical plane than
it had been earlier in the day. The pendulum has actually not changed its
direction of swing in space, but the earth has rotated underneath it so that the
pendulum appears to have changed its direction of swing. An example of this is
shown in Fig. 6.3.

Rotation
0 W& of earth

FiGURE 6.3 The Foucault pendulum deflection in the northern hemisphere.
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We have given five examples of ways in which the Coriolis force can be
detected. Four of these were practical examples and one was an easy mathe-
matical derivation. All of the examples studied were inertial. That is, they
assumed that a body or object was moving at some constant speed caused by
an initial impulse, or walking at some constant and controlled speed, as in the
examples of the bear and penguin. Also we have so far considered that the
underlying surface is rotating with some angular velocity 2 and that the axis of
rotation is perpendicular to the underlying surface at some selected point which
we chose to use as an origin. In the next chapter we will be concerned with air
parcels in the atmosphere and will introduce two additional factors. The first of
these are forces which act to accelerate (or decelerate) the air parcel along the
coordinate axes in accordance with Newton’s second law. The second factor
is to consider the spherical shape of the earth and break down the magnitude
2 of the earth’s rotation to one component around an axis perpendicular to
the horizontal plane, that is along the local vertical, and another component
perpendicular to the local vertical. The local vertical can be identified as a line
which is coincident with a plumb line with a weight on the end of it. We shall
then derive the full equations of motion, including the Coriolis terms in a more
rigorous manner than hitherto.

1. What is the radius of the circle described by the polar bear?

2. Why does the penguin meet its footprint in 12 hours and not 24 hours?

3. Write an essay describing your own personal understanding of the Coriolis
force with examples.
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DERIVATION IN VARIOUS
COORDINATES

The most important force in the equations of motion is the pressure gradient
force. This arises as a result of the unequal distribution of the mass of the
atmosphere over the surface of the earth. It is represented on weather maps by
patterns of isobars which are recognized as pressure patterns such as anti-
cyclones and cyclones or depressions. The pressure gradient force is measured in
terms of the difference in pressure between two points. An expression may be
derived for it in the following way.

Imagine an infinitesimal rectangular box whose sides are parallel to the
frame of axes, with a pressure p acting on the face ABCD and a pressure
p + (0p/0x) dx acting on the opposite face EFGH (Fig. 7.1). The sides of the
box are dx, dy, dz.

Then the corresponding forces acting on ABCD and EFGH are

pdydz and (p +g§dx)dydz

respectively. The resultant force F, acting on the rectangular box in the x
direction is the difference between the two forces.

Thus
op
F,=pdydz—pdyd:z —adxdydz
op
F.=——dVv 7.1
F. = —1 QB for unit mass

p Ox
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FIGURE 7.1 The pressure gradient force.

This is the pressure gradient force acting in the x direction. If the pressure
decreases along the x axis the force is directed along the x axis. If the pressure
increases along the x axis the force is directed in the opposite direction, that
is towards the origin of the system of coordinates. The forces acting in the
directions can be derived similarly. Thus the complete equations for unit mass

are
1 6p
o
_ 10p
= oay
1 dp

Fo=--2-=
‘ p Oz

x.’:

(7.2)

The vertical component F. is normally balanced by the acceleration of gravity, g.
Thus
1 dp
F.= 0oz ¢
and this is the hydrostatic equation already derived at (5.1). If a parcel of air is
not in hydrostatic equilibrium there must be vertical acceleration and (5.1) takes
the form of (5.14). The assumption will be made, however, that for the time being
vertical motion is negligible in magnitude compared with horizontal motion and
accordingly the development of the equations of motion will be confined to
horizontal flow.
We may now write

du 1 p
dr ™ p o (7.3)
dv 1 9p
i~ poy

Equations (7.3) refer to horizontal, frictionless flow in a fixed system of
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coordinates. The resulting motion would be a continuously accelerating velocity
directed along the pressure gradient, that is from high to low pressure. Such
motion of the atmosphere may occur near the equator as we shall see later, but it
is not important since pressure gradients are weak in that region.

In our discussions about the Coriolis force in the previous chapter we
contrived the artificial examples where the axis of rotation was perpendicular
to the surface. Although this is true at the earth’s poles such an assumption is not
valid elsewhere. Figure 7.2 is a schematic diagram showing a spherical earth
rotating with angular velocity €2 about its axis. It can be readily seen that, if the
latitude is denoted by ¢, then the component of rotation about a point on the
local vertical, that is about a line drawn from the point to the centre of the
earth, is Qsin¢. It is proportional to the projection of the polar axis of
rotation of a line drawn from the centre of the earth O to the specified point
on the earth’s surface. This projection is shown as OB. Also the component
of rotation about a point perpendicular to line OA line is Q2 cos ¢ and this is
proportional to the line AB.

We must now substitute 2 in equation (6.4) by Q2 sin ¢. Thus, the Coriolis term
becomes 202V sin ¢. The expression 29 sin ¢ is called the Coriolis parameter. It
will be denoted by f. Having now derived the Coriolis parameter for a spherical
rotating earth, and also the pressure gradient terms, we are in a position to write
the equations of motion in their basic form.

>

Ficure 7.2 Component of rotation of a point on the earth’s surface about the polar
axis.
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To do this we need to examine Fig. 7.3 to see how the forces act. Remembering
that the Coriolis force acts at 90° to the right of the direction of motion of the air
parcel in the northern hemisphere, and is proportional to the velocity we may
write

du  10p
E__;aerf“
dv_ _10p_
dt~  pdy

The terms on the left hand side of the above equations are the actual residual
accelerations along the axes x and y. The equations are normally written in the
form

%_ - 1 dp
a7 pox
) ’l'ax (7.4)
v __~o
dt+fu_ p Oy

Although we shall derive more rigorous forms of (7.4) the additional terms are
neglected for most calculations and simulations of the motion of the atmosphere.
Nevertheless, it is necessary to derive the more rigorous forms so that we can
decide whether or not the extra terms really can be neglected.

We recall that in the southern hemisphere the terrestrial tangent plane rotates
in a clockwise sense when viewed from above. By convention anticlockwise
rotation is positive and clockwise rotation is negative. Thus, f = 2Qsin ¢ is

y
|
1%

p &x
i {7/

1y
f p oy
(4

Y e———

fu

FiGure 7.3 Equations of motion for horizontal frictionless flow.
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positive in the northern hemisphere and negative in the southern hemisphere.
This means that in the southern hemisphere equation (7.4) would become

du 1 96)
E—Hflv:_;@—i
(1.5)
& =2
dt T poy

In describing atmospheric motion in the southern hemisphere as, for example,
in numerical general circulation models, the problem of the change in sign is
accomplished by setting the latitude angle ¢ negative, so that (7.4) are valid in
both hemispheres.

We will use one more method to derive the Coriolis parameter. In this case we
will derive both the components, that is the component about the earth’s axis of
rotation and the component about the line perpendicular to that axis; in other
~ words, we shall consider the earth to be a sphere.

First, let us consider that a parcel of air of unit mass is moving with velocity u
along a parallel of latitude and let us discuss the relation

u\2 2 u?
(2+%) R=22R+ 20+
where R = acos ¢ and a is the radius of the earth. Now the term on the left hand
side of (7.6) is the total centrifugal force on the air parcel, and the first term on the
right hand side is the centrifugal force due to the rotation of the earth. This is
included in the measured value of gravity. The third term is the centrifugal force
on the air parcel due to its rotation with velocity » about the axis of the earth.
This is small compared with the first term and may be neglected. The term we are
interested in is the second term which is the deflective or Coriolis force. This is
2Qu. Now we have already seen that there are two components of Q: {2sin ¢
around the axis of the local vertical, and 2 cos ¢ around the horizontal vector
line connecting the parcel with the axis of the earth. The latter line is
perpendicular to the vertical axis. Thus we have
dal;j = —2Qusin ¢ (1.7
This component of the Coriolis force acts at right angles and to the right of the
westerly wind . It is negative since it is directed towards the south. This is the
component we have already met which acts within the horizontal x, y plane. But
we also have the other component
dw

T 2Qucos ¢ (7.8)

(7.6)
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which gives rise to a vertical acceleration within the x, z plane. Equations (7.7)
and (7:8) both act at right angles to the wind blowing along a parallel of latitude.
We will now consider what happens if we displace a parcel northwards (or
southwards), that is on the meridional component of the wind, v. To do this we
invoke the conservation of angular momentum equation
bu
QR = —_— 2 .
<Q+(R+5R))(R+6R) (7.9)
Expanding (7.9) we may neglect the products of all differentials. We also
neglect 6R in comparison with R. We find that

du = —206R

We have already defined R = acos ¢ so that 6R = —asin§ ¢.
Therefore du = +2Qasin ¢ d¢ and, since dy = ad¢, we have

du . |

i —2Qusin ¢ (7.10)
In a similar manner we can show that if a parcel is projected vertically upward

du

- —2Qwcos ¢ (7.11)

Combining equations (7.7)—(7.10) we have the complete set of Coriolis
accelerations:

du

P = fv —2Qwcos ¢
®_ g

dr

dw

i 2Qucos ¢

i i i R g TR s i

A more rigorous form of (7.4) may be derived by considering a system of rotating
axes referred to axes fixed in space.

In Fig. 7.4 x, y is a system of axes fixed in space with origin O at the North
Pole. x’, y' are axes fixed to the surface of the earth also with origin at the North
Pole, but they rotate with the earth in an anticlockwise direction. Then

OM = xcos Ut
MR = ysin Q¢
PQ = ycos Q¢
RQ = xsin Q¢

We may describe the rotating coordinates x’, y’ of a point P in terms of fixed
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coordinates x, y as follows:
x' = xcos Qt + ysinQt
, ) (7.12)
y =ycosit — xsin

Differentiating with respect to time and using the notation x = dx/ds,
y = dy/ds, etc., we have

x" = xcos Qt + ysin Qf — Qxsin Qz + Qy cos QU

or
%' = xcosQt + ysinQt + Qy’
and
¥ = ycosQt — xsinQr — Qysin Ot — Qxcos Nt
or

y' = pcosQt — xsinQt — Qx'
Differentiating X’ and y’ again with respect to time we have
%' = Xcos Qi + jsin Qt + Q' — Qxsin Qr 4+ Qycos Nt
= ¥cos it + jsin Qs + Q' + ¥ + Q'
= Xcos Ut + jsin Qr + 207" + QX (7.13)
and
' = jcos Ut — ¥sinQt — Qx’ — Qysin Qr — Qxcos QU
= jicos QU — ¥sin Q1 — Qx’ — Q%' + Q%)
= jcos Qt — ¥sin Qr — 2Qx" + Q%' (7.14)

FiGURE 7.4 Rotating frame of reference.
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Now from Fig. 7.4 the forces acting at any point along the rotating axes may
be expressed in terms of the forces acting along the fixed axes:

Fy = F,cos{ + F, sinQ

, ] (7.15)
F, = F,cos )t — F,sin Q¢
where F, = ¥ and F, = j, for unit mass.
Then
F. = XcosQt + jsin Q¢
F, = jcos Q — %sin Qt
From (7.13), (7.14) and (7.15) we obtain
¥ = FL+2Qp" + 0%
(7.16)

j' = F, - 20x" + Q%'

Now replacing x', y’ by x, y throughout we may write the equations of motion
for horizontal and frictionless flow referred to rotating axes fixed to the earth’s
surface with their origin at the North Pole. For any point located elsewhere on
the earth’s surface than at the North Pole we must replace 2 by Qsin ¢ in the
Coriolis terms as already discussed in Section 7.3. Then, from (7.16),

%=—la—p+ﬁ)+92xsin2¢

de p Ox (71.17)
d'U_ lap 2 .9 .
TR Ju+Qysin“¢

The last two terms are the horizontal component of the centrifugal force due to
the earth’s rotation. When combined the two terms can be expressed as Q°R. It
acts outwards from the axis of rotation, that is, along the line BA in Fig. 7.2. This
component is small and absorbed in the measured value of g and is therefore not
included separately. The vectorial combination of the gravitational attraction
and this small centrifugal force is known as apparent gravity.

So far we have used a plane rectangular coordinate system to express the
accelerations in the equations of motion. It is sometimes useful to use polar
coordinates as, for example, if we are concerned with circular systems of isobars
such as occur in high-pressure systems (anticyclones), or low-pressure systems
(depressions, or tropical cyclones or typhoons). For tropical cyclones or
typhoons the polar coordinate system is converted to a cylindrical system by
including the vertical coordinate z. We will start by transforming the equations
(7.3) using the relations

x=rcosb
(7.18)
y =rsinf
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FIGURE 7.5 Transformation from Cartesian to polar coordinates.

where r is the radius vector and 4 is the angle r makes with the x axis (Fig. 7.5).
Differentiating (7.18),

X = —rsinff + icosf
% = —rsinf — 0(rcos 69 -+ 7sin §) + Fcos & — G sin §
= ¥cosf — 2¢sin @ — rfsin @ — rf cos (7.19)
and
¥ = Fsin @ + rcos 69
J = Fcos 00 + ¥sin @ + rcos 06 + 6(# cos  — rsin 66)
= #sinf + 279 cos @ + rf cos § — ré*sin 6 (7.20)

Now any force F may be split up into components F,, F, along and
perpendicular to the radius vector in just the same way as into F,, F, along
the x and y axes. From Fig. 7.5 it is seen that we may express F,, F, in terms of F,,
F, as below:

F, = F,cosf + F,sin¢
) (7.21)
Fy=—F,sinf+ F,cosf
but
F,=X and F,=j
Therefore
F, = Xcosf@+ jsinf
Fy=—Xsinf + ycosd
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and from (7.19), (7.20) and (7.21)
F, = Fcos?0 — 27fsin § cos § — rf sin 6 cos 6 — r6? cos? 8
+ #sin® @ + 29 sin f cos  + réisin 6 cos § — r6? sin® 9
F =i— ré?
and
Fy = —Fcos@sin @ + 2/6sin® 0 + résin> 6 + ré° sinf cos §

+ Fsin@cos @ + 270 cos*0 + rf cos’ 8 — ré* sin § cos 6

The forces along and tangential to the radius vector are thus, respectively
F,=i— r?
.. . (7.22)
Fy=r6+270

The above expressions refer to fixed polar coordinates. If the coordinate
system is rotating as it does when fixed relative to the surface of the rotating earth
these expressions must be adjusted. This may be done by letting 8 in (7.22) equal
6 + Qsin ¢. The new 6 thus represents the angular velocity relative to axes fixed
relative to the surface of the earth:

F,=#—r(0+ Qsing)* = _lop

0
P | 'a (7.23)
_ . oA . _ _p
Fy=r0+2/(0+ Qsing) = o 36
Omitting the term for the centrifugal force of the earth as before, we have
F,=F—r92~fr9=—l§£
p or
(7.24)

Fy=ré+2i64fi= 2P
pr

which are the required equations.

T e
?2-.1

In order to do this we set up the relations

X =7COSPCOS A
y =rcos¢sin A (7.25)
z=rsin¢

as shown in Fig. 7.6, and differentiate twice. The second derivatives of x, y, z are
F\, F,, F., the forces acting along the axes fixed within the earth.
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Longitude, A

FiGURE 7.6 Illustration of spherical coordinates: A represents longitude measured
anticlockwise around the equatorial plane; ¢ is latitude, the angle between OP and
the equatorial plane.

Having found the second derivatives of x, y, z, we deduce from the figure that
we must equate the forces along the parallels of latitude and longitude and along
the radius vector as follows:

F,= —F.cosAsin¢ — F,sinAsin¢ + F.cos ¢
F)y = —F,sin\+ F,cos A (7.26)
F, = F.cos Acos¢ + F,sinAsin ¢ + F.sin ¢

The understanding of the relations in (7.26) requires a sense of visual interpreta-
tion of the spherical geometry, but the task is made easier by first selecting the
simplified cases of ¢ =90° and A = 0° and A = 90°. We will leave the actual
differentiating and multiplying out as an exercise for the reader. Remembering
that the A in our equations is for a fixed system of coordinates and that for
the rotating earth d\/dr — dA/dt + §, we thus obtain the final form for the
equations of motion in spherical coordinates.

We neglect the terms containing %r which represent the centrifugal force of
the earth’s rotation, which is incorporated in the observed measurement of
gravity. Then the final form of the equations of motion in spherical coordinates is

rcos o + 2(A + Q)(Fcos ¢ — rsin ¢g) = F,
r$ + 2i¢ + rcos psin pA(A +29Q) = F, (7.27)
¥ — ré? — rcos’ gA(A +2Q) = F,
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The equations of motion in spherical coordinates as derived in equations (7.27)
are not very convenient to use. We make our observations of wind with reference
to the surface of the earth so that a form of coordinate system fixed to the surface
of the earth is better. We may then adjust our simple rectangular coordinate
system so that it is everywhere tangent to the curved spherical surface of the
earth. To do this we set up the relations

dx =rcosgpdA
dy=rd¢ (7.28)
dz=dr
Then
U = rcos g (7.29)
i = rcos g (7.30)
. u
A= 7.31
rcos ¢ (7.31)
. Xrcos¢ — XFcos ¢ + x¢rsin ¢
A= 7.32
r2 cos® ¢ (732)
Also
. “ o —Ur
o= . and ¢ = 3 (7.33)
and r = a + z, 7 = z = w, the vertical velocity.
Maultiplying equation (7.32) above by rcos ¢ we have
rcos i = % — YEC0s$ —vsing) (7.34)

Fcos ¢

Substituting the right hand side of this equation into the first relation of (7.27),
neglecting z, the height above the earth’s surface, in comparison with the radius
of the earth, a, and converting the spherical coordinate terms into curvilinear
coordinate terms using the relations described, we get

uw uvtan 19
u+————?+29wcos¢—fv=———p (7.35)
a a p Ox
This is the first equation in curvilinear coordinates for the accelerations directed
along parallels of latitude. Continuing,

h =~ (7.36)

(7.37)
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and

Substituting (7.37) and (7.38) into the second relation of (7.27) and making the
appropriate conversion to curvilinear coordinates again we have
2 1dp

W v
v+a+atan¢+fu >3y (7.39)

Finally, the direct transformation of the third relation of (7.27) is

2———u——29ucos¢=—l——g (7.40)
a a p 0z
We find that we can neglect all terms with the radius of the earth in the
denominator as ¢ is large compared with the velocities in the numerator. If we
neglect these small terms we end up once again with equations (7.4). These are
the equations used in most studies of the motion of the atmosphere.

There is one important thing to remember. All the latter equations we have
derived apply to an atmosphere which is inviscid, that is there is no friction. This
is an approximation that can be made for motion in the free atmosphere, that is
to say, above the boundary layer, which is affected by the friction of the surface,
normally greater over land than over the ocean. We will at a later stage discuss
the addition of extra terms to include friction. However, for the time being we
will only use the equations which describe frictionless motion.

1. Two pedestrians set out together to walk towards a church steeple 10 km
away. When they start out a fixed star is seen directly behind the steeple. The
first pedestrian walks continuously towards the steeple. The second walks
continuously towards the fixed star. If they both walk at a speed of Skmh~!
how far apart will they be when the first has reached the church (a) if the
church is at the North Pole? (b) if it is at 45° south latitude? (c) if it is on the
equator?

2. Two billiard balls are placed on a billiard table, one at each end at a
distance of 10 m apart. The balls are 2 cm in radius. A player strikes one ball
directly towards the other. At what speed must the ball travel in order to just
miss the ball at the other end of the table? The table is at 43° latitude. Neglect
friction.

3. An object is propelled upwards at some starting velocity w, at some
latitude ¢. Neglecting friction, where will the object hit the ground on its
descent? Find the numerical result for initial upward velocities of 10ms™!
and 50ms~’.

4. Consider the Coriolis acceleration acting on an air parcel in the plane
tangent to the earth’s surface and find the velocity and position of the parcel
subjected to some initial velocity uy, vg. No other forces are present.
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5.

Derive the equations of motion in spherical coordinates as described in
Section 7.7. [Hint: To simplify the double differentiation of the product of
three variables set the independent variables in the first and second relations
in (7.25) to a, b, ¢. Differentiate x, y twice using the dot notation. Then
differentiate the individual values of a, b, ¢ separately and substitute in your
equation for X and j which is in terms of a, b, c.]



BALANCED FLOW

Atmospheric motion is often described as balanced or unbalanced. What do we
mean by this terminology? Of course, in the strict sense of the word all motion is
balanced. In the equations of motion we have accelerations du/d¢, dv/dz and
dw/dr. These are essentially residual accelerations along the coordinate axes.
When we say the flow is balanced what we really mean is that du/d¢, dv/ds and
dw/dt are all equal to zero. We will start with the simplest example, which is also
the case most frequently used in practical studies.

We will take the case of straight isobars. If one had not studied the effect of the
rotation of the earth one might expect the air to blow across the isobars from
high to low pressure. Certainly, if we allow a marble to roll down a smooth slope
it appears to run down the hill, not at right angles to the slope. (See problem 1.)
However, observations of the wind on a weather map invariably show that
the wind appears to blow along the isobars. Why is this? Let us return to
equations (7.4). If we set the residual accelerations along the axes equal to zero
we have

w—_L0p
£ pof oy @)
v =+L8—P |
£ pf Ox

Equations (8.1) are known as the geostrophic equations. If we calculate a
value of the density of the air and know the difference of pressure between two
selected points on a grid along the x and y axes we can compute the components
of the wind speed in ms~'. In calculating geostrophic winds for weather
forecasting purposes, and in some synoptic and climatological diagnostic
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studies, we may not be interested in the components of the wind, only in the total
geostrophic speed along the isobars, irrespective of the direction in which they
are oriented. In such a case equations (8.1) reduce to

_Lép

& of 6n

where n is the perpendicular or normal distance across the isobars at the place
where that distance is measured. We may always reduce (8.1) to (8.2) by
orientating our x axis along the isobars. However, in most diagnostic studies

it is better to retain the notation of # and v to represent the west and south winds
respectively.

Worked Example

What is the geostrophic wind at 43°N latitude if the pressure gradient is 1 hPa per
degree of latitude? Surface pressure is 1012 hPa and temperature 20°C. (One
degree of latitude = 60 nautical miles = 111km.)

(8.2)

Solution:
_1&
£ pof én
Vo= 100
E 111 x103x1.2x 1074

The relation expressed by (8.2) is sometimes known as the geostrophic
assumption. It represents the condition where there is an exact balance between
the Coriolis and pressure gradient forces. Equation (8.2) may also be derived
very simply by setting the Coriolis force and the pressure gradient force equal to
each other as shown schematically in Fig. 8.1(a) for the northern hemisphere and
Fig. 8.1(b) for the southern hemisphere. It is an assumption that is confirmed by
observations most of the time. If the isobars are curved or if the pressure gradient
is changing rather rapidly with time corrections must be made. We will return to
this later.

The geostrophic assumption or approximation is extremely useful to
meteorologists as it enables an estimate of the wind to be made from a
weather map, even though there are no actual wind observations available. This s
important because the pressure field is continuous and can be expressed by
constructing isobars, whereas the wind cannot be mapped so easily as a
continuous field.

It will be noted from equations (8.1) that the geostrophic wind speed increases
with decreasing f, that is, with decreasing latitude. At the equator the geos-
trophic wind speed becomes infinite. This, of course, is absurd. The physical
significance of such an impossible mathematical statement is that the assumption
that the residual accelerations du/dz and dv/d¢ are zero breaks down as the
equator is approached. The geostrophic assumption is generally not valid in the
tropics. However, it may be used satisfactorily for latitudes greater than about
15°N and S. Strictly speaking the geostrophic assumption only applies to east—
west and not to north—south isobars. In the former case f is constant, but in the

=7.5ms”!
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Ficure 8.1 Balance of forces for geostrophic flow: (a) northern and (b) southern
hemisphere. Note in (b) that the absolute value of f is used.

latter case f changes in direct proportion with the latitude so that exact balance
cannot be achieved. However, for all practical purposes, particularly in regions
removed from the tropics and on scales less than planetary, we can neglect the
variation of f with latitude in computing the value of v,.

Weather forecasters sometimes use a wind scale to calculate the geostrophic
wind. The scale consists of a piece of Perspex upon which curved lines are spaced
at different distances apart, in order to take into account the latitude. The scale is
placed over the isobars on the weather map so that two lines on the scale coincide
with two isobars on the synoptic chart at the actual latitude where the wind is
being measured. The wind speed may then be read off the scale.

If the isobars are not straight, but curved, a third force must be introduced in
addition to the Coriolis and pressure gradient forces. This additional force is the
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centrifugal force due to the motion of the air around a curved horizontal
path, not to be confused with the centrifugal force caused by the rotation of
the earth, which is absorbed into gravity. When all three forces are in
balance, so that there is no residual acceleration either along the isobars or
perpendicular to them, the flow is called gradient wind flow and the
equation which describes this kind of flow is called the gradient wind
equation. Figures 8.2(a) and 8.2(b) illustrate the balance of forces in
schematic form for the anticyclonic system with high pressure in the
centre, and the cyclonic system with low pressure in the centre. In order
to define the gradient wind equation we will assume that the isobars are
circular around the centre and equally spaced. In real weather systems this
condition may not be met exactly, but the approximation is sufficiently near for
most practical calculations. Vigorous depressions are certainly observed to be
almost circular.
Taking the anticyclonic case for the northern hemisphere first we have

St B (8.3)

where V is the wind speed around the isobars and R is a radial coordinate
measured from the centre of the system. To be strict we must assign a sign to
f which is positive in the northern hemisphere and negative in the southern
hemisphere. We must also assign a sign to the horizontal curvature of the
flow whose magnitude is 1/R. In conformity with the conventions of vector
calculus we take it to be positive to the left of the direction of motion and
negative to the right in both hemispheres. Such a development will describe
the sign of the motion around anticyclones and depressions in both hemi-
spheres. We will return to this treatment later.

2 2
Y_ l 8_}7 Y + fV
R pdR R
18p
PR
LOW
(a) Anticyclonic case (b) Cyclonic case

FIGURE 8.2 Balance of forces for gradient wind flow in the northern hemisphere.
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The cyclonic case for the northern hemisphere is

y? 1 dp
- . 8.4
= TV 3R (8.4)
Combining (8.3) and (8.4) we get
v? 1 dp
—— — e — T 8-5
ikl >R 0 (8.5)

where the minus sign in the second term refers to the northern anticyclonic or
southern cyclonic case and the plus sign refers to the northern cyclonic or
southern anticyclonic case.

Equation (8.5) is a quadratic with solutions

_fR_ PR _Rp
Ve =% F\"2 ", or (8.6)

fR fiR* R Op
== 2 8.7
Ve ="3 V"2 Toor (87)

Equation (8.6) is valid for the northern anticyclonic or southern cyclonic case
and (8.7) for the northern cyclonic or southern anticyclonic case. A word of
explanation is needed here about signs. Since R is a radial coordinate,
(R/p) - (Op/OR) is negative for anticyclones and positive for cyclones in both
hemispheres.

We are interested in calculating the gradient wind which is caused by the
pressure gradient. For such a relation the gradient wind will be zero if the
pressure gradient is zero. We see at once that the latter condition is met in
the northern hemisphere if we take the upper root in equations (8.6) and

8.7
_fR [f*R* Rp
Ve =3 \"T " Lar (88)
__JR, |f’R® ROp
Vgr = 7 + 4 + ; 6_R (89)

We see now that if the pressure gradient term is zero the gradient wind is
zero. In the southern hemisphere, fR/2 < 0, so that the lower roots must
be chosen in (8.6) and (8.7) for the cyclonic and anticyclonic cases,
respectively.

Equations (8.8) for the northern anticyclonic case and (8.9) for the northern
cyclonic case and, of course, their southern hemisphere equivalent are most

interesting and tell us a great deal about possible flows around circular isobaric
systems.

and

and
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8.3.1 Gradient wind solution for the anticyclonic case

We have already seen that equation (8.8) meets the condition that the
gradient wind is zero when the pressure gradient is zero. The next thing that
strikes us is the possibility of a negative sign under the square root radical
in the anticyclonic case. This tells us that if the numerical value of the
anticyclonic pressure gradient exceeds a certain limiting value we have an
imaginary term. What does this mean? Mathematics is exciting in that it can
on occasions tell us when physical laws are being contravened. The limiting
value in equation (8.8) occurs when

szz_ia_P
4  —poR

that is, when the pressure gradient acceleration is greater than f2R/4. We then
have for the northern anticyclonic case

Vg =0 when %:0
SR 1 p f°R
O<Vg,r<2 when 0<—_p(9R< 7]
fR 1 9p f'R
V = —"0 —— T
o= when —,3R 7y
1 p_ f'R

Visi ina hen —

is imaginary when —pBR> 7]
and similarly for the southern hemisphere case.

The values of f and R are variable and thus determine whether the root of the
quadratic is real or imaginary. The root is liable to become imaginary if

1. The pressure gradient becomes too large.
2. The radius of curvature of the high-pressure system becomes too small.
3. The latitude is near the equator, that is f becomes too small.

Thus if any or a combination of the three conditions above occur
gradient wind flow cannot exist. What this means, physically, is that there
is a component of the velocity which crosses the isobars. This has
interesting connotations. It means that under such conditions an antic-
yclone must spread out, since part of the flow is blowing radially outwards
from the centre across the isobars. It is not possible to have intense centres
of high pressure with small radii, except perhaps for short periods of time.
Nor is it possible to have anticyclonic systems at or near the equator. Any
such systems would dissipate rapidly, on a time scale of hours. These
restrictions on the horizontal structure of anticyclones are supported by
observations which indicate that high-pressure systems are extensive and
have light winds over their large central areas.
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8.3.2 Gradient wind solution for the cyclonic case

We will now look at equation (8.9). We again see that this state meets the
condition that the gradient wind is zero when the pressure gradient is zero.
However, we see now that the expression under the radical must always be
positive. There is therefore no limiting condition for which the expression
becomes imaginary. Thus, there is theoretically no limit to the depth of a
low-pressure centre. This feature is again borne out by observations.
Depressions are generally smaller in size than anticyclones. The more
violent they are, the smaller are the centres of low pressure. This is
particularly observed in tropical cyclones, hurricanes and typhoons, all of
which are different names for intense low-pressure systems which form in
the tropics. The centres of such storms are called ‘eyes’. They can be readily
seen on satellite pictures, and are sometimes only a dozen or so kilometres
in diameter. These properties are predicted by the equations we have
derived.

We may set a balance between the centrifugal force and the pressure gradient
force. This balance is only valid for the cyclonic case (see Fig. 8.2(b)), and only if
we neglect the Coriolis force. We can do this if f is small, and/or if the time and
space scales are small compared with the scale of normal synoptic systems seen
on the weather map. We have

v:_1op
R poR
(8.10)
R Op

Equation (8.10) describes the motion around small-scale systems such as
tornadoes or waterspouts. It is theoretically possible for the flow to rotate in
either an anticyclonic or a cyclonic sense, but is probably more frequent in the
cyclonic sense.

R SRR 8 R SRR

We may also obtain a balance between the Coriolis force and the centrifugal
force. This can only occur if there is no pressure gradient and the motion results
from an initial impulse such as the firing of a projectile. (See problem 2 in
Chapter 7 about the billiard ball.) It can only occur for clockwise flow in the
northern hemisphere and anticlockwise flow in the southern hemisphere. Thus,
V2/R=fVand V =fR.
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Earlier in this chapter we defined the anticyclonic case as one in which we had a
centre of high pressure, and a cyclonic case as one in which we had a low-pressure
centre. In the northern hemisphere the wind normally blows clockwise around a
high-pressure centre and anticlockwise around a low-pressure centre and vice
versa in the southern hemisphere. Let us now consider the remaining roots of

(8.6) and (8.7), namely

Ver = (8.11)
and
R
Ver = — %— - (8.12)

where (8.11) is the solution for the northern anticyclonic case and (8.12) is the
solution for the northern cyclonic case for the condition that the flow is normal
around the pressure centres. Note that the second term under the radical has
been expressed in a different form since R is always positive.

Let us look at the ‘strange’ or anomalous roots which are those solutions
given by the addition of the first term and the term under the radical. For the case
(8.12), we have a non-zero value when the pressure gradient is zero. This is
Vg = —fR. We have already found that this is the inertial wind. It is negative
and therefore anticyclonic and occurs when a body has been projected with some
initial and constant speed V. The case of the anticyclonic ‘strange’ root has not
been discussed in detail in most texts. It tends to be dismissed as an irrelevance.
However, this root does have physical meaning. It is larger than the normal
gradient wind and occurs as a result of the addition of an inertial component
which an air parcel received at some earlier state and carries with it to a new
location. Whereas geostrophic balance is a fairly stable state, gradient wind
balance is very sensitive and only applies to some exact value of the radius of
curvature. In practice it may be all right to neglect the ‘strange’ root, but we
should know the physical meaning of the mathematical ‘strangeness’.

There is another root for the northern hemisphere high-pressure case (8.11),
but it does not meet the conditions we originally set up. This occurs when the
flow around the anticyclone is anticlockwise in the northern hemisphere and
clockwise in the southern hemisphere, that is ‘the wrong way round’. This is an
impossible condition for gradient wind balance as can be seen from Fig. 8.2.

The anomalous solution given for the low pressure case is obtained by
adding the two negative terms in (8.12). The velocities are negative or anti-
cyclonic. This situation is called antibaric because the flow is ‘the wrong way
round’. This type of flow cannot occur in normal-scale synoptic situations since
it is the Coriolis force which determines the direction of rotation about the
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centre. It can only occur if the Coriolis force is small compared with the
pressure gradient force. It is necessary for an inertial force to set up this kind
of motion. This can happen in small-scale vortices such as tornadoes or
waterspouts, or for a whirlpool down a bath plughole. The circulation is then
cyclostrophic and defined by equation (8.10). One could imagine developing
‘strange’ cyclonic flow if a huge giant stirred up the atmosphere with an
enormous teaspoon so that it generated the necessary speed for balance
between the three forces to be established.

There is a more complex equation which expresses a balance between forces
for the general case of the gradient wind equation for isobars which change
their curvature in space. This, of course, is what happens in the real world.
Examination of any weather map will show isobars which form pressure patterns
in space. Sometimes the patterns are in the shape of symmetrical waves, other
times they are more complex. This equation is called the balance equation. The
mathematical derivation of the equation will be postponed until a later chapter
as it involves some new ideas we have not yet introduced.

1. A case of balanced motion might be that of a weather satellite which is
positioned so that it remains permanently over the same spot on the equator.
At what height must the satellite orbit? [Hint: Assume g = 9.8/[1 + (z/a)’]
where z is the height above the surface of the earth of radius a.

2. What is the maximum possible gradient wind expressed as a multiple of the
geostrophic wind for the same spacing of isobars for the regular anticyclonic
case?

3. A circular shaped anticyclone has a pressure gradient of 1hPakm™'.
What is the gradient wind at the following radii from the centre: (a) 10 km,
(b) 100km, (c) 500km? Let f = 10~*s~!. Assume the density of the air is
1kgm®. What is the gradient wind for a cyclonic low-pressure system
having the same pressure gradient at the same distances from the centre?

4. The funnel of a tornado which has a radius of 25 m rotates like a solid body
at 1 revolution per second. What is the central pressure if the pressure at the
funnel outer wall is 1000 hPa? Assume a temperature of 20°C. What is the
velocity of the funnel wall?

5. In problem 4 assume that the velocity can be represented by the function
V =k/r", where k is a constant. If the velocity decreases to 1ms™"' at a
radius of 500 km, what is the value of the index n?

6. Consider the more rigorous form of the equations of motion in the tangent
plane coordinate system. Neglecting terms involving vertical motion and
residual accelerations show that there are two cases of balanced flow. If there
is no zonal gradient but a meridional pressure gradient of nhPakm™'
(average surface pressure and temperature) find the balanced zonal winds
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at 45° latitude for the two cases. Why is one of them highly unlikely on planet
earth?

7. Compute the space-averaged gradient wind between some inner radius
ro and outer radius r for a circular anticyclone with a pressure gradient
acceleration of 16.0 x 10™> m s~ and Coriolis parameter / = 10™*s~!. Now
assume the inner radius is the minimum for which gradient wind balance can
occur and an outer radius of 500 km. (Note: This is a problem to challenge
the mathematically minded.)
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We introduced the previous chapter by stating what we meant by balanced and
unbalanced flow. We said that balanced flow covered motion which does not
have any residual accelerations along the coordinate axes. Unbalanced flow is
motion which does have residual accelerations along the coordinate axes. In this
chapter we will study these accelerations.

The difference between the actual wind and the geostrophic wind is called the
ageostrophic wind. Another term used to denote this difference is the geostrophic
departure.

Rewriting the equations of motion (7.4) and the geostrophic equations we
have, as before,

du _ 10p
a —f’U = ; a (913)
dv 1dp
*d—t+fu——;8—y (91b)
and
1 op
P & 9.2a
E - pf oy (5-22)
1 op
From (9.1) and (9.2) we obtain
du
T - fo= -fvg
dv
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or
d
d—L; =f(v—uy) (9.3a)
d
d—f = —f (1 — ug) (9.3b)

There are many factors which cause the wind to depart from its geostrophic
value. Strictly speaking gradient-balanced winds around anticyclones and
cyclones are ageostrophic, although we normally mean that the flow is
unbalanced in the sense that there are accelerations along and perpendicular
to the isobars. Frictional drag, which we will discuss in a later chapter, is one
factor which causes the wind to blow across the isobars. Imbalances can occur,
even in straight, equally spaced isobars, if they are not orientated east—west, but
have a meridional component. This is because the Coriolis force changes with
latitude. But the most important geostrophic departures are normally associated
with changes of the pressure gradient with time. To understand the physical
meaning of this we will expand the so-called substantial derivative of pressure
with time:

dp Op Opdx Opdy

dt "ot Tox dy dt

The term on the left hand side is the total derivative following the fluid. The first
term on the right hand side is the local change and the other two terms on the
right hand side are the advective changes. The local change means that the
pressure is changing with time, as measured by a barometer which is located at a
specific place. The changes given by the other terms are the changes which would
be observed if we moved through a given pressure pattern on the weather map,
carrying our barometer with us. If the local change is zero we say that the system
is in a steady state. If the local change is not zero the system is in an unsteady
state. Changes in dp/dt are important because this is the term which can tell us
whether a depression or cyclone is deepening, that is intensifying, or if an
anticyclone is weakening or intensifying. Such changes in synoptic systems are
known as development. In weather prediction it is most important to know if
synoptic systems are developing, or if they are in a steady state. We will discuss
an example of ageostrophic winds caused by development.

9.4)

We will assume a pattern of straight isobars. The geostrophic winds are given by
equations (8.1). It is noted that in the geostrophic case the advective acceleration
terms are zero since there is no change in the shape of the pattern in space:

__ L1 (op
e T T of \oy

1 (0p
= (3%)
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We will assume further that the pressure gradient is changing in time at a
constant rate, but that its shape remains the same, that is, the isobars remain
straight. Then

% = —po % (9.5a)
% - % % (9.5b)
From equations (9.3) and (9.5) we may write
'= —-# g—f—c (9.6a)
- # %’ (9.6b)

where ' and v’ are the geostrophic departures and p = dp/dt. We also assume
that f is constant. In equations (9.6) the geostrophic departures are also called
isallobaric winds. They are produced by the condition that the pressure gradient
is changing with time. In other words, development of the pressure pattern is
occurring. Isopleths or lines of equal rate of change of pressure at a given
location are called isallobars and the magnitude of the isallobaric wind can be
calculated from the spacing of the isallobars in a way similar to that used to find
the geostrophic wind from the spacing of the isobars. Figure 9.1 shows an
example of the isallobaric wind for a case where an isallobaric high is super-
imposed upon a system of straight isobars. Equations (9.6) are derived for a
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FiGURE 9.1 The isallobaric wind with westerly geostrophic flow, #,. The actual wind
is denoted by ¥, and the isallobaric by u’, v’ (northern hemisphere).
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given point where the rate of change of pressure gradient with time is constant.
The isallobaric winds in Fig. 9.1 would vary according to the value of the
isallobars at different points on the diagram. We might also consider cases where
isallobaric centres were superimposed over circular anticyclonic or cyclonic
systems. Thus an isallobaric high superimposed over an anticyclone would cause
an isallobaric wind to flow outwards all round the anticyclone. The opposite
effect would occur if an isallobaric low were superimposed over a cyclone or
centre of low-pressure. Similarly, an isallobaric low over an anticyclone would
cause an isallobaric wind to flow inwards towards the centre.

In the more general case we would expand the acceleration terms in the the
equations of motion

du Ou Ou  Ou
a—a+ua+va—y (9.7a)

dv v v v

E=E+ua+’v—a; (9.7b)
In the case of the isallobaric wind discussed above the advective terms are zero
since there is no change of the pressure field in space. If the advective terms are
not zero they contribute to the ageostrophic wind. In the simpler case of circular
isobars which are not changing with time the ageostrophic wind is +¥2/r. Note
that it has come to be accepted that the isallobaric wind is caused by the change
of the pressure gradient with time, whereas all winds which are not geostrophic
are strictly ageostrophic. It should be emphasized that the flow can be balanced,
such as in the case of the gradient wind, but still be ageostrophic. If we considered
the case where the intensity of a high- or a low-pressure system with circular
isobars was changing with time we would have

oV _ 8V 18

?E:F 5{'—4‘;612 (9.8a)
o Lo /(2V
V'=+— 3R (R ¢f> (9-8b)

In equations (9.8) V' is the isallobaric wind resulting from the change with time
of the gradient wind, which is itself ageostrophic. Note that if the curvature term
in the denominator is zero equations (9.8) reduce to (9.6).

In weather prediction it might be considered that the primary task is to predict
changes in the pressure pattern. The pressure pattern is closely related to
weather. Anticyclones give rise to fine weather, particularly in summer in
middle latitudes, and most of the time in subtropical latitudes. This is due to
subsidence or slow sinking of the air mass which warms adiabatically in
accordance with equation (2.43). Similarly, low-pressure areas give rise to
cloudy and rainy weather because the air rises and cools adiabatically. It is
most important therefore to be able to know the distribution of highs and lows
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on a weather map. To do this we need to look more closely at equation (9.4).
There are two problems to consider. The first is the development term
expressed by Op/dt, and the second is the advective process given by the
remaining terms. We will deal with the advective term first as this is the
simpler process. We shall see in a later chapter that highs and lows are effectively
advected, literally blown along by the upper wind flow. We can therefore
estimate the upper air velocity by means of the geostrophic assumption and
calculate the speed and direction of the movements of the highs and lows across
the weather map. We can also examine the isallobaric pattern. Anticyclones will
tend to move parallel to a line connecting an isallobaric low to an isallobaric
high, and vice versa for a depression. The latter method was first used by Sverre
Petterssen, a famous Norwegian meteorologist who helped to prepare the
D-Day landing forecast for the Allies in June 1944. A less exact method is to
extrapolate the tracks taken by the highs and lows during the past 24 hours.
These methods are empirical, that is they rely on the movements remaining
constant up until the time for which the forecast is required. Such methods were
entirely relied upon in the past but in recent years numerical prediction models
based on the full equations of motion, together with the thermodynamic
equations predict the movements much more accurately, using small time
steps of a minute or so. After every time step the forecast values for that time
are used as initial conditions for the next time step, and so on. Although weather
forecasters may use the old methods for local forecasts, they have the numerical
forecasts besides as guides to help them.

We may express the advective terms of (9.4) more briefly in their vector form
V.Vp. The term measures two kinds of changes, depending on whether the
observer is stationary and the weather patterns are moving, or whether the
observer is moving and the weather patterns are stationary. Thus, a barometer or
barograph installed at a fixed location will show a trace which moves up and
down the graph as the highs and lows pass over it. Alternatively, a barometer or
barograph on a ship will fall if the ship is moving towards a cyclone, and rise if it
is sailing towards an anticyclone. Motion is relative to the observer.

In this chapter we will be mainly concerned with the first term on the right-
hand side of (9.4), which is known as the local rate of change of pressure. In
general the latter is not exactly a measure of the intensification or weakening of a
pressure system, because this is measured by the time rate of change of pressure
at a point moving with the system. However, when a system is stationary, at the
centre of a system or where a system is moving parallel to the isobars, the local
rate of change of pressure does measure intensification, and it is therefore very
useful. Often, we are specially concerned with pressure changes at the centre of a
depression, particularly when the pressure there is falling (a synoptic term to
mean decreasing). Synoptic meteorologists say the depression is deepening or
filling according to whether the barometer is falling or rising at its centre. But
what causes the local rises and falls of pressure which are observed continually
on a weather chart? It is these continual changes which are responsible for the
changing synoptic pressure patterns, and so for the weather which is associated
with those patterns.
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We know from the hydrostatic equation (5.1) that

p= A pg dz 99)

Thus, the pressure shown by a barometer is just the weight of the entire air
column above it. Changes in that pressure from one hour to the next result from
changes which occur in that whole column. Where do these changes occur? At
what levels in the atmosphere? We cannot answer these questions from the
change in surface pressure, known as the surface pressure tendency, itself. There
are, no doubt, various accumulations and depletions of the total mass of air
occupying the different elements of volume of a column of air, but these usually
cancel out to a large extent, leaving a small, residual net mass change which
appears as a change in surface pressure. These accumulations of air within
various elements of volume of the air column occur where there is convergence of
the flow, and depletions of air occur within elements of volume where there is
divergence of the flow. We will define convergence and divergence in mathema-
tical terms in the next section. The observed changes of surface pressure do not
result from a small depletion or accumulation of air which is occurring uniformly
throughout the whole vertical column, but from the net residual of different
magnitudes of convergence and divergence occurring at different levels through-
out the vertical cross-section. We will see shortly that the accurate measurement
and calculation of convergence and divergence is extremely difficult, if not
impossible, by conventional means. In consequence it is very difficult to predict
changes of surface pressure resulting from the development term, unless the
forecaster has access to the output of a complex ‘state-of-the-art’ numerical
model output. Even then, the numerical predictions do not always get it right.

To summarize, the observed pressure tendency is dependent on the integrated
motion of the atmosphere from the surface upward to a level where pressure
becomes inappreciable. Motion at some levels may be more important than
others but it is the net result which matters.

It has already been stated that convergence and its converse, divergence,
represent an increase or decrease of mass within a specified volume. Conver-
gence within a cross-section of a unit atmospheric column will cause a rise in
pressure at the base of the cross-section considered. Likewise divergence within a
similar cross-section will cause a fall of pressure at the base of the cross-section.
These concepts are fundamental to dynamic and synoptic meteorology.

Let us suppose a rectangular box (Fig. 9.2) with faces ABCD and EFGH
normal to the x axis, faces AEHD and BFGC normal to the y axis and faces
AEFB and DHGC normal to the z axis.

Consider first the flow along the x axis. The mass of air entering face ABCD is
pudy dzdt. The mass of air leaving the face EFGH is

d(pu) )
(pu+ o dx ) dydzds
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FIGURE 9.2 Derivation of the continuity equation.

The difference between the mass of air leaving this box and that entering it
represents the increase or decrease of mass within the box.
Thus the difference may be written (mass going in less mass going out)

AM = pudydzdt — pudydzdt—% dxdydzdt

am =209 4y 4
Ox

where dV is an element of volume.
Similarly the differences resuiting from the flow along the y and z axes are

_ O(pw)
0z

_ %) 4y dr and dv dr
Oy

respectively. The total difference is therefore
[_ 9(pu)  9(pv) <‘9(pW)] dvds (9.10)

Ox dy 0

If (9.10) is divided through by dV d: the resulting expression represents the
change in mass from unit volume in unit time.

Now any change in the mass occupying the box considered must result in a
change in the density of the mass contained therein. This density will have
changed from pto p + dp/0tin time dz. The change in density will accordingly be
(Op/0t) dt) or dp/dtin unit time. We may obviously equate the change in density
with the advective change in mass:

Op _ 9(pu) O(pv) O(pw)

at ox dy oz (0-11)

or

9p  9(pu) , Hpv)  I(pw)
2t ox Ty ez

=0 (9.12)



110 UNBALANCED FLOW

The equation (9.12) is called the equation of continuity. The expression

dpu) , 8(pv) , d(pw)
Ox + oy + 0z

is known as the mass divergence. It represents the loss of mass in the rectangular
box in Fig. 9.2. We may therefore write

, 9(pu)  9(pv) | I(pw)
div(pV) = 9.13

vipV) Ox * dy + 0z (0-13)
where V is the vector velocity. We note that whenever we write the quantity
divergence in the form divV we must express the velocity as a vector. This is
because divergence is a vector operator i(0/9x) + j(0/0y) operating on the
vector wind. The product of the operation is a scalar.

If purely horizontal flow is considered (9.13) takes the form
o B(en) | D(pv)

It may be assumed normally that changes in density are small compared with
changes in velocity, for horizontal flow. Then

ou + ov

dx Oy

Equation (9.15) represents the horizontal divergence of the velocity field.
Now let us consider a small slice cross-section -of an air column in which any

net increase or decrease of air caused by changes in the horizontal flow passes out

through the vertical boundaries. The net divergence within the slice will in this
case vanish, and

divgV = (9.15)

o(pu) , 3(pv) | Apn)

Ox dy 9z 0
If the density does not change appreciably
@ + @ + @ =0
ox 0y 0z
and
Ou Ov Ow
= =
Ox Oy 0z
or
. ow
leHV = - —B_Z (916)

Equation (9.16) means that any horizontal divergence is compensated for by the
removal or replacement of air by means of convergence of vertical motion and
vice versa if there is to be no loss in mass. This is a fundamental mechanism of the
working of the atmosphere and it helps us a great deal in formulating our ideas
about weather forecasting. However, it is not exactly true or we would have no
surface pressure changes. Clearly, vertical convergence does not always exactly
balance horizontal divergence. Three-dimensional divergence in any layer may
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then be regarded as a small residual of the horizontal divergence which is not
balanced by convergence in the vertical. .
We may expand the total change in density dp/dz and write

dp_9, op, % 0p
PRI T ML NP

o dt 9ox o9y oz
but from (9.12)

Op O Op Op Ou Qv Ow
o “ox U(?y Yoz Pox pay P oz
Equating the two expressions above for dp/0t

O _ _0u_ 0v_ 0% _ vV (9.17a)

3 Pox oy Pz
10p . 1 da

it = 9.17b
p Ot divv a Ot ( )

where « is the specific volume.

Figure 9.3 shows typical profiles of divergence and convergence within
anticyclones and depressions. The profiles are schematic only and do not
attempt to assess magnitudes. In an intensifying anticyclone upper level
convergence tends to increase the central pressure. The isallobaric gradient at
the surface causes an isallobaric wind which flows outwards (Fig. 9.3(a)). In
response to the continuity equation there is downward motion, subsidence,
adiabatic heating and fine weather, as described. In winter the subsiding motion
may cause an inversion at the top of the boundary layer, sometimes called the
mixing layer, at about 500-1000 metres. The sky may be totally covered by
strato-cumulus cloud in such conditions, but the weather will be dry. This
condition is sometimes called ‘anticyclonic gloom’. Conversely, in a developing
or deepening depression there is divergence in the upper levels. This results in an

@ (b)

Level of non-divergence

convergence divergence convergence divergence
DEPRESSION ANTICYCLONE

FIGURE 9.3 Typical convergence and divergence profiles over deepening depression
and developing anticyclone.
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isallobaric low at the surface (Fig. 9.3(b)). The isallobaric wind blows inwards
and in response to the continuity equation there is an upward velocity of the air.
The air cools in response to the adiabatic equation, reaches the condensation
level, and rises further up the saturated adiabatic lapse rate. There is cloud
and precipitation, sometimes gales, and generally unsettled and poor weather.
Although for simplicity examples have been given for developing, that is
intensifying, systems, the same profiles exist for steady state, and even decaying
systems. An additional factor, that of surface friction, is always present which
causes an acceleration across the isobars from high to low pressure, that is
outwards around anticyclonic centres and inwards around cyclonic centres. The
latter effect acts to re-enforce the effect of the isallobaric wind during the
intensifying stages of the life of the system, but it may act in an opposite sense
during the decaying stage. We will discuss the role of friction in a later chapter.

It has already been stated that a pressure change indicates a transfer of mass into
or away from the atmospheric column at the base of which pressure is being
measured. There can be no accumulation or depletion of mass if the flow is
geostrophic. Geostrophic flow may vary in space and can be likened to a river
which in places is wide and slow moving and in other places narrow and swift
moving as through a gorge or canyon. The total amount of water passing a given
cross-section across the river is everywhere the same. Imagine an isobaric pattern
where the isobars are approaching one another (Fig. 9.4) and assume for the sake
of argument that the flow is geostrophic. Consider that the flow is westerly so
that the Coriolis parameter is constant, and that the density is constant. In the
actual atmosphere the flow associated with a pattern such as that illustrated in
Fig. 9.4 would not be exactly geostrophic. Flow which is not exactly geostrophic
is called quasi-geostrophic. If, however, the flow in Fig. 9.4 is assumed exactly
geostrophic the supposition is made that the velocity at every point between AB
and DC adjusts itself instantaneously to the new value of the pressure gradient
created by the approach of the isobars AD and BC towards one another.

Having made this assumption, consider the mass transfer within the area
ABCD. From the geostrophic equation the velocity across the line AB is

1o
b of ény
A
1 LOW
_S'L__\D
— Vl 8"2 O t—— Vz
—
C
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B HIGH

FiGure 9.4 Geostrophic flow varying in space (northern hemisphere).
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The velocity across the line DC is

1 ép
V2= 0 on,
Then
pVi _ bmy
pVy  bny
and .
pVﬂSi’ll = sz(Sl’lz (918)

Thus, if the flow is geostrophic the product of the velocity and the
perpendicular distance between two isobars is proportional to the total mass
transfer across that distance in unit time. Then equation (9.18) states that the
mass transfer across AB is equal to the mass transfer across CD. If this is so there
can be no accumulation or depletion of air between AB and CD, and
consequently no change in pressure as measured between the base and top of
the unit column of air considered. Obviously, if the flow is geostrophic and from
the east or west, or nearly so, at all levels in the atmosphere div pV, = 0 and there
is no pressure change at any level; therefore the pressure tendency measured at
the surface of the earth must be zero. If the flow is from the north or south a
correction must be made for the variation of the geostrophic speed due to the
variation of /.

This truth that there can be no change of pressure if the flow is geostrophic can
be derived more rigorously as follows.

Consider the hydrostaticequation (5.1) in the form dp = —pg dz where pis the
pressure at any level. We may integrate thoughout a vertical column of the
atmosphere with height of base z. Then p = [[* gpdz; differentiating partially

with respect to time
*9
/ Pz (9.19)

Now, from the equation of continuity (9.12),

Op  O(pu)  O(pv)  O(pw)
atox Tay oz 0

and substituting the expression for 8p/ Ot into (9.19) we have

oo (22 e [ 2

2 (525 e

Now, for geostrophic flow it follows from (8.1) that
19dp
= "1 oy
1 9p
P =7 ox

(9.20)
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Differentiating the first of these equations with respect to x and the second with
respect to y we obtain, if f is considered constant,

a(pug) - _l (92p

Ox f oxdy
8(pvg) _ l azp
dy  f Oxdy

Then, substituting the above expressions in (9.20)

o g [ & &
( axay T axay ) 428

ot f/
It is seen that

op _

57 = 8(Pw): (9.21)
If we integrate from a flat horizontal surface z = 0, w must be zero; thus
9 _9po_,
ot Ot

and there can be no change of surface pressure with geostrophic flow. All
pressure changes when the variation of f is negligible must therefore be due to
ageostrophic motion.

If equation (9.20) is expanded,

0 [7[(420, 00 gy (0,2
7 g/: [(ua +v6>dz+< P +pa>dz] + g(pw). (9.22)

The first term on the right hand side of (9.22) represents the effect of the
integrated horizontal advection of air of different density above height z on
the pressure at height z. The second term is the effect on the pressure at z of the
integrated horizontal divergence or convergence of velocity. The third term is the
vertical motion term.

If the flow is strictly geostrophic and horizontal the vertical velocity term
vanishes throughout and the advective and divergence terms balance one
another. Thus from (9.21) and (9.22) dp/dt = 0 and

*/ 9 Op 0 0
_gﬂ (ugap—l—vga )dz— / ( al;g—f- 1;?)
Oug  Ovg\ dp Op
(aﬁ“@;)*‘”@ %5y

and div pV, = 0 assuming constant density in the horizontal plane.
If the flow is predominantly northward or southward, the variation of f, the
Coriolis parameter, will create divergence of the geostrophic wind.
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Divergence is clearly a quantity which it would be most useful to measure
quantitatively. It is closely related to pressure change, a parameter which is
linked to the problem of producing a forecast chart and so to the whole technique
of weather forecasting. It has been shown in Section 9.6 that one cannot measure
divergence if the flow is geostrophic. But since the geostrophic assumption is
used fairly generally in the analysis of synoptic charts we find ourselves at an
impasse. Divergence and convergence could perhaps be measured from actual
wind observations. A method has, in fact, been devised to do this from a triangle
of upper wind stations. The amount of air flowing into and out of such a triangle
can be calculated. Any difference between the ingoing and outgoing values
would represent horizontal mass divergence or convergence. These computa-
tions, however, are insufficiently accurate to be of real use because the natural
variations of the wind over the area considered, together with the observational
errors in the values of the wind direction and speed themselves, are both of a
greater order of magnitude than the divergence values to be computed. In
addition the network of upper wind stations is too sparsely spread to enable
triangular areas of most useful size to be used, except in a few relatively small
areas.

Such calculations in selected areas may, however, be of considerable interest
for research purposes since they may give indications of levels where divergence
and convergence are a maximum. If the results were integrated throughout an
entire atmospheric column they would, in theory, give an approximation to the
observed barometric tendency. At present such results would be of little use as an
operational forecasting tool. In addition to the difficulty of making a reasonable
assessment of the divergence itself at any level, the supreme difficulty of
computing the surface pressure tendency lies in the fact that the latter is a
small residual of divergence and convergence of a greater order of magnitude
occurring at various levels throughout the atmospheric column (Section 9.4).

The magnitude of divergence on the synoptic scale is usually between about
107357 and 107%s~!. One may realize the difficulty of measuring divergence if
an idealized case is considered. Consider a narrow west-to-east strip. Let this
strip be, say, 100 kilometres in length. Assume that at the western end of the strip
the exact wind speed is 20 m s~! while at the eastern end it is 21 ms~' (Fig. 9.5).

Now

oV

divV = 5;

\\\ W,

V;=20ms™ V,=21ms™
100km

1

Ficure 9.5 Calculation of divergence for one-dimensional flow.
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If the derivative is replaced by a simple difference it follows that

. VZ - Vl
divV = 5
where L is the length of the strip.

If this condition extended throughout the whole depth of the atmosphere it
can easily be shown that it would cause a fall of surface pressure of about 36 mb
per hour throughout the area of the strip.

Now suppose we can only measure our wind speed at a given level to within 1
metre per second. The maximum possible error in the difference between the two
wind speeds in the case quoted above would either increase the divergence to
3 x 107°s™" or else reverse the sign of divergence and give a value of 107> s~ for
convergence at that level. This would only be the value for one level. In effect
there is direction to consider also, while at upper levels where the wind is stronger
the accuracy of measurement is less. There we may only be able to measure the
wind to within 5 metres or more per second. When such values are calculated for
all levels and a net residual obtained it can be easily seen why it is so difficult to
compute a realistic surface barometric tendency in this way.

We shall see in Chapter 11 that there is an alternative means of estimating the
divergence, assuming that the flow is quasi-geostrophic, that is in more or less
geostrophic balance. However, with the advent of high-speed computers the
primitive equations, that is the full equations of motion, are used to compute
pressure changes, as a residual of the divergence calculated for a number of
upper levels. Certain tunings embodying the principles of the conservation of
mass and energy are utilized to ensure that the predictions are realistic.

In dynamic meteorology we are interested in large-scale vertical motion, that is
on the scale of the synoptic chart. Vertical motion on this scale refers to the
slow ascent or descent of air over comparatively extensive areas. The order of
magnitude is centimetres per second; this is only about a hundredth part of the
speed of horizontal motion. Vertical motion is responsible for most of our
weather. Upward motion in the vicinity of depressions results in systems of cloud
and precipitation while downward motion or subsidence in the vicinity of
anticyclones causes clear skies. Large-scale vertical motion should not be
confused with the scale of vertical motion associated with convective activity.
The latter occurs over the much smaller areas covered by cumulus or cumulo-
nimbus clouds and is not normally related to general rises or falls of pressure
over a period of some hours. Convective vertical motion is, however, frequently
of a magnitude which is comparable with or exceeds that of horizontal motion.
The equation of continuity expressed in (9.16)

ou n ov ow

ox Oy Oz
can be used to compute the vertical motion at different levels in the atmosphere,
providing we have a vertical profile of the horizontal divergence throughout the
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atmospheric column. However, we must be wary of the accuracy of results
achieved by this method over small areas, because of the errors which arise in the
measurement of the horizontal divergence and the assumption of incom-
pressibility inherent in the above form of the continuity equation. Large-scale
numerical models, covering a large part of the earth’s surface, are better
equipped to deal with the problem, as they incorporate tuning and smoothing
techniques as described at the end of the previous section.

1. Suppose an atmospheric column with a surface pressure of 1000 hPa was
diverging horizontally throughout its entire length at 107%s~!. How long
would it take for the surface pressure to reduce to its e-folding value? What is
the e-folding value of the surface pressure?

2. Suppose an atmosphere is converging between the surface and 5km at
10-5s7!, and diverging between 5 km and 10 km at the same magnitude. Plot
the vertical velocity profile. At what level does the vertical velocity reach a
maximum? Discuss this result with reference to Fig. 9.4.

3. We have shown that the divergence of the geostrophic zonal wind is zero.
What is the divergence of the meridional geostrophic wind?

4. Inproblem 9 at the end of Chapter 5 we found that if the earth’s atmosphere
was heated by 1 K the maximum pressure rise would occur at the height of
the homogeneous atmosphere, assuming a constant lapse rate. How much
horizontal convergence would be needed within a layer 100 hPa thick to
produce the same result?

5. Compute the isallobaric wind for geostrophic flow at 45° latitude if the
pressure gradient is 1 hPa per 100 km and the surface pressure is falling at
3hPa per hour. Assume a density of 1.2kgm ™. Compute the isallobaric
wind for a circular-shaped depression for the same conditions at a radius of
100 km from the centre.



EULER AND LAGRANGE

Euler stands on the station platform and measures the speed of the passing
trains. Lagrange rides on an express train and measures its speed as it travels
along the railway tracks, up and down inclines and through stations.

We may look at the motion of a fluid in two different ways. The first is the
method attributed to Leonhard Euler who published his major work on material
coordinates in 1755. The Eulerian technique involves observing the motion of
parcels of matter from a fixed grid of points. Velocities are measured at intervals
of time at each point on such a grid. The stationary observer measures changes in
the properties of a fluid as the fluid streams by. In the Lagrangian technique the
observer rides along with the parcels of matter and measures the motion and
changes in properties of the parcels of fluid while in motion. There has been some
discussion as to the relative roles played by these two great mathematicians (see
Weather Magazine 1968, 23, 2), but it is generally accepted that the two
techniques were developed independently as described.

The Eulerian method is the one most commonly used in meteorology.
Observations are made at specific locations. Fields of the variables observed
may be smoothed and constructed in the forms of isopleths on a map. A grid
array can then be placed over the fields and extrapolated values assigned to the
array of points. Finite difference calculations can then be made over the grid
space and substituted into the equations of motion in place of the partial
derivatives. Thus, if we look again at equations (9.1), where the acceleration
terms have been expanded in the form shown in (9.7), we would extract the values
of u, v and f at the grid points, compute the spatial derivatives of #, vand p, and
solve for du/dt and Ov/8t. Having performed this calculation at every grid
point on the chart for a given time interval, say a minute, we would repeat the
operation for the next time interval, using the computed results as initial
conditions for the ensuing computation. This operation could then be repeated
for as long as desired. It is therefore clear that the Eulerian method is eminently
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suitable for numerical prediction models. However, the Lagrangian method does
have some advantages over the Eulerian method for certain kinds of studies. The
equations are often more amenable to integration and the scale of the motion is
not fixed to a grid of fixed dimensions. The Lagrangian integrations will yield
actual trajectories travelled by parcels of matter. The continuity equation can
also be expressed in Lagrangian coordinates which follow the motion. This is
very useful since divergence is not then fixed to the area or volume of a grid of
constant size.

Let us consider an illustrative example of the Lagrangian method and see
what it tells us about the space and time scales which control the process of
geostrophic adjustment, that is the process which forces the wind to blow
along the isobars rather than across them. We will consider the equations of
motion for frictionless flow where the isobars are oriented in an east—west
direction, the pure geostrophic case:

du 1op

a T e 0 .
dv ~ 1dp '
'&‘Ffu-—;a—})y

where the pressure gradient term is assumed to remain constant. The first terms
in the above equations now represent total derivatives following the motion, but
we need not expand them as we did in (9.7). In this form (10.1) can be integrated.
Solving the top equation for v, taking the derivative dv/dz and substituting in the
second relation we have

d*u
_d?+f2u Zny (10'2)

We may simplify (10.2) by setting m = uf — P,. Then we have (d*m/dr*) +
fm = 0. The above is a second-order differential equation which has a type
solution m = Asin ft + Bcosft. We may evaluate the constants at the initial
starting point where ¢ = 0, u = uy, v = vy. We have, since u = (m + P,)/f, and

v = (1/f)(du/ds),
B=uyf - P,, A=fy

Sfu= vy fsinft + (fuyg — P,)cosft + P,

Simplifying, we obtain

(u‘) — P"> fi+upsingi + 2
U= = ] COS Vp SIN —
f ° /

. (10.3)
v = 1y COS ft — <u0—;—‘—> sin ft



120 EULER AND LAGRANGE

We shall consider the case where parcels start from rest to see how the
geostrophic adjustment process works. Equations (10.3) then reduce to

u= %(1 — cosft)
P (10.4)
— 1y
v 7 sin ft
Equations (10.4) describe the velocity field as a function of time. Clearly the
zonal velocity u reaches a maximum when ft = m, or ¢t = 7/f. At this time
u = 2P, /f which will be recognized as just twice the geostrophic wind speed. At
this time the wind is blowing along the isobars. It can also be seen from equation
(10.4) that the zonal wind diminishes to zero at r = 27/f. The latter time is called
the inertial period. It is the order of magnitude of time needed for the geostrophic
adjustment to take place. Table 10.1 shows the length of the inertial period for
various latitudes. The inertial period is also called a half pendulum day, since it is
12 hours at the poles.
It is quite easy to integrate equations (10.4). The result will give us the
trajectory of the parcel. Initiating the trajectory at the origin, we obtain

x=%(ft—sinft)
3 (10.5)
y =f—2(1 — cos ft)

Equations (10.5) are equations of a cycloid, a well-known mathematical curve.
Figure 10.1 shows a computer output of the track of a parcel following such a
curve. It is assumed that the parcel starts from rest. A reasonable value of f is
10~* which is valid for about 43° of latitude. A reasonable, although weak,
pressure gradient is 1 mb (hPa) per 5° of latitude. Measuring pressure gradients
by these criteria is sensible since maps are printed with latitude and longitude

TaBLE 10.1 The inertial period at
different latitudes
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Ficure 10.1 Numerical computation of parcel trajectories starting from rest for the
geostrophic case. The pressure gradient force per unit mass is 15.0 x 10> ms™2. The
upper curve corresponds to 10° North and the lower curve to 43° North.

lines for marking location. This magnitude of pressure gradient P, = 15.0 x
103 ms~2 is about right for normal surface pressure and temperature, say
1012 mb and 20°C. This value of the pressure gradient acceleration has been used
to generate the curves in Fig. 10.1. Note that the amplitude and wavelength of the
inertial wave are both 15 times larger at 10° than at 43° latitude, while the inertial
period is four times longer.

In some non-mathematical descriptions of the geostrophic adjustment
process, for the case described in this section, it has been said that the wind
begins to flow across the isobars but eventually lines up along the isobars. At this
stage geostrophic balance is achieved. This description only tells half the story.
The simple mathematics tells us a great deal more of the detail of what must
happen. Certainly, the geostrophic adjustment process depends on the length of
the inertial period. In low latitudes where the inertial period is long, geostrophic
adjustment is unlikely to occur because the pressure gradient will not stay
constant for such long periods.

We can show that the geostrophic wind will result eventually, quite simply.
The mean velocity of a parcel integrated over the inertial period is

ﬁ=£r(/udt)={—ﬂ/%dt=2f—ﬂ/dx (10.6)

between limits of 0 and (2n/f 2)P}., so that # = P, /f, which is the geostrophic
wind speed. A similar operation shows that 7 = 0. If we imagine now that we
integrate over the paths of all parcels in a fluid we obtain the geostrophic velocity
for the ensemble of parcels. In the first example shown in Fig. 10.2, the amplitude
of the oscillation is only 30 km. The pressure gradient chosen is one that is small
enough to occur in nature within the inertial period, so that it is reasonable
to assume that geostrophic balance to a changing pressure gradient of this
magnitude can and does occur for all practical purposes. In the second example
shown in Fig. 10.2 geostrophic adjustment is made more difficult as the
amplitude of the inertial oscillation is now 480kms and the inertial period
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Ficure 10.2 The anticyclonic case: numerical computation of trajectories of parcels
starting from radii 0 to 400 km. Invariant pressure gradient of 15.0 x 10> ms~2,

equivalent to about 1 mb (hPa) per degree of latitude, latitude of 10° North.

about 69 hours. However, in the tropics pressure gradient changes occur more
slowly, so that there is more time for adjustment to occur. In some cases, if
pressure gradient changes are not too rapid, quasi-geostrophic flow may occur at
a latitude of 10° either side of the equator.

We may use the method illustrated in the previous case to look at the case of
an anticyclone with concentric circular isobars, once again holding the
pressure gradient constant. This time we must use equations (10.5) in their
polar coordinate form.

We then have

F— 16 —frd =P,
o (10.7)
rO+2f0+ff=Py=0

where Py = —(1/pr)(dp/09).
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Integration of the second relation yields
2
0+ f% = constant (10.8)

If we assume that the air parcel starts from the centre of the anticyclone from a
state of rest the constant of integration is zero and 6 = —f/2. Substituting for
dé@/d¢ in the first relation of (10.7) gives

2
n fz—’ =P, (10.9)
We now follow the same procedure as for the pure geostrophic case and finally
obtain
4P, It
=|— — = 10.10
¥ <f2)(1 cosz) (10.10)

Equation (10.10) will be recognized as that describing the curve of a cardioid. We
note that the inertial period is double that for the geostrophic case while the
amplitude is four times as large. Gradient wind adjustment is a more complicated
process for circular isobaric systems than for the simple geostrophic case. Figure
10.2 shows the path of a parcel starting from radii of 0 to 400 kilometres from the
centre. The tracks have been terminated at the time when they are tangential to
the isobars.

In the anticyclonic case the families of trajectories which start from different
radii, that is when ry is not zero, possess the interesting property that the
minimum amplitude of the family occurs when r = 3ry, measured from the origin
of the coordinate system, that is from the centre of the anticyclone. For the case
illustrated in Fig. 10.2 this occurs when r = 85.3 km. (See problem 3.)

In the cases discussed in the previous section we have kept the Coriolis parameter
constant during the calculations. This is a reasonable thing to do in temperate or
polar latitudes, but not in tropical latitudes. As we have seen from Fig. 10.2 the
trajectories have large amplitudes at 10° distant from the equator. The rate of
change of the Coriolis parameter is a maximum at the equator and diminishes
polewards since 9f /3y = (2w cos ¢)/a, where a is the radius of the earth. Thus, if
we allow the Coriolis force to vary with latitude, using west—east-oriented
isobars as for the geostrophic case, and let air parcels start from rest from
different latitudes, say at 5° intervals, we find we have trajectories which
possess some properties analogous to those illustrated in Fig. 10.3. Families of
numerically computed trajectories of this kind are shown in Figs 10.4 and 10.5
for the northern hemisphere where the relation /' = sin(5y — 40) was used, where
y = 8.0 at the equator and increases/decreases by one unit for each 5° north or
south of the equator. In Fig. 10.4 a pressure gradient of about 1 mb (hPa) per
5° of latitude is used. Note the convergence of the trajectories between those
starting from the equator and those starting a few degrees away from the
equator. The same relation applies for the variable Coriolis parameter for
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FiGURe 10.3 Trajectories of air parcels starting from rest at 5° intervals from the
equator to 15° latitude in the northern hemisphere. The pressure gradient is assumed
to be 1 mb (hPa) per 5° of latitude. This magnitude of pressure gradient might be
found at upper levels of the winter troposphere in the tropics. Note the convergence
of trajectories at about 11° latitude when they become paraliel to the isobars. The grid
on the left hand side is the function y where y = sin (5y — 40).

straight isobars as for the anticyclonic case with constant f, namely that for a
given pressure gradient, the minimum latitude at which the wind becomes
tangent to the isobars is just three times the starting latitude (problem 4).
Figures 10.4 and 10.5 give a simple, but interesting and useful, interpretation
of the behaviour of the atmosphere in the tropics in the real world. In Fig 10.4 the
gradient is small but of the order of magnitude which may exist in winter at upper
levels polewards of the equator in one or the other hemisphere. Both the winter
subtropical jet stream and the existence of the winter subtropical anticyclones
can, at least partially, be explained by the pattern of trajectories appearing in this
figure. Note the convergence of the trajectories where they become parallel to
the isobars, particularly between 11° and 12° latitude. In Fig. 10.5 the pressure
gradient is five times greater. This pattern is more applicable to the Indian
summer monsoon when cross-equatorial pressure gradients occur from late June
to September. Convergence of trajectories occurs now between about 19° and
21° latitude. In the last chapter we saw that upper level convergence tends to
contribute to the building up of anticyclones. If Fig. 10.4 is a possible example of
the behaviour of the troposphere in the tropics it suggests the presence of the
subtropical anticyclones and subsidence in subtropical latitudes. On the other
hand if Fig. 10.5 is used as an example to illustrate pressure gradients in the
boundary layer across and polewards of the equator it suggests convergence and
upward motion in subtropical latitudes. The main thrust of the Indian summer
monsoon is observed in Bombay, which is about 19°N latitude. Observation of
Bombay weather supports the theoretical conclusions derived from Fig. 10.5.
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FiGUre 10.4 Same as Fig. 10.3, but with a pressure gradient of 1 mb (hPa) per
degree of latitude, a value likely to be found in summer monsoon regions. Note the

convergence of the trajectories at about 20° of latitude when they become parallel to
the isobars.

The scientific method is to investigate whether observations in the real world
confirm theoretical arguments. It may proceed in two ways. Perhaps the most
exciting is to attempt to predict events suggested by the solutions of mathema-
tical equations. The alternative is to collect series of observations and attempt to
explain them in terms of solutions of equations. Either way there will probably
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Ficure 10.5 Constant-level trajectories of balloons released from the Seychelles
(adapted from Cadet and Overlez, 1976).
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be a need to refine and tune the theory, or model, so that it agrees more closely
with real measurements. Einstein predicted from his theory of relativity that light
rays would bend if they passed close to the sun. It needed a solar eclipse to prove
his assertion.

Figure 10.5 shows the actual trajectories of balloons that were released from
the Seychelles in the summer monsoon season of 1975 and tracked by satellite.
All together 45 balloons were released so that they drifted at constant pressure
within the tropical boundary layer. For practical purposes constant pressure is
equivalent to constant height for the purpose of calculating the pressure
gradient, as we shall see in a later chapter. It took many years before roughly
computed tracks like those shown in Figs 10.3 and 10.4 could be confirmed by
actual observations. The most interesting trajectory in Fig. 10.5 is the one
marked with a dotted line, which shows a perfect inertial oscillation. It even
shows a small loop, a characteristic predicted by the equations, depending on the
initial conditions.

If we consider a small moving slice of air of constant mass 6M
6M = pAh
where A is the cross-section and 4 is the thickness of the slice considered. Then
d(6M) d(p4h)

=—"" =0

dr ds
pA%—% ph%—j— + Ahijd—l;
Dividing through by 6M = pAh
Ldr 1dd 1dp_
hd:r  Adt  pde
“ldp_Ldn 1A
p dt hdt Ad¢
We know from the continuity equation that
1dp

% _§ivV
L dl div

=0

(10.11)

Hence
%%Jr%(;—f:divV (10.12)
If the total divergence is zero (i.e., the flow is assumed to be incompressible), we
obtain the relation
1d4  1dh
Adt hdr
In practice we interpret (10.13) to mean that if a slice of constant mass expands,
its thickness contracts, and vice versa. We may put this concept into practice by

(10.13)
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following three balloons which are released from different locations and all
ascend at the same rate. The rate of change of the area of the triangles formed by
the three balloons is then a measure of the divergence (or convergence) of the
slice of the atmosphere through which the balloons are ascending. It is sometimes
useful to measure convergence in Lagrangian rather than Eulerian terms. For
example, the Eulerian prediction of the convergence and therefore increased
concentration of harmful pollutants within a square of constant area, the sides of
which are 100 km, would be less useful than the Lagrangian prediction of the
contraction of an area of pollutants to dimensions of, say, 1 km or less, when
concentrations might be so high as to become lethal.

In this chapter we have been concerned with trajectories, the tracks followed by
parcels of fluid (or individual bits of matter). A streamline is defined as a line
joining points of tangency to the wind vector for every point of the flow. Thus
dy/dx = v(x,y,t)/u(x,y,t) states that the direction of the streamline at any
point x, y coincides with the wind vector at a given time #,. A streamline thus
gives an instantaneous picture of the field of motion at a fixed time. Isobars
represent streamlines if the flow is geostrophic or gradient and steady, that is if
there is no change with time with reference to fixed points within the field of flow.
Thus while the slope of a streamline, dy/dx = v/u, the slope of a trajectory is
dy/dx = v(x,y,)/u(x,y, £}, which is not restricted to a fixed time.

We may find a relation between trajectories and streamlines. If d3 expresses
the change of direction of the wind, rd3 = ds where ds is an infinitesimal

displacement along the horizontal trajectory and r is the radius of curvature.
Then

dt  ds
i v (10.14)
FA

where K is the curvature of the trajectory of the air. Now
ds 08 98 98
TR ua+va—y (10.15)

where 93/0t is the local turning of the wind.

Hoyvever, 0B/0t = 0 for a streamline by definition since the streamline refers
to an instantaneous pattern of motion, so

B s 08 v

where K; is the curvature of the streamline. We may write from (10.14), (10.15)
and (10.16)

8
5’?: V(K — K, (10.17)
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When the motion is steady

V(Kt - Ks) =0
and
Kt = Ks

Trajectories and streamlines are then coincident.

In later chapters we shall make use of a relationship called the stream function.
We will introduce the definition here:

(10.18)

We note that equations (10.18) are somewhat similar to the geostrophic
equation. Like the geostrophic equation with a constant f, we easily find that

Ou 4+ Oov

ox oy
Thus the divergence of any flow represented solely by a stream function is
always zero. Non-divergent wind velocities can be represented by the spacing of
isopleths of 1 on a map. The ensuing pattern gives a good visual interpretation of
the non-divergent wind flow. A technique of streamline analysis is discussed in
Chapter 16, but it should be noted that the streamlines described therein are not
quite the isopleths mentioned above.

0

—

Derive equation (10.10) from equations (10.7).
2. At what radius does the tangential velocity of a parcel starting from rest
from the centre of an anticyclone with concentric isobars attain maxi-

mum possible gradient wind speed for the conditions chosen? /' = 1074571,

pressure gradient acceleration 15 x 107> m s™2. At what angle does the wind
intersect the isobars at this point?

3. In the example illustrated in Fig. 10.3 the pressure gradient force per unit
mass is 15.0 x 107° s™2. What is the minimum distance from the origin for
any trajectory to become parallel to the isobars? At what distance from the
origin does this trajectory start? [Hint: Integrate equations (10.7) for the case
where parcels start from r = r,. Set the tangential velocity equal to zero and
differentiate dr/dry.]

4. Show that for the case of a variable Coriolis parameter and isobars parallel
to circles of latitude the minimum latitude at which the wind blows parallel
to the isobars is three times the latitude from which the air parcel starts.
What is this latitude for the pressure gradient value used in Fig. 10.3(a)?
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[Hint: Substitute /' = 2w(y/a) into equations (7.4). This approximation is
reasonable up to about 15° of latitude. Then integrate as in the previous
question. At what latitude does a parcel become tangent to the isobars if it
starts from the equator?)

5. Solve problem 3 using the equations of motion in spherical coordinates and
hence show that the assumption /' = 2w(y/a) used in the previous problem is
a fair approximation for tropical latitudes. [Hint: Answer is cos’¢ =
cos®¢y/[1 + P,/ (sin 2¢paw?).]

6. What is the slope of the cycloid derived in equations (10.5) at z = 7/2f?

7. Obtain (10.11) from §M = pAh by logarithmic differentiation.
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We now come to an extremely important concept in dynamic meteorology. It is,
in fact, a concept which is an integral part of fluid dynamics, the science
concerned with the motion of fluids, gases and liquids. It is called vorticity
and is a measure of rotation. Rotation is also sometimes called spin, a property
that is a characteristic of quantum physics. Spin or rotation is therefore a
fundamental property of our universe. We have already seen in earlier chapters
that the wind blows around anticyclones and depressions. Such circulations have
vorticity. The measure of the vorticity of the flow around these systems is a
measure of the intensity of those systems. This chapter will discuss the derivation
of vorticity as well as interpret its significance when applied to simple patterns on
the weather map. It will be seen in this and later chapters that vorticity provides
an extremely useful practical prediction tool.

The idea of circulation implies moving along a circular path, or more exactly,
moving around a closed path. We talk about the circulation of money (although
money spent may not always return to the spender). In the French language the
word for traffic is /a circulation. At parties the host or hostess will tell the guests to
circulate. Although these descriptions may not be rigorous the idea is similar to
the scientific one with which we shall here be concerned.

Mathematically,

sz(udx-f—vdy-l—wdz) (11.1)

or, in a horizontal plane, C = $(udx + vdy).
We may also express the circulation as

C=fVcosads (11.2)
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ds

Ficure 11.1 Circulation.

where V is the velocity of flow at any point in the field of motion and « is the
angle between the direction of flow and the direction of the tangent to the
element of distance along a closed path through the field of motion at that point,
as shown schematically in Fig. 11.1.

In meteorology, where the geostrophic assumption is used in synoptic
analysis, it is clear that the velocity field and the field of isobars are coincident
and therefore that the circulation around a closed isobar may be expressed by
§ ¥ ds. We must make the point here that when we refer to the geostrophic
assumption as a description of the flow at any point in a field of motion, we really
mean balanced flow. This could include gradient wind flow which, as we have
seen, is more rigorous than geostrophic flow if the isobars are curved. But the
pattern of isobars is far from being circular everywhere so that even the gradient
wind equation is not exact. What we shall really mean by geostrophic flow is
balanced flow in the sense that the wind blows parallel to the isobars at every
point on the pressure pattern. There is an equation which expresses this
condition which we shall come to later. For the time being, we may generalize
and equate geostrophic flow with the quasi-geostrophic assumption that the flow
is parallel to the isobars at every point and that its speed is approximately given
by the geostrophic relation.

Vorticity is a measure of rotation or spin. It may be defined as circulation
per unit area, or as the quantity which, when integrated over the area, gives the
circulation.

Thus

C=/§dA (11.3)
or
dC = ¢d4 (11.4)

where ( is the vorticity about the axis normal to d4.
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Consider a rotating disc of radius ». From (11.2)
C= ]{ Vdscosa = ?{ Vds=2nrV

Here again & = 0 since the motion is always around the closed path.
If we consider a small but finite rotating disc { = dC/dA4,
_2mV 2V

—=—=2w
r r

where w is the angular velocity of the disc.

Now consider a larger rotating disc which is divided up into infinitesimal
squares (Fig. 11.2). If the circulation around these squares is added up it is seen
that adjoining sides supply equal and opposite contributions and cancel out,
leaving the circulation around the perimeter.

Thus the vorticity of the rotating disc is 2w where C is now the circulation
around the perimeter of the disc and A4 is the whole area enclosed by the
perimeter:

(=2w (11.5)

The above relation then states that the vorticity of a rotating disc equals twice its
angular velocity.

Since vorticity can be measured in terms of rotation or angular velocity it is
clearly a function of the curvature of the path around which the parcel or element
travels. This is particularly significant in meteorology where, as a result of the
geostrophic assumption, the wind is considered to blow along the isobars. The
curvature of the isobars is therefore of prime importance in estimating the
horizontal vorticity of the wind field in the atmosphere. Vorticity is also a
function of another parameter, namely shear. Shear is defined as the rate of
change of velocity in a direction normal to the direction of motion. Thus, in
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Ficure 11.2 Vorticity of a rotating disc.
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FiGure 11.3 Cyclonic and anticyclonic shear in a westerly current (northern
hemisphere).

meteorology, horizontal shear exists if, for example, the pressure gradient
changes in a direction along the gradient, that is across the isobars.

Figures 11.3 and 11.4 show the generation of shear vorticity in westerly and
easterly air currents. We might imagine momentarily that Figs 11.3 and 11.4
represent a flowing stream. The velocity of the current is inversely proportional
to the distance between the streamlines, which we can also imagine to be isobars.
If we place a stick across the stream we will observe that the stick rotates in the
direction indicated. The portion of the stick lying in the stronger part of the
current will move faster than the portion lying in the weaker part of the current.
The stick will be seen to have rotated an angle « which the new position A'B’
makes with the initial position AB and similarly with stick CD. In the northern
hemisphere, cyclonic shear occurs where the rotation is anticlockwise, and
anticyclonic shear occurs where the rotation is clockwise. We see that rotation
has been generated through shear, even though the current itself does not possess
any curvature in its path. In other words, we see that vorticity has been generated
by the shear. It is shear vorticity as distinguished from curvature vorticity.
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FiGure 11.4 Cyclonic and anticyclonic shear in an easterly current (northern
hemisphere).
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Mathematically, shear is denoted by 0V /0r where the numerator is a
small change in velocity while the denominator is a small leftward distance
perpendicular to the direction of motion.

Figures 11.3 and 11.4 may refer to either hemisphere. In the northern hemi-
sphere anticlockwise rotation is cyclonic and clockwise rotation anticyclonic. In
the southern hemisphere the reverse is true. Remember that f changes sign and
becomes negative in the southern hemisphere. However, the conventions of
vector calculus require the normal coordinate to increase towards the left of
the flow in both hemispheres, so cyclonic vorticity is positive (negative) and
anticyclonic vorticity is negative (positive) in the northern (southern) hemisphere.

We have seen in the previous section that vorticity is a function of the two
parameters curvature and shear. We will now derive an expression for vorticity
in polar coordinates which brings out the dual character of vorticity very nicely.
In Fig. 11.5 BA and CD are streamlines having a common centre of curvature
0. Consider the circulation around an element of area ABCD where the velocity
V is everywhere normal to the radius vector.
Starting at A we proceed cyclonically around the circuit ABCD. From (11.2)

oV

dC=-Vrdo+0+ (V+ o

dr) (r+dr)ydé+0

oV oV 5
5r—drd9 +Edr de

The last term may be neglected since it is a differential of third order.
The area of the element is

= —Vrd6+Vrdo+Vdrdf+r

d4 =rdrdd
c=4C_Vdrdo+r(dV/or)drds v OV (11.6)
T d4 rdrdé T r Or

The first term represents curvature. The second term represents the change
of velocity along r and is therefore a shear term. As previously stated we see
that vorticity is composed of two components, curvature vorticity and shear

D
dr

8V
V+7ovr' dr

de

r B C

Ficure 11.5. Derivation of vorticity in polar coordinates.
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du
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vﬂ v+%?dx
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FiGURE 11.6 Derivation of vorticity in Cartesian coordinates.

vorticity. Note that though the positive (leftward) curvature of the flow is
1/r, the normal coordinate itself is —r in this case.

It is useful to derive an expression for vorticity in Cartesian coordinates also.
To do this we consider the circulation around a small rectangular element in
the same way as for the small element of area in deriving the expression
(11.6) in polar coordinates. In this case we also proceed around the sides ABCD
(Fig. 11.6).

Since in a horizontal plane

C= }{(udx+ vdy)

we therefore have

ov Ou
dC = —vdy +udx+ (v—i—adx) dy — (u+5; dy) dx

A Ou
= —vdy + udx+vdy+a dxdy —udx ~ 5 dxdy

v Ou ov Ou
- (5-5) o= (35-5)

where d A is the area of the rectangular element, and
dC 0Ov Ou
=3 oy
This is the vorticity perpendicular to the x, y plane. Vorticity perpendicular to
the x, z plane is derived similarly and denoted by
Ou Ow

9z ox

(11.7)

Vorticity perpendicular to the y, z plane is denoted by

The three components of vorticity derived in the preceding section are created by
the combined curvature and shear vorticity of the wind field. In this work we
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shall only be concerned with the first component, ¢, which is perpendicular
to the x, y plane. This vorticity is called relative vorticity to indicate that it
is relative to the surface of the earth. However, since the earth rotates it
possesses its own vorticity, denoted by f, the Coriolis parameter. We proved
this earlier when we showed that the vorticity of a solid rotating disc was
twice its angular velocity. Thus every parcel of air possesses its own
vorticity plus earth vorticity f, corresponding to the latitude about a z
axis normal to the surface of the earth. The sum of the relative and earth
vorticity is

Ca=C¢+f (11.8)
The sum is called the vertical component of absolute vorticity.

In the next section we shall be particularly concerned with the physical
significance of rates of change of the absolute vorticity.

We now come to a remarkable and fundamental relation. We have seen that
convergence and divergence of mass result in pressure changes, and that if we
conserve mass in a vertical column the continuity equation gives a vertical
velocity profile. The calculation of pressure changes gives us a means of
predicting pressure patterns on the weather map. Vertical velocity profiles
may be used to predict fine or rainy weather from the laws of thermodynamics
discussed in Chapters 1 to 5. We have also come to the conclusion that
convergence and divergence are quantities which are difficult to measure
accurately by observational means. We have seen that we cannot calculate
these elusive parameters from the weather map itself, using the geostrophic
assumption, since the divergence of the geostrophic wind is zero for scales less
than planetary. Although nowadays fast electronic computers use the full
primitive equations of motion, this was not the case in the near past.
Meteorology, both before and after World War II, was obsessed with the
field of barometric pressure. This is not to say that pressure is not an
important observation. It always has been and still is the main consideration
in forecasting each day’s weather. However, theoretically, there are other
means of looking at the motion of the atmosphere, which can be applied in a very
useful manner, particularly to the free atmosphere above the boundary layer.
The breakthrough in this regard was the application of the vorticity theorem,
which we will now derive.
In the horizontal x, y plane
. Ou Ov
divgV = x + 3y
and perpendicular to it
_Ov Ou
¢= ox Oy
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We may consider once more the equations of horizontal motion

du 1o

dt p Ox (11.9)
dv 1 dp )
a0y

and differentiate the first of these above equations partially with respect to y and
the second with respect to x.

Then,
9(du/dr) 0(fv) _ _ 9((1/p)(Op/0x))
Oy oy ay
O(dv/dr)  o(fu) _ _9((1/p)(0p/0y)
Ox Ox Oox

The Boussinesq approximation will be made that p remains constant in the
horizontal. Then subtracting the second equation from the first

8(du/ds)  8(dv/dt) _ B(fv) N a(fy 1 &p 18p
Oy ox Oy Ox pOxBy p Oxdy
Expanding the above and eliminating the pressure term

2(6_u+u@+v@>_ﬂ(@+u§2 au) fav+ f+f_

Oy \ 0t ox Oy Ox \ ot Ox
It is noted that the Coriolis parameter is a function of latitude only so that
A
“ox =0
Then

Ou  Oudu  Fu oudv Fu  Fv dudv  Fv

“oxay Toxoy Ve Y opay Tayer Yo oxdy oo

_fOv  Ou af
(53 + o5,
or
(6u/6y 6v/3x)+va(8u/6y—3v/8x) u (Ou  Ov
Ox dy ox\dy ox
2
@(@_?ﬁ>+ﬂ_ﬂ.—f Ou av +vg
oy \dy Ox dyot  Ox0t 8x 8
and
_oC 8( _[(Ou  Ov ¢ ou Ov df
“ox T 8y (8x+8_y) at f<£+8_y>+217
But

ac_o¢, oC. &
ar o e oy
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so we have
dC df Bu 61}
or
d—(gt;;—f)= —(C+/)divV (11.10)

In the above derivation we have started from the simplified form of the equations
of horizontal motion and neglected spatial variations in the vertical velocity and
also variations in the density. Including such variations gives rise to what are
called the tilting or twisting terms and the solenoidal terms, respectively. These
terms are usually small for synoptic-scale motions.

We see that in deriving equation (11.10) we have eliminated the pressure field
altogether. The motion must, of course, be driven by some pressure gradient
forcing, but this forcing is outside the terms of reference of the equation. We can
then study equation (11.10) as it stands. We note specifically that it relates the
rate of change of absolute vorticity to divergence.

The far-reaching practical importance of (11.10) is that we have a means
of computing divergence from rates of change of vorticity. Now vorticity is
wholly different from divergence in that it can be estimated qualitatively or
measured quantitatively from a synoptic chart. This is something that
cannot be done with divergence since the only information we can extract
from the synoptic chart must use the geostrophic assumption. But we can
use the geostrophic assumption to assess the vorticity. Granted, this is an
estimate of the geostrophic vorticity, but it does not matter, since the
numerical magnitude of vorticity is much greater than that of divergence.
We can see this by just looking at weather maps. Anticyclones, cyclones or
depressions and wave-like patterns in the free atmosphere all have vorticity
which can be immediately recognized.

Ficure 11.7 Convergence and divergence due to curvature in a northern-hemisphere
wave pattern.
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Figure 11.7 shows a simple wave pattern. Patterns similar to this are a
regular feature of upper air charts, for instance at 500 mb (hPa). We will apply
the results of the vorticity theorem to this pattern. We will first make some
approximations:

dC+f) _dg , o

= 1.11
dt dt dt (1 )

f only varies along the y axis so

df f 2wvcos¢
dt_Uay— p, (11.12)

Observations show that in most cases df/d is small compared with d¢/dz.
Also the relative vorticity is usually numerically smaller than f, and (, is nearly
always cyclonic, except occasionally near the equator, or in what might be called
singularities in high-intensity jet streams where strong anticyclonic vorticity
is generated over a synoptically small spatial volume. We can disregard such
anomalies. Equation (11.10) then becomes

d¢ .

The fdivV (11.13)
We will apply equation (11.13) to Fig. 11.7, which is applicable to the northern
hemisphere. The isobars are assumed to be equidistant everywhere and the flow
is assumed quasi-geostrophic. We also constrain the shape of the pattern so that
it retains the same shape in space and time. We will let all the vorticity in the
pattern be due to the curvature of the pattern. Let us consider the segment
between AB and CD. At the crest of the wave the vorticity is anticyclonic or
negative. At the trough it is cyclonic or positive. Clearly, vorticity increases
between AB and CD. From (11.13) convergence (negative divergence) must
occur in that segment of the wave. If we now consider the segment between CD
and EF we note that vorticity is cyclonic or positive at the trough while at the
next crest it is again anticyclonic or negative. Vorticity decreases between trough
and ridge. We deduce, therefore, from (11.13) that divergence must occur in this
segment since the term on the right hand side is now positive. What we see on
weather charts does support the foregoing theoretical conclusions. If we look at a
long-wave pattern on an upper air chart, say at 500 mb (hPa), it is often noted
that a surface anticyclone lies directly downstream between the 500 mb ridge and
trough and similarly low-pressure centres at the surface often lie downstream
between the 500 mb trough and ridge. Wave-like patterns of this kind are often
called long waves.

If we now let Fig. 11.7 apply to the southern hemisphere the crest of the wave
at AB becomes the trough and the trough at CD becomes the ridge, and the labels
of convergence and divergence in Fig. 11.7 must be interchanged.

It is interesting that the same general conclusions about the location of
convergence and divergence in wave patterns may be deduced quite simply from
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the gradient wind equation. Thus we may write equation (8.5) as

V2
ngr :FTgr =ng

where V,, and V, refer to the gradient and geostrophic winds respectively, and
the negative sign refers to the northern anticyclonic and southern cyclonic cases.
Then

2
Vg = Vgr + ]%
Thus for the anticyclonic pattern ¥, < ¥, and for the cyclonic pattern Ve >V
in both hemispheres. If these relationships are applied to the segments of the
wave in Fig. 11.7 we find that the gradient wind speed across AB is greater than
across CD. Air will then accumulate within the segment between the ridge and
the trough, that is convergence will occur. Similarly the wind is less across CD
than across EF leading to a depletion of air between the trough and the ridge,
that is divergence.

The observed effect of curvature vorticity is shown as a translation of the
pattern from west to east; that is, if a ridge is approaching from the west, then the
barometer at the surface will record rising pressure. Conversely, if a trough
approaches from the west the barometer at the surface will record falling
pressure. If the pattern is constrained to conserve its shape, translation of the
wave must occur to explain the response of the barometer. The effect of curvature
vorticity in the translation of the wave pattern from west to east in a general
westerly current may also be regarded in a physical sense as due to the advection
of the relative vorticity by the wind. This will be discussed in a later chapter.

In Fig. 11.7 we assumed that all the vorticity was due to the curvature of the
quasi-geostrophic wind. We will now assume a pattern which possesses shear
vorticity but no curvature vorticity. Such a pattern may be formed in jet streams
which occur at high levels, say between 200 and 350 mb. Such a pattern is shown
in schematic form for the northern hemisphere in Fig. 11.8. In the region on the
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Ficure 11.8 Convergence and divergence due to shear in a northern-hemisphere
jet-type pattern.
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polar side of the jet, cyclonic shear increases along AB and decreases along CD.
Conversely, in the region equatorward of the jet, anticyclonic shear increases
along EF and decreases along GH. Equation (11.13) thus predicts that
convergence may be expected to the left of the entrance to the jet and to the
right of the exit in the northern hemisphere. Likewise, divergence may be
expected to the right of the entrance and to the left of the exit to the jet in that
hemisphere.

Figure 11.8 may also represent a jet pattern in the southern hemisphere. In
this case the labels for divergence and convergence must be interchanged as in
Fig. 11.7. This is because the sign of the shear vorticity is inter-changed.

In actual practice the vorticity distribution around a pattern is due partly to
the curvature effect and partly to the shear effect. In some regions of the pattern
the two contributions are of opposite sign and tend to cancel each other out. In
other regions they reinforce each other.

The convergence and divergence which arise from the vorticity distribution
around a given pressure or contour pattern refer to the level or within a layer in
which the given pattern exists. At other levels the pattern and consequently the
vorticity distribution and resulting convergence and divergence may be quite
different. The convergence and divergence calculated in any given level or thin
layer may not be very closely related with the rise or fall in surface pressure. For
this to occur it would be necessary to calculate and integrate the convergence or
divergence for every level from the surface to the outer limits of the atmosphere
where pressure was still appreciable. However, the results for a specific level may
be significant in estimating development of the surface pressure field if a level is
chosen at which ageostrophic motion is a maximum.

The theory of long waves and of their translation will be examined in
more detail in the next chapter. This theory is generally applicable to
westerly currents. In the troposphere the wind motion is generally westerly
except in the tropics, and in rare blocking occasions when large anticyclones
extend their structure upwards to 500 or 300 mb levels. Westerly flow arises
because of the rotation of the earth and because of the temperature
difference beween the poles and the equator, that is the meridional profile
of temperature. Long waves rarely occur in an easterly current in temperate
latitudes.

S

We may construct trajectories of parcels of air which are constrained to conserve
their absolute vorticity so that d(¢ + f)/d¢ = 0. Let us rewrite equation (10.2)
omitting a pressure gradient forcing:

i+f2u=0
The solution is

U = Uy cos ft + vy sin ft
(11.14)
v = vy COS ft — U, Sin ft



142 VORTICITY
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Ficure 11.9 Constant absolute velocity trajectory of air parcel starting from the

equator with a southerly velocity of 5Sms™!.

where u, vy are some initial velocities and

M Yoo
x—fsmft-l-f(l cos ft)
v w,, (11.15)
)»—TSlnft—f( — cos ft)

Equations (11.14) and (11.15) above express the velocities and trajectories of
air parcels which are projected at an initial velocity ug, vy from some initial origin
of coordinates. The tracks are then constant absolute vorticity trajectories. We
may arbitrarily assign such initial velocities and compute the tracks. If f is held
constant the trajectories are inertial circles. If /' is allowed to vary the trajectories
are more accurate, particularly if they spend any time in equatorial latitudes.
These trajectories conserve their absolute vorticity and so obey the constraint
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Fiure 11.10 As for Fig. 11.9 but starting with a southwesterly of 10ms~.
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d(¢ +7)/dt = 0. These air parcels start from the equator and so they have
zero total vorticity at all times. In Fig. 11.9 the initial velocity is 5ms™' from the
south. In Fig. 11.10 the initial velocity is uy = 5ms”!, vp =5ms”! giving a
southwest wind of 7.07ms™".

Now suppose we replace uy, v in equations (11.14) and (11.15) above by u,,
vg. We may then presume that the absolute vorticity trajectories we calculate are
trainlines already laid down by nature in determining the planetary flow pattern.

In the next chapter we will investigate in more physical and mathematical
detail the properties of wave patterns in the free atmosphere under the forcing for
which the air is assumed to follow constant absolute vorticity trajectories.

1. Under what conditions does the advection of relative vorticity equal the
product of the absolute vorticity and the horizontal divergence?

2. What is the vorticity of a disc rotating at 10 revolutions per second?

3. The geostrophic wind is westerly and changes from 25ms™! at 40°N to
5ms~! at 50°N. What is the magnitude and sign of the relative vorticity if the
rate of change of the wind velocity is constant? What would be the radius of
an isobaric system having the same relative vorticity if the gradient wind
velocity was 10ms ™!, assuming no shear?

4. Derive an expression for the relative vorticity of the gradient wind from the

gradient wind equation.

What is the vorticity of flow represented by the stream function?

6. Whatis the relative vorticity of the outer structure of the tornado in problem
5 of Chapter 8 if n = 1?

7. Write the divergence vorticity equation in terms of the stream function.

e



THE LONG-WAVE EQUATIONS

The derivation of the long-wave equations is attributed to Carl Rossby, an
outstanding meteorologist of the twentieth century. They afforded a break-
through in thinking of meteorology after World War II. Such waves are often
called Rossby waves. The theory developed here relies on the theorem of the
conservation of absolute vorticity.

The breakthrough in thinking came largely as a result of the invention of the
radiosonde instrument which enabled temperatures and pressures to be mea-
sured in the upper atmosphere, and transmitted by radio to a ground-based
receiver. From the equation of state we have already seen that if two of the three
variables p, T, p are known, we can calculate the third variable. Knowing the
pressure and temperature at different heights we can calculate the density and
also the pressure gradients. But more important, as we shall see in the next
chapter, we can use the thickness equation to calculate the heights of the pressure
surfaces. Either way it becomes possible to construct upper air charts of the
pressure field, or of the height field, and use the geostrophic assumption to
calculate the wind field. It was immediately noted that the quasi-geostrophic flow
pattern along the isopleths of pressure or height possessed a wave-like structure
and that these waves meandered around the globe.

We have already seen in Fig. 11.7 that curvature vorticity produces convergence
in that part of a wave pattern downwind of the ridge and upwind of the trough,
and divergence in that part of the pattern downwind of the trough and upwind of
the ridge. We were able to show this effect first from the vorticity equation and
secondly from the gradient wind equation. We also said that the advection of the
curvature or relative vorticity in the pattern, the shape of which remains constant



EFFECTS OF CURVATURE AND LATITUDE VORTICITY /45

in time and space, caused the pattern to translate from west to east. We may now
use the simple geostrophic equation to show that the earth vorticity produces the
opposite effect. We assume a northern-hemisphere long-wave pattern (Fig. 12.1)
where the isobars are spaced at an equal distance from one another. Then, at the
ridge line AB

1 b
Vg = Z?l) on

and at the trough line CD
1 ép

2 T (ofy) n

where v, , v,,, are the respective geostrophic velocities and én is the distance
between the isobars. Dividing the first of the above relations by the second we
have

Vg, :é _ sin ¢,
Ve, Ji sing
_ sin ¢2
5 = Vg sin g,

but sin ¢, < sin¢; and 5o vy, < v,,.

Thus, in this case there is divergence between AB and CD and convergence
between CD and EF. We see that this is just the opposite of the effect shown in
Fig. 11.7. The effect shown in Fig. 12.1 is due to the latitude vorticity, that is to
the rotation of the earth. The distribution of convergence and divergence in Fig.
12.1 may also be determined from equation (11.13), as vorticity now increases
upstream from AB and decreases between AB and CD. The pattern will be
translated from east to west as the advection of f, the planetary vorticity, by the
wind is in the opposite direction to the advection of the curvature vorticity. In
this case the pattern is advected against the wind field. The net result of these
two opposing effects may be as illustrated in Fig. 12.2. Figure 12.2(a) shows a

(12.1)

E

FiGURE 12.1 The latitude effect in a long-wave pattern in the northern hemisphere.
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FIGURE 12.2 (a) Short wave translated in the direction of the wind; (b) long wave
translated against the wind.

short-wave pattern. In such a pattern the effect of changes in the curvature
vorticity exceeds the effect of changes in the latitude vorticity. The pattern
will move from west to east. The opposite happens in Fig. 12.2(b). There, the
effect of changes in the curvature vorticity is small compared with changes in
the latitude vorticity. The pattern will therefore move from east to west. The
general result is that short-wave patterns move from west to east. On the
other hand, long-wave patterns move from east to west, upstream against the
wind. Such movement is sometimes called retrogressive. These predicted
motions are observed to be the case when we follow the movement of such
waves on upper air weather charts.

These principles form the basis of the Rossby long-wave equations. Their
identification provided an extremely important breakthrough in the under-
standing of the way in which the atmosphere behaves. The theoretical and
practical applications of these ideas turned out to be of the utmost significance in
modern dynamic meteorology. A more exact mathematical derivation of the
general ideas discussed above will now be given.

The development of the Rossby long-wave equation relies on the principle of the
conservation of absolute vorticity, which was introduced in the previous chapter.
Absolute vorticity may be conserved in nature as can such quantities as mass,
heat and momentum. To conserve absolute vorticity we will write the relation
d(¢ +f)/dr = 0. This was done in the preceding chapter when we computed
constant absolute vorticity trajectories. In order for absolute vorticity to be
conserved the divergence must be zero from the vorticity equation. We must
therefore apply the theorem to some level where the flow is non-divergent. We
saw in Fig. 9.4 that there is usually some level at which the divergence profile
changes sign. This is often found to be at about 600 mb (hPa). This level may be
considered as a level equivalent to or representative of a simplified mean
atmosphere.
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Consider a long-wave pattern at the level of non-divergence (9.3) which is
normally to be found at about 600 mb. Then

d¢+/) _,

de
and

0¢ 06, 0, o _
at-I-uax+vay+vay—0

It follows that the total vorticity must be conserved at this level. We may
transform the term

g _ 20cos¢
gy~ R
where R is the radius of the earth, so that

B

vg_f; - (12.2)
3 expresses the instantaneous rate of change of the earth’s vorticity at a given
point in the flow.
Equation (12.2) now becomes
o o¢ I
iy 4= = 12.
8t+uax+vay+vﬂ 0 (12.3)
It is assumed that there is a zonal current of uniform constant velocity U upon
which is superimposed a perturbation with the velocity components «’ and v'.
The total velocities, which are assumed independent of y, are then
u=U+u
(12.4)

v=1'
Now the mean zonal velocity is independent of x and y so that from (11.7) and
(12.3)
ox 9y
It follows from (12.3) and (12.4) that

28 nOC  0C o
az+(U+”)ax+Uay+v’8_0 (12.5)
The term u’(8¢/8y) = 0, since the vorticity is independent of y.

We have left

(= ¢

¢, . 0¢ .
5, t Uz toB=0 (12.6)

Now, if the perturbations are travelling eastward without change of shape it
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follows that

o¢ &
where ¢ is equal to the eastward velocity of the pattern.
Substituting (12.6) in (12.7)
o oC, .
U@x c$+v,8—0 (12.8)
It was assumed that the perturbations are independent of y. Then
ou'
o
and
v’
(=%:
! (12.9)
!
(U - C) 'a? +v B =0

This is a differential equation the solution of which may be given by an
expression of type

2
v =1 s1nf7r(x—ct) (12.10)

where g is a constant.
If (12.9) is differentiated twice with respect to x, then
o' _ v 2m cos 2m (x —ct)
ax "L L
&' A 2
W = —’U()—L-Z—Slnf(x - Ct)
Substituting (12.9) in (12.8)

2
.2
—(U - e)vp isin%r(x —ct) = —v{)ﬂsm-i—r(x— ct)

L2
BL?
U-C=—
472
or
2
C=U—§iﬂ_2 (12.11)

where L is the wavelength of the sinusoidal disturbance.

The formula (12.11) expresses the velocity of the long wave in terms of the mean
zonal speed and the wavelength. If the wave is stationary ¢ = 0 and (12.11)
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becomes

BL?
= 12.12
v 472 ( )

where L, denotes the stationary wavelength

L= 27r\/% (12.13)

Substituting for U from (12.13) in (12.11) we have

12 BL?
c=§?—§? (12.14)

It is clear from (12.14) that if
L,>L then ¢>0
Li<L then ¢<0

Thus, if the wavelength is less than the stationary wavelength the wave velocity is
positive, that is from west to east. If, on the other hand, the wavelength is longer
than the stationary wavelength for the selected latitude and mean wind speed, the
velocity is negative, that is from east to west (retrogressive).

It is seen from equation (12.13) that the stationary wavelength increases with
zonal wind speed and with latitude. Thus in high latitudes the wave velocity will
be greater for a given wind speed than in low latitudes for a given wavelength. In
temperate latitudes where strong jet streams occur the waves will move fast from
west to east since both the mean zonal wind speed and the latitude are larger. In
latitudes nearer the tropics they will move more slowly from west to east, or
remain almost stationary, or even move slowly from east to west if the zonal
wind speed is small and the actual wavelength is longer than the stationary
wavelength.

Although the Rossby long-wave theory as presented here has been simplified,
and some assumptions have been made, the results do give an excellent insight
into the way in which long waves in the troposphere behave. Since the crests of
the long waves in the 500 mb (hPa) chart are associated with anticyclones at the
surface, and the troughs are associated with low-pressure centres at the surface,
the computed speed of the wave will tell us its anticipated position 12 to 24 hours
ahead.

To summarize, why do shortwaves travel towards the east and why does the
eastward velocity increase as the wavelength decreases? The answer is that the
combined velocity of the wave and the wind through the geostrophic control
pattern must be a constant absolute vorticity trajectory. Absolute vorticity must
be conserved as that was the foundation stone of the theoretical development.
Why does a wave which is longer than the stationary wavelength travel
towards the west? The same answer applies. In order to maintain a constant
absolute vorticity trajectory the long wave must move in the opposite
direction to that of the air current through the geostrophic control pattern.
In other words, d(¢ +f)/dt = 0.



150 THE LONG-WAVE EQUATIONS

In the discussion so far we have derived the term d(¢ +f)/dz =0 which
expresses the theorem of the conservation of absolute vorticity. The formula
has been derived for some constant level of height or of pressure. We may,
however, derive a more general expression which is less restrictive and
therefore more useful as a tool in the analysis and prediction of movement
of long waves.

We return to the vorticity equation (11.10)

d(¢+ .
%f—) — —(C+f)divV
We have already shown in equation (10.12) that horizontal divergence may be

expressed as

1.d4
divvVy ==-—
VYHE T
where A4 is a given area. Hence,
I _d¢+/)_ 1 d4
(C+f) dt — 4 dt

log(¢ +f) = —log A + constantlog A({ + f') = constant
A(¢ + f) = constant
and 4 = M /pdz = Mg/dp. Therefore, since mass is conserved,

C+S)
dp

= constant (12.15)

and hence
d(¢+/)
PR 0 (12.16)
Equation (12.16) is a more explicit expression for the conservation of
absolute vorticity than (11.10) as it is not confined to a given height or
pressure level. It embodies a given mass or thickness of air measured in
millibars or hectopascals. We shall see in the next chapter that all upper air
charts are analysed at selected pressure levels and that numerical models are
concerned with layers bounded by two pressure surfaces. In approximate
studies these layers may be bounded by the 1000 and 500 mb (hPa) layers, or
by the 500 and 300 mb (hPa) layers, and so forth. In more accurate models,
say 10 layers, or even 20 layer models, the thicknesses are 100 mb or 50 mb,
respectively. Thus, the vorticity equation in this form enables constant
vorticity trajectories and, thus, Rossby long waves to be represented for a
given layer or slice of the atmosphere. The assumption of non-divergence is
automatically included in the method of representing the atmosphere as made up
of layers or slices of constant mass; that is, the slices are enclosed by fixed upper
and lower pressure levels.
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For an incompressible fluid such as the ocean (¢ +f)/dp may be defined as
potential vorticity. In oceanographic work dp is usually replaced by D, the depth,
since d4/4 = dh/h =dD/D in the development of (12.16) in the preceding
section.

The concept of potential vorticity applied to the atmosphere requires a
slightly different treatment since the atmosphere is not incompressible. We
must now consider a slice of air bounded by constant isentropic surfaces, that
is surfaces of constant potential temperature, and assume that the air is subject to
adiabatic motion.

From the preceding section we have found that A(¢ + f) = constant but

_ Mg 6 " Mg

T op Gp 66
Mg/80 is constant since the difference between the two isentropic surfaces is
constant. Therefore 4 = constant x 66/6p and

00
(s +f)$= constant (12.17)
and
(C+1)o0N _
dt( = ) =0 (12.18)

Equation (12.18) expresses the conservation of potential vorticity in an
atmosphere in which the motion is adiabatic. It is a measure of the ratio of the
absolute vorticity to the depth of the vortex. It is an important concept because it
tells us how the vorticity changes as the thickness of the vortex between two
isentropic surfaces changes. This parameter is referred to frequently in modern
dynamic meteorology.

1. What is the wavelength ofa statlonary Rossby wave at 45°N if the mean
wind speed is westerly at 10ms~'?

2. What is the velocity of a Rossby wave at 45°N if the wavelength is 5000 km
and the mean zonal westerly wind is 25ms™'?

3. InFig. 11.10 the wavelength of the constant absolute vorticity trajectory was
about 3000 km. What would be the wave speed? If the wavelength of the
forcing geostrophic pattern was half of the above wavelength what would be
its velocity?



THE UPPER AIR SYNOPTIC
CHART

In the preceding chapters we have confined our treatment of the flow of the
atmosphere to motion referred to a horizontal plane. Although this concept
works well for the surface weather map, it is difficult to apply it to upper air
charts which also involve the dimension of height. As we shall now discuss
the motion of the atmosphere as a whole, that is in three dimensions, we
must include this third dimension into our deliberations. In order to obtain
geostrophic wind speeds we need to know the pressure gradients at different
levels. The radiosonde instrument measures pressure and temperature, but
not height directly. There is also the difficulty of computing the density at
different heights. It would involve tedious calculations to obtain the pressure
and density of selected reference height levels. These difficulties were realized
internationally at the end of World War II and a much better scheme was
devised, not only for the plotting and analysis of upper air charts, but also
for their interpretation.

- .

R B SRR SRR & SRR

Consider a point P in the isobaric surface at a height z above m.s.l. Nextlet Qbea
nearby point in the same surface at a height z + dzabove m.s.1. and let us suppose
that it is situated so that PQ represents the direction of steepest slope of the
isobaric surface at P (Fig. 13.1). Then, if Q' lies directly beneath Q at a height z
above m.s.l. and if dn represents the infinitesimal distance PQ’, we have that the
pressure change on going from P to Q via Q' is

dp=g%dn+%dz=0 (13.1)

since we are moving on a surface of constant pressure. From the hydrostatic
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FiGure 13.1 Schematic of isobaric surface sloping in space.

equation and the fact that dz = (9z/dn) dn we see from (13.1) that

Op 0z
on Pon
or
1 dp Oz
o g 13.2
p On & on (132)
We may therefore rewrite the geostrophic wind as
0z
Ug = —ggJ; (13.3)
0z
Vg =85 (13.4)

This is a most important and useful advance. We have reduced the number of
variables needed to calculate the geostrophic wind from three to two as we have
eliminated density from our equation. We now only need to know the gradient of
the height of the pressure surface since g is a constant. In order to take advantage
of this simpler method we must transform our means of constructing our upper
air charts from maps of the pressure at specified heights to maps showing the
heights of specified isobaric surfaces, that is surfaces of constant pressure,
above m.s.l. Isopleths of constant height on a map are called contours. We shall
therefore refer to contours on synoptic charts of the troposphere in the same way
as contours on a geographical map of a country or continent of the world. We
shall see that this different representation opens up many new avenues of
exploration in the understanding of the dynamics of the weather.

A new parameter of great importance in atmospheric dynamics may now be

introduced. It is a measure of the vertical variation of the geostrophic wind.
We will consider the geostrophic wind at two levels. Let Ug,, vy, be the

geostrophic wind at some higher level p;, z; and u,, vy, be the geostrophic wind
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at some lower level py, z5. Then

—g (021 0Oz
o = gy = 7 (F; ~ —a;?) (13.5)
and

oy, =8 (% _%%
Vg, — Vg, _f(ax 3x> (13.6)

bug = —£282) 5, 8 9E)
S oy f ox
Table 13.1 may be used to convert a synoptic chart of the m.s.l. pressure
distribution into a chart of the contour pattern of the 1000 mb isobaric surface.
The chart then represents the topography of the 1000 mb chart in the same sense
as a geography map may represent the topography of the underlying surface
by height contours. We may continue with this method and use the thickness
equation to compute the thicknesses of different layers of the troposphere. We
may then add the different thicknesses together and obtain the total heights of
the different standard pressure levels above m.s.l. Contours of the heights of the
pressure surfaces may then be constructed so that we have topographies of the
heights of the standard pressure surfaces above m.s.l. There is one problem to
overcome here. It is to find the mean temperature of a layer.

or

(13.7)

Suppose the heavy zig-zag curve in Fig. 13.2 represents an actual virtual
temperature distribution starting from 7| at pressure p; and finishing at T
on the p, isobar. If we were to replace this distribution of temperature by an
equivalent isothermal one, which can be done by finding the isotherm AQB for
which the shaded areas AQT;" and BQT;' are equal, then the thickness of the
original layer and that of the equivalent isothermal layer will be the same, since
the same area A lies to the left of each temperature curve.

Since the thickness of the equivalent isothermal layer can be calculated
from the thickness equation we can construct a thickness scale parallel to the
isobars as shown in the figure. It is often hard to estimate the temperature of an
equivalent isothermal layer accurately, when large areas such as those in Fig.
13.2 have to be balanced. In practice, since the thickness scale is placed

TasLE 13.1 Transformation of anm.s.l. synoptic pressure pattern to a topography of
the 1000 mb surface using the conversion §mb = 60m

Sealevel 960 968 976 984 992 1000 1008 (016 (024 1032 1040

1000mb
stirface

{m)

Heightof —300 ~240 —I60 —120 ~60 O 60 120 180 240
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FiGURE 13.2 The thickness of a standard isobaric layer.

geometrically midway between the isobars, the intersection AOB can be replaced
by a line closer to the actual temperature curve, such as COD, and because the
area AAOC = ABOD, the intersection of COD with the scale will still give the
correct thickness.

The graphical computation of thicknesses can be done on any tephigram,
Emagram or skew-log p diagram upon which the virtual temperature structure
has been plotted.

Thus, the thermodynamically determined thicknesses may be added cumu-
latively to construct the topography of various standard isobaric surfaces. In
this way we may draw upper air charts of the 850, 700, 500, 300, 200 and 100 mb
surfaces. In the analysis of routine daily charts the 1000—500 thickness is
important as it represents the lower half of the mass of the atmosphere.

The basic upper air synoptic chart is a contour chart of the 500 mb isobaric
surface. As we have seen in Section 13.3 a surface map of the m.s.l. pressure
distribution may easily be transformed into a contour chart of the 1000 mb
height field. If we compute the 1000—500 thickness as described in the preceding
section we may add the two fields together to get the 500 mb contour map. Figure
13.3 is applicable to both hemispheres. It shows how the summation may be
carried out graphically. It is seen that a third set of lines can be drawn through
the intersection points of the thickness lines and the 1000 mb contours. This
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« = = = Thickness line
e 1000-mb contour
== o == 500-mb contour

Ficure 13.3 The gridding technique (heights in dm).

technique of differential analysis has been called ‘gridding’. We will now blow up
one of the cellsin Fig. 13.3 as shown in Fig. 13.4. The northern-hemisphere winds
are shown by arrows to signify that they are vectors, that is they possess both
speed and direction. In the chosen cell the surface geostrophic wind is denoted by
V. It blows from the north. The thermal wind which blows along the thickness
lines is denoted by V. It is mainly westerly indicating that there is colder air to

+6 0
\s ——-—-’———--
534= ~ NSOV
\
Vo \‘ ———_
'—"-\
\s - Vl ~.
’_—' . =540
540—' \546

= = = = Thickness line
e 1 000-mb contour
— = e 500-mb contour

FiGURE 13.4 The thermal wind for the northern-hemisphere case.
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the north. The thermal gradient is therefore directed normal to the thickness
lines. If we add the two vector winds

V0+V/=V5 (138)
and
V =V,-V, (13.9)

we see then that the thermal wind is the vector difference between the geostrophic
winds at 500 mb and the surface. This is the theoretical result we obtained when
deriving the mathematical form of the thermal wind equation (13.5). Thus, it is
emphasized that the thermal wind behaves in the same way as the geostrophic
wind in that it blows along the thickness lines. In the northern hemisphere low
temperature is to the left of the flow and warm temperature is to the right of
the flow. In the southern hemisphere the reverse is true. The velocity of the
thermal wind is inversely proportional to the perpendicular distance between the
thickness lines, as the velocity of the geostrophic wind is inversely proportional
to the perpendicular distance between the contours.

Barotropic and baroclinic are words which are used to describe two different
states of the atmosphere. Simple diagrams based on the construction of upper air
charts will bring out the properties of these two kinds of atmospheres.

Concisely, a barotropic atmosphere exists if there is no thermal wind. A
baroclinic atmosphere exists if there is a thermal wind. Alternatively, a
barotropic atmosphere may be defined as one in which isopleths of density or
specific volume are parallel to the isobars. A baroclinic atmosphere may then
be defined as one in which isopleths of constant density or specific volume
intersect the isobars. The intersection creates solenoids. The latter are exhibited
as geometrical areas. Examples of such solenoidal areas are shown in Fig. 13.3.
The greater the thickness gradient, the greater is the number of solenoids and the
greater the amount of available energy.

If there is no variation of the geostrophic wind with height and therefore no
thermal wind, the contour pattern will look the same at all levels as it does at the
surface. The surface pressure map will be reproduced at 500 mb. One may
compare this structure with a brick wall. No matter where an additional brick is
placed within a vertical column of bricks, the net effect of the extra brick will be
felt at all levels. The surface pressure underneath the bottom brick will register
one brick more while the top of the column will be one brick higher. Such a
situation is shown in Fig. 13.5. Figure 13.6 shows a vertical cross-section along
the east—west axis of a baroclinic structure. The thickness increases towards the
east giving rise to a southerly thermal wind in the northern hemisphere. We
see that the actual wind at the left hand or easterly side of the diagram is
northerly at the surface and southerly at 500 mb for the northern-hemisphere
case. The change in wind between the two levels is the thermal wind. The
structure of the atmosphere may therefore be divided into two components,
the barotropic and the baroclinic. Any pattern of isobars or contours on the
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Vo calm
2 500mb
1000 - 500mb
layer thickness
Vo calm
1000mb
Vrcalm

FiGure 13.5 Vertical cross-section of a thickness layer — no thermal wind.

barotropic component, which is always exhibited by the surface m.s.l. pressure
chart, is solely due to the horizontal distribution of mass. On the other hand,
any pattern exhibited by the thickness pattern is solely due to the horizontal
distribution of the mean temperature of that thickness layer. In any real case the
patterns shown by the upper level contours are a combination of the two kinds
of structure, barotropic and baroclinic. A considerable barotropic component
occurs sometimes in large blocking anticyclones, such as the subtropical
anticyclones, and in the tropics. However, the energy is provided by the
baroclinic component. In a true barotropic atmosphere the circulation would
spin down in a matter of weeks, that is the e-folding time, or the time needed for
the wind circulation to decrease to 1/e of its original value. This decay in
circulation would be caused by surface friction, a subject which we will introduce
in the next chapter.

The construction of an upper level contour chart for some period in the future,
say 12, 24 or 36 hours, must depend on the combined behaviour of the two
structural components of the atmosphere, the barotropic and the baroclinic.

500mb
5™ _—""]
Ve = soW
> 1000 - 500 mb
layer thickness
Vo =north 15m/ 1000mb

Vr =south 30 m/s

FIGURE 13.6 Vertical cross-section of a thickness layer — strong southerly thermal
wind (northern hemisphere case).
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Long-wave theory, as derived in the last chapter, may assist in predicting the
behaviour of the upper long-wave pattern exhibited by the upper air contours.
However, another factor now emerges. It is obvious that the thickness pattern
must change with time in a moving atmosphere. The thickness column at a given
place is dependent on the mean temperature of the layer. But the whole air
column above a fixed point is constantly changing as the wind at different levels is
blowing at different speeds and in different directions. The mean temperature or
thickness of the air column above must also change as different parts of the
column are replaced by air of different temperature. Thus the thickness pattern
itself must change and this will change the baroclinic component and, in turn,
the actual flow pattern as shown by the contour fields at different levels. The
thickness lines must be blown along, or advected, by the wind field caused by
the barotropic part of the structure. In other words, the surface wind field
advects the thickness pattern. This effect is shown in the solenoidal cell shown in
Fig. 13.4.
Advection is well expressed by a simple dot product vector

V.VT
where T is the mean temperature or the value of a given isopleth of thickness. We

have met with advection early in this work. For example, the acceleration terms
in the equations of motion contain advective terms. Thus,

du Ou

d—t—51;+V-Vu (13.10)
and

dv Ov

d—t—g-l-V'VU (1311)

We mentioned in Chapter 11 that vorticity may be advected. Various other
quantities may be advected, like heat, water vapour, pollutants, trace gases, etc.
Note that a dot product in a vector expression gives a scalar quantity for the
product. The dot product also indicates that the magnitude of the advection is
the product of the wind and the gradient of the quantity being advected times the
cosine of the angle between the directions of the wind vector and the gradient
concerned. If the wind is perpendicular to the thickness lines then the advection is
Vo|VT|. We may therefore formulate the rule that the thickness pattern is
advected by the component of the surface wind normal to the thickness line. As
we have seen this is the barotropic component of the wind.

An example of northern-hemisphere cold-air advection can be seen in Fig.
13.3. Since the 1000 mb surface is 120 metres above m.s.l. in the eastern (left hand
edge of the diagram) and 120 metres below m.s.l. on the western (right hand
edge) and the diagram relates to the northern hemisphere, the surface geo-
strophic wind is northerly and the cold air shown by the smaller thickness values
is being advected, or blown southwards.

Thus we do have a means by which we can predict the future shape of the
thickness pattern. We simply advect the pattern with the wind at every point.
There are, of course, other factors to be borne in mind in advecting thickness
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patterns. If cold air is advected over a warm sea surface the advection will be less
than the formula indicates. Conversely, if cold air is advected over a colder sea
surface the thickness lines will tend to move faster than the formula indicates.
Similar considerations apply to the advection of warm air over cold and warm
surfaces.

i

Itis pertinent at this stage to comment on the relative merits of the historical and
conventional method of drawing isobars and the newer method of trans-
forming the pressure chart to one of the height of the 1000 mb surface. First,
surface observations must be made by barometers. M.s.l. pressure readings
are therefore available for plotting on a map. Everyone is familiar with weather
maps containing isobars. They are published daily in newspapers and are seen on
television. Since the number of weather stations reporting conventional surface
measurements is far greater than the number of upper air radiosonde reporting
stations, it has been found more convenient to retain weather maps of the
pressure field. Also, a great deal of historical data obtained from ships’ logs over
the oceans, as well as from land stations, is being compiled in the investigation of
climate change. It would be pointless to convert such a vast amount of data from
their original form.

R

v Ou

= _ZZ 13.12
and the geostrophic wind by

—g 0z
SRR Sded 13.13
Ug f 8y ( )

_80z

Vg =7 ox (13.14)

Substituting the geostrophic velocities into the expression for vorticity and
neglecting the Meridinal component of the Coriolis parameter (i.e. assuming f
to be constant), we have

gz &=z g 5
=822 22 =8 13.15
where the height notation z has been replaced by A, the height of a grid
point on an isobaric surface on a contour chart. Thus, vorticity on an
isobaric surface is simply a constant times the Laplacian of the height



THE VELOCITY POTENTIAL /6]

field. Equation (13.7) can be conveniently transformed into a finite-difference
formula.

Consider a grid composed of arms of equal length such as shown in Fig. 13.7.
Then,
(hy — h3)

g
Uy = — 7%
gzbf (13.16)
Vg =W(h2 = hy)

where b is the length of the arms; this represents the mean geostrophic wind field
covering the grid. Substituting finite differences of velocity as obtained from
(13.7) there follows

¢= b—§7[<h2 — hs) = (hs — ha) + (hy — hs) — (hs — h3)]
f (13.17)
<=W(hl +h2+h3 +h4—4h5)

This represents the geostrophic vorticity field within the grid about the point 4.

The formula (13.17) is a convenient one for calculating vorticity numerically
from a contour chart. It is merely necessary to add the heights at the four arms of
the grid and subtract four times the value at the centre, and multiply by the
correct factor. A scale on the lines of Fig. 13.7 may be constructed so that height
values may be interpolated from the contour chart.

In Section 10.7 we expressed the wind in terms of a stream function. It is easily
seen that the divergence of the stream function component of the wind is zero. If

hy

hy

FIGURE 13.7 Height grid for use with contour chart.
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the wind field is constructed on a weather map in terms of its stream function,
such a wind pattern must be non-divergent. Thus a stream function pattern
shows the non-divergent component of the wind.

We may also form an expression which describes the divergent component of
the wind. Thus

(13.18)

where ¥ is defined as a velocity potential. It is readily seen that the Laplacian of
the velocity potential is the divergence. Thus centres of low velocity potential are
areas of strong divergence and centres of high velocity potential are areas of
strong convergence. This can be visualized if one regards the wind as blowing up
and perpendicular to the gradient of the velocity potential isopleths with a speed
that is proportional to the gradient. Isopleths of the velocity potential are often
constructed for upper levels on synoptic charts in order to delineate regions of
divergence and convergence. In Sir Horace Lamb’s classical hydrodynamics
treatise the signs on the right hand side of (13.10) are negative so that the wind
blows down the gradient. This reverses the sign of the divergence/convergence at
the high and low centres of the velocity potential pattern. Since divergence is
positive and convergence is negative the latter representation might seem more
consistent from a meteorological point of view.

1. If the pressure gradient acceleration is 0.001 what is the pressure gradient
inmb (hPa) per 5° of altitude? What is the contour gradient in metres per 5°
of altitude?

2. If an upper level jet at 250mb is 200 knots and contours are spaced 60 m
apart what is the distance between two contours in km?



FRICTION IN THE BOUNDARY
LAYER OF THE ATMOSPHERE

In all the equations we have derived so far we have assumed that the atmosphere
was frictionless. This is a reasonably valid assumption to make through much of
the atmosphere. However, in the planetary boundary layer, which may extend to
only 30 m above the ground in very stable conditions, and to as much as 3km
above the ground in turbulent or convective conditions, the motion of the air is
obstructed by surface friction. This may be due to the roughness of the land
surface due to vegetation, trees, small hills or mountains. The rigorous way of
treating friction in the planetary boundary layer is by means of turbulence
theory. This is a highly complex subject and we shall only touch on its simplest
aspects in this work. We shall first, however, consider friction in a simpler way.

Guldberg—Mohn (1876) assumed that surface friction could be parameterized by
letting the frictional deceleration of the air be proportional to the wind velocity.
This is true to a first approximation, although it is not based on a rigid physical
theory. However, the treatment of friction in this way does allow the equations of
motion to be treated in a relatively simple manner.

Thus we may write equations (7.4) as

du o 10p_

dt - pOx

d 1o (14.1)
v __lop

dt+fu_ 3y kv

where k is a constant of proportionality. This constant has been experimentally
found to vary from about 1.0 x 107> s™! over a fairly calm sea to about 10 times
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asmuch over a land surface covered by grass or similar vegetation. The frictional
force acts to reinforce the pressure gradient. It slows down the wind velocity so
that it is no longer in balance with the pressure field. The result is that the wind
flows across the isobars from high to low pressure.

Let us suppose that the flow is balanced for a system of straight isobars
orientated from east to west along the x axis. In this case du/dr and dv/ds in
equations (14.1) are equal to zero, since there is no acceleration. We have
instead

ku
v=—

/

e (o)
S \ey) f

and the two components u, v may be written

flug

21

R (14.2)
__ Kfug
NG
V=V +* (14.3)

U e + kz)
where V is the total wind velocity. If € is the angle between the total wind

direction and the isobars, then tan 6 = v/u = k/f.
Figure 14.1 illustrates the balance of forces for the case discussed.

_Lep
pdy
LOW HIGH
Pa
]
Po =~ 79 - </ 550
]
KV YNy 14
P1 HIGH Low
_1op
Py
(a) Northern hemisphere (b) Southern hemisphere

Figurk 14.1 Inclination of the wind across the isobars as a result of friction.
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Although the Guldberg—Mohn parameterization of friction is extremely con-
venient in some models, particularly in Lagrangian representations of motion, it
does not embody the rigid mathematical physics of an exact explanation of the
effect of friction. To do this we must venture into the field of turbulence, and
consider that friction is due to the effects of eddy viscosity.

Let us consider a layer of air. Its lower boundary is the surface and its upper
boundary is some higher level where the effects of surface friction are less evident
(see Fig. 14.2(a)).

At the upper level the wind has a velocity u(z) and at the lower boundary
the velocity is zero, while the distance separating the two levels is /. Then the
tangential shearing stress exerted by one infinitesimal layer on its adjacent layer
may be defined as

Ou
o= po (144)

where p is a viscosity coefficient which is assumed to be constant. The stress is
tangential to the x axis. The schematic concept illustrated in Fig. 14.2 is said to

@
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FiGuRE 14.2 The shearing stress force.
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have been predicted by Newton to describe molecular processes. The usual
example shown in textbooks is to show a shear of the fluid between an upper
and a lower bounding plate, but the process may be transformed so that it
represents eddy viscosity in the atmosphere. y then becomes a coefficient of
eddy viscosity. The subscript in (14.4) indicates that the shearing stress is in
the x direction and due to the vertical wind shear. Physically, it represents an
eddy transfer of momentum through the interface of two adjacent layers.
Now if there is a variation of stress between two infinitesimal layers there will
be a divergence of shearing stress and a force per unit mass or acceleration will be
exerted by a layer on its neighbouring layer. These forces may be regarded as the
transfer of momentum from faster moving air at higher levels to slower moving
air at lower levels, and vice versa. This interchange of momentum between
levels may then be interpreted as a frictional retardation of the flow which
would otherwise occur if there were no reduction of velocity by the lower
boundary.

We may now derive a term which expresses the acceleration (or retardation)
of the flow due to the variation with height of the shearing stress.

Consider the rectangular box in Fig. 14.2(b). The drag exerted in the x
direction on the lower face dxdy is 7. dxdy; the drag on the upper face is

or.

(7} + -87‘ dz) dxdy

Then the difference between these two forces is the shearing stress force acting on
the volume element
or. 1 07,

g dv = P for unit mass  (14.5)

(Tx + O dz) dxdy — rdxdy =
0z

Similarly one can express the shearing stress force along the y axis. It is
1 07,
p Oz
If equations (14.4) and (14.5) are combined, it follows that
101, n u 101, p v
p 0z p 92* p 0z p 8

The expressions in (14.6) may now be included in the equations of motion:

(14.6)

du —10p 107,
TR AP S
(14.7)
d_v+fu—__16_p+1%
dt T p Oy p Oz

We may visualize the physical meaning of the final terms from a meteoro-
logical point of view. When the wind is blowing over a solid land surface (or
liquid ocean surface) the stress will be greatest at that boundary and will decrease
until it becomes a minimum at some upper level, normally the level at which the
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wind is assumed to be geostrophic. The stress therefore decreases with height.
That means the shear of the wind decreases with height. Thus the terms
contained in (14.6) are negative and the air flow is retarded. We are especially
interested in a balanced state in which the flow is steady and does not possess any
acceleration. Under such conditions equations (14.7) reduce to

2
K%—Z—i—fv’:O

§ (14.8)
Kggﬁmew

In (14.8) «’, v’ are the geostrophic departures and K = y/p, the eddy coefficient
of viscosity, which is assumed to be constant with height. Equations (14.8) are
usually applied to what is called the Ekman or spiral layer within the planetary
boundary layer. The lower boundary of the Ekman layer is normally assumed
to be about 10 metres above the actual surface. The layer between the surface
and 10 metres is governed by a different process. This layer is called the
surface layer.

The viscosity force in equations (14.7) may be expressed in the form 9(7/p)/0z.
In dealing with the surface layer we define a new and very important parameter
called the friction velocity. It is denoted u*, where

e
w=,/- 14.9
p (14.9)
If a parcel of air is displaced vertically it is assumed that u’ = kz(0ii/9z) where u’
is a perturbed velocity from #, the mean flow, and kz = /, some typical mixing
length of eddy. Then, if we consider the motion along the x axis we may express
the eddy shearing stress, as before,
0
Blar”
and
2o
0z
Equation (14.10) is derived from what is called mixing length theory. This
concept is discussed at length in more advanced textbooks. We note that y is no
longer constant as it was assumed when we initially defined stress for the case of
uniform motion without eddies. It is now the eddy exchange coefficient

—\2
T_p2p(%
p_kz(&>

2
Tz = kaZZ (gg)

u=pk’z (14.10)

(14.11)
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From (14.11), the definition of the friction velocity is

* =k
u z
Integrating,

_u' logz
- k Zy

where z; is a roughness coefficient dependent on the roughness of the surface to
fit the condition that ¥ = 0 at z = z,. k is called Von Karman’s constant and is
equal to about 0.4. Thus, equation (14.12) describes the velocity profile in the
surface layer between the surface and about 10 metres height. Above the surface
layer we enter the Ekman or spiral layer which is governed by equations (14.8).

(14.12)

We will now derive the equations which express the wind components as a
function of height above some reference level as a function of the height. To do
this we must solve equations (14.8). To simplify the problem we will orientate the
isobars along the x axis as we have done previously in Chapter 10. Equations
(14.8) then becomes

K%+ﬁ} =0
azz (14.13)
v P
Kaz2 fu' =0

We may solve (14.13) for the appropriate boundary conditions in two
ways. The first is to obtain the constants of integration by orthodox algebraic
manipulation. The second is to introduce the concept of complex numbers,
which involve the square root of —1, which we call i. We will here use the more
conventional method, and leave the second, more sophisticated method to be
worked out under some of the worked examples of this chapter. In both cases we
have to rely on standard-type solutions. We used this method in solving a set of
second-order differential equations in Chapter 10. In that case equations (10.3)
were total differential equations whereas we have now have a set of differential
equations written in their partial form. However, since we are only interested in
the variation in the vertical (the arbitrary constants are only functions of the
reference horizontal plane), we may solve them as if they were ordinary
differential equations.

A standard-type solution of equations (14.13) is given by u’ = 4. We will
write a standard solution of (14.13) in the form

u = Auge™“sin(az — b)
v = Buge * cos(az — b)

where ' = u — u,. Now friction slows the motion down so that «’ will be
negative, but « will be positive if the isobars are orientated along the x axis. v will
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blow across the isobars from high to low pressure and will be positive, since

pressure decreases along the y axis. We have to evaluate the constants 4, B, a, b.

To do this we differentiate the standard solutions partially twice with respect to z.
Then

%S = —Aauy e~ “[sin(az — b) — cos(az — b)]
% = —2Aa2ug e *cos(az — b)

Z

and

Ov —az .

%= —Bau, ¢ “[cos(az — b) + sin(az — b)]
%2; = —2Ba2ug e %sin{az — b)

4

Substituting the second partial derivatives above in (14.13) for the boundary
conditions uy = 0, vy = 0, zy = 0 we obtain

2KAd* = fB
and
2KBa* = fA

We see that 4> = B> or A = +B.

We now return to the standard solution and substitute the boundary
conditions. We obtain 4sinb = 1 and Bugcosb = 0.

The equations (14.13) are therefore satisfied if 4 = 1, B=1, and b = «/2.

Since sin (¢ — 7/2) = —cos ¢ and cos (¢ — 7/2) =sin¢ our Ekman spiral
equations are

—az

u=ug(l — e * cosaz)

. (14.14)
v=uze “sinaz

We may interpret (14.14) in the sense that as the elevation above the surface
increases indefinitely # — u, and v — 0. The gradient wind level, that is the level
at which the wind becomes quasi-geostrophic, is about 500 metres or so above
the surface. Figure 14.3 shows a plot of the spiral. It is seen that the wind along
the isobars actually becomes supergeostrophic at higher levels. It is only when z
becomes very large that # becomes exactly geostrophic.

Equations (14.14) have been derived under the premise that the spiral layer
extends down to the surface. This is not truly so. We have previously discussed
the structure of the surface layer which may be said to describe the first 10 metres
of the atmosphere above the earth’s surface. The latter structure offers a much
closer approximation to the truth for the surface layer. We may therefore model
a more accurate representation of the spiral layer if we place its lower boundary
at the top of the surface layer, about 10 metres above the surface. Standard
anemometers are positioned at about this height. If we make this condition we
need a new lower boundary condition. Such a condition may be satisfied if we
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FiGure 14.3 Ekman spiral for the case where the surface level is assumed to be at
anemometer level. The angle of inclination of the wind across the isobars at surface
level is 15°.

make the assumption that the wind at the new z = 0 level (actually 10 metres
above the surface) is proportional to the shear. Then,

IO
“= 820 Y=< Bzo

where c is a constant of proportionality. At the boundary

<@) =%_ Aauy(sin b + cos b)
0

0z c
i =2 _ Bau (sinb — cos b) (14.15)
dz)y ¢ &

tanon = 20 — Bsinb —cosb
07 4 Asinb+cosb

Evaluating the constants by substitution of the lower boundary values into
(14.14) and (14.15) above

uy = ug + Augsinb = cAauy(sinb + cos b)
vy = Buycosb = cBauy(sinb — cos b)
Then from the second relation, that is for v

tanb = 19 (14.16)
ac

and from the first relation, that is for u,
1

V1 + 2ac + 2a%c?
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Worked Example
Show that
|
A=
1+ 2ac + 2a*c?
Solution:
We have alreadly found that
tanb = ——(1 + ac)
ac

From the boundary conditions
1 — Asinb = cAa(sinb + cos b)

1
" sinb+acsinb + accosb

Then from right-angled triangle relationships
1+ac

V1 + 2ac + 2422

ac

V1 + 2ac + 242

sinh =

cosh =

Therefore
' 1
T (1 4 2ac + 24%?)

We already know from the derivation of the classical Ekman spiral that 4 = B.
Then

an o — sinb — cos b
" sinb+cosb
_tanb—l_ 1

“tanb+1 14 2ac

where « is the angle between the wind and the isobars at the lower boundary
level, that is at anemometer height level.

We know that a* = f/2k since A = B. Thus, if f =0, a =0, and o = 45°.
Thus at the equator the wind would blow across the isobars at an angle of 45°,
Also it can be shown that 42 = 2sin? o

We know from (14.15) that

tanb — 1 s
tana—m—tan(b——)

where« = b — w/4orb = o + /4. Then, having evaluated 4 and b, we can write

U=, [1 - \/Esinae_“’cos(az —aot g)] (14.17)

V= U, e “v/2sinasin (az —a+ %)
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Ficure 14.4 Modified Ekman spiral.

Figure 14.4 shows a plot of equations (14.17) which is sometimes referred to as
the modified Ekman spiral in contrast to the simpler classical spiral depicted in
Fig. 14.3. It can readily be seen that the two versions become identical when
a = /4. A useful application of the Ekman spiral is the calculation of the
vertical velocity within a pattern of surface isobars which possess cyclonic
vorticity. Such cyclonic vorticity may be cyclonic shear in an east-to-west
isobar (high-pressure to the south in the northern hemisphere and low-pressure
to the south in the southern hemisphere).

Worked Example
The synoptic chart on a given day shows a pattern of east—west-orientated

isobars with the geostrophic wind decreasing with latitude in the direction
of low-pressure. Show that the vertical velocity at the top of the frictional
layer is proportional to the geostrophic vorticity. Use the classical Ekman

spiral.

Solution:
8ug
G = By
Ou + ov_ ow
ox ' 9y 0Oz
Ou
= _ 14.
52 ="0 (14.18)
Ow Oy
0z Oy
Aw= [T g [Ty
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From the Ekman solution, assuming w = 0 at the surface,

W= / ” Cg(e ™ sinaz) dz
0 (14.19)
w2
2a
Worked Example

If ¢, = 107°s7,, £ =107*s7! and k = 10m? s—l, what is the numerical value of
the vertical velocity?

Solution:
a=1]L
2k (14.20)
W= Gk _ 0.22cms™!
v2f
Worked Example

Show that the ratio of the speeds of the surface wind to the geostrophic wind is
vp/Vy = COS v — sin o using equations (14.17) for the lower boundary.

Solution:
u0=ug[1 —\/Esinacos(%—a)] (14.21)
v = ug\/zsinacos G - a) (14.22)
Then
% _‘;,U% =1- 2\/§sinacos(3 — a) + 2sin? acosz(z - a)
u 4 4

g

+ 2sin® acos® G - a) (14.23)
2
E)% =1- 2\/5.sinozcos(E - a) + 2sin’a
v3 4

=1- 2\/§sina<£cosa +£sina> + 2sin’a

2 2
=1~-2sinacosa — 2sin’ a + 2sin’ o (14.24)
or
o2
—(23 =1-2sinacosa = sin*a + cos’a — 2 sin a cos o
v,
i
and thus

2~ cosa~sina (14.25)
Ve
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The Ekman spiral may also be found by resorting to complex numbers. To do

this we multiply the v component of the wind by i, the square root of —1. Then
from (14.13)

ko? i
(u+iv) n

57 So—if(u—ug)=0 (14.26)
kﬁ(g—;ﬂ— if (u+ v) + ifitg = 0 (14.27)

The general solution is

o172 1/2
u+iv=Aexpl<%> z exp(—%)

+B + Uy
& (u + iv) if i\1/2 if i\1/2 (14.28)
T:Alrzexp<_?> +B ?exp(—?> :|
Now
- 1+
%:% a= Qf; (14.29)

It is obvious that 4 = 0 since the velocity cannot increase indefinitely with
height. Inserting the boundary conditions for the classical case, uy = 0, v, = 0 at
z=0,

U+ iv = —uy[e” 7 4y ]
= uy(1 — e747%) (14.30)
but
e = cosaz —isinaz
$0
u+iv = u,[l —e “(cosaz —isinaz)] (14.31)

Matching the real and imaginary parts

u=u,(l—e “cosaz
el ) (14.32)

v=u,e “sinaz

as before.

1. A wide river flows 1000km along the equator to the sea. At 1000 km
from the sea its elevation above m.s.l. is 1000 m. The slope is constant and
the downstream velocity is 1ms™'. Assuming the frictional retardation of
the flow is proportional to the velocity, what is the numerical value of