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FOREWORD

In the first edition of this text Sir Graham Sutton, then Director General of the 
UK Meteorological Office and formerly Bashforth Professor of Mathematical 
Physics at the Royal Military College of Science, wrote in his foreword:

A course of study in science may take one of two shapes. It may spread 
horizontally rather than vertically, with greater attention to the security of the 
foundations than to the level attained, or it may be deliberately designed to 
reach the heights by the quickest route possible. The tradition of scientific 
education in this country has been in favour of the former method, and 
despite the need to produce technologists quickly, I am convinced that the 
traditional policy is still the sounder. Experience shows that the student who 
has received a thorough unhurried training in the fundamentals reaches the 
stage of productive or original work very little, if at all, behind the person who 
has been persuaded to specialize at a much earlier stage, and in later life there 
is little doubt who is the better educated.

Although I have always agreed with these comments I did not at the time fully 
appreciate the real importance of their meaning.

Some 20 years later I read the cult novel Zen and the Art of Motor-Cycle 
Maintenance by Robert Pirsig. This novel strongly influenced my thinking. In 
the preambles to my PhD thesis I included the following extract:

the only real learning results from hang-ups, where instead of expanding the 
branches you already know, you have to stop and drift laterally for a while 
until you come across something that allows you to expand the roots of what 
you already know.

Yet, I did not in any way relate, or connect, the latter quote with the ideas 
expressed so concisely by Sir Graham Sutton in the 1962 edition. In fact it was 
not until I reread the Foreword in the course of reconstructing the present text 
that I realized that Sir Graham was really talking about an aspect of ‘lateral 
thinking’, a concept often discussed in educational and research circles today.

The authors hope, and believe, that the tradition pioneered by Sir Graham 
has been carried on in this newly constructed text, comprising three fundamental 
courses in meteorology which have been taught to undergraduate students by the 
authors in dynamic, synoptic and radiation meteorology. The authors are all



xiv FOREWORD

internationally known in their individual fields. Not only is this author 
diversity unusual in a book of this level, but diversity in content emphasizes 
the importance of the contrast in motions between the southern and northern 
hemispheres as determined by the differing sign of the angular velocity of 
rotation of the planet relative to the observer.

I hope that this text will serve its purpose well.

Adrian Gordon
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1

INTRODUCTION: 
UNITS AND DIMENSIONS

iA  H is to r ic a l perspective o f  m e te o ro lo g y

During the first part of the present century the term meteorology really meant the 
study of all aspects of the atmosphere. But it tended to emphasize the weather in 
all its variety of manifestations: the simple and the extreme, the sunny days we all 
enjoy, the more extreme conditions we bear and suffer and swear at. The study 
was particularly concerned with weather maps, or synoptic charts as they are 
referred to by those who prepare and analyse them, and to forecasting the 
weather using the weather map as a practical tool. The classic text in the early 
days of the century was Sir Napier Shaw’s four-volume masterpiece Manual o f  
Meteorology, followed in the 1930s by Sir David Brunt’s Physical and Dynamic 
Meteorology. Even in those comparatively early days the role of mathematics 
was indispensable. Yet, it often seemed most difficult to follow the equations. 
Meteorology was only taught at a few universities -  Imperial College in London, 
MIT (Massachusetts Institute of Technology) in the USA in the English- 
speaking world, but it was also advancing rapidly in Scandinavia and other 
European countries. It was mainly taught as a postgraduate specialist course 
leading to Master and PhD degrees.

In the middle 1930s, in a time of recession and depression, meteorology 
received a big boost. This was due to the demands of the rapidly expanding 
airline industry, particularly in the USA. Jobs were offered to qualified 
meteorologists to prepare flight weather forecasts for airline operations. A few 
years later the outbreak of World War II intensified the demand for weather 
forecasters. Training courses were established and filled by those who only had a 
rudimentary background of mathematics and physical science. During the latter 
half of this century the term meteorology tended to be displaced by the more 
erudite term ‘atmospheric physics’ or ‘atmospheric science’. This transformation 
was in part due to a certain elitism that meteorology was too much concerned 
with weather maps and weather forecasting which, before the days of numerical



2 INTRODUCTION

prediction models, were thought by mathematicians and physicists to be a kind 
of technical trade beneath their professional abilities. But in this work we will not 
show disrespect to the original term, which is still useful when we wish to 
subdivide the subject into more specialized fields of interest.

Thus a main field of interest here is called dynamic meteorology. The 
word dynamic is used a great deal when it is desired to convey that 
something has energy and movement. It is defined in the dictionary as 
motive force. Thus, dynamic meteorology applies our knowledge of mathe­
matics and of physical processes to explain and describe the motions and 
energy transformations which occur in the atmosphere to produce our 
weather, and eventually, our climate. In turn it is convenient to subdivide 
dynamic meteorology into headings which concern the thermodynamics and 
the dynamics of the atmosphere. The former concerns the effect of the 
influence of heat in its various forms on the vertical and horizontal structure 
of the atmosphere while the latter concerns and describes the resulting 
motions.

But we will also touch on synoptic meteorology. This heading covers the 
scientific techniques used in forecasting the weather by means of the analysis 
of synoptic charts of the surface and upper level patterns of barometric 
pressure, temperature and humidity. A further subdivision is that of physical 
meteorology which deals among other things with the heat budget, balancing 
the short-wave radiation directly received from the sun with the long-wave 
radiation emitted and received by the earth’s surface, by clouds and by the 
atmosphere itself. This balance determines the mean temperature of our 
planet.

Further branches of meteorology include mesometeorology, which covers the 
study of meteorological processes and motions on a scale of the size of local 
topographical or surface features or of thunderstorm or squall line size, and 
micrometeorology, which covers processes and motions on the scale of a few 
metres or even centimetres above the land or sea surface.

Finally, the heading which has a long classical history, but which has 
recently undergone a rebirth to become the most important of all subhead­
ings, because it includes all, is climate. From its origins of presenting maps of 
mean temperature and other observations for different parts of the world it 
now embodies all of the physics and mathematics of the other branches in the 
large numerical climate models which not only reproduce the actual climate 
of the planet, but attempt to predict future climates within the broad concept 
of ‘climate change’.

Once again, meteorology has a promising future. Now it is in the forefront 
of discussion because it concerns the environment. The weather is part of our 
environment. Climate change is in the minds of everyone because it directly 
affects everyone. Hence the need for the scientific issues to be properly 
understood. These issues all stem from the basic mathematical and physical 
laws which govern our universe. These basic laws will be derived in an easy, 
step-by-step manner and presented in the form of simplified mathematical 
equations.
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1.2 D im en sio n s  j

In science generally, and in mathematics and physics particularly, it is most 
important at all stages to keep track of the dimensions of the quantities being 
manipulated. There are important practical reasons for doing this apart from 
theoretical rigidity. For example, the reader may be finding the answer to a 
problem which involves the derivation of a complicated set of equations. After 
pages of work the state of the equations may seem to be leading to an impossible 
solution. Rather than go back to the beginning and repeat all the operations a 
simple check may be made of the dimensional value of each individual term and 
expression on both sides of the equal sign in the equation. If any one term has a 
dimension which differs from the remaining terms there is an error somewhere in 
that term. The error can then be found more easily by tracking the earlier 
development of that particular term.

In meteorology there are four dimensions of which the first three are 
fundamental. These are usually denoted as

M mass 
L length 
T time

A fourth dimension appears in some physical quantities. It is denoted as
K temperature

The use of the capital letter K arises from the fundamental unit of tempera­
ture, the kelvin. The kelvin scale of temperature starts at 0 K or absolute zero, at 
which value there would in theory be a total absence of any heat energy in the 
domain in which the temperature is being assessed.

All physical entities must have a dimension associated with them. Some 
quantities, such as the ratio between two quantities having the same 
dimensions, are non-dimensional or dimensionless. These are just pure 
numbers.

Table 1.1 lists some of the more common quantities which occur in traditional 
physics and therefore in meteorology, which is a branch of physics. The first 
column gives the quantity, the second column lists the dimensions of the quantity 
and the third column the method of expressing the numerical value of the 
quantity, which we will discuss in the following section.

In order to understand the dimensions of the various quantities listed it is 
necessary to appreciate the simple physical relationships such as

Force =  mass x acceleration F — Ma
Pressure =  force per unit area P = FA~l
Work =  force x distance W = FL
Work =  energy =  heat W  =  E  =  H
Power =  work -f- time P = W T~l

and other basic statements learned in elementary school physics.
We will now discuss the entries in the third column of Table 1.1.
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T a ble  I . I Dimensions and units of quantities used in meteorology

Quantity Dimension Units (SI)

Area m2
Volume m3
Density M/L3 kgrrT3

Specific volume L/M3 m3 kg”1

Velocity L/T m s-i
Acceleration L/T2 ms- 2

Force ML/T2 N
Pressure M/LT2 Pa
Work ml2/ t2
Energy M l2/ ! 2

Angular velocity I/T rad s~!
Momentum ML/T kgms~!
Divergence l/T s~'
Vorticity l/T
Power ml2/t3 is-'
Frequency l/T cycles s~1

Wavelength m
Lapse rate K/L Km-t
Specific heat l 2/kt2

Latent heat l 2/ t2

In the past units have been defined in the c.g.s. or centimetre, gram, second 
system. In this system the unit of force is the dyne, the force required to give a 
mass of 1 gram an acceleration of 1 cm s_1 s-1. The most commonly used unit of 
pressure in this system is the millibar (mb) which is 1000 dynes cm-2. The unit of 
work is the erg. In recent years the c.g.s. system has been replaced by the m.k.s. or 
SI system (International System), in which the unit of force is the newton (N), the 
force required to give a mass of 1 kg an acceleration of 1 m s_1 s_1. The unit of 
pressure is the pascal (Pa) which is 1 N m-2. The unit of work is the joule. We will, 
however, retain the unit of millibar in our discussions of synoptic charts and 
upper air diagrams as this unit tends to be used more widely than kilopascals 
or hectopascals (hPa). One hPa is numerically equivalent to 1 millibar so 
nothing is lost by retaining the name of millibar. One watt is 1 J s_1. We are 
accustomed to think of a watt as a unit of electrical energy. Electric light 
bulbs are labelled in watts, which measures their brightness, and is a guide to 
the amount of electricity they use and so to the amount on the electricity bill 
we have to pay. In meteorology and particularly in climate change sensitivity 
studies we will find that the energy received from the sun is also measured in

Education 
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watts. This is an example of how different branches of science interrelate with 
one another.

It is essential that all numerical quantities be labelled with their correct units. 
An answer to a worked problem is not right unless it is expressed in the proper 
units of measurement. The third column in Table 1.1 shows the manner in which 
numbers should be identified by their units. If the units are correct so are the 
dimensions.

The c.g.s. or, preferably, SI units must be used for all mathematical relation­
ships. Occasionally, for practical observational purposes, it may be more 
convenient to use non-standard units such as knots for wind speed and degrees 
Celsius for temperature. Degrees Fahrenheit and inches of rain are still widely 
quoted in some countries.

Worked Example
You vaguely remember that the pressure (p in Pa) of unit mass (1 kg) of a perfect 
gas depends upon its specific gas constant (R in J kg-1 K -1), density (p in kg m-3) 
and absolute temperature (T  in K), but you have forgotten the exact form of the 
perfect gas equation and now wish to reconstruct it!

Solution:
If [ ] denotes the dimensions of a quantity, then we have that

\p] =  [force per unit area] — MLT_2L~2 = ML-1T-2 
[R] = M L 2r 2M_1K_1 = L 2r 2K-1 
[p] = M L -3 and [T] = K

Now suppose that the perfect gas equation has the form p =  R qprTs, where 
q, r and s are to be found. Since the dimensions of each side of a physical equation 
must be identical, it follows that

[P\ = m r[7T
and hence that

ML-1T-2 = M r\ } q~irT~lq¥J~q

Equating the indices of M yields r — 1,
of L yields 2q — 3r =  -1 , from which q =  1,
of T yields —2q = —2, from which q =  1 (as above),
of K yields s — q — 0, from which s =  1.

It therefore follows that the perfect gas equation must have the form 
p =  pRT.

Note that this is not a physical proof of the perfect gas equation, for the latter 
must be derived from Boyle’s and Charles’ laws.

____________________________1A  P ro  b lem s ____

1. What are the dimensions and units (SI) of

(a) wind speed
(b) the velocity of light
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(c) the rotation of the earth on its axis
(d) a kilowatt hour of electricity
(e) the logarithm of the absolute temperature (K)
(f) a number
(g) salinity in the ocean
(h) the concentration of carbon dioxide in the atmosphere
(i) space
(j) the density of a ‘black hole’?

Note: In some of the above it may be convenient to express the answer also in 
units of larger scale.

2. In micrometeorology (and aerodynamics), it is assumed that the friction 
velocity w* depends upon the stress r  (in N m-2) and the density p (in kg m~3) 
in the fluid. Use variable dimensions to find a suitable relationship between 
w*, t and p. [Hint: Suppose that u* = r rps.]

3. Show that

(a) 1 joule is equivalent to 10 million (107) ergs
(b) 1 newton is equivalent to 105 dynes
(c) 1 pascal is equivalent to 10 dynes cm-2
(d) 100 pascals (1 hPa) == 1 millibar.

If you can easily master the transformations in problem 3 we may proceed to the 
next chapter.



THE THERMODYNAMICS OF 
DRY CLEAN AIR

The atmosphere is composed of a mixture of gases which in more popular 
language is called air. It is made up of the entire body of gaseous substances 
which cover our planet earth. The lower boundary is marked by land or liquid 
water substances, the continents, oceans, lakes and rivers, and ice and snow 
surfaces. The upper boundary extends into the fringes of outer space, but at great 
heights the mass of the atmosphere is too small to be of consequence to our 
weather. The region where weather occurs is the lower part of the atmosphere 
distinguished by the important property that on a broad scale temperature 
decreases with height. This region is called the troposphere and it is the region 
which mainly concerns the meteorologist. Above the troposphere is the strato­
sphere which possesses the property that the temperature no longer decreases 
with height, but remains the same (isothermal) or increases a little with 
height. The discontinuity, or narrow zone, which divides the troposphere from 
the stratosphere is called the tropopause. Upper air ascents which record the 
temperature at different heights show a well-marked discontinuity at the 
tropopause.

In the troposphere the mixture of clean air consists of approximately 78% 
nitrogen and 21% oxygen by volume. The remaining 1% is made up of argon, 
carbon dioxide, and other gases. The concentration of carbon dioxide (C 02) has 
been increasing owing to human activities. When the first edition of this book 
was published in 1962 the concentration of C 0 2 was about 315 parts per million 
by volume. It is now about 355ppmv. C 0 2 in these quantities is not in itself a 
harmful gas, although an increase in concentration will probably eventually 
cause a global warming. The magnitude of any such warming is at present a 
question of some debate because of the compensating factors of clouds, and the 
effect of aerosols (small particles) and of volcanic eruptions. Much more research

i t  S t r u c t u r e  a n p  co m po sitio n  o f  t h e  atm o sph ere

30 
30 
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is needed to give a reliable answer to the question of predicting a reliable increase 
in mean temperature for the planet for the decades ahead of us.

However, we cannot be so easy on the release of other gases into the 
atmosphere through human activities. Sulphur dioxide (S02) reacts with water 
(H20) to form sulphuric acid (H2S 04), which falls out as acid rain. Carbon 
monoxide, exuded from automobile exhausts, is lethal in quantity. Nitrous 
oxide, methane, and the chlorofluorocarbons (CFCs) are other obnoxious gases 
which are poured into the atmosphere. What appears as pollution in the 
atmosphere is composed of particulate matter, small particles of soot (solid 
carbon), sulphur compounds and other chemicals. In the last century, and up to 
the middle of the present century, London was renowned for its ‘pea soup’ fogs, 
caused by the burning of coal. These fogs smelled acrid and were harmful to the 
human respiratory system. In December 1952 more than a thousand deaths were 
attributed to a prolonged spell of such fog during a quiet period of anticyclonic 
weather. In consequence laws were passed to prevent the burning of fuels which 
caused such disastrous effects on the atmosphere and London became free from 
the kind of fogs described in the opening page of Charles Dickens’ Bleak House.

However, the concentrations of effluent harmful gases are not large enough to 
affect the broad-scale thermodynamics or dynamics of the atmosphere. There is 
one other constituent of the atmosphere which must be mentioned at this stage, 
and that is water vapour. Water vapour is also a strong ‘greenhouse gas’. Its 
globally averaged concentration throughout the whole atmosphere is approxi­
mately 2.5 grams kg-1, that is about 0.25%, which is about one four-hundredth 
of the total mass of air. It can be seen from the previously stated concentration of 
C 0 2 that there is on average seven times more water vapour than C 0 2. In the 
surface layer in the tropics there is 45 times more water vapour than C 0 2. We will 
discuss water vapour in more detail in the next chapter. However, in deriving the 
thermodynamical equations we will consider clean dry air in the sense that it does 
not contain any water substance, solid or liquid particles, but is composed 
entirely of the elements mentioned above and listed in Table 2.1.

2.2 T h e  s o e n t h p i c  m e t h o d __________

The method in which scientific knowledge is gathered has two components. The 
first is observational. Observations of what happens in the natural world are

Table 2.1 Molecular weights and specific gas constants of components of dry air

Gas Mol. weight Gas constant Part by mass M kRk
Mk

Nitrogen 28,0f6 296.74 0.7552 224.10
Oxygen 32.000 259.80 0.2315 60.14
Argon 39.944 208.13 0.0128 2.66
Carbon dioxide 44.010 188.90 0.0005 0.09

Dry air ! .0000 286.99 = Rd
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made, collected, and put in some kind of methodical order. Most observations 
are made by some mechanical or electronic instrument or piece of equipment. 
They may be made from observing the behaviour of the natural world or they 
may be obtained from the results of artificially contrived experiments in 
laboratories. The second component is analysis of the collected observations 
and the search for a relation between individual observations within a space- 
time framework; that is, within the dimensions defined in the previous chapter. 
Such relationships may be called laws. Thus, it may be observed that objects 
falling within a vacuum under the influence of gravity fall with a constant 
acceleration which may be measured as g, about 9.8 m s“". From this result a law 
may be postulated and this law may be expressed by a number of relationships, 
that is by mathematical equations, such as

velocity =  acceleration x time or =  gt 

distance fallen =  5 =  \g t2

and so forth.
As we progress with our study of meteorology we shall find that there are a 

number of laws which have been established as a consequence of observation 
and/or controlled experiment. These laws, expressed as equations, govern all the 
complex processes which occur in the atmosphere. They determine the con­
tinuous evolution of the weather, from the hour-by-hour development and decay 
of cumulus clouds, to the changing patterns shown on daily weather maps and 
satellite cloud images, to the seasonal changes of summer and winter and the 
long-term evolution of the climate.

It is important that we understand the laws which are at work. This 
understanding can best be attained by following the derivation of the 
mathematical equations, or language, by which the laws are described. It is the 
opinion of the authors that this approach is more rewarding than accepting an 
equation on trust, just because it appears in print, or avoiding equations 
altogether and simply accepting descriptive expositions of the dynamics. The 
latter approach is not an acceptable alternative to a prospective career in 
atmospheric science.

2.3 T h e  e q u a t io n  o f  s t a t e  o f  a  p e r f e c t  g a s

According to kinetic theory, fluids consist of millions of molecules moving 
randomly and colliding often with one another and sometimes with the 
molecules of their boundary. In the denser fluids, which are known as liquids, 
the molecules take up a significant proportion of the space occupied by the 
fluid and they are sufficiently close together (on the average) for the forces 
between them to be easily called into play. At a certain critical distance, the 
intermolecular forces between two molecules are zero but, at greater or lesser 
distances, very large attractive or repulsive forces occur between the 
molecules. Thus, if any attempt is made to compress or decompress a 
liquid (i.e. to force the molecules closer or further apart, on the average),
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enormous intermolecular forces of repulsion or attraction tend to resist it and 
the liquid is said to be almost incompressible.

In the less dense fluids, which are known as gases or vapours, the molecules 
tend to be about 10 times further apart than in a liquid. They therefore take up 
very little of the space occupied by the fluid and they are so far from one another 
(on the average) that only very weak forces of attraction occur between 
molecules over most of their random motions. As,a consequence of this, gases 
and vapours are easily compressed. When a gas or vapour is so rarefied that the 
proportion of space occupied by the molecules and the attractive forces between 
the latter are negligible, we say that we are dealing with a perfect gas. Of 
course, no real gas can be exactly perfect but, under natural conditions, the 
mixture of gases which we refer to as air is sufficiently close to perfect for most 
meteorological purposes.

Since even the behaviour of something as idealized as a perfect gas can only be 
described by mathematics, we must now derive the equation of state for a perfect 
gas, which is the first of a series of fundamental equations with which we 
must become familiar. It involves three variables which we will call p , T , a. The 
notation T  now signifies absolute temperature in K, and must not be confused 
with the dimension of time, also denoted by T. p is pressure in Pa, and a  is the 
specific volume. Specific volume is volume per unit mass. The symbol for density 
is p. Thus,

The derivation of the equation of state for a perfect gas depends on combining 
the results of two experimental laws. In science ‘laws’ or relationships between 
variables must first depend on experimental observations. The first experimental 
law we use is called Boyle’s law. It states that if the temperature (in K) is held 
constant the volume is inversely proportional to the pressure. It merely says 
that if the temperature is held constant and a gas is compressed by increasing the 
pressure then the relation pa = constant is true for all stages of the process. 
The second experimental relation we use is Charles’ law, which states that if the 
pressure is held constant the specific volume is directly proportional to the 
temperature. This law merely says that if the pressure is held constant and a gas is 
heated, the gas will expand and the specific volume increase in proportion to the 
increase in T.

We now combine these two laws in the following manner:

The bracket under a 2  denotes that a 2  is at pressure p 2  and temperature 7j. 
Now, from equation (2.2) we know that

a = l /p

pa  =  constant 

p xa  i =  p 2 a 2  — P2 0 L{p2 s x)

(2.1)

(2.2)

(2.3)

The above expression gives the specific volume at the original temperature 7 j . 
The process was therefore carried out while maintaining a constant temperature.

_ P l a (p], Tl) 

a ^ - r >) ~  P2
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_  * 1 u(p2,T2) ^ 0
a (/>2,ri) -  j  (2-5)

We now introduce Charles’ law which states that
T
— = constant

Ti < w ,>  (2-4)
T 2 <X(p2,t2)

Then
T ] a (P2,T2)

r^

The above relation expresses the specific volume at constant pressure p2. That 
is, the process took place while keeping the pressure constant at p2. Equating the 
two relations (2.3) and (2.5) we have

P \ a (px,Tx) ^  T l a (P2,T2)

P i  t 2

Therefore
P l a \ _ P l ® 2  

T\ ~  T2
or

^  =  constant (2.6)

The constant may be determined experimentally by measuring the volume 
occupied by unit mass of the gas at some selected pressure and temperature. It is 
called the specific gas constant and is found to be 287 J kg-1 K _1 for dry air. We 
may now write the important relation

pa  =  R T  (2.7)

Equation (2.7) is known as the equation of state of a perfect gas, referred to as 
the equation of state. However, in using Charles’ law to derive the equation of 
state it is important to recognize that the law only holds in the form of (2.7) for 
those ranges of temperature and pressure for which the substance is in a gaseous 
state. If, for example, the temperature is decreased beyond a certain limit the 
gaseous state of a gas will be transformed to a liquid or solid state, for which the 
equation of state is not valid. The best example of this is water, which freezes to a 
solid state (ice) at atmospheric pressure (about 1013 hPa or mb) at approxi­
mately 0°C, and boils at atmospheric pressure at about 100°C. Students will be 
familiar with school experiments with liquid air, and everyone is familiar with 
‘dry ice’ or solid carbon dioxide.

Equation (2.7) is the general form of the equation of state. For the case of dry 
air it becomes

pa = RdT  (2.8)

The equation of state is one of the basic equations used throughout 
meteorology. The derivation we have worked through here is rigorous, but it 
may seem a little complicated for the first mathematical relation developed. 
Succeeding derivations will in many cases be simpler than this first one.
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Worked Example
What is the density of a sample of dry air at the 500 hPa level if the 
temperature is —20°C? Note that we will denote the gas constant for dry air as 
R in the examples.

Solution:
The equation of state is

pa — R T

^ R T
500 x 100 _3

/9 =  ;t7-=— ——= 0.6886 kg m
p 287 x 253

Remember that 1 mb (hPa) is 100 Pa, where 1 Pa is the unit of pressure in the SI 
system. Pressure must always be expressed in equations in this way.

 _____________2 .4 T h e  u n iv e rsa l g a s c o n s ta n t _______________

We have so far used two experimental laws, Boyle’s and Charles’, to derive a 
mathematical relation, the equation of state. Another law which has been 
established by experiment and observation was formulated by Avogadro. He 
found that the molar volume of a gas at the same pressure and temperature was 
the same for all permanent gases. The molar volume is the volume occupied by a 
mass of gas equal to unit mass multiplied by the molecular weight of the gas.
Thus a 1 gram molecule is m grams where m is the molecular weight. The molar
volume is dependent on the pressure and temperature and so, multiplying both 
sides of (2.8) by m,

pma = mRdT = R*T  (2.9)

But ma — V, the molar volume (a is the specific volume, i.e. volume per unit 
mass) which is the same for all gases. We will let mR — R v where R* is called the 
universal gas constant and is 8313.6 Jkg-1 m olK -1. Substituting for R in (2.7) 
we obtain the form

p a  =  —  (2 .1 0 )
m

2.S M ix tu re  o f  g ases _____ __

A fourth law based on experiment is known as Dalton’s law of partial pressures. 
It states that in a mixture of perfect gases each gas completely occupies the 
volume; each gas obeys its own equation of state; and the sum of the partial 
pressures of each individual gas equals the total pressure of the mixture.

If there is a mixture of different gases such that V cubic metres contains M { kg 
of one gas, M 2 kg of a second gas and finally M s kg of another gas which have 
molecular weights . . .  ,ms and specific gas constants R i ,R 2, . . . , R s,
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where each Rk — R*/mk, then Dalton’s law states that each constituent gas will 
obey its equation of state as though the other constituents were not present. If the 
partial pressures arep x, p2, . . . ,  ps

PkV = M kRkT k =  1 ,2 ,... ,5  (2.11)
and

Y , P k = P
Summing the above equation, (2.11),

k= s

pV  = Y , M kRkT
fr=l

If M  denotes the total mass of the mixture and R is chosen such that
k=s

MR = Y l M kRk (2.12)
k=\

then
pV  — M RT  

pa  =  R T

which is the same as (2.7).
Thus, if R is defined as above, a mixture of perfect gases will have the same

equation of state as one perfect gas by itself. Formula (2.12) states that R is
simply a weighted average of all the Rk, each Rk being weighted according to the 
mass of gas M k present in the mixture.

2 . 6  M o l e c u l a r  w e ig h t  o f  d r y  a i r

A value for the specific gas constant for dry air may be obtained by considering 
the molecular weights and specific gas constants of the constituent gases shown 
in Table 2.1. The gas constants for the different gases in the atmosphere are 
found from the relation stated in the previous section, Rk — R*/mk.

It is seen that the sum of the M kRk values is 287 approximately. We may then 
define the molecular weight of dry air by use of the formula mR =  R* which was 
obtained from (2.9):

* *  8 3 1 3 ‘6  7Q 0 7
m‘ =  a  = M  = 2897

With this definition equation (2.8) may be used for dry air just as for any 
hypothetical perfect gas of molecular weight md. In particular, we may consider a 
mixture of dry air and water vapour as a perfect gas, using the value of R 
appropriate to the mixture.

2 . 7  W o r k

When a material particle under the action of a force F  moves through the 
distance d.y in the direction of the force, the element of work d W  done by the
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pdA

force is F  ch. When the direction of movement makes an angle 0 with the force, 
only the displacement dscosO in the direction of the force contributes to the 
work, and the element of work

d W  = FdscosO (2.13)
We may consider the case of the amount of work done by a gas which expands 

against its environment (Fig. 2.1). In considering an element of compressible 
fluid such as a gas the force F = pdA  where d A is an element of area upon which 
the force is acting. The pressure p  is the force per unit area exerted by the fluid 
element on its boundaries.

Then
d W  =  pdA dscosO =  p d V  (2.14)

dV  is the element of volume swept through as the element of boundary area d A 
moves through ds to d^4'. d FT" is thus the element of work done by the parcel of 
gas as it expands its boundary from d̂ 4 to dAf.

The sign convention is that if work is done on the environment by the parcel 
d W  is positive. If work is done by the environment on the parcel d W  is negative. 
The environment is the mass of fluid surrounding the parcel under consideration.

0 da

F ig u r e  2 .2  Path of an elementary process.

dA'

/ a s

dA

cV

D'

E

a

Figure 2.1 Definition of work.

V

i
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Now the state of a gas may be represented by means of a diagram with 
coordinates a, p in which pressure decreases upwards along a linear scale. We 
may follow on this diagram the elementary processes by which the gas changes its 
state as defined by successive pairs of values a , p. Each point on the diagram 
represents a unique state.

Any change of state from a, p to a  +  da, p  +  dp is called an elementary 
physical process. A finite process is composed of a succession of elementary ones 
and can be represented on the diagram by a continuous line, the path of the 
process. Suppose that a perfect gas changes its state from that represented by 
point C to that represented by point E in Fig. 2.2 by way of the various states 
represented by all the points of which the curve CDD'E is composed.

In Fig. 2.2 the element of work dw = p d a  from (2.14), for unit mass of the gas. 
This equals the area of the shaded strip. The width of the element da is, of course, 
very small compared with the length of the strip.

Then w =  Jc Pd a  for the whole process represented by the path CDD'E; 
it is equal to the area bounded by the curve CDD'E, the specific volume 
isopleths through C and E, and the upper boundary of the diagram, where p 
is considered to be zero.

Figure 2.3 shows a cyclic process, so called because the gas eventually returns 
to its initial state by way of a cycle of different states. Negative work is done on the 
return path EGC since the element is being compressed and work is being done 
on it. In this case the area bounded by the curve EGC and the upper boundary, 
representing the negative work, must be subtracted from the total area above 
CHE, representing the positive work, to obtain the area equivalent to the work 
done by the element. This area is that enclosed by the cyclic curve CHEGC. Thus

where the integration is performed around the closed path, and A is the area 
enclosed.

(2.15)

0

V c

E

a  *
F ig u r e  2 .3  Path of a cyclic process.

W — (b p d a  = A

D -

G
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T = T ,

T = T, + dT = T2
p

I
T = r2 + dT = T3

a

F ig u r e  2.4 Curves of state.

From the equation of state pa  =  RT  there must be a different curve of state 
for each temperature as shown by the appropriate isotherm.

Suppose it is desired to heat the system in Fig. 2.4 from temperature Tx to 
temperature T2. This can be done in an infinite number of ways. The process AB 
is isobaric (constant p) while the process AC is isosteric (constant a). It is noted 
that no work is done in the isosteric process. The process BC is isothermal 
(constant T).

Worked Example
How much work is needed to lift 1 kg of dry air from 1000 mb (hPa) to 900 mb 
(hPa) if the temperature throughout the 1000-900 mb layer is 10°C?

Solution:
Work is defined as

We can find this as follows.
Differentiate the equation of state

p d a  +  a dp — R d T  = 0

since the temperature remains constant. Integrate between the required limits

Heat must not be confused with temperature. Temperature measures how hot a 
substance is on the kelvin scale. The temperature may range from absolute 
zero to millions of degrees in the centres of hot stars. Now it is observed that 
when two substances with different temperatures are brought into contact with

W  =  287 x 273 x lo g ( l .l l l)  -  8479J

2,8  H i a t

A a B

C

w =  j) pd a

r °   ̂ _  f  r, i9°o/ p d a — ~ R T  —  - - R T  log/? 1000
J1000 J1000 p
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one another the warmer substance gets cooler and the cooler substance gets 
warmer. Heat is a form of energy and may be converted to work. It is therefore 
expressed in joules. In the old c.g.s. system the unit of heat is expressed as a 
calorie, which is defined as the amount of heat required to heat 1 gram of water 
from 14.5 to 15.5°C. One calorie equals 4.185 J. In them.k.s. system it therefore 
takes 4185 J to heat a kilogram of water 1°C. If d T  is the change in temperature 
of a mass of a substance and dQ the amount of heat required to effect the change 
then d Q /dT  is defined as the heat capacity of the substance. If dT is the change in 
temperature of unit mass of a substance, say 1 kg, then dq is the amount of heat 
imparted to unit mass of the substance to effect the change. dq/dT  is defined as 
the specific heat of the substance. Its units are Jkg-1 K-1.

2,9 T h e  f ir s t  i a w  o f  therm o d ynam ics__________

The first law of thermodynamics states that mechanical energy or work and heat 
are equivalent to each other and so may be converted from one form to the other. 
In a classical experiment in 1849 Joule produced heat by churning water. He 
found the relation that 1 calorie =  4.185 J as already stated. As for Boyle’s law, 
Charles’ law, Avogadro’s law and Dalton’s law we establish a new law as a result 
of a physical experiment in the laboratory. It is expressed

dQ = dU + dW  (2.16)

This is a fundamental relationship in dynamic meteorology. We have already 
defined dQ and dW. The quantity dU remains to be defined.

U is the internal energy of the system and d U represents a change in that 
internal energy. U is a measure of the random molecular excitation and can be 
shown to be dependent only on temperature. The relation (2.16) states that an 
amount of heat added to or subtracted from a substance is used partly in 
changing its internal energy and partly in doing work against external pressure 
forces.

If (2.16) is divided by the mass of the system we obtain

d^ =  dtt +  dw (2.17)

and this relation refers to unit mass of the system, where lower case letters have 
replaced capitals in our notation.

One may also write (2.17) in the form

dq =  du +  p d a  (2.18)

2,10 Sp ecific  h ia t s  m  g ases

The amount of heat required to change the temperature of a gas by any amount 
depends on the conditions under which the change takes place. If the gas expands 
during the warming some of the heat supplied will be used to do work on the 
environment and so more heat will be required to warm the gas by the specified 
amount than if the gas were at constant volume. Each process curve between Tx
and T2 in Fig. 2.4 represents a different specific heat. Of the infinite number



18 THE THERMODYNAMICS OF DRY CLEAN AIR

which are possible those represented by the processes AB and AC are of special 
interest. The latter specific heat is at constant volume and the former at constant 
pressure. Thus:

1. specific heat at constant volume
dq \

( 2 ' , 9 )

2. specific heat at constant pressure
dq \  
d T j p

(2.20)

Now if the process is isosteric, that is if it takes place at constant volume, (2.18) 
becomes

dq =  du (2.21)

Thus,

and
dq = cv dT

It is seen therefore that for an isosteric process all heat added to or taken away 
from a system goes to increase or decrease the temperature. If the process is not 
isosteric (2.18) becomes

dq =  cv dT  + p d a  (2.24)

This is the energy equation for a perfect gas.
If we differentiate (2.7), for a perfect gas

p dot 4“ ol dp — R dT  (2.25)
and substituting in (2.24)

dq — cv dT  +  R dT  — a dp (2.26)

Now consider an isobaric process; dp — 0 so that (2.26) reduces to

dq = (cv +  R) dT
or

'dq'
'  P

which is known as Mayer’s Formula. cp must be greater than cv since any heat 
imparted to a gas at constant pressure must be used to expand the gas against the 
environment and thus do work as well as increase its temperature. The values of 
the specific heats for dry air are found to be

cv =  717Jkg“ 1K “1 

cp = 1004 J kg-1 K-1

= c v + R = cp (2.27)

du =  cvdT  (2.23)
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Worked Example
The air in a room of 100 m2 and ceiling 5 m from the floor is at a pressure of 
1000 mb (hPa) and temperature 0°C. How much energy would be required to 
heat all the air in the room to 20°C?

Solution:
The volume of the room is 500 m3.
The density =  p /R T  = 1.276 kg m-3 
The total mass is 500 x 1.276 =  638.15 kg.

Heat =  638.15 x 20 x 717 =  9.15 x 106 J

Equation (2.24) may be written in the form

dq = (cp — R )d T  + p d a
or from (2.25)

dq = (cp — R) dT  +  R dT  — a dp
from which

dq = cp dT  — a dp (2.28)

If we divide (2.24) and (2.28) by T

dq cv dT  | p  da? _  cp dT  a dp ^  ^

whence it follows that from the equation of state (2.7)

dq _  cvdT  R da  _  cp dT  _  Rdp
T ~  T a T p  ̂ ' ’

and

^  =  d{ In T e'a*) = d(ln T Cpp~R) (2.31)

To obtain an expression for dq/T  which does not involve temperature the
equation of state may be differentiated logarithmically, giving

dp da dT  _
p a T

From (2.32) we can substitute for d T /T  in (2.30). Then 

dq f  dp d a \  da da dp da dp
— cv \  1 J — — (cv +  ^ ) ----- 1" cv— — cp  1- cv— (2.33)\ p  a J a a p F a p

d(lnpCvaCp) (2.34)

The expression dq/T  is of considerable interest. It represents the change in the 
entropy of the system per unit mass. It is discussed further in Section 2.12, but for 
a full discussion of entropy the reader should refer to a standard textbook on 
thermodynamics.
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2.11 A d ia b a t ic  p r o c es s

If there is no exchange of heat between a system and its environment the 
dynamical process by which a perfect gas is heated by compression or cooled 
by expansion is called an adiabatic process. The gain or loss of heat to the system 
in an adiabatic process is caused by the loss or gain of energy due to the work 
which has been done by the environment on the system or by the system on the 
environment as the system is compressed or as it expands, respectively. 

Equation (2.17) may be written
dq = du +  dw =  0

and thus
cvd T + p d a  - 0  (2.35)

We may set all the relationships in (2.30) and (2.33) and in (2.31) and (2.34) equal 
to zero. Thus,

dq dT  d a dT dp dp da
—— — cv ———b R —  — c„ —  R — — Cv  b Cp —T T a p T p % p p a

and

^  =  d(ln T c‘a R) =  d(ln T e'p~R) = d(lnpc-ac'] =  0 (2.37)

Integrating (2.37), we obtain

T CvaR = constant

Tcpp R = constant (2.38)

pCva Cp = constant

Equations (2.38) represent the various curves of state of different adiabatic 
processes, as determined by the initial conditions for /?, a, T. Let us define

-  =  k (2.39)
cp

and

^  =  n (2.40)
Cv

Then, from (2.38),

T  =  constant (pR/Cp) = constant (pK) (2.41)
and

p =  constant (a~Cp/Cv) =  constant (a_7?)
or

pa71 = constant " (2.42)

The values of k and rj for dry air are

n — 0.286 r] = 1.400
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2.12 P o t e n t ia l  t e m p e r a t u r e

Equation (2.42) represents the family of adiabatic curves on an a , p diagram; 
when 7] — r]d the curves are called dry adiabats. Each point on a dry adiabatic 
curve represents a temperature. The adiabatic lines are labelled according to the 
temperature at the point where the curve intersects the 1000 mb isobar. This 
temperature is called the potential temperature and it is denoted by 0. We may 
define the potential temperature, therefore, as the temperature assumed by a 
parcel of air when that parcel is expanded or compressed adiabatically to a 
pressure of 1000 mb. A value of the potential temperature therefore defines a 
given adiabatic process, and conversely for any adiabatic process the potential 
temperature must be constant.

Thus, from (2.41),

If p 2 = 1000 mb and T2  = 0, the potential temperature, as defined above, is

Equation (2.43) is sometimes called Poisson’s equation.
The potential temperature of a parcel of dry air at any pressure and 

temperature {/?, T) can be calculated from (2.43), where k =  Kd.
If we differentiate (2.43) logarithmically it follows that 

dO AT ndp AT RAp

If Aq — 0 then A0 =  0 and 9 — constant. It is already known by definition that 
the potential temperature is constant for an adiabatic process.

Worked Example
If the temperature at 500 mb (hPa) is —20CC, what is the potential temperature of 
a parcel of air at that level?

0 T p T cpp
Multiplying by cD

(2.44)

(2.45)

Comparing this with (2.30) we get

(2.46)

Solution:

2.13 E n t r o p y

It is seen from (2.31), (2.34) and (2.46) that the term Aq/T is equal to a total 
derivative of an expression which defines a state of a gas. The term Aq/T is thus

F =  ^\P2 /

(2.43)

U(7 (11 Up

CpT  = Cpl r ~ 7

d ( ?  A  I  1 Q \
y = cP j  = d (cPlne)

/ 1000Y
e = T y - ) =  253 X 20'286 =  308.7°K =  35.7°C
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called a differential of a function of state of a gas. If

d (j)

0

4> =  cp log 6 +  constant

The quantity </> is called specific entropy. It is seen that <f> increases or decreases as 
heat is absorbed or removed.

For adiabatic processes dq =  0 and </> =  constant. Consequently adiabatic 
processes are often called isentropic. Isentropic synoptic charts are sometimes 
constructed. They are composed of contours of the heights of a selected 
surface of constant potential temperature above mean sea level (m.s.l.), or of 
isobars giving the pressures on such a surface. An isentropic process must be 
reversible.

The quantity entropy is somewhat abstruse and often discussed in physics 
and in cosmology (e.g. see A Brief History o f Time by Stephen Hawking). It is 
sometimes described as a measure of disorder of the universe. However, in 
meteorology we will not delve into such esoteric concepts but only concern 
ourselves with the physical meaning of the formulae for dq/T.

Isentropic analysis, which is actually analysis using lines of equal potential 
temperatures (from equation (2.47)) is particularly useful in tracking air masses 
as air tends to follow the dry adiabatic lines of constant potential temperature; 
that is, if the air moves up or down it will cool or warm at the dry adiabatic lapse 
rate and air parcels may therefore (in theory, assuming no diabatic or non- 
adiabatic heating) be followed. The amount of warming and/or cooling which 
occurs as the air moves up or down the dry adiabats may be determined from 
reading the temperature at the intersection of the lines of constant potential 
temperature and the isotherms on an aerological or upper air diagram. This will 
be the subject of the next chapter.

XI4 Problems
1. What are the units and dimensions of the specific gas constant Rdl
2. Equation (2.6) was derived using Boyle’s law and then Charles’ law. Derive 

(2.6) using the opposite sequence, that is Charles’ law and then Boyle’s law.
3. The pilot of an aircraft flying from Miami to Montreal in winter wishes to 

know the air density for takeoff at the two terminals. At Miami the surface 
pressure is 1000 mb (hPa) and the temperature 30°C. At Montreal the 
surface pressure is 1040 mb (hPa) and the temperature is —20°C. At what 
pressure over Montreal would the density be the same as at Miami, assuming 
there was no change of temperature with height at Montreal?

4. Find the amount of work performed in lifting a kilogram of dry air from 
1000 hPa to some level where the pressure is p, if the potential temperature is 
constant throughout the layer.

dq
T

= constant =  J  d (cp log 0) + constant (2.47)
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5. Using the mass-energy equivalence equation E = me2, how much would 
1 kilogram of mass warm the global atmosphere if the heat was uniformly 
distributed? Assume an average m.s.l. pressure of 1000 hPa.

6. Two parcels of air are at 1000 hPa and 10°C. One undergoes an isothermal 
process and the other an adiabatic process. What is the ratio of their 
densities at some higher level pi  What is the ratio of the two constants in 
the relations pa = constant and pop =  constant?
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THE AEROLOGICAL DIAGRAM

3.1 In t r o d u c t io n

The thermodynamic or aerological diagram is an indispensable tool to the 
meteorologist in the analysis of the temperature and humidity structure of the 
column of air above us. The diagram can be used not only to explain and predict 
sky conditions on quiet days when the pressure distribution on the weather map 
is flat, when convection may take major control of the weather, but also on less 
settled days, as long as an upper air ascent is available within the air mass which 
is predicted to be overhead at the time it is desired to know the weather and state 
of sky. The diagram can assist in the prediction and breakup of clouds, and 
in estimating cloud amounts, cloud bases and tops, and whether showers or 
thunderstorms are likely to develop or not. It is also particularly useful as a 
tool to assist in the prediction of the formation and the morning clearance of 
radiation fog.

The aerological diagram is simply a graph upon which observations of 
temperature, pressure and moisture content are plotted. Various lines are 
constructed from theoretical equations and drawn as a permanent backing to 
the diagram. When curves of the actual temperature and moisture from a given 
upper air radiosonde or aircraft ascent are plotted and compared with the 
background lines certain conclusions may be drawn about the vertical structure 
of the atmosphere. The diagram may look complicated at first because it seems to 
have so many lines on it, but it is actually quite simple and this will become 
apparent after some simple plotting exercises are done, perhaps with the current 
day’s upper air ascent obtained from a nearby airport or weather office. 
Current weather is like today’s newspaper: up to date and usually having 
some points of special interest.

______________3 .2 D if f e r e n t  k in d s  o f  d ia g r a m  ____________

There are several different kinds of aerological diagrams. The simplest is 
probably the pressure, volume (p, a) or Clapeyron diagram. It is not a suitable
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one for practical use since one of the coordinate axes is specific volume. This is 
not a quantity that can be physically measured by a radiosonde transmitting 
instrument during its balloon flight into the troposphere, although it can be 
derived from the equation of state. If one were to draw a (/?, a) diagram with an 
eye to meteorological use it would look like Fig. 3.1. Since potential temperature 
is conserved in an adiabatic process, the adiabats or isentropes can each be 
labelled with a particular value of 6 .

The figure exhibits several disadvantages of the (p,a)  diagram. In the first 
place, both the isotherms and the adiabats are excessively curved, and in the 
second place, the angle between them is not very great, considering the wide 
difference in character between isothermal and adiabatic processes. The diagram 
has one advantage, however, in that it is an energy diagram in the sense that area 
on it represents work or energy per unit mass. We will look at the criteria that are 
needed in the design of an aerological diagram:

(a) The abscissa (x axis) should be temperature, if possible.
(b) The ordinate (y  axis) should be a function of pressure, chosen so that it is

also approximately a height coordinate.
(c) If some function of pressure is not chosen for the ordinate the resultant 

isobars should at least not be too curved or crowded together.
(d) The diagram should be an ‘equal-area’ diagram, in the sense that area is 

proportional to energy/unit mass, although slow changes in the ‘constant’ 
of proportionality over the diagram can be tolerated for the sake of other 
desirable features.

(e) The adiabatic process for dry air should be well represented, that is the
dry adiabats should be fairly straight and nearly perpendicular to the
isotherms.

Since temperature and pressure are directly measured in both surface and 
upper air meteorology it is not surprising to find that most meteorological

F ig u r e  3 . 1 Schematic form of the (/?, a) or Clapeyron diagram.
1000 hPa —

T = 0 on this isobar

V

I

30 30 
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diagrams are based upon the variables 7  and p. We will therefore briefly discuss 
the merits or otherwise of the (7, - pK), (7, —p) and (7, - log  p) diagrams, where 
log of course denotes the natural logarithmic function In.

All of the above satisfy criteria (a) and the first part of (b). However, the 
( 7 ,—log/?) diagram is the only one which satisfies the requirement that the 
ordinate be approximately a height scale. Let us now determine which of 
the diagrams (a)-(e) has the ‘equal-area energy property’ mentioned in (d).

In the case of isothermal heating, that is the addition of heat energy to a 
kilogram of dry air, while holding its temperature constant, the last expression 
on the right hand side of (2.30) reduces to

dq = - R T ^ -  (3.1)
P

and it is easily shown (problem 2) that the latter can take the alternative forms

d^ r d ( - ^ )

dq = * T d ( - p )  (3.2)

dq = R T  d(—log/?)

Since T d ( —pK), 7 d ( —/?) and 7 d ( —log/?) all denote elements of area upon 
diagrams possessing these coordinate axes, it is clear that the scale factors 
between area and energy per unit mass are respectively proportional to cp/pK, 
R/p  and R. Only the (7, - lo g p) diagram has the ‘equal-area’ property (since R is 
a constant and p is a variable). However, since k =  0.286, the change in scale

—logep (mb)

F ig u re  3.2 Schematic form of the (7, -  logp) diagram.
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factor with respect top  over the (I 7, - p K) range is sufficiently slow to be tolerable, 
so the diagram is sometimes used and is known as the Stuve diagram.

Apart from the fact that the Stiive diagram alone has straight adiabats the dry 
adiabats are not very well represented on any of the above diagrams, mainly 
because they do not intersect the isotherms nearly at right angles. As an example 
of this see the schematic version of the ( I7, —log/7) diagram in Fig. 3.2.

From the above discussion it is clear that the (T7, —log/?) diagram satisfies 
more of the criteria (a)-(e) above than the other two diagrams. For this reason it 
is quite popular for displaying the results of radiosonde ascents and for 
computing the heights of various pressure levels. In Europe, the diagram is 
often known as the Vaisala diagram while in North America it is called the 
Emagram (energy per unit mass diagram).

In Australia the Commonwealth Bureau of Meteorology uses the skew (T , —log p) 
diagram or Herlofson diagram. The only difference between it and the (T7, —logp) 
diagram is that the temperature axis is skewed a further 45° from the —logp axis 
to make an angle of 135° with the latter. This transformation allows the dry 
adiabats to intersect the isotherms at an angle close to 90°. The adiabats are 
slightly curved. The properties of the skew (T, — log/7) diagram are quite similar 
to those of the tephigram, the diagram used by the British Meteorological Office.

3*4 T h e t ip h ig r a w

If we wished to design a meteorological diagram in which the distinction between 
the two limiting processes for dry air, namely the adiabatic and isothermal

iogee

F ig u r e  3 .3  Schematic form of the tephigram.
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processes, is best exhibited, then we would probably choose both the adiabats 
and the isotherms to be straight lines and we would insist that they intersect 
everywhere at right angles. Such requirements can in fact be satisfied if we retain 
temperature as the abscissa of our diagram but take the entropy of 1 kilogram of 
dry air to be the ordinate. This gives rise to the so-called temperature-entropy 
diagram, which is widely used by meteorologists, as well as by engineers in 
non-meteorological contexts. We saw in the last chapter that in equation (2.47) 
entropy was denoted by the Greek letter 6 , and that (j) was proportional to the 
logarithm of the potential temperature, denoted by 9. In view of these symbols it 
is not surprising that a diagram constructed with the axes just mentioned should 
be called a T —cj) gram or tephigram.

Figure 3.3 shows a tephigram in schematic form. Figure 3.4 is a replica of the 
main working area of the diagram as it is used in practice. The axes have been 
rotated so that pressure and height are represented as nearly as possible along the 
vertical. Such an orientation of axes is useful since relative height can be judged 
at a glance. The pressure lines slope very gently to the right. The isotherms slope 
upwards at an angle of about 45° to the right and potential temperature lines or 
dry adiabats at about 45° upwards to the left.

-70° -60° -50° -40°

F ig u r e  3 .4  Replica of the main working area of a tephigram.
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The lines of equal pressure are labelled in mb (hPa) at the left hand side of the 
diagram. The isotherms are labelled in degrees Celsius. The mixing ratio lines are 
the dotted lines and they are labelled in g kg-1 of water vapour (see next chapter). 
The dry adiabatic lines of constant potential temperature which slope upwards 
from right to left are not labelled but they may be designated by the value of 
the temperature at the intersection with the 1000 mb (hPa) isobar. Finally, the 
saturated adiabats are shown by the heavier curved lines. These lines are not 
labelled but their value may be designated as for the dry adiabatic lines of 
constant potential temperature. These lines will also be discussed in the next 
chapter.

It will be noted that the origins of T  and <j> are well off the diagram. Figure 3.3 
only shows a small portion of the full theoretical diagram, but it covers the 
ranges of variables occurring in the lower atmosphere.

From (2.45) and (2.46)

It is clear from (2.15) that the work performed in a cyclic process can be 
represented on an (/?, a) diagram by the area enclosed by the path of the process. 

From (2.17)

because there is no change in temperature around a closed path. The integral 
around a closed path of an exact differential representing a function of state must 
be zero. The reader should refer to a textbook on calculus for a rigorous proof of 
this theorem.

The equation of an isobar is then

d(C/,log6>) = c p —
(3.3)

3 .S  W o r k  a n d  e n e r g y  o n  t h e  t e p h ig r a m

but

Thus

d (cp log 0 ) = c p^ r - R  —

cp log 6  = cp log T  +  constant

log — =  constant

or

The equation of a dry adiabat is already given in (2.43).

(b dq =  (p du +  d) dir

=  j) cv d T  +  j) dw

(p cv d T = 0 since cv (p d T  =  0

y  dq =  j)  dvr (3 .4 )
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and from (2.46)

dq = <j> Td(cp \o%0) 

j) dw — ^  T d(cplog^)

Thus

w = j> Td{cp \ogO) (3.5)

and w = A where A is an area on the tephigram, since T  d (cp log 6) is obviously 
an element of area on the tephigram. Thus the work performed by a cyclic 
process can be represented by the area enclosed by the path of the process on a 
tephigram. The application of this concept will be discussed in greater detail in a 
later chapter. It has an important bearing on the use of the tephigram and other 
diagrams since it enables a calculation to be made of the potential thermo­
dynamic energy of the air above us. This has come to be known by the acronym 
CAPE (Convective Available Potential Energy). It is represented by an area on 
the diagram produced by a cyclic process like that described by equation (3.5). It 
is this particular feature of the diagram that enables the weather forecaster to 
predict showers, thunderstorms, the breakup of radiation fog and low stratus 
cloud. But to do this we must first study the properties of water vapour and the 
behaviour of moist air, that is the mixture of dry air and water vapour. We will 
discuss this subject in the next chapter.

3 J  P r o b  lem s

1. Which equations enable us to plot values of T  and 6 all over a Clapeyron 
diagram and hence to construct isopleths of temperature and potential 
temperature on the diagram?

2. Show that dQ = (cp/pK) T d (—pK) reduces to dQ = —R T  (dp/p).
3. Why are the isobars on a tephigram not straight lines?
4. The station-level pressure at Adelaide Airport is 1020 mb at the same time as 

a barometer nearby at Mount Lofty Lookout reads 950 mb.

(a) Assuming that dry air, which has a temperature of 26.5°C at the Airport, 
flows rapidly from there to the Lookout without undergoing any 
diabatic (i.e. non-adiabatic) heating, find the temperature which it 
would have at the Lookout.

(b) Assuming that this air then flows adiabatically into a valley where the 
pressure at the valley floor is 980 mb, what would you expect the 
temperature in the valley to be?

5. It is perhaps not immediately obvious that the skew (T, —logep) diagram is 
an ‘equal-area’ energy diagram and a rather neat geometric proof of this is as 
follows. Take a tephigram and dissect it into a large number of infinite­
simal isothermal strips. Slide these strips parallel to one another until the 
isobars are straight lines (in the limit of finer and finer dissections). Since
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the ‘equal-area’ energy property of the original tephigram is preserved 
under this transformation and the latter transforms a tephigram into a 
skew ( T ,—\ogep) diagram, it follows that the skew ( T ,—\ogep) diagram 
is itself an ‘equal-area’ energy diagram.

6. Plot the following points on an aerological diagram:

• p — 1000 mb, T — 15°C
• p — 500 mb, T  =  —21.2°C
• p =  220 mb, T  =  —56.5°C.

7. Obtain a current (or recent day’s) upper air ascent from your nearest major 
airport or weather office. Plot the temperature and pressure for each pair of 
coupled readings. Describe the curve.
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THE THERMODYNAMICS OF 
MOIST AIR

4 J  W a t e r  s u b s t a n c e  a n d  w a t er  v a p o u r

In the previous chapter our considerations have been confined to perfect gases 
and subsequently to a mixture of perfect gases which is known as dry air. In the 
atmosphere air is never completely dry. It may be relatively dry over deserts and 
at very high altitudes but there is always some water vapour in it. The continuous 
evaporation of water into the atmosphere from the vast oceans and inland waters 
as well as from the ground and from vegetation is the source of all the clouds and 
varied forms of condensation and precipitation which go to make up the weather 
and climate of our globe.

Water vapour is a gas which behaves in the same way as other gases. It obeys 
the various laws which we have already discussed. It is a constituent of the 
earth’s atmosphere and obeys Dalton’s law in the same way as the other gaseous 
constituents. However, a substance behaves according to the various gas laws 
just as long as it is in a gaseous phase and does not liquefy or solidify.

Water substance, however, does liquefy and solidify within a range of 
temperatures which commonly occur.

Now only a certain amount of water can exist in a given volume in the 
gaseous phase. This amount varies according to the temperature. Thus, if water 
is injected into a vacuum of given volume it will at first evaporate and exert a 
vapour pressure e. After a while, if further water is injected, the additional water 
will not evaporate and the vapour pressure e will remain constant. Any further 
water which may be injected will remain in the liquid state. The space is then said 
to be saturated and the pressure e of the vapour at the point when it no longer 
increases, that is when evaporation ceases, is the saturation vapour pressure. 
This saturation vapour pressure es varies according to the temperature. It is, in 
fact, a function of the temperature only and increases with the temperature.

The reason is that at higher temperatures the molecules of water at the surface
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e

F ig u r e  4. S Curve of state of water vapour at 300 K.

of the liquid are moving more rapidly and more of them overcome the attraction 
exerted on them by other molecules in the liquid state. These then escape into the 
less dense gaseous state.

A vapour whose pressure is less than the saturation vapour pressure is said 
to be unsaturated and if brought into contact with its own liquid, the latter will 
evaporate until it has all gone or until the vapour has reached the saturation 
pressure, or in other words, until the space occupied by the vapour has become 
saturated.

Suppose now we have a cylinder containing a perfectly fitted piston. Let the 
cylinder be filled with vapour and let it be unsaturated. Let the system remain 
at a constant temperature T, say 300 K. Now compress the gas by means of 
the piston. The path of state of the water vapour will then be observed to follow a 
curve as shown in Fig. 4.1. The first effect of an increase in pressure will be a 
decrease of volume. This occurs along the path AB. At B the water vapour 
reaches the saturation vapour pressure and it starts to condense; any further 
compression by the piston will cause the remaining water vapour to condense to 
liquid water. The volume in the cylinder thus decreases without any further 
change in the vapour pressure es. C represents the stage of the process where all 
the vapour has condensed to water, which is virtually incompressible, so that 
further compression by the piston does not change the volume significantly.

The above curve of state will be observed if the system is at about 300 K. 
Different curves will be observed for other temperatures. We may draw a 
diagram showing the state of water in all its phases, solid, liquid and gas at all 
temperatures. Such a diagram is shown in Fig. 4.2. The diagram is divided into 
regions showing the states of vapour, combination of water and vapour, 
combination of ice and vapour and water only. At very high temperatures the 
water vapour never condenses, however great the pressure, and the curve of state 
is similar to that of a perfect gas. This occurs for isotherms T > Tc. The value Tc 
is the temperature at which the vapour stage touches the water and vapour stage. 
Tc is called the critical temperature. The critical pressure ec is the highest pressure 
at which liquid water and water vapour can exist in co-equilibrium.

D

C B

A
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e

The critical specific volume ac is the value of a  observed at ec, Tc. The state 
ec, a c, Tc is called the critical state. The values are

■ ec = 221 000 hPa =  218 atmospheres
■ Tc = 647 K
■ ac = 3.1 x 10~3m3 kg-1.

At lower temperatures a state of coexistence between liquid water and 
saturated water vapour occurs within the region bounded by ABC. Further 
compression causes all the vapour to condense and the total liquid phase occurs 
to the left of AC. When the temperature is reduced sufficiently a value is reached 
where the water freezes. The temperature at which liquid water, ice and water 
vapour exist in coequilibrium is called the triple state temperature and this state 
of the water substance is called the triple state, or sometimes the triple point. It 
occurs along the line AB. The triple state temperature is Tt — to- to is the 
temperature of a substance which is brought into equilibrium with a mixture 
of ice and pure water at a pressure of 1 atmosphere (1013.2mb). This 
temperature is 0°C. Also we may define tm  as the temperature of a substance 
which is brought into thermal equilibrium with steam immediately over water 
boiling at a pressure of one atmosphere (1013.2 hPa). This temperature is 100°C. 
The values of e, T, and a at the triple state are

S  et = 6.11 hPa
■ T = 0.0075QC
■ a t =  1.0 x 10~3 m3 kg-1 for water

Vapour

T > T C

-T = TC

Tt < T < T

T = Tt

T< Tt

a

F ig u r e  4 .2  State of water in its three phases.
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■ a t = 1.091 x 10 3m3kg 1 for ice
■ a t =  206.2 m3 kg"1 for water vapour.

At temperatures lower than Tt a state of ice and vapour occurs. At very great 
pressures the ice is converted into water, which freezes again when the pressure is 
released. This phenomenon is called regelation and accounts for the flow of 
glaciers and our ability to ski and skate.

In the above discussion the subject of the supercooling of water, that is the 
cooling of water below Tt, has been omitted. This will be mentioned later.

4,2 E q u a t io n  o f  s t a t e  fo r  w a t er  v a p o u r

We may now write the equation of state of a perfect gas for water vapour, 
following the same form as (2.8) for dry air:

eav =  RVT  (4.1)
where e, the pressure of the water vapour, replaces p and

Rv =  —  =  461 J k g - 'K ” 1
mv

Worked Example
What is the density of water vapour at 25°C and vapour pressure 25 hPa? How 
does this compare with dry air at the same pressure and temperature? Could you 
have anticipated this result?

Solution:
We start with equation (4.1) in the form

p = i f
2500 , _3

kgm
461 x 298

=  18.2gm~3 

For dry air under the same conditions we have
2500 ^  „ _3

p =  r =  29.2 gm
287 x 298kgm - &

We note that water vapour is about 0.62 times as heavy as dry air. This could 
have been anticipated from the ratio of the molecular weights of water and dry 
air.

Now
mvRv = mdRd since mR = R*

and so

* v = = - * d 
mv e

where e is the ratio of the molecular weight of water vapour to that of dry air and 
equals 0.622.
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Equation (4.1) may be rewritten in the form

eax = —  T — RXT (4.2)
€

We may compare (4.2) with (2.8).

The specific heats of water and ice may be considered constant for atmospheric 
problems. The values in m.k.s. mechanical units are:

S Cw = 41851kg-1 K '1 
a  q = 2060 J kg-1 K "1.

The specific heats of water vapour at constant pressure and constant volume 
are, respectively,

■ <:,* = 1911J kg-1 K "1
■ cvv = 1450 J kg"1 K "1.

These values may be up to 2% in error since water vapour does not always 
behave as a perfect gas. However, cpv — cvv =  Rv — 461 J kg-1 K _1 which agrees 
with the value previously given.

We have seen that it is possible for saturated vapour and its liquid to exist 
together side by side in equilibrium through a range of pressures and tempera­
tures, and that the vapour pressure at which water and water vapour exist side by 
side is the saturation vapour pressure, es. We will now consider what happens 
when water substance changes from one physical state or phase to another. Such 
a change will involve a change in the total heat content of the system.

Let the two phases in equilibrium be 1 and 2. Then, from (2.18) and Section 
2.12,

The first integral represents the total amount of heat absorbed by unit mass 
of the substance in phase 1 to transform it to phase 2. It is known as the latent 
heat of transformation and will be denoted by L X2. L X 2  — —L 2 y 9 that is, it 
also equals the amount of heat released by the substance during the 
transformation from phase 2 to phase 1. By convention the change of heat 
dq is positive if the heat is absorbed by the system and negative if it is 
released. If we integrate (4.3), holding pressure and temperature constant during 
the transformation we obtain

4.4 C h a n o i o f  p h a s e

(4.3)

Z-12  — T(<f>2 — 4>\) — u 2  — ul +  es( a 2 — a l) (4.4)

L L2 varies with the temperature and has a different value for each of the three

4.3 S p e c if ic  h e a ts  or w a tc h  su b st a n c e

dq =  J *  T d<p = j *  du + j *  es da
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phase transformations. These are
Lw v, liquid water <-> vapour 
Lx v, ice vapour 
Lj vv, ice liquid water

The values are

■ Lwv =  2.500 x 106 J kg“ 1
■ L;,v =  2.834 x 106Jkg“ ‘
■ Lj’w =  0.334 x 106 Jkg-1.

Actually these latent heats do depend upon temperature, but they are often 
taken to be constant within the atmospheric range of temperature. The three 
cases stated above are all positive since heat must be absorbed to evaporate, to 
sublimate or to melt water substance. When water substance condenses, or 
freezes, heat is liberated and the values for the latent heats are negative.

4 J  V a r ia t io n  m  la t e n t  h ia t  w ith  tem p eratu re

The variation of latent heat with temperature is relatively small and may be 
obtained as follows: we will take the case of Lw v. From (4.4)

■̂W,v T ^s(^v ^w)

es Oy +  Uy Ww

a w =  1 and may be neglected in comparison with av.
Now, esav = RVT  from the equation of state; differentiating,

dLw v =  Ry dT  +  dwv — di/w =  Rv dT  +  (cvv — cw) dT

^  J  —  R \  T - Cyy Cw =  Cpy C ,̂ (^-5)

^ ~  =  1911 -4185 =  -2274Jkg“ 'K “ 1

It is noted that 2274 is much smaller than 2.5 million, the value of Lwv. However, 
it may be shown that over an atmospheric temperature range from —4Q°C to 
+40°C the range undergoes a change of about 7%. Whilst the change is by no 
means negligible for very accurate work, it does suggest that we can take L to  be 
constant in order to obtain a first approximate solution of the differential 
equation which we will now derive.

 ___ 4 .6  C lAFEYRON’S e q u a t io n

The equation called the Clausius-Clapeyron equation is one of the most 
important equations in the thermodynamic subheading of meteorology. It 
shows the physical relation between the saturation vapour pressure and the 
temperature. It is a little difficult to follow so we will develop it step by step. 

The first law of thermodynamics for water substance may be written in the

Latent heat of evaporation 
Latent heat of sublimation 
Latent heat of melting
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form

dQ = T dtf* = du +  es da (4.6)

This follows from equation (2.18) wherep  has been replaced by eS9 the saturation 
vapour pressure of water vapour; du denotes the change in internal energy and 
da is the change in specific volume which occurs when an amount of heat dq is 
imparted to 1 kilogram of water substance. Let us suppose that the suffixes 1 and 
2 represent any two phases of water substance which are in equilibrium with one 
another at a temperature T\ for example water vapour in contact with a water 
surface. Then, if L X1 denotes the latent heat associated with the change from 
phase 1 to phase 2, we have, from (4.6),

^ 1.2 — &Q = du + es da (4.7)

and since the pressure es remains constant whilst the specific volume changes
during a change of phase, it follows that

Li .2 =  T{<f>2 -  <f>i) = U2 -  Ml + es(a2 -  a {) (4.8)

In classical thermodynamics, the combination of variables
G = u +  esa — T<fi (4.9)

is called the Gibbs function and it is only a function of state of the water
substance. From (4.9) it is clear that

u\ esa x — T(j)\ — U2  T — T 4*2 ^ 1  ~  ^ 2  (4* 10)
during the isothermal change of phase under consideration.

We must include a word of caution here in dealing with this thermodynamic 
principle. By phase we mean the physical state of a substance, that is gas, liquid 
or solid. Where H20  substance is concerned, we commonly call the three phases 
water vapour, water and ice. In addition to the physical state of a substance we 
also have its thermodynamic state. This is the state we mean when we talk about 
the equation of state which was introduced very early in this text (Section 2.2). It 
is the state of a phase which is known if two variables of the three given in the 
equation of state are known. Now that this distinction between state and phase is 
defined we may continue with the derivation of our equation.

Suppose that G +  dG represents the Gibbs function for a neighbouring state 
(T  +  d7\ es +  des) of water substance. Then, for an isothermal change of phase 
in this neighbouring state we would have Gx +  dC^ =  G2 +  dG2, according to 
(4.10). Subtraction of the two equations above then tells us that d Gx = d G2. Now 
taking the differential of (4.10), we have that

dG = du + es da — T dcf) + a des — 4>dT (4.11)
where it must be emphasized that the derivative d( ) is associated with the change 
to the neighbouring thermodynamic state rather than with the change of phase. 
Since the differential form T dcj) = du +  es da  of the first law of thermodynamics 
is as valid for changes of state as it is for changes of phase, it may be used to 
reduce (4.11) to

dG = ades -( j)dT  (4.12)
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Since dGx = dG2 we have

des -  d T — a2 des -  d2 dT

which can be written in the form

des (02~0i) (4.13)
d r  (a2 — a i)

Since we are not particularly interested in entropy and 02 — 0i — ^ 1 ,2 / T  as 
defined by (4.8), a more useful form of (4.13) is

des _  L X 2
d r  T(a  2 — cq)

(4.14)

which is the famous Clausius-Clapeyron equation which gives us the saturation 
vapour pressure as a function of temperature. Applying the above to all of the 
possible changes of phase of water substance, we find that for equilibrium 
between

(a) water and water vapour

deSw _  £w,v (415j
dr r(av — <aw)

This equation covers the processes of evaporation and condensation. The 
subscripts w, v refer to the liquid and gaseous phases of water substance 
respectively.

(b) ice and water vapour

d^si   ^-'i,v

dr r(c (4.16)

This equation covers the process of sublimation, the direct transformation 
from the solid to the gaseous phase and vice versa. It occurs when the 
temperature is less than the triple point although the process (a) may also 
occur at temperatures below the triple point if water droplets are cooled 
below 0°C without freezing to ice.

(c) ice and water

^ = r ( h w  , (4-17)dr T(aw — c*i)

This equation covers melting, freezing and regelation.

We are now in a position to investigate quantitatively the dependence of 
saturation vapour pressure upon temperature.

Since av — 103 m3 kg-1 approximately and aw is 10-3 m3 kg-1 it is clear that 
a v »  a w and hence to a very good degree of approximation the equation (4.15) 
reduces to

deSW   Tyj v
dr Tav
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which from (4.2) may be written in the form

d.£?o.
dr

eLw,v \ ( c sw

r 1
(4.18)

Assuming Lw v to be independent of temperature, as argued in Section 4.5, the 
differential equation separates immediately to

eL A  dT 
Rd J T 2

which, upon integration, yields

loge«. =  - [ ^ 4- constant

(4.19)

(4.20)

In order to evaluate the constant of integration we make use of the triple point 
values already given. We may then express the Clausius-Clapeyron equation in 
the forms

esw(mb) =  6.11 exp

esi(mb) =  6.11 exp

eL„
Rd

eA.v
Rd

L _ 1
273 _  T

l _ _  1 
273 ~ T

(4.21)

(4.22)

A schematic diagram of the solutions of equations (4.21) and (4.22) is shown 
in Fig. 4.3. The dashed line represents the equilibrium which can exist between

F ig u r e  4 .3  Evaporation melting and sublimation curves.
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supercooled water and water vapour. The melting curve represents the 
equilibrium between ice and water. Although of geological importance, as 
for example in connection with the slow flow or creep of glaciers, it is not of 
great interest to meteorologists (mainly because es no longer represents vapour 
pressure). However, skaters and skiers will be aware of the need to have a 
slippery surface, and this results in part from the process of regelation, the 
melting of ice under pressure, creating a film of liquid water. A more exact 
diagram between the ranges — 80°C to 60°C is given in Fig. 4.4. We note that 
equation (4.20) may be plotted as a straight line on a graph with one axis scaled in 
ln£s intervals and the other axis in 103/K  intervals. Such a linear relation is 
shown in Fig. 4.5.

Worked Example
Compute the saturation vapour pressure at 20°C from Clapeyron’s equation. 
Assume L  — 2.5 x 106 J kg-1.

Solution:
We know that e, is 6.11 hPa at 273 K. Then

* ( & ) -
(0.622L x 20) 

(287 x 273 x 293)

es = 23.7 hPa

Temperature (°C)

Figure 4.4 Curve of saturation vapour pressure against temperature allowing for the 
change of latent heat with temperature.
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io3/ k

F ig u r e  4.5 Evaporation curve on a logarithmic scale with latent heat assumed 
constant.

43  CtAFSYRON AND GLOBAL WASHING

We see that the higher the temperature the higher the saturation vapour pressure 
which is in equilibrium with liquid water at that temperature. At ordinary 
temperatures the increase in saturation vapour pressure is about 6% for a 1 K 
rise in temperature. Now there is no definite mathematical relation between the 
saturation vapour pressure in equilibrium with a water surface at a given 
temperature, and the actual vapour pressure in the air at some arbitrary distance 
above it. Thus, we may know the saturation vapour pressure at the interface of 
the ocean and atmosphere but this does not mean that we know the exact vapour 
pressure at, say, 100 metres above the interface, and we would know even less 
about the vapour pressure at higher levels. This is because the water vapour 
content of different layers of the atmosphere depends on a number of factors, 
such as the temperature structure of the layers, whether the air in the different 
layers is rising or descending (subsiding), and on the rate of evaporation of water 
from the ocean surface, which is dependent on several variables such as the 
intensity of solar insolation, the wind strength and the existing moisture content 
of the air which may have been advected from a dry continent. We have also 
noted that the increase of saturation vapour pressure with temperature is not 
linear but exponential. We sometimes use words such as ‘sultry’ or ‘close’ to 
describe the unpleasant feeling induced by the combination of high temperature 
and high humidity.

Numerical modellers have estimated that for every degree rise in temperature 
resulting from a greenhouse gas other than water vapour, the temperature will 
increase a further 0.7°C as a result of the additional water vapour held by the 
atmosphere because of its higher temperature. That is, if the temperature of the 
surface of the oceans and of the atmosphere is increased by 1 K, the saturation 
vapour pressure will have increased and the atmosphere will be capable of taking 
up at least some extra water from the ocean interface. Since water vapour is a 
strong greenhouse gas and there will be more of it, the net effect will be to

w<L>
c

20

10

0

0 2 4 6 8 10

Critical point

k Boiling point
^Triple point
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increase the temperature by a further amount. This is what is known as a positive 
feedback. It is a somewhat unstable process in which any impulse tends to 
amplify. In the case of a negative feedback the opposite occurs and the system 
will tend to return to its original state before it was perturbed. We also note from 
the more accurate form of Clapeyron’s equation in which the value of Lw v is 
allowed to vary in accordance with equation (4.5) that the value of the latent heat 
of transformation decreases with temperature so that less heat is required to 
evaporate water at higher than at lower temperatures. This is an additional 
positive feedback, although a small one.

A word of warning should be given here. The conclusion that an increase 
in temperature of the atmosphere leads to a positive feedback because of an 
increase in water vapour is one that has been accepted by the majority of 
atmospheric scientists. However, there are a minority who believe that the latter 
conclusion is too simplistic, that there are complex compensations. This some­
what radical opinion suggests that an increase in water vapour in the atmosphere 
will result in more clouds and that, in consequence, the albedo or reflective 
property of the planet will be increased, thus decreasing the radiative equilibrium 
temperature. Such a response would be a negative feedback, a result which 
would tend to neutralize any increase, at least in the time scale encompassed by 
global warming predictions.

Certainly, Clapeyron’s equation has taken on immense new importance as a 
result of global concern about the ‘greenhouse effect’.

,_______ 4.8 SUPERCOOLED WATER____________

Water normally freezes at about 0°C. However, when it is in the form of tiny 
droplets the surface tension inhibits the freezing process. Water droplets in 
clouds are very small and may not freeze spontaneously. However, if they come 
into contact with a solid surface, such as, for example, the wing of an aircraft, the 
droplets will freeze. Aircraft icing used to present a great danger to aircraft, 
particularly in winter, in days when aircraft flew at much lower heights than 
today. Water which remains in the liquid state below 0°C is known as super­
cooled water. This is an unstable state, and should supercooled water come into 
contact with ice or with certain other substances in the finely divided state (called 
freezing nuclei) solidification takes place very rapidly. Cloud droplets formed by 
condensation above 0°C will normally assume this supercooled state on cooling 
below 0°C. Most cloud elements are still liquid at — 10°C and water droplets may 
be found down to -40°C. When ice crystals are injected into such a cloud of 
supercooled water drops at a fixed temperature the system is no longer in 
equilibrium. The vapour is saturated with respect to the water drops and super­
saturated with respect to the ice particles. The result is condensation on the ice 
particles. This reduces the vapour pressure in the air to below the saturation 
vapour pressure over water. Water therefore evaporates. The net result of the 
two processes is the growth of ice crystals at the expense of water drops. The 
process goes on most rapidly near — 12°C where the saturation vapour pressure 
over water most greatly exceeds that over ice.



44 THE THERMODYNAMICS OF MOIST AIR

The Bergeron-Findeisen theory of the mechanism of precipitation is based 
on the above principle. When a relatively small number of ice crystals are 
present in a cloud of supercooled water droplets the ice crystals grow to such 
a size by evaporation from the water droplets that they can no longer remain 
suspended in the air and start falling. The formation of the ice crystals depends 
upon the existence of suitable condensation nuclei which are usually present in 
the atmosphere in large concentrations; however, recent observations suggest 
that ice-nucleating agents are not as efficient as the nuclei which initiate the 
condensation of small water droplets. The ice nuclei require a considerable 
degree of supersaturation of vapour with respect to ice before they become 
effective in creating ice crystals.

It has been observed in recent years, particularly in tropical regions, that rain 
can fall from clouds which are above the freezing point. A process of coalescence 
has been postulated to explain this kind of rain, which is sometimes called ‘warm’ 
rain, in contrast to the so-called ‘cold’ rain formed by the ice crystal theory.

In the 1960s and 1970s a considerable amount of publicity was given to the 
stimulation of the rain-producing mechanism. Experiments in this activity, 
known as artificial precipitation, or more popularly, ‘rainmaking’, were carried 
out by national meteorological services and by commercial organizations. A 
favourite method was to ‘seed’ clouds with silver iodide crystals, dropped from 
aircraft. The silver iodide acted as a surrogate for ice crystals, as a catalyst to 
prime the evaporation of supercooled liquid droplets onto the crystals, where 
they would freeze into ice crystals and subsequently fall out, melt on the way 
down to the surface and turn to raindrops. It was hoped that these operations 
would increase precipitation in arid zone countries and in periods of prolonged 
dry spells or droughts. However, clearly rain could not be stimulated unless the 
right kinds of clouds were present at the time of seeding. It was often difficult to 
make useful comparisons between a selected control station and an operational 
result. It was believed that the technique worked best in trying to increase 
snowcover over mountains during the winter. However, these operations and 
experiments could never be regarded as highly successful and interest in them has 
waned during more recent years.

4,9 M o ist a ir

We have so far discussed only one parameter which is a measure of the water 
vapour in the air, that is, the vapour pressure (and the saturation vapour 
pressure). We have seen that the constituent gases of the atmosphere do not 
affect these values, which are the same as they would be if only water vapour were 
present. Thus, water vapour is a constituent of the atmosphere along with the 
other gases; its presence in the atmosphere forms a mixture which we shall 
call ‘moist air’. Although saturation vapour pressure is useful in deriving 
Clapeyron’s equation, we also need a more practical measurement which 
tells us the actual amount (mass) of water vapour present. We shall 
therefore now introduce new parameters:
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1 . The humidity mixing ratio (x) which is defined to be the mass of water 
vapour per unit mass of dry air.

2. The specific humidity (s) which is defined to be the mass of water vapour per 
unit mass of moist air.

3. The relative humidity (R H ) which is defined as the ratio of the observed 
vapour pressure to the saturation vapour pressure at the observed 
temperature, that is e/es.

Now, if M '  grams of water vapour are mixed with M d grams of dry air to give 
M  = M f 4- Md grams of moist air, then x = M f/ M d and s = M ' / M .  Since x 
and s are usually less than 0.05, we use the SI unit of gkg - 1  when specifying 
their values. Although x  and s are usually numerically close, they are still 
theoretically distinct. From the above definitions it follows that s = x /(I  + x) 
and x = s/(  1 — s). We will normally use the mixing ratio rather than the specific 
humidity. Suppose that (1 +  x) kilograms of moist air occupy a volume V and 
exert a pressure p-lfpd and e denote the partial pressures of the dry air and water 
vapour respectively, then

P  — Pd  +  e  (4-23)

from Dalton’s law of partial pressures.
From the perfect gas law

P d a d —
and also

eay = RVT

and on dividing the latter by the former we get
e xRy 

P d ~  &d

or
e x

( p - e )  e
and

x =  --------  «  -  4.24
(P~e)  P

Since (4.24) is true in the case where x  and e take their saturation values x5 and eS9 
it follows that

eeo ees
( P ~ e s) P

Taken together, Clapeyron’s equation and equation (4.9), recalling that 0 is a 
function of temperature and pressure, tell us that the saturation mixing ratio is a 
known function of temperature and pressure, that is x, =  xs(T,p).  It is the 
knowledge of this function which enables the isopleths of humidity mixing ratio 
to be constructed on aerological diagrams. These lines may be identified on Fig. 
3.3. They are the lightly dashed lines that slope upwards from left to right and 
they are labelled in grams per kilogram along the lower boundary of the diagram.
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(Do not confuse with the more heavily marked dashed line for the freezing 
temperature (0°C).)

We now introduce a corrected form of temperature which can be used when 
applying ‘dry-air’ theory to moist-air problems. Although the correction is 
not large and may not be needed in much of the work which is to follow, 
nevertheless, bearing in mind the importance of accurate calculations in 
climate change models, it is necessary to know in what circumstances to 
use the corrected value.

We have already seen from (2.12) that for unit mass of moist air 
li? =  M dRd +  MyRy where R  is the gas constant for moist air, and Rw is the 
gas constant for water vapour. Then

Inserting the value of R  above in the equation of state for moist air we get

Now we define the quantity (1 +  0.61 x)T  as T*, the virtual temperature of the 
moist air so that pa = RdT*. Obviously, T* is the temperature of dry air having 
the same pressure and specific volume as the moist air. For many purposes moist 
air may then be treated as dry air of temperature T*.

Let the quantity of heat dq be applied to a kilogram of moist air. The 
moist air is then heated from temperature T  to temperature T  +  dT.  Then
1 • dq = M d dqd +  M v dqv where dqd is the amount of heat received by the 
dry air per kilogram of dry air and dqv is the amount of heat received by the 
water vapour per kilogram of water vapour.

Dividing both sides by dT7 and substituting in terms of specific humidity, s, it is 
seen that

4 .10  T h e  v ir t u a l  t e m p e r a t u r e

evaluating e 1 — 1 and using the approximate relation s =  rw e  get
R =  (1 +  0.61x)i?d (4.25)

pa  =  (1 -F 0.61x)^dT (4.26)

4 .1 ! S p e c if ic  h e a t s  o f  h o is t  a ir

or

Evaluating cpv/cpd we get
cp =  (1 +  0.90s)cpd =  (1 +  0.9(bc)cpd (4.27)

R = (1 - ^ d  + sR y
and

R = (1 - s ) R d + S- ^ -  = Rd 1 + s Q - l ^

Cp — (1  s)C pd "f“ ■S'Cpv Cpd 1 +  S l )
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and similarly
cv =  (1 +  1.02s)cvd =  (1 +  1.02x)cvd (4.28)

We thus see how the specific heat of moist air can be expressed in terms of the 
specific heat of dry air and the amount of water vapour contained in the air.

4.12 A p ia b a t ic  p r o c e s s  o f  u n s a t u r a t e p  a ir

The adiabatic process for unsaturated air is a special case of the adiabatic process 
of any perfect gas. Thus from (2.39) and (2.40) k = R/cp and rj = cp/cv for moist 
air.

From (4.25) and (4.27)
(1 +  0.61x)i£d (1 +  0.61x)ftd

K =  (1 +  0.90x)cpd =  (1 +  0.90x)

Since i < l w e  can expand the denominator as a geometric series giving
k =  (1 -  0.29.x)Kd (4.29)

and similarly
rj = (1 — 0.12x)?7d (4.30)

It can be shown that Poisson’s constant n for moist air will be lowered from its 
dry-air value of 0.286 to a minimum of 0.283 for saturated air at the highest 
temperature likely to be found in the atmosphere.

The equation (2.43) 6 = T(\000/p)K defines a family of unsaturated adiabats 
each one of which is a function of an initial p , T  and of a given value of k. Since k 
varies with x there would be a different unsaturated adiabat for each value of x 
for similar initial pressure and temperature values. However, n departs from Kd 
so little that unsaturated adiabats may be replaced by dry adiabats for all 
practical purposes. An example would show that there would be a difference 
of about 1°C in the potential temperature if a parcel of air was brought 
down a dry adiabat instead of the steepest unsaturated adiabat from 400 mb 
to 1000  mb.

4 1 3  T^ jM PiA ^ TicyiiocB SSESPO ^ M o m ^ SA Tim iyro jyii

In a dry or unsaturated adiabatic expansion, the work done to expand a parcel of 
air is drawn solely from the internal energy of the gas. However, in a saturated 
adiabatic expansion, the latent heat of condensation (or sublimation) of water 
vapour is also available to help expand the parcel, so that a saturated parcel cools 
less than an unsaturated one, for a given amount of decompression.

If the products of condensation do not escape from a parcel, they are available 
for re-evaporation in the event of the parcel being compressed. This assumption 
leads us to the idea of a

■ reversible saturated adiabatic process, defined to be one in which none of the 
products of condensation escape from the parcel.
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At the other extreme we have the

■ pseudo-adiabatic process for saturated air, defined to be one in which all of 
the products of condensation escape from the parcel.

Since an unknown fraction of the products of condensation escapes from a 
real parcel of saturated air, the actual adiabatic processes for saturated air lie 
somewhere between the extremes. However, because the heat capacity of the 
products of condensation is very small compared with that of the moist air, 
the two processes described above yield almost identical cooling rates and so 
the actual adiabatic process for saturated air is represented equally well by the 
reversible or the pseudo-adiabatic process (at least as far as cooling rates but not 
necessarily as far as precipitation rates are concerned). The saturated adiabats on 
the tephigram and the skew (7\ —logp) diagram are therefore constructed using 
the process which is the simpler from the point of view of computation, and this 
happens to be the pseudo-adiabatic process. Furthermore, since the condensa­
tion of water vapour into water droplets is quite common above the freezing level 
in the real atmosphere, the pseudo-adiabatic computations are carried out 
assuming the product of condensation to be water.

4 J 4  E x a c t  e q u a t io n  f o r  t h i  r a in  s t a g i  o p  t h i

____________________PS6UPO-APIASAT1C P R O C E S S __

Let us again take a parcel of saturated air at T, p , xs. After a small pseudo- 
adiabatic expansion the air is in the state (T +  d r ) ,  (/? +  dp), (xs + dxs). 
Now consider a mass of 1 +  xs kilograms of moist air made up of 1 kilogram 
of dry air and xs kilograms of water vapour. In the pseudo-adiabatic process 
the quantity - d x s of water vapour condenses and drops out as precipitation. 
The condensation releases the quantity of heat

dQ =  —L  dxs (4.31)
which is used to heat the moist air.

It follows from (2.28) that

dq = c„dT -  R T  —
P P

This gives the heat absorbed by the moist air per unit mass.
Now

dfi =  ( l + x s)d? (4.32)
Equating the heat released due to the latent heat of condensation of the water
vapour to the heat absorbed by the moist air we obtain

-Ld .xs =  (1 +  xs) (cpdT -  R T ^ j  (4.33)

We may put (4.33) in the form

Positive role model Positive role model Positive role model 
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by substituting cp and R in terms of cpd, i?d and x from (4.27) and (4.25) and 
multiplying through, ignoring terms in x2.

4 J S  E x a c t  e q u a t io n  o f  t h e  r e v e r s ib le

SATURATION APIABATtC PROCESS

In the reversible saturation adiabatic process the condensed water is retained in 
the system in the form of cloud droplets.

Let x be the total mass of water substance in a saturated parcel containing unit 
mass of dry air. The system will then consist of 1 +  xs kilograms of moist air and 
x -  xs kilograms of liquid water.

Let the saturated air be in a state T, p, xs and let it be expanded to a state 
(T +  dr), (p +  dp), (xs +  dxs).

Then, as for the pseudo-adiabatic process, dQx =  -L d x s. This is the heat 
released by condensation which is used to heat the moist air, and also

d Q2 =  —cw(x — xs) dr
This is the heat given off by the cooling of x -  xs kilograms of liquid water 
through dr degrees as the system is cooled by this amount as a result of the 
expansion. The total heat dQ — dQ\ +  dQ2 is absorbed by the moist air:

d Q =  — L  dxs — cw(x — xs) dr

= ( l + x s) (cp d T - R T ^ j  

from (4.32); equating the two expressions, we have

- L d x s -  cw(x -  xs) d r  =  (1 +  x s) (cp dT -  RT<j )  (4-35)

It is seen that the above expression is the same as (4.33) for the pseudo- 
adiabatic process apart from the addition of the second term on the left hand side 
of the equation which is due to the cooling of the liquid water retained in the 
system during the expansion.

If we convert cp and R into cpd, i£d and xs as before, (4.35) can be transformed 
into the form

-L d x s =  [1 + 1.90xs +  4.17(x — xs)]cpd dT  -  (1 +  1.61 x s)RdT ^ -  (4.36)

It is seen that there is a different reversible saturation adiabat through T,p  for 
each value of x, the total water content. They only differ slightly from one 
another and from the pseudo-adiabats.

A numerical solution of the above equations shows that the pseudo-adiabatic 
process cools at a slightly faster rate than the reversible process because of the 
loss of heat content of the precipitated water. The difference is very small and is 
negligible compared with the effects of turbulence and radiation. Either equation 
may be used to calculate the adiabatic process of saturated air, provided the 
process is an expansion. The difference occurs when expansion is followed by
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compression. In the pseudo-adiabatic process the compression follows a dry 
adiabat. In the reversible process the condensed water remains in the air and the 
compression returns along the path of expansion.

In practice we need not use the exact forms of the equations of the adiabatic 
processes. They can be replaced by a simpler form which will now be developed.

4.16 Sim plified e q u a tio n  o f  th e  a d ia b a tic  

PROCESS OF SATURATED AIR

Let a parcel of 1 H- xs kilograms of saturated moist air be in state p , T , xs and 
expanded adiabatically to Cp +  dp), (T +  d T), (xs +  dxs) as before. We will 
now make the slightly incorrect assumption that the latent heat —L  dxs is used 
exclusively to heat the kilogram of dry air, ignoring the heating of the water 
vapour.

Then

dq =  cpdd r  -  RdT ^ -  
P

from (2.28). Equating the latent heat released by condensation to the heat 
absorbed by the dry air we have

-L d x s =  CpddT - R - i T y  (4.37)

It can be seen that the exact equations derived in (4.34) and (4.36) reduce to 
(4.37) when the correction factors to Rd and cpd are neglected.

Equation (4.37) can then be used to describe the saturation adiabatic process 
rather than the exact forms.

We may write (4.37) in the form, from (2.45),
L d x s _  dT  dp _  d6

—  — Cpd -TjT ~  R d  — ~ ~  cpd
P (4.38)

Cpd q

from (2.47). It is noted that a saturated adiabatic expansion involves a change in 
entropy for the moist air.

___________ 4 J 7  Is o b a r ic  w a rm in g  a n d  c o o l in g ___________

In the preceding sections heating and cooling by adiabatic processes involving 
expansion and compression have been discussed. It is also necessary to consider 
heating and cooling at constant pressure. Such a process is called isobaric 
heating and cooling.

Consider a parcel of air in a state T,/?, x. Let vapour be condensed from or 
water evaporated into the parcel. Let either process take place at constant 
pressure, the latent heat being supplied to or taken from the air. In the case of 
evaporation the change in mixing ratio is positive and the air provides the latent
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heat by cooling. In the case of condensation dx is negative and the air absorbs the 
latent heat by warming. We assume, as in the preceding section, that the heat is 
used exclusively to heat the kilogram of dry air. Then

dq = cpd(dT)p
from (2.28), or

- L d x  = cpd(dT)p (4.39)

Numerically, the above equation states that at constant pressure adiabatic 
condensation of one part per thousand of water vapour will warm moist air 
2^°C. Similarly adiabatic evaporation will cool the air 2|°C.

4.18 H y g r o m e t r ic  e q u a t io n

The principle of isobaric cooling by the evaporation of liquid water, the latent 
heat being supplied by the air, is the basis of the measurement of humidity by the 
dry- and wet-bulb thermometer. If the air is cooled isobarically by the evapora­
tion of liquid water, until it becomes saturated, the temperature reached at the 
saturation point is called the wet-bulb temperature. If this operation is 
performed on 1 +  x  kilograms of moist air composed of 1 kilogram of dry air 
and x kilograms of water vapour we have, from (4.39),

r Tv rx w
I cp{\ +  x) dT  =  —L I dx

where Tw is the wet-bulb temperature and xw is the saturation mixing ratio at Tw. 
Integrating,

(^pd ^ p v)(-^ w  - 0  L{x X w)

where x is the mean mixing ratio during the process; xcpv may be neglected 
compared with cpd. Approximately

^  ^  L(xw -  x )
1 1 w —

^pd

and
0 •622c

x = ---------
P

approximately. Then

^ . - < 0 ( 0 .6 2 2 L)
PC  pd

T — Tw is the wet-bulb depression which is measured by a wet- and dry-bulb 
thermometer or by a psychrometer. Since cw is known for different temperatures 
the vapour pressure c, and consequently the relative humidity, can be calculated. 
Hygrometric tables of values of the humidity and the dewpoint have been 
calculated for different values of the wet-bulb depression. Equation (4.40) 
applies to the evaporation or condensation from the vapour to the liquid 
phase. If the temperatures are below 0°C and sublimation from the solid to
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the vapour phase occurs the value of L  will be that for the ice-vapour 
transformation. In this case ew would be replaced by ex, the saturation vapour 
pressure over ice at the wet-bulb temperature.

4 A 9  C o n s t r u c t io n  o e s a t u iia t io n  a d ia b a ts

Equation (4.39) can be used in constructing saturation adiabats on any 
thermodynamic diagram. In Fig. 4.6 let saturated air be in state p , T, xs at a 
point A. Let dxs be a fixed convenient quantity. We wish to find the point B 
where the saturation adiabat through A crosses the saturation mixing ratio line 
xs +  dxs. We first follow the process AA', heating the air at constant pressure by 
the amount caused by the latent heat released by the condensation of — dxs 
kilograms of water vapour. This amount may be calculated from (4.39) and the 
resulting temperature defines a point A'. We then follow the dry adiabat through 
A' until the saturation value of the air is reached where the dry adiabat intersects 
the saturation mixing ratio line xs +  dxs at point B. Note that in Fig. 4.6 dp, dT  
and dxs are all negative. The saturation adiabat may then be constructed through 
AB, and so on through BC, CD, etc.

It will be useful to define some further temperatures which can be found on 
thermodynamic diagrams:

■ The equivalent temperature is the temperature reached isobarically when all 
the vapour in a sample of moist air has been condensed.

■ The equivalent potential temperature is the temperature reached by expand­
ing a parcel of air along the saturated adiabatic line until it is completely dried 
out and then compressing it along the dry adiabat to the pressure of 1000 hPa.

■ The dewpoint temperature is the temperature at which a parcel of air would 
become saturated if it were cooled isobarically without any change in the 
mixing ratio.

■ The wet-bulb temperature is the lowest temperature to which air may be 
cooled by evaporating water into it.

F ig u r e  4 .6  Graphical construction of saturation adiabats.

T+dT T

0+ d 0

p+dp -

P

xs+dxs
Saturation ^  

adiabat

(A

^ 0

x s

/ /
a/ b
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■ The wet-bulb potential temperature is the wet-bulb temperature reached 
when a parcel of air is brought along the saturated adiabat from its wet-bulb 
temperature to a pressure of 1000 mb.

The preceding exercise describing the construction of saturation adiabats 
illustrates an important principle. It is that the dry adiabatic line, the saturated 
adiabatic line and the line of equal mixing ratio for a given parcel of air all 
intersect at a common point, the lifting condensation level. This principle is 
known as Normand’s theorem after Sir Charles Normand who first directed the 
attention of meteorologists to it.

Although the hygrometric equation (4.40) is the basic equation for determining 
humidity, it is not always immediately practical for calculations of dewpoint 
temperature, relative humidity and mixing ratio. Below are some approximate 
formulae from Abbott and Tabony (1985) linking the various quantities for use 
if Tw > 0°C. We use T  for temperatures (in degrees Celsius), TD for dewpoint 
temperature and Tw for wet-bulb temperature; e for vapour pressure and es for 
saturation vapour pressure; and p for pressure in hPa. Note that e is identically

4.29 NORMAND’S THEOREM

4.21 S o m e  u s e f u l  e m p ir ic a l  r e l a t io n s h ip s

es(TD).
The Magnus equation is

The Regnault equation is

e =  es{Tw) -  0.000199p(T -  Tw) 

and the transposed Magnus equation is

where
B = In (e/6.107)

The relative humidity RH  is

RH  =  e/es(T)

and the mixing ratio, x, in g kg 1, is

x =  620
e

p - e

Given T  and Tw, one uses the Magnus equation (twice) to find the saturation 
vapour pressure at T  and at Tw, then the Regnault equation to find es(TD), then 
the transposed Magnus equation to find TD, and the last two equations to

e‘<r > = 6-107^ ( J l T r )

_  /  239.0J \
D \17.38 — BJ
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determine relative humidity and mixing ratio. If Tw < 0°C then the coefficients
22.44 and 272.4 are used instead of 17.38 and 239.0 respectively in the above
equations.

4*22 Frosuens

1. One sometimes hears the expression ‘it makes my blood boil!’ At what 
pressure level in the atmosphere would this actually occur? Normal 
temperature of the human body is about 37°C.

2. What would be the difference in the latent heat of transformation from water 
vapour to liquid water if the temperature was 100°C instead of 0°C?

3. Using equation (2.5) derive a more accurate form of Clapeyron’s equation 
than (4.14) and compute the saturation vapour pressure of water at 100°C.

4. From the definitions of mixing ratio and specific humidity show that 
x =  ̂/  (1 — s).

5. Show that - (L wv/F ) dxs =  cpd d(loge0), which can obviously form the basis 
of saturated adiabat construction on a tephigram.

6 . Construct the saturated adiabat through (1000 mb, 22.5°C) between 
1000 mb and 800 mb on an available aerological diagram.

7. Show how Fig. 4.6 illustrates Normand’s theorem.
8. Integrate the Clausius-Clapeyron equation for the equilibrium between 

water and water vapour in the case where the latent heat depends upon 
temperature, i.e. Lw<v =  L0 -  a(T -  F0). Show that your answer reduces to
(4.21) as a 0 and hence Lw v —> L0.
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HYDROSTATIC EQUILIBRIUM

S. I W h a t  is  h y d r o s t a t ic  eq u ilib r iu m ?

We have found that for meteorological purposes it is a close enough approxi­
mation to treat dry air as if it were a perfect gas. The atmosphere is therefore 
compressible. The weight of the atmospheric column above some reference 
height compresses, literally squashes, the column below the reference height so 
that the mass of the latter column is squeezed together and occupies less space, 
when averaged over the earth’s surface, than the upper layers above that 
reference point. This is what is meant by hydrostatic equilibrium. It is a stable 
state in which no vertical motion occurs. Numerical models of some aspects of 
atmospheric motion are often described as hydrostatic or non-hydrostatic, 
depending on whether the condition of hydrostatic equilibrium is maintained 
at all stages of the calculations, or whether that condition is disobeyed and 
vertical instabilities are allowed to generate. Such vertical instabilities might be 
heavy showers and thunderstorms. These kinds of weather events usually occur 
over a relatively small area at any given time. It has been estimated that unstable 
upward vertical motion only occurs over about 1 % of the earth’s surface at any 
given moment. Much of the time there is very gentle subsidence or downward 
motion of a few centimetres a second. This condition gives rise to quiet, fine 
weather. Thus hydrostatic equilibrium is a very useful, simple and practical 
condition to impose.

1,2 T h i  h y d r o s t a t ic  e q u a t io n

Thus, the atmospheric pressure measured by a barometer at any point in the 
atmosphere represents the total weight of an air column of unit cross-section 
above that point reaching to the outer limits of the earth’s atmosphere. We will 
consider a thin slice of such a column (Fig. 5.1). If we denote the height and 
pressure at the bottom of the slice by z,p and at the top by z +  dz, p  +  dp, 
respectively, the pressure difference dp is the weight of the unit air column of 
thickness dz.
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Figure 5.1 The hydrostatic equation.

It follows that dp =  — pg dz where dp is the change of pressure along the 
vertical height axis, p is the density and g is the acceleration of gravity; dp is 
negative if the pressure decreases as the height increases. The z axis extends 
vertically upwards from the earth’s surface and is normal to the plane tangent to 
the earth’s surface at the point of intersection.

The relation dp — -p g d z  is called the hydrostatic equation. It is usually 
expressed in partial differential form

dP
d i = - pg

(5.1)

The hydrostatic equation represents the balance between the weight of unit 
mass of air on the one hand and its buoyancy on the other. If (5.1) is valid the 
atmosphere is said to be in hydrostatic equilibrium.

If the term — (1 /  p) (dp/dz) is greater than g the air parcel will rise while if it is 
smaller it will sink. The same principle governs whether an object will float or 
sink in water or other liquid medium.

5.3 D e f in it io n  o f  lap se  r a t e________________

The lapse rate is defined as the change of temperature with height. The 
temperature normally decreases with height in the troposphere. However, 
sometimes in the boundary layer near the surface, and occasionally at other 
levels of the atmosphere, the temperature may remain constant or increase with 
height over short vertical distances. When the temperature increases with height, 
we define the temperature plot with height an inversion. Inversions often occur in 
the early morning after a clear cold night during which the air near the ground 
cools faster than the overlying air. Inversions can be readily designated on an 
aerological diagram as the slope is upwards and to the right of the isotherms 
instead of to the left. Mathematically, we denote the lapse rate by the relation 
-d T /d z  =  7 . Therefore, if the temperature decreases with height, which it 
usually does, we have a positive lapse rate. If there is an inversion the lapse 
rate would be negative.

p+dp

V

z+dz

z
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$ .4  T h e  t h ic k n e s s  e q u a t io n

We will substitute in (5.1) the value of p obtained from the gas equation (2.7). 
Using the total instead of the partial differential form we have

Eq. (5.2) may be integrated between specified limits if it is assumed that the 
temperature remains constant with height. Then

where z0, p 0 are the values of height and pressure, respectively, at the lower or 
reference level of the layer considered. We see that the term In (po/p) represents 
the ‘squeezing’ of the layer by the pressure p exerted at the upper boundary. In 
order to obtain a numerical result for the difference z -  z0, which is clearly the 
thickness of the layer, we must keep T  constant. This is not strictly possible, 
unless the layer is isothermal, which would be an unlikely condition. We know 
from observations that temperature normally decreases with height. However, 
we may manipulate the situation to our advantage by defining T  in equation
(5.3) as a mean temperature of the layer. This may be found graphically from an 
aerological diagram upon which an actual temperature ascent curve has been 
plotted. We will return to that later. The dependence of the thickness on the 
mean temperature Tm is just a manifestation of Charles’ law, that the volume of a 
given mass of gas will expand if the temperature is increased and contract if 
the temperature is decreased. Thus the thickness of a layer is greater if the 
temperature is higher and smaller if the temperature is lower than some 
arbitrarily chosen reference value. Equation (5.3) is known as the thickness 
equation and it is extremely important in the analysis of upper air synoptic 
charts, a subject we will cover in a later chapter.

S .S  PRESSURE-HEIGHT FORMULAE IN MQOEL ATMOSPHERES

By a model atmosphere we mean one which is assumed to have an idealized 
structure, as far as temperature and humidity are concerned. One of the simplest 
models we can construct is that in which temperature is constant with respect to 
height and from which water vapour is absent. One such model is the isothermal 
model described by equation (5.3). Another form of (5.3) is

T  is specified and constant in equation (5.4), not a mean value such as is used in
(5.3) to calculate the thickness of a selected layer in the atmosphere. It can be easily 
seen from (5.4) that it would not be possible to have an isothermal atmosphere of 
finite thickness, since at the top of the atmosphere p — 0. (See problem 1.)

In p — — —— + constant

(5.4)

dp _  gdz (5.2)

(5.3)R T  p0z — zn =  In —
g P

f - g ( z  -  z0) \
Positive role model Positive role model 



5.5.1 Dry atmosphere with a constant lapse rate
We have already seen that the lapse rate is defined by

— £
We may then express the temperature at any height z by the relation

T = T 0 - 1Z (5.6)

where T0 is the temperature at the reference level z =  0 and 7  is a constant lapse 
rate. We may substitute (5.6) in (5.2). Thus

d.p = - g d z
P R ( T o - J z )

Then the above equation may be separated. We obtain

dP = g d ( r 0 - 7 z)
P R l  {T0 - ^ z )

and integrating,
g

In p — —  In (T0 — 7  z) +  constant 

If we evaluate between limits p0, p and z0, z,

1„ L  = A . in l« - F
Po R l  To ~ 7Z0

At the surface z = z0 = 0, p = p0. Then

In L  = - L t n I l Z j l
Po To

and

Equation (5.7) is the barometric equation for an atmosphere with a constant 
lapse rate.

5.5.2 Height and lapse rate of a homogeneous atmosphere
One may also integrate the hydrostatic equation, assuming a homogeneous 
atmosphere, that is an atmosphere in which density does not change with height. 
In this case

where p0 is a constant density. Then

/ ' " ‘ dz and z - z „ = ^
J - = ~ o  Jp=Po PoS PoS

Positive role model Positive role model 

Positive role model 
Positive role model 

Positive role model Positive role model 
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At the surface z =  0, p =  Pq and
Poz =  -

Pog
The height of such an atmosphere may be computed. At the outer limits of the 
atmosphere p =  0 so that

Po RT0 , .
T̂OP = ----= — - (5*9)

Pog g
where T0 is the surface temperature.

If a value of 293 K is substituted in (5.9),
287 x 293 Q i:1  

z t o p  =  — ^  8 . 6  k m

Different values of the height of an atmosphere will be obtained if other values of 
the surface temperature are assumed. The higher the value of surface tempera­
ture substituted in (5.9) the less will be the density and thus the greater the
height of the resulting homogeneous atmosphere. Of course, the homogeneous 
atmosphere never exists in nature; it is purely a hypothetical concept.

If we multiply the hydrostatic equation (5.8) by AT we have

f z d T = - p 0g d T

l d p  = pogdT  

Integrating as before since 7 is constant

l ( p - P o )  = P o g ( T -  To)
IP  ~  1Po =  P ogT  -  PogT0 

At the upper boundary p = 0 and therefore T — 0

7  =  =  J _  =  0 .0 34oC m -i =  340Ckm _1. (5.10)
Po

This is the lapse rate for a homogeneous atmosphere. It will be seen from the 
following section that the lapse rate for a homogeneous atmosphere of constant 
density is extremely high and unstable. No such lapse rate could exist in the free 
troposphere.
Worked Example
What would be the height of an atmosphere of density 1 kgm -3  at all heights 
within the air column? Assume surface pressure is 1012 hPa.
Solution:

z =  1012 X ^  =  10.326 km 
9.8

5.5.3 The dry adiabatic atmosphere

This is the most useful and practical of all the model atmosphere lapse rates 
because it is close to the rate at which a parcel, or bubble, which might be a more



60 HYDROSTATIC EQUILIBRIUM

visual concept, cools as it rises up through the atmosphere. We consider a parcel 
of dry air which is rising adiabatically in this way. Remembering that the 
potential temperature remains constant in a dry adiabatic process it follows 
from ( 2 . 4 5 }  that

Substituting for dp/dz  from the hydrostatic equation and using (2.8) and 
(2.39)

If, as before, the lapse rate is considered to be a positive value for a decrease of 
temperature with height

Now the term dp/dz represents the decrease of pressure of the parcel as it 
ascends. This must also equal the decrease of pressure of the environment since it 
is assumed that there is no discontinuity of pressure at the boundary separating 
the rising parcel or bubble of air from its surroundings.

If the temperature of the environment is not exactly the same as that of the 
rising air parcel level for level we have

where p is the density of the air in the surrounding atmosphere, that is in the 
environment.

Since there is no discontinuity of pressure p = p / R dT ’ and

where T f is now the temperature of the environment and T  is the temperature of 
the rising parcel. Normally T / T '  =  1 to a close approximation. j d is the dry 
environmental lapse rate for the case when T  /  T f.

The height of an atmosphere having a dry adiabatic lapse rate may be

Dividing through by dz,

dz p  dz

The dry adiabatic lapse rate will be denoted

dT =  Kd T dp

(5.11)

(5.12)

dT _  - n dTpg  
dz p

d6  d r  dp
T  = “ '“ 7  = 0

d r  = «dr —
V

or

dr- r
_  dz d

r  -  8  
1 d _  7“cpd

Td =  9.8°Ckm“ 1

_ d T = _  «dTpg  = g T
dz 7d fJRAT'  cDd T' d T'



STABILITY AND INSTABILITY 61

calculated from (5.11). Thus

p̂d
Integrating

At the upper boundary p — 0 and therefore T — 0, and at the lower boundary 
zq — 0. Then

A parcel of air is said to be stable, unstable or indifferent with respect to its 
environment if, on being given an initial impulse, it returns to its original 
position, continues its movement or stays where it is.

An example of the concept of stability may be taken from the world of 
solid things. In the first case we assume that a marble rests at the bottom of a 
symmetrical concave surface (Fig. 5.2). If the marble is given a flick with the 
finger it will roll a short distance up the surface, soon returning to its initial 
position. This is the stable case. In the second case it is assumed that the 
marble rests on a small perch at the top of a symmetrical convex surface. A 
flick of the finger will send the marble rolling away down the surface. This is 
the unstable case. In the third case let it be assumed that the marble rests on 
a perfectly flat horizontal surface. If the marble is flicked it will move a short 
distance over the surface and then come to rest and remain where it is. This is 
the indifferent case.

Now a parcel of air moving through its environment will, if unsaturated, 
follow the dry adiabatic curve or, if saturated, follow the saturated adiabatic 
curve. By thus following its path on an upper air diagram its density relative to its 
surroundings may be seen at a glance. The assumption is made that there is no 
mixing between the rising parcel and its environment.

If T0 =  293 K, zTOP = 29.9 km.

5.6 S t a b il it y  a n d  in s t a b il it y

a
Stable 

Marble in a valley
Unstable 

Marble on a hill
Neutral 

Marble on a tabletop

F ig u re  5 .2  Stable, unstable and neutral marble.

dT-  r 
d 7 - " rd

z -^ o  =  — (To -  T) 
z

  T7
z TOP —  1 0

Z
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From the hydrostatic equation (5.1)
dp

or

I |  +  ,  =  0 , , , 3 ,

showing that the vertical acceleration is zero.
Now if the parcel is not in hydrostatic equilibrium it will have a vertical 

acceleration
d2z .. 1 dp
i (5-14)

In (5.14) the term
dp , 
d-z = - p8

where p is the density of the surrounding air as distinguished from the density of 
the rising parcel. If we substitute for dp/dz  in (5.14) it is seen that

If the air parcel is lighter than the environment p < p and z is positive, that is 
the vertical acceleration is directed upwards since —( 1 / p)(dp/dz), the buoyancy 
acceleration, exceeds g. If p > p ,z is negative from (5.15) and is directed 
downwards. In this case the buoyancy acceleration is less than g , and (5.14) 
equates the vertical acceleration to the resultant buoyant force acting on unit 
mass of the parcel.

As density is not directly available from aerological data the buoyant force 
may be conveniently expressed in terms of the temperature. Substituting from 
the gas equation in (5.15) and remembering that sincep —p  the parcel will adjust 
its pressure to the pressure of the environment, we obtain

* =  *2 ^ 2  (516)

where T  and T 1 are the temperatures of the parcel and environment 
respectively; strictly speaking T , T f should be replaced by the corresponding 
virtual temperatures T*y T*f as derived in (4.26). In practical meteorology the 
actual temperature is often used instead of the virtual temperature since the 
difference between the two is small.

From (5.5) the lapse rate was defined as 7  =  —(dT/dz).  We may call 7 ' the 
environment lapse rate and define 7  =  — (dT/dz)  as the individual lapse rate. At 
the reference level it is assumed that the parcel and its environment have the

or

\P  )  P
(5.15)Positive role model 
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same thermodynamic properties. When the parcel is given an impulse it will 
separate from its environment and its thermodynamic properties may then differ 
from its environment in any new position it may take up.

Now
d T ^  ^—  -z =  - 7 Z=  T -  T0

where Tq is the temperature of the parcel at the lower reference level, and

d T'  , ,—  -z =  —7  z = T - T 0

where it is assumed that the temperature of the environment at the lower
reference level is also T0, that is it is the same as that of the parcel at the lower
reference level.

Subtracting,

{l  ~ l ) z = T — T 1 (5.17)

Substituting in (5.16) we have

s =  £ < 2 L p l  (5.18)

Thus the value of the vertical acceleration of a parcel of air is a function of the 
difference between the environment and individual lapse rates. We may consider 
the case where the reference level is at the ground. Then, if the parcel is given an 
initial upward impulse,

■ z is positive and therefore directed further upwards if 7 ' > 7
■ z is zero when 7 ' =  7
■ z is negative and therefore directed downwards back to the reference level 

when 7 ' < 7 .

If the reference level is at a higher level, that is above the ground, the sign of z 
will be the same as above for an upward-directed impulse. The sign of z will be 
reversed for a downward-directed impulse. Thus, if 7 ' > 7  and the parcel is 
given an impulse downwards it will continue to accelerate in that direction.

7 ' = 7  according to whether the lapse rate or decrease of temperature with 
height in the environment is greater than, equal to or less than the decrease of 
temperature with height undergone by the individual parcel when it is displaced 
from the environment.

Now 7  represents the process curve lapse rate to which a parcel is subjected 
during ascent or descent. This is Td, the dry adiabatic lapse rate for dry air, and 
Ts, the moist adiabatic lapse rate for saturated air.

We may now state the following conditions governing stability and instability 
according to the criteria which were stated at the head of this section. We give a 
parcel of air an initial impulse upwards; then if z, the vertical acceleration, is 
positive and directed upwards, that is if the parcel continues to rise, then the 
atmosphere is unstable.

If z is zero the atmosphere is in equilibrium, and if z is directed downwards,
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that is if the parcel returns to its initial position, the atmosphere is stable. The 
sign of z would be reversed for an initial downward impulse. Thus, we see from 
our foregoing conclusions that, for dry air,

(i) if 7 ' > Td the atmosphere as shown by the sounding curve is unstable,
(ii) if 7 ' =  Td the sounding curve is indifferent, and
(iii) if 7 ' < Td the sounding curve is stable;

and, for saturated air,

(iv) if 7 ' > Ts the sounding curve is unstable,
(v) if 7 7 =  Ts the sounding curve is indifferent or neutral, and

(vi) if 7 7 < Ts the sounding curve is stable.

If we refer to unsaturated air we say further that,

■ if 7 ' > Td the sounding curve is absolutely unstable
■ if 7 ' =  Td the curve is dry indifferent. It is neutral for dry air and unstable for 

saturated air.

If Ts < 7 ' < Td the curve is conditionally unstable. It is stable for dry air but 
unstable for saturated air.

If  y =  rs the curve is saturated indifferent. It is neutral for saturated air but 
stable for dry air.

If 7 ' < Ts the curve is absolutely stable. Figure 5.3 illustrates the stability 
criteria.

If the reference level is stable the parcel will, as already stated, return towards 
the equilibrium level after displacement. Its inertia will, however, cause it to pass 
the reference level so that an oscillation will be set up.

We may define a positive number N  such that

N 2 = ^ r t f , —  (5-19)

Equation (5.18) may then be written as

z =  - N 2z

F ig u re  5.3 Stability criteria on the skew (T, — loge/>) diagram or tephigram.
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a solution of which is
z — A sin Nt (5.20)

and the parcel will oscillate about the level z =  0 with amplitude A and period 
2n/N.  Such an oscillation is known as a Brent-Vaisala oscillation, after the two 
persons who first predicted its existence.

As an example, we may compute the period of oscillation of a dry isothermal 
layer by substituting numerical values for N  in (5.19):

If T0 =  273 K, t =  335 seconds.
However, since the lapse rate is normally nearer the dry adiabatic the period 

of oscillation is usually considerably longer.

The term on the right hand side of (5.21) may be expressed as an area on 
an (a,/?) diagram. On the tephigram the element of area is given by the 
small parallelograms bounded by the isobars and isotherms since a, a  are 
proportional to T, T'  for a given pressure. The area on a tephigram also 
represents work, (3.5). Equation (5.21) then represents the element of work 
done by the buoyant force on unit mass of the parcel while it moves through the 
height dz.

Integrating (5.21),

This area, A, is that bounded by the two pressure levelsp { andp 2  and the process 
and environment curves respectively (Fig. 5.4). If the process curve is warmer 
than the environment curve the air is unstable and the area described represents 
the positive latent energy of instability within the layer. This energy is released 
when a suitable impulse or trigger action sets off the vertical motion. A rising 
bubble of air may then remain warmer than the air through which it is ascending

 5 .7  E n e rg y  o f  d ^f la c e m in t

Equation (5.15) may be stated as

' =  =  = 7 ^

^ . d z  =  8 { f , - pU z 
At p

where w = dz/dt  is the vertical velocity. The left hand side is vvdw =  d(^ w2).
This expression represents the change of kinetic energy per unit mass of the 

particle while it moves through the height dz. When the buoyant force expressed 
bv the term (2 / 0 ) (o' -  o) is multiplied bv dz one obtains

8- y  -  p) dz =  \ P-  (p' -  p) dz =
p p p pp (5.21)

^  • dz =  —dp(a — a )

A — — I  (a — a )  dp
Jp\

(5.22)
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over a considerable height range. Convective weather phenomena such as 
showers and thunderstorms arise in this way. If the process curve is colder 
than the environment curve the atmosphere is stable and the area represents the 
amount of work which must be performed on unit mass of the parcel to displace 
it from level p x to level p 2  or vice versa. The energy is then negative. The 
magnitude of the positive or negative latent energy in the atmosphere is a useful 
means of judging its relative stability. Isopleths of such values may be plotted on 
synoptic charts and the resultant patterns analysed and used as a further tool in 
the complex technique of weather forecasting.

In Fig. 5.4 the energy is represented in schematic form by the shaded area. In 
this example the air is dry. If it is unsaturated it may be assumed to be dry for 
practical purposes. The process curve is the dry adiabatic line and the environ­
ment curve is the plot of the actual temperatures at different pressures or height 
levels measured by a radiosonde instrument.

On occasions the lapse rate may be stable for dry air and unstable for 
saturated air. The atmosphere is then called conditionally unstable. If, in 
such a case, heating of relatively moist air at low levels during a warm day 
forms a superadiabatic lapse rate the air at these levels may ascend until it 
becomes saturated and then ascend further along the saturated curve. 
Forcible lifting over a hill or mountain barrier may also give the required initial 
impulse instead of solar heating. If the impulse is insufficient the air will 
sink back to its original level. A conditionally unstable lapse rate is illustrated 
in Fig. 5.5.

Charles Normand was an internationally known meteorologist who lived in 
the first part of the twentieth century. He attempted to classify various types of 
stratification on the basis of the energy principle inherent in the aerological 
diagram. In Fig. 5.5 suppose that ACBEG is the process curve for a parcel of air 
moving in an environment whose virtual temperature is given by ABDEF, and 
let the lower negative area be of magnitude N  and the upper positive area be 
of magnitude P. Then, Normand’s classification of stability distinguishes the 
following three cases:

F ig u re  5.4 Area of latent energy.
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F ig u r e  5.5 Schematic example for conditional instability: environment and 
adiabatic lapse rate curves.

1. N  > 0, P =  0 absolute stability
2 . N  = 0, P > 0 absolute instability
3. N  > 0, P > 0 conditional or latent instability, which can be subdivided into

P > N  real latent instability
P < N  pseudo-latent instability

In the case of absolute stability, there is just no energy available (positive area) 
to start an initially stationary parcel moving upwards and, in the case of absolute 
instability, there is no lower negative area to inhibit buoyant vertical motion. 
The latently unstable cases are more complex, however.

In the real latent case, the amount of energy which must be supplied to a 
parcel at A in Fig. 5.5 in order for it just to reach B is less than the amount 
which can be released above B, and the difference (P — N) > 0 is taken to be 
the amount of specific energy available for buoyant convection. In practice, the 
latter energy appears to be only available on occasions when N  is small and the 
probability of convection occurring increases as N  —» 0 in this case. One might 
be tempted to attribute this to the fact that some parcels would be bound to 
penetrate a very thin lower negative layer as a result of external impulses. The 
initial velocities required to overcome even a small N  are quite large, however, 
and it is thought to be more likely that, in situations where N  is small above a 
radiosonde station, there may exist nearby superheated areas where it is zero and 
absolute instability is therefore present. In the pseudo-latent case (P — N)  < 0 
and so there is no net amount of specific energy available for buoyant convection.

In all cases where a parcel arrives at the level E with non-zero kinetic energy, 
the assumption of the closed-parcel theory is that the parcel will ascend 
sufficiently far into the upper negative region to lose that kinetic energy and 
will then execute vertical oscillations about E with the Brunt-Vaisala frequency 
expressed in equation (5.19). In practice, cloud tops do not usually reach the top 
of the upper positive area unless they are powerful cumulo-nimbus clouds, when 
wide anvils stretch out from the tops of the convective part of the clouds. In
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conclusion of the discussion, it should be borne in mind that there are better and 
more exact theories of penetrative convection, such as the entrainment theory, 
which allows for mixing of the convective element with the environment, and the 
slice theory, which allows for the downward movement of the environment, 
which must compensate the upward motion of the buoyant elements, if mass is 
conserved. These more advanced ideas are beyond the scope of the thermo- 
dymamics content of this text. They would be incorporated in numerical models. 
However, for most practical analyses, particularly where the issue of weather 
forecasts has to meet a time deadline, the parcel methods discussed here will be 
sufficiently accurate.

5.8  C o n v e c t iv e  a v a il a b l e  p o t e n t ia l  e n e r g y

Figures 5.3-5.5 show examples of different kinds of lapse rates in schematic 
form. Real examples on an aerological diagram would also show the humidity 
profile as shown by the mixing ratio lapse rate. In Fig. 5.4 it is assumed that the 
air is dry, but in Fig. 5.5 it is assumed that the rising parcels of air become 
saturated at the point C. Below C the parcels rise along the dry adiabat line, but 
after C, the condensation level, the parcels follow the saturated adiabats. In Fig.
5.5 the area marked with plus signs represents the amount of latent or available 
energy, as discussed in the preceding section. This energy may also be called 
convective available potential energy (CAPE). We may define potential energy 
per unit mass at some level z by the expression

i{z  -  -o)
where z0 is a reference level. The potential energy of the (z0, z) layer is then

£p =  [  pg(z -  Zo) dz (5.23)
Jz 0

For the whole atmosphere from z0 =  0 to oo, integration of (5.23) by parts yields
roc

E r = l  p i t

which may be rewritten as
1 i [0 R

Ev = -  papgdz= - -  /  pa dp =  /  T dp.
& JO &  JPo &  J pq

Since the internal energy of such a column is

f ° Td
8  Jpo

it follows that its total potential energy (TPE) is
C r°

/  Tdp. (5.24)
S  Jpo

Now suppose that the TPE in our column is somehow minimized by means of 
a virtual adiabatic re-arrangement of mass. The difference between the actual
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TPE and the minimum TPE represents the amount of TPE available for 
convection and may be regarded and defined as the CAPE. This is a very 
important property of the atmosphere. In climatic studies and climatic models 
sea surface temperature anomalies are regarded as very important indicators of 
rainfall anomalies. Thus, high sea surface temperature anomalies are associated 
or positively correlated with increases in rainfall and vice versa. It should be 
borne in mind, however, that it is really CAPE anomalies that are the important 
criteria. Thus, if sea surface temperatures increase and the upper level tempera­
tures remain constant then the amount of CAPE does increase. Overturning and 
cloud and precipitation may increase. But if the upper level temperatures change 
by the same amount as the sea surface temperatures the amount of CAPE will 
not change much. There has been some debate as to the role of CAPE in climatic 
change. Professor R. S. Lindzen at MIT has identified CAPE as a parameter 
which can be used to help in the detection of climate change. He has referred to 
the climate of 18 000 years ago in the midst of the last glaciation and suggests that 
on the basis of observations of unicellular creatures called Torams’, the sea 
surface temperature in the tropics was only about a degree colder than today. 
However, the temperature at 5 km, estimated from evidence of the height of the 
snowline on high mountains, was about 5°C colder than today. This meant that 
there was much more CAPE, so that CAPE changes inversely with sea surface 
temperature.

 5 .9  L a p s e  r a t e  f o r  u n s a t u r a t e d  a ir

The adiabatic process for unsaturated air is given by (2.28)

cp d T  — a dp = 0
where

from (4.27). Then
cp = cpd(l + 0-9*)

d r  dp
Ĉ  = a dZ = ~g

r = - — = £-dz c„

(5.25)

The error arising in neglecting ().9x compared with 1 is small. For all 
practical purposes we may therefore consider the adiabatic lapse rate for moist 
unsaturated air to be the same as that for dry air:

r  =  Td =  —  (5.26)
Cpd

5.10 L a p s e  ira te  f o r  s a t u r a t e d  a ir

We may derive the lapse rate which expresses the rate at which moist air will cool 
as it ascends when it is saturated.
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The saturated process is described by (4.33) as

- L d x s = (1 + x s)[c/7d r - ^ r d ( l n  p)} 

- L d x s =  (1 +Xs){cpdT + gdz) 

Dividing through by dz

_ dxs \ (  dT
dz -  ( s)( ĉ d F  + 

dx
=  0  +  xs ) ( - ^ r s + g)

where Ts is the adiabatic lapse rate for saturated air,

L(dxs/dz)
Cp & i ,

1 +  *s
r  _  L(dxs/dz) g

Cp (1  -f" X s )  Cp

Now xs =  ees/p from (4.47), and, differentiating (4.24),

(5.27)

dxs pe(des/dz) — ese(dp/dz) 
dz p2

Substituting for des/ d T  from (4.18)

dxs =  -cLes Ts eseg =  _ 
dz “  RvT2p p R T ~

-eYs des eseg
p dT  pRT

xsLTs

We assume that 1

rs = —̂
pd

RVT2 pRT  

1 and R ~  Rd, cp ~  cpd. Then, from (5.27), 

gxvLT^ x.

rs +

1 +

x,L2r.

RVT2 ' RdT

x s g L

+ -

+

cpd

g
CpdRyT2 cpdRdT  cpd

x X z
CpdRyT2

_g_ XcL
R , T

(5.28)

p _  Td(l +  xsL / R dT)  
s “  1 +  xsL2/cpdRvT2

It is seen that the saturated adiabatic lapse rate is a fraction of the dry 
adiabatic lapse rate and that this fraction is a function of the amount of 
water vapour in the air. When the air is quite dry xs =  0 and Ts =  Td, the dry 
adiabatic lapse rate. The saturated adiabatic lapse rate at different levels may 
be evaluated from (5.28) for given initial conditions of p , T. It is seen that at 
very high levels the saturated adiabats on a tephigram approach the dry 
adiabats.
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- - - S .II P r o b le m s __________________ ,

1. Show that p — Po exp (—constant • z) for an isothermal atmosphere. Why is 
such an atmosphere unlikely to exist?

2. Figures 5.4 and 5.5 are schematic. Construct ascents of actual cases of 
temperature and humidity profiles and shade the areas of CAPE.

3. At a particular instant, a dry parcel of air has a temperature of 250 K 
and is moving vertically through a dry isothermal environment of the 
same temperature. Under the assumption that the motion of the parcel is 
adiabatic, find its period of oscillation about the initial reference level. 
Suppose the environment lapse rate is dry adiabatic.

4. If a parcel has an initial upward velocity w'0, what negative area can it 
describe before its kinetic energy is consumed? Into what type of energy is 
this kinetic energy converted?

5. Write a computer program to construct the saturated adiabatic lapse from 
40°C to — 40°C. Use tables to obtain the values of the saturation mixing 
ratios at different temperatures.

6 . If the lapse rate is constant how does the density change with height? What is 
the lapse rate when the variation of density with height is zero?

7. Solve equation (5.7) for z, the height. What is the value of the height for 
the case of a dry adiabatic lapse rate? Express this in terms of the potential 
temperature, assuming p0 = 1000 hPa.

8 . Suppose the atmosphere has a constant lapse rate and surface tempera­
ture T0. Suppose the temperature varies everywhere with time while p0 is 
constant. At what height is dp/dt  a maximum?

9. An atmospheric column with a dry adiabatic lapse rate is heated by 1°C 
throughout. What is the maximum pressure change occurring within the 
column? Assume p0 = 1000 hPa, T0 =  293 K.
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THE EQUATIONS OF MOTION: I 
THE CORIOLIS FORCE

6.1 In t r o d u c t io n

So far, the only dynamical phenomenon with which we have dealt is that of 
convection. In equation (5.14) we introduced the concept of a vertical accelera­
tion for a parcel which was not in hydrostatic equilibrium. We will now examine 
the idea of force and acceleration in much more detail, concentrating on the way 
in which horizontal motion of the atmosphere is generated.

The procession of weather changes which takes place from hour to hour, 
from day to day and from month to month over the surface of our globe is 
fundamentally the result of the motion of the air, a motion resulting from the 
action of various forces upon the air parcels. The primary origin of these forces is 
the energy received from the sun. This energy heats the atmosphere and drives 
the atmospheric engine. Water vapour is evaporated into the air and subse­
quently precipitated as dew, frost, rain, hail or snow. The processes involved are 
complex, but broadly speaking the general circulation of the atmosphere arises 
as a result of the unequal seasonal and latitudinal and geographic heating of the 
earth’s surface and atmosphere and of the rotation of the earth. The result is that 
the radiant energy of the sun is transformed into kinetic energy of moving air or 
wind. The vertical component of the wind is usually small and is often neglected 
in comparison with the horizontal components. Nevertheless, vertical motion is 
the prime cause of nearly all forms of cloud and measurable precipitation, 
and of the absence of clouds, and therefore the main cause of all the weather 
we experience.

In order to proceed with our arguments we must invoke Newton’s second 
law of motion: the rate of change of momentum of a body is proportional to the 
impressed force on that body and takes place in the direction of that force. We 
may write this law in the form

^(m v) =  F (6.1)
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where m is the mass of the body, v is its velocity and F is the resultant 
impressed force. Note that in this introductory equation we have used v 
where the bold type signifies that the velocity is a vector, that is the notation 
implies that the velocity has both speed and direction. If we assume that the 
mass of the body stays constant we may write (6 .1 ) in the form

F = m 37 (6'2)
As a special case of (6.2) we have Newton’s first law of motion: every body 
continues in a state of rest or of uniform motion in a straight line, except in so far 
as external impressed forces change that state.

6,2 Mo t io n  a s  o b s e r v e d  w it h  r e f e r e n c e  t o  a f ix id

_________ ' ____ FRAHE OF COORDINATES

We must first remember that Newton’s laws of motion are only valid for a fixed 
system of coordinates. Such a frame of reference is known as an inertial frame. 
Whilst we know from relativity that there does not exist an absolutely fixed frame 
of reference, it turns out that a reference system based upon the ‘fixed’ stars is 
sufficiently close to an inertial one for most geophysical purposes. In mathema­
tical physics the most commonly used system of coordinates is the rectangular or 
Cartesian system of coordinates. In such a system the x, y  axes are constructed at 
right angles to one another on a horizontal plane. The z axis is constructed at 
right angles and vertically upwards from the origin. In such a system we may 
write (6 .2 ) in its component forms

du
(6.3a)

dvFv = m —  
} d t (6.3b)

5IItf (6.3c)

where Fx, Fy, Fz are the forces acting along the x, y, z axes and w, v, w are the wind 
components along those axes. In meteorology u and v may be thought of as 
westerly (i.e. eastwards) and southerly (i.e. northwards) wind components, 
respectively, while w may be thought of as the vertical (upward) wind speed, x 
and u are positive if measured to the right of the origin of the rectangular 
coordinate system and negative if measured to the left of the origin, y  and v are 
positive if they are measured up in the horizontal plane, that is towards the north, 
and negative if they are measured down in the horizontal plane, that is towards 
the south. The vertical direction is positive if it is measured up and out of the 
horizontal plane, and negative if it is measured down into the horizontal plane. It 
is important to be clear about these basic definitions before proceeding further. 
All of the equations of motion will contain these symbols. Incidentally, it might 
be noted that the quantity ‘force’ is difficult to comprehend, except within
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Newtonian mechanics. We all think that we know what it signifies, but it can 
really only be measured in terms of the acceleration it gives to unit mass. In 
Chapter 5 we introduced the acceleration of gravity, g, in the hydrostatic 
equation, g is measured as about 9.8 m s-2; that is, it imparts an acceleration 
of 9.8 m s- 2  to a body in free fall, without any retarding force such as friction of 
the air. We cannot really identify force any more closely than this. In future we 
will drop the symbol m in (6 .1)—(6.3). The forces then become forces per unit 
mass, that is they have the dimensions of acceleration.

6*3 M o tio n  a s  o b se rv e d  m  a  r o t a t in g  

FRAME OP COORDINATES

In a fixed system of coordinates such as we have described the resulting 
motions are fairly simple. However, the surface of the earth is not fixed in 
space. It describes an orbit around the sun and this gives rise to our seasons 
of summer and winter. But more important in the present context is the fact 
that the earth rotates about its axis with an angular velocity Q equal to about 
7.29 x 10- 5 rads - 1  which, of course, is once every 24 sidereal hours. Thus, 
motion cannot be described properly by (6.3), except at the equator; we shall see 
the reason for this later. We have to adjust our equations by including another 
term. This new term expresses an apparent force which arises in consequence of 
the rotation of the frame of reference. In other words, we must write our 
equations of motion with reference to a rotating reference frame, and not a 
reference frame which is fixed in space. The new force is called the Coriolis force. 
It is a factor which must be included whenever the motion of the air is the subject 
of study, whether in day-to-day weather forecasting or in climate models. It may 
only be neglected in studies of small-scale phenomena which do not last longer 
than an hour or two and which are therefore not influenced a great deal by the 
earth’s rotation. The Coriolis force is often difficult to visualize. Because of this 
we will look at several simple ways of detecting its existence in everyday life. 
After these examples we will derive the Coriolis force by several mathematical 
methods. The examples will become more difficult as we proceed, but the results 
are the same, although in some examples they show more detail.

6.3.1 The bear and the penguin

The very apt mathematical readers will be asked to excuse this first example. We 
imagine a polar bear at the exact North Pole. The surface is solid ice and the 
weather is clear and cloudless and it is the 21st of June. The bear has a good 
watch and at exactly 12 noon starts to walk towards the sun. Let us assume that 
2km h - 1  is average bear walking speed. The bear continues to walk until the 
watch does one complete revolution. The bear has now walked in a straight line 
towards the sun for 12  hours and thinks it must be a long way from its starting 
point. Imagine its surprise, that is if the bear does not possess any mathematical 
ability, to find that as the hands of the watch point to 12  midnight 1 2  hours later, 
there are bear footprints ahead, and these footprints look surprisingly like those
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of the walking bear. What are their origin? Actually the bear has completed a full 
circle, what is called an inertial circle. Although the bear has walked in a straight 
line towards the sun, which is a fixed star, the earth has rotated underneath. 
The plane covering the North Pole has rotated in an anticlockwise direction, but 
the bear has covered its inertial circle in a clockwise direction. To summarize, the 
bear has walked in a straight line with reference to an observer fixed in space. But 
to an observer on the earth, in a rotating frame of reference, the bear appears to 
have walked in a circle.

Suppose we imagine a similar example in the southern hemisphere, at the 
South Pole. This time a penguin conducts the same exercise. Conditions are 
identical except now it is the 21st of December. The result is similar except 
that the penguin will have described a circle in an anticlockwise direction 
owing to the fact that the earth’s surface has rotated in a clockwise direction 
around the South Pole.

The results of these two examples suggest that there is a force which acts at 
right angles to the direction of motion. In the northern hemisphere it acts 
perpendicular to and to the right of the direction of motion and in the southern 
hemisphere perpendicular to and to the left of the direction of motion. Because 
of this effect the Coriolis force is sometimes referred to as a deflective force. It 
does not change the linear speed of the moving body, but changes its direction.

6.3.2 The carousel or merry-go-round

Two children, Jack and Jill, go for a ride on a merry-go-round, which is going 
round in an anticlockwise direction. They are riding the horses. Jack gets on one 
side and Jill on the exact opposite side. Jack has a tennis ball. When the carousel 
is at full speed he throws the ball across to Jill and shouts at her to catch it. Jack 
watches the ball and sees it career off to the right far out of Jill’s grasp. What has 
happened? The ball has travelled in a straight line but Jack and Jill are rotating at 
a relatively fast rate. Consequently, the ball appears to veer off to the right. It is 
an example of the effect of the Coriolis force.

Suppose now the merry-go-round starts to rotate in a clockwise direction 
and the same experiment is carried out. The tennis ball will now appear to have 
veered off to the left as watched by Jack. This experiment simulates the effect of 
the Coriolis force in the southern hemisphere.

6.3.3 A simple practical example of the Coriolis force

Take a sheet of paper and position it on a desk or table with a pin, in such a 
way as to allow the paper to rotate. With one hand slowly rotate the sheet of 
paper in an anticlockwise direction. With the other hand take a pen or pencil 
and move the point towards a fixed object on the desk or opposite wall, 
keeping the eye fixed on this object, not on the paper. In this example the 
pencil is moving in a straight line in space, but the paper is rotating. The path 
drawn by the pen or pencil will be a curve to the right (Fig. 6.1), another example 
of the Coriolis or deflective force. The same experiment may be conducted with a 
record turn-table.



Figure 6.1 Illustration of the deflective force.

6.3.4 Simple mathematical derivation of the Coriolis force
We will again return to the North Pole and imagine that we have there a human 
observer. This observer can identify a specified object which is shot in a straight 
line away from the observer with velocity F  as illustrated in Fig. 6.2. In the 
absence of friction or any other retarding force the object would obey Newton’s 
second law and continue moving in a straight line along OA. However, the earth 
is rotating anticlockwise with angular velocity ft, so that after an interval of time 
8 {t) the observer is facing OA'. The observer would expect to see the object at 
OA' but, instead, sees it at OA, which is to the observer’s right. The object 
appears to have been deflected from OA' to OA. Now if AA' is small compared

F ig u r e  6 .2  Derivation of the expansion for the Coriolis force.
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with OA
aa ' =  oa'q = {vt)x (sit) = vnt2

AA'  =  \at2

where a is acceleration, and
a = 2Q.V (6.4)

Equation (6.4) expresses the Coriolis force per unit mass acting on a body or 
parcel of air moving over a plane surface which is rotating about a central axis 
normal to the surface. We have obtained some additional information from (6.4). 
It is that the deflective force is proportional to the velocity.

6.3.5 The Foucault pendulum
The action of the Coriolis force can be explicitly illustrated by a Foucault 
pendulum which is suspended at the end of a very long cable attached to the roof 
of the ceiling of a vaulted hall. Foucault pendulums are often exhibited in science 
museums, such as the South Kensington Science Museum in London. Suppose a 
visitor enters the museum in the morning and observes the pendulum swinging 
from right to left. Suppose the visitor leaves the museum late in the afternoon 
and passes the pendulum on the way out. The visitor will notice that now the 
pendulum is swinging at a different angle, that is in a different vertical plane than 
it had been earlier in the day. The pendulum has actually not changed its 
direction of swing in space, but the earth has rotated underneath it so that the 
pendulum appears to have changed its direction of swing. An example of this is 
shown in Fig. 6.3.

F ig u re  6.3 The Foucault pendulum deflection in the northern hemisphere.
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 __________  6 .4  C o n c lu s io n

We have given five examples of ways in which the Coriolis force can be 
detected. Four of these were practical examples and one was an easy mathe­
matical derivation. All of the examples studied were inertial. That is, they 
assumed that a body or object was moving at some constant speed caused by 
an initial impulse, or walking at some constant and controlled speed, as in the 
examples of the bear and penguin. Also we have so far considered that the 
underlying surface is rotating with some angular velocity Q, and that the axis of 
rotation is perpendicular to the underlying surface at some selected point which 
we chose to use as an origin. In the next chapter we will He concerned with air 
parcels in the atmosphere and will introduce two additional factors. The first of 
these are forces which act to accelerate (or decelerate) the air parcel along the 
coordinate axes in accordance with Newton’s second law. The second factor 
is to consider the spherical shape of the earth and break down the magnitude 
Q of the earth’s rotation to one component around an axis perpendicular to 
the horizontal plane, that is along the local vertical, and another component 
perpendicular to the local vertical. The local vertical can be identified as a line 
which is coincident with a plumb line with a weight on the end of it. We shall 
then derive the full equations of motion, including the Coriolis terms in a more 
rigorous manner than hitherto.

6.5 P r o b lem s

1. What is the radius of the circle described by the polar bear?
2. Why does the penguin meet its footprint in 12 hours and not 24 hours?
3. Write an essay describing your own personal understanding of the Coriolis

force with examples.
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THE EQUATIONS OF MOTION: 2 
DERIVATION IN VARIOUS 

COORDINATES

The most important force in the equations of motion is the pressure gradient 
force. This arises as a result of the unequal distribution of the mass of the 
atmosphere over the surface of the earth. It is represented on weather maps by 
patterns of isobars which are recognized as pressure patterns such as anti­
cyclones and cyclones or depressions. The pressure gradient force is measured in 
terms of the difference in pressure between two points. An expression may be 
derived for it in the following way.

Imagine an infinitesimal rectangular box whose sides are parallel to the 
frame of axes, with a pressure p acting on the face ABCD and a pressure 
P +  (dp/dx) dx acting on the opposite face EFGH (Fig. 7.1). The sides of the 
box are dx, dy, dz.

Then the corresponding forces acting on ABCD and EFGH are

respectively. The resultant force Fx acting on the rectangular box in the x 
direction is the difference between the two forces.

7.1 T h e  p re ssu re  g ra d ie n t  f o r c e

Thus

Fx — pdydz  — pdydz  — ^  dx dy dz

1 dP f  ■,Fx = —  —  for unit mass 
p ox

for unit mass

p dy dz and ^

(7.1)
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Figure 7.I The pressure gradient force.

This is the pressure gradient force acting in the x direction. If the pressure 
decreases along the x axis the force is directed along the x axis. If the pressure 
increases along the x axis the force is directed in the opposite direction, that 
is towards the origin of the system of coordinates. The forces acting in the 
directions can be derived similarly. Thus the complete equations for unit mass 
are

p  _  _  1  fjP 
p d x
1 dp
p dy
1 dp

dz

Fy = (7.2)

The vertical component Fz is normally balanced by the acceleration of gravity, g. 
Thus

IT 1 9 P
F 2 =  -  “  ~X~ =  g p oz

and this is the hydrostatic equation already derived at (5.1). If a parcel of air is 
not in hydrostatic equilibrium there must be vertical acceleration and (5.1) takes 
the form of (5.14). The assumption will be made, however, that for the time being 
vertical motion is negligible in magnitude compared with horizontal motion and 
accordingly the development of the equations of motion will be confined to 
horizontal flow.

We may now write
du _  1 dp
d t p dx  ,

(7.3)
dv _  1 dp
dt p dy

Equations (7.3) refer to horizontal, frictionless flow in a fixed system of
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coordinates. The resulting motion would be a continuously accelerating velocity 
directed along the pressure gradient, that is from high to low pressure. Such 
motion of the atmosphere may occur near the equator as we shall see later, but it 
is not important since pressure gradients are weak in that region.

In our discussions about the Coriolis force in the previous chapter we 
contrived the artificial examples where the axis of rotation was perpendicular 
to the surface. Although this is true at the earth’s poles such an assumption is not 
valid elsewhere. Figure 7.2 is a schematic diagram showing a spherical earth 
rotating with angular velocity ft about its axis. It can be readily seen that, if the 
latitude is denoted by 0, then the component of rotation about a point on the 
local vertical, that is about a line drawn from the point to the centre of the 
earth, is flsin0. It is proportional to the projection of the polar axis of 
rotation of a line drawn from the centre of the earth O to the specified point 
on the earth’s surface. This projection is shown as OB. Also the component 
of rotation about a point perpendicular to line OA line is ft cos 0 and this is 
proportional to the line AB.

We must now substitute ft in equation (6.4) by ft sin 0. Thus, the Coriolis term 
becomes 2ft V sin 0. The expression 20 sin 0 is called the Coriolis parameter. It 
will be denoted by/ .  Having now derived the Coriolis parameter for a spherical 
rotating earth, and also the pressure gradient terms, we are in a position to write 
the equations of motion in their basic form.

Figure 7.2 Component of rotation of a point on the earth’s surface about the polar 
axis.

7 .2  T h e  s p h e r ic a l  e a k t h

B

0 <

W /

C J > Q

A

Q, sin <|)
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7.3 T h e  EQUATIONS OF MOTION

To do this we need to examine Fig. 7.3 to see how the forces act. Remembering 
that the Coriolis force acts at 90° to the right of the direction of motion of the air 
parcel in the northern hemisphere, and is proportional to the velocity we may 
write

The terms on the left hand side of the above equations are the actual residual 
accelerations along the axes x and y. The equations are normally written in the 
form

Although we shall derive more rigorous forms of (7.4) the additional terms are 
neglected for most calculations and simulations of the motion of the atmosphere. 
Nevertheless, it is necessary to derive the more rigorous forms so that we can 
decide whether or not the extra terms really can be neglected.

We recall that in the southern hemisphere the terrestrial tangent plane rotates 
in a clockwise sense when viewed from above. By convention anticlockwise 
rotation is positive and clockwise rotation is negative. Thus, /  =  2Q sin 4> is

y
I

1 8p 
p 6x

t
V

U

F ig u re  7.3 Equations of motion for horizontal frictionless flow.

d u 1 op
Tt = ~~P d i +f0-
dv 1 dp
d- r —e S y - f “

d u I dp
d t p dx
dv I dp
5 -,+ f u = - P r y

(7.4)

1  8p
” p ¥

■ F
fu
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In describing atmospheric motion in the southern hemisphere as, for example, 
in numerical general circulation models, the problem of the change in sign is 
accomplished by setting the latitude angle 0 negative, so that (7.4) are valid in 
both hemispheres.

7 .4  D e r iv a t io n  o r  t h e 'c o m p o n e n t s  o r  t h i  C o r io l is

FORCE FROM THE LAW OR THE CONSERVATION OR
_ _ _ _______________ANGULAR MOMENTUM________________

We will use one more method to derive the Coriolis parameter. In this case we 
will derive both the components, that is the component about the earth’s axis of 
rotation and the component about the line perpendicular to that axis; in other 
words, we shall consider the earth to be a sphere.

First, let us consider that a parcel of air of unit mass is moving with velocity u 
along a parallel of latitude and let us discuss the relation

2 2 
( n  + £ )  r  = q 2r  + 2 u n + ^ ~  (7.6)
\ RJ R

where R = a cos 0 and a is the radius of the earth. Now the term on the left hand 
side of (7.6) is the total centrifugal force on the air parcel, and the first term on the 
right hand side is the centrifugal force due to the rotation of the earth. This is 
included in the measured value of gravity. The third term is the centrifugal force 
on the air parcel due to its rotation with velocity u about the axis of the earth. 
This is small compared with the first term and may be neglected. The term we are 
interested in is the second term which is the deflective or Coriolis force. This is 
2flu. Now we have already seen that there are two components of ft: ft sin 0 
around the axis of the local vertical, and ft cos <ft around the horizontal vector 
line connecting the parcel with the axis of the earth. The latter line is 
perpendicular to the vertical axis. Thus we have

^  =  —IfLu sin 0 (7.7)

This component of the Coriolis force acts at right angles and to the right of the 
westerly wind u. It is negative since it is directed towards the south. This is the 
component we have already met which acts within the horizontal y  plane. But 
we also have the other component

dvr
—  = 2flucos(f) (7.8)

positive in the northern hemisphere and negative in the southern hemisphere. 
This means that in the southern hemisphere equation (7.4) would become

d u . .. 1 dp
d7 + m v  = - , S i
dv . . .  1 dp

(7.5)
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which gives rise to a vertical acceleration within the x, z plane. Equations (7.7) 
and (7.8) both act at right angles to the wind blowing along a parallel of latitude. 
We will now consider what happens if we displace a parcel northwards (or
southwards), that is on the meridional component of the wind, v. To do this we
invoke the conservation of angular momentum equation

af? = (n + TSTsR)){,t + SR)1 (7'9)
Expanding (7.9) we may neglect the products of all differentials. We also 

neglect 6R in comparison with R. We find that

6u = - 2  M6R

We have already defined R =  a cos </> so that SR = —a sin 6 (/>.
Therefore du =  4 -2 £la sin 4> dcj) and, since dy = a d<j>9 we have

^  =  —2Qu sin 4> (7.10)

In a similar manner we can show that if a parcel is projected vertically upward
du
— = —2fhvcos <p (7.11)

Combining equations (7.7)-(7.10) we have the complete set of Coriolis 
accelerations:

~  fv — 2Q\v cos 6
dt
dv
n = - fu

=  2Qucos(j>
dt

7,5 D ir iv a t io n  o f  tm s  iq u a t io n s  o f  n o t io n  in  p l a n i

COORDINATiS FROM ROTATING AXES

A more rigorous form of (7.4) may be derived by considering a system of rotating 
axes referred to axes fixed in space.

In Fig. 7.4 x, y  is a system of axes fixed in space with origin O at the North 
Pole, x', y'  are axes fixed to the surface of the earth also with origin at the North 
Pole, but they rotate with the earth in an anticlockwise direction. Then

OM =  xcos Qt

MR = >’sinf^

PQ =  y  cos 0 /

RQ =  xsin fit

We may describe the rotating coordinates xf, y' of a point P in terms of fixed
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coordinates x, y  as follows:

x'  = x  cos fit +  v sin 17/
(7.12)

y'  — y  cos fir — x sin 17/

Differentiating with respect to time and using the notation x — dx/dt, 
y =  dy/dt , etc., we have

x ' = x cos Sit y  sin Sit — 17xsinl7/ +  17jcosl7/

or
x'  = x  cos 17/ +  y  sin 17/ +  Sly*

and
y  =  y  cos Sit — x  sin Sit — Sly sin Sit — Six cos Sit

or

y'  = y  cos Sit — x  sin 17/ — fix'

Differentiating x  and again with respect to time we have

x  =  x cos Sit + y  sin 17/ +  Sly — 17xsinl7/ +  17jcosl7/

=  x cos 17/ +  y  sin 17/ +  Sly +  172x' +  17j'

=  x cos 17/ +  y  sin 17/ +  217j' +  172x' (7-13)

and

y  =  j  cos 17/ — x sin 17/ — 17x; — 17j> sin 17/ — 17xcosl7/

= y cos Sit -  x sin 17/ -  17x' -  17x' +  172j '

=  j; cos 17/ -  x sin 17/ — 217x' +  Sl2 y'  (7.14)

F ig u re  7.4 Rotating frame of reference.

y' y
p r x

Q

• X
N0

Q t\

M ,

\ £ 2f
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Now from Fig. 7.4 the forces acting at any point along the rotating axes may 
be expressed in terms of the forces acting along the fixed axes:

Now replacing x', y f by x, y  throughout we may write the equations of motion 
for horizontal and frictionless flow referred to rotating axes fixed to the earth’s 
surface with their origin at the North Pole. For any point located elsewhere on 
the earth’s surface than at the North Pole we must replace Q by ft sin <j> in the 
Coriolis terms as already discussed in Section 7.3. Then, from (7.16),

The last two terms are the horizontal component of the centrifugal force due to

acts outwards from the axis of rotation, that is, along the line BA in Fig. 7.2. This 
component is small and absorbed in the measured value of g and is therefore not 
included separately. The vectorial combination of the gravitational attraction 
and this small centrifugal force is known as apparent gravity.

So far we have used a plane rectangular coordinate system to express the 
accelerations in the equations of motion. It is sometimes useful to use polar 
coordinates as, for example, if we are concerned with circular systems of isobars 
such as occur in high-pressure systems (anticyclones), or low-pressure systems 
(depressions, or tropical cyclones or typhoons). For tropical cyclones or 
typhoons the polar coordinate system is converted to a cylindrical system by 
including the vertical coordinate z. We will start by transforming the equations
(7.3) using the relations

Fx = Fx cos Qt +  Fy sin Qt 

Fy = Fy cos Qt — Fx sin fIt 

where Fx =  x  and Fv = y, for unit mass.

(7.15)

Then
Fx =  x  cos tot+ y  sin fIt 

Ff}, = y cos Qt — x  sin fIt

From (7.13), (7.14) and (7.15) we obtain

jc' =  Fx +  2 ny  +  t f x  

y'  = F'y -  2 n x f +  t f y '
(7.16)

du I dp _ 2 • 2 /— — —  —  +  f v  4- O x sin <p 
d t p dx

(7.17)

the earth’s rotation. When combined the two terms can be expressed as Q2 R. It

x = r cos 9
y — r sin 9

(7.18)

du 1 r  r~\2 • 2 i—  = + y sin 4>
at p ay

IJb D e r iv a t io n  o f  t h e  e q u a t io n s  o f  m o tio n  in
A  T IK I/*  0 A {  A D  A A A D f l i A l  A T C C



DERIVATION OF EQUATIONS OF MOTION IN ROTATING COORDINATES 87

where r is the radius vector and 0 is the angle r makes with the x axis (Fig. 7.5). 
Differentiating (7.18),

x = —r sin 60 -hr cos 9

x = - r  sin 00 — 9{rcos99 4 - rsinO) +  rcos0 -  r0sin0 

= rcosO -  2r0sin0 — rOsinO -  rd2  cos 0 (7.19)

and

y — r sin 9 +  r cos 99

y  =  r cos96 +  rsinO r cos 99 +  6 {rcos0 — rs in 99)

= r sin 9 4 - 2r9 cos 9 4 - rd cos 9 -  rd1  sin 9 (7.20)

Now any force F may be split up into components Fn Fe along and 
perpendicular to the radius vector in just the same way as into Fx, Fv along 
the x and y  axes. From Fig. 7.5 it is seen that we may express Fr, Fe in terms of Fx, 
Fy as below:

Fr — Fx cos 9 +  Fv sin 9
(7.21)

Fq =  —Fx sin 9 +  Fy cos 9

but

Fx =  x  and Fy = y

Fr =  xcos 9 4- y  sin 9 

Fe =  — x  sin 9 4- y  cos 9

Therefore

Figure 7.5 Transformation from Cartesian to polar coordinates.
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and from (7.19), (7.20) and (7.21)

Fr =  r cos2 9 — 2 rO sin 9 cos 9 — r9 sin 9 cos 9 — r92 cos2 9 

4  r sin2 9 4  2r9 sin 9 cos 9 4  rO sin 9 cos 9 — r92 sin2 9 

Fr = r -  r92
and

Fe =  —r cos 9 sin 9 4  2r9 sin2 9 4  r9 sin2 9 4  r92 sin 9 cos 9 

4  r sin 9 cos 9 4  2r9 cos2 9 4  rO cos2 9 — r92 sin 9 cos 9 

Fe =  r9 4  2r9

The forces along and tangential to the radius vector are thus, respectively

Fr =  r -  r92
(7.22)

F0 =  rO 4  2r(9

The above expressions refer to fixed polar coordinates. If the coordinate 
system is rotating as it does when fixed relative to the surface of the rotating earth 
these expressions must be adjusted. This may be done by letting 9 in (7.22) equal 
9 4  ^  sin cj). The new 9 thus represents the angular velocity relative to axes fixed 
relative to the surface of the earth:

F = r — r(9 4  ft sin 0 )2 =  -  -  ^
p or ,

1 a  (?*23)
Fe = r9 4  2r(9 4  sin 0) = -----

pr 09
Omitting the term for the centrifugal force of the earth as before, we have

I dp 
p dr

Fr = f — rO2 — frO = —~ dp

i a (7'24)
F$ = rO + 2r6 + f r  = ------^

pr o9
which are the required equations.

7 ,7  D e r iv a t io n  o f  t h e  TH R iE^ iH iN iio N A iL e q u a t io n s

OF NOTION IN A SPHERICAL COORDINATE SYSTEM

In order to do this we set up the relations
x = rcosficosX

y — r cos 0 sin A (7.25)

z =  r sin 0

as shown in Fig. 7.6, and differentiate twice. The second derivatives of x, y , z are 
Fy, Fy, Fr, the forces acting along the axes fixed within the earth.
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F ig u r e  7 .6  Illustration of spherical coordinates: A represents longitude measured 
anticlockwise around the equatorial plane; <fi is latitude, the angle between OP and 
the equatorial plane.

Having found the second derivatives of x, y, z, we deduce from the figure that 
we must equate the forces along the parallels of latitude and longitude and along 
the radius vector as follows:

F0 = —Fx cos A sin <j> — Fy sin A sin </> +  Fz cos (j>

Fx — —Fx sin A +  Fv cos A (7.26)

Fr =  Fx cos A cos cj) +  Fy sin A sin </> +  Fz sin (j>

The understanding of the relations in (7.26) requires a sense of visual interpreta­
tion of the spherical geometry, but the task is made easier by first selecting the 
simplified cases of 0 =  90° and A =  0° and A =  90°. We will leave the actual 
differentiating and multiplying out as an exercise for the reader. Remembering 
that the A in our equations is for a fixed system of coordinates and that for
the rotating earth dX/dt  —» dX/dt  +  we thus obtain the final form for the
equations of motion in spherical coordinates.

We neglect the terms containing fl2r which represent the centrifugal force of 
the earth’s rotation, which is incorporated in the observed measurement of 
gravity. Then the final form of the equations of motion in spherical coordinates is

rcoscj)X +  2(A -1- Q)(rcoscj) — rsincfxp) = Fx

rd> -I- 2r<p -j- r cos 4> sin <̂ A(A +  2Q) = F  ̂ (7.27)

r — r<j)2 — r cos2 4>X(X +  2fi) =  Fr

c b Q

Latitude, <|>

0 ’

Longitude, X
X

y

V
z
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7 .0  E q u a t io n s  o f  m o tio n  m  t a n g e n t ia l

____________________ CURVIUNiAR COOIUOINATES_________  '

The equations of motion in spherical coordinates as derived in equations (7.27) 
are not very convenient to use. We make our observations of wind with reference 
to the surface of the earth so that a form of coordinate system fixed to the surface 
of the earth is better. We may then adjust our simple rectangular coordinate 
system so that it is everywhere tangent to the curved spherical surface of the 
earth. To do this we set up the relations

dx = r cos 0 dA

dy = rd(j) (7.28)

Then

Also

dz =  dr

w =  rcos0A (7.29)

w =  rcos0A (7.30)

A =  — 1~~1 (7*31)r cos 0

•• xr cos cj> — xr cos 0 +  x$r sin 0 (n Q ̂
A = --------------- j----T1--------------  (7.32)r1 cos2 0

v ■ rv — vr . . .
• =  -  and cj) = ----=—  (7.33)

r rL
and r =  a + z ,r  =  z =  w, the vertical velocity.

Multiplying equation (7.32) above by r cos 0 we have

•• .. x(z cos 6 — v sin d>)
r cos 0A =  jc -  ;----- — (7.34)

rcos0

Substituting the right hand side of this equation into the first relation of (7.27), 
neglecting z, the height above the earth’s surface, in comparison with the radius 
of the earth, a, and converting the spherical coordinate terms into curvilinear 
coordinate terms using the relations described, we get

. uw uv tan 0 1 dpU H b 2fbv cos 6 - f v  — —  —  (7.35)
a a p ox

This is the first equation in curvilinear coordinates for the accelerations directed 
along parallels of latitude. Continuing,

4> = -  (7.36)
r

rj, =  i  _  ™  (7.37)
r
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and

2rd> = —  (7.38)
r

Substituting (7.37) and (7.38) into the second relation of (7.27) and making the 
appropriate conversion to curvilinear coordinates again we have

VW V1 , r 1 fnv-\--------1—  tan 4> +fu  = —  tt  (7.39)a a p oy

Finally, the direct transformation of the third relation of (7.27) is

z — - —  - —  2Qu cos cj> = —  — g (7.40)
a a p oz

We find that we can neglect all terms with the radius of the earth in the 
denominator as a is large compared with the velocities in the numerator. If we 
neglect these small terms we end up once again with equations (7.4). These are 
the equations used in most studies of the motion of the atmosphere.

There is one important thing to remember. All the latter equations we have 
derived apply to an atmosphere which is inviscid, that is there is no friction. This 
is an approximation that can be made for motion in the free atmosphere, that is 
to say, above the boundary layer, which is affected by the friction of the surface, 
normally greater over land than over the ocean. We will at a later stage discuss 
the addition of extra terms to include friction. However, for the time being we 
will only use the equations which describe frictionless motion.

7.9 Pro b lem s ________

1. Two pedestrians set out together to walk towards a church steeple 10 km 
away. When they start out a fixed star is seen directly behind the steeple. The 
first pedestrian walks continuously towards the steeple. The second walks 
continuously towards the fixed star. If they both walk at a speed of 5 km h - 1  
how far apart will they be when the first has reached the church (a) if the 
church is at the North Pole? (b) if it is at 45° south latitude? (c) if it is on the 
equator?

2. Two billiard balls are placed on a billiard table, one at each end at a 
distance of 10 m apart. The balls are 2 cm in radius. A player strikes one ball 
directly towards the other. At what speed must the ball travel in order to just 
miss the ball at the other end of the table? The table is at 43° latitude. Neglect 
friction.

3. An object is propelled upwards at some starting velocity w0 at some 
latitude <j>. Neglecting friction, where will the object hit the ground on its 
descent? Find the numerical result for initial upward velocities of 10 m s - 1  
and 50 m s-1.

4. Consider the Coriolis acceleration acting on an air parcel in the plane 
tangent to the earth’s surface and find the velocity and position of the parcel 
subjected to some initial velocity w0, v0. No other forces are present.
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5. Derive the equations of motion in spherical coordinates as described in 
Section 7.7. [Hint: To simplify the double differentiation of the product of 
three variables set the independent variables in the first and second relations 
in (7.25) to a, b, c. Differentiate x, y  twice using the dot notation. Then 
differentiate the individual values of a, b, c separately and substitute in your 
equation for x  and y  which is in terms of a, b, c.]
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BALANCED FLOW

8 . 1  I n t r o d u c t i o n

Atmospheric motion is often described as balanced or unbalanced. What do we 
mean by this terminology? Of course, in the strict sense of the word all motion is 
balanced. In the equations of motion we have accelerations du/dt , dv/dt  and 
dw/dt. These are essentially residual accelerations along the coordinate axes. 
When we say the flow is balanced what we really mean is that du/dt , dv/dt  and 
dw/dt  are all equal to zero. We will start with the simplest example, which is also 
the case most frequently used in practical studies.

8.2 T h e  c e o s t r o r h ic  e q u a tio n

We will take the case of straight isobars. If one had not studied the effect of the 
rotation of the earth one might expect the air to blow across the isobars from 
high to low pressure. Certainly, if we allow a marble to roll down a smooth slope 
it appears to run down the hill, not at right angles to the slope. (See problem 1.) 
However, observations of the wind on a weather map invariably show that 
the wind appears to blow along the isobars. Why is this? Let us return to 
equations (7.4). If we set the residual accelerations along the axes equal to zero 
we have

1 dp
Ug p f  dy

_  ± *  <8-i >
Vg + Pf dx

Equations (8.1) are known as the geostrophic equations. If we calculate a 
value of the density of the air and know the difference of pressure between two 
selected points on a grid along the x  and y axes we can compute the components 
of the wind speed in m s-1. In calculating geostrophic winds for weather 
forecasting purposes, and in some synoptic and climatological diagnostic
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studies, we may not be interested in the components of the wind, only in the total 
geostrophic speed along the isobars, irrespective of the direction in which they 
are oriented. In such a case equations (8.1) reduce to

v‘ = 7f l  <8-2>

where n is the perpendicular or normal distance across the isobars at the place 
where that distance is measured. We may always reduce (8.1) to (8.2) by 
orientating our x axis along the isobars. However, in most diagnostic studies 
it is better to retain the notation of u and v to represent the west and south winds 
respectively.

Worked Example
What is the geostrophic wind at 43°N latitude if the pressure gradient is 1 hPa per 
degree of latitude? Surface pressure is 1012 hPa and temperature 20°C. (One 
degree of latitude =  60 nautical miles = 1 1 1  km.)

Solution:

v.= l 6p
Pf tin

100  i  * -i— 7.5ms
g 1 1 1  x 10 3 x 1 .2  x 10 ~ 4

The relation expressed by (8.2) is sometimes known as the geostrophic 
assumption. It represents the condition where there is an exact balance between 
the Coriolis and pressure gradient forces. Equation (8.2) may also be derived 
very simply by setting the Coriolis force and the pressure gradient force equal to 
each other as shown schematically in Fig. 8.1(a) for the northern hemisphere and 
Fig. 8.1(b) for the southern hemisphere. It is an assumption that is confirmed by 
observations most of the time. If the isobars are curved or if the pressure gradient 
is changing rather rapidly with time corrections must be made. We will return to 
this later.

The geostrophic assumption or approximation is extremely useful to 
meteorologists as it enables an estimate of the wind to be made from a 
weather map, even though there are no actual wind observations available. This is 
important because the pressure field is continuous and can be expressed by 
constructing isobars, whereas the wind cannot be mapped so easily as a 
continuous field.

It will be noted from equations (8.1) that the geostrophic wind speed increases 
with decreasing / ,  that is, with decreasing latitude. At the equator the geos­
trophic wind speed becomes infinite. This, of course, is absurd. The physical 
significance of such an impossible mathematical statement is that the assumption 
that the residual accelerations du/dt  and dv/dt  are zero breaks down as the 
equator is approached. The geostrophic assumption is generally not valid in the 
tropics. However, it may be used satisfactorily for latitudes greater than about 
15°N and S. Strictly speaking the geostrophic assumption only applies to east- 
west and not to north-south isobars. In the former case/  is constant, but in the
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Pi ------------------------------------------■ -
LOW

(b) Southern Hemisphere

F ig u r e  8 . 1 Balance of forces for geostrophic flow: (a) northern and (b) southern 
hemisphere. Note in (b) that the absolute value of f is used.

latter case /  changes in direct proportion with the latitude so that exact balance 
cannot be achieved. However, for all practical purposes, particularly in regions 
removed from the tropics and on scales less than planetary, we can neglect the 
variation of/  with latitude in computing the value of vg.

Weather forecasters sometimes use a wind scale to calculate the geostrophic 
wind. The scale consists of a piece of Perspex upon which curved lines are spaced 
at different distances apart, in order to take into account the latitude. The scale is 
placed over the isobars on the weather map so that two lines on the scale coincide 
with two isobars on the synoptic chart at the actual latitude where the wind is 
being measured. The wind speed may then be read off the scale.

S 3  T h i  g r a d ie n t  w in s  b q u a t io n

If the isobars are not straight, but curved, a third force must be introduced in 
addition to the Coriolis and pressure gradient forces. This additional force is the

LOW
Pi “

1 8p 
p 8n

P2 “ VS

P3 -----
HIGH

(a) Northern Hemisphere

HIGH

A

1 8p 
p 8n

Vi



96 BALANCED FLOW

centrifugal force due to the motion of the air around a curved horizontal 
path, not to be confused with the centrifugal force caused by the rotation of 
the earth, which is absorbed into gravity. When all three forces are in 
balance, so that there is no residual acceleration either along the isobars or 
perpendicular to them, the flow is called gradient wind flow and the 
equation which describes this kind of flow is called the gradient wind 
equation. Figures 8.2(a) and 8.2(b) illustrate the balance of forces in 
schematic form for the anticyclonic system with high pressure in the 
centre, and the cyclonic system with low pressure in the centre. In order 
to define the gradient wind equation we will assume that the isobars are 
circular around the centre and equally spaced. In real weather systems this 
condition may not be met exactly, but the approximation is sufficiently near for 
most practical calculations. Vigorous depressions are certainly observed to be 
almost circular.

Taking the anticyclonic case for the northern hemisphere first we have

where V is the wind speed around the isobars and R is a radial coordinate 
measured from the centre of the system. To be strict we must assign a sign to 
/  which is positive in the northern hemisphere and negative in the southern 
hemisphere. We must also assign a sign to the horizontal curvature of the 
flow whose magnitude is 1 /R.  In conformity with the conventions of vector 
calculus we take it to be positive to the left of the direction of motion and 
negative to the right in both hemispheres. Such a development will describe 
the sign of the motion around anticyclones and depressions in both hemi­
spheres. We will return to this treatment later.

F ig u r e  8 .2  Balance of forces for gradient wind flow in the northern hemisphere.

—  — i  —  = f V  
R  p O R

( 8 . 3 )

y Li *p
R  p 8 R

V
-  + fV  
R  1

(a) Anticyclonic case (b) Cyclonic case

f  o 5 R

^LOW Js H I G H /
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The cyclonic case for the northern hemisphere is

V 1 I dp b f v  = ------ — (8.4)
R p OR K 1

Combining (8.3) and (8.4) we get

l ! T / F _ i | P =  0 (8.5)
R p dR K J

where the minus sign in the second term refers to the northern anticyclonic or 
southern cyclonic case and the plus sign refers to the northern cyclonic or 
southern anticyclonic case.

Equation (8.5) is a quadratic with solutions

_ f R  l f 2R 2 R dp 
gr ~  2 T y 4 p dR

(8.6)

and

17 +  l f 2Rl ■ R dp
gr 2 V 4 P  dR

(8.7)

v  _ f R  l f 2R 2 R d p
gr “  2 V 4 p dR

f R  l f 2R2 R dp 
Vgr = — r + \ j — + -pdR

and

(8 .8)

(8.9)

Equation (8.6) is valid for the northern anticyclonic or southern cyclonic case 
and (8.7) for the northern cyclonic or southern anticyclonic case. A word of 
explanation is needed here about signs. Since R is a radial coordinate, 
(R/p) • (dp/dR) is negative for anticyclones and positive for cyclones in both 
hemispheres.

We are interested in calculating the gradient wind which is caused by the 
pressure gradient. For such a relation the gradient wind will be zero if the 
pressure gradient is zero. We see at once that the latter condition is met in 
the northern hemisphere if we take the upper root in equations (8.6) and 
(8.7):

We see now that if the pressure gradient term is zero the gradient wind is 
zero. In the southern hemisphere, f R / 2 < 0, so that the lower roots must 
be chosen in (8.6) and (8.7) for the cyclonic and anticyclonic cases, 
respectively.

Equations (8.8) for the northern anticyclonic case and (8.9) for the northern 
cyclonic case and, of course, their southern hemisphere equivalent are most 
interesting and tell us a great deal about possible flows around circular isobaric 
systems.
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and similarly for the southern hemisphere case.
The values of /  and R  are variable and thus determine whether the root of the 

quadratic is real or imaginary. The root is liable to become imaginary if

1. The pressure gradient becomes too large.
2. The radius of curvature of the high-pressure system becomes too small.
3. The latitude is near the equator, that is /  becomes too small.

Thus if any or a combination of the three conditions above occur 
gradient wind flow cannot exist. What this means, physically, is that there 
is a component of the velocity which crosses the isobars. This has 
interesting connotations. It means that under such conditions an antic­
yclone must spread out, since part of the flow is blowing radially outwards 
from the centre across the isobars. It is not possible to have intense centres 
of high pressure with small radii, except perhaps for short periods of time. 
Nor is it possible to have anticyclonic systems at or near the equator. Any 
such systems would dissipate rapidly, on a time scale of hours. These 
restrictions on the horizontal structure of anticyclones are supported by 
observations which indicate that high-pressure systems are extensive and 
have light winds over their large central areas.

8.3.1 Gradient wind solution for the anticyclonic case

We have already seen that equation (8.8) meets the condition that the 
gradient wind is zero when the pressure gradient is zero. The next thing that 
strikes us is the possibility of a negative sign under the square root radical 
in the anticyclonic case. This tells us that if the numerical value of the 
anticyclonic pressure gradient exceeds a certain limiting value we have an 
imaginary term. What does this mean? Mathematics is exciting in that it can 
on occasions tell us when physical laws are being contravened. The limiting 
value in equation (8.8) occurs when

f 2R2 R dp 
4 ~ ~ p d R

that is, when the pressure gradient acceleration is greater than f 2R/4.  We then 
have for the northern anticyclonic case

Vgr =  0 when | |  =  0

r * - fT

T, ■ • U 1 dp f 2RV is imaginary when — —  > —

Positive role model 

Positive role model 

Positive role model 

Positive role model Positive role model 

Positive role model 

Positive role model 
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8.3.2 Gradient wind solution for the cyclonic case

We will now look at equation (8.9). We again see that this state meets the 
condition that the gradient wind is zero when the pressure gradient is zero. 
However, we see now that the expression under the radical must always be 
positive. There is therefore no limiting condition for which the expression 
becomes imaginary. Thus, there is theoretically no limit to the depth of a 
low-pressure centre. This feature is again borne out by observations. 
Depressions are generally smaller in size than anticyclones. The more 
violent they are, the smaller are the centres of low pressure. This is 
particularly observed in tropical cyclones, hurricanes and typhoons, all of 
which are different names for intense low-pressure systems which form in 
the tropics. The centres of such storms are called ‘eyes’. They can be readily 
seen on satellite pictures, and are sometimes only a dozen or so kilometres 
in diameter. These properties are predicted by the equations we have 
derived.

We may set a balance between the centrifugal force and the pressure gradient 
force. This balance is only valid for the cyclonic case (see Fig. 8.2(b)), and only if 
we neglect the Coriolis force. We can do this if/  is small, and/or if the time and 
space scales are small compared with the scale of normal synoptic systems seen 
on the weather map. We have

Equation (8.10) describes the motion around small-scale systems such as 
tornadoes or waterspouts. It is theoretically possible for the flow to rotate in 
either an anticyclonic or a cyclonic sense, but is probably more frequent in the 
cyclonic sense.

We may also obtain a balance between the Coriolis force and the centrifugal 
force. This can only occur if there is no pressure gradient and the motion results 
from an initial impulse such as the firing of a projectile. (See problem 2 in 
Chapter 7 about the billiard ball.) It can only occur for clockwise flow in the 
northern hemisphere and anticlockwise flow in the southern hemisphere. Thus, 
V 2/ R = f V  and V = f R .

8 ,4  T h e  c y c l o s t r q p h ic  w in d

8.5 T h e  INERTIAL WIND

V^__\dp_  
~ R ~  p d R

v  = x F -Y p d R

(8.10)
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8.6  T h e  ‘s t r a n g e  r o o t s * o f  t h e  g r a d ie n t  

WIND EQUATION

Earlier in this chapter we defined the anticyclonic case as one in which we had a 
centre of high pressure, and a cyclonic case as one in which we had a low-pressure 
centre. In the northern hemisphere the wind normally blows clockwise around a 
high-pressure centre and anticlockwise around a low-pressure centre and vice 
versa in the southern hemisphere. Let us now consider the remaining roots of
(8.6) and (8.7), namely

where (8.11) is the solution for the northern anticyclonic case and (8.12) is the 
solution for the northern cyclonic case for the condition that the flow is normal 
around the pressure centres. Note that the second term under the radical has 
been expressed in a different form since R is always positive.

Let us look at the ‘strange’ or anomalous roots which are those solutions 
given by the addition of the first term and the term under the radical. For the case
(8.12), we have a non-zero value when the pressure gradient is zero. This is 
Vgr = —f R .  We have already found that this is the inertial wind. It is negative 
and therefore anticyclonic and occurs when a body has been projected with some 
initial and constant speed V. The case of the anticyclonic ‘strange’ root has not 
been discussed in detail in most texts. It tends to be dismissed as an irrelevance. 
However, this root does have physical meaning. It is larger than the normal 
gradient wind and occurs as a result of the addition of an inertial component 
which an air parcel received at some earlier state and carries with it to a new 
location. Whereas geostrophic balance is a fairly stable state, gradient wind 
balance is very sensitive and only applies to some exact value of the radius of 
curvature. In practice it may be all right to neglect the ‘strange’ root, but we 
should know the physical meaning of the mathematical ‘strangeness’.

There is another root for the northern hemisphere high-pressure case (8.11), 
but it does not meet the conditions we originally set up. This occurs when the 
flow around the anticyclone is anticlockwise in the northern hemisphere and 
clockwise in the southern hemisphere, that is ‘the wrong way round’. This is an 
impossible condition for gradient wind balance as can be seen from Fig. 8.2.

The anomalous solution given for the low pressure case is obtained by 
adding the two negative terms in (8.12). The velocities are negative or anti­
cyclonic. This situation is called antibaric because the flow is ‘the wrong way 
round’. This type of flow cannot occur in normal-scale synoptic situations since 
it is the Coriolis force which determines the direction of rotation about the

and

_  f R  I f W  dp 
^ r - + T + f T  +  d p )

v = - / * / £ * +  1 ^ 1
gr 2 Y 4 d(lnR)

(8.11)

(8.12)
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centre. It can only occur if the Coriolis force is small compared with the 
pressure gradient force. It is necessary for an inertial force to set up this kind 
of motion. This can happen in small-scale vortices such as tornadoes or 
waterspouts, or for a whirlpool down a bath plughole. The circulation is then 
cyclostrophic and defined by equation (8.10). One could imagine developing 
‘strange’ cyclonic flow if a huge giant stirred up the atmosphere with an 
enormous teaspoon so that it generated the necessary speed for balance 
between the three forces to be established.

_ _ _ _ _ _  8 ,7  T h e  b a l a n c e  e q u a t io n

There is a more complex equation which expresses a balance between forces 
for the general case of the gradient wind equation for isobars which change 
their curvature in space. This, of course, is what happens in the real world. 
Examination of any weather map will show isobars which form pressure patterns 
in space. Sometimes the patterns are in the shape of symmetrical waves, other 
times they are more complex. This equation is called the balance equation. The 
mathematical derivation of the equation will be postponed until a later chapter 
as it involves some new ideas we have not yet introduced.

8,8 Pr o b le m s______ ______

1. A case of balanced motion might be that of a weather satellite which is 
positioned so that it remains permanently over the same spot on the equator. 
At what height must the satellite orbit? [Hint: Assume g = 9.8/[l 4- (z/a)2] 
where z is the height above the surface of the earth of radius a.

2. What is the maximum possible gradient wind expressed as a multiple of the 
geostrophic wind for the same spacing of isobars for the regular anticyclonic 
case?

3. A circular shaped anticyclone has a pressure gradient of lhP akm -1. 
What is the gradient wind at the following radii from the centre: (a) 10 km, 
(b) 100 km, (c) 500 km? Let /  =  10_4s_1. Assume the density of the air is 
lk g m 3. What is the gradient wind for a cyclonic low-pressure system 
having the same pressure gradient at the same distances from the centre?

4. The funnel of a tornado which has a radius of 25 m rotates like a solid body 
at 1 revolution per second. What is the central pressure if the pressure at the 
funnel outer wall is lOOOhPa? Assume a temperature of 20°C. What is the 
velocity of the funnel wall?

5. In problem 4 assume that the velocity can be represented by the function 
V = k / r n, where k  is a constant. If the velocity decreases to 1m s-1 at a 
radius of 500 km, what is the value of the index nl

6. Consider the more rigorous form of the equations of motion in the tangent 
plane coordinate system. Neglecting terms involving vertical motion and 
residual accelerations show that there are two cases of balanced flow. If there 
is no zonal gradient but a meridional pressure gradient of whPakm-1 
(average surface pressure and temperature) find the balanced zonal winds
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at 45° latitude for the two cases. Why is one of them highly unlikely on planet 
earth?

7. Compute the space-averaged gradient wind between some inner radius 
r0 and outer radius r for a circular anticyclone with a pressure gradient 
acceleration of 16.0 x 10-5 m s-2 and Coriolis param eter/ =  10“4s_1.Now 
assume the inner radius is the minimum for which gradient wind balance can 
occur and an outer radius of 500 km. (Note: This is a problem to challenge 
the mathematically minded.)



UNBALANCED FLOW

9.1 In t r o d u c t io n

We introduced the previous chapter by stating what we meant by balanced and 
unbalanced flow. We said that balanced flow covered motion which does not 
have any residual accelerations along the coordinate axes. Unbalanced flow is 
motion which does have residual accelerations along the coordinate axes. In this 
chapter we will study these accelerations.

The difference between the actual wind and the geostrophic wind is called the 
ageostrophic wind. Another term used to denote this difference is the geostrophic 
departure.

Rewriting the equations of motion (7.4) and the geostrophic equations we 
have, as before,

9 .2  T h e  a g e o s t r o p h ic  w in d

9

d u I dp
(9.1a)

dv 1 dp
— + /u  =  —
at p dy (9.1b)

and
1 dp

u* ~  VfQy
(9.2a)

1 dp
Wg ~  Pf dx

(9.2b)

From 19.1) and (9.2) we obtain

d u
y - f v = - f v g

dv
j-t + f u = f u &
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There are many factors which cause the wind to depart from its geostrophic 
value. Strictly speaking gradient-balanced winds around anticyclones and 
cyclones are ageostrophic, although we normally mean that the flow is 
unbalanced in the sense that there are accelerations along and perpendicular 
to the isobars. Frictional drag, which we will discuss in a later chapter, is one 
factor which causes the wind to blow across the isobars. Imbalances can occur, 
even in straight, equally spaced isobars, if they are not orientated east-west, but 
have a meridional component. This is because the Coriolis force changes with 
latitude. But the most important geostrophic departures are normally associated 
with changes of the pressure gradient with time. To understand the physical 
meaning of this we will expand the so-called substantial derivative of pressure 
with time:

The term on the left hand side is the total derivative following the fluid. The first 
term on the right hand side is the local change and the other two terms on the 
right hand side are the advective changes. The local change means that the 
pressure is changing with time, as measured by a barometer which is located at a 
specific place. The changes given by the other terms are the changes which would 
be observed if we moved through a given pressure pattern on the weather map, 
carrying our barometer with us. If the local change is zero we say that the system 
is in a steady state. If the local change is not zero the system is in an unsteady 
state. Changes in dp/dt  are important because this is the term which can tell us 
whether a depression or cyclone is deepening, that is intensifying, or if an 
anticyclone is weakening or intensifying. Such changes in synoptic systems are 
known as development. In weather prediction it is most important to know if 
synoptic systems are developing, or if they are in a steady state. We will discuss 
an example of ageostrophic winds caused by development.

We will assume a pattern of straight isobars. The geostrophic winds are given by 
equations (8.1). It is noted that in the geostrophic case the advective acceleration 
terms are zero since there is no change in the shape of the pattern in space:

dp _  dp dp dx dp dy 
dt dt dx dt dy dt (9.4)

9 3  T h e  ISALLOBARIC W1KD

or

(9.3a)

(9.3b)

U% P f [ d y )

Vg Pf  UJ

Positive role model 

Positive role model 



THE ISALLOBARIC WIND 105

We will assume further that the pressure gradient is changing in time at a 
constant rate, but that its shape remains the same, that is, the isobars remain 
straight. Then

dug 1 dp
dt p f  dy

dvg 1 dp
dt p f  dx

From equations (9.3) and (9.5) we may write
/ _  1 dp

U Pf2 dx

1
P f2 dy

where u and v are the geostrophic departures and p = dp/dt. We also assume 
that/  is constant. In equations (9.6) the geostrophic departures are also called 
isallobaric winds. They are produced by the condition that the pressure gradient 
is changing with time. In other words, development of the pressure pattern is 
occurring. Isopleths or lines of equal rate of change of pressure at a given 
location are called isallobars and the magnitude of the isallobaric wind can be 
calculated from the spacing of the isallobars in a way similar to that used to find 
the geostrophic wind from the spacing of the isobars. Figure 9.1 shows an 
example of the isallobaric wind for a case where an isallobaric high is super­
imposed upon a system of straight isobars. Equations (9.6) are derived for a

(9.5a)

(9.5b)

(9.6a)

(9.6b)

LOW
v '

V = (u g2+ v ' 2)V 2

~ u g

V = u g + u'

f y  -
8f

HIGH

P3

P2

Pi “

v =ug- u ’
k u . + b i .

F ig u r e  9 .1 The isallobaric wind with westerly geostrophic flow, wg. The actual wind 
is denoted by Fg and the isallobaric by w', v (northern hemisphere).
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given point where the rate of change of pressure gradient with time is constant. 
The isallobaric winds in Fig. 9.1 would vary according to the value of the 
isallobars at different points on the diagram. We might also consider cases where 
isallobaric centres were superimposed over circular anticyclonic or cyclonic 
systems. Thus an isallobaric high superimposed over an anticyclone would cause 
an isallobaric wind to flow outwards all round the anticyclone. The opposite 
effect would occur if an isallobaric low were superimposed over a cyclone or 
centre of low-pressure. Similarly, an isallobaric low over an anticyclone would 
cause an isallobaric wind to flow inwards towards the centre.

In the more general case we would expand the acceleration terms in the the
equations of motion

du du du du .
<9-7a>

dv dv dv dv
d7 = a 7 + " to  + ,,S  (97b)

9 .4  P r ess u r e  c h a n s s s

In weather prediction it might be considered that the primary task is to predict 
changes in the pressure pattern. The pressure pattern is closely related to 
weather. Anticyclones give rise to fine weather, particularly in summer in 
middle latitudes, and most of the time in subtropical latitudes. This is due to 
subsidence or slow sinking of the air mass which warms adiabatically in 
accordance with equation (2.43). Similarly, low-pressure areas give rise to 
cloudy and rainy weather because the air rises and cools adiabatically. It is 
most important therefore to be able to know the distribution of highs and lows

In the case of the isallobaric wind discussed above the advective terms are zero 
since there is no change of the pressure field in space. If the advective terms are 
not zero they contribute to the ageostrophic wind. In the simpler case of circular 
isobars which are not changing with time the ageostrophic wind is ± V 2/r. Note 
that it has come to be accepted that the isallobaric wind is caused by the change 
of the pressure gradient with time, whereas all winds which are not geostrophic 
are strictly ageostrophic. It should be emphasized that the flow can be balanced, 
such as in the case of the gradient wind, but still be ageostrophic. If we considered 
the case where the intensity of a high- or a low-pressure system with circular 
isobars was changing with time we would have

2 V d V  f d V _  1 
l i l h T ' ' ~ d t ~ + p d R

v , = + ± W / ( 2 r  )
p f  OR/ \ R  )

(9.8a)

(9.8b)

In equations (9.8) V'  is the isallobaric wind resulting from the change with time 
of the gradient wind, which is itself ageostrophic. Note that if the curvature term 
in the denominator is zero equations (9.8) reduce to (9.6).

Positive role model 
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on a weather map. To do this we need to look more closely at equation (9.4). 
There are two problems to consider. The first is the development term 
expressed by dp/dt , and the second is the advective process given by the 
remaining terms. We will deal with the advective term first as this is the 
simpler process. We shall see in a later chapter that highs and lows are effectively 
advected, literally blown along by the upper wind flow. We can therefore 
estimate the upper air velocity by means of the geostrophic assumption and 
calculate the speed and direction of the movements of the highs and lows across 
the weather map. We can also examine the isallobaric pattern. Anticyclones will 
tend to move parallel to a line connecting an isallobaric low to an isallobaric 
high, and vice versa for a depression. The latter method was first used by Sverre 
Petterssen, a famous Norwegian meteorologist who helped to prepare the 
D-Day landing forecast for the Allies in June 1944. A less exact method is to 
extrapolate the tracks taken by the highs and lows during the past 24 hours. 
These methods are empirical, that is they rely on the movements remaining 
constant up until the time for which the forecast is required. Such methods were 
entirely relied upon in the past but in recent years numerical prediction models 
based on the full equations of motion, together with the thermodynamic 
equations predict the movements much more accurately, using small time 
steps of a minute or so. After every time step the forecast values for that time 
are used as initial conditions for the next time step, and so on. Although weather 
forecasters may use the old methods for local forecasts, they have the numerical 
forecasts besides as guides to help them.

We may express the advective terms of (9.4) more briefly in their vector form 
V-V/7. The term measures two kinds of changes, depending on whether the 
observer is stationary and the weather patterns are moving, or whether the 
observer is moving and the weather patterns are stationary. Thus, a barometer or 
barograph installed at a fixed location will show a trace which moves up and 
down the graph as the highs and lows pass over it. Alternatively, a barometer or 
barograph on a ship will fall if the ship is moving towards a cyclone, and rise if it 
is sailing towards an anticyclone. Motion is relative to the observer.

In this chapter we will be mainly concerned with the first term on the right- 
hand side of (9.4), which is known as the local rate of change of pressure. In 
general the latter is not exactly a measure of the intensification or weakening of a 
pressure system, because this is measured by the time rate of change of pressure 
at a point moving with the system. However, when a system is stationary, at the 
centre of a system or where a system is moving parallel to the isobars, the local 
rate of change of pressure does measure intensification, and it is therefore very 
useful. Often, we are specially concerned with pressure changes at the centre of a 
depression, particularly when the pressure there is falling (a synoptic term to 
mean decreasing). Synoptic meteorologists say the depression is deepening or 
filling according to whether the barometer is falling or rising at its centre. But 
what causes the local rises and falls of pressure which are observed continually 
on a weather chart? It is these continual changes which are responsible for the 
changing synoptic pressure patterns, and so for the weather which is associated 
with those patterns.



108 UNBALANCED FLOW

We know from the hydrostatic equation (5.1) that
POO

p =  pgdz (9.9)

Thus, the pressure shown by a barometer is just the weight of the entire air 
column above it. Changes in that pressure from one hour to the next result from 
changes which occur in that whole column. Where do these changes occur? At 
what levels in the atmosphere? We cannot answer these questions from the 
change in surface pressure, known as the surface pressure tendency, itself. There 
are, no doubt, various accumulations and depletions of the total mass of air 
occupying the different elements of volume of a column of air, but these usually 
cancel out to a large extent, leaving a small, residual net mass change which 
appears as a change in surface pressure. These accumulations of air within 
various elements of volume of the air column occur where there is convergence of 
the flow, and depletions of air occur within elements of volume where there is 
divergence of the flow. We will define convergence and divergence in mathema­
tical terms in the next section. The observed changes of surface pressure do not 
result from a small depletion or accumulation of air which is occurring uniformly 
throughout the whole vertical column, but from the net residual of different 
magnitudes of convergence and divergence occurring at different levels through­
out the vertical cross-section. We will see shortly that the accurate measurement 
and calculation of convergence and divergence is extremely difficult, if not 
impossible, by conventional means. In consequence it is very difficult to predict 
changes of surface pressure resulting from the development term, unless the 
forecaster has access to the output of a complex ‘state-of-the-art’ numerical 
model output. Even then, the numerical predictions do not always get it right.

To summarize, the observed pressure tendency is dependent on the integrated 
motion of the atmosphere from the surface upward to a level where pressure 
becomes inappreciable. Motion at some levels may be more important than 
others but it is the net result which matters.

It has already been stated that convergence and its converse, divergence, 
represent an increase or decrease of mass within a specified volume. Conver­
gence within a cross-section of a unit atmospheric column will cause a rise in 
pressure at the base of the cross-section considered. Likewise divergence within a 
similar cross-section will cause a fall of pressure at the base of the cross-section. 
These concepts are fundamental to dynamic and synoptic meteorology.

Let us suppose a rectangular box (Fig. 9.2) with faces ABCD and EFGH 
normal to the x axis, faces AEHD and BFGC normal to the y axis and faces 
AEFB and DHGC normal to the z axis.

Consider first the flow along the x axis. The mass of air entering face ABCD is 
pudydzdt.  The mass of air leaving the face EFGH is

9.5  D lV lR G lN C l AND CONVfRGIN CI
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F ig u r e  9.2 Derivation of the continuity equation.

The difference between the mass of air leaving this box and that entering it 
represents the increase or decrease of mass within the box.

Thus the difference may be written (mass going in less mass going out)

A M  =  pu dy dz dt — pu dy dz dt —
d(pu)

dx
dx dy dz dt

A M  =  - d(pu)
dx

dVd t

where dV  is an element of volume.
Similarly the differences resulting from the flow along the y  and z axes are

d(pv) dV dt and
d(pw)

dy dz

respectively. The total difference is therefore

d(pu) d(pv) d(pw)

dVd t

dx dy dz dVd t (9.10)

If (9.10) is divided through by dVdt  the resulting expression represents the 
change in mass from unit volume in unit time.

Now any change in the mass occupying the box considered must result in a 
change in the density of the mass contained therein. This density will have 
changed from p to p +  dp/dt  in time dt. The change in density will accordingly be 
{dp/dt) dt) or dp/dt  in unit time. We may obviously equate the change in density 
with the advective change in mass:

dp _  d(pu) d(pv) d(pw) 
dt dx dy dz

or
dp d(pu) d{pv) d(pw)
dt dx dy dz

(9.11)

(9.12)

pu d y d z d t  -

D l*

C__ G

“  H

* [pM+̂ ] d̂ dzdt
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is known as the mass divergence. It represents the loss of mass in the rectangular 
box in Fig. 9.2. We may therefore write

dhW V) _ * £ >  +  < te>  + » £ 2  ( , ,3 )

where V is the vector velocity. We note that whenever we write the quantity 
divergence in the form divV we must express the velocity as a vector. This is 
because divergence is a vector operator \{d/dx) 4- }(d/dy) operating on the 
vector wind. The product of the operation is a scalar.

If purely horizontal flow is considered (9.13) takes the form

dlVH(, V) ^ + ( M  (9,14)

It may be assumed normally that changes in density are small compared with 
changes in velocity, for horizontal flow. Then

div»v = f M  (915)
Equation (9.15) represents the horizontal divergence of the velocity field.

Now let us consider a small slice cross-section of an air column in which any 
net increase or decrease of air caused by changes in the horizontal flow passes out 
through the vertical boundaries. The net divergence within the slice will in this 
case vanish, and

d(pu) d(pv) d(pw) _ 
dx dy dz

If the density does not change appreciably

divHV =  - - ^  (9.16)

Equation (9.16) means that any horizontal divergence is compensated for by the 
removal or replacement of air by means of convergence of vertical motion and 
vice versa if there is to be no loss in mass. This is a fundamental mechanism of the 
working of the atmosphere and it helps us a great deal in formulating our ideas 
about weather forecasting. However, it is not exactly true or we would have no 
surface pressure changes. Clearly, vertical convergence does not always exactly 
balance horizontal divergence. Three-dimensional divergence in any layer may

The equation (9.12) is called the equation of continuity. The expression
d(pu) d(pv) d (pw)

dx dy dz

and

du dv dw 
dx dy dz

du dv dw
dx +  dy dz

or
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then be regarded as a small residual of the horizontal divergence which is not 
balanced by convergence in the vertical.

We may expand the total change in density dp/dt  and write
dp dp dp dp dp
~T~ = “3~~ ”1”  ̂v ~a—  ̂ m;"3-d t dt dx dy dz
dp dp dp dp dp— — —— — u —-—  v —-—  w —
dt dt dx dy dz

but from (9.12)
dp dp dp dp du dv dw 
dt ~  U dx V dy H dz P dx P dy P dz

Equating the two expressions above for dp/dt
dp du dv dw . .

_ i ^  = divV = i ^  (9.17b)
po t  a at

where a is the specific volume.
Figure 9.3 shows typical profiles of divergence and convergence within 

anticyclones and depressions. The profiles are schematic only and do not 
attempt to assess magnitudes. In an intensifying anticyclone upper level 
convergence tends to increase the central pressure. The isallobaric gradient at 
the surface causes an isallobaric wind which flows outwards (Fig. 9.3(a)). In 
response to the continuity equation there is downward motion, subsidence, 
adiabatic heating and fine weather, as described. In winter the subsiding motion 
may cause an inversion at the top of the boundary layer, sometimes called the 
mixing layer, at about 500-1000 metres. The sky may be totally covered by 
strato-cumulus cloud in such conditions, but the weather will be dry. This 
condition is sometimes called ‘anticyclonic gloom’. Conversely, in a developing 
or deepening depression there is divergence in the upper levels. This results in an

F ig u r e  9.3 Typical convergence and divergence profiles over deepening depression 
and developing anticyclone.
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isallobaric low at the surface (Fig. 9.3(b)). The isallobaric wind blows inwards 
and in response to the continuity equation there is an upward velocity of the air. 
The air cools in response to the adiabatic equation, reaches the condensation 
level, and rises further up the saturated adiabatic lapse rate. There is cloud 
and precipitation, sometimes gales, and generally unsettled and poor weather. 
Although for simplicity examples have been given for developing, that is 
intensifying, systems, the same profiles exist for steady state, and even decaying 
systems. An additional factor, that of surface friction, is always present which 
causes an acceleration across the isobars from high to low pressure, that is 
outwards around anticyclonic centres and inwards around cyclonic centres. The 
latter effect acts to re-enforce the effect of the isallobaric wind during the 
intensifying stages of the life of the system, but it may act in an opposite sense 
during the decaying stage. We will discuss the role of friction in a later chapter.

It has already been stated that a pressure change indicates a transfer of mass into 
or away from the atmospheric column at the base of which pressure is being 
measured. There can be no accumulation or depletion of mass if the flow is 
geostrophic. Geostrophic flow may vary in space and can be likened to a river 
which in places is wide and slow moving and in other places narrow and swift 
moving as through a gorge or canyon. The total amount of water passing a given 
cross-section across the river is everywhere the same. Imagine an isobaric pattern 
where the isobars are approaching one another (Fig. 9.4) and assume for the sake 
of argument that the flow is geostrophic. Consider that the flow is westerly so 
that the Coriolis parameter is constant, and that the density is constant. In the 
actual atmosphere the flow associated with a pattern such as that illustrated in 
Fig. 9.4 would not be exactly geostrophic. Flow which is not exactly geostrophic 
is called quasi-geostrophic. If, however, the flow in Fig. 9.4 is assumed exactly 
geostrophic the supposition is made that the velocity at every point between AB 
and DC adjusts itself instantaneously to the new value of the pressure gradient 
created by the approach of the isobars AD and BC towards one another.

Having made this assumption, consider the mass transfer within the area 
ABCD. From the geostrophic equation the velocity across the line AB is

Vl = ----- —
p f  <$«!

pi
A

T ~
LOW

 D

5 n2 — 

C
Vi -

B HIGH

F ig u re  9 .4  Geostrophic flow varying in space (northern hemisphere).
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The velocity across the line DC is

v2 = —  tL  
p f  Sn2

Then
pV{ dn2 
^V2 = ^nx

and
pV\8n\ = pV26n2 (9.18) '

Thus, if the now is geostrophic the product of the velocity and the 
perpendicular distance between two isobars is proportional to the total mass 
transfer across that distance in unit time. Then equation (9.18) states that the 
mass transfer across AB is equal to the mass transfer across CD. If this is so there 
can be no accumulation or depletion of air between AB and CD, and 
consequently no change in pressure as measured between the base and top of 
the unit column of air considered. Obviously, if the flow is geostrophic and from 
the east or west, or nearly so, at all levels in the atmosphere div pVg =  0 and there 
is no pressure change at any level; therefore the pressure tendency measured at 
the surface of the earth must be zero. If the flow is from the north or south a 
correction must be made for the variation of the geostrophic speed due to the 
variation of/ .

This truth that there can be no change of pressure if the flow is geostrophic can 
be derived more rigorously as follows.

Consider the hydrostatic equation (5.1) in the form dp = —pg dz wherep is the 
pressure at any level. We may integrate thoughout a vertical column of the 
atmosphere with height of base z. Then p =  gp dz; differentiating partially 
with respect to time

dP o r  dp
ai  = s l  m i z

(9.19)

Now, from the equation of continuity (9.12),
dp d(pu) d(pv) d(pw) ^
dt dx dv dz

and substituting the expression for dp/dt  into (9.19) we have

(9.20)
dp f°° fd(pu) d(pv)\

Now, for geostrophic flow it follows from (8.1) that
1 dp

pU* = - J d y
1 dp

pVg=7 fa

Positive role model 
Positive role model 

Positive role model 
Positive role model 

Positive role model 

Positive role model 
Positive role model 
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Differentiating the first of these equations with respect to x and the second with 
respect to y  we obtain, if/  is considered constant,

d(pug) 1 d2p
dx f  dx dy

d{pvg) _  1 d2p 
dy f  dxdy

Then, substituting the above expressions in (9.20)

dp = _ g  [° 
dt f ] :

+ ^ d z
dx dy dx dy 

It is seen that

j-t =g(pw)z (9.21)

If we integrate from a flat horizontal surface z — 0, w must be zero; thus

dp _  dpp _  
dt dt

and there can be no change of surface pressure with geostrophic flow. All 
pressure changes when the variation of/  is negligible must therefore be due to 
ageostrophic motion.

If equation (9.20) is expanded,

dp
dt

dp dp\  f  du dv .“aJ + ”5 ) dz+(/’ai + '’%|dz + g(pw)2 (9.22)

The first term on the right hand side of (9.22) represents the effect of the 
integrated horizontal advection of air of different density above height z on 
the pressure at height z. The second term is the effect on the pressure at z of the 
integrated horizontal divergence or convergence of velocity. The third term is the 
vertical motion term.

If the flow is strictly geostrophic and horizontal the vertical velocity term 
vanishes throughout and the advective and divergence terms balance one 
another. Thus from (9.21) and (9.22) dp/dt  — 0 and

■s i * ( “' l +<,sl ) d z= s/  ('’3 + <>:S s
dua dv.
d } + p 7>;

dug dv dp dp
dx + d y )  Mg dx Vgdy

and div p \ g = 0 assuming constant density in the horizontal plane.
If the flow is predominantly northward or southward, the variation of/ ,  the 

Coriolis parameter, will create divergence of the geostrophic wind.
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9.7 M easurem ent o f d ivergence

Divergence is clearly a quantity which it would be most useful to measure 
quantitatively. It is closely related to pressure change, a parameter which is 
linked to the problem of producing a forecast chart and so to the whole technique 
of weather forecasting. It has been shown in Section 9.6 that one cannot measure 
divergence if the flow is geostrophic. But since the geostrophic assumption is 
used fairly generally in the analysis of synoptic charts we find ourselves at an 
impasse. Divergence and convergence could perhaps be measured from actual 
wind observations. A method has, in fact, been devised to do this from a triangle 
of upper wind stations. The amount of air flowing into and out of such a triangle 
can be calculated. Any difference between the ingoing and outgoing values 
would represent horizontal mass divergence or convergence. These computa­
tions, however, are insufficiently accurate to be of real use because the natural 
variations of the wind over the area considered, together with the observational 
errors in the values of the wind direction and speed themselves, are both of a 
greater order of magnitude than the divergence values to be computed. In 
addition the network of upper wind stations is too sparsely spread to enable 
triangular areas of most useful size to be used, except in a few relatively small 
areas.

Such calculations in selected areas may, however, be of considerable interest 
for research purposes since they may give indications of levels where divergence 
and convergence are a maximum. If the results were integrated throughout an 
entire atmospheric column they would, in theory, give an approximation to the 
observed barometric tendency. At present such results would be of little use as an 
operational forecasting tool. In addition to the difficulty of making a reasonable 
assessment of the divergence itself at any level, the supreme difficulty of 
computing the surface pressure tendency lies in the fact that the latter is a 
small residual of divergence and convergence of a greater order of magnitude 
occurring at various levels throughout the atmospheric column (Section 9.4).

The magnitude of divergence on the synoptic scale is usually between about 
10-5 s"1 and 10~6 s-1. One may realize the difficulty of measuring divergence if 
an idealized case is considered. Consider a narrow west-to-east strip. Let this 
strip be, say, 100 kilometres in length. Assume that at the western end of the strip
the exact wind speed is 20 m s 1 while at the eastern end it is 21 m s 1 (Fig. 9.5). 

Now

F ig u re  9.5 Calculation of divergence for one-dimensional flow.

>■ » V  d,W  = -

V 2=  21ms 1V t =  20ms 1
- 100km -
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If the derivative is replaced by a simple difference it follows that

where L  is the length of the strip.
If this condition extended throughout the whole depth of the atmosphere it 

can easily be shown that it would cause a fall of surface pressure of about 36 mb 
per hour throughout the area of the strip.

Now suppose we can only measure our wind speed at a given level to within 1 
metre per second. The maximum possible error in the difference between the two 
wind speeds in the case quoted above would either increase the divergence to 
3 x 10~5 s"1 or else reverse the sign of divergence and give a value of 10-5 s-1 for 
convergence at that level. This would only be the value for one level. In effect 
there is direction to consider also, while at upper levels where the wind is stronger 
the accuracy of measurement is less. There we may only be able to measure the 
wind to within 5 metres or more per second. When such values are calculated for 
all levels and a net residual obtained it can be easily seen why it is so difficult to 
compute a realistic surface barometric tendency in this way.

We shall see in Chapter 11 that there is an alternative means of estimating the 
divergence, assuming that the flow is quasi-geostrophic, that is in more or less 
geostrophic balance. However, with the advent of high-speed computers the 
primitive equations, that is the full equations of motion, are used to compute 
pressure changes, as a residual of the divergence calculated for a number of 
upper levels. Certain tunings embodying the principles of the conservation of 
mass and energy are utilized to ensure that the predictions are realistic.

_______________________9*8 V e r t ic a l  m o t io n _______________________

In dynamic meteorology we are interested in large-scale vertical motion, that is 
on the scale of the synoptic chart. Vertical motion on this scale refers to the 
slow ascent or descent of air over comparatively extensive areas. The order of 
magnitude is centimetres per second; this is only about a hundredth part of the 
speed of horizontal motion. Vertical motion is responsible for most of our 
weather. Upward motion in the vicinity of depressions results in systems of cloud 
and precipitation while downward motion or subsidence in the vicinity of 
anticyclones causes clear skies. Large-scale vertical motion should not be 
confused with the scale of vertical motion associated with convective activity. 
The latter occurs over the much smaller areas covered by cumulus or cumulo­
nimbus clouds and is not normally related to general rises or falls of pressure 
over a period of some hours. Convective vertical motion is, however, frequently 
of a magnitude which is comparable with or exceeds that of horizontal motion.

The equation of continuity expressed in (9.16)
du dv dw
dx dy dz

can be used to compute the vertical motion at different levels in the atmosphere, 
providing we have a vertical profile of the horizontal divergence throughout the

div V =  —— 0± 
T.
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1. Suppose an atmospheric column with a surface pressure of 1000 hPa was 
diverging horizontally throughout its entire length at 10~6s-1. How long 
would it take for the surface pressure to reduce to its e-folding value? What is 
the e-folding value of the surface pressure?

2. Suppose an atmosphere is converging between the surface and 5 km at
10-5 s-1, and diverging between 5 km and 10 km at the same magnitude. Plot 
the vertical velocity profile. At what level does the vertical velocity reach a 
maximum? Discuss this result with reference to Fig. 9.4.

3. We have shown that the divergence of the geostrophic zonal wind is zero. 
What is the divergence of the meridional geostrophic wind?

4. In problem 9 at the end of Chapter 5 we found that if the earth’s atmosphere 
was heated by 1 K the maximum pressure rise would occur at the height of 
the homogeneous atmosphere, assuming a constant lapse rate. How much 
horizontal convergence would be needed within a layer lOOhPa thick to 
produce the same result?

5. Compute the isallobaric wind for geostrophic flow at 45° latitude if the 
pressure gradient is 1 hPa per 100 km and the surface pressure is falling at 
3hPa per hour. Assume a density of 1.2 kg m-3. Compute the isallobaric 
wind for a circular-shaped depression for the same conditions at a radius of 
100 km from the centre.

atmospheric column. However, we must be wary of the accuracy of results 
achieved by this method over small areas, because of the errors which arise in the 
measurement of the horizontal divergence and the assumption of incom­
pressibility inherent in the above form of the continuity equation. Large-scale 
numerical models, covering a large part of the earth’s surface, are better 
equipped to deal with the problem, as they incorporate tuning and smoothing 
techniques as described at the end of the previous section.

9 .9  P ro b le m s
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 __________ 10.1 In t r o d u c t io n  ______

Euler stands on the station platform and measures the speed of the passing 
trains. Lagrange rides on an express train and measures its speed as it travels 
along the railway tracks, up and down inclines and through stations.

We may look at the motion of a fluid in two different ways. The first is the 
method attributed to Leonhard Euler who published his major work on material 
coordinates in 1755. The Eulerian technique involves observing the motion of 
parcels of matter from a fixed grid of points. Velocities are measured at intervals 
of time at each point on such a grid. The stationary observer measures changes in 
the properties of a fluid as the fluid streams by. In the Lagrangian technique the 
observer rides along with the parcels of matter and measures the motion and 
changes in properties of the parcels of fluid while in motion. There has been some 
discussion as to the relative roles played by these two great mathematicians (see 
Weather Magazine 1968, 23, 2), but it is generally accepted that the two 
techniques were developed independently as described.

The Eulerian method is the one most commonly used in meteorology. 
Observations are made at specific locations. Fields of the variables observed 
may be smoothed and constructed in the forms of isopleths on a map. A grid 
array can then be placed over the fields and extrapolated values assigned to the 
array of points. Finite difference calculations can then be made over the grid 
space and substituted into the equations of motion in place of the partial 
derivatives. Thus, if we look again at equations (9.1), where the acceleration 
terms have been expanded in the form shown in (9.7), we would extract the values 
of u, v and/  at the grid points, compute the spatial derivatives of u, v and p , and 
solve for du/dt  and dv/dt. Having performed this calculation at every grid 
point on the chart for a given time interval, say a minute, we would repeat the 
operation for the next time interval, using the computed results as initial 
conditions for the ensuing computation. This operation could then be repeated 
for as long as desired. It is therefore clear that the Eulerian method is eminently

Plan 
Plan 
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suitable for numerical prediction models. However, the Lagrangian method does 
have some advantages over the Eulerian method for certain kinds of studies. The 
equations are often more amenable to integration and the scale of the motion is 
not fixed to a grid of fixed dimensions. The Lagrangian integrations will yield 
actual trajectories travelled by parcels of matter. The continuity equation can 
also be expressed in Lagrangian coordinates which follow the motion. This is 
very useful since divergence is not then fixed to the area or volume of a grid of 
constant size.

10.2 GEOSTROPHIC ADJUSTMENT: EXAMPLE O f T H I

L a g r a n g i a n  m e t h o d

Let us consider an illustrative example of the Lagrangian method and see 
what it tells us about the space and time scales which control the process of 
geostrophic adjustment, that is the process which forces the wind to blow 
along the isobars rather than across them. We will consider the equations of 
motion for frictionless flow where the isobars are oriented in an east-west 
direction, the pure geostrophic case:

= = o
dt p dx

( 10.1)
du 1 dp

dl + f u ~ —p ¥ y ~ y
where the pressure gradient term is assumed to remain constant. The first terms 
in the above equations now represent total derivatives following the motion, but 
we need not expand them as we did in (9.7). In this form (10.1) can be integrated. 
Solving the top equation for u, taking the derivative dv/dt  and substituting in the 
second relation we have

-^2 + / 2w=/P>* (10.2)

We may simplify (10.2) by setting m = uf  — Py. Then we have (d2m/dt2) + 
fm  — 0. The above is a second-order differential equation which has a type 
solution m =  A sin f t  -\- B cos ft.  We may evaluate the constants at the initial 
starting point where t =  0, u — u0, v =  u0. We have, since u =  [m +  Pv)/ f ,  and
v = (V /X ^/dO *

B = u0 f - P y, A = fu0 

fu  = v0f  sin f t  +  (fuo -  Py)  cos f t  +  Py 

Simplifying, we obtain
(U0 — Py\  . Py

u = I — 1 cos f t  +  v0 smft  +  - f

( u o - P Y\
V = vq cos f t  -  I —

(10.3)
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We shall consider the case where parcels start from rest to see how the 
geostrophic adjustment process works. Equations (10.3) then reduce to

p ,
u = (1

/

y  sin f t

■ cos ft)
(10.4)

Equations (10.4) describe the velocity field as a function of time. Clearly the 
zonal velocity u reaches a maximum when f t  = 7r, or t = ir // . At this time 
u =  IP y f f  which will be recognized as just twice the geostrophic wind speed. At 
this time the wind is blowing along the isobars. It can also be seen from equation 
(10.4) that the zonal wind diminishes to zero at t = I'k/ f .  The latter time is called 
the inertial period. It is the order of magnitude of time needed for the geostrophic 
adjustment to take place. Table 10.1 shows the length of the inertial period for 
various latitudes. The inertial period is also called a half pendulum day, since it is 
12 hours at the poles.

It is quite easy to integrate equations (10.4). The result will give us the 
trajectory of the parcel. Initiating the trajectory at the origin, we obtain

x = y ^  ( f t - s i n  ft) 

(1 -c o s /f )
(10.5)

Equations (10.5) are equations of a cycloid, a well-known mathematical curve. 
Figure 10.1 shows a computer output of the track of a parcel following such a 
curve. It is assumed that the parcel starts from rest. A reasonable value of/  is 
10~4 which is valid for about 43° of latitude. A reasonable, although weak, 
pressure gradient is 1 mb (hPa) per 5° of latitude. Measuring pressure gradients 
by these criteria is sensible since maps are printed with latitude and longitude

T a b l e  1 0 .1 The inertial period at 
different latitudes

Latitude Inertial period (h)

Equator OQ

!8!!!!llll|||l||j I7L5 w j week
10 69. f
15 46.4
20 35, t
25 28.4
30 24,0
45 17.0
60 [3.8
90 [10
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X  (km)

Figure 10.1 Numerical computation of parcel trajectories starting from rest for the 
geostrophic case. The pressure gradient force per unit mass is 15.0 x 10-5 m s-2. The 
upper curve corresponds to 10° North and the lower curve to 43° North.

lines for marking location. This magnitude of pressure gradient Py =  15.0 x 
10-5 m s-2 is about right for normal surface pressure and temperature, say 
1012 mb and 20°C. This value of the pressure gradient acceleration has been used 
to generate the curves in Fig. 10.1. Note that the amplitude and wavelength of the 
inertial wave are both 15 times larger at 10° than at 43° latitude, while the inertial 
period is four times longer.

In some non-mathematical descriptions of the geostrophic adjustment 
process, for the case described in this section, it has been said that the wind 
begins to flow across the isobars but eventually lines up along the isobars. At this 
stage geostrophic balance is achieved. This description only tells half the story. 
The simple mathematics tells us a great deal more of the detail of what must 
happen. Certainly, the geostrophic adjustment process depends on the length of 
the inertial period. In low latitudes where the inertial period is long, geostrophic 
adjustment is unlikely to occur because the pressure gradient will not stay 
constant for such long periods.

We can show that the geostrophic wind will result eventually, quite simply. 
The mean velocity of a parcel integrated over the inertial period is

a = s ( / " d0 = 6 / £ d' = s / ‘bc (106)

between limits of 0 and (27r//2)P>5, so that u =  Py/ f , which is the geostrophic 
wind speed. A similar operation shows that v = 0. If we imagine now that we 
integrate over the paths of all parcels in a fluid we obtain the geostrophic velocity 
for the ensemble of parcels. In the first example shown in Fig. 10.2, the amplitude 
of the oscillation is only 30 km. The pressure gradient chosen is one that is small 
enough to occur in nature within the inertial period, so that it is reasonable 
to assume that geostrophic balance to a changing pressure gradient of this 
magnitude can and does occur for all practical purposes. In the second example 
shown in Fig. 10.2 geostrophic adjustment is made more difficult as the 
amplitude of the inertial oscillation is now 480 kms and the inertial period
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F ig u r e  10.2 The anticyclonic case: numerical computation of trajectories of parcels 
starting from radii 0 to 400 km. Invariant pressure gradient of 15.0 x 10-5ms-2, 
equivalent to about 1 mb (hPa) per degree of latitude, latitude of 10° North.

about 69 hours. However, in the tropics pressure gradient changes occur more 
slowly, so that there is more time for adjustment to occur. In some cases, if 
pressure gradient changes are not too rapid, quasi-geostrophic flow may occur at 
a latitude of 10° either side of the equator.

1 0 3  T h i c a se  o * th e  a n t ic y c io n e ___________ _

We may use the method illustrated in the previous case to look at the case of 
an anticyclone with concentric circular isobars, once again holding the 
pressure gradient constant. This time we must use equations (10.5) in their 
polar coordinate form.

We then have
r -  rO2 -  fr6 =  Pr

(10.7)
rd +  2r6 + fr  =  P e =  0

where Pg = —(1 / pr)(dp/d6).
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Equation (10.10) will be recognized as that describing the curve of a cardioid. We 
note that the inertial period is double that for the geostrophic case while the 
amplitude is four times as large. Gradient wind adjustment is a more complicated 
process for circular isobaric systems than for the simple geostrophic case. Figure 
10.2 shows the path of a parcel starting from radii of 0 to 400 kilometres from the 
centre. The tracks have been terminated at the time when they are tangential to 
the isobars.

In the anticyclonic case the families of trajectories which start from different 
radii, that is when r0 is not zero, possess the interesting property that the 
minimum amplitude of the family occurs when r =  3 r0, measured from the origin 
of the coordinate system, that is from the centre of the anticyclone. For the case 
illustrated in Fig. 10.2 this occurs when r =  85.3 km. (See problem 3.)

10.4 T he case o r th e variable Coriolis p a ra m e te r

In the cases discussed in the previous section we have kept the Coriolis parameter 
constant during the calculations. This is a reasonable thing to do in temperate or 
polar latitudes, but not in tropical latitudes. As we have seen from Fig. 10.2 the 
trajectories have large amplitudes at 10° distant from the equator. The rate of 
change of the Coriolis parameter is a maximum at the equator and diminishes 
polewards since d f  /dy = (2u  cos </>)/ a, where a is the radius of the earth. Thus, if 
we allow the Coriolis force to vary with latitude, using west-east-oriented 
isobars as for the geostrophic case, and let air parcels start from rest from 
different latitudes, say at 5° intervals, we find we have trajectories which 
possess some properties analogous to those illustrated in Fig. 10.3. Families of 
numerically computed trajectories of this kind are shown in Figs 10.4 and 10.5 
for the northern hemisphere where the relation/  =  sin(5y — 40) was used, where 
y =  8.0 at the equator and increases/decreases by one unit for each 5° north or 
south of the equator. In Fig. 10.4 a pressure gradient of about 1 mb (hPa) per 
5° of latitude is used. Note the convergence of the trajectories between those 
starting from the equator and those starting a few degrees away from the 
equator. The same relation applies for the variable Coriolis parameter for

Integration of the second relation yields

2 • fr2r 9 +  —  =  constant (10.8)

If we assume that the air parcel starts from the centre of the anticyclone from a 
state of rest the constant of integration is zero and 6 — - / / 2 .  Substituting for 
d6/dt  in the first relation of (10.7) gives

r + - ^  = Pr (10.9)

We now follow the same procedure as for the pure geostrophic case and finally
A U f o i t V

(10.10)Positive role model 
Positive role model 
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x (km)

Figure 10.3 Trajectories of air parcels starting from rest at 5° intervals from the 
equator to 15° latitude in the northern hemisphere. The pressure gradient is assumed 
to be 1 mb (hPa) per 5° of latitude. This magnitude of pressure gradient might be 
found at upper levels of the winter troposphere in the tropics. Note the convergence 
of trajectories at about 11° latitude when they become parallel to the isobars. The grid 
on the left hand side is the function y where y — sin (5y — 40).

straight isobars as for the anticyclonic case with constant / ,  namely that for a 
given pressure gradient, the minimum latitude at which the wind becomes 
tangent to the isobars is just three times the starting latitude (problem 4).

Figures 10.4 and 10.5 give a simple, but interesting and useful, interpretation 
of the behaviour of the atmosphere in the tropics in the real world. In Fig 10.4 the 
gradient is small but of the order of magnitude which may exist in winter at upper 
levels polewards of the equator in one or the other hemisphere. Both the winter 
subtropical jet stream and the existence of the winter subtropical anticyclones 
can, at least partially, be explained by the pattern of trajectories appearing in this 
figure. Note the convergence of the trajectories where they become parallel to 
the isobars, particularly between 11° and 12° latitude. In Fig. 10.5 the pressure 
gradient is five times greater. This pattern is more applicable to the Indian 
summer monsoon when cross-equatorial pressure gradients occur from late June 
to September. Convergence of trajectories occurs now between about 19° and 
21° latitude. In the last chapter we saw that upper level convergence tends to 
contribute to the building up of anticyclones. If Fig. 10.4 is a possible example of 
the behaviour of the troposphere in the tropics it suggests the presence of the 
subtropical anticyclones and subsidence in subtropical latitudes. On the other 
hand if Fig. 10.5 is used as an example to illustrate pressure gradients in the 
boundary layer across and polewards of the equator it suggests convergence and 
upward motion in subtropical latitudes. The main thrust of the Indian summer 
monsoon is observed in Bombay, which is about 19°N latitude. Observation of 
Bombay weather supports the theoretical conclusions derived from Fig. 10.5.
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*(km)

F ig u r e  10.4 Same as Fig. 10.3, but with a pressure gradient of 1 mb (hPa) per 
degree of latitude, a value likely to be found in summer monsoon regions. Note the 
convergence of the trajectories at about 20° of latitude when they become parallel to 
the isobars.

The scientific method is to investigate whether observations in the real world 
confirm theoretical arguments. It may proceed in two ways. Perhaps the most 
exciting is to attempt to predict events suggested by the solutions of mathema­
tical equations. The alternative is to collect series of observations and attempt to 
explain them in terms of solutions of equations. Either way there will probably

Figure 10.5 Constant-level trajectories of balloons released from the Seychelles 
(adapted from Cadet and Overlez, 1976).
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be a need to refine arid tune the theory, or model, so that it agrees more closely 
with real measurements. Einstein predicted from his theory of relativity that light 
rays would bend if they passed close to the sun. It needed a solar eclipse to prove 
his assertion.

Figure 10.5 shows the actual trajectories of balloons that were released from 
the Seychelles in the summer monsoon season of 1975 and tracked by satellite. 
All together 45 balloons were released so that they drifted at constant pressure 
within the tropical boundary layer. For practical purposes constant pressure is 
equivalent to constant height for the purpose of calculating the pressure 
gradient, as we shall see in a later chapter. It took many years before roughly 
computed tracks like those shown in Figs 10.3 and 10.4 could be confirmed by 
actual observations. The most interesting trajectory in Fig. 10.5 is the one 
marked with a dotted line, which shows a perfect inertial oscillation. It even 
shows a small loop, a characteristic predicted by the equations, depending on the 
initial conditions.

19 J  DIVERGENCE OF PARCELS IN A FLUID

If we consider a small moving slice of air of constant mass 6M
SM = pAh

where A is the cross-section and h is the thickness of the slice considered. Then
d{6M) d(pAh)

dr dt
=  0

(10.11)

dh . dA A1 dp _
pA —  + ph —  + Ah—  =  0
r  d t dt dt

Dividing through by 6M = pAh
1 dh 1 dA 1 dp A
— --1----- 1 -T~ — 0h dt A dt p dt

— \dp  Idh I dA
p dt hdt  A dt

We know from the continuity equation that

- i *  <li.Vp dt
Hence

1 dh 1 dA _7 /1A
7-T7 +  ̂ -T 7  =  dlvV (10-12)h dt A dt

If the total divergence is zero (i.e., the flow is assumed to be incompressible), we 
obtain the relation

L  —  (10.13)
A dt h d t

In practice we interpret (10.13) to mean that if a slice of constant mass expands, 
its thickness contracts, and vice versa. We may put this concept into practice by
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following three balloons which are released from different locations and all 
ascend at the same rate. The rate of change of the area of the triangles formed by 
the three balloons is then a measure of the divergence (or convergence) of the 
slice of the atmosphere through which the balloons are ascending. It is sometimes 
useful to measure convergence in Lagrangian rather than Eulerian terms. For 
example, the Eulerian prediction of the convergence and therefore increased 
concentration of harmful pollutants within a square of constant area, the sides of 
which are 100 km, would be less useful than the Lagrangian prediction of the 
contraction of an area of pollutants to dimensions of, say, 1 km or less, when 
concentrations might be so high as to become lethal.

10*6 S t r ea m lin es

In this chapter we have been concerned with trajectories, the tracks followed by 
parcels of fluid (or individual bits of matter). A streamline is defined as a line 
joining points of tangency to the wind vector for every point of the flow. Thus 
dy/dx = v{x,y, t)/u(x,y, i)  states that the direction of the streamline at any 
point x,y  coincides with the wind vector at a given time tQ. A streamline thus 
gives an instantaneous picture of the field of motion at a fixed time. Isobars 
represent streamlines if the flow is geostrophic or gradient and steady, that is if 
there is no change with time with reference to fixed points within the field of flow. 
Thus while the slope of a streamline, dy/dx  =  v/u, the slope of a trajectory is 
dy/dx  =  v(x,y, t )/u(x ,y , t), which is not restricted to a fixed time.

We may find a relation between trajectories and streamlines. If d/3 expresses 
the change of direction of the wind, rd(3 = ds where ds is an infinitesimal 
displacement along the horizontal trajectory and r is the radius of curvature. 
Then

d/3 ds 
VJ i = dt

d fl V <1 0 1 4 )

£ ‘ 7 = rK<
where Kt is the curvature of the trajectory of the air. Now

d (3 00 00 00
d t ~ ~ d t +Ufcc + Vy  (10-15)

where 00/01 is the local turning of the wind.
However, 00 /Ot = 0 for a streamline by definition since the streamline refers 

to an instantaneous pattern of motion, so

00  , 00 00 V
u » ; + % = v - £ = v = r K ‘ (>»•“ )

where Ks is the curvature of the streamline. We may write from (10 14) (10 15) 
and CIO. 161

|  = n w . ) (10.17)
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When the motion is steady

V(Kt - K s) = 0
and

^t =  *s
Trajectories and streamlines are then coincident.

_____________  I& 7  T h i  stre a m  fu n c t io n  ,

In later chapters we shall make use of a relationship called the stream function. 
We will introduce the definition here:

di/j

(10.18)
O'tb

We note that equations (10.18) are somewhat similar to the geostrophic 
equation. Like the geostrophic equation with a constant/ ,  we easily find that

du dv 
frc + ¥y = 0

Thus the divergence of any flow represented solely by a stream function is 
always zero. Non-divergent wind velocities can be represented by the spacing of 
isopleths of ip on a map. The ensuing pattern gives a good visual interpretation of 
the non-divergent wind flow. A technique of streamline analysis is discussed in 
Chapter 16, but it should be noted that the streamlines described therein are not 
quite the isopleths mentioned above.

j<MI P r o b le m s

1. Derive equation (10.10) from equations (10.7).
2. At what radius does the tangential velocity of a parcel starting from rest 

from the centre of an anticyclone with concentric isobars attain maxi­
mum possible gradient wind speed for the conditions chosen?/  =  10~4 s-1, 
pressure gradient acceleration 15 x 10~5 m s-2. At what angle does the wind 
intersect the isobars at this point?

3. In the example illustrated in Fig. 10.3 the pressure gradient force per unit 
mass is 15.0 x 10-5 s-2. What is the minimum distance from the origin for 
any trajectory to become parallel to the isobars? At what distance from the 
origin does this trajectory start? [Flint: Integrate equations (10.7) for the case 
where parcels start from r =  r0. Set the tangential velocity equal to zero and 
differentiate dr/dr0.]

4. Show that for the case of a variable Coriolis parameter and isobars parallel 
to circles of latitude the minimum latitude at which the wind blows parallel 
to the isobars is three times the latitude from which the air parcel starts. 
What is this latitude for the pressure gradient value used in Fig. 10.3(a)?
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[Hint: Substitute /  =  2uo(y/a) into equations (7.4). This approximation is 
reasonable up to about 15° of latitude. Then integrate as in the previous
question. At what latitude does a parcel become tangent to the isobars if it 
starts from the equator?]

5. Solve problem 3 using the equations of motion in spherical coordinates and 
hence show that the assumption/  =  2uj(y/a) used in the previous problem is 
a fair approximation for tropical latitudes. [Hint: Answer is cos2(p = 
cos2</>o/[l +  i >>./(sin20ô 2).]

6. What is the slope of the cycloid derived in equations (10.5) at t — 7r/2/?
7. Obtain (10.11) from 8M =  pAh by logarithmic differentiation.
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VORTICITY

I I . I  In tr o d u ctio n

We now come to an extremely important concept in dynamic meteorology. It is, 
in fact, a concept which is an integral part of fluid dynamics, the science 
concerned with the motion of fluids, gases and liquids. It is called vorticity 
and is a measure of rotation. Rotation is also sometimes called spin, a property 
that is a characteristic of quantum physics. Spin or rotation is therefore a 
fundamental property of our universe. We have already seen in earlier chapters 
that the wind blows around anticyclones and depressions. Such circulations have 
vorticity. The measure of the vorticity of the flow around these systems is a 
measure of the intensity of those systems. This chapter will discuss the derivation 
of vorticity as well as interpret its significance when applied to simple patterns on 
the weather map. It will be seen in this and later chapters that vorticity provides 
an extremely useful practical prediction tool.

The idea of circulation implies moving along a circular path, or more exactly, 
moving around a closed path. We talk about the circulation of money (although 
money spent may not always return to the spender). In the French language the 
word for traffic is la circulation. At parties the host or hostess will tell the guests to 
circulate. Although these descriptions may not be rigorous the idea is similar to 
the scientific one with which we shall here be concerned.

Mathematically,

11.2 C ir c u l a t io n

C =  j) {u dx +  v dy +  w dz) ( n . i )

or, in a horizontal plane, C =  §(udx  4- vdy). 
We may also express the circulation as

C =  j )  V cos a  ds (11.2)
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Figure 11.1 Circulation.

where V is the velocity of flow at any point in the field of motion and a is the 
angle between the direction of flow and the direction of the tangent to the 
element of distance along a closed path through the field of motion at that point, 
as shown schematically in Fig. 11.1.

In meteorology, where the geostrophic assumption is used in synoptic 
analysis, it is clear that the velocity field and the field of isobars are coincident 
and therefore that the circulation around a closed isobar may be expressed by 
/  V ds. We must make the point here that when we refer to the geostrophic 
assumption as a description of the flow at any point in a field of motion, we really 
mean balanced flow. This could include gradient wind flow which, as we have 
seen, is more rigorous than geostrophic flow if the isobars are curved. But the 
pattern of isobars is far from being circular everywhere so that even the gradient 
wind equation is not exact. What we shall really mean by geostrophic flow is 
balanced flow in the sense that the wind blows parallel to the isobars at every 
point on the pressure pattern. There is an equation which expresses this 
condition which we shall come to later. For the time being, we may generalize 
and equate geostrophic flow with the quasi-geostrophic assumption that the flow 
is parallel to the isobars at every point and that its speed is approximately given 
by the geostrophic relation.

Vorticity is a measure of rotation or spin. It may be defined as circulation 
per unit area, or as the quantity which, when integrated over the area, gives the 
circulation.

11.3 V o r t ic it y

Thus

or

dC = (dA

where ( is the vorticity about the axis normal to dA.

(11.4)

- V

r  o \
ds

C = f  CdTi (11.3)
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Consider a rotating disc of radius r. From (11.2)

C = j) V ds cos a — j) V ds = 2irrV

Here again a = 0 since the motion is always around the closed path.
If we consider a small but finite rotating disc (  =  dC/d^4,

,  lirrV 2V  „
C =  r  = —  = 2a;

7rrz r
where uj is the angular velocity of the disc.

Now consider a larger rotating disc which is divided up into infinitesimal 
squares (Fig. 11.2). If the circulation around these squares is added up it is seen 
that adjoining sides supply equal and opposite contributions and cancel out, 
leaving the circulation around the perimeter.

Thus the vorticity of the rotating disc is 2u where C is now the circulation 
around the perimeter of the disc and A is the whole area enclosed by the 
perimeter:

(  — 2uj (11.5)

The above relation then states that the vorticity of a rotating disc equals twice its 
angular velocity.

Since vorticity can be measured in terms of rotation or angular velocity it is 
clearly a function of the curvature of the path around which the parcel or element 
travels. This is particularly significant in meteorology where, as a result of the 
geostrophic assumption, the wind is considered to blow along the isobars. The 
curvature of the isobars is therefore of prime importance in estimating the 
horizontal vorticity of the wind field in the atmosphere. Vorticity is also a 
function of another parameter, namely shear. Shear is defined as the rate of 
change of velocity in a direction normal to the direction of motion. Thus, in

F ig u re  11.2 Vorticity of a rotating disc.
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F ig u re  11.3 Cyclonic and anticyclonic shear in a westerly current (northern 
hemisphere).

meteorology, horizontal shear exists if, for example, the pressure gradient 
changes in a direction along the gradient, that is across the isobars.

Figures 11.3 and 11.4 show the generation of shear vorticity in westerly and 
easterly air currents. We might imagine momentarily that Figs 11.3 and 11.4 
represent a flowing stream. The velocity of the current is inversely proportional 
to the distance between the streamlines, which we can also imagine to be isobars. 
If we place a stick across the stream we will observe that the stick rotates in the 
direction indicated. The portion of the stick lying in the stronger part of the 
current will move faster than the portion lying in the weaker part of the current. 
The stick will be seen to have rotated an angle a which the new position A'B' 
makes with the initial position AB and similarly with stick CD. In the northern 
hemisphere, cyclonic shear occurs where the rotation is anticlockwise, and 
anticyclonic shear occurs where the rotation is clockwise. We see that rotation 
has been generated through shear, even though the current itself does not possess 
any curvature in its path. In other words, we see that vorticity has been generated 
by the shear. It is shear vorticity as distinguished from curvature vorticity.

Figure 11.4 Cyclonic and anticyclonic shear in an easterly current (northern 
hemisphere).
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Mathematically, shear is denoted by dV/dr  where the numerator is a 
small change in velocity while the denominator is a small leftward distance 
perpendicular to the direction of motion.

Figures 11.3 and 11.4 may refer to either hemisphere. In the northern hemi­
sphere anticlockwise rotation is cyclonic and clockwise rotation anticyclonic. In 
the southern hemisphere the reverse is true. Remember that/  changes sign and 
becomes negative in the southern hemisphere. However, the conventions of 
vector calculus require the normal coordinate to increase towards the left of 
the flow in both hemispheres, so cyclonic vorticity is positive (negative) and 
anticyclonic vorticity is negative (positive) in the northern (southern) hemisphere.

We have seen in the previous section that vorticity is a function of the two 
parameters curvature and shear. We will now derive an expression for vorticity 
in polar coordinates which brings out the dual character of vorticity very nicely.

In Fig. 11.5 BA and CD are streamlines having a common centre of curvature
O. Consider the circulation around an element of area ABCD where the velocity 
V is everywhere normal to the radius vector.

Starting at A we proceed cyclonically around the circuit ABCD. From (11.2)

The last term may be neglected since it is a differential of third order. 
The area of the element is

d A = r dr dO

The first term represents curvature. The second term represents the change 
of velocity along r and is therefore a shear term. As previously stated we see 
that vorticity is composed of two components, curvature vorticity and shear

11.4 D e r iv a t io n  o f  e x p re ss io n s f o r  v o r t ic it y

dC =  -V r d 0  + 0 + ( v  +  ^ d r j  (r +  dr) d6 +  0

dV  dV  7
=  -VrdO+ VrdO+ VdrdO + r —  drd0 +  —  dr2 d6

dr dr

dC Vdrd0 + r(dV/dr)drd6 V dV  
dA rdrdO r dr

( 11.6)

n

[v+¥ dr

cBr

A
dy

d0]

F ig u re  11.5. Derivation of vorticity in polar coordinates.



F ig u r e  11.6 Derivation of vorticity in Cartesian coordinates.

vorticity. Note that though the positive (leftward) curvature of the flow is 
1/r, the normal coordinate itself is —r in this case.

It is useful to derive an expression for vorticity in Cartesian coordinates also. 
To do this we consider the circulation around a small rectangular element in 
the same way as for the small element of area in deriving the expression
(11.6) in polar coordinates. In this case we also proceed around the sides ABCD 
(Fig. 11.6).

Since in a horizontal plane

C =  j) (u dx +  v dy)

we therefore have

dC =  —vdy  +  udx  +  ( v +  ^ dx^j dy — ^  dy ) dx

-v dy 4- u dx 4- v dy +  dx dy 
ox

u dx
du
dy

dx dy

(11.7)

dv du\  - j f  dv du\  
d x ~ l f y )  X y =  \ f a ~ d l ' )  

where dA is the area of the rectangular element, and
_  dC _  dv du 

dA dx dy
This is the vorticity perpendicular to the x, y  plane. Vorticity perpendicular to 
the x, z plane is derived similarly and denoted by

du dw 
^ dz dx

Vorticity perpendicular to the y, z plane is denoted by
dw dv 
dy dz ’

H .5  R e l a t iv e  a n d  a sso lu te  v o rt ic ity

The three components of vorticity derived in the preceding section are created by 
the combined curvature and shear vorticity of the wind field. In this work we
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shall only be concerned with the first component, C, which is perpendicular 
to the x .y  plane. This vorticity is called relative vorticity to indicate that it 
is relative to the surface of the earth. However, since the earth rotates it 
possesses its own vorticity, denoted by / ,  the Coriolis parameter. We proved 
this earlier when we showed that the vorticity of a solid rotating disc was 
twice its angular velocity. Thus every parcel of air possesses its own 
vorticity plus earth vorticity / ,  corresponding to the latitude about a 2 
axis normal to the surface of the earth. The sum of the relative and earth 
vorticity is

Ca — C+ /  (11-8)

The sum is called the vertical component of absolute vorticity.
In the next section we shall be particularly concerned with the physical 

significance of rates of change of the absolute vorticity.

11.6 TH E PtVERGENCE~YQRTIOTY RELATION

We now come to a remarkable and fundamental relation. We have seen that 
convergence and divergence of mass result in pressure changes, and that if we 
conserve mass in a vertical column the continuity equation gives a vertical 
velocity profile. The calculation of pressure changes gives us a means of 
predicting pressure patterns on the weather map. Vertical velocity profiles 
may be used to predict fine or rainy weather from the laws of thermodynamics 
discussed in Chapters 1 to 5. We have also come to the conclusion that 
convergence and divergence are quantities which are difficult to measure 
accurately by observational means. We have seen that we cannot calculate 
these elusive parameters from the weather map itself, using the geostrophic 
assumption, since the divergence of the geostrophic wind is zero for scales less 
than planetary. Although nowadays fast electronic computers use the full 
primitive equations of motion, this was not the case in the near past. 
Meteorology, both before and after World War II, was obsessed with the 
field of barometric pressure. This is not to say that pressure is not an 
important observation. It always has been and still is the main consideration 
in forecasting each day’s weather. However, theoretically, there are other 
means of looking at the motion of the atmosphere, which can be applied in a very 
useful manner, particularly to the free atmosphere above the boundary layer. 
The breakthrough in this regard was the application of the vorticity theorem, 
which we will now derive.

In the horizontal x, y  plane

,. du dv
dlVfiV=^ + ^

and perpendicular to it
dv du
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We may consider once more the equations of horizontal motion
d u r 1 dp

(11.9)
dv , 1 dp v '
d t + U p dy

and differentiate the first of these above equations partially with respect to y  and
the second with respect to x.

Then,
d{du/dt) d(fv) =  d((l/p){dp/dx))

dy dy dy
d{dv/d t) d(fu) = d{{\/p){dp/dy)

dx dx dx
The Boussinesq approximation will be made that p remains constant in the 
horizontal. Then subtracting the second equation from the first

d(du/dt) d(dv/dt) d(fv) ^ d ( f u )  1 ( fp  ^ 1  d2p
dy dx dy dx p dxdy p dxdy

Expanding the above and eliminating the pressure term

d (du du du\  d (dv dv du\  r dv d f  r du ---- 1_ jj L ------   L  1-11--- = f ---- 1- 11—  +  f  —
a y \ 9 , +UVx + Va ; . ) - r X[ai  + “rX + VWy)= f d-y + V¥y+ f d-x

It is noted that the Coriolis parameter is a function of latitude only so that

d f  „
U! T  = 0 dx

Then

( fu  dudu d2u dudv d2u d2v dudv d2v 
U K  o + T r -7 r -  + ^7r-T +  7r-7T' +  T v -7 r ~  w

or

and

But

dxdy dxdy dy2 dydy dydt dx2 dxdy  dxdt  
„(dv du\  d f  

- f \d'y + d~x)+ V d'y

d{du/dy — dv jdx ) d[dujdy — dv/dx) du (  du dv
dx JrV dy dx dx

dv (du dv \  d2u d2v r ( d u d f
+  dy \<9y dx)  ^  dydt dxdt ^  dy)  ~^V dy

d(  d(  r (du dv\  d(  ( du dv\  df
~u dx Vdy CVax dy)  ~ ' d i ~ f \ d x  + d y ) + di

dC_dC dc
d i ~ d t + u f o + v d i
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so we have

or
d ( C + / ) = -(C+/)divV ( 11.10)

d t

In the above derivation we have started from the simplified form of the equations 
of horizontal motion and neglected spatial variations in the vertical velocity and 
also variations in the density. Including such variations gives rise to what are 
called the tilting or twisting terms and the solenoidal terms, respectively. These 
terms are usually small for synoptic-scale motions.

We see that in deriving equation (11.10) we have eliminated the pressure field 
altogether. The motion must, of course, be driven by some pressure gradient 
forcing, but this forcing is outside the terms of reference of the equation. We can 
then study equation (11.10) as it stands. We note specifically that it relates the 
rate of change of absolute vorticity to divergence.

The far-reaching practical importance of (11.10) is that we have a means 
of computing divergence from rates of change of vorticity. Now vorticity is 
wholly different from divergence in that it can be estimated qualitatively or 
measured quantitatively from a synoptic chart. This is something that 
cannot be done with divergence since the only information we can extract 
from the synoptic chart must use the geostrophic assumption. But we can 
use the geostrophic assumption to assess the vorticity. Granted, this is an 
estimate of the geostrophic vorticity, but it does not matter, since the 
numerical magnitude of vorticity is much greater than that of divergence. 
We can see this by just looking at weather maps. Anticyclones, cyclones or 
depressions and wave-like patterns in the free atmosphere all have vorticity 
which can be immediately recognized.

Figure 11.7 Convergence and divergence due to curvature in a northern-hemisphere 
wave pattern.
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11.7 A SIMPLE WAVE PATTERN

Figure 11.7 shows a simple wave pattern. Patterns similar to this are a 
regular feature of upper air charts, for instance at 500 mb (hPa). We will apply 
the results of the vorticity theorem to this pattern. We will first make some 
approximations:

d ( C + / ) _ ^ C  , df
dt d; dt

/  only varies along the y  axis so

d /  d f  2uwcos

(11.11)

. = v —  = ----------   (11.12)
dt dy a

Observations show that in most cases d f  /dt  is small compared with d(/dt.  
Also the relative vorticity is usually numerically smaller than/ ,  and (a is nearly 
always cyclonic, except occasionally near the equator, or in what might be called 
singularities in high-intensity jet streams where strong anticyclonic vorticity 
is generated over a synoptically small spatial volume. We can disregard such 
anomalies. Equation (11.10) then becomes

^ = - / d i v V  (11.13)

We will apply equation (11.13) to Fig. 11.7, which is applicable to the northern 
hemisphere. The isobars are assumed to be equidistant everywhere and the flow 
is assumed quasi-geostrophic. We also constrain the shape of the pattern so that 
it retains the same shape in space and time. We will let all the vorticity in the 
pattern be due to the curvature of the pattern. Let us consider the segment 
between AB and CD. At the crest of the wave the vorticity is anticyclonic or 
negative. At the trough it is cyclonic or positive. Clearly, vorticity increases 
between AB and CD. From (11.13) convergence (negative divergence) must 
occur in that segment of the wave. If we now consider the segment between CD 
and EF we note that vorticity is cyclonic or positive at the trough while at the 
next crest it is again anticyclonic or negative. Vorticity decreases between trough 
and ridge. We deduce, therefore, from (11.13) that divergence must occur in this 
segment since the term on the right hand side is now positive. What we see on 
weather charts does support the foregoing theoretical conclusions. If we look at a 
long-wave pattern on an upper air chart, say at 500 mb (hPa), it is often noted 
that a surface anticyclone lies directly downstream between the 500 mb ridge and 
trough and similarly low-pressure centres at the surface often lie downstream 
between the 500 mb trough and ridge. Wave-like patterns of this kind are often 
called long waves.

If we now let Fig. 11.7 apply to the southern hemisphere the crest of the wave 
at AB becomes the trough and the trough at CD becomes the ridge, and the labels 
of convergence and divergence in Fig. 11.7 must be interchanged.

It is interesting that the same general conclusions about the location of 
convergence and divergence in wave patterns may be deduced quite simply from
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the gradient wind equation. Thus we may write equation (8.5) as

where and Vg refer to the gradient and geostrophic winds respectively, and 
the negative sign refers to the northern anticyclonic and southern cyclonic cases.

Thus for the anticyclonic pattern Kg < Kgr, and for the cyclonic pattern Kg > Kgr 
in both hemispheres. If these relationships are applied to the segments of the 
wave in Fig. 11.7 we find that the gradient wind speed across AB is greater than 
across CD. Air will then accumulate within the segment between the ridge and 
the trough, that is convergence will occur. Similarly the wind is less across CD 
than across EF leading to a depletion of air between the trough and the ridge, 
that is divergence.

The observed effect of curvature vorticity is shown as a translation of the 
pattern from west to east; that is, if a ridge is approaching from the west, then the 
barometer at the surface will record rising pressure. Conversely, if a trough 
approaches from the west the barometer at the surface will record falling 
pressure. If the pattern is constrained to conserve its shape, translation of the 
wave must occur to explain the response of the barometer. The effect of curvature 
vorticity in the translation of the wave pattern from west to east in a general 
westerly current may also be regarded in a physical sense as due to the advection 
of the relative vorticity by the wind. This will be discussed in a later chapter.

11.8 S h e a r  v o r t ic it y  in  a  je t  s tre a m  p a t t e r n

In Fig. 11.7 we assumed that all the vorticity was due to the curvature of the 
quasi-geostrophic wind. We will now assume a pattern which possesses shear 
vorticity but no curvature vorticity. Such a pattern may be formed in jet streams 
which occur at high levels, say between 200 and 350 mb. Such a pattern is shown 
in schematic form for the northern hemisphere in Fig. 11.8. In the region on the

Figure 11.8 Convergence and divergence due to shear in a northern-hemisphere 
jet-type pattern.
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polar side of the jet, cyclonic shear increases along AB and decreases along CD. 
Conversely, in the region equatorward of the jet, anticyclonic shear increases 
along EF and decreases along GH. Equation (11.13) thus predicts that 
convergence may be expected to the left of the entrance to the jet and to the 
right of the exit in the northern hemisphere. Likewise, divergence may be 
expected to the right of the entrance and to the left of the exit to the jet in that 
hemisphere.

Figure 11.8 may also represent a jet pattern in the southern hemisphere. In 
this case the labels for divergence and convergence must be interchanged as in 
Fig. 11.7. This is because the sign of the shear vorticity is inter-changed.

In actual practice the vorticity distribution around a pattern is due partly to 
the curvature effect and partly to the shear effect. In some regions of the pattern 
the two contributions are of opposite sign and tend to cancel each other out. In 
other regions they reinforce each other.

The convergence and divergence which arise from the vorticity distribution 
around a given pressure or contour pattern refer to the level or within a layer in 
which the given pattern exists. At other levels the pattern and consequently the 
vorticity distribution and resulting convergence and divergence may be quite 
different. The convergence and divergence calculated in any given level or thin 
layer may not be very closely related with the rise or fall in surface pressure. For 
this to occur it would be necessary to calculate and integrate the convergence or 
divergence for every level from the surface to the outer limits of the atmosphere 
where pressure was still appreciable. However, the results for a specific level may 
be significant in estimating development of the surface pressure field if a level is 
chosen at which ageostrophic motion is a maximum.

The theory of long waves and of their translation will be examined in 
more detail in the next chapter. This theory is generally applicable to 
westerly currents. In the troposphere the wind motion is generally westerly 
except in the tropics, and in rare blocking occasions when large anticyclones 
extend their structure upwards to 500 or 300 mb levels. Westerly flow arises 
because of the rotation of the earth and because of the temperature 
difference beween the poles and the equator, that is the meridional profile 
of temperature. Long waves rarely occur in an easterly current in temperate 
latitudes.

I I J  C o n s t a n t  a b s o l u t e  v o r t ic it y  t r a iic t o r ie s

We may construct trajectories of parcels of air which are constrained to conserve 
their absolute vorticity so that d(C 4- f ) / d t  =  0. Let us rewrite equation (10.2) 
omitting a pressure gradient forcing:

u +  f 2u =  0
The solution is

u = uq c o s  f t  -f v0 sin f t
0 1-14)v = v0 c o s  ft — u0 sm ft
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Distance (km)

Figure 11.9 Constant absolute velocity trajectory o f air parcel starting from the 
equator with a southerly velocity o f 5 m s_1.

where u0, v0 are some initial velocities and

X = ~  sin f t  + y ( l -  cos ft)
, (11.15)

>' =  y  sinft -  y  (1 -  cos ft)

Equations (11.14) and (11.15) above express the velocities and trajectories of 
air parcels which are projected at an initial velocity w0, from some initial origin 
of coordinates. The tracks are then constant absolute vorticity trajectories. We 
may arbitrarily assign such initial velocities and compute the tracks. If/  is held 
constant the trajectories are inertial circles. If/  is allowed to vary the trajectories 
are more accurate, particularly if they spend any time in equatorial latitudes. 
These trajectories conserve their absolute vorticity and so obey the constraint

Distance (km)

F ig u r e  11.10 A s  fo r  F ig . 11.9 b u t s ta r t in g  w ith  a so u th w e ste rly  o f  10 m  s- 1 .

I'w '

I
S
Q

1000

0

1000

0 1000 2000 3000 4000

1000

I
0>u

cfl
B

o

-1000
0 1000 2000 3000 4000



PROBLEMS 143

d(C -\-f)/dt  = 0. These air parcels start from the equator and so they have 
zero total vorticity at all times. In Fig. 11.9 the initial velocity is 5 m s ' 1 from the 
south. In Fig. 11.10 the initial velocity is u0 = 5 m s-1, ^ - ^ m s " 1 giving a 
southwest wind of 7.07 m s-1.

Now suppose we replace u0, v0 in equations (11.14) and (11.15) above by wg, 
ug. We may then presume that the absolute vorticity trajectories we calculate are 
trainlines already laid down by nature in determining the planetary flow pattern.

In the next chapter we will investigate in more physical and mathematical 
detail the properties of wave patterns in the free atmosphere under the forcing for 
which the air is assumed to follow constant absolute vorticity trajectories.

11.10 P r o b le m s

1. Under what conditions does the advection of relative vorticity equal the 
product of the absolute vorticity and the horizontal divergence?

2. What is the vorticity of a disc rotating at 10 revolutions per second?
3. The geostrophic wind is westerly and changes from 25 m s-1 at 40°N to 

5 m s-1 at 50°N. What is the magnitude and sign of the relative vorticity if the 
rate of change of the wind velocity is constant? What would be the radius of 
an isobaric system having the same relative vorticity if the gradient wind 
velocity was 10ms-1, assuming no shear?

4. Derive an expression for the relative vorticity of the gradient wind from the 
gradient wind equation.

5. What is the vorticity of flow represented by the stream function?
6. What is the relative vorticity of the outer structure of the tornado in problem 

5 of Chapter 8 if n =  1?
7. Write the divergence vorticity equation in terms of the stream function.
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THE LONG-WAVE EQUATIONS

12.1 In t r o d u c t io n

The derivation of the long-wave equations is attributed to Carl Rossby, an 
outstanding meteorologist of the twentieth century. They afforded a break­
through in thinking of meteorology after World War II. Such waves are often 
called Rossby waves. The theory developed here relies on the theorem of the 
conservation of absolute vorticity.

The breakthrough in thinking came largely as a result of the invention of the 
radiosonde instrument which enabled temperatures and pressures to be mea­
sured in the upper atmosphere, and transmitted by radio to a ground-based 
receiver. From the equation of state we have already seen that if two of the three 
variables p, T , p are known, we can calculate the third variable. Knowing the 
pressure and temperature at different heights we can calculate the density and 
also the pressure gradients. But more important, as we shall see in the next 
chapter, we can use the thickness equation to calculate the heights of the pressure 
surfaces. Either way it becomes possible to construct upper air charts of the 
pressure field, or of the height field, and use the geostrophic assumption to 
calculate the wind field. It was immediately noted that the quasi-geostrophic flow 
pattern along the isopleths of pressure or height possessed a wave-like structure 
and that these waves meandered around the globe.

S 2*2. EEEECTS Of* CURVATURt AN© LATITUDE 
VQRTiCITY ON WAVE TRANSLATION

We have already seen in Fig. 11.7 that curvature vorticity produces convergence 
in that part of a wave pattern downwind of the ridge and upwind of the trough, 
and divergence in that part of the pattern downwind of the trough and upwind of 
the ridge. We were able to show this effect first from the vorticity equation and 
secondly from the gradient wind equation. We also said that the advection of the 
curvature or relative vorticity in the pattern, the shape of which remains constant
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in time and space, caused the pattern to translate from west to east. We may now 
use the simple geostrophic equation to show that the earth vorticity produces the 
opposite effect. We assume a northern-hemisphere long-wave pattern (Fig. 12.1) 
where the isobars are spaced at an equal distance from one another. Then, at the 
ridge line AB

1 6p
Vg' (pfi)

and at the trough line CD
1 6p

&2 (pfi) 6n
where vgl, vg2, are the respective geostrophic velocities and Sn is the distance 
between the isobars. Dividing the first of the above relations by the second we 
have

VSx = / 2  =  s i n <fe

f l&2 sin4>\ 
sin 4> 2  

' sin 4>i

(12.1)

Ug\ < Vg2 ‘but sin (j>2 < sin 4> i and so vg
Thus, in this case there is divergence between AB and CD and convergence 

between CD and EF. We see that this is just the opposite of the effect shown in 
Fig. 11.7. The effect shown in Fig. 12.1 is due to the latitude vorticity, that is to 
the rotation of the earth. The distribution of convergence and divergence in Fig.
12.1 may also be determined from equation (11.13), as vorticity now increases 
upstream from AB and decreases between AB and CD. The pattern will be 
translated from east to west as the advection of/ ,  the planetary vorticity, by the 
wind is in the opposite direction to the advection of the curvature vorticity. In 
this case the pattern is advected against the wind field. The net result of these 
two opposing effects may be as illustrated in Fig. 12.2. Figure 12.2(a) shows a

F ig u re  12.1 The latitude effect in a long-wave pattern in the northern hemisphere.
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F ig u r e  12.2 (a) Short wave translated in the direction of the wind; (b) long wave 
translated against the wind.

short-wave pattern. In such a pattern the effect of changes in the curvature 
vorticity exceeds the effect of changes in the latitude vorticity. The pattern 
will move from west to east. The opposite happens in Fig. 12.2(b). There, the 
effect of changes in the curvature vorticity is small compared with changes in 
the latitude vorticity. The pattern will therefore move from east to west. The 
general result is that short-wave patterns move from west to east. On the 
other hand, long-wave patterns move from east to west, upstream against the 
wind. Such movement is sometimes called retrogressive. These predicted 
motions are observed to be the case when we follow the movement of such 
waves on upper air weather charts.

These principles form the basis of the Rossby long-wave equations. Their 
identification provided an extremely important breakthrough in the under­
standing of the way in which the atmosphere behaves. The theoretical and 
practical applications of these ideas turned out to be of the utmost significance in 
modern dynamic meteorology. A more exact mathematical derivation of the 
general ideas discussed above will now be given.

12.3 Tng Rossgy lo n g w a v e  e q u a t io n

The development of the Rossby long-wave equation relies on the principle of the 
conservation of absolute vorticity, which was introduced in the previous chapter. 
Absolute vorticity may be conserved in nature as can such quantities as mass, 
heat and momentum. To conserve absolute vorticity we will write the relation 
d(£ +  f ) / d t  =  0. This was done in the preceding chapter when we computed 
constant absolute vorticity trajectories. In order for absolute vorticity to be 
conserved the divergence must be zero from the vorticity equation. We must 
therefore apply the theorem to some level where the flow is non-divergent. We 
saw in Fig. 9.4 that there is usually some level at which the divergence profile 
changes sign. This is often found to be at about 600 mb (hPa). This level may be 
considered as a level equivalent to or representative of a simplified mean 
atmosphere.

(a) >

 ►Wind

«■ Wind
( b ) \
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12.4 T HE LONG WAVE THEORY

Consider a long-wave pattern at the level of non-divergence (9.3) which is 
normally to be found at about 600 mb. Then

d(C+ /)
dt

and

=  0

d(  , , d< , d f
ai + u3i+vry + V 3 T °

It follows that the total vorticity must be conserved at this level. We may 
transform the term

d f  20 cos c
dy R

where R is the radius of the earth, so that

«§£ =  /*> (12.2)

t3 expresses the instantaneous rate of change of the earth’s vorticity at a given 
point in the flow.

Equation (12.2) now becomes

d(  , dC , dC „ n ,o r .
m  + uW;+ v ¥y + vli = 0 (12'3)

It is assumed that there is a zonal current of uniform constant velocity U upon
which is superimposed a perturbation with the velocity components u and v .
The total velocities, which are assumed independent of y, are then

u =  U +  u
(12-4)

V  =  V

Now the mean zonal velocity is independent of x  and y so that from (11.7) and 
(12.3)

_  dv du __ , 
dx dy

It follows from (12.3) and (12.4) that

(12.5)

The term u{dQ/dy) =  0, since the vorticity is independent of y. 
We have left

dt dx
(12.6)

Now, if the perturbations are travelling eastward without change of shape it

Positive role model 
Positive role model 

Positive role model 
Positive role model 

Positive role model 
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follows that
dC dC

ci x = ~ i  (12-7)
where c is equal to the eastward velocity of the pattern.

Substituting (12.6) in (12.7)

ud£ - ch v'i , = °  <i2-s>
It was assumed that the perturbations are independent of y. Then

% ■ -*dy
and

c ŷf
? x  (12.9)

( U - c ) ^  + V'd = 0

This is a differential equation the solution of which may be given by an 
expression of type

v — Uq s in^-(x  — ct) (12.10)

where vq is a constant.
If (12.9) is differentiated twice with respect to x, then

dv’ , 2 k  2 k  ,  ,_  =  „ „ _ c<>s T (, - « )

d2v' , A-i? . 2ir,

Substituting (12.9) in (12.8)

— (U -  c)vo ^ - s i n ^ ( x  — ct) =  - t /0/3 s in ^ (x  — ct)
L / JLj

The formula (12.11) expresses the velocity of the long wave in terms of the mean 
zonal speed and the wavelength. If the wave is stationary c =  0 and (12.11)

or

( 12.11)

where L  is the wavelength of the sinusoidal disturbance.

12.5 T h i  s t a t io n a r y  w a v e l e n g t h

Positive role model 

Positive role model 
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becomes

(12.12)

where Ls denotes the stationary wavelength

(12.13)

Substituting for U from (12.13) in (12.11) we have

QL\ (3L2 
c ~  47T2 47r2

(12.14)

It is clear from (12.14) that if
Ls > L  then c > 0 
Ls < L  then c < 0

Thus, if the wavelength is less than the stationary wavelength the wave velocity is 
positive, that is from west to east. If, on the other hand, the wavelength is longer 
than the stationary wavelength for the selected latitude and mean wind speed, the 
velocity is negative, that is from east to west (retrogressive).

It is seen from equation (12.13) that the stationary wavelength increases with 
zonal wind speed and with latitude. Thus in high latitudes the wave velocity will 
be greater for a given wind speed than in low latitudes for a given wavelength. In 
temperate latitudes where strong jet streams occur the waves will move fast from 
west to east since both the mean zonal wind speed and the latitude are larger. In 
latitudes nearer the tropics they will move more slowly from west to east, or 
remain almost stationary, or even move slowly from east to west if the zonal 
wind speed is small and the actual wavelength is longer than the stationary 
wavelength.

Although the Rossby long-wave theory as presented here has been simplified, 
and some assumptions have been made, the results do give an excellent insight 
into the way in which long waves in the troposphere behave. Since the crests of 
the long waves in the 500 mb (hPa) chart are associated with anticyclones at the 
surface, and the troughs are associated with low-pressure centres at the surface, 
the computed speed of the wave will tell us its anticipated position 12 to 24 hours 
ahead.

To summarize, why do shortwaves travel towards the east and why does the 
eastward velocity increase as the wavelength decreases? The answer is that the 
combined velocity of the wave and the wind through the geostrophic control 
pattern must be a constant absolute vorticity trajectory. Absolute vorticity must 
be conserved as that was the foundation stone of the theoretical development. 
Why does a wave which is longer than the stationary wavelength travel 
towards the west? The same answer applies. In order to maintain a constant 
absolute vorticity trajectory the long wave must move in the opposite 
direction to that of the air current through the geostrophic control pattern. 
In other words, d(C +  f ) / d t  = 0.

Positive role model 
Positive role model 

Positive role model 
Positive role model 
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12.6 A b s o lu te  VORTICITY o e  la y e r  o f  CONSTANT HASS

In the discussion so far we have derived the term d ( £ + / ) / d f  =  0 which 
expresses the theorem of the conservation of absolute vorticity. The formula 
has been derived for some constant level of height or of pressure. We may, 
however, derive a more general expression which is less restrictive and 
therefore more useful as a tool in the analysis and prediction of movement 
of long waves.

We return to the vorticity equation (11.10)

^ t Z )  =  - ( C + / ) d i v V

We have already shown in equation (10.12) that horizontal divergence may be 
expressed as

a• XT 1 dA
d , ,v “ = i ¥

where A is a given area. Hence,

1 d ( C+ / )  1 dA
(C + / )  dt A '  dt

log(C + / )  =  -  lo gA + constant log A (( + / )  =  constant

A(Q +f)  =  constant

and A = M /p d z  = Mg/dp.  Therefore, since mass is conserved,

(C+/>
dp

and hence
d ( C+ / )

=  constant (12.15)

- 0  (12.16)
dp

Equation (12.16) is a more explicit expression for the conservation of 
absolute vorticity than (11.10) as it is not confined to a given height or 
pressure level. It embodies a given mass or thickness of air measured in 
millibars or hectopascals. We shall see in the next chapter that all upper air 
charts are analysed at selected pressure levels and that numerical models are 
concerned with layers bounded by two pressure surfaces. In approximate 
studies these layers may be bounded by the 1000 and 500 mb (hPa) layers, or 
by the 500 and 300 mb (hPa) layers, and so forth. In more accurate models, 
say 10 layers, or even 20 layer models, the thicknesses are 100 mb or 50 mb, 
respectively. Thus, the vorticity equation in this form enables constant 
vorticity trajectories and, thus, Rossby long waves to be represented for a 
given layer or slice of the atmosphere. The assumption of non-divergence is 
automatically included in the method of representing the atmosphere as made up 
of layers or slices of constant mass; that is, the slices are enclosed by fixed upper 
and lower pressure levels.
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 _________ 12.7 P o t e n t ia l  v o r t ic it y __________ _________

For an incompressible fluid such as the ocean (£ + f ) / d p  may be defined as 
potential vorticity. In oceanographic work dp is usually replaced by Z), the depth, 
since dAjA  =  dh/h =  dD/D  in the development of (12.16) in the preceding 
section.

The concept of potential vorticity applied to the atmosphere requires a 
slightly different treatment since the atmosphere is not incompressible. We 
must now consider a slice of air bounded by constant isentropic surfaces, that 
is surfaces of constant potential temperature, and assume that the air is subject to 
adiabatic motion.

From the preceding section we have found that A((  + / )  =  constant but

A _  MZ _  60 x M8
6p 6p X 60

M g/60 is constant since the difference between the 
constant. Therefore A = constant x 66/6p and

d6
(c + / )^ =constant

and
d f (C+f)de\

dp )

Equation (12.18) expresses the conservation of potential vorticity in an 
atmosphere in which the motion is adiabatic. It is a measure of the ratio of the 
absolute vorticity to the depth of the vortex. It is an important concept because it 
tells us how the vorticity changes as the thickness of the vortex between two 
isentropic surfaces changes. This parameter is referred to frequently in modern 
dynamic meteorology.

___________________________12.8 P r o b l e m s ___________________________

1. What is the wavelength of a stationary Rossby wave at 45°N if the mean 
wind speed is westerly at 10 m s-1?

2. What is the velocity of a Rossby wave at 45°N if the wavelength is 5000 km 
and the mean zonal westerly wind is 25 m s-1?

3. In Fig. 11.10 the wavelength of the constant absolute vorticity trajectory was 
about 3000 km. What would be the wave speed? If the wavelength of the 
forcing geostrophic pattern was half of the above wavelength what would be 
its velocity?

two isentropic surfaces is

(12.17)

(12.18)
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THE UPPER AIR SYNOPTIC  
CHART

In the preceding chapters we have confined our treatment of the flow of the 
atmosphere to motion referred to a horizontal plane. Although this concept 
works well for the surface weather map, it is difficult to apply it to upper air 
charts which also involve the dimension of height. As we shall now discuss 
the motion of the atmosphere as a whole, that is in three dimensions, we 
must include this third dimension into our deliberations. In order to obtain 
geostrophic wind speeds we need to know the pressure gradients at different 
levels. The radiosonde instrument measures pressure and temperature, but 
not height directly. There is also the difficulty of computing the density at 
different heights. It would involve tedious calculations to obtain the pressure 
and density of selected reference height levels. These difficulties were realized 
internationally at the end of World War II and a much better scheme was 
devised, not only for the plotting and analysis of upper air charts, but also 
for their interpretation.

1 3 ,2  PRESSURE m  A  VgRTICAt COORDINATE

Consider a point P in the isobaric surface at a height z above m.s.l. Next let Q be a 
nearby point in the same surface at a height z +  dz above m.s.l. and let us suppose 
that it is situated so that PQ represents the direction of steepest slope of the 
isobaric surface at P (Fig. 13.1). Then, if Q' lies directly beneath Q at a height z 
above m.s.l. and if dn represents the infinitesimal distance PQ', we have that the 
pressure change on going from P to Q via Q' is

dp = d/i +  i r d z  =  0 (13.1)
on dz

since we are moving on a surface of constant pressure. From the hydrostatic

13J  In t r o d u c t io n
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Figure 13.1 Schematic of isobaric surface sloping in space.

equation and the fact that dz =  (dz/dn) An we see from (13.1) that
dp d z _
On gP dn

or

«g = ~ g -

dz_ \ d p _ _  
p dn g dn

We may therefore rewrite the geostrophic wind as
dz

'dy
dz

V* =  g d~x

(13.2)

(13.3)

(13.4)

This is a most important and useful advance. We have reduced the number of 
variables needed to calculate the geostrophic wind from three to two as we have 
eliminated density from our equation. We now only need to know the gradient of 
the height of the pressure surface since g is a constant. In order to take advantage 
of this simpler method we must transform our means of constructing our upper 
air charts from maps of the pressure at specified heights to maps showing the 
heights of specified isobaric surfaces, that is surfaces of constant pressure, 
above m.s.l. Isopleths of constant height on a map are called contours. We shall 
therefore refer to contours on synoptic charts of the troposphere in the same way 
as contours on a geographical map of a country or continent of the world. We 
shall see that this different representation opens up many new avenues of 
exploration in the understanding of the dynamics of the weather.

'__________________t 3 3  T h e  THERMAL WIND__________________

A new parameter of great importance in atmospheric dynamics may now be 
introduced. It is a measure of the vertical variation of the geostrophic wind.

We will consider the geostrophic wind at two levels. Let wg|, vg be the 
geostrophic wind at some higher level p x, z, and «g0, t>&) be the geostrophic wind

Q

dz

Q'd nP *

d r
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at some lower level p0, z0. Then

- g  ( dz\ dz0
(13.5)

Mg° /  U > ' dy
and

g ( <9z, dz0
(13.6)Vgl v*> f \ d x  dx

or

(13.7)

Table 13.1 may be used to convert a synoptic chart of the m.s.l. pressure 
distribution into a chart of the contour pattern of the 1000 mb isobaric surface. 
The chart then represents the topography of the 1000 mb chart in the same sense 
as a geography map may represent the topography of the underlying surface 
by height contours. We may continue with this method and use the thickness 
equation to compute the thicknesses of different layers of the troposphere. We 
may then add the different thicknesses together and obtain the total heights of 
the different standard pressure levels above m.s.l. Contours of the heights of the 
pressure surfaces may then be constructed so that we have topographies of the 
heights of the standard pressure surfaces above m.s.l. There is one problem to 
overcome here. It is to find the mean temperature of a layer.

13*4 T h i  t h ic k n e s s  o p  a  s t a n d a r d  is o b a r ic  l a y e r

Suppose the heavy zig-zag curve in Fig. 13.2 represents an actual virtual 
temperature distribution starting from T * at pressure p x and finishing at T2* 
on the p2 isobar. If we were to replace this distribution of temperature by an 
equivalent isothermal one, which can be done by finding the isotherm AQB for 
which the shaded areas AQ Tx and BQT2* are equal, then the thickness of the 
original layer and that of the equivalent isothermal layer will be the same, since 
the same area A lies to the left of each temperature curve.

Since the thickness of the equivalent isothermal layer can be calculated 
from the thickness equation we can construct a thickness scale parallel to the 
isobars as shown in the figure. It is often hard to estimate the temperature of an 
equivalent isothermal layer accurately, when large areas such as those in Fig.
13.2 have to be balanced. In practice, since the thickness scale is placed

T a b l e  13 . 1 Transformation of an m.s.l. synoptic pressure pattern to a topography of 
the 1000 mb surface using the conversion 8 mb = 60 m

Sea-level 960 968 976 984 992 1000 1008 1016 1024 1032 1040

Height of -300 -240 -180 -120 -60 0 60 120 180 240 300

pressure

1000 mb 
surface
(m)

- g  d(Sz) g d(6z)
t  = T ~ a f ’ Sv* = f - & r
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F ig u r e  13.2 The thickness of a standard isobaric layer.

geometrically midway between the isobars, the intersection AOB can be replaced 
by a line closer to the actual temperature curve, such as COD, and because the 
area AAOC =  ABOD, the intersection of COD with the scale will still give the 
correct thickness.

The graphical computation of thicknesses can be done on any tephigram, 
Emagram or skew-log p diagram upon which the virtual temperature structure 
has been plotted.

Thus, the thermodynamically determined thicknesses may be added cumu­
latively to construct the topography of various standard isobaric surfaces. In 
this way we may draw upper air charts of the 850, 700, 500, 300, 200 and 100 mb 
surfaces. In the analysis of routine daily charts the 1000-500 thickness is 
important as it represents the lower half of the mass of the atmosphere.

13.5 D i f f e r i n t i a l  a n a l y s i s  o f  t h i  u p p e r
  ________ AIR SYNOPTIC CH ART__________________

The basic upper air synoptic chart is a contour chart of the 500 mb isobaric 
surface. As we have seen in Section 13.3 a surface map of the m.s.l. pressure 
distribution may easily be transformed into a contour chart of the 1000 mb 
height field. If we compute the 1000-500 thickness as described in the preceding 
section we may add the two fields together to get the 500 mb contour map. Figure
13.3 is applicable to both hemispheres. It shows how the summation may be 
carried out graphically. It is seen that a third set of lines can be drawn through 
the intersection points of the thickness lines and the 1000 mb contours. This

V)^ >
■ ^ y

Ti*

D .

B

•T *1m
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— — — — Thickness line
— 1000-mb contour

—  - — 500-mb contour

F ig u r e  13.3 The gridding technique (heights in dm).

technique of differential analysis has been called ‘gridding’. We will now blow up 
one of the cells in Fig. 13.3 as shown in Fig. 13.4. The northern-hemisphere winds 
are shown by arrows to signify that they are vectors, that is they possess both 
speed and direction. In the chosen cell the surface geostrophic wind is denoted by 
V0. It blows from the north. The thermal wind which blows along the thickness 
lines is denoted by V'. It is mainly westerly indicating that there is colder air to

F ig u re  13.4 The thermal wind for the northern-hemisphere case.

+12 +6 0 -6 -12
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— — — — Thickness line
■■■'■    1000-mb contour
_  .  _  500-mb contour
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the north. The thermal gradient is therefore directed normal to the thickness 
lines. If we add the two vector winds

v0 + v' = v 5 (13.8)
and

V '^ V s - V o  (13.9)

we see then that the thermal wind is the vector difference between the geostrophic 
winds at 500 mb and the surface. This is the theoretical result we obtained when 
deriving the mathematical form of the thermal wind equation (13.5). Thus, it is 
emphasized that the thermal wind behaves in the same way as the geostrophic 
wind in that it blows along the thickness lines. In the northern hemisphere low 
temperature is to the left of the flow and warm temperature is to the right of 
the flow. In the southern hemisphere the reverse is true. The velocity of the 
thermal wind is inversely proportional to the perpendicular distance between the 
thickness lines, as the velocity of the geostrophic wind is inversely proportional 
to the perpendicular distance between the contours.

13.5 BAROTROPIC AND BAKOCUNiC STRUCTURE

Barotropic and baroclinic are words which are used to describe two different 
states of the atmosphere. Simple diagrams based on the construction of upper air 
charts will bring out the properties of these two kinds of atmospheres.

Concisely, a barotropic atmosphere exists if there is no thermal wind. A 
baroclinic atmosphere exists if there is a thermal wind. Alternatively, a 
barotropic atmosphere may be defined as one in which isopleths of density or
specific volume are parallel to the isobars. A baroclinic atmosphere may then
be defined as one in which isopleths of constant density or specific volume 
intersect the isobars. The intersection creates solenoids. The latter are exhibited 
as geometrical areas. Examples of such solenoidal areas are shown in Fig. 13.3. 
The greater the thickness gradient, the greater is the number of solenoids and the 
greater the amount of available energy.

If there is no variation of the geostrophic wind with height and therefore no 
thermal wind, the contour pattern will look the same at all levels as it does at the 
surface. The surface pressure map will be reproduced at 500 mb. One may 
compare this structure with a brick wall. No matter where an additional brick is 
placed within a vertical column of bricks, the net effect of the extra brick will be 
felt at all levels. The surface pressure underneath the bottom brick will register 
one brick more while the top of the column will be one brick higher. Such a 
situation is shown in Fig. 13.5. Figure 13.6 shows a vertical cross-section along 
the east-west axis of a baroclinic structure. The thickness increases towards the 
east giving rise to a southerly thermal wind in the northern hemisphere. We 
see that the actual wind at the left hand or easterly side of the diagram is 
northerly at the surface and southerly at 500 mb for the northern-hemisphere 
case. The change in wind between the two levels is the thermal wind. The 
structure of the atmosphere may therefore be divided into two components, 
the barotropic and the baroclinic. Any pattern of isobars or contours on the
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^500 ca m̂ 500mb

1000 -  500mb
layer thickness

V 0 calm
1000mb

V T calm

Figure 13.5 Vertical cross-section of a thickness layer -  no thermal wind.

barotropic component, which is always exhibited by the surface m.s.l. pressure 
chart, is solely due to the horizontal distribution of mass. On the other hand, 
any pattern exhibited by the thickness pattern is solely due to the horizontal 
distribution of the mean temperature of that thickness layer. In any real case the 
patterns shown by the upper level contours are a combination of the two kinds 
of structure, barotropic and baroclinic. A considerable barotropic component 
occurs sometimes in large blocking anticyclones, such as the subtropical 
anticyclones, and in the tropics. However, the energy is provided by the 
baroclinic component. In a true barotropic atmosphere the circulation would 
spin down in a matter of weeks, that is the e-folding time, or the time needed for 
the wind circulation to decrease to 1/e of its original value. This decay in 
circulation would be caused by surface friction, a subject which we will introduce 
in the next chapter.

The construction of an upper level contour chart for some period in the future, 
say 12, 24 or 36 hours, must depend on the combined behaviour of the two 
structural components of the atmosphere, the barotropic and the baroclinic.

13.7 A d vectio n  o f th ickn ess unes

500mb

Figure 13.6 Vertical cross-section of a thickness layer -  strong southerly thermal 
wind (northern hemisphere case).

v o = north 15 m/s 

V j  = south 30 m/s

— lOOOmb

1000 -  500mb 
layer thickness
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Long-wave theory, as derived in the last chapter, may assist in predicting the 
behaviour of the upper long-wave pattern exhibited by the upper air contours. 
However, another factor now emerges. It is obvious that the thickness pattern 
must change with time in a moving atmosphere. The thickness column at a given 
place is dependent on the mean temperature of the layer. But the whole air 
column above a fixed point is constantly changing as the wind at different levels is 
blowing at different speeds and in different directions. The mean temperature or 
thickness of the air column above must also change as different parts of the 
column are replaced by air of different temperature. Thus the thickness pattern 
itself must change and this will change the baroclinic component and, in turn, 
the actual flow pattern as shown by the contour fields at different levels. The 
thickness lines must be blown along, or advected, by the wind field caused by 
the barotropic part of the structure. In other words, the surface wind field 
advects the thickness pattern. This effect is shown in the solenoidal cell shown in 
Fig. 13.4.

Advection is well expressed by a simple dot product vector

where f  is the mean temperature or the value of a given isopleth of thickness. We 
have met with advection early in this work. For example, the acceleration terms 
in the eauations of motion contain advective terms. Thus,

We mentioned in Chapter 11 that vorticity may be advected. Various other 
quantities may be advected, like heat, water vapour, pollutants, trace gases, etc. 
Note that a dot product in a vector expression gives a scalar quantity for the 
product. The dot product also indicates that the magnitude of the advection is 
the product of the wind and the gradient of the quantity being advected times the 
cosine of the angle between the directions of the wind vector and the gradient 
concerned. If the wind is perpendicular to the thickness lines then the advection is 
F0|V f |.  We may therefore formulate the rule that the thickness pattern is 
advected by the component of the surface wind normal to the thickness line. As 
we have seen this is the barotropic component of the wind.

An example of northern-hemisphere cold-air advection can be seen in Fig. 
13.3. Since the 1000 mb surface is 120 metres above m.s.l. in the eastern (left hand 
edge of the diagram) and 120 metres below m.s.l. on the western (right hand 
edge) and the diagram relates to the northern hemisphere, the surface geo­
strophic wind is northerly and the cold air shown by the smaller thickness values 
is being advected, or blown southwards.

Thus we do have a means by which we can predict the future shape of the 
thickness pattern. We simply advect the pattern with the wind at every point. 
There are, of course, other factors to be borne in mind in advecting thickness

v-vr

(13.10)

and

(13.11)

du du ^
- r  =  7 r  +  V-Vw dt dt

dv dv ^  
-7- = -r  +  V'Vv dt dt
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patterns. If cold air is advected over a warm sea surface the advection will be less 
than the formula indicates. Conversely, if cold air is advected over a colder sea 
surface the thickness lines will tend to move faster than the formula indicates. 
Similar considerations apply to the advection of warm air over cold and warm 
surfaces.

1 X 8  M .s .l. p re ssu re  m m  v e r s u s  t o p o g iia w iy  

OF 1000 MB CHARTS

It is pertinent at this stage to comment on the relative merits of the historical and 
conventional method of drawing isobars and the newer method of trans­
forming the pressure chart to one of the height of the 1000 mb surface. First, 
surface observations must be made by barometers. M.s.l. pressure readings 
are therefore available for plotting on a map. Everyone is familiar with weather 
maps containing isobars. They are published daily in newspapers and are seen on 
television. Since the number of weather stations reporting conventional surface 
measurements is far greater than the number of upper air radiosonde reporting 
stations, it has been found more convenient to retain weather maps of the 
pressure field. Also, a great deal of historical data obtained from ships’ logs over 
the oceans, as well as from land stations, is being compiled in the investigation of 
climate change. It would be pointless to convert such a vast amount of data from 
their original form.

13.9 V o r t ic it y  o n  iso b aric  su rfa ce s

The vorticity about a vertical axis in a horizontal plane is expressed by

dv du 
dx dy

(13.12)

and the geostrophic wind by

- Z i ^ l  
"g _  /  dy

(13.13)
_ g  dz  

V% f d x
(13.14)

Substituting the geostrophic velocities into the expression for vorticity and 
neglecting the Meridinal component of the Coriolis parameter (i.e. assum ing/ 
to be constant), we have

,  d2z \  _  g 2 (13.15)
where the height notation z has been replaced by h, the height of a grid 
point on an isobaric surface on a contour chart. Thus, vorticity on an 
isobaric surface is simply a constant times the Laplacian of the height

Positive role model 

Positive role model 
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field. Equation (13.7) can be conveniently transformed into a finite-difference 
formula.

Consider a grid composed of arms of equal length such as shown in Fig. 13.7. 
Then,

where b is the length of the arms; this represents the mean geostrophic wind field 
covering the grid. Substituting finite differences of velocity as obtained from
(13.7) there follows

This represents the geostrophic vorticity field within the grid about the point h5.
The formula (13.17) is a convenient one for calculating vorticity numerically 

from a contour chart. It is merely necessary to add the heights at the four arms of 
the grid and subtract four times the value at the centre, and multiply by the 
correct factor. A scale on the lines of Fig. 13.7 may be constructed so that height 
values may be interpolated from the contour chart.

In Section 10.7 we expressed the wind in terms of a stream function. It is easily 
seen that the divergence of the stream function component of the wind is zero. If

(13.16)

C = 1(̂ 2 -  hs) — (h5 — h4) 4- (h\ — h5) — (h5 — h^)]

C = ~g[j {h\ + h2 + /*3 + h4 — 4 h5)
(13.17)

13,10 THS VIlLOCiTY POTENTIAL

^3

F ig u re  13.7 Height grid for use with contour chart.

U* = - 2 b f { h - h )  

Vg = y f ( h2 ~ h )

b

b

b

b
-  h2
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where x  is denned as a velocity potential. It is readily seen that the Laplacian of 
the velocity potential is the divergence. Thus centres of low velocity potential are 
areas of strong divergence and centres of high velocity potential are areas of 
strong convergence. This can be visualized if one regards the wind as blowing up 
and perpendicular to the gradient of the velocity potential isopleths with a speed 
that is proportional to the gradient. Isopleths of the velocity potential are often 
constructed for upper levels on synoptic charts in order to delineate regions of 
divergence and convergence. In Sir Horace Lamb’s classical hydrodynamics 
treatise the signs on the right hand side of (13.10) are negative so that the wind 
blows down the gradient. This reverses the sign of the divergence/convergence at 
the high and low centres of the velocity potential pattern. Since divergence is 
positive and convergence is negative the latter representation might seem more 
consistent from a meteorological point of view.

I 3 J I  FmwjEm
1. If the pressure gradient acceleration is 0.001 what is the pressure gradient 

in mb (hPa) per 5° of altitude? What is the contour gradient in metres per 5° 
of altitude?

2. If an upper level jet at 250 mb is 200 knots and contours are spaced 60 m 
apart what is the distance between two contours in km?

the wind field is constructed on a weather map in terms of its stream function, 
such a wind pattern must be non-divergent. Thus a stream function pattern 
shows the non-divergent component of the wind.

We may also form an expression which describes the divergent component of 
the wind. Thus

(13.18)

dx

dx
d y
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FRICTION IN THE BOUNDARY 
LAYER OF THE ATMOSPHERE

I 4 J  INTRODUCTION

In all the equations we have derived so far we have assumed that the atmosphere 
was frictionless. This is a reasonably valid assumption to make through much of 
the atmosphere. However, in the planetary boundary layer, which may extend to 
only 30 m above the ground in very stable conditions, and to as much as 3 km 
above the ground in turbulent or convective conditions, the motion of the air is 
obstructed by surface friction. This may be due to the roughness of the land 
surface due to vegetation, trees, small hills or mountains. The rigorous way of 
treating friction in the planetary boundary layer is by means of turbulence 
theory. This is a highly complex subject and we shall only touch on its simplest 
aspects in this work. We shall first, however, consider friction in a simpler way.

<4.2 T H i G o l d b e r g -M o h n  a p p r o x im a t io n

Guldberg-Mohn (1876) assumed that surface friction could be parameterized by 
letting the frictional deceleration of the air be proportional to the wind velocity. 
This is true to a first approximation, although it is not based on a rigid physical 
theory. However, the treatment of friction in this way does allow the equations of 
motion to be treated in a relatively simple manner.

Thus we may write equations (7.4) as

d u I dp

(14.1)
dt,’ 1 d p  .
— + fu = -  -  kv

where k  is a constant of proportionality. This constant has been experimentally 
found to vary from about 1.0 x 10-5 s-1 over a fairly calm sea to about 10 times
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as much over a land surface covered by grass or similar vegetation. The frictional 
force acts to reinforce the pressure gradient. It slows down the wind velocity so 
that it is no longer in balance with the pressure field. The result is that the wind 
flows across the isobars from high to low pressure.

143 Ba la n c ed  fr ic t io n a l  flo w

Let us suppose that the flow is balanced for a system of straight isobars 
orientated from east to west along the x axis. In this case du/dt and dv/dt  in 
equations (14.1) are equal to zero, since there is no acceleration. We have 
instead

ku
v = 7

dp\ kv
U = ~ r \ d ^ ) ~ j

and the two components u, v may be written

v =

( f 2 + k2)

kfUa
W T T )

(14.2)

f  = v/" ^  =  ( 7 ^ T P )  <143)

where V is the total wind velocity. If 6 is the angle between the total wind 
direction and the isobars, then tan# =  v/u  =  k / f .

Figure 14.1 illustrates the balance of forces for the case discussed.

(a) Northern hemisphere

F ig u re  14.1 Inclination of the wind across the isobars as a result of friction.
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14.4 T h e  N e w t o n ia n  c o n c e p t  o f  f r ic t io n _____

Although the Guldberg-Mohn parameterization of friction is extremely con­
venient in some models, particularly in Lagrangian representations of motion, it 
does not embody the rigid mathematical physics of an exact explanation of the 
effect of friction. To do this we must venture into the field of turbulence, and 
consider that friction is due to the effects of eddy viscosity.

Let us consider a layer of air. Its lower boundary is the surface and its upper 
boundary is some higher level where the effects of surface friction are less evident 
(see Fig. 14.2(a)).

At the upper level the wind has a velocity u(z) and at the lower boundary 
the velocity is zero, while the distance separating the two levels is /. Then the 
tangential shearing stress exerted by one infinitesimal layer on its adjacent layer 
may be defined as

d U  M A  A \= (14.4)

where /i is a viscosity coefficient which is assumed to be constant. The stress is
tangential to the x axis. The schematic concept illustrated in Fig. 14.2 is said to

2 =  0

(b)

(a)

z=l u(l)=u0
“► " o

m( z )

. m(0)=0

"  ( Xx+W  dz)  = dxdy

Txdxdy

F ig u re  14.2 The shearing stress force.

Positive role model 
Positive role model 
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have been predicted by Newton to describe molecular processes. The usual 
example shown in textbooks is to show a shear of the fluid between an upper 
and a lower bounding plate, but the process may be transformed so that it 
represents eddy viscosity in the atmosphere, p then becomes a coefficient of 
eddy viscosity. The subscript in (14.4) indicates that the shearing stress is in 
the x  direction and due to the vertical wind shear. Physically, it represents an 
eddy transfer of momentum through the interface of two adjacent layers. 
Now if there is a variation of stress between two infinitesimal layers there will 
be a divergence of shearing stress and a force per unit mass or acceleration will be 
exerted by a layer on its neighbouring layer. These forces may be regarded as the 
transfer of momentum from faster moving air at higher levels to slower moving 
air at lower levels, and vice versa. This interchange of momentum between 
levels may then be interpreted as a frictional retardation of the flow which 
would otherwise occur if there were no reduction of velocity by the lower 
boundary.

We may now derive a term which expresses the acceleration (or retardation) 
of the flow due to the variation with height of the shearing stress.

Consider the rectangular box in Fig. 14.2(b). The drag exerted in the x 
direction on the lower face dx dy is rx dx dy; the drag on the upper face is

d r x \  
rx +  dz 1 dx dy

Then the difference between these two forces is the shearing stress force acting on 
the volume element

rx +  dz ] dxdy -  rxdxdy  =  dV = -  for unit mass (14.5)
d z  J  ' d z  p  d z

Similarly one can express the shearing stress force along the y axis. It is

1 drv
p d z

If equations (14.4) and (14.5) are combined, it follows that

1 d r x p  d  u 1 d r v p  d  v

p  d z  p  d z 1 p  d z  p  d z 1
(14.6)

The expressions in (14.6) may now be included in the equations of motion:

du _  — 1 d p  1 d r zx 

dt V p  d x ~ ^  p  d z

dv —I dp 1 drzv
—  +/w =  —  — H-----d t p  d y  p  d z

(14.7)

We may visualize the physical meaning of the final terms from a meteoro­
logical point of view. When the wind is blowing over a solid land surface (or 
liquid ocean surface) the stress will be greatest at that boundary and will decrease 
until it becomes a minimum at some upper level, normally the level at which the
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wind is assumed to be geostrophic. The stress therefore decreases with height. 
That means the shear of the wind decreases with height. Thus the terms 
contained in (14.6) are negative and the air flow is retarded. We are especially 
interested in a balanced state in which the flow is steady and does not possess any 
acceleration. Under such conditions equations (14.7) reduce to

K i +fv' =0°  (14.8)

In (14.8) u , v ' are the geostrophic departures and K  = p/p, the eddy coefficient 
of viscosity, which is assumed to be constant with height. Equations (14.8) are 
usually applied to what is called the Ekman or spiral layer within the planetary 
boundary layer. The lower boundary of the Ekman layer is normally assumed 
to be about 10 metres above the actual surface. The layer between the surface 
and 10 metres is governed by a different process. This layer is called the 
surface layer.

1 4 3  T he su r fa c e  l a y ir

The viscosity force in equations (14.7) may be expressed in the form d(r/p)/dz. 
In dealing with the surface layer we define a new and very important parameter 
called the friction velocity. It is denoted u , where

I  (,4.9)

If a parcel of air is displaced vertically it is assumed that u = kz(du/dz) where uf 
is a perturbed velocity from u, the mean flow, and kz =  /, some typical mixing 
length of eddy. Then, if we consider the motion along the x axis we may express 
the eddy shearing stress, as before,

du 
T = / i &

and
2 2du 

8 =  P*Z g j (14.10)

Equation (14.10) is derived from what is called mixing length theory. This 
concept is discussed at length in more advanced textbooks. We note that p is no 
longer constant as it was assumed when we initially defined stress for the case of 
uniform motion without eddies. It is now the eddy exchange coefficient

(14.11)

Positive role model 

Positive role model 
Positive role model 

Positive role model 
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From (14.11), the definition of the friction velocity is 

Integrating,

* j du u =  k z —  
dz

u logz
■ = l l  <14-,2>

where z0 is a roughness coefficient dependent on the roughness of the surface to 
fit the condition that u = 0 at z =  z0. k  is called Von Karman’s constant and is 
equal to about 0.4. Thus, equation (14.12) describes the velocity profile in the 
surface layer between the surface and about 10 metres height. Above the surface 
layer we enter the Ekman or spiral layer which is governed by equations (14.8).

H d  T h e  SPIRAL OR Ekm an LAYER

We will now derive the equations which express the wind components as a 
function of height above some reference level as a function of the height. To do 
this we must solve equations (14.8). To simplify the problem we will orientate the 
isobars along the x axis as we have done previously in Chapter 10. Equations 
(14.8) then becomes

K ^ - f u '  =  0

(14.13)

We may solve (14.13) for the appropriate boundary conditions in two 
ways. The first is to obtain the constants of integration by orthodox algebraic 
manipulation. The second is to introduce the concept of complex numbers, 
which involve the square root of — 1, which we call i. We will here use the more 
conventional method, and leave the second, more sophisticated method to be 
worked out under some of the worked examples of this chapter. In both cases we 
have to rely on standard-type solutions. We used this method in solving a set of 
second-order differential equations in Chapter 10. In that case equations (10.3) 
were total differential equations whereas we have now have a set of differential 
equations written in their partial form. However, since we are only interested in 
the variation in the vertical (the arbitrary constants are only functions of the 
reference horizontal plane), we may solve them as if they were ordinary 
differential equations.

A standard-type solution of equations (14.13) is given by u = A. We will 
write a standard solution of (14.13) in the form

u = Aug e az sin(az — b) 

v = Bug e~az cos (az — b)

where u =  u — ug. Now friction slows the motion down so that u will be 
negative, but u will be positive if the isobars are orientated along the x axis, v will

Positive role model 
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blow across the isobars from high to low pressure and will be positive, since 
pressure decreases along the y  axis. We have to evaluate the constants A, B, a, b. 
To do this we differentiate the standard solutions partially twice with respect to z. 

Then
du—  = -A aus e~a2[sin(az -  b) -  cos(az -  6)]

24 a2 Mg e~az cos(az — b)

Bau% e "”[cos(az -  b) + sin(az -  b)}

(P"v—% =  —2BcCu„ e~az sin (az — b) 
dz1

Substituting the second partial derivatives above in (14.13) for the boundary 
conditions u0 = 0, u0 =  0, z0 =  0 we obtain

2KAa2 =  fB
and

2KBa2 = fA

We see that A2 = B2 or A — ±B.
We now return to the standard solution and substitute the boundary 

conditions. We obtain A sin6 =  1 and Bugcosb = 0.
The equations (14.13) are therefore satisfied if A = 1, B =  1, and b = 7r/2. 
Since sin (0 -  7r/2) =  -  cos 0 and cos (0 -  7r/2) =  sin 0 our Ekman spiral 

equations are
u =  Uq{\ — e~az cos az)

8 _  (14.14)
v =  ug e az sin az

We may interpret (14.14) in the sense that as the elevation above the surface 
increases indefinitely u —► ug and v —> 0. The gradient wind level, that is the level 
at which the wind becomes quasi-geostrophic, is about 500 metres or so above 
the surface. Figure 14.3 shows a plot of the spiral. It is seen that the wind along 
the isobars actually becomes supergeostrophic at higher levels. It is only when z 
becomes very large that u becomes exactly geostrophic.

Equations (14.14) have been derived under the premise that the spiral layer 
extends down to the surface. This is not truly so. We have previously discussed 
the structure of the surface layer which may be said to describe the first 10 metres 
of the atmosphere above the earth’s surface. The latter structure offers a much 
closer approximation to the truth for the surface layer. We may therefore model 
a more accurate representation of the spiral layer if we place its lower boundary 
at the top of the surface layer, about 10 metres above the surface. Standard 
anemometers are positioned at about this height. If we make this condition we 
need a new lower boundary condition. Such a condition may be satisfied if we

and
dz2

dv _  
!h  = ~
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Figure 14.3 Ekman spiral for the case where the surface level is assumed to be at 
anemometer level. The angle of inclination of the wind across the isobars at surface 
level is 15°.

make the assumption that the wind at the new z =  0 level (actually 10 metres 
above the surface) is proportional to the shear. Then,

Evaluating the constants by substitution of the lower boundary values into
(14.14) and (14.15) above

Uq =  ug +  Aug sin b =  cAaug(sin b +  cos b)

u0 =  Bug cos b =  cBaug(sin b -  cos b)

Then from the second relation, that is for v0

where c is a constant of proportionality. At the boundary

(14.15)

(14.16)

and from the first relation, that is for u0,

A =
V l  4- 2ac +  2a2c2

( du\ ( dv\

0.3

0.2

0.1

7 °
MhO
§
•■5

83 m

35 m.

170m

510m

~  Aau%(smb -f cos b)

( dv \  Vo n , x— =  — =  BauJ  sin b — cos b)\d zJ o  c gv

v0 B sin b — cos b
tan a0 = — =  -j-i—,----------

uq A sin b H- cos b

+ u 1 +  ac tan b = --------
ac
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Worked Example 
Show that

1A*
1 -f- 'lac H- IcP" c2 

Solution:
We have alreadly found that

(1 +ac)
tan b =   --------1

ac
From the boundary conditions

1 — A sin b =  cAa(sin b +  cos b)

1
sin b +  ac sin b +  ac cos b 

Then from right-angled triangle relationships
1 -f ac

sin b =  

cos b =

a/1 -F lac +  2 a"c2̂ 2
r

ac
Vl +  lac +  la2c2 

Therefore

1
(1 +  l a c  +  l a 2c 2 )

We already know from the derivation of the classical Ekman spiral that A = B. 
Then

sin b — cos b
tan a — —— ---------

sm b +  cos b
tan b — 1 1
tan b +  1 1 +  lac

where a  is the angle between the wind and the isobars at the lower boundary 
level, that is at anemometer height level.

We know that a1 = f  j l k  since A — B. Thus, if /  =  0, a — 0, and a = 45°. 
Thus at the equator the wind would blow across the isobars at an angle of 45°. 
Also it can be shown that A2 = 1 sin2 a.

We know from (14.15) that

tan b — 1 
tan a = -----    =  tan

(‘ - 3tan b +  1

where a = b — 7r/4 or b =  a  -f tt/4. Then, having evaluated A and b, we can write

1 — a/ 2  sin a oTaz cos (az — a  -f- 0

~azV l  sin a sin (az — a +  ^

U =  Uq

(14.17)
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F ig u r e  14 .4  Modified Ekman spiral.

Figure 14.4 shows a plot of equations (14.17) which is sometimes referred to as 
the modified Ekman spiral in contrast to the simpler classical spiral depicted in 
Fig. 14.3. It can readily be seen that the two versions become identical when 
a = 7r/4. A useful application of the Ekman spiral is the calculation of the 
vertical velocity within a pattern of surface isobars which possess cyclonic 
vorticity. Such cyclonic vorticity may be cyclonic shear in an east-to-west 
isobar (high-pressure to the south in the northern hemisphere and low-pressure 
to the south in the southern hemisphere).

Worked Example
The synoptic chart on a given day shows a pattern of east-west-orientated 
isobars with the geostrophic wind decreasing with latitude in the direction 
of low-pressure. Show that the vertical velocity at the top of the frictional 
layer is proportional to the geostrophic vorticity. Use the classical Ekman 
spiral.

Solution:

0.2

§

£S>

0.1

. 3 3 1 m

C - - ^ 1  
^g _  dy

du dv dw
dx dy dz

^  =  0 (14.18)
dx
dw dv g
dz dy

dw a 9ve AA w =  —  dz = -  /  dz
Jo dz Jo dy
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From the Ekman solution, assuming w = 0 at the surface,
poo

= J  Cg(e~a: s'n az) dzw
/  (14.19)

2 a 
Worked Example
If Cg =  1 O' 5 s-1, /  =  10 4 s  1 and k =  10 m2 s  , what is the numerical value of 
the vertical velocity?

Solution:

I T  a V 2k
^  , <14'20)w = g ■ =  0.22 cm s
v V

Worked Example
Show that the ratio of the speeds of the surface wind to the geostrophic wind is
v0/vg = cos a  — sin a  using equations (14.17) for the lower boundary.

Solution:
uq = Ug 1 — \ /2 s in a c o s ^  — a'j j (14.21)

vQ =  W gV^sinacos^ — (14.22)

Then

— = 1 -  2yjl sin a cos — a j  + 2  sin2 a  cos2

+ 2 sin2 a  cos2 ^  — a  j  (14.23)

^  =  1 — 2V2 since cos -  a )  +  2sin2Q! v \ \4 J

or

. r- . fy/2 L V2 . \ _ . 2
= 1 — 2v2sm o'l —  cos a  -h —  sm a I + 2 sin  a

=  1 -  2 sin a  cos a -  2 sin2 a  +  2 sin2 a  (14.24)

2
~4 =  1 — 2 sin a cos a = sin2 a  +  cos2 a  — 2 sin a  cos av i

and thus
v0
Vn

cos a — sin a  (14.25)
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The Ekman spiral may also be found by resorting to complex numbers. To do 
this we multiply the v component of the wind by i, the square root of -1  Then 
from (14.13)

kd2(u +  it;)
dz2

kd2(u +  \v)

The general solution is
dz1

r / i / v /2u +  i v  = A exp
\T)

d2(u + iv) V (  \ f
dz1 = A

Now

I  P V T

+f» ~  i/(w -  ug) =  0 

i f  (u + iv) +  i/wg =  0

(14.26)

(14.27)

+ B

1/2

exp
- f j

1/ 2 '

B i / 1/2
(14.28)

/r 1 +  i I fv i =  — a = \ —
y/2 V 2k

(14.29)

It is obvious that A — 0 since the velocity cannot increase indefinitely with 
height. Inserting the boundary conditions for the classical case, u0 = 0, v0 =  0 at
z =  0,

u + iv = —ug +  Mg]

but

so

Mg( l - e - “ )

e ~ =  cos az — i sin az

(14.30)

u +  \v =  wg[l — e az(cosaz — ismaz)\ 

Matching the real and imaginary parts

u =  u J l  — e~az cos az)

(14.31)

(14.32)

as before.

14.7 P r o b le m s

A wide river flows 1000 km along the equator to the sea. At 1000 km 
from the sea its elevation above m.s.l. is 1000 m. The slope is constant and 
the downstream velocity is 1m s-1. Assuming the frictional retardation of 
the flow is proportional to the velocity, what is the numerical value of the 
constant of frictional resistance? Suppose the downward slope is from south 
to north between 40° and 60° of latitude and the northward velocity of the 
river is 1m s-1. Does the value of k  alter?

v = wg e sin az

+-«g
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2. Let us assume the Guldberg-Mohn parameterization of friction. The 
pressure gradient is constant. What is the relation between k  and /  for the 
maximum cross-isobaric wind to occur at any given latitude?

3. Assuming the classical Ekman spiral, at what altitude is the cross-isobaric 
velocity a maximum? Assume constant geostrophic wind.

4. Suppose the geostrophic wind increases with height so that ug = wg0 +  Cz. 
Compute the Ekman spiral for the first 500 metres if (a) the geostrophic 
velocity at 500 metres is double that at the surface, (b) it is half that at the 
surface.



SOME MORE ADVANCED  
EQUATIONS

(5.1 T he divergence equation

In Chapter 11 we derived the vorticity equation by cross-differentiating the 
equations of motion in horizontal, frictionless flow. By cross-differentiation we 
mean we form d/dy  of the first equation and d /dx  of the second equation. In 
doing this and subtracting we were able to eliminate the pressure gradient term 
and derive a relation characteristic of the motion itself. We will now differentiate 
in x, y, ignoring horizontal variations in the vertical motion and density.

We then obtain

. du dv ^ du dv2 ----------h2 --------
dx dy dy dx = - v V (15.3)

i

d2u d?u /c^A2 cPu du dv dv _  1 d2p  , ,
dx2 U dx2 \<9x)  dx dy dy dx dx e dt2

d?v d2v dudv (dv^\ d2v du d f  1 d2p 
d y d t ^ U dx dy dy dx  +  \<9y )  ~*~V dy2 +  dy +  U dy e dy2

We will add the two equations above. On the right hand side we will replace 
-(1  / p)V2p by V20 where 0 =  —gVz  the geopotential gradient. Collecting terms 
we have

d /du  <9?A f (® v ®u\  ^ V
d t X d x ^  dy)  \<9x dy) U dy +  \<9x +  dy)

d (du dv\ d (du dv\
+  U dx  \<9x +  dy) dy \c?x +  dy)

Letting
d u d v ^ d v d u  df
Yx  + Ty = D =  < “ d ^

Kind 
Kind 
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and simplifying we have

^  +  D2 - f C  + p u -  2J(u, v) =  V 2<f> (15.4)

Equation (15.3) is known as the divergence equation. We may now make some 
approximations.

1. If dD/dt = 0 the divergence is in a steady state but the divergence will 
change in terms of the spatial pattern of the contours.

2. If dD/dt =  0, the divergence within the flow will remain constant within the 
domain for which the equation is applicable.

3. If dD/dt = 0 and D = 0 the flow will be non-divergent.

For case 1 the equation eliminates time-dependent gravity waves. For case 2 the 
equation eliminates both time-dependent and standing gravity waves.

For case 3 the equation describes the relation between the flow of the wind and 
the isobars or contours for the non-divergent wind. It is, in fact, an extension of 
the gradient wind equation to cover the continuous curving of the isobars across 
the weather map.

Since the wind is non-divergent we may transform it into a stream function using 
the relations

I S 3  T h e  b a l a n c e  e q u a t io n

We have
0 u - f C -  2J(u, v) + V 24> = 0 (15.5)

d'lj) d'tb
U = ^ ! fy  V = d^

and obtain the balance equation

V^ , _ 8 g  + 2[ ( | | ) - § 0 U

Worked Example
Show that 0u —fX  =  - V  • (fVip).

Solution:

(15.6)

dipii = -  —
dy

X = v 2ip 

0 u - f X = - 0 ^ - f V 2iP

- v - ( / v «  =  - / v v v - ( i g + J ^ W
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-v- (/vvo = -/vV-/?¥

Equation (15.3) may be used to determine the initial wind for numerical 
prediction models. It is too cumbersome an equation to solve for ordinary 
operational weather forecasting purposes. Although more exact than the 
geostrophic wind, the latter serves a close enough approximation for normal, 
routine synoptic analyses.

We will derive one final equation which expresses a comprehensive 
behaviour of the motion of the atmosphere. It relates the vertical motion 
to the existing geopotential height field. In deriving this important equation 
we will review all the basic equations upon which this ultimate relation 
depends.

The equations of horizontal, frictionless motion including the vertical motion 
in pressure coordinates may be written as

where u  is defined as dp/dt.
The hydrostatic equation is dp/dz = —pg, but must be written in inverse

15.3 T h e  o m e g a  e q u a t io n

(15.7)

form as

(15.8)

where $  is the geopotential height of the pressure surface.
The compressible continuity equation in pressure coordinates is

du dv duj_
dx dy dp

The thermodynamic equation is

Cp dT  — a d p — q

- v - l / v * )  =  - / W - (  , § t + , * ) . ( , g + | g )

<9w du du du d§
m + u d ^ + v ^ +Lo' d ^ ~ f v - ~ d ^

dv dv dv dv d<&
771 u 7—  ̂v 7— u 77 ^  J11 =  ~ 7 ~dt dx dv dp dx

dz a
d p ~  g
dz

g ^ ~ =  ~ a dp

d® _  R T
dp p
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from which, assuming the motion is adiabatic, 
f d T  dT  dT dT

C\ l h +Ul b  + Vl h - + U ~dp) = « = °

dT  dT dT  udT  auo _
777 +  u ~̂— I" v ~̂ — I------- q ~pr — 0dt dx dy —pgdz Cp

dT  dT  dT  ury au;
dt dx dy pg g

dT  dT  dT  (  d z \  dz ^
1 7  + “ a ;  + v d j:+ ^ { - 9 - p ) + f y u r <

0T  dT  dT  dz .
s7  +  " a ?  + ” a ? + 5 ( r '1“ l ) “’ = 0

Let
dz 
dp

where Sp is a stability parameter. Then
dT  dT  dT
-m +u-r* + v Ty

(rd - 1) = -s .

U1 U1 n  ̂ /1C ^+ u—— \-v— SpW =  0 (15.9)

We also know that

(15.10)

d9 d T  dp

I de _  I d T _ k d p _  2. £d 
0 f o ~ T ~ d 7 ~ ] ? d z ~ ~ T + T  
T de ^
J d ~ z ~  d _ 7

T dO dz _ 9 .  dz
l ! h & p ~  d p og ~ ( A~ ^ d j ) ~ ~ p

where k — R/cp.
We define a static stability parameter

_  -a d d  _  - R T  d O _ R  
a Odp Op dp p p

Now if 7  < Td the lapse rate is stable and a is positive. Alternatively if 7  > Td the 
lapse rate is unstable and a is negative. Except in regions of strong convection, a 
is normally positive. As shown in problem 2 , a is defined by the vertical structure 
of the geopotential height field.

We will now make a number of approximations in deriving the omega 
equation by using the vorticity equation.

1. Assume geostrophic flow for the advection term.
2. Neglect the tilting and twisting terms in the geostrophic vorticity equation.
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noting that Q =  V <&//0.
We will rewrite (15.9) using the hydrostatic relation (15.8) and noting that 

Sp = p a / R :
d (  d $ \  d (  d$>\ d (  d $ \  A

W + v ‘ a - y { - y +,TW = 0 ( l5 ' 12)

Replacing dQ/dt by \  we have
dX d { d $ \  d f d $ \  , .
^ + " > ^ W J + ”s 8 ; W J + " =0 (1513)

and in vector form
dx_  -1- V  . v —
dp +  8 v  dP 

We will now rewrite equation (15.11) as

7r: +  W ^  +  <nv =  0 (15-14)

3. Consider that /  =  / 0, a constant value for the domain covered by each 
calculation. It depends on the latitude of the domain.

4. Consider (3 — d f  jdy  a constant at the latitude of the domain.
5. Neglect £ compared with/  in the divergence term of the vorticity equation. 

Note that the horizontal wind in the divergence term is not replaced by 
the geostrophic velocity. If it were, the divergence would be zero and no 
vertical motion would be generated. Instead we use the continuity equation 
divV =  -dwjdp.

Having made the assumptions we write the vorticity equation as

dCg Ugd(g . Vgd(g n f  dw (15.11)

1 dV2$  1 (  <9V2$  <9V2$ \  - ,  dw
Z - s r + To [ U‘ ^ r  + V‘ ~ 1 F -  +<J”> = A a ?

„ 2 d$ , (  \ 1 vt2 r a rl dw
V 7  +fo0v' =f ° 7}

a 2 d$  2 d<& r n r2 dw
V x =  ~ MgV “  V*v  ay + /o^ g + /o

(15.15)

or in vector form, involving the simple dot product,

V2x =  -/oVg • V + / )  + /o2|  (15.16)

We wish to eliminate x  between (15.14) and (15.16). To do this we take the 
Laplacian of (15.14):

v 2g + v 2( Vg. v ^ ) +(rV2w, =  0 (1517)
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Equation (15.19) is called the geostrophic omega equation. It relates the 
geopotential heights, that is the contours on a synoptic chart, with the vertical 
velocity field. Usually, it must be evaluated by computer. When the water 
vapour structure of the atmosphere is compared with the vertical motion, 
maps of rainfall intensities and amounts may be prepared.

But perhaps even more important than the vertical velocity as an output of 
the contour pattern is the remarkable way in which the atmosphere’s behaviour 
is regulated and controlled in accordance with the basic assumptions of 
geostrophic flow, hydrostatic equilibrium and mass conservation.

I I A Problem s

1. Show that the balance equation (15.6) can be written as

V2 [$ +  ^(V$)2] -  V [(/ +  V2$)V$] =  0

2. Show that the static stability parameter a may be written in terms of $  in the 
form

<92$ 1 d<f> f  Ra =
dp2 p dp \C}

—  1

where r\ — cv cp.

We then take d/dp  of (15.16):

v ; ! +- 4  v v  t + / - 4 ? = ° (15.18)

Subtracting (15.18) from (15.17) we obtain, after dividing by a,
V2w’ +  - | ^  +  - V 2[ V ( L ^ + / )  ^  ^

cr dp cr g dp\ a dp g \ f 0 J
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SYNOPTIC OBSERVATIONS 
AND ANALYSIS

I 6 J  In t r o d u c t io n

In all fields of science documented observations form a crucial cornerstone. The 
practice of detailed observation of weather dates from antiquity -  yet obtaining 
a sufficient number of reliable and accurate observations -  taxes the organiza­
tional and technological skills of even the industrialized nations. Observations 
of the weather encompass the techniques of classification, of estimation and of 
measurement. Any objective scheme should ensure that different observers of the 
same event record the same weather type. Clearly a universal scheme for 
observing and documenting the weather is required; fortunately such a scheme 
exists. The remarkable feat of devising this scheme was achieved by meteor­
ologists through the World Meteorological Organization* (formed in 1950) 
and its predecessor (International Meteorological Organisation*, created in 
1873), and is a splendid example of the internationalism, common sense and 
cooperation that is still traditional amongst meteorologists.

The operational World Weather Watch is a daily example of this cooperation. 
The World Weather Watch encompasses the Global Observing System which 
includes over 9000 land stations and 7000 ships. About one in ten of the land 
stations release weather balloons for upper air observations daily. Ships 
provide similar reports and are often invaluable when they are in data-sparse 
areas. Their reports also include sea surface temperature, sea and swell 
details. Other important data come from satellites, radars, hundreds of 
drifting ocean buoys, and several thousand commercial aircraft which measure 
and relay inflight temperature, humidity, wind and weather. Increasingly, 
national weather services and other agencies are installing automatic weather 
stations, especially in remote locations. The advantages are that they provide 
the agency with continuous data of the easily measured quantities such as wind,

* The different spellings are indeed correct.
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temperature, humidity and pressure (although this last is relatively expensive 
and therefore sometimes omitted). They can also be preset to send a message 
when predefined events occur, such as the wind exceeding 30 knots. The 
disadvantages are that other important parameters of weather type, visibility 
and cloud are not measured, although the technology to do this is now being 
developed in several countries. To compensate for this lack, there is often 
provision for the insertion of additional information by human operators.

16.2 S y n o p t ic  o b s e r v a t io n s  and  p l o t t in g

The weather classification scheme in use enables an enormous amount of 
information to be concisely displayed and quickly absorbed by an experienced
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F ig u r e  16.1 (a) A model plot of a synoptic observation: TTT =  temperature; 
W ww = visibility and present weather; TdTdTd = dew point temperature; 
(TwTw) = wet-bulb temperature; CH = type of high cloud; CM = type of middle 
cloud; CL = type of low cloud; N = number of octas of cloud; Nh/h = number of 
octas of low cloud and height; PPPP = pressure (m.s.l.); p'p' = corrected pressure 
tendency; pppa = uncorrected pressure tendency; W \/W 2 = recent weather; R0 
group = rainfall in specified periods, (b) A sample plot showing showers and recent 
rain with northerly winds. The larger wind plot is the 3000 ft (910 m) balloon wind.
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meteorologist of any nationality. Observations from official stations are plotted 
to display information on weather (phenomena), cloud, wind, temperature, 
humidity, pressure, visibility, rainfall and other quantities. Figure 16.1 shows a 
sample plot and a generic plot. Typically, observations are performed every 3 
hours. By common usage, the term synoptic observation has come to apply to 
this type of observation.

Phenomena

The phenomena, or present weather, category has provision for 100 types of 
weather and these are condensed into a 10 x 10 matrix. The matrix with its 100 
symbols is shown in Fig. 16.2. Each symbol aiid corresponding number has a 
specific meaning as shown in Table 16.1. Once one knows about 10 symbols, 
most of the others are easy to remember or guess. Some common ones are V for 
showers, 5 for drizzle, •  for rain. Even knowing only a handful of the common 
symbols, one can quickly scan a group of plotted observations and obtain a 
reasonable feel for the weather.

Past weather is also recorded. There are two ‘past weathers’: one for weather 
during the past hour and one for weather during the past 3 hours. The series of 
symbols is an abbreviated version of the present weather scheme and has only 10 
types. These are shown in Fig. 16.3.

Symbols for present weather
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F ig u r e  16.2 The symbols for 100 types of weather. Specific meanings are shown in 
Table 16.1.
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Table 16.1 Present weather symbols

No. Symbol

00

01

02

03

04

o

Q
O

O
| W

05 C O

06 O

Explanation

Cfoud development not observed or not observable 

Cloud generally dissolving or becoming less developed 

Cloud on the whole unchanged or sky cloudless 

Cloud generally forming or developing 

Smoke originating from bush or industrial fires

Haze, very small dry particles, relative humidity below

Widespread dust in suspension, not raised at or near the 
station at the time of observation

07

08

Raised dust or sand at the time of observation, no 
well-developed whirls and no duststorm or sandstorm 
seen

Well-developed dust whirls (dust devils) at or near the 
station at the time of observation or during the past hour

09

10

Distant duststorm or sandstorm at the time of 
observation or at the station during the past hour

Mist, visibility 1000 m to 10 km inclusive, relative humidity 
above 90%

Shallow fog (below 2 m) in patches30 
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Table 16.1 Continued 

No. Symbol

13 <

/  \

20

21

*
22

Explanation

Shallow fog (below 2 m) generally continuous 

Lightning seen, no thunder heard

Precipitation not reaching the ground, near to or at a 
distance from the station

Precipitation reaching the ground but not at the station, 
estimated more than 5 km away

Precipitation reaching the ground but not at the station, 
estimated less than 5 km away

Thunderstorm (thunder heard) without precipitation

Squall duringthe past hour or at the time of observation

Funnel cloud during the past hour or at the time of 
observation

Drizzle at the station within the past hour, but not at the 
time of observation

Rain at the station within the past hour, but not at the 
time of observation

Snow at the station within the past hour, but not at the
time of observation

30 

30 

30 

30 

30 
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Table 16.1 Continued

No. Symbol

23 _

Explanation

Rain and snow at the station within the past hour, but not 
at the time of observation

24
o o

Freezing drizzle or rain at the station within the past 
hour, but not at the time of observation

25

V

Shower of rain at the station within the past hour, but 
not at the time of observation

26
*

VJ
Shower of snow at the station within the past hour, but 
not at the time of observation

27
A

VJ
Shower of hail at the station within the past hour, but not 
at the time of observation

28 Fog (visibility less than 1000 m) at the station within the 
past hour, but not at the time of observation

29

30

31

32

R] 

&

&

Thunderstorm (thunder heard) at the station within the 
past hour, but not at the time of observation

Slight or moderate sand- or duststorm (visibility less than 
1000 m but more than 200 m) decreased during the past 
hour

Slight or moderate sand- or duststorm (visibility less than 
1000 m but more than 200 m) unchanged duringthe past 
hour

Slighter moderate sand- or duststorm (visibility less than 
1000 m but more than 200 m) began or increased during 
the past hour
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Table 16.1 Continued

No. Symbol

33

Explanation

Severe sand- or duststorm (visibility less than 200 m) 
decreased duringtbe past hour

34 Severe sand- or duststorm (visibility less than 200 m) 
unchanged during the.past hour

35 Severe sand- or duststorm (visibility less than 200 m) 
began or increased during the past hour

36 Drifting snow, slight or moderate below eye level

37 Drifting snow, thick below eye level

38 Blowing snow, slight or moderate below eye level

39 Blowing snow, thick above eye level

40 Fog at a distance, sky visible, at the time of observation, 
but no fog at the station during the past hour (visibility 
more than 1000 m)

41 “ Fog in patches at the time of observation, sky visible 
(visibility less than 1000 m in patches)

42 Fog in patches at the time of observation became 
thinner during the past hour, sky visible (visibility less 
than 1000 m in patches)
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Table 16.1 Continued

No. Symbol

43

Explanation

Fog at the time of observation became thinner during the 
past hour, sky invisible (visibility less than 1000 m)

Fog at the time of observation unchanged during the past 
hour, sky visible (visibility less than 1000 m)

45

46

47

48

49

50

51

52

53

3 E
9

9 9
9
9

A

Fog at the time of observation unchanged during the past 
hour, sky invisible (visibility iess than 1000 m)

Fog at the time of observation began or became thicker 
during the past hour, sky visible (visibility less than 
1000 m)

Fog at the time of observation began or became thicker 
during the past hour, sky invisible (visibility less than 
1000 m)

Fog at the time of observation depositing rime, sky visible 
(visibility less than 1000 m)

Fog at the time of observation depositing rime, sky 
invisible (visibility less than 1000 m)

Slight intermittent drizzle at the time of observation 

Slight continuous drizzle at the time of observation 

Moderate intermittent drizzle at the time of observation

Moderate continuous drizzle at the time of observation

54 Heavy intermittent drizzle at the time of observation
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Table 16.1 Continued

No. Symbol Explanation

55 •  Heavy continuous drizzle at the time of observation

V
56 Slight freezing drizzle at the time of observation

57 fe Moderate or heavy freezing drizzle at the time of
y  \ ^ /  observation

58 A  Slight drizzle with rain at the time of observation

59 •  Moderate or heavy drizzle with rain at the time of
^  observation

?

60 £  Slight intermittent rain at the time of observation

61 £  £  Slight continuous rain at the time of observation

62 £  Moderate intermittent rain at the time of observation

63 £  Moderate continuous rain at the time of observation

64 £  Heavy intermittent rain at the time of observation

65 £  Heavy continuous rain at the time of observation

66 Slight freezing rain at the time of observation

67 (S X v  t f )  Moderate or heavy freezing rain at the time of
^ observation



SYNOPTIC OBSERVATIONS AND PLOTTING 191

Table 16.1 Continued

No. Symbol Explanation

68 ^  Slight rain or drizzle with snow at the time of observation

69 Moderate or heavy rain or drizzle with snow at the time
of observation

*

70 y^ Slight intermittent snow at the time of observation

71 ^  Slight continuous snow at the time of observation

72 \/ Moderate intermittent snow at the time of observation
*

73 y  ̂ Moderate continuous snow at the time of observation

y  y  Tv 7\

74 y^ Heavy intermittent snow at the time of observation

X

75 \ /  Heavy continuous snow at the time of observation

&

76 **--- ► Ice prisms at the time of observation

^  Snow grains at the time of observation

78 y  ̂ Isolated star-like crystals at the time of observation

79 A  Ice pellets at the time of observation
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T ab le  16.1 Continued

No. Symbol Explanation

80 £  Slight rain shower at the time of observation

v
81 £  Moderate or heavy rain shower at the time of

observation

82 A  Violent rain shower at the time of observation

$

83 IP  Slight rain and snow shower at the time of observation
*V

84 #  Moderate or heavy rain and snow shower at the time of
observation

85 Slight snow shower at the time of observation

v
86 -)£ Moderate or heavy snow shower at the time of

^ f  observation

87 Slight soft hail shower at the time of observation

V
88 Moderate or heavy soft hail shower at the time of

observation

89 Slight hail shower at the time of observation



SYNOPTIC OBSERVATIONS AND PLOTTING 193

Tab le  16.1 Continued

No. Symbol

90 ▲

91

v
It

Explanation

Moderate or heavy hail shower at the time of 
observation

Thunderstorm in the past hour with slight rain at the 
time of observation

92

K

Thunderstorm in the past hour with moderate or heavy 
rain at the time of observation

93

t

Thunderstorm in the past hour with slight snow or hail at 
the time of observation

94

.95

K

• /* -

It Thunderstorm in the past hour with moderate or heavy 
snow or hail at the time of observation

Slight or moderate thunderstorm with rain and/or snow 
at the time of observation

96 A Slight or moderate thunderstorm with hail at the time of 
observation

97

99

• / *

15
iS iis i

K
A
l>

Heavy thunderstorm with rain and/or snow at the time 
of observation

Thunderstorm with dust- or sandstorm at the time of 
observation

Heavy thunderstorm with hail at the time of observation
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o  Less than 5/8 cloud 

3  More than 4/8 cloud for part of period o More than 4/8 cloud for whole of period 

Dust or haze 

=  Fog 

^  Drizzle 

•  Rain 

Snow 

V Shower

Thunderstorm

F ig u r e  16.3 Symbols for past weather.

Cloud

Just as weather has a systemic classification, so too has cloud cover. First, the 
amount of sky covered is recorded in eighths (usually known as octas or oktas). 
The number of octas is always rounded up to the next integer excepting the case 
of rounding up to 8 . Completely cloud-free or cloud-covered sky corresponds to 
0 or 8 octas respectively. The estimated direction of movement of the lowest 
cloud is shown by a small arrow plotted adjacent to its symbol.

As with weather symbols, the novice can quickly acquire a reasonable grasp of 
the cloud through knowing the most common and important ones, for example 
cumulus, strato-cumulus, cumulo-nimbus. Knowledge of a few Latin words is 
useful (icumulus = heaped; strata =  layers; cirrus =  hair; alto =  middle; nimbus =  
rain). The experience of many perceptive observers has led to the current 
convention of cloud classification. Clearly, any classification must be based on 
appearance but the visual features used are those that indicate the physical 
processes of the cloud’s formation. In this sense, there are but two main types of 
cloud, namely cumuliform and stratiform. Cumuliform comprise cumulus types 
in which the clouds are usually separated by clear spaces. Stratiform clouds are in 
sheets or layers covering large areas.

By convention, clouds are also classified into three height ranges (called 
etages) as low, middle or high as in Table 16.2. Clouds rarely form above the

Table 16.2 Typical cloud base ranges for the low-, middle- and high-level clouds for 
different regions

Etage

High
Middle
Low

T  ropical

6~18 km 
2-8 km 
up to 2 km

Temperate

5-14km 
2-7 km 
up to 2 km

Polar

3-8 km 
2-4 km 
up to 2 km
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F ig u r e  16.4 A selection of common cloud types: A, cumulus (humilis) -  often known 
as fair-weather clouds; B, cumulus (congestus) -  can produce brief showers; C, 
cumulus (with vertical development); D, strato-cumulus -  low-level layered cloud; E, 
cumulo-nimbus -  will produce showers; F, cumulo-nimbus with anvil -  will produce 
heavy showers, often with thunder and lightning observed; G, cumulo-nimbus 
(mammatus) -  as for F, the downward protuberances are due to strong downdrafts 
within the cloud; H, arc cloud or squall line -  severe winds, heavy showers and



196 SYNOPTIC OBSERVATIONS AND ANALYSIS

possibly hail expected; I, alto-stratus -  middle-level grey, generally uniform, sheet; J, 
alto-cumulus (undulatus) -  rippled elements, generally white; K, alto-cumulus 
(floccus) -  rippled nature but darker; L, alto-cumulus (castellanus) -  good indicator 
of middle-level instability: when observed in the morning, often indicate showers or 
thunderstorms in the afternoon; M, cirrus (fibratus); N, cirrus dense; O, cirrus uncinus 
-  white tufts or filaments; P, cirro-cumulus -  small rippled elements. Clouds A to G 
are low-level clouds; H to L are middle level and M to P are high level. (Photographs 
courtesy of Mark Bedson, Cloud World, Ceduna, South Australia 5690.)
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troposphere. There are 10 main types of clouds (technically genera, the singular 
being genus) and 27 subtypes according to height, shape, colour and weather. 
Some common cloud types are shown in Fig. 16.4.

Identifying and classifying clouds, and estimating their base heights, is not 
always easy. Sometimes clouds are intermediate between the standard forms. 
Trained observers do not merely note the sky at the time of observation but will 
have been noting the evolution of the clouds as opportunity permits well before 
the observing time. This continual study will often help classification. Other aids 
in estimating cloud heights are information from pilots and inspection of an 
aerological sounding.

The basic symbols of the different cloud types are given in Fig. 16.5. Column 6 
(headed ‘C’) shows cloud type. Column 2 (headed ‘N ’) shows cloud amount in 
octas. If there is only one type of cloud observed, then column 6 is used, 
otherwise column 3, 4 or 5 as appropriate (for low, middle and high cloud, 
respectively).

Visibility
Visibility is a parameter especially important to aviation users. It is a horizontal 
measure of the transparency of the atmosphere and, as such, should be

N CL c W,,2 a s Ks d l

0 O o / c

1 © a — >2 © 2 c LS /
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4 © o < 2 7 ^ 1 = — M MA 1
5 © 2- V R ML /
6 © ---- A 2 • V VR HS

7 O ---- OR * \ H HA \
8 • M—LA V \ VH HL 1
9 0 H A K Ph Conf.

cloud
F ig u r e  16.5 Symbols for cloud amounts and types, past weather, sea and swell, and 
direction of motion of lowest cloud.



198 SYNOPTIC OBSERVATIONS AND ANALYSIS

unaffected by whether it is daytime or night-time. The visibility is coded as in 
Table 16.3. Estimates of visibility are arrived at by reference to landmarks 
obscured by, or discernible through, drizzle, rain, haze, dust, mist, fog, etc.

Rainfall

Rainfall recorded during the previous 3 hours and 6 hours is also plotted. 

Wind

Apart from rainfall, none of the preceding categories requires any particular 
instrument. Wind, too, may be estimated by eye and this visual estimation is 
performed via the Beaufort scale in Table 16.4. Of course, it is desirable to be 
more objective and to measure the wind speed and direction with a standard 
anemometer. Anemometers are located on masts at 10 m above ground level 
although sometimes 2 m or 3 m elevations are used. The anemometer needs to be 
located such that the measured wind is unaffected by barriers and obstacles. A 
good site is one where any obstacle is distant from the anemometer by at least 10 
times its height. In practice, it is surprisingly difficult to obtain good measuring 
sites.

If wind direction is estimated then it is estimated to the nearest of the eight 
compass points. If direction is measured then it is recorded to the nearest 10° 
increment from true north. Both speed and direction are the mean values over a 
10 minute interval. Direction is taken as direction from -  a point of confusion for 
many students of mathematics or physics coming to meteorology for the first

Table 16.3 Left hand portion shows visibility code of non-aeronautical stations. 
Right hand portion shows visibility code for aeronautical stations. (Code figures 51 to 
55 are not used.)

Criteria: non-aeronautical Code Criteria: aeronautical Code

Object visible at <50 m 90 Object visible at < 100 m 00
Object visible at 50 m 91 Object visible at 100 m 01
Object visible at 200 m 92 Object visible at 200 m 02
Object visible at 500 m 93
Object visible at (OOGm 94 in increments of 100 m to
Object visible at 2000 m 95 5 km 50
Object visible at 4000 m 96 6 km 56
Object visible at 10 km 97 7 km 57
Object visible at 20 km 98
Object visible at 50 km 99 in increments of 1 km to

30 km 80

in increments of 5 km to
70 km 88

greater than 70 km 89
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Table 16.4 Beaufort scheme for estimating wind speed at a height of 10 m on land. A 
similar scheme is used for estimating speed over the ocean

Specification for estimating wind speed

Specification Description Speed
(knots)

Calm; smoke rises vertically Calm 0
Smoke drifts; wind vane steady Light air 2
Wind felt on face; leaves rustle; vane moves Light breeze 5
Leaves and small twigs moving Gentle breeze 9
Dust and loose paper raised Moderate breeze 13
Small leafy trees sway Fresh breeze 18
Large branches sway whistling in overhead wires Strong breeze 24
Whole trees sway; inconvenient to walk Moderate gale 30
Twigs break off; difficult to walk fresh gale 37
Slight structural damage Strong gale 44
Trees uprooted; considerable structural damage Storm 52
Widespread damage (rarely experienced on land) Violent storm 60
Widespread damage (rarely experienced on land) Hurricane 68

time. The main reason, apart from tradition, is that when using the simplest 
forecast (based upon advection from upstream) one is concerned with where the 
air has come from rather than where it is going to. (To compound the possible 
confusion, oceanographers use the opposite convention.)

Another aspect of tradition is in the matter of the units of speed. 
Traditionally knots have been used, yet the appropriate SI units are metres 
per second. Fortunately, since 1 m s-1 «  2 knots, the same plotting scheme of 
barbed, or feathered, arrows is applicable. For example, a full feather on the 
arrow shaft equals 10 knots or 5 m s-1. Feathers are to the left in the 
northern hemisphere and to the right in the south, the idea being that if the 
wind were geostrophic, the feathers would point to the low pressure. If the 
maximum gust is significantly above the mean it is sometimes included near 
the wind tail as ‘<28’, for example, to indicate a gust to 28 knots. Calm or 
light variable winds are indicated by a solid circular line or dashed circular 
line respectively.

Temperature and humidity

Temperature is obtained to the nearest tenth of a degree from a thermometer 
housed in a Stevenson screen and plotted omitting the decimal point. In some 
offices, the plotted quantity is rounded to the whole degree. Similarly dew point 
temperature is plotted a little below the dry-bulb temperature. Relative humidity 
is not normally plotted because this is not a conservative quantity whereas dew 
point temperature is approximately so (see problem 2).

As a general rule, no data should ever be accepted unquestioningly. Of all the 
standard meteorological measurements, the quantity which seems to be the least
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reliable is humidity. In particular, the accuracy and reliability of dew point 
temperatures suffer from incorrect wet-bulb temperature readings due to poorly 
maintained equipment, and faults such as dried or dirty muslin coverings on the 
thermometer, or algae in the water reservoir. These faults usually lead to an 
overestimation of the dew point temperature.

Pressure and its tendency
In terms of the standard analysis of the observations, the most important 
quantity is pressure. The barometer provides station-level pressure (SLP). 
To this value must be added a correction to give what the pressure would 
be at mean sea level (m.s.l.) -  this is called reducing to sea level. This 
correction adds a factor for the station’s altitude on the assumption of a mean 
virtual temperature in a hypothetical column of air from m.s.l. to the barometer 
altitude. The mean temperature of the column is assumed to be determined by 
the temperature at the station and a standard lapse rate of 6.5°C km""1 over the 
height of the column. In practice, there are several variations on this procedure. 
For example, many countries use for the station temperature an average of the 
current and the 12 hour prior temperature while some use the climatological 
mean. The correction is calculated through the hypsometric equation (5.3) which 
is recast as

where /?msl and ps\ refer to the reduced pressure and the station-level pressure 
respectively. H  is the station height and Tm is the mean temperature of the 
column.

The observed tendency of any quantity is usually defined as the latest reading 
minus the previous reading. For pressure, two SLP tendencies over the past 3 
hours are given. First, an uncorrected tendency in tenths of hectopascals is given 
by selecting from a choice of eight symbols to describe best the barograph trace. 
If no barograph is available then a simple 2, 4 or 7 is used to indicate 
whether the SLP has risen, showed no net change or fallen, respectively. 
Secondly, the corrected tendency is plotted. This correction compensates the 
observed 3 hourly change in SLP by subtracting out the expected ‘tidal’ or mean 
variation for that time of day and year. This corrected tendency is the one that 
appears in the pressure tendency equation in section 9.4 as dp/dt although 
conversion from hPa per 3 hours to SI units is required. The pressure tendency is 
also known as the isallobaric component (see Chapter 9). The isallobaric 
component may be determined over other periods, for example 24 hours, in 
order to analyse a daily rise/fall pattern.

The approach of a low-pressure system will often be heralded by rapidly 
falling pressure. Usually, isallobaric components will be large when synoptic 
systems are approaching quickly or developing and therefore the isallobaric 
component is carefully monitored by forecasters. However, there are other 
small-scale effects which can produce large components and these need to be

(16.1)(  g n \Ansi = Psi exp h jT jH
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borne in mind. Examples are thunderstorm outflows, and a ‘pumping’ or 
chimney effect of strong winds on barometers in lighthouses -  this is of 
significance because a lighthouse is often the closest observing site to approach­
ing weather systems. An example of such pumping during strong prefrontal 
northerly flow (southern hemisphere) at a lighthouse is shown in Fig. 16.6.

Customizing
Tendencies may be calculated for other parameters also, especially temperature 
and dew point. These provide additional information useful for analysis in some 
circumstances. Deriving and plotting 24 hour tendencies of temperature and dew 
point temperature at stations either side of a quasi-stationary front will often 
provide the first objective sign, or confirmation, of the formation and deepening 
of small-scale wave lows on the front.

All forecasting centres have their own styles. Commonly used colour 
associations are yellow for fog, green for rainfall, red for thunderstorms, red 
also for falling pressure and rising temperatures with blue for rising pressure and 
falling temperatures. Thus, for example, a red-blue boundary will emphasise a 
frontal zone. Other derived quantities such as dew point depression, fire danger 
index, soil dryness index and other thermodynamic parameters and indices are 
often plotted, depending upon the season and the circumstances.

Although the plotting of the observations synoptically (i.e. in a spatial pattern 
for a ‘snapshot’ in time) is the norm, one may also produce a time series for one 
or more stations (see Fig. 16.7). Commonly, a synoptic chart will cover an area 
with dimensions of 2000-4000 km. Adequately covering all the stations and 
retaining legibility requires charts of physical size of about a square metre, and

Saturday Sunday

F ig u r e  16 .6  Barometer pumping of up to 3 hPa between 8 a.m. and 2 p.m. on Sunday 
during a frontal passage at a lighthouse.
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unfortunately beyond the scope of this book to reproduce. However, an 
increasing number of charts are becoming available on the World Wide Web.

The main purpose in plotting the observations is to analyse them, and by 
doing so, to make judgements about physical causes of the current and past 
weather -  and thence to make further judgements about future weather.

16.3 A n a lysis  m eth o d s

In polar and temperate regions, weather is mostly associated with the features on 
an m.s.l. pressure analysis. The charts depicting these features are usually 
referred to as synoptic. Hitherto we have rather blithely glossed over any 
definition of synoptic. A dictionary will show that the original and literal 
meaning is ‘at that time’. So-called synoptic charts generally cover geographic 
dimensions of 3000 km or more. Common usage has produced the term synoptic 
for the features typically seen on these charts, and, by extension, these synoptic 
features have a synoptic scale of the order of 1000 km.

The horizontal scale of synoptic features is typically about 2000 km and the 
vertical scale is about 10 km (altitude of the tropopause): the typical wind speeds 
are respectively 20m s-1 and lOcms-1. Thus, the time taken for an air parcel 
to traverse a stationary system is roughly equal to the time taken for it to 
travel through its vertical extent, that is 1 to 2 days. Denoting the vertical and 
horizontal length and speed scales respectively as H , L, W  and F, then a synoptic 
scale ratio. S . mav be defined as

s  =  ^ -
L W

( 16.2)

If S ~  1, then the scales are said to be matched. This simple concept of scale 
matching can be quite powerful and will be encountered again in a more 
sophisticated form in relation to tropical cyclone genesis in Section 18.2.

In the first half of this chapter we saw how individual observations were 
acquired and plotted for display. To synthesize and visualize the patterns 
inherent in the information in the aggregations of these observations it is 
necessary to analyse them. There are many types of analyses. The most well 
known is that of the m.s.l. pressure analysis, often simply called the surface 
chart, the weather map, or the m.s.l. anal. In general, the most important 
single parameter analysed on these charts is the horizontal wind field. 
Modern meteorological analysis is more concerned with air streams 
(dynamic) rather than air masses (static) and this fundamental perspective 
leads to a focus on the wind field.

Analysis is a procedure similar to diagnosis. Analysis is the drawing of fields 
of wind flow, pressure, temperature, humidity and so on, with the purpose of 
showing what is happening and what has happened; diagnosis is the how and 
why. Prognosis is then the extrapolation of the fields to the future. Prior to 
analysis, the surface observations are plotted on a suitable map at their 
corresponding locations. Drawing of the desired fields is accomplished in two 
different ways: objectively by computer according to algorithms of varying
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sophistication; and subjectively. Strictly speaking, plotting of the observations 
on paper or a computer screen is required only for subjective analysis.

16.3.1 Objective analysis

The objective analysis schemes range from simple contouring by (a) linear 
interpolation, (b) spline interpolation, (c) least-squares fitting, (d) Kriging 
methods and (e) Bezier curves, to interpolation schemes by (f) Cressman and 
(g) Barnes, to complex methods of (h) optimum interpolation which utilize the 
statistical behaviour of the observations and a first-guess field, (i) initialization 
and (j) assimilation. Detailed descriptions are beyond the scope of this text, but 
numerical analysis texts often cover (a) to (e). As a digression, the authors’ 
experience is that isopleths drawn using the Bezier curves, available in many 
software drawing packages, often approximate closely the forecasters’ freehand 
isopleths.

Objective analysis is often less useful in data-sparse areas and in complex 
areas. Unfortunately data-sparse areas will continue to exist for a long time yet, 
and the complex areas are usually those areas which are most interesting (i.e. 
where the weather is happening). A sophisticated analysis method (a) incorpo­
rates neighbouring observations with different error characteristics in an 
optimum interpolation, (b) includes non-standard-level information, and (c) 
calls upon information from previous charts to form a consistent analysis in four 
dimensions (4D, i.e. in x, y, z and time). This aspect of consistency applies to both 
objective and subjective methods, and means that all data must be scrutinized 
and checked for quality. In the objective method, the underlying equations such 
as the hydrostatic equation and the thermal wind equation are used as checks at 
each grid point in three-dimensional space. In the subjective method, the analyst 
must have in mind suitable models, of at least an empirical or idealized physical 
type, that are used as guidance. For example, at higher latitudes the winds 
will tend to be parallel to isobars and the speeds will be related to the 
pressure gradient. There are many exceptions to simple rules of this type, 
however.

Computer models which predict the state of the atmosphere must start of 
course with initial conditions. The accuracy of these initial conditions is 
extremely important in that it is now well established that small differences in 
the initial conditions can sometimes lead to large differences in model prognoses 
at a later time. The treatment of the initial observational data and their 
analysis is an important and non-trivial aspect known as initialization. The 
number of parameters to be determined explicitly for starting a global numerical 
forecast model is in the range of 106 to 107, whereas the number of individual 
scalar observations available for a 24 hour period is about 105. The effect of this 
discrepancy is partially countered by the processes of initilization and assimila­
tion. Initialization typically involves running the prognostic equations back and 
forth to achieve an optimization between fitting the observed data (at time =  0) 
and physical consistency. A more complex process known as assimilation is used 
to incorporate observations received late and those performed at non-synoptic
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times, or those that have required correction. Sequential assimilation entails 
running the numerical model over the period of assimilation (which ends at 
time =  0). Whenever the model time reaches the time of an observation, that 
observation is incorporated by using its data in lieu of the model’s estimate. 
Variational assimilation in 4D, which is the more general problem, attempts to 
find a model ‘trajectory’ which best fits the observations from the assimilation 
period and the forecast field valid at time =  0. The inclusion of the forecast field 
as a set of pseudo-observations has the positive effects of enforcing the dynamics 
of the primitive equations in the fields and of retaining information from time 
prior to the assimilation period. The retention of previous information has a 
further benefit: that is, the prior information from areas with good data coverage 
is, in effect, advected into regions where data coverage is poor. The technique 
of assimilation provides the means by which satellite data and data from 
other sources can be ingested and its inherent information fully utilized. Another 
form of assimilation is the technique of nudging. In this process the model is 
initialized. Then, the vertical motion field, which is susceptible to error as 
explained in earlier chapters, is derived from satellite cloud imagery via heating 
considerations. This upgraded vertical motion field is then inserted into the 
model. The computational process of assimilation in 4D is extremely complex 
and is, at the time of writing, yet to be fully developed for operational use. It is 
worth bearing in mind that, ultimately, objective analyses are subjective in the 
sense that someone had to choose the analysis scheme subjectively.

16.3.2 Subjective analysis

Subjective analysis is more of an art than a science, yet despite the subjectivity, 
experienced analysts given the identical unanalysed charts will produce very 
similar analysed charts. This is because they will draw their contours not 
only by the values of the relatively few data points but by using accepted 
physical and descriptive models of the atmosphere. Compared with powerful 
computers with modern pattern recognition software, humans are extremely 
good at visually identifying and discerning coherent features even as those 
features move and evolve. Subjective analysis relies upon the individual 
consciously or unconsciously absorbing a vast amount of data (some of which 
may be inaccurate or even misleadingly wrong) and synthesizing, or creating, a 
representation on the chart. A good analysis is really a good diagnosis -  a clear 
understanding of what is happening and why. This is a major step in deciding 
what will happen later. Experience in subjective analysis is priceless. The eminent 
Jule Charney is quoted thus:

I think a person who has made subjective analyses of weather maps has a 
deeper appreciation of how inadequate many objective analysis schemes are, 
and if you simply accepted the machine product as reality, it would be very 
dangerous. And I think that the tendency to rely too heavily on the machine 
has occasioned a lot of errors in operational work, and not only in operational 
work, but in research, synoptic research. (Platzman, 1990, p. 462).
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A management text by Reddin draws a similar conclusion regarding the value of 
such experience. He asserts that ‘The ideal Chief Executive Officer would be 
[among other things] . . .  a student of weather maps . . .  [because] . . .  studying 
weather maps would teach decision-making under uncertainty’ (Reddin, 1985, 
p. 41).

To obtain the best of both worlds, interactive analysis, where the human 
analyst can re-arrange and improve the computer’s effort, is now  a com m on  
practice in national meteorological centres. One method to achieve this has 
created the hybrid art form of ‘bogussing’ -  inserting synthetic observations to 
force the computer analysis into a ‘better’ pattern. The operator inserts the 
synthetic data, which have been estimated subjectively or obtained from other 
sources such as satellite imagery, usually at a set of predefined grid points over 
data-sparse areas and at the synoptic features of most interest. From satellite 
imagery, for example an analyst may note a tropical cyclone in the data-sparse 
areas of the tropical oceans. The cyclone may well not show up at all on an 
objective analysis. So the analyst may insert a complete preprogrammed packet 
of ‘bogus’ or synthetic observations to simulate a tropical cyclone. A similar 
concept is sometimes used for mid-latitude cyclones. For example, Japanese 
analysts use the diagrammatic relationship (in Fig. 16.8) between satellite 
imagery of cloud associated with a depression and the pressure field (Ryoji 
Kumabe, personal communication). This classification follows the scheme of 
Smigielski and Mogil (1992) developed for Atlantic lows but is ‘tuned’ for the 
area around Japan.

One intriguing aspect of analysis is that of aesthetics. Forecasters sometimes 
speak of a chart as ‘passing the look test’, and regard an analysis as incorrect if it 
is ‘ugly’. Jerome Namias gives an instance of where his wife, an artist, completed 
one of his sea surface temperature analyses which he had left unfinished awaiting 
more data. When challenged to justify her analysis, she remarked that her 
interpretation was justified because it was artistically pleasing. To Namias’ 
chagrin, when the remainder of the data was later plotted, his wife turned out to 
be correct. A quote from a UK Meteorological Office handbook also emphasizes 
this aesthetic side:

Nature is at heart an artist and the smooth, functional lines and colours of the 
synoptic chart show ample evidence of this truth. . . .  The final chart should 
have artistic beauty and give pleasure to the eye of the viewer. . . .  the chart 
should have some of the beauty of a painting or other work of art. . . .  A 
synoptic chart so drawn will convey at one glance something of the working of 
the atmosphere to the viewer’. (UKMO, 1964, p. 19).

16.3.3 Streamlines
Analysis in tropical areas is qualitatively different mainly because of the absence 
of fronts and the smallness of the Coriolis force. Within 20° of the equator, the 
geostrophic ‘rule’ is of little use and the isobaric spacing is usually too open 
to provide meaningful analyses of the wind field. To overcome this difficulty, 
streamline analysis is often used.
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F ig u r e  16.8 Schematic relation between cloud imagery and m.s.l. pressure pattern 
for cyclones around Japan.

Streamline analysis entails drawing a line on a chart to represent the wind 
direction at that time. The only constraint is that the wind direction should be 
tangential to the streamline. Spacing is simply a matter of convenience. Speed is 
analysed separately (although usually on the same chart) by isotach analysis. Note 
that a streamline is not the same as a trajectory; however, the two are identical only 
in steady-state conditions. Streamline analysis can be used over areas poleward 
of 20° and sometimes forecasters perform hybrid blends of streamline and 
isobaric analyses on working charts, especially over data-sparse areas.

16.3.4 Trends

The m.s.l. pressure analysis remains the most complex chart of all. Most 
meteorologists consider that the most important routine charts (either isobaric
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or streamline) are the m.s.l. analysis, with the thickness (or 500 hPa) analysis and 
jet stream level (say 250 hPa), and this is likely to continue to be the case for some 
time. Forecasters will likely focus on more frequent analyses of a subsynoptic or 
regional scale with the larger scale being automated. These local area analyses 
will be integrated with a vast amount of satellite and radar imagery leading to a 
whole new set of subjective skills of an empirical and experiential nature in the 
identification and interpretation of meteorological features and the prediction of 
their evolution. However, these interpretive skills will not be confined to local 
areas. Over data-sparse areas, cloud patterns from satellite imagery can be 
classified and assigned to idealized pressure patterns.

With the advance of assimilation and pattern recognition techniques for 
computer analysis and the integration of a vast amount of spatial data, such as 
TOVS (temperature soundings derived from satellite data), cloud-drift winds, 
sea surface winds and, potentially, even m.s.l. pressure itself, from satellite and 
radar, objective analyses produced by computer will undoubtedly improve and 
match subjective analysis. A further advantage of objective analysis is thiat 
additional fields of derived parameters, such as vorticity, potential temperature 
and Q vectors, can be produced when required. Historically, there has been 
recurring support for analysing, on a routine basis, the flow on isentropic 
surfaces rather than, or as well as, isobaric surfaces. The main advantage of 
these charts is that it is usually very easy to diagnose the vertical motion. These 
could become the conventional charts of the future.

Much of the foregoing has implicitly demonstrated the ever increasing 
reliance on computers. It is instructive to look at the growth in computing 
power used by the European Centre for Medium Range Weather Forecasting. 
Over the past two decades the power, as measured in gigaflops, of the Centre’s 
main computer has grown exponentially (the plot being roughly a straight line on 
the log-linear graph in Figure 16.9).

1000.00 i ......................................................................................................... 1
I .□

F ig u r e  16.9 Plot of power of ECMWF’s computer for numerical modelling against 
time. The approximate straight line nature of the plot on log-linear scales 
corresponds to exponential growth. Open square indicates projected speed and 
open circle indicates world’s fastest computer as at May 1997.
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Figure 16.10 Plot of SI skill score of Australian Bureau of Meteorology’s model. 
The downward trend indicates a steadily improving model.

Most national weather services show similar growth in computer power 
used in numerical modelling. One might ask: how much have the prognoses 
improved? In Figure 16.10, the skill score of the Australian Bureau of 
Meteorology’s model is plotted against time. The particular score used here is 
SI which is essentially a correlation of the pressure gradient at all grid points: the 
correlation is then subtracted from one and converted to a percentage. So 
improvements in the model are evident from the marked downward trend in the 
SI skill score. Many other objectively measured improvements in analysis and 
forecasting are published in annual reports from national weather services.

1. Air at a temperature of 20°C and pressure of lOOOhPa has a wet-bulb 
temperature of 10°C. What is the dew point, the relative humidity and the 
mixing ratio? [Hint: Review Section 4.21.]

2. The concept of aesthetic appeal is an intriguing one. Do you agree with the 
UK Met Office quote? Or is it simply a case of beauty being in the eye of the 
beholder?

3. A station at 300 m altitude reports a station-level pressure of 980 hPa. The 
surface (virtual) temperature for use as the upper ‘anchor’ point in the 
fictitious column to sea level is 0°C. What is the pressure reduced to sea level? 
Repeat for a surface temperature of 5°C.

4. Inspect your local weather office site. Does it have good siting as far as wind 
is concerned?

5. For 1 week collect the daily m.s.l. analyses in your local newspaper or from 
some other source. Identify observations which tend to obey geostrophy, 
and those which tend not to. Offer some plausible reason for the difference.

6. Use the daily charts from problem 5 to estimate the speeds of fronts, lows 
and highs. Which tend to move faster?

Year

i $ A  P ro b le m s
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SIMPLE SYNOPTIC MODELS

17.1 In t r o d u c t io n

From a pragmatic perspective, synoptic features are important because 
weather at a site usually results from the movement of the features across the 
site. The synoptic features themselves are continuously changing by modifying, 
intensifying, interacting, weakening, decaying and reforming. Understanding 
the evolution of the features and the associated weather begins with a knowledge 
of some descriptive and conceptual models of synoptic features.

Compared with daily charts, the climatological charts which show analyses 
of the mean pressure fields (monthly or long term) are relatively featureless. 
It is beyond the scope of this book to present a comprehensive set of 
climatological charts and it is expected that the reader is familiar with, or, 
at least, has access to, suitable reference material. Only through experience or 
systematic study of many synoptic systems and features can one appreciate 
the similarities and diversities of the individual features. Operational fore­
casters acquire an experience and knowledge of the typical features, their 
most common tracks, the most likely areas of intensification or decay, the 
typical speeds of different types of systems for the different seasons and even 
for the time of day. This type of knowledge is usually documented and 
available in various formats such as internal technical publications from the 
national weather services.

___________17.2 S o m e  c o m m o n  s y n o p t ic  p a t t e r n s __________

Analysed m.s.l. charts show ubiquitous features such as highs, ridges, lows, 
troughs, cols, ‘cut offs’, secondary lows and dumb-belling depressions. These 
features are shown schematically in Fig 17.1. Note that northern and southern 
hemisphere systems are mirror images (reflections in a mirror aligned with the 
equator). Fronts are described in a later section.
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Figure 17.1 (a) Northern hemisphere high or anticyclone; (b) southern hemisphere 
high or anticyclone; (c) ridge of high pressure -  either hemisphere; (d) northern 
hemisphere low or cyclone; (e) southern hemisphere low or cyclone; (f) trough of low 
pressure -  either hemisphere; (g) a col (or neutral point) -  either hemisphere; (h) 
primary and secondary lows -  either hemisphere; (i) waves -  either hemisphere.

1 7 3  W lATH BR ASSOCIATED WITH SYNOPTIC SYSTEMS

This section applies to tropical as well as extra-tropical systems. The weather 
associated with fronts is discussed later.

With anticyclones, ridges and zones of surface divergence, the stability is 
greatest near the centre. If the air is dry, cloudless conditions with light variable
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winds are likely with dew or frost at night. If the air is moist, mists and fogs may 
occur at night; during the day, strato-cumulus is likely with drizzle being possible 
if the cloud depth is sufficient. In cities, under an overcast sky of such strato- 
cumulus, air pollution is trapped and leads to ‘anticyclonic gloom’. Away from 
the centres of the anticyclones, the wind is stronger and the air less stable. 
Subsidence aloft will be weaker. The actual weather depends on the air stream 
characteristics of the stability and moisture content of the air at lower levels, 
which in turn is modified by the surface itself.

With depressions (non-frontal), troughs and zones of surface convergence, 
widespread ascent occurs and the weather depends upon the characteristics of 
the stream. With sufficient moisture, widespread rain will occur. Some depres­
sions are simply the result of intense surface heating and are called heat lows. 
These systems occur inland and are little more than wind circulations since the 
lack of moisture precludes significant cloud formation.

A cold stream is one in which the air mass is colder at low levels than the 
surface over which it is moving. It is therefore heated from below and 
becomes less stable. The depth and degree of instability depends on the 
amount of warming and the initial stability. The characteristic cloud of a cold 
stream is cumulus which may develop into cumulo-nimbus. Showers, hail and 
thunderstorms may occur.

A warm stream develops when warm air flows over a colder surface. This has 
the effect of stabilizing the air. If the air is moving over the ocean, then the lower 
layers may become saturated with fog or low stratus subsequently forming.

Vf A  PEFINtTION OF A FRONT

Systematic analyses became possible in the late nineteenth century with the 
widespread adoption of the telegraph and dissemination of observations. It 
was found possible to track the passage of storms and weather events. 
However, not for another half-century did the concept of fronts and the 
life cycles of frontal cyclones or depressions arise. The influential Norwegian 
meteorologist, Vilhelm Bjerknes, remarked that ‘During 50 years meteorol­
ogists all over the world had looked at weather maps without discovering 
their most important features’. A front, or frontal zone, has no universally 
accepted and clear-cut definition. The basic concept of a front is that of a 
boundary. Often this boundary is several kilometres across and so the term 
frontal zone is more appropriate. A frontal zone separates air masses of different 
densities, temperature, humidity or some other physical property. The derived 
parameter of vorticity generally shows a high degree of consistency and is an 
effective frontal marker.

Fronts are marked at their surface position and described as cold or warm 
(or stationary) according to the direction of advance. For example, with a 
cold front, cold air replaces warm air. In the vertical, fronts slope upwards at 
very small angles -  typically 1:70 for cold fronts and 1:250 for warm fronts. 
Vertical profiles of cold, warm and stationary fronts are shown schematically 
in Fig. 17.2.
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F ig u r e  17.2 Cross-section through (a) cold front, (b) warm front, (c) stationary 
front. Air motion is indicated by arrows; frontal motion by thick arrows. Dashed 
lines are isotherms.

The most important front is the polar front which separates polar air from 
tropical air. In an idealized picture, the polar front circles the earth in the 
middle latitudes in both hemispheres. The warm air on the equatorward side 
is termed ‘tropical’ and that poleward ‘polar’. Typical temperature gradients 
are 5°C per 100 km. In some regions along the polar front, colder, denser 
polar air advances equatorward. This portion of the polar front is known as 
a cold front; similarly, that portion moving poleward is known as a warm 
front.
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Figure 17.3 Classical life cycle of wave cyclone -  northern and southern hemisphere. 
See text for details.

17.5 E v o lu t io n  o f  a  w a v e  d e p re ssio n  ________

The evolution of a wave depression, or polar front cyclone, from a quasi- 
stationary polar front is shown in Fig. 17.3. Two possible initial states, (a) 
one with a coincident trough of low pressure and (b) one without, may 
undergo perturbation and evolve to stages (c) and (d) respectively. Both of 
these evolve to (e) and thence to (f), (g) and then frontolysis (decay) at (h). 
During this sequence, the cyclone propagates along the front with the speed 
and direction of the wind in the warm sector. Rainfall and cloud varies 
from system to system depending on stability and moisture. At (e), (f), (g) is 
shown the occluded front. This latter is commonly thought of as the cold front
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catching up with the warm front, in which case either a cold frontal occlusion or a 
warm frontal occlusion occurs {see Fig. 17.4). However, in reality it is more 
frequently the separation, and subsequent deepening, of the surface lows from 
the ‘V’ junction of the cold and warm fronts poleward into the cold air with a 
consequent trough line.

The initial perturbation may be due to topography, surface temperature 
contrast (land and sea, for example), divergence aloft as an upper trough 
approaches, horizontal wind shear, or the approach of another synoptic 
feature. Once a front is perturbed, the atmosphere is baroclinic around the 
perturbation and self-development occurs through to maturity (g) when the low
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Frontal theory uses the concept of flow relative to the front. Hoskins and 
Bretherton (1972) developed such a model (see Fig. 17.6) of which the following 
account follows the exposition of Bennetts et al. (1988).

Consider a dry, adiabatic frictionless flow of (U,V)  with a straight front 
moving steadily eastwards with the geostrophic wind speed, wg, as in Fig. 17.6. 
The wind relative to the front is therefore (U — wg, V) or (w, v). The relevant 
equations in the isobaric system, which the reader should recognize as similar to 
those of earlier chapters, are

v = f - xd(j>/dx (i7.i)

du/d t + fu  = 0 

d<j)/dz = gO/60

(17.2)

(17.3)

warm

colder

(a)

warm

cold .
colder

(b)
F ig u r e  1 7 .4  Model of frontal occlusion: (a) cold; (b) warm.

tends gradually to fill in as the baroclinicity is destroyed. It then frontolyses 
(decays) as at (h).

During this growth phase, the cold front to the equator-west is strengthened 
by advection of cold air moving equatorward on the western flank. Cold air 
increases the surface pressure and the high-pressure cell, labelled H2 in Fig. 17.5, 
is induced to form on the poleward side with the front becoming quasi-stationary 
just equatorward of the high. Yet another wave may form at this point in this 
manner. If so, a train of waves, or a cyclone family, forms. Each wave brings 
polar air further equatorward with a polar outbreak occurring in the western 
flank of the last member. Simultaneously warm air is carried poleward ahead of 
the subtropical high H. Of course, the above description is highly idealized and 
each frontal system differs from previous ones.

1 7 .4  F r o n t a l  r m o w f
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(a)

(b)
F ig u r e  17 .5  The wave cyclone family: (a) northern and (b) southern hemisphere.

dd/dt = 0 (17.4)
du/dx  +  dw/dz = 0 (17-5)

where 60 is a reference temperature and z is the height in an isentropic
atmosphere. The equations here may be regarded as reformulations of the
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F ig u r e  17.6 Idealized front: (a) with flow relative to the ground; (b) with flow relative 
to the front.

momentum equation, the hydrostatic equation and the continuity equation in an 
isentropic coordinate sysytem. Equation (17.1) says that the component of wind 
parallel to the front is always in geostrophic balance. Any ageostrophic motion is 
therefore across the front. Elimination of <fi from equations (17.1) and (17.3) 
gives

dv _  g 89 
dz Oq dx

(17.6)

which is actually the thermal wind equation recast. The solution to these 
equations for a cold front and a warm front is schematically shown by the 
streamline flow in Fig. 17.7. Note the up motion in the warm air, down motion in 
the cold air and the cross-frontal flow. This cross-frontal flow is not completely

y
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F ig u r e  17.7 Naive model of cross-frontal ageostrophic motion about cold fronts 
and warm fronts. The flow through the frontal boundaries is not realistic.

realistic as we have already said that fronts tend to act as material boundaries, 
and will need to be rectified by some other factor.

Several flow patterns have the property of increasing existing temperature 
gradients. Three types are shown in Fig. 17.8. These patterns act to intensify the 
thermal gradient. This intensification via positive feedback occurs thus:

■ tightening of thermal gradient at, for example, A and B, as located in Fig. 
17.3(e), due to shear and deformation patterns in the low-level flow (89/dx 
increases);

■ since the thermal wind is in balance along the front, then by equation (17.6) v 
increases;

■ since v increases with time, then by equation (17.2) u increases;
■ this increase in cross-frontal ageostrophic motion acts to increase the thermal 

gradient;
■ and so on . . .  but eventually limited by friction, and ultimately by the 

synoptic-scale change occurring in the thermal pattern.

In Fig. 17.7 there is cross-frontal flow, but in reality prefrontal jets form as a 
consequence of equation (17.6). Because air can enter or exit via the jets, then the 
need for cross-frontal flow is obviated: this is necessary in the sense that 
otherwise the front would be destroyed. The air entering these jets ascends -  
and if the air is moist enough, cloud and rain form. Two types of ascending 
conveyor belts of air have been described in models by Browning (1985): namely, 
a warm conveyor belt and a cold conveyor belt. The cold conveyor belt tends to 
come in parallel to the warm front and ascend to mid-levels while the warm 
conveyor belt tends to parallel the cold front prior to its anticyclonic exit at upper 
levels in the vicinity of the surface position of the warm front (see Fig. 17.9). The 
warm conveyor belt is very commonly seen on satellite pictures. In Australia, it

Cold front Warm front

z
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y

y

z

F ig u r e  17 .8  Synoptic-scale flow patterns which can intensify horizontal temperature 
gradient: (a) horizontal shear; (b) horizontal deformation; (c) vertical deformation.
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y

y

F i g u r e  17.8 Continued.

may sweep for thousands of kilometres diagonally across the continent and is 
known as the Northwest Cloud Band shown schematically in Fig. 17.10(a) and in 
the satellite imagery in Fig. 17.10(b).

  IT .7 O t h e r  d ep r essio n s

Many depressions in temperate regions, not just in the tropics, are without fronts 
or the fronts form later as a result of the convergent wind flow of the depression. 
This is shown in typical synoptic pattern in Fig. 17.11 where one sees the creation 
of a strong temperature gradient, and the reader will recognize that this is an 
example of the idealization in Fig. 17.8.

Other fronts form on the polar front, on troughs due to land/sea temperature 
contrasts (e.g. Western Australia, and off the east coasts of most continents in 
winter). The development of lows, with or without fronts, occurs in association 
with an upper trough.

(a) southern hemisphere

t0+at

Tn

- x

: Tn+AT

To

- x
(b) southern hemisphere
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F i g u r e  1 7 .9  Browning model of cold and warm conveyor belts associated with an 
occlusion and cloud band: (a) northern hemisphere; (b) southern hemisphere.

Another important feature is the cut-off low. This is a low which becomes 
‘trapped’ in the mean easterly flow, in either hemisphere, often with a substantial 
ridge extending poleward. In the right circumstances with a suitable stable upper 
flow configuration and topographic ‘anchoring’, these coupled systems, usually 
referred to as blocking pairs and sometimes as dipoles, persist for many days. 
Their most obvious effect is to prevent the commonly expected eastward 
movement of lows; such lows tend to weaken as they approach the block and 
slide poleward of the ridge. However, sometimes a low or an associated 
secondary, or an associated upper low, will be attracted into the cyclonic

F i g u r e  17 . 10  (a) Schematic model of the three-dimensional flow in a northwest cloud 
band. L, M and H refer to the levels of isentropic streamlines (from Ferriere, 1994 and 
BMTC, 1988). (b) Satellite image and m.s.l. pressure pattern for a typical north west 
cloud band. (Image courtesy Bureau of Meteorology from Japanese GMS data.)

(a)

(b)

« 5 S 7 \  '

j > > > 3 W

/ / K \yy  \\\w^x X /

i ^ \  / V -
A  /  # /

\ \ \  /  $  /  
-x  \  % 2 \ ¥  /\  \  /
' 1  \ > a w \", 6 X .  ^e/*

¥ ■ '  ' { / /



OTHER DEPRESSIONS 223

— ► Ascent H — High

 Axis of maximum winds = >  — Relative maximum wind

/ Possible 
deep

convection.
\ 1 / \jjr /

Ascent 
(moist) i

Descent 
(dry) /

M Descent
, J dry)

Descent \  
(dry) h

L <

(a)

Ascent
^ ( d r y ) "

H / /X--/  Mm / >

L — Low 

M — Middle

||1 | Cloud band 

— ► Descent



224 SIMPLE SYNOPTIC MODELS

(a) north

(b) south

F ig u r e  17. I I  Typical synoptic surface wind isotherm patterns (full and dashed lines 
respectively) associated with intensification of a low: (a) northern; (b) southern 
hemisphere.

portion of the block -  tracking equatorward and eastward. This process, known 
as ‘shearing off’ by forecasters, effectively reinforces the cyclonic portion and 
tends to prolong the existence of the blocking pair.

Depressions are associated with upslide and can result in widespread
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stratiform cloud. Depending on the hydrostatic stability, embedded cumuliform 
cloud may form. Thus rain and showers are possible even before a low has 
developed as a cyclonic circulation on the m.s.l. analysis.

Troughs, depressions and fronts may provide lifting of up to 300 hPa in a 24 
hour period. Given a moisture supply, such lifted air is likely to form stratiform 
cloud and to precipitate in the form of rain or snow. Up motion may also be 
provided by mountains, and this too will tend to produce stratiform cloud. In 
contrast, up motion of a convective or cumuliform nature may be triggered by 
the upslide lift and/or by thermal convection provided that the atmosphere is 
conditionally or potentially unstable.

Shower activity is expected in the colder stream just west of a trough or front. 
Further west where the low-level convergence is less, or possibly divergence 
may be occurring, any thermal convection will be limited by the subsidence 
aloft. Thus vast expanses of strato-cumulus may form on the poleward side of 
anticyclones. Ahead of a trough or front, the poleward-moving air can be 
potentially unstable through deep layers and so deep convection is possible. This 
air is relatively warm and if it has been over the sea it may contain much more 
precipitable water than the cooler equatorward moving air. Therefore thunder­
storms, heavy showers (and flash flooding) are more likely in these prefrontal or 
pretrough streams.

17*8 S te e rin g  a n d  d eve lo p m en t

We have seen that in the right circumstances, depressions in association 
with a temperature gradient can be self-developing. It is commonly 
observed that the winds in the middle troposphere, say 500 hPa or the 
1000-500 thermal wind, appear to act as a steering flow for features on 
the surface chart. An empirical rule of thumb is that the surface systems 
move parallel to the 500 hPa contours with half the 500 hPa wind speed. It 
is important to understand that though it appears that surface features 
travel downwind like rafts on a river, in reality the surface feature is being 
continuously redeveloped in the region of the strongest isallobaric compo­
nents. These rise/fall patterns may be regarded as mainly due to tempera­
ture advection and vorticity advection. Mid-level and upper level patterns 
also influence the rate of intensification or weakening of surface cyclones 
and anticyclones.

We have already derived a useful relationship for the diagnosis, but not 
prognosis, of synoptic systems. Recall the omega equation (equation (15.19)). 
The first and second terms are the vertical motion terms: the third term is called 
the thickness, or temperature, advection; and the fourth the differential vorticity 
advection. In the absence of other effects, warm advection implies up motion, 
cold advection implies down motion. Similarly, rising air is implied by an 
increase with height of cyclonic vorticity advection; subsiding air is implied by 
an increase with height of anticyclonic vorticity advection. This allows us to 
re-express the omega equation in words (following the treatment of Holton
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(a)

(b)

F i g u r e  1 7 . 1 2  Vertical motion due to cold and warm advection as deduced from 
equation (17.7). M.s.l. pressure pattern represented by fine lines and 500 hPa pattern 
by thick lines: (a) northern; (b) southern hemisphere.

(1979)), thus:

Rising motion oc warm advection

+ vertical rate of increase of cyclonic vorticity advection 

Sinking motion oc cold advection

+ vertical rate of increase of anticyclonic vorticity advection
(17.7)

This might appear complicated at first, but is quite easy and powerful once 
one works through a few examples. At all levels, vorticity advection in troughs, 
ridges and near the centres of synoptic features is very small since the gradient 
of vorticity is very small; conversely, vorticity advection, either cyclonic or 
anticyclonic, is usually greatest between such features. Thus Figs 17.12 and 17.13 
show a schematic surface high and low beneath a 500 hPa flow. For the low, the 
cyclonic vorticity advection at the surface is roughly zero while directly aloft it 
will be comparatively large -  hence, up motion is expected associated with falling
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(a)

W <------------------------------------------------------------------------ ► E
(b)

F i g u r e  17 . 13  Vertical motion due to differential vorticity advection as deduced from 
equation (17.17).

surface pressures. Figure 17.13 shows the vertical motion due to differential 
vorticity advection.

Just after World War II, Sutcliffe (1947) developed a theory linking surface 
divergence with vorticity in the troposphere. His treatment, and that of several 
others, notably Petterssen (1956), gave forecasters the ability to undertake the 
diagnosis and prognosis of system development in qualitative and sometimes 
graphical ways. Sutcliffe used many of the assumptions underlying the deri­
vation of the more modern omega equation (see Section 15.3) to arrive at the 
following:

- V . V ' = f ^ ( /  +  C ' +  2C ) ( 1 7 .8 )

or, in a form following the thermal wind,

- v ' v ' = 7 d + § ;+ 2 ! )  <l79)

The prime denotes values in the 1000-500 hPa thickness layer; other values 
pertain to the lOOOhPa level but are assumed to approximate the surface
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values. The first term is the divergence in the thickness layer. Making the further 
assumption that 500 hPa is the level of non-divergence, then the surface wind 
divergence is given by

Remember that low-level convergence (or negative divergence) implies rising 
air and falling pressure and falling heights. The third term in brackets, Sutcliffe 
called the steering term. Thus, the thermal wind V' advects surface vorticity. 
This is why the thermal wind (or the 500 hPa wind, which is a crude approxi­
mation) appears to steer the surface features. The second term is a development 
term due to the advection, by the thermal wind, of the ‘thermal vorticity’ which is 
proportional to the Laplacian of the thickness. The first term is the beta term or 
latitude term met in the Rossby wave equation and is usually comparatively 
small. Charney (1948) produced a rigorous scale analysis of all the terms used or 
implicitly discounted in the above.

It is suggested that the reader refer to Figs 17.12 and 17.13, and determine 
the contributions to low-level convergence by the advection term and by the 
development term (approximate the thickness by the 500 hPa flow). Compared 
with the omega equation, Sutcliffe’s steering term contribution is similar to the 
differential vorticity advection term, and his development term is similar to the 
temperature advection term.

Several similar models and perspectives have been proposed by others. We 
saw in a previous section the advantage of a coordinate system fixed to the 
moving front. In such a system the vertical motion can be ascribed entirely to 
temperature advection. More recently, Hoskins and Pedder (1980) have 
developed a theory of Q vectors (first proposed by Sawyer and Eliassen) whereby 
the omega equation can be expressed by a single term -  the convergence of the Q 
vector field.

Isotach analysis of the middle and upper level flow shows minima and 
maxima in wind speed. A jet max is usually regarded as any such maximum 
greater than 60 knots. Intuitively, the reader might expect jet max to be 
pertinent to surface development simply because of their energy. Jet max 
occur in various configurations but a very common form is ellipse shaped 
with the long axis along the wind. Jet max tend to move with the wind but at 
a slower speed. Forecasters often refer to a jet max as migrating around a 
trough axis.

To understand the effect of a jet max upon the underlying surface pattern, 
we consider the simple jet max configuration of Fig. 17.14. Maximum cyclonic 
vorticity is located just poleward of the jet max centre with maximum 
anticyclonic vorticity being just eastward. The gradient of vorticity in the 
direction of flow at these locations is near zero. Recognizing this, it is apparent 
that cyclonic vorticity advection occurs at jet stream level in the forward/ 
poleward and rearward/equatorward quadrants. Thus in these quadrants — all 
other things being equal -  there will be rising motion and associated low- 
level convergence possibly leading to surface low development. Conversely, in

(17.10)v-v=f(I+S+2S)
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F i g u r e  17 . 1 4  Model of an upper level jet max. Fine lines indicate contour heights of 
250 hPa and dashed lines show isotachs (speed contours). Cyclonic and anticyclonic 
vorticity is a maximum at the indicated locations. Through equation (17.7), the 
vertical motion, U = up and D = down, is deduced, (a) Northern and (b) southern 
hemisphere.
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F i g u r e  17 . 15  The seasonally averaged density of anticyclogenesis. Contour intervals 
of 10-4 anticyclones per degree squared per day. (From Jones, 1994.)
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the other quadrants, subsiding motion is expected with the formation of 
anticyclones being favoured.

The four-quadrant model was initially used by Riehl to show the associated 
development in the context O f temperature advection. Of course, there are many 
other configurations possible but the ideas are transferable.

Vorticity associated with the jet max in Fig. 17.14 is due to shear and to 
curvature (recall Sections 11.7 and 11.8). By both Sutcliffe’s method and the 
omega equation, the greatest cyclonic development of an underlying surface low 
tends to occur where the upper level cyclonic vorticity advection is greatest -  all 
other things being equal, such as low-level vorticity advection and temperature 
advection. Thus, each quadrant may be labelled with U or D (for up or down 
motion within the column). Columns with up motion will favour cyclogenesis; 
down motion will favour anticyclogenesis.

An extreme form of cyclogenesis occurs in maritime ‘bombs.’ This is termed 
explosive cyclogenesis and defined as occurring when the pressure falls by more 
than 12hPa in 12 hours. It occurs mostly in winter, a few hundred kilometres 
downstream of the mid-level trough (as in Figs 17.12 and 17.13), over the sea off 
the continental eastern coasts where there is often a strong cold-land-warm-sea 
contrast.

___________________ 17.9 B l o c k in g ___________________

Long-wavelength Rossby waves (also known as long waves or planetary 
waves) may be stationary or even slightly regressive as we saw in Chapter 12. 
Large-amplitude waves may form large-scale eddies which are evident 
throughout most of the troposphere. Consequently, the associated thickness 
patterns can be quite involuted with the steering direction for surface features 
being meridional. In the troughs, and especially in the ridges, of the long 
waves the thermal steering is weak and consequently the surface features 
move only slowly. With the large amplitude of the Rossby waves, the beta 
term in equation (17.8) is no longer negligible and tends to weaken the 
development of highs in an equatorward steering current, and the develop­
ment of lows in a poleward steering current -  that is, lows tend to weaken 
and ‘slide’ poleward along the western flank of the anticyclonic portion of the 
long wave.

We saw in the frontal theory section that mesoscale interaction can amplify 
the synoptic-scale features. A process by which the synoptic features can amplify 
the long waves also occurs although the mechanisms are less well understood. 
Typical lifetimes are 1 to 4 weeks in the northern hemisphere but significantly 
less, about a week, in the southern hemisphere. Particular locations and 
longitudes seem to be favoured. Seasonal densities of anticyclogenesis (the 
formation or intensification of highs) for the southern hemisphere, taken from 
Jones (1994), are shown in Fig. 17.15. These observations indicate that some 
aspect o f topography is important. Large anticyclonic anomalies seem to occur 
more often than cyclonic ones. As mentioned in the Section 17.7, blocks o f a 
dipolar nature also occur.
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_______________________ 17.10  T r o p ic s _______________________

Although frontal activity is rare in the tropics, widespread weather in zones of 
convergence is not. Within the so-called equatorial trough, once known as the 
doldrums, local convection is the main type of weather, although in southeast 
Asia, smoke and haze is becoming an increasing problem. Convergence zones 
within the equatorial trough may lead to more widespread cloud and precipita­
tion. Convergence occurs on an even larger scale if the trade winds from either 
hemisphere meet in a narrow zone, the intertropical convergence zone (ITCZ). 
This zone produces extremely bad weather conditions over an area several 
hundred kilometres in width.

Tropical disturbances can be found on daily charts. These include various 
types of eddies, vortices, troughs in the easterlies (typically a few thousand 
kilometres apart and travelling westward at 15 knots), other wave patterns (e.g. 
the 40 day oscillation), trade wind surges and convergence zones. The term 
‘disturbances’ refers to any feature that disturbs the basic or mean flow patterns. 
The Ekman layer wind profile (see equation (14.14)) shows that wind in the 
friction layer actually blows cross-isobarically into the low pressure. This 
secondary circulation can be seen clearly in a simple analogue demonstration. 
To a glass flask of water add some tea leaves. Stir or swirl vigorously. Radial 
inflow takes place at the bottom. Occasional ‘pumpings’, or short-lived towers, 
o f the leaves may also be evident.

This convergent inflow is unstable (in the sense of self-reinforcing) for an 
atmosphere which is neutrally buoyant or potentially unstable. This latter 
condition applies to much of the tropics. The important mechanism for 
producing up motion is known as CISK (Conditional Instability o f the 
Second Kind). Even though the mechanism relies on the release of latent 
heat to fuel the development of a cyclonic disturbance, most of these distur­
bances are cool cored. That is to say, the mid-level temperatures of the 
disturbances are cooler than the environment -  as are their mid-latitude 
counterparts. The tropical disturbances, however, may be punctuated by 
many hot towers which may be warm cored on a smaller scale. There is, 
though, one im portant tropical disturbance which is warm cored -  the tropical 
cyclone.

1. Why might forecasters be especially concerned to monitor the migration of a
jet max around an upper level trough located a few hundred kilometres west 
o f the east coast? ”

2. From your local weather service obtain the routine charts (analyses) for a 
particular day of surface pressure, thickness, 500 hPa and 250 hPa or similar, 
and the 24 hour surface prognostic. Explain qualitatively the prognosticated 
movements of the various highs and lows and any development or decay.

3. If you believe any of the following lore from temperate latitudes, explain 
their possible basis in terms of synoptic features.

Alternative Education 
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(a) Red at night -  shepherd’s delight
Red in the morning -  shepherd take warning!

(b) A halo around the moon means steady rain the next day.
(c) A heavy morning dew suggests a fine and sunny day.
(d) If corns, rheumatics or old scars start nagging, a wet spell isn’t far away.
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THE TROPICAL CYCLONE

_________________I8 J  In t r o d u c t io n ________________

The most vigorous of the tropical disturbances are the tropical cyclones, also 
known as hurricanes, tropical storms or typhoons. As soon as a tropical 
disturbance has an observed, or reliably estimated, sustained surface wind 
(averaged over a period of 10 minutes) of 17m s-1 (34 knots) or more it is 
defined as a tropical cyclone, although not all countries use this definition. 
Although regional usage of the terms is variable, World Meteorological 
Organization publications refer to tropical storms as being tropical cyclones 
with closed isobars and maximum sustained wind between 17 and 32m s-1 (34 
and 63 knots), and typhoons and hurricanes as tropical cyclones with maximum 
sustained winds of at least 33 m s - 1  (64 knots).

The word cyclone comes from the Greek word kukloma meaning coiled snake 
and was proposed by Piddington in 1848. The word hurricane is thought to 
derive from a central American tribe’s name for god o f  evil. The origin of the 
word typhoon is less certain. Possibly it derives from Chinese dialects for great 
wind. The practice of naming tropical cyclones seems to have begun at the turn of 
the century with Clement Wragge, a rather controversial and colourful govern­
ment meteorologist in Australia. He used Greek letters, mythological characters 
and then the names of politicians, especially those he disliked. He published 
accompanying notes on the behaviour o f the cyclones such as ‘erratic’, 
‘capricious’ and ‘very destructive’ in a mischievous manner. N ot surprisingly, 
he himself earned the nickname ‘Inclement’.

A tropical cyclone first appears on the m.s.l. pressure chart as a tropical 
disturbance. Under favourable conditions its central pressure decreases rapidly, 
frequently to less than 960 hPa, with the lowest recorded being 870 hPa. The 
diameter of a tropical cyclone is typically a few hundred kilometres. Extremely 
steep pressure gradients result and the winds in quasi-gradient balance may 
reach hurricane force, with torrential rain and thunderstorm activity. Tropical 
cyclones usually move with a deep-layer-steering environmental wind. They may 
move in any direction and are sometimes quite erratic, although in the mean they
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move westward and poleward before recurving to move poleward and eastward. 
Figure 18.1 shows tropical cyclone tracks and genesis positions.

_________18.2 S t r u c t u r e  a n d  e n e r g y  s o u r c e ________

From a satellite perspective (Fig. 18.2), the striking features of a tropical cyclone 
are the swirl o f dense cirrus cloud covering hundreds o f kilometres, sometimes an 
eye, and the spiral arms o f convective cloud. The typical scale and structure is 
shown in schematic form in Fig. 18.3 and the temperature and wind speed profile 
is similarly shown in Fig. 18.4. An important feature is that higher temperatures 
occur in the core, that is in the vicinity of the eye and its wall. Compared 
with other depressions, even gale-producing monsoon depressions, the tropical 
cyclone is warm cored.

These schematics assume an axisymmetric structure but this is not 
strictly true. Much of the asymmetry is in fact due to the superposition of the 
environmental flow upon the vortex. A practical outcome of this for mariners is

F ig u r e  18.2 Satellite picture of tropical cyclone Frank, 11 December 1995. Courtesy 
Australian Bureau of Meteorology from Japan Met Service GMS satellite data.
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(a)
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F ig u r e  18.3 Model of a typical tropical cyclone: (a) plan view (in northern 
hemisphere) of spiral cloud bands -  note the central eye; (b) vertical ‘slice’ showing 
the radial circulations which are superimposed upon the much greater tangential 
horizontal wind speeds; (c) tangential wind speeds at the surface with corresponding 
m.s.l. pressure for (b).
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F ig u r e  18.4 Vertical slice through a hurricane showing temperature structure (solid 
lines) in relation to tangential speeds (dashed lines are isotachs in m s_1) and various 
cloud features (from Mcllveen, 1992)

Time

F ig u r e  18.5 Pressure and wind recordings from an offshore oil rig with the passage 
of tropical cyclone Orson. Courtesy Australian Bureau of Meteorology from data 
supplied by Woodside Offshore Petroleum.
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that in the northern hemisphere, the right leading quadrant following the cyclone 
track has the strongest winds (left in the southern hemisphere). An example of 
the wind and pressure profile for a tropical cyclone is shown in Fig. 18.5 for 
tropical cyclone Orson as measured at an offshore oil platform.

In countries other than the USA, where aircraft data are not usually available, 
the central pressure of a tropical cyclone is usually estimated from infrared and 
visual satellite imagery using a scheme devised by Dvorak (1975, 1984). This 
empirical scheme relates the central pressure to features of cloud configurations 
and size. Holland (1982) has developed a semi-empirical formula for the surface 
pressure p  at a radial distance r from the centre of the eye. Holland’s formula is

P = Pc + (Pn -  Pc) exp { - R / r ) b (18.1)

where p n and pc are respectively the environmental pressure away from the 
influence of the cyclone and the central pressure, and b is a factor between 1  and 
2.5. At this stage, R  is simply a suitable scaling constant, but we will soon see that 
it has physical significance. Now, using the gradient wind equation (8.12), the 
tangential wind speed is a function of dp/dr.  Thus

v2 = [b/p(R/r)b(pn - Pc) exp ( - R / r ) b -  r2/ 2 /4 ] 1 / 2  -  r f /2  (18.2)

Using the cyclostrophic approximation (equation (8.10)) at r = R, the 
maximum speed V is given by

V 2 = b{pn - p c)/(pe)  (18.3)

where p is the density and e is the base of natural logarithms. This implies a 
maximum wind speed at some distance from the centre, R  (the radius of 
maximum wind) which is usually about 8  km within the eye wall. To estimate 
b, Love and Murphy (1987) suggest the following:

b «  0.25 + 0 .30  lnQ?n -/> c) (18.4)

where (p n -  pQ) is in hPa. Thus one needs to know only the central pressure and 
the environmental pressure in order to estimate the pressure and wind speed 
profiles. Love and Murphy suggest a further correction to the estimate of V such 
that corrected V (denoted V')  is given by

V ' =  V +0.0039V2 (18.5)

This estimate is for the gradient wind which is above the friction layer, loosely 
assumed to be about 1000 m. Note that this is consistent with the height of the 
maximum tangential speed in Fig. 18.4. The 10 minute mean surface wind over 
the sea is often assumed to be 70% of the gradient wind speed. Other maximum
wind speed formulae are

Atkinson/Holliday V = 3.4(1010 — / > c ) 0 ' 6 4 4  (18.6)
Takehashi V = 6.9(1010 —pc)0'5 (18.7)
Kraft V =  6.3(1010 — pc)°'5 (18-8)
Fujita V =  (13.1/a) (1010 -  pcf 5 1 ^  a s; 5 (18.9)
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For equations (18.6) to (18.9), wind speed is in m s- 1  and pressure is in hPa. Note 
that equation (18.3) is, of course, in SI units. By setting p n to 1010 hPa, the reader 
can check that all these equations are consistent.

Subsequent practical problems are forecasting the ‘open-water’ wave height 
created by tropical cyclones and the surge in sea level at landfall. The maximum 
significant wave height, H  in m, due to a tropical cyclone in deep water is given by 
Hsu’s empirical formula

H  = 0.2(pn — Pc) (18.10)

where pressure is in hPa. Surge heights are given by similar rules of thumb for 
various locations. The current practice is to build up a library of scenarios using 
numerical models and to have these scenarios available operationally.

In previous chapters, we saw that the thermal wind equation implies that 
cyclonic wind speed increases with height around a cold-centred low-pressure 
region. Using the cyclostrophic equation (8.10), we can derive an analogous 
‘thermal’ wind equation similar to that in Section 13.3.

Starting with equation (8.10), then

»2 = - |  (18.11) p or

or, recasting into the isobaric system, we have

v 2 = r g -  (18.12)

Applying equation (18.12) to isobaric heights denoted by subscripts 1 and 2 and 
subtracting one from the other, then

(18-13)

We can integrate the hydrostatic equation (15.8) to obtain

g ( z 2 - z \ )  = - R T l n ( p 2/pi )  (18.14)

where T  is the mean temperature between levels 1 and 2. So

V' ~ VK r R \ n ( PA d- l  (18.15)
z 2  -  Zi \ P i )  dr

_ rg d T
~ T l h

and if the layer is considered infinitesimal, then

d v 2 _  rg d T  
dz T  dr

(18.16)

(18.17)

In tropical cyclones the core is relatively warm and it is evident from Fig. 18.4 
that d T / d r  is strongly negative in the mid-troposphere. The implication then of 
equation (18.17) is that the cyclonic wind speed is decreasing with height because 
this is a warm-cored system. The cyclonic wind speed decreases and reverses to 
form anticyclonic outflow aloft. Thus the system can have low-level inflow

Positive role model 
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located beneath upper level outflow. The linking upward motion at mid-level in 
the eye wall has been recorded at 2 0 m s“ * or more.

The main source of this energy is the diabatic heating from latent heat of 
condensation. A second-order contribution is the diabatic heating from the sea 
surface. This occurs as the pressure of the inflowing low-level air reduces, thereby 
tending to cool the inflowing air adiabatically; however, any cooling is countered 
by sensible heat drawn from the warm sea surface. Most of the latent heat that 
drives the primary circulation is derived from evaporation from the sea surface 
located within a radius of 12° latitude degrees (Frank, 1987). Evaporation 
increases with reduced pressure and high winds. (Clearly a corollary of this is 
that tropical cyclones dissipate over dry land.) A model mechanism to feed in the 
energy is the CISK process which was briefly mentioned in the previous chapter. 
The process is shown schematically in Fig. 18.6 That process is now referred 
to as linear CISK in distinction to wave CISK. Under the linear CISK theory, the 
growth of cumulus clouds is predicted because the maximum growth rates occur 
at the smaller scales. Linear CISK can maintain and intensify existing tropical 
cyclones, but it cannot initiate them. For tropical cyclones to occur, there must 
be an effective interactive coupling between the cumulus-scale vertical motion 
and the large-scale horizontal wind field. The hypothesis of wave CISK is an 
attempt to match these scales of vertical and horizontal motion so that self- 
sustaining growth occurs. In the model of wave CISK, a wave, which could be a 
synoptic-scale wave in the easterlies, for example, with its associated upward 
motion is a precondition. With the wave, the zone of vertical motion slopes with 
height. The low-level vertical motion initiates moist convection and latent heat 
release. It has been shown that because of the sloping of the wave with height, the 
maximum heating is out of phase with the maximum upward motion and this 
leads to greater vertical motion at low levels and, thus, to self-amplification. 
Recently, Fraedrich and McBride (1995) proposed a third type of CISK based on 
the large-scale convective overturning in which the heating and the synoptic- 
scale vertical motion are related, or matched, to the cumulo-nimbus mass flux 
and the synoptic-scale mass flux. In their model, positive feedback occurs for 
motion of the order of several hundred kilometres, and does not occur for sea 
surface temperatures below 25.5°C, a threshold reasonably consistent with 
Gray’s criteria (next section).

Section 5.6 introduced the concept of static stability (in relation to vertical 
displacements) in the form of the Brunt-Vaisala frequency, N. An analogous 
concept of the inertial stability in relation to horizontal perturbations is the 
inertial frequency, /  (Holton, 1979). For horizontal flow in gradient balance 
(i.e. the pressure gradient, the centrifugal and Coriolis forces cancel), we simply 
assert here (but see Holland (1987) for a derivation) that

I 2 =  { f  +  C)(C +  2-iyV) (18.18)

and

■ i f / 2  > 0  then a stable oscillation with frequency I  results;
■ i f / 2  < 0  then any displacement results in acceleration in the direction of the

displacement;
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F ig u r e  18 .6  The CISK model. At / =  t0, there is a surface cyclone with an anticyclone 
aloft. Frictional convergence near the surface provides moisture and latent heat. Most 
of this diabatic heating is balanced by adiabatic cooling associated with induced radial 
circulation. However, at / =  t0 +  A t  there is a slight warming and accompanying 
thickness increase inducing a more intense upper anticyclone, a more intense surface 
cyclone and so on. (a) Northern and (b) southern hemisphere. From Frank (1987).
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■ if I 2 = 0 then stability is neutral (see Schubert and Hack (1982) for a 
derivation).

Let H  be the height scale, say 10 km, being the height of convective clouds, 
and let L  be a horizontal distance scale for a cluster of such clouds. Now N H  is 
the speed of the gravity waves which disperse the diabatic heating in the clouds: 
heuristically, L I  may be thought of as the speed of inertial response of the wind 
field to rearrange the mass field (i.e. the pressure field). Let FR be defined as 
L I / N H .  Fr is called the rotational Froude number and

Fk = L ( f  + C)1/2(C +  2 v / r ) l/1/ N H  (18.19)

According to the value of the Froude number the response is such that

■ if Fr  <C 1  then the pressure field adjusts to the wind field and
»  1 then the wind field adjusts to the pressure field.

But if Fr ~  1 then the pressure and wind fields interact with each other; that is, 
the scales are matched. For a tropical convective cloud cluster of 100 km extent, 
Fr  is of the order of 0 . 0 1  and thus the cloud clusters are inefficient at converting 
their latent heat release to warming which would decrease the pressure and 
increase the rotational circulation. Instead, much of the energy is dispersed by 
gravity waves. Inspection of equation (18.19) shows that clusters can be more 
efficient in a region of higher I, in turn due to an unusually high value of relative 
vorticity, (. (Remember that (  is composed of both a shear term and a 
curvature term, so we might expect pre-existing troughs and shear lines to be 
genesis factors.)

18.3 G e n e s is

A climatological survey by Gray (1968) showed that tropical cyclone genesis is 
related to the following six factors:

1 . above-average low-level vorticity;
2 . middle-level moisture;
3. conditional instability through a deep layer;
4. a warm sea surface (>26.5°C) and a deep oceanic mixed layer;
5. weak vertical shear of the horizontal wind;
6 . a location at least a few degrees from the equator.

Maps of G ray’s factors coincide with maps of tropical cyclones (genesis and 
tracks) as shown in Fig. 18.1.

The dependence on sea surface temperature is shown by the empirical 
relationship in Fig. 18.7. Various surface and upper level features have been 
identified as tropical cyclone precursors. For example, genesis is favoured in the 
wake of a tropical cyclone but inhibited in the region ahead (Frank, 1987). Broad 
areas of upper level divergence are favourable to tropical cyclone genesis 
and such areas can be associated with tropical upper tropospheric troughs 
(TUTTs) and with entrances to upper level easterly jets. Westerly wind shear 
(in the vertical) inhibits genesis. Idealized surface charts (by Love (1985) in
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F ig u r e  18 .7  Empirical relationship of potential intensity of tropical cyclones to sea 
surface temperature of the genesis area.

Fig. 18.8) identify precursor synoptic features such as enhanced winds into 
the ITCZ (Intertropical Convergence Zone), a surge from a subtropical high, 
and the intrusion o f mid-latitude fronts to low latitudes. In qualitative terms, 
such features serve to increase the (  and v /r  terms in equation (18.19) and 
thereby increase FR, so that scale interaction is more likely.

An attractive conceptual model of tropical cyclone genesis proposed by 
Emanuel (1988) is that tropical cyclones are self-amplifying systems. They 
intensify to attain their M PI (Maximum Potential Intensity) unless their 
surroundings disrupt the process, as is usually the case. Strong vertical shear is 
the most common inhibitor. MPI is a function of sea surface temperature 
and the temperature o f the outflow which is assumed to be at the tropopause, as 
shown in Fig. 18.9.

Gray, in particular, has pointed out that aggregate tropical cyclone genesis 
appears to fluctuate on several quasi-periodic scales owing to:

1. ENSO (El Nino Southern Oscillation) -  the response of each basin is 
individual; for example, during El Nino, the N orth Atlantic basin has a 
large decrease in cyclone frequency whereas the South and Central Pacific 
basin has an increase.

2. QBO (Quasi-Biennial Oscillation) -  this is a 26 monthly (roughly) oscil­
lation in the equatorial stratospheric winds from an easterly phase to a 
westerly phase (see Fig. 18.10). As with the ENSO, the effect is basin 
dependent.

3. MJO (M adden-Julien Oscillation) -  alternations of active and inactive 
genesis periods of 15 to 25 days have been observed with a 4 :1  ratio of
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20° GENESIS 20°
(W ofGL) LONGITUDE (EofGL)

(a)

F ig u r e  18.8 Schematic surface chart showing the important synoptic features 3 days 
and 1 day before cyclone genesis in (a) the northern and (b) the southern hemispheres. 
Subscripts denote days before genesis. (From Love, 1985.)

cyclone numbers between active and inactive periods (see Fig. 18.11). The 
length of these active and inactive periods suggests a link with the 30 to 50 
day cycle, usually termed the M adden-Julien Oscillation.

__________ 18.4 S t e e r in g  a n d  d e v e l o p m e n t __________

Tropical cyclone positions are determined by a range of methods: satellite image 
interpretation, by radar, by aircraft and by analysis of available synoptic 
observations. Even so, accurate position fixing of tropical cyclones is difficult. 
Examples of their erratic, often trochoidal, motion at the smaller scales are 
shown for the paths of Joy and Rewa in Fig. 18.12. In seeking to understand 
the motion and development of tropical cyclones, forecasters use a variety of 
concepts. These are the beta effect, steering, empiricism, the Fujiwhara effect, a 
range of numerical models and statistical techniques.
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F ig u r e  18.8 Continued.

18.4.1 Movement

Beta effect

In the previous chapter we inferred (mid-latitude) cyclone movement from the 
diagnosis of the vorticity tendency. We now make the basic assumption that a 
tropical cyclone will be displaced towards the region with greatest maximum 
cyclonic vorticity tendency. For an initially stationary axisymmetric tropical 
cyclone experiencing no background flow, we show heuristically that the 
cyclone itself generates a westward and poleward movement. Using the 
vorticity-divergence relation of equation ( 1 1 . 1 0 ), we have

d ( /d t  = - V - V ( - / 3 v - f V - V - ( V - V  (18.20)

where V is the horizontal wind vector and v is its meridional component. We 
now consider the contribution of the individual right hand terms at some 
distance from the centre. A little thought reveals that we are only interested in 
the asymmetric or net contributions. Since at any given radius both (  and the 
tangential components of V are constant, the first and fourth terms contribute 
symmetrically: this is easily realized if one uses an r, 6 coordinate system. To the
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r0(°c)

F ig u r e  18.9 Maximum potential intensity as a function of sea surface temperature 
and outflow temperature at tropopause level. An ambient pressure of 1013 hPa and 
relative humidity of 80% are assumed. (From Emanuel, 1988.)

west of the cyclone, the -f3v  term contributes cyclonic vorticity; to the east, it 
contributes anticyclonic vorticity. Thus we expect westward motion in either 
hemisphere. This is called the linear beta effect. I f / i s  constant, the third term’s 
contribution would be symmetrical. For the convergence associated with the 
cyclone, —V • V is positive. Poleward of the cyclone centre /  is numerically 
greater, albeit slightly, and equatorward it is numerically smaller. Thus, on the

EAST PHASE QBO WEST PHASE QBO

F ig u r e  18.10 Schematic of the two phases of the QBO, having either easterly or 
westerly winds above the equator at 50 hPa. Depending on the basin, the particular 
phase suppresses or enhances tropical cyclone activity.
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Month

F ig u r e  18.11 Effect of the MJO on tropical cyclone genesis. Average annual 
variation shown by dashed line with average variations for active (upper) and 
inactive (lower line). (From WMO, 1995.)

poleward side there is an asymmetric contribution of cyclonic vorticity (and 
anticyclonic vorticity on the equatorward side). In total then, the movement 
expected is to the west and poleward. The above exposition has the 
advantage of simplicity, although the reader should be aware that more 
rigorous arguments incorporating non-linear beta effects are usually called upon 
to explain the poleward motion.

Steering

Just as the mid-level wind or the thermal wind apparently steers mid-latitude 
systems, it has been observed that tropical cyclones tend to move with the speed 
and direction of the mid-level environmental wind. Some offices use the 700 or 
500 hPa wind. Holland recommends a layer mean between 850 and 500 hPa 
filtered to remove the cyclone scales, but cautions that the notion is too simplistic 
as interaction between the tropical cyclone and the environment has a marked 
impact upon the track of the tropical cyclone. In general, the steering flow is 
easterly near the equator and becomes westerly with latitude. Bearing in mind 
the beta effects and the climatological broad-scale environmental flow, it is not 
surprising that the mean tropical cyclone tracks are initially westward prior to an 
anticyclonic recurving away from the equator.

Empirical rules

Recognizing synoptic patterns that favour certain types of motion and develop­
ment is the next method. For example, Foley and Hanstrum (1994) developed a
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(a)

(b)

F ig u r e  18.12 Typical erratic paths of tropical cyclones: (a) path of Joy 21-25 
December 1990 heading towards the Australia coast; (b) path of Rewa 29 
December 1993 to 21 January 1994 from Honiara. (Courtesy Australian Bureau of 
Meteorology.)
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synoptic classification to distinguish those patterns that favour a tropical 
cyclone moving steadily down the West Australian coast and those that 
accelerate. A commonly observed pattern is that o f the subtropical ridge 
poleward of the tropical cyclone: in this case the tropical cyclone will maintain 
its westward course. A trough in the upper level westerly flow to the west of a 
tropical cyclone usually indicates recurvature. Both of these empirical rules may 
be seen as consistent with the previous steering rules. Tropical cyclones tend to 
move towards the downstream end of convective cloud bands in the outer circle 
and give the impression of avoiding cumulo-nimbus-free sectors. A mass of 
middle-level cloud streaming poleward from a tropical cyclone indicates that 
recurvature is likely. ‘Nearby’ tropical cyclones mutually affect each other in 
complex ways and the interactions of binary tropical cyclones and of tropical 
cyclones with other systems is under vigorous research. It is often observed 
that tropical cyclones within 1 0 0 0  to 1500 km of each other tend to inhibit 
each other.

Animation of satpic enables forecasters to identify and monitor the 
peripheral synoptic features that influence tropical cyclone motion and allow 
subjective forecasts. Dvorak (1975) proposed a set of pattern recognition 
techniques using such imagery for tropical cyclone motion but these are not 
widely used (Holland, 1993). (His techniques for tropical cyclone position-fixing 
and development are, however, widely used.)

F ig u r e  18.13 Component motion of a pair of binary tropical cyclones. Paths of 
cyclones Bravo and Sarah shown by heavy lines (dotted line indicating less reliable 
positioning). The motion can be resolved into mutual rotation about a common 
centroid as per inset and the motion of that centroid (shown by the fine line).

. SARAH • ^A 1
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Fujiwhara effect

Tropical cyclones within 1500 km tend to rotate about each other, or more 
precisely, about a common ‘centroid’. This effect is the Fujiwhara effect. What 
appears at first to be chaotic motion of two tropical cyclones may often be 
resolved into components of mutual rotation and of advection of the centroid on 
the broad scale. Figure 18.13 shows schematically the technique used to resolve 
the separate components. Tropical cyclone positions are plotted on an overlay 
map in a coordinate sysytem that moves relative to the centroid. The centroid is 
the geometric centre of the line joining the centres, sometimes weighted towards 
the larger cyclone. The motion of the individual cyclones may then be forecast by 
assuming persistence of the binary orbit and of the motion of the centroid.

Statistical methods

Simple track prediction schemes rely on climatology and persistence. Predic­
tions based on climatology use the long-term mean track and speed of previous 
cyclones in the area, and those based on persistence use the current track and 
speed. However, subjective extrapolation using persistence is usually improved 
by smoothing the recent track using regression methods such as suitable order 
polynomials. Another form of climatological forecasting is an analogue 
technique where a ‘family’ of suitably selected storms is found from the archives 
and the forecaster is then guided by their known history. The optimal combina­
tion of the climatological and the persitence forecasts is referred to as CLIPER 
(CLImatology and PERsistence).

CLIPER provides simple and realistic forecasts of cyclone track. It also 
provides a reference by which to judge the accuracy of other (more sophisticated) 
techniques. These more sophisticated methods include dynamical methods 
which range from fairly simple trajectory forecasts using environmental advec­
tion implied from the large-scale flow predicted in turn from one of the simpler 
global numerical models, to the complex global numerical models integrated 
over several days. One problem with the latter is that they often incorrectly 
reposition the tropical cyclone during their initialization and assimilation phase. 
The position error at ‘time =  0’ is typically one or two hundred kilometres.

18.4.2 Development

Empirical rules
Tropical cyclones are intensified by the same factors that promote genesis. 
Examples include surges in the trade winds (easterlies) or the monsoonal 
westerlies, upper level features such as the development of an outflow jet, or a 
tropical upper tropospheric trough (TUTT) in a favourable position. These 
types of interactions form the basis for many of the empirical rules for 
forecasting intensification and are beyond the scope of this book.

A form of expert system widely used to estimate tropical cyclone intensity 
(and central pressure) and any tendency to intensify or weaken is the Dvorak
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scheme. Using satellite imagery, both visual and infrared, a T number is assigned 
to a tropical cyclone based upon the size, shape and evolution of features 
such as the eye, the spiral arms, the embedded cumulo-nimbus activity. This 
system works reasonably well and estimates of central pressure are usually 
within a few hectopascals.

Upper level divergence in the form of outflow jets at upper levels is extremely 
important to tropical cyclone development. Such jets are usually associated with 
the anticyclonic flow of the subtropical jet, with a TUTT, or with a trough in 
the westerlies. An adjacent cold pool may also provide an outflow region via the 
baroclinic jet around the cold pool.

Dissipation and interactions

Upon landfall, tropical cyclones weaken rapidly, mainly because of the loss of 
the latent heat sourced from the sea surface. However, heavy rain may persist for 
days. Cyclones can redevelop if the decayed system moves back over water. 
Tropical cyclones that move poleward of 30° latitude generally undergo 
extra-tropical dissipation and weaken as they move over land or cooler water, 
or encounter an environment of increasing westerly wind shear. Dissipating 
tropical cyclones will tend to maintain gale force winds within 2  kilometres of the 
surface for several days and these gales force winds can be brought down to the 
surface by vertical mixing due to convection or passage over rough terrain. 
However, about a quarter of tropical cyclones moving into mid-latitudes interact 
with a mid-latitude front and transform into an extra-tropical cyclone. During 
transformation, the cyclone may exhibit a mixture of tropical and extra-tropical 
characteristics. Compound extra-tropical transformation occurs when a tropical 
cyclone merges with a pre-existing extra-tropical cyclone which then intensifies 
owing to the addition of moisture and diabatic heating. Complex extra-tropical 
transformation occurs when a tropical cyclone approaches a front and induces a 
wave low on the front. The tropical cyclone then accelerates into the wave low 
and forms a single extra-tropical cyclone.

The changes from tropical cyclone to extra-tropical cyclone are summarized 
in Table 18.1.

_______________18.5 F o r e c a s t in g  s k il l ________________

The performance of CLIPER forecasts provides a reference by which to judge 
the operational skill of other techniques. CLIPER forecasts also form the 
basis of Neumann’s measure of forecast difficulty level (Neumann, 1993). The 
CLIPER errors provide a threshold skill level and are found to be directly related 
to operational forecast errors. Forecast difficulty level for the different basins 
varies a great deal. Figure 18.14 shows CLIPER forecast position error for the 
various basins at different lead times. For example, a 24 hour CLIPER forecast 
for a tropical cyclone in the southwest Indian Ocean has a mean error of 150 km. 
By comparison, an evaluation of the UKM O (United Kingdom Meteorological 
Office) global numerical model for 163 tropical cyclones over three seasons in the
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Table 18.1 Structural and dynamical changes associated with extra-tropical 
transformation (from Merrill 1993)

Element Tropical cyclone Extra-tropical cyclone
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F ig u r e  18.14 Forecasting difficulty level by basin as a function of forecast lead time 
(adapted from Neumann, 1993).
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southwest Indian Ocean showed the model to have a mean error in forecasting 
position at 24 hours of 264 km. Much of this error (about 200 km) is due to a 
mislocation error at time =  0 during initialization. An interesting finding by F. 
Woodcock (personal communication) is that, at least for the Australian region,

FE = IE + 6 3 A t  (18.21)

where FE  and IE  are the operational forecast and initial errors in kilometres 
and A t  is in hours. This finding implies that the error growth with lead time is 
independent of the initial error.

Forecasts o f cyclones have certainly improved in recent years although much 
of the improvement is probably due to better position fixing and monitoring, in 
turn due to better observing technologies and communications.

___________________ 18.6 P r o b l e m s ____________________

1. From  the pressure trace in Fig. 18.5, calculate an estimate of the maximum 
wind speed and compare it with the observed wind speed. At what distance 
from the centre of the eye is this speed attained?

2. (a) Assume SST (Sea Surface Temperature) of 28°C, T0 (outflow tem­
perature) of —70°C. W hat is MPI? Using an environmental pressure of 
1013 hPa, what is the maximum wind speed?

(b) Plot specific humidity as a function of dew point. [Hint: Use a suitable 
formula from Section 4.21], W hat is the relevance of this curve to 
Gray’s fourth criterion for tropical cyclone genesis?

3. A day or so prior to the arrival of a tropical cyclone, the weather is often very 
fine with hardly a cloud in the sky. Explain.

4. A rule of thumb for forecasting recurvature is the presence of a mid-level 
westerly trough in mid-latitudes to the west of a tropical cyclone. Explain.

5. Examine Love’s diagram (Fig. 18.7) and explain the effect of each feature in 
terms of (a) Gray’s genesis factors and (b) the rotational Froude number.

6 . Referring to Fig. 18.1, why are there no tropical cyclones observed over the 
ocean west of Peru?

7. A forecaster examines a series of satellite images of a tropical cyclone 
from an area without synoptic observations and makes an estimate of its 
maximum surface wind speed. Outline the forecaster’s likely line of 
reasoning and calculations.
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RADIANT ENERGY TRANSFER

19.1 H i s t o r ic a l  c o n c e p t s , c a v it ie s  a n d  b l a c k  b o d ie s

The very existence of the earth and the maintenance of its important and life- 
sustaining atmospheric processes depends on radiant energy transfer. While 
the sun is the fundamental source of radiant energy, all exposed terrestrial 
surfaces and transparent or translucent fluids, particularly gases, participate in 
an interdependent and complex range of radiant processes.

The science of thermal radiation had its origins in the caloric theory in which 
hot and cold radiations were accepted concepts. Since a block of ice was thought 
to radiate cold to any body placed beside it, it is evident that these concepts 
were based on very subjective and shallow impressions. A simple further 
philosophical experiment, in which are considered the processes at play when 
water ice at 0°C faces dry ice (C 0 2) at -80°C , highlights the arising dilemma as 
to which body is radiating what type of radiation.

Because of such logical problems, it was essential to return to the funda­
mental observation that even in a vacuum, thereby ruling out the possibility of 
heat transfer by conductive or convective means, two isolated bodies at 
initially different temperatures ultimately come to thermal equilibrium at the 
same temperature. From  this basis it is possible to make progress with physical 
explanations.

Prevost put forward his theory of exchanges in 1792 to offer a logically 
satisfactory explanation of radiation transfer between surfaces at all tempera­
tures. This theory, which might more accurately be called the theory o f continual 
exchange, states that a body emits radiant energy at all temperatures and at a rate 
which increases with the temperature. The settling down o f a body to a constant 
temperature then indicates the fact that it is receiving radiation from the 
surroundings at the same rate as it is emitting. Thermal equilibrium is thus 
dynamic rather than static and leads to the question of the relationship between 
the processes of emission and absorption.

A simple experiment was conducted by Leslie in 1804, using a hollow cube 
prepared with both reflecting and black-painted sides. When such a cube is filled
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with hot water, a qualitative test with the open palms of bare hands as sensors 
suffices to show that the black faces radiate more efficiently than the reflective 
ones. However, Ritchie in 1833 extended this experimental set-up definitively to 
allow for quantitative deductions which established both a fundamental fact as 
well as the precise definition of a black body.

Ritchie’s experiment utilized Leslie’s cube, again filled with hot water, but 
with two additional surfaces, one black and the other reflecting, able to be 
positioned parallel and equidistant from the faces of the cube. When a reflecting 
face is placed near to a black face on the cube and vice versa, it is observed, 
e.g. by means of a simple thermocouple or other thermometric arrangement as 
illustrated in Fig. 19.1, that no temperature difference develops between the two 
movable faces which have different surface finishes and are physically uncon­
nected to the cube. This clearly indicates a link between the ability of a given 
surface to absorb and radiate respectively.

Historically, this led to the definition of a quantity known as the emissive 
power E, for a surface, as the energy per unit area per unit time emitted radiantly, 
and also the absorption coefficient or absorptivity, a, as the fraction of the 
incident radiant energy which is absorbed. While these parameters and their 
symbols are no longer in vogue, their use is essential in following the historical 
development of this subject. If in Ritchie’s experiment, the black and reflecting 
surfaces are designated by the subscripts b and r respectively, then

Ej Qb Efo CKr

£ I _ £ b  t 19-1) 
G:r  CKb

F ig u r e  19 .1 Ritchie’s cube experiment.

^Thermocouple and galvanometer
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Essentially, equation (19.1) implies that any surface is as good a radiator as it is 
an absorber, a statement which offers the most basic expression of the law first 
formulated by Kirchhoff:

A surface for which the absorptivity a  = 1, i.e. one which absorbs all incident
radiation, is called a perfectly black body or, more simply, just a black body.
For all other surfaces, a  ^  1.

A further quantity, known as the emissivity e of a surface, is defined as the 
ratio of its emissive power to that of a black body at the same temperature. It is 
clear that for a black body, e =  1, while for all others, e ^  1. Then

^ - E h = ^ E b (19.2)
OtT Cfc'b

Therefore, er =  a r and in general e =  a, since eb = a b.
Equation (19.2) clearly demonstrates the equality of the two parameters, 

absorptivity and emissivity. The latter is now the scientifically preferred 
quantity.

In radiation theory, it soon becomes evident that many processes can readily 
be envisaged and that for many purposes the need for a technically complex 
experiment can be obviated by means of a controlled imagination. Exploring the 
relationship between the surface temperature of a radiator and the density of 
radiant energy offers an example.

Consider, as illustrated in Fig. 19.2, two enclosures, A and B, which are at the 
same temperature but whose surfaces, in being arbitrary, may be different. 
Assume that these two enclosures are connected by a tube equipped with a 
shutter able to block the transfer of radiation. If  A were initially to have a greater 
radiation density than B, there would be a net transfer of radiation to B if the 
shutter were to be opened. Were the shutter to be closed again, new equilibrium 
conditions would ensue within the two separate enclosures. A, in having lost 
radiation, would cool down by giving radiant energy to the cavity until a new

F ig u r e  19.2 Two arbitrarily shaped, separate uniform temperature cavities 
connected by a tube and shutter.

Shullcr i

H
A
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equilibrium were reached. Correspondingly, the walls of B would rise in 
temperature to reach equilibrium with the increased radiation density. Clearly, 
through the generation of a temperature difference capable of powering an 
engine, even though the source and sink had initially been at the same 
temperature, the entire process outlined above would have violated the second 
law of thermodynamics.

It has thus been demonstrated that the energy density within an enclosure 
depends only on the temperature, and is independent of both the shape and the 
nature of the walls, as well as of the shape and nature of any bodies placed within 
it. Any body placed in an enclosure must take up the temperature of the 
enclosure and then remain in equilibrium. Under such conditions, the theory 
of exchanges explains that the enclosed body emits just as much energy as it 
receives from the enclosure walls, thereby leaving the radiation density within the 
enclosure unaffected.

The information above also allows a simple black body radiator to be 
designed, based on the concept of a thermodynamic cavity. If  such a cavity is 
prepared with a hole through which radiation can enter or leave, it is clear that 
the plane of this aperture will have the properties of a perfectly black plane 
radiator, provided that the hole is small compared with the surface area of the 
cavity. This prescription means that only a minute fraction of radiation which is 
trapped after entrance through a cavity hole is able to escape; in other words, 
absorption is well nigh total.

While it is important and reassuring to know that in theory, at least, a 
perfectly black body radiator can be constructed, it is essential to devise criteria 
for the description of the radiative behaviour of any radiating plane surface. The 
cosine law, which is derived below, is one of the most fundamental.

Let K, the specific emission, be the rate of radiation per unit solid angle per

K

F ig u r e  19.3 Radiation into an infinitesimal solid angle at various angles.

~ 0  -

''d to
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unit area of a surface in the normal direction and let the value of this quantity at 
an angle 6 to the normal be Kg. Consider the radiating surface element dA  which 
is shown in Fig. 19.3, from which it can be seen that if dEg describes that fraction 
of the emissive power which radiates into an infinitesimal cone which subtends a 
solid angle doj at the surface of the element d A and has its axis lying at an angle 6 
to the surface element’s normal direction then

A second radiating surface element is now introduced as indicated in Fig.
19.4 and, to ensure radiative equilibrium, both are considered to  be within the 
common confines of a uniform temperature enclosure. In order that this 
radiative equilibrium may be maintained, the radiation received by the element 
dA from dA'  must equal that received by dA'  from dA. Thus

This is the basic expression of the cosine law, which was first formulated by 
Lambert for perfect optical diffusers (for which flat, fresh, light-scattering 
powder snow surfaces constitute a good example in nature) but which applies 
equally well to perfect radiators, which may be conveniently visualized as m att 
black surfaces.

The conveniently, if unusually, named quantity, the specific emission, which

d Eg d A = Kg duj d A (19.3)

K d A ' d J  = Ke dAduj 

But since dA'  =  r2 du> and dA cos 0 =  r2 d J  it follows that

(19.4)

(19.5)

K,

K

F ig u r e  19.4 Radiative equilibrium between two infinitesimal surfaces.

and therefore
rl

Ke d A ^
rA

Ke = K cos6

^d4'
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was required for the demonstration of the cosine law, can be related to the 
emissive power in a manner which will be examined now.

Reference to Fig. 19.5 shows that the radiation, intercepted by a hemisphere, 
from an infinitesimal radiating element of area dA can be determined. If the 
emissive power of the element dA  is E, and dEe describes that fraction of the 
emissive power which radiates into an infinitesimal cone which subtends a solid 
angle du> at the surface of the element d A and has its axis lying at an angle 6 to the 
surface element’s normal direction, then, again,

dEff d A  =  Kg d A duj

Lambert’s law allows this to be written as

d Ee =  2ttK cos 6 d 6

When this expression is integrated over the entire hemisphere above the radiating 
element, i.e. from 9 = 0 to 7 t / 2  as shown,

t-ir/2
E  = 2-kK  I sin 6 d(sin 6)

which reduces to
E  = wK (19.6)

This is an expression of fundamental importance.
As well as offering a comprehensible model for a radiative black body, a 

constant temperature enclosure or cavity provides a defined environment for 
examining other properties of black body radiation such as the density of radiant 
energy.

The energy density of radiation must be independent of position in a constant 
temperature enclosure or cavity, because this quantity has earlier been shown to 
be dependent only on the temperature. Figure 19.6 depicts a spherical cavity with 
its inner walls being that of a black body. At the centre of this cavity of radius r is 
shown an infinitesimal cylinder of length dl and cross-section r2 du> and hence 
volume r2 dudl.

F ig u r e  19.5 Radiation into a hemisphere from an infinitesimal black body.
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F ig u r e  19 .6  Energy density of radiation at the centre of a spherical cavity.

Assuming that the radiation emitted by the cavity wall element of area dA 
moves with a velocity c, it follows that at any instant, the quantity of energy at 
the centre of the sphere and originating from dA  is (K dA d u d l) /c ,  where only 
normally emitted radiation need be considered, since radiation emitted in other 
directions bypasses the centre. It follows that the energy density o f radiation at 
the sphere’s centre, contributed by the wall element dA, is given by

J K d A d w d l  K  dA
=  —T T T a—  =  — 2~ 1 9 ' 7c d I rl duj crl

If radiation from all directions, i.e. the entire inner surface of the spherical cavity, 
is considered, simple integration yields

r4w K  dA  4tiKr2 AtxK
2 2crL c r

(19.8)

but on considering equation (19.6), it then also follows that

u = 4E /c  (19.9)

Equations (19.8) and (19.9) thus relate the four principal radiative parameters 
introduced so far, i.e. u, E, K  and c, but one further basic parameter remains and 
that is the pressure exerted by radiation

Already in about the year 1600, the astronomer Kepler had suggested that 
solar radiation exerts a pressure which causes the tails of comets to appear to be 
blown away from the sun. In 1873, Maxwell showed that normally incident 
electromagnetic radiation exerts a pressure, on absorbing surfaces, equal to the

c

d4

dco
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energy density. No quantitative tests were made, however, until Lebedev in 1900 
and Nichols and Hull in 1903 carried out laboratory experiments to verify this 
effect.

A simple analysis of the radiative pressure effect relies on analogy with the 
molecular case explained by the kinetic theory of gases. In this latter theory, the 
pressure exerted by the molecules of a gas against the walls of a container is 
proportional to the rate of change of momentum density at the wall.

The change of momentum per unit time per unit area of wall by molecules 
with collective density n molecules/(unit volume) and individual mass m is given 
by g (2 mv • nv) because when resolved into three orthogonal directions, each with 
the two possibilities of either positive or negative motion, only one-sixth of the 
total can be regarded as moving in a given sense normally to a given wall. The 
pressure caused by molecular bombardment in this case follows as

p  = \n m v2 = \ u M (19.10)

where, in this case, uM = \nm v2 is the energy density of the molecules within the 
enclosure.

A similar procedure can be applied to the case of radiation within an 
enclosure. Referring to Fig. 19.7, it is seen on recalling equation (19.7) that the 
energy density of radiation at element dA 1, which is located at the centre of the 
spherical cavity, is

J K d A  
d u =  — r— 

crl
Hence the net force on the upper surface of the element dA ' is given by

j2 _ K A A A A ' cos 9
d ZF = ---------- ,--------

F ig u r e  19.7 Radiation incident on a surface at the centre of a spherical cavity.

dA A
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where the components of forces horizontal to the central surface element cancel 
because of symmetry and therefore only the components in the normal direction 
require consideration. Since dA = 2irr2 sin 0 d9 on the spherical surface, the total 
force exerted on the upper surface of d A by radiation from the inner area of the 
spherical cavity is

2nr2d A 'K  M 2 . „ 2’n d A 'K  M 2
d F — ----------------------------------------- -̂------ sin 9 cos 9d9 = -----  sin 9 cos 9 d 9

J o c J o

However, the pressure of radiation on dA'  is only dependent on the 
vertical components of d2F  above the area dA '; since, because of symmetry, all 
horizontal components of force cancel:

dF  2nK r / 2 . „ , 2irK ,
P A = T T i  = -----  sin9 cos 9d9 = ------ cos 0d(cos0)

dA'  c J o c A / 2

an expression which readily reduces to

P A = \ 2̂ [ Co sH ] l /2 = 2- § -  (19.11)

At this stage, it is necessary to consider the emission of radiation from the 
central element dA'  itself. In fact, if it is a black body in equilibrium within the 
cavity, it must be radiating as much energy as it receives. If, on the other hand, 
d A ' is a full reflector, the energy density over the element is still doubled by the 
latter’s presence. It is thus possible to argue inductively that the radiative energy 
density would be doubled by virtue of the presence of any body in the cavity, no 
m atter what its radiative properties. It can thus be concluded that the actual 
pressure of radiation is double that given by equation (19.11), so that

1  4tt/s: 1

P = —  =  j »  (19-12)

where the right hand side of (19.12) follows from (19.9).
A factor of two has changed the expression for the pressure in (19.12) from 

that given for the molecular case in (19.10). In case this causes bewilderment, it 
might also be recalled that while the energy of a classical particle or molecule is 
\m v 2, that of a photon is mv2 (where in the latter case v = c), also differing by a 
factor of two.

_______19.2 T h e r m o d y n a m ic  c y c l e s

This discussion of thermodynamic cycles will be restricted to reversible 
processes, which are, in simplest terms, ones in which the pressure corre­
sponding to a given volume of working substance remains constant. Although 
it may seem strange to refer to radiation as a working substance, it must be 
recalled that in the development of thermodynamic theory so far, apart from the 
concept of velocity of radiation, it has not been necessary to assume any 
particular properties which did not follow from fundamental and simple 
observations. Just as a gas was regarded as a working substance in the kinetic 
theory, and able to do work when allowed to expand the volume of a cylinder
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through exerting pressure on a movable piston, there is no reason why radiation, 
which has also been shown to exert a pressure and have a temperature-dependent 
energy density, could not be regarded as a working substance in a suitably 
designed cavity.

The simplest cycle is that discovered by Carnot, in which a working 
substance (which does not require specification) is followed through a sequence 
of adiabatic and isothermal changes to complete a closed path on a p - V  
diagram, illustrated in Fig. 19.8. The reason for choosing these two types of 
thermodynamic change is that well-understood mathematical expressions, most 
simply derived for an ideal gas, are available to describe them.

The ideal gas equation, and in particular its differential form, offers a logical 
starting point for the purpose of discussing the cycle:

When a gas or working substance is allowed to expand and do work as a result 
o f the absorption of heat d Q, part of this energy increases the internal energy of 
the system and the balance is converted to external work:

For an adiabatic change, d Q = 0, so that from (19.14) and (19.13) it follows 
that

p V  = R T  

p d V  + vdp  = R d T
(19.13)

d Q = cv d T  + p d v (19.14)

dT  =  - - ( /> d v )
cv■v

which on substitution in (19.13) yields

p d V  + V d p + — p d V  =  0
Cuv

P

V
v i v V2 V3

F ig u r e  19.8 The four stages of the Carnot cycle.
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Therefore

p d V  ( -  +  R \  = ^ p d V  = V d p  (19.15)
V /  Cv

and hence
dp _ d V  cp
T ~ T 7 V

where cp =  (c,, + R) is the specific heat at constant pressure. If 7  =  cp/cv then the 
conditions for adiabatic change follow as either:

p V 1 = constant (19.16)

or, on substitution for p  by T, from the first of the equations (19.13):

TV' :~l — (another) constant (19.17)

The equation describing an isothermal change is simply an expression of 
Boyle’s law, or alternatively equation (19.13) for a constant value of T\

p V  =  constant (19.18)

If a reversible, or frictionless, cycle as illustrated in Fig. 19.8 is now considered 
to commence with an isothermal change during which heat Q1 is added to the 
working substance initially occupying a volume Vt and V2 at the end of this first 
phase of the cycle, then

r V 2 f V 2
Q x =  d p d V

JVi  J v ,

and since p V  = RT ,  it is clear that:

Qi f  2]¥ ± d V  = R T l l n ^  (19.19a)
Jvx v  V\

and similarly for the second isothermal stage:
r 4̂ /?t v

& =  -1/ - d V  = R T 2l n - ±  (19.19b)
Jv 3 V V3

The values o f the ratios of the volumes in both equations (19.19) can be found 
after considering the consequences of the intermediate adiabatic changes for 
which equation (19.17) gives

TiV? = t 2v :
2  3  (19.20)

t 2v 2 = t , f ,7

from which above pair of equations it follows that V2fV \  =  F 3 /K 4 , which when 
substituted in the two equations (19.19) results in

Q\ _  Qi
Tx ~  T2

(19.21)
( 8 1  -  Qi) (Jx -  t 2)

Q\ T,
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Now recalling that if Q\ is the heat absorbed by the system and Q2 that given 
out, then the external work done is

so that the efficiency of the process is given by w/Q\ = (Q\ — Qi)IQ\,  a ratio 
which, together with( 19.21), is fundamentally important.

The great significance of the Carnot cycle lies in the fact that any reversible 
thermodynamic change can be built up by a sequence of sufficiently small 
isothermal and adiabatic steps. The concept of this cycle also leads to the 
definition of a very useful thermodynamic term known as the entropy.

A substance undergoing reversible change and taking in heat dQ whilst at a 
temperature T  is said to increase its entropy by:

The change in entropy depends only on its initial and final conditions and not on 
the particular reversible process by which the working substance passes from one 
state to another.

In considering the entropy changes occurring during the four component 
steps of a Carnot cycle, it is evident that during the two separate adiabatic 
changes, no change in entropy occurs. However, during the two isothermal 
changes, entropy increases by Q \/T \  and decreases by Q2/ T 2, so that the net 
change in entropy is given by

a quantity which from equation (19.21) is seen to be zero. Hence, during any 
reversible cycle, entropy change is zero, but it is im portant to note that the net 
change in heat energy is not zero when mechanical work has been done.

It should be noted that in using the term ‘thermodynamic working 
substance’, there has been no concern expressed in relation to the details of 
the physical nature of the substance. It will become clear that for most 
purposes it is irrelevant whether a cavity contains the ideal gas introduced in 
treatises of elementary thermodynamics, or radiation. It has not, as yet, been 
found essential to enquire into the actual nature of radiation, since all the 
basic knowledge has followed from the fact that radiation, at least up to the 
present stage of development of the theory, is simply a convenient term 
describing the process whereby thermal equilibrium can be achieved between 
bodies in a vacuum.

Following from the first law of thermodynamics (an expression of the law of 
conservation of energy), if a substance of volume V  absorbs heat d Q and external 
forces do work dtv on this substance, then its increase in internal energy is given

(19.22)

(19.23)

by
d U =  V du

= d Q +  dw (19.24)

6S = S { -  S 2 =  %- -  ^
1 2  Tx T2

* s = * 4
T
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(in which it is important to distinguish between the total internal energy U and 
the energy density u).

If  the external force is observed as a uniform pressure, p, then

dw = - p d V  (19.25)

so that from (19.24) and (19.25) it is evident that

V du =  d Q — p d V  

and on introducing the expression for entropy (19.22), it follows that

V d u = T d S - p d V  (19.26)

19.3 T h e  S t e f a n - B o l t z m a n n  l a w _________

Measurements of the rate of cooling of a body as a function of its temperature, 
and that of its surroundings, were made by Dulong and Petit in 1819 and 
extended by Tyndall in 1865. The results of these investigations can be expressed 
in the form

o) (19.27)

where T  is the temperature of the body and T0 is that of its surroundings.
In 1879 Stefan showed that f ( T )  is proportional to the fourth power of the 

temperature. These observations were later supported by the theoretical analysis 
o f Boltzmann in 1884.

The Stefan-Boltzmann law states that if a black body at absolute temperature 
T  is surrounded by another black body at absolute temperature T<h  then the net 
rate of transfer of radiative energy at the former surface is given by:

E  = <t{ T 4 - T £ )  (19.28)

where a  is known as Stefan’s constant. In this expression, if T0 = 0, then E  is 
identical to the emissive power of the black body at temperature T.

As originally shown by Boltzmann, this law can be established on purely 
thermodynamic grounds. This demonstration makes use of the thermodynamic 
parameters which have been discussed earlier and relies on recalling that the 
energy density of radiation, u, in an enclosure depends only on the temperature, 
u =  u(T),  and that the pressure on a surface element in such an enclosure is given 
b y p ( V , T ) = $ u ( T ) .

Because of the known relationship between pressure, volume and tempera­
ture, the concept of a reversible cycle, which was introduced earlier to explore the 
effect of a change in the volume of a radiation cavity, the energy density- 
temperature function, is again employed. In this instance, the behaviour of the 
pressure is initially examined.

If an infinitesimal quantity of heat d Q is led into a cavity, conveniently 
regarded to be in the form of a cylinder equipped with a piston, it is possible to 
examine the consequent changes in volume dV,  temperature d r ,  pressure dp 
and energy density du. The change is regarded as being reversible, but certainly
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not adiabatic, because heat has been introduced, nor is it isothermal. The heat 
supplied causes an increase in internal energy as well as allowing the ‘working 
substance’, radiation, to do work by expansion:

d Q — d (uV) + p d V  = V du + u d V  + p d V  

but becausep = \u,  it follows that

d Q = Vdu  + \ u d V (19.29)

In order to specify the process by functions which are dependent on the 
condition of the system only, the quantity of heat, dQ, is replaced by a term 
containing the entropy, T  dS1, so that

4 u V
dS  = - - d V  + - d u

3 T  T

With dS being a perfect differential, it is possible to write

i s = Q , i v -
Hence

Since

(dS_
\ d V d V

d
d u  /  y

4 u 
3 T

d S \
9 V ) U

and
V
T

it follows that
d  \  /  4 u 

& J r \ 3 T

But since u is a function of T  only

d V ) u

dAd V ) u

d S \
d u ) v

± ± ( d T \  + ± = _ v ±  
3 T 2 \ d u ) v 3T  T 2

d T \  d T  . ( d T  
~du)  v ~du “  V5F

d V ) u 

= 0

+  :

Therefore

and thus

j_u_dT_  
3 T 2 ~du

1

3T

4
d T du 
T u

Integration of equation (19.31) leads to

u{T) = aT 4

(19.30)

(19.31)

(19.32)

where a is a constant of integration. This equation can be expressed in terms of

1
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the emissive power, by substituting equation (19.19)

E = ^ T 4 = a T 4 (19.33)

Various experimental determinations of the value of Stefan’s constant, a, 
have indicated that ’

a =  5.67032 x 10“ 8  W m “ 2  K ~ 4

As everyday examples, simple evaluations of equation (19.33) reveal that 1 0  mm 2  

of a perfectly black body at 3000 K, simulating an electric light filament, would 
emit radiant energy at a rate of about 46 W, while a cylindrical electrical heating 
element at a temperature of 1000 K  having a surface area of 10000 mm 2  would 
radiate about 570 W.

It has now been seen that the relatively simple concept of the radiation cavity 
allowed the methods of classical physics to explain the relationship between 
total radiated power and the temperature of the radiating surface. Indeed the 
explanation of Stefan’s empirical law was a major scientific triumph. However, a 
classical physical explanation for the fundamental observation of the change of 
colour of radiators with temperature remained elusive.

As long as radiation is restricted to the visible range, simple concepts of a 
black body absorber can be readily visualized in the form of either a m att black 
painted surface, or even as an actual cavity, with a small entrance which can 
be ‘seen’ as a very efficient black surface. However, other ranges of radiation 
must be associated with other types of absorbing surfaces. An extreme example 
at the higher frequency end of the known spectrum is provided by nuclear 
radiations, such as gamma rays, to which the types of black body which have 
been considered so far may be quite transparent. At relatively low frequencies, 
compared with thermal and visible radiation, radio waves serve as an example. 
The latter are not affected by the colour of intercepting surfaces at all.

As the nineteenth century drew to a close, physicists realized that simply 
considering radiation as an unspecified ‘working substance’ would not lead to 
further advances. New assumptions had to be made and tested.

In the discussion of the thermodynamics of radiation so far, no discussion of 
the actual nature of radiation was found to be necessary. However, with the 
development of ‘grating’ spectroscopy in the nineteenth century, the wavelength 
characteristics of not only visible light but also radiation perceived as heat were 
investigated. The latter were discovered to lie in a range of wavelengths just 
longer than the visible red and thus became known as infrared. Another group of 
wavelengths were identified as being just shorter than those of the visible violet 
and were consequently designated as ultraviolet radiation.

19.4 T h e  b l a c k  b o d y  s p e c t r u m  a n d  W i e n ’s

DISPLACEMENT LAW

Following the discovery that any body emits radiation over a range of 
wavelengths, it was realized that whereas the Stefan-Boltzmann law gives the
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total power of radiation of all wavelengths emitted, E, as a function of the 
absolute temperature, it became necessary to introduce a modified notation such 
that d E ( \)  is the rate of radiation having wavelengths between A and A +  dA 
from unit area of a radiator. Since the quantity dis(A) is infinitesimal in 
magnitude, a new parameter is defined such that

dE(X)
E , =

dA
(19.34)

and the plot of Ex against A is said to represent the spectrum of the radiation.
The effort to specify the shape of the spectrum o f black body radiation or the 

determination of the functional relationship between E x and the temperature 
became a great challenge for nineteenth-century physicists.

A readily made fundamental observation lies in the fact that as a suitable body 
is heated, e.g. electrically, initially invisible radiated heat may be felt. Further 
heating results in a red glow. Continuing the heating by applying more energy 
results in the light becoming more yellow and later even tinged with blue.

A quantitative spectrometer allows the energy in standard incremental 
wavelength ranges to be found. When this is done for various temperatures, 
the change in shape of the spectrum as well as the movement of the position 
of the maximum can be studied. Figure 19.9 shows black body spectra for a range 
of emitter temperatures.

During the last decade of the nineteenth century, Wien made an intensive 
study of radiation spectra and observed that:

1. The values of Ex — dE/dX  increase as T  increases and the Stefan- 
Boltzmann law is obeyed as follows:

roo a  p
—  dA =  o T 4  (19.35)
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2 . With increasing temperature T, the position of the maximum value of Ex 
shifts towards the shorter wavelengths. In 1893, Wien discovered that the 
exact way in which this maximum value shifts is given by

A mT  = constant (19.36)

an equation which is known as Wien’s displacement law and which was 
experimentally verified by Lummer and Pringsheim in 1899. Figure 19.10 
has been constructed from the wavelengths for the maxima in the spectra 
shown in Fig. 19.9.

Wien’s observation on the position of the maximum of spectra and subse­
quent theoretical explanation became the last major contribution of the methods 
of classical physics to the understanding of radiation.

In his theoretical analysis, Wien again relied on considering the conditions 
which describe radiation in an adiabatically expanding cavity. As such, this 
procedure could be described as being similar to that used in establishing the 
Stefan-Boltzmann law. The main innovation was to consider radiation to be 
in the form of standing waves, whose wavelengths were determined by cavity 
dimensions.

If  radiation in equilibrium with its enclosure is visualized as being constituted 
of standing waves, then if a characteristic linear dimension o f the cavity is 
increased from l{ to l2, the wavelength of the associated standing-wave radiation 
must change from A] to A2  in accordance with the following relation:

-̂ l _  h 
A2  I2

(19.37)

This theory is compatible with the observation that expansion reduces the 
energy density of cavity radiation and also the equilibrium temperature as

F ig u r e  19.10 Wien’s displacement law.
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well as the consequent inference that the characteristic wavelength, or that of 
the maximum, associated with the cavity would increase.

Whereas it was earlier demonstrated that the energy density of radiation 
depends only on the temperature and not on a cavity’s shape, Wien’s theoretical 
development relies on assumptions as to a cavity’s geometry. In particular, it is 
necessary to consider that any adiabatic change in the dimensions of a cavity 
need to be o f such a nature as to ensure the maintenance o f the relativity between 
the continuous range of all wavelengths which the cavity supports.

In order to discuss this type of phenomenon on a precise basis, attention is 
restricted to radiation within a small range of wavelengths. This necessitates 
introducing the concept of the spectrum of any relevant property of radiation, 
not only that of the radiant flux. Typically, such parameters would include the 
energy density and the pressure of radiation:

dw(A) dp(A)
“> =  - d T  and r  =  T T

Attention is now directed to the energy density associated with an infinite­
simal band of radiation in the initial state of a cavity before an adiabatic 
expansion, mA] dA1; and after expansion, uA, dA2, where it is defined that

<19-38>

The argument that led to the theoretical formulation of the Stefan- 
Boltzmann law for total, or all wavelengths of, radiation is now applied to an 
infinitesimal band of wavelengths, for which the equation describing adiabatic 
change becomes

d(wAdAF) + p \  d AdF  =  0 (19.39)

where p x dA represents that part of the pressure caused by the wavelengths under 
consideration.

From  equation (19.12) it now follows that

Px dA =  jWA dA (19.40)

and thus on substituting (19.40) into (19.39)

d(3 V(px dA)) +  (px dA) d F  =  0
Therefore

3 F  d(px dA) +  4 (px dA) d V =  0 

d(j?AdA) 4 d V  _
(P\ dA) 3 F

In (px dA) +  j  In V =  ln(/>A) F 4 ^ 3  =  constant

from which it then follows that the adiabatic expansion of the cavity is described 
by

p A, d A, F 14 / 3 = JpA2 dA2 F 24 / 3  (19.41)

If  equation (19.41) is rewritten in terms of the energy density u and the
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characteristic linear cavity dimension I then assuming that the cavity volume Fis 
proportional to / 3  the expression becomes

u\ x /j4  =  u\2 dA2 / 2  (19.42)

but through application of equations (19.37) and (19.38), it is possible to 
remove the infinitesimal quantities dA and the somewhat artificial concept of
characteristic cavity dimension I from (19.42) to yield

= or = (19.43)
U\ 2 ^ 1

While equation (19.43) is one which is characteristic of the adiabatic cavity 
expansion, it might also be claimed that the Stefan-Boltzmann equation itself 
(19.32), if rewritten for the same infinitesimal band of wavelengths, would also be 
a characterizing expression. If this is done, then

MALdA1 = 7V =  «A1 A1

ux2 dA2  r 24  U\2 A2

Equations (19.43) and (19.44) are two independent expressions, but it is 
possible to generate a third equation by eliminating the ux ratio as follows:

\ \ T \  =  A2 r 24  or Aj T] = X2T2 (19.45)

It should be noted that while the second of the above equations is the simpler, it is 
clear that in general the equality would apply to any function of XT  as shown 
below:

f ( X l T l) = f ( X 2T2) (19.46)

There are now three expressions, from which a selection can be made to 
provide two independent equations to combine to specify the adiabatic 
expansion of the cavity. From these, (19.43) and (19.46) are chosen to produce

«a,A? «a,A2 ^194?^
/ ( A , r , )  f ( X 2T2)

Equation (19.47) implies that

u x = ^ / m  (19.48)

where A is a constant.
Equation (19.48) has been derived on the basis of thermodynamic reasoning 

alone, apart from the necessary visualization of standing waves in a radiation 
cavity. Although the methods of classical physics were not able to determine the 
nature of the function f { X T )  considerable progress was achieved in describing 
the spectrum of black body radiation.

Occasionally, it is convenient to discuss the spectrum in terms of the frequency 
of radiation v so that the concept of energy density per unit frequency interval is 
introduced as uv dv  wherein it is defined that

u„ &v =  ux dA
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(19.49)
uv = Bv3g (u /T )

where B  is another constant (such that B  =  A / ca) and g {v /T )  = f (X T ) .
Wien’s displacement law can be shown to follow as a particular consequence 

of equation (19.48) for the expression for ux when this function is itself 
considered as a function o f the temperature. From  equation (19.45) it is clear 
that l / T 5 can be substituted for A5  in (19.48) to yield

If (19.50) is viewed as a simple functional relationship between two 
variables, say x  and y, so that y  = A f(x) ,  it would be reasonable to 
anticipate that a plot of y  against x  would be a single curve. If  this function 
has a maximum value xmax =  Amaxr  then this value would be the same for all 
values of T, i.e. Amaxr  =  constant.

Following his success with the displacement law, Wien struggled in vain to 
offer a theoretical explanation for the observed shape of the black body 
spectrum. Finally he resorted to the creation of a semi-empirical expression of 
the following form:

in which equation the two constants cx and c2 required empirical determination.
While the presence of the A- 5  term on the right of equation (19.51) follows 

logically from (19.48), the exponential part of the expression appears to be an 
attempt to guess the nature of the function /(A 7 7). Nevertheless, Wien’s equation 
does give ux =  0 for A =  0 and has a single maximum value as required. Wien 
was able to select values for the two constants c\ and c2 to force (19.51) to fit 
experimental observations at wavelengths shorter than those associated with 
spectral maxima, only to be unable to correct for small but significant 
departures from reality at longer wavelengths. As will be shown later, with the 
above optimal selection of values for the constants, spectral integration leads to 
an underestimation of the total radiation by about 8 %, which for many 
purposes represents a not too unsatisfactory result by this final classical physical 
contribution.

The impasse reached by the methods of classical thermodynamics became 
partially resolved by the advent of James Maxwell’s electromagnetic theory, 
which in demonstrating the connection between the properties o f light and the

ux/ T 5 = A f ( \ T ) (19.50)

19.5 W lE N ’S EXPRESSION FOR THE FREQUENCY  

DISTR IBUT IO N OF RAD IAT IO N

ux =  ci A 5e Cl̂ XT (19.51)

but since A =  c/v,  where c is the velocity of radiation,
du

dA =  - c - ?
ir

..iV .O  O SC IL L A T O R S, RADIATORS A N D  SPE C T R A ...:
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nature of electricity and magnetism was one of the great contributions in 
nineteenth-century mathematical physics. In this theory, the electrons in neutral 
m atter are linked with the processes of electrical and thermal conduction. As a 
further step, radiation is considered to be in the form of electromagnetic waves 
generated by oscillating electrons. In this context, the problem of elucidating 
cavity radiation became transformed into the study of the equilibrium between a 
large collection of oscillators which could absorb as well as emit radiative energy.

A particular electron of charge e and mass m is considered to be 
undergoing simple harmonic motion with angular frequency u>0 = 2iw0, and 
if the mechanical energy of this electron is given by e then Maxwell showed 
that the rate of radiation is given by

<1952)
where c is the velocity of light.

The same oscillating electron is now considered to be exposed to a plane wave 
of radiation. Maxwell was also able to show that the total power absorbed is 
concentrated in a very narrow band situated in the immediate vicinity of the 
electron’s natural frequency of oscillation u0 and if « „ 0 is the value of the energy 
density spectrum at the resonant frequency v then the power absorbed is given by

^ 0 = 1 ^ 0  (19.53)

In order for an electron to achieve equilibrium, the rates of emission and 
absorption must become equal. Rather than remain with only a single electron as 
in the above two sections, a large collection of electronic oscillators is now 
considered, so that the possibility exists for any electron to have any arbitrary 
frequency, and hence energy. This means that the equilibrium condition for a 
sufficiently large group of oscillators does not need to be restricted to a specific
frequency v0 but to a range of frequencies v and is therefore given by

O') 1Sire v _ ne 
hrnc* 3m v

uv = — 5—e (19.54)

This equation connects the energy density of radiation with the mean 
mechanical energy E of a system of oscillators, where, because the expression 
refers to a group of oscillators rather than a single one, it remains necessary to 
determine an expression for e in order to be able to specify the whole spectrum of 
radiation.

This theory attempted to link a theory of radiation to concepts of the then 
recently developed kinetic theory of gases. The likely inspiration for this lay in 
the earlier classical thermodynamic analyses in which radiation was regarded 
as a working substance behaving similarly to a gas. One of the important 
contributions of the kinetic theory was to provide a relationship between the 
energy of gaseous molecules and the absolute temperature. Boltzmann and
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Maxwell in their development of statistical mechanics showed that a far- 
reaching principle, that of the equipartition of energy, governed the distribution 
of energy amongst the various modes of m otion open to a molecule. This 
principle states that a mean energy of \ k T  is associated with each degree of
freedom, where T  is the absolute temperature and k  is a constant now known as
the Boltzmann constant.

The English mathematical physicists, Rayleigh first and Jeans later, applied 
this theory o f energy partition to an assembly of oscillating electrons. In this 
model, the electrons were assumed to be fixed in mean positions with only two 
degrees of vibrational freedom, so that the mean total energy of an oscillator of 
the type considered as radiators and oscillators in sections 3.1, 3.2 and 3.3 would 
involve two multiples of \ k T  and hence

e = k T  (19.55)
a simple expression which can readily be applied to equation (19.51) assumedly 
to yield an equation for the spectrum of black body radiation as follows

Uv = * ™ k T  (19.56)
c3

This result was obtained by Rayleigh in 1900 and by Jeans in 1905 and was 
found to provide a good fit to the experimental results in the region of long 
wavelengths, for which of course v  has small values. The crucial objection is 
almost obvious from an inspection of equation (19.53) and became historically 
famous as the ultraviolet catastrophe. As the wavelength tends to zero, the 
frequency tends to infinity, so that the Rayleigh-Jeans model indicates that the 
energy density should also tend to infinity. This is, of course, nonsense, even if 
only because integration of the energy density over all frequencies leads to 
infinite values of the total energy density at any non-zero temperature. This 
rigorous adhesion to classical principles had generated a blatant falsehood.

___________19.7 PLANCK’S QUANTUM THEORY__________

The failure of classical physics as first demonstrated by Rayleigh led the German 
physicist Max Planck to re-examine the subject of radiation from fundamental 
principles in 1900. Instead of allowing atomic oscillators to have an arbitrary 
energy, with a specification only of the total energy of an assembly of oscillators, 
Planck postulated that they were restricted to integral multiples of some basic 
unit.

Although the photo-electric effect which exhibited a response threshold 
dependent on the frequency o f light was a strongly supporting observation, at 
the time, Planck’s concept was revolutionary, so much so that Jeans, in apparent 
disbelief, persevered on classical lines in his attempts to elucidate the problem as 
late as the year 1905.

In suggesting that the energy of oscillating electrons should be regarded as 
restricted to integral multiples of some basic unit e0  with a restriction on the 
proportion of the total number of electrons able to occupy a particular level of 
energy, Planck departed radically from the classical case in which the Boltzmann
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distribution function appropriately describes the continuous range of energies 
which molecules may have in the kinetic theory. In the latter, the number of 
molecules which have an energy between e and de is given by

dn(e) =  A e r e!kT &e (19.57)

where A is a constant. Planck’s discontinuous, permissible energies are shown in 
Table 19.1.

Planck consequently was able to show that the unconstrained term for the 
mean energy E in equation (19.54) should be replaced by

f  =  ; s r r T  <19-58>

where /? is a constant, analogous to one encountered in Maxwell Boltzmann 
statistical mechanics, the magnitude of which, in the present instance determines 
the spacing of the energy levels of the electrons prescribed by Planck.

The expression for the frequency distribution, or spectrum, of black body 
radiation thus becomes

^ = ^ ^ 3 1  (19‘59)

It is now interesting to explore the link between the Planck black body 
spectrum and those of the classically based theories.

Examining the exponential part of equation (19.59) by noting that

r  , X  x 2 X* 

e = 1 + l! +  2! +  3! +  ' "  
and if x  =  0eo is much less than 1 , then

e ô

Thus if 13 is considered to tend to a value much less than 1 in equation (19.59), it 
becomes evident that the separation between the permitted energies of oscillation 
would also tend to zero, since then

$7rv2 1
u„ = (19.60)

It should be observed that if l//3 — k T  in equation (19.60), then the 
Rayleigh-Jeans formula for the spectrum (19.55) is reproduced.

It is now interesting to compare the spectral equation (19.59) derived by

Table 19.1 Numbers of electron oscillators at specified energy levels in Planck’s 
theory (A is a constant)

Level of electron oscillator energy No. of electrons with this energy

m S S m r n m ^ ^

Q--:

W X
Ae-n&0
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Planck with the earlier thermodynamic expression (19.50) obtained by Wien, 
both o f which are in the form showing the frequency distribution of radiation. As 
concluded earlier, although the Wien equation does not reveal the complete 
functional nature of the spectrum, the details offered are true because no 
unreasonable assumptions were made in the process of its derivation. Thus it 
is possible to write

M r )  =  —  ? 5 r r r  = — ? s r r r  <19-61>

If now the substitution f3 =  1 j k T  is made in (19.61) so as to make it compatible 
with the Rayleigh-Jeans formula when the energy level spacing e0 —► 0, i.e. a 
continuous range of energies is permitted for the electrons, then for (19.61) to be 
true in general, it must be that

and
So/"m = _ £ o ^ _  

S \T J  eeo/kT -  1
The second of these above conditions can only be met if e$ /kT  oc v /T  and hence 
£0 oc v. The constant of proportionality between e0 and v  is given the symbol h 
and named Planck’s constant.

The energy density spectrum of black body radiation can now be written as

87TI/3 1
=  t hvjkT _  y (19.62)

This equation is known as Planck’s formula and was experimentally shown by 
Rubens and Michel in 1919 to represent the black body spectrum accurately 
from -160°C  to 1800°C. Over this range of temperatures, it is significant to 
observe that the Stefan-Boltzmann law indicates that the total radiant power 
changes by a factor of about 2.5 x 105 which shows how well the Planck formula 
describes this phenomenon.

When expressed in terms of wavelengths, the Planck formula follows from the 
application of a substitution of c /v  for A, similar to that used in generating 
equation (19.48), the classical expression for uv, from (19.49), the corresponding 
one for u\, as shown below

1 . . .

Ux -  ehc/k\T _  j (19.63)

In order to generate an expression for the spectral emissive power Ev or Ex, it 
is simply necessary to recall, from equation (19.9), that E — \u c  where c, as 
throughout this text, is the velocity of light, e.g.

2it/ic2 1
E*= xs e W _ !  ( 19-64)

Figures 19.9 and 19.10 were derived from values calculated using the above
equation.
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19.8 R e l a t io n s h ip  b e t w e e n  t h e  S t e f a n - B o l t z m a n n , 

W ien  a n d  P la n c k  l a w s__________________

An expression similar to equation (19.34) allows the Stefan-Boltzmann law to be 
written in a form

“ ‘ - i

roc
I uv di/ (19.65)

which, when substituting the appropriate expression for uu offered by the Planck 
formula (19.62), gives the Stefan-Boltzmann constant as

r x  i / d v  , s
I  Qhv/kT _  |  (19‘66)

If this expression is simplified by substituting x  — h v /k T  the further 
substitutions follow:

, k T  3  k* T 3 3
av = - r -  dx and v =  ——r— x  

h hs
so that:

2ixk4 f°° x 3 dx
h?c2

f°° r  dx
I  (19'67)

Fortunately the integral on the right hand side of (19.67) is a standard one and in 
fact equal to 7r4/15 so that

2 irk4 7T4

" = W 1 5  <l9 '68>
It is interesting to attempt to solve equation (19.67) by means of an 

approximation in which it is noted that the integrand tends to zero as x  —> 0 , 
while for all values of x  > 1 , eT »  1 , so that by neglecting the small inaccuracies 
arising through the approximation in the integration for values of x  close to zero, 
the following solution results:

In k4 Z- 0 0  , _v . 2irk4poo I'Trk
x 3  e~x dx =  x 6  (19.69)

Jo

This expression could equally well have been generated by Wien’s formula 
for the spectrum (19.51), which when rewritten for frequencies, rather than 
wavelengths, can be shown to become

uv ^ h- ^ - t - b̂ lcT (19.70)

where bx and b2 are another pair o f Wien’s positive, empirically determined, 
constants, related to those shown in (19.51). If the substitution x  =  b2v lc T  is 
made similarly to that leading to equation (19.67), then first

. _ uv av  =  ——5—  e dx 
o^c
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and subsequently by the same method which led to the expression for the 
Stefan-Boltzmann constant in equation (19.66)

h C°°
<T= ~~r I x V * d x  (19.71)

4b\ Jo

There is an obvious similarity between equations (19.71), above, and (19.68) 
which implies that by appropriate choice of the Wien constants, the ratio 
between the spectrally integrated values of the Wien and Planck formulae is 
6:tt4/15, i.e. approximately 6:6.49, implying an error of about 8 % only.

Returning to Planck’s law expressed in terms of wavelengths, equation 
(19.63), and again simplifying the expression by making the substitution 
x =  hc/XkT,  this becomes

inhc  x 5

Ux~  A5  e* — 1 ( 7  )
Planck’s solution for the constant in Wien’s displacement law can now be 

obtained simply through determining the value of x which is proportional to
1 /X T  for which dwA/dA =  0. Determination of the appropriate values of x  to 
achieve the above condition cannot be performed analytically, but a numerical 
solution can be obtained. In fact the value of x  =  he/XkT  for which dwA/dA =  0 
is found to be 4.965.

Again it is interesting to determine the result through use o f Wien’s formula 
(19.51) which, with the substitution of x  =  c2/X T ,  is written as

(19.73)
c2

Determination of a stationary value of u\ in equation(19.70) is simple and 
follows after differentiation

0 =  5x4  e~v — x 5  eTx

from which it is clear that x  =  5.000 which again shows how surprisingly well 
Wien’s formula performs.

Again returning to the exact value of x =  he/XkT, i.e. 4.965, for the maximum 
value of u\ Planck’s statement of the Wien displacement law would be

A" “ r  =  4 ^  <19-74)
Since the Stefan constant has been determined experimentally with considerable 
accuracy, and as listed in Section 19.3, a  =  5.67 x 10- 8  W m - 2  K ~ 4  so that from 
(19.68) it follows that

£  (19.75)

Furthermore, the value o f Amaxr  =  0.29 was reliably determined through the 
experiment of Lummer and Pringsheim, so that equation (19.74) becomes

(19.76)
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Finally, utilizing the fact that the velocity of light is given by c = 
2.998 x 108m s-1, equations (19.75) and (19.76) can be solved for the hitherto 
unknown constants h and k  which were introduced by Planck. When this is done, 
it is found that the constant k  used by Planck takes an identical value to that of 
the Boltzmann constant which was deduced from kinetic theory. In fact

k =  1.38 x 10-23 JK ~ ’
and also

h = 6.625 x 10-34 J s

The logical link between the classical and quantum approaches to the 
explanation o f the black body spectrum has thus been well demonstrated and 
there is every reason to have confidence in drawing on the Planck formula for 
quantitative spectral information.

The two equations shown for the Planck black spectrum, (19.62) and (19.63), 
giving the energy density of radiation in terms of frequency and wavelength 
respectively, lend themselves to being readily plotted by standard computer 
spreadsheet techniques when the values for c, k  and h, all given above, are 
substituted. N ot only was such a speadsheet used to generate Figs 19.9 and 19.10, 
but as will be seen later in Chapter 20, these data are useful in drawing other 
im portant quantitative conclusions.



THE RADIATION BALANCE OF 
THE EARTH

_______20.1 R a d ia t io n  a t  t h e  e a r t h ’s  su r f a c e _______

During clear-sky daylight hours, the energy transformed at the Earth’s 
surface is largely supplied in the form of incoming solar radiation, part 
of which, S 0, is scattered or reflected back, in the visible band of wavelengths. 
The standard unit of measurement for instantaneous levels o f radiation, and 
indeed other meteorological energy fluxes, is W m~2, where W (for W att) =  
J s -1 (or joules per second). This implies that a meteorological energy flux is 
normally specified as a power, or rate of supplying of energy, and conse­
quently a daily or hourly total is given in units o f work, usually per unit area,
i.e. J m-2. The Sun sends radiant energy at a rate o f about 1370 W m -2 to the 
‘top o f the atmosphere’ of the earth, which for an arbitrary fixed location 
averages over a 12 hour day to about 38M Jm -2, a quantity which in the 
usual, but non-standard, ‘commercial’ units employed by electrical power 
utilities equates to a little over 10 kWh for every square metre. Depending on 
the cloud cover and atmospheric transparency generally, as well as the 
latitude, a lesser flux reaches the earth’s surface.

Although ultraviolet radiation, most o f which reaching the Earth is 
emitted by the sun, has important, particularly biological, impacts, it does not 
significantly influence the magnitude of the terrestrial energy balance. The 
wavelengths of ultraviolet radiation are shorter than those of the visible part 
of solar radiation. Ozone in the upper levels o f the atmosphere serves a vital 
purpose for life on Earth by absorbing most o f the incident solar ultraviolet 
radiation; hence the concern with the integrity of this protective layer. The 
popularly known ‘ozone hole’ in the Earth’s upper atmosphere, while having 
important consequences to life on Earth, is almost irrelevant to the question of 
the Earth’s energy balance.

The third, meteorologically important, wavelength grouping of radiation, 
known as the infrared, has longer wavelengths than those of the visible range.

Kind 
Kind 
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The polyatomic constituents of the atmosphere, particularly water vapour and 
carbon dioxide (CO 2 ), both selectively absorb and reradiate radiant energy in a 
broad range of infrared bands. Because the sources and sinks for C 0 2 are, 
apart from areas of industrial or combustional concentration, such as forest 
fires, relatively diffuse and slow acting, this gas is well mixed in the 
atmosphere and its contribution to radiant transfer processes is not subject 
to the great variations of those of water vapour, a gas with concentrations 
which vary greatly in space and time. In the atmosphere, water vapour is the 
dominant source of long-wave infrared radiation, and greatly exceeds any 
contribution made by C 0 2 and other active gases of lesser concentration, 
including methane, CH4. Infrared radiation is almost entirely terrestrial in 
origin, both in the form of inward energy reaching the Earth’s surface from 
the atmosphere and clouds above, L h and the outward energy radiated by 
the solid surface itself, L 0 «  aT§ where < 7 =  5.67 x 10-8 W m -2 K -4 is the 
Stefan-Boltzmann constant, and T0 is the absolute temperature of the radiating 
surface. Since the emissivity of terrestrial surfaces is usually in the range of 95% 
to 98%, the simple approximation for L 0 written above is satisfactory for many 
purposes.

Except during polar summers, the solar, the short-wave irradiance or the 
visible radiation flux vanishes as a significant source of energy during the night. 
The radiometers used in meteorological studies do not respond to even the 
brightest full moon. On the other hand, the long-wave or infrared radiation 
fluxes continue day and night, since this radiation depends only on emitters being 
above the absolute zero of temperature. The radiation fluxes discussed above are 
shown diagrammatically in Fig. 20.1.

1 r

F ig u r e  20.1 Solar (short-wave, S, and ultraviolet, U) and terrestrial (long-wave, L) 
radiation fluxes at an idealized, opaque earth surface.

s
s
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20.2 N e t  r a d i a t io n  a n d  a lb e d o

The algebraic sum of all of the four meteorologically significant radiant fluxes, 
discussed above, is known as the net radiation, /?N, defined by the equation

R li = Si - S 0 + L i - L 0 (20.1)

This convenient parameter essentially summarizes the total energy available for 
partition between all other energy fluxes which originate or are transformed at 
the earth’s surface. It is for this reason that net radiation, which can be measured 
with a single instrument, is often regarded as the most important single item of 
data in meteorological energy balance studies.

In spite of the importance of the direct measurement of net radiation, 
there are situations in which it is either necessary or preferable to measure the 
four components in equation (20.1) separately. While instrumentation exists to 
measure separately short- and long-wavelength ranges of radiation, it is essential 
to be confident that there is a minimal degree of overlap between these two 
meteorologically im portant bands of radiation.

The Earth’s surface does not absorb all of the incoming short-wave, solar 
radiation S\ and an important property of the surface known as the albedo, 
/?, determines what fraction is reflected and scattered back and if S0 is the 
magnitude of the latter flux

, P =  S0/Si (20.2)

Albedos of natural surfaces range from up to 90% for freshly fallen snow, to 
as low as 3% for the ocean when the sun illuminates it from overhead. Dry 
grassland has an albedo of about 25% and forests usually scatter back 10% or 
less. Whereas the short-wave radiation scattered upwards by some planar 
natural surfaces approximates cosine law estimates, with snow and bare, dry 
soil offering good examples, the reflectivity o f many structured surfaces depends 
on the angle of incidence of the illumination, principally that from the sun, but 
under overcast conditions the illumination tends to be isotropic, i.e. equal from 
all directions. Figure 20.2 illustrates in two dimensions the incidence of two 
separate rays on a dark terrestrial surface such as soil, on which is growing an 
array of lighter-coloured plants. For the vertically incident beam, the magnitude 
of the albedo is mainly influenced by that of the soil, whereas for the other, more 
acute angle shown, the beam falls only on the lighter-coloured plant stalks, 
which entirely mask the view of the ground at the angle of incidence shown. It is 
intuitively clear that, in spite of secondary and subsequent scatterings which 
occur, the observed albedos of the same three-dimensionally structured surface 
will be markedly different in the simulated two cases, with the consequence that, 
in general, diurnal variations in albedos are to be expected.

Because of the possibility of high levels of surface reflectivity, rather than 
scattering, the albedo of calm water surfaces, including the sea under appro­
priately calm meteorological conditions, is particularly sensitive to solar attitude 
and consequently also to the state of the water surface. In general, all textured or 
structured surfaces, including forests but also, on a larger scale as might be
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SUN

lit

/  1

F ig u re  20.2 Illustration of the dependence of the albedo on the angle of incidence of 
radiation on three-dimensionally structured surfaces. The diagram simulates rows of 
light-coloured plant stalks growing on darker soil being irradiated, with beams 
shown from two different solar zenith angles.

viewed by satellite technology, landforms with significant topography, such as 
deserts with rows of dunes, have albedos which vary during the course of a 
day.

The concept of albedo is relatively straightforward when dealing with 
substantially uniform opaque surfaces, but becomes complex as soon as any 
significant level of translucency needs to be considered. Snow, clouds, sand and 
water surfaces clearly fall into this class. However, almost every natural surface, 
including those covered by vegetation, present optically complex structures 
for which the albedo cannot be described in terms of the properties of a single 
two-dimensional sheet.

The short-wave radiation returned from partially transparent or translucent 
terrestrial surface media is determined only in part by the properties of the 
surface, where the example of the reflection by water or by quartz crystals in sand 
comes to mind. But these same examples serve to emphasize the fact that incident 
radiation actually penetrates the structure of the material below the surface 
and because of the internal scattering processes, the flux of upwardly scattered
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radiation, in the case of translucency, will have been contributed to from a 
continuous range of depths.

20.3 T h e  f lu x e s  o f  s o l a r  a n d  t e r r e s t r i a l  r a d i a t io n

At the Earth’s surface, the sun is seen as a source of radiation with an extent of 
about 0.68 x 10-4 steradians and a temperature of about 6000 K. The direct 
beam from this source, together with a diffuse component of a magnitude which 
depends on cloudiness and also clear sky scattering, constitutes the incoming 
short-wave radiation flux S, . The spectral content of the short-wave radiation 
scattered and reflected by the Earth, S 0, depends on its optical properties at and 
near the surface, but the range of wavelengths cannot extend beyond the 
limits of that initially received from the Sun. The albedo of most terrestrial 
surfaces results in a substantially diffuse outward short-wave flux, although a 
direct beam or reflective component may be observable in many instances, 
particularly on still water surfaces, where reflectivity of the direct solar beam is 
dependent on the angle of incidence and may be the dominant signal. Whether 
the short-wave flux S0 is diffuse or directional should influence the method 
adopted for its measurement, as well as the calibration factor adopted for the 
instruments used.

The terrestrial radiation fluxes from the separate hemispheres of both the 
sky Lj and the earth’s surface L0 are very substantially diffuse but not necessarily 
isotropic, although for the purposes of a general comparison of the relative 
magnitudes o f the short- and long-wave fluxes, an assumption of approxi­
mate isotropy for the latter is acceptable. Again, for the purposes of compari­
son, typical terrestrial radiators might be supposed to have approximate 
temperatures of about 300 K.

Using Stefan’s law, the ratio of the radiant intensities of the sun and the Earth
is

T = “ 7 x >»-‘ (m -3)'S u n  -<(r=6000) \ 6 0 0 0 y

However, when irradiances or flux densities are considered at a point on the 
earth, it must be considered that the solar intensity extends only over a solid 
angle of about 0.68 x  10~4 st, while the terrestrial intensity emanates from a solid 
angle of 2ir so that if the former is considered to be normally incident then

'̂Y’arth — "^Earth and Fgun =  0.68 X 10 /sun 

and consequently

Êarth { _300 \ 4______7T____
FSun V6000J 0.68 Xio- 4 1 j

This ratio of about 0.29 is a useful guide to the minimum value to be 
expected, since solar attitudes below the zenith will result in lower values of FSun 
and hence higher values for the value of this ratio in equation (20.4). The solar 
and terrestrial irradiances are shown graphically in Figs 20.3, 20.4 and 20.5,
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F ig u r e  20.3 Solar and terrestrial radiation spectra compared using linear axes for 
both spectral flux and wavelength.

where the same information has been presented on respectively linear, log-linear 
and log-log sets of axes. It should be noted that the solar flux has been simulated 
by chosing an emission temperature of 5775 K  rather than 6000 K since the total 
flux for the former more closely matches the actually measured value of the solar 
constant, i.e. the value of FSun at the ‘top’ of the atmosphere. The integrated total 
flux radiative density has been shown for both wavelength groups in all three 
figures.

Wavelength (micron = 10-6 m)

F ig u r e  20 .4  Solar and terrestrial radiation spectra compared using log spectral flux 
and linear wavelength axes.
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F ig u r e  20 .5  Solar and terrestrial radiation spectra compared using logarithmic 
scales for both flux and wavelength.

20.4 T h e  w a v e l e n g t h  s e p a r a t io n  o f  s o l a r

______________ A N D  TERRESTRIAL RAD IAT ION______________

The separation of the solar and terrestrial wave-bands is apparent in all the 
figures 20.3,20.4 and 20.5 but Fig. 20.4 allows the values of the coordinates at the 
point where the solar and terrestrial irradiances are equal to be read with some 
accuracy. In fact at a wavelength of 4.7 jim the solar irradiance is seen to be about
0.35% of its value at the maximum which occurs at a wavelength of about 5 fim. 
The data for all of these spectral graphs have been derived from spreadsheet 
computations based on the Planck spectrum equation (19.63). When this type of 
comparison is made for the terrestrial long-wave region, the result is not so 
favourable, in that at the same wavelength of 4.7 /im the spectral terrestrial 
irradiance (for 300 K) is about 6 % of the value at the maximum. Perhaps more 
reassuring is to note that when the fluxes are computed, the total overlapping 
area accounts for only 12 W m "2. Indeed, if 4 .7 /xm is chosen as the dividing 
wavelength, then 0.6% of the solar and 0.9% of the terrestrial components 
respectively are cut off. Were it possible to devise a sharp cut-off for both solar 
and terrestrial radiation sensors, at a wavelength o f 4.7 fj,m, then it is clear that 
only a modest error would result.

It is clear that while there is a substantial degree of separation between the two 
flux spectra, the overlap should not be automatically ignored when long-wave, 
rather than all-wave radiometers are being used. In fact, the ‘cut-off’ wave­
lengths for the filters built into the domes of some modern pyrgeometers need 
to be considered before computing the total all-wave radiation for a given 
direction.

While spreadsheet-generated data have conveniently provided the data
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revealed in the first paragraph of this section, the Planck equation can readily be 
used in a simple analytical solution to find the value of A at which the spectral 
solar and terrestrial fluxes are equal. As an example, this has been done for 
emitter temperatures of 5775 and 300 K, not forgetting the magnitudes of the 
effective ‘apertures’ of the two sources, which are 0.68 x 10-4 and tt respectively, 
the ratio of which provides a ‘normalizing’ factor to enable a comparison 
o f radiative flux density for terrestrial and solar sources at 300 and 5775 K 
respectively

8-7The 
~> T  exp (he/300A&) -  1 -  0.68 x 10~4 “ A5”  exp (hc/5115\k) 

On substituting the by now known values of c =  2.998 x 108m s-1, 
k  = 1.38 x 10-23 J K -1 and h =  6.625 x 10~34Js  into the above equation, it 
can be shown that A «  4.7 x 10~6 m; that is, at a wavelength of 4.7 fim  the 
solar and terrestrial spectral fluxes are equal. It is clear that the graphical means 
of solution offered by means of a spreadsheet is far more convenient.

20.5 T h e  PLANETARY TEMPERATURE

Although the Earth experiences minor variations in its long-term temperature, 
as evidenced by both historical and palaeoclimatological records, there does 
exist a relatively stable thermal equilibrium. In order for this to have been 
maintained, the earth and its atmosphere must have attained some equilibrium 
temperature as a composite system radiating out to space, to balance the 
incoming radiation from the sun.

An elementary method of describing this process is achieved by considering 
the earth, when viewed from space, to have an overall mean albedo of /3E which 
as a further simplification is regarded as being independent of the angle of 
incidence of the solar irradiance, that is independent of the terrestrial latitude. 
Figure 20.6 illustrates this model of terrestrial irradiance FSun by the Sun. The 
total radiant power from the sun (rather than the radiant flux density) absorbed 
by the earth, £ sun, is found by annular integration

£sun =  27rr2(l -A O ^sun [  s in0 cosed e  =  7rr2(l -  Pz )FSud (20.6) 
Jo

where Fsu„ is the ‘solar constant’ expressed as a radiant flux density at the ‘top’ of 
the earth’s atmosphere.

Equation (20.4) implies that in this simplified model, the Earth absorbs 
radiation from the sun as if the former were a plane circular disc of radius r 
and uniform albedo /3E.

On the other hand, this planet of radius r must be regarded as continuously 
radiating out to space from its entire effective radiating surface. The altitudes of 
the latter will be distributed throughout the atmosphere, but because the 
atmospheric thickness is small compared with the radius of the Earth, this 
area is 4irr2, at a total rate given by

-^Earth 47TT ^  1 f-arth
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I

\ ' *
\  i

e

F ig u r e  20 .6  Simple model of the irradiance of the Earth by the Sun and the loss of 
radiation to space by the Earth.

where a  is Stefan’s constant and r Earth is the effective radiating temperature of 
the earth, a quantity which is known as the Earth’s planetary temperature.

However, for the Earth as a whole to be in a state of radiative equilibrium, the 
rate at which energy is gained from the Sun must match the mean rate at which it 
is lost to space, that is isSun =  E^anil, and so from equations (20.4) and (20.5) it 
can be seen that

On substituting into equation (20.6) the observed value of the ‘solar constant’ 
o f FSun =  1370 W m “ 2  and the known value of Stefan’s constant a  =  5.67 x 
1 0 - 8  W m - 2 K - 4  as well as the estimated mean value of the terrestrial albedo 
p  =  0.34, the Earth’s planetary temperature is found to be 251.3 K which is 
about -22°C .

The planetary temperature can be regarded as an effective mean or equilib­
rium temperature which could be found to characterize any significant body in 
space as its effective overall temperature when determined by a relatively remote 
infrared or long-wave radiometer integrating the radiational characteristics over 
the entire surface. In the case of the Earth this could be envisaged as being done 
by an orbiting radiometer-equipped satellite. The atmospheric or terrestrial level

717-2(1 -  A O ^ S u n  =  4 7 ir2o-7V4arth (20.7)
Therefore

(20.8)

<tf-4EaIth
Ŝun
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of the effective radiating surface is of course not identified by a single, simple 
radiometric measurement, just as the Earth’s albedo is determined in part by 
cloud and also by the Earth’s surface itself where the sky is clear; that is, the 
effective albedo is distributed over a range of terrestrial altitudes.

It is interesting to compare the Earth’s planetary temperature with the mean 
temperature of the earth’s surface itself, which may vary from —40°C in polar 
ragions to 40°C in tropical latitudes. The overall, areally weighted mean is 
usually accepted as being 14.3°C which is much higher than the planetary 
temperature of —22°C. On the other hand, the latter is still much higher than 
the mean temperature of about -60°C  at the tropopause. These facts suggest 
that the terrestrial radiation which is lost to space originates in part at the Earth’s 
surface, but is contributed to by gaseous emitters right through the atmosphere 
to the highest levels. However, since it is known that only polyatomic gases, 
which are dominated in the lower atmosphere or troposphere by water 
vapour, are infrared or long-wave radiators, early theoretical models of 
terrestrial atmospheric radiation considered the tropopause as being the upper 
limit for contributing effective radiating surfaces.

Because part of the radiant flux lost to space is emitted at higher levels of the 
troposphere, this suggests a mechanism whereby the Earth’s surface is protected 
from excessive radiative heat loss. The general nature of this mechanism can be 
illustrated by a simple example, in which the atmospheric gases participating in 
long-wave radiation are considered to be located in a compact layer at some 
height above the Earth’s surface. This arrangement is shown in Fig. 20.7 in which 
this layer is shown to be transparent to the short-wave solar radiation of flux 
density FSun as is substantially the case in the absence of cloud. If the Earth’s 
surface temperature is T0 and that of the compact layer of long-wave radiating 
gases above it is T x then since all the latter radiates but, because of its short-wave 
transparency, relies on radiation from the earth’s surface for all the radiant 
energy it receives, radiative equilibrium demands that 2aT* = ctTq so that

Tx =  Q )1/4 To =  0.84ro (20.9)

If this type of argument is extended to consider four compact layers of 
radiatively participating gases in the atmosphere, as illustrated in Fig. 20.8, then 
the following set of simple simultaneous equations can be solved

2 T 4 =  T*

2 r 34 =  T t  +  r 24

2 T A =  T$ +  T,4 

2T\ =  r 24 +  r 04

Therefore
3T44 =  r 24 4 T f  = T? and 5T44 = T04

Alternative Education 

Alternative Education Alternative Education Alternative Education 
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F ig u r e  20 .7  Model of a single-layer ‘greenhouse’.

Inductively it then follows that for n layers, the temperature of the outermost or 
nth layer would be given by

Equation (20.10) implies that the rate of loss of energy to space would then be 
reduced by a factor o f 1  /(«  +  1 ) to the rate which would prevail in the absence of 
the atmospheric layers.

Measurements reveal that an atmospheric layer containing 0.3 mm of 
precipitable water has an effective emissivity of e =  0 . 2  so that in this 
simple ‘greenhouse’ model, there would be a large number of relatively 
thin atmospheric layers in the lower troposphere, where the water vapour 
content tends to be high, and only a few, thick layers in the dry upper 
troposphere. The outermost of n atmospheric layers, each having 0.3 mm of 
precipitable water, would thus be radiating with a flux density and a rate 
given by

In this simple model, n needs to be found from an estimate o f the total 
precipitable water in the atmosphere. On assuming an order of magnitude 
value of about 1 0  mm for the precipitable water in an atmospheric column, 
this implies a value of about 30 for n and consequently a ludicrously small value 
for the terrestrial radiant flux out to space. This false result suffices to show that 
the overly simple model of the atmosphere as a layered sequence of ‘grey’ body 
radiators is inappropriate, necessitating a more careful physical examination of 
the radiation processes.

(20.10)

(20.11)
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F ig u r e  20 .8  Model of a four-layer ‘greenhouse’.

20.7 S im p s o n  s  t h e o r y  o f  a t m o s p h e r ic  

________________ r a d ia t io n  t r a n s f e r

Following the clear failure of the ‘grey’ radiational model of the atmosphere, in 
1927 the English meteorologist George Simpson recognized the importance of 
considering the spectral dependence of atmospheric radiative properties. He was 
able to develop a relatively simple means for computing the radiation exchange 
between the surface of the Earth, its atmosphere and space.
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F ig u r e  20 .9  Planck spectra for temperatures between 270 and 310 K and the 
combined water vapour and carbon dioxide spectrum at 310K.

Inspection of the infrared spectrum for a black body temperature of 300 K, 
for example in Fig. 20.4, indicates that practically all of the radiant energy 
lies between wavelengths of 3 and 50 /im for temperatures encountered in the 
atmosphere. Figure 20.9 shows the approximate form of the spectrum of 
radiation from an atmosphere o f ‘average’ composition. Because the absorption 
bands of H 20  and C 0 2  are substantially responsible for this radiation the great

T a b le  20.1 Slab emissivities (%) as a function of path length for water vapour 
and carbon dioxide at 20°C and standard sea-level pressure (after Elsasser and 
Culbertson, 1960)
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range of concentrations of water vapour encountered in the atmosphere will 
cause the precise shape of the spectrum shown in Fig. 20.9 to vary. However, for 
a path length corresponding to the full ‘thickness’ of the atmosphere, the data in 
Tables 20.1 and 20.2 suggest that these variations are not large. In using the 
information from these tables, it is useful to imagine the gases in a ‘real’ vertical 
column of the atmosphere arranged as a column of uniform density, which 
would in fact be about 8000 m long at standard temperature and pressure. If  C 0 2 
were present at a concentration of 0.03%, then its total radiative path length at 
STP would be about 2400 mm. W hat is important to note from Table 20.1 is that 
the doubling of this path length, that is doubling the atmospheric concentration, 
would only increase the C 0 2 contribution to the radiant flux by about 5%. This 
contribution is in any case usually far smaller than that of water vapour, 
atmospheric path lengths for which in Table 20.1 typically range from 50 to 
500 mm. This means that the total emissivity contributed by C 0 2 is usually less 
than 20% of that for H 20 , where typical humidity ranges result in over 20% 
emissivity variations, with a doubling of C 0 2 concentration producing an 
emissivity change of 5% of a 20% overall contribution, that is only 4%, which 
in turn is only 20% of total emissivity variations associated with normal water 
ranges of water vapour concentration in the atmosphere. The further water- 
vapour-induced changes in the atmospheric radiation budget owing to albedo 
responses to cloud formation mask the significance of C 0 2 contributions still 
further.

Simpson was led to regard the atmospheric infrared spectrum in a manner 
summarized in Table 20.3. This table also incorporates data read from

Table 20.2 Slab emissivities (%) as a function of temperature for a constant path 
length of water vapour and carbon dioxide at standard sea-level pressure (after 
Elsasser and Culbertson, 1960)

Temperature h 2o
(20 mm path length)

co2
(2 m path length)

P
os

it
iv

e 
ro

le
 m

o
d

el
 

P
os

it
iv

e 
ro

le
 m

o
d

el
 

P
os

it
iv

e 
ro

le
 m

o
d

el
 

P
os

it
iv

e 
ro

le
 m

o
d

el
 

P
os

it
iv

e 
ro

le
 m

o
d

el
 

P
os

it
iv

e 
ro

le
 m

o
d

el
 

P
os

it
iv

e 
ro

le
 m

o
d

el
 

P
os

it
iv

e 
ro

le
 m

o
d

el
 

P
os

it
iv

e 
ro

le
 m

o
d

el
 

P
os

it
iv

e 
ro

le
 m

o
d

el
 



SIMPSON’S THEORY OF ATMOSPHERIC RADIATION TRANSFER 297

Table 20.3 The radiation losses to space from the earth-atmosphere system 

Wavelength range Terrestrial origin of radiation Radiation loss to
0 ' m) space per unit 

area (W m-2)

; W;.. S ;. :f  ■ i ;‘5:■ 'h • s ! K i
 ̂:! S;; 1 y. ?• -

::■ 3% of surface and stratosphere :.

0 - 1 0 0 Composite terrestrial system 211 (composite 
terrestrial flu

Simpson’s spectral model shown in Fig. 20.10 which he devised by considering 
that any radiation originating at the earth’s surface in the region between 8.5 and
1 1  pm  will escape to outer space because of the transparency in this region shown 
in Fig. 20.10. For these wavelengths, the energy lost to space is thus proportional 
to the area under the spectrum for a black-body at the earth’s surface 
temperature. For the regions below 7 pm  and above 14 pm  the theory of the 
grey body atmosphere is applied and the last atmospheric layer with 0.3 mm of 
precipitable water determines the radiation into space. For the small inter- 
mediate-wavelength regions, i.e. 7 to 8.5 pm  and 11 to 14^m, Simpson used 
graphical interpolation to indicate the total radiated energy. Spreadsheet 
techniques now allow this to be accomplished very simply, in particular the 
calculation of the areas which represent radiated powers, for which results are 
shown in Table 20.3.

This summary of the effective atmospheric (i.e. long-wave) radiation out 
to space can now be used in a comparison with the power of the short-wave

F ig u re  20.10 Simpson’s model of the atmospheric ‘window’.
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radiation gained by the whole Earth from the Sun which was calculated in the 
discussion of the planetary temperature.

The essential details are noted in Table 20.4 which reveals the remarkable 
accuracy achieved by Simpson in describing the mechanism of the terrestrial 
radiation balance. In the calculation of the solar irradiance of the Earth’s 
surface, the solar flux (solar constant) is taken to be 1370 W m -2 and the value 
used for the mean terrestrial albedo is 34%. While more detailed knowledge of 
the spectra of the polyatomic atmospheric gases is now used in more elaborate 
radiation models of the atmosphere, the Simpson theory clearly establishes the 
basic nature of the fundamental mechanisms.
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CLIMATE CHANGE

__________________ 21.1 I n t r o d u c t io n __________________

Climate has been defined by meteorologists as average weather. The Oxford 
dictionary defines it as ‘a place’s weather characteristics’. These are rather 
simple definitions. Climate might also be defined as the ensemble of all relevant 
statistics for all meteorological observations averaged over the time period and 
the location, area or region to which the term climate refers. If we consider 
temperature we might regard the annual mean temperature of a place or 
geographical region calculated for a period of a decade or more to be its climate 
in so far as temperature is concerned. But each month of the year would also have 
its climate. In some places winters might be very cold and summers very hot, 
yet the mean annual temperature might be the same as if every month had 
the same mean temperature. In the latter case the range and the variance of 
the temperature would be important factors, in addition to the mean. Similar 
considerations would apply to other meteorological parameters such as rainfall, 
cloudiness, humidity, wind strength, etc.

___________________ 21.2 D e f in it io n s ___________________

A somewhat formal definition of climate used by the WMO is

Climate is the synthesis of weather over the whole of a period essentially 
long enough to establish its statistical ensemble properties (mean values, 
variances, probabilities of extreme events, etc.) and is largely independent of 
any instantaneous state.

Weather changes from day to day. The average weather for a given month one 
year may be different from that in the same month in another year. The average 
weather for a given year may be different from the average weather in another 
year. Has the climate changed? Or has the climate varied? The word changed 
in this context implies a permanent change. The word varied implies a temporary 
change from one condition to another and then back again. The expression
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‘climate change’ has been used a great deal during the past 10 years and has 
become identified with an absolute truth. W hat is meant by ‘climate change’?

This perplexing question can perhaps best be answered by referring to a 
footnote contained in the Australian delegation’s report of the November 1995 
meeting of the Working Group (Science) of the W M O/UNEP Intergovern­
mental Panel for Climate Change (IPCC), and subsequently included in the 
W M O/UNEP publication Climate Change 1995. It states:

Climate Change in IPCC Working Group I usage refers to any change in 
climate over time whether due to natural variability or as a result of human 
activity. This differs from the usage in the Framework Convention on Climate 
Change where Climate Change refers to a change in climate which is 
attributed directly or indirectly to human activity that alters the composition 
of the global atmosphere and which is in addition to natural climate 
variability observed over comparable time periods.

_______________ 21.3 G l o b a l  w a r m in g ________________

The basis of any conjectured human-induced climate change within the near 
future must first lie in the concept that an enhanced greenhouse effect induced by 
human activities must warm the planet to an extent which may be detected, and 
generally agreed to lie outside the range of normal climate variability. This 
concept has become known by the term ‘global warming’. In any ensuing debate 
about human-induced climate change the factual existence of global warming 
should be the main issue in the first instance. Any redistribution of the three­
dimensional pressure field, that is any changes in the general circulation of the 
atmosphere and/or in the frequency o f severe storms or weather events which 
might occur as a consequence of an overall warming, is a second-order effect and 
one of great complexity. This is a problem which has to be addressed by 
high-resolution numerical models, the results from which must be carefully 
interpreted and cannot always be taken on their face value.

21.4 C l im a t e  v a r ia b il it y

Climate variability may be regarded as the sum of natural variability and 
artificially induced variability. Natural climate variability may be interpreted 
as the spatial and temporal changes in observed measurements of atmospheric 
quantities such as temperature, precipitation, cloudiness and many others which 
occur as a consequence of the internal mechanisms of the ocean-atmosphere 
system. This variability is the observed result of the non-linear internal response 
to the external forcing of solar radiation, and perhaps volcanic eruptions. 
Although the latter forcing is not external to the planet it is external to the 
ocean-atm osphere fluid. Artificially induced climate variability may be regarded 
as changes in climate which result from human-induced processes such as the 
alteration of the constituents of the atmosphere due to the release of various 
chemical compounds such as are caused by carbon emissions, and other effluents
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from industrial and domestic appliances. The most important among such 
artificial perturbations to the ocean-atmosphere system has come to be 
known as the enhanced greenhouse effect.

The concept of climate change in the sense of a human-induced and 
permanent change in the statistics of climate has been in the public eye from 
time to time in the past, but it has only been during the last 10 years that it has 
commanded worldwide public and political attention, leading to international 
action addressed to the problem of reducing emissions of carbon dioxide and 
other greenhouse gases.

____________21.5 T h e  GREENHOUSE EFFECT

The analogy between a garden greenhouse and global warming can only be made 
in a very crude way. Although the garden greenhouse is transparent to short­
wave solar radiation and traps the longer infrared radiation, it is also enclosed by 
walls and, more importantly, by a roof. Heat cannot escape through the roof by 
convection as in the real atmosphere. A greenhouse can therefore become much 
wanner than its external environment. In the atmosphere the greenhouse effect 
arises from the fact that certain gases are transparent to short-wave solar 
insolation but are opaque to long-wave terrestrial radiation. However, the 
gases do not constitute a solid roof such as is provided by the glass o f the 
garden greenhouse, or by the closed glass windows and sun roof of a car. There 
can be no transport of heat by convection from the glass greenhouse or m otor car 
to the external environment. Thus, although the use of the simile ‘greenhouse’ is 
quite apt and useful, it should not be interpreted too literally in the common 
garden sense.

The most important greenhouse gases in the atmosphere are water vapour 
and carbon dioxide in that order. Now the amount of water vapour in the 
atmosphere remains fairly constant. Evaporation is balanced by precipitation, 
processes which form part of the hydrological cycle. However, this is not the case 
for carbon dioxide which does not liquefy at temperatures encountered naturally 
on the earth. The content of carbon dioxide in the atmosphere has increased 
from about 280 parts per million by volume before 1800, to about 360ppmv 
today. This is believed to be almost entirely due to emissions for which human 
beings are responsible in consequence of their needs for energy and consumer 
goods and services, including agricultural practices which alter the surface of the 
planet. A specific example is the reliance of inhabitants of the industrialized 
nations on the m otor vehicle.

It has been said (IPCC, 1990) that the earth is about 33 K warmer than it 
would be if there was no greenhouse effect. This is obtained from the formula for 
the radiative equilibrium temperature

T i = (±zJt>Q ( 2 U )
4a v ’

where Q is the solar constant, about 1360 W m ~2, a is the albedo, the fraction 
of solar isolation reflected back to space by the earth, and a  is 5.67 x 
10~8 W m -2 K -4. Substituting these values and 0.30 for a in equation (21.1) we
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find that T  =  254.5 K or about —18“C. We know that the mean observed 
temperature of the earth is about 288 K or 15°C. However, in making this 
calculation we have assumed an albedo of 0.30. Since the latter value is largely 
due to reflection from the tops of clouds, and clouds are composed of condensed 
water vapour, we must assume there is water vapour in the air. But we have also 
assumed there is no absorption by the water vapour which would have to be in 
the atmosphere if there were clouds. As pointed out by Professor R. S. Lindzen 
of M IT (1991), the calculation is not really valid. If you throw away the water 
vapour you also throw away the clouds. If we substitute zero for the albedo we 
find that T  =  278 K  or 5°C, still 10°C colder than observed but certainly not 
everywhere icebound. However, the surface of a totally dry earth would still have 
an albedo. Supposing in a dry world one assumes an albedo of, say, 0.15, we then 
find that the mean temperature of the earth would be about -6°C ; that is, about 
21°C colder than it actually is.

Comparisons are sometimes made with Venus. The temperature there is 
observed to be about 760 K, in spite of an albedo of 0.77. On the other hand, the 
solar constant is about double that for the earth, the atmosphere is almost wholly 
carbon dioxide and the surface pressure is 90 times greater than on the earth. 
Thus, with a composition of carbon dioxide some 180 000 times more than on the 
earth it is clear that a strong greenhouse effect must exist, but it can hardly be a 
fair comparison with the earth, where the human-induced radiative forcing has 
been about 2.5 W m -2 since the beginning of the industrial age in the middle of 
the nineteenth century.

21.6 T h e  o b s e r v e d  g l o b a l  t e m p e r a t u r e  r e c o r d

The physics of radiative forcing can tell us the theoretical amount by which the 
planet can be warmed. But that physics alone does not include any complex 
feedbacks. There are two methods of deducing information about a possible 
‘enhanced’ greenhouse effect. The first is to examine and analyse the time series 
of past records of temperature data. The second is to build theoretical models 
incorporating most of the equations we have studied, and others. The models 
simulate the behaviour of the real atmosphere by means of computer calcula­
tions for successive time intervals. They start to run at some initial time for which 
actual or assumed numerical values are assumed valid. Both methods have 
inherent difficulties in divulging the real truth and nature of what happens in the 
real world.

There are several data banks of hemispheric and global series of mean 
temperatures. All the series are expressed as anomalies from some mean 
reference value. They also indicate the same general result that the mean global 
surface temperature has increased from about 0.3 to 0.6°C during the past 100 
years or so, but the increase has not been continuous. This is not a linear relation 
with time, although the trend computed as a linear regression may be shown as a 
straight line.

Figure 21.1 shows the global temperature record for the period 1856-1996. 
The values represent anomalies of temperature from the mean for the period
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Year

F ig u r e  21.1 Twelve month running average temperature anomalies for the two 
hemispheres (1856-1996): southern hemisphere, dashed line; northern hemisphere, 
solid line.

1961-90, computed from the internationally recognized Parker/Jones historical 
temperature record. The curve is a 12 month running average. It shows an 
increase of global 1 2  month mean surface air temperature between 1880 and 
1940, a cooling from 1940 to about 1970 and then another sharp warming up to 
1996 (although there has been a cooling of about 0.2°C during 1996 in the 
running average).

________________ 21.7 R a n d o m  w a l k s________________

The shape of temperature curves such as shown in Fig. 21.1 has often led to the 
comment that 7 or 8  years, or whatever it may be at the time, out of the past 10 
years have been the warmest of the whole historical record. Superficially, this 
fact seems to present a strong argument of some trend that is being forced 
continually, but mathematically the argument is unconvincing.

Pure random walks may give the impression that there is a forcing trend when 
actually the series is composed by pure chance, as during the tossing of a fair 
coin. Figures 21.2 show examples o f five random walks which were generated by 
a computer for first-order differences possessing a normal distribution of mean 0  

and standard deviation of the same magnitude as possessed by the real-world 
series. It is noted that the excursions within the same timeframe generally
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Year

F ig u re  21.2 An ensemble of random walks generated with the same standard 
deviation statistic as the historical temperature series.

exceed those shown by the global temperature series in Fig. 21.1. The real-world 
temperature trend appears to contain a natural variability that possesses some 
random walk characteristics, but these are not so well developed as in the 
theoretical case. Although the variances of the first-order differences used to 
generate the walks and those of the real-world series are the same, the variances 
of the random walks themselves are several times larger than the variances of the 
real-world series.

The curve illustrated by 6/ A the top curve in Fig. 21.2 is of special interest. 
If observed in a series o f real observations the warming trend would almost 
certainly be interpreted as having been forced by some external factor. In order 
for the global temperature series to be transformed into a true random walk the 
interannual changes should be normally distributed and the energy of each 
change must be conserved for all time. That is an unrealistic assumption to make. 
However, for short time scales, such as the length of the period of historical 
temperature records, some randomness is inherent, and care must be exercised in 
drawing conclusions. For these reasons the pre-1996 official point of view put 
forward by the WMO is

it is still not possible to attribute with high confidence all, or even a 
large part of, the observed global warming to the enhanced greenhouse 
effect. On the other hand, it is not possible to refute the claim that
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greenhouse-gas-induced climate change has contributed substantially to 
the observed warming.

________________ 21.8 T h e  d e b a t e __________________

During 1986-90 the greenhouse effect debate raged furiously. Various green­
house action societies were formed. Warnings of impending catastrophe were 
promulgated in the press and electronic media. On the other side there were 
equally mistaken views which maintained that the physics had been interpreted 
incorrectly, and that little or no effect would occur. In those years there seemed to 
be little coordination or authoritative source of information.

The publication of the IPCC (1990) report entitled Climate Change 1990: The 
IPCC Scientific Assessment was a milestone in the debate. This report of some 
350 pages consisted of 11 chapters and was compiled by more than 30 authors, 
while nearly 300 scientists contributed to the final text. It was sponsored jointly 
by the W MO and the United Nations Environment Programme (UNEP). As 
such it was regarded by many (both governmental bodies and non-governmental 
groups and by the public at large) as representing the final official and 
authoritative point of view on climate change and global warming. Its main 
conclusions were that under a ‘business as usual scenario’ with no controls over 
C 0 2 emissions the rate of increase of temperature would be about 0.3°C per 
decade, leading to an increase of 3°C before the end of the next century. This 
amount of warming would lead to an average increase of mean sea level o f about 
6 cm per decade over the next century, mainly due to thermal expansion of the 
oceans and melting of some land ice. This predicted rise would reach about 65 cm 
by the end of the next century. The IPCC (1990) report was updated in 1992 with 
a further report on climate change (IPCC, 1992). The latter came to the same 
general conclusions as the earlier report but added to and amended the earlier 
version in minor detail on the basis of later research and opinion. In the past few 
years, several model experiments have shown that even if greenhouse gas 
emissions were to be stabilized, sea level will continue to rise for decades if not 
for centuries (IPCC, 1996). Finally, at the time o f writing the new 1996 update 
has been published. This recent addition to the debate will be discussed in the 
final section of this chapter.

The first IPCC report did not escape criticism, in spite of the eminent stature 
of its authors and contributors (Lindzen, 1991).

21.9 T h e  MSU d a t a

MSU stands for microwave sounding units. The units are carried by satellites 
and they scan the atmosphere as they travel in their orbits around the planet. 
This passive microwave radiometry from satellites provides a more precise 
record of atmospheric temperatures than do the surface historical records 
such as shown in Fig. 21.1. The first major announcement of temperature 
trends computed from the MSU data was contained in a paper by Spencer 
and Christy which was published in M arch 1990. It made something o f an impact
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and was included in television news broadcasts. The observational period was 
from 1979 to 1988, since extended to 1996. The 1990 paper reported that

analysis of the first 10 years (1979-1988) of satellite measurements of lower 
atmospheric temperature change reveals a monthly precision of 0.01 =C, a 
large temperature variability on time scales from weeks to several years, but 
no obvious trend for the 10 year period. The years 1980, 1983, 1987 and 1988 
were the warmest for the period while 1984, 1985 and 1986 were coolest.

Figure 21.3 shows a comparison of the satellite-monitored temperature 
anomalies for the two hemispheres for the period January 1979 to March 
1997. The sharp cooling which occurred in 1991-2 is due to volcanic dust 
ejected from the eruption of M t Pinatubo in the Philippines in June 1991. Figure
21.4 shows the 12 month running averages of the curves shown in Fig. 21.2. The 
plot is much smoother than the plot of the actual monthly observations. Figure
21.5 compares the time series of the surface data and the satellite data over the 
same period for the globe. It is noted that although there is no warming trend in 
the satellite observations, the coherence between each set of data is very high.

Table 21.1 shows the extremes for the monthly MSU values, extended to 
December 1995. The warmest month for the globe and for the northern 
hemisphere occurred in December 1987. It came at the end of a warm phase of 
ENSO, a phenomenon which will be described in the following section. The

Year
F ig u r e  2 1.3 Satellite temperature anomaly record for the northern (solid line) and 
southern (dashed line) hemispheres (January 1979 to March 1997).
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Table 21. 1 Maximum and minimum temperatures for the globe and hemispheres for 
the period 1979-95 inclusive for the monthly series of MSU data (anomalies from the 
mean for the period)

■■■ " Max' ■ ■■■■ Date Min Date

G.obc : ■ : %472 : ;X'-i Sept. 92
NH 87;  ̂X;;v. 92

:;:c: ; Vo.417 : :: ; : : ; : ; Mar. 93

coldest days occurred in different years. The coldest month of all was in July 1992 
for the northern hemisphere, a little more than a year after the volcanic eruption 
of M t Pinatubo. The southern hemisphere reached a minimum in March 1993.

Table 21.2 shows changes of mean temperature for the globe and the 
hemispheres from one month to the next.

______ 2 1 .1 0  T h e  E N S O  p h e n o m e n o n ___________________

ENSO stands for El Nino Southern Oscillation. This phenomenon is regarded by 
meteorologists and oceanographers as the most significant air-sea interaction 
event with respect to its influence on climate on a scale of 3 to 6  years. El Nino is

Year

F ig u re  21.4 Twelve month running satellite-monitored temperature for the two 
hemispheres (January 1979 to March 1997): southern hemisphere, dashed line; 
northern hemisphere, solid line.
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Year

F ig u r e  21.5 Twelve month running average temperature anomalies for the global 
land marine temperature (solid line) and the global satellite temperature (dashed 
line).

the name of a warm ocean current which replaces the normally cold water off the 
coast of Peru. The Southern Oscillation accompanies the oceanic component 
and is measured by an index, (the Troup index, SOI), which is the normalized 
difference in m.s.l. pressure anomaly between Tahiti and Darwin. Thus if the 
m.s.l pressure difference anomaly Tahiti-D arw in is positive ENSO is in its more 
normal mode; if the difference anomaly is negative, ENSO is in its El Nino mode. 
The effect on the climate is very dependent on the magnitude of the difference. An 
ENSO or El Nino event refers to a relatively large negative value of the SOI. 
When this happens surface water temperatures of the eastern and central tropical 
Pacific Ocean become abnormally high. Figure 21.6 (Figure 10.6 on page 300 
of Neil Wells’ text Atmosphere and Ocean) brings this factor out well. Water 
temperatures in subtropical latitudes in the southern hemisphere become less

Table 21.2 Greatest rises and falls of temperature from one month to the next for the 
1979-95 series of daily MSU data
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F ig u r e  21 .6  Sea surface temperature (°C) in the tropical Pacific Ocean during an El 
Nino event (December 1982).

than average and this may result in drought or long dry periods in eastern 
Australia.

Numerical general circulation models (GCMs) were first developed in the 1950s, 
mainly in the USA (see Phillips, 1956). However, it was not until the 1960s when 
full-scale GCMs became major research projects within special geophysical fluid 
dynamics laboratories. Since that time the science of modelling has become what 
might be termed a growth industry.

A GCM  attempts to develop the existing climate, solving sets of partial 
differential equations which incorporate the physical mechanisms and processes 
that are in continual operation in the atm osphere-ocean system. We have 
derived many of the basic mathematical equations which have already been 
used in this text. Others are too advanced to be included here. It is first necessary 
to set the initial conditions. One set of initial conditions might be to consider 
the atmosphere to be stationary and the pressure gradient fields zero at all 
elevations. The sun is then switched on and the atmospheric temperature, 
pressure and wind distribution slowly develop as the model is run with some 
selected time interval for the integration. Alternatively, one might select some 
climatic mean values for the initial conditions. Such models will eventually reach 
a state of equilibrium, which resembles the observed climatic distribution of 
the variables computed. This model may then be used as a control model for 
comparison with others which embody different initial conditions or contain 
parameters which change throughout the numerical integration. During the past 
30 years there have been enormous developmemts in these GCMs, which now 
incorporate a coupling mechanism with the oceans.
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GCMs have been very successful in reproducing the general climate of the 
globe. They have not been so successful in predicting, in advance, changes in 
the mean state, as, for example, from one season to the next or from one year to 
the next. The success in simulating the broad climate may to some extent be due 
to tuning the model to reproduce what is observed.

The early GCMs were mainly concerned with attempting to reproduce the 
observed general circulation, or climate. Attempts were also made to predict 
seasonal or monthly anomalies, but such predictions were never very 
successful. During the past 10 years attention has been directed towards 
the formulation of models which will predict the extent of global warming 
expected to occur as a direct result of the enhanced greenhouse effect. There 
are two types of models which may be used for this purpose: the equilibrium 
model and the transient model. Both types must assume a selected rate of 
increase of C 0 2.The target is to predict the warming which would occur if 
some existing or preindustrial C 0 2 concentration doubled. It is therefore 
necessary to surmise the rate of increase of C 0 2. This is done by supposing 
different scenarios, based on assumptions of more efficient energy use in the 
future. The worst scenario is usually called the ‘business as usual scenario’, 
the meaning of which is self-evident.

2 1. I I . I The equilibrium model

The equilibrium model attempts to predict the warming which would occur if 
the concentration of C 0 2 were doubled instantaneously. The model is therefore 
similar to a normal GCM with the imposition of the condition of a doubling of 
C 0 2. Other initial conditions remain the same. The mathematical expressions for 
the radiative forcing embodied in the model compute a new temperature and the 
model incorporates the new information in its output. Eventually the model 
settles down into a state of equilibrium. One of the factors which complicates the 
difficulty of identifying a result believed to be caused by a real physical forcing, 
such as that induced by greenhouse gases, is that there is natural or random 
variability in the changes which occur with time. This natural variability is 
inherent in both the real world and in the GCM  control models which try to 
simulate the real world. Sometimes the natural variability is called noise. It is 
not possible to predict the noise accurately as a function of time although 
GCMs do produce noise in their results. Some of the criteria against which 
GCMs must be tested concern comparisons between the statistics of the natural 
variability and the noise generated by the model simulation. Of course, models 
are tuned to ensure that there are no wide differences between these statistics, as, 
for example, the standard deviation of the modelled time series of temperature 
anomalies.

Thus, when the equilibrium model has settled down into the new condition 
of double C 0 2 a mean temperature over some standard period is computed. 
The original temperature may then be subtracted from the new double C 0 2 
equilibrium temperature to give the global warming for whatever period has 
been assumed as the doubling C 0 2 period.
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21.11.2 The transient model

The equilibrium model is more economic to run as it does not require as much 
computer time. In fact, it is only necessary to run two GCMs side by side and 
compare their equilibrium states. However, the atmosphere does not work 
like that. Changes are not discontinuous but continuous. The transient model 
attempts to overcome this problem and tries to reproduce more closely what 
happens in the real world. Thus the C 0 2 concentration is increased gradually. 
The resulting integrations are therefore much longer and so is the computer 
time required to integrate in small time steps some hundreds of years into the 
future. The latest results at the time of writing show a nearly linear trend of 
about 0.3°C per decade, depending on the assumed C 0 2 doubling period. 
These results show warmings about 60% of the equilibrium model results. The 
difference between the results of the equilibrium and transient models is partly 
due to the inclusion of the deep ocean in transient models. The inertia of the 
oceans is considerable so that equilibrium is not reached when double C 0 2 is 
reached.

The models attempt to predict other meteorological parameters in addition 
to temperature. Specifically, they attempt to predict these parameters as a 
function of the planetary geography. It might be thought, however, that the 
prime problem is first to establish the magnitude of hemispheric and global 
warming. Too much attention and policy directives towards exact geo­
graphical mapping of changes in climate parameters may not be rewarding 
at the present stage o f knowledge, although a great deal of effort is being put 
into this approach.

21.12 T h e  g l o b a l  w a r m in g  d e b a t e  c o n t in u e s

In March 1996 the volume Climate Change 1995 (IPCC, 1996) was distrib­
uted. This report continued the IPCC Scientific Assessment of Climate 
Change begun with the 1990 and 1992 reports. The essential difference 
between the 1995 and earlier assessments was the inclusion of a bottom- 
line statement which concluded that ‘the balance of evidence suggests that 
there is a discernible influence on global climate’. This was the statement that 
the world had been waiting for. Governments needed such a statement to 
justify the action and pressure that had been taken worldwide to reduce C 0 2 
emissions.

The statement was based on the results of an investigation embodied in 
chapter 8 of the 1995 report, a chapter entitled ‘Detection o f Climate Change 
and Attribution of Causes’. The research consisted of an analysis of radio­
sonde observations as a function of latitude and height. Using the period 
1963-1987 it was found that there was a pronounced warming trend in the 
southern hemisphere, which was not matched by a similar magnitude of trend 
in the northern hemisphere. The substance of chapter 8 was published in the 
scientific journal Nature in July 1996. At the time of writing responses to the 
published article had not been printed. The global debate continues.
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_____________ 21.13 C l im a t e  p r e d ic t io n

The goal of predicting the weather far into the future has always been an elusive 
dream. The accuracy of forecasts based on synoptic analysis of surface and 
upper air charts decays rapidly after about 24 hours. Forecasts computed from 
complex high-speed and high-resolution numerical models can now be extended 
from 5 to 10 days and retain useful information, although the degree of accuracy 
relies a great deal on the type of synoptic pattern prevailing. Large anticyclonic 
blocks are stable and persist for some time, whereas periods of intense baroclinic 
activity are dynamically unstable and lead to the problem of sensitivity to initial 
conditions and resulting chaos.

After W orld W ar II the idea of long-range forecasting received increasing 
attention. Indeed there had been enormous effort in this field leading up to the 
Normandy landings in June 1944. The general technique adopted was called the 
analogue method. This relies on selecting a chart from a long period of historical 
records of previous synoptic charts and selecting one that appeared most closely 
identical with the one for the present time, on which the forecast had to be based. 
It was assumed that the current chart would develop in a similar manner to the 
analogue chart chosen from some past date. The aim of the Normandy landing 
weather forecast exercise to produce a prediction for several days ahead was 
more closely related to the aims of the medium-range forecasts which have been 
produced for many years now by the European Centre for Medium-Range 
Weather Forecasting (ECMW) at Reading in England. Climate prediction is 
something different. It involves prediction of the mean state for a month, several 
months or even some years into the future.

In the 1950s the analogue method was used to try and predict the overall mean 
state, warm or cold, wet or dry, of the following month. In this procedure the 
analogue consisted of a chart of the mean pressure field selected from past 
records which most closely resembled the mean pressure field of the month 
immediately past. Thus, on or about the first day of each calendar month a 
forecast was presented for that month. The exercise was carried out for many 
years on an experimental and trial basis by the UK MO. Finally, it was decided 
to issue the monthly predictions officially as a service to the public. The practice 
lasted some 10 years or more, but it was eventually discontinued as statistical 
analyses suggested the results were no better than persistence or chance.

Today climate prediction is a problem that once again has come to the fore, 
largely driven by the need to make predictions of global warming caused by the 
‘enhanced’ greenhouse effect. But although it may be possible to predict different 
climates which have different solar radiation inputs, different albedos or different 
C 0 2 concentrations, it may well be impossible to predict changes in our climate 
under the assumption that the various forcings remain invariant.

Any progress towards even a partial solution to the problem rests on two 
possible techniques. The first is the harnessing of high-speed computers to the 
development of coupled ocean-atm osphere numerical models, the second is the 
use of various statistical techniques. To some extent both these roads depend 
on the high heat capacity of the oceans and the sluggish response of ocean
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circulations to forcings. The ENSO phenomenon discussed earlier is a very 
important link and may help to introduce occasional good results up to a few 
years ahead.

Prediction using the persistence of climatic features will always be better than 
pure chance because an even-odds choice means there is no persistence.

N o improvement in climate prediction can be realized without an evaluation 
of results predicted in advance, not in arrears. New statistical techniques such as 
cross-validation and bootstrapping evade this problem to some extent but still 
implicitly assume that the next era will exhibit the previously observed statistical 
relationships. Nevertheless, as most statistical significance tests need a fairly 
large number of trials it is doubtful that any twentieth-century reader will see the 
realization o f the dream.

__________________ 21.14 P r o b l e m s__________________

1. Suppose the time constant (e-folding period) for A: is 3.5 years, a value which 
may be attributed to the oceans, and w is 26.4 months, a mean value for the 
quasi-biennial oscillation. Write a computer program and plot the lagging 
temperature, 6, of the oceans if the atmosphere is subjected to a sinusoidal 
QBO oscillation of amplitude 0.1 °C. Assume the Newtonian expression 
d (0 )/d t = —k (T  — 6) is applicable. Try 1 month time intervals. Now assume 
that successive QBOs have varying periods (u>) and plot the results of 
temperature against time.

2. Suppose the atmospheric temperature increases by 0.3°C per decade as a 
result o f greenhouse-induced warming. Assume a lag time constant of 3.5 
years. How much do the oceans lag the atmospheric temperature as time 
becomes infinitely great?
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C urren t A ustralian  weather:

h ttp ://w w w .bom .gov.au/w eather/national/charts/
http://w w w .bom .gov.au/w eather/national/satellite

El N ino, SOI, sea surface tem perature, A ustralian  rainfall:

h ttp : //www. dpi .qld.gov.au/longpdk/
M .s.l. charts (Australia):

Interactive meteorology, by R ichard  Lowe (C urtin  University o f  Technology, Perth, 
W estern A ustralia). D istinctive characteristics and  behaviour o f  a num ber o f key features 
in a typical sum m er-type m.s.l. chart p a tte rn  fo r A ustralia.
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