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Preface

As it relates to the essential property of robots, the motion of mechanisms,
kinematics is the most fundamental aspect of robot design, analysis and control.
The series of books on Advances in Robot Kinematics reports the latest achieve-
ments in this field. The first book in the series was published in 1991. Then, since
1994, these books have been published every 2 years, with the publication of each
one being followed by a symposium in which the participants exchange their
results and opinions. Books on Advances in Robot Kinematics have always been
warmly accepted by experts and represent an important and ongoing information
about what is happening in this area.

This book is the 12th in the series. All the articles contained within it have been
selected on the basis of a peer-review process and describe the newest and most
original achievements in the field of robot kinematics. We would like to emphasise
that the whole process, from the submission of manuscripts, the reviewing, the
selection of the articles, the various revisions, the preparation of the finished
articles and the publication of the book, has taken less than 6 months.

Today, robot kinematics still presents an immense number of research challenges
and the symposia on Advances in Robot Kinematics manage to bring together the
best of the world’s researchers and scientists. Since 1992 the symposia have come
under the patronage of the International Federation for the Promotion of Mechanism
and Machine Science—IFToMM.

The last symposium related with this book was organised by the J. Stefan
Institute in Ljubljana, Slovenia. The 56 articles in this book cover the latest topics
in the kinematics of robotic systems. We are grateful to the authors for their
contributions and to the large team of reviewers for their critical and insightful
recommendations. We are also indebted to Dr. Tadej Petrič from the J. Stefan
Institute for his valuable technical contribution, and to the staff of Springer who
were responsible for putting the whole book together.

Ljubljana, June 2014 Jadran Lenarčič
Oussama Khatib
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Computing Cusps of 3R Robots
Using Distance Geometry

Federico Thomas

Abstract The singularities of a 3R robot are usually determined, in terms of its
joint angles, from the determinant of its Jacobian which can then be mapped onto the
robot’s workspace through its forward kinematics. The presence of cusps in these
singularity plots permits to change robot’s posture without meeting a singularity
and hence their relevance. This chapter shows how, using Distance Geometry, the
singularities in the workspace of a 3R robot can be represented as an octic curve of
the form 4δ1δ3 − δ22 = 0, where δi , i = 1, 2, 3, are quartic polynomials and, what
is more important, its cusps correspond to those points in which δ2 = δ3 = 0. This
leads to important simplifications over previous approaches.

Keywords 3R regional robot ·Wrist-partitioned robots ·Cuspidal robots ·Distance
geometry

1 Introduction

The presence of cusps in the singularity locus of a 3R robot allows it to change
posture without meeting a singularity (see [1] and the references therein). Cusps
correspond to points of the workspace where the robot’s inverse kinematics admit
three equal solutions, as it was first established in [2]. Then, the existence of cusps
is usually determined from its fourth-degree inverse kinematics polynomial, though
other alternatives are possible [3]. The symbolic condition, in terms of the DH para-
meters of the robot, for this polynomial to have three equal roots has been considered
as intractable [1]. Only the case of orthogonal 3R robots—robots whose consecutive
joint axes are mutually orthogonal—has been analyzed in detail [4]. This chapter

F. Thomas (B)

Institut de Robòtica i Informàtica Industrial (CSIC-UPC), Barcelona, Spain
e-mail: fthomas@iri.upc.edu

J. Lenarčič and O. Khatib (eds.), Advances in Robot Kinematics, 1
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Fig. 1 A 3R regional robot (left) and its associated bar-and-joint framework (right)

puts forward a new formulation of the problem that could lead to new insights into
the general case thanks to the simplicity and symmetry of the resulting algebraic
expressions.

This chapter is organized as follows. Section2 describes how, using Distance
Geometry, the inverse kinematics of a 3R robot boils down to compute the intersection
of two ellipses. Sections3 and 4 show how the singularity locus of a 3R robot can be
computed from the pencil of conics defined by these two ellipses, and how cusps in
this locus correspond to osculating contacts between them. An example is presented
in Sect. 5, and some conclusions are drawn in Sect. 6.

2 Distance-Based Formulation

A regional 3R robot is an open chain of four rigid bodies (the links), pairwise artic-
ulated through revolute joints [Fig. 1(left)]. The inverse kinematics problem is to
find all valid configurations of this chain (φ1, φ2, and φ3) that are compatible with
a specified location for P7, relative to a global reference frame. Then, the first and
last links can be seen as articulated through a spherical joint centered at P7 and the
problem is equivalent to that of finding the valid configurations of a closed loop of
four pairwise articulated links through three revolute joints and one spherical joint.

A link connecting two revolute axes can be modeled by taking two points on
each of these axes, and by connecting them all with rigid bars to form a tetrahedron.
A link connecting a revolute axis and a spherical joint can be modeled by taking
two points on the revolute joint axis and the center of the spherical joint, and by
connecting them all with rigid bars to form a triangle. In this way, a 3R regional
robot can be modeled as the bar-and-joint framework shown in Fig. 1(right). In this
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conversion we are loosing an important information: the orientation of the two
tetrahedra. Nevertheless, given a valid configuration of the obtained bar-and-joint
framework, we can derive another valid configuration with the desired orientations
for the two tetrahedra. Indeed, observe that P3, P4, and P7 defines a plane that divides
the framework in two halves and the mirror projection of any of these two halves
with respect to this plane changes the orientation of the corresponding tetrahedron
while preserving the bar lengths. As a consequence, any valid configuration for the
framework translates into a valid configuration for the 3R robot.

The distances between the set of points {P1, P2, P3, P4, P7} or {P3, P4, P5, P6,
P7} are not independent because they are embedded in R

3. This dependency, using
the theory of Cayley-Menger determinants, translates into the following algebraic
conditions:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 1 1 1 1 1
1 0 s1,2 s1,3 s1,4 s1,7
1 s2,1 0 s2,3 s2,4 s2,7
1 s3,1 s3,2 0 s3,4 s3,7
1 s4,1 s4,2 s4,3 0 s4,7
1 s7,1 s7,2 s7,3 s7,4 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0 and

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 1 1 1 1 1
1 0 s3,4 s3,5 s3,6 s3,7
1 s4,3 0 s4,5 s4,6 s4,7
1 s5,3 s5,4 0 s5,6 s5,7
1 s6,3 s6,4 s6,5 0 s6,7
1 s7,3 s7,4 s7,5 s7,6 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0,

(1)

where si, j stands for the squareddistancebetween Pi and Pj . The above twoequations
are quadratic forms in the unknown distances s3,7 and s4,7. They actually represent
two real ellipses, A : xAxT = 0 and B : xBxT = 0, where x = (s3,7, s4,7, 1) and

A =
⎛

⎝

a1 c1 d1
c1 b1 e1
d1 e1 f1

⎞

⎠ and B =
⎛

⎝

a2 c2 d2
c2 b2 e2
d2 e2 f2

⎞

⎠ . (2)

The entries d1 and e1 depend linearly on s1,7 and s2,7, while f1 depends on them
quadratically. All other entries of A and B are constant for a given robot and they
can be expressed in terms of determinants of known bar lengths (see [5] for details).

Solving the inverse kinematics of a 3R robot consists in obtaining the sets of
joint angles (φ1, φ2, φ3) that provide the desired position of its end-effector given
in cylindrical coordinates by (θ, ρ, z). Due to the symmetry with respect to the first
joint axis, φ1 is trivially obtained. The other two cylindrical coordinates, ρ and z,
determine the squared distances s1,7 and s2,7. Then, we can compute the intersection
of A and B to obtain up to four sets of distances (s3,7, s4,7)compatible with all
other distances. It is important to note that, given the orientation of the tetrahedra
with vertex sets {P1, P2, P3, P4} and {P3, P4, P5, P6}, every solution for (s3,7, s4,7)
leads to a unique solution for (φ2, φ3). Thus, solving the inverse kinematics of a 3R
regional robot reduces to calculate the intersections of two ellipses.
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3 Singularities

A singularity occurs when we have a repeated solution of the inverse kinematics, that
is, whenA andB are tangent. The positional relationship betweenA andB can be
derived from the study of the pencil of conics they define, that is, from the family of
conics defined by pT (λA+B)p = 0, λ ∈ R (see [6] for an introductory explanation).
The values of λ for which a conic of this pencil is degenerate correspond to those in
which

f (λ) = det(λA + B) = l3λ
3 + 3l2λ

2 + 3l1λ + l0 = 0, (3)

where the coefficients li , i = 0, 1, 2, 3, can expressed in a neat and elegant way as
[7, p. 191]:

l3 =
∣
∣
∣
∣
∣
∣

a1 c1 d1
c1 b1 e1
d1 e1 f1

∣
∣
∣
∣
∣
∣

= det(A), (4)

3l2 =
∣
∣
∣
∣
∣
∣

a2 c1 d1
c2 b1 e1
d2 e1 f1

∣
∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
∣

a1 c2 d1
c1 b2 e1
d1 e2 f1

∣
∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
∣

a1 c1 d2
c1 b1 e2
d1 e1 f2

∣
∣
∣
∣
∣
∣

, (5)

3l1 =
∣
∣
∣
∣
∣
∣

a1 c2 d2
c1 b2 e2
d1 e2 f2

∣
∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
∣

a2 c1 d2
c2 b1 e2
d2 e1 f2

∣
∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
∣

a2 c2 d1
c2 b2 e1
d2 e2 f1

∣
∣
∣
∣
∣
∣

, (6)

l0 =
∣
∣
∣
∣
∣
∣

a2 c2 d2
c2 b2 e2
d2 e2 f2

∣
∣
∣
∣
∣
∣

= det(B). (7)

The above polynomial in λ is known as the generalized characteristic polynomial
of the pencil. By definition, f (λ) = 0 has a multiple root if, and only if, its discrim-
inant, say Δ, vanishes. Furthermore, it can be shown that f (λ) = 0 has three simple
real roots if Δ > 0, and f (λ) = 0 has two complex conjugate roots and a real root if
Δ < 0. The roots of Δ = 0 give information on the positional relationship between
A andB. Actually, the sign of the discriminant Δ gives information about the order
of accessibility of the robot’s workspace. It permits to decompose it in the following
three regions:

• Δ < 0 corresponds to a two-way accessible region;
• Δ = 0 corresponds to the singularities of the robot; and
• Δ > 0 corresponds to a four-way accessible region or an inaccessible region.

The standard expression of the discriminant of a cubic gives little insight into the
structure of our problem. Fortunately, a much more convenient expression, that will
reveal very important for the computation of cusps, can be found in [8]. It reads as
follows:

Δ =
∣
∣
∣
∣

2δ1 δ2
δ2 2δ3

∣
∣
∣
∣

(8)



Computing Cusps of 3R Robots Using Distance Geometry 5

where

δ1 =
∣
∣
∣
∣

l3 l2
l2 l1

∣
∣
∣
∣
, δ2 =

∣
∣
∣
∣

l3 l1
l2 l0

∣
∣
∣
∣
, δ3 =

∣
∣
∣
∣

l2 l1
l1 l0

∣
∣
∣
∣

(9)

Observe that the condition of singularity Δ = 0 is expressed as a determinant of
determinants of determinants of determinants (four levels of nested determinants). It
can be shown that the elements of the third level of determinants depend quadratically
on s3,7 and s4,7. Then, since the two outer levels of determinants are quadratic with
respect to their elements, the singularity locus can be displayed as a curve of order
23 in the plane defined by s3,7 and s4,7.

4 Cusps As Osculating Contacts

If three of the points of intersection betweenA andB coincide, the ellipses are said
to osculate each other at this point. In this case, the characteristic polynomial of the
pencil they define is a perfect cube [9]. As a consequence,

l3
l2

= l2
l1

= l1
l0

= −1

r
, (10)

where r is the triple root of the characteristic polynomial. Then, observe that

l3
l2

= l2
l1

⇒ δ1 = 0,
l3
l2

= l1
l0

⇒ δ2 = 0, and
l2
l1

= l1
l0

⇒ δ3 = 0.

In other words, in a cusp not onlyΔ = 0, but all three components of the discriminant
vanish. Moreover,

δ1 = 0
δ2 = 0

}

⇒ Δ = 0, and δ3 = 0 iff
l2
l3

�= 0

0
,

δ2 = 0
δ3 = 0

}

⇒ Δ = 0, and δ1 = 0 iff
l0
l1

�= 0

0
.

Since l0 = det(B) �= 0 by construction, we conclude that we have a cusp if, and only
if, δ2 = 0 and δ3 = 0.

5 Example

Let us considered the orthogonal 3R robot with the standard DH parameters d1 = 1,
d2 = 1/2, d3 = 1, a1 = 1, a2 = 4/5 and a3 = 2. Then, by locating P1 and P7 at the
origin of the reference frame and at the center of the end-effector, respectively; P2
and P3 on the common normal between the first and the second axis; P4 and P5 on the
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common normal between the second and the third revolute axis; and P6 as the nearest
point to P7 on the third revolute axis, we have that s1,2 = d2

1 , s2,3 = a2
1, s3,4 = d2

2 ,

s4,5 = a2
2, s5,6 = d2

3 , s6,7 = a2
3 . Then, by Pythagoras’ theorem, s1,3 = s1,2 + s2,3,

s2,4 = s2,3 + s3,4, s3,5 = s3,4 + s4,5, s4,6 = s4,5 + s5,6, s5,7 = s5,6 + s6,7. Moreover,
since α2 = π/2 and α3 = π/2, s1,4 = s1,3 + s3,4, s3,6 = s3,5 + s5,6.

Substituting the above squared distances in the expressions for A and B, we
obtain:

(

s3,7 s4,7 1
)

⎛

⎝

5 −4 d
−4 4 e
d e f

⎞

⎠

⎛

⎝

s3,7
s4,7
1

⎞

⎠ = 0, (11)

and
(

s3,7 s4,7 1
)

⎛

⎝

2.56 −2.56 −0.64
−2.56 3.56 −5
−0.64 −5 21.7296

⎞

⎠

⎛

⎝

s3,7
s4,7
1

⎞

⎠ = 0, (12)

respectively, where d, e, and f depend on s1,7 and s2,7 as follows:

(

d
e

)

=
(

0 −1 0
0 0 −1

)
⎛

⎝

s1,7
s2,7
1

⎞

⎠ and f = (

s1,7 s2,7 1
)

⎛

⎝

1 −1 −1
−1 2 0
−1 0 2.25

⎞

⎠

⎛

⎝

s1,7
s2,7
1

⎞

⎠ .

Now, substituting in (4)–(7), we obtain:

l0 = −16384

625

l1 = 18848

1875
d + 64

75
f + 263116

46875

= 64

75
s21,7 − 128

75
s1,7s2,7 − 128

75
s1,7 + 128

75
s22,7 − 18848

1875
s2,7 − 173116

46875

l2 = 1256

75
d + 63

25
f − 89

75
d2 + 18274

1875

= 63

25
s21,7 − 126

25
s1,7s2,7 − 126

25
s1,7 + 289

75
s22,7 − 1256

75
s2,7 + 115621

7500
l3 = −4d2 + 8d + 4 f − 5

= 4s21,7 − 8s1,7s2,7 − 8s1,7 + 4s22,7 − 8s2,7 + 4

Then, substituting in (9), we finally obtain:

δ1 = 4814

1875
d2 f − 1184996

15625
f − 70064

1875
d f − 59287072

140625
d − 7239812

46875
d2

− 2608

5625
d3 − 7921

5625
d4 − 5507

1875
f 2 − 235270576

3515625

δ2 = 5696

5625
d2 f − 348149476

3515625
f − 5571872

140625
d f − 250411552

1171875
d − 82201508

1171875
d2

+ 1677472

140625
d3 − 1344

625
f 2 + 16328181784

87890625
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Δ = 0
l3 = 0

Fig. 2 The singularity locus (Δ = 0) divides the area where l3 < 0 (the region where A is a real
ellipse) into regions where the spatial relationship between A and B is the same

δ3 = − 28665899264

87890625
d − 198564352

3515625
f − 2412544

140625
d f − 245883904

3515625
d2

− 4096

5625
f 2 − 630607309456

2197265625

The robot’s singularity locus is given by Δ = 4δ1δ3 − δ22 = 0. This locus
segments the plane define by (s3,7, s4,7) into regions with the same number of
inverse kinematics solutions (Fig. 2). It can be mapped onto the robot’s workspace
by observing that z = (d2

1,2 − s2,7 + s1,7)/2d1,2 and ρ = +√

s2,7 − (d1,2 − z)2,
where d1,2 = √

s1,2 = 1. The result is represented in Fig. 3.
The curves defined by δ2 = 0 and δ3 = 0 are plotted in Fig. 4. Observe how

their intersection coincide with the cusps of the singularity locus plotted in Fig. 2.
The system of equations δ2 = δ3 = 0 has 12 solutions, 8 of them are complex.
The real solutions correspond to the coordinates of the 4 cusps: (5.4364, 2.8669),
(10.4444, 7.4444), (2.2975, 2.8669), and (6.4444, 7.4444).

We have analyzed an orthogonal 3R robot and this induces some simplifications in
the derived equations. For example, δ3 is cubic with respect to s1,7 and s2,7 instead of
quartic (as is the case in general). This leads to 12 solutions for the system δ2 = δ3 = 0
while, in general, we would have 16.
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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0
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z

Fig. 3 The singularity locus represented in Fig. 2 mapped onto the robot’s workspace. Both plots
are in one-to-one correspondence

Fig. 4 Plot of δ2 = 0 (green),
and δ3 = 0 (blue)
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6 Conclusion

We have shown how the kinematics of a 3R robot is determined by the positional
relationship between two ellipses, and how cusps in the singularity locus correspond
to osculating contacts between these two ellipses. This geometric interpretation trans-
lates into an algebraic characterization of cusps as the intersection of two quartic
curves, a simpler characterization than the traditional one based on imposing three
equal roots to the inverse kinematics polynomial.
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Kinematic Mapping of SE(4)
and the Hypersphere Condition

Georg Nawratil

Abstract In this chapter we present a novel kinematic mapping for the Euclidean
4-space E4. We show that there is a bijection between the group SE(4) of Euclidean
displacements of E4 and points on a quadric (sliced along a 3-dimensional generator-
space),which is located in a projective 11-dimensional space. These 12 homogeneous
motion parameters can be seen as a natural extension of the Blaschke-Grünwald
parameters for E2 and the Study parameters for E3, respectively. In addition we also
study the constraint that a point is located on a hypersphere of E4. We prove that this
hypersphere condition is a homogeneous quadratic equation in the 12 homogeneous
motion parameters.

Keywords Kinematic mapping · Euclidean 4-space · Quaternion · Hypersphere

1 Motivation

The study of displacements of the Euclidean 4-space is motivated by Stewart Gough
(SG) platforms. These are 6-dof S3P S3 parallel manipulators, as the platform is
connected with the base via six S3P S3-legs, where P denotes an active prismatic
joint and S3 a passive spherical1 one. If the centers of the S3-joints located at the
base (resp. platform) are coplanar, then the base (resp. platform) is called planar.
A SG manipulator with planar platform and planar base is called planar SG plat-
form. These manipulators are geometrically a lot better understood than their non-
planar counterparts (e.g. attachment of additional legs without changing the direct

1 Sn denote the spherical joint, which admits the group of spherical motions SO(n) of En . Note
that a S2-joint equals a rotational joint (R-joint).
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kinematics [1] and singularity set [2], self-motions [3] and Duporcq’s theorem [4],
…).

We hope to gain a deeper geometric insight into the nature of non-planar SG
platforms by studying the analogs of planar SG platforms in E4, which are so-called
hyperplanar 10-dof S4P S4 parallel manipulators.2

The basic equation for an algebraic kinematical study of 10-dof S4P S4 parallel
manipulators is the so-called hypersphere condition which means that the center of
the platform S4-joint is located on a hypersphere centered in the corresponding base
S4-joint. For the formulation of this equation, we need a proper kinematic mapping
of SE(4), which is given in Sect. 2. Based on the presented kinematic mapping, we
study the hypersphere condition and its derivative (infinitesimal direct kinematics)
in Sect. 3. Finally we close the chapter with conclusions and an outlook.

2 Kinematic Mappings of SE(n)

A kinematic mapping of SE(n) is a bijective mapping between the group of displace-
ments of En and a setS of points in a certain space. Well known examples of these
mappings are the one of Blaschke [5] and Grünwald [6] for E2 and the one of Study
[7] for E3, which are reviewed within the next two subsections.

2.1 Study Mapping of SE(3)

Q := q0 + q1i + q2j + q3k with q0, . . . , q3 ∈ R is an element of the skew field
of quaternions H, where i, j, k are the so-called quaternion units. The conjugated
quaternion toQ is given by ˜Q := q0 − q1i − q2j − q3k. MoreoverQ is called a pure
quaternion for q0 = 0 and a unit quaternion for q2

0 + q2
1 + q2

2 + q2
3 = 1. Finally we

can embed the points X of E3 with Cartesian coordinates (x1, x2, x3) into the set of
pure quaternions by the following mapping:

ι3 : R3 → H with (x1, x2, x3) �→ X := x1i + x2j + x3k. (1)

Classically the Study mapping is introduced by the usage of dual quaternions
H + εH, where ε is the dual unit with the property ε2 = 0. An element E + εT
of H + εH is called unit dual quaternion if E is an unit quaternion and following
condition holds:

e0t0 + e1t1 + e2t2 + e3t3 = 0. (2)

2 As there are 10 dofs in E4 (six rotational ones and four translatory dofs), the hyperplanar platform
(moving 3-space) and the hyperplanar base (fixed 3-space) have to be connected via ten S4P S4-legs
(cf. footnote 1). In this context it should be noted that the lower-dimensional counterparts of planar
SG platforms are 3-dof R P R parallel manipulators with collinear base points and platform points.
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Based on the usage of unit dual quaternions E + εT it can be shown (e.g.
Sect. 3.3.2.2 of [8]) that the mapping of points X ∈ E3 to X′ ∈ E3 induced by
any element of SE(3), can be written as follows (by using ι3):

X �→ X′ with X′ := E ◦ X ◦ ˜E + (T ◦ ˜E − E ◦ ˜T), (3)

where ◦ denotes thewell-known quaternionmultiplication.Moreover it can be shown
that the mapping of Eq. (3) is an element of SE(3) for any unit dual quaternion
E + εT. Note that X′ is again a pure quaternion, where the first summand E ◦
X ◦ ˜E is the rotational component, which can be written in vector-representation as
(x ′

1, x ′
2, x ′

3)
T = R3(x1, x2, x3)T with

R3 =
⎛

⎝

e20 + e21 − e22 − e23 2(e1e2 − e0e3) 2(e1e3 + e0e2)
2(e1e2 + e0e3) e20 − e21 + e22 − e23 2(e2e3 − e0e1)
2(e1e3 − e0e2) 2(e2e3 + e0e1) e20 − e21 − e22 + e23

⎞

⎠ , (4)

where detR3 = (e20 + e21 + e22 + e23)
3 = 1 holds. As the remaining part of Eq. (3)

does not depend on X, it corresponds to a translation with vector s3 := (s1, s2, s3)T

and

s1 = 2(e0t1 − e1t0 + e2t3 − e3t2), s2 = 2(e0t2 − e1t3 − e2t0 + e3t1),

s3 = 2(e0t3 + e1t2 − e2t1 − e3t0). (5)

As both unit dual quaternions ±(E+ εT) correspond to the same Euclidean motion
of E3, we consider the homogeneous 8-tuple (e0 : . . . : e3 : t0 : . . . : t3). These so-
called Study parameters can be interpreted as a point of a projective 7-dimensional
space P7. Therefore there is a bijection between SE(3) and all real points S of P7

located on the so-called Study quadric Φ ⊂ P7, which is given by Eq. (2) (⇒ the
signature ofΦ is (4+, 4−, 00)) and is sliced along the 3-dimensional generator-space
e0 = e1 = e2 = e3 = 0, as the corresponding quaternion E cannot be normalized.

2.2 Blaschke-Grünwald Mapping of SE(2)

The Blaschke-Grünwald mapping can be obtained from the Study mapping by re-
stricting ourselves to planar Euclidean displacements within a plane α, which corre-
sponds to a 3-dimensional generator-space of Φ. If we choose α as the plane given
by x1 = 0, it can easily be seen (cf. Remark 3.38 of [8]) that the corresponding
generator-space of Φ is given by e2 = e3 = t0 = t1 = 0. Therefore there is a bijec-
tion between SE(2) and all real points (e0 : e1 : t2 : t3) of a projective 3-dimensional
space P3, with exception of the points located on the line e0 = e1 = 0.

The vector-representation of planar displacements in dependency of theBlaschke-
Grünwald parameters (e0 : e1 : t2 : t3) can immediately be obtained from Eqs. (4)
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and (5) and reads as (x ′
2, x ′

3)
T = R2(x2, x3)T + s2 with:

R2 =
(

e20 − e21 −2e0e1
2e0e1 e20 − e21

)

, s2 =
(

2(e0t2 − e1t3)
2(e0t3 + e1t2)

)

, (6)

where detR2 = (e20 + e21)
2 = 1 holds.

2.3 Kinematic Mappings of SE(4)

Until now the author is only aware of one kinematic mapping of SE(4), which was
given by Klawitter and Hagemann [9]. They presented an unified concept based
on Clifford algebras, for constructing kinematic mappings for certain Cayley-Klein
geometries. Especially for E2 and E3, they demonstrated that their approach yields
the Blaschke-Grünwald mapping and the Study mapping, respectively.

According to Sects. 6.3 and 7 of [9], displacements of SE(4) are mapped onto
points of a real 15-dimensional projective space P15, which are located in the in-
tersection of nine quadrics Ri (i = 1, . . . , 9) sliced along the quadric N1. For the
explicit equations of R1, . . . , R9 and N1 we refer to Sect. 7 of [9].

Due to the large number of homogeneous motion parameters as well as the result-
ing set of quadratic constraints, the Klawitter-Hagemann mapping is not suited for
performing computational algebraic kinematics in E4. Therefore we are interested
in a simplified kinematic mapping of SE(4), which is constructed next.

We start by embedding the points X of E4 with Cartesian coordinates (x0, x1,
x2, x3) into the set of quaternions by the mapping:

ι4 : R4 → H with (x0, x1, x2, x3) �→ X := x0 + x1i + x2j + x3k. (7)

Moreover we need the classical quaternion representation theorem for SO(4), which
hasmany fathers (Euler, Cayley, Salmon, Elfrinkhof, Stringham, Bouman) according
to Mebius [10] and states the following:

Theorem 1 The mapping of points X ∈ E4 to X′ ∈ E4 induced by any element of
SO(4), can be written as follows (by using ι4):

X �→ X′ with X′ := E ◦ X ◦ F, (8)

where E and F is a pair of unit quaternions, which is determined uniquely up to the
sign. Moreover the mapping of Eq. (8) is an element of SO(4) for any pair of unit
quaternions E and F.

Direct computation shows that the mapping given in Eq. (8) can be written in
vector-representation as (x ′

0, x ′
1, x ′

2, x ′
3)

T = R4(x0, x1, x2, x3)T with R4 = EF and



Kinematic Mapping of SE(4) and the Hypersphere Condition 15

E =

⎛

⎜

⎜

⎝

e0 −e1 −e2 −e3
e1 e0 −e3 e2
e2 e3 e0 −e1
e3 −e2 e1 e0

⎞

⎟

⎟

⎠

, F =

⎛

⎜

⎜

⎝

f0 − f1 − f2 − f3
f1 f0 f3 − f2
f2 − f3 f0 f1
f3 f2 − f1 f0

⎞

⎟

⎟

⎠

, (9)

where detR4 = detE detF = (e20 + e21 + e22 + e23)
2( f 20 + f 21 + f 22 + f 23 )2 = 1 holds.

Due to the free choice of sign in Theorem 1, the decomposition into a left unit
quaternion E and a right unit quaternion F yields a double cover of SO(4). Therefore
we consider again the homogeneous 8-tuple (e0 : . . . : e3 : f0 : . . . : f3), which can
be seen as a point in P7. Hence there is a bijection between SO(4) and all real points
S of P7, which are located on the quadric Ψ ⊂ P7 given by

(e20 + e21 + e22 + e23) − ( f 20 + f 21 + f 22 + f 23 ) = 0, (10)

(⇒ the signature of Ψ is (4+, 4−, 00)) sliced along the 3-dimensional space e0 =
e1 = e2 = e3 = 0, as the corresponding quaternion E cannot be normalized. But
this 3-space does not have a real intersection with Ψ and therefore no point of Ψ has
to be removed. Note that Eq. (10) expresses the fact that F is also normalized if E is.

Remark 1 If we identify E3 with the hyperplane x0 = 0, all points of the 3-
dimensional generator-space f0 = e0, fi = −ei for i = 1, 2, 3 (⇔ F = ˜E) of
Ψ , map the hyperplane x0 = 0 onto itself. Therefore this 3-dimensional generator-
space is the well-known Euler-Rodrigues parameter space (e0 : . . . : e3) of SO(3).

The extension of this kinematic mapping of SO(4) with respect to translations of
E4 can be done as follows:

Theorem 2 The mapping of points X ∈ E4 to X′ ∈ E4 induced by any element
of SE(4), can be written as follows (by using ι4):

X �→ X′ with X′ := E ◦ X ◦ F − (T ◦ E + E ◦ ˜T). (11)

Moreover the mapping of Eq. (11) is an element of SE(4) for any triple of quaternions
E,F,T, where E and F are unit quaternions.

Proof Due to Theorem 1, we only have to show that there is a bijection between the
coordinates of the translation vector s4 = (s0, s1, s2, s3)T and the entries t0, . . . , t3
of T for a given unit quaternion E. It can easily be seen that s1, s2, s3 equal the
expressions given in Eq. (5) and that s0 = −2(e0t0 + e1t1 + e2t2 + e3t3) holds. Now
we solve these four equations for t0, . . . , t3 which yields:

t0 = −(e0s0 + e1s1 + e2s2 + e3s3)/2, t1 = (e0s1 − e1s0 − e2s3 + e3s2)/2,

t2 = (e0s2 + e1s3 − e2s0 − e3s1)/2, t3 = (e0s3 − e1s2 + e2s1 − e3s0)/2.

This already proves the theorem. �
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As both triples of quaternions ±(E,F,T), where E and F are unit quaternions,
correspond to the same Euclidean motion of E4, we consider the homogeneous 12-
tuple (e0 : . . . : e3 : f0 : . . . : f3 : t0 : . . . : t3). These 12 homogeneous motion
parameters for E4, which are called the new parameters for short, can be interpreted
as a point of a projective 11-dimensional space P11. Therefore there is a bijection
between SE(4) and all real pointsS of P11 located on the cylinderΞ overΨ , which
is also given by Eq. (10) (⇒ the signature of Ξ is (4+, 4−, 40)) and is sliced along
the 7-dimensional space e0 = e1 = e2 = e3 = 0, as the corresponding quaternion
E cannot be normalized. But the real intersection of this 7-space and Ξ equals the
3-dimensional generator-space e0 = e1 = e2 = e3 = f0 = f1 = f2 = f3 = 0 of
Ξ . Therefore only the points of this 3-space have to be removed from Ξ .

Remark 2 If we identify E3 with the hyperplane x0 = 0, all points of the 7-
dimensional generator-space f0 = e0, fi = −ei for i = 1, 2, 3 (cf. Remark 1)
of Ξ , which additionally fulfill the condition that no translation is done in direction
of x0 (⇔ s0 = 0), map the hyperplane x0 = 0 onto itself. As the condition s0 = 0
equals the Study condition, the 7-dimensional generator-space of Ξ is the Study
parameter space of SE(3). This shows that the Study parameters and subsequently
the Blaschke-Grünwald parameters can be obtained from the new parameters.

Finally it should be noted that the exceptional quadric of the new parameter space
is given by e20 + e21 + e22 + e23 = 0 and therefore it is also quasi-elliptic (cf. [11]) like
the kinematic image spaces named after Study and Blaschke-Grünwald.

3 The Hypersphere Condition

In the following we study the hypersphere condition Ωn of En for n = 4, but
we formulate everything in a way that it is also valid for the lower-dimensional
counterparts, i.e. the sphere condition for n = 3 and the circle condition for n = 2.

Based on our results of Sect. 2, the mapping X �→ X′ implied by an element of
SE(n) can be written in vector-representation as follows:

⎛

⎝

x ′
4−n
. . .

x ′
3

⎞

⎠ = 1

Nn

⎡

⎣Rn

⎛

⎝

x4−n

. . .

x3

⎞

⎠ + sn

⎤

⎦ , (12)

with N2 = e20 + e21 and N3 = N4 = e20 + e21 + e22 + e23, respectively, if we neglect
the normalizing condition Nn = 1. Note that the factor N−1

n , which corresponds to
the division by 1, is inserted in order to homogenize Eq. (12).

Now we can write the constraint Ωn that the point X is located on a hypersphere
of En with midpoint M and radius ρ as follows:

Ωn : (x ′
4−n − m4−n)

2 + . . . + (x ′
3 − m3)

2 − ρ2 = 0, (13)
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where m4−n, . . . , m3 are the coordinates of M and with x ′
4−n, . . . , x ′

3 of Eq. (12).
As Nn 
= 0 holds the denominator of Ωn cannot vanish and so we can focus on
the nominator, which is a homogeneous polynomial Pn of degree 4 in the motion
parameters.

• n = 2: A closer look at P2 shows that N2 factors out and we remain with a
homogeneous quadratic equation in the Blaschke-Grünwald parameters, which is
the so-called circle equation Q2.

• n = 3: Interestingly P3 does not behave like P2, but Husty [12] showed that N3
factors out if we add four times the squared Study condition to P3. The remaining
homogeneous quadratic equation in the Study parameters is the so-called sphere
equation Q3, which is the key for solving the direct kinematics of SG platforms
(cf. [12]). Note that according to Sect. 2.2, we can obtain Q2 from Q3 by setting
m1 = x1 = e2 = e3 = t0 = t1 = 0.

• n = 4: It is not difficult to see that P4 factors into N4 and a homogeneous quadratic
equation in the new parameters. This is the so-called hypersphere equation Q4,
which is the base of any algebraic kinematical study (e.g. solution of the direct
kinematics) of 10-dof S4P S4 parallel manipulators.
According to Remark 2 we can obtain Q3 from Q4 by setting m0 = x0 = 0,
f0 = e0, fi = −ei for i = 1, 2, 3. This also sheds light onto Husty’s tricky
addition, as it corresponds to the summand s20 within the new parameter approach.

Based on the hypersphere condition, we prove in the next theorem that singular
(infinitesimal movable) poses of 10-dof S4P S4 manipulators have an analogous line-
geometric characterization as those of their lower-dimensional counterparts.

Theorem 3 A 10-dof S4P S4 manipulator is in a singular configuration C if and
only if the carrier lines of the ten P-joints belong to a linear complex of lines of E4.

Proof For the proof we consider an arbitrarily given configuration C of the 10-dof
S4P S4 manipulator. Without loss of generality we can assume that the coordinates of
the platform anchor points X and the base anchor points M are given with respect to
the same reference frame. Therefore C is given by the identity map of SE(4), which
corresponds to the point I = (1 : 0 : 0 : 0 : 1 : 0 : 0 : 0 : 0 : 0 : 0 : 0) on Ξ .

We study an arbitrary motion throughC , which depends on the time τ , whereC is
passed at τ = 0. Now the partial derivative of the normalizing condition N4 = 1 and
the equation of the cylinder Ξ with respect to τ evaluated in I yields ė0 = ḟ0 = 0,
where the superior dot denotes the time derivative. Under consideration of this result
the partial derivative of Q4 with respect to τ simplifies to:

1

2ρ

(

3
∑

i=1

Q4,ei ėi +
3

∑

i=1

Q4, fi ḟi +
3

∑

i=0

Q4,ti ṫi

)

= ρ̇ with Q4,vi := ∂ Q4

∂vi
(14)

for v ∈ {e, f, t} and
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Q4,e1 + Q4, f1 = 4(m0x1 − m1x0) =: 4g01 Q4,e1 − Q4, f1 = 4(m2x3 − m3x2) =: 4g23

Q4,e2 + Q4, f2 = 4(m0x2 − m2x0) =: 4g02 Q4,e2 − Q4, f2 = 4(m3x1 − m1x3) =: 4g31

Q4,e3 + Q4, f3 = 4(m0x3 − m3x0) =: 4g03 Q4,e3 − Q4, f3 = 4(m1x2 − m2x1) =: 4g12

Q4,t0 = 4(m0 − x0) =: 4g04 Q4,t j = 4(x j − m j ) =: 4g4 j

for j = 1, 2, 3. This is a linear relation between the instantaneous motion of the
platform and the velocity ρ̇ of the P-joint. Therefore the coefficient matrix with
respect to ė1, ė2, ė3, ḟ1, ḟ2, ḟ3, ṫ0, ṫ1, ṫ2, ṫ3 of the system of ten linear equations (14),
which are induced by the ten S4P S4-legs, is the 10 × 10 Jacobian matrix J. As a
consequence the given configuration C is singular for detJ = 0.

In the following, we consider the projective point coordinates of X and M, i.e.

(x�
0 : . . . : x�

3 : x�
4) := (x0 : . . . : x3 : 1), (m�

0 : . . . : m�
3 : m�

4) := (m0 : . . . : m3 : 1).

With this notation the ten Grassmann coordinates li j = −l j i of the line
[

M, X
] ∈ E4,

which are the analogue to the six Plücker coordinates of lines in E3, can be computed
as li j := m�

i x�
j − m�

j x�
i for i 
= j and i, j ∈ {0, 1, 2, 3, 4} (cf. [13]). As the gi j ’s

defined in Eq. (14) equal the li j ’s, the theorem is proven. �

4 Conclusion and Outlook

In this chapter we developed all basics (kinematic mapping, hypersphere condition,
Jacobian matrix, line-geometric characterization of singular configurations) for a
future, deeper study of hyperplanar 10-dof S4P S4 parallel manipulators of E4, which
aims to improve the geometric understanding of non-planar SG platforms.

Moreover the hypersphere condition, written in the novel 12 homogeneousmotion
parameters for E4, yielded a deeper insight into Husty’s tricky addition for the
generation of the sphere condition in terms of Study parameters (cf. [12]), which is
the central equation for (computational) algebraic kinematics of SG manipulators.

Klawitter and Hagemann showed in Sect. 5.1 (resp. 5.2) of [9] (see also Sect. 9 of
[14]) that the algebraic structure of the Study parameters (resp. Blaschke-Grünwald
parameters) corresponds to the Spin group of the even part of the Clifford Algebra
with signature (3+, 0−, 10) (resp. (2+, 0−, 10)), which is isomorph to the group of
unit dual quaternions (cf. Sect. 2.1). The algebraic structure behind the new parame-
ters of SE(4) is still unknown and dedicated to future research.
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Direct Kinematics of an Orthogonal 6PRRS
Parallel Manipulator

Paul Zsombor-Murray

Abstract Direct kinematic (DK) analysis of a fully parallel—i.e., where each
identical 6dof serial leg contains a single basal, actuated joint—highly symmet-
ric six-PRRS legged robot is presented. Though not pursued herein, it is easy to see
that the inverse (IK) problem is linear. What is remarkable is that this device may be
thought of as a parallel architecture equivalent to the classical 6R wrist partitioned
serial manipulator because the linear point positioning aspect of the DK problem
is distinctly separated from its rotational aspect which is only slightly more com-
plicated. This is accomplished by rotational transformation (rotational kinematic
mapping) that places 6 points, the vertices of a regular octahedron originally in an
ideally convenient end effector (EE) frame, onto 6 planes explicitly defined by the 6
actuated prismatic P-joints in the fixed frame FF. A numerical example is formulated,
solved and results are illustrated in principal view pairs. Some plans for future, more
thorough, investigation are laid out, workspace and singularity and a different end
effector architecture are discussed briefly.

Keywords Direct kinematics · Parallel manipulator · Kinematic mapping · Six
degrees of freedom · Rotationally partitioned

1 Introduction

Recently, the novel six-legged robot shown in Fig. 1 was discovered as a website
posting [1]. Three pairs of parallel actuated prismatic or P-joints, in the fixed frame
FF,move in threemutually orthogonal directions. Attached to each of the six actuated
links is a serial RRS subchain where R and S respectively indicate a free revolute
joint and a distal spherical joint attached to the end effector. Going by what can be
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Fig. 1 Orthogonal 6PRRS parallel robot

gleaned from Fig. 1 it seems that the six S-joint centres, attached to the end effector,
are distributed on the vertices of a regular octahedron. For the purpose of direct
kinematic analysis (DK), that follows, these vertices are assigned homogeneous
coordinates

A{1 : 1 : 0 : 0}, B{1 : −1 : 0 : 0}, C{1 : 0 : 1 : 0}

D{1 : 0 : −1 : 0}, E{1 : 0 : 0 : 1}, F{1 : 0 : 0 : −1},

expressed in the moving or end effector frame EE shown on the right in Fig. 2.
Because the axes of the unactuated parallel RR pair in each leg are parallel to

the direction of motion caused by that pair’s P-joints the S-joint centre, if that joint
is detached from the end effector, sweeps a plane normal to the P-joint imposed
motion. These planes are labeled on FF, in Fig. 2, in lower case with the same letter
in upper case assigned to the S-joint centre that is confined to that corresponding
plane. Figure3 shows the pair of PRRS legs whose S-joint centres A, B, on planes
a, b, translate in the planes’ normal direction parallel to the x-axis in FF. The three
thickest, mutually orthogonal lines in Fig. 3 represent the rails on which the three
pairs of actuated P-joints travel. The plane equations and their coefficients are

a : x = p ≡ {−p : 1 : 0 : 0}, b : x = q ≡ {−q : 1 : 0 : 0}, c : y = r ≡ {−r : 0 : 1 : 0}

e : y = s ≡ {−s : 0 : 1 : 0}, e : z = t ≡ {−t : 0 : 0 : 1}, f : z = u ≡ {−u : 0 : 0 : 1}.
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Fig. 2 Three orthogonal pairs of parallel planes and six S-joint centres in regular octahedral array
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Fig. 3 One of the three PRRS leg pairs

Note how
A ∈ a, B ∈ b, C ∈ c, D ∈ d, E ∈ e, F ∈ f

have been assigned.Whether or not this corresponds to the layout shown in Fig. 1 the
DK approach detailed below is based on the architecture implicit in Figs. 2 and 3. Due
to the symmetry of the manipulator and choice of frame EE the solution is simple.
Pure translation of the end effector is produced by moving actuated parallel P-joints
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Fig. 4 Home and rotated orientations of end effector

pairs in the same direction at the same rate so as to maintain constant the parallel
plane separation distances p − q, r − s, t − u. Thus the origin M in EE assumes the
midpoint of the rectangular parallelepiped, as shown in Fig. 4, embraced by planes
a, b, c, d, e, f ; i.e., the point M{2 : p + q : r + s : t + u} in FF.

2 Rotational DK Analysis

Analysis is confined to rotation because this manipulator architecture neatly sep-
arates it from translation. Pure rotation is effected by moving parallel plane pairs
together or apart at the same rate, i.e., in opposite directions so as to maintain their
mid-planes on a fixed point M . Operating on the points A, B, C, D, E, F in EE
with the rotation matrix populated with Euler parameters (also known as quaternion
elements) and equating the appropriate coordinate differences to the three separation
distances provides the necessary three–four, if one includes the quaternion norm-
ing condition-equations to reveal the rotation, its axis expressed by the unit vector
[cosα cosβ cos γ ]� and its angle by φ taken in a right handed sense with respect to
sense given by the direction cosine unit vector, necessary to separate the octahedron
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opposite vertex pairs according to the distance between parallel plane pairs in the
Cartesian directions peculiar to FF. For example the first operation [R]aEE = aFF
is written below.

⎡
⎢⎢⎣

c20 + c21 + c22 + c23 0 0 0
0 c20 + c21 − c22 − c23 2(c1c2 − c0c3) 2(c1c3 + c0c2)
0 2(c2c1 + c0c3) c20 − c21 + c22 − c23 2(c2c3 − c0c1)
0 2(c3c1 − c0c2) 2(c3c2 + c0c1) c20 − c21 − c22 + c23

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1
1
0
0

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

c20 + c21 + c22 + c23
c20 + c21 − c22 − c23
2(c1c2 + c0c3)
2(c1c3 − c0c2)

⎤
⎥⎥⎦

Due to the norming condition c20 + c21 + c22 + c23 = 1 the second row c20 + c21 −
c22 − c23 = p − q defines the x-coordinate distance between points A, B in FF.

3 Constraint Equations and Solution

The four constraint equations are

2(c20 + c21 − c22 − c23) − p + q = 0, 2(c20 − c21 + c22 − c23) − r + s = 0,

2(c20 − c21 − c22 + c23) − p + q = 0, c20 + c21 + c22 + c23 − 1 = 0.

These yield the following solutions.

c20 = (p − q + r − s + t − u + 2)/8, c21 = (p − q − r + s − t + u + 2)/8,
c22 = (−p + q + r − s − t + u + 2)/8, c23 = (−p + q − r + s + t − u + 2)/8

Note that since the solutions are in terms of the square of Euler parameters all square
root values can be positive or negative so as to produce up to eight end effector poses.
Why not 16, i.e., 24 = 16? Since the four quaternion elements are homogeneous
coordinates the sign of one of them can be chosen.

4 Example

Positioning properties of this manipulator, as regards both DK and IK, are adequately
covered above. Therefore this example will be confined to dealing with end effector
orientation pertaining to DK. Assume joint coordinates are imposed to produce the
following plane parameters.
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p − q = 4/3, r − s = 2/3, t − u = 1

These yield

c20 = 4/3 + 2/3 + 3/3 + 6/3

8
= 5/8, c21 = 4/3 − 2/3 − 3/3 + 6/3

8
= 5/24,

c22 = −4/3 + 2/3 − 3/3 + 6/3

8
= 1/24, c23 = −4/3 − 2/3 + 3/3 + 6/3

8
= 1/8.

This produces the following quaternion elements (or Euler parameters), rotation
axis direction cosines and rotation half-angle cosines and sines.

⎡
⎢⎢⎣

c0
c1
c2
c3

⎤
⎥⎥⎦ ≡

⎡
⎢⎢⎣

cos(φ/2)
cosα sin(φ/2)
cosβ sin(φ/2)
cos γ sin(φ/2)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
2

√
5
2

± 1
2

√
5
6

± 1
2

√
1
6

± 1
2

√
1
2

⎤
⎥⎥⎥⎥⎥⎥⎦

≡

⎡
⎢⎢⎢⎢⎢⎢⎣

√
5
8

±
√

5
9

√
3
8

±
√

1
9

√
3
8

±
√

1
3

√
3
8

⎤
⎥⎥⎥⎥⎥⎥⎦

It is noted with satisfaction that the values above confirm that

c20 + c21 + c22 + c23 = cos2 α + cos2 β + cos2 γ = 1.

Choosing the solution wherein all signs are positive and putting the ci into the
rotation matrix reveals the following displacement operator

⎡
⎢⎢⎣

1 0 0 0
0 2/3 −√

5/6
√
15/6

0 −√
5/3 1/3 −√

3/3
0 0

√
3/2 1/2

⎤
⎥⎥⎦

whose determinant is 1. Premultiplying the point vectors ofA,B,C,D,E,F, given above
in EE, by this matrix gives the displaced position vectors.

a =
⎡
⎣

2/3√
5/3
0

⎤
⎦ , b =

⎡
⎣

−2/3
−√

5/3
0

⎤
⎦ , c =

⎡
⎣

−√
5/6

1/3√
3/2

⎤
⎦

d =
⎡
⎣

√
5/6

−1/3
−√

3/2

⎤
⎦ , e =

⎡
⎣

√
15/6

−√
3/3

1/2

⎤
⎦ , f =

⎡
⎣

−√
15/6√
3/3

−1/2

⎤
⎦

Referring to Fig. 4 one sees, all plotted to scale, on the left the six S-joint centres
A, B, C, D, E, F and the corresponsing planes a, b, c, d, e, f in edge or line view
on these points in plan (top) and elevation (front) projections in the so-called “home”
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orientation. In the middle appears the same two views of the rotation axis implied by
the quaternion. The angle of rotation, in a right hand sense, is about φ = 75.52◦. On
the right there appear the two views of the six S-joint centres and six constraining
planes after the quaternion rotation has been imposed on the home attitude.

5 Conclusion

Extensions to this analysis would logically include

• Examination of workspace and singularity,
• Generalizing by treatingDKanalysis of various S-joint distributions on the vertices
of a scalene octahedron and/or,

• Similarly treating an architecture with the six constraining planes embracing a
general convex hexahedral volume.

It should be noted here that the simplicity of the analysis presented comes about
by applying the rotational kinematic mapping method, introduced by Husty [2], to
mapping six points in EE to six planes in FF, called “Point-on-Plane” constraint
equations (PoP) by Zsombor-Murray and Gfrerrer [3]. Upon undertaking analysis of
the most general case, of arbitrary octahedral vertices and convex hexahedron, six
general PoP constraints will arise. The rotation matrix, shown previously in Sect. 2,
Rotational DK Analysis, will, in its first column, acquire dual quaternion elements
thus. ⎡

⎢⎢⎣
c20 + c21 + c22 + c23 ...

2(c0d1 − c1d0 + c2d3 − c3d2) ...

2(c0d2 − c2d0 + c3d1 − c1d3) ...

2(c0d3 − c3d0 + c1d2 − c2d1) ...

⎤
⎥⎥⎦

In these six quadrics all di appear only in linear form. Eliminating these one is left
with the quaternion elements ci in both linear and quadratic form. Therefore the most
general problem will admit eight solutions too. These however must be computed
individually and not by simply permuting three ± signs.

6 Appendix: A Reprise

Here some concerns expressed by a reviewer and DK with a somewhat different
layout of the 6 EE points A′, . . . , F ′ are briefly addressed.

Re-examine Figs. 2 and 3 then consider Fig. 5 which shows

• On the left, S-joint points A, . . . , F on regular octahedron vertices and the 6
points A′, . . . , F ′, on midpoints of 6 of the 12 cube edges that circumscribe the
octahedron. The latter was supplied by Professor Bonev [4] as the “correct ones”
used by the designer [1].
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Fig. 5 Two S-joint distributions on end effector

• In the middle at 1
2 -scale, the “stretched” configuration of planes a, . . . , f which

encloses a 2 × 2 unit cube, the faces of which cannot be further separated.
• On the right at 1

2 -scale, the “squeezed” configuration such that the cube collapses
to a point and (a, b), (c, d), (e, f ) describe three mutually orthogonal coincident
plane pairs.

The S-joint point sets A, . . . , F and A′, . . . , F ′ have been compatibly distributed in
both stretch and squeeze configuration to demonstrate that the rotational workspace
limits are identical with both EE designs. This can be shown by noting the chords of
the arcs described by migration of points under a single (quaternion) rotation about
a fixed axis during the transition is in the same direction, to wit:

(A → C) × (C → E) (A′ → C ′) × (C ′ → E ′)
[1, 0, 0) → (0, 1, 0) × (0, 1, 0) → (0, 0, 1)] [(1, 0,−1) → (−1, 1, 0) × (−1, 1, 0) → (0,−1, 1)]⎡

⎣
−1
1
0

⎤
⎦ ×

⎡
⎣

0
−1
1

⎤
⎦ =

⎡
⎣
1
1
1

⎤
⎦

⎡
⎣

−2
1
1

⎤
⎦ ×

⎡
⎣

1
−2
1

⎤
⎦ =

⎡
⎣
3
3
3

⎤
⎦

But a given intermediate rotation between the two extremes described above is
not produced by the same placement of planes a, . . . , f . This is evident from the
set of four constraint equations obtained for the second EE configuration.

c0c2 + c1c3 − dab/4 = 0, c0c3 + c1c2 − dcd/4 = 0,

c0c1 + c2c3 − def /4 = 0, c20 + c21 + c22 + c23 − 1 = 0

These produce a monovatiate of degree 6 in squares. It is hoped that this reprise helps
to explain some issues raised by Conclusion above.
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The Hidden Robot Concept: A Tool for Control
Analysis and Robot Control-Based Design

Sébastien Briot, Victor Rosenzveig and Philippe Martinet

Abstract Exteroceptive sensors can be used to estimate the robot pose in order to
suppress inaccuracies coming from the accumulation of modelling errors when using
the classical control approach. In some cases, it is impossible to directly observe
the end-effector. Thus we can replace it efficiently by the observation of the legs
directions. However, with such an approach, unusual results were recorded, namely:
(i) the possibility of controlling the robot by observing a limited number of legs, and
(ii) in some cases, the robot does not converge to the desired end-effector pose, even
if the observed leg did. These results can be explained through the use of the hidden
robot concept, which is a tangible visualisation of the mapping between the observed
leg direction space and Cartesian space. In the present chapter, it is explained (1)
why the tools used in mechanical design can be efficently applied in control analysis
via the use of the hidden robot concept which is, in our opinion, a way to unify the
analysis of the mechanical and control performances and (2) why we believe that
the hidden robot concept must be used to modify the robot design methodologies in
order to include control-based performance indices.
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1 Introduction

Sensor-based control approaches have proven to be more efficient than model-based
control approaches when accuracy is required in robotized industrial applications [9].
The most usual approach is to observe the robot end-effector pose through the use
of a camera. However, for some operations, such as the milling of materials, it is not
possible to observe the end-effector. An innovative vision-based control approach
that can be used on parallel robots has been proposed in [2]. It is based on the fact that
parallel robot links are usually made of rectilinar cylindrical rods that can be easily
detected in the camera space. The information being acquired through an external
sensor, this technique allows to estimate indirectly the pose of the end-effector from it.

Servoing through the robot leg observation was sucessfully applied to several
types of robots, such as the Gough-Stewart (GS) platform, the Adept Quattro and
other robots of the same family [2, 3].

However, two unexpected results arose from the use of this technique: (1) it was
possible to control the robot by observing a number of legs fewer than the total
number of legs; this is surprising because in actuator-based control schemes, each
actuated leg has to be controlled to fully servo the robot, and (2) in some cases, the
robot did not converge to the desired pose, even if all observed leg directions did.

Not only were these two points inexplicable, but other questions arose too: (3)
are we sure there are no local minima (for which the error in the observation space
is non zero while the robot platform cannot move [8]) and (4) are we sure that there
is no singularity in the mapping between the leg direction and the Cartesian spaces?

Due to the unusual nature of this visual servoing technique, all these points were
left unanswered. Indeed, the nature of the mapping was not clearly understood. The
answer came only recently, when two of the authors of the present chapter proposed
the existence of a virtual robot model “hidden” within the controller. This robot
presents singular configurations and assembly modes different from the controlled
robot, and it is this hidden robot whose properties are being used through the obser-
vation of the real robot’s leg directions. This proposition was fully demonstrated and
validated through experiments in [13].

The aim of the present chapter is to introduce the generalized concept of hidden
robot model and to show why the tools used in mechanical design can be efficently
applied in control analysis and how the hidden robot concept must modify the robot
design methodologies in order to include control-based performance indices.

2 Leg Observation Based Control

2.1 Cylindrical Leg Observation and Interaction Matrix

The controller proposed in [2] is based on the fact that the robot leg directions cui
(extracted from the projection of the cylindrical link in the image space—Fig. 1) are
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Fig. 1 Projection of a cylinder in the image

controlled and that the leg direction velocities can be linked to the platform twist cτc

through the expression (the superscript “c” denotes the camera frame):

cu̇i = MT
i

cτc (1)

where MT
i is the (3 × 6) interaction matrix for the leg i .

For spatial parallel robots, matrices Mi are in general of rank 2 [2]. As a result,
for spatial robots with more than 2 dof, the observation of several independent legs is
necessary to control the end-effector pose. An interaction matrix MT can be obtained
by stacking k matrices MT

i of k legs, which leads to:

cu̇ =
[

cu̇i ,
c u̇ j , . . . ,

c u̇m

]T = [
Mi , M j , . . . , Mm

]T cτc = MT cτc (2)

2.2 Control

For the visual servoing of a robot, one achieves exponential decay of an error e(s, sd)

between the current primitive vector s and the desired one sd using a proportional
linearizing and decoupling control scheme. The visual primitives being unit vectors,
it is more elegant to use the geodesic error rather than the standard vector difference,
i.e. the error grounding the proposed control law will be ei = cui × cudi , where cudi
is the desired value of cui . A control is then chosen such that e, the vector stacking
the errors ei associated to of k legs, decreases exponentially (i.e. ė = −λe).

Then, introducing LT
i = − [

cudi

]
× MT

i , where
[

cudi

]
× is the cross product

matrix associated with the vector cudi , the control law can be derived:

cτc = −λLT +e (3)
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where LT can be obtained by stacking the matrices LT
i of k legs and the upperscript

“+” corresponds to the matrix pseudo-inverse.
This expression can be transformed into the control joint velocities:

q̇ = −λcJinvLT +e (4)

where cJinv is the inverse kinematic matrix of the robot relating the end-effector
twist to the actuator velocities, i.e. cJinvcτc = q̇.

It can be proven that the controller can meet numerical issues if:

• the matrix LT is rank deficient: in that case, a null error vector e can lead to a non
null platform twist cτc. This appears if and only if MT is rank deficient.

• the pseudo-inverse LT + is rank deficient: in that case, we can meet a local minimum
of the controller [8] for which the value of the platform twist cτc is zero while the
error e is not. This appears if and only if MT + is rank deficient.

Clearly, only stacking leg interaction matrices (which is usual in the visual servoing
community) is not enough and the singularities of the controller must be studied.
The rank-deficiency conditions are difficult to analyze, and indeed, the complexity
for the formerly studied robots was so high that they were never obtained. It is shown
in the next part that they can be analyzed by taking into account that the matrix MT

is indeed the inverse kinematic matrix of a virtual robot hidden into the controller.

3 The Concept of Hidden Robot Model

3.1 How to Define the Legs of the Hidden Robots

The concept of hidden robot model comes from the following observation: in the
classical control approach, the encoders measure the motion of the actuators and
this measure is linked to the forward kinematic problem (fkp) x = H (q), where x
represents the platform pose and q the encoder measures; in the previously described
control approach, the leg directions are observed. So, in a reciprocal manner, one
could wonder to what kind of virtual actuators such observations correspond, i.e.
what is the virtual robot hidden below the new fkp x = G (u).

The virtual robot hidden into the controller corresponding to x = G (u) can be
described as follows [13]. First, the observed links mounted to the platform must be
disassembled from the rest of the robot and mounted onto active U joints (Fig. 2).
The U joint must be linked to a passive kinematic chain composed of at most 3
orthogonal passive P joints that ensures that the link on which is it attached performs
a translation w.r.t. the base frame. This passive chain is also linked to the segments
before the observed links so that they do not change their motion. Note that:

• it is necessary to fix the PPP chain on the preceeding leg links because the informa-
tion given by the vectors ui is not enough for rebuilding the full platform position
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Fig. 2 a A general robot leg and b its corresponding hidden robot leg when the vector ui is observed

and orientation: it is also necessary to get information on the location of the anchor
point An−1 of the observed segment [1];

• 3 P joints are only necessary if and only if the point An−1 describes a motion in
the 3D space; if not, the number of P joints can be decreased such as in [6];

• when the vector ui is constrained to move in a plane (e.g. for planar legs), the
virtual actuator becomes an R joint which must be mounted on the PPP chain.

It should be noticed that, in several cases for robots with a lower mobility, the last
joint should be changed so that, if the number of observed legs is inferior to the number
of real legs, the hidden robot keeps the same mobility (see [12]). Moreover, we have
presented above the most general methodology, but not the most elegant. In many
cases, a hidden robot leg architecture can be obtained such that less modifications
w.r.t the real leg are achieved. For example, for the Quattro [12] made of R–{2–UU}
legs for which the parallelogram links are observed ({2–UU} subchain links), the
R–PPP chain of the hidden robot leg (which is indeed a{R–PPP}–{2–UU} leg)
could be fully-equivalently replaced by a planar parallelogram (� joint) [12].

3.2 How Analyzing the Controllability of the Servoed Robots

The aim of this section is to show how to use the hidden robots for answering points
1–4 enumerated in the introduction of the chapter.

Point 1: Let us consider a general parallel robot composed of 6 legs (one actuator
per leg) and having six dof. Using the approach proposed in Sect. 3.1, each observed
leg will lead to a modified hidden robot virtual leg with at least one actuated U joint
that has two degrees of actuation. For controlling 6 dof, only 6◦ of actuations are
necessary, i.e. three actuated U are enough. Thus, in a general case, only three legs
have to be observed to fully control the platform dof (e.g. see [6]).
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Fig. 3 The hidden robot model of the 3–RRR robot and its hidden robot model. a 3–�RR robot
kinematics, b the six possible assembly modes

Point 2: In many cases, the hidden robot may have assembly modes and singular
configurations different from those of the real robot. If the initial and final robot
configurations are not included in the same aspect [11], the robot will not be able
to converge to the desired pose, but to a pose that corresponds to another assembly
mode that has the same leg directions as the desired final pose (e.g. see [6, 12]).

Point 3: The interaction matrix MT involved in the controller is the inverse kinematic
matrix of the hidden robot (and, consequently, MT + is the hidden robot kinematic
matrix) which, is most of cases, is not free of singularities. Thus, finding the condi-
tion for the rank-deficiency of MT and MT + is equivalent to find the Type 1 and 2
(also called serial and parallel) singularities of the hidden robot [10].

Point 4: The robot could converge to local minima if the matrix MT + is rank defi-
cient, i.e. the hidden robot model encounters a Type 1 singularity.

Case Study: In the previous chapters, only spatial mechanisms have been studied.
For illustrating that section, we have decided to consider the case of the well-known
planar 3–RRR robot controlled via the observation of the distal links (links between
the passive R joints on each leg). Using the results of previous section, it can be found
that its equivalent hidden robot model is a 3–�RR robot (Fig. 3—grey joints denote
actuated joints). Each of its legs is composed of a passive planar parallelogram (�
joint) which is able to maintain constant the orientation of the links Bi Di w.r.t. the
base and of an RR chain which is mounted on the link Bi Di .

Forward kinematics and assembly modes. All the solutions to the fkp are at the inter-
sections of the coupler curve (which represents the displacement loci of one platform
extremity when one of the leg is disassembled, the actuators of the two other being
fixed (see Fig. 3b)—for the present robot, the coupler curve is a sextic curve) with
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the vertex space of the disassembled leg (here, a circle) [11]. Thus, the solutions
of the fkp are at the intersection points (which are at most 6 [11]) between the
aforementioned circle and sextic curve (Fig. 3b).

Singular configurations. The Type 1 singularities of 3–�RR robot appear when one
leg is fully streched or folded. Its Type 2 singularities appear when the lines of
direction wi (i = 1, 2, 3—Fig. 3a) passing through points Ci intersects in the same
point (that can be at infinity). Those conditions are different from the Type 2 singular
configurations of the 3–�RR robot, for which they appear when all lines passing
through Ci of direction ui intersects in one point [5].

4 Rethinking the Robot Design by Using the Hidden
Robot Concept

Through the concept of hidden robot, the tools and methodology used in mechan-
ical design—for solving the fkp (e.g. [7, 11], etc.), for analyzing the singularities
(e.g. [4, 11], etc.)—can be efficiently used in control design and analysis. However,
this concept can also be used to rethink the design process of robots controlled via
the use of exteroceptive sensors: the concept of hidden robot can lead to the defini-
tion of control-based performance indices. We want to mention that, even if we have
deliberately limit the approach to the leg-based visual servoing of parallel robots, the
hidden robot concept can be extended to any types of robots controlled via the use of
exteroceptive sensors (e.g. cameras, lasers, etc.) which are observing robot internal
motions in order to estimate the robot external properties (end-effector pose).

Figure 4 illustrates that point. The design process is typically separated into four
main phases: (1) the specification of the product requirements coming from the need
definition, (2) the phase of conceptual design during which concepts are proposed and
evaluated, (3) the embodiement of schemes during which the concepts are developed
and analyzed, and (4) the detailed design that leads to the CAD drawing and the
manufacturing of prototypes. Phases (1–3) are obviously linked in order to modify/
improve the design solutions in case of feasability issues.

If, for a given application, it is specified that a robot must be controlled via the
use of exteroceptive sensors observing its legs, the designer has to know that such a
requirement leads to the definition, for any kind of robot architecture, to a generic
concept of hidden robot (such as the one in Fig. 4 for leg-based visual servoing).
Then, during the conceptual design phase, for each proposed robot architecture, the
corresponding hidden robots can be defined and their singularities can be analyzed.
A feedback can be given to the designer so that he can choose, for example, the
robot architectures that have the hidden robot models with the minimal number
of singular configurations. If, for any reason, all hidden robots are architecturally
singular, the design specifications concerning sensor types and observed elements
must be modified (by proposing other sensors, or other observed elements). Then,
once the potential architectures are selected, they must be optimized in phase 3. More
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Fig. 4 How the hidden robot concept should be taken into account into the robot design process

detailed kinematic models of the robots and of their corresponding hidden robots
are defined and used for extracting performances indices (e.g. w.r.t. accuracy), for
defining a controller, and simulating the robot behavior. If the results do not meet the
design requirements, previous design steps must be conducted again. Finally, during
the implementation of the controller in the manufactured prototype, the hidden robot
model equations must be implemented. Our future works will focus on the practical
implementation of such a design methodology.

5 Conclusion

In that chapter, it has been shown that some sensor-based control approaches well
adapted for servoing parallel robots involve the presence of virtual robots hidden into
the controller, which have assembly modes and singularities different from the real
robots. The analysis of the robot models hidden into the controllers developped by the
sensor-based control community required the use of mathematical tools developped
by the mechanical design community. This analysis is crucial to avoid control issues
that can arise if interaction matrices are stacked without deeper analysis. It has also
been shown that the tools used in mechanical design can be efficently used in control
analysis and that the hidden robot concept can be smartly used in the design process
of robots in order to include control-based performance indices.
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Impact of Perturbation
on Wire Tension Vector

Leila Notash

Abstract The effect of uncertainties in design parameters and error in measurement
on the Jacobian matrix and its null space basis of wire-actuated parallel manipulators
is investigated to ensure positive wire tension. The minimum 2-norm non-negative
solution for the vector of wire tensions is calculated utilizing the perturbed and the
interval forms of Jacobian matrix. A planar manipulator is simulated to investigate
the implementation and effectiveness of these twomethodologies while relating their
results.

Keywords Positive wire tension · Parameter uncertainty

1 Introduction

In wire/cable-actuated robot manipulators, also known as wire/cable-driven, the
mobile platform (end effector) is connected to the base by wires/cables. Because
wires act in tension, i.e., their inputs are unidirectional and irreversible, to fully con-
strain an m degrees of freedom (DOF) rigid body suspended by wires, in the absence
of gravity and external force/moment (wrench), the number of wires/actuators should
be larger than the DOF of manipulator (Fig. 1). Hence, there are infinite solutions
for the wire tension vector for a given platform wrench as n ≥ m + 1. Applying
the generalized inverse (GI) of Jacobian matrix, the minimum 2-norm solution for
the vector of wire tensions could result in negative tension for wires which is not
acceptable. Homogeneous solution is used to adjust the tension to positive values if
the platform position and orientation (pose) is within the wrench closure workspace.
Implementation of the methodology of [1] for achieving minimum 2-norm positive
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Fig. 1 2 DOF wire-actuated parallel manipulators with a three wires; and b four wires

wire tension was presented in [2]. The proposed novel method provides closed-form,
minimum norm and continuous solution for positive wire tension. In most other pub-
lications, positive tension is identified with iterative methods (e.g., [3]), which are
not suitable for real time applications and the calculated wire forces could be much
larger than necessary. The closed-form procedure of [4] could fail in finding a solu-
tion though the solution exists, e.g., wire tension could exceed the upper limit as it
is not the minimum norm solution. In Sect. 2, formulation of non-negative minimum
2-norm wire tension vector, in the presence of uncertainties in parameters and error
in measurement, is discussed utilizing perturbation theory and interval arithmetic’s.
Simulation results are reported in Sect. 3. The article concludes with Sect. 4.

2 Non-negative Minimum Norm Wire Tension

2.1 Perturbed Jacobian Matrix

The perturbed transposed Jacobian matrix as a result of uncertainty in parameters is

J̃
T = JT + E. For perfect case, E = 0 and J̃T = JT . The n × 1 vector of perturbed

wire forces τ̃ττ = [
τ̃1 · · · τ̃n

]T is related to them×1wrench F̃ applied by the platform
with the m × n perturbed transposed Jacobian matrix J̃T as

F̃ = J̃T τ̃ττ =
[
J̃T
1 J̃T

2 · · · J̃T
i · · · J̃T

n−1 J̃T
n

]
τ̃ττ =

n∑

j=1

J̃T
j τ̃ j (1)

The solution for the perturbed linear systemwhen theMoore-Penrose generalized
inverse of J̃T, J̃#T, is a continuous function of its entries is

τ̃ττ = τ̃ττp + τ̃ττh = J̃#T F +
(

I − J̃#T J̃T
)

k = J̃#T F + Ñλλλ

τl min ≤ τ̃ l = τ̃p l + τ̃h l = τ̃p l +
n−m∑

j=1
ñl jλ j ≤ τl max for l = 1, . . . , n

(2)
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When rank(JT ) = rank(J̃T ) then J̃T is an acute perturbation of JT . Other-

wise, ‖J̃#T − J#T ‖2 ≥ 1/‖E‖2 ,‖J̃#T ‖2 ≥ 1/‖E‖2; and ‖J̃T ‖2 =
√

λmax(J̃J̃
T
) =

σmax(J̃T ) is the spectral norm, λmax(J̃J̃
T
) and σmax(J̃T ) are respectively the largest

eigenvalue and singular value of J̃J̃
T
and J̃T [5]. For the nonsingular square matrix

JT , a relative perturbation of at least ‖E‖/‖JT ‖ ≥ κ−1(JT ) is required for J̃T to
become singular, where κ(JT ) = ‖JT ‖ ‖J−T ‖ is the condition number of JT with
respect to a consistent matrix norm, e.g., κ2(JT ) = σmax/σmin.

In Eq. (2), the homogeneous solution τ̃ττh =
(

I − J̃#T J̃T
)

k = Ñλλλ vanishes when

J̃T is of full column rank as J̃#T J̃T = I. Columns of the n × (n − m) matrix Ñ, ñ j ,
j = 1, . . . , n−m, correspond to the null space basis of J̃T , andλλλ is an (n−m)-vector.
When one or more entries of the minimum 2-norm (particular) solution τ̃ττp = J̃#T F̃
are negative thewire tensions couldbe adjustedby identifying the correctional tension
τ̃ττh that would set all the wire tensions to positive values provided the manipulator
pose is in the wrench closure workspace.The adjusted wire tensions should satisfy
the tension limits 0 ≤ τττmin ≤ τ̃ττp + τ̃ττh ≤ τττmax.

The possibility of having positive wire tensions (pose being in the wrench closure
workspace) could be investigated considering the orthonormal basis of the null space
of the m × n perturbed transposed Jacobian matrix J̃T . The sufficient condition for
ensuring positive tension is the existence of a null space vector of J̃T with all positive
entries. In the presence of external wrench, regardless of the null space vector of J̃T ,
positive wire tension is feasible if there exist a null space vector for the m × (n + 1)
augmented transposed Jacobian matrix J̃T

aug

[
J̃T
1 J̃T

2 · · · J̃T
n−1 J̃T

n − F̃
] [

τ̃ττ

1

]
= J̃T

augτ̃ττaug = 0 (3)

with non-negative values for the first n entries corresponding to wires and positive
value for the (n + 1)th entry corresponding to F̃. A procedure for calculating the
non-negative null space vectors of JT and JT

aug (J̃T and J̃T
aug) is presented in [2].

When theminimum norm solution results in negative tension for wire i the change

in its tension after adjusting the negative value to τ̃pi + τ̃hi = τ̃pi +
n−m∑

j=1
ñi jλ j =

τci ≥ τmin ≥ 0 is
∣
∣τ̃pi − τci

∣
∣. When k wires have negative tension, after adjusting the

negative tensions, the platformwrench that should bebalancedby the remainingwires
is

∑

k
J̃T

i (τ̃pi − τci ) = J̃T (τ̃ττp − τ̃ττ f ), and τ̃ττ f = [τ̃p 1 τ̃p 2 ... τci ... τ̃p n−1 τ̃p n]T .

A method for calculating τci such that the adjusted wire tensions do not vio-
late the lower and upper limits, i.e., τmin ≤ τ̃ l ≤ τmax, for l = 1, . . . , n was
discussed in [2, 6]. For example, when the entries of the null space vector ñ have
consistent signs (non-negative), while adjusting the negative tension of wires, e.g.,
wire i with τ̃pi + ñiλ ≥ τmin, the tension of wires with positive particular solution
will be increased (will remain unchanged if the corresponding entry of ñ is zero).
When wire k has the smallest λk = (τmax − τ̃pk)/ñk among all wires with positive
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particular solution, the adjusted tensionswill not exceed the limit for anyvalues ofλ as
long as

0 < λdw = τmin + ∣∣τ̃pi
∣∣

ñi
≤ λ ≤ λk = τmax − τ̃pk

ñk
for ñi > 0 and ñk > 0 (4)

Whenmore than onewire has negative tension, in Eq. (4) wire i corresponds to the
dominating wire with λdw. On the other hand, when the minimum 2-norm solution
results in a wire tension larger than the maximum value that tension could be set to
the limit and the procedure is repeated. The upper limit will be fulfilled as long as
there is sufficient redundancy. The necessary condition for exceeding the upper limit
after adjustment is τ̃pk ≥ τmax − ñkλ. If ñi and ñk have opposite signs, ñi > 0 and
ñk < 0, the upper limit is satisfied if τ̃pk ≤ τmax + |ñk | λ.

2.1.1 Adjusting Wire Tensions

Following the method in [1] for manipulators with no uncertainty in parameters,
for the perturbed case, the minimum 2-norm “correctional” and overall wire force
vectors for the calculated τci [7] will be

τ̃ττcorr = J̃#T
f

∑
J̃T

i (τ̃ττpi − τci ) = J̃#T
f J̃T (τ̃ττp − τ̃ττ f ) (5)

τ̃ττtot = τ̃ττ f + τ̃ττcorr = J̃#T
f J̃T τ̃ττp + (I − J̃#T

f J̃T )τ̃ττ f (6)

where k columns of J̃T , corresponding to thewireswith negative tension, are replaced
by zeroes resulting in J̃T

f . These τ̃ττcorr and τ̃ττtot are continuous as long as the GI is

continuous, i.e., while J̃T and J̃T
f have locally constant rank. For full row-rank J̃T

f ,

the right-GI of J̃T
f is J̃#T

f = J̃ f (J̃T
f J̃ f )

−1 as the vector of wire forces is physically
consistent. Otherwise, the weighted left-GI is used.

2.2 Interval Arithmetic’s

When data/parameters are given as intervals, the interval Jacobian matrix is JT =
[JT , J

T ] = [JT
c − ΔJT , JT

c + ΔJT ], where JT
c is the midpoint transposed Jaco-

bian matrix. F = [F, F] and τττ = [τττ, τττ] are interval vectors due to inexactness of

data/parameters. If JT = [JT , J
T ] does not include a singular matrix then it is regu-

lar. The problem then is the computation of the exact/sharp lower and upper bounds

of τττp using F = JTτττ =
n∑

j=1
JT

j τ j , along with τττcorr and τττtot , with data/parameters

varying independently of each other in the prescribed intervals, e.g., the interval
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hull of solution sets. The dependency among entries of JT may be addressed by
preconditioning, e.g., with the inverse of JT

c , to tighten the solution set enclosure.

2.2.1 Adjusting Wire Tensions

When the m × n interval matrix JT
f is full-row rank with n > m then JT

f cJ#T
f c = Im ,

where in τττ f and JT
f the corresponding entries and columns relating to the wires with

negative tension are replaced with degenerate null interval. The bounds for τττcorr are
calculated solving

JT
f τττcorr =

∑
JT

i (τpi − τci ) = JT (τττp − τττ f ) (7)

and τττtot = τττ f + τττcorr . For J f y = τττcorr , JT
f J f y = JT

f τcorr = JT (τττp − τττ f ) is
solved for y then τττcorr = J f y. Hence, for the under-determined linear system, the
bounds for τττcorr could also be calculated using the (m + n) × (m + n) extended
relation [8]

[
J f −I
0 JT

f

] [
y

τττcorr

]
=

[
0

JT (τττp − τττ f )

]
⇒ JT

ext τττext = Fext (8)

where τττcorr corresponds to the last n entries of the (m + n) × 1 vector τττext .

3 Case Study

For planar manipulators, the platform is connected to the base by n wires, each wire
with a length of li and orientation of αi (Fig. 2). The attachment points of wire i
to the base and platform are denoted as points Ai and Bi , respectively. The angular
positions of points Bi on the platform are denoted by θi . For a 2 DOF translational
manipulator with four wires (Fig. 1b), the coordinates of Ai , i = 1, . . . , 4, are (–2,
–1.5), (2, –1.5), (2, 1.5) and (–2, 1.5) meters, respectively. Error bounds of ±10mm
are considered for these coordinates and for the platform pose (when applicable).
The null space bases of the 2×4matrices JT and J̃T are spanned by two 4×1 vectors.

Example 1 At the platform pose of p = [0 0]T in the wrench closure workspace
and for F = [0 24]T N, the minimum 2-norm vector of wire forces is τττp = J#T F =
[−10 − 10 10 10]T N with negative tension for wires 1 and 2 and a magnitude of∥
∥τττp

∥
∥
2 = 20. With uniformly distributed random error for Ai ,

J̃T =
[
cos α̃1 · · · cos α̃4
sin α̃1 · · · sin α̃4

]
=

[−0.7985 0.7977 0.8015 −0.8023
−0.6021 −0.6030 0.5979 0.5969

]
(9)
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Fig. 2 Parameters of planar wire-actuated parallel manipulators

J̃T is an acute perturbation of non-singular JT (reported as Eq. (13) of [2]) since
‖E‖2 /

∥∥JT
∥∥
2 = 0.0035 < κ−1

2 (JT ) = 0.7500. The minimum 2-norm perturbed
wire tension vector also includes negative tension for wires 1 and 2

τ̃ττp = J̃#T F = [−10.0342 − 10.0510 9.9655 9.9491]T (10)

The non-negative null space vectors of J̃T and J̃T
aug are

Ñ = [
ñ1 ñ2

] =

⎡

⎢⎢
⎣

0 0.9985
0.9978 0
0.0080 1.0000
1.0000 0.0054

⎤

⎥⎥
⎦ (11)

ÑT
aug = [0 0 0.7053 0.7080 0.0357] (12)

For τc1 = τc2 = 1N, τ̃ττ f = [1 1 9.9655 9.9491]T . To produce the wrench F

τ̃ττcorr = J̃#T
f J̃T (τ̃ττp − τ̃ττ f ) = [0 0 11.1393 11.1353]T (13)

τ̃ττtot = [1.0 1.0 21.1048 21.0843]T (14)

with
∥∥τ̃ττp

∥∥
2 = 20.0001,

∥∥τ̃ττcorr
∥∥
2 = 15.7505 ,

∥∥τ̃ττtot
∥∥
2 = 29.8657.

If thewire tension limits are set at τmin = 1N and τmax = 30N, then 1 ≤ τc1 ≤ 9.8
and 1 ≤ τc2 ≤ 9.8 would satisfy the tension limits, e.g., for τc1 = τc2 = 9.8 N

τ̃ττtot = [9.8000 9.8000 29.9885 29.9515]T (15)
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with
∥∥τ̃ττtot

∥∥
2 = 44.5924. While for τc1 = 1 N,τc2 = 9.8 N, ‖τττtot‖2 = 37.9431 for

τ̃ττtot = [1.0 9.8 21.1750 29.9042]T (16)

When Ai are treated as interval arguments, original coordinates are taken as
the midpoint of corresponding interval. With an interval radius of 10 mm for Ai

coordinates, e.g., with infimum-supremum representation for the coordinates of A1([−2.0100,−1.9999]; [−1.5100,−1.4999]), the interval JT is

JT =
[ [ −0.8085, −0.7916

] [
0.7916, 0.8085

] [
0.7916, 0.8085

] [ −0.8085, −0.7916
]

[ −0.6074, −0.5927
] [ −0.6074, −0.5927

] [
0.5927, 0.6074

] [
0.5927, 0.6074

]
]

(17)

with JT
c =

[−0.8000 0.8000 0.8000 −0.8000
−0.6000 −0.6000 0.6000 0.6000

]
as the Jacobian matrix for perfect

case. For degenerate interval F = [[0, 0][24, 24]] T N, τττp = J#T F = [[−10.6227,
−9.3792] [−10.6227, − 9.3792] [9.3792, 10.6227] [9.3792, 10.6227]]T and

∥∥τττp
∥∥
2= [18.7584, 21.2454]. Using the “verifylss” routine with “SharpIVmult” option of

INTLAB software, the tighter bounds of the minimum 2-norm solution of under-
determined linear system and the minimum norm non-negative solution are

τττp = [[−10.3646, −9.6340] [−10.3646, −9.6340] [9.6340, 10.3646]
[9.6340, 10.3646]]T (18)

τττcorr = [[0.0, 0.0] [0.0, 0.0] [8.2286, 13.7790] [8.2286, 13.7790]]T (19)

τττtot = [[1.0, 1.0] [1.0, 1.0] [17.8626, 24.1436] [17.8626, 24.1436]]T (20)

with interval norms
∥
∥τττp

∥
∥
2 = [19.2680, 20.7293], ‖τττcorr‖2 = [11.6370, 19.4864]

and ‖τττtot‖2 = [25.3011, 34.1735].
As it is evidenced from the results, for the error bounds of±10mmand the interval

radius of 10mm, the interval vectors τττp, τττcorr and τττtot encompass the corresponding
τ̃ττp, τ̃ττcorr and τ̃ττtot vectors identified using the perturbed Jacobian matrix.

Example 2 At the platform pose of p̃ = [2.0020 0.0010]T meters, with nominal X
coordinate identical to those for the anchors of wires 2 and 3,

J̃T =
[
cos α̃1 · · · cos α̃4
sin α̃1 · · · sin α̃4

]
=

[−0.9356 −0.0030 −0.0031 −0.9373
−0.3530 −0.9999 0.9999 0.3485

]
(21)

For F̃ = [−47.0007 20.4097]T N, the minimum 2-norm vector of wire forces
is τ̃ττp = J̃#T F̃ = [21.7487 −9.1042 9.2667 28.2376]T N, with negative tension
for wire 2. While the non-negative null space vector of JT is n = [0 1 1 0]T , the
non-negative ñ could not be calculated. The non-negative ñaug is



48 L. Notash

ñT
aug = [0.3983 0.3972 0.7244 0.3983 0.0159]T (22)

The tension of wire 2 is set to τc2 = τmin = 1 N. To produce the wrench F̃

τ̃ττcorr = J̃#T
f J̃T

2 (τ̃p2 − τc2) = [−2.8764 0 8.1087, 2.8122]T (23)

τ̃ττtot = τ̃ττ f + τ̃ττcorr = [18.8722, 1.0 17.3754, 31.0497]T (24)

and
∥∥τ̃ττp

∥∥
2 = 37.9358,

∥∥τ̃ττcorr
∥∥
2 = 9.0517 ,

∥∥τ̃ττtot
∥∥
2 = 40.2884. If τmax = 30 N the

procedure is repeated for τc2 = 1 and τc4 = 30 with
∥
∥τ̃ττtot

∥
∥
2 = 40.3224 for

τ̃ττtot = τ̃ττ f + τ̃ττcorr = [19.9215 1.0 18.1117 30.0]T (25)

With an interval radius of 10mm for Ai coordinates, the interval JT is

[ [−0.9468, −0.9260] [−0.0136, 0.0136] [−0.0136, 0.0136] [−0.9468, −0.9260]
[−0.3580, −0.3443] [−1.0271, −0.9735] [0.9735, 1.0271] [ 0.3443, 0.3580]

]

(26)

Then, the bounds of the minimum 2-norm solutions are

τττp = [[20.6961, 22.8852] [−10.2962,−7.9789] [7.9789, 10.2962]
[27.1116, 29.3008]]T (27)

τττcorr = [[−7.1935, 1.4658] [0.0, 0.0] [3.3443, 12.9713]
[−1.4658, 7.1935]]T (28)

τττtot = [[13.5027, 24.3510] [1.0, 1.0] [11.3232, 23.2675]
[25.6459, 36.4942]]T (29)

with interval norms
∥∥τττp

∥∥
2 = [35.9263, 39.9285], ‖τττcorr‖2 = [0.0000, 16.4847]

and ‖τττtot‖2 = [31.1328, 49.6706]. For wire tension limits of τmin = 1 N and τmax =
30N, the interval for the tension of wire 4 is redefined as τtot4 = [25.6459, 30.0000].

4 Concluding Remarks

The effect of uncertainties in parameters and error in measurement on the minimum
2-norm particular and non-negative solutions for the break wire tension vector of
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wire-actuated parallel manipulators was investigated. Matrix perturbation and inter-
val arithmetic’s were applied. The perturbation theory integrates a chosen set of
distinct uncertainties in each parameter/datum, while the interval arithmetic’s pro-
vides evidence on the performance of manipulator within the taken uncertainty/error
interval for each parameter/datum and possibility of ensuring non-negative wire ten-
sion in the presence of uncertainty. An example planar manipulator was used to
illustrate the methods, their implementations and results.
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A Deployable Parallel Wrist with Simple
Kinematics

Raffaele Di Gregorio

Abstract The parallel-wrist (PW) architectures that can be manufactured from a
single sheet and, then, packed into a multi-layer configuration are interesting for
many applications that range from MEMS to space. If suitably sized, a single-loop
RU-RRRS topology allows to devise such a PW. Here, this PW architecture will be
presented together with its kinematics analysis.

Keywords Parallel wrist · Single-loop ·Deployable architecture · Position analysis

1 Introduction

Parallel manipulators’ (PMs’) possibility of locating actuators on or near to the
base makes them lighter and faster than their serial counterparts. This possibility
mainly relies on the adoption of multi-loop topologies. Nevertheless, if only three
degrees-of-freedom (dof) are required, some single-loop topologies still keep this
possibility. Single-loop architectures, with respect to multi-loop ones, usually have
a wider workspace and, very often, can easier match some appealing requirements.

Among these requirements, being foldable/deployable makes transportation and
in loco installation easier and cheaper, which is highly appreciated in space applica-
tions; also, it sometimes allows the machine to be manufactured from a single layer
of suitable material as MEMS technology usually requires.

Parallel wrists (PWs) are 3-dof PMs where the platform can only change its
orientation with respect to the base. The majority of the PW architectures proposed
in the literature have two or three loops even though PWs’ single-loop topologies
have been also listed (see [4], for details and references). Only a limited number of
the proposed PW architectures have been analyzed in depth.
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Here, a single-loop PW architecture which can be folded/deployed is presented
and studied. The proposed architecture has two actuators on the base and the third
one adjacent to the base. Also, it can be manufactured from a single sheet since it
can be deployed on a plane and contains only revolute (R) pairs.

2 Single-Loop RU-RRRS

Figure1 shows a particular RU-RRRS1 architecture at a flattened configuration,
where theU joint and the S pair are obtained throughR pairs in series with orthogonal
and intersecting axes. This architecture is a single-loop 9-link/9-(R) pair mechanism
that, at the flattened configuration, has 6 dof: the 3 finite dof it has at non-flattened
and non-folded configurations, plus 3 transitory dof [1] due to the possibility of
folding the mechanism with finite rotations around the two vertical dash-dot lines,
by keeping the three actuated R pairs locked, and to the possibility of exiting out of
the plane up or down the axis of the passive (i.e., non-actuated) R pair of the RRRS
subchain has. Moreover, if the actuated R pair with horizontal axis is not locked,
a third folding possibility arises since finite rotations around the horizontal dash-
dot line are allowed. According to how it is folded, the mobility of this mechanism
changes. Such a property makes this mechanism a kinematotropic linkage [2, 3, 5].

The existence of a flattened configuration is a necessary condition both to manu-
facture the machine starting from a sheet of suitable material, and to have foldable
RU-RRRS architectures. Different RU-RRRS architectures which lose foldability
still keeping a flattened configuration, or lose even the flattened configuration can be
obtained by suitably changing the sizes of the links.

Figure2 shows a more general RU-RRRS architecture at a non-flattened config-
uration together with the notations that will be used. In this figure, the three R pairs
that constitute the S pair centered at B (see Fig. 1) are not represented. In Figs. 1
and 2, points O, A and B, and the two links denoted base and platform are the same
reference points/links and allow to recognize which R-pair axis corresponds to which
other in the two figures. In particular, a Cartesian reference system Oxb ybzb,2 fixed
to the base, has been introduced with origin at O and the xb (zb) coordinate axis that
coincides with the horizontal (vertical) actuated R-pair axis embedded in the base.
The unit vectors u1 and u2 indicate the directions of the two R-pair axes of the U
joint; whereas, the unit vector v indicates the direction of the two parallel R-pair
axes of the RRRS subchain. The angles θ0, ϕ0 and ψ0 are the three actuated-joint
variables; the angles θ1, θ2 and ψ1 are the passive-joint variables; whereas, a, b, c,
d, γ , and ε are links’ geometric constants.

1 R, U and S stand for revolute pair, universal joint and spherical pair, respectively. The underscore
denotes actuated pairs.
2 Hereafter, ib, jb andkb will denote the unit vectors of the coordinate axes xb , yb and zb, respectively.
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Fig. 1 Fodable/Deployable RU-RRRS wrist

Fig. 2 RU-RRRS wrist: notations

With reference to Fig. 2, if the links are so sized that a sin ε = b cos γ , a cos ε = c
and b sin γ = d, the RU-RRRS architecture can assume the flattened and foldable
configuration shown in Fig. 1; instead, if a sin ε = b cos γ , a cos ε + b sin γ = c + d
and the axes of the three R pairs that constitute the S pair centered at B are not
mutually orthogonal, it can assume a flattened configuration that cannot be folded.

Eventually, since point O is embedded both in the platform and in the base, when
the actuated-joint variables change their values only the platform orientation can
vary; hence, this mechanism is a wrist.
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3 Position Analysis

The kinematics behavior of the RU-RRRS wrist shown in Fig. 2 can be easily under-
stood by realizing that points A, B and C always lie on the plane perpendicular to
the unit vector v that contains the line (A, ib).3

The adopted notations (see Fig. 2) allows the following relationships to be written

v = kb cosϕ0 − jb sin ϕ0, u1 = ib cos θ0 + jb sin θ0, (1a)

u2 = kb cos θ1 + (kb × u1) sin θ1, (B − O) = (B − C) + (C − A) + (A − O),

(1b)

(A − O) = a(ib cos ε + kb sin ε), (C − A) = ibc cosψ0 + (v × ib)c sinψ0,

(1c)

(B − C) = ibd cos(ψ0 + ψ1) + (v × ib)d sin(ψ0 + ψ1) (1d)

and, also,

(B − O) = u2b cos γ + b sin γ [(u1 × u2) sin θ2 − u1 cos θ2] (2)

The position analysis refers to the solution of two problems: inverse position
analysis (IPA) and direct position analysis (DPA). Here, the IPA is the determination
of the actuated-joint variables, θ0, ϕ0 and ψ0, for an assigned platform orientation;
whereas, the DPA is the determination of the platform orientations compatible with
assigned values of the actuated-joint variables.

In the IPA, since the platformorientation is known, the coordinates, (xB , yB, zB)T,
of point B and the components, (u2x , u2y, u2z)

T, of unit vector u2 in Oxb ybzb are
known, too. Therefore, the first two actuated-joint variables, θ0 and ϕ0, can be com-
puted as follows

u1 = ± kb × u2

‖kb × u2‖ ≡ (u1x , u1y, 0)
T, θ0 = atan2(u1y, u1x ) (3a)

v = ± ib × (B − A)

‖ib × (B − A)‖ ≡ (0, vy, vz)
T, ϕ0 = atan2(−vy, vz) (3b)

It is worth noting that the double determination of u1 and v in Eq. (3) yields two
values of θ0 and of ϕ0 that differ of π radians.

Then, the third actuated-joint variable, ψ0, can be computed by considering that
point Cmust simultaneously lies on two coplanar circles of the plane points A, B and
C belong to, one centered at B with radius d and the other centered at A with radius c.
From an analytic point of view, the two values of ψ0 that solve this problem (see
Fig. 3) can be determined bywriting (B−C)·(B−C) = d2 whereB = (xB, yB , zB)T

and, according to Eq. (1c), C = (a cos ε + c cosψ0, c sinψ0 cosϕ0, a sin ε +

3 Here, a line passing through point P and with the direction of the vector w is denoted (P, w).
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Fig. 3 Point C must simultaneously lies on two coplanar circles

c sinψ0 sin ϕ0)
T. So doing, after some rearrangements, the following scalar equation

in ψ0 is obtained

xB(a cos ε + c cosψ0) + yBc sinψ0 cosϕ0 + zB(a sin ε + c sinψ0 sin ϕ0)

− ac(cos ε cosψ0 + sin ε sinψ0 sin ϕ0) − a2 + b2 + c2 − d2

2
= 0 (4)

Equation (4) can be transformed into a quadratic equation in tan(ψ0
2 ) which gives

two values of ψ0 for each value of ϕ0 computed through Eq. (3b).
In short, since Eq. (3) provide two values both of θ0 and of ϕ0 and, then, Eq. (4)

yields two values of ψ0 for each ϕ0 value, the IPA solutions, (θ0, ϕ0, ψ0), are at most
eight.

In the DPA, since the actuated-joint variables, θ0, ϕ0 and ψ0, are known, the
vectors v, u1 and (C−A) are known (see Eq. (1)), too. Also, the platform orientation
can be determined by computing the coordinates of point B and the components of
unit vector u2 in Oxb ybzb, which, according to Eq. (1), simply means calculating the
values of the angles ψ1, for B’s coordinates, and θ1, for u2’s components.

The values of the angle ψ1 can be computed by writing (B − O) · (B − O) = b2

where the right-hand side of the second Eq. (1b) is substituted for (B−O). So doing,
after some rearrangement, the following scalar equation in ψ1 is obtained

d cos(ψ0 + ψ1)(a cos ε + c cosψ0) + d sin(ψ0 + ψ1)(c sinψ0 + a sin ϕ0 sin ε)

+ ac(cos ε cosψ0 + sin ε sinψ0 sin ϕ0) + a2 + c2 + d2 − b2

2
= 0 (5)
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Equation (5) can be transformed into a quadratic equation in tan(ψ0+ψ1
2 ) which

gives two values of ψ1 whose introduction into the right-hand side of the second
Eq. (1b) yields as many values of (xB, yB, zB)T.

Once the two positions point B can assume have been computed, the values of θ1
that solve the DPA can be calculated through the equation (B − O) · u2 = b cos γ

(see Eq. (2) and Fig. 2) written as follows

sin θ1(yB cos θ0 − xB sin θ0) + zB cos θ1 − b cos γ = 0 (6)

where the expression given by the first Eq. (1b) is used for the unit vector u2.
Equation (6) can be transformed into a quadratic equation in tan( θ1

2 ). The solution
of such an equation yields at most two values of θ1, for each possible position
of B, whose introduction into the right-hand side of the first Eq. (1b) allows the
determination of as many u2’s directions. Therefore, there are at most four platform
orientations compatible with assigned values of the actuated-joint variables (i.e.,
there are at most four DPA solutions).

The way the DPA has been solved highlights that the position of point B is
controlled only by the two actuated-joint variables of the RRRS subchain (i.e., ϕ0 and
ψ0); whereas, the changes of the remaining actuated-joint variable, θ0 (i.e., the one
of the RU subchain), just make the platform rotate around the line passing through
points O and B (see Fig. 2). This feature makes the proposed wrist an ideal candidate
to be a mechanical shoulder where the platform is the humerus with the line through
O and B as axis, the RRRS subchain that controls the position of the elbow and the
RU subchain that controls the rotation of the whole arm around the humerus axis.

From a geometric point of view, point B is constrained to simultaneously lie on
the plane through A and perpendicular to v, due to the RRRS subchain, and on the
sphere centered at O with radius b, due to the RU subchain. Hence, it must lie on
the intersection curve between these two surfaces, that is, on the circle with radius
r =

√
b2 − [(A − O) · v]2 ≡

√
b2 − a2 sin2 ε cos2 ϕ0 (see Eq. (1)), centered at the

foot, D, of the perpendicular through O to the above-mentioned plane. If ϕ0 does not
change (i.e., the direction of v does not change), an arc of such a circle is the path
point B describes during the variation of ψ0. It coincides with the path of the free
ending of a rocker hinged to the frame at D whose length is r. Thus, in this case, a
planar four-bar linkage can be identified with points A and D as hinge centers at the
frame, and the segments AC, CB and DB as crank, coupler and rocker, respectively,
with ψ0 that plays the role of crank angle (see Fig. 4) and with the plane through A
and perpendicular to v that is the plane of motion.

With reference to this four-bar linkage, since ϕ0 and ψ0 are assigned in the DPA,
the positions of points D and C are at rest with respect to the frame, and the determi-
nation of the B positions that solve the DPA reduces itself to the determination of the
configurations that a four-bar linkage can assume for an assigned value of the crank
angle. It is well known that such configurations are at most two and can be easily
determined through the graphical construction reported in Fig. 5.

In a few words, the motion of the proposed PW architecture reduces itself to the
one of a four-bar linkage where the length of the rocker and of the frame bar together
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Fig. 4 Four-bar linkage lying on the plane that passes through A and is perpendicular to v (h =
(A − O) · v ≡ a sin ε cosϕ0)

Fig. 5 DPA solution: determination of the positions point B can assume

with the attitude of the motion plane can be varied in a controllable way. The fact that
the motion of this mechanism is so clearly defined through well-identified geometric
relationships between actuated-joint variables and motion characteristics is certainly
of interest for applications that goes over the wrist.
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4 Conclusions

Even though systematic synthesis techniques have been used to find all the PW
topologies, and such topologies have been practically all identified, many kinematic
aspects still remain to be discovered on PWs since only a few of the identified PW
types have been studied in depth.

This consideration brought the author to investigate the kinematics of single-loop
PWs, with actuators on or near to the base, till to identify some interesting PW
architectures among which the RU-RRRS one presented here.

The presented PW architecture can match requirements that range from MEMS
to space applications. Its position analysis problems can be solved in closed form
with relationships between actuated-joint variables and resulting platform motion
that allows to visualize the effect on the platform motion of each variable.
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Geometric Derivation of 6R Linkages
with Circular Translation

Chung-Ching Lee and Jacques M. Hervé

Abstract Amathematical explanation on the circular translation is briefly presented
and the planar-hinged parallelogram is introduced as the simplest generator of cir-
cular translational motions without using prismatic pairs. Based on the geometric
properties of circular translation and spherical translation, a kind of 6R paradoxical
linkage with a relative motion of circular translation is derived by a new purely geo-
metric approach. The already published linkage having a link with the translation
property is verified and other existing ones are distinguished and compared by the
use of the parameterization of linkage architecture too.

Keywords Circular translation · Parallelogram · Paradoxical linkage · Geometric
approach · Overconstrained

1 Introduction

Several 6R paradoxical linkages were proposed by Bricard [1], Myard [2], Goldberg
[3], Waldron [4], Baker [5], Wohlhart [6, 7], etc. A list of the known 6R linkages was
appended in [8]. Until now, finding new overconstrained 6R linkages whose architec-
tures are characterized by Euclidean metric constraints [9] is still an attractive topic.
We qualified that category of overconstrained linkages as paradoxical. Our aim in
this chapter is to derivemovable 6R linkages in a visualized geometric way. Recently,
three types of parallel 6R linkages with three couples of parallel joint-axes for all
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possible configurations were proposed [10–12] using dual quaternions and algebraic
computation. The first type has two couples of two adjacent parallel joint-axes and
one couple of opposite parallel joint-axes. Its architecture is addressed in [13] but its
full geometric description is not provided. Our new geometric derivation will result
in exactly the same parallel 6R linkage without using algebraic computation.

The planar four-revolute parallelogram generates circular translation between two
opposite bars. Circular translation is a one-dimensional (1D) submanifold of a 2D
group of planar translations. This factwas revealed in [14, 15] andwas further applied
to type synthesis of 4D motion generator in [16]. In the following, our investigation
begins with the circular translational motion produced in a hinged parallelogram. A
mechanical generator of two-degree-of-freedom (2-DoF) translation along a spheri-
cal surface is synthesized by combining several generators of circular translation. The
2-DoF spherical translation contains all the 1-DoF translationalmotions along curves
drawn on the sphere. Special curves on a sphere can be planar circles. From that,
we newly derive a family of movable 6R linkages in a purely geometric approach.
The chapter is organized as follows. Section 2 makes a brief explanation of circular
translation and its planar parallelogram generator. In Sect. 3, the planar-hinged paral-
lelogram is employed to synthesize the 6R linkagewith circular translation. Section 4
compares and verifies the already published 6R linkages with our derivation.

2 Circular Translation and the Planar-Hinged Parallelogram

Spatial translation is a motion type with no change of the orientation of the moving
rigid body. In a 1-DoF curvilinear translation, each point of the translating body
moves on a curve. The trajectories of any two points are congruent by the constant
translation transforming one point into the other one. The four-revolute (4R) hinged
parallelogram is the simplest way to mechanically generate translation without
resorting to the prismatic pair. As shown in Fig. 1, a planar parallelogram generator
A0AB B0 has four bars jointed by four revolute R pairs and the opposite bars have
equal lengths, A0A = B0B and A0B0 = AB. The trajectory of point A is congruent
with that of point B through the translation of vector (AB), which transforms point
A into point B.

A circular translation means a 1-DoF curvilinear translational motion with trajec-
tories that are congruent arcs of circles. The point A has a circular trajectory that is
congruent to the trajectory of B by the constant translation of vector (AB) and the
centers of the circles are A0 and B0 respectively. In fact, the planes of the circles for
any point are parallel but are not necessarily coplanar. The bound vectors (A0A) and
(B0B) are equipollent (the free vectors are equal) and

(A0A) = (B0B) = r(cos θ i + sin θ j) (1)

where r is a given radius and θ a variable angle. The angle θ is the canonic parameter
of the 1-DoF translational motion along a circle. The point position A is obtained
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Fig. 1 Circular translation and the planar-hinged parallelogram

from a given initial position AI . The point position AI is chosen to satisfy (A0AI )
= ri. By translation, (A0AI ) = ri becomes

(A0A) = r(cos θ i + sin θ j) ⇒ (AI A) = r [(cos θ − 1)i + sin θ j] (2)

In a similar way, (BI B) = r [(cos θ − 1)i + sin θ j].
Let M denote any point belonging to the translating body; then

(MI M) = r [(cos θ − 1)i + sin θ j] = M − MI (3)

Any point at its initial position MI is transformed into M, namely

∀MI , MI → M = MI + r [(cos θ − 1)i + sin θ j] (4)

The foregoing point transformation mathematically characterizes a circular transla-
tion. From that expression, one can establish that any point M moves on a circle of
radius r. The center M0 can be obtained from MI using (MI M0) = −ri or from M
using (MM0) = −r(cos θ i + sin θ j). The circular trajectory of M is the set of points
M(θ) = M0 + r(cos θ i + sin θ j).

A property originates from the fact that a circle is globally invariant by any rotation
around its axis. An arc of the circle and an arc obtained by rotation around the axis
are not congruent by translation. The conjugate by a rotation of a subset of circular
translations [9] is also a subset of circular translations but the two subsets are not
generally equal and the set intersection is the identity group.
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Fig. 2 2-DoF 12R mechanism with spherical translation

3 Mechanical Generator of Spherical Translation

Refer to Fig. 2. In a planar 4R parallelogram IJKL, the motion of the bar JK with
respect to the bar IL assumed to be fixed is considered. The opposite bars IJ and LK
are replaced respectively by two sided 4R planar parallelograms ABCD and EFGH,
which are located on two parallel planes.Moreover, in the parallelogramABCD, (AB)
= (DC)= (IJ)= (LK) and in the parallelogramEFGH, (EF)= (HG)= (LK)= (IJ).
The two bars JK and IL of the original IJKL 4R planar parallelogram have a relative
motion of circular translation when the added ABCD and EFGH 4R parallelograms
are locked at any of their feasible postures. The four R joint axes of the IJKL 4R
planar parallelogram keep their parallelism when both side planar parallelograms
move. The radius of the circular translation of IJ changes when motions in the side
planar parallelograms modify the distances between the two parallel R axes at points
J and I as well as between those at points K and L. As a result, the motion of the
bar JK opposite to the fixed bar IL of the original 4R planar parallelogram is a one-
dimensional set of circular translations and therefore is a 2-DoF translational motion.
The point distance between the point J of the translating body and the fixed point I
is constant, and consequently the point J moves on a sphere of center I. The motion
of the body JK is a 2-Dof translation in which one point moves on a sphere; it is
a translation along a sphere or spherical translation. All trajectories are congruent
spheres. In the obtained multi-loop 12R linkage depicted in Fig. 2, any point M
attached to the moving body JK moves on a sphere whose center O0 is given by
(MO0) = (JI).

If the point M is also constrained to move on a fixed plane, then it will move on
the circular intersection of its spherical trajectory and the plane. This can be achieved
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Fig. 3 A spatial 12R-4R
mechanism with one-DoF
circular translation

by adding one more 4R planar parallelogram OMNP. As shown in Fig. 3, the motion
of rigid body JK will be a subset of the group of spatial translations having a point
M with a circular trajectory whose fixed center is located at point O; it is a circular
translation with a radius OM. The vector (OM) is the orthogonal projection of the
vector (O0M) on the foregoing fixed plane. Hence, one obtains a 12R-4R linkage
with 1-DoF circular translation, Fig. 3.

4 Single Loop 6R Linkages

Removing any three bars chosen from links AB, CD, EF, and GH and any one bar
from links OM and NP in the multi-loop linkage of Fig. 3, 6R single-loop linkages
can be derived. In fact, eight distinct forms of linkages are obtained but they all have
the same architectural type and differ only on the particular values of their structural
parameters. For brevity, only one form is depicted in Fig. 4. In this architecture,
the non-parallel and generally non-intersecting RR links (1) and (3) are congruent
and have the same length, a1 = a3 = a, which can be arbitrarily chosen. The
length a2(=b) of the RR link (2) with parallel axes is the radius of the spherical
trajectories and can be arbitrarily chosen. The lengths a2 and a5 of link (2) and
link (5) are not independent. The length a5 of link (5) with two parallel axes is
the radius of the circular trajectories and is the orthogonal projection of the sphere
radius on the plane arbitrarily chosen for the circular translation. It obeys the relation:
a5 = a2 cos λ = b cos λ, in which the λ = δ is the incline angle of projection plane.
In addition, angles α, β, μ, and η are the twist angles between two R axes in links
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Fig. 4 A movable 6R linkage with one-DoF circular translation

(1), (3), (4), and (6), respectively. Finally, the parameterization of the 6R linkage
leads to the following metric constraints:

a1 = a3 = a, a2 = b, a5 = b cos λ, a4 = a6 = c,
α = β, λ = δ, μ = η, d1 = d4 = e, d5 − d6 = b sin λ

(5)

in which a, b, c, e, α , λ , and μ are arbitrary parameters of linkage structure.
In the single loop 6R linkage of Fig. 4, the parallelograms shown in Fig. 3 virtually

exist due to the special metric geometric constraints. Consequently, the angle of
rotation of the body (3) with respect to (2) is equal to the angle of rotation of (1) with
respect to (2). In the rotation (4)/(3) the angle is equal to the angle in the rotation
(6)/(1). The rotations (4)/(5) and (6)/(5) have equal angles.

In a special case, the two revolute R axes in links (1) and (3) intersect. Its archi-
tecture is depicted in Fig. 5a. In a more special case, the revolute R axis between
links 4 and 5 passes through the intersection of the R axes between links 2 and 3,
and links 3 and 4, respectively. Then the R axis between links 5 and 6 passes through
the intersection of the axes between links 6 and 1, and links 1 and 2. The closed
loop type is (RRR)–(RRR) with two sets of three intersecting R axes as described in
Fig. 5b. It is a special bi-spherical (RRR)–(RRR) linkage with exceptional mobility
and the body (5) rotates with respect to the body (2) around the axis which connects
the two centers of the (RRR) spherical sub-chains.

When the constant angle α in the links (1) and (3) is a right angle, the bispherical
linkage includes two universal (RR)=U joints, and the series of twoU joints realizes
a constant velocity transmission between the two parallel R axes of link (5).
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Fig. 5 A special movable 6R linkage with zero common perpendiculars. a a1 = a3 = 0, b a
spherical bi-spherical space

Fig. 6 Gfrerrer 6R linkage. a Gfrerrer’s 6R, b Gfrerrer’s 6R configuration

5 Already Published 6R Linkages

Li and Schicho [10], Li and Schicho [11] and Li [12] have introduced angle-
symmetric 6R linkages using the representation of rigid-body displacement by dual
quaternion. The synthesis is done by algebraic computation. The synthesized link-
ages are not fully characterized by their geometric descriptions. One type is pro-
posed by Gfrerrer in [12] and termed as parallel 6R linkage. It is a special case
of 6R with circular translation. When twist angles between joint axes in links 1
and 3 and twist angles between joint axes in links 4 and 6 are right angles (i.e.
α = β = 90◦, μ = η = 90◦) and the common perpendiculars between joint axes in
links 1 and 3 are zeros (a1 = a3 = 0), one obtains the special architecture of Fig. 6a.
The configuration of this linkage is further verified in Fig. 6b.
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6 Conclusions

In the chapter, a family of movable 6R linkages with circular translation is synthe-
sized in a visualized geometric way. The synthesis method is based on the fact that
the intersection of a spherical translational motion and a planar motion is circular
translational motion. The 2-DoF spherical translation is generated bymeans of a spe-
cific arrangement of three parallelograms. The planar hinged-parallelogramproduces
1-DoF circular translation. Although parallel 6R linkages were already derived by
dual quaternion method, our work is expected to provide a preliminary insight into
a possible geometric derivation of other potential parallel linkages that have three
couples of opposite parallel joint-axes. It is also hoped that, extending the idea of
this work, a new category of 6H linkages with circular translation property could be
achieved in the near future.
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Function Synthesis of the Planar
5R Mechanism Using Least Squares
Approximation

Gökhan Kiper, Barış Bağdadioğlu and Tunç Bilgincan

Abstract In this chapter, the problem of function generation synthesis of planar
5R mechanism is studied using the least squares approximation method with equal
spacing of the design points. The study represents a case study for analytical func-
tion generation of multi-degrees-of-freedom systems. The planar 5R mechanism is
designed with a fixed input joint and a moving input joint adjacent to the first input,
whereas the remaining fixed joint is the output joint. The input/output relationship of
the mechanism is expreseed as an objective function in polynomial form with four
unknown construction parameters. The objective function involves nonlinearities,
however the problem is linearized using Lagrange variables. The linear system is
solved and finally the construction parameters of the mechanism are determined. A
numerical example is presented as a case study.

Keywords Function generation · Planar 5R mechanism · Least squares approxi-
mation · Equal spacing

1 Introduction

One of the research areas in Rasim Alizade Mechatronics Laboratory in IzTech
addresses analytical kinematic synthesis of multi degrees-of-freedom (dof) sys-
tems. Although analytical kinematic synthesis methods for single-dof mechanisms
are widely studied [1, 2], usually numerical optimization methods are utilized for
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dimensioning multi-dof mechanisms (ex. see Alizade [3]). There are a few studies
on analytical synthesis methods for multi-dof systems [4, 5]. Recently we worked
on function synthesis of a planar 5R mechanism [6] and a spherical 5R mechanism
[7]. The present study differs from [6] in selection of one of the inputs, and also a
different synthesis method is utilized.

Three widely used approximation methods for kinematic synthesis are the inter-
polation, least squares and Chebyshev approximation methods [8]. In this study we
employ the least squares method [8–10]. In any of these methods, first an objective
function is defined using the input/output (I/O) relationship of the mechanism and
then an approximation in polynomial form is sought for the objective function. The
approximation is performed for a certain number of design points on the domain
of the inputs. For the interpolation approximation, these design points are preci-
sion points at which the mechanism exactly generates the required function value,
while for the least squares and Chebyshev approximations the aim is to minimize
the nonzero errors at the design points. The approximation error depends on the
selection of design points and optimizing the selection is a big issue [11]. In case of
single-dof mechanisms the domain for the design points is just a line segment, while
in general for an n-dof mechanism the domain will be an n-dimensional compact
space. Specifically, for a 2-dof mechanism the domain is typically rectangular.

In Kiper et al. [6, 7] we employed Chebyshev approximation. In Kiper et al. [6]
we had five design points, four of which we located on the sides of the rectangular
domain. In Kiper and Bilgincan [7] we tried a different type of spacing for the design
points, which we called regional spacing. In regional spacing the design points are
located in distinct regions in the domain and since the Chebyshev approximation
method involves iterations, the design points are relocated in each iteration step, but
they are forced to remain in their respective regions. In least squares approximation
there is no iteration. As the name implies, the aim is to minimize the sum of the
squares of the errors at the design points. In this study we make use of equal spacing
for the design points. For single-dof mechanisms generally Chebyshev spacing gives
superior results [8, 12], however the comparison of the methods for 2-dof mecha-
nisms is yet to be done. Although we obtained quite good results with Chebyshev
approximation [6, 7], we expect that least squares approximation may yield better
results, at least for some functions and some mechanisms.

2 Formulation

In this study, the input variables θ and φ of the planar 5R mechanism are associated
with one of the fixed joints and the adjacent floating joint. The output variable ψ

is associated with the remaining fixed joint. In practice, an extra parallelogram loop
can be employed in order to actuate the mechanism at fixed joints (Fig. 1). Since the
scale of themechanism does not affect the I/O relationship, without loss of generality
we may assume that the fixed link length is 1. The construction parameters are a, b,
d and e shown in Fig. 1.
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Fig. 1 The construction parameters and joint variables of the 5R mechanism

The I/O relationship for the mechanism is obtained as follows:

∣
∣
∣
−→
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∣
∣
∣ =

∣
∣
∣
−→
AE + −→

E D − −→
AB − −→

BC
∣
∣
∣

⇒ (aCθ + bCφ − 1 − eCψ)2 + (aSθ + bSφ − eSψ)2 = d2
(1)

where C and S represent the cosine and sine functions, respectively. Rearranging
Eq. (1) in polynomial form:

6
∑

j=1

Pj f j (x) − F(x) = 0 (2)

where x = {θ, φ,ψ} , whereas {

Pj
}6
1 ,

{

f j (x)
}6
1 and F(x) are defined as:

P1 = −1 − a2 − b2 + d2 − e2

2e
, P2 = a, P3 = b, P4 = a

e
,

P5 = P3P4 = λ1 = ab

e
, P6 = P5

P2
= λ2 = b

e
, (3)

f1(x) = 1, f2(x) = cos(θ − ψ), f3(x) = cos(φ − ψ), f4(x) = cos θ,

f5(x) = − cos(θ − φ), f6(x) = cosφ and F(x) = cosψ

There are four construction parameters, but six Pj ’s. Therefore P5 and P6
are defined in terms of the other Pj ’s and two Lagrange parameters P5 = λ1 and
P6 = λ2 are introduced as two more construction parameters. In order to linearize
the system, let Pj = � j + m jλ1 + n jλ2 for j = 1, 2, 3, 4. Eq. (2) becomes
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4
∑

j=1

(� j + m jλ1 + n jλ2) f j (x) + λ1 f5(x) + λ2 f6(x) − F(x) = 0 (4)

Equation (4) should be satisfied for all x , hence the coefficients of λ1, λ2 and the
rest can be dissected as follows:

4
∑

j=1

� j f j (x) − F(x) = 0 (5)

4
∑

j=1

m j f j (x) + f5(x) = 0 (6)

4
∑

j=1

n j f j (x) + f6(x) = 0 (7)

In least squares approximation the number of design points, N, is necessarily
greater than the number of construction parameters and we aim to minimize the
sum of the squares of the errors at these design points. At each design point xi for
i = 1, ..., N, the sum of the squares of the errors corresponding to Eqs. (5–7) are
defined as

S� =
N

∑

i=1

⎡

⎣

4
∑

j=1

� j f j i − Fi

⎤

⎦

2

(8)

Sm =
N

∑

i=1

⎡

⎣

4
∑

j=1

m j f ji + f5i

⎤

⎦

2

(9)

Sn =
N

∑

i=1

⎡

⎣

4
∑

j=1

n j f ji + f6i

⎤

⎦

2

(10)

where f j i = f j (xi ) , f5i = f5(xi ) , f6i = f6(xi ) and Fi = F(xi ). In order to find
the minimum of the sum of the squares, we set the derivatives of Eqs. (8–10) with
respect to � j , m j , n j to zero for j =1, 2, 3, 4 to obtain

1

2

∂S�

∂� j
=

N
∑

i=1

[ f1i�1 + f2i�2 + f3i�3 + f4i�4 − Fi ] f j i = 0 (11)
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1

2

∂Sm

∂m j
=

N
∑

i=1

[ f1i m1 + f2i m2 + f3i m3 + f4i m4 + f5i ] f j i = 0 (12)

1

2

∂Sn

∂n j
=

N
∑

i=1

[ f1i n1 + f2i n2 + f3i n3 + f4i n4 + f6i ] f j i = 0 (13)

For j =1, 2, 3, 4 Eq. (11) constitute a linear set of 4 equations in unknowns
�1, �2, �3, �4 and similarly Eqs. (12) and (13) are respectively linear in m1, m2, m3,

m4 and n1, n2, n3, n4. Writing Eqs. (11–13) in matrix form:

[

A jk
] [

� j
] = [

b j
]

(14)

[

A jk
] [

m j
] = [

c j
]

(15)

[

A jk
] [

n j
] = [

d j
]

(16)

where
[

A jk
]

is the 4×4 coefficient matrix with A jk = ∑N
i=1 fki f j i for j, k =1, 2, 3,

4,
[

� j
] = [ �1 �2 �3 �4 ]T ,

[

m j
] = [ m1 m2 m3 m4 ]T ,

[

n j
] = [ n1 n2 n3 n4 ]T and

[

b j
]

,
[

c j
]

and
[

d j
]

are 4×1matriceswith b j = ∑N
i=1 Fi f ji , c j = −∑N

i=1 f5i f j i ,

d j = −∑N
i=1 f6i f j i for j = 1, 2, 3, 4.

� j , m j , n j are uniquely solved from Eqs. (14–16). Once � j , m j , n j are deter-
mined, λ1 andλ2 are solved as follows:

λ1 = P3P4 = (�3 + m3λ1 + n3λ2)(�4 + m4λ1 + n4λ2) ⇒ m3m4λ
2
1 + n3n4λ

2
2+(m3n4 + m4n3) λ1λ2 + (�3m4 + �4m3 − 1)λ1 + (�3n4 + �4n3)λ2 + �3�4 = 0

(17)

λ2 = P5

P2
= λ1

(�2 + m2λ1 + n2λ2)
⇒ n2λ

2
2 + m2λ1λ2 − λ1 + �2λ2 = 0 (18)

We can solve for λ1 from Eq. (18):

λ1 = n2λ
2
2 + �2λ2

(1 − m2λ2)
(19)

Substituting Eq. (19) in Eq. (17):

m3m4(n2λ
2
2 + �2λ2)

2 + n3n4λ
2
2(1 − m2λ2)

2 + (�3n4 + �4n3)λ2(1 − m2λ2)
2

+(m3n4 + m4n3)(n2λ
2
2 + �2λ2)(1 − m2λ2)λ2 + �3�4(1 − m2λ2)

2

+(�3m4 + �4m3 − 1)(n2λ
2
2 + �2λ2)(1 − m2λ2) = 0 (20)

Equation (20) is a 4th order polynomial equation in λ2 and can be solved
analytically. There may be 4, 2 or no real solutions for λ2. If exists, once one
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of the solutions for λ2 is selected, λ1 is determined uniquely from Eq. (19).
P j = � j + m jλ1 + n jλ2 for j = 1, 2, 3, 4 are determined and the construction
parameters are solved uniquely from Eq. (3) as

a = P2, b = P3, e = a

P4
, d =

√

1 + a2 + b2 + e2 + 2eP1

3 The Function Synthesis Problem

Let the function to be generated be z = f (x, y) for xmin ≤ x ≤ xmax and ymin ≤ y
≤ ymax. The independent variables x and y should be related to the mechanism
inputs θ and φ and the dependent variable z should be related to the mecha-
nism output ψ . θ , φ and ψ are in ranges θmin ≤ θ ≤ θmax ,φmin ≤ φ ≤ φmax ,
ψmin ≤ ψ ≤ ψmax and the limits can be arbitrarily chosen. We shall linearly relate
x to input θ , y to input φ and z to output ψ as [1]

x − xmin

xmax − xmin
= θ − θmin

θmax − θmin

y − ymin

ymax − ymin
= φ − φmin

φmax − φmin
(21)

z − zmin

zmax − zmin
= ψ − ψmin

ψmax − ψmin

Then input values θ and φ and the desired output values ψ of the mechanism
can be solved from Eq. (21) as follows:

θ = x − xmin

xmax − xmin
(θmax − θmin) + θmin

φ = y − ymin

ymax − ymin
(φmax − φmin) + φmin (22)

ψ = z − zmin

zmax − zmin
(ψmax − ψmin) + ψmin

and conversely

x = θ − θmin

θmax − θmin
(xmax − xmin) + xmin

y = φ − φmin

φmax − φmin
(ymax − ymin) + ymin (23)
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Fig. 2 The percentage error variation over the domain of x and y

z = ψ − ψmin

ψmax − ψmin
(zmax − zmin) + zmin

We make use of Eq. (22) when determining the design points {θi }N
1 , {φi }N

1 and
{ψi }N

1 in terms of {xi }N
1 , {yi }N

1 and {zi }N
1 = { f (xi , yi )}N

1 .We select the design points
(xi , yi ) with equal spacing on the rectangular domain given by xmin ≤ x ≤ xmax
and ymin ≤ y ≤ ymax , i.e. x1 = xmin , y1 = ymin , xi = xmin + i−1

N−1 (xmax − xmin)

and yi = ymin + i−1
N−1 (ymax − ymin) for i = 2, ..., N .

We make use of Eq. (23) after the synthesis is performed, to check the error in
between the desired z = f (x, y) and z generated by the mechanism. At this step,
one shall determine the output values of themechanism for several given input values
by solving the I/O relationship.

4 Case Study

The formulations in the previous sections were implemented in MS Excel® and a
case studywasworked out for a function z = x1.1y1.4 for 5 ≤ x ≤ 9 and 1 ≤ y ≤ 4.
Limits for the mechanism input and output angles are selected as 75◦ ≥ θ ≥ 30◦ ,
80◦ ≤ φ ≤ 130◦ and 120◦ ≤ ψ ≤ 170◦ . Actually several different limit valueswere
employed, but the final selection is done until we obtain a small maximum error and
good link length ratios. The design points are selected with equal spacing of 30
intervals for both x and y . That is, there are totally 900 design points.

As a result of computations, two real solutions for λ2 are found. For one of
the solutions the link lentgh ratios were not appropriate, whereas for the other
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solution a nice 5R mechanism is obtained. The maximum percentage error 100×
∣
∣
∣
ψdesired−ψcomputed

ψdesired

∣
∣
∣ is found as 1,33%. The variation of the percentage error over the

domain of x and y is illustrated in Fig. 2. The construction parameters are calculated
as a = 2.382, b = 1.636, d = 2.671, e = 1.577.

5 Conclusions

In this chapter, the function generation problem for a planar 5R mechanism is
addressed using analytical solution for given set of design point. The problem is
formulated starting with expressing the I/O relationship in polynomial form. The
equations are linearized by introducing Lagrange variables. The linear set of equa-
tions and the Lagrange variables are solved analytically. A computational example
is presented and the error variation is given.

As future studies we plan to work out the same problem using Chebyshev approx-
imation and compare the results. Also we plan to apply these analytical and semi-
analytical approximation methods to other multi-dof mechanisms.

References

1. Erdman, A., Sandor, G.N.: Mechanism Design: Analysis and Synthesis. Prentice Hall, Engle-
wood Cliffs (1984)

2. McCarthy, J.M., Soh,G.S.: GeometricDesgin of Linkages, 2nd edn. Springer, NewYork (2011)
3. Alizade, R., Rao, A.V.M., Sandor, G.N.: Optimum synthesis of two-degree-of-freedom planar

and spatial function generating mechanisms using the penalty function approach. J. Eng. Ind.
97(2), 629–634 (1975)

4. Svoboda, A.: Computing Mechanisms and Linkages, 2nd edn. Dover, New York (1965)
5. Kim, H.S., Tsai, L.-W.: Kinematic synthesis of a spatial 3-RPS parallel manipulator. J. Mech.

Des. 125, 92–97 (2003)
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Some Remarks on the RRR Linkage

J. M. Selig

Abstract The variety of rigid-body displacements of the final link of a 3R kinematic
chain are investigated. In most cases the variety generated is a Segre manifold;
the Cartesian product of three projective lines. The homology of this variety as a
subvariety of the Study quadric is found and simple applications to some enumerative
problems in kinematics are given. The conditions for the variety to fail to be a Segre
variety are investigated in full and the case where the linkage forms the first three
joints of a Bennett mechanism is examined.

Keywords 3R linkages · Segre variety · Homology

1 Introduction

Husty et al. [2], recognised that the possible displacements achievable by a 3R linkage
could be viewed as a Segre variety in the Study quadric. In this work several results
on the geometry of this Segre variety and its significance to kinematics are collected
together. Some of these results have been published elsewhere, but to the author’s
knowledge, most have not.

2 The Segre Variety P
1 × P

1 × P
1

Consider a point in P1 × P
1 × P

1 to be given by (c1, s1) × (c2, s2) × (c3, s3) where
ci and si are the homogeneous coordinates of the i th projective line of the product;
i = 1, 2, 3. For the 3R linkage, these will be the cosine and sine of the joint
half-angles, see below. The Segre embedding is the map,
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P
1 × P

1 × P
1 −→ P

7

given explicitly in terms of homogeneous coordinates by,

(c1, s1) × (c2, s2) × (c3, s3) �−→
(c1c2c3, s1c2c3, c1s2c3, c1c2s3, s1s2s3,−c1s2s3, s1c2s3,−s1s2c3). (1)

This particular ordering and the inclusion of the negative signs are arbitrary. Notice
that each degree three monomial, separately homogeneous in the coordinates of each
P
1, appears in the image. The image is the Segre variety which forms the central

subject of this work.
Returning to the 3R linkage, the possible displacements of the end-effector can

be found by multiplying dual quaternions representing displacement about the 3
R-joints,

(c1 + s1�1)(c2 + s2�2)(c3 + s1�3) = s1c2c3�1 + c1s2c3�2 + c1c2c3 + c1c2s3�3
+ c1s2s3�2�3 + s1c2s3�1�3 + s1s2c3�1�2
+ s1s2s3�1�2�3,

where �i is the dual quaternion representing the line of the i th joint axis in the home
position of the linkage.

Taking the ci and s j as parameters, this parametrises a rational variety in P7. This
variety is, in general, projectively equivalent to the Segre variety defined above. To
see this consider the parameterisation given above as a matrix equation, g = Mw.
Here the vector g = (a0, a1, a2, a3, c0, c1, c2, c3)T , is the vector of dual quaternion
components and

w = (c1c2c3, s1c2c3, c1s2c3, c1c2s3, s1s2s3,−c1s2s3, s1c2s3,−s1s2c3)
T .

The matrix M has columns given by the components of the dual quaternions
1, �1, �2, . . . ,−�1�2. To be definite, take the lines determined by the joints of an
arbitrary 3R linkage which can always be opened to give the form shown in Fig. 1.
Placing the origin of coordinates as shown in the figure, at the foot of the common
perpendicular between the first and second joint axes and with the axes aligned as
shown, the matrix M can be written explicitly, the (transposed) columns will be,

1T = (
1, 0, 0, 0, 0, 0, 0, 0

)

�T
1 = (

0, 0, sinα1, cosα1, 0, 0d1 cosα1, −d1 sinα1)

�T
2 = (

0, 0, 0, 1, 0, 0, 0, 0
)

�T
3 = (

0, 0, − sinα2, cosα2, 0, h sinα2, −d2 cosα2, −d2 sinα2
)

(�1�2�3)
T = (

0, 0, sin(α1 − α1), − cos(α2 − α1
)
, −h sinα1 sinα2, −h cosα1 sinα2,

(d2 − d1) cos(α2 − α1), (d2 − d1) sin(α2 − α1)
)
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Fig. 1 The standard position
for a general 3R linkage

�1

�2

�3

y

x
z h

d1

d2

α2

α1

−(�2�3)
T = (

cosα2, − sinα2, 0, 0, −d2 sinα2, −d2 cosα2, −h sinα2, 0
)

(�1�3)
T = ( − cos(α1 + α2), sin(α1 + α2), 0, 0, (d1 + d2) sin(α1 + α2),

(d1 + d2) cos(α1 + α2), h cosα1 sinα2, −h sinα1 sinα2
)

−(�1�2)
T = (

cosα1, − sinα1, 0, 0, −d1 sinα1, −d1 cosα1, 0, 0
)

When the matrix M is non-singular, it can be viewed as a projective change of
coordinates in P

7. The determinant of M can be computed and written as,

det(M) = − h4 sin4 α1 sin
4 α2 − 2h2 sin2 α1 sin

2 α2(d
2
1 sin

2 α2 + d2
2 sin

2 α1)

− (d2
1 sin

2 α2 − d2
2 sin

2 α1)
2. (2)

This is clearly non-singular in general. Condition for this expression to vanish will
be investigated below.

2.1 Nine Quadrics

Classically the implicit equations for a Segre variety comprise a number of quadrics,
each a simple 2 × 2 determinant. Take (X0 : X1 : X2 : X3 : Y0 : Y1 : Y2 : Y3) as
homogeneous coordinates for P7. In these coordinates the Segre map will be written,

X0 = c1c2c3, X1 = s1c2c3, X2 = c1s2c3, X3 = c1c2s3

and
Y0 = s1s2s3, Y1 = −c1s2s3, Y2 = s1c2s3, Y3 = −s1s2c3.

Consider these coordinates as the label for the vertices of a cube, see Fig. 2. The
vertices are labelled so that vertices are joined by an edge if and only if the corre-
sponding monomials differ in only one position. Each of the six faces gives a 2 × 2
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Fig. 2 The monomials
defining the Segre embedding

Y3 = − s1s2c3X1 = s1c2c3

X2 − c1s2c3X0 = c1c2c3

Y1 = − c1s2s3
X3 = c1c2s3

Y2 = s1c2s3 Y0 = s1s2s3

determinant,

Q1 : X0Y1 + X2X3 = 0, Q4 : X1X0 + Y2Y3 = 0,
Q2 : X0Y2 − X1X3 = 0, Q5 : X2Y0 − Y1Y3 = 0,
Q3 : X0Y3 + X2X3 = 0, Q6 : X3Y0 + Y1Y2 = 0.

The six diagonal planes also give 2 × 2 determinants, but only three of these are
linearly independent,

Q7 : X0Y0 + X1Y1 = 0, Q7 − Q8 : X1Y1 + X2Y2 = 0,
Q8 : X0Y0 − X2Y2 = 0, Q7 − Q9 : X1Y1 − X3Y3 = 0,
Q9 : X0Y0 + X3Y3 = 0, Q9 − Q8 : X2Y2 + X3Y3 = 0.

A general quadric in P
7 can be specified by a symmetric 8 × 8 matrix. Such a

matrix will have 36 independent entries. Substituting the parameterisation for the
Segre variety given above into the general quadric gives a linear equation in the
entries of the symmetric matrix. For the Segre variety to lie entirely on a quadric the
coefficients of the monomials must all vanish. There are 27 such terms and hence 27
linear homogeneous equations in the 36 matrix entries. So we should have expected
that the Segre variety lies in a linear system of 36 − 27 = 9 quadrics.

The degree of the Segre variety is well known to be six, see for example [7]. This
fact can also be easily computed by slightly extending the arguments given in [1] for
the degree of two factor Segre varieties.

2.2 Line Symmetric 6R Mechanisms

A line symmetric motion is defined by a ruled surface, called the base surface of
the motion. Given a fixed position and orientation for the rigid body, the motion is
produced by performing a π-rotation of the body about successive generating lines
in the base surface.
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If the end-effector of a 3R linkage performs a line-symmetric motion then at
each instant the linkage can be reflected in the generating line of the base surface to
produce a reflected linkage. Since a π-rotation is a proper rigid-body displacement
the reflected linkage will have the same design-parameters (link-lengths, twist angles
and offsets), as the original. Hence, if such a motion is possible, it will be produced
by joining the end-effectors of the original and reflected linkages.

In [5] it was shown that a line symmetric rigid motion lies in the intersection of
the Study quadric with a certain type of 5-plane in P7. The 5-plane is determined by
the initial line in the base surface of the motion, �0 and can be written as the dual
quaternion equation, g�−

0 + �0g− = 0, where g is a variable dual quaternion. The
intersection of the Segre variety with such a 5-plane will be a curve of degree 6,
in general. We may conclude that such a motion is therefore possible and that the
coupler bar of a general line symmetric 6R mechanism will follow a degree 6 line
symmetric motion.

This curve has genus one, that is the curve is elliptic. To see this note that a curve
of degree n + 1 in P

n is always either genus 0 or 1, see [6, Chap. 2 Sect. 4.1]. Our
curve cannot be rational since it lies on 9 quadrics. It is not hard to show that a general
rational sextic in a P5 lies on a maximum of 8 quadrics. This is a simple extension
of the well known fact that a rational quartic curve in P3 can only lie in one quadric
but an elliptic quartic is generally the intersection of two quadrics [8].

The above argument can be extended to other cases. Recall, [4], that a Schoenflies
motion is determined by the intersection of the Study quadric with a 5-plane. Hence if
we join the end-effector of a 3R linkage to a Schoenflies motion generator, a SCARA
robot for example, we should expect that the coupler bar of this closed loop linkage
will follow motion represented by an elliptic sextic curve in the Study quadric.

2.3 Homology in the Study Quadric

A detailed account of the homology of the Study quadric may be found in [3,
Sect. 11.5]. Here only the homology in dimension 3 is required. This is generated by
the homology classes of arbitrary A-planes and B-planes. Recall that in the Study
quadric there are two families of 3-plane called A-planes and B-planes. The class
of a general A-plane will be called σA and σB will denote the class of a general
B-plane. In general, two A-planes or two B-planes are disjoint, hence in homology
we have the relations, σA ∩ σA = σB ∩ σB = 0. However a general A-plane will
meet a general B-plane in a point: σA ∩ σB = 1. A 3-dimensional subvariety of the
Study quadric will have a homology class mσA + nσB where the integers m and n
give the generic number of intersections with a B-plane and an A-plane respectively.
The subvariety will also be a subvariety of P7 and hence will have a degree—the
number of intersections with a general 4-plane. Such a 4-plane intersects the Study
quadric in subvariety of class σA + σB . The degree of the original subvariety is thus
given by,

d = (σA + σB) ∩ (mσA + nσB) = m + n.
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In general the intersection of two subvarieties of the Study quadric with homology
classes m1σA + n1σB and m2σA + n2σB will be given by

(m1σA + n1σB) ∩ (m2σA + n2σB) = m1n2 + n1m2

points. This is analogous to Halphen’s theorem for line congruences.
The homology class of the general 3R linkage was given in [3, Sect. 11.5.1], here

a simpler proof is given. Since the degree of the Segre variety is 6 the homology
class of the 3-dimensional variety must be mσA + nσB where m + n = 6. So we
only need to find the intersection of the Segre variety with an general A-plane (or
B-plane) . Recall that the motions allowed by an S joint are simply an A-plane in
the Study quadric. Hence the number of intersections between the Segre variety and
a general A-plane can be counted as the number of assembly configurations of an
RRRS loop. This loop can also be decomposed as the intersection of an R R dyad and
an RS linkage. TheRS linkage produces rigid displacements lying on aP1×P

3 Segre
variety. This variety lies entirely within the Study quadric and by general arguments
can be shown to have degree,

(1+3
1

) = 4, see [1]. On the other hand the variety of
displacements produced by the R R linkage is well known to be the intersection of the
Study quadric with a 3-plane, [3, Sect. 11.4]. The intersection of these two varieties
thus generally consists of 4 points. Hence the homology class of the variety produced
by the 3R linkage is 2σA + 4σB .

In a very simple manner this result gives the general number of postures of a 6R
serial robot, and equivalently the general number of assembly modes for a single
loop 6R mechanism. The number of postures is given by the intersection of two such
varieties,

(2σA + 4σB) ∩ (2σA + 4σB) = 2 × 4 + 4 × 2 = 16.

It is also possible to find the general number of postures for a 6R robot with a 3R
wrist. The wrist behaves like an S joint, but there are generally two postures of the
3R wrist for any rotation. Thus the homology class of the 3R wrist is 2σA. Hence
the general number of postures for the general 6R serial robot with a 3R wrist will
be 2σA ∩ (2σA + 4σB) = 2 × 4 = 8.

3 The Bennett RRR Linkage

The condition for the determinant of the matrix M to vanish will be studied here.
Recall the significance of this relation;when det(M) = 0 the variety of rigid displace-
ments of the end-effector of the 3R linkage will not be the Segre varietyP1×P

1×P
1.

Rather, it will the the projection of the Segre variety to a subspace determined by the
column space of M .

To begin, suppose that either sinα1 or sinα2 (but not both) vanish, in this case
det(M) = 0 is only possible if d1 = 0 or d2 = 0 respectively. This implies that joints
1 and 2 coincide or in the second case joints 2 and 3 are the same. Both cases are
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degenerate and will not be considered further. Next suppose both sinα1 and sinα2
vanish. The equation det(M) = 0 is satisfied and the linkage is planar as all joint are
parallel.

In other cases we may assume that neither sinα1 nor sinα2 vanish and so we can
divide Eq. (2) by sin4 α1 sin4 α2 to get,

h4 + 2h2

(
d2
1

sin2 α1
+ d2

2

sin2 α2

)

+
(

d2
1

sin2 α1
− d2

2

sin2 α2

)2

= 0.

Treating this as a quadratic in h2 gives two potential solutions; h2 = −((d1/ sinα1)±
(d2/ sinα2))

2. Both these solutions give imaginary values for h and hence can be
rejected.

The final possibility is h = 0 and d2
1 sin

2 α2 = d2
2 sin

2 α1. This gives two possible
cases, if d1 = d2 = 0 then the linkage is spherical. In the final case neither link-length
d1 nor d2 are zero and this will be called the Bennett linkage. The above shows that
for a non-degenerate 3R linkage, the subvariety of the Study quadric generated by
the end-effector fails to be the Segre variety P1×P

1×P
1 in just three possible cases;

the planar, spherical and Bennett linkages.1

To satisfy the conditions for the Bennett linkage we set h = 0, d1 = d sinα1
and d2 = d sinα2 in the following. Call the displacement variety generated by the
end-effector of a Bennett linkage X . This variety is given by a linear projection of
the Segre variety P

1 × P
1 × P

1. The centre of this projection is the line of points
satisfying Mp = 0. This line is the join of the pair of points,

pT
1 = (

sin(α2 − α1), 0, 0, 0, 0, sinα1 + sinα2, sin(α2 − α1),− sinα1 − sinα2
)
,

pT
2 = (

0, sinα1 − sinα2, sin(α1 + α2), sinα2 − sinα1, sin(α1 + α2), 0, 0, 0
)
.

Substituting this line into the nine quadrics from Sect. 2.1 above, reveals that the
centre of projection meets the Segre variety at a pair of points. So the degree of X is
6 − 2 = 4.

The image of the projection X lies in a 5-plane. This is given by the intersection
of two hyperplanes of the form qT g = 0, where g = (a0, a1, a2, a3, c0, c1, c2, c3)T

as in Sect. 2. Two linearly independant hyperplanes are given by,

qT
1 = (

0, 0, d(sinα1 − sinα2), 0, 0, 0, sin(α2 − α1), 1 − cos(α2 − α1)
)

qT
2 = (

0, d(sinα1 + α2), 0, 0, cos(α1 + α2) − 1,− sin(α1 + α2), 0, 0
)

This has an immediate application to line-symmetric 6R mechanisms. As in
Sect. 2.2 above, we can form a line-symmetric 6R mechanism by joining the

1 This results is due to Josef Schicho.
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end-effectors of a Bennett linkage and its line symmetric linkage. The motion of
the coupler link with then be the intersection of the variety X with a 5-plane deter-
mined by the symmetry. The result is a quartic curve in the Study quadric in general,
this curve lies in the 3-plane given by the intersection of the symmetry 5-plane with
the 5-plane that the variety X lies in.

The homology class of X will have the form mσA + nσB where m + n = 4. Take
a general A-plane, this will meet the P5 containing X in a line. The intersection of
the Study quadric with this P5 is a 4-dimensional quadric. Since the line and the
3-dimensional variety X both lie in this 4-dimensional quadric they will generally
meet in n points. Take a 2-plane which is tangent to the quadric along the line. The
interstion of this 2-plane with the quadric is just the line but with multiplicity two.
The intersection of X with the 2-plane has degree 4 since X has degrre 4. But this
intersection can consist of at most 2 points on the line, since each point must have
multiplicity at least 2. The same argument applies to a general B-plane hence we see
that we must have m = n = 2. The homology class of X is 2σA + 2σB .

This result has several simple consequences for robots and mechanisms. A 6R
serial robot consisting of such a Bennett linkage and a 3R wrist will, in general, have
2σA ∩ (2σA + 2σB) = 4 postures. If the robot consists of two Bennett linkages
then we should expect (2σA + 2σB) ∩ (2σA + 2σB) = 8 postures in general. If the
robot consists of a general 3R linkage and a Bennett 3R we expect (2σA + 4σB) ∩
(2σA + 2σB) = 12 postures in general.

AnRRRS single loopmechanism,where theRRR linkage has the formof aBennett
linkage as described abovewill haveσA ∩ (2σA+2σB) = 2 assembly configurations
in general.

4 Conclusions

Homological methods are powerful tools for solving enumerative problems in kine-
matics. The results are, of course, subject to the usual cautions: Solutions must be
properly counted, solutions can be complex and in exceptional cases the set of solu-
tions will have a higher dimension than predicted.

Finally it is hoped that the methods outlined here can be used to study the many
kinematic structures formed from several Bennett linkages or mechanism.
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Force Capability Polytope of a 4RRR
Redundant Planar Parallel Manipulator

Leonardo Mejia, Henrique Simas and Daniel Martins

Abstract In this chapter the characteristic force capability polytope of a 4RRR
parallel manipulator is obtained from the optimization of its static equations. In or-
der to solve the problem regarding the global optimization, an evolutionary algorithm
known as Differential Evolution (DE) is used. The objective function of the opti-
mization problem of force capability is defined by employing the Screws Theory
and Davies’s method as a primary mathematical tool. Finally, some force capability
polytopes are obtained for different kinematic positions of the manipulator.

Keywords Force capability polytope · Optimization · Screws theory · Davies’s
method

1 Introduction

The task space capabilities of a manipulator to perform motion and/or to exert forces
and moments are of fundamental importance in robotics. Their evaluation can be
useful to determine the structure and the size of a manipulator that best fit the
designer’s requirements or they can be used to find a better configuration or a better
operation point for a manipulator to perform a given task [2].

In robotics, the force capability of a manipulator is defined as the maximum
wrench that can be applied (or sustained) by a manipulator for a given pose based on
the limits of the actuators.By considering all possible directions of the appliedwrench
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or by considering specific directions along spatial trajectories, a force capability plot
can be generated for the given pose [5]. The force capability of amanipulator depends
on its design, posture, actuation limits and redundancies [8].

Redundant actuation in parallelmanipulators can be divided into three categories.
The first category features actuating some of the passive joints within the branches
of a parallel manipulator. The second category of redundant manipulators are those
that feature additional branches beyond the minimum necessary to actuate the device
(as in the present study). Finally, the third category of redundantly-actuated parallel
manipulators are devices that are a hybrid of the first two categories [5].

With redundant actuation, the solution to the inverse force problem (given
the desired wrench to be applied by the platform, what are the required joint
torques/forces) no longer has a unique solution. An infinity of possible solutions
exists to the inverse force problem. This infinity of possible solutions allows the
joint torques/forces to be optimized [5].

The main objective of this study is to develop a method to obtain the force capa-
bility polytope of a 4RRR parallel manipulator in static or quasi-static conditions.

2 Geometric Representation of a 4RRR Planar Parallel
Manipulator

Parallel manipulators usually consist in a mobile platform connected to a fixed plat-
form by several branches in order to transmit the movement. Generally, the number
of branches of parallel manipulators is equals to their degree of freedom (DoF), and
the motors are usually located near the fixed base [7].

In this chapter, a “4RRR Redundant Planar Parallel Manipulators (RPPM)” is
studied. In this parallel manipulator, the fixed and mobile platforms are joined by
using four branches. Each branch has three rotational joints whose axes are perpen-
dicular to the (x − y) plane, and the first of the three joints in each branch is actuated,
as shown in Fig. 1.

Furthermore, the mobile and fixed platforms are formed by squares with sides
lm and l f respectively. The branches are formed by two links with lengths l1 and l2
respectively and the angle φ represents the orientation of the mobile platform. For
the studied manipulator, the link lengths and platform edge lengths are specified as
l1 = l2 = lm = 0.2m, l f = 0.5m, the manipulator’s end effector is located in
[0.25m, 0.25m], the mobile platform is oriented in φ = 0◦ and the maximum torque
capability for each actuated joint of the manipulator is ±4.2Nm.

3 Statics of the Manipulator

In the static analysis of manipulators, the goal is to determine the force and moment
requirements in the joints. It is possible to apply forces and moments in the mech-
anism joints to analyse the efforts obtained in the end actuator, or to apply external
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Fig. 1 Schematic
representation of 4RRR
RPPM

forces and calculate the necessary forces and moments in the joints to balance these
external forces.

The wrenches (force and moments) applied (or sustained) by the end effector can
be represented by the vector F = [Fx , Fy, Mz]T , where Fx and Fy denotes the force
in the directions “x” and “y” respectively, and Mz denotes the moment around the
“z” axis. The actuator torques of joints A1, A2, A3 and A4 (denoted by the vector τ )
are respectively τA1 , τA2 , τA3 and τA4 , in other words τ = [τA1 , τA2 , τA3 , τA4 ]T .

Using the formalism presented in Davies [3], the primary variables are known,
and the secondary variables are the unknown variables. Considering that the primary
variables are the actuation torques, the direct force equation can be written in the
form: V27×1 = [̂AN ]27×4 · τ4×1. Where ̂AN is the unitary action matrix and V is a
vector comprising all the unknown wrenches in the manipulator.

The ̂AN matrix can be obtained using graph theory, screw theory and Kirchhoff-
Davies cutset law [1]. The complete manipulators action graph is shown in Fig. 2,
where the edges are the joints and the vertices are the manipulator links. Existing
wrenches in each joint are represented by the symbol $.

The cutset law states that: when a manipulator is in static equilibrium, the sum
of wrenches acting in a single cut must be zero. Each one of the k cuts divides the
manipulator in subsets of links and joints, where in each subset, the static equilibrium
must be preserved [8].

Since the manipulator is planar, the space dimension λ is three and only the Fx ,
Fy , and Mz wrench components are considered, while Fz , Mx , and My are always
equal to zero [8] and will not be represented in this chapter.

For each revolute joint “i”, the wrench can be written as shown in Eq. (1), where
xi and yi are the location of the joint axis given in Cartesian coordinates, Fxi and
Fyi are respectively the forces in directions x and y of the joint, and τi is the joint’s
actuation torque. If the joint is passive, τi is zero and the last term of equation Eq. (1)
vanishes [8].
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Fig. 2 Manipulator action graph of a 4RRR RPPM

$i =
⎡

⎣

−yi
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⎦ Fxi +
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⎣

xi

0
1

⎤

⎦ Fyi +
⎡

⎣

1
0
0

⎤

⎦ τi (1)

For each cutset there are three independent equations that can be written in the
matrix as shown in Eq. (2), where AD is the cut action matrix, ̂AN is the unitary cut
action matrix, � is the vector comprising the wrenches magnitudes, λ is the space
dimension, and C represent the manipulator’s gross [1, 3, 8].

�$ = [AD]λ×C = [̂AN ]λ×C {�}C×1 = {0}λ×1 (2)

Algebraic manipulation of Eq. (2) allow us to obtain the general expressions for
the forces and the moment in the manipulator’s end effector as shown in Eq. (3),
in these equations Fx and Fy denotes the force in the directions “x” and “y” of
the manipulator’s end effector, Mz denotes the moment around the “z” axis of the
manipulator’s end effector, the k1, . . . , k12 terms represent the kinematic expressions
as functions of the manipulator’s joint’s positions, and the τA1 , τA2 , τA3 , τA4 terms
represent the torques in the actuated joints.

⎡

⎣
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⎥

⎦
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Fig. 3 Force capability map of a 4RRR RPPM

4 Optimization Problem

The aim of the optimization problem studied in this chapter, is to maximize the force
Fm applied or sustained for the manipulator in a given direction by the angle θ , while
the moment is imposed as a constant. A force capability map (Fig. 3) is obtained
when all the possible directions of the maximum force Fm are considered. A force
capability map similar to the one shown in Fig. 3 was first studied by Nokleby [4, 5]
for a 3RRR Planar Parallel Manipulator.

The optimization problem can be described as the process in which the torque in
the actuators τA1 , τA2 , τA3 and τA4 must be optimized in order to maximize the pure
force andminimize the error in the imposed value for themoment in themanipulator’s
end effector. This optimization must be done in all possible directions given for the
angle θ . In our simulations, were used 360 repetitions, one repetition per degree of
the angle θ , and the imposed moment was increased positively and negatively until
the force in any direction was zero.

4.1 Objective Function and Diferential Evolution (DE) Algorithm

The objective function used in the optimization process is shown in Eq. (4), where
the terms Fx and Fy are the components of the force obtained in each iteration of the
optimization, αd is the desired angle of the application of the force, αo is the obtained
angle of the application of the force as a function of the Fx and Fy components, Mz

is the moment obtained in the manipulator’s end effector, Mk is the constant moment
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imposed in the manipulator’s end effector and finally the “P” term is the penalization
of the objective function.

In Eq. (4), the |αd − αo/αd | term minimizes the normalized error between the

obtained and desired force direction, the
∣

∣

∣3l1τAnmax

/

√

F2
x + F2

y

∣

∣

∣ term maximizes the

normalized force obtained, and the |Mz − Mk/Mk | term minimizes the normalized
error between the obtained moment and the desired moment in the manipulator’s end
effector.
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∣

∣

+ P (4)

The penalization term “P” included in Eq. (4) is activated when the condition
[τAnmin ≤ τAn ≤ τAnmax ] is not satisfied, this condition is imposed as the maximum
admissible torque in the actuators τAn . In the present chapter were used τAnmin =
−4.2Nm and τAnmax = 4.2Nm.

In order to solve the problem regarding the global optimization, an evolutionary
algorithm known as Differential Evolution (DE) was used. DE is a very simple
population based, stochastic function minimizer and very powerful at the same time.
This algorithm is commonly accepted as one of the most successful algorithms for
the global continuous optimization problem [9].

DE optimizes a problem by maintaining a population of candidate solutions, and
creating new candidate solutions by combining existing ones, according to its simple
formula, and then keeping whichever candidate solution has the best score or fitness
on the optimization problem at hand. In this way, the optimization problem is treated
as a black box that merely provides a measure of quality given a candidate solution,
and therefore, the gradient is not needed [9].

The performance of the DE algorithm is sensitive to the mutation strategy and
respective control parameters, such as the population size (NP), crossover rate (CR),
and the mutation factor (MF). The best settings for control parameters can be dif-
ferent for different optimization problems, and the same functions with different
requirements, for consumption time and accuracy [8].

In this study the parameters NP = 30, CR = 0.8, and MF = 0.5 were used, as
suggested in [6], and the maximum iteration number was established in 4,000.

5 Results

From the optimization of the objective function shown in Eq. (4) and using the
topology shown in Sect. 2, is possible to obtain the maximum force in a desired
direction. By repeating the optimization process for each possible direction, the
force capability map as shown in Fig. 3 is obtained. Finally, by varying the value
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Fig. 4 Force capability polytope of a 4RRR RPPM (first studied case)

Fig. 5 Force capability polytope of a 4RRR RPPM (second studied case)

for the imposed moment in the manipulator’s end effector, the manipulator’s force
capability polytope as shown in Fig. 4 is obtained.

Using the same manipulator shown in Fig. 1, but changing the end effector’s
position to [0.35m, 0.35m], the orientation of the mobile platform to φ = 8◦, and
inverting the working mode of the branch A1, B1, C1, is obtained the manipulator’s
force capability polytope shown in Fig. 5.
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Finally, using the same strategy, is possible to obtain the manipulator’s force
capability polytope for each position into the manipulator’s workspace.

6 Conclusions

This chapter presents a method to obtain the force capability polytope in a 4RRR
redundant parallel manipulator optimizing the torque in the actuators of the manip-
ulator and imposing the moment in the manipulator’s end effector. The optimization
problems were solved using DE algorithms.

The force capability polytope is composed by the superposition of several force
capability maps and depends on several parameters as the manipulator’s kinematic
position, orientation, working mode and redundancies, two study cases were shown
in order to illustrate these dependencies.

The present study may be extended in various ways. Manipulators with different
DOFs, kinematic chains and including dynamic behavior may be studied, and the
minimization of the force and the maximization of the moment may be considered
in future researches.
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Motion Planning of Non-holonomic Parallel
Orienting Platform: A Jacobian Approach

Krzysztof Tchoń and Janusz Jakubiak

Abstract This chapter addressed the motion planning problem for a non-holonomic
parallel orienting mechanism whose kinematics are represented by a driftless
control system on SO(3). A coordinate-free, Jacobian motion planning algorithm
is proposed. A normal form of singularity locus is derived. Two example motion
planning problems are solved numerically.

Keywords Non-holonomic mechanism · Motion planning · Jacobian algorithm ·
Singularities

1 Introduction

The parallel non-holonomic orienting platform is a robotic mechanism designed at
the Institute of Robotics and Industrial Informatics, UPC. The design guidelines of
this platform, defined in [1, 3], rely on replacing a prismatic actuated joint by a
passive joint introducing a non-holonomic constraint. Thanks to this constraint the
platform can be oriented by means of two actuators instead of three. However, like in
other non-holonomic mechanisms, the reduction of actuation is usually made at the
expense of more complicated control [5]. A view of the platform used in [2] as an
experimental testbed for control algorithms is shown in Fig. 1 (left part). The right
part of this figure shows schematically the design idea. The platform is represented
by a ball. Two linear actuators attached to the ball at b1 and b2 change its orientation,
while a rolling disk prevents the ball’s rotation around the r axis coplanar with
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Fig. 1 Non-holonomic parallel orienting platform (courtesy of Prof. F. Thomas)

the disk, and passing through the center of the ball. In Grosch and Thomas [2] the
motion planning problem of the non-holonomic parallel orienting platform has been
studied using the quaternion representation of rotations, and the theory of bilinear
control systems. Although geometrically insightful, that approach uses a specific
arrangement of platform’s actuators, and is not adopted to challenge the problem
of mechanical singularities of the platform. In this chapter we propose a Jacobian
motion planning algorithm devised for general velocity affine mechanical systems
[4]. The algorithm is not restricted to any specific values of design parameters, and
works in a coordinate-free way. An attempt at applying this kind of algorithm to
a parallel non-holonomic robot has been made in [8]. In this chapter we assume
that the platform’s motions remain completely within the singularity-free region.
However, by employing sufficiently rich controls and themultiple-task approach, our
method should be able to solve the motion planning problem and keep the platform’s
trajectories away from singularities.

This chapter is composed in the following way. Section 2 presents the kinematics
model of the platform and a local model of its singularities. Section 3 is devoted
to the motion planning algorithm. Performance of the algorithm is illustrated with
two motion planning problems solved in Sect. 4. Section 5 concludes the chapter.
Mathematical details are collected in Appendix.

2 Modeling

Taking into account a specific position of the attachment points a1, a2, b1, b2, and
of the vector r (see Fig. 1), the kinematic model of the platform takes the following
form [2]

Ṙ = [L(R)u] R, (1)
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Fig. 2 Singularity locus: global and local, around R = I3

where R = [ri j ] ∈ SO(3) is a rotation matrix, and the control vector u ∈ R
2.

The operator [ · ] denotes the isomorphism between R3 and the Lie algebra so(3) of
skew symmetric 3 × 3 matrices, such that for any v, w ∈ R

3 [v × w] = [v][w] −
[w][v]. Admissible control functions entering (1) will be taken from the Hilbert space
L2
2[0, T ] of Lebesgue square integrable functions u(·) : [0, T ] → R

2. Given an
initial condition R0 ∈ SO(3) and a control function u(·) ∈ L2

2[0, T ], the system (1)
produces a trajectory Rt = φR0,t (u(·)) evolving on SO(3). In this chapter, following
[2], we shall study the system (1) defined by

L(R) = 1

Δ(R)

⎡
⎣

r21 r12
−r21 −r12
−r31 r32

⎤
⎦, (2)

withΔ(R) = r12r31+r21r32. By design, the rotations satisfying the equationΔ(R) =
0 are inaccessible configurations of the platform, called mechanical singularities. A
global view of these singularities in theRoll-Pitch-Yaw coordinates is shown in Fig. 2
(left). A usual way of locally visualizing a singularity consists in using its normal
form representation. It can be shown that in suitably chosen coordinates around the
unit rotation the singularity can be described by a normal form f (x, y, z) = z3+ xy.
A derivation is presented in Appendix. A view of the singularity locus f (x, y, z) = 0
is displayed in Fig. 2 (right).
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3 Motion Planning Algorithm

The following motion planning problem will be addressed in (1): For an initial
orientation R0 and a desired Rd , find a control function ud(·), such that the corre-
sponding trajectory reaches Rd at a prescribed time instant T > 0, i.e. RT = Rd .
A motion planning algorithm that will be applied to the platform has been obtained
along the lines described in [4]. A detailed derivation is deferred to Appendix, so
here we shall present only the final result. The algorithm computes a curve uθ (·) of
control functions parametrized by θ ∈ R, that converges to a solution of the motion
planning problem, limθ→+∞ uθ (t) = ud(t). Let Rt (θ) = φR0,t (uθ (·)) denote a tra-
jectory of (1) under the control function uθ (·), and let the planning error along this
curve be e(θ) = log(RT (θ)RT

d ). Then, the motion planning algorithm consists in
solving simultaneously the following set of differential equations

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂ Rt (θ)
∂t = [L(Rt (θ))uθ (t)] Rt (θ), R0(θ) = R0,

∂Φθ (T,t)
∂t = −Φθ(T, t)Aθ (t), Φθ (T, T ) = I3,

∂ Mθ (t)
∂t = Bθ (t)BT

θ (t) + Aθ (t)Mθ (t) + Mθ (t)AT
θ (t), Mθ (0) = 0,

∂uθ (t)
∂θ

= −γ BT
θ (t)ΦT

θ (T, t)M−1
θ (T )lT (θ), u0(t) = uθ=0(t),

[lT (θ)] = log(RT (θ)RT
d ).

(3)

This algorithm should be initialized by the initial orientation R0 and the initial control
function u0(t). Thematrices Aθ (t) and Bθ (t) have been defined in theAppendix. The
computation of the control function in the line 4 of the system (3) involves theMoore-
Penrose inverse of the motion planning problem Jacobian (see Appendix), so this
algorithm belongs to the family of Jacobian motion planning algorithms. The system
(3) can be solved using either parametric or non-parametric approach [6]. In this
chapter the parametric approachwill be employed, relying on representing the control
functions by truncated Fourier series. The number of terms in the representation
should not be less than the dimension of SO(3).

4 Computer Simulations

In order to illustrate the performance of the motion planning algorithm, we shall
solve two example motion planning problems. In the calculations the parametric
representation u(t) = P(t)λ of the control functions is chosen, where the matrix
P(t) collects the base functions, and λ ∈ R

s denotes parameters, s ≥ 3. In the
assumed representation the curve uθ (t) = P(t)λθ of control functions is equivalent
to a curve λθ ∈ R

s . Specifically, a substitution of the parametrized control into the
integral equation (10) from Appendix leads to the equation
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Fig. 3 Example 1: Rd = R PY (1.3, 1.3, 1.3)

JR0,T (θ)
∂λθ

∂θ
=

T∫

0

Φθ(T, t)Bθ (t)P(t)dt
∂λθ

∂θ
= −γ lT (θ),

that can be solved for dλθ

dθ
using theMoore-Penrose inverse of the Jacobian JR0,T (θ),

so that dλθ

dθ
= −γ J #

R0,T
(θ)lT (θ). By integrating this equation by the fixed step Euler

method we get the discrete motion planning algorithm

λθ+1 = λθ − γ J #
R0,T (λθ )lT (θ), θ = 0, 1, . . . .

Furthermore, it follows that the Jacobian JR0,T (θ) appears to be a solution of the

differential equation
d JR0,t (θ)

dt = A(t)JR0,t (θ) + Bθ (t)P(t), JR0,0(θ) = 0. In the
examples a 6-dimensional representation of control functions is chosen, in the form

u = P(t)λ = (
λ1 + λ2 sin 2π

T t + λ3 cos 2π
T t, λ4 + λ5 sin 2π

T t + λ6 cos 2π
T t

)T
. The

initial orientation of the platform was set to R0 = R PY (1, 1, 1) (Roll-Pitch-Yaw
angles ϕ = ϑ = ψ = 1), which lies in the region free from singularities. The
desired orientation was equal to Rd = R PY (1.3, 1.3, 1.3) for the first example
and Rd = R PY (0.5, 0.5, 0.5) for the second one. The initial controls were chosen,
respectively, as u0(t) = P(t)λ0 = (0.1, 0.1)T and u0(t) = P(t)λ0 = (0.1,−0.1)T .
In the both examples the motion planning horizon T = 1, the error decay rate
γ = 0.1. The algorithm stops when the Euclidean norm of the planning error ||lT ||
drops below 10−4. The computations were made in Matlab, with ode45 function
used to compute the system trajectory and the Jacobian. The results are presented,
respectively, in Figs. 3 and 4. The image on the left in each figure presents the
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Fig. 4 Example 2: Rd = R PY (0.5, 0.5, 0.5)

resulting trajectory in RPY coordinates against the background of the singularity
surface.

5 Conclusion

The examples demonstrate that the motion planning algorithm works efficiently on
condition that the platform trajectory remains within the singularity-free region of
the platform orientations. In order to prevent the trajectory from entering into these
singularities, the primary motion planning task may be completed by a secondary
task of avoiding singularities. For the specific arrangement of platform’s actuators, a
preliminary feedback can be applied to (1), and the motion planning problem solved
by means of the imbalanced or singularity robust Jacobian methods. These issues
will be addressed in a future chapter.
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Appendix

Normal Form

Originally, the singularity locus of the non-holonomic orienting platform is given by
the equation Δ(R) = r12r31 + r21r32 = 0. Let’s first use the Roll-Pitch-Yaw coor-
dinates, R PY (ϕ, ϑ,ψ) = R(Z , ϕ)R(Y, ϑ)R(X, ψ). Obviously, R PY (0, 0, 0) =
I3. It is easily seen that in these coordinates Δ(ϕ, ϑ,ψ) = sin ϕ sin ϑ cosψ +
sinψ(sin ϕ cos2 ϑ − cosϕ sin2 ϑ). Next, we choose ξ = sin ϑ cosψ , η = sin ϕ ·
cos2 ϑ − cosϕ sin2 ϑ , and ζ = sinψ . This is a well defined coordinate sys-
tem around 0, so Δ(ξ, η, ζ ) = ξ sin ϕ(ξ, η, ζ ) + ηζ. The function ϕ satisfies
η − sin ϕ(ξ, η, ζ ) cos2 ϑ(ξ, η, ζ ) + cosϕ(ξ, η, ζ ) sin2 ϑ(ξ, η, ζ ) = 0, that after

suitable substitutions, converts into− sin ϕ(ξ, η, ζ )+η+ ξ2(cosϕ(ξ,η,ζ )+sin ϕ(ξ,η,ζ ))

1−ζ 2
=

0. It follows that ϕ(0, 0, 0) = 0, and in new coordinates, Δ(ξ, η, ζ ) =
ξ3(sin ϕ(ξ,η,ζ )+cosϕ(ξ,η,ζ ))

1−ζ 2
+ξη+ηζ.Finally, a changeof coordinates x = ξ+ζ , y = η,

z = ξ
(
sin ϕ(ξ,η,ζ )+cosϕ(ξ,η,ζ )

1−ζ 2

)1/3
provides the desired normal form f (x, y, z) =

z3 + xy.

Motion Planning Algorithm

We begin with any admissible control function u0(·) of (1). If RT = ϕR0,T (u0(·)) =
Rd , we are done. Otherwise, we choose a smooth curve uθ (·) of control func-
tions, starting at θ = 0 from u0(·), and compute a logarithmic error e(θ) =
log(RT (θ)RT

d ) = [lT (θ)], where Rt (θ) = φR0,t (uθ (·)). We request that along the
control curve the error decreases exponentially, i.e.

de(θ)

dθ
= −γ e(θ), (4)

for a positive decay rate γ . It follows that the identity (4) is tantamount to

dlT (θ)

dθ
= −γ lT (θ). (5)

Letting St (θ) = ∂ Rt (θ)
∂θ

RT
t (θ) = [st (θ)], we get

ST (θ) = d RT (θ)

dθ
RT

T (θ) =
d

(
RT (θ)RT

d

)

dθ

(
RT (θ)RT

d

)T = d exp([lT (θ)])

dθ
exp(− [lT (θ)]).
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Now, the Hausdorff formula [7] yields

d exp([lT (θ)])

dθ
exp(− [lT (θ)]) =

[
P(θ)

dlT (θ)

dθ

]
, (6)

what means that

sT (θ) = P(θ)
dlT (θ)

dθ
, (7)

where

P(θ) = exp([lT (θ)]) = I3 + 1 − cosα

α2 [lT (θ)] + α − sin α

α3 [lT (θ)]2,

and α(θ) denotes the rotation angle of RT (θ)RT
d , given by cosα(θ) = 1

2 (tr(RT (θ) ·
RT

d ) − 1). Referring to the system (1), we compute

∂

∂t

∂ Rt (θ)

∂θ
= ∂

∂θ

∂ Rt (θ)

∂t

=
[(

∂Lt (θ)

∂θ

)
uθ (t) + Lt (θ)

∂uθ (t)

∂θ

]
Rt (θ) + [Lt (θ)uθ (t)]

∂ Rt (θ)

∂θ
,

and, after some mathematical developments, conclude that

∂st (θ)

∂t
= ∂Lt (θ)

∂θ
uθ (t) + Lt (θ)

∂uθ (t)

∂θ
+ [Lt (θ)uθ (t)] st (θ). (8)

A little more computation shows that ∂Lt (θ)
∂θ

uθ (t) = Qt (θ)st (θ), for a certain matrix
Qt (θ), that will be displayed below. Thus, (8) can be represented as a linear, time
dependent control system

∂st (θ)

∂t
= Aθ (t)st (θ) + Bθ (t)

∂uθ (t)

∂θ
, (9)

where Aθ (t) = Qt (θ) + [Lt (θ)uθ (t)], Bθ (t) = Lt (θ), and ∂uθ (t)
∂θ

playing the role
of control. After the integration of (9) with initial condition s0(θ) = 0, we deduce
from (7) a basic motion planning integral equation

JR0,T (uθ (·))∂uθ (t)

∂θ
=

T∫

0

Φθ(T, t)Bθ (t)
∂uθ (t)

∂θ
dt = −γ lT (θ), (10)

where the transition Φθ(t, s) of (9) satisfies the evolution equation ∂Φθ (t,s)
∂t =

Aθ (t)Φθ (t, s) along with Φθ(t, t) = I3. Specifically,
∂Φθ (T,t)

∂t = −Φθ(T, t)Aθ (t).
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The operator JR0,T (uθ (·)) appearing in (10) can be regarded as a Jacobian operator
associated with the motion planning problem in the system (1). Using the Moore-
Penrose inverse of this Jacobian, J #

R0,T
(uθ (·)), we derive the motion planning algo-

rithm

∂uθ (t)

∂θ
= −γ

(
J #

R0,T (uθ (·))
)
(t)lT (θ) = −γ BT

θ (t)ΦT
θ (T, t)M−1

θ (T )lT (θ). (11)

Thematrix M(T )θ = ∫ T
0 Φθ(T, t)Bθ (t)BT

θ (t)ΦT
θ (T, t)dt that can be called amobil-

ity matrix of the system (1) is found as a solution of the Lyapunov matrix differential
equation ∂ Mθ (t)

∂t = Bθ (t)BT
θ (t) + Aθ (t)Mθ (t) + Mθ (t)AT

θ (t), Mθ (0) = 0. Finally,
taking into account the identity (2), the matrix Qt (θ) has been computed as

Qt (θ) = 2

Δ2

⎡
⎢⎢⎣

−r12(m1eT
2 − m2eT

3 )[r1] + r21(m1eT
1 + m2eT

3 )[r2]
r12(m1(eT

2 − m2eT
3 )[r1] − r21(m1eT

1 + m2eT
3 )[r2]

−r32(m1(eT
2 − m2eT

3 )[r1] − r31(m1eT
1 + m2eT

3 )[r2]

⎤
⎥⎥⎦ . (12)

Here above Rt (θ) = [ri j ], m1 = r31uθ1 − r32uθ2, m2 = r21uθ1 + r12uθ2, r1, r2, r3
denote columns of Rt (θ), e1, e2, e3 are unit vectors in R3, and Δ = r12r31 + r21r32.
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Nonsingular Change of Assembly
Mode Without any Cusp

Michel Coste, Damien Chablat and Philippe Wenger

Abstract This chapter shows for the first time a parallelmanipulator that can execute
nonsingular changes of assembly modes while its joint space is free of cusp points
and cuspidal edges. The manipulator at hand has two degrees of freedom and is
derived from a 3-RPR manipulator; the shape of its joint space is a thickening of
a figure-eight curve. A few explanations concerning the relationship between cusps
and alpha curves are given.

Keywords Parallel robots · Singularities

1 Introduction

The nonsingular change of assemblymode in parallelmanipulatorswas first observed
by Innocenti and Parenti-Castelli [1]. The possibility to execute such a motion is
most frequently associated with the presence of cusps, and the nonsingular change
of assembly mode is realized by turning around a cusp point, or a cuspidal edge of
the singularity surface (see for instance [2–5]). It has also been reported [6, 7] that
nonsingular change of assemblymodes can be realized by following an “alpha curve”
(i.e. a fold curve intersecting itself transversally) but, in the examples shown, such
an alpha curve is always associated with the presence of cusps. Figure1 shows such
an example. The figure depicts a slice of the joint space for a 3-RPR manipulator,
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Fig. 1 Change of assembly mode looping around an alpha curve, with a zoom on the zone with
four solutions to the direct kinematic problem

along with a nonsingular assembly mode changing trajectory that goes around the
alpha-curve. The zone with four (resp. two) solutions to the direct kinematic problem
is colored in green (resp. red). Going from the green zone to the green zone following
the trajectory, one passes from one solution to the other solution in the same aspect.
Since there are two cusps, note that a nonsingular change of assembly mode may
also be executed by encircling one of them.

In the present chapter we describe a planar parallel manipulator with two degrees
of freedom which has absolutely no cusp, but nevertheless allows nonsingular
changes of assembly modes. This manipulator is derived from a 3-RPR manipulator
with one prismatic articulation blocked, coupled with a mechanism for reversing an
angle. We describe this manipulator in the next section. The idea behind the special
design of thismanipulator is to obtain a joint spacewhich has the shape of a thickened
figure-eight curve. This is first established with an asymptotic simplification of the
inverse kinematic mapping in Sect. 3. Section4 contains the actual example of a non-
singular change of assembly mode showing no cusp at all. Some remarks on stable
singularities are given in Sect. 5; in particular, we comment about the relationship
between cusps and alpha curves.

2 The Non Cuspidal Manipulator

The manipulator we describe here derives from a planar 3-RPR. It has a triangular
moving platform B1B2B3 which is linked to the base A1A2A3 via three legs Ai Bi ,
with passive rotoidal joints at Ai and Bi (for i = 1, 2, 3). The length r1 of the leg A1B1
is fixed. The lengths r2 and r3 of the other two legs A2B2 and A3B3 are controlled
by actuated prismatic joints. The vertices A1 and A2 of the base are fixed. The length
A1A3 is fixed. The peculiarity of this manipulator, which makes it different from a
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Fig. 2 The manipulator

Fig. 3 The 4-bar kite and the two coupled kites

3-RPR with one blocked prismatic joint, is the fact that the angle ̂A2A1A3 varies.

Precisely, if we denote by θ the angle ̂A2A1B1, then ̂A2A1A3 = π

2
− θ (see Fig. 2).

Let us complete the description of the manipulator. The platform B1B2B3 is a
right-angled triangle, with right angle at B1. Its dimensions are given by bB = B1B2
and hB = B1B3. The dimensions of the base are given by bA = A1A2 and h A =
A1A3. The position of the manipulator is completely described by the angles θ and
ψ = ̂B2B1A1.

We explain now how one can constrain the angle ̂A2A1A3 to be equal to
π

2
− θ .

Consider a 4-bar kite A1C DE with A1C = A1E and C D = E D. The rotoidal joint
A1 is fixed and D is constrained to glide on A1A2. The rotoidal joint E is on the leg
A1B1. Of course, we have ̂A2A1C = −θ . We constrain A1A3 to be orthogonal to

A1C so that ̂A2A1A3 = π

2
− θ (see Fig. 3, left).

When the 4-bar kite is flat (this happens when θ = 0 or π ), it can change its
operating mode by moving in such a way that C and E remain coincident. In order
to rule out this possibility, we can couple the first kite A1C DE with a second one
A1C ′ D′E ′, as shown on Fig. 3, right.

We could have used other mechanisms in order to reverse the angle θ : for instance
Kempe’s reverser consisting of two contra-parallelograms (see [8] p. 270), or belts,
or gears.
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3 The Inverse Kinematic Mapping and Its Asymptotic
Simplification

The constraint equations of the manipulator can be written as follows. Recall that ri

is the length of the leg Ai Bi . The actuated joint variables are r2 and r3, while r1 is
fixed. The position of the manipulator is determined by the angles θ andψ . We have:

r22 = (r1 − bA cos θ − bB cosψ)2 + (bA sin θ + bB sinψ)2,

r23 = (r1 − h A sin 2θ − hB sinψ)2 + (h A cos 2θ + hB cosψ)2.
(1)

Equation (1) describe the inverse kinematic mapping from the workspace, which is
a torus parametrized by the angles θ and ψ , to the actuated joint space, which is the
positive quadrant parametrized by the lengths r2 and r3.

We shall now consider the asymptotic version of the inverse kinematic mapping
as r1 tends to infinity, as was done in [9] for the usual 3-RPR manipulator. In order
to do this, we replace r2 and r3 with r2 − r1 and r3 − r2 and take their limit δi =
limr1→∞(ri − r1) for i = 2, 3. We obtain:

δ2 = −bA cos θ − bB cosψ,

δ3 = −h A sin 2θ − hB sinψ.
(2)

Equation (2) describe the asymptotic simplification of the inverse kinematicmapping,
from the torus (θ, ψ) to the plane (δ2, δ3). The singularities of the asymptotic inverse
kinematic mapping are easily understood. Remark that (bA cos θ, h A sin 2θ) is a
parametrization of a figure-eight curve, or lemniscate of Gerono (a particular case of
a Lissajous curve), while (bB cosψ, hB sinψ) is, of course, the parametrization of
an ellipse. So the curve of critical values of the asymptotic inverse kinematicmapping
is the envelope of a family of translated ellipses with centres on a figure-eight curve.
If the ellipse is small compared to the figure-eight curve, we obtain just a thickening
of the figure-eight curve.

Specifically, take bA = 10, h A = 5, bB = 1, hB = 2. The Jacobian determinant
of the asymptotic inverse kinematic mapping is then

J = −20 sin θ cosψ + 10 cos 2θ sinψ. (3)

Solving J = 0 for ψ , we obtain that the critical points of the asymptotic inverse
kinematic mapping are those such that

cosψ = ± cos 2θ
√
1 + 4 sin4 θ

, sinψ = ±2 sin θ
√
1 + 4 sin4 θ

. (4)

The two branches of the curve of critical points in the (θ, ψ) torus are represented
in thick black line in Fig. 4, left. These two branches delimit two aspects.
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Fig. 4 Work space: the (θ, ψ) torus (left) and joint space: the (δ2, δ3)plane (right) for the asymptotic
model

Carrying these values in the Eq. (2) for the asymptotic inverse kinematic mapping,
we get the two branches of the curve of critical values in the (δ2, δ3) plane. They are
represented in Fig. 4, right. These curves delimit zones where the direct kinematic
problem has two solutions (red zone), and four solutions (green zone).

There is no cusp, but a nonsingular changeof assemblymode is possible since there
are two aspects and a zone where the direct kinematic problem has four solutions. A
trajectory for such a nonsingular change of assembly mode is represented in Fig. 4.
The nonsingular change of assembly mode can be interpreted using a comparison
with a figure-eight race track where the crossroads is realized with a bridge, i.e.
there are two levels at the crossroads. Each level is associated with an assembly
mode. The track represents an aspect (the joint space is made of two superimposed
similar aspects). Starting from the crossroads on the bridge (level 1), the car can drive
until it reaches the crossroads at the same horizontal position but under the bridge
(level 0).

The characteristic curves have been plotted in thin black line in Fig. 4, left. These
curves, together with the critical curves, define the uniqueness domains: any two
points in the same uniqueness domain of the (θ, ψ) torus have different images in
the (δ1, δ2) plane (joint space). For a complete definition of the characteristic surfaces
and uniqueness domains, see [10]. Any point in the green region of the joint space
(Fig. 4, right) is the image of four points in the workspace (four assembly modes).
These four points are distributed in the four green regions shown in the workspace
(Fig. 4, left), two in each aspect.

The preceding analysis concerns, of course, only an asymptotic case. However,
since the asymptotic inverse kinematic mapping has only stable singularities (folds
and transverse intersection of folds, see Sect. 5) which are not altered by small per-
turbations, the conclusion obtained will remain valid for all sufficiently large values
of r1. We shall check this in the next section.
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Fig. 5 Workspace and joint space for r1 = 30, with a nonsingular change of assembly mode

4 An Actual, Non Asymptotic Example

The asymptotic analysis of the preceding section corresponds to r1 = ∞. We show
here that the conclusion remains valid for r1 = 30 (keeping the samebA, h A, bB , hB).
We have now to deal with Eq. (1) which are more complicated than their asymptotic
simplification. The computation is done using the SIROPA library. In order to sim-
plify calculations, we use coordinates l2 = r22 , l3 = r23 for the actuated joint space,
which is an unessential change.

We can see on Fig. 5 that the picture of the singularities is the same as the one for
the asymptotic simplification (Fig. 4). In particular, there is no cusp. We have also
represented a nonsingular trajectory between two configurations corresponding to
the same values l2 = 1000, l3 = 880 for the actuated joints.

5 Stable Singularities and Nonsingular Change
of Assembly Modes

The only stable singularities of a mapping from a surface to a surface (see [11])
are the folds (codimension one singularity, giving a fold curve), the cusps and the
transverse intersections of fold curves (codimension two singularities, i.e. isolated
points). Any other singularity will be decomposed into a combination of these stable
singularities by a small perturbation, whereas a stable singularity is persistent under
small perturbations.

Figure6 represents these three stable singularities for a critical value P . Gener-
ically, the picture of parallel singularities in a two-dimensional surface around a
critical value of the inverse kinematic mapping in the joint space will fit into one of
these three cases. The direct kinematic problem has a double solution for a fold, a
triple solution for a cusp and two double solutions for a transverse intersection of
fold curves.



Nonsingular Change of Assembly Mode Without any Cusp 111

Fig. 6 Stable singularities: fold, cusp and transverse intersection of fold curves

Fig. 7 Degeneration of an alpha curve

The only stable singularity which allows local nonsingular change of assembly
mode is the cusp. By “local”, wemean that the change of assemblymode is performed
by following a loopwhich can be shrunk to become arbitrarily small. This is certainly
the case for a loop encircling a cusp, but not for a loop following an “alpha curve”,
i.e. a fold curve intersecting itself transversally.

In examples, an alpha curve is frequently associatedwith cusps because a transver-
sal intersectionof folds often appears after a “swallowtail bifurcation” (see [12] p. 34),
together with a pair of cusps. One might think that a cusp is obtained by shrinking
the loop of an alpha curve to a point. This is not the case, since a cusp is a stable
singularity which cannot be obtained by degenerating another singularity. If the loop
of an alpha curve is shrunk to a point, then this point corresponds to a quadruple, not
triple, solution to the direct kinematic problem.

In order to illustrate an example of degeneration of an alpha curve, and also the
swallowtail bifurcation, we show the transformation of the (δ2, δ3) joint space of
Sect. 3, as we decrease h A keeping the other dimensions fixed. Only a half of the
joint space is shown in Fig. 7, since it is symmetric.

Figure7 shows that, at first, two cusps and a transverse intersection of fold curves
appear as a result of a swallowtail bifurcation. Then, the two transverse intersections
of fold curves disappear through a tangent crossing of these curves.
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6 Conclusion

While it is clear that the existence of cusps or cuspidal edges is a sufficient condition
for allowing a nonsingular change of assembly mode, the question of whether this
condition is necessary or not remained to be fixed because previous examples of
nonsingular assembly mode changing manipulators always exhibited cusps, even
in the presence of an alpha-curve. This chapter showed that the aforementioned
condition is indeed not necessary, through the presentation of a 2-DOF parallel
manipulator that can execute a nonsingular change of assembly mode while its joint
space is free of cusps. This manipulator is derived from a 3-RPR and its joint space
is a thickening of a figure-eight curve. The kinematic properties of this manipulator
were first established using the asymptotic simplification of its inverse kinematic
mapping.

It was recalled that a cusp is a necessary and sufficient condition for local non-
singular change of assembly mode in generic situations; it was also explained that a
cusp cannot be interpreted as a degeneration of an alpha-curve.
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The Influence of Discrete-Time Control
on the Kinematico-Static Behavior
of Cable-Driven Parallel Robot
with Elastic Cables

Jean-Pierre Merlet

Abstract Robots are controlled with a discrete-time controller that includes a
high-level loop for motion control and a faster internal loop that controls the ac-
tuators. We intend to simulate the behavior of the whole chain for a cable-driven
parallel robot (CDPR) with linear elastic cables and we will show that such a simu-
lation cannot be performed using classical simulation tools. We exhibit a simulation
algorithm which computes exactly the pose and cable tensions on a given trajectory.
As an example we consider a redundantly actuated robot with 8 cables. We show that
the discrete-time control has a moderate influence on the accuracy of the positioning
but a very large influence on the cable tensions.

Keywords Cable-driven parallel robot · Elastic cable · Discrete-time control

1 Introduction

The study of CDPR has started about 30 years ago with the pioneering work of
Albus [2] and Landsberger [13] but there has been recently a renewed interest in such
a robot, both from a theoretical and application viewpoint. For example kinematics
analysis of CDPR is much more complex than the one of parallel robot with rigid
legs as static equilibrium has to be taken into account [5, 11, 21] and is still an
open issue especially as not all cables of a robot with m cables may be under tension
[1, 3, 6, 8, 16] and that only stable solutions have to be determined [7]. This analysis
is evenmore complex if we consider that the cables may be elastic and/or deformable
[9, 10, 12, 18].
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Numerous applications of CDPRs have been mentioned e.g. large scale main-
tenance studied in the European project Cablebot [17], rescue robot [15, 19] and
transfer robot for elderly people [14] to name a few.

However a problem has never been addressed when simulating CDPRs: the influ-
ence of the use of discrete-time control on the kinematic and static behavior of the
robot. Only Borgstrom [4] has presented a motion planning algorithm for CDPRs
that takes into account the discrete-time nature of the controller. The purpose of this
paper is to study the controller influence on the kinematic and static behavior of a
CDPR with linear elastic cables when performing a given trajectory.

2 Discrete-Time Control

A robot controller is basically constituted of two discrete-time control loops:

• a high-level loop with a sampling frequency Δt1: at time kΔt1, k being an inte-
ger, this loop get sensory information from the robot, process it and send a new
command for the actuators at time (k + 1)Δt1

• an inner loop with a sampling frequency Δt2 < Δt1: at time lΔt2, l being an
integer, this loop get sensory information from the actuators and process it for
sending new voltages or currents to the actuators at time (l + 1)Δt2. For the sake
of simplicity we will assume that Δt1 is a multiple of Δt2.

A consequence of this scheme is that during the time interval [lΔt2, (l + 1)Δt2] the
actuators are submitted to a constant voltage/current V and the CDPR state evolves
according to only the actuator state.Wewill assume that a time-model of the actuator
is available i.e. the output θ of the motor at any time T in the range [t, t + Δt2] may
be obtained as θ(T ) = H(T, θ(t), V ).

3 Cable Configurations and Kinematico-Static Equations

We consider a CDPRwithm elastic cables, numbered from 1 tom, whose extremities
are located on the robot base at point Ai and attached to the platform at point Bi . If
ρ is the cable real length and l0 its length at rest, then the tension τ in the cable is
τ = K (ρ − l0), where K is the stiffness constant, provided that l0 is larger than the
distance ||AiBi||, otherwise the cable is slack and τ = 0. As a cable may become
slack we introduce the concept of cable configuration (CC): a cable configuration
Mi at a pose is a set of i ≤ m integers which are the numbers of the cables that are
currently under tension, all other cables being slack. Note that at a given pose several
CC may be possible, the current one depending on the history of the system.

Wemay now investigate the equations that are involved in the forward kinematics
(FK) problem for a given CC M j . The unknowns are the 6 parametersX that describe
the pose of the platform and the i tensions τ or, equivalently, the i cable lengths ρ,
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for a total of 6 + i unknowns. The equations are the i inverse kinematic equations
and the 6 equation from the mechanical equilibrium:

ρ = G(X) F = J−Tτ (1)

where F is the external force applied on the platform. In this paper we will assume
that the only external force is gravity that is applied at the center of mass C of the
platform. The matrix J−T is the 6 × i transpose of the inverse kinematic jacobian.
The j-th row J j of J−T is given by

J j = ((
AjBj

ρ j
CBj × AjBj

ρ j
))

Hence we end up with a square system of 6 + i equations that may be written as

F(X, ρ, l0) = 0. (2)

4 Kinematico-Static Simulation on a Trajectory

We are interested in determining the kinematic and static behavior of a CDPR under a
discrete-time controller when it has to move along a given trajectory.We will assume
that when the CDPR starts its task the current CC Ml is known. We will also assume
that the pose at the start point is known.

4.1 Finding a Certified End-Pose

We consider a time intervalT = [lΔt2, lΔt2 +Δt], with Δt ≤ Δt2, and we assume
that at time t the CC M j is known, together with the pose Xt. Our objective is to
determine what is the pose at time lΔt2 + Δt , under the assumption that the CC
does not change on the whole time interval. If such result can be obtained the time
interval T will be called valid. For checking the validity of T we consider the
system of Eq. (1) at time T , i.e. for fixed values of the l0. This system may admit
several solutions i.e. the pose X may lie on different kinematic branches Si and our
objectives are to show (1) that for any time T the pose lies on the same branch St

than Xt and (2) to calculate the pose at time lΔt2 + Δt . Assume that we are able to
show that for any time T system (1) admits a single solution in a ball centered at Xt:
this implies that during the time interval the kinematic branch on which lies Xt does
not cross any other branch and that the pose always lies on the branch St , hence
fulfilling 1). For showing the unicity of the solution in a ball centered at Xt we will
use Kantorovitch theorem [20], that is presented now. Let an arbitrary system of n
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equations in n unknowns F = {Fi (x1, . . . , xn) = 0, i ∈ [1, n]} and x0 be a point and
U a ball centered at x0 with radius B0. Assume that x0 is such that:

1. the Jacobian matrix J0 of the system has an inverse Γ0 at x0 such that ||Γ0|| ≤ A0
2. ||Γ0F(x0)|| ≤ 2B0

3.
∑n

k=1 | ∂2Fi (x)
∂x j ∂xk

| ≤ C for i, j = 1, . . . , n and x ∈ U
4. the constants A0, B0, C satisfy 2n A0B0C ≤ 1 (A)

Then there is an unique solution of F = 0 in U and Newton iterative scheme used
with x0 as estimate of the solution will converge toward this solution.

In our case however as we consider any time in the time interval, Eq. (1) is not a
single system but a family of systems because l0 vary over time. We may however
assume that the time model of the actuator allow us to determine an interval I i =
[li

min, li
max ] such that for all cables we have li

0 ∈ I i . Note that the width ofI i will
decrease with Δt . Assuming that the reader is familiar with interval analysis (IA)
we may now apply Kantorovitch theorem to the system (2) using Xt as x0 with the
following modifications:

• F(x0) has now an interval value
• the matrix J0 is an interval matrix. Classical method allows to obtain its inverse
but may fail if the width of the intervals in J0 is too large

• the Hessian matrix appearing in item 3 of the theorem is also an interval matrix
but its norm can be calculated with IA methods

We start by settingΔt = Δt2. If the interval matrix J0 cannot be inverted or condition
(A) of the theorem is not satisfied, then we set Δt = Δt/2, update the ranges I i

and starts again until a valid Δt is determined. This approach may fail only in two
cases: (a) system (2) is close to a singularity (in which case we cannot predict the
behavior of the robot) or (b) in case of insufficient computer accuracy (this issue will
be addressed in a later section). If a valid Δt is found we are able to calculate the
pose at time lΔt2 + Δt unless a CC change occurs in the time interval.

4.2 Finding Cable Configuration Changes

Assume that a valid interval [lΔt2, lΔt2 + Δt] has been determined in the previous
step. If no CC change occur in this time interval, then we are able to calculate the
pose at time lΔt2 + Δt . Necessary conditions for a CC change are

1. there is a time T in the time interval at which the tension of a cable i ∈ M j is
exactly equal to 0, i.e. ρi = li

0 = ||AiBi||.
2. there is a time T in the time interval at which the length li

0 a cable i �∈ M j is such
that li

0 = ||AiBi||.
In both cases Eq. (2) for the CC M j are still valid but we have an additional unknown,
T , while one of the unknown, ρi , has now a known value. Hence this new version
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of (2), denoted Fmod
i , is still a square system. As we have to consider that all the m

cable may possibly satisfy in turn ρi = li
0, we have therefore m system Fmod

i . Note
that we have bounds on all unknowns of the new system: X and the ρi have to lie in
the ball provided by the Kantorovitvh theorem. Hence it is quite natural to use IA to
determine all possible solutions of all m systems Fmod. All the n solutions are then
ordered by increasing value T k1

1 , T k2
2 , . . . , T kn

n where the superscript ki denotes the

cable number for which ρki = lki
0 . In the time interval [lΔt2, lΔt2 + T k1

1 ] we are
sure that the platform lie on the kinematic branch St . A possible CC change may
occur at time T k1

1 , where we have ρk1 = lk1
0 , but is not certain. Indeed if k1 ∈ M j the

tension may decrease before T k1
1 , cancel at T k1

1 but may then increase. In the same

manner if k1 �∈ M j the distance ||Ak1Bk1 || may increase before T k1
1 , reach lk1

0 at

T k1
1 but may then decrease so that cable k1 remains slack. To determine if such case

occurs we consider a new CC M j+1 obtained by adding k1 to the CC M j . We then
apply the Kantorovitch theorem on the Eq. (2) valid for this new CC, using as x0 the
pose obtained for the time T k1

1 . We then calculate times T ′
1, T ′

2, . . . , T ′
u at which a

CC change may occur. We then solve the system obtained for time (T k1
1 + T ′

1)/2.

If at this time we have both k1 ∈ M j and ||Ak1Bk1 || < lk1
0 or both k1 �∈ M j and

ρk1 > lk1
0 , then a CC change occurs at T k1

1 , cable k1 becoming slack in the first case
and under tension in the second one. If this not the case we repeat the procedure for
time T k2

2 , …, T kn
n until either a CC change occur or there is no CC change at T kn

n ,
which implies that at time lΔt2 + Δt the platform still lies on the branch St .

4.3 Trajectory Checking

The two previous sections allow us to determine the pose, cable configuration and
cable tensions at any time when the CDPR performs a trajectory. As soon as the high
level loop has sent an order to the inner one we will determine the pose and tension
during the time intervals [kΔt1+ lΔt2, kΔt1+ (l +1)Δt2] until kΔt1+ (l +1)Δt2 =
(k + 1)Δt1. We store the CDPR status at times kΔt1 + lΔt2, kΔt1 + (l + 1)Δt2 and
possible at intermediate times. Note that uncertainties may be taken into account:
for example we may use in the simulation a different value of the cable stiffness Ki

than the one used in the high level loop or we may introduce arbitrary random errors
in the measurements of the l0 that is used by the inner loop.

5 Implementation and Example

The previous algorithm has been implemented assuming a first order time model for
the velocity of the actuator. Let Vc be the desired velocity of the actuator and V (t0)
the known velocity at time t0. Then the actuator velocity V (t) at time t ≥ t0 is
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V (t) = Vc + (V (t0) − Vc)e
− t−t0

U

where U is a known constant. The inner loop is a simple P controller that send to the
actuator at time (l + 1)Δt2 a velocity order V l = Vc + kp(Vc − Vm), where Vm is
the measured velocity at time lΔt2, Vc the velocity sent by the high level loop and
kp a constant gain.

The IA part of the algorithm has been implemented using our IA library ALIAS,
that takes into account round-off errors. But even with this library we have encoun-
tered numerical problems, especially with the convergence of the Newton scheme.
The satisfaction of Kantorovitch theorem requires that the pose computed for a given
time T is accurate enough. Indeed a minimum condition for the theorem to provide a
positive answer is that it is satisfied at time T . Roughly this means that the absolute
value of the components of F at this time have a value less than 1/(2k A2

0C0), where
k is the number of equations in F. In some cases we have noticed that this value
is very low and well below the accuracy of floating-point calculation. Hence the
floating-point version of the Newton scheme oscillates around the solution without
ever producing a value of F which is small enough. Fortunately we have a mean
to solve this issue: ALIAS has a Maple interface that includes a multi-precision
Newton scheme, allowing to calculate a solution with an arbitrary accuracy. Conse-
quently when Kantorovitch theorem is satisfied but the floating-point Newton does
not converge, then we use the Maple version.

As a complex example we consider the 8-cables large scale robot developed
by LIRMM and Tecnalia as part of the ANR project Cogiro and the FP7 project
CABLEBOT. This robot is a suspended CDPR whose dimensions have been given
in several papers [10]. The platform is assumed to have a mass of 1/9.81 kg. We
consider a planar circular trajectory centered at (0,0,2) with radius 1. The sampling
times were fixed to Δt1 = 0.005 s, Δt2 = 0.001 s and the motor constant U to 0.1 s.
The high level loop computes at time kΔt1 what should be the pose at time (k+2)Δt1
and calculates the lc

0 for this pose that minimize
∑

τ 2j . The inner loop generates a
velocity order for the actuators as K p(lc

0−lm
0 )where K p is a constant gain and lm

0 the
l0 measured at time kΔt1. We have considered two simulation cases. In the first one
there is no error on the measurement of the l0 and the stiffness of the cables was set to
1,000N/m (which correspond roughly to the stiffness of nylon). In the second casewe
add a random error on the lm

0 in the range [−0.01, 0.1] (the average value of the l0 on
this trajectory is about 800), the high level loop assume a cable stiffness of 1,000 but
the real cable stiffness was set to 1, 050, 900, 950, 1, 020, 1, 010, 1, 000, 1040, 980.

In the first case themaximal positioning error on the trajectory is 0.00002275 with
a mean value of 0.36610−5. In the second case the maximal error is 0.00575 with a
mean value of 0.00104 (Fig. 1). Hence it may be seen that the uncertainties on the
stiffness and length measurement has a relatively low influence on the positioning
accuracy,

The situation is quite different for the tensions in the cables.Without uncertainties
the maximal difference between the cable tensions and the optimal one over all
cables is 0.000221N with a mean value of 0.0001N. With uncertainties the maximal
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Fig. 2 Tension of cable 1 without uncertainty and with uncertainty (optimal tension is the dashed
line)

difference is 0.4844N with a mean value of 0.28097N. In percentage of the optimal
tension the maximal difference is 140.13% and the mean value is 72.85%. Figure 2
presents tension of cable 1 together with its optimal tension during the first 3 seconds
of the trajectory. It may be seen that a perfect knowledge of the cable stiffness allows
to follow accurately the optimal tension. But as soon that as the real stiffness differ
by a small amount from the assumed one the cable tension oscillates between slack
state and under tension.

This analysis confirms that the use of a discrete-time controller prohibits tension
control in CDPRs.

6 Conclusion

To the best of our knowledge this paper has presented for the first time a simula-
tion of CDPRs that takes into account the discrete-time nature of current controller.
Implementing this simulation is a complex task because it involves solving the FK
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but also because the necessary accuracy for obtaining this simulation may be lower
than the one obtained with floating point calculation. Results on an example shows
that positioning accuracy is not that much influenced by the controller but that on
the other hand cable tensions are drastically influenced. Our next objective will be
to take into account the dynamics of the robots in this simulation.

This research has received partial funding from the EC’s Seventh Framework
Program under grant agreement NMP2-SL-2011-285404 (CABLEBOT).
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Derivatives of Screw Systems in Body-Fixed
Representation

Andreas Müller

Abstract The configuration of a kinematic chain can be uniquely expressed in terms
of the joint screws via the product of exponentials. Twists on the other hand can be
represented in various forms. The particular representation is determined by the ref-
erence frame in which the velocity is measured and the reference frame in which
this velocity is expressed. For kinematic analyses the spatial twists are commonly
used.Analyticalmechanismdynamics, on the other hand, uses body-fixed twists. The
body-fixed twist of a moving body is the velocity of a body-attached frame relative
to the spatial frame expressed in the body-attached moving frame. Accordingly the
spatial and body-fixed twists are expressed in terms of spatial and body-fixed instan-
taneous joint screw coordinates, respectively. Crucial for analytical kinematics and
dynamics are the derivatives of twists, and thus of the mechanism’s screw system.
Whereas higher-order derivatives of screw systems in spatial representation have
been a subject of intensive research, the body-fixed representation has not yet been
addressed systematically. In this chapter a closed form expression for higher-order
partial derivatives of the screw system of a kinematic chain w.r.t. the joint variables
is reported. The final expression is a nested Lie bracket of the body-fixed instan-
taneous joint screws. It resembles the previously presented results for the spatial
representation.
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1 Introduction

Velocities of frames (representing rigid bodies or nodal elements of flexible bodies) in
amultibody system (MBS) can be expressed recursively in terms of the instantaneous
joint screws.Kinematic and dynamic analysis ofMBS require higher-order derivative
of frame twists, and thus of the joint screws. The twists and joint screws can be
expressed in an arbitrary reference, and accordingly their derivatives depend on this
reference frame.Mechanism theory and robot kinematics traditionally employ spatial
representations of twists, and many publications deal with the issue of higher-order
derivatives of screws to aid the analysis of mechanisms. Dynamics formulations on
the other hand use body-fixed reference frames and body-fixed twists.

The derivatives of screw systems have been addressed for instance in [3, 8, 14].
It is well-know that for a kinematic chain the partial derivatives of the spatial screw
representation is given in terms of Lie brackets, and explicit expressions have been
reported [6, 7, 9, 11]. Partial derivatives of the body-fixed representation are also of
great importance for MBS kinematics and dynamics, as well sensitivity analysis and
optimization [5, 13]. However, explicit closed form expressions have not yet been
reported. In this chapter such closed form expressions are presented complementing
these for the known spatial representation [9].

2 Kinematics of Open Chains

Consider a kinematic chain comprising1-DOFscrew joints, and let the constant screw
coordinates of joint i in the reference configuration be Yi = (ei , si × ei + hi ei )

T .
The configuration of the rigid body r in a kinematic chain is represented by the
configuration of a body-fixed reference frame (RFR), denoted Cr ∈ SE (3). This
can be determined in terms of the joint screws by the kinematic mapping f : Vn →
SE (3) that is formulated by the product of exponential (POE) formula [1, 12]

fr (q) = exp(Y1q1) · . . . · exp (
Yr qr ) mr (1)

where mr ∈ SE (3) is the reference configuration of body r for q = 0. Therefore
(1) is also referred to as zero reference formulation [4].

The spatial twist Vs
r = (

ωs
r , vs

r

)T of body r , i.e. the velocity of RFR at body r
relative to the space-fixed frame measured in the space-fixed frame, is introduced as
V̂s

r := Ċr Ċ−1
r ∈ se (3). Using (1) the twists vector is expressible as

Vs
r = S1 (q) q̇1 + · · · + Sr (q) q̇r (2)

where Si (q) = (ei (q), si (q) × ei (q) + hi ei (q))T are the instantaneous joint screws,
in the configuration q , expressed in the spatial frame. That is, these are the reference
screw coordinates transformed to the current configuration



Derivatives of Screw Systems in Body-Fixed Representation 125

Si = Ad fi m−1
i

Yi , i ≤ r (3)

which follows immediately from (1).
The body-fixed twist Vb

r = (ωb
r , vb

r )T of body r , i.e. the velocity of body-fixed
RFR at body r relative to the space-fixed frame measured in the body-fixed RFR, is
introduced as V̂b

r := Ċ−1
r Ċr ∈ se (3). The body-fixed twist vector is given by

Vb
r = B

r
1 (q) q̇1 + · · · + B

r
r (q) q̇r (4)

where B
r

i (q) = (er
i (q), br

i (q) × er
i (q) + hi er

i (q))T is the instantaneous screw coor-

dinate vector of joint i expressed in RFR on body r . I.e. er
i is a unite vector along

the joint axis i and br
i (q) is the position vector of a point on the axis measured from

the RFR on body r and expressed in that RFR. With (1) this is

B
r

i = Ad−1
mi Rr,i

Yi , i ≤ r (5)

with Rr,i (q) := f −1
i (q) fr (q) = m−1

i exp
(
Yi+1qi+1

) · . . . · exp (Yr qr ) mr . The
latter is the relative configuration of body r w.r.t. body i .

3 Partial Derivatives of Spatial Instantaneous Joint Screws

It is known that the partial derivatives of the spatial screws (3) are given by the Lie
brackets

∂

∂q j
Si = [S j , Si ], j < i,

∂

∂qk∂q j
Si =

{ [Sk, [S j , Si ]], k < j < i
[S j , [Sk, Si ]], j ≤ k < i.

(6)

This follows directly from the POE (1). It is straightforward to derive explicit expres-
sions for higher order derivatives noting the bilinearity of the Lie product and insert-
ing (6). This has been pursued in [2, 6, 7, 10, 11], and the closed form for arbitrary
orders was presented recently [9]. It remains to derive closed form relations for the
body-fixed twists. This is presented in the next section.

4 Partial Derivatives of Body-Fixed Joint Screws

As the interest in higher-order relations for body-fixed representations is mainly
limited to robot dynamics, and MBS dynamics in particular, there is little research
aiming at a systematic and conclusive treatment of this topic. In the following a
closed form expression is presented that can be considered as conclusive statement.
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The central relations for the following derivations are the bilinearity and skew
symmetry of the Lie bracket, the Jacobian identity [Y, [Z, X]] + [Z, [X, Y]] +
[X, [Y, Z]] = 0, and the fact that for constant Yi

∂

∂qi
exp(Ŷi q

i ) = Ŷi exp(Ŷi q
i ). (7)

For sake of brevity introduce the notations B
r
1
i j := ∂

∂q j B
r

i , B
r
2
i jk := ∂

∂qk B
r
1
i j , and so

forth for B
r

ν
i j ...kl := ∂

∂ql B
r

ν−1
i j ...k .

The relation (5) leads to the expression for the partial derivatives of B
r

i

∂

∂q j
B̂
r

i = ∂

∂q j
( f −1

r fi )m
−1
i Ŷi mi f −1

i fr + f −1
r fi m

−1
i Ŷi mi

∂

∂q j
( f −1

i fr ). (8)

The relation (7) applied to the first term in (8) yields

∂

∂q j
( f −1

r fi ) = ∂

∂q j
(m−1

r exp(−Yr qr ) . . . exp(−Yi+1qi+1)mi ))

= −m−1
r exp(−Yr qr ) . . . exp(−Y j+1q j+1)Ŷ j exp(−Y j q

j ) . . .

exp(−Yi+1qi+1)mi

= − f −1
r f j m

−1
j Ŷ j m j f −1

j fi = − f −1
r f j m

−1
j Ŷ j m j f −1

j fr f −1
r fi

= −B̂
r

j f −1
r fi , i ≤ j ≤ r.

In the same way it follows that

∂

∂q j
( f −1

i fr ) = f −1
i fr B̂

r
j , i ≤ j ≤ r

so that in summary

∂

∂q j
B̂
r

i = −B̂
r

j f −1
r fi m

−1
i Ŷi mi f −1

i + f −1
r fi m

−1
i Ŷi mi f −1

i fr B̂
r

j

= B̂
r

i B̂
r

j − B̂
r

j B̂
r

i , i ≤ j ≤ r.

The matrix commutator in the last term is the Lie bracket on se (3), and hence the
explicit expression for the partial derivative of the instantaneous joint screws is

B
r
1
i j = [B

r
i , B

r
j ], i < j ≤ r. (9)

It is important to notice the index range in (9). As it is clear from the kinematics that
the contribution of the i th joint twist to the body twist only depends on the relative
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configuration of body i and body r , and thus on the joint variables qi+1, . . . , qr .
Moreover, comparing (9) with (6) shows that the derivative of the spatial twist is
identically zero, exactly when the partial derivative of the body-fixed twist is not.

The second partial derivative follows immediately from as (9) and the bilinearity
of the Lie bracket as

B
r

2
i jk = [ ∂

∂qk
B
r

i , B
r

j ] + [B
r

i ,
∂

∂qk
B
r

j ], i < j ≤ r

= [[B
r

i , B
r

k], B
r

j ] (for i < k, j ≤ r) (10)

+ [B
r

i , [B
r

j , B
r

k]] (for i < j < k ≤ r).

The last two terms have an overlapping index range, and are thus partially redun-
dant. This redundancy can be eliminated by application of the Jacobi identity
[[B

r
i , B

r
k], B

r
j ] + [[B

r
k, B

r
j ], B

r
i ] + [[B

r
j , B

r
i ], B

r
k] = 0 for i < j ≤ k. Solving for

[[B
r

i , B
r

j ], B
r

k] leads to

B
r
2
i jk =

{ [[B
r

i , B
r

j ], B
r

k], i < j ≤ k ≤ r

[[B
r

i , B
r

k], B
r

j ], i < k < j ≤ r.
(11)

The third partial derivative of the body-fixed instantaneous screw vector is obtained
in the same way noticing the bilinearity of the Lie bracket and the linearity of the
derivative operator. Making use of (11) leads to

B
r
3
i jkl =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[ ∂
∂ql [Br i , B

r
j ], B

r
k], i ≤ j ≤ k ≤ r

[[B
r

i , B
r

j ], ∂
∂ql B

r
k], i ≤ j ≤ k ≤ r

[ ∂
∂ql [Br i , B

r
k], B

r
j ], i ≤ k ≤ j ≤ r

[[B
r

i , B
r

k], ∂
∂ql B

r
j ], i ≤ k ≤ j ≤ r

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[[[B
r

i , B
r

j ], B
r

l ], B
r

k], i ≤ j ≤ l ≤ r, i ≤ j ≤ k ≤ r ∗
[[[B

r
i , B

r
l ], B

r
j ], B

r
k], i ≤ l ≤ j ≤ r, i ≤ j ≤ k ≤ r

[[B
r

i , B
r

j ], [B
r

k, B
r

l ]], i ≤ j ≤ k ≤ l ≤ r ∗∗
[[[B

r
i , B

r
k], B

r
l ], B j ], i ≤ j ≤ l ≤ r, i ≤ k ≤ j ≤ r ∗ ∗ ∗

[[[B
r

i , B
r

l ], B
r

k], B
r

j ], i ≤ l ≤ k ≤ r, i ≤ k ≤ j ≤ r

[[B
r

i , B
r

k], [B
r

j , B
r

l ]], i ≤ k ≤ j ≤ l ≤ r . ∗ ∗ ∗∗

Again the terms * and **, as well as *** and **** have respectively overlapping
index ranges. These can again be eliminated with help of the Jacobi identity. To this
end, the identity [B

r
k, [B

r
l , [B

r
i , B

r
j ]]]+[[B

r
i , B

r
j ], [B

r
k, B

r
l ]]+[B

r
l , [[B

r
i , B

r
j ], B

r
k]] = 0

is solved for [[B
r

i , B
r

j ], [B
r

k, B
r

l ]] so that ∗ + ∗∗ = −[B
r

l , [[B
r

i , B
r

j ], B
r

k]] in the range
i ≤ j ≤ k ≤ l. In order to harmonize the overlapping index ranges of *** and ****
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the identity [B
r

j , [B
r

l , [B
r

i , B
r

k]]] + [[B
r

i , B
r

k], [B
r

j , B
r

l ]] + [B
r

l , [[B
r

i , B
r

k], B
r

j ]] = 0 is

solved for [[B
r

i , B
r

k], [B
r

j , B
r

l ]] so that ∗ ∗ ∗ + ∗ ∗ ∗∗ = −[B
r

l , [[B
r

i , B
r

j ], B
r

j ]] for
i ≤ k ≤ j ≤ l. This leads to

B
r

3
i jkl =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−[B
r

l , [[B
r

i , B
r

j ], B
r

k]], i < j ≤ k ≤ l ≤ r

[B
r

k, [B
r

l , [B
r

i , B
r

j ]]], i < j ≤ l ≤ k ≤ r

[[[B
r

i , B
r

l ], B
r

j ], B
r

k], i < l < j ≤ k ≤ r

−[B
r

l , [[B
r

i , B
r

k], B j ]], i < k ≤ j ≤ l ≤ r

[B
r

j , [B
r

l , [B
r

i , B
r

k]]], i < k < l ≤ j ≤ r

[[[B
r

i , B
r

l ], B
r

k], B
r

j ], i < l < k ≤ j ≤ r

(12)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[[[B
r

i , B
r

j ], B
r

k], B
r

l ], i < j ≤ k ≤ l ≤ r

[[[B
r

i , B
r

j ], B
r

l ], B
r

k], i < j ≤ l ≤ k ≤ r

[[[B
r

i , B
r

k], B
r

j ], B
r

l ], i < k < j ≤ l ≤ r

[[[B
r

i , B
r

k], B
r

l ], B j ], i < k ≤ l ≤ j ≤ r

[[[B
r

i , B
r

l ], B
r

j ], B
r

k], i < l < j ≤ k ≤ r

[[[B
r

i , B
r

l ], B
r

k], B
r

j ], i < l < k ≤ j ≤ r

(13)

where the last form is obtained noticing the skew symmetry of Lie bracket.
Proceeding for higher derivatives, the closed form expressions are obtained in

the same manner. In particular for each term of order ν the index range is split
leading respectively to two overlapping index ranges. These overlaps are eliminated
invoking the Jacobi identity in an appropriate subrange, and the skew symmetry gives
rise to the systematic ordering so that the Lie brackets are nested from left to right.
Inspection of the resulting expressions shows an apparent systematics, induced by
the separation into disjoined index ranges, giving rise to a general rule. This general
expression for the νth order derivative is summarized as follows.

Corollary 1 The non-zero terms in the νth partial derivative of the instantaneous
joint screws B

r
i of a kinematic chain, with (forward) kinematic mapping (1), is given

by

B
r

ν
iα1α2...αν

= [. . . [[[B
r

i ,B
r

β1 ], B
r

β2 ], B
r

β3 ] . . . , B
r

βν ], i < β1 ≤ β2 ≤ · · · ≤ βν ≤ r

(14)
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with
{β1, β2, . . . , βν} ∈ Πν (α1, . . . , αν)

where Πν is the permutation group of the indices α1, . . . , αν .
This is the explicit closed form expression for the partial derivative of arbitrary

order ν. The corollary says that the repeated derivative w.r.t. qα1 , . . . , qαν is non-
zero if and only if the indexes α1, . . . , αν can be permuted so to satisfy the inequality
(14), and it is given by the nested Lie brackets in (14). Each permutation gives rise
to an index range where the derivative is non-zero. Inspection of (9), (11), and (12)
indicates a sharp increase of the number of these index ranges. In fact the number of
index ranges with non-zero partial derivative of order ν is ν!.

Comparing the corresponding result for the spatial screw system, reported in [9],
the closed form for the spatial and body-fixed version apparently only differs in the
index range and in the way in which the brackets are arranged.

5 Conclusions

The body-fixed twists are essential for mechanism analysis and dynamics in partic-
ular since the kinetic energy is naturally expressed in terms of body-fixed quantities.
Hence the derivatives of the body-fixed representation of instantaneous joint screws
is vital. Kinematic and static sensitivity measures require first partial derivatives of
a mechanism’s screw system (i.e. its Jacobian). Also rigid body (and also flexible)
body dynamics requires partial derivatives of first order in order to derive the motion
equations. Dynamic sensitivity considerations need second order derivatives (recur-
sive approaches were reported in [5]). Moreover, nonlinear dynamics and control
demands higher-order derivatives of body-fixed screws. Even though no closed form
expressions have been presented in the literature so far. Such expressions are derived
in this chapter that have not appeared previously in the literature.

It should be mentioned that, noticing the generality of (1), the presented expres-
sions can be adopted straightforwardly for partial derivatives w.r.t. to geometric
design parameters. This has certainly some significance for optimal design of robots
and mechanisms.

It should finally bementioned that the νth-order derivative can be recursively eval-
uated from the lower-order derivatives. To this end denote Bν

r := ∑
j≤r B

r
j

dν

dtν q j .

Then it follows that

Ḃν
r =

∑

i< j≤r

[B
r

i
dν

dtν
qi , B

r
j q̇

j ] + Bν+1
r

=
∑

i≤r

∑

j≤r

[B
r

i
dν

dtν
qi , B

r
j q̇

j ] −
∑

i≤r

∑

j<i

[B
r

i
dν

dtν
qi , B

r
j q̇

j ] + Bν+1
r
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=
∑

i≤r

∑

j<i

[B
r

j q̇
j , B

r
i

dν

dtν
qi ] + [Bν

r ,B1
r ] + Bν+1

r .

This relation might be useful for recursive implementations.
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Sharp Linkages

Zijia Li

Abstract In this chapter, we consider a special kind of overconstrained 6R closed
linkages which we call sharp linkages. These are linkages with the property that their
bond diagram looks like a � sign. We give a construction of this linkage using the
bond theory and motion polynomial factorization methods. These two methods are
introduced recently in [6, 7]. Another type of 6R linkages is also introduced. To my
knowledge, both types of linkages are new.

Keywords Dual quaternions · Motion polynomials · Factorization · Bond theory· Overconstrained 6R linkages

1 Introduction

In kinematics, a closed 6R linkages with mobility one have been considered by many
authors (see [1, 3, 4, 6, 11–13]).

In this chapter, we mainly focus on closed 6R linkages. More precisely, we con-
sider a very special type of 6R linkages, which we call sharp linkages. Their bond
diagrams look like a � sign. Namely, this bond diagram has two Bennett conditons
as the bond diagram of Waldrons double Bennett hybrid, Dietmaier 6R linkages and
Bricard plane symmetric 6R linkages [3, Sect. 4.8.3]. But it is not a special case of
those 6R linkages. We also get another 6R linkage which has quasi-symmetric bond
diagram. One can find a special angle symmetric 6R linkage in [8] with the same
bond diagram. But this new linkage is not angle symmetric, because there is one pair
of opposite angles which are not equal.

Z. Li (B)
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Our main tools are the bond theory and the factorization of a motion polynomial.
These two are based on dual quaternions. In the chapter [6], the authors found a
new 6R linkage by using the factorization of a cubic motion polynomial. We find
a quartic motion polynomial in this chapter. This quartic motion polynomial has
two factorizations which generate two 3R open chains. Using these two chains we
can construct the sharp linkage. The main difficulty is to find such quartic motion
polynomials. In the future, we want to find all quartic motion polynomial that lead
to closed 6R linkages.

The remaining part of the chapter is set up as follows. In Sect. 2, we give the
preliminaries we need i.e. dual quaternions, the factorization of amotion polynomial,
the bond theory. Section 3 introduces our motivation. Section 4 contains the main
result and examples.

2 Preliminaries

In this chapter, we mainly use two tools (Bond theory and motion polynomial fac-
torization). Before introducing each of them, let us recall the dual quaternions.

2.1 Dual Quaternions

The algebraDH of dual quaternions is the 8-dimensional real vector space generated
by 1, ε, i, j, k, εi, εj, εk (see [6]). Following [6], we can represent a rotation by a

dual quaternion of the form
(
cot

(
φ
2

)
− h

)
, where φ is the rotation angle and h is

a dual quaternion such that h2 = −1 depending only on the rotation axis. We use
projective representations, whichmeans that two dual quaternions represent the same
Euclidean displacement if only if one is a real scalar multiple of the other.

The set of all possiblemotions of a closed 6R linkage is determined by the position
of the six rotation axes in some fixed initial configuration. Let L be a 6R linkage
given by six lines, represented by dual quaternions h1, . . . , h6 such that h2

i = −1 for
i = 1, . . . , 6. A configuration (see [6]) is a 6-tuple (t1, . . . , t6), such that the closure
condition

(t1 − h1)(t2 − h2)(t3 − h3)(t4 − h4)(t5 − h5)(t6 − h6) ∈ R\{0} (1)

holds. The configuration parameters ti—the cotangents of the rotation angles—may
be real numbers or ∞, and in the second case we evaluate the expression (ti − hi )

to 1, the rotation with angle 0. The set of all configurations of L is denoted by KL .
We say L is movable when KL is a one-dimensional set. Mostly, we will assume,
slightly stronger, that there exists an irreducible one-dimensional set for which none
of the ti is fixed. Such a component is called a non-degenerate component. We also
exclude the case dimC KL ≥ 2. Linkages with mobility ≥ 2 do exist, for instance
linkages with all axes parallel have mobility 3.
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2.2 The Factorization of a Motion Polynomial

In the chapter [6], the authors introduced the motion polynomial P which is a monic
polynomial in Study quadric of degree n with P P̄ ∈ R[t]. Let h1, h2, . . . , hn be
rotations; using their algorithm, in general, one can compute a factorization

P = (t − h1)(t − h2) · · · (t − hn).

One application of the factorization of a motion polynomial is to construct closed
linkages by combining the different factorization (which corresponding to different
open chains). The difficulty is to find a quartic (or higher degree) motion polynomial
which has two factorizations. Furthermore, each of these two factorizations should
be corresponding to an open 3R chains. Our main contribution is that we construct
such two special quartic motion polynomials. Our construction is based on the bond
theory [7].

2.3 The Bond Theory

Let L = (h1, . . . , h6) be a closed 6R linkage with mobility 1. We assume, for
simplicity, that the configuration curve KL ⊂ (P1

R
)n has only one component of

dimension 1. Let KC ⊂ (P1
C
)n be the Zariski closure of KL . We set

B := {(t1, . . . , tn) ∈ KC | (t1 − h1)(t2 − h2) · · · (tn − hn) = 0}. (2)

The set B is a finite set of conjugate complex points on the configuration curve’s
Zariski closure.

Let β be a bond with coordinates (t1, . . . , tn). By Theorem 2 in [7], there exist
indices i, j ∈ [n], i < j , such that t2i + 1 = t2j + 1 = 0. If there are exactly two
coordinates of β with values±i, thenwe say that β connects joints i and j . In general,
the situation, is more complicated.

We visualize bonds and their connection numbers by bond diagrams. We start
with the link diagram, where vertices correspond to links and edges correspond to
joints. Then we draw a connecting line between the edges hi and h j for each set
{β, β} of conjugate complex bonds. Multiple connections are possible.

Let us recall [7, Corollary 12] for explaining the connection.

Corollary 1 For a bond β with t2i + 1 = t2j + 1 = 0 and i < j , the equality

(ti − hi )(ti+1 − hi+1) · · · (t j − h j ) = 0 (3)

holds.

In Fig. 1, we show some known examples and our new examples with bond
diagrams.
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Fig. 1 Bond diagrams for the cube linkage (a), the Waldrons double Bennett hybrid (b), the sharp
linkage type one (c), the sharp linkage type two (d)

3 Motivation

In the chapter [6], the authors constructed a new 6R linkage by using the factorization
of a cubic motion polynomial. It has bond diagram of Fig. 1a which is one of simplest
bond diagrams. The other one of simplest bond diagram is Fig. 1b which is known
as the Waldrons double Bennett hybrid (see [3], Sect. 4.2.5). There is no other 6R
linkages with bond diagrams of only three bond connections. Using [7, Theorem
23], one can find the reason as an excise. We consider diagrams with four bond
connections, e.g. Fig. 1c, d. There are some other types of bond diagrams with four
bond connections. We only consider these two types in this chapter.

4 The Main Results

First, let us make our purpose clear.Wewant to construct a monic quartic polynomial
Q in DH[t] such that Q Q̄ ∈ R[t]. Furthermore, we can factor Q in two different
ways (at least) which both constitute a 3R open chain. Then we can construct a 6R
linkage by combining these two factorizations.
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Remark 1 Such 6R linkage exists (angle symmetric 6R linkage [8, 9]). Up to now,
it was not known whether or not there exist such 6R linkages that are not angle
symmetric. This chapter gives a positive answer.

Now we introduce our procedure for finding such examples.

I. We choose four lines with two different bond connections (3) as following

(i − h1)(α − h2)(β − h3)(i − h4) =0,

(i − h1)(α
′ − h2)(β

′ − h3)(i + h4) =0,

where i is the imaginary unit, complex numbers α and β have the same linear
relation as α′ and β ′ i.e.

β = aα + b, β ′ = aα′ + b.

II. Use these two bond conditions to calculate quartic motion polynomials.
III. Use the factorization algorithm to compute another factorization of the first three

factors. This procedure contribute the two lines h5 and h6 which we want.
IV. Return the 6R linkage [h1, h2, h3, h4, h5, h6].
Remark 2 There are two options in procedure III (either change the order of second
and third or not), which contribute two kinds of 6R linkage with bond diagrams 1(c)
and (d).

As the first step is the most important step, we show the details in the following
subroutine.

I.a Choose h2 and h3 as two random lines with h2
2 = h2

3 = −1.
I.b Choose two complex number α and α′ where α �= ±i and α′ �= ±i.
I.c Choose two random real numbers a, b with a �= 0.
I.d Assume that the other two lines have the following formula

h1 = (x1i + x2j + x3k) + (y1i + y2j + y3k)ε,

h4 = (u1i + u2j + u3k) + (v1i + v2j + v3k)ε.

I.e Solve the following system for unknowns x1, x2, x3, y1, y2, y3, u1, u2, u3, v1,
v2, v3 ⎧⎨

⎩
(i − h1)(α − h2)(β − h3)(i − h4) = 0,
(i − h1)(α

′ − h2)(β
′ − h3)(i + h4) = 0,

h2
1 = −1, h2

4 = −1.

I.f Choose one solution (all variables are in real) for the next steps.

We add one example to support our procedure. This is a particularly easy example
which we found by our procedure.
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Input: I.a, I.b, I.c

h2 =
(

−3

5
i − 4

5
j
)

− 6

5
kε,

h3 =
(
3

7
i − 2

7
j + 6

7
k
)

+
(
76

49
i + 24

49
j − 30

49
k
)

ε,

α = −1

5
− 4

3
i, α′ = 4

5
− 1

2
i,

a = 5

2
, b = −3

4
.

Output: Then one can get a numerical solution with ten digits as following

x1 = 0.4058453976, x2 = −0.9139192147, x3 = −0.0064173294,

y1 = 1.244931364, y2 = 0.5535129673, y3 = −0.09606363509,

u1 = −0.6219669897, u2 = −0.3316117352, u3 = 0.7093593733,

v1 = −0.5417103337, v2 = −1.024569908, v3 = −0.9539386886.

Then the next two steps are for calculating the factorization. We assume that t1(t)
and t4(t) are quadric rational functions of t , and we also assume that

t1(α) = i, t1(α
′) = i, t4(α) = i, t4(α

′) = −i. (4)

The quartic motion polynomial is (t1(t) − h1)(t − h2)(at + b − h3). The other
factorization is obtained by multiplying (t4(t) − h4) from the right. Then (t1(t) −
h1)(t − h2)(at + b − h3)(t4(t) − h4) is a quadric motion polynomial when we
remove the real denominators and factors. The next step is to factor this quadric
motion polynomial. We show all these details in the following:

Assumption:

t1(t) = t2 + p2t + p3
p4t + p5

, t4(t) = t2 + p′
2t + p′

3

p′
4t + p′

5
,

α = −1

5
− 4

3
i, α′ = 4

5
− 1

2
i.

Do: Solve the linear system (4) for unknowns p2, p3, p4, p5,
p′
2, p′

3, p′
4, p′

5.
Output: Then one can get a solution of t1(t) and t4(t) as following

t1(t) = t2 − 3
5 t − 62

75

− 11
6 t + 29

30

, t4(t) = t2 − 3
5 t + 38

75

− 5
6 t + 7

6

.

After substituting t1(t) and t4(t) into
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(t1(t) − h1)(t − h2)(at + b − h3)(t4(t) − h4),

we have a numeric quadric motion polynomial in 10 digits (replacing the real de-
nominators and factors)

t2 + (−0.3000000000 + 0.6543154994i − 1.037575959j + 0.2365105645k

+ 1.210540727iε − 0.0349528507jε + 0.4738323880εk)t

− 70.2003149450 − 0.0160185109i + 0.3911798525j + .2378984092k

− 0.9404081633ε − 1.436504834iε − 0.5526215606jε + 0.0201175896εk.

As the norm of this quadric motion polynomial is (t2 + 1)(t2 − 3
5 t + 1

4 ), we
can construct two 6R linkages Lc = [hc

1, hc
2, hc

3, hc
4, hc

5, hc
6] and Ld = [hd

1 , hd
2 ,

hd
3 , hd

4 , hd
5 , hd

6 ] (with bond diagram 1c, d) basing on these two factorization as fol-
lowing (numerically in ten digits).

hc
1 = (0.4058453976i − 0.9139192147j − 0.0064173294k)

+ (1.244931364i + 0.5535129673j − 0.09606363509k) ε,

hc
2 =

(
−3

5
i − 4

5
j
)

− 6

5
kε,

hc
3 =

(
3

7
i − 2

7
j + 6

7
k
)

+
(
76

49
i + 24

49
j − 30

49
k
)

ε,

hc
4 = (−0.6219669897i − 0.3316117352j + 0.7093593733k)

+ (−0.5417103337i − 1.024569908j − 0.9539386883k) ε,

hc
5 = (0.9529670102)i − 0.2884245020j − 0.0930869702k)

+ (0.145998817i − 0.4419436106j + 2.863982166εk) ε,

hc
6 = (0.2731286954)i − 0.9222061578j + 0.2737453525k)

+ (1.152141200i + 0.1418245937j − 0.6717604788k) ε.

hd
1 = hc

1, hd
2 = hc

2, hd
3 = hc

3, hd
4 = hc

4,

hd
5 = (0.6843121346i − 0.7290081982j − 0.0162465108k)

+ (0.7852041130i + 0.7074301081j + 1.329661169k) ε,

hd
6 = (−0.0749915882i − 0.7714194013j + 0.6318926880k)

+ (1.063341534i − 1.855957397j − 2.139571953k) ε.

Remark 3 At several places, we used the computer algebra system Maple for more
elaborate computations: examples, animations. Because of the length of these com-
putations, it is not reasonable to reproduce them in this chapter, but they can be found
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at our webpage.1 They can be read with any text editor and verified using Maple 16.
One can use a new technique, namely, quad polynomials [10],2 to check mobility
from their symbolic Denavit/Hartenberg parameters[2, 5]3 which have complicate
square roots.

Acknowledgments We would like to thank Gábor Hegedüs, Hans-Peter Schröcker and Josef
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Solvable Multi-Fingered Hands
for Exact Kinematic Synthesis

Abhijit Makhal and Alba Perez-Gracia

Abstract Multi-fingered hands are kinematic chains with a tree topology, that is,
with a set of common joints that span several branches and end-effectors. When
performing dimensional kinematic synthesis with simultaneous tasks for all the end-
effectors, a new solvability criterion needs to be applied that includes checking
the solvability of sub-chains. This criterion yields as a result that not all possible
topologies are solvable for a common number of positions for all end-effectors. This
article shows and proves the solvability criterion and derives some properties of the
kinematic chains with tree topology for a single branching and identical fingers.

Keywords Knematic synthesis · Multi-fingered hands

1 Introduction

Kinematic chains with a tree topology consist of several common joints that branch
to a number of serial chains, each of them corresponding to a different end-effector. A
typical example of a kinematic chain with a tree topology is a wristed, multi-fingered
hand.

Compared to other topologies, the tree topologies have not been sowidely studied.
Kinematic analysis for applications inmodular robots and robotic hands can be found
in [8, 9], and [1], and dynamic analysis is found in [3] and [2]. Structural synthesis for
multiple fingers with no wrist, considering grasping and manipulation requirements,
are found in [4]. The first reference to kinematic design of tree topologies is found
in [5].
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The kinematic synthesis of these topologies presents particular challenges that
are different of those that appear in single serial chains or in closed-loop systems. In
particular, the kinematic synthesis of multi-fingered hands has been explored also in
[7] and more extensively in [6].

When dealing with exact kinematic synthesis, one of the first steps is to calculate
the maximum number of positions that can be used, which define the workspace of
the chain. In the case of tree topologies, consider a task having the same number of
positions for each of the multiple end-effectors; this means that we are dealing with
a coordinated action of all those end-effectors, denoted as a simultaneous task.

In this chapter we focus on the particular issues that appear in tree topologies
when dealingwith exact synthesis for simultaneous positions of all end-effectors. The
solvability for the simultaneous task case presented in [6] is proved and developed in
further detail, and a basic classification, togetherwith some results regarding solvable
multi-fingered chains with identical fingers, are included.

2 Tree Topologies

We denote a tree topology for a kinematic chain as that of a chain having a set of
common joints spanning several chains and ending in multiple end-effectors. The
tree topology is modeled using graph theory; for this we follow the approach of Tsai
[10]. The kinematic chain is represented as a rooted graph, with the root vertex being
fixed with respect to a reference system.

A tree topology is denoted as SerialChain − (Branch1, Branch2, . . . , Branchb),
where SerialChain are the common joints and the dash indicates a branching, with
the branches contained in the parenthesis, each branch Branchi characterized by its
type and number of joints. In the case of using just revolute joints, the joint type is
dropped and only the number of joints is indicated. Figure 1 presents the compacted
graph for a 3R − (2R, R − (R, R, R)), or 3 − (2, 1 − (1, 1, 1)) chain, with two
branches, one of them branching again on three additional branches, for a total of
four end-effectors. Branches are ordered according to their branching order (branch
1 is the first one to branch). The root vertex is indicated with a double circle.

In tree topologies, a vertex can be connected to several edges defining several
branches; a tree topology will always have links that are ternary or above, which are
identified in the graph as a vertex spanning several edges. For the purpose of this
work we consider serial chains in each branch, with only revolute joints. For the
reduction of closed-loop chains to serial chains for synthesis purposes, see [6].

The contracted graph does not have binary vertices, and the primary vertices
are either the root node or end-effectors. Having several end-effectors allows us to
change the root node to any of them: consider displacements Pi to each end-effector
i , where i = 1 is the root node. The inversion of the root from i = 1 to i = j is

P∗
i = P−1

j Pi , (1)

where P∗
i would be the i th end-effector’s position with respect to the new root node

j.
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Fig. 1 A 3 − (2, 1 − (1, 1, 1)) tree topology

3 Dimensional Kinematic Synthesis for Tree Topologies

Dimensional kinematic synthesis seeks to find the position of the joint axes for a
given topology, in order for each of the end-effectors to perform a given set of
displacements. In this section we present a summary of the design methodology
when the chosen topology is that of multi-fingered hands; for details, see [6].

Given a set of m task positions P̂i
k , k = 1 . . . m, for each end-effector (denoted

by superscript i), we compute the relative displacements from a selected reference
position (let us say, position 1), and equate the relative forward kinematics to those
relative positions, for all branches simultaneously,

P̂i
1k =

ki∏

j=1

e
�θ̂k

j
2 S j

︸ ︷︷ ︸
common

ni∏

j=ki +1

e
�θ̂k

i, j
2 Si, j

︸ ︷︷ ︸
branch

i = 1, . . . , b
k = 2, . . . , m,

(2)

where the number of common joints is indicated by ki and the number of end-
effectors, or branches, is indicated by b. Using this notation, each branch i has a total
of ni joints, with ki common joints. The joint axes at the reference configuration are
S j for the common joints and Si, j for the joints of branch i .

This yields a total of 6(m − 1)b independent equations to be simultaneously
solved.

4 Solvability of Tree Topologies for Exact Synthesis

We define a kinematic chain as solvable if we can find a positive rational number
of positions for which the exact dimensional synthesis yields a finite number of
solutions. In the case of serial chains the solvability problem is trivial, and we can
always find the maximum number of positions for exact synthesis by equating the
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number of independent unknowns to the number of independent equations, for a
chain that does not fully define its group of motion. In the most general case, a serial
chain with less than six degrees of freedom is solvable.

When dealing with tree topologies, the task sizing must be done so that the system
of equations can be solved simultaneously while not overconstraining any of the
branches. The tree topology is solvable if we can find a rational number of positions
so that we obtain a finite number of solutions for all branches. In order to do so, some
conditions need to be defined. Here we present the theory for the most general case;
see [6] for cases restricted to subgroups of the group of rigid motion.

The maximum number of positions for the overall system is computed as follows:
let De

j be an e × 1 vector containing the joint degrees-of-freedom for each edge of
the contracted graph, and De

s be the e × 1 vector containing the number of structural
parameters (four per joint in the general case) for each edge of the contracted graph.
Denote as Dn

ee the b × 1 vector containing the degrees-of-freedom of the space of
each end-effector, and Dn

c the b × 1 vector with the number of additionally imposed
constraints (if any) for each branch. Define the vectors B as a b × 1 vector of ones
corresponding to branches, or end-effectors, and E as an e × 1 vector of ones for the
edges in the graph considered. The maximum number of positions for the overall
graph is given by

m = De
s · E − Dn

c · B
Dn

ee · B − De
j · E

+ 1. (3)

It is necessary thatm ∈ Q
+ for the system to be solvable, but this is not a sufficient

condition. In addition, no subgraph starting at the root node and ending at one ormore
end-effectors can be overdetermined. This phenomenon happens in some topologies
with heterogenous branches, such as 2− (1, 1, 5) or 2− (1, 5, 5), to cite a couple of
them.

In order to calculate the solvability of each of these subgraphs, use the end-effector
pathmatrix [T̃ ] and incidencematrix [B̃] of the graph [6] to find the vectorsEi andBi

containing the edges and branches for a given subgraph i . There are 2b − 2 possible
subgraphs for any given rooted tree graph, excluding both the full graph and the null
graph; only the non-isomorphic graphs need to be considered.

For each subgraph i , calculate the number of positions needed for exact synthesis
of the subgraph,

mi = De
s · Ei − Dn

c · Bi

Dn
ee · Bi − De

j · Ei
+ 1. (4)

In addition to this, all different and non-isomorphic subgraphs that appear when
exchanging the root node with each of the end-effectors need to be considered. This
can be proved using the system of design equations.

Let a tree topology have b branches, the first branching happening after k1 joints,
according to the notation in Eq. (2). For each task position k we can isolate the k1
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common joints by post-multiplying by the inverse forward kinematics corresponding
to the rest of joints,

P̂1
1k

⎛

⎝
n1∏

j=k1+1

e
�θ̂k

1, j
2 S1, j

⎞

⎠
−1

=
k1∏

j=1

e
�θ̂k

j
2 S j

...

P̂b
1k

⎛

⎝
kb∏

j=k1+1

e
�θ̂k

j
2 S j

nb∏

j=kb+1

e
�θ̂k

b, j
2 Sb, j

⎞

⎠
−1

=
k1∏

j=1

e
�θ̂k

j
2 S j

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

and subtract thefirst equation from the rest, to obtain the newsystemof 6(m−1)(b−1)
equations,

(P̂1
1k)

−1(P̂i
1k) =

⎛

⎝
n1∏

j=k1+1

e
�θ̂k

1, j
2 S1, j

⎞

⎠
−1 ⎛

⎝
ki∏

j=k1+1

e
�θ̂k

j
2 S j

ni∏

j=ki +1

e
�θ̂k

i, j
2 Si, j

⎞

⎠ , (5)

i = 2 . . . b, k = 2 . . . m,

in which all the unknowns corresponding to the common joints up to the first branch-
ing have been eliminated. Also notice that the new task positions correspond to con-
sidering the first end-effector as the root node and calculating displacements with
respect to a reference frame attached to the new root node. These are the equations
for the maximal subgraph not including the previous root node and expressed in this
new root node.

We can again repeat the process starting with this new system and eliminating the
common joints up to the next branching. At the end of the process, we have explored
all non-isomorphic maximal subgraphs created by changing the root node to each of
the end-effectors and discarding the previous root node.

As a summary, an overall solution can be imposed onlywhen considering the solv-
ability of all subgraphs that start at the root node and end at end-effectors, including
all subgraphs obtained when exchanging the root node with one of the end effectors
as described above. In this case, considering mi as the number of positions for exact
synthesis for a subgraph i , with i ∈ S the set of all possible different end-effector
subgraphs up to isomorphism, the topology is solvable if

1. m ∈ Q
+

2. m ≤ mi , ∀mi ∈ Q
+, i ∈ S

In the case of a subgraph containing c branches and being solvable for mi = m
positions, that subgraph can be solved separately, which eliminates exactly 6c(m−1)
equations and the same number of unknowns, so that the rest of the graph can be
solved a posteriori.
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Table 2 Maximum and minimum number of branches and solvability for topologies with identical
branches consisting of revolute joints p − (q, . . . , q)

Number of joints
in wrist (p)

Number of joints in
each branch (q)

Number of branches (b) Solvability

Minimum Maximum (S, NS)

1 1 1 5 S
2/3/4 1 ∞ S/S/S
5 2 ∞ S

2 1 1 10 S for b = 1, 2
2/3 1 ∞ S/S
4 2 ∞ S
5 3 ∞ S

3 1 1 15 S for b = 1
2 1 ∞ S for b = 1, 2, 3
3/4 2 ∞ S/S
5 4 ∞ S

4 1 1 20 S for b = 1
2/3 2 ∞ S for b = 2/S for b = 2, 3, 4
4 3 ∞ S
5 5 ∞ S

5 1 2 25 NS
2/3 2 ∞ NS/S for b = 2
4 3 ∞ S for b = 3, 4, 5
5 6 ∞ S

5 Solvable Tree Topologies with Identical Branches

Two conditions are established for a topology to be a good candidate for exact
synthesis with simultaneous tasks: the topology must be solvable, and it must be
solvable for m ≥ 2 positions.

Considering these criteria, the topologies can be classified according to their
solvability. As an example of the classification process, Table 1 presents all possible
useful topologies for a single branchingwith 1-jointed branches consisting of revolute
joints, together with the detailed analysis of their solvability.

Similar analysis can be performed for increasingly complex topologies, however
the complete analysis of useful topologies is not possible, due to the fact that many
topologies can have as many branches as desired and still get a useful simultaneous
task (with 2 or more task positions per finger). Table 2 shows the candidates for
dimensional synthesis for the simplest case of branching, a single branching in which
all branches have the same number of joints. The minimum and maximum number
of branches have been calculated for having an overall task with a finite number of
positions, and greater or equal to 2.

Regarding the solvability of the tree topologies with identical branches, notice
that the higher the number of branches, the smaller number of positions mi obtained:



146 A. Makhal and A. Perez-Gracia

compare the value of Eq. (4) for the overall graph and the graph obtained after elim-
inating a single branch, and impose non-solvability. Let the tree topology have p
common joints and b branches with q joints each, that is, a p − (q, . . . , q) topology
with b branches, then the graph is not solvable if

4p + 4bq

6b − p − bq
>

4p + 4(b − 1)q

6(b − 1) − p − (b − 1)q
=⇒ p

6 − q
< b <

p + 6 − q

6 − q
. (6)

It can be exhaustively checked for 0 < p, q < 6 that there is no positive integer
solution for b in this inequality. As a conclusion, all subgraphs starting at the original
root node have mi ≥ m when mi ∈ Q

+. In order to check for subgraphs when
changing the root node, notice that the maximal subgraph obtained is q − (q, . . . , q)

with b − 1 branches. Following the same reasoning, only this maximal subgraph
must be checked and compared to m in each case. The solvability of all useful tree
topologies with identical branches presented in the Table 2 has been calculated using
this strategy.

6 Conclusions

Dimensional synthesis applied to tree topologies can be used for the design of multi-
fingered hands for simultaneous tasks of all fingers. This work focuses on the solv-
ability of tree topologies, that is, on computing which topologies can be synthesized
for simultaneous tasks that are meaningful, in which each finger has to reach at least
two positions. Previously-stated solvability criteria are proved here and systemati-
cally applied to tree topologies with different number of fingers and joints. It turns out
that the possible number of fingers is not limited for many topologies, leading to the
impossibility of creating a chart of solvable topologies for the general case. It is pos-
sible however to classify the topologies with identical fingers, and this classification
is presented here. For the general case, a search algorithm is to be developed in future
research that can explore solvable topologies for a given task size and for specific
requirements on the branches. The results of this research are to be implemented in
a general design tool for multi-fingered hands.
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Non-singular Assembly Mode Changing
Trajectories in the Workspace
for the 3-RPS Parallel Robot

Damien Chablat, Ranjan Jha, Fabrice Rouillier and Guillaume Moroz

Abstract Having non-singular assembly modes changing trajectories for the 3-RPS
parallel robot is a well-known feature. The only known solution for defining such
trajectory is to encircle a cusp point in the joint space. In this chapter, the aspects
and the characteristic surfaces are computed for each operation mode to define the
uniqueness of the domains. Thus, we can easily see in theworkspace that at least three
assembly modes can be reached for each operation mode. To validate this property,
the mathematical analysis of the determinant of the Jacobian is done. The image of
these trajectories in the joint space is depicted with the curves associated with the
cusp points.

Keywords Parallel robot · 3-RPS · Singularity · Operation mode · Aspect ·
Cylindrical algebraic decomposition

1 Introduction

When designing a robot, the last step is the trajectory planning. The task of the robot
is generally defined in the workspace whereas the control loop depends on the joint
space parameters. While defining the home pose of the robot, the Cartesian pose
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and the joint values of the actuators are known. If the trajectory planning is done
in the workspace by analyzing only the determinant of the Jacobian, we can reach
a Cartesian pose different from the home pose but with the same joint value. This
feature is called a non-singular assembly mode changing trajectory and stands only
for the parallel robot.

For such robots, the inverse and direct kinematic problem (DKP) can have several
solutions. To cope up with this problem, the notion of aspects was introduced for
the serial robot in [1] and for the parallel robot in [2, 3]. For the serial robots, the
aspects are defined as the maximal singularity-free sets in the joint space whereas
in case of parallel robots, the aspects are defined as the maximal singularity-free
sets in the workspace or the cross-product of the joint space by the workspace.
However, there exists robots, referred as cuspidal robots, which are able to change
the inverse kinematic solution without passing through a singularity for serial robots
or direct kinematic solution without passing through a singularity for parallel robots
[4–8]. The uniqueness domains are the connected subsets of the aspects induced
by the characteristic surface. These notions are defined more precisely in Sects. 2.3
and 2.4.

The chapter elucidates the non-singular assembly mode changing trajectories in
theworkspace for the 3-RPSparallel robot. In Sect. 2.1wedescribe the 3-RPSparallel
robot, in Sect. 2.2 we set the related kinematic equations while in Sect. 2.3 we define
the aspects for an operation mode. In Sect. 2.4 we analyze the characteristic surfaces
for an operation mode, and in Sect. 2.5 we report the non-singular assembly modes
changing trajectory between the two basic regions.

2 Kinematics

2.1 Mechanism Under Study

The robot under study is the 3-RPS parallel robot with three degrees of freedom. It
been studied bymany researchers [8, 9]. It is the assembly of two equilateral triangles
(the base and the moving platform) by three identical RPS legs where R is a revolute
passive joint, P an prismatic joint and S a passive spherical joint. Thus, the revolute
joint is connected to the fixed base and the spherical joint to the mobile platform.

Considering the 3-RPS parallel manipulator, as shown in Fig. 1, the fixed base
consists of an equilateral triangle with vertices A1, A2 and A3, and circumradius
g. The moving platform is another equilateral triangle with vertices B1, B2 and B3,
circumradius h and circumcenter P . The two design parameters g and h are positive
numbers. Connecting each of the pairs of vertices of Ai , Bi (i = 1, 2, 3) by a limb, a
rotational joint lies at Ai and a spherical joint lies at Bi . ρi denotes the length of each
limb and their adjustment is done through an actuated prismatic joint. Thus we get
five parameters, namely g, h, ρ1, ρ2 and ρ3. g and h are the two design parameters
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Fig. 1 3-RPS parallel robot

determine the design of the manipulator whereas the joint parameters ρ1, ρ2 and ρ3
determine the motion of the robot. To simplify the equations, we will study a unit
robot with g = h = 1.

2.2 Kinematic Equations

The transformation from the moving frame to the fixed frame can be described by a
position vector p = OP and a 3 × 3 rotation matrix R. Let u, v and w be the three
unit vectors defined along the axes of the moving frame, then the rotation matrix can
be expressed in terms of the coordinates of u, v and w as:

R =
⎡
⎣

ux vx wx

uy vy wy

uz vz wz

⎤
⎦ (1)

The vertices of the base triangle and mobile platform triangle are

A1 =
⎡
⎣

g
0
0

⎤
⎦ A2 =

⎡
⎣

−g/2
g
√
3/2
0

⎤
⎦ A3 =

⎡
⎣

−g/2
−g

√
3/2

0

⎤
⎦ (2)

b1 =
⎡
⎣

h
0
0

⎤
⎦ b2 =

⎡
⎣

−h/2
h
√
3/2
0

⎤
⎦ b3 =

⎡
⎣

−h/2
−h

√
3/2

0

⎤
⎦ (3)

The coordinates of bi with respect to fixed frame reference are obtained by Bi =
P + Rbi for i = 1, 2, 3. Also the coordinates of the centre of the mobile platform in
the fixed reference is P = [x y z]T . The distance constraints yields:
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||Ai − Bi || = ρ2
i with i = 1, 2, 3 (4)

As Ai are revolute joints, the motion of the Bi are constrained in planes. This leads
to the three constraint equations:

uyh + y = 0 (5)

y − uyh/2 + √
3vyh/2 + √

3x − √
3ux h/2 + 3vx h/2 = 0 (6)

y − uyh/2 − √
3vyh/2 − √

3x + √
3ux h/2 + 3vx h/2 = 0 (7)

Solving with respect to x and y we get:

y = −huy (8)

x = h
(√

3ux − √
3vy − 3uy + 3vx

)√
3/6 (9)

The coefficients of the rotationmatrix can be represented by quaternions. The quater-
nion representation is used for modeling the orientation as quaternions do not suffer
from singularities as Euler angles do. The quaternion rotation matrix for the parallel
robot is then

R =
⎡
⎣
2q12 + 2q22 − 1 − 2q1q4 + 2q2q3 2q1q3 + 2q2q4
2q1q4 + 2q2q3 2q12 + 2q32 − 1 − 2q1q2 + 2q3q4

−2q1q3 + 2q2q4 2q1q2 + 2q3q4 2q12 + 2q42 − 1

⎤
⎦ (10)

with q2
1 +q2

2 +q2
3 +q2

4 = 1. In Eqs. (4), (6), (7), we substitute x, y using relations (8)
and (9), and u, v, w by quaternion expressions using (10). Then (6) and (7) become
q1q4 = 0. Thus, we have either q1 = 0 or q4 = 0. This property is associated with
the notion of operation mode [10].

The notion of operationmode (OM)was introduced in [11] to explain the behavior
of the DYMO robot. An operation mode is associated with a specific type of motion.
For the DYMO, we have 5 operation modes: translational, rotational, planar (2 types)
and mixed motions. In the workspace W , for each motion type, the WO M j is defined
such that

• WO M j ⊂ W
• ∀X ∈ WO M j , OM is constant

For a parallel robot with several operating modes, the pose can be defined by fixing
the control parameters. For an operation mode OM j , if we have a single inverse
kinematic solution, we can then define an application that maps X onto q:
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g j (X) = q (11)

Then, the images in WOM j of a posture q in the joint space Q are defined by:

g−1
j (q) = X | (X, q) ∈ OM j (12)

where g−1
j is the direct kinematic problem restricted to the operation mode j . Dif-

ferentiating with respect to time the constraint equations leads to the velocity model:

Aṫ + Bq̇ = 0 (13)

where A and B are the parallel and serial Jacobian matrices respectively, ṫ is the
velocity of P and q̇ is the joints velocity. The parallel singularities occur whenever
det(A) = 0. Let OM1 (reps. OM2) be the operation mode where q1 = 0 (reps.
q4 = 0). Then SOM1 and SOM2 are the loci of the parallel singularities and are
characterized by:

SOM1 : q4(8q2q23q64 + 2q2q84 − 64zq63q4 − 96zq43q34 − 36zq23q54 − 6zq74

− 24z2q2q23q24 − 6z2q2q44 − 32q2q23q44 − 10q2q64 + 2z3q34 + 96zq43q4

+ 72zq23q34 + 23zq54 + 16z2q2q23 + 10z2q2q24 + 8q2q44 − z3q4 − 36zq23q4

− 21zq34 − 4z2q2 + 4zq4) = 0 (14)

SOM2 : q21 (6q71q3 + 8q51q33 − 2zq61 + 36zq41q23 + 96zq21q43 + 64zq63

− 18z2q31q3 − 24z2q1q33 − 18q51q3 − 16q31q33 + 2z3q21 + 3zq1
4 − 72zq21q23

− 96zq43 + 18z2q1q3 + 12q31q3 − z3 + 3zq21 + 36zq23 − 4z) = 0 (15)

The serial singularities occur whenever ρ1ρ2ρ3 = 0. The common coordinates for
both operation modes are z, q2 and q3. Due to the redundancy of the quaternion rep-
resentation, there exists two triplets defined by these three coordinates that represent
the same pose in the same operation mode. To overcome this problem, we set q1 > 0
and q4 > 0. We can then depict a slice of this hypersurface by fixing one parameter
as shown in Fig. 2.

2.3 Aspect for an Operation Mode

In [2], the notion of aspect is defined for parallel robots with only one inverse kine-
matic solution. An aspect W Ai is a maximal singularity free set defined such that:
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q4 q1

q2
q3

(a) (b)

Fig. 2 Singularity curves for z = 3, q1 = 0 (a) and q4 = 0 (b)

• WAi ⊂ W
• WAi is connected
• ∀X ∈ WAi , det(A) �= 0 and det(B) �= 0

This notion is now extended for a parallel robot with several operation modes such
that:

• WAi j ⊂ WO M j

• WAi j is connected
• ∀X ∈ WAi j , det(A) �= 0 and det(B) �= 0

In other words, an aspect WAi j is the maximum connected region without any sin-
gularity of the OM j . The analysis of the workspace is done in the projection space
(z, q2, q3), and shows the existence of four aspects as shown in Fig. 3. However, no
further analysis is done to prove this feature in the four dimension space. As there are
several solutions for the DKP in the same aspect, non-singular assembly mode tra-
jectories are possible. The cylindrical algebraic decomposition (CAD) implemented
in the SIROPA library has been used to decompose an aspect into a set of cells where
algebraic equations define its boundaries [12]. The CAD provides a formal decom-
position of the parameter space in cells where the polynomials det(A) and det(B)

have a constant sign [13] and the number of solutions for the DKP is constant.

2.4 Characteristic Surfaces for an Operation Mode

The notion of characteristic surface was introduced in [14] to define the uniqueness
domains for serial Cuspidal robots. This definition was extended to parallel robots
with one inverse kinematic solution in [2] andwith several inverse kinematic solutions
in [7]. In this chapter, we introduce this notion for a parallel robot with several
operating modes.
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Fig. 3 Aspects for OM1 with det(A) < 0 (a) and det(A) > 0 (b) and aspects for OM2 with
det(A) < 0 (c) and det(A) > 0 (d)

Let WAij be one aspect for the operation mode j . The characteristic surfaces,
denoted by SC (WAij), are defined as the preimage in WAij of the boundary WAij of
WAij.

SC (WAij) = g−1
j

(
g(WAij)

) ∩ WAij (16)

These characteristic surfaces are the images in the workspace of the singularity
surfaces. By using the singularity and characteristic surfaces, we can compute the
basic regions as defined in [2]. The joint space is divided by the singularity surfaces
in regions where the number of solutions for the DKP is constant.We also name these
regions the basic components as in [2]. For each operation mode, we find regions
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Fig. 4 Slice of the joint space for ρ1 = 3 for OM1 (a) and OM2 (b)
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Fig. 5 Slice of an aspect for z = 3 and det(A) > 0 for OM1 (a) and OM2 (b) with in blue (resp.
in red) a basic region coming from a basic component with four DKP (resp. eight)

where the DKP admits four (in red) or eight (in green) solutions, as it is depicted in
Fig. 4. We can also notice in Fig. 4 the existence of cusp points.

2.5 Non-singular Assembly Mode Changing Trajectories

Due to the lack of space and for pedagogical purpose, we only report a slice of the
workspace. Letting z = 3, the basic regions are computed by using the cylindrical
algebraic decomposition for a given aspect. Figure 5 shows the three basic regions’
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Table 1 Solutions of the DKP for det(A) > 0

OM1 OM2

ρ1 = 3.90, ρ2 = 3.24, ρ3 = 3.24 ρ1 = 3.79, ρ2 = 3.24, ρ3 = 3.24
P z q2 q3 q4 P z q1 q2 q3

P1 3.01 −0.34 −0.94 0.06 P5 3.04 0.35 −0.58 −0.74
P2 3.01 −0.34 0.94 0.06 P6 3.04 0.35 0.586 −0.74
P3 3 0.85 0.0 0.53 P7 3 0.24 0.0 0.97
P4 −2.88 −0.35 0.0 0.93 P8 −3.42 0.98 0.0 0.19
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Fig. 6 Variation of det(A) along trajectory P1, P2, P3 for OM1 (a) and P5, P6, P7 for OM2 (b)

images of basic components with 8 solutions for the DKP and a single basic region’s
image of a basic components with 4 solutions for the DKP connects these three
previous basic regions. Table 1 presents the roots of the DKP for det(A) > 0 for a
joint position in each operation mode. For each of them, we find out that three roots
have their z coordinate close to 3. A non-singular assemblymode changing trajectory
can be obtained between three basic regions coming from eight solutions to the DKP.
Due to symmetrical properties, there are also three roots of the DKP for det(A) < 0
with z = −3. For O M1, we construct a path between P1, P2, P3 and for O M2
between P5, P6 and P7. When a straight line between two poses cross a singularity,
we add an intermediate point as shown in Fig. 5. The connections between the basic
regions depicted in red are the projections of the cusp points in the workspace, i.e.
the tangent between the singularity surface and the characteristic surface [12].

The variation of the det(A) is plotted in the Fig. 6 and shows the existence of a
non-singular assembly mode changing trajectory. The image of this trajectory in the
joint space is illustrated in the Fig. 7. The projection of the cyclic trajectory defined
by (P1, P2, P3, P1) (resp. (P5, P6, P7, P5)) onto the joint space encloses three curves
of cusps. This behavior is similar to that of the 3-RPR robot described in [15] or the
3-RPS robot in [8]. The path to connect the fourth solutions is not presented in this
chapter. The method introduced in [16] is used to compute the cusp curves.
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Fig. 7 Projection in Q of the trajectories with the cusp curves for OM1 (a) and OM2 (b)

3 Conclusions

This chapter presents a study of the joint space and workspace of the 3-RPS parallel
robot and shows the existence of non-singular assembly mode changing trajectories.
First, we have shown that each of the two operationmodes is divided into two aspects,
which is a necessary condition for non-singular assemblymode changing trajectories.
Moreover, it turns out that this mechanism has a maximum of 16 real solutions to
the direct kinematic problem, eight for each operation mode. Then, by computing
the characteristic surfaces, we have shown that we can describe the basic regions
for each operation mode. We construct a path going through several basic regions
which are images of the same basic component with 8 solutions for the DKP. The
analysis of the determinant of Jacobian shows that a non-singular assembly mode
change exists for each motion type.
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Influence of Spring Characteristics
on the Behavior of Tensegrity Mechanisms

Quentin Boehler, Marc Vedrines, Salih Abdelaziz,
Philippe Poignet and Pierre Renaud

Abstract There is today a growing interest for tensegrity mechanisms. Their
analysis is however challenging because of their self-stress state. The most pop-
ular tensegrity mechanisms use linear springs as tensioned elements. Their synthesis
for given user requirements is an open issue. In this article, we propose as a first
step to better understand the influence of the spring characteristics, that constitute
important design parameters. The influence of spring free length is in particular as-
sessed, considering two planar tensegrity mechanisms. Impact of the spring selection
on the workspace, the stiffness and the actuation requirements is observed. The sim-
ulation results outline that using nonzero free length springs can be of interest, and
conclusions are given on further steps towards a synthesis method.

Keywords Tensegrity mechanisms · Stiffness computation · Workspace estimation

1 Introduction and Scope of the Study

Tensegrity systems can be defined [5] as systems in stable self-equilibrated state
comprising a discontinuous set of compressed components, i.e. struts, inside a
continuum of tensioned components, either cables or springs. Thanks to the self-
stress state, prestress can be imposed for a same topology in order to modify the
level of internal forces. A high stiffness-to-mass ratio can thus be reached. More-
over, since the components are axially loaded, they can be very light and so does
the system [7]. Tensegrity mechanisms use actuators to modify their configuration
[3, 6]. The tensioned components are then generally linear springs, in order to
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systematically reach equilibrated configurations without tension loss. They have
recently received a lot of attention [8, 9, 11], and could be interesting solutions for
instance in surgical contexts, where lightweight devices with large workspaces are
required [1].

The analysis of tensegrity mechanisms is delicate compared to rigid-body mech-
anisms. The determination of a mechanism configuration requires for instance to
take into account joint variables and external loads while respecting self-equilibrium
state conditions. The corresponding static model is obtained using so-called form
finding methods [10]. Up to now, related works have been focused on the analysis of
tensegrity mechanisms, but not yet on their synthesis. Even the relationship between
the design parameters and the mechanism behavior, and the estimation of actuator
performances for given specifications remains to be investigated. In this chapter,
we wish therefore to analyze the sensitivity of the tensegrity characteristics to their
design parameters.

The spring characteristics strongly influence the mechanism behavior. We there-
fore concentrate our efforts on the parameters related to the linear springs used as
tensioned components. The influence of spring stiffness is here considered, and more
importantly the free length of the springs. To our knowledge, estimating the influence
of nonzero free lengths on mechanism performances has not yet been covered in the
literature.

As a result, we introduce in this chapter an analysis of spring stiffness and free
length on the behavior of tensegrity mechanisms. Two planar tensegrity mechanisms
of Snelson-cross type [2, 3] are considered, that respectively exhibit 1 and 2-DOF.
In Sect. 2, the 1-DOF mechanism is considered. The mechanism is simple enough to
allow a detailed analysis of free length influence on mechanism workspace, stiffness
and criteria related to actuator requirements, namely actuator stroke, force and energy
consumption. In Sect. 3, a 2-DOF mechanism is analyzed. This mechanism can be
used as a tool holder in a surgical task [1]. Conclusions are finally given with emphasis
on further steps towards a generalization for other tensegrity mechanisms.

2 Sensitivity Analysis of a 1-DOF Tensegrity Mechanism

2.1 Mechanism Description

The 1-DOF tensegrity mechanism, based on the Snelson-cross planar tensegrity, is
represented in Fig. 1. It consists in four nodes {A, B, C, D}. Two rigid struts of length
L connect respectively A with C and B with D. Three linear springs are installed
on the outside of the mechanism, with same stiffness k and free length l0. An ac-
tuator is used to modify the distance ‖AB‖ = ρ, with the node A anchored to the
base and B constrained to move in a horizontal direction. In such a situation, the
mechanism exhibits 1 DOF, with nodes C and D that have equal vertical displace-
ments. The output variable is defined as y, the Y -coordinate of C and D, and ρ is the
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Fig. 1 Kinematic schemes of the 1-DOF (left) and 2-DOF (right) tensegrity mechanisms. In black
plain lines, rigid struts and in red dotted lines, linear springs

input variable. For sake of simplicity, a so-called neutral configuration is defined as
||AD|| = ||BC || = ||C D|| = ρ =100 mm with perpendicular struts. It implies that
the struts have a length L = 100

√
2 = 141 mm.

2.2 Modeling and Analysis Criteria

The mechanism modeling consists in deriving expressions of the direct and inverse
static models. The output variable y is obtained for a given value of ρ by solving the
direct static problem. An energy method, as described in [10], is here considered.
The mechanism configuration is then obtained by determining the local minimum
of the potential energy U stored in the mechanism springs. In our context, U can be
easily computed as

U = 1

2
k(2(l1 − l0)

2 + (l2 − l0)
2) (1)

with l1 = ||AD|| = ||BC || and l2 = ||C D||. The lengths l1 and l2 can be expressed
using simple geometrical relationships as functions of the variables ρ and y and
the length L . In the following, we are only interested in positive solutions of y.
The analytic expression of y = f (ρ) is obtained by solving ∂U

∂y = 0 for a given ρ,
using a computer algebra system (Mupad, The Mathworks Inc.). Only one admissible
solution is found with the simulated conditions where ρ ∈ [70, 130] mm and l0 ∈
[20, 80] mm. The inverse static model that expresses ρ as a function of y is difficult
to obtain if nonzero free length of the springs are considered. As noticed previously
in [4], the use of nonzero free length springs in a tensegrity mechanism significantly
increases its analysis complexity. In our situation, no analytical expression could be
found. A numerical approach is then adopted, with a Levenberg-Marquardt algorithm
to compute the ρ value for a given y as the solution of (y − f (ρ))2 = 0. The
tensegrity mechanism behavior is assessed by using two types of criteria. The first
type corresponds to usual mechanism properties, namely the workspace and the
stiffness. The workspace is the range of y values for a given range of ρ. The stiffness
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of the mechanism is defined as Ky = δFy
δuy

with δuy the infinitesimal displacement
of nodes C and D along the Y -axis when an infinitesimal external vertical force
δFy is evenly applied on these nodes, while the actuator is locked. As stated in [2],

the stiffness Ky can be estimated with ∂2U
∂y2 . The other type of criteria characterizes

the actuation requirements of the mechanism. For a predefined path followed by the
mechanism in quasistatic conditions, we compute

• Δρ: the corresponding required actuator stroke
• F and Fmax : respectively the mean and maximum forces delivered by the actuator
• ΔU : the variation of potential energy.

Meanwhile, the mean value Ky and the variation ΔKy of the stiffness are also
estimated. In the presented results, the path is defined as symmetric with respect to
the neutral configuration, with a 20-mm displacement. It is discretized in 11 steps to
compute the analysis criteria.

2.3 Results and Discussion

As it can be observed in Eq. (1), the configuration corresponding to the local minimum
of the potential energy U does not depend on the springs stiffness k. The equilibrium
configuration is therefore invariant with respect to k. Consequently, modifying the
spring stiffness does not modify the mechanism workspace. The mechanism stiffness
Ky is proportional to k as it can be observed in Eq. (1). The energy variation ΔU and
the actuator force F are also proportional to k. The energy variation corresponds to
the energy to be delivered by the actuator. The actuation requirements are therefore
linearly dependent on the spring stiffness for a given workspace.

The spring free length l0 has on the contrary a non-linear influence on the analy-
sis criteria. Figure 2 represents the computation of y and Ky according to l0 when
ρ varies between 70 and 130 mm in 25 steps, for k = 4 N/mm. In this example,
one may observe that the neutral configuration is not dependent on the spring free
length. For a given y, increasing l0 leads to an increase of Ky while the force de-
livered by the actuator decreases. This may appear unintuitive, but it is explained
by the reconfiguration of the mechanism when l0 is increased (bottom of Fig. 2).
The workspace is on the contrary reduced for the same actuation stroke. For given
mechanism specifications, interesting compromises therefore exist for nonzero free
lengths.

Figure 3 shows the evolution of the criteria related to the actuator requirements.
Increasing l0 leads to the increase of the actuation stroke Δρ while F , Fmax are
reduced, as well as the potential energy variation ΔU . An optimal value of l0 could
be searched for in order to adapt the mechanism and the actuator force/displacement
characteristics. The influence of the free length on the stiffness is complex, with an
increase of the mean value Ky but a reduction of the variation ΔKy . As a conclusionof
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Fig. 3 Evolution of the analysis criteria according to l0

this case, the analysis suggests first that nonzero free lengths can be of interest for
the mechanism performance, and that the choice of l0 is a compromise between
mechanism properties Ky , ΔKy and the actuator requirements Δρ, F , Fmax and
ΔU .
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3 Analysis of a 2-DOF Tensegrity Mechanism

3.1 Mechanism Description

A second actuator is integrated between nodes B and C in the previous tensegrity
mechanism (Fig. 1). The mechanism becomes a 2-DOF manipulator with two joint
variables (ρ1, ρ2) and its end-effector in D.

3.2 Modeling and Analysis Criteria

For this 2-DOF mechanism, no analytical direct static model could be obtained if
springs have a nonzero free length. Hence, the coordinates of D are determined by
minimizing the potential energy U using a Nelder-Mead algorithm. The inverse static
model is not implemented since it is not necessary for the evaluation.

Contrary to a rigid-body mechanism, the mechanism configuration does not
depend only on (ρ1, ρ2), but also on one parameter that can be either the angle
̂AB D, the variable x , or y. Therefore U = U1(ρ1, ρ2, x) = U2(ρ1, ρ2, y), and the
end-effector stiffnesses Kx and Ky in X - and Y -direction can be computed as follows

Kx = ∂2U1(ρ1, ρ2, x)

∂x2 (2)

Ky = ∂2U2(ρ1, ρ2, y)

∂y2 (3)

For this mechanism, analysis criteria are related to the mechanism workspace,
stiffness and the actuation requirements:

• A is the area of the reachable workspace
• Kx and Ky are the mean values of respectively Kx and Ky over the workspace
• ΔKx and ΔKy designate the variations of respectively Kx and Ky over the

workspace
• F and Fmax are computed as the mean and maximum forces in each actuator.

The workspace is explored with joint ranges that avoid mechanism singularity
and loss of tensegrity configuration. A singularity occurs when ρ1 = ρ2 = L/2,
i.e. B D is vertical. The lower bounds of ρ1 and ρ2 are therefore chosen equal to
75 mm. The strut B D must remain in compression to keep the mechanism in a
tensegrity configuration. As a result, the upper bound of the joint variables is such
that ρ2

1 + ρ2
2 < 5L2/2. A 5-mm step for each joint variable is considered for the

computation. The area A is computed by extracting the edge of the discrete set of
positions obtained after the exploration of the joint space. With such joint ranges,
and thanks to the mechanism symmetry, F and Fmax are the same for both actuators.
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3.3 Results and Discussion

Similarly to Sect. 2, the influence of the spring stiffness k on the analysis criteria is
simple. It does not affect the equilibrium configurations, and linearly impacts the
required actuators forces and the stiffnesses.

The variation of Ky is represented in Fig. 4, for a spring stiffness k = 3 N/mm.
For such a mechanism, an end-effector position can sometimes be obtained with
two different configurations and hence two different stiffness values. The map is
therefore plotted in the joint space. Figure 5 depicts the corresponding reachable
workspace. The l0 value modifies the shape of the workspace boundaries, and the
workspace area. In addition, tension losses can occur that limit the workspace, as
it can be observed between the middle and right plots of Fig. 5. Further analysis
shows that the first tension loss takes place when D is at the middle of AC , and
that l0 = l0 loss = L/2 � 70 mm. The l0 value also affects the mean value and the
variation of the stiffness over the workspace (left and middle plots of Fig. 4).

Figure 6 shows the evolution of the analysis criteria according to l0. This evolution
of the criteria is notably affected by choosing l0 > l0 loss , with in particular a fast
reduction of the workspace area A. If l0 < l0 loss , Kx , Ky , F and Fmax decrease
when l0 increases. Although ΔKx is also decreasing monotonously with respect to
l0, the evolution of ΔKy is more complex (as it can be seen on Fig. 4). The lowest
value of ΔKx is indeed obtained for a nonzero value of l0. The evolution of the
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workspace area A is also non uniform. Increasing l0 does not necessarily decrease
the size of the workspace.

The criteria sensitivity to the free length value is different from the one observed
for the 1-DOF mechanism. Increasing l0 can lead to tension losses, which is quite
logical, and affects stiffness and workspace properties. However, the free length can
be used to lower the required actuator forces and an adequate choice of l0 can help
increasing the workspace size.

4 Conclusions

In this chapter, influence of the spring characteristics on tensegrity mechanisms
was considered. Using analysis criteria related to the mechanism properties and the
actuator requirements, two planar mechanisms were analyzed. The first major re-
mark is that increasing the free length of the springs can have a beneficial impact on
the mechanism or the selection of an adequate mechanism. Whereas the spring stiff-
ness influence can be easily assessed, relationships between the selected criteria and
the free length is much more complex. The determination of the spring free length
during a mechanism synthesis will need to be performed simultaneously with other
design parameters related to the mechanism geometry. The observed significant non-
linearities of the sensitivity curves outline also that the selection of the optimization
strategy will be delicate, and will be investigated as the next step of this work as well
as the generalization for other tensegrity mechanisms.
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Human Motion Kinematics Assessment Using
Wearable Sensors

Sebastjan Šlajpah, Roman Kamnik and Marko Munih

Abstract This chapter presents a novel sensory fusion algorithm for assessing the
orientation of human body segments in long-term human walking based on signals
from wearable sensors. The basic idea is to constantly fuse the measured segment’s
angular velocity and linear acceleration via known kinematic relations between
segments. The wearable sensory system incorporates seven inertial and magnetic
measurement units and two instrumented shoe insoles. The proposed system was
experimentally validated in a long-term walking on a polygon simulating different
everyday activities. Results show accurate joint angle measurements (error median
below 5◦) with no observed drift over time.

Keywords Sensory fusion · Kinematic model · Extended Kalman filter · Inertial
measuring units · Long-term walking

1 Introduction

Wearable robotics and monitoring in sports are two recently developed fields where
the latest progress in sensory technology contributed essentially. Miniature sen-
sors utilizing MEMS components are convenient to be worn by the user or to be
implemented on a wearable robotic structure, such as active prostheses, orthoses,
and exoskeletons [7, 10, 12]. The acquired information on kinematic and kinetic
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parameters is used for providing feedback to the user [2, 3] or for closing the loop
in a robot controller [6, 10].

Level-ground walking is considered a basic manoeuver of human locomotion and
has as such been a subject of numerous studies in recent decades. At first, the uni-
axial gyroscopes, attached to body segments, were used to assess joint angles with
a simple integration method [9, 14]. The method is prone to output drift over long-
term measurements since it integrates superimposed noise over time. A solution was
proposed as a system reset during static conditions and re-initialization of the outputs
with regards to a known reference value [14]. Difficulty with this approach is that
during fast, uninterrupted walking it is near to impossible to accomplish accurate
re-initialization.

The Kalman filter was introduced for assessing the orientation of individual seg-
ment by fusing data from gyroscope and accelerometer [8]. The orientation estimate
obtained by integration of the 3D angular velocity is continuously corrected by using
inclination estimate obtained frommeasured acceleration of the segment. The results
show that due to the heading drift the presented method is not suitable for long-term
measurements [4, 13].

To measure three dimensional orientation, supplementary reference axis in addi-
tion to gravity needs to be introduced. Commonly, magnetometers have been incor-
porated into systems using magnetic field as an additional axis [1, 11]. In [1]
authors implemented the Unscented Kalman filter for orientation estimation. Esti-
mate obtained by integrating angular velocity is continuously corrected by the ori-
entation estimated via accelerometer and magnetometer. During fast movement this
method yields larger errors in orientation since it is not differentiating between gravi-
tational and dynamical components of measured acceleration. Roetenberg et al. [11]
presented a complementary Kalman filter which is based on estimation of errors
between the orientation obtained by integration of gyroscope data and one obtained
from accelerometer and magnetometer.

The aim of this chapter is to present a novel approach for long-term kinematic
parameters assessment with a combined use of wearable inertial, magnetic, and
insole sensors. The approach is based on fusing measured accelerations and angular
velocities with calculated accelerations based on human body kinematic relations.
The accuracy and long-term reliability of proposed approach are experimentally
evaluated in walking on a polygon.

2 Kinematic Relation in Serial Kinematic Chain

The sensory fusion for estimation of segment orientations in long-term and dynamic
motion proposed in this chapter is built upon an extended Kalman filter (EKF) algo-
rithm [5]. The concept is based on a kinematic relation which states that on a rigid
body the acceleration of any point can be determined if the angular velocity, angular
acceleration and linear acceleration of another point of the body are known.
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Fig. 1 a A serial kinematic chain of segments with marked connections between two neighboring
segments and IMU’s measured quantities. Quantities denoted with subscripts j refer to the
j-th segment. Quantities marked with left superscripts I, S, and E are expressed in the coordinate
frame of the IMU, segment, and Earth, respectively. b RL Right–left and LR left–right sequence of
orientation calculations, denoted with numbers in circles, when the right or the left foot is in stance
phase, respectively

A serial kinematic chain of rigid bodies mimicking human lower extremities
with one wearable inertial and magnetic measurement unit (IMU) placed on each
segment is presented in Fig. 1a. Quantities marked with subscript j correspond to
the j-th segment. Vectors Iω, Ia and IB refer to angular velocity, linear acceleration
and magnetic field measured by IMU sensor, respectively. Vector Ea1 denotes the
linear acceleration of the center point of the joint connecting the j-th segment with
the previous j − 1 segment. Vector Ea2 denotes the linear acceleration of the center
point of the joint between the j-th segment with the following j + 1 segment.
Accelerations Ea1 and Ea2 are expressed in the Earth’s coordinate frame which is
defined by the gravity vector (EY axis) and a normal vector to a plane described with
gravity and magnetic vectors (EZ axis). The vector pointing from the joint which
connects segments j − 1 and j to the IMU and vector pointing from the IMU to the
joint which connects segments j and j + 1 are denoted as Sr1 and Sr2, respectively.
The vectors describe the geometric model of the segment and the IMU placement on
the segment. The vector of gravity is marked with Sg. Quaternion Eq describes the
segment’s orientation with respect to the Earth coordinate frame.

The relation between measured acceleration by the IMU Sa and the linear accel-
eration of the center point of the joint between segments j and j − 1 Sa1 can be
described as

Sa j = Sa1, j + Sω j ×
(
Sω j × Sr1, j

)
+ Sω̇ j × Sr1, j − Sg j . (1)

The measured quantities are transformed into the segment’s coordinate frame
using rotation SqI, j . In Eq. (1), the measured linear acceleration Sa comprises
dynamic SaDYN and gravitational Sg contributions: SaI = SaDYN − Sg. Gravity
vector is transformed into the segment’s local coordinate frame as
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[
0, Sg

]T = Eq
∗ ⊗

[
0, Eg

]T ⊗ Eq (2)

where ⊗ represents a quaternion multiplication, ∗ denotes a conjugated quaternion,
and Eg = [0,−9.81, 0]T m/s2.

The relationship between measured linear acceleration Sa and linear acceleration
of the joint center point connecting segment j with segment j +1 Sa2 is expressed as

Sa2, j = Sa j + Sω j ×
(
Sω j × Sr2, j

)
+ Sω̇ j × Sr2, j + Sg j . (3)

If the acceleration at the connection point with the previous segment Sa2,j−1 is known
and transformed into theEarth’s coordinate frame, it represents the linear acceleration
Ea1, j of the j-th segment. Expressed in the coordinate frame of the j-th segment it
is used in (1). The aforementioned equations form a basis for the iterative procedure
processing a serial kinematic chain of lower extremities segments.

Vector of the magnetic field IB, measured by the IMU and expressed in the
segment’s frame, is modeled as a rotated magnetic field of the Earth in the Earth’s
coordinate frame EB. It can be described as

[
0, SB

]T = Eq
∗ ⊗

[
0, EB

]T ⊗ Eq. (4)

3 Model-Based Extended Kalman Filter

AnextendedKalmanfilter (EKF) algorithm [5] is used to fusemeasured data from the
IMU sensors and knowledge about the lengths of the segments and sensor placement.
The estimation model combines integration of angular velocity with relations (1) and
(4). The model incorporates a non-linear state-space presentation of the state (5) and
measurement (6) equations

xk = f (xk−1, uk−1, wk−1) (5)

zk = h (xk, vk) . (6)

The non-linear function f describes the relations between the state vector xk at time
step k and the state xk−1, the input vector uk−1 and superimposed process noise
wk−1 at time step k − 1. The function hk relates the state to the measurements zk at
time step k with addition of superimposed measurement noise vk .

The state vector xk in the proposed algorithm for single segment orientation
assessment is defined as xk = [

Sω Sω̇ Eq E q̇ E q̈
]T

with E q̇ and E q̈ being the first
and the second time derivative of quaternion Eq. The function f of the state equation
(5) is given as follows: f[1−3] represents time integration of angular velocity Sω and
f[4−6] forward transfer of angular acceleration. The time integration of quaternion
Eq is described with f[7−10], while f[11−14] and f[15−18] represent the first and the
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second time derivative of the quaternion Eq. Combined function f is presented with
Eq. (7). ⎡

⎢⎢⎢⎢⎣

f[1−3]
f[4−6]
f[7−10]
f[11−14]
f[15−18]

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

Sω + Sω̇I�t
Sω̇

Eq + E q̇�t
1
2
Eq ⊗ [

0, Sω
]T

1
2
E q̇ ⊗ [

0, Sω
]T + 1

2
Eq ⊗ [

0, Sω̇
]T

⎤
⎥⎥⎥⎥⎥⎦

(7)

where �t represents the time difference between two sequential time steps.
The measurement vector incorporates all measured quantities and is defined as

zk = [
Sω Sω̇ Sa SB

]T
. The function h relates measured quantities with state space

variables through (1) and (4). The function h is given as

⎡
⎢⎢⎣

h[1−3]
h[4−6]
h[7−9][

0, h[10−12]
]T

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Sω
Sω̇

Sa1 + Sω × (
Sω × Sr1

) + Sω̇ × Sr1 − Sg
Eq

∗ ⊗ [
0, EB

]T ⊗ Eq

⎤
⎥⎥⎦ . (8)

The set of equations for discrete-time EKF algorithm implementation is presented
in [5].

The proposed configuration of the EKF is used for estimation of the orientation of
a single segment on which an IMU is attached. For a valid orientation estimation the
linear acceleration of the joint connecting the previous segment must be known.With
a recursive procedure processing segment by segment and known either acceleration
of the mounting point of the first segment or it’s orientation, the orientations of any
number of segments in a kinematic chain can be determined.

4 Implementation of Model-Based EKF for Human Motion
Kinematics Assessment

For assessing the kinematic parameters in human walking a seven segment model of
human body was utilized incorporating left and right foot, shank, thigh, and head–
arm–trunk (HAT) segment. A recursive algorithm composed of seven EKFs is imple-
mented for the estimation of the individual segments orientation.When the right foot
is in the stance phase the recursive algorithm calculate the orientations in the right-
left (RL) direction as illustrated in Fig. 1b: (1) right foot, (2) right shank, (3) right
thigh, (4) HAT, (5) left thigh, (6) left shank, and (7) left foot. In situation when the
left foot is in the stance phase, the direction of the recursive calculation is reversed
(LR direction).

The insole data are used to determine standing and swinging leg. While the first
segment is in contactwith the floor, the position of the contact center point (foot center
of pressure—COP), measured by instrumented shoe insoles, is used to determine the



176 S. Šlajpah et al.

(a) (b)

Fig. 2 a Subject equippedwith sensors walking up the stairs on the polygon. b IMU on ameasuring
plate with corresponding infrared markers

vector Sr1,1 pointing from the sole to the IMU. The acceleration of the contact point
is considered as an origin with acceleration a1,1 = 0m/s2.

5 Experimental Validation and Results

Wearable sensory systemcomprises seven IMUsplacedon segments of lower extrem-
ities and trunk. Two instrumented shoe insoles are used formeasuring the feet reaction
forces. An IMU (see Fig. 2b) consists of three digital sensors: a three-axial gyroscope
(measuring range±500◦/s), a three-axial accelerometer (measuring range±4G) and
a three-axial magnetometer (measuring range ±1.3Ga) [1]. The size of one unit is
(30 × 20 × 5)mm. Prior measuring, each IMU is calibrated to obtain biases and
misalignments of sensors. Measured data from individual IMU are wirelessly trans-
ferred to a data acquisition unit. Parotec-System pressure measurement shoe insoles
(Paromed GmbH, Neubeuern, Germany) consist of 24 hydrocell sensors each and
measure reaction forces of different anatomical points of the foot and the load dis-
tribution along the feet. The sensory system operates with a sampling frequency of
100Hz.

The developed model-based EKF algorithm was tested during long-term walk-
ing on a cyclical polygon simulating different types of everyday walking activities:
level walking, stair climbing, turning and stair descent (see Fig. 2a). As a reference,
an optical measurement system Optotrak Certus (Northern Digital Inc., Waterloo,
Canada) was used.
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Five males [27.6 ± 3.4 years old, 1.79 ± 0.07m height, 78 ± 8 kg weight
(mean ± standard deviation)] represented a test group. IMUs were mounted on a
plastic plate together with three infrared reference markers as shown in Fig. 2b. Mea-
surement plates were fixed on the segments of lower extremities and lower back.
Reference markers were also placed over the anatomical landmarks describing the
ankle, knee and hip joints. Subjects were fitted with the proper size of the Parotec-
System insoles. In the test trials subjects were asked to walk on a polygon for 15min
at a self selected speed. Raw signals from IMUs, insoles, and Optotrak were all
sampled synchronously with sample rate of 100Hz.

Estimates of the segments’ orientations Eq j were calculated using the proposed
model-based EKF. Reference orientations of the segments were determined from
optical measurement system. Reference and estimated joint angles were calculated
as the rotational differences between measured orientations of two neighboring seg-
ments: ankle angle as difference between foot and shank orientation, knee angle as
difference between shank and thigh orientations, and hip angle as difference between
thigh and HAT orientations. Absolute errors between estimated and reference joint
angles at different time frames (in first, 5th, 10th, and 15th minute) were used to
assess the algorithm accuracy and long-term reliability.

5.1 Results

Kinematic analysis of long-term gait encompassed comparison of joint angles of
lower extremities assessed by the proposed EKF algorithm and the reference Opto-
trak system. In the results, joint angles with largest range of motion were analyzed:
dorsiflexion/plantar flexion of the ankle, extension/flexion of the knee and exten-
sion/flexion of the hip. To test the reliability of the proposed algorithm the error was
evaluated in 1st, 5th, 10th and 15thmin of the walking.

In tests on a polygon on average a distance of 647 ± 114 m was covered with a
speed of 2.6 ± 0.5 km/h. Comparison of typical joint angle trajectories for knees,
ankles, and hips for one subject within four time intervals is illustrated in Fig. 3.
Trajectories show half of the preparation step and climbing of three stairs with a
duration of approximately 3 s. Absolute errors between assessed and reference joint
angles for all trails (n = 5, 49.8 ± 8.8 rounds per trail, 18.6 ± 3.9 s duration of one
round) are presented with boxplots in Fig. 4.

6 Discussion

The presentedmodel-based extended Kalman filter is based on the kinematic relation
between linear acceleration and angular velocity of a rigid body. The concept uses
accelerometer data for continuous fusion, and not just for inclination estimation
during quasi-static conditions as presented in many other papers [8, 9, 15]. With
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Fig. 3 Right and left ankle, knee, and hip joint angle trajectories during half of the preparation
step and stair climbing determined by the proposed model-based EKF algorithm (solid line) and
reference system (dashed line) in walking on polygon. Grey and white areas denote RL and LR
direction of calculation, respectively. Thick solid lines represent feet contact durations for each time
frame as followed: right foot: floor–1st stair–3rd stair; left foot: floor–2nd stair

a novel EKF, a recursive algorithm is proposed treating the lower extremities of a
human as a serial kinematic chain where the base alternates with a swinging leg. In
comparison to other methods [1, 11], the measurement insoles are incorporated into
the system to distinguish between the stance and the swing leg and to determine the
COP which is used for kinematic calculations in Eq. (1) for the first segment.
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Fig. 4 Absolute error between assessed and reference joint angle trajectories for ankles, knees, and
hips during 1st, 5th, 10th, 15thmin and during whole trail for all trails accomplished at walking on
the polygon

Long-term walking on the polygon simulated different everyday motion types:
level walking, stair negotiation, and turning. The experiment tested the performance
of the presented algorithm when combining different motion types and evaluated the
long-term reliability. The comparison of joint angles trajectories show that the per-
formance of the proposed algorithm is not affected by changing the type of motion.
Median errors around 3◦ for the lower extremities’ joint angles validate the ade-
quacy of the model-based EKF algorithm for tracking kinematic parameters in dif-
ferent motion conditions. From results, no tendency of median error increase can be
observed.

The novel sensory system and algorithms are appropriate for assessment of joint
angles in human walking and other daily activities with improved accuracy and
consistency. The only condition to be met for proper operation is that at least one
foot must be in contact with the floor at any given time. During regular walking,
this condition is inherently met. The proposed approach is also applicable in other
areas of mechatronics where orientation assessment of serially linked segments is of
interest.
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Stiffness Matrix of 6-DOF Cable-Driven Parallel
Robots and Its Homogenization

Dinh Quan Nguyen and Marc Gouttefarde

Abstract In this chapter, several issues of the stiffness matrix of a general 6-DOF
Cable-Driven Parallel Robot (CDPR) are addressed. First, the stiffness matrix of
a CDPR with hefty cable is derived analytically. Then, a homogenization of this
stiffness matrix is introduced. The discussion on this procedure gives an intuitive
meaning of the stiffness matrix of the CDPR and its homogeneous form. This analysis
can be used to solve a set of CDPR design problems.

Keywords Cable-driven parallel robots · Stiffness · Homogenization

1 Introduction

Cable-driven parallel robots have been extensively studied and proved to have appeal-
ing advantages compared to rigid-link parallel manipulators, such as light weight,
large workspace, high load capacity, ease of construction, ease of reconfiguration
and low cost. Figure 1 shows a general CDPR whose mobile platform is driven by
m cables.

Similar to general robotic manipulators, the design of CDPR, in general, is a
process in which many criteria, such as the working volume, positioning accuracy
and stiffness, have to be considered. For cable robots, the latter is particularly impor-
tant especially since CDPR are much more compliant than rigid-link manipulators.
The stiffness of a CDPR can be characterized by its stiffness matrix at a given point
of its workspace. This matrix relates the forces and torques applied on the mobile
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Fig. 1 A general m-cable CDPR

platform to the corresponding linear and angular displacements of the mobile
platform. Suppose that K is the stiffness matrix of a CDPR. In a static equilib-
rium, an infinitesimal wrench dfe applied on the mobile platform will create a small
displacement d X that satisfies the relation:

K · d X = dfe (1)

Many studies on the stiffness of CDPR and its applications have been carried out
[1, 3–5, 11, 14]. However, most of them deal with the cases where the cable mass
is neglected. These assumptions hold only for CDPR of small dimensions or using
light-weight cables. For large-dimension CDPR that are designed to handle heavy
payloads, hefty cables are used to drive the mobile platform. Sagging effects of
the cables over a wide workspace may have a significant impact on the robot per-
formances. In [3], an analysis of the stiffness of CDPR considering cable mass is
proposed. However, this analysis is only applied to a planar 2-DoF CDPR. In [8],
Du et al. performed an analysis of the kinematics of a long-span CDPR. Their
approach utilized the well-known 2D catenary cable model [7]. From their work,
one can also derive the stiffness matrix of a CDPR. However, their derivation is
rather complicated and contains errors.

Various means of quantifying the stiffness of a parallel manipulator have been
proposed, e.g. in [5, 6, 9, 12]. Among those, characterizing the stiffness matrix K
through its singular values is of interest to us.

Let us consider some of the possible applications of CDPR shown in Fig. 2: a
suspended CDPR that can carry workers in an airplane maintenance workshop, or
one that carries a robot arm attached to its mobile platform to perform certain tasks
over a large volume. In both cases, due to suspended architecture (all cable exit points
Ai are located above the mobile platform), the stiffness of the CDPR is determined
by its payload (including the mobile platform weight), the cable layout (positions of
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Fig. 2 Examples of applications. a Carrying workers. b Carrying robot arm

the cable exit points Ai and attachment Bi ) and also the cable characteristics. In the
design phase of such CDPR, one goal can be to have a high stiffness at the mobile
platform. In fact, among a set of design solutions, the solution which has “smaller”
resultant displacement d X (with respect to any disturbance wrench dfe) will have
higher stiffness. The disturbance wrench can be caused, e.g., by the workers on the
platform (in Fig. 2a) or the robot arm performing a task (in Fig. 2b). In such cases,
one need to quantify efficiently the stiffness of the CDPR in order to aid the design
process.

From (1), one can derive:

σmin = 1

‖K−1‖ ≤ ‖dfe‖
‖d X‖ ≤ ‖K‖ = σmax (∀ d X �= 0) (2)

where σmin and σmax are the minimum and maximum singular values of the stiffness
matrix K, and ‖.‖ indicates the 2-norm of a vector or a matrix.

In this sense, the stiffness of the CDPR can be quantified by its singular values
(specifically σmin and σmax) regardless of the magnitude or direction of the infinites-
imal wrench dfe. However, the term ‖dfe‖ and ‖d X‖ become meaningful only if dfe
and d X are homogeneous. In [5], Bouchard presented the analysis of the rotational
kinematic sensitivity of a CDPR (which is defined as the change in the pose of the
mobile platform under a change in the actuation). The infinitesimal position vector
d P and the infinitesimal rotation vector d� (here, d X = (d P, d�)) are quantified
separately which helps to avoid the issues due to the difference in units. However,
the study focused mainly on the rotational kinematic sensitivity of the CDPR under a
change in cable lengths. In [9], Larfourcade et al. presented a way to homogenize the
stiffness matrix based on the concept of characteristic lengths [2, 10] to transform
angles to lengths in the infinitesimal displacement vector d X and moments to forces
in the infinitesimal wrench dfe. The characteristic length was chosen as the average
distance from the anchor points Bi to the origin of the local frame attached to the
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mobile platform. This choice, however, may not provide an efficient quantification
of the stiffness of CDPR in our applications of interest.

In this chapter, we first derive the analytical form of the stiffness matrix of a
general 6-DOF CDPR taking into account cable mass and elasticity. This attempt is
in fact an improvement of the work done in [8] by using the extended 3D catenary
cable model [13]. Then, we present a procedure to transform the stiffness matrix into
its homogeneous form. Based on an analysis of this homogenization, we derive a
means to quantify the stiffness of a CDPR.

The chapter is organized as follows. Section 2 describes the stiffness of one hefty
cable. Section 3 gives the analytical form of the stiffness matrix of general 6-DOF
CDPR. Finally, the homogenization procedure is presented in Sect. 4.

2 Stiffness Matrix of One Cable

Let us consider a steel cable that has unstrained length L0 (m), self-weight w (N/m),
elastic modulus E (Pa) and cable cross-section area A0 (m2). Figure 3 shows the
relevant coordinates and parameters of a cable in static equilibrium. The cable is fixed
between two end-points A (xa, ya, za) and B (xb, yb, zb). The term �L represents
the strain of the cable. fbx , fby and fbz are the cable horizontal and vertical force
components at point B and

τa =
√

f 2
bx + f 2

by + ( fbz − w L0)
2 (3)

τb =
√

f 2
bx + f 2

by + f 2
bz (4)

are the tensions in the cable at point A and B, respectively.
According to the well-known elastic catenary equations [7, 13], we obtain the

relation between the coordinates of points A and B:

xa = xb − fbx L0

E A0
+ fbx

w
ln

[
τa + fbz − w L0

τb + fbz

]
(5a)

ya = yb − fby L0

E A0
+ fby

w
ln

[
τa + fbz − w L0

τb + fbz

]
(5b)

za = zb − fbz L0

E A0
+ w L2

0

2E A0
+ 1

w
(τa − τb) (5c)

If the coordinates of point A are known, then the coordinates of point B can be
computed from the cable force components and the cable unstrained length L0:

B = f
(

fbx , fby, fbz, L0
)

(6)
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Fig. 3 Sketch of a sagging cable

Differentiating both sides of (6) and applying the chain rule, we have:

d B = ∂ B

∂ FB
· d FB + ∂ B

∂L0
· d L0

⇒ d FB = KB · d B − KL · d L0 (7)

Here, the term d (·) indicates an infinitesimal change in a vector. FB is the cable
force at point B as shown in Fig. 3.

Assume that the end point A is fixed. If the coordinates of point B and the cable
force components at B are known, the cable unstrained length L0 being also known
and unchanged (d L0 = 0), then KB is the stiffness matrix of the cable at point B:

KB =
(

∂ B

∂ FB

)−1

(8)

The vector KL in (7) is:

KL =
(

∂ B

∂ FB

)−1

·
(

∂ B

∂L0

)
= KB · FA ·

(
1

E A0
+ 1

τa

)
(9)

where FA = [
fbx fby ( fbz − wL0)

]T is the force applied by the cable at point A
(which points toward point B).
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3 Stiffness Matrix of 6-DOF CDPR

Let us consider the CDPR shown in Fig. 1. FBi is the force applied by the mobile
platform on the cable i at its end point Bi . The resultant wrench applied by the cables
on the mobile platform is:

fc =
[ m∑

i=1

−FBi ,

m∑

i=1

− (Rbi × FBi )

]T

(10)

Here, bi is the position vector of Bi expressed in the mobile platform local frame.
Assume that an infinitesimal external wrench dfe is applied on the mobile platform.
Then, in static equilibrium:

dfe = d (−fc) =

⎡
⎢⎢⎢⎢⎣

m∑

i=1

d FBi

m∑

i=1

d (Rbi × FBi )

⎤
⎥⎥⎥⎥⎦

(11)

We have:

d FBi = KBi · d Bi − KLi · d L0i

= KBi · d (Rbi + P) − KLi · d L0i

= KBi ·
(

− (Rbi )× · d� + d P
)

− KLi · d L0i

= KBi · [
13×3,− (Rbi )×

] · d X − KLi · d L0i (12)

where X = (
x y z θx θy θz

)
defines the mobile platform pose, P = (x y z) is

the position vector in Cartesian space of point Op, θ = (
θx θy θz

)
is a vector of

Euler angles, d P = (dx dy dz) is the position displacement vector, d� = S · dθ is
the rotation displacement vector with dθ = (

dθx dθy dθz
)

and d X = (d P, d�) is
the infinitesimal displacement vector of the mobile platform. The term (·)× indicates
the cross product matrix of a vector, 13×3 is the identity matrix. The rotation matrix
R and the transformation matrix S (which maps the time derivative of the vector
of ZYX Euler angles to the mobile platform angular velocity vector) are given as
follows:

R =
⎡
⎣

CyCz Cz Sy Sx − SzCx Cz SyCx + Sz Sx

Cy Sz Sz Sy Sx + CzCx Sz SyCx − Cz Sx

−Sy Cy Sx CyCx

⎤
⎦, S =

⎡
⎣

CyCz − Sz 0
Cy Sz Cz 0
−Sy 0 1

⎤
⎦

(13)

with Cx = cos (θx ) , Sx = sin (θx ) , Cy = cos
(
θy

)
, ...
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Moreover, we have:

d (Rbi × FBi ) = d (Rbi ) × FBi + (Rbi ) × d FBi

= (FBi )
T× · (Rbi )

T× · d� + (Rbi ) × d FBi

= [
(Rbi )× · KBi , Hi − (Rbi )× · KBi · (Rbi )×

] · d X

− (Rbi )× · KLi · d L0i (14)

Here, the matrix Hi is defined as:

Hi = (FBi )
T× · (Rbi )

T× (15)

Finally, from (11), (12), (14) we obtain:

dfe = K · d X − KL · d L0 (16)

where:

K =

⎡
⎢⎢⎢⎢⎢⎢⎣

m∑

i=1

KBi −
m∑

i=1

KBi · (Rbi )×

m∑

i=1

(Rbi )× · KBi

m∑

i=1

Hi −
m∑

i=1

(Rbi )× · KBi · (Rbi )×

⎤
⎥⎥⎥⎥⎥⎥⎦

(17)

and

KL =
[

KL1 KL2 . . . KLm

(Rb1)× · KL1 (Rb2)× · KL2 . . . (Rbm)× · KLm

]
(18)

where KLi (i = 1, m) is given in (9).
If during the period in which an infinitesimal wrench dfe is applied on the mobile

platform all the cable unstrained lengths are assumed to be unchanged (d L0 = 0),
then we obtain K as the stiffness matrix of the CDPR at the mobile platform.

Note that, as an additional merit of (16), at the equilibrium state (dfe = 0), we
also obtain the Jacobian matrix of the CDPR:

J = K−1 · KL (19)

4 Homogenization of Stiffness Matrix

Suppose that from an equilibrium pose, a small disturbance force d Fe is applied on
the mobile platform at a point M . This force creates an infinitesimal wrench at Op,

dfe = (d Fe, rM × d Fe)
(

rM = −−−→
Op M

)
. From (1), we can write:
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K · d X =
[
13×3 03×3
03×3 ‖rM‖ · 13×3

]
·
[

d Fe
rM

‖rM‖ × d Fe

]

⇔S−1
H · K · d X = dfe H

⇔S−1
H · K · S−1

H · SH · d X = dfe H

⇔KH · d X H = dfe H (20)

where

SH =
[
13×3 03×3
03×3 ‖rM‖ · 13×3

]
, dfe H =

[
d Fe

uM × d Fe

]

d X H = SH · d X (21)

KH = S−1
H · K · S−1

H (22)

and uM is the unit vector
rM

‖rM‖ .

In (20), the terms d X H and dfe H are homogeneous (the units are meters and
Newtons, respectively). The matrix SH transforms the stiffness matrix K into its
homogeneous form KH . The characteristic length used in this transformation is
Lc = ‖rM‖. In fact, this transformation preserves the work done by the infinitesimal
wrench:

(dfe)
T · d X = (dfe H )T · d X H (23)

Obviously, the choice of the characteristic length Lc plays an important role in
providing useful physical meaning of KH .

The matrix K can be considered homogeneous with the trivial characteristic length
Lc = ‖rM‖ = 1 (m). One can then safely take the 2-norm of the infinitesimal dis-
placement vector d X . However, even if d X H (or d X ) is homogeneous, its compo-
nents d PH and d�H still represent different quantities (position and orientation).
Taking the norm of the two terms together in ‖d X H ‖ and utilize (2) may not be really
meaningful. We shall give an interpretation for d PH and d�H as follows.

Let us consider the simple example shown in Fig. 4. An infinitesimal wrench dfe
applied on the mobile platform at point M creates an infinitesimal displacement
d X H = (d PH , d�H ). We will consider the changes of the origin point Op and
point M . Under the action of dfe, a displacement occurred at Op and M . One can
write:

M = Op + rM

⇒‖d M‖ = ‖d Op + d� × rM‖ ≤ ‖d Op‖ + ‖d� × rM‖
⇒‖d M‖ ≤ ‖d Op‖ + ‖d�‖ · ‖rM‖ = ‖d PH ‖ + ‖d�H ‖ (24)

The magnitude of the displacement at Op is ‖d PH ‖. Whereas the magnitude of the
displacement at M (in the local mobile platform frame) is bounded by ‖d�H ‖.
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Fig. 4 Displacement of Op and M at the mobile platform of a CDPR

With this interpretation of the homogeneous infinitesimal displacement vector
d X H , it is proposed to quantify separately the two terms d PH and d�H . From (20),
we can write:

d X H = K−1
H · dfeH

⇒
{

d PH = CP · dfe H

d�H = C� · dfeH

(25)

where K−1
H = [

CT
P , CT

�

]T
.

From (25), we have:

‖d PH ‖
‖dfe H ‖ ≤ ‖CP‖ = σP max (26)

‖d�H ‖
‖dfe H ‖ ≤ ‖C�‖ = σ� max (27)

⇒ ‖d M‖
‖dfe H ‖ ≤ σM = σP max + σ� max (28)

where σP max and σ� max are the maximum singular values of the matrices CP and
C�, respectively.

Regardless of the magnitude or direction of the infinitesimal wrench dfe H , the
magnitudes of the displacements at points Op and M are bounded by σP max ·‖dfe H ‖
and σ� max · ‖dfe H ‖. The two values σP max and σ� max can be used as a means to
quantify the stiffness of the CDPR.
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It is worth noting that the homogeneous stiffness matrix of a CDPR will be deter-
mined by the choices of:

• The position of the origin Op of the local frame attached to the mobile platform.
• The characteristic length Lc (or the choice of point M to be analyzed).

These two factors should be considered together while analyzing the stiffness matrix
of a CDPR. For point Op, a wise selection could be the center of mass C of the
mobile platform. In case C falls into a set of possible points UC , Op can be chosen
as the center point of UC . For choosing Lc, we propose first to define an area of
interest UM of point M . Then, Lc can be computed as the average (or the maximum)
distance from Op to the points in UM . After defining Op and Lc, by minimizing
σP max and σ� max (or σM ), one could obtain an optimal design solution where the
displacements at point Op and at the point(s) M of interest are minimized.

Conclusion

The analytical expression of the stiffness matrix of a general 6-DOF CDPR with
hefty cables is presented in this chapter. It provides a useful tool to analyze the
stiffness of CDPR. In addition, a homogeneous form of the stiffness matrix is also
introduced as a means to quantify the stiffness at the mobile platform of the CDPR.
These tools should enable us to solve some design problems for cable-driven robots
as mentioned in this chapter.
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Human Motion Mapping to a Robot Arm
with Redundancy Resolution

Fanny Ficuciello, Amedeo Romano, Vincenzo Lippiello, Luigi Villani
and Bruno Siciliano

Abstract In this chapter the problem of mapping human arm motion to an
anthropomorphic robot arm has been addressed using an Xsens MVN motion cap-
ture suite and a 7-DoF KUKA LWR. The desired end-effector trajectories of the
robot are reconstructed from the human hand, forearm and upper arm trajectories in
the Cartesian space obtained from the motion tracking system by means of human
arm biomechanical models and sensor fusion algorithms embedded in the Xsens
Technology. The desired pose of the robot is reconstructed taking into account the
differences between the robot and human arm kinematics and is obtained by suitably
scaling the human arm link dimensions. A Cartesian impedance control is designed
to replicate, at the robot side, the human wrist motion and a compliant null-space
control strategy is applied to solve kinematic redundancy exploiting the compliant
behavior of the elbow to obtain suitable body reconfigurations.
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1 Introduction

The development of hardware and software technologies for refining the ability to
learn from humans grasping and dynamics manipulation capabilities is of greatest
interest in robotics, [3]. A big challenge of humanoid robotics is to provide a robotic
arm or a dual-arm system with autonomous and dextrous skills to replicate capacity
in performing tasks which are typically executed by humans, [4, 6]. The fields of
interest can be in all those applicationswhere the robot closely interacts with humans,
namely for surgical, industrial and service applications.

Another important issue in unstructured human-shared environment is to achieve
a compliant behavior when interaction occurs in order to realize a proper and safe
cooperation between humans and robots. This behavior can be imposed in the joint
space to ensure safe interaction, [7]. Moreover, the redundant degrees of freedom
can be conveniently used to perform some additional tasks besides the main task
[2]. These additional tasks can be a given Cartesian position of a point on the body
of robot, such as the elbow position, [9]. A compliant behavior in the null space of
the main task can be enhanced to manually adjust robot postures to fit into human
targeted ones.

The aim of this work is to integrate a robotic platform able to acquire and transfer
human body motion to a robotic system. This platform will be used to learn human
motion primitives and to achieve a low-dimensional motion manifold. Replication of
human body motion is very important to transfer human knowledge and experience
to a robot. For accurate motion capturing a sensor technology that use inertial and
magneticmeasurement units has been used tomeasure postures of human bodies. The
robot arm used for replicating human motion is a 7-DoF KUKALWR4 arm, [1]. The
control of the robot pose is carried out using an impedance strategy in the Cartesian
space which uses, as the setpoint for the position, speed and acceleration, the output
coming from a second-order filter that processes the signals from Xsens MVN [10].
The redundant degrees of freedom are used to ensure a compliant behavior of the
robot elbow in order to reconfigure its position.

2 Experimental Set-Up

The Xsens MVN suite is a low-cost motion capture system that does not need
cameras, emitters or markers, and it is simple to be used both indoors and outdoors.
It consists essentially of 17 MTx inertial and magnetic measurement units and com-
prises 3D gyroscopes, 3D accelerometers and 3D magnetometers sensors through
which it is possible to obtain the position measurement and orientation of parts of
the body of the wearer. Two Xbus Masters handle the wireless communication with
the PC or laptop and synchronize all sensor sampling. The body worn sensors are
positioned in correspondence of the feet, legs, thighs, pelvis, shoulders, sternum,
head, arm, forearm and hand. In Fig. 1, Xsens MVN is shown and the components
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Fig. 1 TheXsens suite worn by the operator is shown. TheXbus Masters and the sensors positioned
at the hand, forearm and upperarm are highlighted

used for the developed application are highlighted. The total weight of the system
is 1.9Kg. The entire system operates in real-time with a frequency of maximum
sampling rate of 120Hz. By means of a dedicated software (MVN Studio Software),
the user can easily observe the movements in 3D, record or export them. The system
estimates body segment orientation and position changes by integration of gyroscope
and accelerometer signals which are continuously updated by using a biomechanical
model of the human body. This allows for tracking of dynamic motion.

When placing the sensors, the initial pose between the sensor and the relative body
segment is unknown. Therefore, a calibration procedure, requiring measures such as
the height, the arms length and the foot length of the subject, has to be performed.
The subject is asked to stand in an a-priori known pose, the rotation from sensor to
body segment is determined by matching the orientation of the sensor in the global
frame with the known orientation of each segment in this pose.

The robot used to replicate the human arm motion is the 7-DoF KUKA Light-
weight Robot (LWR). The kinematic redundancy, similar to the human arm, allows
the elbow motion while maintaining the pose of the hand, see Fig. 2. Moreover, the
torque sensors, mounted in all joints, allow detecting contact and collisions for safe
human-robot interaction and compliant reaction to applied external forces. Thus, the
robot can be also manually guided and programmed [1].
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Fig. 2 Human and robot arm comparison, [9]

3 Mapping of the Human Arm Motion

The mapping of movements from the human to the robotic arm requires appropriate
considerations regarding the differences in the kinematic chain, size of the two arms
and joint limits. The motion tracking system does not provide measurements of the
joint angles of the human arm in real time, but allows obtaining that information
only from the recorded data. Thus, the mapping of the human arm movement should
be referred to measurements in the Cartesian space. Since the human arm positions
may be out of the workspace of the robot, to generate a suitable setpoint a bounding
box has to be considered for safety issues. Further, to limit the speed and have a
smooth motion, the signals coming from the Xsens must be processed by means of
interpolation and filtering.

The MTx sensors, mounted on the Xsens suite, provide position and orientation
(expressed in termsof a quaternion) of the related segmentswhere they are positioned.
Because of the difference between the kinematics of the human arm and that of the
robot, we made some assumptions to simplify the mapping. It is assumed that the
second joint (q2) of the robot coincideswith the spherical joint of the human shoulder.
Such assumption is allowed since the axes of the first three joints of the LWR intersect
at a single point corresponding to the center of q2. The same observation can be
made for the sixth joint (q6) identified as the spherical joint of the human wrist. In
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agreement with this assumption the joints that modify the extension of the robot
(distance from the shoulder to the wrist) are joints q2 and q4 corresponding to the
wrist and the elbow of the human arm respectively. During the motion, the distances
between joints q6 and q4 (robot’s wrist and elbow) as well as the distances between
joints q4 and q2 (robot’s elbow and shoulder) remain constant and correspond to the
length of the human forearm and upperarm respectively, see Fig. 2. In order to transfer
the movement of an operator wearing Xsens suite to the robot, the measurements of
interest are the position of the hand, forearmandupperarm, xh , x f and xu respectively,
which are provided by the Xsens and are expressed with respect to the global frame
of the motion capture system. Since the robot does mount neither a hand nor any
tool, only the desired position of the wrist is mapped, while the orientation of the end
effector is controlled to be constant at the initial value.Alternatively, it is also possible
to map the orientation by means of the composition of the quaternion related to the
hand, forearm and upperarm in the same way as for the position. As already stressed,
the kinematics of the human and robot are different also in terms of link dimensions.
The position setpoints of the robot are generated by modifying the XSens references
on the based of the link lengths of the KUKA robot. To compute the wrist reference
position of the robot, the versor of the human forearm and upperarm are obtained and
multiplied for the robot forearm and upperarm lenghts, l f = 0.39m and lu = 0.40m
respectively. This quantities are summed with the vector linking joint q2 to the base
of the robot, xb = (0 0 0.31)T , as in the following equation:

xd = xb + lu
x f − xu

‖x f − xu‖ + l f
xh − x f

‖xh − x f ‖ . (1)

The global frame of the Xsens has the same orientation of the base frame of the
KUKA LWR, thus no further trasformation is needed. A bounding box is applied
to the computed desired wrist position to impose limits on the spatial coordinates,
−0.79 ≤ xx ≤ −0.45, −0.5 ≤ xy ≤ 0.5, 0.15 ≤ xz ≤ 0.6.

The control of the LWR is designed by means of a Cartesian impedance strategy
with compliant null space control for redundancy resolution. The desired position,
velocity and acceleration are generated by a second-order filter that processes the
signals from Xsens MVN. The output signals of the motion tracking system are first
modified according to the robot kinematics in such a way as to generate suitable
references for the robot wrist and then filtered in such a way to have stable and
feasible setpoints. The control purpose is to let the robot following the pose of the
human arm and to allow the reconfiguration of the robot body, relying on a compliant
behavior in the null-space of the main task.

3.1 Cartesian Impedance Control

The dynamic model of the robot has the form [8]:

M(q)q̈ + C(q, q̇)q̇ + g(q) + τ f = τc + J T (q)Fext (2)
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where q ∈ IRn , with n = 7, is the vector of joint variables, M(q) is the inertia
matrix, C(q, q̇)q̇ is the vector of Coriolis/centrifugal torques, g(q) is the vector of
gravitational torques, τ f is the vector of friction torques, τc is the control torque, J (q)

is the robot Jacobian, and τext = J T Fext is the joint torque resulting from external
force and torque Fext applied to the end effector, that in this case are null. To design
the Cartesian impedance control, it is useful to derive the end-effector dynamics in
the operational space [5]:

Λ(q)ẍ + μ(q, q̇)ẋ + Fg(q) + F f (q) = Fc + Fext (3)

where x is the Cartesian pose vector, Λ = (J M−1JT)−1 is the (6 × 6) end effector
inertia matrix, while μẋ = Λ(J M−1C − J̇ )q̇ , Fg = J †T g, F f = J †T τ f and
Fc = J †T τc are the forces, reflected at the end effector, corresponding to the non-
inertial joint torques in (2). By neglecting the friction and the Coriolis/centrifugal
forces and considering that gravity is compensated, the following impedance control
guarantees, in absence of external forces exerted at the robot tip, the tracking of the
desired end-effector pose trajectory:

τimp = J T (Λ(ẍd − J̇ q̇) + Kv
˙̃x + K px̃, (4)

with

Kv =
(
90I3 O

O 10I3

)
, K p =

(
2000I3 O

O 40I3

)
. (5)

The impedance gains have been set experimentally. The error between the desired
and the effective pose x̃ = xd − xe is expressed by means of the position error,
pd − pe, and orientation error expressed in terms of the quaternion Δε:

x̃ =
(

pd − pe

Δε

)
, Δε = ηeεd − ηdεe − S(εd)εe, (6)

where η and ε are the scalar and the vector part of the quaternion and S(·) is the
skew-symmetric operator. Snapshots of the experimental results are shown in Fig. 3.

3.2 Compliant Null-Space Control for Redundancy Resolution

Equation (3) describes only the end-effector dynamics and does not include the
so-called null space dynamics.

In the presence of redundant degrees of freedom, it is possible to impose a
secondary task in the null space of the end effector task, as follows

τc = τimp + (I − J T J †T )(−kd q̇), (7)
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Fig. 3 Snapshots of the experimental set-up during the execution of the motions by the human
operator followed by the robot

where−kd q̇ , with kd = 0.4I7, is a suitable damping torque. In this case the secondary
task consists in a possible reconfiguration of the arm obtained by applying forces to
the robot’s body.

Matrix J † = M−1 J T [J M−1 J T ]−1 is the dynamically consistent generalized
inverse of matrix J [5].

The first image of Fig. 4 represents the configuration assumed by the robot when it
is not touched and redundancy is not exploited. In the other two images, two possible
configurations, elbow up and elbow down respectively, assumed by the robot, while
following the trajectory in the Cartesian space, when complying to external forces
exerted on its body are shown.



200 F. Ficuciello et al.

Fig. 4 From left to right, the first image represents the robot configuration when redundancy is not
exploited, the second and the third images represent other two possible configurations, elbow up
and elbow down respectively

4 Conclusion and Future Work

In this work, a kinematic mapping algorithm has been implemented in order to
replicate the movements made by a human arm on an anthropomorphic robot arm
with seven degrees of freedom.

The desired trajectories are generated in the Cartesian space in terms of position
and orientation and are obtained by taking into account the differences between the
kinematics of the robot and of the human arm. The control of the robot pose is carried
out using an impedance strategy in the Cartesian space which uses, as the setpoint
for the position, speed and acceleration, the output coming from a second order filter
that processes the signals from Xsens MVN.

Since the robot is kinematically redundant, a compliant null-space control strategy
is employed to adjust the configuration of the robot manually in order to generate
anthropomorphic configurations.

The objective of this work is to create a robotic platform to learn from human
grasping and manipulation tasks. Future work consists on learning primitives of
motion in a low-dimensional manifold for a simplified and human-like control of
humanoids robots.
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Analysis of Geometrical Force Calculation
Algorithms for Cable-Driven Parallel Robots
with a Threefold Redundancy

Katharina Müller, Christopher Reichert and Tobias Bruckmann

Abstract In this chapter geometrical force calculation algorithms, namely the
Barycentric Approach, the Weighted Average Approach, the Corner Projection
Method, the Closed Form Method and the Puncture Method are discussed. The last
four were implemented for a threefold redundancy and their performance regard-
ing their practical applicability is investigated. The analysis includes the covered
workspace, the characteristics of the resulting cable forces, the needed computation
time and the adaptability to varying degrees of redundancy.

Keywords Cable-driven parallel robot ·Force distribution ·Threefold redundancy ·
Geometrical approaches

1 Introduction

Cable-driven parallel robots (CDPR) move an end effector using flexible cables
instead of stiff struts in a parallel topology. Each cable is wound up by a motor-
driven winch. The cable can be wound up very quickly and thus, the end effector can
reach high velocities and accelerations. Besides a large workspace can be covered.
Furthermore the well known advantages of higher stiffness and better load spreading
of conventional parallel robots apply for cable driven parallel robots as well [1, 7].
Generally, with the number of cables the stiffness increases, the load distribution

K. Müller (B) · C. Reichert · T. Bruckmann
Chair of Mechatronics, University Duisburg-Essen, Essen, Germany
e-mail: mueller@imech.de

C. Reichert
e-mail: reichert@imech.de

T. Bruckmann
e-mail: bruckmann@imech.de
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gets better and even the workspace can be enlarged depending on the configuration
of the robot. Nonetheless, a drawback is that the computation of the cable forces gets
more complicated.

CDPRs can be classified by the number of cables m, the degree of freedom of the
end effector n and the resulting degree of redundancy r = m − n [8, 12]. Because
cables can only transmit tension forces, to fully tense a system which has n degrees
of freedom at least m = n + 1 cables are needed. In this case the term CRPM
(Completely Restrained Parallel Manipulator) has gained the most acceptance to
characterize the case r = 1.

In the case of m < n + 1 cables the system is never fully tensed. This class is
denoted as IRPM (Incompletely Restrained Parallel Manipulator) whereas a robot
with m > n + 1 cables is called RRPM (Redundantly Restrained Parallel Manipu-
lator) [2].

Due to the fact that the solution space of the cable force distributions has the
dimension r , the computation gets more complicated and more time consuming for
higher degrees of redundancy. To be usable as set-point values for control purposes,
the results have to be continuous when the end effector is following a continuous
trajectory while they have to lie within an upper and a lower force limit to prevent
slackness and cable breaks, respectively.

2 Problem Definition

For the static equilibrium, the sum of the forces (cable forces and external forces)
and the sum of the torques which affect the end effector have to be zero. In short
form this can be written as:

ATf + w = 0 (1)

⇔ f = −A+Tw
︸ ︷︷ ︸

f0

+ Hλ. (2)

Here AT is the structure matrix, f is the cable force vector, w is the vector of the
external forces and torques,A+T is theMoore-Penrose pseudoinverse of the structure
matrix and H is the kernel of the structure matrix.

f0 is a minimum solution, solving the system of equations Eq. 1 with the smallest
Euclidean norm. Because the minimum solution usually lies outside the admissible
solution space defined by the force limits defined in Eq. 3, it needs to be moved by
choosing an appropriate value for Hλ.

For a CDPR, Eq. 2 is additionally bounded by a maximum and a minimum per-
missible tendon force as already introduced:

0 < fmin ≤ f ≤ fmax. (3)
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Fig. 1 Geometrical visualization of the problem for n = 1 and m = 3. Source Bruckmann and
Reichert [6]

3 Force Calculation Algorithms

Generally, there are two different approaches to calculate feasible cable forces: Either
the presented problem can be handled as an optimization problem or it can be inter-
preted geometrically.

Because optimization problems are usually solved iteratively and the worst-case
number of computational steps may be very high, real-time capability usually cannot
be guaranteed. For this reason, geometrical approaches are very promising.

In Fig. 1 the problem is visualized geometrically for a RRPM with three cables
and one degree of freedom, i.e. r = 2. Solutions of Eq. 2 lie in the solution space
S which is a plane in this case (dimension two because of r = 2). Solutions of
the inequality Eq. 3 lie inside the m-dimensional hypercube C . The intersection
F = C ∩ S contains the feasible cable forces.

For a higher number of cables the hypercube gets a higher dimension and for a
higher degree of redundancy the solutions space gets a higher dimension as well.

Existing geometric approaches are introduced now:

3.1 Barycentric Approach

For the Barycentric Approach (BA), first the vertices of the intersection have to
be identified, then the barycenter of the intersection is computed (for example by
triangulation) [1, 3, 4].
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3.2 Weighted Average Approach

For the Weighted Average Approach (WAA), also at first the vertices of the intersec-
tion have to be identified. Then simply a weighted average is computed. In [1, 5],
the weighting coefficient was defined as:

ai =

r
∑

j=1

∥

∥λvi − λu j

∥

∥

p

∥

∥λvi

∥

∥
pn
p

,with pn = 1. (4)

In the numerator, the distance to the neighbor is included in order to compensate
varying numbers of vertices, because—following a continuous trajectory—vertices
appear by splitting or disappear by uniting.

In the denominator, the distance to the origin is considered in order to get results
having a small norm, leading to a low tension level and thus, low power demands for
the winch drives. During research it was found out that it is very useful to set pn > 1
to strengthen the minimizing influence [9].

3.3 Closed Form Method

For the Closed Form Method (CFM), no vertices have to be computed. Instead the
center point of the hypercube C is projected onto the solution space S . Then it is
checked, whether the projected center point lies within the cable force boundaries
(within the intersectionF ) [11]. Recently Pott presented an improving extension to
this approach which is currently evaluated [10].

3.4 Corner Projection Method

At the Corner Projection Method (CPM), the vertices of the hypercube are projected
onto the solution space. The ones which lie inside the cable force boundaries are kept
and used to compute another weighted average. This time they are weighted with
their smallest distance to one of the cable force boundaries, also with the objective of
preventing jumps, because following a continuous trajectory the number of vertices
may change: Vertices appear by entering the intersection and disappear by leaving
[5].
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Fig. 2 Chosen robot configuration with its workspace and the used trajectory

3.5 Puncture Method

To the authors’ best knowledge, the Puncture Method (PM) has not been presented
before. Initially, two points on the solution space S are needed: One which lies
inside the intersectionF (e.g. the solution of the CFM) and one which lies outside,
preferably near the origin. Therefore, the projection of the origin onto the solution
space (f0) lends itself to being used. Then these two points get connected by a line and
at the intersection point of the line with one of the minimum cable force boundaries
contains the wanted cable force distribution.

4 Discussion of Results

WAA, CFM, CPM and PM were analyzed for threefold redundancy and examined
for the resulting tendon forces, the covered workspace, the needed computation time
and their adaptability to varying redundancies. These are major properties, having a
large influence on the practical applicability of any force computation algorithm.

In Fig. 2, the chosen configuration for a parallel cable robot with nine tendons
and n = 6 degrees of freedom is illustrated. Additionally it shows the trajectory for
which the resulting force distributions where computed with the different methods. It
was supposed that the end effector (EE) moves along the spiral path from the lowest
to the highest end. Using this example, the introduced methods were implemented
in MATLAB�. The simulation results are presented below:

4.1 Workspace

Tomeasure the covered workspace, the available space inside of the frame (0.83m×
0.61 m × 1.00 m) was discretized so that the distance between the grid points was
0.01 m. The cable force boundaries were defined as fmin = 10 N and fmax = 100 N.
For each method it was checked whether feasible cable force distributions could be
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found for the grid points. The number of covered points was used as an indication
of the workspace volume.

The largest workspace is covered by theWAAand contains 108,765 points. This is
followed by the CPMwhich covers only about 85% of that volume. The CFM covers
the smallest workspace with less than 50% of the size of the WAA’s workspace.

Due to the fact that the PM is based on the CFM here, its workspace is as small
as well. But there is a possibility to enlarge it (by 15% in this example): In two steps
of the algorithm, the upper cable force limit is manipulated:

In the first step, the upper bounds get increased by a factor. This doesn’t affect
the position of the intersection point: Due to the proportional enlargement, the new
projected center point lies on the same line. But as a result of the wider boundaries,
more solutions inside of the manipulated acceptable area can be found. In the second
step, the initial limits have to be applied again, because the intersection point contains
the resulting cable force distribution and it has to be checked, if it lies inside of the
origin boundaries.

The same results can be achieved by completely ignoring the cable force bound-
aries after the orthogonal projection of the center point onto the solution space and
only considering them when checking the intersection.

By this means, the CPM’s workspace could be enlarged and now contains 62,542
points. Still this is just 57% of the size of the WAA’s workspace.

4.2 Characteristics of the Cable Force Distributions

In Fig. 3 the resulting cable force distributions of the analyzed methods are presented
compared to those computed by Quadratic Programming (QP) (Fig. 3a). The cable
force boundaries again were defined as fmin = 10 N and fmax = 100 N.

The WAA provides cable forces which converge close to the results of QP when
the exponent pn increases (Figs. 3b, c). The resulting cable forces of the PM are
close to the QP results, too. Contrarily, the force values generated by the CP and the
CFM are quite high.

Similar to the WAA, the CPM may use a minimizing denominator with an expo-
nent, but its influence is much less efficient and may even cause jumps in the force
values for higher powers of denominator (remarkable for pn < 5 in this example).
This is because here not the vertices of the intersection, but the hypercube-vertices
projected onto the intersection are used. These projections usually lie within the
intersection and not at the boundaries, so even the ones with smaller norm values are
far away fromoptimal solutions (less effective). They appear or disappear by entering
or leaving the intersection and not by splitting or uniting, so at that moment when
the projection crosses the boundary no other point with similar values exists. That
leads to jumps when for higher powers the denominator outweighs the smoothing
influence of the numerator.
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Fig. 3 Resulting cable force distributions. a Quadratic Optimization b Weighted Average
c Weighted Average with pn = 10 d Puncture Method e Corner Projection Method f Closed
Form Method

4.3 Computation Time

The needed computation time was determined by running eachmethod on a real time
system using TwinCAT3� by BECKHOFF on an Intel� Core2™ Duo CPU T9400
processor.

The CPM (maximum value 875µs, mean value 745µs) and theWAA (maximum
value 743µs (outlier), mean value 652µs) needed by far the most computation time.
As shown in Fig. 4a, b, the number of vertices correlates with the changes in the
needed computation time for both methods.
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Fig. 4 Computation time. a Corner Projection b Weighted Average

The fastest algorithm is the CFM, which needs only around 21µs with little
oscillation of <4µs that can be led back to system latency. The PM based on the
CFM is just slightly slower (around 24µs, oscillation <4µs).

4.4 Adaptability to Varying Redundancies

The presented methods were implemented and analyzed for a threefold redundancy.
CPM, CFM and PM are adaptable to varying redundancies without changes of the
code. They even work for higher redundancies what was exemplarily tested up to
r = 6.

Only the WAA’s code has to be adjusted for higher redundancies because by now
its structure directly depends on the degree of redundancy.

5 Conclusion

Concluding can be said that the WAA and the PM provided outstanding results
concerning most practical aspects. They both deliver nearly optimal tendon forces,
but while the PM is very fast and thereby very well suitable for real time applications,
the WAA needs approximately 25 times more computation time. On the other hand,
the WAA covers a significantly larger workspace. So for applications where the
trajectory is known and the tendon forces can be computed offline, this method
might be the first choice.
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Kinetostatic Analysis of Cable-Driven Parallel
Robots with Consideration of Sagging
and Pulleys

Marc Gouttefarde, Dinh Quan Nguyen and Cédric Baradat

Abstract Cable-driven parallel robots manipulating heavy payloads typically use
cables having non-negligible diameters and mass. The associated cable guiding pul-
leys may then have non-negligible radii whose influence on the robot kinematics
can hardly be neglected. This chapter focuses on the output pulleys from which the
cables extend to the robot mobile platform. A kinetostatic analysis of cable-driven
parallel robots considering both cable mass and output pulleys is presented.

Keywords Cable-driven parallel robots ·Kinematics ·Static ·Hefty cable modeling

1 Introduction

The mobile platform of a cable-driven parallel robot is driven by a number of cables.
The cable lengths are generally modified by means of winches. Each cable is wound
around a winch drum and is routed to the mobile platform by means of a set of pulleys.
This chapter focuses on the output pulley, i.e., the “last” pulley from which the cable
extends to the mobile platform. As shown in Fig. 1, this pulley should be mounted
on a revolute joint whose (vertical) axis is coincident with the cable segment exiting
the pulley toward the winch. The revolute joint allows the pulley to align with the
cable segment which exits the pulley toward the mobile platform. Such output pulley
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Fig. 1 Example of an output pulley mounted on a vertical axis revolute joint

mechanisms are, for example, used in the cable-driven parallel robots described in
[1] and [8].

The radii of the pulleys used to guide the cables should be greater than a minimum
value to ensure that the cable bending radius remains greater than an acceptable
minimum value. Typically, the diameter of the pulley should be greater than ten
times or more that of the cable. For large-dimension cable-driven parallel robots,
heavy payloads and/or in the case of high safety factors, the cables have a diameter
of about 10 mm or more. Hence, both the non-negligible cable mass and output pulley
radius may have to be taken into account in the robot kinematics.

Several previous works deal with the static analysis of large-dimension cable-
driven parallel robots, e.g. [2–4, 6, 10], using the well-known elastic catenary cable
modeling [5] in order to account for the cable mass and elasticity. Besides, a few
papers, e.g. [7, 9], takes into account the influence of an output pulley in their analysis
of cable-driven parallel robots, but considering the cables as being massless. To
the best of our knowledge, a kinetostatic (or geometrico-static) analysis of cable-
driven parallel robots considering both cable mass and output pulleys has never been
proposed. Such an analysis is thus the contribution of the present chapter.

The chapter is organized as follows. Section 2 presents the well-known elastic
catenary hefty cable modeling. Section 3 introduces the equations of the static equi-
librium of a sagging cable segment, described by the elastic catenary, this segment
being attached at a given point of the robot mobile platform at one extremity and
wound on a pulley at its other extremity. Section 4 briefly presents the correspond-
ing kinetostatic analysis in which the kinematics and statics are coupled. Section 5
concludes the chapter.
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2 Elastic Catenary Cable Modeling

Let us consider a 6-DOF cable-driven parallel robot whose mobile platform is driven
by m cables. In a fixed reference frame R = (O, X, Y, Z), the position vector of
the reference point P of the mobile platform is denoted p. Defining a mobile frame
RP = (P, X P , YP , Z P ) attached to the mobile platform at P , the orientation of
the platform is defined by the rotation matrix Q from (X, Y, Z) to (X P , YP , Z P ).
The position vectors in R of the cable drawing points Ai are denoted ai . In this
section, like in most previous works, the points Ai are supposed to be fixed in space.
In practice, this assumption is correct when the cables extend from eyelets or for
output pulleys having a small radius. The positions in the mobile frame RP of the
cable attachment points Bi on the platform are denoted bi . In the fixed frame R, the
vector

−−→
Bi Ai from the cable attachment point to the cable drawing point is defined as

li = (li x , liy, li z)
T = ai − Qbi − p.

As detailed in several previous works, notably in [6], in order to account for cable
mass and elasticity, the elastic catenary cable modeling [5] can be considered. Under
static loading conditions, cable i lies in the vertical plane Pi containing both points
Ai and Bi . As shown in Fig. 2, let us consider the local frame Ri = (Ai , Xi , Yi , Zi )

such that Zi ≡ Z (directed vertically upward) and with Xi pointing toward the
mobile platform point Bi . The angle αi between X and Xi is given by

αi = atan2(−liy,−li x ). (1)

Angle αi depends only on the pose (position and orientation) of the mobile platform
and on the constant position vectors ai and bi . The rotation matrix Qi defining the
orientation of (Xi , Yi , Zi ) with respect to (X, Y, Z) is

Qi = (xi , yi , zi ) =
⎛
⎝

cos αi − sin αi 0
sin αi cos αi 0

0 0 1

⎞
⎠ = 1√

l2
i x + l2

iy

⎛
⎜⎝

−li x liy 0
−liy −li x 0

0 0
√

l2
i x + l2

iy

⎞
⎟⎠ .

(2)
Under the actions of its own weight and of the forces applied at its extremities,

the part of the cable located between Ai and Bi sags and stretches. According to the
elastic catenary modeling, the following two equations give the coordinates i Bix and
i Biz of the cable attachment point Bi in the local frame Ri [6]

i Bix = τlix l0i

E A0
+ τlix

ρ0g

[
sinh−1

(
τliz

τlix

)
− sinh−1

(
τliz − ρ0gl0i

τlix

)]
(3)

i Biz = τliz l0i

E A0
− l2

0iρ0g

2E A0
+ 1

ρ0g

[√
τ 2

lix
+ τ 2

liz
−

√
τ 2

lix
+ (

τliz − ρ0gl0i
)2

]
. (4)
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Fig. 2 Top view of cable i
extending from point Ai (or
from A′

i if the output pulley
is considered) to the platform
point Bi

output pulley

cable

Y

X
O

Ai

Bi

αi

Xi

Yi

Ai Pi

In these equations, E , A0, ρ0 and l0i are the Young’s modulus, unstrained cross-
sectional area, unstrained linear density and unstrained length between points Ai

and Bi of cable i , respectively. g is the gravity acceleration. τlix and τliz are the
components in the local cable frame Ri of the force τ li = (τlix , 0, τliz )

T applied

by the platform to the cable at its end point Bi . Note that τlix ≥ 0 since, because
of the choice of the direction of Xi , τlix < 0 would mean that cable i is working in
compression.

Besides, the position vector of point Bi in the local frame Ri can be written

⎛
⎝

i Bix

0
i Biz

⎞
⎠ = −QT

i li =
⎛
⎜⎝

√
l2
i x + l2

iy

0
−li z

⎞
⎟⎠ . (5)

3 Elastic Catenary and Output Pulley

As illustrated in Fig. 3, when an output pulley is used and considered in the modeling,
the position of point A′

i from which the cable exits the output pulley and extends
toward the mobile platform is not fixed in space. The output pulley can rotate about
the vertical axis Zi shown in Fig. 3 so that its circumference (pitch diameter) should
always lie in the vertical plane Pi containing the cable. Point A′

i lies on the circum-
ference of the output pulley at a position which depends on the position of point Bi

and on the force τ li applied to the cable at Bi . The origin Ai of the local frame Ri
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XiPi

Zi

Ai

rp

Bi

τliz

Aiτ 0i

βi

βi
τ0iz

τlix

τ li

τ0ix

cable

sagging part of the cable (ρ0, E, A0)

to the winch

output pulley circumference (pitch diameter) g

Fig. 3 Cable routing by means of an output pulley

is placed at the point from which the cable exits the output pulley toward the winch.
Since Ai lies on the pulley vertical rotation axis Zi , its position is fixed in space.

The position vector of A′
i in Ri can be written

−−→
Ai A′

i = rp

⎛
⎝

1 + sin(βi )

0
− cos(βi )

⎞
⎠
Ri

(6)

where βi is the angle shown in Fig. 3 (angle βi is positive in the counterclockwise
direction) and rp denotes the radius of the output pulley. When point Bi is located
below the output pulley (case of Fig. 3), we have −π/2 ≤ βi ≤ 0. When Bi is
located above the pulley, we have 0 ≤ βi ≤ π/2.

The part of the cable which sags under its own weight is located between A′
i and

Bi whereas the cable segment between Ai and A′
i is wound around the output pulley.

Hence, the two non-zero coordinates (along Xi and Zi ) of vector
−−→
A′

i Bi are given by
the right-hand sides of Eqs. (3) and (4). Moreover, according to Eq. (6) and since−−→
Ai Bi = −−→

Ai A′
i +

−−→
A′

i Bi , the non-zero coordinates i Bix and i Biz of the cable attachment
point Bi in the local frame Ri satisfy

i Bix = rp(1+ sin(βi ))+ τlix l0i

E A0
+ τlix

ρ0g

[
sinh−1

(
τliz

τlix

)
− sinh−1

(
τliz − ρ0gl0i

τlix

)]

(7)
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i Biz = −r p cos(βi ) + τliz l0i

E A0
− l2

0i ρ0g

2E A0
+ 1

ρ0g

[√
τ2
lix

+ τ2
liz

−
√

τ2
lix

+ (
τliz − ρ0gl0i

)2

]
.

(8)

Angle βi can be removed from Eqs. (7) and (8). Indeed, the force τ 0i applied to
the cable segment A′

i Bi at point A′
i is tangent to the cable at point A′

i . Hence, it is
also tangent to the pulley at this same point and we have

sin(βi ) = −τ0iz√
τ 2

0ix
+ τ 2

0iz

, cos(βi ) = −τ0ix√
τ 2

0ix
+ τ 2

0iz

(9)

where iτ 0i = (τ0ix , 0, τ0iz )
T is the force τ 0i expressed in Ri and the minus signs

are due to the fact that βi is negative in Fig. 3. Moreover, the static equilibrium of
the cable segment A′

i Bi gives

τ0ix = −τlix , τ0iz = −τliz + ρ0gl0i (10)

where ρ0gl0i is the weight of the cable segment A′
i Bi . Equations (9) and (10) imply

sin(βi ) = τliz − ρ0gl0i√
τ 2

lix
+ (

τliz − ρ0gl0i
)2

(11)

cos(βi ) = τlix√
τ 2

lix
+ (

τliz − ρ0gl0i
)2

. (12)

Finally, putting together Eqs. (7) and (11), as well as (8) and (12), we obtain

i Bix = rp

⎛
⎝1 + τliz − ρ0gl0i√

τ 2
lix

+ (
τliz − ρ0gl0i

)2

⎞
⎠

+ τlix l0i

E A0
+ τlix

ρ0g

[
sinh−1

(
τliz

τlix

)
− sinh−1

(
τliz − ρ0gl0i

τlix

)]
(13)

i Biz = −rpτlix√
τ 2

lix
+ (

τliz − ρ0gl0i
)2

+ τliz l0i

E A0
− l2

0iρ0g

2E A0
+ 1

ρ0g

[√
τ 2

lix
+ τ 2

liz
−

√
τ 2

lix
+ (

τliz − ρ0gl0i
)2

]
(14)
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which describe the static equilibrium of an hefty cable segment attached, at one
extremity, at point Bi to the robot mobile platform and, at its other extremity, entering
tangentially the output pulley at A′

i .
In this section, we dealt with the case in which the part of the cable going to the

winch exits the output pulley upwardly as shown in Fig. 3. The other case in which
the cable exits the output pulley downwardly to the winch leads to equations much
similar to Eqs. (13) and (14). These equations are not presented here due to space
limitations but can be obtained by following exactly the same reasoning as the one
proposed in this section.

4 Kinetostatic Analysis

Similarly to the case of a model including cable mass but neglecting the influence of
output pulleys, e.g. [6], Eqs. (13) and (14) involve the mobile platform pose (through
the coordinates i Bix and i Biz of point Bi ), the cable lengths l0i and the forces τ li

applied by the platform to the cables. Therefore, in order to solve an inverse or direct
kinematic problem, the static equilibrium of the mobile platform needs also to be
considered.

The force applied by the platform to the cable at point Bi is equal to −iτ li =
(−τlix , 0,−τliz )

T . In the basis (X, Y, Z) of the fixed reference frame, the corre-
sponding wrench at the platform reference point P is

−
(

Qi
iτ li

Qbi × Qi
iτ li

)

6×1
=

(
xi zi

Qbi × xi Qbi × zi

)

6×2

(
τlix

τliz

)
(15)

where xi and zi denote the first and third column vectors of Qi (Eq. 2), respectively.
The net wrench applied by the m cables on the platform at point P is then

f = −Wsτ l (16)

with
τ l = (

τl1x τl1z . . . τlmx τlmz

)T
2m (17)

Ws =
(

x1 z1 x2 z2 . . . xm zm
Qb1 × x1 Qb1 × z1 Qb2 × x2 Qb2 × z2 . . . Qbm × xm Qbm × xm

)

6×2m
.

(18)

Note that a minus sign appears in (16) because τ li is defined as the force applied by
the platform on the cable. Let us also note that Ws depends only on the pose of the
platform.

The static equilibrium of the mobile platform can be written
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− Wsτ l + fe = 0. (19)

The external wrench fe is simply given by

fe = (0, 0,−m pg, 0, 0, 0)T (20)

when the reference point P coincides with the platform center of mass, m p being
the platform mass (including the payload, if any).

To conclude this section, let us consider the case of an inverse problem for a 6-DOF
parallel robot driven by m = 6 cables: Knowing the position p and orientation Q of
the platform, we want to determine the unstrained lengths l0i of the cable segments
from the platform to the output pulley. The unknowns of the problem are the six
cable lengths l0i but also the 12 force components gathered in vector τ l which need
to be considered because they are involved in Eqs. (13) and (14). This total of 18
unknowns is equal to the number of available equations: 6 equations in (19) plus
12 equations in (13) and (14) for i = 1, . . . , 6. The determination of the unstrained
lengths l0i thus requires the resolution of this “square” system of 18 non-linear
equations in 18 unknowns subjected to the 12 inequality constraints l0i ≥ 0 and
τlix ≥ 0, i = 1, . . . , 6. The inequalities τlix ≥ 0 account for the inability of the
cables to push on the mobile platform.

5 Conclusion

This chapter introduced a kinetostatic analysis of cable-driven parallel robots
considering both non-negligible cable mass and elasticity and output pulley radii. The
corresponding non-linear system of equations turns out to have the same structure
as the one obtained when the cable mass is accounted for but the pulley influence
is disregarded. The sole difference is one additional term in each one of the two
equations describing the static equilibrium of the cable segment extending from the
output pulley to the robot mobile platform.
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M.L. (eds.) Advances in Robot Kinematics, pp. 197–204. Springer, Dordrecht (2012)
8. Pott, A., Mutherich, H., Kraus, W., Schmidt, V., Miermeister, P., Verl, A.: IPAnema: a family

of cable-driven parallel robots for industrial applications. In: Bruckmann, T., Pott, A. (eds.)
First International Conference on Cable-Driven Parallel Robots, pp. 119–134. Springer (2013)

9. Surdilovich, D., Radojicic, J., Kruger, J.: Geometric stiffness analysis of wire robots: a mechan-
ical approach. In: Bruckmann, T., Pott, A. (eds.) First International Conference on Cable-Driven
Parallel Robots, pp. 389–404. Springer (2013)

10. Zi, B., Duan, B., Du, J., Bao, H.: Dynamic modeling and active control of a cable-suspended
parallel robot. Mechatronics 18, 1–12 (2008)



Direct and Inverse Second Order Kinematics
for Hyper-Redundant Parallel Robots

Georges Le Vey

Abstract Second order direct and inverse continuous recursions for parallel
hyper-redundant robots are derived in a purely deductivemanner. Themethod extends
previous results by the author, that generalized to a single, completely actuated, flex-
ible beam the Newton–Euler recursive approach for serial robots. This is done thanks
to a convenient formulation as an optimal control problem in the spatial coordinate.
Consideration of such abstract models of robots and all the more getting both recur-
sions at once appear to be quite new. Thus, only the theory is presented here, deferring
simulations to future publication. Indications for future implementations are given,
relying upon software from control theory.

Keywords Parallel hyper-redundant robot · Newton–Euler · Continuous inverse
direct recursions · Optimal control · Cosserat theory · Nonlinear beam

1 Introduction

Parallel robots with rigid links have been widely studied for several decades and
those with flexible links are also currently under active study [1, 2], In the present
rather prospective work, one departs from the usual problems and the focus is on
atypical hyper-redundant parallel robots forwhich the links aremodelled as nonlinear
Cosserat beamswith distributed controls, under the hypothesis of neither extensibility
nor shearing. On another line, analogy of recursive Newton–Euler equations for
multibody systems with optimal filtering [3] and discrete-time optimal control [4]
has been evidenced. A purely deductive approach within multistage optimal control
theory brought a significant improvement [5] for getting this classical case of discrete
Newton–Euler formalism. Results of [5] were generalized to continuous theories
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Fig. 1 a A hyper-redundant parallel robot. b Model of one leg

in [6] under the above kinematical hypothesis. In the present work, this approach to
robotic systems through optimal control theory is further extended to derive direct
and inverse second order continuous recursions for the dynamics of a parallel hyper-
redundant robot, as an example of complex robots. Such mechanisms are obviously
abstractions at the present stage but they can be thought of as higher level models
for mechanisms where complex hybrid (serial-parallel) links would lead otherwise
to very complex equations. Such models can be useful e.g. as simulation tools, at the
preliminary stage of design.

2 Kinematics of the Legs and Connection to the Platform

Notations: dots (resp. primes) over some quantity indicate time (resp. space) differ-
entiation. For a vector y ∈ R

3, ŷ is the antisymmetric matrix such that ∀z ∈ R
3,

ŷz = y × z and × is the usual vector product. I is the identity matrix in R
3. The

dependence on time and space is implicit for all variables, except when needed.
Consider a parallel robot with n deformable legs, labelled with index i , each

linked to the mobile rigid platform labelled with index 0 (see Fig. 1a). Each leg,
a slender continuous deformable body, is actuated on its whole length and mod-
elled as a flexible nonlinear Cosserat beam [7, 8] (see Fig. 1b). This means that it
is a one dimensional medium with a continuous set of three directors (i.e. a frame)
attached to each point. One restricts here to the case where only one of these direc-
tors, the one tangent to the neutral line, is considered: this amounts to consider an
unstretchable, unshearable beam [8], the cross-section remaining orthogonal to the
neutral line. Significantly more work would be needed in the most general case.
With this hypothesis, all legs can be assumed to have the same unit length: for leg
i with length li and arclength parameter xi , the scaling xi = li x implies x ∈ [0, 1].
Thus space derivatives will be understood with respect to this normalized x from
now on, and denoted by primes. The configuration space of each beam is the prin-
cipal bundle R

3 × SO(3), a cross section at x being described by ri (x, t) ∈ R
3,

the position of its mass center in a reference frame, and Ri (x, t) ∈ SO(3), its atti-
tude (see Fig. 1b). The basis of the robot is at x = 0 and the connection to the
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platform is at x = 1. Its kinematics is described first by a twist-curvature tensor
field Cd , ruling the deformation of the leg, hence being an input to the dynamics,
and second by the constraint imposed by the spherical kinematics, i.e. formally:
∀t,∀x ∈ [0, 1] : Cd(x, t) = Ri (x, t)T R

′
i (x, t) and r

′
i (x, t) = ti (x, t), where ti

is the unit vector tangent to the neutral line of the beam, Ri is the rotation matrix
mapping the mobile basis at x before deformation onto that after (see Fig. 1b). Two
time differentiations of the previous set of equations give successively a kinematic
model of velocities and accelerations. As the focus is here on the dynamics, rewrite
the second one inmatrix-vector form for the ease of analogywith optimal control [6]:

(
r̈i

ω̇i

)′

=
(
0 −t̂i
0 k̂i

) (
r̈i

ω̇i

)
+

(
0
k̈i

)
+

(
ωi × (ωi × ti )

k̇i × ωi

)
(1)

where ωi is the axial vector corresponding to the matrix ω̂i = Ṙi RT
i , and ki , the

axial vector corresponding to the matrix k̂i = Ri Cd RT
i . Notice that in (1), r̈i and

ω̇i appear as elements of a state vector and k̈i as a control input, of a linear state
equation, in the language of control systems theory that will be used below, with
independent variable the space dimension x , not the time. Also, the last term is an
inhomogeneity, not depending on this so defined state, and can be computed before,
for each x . Now, as the legs are connected to the mobile platform, their motions
are constrained. The platform has total mass M0, inertia tensor I0 and linear (resp.
angular) velocity Vg0 (resp. ω0) of (resp. around) mass center O . Set V0,i (resp. ω0,i )
to be the linear (resp. angular) velocity of A0,i , the point where the i th leg connects to
the platform (see Fig. 1a), di being the distance from the mass center of the platform
to A0,i . The twist of this rigid body allows to write: V0,i = Vg0 + ω0 × di and, after
one time differentiation:

V̇0,i = V̇g0 + ω̇0 × di + ω0 × (ω0 × di ). (2)

For the rotation velocities: ω0,i = ω0 and thus ω̇0,i = ω̇0. It is then useful for the
formulation in the next section to rewrite (2) as: V̇0,i + d̂i ω̇0,i = V̇g0 +ω0×(ω0×di )

i.e. in matrix form:

(
I d̂i

) (
V̇0,i
ω̇0,i

)
= V̇g0 + ω0 × (ω0 × di ). (3)

3 Appell’s Function Computation

Recall [9, 10] thatAppell’s approach toGauss least constraint consists in buildingfirst
the acceleration energyR. Then, including active efforts through a work functional
gives the so-called Appell function [9], a quadratic function of the accelerations.
The kinematical constraints are then added at the level of accelerations using
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multipliers. The minimum of the resulting functional gives the dynamical equa-
tions. This approach is well-suited to derive dynamical equations as it works directly
with accelerations. This section is dedicated to the computation of R for the over-
all parallel hyper-redundant robot. Firstly, the Appell’s function for the platform is
[9, 11]:

R0 = 1

2
ω̇T
0 I0ω̇0 + 1

2
M0V̇ T

g0 V̇g0 . (4)

Consider now the i th leg, withmass density ρi , section area Ai and inertia matrix ρ Ii ,
all at section x . The external uncontrolled applied efforts (modelling e.g. gravity, a
fluid resistance or a magnetic field in dedicated environments) at abcissa x are sum-

marized in the vector
(

f T
i | cT

i

)T
. Consider also the torque density Γi , for actuating

the leg, and the corresponding generalized coordinate ki , the curvature density. In the
next section, either k̈i or Γi will be considered as unknown control hence introducing
external energy to the system. The corresponding work is Γ T

i k̈i . It has been shown
in [6] that the Appell function of section at x for one leg is:

Ri (x) =
[

1
2

(
r̈ T

i ω̇T
i

) (
ρi AiI 0

0 ρi Ii

) (
r̈i

ω̇i

)
+

( − fi

−ci + (ωi × (ρi Ii ωi ))

)T (
r̈i

ω̇i

)
− Γ T

i k̈i

]
.

(5)
As a scalar additive function, the Appell function of one leg is the integral:
Ri = ∫ 1

0 Ri (x)dx and that of the whole parallel robot is then:

R = R0 +
n∑

i=1

Ri . (6)

4 Inverse and Direct Dynamics as Solution of a Control Problem

One can now pose the optimization problem to be solved resulting from applying
the Gauss principle of least constraint, while taking into account the kinematic con-
straints. To get compact formulations, define the following intermediate quantities:

ξi =
(

r̈i
ω̇i

)
; υi = k̈i ; Fi =

(
0 −t̂i
0 k̂i

)
; Gi =

(
0
I

)
; hi =

(
ωi × (ωi × ti )

k̇i × ωi

)

Σi =
(

σiI 0
0 τi

)
; bi =

( − fi
−ci + (ωi × (ρi Ii ωi ))

)
; ci = −Γi ; σi = ρi Ai ; τi = ρi Ii

Qi = (
I d̂i

) ; qi = ω0 × (ω0 × di ); pi = V̇g0 + qi
ξ = (ξi )i ; υ = (υi )i ; h = (hi )i ; b = (bi )i ; c = (ci )i
F = diag(Fi ); G = diag(Gi ); Σ = diag(Σi ); Q = diag(Qi ); q = (qi )i ; p = (pi )i

(7)
where ξ = (ξi )i e.g. stands for the vector with components ξi , i = 1, . . . , n and so
on. These are notmerely a notational device. As onewill see below, theymake appear
useful connections between Newton–Euler recursions in robotics and control theory
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concepts, allowing for simple derivation and formulation of otherwise complex and
tricky equations. Notice that the boundary value ξi (1) is given by (V̇0,i , ω̇0,i ). With
these notations, R0 (4) given as a quadratic function of (V̇g0 , ω̇0) is also, by a mere
substitution, a quadratic function of ξ(1): 1

2ξ
T (1)Q̃ξ(1) + T T ξ(1) + e where the

matrix Q̃, vector T and scalar e are not detailed here for saving space. The overall
Appell function R (6) then writes:

R =
(
1

2
ξ T (1)Q̃ξ(1) + T T ξ(1) + e

)
+

1∫
0

(
1

2
ξ T Σξ + bT ξ + cT υ)dx . (8)

The kinematics (1) of all the legs are gathered in:

ξ
′ = Fξ + Gυ + h (9)

which is a dynamical equation in the space variable x . The connecting equations (3)
write:

Qξ(1) − p = 0. (10)

Boundary conditions have to be added at the basis (x = 0): each leg is fixed to it by
some joint thus the linear velocities vanish: ri (0, t) = ṙi (0, t) = r̈i (0, t) ≡ 0. As for
the rotations at x = 0, when actuated their value is imposed; when unactuated the
corresponding costate (defined below) vanishes. Eventually, using the previous nota-
tions, Gauss principle in Appell’s formulation implies that the dynamical equations
are the solution of the following optimization problem:

(P)

⎧⎨
⎩
minυ R

such that ξ
′ = Fξ + Gυ + h

and: Qξ(1) − p = 0
(11)

together with boundary conditions at x = 0. This actually is an optimal control
problem in the space variable. Although this problem has variable coefficients and is
non standard, writing the first order necessary conditions is a routine task thus only
the main steps of the procedure are given here for computing the optimal control
(see [12, 13] for details). Introducing vector Lagrange multipliers (costate) λ and μ,
define the hamiltonian:

H = 1

2
ξ T Σξ + bT ξ + cT υ + λT (Fξ + Gυ + h) (12)

the function:

Φ(ξ) = (
1

2
ξ T Q̃ξ + T T ξ + e) + μT (Qξ − p) (13)

for the boundary part at x = 1 and the performance index:
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J (ξ, υ) = Φ(ξ(1)) +
1∫

0

(H − λT ξ
′
)dx . (14)

Then, the optimization problem (P) is equivalent to the minimization of J [12].
First order necessary conditions (that are also sufficient as (P) is quadratic) for
optimality then write:

N .C .

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ξ
′ = ∂ H

∂λ
= Fξ + Gυ + h

λ
′ = − ∂ H

∂ξ
= −FT λ − Σξ − b

0 = ∂ H
∂υ

= c + GT λ

ξi (0) = ξi0 or λi (0) = 0
λ(1) = ∂Φ

∂ξ |x=1
Φ(ξ(1)) = 0

(15)

As observed in [6], the condition ∂ H
∂υ

= Hυ = 0 does not allow to explicit the
optimal control, because υ appears linearly in the functional J . This makes the
problem singular ([12], Chap. 8). But, differentiating Hυ twice with respect to x one
gets after some computations the expression of the optimal control υ∗:

υ∗ = (GT ΣG)−1(K1λ + K2ξ + K3) (16)

with GT ΣG shown to be nonsingular and where K1, K2, K3 are intermediate quan-
tities that are not explicited here. (see [13]) for details on a single leg). Awell-known,
numerically efficient method of solution is the sweep method [12]. It uses the fact
that, in the present linear-quadratic situation, the costate λ can be written as an affine
function of the state: λ = ζ ξ + κ . Then υ∗ is computed thanks to the following two
matrix-vector differential equations for ζ (a matrix Riccati equation) and κ [6]:

{
ζ

′ + ζ G(GT ΣG)−1K1ζ + ζ(F + G(GT ΣG)−1K2) + FT ζ + Σ = 0
κ

′ + (FT + ζ G(GT ΣG)−1K1)κ + ζh + ζ G(GT ΣG)−1K3 + b = 0
(17)

that are integrated backward from x = 1 with the conditions: ζ(1) = ∂Φ
∂ξ |x=1

and

κ(1) = 0. With all this material at hand, one is now able to explicit the continuous
Newton–Euler second order direct and inverse algorithms for a hyper-redundant
parallel robot, remarkably in a purely deductive way.

4.1 Direct Algorithm

The direct algorithm aims at finding the platform accelerations when torques at the
legs are given. Notice that forces and torques will appear in a natural way as dual
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variables (λ) of the accelerations in the optimization problem, as one expects in a
variational context.Decomposeλ as:λ = (λi )i withλT

i = (nT
i , MT

i )T , in accordance
with the decomposition of ξi . Firstly, writing down the optimality condition of the
hamiltonian with respect to the control (third equation of (15)) gives:−Γi + Mi = 0,
thus Mi is the distributed torque to be applied for getting a certain deformation of
leg i , an expected interpretation. The direct algorithm is then:

1. Data: the distributed torques along all the legs, i.e. the costate λ ,∀x ∈ [0, 1].
2. Compute the optimal control υ∗ (16) as a function of ξ .
3. Substitute for υ∗ into the state equation (9) which becomes an ODE.
4. Integrate forward the state equation (9) from x = 0 until x = 1 and get ξ(1).
5. Compute the platform accelerations through: p = Qξ(1) and ω̇0 = ω̇0,i .

Thus, the direct algorithm is obtained straightforwardly in a purely deductive fashion,
through one forward integration.

4.2 Inverse Algorithm

The inverse algorithm (computed torque) takes the accelerations of the platform as
inputs and aims at giving the necessary torques of the legs as outputs. For parallel
robots, it is known to be significantlymore difficult to obtain than the direct algorithm
and to ask for one recursion more. This is equally true in our context, as one will see.
In the present continuous situation, it would be a really huge task, if even possible,
to obtain an analogous algorithm when proceeding with a classical approach as in
the discrete case. It is in that respect that the analogy with optimal control shows
real power, making these derivations systematic and straightforward. The inverse
algorithm is as follows:

1. Data: the platform accelerations, through p, giving ξ(1) from (10): Qξ(1) = p.
2. Compute the free parameter μ in order that Φ(ξ(1)) = 0 is satisfied.
3. Compute the terminal condition ζ(1) = ∂Φ

∂ξ |x=1
= (Q̃ξ + T + QT μ)|x=1.

4. Solve the two-point boundary value problem (15) along the following steps:

a. Integrate backward the set of equations (17) from x = 1 until x = 0, with
ζ(1) as computed at step 3 and κ(1) = 0.

b. Compute the initial value λ(0) through λ(0) = ζ(0)ξ(0) + κ(0)
c. Integrate forward the first two equations of (15) from x = 0 until x = 1.

5. Output: the accelerations and control torques all along the n legs.

Fundamental observation: the continuous second order Newton–Euler inverse
recursion is nothing else than the sweep method for solving the two-point boundary
value problem (15) coming from the constrained quadratic optimization problem
(P) (compare with [11]).



230 G. Le Vey

5 Conclusion

Gauss principle in Appell interpretation as a quadratic optimization problem in the
accelerations is a powerful tool to derive in a systematic and deductive fashion
the second order direct and inverse continuous recursions for complex robots such
as a hyper-redundant parallel robot with actuated flexible legs presented here. It
would certainly be a formidable task, if even possible, to obtain at once as here
both Newton–Euler type recursions by standard means, especially for the direct
algorithm,which is new and for which the only alternative seems to use finite element
computations for solving the involved PDEs, of high computation cost. These results
rely upon our reformulation of problems into the optimal control formalism. Such
an approach to typical problems in robotics, even for atypical robots, allows for
using this whole body of control theory, opening very interesting perspectives in
robotics, for example at the preliminary design stage of complex robots. Obviously,
the algorithms presented at the theoretical level in this work cannot be implemented
as such, by brute force. Computer implementations have to take into account the
special structure of involved matrices in order to take the whole benefit known for
Newton–Euler recursions in the discrete case. Thus, further research will deal with
computer implementation but also with control questions related to such complex
robots. Nevertheless, implementations in high level, Matlab-like softwares appear
straightforward as these include efficient built-in matrix Riccati equations solvers,
a central computation node in our method, efficient ODE solvers and well tested
control toolboxes. Thus, far from being only of theoretical interest, the formulation
and resolution of complex robotics questions in the language of control theory allows
for using efficient practical methods and software developed for other purposes, in a
cross fertilization process of both domains.

References

1. Boyer, F., Khalil, W., Benosman, M., Le Vey, G.: Robot manipulators, modeling: performance,
analysis and control. In: ISTE, vol. 7, pp. 337–394 (2007)

2. Dwivedy, S., Eberhard, P.: Dynamic analysis of flexiblemanipulators, a literature review.Mech.
Mach. Theory 41(7), 749–777 (2006)

3. Rodriguez, G.: Kalman filtering, smoothing and recursive robot arm forward and inverse
dynamics. IEEE Trans. Robot. Autom. 3(6), 624–639 (1987)

4. d’Eleuterio, G.M.T., Damaren, C.J.: The relationship between recursive multibody dynamics
and discrete-time optimal control. IEEE Trans. Robot. Autom. 7(6), 743–749 (1991)

5. Le Vey, G.: The Newton-Euler formalism for general multibody systems as the solution of
an optimal control problem. In: Technical Report 05/4/AUTO, IRCCyN/Ecole des Mines de
Nantes (2005)

6. Le Vey, G.: Optimal control theory and Newton-Euler formalism for cosserat beam theory.
Comptes Rendus de l’Académie des Sciences de Paris, CR-Mécanique 334, 170–175 (2006)

7. Cosserat, E., Cosserat, F.: Théorie des corps déformables. Hermann, Paris (1909)
8. Antman, S.S.: Nonlinear problems of elasticity. In: Applied Mathematical Sciences, vol. 107,

2nd edn. Springer, Berlin (2005)



Direct and Inverse Second Order Kinematics 231

9. Appell, P.: Traité de Mécanique Rationnelle. Gauthier-Villars, Paris (1921)
10. Baruh, H.: Analytical Dynamics. McGraw Hill, New York (1999)
11. Le Vey, G.: Dynamics and control of actuated parallel structures as a constrained optimiza-

tion problem through gauss’ principle and appell’s equations. In: Proceedings of 2007 IEEE
International Conference on Robotics and Automation, pp. 1480–1485. Roma (2007)

12. Bryson, A.E., Ho., Y.C.: Applied optimal control. In: Hemisphere Publishing Corporation,
New York (1975) (Revised printing)

13. Le Vey, G.: Hyperredundant manipulators, continuous Newton-Euler algorithms and optimal
control theory. In: Technical Report 05/3/AUTO, IRCCyN/Ecole des Mines de Nantes (2005)



Kinematic Design of Miura-Ori-Based Folding
Structures Using the Screw Axis of a Relative
Displacement

Kassim Abdul-Sater, Tim C. Lueth and Franz Irlinger

Abstract This chapter provides a kinematic design approach for specific folding
structures, consisting of vertices with four intersecting creases, such that they can
achieve two given folding configurations. These configurations are defined in terms
of up to two planar curves, which are approximated by a polyline that is a particular
part of the folding structure. We call these structures Miura-ori-based structures or
linkages because the design approach makes use of the particular motion charac-
teristics of the 1-DOF mechanism equivalent of the Miura-ori folding pattern. To
achieve the design goal we apply a two-configuration synthesis, also provided in a
previous work, which is based on the screw axis of a specific relative displacement.
A classification of the slide along the screw axis allows it to determine the creases
connecting consecutive links of the folding structure as revolute joints.

Keywords Screw axis · Linkage design · Dimensional synthesis · Origami ·
Miura-ori

1 Introduction

The class of folding patterns that remain moveable even if the numerous
symmetrically arranged creases and chapter segments are replaced by revolute
joints and rigid plates is known as rigid origami, [6]. A well-known example is the
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Fig. 1 a The Miura-ori folding pattern, b The Miura building block 4-bar, c Serial assembly of
Miura building blocks, d A modified Miura pattern with different angles ε

Miura-ori pattern ([3], Fig. 1a), which moves with 1-DOF mobility and is used to
fold maps or to deploy solid solar panels. Furthermore, this pattern is also considered
to realize transformable roofs or foldable spaces in architecture (e.g. [5, 8]).

TheMiura pattern belongs to the class of so called quadrilateral meshes because it
is built from a recurring arrangement of four intersecting creases that form a special
symmetric spherical 4-bar linkage, Fig. 1b. Tachi [6] provides conditions that allow
it to change the kinematic dimensions among the hinges of quadrilateral meshes,
while preserving rigid foldability. Based on this property of quadrilateral meshes we
will use the kinematic properties of the building block linkage of the Miura pattern
in combination with the screw axis of a specific relative displacement, to design
structures that originate from the Miura pattern. The approach can be seen as a finite
position synthesis approach, which allows it to determine a crease pattern so that it
is able to reach two folding configurations. These are pre-defined by using a polyline
of hinges that is a particular part of the folding structure. Thereby we extend some
results that were reported in our previous work [1] and we aim to strengthen the
bridge between rigid origami design and linkage design. Within Sects. 4 and 5 we
address practical applications of the structures designed here.

2 Kinematic Analysis of Miura-Ori Building Blocks (Mbb)

The plane-symmetric halves of the Mbb shown in Fig. 1b satisfy

αi = −ϑ i and − αi = ϑ i , i = 1, . . . , n, (1)

(The right superscript denotes a linkage configuration i).
To retrace the first relation, compute two different representations of the vector

di
B1|B2, measured in a fixed world frame W : di

B1|B2 = Ri
B1g and di

B1|B2 = Ri
B2g.

Herein Ri
B1 = X(αi ) =

⎛
⎝
1 0 0
0 cosα − sin α

0 sin α cosα

⎞
⎠

i

(Rotation of frame B1), Ri
B2 =
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Z(ψ i )X(−ϑ i ) =
⎛
⎝
cosψ − cosϑ sinψ − sinψ sin ϑ

sinψ cosψ cosϑ cosψ sin ϑ

0 − sin ϑ cosϑ

⎞
⎠

i

(Rotation of frame B2)

and g = (
sin ε 0 − cos ε

)T . The nomenclature B1|B2 denotes the coupling of the
frames.W and B1 have their x-axes coincidingwith a specific fixed crease; the angles
αi are measured from the dashed line coinciding with z-axis of W (Fig. 1b). The flat,
links shall lie in the xz-planes of B1 and B2,which shall coincidewith that ofW in the
unfolded configuration. Comparing the z-coordinates of the different representations
yields cosαi cos ε = cosϑ i cos ε and we obtain the first relation of Eq. (1) because
of the negative angle−ϑ inRi

B2. The second relation is obtained for the opposite half
of Mbb when one uses Ri

B3 = X(−αi) and Ri
B4 = Z(ψ i )X(ϑ i ) and then computes

two expressions of di
B3|B4 (Note that B3 and B4 are not shown in Fig. 1b).

From cosαi cos ε = cosϑ i cos ε we can conclude, that also larger couplings
made of two or more Mbb assembled one after the other along the x-axis of W
preserve Eq. (1) even if they have different angles ε. We call such an coupling a
serial assembly of Mbb and it has hinges which form a polyline in the xy-plane of W
(Fig. 1c). Compared to this type of coupling, in [4] a coupling of two spherical 4-bars
is studied, whose axes share a common vertex. Because the edges of a serial assembly
ofMbbmove in planes that remain parallel to the xy-plane of W one can place several
such structures along the z-axis and connect their edges using revolute joints. This
idea may yield modified Miura-ori folding patterns, such as shown in Fig. 1d.

Another kinematic property of Mbb which will be needed in the following is
the relation among α and ψ . This can be calculated using the constant scalar prod-
uct 〈di

B1|B2 , di
B2|B4〉 = cos(π

2 − ε) = sin ε. Because we have defined a symmet-

ric folding process, we have di
B1|B2 = (

sin ε, sin αi cos ε, − cosαi cos ε
)T

and

di
B2|B4 = (

cosψ i , sinψ i , 0
)T
, which yields

〈di
B1|B2 , di

B2|B4〉 = cosψ i + k sin αi sinψ i = 1, k = cot ε. (2)

This can be seen as a constraint equation of Mbb because we obtain the same result
for the symmetric counterpart of the structure. Then, the well known tan-half-angle

solution yields the simple relation: tan ψ i

2 = k sin αi .

3 The Screw Axis of a Relative Displacement
and a Two-Configuration Synthesis Method
for C and R Joints

A spatial relative displacement can be written as

T12
B =

(
R12

B t12B
0 0 0 1

)
, where R12

B = R2
B

(
R1

B

)T
and t12B = t2B − R12

B t1B . (3)
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(see [2]). T12
B transports the moving frame B from an initial pose 1 to a goal pose

2. The 3 × 3 rotation matrix Ri
B may be constructed using a certain composition of

coordinate rotations X, Y and Z, and ti
B can be an arbitrary 3× 1 translation vector.

The same displacement is obtained, if B performs screwmotion about the Plücker
coordinate vector of the screw axis l̂ = (d, p × d), which satifies the equation:

(
Ê − T̂12

B

)
l̂ = 0̂, (4)

where Ê is a 6×6 identitymatrix and T̂12
B =

(
R12

B 0
t̃12B R12

B R12
B

)
is a screw transformation

matrix, where t̃12B is a skew symmetric matrix assembled from the parameters of t12B .
Solving (4) (see [2, p. 294]) yields the normalized direction d and the location p
of l̂, measured in a fixed frame W . Note that we do not necessarily require the right
superscript here since l̂ is not affected by T̂12

B .
The translation or slide along l̂ shall be denoted as s12 and can be calculated by

constructing a vector (t12B )‖ which is parallel to d: (t12B )‖ = (t12B d)d = s12d (see e.g.
[2, p. 285]). A slide s12 �= 0 means a spatial motion and allows it to produce the
movementT12

B by a rotation around and the slide along l̂. s12 = 0means a non-spatial
motion and allows it to produce T12

B by a pure rotation about l̂. These cases amount
to a certain finite position synthesis approach, where the calculation of l̂ may yield
the axis of a cylindrical (C) or either a revolute (R) joint, which satisfies the given
spatial poses 1 and 2 of B.

By considering the coupling among two consecutive frames Ba and Bb, intro-
duced by the axis l̂Ba|Bb of either a C or a R joint, this simple synthesis idea can be
generalized. To see this, consider such a coupling described by two spatial relative
displacements of the line l̂Ba|Bb: l̂2Ba|Bb = T̂12

Ba l̂1Ba|Bb and l̂2Ba|Bb = T̂12
Bb l̂1Ba|Bb.

Rearranging yields the equation of the screw axis in terms of l̂1Ba|Bb:

(
Ê − T̂12

Ba|Bb

)
l̂1Ba|Bb = 0̂, (5)

where

T̂12
Ba|Bb =

(
T̂12

Ba

)−1
T̂12

Bb =
(

(R12
Ba)T R12

Bb 0
(R12

Ba)T
(
(t̃12Ba)T + t̃12Bb

)
R12

Bb (R12
Ba)T R12

Bb

)
. (6)

In order to classify, whether l̂1Ba|Bb = (d1
Ba|Bb, p1

Ba|Bb × d1
Ba|Bb) represents a C or

a R joint, we can calculate the slide s12Ba|Bb which is produced by the components

of the skew symmetric translational submatrix of T̂12
Ba|Bb. To obtain this matrix, we

first introduce the matrix R∗ = (R12
Ba)T R12

Bb. Rearranging, so that R12
Bb = R12

BaR∗

and re-substituting into T̂12
Ba|Bb allows it to extract the skew symmetric matrix

t̃∗ = (R12
Ba)T

(
(t̃12Ba)T + t̃12Bb

)
R12

Ba , which contains the translation. Hence, we can
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now assemble a vector t∗ and compute s12Ba|Bb = t∗d1
Ba|Bb in order to check whether

l̂1Ba|Bb represents a C or a R joint. This discussion on the slide specifies our results
from [1], where only a detailed and pictured derivation of Eq. (5) is provided.

If we consider a complete linkage, the approach described here may be used to
synthesize the structure, such that it can be assembled in two pre-defined configura-
tions, defined by two spatial poses of each link that make up the structure. For this
reason we call the approach a two-configuration synthesis, which will be applied in
the following to design the Miura-ori based folding structures.

4 Serial Assemblies of Mbb Patterns

Figure 2a shows a serial assembly of Mbb, in a flat unfolded configuration with
frames B1 to B(2m) located at the different vertices. The goal will be now to design
such a structure, so that the lines l̂B1|B(m+1),…, l̂Bm|B(2m) can approximate the shape
of a specific predefined planar curve in the xy-plane of W . Figure 2b shows such
a design with m = 4 in its folded configuration i = 2. The structure approximates
one half of a parabola (red-colored) using the creases l̂B1|B2, …, l̂B4|B8 and different
angles ψ2 at each vertex. The creases define a polyline of tangents to this curve with
pre-defined length l1, …, l4. This basic design idea was already described by others
(see e.g. [5]). However, in order to achieve this goal here, we will use the results
from Sects. 2 and 3, which will yield the dimensions of a structure.

In order to perform two-configuration synthesis, two poses of each link that make
up a structure need to be pre-defined. For one half of a Mbb such as shown in

Fig. 1b this yields relations αi = −ϑ i and tan ψ i

2 = k sin αi , i = 1, 2. The second
relation defines an overdetermined linear system for the dimensional parameter k,
which shows that two configurations of a structure cannot be pre-defined in general.
However, if we defineα1 = 0 orψ1 = 0, the linear system degenerates andwe obtain
the condition ψ1 = 0 or α1 = 0. This case defines the flat unfolded configuration

and we can select arbitrary angles α2 and ψ2 and solve tan ψ2

2 = k sin α2 directly

for k. This yields the direction dB1|B2 of the crease l̂B1|B2 and the reflection at the
xy-plane of W then yields a complete Mbb. To design a complete serial assembly
of m − 1 such building blocks so that it can approximate the shape of a specific
predefined planar curve, one may perform the upper procedure at each vertex. Note
that in this case one cannot use absolute angles ‘ψ’, but has to calculate relative
angles among l1, …, lm .

Apart from this approach, applying the two-configuration synthesis from Sect. 3
provides a way to directly determine the Plücker coordinates l̂B1|B2, l̂B2|B3, …,
l̂B(2m−1)|B(2m). As an example, we provide the synthesis procedure for the structure
from Fig. 2b using the position data from Table 1. From this we can derive a general
formula for the definition of a pose i of a certain frame B j , j = 2, . . . , m in an
assembly of m − 1 Mbb:
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Fig. 2 a Assembly of a Miura-ori building block pattern with a flat unfolded configuration. b
Folding configuration of a specific design which approximates the shape of a parabola. c Line
coordinates of the creases l̂1B1|B2, l̂1B2|B3 and l̂1B3|B4 calculated using two-configuration synthesis
and the position data from Table1

Table 1 Position data for the frames B1 to B4, which form one half of a serial assembly of Mbb
that approximates the shape of a parabola

α1 α2 ψ1 ψ2 t1B t2B
B1 0◦ −17.5◦ 0◦ 0◦ ( 0 0 0 )T ( 0 0 0 )T

B2 0◦ 17.5◦ 0◦ 340.94◦ ( l1 0 0 )T ( l1 0 0 )T

B3 0◦ −17.5◦ 0◦ 329.1◦ t1B2 + ( l2 0 0 )T t2B2 + l2( cosψ2
B2 sinψ2

B2 0 )T

B4 0◦ 17.5◦ 0◦ 319.98◦ t1B3 + ( l3 0 0 )T t2B3 + l3( cosψ2
B3 sinψ2

B3 0 )T

Ri
B j = Z(ψ i

B j )X(−αi
B( j−1)), ti

B j = ti
B( j−1) + l j−1

⎛
⎝
cosψ i

B( j−1)
sinψ i

B( j−1)
0

⎞
⎠ (7)

For B1 we can add here Ri
B1 = X(αi

B1) and ti
B1 = 0 to have a complete descrip-

tion. This allows it to compute the creases l̂B1|B2, l̂B2|B3, …, l̂B(m−1)|Bm using
Eq. (5). Afterwards the other half of the structure, defined by l̂B(m+1)|B(m+2), …,
l̂B2(m−1)|B(2m) is found by a reflection at the xy-plane of W .

The example procedure for the structure with m = 4 yielded the lines l̂1B1|B2,
l̂1B2|B3 and l̂1B3|B4. The results are shown in Fig. 2c and one can see, that the Plücker
coordinates have y-components equal to zero, which corresponds to the unfolded
configuration. Furthermore,wecomputed the slides along thedifferent creases,which
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Fig. 3 a A number of serial assemblies of Mbb forming a transformable closed roof, b two planar
curves approximated by a polygonal chain, c folding configurations of the non-flat serial assembly
of Miura-based spherical 4-bars, d non-flat design of links, induced by hinges that do not lie in a
plane, e a number of non-flat serial assemblies forming a transformable roof, which is closed in
configuration 1 (left)

yielded s12B1|B2 = s12B2|B3 = s12B3|B4 = 0. This shows that the structure could be build
up using revolute joints, which corresponds to origami patterns, where no sliding is
observed at the creases. However, for a designer the resultsmay be confusing because
the lines l̂1B1|B2 and l̂1B3|B4 define their corresponding creases at the opposite half of
the pattern. Furthermore, directions can point in the opposite direction of the actual
crease, which is the case for l̂1B2|B3.

Figure 3a shows a complete Miura-based mesh, build from several serial assem-
blies and their mirrored counterparts that are hinged at their common edges. This
forms a closed moveable structure, which could be used as a transformable roof.

5 Non-flat Serial Assemblies of Miura-Based Spherical 4-Bars

If we ignore the condition α1 = 0 or ψ1 = 0 from Sect. 4 and set {α1, α2} �= 0 and
{ψ1, ψ2} �= 0 in a two-configuration design procedure, aMbbwill not be able to fulfil
the desired task. However, an appropriate modification of the structural dimensions
may enable the resulting structure to reach the desired configurations. This refers
to another spherical 4-bar, which is still plane-symmetric to the xy-plane of W but
cannot achieve a flat unfolded configuration.

Compared to the originalMbb a 4-bar without a flat unfolded configurationmeans
that we obtain a more complex constraint equation (see Sect. 2). Hence, we obtain
a more complex tan-half-angle solution, which does not allow a simple solution for
the dimensional parameters as shown in Sect. 4. However, if we use the rotations
Ri

B1, Ri
B2, {α1, α2} �= 0 and {ψ1, ψ2} �= 0, and the relation αi = −ϑ i already

introduced in Sect. 2 to define two poses i = 1, 2, we will find the axis l̂1B1|B2 of a
revolute joint using two-configuration synthesis from Sect. 3. This is because we can
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compute s12B1|B2 = 0 and we find the axis l̂1B3|B4 of the symmetric counterpart by a
reflection at the xy-plane of W .

This approach also holds for a serial assembly of such structures and finally allows
it to approximate the shape of two different planar curves in the xy-plane of W . An
example is shown in Fig. 3b, c, where a polyline of pre-defined length is used to define
tangents to a parabola (configuration 1) and a circle (configuration 2). To perform the
synthesis procedure of the complete structure we used Eq. (7) to pre-define poses.
Here we used position data obtained from the polyline in both configurations in
combination with arbitraily chosen angles αi , i = 1, 2.

The different links of the structure cannot be designed as flat plates because the
hinges in a link do not lie in one plane anymore (see Fig. 3d). Even though this means
that we cannot hinge two or more adjacent serial assemblies, an isolated actuation
of each serial assembly is still possible, which could yield a transformable roof that
can be closed in one configuration (Fig. 3e). Another speculative application could
be grasping devices, i.e. robotic fingers formed from serial assemblies.

6 Conclusion

In this chapter the kinematic design method from [1] for C or R joints is used to
compute the axes of R joints of a class of rigid folding structures for two pre-defined
configurations. These configurations are defined in terms of a polyline, which is a
particular part of the folding structure and which is used to approximate up to two
pre-defined planar curves. Furthermore, for the design method we provide a criterion
to clearly distinguish between R and C joints, whichmay also be useful for the design
of folding structures with non-zero plate thickness. This is because this case may
require C joints [8]. As an example, it can happen that a spherical 4-bar mechanism
equivalent of a non-symmetric single vertex pattern with non-zero thickness needs
to degenerate to a spatial RCCC linkage to preserve 1DOF mobility. Our results can
also be seen in the context of results such as Tachi [7], where rigid-foldable, so called
tubular structures are designed for a given space curve.
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On the Limitations on the Lower and Upper
Tensions for Cable-Driven Parallel Robots

Andreas Pott

Abstract In this chapter we discuss the feasible range for the cable forces of
cable-driven parallel robots. Numerous papers on algorithms have been presented
that assume certain values for the minimum and maximum cable forces. In this con-
tribution we summarize criteria to derive the tension limits from kinematic, physical,
and technological parameters point of view. We discuss a number of effects leading
to the interval of feasible cable forces and provide formula and technical parameters
that allow the determination of the limits for the cable forces. Typical values for
the cable force limits are exemplified based on use-cases of different robots of the
IPAnema system family.

Keywords Cable-driven parallel robots · Cable tension · Limits · Sagging

1 Introduction

Cable-driven parallel robots are a special class of parallel robots where the rigid legs
are replaced by light weight steel or synthetic fibre cables. The use of cables leads
to unilateral constraints, i.e. the robot can only pull but not push the platform or
mathematically speaking the tension f in the cables must be nonnegative.

As carried out by a number of authors [16] a minimum tension fmin must be
maintained to hinder the cables from being slack and a maximum tension fmax must
not be violated to prevent cables and motors from overload. Although there is a
rich development for algorithms to compute tension distributions for given limits
[5, 7, 14], little was published on how to derive the actual limits. In practise it turns out
that there are many more limiting factors both for the minimum and maximum force
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which are hardly discussed in the literature. Therefore, we dedicate this contribution
to review and quantify these limits.

Analysis, design, and control of cable robots are mostly based on assuming straight
and inelastic cables. Typical issues to be solved are direct and inverse kinematics,
workspace computation [2, 16], tension distribution [1, 14], control, or calibration
of cable-driven parallel robots. During the recent years it becomes clear that such
assumptions do not hold under some circumstances such as large-scale systems like
CoGiRo [9] or FAST [10]. Therefore, it is a matter of design and configuration of the
robot to choose the tension limits such that the error induced by the simplifications
on the model used for the real-time control system is acceptable.

2 Upper Bounds on the Tension

In the following we briefly recall the concept to characterize a pose of the robot that
is based on the tension in the cables. A pose (r, R) is called wrench-feasible [3, 6]
or acceptable [16] for a given wrench w if

AT(r, R)f + w = 0 for fmax ≥ fi ≥ fmin > 0, i ∈ [1, m], (1)

where AT is the structure matrix (wrench matrix), w is the vector of wrench applied
to the platform, and f ∈ �m is the vector of cable forces. Clearly, more poses are
wrench-feasible and thus the workspace is larger if the interval between fmin and fmax

is wider. In the following we will investigate criteria leading to restriction in the cable
forces.

As pointed out above, the lower and upper limits on the forces in the cables must
be taken into account when considering the wrench-feasibility of a pose. This section
will investigate what effects must be taken into account when choosing the upper
fmax bound for the cable force. To determine the maximum tension in the cables the
following effects must be considered.

Safety and mechanical limits: An obvious limitation is the breaking load of the
cable. Clearly, if the tension exceeds the cable’s breaking load, the robot cannot be
safely operated. For real cables one has to additionally take into account a safety
factor where relatively high factors are typical in the magnitude around 10 in lifting
applications such as cranes, elevators, cable cars, and thrill rides.

We have to take into account that the breaking load of the cable applies to ideally
applied forces at the end of the cable. Fixing the cable by clamping, inappropriate
knots, and too small bending radii, reduces significantly the cable’s payload, in some
cases such as clamping and bending to less than 2 % (!) of its nominal load. This
effect can be seen from the evaluation of the cable’s breaking load in Fig. 1.

Another mechanical limitation is the maximum load on the winches and pulley
mechanisms. The forces in the cable must not damage the mechanical structures. In
typical applications the frame, winches, and pulleys are appropriately dimensioned
after the maximum tension of the cables was chosen. As a matter of safety, the
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Fig. 1 Left measured cable force f [N] over the absolute elastic elongation Δl [mm]. Right com-
puted sagging s in the middle of a horizontal cable over distances l in logarithmic scaling. Different
cable forces f . Considered cable: Dyneema cable D-PRO, diameter d = 2.5 mm, probe length
l0 = 300 mm, specified breaking load fspec,max = 5,800 N, measured breaking load 3,300 N

cable’s breaking load is chosen to be at least twice that of the nominal load of the
winches. Therefore, overload will potentially immobilize the winch rather than cut
the connection between winch and platform.

The maximum forces exerted by cables on the mobile platform should not deform
or damage the platform. This is important for robots that can be reconfigured by
exchanging the platform. Different platforms may be designed for largely differ-
ent processes e.g. inspection and handling. A light-weight sensor platform may get
destroyed when applying crane like forces that are necessary for the handling oper-
ation. This effect is mostly a matter of the configuration of the controller and the
safety system.

Fatigue: The maximum feasible tension considering fatigue heavily differs from
the static forces. Even if the braking load of a certain cable may be very high, one has
to take into account the conditions under which the robot is operated. While the robot
moves along a trajectory the cable gets bent every time it is guided around a pulley
or coiled onto the drum. For linear actuators with pulley mechanisms each motion
cycle causes a multiple of bending cycles in the cable. Given a certain lifetime for the
cable, the maximum feasible tension in the cable must be chosen to avoid failure due
to fatigue. Since the fatigue of different cables of the same type may heavily vary,
a second safety factor must be chosen to care for the statistic variations. The first
factor depends on mechanical and material properties of the cable, while the second
safety factor additionally depends on the level of safety required for the targeted
application. Today, figures on fatigue can only be determined by empirical studies
[4], while models and simulations such as finite elements method are not yet reliable
enough to compute such data without experimental validation.
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Actuators: The maximum force of the motor often puts the effective upper limit
of the cable force since the actuators are usually the most costly component in the
robot system. If the robot has an emergency braking system, one has to additionally
consider the maximum force that can be generated by the brakes. In case of an
emergency stop, the forces generated by the brakes may generate a severe danger
for the cables to break down. A general method to safely predict upper limits on the
braking forces is still an open problem.

Additionally, one has to consider a safety margin caused by control errors. The
width of the safety margin depends on the quality of the control system.

Summary: Determining the maximum cable force is mostly a matter of mechan-
ical design. Since the costs for the drive-train presents often the highest costs in the
robot design (around 50 %) this is the limiting factor in most cases. More precisely,
the maximum force generated by the motor should be the limit because the other cri-
teria presented above have to be chosen in an appropriate relation to the motor forces.
However, if we reconfigure a cable robot and reuse a winch with a different cable,
the effective maximum force may be determined from the other criteria described in
this section.

3 Lower Bounds on the Tension

The lower limit on the cable force is considered in the this section. On first sight one
might consider any positive tension feasible. In practice the following effects require
the cables to be under a minimum force.

Slackness: Ensuring pretension and thus preventing the cables from slackness is
a premise to assume straight cables. However, every cable is subject to sagging under
the effect of gravity [8]. If the tension in the cables is too low, sagging of the cable
cannot be neglected. This is often not acceptable because the effective length of the
cable and the distance between Ai and Bi heavily differs in this case. In the presence
of large sagging the real direction of the cable force vector differs largely from the
ideal direction. Furthermore, the robot becomes unsensitive to control changes in
case of slack cables: Changes in the cable length lead to smaller changes in the
cable tension. Therefore, slack cables can hardly be used to control the motion of the
mobile platform. To find the minimum cable tension one has to define the maximum
error for the cable length or the maximum displacement from the ideal linear form.
We consider the minimum tension required to keep the maximum sagging below a
given upper bound and the minimum tension required to bound the deviation in the
real and effective length by an upper limit.

The maximum sagging s for a horizontal cable with a distance between the ends
of length l is

s = H

g

(
cosh

(
gl

2H

)
− 1

)
, (2)
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where H is the horizontal cable force and g is the gravity force caused by the cable’s
mass per length. Unfortunately, it is difficult to solve for the sought force H but a
double logarithmic plot reveals simple figures (Fig. 1) and we can easily pick the
required pre-tension fmin for a given length l, a given cable mass g, and an acceptable
sagging of smax either from diagrams or by numerical solving the implicit equation.

Considering the length error is straightforward using the equation of the sagging
cable. Computing the actual length lS of the cable from the catenary line can be solved
in closed-form and we receive the simple equation

lS = 2H

g
sinh

(
gl

2H

)
. (3)

For selecting the minimal force we have to face the same situation as above. While
the equation for length can be written in closed-form, we cannot find a closed from
express for H from Eq. (3).

Even if sagging is acceptable there is a lower bound for the cable force. The
minimum tension depends on the weight of the cable and the tension cannot be
reduced below a value that is coupled to the density and length of the cable. Consider
the following situation: The distal end of the cable is fixed in space and the cable is
uncoiled starting from a perfect line. Then the additional length of the cable uncoiled
from the winch contributes to the effective weight that is acting on its distal anchor
point. Therefore, a lower bound on the cable force depends on the density of the
cable. In between, we find a minimal positive cable force than cannot be undercut.
This limit depends on the distance between the proximal and distal anchor points as
well as on the density of the cable.

Reliable Operation: Pretension is required for reliable operation of the winch.
If the tension of the cable is very low the bending stiffness of the cable cannot be
neglected. The effect is more important for steel cables but even fibre ropes have a
finite bending stiffness that may cause uncontrollable coiling errors in the winches.
Also for steel cables a very low tension may cause the cables to leave the pulleys or
drum grooves. Beside coiling errors that might affect the accuracy of the robot, the
cable might leave the guiding pulleys which in turn causes severe safety problems.

In the field of stage equipment 1–2 % of the cables breaking load is desirable as
minimal tension for coiling.

Elasticity: The elastic elongation of the cables is in general nonlinear (see Fig. 1),
even if there is a nearly linear region around the operational point. To operate the
cables within this desired interval, a certain pretension is required and at the same
time a maximum tension may not be exceeded to stay within this preferred state. Since
little compensation techniques for nonlinear elongation of the cables can be found in
the literature, this presents a relevant limitation on the maximum ratio between fmin

and fmax.
Vibration: Tensions in the cables can reduce the vibration of the cables by increas-

ing the cable’s eigenfrequency. This effect is well known from string instruments. It
was also shown that pretension can be used to influence the vibration of the platform
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of planar robots [15]. For an ideal string, the first eigenfrequency λ can be computed
from basic physics

λ = 1

2l

√
f

ρ A
, (4)

where ρ is the density of the cable and A is the cross section. We can easily compute
the tension f for a desired minimum eigenfrequency λ

f (λ) = 4λ2l2ρ A. (5)

To achieve higher eigenfrequencies for large robots, high pretension is required.
Summary: When using force sensors to measure the tension in the cables it might

be necessary to maintain a minimum tension, since some force sensors provide low
quality signals close to zero tension. For very small forces the measurement is also
subject to errors caused by mechanical parts for including the sensors. Therefore,
small cable forces are hard to distinguish from friction. Also for the lower cable
forces fmin one has to consider a safety margin in order to prevent control errors to
trigger one of the effects listed above.

Taking all these above mentioned effects into account, it becomes apparent that
the ratio between minimum and maximum cable force may be significant but cannot
be increased to arbitrary values.

4 Examples

The effective limits of the cable forces depend on a large number of physical parame-
ters, design decisions, and application requirements. Since a number of components
such as motors, cable material and diameter are subject to a long design procedure,
we consider these parameters to be given. In the following the considerations on
the cable force limits are exemplified based on case-studies performed for some
prototypes, i.e. the IPAnema family prototypes [13]. In particular, we consider the
use-cases described in Table 1 which are applied in the following robot setup:

• IPAnema 1 spatial system, medium size robot for a fast pick-and-place tasks.
• IPAnema 2 spatial system, medium size robot for handling of solar collectors.
• IPAnema 3 mini spatial system, small size robot, high-dynamics laboratory system

for testing of kinematic codes, control algorithms, and calibration.
• IPAnema 3 spatial system, large size robot (>16 × 6 × 5 m), 5.0 kW for handling

in a logistics scenario.

Beside the actual scenario we consider additionally the nominal design parameter of
the IPAnema 3 winches for 2.5 mm cable and 6.0 mm cable.

In order to compute feasible tensions we have to fix the requirements. We checked
the following criteria: The maximum sagging s shall be smaller that 0.1 % of the
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Table 1 Overview of some use-cases of the IPAnema robot family

Robot Frame Winch Cable
Length Width Height Power Material Diameter Weight/ Breaking

length load
(m) (m) (m) (kW) (mm) (kg/m) (N)

IPAnema 1 4 3 2 1.8 Dyneema 2.5 0.0035 5,800
IPAnema 2 8 6 5.5 1.8 Dyneema 2.5 0.0035 5,800
IPAnema 3

mini
1 1 1 0.2 Dyneema 1.5 0.0013 2,300

IPAnema 3
planar

20 5 0 5.0 Dyneema 6 0.023 43,000

IPAnema 3
spatial

16 6 5 5.0 Steel 6 0.129 21,100

IPAnema 3
winch A

45 0 0 7.5 Dyneema 2.5 0.0035 5,800

IPAnema 3
winch B

23 0 0 7.5 Dyneema 6 0.023 43,000

Table 2 Tension limits for the IPAnema use-cases

Robot Nominal Sagging Sagging Length error Length error Eigenfrequency
(given) s < l/1000 s < d Δl < l/1000 Δl < 1 mm fE > 10 Hz
fmax (N) fmin (N) fmin (N) fmin (N) fmin (N) fmin (N)

IPAnema 1 180 2.6 5.1 1.2 2.8 40.6
IPAnema 2 720 5.0 22.8 2.5 8.5 182.4
IPAnema 3 mini 60 2.8 3.2 0.1 0.2 1.6
IPAnema 3 planar 3,000 59.3 203.7 26.3 136.4 3910.0
IPAnema 3 IZS setup 3,000 287.0 851.5 26.0 613.2 16357.2
IPAnema 3 winch A 580 192.9 3472.0 10.0 66.9 2835.0
IPAnema 3 winch B 4,000 648.6 2486.4 33.5 160.6 4866.8

length of the cable or smaller than the cable’s diameter (columns 3 and 4). The
length error caused by the sagging shall be smaller than 0.1 % of the cable length or
smaller than 1 mm (columns 5 and 6) and the eigenfrequency of the cable should be
at least 10 Hz (column 7). The results are given in absolute numbers in Table 2.

5 Conclusions

In this chapter we discussed a number of technical issues that influence the feasi-
ble minimum and maximum tensions for the cables of cable-driven parallel robots.
Taking all these issues into account can lead to a surprisingly small intervals for
the feasible cable forces in some applications. In the most optimistic use-case we
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found a ratio between minimum and maximum tension of 600. Considering strict
requirements on sagging, larger application typically allow for a smaller ratio and
thus for less workspace compared to the theoretical limits. However, since cable
robots are evolving towards commercial applications such limitation needs to be
taken in account to allow for safe and reliable operation. Furthermore, some criteria
discussed in the chapter are pose dependant. To the best of the authors knowledge,
it was not yet considered in literature to adjust the cable force limits to the pose
e.g. for workspace computation or for control. Relaxing and tightening these bounds
may have either positive or negative influence on the robots workspace since it can
present additional potentials at some poses as well as the need for higher pretension
in other poses.
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Characterization of the Subsystems
in the General Three-System of Screws

Marco Carricato and Dimiter Zlatanov

Abstract The chapter examines the subspaces of a space spanned by three twists (or
wrenches) with finite pitches and linearly independent directions. The main result is
the complete characterization of all cylindroids nested within a general three-system
of screws. The findings are illustrated by means of the prestereographic model of
three-dimensional projective space, which allows to faithfully represent the screws
of a three-system, with their pitches and axis locations, by the surface of a sphere.

Keywords Screw systems · Projective space · Mechanism synthesis

1 Introduction

In robotic systems, the possible instantaneous motions of a rigid body, or the systems
of forces acting on it, are described by a subspace of the six-dimensional vector space
of twists, or wrenches. Such linear subspaces, or the underlying projective spaces,
are referred to as screw systems. There is a great variety of screw systems, because
subspaces with the same dimension, but spanned by different screws, cannot in
general be transformed in one another by a rigid displacement. Screw systems were
first studied in [1], but a comprehensive classification was obtained in [5] (re-derived
in [4], see also [3, 8]). Hunt first described in detail how the locations and pitches of
the screws vary within systems of different types [5] (see also [7]).

Two screw systems are equivalent if one is a rigid displacement of the other. This
equivalence relation divides the space of linear subspaces of se(3) into infinitelymany
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(nonintersecting) classes. Geometrically similar classes are grouped into types: one
general and a variety of special, according to [5]. Following Gibson and Hunt [4] a
screw-system class can be labeled by: its dimension; I or II, indicating whether or
not there are screws of more than one finite pitch; a letter (from A to D) denoting the
number (from 0 to 3) of independent infinite-pitch screws; and additional parameters.
In this chapter we study three-system A-types, including the general three-system
class 3–IA(hx , hy, hz) with principal pitches hx , hy , and hz .

One aspect of the geometry of screw systems, which has not been explored in
detail, is the nesting of lower-rank systems within spaces of higher dimension. The
key issue is the characterization of all two-systems within a three-system. (Nesting
in higher-rank systems reduces to lower dimensions via reciprocity.) One can ask:
what classes of two systems exist in any given three-system class, and where are the
representatives of each class located? Such questions are of theoretical importance
and have practical relevance in the design of mechanisms as they relate to the type-
synthesis of serial chains with a desired mobility space of the end link [2, 6].

The present chapter computes explicitly (Sect. 4) the 2-subspaces of a general 3-
system,which is spanned by three screwswith concurrent and perpendicular axes and
different finite pitches. The characterizations of the nesting subspaces of two special
cases, when two or all the principal pitches are equal, are also derived. Nesting in
three-systems containing infinite-pitch screws is discussed in [10].

2 Screws and Projective Spaces

A twist (or a wrench) is given by a pair of vectors, (ω, v) ∈ se(3), the body’s angular
velocity and the linear velocity at the origin (or (f, m) ∈ se(3)∗, the resultant force
and moment at the origin). An element, ξ = (ω, v), of se(3) (or se(3)∗) is associated
with a screw about which the body twists (or the wrench is applied)—a line in space,
�(ξ), the screw axis, with a metric scalar, the pitch h, given by

h = ω · v
ω · ω

, r⊥ = ω × v
ω · ω

(1)

where r⊥ is the axis point closest to the origin. Conversely, ξ = (ω, v) = (ω, h ω +
r × ω), for any r ∈ �(ξ). An infinite-pitch screw (not encountered herein) is a pure
direction of a translation (0, v) (or a force couple (0, m)).

Each screw is identified with a class,
[
ξ
]
, of twists obtained from each other

by (real-number) scalar multiplication, i.e., it is an element of the five-dimensional
real projective space,

[
ξ
] ∈ P(se(3)), generated by se(3). Real projective n-space,

P(Rn+1) = RP
n , is defined by imposing the equivalence relation x ∼ λx, λ �= 0,

on Rn+1 −{0}, identifying vectors that are scalar multiples. The equivalence classes
can be thought of as lines through the origin in Rn+1.

It is often desirable to visualize the elements of projective space as points of an
n-dimensional manifold. The prestereographic model [9] uses a sphere Sn(s), with
antipodal points O and some s ∈ R

n+1. For a line through O not tangent to Sn(s),
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we take the second intersection point as the image. (The lines tangent to the sphere at
the origin have no such second point, and so the image space needs to be augmented
by “blowing-up” the origin and replacing it with a copy of RP n−1).

3 The General Screw-Systems and Their Prestereographic
Models

The screw system, P1 = P(A 2), of a two-dimensional subspace A 2 ⊂ se(3), is
classified as general, when it has a pair of generators, the principal screws of the
system, with different finite pitches, h1 > h2, and intersecting perpendicular axes:

A 2 = Span (ξ1, ξ2), ξi = (ei , hi ei + r × ei ), i = 1, 2 (2)

where e1 ⊥ e2 are unit and r is the radius-vector of the intersection point.
In the plane π of �(ξ1) and �(ξ2), consider a circle, S1(s), with antipodes r and

r + s, s = s1e1 + s2e2, |s| = h1 − h2. We define the image, ws(ξ), as the intersection
of the projection of the screw axis on π with S1(s),

P1 −→ RP
1 −→ S1(s)[

ξ
] 	−→ [ω] 	−→ r + (s · ω)ω

(3)

We have wi = ws(ξi ) = r + si ei , i = 1, 2. It can be shown that the line from w2 to
w1 is a pitch axis: the projection on it of ws(ξ)measures the relative pitch, h −h2, of
ξ ∈ A 2. Moreover, the distance of ws(ξ) to the pitch axis gives the elevation of the
screw axis above π . Thus, the generalized Ball circle, S1(s), models geometrically
the relationship between screw-axis location and pitch in the cylindroid [1, 5, 9].

A general three-system,P2 = P(A 3), is one generated by screws with different
finite pitches and mutually perpendicular concurrent axes. We assume these to be the
axes of the frame Oxyz, the unit twists on the principal screws being ξx = (i, hx i),
ξy = (j, hyj), ξz = (k, hyk), where hx > hy > hz . For any ξ ∈ A 3,

ξ = ωxξx + ωyξy + ωzξz = (ω, Hω). (4)

where ω = ωx i + ωyj + ωzk and H = diag (hx , hy, hz).
We select s = sx i + szk, sx = √

H Hx , sz = √
H Hz , |s| = H , where Hx =

hx − hy , Hz = hy − hz , and H = Hx + Hz = hx − hz . We use the prestereographic
map,1 w = ws, on the sphere, S = S2(s), with antipodal points O and s, Fig. 1.
First we translate all screw axes ofP2 to the origin, then we intersect them withS :

P2 −→ RP
2 −→ {

S2(s) − {O}} � RP
1

[
ξ
] 	−→ [ω] 	−→

{
(s · ω)ω if ω · s �= 0
[ω] if ω · s = 0

(5)

1 Classic stereographic projection from O maps S to a standard plane model of RP 2.
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Fig. 1 The sphere, S , with the two planes: κ ′, normal to the pitch axis; and κ ′′, tangent to S at
O . The pencils, B′ and B′′, of hy-screws are visible in the planes. See [9] for more details

where (ω, v) is a normalized twist in
[
ξ
]
. The image is S2(s) with the origin blown

up and replaced by a copy of RP 1 in the tangent plane at O , κ ′′.
In the general three-system the hy-screws form two planar pencils in two planes

intersecting in �(ξy) [5]. The sphere is constructed so that it is tangent to one of these
pencils,B′′ at Q′′, Fig. 1. The second pencil,B′, is in the plane κ ′ ⊥ ep at Q′. (The
coordinates of Q′ and Q′′ are (0,±H/2, 0)).

The line from wz = szk to wx = sx i, with unit vector ep, is the pitch axis of S .
The projection of the pre-stereographic image vector of any screw on the pitch axis
is equal to its relative pitch, p = h − hy = w · ep [9].

As on the Ball circle, the position of the image point with respect to the pitch axis
contains information about the location of the screw. A point on the screw axis is
obtained by moving the image point, w, along the “westward” tangent at a distance
equal to that between w and the pitch axis [9], (wx and wy playing the roles of North
and South poles, respectively).

4 General Two-Systems in the General Three-System

As the general three system contains no infinite-pitch screws, all 2-subsytems are
either general (2–IA) or of the first special type (2–IIA, a concurrent planar pencil
of same-pitch screws). It is known that the only intersecting same-pitch screws in
a 3–IA system are the two concurrent pencils, B′ and B′′. This means that there
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are exactly two 2–IIA subsytems in any 3–IA system, and all other 2-subsystems are
cylindroids of classes 2–IA(h1, h2) for some values of h1 and h2.

We proceed to find all the individual 2-subsystems of each general class, that is
all concurrent perpendicular pairs ξ1, ξ2 within Span (ξx , ξy, ξz). Thus,

ξi = eixξx + eiyξy + eizξz = (ei , Hei ), hi = ei · Hei , i = 1, 2 (6)

where H = diag (hx , hy, hz). Two perpendicular finite pitch screws are concurrent
if and only if they are reciprocal, i.e., e1 · He2 = 0. Therefore,

ei · e j = δi j (7)

ei · He j = 1

2
δi j (hi + h j ) i = 1, 2 (8)

where δi j is the Kronecker delta. For each given pair h1 > h2, these are six equations
for the six scalar components of e1 and e2.

Taking each (7) with i = j , multiplying it with hz (or hy), and subtracting from
the corresponding (8) yields (9) (or (10), respectively)

e2i x (hx − hz) + e2iy(hy − hz) = hi − hz (9)

e2i x (hx − hy) + e2i z(hz − hy) = hi − hy i = 1, 2 (10)

Taking now i �= j in (7) and (8):

e1x e2x (hx − hz) + e1ye2y(hy − hz) = 0 (11)

e1x e2x (hx − hy) + e1ze2z(hz − hy) = 0 i = 1, 2 (12)

We now express e2iy and e2i z with e2i x via (9) and (10), and substitute in (11) and (12)

(manipulated and squared). This results in a linear system for e21x and e22x , yielding

e21x = (hx − h2)(hy − h1)(hz − h1)

(h1 − h2)(hy − hx )(hz − hx )
(13)

Similar formulas are obtained for the other 5 unknowns:

e2iσ = − (hσ − hi+1)(hσ+1 − hi )(hσ+2 − hi )

(hi − hi+1)(hσ+1 − hσ )(hσ+2 − hσ )
(14)

i = 1, 2, 1, . . . σ = x, y, z, x, y, . . .

where the cyclic indices i and σ scan the sets {1, 2} and {x, y, z}, respectively (and
so, for example, i + 1 = 1 when i = 2 and σ + 1 = x when σ = z).

It can be observed that if h2 > hy or hy > h1 there is no solution (some e2iσ
would be negative). Therefore, hx ≥ h1 ≥ hy ≥ h2 ≥ hz , with hx > hy > hz
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Fig. 2 The view in the central
plane of the nested cylindroid

e2

e1

O

r1⊥

r2⊥

r

2ξ

1ξ

and h1 > h2. Obviously, when both h1 and h2 are among the principal pitches, ξ1
and ξ2 are principal screws of the 3-system and there is only one nested 2-system.
When only one hi is a principal pitch, it is easy to see from (14) that ξi must be the
corresponding principal screw and there are exactly two different solutions for ξi+1.
It should be noted that we identify solutions obtained from each other by reversing
the direction of one or both screws, because the spanned two-system is the same.

Focusing on the remaining case hx > h1 > hy > h2 > hz , we first note that,
from (11) and (12), if one eiσ = 0 then at least two other unknowns are zero. But
this would mean that either ξ1 or ξ2 is a principal screw with a principal pitch, a
contradiction. Therefore, e1 and e2 have no zero components.

Because we can reverse the directions e1 and e2, the choice of sign of, say, e1x > 0
and e2x > 0, is arbitrary. From (11) and (12) we see that there are then two indepen-
dent choices for the signs of e1y and e2x and, for each of those, two possibilities for
the signs of e1z and e2z . This gives four different solutions for the nested 2-system.

We now proceed to find the intersection point, r, of �(ξ1) and �(ξ2). The point on
�(ξi ) closest to O is ri⊥ = ei ×Hei . It is known that O , �(ξ1), and �(ξ2) are coplanar
[5]. (Indeed, e1 × e2 · ei × Hei = 0 can be shown easily implying that all ri⊥ and
ei are coplanar and ri⊥ ‖ ei+1.) Therefore, r = r1⊥ + r2⊥. It can be shown that if
the signs of eiσ in the four nested systems are chosen so that e1x e2x < 0 and e1x is
positive twice, the directions of ri⊥ and ei+1 always coincide, Fig. 2, and we have

ri⊥ =
√

(hα − hi )(hβ − hi )(hγ − hi )

hi − hi+1
ei+1 i = 1, 2, 1, . . . (15)

5 The Nested Two-Systems on the Prestereographic Sphere

We analyze the problem geometrically using the sphere,S . The screws of any two-
system are parallel to a plane and so their images onS are coplanar. There is a one-to-
one correspondence between the nested subsystems and the planes through the origin.
Each 2-subsystem, P1(π), of plane π , maps to a (distinct) circle, σ(π) = S ∩ π ,
through O (except the tangent pencil B′′). The principal screws of P1(π) map to
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Fig. 3 Side views (as segments w1w2) of the image circles on S when hx = h1 (left) or hy = h2
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Fig. 4 Side views (as segments w1w2) of the image circles onS when hx > h1 > hy > h2 > hz

the points, w1 and w2, with highest and lowest pitch (i.e., “latitude” onS ) on σ(π).
Such points are antipodal on the circle (not necessarily on the sphere) and the line
connecting them will intersect the pitch axis (i.e., they are on the same “meridian
circle”). (Figs. 3 and 4 are projections on these meridian planes).

Since every circular image of a nested 2-subsystem passes through O , every
subsystem includes a screw of pitch hy . Hence no solution exists unless h1 ≥ hy ≥
h2. The case h1 = hy = h2 gives two possible special-subsystem images: the 0-
pitch parallel circle and the tangent pencil B′′. When hx = h1 > h2 = hy (or
hy = h1 > h2 = hz) we have a unique solution, S ∩ Oxy (or S ∩ Oyz). When
only one hi is principal in P2, there are two possible sections, Fig. 3. When the
principal pitch is hx or hy the two circles are congruent, while when hi = hy they
have different diameters.

Finally, when hx > h1 > hy > h2 > hz , there are exactly four circles through O
on S tangent to both the h1- and h2-pitch parallels. Indeed, there are two different
possible diameters, corresponding to the cases when the plane π intersects the pitch
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axis inside and outside the sphere. When looking at the meridian plane containing
w1 and w2, the two segments appear as the side and the diagonal of an equilateral
trapezoid. For each diameter there are two distinct sections through O: on the side
view in Fig. 4, point O may be either on the front or on the back of the sphere.2

It is easy to construct geometrically the 2-system origin, r, in the plane π . First,
we find two points on the axes by translating w1 and w2 along the westward tangents
at distances equal to the radii of the h1- and h2-parallels. From these points, �(ξ1)

and �(ξ2) can be drawn parallel to w1 and w2, respectively, to their intersection, r.

6 The Special A-Type Three-Systems

When exactly two of the three principal pitches are equal, we no longer have a general
but a (so-named in [5]) first special three-system. If hy = hz , onS we have wx = O
and the pitch axis coincides with Ox . As the subsystem image circles pass through
O , every 2-subsystem will have a principal pitch h2 = hy = hz .

There is a unique special 2-subsystem of concurrent (at O) screws with pitch
hy = hz in the Oyz plane. When h1 = hx the section can be any meridian circleS :
there are infinitely many 2-subsystems of class 2–IA(hx , hy), with the same ξ1 = ξx

and ξ2 any hy-pitch screw through O in Oyz. If hx > h1 > h2, any point on the
h1-pitch parallel can be chosen as w1. There are infinitely many 2-subsystems of
class 2–IA(h1, hy), but note that they are “twice as many” as when h1 = hx . The
origin of all subsystems is in Oyz, at a distance equal to the radius of the h1-pitch
parallel.

The case when hx = hy > hz is analogous to hx > hy = hz . Finally, when
hx = hy = hz , we have a system consisting of all hx -pitch screws with axes through
O . Trivially, the 2-subsystems are all of the same class: concurrent planar pencils
at O .

7 Conclusions

The chapter analyzes the nesting of two-subsystems within screw systems of rank
three with no infinite-pitch screws. In the important case of the general three-system,
it is shown that at most four screw cylindroids of every class are nested, and all
solutions are computed explicitly. The subcases with zero, one, two, and exactly four
subsystems of a given class are identified precisely and the possibilities are illustrated
geometrically with the help of a prestereographic model.

2 It should be noted that the varying multiplicity of solutions for the 2-system can also be visualized
in elegant ways using plane models (like the ones in [1, 4]) of the 3-system.
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Geometrical Patterns for Measurement Pose
Selection in Calibration of Serial Manipulators

Alexandr Klimchik, David Daney, Stephane Caro and Anatol Pashkevich

Abstract The chapter is devoted to the accuracy improvement in geometric cali-
bration of serial manipulators. Particular attention is paid to the optimal selection
of measurement poses, which reduce measurement noise impact on the parame-
ters identification precision. In contrast to previous works, the proposed approach
yields simple geometrical patterns that allow user to take into account the joint and
workspace constraints and to find measurement configurations without tedious com-
putations. The advantages and practical significance of the proposed approach are
illustrated by an example that deals with 6-dof serial manipulator.

Keywords Calibration ·Design of experiments ·Geometrical patterns ·Serial robot

1 Introduction

Since most of industrial serial robots operate without position feedback,
the precision of a geometric model used in the control algorithm should be high

enough. In order to meet this requirement in practice, the calibration technique is
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usually applied. For this reason, the problem of robot calibration has always been in
the focus of the robotic community. There exist open-loop and closed-loop techniques
that are suitable for serial and parallel manipulators [3, 4]. However, to apply them in
a real industrial environment, it is necessary to reduce the impact of the measurement
noise that corrupts the input data and is evaluated via the terms of the covariance
matrix [6].

In order to reduce the impact of measurement noise, two approaches can be gen-
erally applied: (i) increasing the number of experiments and (ii) applying design of
experiments theory for selection of measurement configurations. The first approach
is quite a simple, it does not require any computation, but increases a lot the measure-
ment time and related cost. In contrast, the second approach allows us to increase
identification accuracy without increasing the number of measurements [2]. How-
ever this approach requires additional knowledge and some computational efforts.
Nevertheless, because of its advantages the second approach is more attractive and
is in the focus of this chapter.

Although the design of experiment theory has been used for more than a century
in different areas, the obtained results cannot be applied directly in robotics since
they are mostly suitable for linear regression models. Therefore, to obtain similar
results for robot calibration that rely on highly non-linear models, the existing tech-
niques should be essentially revisited. In addition, to make the technique attractive
for practicing engineers, it is reasonable to obtain some geometrical patterns allowing
the user to generate optimal measurement configurations without any computational
efforts.

2 Problem of Measurement Pose Selection in Robot Calibration

To show the importance of the problem of interest, let us present first a simple
motivation example. For the purpose of simplicity, let us limit our study by a 2-dof
planar manipulator with two actuated revolute joints and link lengths l1 = 1.0m,
l2 = 1.0m . This manipulator has four geometrical parameters to be identified: (i)
two link length deviations and (ii) two joint encoder offsets.

For comparison purposes, let us examine two sets of measurement configurations
assuming that the measurement noise is Gaussian with zero mean and the standard
deviation σ = 0.1mm. Simulation results are summarized in Fig. 1, where the root-
mean-square errors ρ of the end-effector position after calibration throughout the
robot workspace are presented. As follows from Fig. 1, in the worst manipulator
configuration, the Set #1 provides a positioning error equal to 2.29mmwhile the Set
#2 reduces the worst positioning error down to 0.14mm, i.e. by a factor of 16. Hence,
this simple example clearly shows that the selection of measurement configurations
is a very important issue in robot calibration. In fact, poorly chosen measurement
configurations may have a negative effect and even reduce the robot accuracy after
calibration. This motivates careful planning of the calibration experiments in order
to increase calibration efficiency, which is in the focus of the chapter.
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Fig. 1 Manipulator accuracy after calibration for two different sets of measurement poses

In the frame of this chapter, a general planar manipulator with revolute joints is
considered, whose the end-effector position is computed using the following expres-
sions

x =
n∑

i=1

(
l0i + Δli

)
· cos(θ0i + Δθi ); y =

n∑

i=1

(
l0i + Δli

)
· sin(θ0i + Δθi ) (1)

where l0i are the nominal link lengths, Δli are their deviations, q0
j are nominal joint

coordinates, the variables θ0i are defined as
∑i

j=1 q0
j , Δθi are the joint offsets and

n is the number of links. Collecting the unknown parameters (Δli and Δθi ) into the
vectorΔπ and the measurements (xk, yk) into the vectorΔPk , expression (1) can be
rewritten as ΔP = J Δπ , where J is a Jacobian matrix. Then, one can get unknown
parameters using the least-square technique that leads to

Δπ =
(

m∑

k=1

Jk T
Jk

)−1

·
m∑

k=1

Jk T
ΔPk (2)

where the superscript ‘k’ indicates the experiment number, and m is the number of
measurements.

Taking into account that each measurement is corrupted by the unbiased random
Gaussian noise with standard deviation (std) σ , the identification accuracy of the
parameters Δπ can be evaluated via the covariance matrix, which is computed as
follows:

cov(Δπ) = σ 2

(
m∑

k=1

Jk T
Jk

)−1

(3)
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The latter allows us to evaluate the impact of measurement noise on the parame-
ters identification accuracy and can be used to estimate the quality of measurement
configurations. Based on the covariance matrix, it is possible to choose the mea-
surement configurations that yield parameters less sensitive to measurement noise.
In engineering practice, this procedure is referred to as the design of calibration ex-
periments. In order to compare different plans of experiments (i.e. their efficiency),
different performance measures have been proposed that deal with the norm, trace,
etc. of the covariance matrix or information matrix (its inverse) [1]. In [5] the authors
proposed an optimality condition of the calibration plan where the main idea is to
ensure that the information matrix is diagonal. This condition corresponds to the
D-optimal plan of experiments and is satisfied when

m∑

k=1

cos

⎛

⎝
i∑

s= j

qk
s

⎞

⎠ = 0,
m∑

k=1

sin

⎛

⎝
i∑

s= j

qk
s

⎞

⎠ = 0, ∀ i, j = 2, n, i ≥ j (4)

i.e. the sums of sines and cosines of links orientation qk
s with respect to any joint s

should be equal to zero.
It has been proved that the above presented equations define the desired set of

the optimal measurement configurations, but in general case solution of this sys-
tem requires essential efforts. In fact, for n = 2, m ≥ 2 expressions (4) provide
two simple constraints only

∑m
k=1 cos qk

2 = 0 ,
∑m

k=1 sin qk
2 = 0, which are im-

posed on the 2m design variables
{
qk
1 , qk

2 | k = 1, m
}
. So, relevant configurations

can be easily found geometrically [5]. However, even in the case of n = 3, m ≥ 3
there are 6 rather complicated trigonometric constraints imposed on 3m design vari-
ables

{
qk
1 , qk

2 , qk
3 | k = 1, m

}
. Therefore, the solution of the corresponding under-

constrained system of algebraic equations becomes non-trivial. It is apparent that the
complexity of the problem essentially increases with n (the number of manipulator
links). Additional difficulties arise when the joint limits should be taken into account
(i.e.

{
qmin

i ≤ qk
i ≤ qmax

i | i = 1, n ; k = 1, m
}
). Hence, it looks reasonable to de-

velop relevantly simple and efficient technique allowing practical engineers to select
desired measurement configurations in accordance with Eq. (4) without any tedious
computations. This problem is in the focus of this chapter.

3 Geometrical Patterns for Measurement Pose Selection

Before defining patterns, let us obtain some important properties of the optimality
conditions (4) that allow us to reduce the problem complexity.

Property 1: Superposition of optimal plans gives also an optimal plan for this.
Proof of this property is obvious and is based on the additivity of the operations

included in (4). Using this property it is possible to generate optimal plans with a
large number of measurement configurations using simple sub-sets. In a trivial case,
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it is possible to repeat experiments using the same set of optimal configurations. The
latter is very important in practice, since it is much less time consuming to repeat
experiments without changing manipulator configurations.

Property 2: The angles q2, . . . , qn can be rearranged in the optimal plans in an
arbitrary manner without losing the optimality conditions (4).

Proof Let us assume that for an n-link manipulator optimal plan consists of m mea-
surement configurations. Let us now change in the optimal plan column a and b
(a, b > 1) and analyze the sets of angles for which sums of sines and cosines should
be satisfied in the optimal plan

∑i
s= j qk

s . In this case conditions (4) will be satisfied

for i, j = 2, a and i, j = b, n since all arguments of sines and cosines remain the
same. For case a ≤ j ≤ i ≤ b conditions also do not change. However, in the
cases a ≤ j ≤ b ≤ i and j ≤ a ≤ i ≤ b optimality conditions

∑i
s= j qk

s will be

replaced
∑i

s= j q ′k
s = ∑i

s= j qk
s + qk

a − qk
b by and

∑i
s= j q ′k

s = ∑i
s= j qk

s + qk
b − qk

a
respectively, where prime indicates the angle corresponding to the rearranged new
set of angles. Assuming that plan

∑i
s= j qk

s is optimal, plans
∑i

s= j q ′k
s − qk

a + qk
b

and
∑i

s= j q ′k
s + qk

a − qk
b will be also optimal. Further, taking into account that the

superposition of optimal plans gives optimal plan and applying it to the last two plans
gives plan 2

∑i
s= j q ′k

s that should be also optimal. This plan can be split into two

sub-plans
∑i

s= j q ′k
s for which the sums of sines and cosines should be equal. Taking

into account that double sum is equal to zero, the plan
∑i

s= j q ′k
s will be also optimal.

This property can be useful when the joint limits are narrower than the minimum
range required for the optimal plan. In this case, it is reasonable to change joint
coordinates with the ones where joint limits are not so critical (more than 240◦) and
where the required range of joint variations is lower.

Property 3: Optimal plan for n-link manipulator can be obtained using two
lower-order optimal plans for n1- and n2-link manipulators, where n1+n2 = n +1.

This property gives us an elegant technique to generate optimal plans of calibration
experimentswithout straightforward solution of system (4). In this case the number of
measurement configurations is defined by n1×n2. In fact, by a sequential splitting of
the original n-link kinematic chain, it is possible to reduce the problem complexity
and to replace the problem of generating optimal plan for n-link manipulator by
several sub-problems for 2-, 3- and 4-link manipulators. The latter motivates us to
develop typical geometrical patterns that can be used directly to generate optimal
plans for complex manipulators.

Now let us introduce some geometrical patterns for typical serial manipulators
that can be used to generate optimal plans. In the frame of these patterns, all variables
αi , βi and γ, δ are treated as arbitrary angles.

For n = 2, m = 2, the complete set of solutions can be expressed as:

q1
1 = α1; q1

2 = β

q2
1 = α2; q2

2 = β + π
(5)
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For n = 2, m = 3, the desired set of solutions is

q1
1 = α1; q1

2 = β

q2
1 = α2; q2

2 = β + 2π/3
q3
1 = α3; q3

2 = β − 2π/3
(6)

For n = 3, m = 3, the geometrical pattern can be presented as

q1
1 = α1; q1

2 = β; q1
3 = γ

q2
1 = α2; q2

2 = β + 2π/3; q2
3 = γ + 2π/3

q3
1 = α3; q3

2 = β − 2π/3; q3
3 = γ − 2π/3

(7)

For n = 3, m = 4, an optimal solution can be expressed as

q1
1 = α1; q1

2 = β1; q1
3 = γ

q2
1 = α2; q2

2 = β1 + π; q2
3 = γ

q3
1 = α3; q3

2 = β2; q3
3 = γ + π

q4
1 = α4; q4

2 = β2 + π; q4
3 = γ + π

(8)

For n = 4, m = 4, the desired geometrical pattern can be written as

q1
1 = α1; q1

2 = β1; q1
3 = γ ; q1

4 = δ

q2
1 = α2; q2

2 = β1 + π; q2
3 = γ ; q3

4 = δ + π

q3
1 = α3; q3

2 = β2; q3
3 = γ + π2; q3

4 = δ + β − β2

q4
1 = α4; q4

2 = β2 + π; q4
3 = γ + π2; q4

4 = δ + β − β2 + π

(9)

When the optimal plan for the entire n-link manipulator is defined, it is required to
fix all arbitrary variables. In case there is no joint limit, they can be set to any value.
In contrast, in case the joint angles are limited, these variables should be properly
selected using the following rules:

Rule 1. If the joint limits for the angle are narrower than 2π/3 while plan of
experiments requires higher width for joint variations, the joint coordinates of this
joint should be changed with the one for which the joint coordinates can be set within
the interval of the length π .

Rule 2. If the joint limits for the angle are narrower than π , some optimality
conditions in (4) cannot be satisfied and the plan of experiments should be modified.
In this case, the best results can be achieved when the joint coordinates are set to the
joint limits.

Rule 3.For the jointwith a range of variation equal toπ , an arbitrary parameter can
be fixed in the interval [qmin; qmax − π ], where qmin and qmax are the corresponding
joint limits.

Rule 4.For the jointwith a range of variation equal to 2π/3, an arbitrary parameter
can be fixed in the interval [qmin + π/3; qmax − π/3].

Hence, the above defined properties and rules allow us to generate optimal plan of
experiments for the complex manipulator using simple patterns without any tedious
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computation. In the next section the obtained results will be applied for the generation
of a plan of experiments for a 6-dof manipulator.

4 Case Study: Optimal Measurement Poses for a 6-Dof Robot

To show the efficiency of the developed optimal measurement pose selection tech-
nique, let us consider a 6-dof serial manipulator with six revolute joints and six links
(l1 = 1.4m, l2 = 1.1m, l3 = 1.0m, l4 = 0.8m, l5 = 0.6m, l6 = 0.4m), whose
joint limits are −140◦ ≤ q1 ≤ 0◦, −120◦ ≤ q2 ≤ 90◦, −120◦ ≤ q3 ≤ 120◦,
−180◦ ≤ q4 ≤ 180◦, 0◦ ≤ q5 ≤ 210◦, 0◦ ≤ q6 ≤ 360◦. In order to simplify
the determination of measurement configurations, the manipulator can be split into
two sub-chains: (i) 3-link chain corresponding to links #1− #3, and (ii) 4-link chain
composed of a virtual link/joint and links #4 − #6 of entire manipulator.

According to the geometrical patterns presented above, the optimal plans for the
first and second sub-chains can be generated using Eqs. (7) and (9), respectively. For
the entire manipulator, the optimal plan can be obtained using Property 3 (it consists
of 12 measurement configurations). However, such a plan of experiments requires a
large range of variations for q2 (equal to 2π/3), which cannot be included in the joint
limits. This difficulty can be overcome using Property 2 allowing us permutation of
q2 and q4. This provides us with the following plan of calibration experiments, which
satisfies Eq. (4) and, consequently, insures the covariance matrix diagonality:

α1; δ1; γ β; χ; ϕ

α1; δ1 + π; γ β; χ; ϕ + π

α1; δ2; γ β; χ + π2; ϕ + δ1 − δ2
α1; δ2 + π; γ β; χ + π2; ϕ + δ1 − δ2 + π

α2; δ1; γ + 2π/3 β + 2π/3; χ; ϕ

α2; δ1 + π; γ + 2π/3 β + 2π/3; χ; ϕ + π

α2; δ2; γ + 2π/3 β + 2π/3; χ + π2; ϕ + δ1 − δ2
α2; δ2 + π; γ + 2π/3 β + 2π/3; χ + π2; ϕ + δ1 − δ2 + π

α3; δ1; γ − 2π/3 β − 2π/3; χ; ϕ

α3; δ1 + π; γ − 2π/3 β − 2π/3; χ; ϕ + π

α3; δ2; γ − 2π/3 β − 2π/3; χ + π2; ϕ + δ1 − δ2
α3; δ2 + π; γ − 2π/3 β − 2π/3; χ + π2; ϕ + δ1 − δ2 + π

(10)

Taking into account given joint limits, the arbitrary angles in the above expression
have been set as

α1 = 0; α2 = −π/3; α3 = −2π/3; β = 0;
δ1 = −2π/3; δ2 = −π/2; γ = 0; χ = π/6; ϕ = π/2

(11)

Using this plan of experiments, the desired geometrical parameters can be iden-
tified with a precision of 0.029mm for the link lengths and 4.13mdeg for the joint
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Table 1 Identification accuracy for different plans of calibration experiments

Joint Proposed plan Regular plan Random plan
δqi (mdeg) δLi (mm) δqi (mdeg) δLi (mm) δqi (mdeg) δLi (mm)

1 1.18 0.029 1.70 0.041 1.90 0.046
2 1.50 0.029 2.21 0.042 2.58 0.050
3 1.65 0.029 2.32 0.041 2.46 0.043
4 2.07 0.029 3.04 0.042 3.32 0.046
5 2.76 0.029 4.04 0.042 4.39 0.046
6 4.13 0.029 5.73 0.040 5.55 0.039

ρmax 0.61 0.88 0.96

offsets (assuming that the measurement system precision is equal to 0.1mm). In
more details, relevant results are presented in Table1. For comparison purposes, the
identification accuracy has been also evaluated for regular and random plans of ex-
periments that contain the same number of measurement configurations. It should
be noted that for a 6-dof manipulator it is not possible to obtain a regular plan with
12 measurement configurations. For this reason the plan has been generated using
five measurement configurations within the joint limits from which 12 configura-
tions have been selected randomly. In order to reduce the factor of particular set of
measurement configurations, simulations for regular and random plans have been
repeated 1,000 times and the results have been averaged.

Hence, simulation results confirm advantages of the proposed approach. In this
study, the identification accuracy for the optimal plan is better by 34–72% comparing
with the randomplan and by 38–48% comparedwith the regular plan of experiments.
In addition, maximum positioning errors have been reduced by 44% and 57%,
respectively. It should be stressed that the proposed approach does not require any
computation for optimal measurement pose selection and is able to improve the
identification accuracy using a small number of measurement configurations.

5 Conclusions

The chapter presented a new approach for the design of calibration experiments for
robotic manipulators that essentially simplifies the optimal pose selection proce-
dure. The main theoretical results are expressed as a set of several properties and
rules, which allow user to obtain optimal measurement configurations without any
computation, simply using superpositions and permutations of the proposed geomet-
rical patterns describing optimal measurement configurations for 2-, 3- and 4-link
manipulators. The efficiency of the developed approach has been confirmed by an
illustrative example that deals with the calibration of a 6-dof manipulator.
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Stiffness Analysis of a Fully Compliant
Spherical Chain with Two Degrees of Freedom

Farid Parvari Rad, Giovanni Berselli, Rocco Vertechy
and Vincenzo Parenti-Castelli

Abstract This chapter introduces and investigates a fully compliant spherical chain
that is obtained by the in-series connection of two identical primitive spherical
flexures with coincident center of spherical motion. The compliance matrix of the
proposed chain is obtained via an analytical procedure andvalidated via finite element
analysis. Comparison with an equivalent fully compliant chain employing straight
beam hinges is also provided to highlight the added benefits when using primitive
spherical flexures.

Keywords Spherical flexures · Compliance matrix · Finite element analysis ·
Parasitic motions

1 Introduction

Spherical mechanisms are an important class of spatial kinematic chains that find
vast applications in pointing/orientation systems and mechanical transmissions [3].
These mechanisms are characterized by having all points of their links moving on
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concentric spherical surfaces; the center of these spheres being denoted as center
of spherical motion. In its simplest form, a spherical chain features the in-series
connection of two or more revolute pairs with axes intersecting in the said center of
spherical motion.

Aswith any planar or spatial linkage, sphericalmechanisms based on conventional
kinematic pairs suffer from backlash, friction, slip-stick and wear in the joints. This
poses a major challenge to the development of spherical mechanisms with high
repeatability and resolution, and that are, at the same time, easy to manufacture and
assemble, maintenance free and cost effective.

In order to overcome this limitation, compliant joints can be used [6, 10]. Com-
pliant joints are solid-state connections in which the relative motion of joined links
is gained via material deformations rather than by the sliding or rolling of mating
surfaces. Compliant joints can be categorized in three classes [15]: small-length flex-
ure pivots (including notch type hinges), long flexible segments (including straight
beams, curved beams, leaf springs and tape springs) and complex flexures that
are obtained by combining primitive compliant joints belonging to the former two
classes. Although compliant joints provide monolithic connections with no back-
lash and hysteresis, they usually bring the following disadvantages: limited range of
motion, parasitic motions and stress concentrations. For this reason, to be effective,
compliant joints need to be conceived and optimized for the specific application at
hand. To date, only a limited number of works have investigated compliant joints
specifically designed for spherical motion as well as fully compliant spherical mech-
anisms. Smith [16] proposed compliant universal joints fabricated from circular leaf
springs, which also provided axial translation for self-alignment applications. How-
ever, the proposed joints are affected by significant stress concentrations that limit
their ranges of motion. Lobontiu et al. [11, 12] investigated the two- and three-axis
flexure hinges. The former consists of two collocated notches that are cut perpen-
dicular to each other; the latter consists of an axial-symmetric notch. In both cases,
the resulting hinge features a small cross-sectional area and is prone to uninten-
tional rotations or buckling even when loaded with small forces. Moon et al. [17]
developed a compliant revolute hinge based on torsion beams of cross or segmented-
cross type, and employed two of them, connected in series with orthogonal axes,
to conceive a fully compliant universal joint. Later on, the ensemble of two uni-
versal joints of this kind has been proposed by Machekposhti et al. [4] to obtain a
compliant constant velocity Double-Hooke’s universal joint. Different authors [5,
13] employed two in-series connected flexure notch hinges with orthogonal axes to
conceive a fully compliant universal joint. Jacobsen et al. [7] employed three in-
series connected lamina emergent torsional joints with axes intersecting in a single
point to make spherical chains with three degrees of freedom (for compliant joints
or mechanisms, the number of degrees of freedom is intended as the number of
independent prevalent directions of motion). These spherical chains were then used
to build a 3-RRR spherical parallel mechanism (R being a revelote joint). Callegari
et al. [1] addressed the analysis and design of a 3-CRU spherical parallel mechanism
with flexure hinges (C and U being cylindrical and universal joints respectively).



Stiffness Analysis of a Fully Compliant Spherical Chain 275

Fig. 1 SF-based compliant
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Li and Chen [9] employed two circularly-curved beam flexures with rectangular
cross-section to devise a spherical Young parallel mechanism. Apart the works by
Lobontiu et al. and that by Li and Chen, all the aforementioned studies are based
on the use and proper combination of primitive flexures that are specifically con-
ceived for prevalent planar motions only. Recently, a primitive Spherical Flexure
(SF) specifically designed for prevalent spherical motion has been proposed and
analyzed [14]. The proposed SF features an arc of a circle as centroidal axis and an
annulus sector as cross-section; circle and annulus have a common center coinciding
to that of the desired prevalent spherical motion; the axis of the smaller SF central
moment of inertia points towards the desired center of prevalent spherical motion.

In this context, this chapter presents a fully compliant spherical chain that is made
by the in-series connection of two identical primitive SFs with coinciding centers of
spherical motion (see Fig. 1). In particular, the stiffness analysis of the proposed fully
compliant spherical chain is addressed. Simulation results are compared to those of
a similar chain (see Fig. 2) employing Straight Beam Flexures (SBFs). Overall, the
stiffness analysis highlights that the use of two primitive SFs makes it possible to
conceive fully compliant spherical chains with two independent prevalent directions
of rotation and with reduced parasitic translational motions.
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2 Background Theory

Within the validity limits of the superposition principle (which assumes linear elastic
materials and small deflections), the kinetostatic behavior of a flexural hinge in
the 3D space can be deduced by the analysis of its compliance matrix [18]. With
reference to Fig. 1, given an external perturbation wrench, pw, acting on one point
Op of the end link and whose components are expressed with respect to the end link
coordinate frame Sp (with axis x p, yp, z p and origin in the point Op), the incremental
displacement vector, ps, can be expressed as:

ps =
[

pu
pθθθ

]
= pC ·

[
pf

pm

]
= pC · pw (1)

where ps is composed of an incremental translation pu = [
u v w

]T and an incre-

mental rotation pθ = [
α φ ψ

]T, whereas pw is composed of a force vector
pf = [

fx fy fz
]T and a torque vector pm = [

mx my mz
]T. As a consequence,

the compliance matrix pC is a 6 × 6 matrix with frame-dependent entries of non
homogenous physical dimensions, which relates the external wrench to the resulting
translations and rotations. Concerning the frame dependency, as explained in [18],
compliancematrices at different reference frames (e.g. from the frame Sp to a generic
frame S0) can be related resorting to the 6 × 6 adjoint matix pT0:

pT0 =
[

pR0 0
p̃r0 · pR0

pR0

]
=

⎡
⎣ 0RT

p 0
(
0̃rp · 0Rp

)T 0RT
p

⎤
⎦ (2)

where pR0 denotes the rotation matrix of frame S0 with respect to frame Sp (i.e.
the columns of pR0 are the unit vectors of frame S0 expressed in the coordinate
frame Sp), and 0̃rp denotes the skew symmetric matrix of the position vector pr0,
which locates the origin of frame S0 with respect to frame Sp. Specifically, once the
compliance matrix pC at frame Sp is known (Fig. 1), the compliance matrix related
to the frame S0 can be simply calculated as:

0C = 0T−T
p · pC · 0T−1

p = pTT
0 · pC · pT0 (3)

where T denotes the transpose of amatrix. As reported in [2], the 6 × 6 adjoint matrix
is also useful for characterizing a collection of n in-series connected compliant flex-
ures. In this case, the overall system compliance can be simply obtained by summing
up the compliancematrices of each flexure, once all matrices are related to a common
reference frame S0. Therefore, resorting to Eq. (3), the following relation holds:

0C =
n∑
k

0T−T
k · kC · 0T−1

k =
n∑
k

kTT
0 · kC · kT0 (4)
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3 Closed-Form Compliance Equations
for the Spherical 2-SF Chain

Owing to the general remarks reported in the previous section, the procedure for
deriving the closed-form compliance equations in the case of a single SF is firstly
analyzed. Similarly to [8] and referring to Fig. 3, let one consider a cantilever curved
beam with a uniform cross section fixed at one end (Node 1) and generically loaded
at the other end (Node 2, the free end). Node 1 and node 2 are located on the
beam fixed and free end respectively. In addition, let one define a global coordinate
system Sk located at Node 2, and a local coordinate system Sl located on the centroid
of a generic beam cross section. Let the external load, kw, and the corresponding
deformation, ks, be expressed with respect to Sk . Considering the centroidal axis (i.e.
curveC in Fig. 3), the relative position and orientation of the local, Sl , and global, Sk ,
coordinate systems can be expressed as a function of the curvilinear coordinate s, by
means of vector kr(s) and matrix lRk(s). With reference to Fig. 3, the generic load
kw acting at the free end is balanced by a load lw′ acting on the element ds. This load
lw′ produces a deformation dls′ of the same element, lE being the corresponding
deformation per unit length. The analytical relations between vectors dls′, lw′ and
lE can be expressed as follows:

dls′ = lE · ds; lw′ = K · lE (5)

The matrix K is the stiffness matrix of the element ds that can be written as:

K = Diag
[
E A, bm G A, bnG A, G J, E Im, E In

]
(6)

where A, bm , bn , Im , In , J , E and G are, respectively, cross section area, shear coef-
ficients, principal moments of inertia and polar moment of inertia of the beam’s cross
section, Young’s modulus and shear modulus of the employed material. Resorting
to Eq. (2), the load lw′, acting on ds and due to the presence of a load kw at the free
end, can be computed via the adjoint transformation matrix lTk , relating global and
local coordinate systems. In particular, the following relation holds:

lw′ = lTk · kw (7)

having written the matrix lTk as a function of the curvilinear coordinate s, such that:

kTl(s) =
⎡
⎣ kRl(s) 0

kRl(s) · k r̃(s) kRl(s)

⎤
⎦ . (8)

In addition, the deformation of the element ds, denoted as dls′, causes a deformation
at the free end, dks, that can be calculated as:

dks = lT
T
k · dls′ (9)
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Fig. 3 SF loaded at the free
end

 Node 1
 Node 2

  Fixed
end  

ds

θ

 O0

Curve Cs

Sk

Sl

xk

zk

yk

x
l

y
l

z
l

By merging Eqs. (5), (7) and (9) one can obtain:

dks = lT
T
k · K−1 · lTk · kw · ds (10)

The relation between the load kw and the deformation ks of the free node can then
be found by integrating Eq. (10), as follows:

ks = kC · kw (11)

where
kC =

∫
C

lT
T
k · K−1 · lTk · ds (12)

Matrix kC is the compliance matrix for a single cantilever curved beam loaded at
the free end, as referred to the coordinate system Sk located on Node 2. For multiple
cantilever curved beams connected in series, the overall compliance can be obtained
resorting to Eq. (4), after a common reference frame S0 is chosen.
In the following, the procedure is outlined for the fully compliant spherical chain
depicted in Fig. 1. The chain is composed by the in-series connection of two identical
spherical flexures (hereafter referred to as SF#1 and SF#2) with centroidal axis lying
on the same circumference. Let one denote as 1C and 2C the compliance matrices of
each SF as referred to the hinge end (similarly to Eq. (12)). The center of the spherical
motion (i.e. point O0 in Fig. 1) is then taken as the origin of S0, the frame axis being
oriented such that y0 axis passes through the centroid of the SF#1 mid cross section,
whereas z0 axis is orthogonal to the symmetry plane containing the centroidal axis
(see Fig. 4).
As a further step, the adjoint matrices 1T0 and 2T0, respectively relating 1C and 2C
to S0, should be computed. Recalling Eq. (2), the rotation matrices, 1R0 and 2R0, and
the translation vectors, 1r0 and 2r0, composing 1T0 and 2T0 are defined as follows:
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Fig. 4 Cross section proper-
ties of SFs
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1R0 =
⎡
⎣cos(θ/2) − sin(θ/2) 0
sin(θ/2) cos(θ/2) 0

0 0 1

⎤
⎦ (13)

2R0 =
⎡
⎣cos(θ/2 + δ) − sin(θ/2 + δ) 0
sin(θ/2 + δ) cos(θ/2 + δ) 0

0 0 1

⎤
⎦ (14)

1r0 = 2r0 = [
0, −R, 0

]T (15)

where R and θ represent the radius and subtended angle of SF#1 and SF#2 centroidal
axis, whereas δ is the angle between the y0 axis and an axis connecting point O0 and
the centroid of the SF#2 mid cross section. The overall chain compliance matrix can
then be computed resorting to Eq. (4), where n = 2. In particular, the matrix 0C can
be expressed as follows:

0C =

⎡
⎢⎢⎢⎢⎢⎢⎣

Cx, fx Cx, fy 0 0 0 Cx,mz

Cy, fx Cy, fy 0 0 0 Cy,mz

0 0 Cz, fz Cz,mx Cz,my 0
0 0 Cθx , fz Cθx ,mx Cθx ,my 0
0 0 Cθy , fz Cθy ,mx Cθy ,my 0

Cθz , fx Cθz , fy 0 0 0 Cθz ,mz

⎤
⎥⎥⎥⎥⎥⎥⎦

(16)

Matrix 0C relates the wrench 0w acting on 0C to the corresponding generalized
displacement 0s, (namely 0s = 0C · 0w). The analytical expression of the matrix
entries are reported in Table 1.

It can be noticed that each compliance element is written in terms of the cross
section area, principal and polar moments of inertia (namely A, Im , In , and J ). In
particular, the SF cross section is an annular sector (Fig. 4), that can be considered as
the common section of two concentric circular sectors with different radius. There-
fore, denoting θ as the subtended angle of the SF centroidal axis (see Fig. 3), β as
the subtended angle of the circular sector in the y0 − z0 plane, and ri and ro as the
radius of the inner and the outer circular sectors respectively (see Fig. 4), the cross
section properties can be written as a function of the hinge geometric parameters,
the analytical expression being reported in Table2.
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Table 1 Compliance elements of the mechanism

Cx, fx = − R
(−2

(
AR2+In

)(
cos2(δ) sin(θ)+θ

))
2E AIn

Cx, fy = Cy, fx = − R
(
sin(2δ) sin(θ)

(
AR2+In

))
2E AIn

Cy, fy = R
(
2
(

AR2+In
)(

θ−cos2(δ) sin(θ)
))

2E AIn
Cx,mz = Cθz , fx = − R2

(
−4 cos2

(
δ
2

)
sin

(
θ
2

))
E In

Cy,mz = Cθz , fz = − R2
(
2 sin(δ) sin

(
θ
2

))
E In

Cz,mx = Cθx , fz = R2
(
−4 cos2

(
δ
2

)
sin

(
θ
2

))
GJ

Cθx ,mx = − R
(−2G J

(
θ−cos2(δ) sin(θ)

)−2E Im
(
cos2(δ) sin(θ)+θ

))
2EG J Im

Cz, fz = 2 R3θ
G J

Cθx ,my = Cθy ,mx = R sin(δ) cos(δ) sin(θ)
(

1
E Im

− 1
G J

)
Cz,my = Cθy , fz = R2

(
2 sin(δ) sin

(
θ
2

))
GJ

Cθy ,my = R
(
2G J

(
cos2(δ) sin(θ)+θ

)+2E Im
(
θ−cos2(δ) sin(θ)

))
2EG J Im

Cθz ,mz = 2 Rθ
E In

Table 2 Spherical flexure areas and moments of inertia

A = (r2o −r2i )β

2 Im = 1
8 (r4o − r4i )(β − sin β)

In = 1
8 (r4o − r4i )(β + sin β) − 8

9
(r3o −r3i )2 sin2 (β/2)

(r2o −r2i )β
J = 1

4 (r4o − r4i )β − 8
9

(r3o −r3i )2 sin2 (β/2)

(r2o −r2i )β

4 Numerical Example and Model Validation

A fully-compliant spherical chain featuring two identical in-series SFs is considered
as a case study. The SF geometric parameters employed in the simulations are R =
55.2mm, ro = 60mm, ri = 50mm, θ = π/3 and β = π/180. The hinge material is
Acrylic Plastic with Young’s modulus E = 3,000MPa and Poisson’s ratio ν = 0.33.
Shear induced deformations are neglected, both SFs being slender beam hinges. For
a generic angle δ, the aforementioned theoretical procedure is adopted to estimate
the overall compliancematrix.The dependency of the principal compliance elements,
Cθx ,mx and Cθy ,my , on the angle δ is shown in Fig. 5, which highlights that Cθx ,mx =
Cθy ,my when δ = 90◦. Results concerning this particular geometry (namely δ = 90◦)
are then validated through FEA performed with the commercial software COMSOL.
FEA simulations are executed by individually loading the chain along the axes x0,
y0 and z0 (see Fig. 1). The compliance elements are simply computed as the ratios
between each load component and the corresponding deformations. Table 3 compares
the results obtained via analytical model and FEA. The comparison shows a close
agreement between the two methods.

As a further step, an SF-based chain has been compared with a similar chain fea-
turing SBF flexures and equal values of the principal compliance elements. Defining
w and l as the SBFwidht and length, the latter design constraint is achieved whenever
both SBFs and SFs are carachterized by equal width (i.e. w = ro − ri ), and same
centroidal axis lenght (i.e. l = Rθ ). By applying the method described in Sect. 3, the
compliance matrix of the SBF-based chain has been computed and numerical data
are shown in Table4. The quantitative comparison between the two design solutions
is then performed by defining three compliance ratios as follows:
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Fig. 5 Influence of varying δ on principal compliances

Table 3 Compliance elements of the 2-SF spherical chain and comparison between analytical and
FEA results

Compliance Cx, fx Cx, fy = Cy, fx Cx,mz = Cθz , fx Cy, fy Cy,mz = Cθz , fy Cz, fz

elements

Analytic 7.3603e-4 −5.9730e-20 0.0127 7.3603e-4 −0.0127 0.0039
FEA 7.3631e-4 −5.9000e-20 0.0127 7.3635e-4 −0.0127 0.0038
Error (%) 0.038 1.22 0 0.038 0 2.56

Compliance Cθx ,mx Cz,mx = Cθx , fz Cz,my = Cθy , fz Cθy ,my Cθx ,my = Cθy ,mx Cθz ,mz

elements

Analytic 26.5379 −0.0334 0.0334 26.5379 −4.9013e-15 0.4827
FEA 26.5455 −0.0334 0.0334 26.5455 −4.9000e-15 0.4842
Error (%) 0.028 0 0 0.028 0.026 0.31

Table 4 Compliance elements of the 2-SBF spherical chain

Compliance Cx, fx Cx, fy = Cy, fx Cx,mz = Cθz , fx Cy, fy Cy,mz = Cθz , fy Cz, fz

elements

Value 8.0311e-4 −4.0926e-20 0.0133 8.0311e-4 −0.0133 0.0183
Compliance Cθx ,mx Cz,mx = Cθx , fz Cx,my = Cθy , fz Cθy ,my Cθx ,my = Cθy ,mx Cθz ,mz

elements
Value 26.5379 −0.0350 0.0350 26.5379 −1.5472e-15 0.4827

r1 = |C SF
x, fx

|
|C SB F

x, fx
| ; r2 = |C SF

x,mz
|

|C SB F
x,mz

| = |C SF
θz , fx

|
|C SB F

θz , fx
| = |C SF

z,mx
|

|C SB F
z,mx

| = |C SF
θx , fz

|
|C SB F

θx , fz
| ; r3 = |C SF

z, fz
|

|C SB F
z, fz

| ;
(17)

where each compliance element concerning the SF-based chain (referred to with
SF superscript) is divided by the corresponding compliance element concerning
the SBF-based chain (referred to with SBF superscript). In particular, the variables
r1, r2, and r3 represent ratios between undesired (secondary) compliances in all
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Fig. 6 Influence of varying θ on compliance ratios

Fig. 7 Finite element model
of the 2-SF chain

O0

Fig. 8 Finite element model
of the 2-SBF chain

O0

those applications requiring a spherical motion. Therefore, compliance ratios whose
value is less than unity simply indicates that the SF-based chain outperformes the
SBF-based chain in terms of parasitic motions. As an example, for a given radius
R = 55.2mm, the values of r1, r2 and r3 as a function of θ are reported in Fig. 6.
For a given angle θ = π/3, the compliance ratios are constant (independent of
R), namely r1 = 0.9191, r2 = 0.9549 and r3 = 0.2115. In conclusion, for what
concerns this particular case study, numerical simulations confirm the benefits when
using the primitive SF as compared to the traditional SBF. Finally, pictures of the two
considered design solutions are reported in Figs. 7 and 8 which also show the chain
deformed shapes (contour plot of the total displacement) when a generic torque lying
in x0 − y0 plane is applied to the end-link.
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5 Conclusions

A fully compliant spherical chain featuring two in-series connected identical prim-
itive spherical flexures with coincident centers of spherical motion is introduced
and analyzed. The closed form compliance equations of the proposed chains are
presented as a function of hinge dimensions, relative location and employedmaterial.
Comparison with an equivalent chain featuring two straight beam hinges with axes
intersecting in the sought center of spherical motion is also performed in terms of
secondary compliance elements, together with their finite element verification. The
results highlight that the use of primitive spherical flexures makes it possible to
conceive fully compliant spherical chains with reduced parasitic motions.
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Points, Lines, Screws and Planes in Dual
Quaternions Kinematics

Luiz Alberto Radavelli, Edson Roberto De Pieri, Daniel Martins
and Roberto Simoni

Abstract Quaternions and dual quaternions are interesting elementswhich are being
used to robot kinematics over five decades. They arise from Clifford algebras as
many isomorphisms. In this chapter we offer representations to points, vectors, lines,
screws and planes in dual quaternions coordinates, allowing a huge possibilities to
solve problems, especially robot kinematics. No Clifford algebra is necessary, we
will use only quaternions units. The displacement of the given elements are found
in terms of dual quaternions algebra. For all these elements we must define the right
dual quaternions conjugation and operations to handle with. Also, the principle of
transference now is not sufficient, as we will explain into the chapter. Examples are
presented to show the applicability of our results.

Keywords Quaternions · Dual quaternions · Point · Line · Screw · Plane · Kine-
matics

1 Introduction

Robot positional kinematics studies positions and orientations of robots. It relates
the actuated-joint parameters with the end-effector position and orientation, called
posture of end-effector. The actuated-joint parameters are the angles of rotation and
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the distance of translations of the joints. Positional kinematics is commonly divided
into twoways:direct kinematics, inwhichwehave the actuated-joint variables andwe
study the posture of the end-effector; and in the opposite way, the inverse kinematics,
in which the posture of the end-effector is given and the problem is to calculate the
actuated-joint variables.

Traditionally, the robot positional kinematics is obtained by Denavit-Hartenberg
method, but the dual numbers theory have being used as an alternatively tool to kine-
matics over five decades. The definitions, operations and properties of dual quater-
nions arise from a more general algebra: The Clifford algebras [9]. There are many
ways to get the dual quaternions algebra from Clifford algebras. So, firstly it is
necessary to establish a convenient notation to work with them.

Dual quaternions are elements composed by scalar, vector and dual numbers. The
first work applying dual numbers into kinematics is due to Yang and Freudenstein
[19]. After, several authors have shown advantages using dual quaternions algebra
in robot kinematics. Some of them have more interest on computational analysis
[8, 10], others on singularities [13]. Recent works using dual quaternions appear in
control theory and dynamic [15–17], but for the geometrical [2, 3, 11], elements
treatment the most interesting papers are.

2 Quaternions and Dual Quaternions Algebras

There are several ways to define a Clifford Algebra and the definition will depend
on its purpose [6]. A Clifford Space is an extension of an Euclidean vector space
that works with more general concepts—multivectors. A Clifford Space becomes a
Clifford Algebra when a product between multivectors, called geometric product or
Clifford product, is defined.

Basically, considering anorthonormal basis {e1, . . . , en}ofEuclideanvector space
R

n, the corresponding 2n-dimensional Clifford Algebra Cl(p, q, r), n = p + q + r,
is composed by combinations of k-degree elements e1e2 . . . ek with a geometrical
product satisfying

1. eiej + ejei = 0, if i �= j;
2. e2i = εi

where εi = +1,−1, 0 represents the signature of a generator ei, such that p, q, r are
the number of generators with signatures +1,−1, 0, respectively.

The operations between Clifford elements may be reduced to axioms 1. and 2.
above, and the conjugate operation on generations

1. e∗
i = −ei;

2. (eiej)
∗ = e∗

j e∗
i .

AClifford algebra has some decompositions and isomorphismswhich allowmany
representations for quaternions and dual quaternions. Indeed, an important decom-
position is Cl(p, q, r) = Cl+(p, q, r) ⊕ Cl−(p, q, r) where Cl+(p, q, r) is a sub-
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algebra of even degree elements, named Spinors. The isomorphism Cl+(p, q, r) �
Cl(p, q − 1, r) produces Cl+(0, 3, 0) � Cl(0, 2, 0) = H—the Quaternions space—
and Cl(0, 2, 1) � Cl+(0, 3, 1) = H2—the dual quaternions space. Therefore, the
Clifford generators, quaternions and dual quaternions units are related by e2e3 ↔ i,
e3e1 ↔ j, e1e2 ↔ k, ee1e2e3 ↔ ε, e1e ↔ εi, e2e ↔ εj, e3e ↔ εk.

If q ∈ Cl+(0, 3, 0), then q = w + xe2e3 + ye3e1 + ze1e2, e21 = e22 = e23 = −1,
correspond to the quaternion q = w + xi + yj + zk, where i2 = j2 = k2 = ijk = −1.
If w = 0, then the quaternion q correspond to 3D vectors and it is called pure
quaternion. Thus, it is natural to think quaternions as the sum of a scalar and a
vector:

q = w + v = Sc(q) + Ve(q).

Let q = w + xi + yj + zk = w + v and q2 = w2 + x2i + y2j + z2k = w2 + v2
quaternions, the usual operations are:

q∗ := w − v, Sc(q) := q + q∗
2

, Ve(q) := q − q∗
2

, ‖q‖2 := qq∗ = q∗q,

q ± q2 := (w ± w2) + (v ± v2)q q2 := (ww2 − v · v2) + (wv2 + w2v + v × v2).

To pure quaternionswe have interesting properties like qq2 = qq2 = −q·q2+q×q2
which establishes the relation among quaternions and R

3 inner and outer products.
From the pure quaternions product follows more two identities:

qq2 + q2q = −2
(
q · q2

)
(1)

qq2 − q2q = 2
(
q × q2

)
. (2)

A rotation of a quaternion ξ = 0 + r,r ∈ R
3, is given by ξ ′ = qξq∗, where

q = cos θ
2 + s

(
sin θ

2

)
is the rotation quaternion operator which encodes a rotation by

θ around the axis represented by the unit direction vector s [9, 12]. A more general
form of rotations is given by

ξ ′ = q(ξ − s0)q∗ + s0, (3)

where s0 is the rotational axis position vector [9]. Another important result states
that if ξ is a pure quaternion then ξ ′ = qξq∗ is also a pure quaternion. Indeed, the
scalar part of ξ ′ is

Sc(qξq∗) = qξq∗ + (qξq∗)∗

2
= qξq∗ + qξ∗q∗

2
= q(ξ + ξ∗)q∗

2
= 0. (4)

Now, if we consider h ∈ Cl+(0, 3, 1), then h = w + xe2e3 + ye3e1 + ze1e2 +
w2ee1e2e3 + x2e1e + y2e2e + z2e3e, e21 = e22 = e23 = −1 and e2 = 0, correspond
to dual quaternions. Using the algebra isomorphism Cl+(0, 3, 1) � H2, the dual
quaternion main representation is
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h = w + xi + yj + zk + w2ε + x2iε + y2jε + z2kε,

but we also have the generalized dual number and the generalized quaternion rep-
resentations, respectively,

h = (w + xi + yj + zk) + ε(w2 + x2i + y2j + z2k),

h = (w + w2) + (x + x2ε)i + (y + y2ε)j + (z + z2ε)k.

Let h = q + εp and h2 = q2 + εp2 dual quaternions, the usual operations are:

h∗ = q∗ + εp∗, h = q − εp, h∗ = q∗ − εp∗,
h ± h2 = (q ± q2) + ε(p ± p2), hh2 = (qq2) + ε(qp2 + pq2).

A rotation by θ with axis represented by the unit vector s and a translation by vector
t are performed from the dual quaternions by hR := cos θ

2 + s
(
sin θ

2

) + ε0 + ε0 =
q + ε0 + ε0 and hT := 1 + 0 + ε0 + ε t

2 . Thus, the general displacement operator
(a rotation followed by a translation) is

h := hT hR = q + ε
tq

2
, (5)

where q = cos θ
2 + s(sin θ

2 ) and t = 0+ t are its rotational and translational compo-
nents, respectively [9, 12].

A convenient way to represent quaternions q and dual quaternions h is to think
q ∈ R

4 and h ∈ R
8, therefore q = [w x y z]T = q(1 : 4), h = [w x y z w2 x2 y2 z2]T =

h(1 : 8) and their operations can be easily implemented.

3 Points, Vectors, Lines, Screws and Planes in DQ Coordinates

In this section we will provide our definition of some geometrical elements in dual
quaternions coordinates. There is a Clifford algebra representation of point, line and
plane elements in Selig [11], but our representations are free fromClifford generators,
which are very confused to handle with and have much tendencies to errors.

In 3D space, the representation of points and vectors is confused because a point
p and a vector v are given by their components: [x y z]T . In the projective space
RP3 ⊂ R

4 points and vectors differs each other, once we have p = 1+p = [1 x y z]T

and r = 0 + v = [0 x y z]T . In dual quaternions coordinates, a point and a vector
have the following representations:

P = 1 + 0 + ε
(
0 + p

) = [
1 0 0 0 0 x y z

]T
,

V = 0 + 0 + ε
(
0 + v

) = [
0 0 0 0 0 x y z

]T
.
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The representation of a line L is givenPlücker coordinates into a dual quaternions,
that is, if l and l0 are the direction and position vectors of L, then m = l0 × l is the
moment vector of L about origin of coordinate system and the dual quaternions
representation of L is

L = 0 + l + ε
(
0 + m

) = [
0 lx ly lz 0 mx my mz

]T
.

The representation of screws is similar to lines but we have an additional term to the
moment vector:

$ = 0 + s + ε
(
0 + m + λs

) = [
0 sx sy sz 0 mx + λsx my + λsy mz + λsz

]T
,

where s, s0 and m = s0 × s are the direction, position and moment vector of the
screw $, respectively, λ is the pitch of $. The pitch is the distance parallel the axis s
to complete one rotation around s. So, a rotational angle θ and translational distance
d are related by λ = 2πd/θ .

The representation of planes follows from the classical calculus.Oneway to define
a planeΠ with normal vector n and support vector r0 is given by n·(r−r0) = 0 ⇐⇒
n · r = d, where d is the distance of the plane from origin of coordinate system.
In dual quaternions algebra, the inner product returns an opposite of an usual inner
product. Therefore we have n · r0 = −d and the plane representation is

Π = 0 + n + ε
( − d + 0

) = [
0 nx ny nz −d 0 0 0

]T
.

4 Geometrical Element Displacements

In this section we will present the displacement equation for points, lines, screws and
planes, which arise from geometrical analysis and dual quaternions representations.
We must remember the general displacement operator (5), in which we have h∗ =
q∗ − ε

q∗t
2 and h∗ = q∗ + ε

q∗t
2 .

Let P = 1+ εp be a point in dual quaternions coordinate. A rotation of P cause a
reorientation of the vector p to p′′ = qpq∗. The translation of P moves p′′ to the new
position p′ = p′′ + t. Thus, the composition of rotation and translation of P must be

P′ = 1 + ε(qpq∗ + t) = 1 + ε(qpq∗) + ε
t
2

− ε
t∗

2
= hPh∗.

A vector V = 0 + εp has similar equations which arise considering no translation.
Let L a line and $ a screw in dual quaternions coordinate. A rotation of L cause

a reorientation of the direction vector l and of the moment vector m. A translation
has no effect on l, then: l −→ l′ = qlq∗ but the moment vector has the shifting law:
m −→ m′ = qmq∗ + t ×(

qlq∗)—see Fig. 1(left). Once l and t are pure quaternions,
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Fig. 1 General displacement of the line L (left) and planeΠ (right) from two steps: a rotation from
θ rad followed by a translation from t

(4) assures qlq∗ is a pure quaternion and using (2) we get:

L′ = qlq∗ + ε
[
qmq∗ + t × (qlq∗)

] =
(

q + ε
t
2

q
)
(l + εm)

(
q + ε

t
2

q
)∗ = hLh∗.

Some authors use the Principle of Transference [7] to handle with dual quaternion
displacements, saying that the dual quaternions transformations arise from quater-
nions rotation like ξ ′ = qξq∗ −→ ξ ′ = hξh∗ [1, 5]. Basically, the principle of
transference states that the real numbers are cropped to dual ones, transforming the
quaternion equation ξ ′ = qξq∗ into the dual quaternions equation ξ̆ ′ = q̆ξ̆ q̆∗, where
ξ̆ , must be a dual quaternion and ξ̆ must be a dual vector.

Let Π = n − εd be a plane. A rotation of Π cause a reorientation of vector n,
while the translation changes the distance d from the origin. The addition to d is
the projection of translation vector t into normal vector n—see Fig. 1. We must have
n −→ n′ = qnq∗ and d −→ d′ = d + t ·(qnq∗). Once t and n are pure quaternions,
(4) assures qnq∗ is a pure quaternion and using (1) we have:

Π ′ = qnq∗ − ε
[
d + t · (qnq∗)

] = qnq∗ − εd + ε
[ t(qnq∗) + (qnq∗)t

2

]
= hΠh∗.

In order to unified the general displacement in dual quaternions coordinate, we
define a general conjugate:

h̃ =
{

h∗, if ξ ← P, V , or Π.

h∗, if ξ ← L, or $.

Therefore, a general displacement of any geometrical element is given by ξ ′ = hξ h̃.
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5 Application to Robot Kinematics

Once we know how to make points, vectors, lines, screws and planes displacements,
we can use them to perform robot kinematics. Firstly, the end-effector informa-
tion must be codified into the dual quaternion ξ . Examples will be illustrate some
situations. In all cases, h is the general displacement operator, composed by the
joints transformations, B = {u, v, w} and B′ = {u′, v′, w′} are the end-effector
orthogonal coordinate systems associated to Ox, Oy and Oz axis, before and after
transformations, respectively all represented in global orthogonal coordinate system
G . The end-effector position is represented by vector r.
Case 1—posture from three vectors: Let the vectors xV ← u, zV ← w and
rV ← r in dual quaternions coordinates, namely, xV = 0 + 0 + ε(0 + u),
zV = 0+ 0 + ε(0+ w) and rV = 0+ 0 + ε(0+ r).Using the vector transformations
we get

u′ ← xV ′(6 : 8), w′ ← zV ′(6 : 8), v′ = w′ × u′, r′ ← rV ′(6 : 8).
Case 2—posture from two lines: Let xL ← (xl, xm) and zL ← (zl, zm) two
lines with directions u, w and moment vectors xm, zm, respectively. Namely, xL =
0 + u + ε(0 + xm), zL = 0 + w + ε(0 + zm), the line transformations and line
intersection [18] assure that

u′ ← xL′(2 : 4), w′ ← zL′(2 : 4), v′ = w′ ×u′, r′ = xu′ ×xm′ +
[(zw′ × zm′) ·xu′]xu′,

where xm′ = xL′(6 : 8) and zm′ = zL′(6 : 8). Figure 2 (left) relates the robot
kinematics from line displacements.
Case 3—posture from line, vector and plane: Let xL ← (xl, xm) = (u, m) be
a line with direction u and moment vector m, xΠ ← (xn, d) = (n, d) be a plane
with normal vector u and distance from origin d and zV ← w a vector. Namely,
xL = 0+ u + ε(0+ m), xΠ = 0+ n + ε(−d + 0) and zV = 0+ 0 + ε(0+ w). The
posture of end-effector is given by the transformations

xL′ = hxL̃h = hxLh∗, xΠ ′ = hxΠ h̃ = hxΠh∗, zV ′ = hzVh̃ = hzVh∗.

Indeed, from these equations we have u = l = n, then

u′ ← xL′(2 : 4), w′ ← zV ′(6 : 8), v′ = w′ ×u′, r′ = l′0+d′u′ = u′ ×m′ +d′u′,

where d′ = xΠ ′(5), and m′ = xL′(6 : 8). The Fig. 2 (right) relates the robot kine-
matics using vector, line and plane displacements.
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Fig. 2 Robot kinematics from line intersection (left) and plane (right) displacements in dual quater-
nions coordinate

6 Conclusion

In this chapter we presented a dual quaternions representation for points, vectors,
lines, screws and planes, how we perform their displacements and some applications
in positional kinematics. No Clifford algebra was used. All of it was developed from
dual quaternions point of view, using no confuse Clifford generators.

On the bibliography review, dual quaternion transformations appears from prin-
ciple of transference, but now it is not a sufficient trick anymore, once we have many
kind of geometrical elements to handle with, not only dual vectors.

Quaternions and dual quaternions offer an alternatively algebra for modeling
problems, therefore we can rethink those one which use rigid boby displacements in
order to avoid some undesire effect. Three examples in robot positional kinematics
enlighten the applicability of our dual quaternion approach. Unfortunately we do
not have space to analyse a more challenging problems. That will be our future
investigation.
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Recovering Dual Euler Parameters From
Feature-Based Representation of Motion

Daniel Condurache and Adrian Burlacu

Abstract The parameterization of a rigid-body motion can be done using multi-
ple algebraic entities. A very important criterion when choosing a parameterization
methods is the number of algebraic equations and variables. Recently, orthogonal
dual tensors proved to be a complete tool for computing rigid body displacement
and motion parameters. The present research is focused on developing new methods
for recovering kinematic data when the state of features attached to a body during a
rigid displacement is available. The proof of concept is sustained by computational
solutions both for the construction of orthogonal dual tensors and for the recovery
algorithms of the dual quaternion and the dual Rodrigues vector.

Keywords Dual rigid basis · Dual quaternion · Dual Rodrigues vector ·
Rigid motion

1 Introduction

Different techniques for rigid body motion representation can be obtained if dual
numbers, dual vectors or dual matrices [1, 12] are combined with elements of screw
theory [10]. First reported as biquaternions, dual quaternions are associated with
linear algebra methods to represent a general displacement of a rigid body and to
model the group of rigid body displacements [14]. A series of interesting applications
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based on dual quaternions were considered and multiple algorithms were developed
for: rigid motion analysis and planning [13]; hand-eye calibration [9]; kinematics
equations evaluation of manipulator robots [11, 14]; relative orbital motion [6, 17].

The desire to create a complete framework for parametrization of rotation and
rigid motion lead to closer inspection of linear invariants of the dual rotation matrix
and the dual Euler-Rodriques parameters of rigid motion [1, 16]. A general screw
displacement, that is a finite displacement, can be represented by an analogous to
Rodrigues original formula but in a dual form. In the last years a new entity was
considered for parameterization of rotation and motion: tensors. Tensor analysis
expresses the invariance of the laws of physics with respect to the change of basis and
change of frame operations [3, 4, 7]. In [7], we have presented an algebraic method
based on orthogonal dual tensors for spatial rigid body motion parametrization. In
this paper we present how rigid basis [5] of dual vectors can be used to provide
direct computational solutions for the dual Euler-Rodrigues parameters, the dual
quaternion and the dual Rodrigues vector when information regarding the state of
different type of features attached to a rigid body are available. Our study shows how
the dual rigid bases can be used to obtain free of coordinates computational methods
when a rigid body is characterized by points and lines. This approach does not need
the actual structure of the dual orthogonal tensor to compute the Euler parameters,
fact which represents the novelty of our research.

2 Dual Tensor Based Representation of Motion

Let the set of real dual numbers be denoted byR = {a = a + εa0| a, a0 ∈R, ε2 =
0}, where a = Re(a) is the real part and a0 = Du(a) the dual part. In the Euclidean
space, the linear space of free vectors with dimension 3 will be denoted by V3. The
ensemble of dual vectors is defined as V3 = {a = a + εa0; a, a0 ∈ V3, ε2 = 0},
where a = Re(a) is the real part and a0 = Du(a) the dual part. For any three dual
vectors a, b, c the following notationswill be used for the basic products: a·b—scalar
product, a × b—cross product, < a, b, c >—scalar triple product. The magnitude
of a, denoted by |a|, is the dual number computed from

|a| =
{

‖a‖ + ε
a0·a
||a|| , Re(a) �= 0

ε||a0||, Re(a) = 0
, (1)

where ||.|| is the Euclidean norm. If |a| = 1 then a is called unit dual vector.
For any a ∈ V3 a dual number λ ∈ R and a unit dual vector u ∈ V3 exist in order

to have a = λ u. Consider ||.|| to denote the Euclidean norm then

± λ = |a|; ± u =

⎧⎪⎨
⎪⎩

a
||a|| + ε

a × (a0 × a)

||a||3 Re(a) �= 0

a0
||a0|| + εv × a0

||a0|| , ∀v ∈ V3 Re(a) = 0
. (2)
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The previous result allows to geometrically describe any dual vector from the 3D
Euclidean space, as detailed in [7].

An R-linear application of V 3 into V 3 is called an Euclidean dual tensor:

T(λ1v1 + λ2v2) = λ1T(v1) + λ2T(v2), ∀λ1, λ2 ∈ R,∀v1, v2 ∈ V3. (3)

LetL(V 3, V 3) be the set of dual tensors, then anyT ∈ L(V 3, V 3) can be decomposed
as T = T + εT0, with T, T0 ∈ L(V3, V3). Also, the dual transposed tensor denoted
by TT is defined by

v1 · (Tv2) = v2 · (TTv1), ∀v1, v2 ∈ V 3, (4)

An important class of invariants that is used to describe the dual tensor are called
linear invariants and are denoted by vectT = vect 12 [T − TT] and traceT [2]. For
an arbitrary dual tensor T the following entities can be computed

symT = 1

2
[T + TT], skewT = 1

2
[T − TT], (5)

where “sym” is the symmetric part of the dual tensor and “skew” is its skew-
symmetric part. The dual tensors set is an R-module of rank 9, while the skew-
symmetric dual tensors is structured as a rank 3 R sub-module of L(V 3, V 3) and
is isomorph with V 3. For any skew-symmetric dual tensor A, a dual vector a ∈ V 3
exists so that:

Av = a × v,∀v ∈ V 3. (6)

From now on ã will denote the skew-symmetric dual tensor attached to a dual vector
a = vect ã.

In order to completely describe our solutions, we need to consider the following
notations

SO
3

= {R ∈ L(V3, V3) | RRT = I, det R = 1};
{ f : R → V3} = VR

3 , { f : R → SO3} = SOR

3 , { f : R → SO
3
} = SOR

3
,

(7)

where SO3 is the set of real special orthogonal tensors and f = f (t) (t being the time
variable). The internal structure of any dual tensor function R ∈ SOR

3
is illustrated

by the following three results [7]:

Remark 1 For any R∈ SOR

3
, an unique decomposition is viable

R = Q + ερ̃ρρQ, (8)

where Q = Q(t) ∈ SOR

3 and ρρρ = ρρρ(t) ∈ VR

3 .
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Remark 2 Based on the construction of SO
3
and the multiplication of dual tensors,

a direct conclusion is the Lie group structure of (7). This Lie group globally para-
meterizes all rigid motions. Thus, a rigid body motion [7, 16] can be modeled by
(8).

Remark 3 For any R ∈ SO
3
a dual number α = α + εd and a dual unit vector

u = u + εu0 exists in order to have the following expression:

R = I + sin αũ + (1 − cosα)̃u2 = exp(αũ). (9)

The parameters α and u are called the natural invariants of R and can be recov-
ered from the linear invariants [2] using (9):

u sin α = vectR, cosα = 1

2
[traceR − 1]. (10)

The unit dual vector u is the Plucker representation of the Mozzi-Chalses axis, while
the dual angle α = α + εd embeds the rotation angle α and the translation d. In
literature there are presented different methods [7, 8] which can be used to recover
u and α from (10).

3 Dual Euler-Rodrigues, Dual Quaternions and Dual Rodrigues
Vector Recovery Solutions

3.1 Dual Quaternions

A dual quaternion can be defined as an associated pair of a dual scalar quantity and
a free dual vector:

q̂ = (q, q), q ∈ R, q ∈ V 3. (11)

The set of dual quaternions will be denoted Q and is organized as aR-module of rank
4, if dual quaternion addition and multiplication with dual numbers are considered.
The product of two dual quaternions q̂

1
= (q

1
, q

1
) and q̂

2
= (q

2
, q

2
) is defined by

q̂
1
q̂
2

= (q
1
· q

2
− q

1
· q

2
, q

1
q
2
+ q

2
q
1
+ q

1
× q

2
). (12)

Taking into account the above properties results that the R-module Q becomes
an associative, non-commutative linear dual algebra of order 4 over the ring of dual
numbers . For any dual quaternion defined by (11) the followings can be computed:
the norm denoted by |̂q| and the conjugate denoted by q̂∗. Regarded solely as a
free R-module, Q contains two remarkable sub-modules: Q

R
and Q

V 3
. The first

one composed from pairs (q, 0), q ∈ R, isomorphic with R, and the second one,
containing the pairs (0, q), q ∈ V 3, isomorphic with V 3. Also, any dual quaternion
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can be written as q̂ = q + q, where q = (q, 0) and q = (0, q), or q̂ = q̂ + εq̂0,
where q̂, q̂0 are real quaternions.

LetUdenote the set of unit quaternions andU denotes the set dual unit quaternions.
For any q̂ ∈ U, the following representation is valid [15]

q̂ = (1 + ε
1

2
ρρρ)̂q , (13)

where ρρρ ∈ V3 and q̂ ∈ U. This representation is the quaternionic counterpart to (8)
and allows that a dual number α and a dual vector u exist in order to have

q̂ = cos
α

2
+ u sin

α

2
, (14)

which gives a quaternionic counterpart to (9). For α = α + εd and u = u + εu0, the

pair (α, u) is recovered from q̂ = cos
α

2
+ u sin

α

2
and d = ρρρ · u, u0 = 1

2
ρρρ × u +

1

2
cot

α

2
u × (ρρρ × u) if α �= 0 or u0 = 1

2
ρρρ × u if α = 0.

Remark 4 The mapping exp : V 3 → U, q̂ = exp
ϕϕϕ

2
, is well defined and surjective.

Proof Consider v a dual vector from V 3. Based on (2), v can be structured as v =
λ u. Taking into account that u is a unitary dual vector and the definition of the
quaternionic product (12) results that ûû = −1. This proves the correct construction

of the mapping exp(λ u) = cos λ + u sin λ. Considering λ = α

2
together with (14),

the proof of surjectivity is complete.

Remark 5 Based on the construction ofU and themultiplication of dual quaternions,
a direct conclusion is its Lie group structure (V 3 being the associated Lie algebra,
where the cross-product between dual vectors is the internal mapping), which can
be used to global parameterize all rigid motions.

3.2 Orthogonal Dual Tensors Construction

Given two dual vectors a and b ∈ V3, a ⊗ b denotes dyadic product, which is a dual
tensor defined by:

a ⊗ b : V 3 → V 3, (a ⊗ b)v = (v · b)a, ∀v ∈ V3. (15)

An important property of (15) is that (a ⊗ b)(c ⊗ d) = (b · c)a ⊗ d. If the dual
tensor defined by (15) is analyzed, the following results emerge: (a ⊗ b)T = b ⊗ a,

vect(a ⊗ b) = 1

2
(b × a) and trace(a ⊗ b) = a · b. From this point on we uncover

how the dyadic product can be used to construct a dual tensor.
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P2(t0)

P3(t0)

l1(t0)

l2(t0)

Fig. 1 Rigid body features, points and lines, represented at two time stamps

A basis B = {e1, e2, e3} from VR

3 , which has the values e0i = ei (t0) at initial
time t0 , is named dual rigid basis if:

{ ei · e j = e0i · e0 j , i, j = 1, 3,
< e1, e2, e3 >=< e01, e02, e03 >

. (16)

Remark 6 For a dual basis B = {e1, e2, e3}, the set B∗ = {e1, e2, e3} represents its
reciprocal

e1 = e2 × e3
< e1, e2, e3 >

, e2 = e3 × e1
< e1, e2, e3 >

, e3 = e1 × e2
< e1, e2, e3 >

. (17)

The dual vectors
{
e1, e2, e3

}
are uniquely determined using the conditions ei · e j =

δ
j
i , i, j = 1, 3, δ

j
i being the Kronecker symbol. If B = {e1, e2, e3} is a dual rigid

basis then B∗ = {e1, e2, e3}, its reciprocal dual basis, is also rigid.
Using points and lines as rigid body features (as shown in Fig. 1), dual rigid bases

can be constructed using the following five combinations [7]:

1. Three non-coplanar directed lines
Consider that three non-coplanar lines li(t0), i = 1, 3 are part of a rigid body.
These lines can be characterized by normalized Plucker coordinates, which are
staked in dual vectors ui (t0) = mi (t0) + εni (t0), i = 1, 3. For each line the
time t correspondent is denoted li(t), i = 1, 3 while the attached dual vectors
are ui (t) = mi (t) + εni (t), i = 1, 3. In this case, the dual rigid bases are
{e01, e02, e03} = {u1(t0), u2(t0), u3(t0)} and {e1, e2, e3} = {u1(t), u2(t), u3(t)}.
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2. Two non-parallel directed lines
If two lines are available, then the non-parallel condition must be fulfilled. Let
l1(t0) and l2(t0) be the two lines that describe the rigid body at time t = t0. The
rigid basis {e01, e02, e03} is computed as {u1(t0), u2(t0), u1(t0) × u2(t0)} The
same method is applied at any time t when, for example, l1(t) and l2(t) are valid.

3. Four non-planar points
Let Pi (t0), i = 1, 4 be four non-planar points attached to a rigid body. The dual
rigid basis {e01, e02, e03} is computed from

e01 = ρ02 − ρ01 + ερ01 × ρ02

e02 = ρ03 − ρ01 + ερ01 × ρ03 (18)

e03 = ρ04 − ρ01 + ερ01 × ρ04

where ρ0i , i = 1, 4 is the position vector of Pi (t0). Using a similar procedure
for Pi (t), i = 1, 4 the dual rigid basis {e1, e2, e3} is obtained.

4. Three non-collinear points
In case of non-availability of one point from the four points set, if the remaining
three points are non-collinear (e.g P1(t0), P2(t0), P3(t0) are known) then e01 and
e02 are computed using (18). For e03 the following equation is used:

e03 = e01 × e02. (19)

The same approach is valid for {e1, e2, e3} generated by {P1(t), P2(t), P3(t)}.
5. One point and one directed line

Let the P1(t0) and l1(t0) be the availablemeasurements on the rigid body. First, the
constraint P1(t0) /∈ l1(t0) must be fulfilled. If u = u + εu0 is the unit dual vector
of l1(t0) then e01 = u, e02 = u × w0 + ερρρP1(t0) × (u × w0) and e03 = e01 × e02.
The vector w0 is defined as w0 = u0 − ρρρP1(t0) × u. The same approach is used
to compute {e1, e2, e3} when P1(t) and l1(t) are known.

Theorem 1 If B = {e1, e2, e3} is a dual rigid basis in VR

3 and ei are continuous
functions, then the dual tensor

R = ei ⊗ ei
0 (20)

is proper orthogonal and uniquely defined by R(e0i ) = ei , i = 1, 3.

Remark 7 Based on the linear invariants of (20) results:

u sin α = 1

2
ei
0 × ei , cosα = 1

2
[ei

0 · ei − 1]. (21)

Previous, the Einstein’s rule for mute indexes summation was considered. The
proofs for Theorem 1 and Remark 7 are presented in [7]. Next the computational
solutions for both dual quaternions and dual Rodrigues vector are revealed.
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3.3 Computational Solutions

Our solutions consider as inputs information about the features attached to a rigid
body at different time stamps and generates the dual Euler-Rodrigues parameters,
the dual quaternion and the dual Rodrigues vector which parameterizes the rigid
displacement.

Theorem 2 Let

γ = cos
α

2
, γγγ = u sin

α

2
, (22)

be the dual Euler-Rodrigues parameters. Using some properties for functions of dual
number variable [16] together with (21) results that if Re(ei

0 · ei ) �= −1 then

γ = ±1

2

√
1 + ei

0 · ei , γγγ = ±ei
0 × ei

2
√
1 + ei

0 · ei

. (23)

Theorem 3 Given the dual rigid bases {e1(t), e2(t), e3(t)} and {e01, e02, e03}, as
presented for any of the five combinations of features, the structure of the dual
quaternion that parametrizes the rigid displacement is

± q̂ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − êi ê
i
0

|1 − êi ê
i
0|

; if Re(̂ei ê
i
0) �= 1

(
1 + ε

1

2
ρ̂ρρ

)
û; if Re(̂ei ê

i
0) = 1

, (24)

where êi , êi
0, ρ̂ρρ, û ∈ Q

V 3
.

Proof For Re(̂ei ê
i
0) �= 1 the solution is ±q̂ = γ + γγγ , which combined with (23)

leads to (24) . The proof for the case Re(̂ei ê
i
0) = 1, which embeds a rotation with

an angle equal to π , is based on choosing e0 + e as the pair e0i + ei , i = 1, 3 which
has the maximum norm. The recovering procedure presented in [7] leads to

u = e0 + e
||e0 + e|| , ρρρ = 1

2
ei × Q0ei

0, (25)

where Q0 = ei ⊗ ei∗
0 + e∗

i ⊗ ei
0, ei = ei + εe∗

i , ei
0 = ei

0 + εei∗
0 .

Remark 8 Using the second equation from (24), the solution for (23) when Re(ei
0 ·

ei ) = −1 is:

γ = −ε
ρρρ · u
2

, γγγ = u + ε
ρρρ × u
2

. (26)
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Theorem 4 A rigid motion can also be described by the dual Rodrigues vector,
which embeds the natural invariants of R in

b = tan
α

2
u. (27)

Using (22) and (23), the dual Rodrigues vector can be recovered from

b = 1

γ
γγγ = ei

0 × ei

1 + ei
0 · ei

, (28)

when Re(ei
0 · ei ) �= −1.

3.4 Numerical Results

The solutions presented in the previous subsection can be easily transposed into
simulation algorithms. An implementation algorithm start by acknowledging the
type of features combination chose for the description of the rigid body. The next
step, computation of the dual rigid bases and their reciprocals, is accomplished using
the solutions presented in Sect. 3.2. Once this step is finalized, Eqs. (23), (24) and (28)
are employed to recover the dual Euler-Rodrigues parameters, the dual quaternion
and the dual Rodrigues vector which parameterizes the rigid displacement.

Inspired by [13], lets consider a rigid body to be described at time t0 by three
points: P01 = [ 1 0 0 ]T, P02 = [ 1 2 0 ]T, P03 = [ 1 2 1 ]T, while at time t1 the
same configuration of points has the following data P1 = [ 2 3 1 ]T, P2 = [ 0 3 1 ]T,
P3 = [ 0 3 2 ]T. Without computing the dual tensor, our algorithm first constructs
the dual rigid bases

e01 = [
0 2 0

]T + ε[ 0 0 2 ]T; e1 = [−2 0 0
]T + ε[ 0 −2 6 ]T

e02 = [
0 2 1

]T + ε[ 0 −1 2 ]T; e2 = [−2 0 1
]T + ε[ 3 −4 6 ]T

e03 = [
2 0 0

]T + ε[ 0 0 0 ]T; e3 = [
0 2 0

]T + ε[−2 0 4 ]T
, (29)

the reciprocal
e10 = [

0 0.5 −1
]T + ε[ 0 1 0.5 ]T

e20 = [
0 0 1

]T + ε[ 0 −1 0 ]T
e30 = [

0.5 0 0
]T + ε[ 0 0 0 ]T

. (30)

After validating that Re(ei
0 · ei ) �= −1, the algorithm employs (23), (24) and (28)

to recover the dual Euler-Rodrigues parameters, the dual quaternion and the dual
Rodrigues vector:
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± γ = 0.70711 − ε0.35355, ± γγγ = [ 0 0 0.7071 ]T + ε
[
1.4142 0 0.3536

]T
,

(31)
± q̂ = [ 0.70711 0 0 0.7071 ]T + ε

[−0.35355 1.4142 0 0.3536
]T

, (32)

b = [ 0 0 1 ]T + ε[ 2 0 1 ]T. (33)

This is a first step in proving our concept, future applications will be developed and
will make use of direct measurements from different type of sensors.

4 Conclusions

The research presented in this paper is focused on developing new solutions to
recover dual Euler parameters from feature based representation of rigid motion.
Dual rigid bases can be constructed using different combinations of points and lines
which represent rigid body features. The combination between a dual rigid basis and
its reciprocal provides a natural computational instrument that can be used to solve
many problems in the kinematics of rigid bodies. Our approach does not necessitate
the computation of the dual tensor when the Euler parameters need to be recov-
ered. This may imply an advantage over existing solutions (which usually iterate
the computation of the dual matrix associated with the dual tensor) when point and
lines features of the rigid body are available. The theoretical solutions have a form
suitable for a direct implementation into numerical codes and should provide useful
tools for the development of future applications.
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Kinematics and Dynamics of a 3-RPSR Parallel
Robot Used as a Pipe-Bending Machine

Mario Alberto Garcia-Murillo, Yukio Takeda, Eduardo Castillo-Casataneda,
Daisuke Matsuura, Syohei Kawasumi and Jaime Gallardo-Alvarado

Abstract In this work the kinematics and dynamics of a six degrees of freedom
3-RPSR parallel manipulator, used as a pipe-bender machine, are solved. First the
forward position analysis of the mechanism under study is solved by using me-
chanical constraints equations. Afterwards, the velocity and acceleration analysis
are addressed by taking advantage of the properties of reciprocal screws. Then, the
generalized forces of the mechanism are determined by combining the screw theory
with the principle of virtual work. Finally, a numerical example is provided.

Keywords Parallel robot · Pipe-bender · Screw theory · Dynamics · Virtual work

1 Introduction

The dynamic analyses of a manipulator are a crucial stage in the process design
and control. The calculation of the forces or torques of active joints allows selecting
the more appropriate actuators and performing a suitable mechanical design to meet
requirements such as stiffness of the mechanism [8]. The methods of Newton-Euler
and the Lagrangian are the most used to solve the dynamic analysis of parallel mecha-
nisms [1, 8]. Other authors use the formulations of Kapel, Routh, and Apell equations
[3]. The Newton-Euler equations consider reactions of kinematic pairs, which do not
to exclude the explicit formulation between movements and forces, creating a large
number of equations. Moreover, the Lagrangian, Routh and Apell methods, involve
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systems of nonlinear differential equations that are computationally less efficient [3].
Other mechanical principles have been used to solve the dynamic analysis of robotic
systems [1], such as the generalized momentum approach [4] and the Hamilton’s
principle [5]. One of the more popular approach to get the dynamic model of parallel
robots is the use of the virtual work principle [1, 2, 8], which avoids the calculation of
the internal reactions in the mechanism. In addition, the combination of this principle
and the screw theory significantly simplifies the model.

Takeda [6, 7] proposed a 6 DOF spatial parallel manipulator as the movable-
die drive mechanism, which can achieve a wide range of output orientation angles,
for bending pipes into three- dimensional complex shapes. This chapter develops a
model to determine the generalized forces through the principle of virtual work and
the screw theory for that robot.

2 Kinematic Analysis of 3-RPSR Parallel Robot

The robot under study consists of a mobile platform and a fixed base connected by
means of three RPSR kinematic chains (Fig. 1). The three actuated revolute joints
share a common rotation axis, normal to the plane of the base. The arrangement of
the kinematic chains is such that the axes of prismatic joints form a constant angle β

with the plane of the base link. The centres of spherical joints are denoted as Ai and
the connected locations of a leg and the moving platform are denoted by Bi , unless
otherwise indicated, i = 1, 2, 3 (Fig. 1). The global coordinate system is OXY Z ,
where point O is located at the intersection of the lines that pass through points Ai

and are parallel to its corresponding axis of the prismatic joints. In addition, Y axis is
collinear to the triple revolute joint. On the other hand, moving reference frame Pxyz

is located at the center of triangle B1 B2 B3, where x axis is a unit vector between
points P and B1; moreover, y axis is normal to plane B1 B2 B3 and z is parallel to the
passive revolute joint of chain 1 (see Fig. 1).
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2.1 Displacement Analysis

It is well known that the pose of any rigid body can be specified by knowing the
coordinates of three points belonging to it, then the pose of the moving platform,
with respect to the fixed reference frame OXY Z , may be determined by computing
the coordinates of points B1, B2 and B3 (see Fig. 1). Then we write equations that
include these variables using mechanical constraints expressions.

The length of the limbs of the manipulator (Fig. 1) are restricted to

‖Bi − Ai‖ = d2, ∀i = 1, 2, 3 (1)

where AXi = qi cos β cos θi , AYi = −qi sin β, AZi = −qi cos β sin θi , and θi and
qi represent the displacements of active revolute and prismatic joints of chain i .

Three compatibility closure equations for the distance e may be expressed as:

‖Bi − B j‖ = e2, ∀i, j = 1, 2, 3; i �= j. (2)

As is shown in Fig. 1b, any revolution axis is parallel to its opposite side of the
triangle B1 B2 B3 and perpendicular to its corresponding limb. These constraints can
be expressed as:

(
Bi − B j

) · (Bk − Ak) = 0 ∀i, j, k = 1, 2, 3; i �= j �= k. (3)

Equations (1–3) form a 9 × 9 equation system on BXi , BYi and BZi . It can be
solved by using homotopy continuation method or Sylvester elimination method [8].

2.2 Velocity Analysis

The analysis of velocity and acceleration of the manipulator are solved by the screw
theory. The screws are modeled as shown in Fig. 2, and referred to the frame OXY Z .
It is understood that the screw a$b

i models the movement of the body b with respect
to a, both belonging to the i-th chain. The spherical pair is decomposed into three
revolute pairs,

{
2$3

i , 3$4
i , 4$5

i

}
, whose axes are perpendicular to each other. The

direction of 2$3
i is parallel with ûi ; screw 3$4

i is collinear with vector (Bi − Ai ).
The velocity state of the mobile platform with respect to the fixed base, V O , can

be expressed as a screw [2],

V O =
[

ω

vO

]
= 0ω

i
1

0$1
i + 1ω

i
2

1$2
i + . . . + 5ω

i
6

5$6
i = Ji�i , (4)

where ω and vO are angular and translational velocities, respectively, of the mobile
platform respect to the reference pole O; Ji = [

0$1
i

1$2
i

2$3
i

3$4
i

4$5
i

5$6
i

]
and �i is a
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vector that contains terms aωi
b, that represent the ratios of rotational or translational

velocity of body b respect to a belonging to the i-th chain. Moreover, given the
actuation scheme of the robot, 0ω

i
1 = θ̇i and 1ω

i
2 = q̇i .

With reference to Fig. 2, one can demonstrate that the screw 2$3
i is reciprocal to

all screws associated with revolute joints in the chain i , except to 0$1
i . Then, applying

the Klein form, or reciprocal product, on both sides of Eq. (4), gives:

{
V O ; 2$3

i

}
= θ̇i

{
0$1

i ; 2$3
i

}
+ q̇i

{
1$2

i ; 2$3
i

}
. (5)

In addition, applying the Klein form of screw 3$4
i and Eq. (4):

{
V O ; 3$4

i

}
= θ̇i

{
0$1

i ; 3$4
i

}
+ q̇i

{
1$2

i ; 3$4
i

}
. (6)

Grouping in matrix form Eqs. (5–6), the state of velocity can be calculated from
the expression:

MT�V O = Q̇ , (7)

where M = [
2$3

1
2$3

2
2$3

3
3$4

1
3$4

2
3$4

3

]
; � =

[
0 I
I 0

]
is a polarity operator defined by

3 × 3 identity matrix, I, and zero matrix 0, and finally,

Q̇ =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

θ̇1
{

0$1
1 ; 2$3

1

} + q̇1
{

1$2
1 ; 2$3

1

}

θ̇2
{

0$1
2 ; 2$3

2

} + q̇2
{

1$2
2 ; 2$3

2

}

θ̇3
{

0$1
3 ; 2$3

3

} + q̇3
{

1$2
3 ; 2$3

3

}

θ̇1
{

0$1
1 ; 3$4

1

} + q̇1
{

1$2
1 ; 3$4

1

}

θ̇2
{

0$1
2 ; 3$4

2

} + q̇2
{

1$2
2 ; 3$4

2

}

θ̇3
{

0$1
3 ; 3$4

3

} + q̇3
{

1$2
3 ; 3$4

3

}

⎤

⎥⎥⎥⎥
⎥⎥
⎦

.
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2.3 Acceleration Analysis

The reduced acceleration state, AO , of a rigid body is defined as follows [2]

AO =
[

α

aO − ω × vO

]
= Ji �̇i + Li , (8)

where α = ω̇ and aO is the angular and linear acceleration, respectily, of the mobile
platform. �̇i is the matrix whose elements are the joint acceleration ratios of the i-th
chain, mω̇i

m+1. Moreover Li is given by the Lie products:

Li =
4∑

j=0

⎡

⎣ jω
i
j+1

j $ j+1
i

5∑

k= j+1

kω
i
k+1

k$k+1
i

⎤

⎦.

Using a similar procedure shown in velocity analisys, and applying the Klein form
between Eq. (8) and the reciprocal screws we have:

MT�AO = Q̈ , (9)

where

Q̈ =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

θ̈1
{

0$1
1 ; 2$3

1

} + q̈1
{

1$2
1 ; 2$3

1

} + {
2$3

1 ; L1
}

θ̈2
{

0$1
2 ; 2$3

2

} + q̈2
{

1$2
2 ; 2$3

2

} + {
2$3

2 ; L2
}

θ̈3
{

0$1
3 ; 2$3

3

} + q̈3
{

1$2
3 ; 2$3

3

} + {
2$3

3 ; L3
}

θ̈1
{

0$1
1 ; 3$4

1

} + q̈1
{

1$2
1 ; 3$4

1

} + {
3$4

1 ; L1
}

θ̈2
{

0$1
2 ; 3$4

2

} + q̈2
{

1$2
2 ; 3$4

2

} + {
3$4

2 ; L2
}

θ̈3
{

0$1
3 ; 3$4

3

} + q̈3
{

1$2
3 ; 3$4

3

} + {
3$4

3 ; L3
}

⎤

⎥⎥⎥⎥
⎥⎥
⎦

.

3 Dynamic Analysis

In this section are calculated the driving forces of the pipe-bending machine, by
means of a combination of the screw theory and the Principle of virtual work.
This problem consist of: given the inertial, gravitational and external wrenches, to
determine the driving forces/torques required to obtain the desired trajectory for the
mobile platform.

According to the principle of D’Alembert [8], the inertial wrench acting on the
j-th body of the i-th chain is given by:

F j,i
I,∗ =

[
−m j,i

0a j
i,∗

−I0
j,i

0α
j
i − 0ω

j
i × I0

j,i
0ω

j
i

]

; (10)
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where m j,i is the mass of the body, 0a j
i,∗, is the translational acceleration of the mass

center and I0
j,i is the centroidal inertia tensor with respect to global reference system.

We consider the gravitational wrench F j,i
G,∗ = [

m j,i g ; 0
]T, where g is the accel-

eration of gravity, and a external wrench F j,i
E,∗ applied to the body j at its center of

mass. Then, the resultant wrench acting on body j of the limb i is

F j,i = F j,i
I,∗ + F j,i

G,∗ + F j,i
E,∗. (11)

In [2] is shown that the power w j,i produced by F j,i that acts on the j body of

the i-th chain with velocity state 0V j,i∗ , whose reference pole is its center of mass,
can be determined by:

w j,i =
{

F j,i ; 0V j,i∗
}

. (12)

In order to apply the principle of virtual work it is necessary to express 0V j,i∗ as a
function of the generalized velocities, q̇i and θ̇i . From Eqs. (7) and (4):

�i = (Ji )
−1

(
MT �

)−1
Q̇ (13)

In that way, the speed ratio of body j respect to body j − 1, belonging to chain i , is
expressed in terms of q̇i and θ̇i as follows:

j−1ω
i
j =

6∑

k=1

(
j−1Gk,i

j q̇
k

)
, (14)

where q̇
k

= q̇k, ∀k = 1, 2, 3 and q̇
k

= θ̇k, ∀k = 4, 5, 6. Also, the scalars j−1Gm,i
j

are the first order kinematic influence coefficients. Then the velocity state of body j
belonging to the i-th chain can be expressed as:

0V j,i
O =

j−1∑

k=0

[
6∑

m=1

(
k−1Gm,i

k q̇
m

)]
k$k+1

i . (15)

Then, grouping the terms in q̇
i
, and taking the mass center of the body as represen-

tation pole, leads to:

0V j,i∗ =
6∑

k=1

$k
j,i q̇

k
(16)

where $1
j,i , $2

j,i . . . , $6
j,i are called partial screws [2]. Thus, Eq. (12) can be rewritten

as follows:
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Table 1 Inertial properties

Body Mass (kg) Ix (kg· mm2) Iy Iz Ixy Iyz Ixz

Arm 1 13.072 53221.961 400773.773 428111.073 15739.096 4163.259 17844.419
Arm 2 12.210 47901.779 376056.888 401044 23041.162 −3383.654 −6010.009
Arm 3 13.240 53812.305 407679.281 432720.353 19736.403 −5021.887 7555.891
P. joint 1.529 2029.198 2132.738 2132.738 298.504 0 0
Leg 0.583 4316.549 94.821 4256.381 −1.294 0.027 0
M. Plat. 0.322 408.900 456.586 715.893 0.012 −0.001 23.185

w =
{

F6 ; V6∗
}

+
6∑

i=1

⎛

⎝
5∑

j=1

{
F j,i ; 0V j,i∗

}
+ τi q̇ i

⎞

⎠ , (17)

where τi is the driving force/torque associated to the generalized velocity q̇
i
.

The principle of virtual work states that if a multi-body system is in equilibrium
under the effect of external actions, then the global work produced by the external
forces with any virtual velocity must be null [8]. Taking into a count the virtual
velocities δq̇

i
, substituting Eq. (16) in Eq. (17), and rearranging terms, leads to

δw =
6∑

i=1

[({
F6 ; $i

6

}
+

5∑

j=1

{
F j,i ; $i

j,i

}
+ τi

⎞

⎠ δq̇
i

⎤

⎦ = 0. (18)

Since the generalized virtual velocities δq
i

are arbitrary, and δw = 0, it is neces-
sary and sufficient that the coefficients of the virtual displacements δq

i
are zero.

6∑

i=1

⎛

⎝
{

F6 ; $i
6

}
+

5∑

j=1

{
F j,i ; $i

j,i

}
+ τi

⎞

⎠ = 0. (19)

Finally, from Eq. (19) the generalized forces τi can be computed directly.

4 Numerical Simulations

In order to show the potential of this method to calculate the driving forces/torques
of the robot, a numerical example is presented. The geometrical parameters of the
robot are d = 250 mm, e = 55

√
3 mm, β = 20◦, and the inertial properties of the

links are depicted in Table 1. Moreover, the initial position, in millimeters, of the
robot is described in Ai and Bi points:
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Fig. 3 Displacements of the P joints

ra
d

-

-

Fig. 4 Displacements of the R joints

B1 = (30.630, 76.384, 47.012); A1 = (211.150,−88.742, 121.908);
B2 = (28.866, 76.499,−48.234); A2 = (−0.001,−88.742,−243.816);
B3 = (−52.637, 72.359, 0.909); A3 = (−211.150,−88.742, 121.901);
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-

-

-

-

-

-

-

Fig. 5 Driving forces of P joints

-

-

Fig. 6 Driving forces of R joints

On the other hand, the time history of the generalized coordinates are shown in
Figs. 3 and 4. Please note that q2 = q3. The results are shown in Figs. 5 and 6. Note
that τ5 = τ6.
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5 Conclusions

In this chapter the dynamic analysis of a 3-RPSR parallel robot has been solved
using a combination of screw theory and the principle of virtual work. Equation for
displacement analysis has been derived based on mechanical constraint conditions of
joints. The velocity and acceleration states of the moving platform are written in screw
form through each one of the three chains of the robot. The expressions obtained
are linear, simple and compact through the use of the Klein form. An advantage of
this formulation is that it is not necessary to know the velocities and accelerations of
passive joints to solve forward velocity and acceleration analysis, respectively.

Finally, the driving forces required to obtain the desired trajectory for the mobile
platform are calculated considering both the screw theory and the principle of virtual
work. Resulting equations are simple and linear, unlike those obtained by the Newton-
Euler method, the Lagrangian and some others and it is not necessary to determine
the instantaneous values of the internal reactions of the mechanism, or calculate the
energy of the entire system.
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Kinematic Synthesis of a Watt I Six-Bar
Linkage for Body Guidance

Mark Plecnik, J. Michael McCarthy and Charles W. Wampler

Abstract This chapter formulates the synthesis equations for aWatt I six-bar linkage
thatmoves through N specified task positions. For themaximumnumber of positions,
N = 8, the resulting polynomial system consists of 28 equations in 28 unknowns,
which can be separated into a nine sets of variables yielding a nine-homogeneous
Bezout degree of 3.43×1010.We verify these synthesis equations by finding isolated
solutions via Newton’s method, but a complete solution for N = 8 seems beyond the
capability of current homotopy solvers. We present a complete solution for N = 6
positions with both ground pivots specified.

Keywords Kinematic synthesis · Six-bar linkage

1 Introduction

This chapter presents the synthesis equations for a Watt I six-bar linkage, Fig. 1a, to
guide a rigid body through N specified task positions. This is a generalization of the
motion generation problem for four-bar linkages, see Hartenberg and Denavit [5],
Erdman et al. [3], and McCarthy and Soh [6].

Our formulation yields 28 equations in 28 unknowns for the maximum number of
task positions, N = 8, which has a nine-homogeneous Bezout degree of 3.43×1010.
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(a) (b)

Fig. 1 a Vectors A, B, C , D, F , G, H locate the pivots in position j = 0 from the fixed frame
coordinate system �0. b The three vector loops in position j . Note that the vector A has not been
drawn in order to make the figure more clear

The size of this problem seems to be beyond the ability of polynomial continuation
software to formulate a start system. In what follows, we present the solution for six
task positions with the locations of the two ground pivots specified.

2 Literature Review

The synthesis theory for six-bar linkages focuses on obtaining specified input-
output angles for function generation. In 1944, Svoboda [12] used a nomograph
formulation to design a six-bar linkage that generates a logarithmic function. Fol-
lowing the work by Freudenstein [4], McLarnan [7] formulated the loop equations
for Watt II, Stephenson II and III six-bar linkages for use as function generators
which he solved on an IBM 704 computer. Dhingra et al. [2] formulated synthesis
equations for Watt II, Stephenson II and III function generators which they solved
using numerical homotopy methods on a 486 PC.

The closest work to this chapter is Soh and McCarthy [10] who formulate the
five-position body guidance problem for a Watt I linkage as a constrained 3R chain.
Pennock and Israr [8] design an adjustable six-bar linkage for function generation.
Other recent work is Shiakolas et al. [9], who used an optimization formulation to
design six-bar linkages for the combination of crank angle and coupler point location.

This work follows Wampler et al. [14] and formulates the loop equations of the
linkage using vectors in the complex plane and their conjugates together known as
isotropic coordinates. We use the polynomial continuation software Bertini to solve
the system of equations [1, 11].
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3 Synthesis Equations

AWatt I six-bar linkage, Fig. 1a, can be viewed as a four-bar linkage sitting on top of
another four-bar linkage. The base four-bar linkage consists of the ground link AB,
the cranks AC and B DF , and the floating link C DG. The second four-bar linkage
is attached to B DF , has cranks C DG and F H , and the floating link G H P . The
floating link G H P is considered to be the end-effector of the system. The goal is to
place a task frame attached to G H P in N positions � j for j = 0, . . . , N − 1.

A task frame � j is defined by the coordinates of its origin Pj and its orientation
angle measured relative to a fixed frame. Complex coordinates are used to define
these parameters, so

� j = (x j + iy j , eiθ j ) = (Pj , Tj ). (1)

For convenience, choose the fixed frame to coincide with the first task frame, so
�0 = (0, 1), Fig. 1.

The coordinates of the seven pivots are identified in position j = 0 by the complex
vectors A, B, C , D, F , G, H as shown in Fig. 1a. The coordinates of these vectors
are 14 unknowns of the linkage synthesis problem. Following Wampler [13], we
consider these vectors and their complex conjugates as separate unknowns, which
yields a total of 28 unknowns.

The synthesis equations are obtained from three vector loop equations for the
Watt I six-bar linkage formulated in each of the specified task positions. The rotations
of each joint relative to the initial configuration are defined by the pairs of complex
vectors and their conjugates,

(Q j , Q̄ j ) = (eiφ j , e−iφ j ), (R j , R̄ j ) = (eiρ j , e−iρ j ),

(S j , S̄ j ) = (eiψ j , e−iψ j ), (U j , Ū j ) = (eiμ j , e−iμ j ). (2)

The overbar denotes the complex conjugate. Notice that each pair satisfies the con-
dition that their product equals one, that is,

Q j Q̄ j = 1, R j R̄ j = 1, S j S̄ j = 1, U jŪ j = 1, j = 1, . . . , N − 1. (3)

This yields 4(N − 1) equations in the unknown joint rotation angles. Using these
rotation unit vectors, we obtain three sets of loop equations from Fig. 1b,

A j =
{

A + Q j (C − A) + R j (G − C) − Tj G = Pj

Ā + Q̄ j (C̄ − Ā) + R̄ j (Ḡ − C̄) − T̄ j Ḡ = P̄j
j = 1, . . . , N − 1, (4)

B j =
{

B + S j (D − B) + R j (G − D) − Tj G = Pj

B̄ + S̄ j (D̄ − B̄) + R̄ j (Ḡ − D̄) − T̄ j Ḡ = P̄j
j = 1, . . . , N − 1, (5)

C j =
{

B + S j (F − B) + U j (H − F) − Tj H = Pj

B̄ + S̄ j (F̄ − B̄) + Ū j (H̄ − F̄) − T̄ j H̄ = P̄j
j = 1, . . . , N − 1. (6)
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This is 6(N − 1) equations in the pivot location and joint angle unknowns.
The collection of the joint normalization conditions (3) and the three sets of loop

equations A j , B j , and C j yields 10(N − 1) equations in the 8N + 6 unknowns,

〈A, Ā, B, B̄, C, C̄, D, D̄, F, F̄, G, Ḡ, H, H̄ 〉〈Q j , Q̄ j , R j , R̄ j , S j , S̄ j , U j , Ū j 〉
j = 1, . . . , N − 1.

(7)

For N = 8, this system is square and has a total degree 270 ≈ 1.18 × 1021.
The joint rotation angles (Q j , Q̄ j ) can be eliminated by solving the loop equations

A j and substituting the result into its normalization condition of (3). Similarly,
(U j , Ū j ) are eliminated using the loop equationsC j and the normalization condition
of (3). The resulting equations are

(Pj − A + R j (C − G) + Tj G)(P̄j − Ā + R̄ j (C̄ − Ḡ) + T̄ j Ḡ) = (C − A)(C̄ − Ā),

(8)

(Pj − B + S j (B − F) + Tj H)(P̄j − B̄ + S̄ j (B̄ − F̄) + T̄ j H̄) = (H − F)(H̄ − F̄),

j = 1, . . . , N − 1.
(9)

This yields a system of 6(N − 1) equations in 4N + 10 unknowns. The degree of
this system is (24 · 32)N−1, which for N = 8 is approximately 1.28 × 1015.

Now, eliminate the variables (R j , R̄ j ) by solving the loop equationsB j . Substi-
tute the result into the normalization conditions of (3) to obtain,

(Pj − B + S j (B − D) + Tj G)(P̄j − B̄ + S̄ j (B̄ − D̄) + T̄ j Ḡ) = (G − D)(Ḡ − D̄),

j = 1, . . . , N − 1.
(10)

Substitution of (R j , R̄ j ) into (8) gives,

((G − D)(Pj − A + Tj G) + w j (C − G))((Ḡ − D̄)(P̄j − Ā + T̄ j Ḡ) + w̄ j (C̄ − Ḡ))

= (C − A)(C̄ − Ā)(G − D)(Ḡ − D̄), j = 1, . . . , N − 1, (11)

where

w j = Pj − B + S j (B − D) + Tj G, w̄ j = P̄j − B̄ + S̄ j (B̄ − D̄) + T̄ j Ḡ. (12)

After this elimination process, the systemconsists of the normalization conditions,
S j S̄ j = 1 and (9), (10), and (11). which tallies to 4(N − 1) equations in 2N + 12
unknowns. The total degree of these equations is (2 · 32 · 5)N−1, which for N = 8 is
approximately 4.78× 1013. To compute the multihomgeneous degree, we introduce
the N + 1 groups,
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Table 1 Eight task positions j x j y j θ j (◦)
0 0 0 0
1 −0.08849958 0.63143282 5.95778240
2 −0.49237057 1.35531439 17.35017046
3 −1.14387347 1.93359099 31.25403761
4 −1.92567709 2.25400993 45.59910917
5 −2.68188520 2.29738239 58.34343392
6 −3.27440782 2.13240439 68.00251408
7 −3.61649767 1.86582938 73.93850323

〈A, B, C, D, F, G, H〉, 〈 Ā, B̄, C̄, D̄, F̄, Ḡ, H̄〉,
and 〈S j , S̄ j 〉, j = 1, . . . , N − 1. (13)

For N = 8 this grouping yields a nine-homogeneous Bezout degree of 3.43× 1010.

4 Numerical Solution for Eight Positions

The synthesis equations were validated by generating a few solutions using an imple-
mentation ofNewton’smethod provided by theMathematica computational software
package called FindRoot. We solved for the task positions listed in Table 1. Example
solutions are listed in Table 2. Solution 1 is shown in Fig. 2.

Newton’s method was used to solve the synthesis equations for a randomized set
of 100,000 of start points. The computation took 46min. All computations of this
chapter were done in parallel on a 64 core machine. The start point values of the
isotropic coordinate pairs (A, Ā), . . . , (H, H̄) were randomized within a 10 × 10
box centered on the origin of the complex plane. The start point values of (S j , S̄ j ),
j = 1, . . . , 7 were specified to be random complex numbers of unit magnitude.
All isotropic coordinate start points maintained conjugate relationships throughout
randomization.

This yielded 28,890 solutions, of which only 64were suitable for linkage analysis.
Solutions suitable for linkage analysis are those whose isotropic pairs are truly con-
jugates and that have link lengths AB, AC , B D, DF , C D, DG, F H , G H greater
than 0.1. Only two of the suitable solutions corresponded to defect-free linkages,
Solutions 1 and 4 in Table 2.
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Table 2 A sample of solutions to the eight position synthesis equations

Solution 1 Solution 2 Solution 3 Solution 4
Re Im Re Im Re Im Re Im

A −2.750557 −0.331168 −2.688674 −0.294929 −3.464722 −0.981841 −2.133969 −1.241728
B −6.443286 −0.179046 −2.918281 −1.066570 −2.979378 −1.882345 −2.456924 −1.199599
C −1.819766 −0.499668 −1.695131 −0.453426 −2.776606 −1.762104 −1.973392 −1.046694
D −2.995680 −0.283615 −3.054520 −1.255878 −2.796190 −2.001717 −2.233036 −1.203616
F −5.386180 −0.695399 −3.134324 −1.075385 −2.965783 −2.550331 −2.403520 −1.686455
G −1.815717 −0.498056 −1.492112 −0.390568 −3.157675 −1.868198 −2.884410 −1.164443
H −2.852650 −1.683542 −3.191124 −1.473735 −2.619687 −2.233975 −2.041865 −1.797497
S1 0.999690 −0.024890 −0.384794 −0.923002 0.686117 0.727491 0.915234 0.402922
S2 0.999171 −0.040701 −0.764101 0.645097 0.236524 0.971626 0.386722 0.922197
S3 0.998217 −0.059687 −0.985651 −0.168793 −0.110517 0.993874 −0.931545 0.363626
S4 0.838386 0.545077 −0.997586 −0.069446 −0.405476 0.914105 −0.664287 0.747478
S5 0.831441 0.555613 −0.965251 0.261323 −0.617109 0.786878 −0.979973 0.199132
S6 0.986016 −0.166650 −0.777383 0.629027 −0.824702 0.565568 −0.980540 −0.196322
S7 0.915030 0.403386 0.789645 0.613565 −0.870772 0.491688 −0.847467 −0.530849

Fig. 2 Watt I six-bar linkage that passes through eight specified task positions

5 Solution for Six Positions

If only N = 6 positions are specified, then we may specify four conditions on the
design parameters. One choice is to specify the ground pivot locations (A, Ā) and
(B, B̄). This is natural for design purposes and also leads to considerable simplifi-
cation in the numerical treatment of the problem. With N = 6 there are 20 synthesis
equations in 20 unknowns with a total degree of (2 · 32 · 5)5 ≈ 5.90 × 109. In this
case, however, the unknowns separate into the ten groups

〈C, C̄〉, 〈D, D̄〉, 〈F, F̄〉, 〈G, Ḡ〉, 〈H, H̄ 〉, and 〈S j , S̄ j 〉, j = 1, . . . , 5, (14)
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Table 3 Paths tracked and nonsingular endpoints found at each level of regeneration

Level Paths Nonsingular endpoints

0 3 3
1 9 9
2 25 25
3 63 61
4 138 130
5 548 437
6 1421 788
7 2062 980
8 2022 868
9 1346 500
10 900 900
11 1600 1600
12 2400 2341
13 2941 2042
14 2042 808
15 1616 1548
16 3095 2880
17 5760 4867
18 9734 6638
19 13275 5735

Fig. 3 A Watt I six-bar linkage that reaches six task positions

which yields the ten-homogeneous Bezout degree 1,998,720. The Bertini numerical
continuation software was used to obtain a complete solution to this problem.

The solution of this problem takes advantage of regeneration. Regeneration tracks
solutions for several levels of homotopies. In a square system of n equations and
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Table 4 A sample of solutions to the six position synthesis equations

Solution 1 Solution 2 Solution 3 Solution 4
Re Im Re Im Re Im Re Im

C −3.277663 −0.360479 −2.438554 −0.627923 −2.672919 −1.937923 −2.787652 −3.185862
D −1.612335 −1.898356 −0.432594 −0.991854 −1.172132 −2.538575 −3.547796 −1.100739
F −1.948622 −1.535115 −0.322911 −2.589864 −2.175566 −1.663265 −6.427970 −0.222094
G −1.835116 −0.569740 −1.204924 −0.030339 −2.786399 −2.523568 −2.103420 −1.644206
H −2.410335 −1.772735 0.116380 −2.016269 −4.636286 −1.395320 −2.387046 −2.239104
S1 0.626133 0.779716 0.956723 0.290999 0.989602 0.143835 −0.978732 0.205142
S2 0.040843 0.999166 0.783349 0.621582 −0.876928 −0.480621 0.999287 −0.037744
S3 −0.473696 0.880688 0.493733 0.869614 −0.916843 −0.399247 −0.905977 −0.423328
S4 −0.822092 0.569355 0.144621 0.989487 0.403962 0.914776 0.998733 0.050325
S5 −0.978809 0.204776 −0.194393 0.980924 −0.977576 −0.210581 0.985576 0.169231

unknowns, the first level solves a system composed of 1 equation of the target sys-
tem and n−1 arbitrarily specified linear equations in all unknowns. The finite isolated
solutions of the first level are used to solve the second level system. At each succeed-
ing level, one linear equation is replaced with one target system equation until the
final level when the target system is solved. A detailed description of regeneration is
found in Bates et al. [1].

Our level by level results of regeneration are shown in Table 3. Finally, 5,735 non-
singular solutions were found after tracking a total of 51,000 paths. The computation
took about 7h.

The solution set and parameters from the regeneration run provided a parame-
ter homotopy for the synthesis equations. The base pivots were specified to be
A = −3.976225 − 0.623063i and B = −2.024139 − 1.285906i . This compu-
tation took about 5min and yielded 5,556 nonsingular solutions of which 243 were
suitable to analyze and 43 were defect-free. Example solutions are listed in Table 4.
Solution 1 is shown in Fig. 3.

6 Conclusion

The chapter derives the synthesis equations forWatt I six-barmechanisms that guides
a body through N task positions. For N = 8, we were unable to solve this problem
using polynomial continuation but did obtain solutions via repeated trials ofNewton’s
method.

For the simpler problem of six positions with specified ground pivots, we com-
puted a complete solution using polynomial regeneration. This gives a set of 5,735
solutions that serve as the start points for a parameter homotopy to solve any partic-
ular case in about 5min on a 64 core parallel computer.
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Collision-Free Workspace of 3-RPR Planar
Parallel Mechanism via Interval Analysis

MohammadHadi FarzanehKaloorazi, Mehdi Tale Masouleh
and Stéphane Caro

Abstract This chapter proposes an interval-based approach, to obtain the
collision-freeworkspace of planar parallelmechanisms. This approach is represented
through an example for a 3-RPR planar parallel mechanism, but it can be extended
to investigate the obstacle avoidance of higher degree of freedom and spatial mech-
anisms. Three main feature of the collision-free workspace is taken into account:
mechanical stroke of actuators, interference of limbs with the obstacle and inter-
ference of end-effector with the obstacle. In this chapter a circle shaped obstacle is
considered and its mechanical interference with limbs and edges of the end-effector
is taken into account. The results are represented and ongoing works are mentioned.

Keywords Collision-free · Workspace · Obstacle avoidance · Mechanical
interference · Parallel mechanisms · Interval analysis

1 Introduction

Parallel mechanisms are known to be more precise and able to carry more loads with
respect to serial manipulators [8]. Besides several advantages, they are restricted by
their limited workspace. Therefore, in practice, the presence of an obstacle inside
theirworkspace should be taken into consideration in order to alleviate this limitation.
Obtaining the collision-free workspace of parallel mechanisms leads to have a
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conservative workspace for which all actions inside the aforementioned workspace
are free of collision. Furthermore, obtaining the collision-free workspace is a definite
asset in path planning and obstacle avoidance while controlling parallel mechanisms.

The problems of path planning and obstacle avoidance have been frequently
investigated in the literature [1, 2, 5, 11]. Brooks et al. in [2], propose an effi-
cient algorithm that finds collision-free paths for a manipulator with five or six
revolute joints. Yang et al. in [11], investigated dynamic collision-free trajectory
generation in a non-stationary environment, using biologically inspired neural net-
work approaches. Brocks and Khatib in [1], represented elastic strip framework that
enables the execution of a previously planned motion in a dynamic environment for
robots with many degrees of freedom. Khatib et al. in [5], presented developments of
models, strategies, and algorithms dealing with a number of autonomous capabili-
ties that are essential for robot operations in human environments. These capabilities
include: integrated mobility and manipulation, cooperative skills between multiple
robots, interaction ability with humans, and efficient techniques for real-time mod-
ification of collision-free paths. In [6], Komainda and Hiller represented a concept
for motion control of redundant manipulators in a changing environment. In [4],
Jiménez et al. represented a general approach to cover all distance computation algo-
rithms, hierarchical object representations, orientation-based pruning criteria, and
space partitioning schemes. In [10], Wenger and Chedmail represented the collision-
free workspace of serial manipulators. Caro et al. in [3], introduced a new method,
based on numerical constraint programming, to compute a certified enclosure of the
generalized aspects.

The mathematical framework used in this chapter is based on interval analysis
[9]. Interval analysis is a reliable method to evaluate functions and is used frequently
in the field of robotics [7]. An interval variable of [x] = [x, x] is a set of all real
numbers from the lower bound, x , to the upper bound, x . In order to have more
details, see interval analysis in [9].

The remainder of this chapter is organized as follows. First, the the concept of
the algorithm to obtain the collision-free workspace is broadly reviewed. Then, the
pseudo-code of the algorithm is explained. Finally, the results and the conclusion of
the obtained collision-free workspace are presented.

2 Obstacle Avoidance Formulation via Geometrical Concept

In order to avoid an obstacle, in general, the links of limbs and the edges of the
End-Effector (EE) are considered to be straight line segments. Through this chapter,
the obstacle is a circle; Px and Py being the Cartesian coordinate of its center point
and Pr its radius. The problem of obtaining the collision-free workspace via interval
analysis can be divided into two cases: the collision between the obstacle and (a) a
line passing through one point and one box (b) through two boxes. The first case is
applicable for those limbs which are connected to the fixed frame via a revolute joint;
for instance, A1B1, A2B2 and A3B3 in the 3-RPR Planar Parallel Mechanism (PPM)
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Fig. 1 a Schematic representation and b the constant-orientation workspace of a 3-RPR PPM.
A1 = {−10,−5}, A2 = {50,−5} and A3 = {15, 40}; Px = 20, Py = 0 and Pr = 3; lx = ly = 10.
a 3-RPR PPM and a circle shaped obstacle located at point P . ρmin = 5 and ρmax = 50, b The
constant-orientation workspace of the 3-RPR PPM for φ = π/4, via interval analysis, collisions
are ignored. Green boxes are inside and red boxes are outside the workspace

shown in Fig. 1a. The second case is more general and is applicable for those links
which are the medial or distal links of the limb; these links are not existed in the
3-RPR PPM. Moreover, the edges of the EE should be categorized in the second
case; in the 3-RPR PPM, B1B2, B2B3 and B3B1.

A simple solution to obtain the collision-free workspace is to write the equation
from the distance of a point to a line in the 2D space, which can be written as:

d =
√(

Px +m Py−mc
m2+1

− Px

)2 +
(

m
Px +m Py−mc

m + c − Py

)2
L : y = mx + c,

(1)

where d stands for the distance from point P to line L , Px and Py are the x and y
coordinates of the obstacle P , respectively, and m stands for the slope of the line and
c is a constant.

In the case of implementing an interval line using a point and a box, the first
aforementioned case, one has;

m = Ay − [By]
Ax − [Bx ] , c = Ay − m Ax , (2)

in which Ax and Ay stand for the coordinates of point A, [Bx ] and [By] stand for the
components of box [B]. These lines are referred to as the collision lines, which are
assigned to the links of mechanisms and in some positions, may interfere with the
obstacle.

Resorting to interval functions [8], one can apply interval variables to Eq. (1) and
obtain an interval of distances, [d]. For example, in the case of the 3-RPR PM for the
first limb, the collision line passes through A1, which is a fixed point, and a box in
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Algorithm 1The pseudo-code of the algorithm to obtain the collision-freeworkspace
of a 3-RPR PPM. Lines followed by % are comments.

∨
and

∧
stand for logical

OR and logical AND, respectively.
1: Input: Design parameters of the 3-RPR PPM; Px , Py and Pr ; [B] as 2D search space; ρmin and

ρmax as mechanical strokes; ε as the desired accuracy
2: Output: Lin as the constant-orientation collision-free workspace of the 3-RPR PPM, Lout as

boxes, which are outside the aforementioned workspace.
3: L (1) = [B] % Position of the EE;
4: while IsEmpty(L ) �= 1 do
5: [B1] = L (1); % Position of box [B1] in the fixed frame Oxy
6: [B2] = L (1) + (b2 − b1)Oxy ; % Position of box [B2] in the fixed frame Oxy
7: [B3] = L (1) + (b3 − b1)Oxy ; % Position of box [B3] in the fixed frame Oxy
8: for i from 1 to 3 do
9: [ρi ] = ‖Ai − [Bi ]‖; % Length of prismatic actuator ρi
10: [di ] = Distance(Line(Ai , [Bi ]), P); % Distance from P to the line passing through

Ai and [Bi ]
11: end for
12: [t1] = Distance(Line([B1], [B2]), P);
13: [t2] = Distance(Line([B2], [B3]), P);
14: [t3] = Distance(Line([B3], [B1]), P);
15: if ρmin < [ρ1,2,3] < ρmax

∧
(Pr < d1,2,3

∨ ‖A1,2,3 − [B1,2,3]‖2 < ‖A1,2,3 −
P‖2) ∧

Pr < t1,2,3 then
16: Lin ←− [B1]
17: else if (ρmax < [ρ1]∨ ρmax < [ρ2]∨

ρmax < [ρ3]) ∨
…

([ρ1] < ρmin
∨[ρ2] < ρmin

∨[ρ3] < ρmin)
∨

…
(d1 < Pr

∧ ‖A1 − [B1]‖2 > ‖A1 − P‖2) ∨
…

(d2 < Pr
∧ ‖A2 − [B2]‖2 > ‖A2 − P‖2) ∨

…
(d3 < Pr

∧ ‖A3 − [B2]‖2 > ‖A3 − P‖2) ∨
…

t1 < Pr
∨

…
t2 < Pr

∨
…

t3 < Pr then
18: Lout ←− [B1]
19: else if Size([B1] > ε then
20: L (end − 1, end) ←− Bisect([B1]) % Bisect [B1] by the largest edge and add two

new boxes at the end of L
21: end if
22: ShiftLeft(Empty(L (1))) % Erase data ofL (1) and shift one cell to the left
23: end while

the search space of the interval algorithm. The task of the algorithm is to determine
the distance from obstacle P to the collision line. If [d] > Pr , i.e., the distance of all
possible lines passing through the fixed point and the box under investigation will be
higher than the obstacle radius, then the corresponding box will be fully inside the
collision-free workspace. On the other hand, if [d] < Pr , the boxwill be fully outside
the aforementioned workspace. Eventually, if 0 ∈ [d] − Pr the box goes for further
bisection. The result of the above procedure is illustrated in Fig. 2. Noteworthy, the
green circles in figures correspond to the lower limitation of the actuators and even
in the case of no obstacle, will appear in workspace.
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Fig. 2 The collision-free workspace of a 3-RPR PPM shown in Fig. 1a, for φ = 0, only considering
the first limb A1B1.Green boxes are inside and red boxes are outside the collision-free workspace. a
A1B1 as a line satisfying [d] > Pr . b A1B1 as a segment line satisfying [d] > Pr and ‖A−[B]‖2 <

‖A − P‖2

The procedure of obtaining the collision-free workspace is not complete yet.
Indeed, the RPR limb must be regarded as a segment instead of a line. Therefore, if
‖A − [B]‖2 < ‖A − P‖2, then [B] does not interfere the obstacle and should be a
member of collision-free workspace, Fig. 2a.

In addition to the limbs, the interference between the edges of the EE and the
obstacle should also be taken into account. In the case of 3-DOF planar mechanisms,
a general EE can be regarded as a triangle. Therefore, its edges belong to those
lines passing through two intervals, i.e., the second case. In this case, obtaining the
distance from the obstacle to the line, using Eq. (1), leads to a very time consuming
and inefficient process. Hence, a geometrical methodology is proposed in order to
eliminate those parts of the workspace for which edges of the EE collide with the
obstacle. Figure 3a illustrates the results of the foregoing methodology considering
only the collision of edge B1B2 with the obstacle, forφ = 0. In this figure, a rounded-
end rectangle inside the workspace is eliminated. This shape is generated by shifting
the obstacle circle through the segment line that connects B1 to B2. Practically, the
center of the circle-shaped obstacle should be regarded as an interval. In the case of
3-RPRPPMshown in Fig. 1a, [Cx ] = Px −[0, lx cosφ] and [Cy] = Py−[0, ly cosφ]
are the x and y Cartesian coordinates of the center of the shifted obstacle, respectively.
Upon considering all the three edges of the EE, Fig. 3b represents the collision-free
workspace of the 3-RPR PPM for φ = π/4.

Algorithm 1 represents the pseudo-code of the introduced method. It is based on a
branch and prune algorithm [7]. In lines 5–7, the position of the three distal joints are
determined as intervals in the fixed frame. In line 9, for all limbs, the distance from
the distal to the proximal joints, i.e., the length of the actuator, is evaluated in order
to be checked in line 15. In line 10, Line(A, B) is a function that creates a collision
line that passes through points A and B. Since the second argument is an interval
[Bi ], hence the collision line is an interval line. Distance(L, P) computes the
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Fig. 3 The collision-free workspace of the mechanism sown in Fig. 1a by considering interval
segment lines passing through two intervals. Green boxes are inside and red boxes are outside the
collision-free workspace. a The case for which only B1B2 collides with the obstacle, φ = 0. b
Regarding all edges of the EE, i.e. B1B2, B2B3 and B3B1, φ = π/4

Euclidean distance from point P to line L . Therefore, [di ], i = 1, 2, 3 are intervals
of possible distances from P to the corresponding line of the i th actuator. Lines
12–14 are interval lines that passing through two intervals. Line 15 is the general
if-clause for which if all [ρi ] are in the acceptable range, and if all [di ] distances from
P to the collision lines are higher than Pr , then the box under study will be a member
of the collision-free workspace, Lin . There is an extra condition to ascertain that if
the distance from the box [bi ] to the fixed point Ai is lower than the distance from
P to Ai , hence the box should be inside the collision-free workspace. On the other
hand, if only one of the aforementioned criteria violates entirely, then the box will
be moved to the outer boxes list,Lout . In line 19, if the box under study is partially
inside the collision-free workspace and at least one of its dimensions is still larger
than the desired precision, then it will be bisected by the largest edge and two new
boxes will be added at the end of listL . The algorithm continues until the prescribed
precision is reached.

3 Results

So far, an interval-based method to obtain the collision-free workspace of planar
parallel mechanisms, for a 3-RPR PPM as a case study, has been introduced and
the results of collision-free workspace, by considering only the collision of one
limb, Fig. 2b, and only considering the collision of the edges of the EE, Fig. 3b,
are depicted. The next step is to put together all limbs collision-free workspaces.
Figure 4a represents the collision-free workspace of the mechanism for φ = π/4,
by considering the collisions all limbs with the obstacle. It should be noted that
in Fig. 4a, the obstacle is only inside the collision space of the first limb and as it
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Fig. 4 The collision-free workspace of the 3-RPR PPM shown in Fig. 1a, for φ = π/4, a only
considering limbs b final result considering all collisions. Green boxes are inside and red boxes are
outside the collision-free workspace. a Only limbs collisions are taken into account, φ = π/4, b
Intersection of all collision-free workspaces including all limbs and all edges of the EE

can be observed, for the second and third limbs the obstacle is located outside the
corresponding red boxes. The latter is due to the fact that the represented workspace
is depicted in the fixed coordinate frame and since a constant-orientation of the EE is
considered, thus other limbs should be translated into the fixed coordinate frame via
the transformation of the moving frame. For instance, in the case of the 3-RPR PPM
for φ = π/4, if we move the obstacle by the vector of −{lx cos(π/4), ly sin(π/4)}T ,
which is the negative of position of joint B2 represented in the moving frame, the
obstacle will be located in the red boxes caused by considering the collision of the
second limb and the obstacle.

Thefinal step to obtain the collision-freeworkspace is tomerge the results obtained
and intersect them, i.e., considering the limb collisions, Fig. 4a, and all edges of the
EE, Fig. 3b, with the obstacle. The final result is illustrated in Fig. 4 and as it could
be expected, the obstacle divides the workspace into three separated parts, which are
not connected to each others. The obtained collision-free workspace can be used in
obstacle avoidance problems. As it is obtained via interval analysis, for all paths,
which their points are located inside the collision-free workspace, it is guaranteed
that the paths are free of obstacle collision.

The introduced method to obtain the collision-free workspace for planar parallel
mechanisms can be readily extended to more complicated and spatial PMs. Indeed,
one can solve the inverse kinematic problem and use the obtained equations to deter-
mine the interval position of all joints and define the aforementioned segment lines
to obtain the distances to the obstacle. It takes approximately 3 min to compute the
collision-free workspace of the 3-RPR PPM shown in Fig. 1a, precision of 10−6

percent of initial search space, with a 2 GHz processor, using INTLAB 6 toolbox.
In the case of higher degree of freedom mechanisms having more links, collision
computation of each limb will be added into the computational time.
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4 Conclusion

In this chapter, an interval-based methodology was introduced in order to obtain
the collision-free workspace of planar parallel mechanisms. The proposed approach
for the collision-free workspace and the corresponding results were represented for
different cases and orientations of the end-effector. First, the collisions of proximal
segment lines, which pass through one point and one interval, with the obstacle were
investigated. Then, a more general case in which the segment line passes through
two intervals, was used to determine the collision of the obstacle with medial and
distal limbs, and also edges of the EE. The proposed method is applicable for higher
DOF mechanisms and spatial parallel robots. Ongoing work deals with the collision
detection of limbs between themselves into the algorithm used for the computation
of collision-free workspace of parallel mechanisms.
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Development of a One Degree of Freedom
Mechanical Thumb Based on Anthropomorphic
Tasks for Grasping Applications

Shramana Ghosh and Nina Patarinsky Robson

Abstract Our preliminary work on kinematic synthesis of serial chains shows that
the curvature requirements of bodies in contact yield geometric task constraints on
position, velocity and acceleration to yield design equations that can be solved to
determine the dimensions of amechanical chain. In this chapter,we showa systematic
method for using these higher order motion constraints to formulate the synthesis
equations for the design of a planar four bar linkage to be used as a thumb of an
underactuated mechanical hand, based on an anthropomorphic task. The thumb will
be combined with one degree of freedom multi-loop index and middle fingers to
form an underactuated robotic hand for object grasping.

Keywords Kinematic synthesis · Planar linkages · Higher-order constraints ·
Robotic grasping

1 Introduction

Design of underactuated robotic hands has drawn a lot of interest in the recent years
as they offer numerous advantages in terms of lower cost, size, weight and complexity
over fully actuated robotic hands. Humanoid robotic hands that can perform chal-
lenging tasks like stable grasping of irregular objects, precision assembly etc., such
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as the Stanford/JPL HND [1], Utah/MIT Hand [2], DLR-II Hand [3], Gifu II Hand
[4], ShadowDexterous Hand [5], require the use of a substantial number of actuators,
resulting in complicated, expensive and bulky devices. Thus, there has been increas-
ing interest in underactuated hand designs which are particularly well-suited for
grasping applications, as under certain conditions the unconstrained freedoms result
in passive adaptibilty of the fingers around the object to be grasped. Some prominent
examples of underactuated hands are the SARAHHand [6], Barett Hand [7], LARM
Hand [8]. While underactuated hands that use tendon-based actuators are compact in
size and dexterous in operation, they suffer from friction and elasticity related issues
[9] and are generally limited to small grasping forces. For applications where high
stability and large grasping forces are expected, linkage based mechanisms can be
used, as demonstrated by the mechanical gripper designed by Gosselin and Laliberte
[10] and the TUAT/Karlsruhe Hand [11]. However, there is little reported regarding
the methods used to design these linkages.

The mobility of bodies in contact has been studied using first order theories
that are based on notions of instantaneous force and velocities [12]. For example,
Ohwovoriole and Roth describe the relative motion of contacting bodies in terms
of Screw Theory. Using first order notions, Reuleaux [13], Markenskoff et al. [14]
and Mishra et al. [15], derive bounds on the number of frictionless point contacts
required for force closure, which is one means to immobilize an object. However,
first order theories are inadequate in practice. The source of deficiency is that the
relative mobility of an object in contact with finger bodies is not an infinitesimal
notion but a local one. When developing a systematic methodology for the design
of multi-fingered robotic hands, one must consider the local motions of the object
and not the tangential aspects of the motions, as employed by the first-order theories.
This calls for innovative ways to look at the design problems and formulate them in
an effective manner such that the whole design space can be obtained.

The synthesis of planar linkages for velocity and acceleration constraints was
formulated about 40 years ago by Tesar [16] and Dowler et al. [17]. The concept
of using relative curvature of surfaces in contact to limit the movement of a work-
piece was introduced by Rimon and Burdick [18, 19]. They generalized the study
of the grasping constraint of a rigid body using the fingers of a mechanical hand by
considering the configuration space of movement of the body relative to obstacles
formed by the fingers, and introduced the idea of second order mobility of a con-
strained body. Currently [20–22], Robson and McCarthy, and later on Robson and
Tolety [23] developed the theoretical framework for the geometric design of planar
and spatial serial mechanical linkages to guide an end-effector that maintains con-
tact with specified objects in the environment. They show that the contact geometry
defines velocity and acceleration specifications for the movement of the end-effector
that are used to formulate synthesis equations for the serial chain.

In this chapter we discuss how to use these higher order effects to formulate the
synthesis equations of a planar one-degree-of-freedom four-bar linkage used for the
design of a mechanical thumb. The addition of requirements for the accelerations
of the fingertips allows for (1) consideration of the local motions of the tip of the
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Fig. 1 a General structure of a planar RR chain and the five design parameters B, P and a. b
Example of a typical task specification for the synthesis of an RR chain: P1 and P2 indicate position
specifications, V1 and V2 velocity and A2 acceleration specification

thumb and a grasped object, (2) accurate definition of the anthropomorphic tasks in
the vicinity of specified positions.

2 Kinematic Synthesis of a Planar Four Bar Linkage
with Second Order Kinematic Constraints

A four-bar type of linkage is chosen to be used for the thumb design based on the
kinematic structure of the human’s thumb, as well as the advantages of low actuation,
high grasping forces and stability that the parallel linkages offer. In order to synthesize
the planar 4R chain, we formulate and solve the design equations for a planar RR
serial chain. The planar RR chain, shown in Fig. 1a, plays a major role in the planar
linkage synthesis, because it is the building block of many open and closed loop
planar robot manipulators. The analytical solution of the RR likage design equations
yield zero, two, or four sets of real values for the five design parameters for the chain
that ensure that the floating link/finger tip moves through the task positions. When
two of these chains are connected in parallel, the workspace of the system reduces
from two to one dimension to form a single degree of freedom 4R chain.

In what follows, we briefly describe our recent results on kinematic synthesis of
a planar RR chain with second order task specifications. As a next step, we present
the geometric design of a one degree of freedom mechanical thumb for grasping
applications, based on an anthropomorphic task obtained from a motion capture
system and a sensor-based glove device.
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2.1 Kinematics of a Planar Serial RR Chain

Assume that the planar task consists of positioning the tip of the thumb at a start and
an end position which are given by P1V1 and P2V2A2 (see Fig. 1b).

Let the the movement of the tip of the thumb be defined by the parameterized set
of 3× 3 homogeneous transforms [T (t)] = [R(t), d(t)] constructed from a rotation
matrix, R(t), and translation vector d(t). A point p fixed in the moving body traces
a trajectory P(t) in a fixed coordinate frame F , given by

⎧
⎨

⎩

Px (t)
Py(t)
1

⎫
⎬

⎭
=

⎡

⎣
cosφ(t) − sin φ(t) dx (t)
sin φ(t) cosφ(t) dy(t)

0 0 1

⎤

⎦

⎧
⎨

⎩

px

py

1

⎫
⎬

⎭
, (1)

or
P(t) = [T (t)]p. (2)

Our goal is to determine the movement [T (t)]. The movement of M relative to a
world frame F in the vicinity of a reference position, definoted by t = 0 can be
expressed as the Taylor series expansion,

[T j (t)] = [T j
0 ] + [T j

1 ]t +
1

2
[T j

2 ]t2 + . . . , j = 1, . . . , n

where [T j
i ] =

di [T j ]
dti

∣
∣
t=0. (3)

The matrices [T j
0 ], [T j

1 ] and [T j
2 ] are defined by the position, velocity and acceler-

ation of the end-effector in the vicinity of the two task positions M j . Therefore, a
point pj in M has the trajectory Pj(t) defined by the equation

Pj(t) = [T j (t)]pj = [T j
0 + T j

1 t + 1

2
T j
2 t2 + · · · ]pj. (4)

Let pj = [T j
0 ]−1Pj, which yields

Pj(t) = [T j
0 + T j

1t + 1

2
T j

2t2 + · · · ][T j
0]−1Pj,

= [I + Ω j t + 1

2
Λ j t2 + · · · ]Pj, (5)

where

[Ω j ] =
⎡

⎣
0 −φ1 dx1 + dy0φ1
φ1 0 dy1 − dx0φ1
0 0 0

⎤

⎦ , [Λ j ] =
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⎣
−φ2

1 −φ2 dx2 + dx0φ
2
1 + dy0φ2

φ2 −φ2
1 dy2 + dy0φ

2
1 − dx0φ2

0 0 0

⎤

⎦

(6)
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are the planar velocity and planar acceleration matrices, which are defined by the
velocity and acceleration specifications of the tip of the thumb in the vicinity of the
task positions M j , j = 1, . . . , n.

2.2 The Constraint Equations and Solutions

The design parameters for the RR chain are the coordinates B = (Bx , By) of the
fixed pivot, the coordinates P1 = (Px , Py) of the moving pivot when the floating
link is in the first position, and the length a of the link (see Fig. 1). Notice that in
each task position the moving pivot Pj is constrained to lie at the distance a from B,
so we have,

(Pj(t) − B) · (Pj(t) − B) = a2 (7)

The derivatives of this equations provide the velocity constraint equation

d

dt
Pj · (Pj − B) = 0 (8)

and the acceleration constraint equation

d2

dt2
Pj ·

(
Pj − B

)
+

( d

dt
Pj

)
·
( d

dt
Pj

)
= 0 (9)

In order to determine the five design parameters, we require five design equations.
Choosing one of the task positions to be the first and using the relative displacement
matrices [D1 j ] = [T j

0][T 1
0]−1 allow us to define coordinates Pj taken by the

moving pivot as follows:
Pj = [D1 j ]P1 (10)

We now substitute Pj in Eq. (7) to obtain,

(
[D1 j ]P1 − B

)
·
(
[D1 j ]P1 − B

)
= a2, i = 1, . . . , n (11)

These are the position design equations. Note, that [D11] is the 3×3 identity matrix.
From our definition of the 3× 3 velocity matrix, we have d

dt Pj = [Ω j ][D1 j ]P1 and
substituting Pj into (8), we obtain the velocity design equations

(
[Ω j ][D1 j ]P1

)
·
(
[D1 j ]P1 − B

)
= 0, j = 1, . . . , n (12)

From our definition of the 3× 3 acceleration matrix, we have d2

dt2
Pj = [Λ j ][D1 j ]P1

and substituting Pj in Eq. (9) yields
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(
[Λ j ][D1 j ]P1

)
·
(
[D1 j ]P1 − B

)
+

(
[Ω j ][D1 j ]P1

)
·
(
[Ω j [D1 j ]P1

)
= 0, j = 1, . . . , n

(13)
These are the acceleration design equations. Thus, for each of the n task positions,
the position, velocity and acceleration design equations have the following form

P j :
(
[D1 j ]P1 − B

)
·
(
[D1 j ]P1 − B

)
= a2,

V j :
(
[Ω j ][D1 j ]P1

)
·
(
[D1 j ]P1 − B

)
= 0,

A j :
(
[Λ j ][D1 j ]P1

)
·
(
[D1 j ]P1 − B

)

+
(
[Ω j ][D1 j ]P1

)
·
(
[Ω j ][D1 j ]P1

)
= 0, j = 1, . . . , n. (14)

The constraint equations (14) can be solved algebraically, or numerically usingMath-
ematica’s Nsolve function (see [22] for more details). The algebraic solution to
the set of four bilinear equations for an RR chain is presented in McCarthy [24] for
the case of five position synthesis and applies without any changes to the design
equations (14).

3 Geometric Design of One Degree-of-Freedom Thumb
Based on Anthropomorphic Task

To specify the task, we obtain experimental kinematic motion task data (position,
velocity, acceleration specifications) from a subject performing a grasping task using
a 3D motion capture system (Vicon, OMG PLC., U.K.), shown in Fig. 2a. Recently,
the authors developed a cost-effective sensor based glove, which is used in conjunc-
tion with the motion capture system to define directly the accelerations, measured at
the tip of the fingers and the thumb.

The glove is shown in Fig. 2b, c and is equipped with tri-axis accelerometers
(ADXL 335) at the fingertips in addition to the infra-red (IR) markers neccessary for
the motion capture system data. Details on the operation of the device can be found
in [25].

During each capture session, a left-handed subject sits at a table such that their arm
rests on the table in a relaxed position with a pen placed within their reach, and when
prompted grasps it. A smaller object with higher curvature is specifically chosen for
the task with the idea of testing later the extent of generalization/applicability of
the synthesis method to grasping of bigger objects with different geometries. The
obtained thumb trajectory can be seen in Fig. 2d.

For defining the synthesis task, we chose two critical positions on the trajectory
(the start and end), in which the local motions aspect is important for the thumb
performance. At the start position we define a velocity, in order to keep the finger
moving as closely along a tangent as possible to the original trajectory in the vicinity
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Fig. 2 a View of the human hand performing object grasping task. Sensor based glove prototype
b without and c with IR markers. d Task trajectory obtained from motion capture system

Table 1 The two positions, velocities and one acceleration, obtained from the anthropomorphic
task data from the thumb motion of a left-handed subject performing a pen grasping task

Task 1 2

Position (θ, dx , dy) (0, 2.2, 1.4) (0, 2.5, 2.5)
Velocity (θ̇ , ḋx , ḋy) (1, 0.53, 2.09) (1, 0.33,−1)
Acceleration (θ̈ , d̈x , d̈y) – (0, 1.18, 4.63)

The positions, velocities and accelerations are expressed in a coordinate frame centered at the MCP
joint of the index finger. Lengths are measured in inches, angles in radians and time in seconds

of that position. The second position was defined at the point of contact between the
tip of the thumb and the pen. Velocity and acceleration constraints, obtained from
the sensor based glove were defined in this position, since the local motions within
the vicinity of the contact are critical to the overall performance of the thumb. The
task at each of the two selected positions is shown in Table 1.
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Fig. 3 a Kinematicmodel of thumb as a 2R chain. The • represents a revolute joint. bThe trajectory
of the RR chain, moving from the first to the second position and back

Table 2 The two real solutions for the fixed B and the moving pivots P (in inches)

Solution B P

1 (−0.82, 2.58) (0.62, 1.59)
2 (0.56, 1.14) (0.94, 0.45)

Next, Eq. (14) are applied to synthesize an RR chain denoted by B1P1, with a
length a within the range of the average distance between the interphalangeal (IP)
and distal interphalangeal (DIP) joints for human thumb (see Fig. 3a). The obtained
two real solutions from the synthesis of the RR chain are listed in Table 2 and are
connected in parallel to form a 4R chain, shown in Fig. 4. The B1P1 is obtained to
be equal to 1.75 inches and its trajectory is shown in Fig. 3b. Note, that the pick of
the trajectory in the vicinity of the second position is where the contact between the
thumb and the object occurs and is due to the specified acceleration.

The link length of the second RR chain B2P2 is equal to 0.79 inches, which is less
than half of the size of B1P1 (see Table 2). Last, we animate the linkage to ensure
that the tip of the thumb moves smoothly through the given task.

The synthesis results for the planar four-barmechanical fingermoving through the
anthropomorphic trajectory is shown in Fig. 4a. The CAD model of the synthesized
linkage is shown in Fig. 4b, and a physical model of the thumb linkage is shown in
Fig. 4c.

4 Conclusions

The chapter describes a systematic method for the kinematic synthesis of a one
degree-of-freedommechanical thumb to ensure that it does not violate normal direc-
tion and curvature constraints, related to velocity and acceleration specifications,
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Fig. 4 a Result from the synthesis of a one degree of freedom mechanical thumb at its initial
position in Mathematica, b A CAD model of the synthesized thumb c A physical model of the
thumb, d The - - - represents the experimentally obtained trajectory and · · · represents the path
trajectory of the synthesized thumb linkage

imposed by contact with objects. The theoretical foundation presented in this chapter
serves as a basis for the further design of middle and index fingers for an underactu-
ated mechanical hand and assists in solving some of the open problems in the field,
providing results on the synthesis of parallel mechanical chains, based on human’s
dimensions and anthropomorphic tasks.
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Trifurcation of the Evolved Sarrus-Motion
Linkage Based on Parametric Constraints

Ketao Zhang and Jian S. Dai

Abstract This chapter investigates a single-loop overconstrainedmechanismwhich
is an evolved Sarrus-motion linkage extracted from origami-type cardboard model.
The mechanism is characterized by bilateral symmetry in the three-dimensional
Euclidean space, revealing the mechanism is an interesting case of plane-symmetric
Bricard 6R loops. The parametric constraints of this overconstrained 6R mecha-
nism are derived according to its inherent geometry. This mechanism is capable of
transforming rotary motion into spherical motion. Constraints analysis in terms of
reciprocal screws reveals a unique set of design parameters resulting in constraints
degeneration and singularity. This leads to further identification of a very interesting
behaviour, trifurcation, of the Sarrus-motion linkage specified by the unique set of
design parameters.

Keywords Overconstrained mechanism · Sarrus-motion linkage · Parametric con-
straints · Trifurcation

1 Introduction

Link-motion, which came to attract a great deal of attention, initially arose in practi-
cal problems in various fields such as generation of rectilinear motion in the design
of steam engines [1]. It was recognized as a beautiful discovery in link-motion when
Peaucellier [2] first reported his solution for generating a straight line and also a conic
before G. T. Bennett pointed out that P. F. Sarrus apparatus invented in 1853 [3] is
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the first mechanism for generating straight-line motion. Starting from the attention
called to the Sarrus linkage, a number of overconstrained 6R linkages have been pre-
sented. Bricard discovered three different types of mobile 6R-loops during an earlier
period beginning from1897 and the other three in 1927 [4, 5]. Schatz [6] discovered
the invertible cube due to his art studies, and his discovery of the inversion move-
ment led to the first practical application, Turbula, which was patented in 1971 as
one typical overconstrained linkage used in industry [7]. Further study reveals that
Schatz linkage can be derived from a special plane-symmetric Bricard loop. Besides
the aforementioned inventions of overconstrained 6R mechanisms by mathemati-
cians and engineers, systematic approaches for searching possible overconstrained
6R mechanisms were explored subsequently. Goldberg [8] presented asymmetrical
overconstrained mobile 6R linkages by firstly attaching three selected Bennett loops
in series. Altmann presented a workable linkage [9] which was revealed as a special
case of the Bricard line-symmetric 6R linkage. Waldron obtained a class of over-
constrained mechanisms and the six-bar linkage by combining two Bennett linkages
[10]. Baker [11] went trough a thorough study of the Bricard 6R-loops and classified
these linkages into five distinct cases according to the parametric constraints and
closure equations.

In the last two decades, the overconstrained 6R linkage has been extensively
studied [12] and their capabilities of being used in deployable structures and foldable
devices [13] were explored. A number of works have been reported on the kinematics
of overconstrained 6Rmechanisms. However, there are very few of them focusing on
reconfiguration and motion branches variation of these mechanisms with one degree
of freedom (DOF). A very closing work was presented by Chen and Chai on the
bifurcated motion of a special line- and plane-symmetric Bricard linkage [14].

When referring to reconfiguration andmotion branches variation, there aremainly
two kinds of such mechanisms, including kinematotropic mechanisms and meta-
morphic mechanisms, both of which emerged in the mid-1990s. These two kinds
of mechanisms are commonly characterized by their variable mobility in different
motion branches and mobility configurations. The kinematotropic linkages [15, 16]
were coined as one kind of linkages which are able to change their full-cycle mobility
by passing transitory positions [17, 18] where the mechanism experiences singular-
ity. While the metamorphic mechanisms [19] are capable of changing their structure,
topological configuration and subsequently mobility resorting to link annex or joint
property changes.

The preventative phenomenon of the above two kinds of reconfigurable mech-
anisms is the mobility change [20]. The subjects of present chapter capture par-
tial features of both kinematotropic mechanisms and metamorphic mechanisms, but
not exactly belong to any one of those two kinds as the mobility of the presented
mechanism keeps unchanged in different motion branches. Further, the structure
of the presented mechanisms is changed in different motion branches and hence
the mechanisms are distinguished with the planar four-bar linkage which does not
show kinematotropy [15] as well. Here we term the mechanisms with behaviour of
reconfiguring their structure but having invariant mobility as RSIM, reconfigurable
structure with invariant mobility.



Trifurcation of the Evolved Sarrus-Motion Linkage 347

This chapter presents an evolved plane-symmetric Sarrus-motion linkage, espe-
cially its special case which can reconfigure the structure by passing transitory posi-
tion. The parametric constraints and geometric constraints induced trifurcation of the
special case is investigated in terms of reciprocal screws. The layout of the chapter is
as follows. Section2 presents the design of an evolved Sarrus-motion linkage and its
geometric properties. In the Sect. 3, the parametric constraints and motion charac-
teristics of the linkage are investigated. The geometric constraints induced structure
reconfiguration is analysed in details in Sect. 4. The chapter is then concluded in
Sect. 5.

2 The Evolved Plane-Symmetric
Sarrus-Motion Linkage

Since the concept of mechanisms is often embedded in artistic origami and
pop-ups, the origami-inspired mechanical systems and pop-up paper mechanisms
[21] attracted substantial interests in recent years. Kinematic chains made from
cardboard can be traced back to construction of simple models in three dimensional
Euclidean space arisen from Mathematics, the quintessence of truth, by Cundy and
Rollett [22]. The typical flat card diagram and corresponding kinematic chain for
generating Sarrus motion were presented. Besides the flat card diagram for Sarrus
linkage, two more Sarrus-motion models were briefly described. Since the focus of
present chapter is originated from and inspired by the models generating Sarrus-
motion, the following is going to recall a C-shaped flat card models and present the
corresponding closed-loop mechanism.

The C-shaped diagram with creases pattern drawn on a flat card is shown in
Fig. 1a. The creases R1 and R2 have common point A. The creases R3 and R4 are
parallel and both of them are perpendicular to R1. The other creases R5, R6 and
R7 are the reflection of R3, R2 and R1 with respect to the axis aligned with crease
R4, respectively. The common point of R6 and R7 is denoted as A′. The angles γi

(i = 1 and 2) denote the interior angle of each pair of intersecting creases. The distance
between point A and the creaseR3 is denoted by h. TheC-shaped cardboard is divided
into six parts as panels by these creases. The panels p1, p2, p5 and p6 are in right
trapezoid shapewhile panels p3 andp4 in rectangular shape.According to the bilateral
symmetry, panels p1, p2 and p3 are congruent with p6, p5 and p4, respectively, and
γ1 = γ2. A closed-loop card model is then formed in Fig. 1b by jointing the panels
p1 and p6 and aligning creases R1 and R7 of the C-shaped cardboard in Fig. 1a.

Taking creases as revolute joints and panels as links, an evolved Sarrus-motion
linkage is derived in Fig. 2. This 6R linkage is a plane-symmetric mechanism with
respect to the plane�which is formed by the axes of joint R4 and the common point
A. The axes of joints R1, R2 and R6 have the common point A which is the mapping
of aligned points A and A′ in Fig. 1. The axes of the other three joints, R2, R4 and
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Fig. 1 A pre-grooved C-shaped cardboard and its evolved closed loop [22]. a Flat card diagram, b
Closed-loop model

Fig. 2 A Sarrus-motion
linkage extracted from the
closed-loop card model
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R5 in serials are in parallel. The axes of joints R2, R1 and R6 have common points
D, E and C with axes of joints R3, R4 and R5, respectively.

3 Parametric Constraints and Reciprocal Screws

Following the Denavit-Hartenberg convention, a Cartesian coordinate frame is
attached to each link with consideration of the geometry of the linkage in Fig. 2.
The zi -axis is aligned with the (i+1)th revolute joint axis, and the xi -axis is defined
along the common normal between the i th and (i+1)th joint axes, pointing from the
i th to the (i+1)th joint axis. Here each pair of xi -axis having origins in symmetric
position are either pointing towards or against the plane of symmetry simultane-
ously.

The parameters of the closed-loop linkage including the offset distance between
two adjacent joint axes ai , the translational distance between two incident normals
of a joint axis di and the twist angle between two adjacent joint axes αi are uniquely
determined by the geometry of each mechanism. The joint variables of the revolute
joints are θi .

As illustrated in Fig. 2, the coordinate frame O-XY Z attached at point A is set
as the global frame of the 6R mechanism. The Z -axis is parallel to the axes of R4
and pointing upward, X -axis is located in the plane of symmetry and Y -axis is set
following the right-handed rule.

The parametric constraints of the plane-symmetric overconstrained 6R mecha-
nisms is then derived as

a1 = a3 = a5 = a6 = 0, a3 = a4 = r (1)

α1 = α6 = γ1, α2 = α5 = γ − 1 + π/2, α3 = α4 = 0 (2)

d1 = d4 = 0, d2 = −d6 = h/cosγ1, d3 = −d5 = h′ (3)

in which r , γ1, h and h′ are the design parameters of the mechanism. Further, the
value of h′ depends on the selection of origin of coordinate frame and can be set
as 0. These parametric constraints reveal that the 6R linkage is a case of general
plane-symmetric Bricard 6R loop.

The motion screws of the 6R mechanism in Fig. 2 expressed in the global frame
O-XYZ are

Sm1 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S11 = [l1 0 n1 0 0 0]T
S12 = [l2 m2 n2 0 0 0]T
S13 = [0 0 1 hm2 −hl2 0]T
S14 = [0 0 1 0 −hl1 0]T
S15 = [0 0 1 −hm2 −hl2 0]T
S16 = [l2 −m2 n2 0 0 0]T

(4)
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where

l1 =
√
1 − (sθ10tα1)2 +

√

(r/h)2 − (sθ10tα1)2, n1 = tγ1,

l2 =
√
1 − (sθ10tα1)2, m2 = sθ10tα1 n2 = tγ1,

θ10 = θ1/2.

The constraint-screw system is reciprocal to the motion-screw system and can be
derived as

S
c
1 = Sr

1 = [0 0 1 0 0 0]T (5)

The above constraint screw is a pure force along Z -axis and the dimension of the
constraint-screw system, dim(Sc), equals to one. With this constraint force, the links
p2 and p5 are rotating around the Z -axis while p1 and p6 are implementing spherical
motion. This implies the mechanism can transform rotary motion into spherical
motion.

4 Constraints Induced Transitory Position and Trifurcation

It is evident that the 6R linkage is in boundary singularity when the axes of each
pair of joints located in the symmetric position become collinear. In other words,
the boundary singularity occurs when the common points C and D are concurrent.
Besides the boundary singularity, the other singular position can be identified by
checking the dependency of motion screws.

According to the geometry of the overconstrained mechanism in Fig. 2, the cor-
responding motion screws in Eq. (4) form a five-system in a general configuration
and the screw system only degenerates when the design parameters h and r and the
motion parameter θ1 satisfy the following condition,

⎧
⎨

⎩

γ1 = π/4,
h = r,
θ1 = π.

(6)

Under such a condition, the motion screws of the linkage become

Sm2 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S21 = [0 0 1 0 0 0]T
S22 = [0 1 1 0 0 0]T
S23 = [0 0 1 r 0 0]T
S24 = [0 0 1 0 0 0]T
S25 = [0 0 1 −r 0 0]T
S26 = [0 −1 1 0 0 0]T

(7)
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Fig. 3 Transitory position
of the Sarrus-motion linkage
with special parameters

The constraint screw system, which is reciprocal to the motion screw system, is
subsequently derived as

S
c
2 =

⎧
⎪⎨

⎪⎩

Sr
21 = [1 0 0 0 0 0]T

Sr
22 = [0 1 0 0 0 0]T

Sr
23 = [0 0 1 0 0 0]T

(8)

The above constraint screws are the bases of the degenerated constraint-screw
system of order 3. It implies that the mechanisms moves to a singular configuration
in which the axes of all revolute joints are in one plane and the axes of joints R1 and
R4 are collinear as illustrated in Fig. 3.

According to the geometry of the 6R mechanism and the constraint-screw system
at the singular position, the mechanism can move to other two motion branches by
passing this singular position as a transitory position.

The first motion branch in Fig. 4a is a spherical 4R linkage. In this motion branch,
the axis of joint R4 passes the common point A and the two joints R3 and R5 are
geometrically locked in the full-cycle motion. The constraint-screw system for this
spherical 4R linkage is a three-system.

The second motion branch in Fig. 4b is a planer 4R linkage with equal link length.
In this motion branch, the axes of joints R1 and R4 keep parallel and the two joints
R2 and R6 are geometrically locked in the full cycle motion. The constraint-screw
system for this planer 4R linkage is a three-system.
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Fig. 4 Two motion branches evolved from the overconstrained 6R linkage a Branch 1 spherical
4R linkage, b Branch 2 planer 4R linkage

5 Conclusions

This chapter presented a Sarrus-motion linkage extracted from a closed-loop card-
board model. The parametric constraints of the overconstrained 6R linkage are
derived. It revealed the 6R linkage is capable of transforming rotary motion into
spherical motion in a general configuration. The screw system based constraints
analysis further revealed the specific parametric constraints leading to inner sin-
gularity of the mechanism. The 6R linkage with specific parameters has ability to
reconfigure its motion branches and change its configuration to a spherical 4R link-
age and a planner 4R linkage with invariant mobility one by passing the transitory
position where singularity occurs. This overconstrained 6R linkage can be employed
for development of remote centre of motion (RCM) mechanism.
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The Kinematics of Containment

Gregory S. Chirikjian and Yan Yan

Abstract This chapter is concerned with two problems related to what we call
the kinematics of containment: (1) Given a small convex body in n-dimensional
Euclidean space, such as an ellipsoid, that is contained inside of a large convex body,
characterize the range of allowable motions for which the boundaries of the bodies
do not collide, and calculate the corresponding volume of this motion in the group
of rigid-body motions, SE(n); (2) If the smaller body is almost the size of the larger
one, and can only execute small collision-free motions, analyze the range of these
motions. Both of these problems are addressed fully here. The first uses methods of
the fields of Integral Geometry and Geometric Probability and derives an expression
similar to the so-called Principal Kinematic Formula. The second uses the kinematics
of infinitesimal motions and properties of ellipsoids.

Keywords Rigid-body motion · Minkowski sum · Principal kinematic formula ·
Ellipsoids · Collision · Containment

1 Introduction

Knowing how much free room to move that a small body has inside a large cavity
has applications in the design of mechanical parts-handling machines [3, 11], char-
acterizing the entropy of parts in manufacturing settings [5, 16], and in assessing
the entropy of biomolecules inside of cellular environments [6]. This chapter first
develops new formulas that parameterize the region of the group of rigid-body mo-
tions for the case when one small body is capable of free rotation inside of the larger
body. Then, the other extreme case in which small motions of an ellipsoidal body
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contained in a slightly larger body is analyzed. In both cases, the volume of free
motion is computed in closed form.

Throughout this chapter, as a matter of notation In is the n × n identity matrix
consisting of entries of 1 on the diagonal and 0 otherwise, AT denotes the transpose
of amatrix, and A−1 denotes the inverse of a squarematrixwith nonzero determinant,
det A �= 0. The set of n×n special orthogonal (or proper rotation)matrices is denoted
as

SO(n)
.= {R ∈ R

n×n | R RT = In, det R = +1}.

This set forms a group under the operation of matrix multiplication. In fact, it is an
n(n − 1)/2-dimensional matrix Lie group. The set of all special Euclidean motions
(or proper rigid-body motions) in n-dimensional Euclidean space is [1, 4, 14]

SE(n)
.= {(R, t) ∈ SO(n) × R

n | (R1, t1) ◦ (R2, t2) = (R1R2, R1t2 + t1)}.

It is well known that an arbitrary motion can be decomposed into a product of
translations and rotations as

(R, t) = (In, t) ◦ (R, 0). (1)

The group operation ◦ can be captured by representing motions as (n + 1)× (n + 1)
homogeneous transformation matrices. If g = (R, t) ∈ SE(n), the notation g · x =
Rx + t for any x ∈ R

n defines an action of SE(3) on R

n . And similarly, if B ⊂ R

n

is a finite rigid body, then g · B is the moved version of B defined as

g · B = {g · x | x ∈ B}.

Let χB : R

n → R be the characteristic function of B which takes a value of 1 when
x ∈ B and a value of 0 otherwise. It is not difficult to show that

χg·B(x) = χB(g−1 · x).

If f ∈ (L1 ∩ L2 ∩ C1)(Rn), i.e., f : R

n → R is absolutely and square inte-
grable with respect to the Lesbegue measure dx = dx1dx2 · · · dxn , and it is also
differentiable with continuous derivative, then f : R

n → R will be called a “nice”
or “well-behaved function”. For functions ϕ : SE(n) → R similar concepts exist as
defined in [6] where instead of the Lesbegue measure, the Haar measure dg = d Rdt
is used. Here d R is theHaarmeasure for SO(n) [6, 7] and dt is the Lesbeguemeasure
for the translational part of the motion. Even though SE(n) is not compact and does
not possess a bi-invariant metric, this integration measure is nevertheless bi-invariant
[7], and as a result

∫

SE(n)

ϕ(g) dg =
∫

SE(n)

ϕ(g−1) dg =
∫

SE(n)

ϕ(g0 ◦ g) dg =
∫

SE(n)

ϕ(g ◦ g0) dg
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where

g−1 = (RT ,−RT t) and
∫

SE(n)

ϕ(g) dg
.=

∫

Rn

∫

SO(n)

ϕ(R, t)d Rdt

and g0 is an arbitrary constant element of SE(n).
This backgroundmaterial will be used in the following sections. Section2 reviews

the classical Principal Kinematic Formula, giving a new derivation that leads to a new
containment formula for convex bodies. Section3 derives closed-form expressions
for theMinkowski sum of ellipsoids. Section4 relates the formula for theMinkowski
sum of convex bodies to the Principal Kinematic Formula. These are used to derive
expressions for the allowable motion of small bodies inside of larger ones. Section5
examines the opposite extreme in which the contained body is almost the same size
as the larger one, and computes nontrivial lower bounds on the free room to move in
this case.

2 The Principal Kinematic Formula

In classical integral geometry, the Principal Kinematic Formula plays a central role.
The formula expresses the average Euler characteristic of the intersections of rigid
bodies moving uniformly at random in terms of fundamental quantities of these
bodies (volume, area, etc.).When the bodies are convex, the intersections are convex,
and the Euler characteristic can be replaced by the set indicator function, ι(·) which
takes a value of 1 when the argument is nonempty, and 0 otherwise. The resulting
formula works in R

n and has been extended to general spaces of constant curvature.
But we are concerned only with two- and three-dimensional Euclidean space, in
which case the result is as follows.

Theorem 1 (See [2, 17] for proof): Given convex bodies C0 and C1 in R

2, then

∫

SE(2)

ι(C0 ∩ g · C1) dg = 2π [A(C0) + A(C1)] + P(∂C0) · P(∂C1). (2)

where A(Ci ) is the area of planar body Ci and P(∂Ci ) is its perimeter (i.e., the
length of the closed curve that bounds it). Here dg = dt1dt2dθ . For example, if the
bodies are circular disks of radii r0 and r1, then if the center ofC1 translates anywhere
within a circle of radius r0 + r1 at any orientation, it will be in collision with body
C0 with center pinned at the origin. Therefore, in this case the collision space, as a
subset of SE(2), is the Cartesian product of a disk of radius r0 + r1 and SO(2), i.e.,
Dr0+r1 × SO(2). The volume of this domain is easily computed as 2π ×π(r0+r1)2.
The formula in (2) gives 2π [πr20 + πr21 ] + (2πr0)(2πr0), which is the same thing.
In R

3 the analogous formula is [2, 17]
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∫

SE(3)

ι(C0 ∩ g · C1) dg

= 8π2[V (C0) + V (C1)] + 2π [F(∂C0)M(∂C1) + F(∂C1)M(∂C0)]
(3)

where F(∂Ci ) and M(∂Ci ) are respectively the surface area and integral of mean
curvature of the bounding surface enclosing body i , and V (Ci ) is the volume of
body i . To be concrete, if rotations are expressed in terms of ZXZ Euler angles, then
the volume element is dg = sin βdαdβdγ dt1dt2dt3. These equations generalize
to n-dimensional Euclidean spaces and even to other spaces of constant sectional
curvature. For the proof and pointers to the literature, see [2, 12, 17, 19].

An alternative proof specifically for convex bodies was given in [6]. In that proof,
the center of the moving body, C1, visits every point in the fixed body, C0, and
rotates freely, each time contributing to the integral, and resulting in the 2πV (C0)

and 8π2V (C0) terms in the 2D and 3D cases, respectively. Then, the moving body
is decomposed into concentric shells, and as each shell makes every possible point
contact with the boundary ∂C0, intersections of the original bodies is also guaranteed.
Adding up these contributions results in the above formulas.

This alternative proof is mentioned, because a new kind of kinematic formula can
be derived in essentially the same way. In this new formula, we are concerned not
with measuring the volume in SE(n) corresponding to all possible intersections of
bodies, but rather the integral of the volume in SE(n) corresponding to all possible
ways that C1 can move while being contained in C0. To this end, let b(g · C1 ⊂ C0)

be defined to take a value of 1 when g · C1 ⊂ C0 and a value of zero otherwise,
corresponding to the binary truth of the statement that the moving body is contained
in the stationary one.

Theorem 2 Given convex bodies C0 and C1 in R

n such that it is possible to slide
∂C1 through all orientations while remaining completely inside of C0 with the the
boundaries g · ∂C1 and ∂C0 always in contact at a single point, then for for n = 2

∫

SE(2)

b(g · C1 ⊂ C0) dg = 2π [A(C0) + A(C1)] − P(∂C0) · P(∂C1) (4)

and for for n = 3

∫

SE(3)

b(g · C1 ⊂ C0) dg

= 8π2[V (C0) − V (C1)] − 2π F(∂C0)M(∂C1) + 2π F(∂C1)M(∂C0).

(5)
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For example, ifC0 andC1 are spheres in 3Dwith radii r0 > r1, then F(∂Ci ) = 4πr2i ,
M(∂Ci ) = 4πri , V (Ci ) = 4

3πr3i , the above 3D formula gives 8π2 times the volume
of a sphere of radius r0 − r1 (where 8π2 is the volume of SO(3)).

We know of no other work that addresses this problem. The closest works are
those of Zhang [21] and Zhou [22] that address when one body can be contained
within another (but not the amount of motion allowed for a contained body). In some
practical engineering contexts, this can be quite important [3, 5, 11].

3 The Minkowski Sum of Ellipsoids

The results of the previous section can be expressed in terms of the Minkowski sum
of two bodies. Recall that the Minkowski sum and difference of two convex point
sets (or bodies) each centered at the origin, P1 and P2 in R

n , are respectively defined
as

P1 ⊕ P2
.= {p1 + p2 | p1 ∈ P1, p2 ∈ P2} and P1 	 P2

.=
⋂

p2∈P2

(P1 + p2). (6)

Alternatively, theMinkowski difference of two convex bodies can be defined relative
to the Minkowski sum as the body P ′

1 = P1 	 P2 for which P1 = P ′
1 ⊕ P2.

Interestingly, the boundary of the Minkowski sum of two ellipsoids can be com-
puted in closed form, but appears not to have been reported previously in the literature,
despite a vast literature on related work concerned with checking collisions between
ellipsoids (see e.g., [13, 15]).

We now present how to compute this Minkowski sum of two arbitrary ellipsoids.
To begin, let u(φ) be the standard parameterization of the hyper-sphere Sn−1 with
n − 1 angles φ = [φ1, . . . , φn−1]. Note that in addition to the defining fact that
uT u = 1, the entries of u must also satisfy the conditions

− 1 ≤ ui ≤ 1 ; 0 ≤ u2
i ≤ 1 ; −1/2 ≤ ui u j ≤ 1/2 for i �= j. (7)

Whereas the first two sets of inequalities are obvious, the third is perhaps less so,
and can be proven using induction.

Let E1 and E2 be two arbitrary ellipsoids in n-dimensional Euclidean space with
semi-axis lengths given by the row vectors a = [a1, . . . , an] and b = [b1, . . . , bn],
respectively. In the frame of reference with origin at the center of mass and aligned
with the principal axes of E1, it has implicit and parametric equations of the form

xT Λ−2(a) x = 1 and x = Λ(a)u(φ) (8)

where Λ(a) is the n × n diagonal matrix with entries λi j = aiδi j and Λm(a) is
shorthand for themth power [Λ(a)]m . An ellipsoid of the same shape and same center
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of mass but at an arbitrary orientation will have parametric and implicit descriptions
of the form x̂ = RΛ(a)u(φ) and x̂T RΛ−2(a)RT x̂ = 1 where R is an n × n rotation
matrix.

As with any convex set, the Minkowski sum of E1 and E2 is E1 ⊕ E2 as defined
in (6). Let E2 translate around E1 and attach a reference point in the center of E2.
Then E1 ⊕ E2 can be interpreted as the locus of positions, t , of the reference point
of E2 for which E1 ∩ (t · E2) �= ∅. This can be evaluated over all translations t ∈ R

n

where t · E2 denotes a translated version of E2 defined by t · E2 = {x + t |x ∈ E2}.
The Minkowski sum of E1 and R2 · E2 (a rotated version of E2) can be computed

as follows: (1) Apply a linear transformation to the whole scene that preserves the
origin of E1 yet shrinks R2 · E2 to a sphere; (2) Compute the offset surface of the
transformed version of E1; (3) Apply the inverse of the linear transformation to the
whole scene.

Let r = min{b1, b2, ..., bn}. The boundary of E1 ⊕ E2 in this case becomes an
offset curve/surface. After this affine operation E1 still remains an ellipsoid but with
changed semi-axis lengths ã = [ã1, ã2, ..., ãn] and changed orientation. This new
ellipsoid is called Ẽ1.

The first linear operation on E1 transforms it to

x̃ = R2Δ
−1(b/r)RT

2 x ⇐⇒ x = R2Δ(b/r)RT
2 x̃ (9)

where x and x̃ specify the coordinates of the original E1 and transformed version,
Ẽ1, respectively, and R2 is the rotation matrix describing the orientation of E2.

The implicit expression for the original version of E1 is given in (8). By substitut-
ing (9) into (8), we can get the implicit expression for Ẽ1 of the form x̃T A−2 x̃ = 1,
where A = QΛ(ã)QT depends on the rotation matrix R2, and a and b. The eigen-
values A1, which are the entries of ã, are the changed semi-axis lengths of E1, and
the rotation matrix Q gives the orientation of its principal axes. In this principal axes
frame the parametric and implicit equations of the shrunk motionless ellipsoid are
the same as in (8) but with a replaced by ã.

An offset hyper-surface x̃of s(φ) of an orientable, closed, and differentiable hyper-
surface x̃(φ) ∈ R

n with the offset radius r is defined as

x̃of s(φ) = x̃(φ) + r ñ(φ), (10)

where ñ is the outward-pointing unit surface normal, and these surfaces are parame-
terized by φ ∈ R

n−1. In the case of an ellipsoidal surface defined by the level set
Φ(x̃)

.= x̃T A−2 x̃ − 1 = 0, the outward pointing normal can first be computed as
∇Φ(x̃) = 2A−2x̃, and then evaluated with the parametric equation and normalized:

ñ(φ) = ∇Φ(x̃(φ))

‖∇Φ(x̃(φ))‖
∣∣∣∣
x̃=Au

= A−1u
‖A−1u‖ . (11)
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This and (10) gives a closed-form expression for the offset of Ẽ1 in the linearly
transformed coordinates. To convert back to the original coordinates, we must apply
the inverse of the applied linear transformation to get

xeb(φ) = R2Δ(b/r)RT
2 x̃of s(φ), (12)

which is a closed-form parametric expression for the boundary of the Minkowski
sum E1 ⊕ (R2 · E2). The Minkowski difference is computed in exactly the same
way, with r replaced by −r in (10), and is valid as long as the resulting sphere can
be fully contained in Ẽ1 when the boundaries meet. This is essentially the condition
in the statement of Theorem 2.

4 Relationship Between Minkowski Sums
and Kinematic Formulae

The integral in the Principal Kinematic formula can be rewritten for convex bodies
as

∫

SE(n)

ι(C0 ∩ g · C1) dg =
∫

SO(n)

∫

Rn

ι(C0 ∩ t · (R · C1)) dt d R

=
∫

SO(n)

V (C0 ⊕ (R · C̄1))d R (13)

where (1) has been used and the translation integral has been replacedwith the volume
of the Minkowski sum of ellipsoids, with C̄1

.= {−x | x ∈ C1}. For centrosymmetric
bodies like ellipsoids, Ēi = Ei .

The subject of translative kinematic formulas for general bodies that compute
integrals of the form

∫
Rn ι(C0 ∩ t · C1) dt for convex bodies has been addressed

extensively in [8–10, 18, 20]. The same can be written for containment, with ⊕
replaced by 	. Specifically, given ellipsoidal bodies E0 and E1 with the conditions
of Theorem 2 holding, we can compute a translative integral geometric formula for
containment of the form

∫

Rn

b(t · E1 ⊂ E0)dt = V (E0 	 E1).

Having a parametric expression for the boundary ∂(E0 	 E1) such as that in (12)
with r → −r , gives a way to compute the volume efficiently (using the divergence
theorem).
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The result of this formula is related to the formulas given in Theorem 2 because

∫

SE(n)

b(g · C1 ⊂ C0) dg =
∫

SO(n)

V (C0 	 (R · C̄1))d R. (14)

Moreover, if the range of allowable rotations does notmeet the conditions of Theorem
2, it is possible to compute the allowable room to move with a restricted rotation
range. This involves computing the integral over a region of SO(n) rather than all
of it, which can be computationally intensive.

5 Motion of Frustrated Ellipsoids

Suppose that E1 and E0 are both axis-aligned ellipsoids with their centers of mass
at the origin. Then both are described by (8), with a describing the semi-axis lengths
for the smaller (moving) body E1 and b the semi-axis lengths for the fixed body, E0.
Suppose that bi/ai = 1 + εi where 0 < εi << 1. Then there is very little room
for E1 to “rattle around” inside of E0, and the formulations of the previous sections
will fail. This scenario represents an opposite extreme where different methods are
applicable. Here it is safe to assume that the allowable motion is small, and so

R ≈ I + S(r) where S(r)T = −S(r) = S(−r) ∈ so(n) (15)

is a skew-symmetric matrix function linear in r. In the n-dimensional case r ∈
R

n(n−1)/2. In 3D, this is the 3D dual vector such that S(r)v = r × v. For such
small motions, elements of SE(3) can be approximated well with those in se(3),
the corresponding Lie algebra. And if we want to compute volumes of motion,
dg ≈ drdt.

If E1 can move inside of E0 without their boundaries intersecting at more than
one point, then substituting the parametric equation for E1 into the implicit equation
for E0 must satisfy

(RΛ(a)u + t)T Λ−2(b)(RΛ(a)u + t) ≤ 1 (16)

for all values of u ∈ Sn−1. Moreover, substituting (15) into (16) gives an equation
that can be written in the form

C(z) = zT Hz + hT z + c ≤ 1 (17)

where z = [rT , tT ]T and 0 < c < 1. Note that H , h, and c all depend on u, and
for each u the inequality (17) defines a solid hyper-ellipsoid in se(n) ∼= R

n(n+1)/2.
The intersection of all of these hyper-ellipsoids taken over all u ∈ Sn−1 will give the
allowable range of motion.
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A much easier quantity to compute is the subset of this that is of the form of a
centered hyper-ellipsoid in se(n) parameterized as z = Bw where w is a unit vector
in R

n(n+1)/2 (or equivalently, a point in the hyper-sphere Sn(n+1)/2−1). Substituting
this in (17), and using the properties of consistent matrix norms (in this case using
the property that ‖Hv‖ ≤ ‖H‖ · ‖v‖ where ‖H‖ can be either the induced 2-norm
or the Frobenius norm), then

C(Bw) = wT BT H(u)Bw + [h(u)]T Bw + c(u) ≤ |wT BT H(u)Bw|
+ |[h(u)]T Bw| + c(u)

= ‖wT BT H(u)Bw‖ + ‖[h(u)]T Bw‖ + c(u) ≤ ‖BT H(u)B‖
+ ‖[h(u)]T B‖ + c(u)

≤ ‖H(u)‖ · ‖B‖2 + ‖h(u)‖ · ‖B‖ + c(u)

≤ ̂‖H‖ · ‖B‖2 +̂‖h‖ · ‖B‖ + ĉ (18)

wherê‖H‖,̂‖h‖, and ĉ are upper bounds on ‖H(u)‖, ‖h(u)‖, and c(u) that do not de-
pend on u. For example, c(u) = uT Λ(a)Λ−2(b)Λ(a)u ≤ ‖Λ(a)Λ−2(b)Λ(a)‖2 =
maxi a2

i /b2i . Space limits do not permit explicit formulas for ̂‖H‖ and̂‖h‖ in this
venue, but such bounds can be found using (7). Then, from the above equation, ‖B‖
must satisfy the quadratic formula

‖B‖ ≤ −̂‖h‖ +
√

̂‖h‖2 + 4(1 − ĉ)̂‖H‖
2̂‖H‖

.

This imposes conditions on the maximal motion ellipsoid, and the volume of the
resulting motion (which is a lower bound on the total allowable motion) of the form

V (Dn(n+1)/2) · | det B| ≤
∫

SE(n)

b(g · E1 ⊂ E0) dg.

where V (Dn(n+1)/2) is the volume of the unit hyper-disk (or ball) in R

n(n+1)/2 ∼=
se(n).

6 Conclusions

New expressions that describe the available room to move for one convex body
contained inside of another are given. In the extreme case when one body is very
small relative to the other, and it can freely rotate and translate such that all contacts of
the surfaces are single-point contacts, closed form formulas for containment based on
the Principal Kinematic formula are possible. Likewise, in the other extreme case in
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which one body fits inside the other with only a little bit of wiggle room, we provide
closed-form lower bounds on the allowable motion. For the intermediate case of
possibly hindered rotation, we show how Minkowski sum can be used to compute
allowable translational motion for each fixed orientation of the inner moving body,
and these can be added up by integrating over all allowable rotations.
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The Dimensional Synthesis of 3-RPR Parallel
Mechanisms for a Prescribed Singularity-Free
Constant-Orientation Workspace

Amirhossein Karimi, Mehdi Tale Masouleh and Philippe Cardou

Abstract This chapter addresses the dimensional synthesis of a planar 3-DOF par-
allel mechanism, namely 3-RPR platform, in order to obtain a geometry for this
mechanism whose constant orientation workspace contains a prescribed workspace
while avoids the singularity configurations within the whole prescribed workspace.
To this end, first the constraint expressions describing mathematically the desired
geometry to contain the prescribed workspace and eliminate the singularities are
introduced.Moreover, a multi-objective programming problem is presented in which
a scaling factor is maximized to enlarge the workspace region in addition to a para-
meter to maximize the singularity-free workspace area. Then, the problem is relaxed
to a convex form. Finally, to prevent the relaxation from becoming too loose, a
branch-and-prune algorithm is applied.

Keywords Parallel mechanism · Dimensional synthesis · Convex programming ·
3-RPR platform · Singularity-free workspace

1 Introduction

The synthesis of parallel mechanisms is much more complex than that of serial
robots, due to many reasons such as the increased number of parameters required to
determine the geometry of the mechanism and complicated analysis of workspace

A. Karimi (B) · M. T. Masouleh
Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
e-mail: ah.karimi@ut.ac.ir

M. T. Masouleh
e-mail: m.t.masouleh@ut.ac.ir

P. Cardou
Department of Mechanical Engineering, Laval University, Quebec City,
QC G1V 0A6, Canada
e-mail: pcardou@gmc.ulaval.ca
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and singularity configurations [6]. The studies conducted in the synthesis of par-
allel mechanisms are mostly based on heuristic methods such as genetic algorithm
[3, 8], and interval analysis [5] or using a sequential procedure in which two arms are
designed first to satisfy the workspace requirements, then the third arm is designed
to provide a singularity-free workspace [10]. It should be noted that in the latter,
a feasible subset for the problem of the dimensional synthesis of a 3-RPR paral-
lel mechanism is obtained in order to contain a prescribed workspace while it is
singularity-free.

There are various indices according to which a parallel mechanism can be
designed. It is indispensable for a mechanism which performs any special task, to
have a prescribed workspace. Therefore, the workspace area and shape are of the
foremost indices which can be taken into account for the purpose of dimensional
synthesis. Another important criterion for the aim of synthesis is the presence of sin-
gularities. This chapter deals with these two indices for the purpose of synthesizing
of 3-RPR parallel mechanisms.

The remainder of the chapter is organized as follows. First, the optimization
problem for the synthesis of 3-RPR parallel mechanism is expressed by introducing
the constraints required for the optimal geometry to contain the prescribedworkspace
while avoiding singularities. Then, a relaxation method is presented to convexify
the non-convex constraints. A branch-and-prune algorithm is then proposed, which
converges to the global optimal solution. Finally, the chapter concludes by providing
some remarks and describing related ongoing work.

2 Formulation of the Dimensional Synthesis Problem of 3-RPR
Parallel Mechanisms

Figure1 depicts schematically a 3-RPR Parallel Mechanism (PM). The position vec-
tor of the operation point of themobile platformwith respect to the fixed frame is rep-
resented by p = [x, y]T . This operation point is chosen to be point B1. The position
vectors of point Bi in the fixed and mobile frames are denoted by bi and b′

i , respec-
tively. The design parameters of this platform are listed as (x1, y1), (x2, y2), (x3, y3)
which stand for the coordinates of the points attached to the base, l1, l2 which are
the lengths of two sides of the Mobile Platform (MP) triangle, ρmaxi (i = 1, 2, 3)
as the maximum lengths of each leg, and θ1, which is the angle between B1B2 and
B1B3. In this chapter it is assumed that x1 = y1 = 0. For the sake of simplicity, it is
considered that θ1 is fixed. Thus, the number of main design parameters for 3-RPR
PM reduces to nine, i.e., x2, y2, x3, y3, l1, l2, ρmaxi (i = 1, 2, 3). It should be noted
that ρmin is assumed to be zero in this approach. One can define the dimensional
synthesis problem as that of finding the geometry (design parameters) of a 3-RPR
PM such that the workspaceW includes the desired workspaceWd and g(x) �= 0, for
∀x ∈ Wd ; where g(x) is the singularity loci expression. The desired workspace,Wd ,
is considered to be a prescribed circle with the center point (xd , yd) and radius Rd .
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Fig. 1 A 3-RPR PM

Therefore, a mathematical description of the dimensional synthesis problem under
study in this chapter can be written as:

max. W

s.t. Wd ⊆ W ,

g(x) �= 0, for ∀x ∈ Wd ,

hi (t) ≤ 0, t = [x2, x3, y2, y3, l1, l2, ρmax1 , ρmax2 , ρmax3 ], i = 1, . . . , m.

(1)

where hi (t), i = 1, . . . , m, are the constraint inequalities on the design parameters
of the mechanism. In the following, the aim is to obtain the objective function and
the constraints mentioned in Eq. (1).

2.1 Workspace Constraints

According to Fig. 2, in which v2 is the constraint imposed by the second limb of
the mechanism on the workspace, one can obtain the constraints required for the
workspace to include the internal region of the prescribed circle as:
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Fig. 2 Schematic illustration
of the workspace constraints

||(xd , yd)||2 + Rd ≤ ρmax1 ,

||(x2 − l1 cosφ − xd , y2 − l1 sin φ − yd)||2 + Rd ≤ ρmax2 , (2)

||(x3 − l2 cos (φ + θ1) − xd , y3 − l2 sin (φ + θ1) − yd)||2 + Rd ≤ ρmax3 .

where || · ||2 stands for the Euclidean norm of its vector argument. It should be noted
that above constraints are Second-Order Cone (SOC) constraints and are thus convex.
Moreover, this approach can readily be generalized to any polyhedron, convex or not,
since, in order to include the polyhedron, it is sufficient to contain all its vertices.

2.2 Geometric Constraints

In order to avoid impractical solutions, the following linear geometric constraints
are considered to restrict the geometry of the platform:

x2 ≤ x2 ≤ x2, y2 ≤ y2 ≤ y2,

x3 ≤ x3 ≤ x3, y4 ≤ y4 ≤ y4,

l1 ≤ l1 ≤ l1, l2 ≤ l2 ≤ l2, (3)

ρmaxi ≤ ρmaxi ≤ ρmaxi , i = 1, 2, 3.

where the underline andoverline indicate the lower andupper bound for eachvariable,
respectively. In order to prevent the mobile platform from becoming larger than the
base, one can add the following constraints:
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||(x2, y2)||2 − l1 ≥ 0,

||(x3, y3)||2 − l2 ≥ 0, (4)

||((x2, y2) − (x3, y3))||2 − l3 ≥ 0.

where l3 =
√

l21 + l22 − 2l1l2 cos θ1. The above are not convex constraints and thus
one can exert the McCormick or Al-Khayyal relaxation [1, 7, 9]. This relaxation is
based on the convex (concave) envelope of a function f (x) overΛ, i.e., the pointwise
supremum (infimum) of all convex (concave) functions which underestimate (over-
estimate) f (x) over Λ, where:

Λ = {x ∈ R
n|x ≤ x ≤ x}. (5)

From [1], one can prove for x = [x, y]T , x = [x, y]T and x = [x, y]T that:

CVXΛ(xy) = max(x y + yx − x y, x y + yx − x y),

CCVΛ(xy) = min(x y + yx − x y, x y + yx − x y). (6)

where CVXΛ and CCVΛ stand for convex and concave envelopes over Λ, respec-
tively. Therefore, to convexify the constraints in Eq. (4), the following substitution
of variables is used:

X2 = −x22 , X3 = −x23 , Y2 = −y22 , Y3 = −y23 , Z1 = x2x3, Z2 = y2y3.
(7)

As a result, the relaxation of the constraints in Eq. (4) is:

l21 + X2 + X3 + Y2 + Y3 + 2Z1 + 2Z2 ≤ 0,

l22 + X2 + Y2 ≤ 0,

l21 + l22 − 2l1l2 cos θ1 + X3 + Y3 ≤ 0,

max(x2x3 + x3x2 − x2x3, x2x3 + x3x2 − x2x3) ≤ Z1

Z1 ≤ min(x2x3 + x3x2 − x2x3, x2x3 + x3x2 − x2x3),

max(y2y3 + y3y2 − y2y3, y2y3 + y3y2 − y2y3) ≤ Z2 (8)

Z2 ≤ min(y2y3 + y3y2 − y2y3, y2y3 + y3y2 − y2y3),

x2x2 − (x2 + x2)x2 ≤ X2 ≤ min(−2x2x2 + x2
2,−2x2x2 + x2

2),

x3x3 − (x3 + x3)x3 ≤ X3 ≤ min(−2x3x3 + x3
2,−2x3x3 + x3

2),

y2y2 − (y2 + y2)y2 ≤ Y2 ≤ min(−2y2x2 + y2
2,−2y2y2 + y2

2),

y3y3 − (y3 + y3)y3 ≤ Y3 ≤ min(−2y3y3 + y3
2,−2y3y3 + y3

2).



370 A. Karimi et al.

2.3 Singularity Constraint

The singularity loci expression, g(x, t), is a quadratic polynomial with respect to x
and a fourth-order polynomial with respect to (x, t). To avoid the singularities within
the prescribed circle, one of the following implications must be satisfied:

(x − xd)2 + (y − yd)2 − R2
d ≤ 0 =⇒ g(x, t) < 0,

(x − xd)2 + (y − yd)2 − R2
d ≤ 0 =⇒ g(x, t) > 0. (9)

To simplify the procedure of the dimensional synthesis, it is advantageous to divide
the optimization problem into two steps: first, obtain l1, l2 in order to maximize the
workspace area as discussed in the next subsection, and then, optimize the other deci-
sion variables to make the prescribed workspace singularity-free while maximizing
the workspace area.

Once l1, l2 are obtained, all the coefficients of g(x, t) with respect to x will be
linear functions of the design variables, except for four terms, i.e., x2x3, x2y3, x3y2
and y2y3. Thus, one can use the following substitutions in order to linearize all the
coefficients:

Z1 = x2x3, Z2 = y2y3, Z3 = x2y3, Z4 = x3y2. (10)

Therefore, similar inequalities to Eq. (8) can be obtained for Z3 = x2y3, Z4 =
x3y2 in order to convexify them. By using the S-procedure [2], one can convert the
constraint in Eq. (9) to a LMI (Linear Matrix Inequality). If one reformulates the
singularity loci and the prescribed circle equations as follows:

g(x, t) = xT Ex + 2fT x,

(x − xd)2 + (y − yd)2 − R2
d = xT Px + 2qT x + r. (11)

then the singularity constraint can be reformulated as:

[
λP + E λq + f

(λq + f)T λr − η

]

 0, λ ≥ 0. (12)

where η is an optimizatiom variable which should be positive in order to g(x) > 0. It
should be noted that this approach can readily be modified for g(x) < 0. Therefore,
by solving two optimization problems, one for g(x) < 0, the other for g(x) > 0, the
design parameters with the maximum objective value will be obtained.

2.4 Objective Function

The objective function should be selected in order to maximize the workspace area.
The most reasonable way to maximize the workspace area is to use a scaling factor,
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where by maximizing it a larger workspace can be obtained. To do so, we define s
as the scaling factor and one can modify the workspace constraints in Eq. (2) for this
purpose, i.e.,

max. s + η

s.t. ||(xd , yd)||2 + sRd ≤ ρmax1, (13)

||(x2 − l cosφ − xd , y2 − l cosφ − yd)||2 + s Rd ≤ ρmax2 ,

||(x3 − l cos (φ + θ1) − xd , y3 − l cos (φ + θ1) − yd)||2 + s Rd ≤ ρmax3 .

If s ≥ 1, it is guaranteed that the obtained geomtry of the platform includes the
prescribed circlewithin itsworkspace. Furthermore, bymaximizingη in the objective
function as a second parameter, one can make a safety margin for the singularity-
free prescribed workspace. Also, if the objective in the problem of synthesis is to
have smaller values for ρmaxi , i = 1, 2, 3, one can modify the objective function to
minimize ρmax1 +ρmax2 +ρmax3 while s ≥ 1 is one of the constraints of the problem.

3 Branch and Prune Algorithm

The final challenge is proposing a branch-and-prune algorithm in order to avoid the
relaxations exerted in Eqs. (8) and (10) to become too loose, which due to the space
limitation is only described briefly.

The main idea behind this algorithm is to bisect the intervals bounding the design
parameters. If the solution obtained from the relaxed optimization problem is feasible
for the original optimization problem, then the algorithm is finished. Otherwise, in
the next step, the search space is divided into 16 equal sections and the relaxed
problem is solved for each section. One of the three following items can be true for
the solution obtained in each section:

1. The original and relaxed problems are both infeasible: the dividing procedure
does not continue for this section.

2. The original problem is infeasible and the relaxed problem is feasible: the dividing
procedure continues for this section.

3. The original and relaxed problems are both feasible: the dividing procedure does
not continue for this section.

The procedure of bisecting the intervals stops when there is no section left to be
divided into subsections. It should be noted that since the relaxed problem is convex,
the branch and prune algorithm will converge to the global optimal solution in a low
computational time.

By resorting to CVX [4], a package for solving convex programming problems,
the optimal design parameters are obtained for the 3-RPR parallel mechanism. The
lower bound and upper bound for all the design parameters are selected to be −2
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(a) (b)

Fig. 3 The results of synthesis problem for 3-RPR PM (φ = π
6 ). a One circle is prescribed, b two

circles are prescribed

and 2, respectively. The problem is solved for φ = π
6 when the objective function is

s and the prescribed workspace is a circle represented with the following set:

{(x, y) ∈ R
2|(x + 0.5)2 + (y − 1)2 ≤ 0.82}. (14)

As a second example, two circles are prescribed and the objective function is s + η.
The problem is solved in order to find the optimal geometry of the mechanism. The
results of the designedmechanisms are depicted in Fig. 3a, b. The computational time
obtained by a PC equipped with an Intel(R) Core(TM) i5-2430M CPU@ 2.40GHz,
and 4GB RAM, for the first and second results illustrated in Fig. 3 are 9.2 and 4.3 s,
respectively.

4 Conclusion

In this chapter, an optimal dimensional synthesis approach was presented for
3-RPR parallel mechanisms. The required constraints for containing the prescribed
workspace and avoiding the singularities within the workspace were proposed. A
multi-objective programming problem was considered in order to maximize the
workspace area and maximize a parameter for the aim of singularity avoidance.
Furthermore, a relaxation approach was introduced to convexify the problem and
also a branch-and-prune based algorithm was applied in order to converge to the
global optimal solution for the geometry of the mechanism. Ongoing work includes
solving the problem of dimensional synthesis for other planar and spatial parallel
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mechanisms such as the 3-PRR and 6-UPS parallel mechanisms. Moreover, another
aim is to find an approach which guarantees the existence of a singularity-free path
between two or more separated parts of a prescribed workspace.
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Approximating Constrained Hand Paths Via
Kinematic Synthesis with Contact Specifications

Hyosang Moon, Nina P. Robson and Reza Langari

Abstract This chapter presents part of our recent efforts in developing compu-
tational models of human motor coordination with reduced mobility. A recently
developed kinematic synthesis is implemented to approximate natural human hand
profiles with an elbow joint constraint. The constraint condition holds the hand on
a spherical workspace centered at the shoulder. The assumption that the hand is
in contact with the surface during the entire movement, allows us to describe the
contact condition by using higher order kinematic constraints such as velocities and
accelerations. By adopting contact specifications at an initial and a final task po-
sitions, kinematic synthesis and path planning techniques enable us to generate an
entire hand path connecting the two positions. It was found that the proposed method
closely approximates an actual human hand path, obtained experimentally.

Keywords Kinematic synthesis · Higher order kinematic specifications · Human
motor coordination

1 Introduction

Human arm can perform versatile reaching actions in activities of daily living (ADL)
mostly for achieving a desired hand manipulation such as pointing or grasping. Co-
ordinating such movements is not trivial since the central nervous system (CNS)
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J. Lenarčič and O. Khatib (eds.), Advances in Robot Kinematics, 375
DOI: 10.1007/978-3-319-06698-1_39,
© Springer International Publishing Switzerland 2014



376 H. Moon et al.

needs to resolve a highly redundant mapping problem to realize required hand
kinematics and dynamics with a set of control input for the complex musculoskeletal
system. However, every time we encounter such a problem in ADL, the CNS almost
automatically finds and executes an optimal solution without significant conscious
efforts. It can be explained that there are some governing rules within the CNS that
impose additional constraints on the assigned problem and induce a finite set of pat-
terned solutions. In his experimental study on point-to-point reaching actions on a
horizontal plane, Morasso [7] concluded that the hand kinematics tends to follow
a straight path connecting two task points with a smooth bell-shaped speed profile.
Flash and Hogan [3] formulated a mathematical expression called the minimum jerk
model to approximate such features of natural hand profiles in reaching movements.
Uno et al. [12] considered that the CNS takes a motion dynamics (i.e., variations in
joint torque values) into account for its motor coordination to explain slightly curved
experimental hand paths.

In this chapter, we hypothesize that hand contact conditions play an important
role in the governing rules to coordinate a point-to-point reaching in a stereotyped
manner. Contact conditions of a handwith one ormore objects can define velocity and
acceleration specifications in the vicinity of those contact points based on theoretical
backgrounds by Rimon and Burdic [8, 9]. Recently, Robson and McCarthy [11]
introduced a systematic method for the kinematic synthesis of planar mechanical
linkages such that they do not violate normal direction and curvature constraints
imposed by contacts with objects. Using the geometry of the task, they showed
how to transform these constraints into velocity and acceleration specifications of
the moving body/end-effector. Their work was further continued by Robson and
Tolety [10], who extended the contact geometry problem to the three dimensional
case.

We believe that the CNS senses directional constraints on hand velocity, acceler-
ation and higher derivative vectors due to relative curvatures of contact geometries
and utilizes them while generating a hand profile. Consider that a targeting hand
position is assigned as an only input for planning and executing a point-to-point
reaching. Then, the CNS needs to generate a hand path to fill out a gap to the target-
ing hand position from an initial state. When there is a contact condition imposed at
each task point, directions of hand velocity and acceleration vectors are constrained
by contact geometries in the vicinity of each task point. As a result, the specified
contact conditions can assist the CNS to reduce a range of possible hand profile
solutions: i.e., the solution set can be filtered to meet those kinematic specifica-
tions simultaneously. In this manner, we believe that the entire hand profile can be
approximated/reproduced/predicted by using the linkage kinematic synthesis tech-
niques with the given contact conditions. In this study, elbow constrained reaching
movements on a spherical workspace are approximated via the previously developed
spatial SS linkage synthesis for contact specifications shown in [10]. The spherical
contact condition was realized by an elbow joint constraint with a medical brace in
the experiment.
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Fig. 1 The defined joint
coordinates to represent an
elbow constrained human arm
motion kinematics [6]

2 Human Arm Kinematic Model with a Constrained
Elbow Joint

Human arm kinematics can be simplified as a seven DOF (degrees of freedom) SRS
chain (i.e., one DOF revolute joint at the elbow and three DOF ball and socket joints
at the wrist and the shoulder). When the elbow joint is fixed, the arm kinematics
changes to a serial SS chain, characterized by a spherical workspace centered at
the shoulder. In order to represent motion kinematics of the elbow constrained arm,
joint coordinates shown in Fig. 1 is defined [6]. The coordinate system consists of
the shoulder azimuth α, the humeral elevation β, the humeral rotation γ , and the
elbow flexion δ. Note that δ is fixed as a constant in this study due to the elbow joint
constraint condition. For the sake of simplicity, the three wrist DOF are neglected
and considered as fixed due to their minor roles in pointing motions.

The hand location (Xh,Θh)T = (xh, yh, zh, θh, φh, ψh)T in Cartesian space can
be obtained by the forward kinematics:

⎡
⎢⎢⎢⎢⎢⎢⎣

xh

yh

zh

θh

φh

ψh

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

lusαsβ − l f (sδ(cαsγ − sαcβcγ ) − sαsβcγ )

lucαsβ + l f (sδ(sαsγ + cαcβcγ ) + cαsβcδ)

−lucβ − l f (cβcδ − sβcγ sδ)

arcsin(cδ(sαsγ + cαcβcγ ) − cαsβsδ)

arctan 2(sαcγ − cαcβsγ , sδ(sαsγ + cαcβcγ ) + cαsβcδ)

arctan 2(cδ(cαsγ − sαcβcγ ) + sαsβsδ,−cβsδ − sβcγ cδ)

⎤
⎥⎥⎥⎥⎥⎥⎦

, (1)

where lu and l f indicate the upper arm and the forearm link lengths, and cos(.) and
sin(.) are noted as c(.) and s(.), respectively. Here, θh , φh and ψh indicate pitch,
yaw and roll orientation angles of the hand that are corresponding to directions of
anatomical joint articulations: wrist flexion, radial deviation and forearm pronation,
respectively. From the inverse kinematics, each joint angle can be derived as [1]:
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⎡
⎢⎢⎣

α

β

γ

δ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

arctan 2(xe, ye)

arccos (−ze/ lu)

arctan 2
(

lu(xe yh − xh ye), ye(yezh − yhze) − xe(zexh − zh xe)
)

arccos
(
(x2h + y2h + z2h − l2u − l2f )/(2lul f )

)

⎤
⎥⎥⎥⎥⎦

, (2)

where Xe = (xe, ye, ze)
T depicts the elbow position in Cartesian space. In what

follows we briefly present the background, described in details in [10], needed for
the development of our model for approximating the elbow joint constrained hand
path.

3 Higher Order Motion Specifications Defined from Relative
Curvatures of Contact Geometries: Background

Let the the movement of the moving frame M, located at the wrist joint, be defined
by the parameterized set of 4 × 4 homogeneous transforms [T (t)] = [R(t), d(t)]
constructed from a rotation matrix R(t), composed of roll ψ(t), pitch θ(t) and yaw
φ(t) angles, and translation vector d(t) = (dx (t), dy(t), dz(t))T:

[T (t)] =

⎡
⎢⎢⎣

cφ(t)cψ(t) + sθ(t)sφ(t)sψ(t) sθ(t)cφ(t)sψ(t) − sφ(t)cψ(t) cθ(t)sψ(t) dx (t)
cθ(t)sφ(t) cθ(t)cφ(t) −sθ(t) dy(t)

sθ(t)sφ(t)cψ(t) sφ(t)sψ(t) + sθ(t)cφ(t)cψ(t) cθ(t)cψ(t) dz(t)
0 0 0 1

⎤
⎥⎥⎦ .

(3)

A point p fixed in the moving frame M traces a trajectory P(t) in a fixed global frame
F by the [T (t)] and can be approximated by the Taylor series expansion,

P(t) = [T (t)]p =
[

T0 + T1t + 1

2
T2t2 + · · ·

]
p where [Ti ] = di [T (t)]

dti

∣∣∣∣
t=0

.

(4)
The matrices [T j

0 ], [T j
1 ] and [T j

2 ] are defined by the position, velocity and acceler-
ation of the end-effector in the vicinity of the two task positions.

Figure 2 represents a schematic plot of an elbow constrained arm, as well as
the geometry of the spatial contact problem in the vicinity of a particular position.
It can be assumed that the hand is in contact at three points with three spherical
objects, with radii of curvature RA, RB and RC , defined from object geometries at
three points. The orientation angles θ(t), φ(t) and ψ(t) of the moving frame M are
directly derived from hand contact positions, which are obtained from the motion
capture system in this study, as presented in [10]. Note that the forward kinematics
(1) requires an additional step of deriving joint angles from the captured motion
data through the inverse kinematics (2) to obtain orientation angles. The position
coordinate transformation [T0] in (3) can be specified by the geometrically derived
orientation angles:
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Fig. 2 Schematic plot of an elbow constrained arm with contact specifications. B and P refer
positions of the base and the moving pivot, respectively

θ(t) = arctan 2
(

ĵ ·(B−A)
|B−A| ,

î ·(B−A)
|B−A|

)
,

φ(t) = arctan 2
(

k̂·((B−A)×(C−A))×(B−A)
|((B−A)×(C−A)) ×(B−A)| ,

k̂·((B−A)×(C−A))
|((B−A)×(C−A))|

)
,

ψ(t) = − arcsin
(

k̂·(B−A)
|B−A|

)
,

(5)

where î , ĵ and k̂ are unit vectors along each axis of the fixed frame F.
From the geometry of contact conditions shown in Fig. 2, the velocity specifica-

tions of contact points can be derived using:

Ȧ = w × (A − d) + ḋ = wO1A × (A − O1),

Ḃ = w × (B − d) + ḋ = wO2B × (B − O2),

Ċ = w × (C − d) + ḋ = wO3C × (C − O3),

(6)

where the moving frame’s angular velocity vector w is a function of θ̇ , φ̇ and ψ̇ . By
solving (6) for w, the velocity coordinate transformation [T1] in (4) can be specified.
In the same manner, the acceleration specifications at the contact points are:

Ä = aO1 A × (A − O1) + wO1 A × (wO1 A × (A − O1)) = a × (A − d) + w × (w × (A − d)) + d̈,

B̈ = aO2B × (B − O2) + wO2B × (wO2B × (B − O2)) = a × (B − d) + w × (w × (B − d)) + d̈,

C̈ = aO3C × (C − O3) + wO3C × (wO3C × (C − O3)) = a × (C − d) + w × (w × (C − d)) + d̈,

(7)

where a is the time derivative of w. In order to calculate the acceleration coordinate
transformation [T2] in (4), (7) is solved for a which is a function of θ̈ , φ̈ and ψ̈ .
In this study, higher order motion specifications (i.e., linear and angular velocities
and accelerations in Cartesian space) can be numerically computed from a motion
capture data.
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4 Elbow Constrained Trajectory Generation in Joint Space

The hand trajectory of the elbow constrained arm in the vicinity of the specified
task positions can be generated by using (4). In order to produce an entire hand
trajectory with a smooth speed profile, a standard robotic trajectory planning tech-
nique introduced in [2] is adopted to approximate the elbow constrained hand path,
which can be kinematically modeled as a spatial SS linkage. At each task point, the
inverse kinematics of the elbow constrained arm shown in (2) enables the conver-
sion of a specified hand position into joint angles. The joint angular velocity vector
q̇i = (α̇i , β̇i , γ̇i , δ̇i )

T at the task point i can be solved by

Vi = Ji q̇i , (8)

where Vi = (vTi ,ωT
i ) is linear and angular velocity specifications of the moving

frame M in Cartesian coordinates and Ji refer the Jacobian of the forward kinematics
[see (1)] at the task point i. Since the Jacobian Ji is not a square matrix, a pseudo-
inverse is utilized to solve (8).

The prescribed linear and angular accelerations of the moving frame M in Carte-
sian coordinates, Ai = (aTi ,αT

i ), can be mapped to a corresponding joint angular
acceleration vector q̈i = (α̈i , β̈i , γ̈i , δ̈i )

T by the time derivative of (8),

Ai = J̇i q̇i + Ji q̈i . (9)

Since J̇i q̇i is known from (8), the acceleration conversion (9) can be solved with a
Jacobian pseudo-inverse,

q̈i = [J T
i Ji ]−1[J T

i ](Ai − J̇i q̇i ). (10)

Following [2], a set of fifth order polynomials is defined as

q(t) = D[1 t t2 t3 t4 t5]T, (11)

where the coefficient matrix D can be solved to generate a smooth joint trajectory
between (q1, q̇1, q̈1) and (q2, q̇2, q̈2) over the time range t1 ≤ t ≤ t2.

5 Experimental Setup for Obtaining Elbow
Constrained Hand Paths

In order to acquire actual human hand profiles with an elbow joint constraint, a point-
to-point reaching experiment is designed. The elbow joint was immobilized at 60◦
of flexion by a light weight brace (Aircast Mayo Clinic Elbow Brace, DJO Global
Inc., USA). The wrist joint was also fixed with a brace (AirCast A2Wrist Stabilizing
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Fig. 3 Attached markers on the elbow constrained arm. Three contact points of the hand are
indicated as A, B and C

Table 1 Task specifications captured and computed at two task points

Position spec. (mm; rad) (dx , dy , dz; θ, φ,ψ)

Initial location (−47.10, 543.7, 51.89; −0.897, −0.853, 0.869)
Final location (210.0, 493.5, −113.5; −0.561, −0.612, 1.260)

Velocity spec. (mm/s; rad/s) (ḋx , ḋy , ḋz; θ̇ , φ̇, ψ̇)

Initial location (11.88, 0.8770, 1.589; 0.0314, −0.0326, 0.0696)
Final location (−5.084, 5.984, 16.60; −0.0297, −0.0280, 0.0257)

Acceleration spec. (mm/s2; rad/s2) (d̈x , d̈y , d̈z; θ̈ , φ̈, ψ̈)

Initial location (222.4, 24.25, −55.30; −0.562, −2.91, 3.63)
Final location (−93.72, 41.28, 8.978; −1.35, 0.380, 1.27)

Brace, DJO Global Inc., USA). Four target points were displayed on a computer
monitor and six reaching directions were defined among those targets. See [4, 5] for
details. During the experiment, the motion kinematics was recorded by a 3D motion
capture system (Vicon, OMG Plc., UK) with 100 Hz sampling rate. Three reflective
markers were attached to each shoulder, elbow and wrist joint regions as shown in
Fig. 3. The origin of the moving frame M is defined on the marker A. Its x axis Mx

was defined as B − A, the z axis Mz is computed by (B − A) × (C − A) and the y
is determined by Mz × Mx .

6 Comparison Between the Approximated
and the Experimentally Obtained Elbow Constrained
Hand Paths: A Preliminary Result

A diagonal point-to-point reaching task was selected. From the captured motion
data, contact specifications of the hand in the vicinity of each task point were com-
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Fig. 4 Comparison of the approximated hand path with the experimental data. a 3D spatial path
comparison b Coordinate comparisons with respect to the normalized arc length and the normalized
time, respectively c Hand speed profile comparison

puted as shown in Table 1 by numerically differentiating linear positions and solving
Eqs. (5–7). The contact specifications at the two task positions in Cartesian space
are then converted into the joint space via Eqs. (2) and (8–10). Finally, the joint
trajectory is formulated by (11), and the hand path in Cartesian space is recovered
by the forward kinematics (1).
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The approximated hand path profile with higher order motion constraints for the
selected trial is compared with the experimental data and shown in Fig. 4. In Fig. 4a,
two spatial curve geometries are compared in Cartesian space. The approximation
result (see grey dotted line) closely follows the experimental hand path (see black
continuous line) with no significant deviations. In order to take a closer look, two
curves are compared in the geometry and the spatio-temporal perspectives. First,
each curve is re-parametrized by one’s arc length and its Cartesian coordinates are
plotted over the normalized arc length (see the left graphs in Fig. 4b). By the re-
parametrization, we can purely compare the geometries of the two curveswithout any
temporal effects. Next, each x, y, and z axis component of the two trajectories along
the normalized time is compared (see the right graphs in Fig. 4b). As shown in those
detailed figures, the proposed method closely approximates both the geometry and
the spatio-temporal aspects of the actual hand path. It can be noticed that deviations
between the two trajectories are relatively more significant when they are compared
along the normalized time than along the normalized arc length. This can be explained
by different temporal characteristics reflected in their speed profiles (see Fig. 4c).
Since the approximated model trajectory is formulated by the analytical solution of
the minimum jerk model in joint space, it shows smoother speed profile than the
experimentally obtained profile. Here, it should be noted, that despite the deviations
during the reaching, the approximated and the obtained hand paths overlap in the
vicinity of the two positions where the higher motion constraints have been defined.

7 Conclusion and Future Work

Hand path formulation in a point-to-point reaching is a highly redundant mapping
problem in mathematics which is easily resolved by the CNS almost unconsciously.
In order to explain such an efficient and optimal redundancy resolution scheme, we
propose that contact conditions at the reaching hand are taken into account. These
contact conditions are related to higher order kinematic task constraints such as ve-
locities and accelerations. In order to validate our viewpoint, an elbow constrained
reaching motion profile is approximated using recently developed kinematic synthe-
sis techniques.

As a preliminary result, an approximation model output is generated for geo-
metrical and spatio-temporal comparisons with a selected experimental data. From
qualitative analysis, the model output closely follows the experimental data. There-
fore, it can be considered that the CNS takes the hand contact conditions into account
when it plans reaching profiles. We expect this finding can be extensively applied
to approximate healthy arm reaching movements, which are highly patterned, by
assuming that characteristics of governing rules within the CNS can be modeled as
imaginary hand contact conditions. In addition, the future work includes conduct-
ing quantitative and statistical analysis to model the shoulder and wrist constrained
paths, as well as extending the model to finger motion and object manipulation.
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Investigation of Error Propagation
in Multi-backbone Continuum Robots

Long Wang and Nabil Simaan

Abstract Snake-like robots using multiple backbones have gained increased use
in surgical robotics. These robots are essentially parallel robots with constrained
flexible legs. Change in the equilibrium configuration of these robots is obtained
by pushing/pulling on the robots’ legs. This chapter presents an investigation of the
effects of assembly and home position errors on the accuracy of these robots. The
assembly errors considered in this chapter include twisting about the backbone curve
and deviation of the equilibrium shapes from assumed circular shapes. A modeling
framework for the inverse and direct kinematics is presentedwhile taking into account
twisting and shape deviation. The configuration space and the identification Jacobian
matrices are derived and then used to investigate the effects of the assembly/modeling
errors on inducing errors in configuration and task space.

Keywords Kinematics · Continuum robots · Calibration · Parallel robots

1 Introduction

Continuum robots (CRs) control their shape by bending elastic components embed-
ded in their structure [5, 7]. This chapter focuses on a specific type of contin-
uum robot we call multi-backbone continuum robots (MBCRs). Figure1 shows
an MBCR as proposed in [11]. These robots are built using serially stackable
segments. The snake segment is essentially a parallel robot having constrained
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Fig. 1 Multi-backbone snake
robot with two segments: 1
Base disk; 2 Primary back-
bone; 3 Spacer disk; 4 End
disk; 5 Secondary backbone;
6 Bending plane
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flexible legs in the form of superelastic NiTi beams actuated in push-pull mode.
A primary backbone (PB) of the snake segment is surrounded by multiple secondary
backbones (SBs) circumferentially distributed around it with equal separation angles
and a constant pitch radius. The secondary backbones of each snake segment are kept
equidistantly distributed around the primary backbone using spacer disks. The last
disk in a snake segment is attached to all backbones while all other disks are attached
only to the central backbone. Pushing or pulling on the secondary backbones allows
controlled bending of the each segment in two degrees of freedom.Other design alter-
natives (e.g. [4]) replace the secondary backbones with wires. We call these robots
single-backbone continuum robots (SBCRs). The simplified design of SBCR comes
at a cost of limited miniaturization and payload carrying capabilities as was shown
in [10]. Due to these advantages, MBCRs have been used extensively for dexter-
ity enhancement in many surgical domains including otolaryngology, transurethral
bladder surgery, and single port access surgery (see [2, 3, 12]).

Most modeling works assume circular bending of the continuum robot segments
[15]. Few exceptions include [17] which addressed the exact kinematics and statics
of MBCRs and [8, 9, 13] who addressed the exact statics and dynamics of SBCRs.
However, all previous works on SBCRs andMBCRs ignore twisting along the central
backbone curve. Additionally, they also ignore issues related to geometric assem-
bly errors and potential bending shape deviations stemming from friction effects or
modeling errors. There is a paucity of works addressing calibration of MBCRs and
SBCRs.

The twisting typically stems from inexact assembly of the spacer disks on the pri-
mary backbone or from a wrong definition of the “home” position of the joints con-
trolling the length of the secondary backbones. For example, if the SBs are assembled
such that they are almost equal in length but longer than the PB then the CR segment
will start from an almost straight configuration but with a twist of the secondary
backbones about the primary backbone. In addition to these errors, the chapter also
addresses calibration of a configuration-dependent bending shape of these robots.

Wang and Chirikjian [14] used convolution on the motion group SE(3) and
derived a second-order approximation using Lie algebras. Nahvi and Hollerbach [6]
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presented a first-order error propagation based on error ellipsoid analysis. In this
chapter, we adopt the ellipsoid analysis approach.

The contribution of this chapter stems from putting forward a generalized
kinematic modeling framework allowing for evaluating errors in configuration
and task space and providing the identification Jacobian matrix for calibration of
MBCRs/SBCRs. A kinematic simulation of a single snake segment is presented as
a case study for evaluating the pose errors caused by assembly and modeling errors.

2 Kinematic Modeling for Calibration

In this work we extend the modeling framework of [11, 16] to include twisting
about the backbone curve and non-circular bending in shapes. The bending shape
of each snake segment depends on the minimal energy of the elastic structure and it
may deviate from circular bending depending on material distribution, friction and
assembly errors.Wewill focus on capturing the bending behavior of a snake segment
moving in free space (no external load).

Each snake segment has a configuration vector ψ = [θe, δ]where θe is the bending
angle at the tip of the snake segment and δ is the angle characterizing the plane in
which the snake segment bends, Fig. 1. We also use the arc length parameter s as
measured from the base disk and we use L to denote the segment length.

Modeling non-circular bending shapes:When the segment is actuated, we assume
that its exact bending shape changes as a function of its minimal energy, which
may be configuration-dependent. To capture the general configuration-dependent
bending behavior, we use a family of shapes given by a curvature profile function
κ(s, t). The interpolation parameter t ∈ [0, 1] selects a specific bending shape that
is interpolated from two shape generators κ0(s) and κ1(s) describing the limits of
the bending workspace of the continuum segment.

κ(s, t) = tκ1(s) + (1 − t)κ0(s), t ∈ [0, 1] (1)

The relationship between t and θe is defined such that t = 1 when the snake
assumes the most bent shape κ1(s) with a corresponding end disk angle θe1 and
t = 0 for the least bent shape κ0(s) with a corresponding end disk angle θe0, Fig. 2.

t = (θe − θe0) / (θe1 − θe0) , θe ∈ [θe1, θe0] (2)

This mapping allows us to interchangeably use t instead of θe in the configuration
space vector ψ . We will therefore redefine ψ as ψ = [t, δ].

To enable calibration of the shape behavior, the shape generator curves κ0(s) and
κ1(s) are described using a modal representation:

κ0(s) = aT η, κ1(s) = bT η, η(s) = [s0, s1, . . . , sn]T (3)
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Fig. 2 Shape interpolation
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where a, b ∈ IRn+1 are vectors of modal factors, η(s) is a vector of modal functions
and n is the highest degree in η(s). This use of the modal approach is inspired by [1]
who first proposed this method for solving the inverse kinematics of hyper-redundant
snake-like robots.

Modeling twist along the backbone curve: We assume that the segment has a
twist angle γe describing the amount of twisting about PB at the end disk (s = L).
This twist is configuration-dependent i.e. γe = γe (ψ). The configuration-dependent
behavior of γe is captured by an offset assembly error at the base disk γe0 and two
linear constants kθ and kδ describing the configuration dependence of the end disk
twist angle. We also assume that the twisting about the PB is linearly distributed:

γe = γe0 + kθ t + kδδ, γ (s) = γes/L (4)

In the following sections we use these assumptions to evaluate kinematic sensitivity
to calibration and geometric errors.

3 Inverse and Forward Kinematics

Figure3 shows the PB and only the 1st SB for clarity. In the following we will use
the notation {F} to designate a right-handed frame with unit vectors x̂ f , ŷ f , ẑ f and f
as its origin. Accordingly we define {B} as the base disk frame with b located at the
center of the base disk, x̂b passing through the first SB and ẑb perpendicular to the
base disk. Frame {1} characterizes the plane in which the snake segment bends and
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Fig. 3 Frame definitions for a single segment. Left shows a non twisted segment. Right shows a
twisted segment

it is obtained by a rotation of (−δ) about ẑb. Unit vector x̂1 is along the projection
of the PB on the plane of the base disk and ẑ1 = ẑb.

To describe the end disk configuration we use frames {E} and {G}. Frame {E}
is defined with ẑe as the normal to the end disk and x̂e is the intersection of the
bending plane and the end disk top surface. Frame {G} is obtained by a rotation
angle (−σ1e) about ẑe which is the unit vector normal to the end disk. This angle
is given by σ1e = δ + γe. Similarly, assuming three backbones, one could define
σie = δ + (i − 1) 2π3 + γ (s), i = 1, 2, 3.

In addition, we define local frames {P} and {Gs} associated with arc length s.
These frames are defined in a manner similar to the definition of frames {E} and {G}
but for a specific value of s as opposed to s = L . The origin of {P} is located at point
p(s) and obtained by integration along the PB. We also define a vector v(s) = r x̂gs

which points from p(s) on the PB to the corresponding point on the first SB. The
location of the point on the first SB that corresponds to point p(s) on the PB is
designated by w(s). We note that w(s) = p(s) + v(s).

The inverse kinematics of the snake segment solves the required lengths Li , i =
1, 2, 3 of the SB’s for a desired segment configuration ψ = (t, δ). The length of the
i th SB can be calculated using the tangential vector dw(s)/ds,
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Li =
L∫

0

∥∥∥ dw(s)
ds

∥∥∥ ds, dw(s)
ds = dp(s)

ds + dv(s)
ds (5)

Using the definition of curvature and expressing vectors in frame {1}, we have:

1dp
ds

= [cθs , 0, sθs ]T , θs(s) = π

2
+

s∫

0

κ(τ, t)dτ (6)

where the left superscript designates the frame in which vectors are written, cx =
cos x and sx = sin x and θ(s) designates the angle of the local tangent to the PB as
measured from x̂1 about −ŷ1 according to the right hand rule.

Since v(s) is coincident with x̂gs and frame {Gs} is rotated by σ1s about the local
tangent ẑgs = dp

ds , we can characterize its motion by two instantaneous rotations
about ŷp and ẑp . Then usingEqs. (4) and (6), we can derive the frame angular velocity
ωgs and the velocity of vector v in Eqs. (7) and (8).

pωgs = p ẑp
dγ (s)
ds − pŷp

dθs (s)
ds = [

0,−κ(s, t), γe
L

]T (7)

1 dv
ds

= 1Rp
(pωgs × pv

)
, 1Rp = Rot

(
y,

(
π
2 − θs

))
, pv = r

[
cσis , sσis , 0

]T

(8)
where Rot

(
y,

(
π
2 − θs

))
is a canonical rotation matrix about the y axis by an angle

θ̃s . By substituting Eqs. (6) and (8) into Eq. (5) we obtain:

Li =
L∫

0

gi (s) ds, gi (s) =
√(

rκ(s, t)cσis + 1
)2 + ( rγe

L

)2 (9)

By defining the vector of joint values as q = [q1, q2, q3]T where qi = Li − L , i =
1, 2, 3 and assuming that the corresponding “zero” home positions for these joints
are given by qh = [qh1, qh2, qh3]T we can formulate the inverse kinematics problem
as:

q = f(ψ, k),
{
f, q ∈ IR3×1, fi = Li (ψ, k) − L + qhi

}
(10)

where k is a kinematic model parameter vector given by:

k � [kθ , kδ, γe0, r, L , qT
h , aT , bT ]T ∈ IR(8+2(n+1)) (11)

Equations (9) and (10) show us that the inverse kinematics of configuration space is
solvable using numerical integration while it is difficult to find an analytical solution
for the direct kinematics.
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The direct kinematics of the snake segment requires findingψ for a kinematically
consistent value of q. Due to its nonlinear nature of and because we are interested
in investigating the sensitivity of the end disk pose to calibration errors we decided
to use a numerical solution method. We therefore derive the configuration space
Jacobian Jqψ ∈ IR3×2 and the identification Jacobian Jk ∈ IR3×(8+2(n+1)) such that
JqψΔψ = Δq and JkΔk = Δf (ψ, k) using Eqs. (10) and (9).

Jqψ = ∂f(ψ, k)

∂ψ
=

L∫

0

∂g(s,ψ, k)

∂ψ
ds, g(s,ψ, k) = [g1, g2, g3]T (12)

Jk = ∂f(ψ, k)

∂k
=

L∫

0

∂g(s,ψ, k)

∂k
ds + g(L ,ψ, k)

∂L

∂k
− ∂[L , L , L]T

∂k
(13)

where ∂gi
∂ψ j

and ∂gi
∂k j

are obtained by differentiation of Eq. (9). Using Jqψ the direct
kinematics is solved using algorithm 1 based on Newton’s method.

Algorithm 1 fdir Configuration space direct kinematics
Input: {qtg, k} Output: ψ tg Adjust Parameters: ψ0, ε0 > 0, μ > 0
1: START Initialize: ψ ← ψ0, eq ← 100 ε0
2: while eq > ε0 do
3: Compute q = f(ψ, k), Jqψ = Jqψ (ψ, k) using Eqs. 10 and 12.
4: Update {ψ}

J+qψ = (JT
qψ WJqψ )−1JT

qψ W, Δψ = J+qψΔq, (14)

5: Δq ← (qtg − q), ψ ← (ψ + μΔψ), eq ← ‖Δq‖
6: end while
7: ψ tg ← ψ END

4 Evaluating Accuracy Effects of Geometric
and Calibration Errors

We will evaluate the effect of calibration errors in three cases. In case 1 we evaluate
the effect of twist about the PB on the accuracy of the robot if this twist is not
accounted for. In case 2 we evaluate the effect of errors in (kθ , kδ) on the accuracy
of the robot. Finally, in case 3 we evaluate the effect of home position errors in qh

on the accuracy of the robot. In this section we used a single-segment robot with
L = 60mm, r = 4mm, γe0 = 10◦, qh = [1,−2, 3]mm.

Case 1: effect of twist about PB. Figure4 shows the flowchart of the simulation
for evaluating the effect of an unknown twist angle γe on the task and configuration
space errors. A joint actuation q is planned based on given desired configuration ψd
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Fig. 4 Simulation flow chart
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Fig. 5 Pose errors due to twist error: a end disk position error, b error in δ

and an ideal model k0 assuming non-twisted and circular bending shape. This joint
actuation is fed into the forward kinematics model using kactual which includes twist
errors but satisfies the circular bending assumption. The errorΔψ is then propagated
to the robot task space kinematics to evaluate the task space error. We assumed in
this simulation γe = 30◦, kθ = 0.2327, kδ = 0.0185, a = −0.05/L, b = −0.8/L.
The errors between desired and actual robot pose are reported in configuration space
and task space as shown in Fig. 5. For space limitations and because the maximal
error in θe was less than 0.5◦ we did not include a separate for Δθe. Figure5a shows
that the position error can be significant (almost 10% of L). Figure5b shows that the
error in the bending plane direction can be as high as 14.3◦.

Case 2: effect of twist gains error. To evaluate the effect of errors in kθ and kδ

we assumed 10% error over their nominal values as in case 1. The jacobian Jk was
used to calculate the propagation of errors using Δq = JkΔk. The error Δψ was
bounded using the singular value decomposition (SVD) of Jqψ :

1

σ1
≤

∥∥∥Δψ

Δq

∥∥∥ ≤ 1

σm
, [σ1, σ2, . . . , σm] = SVD(Jqψ ) (15)

Figure6a shows the upper and lower bound for
∥∥∥Δψ

∥∥∥.
Case 3: effect of error in joint values at home position. Figure6b shows the upper

and lower bounds of the pose errors stemming from Δqh = [0.1, 0.2,−0.3]T [mm].
We estimated Δq = JkΔqh and used Eq. (15) to bound the error.
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Fig. 6 Configuration error bounds: a error due to Δkθ ,Δkδ , b error due to Δqh

5 Conclusions

This chapter presented a kinematic modeling framework that allows the derivation
of generalized identification and configuration space Jacobians of MBCR’s. The
chapter assumed a configuration-dependant change in the twisting about the pri-
mary backbone and in the characteristic bending shape throughout the workspace.
A generalized model for the inverse and forward kinematics was used along with
the identification and configuration Jacobians to study the potential effect of errors
including twisting about the primary backbone, error in the joint values at home
position and error in the coefficients characterizing configuration-dependent shape
behavior. A simulation study shows that these errors may be significant and empha-
sizes the need for calibration algorithms for these robots. Future work will include
calibration of continuum robots using the identification Jacobian derived in thiswork.
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Kinematics of Expansive Planar Periodic
Mechanisms

Ciprian S. Borcea and Ileana Streinu

Abstract Aflexible bar-and-joint framework is said to be moving expansively if the
distance between any two of its joints either increases or stays the same. Expansive
motions of finite 2D frameworks have been fully characterized. Here, we investigate
their periodic counterparts. The key to their understanding is a family of one-degree-
of-freedom mechanisms called periodic pointed pseudo-triangulations. Expansive
infinitesimal motions for mechanisms with several degrees of freedom form a poly-
hedral cone whose extremal rays are obtained from different completions of the
framework to pseudo-triangulations. We illustrate its structure on a framework asso-
ciated to a stellated tiling of the plane.

Keywords Periodic framework · Repetitive assembly · Expansive deformation

1 Introduction

In this chapter we study the kinematics of a remarkable family of planar periodic
bar-and-joint frameworks: those which possess periodic expansive deformations.
For instance, we show that the periodic framework from Fig. 1 has locally a smooth
4-dimensional space of periodic deformations and all directions for expansive trajec-
tories are contained in a polyhedral cone which has a natural geometric description
and can be determined with precision. By definition, a one-parameter deformation
of a flexible framework is expansive if the distance between any pair of joints either
increases or stays the same. Taken in reverse, an expansive motion is contractive.
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Fig. 1 A periodic bar-and-
joint framework

Of particular interest are those one-degree-of-freedom (1dof) mechanisms which
are expansive in some neighborhood of the initial configuration. We show that all
expansive deformations are, infinitesimally, linear combinations with non-negative
coefficients of underlying 1dof expansive mechanisms.

Expansion is a type of kinematic behavior with multiple applications which
include deployable structure design and nano-mechanics. A popular example of a
truss structurewith reversible expansion/contraction properties isHoberman’s sphere
[8]. Kovacs et al. [9] describe a kinematic model of a virus and argue that it has
expansive properties. More recently, Tanaka et al. [17, 18] study repetitive assem-
blies with expanding properties. Expanding or auxetic features, as considered in the
materials science literature [4–6, 10, 12] have been shown in [3] to be implied by
the stronger expansive property as defined above. In dimension two, finite expansive
framework deformations have applications to robot arm motion planning [14, 15]
and are well-understoodmathematically [13–15]. One-degree-of-freedom expansive
frameworks arise from a planar pointed pseudo-triangulation with a convex hull edge
removed [15]. In the expansive interval, such a framework has a smooth configu-
ration space. Infinitesimal expansive motions of mechanisms with more than one
degree-of-freedom form a polyhedral cone [13] whose extremal rays correspond to
refinements with just 1dof of the given linkage. Our purpose here is to demonstrate
a similar structure underlying planar periodic frameworks.

2 Preliminaries: Periodic Frameworks and Deformations

2.1 Planar Periodic Frameworks

A periodic bar-and-joint framework (G, Γ, p, π) in the plane is given by an infinite
graph G, a periodicity group Γ acting on G, a placement p of the vertices of G in
the Euclidean plane and a representation π of the periodicity group Γ by a lattice
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of translations. The edges are viewed as rigid bars: they may rotate freely around
their incident joints, and maintain their lengths during framework deformations. The
graph G = (V, E) has an infinite set of vertices V and (unoriented) edges E and
is connected. The periodicity group Γ is a free Abelian group of rank two acting
on G without fixed vertices or fixed edges. We assume that the quotient multigraph
G/Γ is finite, and denote the number of vertex and edge orbits by n = |V/Γ | and
m = |E/Γ |. For example, the periodic framework in Fig. 1 has 6 vertex orbits and 9
edge orbits. The function p : V → R

2 gives a specific placement of the vertices as
points in the plane, in such a way that any two vertices joined by an edge in E are
mapped to distinct points. The placement is periodic in the obvious sense that the
abstract action of the periodicity groupΓ is replicated by the action of the periodicity
lattice Λ = π(Γ ) on the placed vertices.

2.2 Periodic Deformations

A one-parameter periodic deformation is a family of placements and a family of
lattices parametrized by time (p(t), π(t))t , such that all bar lengths are maintained
and the same abstract periodicity groupΓ acts on all the frameworks of the deformed
family. A periodic framework is rigid if it has no periodic deformations other than
the trivial ones resulting from Euclidean isometries. The configuration space of the
periodic framework is obtained from the placements of vertex orbits, subject to
the algebraic constraints of prescribed (squared) lengths for edges. We factor out
the 3-dimensional space of planar rigid transformations. This concept of periodic
deformation was introduced in [1]. A framework is rigid when corresponding to
an isolated point of the configuration space; otherwise it is flexible. After choosing
vertex representatives for all vertex orbits and two generators for the periodicity
lattice, the Jacobean matrix at a given placement p is a (2n + 4) × m matrix (called
the periodic rigidity matrix and denoted by R) whose rank thus cannot exceed 2n + 1.
At a regular point the rank of the Jacobean equals the dimension of the configuration
space in a small neighborhood. We say that a periodic framework is infinitesimally
rigid if its periodic rigidity matrix has the maximum rank of 2n + 1. In this case,
the framework must have at least 2n + 1 edges, properly placed. In [2], we have
characterized the graphs which are periodically minimally rigid, when generically
placed. A finite graph is said to be of “2n − 2”-sparsity type if it has exactly 2n − 2
edges (where n is its number of vertices), and any of its subsets of n′ ≤ n vertices
spans at most 2n′ − 2 edges.

Theorem 1 [2] A (multi)graph with 2n + 1 edges (on n vertices) is the quotient
graph of a minimally rigid periodic framework if and only if it contains a subgraph
of 2n − 2 sparsity type spanning all the vertices.

A framework is minimally rigid if it is infinitesimally rigid and the removal of
any edge turns it into a flexible framework. Classical arguments can be used to show
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that infinitesimal (periodic) rigidity implies (periodic) rigidity and that, if a periodic
framework is obtained from a minimally rigid one by the removal of k edges then
the rank of its rigidity matrix is 2n + 1− k and its deformation space has dimension
k in a neighborhood of the given placement. We say, in this case, that the framework
has k degrees of freedom.

2.3 Periodic Expansive Motions

A one-parameter deformation (p(t), π(t))t∈(−ε,ε) of a flexible framework is said to
be expansive if, as the time t increases, all the distances between pairs of vertices
increase or stay the same. Here, (p(0), π(0)) gives the initial framework and the
corresponding infinitesimal deformation is the tangent vector to the deformation
space given by the derivative at 0.

We describe now a family of planar periodic frameworks distinguished by two
elementary and easy to verify properties.

2.4 Non-crossing Periodic Graphs

A periodic framework is non-crossing if all pairs of non-incident bars are disjoint
(they do not cross, touch or overlap). All the frameworks illustrated in this chapter are
non-crossing. A non-crossing framework subdivides the plane into two-dimensional
regions, called faces. The periodicity group of the given framework also acts on its
set of faces. The examples in Fig. 2 have 3, 2, 3 and 3 face orbits, colored distinctly.
Euler’s formula n − m + f = 0 for the torus relates the numbers n, m and f of
vertex, edge and face orbits.

2.5 Periodic Pseudo-Triangulations

A pseudo-triangle is a simple closed planar polygonwith exactly three internal angles
smaller than π . A set of vectors is pointed if no subset allows a linear combination
with strictly positive coefficients that sums to 0. Equivalently, for a pointed set of
vectors, some consecutive pair (in the circular rotational order around the common
vertex) induces an angle larger than π . A planar non-crossing periodic framework is
a periodic pointed pseudo-triangulation when all faces are pseudo-triangles and the
framework is pointed at every vertex. An illustration for n = 3 is given in Fig. 2d.

Proposition 2 [3] A periodic pseudo-triangulation has m = 2n, that is, the number
of edge orbits m = card(E/Γ ) is twice the number of vertex orbits n = card(V/Γ ).
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Fig. 2 Four pointed periodic tilings from [7]

Combined with Theorem 1, this proposition shows that periodic pointed pseudo-
triangulations have the right number of edges to be smooth one-degree-of-freedom
periodic mechanisms. The fact that this is indeed the case was proved in [3] based
on our generalization to the periodic setting of Maxwell’s Theorem [11] on liftings
and stresses of planar bar-and-joint frameworks, where we showed that a periodic
pseudo-triangulation cannot have nontrivial periodic stresses.

Proposition 3 [3] The local deformation space of a periodic pseudo-triangulation
is smooth and one-dimensional and continues to be so as long as the deformed frame-
work remains a pseudo-triangulation. This is true for any relaxation of periodicity
Γ̃ ⊂ Γ of finite index.

Finally, we have proved the following, most remarkable property of periodic
pseudo-triangulations.

Theorem 4 [3] Let (G, Γ, p, π) be a planar periodic pseudo-triangulation. Then
the framework has a one-parameter periodic deformation, which is expansive for the
entire open interval where it remains a pseudo-triangulation.

In the rest of this chapter, we extend this result from periodic pointed pseudo-
triangulations to arbitrary pointed and non-crossing periodic frameworks and show
how to design expansive trajectories for them. Ultimately, we obtain a complete
characterization of the frameworkswhich support expansivemotions. In addition, we
give a precise procedure for calculating the set of all possible infinitesimal expansive
motions of a given framework, which we show to be a polyhedral cone, called the
cone of expansive infinitesimal motions. Expansive trajectories can be obtained by
integrating an appropriate vector field of expansive infinitesimal motions belonging,
at each point, to the corresponding cone.

3 Designing Expansive Trajectories: Examples

We illustrate the theory presented so far with the four periodic frameworks from
Fig. 2, where they are depicted with colored face orbits and highlighted face rep-
resentatives to facilitate the visual identification of the periodicity lattice. These
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Fig. 3 The periodic framework from Fig.2a can be turned into pointed pseudo-triangulations by
the addition of three edges on the large stellated face, placed in 14 distinct ways (shown here up to
symmetries)

examples are the stellated planar tilings of [7] (p. 239). They are all non-crossing
and pointed, but only (d) is a pseudo-triangulation.

3.1 Counting Degrees of Freedom

An argument similar to the one used in [3] (based on our periodic extension of
Maxwell’s Theorem) can be applied to show that none of the examples in Fig. 2
(more generally, no periodic non-crossing and pointed framework) supports a peri-
odic stress. In particular, this implies that Theorem 1 can be applied to compute their
degrees of freedom, as follows.

Framework (a) has n = 6, m = 9, f = 3, and k = 2n + 1 − m = 4 dofs.
Framework (b) has n = 4, m = 6, f = 2, and k = 2n +1−m = 3 dofs. Framework
(c) has n = 6, m = 9, f = 3, and k = 2n + 1 − m = 4 dofs. Framework (d),
which has n = 3, m = 6, f = 3, and k = 2n + 1 − m = 1, has a well-defined
one-parameter expansive trajectory. This framework is a deformed configuration of
the familiar Kagome framework [3, 16]. Our goal now is to explain our approach for
designing expansive trajectories for the other three frameworks (a), (b) and (c).

3.2 Subdividing Faces

The faces of a periodic non-crossing and pointed framework which are not pseudo-
triangles can be subdivided by new edges which maintain non-crossing and pointed-
ness. This is always possible (Theorem5 below), but not uniquely. Figure3 illustrates
three of the ways in which the large stellated face of the framework from Fig. 2a can
be subdivided; the others are obtained by applying appropriate symmetries to these
three types of constructions, for a total of 14 possibilities.
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3.3 Designing Expansive Trajectories

For the example under discussion, each of the 14 pseudo-triangulations induces a
distinct expansive trajectory of the original framework. However, these are not the
only possibilities. One may imagine the following scenario: start with one pseudo-
triangulation and deform the original framework for a small time step δt according
to its induced trajectory. Since the points have not moved too much, there will still be
14 ways of pseudo-triangulating the deformed framework, so now we may choose a
different one. This can be continued for as long as each of the intermediate pseudo-
triangular frameworks retains its pointedness. We remark that no crossings of edges
will occur during an expansive motion: joints move away from each other, by defin-
ition, and the same holds for arbitrary points on the edges.

This scenario can be further refined. If we make the time step δt infinitesimally
small, we may look not just at the finite motions induced by the pointed pseudo-
triangular completions of the original framework, but also at the corresponding
infinitesimal expansive motions.

3.4 Cone of Infinitesimal Expansive Motions

Given an infinitesimal deformation and a pair of vertices, the condition expressing
the infinitesimal increase of the squared distance between the vertices is a linear
inequality: infinitesimal deformations on one side of the equality subspace produce
infinitesimal increase and on the other side infinitesimal decrease. It follows that all
expansive infinitesimal motions must lie in a polyhedral cone with the apex at the
origin which is the intersection of all half-spaces determined by pairs of vertices. The
extremal rays of this cone correspond to the possible refinements of the framework to
periodic pseudo-triangulations. For the example in Fig. 2a there are 14 possibilities
(Fig. 3), hence a section of the cone away from the origin will result in a convex
polyhedron in R3, with 14 vertices (Fig. 4). The combinatorics of this polyhedron
can be explained as follows: each face corresponds to adding onemore (non-crossing,
pointedness respecting) edge-orbit to the given framework (in 9 ways); an edge of
the polyhedron corresponds to adding two edge-orbits to the framework (21 ways),
and a vertex of the polyhedron corresponds to adding three edges, i.e. to one of the
14 ways in which the framework can be completed to a pseudo-triangulation.

3.5 Convex Faces and Rigid Components

The frameworks (b) and (c) inFig. 2 eachhave a convex facewithmore than3vertices.
Such faces can be subdivided inmanyways, butwhen all the possible edges have been
added, the result is a triangulation of the convex face. Since each triangle is rigid, the
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Fig. 4 A section of the cone
of infinitesimal expansive
motions for the 4dof frame-
work from Fig. 2a

triangulated face becomes a (periodically repeated) rigid component. The pseudo-
triangulation ultimately obtained will expand in a manner that does not depend on
how the convex face was triangulated. Therefore, although the framework in Fig. 2b
can be extended in 4 ways (two ways for the convex face and 2 ways for the non-
convex face) to a pseudo-triangulation, only two of them lead to distinct expansive
trajectories. The framework inFig. 2c has only one face that canbe further subdivided,
and it is convex: this framework supports exactly one expansive trajectory, in spite
of the fact that it can also be pseudo-triangulated in 14 ways.

4 Kinematics of Periodic Expansive Motions

Wenow present a complete characterization of the frameworks which support expan-
sive motions. First, we show that any periodic non-crossing and pointed framework
can be extended to a pointed pseudo-triangulation by subdividing faces. The next
goal is to understand the rigid components, as we have already seen in the previous
examples that they play a role in determining the expansive behavior of a periodic
non-crossing and pointed framework.

4.1 Extending a Periodic Non-crossing Pointed Framework
to a Pseudo-Triangulation

There is a simple procedure for designing frameworks similar to those shown in
Fig. 3: start with an arbitrary periodic point set in general position (i.e. triplets of
points are collinear only when they belong to the same orbit). Then insert edge
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Fig. 5 Extending a periodic pointed non-crossing framework which is not a pseudo-triangulation. a
All graph cycles are trivial homology cycles. b Cycles span a one-dimensional homology subspace.
c, d Cycles span the full (rational) homology group of the torus

representatives, one by one, maintaining non-crossing and pointedness, and replicate
them periodically. The following theorem proves the correctness of this procedure.

Theorem 5 Let G be a non-crossing and pointed periodic framework which is not a
pseudo-triangulation. Then there exists a new edge orbit which can be added, while
maintaining the non-crossing and pointedness of the framework.

Proof Compared to the proof for finite pseudo-triangulations [15], in the periodic
setting we have to show that it is not possible that the only non-crossing edges that
could be inserted have endpoints in the same orbit. The proof proceeds through a
case analysis of three possible situations, differentiated by the nature of the cycles
of the quotient graph G/Γ , when viewed as a graph embedded on the (flat) torus:
(a) all graph cycles are trivial homology cycles; (b) cycles span a one-dimensional
homology subspace and (c) cycles span the full homology group of the torus. We
now reason in the Euclidean plane and for the infinite framework G. In case (a),
G is disconnected and all its connected components (which repeat periodically) are
finite frameworks (Fig. 5a). Vertices in the same orbit do not belong to the same
component, and the planar subdivision induced by G has exactly one unbounded
face F . If two such connected components are visible to each other, then a standard
geometric argument as in [15], based on (piecewise linear) geodesic paths, shows
the existance of a tangent edge. Since it lies in the unbounded face, the tangent does
not cross any existing edge, and since it is tangent, its endpoints are pointed, hence
it satisfies the conclusion. In case (b) (illustrated in Fig. 5b), G is still disconnected
but at least one of its connected components (as a subgraph) is infinite (and so are
all of its periodically repeated copies). The existence of a tangent segment, with
endpoints lying on two different connected components, and not in the same vertex
orbit, follows by taking a geodesic path between two non-adjacent, inner convex
vertices on the infinite face: such a path is piecewise linear and contains at least one
tangent edge. Finally, in case (c) (illustrated in Fig. 5c, d) all the face cycles of the
periodic graph G are finite and thus enclose polygonal regions (which may have
holes). However, such a face cycle may contain vertices belonging to the same orbit
(Fig. 5c, d). If such a face is not an empty pseudo-triangle, then it will have an internal
tangent along the geodesic path joining two inner convex vertices. All that remains
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Fig. 6 A flip in a periodic pointed pseudo-triangulation

to be shown is that the two endpoints of one such tangent are not in the same vertex
orbit. This follows from two observations: (a) on any simple polygonal cycle, the
vertices in the same orbit appear with an inner reflex angle at most once, and (b) if
an edge is tangent to a polygonal chain, then the inner angles of the polygonal cycle
at these endpoints are both reflex.

The examples in Fig. 5 (where vertices of the same color indicate that they are
in the same orbit) have been chosen to illustrate the properties used in the proof of
the theorem. Each subsequent framework is obtained by inserting a tangent in the
previous one.

As a corollary we obtain:

Corollary 6 (Flips in pseudo-triangulations) If we remove an edge orbit from a
periodic pointed pseudo-triangulation, then there always exists a different edge orbit
that can be added to obtain another pointed pseudo-triangulation.

Proof We use an idea from finite pointed pseudo-triangulations [15], namely that
the removal of one edge creates a face with four inner convex angles (as in Fig. 6,
middle), which can be pseudo-triangulated in two ways by two distinct tangents
(Fig. 6, left and right). The argument from case (c) of Theorem 5 shows that the
endpoints of these tangents belong to distinct vertex orbits.

4.2 Kinematically Equivalent Frameworks

A flexible framework decomposes into rigid parts called rigid components (Fig. 7).
Two periodic frameworks on the same point set are kinematically equivalent if one
is obtained from the other by placing differently the bars inside rigid components,
while maintaining them rigid. Such frameworks have the same configuration space.
An example is illustrated in Fig. 7. Since adding a bar to a rigid component does not
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Fig. 7 A rigid component in a periodic pseudo-triangulation and a kinematically equivalent frame-
work

change the deformation space, we assume that our frameworks are non-redundant,
i.e. they use the minimum number of bars on all rigid components.

Proposition 7 A rigid component of a periodic pseudo-triangulation is a finite
pointed pseudo-triangulation; in particular, it is contained in its convex hull.

Proof We only need to prove that a rigid component is finite. Then we apply a result
from [15] about finite pointed pseudo-triangulations, which are contained in their
convex hulls. An infinite rigid component must be, as an induced graph, periodically
rigid, hence its quotient graph (on n′ vertices) has 2n′+1 edges. As an induced graph,
it is still pointed and non-crossing, hence it has at most 2n′ edges, a contradiction.
Hence there can’t be any infinite rigid components.

Theorem 8 A non-redundant periodic framework is an expansive 1dof mechanism
if and only if it is a periodic pointed pseudo-triangulation, or is kinematically equiv-
alent to one. A periodic framework has an expansive deformation if and only if it is
pointed and non-crossing or is kinematically equivalent to one.

Proof Indeed, if a set of points belong to a rigid component, theway they are intercon-
nected does not matter (they stay at the same distance anyway), so we can replace the
interconnecting pseudo-triangulation with any finite minimally rigid (Laman) graph.
The construction may violate pointedness and it may be self-intersecting, but only in
the interior region of the rigid component convex hull. Figure7 illustrates the idea.

4.3 The Cone of Infinitesimal Expansive Motions of a Periodic
Non-crossing and Pointed Framework

It is possible to compute with precision how many, and which edges can be
used for subdividing a face into pseudo-triangles. This information is related to a
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combinatorial characterization of the polyhedral cone of expansive motions, and is
a natural generalization of a similar result for the finite case [13].

Theorem 9 A planar periodic non-crossing and pointed framework with n vertex
orbits and m = 2n − k edge orbits has a smooth local deformation space of dimen-
sion k + 1 and allows expansive deformation trajectories. The set of all possible
directions for these expansive trajectories forms a polyhedral cone in the infinitesi-
mal deformation space of the given framework. This cone of expansive infinitesimal
motions has dimension at most k + 1 and all its extremal rays are obtained from
completions of the framework to periodic pointed pseudo-triangulations.

Proof (Sketch) The first statement is a direct consequence of the previous discussion
and of the results in [2]. The cone of expansive motions is given as the half-space
intersection of the set of all linear inequalities that express the property of infini-
tesimal expansiveness for a pair of vertices in the periodic framework. Corollary 6
characterizes the edges of the cone. The extension to faces of all dimensions is a
direct generalization of the argument used in the finite case [13].

As a final remark, we point out that if a non-crossing and pointed periodic frame-
work has convex faces, these faces must be rigid in any expansive deformation. Any
triangulation of a convex face will serve the purpose of rigidifying it.

5 Conclusion

In this chapter, we have characterized those planar non-crossing periodic bar-and-
joint frameworks which allow an expansive deformation trajectory. Those with
a single degree of freedom are the periodic pointed pseudo-triangulations or are
obtained from them by simple replacement operations on rigid components. For sev-
eral degrees of freedom, we investigated all completions of the framework to 1dof
expansive mechanisms (up to kinematic equivalence). Infinitesimally, they provide
the extremal rays of the cone of infinitesimal expansive motions.
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1 Introduction

Both inverse geometry [11] and inverse kinematics1 [21] can be viewed as the res-
olution of an optimization problem: non-linear from the configuration space to the
special Euclidean group SE(3) for the first one [3], quadratic in the tangent space to
the configuration space for the second [5]. This is only one view of the problem, but
it helps to formulate efficient solvers and to understand their convergence properties,
by using some powerful results of numerical optimization [14]. For controlling a
robot, inverse kinematics is nowadays a standard technique, due to its simplicity and
the limited computation cost (e.g. 1ms is enough to invert the kinematics of a 40DOF
humanoid robot [5]). Moreover, the structure of the problem is well understood and
problems are easy to diagnose.

On the other hand, model predictive control (MPC) is an advanced technique
to control a given system by optimizing its predicted evolution [1]. It relies on the
systematic evaluation of the control of the system with respect to a reference cost
function, while only the first few steps of the optimal trajectory are executed before
its complete re-evaluation. The main interest of MPC is the ability of dealing with
non-linear systems whose instantaneous linearization is not meaningful.

Like for inverse kinematics, MPC can be formulated as the resolution at each
control cycle of a numerical optimization problem depending on the estimated state.
However, the typical size of the problem generally makes it difficult to obtain real-
time performance [12]. Moreover, this kind of formulation is difficult to interpret.
It is typically difficult to quantify the robustness of such controllers [1], or even to
explain the reasons that have led to the chosen trajectory.

In this chapter,we consider an optimal-control solver namedDifferentialDynamic
Programming [8]. This numerical scheme provides a simple yet efficient solver of
direct implicit (shooting) optimal-control problems, that makes it possible to control
complex systems, like humanoid robots [18], despite the inherent complexity of this
class of problems. We propose a reformulation that provides numerical advantages
and, more importantly, gives a better understanding of the structure of the optimal
trajectory. In particular, when only the robot kinematics are considered, we show
that every iteration of the algorithm amounts to a sequence of Jacobian pseudo-
inversions along the trajectory. Classical pseudoinverse-based inverse kinematics is
then equivalent to the optimization of a single-step trajectory. Consequently, once
the ratio between the size of the system and the CPU load are sufficiently low, any
inverse-kinematics should be considered with several steps ahead rather than with
only a single one. The same observation seems valid for inverse dynamics [9].

1 The problem we name inverse geometry is sometimes referred as inverse kinematics, the second
being referred as differential (or closed-loop) inverse kinematics. We use ‘geometry’ when only
static postures are implied and keep the word ‘kinematics’ when a motion is explicitly implied.
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2 Model Predictive Control

2.1 Principles and Model

Consider generic dynamical system, with state x and control u:

xt+1 = f (xt , ut , t) (1)

f is the evolution function and the time variable t is discrete. x is typically a finite
sequence of derivatives of the configuration q, e.g. x = (q, q̇). Optimal control
computes the control and state trajectories that minimize a given cost function:

min
X,U

T −1∑

t=0

lt (xt , ut ) + lT (xT )

subject to the constraint (1), where T is the preview-interval length (fixed here),
U = (u0 . . . uT −1) and X = (x0, . . . , xT ) are the control and state trajectories and
lt and lT are the running and terminal cost functions. Linear dynamics and quadratic
cost lead to the linear-quadratic regulator, given by Riccati equations.

In practice, the information contained in X and U is somehow redundant. The
problem is reformulated as a problem only on X or only U (the other variable
being deduced from the dynamic equation). The formulation is said explicit when
computing X [13] (designated also by collocation [16]) and implicit when computing
U [17] (designated also by shooting [10]). Both formulations have pros and cons [2].
We consider in the following the implicit formulation, cheaper to solve in practice,
without the drawback that it might involve more local minima. For each formulation,
the solution to the numerical problem is then approximated using any optimization
solver, typically using Newton or quasi-Newton [6] descent.

2.2 Differential Dynamic Programming

Differential Dynamic Programming (DDP) is an iterative algorithm to solve a non-
linear optimal control problem using implicit formulation [17]. It is nearly equivalent
to the application of a Newton descent algorithm [15]. As in the Newton descent, it
approaches a local optimum by iteratively modifying a candidate solution. It starts
with initial state and control trajectories (e.g. obtained by integration of the zero con-
trol) and then iterates in two stages. It first computes a quadraticmodel of the variation
of current candidate trajectory and computes the corresponding linear-quadratic reg-
ulator (LQR—backward loop). The candidate is then modified following the LQR
(forward loop).
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Quadratic model: We denote vt the cost-to-go function defined by:

vt (Xt , Ut ) =
T −1∑

k=t

lk(xk, uk) + lT (xT )

where Xt = (xt . . . xT ) and Ut = (ut . . . uT −1) are the trajectory tails. To simplify,
we drop the t variable and denote the next quantity at t + 1 by a prime: v′ ≡ vt+1.
DDP relies on the Bellman principle. It proceeds recursively backward in time using
the following equation:

v∗(X, U ) = min
x,u,X ′,U ′

(
l(x, u) + v′∗(X ′, U ′)

)

building a quadratic model of v from the quadratic models of l and v′∗:

v(x + Δx, u + Δu) = v(x, u) + vxΔx + vuΔu + 1

2
ΔxT vxxΔx + ΔuT vuxΔx

+ 1

2
ΔuT vuuΔu + o(||Δx ||2 + ||Δu||2)

The quadratic model is defined by the quadratic coefficients vx , vu , vxx , vux and vuu ,
functions of the derivatives of l, f and v′ (see [17] for details).
Backward pass: The optimum Δu can be computed for any Δx . It is obtained at
the zero of the derivative of the quadratic model:

Δu∗ = λ + ΛΔx (2)

where λ = v−1
uu vx and Λ = v−1

uu vux are the open-loop and close-loop gains. From the
optimal change Δu∗, the quadratic model of v∗ can be computed:

v∗
x = vx − ΛT vuuλ (3)

v∗
xx = vxx − ΛT vuuΛ (4)

The backward pass starts from the quadratic model of lT and then recursively
computes the optimal gains of all the control cycles from T − 1 down to 0.

Forward pass: The forward pass then computes the new candidate trajectory and
control schedule. For each control cycle, a new control schedule ũ is established
using (2). For each new ũ, the changes is x are obtained by integrating (1) from x0
and then propagated through the closed-loop gains of the next time:

Δx ′ = x ′ − f (x, ũ), ũ = u + λ + ΛΔx
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Fig. 1 Snapshots of a whole-body grasping movement on a 25-DOF humanoid robot. The control
is computed in real-time. Courtesy from [19]

Performance: The interest of DDP is that its simple formulation can be easily im-
plemented in an efficient way, taking into account the inherent sparsity of a numerical
optimal control problem. For example, in [18], a dedicated solver was demonstrated
to animate a humanoid virtual avatar in real-time in interaction with a user through
a haptic device. It was used to control a simulated 25-DOF HRP2 robot in real-time
[19]. In that case, the preview horizon was 0.5 s. The preview control was computed
in 50ms and then interpolated using the underlying LQR at 5ms, enabling effective
real-time control (see Fig. 1).

3 Square-Root Differential Dynamic Programming

In this section we present our proposed modification the the DDP algorithm. The
key idea is to propagate the Value Hessian in square-root form. Reminiscent of the
square-root Kalman Filter, this formulation ensures positive definiteness and confers
numerical stability.

3.1 Algorithm Derivation

The Gauss–Newton approximation: Very often in practice, both the running and
terminal costs have sum-of-square form, with the residuals r(x, u):

l(x, u) = r(x, u)T r(x, u)

This specific shape is interesting in practice as it leads to a cheap approximation of
the second-order derivatives of l in neglecting the second order derivative of r . This
is referred as the Gauss–Newton approximation.
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lxx = r T
x rx , lux = r T

u rx , luu = r T
u ru

where rx and ru are respectively the derivatives of r by respect x and u. The approx-
imation converges to the real Hessian when the residuals r converge to 0, which in
general ensures a good convergence. On the other hand, the approximated Hessian
is always positive, which prevents the algorithm from violently diverging, as hap-
pens when the true Hessian is non-positive. Moreover, the particular shape of the
approximated Hessian can be taken into account when inverting it, since we have:

l−1
xx lT

x = (
r T

x rx
)−1

r T
x = r+

x

where r+
x denotes the Moore–Penrose pseudoinverse of rx and can be efficiently

computed without explicitly computing the matrix product r T
x rx , using for example

the SVD or other orthogonal decompositions [7].
In the literature, the Gauss–Newton approximation of the DDP algorithm is re-

ferred as the iterative LQR (iLQR) algorithm [20]. In this section, we take advantage
of the square shape of the cost and derivatives to propose amore efficient formulation
of this algorithm. This shape will also be used to make some correlations with the
classical inverse kinematics.

Square-root shape of: v∗ In theDDPbackward loop,wehave to invert the derivatives
of v. Being a sum of squares, the cost-to-go v can be expressed as the square of some
vector v∗ = s∗T

s∗. However, DDP does not explicitly compute sx but rather directly
propagates the derivatives v∗

xx from v′∗
xx . In the following, we formulate the same

propagation while keeping the square shape, by searching the vector ŝ∗ and matrix
ŝ∗

x such that

v∗
x = ŝ∗T

x ŝ∗, v∗
xx = ŝ∗T

x ŝ∗
x

At the beginning of the backward pass, the square shape is trivially given by s(T ) =
r(T ) and sx (T ) = rx (T ). During the backward pass, the previous square-root shapes
are written s′ and s′

x . The derivative v∗
xx is given by the recurrence (3), (4). The square

shape of (4) is not trivial since it appears as a difference, that we can prove to be
positive. We denote by s, sx and su the square root of v, vxx and vuu :

s =
[

r
s′

]
, sx =

[
sx

s∗′
x fx

]
, su =

[
ru

s∗′
x fu

]

It is easy to show that v′
xx = s

′T
x s′

x , v′
xu = s

′T
x s′

u and v′
uu = s

′T
u s′

u . In that case, the
gains are given by the pseudoinverse of su :

λ = s+
u s, Λ = s+

u sx

Thanks to the Moore–Penrose conditions, we can reduce ŝ∗ and ŝ∗
x to:

ŝ∗ = s, ŝ∗
x = (I − sus+

u )sx
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3.2 Advantages and Discussion

Keeping the square shape of vxx avoids some numerical trouble. In particular, de-
composing sx instead of vuu offers much better numerical behavior. Moreover, it
avoids the complexity of a big matrix multiplication. This is formalized below.

Comparison of the costs: To evaluate the complexity of this algorithm, sizes of x ,
u and r are supposed all equal to n. The cost for one iteration of the loops is 8n3,
against 11n3 for the classical DDP. Moreover, most operations are due to the QR
decompositions and could be performed when computing the derivatives, that leads
to a total cost of roughly 3n3.

Pseudo inverse and projection: The gains and propagation closed forms also pro-
vide a better understanding of the nature of the inversion. As in the derivation, we
consider only the current time of the backward loop. The Jacobian su is the derivative
of the cost-to-go. The open-loop gain s+

u s only tries to find the current control that
minimizes the cost-to-go evolution. In most of cases, su has more rows than columns.
The pseudoinverse will only provide the control that has the maximum efficiency in
the least-square sense. What remains is a part of the cost that can be nullified. This is
given by the orthogonal part to the image of su , i.e. the kernel of sT

u , whose projector
can be computed by Pu = I − sus+

u .
The backward loop then propagates backward the part of the cost that was not

accomplished, and that is selected using the projector. The trajectory optimization
then corresponds to a sequence of virtual configurations, each of them being moved
to optimize its own cost r and to help the configurations ahead in the trajectory by
optimizing their residual cost s∗′

.

4 Kinematic Simulation

Three-rotations planar (3R) Robot: Due to a lack of space, we only present some
analytical results in simulation with a 3R kinematic model. The dynamic evolution
function is reduced to a trivial integration scheme f (x, u) = x + Δtu, with x = q
and u = q̇ . The robot task is to reach a position pre f with the robot end effector
p(q) while minimizing the velocities:

rt =
[

wp(p(q) − pre f )

wuu

]

with wp and wu the weights of the two cost components. In this case, the derivative
rx is the robot Jacobian Jq while ru = wu I is a regularization term. At the first step
T − 1 of the backward loop, the pseudoinverse is:

su(T − 1)+ =
[

wu I
wpΔt Jq

]+
= 1

wpΔt
J †η

q
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Fig. 2 Performance and computation ratio with respect to the preview length. (left) Evolution of
the cost when increasing the preview horizon: the total cost is plotted as a ratio with respect to the
infinite-horizon optimum. Indicatively, the percentage of the control term of the cost (integral of
the velocity norm) is also given. (right) Computation load, plotted as a ratio of the load needed
to compute the trajectory with a single-step horizon (i.e. cost of an inverse kinematics). The cost
increases linearly with the size of the horizon

where J † denotes the damped inverse [4] with damping η = wu
wpΔt . The last term

of the trajectory indeed moves following an inverse-kinematics scheme. The same
interpretation can be done on the other samples, with a similar regularization and a
task that makes a trade-off between going to the target and helping the next sample
in the trajectory to accomplish its residual.

Results: The Square Root algorithm on the simulated 3R Robot was implemented
in C++. The control sampling frequency is 1kHz and the cycle of the robot lasted
0.1 s (100 timesteps). We chose wu = 0.01 and wp = 1. The control reaches easily
the target with a proper smoothing of the control, as expecting with such a simple
system. With this setting, the robot needs 0.1s to reach the target i.e. 100 control
cycles.

We mainly focus the discussion on the comparison with inverse kinematics. As
explained above, inverse kinematics is obtained when the horizon T is reduced to
1. On the opposite extreme, the optimum of the infinite-horizon problem is approx-
imately obtained for a preview horizon of 0.1s (which is the time to the goal). We
consider the performance in both the obtained cost and the computation load for T
varying from 1 to 100. A summary of the results is given by Fig. 2.

On the left figure, we consider the total cost for the overall executed trajectory.
This cost is computed a posteriori, after the execution by the robot. The cost is
minimal when T is maximal and vice-versa. Most of the cost increase when T is
small is due to the increase of the control term (with an artificial apparent minimum
for some T = 10 that is due to the ratio over a changing total quantity). On the
other hand, the computation load (right figure) increases linearly with the horizon
length (as expected). After a certain threshold on the horizon length, the obtained
trajectories are the same, with same costs. As always with MPC, the horizon length
has to be carefully adjusted: not to small, to find the best trajectory and not to big to
limit computation times.
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Inverse kinematics is obtained for T = 1. The cost is the lowest, but a poor
resulting cost. For only a small expense, (e.g. T = 4), better trajectories are obtained.

5 Conclusion

In this chapter, we described a square-root formulation of the DDP algorithm. The
formulation is numerically more efficient, improving both the computation load and
the numerical conditioning. It also makes apparent the relation between MPC and
other optimization-based robot algorithms. In particular, it makes use of a sequence
of pseudo-inverses of the cost Jacobian along the trajectory. In the particular case
where the time evolution function is reduced to the robot kinematics, this sequence is
equal to the pseudo-inverse of the cost Jacobian, with the first term of the trajectory
following exactly an inverse-kinematics scheme for the final cost.

This study reveals that inverse kinematics is nothing but an MPC scheme with a
singular horizon, and that the robot behaviormight be verymuch improved by simply
considering a few samples ahead of the current robot position when computing an
inverse-kinematics scheme.

The same principle should apply with more complex time-evolution function. For
example, when considering the robot dynamics (the state being the configuration and
velocity, and the control being joint torques),MPC shouldmeet the operational-space
inverse dynamics when the preview horizon collapses.
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New Gravity Balancing Technique and Hybrid
Actuation for Spatial Serial Manipulators
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Abstract The problem of gravity balancing of robotic systems has been investigated
for a long time. A big amount of different designs has been developed so far, but
with several limitations: applicability only to planar kinematics or some particular
spatial ones, encumbrance and reduced workspace of the robot, complication of
both theoretical and practical implementation. This chapter deepens a new simple
technique for gravity balancing any spatial serial manipulator with rotational joints,
using a number of springs less or equal to the number of degrees of freedom of
the manipulator. Then, such technique is extended to a concept of actuation for
robotic systems. Given a robotic manipulator and a force to exert at the level of the
end effector, there is no energy consumption regardless of the configuration of the
system (like in passive systems), as long as magnitude and orientation of the required
force are fixed. Changes in magnitude and/or orientation of the exerted force require
some energy to be achieved (like in active systems). Such combined features make
an hybrid system with several benefits: low energy consumptions, simplified control
and intrinsic safety of the system, with wide prospects in robotics.
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1 Introduction

High amounts of the required torque in robotic manipulators are used to balance
gravity. As an example, industrial robots manipulating large payloads have massive
links in order to be able to accomplish their tasks and, consequently, they have
relatively bigmotors.Gravity balancing techniques reduce actuators efforts.A system
is said to be gravity balanced if no joint actuator inputs are needed to maintain the
system in equilibrium, at any configuration. This happens when the potential energy
of the system is invariant, e.g. if the centre of mass of the machine is inertially fixed,
or whether some elastic elements compensate suitably the variations of the potential
due to changes of configuration (motion of masses).

Several methods of gravity balancing have been proposed over the years, ex-
ploiting clever designs using different techniques. In [10, 16] gravity balancing is
achieved with counterweights. In [12] and [23] systems using cams and springs are
proposed. Focusing on spring balanced mechanisms, examples of architectures are
in [2, 5, 19, 20]. An example from daily life is given by the Anglepoise lamp, a
desk lamp designed in 1932 by George Carwardine [8]. There have been also some
studies (e.g. [4]) addressing the effect of the added weight of the springs.

Planar spring balanced mechanisms are proposed in [2, 8]. Extensions to spatial
mechanisms have been object of numerous efforts in literature. For instance, [19]
proposes a method applying the one-link solution to n links connected in series with
each joint having one dof about the vertical axis, but kinematics is constrained. A
hybrid method for gravity balancing spatial serial manipulators is presented in [1],
but it is complicated and too bulky to be practically implemented. The technique
[14] theoretically guarantees the balance of any general spatial n degrees of freedom
(dof) serial-type manipulator using n zero free length springs and some auxiliary
links defining n revolute-spherical-spherical-revolute (RSSR) mechanisms.

Not uncommonly, robotic systems have to generate constant forces for relatively
long times [6, 11, 17]. The issue of energymanaging in robots is crucial and, together
with new needs in terms of weight, encumbrance and safety, it is gaining more
and more importance in robotics. A concept for a new energy efficient actuator is
introduced in [22] based on the principle that, during any force profile generating
negative work, energy is stored (and not wasted) and it can be used subsequently
whenever a positive work is needed. Energy efficiency issues are also addressed in
[3, 5, 18, 24].

In this chapter a new gravity balancing method for spatial serial manipulators
is deepened. With respect to [14] we propose a simpler theoretical approach and
we address additional considerations on the number of springs needed and on the
implementation of auxiliary links. A new concept of actuation is then conceived and
spelled outwith an example of application on an anthropomorphic arm. The proposed
technique features low energy consumption, simplified control and intrinsic safety
of the system, opening new scenarios for robotic actuators.
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Fig. 1 Single link configuration (a), possible real implementation (b), spring’s free length in ideal
case (continuous line) and real case (dashed line) (c)

2 Gravity Balancing: New Technique

Consider aweightless link (Fig. 1a) able to rotate towards point O , having an attached
mass m at the other extremity, distant l from O . Its configuration is defined by angle
θ . This system can be balanced using a zero free length spring having extremities in
point Q (distant b from point O along the link) and in point P (distant a from point
O in the vertical direction, opposite to gravity). The total potential energy of the
system is E = mgl cos θ + 1

2kδ2 due to the contribution of the mass m (g being the

gravity acceleration) and of the spring, long δ = √
a2 + b2 − 2ab cos θ . To ensure

the equilibrium for any configuration, it must be ∂ E
∂θ

= 0 ∀θ , thus once fixed m, l, a

and b, the stiffness of the zero free length spring must be k = mgl
ab [5].1

A zero free length spring exerts a force proportional to its length, rather than
its elongation. Such a spring is not available off the shelf (Fig. 1c), but there are
several techniques to obtain the same behaviour [5]: for instance, it can be perfectly
realized bymeans of a cable-pulleys system and a standard nonzero free length spring
(Fig. 1b). Alternatively, it is possible to use a preloaded spring, namely a springwhich
elongates when the applied force is greater or equal to its preload. Such preload must
be equal to the product of the spring stiffness and its free length.

Consider a generic n dof spatial serial manipulator with rotational joints (Fig. 2)
and denote with Θ = [θ1θ2 . . . θn]T the set of lagrangian coordinates describing the
system. Assume the following notation [13]:

• g the gravity acceleration vector;
• r0 a vertical unit vector, opposite to g;
• Oi−1 the point connecting link i − 1 and link i ;
• Oi the point connecting link i and link i + 1;

1 Note that the projection of the length of the link l along the direction of the force to balance,
involved in the gravitational potential energy, is l cos θ , and the nonconstant term of the potential
energy of the spring is also proportional to cos θ .
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Fig. 2 Part of a generic balanced spatial manipulator (a), its generic link i (b) and a possible
implementation of springs (c)

• xi a unit vector defining the spatial direction of link i , oriented from point Oi−1
to point Oi , according to the Denavit–Hartenberg convention [9];

• mi the mass of link i , concentrated in point Pi distant hi from Oi−1;
• li the overall length of link i ;
• Pi the vector connecting point O0 with point Pi .

A spring of stiffness ki is attached to link i , as to form a triangle, the other two sides
being bi = bi xi and ai = ai r0. The vector ai must be oriented as r0 independently
of the configuration of the manipulator, differently from bi which is configuration
dependent (xi ). It is not mandatory that Oi−1 is a vertex of said triangle. A possible
implementation using 4-bar mechanisms is shown in Fig. 2c.2

The gravitational potential energy is Em = − ∑n
i=1 Pi · mi g = ∑n

i=1 Pi · mi gr0
and the potential energy of the springs is Es = ∑n

i=1
1
2ki (||bi − ai ||)2 = ∑n

i=1

( 1
2ki

(a2
i +b2i )−ki ai · bi

)
. Being Pi = ∑i−1

j=1 l j x j +hi xi (i > 1) and bi = bi xi and ai =
ai r0, they can be rearranged in the compact forms Em = ∑n

i=0
∑n

j=0 xT
i kmi j x j and

Es = ∑n
i=0

∑n
j=0 xT

i ksi j x j where x0 = r0 and the terms kmi j and ksi j are constant.

So, the total potential energy can bewritten as E = Em +Es = ∑n
i=0

∑n
j=0 xT

i k̂i j x j

where k̂i j = kmi j + ksi j is constant as well. So, denoting X as a set of n + 1 unit

vectors X = [x0, x1, x2 . . . xn]T , it is E = X T K̂ X where K̂ is called stiffness matrix.
At the level of joint k, the torque τk due to conservative force fields is given by

τk = ∂ E

∂θk
=

n∑

i=0

n∑

j=0

k̂i j (xT
i

∂x j

∂θk
+ ∂xT

i

∂θk
x j ) (1)

and if the system is gravity balanced, it must be τk = 0 ∀ k. It is easy to see that
when i = j the term multiplying k̂i i is zero,

∂xi
∂θk

being perpendicular to xT
i . Thus,

it must be k̂i j = 0 for i �= j , in other words K̂ must be a diagonal matrix, namely

2 There have been some studies on balancing manipulators without using auxiliary links [7], but
workspace may be reduced because of possible elements connected between non-consecutive links.
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k̂i j = mi ghi + ∑n
j=i+1 m j gl j − ki ai bi = 0. So, the generic spring stiffness ki

results

ki = mi ghi + ∑n
j=i+1 m j gl j

ai bi
. (2)

The proposed technique is effective even if one or more of the joints of the
manipulator is spherical. Indeed, potential energies do not change. A spherical joint
can be imagined as a sequence of three rotational joints in which the two theoreti-
cal intermediate links have zero length, so there are not springs related to such two
links.3 Formally, the number of springs needed for balancing a general spatial serial
manipulator is less or equal to the number of degrees of freedom.

3 From Balancing to Actuating

Consider the n-dof system depicted in Fig. 3a, supposed to have weightless links
and a force F to exert at the end effector.4 If F pointed upwards it would have the
same effect of a mass m = |F|/g, and the required task could be achieved with
the technique described in Sect. 2. A force having non-vertical direction could also
be exerted by means of said technique, just by orienting ai as F instead of r0, as
in Fig. 3b. Moreover, a change of magnitude of the load (masses in case of gravity
balancing) can be attained, according to previously derived equations, by changing
proportionally the magnitude of either ai or bi . So, orientation and intensity of the
exerted force can be adjusted acting on the attachment points of the springs. A system
able to exert a force of any magnitude and spatial orientation is an actuation system.

Given a force to be exerted F = Fp, a potential energy can be defined as E f =
−Pn · F (reducing to a gravitational potential energy when F = mg). Being bi =
bi xi , ai = ai p and Pn = ∑n

i=1 li xi , with the same method described in the previous
Section (using p instead of r0), the result is that springs have to be designed according
to

ki = Fili
ai bi

. (3)

Hence, a given desired force at the level of the end effector of a given spatial
serial manipulator can be exerted passively. A suitable system of springs will exert
torques that, in traditional actuation systems, are given by motors. The magnitude
of the force is changed by modifying the magnitude of ai or bi . The orientation
of the force is changed by modifying the orientation of ai . This kind of actuation
is defined as hybrid actuation: as long as magnitude and orientation of the desired
force are fixed, the force is exerted regardless of the configuration without energy
contribution, namely passively; if a change of magnitude or orientation of the force

3 Equally, a two-dof rotational joint with incident axes would work too.
4 According to classical robotics conventions [21], F in Fig. 3 is the force applied from the robot to
the external world.
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Fig. 3 Serial manipulator exerting F not aligned with gravity (a) and its generic link (b)

occours, magnitude of ai or bi or orientation of ai need to be changed using some
energy, namely actively. So, a relatively small power is required only to change the
attributes of the force. Therefore, energy consumption can be dramatically reduced
with respect to traditional actuation systems, and motors can be smaller since they
need only to move some attachment points of springs. Smaller motors means motors
less bulky, less heavy and less expensive. For a mobile device there would be more
space for batteries, and at the same time batteries would last more due to the reduced
energy consumption. Moreover, control is very simplified since it needs to be just a
position control rather than a force control. No force sensors are required: the system
is intrinsically safe.

4 Application Example: Actuated Anthropomorphic
Robotic Arm

As an example of application, consider the anthropomorphic arm kinematics
represented in Fig. 4a. Its dofs are: shoulder abduction/adduction, shoulder rota-
tion, shoulder flexion, elbow flexion. The first three dofs have mutually orthogonal
axes, incident in the center of the shoulder, ideally represented by a spherical joint.
So, only two springs are needed to actuate such manipulator: one for the first three
dofs and one for the fourth dof. Suppose that the force to exert F belongs to the
y0-z0 plane (Fig. 4a), and it has orientation defined by y0 with an angle offset of π/3
towards x0. So the unit vector associated to F is, with respect to the x0-y0-z0 frame,
p = [0 cos (π/3) sin (π/3)]T . The following values are chosen: a1 = 10 mm,
b1 = 8 mm, a2 = 10 mm, b2 = 8 mm (springs parameters), l1 = 30 mm,
l2 = 20 mm (length of links), |F| = 50N. So, the stiffnesses of the springs k1
and k2 are computed according to Eq. (3). Assuming the configuration in Fig. 4a to
be Θ = [θ1 θ2 θ3 θ4] = [0 0 0 0] = Θ0, the following steps are performed:

• starting with F = Fp, |F| = 50N, the configuration changes in 20 s from Θ0 to
Θ = [π/6 3π/4 − π/2 π/2];
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Fig. 4 Anthropomorphic arm kinematics (a) and result of the simulation (b)

• at time t = 20 s the force magnitude changes to 75N, so a1 = 15 mm and a2 =
15 mm, then the configuration changes in 20 s to Θ = [−π/2 − π/4 π/2 π/6];

• at time t = 40 s the force orientation changes to p = y0 (vertical force), then the
configuration changes to Θ0 in 20 s.

Results of the simulation are in Fig. 4b: energy of springs Es , energy associated
to the force E f , sum of the two contributions Etot , forces of springs F1 and F2, coor-
dinates θi . During each 20 s step the total potential energy Etot is constant regardless
of the configuration. When the force magnitude increases (t = 20 s), ai increase
accordingly and some energy is introduced in the system.When the force orientation
changes (t = 40 s), the contributions Es and E p change but ai and bi remain the
same, as well as Etot . Indeed, it can be shown easily that Etot = ∑n

i=1
1
2ki (a2

i +b2i ).
A prototype of arm exoskeleton exploiting this kinematics and actuation principle

was designed at PercRo Lab. Practically, it was implemented by means of a remote
actuation system located in the backpack of a user wearing the exoskeleton, like in
[13]. Details are not presented here for space reasons.

5 Conclusion

A new simple approach to gravity balance a generic spatial serial manipulator was
investigated. The technique is based on an energetic approach and it allows to bal-
ance gravity effects for serial spatial manipulators using a number of springs not
greater than the number of degrees of freedom of the manipulator. A concept of
hybrid actuation is derived extending said technique. During any movement of the
manipulator, torques are given by springs and not by motors (as it is in traditional
actuation systems). Energy is needed only when a change of force magnitude or
force orientation is required. As a result, energy consumption is reduced, control
is simplified and the system is intrinsically safe. A detailed example of application
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of the concept is described, considering operating conditions including changes of
magnitude and orientation of the exerted force.

The design of an anthropomorphic arm exoskeleton based on this concept was
completed, and it was partially fabricated. It will be subject of future works.

Acknowledgments This work has been supported by the European project VERE (FP7, FET,
257695)
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Analysis of Constraint Equations
and Their Singularities

Rangaprasad Arun Srivatsan and Sandipan Bandyopadhyay

Abstract The identification of singularities is an important aspect of research in
parallel manipulators, which has received a great deal of attention in the past few
decades. Yet, even in many well-studied manipulators, very few reported results
are of complete or analytical nature. This chapter tries to address this issue from a
slightly different perspective than the standard method of Jacobian analysis. Using
the condition for existence of repeated roots of the univariate equation representing
the forward kinematic problem of the manipulator, it shows that it is possible to gain
some more analytical insight into such problems. The proposed notions are illustrated
by means of applications to a spatial 3-RPS manipulator, leading to the closed-form
expressions for the singularity manifold of the 3-RPS in the actuator space.

Keywords Singularity · Parallel manipulator · Univariate equation

1 Introduction

This chapter attempts to revisit the relationship between the constraint equations in-
herent to a parallel manipulator , and the singularities thereof. It is well-established
that singularities in a physical manipulator can be characterised in terms of a corre-
sponding degeneracy in the mathematical equations defining its motion. In particular,
in all the cases of singularities in direct kinematics (which has also been termed as
a “singularity of the second type” [7], “gain-type” singularity [1], “constraint sin-
gularity”, etc.), it is known that one or more pairs of branches of forward kinemat-
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ics merge—leading to the mathematical condition that the loop-closure equations
defining the forward kinematics admit repeated roots. There exists a considerable
variety in the development of the constraint equations, and the nature of variables
included in them. However, notwithstanding the differences in the implementation
details, many of these formulations are connected via a fundamental logical thread—
namely, the application of implicit function theorem to a set of non-linear equations,
leading to the analysis of the rank degeneracy of certain resulting Jacobian matri-
ces. While a comprehensive discussion of the Jacobian-based formulations is out of
scope of this chapter, the mention of two typical examples may help motivate the
point better. In [7], the constraint equation is also the input-output equation of the
manipulator, i.e., the equations are formed to connect the task-/output-space (i.e.,
dependent/unknown) variables directly to the input (i.e., independent) variables by
eliminating the other unknown variables associated with the passive joints. On the
other hand, in other works such as [1, 6], the passive variables are in focus, and they,
along with the input variables, define the configuration space of the manipulator.
Degeneracy of the Jacobian of the constraint equations with respect to the passive
variables define the condition for the gain-type singularities in the configuration
space. It is also understood, that these methods lead to similar results, since a gain
of degree-of-freedom in the configuration space typically results in a corresponding
gain in the task-space degree-of-freedom.

This chapter follows the same basic approach for the analysis of singularities.
However, it differs in the fact that instead of the vanishing of the determinant of
a certain Jacobian to identify singularities, it uses the derivative of a special scalar
equation in conjunction with the equation itself. This equation is designated as the
“forward kinematic univariate”, or FKU for brevity. Typically, an FKU is derived in
the process of solving the forward kinematic problem itself, by the process of sys-
tematic elimination of all the unknowns but one, which is then solved from the FKU
itself. This observation motivates a very simple procedure/algorithm for deriving
singularity conditions:

1. Derive the FKU depicting the forward kinematics;
2. Set its derivative w.r.t. the lone remaining unknown variable to zero;
3. Solve the above two equations simultaneously.

There are several advantages to this procedure in comparison to the standard
Jacobian-based formulations. Firstly, in the case of a number of spatial manipu-
lators of practical importance, the FKU can be derived in closed form—see, e.g., [3,
5]. This opens up the opportunity of deriving the scalar singularity condition also in
the closed-form. Secondly, sometimes, it is possible to decompose the FKU into fac-
tors. In such cases, the algorithm can be applied separately to the individual factors,
which further simplifies the task of the analytical computation. This aspect would be
demonstrated in Sect. 3. Finally, often the FKU is either in the form of a polynomial
in the unknown variable, or can be converted into one. In such cases, the problem
reduces to the computation of the resultant of the FKU and its derivative w.r.t. the
unknown, which can be accomplished easily provided the degree of the FKU (or
its individual factors) is not too high in this variable. There are, however, several
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limitations of the proposed formulation as well. Obviously, it cannot be applied to
situations, where the FKU is not available in closed form. Also, since the FKU is
typically the result of the elimination of a number of variables from the original set of
constraint equations, it may accrue one or more spurious solutions. The zeros of the
discriminant is only guaranteed to be a super-set of the singularities in the original
system (see, e.g., [4]).

The remaining of the chapter is organised as follows: in Sect. 2, the mathematical
formulation for the proposed method is described. In Sect. 3, the same is illustrated
with the example of a spatial 3-RPS manipulator, and the conclusions are presented
in Sect. 4.

2 Formulation

Let, the loop-closure/kinematic constraint equations be defined as:

η(θ ,φ) = 0, (1)

where θ represents the set of active or known variables, and φ the set of unknown
variables, which could consist of any combination of the passive joint/configuration
variables, and Cartesian-/task-space variables. At a regular point, these equations
yield unique solutions for φ. At a singularity, however, one or more pairs of solutions
merge. Applying the implicit function theorem to this situation, the corresponding
condition emerges as:

det(Jηφ) = 0, where Jηφ = ∂η

∂φ
. (2)

The above observation forms the basis for the identification of the “gain-type singu-
larities in the configuration space” [1, 6], as well as the “singularities of the second
type in the task space” [7], albeit with different meanings for the variable φ. Thus,
the said singularities can be identified as the set of points in the workspace, where
Eqs. (1, 2) are satisfied simultaneously.1 In practice, however, it is difficult to solve
these equations together—particularly since the singularity condition involves a de-
terminant. This observation motivates the following alternative approach.

Consider, that θ ∈ R
n , and φ ∈ R

m (locally at least), where m, n are positive
integers, such that n equals the degrees-of-freedom of the mechanism, and η ∈ R

m .
The forward kinematic problem refers to the finding of solutions for φ in terms of θ .
To achieve this, it is fairly standard to eliminate the variables φi (i = 1, . . . , m − 1),

1 If constraint equations are written in, or, converted to, their algebraic (i.e., polynomial) forms,
then an equivalent condition for such singularities would be that the singularity condition in Eq. (2)
in its algebraic form, belongs to the constraint ideal generated by the algebraic form of Eq. (1).
Thus, the determination of singularities in the constraint equations can also be posed as an ideal
membership (see, e.g., [4]) problem.
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i.e., the components of φ from Eq. (1), till a single variable (which is φm in this
context) remains in a single equation—which encapsulates into it all the kinematic
characteristics captured by the original system (1). This final univariate, (defined as
the FKU in Sect. 1) can be written as:

f (θ , φm) = 0. (3)

In the algebraic context, Eq. (3) would be the resultant of the algebraic form of
Eq. (1). To find the singularities in Eq. (3), the implicit function theorem can be
invoked again, leading to the new singularity condition:

∂ f (θ, φm)

∂φm
= 0. (4)

Elimination of φm between Eqs. (3, 4) results in the singularity condition in terms
of the actuator variables and the geometric parameters alone.

3 Illustrative Example: The 3-RPS Manipulator

The 3-RPS parallel manipulator was introduced by Lee and Shah in 1988, and has
since been studied extensively by several researchers. Some of the important works
on the singularity of this manipulator include [2, 8]. The manipulator, as shown in
Fig. 1, consists of a fixed and a moving platform. The two platforms are connected by
means of three “legs”, each of which has a rotary, a prismatic, and a spherical joint.
The prismatic joints are actuated, and all the other joints are passive. This gives rise
to three-degrees-of-freedom at the moving platform. The coordinates of the (centres
of the) spherical joints on the top platform are obtained in the fixed base reference
frame as:

0 p1 = (b − l1 cos φ1, 0, l1 sin φ1)
T ,

0 p2 = RZ (2π/3) (b − l2 cos φ2, 0, l2 sin φ2)
T ,

0 p3 = RZ (4π/3) (b − l3 cos φ3, 0, l3 sin φ3)
T ,

where RZ (α) denotes the rotation matrix for CCW rotation about axis Z through
an angle α. Without any loss of generality, the base dimension, b, is scaled to unity
in the following, which renders all the linear dimensions unit-less. All angles are
expressed in radians (Fig. 1).
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Fig. 1 The 3-RPS manipulator

3.1 Derivation of the FKU

Given the input variables θ = (l1, l2, l3)T , there are three passive joint variables φ =
(φ1, φ2, φ3)

T , which are to be solved from the loop-closure equations denoted by η =
0, where η = (η1, η2, η3)

T , and:

η1
Δ= (0 p2 − 0 p1) · (0 p2 − 0 p1) − 3a2 = 0,

η2
Δ= (0 p3 − 0 p2) · (0 p3 − 0 p2) − 3a2 = 0,

η3
Δ= (0 p1 − 0 p3) · (0 p1 − 0 p3) − 3a2 = 0.

The functions η1, η2, η3 are first converted into polynomials in the variables ti =
tan(φi/2), (i = 1, 2, 3) using the standard tangent half-angle substitutions (see,
e.g., [5]). After some manipulations, Eq. (1) transforms into a set of three simulta-
neous quadratic equations of the form f1(t1, t2) = 0, f2(t2, t3) = 0, f3(t3, t1) = 0.
The variable t1 is then eliminated between f1 = 0 and f3 = 0, thereby leading
to a new equation of the form f4(t2, t3) = 0, which is quartic in t2, t3. The second
unknown, t2, is eliminated between f4 = 0 and f3 = 0, yielding the FKU f (t3) = 0,
which turns out to be of degree 8 in t2

3 (see [9] for further details of the elimination
scheme). On further analysis, it is found that is it possible to decompose f (t3) into
two quartic factors, i.e., f (t3) = g1(s3)g2(s3), where both g1, g2 are of degree 4
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in s3 = t2
3 . The coefficients of s3 in g1, g2 are functions of the platform dimension a

and the inputs li only, and these have been obtained in closed-form. The coefficients
reveal that g2 becomes identical to g1 when a is replaced by −a. The actual expres-
sions of the coefficients are too big to be included in this chapter; for the sake of
illustration, the coefficient of s3 in g1 is given below:

(9a4 + 12a3(l3 + 3) − 3a2(l2
1 + l2

2 − l2
3 − 10l3 − 15) − 2a(l3 + 3)

(l2
1 + l2

2 + l2
3 − 3) − l2

1(−l2
2 + 2l3 + 3) − 2l2

2l3 − 3l2
2 − l4

3 − 8l3
3 − 18l2

3 − 12l3)
2.

3.2 Analysis of Singularities Using the FKU

Singularities in forward kinematics occur when the FKU, f (t3) = 0, has repeated
roots. Taking advantage of the factorisation, and using the formulation presented
in Sect. 2, it can be seen easily that singularities can occur in one of two possible
manners, and/or their combinations: g1(s3) or g2(s3) = 0 has one or more repeated
root(s); g1(s3) = 0 and g2(s3) = 0 share one or more common root(s). Both the
cases are described below.

• Case 1 g1(s3) = 0 has a repeated root
For the numerical values l1 = 1, l2 = 2, l3 = 3, a = 0.851, the equation
g1(s3) = 0, written as a monic polynomial, becomes:

s4
3 + 1.83886s3

3 − 0.23294s2
3 + 0.00243s3 + 0.00032 = 0.

The roots of this equation are: (−1.95839,−0.02950, 0.07452, 0.07452), and the
passive variables corresponding to the repeated real root are: φ1 = 0.68488, φ2 =
1.52654, φ3 = 0.52303. The corresponding pose of the manipulator is shown in
Fig. 2a.

• Case 2 g1(s3) = 0 and g2(s3) = 0 share a common root
For the inputs l1 = 1.57928, l2 = 1, l3 = 2, and a = 1/2, the roots of g1(s3) =
0 are: (−0.95589,−0.00028, 0.05276, 0.07163), and the roots of g2(s3) = 0
are: (0.07163, 0.09818, 0.46876 ± 0.05965i). Thus, the root s3 = 0.07163 is
shared between the two factors. The corresponding values of the passive variables
are: φ1 = 1.45197, φ2 = 1.27655, φ3 = 0.53296. The manipulator is shown in
this pose in Fig. 2b.

3.3 Special Cases

The loop-closure equations (1) suffer another type of degeneracy for “special” com-
binations of leg inputs, e.g., when two or more of the leg inputs are identical. For
instance, consider the case when l2 = l3: obviously, in this case, φ2 = φ3, and
hence, η2 becomes identical to η3. Proceeding as before with the equations η1 = 0
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Fig. 2 Singular poses of the 3-RPS. a Case 1: g1(s3) = 0 has a repeated root. b Case 2: g1(s3) = 0
and g2(s3) = 0 share a common root

and η2 = 0, the FKU is obtained in terms of t1 in this case, which turns out to
be a quadratic in t2

1 . Once again, the coefficients of the polynomial are obtained in
close-form; e.g., the coefficient of t2

1 is:

2
(

9a4 − 18a3 + a2(9 + l2
1 − 6l2

2) + a(−14l2
1 + 6l2

2) + 4l2
1 + l4

1 − 6l2
1 l2

2 + l4
2

)
.

In the following, the case of gain of one-degree-of-freedom derived in [9] following
geometric reasonings, is studied again, albeit in the framework of analysis proposed
in this chapter. For a = 1/2 and l2 = l3 = 1, the above-mentioned quadratic
equation has a double root when2 l1 = (

√
37 − 3)/4. The solutions for t1 are

obtained as:

(
±

√(
31 − 5

√
37

)
/6,±

√(
31 − 5

√
37

)
/6

)
, i.e., both the positive

and negative solutions of t1 are repeated (as they should, since they correspond to the
poses mirrored at the base plane). The pose corresponding to the positive solutions
is the same as in Fig. 7 of [9].

In the case where l1 = l2 = l3, only one of the constraint equations, say, η1 = 0,
matters. Since φ2 = φ1 in this situation, this equation becomes a quadratic in cos φ1.
Setting the discriminant of this equation to zero, one obtains the final condition for
singularity as a2l4

1 = 0—which can occur only if the top platform shrinks to a point,
or coincides with the base platform.

2 Note that numerically, l1 � 0.770, as noted in Sect. 5.5.1 of [9]. However, thanks to the proposed
algorithm, it is now possible to compute this value exactly.

http://dx.doi.org/10.1007/978-3-319-06698-1_5
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4 Conclusions

A new method for deriving the singularity condition of a parallel manipulator is
presented in this chapter. The method depends upon the solution of the forward
kinematic problem of the manipulator through a single univariate equation, which
is a fairly common practice. The proposed computational scheme involves the elim-
ination of a single variable between two equations, for any manipulator. Special
structures in the final univariate equation, e.g., its decomposition into factors, or
polynomial nature etc. can also be taken advantage of to reduce the computational
complexity, while still obtaining analytical results. This is demonstrated by means of
the spatial 3-RPS manipulator, leading to the description of its singularity manifold
in terms of closed-form expressions in the general case, perhaps for the first time.
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Shape Optimized Heliostats for Kinematic
Sun Tracking

Li Meng, Zheng You and Steven Dubowsky

Abstract Sun tracking heliostat mirrors are key components of many solar power
systems. They must track the Sun’s position in the sky using a spatial 3-D robotic
mount. In addition, their ideal shape is a section of a spatial paraboloid that changes as
a function of time and themirrors’ positions in the system. Errors in this shape results
in reduced system efficiency. The practical implementation of such an ideal heliostat
is very difficult and expensive. Here, a novel compliant heliostat design concept is
proposed to solve this problem by simply applying moments to the corners of a
flat plate whose elastic properties have been tailored to the heliostat’s position in
the system. Analytical studies of concept are presented that show its performance
closely approximates those produced by an ideal paraboloid and that are substantial
improvements over current heliostats. Experimental results are presented to validate
the approach.

Keywords Kinematics · Heliostats · Compliant mechanisms · Spatial tracking

1 Introduction

Many solar power systems use a central receiver surrounded by a large field of
mirrors (heliostats) that are carried by robotic like spatial kinematic mounts. See
Fig. 1. These mounts track the sun and concentrate and redirect the sun light to a
fixed central receiver tower to generate thermal energy [5, 10, 11].
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Fig. 1 A central receiver solar power system with its heliostat field [11]

Fig. 2 Cable tensioned adaptive heliostat with its computer controlled spatial tracker [8]

To be most thermally efficient, the receiver should be as small as possible and the
heliostat light should fall entirely on the receiver. Hence, the mirror’s spot size on
the receiver should be as small as possible. This spot size depends on the shape of the
heliostat mirror, the tracking errors, and the sun shape effect [1]. Ideally, a heliostat
mirror shape should be a precisely curved paraboloid [4]. This shape is difficult and
costly to fabricate and control because it is a time varying function of the mirror’s
position with respect to the receiver tower and the sun’s position in the sky that
changes with the time of the day and the season. It can be a substantial component
of a system’s cost [6]. This chapter describes a new design approach to this problem
based on using 3-D compliant mechanisms to achieve the required geometrical shape
for high optical performance [8]. See Fig. 2.

Most CRS heliostat mirrors are either flat or composed of smaller flat or curved
facets mounted on precise support structures [5]. The curved facets are difficult and
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expensive to fabricate and need to adjust to different field positions. The perfor-
mance of flat mirrors is generally poor. Design concepts have been suggested that
use reflective compliant members to create adjustable focusing surfaces [6], such
as those composed of stretched membranes, implemented with active air pressure
to control the mirror’s shape. However, these concepts are complicated and costly.
Consequently, flat reflective surfaces are still widely used because of their simplicity
[9]. In summary, the problem of a concept to practically shape high performance
heliostats remains unsolved.

This work’s objective is to devise a simple, low-cost concept to achieve an approx-
imation of the ideal adaptive heliostat 3-D mirror shape for high optical performance
heliostat mirrors with minimal spot sizes that would be practical and cost effective.
In the concept, an ideal heliostat (a segment of offset paraboloid) is approximated
by bending the corners of a layered compliant flat square plate in two directions.
All the heliostats in a field would have identical physical designs and their shapes
would be adjusted by the amount they are bent. The flat-layered mirrors could be
easily fabricated, shipped to the site and adjusted to their shape required by their
positions in the field. These adjustments can easily be made on site and real-time
by automatic control using cable mechanism shown in Fig. 2. It has been shown that
for realistic systems, a heliostat optimized for its field position does not need to be
adjusted in real-time to achieve nearly ideal performance [7, 8]. This work addresses
the mechanic and kinematics of producing a desired shape for an individual heliostat.

The results presented below show that the average efficiency difference between
the proposed design and the ideal location-based fixed paraboloids is less than 1%.
The concept is experimentally validated.

2 Heliostat Analytical Models

A heliostat’s optical efficiency is the ratio of solar energy that it receives to energy
that it reflects on to a given size receiver. The spot size of a heliostat is defined as
the circle at receiver aperture plane that receives 98% of the energy reflected by the
heliostat. The smaller a heliostat’s spot size, the better is its efficiency.

To apply these concepts to a realistic heliostat a 3-D model is required. Here, the
incidence light cones are treated as parallel rays. Geometric optics show that an ideal
heliostat surface focusing all of its light to a single receiver focal point is a section of
a paraboloid [13]. Referring to Fig. 3, the equation for the paraboloid is given in the
cylindrical coordinate system (ρ, ϕ, Z ′) and Cartesian coordinates O ′ X0Y0Z0 can
be written as [7]:

x2 + y2 cos2
θ

2
+ z2 sin2

θ

2
− yz sin θ − 4Rz cos

θ

2
= 0 (1)

Note f, the mirror focal length, is given by: f = R(1 + cos θ)/2.
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Fig. 3 An ideal heliostat paraboloid [8]

The ideal heliostat shape, given by Eq. (1), is not a simple symmetric surface. It
is a function of location with respect to the receiver and the sun angle, which is a
function of the time and the date. The two required principal curvatures of the surface
can be calculated in (ρ, ϕ, Z ′) as:

κρ = 1

2 f
(1 + ρ2

4 f 2
)
− 3

2 = 1

2R
cos

θ

2
(2)

κϕ = 1

2 f
(1 + ρ2

4 f 2
)
− 1

2 = 1

2R
sec

θ

2
(3)

R and θ can be approximated as constants over the heliostat surface and the
curvatures can also be assumed to be constants.

3 A Tailored Stiffness Heliostat Design Concept

It can be shown that the out-of-plane displacements of a heliostat are much smaller
than its planar size. So here two-dimensional bending theory is used to find a mech-
anism that will compliantly deform a plate so that it approximates an ideal heliostat.
In this method, the heliostat is formed from a flat square compliant plate by simple
moments and/or forces applied to its four corners. The mirror plate’s stiffness D(x,y)
is divided into two regions, S1 and S2, where S2 is a frame-like structure and S1 the
square center area. See Fig. 4.

S2 is much stiffer than the square center area S1. This stiffness distribution permits
an approximate solution of the integral equations for required curvatures given by
Eqs. (2) and (3). As shown in the figure, the diagonal lines of the plate are aligned
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Fig. 4 Heliostat stiffness design [8]

with the body-fixed OX and OY axis. The corner bending moments (Mρ, Mϕ) create
the required deformation. The plate boundary is assumed to be free of forces or
moments except for the corners. The X corners are assumed to be simply supported
with displacement constraints in the OY and OZ directions. The Y corners are simply
supported with displacement constrained in the OX direction. In which case the plate
bending equations can be shown from plate theory to be: For x, y ∈ [0, l/2],

Mρ =
l
2
−y∫

−( l
2
−y)

mydx =
l
2
−y∫

−( l
2
−y)

D(κρ + νκϕ)dx (4)

Mϕ =
l
2
−x∫

−( l
2
−x)

mx dy =
l
2
−x∫

−( l
2
−x)

D(κϕ + νκρ)dy (5)

D = Eh3

12(1 − ν2)
(6)

where: h is the thickness of the mirror element;
E is the Young’s modulus;
ν is the Poisson’s ratio of the material.
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The exact solution of Eqs. (4) and (5) for the values of corner moments for a
given required plate curvature is complex. However, an approximate solution can
be constructed for the frame-like profile, where b is the width of the frame; c is the
frame stiffness [7]. So that:

l
2
−y∫

−( l
2−y)

Ddx =
{
2cb |y| ≤ l

2 − b
2c( l

2 − y) l
2 − b < |y| ≤ l

2
(7)

l
2
−x∫

−( l
2−x)

Ddy =
{
2cb |x | ≤ l

2 − b
2c( l

2 − x) l
2 − b < |x | ≤ l

2
(8)

The stiffness distribution for a thin frame (bl) satisfies Eqs. (4) and (5) for most of
the surface when simple moment loads are applied so the plates corners, yield a good
approximation to the desired paraboloid shape. Note that D(x,y) is independent of
the exact shape, which permits the shape to easily configured to the one required for
a mirror’s location and the sun angle by only changing the external bending loads.
Also paraboloids are not developable surfaces, so there will be some small stretching
of the central region of the plate. These stretched membrane forces that can affect the
plate’s shape [12], as can gravity and wind loads. These effects are neglected here.
However, they can be reduced if necessary by proper design choices [7]. This tailored-
stiffness approach has the potential to approximate the ideal heliostat surfaces simply
and at low cost. During operation, the proposed heliostat mechanism must adjust its
orientation as the sunmoves across the sky so that the corner loads and the curvatures
of the deformed surface are aligned with the ideal paraboloid. This tracking motion
can be achieved by target-aligned axis orientation [3] using the computer controlled
robotic base. See Fig. 2.

4 Numerical Studies

The numerical analysis of the performance of a heliostat using the tailored stiffness
compliant mirror approach is considered here and compared to ideal shaped and
flat heliostats. The deformed shape of compliant mirrors are calculated using FEA
two-dimensional plate elements. Optical ray tracing is used to calculate the flux
distribution on the receiver aperture plane. The sun shape effect is modeled using
the algorithm developed by Buie et al. [2]. In this study the assumed heliostat field
is located in Los Angeles, California. Each of its heliostats is assumed to be 1m by
1m. The receiver tower height is taken as 50m and the receiver area is 1.4m2. The
field occupies an area of 200×100mwith the layout shown in Fig. 5. In this analysis,
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Fig. 5 Reference field configuration [8]

Fig. 6 a Contour and b errors of surface of a tailored-stiffness mirror [8]

the mirrors do not change their shapes as a function of season and time of the day,
but instead use static shapes that are optimized for best optical overall efficiency,
based on their location in the field. It has been shown that this approach is nearly as
effective as time varying shapes [7, 8].

Figure6a shows example result analytical surface of a tailored-stiffness mirror
at position #1 in Fig. 5 for 15:32 on the spring equinox. The errors of this shape
compared to the ideal paraboloid shape shown in Fig. 6b. These errors can be seen
to be very small. The RMS value of the displacement errors is 17.74µm, 1.9% of
the maximum displacement 0.928mm.

A comparison of a tailored-stiffness design to that for a simple flat mirror, at the
same time and same location as for Fig. 6 shows that the spot size of the tailored-
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Fig. 7 Experimental optical performance base on ray tracing

stiffness heliostat is 1.87m2 while it is 3.55m2 for the flat mirror, a reduction of 47%.
For a 1.4m2 receiver aperture, the tailored-stiffness heliostat has an optical efficiency
of 97.48% while the flat mirror has 75.08%, a very substantial improvement [8].

5 Experimental Studies and Key Results

To validate the proposed approach, a two-axis bending experimental heliostat was
developed and fabricated. In it moments are manually applied to two opposing cor-
ners of the test plate with a calibrated torque wrench and locked into place and
deflection of the plate surface is measured. A number of plates were tested, includ-
ing a polymer honeycomb-sandwich panel with tailored stiffness built with the frame
concept described above. For description of this experimental system, see [7].

Figure7 shows the optical performance of the experimental honeycomb panel
studied using numerical ray tracing. It showed that the majority of the light falls in a
20× 20cm region. The spot size is 0.046m2. By contrast, ray tracing analysis show
that a flat mirror of the same size will have a spot size of 0.41m2, an increase of
nearly a factor of 10.

6 Summary and Conclusions

This chapter presents an approach to produce high performance, low-cost, heliostat
mirrors. It uses a tailored-stiffness compliant surface with simple adjustment mech-
anisms to form the required parabolic shape mounted on articulated tacking base.
These mirrors can be shipped in flat stacks and then assembled and adjusted in the
field and mounted on their robotic tracking supports. Results of numerical analy-
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sis and experiments show that this tailored-stiffness compliant mechanism approach
will significantly improve the efficiency of heliostats at a potentially low cost.
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Efficient Resolution of Hyper-Redundancy
Using Splines

Midhun Sreekumar Menon, B. Gurumoorthy and Ashitava Ghosal

Abstract Hyper-redundant systems such as snake robots, flexible manipulators,
ropes and strings discretized as rigid links connected by joints can be reasonably
assumed to length preserving during their motion. The resolution of the redundancy
in such systems have been addressed by several researchers using least squares and
other techniques in which the computation effort increases rapidly with the number
of links and thus are not amenable to real time motion planning. In this chapter,
we present a computationally efficient, tractrix based algorithm which appear more
‘natural’ with motion of links ‘dying’ down along the length of the hyper-redundant
system. The hyper-redundant system is represented by splines and it is shown that an
approximate length preservingmotion of the hyper-redundant systemcan be obtained
by employing the tractrix based algorithm on the control polygon which generate
the spline. The deviation from the actual length is related to the configuration of
the control polygon and it is shown that this approach reduces the dimension of the
problem space leading to a very efficient resolution scheme. The approach also has
the added advantages of better visualization of the motion due to the higher order
continuities and capability of localized shape control available in splines.

Keywords Hyper-redundant system · Snake robots · Length preserving · Knot ·
Splines
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1 Introduction

One dimensional flexible objects and algorithms for their natural motion are active
areas of research owing to the increased application of snake like robots in various
areas such as medical robotics and search and rescue. The main issue in such robots
is that they are hyper-redundant and there exists infinite number of solution (or con-
figurations) for a desired motion of the end-effector or the head. Various algorithms
have been developed for the resolution of the redundancy and for navigation and mo-
tion planning of such robots and kinematic chains. One of the well-known approach
uses the pseudo-inverse of themanipulator Jacobianmatrix [3]. Obtaining the pseudo
inverse explicitly requires O(n3) operations where n is the number of joints and is
not feasible if n is large. In another well-known approach with complexity O(n),
continuous curves are used to approximate the backbone curve and motion planning
is done on the backbone curve [1]. In this approach the length is approximately
preserved. Recently an optimization based, length preserving algorithm for motion
planning of redundant manipulators has been proposed [2]. Another algorithm by
Su et al. [7] uses inverse kinematics and subdivision algorithms complementarily to
generate length preserving motion of hyper-redundant manipulators. In both these
algorithms, the computation complexity is O(n) where n is the number of links in
the system. Even these efficient algorithms poses limitations for real-time motion
visualization and planning of flexible objects such as ropes, strings, hair or snake
robots. In such flexible objects, to obtain realistic motion visualization and higher
order continuities of slope (C1) or curvature (C2), they need to be discretized into a
very large number of linear segments/pieces resulting in a large n and an increase in
computational costs. In this chapter, we propose a novel method of reducing the com-
putational cost using a tractrix based approach together with splines and the method
of sub-division. The tractrix based approach provides the ‘natural’ motion of the
flexible object and the use of splines and sub-division yields a significant reduction
in dimension of the joint space with a trade-off that the length of the hyper-redundant
system is now approximately preserved.

2 Review of Tractrix Based Approach and Splines

In this section, we present a short review of the tractrix based approach and of
splines for the sake of completeness. More details about splines are available in any
geometric modeling textbook such as Piegl and Tiller [4] and more details on tractrix
based approach are available in Refs. [5, 6].
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2.1 Tractrix Based Resolution

Consider a single link of length L moving in the plane. If the head P moves parallel
to the X axis and the motion of the tail is along the link at each instant, then the tail
describes the well-known classical curve known as the tractrix. The equation of the
tractrix is the solution of the differential equation

dy

dx
= −y

√
L2 − y2

(1)

given as

x = L log
y

L − √
L2 − y2

−
√

L2 − y2 (2)

Some of the main properties of the tractrix are as follows:

• The infinitesimal dr = √
dx2 + dy2 is the local minimum of all possible infini-

tesimal displacements of the tail and for a motion of the head dp, dr ≤ dp.
• The tractrix motion of the link can be extended to 3D space in terms of two
differential equations of the form

dy

dx
= y − ye

x − xe
,

dz

dx
= z − ze

x − xe
(3)

where the equations of the path followed by head are ye = m1xe, ze = m2xe with
m1 = yp/x p, m2 = z p/x p, and (x p, yp, z p) is the destination point of the head.

Instead of numerically integrating the two differential equations, a computation-
ally intensive process, the following algorithm can be used obtain the location of the
tail for a given initial positions of head, tail and the destination point of the head
Xp = (x p, yp, z p)

T .

Algorithm TRACTRIX3D

1 Define the vector S = Xp − Xh where Xh is the current location of the head.
2 Define the vector T = X − Xh where X = (x, y, z)T is the tail of the link lying

on the tractrix.
3 Define the new reference coordinate system {r} with the X -axis along S. Hence

X̂r = S
|S| .

4 Define the Z -axis as Ẑr = S × T
|S × T| .

5 Define rotation matrix 0
r [ R ] = [X̂r Ẑr × X̂r Ẑr ].

6 The Y -coordinate of the tail (lying on the tractrix) is given by y = Ŷr · T and the
parameter p can be obtained as p = L sech−1(

y
L ) ± |S|.
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7 Using the parametric form of the tractrix with p denoting the parameter, obtain
the X and Y coordinate of the point on the tractrix in the reference coordinate
system as

xr = ±|S| − L tanh
( p

L

)
yr = L sech

( p

L

)
(4)

8 Once xr and yr are known, the point on the tractrix (x, y, z)T in the global fixed
coordinate system {0} is given by

(x, y, z)T = Xh + 0
r [ R ](xr , yr , 0)

T (5)

The algorithm TRACTRIX3D can be used for resolution of redundancy for any
serial hyper-redundant system. Consider a hyper-redundant manipulator with n rigid
links l1, l2, ..., ln with joints j1, j2, ..., jn−1 where ji is the joint connecting link i and
link i +1. Consider the last two links ln and ln−1. The head of the link ln , denoted by
the point jn , is required to be moved to a new position jnnew given by (x p, yp, z p)

T .
From the steps in TRACTRIX3D, we can obtain the new location of the tail point jn−1
denoted by (x, y, z)T as it follows a tractrix (see Eq. (5)). The link ln−1 is attached
to the link ln and hence the tail of the link ln can be considered to be the head of the
link ln−1. The head of the link ln−1 should now be moved from its existing location
to (x, y, z)T . The location of the tail of link ln−1, following a tractrix, can again be
obtained from the steps given in algorithm TRACTRIX3D. Following similar steps,
we recursively obtain the motion of the head and tail of all links down to the first
link l1.

We can make the following remarks about the above resolution scheme.

• The algorithm for resolution of redundancy has a complexity of O(n) where n is
the number of rigid links. This fact makes the algorithm amenable for real time
computations.

• Under a tractrix motion, when the head of the link ln moves by drn the displace-
ments of all the links obey the inequality dr0 ≤ dr1 ≤ ... ≤ drn−1 ≤ drn , with
the equality dri = dri−1 reached only when the line of motion of joint ji coin-
cides with link li . A consequence of this observation is that the motion of the links
progressively gets smaller and appears to ‘die’ out as we move towards the first
link. This feature gives a ‘natural’ looking motion of the hyper-redundant system.

2.2 Representation Using Splines

Splines are extensively used to represent smooth curves as they possess advantageous
properties of local control, and numerical stability. In our approach, as a first step,
a control polygon is generated for the smooth spline curve to represent the hyper-
redundant system at its initial configuration. It maybe mentioned that the number
of legs in the control polygon can be much smaller than the number of links in the
hyper-redundant system. Consider a curve as shown in Fig. 1a and the dotted lines
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Fig. 1 Spline curve and its control polygon. a Spline length and length preservingmotion of control
polygon. b Quadratic spline length dependence on angle

which show the control polygon for the curve. As the control polygon is moved using
the tractrix algorithm, the curve changes. As shown in Fig. 1a, the length of the curve
will change even though the length of the control polygon remains constant due to the
tractrix based motion. One can intuitively see that as the angle between the edges of
the control polygon decreases the length of the curve deviates more from the length
of the control polygon. This intuitive notion can be mathematically expressed using
the equation

dl21 = dl20

(
1 + 2N ′

3L2du2sin(α − θ)dθ
)

(6)

where u is the parameter for the spline curve, dl0 is the initial curve length when
the included angle is θ , dl1 is the curve length when the included angle changes by
dθ , α is the slope at an arbitrary point on the spline curve, N3

′ is the derivative of
the spline interpolation function for the point P3, L2 is the length of the segment
P2P3. It is well known that the derivative of a B-Spline is again a B-Spline curve.
Clearly, as the weighing coefficients are all positive, the slope vector of B-Spline at
any point is always a linear combination of p + 1 adjacent Qi ’s which are vectors
directed along the control polygon legs with some scaling. In the case of a quadratic
curve, slope at any point on the spline will be a convex combination of vectors along
two adjacent control polygon segments P1P2 and P2P3. As shown in Fig. 1b, the
slope angle is always in the range θ ≤ α ≤ 180. Hence, the second term in Eq. (6)
is always positive for increasing angles and vice-versa. Thus, as the angle between
segments increase, the length of the spline increases and decreases the other way
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round. Furthermore, when the control polygon is fully stretched out as a straight
line, θ = 180◦ and Yi = 0∀ i . This can be used to conclude that the length of the
curve is always less than or equal to the length of the control polygon.

As shown above, the length of spline changes as the included angles of the control
polygon changes. This makes it unusable for redundancy resolution where the length
must remain constant. In the next section, we present an algorithm to sub-divide the
control polygon when the angle θ becomes too small and the length of the curve
changes more than a user defined amount from the original length.

3 Approximate Length Preservation in Splines

From Sect. 2, the spline length and the control polygon length are related by

l(C P) = l(C(u)) + E(C(u)) (7)

where E(C(u)) ≥ 0 is length difference at any given stage of the motion. In
subdivision algorithm, the control polygon is subdivided by inserting control points.
Figure 2 illustrates the idea of subdivision.

In the subdivision, P1P ′
1 and P ′

1P2 is replaced by P1P2 in �P1P ′
1P2. By triangle

inequality, the length of control polygon is reduced. On the other hand, the length
of the spline remains the same as before. If original spline and control polygon
are denoted by C0(u), C P0 respectively and if the spline and control polygon after
subdivision is denoted by C1(u), C P1 respectively, then we can write from Eq. (7).

l(C P1) ≤ l(C P0), l(C1(u)) = l(C0(u)) ⇒ E(C0(u)) ≥ E(C1(u)) (8)

After subdivision, the length difference between spline and control polygon
decreases. Most importantly, the angles in the introduced edge increases and by
Eq. (6), the sensitivity to change in spline length decreases, thereby effectively re-
ducing error in the spline length. Hence, through subdivision, it is possible to control
spline length error by setting a threshold angle value. If the angle between any two
segments is less than this threshold (θi ≤ θth), then the control point is subdivided
into two new control points. One effect of subdivision is that the number of control
points monotonically increases over time depending on the warping of the control
polygon and this increases the computation requirement. To overcome this problem,
we can also reduce the number of legs in the control polygon when parts of the
control polygon stretches out and the included angle crosses a pre-defined threshold.
When this is done, the number of legs in the control polygon will reduce and the
dimension of the variable space will reduce. The insertion and deletion of links is
schematically shown in Fig. 3.

In the next section, we present numerical simulation results which illustrate the
theory presented in the sections above.
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4 Numerical Simulation

The tractrix algorithm and spline length preservation algorithm are both simulated
on a four link planar kinematic chain with path as shown in Fig. 4a. The snapshots
on various points on the path are shown in Fig. 4b. These reveal that one obtains a
more natural motion using splines, in addition to savings in computation.

Figure 4d shows the variation of control polygon length and Fig. 4c shows number
of control points over the simulation duration. As seen, the algorithm adapts to
the characteristics of the perturbation path by adding control points as and when
required to compensate for the warping of the chain. It also removes control points
from the chain as and when the curve can be simplified and represented in terms
of a lesser number of control points. In this simulation, threshold for inserting a
control point/knot was when the included angle between two segments goes below
140◦. Similarly, the threshold for removing a control point/knot was when the two
consecutive included angles went above 160◦.

Figure 5 shows the length variation of the splines for the algorithms. The variation
in length of the spline has been brought down from 1.0 to 0.45, a reduction of 50%,
demonstrating that the algorithm works. Moreover, it is seen that the knot removal
part of the algorithm is not affecting the length change much (a change of the order
of ≈0.02), when compared with the gain by subdivision.

Finally, the algorithm is used to simulate a generic curve in 3D space moved along
an arbitrary direction. The length of the curve is 30 units and is discretized into 20
links and perturbed in 2,650 steps of 0.1, thus making a total motion of 265 units.
Figure 6 shows the various snapshots during the motion.
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Fig. 6 Motion of an arbitrary curve in a generic direction in 3D

5 Conclusion

This chapter proposes a new paradigm for the simulation and visualization of themo-
tion of one-dimensional flexible objects using a tractrix based approach and splines.
The tractrix based approach yields a natural motion of the hyper-redundant system
and the use of splines leads to efficient computation and more realistic visualiza-
tion of the motion. An important feature of the proposed algorithm is that it is a
purely kinematics and geometry based approach. The approach can be applied to
simulation and realistic visualization of the motion of generic flexible objects such
as snakes, chains, ropes and for redundancy resolution in hyper-redundant robotic
manipulators.
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Kinematic Modeling of an EAP Actuated
Continuum Robot for Active Micro-endoscopy

Mohamed Taha Chikhaoui, Kanty Rabenorosoa and Nicolas Andreff

Abstract An active micro-endoscope based on concentric tubes, an emerging class
of continuum robots, is presented hereby. It is designed to reach the digestive tube
and the stomach for early cancer detection and intervention. The manipulator is
constructed from three flexible, telescopic, and actuated tubes. The actuators are
based on Electro-Active Polymer electrodes coated and patterned around the tube.
A full multi-section kinematic model is developed; it is used to compare the existing
constant curvature configuration to the proposed micro-endoscope. That comparison
is established according to the reachable workspace and the performance indices.
The results are used to prove the effectiveness of the embedded actuation method
to reach the workspace more dexterously, which is very useful in medical systems,
especially in surgical applications.

Keywords Continuum robot · Active cannula · Electro-active polymers (EAP) ·
Kinematic modeling

1 Introduction

Continuum robots are still enthralling researchers’ interests, almost half a century
after the first early prototype: the “Tensor Arm” of [1]. Exceptional usefulness of
continuum robots appears in applications where it is restrictive to have joints and
stiff links. They have the potential to suffer localized damage while still maintaining
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Fig. 1 Design of the considered continuum robot. a CAD design of the tubes, b Illustration of an
EAP-based embedded actuation [8]

a healthy degree of functionality [4]. Moreover, continuum robots are able to navi-
gate through complex anatomy. They may be considered as part of robots for MIS
(Minimally Invasive Surgery) andNOTES (NaturalOrificeTransluminal Endoscopic
Surgery). Recent medical continuum robots include laparoscopic application, laser
manipulators, catheters and micro-endoscopes, summarized in [9]. Concentric tubes
developed by [7, 10] for endonasal skull base surgery are a major contribution to
continuum robots category. Such manipulators are constructed from three precurved
telescopic concentric tubes that have small diameters (less than 3mm). They are actu-
ated at their base by translation and axial rotation of each tube, and the overlapping
builds the final shape.

Concentric tubes are the starting point of our study. We aim to change tubes
curvatures by the means of embedded actuators, and thereby, provide additional
degrees of freedom to the system. Monitoring the curvature and bending each tube
in different directions are indeed expected to enhance the manipulator performances.
Our considered manipulator is presented in Fig. 1a, showing a CAD design of a
curved tube that holds a laser tool at its end-effector. The bending is performed with
Electro-Active Polymer (EAP) electrodes coated around the tube based on [8] work
and sketched in Fig. 1b.

We present in the next section the kinematic modeling of an active cannula robot,
starting from a standard approach to achieve modeling of an EAP actuated con-
tinuum manipulator. In Sect. 3, both models will be used to analyze a part of the
reachable workspace. Then we can establish a theoretical comparison between the
existing configurations and our design, using also performance indices to confirm
the manipulability improvement. Finally, in Sect. 4, we will conclude and present
several future challenges that still need to be achieved in this field.

2 Kinematic Modeling

Before we can start modeling differential kinematics, a few assumptions need to be
set up in the standard approach. This concerns the description used in previous work
[10]. Furthermore, the modeling of a continuum robot with EAP-based embedded
actuators will be described.
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Fig. 2 Active cannula description: a three concentric tube configuration [9], and b arc parameter
description [11]

2.1 Standard Approach

2.1.1 Arc Parameters

The standard approach [10] is basedon a configurationofn concentric tubes presented
in Fig. 2a. Each tube i ∈ {1 . . . n} is made of a straight part (Si) and a precurved distal
one (Ci) and can translate (by ρi) and rotate (by θi) with respect to the z-axis of the
robot base. Thus, depending on the translation of each tube, the concentric assembly
can be decomposed into m successive links, defined by the concentric overlaps of
straight parts, precurved parts or nothing (e.g. for three tubes,C3/S2/S1 orC3/C2/∅).
Each link is modeled by an arc of a circle (constant curvature assumption), described
by three parameters: its length �j, its curvature κj which is the inverse of the radius
of curvature rj, and the angle φj of the so-called equilibrium plane containing the arc
(Fig. 2b).

Depending on the overlapping of the n tubes, the curvature of link j ∈ {1, . . . , m}
is given by:

κj =
√

κ2
xj

+ κ2
yj

with κxj =
∑n

i=1 EiIiκi,j cos θi,j∑n
i=1 EiIi

, κyj =
∑n

i=1 EiIiκi,j sin θi,j∑n
i=1 EiIi

(1)

where Ei is the elastic modulus, Ii is the cross sectional moment of inertia, κi,j is the
intrinsic curvature of the ith tube in the jth link and θi,j denotes the ith tube angle
about the jth link frame z-axis. Finally, the equilibrium plane angle is given by:

φj = arctan(κyj/κxj ) (2)
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2.1.2 Specific Mapping and Independent Mapping

In [11], three spaces are defined:

• the actuator space: {ρi, θi|i ∈ {1 . . . n}}
• the configuration space:

{
κj, φj, �j|j ∈ {1 . . . m}}

• the task space: SE(3).

Two space transformations are thus defined:

1. The specific mapping from the actuator space to the configuration space (actuator
dynamics). This mapping totally depends on the actuation of the tubes.

2. The independent mapping from the configuration space to the task space (forward
kinematics). This mapping is the same for all concentric tube architectures, satis-
fying the assumption of constant curvature links and can be generically modeled.

Forward kinematics can be accomplished in a variety of ways: through Denavit-
Hartenberg parameters [5], Frenet-Serret frames [5], integral formulation [3], and
exponential coordinates [7, 11]. Using the latter convention, the transformation Tj

from link j −1 to link j decomposes into a rotation of center rj = [1/κj, 0, 0]T about
the y axis by αj and a rotation about the z axis by φj:

Tj =
[

Rz(φj) 0
0 1

] [
Ry(αj) pj

0 1

]
(3)

where αj = κj�j and pj = [rj(1 − cosαj), 0, rj sin αj]T .

2.1.3 Differential Kinematics

To compute constant curvature kinematics of a multi-section tube, one must compute
single section tube kinematics. For the brevity of this chapter, the computation is
omitted but details can be found in [9]. The velocity of link j with respect to link
j − 1 is given by:

Vj =

⎡
⎢⎢⎢⎢⎢⎢⎣

cosΔφj(cos(κj�j) − 1)/κ2
j 0 0

sinΔφj(cos(κj�j) − 1)/κ2
j 0 0

−(sin(κj�j) − κj�j)/κ
2
j 0 1

−�j sinΔφj 0 −κj sinΔφj
�j cosΔφj 0 κj cosΔφj

0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Jj

⎡
⎣

κ̇j

Δφ̇j

�̇j

⎤
⎦ where Δφj = φj − φj−1 (4)

Using the adjoint transformation introduced by [6], the full independent kinematic
Jacobian can be deduced from the individual ones:

Jindep = [
J0 AdT0J1 AdT01J2 . . . AdT0(m−1)Jm

]
(5)
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where T0j = T0T1 . . . Tj is the jth transformation matrix at the jth link and

AdT =
[

R R[t]×
0 R

]
(6)

withR and t the rotation and translation component ofT and [t]× the skew-symmetric
matrix associated to the vector cross-product by t. Thus, determining the number of
links in a configuration is a preliminary task to understand full Jacobian matrix
dimension. For a configuration with three totally curved concentric tubes, we obtain
a 6 by 9 matrix, as there are 3 links.

The specific kinematic Jacobian maps actuator derivatives
[
ρ̇i θ̇i

]T
into arc para-

meters derivatives
[
κ̇j Δφ̇j �̇j

]T
. In the three totally curved concentric tube config-

uration, the full specific kinematic Jacobian Jspec is a 3 by 2 matrix. Consequently,
this configuration is a non-holonomic robot: the whole space can be reached but, in
a given state, only a subset of velocity directions is achievable.

2.2 Modeling of EAP Actuated Concentric Tubes

Adding an embedded actuation to the previous configuration is beneficial as it pro-
vides a direct control of the intrinsic curvatures κi,j of each tube, whereas the standard
approach only takes into account constant intrinsic precurvatures. This adds one com-
ponent per tube in the actuator space (ρi, θi, κi) but does not change the two other
spaces. Therefore, the independent mapping and the independent kinematic Jacobian
are the same as those described above, and only the specific mapping and specific
kinematic Jacobian need to be derived.

The curvature of a tube made of Electro-Active Polymer (Fig. 1) follows a linear
law in terms of voltage according to the relation explained in [8]:

κi,j = 1/ri,j = CPPY Vi, (7)

where CPPY is considered as the Polypyrrole actuation constant and Vi is the applied
voltage.

By appropriate low-level control, we foresee to be able to servo κi,j, the intrinsic
precurvature of tube i in link j, to a desired value. Thereby, the specific mapping
will have the same expression as in the standard approach, with only a change in
the inputs (precurvatures). To compute the dependent Jacobian, for three totally
curved concentric tubes, we first need to determine the number of links. With such
configuration, there are three links: three tubes for the first link, two tubes for the
second link, and one tube for the third link as shown in Fig. 3a.
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Fig. 3 End-effector workspace is marked by blue ‘+’ for constant curvature active cannulas and
by red ‘o’ for flexible continuum robot. a Schematic description of tube translation and second tube
curvature κ2,j change from 50 to 10m−1. b Workspaces superimposition in the x-z plane

Differentiating (1) with respect to κ̇i,j and θ̇i,j yields:

κ̇j = 1√
κ2

xj
+ κ2

yj

[
κxj κyj

] [
Aj Bj
Cj Dj

] [
κ̇in,j

θ̇in,j

]
(8)

where κ̇in,j = [κ̇1,j κ̇2,jκ̇3,j]T , θ̇in,j = [θ̇1,j θ̇2,j θ̇3,j]T , κ̇i = CPPY .V̇i and

Aj =
[

E1I1 cos θ1,j
	iE1I1

E2I2 cos θ2,j
	iE2I2

E3I3 cos θ3,j
	iE3I3

]
(9)

Bj =
[
−E1I1κ1,j sin θ1,j

	iE1I1
−E2I2κ2,j sin θ2,j

	iE2I2
−E3I3κ3,j sin θ3,j

	iE2I2

]
(10)

Cj =
[

E1I1 sin θ1,j
	iE1I1

E2I2 sin θ2,j
	iE2I2

E3I3 sin θ3,j
	iE3I3

]
(11)

Dj =
[

E1I1κ1,j cos θ1,j
	iE1I1

E2I2κ2,j cos θ2,j
	iE2I2

E3I3κ3,j cos θ2,j
	iE2I2

]
(12)

Similarly, differentiating (2) yields:

φ̇j = 1√
κ2

xj
+ κ2

yj

[−κyj κxj

] [
Aj Bj
Cj Dj

] [
κ̇in,j

θ̇in,j

]
(13)

For the jth link, the corresponding arc length derivative corresponds to �̇j = ρ̇j. This
leads to the specific kinematic Jacobian at the jth link:

⎡
⎣

κ̇j

φ̇j

�̇j

⎤
⎦ = 1√

κ2
xj

+ κ2
yj

⎡
⎢⎣

κxj Aj + κyj Cj κxj Bj + κyj Dj 0
−κyj Aj + κxj Cj −κyj Bj + κxj Dj 0

0 0
√

κ2
xj

+ κ2
yj

⎤
⎥⎦

⎡
⎣

κ̇in,j

θ̇in,j

ρ̇j

⎤
⎦ (14)

The above specific kinematic Jacobian is a square matrix and does not contain any
structural non-holonomic constraint. Moreover, it is a 3 by 3 matrix. Consequently,
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only two tubes should be enough to reach any pose in the workspace. However,
keeping three tubes provides us with a redundancy which is highly recommended,
especially in medical and surgical manipulators.

3 Performance Analysis

3.1 Workspace Analysis

Workspace means the reachable zones of a manipulator end-effector. In traditional
robotics, one can obtain the workspace by inverting the direct geometrical model.
However, in continuum robotics, converting the effect of curvature change or bending
angle intomovements is significantlymore complex.We restrict our analysis to planar
movements for an intermediate step. This is sufficient to illustrate the key advantages
of changing an additional arc parameter: the curvature.

We take into account a simple configuration case: three tubes with the same
insertion angle αi that are not rotated about their z axis. The total robot length is
45mm and the tube outer diameters are respectively 3.05, 1.45 and 0.72mm. The
only possibility for a precurved concentric tube configuration to reach additional
zones in the x-z plan is to combine tube translations. This would be controlled by
the pre-curvatures already defined and thus, provides a reduced freedom to the end-
effector.Moreover, path-controlling thismovementwould be noticeably challenging.
However, monitoring all the curvatures yields more options to the manipulator to
sweep even more space. Figure 3a shows that changing the second tube intrinsic
curvature κ2,2 in the second link, provides an additional reachable zone, without
even changing first and third tube translation or insertion angle. The workspace was
generated with a translation sampling of 3mm, and a second tube curvature change
sampling of 20m−1. The workspace previously reachable by the existing active
cannula type robot is hold, and additional set of movements is achieved each time
one of the curvatures is changed. It is proven by both workspaces superimposition
shown in Fig. 3b.

3.2 Performance Indices

This analysis is based on the full Jacobian Jrobot singular values σi. Thus, we need
a singular-value-decomposition (SVD) of the matrix. This study is based on the
three most significant performance indices: manipulability, isotropy, and condition
number. Mathematical exact definitions can be found in [2] and their expressions
are :
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Fig. 4 Performance index variation according to second tube precurvature variation below and
beyond κ2,j = 50m−1 fixed for the configuration in the standard approach in Sect. 2: a Manipula-
bility, b Isotropy, and c Condition number

Manip =
√∏

i

ρi, Isotropy =
∏

i ρi∑
i ρi

, Condition number = ρmax

ρmin
(15)

As shown in Fig. 4, monitoring the tube pre-curvature has a significant effect.
Firstly, we notice that manipulability is enhanced when the tube bends beyond
κ2,j = 50m−1 (Fig. 4a). Otherwise, it decreases as the tube is straightened to a linear
configuration. Nevertheless, the manipulator is able to reach additional zones, which
was impossible with constant curvature tubes. The same phenomena is observed
for the isotropy index. Straightening the tube draws the manipulator closer from a
singular configuration as the isotropy reaches zero. In both cases, we notice that
the isotropy measure is very low. It is due to the robot architecture that undeniably
does not allow velocities in all directions similarly. Observing the third curve, the
singular position is confirmed when κ2,j is near zero, with a condition number close
to infinity (Fig. 4c). Beyond κ2,j = 50m−1, the Jacobian matrix is well-conditioned.
The straight position of the manipulator is a singular configuration; thus, it is more
challenging to achieve velocities. The manipulability indices are increasing with the
curvatures. It is owing to the easiness to generate radial movements in a bent position.

4 Conclusion

In this chapter, a novel EAP-based actuation technique of an active micro-endoscope
was briefly described. Demonstrating the benefits of monitoring the tubes curvatures
in contrast with a constant curvature existing configuration was the main contribu-
tion of this chapter. On the one hand, this has been proven in terms of dependent
Jacobian analysis which changes from non-holonomic to holonomic. On the other
hand, performances of both manipulators have been compared through a part of the
workspace as well as via the three most significant performance index evaluation. It
has proven that the variable curvature improves the continuum robot performances.

For the future works, additional mechanical constraints as shearing and torsion
have to be included. Moreover, other tube materials that allow more flexibility need
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to be explored. Another challenge is to improve the actuator design: modifying the
electrodes patterned along the tubeswould enablemore bending directions andwould
provide more degrees of freedom to the manipulator.
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Kinematics Analysis and Singularity Loci
of a 4-UPU Parallel Manipulator

Massimiliano Solazzi, Massimiliano Gabardi, Antonio Frisoli
and Massimo Bergamasco

Abstract The chapter presents the kinematics and singularity analysis by screw
theory of a novel 4-UPU fully parallel manipulator with four degrees of freedom.
The kinematics is characterized by four UPU legs with the actuation on the prismatic
joint and allows the three translations of the end-effector and one rotation along a
direction orthogonal to the platform. In the chapter we show how by studying the
singularity loci and analyzing both the constraint and actuation Jacobian by screw
theory, it is possible to analytically determine the geometric conditions and kinematic
parameters that lead to a null determinant of the Jacobian. Moreover, the singular
configurations for the legs and the effects on the kinematics are investigated.

Keywords Parallel kinematics · Singularity analysis · Screw theory

1 Introduction

Parallel manipulators have been widely studied and utilized for many practical
applications, where their characteristics of high stiffness, good dynamic performance
and precise positioning are relevant. Among the class of lower-mobility parallel ma-
nipulators, the three degrees of freedom(3-DoF) fully-translational or fully-rotational
parallel manipulators are the most common, while the number of 4-DoF devices is
relatively small. The possible kinematic structures for lower-mobility parallel de-
vices has been studied in [4], and in particular structure synthesis of 4-DoF parallel
manipulators has been investigated in [1] and [5], while the analysis of specific
4-DoF fully parallel kinematics has been presented in [6, 7, 9]. The analysis of
kinematics and singularity loci in parallel manipulators presents greater challenges,
and the screw theory is a useful tool to perform the analysis in a more effective
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leg i

(a) (b)

Fig. 1 Kinematics of the 4 degrees of freedom parallel manipulator. a 4-UPU kinematics, b single
leg kinematics

way [2]. An example of the application of screw theory to the singularity analysis of
a 4-DoF parallel manipulator can be found in [3]. A Schoenflies-type parallel manip-
ulator with 4 UPU legs has been described in [8], and the kinematics and singularity
analysis of the Jacobian has been performed.

In this chapter we extend the singularity analysis by screw theory of the 4-UPU
parallel manipulator to the constraint wrenches, and the singular configurations of
the legs, which can not be determined by the Jacobian analysis, has been described.

The proposed kinematics is of particular interest because, with a simple architec-
ture, it allows to control independently the three translations of the end-effector and
one rotation along a direction orthogonal to the platform. This makes it suitable for
several applications, ranging from automatic machining up to haptic interfaces.

In particular, in Sect. 2 the inverse kinematics is solved, in Sect. 3 the singularities
of the constraint wrenches are described, Sect. 4 concerns the singular configurations
of the legs and finally Sect. 5 performs the analysis of the Jacobian.

2 4-UPU Kinematics

The proposed kinematics consists in a four legged parallel manipulator, shown in
Fig. 1. Each leg is composed by an actuated prismatic joint between two universal
joints, mounted in a UPU configuration (Fig. 1b). The manipulator is symmetric in
respect of the x-z and y-z planes, with the base joints on the y axis at a distance D1
from the center O and the base joints on the x axis at a distance D2. All the base joints
rotation axis are parallel to the z axis. The rotation axes of the second and fourth
joints are parallel. The last joint of each leg is connected to the coupling part at a
distance l/2 from the center E and are placed at the corner of a square of diagonal
l. Moreover the rotation axis of these joints are perpendicularly connected to the
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coupling part surface. According to the mobility criterion, for a generic orientation
of the leg joints the manipulator is overconstrained and has not rotational degrees-of-
freedom; if the last joints O5i are mounted to keep always parallel to the z axis, each
leg constrains a rotation in the x-y plane and the manipulator degrees-of-freedom are
the three translations and the rotation around z.

The pose of the end effector E referred to the base reference system Oxyz is defined
by the coordinates OE = [xe ye ze] for the position and θe for the rotation around
the z axis. The position of the points O5i are calculated as OO5i = OE + EO5i with

E O5i = l

2
[sin(θ + (i − 1)

π

2
) − cos(θ + (i − 1)

π

2
) 0], i = 1, . . . , 4 (1)

where i denotes the number of the leg. The position OOi of the first joint of each leg
is known by the geometry of the manipulator. The direction and the length of each
leg is function of the pose of the end effector and results O1i O5i = OO5i − OO1i .

Let’s define the plane of the leg (defined by the versors ˆj1i ˆk1i ) as the plane
perpendicular to the x-y plane and passing through O1i O5i . ˆk1i is the versor parallel
to the z axis, while ˆj1i can be calculated normalizing the projection O1i O5ixy of
O1i O5i on the x-y plane. The perpendicular to the leg plane is defined by the versor
ˆi1i = ˆj1i ∧ ˆk1i . The position and axis of each joint can be now defined by the pose of
the end effector and the geometric dimensions using the above-mentioned relation.

By screw theory for each joint of a leg the twist $ j i is associated, using Plücker
coordinates and considering the origin of the base system O as the pole for represen-
tation of screws; j denotes the number of the joint and i the number of the leg. All
the twists of a leg can be arranged in the system of twists $i :

$i = (
$1i $2i $3i $4i $5i

)
. (2)

The constraint wrench of the leg Wci is then calculated as the reciprocal of the
system $i , so that Wci ⊗ $ j i = 0, for j = 1 . . . 5, where ⊗ denotes the product of
reciprocity between screws.

Analogously the actuation wrench of the leg Wai is calculated as the wrench
reciprocal to the leg twists except the twist associated at the actuated joint:

{
Wai ⊗ $ j i = 0 f or j = 1 . . . 5, j �= 3

Wai ⊗ $ j i �= 0 f or j = 3
(3)

with the actuation at the third joint.
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Fig. 2 Singular configuration
of the kinematics with all the
constraint wrenches parallel

3 Analysis of the Constraint Wrenches

Let’s arrange the constraint wrenches of ∞ pitch Wci in the matrix Jc, hereafter
called constraint Jacobian:

Jc =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 0

x + l
2 sin θ x − D2 + l

2 cos θ x − l
2 sin θ x + D2 − l

2 cos θ

y + D1 − l
2 cos θ y + l

2 sin θ y − D1 + l
2 cos θ y − l

2 sin θ

0 0 0 0

⎤

⎥⎥⎥⎥
⎥⎥
⎦

(4)

D1 and D2 are the distance of the base joints from the center, measured along y
and x axis respectively (Fig. 1). Equation (4) holds only if any leg is not in singularity.
Since the constraint wrenches always lay on the x-y plane and have∞ pitch, the rank
of Jc cannot be higher than two. If all the wrenches are aligned, as depicted in Fig. 2,
the rank of Jc is equal to one and the manipulator presents a singularity.

This condition occurs when all the parameters satisfy the following system:

(
x + l

2
sin θ

)(
y + l

2
sin θ

)−(
y + D1 − l

2
cos θ

)(
x − D2 + l

2
cos θ

)= 0 (5)

xl cos θ + yl sin θ − 2x D1 = 0 (6)

− xl sin θ + yl cos θ − 2y D2 = 0. (7)

The three equations above express the cross product between the first and second
columns, the first and third columns, and the second and forth columns of Jc, respec-
tively. By computing the terms x D1 and y D2 from Eqs. (6) and (7) and substituting
into (5), we obtain the following singularity condition:

D1D2 − D1
l

2
cos θ − D2

l

2
cos θ + l2

4
= 0. (8)
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The condition is verified if and only if

2D1 ≤ l ≤ 2D2 if D1 ≤ D2 or 2D2 ≤ l ≤ 2D1 if D2 ≤ D1. (9)

This is a relevant result, sincewe can state that the constraint wrenchesWci are not
in singularity for any pose of the manipulator, when conditions (9) are not verified.
On the other side when it holds one of the conditions in (9), the solution of Eq. (5) is
given by D1, D2, l and θ that fulfill:

θ = ± arccos

(
l2 + 4D1D2

2l(D1 + D2)

)
. (10)

When Eq. (10) holds, Eqs. (6) and (7) describe the same line through the origin in
the x-y plane. In a plane parallel to the x-y plane for every value of the z coordinate
the singularity condition is then verified only at the origin or in the following cases:

• D1 = l
2 �= D2, ⇒ θ = 0 and y = 0. The singularity locus is the x-z plane.

• D2 = l
2 �= D1, ⇒ θ = 0 and x = 0. The singularity locus is the y-z plane.

• D1 = D2 = l
2 , ⇒ θ = 0. The singularity locus is the whole space.

In these particular cases at least one leg is in singularity because the first and
the last joints are aligned. The orientation of the leg and then the constraint wrench
cannot be univocally determined.

4 Legs Singularities

In this section the singular configurations of the legs of the manipulator are investi-
gated. They cannot be detected analyzing the Jacobian of the manipulator, since for
these configurations the kinematics of the manipulator is altered.
Single leg singularity.When a leg is in singularitywith the first and last joint aligned,
so that the leg is aligned to the z axis as shown in Fig. 3, one constraint wrench is
added:

Wb = [
a b 0 0 0 c

]
a, b, c ∈ R. (11)

The rank of the matrix Jc is then three, and the manipulator looses a degree of
freedom. The terms a, b and c are not univocally determined because it is not possible
to define a leg plane, so that the leg can arbitrarily rotate to constrain a translation in
the x-y plane. If the end effector rotates around the axis of the leg, the manipulator
remains in singularity.
Two legs singularity. Two opposite legs are in singularity if D1 = l

2 �= D2 or
D2 = l

2 �= D1 , θ = 0 and x = y = 0, condition that already represents a singularity
configuration for Jc. With two legs in singularity two constraint wrenches Wbi , of
the same type of the wrench in (11), are added.
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a

(a) (b)

Fig. 3 Legs singularities. a One leg in singularity, b two legs in singularity

Even in this case the orientation of both the legs are not univocally determined.
If the legs in singularity have the same orientation, but are not oriented as the other
legs, the manipulator looses two degrees of freedom because a translation in the x-y
plane and the rotation around z are constrained. If the legs in singularity are oriented
as the other ones the rotation around the same direction of the constrained translation
is allowed.

If the legs in singularity have not the same orientation, the manipulator looses two
degrees of freedom because it can only translate along z and rotate around the axis
a. a is the axis parallel to z passing through the intersection of the two additional
wrenches Wbi (Fig. 3b).
Four legs singularity. Because of the geometry of the manipulator, if three legs can
be aligned along z axis even the forth leg is aligned. This holds if D1 = D2 = l

2 ,
θ = 0 and x = y = 0, and causes the indetermination of the orientation of all the
constraint wrenches. In the general case that all the legs have different orientations,
four additional wrenches are added and the manipulator can only translate along z. If
the additional wrenches Wbi intersect in one point, the end effector can rotate around
an axis parallel to z and passing through the intersection point. In the particular case
all the leg planes are parallel, the rotation around z and the translation parallel to
Wbi are constrained, but the rotation around the direction of Wbi is not constrained.

5 Jacobian Analysis

Assuming the prismatic joints are actuated, we obtain four wrenches Wai applied to
the contact point between the leg and the end effector with the same direction of the
leg, representing the forces that each leg applies to the end effector. We can define
the actuation Jacobian J as the matrix that express the relation between the force at
the actuated joints τi and the wrench at the end effector We, with We = J−T τ .

J−T = (
Wa1 Wa2 Wa3 Wa4

)
τ = [τ1 τ2 τ3 τ4]T (12)
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Fig. 4 Singular configuration of the kinematics leading to Det
(
J−T

)= 0

Since the fourth and fifth rows represent the reaction torques of the structure,
described by the constraint wrenches, they are not relevant for the actuation analysis
and can be neglected, obtaining a 4 by 4 square matrix. The determinant of the square
matrix can be calculated as follows:

Det
(
J−T )= −z(D1 − D2)

l

2
sin θ

(
D1D2 − D1

l

2
cos θ − D2

l

2
cos θ + l2

4

)
(13)

and setting Det
(
J−T

)= 0 the singularity loci can be determined. If Det
(
J−T

)= 0
means that exists a non null τ producing a null We, i.e. a particular load at the end
effector that cannot be balanced by the forces at the actuators .

Since for finite values of z, D1, D2 and l, Det
(
J−T

)
is always upper bounded,

it follows that Det
(
J T

)�= 0 . This means that does not exist in any configuration a
load We at the end effector that is balanced by the reaction of the structure and not
by the actuators, or that the manipulator never looses mobility in the workspace.

The above-mentioned statements hold when any leg is not in singularity.
When the rank of J−T is less then 4, the wrenches Wai in general are disposed

on the regulus of an hyperboloid, as shown in Fig. 4. Det
(
J−T

)= 0 holds in the
following cases: z = 0; θ = 0; D1 = D2; 4D1D2 − 2l cos θ(D1 + D2) + l2 = 0.

The latter condition, as for the analysis of Jc, is verified if and only if conditions
given in Eq. (9) are verified, and so for values of θ fulfilling Eq. (10).

So the singular configurations for Ja include all the singular configurations for
Jc. For the actuation Jacobian it is not possible to avoid the singularities in any
configuration of themanipulator choosing proper values of the geometric parameters.
In fact, by Eq. (13), Det

(
J−T

)
is null for any value of D1, D2 and l if z = 0 or θ = 0.
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6 Conclusion

The kinematics of a 4-UPU fully parallel manipulator has been solved and the sin-
gularity loci has been investigated. By the analysis of the constraint Jacobian Jc, the
singular conditions for the wrenches Wci are determined: in these configurations the
manipulator looses a constraint and it is not isostatic. Analogously, the determinant
of the actuation Jacobian Ja has been studied to define the singular conditions for the
wrenches Wai : in these configurations a particular load at the end effector, that can-
not be balanced by any forces at the actuators, exists. As a relevant result, the singular
configurations for Ja include all the singular configurations for Jc. Moreover the sin-
gular configurations for the legs of the manipulator, that cannot be determined by the
Jacobian analysis, has been defined, finding further singularities for the manipulator.
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On the Kinematics of an Innovative Parallel
Robot for Brachytherapy

Bogdan Gherman, Nicolae Plitea, Bogdan Galdau, Calin Vaida
and Doina Pisla

Abstract The chapter presents the kinematics of a new parallel robot for
brachytherapy. Brachytherapy (BT) is an innovative technique called also inter-
nal radiation, which enables the physician to deliver higher doses of radiation to
very-specific areas of the body. Nowadays, BT usage is limited by the insufficient
accuracy of the radioactive seeds placement devices. Thus, the authors propose an
innovative modular parallel structure which overcomes these limitations, enabling
the high accurate positioning of the BT needles in any parts of the patient’s body. The
kinematics of the new 5-DOF parallel robot is presented. The dextrous workspace of
the robot is computed. Some specific advantages of this structure and the conclusions
are presented in the end.
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1 Introduction

With the current ageing of the population, cancer is one of the main causes of the
death, representing one of the most challenging, but rewarding fields of research.
In brachytherapy (BT) doctors use radioactive sources with powerful but locally
concentrated radiation which must be placed very close to or inside the tumor, [2].
The only drawback of the procedure consists in the high accuracy placement require-
ments which limits its current use. In BT, the doctor should introduce into the tumor
a number of needles with a 1.6 mm diameter, through which radioactive seeds will be
introduced later. These needles are straight, rigid and must be inserted on linear tra-
jectories (defined based on CT/MRI radiologic data). For deeply located tumors, the
needle placement is impossible without visual feedback and the accuracy required
by the medical procedure (of 1 mm from the target point) is very hard to achieve
due to tissue and needle elasticity. Several robotic devices have been developed for
specific BT tasks. EUCLIDIAN [15] is a modular robot by Yu et al. comprised of
a positioning module and a surgery module. Fichtinger et al. developed TRUS [3]
Guided Robotic Approach-an assisting device with 4 DOF composed of two carte-
sian platforms mounted on each other. MrBot [14] by Stoianovici et al is built in the
form of a platform supported by articulated linear actuators in a 5 DOF parallel link
structure. BrachyGuide is a 4 DOF robot compound of two-axis wrist positioned by
a translation stage presented by Salcudean et al. [13]. PROSPER [7] is modular robot
which consists of a 5 DOF needle positioning module and a 2 DOF needle insertion
module, designed only for prostate BT. MAXIO [6] is a 5 DOF robotic arm with
integrated planning, navigation and guidance for tumor ablation. An MRI compat-
ible needle manipulator concept for cancer treatment was developed by Dubowski
et al. [1]. Glozman and Shoham developed in [4] the control algorithm and imple-
mentation for a flexible needle steering to achieve a planned trajectory. It is shown
that only for needle insertion, 3-DOF are sufficient, without taking into account the
needle positioning and orientation of the needle. A report presented in the AAPM
(American Association of Physicists in Medicine) meeting in 2010, [12] shows that
robotic BT is underdeveloped as most of the solutions target only the prostate, with-
out any device capable of performing the BT tasks on larger areas of the body. In
accordance with the current reported limitations, this chapter presents a robot able
to perform general BT procedures, capable of targeting any organs in the thoracic
and abdominal areas, like liver, lungs, paravertebral areas, breast, kidney, etc. The
chapter is organized as follows: Section 2 presents the innovative parallel robot for
BT, based on the medical specifications and its geometric model. Section 3 presents
the kinematics and some numerical and simulation results for a specific trajectory of
the BT needle. Section 4 shows and discusses its workspace. The conclusions and
future work are presented in the Sect. 5.
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2 An Innovative Parallel Robot for Brachytherapy

Figure 1 shows the kinematic scheme of the parallel robot BR1 [10, 11]. The robot
consists of two parallel modules: one with M = 3 DOF and family F = 1, of type
2CRR (PRRR-PRRR), with three active joints, similar with the one studied in [8] by
Kong and Gosselin and and the second module with M = 3 DOF and family F = 1,
of type CR (PRR), having two active joints. The two modules are connected to the
needle holder through two universal joints having the first axis of rotation around Z
axis. Based on [5, 9], the following equation is introduced:

M = (6 − F) · N −
5∑

i=1

(i − F) · Ci , (1)

where (i − F), i = 1 ÷ 5, cannot take negative values. In our case, F = 1, N =
8, C5 = 5, C4 = 5, C3 = C2 = C1 = 0, so the number of DOF of the robot is:
M = 5. The geometrical parameters of the robot are: T1 ÷ T6, h, H, l1 ÷ l7, d.

For the inverse geometric model the coordinates of the needle tip E(X E , YE , Z E )

and the orientation angles of the needle ψ (rotation angle around Z-axis) and θ

(rotation angle around x∗-axis) are known. Knowing also the geometrical parameters
of the parallel robot BR1, the coordinates of A and B points can be determined:

⎧
⎪⎨

⎪⎩

X A = X E − (h + lAB) · sin(θ) · cos(ψ),

YA = YE − (h + lAB) · sin(θ) · sin(ψ),

Z A = Z E + (h + lAB) · cos(θ).

(2)

respectively,

⎧
⎪⎨

⎪⎩

X B = X E − h · sin(θ) · cos(ψ),

YB = YE − h · sin(θ) · sin(ψ),

Z B = Z E + h · cos(θ).

(3)

From Fig. 1 the translational active generalized coordinates of the robot can be
determined:

q1 = X A, q3 = YA + l2, q4 = Z B − l5 (4)

q2 = atan2(H − (Z A + l3), YA − l1)

+ atan2

⎛

⎜⎝

√√√√1 −
(

T 2
1 + T 2

7 − T 2
3

2 · T1 · T7

)2

,
T 2
1 + T 2

7 − T 2
3

2 · T1 · T7

⎞

⎟⎠ (5)
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Fig. 1 Kinematic scheme of the parallel robot

T7 =
√

(H − Z A − l3)2 + (q3 − l1 − l2)2 (6)

q5 = atan2

⎛

⎜⎝

√√√√1 −
(

T 2
5 + l25 − T 2

6

2 · T5 · l5

)2

,
T 2
5 + l25 − T 2

6

2 · T5 · l5

⎞

⎟⎠−atan2

(
YB

l5
,

d − X B

l5

)

(7)
In order to solve the direct geometric model, the active joints q1, q2, q3, q4, q5

as well as the geometrical parameters are considered as known and the unknowns
are the coordinates of the end-effector (the needle tip) and the needle orientation.
Knowing the active joints coordinates, the T8 and T9 lengths can be determined :

T8 = T1 · sin
(π

2
− q2

)
, T9 = q3 − l1 − l2 − T7 (8)
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Coordinates of A point are:

⎧
⎪⎪⎨

⎪⎪⎩

X A = q1
YA = q3

Z A = H − T1 · cos(π
2 − q2) −

√
T 2
3 − T 2

9 − l3.

(9)

θ angle results in a single solution with the equation:

θ = atan2

(√
l24 − (Z A − (q4 + l5))2, Z A − (q4 + l5)

)
(10)

Knowing the coordinates of active joints q1, q2, q3, q4, q5, the ψ angle can be
determined in the following way:

ψ = ψα1α2 − α1 − α2 (11)

where,

ψα1α2 = atan2

(√
1 − (cosψα1α2)

2, cosψα1α2

)
(12)

α1 = atan2

(√
1 − cosα2

1, cosα1

)
, α2 = atan2(YA, d − X A) (13)

cosψα1α2 = T 2
11 + T 2

10 − T 2
5

2 · T10 · T11
(14)

The T10 and T11 segments can be found in the following way:

{
T10 = √

(d − T5 · cos(q5) − X A)2 + (YA + T5 · sin(q5))2
T11 =

√
Y 2

A + (d − X A)2
(15)

The final equations of the needle tip coordinates are:

⎧
⎪⎨

⎪⎩

X E = X A + (h + lAB) · cos(ψ) · sin(θ),

YE = YA + (h + lAB) · sin(ψ) · sin(θ),

Z E = Z A − (h + lAB) · cos(θ).

(16)

3 Kinematics

Kinematic equations are obtained starting from the geometric model. For BR1, we
have the following implicit equations defining the tip of the BT needle:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1 = q1 − X E + (h + lAB) · sin(θ) · cos(ψ)

f2 = cos(q2) − 1
T1

·
(

YR5−H+Z R5
2

)
·
√
4 · T 2

1
Y 2

R5
+(H−Z R5 )2

− 1

f3 = q3 − YE + (h + lAB) · sin(θ) · sin(ψ)

f4 = q4 − Z E − h · cos(θ) + l5

f5 = sin(q5) − 1
T5

·
(

d−YB−X B
2

)
·
√
4 · T 2

5
d2+Y 2

B
− 1

(17)

where using (16),
YR5 = YA − l1, Z R5 = Z A + l3 (18)

Using the matrix representation, the kinematic model is:

A · Ẋ + B · q̇ = 0, (19)

where q̇ = [q̇1 q̇2 q̇3 q̇4 q̇5]T are the driving velocities and Ẋ = [ẊG ˙YG ˙ZG ψ̇ θ̇ ]T

are the end-effector velocities and angular velocities. From relation (19), both the
direct kinematic model and the inverse kinematic model were determined. After
the calculations were achieved, an analytical solution for both geometric and kine-
matic model resulted due to its relatively simple mathematical model.

Some simulation results of the kinematics are presented in Fig. 2. This figure
shows the displacements, velocities and accelerations of the active joints (the five
motors) of the robot. The selected simulated trajectory is a linear one between the two
points along the BT needle axis, so the orientation of the needle remains constant
(namely the angles ψ and θ ). The coordinates of the initial and final position of
the end-effector are: X I = 465.65mm, YI = 222.18mm, Z I = 1089.57mm and
X E = 490.55mm, YE = 251.34mm, Z E = 892.41mm. The maximum velocity
and acceleration of the needle tip are: vmax = 20 mm/s and amax = 10 mm/s2. The
geometrical parameters fits to the experimentalmodel of the robotwhich is going to be
built: T1 = T3 = 465mm; T5 = T6 = 400mm, h = 342.1mm, l1 = 50mm, l2 = 65
mm, l3 = 60mm, l4 = 112.36mm, l5 = 40mm, d = 747mm, H = 2046.04mm.

4 Workspace Modeling

In order to estimate the use of the BR1 structure for different BT procedures, an
algorithm for generating the analytic workspace based on the inverse geometric
model has been achieved. For the workspace generation, using the inverse geomet-
rical model, a volume which integrates the robot workspace is initially defined. One
considers that all the points in that volume are within the robot workspace, and for
each point of the needle tip, the values of the active joints are determined. When
a valid combination for the active joints is obtained, the set of coordinates which
defined the target point is saved. For the active coordinates the following limits
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Fig. 2 Simulation results for the kinematic model of BR1

I

(a) (b)

Fig. 3 Workspace ofBR1 structure: a the dextrousworkspace;b theworkspace ofBR1 structure for
the insertion point I having the following coordinates: X I = 425mm, YI = 425mm, Z I = 1102.2
mm

were defined: qimin = 0mm, i = 1.3, qimin = 0 rad, i = 1.3, q4min = 590mm,
qimax = 850mm, i = 1.3, qimax = 2 ·π rad, i = 2.5, q4max = 1370mm. The dextrous
workspace has been obtained and shown in Fig. 3a, illustrating the capabilities of
the robot for the given geometric parameters. In Fig. 3b, the BR1 workspace for a
given insertion point I (X I , YI , Z I ) has been obtained, where all the robot joints
are positioned in the midway of their strokes. The matrix of the validated needle
tip coordinates represents the robot workspace. The color scale varies with the Z
coordinate of the needle tip.
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Fig. 4 CAD model of the parallel robot in the medical environment

A CAD model of the BR1 structure, integrated in the medical environment has
been presented in Fig. 4, in order to illustrate its working possibilities. The position
and orientation of the needle, as well as its insertion is obtained by the actuation of
all five motors (motors 1, 3 and 4 for translation and motors 2 and 5 for rotation).
The needle insertion motion will be obtained by rotating the ball screws or grooved
shaft held by bearings connected to the fixed frame, necessary for a smooth motion
at the active joints.

5 Conclusions

An innovative parallel robot designed for brachytherapy applications was presented.
The structure can be used for general purpose brachytherapy procedures, to position
accurately the needle, being able to cover most organs in the thoracic and abdominal
areas. The geometric modeling and and some kinematic simulations are presented.
The workspace analysis demonstrates the usability of the robot for the targeted med-
ical task. Further research will focus on trajectory generation for multiple needles in
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a singularity free workspace. The analytic kinematic model will be implemented in
the control system of the experimental model of the robot.
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Reconfigurable and Deployable Platonic
Mechanisms with a Variable Revolute Joint

Guowu Wei and Jian S. Dai

Abstract This chapter presents for the first time a variable revolute joint and a group
of reconfigurable and deployable Platonic mechanisms. Structure of the variable
revolute joint is presented and demonstrated by its application to the construction of
a reconfigurable generic 4R linkage which is capable of converting itself to a planar
parallelogram 4R linkage, a spherical 4R linkage and a Bennett linkage. Then, with a
two-phase variable revolute joint, a group of reconfigurable and deployable Platonic
mechanisms are constructed and mobility of the proposed reconfigurable Platonic
mechanisms is investigated by formulating their corresponding constraint matrices.
Finally, kinematic characteristics of the proposed mechanisms are illustrated.

Keywords Reconfigurable mechanisms · Deployable polyhedral mechanisms ·
Variable revolute joint · Generic 4R linkage

1 Introduction

Deployable polyhedral mechanisms (DPMs) have been raising interest from
kinematicians and mathematicians since the pioneering work of Bricard on flexi-
ble polyhedrons [1] and of Verheyen [11] on the expandable polyhedral structures
coined as “Jitterbug transformers”. Wohlhart proposed different synthesis methods
leading to the generation of various deployable polyhedral mechanisms including the
regular polyhedral linkages [15] which are directly related to the mechanisms pro-
posed in this chapter. Kiper et al. [9], and Wei and Dai [14] revisited Wohlhart’s work
and synthesized the polyhedral mechanisms with new approaches, and Röschel [10]
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investigated polyhedral mechanisms from the geometric point of view giving insight
into the intrinsic geometric properties of the deployable polyhedral mechanisms.
Reconfigurable mechanical systems including metamorphic mechanisms [3] satisfy
the ever-growing market demands of adapting for various stipulations by changing
topological configurations. In order to construct multifunctional mechanisms that are
capable of changing mobility, mechanism topology and function through the meta-
morphic process to adapt themselves for different tasks and working environment
without disassembling the mechanisms, Dai and Rees Jones [4] presented the con-
cept of mechanism metamorphosis, Yan and Kuo [16] investigated variable topology
mechanisms and kinematics pairs, Gan et al. [7] invented a reconfigurable Hooke
(rT) joint, and Zhang et al. [17] proposed a variable axis (vA) joint.

In this chapter, a variable revolute (vR) joint is for the first time proposed
which leads to the construction of reconfigurable mechanisms including a group of
reconfigurable and deployable Platonic mechanisms.

2 A Variable Revolute Joint and a Reconfigurable
Generic 4R Linkage

2.1 Structure of a Variable Revolute (vR) Joint

In the traditional mechanism design, a revolute joint is frequently employed to
connect two links providing one degree of freedom relative motion and once a rev-
olute joint is installed, direction of the axis of rotation as well as the corresponding
structure parameters (e.g. D-H parameters [6]) between the two links are determined.
However, in order to use revolute joints to construct reconfigurable/metamorphic
mechanisms [3] having capability of changing topology structures and functions in
different working stages, it is expected that the directions of their joint axes can be
altered. Thus, inspired by the development of the reconfigurable Hooke joint (rT)
[7] and the variable-axis (vA) joint [17], in this chapter, a variable revolute joint
is invented and designed as illustrated in Fig. 1. It is denoted as vR joint, where R
stands for a revolute joint and v stands for variable indicating that the orientation
of the revolute joint is changeable. The joint consists of a reconfigurable connector
(rC) which is rigidly attached to link i and contains a groove to accommodate a axis-
variable revolute joint. As shown in Fig. 1a, the capacity of changing orientation of
the joint axis is realized by adjusting the axis-variable revolute joint about the groove
and connecting link j such that the relative geometric configuration between link i
and link j can be consequently altered. After changing the direction of the revolute
joint axis to a desired orientation, the joint is fixed by bolting it to the reconfigurable
connector. Figure 1a illustrates one type of vR joint with the revolute joint embedded
inside the groove, and Fig. 1b shows its variant in which the revolute joint is placed
outside of the groove. Further, Fig. 1c gives the topological schematic diagram of the
vR joint.
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connector (rC) 

(a) (b) (c)

Fig. 1 Variable revolute (vR) joint and its variants

Connecting two links by a variable revolute (vR) joint, the two links can have
various relative geometric configurations and thus variable relative structure para-
meters. Therefore, if a vR joint is used to replace the traditional R joint in a linkage,
the linkage readily becomes a reconfigurable linkage that can change itself from one
mechanism type to the other having different motion properties and functions.

2.2 A Reconfigurable Generic 4R Linkage with a Three-Phase
Variable Revolute Joint

Figure 2a gives a conventional spherical 4R linkage with its four revolute joints
arranged at the four corners of a square and their joint axes intersecting at a common
point V. As shown in Fig. 2b, by replacing all R joints of the original spherical 4R
linkage with vR joints, a reconfigurable spherical 4R mechanism can be obtained.

In the evolved reconfigurable spherical 4R linkage, the variable revolute (vR)
joints are connected by reconfigurable connectors (rCs) which are rigidly attached to
the links (Herein, for the sake of clarity, the detailed structure of the reconfigurable
connectors is not illustrated in the figure, readers can refer to Fig. 1b for it). The
reconfigurable connectors have the functions of releasing and locking the vR joints
such that directions of the joint axes can be adjusted so as to reconfigure the types
of linkages.

In the reconfigurable spherical 4R linkage, since four vR joints are distributed
at four corners of a square formed by points A, B, C and D, and axes of the four
joints intersect at a common point V, in the configuration shown in Fig. 2b, the angle
between the axis of any joint and a line passing through point V and point O (which
is the centre point of the square) equals γ . Axes of joints A and C lie in a same
vertical plane, and axes of joint B and D forms another same plane π (see Fig. 2b).

We keep the directions of the axes of joints A and C unchanged and as shown
in Fig. 2c, release reconfigurable connectors at joints B and D, and adjust the axis
directions of vR joints B and D by rotating them respectively about axes eB and
eD by angle α (Where axes eB and eD are aligned with central axes of the grooves
embedded in their corresponding rCs passing through points B and D respectively,
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Fig. 2 A reconfigurable general 4R linkage. a A spherical 4R linkage. b Reconfiguration of vR
joint from PI to PII and from PII to PIII. c A reconfigurable spherical 4R linkage. d A reconfigurable
Bennett linkage (Note rC stands for reconfigurable connector. PI, PII and PIII stand respectively for
phase I, phase II and phase III)

and are perpendicular to plane π .), then fix the vR joints B and D when they reach
phase II. In such a configuration as shown in Fig. 2d, the axes of joints A and C
intersect at point V1, and the axes of joints B and D intersect at point V2, points V1,
V2 and O are collinear, and the angle between axis of any joint and a line passing
through V1, V2 and O remains γ . In such a case, the reconfigured linkage turns out
to be a Bennett linkage [8].

Further, releasing all the vR joints and adjusting their axis directions to form a
configuration that axes of all the four joints are parallel to each other, i.e. each joint
reaches phase III as shown in Fig. 2c, then fastening the reconfigurable connectors
(rCs) so as to fix the vR joints, a planar parallelogram 4R linkage can be obtained
and in this case the angle γ equals 0.

In the stage of Bennett linkage, mobility of the linkage can be calculated and
verified by computing the dimension of nullity of the constraint matrix [12] of the
linkages as

m = dim (N (Mc)) . (1)

Where the constraint matrix of the linkage according to its associated graph can be
formulated as
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Mc = [
SA SB SC SD

]
, (2)

with screws [5] for the joint axes SA, SB , SC and SD derived according to Fig. 2d as

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

SA =
[√

2
2 cos γ

√
2

2 cos γ sin γ − a sin γ a sin γ 0
]T

SB =
[√

2
2 cos γ −

√
2

2 cos γ sin γ − a sin γ − a sin γ 0
]T

SC =
[
−

√
2

2 cos γ −
√

2
2 cos γ sin γ a sin γ − a sin γ 0

]T

SD =
[
−

√
2

2 cos γ
√

2
2 cos γ sin γ a sin γ a sin γ 0

]T

. (3)

Where a denotes the length of a link in the linkage.
Substituting Eq. (2) into Eq. (1) with joint screws provided in Eq. (3) gives m = 1,

which indicates that the linkage at Bennett linkage type has one mobility.
Therefore, this example shows that by integrating variable revolute (vR) joints

into a conventional spherical 4R linkage, a reconfigurable generic 4R linkage can be
generated which is capable of transforming itself into a planar 4R linkage, a spherical
4R linkage and a Bennett Linkage by adjusting the directions of the joint axes through
the reconfigurable connectors (rCs). In order to precisely place axes of the joints in
the correct directions, three slots can be fabricated in the reconfigurable connectors
which clearly define three phases for each vR joint. In such a way, starting from the
spherical 4R linkage configuration shown in Fig. 2b, keeping either pair of joints B
and D, or joints A and C unchanged, and adjusting the other pair from phase I to
phase II as shown in Fig. 2c, the linkage transforms from a spherical 4R linkage into
a Bennett linkage, and vice versa. If all joints are locked at phase III, the linkage
turns out to be a planar parallelogram 4R linkage.

As a result, this section demonstrates that the proposed vR joint can be used to
replace the traditional R joint leading to reconfigurable linkages/mechanisms which
can be converted into linkages/mechanisms of different types that perform diverse
motions and functions. In Sect. 3, it shows that the vR joint can lead to the construction
of a group of reconfigurable and deployable Platonic mechanisms.

3 Construction of Reconfigurable and Deployable Platonic
Mechanisms with a Two-Phase vR Joint

In the previous work, based on a dual-plane-symmetric spatial eight-bar linkage [14]
and an overconstrained [2] spatial eight-bar linkage [13], the authors of this chapter
synthesized a group of deployable Platonic mechanisms with radially reciprocating
motion as well as a group of Fulleroid-like deployable Platonic mechanisms. All the
mechanisms are constructed by purely using R joints to connect the links. Figure 3
shows examples of the two types of Platonic mechanisms, i.e. a deployable dodeca-
hedral mechanism with radially reciprocating motion and a Fulleroid-like deployable
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Fig. 3 Two different types of deployable dodecahedral mechanisms. a A deployable dodecahe-
dral mechanism with radially reciprocating motion. b A Fulleroid-like deployable dodecahedral
mechanism

dodecahedral mechanism. As indicated in Fig. 3a, for the deployable dodecahedral
mechanism with radially reciprocating motion, in each pentagonal facet all R joints
are parallel to the facet, while, for the Fulleroid-like dodecahedral mechanism (see
Fig. 3b), in each pentagonal facet all R joints are perpendicular to the facet.

In this chapter, it is found that by replacing all R joints in either type of afore-
mentioned deployable Platonic mechanisms with two-phase vR joints, a group of
reconfigurable and deployable Platonic mechanisms can be constructed. The mech-
anisms are capable of transforming themselves from one type to the other executing
motions and functions possessed by both types of aforementioned deployable Pla-
tonic mechanisms.

Figure 4 shows a reconfigurable and deployable tetrahedral mechanism which is
constructed by using a two-phase vR joint. In the mechanism, both ends of each
link are connected by vR joints which are mounted in two reconfigurable connectors
(rCs), one rC is rigidly embedded in the facet component and the other rC is rigidly
fixed in the vertex component. Figure 4a shows the mechanism in a Fulleroid-like
deployable tetrahedral mechanism type, in which the vR joints are placed in their
phase I configurations such that all joint axes are perpendicular to their corresponding
facet as shown in Fig. 4b. Then, moving the mechanism to the configuration that the
centre axes of the two rCs at both ends of each link are collinear (see Fig. 4b) and
adjusting all the vR joints from phase I to phase II configurations such that all joint
axes are parallel to their corresponding facet as shown in Fig. 4c, subsequently the
mechanism turns out to be in another type which is capable of performing radially
reciprocating motion.

Hence, by integrating the variable revolute (vR) joints into a deployable tetrahedral
mechanism, the mechanism becomes a reconfigurable one which has the capacity of
converting itself from one type to another and performing diverse functions. For the
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Fig. 4 A reconfigurable and deployable tetrahedral mechanism. a In Fulleroid-like linkage type.
b vR joints in phase I configuration. c vR joints in phase II configuration. d In star-transformer
linkage type

Fulleroid-like tetrahedral mechanism in Fig. 4a, all facet components perform screw
motions around the axes that are perpendicular to their corresponding facets and pass
centroid point O, and all vertex components execute radially reciprocating motions
along the axes passing through their corresponding vertexes and point O. However,
for the other type of tetrahedral mechanism shown in Fig. 4d, all components carry
out radially reciprocating motions along the aforementioned axes towards/outwards
the centroid point O forming star-like tetrahedron which is one of the so called
polyhedral star-transformers [15].

Moreover, by applying the two-phase vR joints to the deployable Platonic mecha-
nisms developed by Wohlhart [15] and Wei and Dai [13, 14], a group of reconfigurable
and deployable Platonic mechanisms can be constructed as illustrated in Fig. 5. All
the reconfigurable and deployable Platonic mechanisms can transform themselves
without disassembly from a Fulleroid-like mechanism type (see left column in Fig. 5)
to a star-transformer mechanism type (see right column in Fig. 5) or vice versa.
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Fig. 5 A group of reconfigurable and deployable Platonic mechanisms. a A reconfigurable and
deployable hexahedral mechanism and its two types. b A reconfigurable and deployable octahedral
mechanism and its two types. c A reconfigurable and deployable dodecahedral mechanism and its
two types. d A reconfigurable and deployable icosahedral mechanism and its two types
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Fig. 6 Geometry and coordinate systems of a Fulleroid-like tetrahedral mechanism. a Initial
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4 Mobility and Kinematics of the Reconfigurable Platonic
Mechanisms

For the reconfigurable Platonic mechanisms proposed in this chapter, when the
mechanisms are in the star-transformer type, mobility of the mechanisms was ver-
ified by the present authors in Ref. [12] and kinematics of the mechanisms was
indicated in Ref. [14]. When the reconfigurable mechanisms are in the Fulleroid
-like type, mobility and kinematics of the mechanisms can be similarly formulated
and analysed.

By following the mobility analysis of star-transformer type mechanisms [12],
referring to the coordinate systems provided in Fig. 6 and the joint screws in individ-
ual facet presented in Fig. 7a, constraint matrix M′

c of the Fulleriod-like tetrahedral
mechanism can be formulated with the joint screws in the individual facet being
modified as

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Si1 = [0 0 1 b 0 0]T , Si2 =
[
0 0 1 − b/2

√
3b/2 0

]T

Si3 =
[
0 0 1 − b/2 − √

3b/2 0
]T

, S′
i1 = [0 0 1 b + l cos β − l sin β 0]T ,

S′
i2 =

[
0 0 1 − b/2 − l(cos β − √

3 sin β)/2
√

3b/2 + l(
√

3 cos β + sin β)/2 0
]T

,

S′
i3 =

[
0 0 1 − b/2 − l(cos β + √

3 sin β)/2 − √
3b/2 − l(

√
3 cos β − sin β)/2 0

]T
.

(4)

Mobility of the mechanism can then be obtained as m = dim(N (M′
c)) = 1.

Further, using the coordinate systems established in Fig. 6, kinematic analysis of
the Fulleroid-like deployable tetrahedral mechanism can be carried out leading to
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Fig. 7 Joint screws in individual facet and kinematics of the mechanism. a Geometry and joint
screws in individual facet. b Trajectories of the facet and vertex components

the illustration of kinematic characteristics of the mechanism as shown in Fig. 7b.
Figure 7b indicates that the Fulleroid-like tetrahedral mechanism has such a property
that the facet components execute screw motions around the axes that are perpendic-
ular to their corresponding facets and pass centroid point O, and vertex components
execute radially reciprocating motions along the axes passing through their corre-
sponding vertexes and point O. Trajectories of the motions are illustrated in Fig. 7b.

The above mobility and kinematic analysis method can then be extended to the
whole group of reconfigurable Platonic mechanisms when they work in the Fulleroid-
like mechanism type. Integrating these analysis with those investigations of mobility
and kinematics for the star-transformer type mechanisms in [12, 14], kinematic
properties of all the reconfigurable and deployable Platonic mechanisms can be fully
characterized.

5 Conclusions

In this chapter, a variable revolute (vR) joint was for the first time proposed and
its structure was presented. Using a three-phase vR joint, a reconfigurable generic
4R linkage was developed verifying the application of the proposed vR joint. The
generic 4R linkage can transform itself into a planar 4R linkage, a spherical 4R
linkage and a Bennett linkage. Subsequently, with a two-phase variable revolute joint,
a group of reconfigurable and deployable Platonic mechanisms were constructed
which have the capacity of converting themselves from the Fulleroid-like linkage
type to the star-transformer linkage type performing screw motion integrated with
radially reciprocating motion or pure radially reciprocating motion. Mobility of the
group of reconfigurable Platonic mechanisms was further investigated and kinematics
properties of the mechanisms were characterized with numerical simulation.



Reconfigurable and Deployable Platonic Mechanisms 495

Acknowledgments The authors gratefully acknowledge the support from the EU 7th Framework
Programme TOMSY under grant No.270436, and the support from the National Natural Science
Foundation of China (NSFC) under grant No.51175366.

References

1. Bricard, R.: Mémoire sur la théorie de l’octaèdre articulé. J. Math. Pure Appl. Liouville 3,
113–148 (1897)

2. Cui, L., Dai, J. S.: Axis constraint analysis and its resultant 6R double-centered overconstrained
mechanisms. ASME J. Mech. Robot. 3(3), 031004 (2011)

3. Dai, J.S., Rees Jones, J.: Mobility in metamorphic mechanisms of foldable/erectable kinds.
Trans. ASME: J. Mech. Des. 121(3), 375–382 (1999)

4. Dai, J.S.: Matrix representation of topological configuration transformation of metamorphic
mechanisms. ASME J. Mech. Des. 127(4), 837–840 (2005)

5. Dai, J.S.: Finite displacement screw operators with embedded Chasles’ motion. ASME J. Mech.
Robot. 4(4), 041002 (2012)

6. Denavit, J., Hartenberg, R.S.: A kinematic notation for lower pair mechanisms based on matri-
ces. ASME J. Appl. Mech. 22(2), 215–221 (1955)

7. Gan, D., Dai, J.S., Liao, Q.: Contraint analysis on mobility change of a novel metamorphic
parallel mechanism. Mech. Mach. Theory 45, 1864–1876 (2010)

8. Hunt, K.H.: Kinematic Geometry of Mechanisms. Clarendon Press, Oxford (1978)
9. Kiper, G., Söylemez, E., Kisisel, A.U.O.: Polyhedral linkages synthesized using cardan motion

along radial axes. In: Proceedings of the 12th IFToMM World Congress. Besancon (2007)
10. Röschel, O.: Möbius mechanisms. In: J. Lenarčič, M. Stanišić (eds.) Advances in Robot Kine-
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Lenarčič, J., Husty, M. (eds.) Latest Advances in Robot Kinematics, pp. 123–130. Springer,
New York (2012)

13. Wei, G., Dai, J.S.: An overconstrained eight-bar linkage and its associated fulleroid-like deploy-
able platonic mechanisms. In: 38th Mechanisms and Robotics Conference (2014)

14. Wei, G., Dai, J.S.: A spatial eight-bar linkage and its association with the deployable platonic
mechanisms. ASME J. Mech. Robot. 6(2), 021010 (2014)

15. Wohlhart, K.: Regular polyhedral linkages. In: Proceedings of the 2nd Workshop on Compu-
tational Kinematics, pp. 239–248 (2001)

16. Yan, H.S., Kuo, C.H.: Topological representations and characteristics of variable kinematic
joints. Trans. ASME: J. Mech. Des. 128(2), 384–391 (2006)

17. Zhang, K., Dai, J.S., Fang, Y.: Topology and constraint analysis of phase change in the meta-
morphic chain and its evolved mechanism. ASME J. Mech. Des. 132(12), 121001 (2010)



Conditions for Sub-6th Order Screw Systems
Composed of Three Planar Pencils of Lines

Xianwen Kong and Duanling Li

Abstract Sub-6th order screw systems composedof (the sumof) three planar pencils
of lines (PPLs)—3-PPL-systems—are closely related to the static singularity (or
forward kinematic singularity) analysis of a number of 3-legged parallelmanipulators
and inverse kinematic singularity analysis of a class of hybrid manipulators. This
paper presents an alternative simple approach to the derivation of the conditions for
sub-6th order 3-PPL-systems. The characteristics of fourth order 2-PPL-systems are
first revealed by using a reciprocal-screw-system based approach. By decomposing
a 3-PPL-system as the sum of a 2-PPL-system and a 1-PPL-system, conditions for
sub-6th order 3-PPL-systems can then be derived based on the intersection of screw
systems. This paper also contributes to the classification of 3-PPL-systems.

Keywords Parallel manipulator · Hybrid manipulator · Screw theory · Singularity

1 Introduction

Sub-6th order screw systems composed of (the sum of) three planar pencils of lines
(PPLs)—3-PPL-systems—are closely related to (a) the static singularity (or forward
kinematic singularity) analysis of a number of 3-legged parallel manipulators (PMs)
[1–11], in which the unactuated joints in each leg are an S (spherical) joint and an
unactuated X joint that can be in the form of any single-DOF (degree-of-freedom)
kinematic joint such as an R (revolute) joint and a P (prismatic) joint or the form of
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Moving platform
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Fig. 1 Parallel and hybrid manipulators associated with 3-PPL-systems: a 3-RPS parallel manip-
ulator; b 3-RPS-3-SPR hybrid manipulator

any single-DOF closed kinematic chain such as a parallelogram, and (b) the inverse
kinematic singularity analysis of a class of hybrid manipulators [12, 13].

Figure 1a shows a 3-RPS PM, which is composed of three RPS legs. Each leg is
composed of one actuated prismatic joint (P), one unactuated R joint and one unac-
tuated S joint. In a forward kinematic singular configuration, the moving platform
of the PM may undergo infinitesimal motion even if the actuated joints are locked.
Figure 1b shows a 3-RPS-3-SPR hybrid manipulator composed of a 3-RPS parallel
module and a 3-SPR parallel module connected serially. In an inverse kinematic
singular configuration, the intermediate platform of the hybrid manipulator may un-
dergo infinitesimal motion even if the moving platform is fixed and the actuated
joints are released. In other words, the moving platform of the hybrid manipulator
loses at least one DOF in this singular configuration.

The geometric characteristics of the static singular configuration of this class
of PMs, i.e., the conditions for sub-6th order 3-PPL-systems, have been revealed
using different approaches [1–11]. Systematic classification of 3-PPL-systems have
been presented in [1–3, 11]. The recent method in [11] for revealing the geometric
characteristics of the singular configuration of the above PMs was based on the basic
manipulations of screw systems and reciprocal systems with fewer derivation.

Inspired by the successful application of the following equation in the type synthe-
sis of PMs (see [15] for example), this paper aims at further simplifying the approach
to the derivation of the conditions for sub-6th order 3-PPL-systems.

S = (S ⊥)⊥ (1)

where S and S ⊥ denote a screw system and its reciprocal screw system.
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By decomposing a 3-PPL-system as the sum of a 2-PPL-system and a
1-PPL-system, the conditions for sub-6th order 3-PPL-systems can be derived using
the basic manipulations on screw systems, including the intersection of screw sys-
tems and reciprocal screw systems. In Sect. 2, the essential results from screw theory
are recalled. Characteristics of fourth order 2-PPL-systems are identified using a
reciprocal-screw-system based approach in Sect. 3. The conditions for sub-6th order
3-PPL-systems are obtained by using the intersection of screw systems in Sect. 4.
Finally, conclusions are drawn.

2 Fundamentals of Screw Theory

This section reviews the fundamentals of screw theory (see [2, 11, 14–17] for exam-
ple) which will be used in deriving the conditions for sub-6th order 3-PPL-system
in Sects. 3 and 4.

2.1 A Screw System and Its Reciprocal Screw System

A screw systemS of order n (0 ≤ n ≤ 6) comprises all the screws that are linearly
dependent on n given linearly independent screws. In most cases of design and
analysis of PMs, a basis of a screw system can be represented by a set of independent
$∞ and $0. Here $∞ and $0 denote screws of ∞- and 0- pitch respectively.

For example, column 3 in Table1 shows three 4-$0-systems—fourth order 2-PPL-
systems [11], each of which is composed of 2 PPLs. A planar pencil of lines (PPL)
is a 2-$0-system which can be represented by a set of two basis $0 represented with
dashed arrows with their axes meeting at one point. For convenience, the centre of
PPL i is denoted by Oi , and the plane of PPL i defined by the lines is denoted by�i .

The reciprocal screw system,S ⊥, of a given screw system,S , can be determined
using the following conditions.

• The axis of a $r∞ is perpendicular to all the axes of $0.
• The axis of a $r

0 is coplanar with the axis of each $0 and perpendicular to the
directions of all the $∞.

Table 1 shows the reciprocal screw systems of three 4-$0-systems—fourth order
2-PPL-systems [11]. In the Case 4a 2-PPL-system, the planes of the two PPLs, �1
and �2, are parallel, and a basis of its reciprocal system is composed of $r∞1 and
$r
02. The direction of the $r∞1 is perpendicular to �1 and �2, while the axis of $r

02
passes through the centres, O1 and O2, of the PPLs. In the Case 4b 2-PPL-system,
the centre, O2, of PPL 2 is on the plane,�1, of PPL 1, a basis of its reciprocal system
is composed of $r

01 and $
r
02 with their axes located on�1 and passing through O2. In

the Case 4c 2-PPL-system, a basis of its reciprocal system is composed of $r
01 along

line O1O2 and $r
02 along the line of intersection between planes �1 and �2.
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Table 1 2-PPL-systems of order 4 and their reciprocal screw systems

Order Class Figure Condition Reciprocal screw system

4 4a �1 ‖ �2 1-$r∞-1-$r
0-system

4b O2 is on �1 2-$r
0-system

4c — 2-$r
0-system

2.2 Sum of Two Screw Systems

Let S1 and S2 denote two screw systems. The sum,S , of S1 and S2 is

S = S1 + S2 (2)

The order of S can be determined using

dim(S ) = dim(S1) + dim(S2) − dim(S1 ∩ S2) (3)

Equation (3) will be used to derive the conditions for sub-6th order 3-PPL-systems
in Sect. 4.

3 Characteristics of Fourth Order Screw Systems Composed
of Two Planar Pencils of Lines

A 3-PPL-system can be regarded as the sum of one 1-PPL-system and one 2-PPL-
system. In order to derive the conditions for sub-6th order 3-PPL-systems, the char-
acteristics of the fourth order 2-PPL-systems [11] (Table1) will be revealed using
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Fig. 2 Characteristics of fourth order 2-PPL-systems. a Case 4a. b Case 4b. c Case 4c

a reciprocal-screw-system based approach rather than the algebraic approach in the
literature. Unlike in [11] where all the PPLs within a Case 4c 2-PPL-system was
revealed, all the $0 within any of the three fourth order 2-PPL-systems will be re-
vealed in this section.1

The reciprocal-screw-system based approach for revealing the characteristics of
a screw system is based on Eq. (1), which has been used in the type synthesis of PMs
(see [15] for example), in order to avoid any algebraic derivation.

According to Sect. 2.1, a basis of the reciprocal system of a Case 4c 2-PPL-
system (Table 1) is composed of $r

01 along line O1O2 and $r
02 along the line of

intersection between planes �1 and �2. Reapplying the reciprocity conditions of
screws [Eq. (1)], we obtain that a Case 4c 2-PPL-system includes all the $0 (lines)
intersecting with both the axes of $r

01 and $r
02 simultaneously. In other words, the

Case 4c 2-PPL-system includes all the $0 (lines) defined by any point OI nt on the
line of intersection between the planes, �1 and �2, of the two PPLs and any point
O12 on line O1O2 (Fig. 2c). Similarly, a Case 4a 2-PPL-system includes all the lines

1 Screws of non-zero pitch within a fourth order 2-PPL-system are omitted since they are irrelevant
to the conditions for sub-6th order 3-PPL-systems.
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($0i ) that are parallel to planes,�1 and�2, and pass through a point, such as O12, on
line O1O2 (Fig. 2a). In the Case 4a 2-PPL-system, any line $0i if not on the �1 and
�2 planes, and the two planes,�1 and�2, meet at infinity. A Case 4b 2-PPL-system
(Fig. 2b) includes all the lines that are located on the plane �1 of PPL 1 ($0i ) and/or
pass through the center O2 of PPL 2 ($0 j ).

The above characteristics will be used to derive the conditions for sub-6th order
3-PPL-systems in Sect. 4.

4 Conditions for Sub-6th Order 3-PPL-System

Let a 3-PPL-system and its compositional 2-PPL-system, which is the one that has
the minimum order among the three 2-PPL-systems within the 3-PPL-system, and
1-PPL-system be denoted by S , S1 and S2 respectively. The two PPLs of S1 are
denoted by PPL 1 and PPL 2, and the PPL of S2 is denoted by PPL 3.

From Eq. (3), we obtain that a 3-PPL-system is a sub-6th order 3-PPL-system if
(a) a PPL degenerates into a line (for hybrid manipulators), (b) dim(S1) ≤ 3, and/or
(c) dim(S1 ∩ S2) ≥ 1. Since cases involving a degenerated PPL (Case (a)) or 2-
PPL-systems order 2 and 3 (Case (b)) are trivial and well documented (see [11] for
example), this section will focus on the conditions for sub-6th order 3-PPL-systems
composed of a fourth order 2-PPL-system (Table 1) and 1-PPL-system (Case (c)).

In a sub-6th order 3-PPL-system involving a fourth order 2-PPL-system, we have
dim(S1 ∩ S2) ≥ 1. This requires that the intersection of the 2-PPL-system and
1-PPL-system includes at least one $0.

Based on the characteristics (Fig. 2c) of Case 4c 2-PPL-system, we can obtain
that the condition for a sub-6th order 3-PPL-system is that line O12OI nt ($0i ) of the
2-PPL-system is located on the plane,�3, of PPL 3 and passes through O3 (Fig. 3d).
Since line O12OI nt is the intersection of the plane,�3, of PPL 3 and plane O1O2O3,
the geometric characteristics of the sub-6th order 3-PPL system is that the planes,�i

(i = 1, 2 and 3), of these three PPLs and the plane O1O2O3 defined by the centres
of these PPLs have a common point OI nt (Fig. 3). The above conclusion is also true
for 3-PPL-systems involving classes 4a and 4b 2-PPL-systems. In a 3-PPL-system
involving Case 4a 2-PPL-system (Fig. 2a), the condition for sub-6th order 3-PPL-
system is that line $0i of the 2-PPL-system is located on the plane of PPL 3 and passes
through O3 (Fig. 3a). Since line $0i is the intersection of the plane, �3, of PPL 3
and plane O1O2O3, the geometric characteristics of the sub-6th order 3-PPL system
is that the planes, �i (i = 1, 2 and 3), of these three PPLs and the plane O1O2O3
defined by the centres of these PPLs have a common point at infinity (Fig. 3a). In a
3-PPL-system involving a Case 4b 2-PPL-system (Fig. 2b), the condition for sub-6th
order 3-PPL-system is that line $0i or $0 j of the 2-PPL-system is located on the plane,
�3, of PPL 3 and passes through O3 (Fig. 3a). In the former case (Fig. 3b), both O2
and O3 are located on plane �1. This leads to that planes �1 and O1O2O3 coincide.
The geometric characteristics of the sub-6th order 3-PPL system is that the planes
�i (i =1, 2 and 3) and O1O2O3, among which at most three planes are distinct,
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Fig. 3 Condition for sub-6th order 3-PPL-systems. a Case 4a. b Case 4b(1). c Case 4b(2). d Case
4c

have a common point. In the latter case (Fig. 3c), point O2 is located on planes �1
and �3. The geometric characteristics of the sub-6th order 3-PPL system is that the
planes �i (i = 1, 2 and 3) and O1O2O3 meet at point O2.

Unlike the approaches in the literature (see [1–11] for example), the approach
presented in this paper is a straightforward geometric approach which needs fewer
derivations and requires no knowledge about properties of linear complex or the Ceva
theorem. The 3-PPL-system shown in Fig. 3a is a class [4a, 4c, 4c] fifth-order 3-PPL-
system, which was not identified in [11]. Following the notation in [11], the class of
a fifth order 3-PPL-system is represented by the orders of its three 2-PPL-systems
here.

5 Conclusions

Asimplified approach has been proposed for deriving the conditions for sub-6th order
3-PPL-systems which requires only the basic manipulations on screw systems, espe-
cially the reciprocal screw systems. The reciprocal-screw-system based approach for
revealing the characteristics of the fourth order 2-PPL-systems has been found to be
efficient. This paper also contributes to the classification of 3-PPL-systems. The re-
sults may help readers better understand the geometric characteristics of the singular
configurations for a number of 3-legged parallel manipulators and hybrid manipula-
tors and design parallel/hybrid manipulators with singularity considerations.
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The method proposed in this paper is being extended to the singularity analysis
of other classes of parallel manipulators and hybrid manipulators.

Acknowledgments Thefirst authorwould like to acknowledge the financial support of Engineering
and Physical Sciences Research Council of the UK (EPSRC) under grant Nos. EP/I016333/1 and
EP/K018345/1. The second author would like to acknowledge the support of National Science
Foundation China under Grant No. 51375058. The authors also acknowledge the support from the
Overseas Famous Scholar Program Sponsored by Chinese Ministry of Education, China. Thanks
to Mr Ruiming Li from Beijing Jiaotong University, China for creating the CAD models in Fig. 1.

References

1. Merlet, J.-P.: Parallel Robots, 2nd edn. Springer, Dordrecht (2006)
2. McCarthy, J.M.: Geometric Design of Linkages, 2nd edn. Springer, Heidelberg (2011)
3. Ebert-Uphoff, I., Lee, J.-K., Lipkin, H.: Characteristic tetrahedron of wrench singularities for

parallel manipulators with three legs. IMechE, J. Mech. Eng. Sci. 216(C1), 81–93 (2002)
4. Kong, X., Gosselin, C.M.: Uncertainty singularity analysis of parallel manipulators based on

the instability analysis of structures. Int. J. Robot. Res. 20(11), 847–856 (2001)
5. Yang, G., Chen, I.-M., Lin, W., Angeles, J.: Singularity analysis of three-legged parallel robots

based on passive joint velocities. Trans. Robot. Autom. 17(4), 413–422 (2001)
6. Downing, D.M., Samuel, A.E., Hunt, K.H.: Identification of special configurations of the

octahedral manipulator using the pure condition. Int. J. Robot. Res. 21(2), 147–159 (2002)
7. Huang, Z., Chen, L.H., Li, Y.W.: The singularity principle and property of Stewart parallel

manipulator. J. Robot. Syst. 20(4), 163–176 (2003)
8. Di Gregorio, R.: Forward problem singularities in parallel manipulators which generate SX-

YS-ZS structures. Mech. Mach. Theory 40(5), 600–612 (2005)
9. Ben-Horin, P., Shoham, M.: Singularity condition of six degree-of-freedom three-legged par-

allel robots based on Grassmann-Cayley algebra. IEEE Trans. Robot. 22(4), 577–590 (2006)
10. Pendar, H., Mahnama, M., Zohoor, H.: Singularity analysis of parallel manipulators using

constraint plane method. Mech. Mach. Theory 48(1), 33–43 (2011)
11. Kong, X., Johnson, A.: Classification of screw systems composed of three planar pencils of

lines for singularity analysis of parallel mechanisms. ASME J. Mech. Robot. 6(2), 021008
(2014)

12. Kong, X., Yang, T.: Formulation of dynamic equations for hybrid robots using a component
approach. In: Proceedings of the 4th Chinese National Youth Conference on Robotics, pp. 1–5,
China (in Chinese) (1992)

13. Hu, B., Lu, Y., Yu, J. J., Zhuang, S.: Analyses of inverse kinematics, statics and workspace
of a novel 3RPS-3SPR serial-parallel manipulator. Open Mech. Eng. J. 6(Suppl1-M5), 65–72
(2012)

14. Davidson, J.K., Hunt, K.H.: Robots and Screw Theory: Applications of Kinematics and Statics
to Robotics. Oxford University Press, New York (2004)

15. Kong, X., Gosselin, C.: Type Synthesis of Parallel Mechanisms. Springer, New York (2007)
16. Dai, J.S.: Finite displacement screwoperatorswith embeddedChasles’motion.ASME J.Mech.

Robot. 4(4), 041002 (2012)
17. Dai, J.S.: An historical view of the theoretical development of rigid body displacements from

Rodrigues parameters to the finite twist. Mech. Mach. Theor. 41(1), 41–52 (2006)



Automatic Optimal Biped Walking
as a Mixed-Integer Quadratic Program

Aurelien Ibanez, Philippe Bidaud and Vincent Padois

Abstract This chapter proposes an original Model Predictive Control approach to
the walking control for humanoid robots, which allows to generate stable walking
motions without the prior definition of footsteps positions and instants. Both the
instant and amplitude of the changes in the supporting surface are part of the walking
motion generation problem, and are described by a set of highly-constrained integer
and real variables. Combined with the center of mass trajectory of the robot, this
description leads to the formulation of a Mixed-Integer Quadratic Program in a
Model Predictive Control framework aiming at reaching high-level objectives, such
as velocity tracking and tip-over risk minimization. The contribution of this approach
is illustrated by the simulation of two scenarii, demonstrating the validity of the steps
and trajectories computed in push-recovery and walking velocity tracking cases.

Keywords Biped walking ·Balance control ·Hybrid systems ·Footsteps planning ·
Push recovery · Mixed-integer quadratic programming
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J. Lenarčič and O. Khatib (eds.), Advances in Robot Kinematics, 505
DOI: 10.1007/978-3-319-06698-1_52,
© Springer International Publishing Switzerland 2014



506 A. Ibanez et al.

1 Introduction

The works introduced in this chapter address the control problem of safe biped
walking, aiming at the predictive generation of stable motions without the use of
prior gait strategy, such as footsteps positions or triggers, in response to high-level
objectives and large disturbances.

Maintaining postural balance under a large physical disturbance may go through
several types of strategies, ranging from body torquing and motion of the center
of mass (CoM) to the adaptation of the base of support. It is clear that changes
in the base of support, either by stepping or grasping an object, have the potential
to provide a greater degree of stabilization than solely using inertial forces in a
fixed-support configuration [4]. These changes might be necessary when the system
undergoes strong physical disturbances or when required by the activity. If so, the best
feet placement is a question which can find answers in the capture of the system’s
dynamics and kinematics with reduced models, as found in approaches such as
Capture Region [5] or using Model Predictive Control [2]. Although the Capture
Region method provides means to determine which strategy to adopt and when, the
end of step and ongoing physical activity could potentially affect the system’s ability
to execute changes of support. A predictive approach may allow to capture such
effects and act accordingly.

This chapter proposes to describe the contact state of the system using a highly
constrained, mixed-integer set of variables. The resulting MPC formulation of the
problem takes the form of a computationally efficient Mixed-Integer Quadratic Pro-
gram (MIQP), which allows to preview and compute optimal changes of the sup-
porting surface (i.e. feet positions over time) and CoM trajectory. Contribution of
this approach is that walking motions are generated as a whole as the result of a
quadratic problem, without the use of prior low-level inputs such as footsteps posi-
tions and instants, and relatively to an ongoing walking activity. This activity is
simply specified as two high-level objectives, being balance and CoM tracking.

The method is introduced as follows. First, an original description of the contact
state of a humanoid is introduced in order to bring a linear biped model subject to
constraints related to the walking motion. This model is then involved in a MPC
framework, leading to the definition of a MIQP. Simple results are finally presented
to demonstrate the validity and contribution of this approach, in push-recovery and
walking cases.

2 Linear Mixed-Integer Biped Model

The general approach of the method presented in this chapter consists in finding
admissible changes in the supporting surface, in order to ensure safe balance while
tracking a desired behavior of CoM of the system. The balance state of the robot
in walking motion can be captured by relating its CoM dynamics to its contact
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Fig. 1 Overview of the real-valued variables a and b, along with the binary variables δ and γ : a
and b bound the position of the feet in contact, γ differentiates single and double support phases,
and δ restrains the evolution of bounds a, b during transitions from double to single support

state. This section therefore aims at describing the robot state with a set of variables
representing both its center of mass behavior and contact state.

2.1 Preliminaries: Mixed-Integer Contact State Description

In walking motions without sliding, changes in contact state are discrete and thus
subject to several constraints, as illustrated in Fig. 1. The set of variables capturing the
contact state of the robot should therefore be chosen adequately, in order to be able
to express these constraints in a desirable form with a view to future optimization;
linear constraints are generally preferred as feasibility is easily maintained in such
problems.

This section proposes a choice of linearly-constrained descriptors of the con-
tact state. The supporting surface is characterized by its bounding box: this box is
described, in the horizontal plane of the ground, by real-valued variables (a, b) ∈
R

2 × R
2 defined as the upper and lower bounds, respectively, of the position in the

two horizontal directions of centers of the feet in contact,1 as depicted in Fig. 1.
Changes of these variables are subject to several constraints, called shape con-

straints, detailed in Appendix A. Shape constraints mainly enforce that variables
(a, b) cannot change continuously: binary variables (α,β) ∈ {0, 1}2 × {0, 1}2 are
introduced as rising and falling edges of a and b respectively, in order to define
constraints restraining the evolution of (a, b) to discrete changes solely.

Because variables (a, b) are implicitly related to feet positions, additional con-
straints, called admissibility constraints, must be brought. As illustrated in Fig. 1 and
detailed in Appendix B, binary variables (γ, δ) ∈ {0, 1} × {0, 1} are introduced to
express such constraints, differentiating single support phases from double support
ones and relating feet configurations to bounds (a, b).

The resulting set (a, b,α,β, δ, γ ) is therefore a linearly-constrained, redundant
description of the contact state of the robot. The following section presents a complete
biped model relating contact state to CoM dynamics in order to capture the balance
state of the system.

1 This description implies that the feet contact and lift-off the ground parallel to it, and are rigid
bodies.
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In the rest of this chapter, time is sampled at discrete control instants ti , and
notation v j for function v of time t denotes the value v(t j ), and vk| j the value v(t j )

estimated from control time tk .

2.2 Linear Biped Model

The state ξ of the robot in walking motion is described through its contact state
(a, b,α,β, δ, γ ) and CoM horizontal dynamics (c, ċ, c̈), where c ∈ R

3 is the position
of the CoM in the world frame.

The major contribution of the description (a, b,α,β, δ, γ ) of the contact state of
the robot, introduced in Sect. 2.1, is that it can be shown that shape and admissibility
constraints (15)–(23), acting on these state variables, can be put in linear form (equal-
ities and inequalities) with respect to ξ in discrete time.2 These constraints (15)–(23)
can be written in the form

∀k ∈ N, Ac,lξ k + Ac,r ξ k+1 � f c, (1)

where Ac,l and Ac,r are nc × 19 matrices, and f c a vector in R
nc .

However, validity of the contact state with respect to the system dynamics requires
that the center of pressure lies within the convex hull of the supporting surface.
In these works, the position of the CoP on the ground is approximated as in the
ZMP Preview Control framework [3], i.e. neglecting rotational effects and thus only
considering inertial effects resulting from the dynamics of the center of mass of the
system.3 The position p ∈ R

2 of the CoP on the ground can hence be derived from
the CoM dynamics as, with g the gravity acceleration, p = h− c·e2

g ḧ, where e2 is the
ascendant vertical direction and h = c−(c·e2)e2 the horizontal position of the CoM.
We recall that validity of the model imposes that p lies within the convex hull of the
supporting surface. Although this inclusion constraint is linear with respect to the
horizontal dynamics of the CoM, the fact that changes in the supporting surface are
reflected by changes in state variables (a, b) brings quadratic terms. Nevertheless,
as shown in [2], overestimating the convex hull of this surface by its bounding box
in forward and lateral directions brings the definition of a set of linear inequality
constraints with respect to the state ξ of the system. Under this overestimation, the
CoP constraints write

∀k ∈ N, Apξ k � f p, (2)

2 Under the hypothesis that there exists upper bounds for the difference ‖a − b‖1 and for the
variations of a and b between two consecutive instants. This hypothesis is always verified in the
case of a biped robot which is subject to geometrical constraints.
3 Moreover, vertical dynamics of the center of mass are also neglected and this hypothesis needs
to be enforced in the whole-body control of the robot.
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where Ap is a n p × 19 matrix, and f p a vector in R
n p .

The biped model finally writes at time tk

∀k ∈ N, ξ k = [
ak bk αk βk δk γk ck ċk c̈k

]T

s.t.

⎧
⎨

⎩

Ac,r ξ k � f c − Ac,lξ k−1, Apξ k � f p,(
αk, βk

) ∈ {0, 1}2 × {0, 1}2 , (δk, γk) ∈ {0, 1} × {0, 1} ,

(ak, bk) ∈ R
2 × R

2, (ck, ċk, c̈k) ∈ R
3 × R

3 × R
3.

(3)

2.3 High-Level Walking Motion Constraints

A selection of additional high-level constraints, related to the walking motion in itself
and limitations of the robot, are introduced in the problem.

Maximal leg span and step length can be easily put in the form of linear inequality
constraints with respect to the system state ξ . Additionally, minimum durations of
single and double support phases can be enforced, in the form of a set of linear
inequality constraints, in order to avoid the generation of small successive steps.
Last, the ratio between step size and single support duration can be bounded by a
maximal swinging foot velocity implemented as a set of linear inequality constraints,
constraints that will hinder solutions requiring an excessively fast movement of the
swinging foot in the transition between two distinct double support phases.

Let v̄ denote the maximal swinging foot velocity, s̄ the maximal step length and
t̄ the largest of minimum durations of single and double support phases, these high-
level constraints write

∀k ∈ N

∑

tk+ j −tk≤max(s̄/v̄,t̄)

Aw, j ξ k+ j � f w, j ∈ N, (4)

where Aw, j is a nw × 19 matrix, and f w a vector in R
nw depending on a history of

states ξ prior to tk . It can be shown that f w can be written in the form

f w = f w0
+

∑

tk−tk− j <max(s̄/v̄,t̄)

Bw, j ξ k− j , j ∈ N
∗. (5)

3 Quadratic Mixed-Integer Predictive Control

The control problem of walking motion generation is formulated as follows: find, over
a preview horizon, admissible changes in the support surface (foot steps position and
instants) and optimal center of mass trajectory (balance adjustments) that minimize,
among other secondary objectives, a tracking error with a desired center of mass path
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and velocity (stand still, walk forward, etc.) and maximize the distance of the CoP
to the bounds of the supporting surface (minimum tip-over risk).

3.1 Quadratic Model Predictive Control

The aim of the balance MPC problem is to find at each control step tk , in addition
to admissible changes in the supporting surface, a horizon of CoM trajectory that
minimizes both a tracking error to a reference trajectory (desired displacements of
the system as a whole) and a tip-over risk. Due to the hypotheses of the ZMP-based
balance criterion, a horizontal trajectory solely is of interest in such a problem.

A future trajectory
(
hk|k+ j , ḣk|k+ j , ḧk|k+ j

)
j=1..N of the center of mass, pre-

viewed from state ξ k at control step tk over N time steps, can be entirely defined
from a horizon of N piecewise constant CoM jerks u = ∂3h/∂t3, using a straight-

forward discrete integration scheme. With ĥ = [
h ḣ ḧ

]T
, the CoM preview writes

∀ (k, j) ∈ N × N, ĥk|k+ j+1 = Ah ĥk|k+ j + Bh uk|k+ j+1, (6)

where Ah and Bh are integration matrices. Under the assumption that the altitude
of the CoM remains constant over time, a previewed state ξ k|k+ j+1 can be linearly
derived from previous state ξ k|k+ j given the value χk|k+ j+1 of the unknown variable
defined as

χ = [
a b α β δ γ u

]T
. (7)

Notation (7) and relation (6) indeed brings, with Q and T state description matrices,
the linear time-invariant process

∀ (k, j) ∈ N × N, ξ k|k+ j+1 = Qξ k|k+ j + Tχk|k+ j+1, (8)

which allows the preview, from the actual state ξ k|k = ξ k , of a horizon Ck,N

of N future states ξ k|k+ j from a horizon Xk,N of N future inputs χk|k+ j . Indeed,
Eq. (8) can be spread over N steps and bring

Ck,N =
⎡

⎢
⎣

ξ k|k+1
...

ξ k|k+N

⎤

⎥
⎦ = Pξ k + R

⎡

⎢
⎣

χk|k+1
...

χk|k+N

⎤

⎥
⎦ = Pξ k + RXk,N , (9)

and thus constraints (1), (2) and (4) can be rewritten

AXk,N � f (10)

where f depends on a history of states ξ , as introduced in (1), (4) and (5).
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The minimization of tip-over risk can be expressed at the level of the center of pres-
sure: safe balance motor control should aim at maximizing the distance between the
CoP and the convex hull of the supporting surface.4 This objective can be expressed
as the cost function Jb to be minimized

Jbk =
N∑

j=1

∥∥ pk|k+ j − rk|k+ j
∥∥2

, (11)

which measures a cumulated square distance between the CoP and the center r of
the supporting surface, where r = (a + b)/2.

Walking motions generally aim at reaching a desired horizontal displacement of
the system as a whole (null displacement in the case of standstill activities), that can

be expressed as a reference CoM horizontal trajectory ĥ
re f

. This second objective
can be reached through the minimization of the cost function Jw that writes

Jwk =
N∑

j=1

∥∥∥S
(

ĥk|k+ j − ĥ
re f
k|k+ j

)∥∥∥
2
, (12)

where S is a 6 × 6 weighting selection matrix, diagonal, defining whether position,
velocity and/or acceleration are tracked in each of the two horizontal directions.

Secondary objectives can be added to the problem in the form of the quadratic
cost q, for regulation purposes or additional input, for example in order to prefer
double support phases over single support ones.

Objectives (11) and (12) are quadratic with respect to Xk,N , and can be synthesized
in the form

Jk = ωb Jbk + ωw Jwk + q = XT
k,N HXk,N + dT Xk,N , (13)

where H is a positive definite matrix, d a vector and (ωb, ωw) scalar weights.
The MPC problem finally writes

min
Xk,N

XT
k,N HXk,N + dT Xk,N

s.t.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

AXk,N � f
ξ k|k = ξ k, ξ k|k+ j = Qξ k|k+ j−1 + Tχk|k+ j , j = 1.. N(

ak|k+ j , bk|k+ j , uk|k+ j
) ∈ R

2 × R
2 × R

2, j = 1.. N(
αk|k+ j , βk|k+ j

) ∈ {0, 1}2 × {0, 1}2 , j = 1.. N(
δk|k+ j , γk|k+ j

) ∈ {0, 1} × {0, 1} , j = 1.. N

(14)

4 As a tip-over case (instantaneous rotation around a point on the ground) is the result of the CoP
being on the edge of the convex hull of the supporting surface.
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Fig. 2 Overview of the results from the MIQP predictive framework (14)—left optimal automatic
push-recovery steps—right evolution of the CoP and CoM of the robot after impact Fwaist

which is a MIQP. Note that the complexity of problem (14), relatively to a standard
QP, is strongly related to the number of integer variables. Binary variables (α,β, δ, γ )

can be discretized with a larger time increment than real-valued variables, and the pre-
vious formulation still holds given appropriate re-sampling matrices, while reducing
the size of problem (14). The only drawbacks of such an approach is that it restrains,
in the preview solely, the occurrence of changes in the supporting surface to fewer
potential instants.

4 Results

The validity of the mixed-integer predictive formulation (14) of the walking control
problem is demonstrated through the simulation of two common biped scenarii: push
recovery and forward walking. In both cases, motion of the center of mass and of the
supporting contacts are automatically computed at each control step, as an optimal
response to high-level CoM velocity tracking and balance objectives Jw and Jb. In
both scenarii, weights ωw and ωb are equal.

Simulations are performed using the Arboris- Python simulator [1] developed
at Isir, and whole-body motion from optimal outputs of the MPC (14) is ensured
by an LQP-based controller [6] for an iCub [7] robot model. The system state is
previewed over a horizon of 1.0 s.

The push-recovery scenario is specified as follows: the system must track a null

CoM velocity ‖ḣ
re f ‖ = 0 m · s−1 while maintaining balance, and an unknown force

Fwaist = [60N − 20N ] is applied to the waist of the robot during a period of 0.1 s.
Outputs from (14) automatically compensate the sudden changes in the system state
resulting from this external force by triggering a sequence of footsteps previewed
over a future horizon. As the system reaches its desired state ‖ḣ‖ = 0 m · s−1,
the optimal solution of (14) requires no further steps. An overview of the results is
presented on Fig. 2.
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Fig. 3 Overview of the results from the MIQP predictive framework (14)—left: optimal automatic
gait from high-level velocity tracking—right minimization of the CoM velocity tracking objective

In the walking scenario, a velocity ḣ
re f = [0.20 m · s−1 0 m · s−1] is set as a

reference. This reference states that the system must move forward while minimizing
lateral velocity of its CoM. Results shown on Fig. 3 shows that the generated gait
effectively tracks the desired velocity in both lateral and forward directions. An
interesting result is that optimal footsteps of such a problem are aligned in order to
minimize velocity of the CoM in the lateral direction. Note that collision avoidance
constraints and objectives might challenge this result.

5 Conclusion

The Model Predictive Control framework introduced in this chapter allows the gener-
ation of optimal walking motions for biped robots, able to reach high-level objectives
such as velocity tracking and tip-over risk minimization, without the use of prior
heuristics such as predefined feet positions or footsteps triggers.

The contact state of the robot is described through a mixed set of variables involv-
ing integers, conjointly optimized with the CoM horizontal trajectory over a preview
horizon in order to maintain balance while tracking high-level objectives.

The validity of the resulting MIQP formulation is demonstrated in push-recovery
and walking speed tracking scenarii, exhibiting automatic footsteps computation and
trigger.

Future works will investigate different behaviors in more complex cases, while
providing more insights on the computational cost of such problems.



514 A. Ibanez et al.

Appendix A

Variables a and b are piecewise constant functions of time5; binary variables (α,β) ∈
{0, 1}2 × {0, 1}2 are therefore introduced as rising and falling edges of a and b
respectively, defined as follows

∀i ∈ {0, 1} ,∀t ∈ R,

{
αi (t) = 1 ⇒ αi (t−) = αi (t+) = 0

αi (t) = 0 ⇒ ai (t−) = ai (t+) = ai (t)
(15)

and similarly for the pair (β, b). Variables α,β can have their value set to 1 at distinct
instants solely (15), and α = 0 imposes constancy of a as written in (15).

Note that changes in a and b are subject to the following additional constraints

∀i ∈ {0, 1} ,∀t ∈ R, bi (t) ≤ ai (t), (16)

∀i ∈ {0, 1} ,∀t ∈ R, αi (t) + βi (t) ≤ 1, (17)

∀t ∈ R, α0(t) + β0(t) = α1(t) + β1(t). (18)

The definition of a and b as respectively upper and lower bounds has to be
enforced (16); also, as only one foot can move at a time, it imposes that, in a given
direction, only one of the bounds a or b can change (17). Last, a change in a first
direction for either bound a or b must allow a change in the other direction (18).

Constraints (15)–(17) define the bounding box of the support surface as restricted
between two bi-dimensional, piecewise constant variables a and b. However, the
nature of the changes occurring in a and b imposes the consideration of additional
variables and constraints to define and guarantee the admissibility of such changes.

Appendix B

As shown in Fig. 1, a phase of single support requires that a and b are equal, and
phases of double support (DS) are necessarily separated by, at least, a single support
phase (SS). Binary variable γ ∈ {0, 1} is therefore introduced to capture the alter-
nation between single and double support phase: γ = 1 describes a double support
phase and γ = 0 a single support one. The single support constraint writes

∀t ∈ R, γ (t) = 0 ⇒ a(t) = b(t), (19)

and the alternation ones, accounting for (18)

5 The discrete nature of contact states in non-sliding walking motions imposes that changes in a
and b can only occur at discrete events.
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α0(t) + β0(t) = 1 ⇒ γ (t) =
{

0 if γ (t−) = 1
1 if γ (t−) = 0

(20)

and
α0(t) + β0(t) = 0 ⇒ γ (t) = γ (t−), (21)

which state that γ must change if and only if a change in variables a or b occurs.6

However, these variables and constraints are not sufficient to guarantee the admis-
sibility of changes in the bounding box described by (a, b). Indeed, as shown in
Fig. 1, potential changes in a and b from a DS phase to a SS one depend on the
configuration of the feet, relatively to bounds a and b, in the DS phase. If one of
the two feet in contact defines the upper bound a in both directions (cf. Fig. 1, far
left), the following single support phase can only result from a change of either a
or b in both directions ; symmetrically, if one of the two feet in contact defines the
upper bound a in one direction and lower bound b in the other (cf. Fig. 1, far right),
the following SS phase will result from a change in a in one direction, and b in the
other. This time history constraint can be captured by the introduction of the binary
variable δ ∈ {0, 1}, having 1 for value in the first case and 0 in the second. The
indicator of configuration δ must remain constant through each DS phase in order to
keep the information for the next transition towards a SS phase; that is

∀t ∈ R, γ (t) = 1 ⇒ δ(t+) = δ(t), (22)

and, as described earlier, changes in a and b are related to the values of δ. This
relation writes

∀t ∈ R, δ(t) = 1 ⇒
{

α0(t) = α1(t)
β0(t) = β1(t)

, and δ(t) = 0 ⇒
{

α0(t) = β1(t)
β0(t) = α1(t).

(23)

Note that this relation is bilateral : if δ is unconstrained by (22), changes in a and b
define the value of δ and else, the value of δ restrains potential changes in a and b.

6 Note that variable γ is thus fully defined through variables α and β, given some initial conditions.
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Mechanisms with Decoupled Freedoms
Assembled from Spatial Deployable Units

Shengnan Lu, Dimiter Zlatanov, Xilun Ding, Rezia Molfino
and Matteo Zoppi

Abstract The chapter presents a family of new deployable mechanisms obtained
by conjoining an indefinite number of copies and variants of the same basic spatial
linkage. The unit mechanism is an assembly of scissor and Sarrus linkages able to
move in two or three independent directions. Unlike most deployable structures,
which have one degree of freedom, the proposed devices can be deployed and com-
pacted independently in two or three directions. Moreover, the physical boundary of
the mechanism can be used to approximate and control the shape of some geometric
curves. Kinematic simulations are performed to validate the proposed designs.

Keywords Deployable mechanism · Deployable unit · Decoupled dof

1 Introduction

Deployable mechanisms (DMs) based on linkages have been studied by a number
of researchers over the past decades [5, 8, 9, 11]. The simple scissor mechanism
has been used as a basic element in many creative designs of deployable structures,
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[6, 12, 13]. Recently, more attention has been paid to spatial mechanisms as possible
building units for the design of DMs. Chen developed a class of DMs using the
Bennett, the Myard, and the Bricard linkages [1]. Ding et al. proposed a novel mast
mechanism using spatial polyhedral linkages arranged along radial axes [2]. Appli-
cations of deployable mechanisms can be found in the field of aerospace structures
[4, 10], and civil engineering, like the covering of swimming pools [3]. Possible
future use is the design of reconfigurable fixtures for large pieces, such as the ones
used in auto manufacturing.

Most proposed DMs have been with one degree of freedom (dof), this limits
the range of the mechanisms’ potential application. In this chapter, we present a
family of unit-based deployable mechanisms with two or three dof. The basic unit is
composed of both planar and spatial linkages. (The two-dof variant was introduced
in [7].) Importantly, themultiple freedoms are decoupled, allowing very good control
of the movement of the mechanism.

The two deployable units, with two and three dof, are introduced in Sect. 2.
These are used, respectively, to construct deployable mechanisms with two decou-
pled degrees of freedom and different boundary outlines in Sect. 3, and a spatial
deployable mobile assembly in Sect. 4.

2 The Deployable Mechanism Units

Typically, a DM is made of identical basic units. Both the 2D and 3D deployable
units (DUs) we propose are derived as combinations of scissor and Sarrus linkages.

2.1 The Two-Dof Deployable Unit

The proposed deployable unit is composed of four scissor linkages and two Sarrus
linkages. The two Sarrus linkages are connected only by a common link. In a Sarrus,
there are two links constrained to perform relative translation. The shared link is one
of these two. The only geometric constraint between the two merged linkages is that
their translation directions must be different.

Figure1 shows the schematic diagram of the DU, while its CAD model is in
Fig. 2. The three translating links of the two Sarrus linkages are the ones housing
joints 3 and 4, 9 and 10, and 1 and 6 (or 7 and 12), respectively. In the figures, they
are indicated with vertical (parallel to Oz) bars and segments. In each Sarrus, apart
from the translating links, the other four links form two hinged pairs, and each can
be thought of as a scissor linkage.

During themovement of theDU, the twoSarrus branches canmove independently,
realizing an arbitrary planar translation of link 3–4 with respect to link 9–10. The
movement of each Sarrus can be transmitted to a neighboring unit via a shared
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Fig. 1 A two-dof deployable unit combining scissor and Sarrus linkages

Fig. 2 CAD model of the two-dof deployable unit

scissor linkage. Thus, each branch of the DU can fold and deploy in one direction
independently from the other branch, and hence with two dof, but synchronous with
other attached DUs, maintaining the same two dof within the larger assembly.

2.2 The Three-Dof Deployable Unit

Anatural next step is to generalize the ability to expand in two directions in a new unit
linkage that can provide three decoupled translations. This can be achieved by adding
another Sarrus linkage translating in a third independent direction. A deployable unit
with three dof is obtained, Fig. 3. One can describe it as three extendable branches
originating from a common base link.
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Fig. 3 CAD model of the
three-dof deployable unit

3 Two-Dof Deployable Mechanisms

The described two-dof deployable units can be assembled into deployable mech-
anisms, which can be folded (and deployed) independently in two directions. An
unlimited number of DUs can be combined while the degree of freedom of the
assembly does not increase. The mechanism can have a parallelogram outline, but it
can also be made to approximate certain curves, e.g. an ellipse or a hyperbola.

3.1 Deployable Parallelograms

For simplicity, in the following we assume that each Sarrus-linkage leg has two
equal-length links (e.g., l12 = l23 and l56 = l78, with lii+1 the distance between
adjacent axes).

Figure4, shows the DU used to assemble a DM in Figs. 5 and 6. The translating
directions relative to D1 of bars D2 and D3, are at an angleπ/2 + β. TwoDUs can be
assembled by merging the corresponding links with the same translation direction.
In Fig. 5, D1

1, D1
2, D1

3 are the corner bars in the first unit, and D2
1, D2

2, D2
3 are the

corresponding parts in the second unit. By sharing the links D1
2 = D2

3 and D1
3 = D2

2,
a new mechanism assembled from two deployable units is created.

By assembling more identical deployable units, novel two-dof deployable mecha-
nisms are obtained and the degree of freedom stays constant. To have a parallelogram
footprint, an even number of units is needed. In a DMwith two units, no scissor link-
age is needed. However, with four or more units scissor linkages are essential to
transfer the motion between adjacent units. As the assembled mechanism is a highly
overconstraint system, some of the links are removed during modeling when they
contribute only redundant constraints. TheCADmodel of an 8-unit structure is shown
in Fig. 6.
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Fig. 4 The deployable unit used in the assembly

Fig. 5 Assembly process of the two-dof deployable mechanism

We can see that the geometric shape generated by the footprint of the translating
bars is decided by the angle β in Fig. 1. By varying β, different parallelograms can
be obtained. When β = 0, the footprint is a rectangle, Fig. 7.

3.2 A Deployable Ellipse

The shape and size of an ellipse centered at the origin,
x2

a2 + y2

b2
= 1, is controlled

by the values of the semi-major and semi-minor axes, a and b. The two-dof DUs
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Fig. 6 Assembly with multiple units

Fig. 7 A deployable mechanism with a rectangular outline

can be used to assemble a DM with an approximate elliptical or circular boundary.
Moreover, the values of a and b are controlled independently by the two dof, each
varying between rmin and rmax. Unlike the parallelogram DM, all used DUs are not
exactly identical: the ones at the periphery are smaller. Amodel of such a mechanism
with 14 DUs has been designed and simulated. During the deployment process,
the angle between each two edges of the approximating polygon varies, so some
additional revolute joints are introduced into the system to solve this problem, Fig. 8.
Figure 9 shows the shape change of the DM viewed from the top.

3.3 A Deployable Hyperbola

Similar designs allow to approximate and control the shape of other two-parameter
curves. An example is the mechanism in Fig. 10, in which the boundary points

always lie on a hyperbola,
x2

a2 − y2

b2
= 1, whose parameters a and b vary when the

configuration changes. As in the elliptical case, some revolute joints are added in the
simulated model. The CAD model of this mechanism is built, and the simulations
are performed as shown in Fig. 10.
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Fig. 8 A deployable ellipse

Fig. 9 Shape change of the elliptical outline

4 Three-Dof Deployable Mechanisms

Using the same assembling method, by linking the three-dof deployable units, three-
dof DMs can be obtained. The mechanism can be deployed in three directions inde-
pendently. An unlimited number of unit mechanisms can be assembled together
while the degree of freedom of the assembly stays three. As in the planar case, the
scissor linkage is used to transmit motion between units. Two simulated models of
two DMs, with two and eight units, respectively, are shown in Fig. 11. Each becomes
a cube when fully deployed. The deployment process of the 8-unit DM is illustrated
in Fig. 12.
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Fig. 10 A CAD model of a mechanism with a hyperbolic outline

Fig. 11 Three-dof deployable mechanisms
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Fig. 12 Simulation of the three-dof DM: compacted configuration (a); partial expansion in one (b)
and two (c) directions; deployed configuraion (d)

5 Conclusion

A family of unit-based mechanisms able to deploy and compact in two or three
directions independently has been reviewed. In the deployable unit, Sarrus linkages
provide the motion directions, and the scissor linkages connect the units, while main-
taining the dof of the whole system constant. The DUs are connected by merging
links and adding revolute joints. Thus, DMs with various boundary outlines and
different dof are obtained. Simulations verify the feasibility of the proposed designs.

References

1. Chen, Y.: Design of structural mechanism. PhD Thesis, University of Oxford, Oxofrd (2003)
2. Ding, X.L., Yang, Y., Dai, J.S.: Topology and kinematic analysis of color-changing ball. Mech.

Mach. Theory 46(1), 67–81 (2011)
3. Escrig, F., Valcarcel, J.P., Sanchez, J.: Deployable cover on a swimming pool in Seville. J. Int.

Assoc. Shell Spatial Struct. 37(1), 39–70 (1996)
4. Fazli,N.,Abedian,A.:Design of tensegrity structures for supporting deployablemesh antennas.

Scientia Iranica 18(5), 1078–1087 (2011)
5. Gantes, C.J., Konitopoulou, E.: Geometric design of arbitrarily curved bi-stable deployable

arches with discrete joint size. Int. J. Solids Struct. 41(20), 5517–5540 (2004)
6. Hoberman, C.: Radial expansion/retraction truss structures. US Patent 5024031 (1991)
7. Lu, S.N., Zlatanov, D., Ding, X.L., Molifino, R., Zoppi, M.: A novel deployable mechanism

with two decoupled degrees of freedom. In: Proceedings of the ASME IDETC/CIE 2013, p.
13187 (2013)

8. Nagaraj, B.P., Pandiyan, R., Ghosal, A.: Kinematics of pantographmasts. Mech.Mach. Theory
44(4), 822–834 (2009)

9. Pellegrino, S., Guest, S.D.: IUTAM-IASS Symposium on Deployable Structures: Theory and
Applications. Kluwer Academic Publishers, Dordrecht (2000)

10. Puig, L., Barton, A., Rando, N.: A review on large deployable structures for astrophysics
missions. Acta Astronautica 67(1), 12–26 (2010)

11. Wei,G.W.,Ding,X.L., Dai, J.S.:Mobility and geometric analysis of theHoberman switch-picth
ball and its variant. ASME Trans. J. Mech. Robot. 2(3), 031,010-1-031,010–9 (2010)

12. You, Z., Pellegrino, S.: Foldable bar structures. Int. J. Solids Struct. 15(34), 1825–1847 (1997)
13. Zhao, J.S., Chu, F.L., Feng,Z.J.: Themechanism theory and application of deployable structures

based on SLE. Mech. Mach. Theory 44(2), 324–335 (2009)



Motion Capability of the 3-RPS Cube Parallel
Manipulator

Latifah Nurahmi, Josef Schadlbauer, Manfred Husty, Philippe Wenger
and Stéphane Caro

Abstract This chapter deals with the analysis of motion capability of the 3-RPS
Cube parallel manipulator. The constraint equations of the manipulator are first
expressed and it is shown that its moving-platform is capable of any orientation
determined by a three parameter set u, v, w. The translation part of the motion is
coupled to these three parameters. It is shown that this type of three dof motion has
been studied by Darboux in 1897. Moreover, the moving-platform can perform the
Vertical Darboux Motion, namely, it can rotate and translate about and along the
same axis simultaneously. The surface generated by the moving-platform path turns
out to be a right-conoid. The axodes generated by the motion are two coinciding
lines passing through the origin of the fixed frame.
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1 Introduction

The 3-RPS parallel manipulator with cube-shaped base was analyzed in [1]. The
kinematic characteristics of this mechanism were studied in [2] by identifying the
principal screws and the authors showed that the manipulator can rotate in any direc-
tion and the corresponding axes do not intersect. It is shown in [3] that themechanism
is capable to perform a motion along its diagonal, which is known as the Vertical
Darboux Motion (VDM). Several mechanical generators of the VDM were later
revealed by Lee and Hervé [4], in which one point in the platform is compelled to
move in a plane. By analyzing the locus of series of the Instantaneous Screw Axis
(ISA), Chen et al. showed in [5] that this mechanism may perform parasitic motions,
in which the rotations are not about a fixed point or axis.

Using Study-parameters x0, x1, x2, x3, y0, y1, y2, y3 to describe the spatial
Euclidean displacements [6], the motion capability of the 3-RPS Cube manipula-
tor is analyzed in more details in this chapter. To characterize the general motion, the
set of constraint equations are derived. They reveal the existence of only one opera-
tion mode. The chapter shows that the moving platform can produce any orientation
and gives the complete parametrization of these orientations. Under the condition
that the prismatic lengths are equal, the moving-platform of the manipulator is able
to perform the VDM. It follows from Bottema and Roth [7] that this motion is the
result of a rotation about an axis and a harmonic translation along the same axis.
Eventually, the ISA are illustrated during this motion and turn out to be congruent
to each other.

2 Manipulator Architecture and Constraint Equations

The 3-RPS Cube parallel manipulator shown in Fig. 1, is composed of a cube-base,
an equilateral triangle platform, and three identical legs. Each leg is composed of
a revolute joint, an actuated prismatic joint and a spherical joint mounted in series.
The fixed frame �0 is shifted along σ0 = [h0, h0, h0] from the center of the base in
order to fulfil the identity condition, as shown by the large and red dashed-box in
Fig. 1. Likewise, the origin of the moving frame is shifted along σ1 = [h1, h1, h1] as
described by the small and blue dashed-box in Fig. 1.

The revolute joint in the ith (i = 1 . . . 3) leg is located at point Ai, its axis being
along vector si, while the spherical joint is located at point Bi, the ith corner of
the moving-platform. The distance between the origin O of the base frame �0 and
point Ai is equal to h0

√
2. The axes s1, s2 and s3 are orthogonal to each other. The

moving-platform has an equilateral triangle shape and its circumradius is equal to
d = h1

√
6/3.

As the direction of the ith prismatic joint is perpendicular to vector si, line AiBi

lies in a plane normal to si. The length of the ith prismatic joint is denoted as ri.
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Fig. 1 The 3-RPS Cube parallel manipulator

By using the Study kinematic mapping, the constraint equations, which comprise
three plane conditions (g1 − g3), three distance conditions (g4 − g6), the Study
condition (g7) and a normalizing condition (g8), are enumerated in Eq. (1). Their
solutions give the possible poses of the platform expressed in frame �0. A primary
decomposition has been computed and shows that the manipulator has only one
operation mode contrary to the 3-RPS manipulator with planar equilateral base and
platform, which has two operation modes [8].

g1 : − h1x0x2 + h1x0x3 − h1x1x2 − h1x1x3 − x0y1 + x1y0 − x2y3 + x3y2 = 0

g2 :h1x0x1 − h1x0x3 − h1x1x2 − h1x2x3 − x0y2 + x1y3 + x2y0 − x3y1 = 0

g3 : − h1x0x1 + h1x0x2 − h1x1x3 − h1x2x3 − x0y3 − x1y2 + x2y1 + x3y0 = 0

g4 :2h20x20 + 2h20x21 + 2h20x22 + 2h20x23 − 4h0h1x20 + 4h0h1x21 − 8h0h1x2x3 + 2h21x20 + 2h21x21

+ 2h21x22 + 2h21x23 − r21x20 − r21x21 − r21x22 − r21x23 − 4h0x0y2 − 4h0x0y3 − 4h0x1y2

+ 4h0x1y3 + 4h0x2y0 + 4h0x2y1 + 4h0x3y0 − 4h0x3y1 + 4h1x0y2 + 4h1x0y3 − 4h1x1y2

+ 4h1x1y3 − 4h1x2y0 + 4h1x2y1 − 4h1x3y0 − 4h1x3y1 + 4y20 + 4y21 + 4y22 + 4y23 = 0

g5 :2h20x20 + 2h20x21 + 2h20x22 + 2h20x23 − 4h0h1x20 − 8h0h1x1x3 + 4h0h1x22 + 2h21x20 + 2h21x21

+ 2h21x22 + 2h21x23 − r22x20 − r22x21 − r22x22 − r22x23 − 4h0x0y1 − 4h0x0y3 + 4h0x1y0 (1)
− 4h0x1y2 + 4h0x2y1 − 4h0x2y3 + 4h0x3y0 + 4h0x3y2 + 4h1x0y1 + 4h1x0y3 − 4h1x1y0

− 4h1x1y2 + 4h1x2y1 − 4h1x2y3 − 4h1x3y0 + 4h1x3y2 + 4y20 + 4y21 + 4y22 + 4y23 = 0

g6 :2h20x20 + 2h20x21 + 2h20x22 + 2h20x23 − 4h0h1x20 − 8h0h1x1x2 + 4h0h1x23 + 2h21x20 + 2h21x21
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+ 2h21x22 + 2h21x23 − r23x20 − r23x21 − r23x22 − r23x23 − 4h0x0y1 − 4h0x0y2 + 4h0x1y0

+ 4h0x1y3 + 4h0x2y0 − 4h0x2y3 − 4h0x3y1 + 4h0x3y2 + 4h1x0y1 + 4h1x0y2 − 4h1x1y0

+ 4h1x1y3 − 4h1x2y0 − 4h1x2y3 − 4h1x3y1 + 4h1x3y2 + 4y20 + 4y21 + 4y22 + 4y23 = 0

g7 :x0y0 + x1y1 + x2y2 + x3y3 = 0

g8 :x20 + x21 + x22 + x23 − 1 = 0

3 The General Motion

The set of eight constraint equations is written as a polynomial idealI with variables
x0, x1, x2, x3, y0, y1, y2, y3 over the coefficient ring C[h0, h1, r1, r2, r3].

I =< g1, g2, g3, g4, g5, g6, g7, g8 > (2)

The general motion performed by the 3-RPS Cube parallel manipulator is character-
ized by solving the idealI . The equations g1, g2, g3, g4, g5, g6, g7 from idealI can
be solved linearly for variables y0, y1, y2, y3, R1, R2, R3 [8], Ri being the square of
the prismatic lengths, i.e., Ri = r2i , and δ = x20 +x21 +x22 +x23. The Study-parameters
become:

y0 = x21x2 + x21x3 + x1x22 + x1x23 + x22x3 + x2x23
δ

y1 = −x20x2 − x20x3 + x0x22 + x0x23 − x22x3 + x2x23
δ

y2 = x20x1 − x20x3 − x0x21 − x0x23 − x21x3 + x1x23
δ

(3)

y3 = −x20x1 − x20x2 + x0x21 + x0x22 − x21x2 + x1x22
δ

The terms Ri are also expressed in terms of x0, x1, x2, x3. However, the expressions
are very lengthy and the readersmay refer to [9]. The remaining Study-parameters are
still linked in equation g8 : x20+x21+x22+x23−1 = 0, which amounts to a hypersphere
equation in space (x0, x1, x2, x3). The hypersphere equation can be parametrized by
setting x0 = sin(u) sin(v) cos(w), x1 = sin(u) sin(v) sin(w), x2 = sin(u) cos(v), and
x3 = cos(u). As a result, the manipulator workspace can be parametrized by three
parameters u, v, w.

This parametrization provides us with an interpretation of the general motion
performed by the manipulator. The moving-platform of the manipulator is capa-
ble of all orientations determined by the parameter set u, v, w. The translational
motion is coupled to the orientations via Eq. (3). Then, all Study-parameters and the
transformation matrix can be obtained in terms of u, v, w. The readers may refer
to [9] as the expressions are very long and cannot be displayed here.
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Fig. 2 ISA axodes of general
motion
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Note that the motion of the manipulator platform is essentially determined by
the fact that three points (B1, B2, B3) move in three planes. According to Bottema
and Roth [7] this motion has been studied already by Darboux in 1897. The special
case at hand, namely that the three planes are mutually orthogonal, is treated in great
detail in [7]. We mention especially that the workspace boundary of each point of
the moving platform (with exception of the vertices) is bounded by a Steiner surface.

The ISA of any motion of the moving-platform are obtained from the entries of
the velocity operator:

A = Ṫ T−1 (4)

The components of matrix A are the twists of the ISA. To illustrate a simple example
of a one parameter motion subset of the three parameter motion, the parameters are
set to u = t, v = t, w = t. Figure 2 shows the axodes obtained from the twists of
the ISA and for t varying between −π/2 and π/2. The red surface shows the fixed
axode, for which all twists are computed with respect to the fixed coordinate frame.
The green surface depicts the moving axode with respect to the moving coordinate
frame.

4 The Vertical Darboux Motion

The condition for the manipulator to generate the VDM is that all prismatic lengths
are equal, i.e., r1 = r2 = r3. By solving the direct kinematics of the manipulator
with the same prismatic lengths, the Study-parameters to perform the VDM yield
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x1 = x2 = x3 and y1 = y2 = y3. By substituting those values into the ideal I , the
set of eight constraint equations becomes:

I : {−x0y1 − 2x21 + x1y0 = 0, −x0y1 − 2x21 + x1y0 = 0,−x0y1 − 2x21 + x1y0 = 0,

−R1x20 − 3R1x21 + 2x20 − 8x0y1 + 22x21 + 8x1y0 + 4y20 + 12y21 = 0,

−R2x20 − 3R2x21 + 2x20 − 8x0y1 + 22x21 + 8x1y0 + 4y20 + 12y21 = 0,

−R3x20 − 3R3x21 + 2x20 − 8x0y1 + 22x21 + 8x1y0 + 4y20 + 12y21 = 0,

y0x0 + 3y1x1 = 0, x20 + 3x21 − 1 = 0}. (5)

It follows from Eq. (5) that the first three constraint equations are the same.
Likewise, the next three equations are identical. Mathematically, one has to find
the case of 1-dof motion, as known as cylindrical motion, with one parameter that
describes the VDM. Equation 5 can be solved linearly for the variables Ri, y0, y1 in
terms of x0, x1, as follows:

R1 = R2 = R3 = − (−2x40 − 44x20x21 − 162x41)

(x40 + 6x20x21 + 9x41)

y0 = 6x31
(x20 + 3x21)

, y1 = − 2x0x21
(x20 + 3x21)

. (6)

It is confirmed from Eq. (6) that the manipulator can perform the VDM if all
prismatic lengths are the same. The remaining Study-parameters x0 and x1 are still
linked to the eighth equation in x20 +3x21 −1 = 0, which is simply an ellipse equation
in the space x0 and x1. This ellipse equation can be parametrized by x0 = cos(u) and
x1 = 1

3 sin(u)
√
3.

As a result, theworkspace of themanipulator performing theVDMis parametrized
by the parameter u. Hence, the Study-parameters are expressed as:

x0 = c(u) x1 = 1

3
s(u)

√
3 y0 = 2

3
s(u)3

√
3 y1 = −2

3
c(u)s(u)2

x2 = 1

3
s(u)

√
3 x3 = 1

3
s(u)

√
3 y2 = −2

3
c(u)s(u)2 y3 = −2

3
c(u)s(u)2

(7)

where s(u) = sin(u), c(u) = cos(u).
Therefore, the possible poses of the moving-platform can be expressed by the

following transformation matrix:
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Fig. 3 Trajectories of points B1 and P

T =

⎡
⎢⎢⎢⎣

1 0 0 0

a 4
3c(u)2 − 1

3 −2
3 s(u)(c(u)

√
3 − s(u)) −2

3 s(u)(c(u)
√
3 − s(u))

a −2
3 s(u)(c(u)

√
3 − s(u)) 4

3c(u)2 − 1
3 −2

3 s(u)(c(u)
√
3 − s(u))

a −2
3 s(u)(c(u)

√
3 − s(u)) −2

3 s(u)(c(u)
√
3 − s(u)) 4

3c(u)2 − 1
3

⎤
⎥⎥⎥⎦ (8)

where a = 4
3 sin(u)2.

5 Trajectory of the Moving-Platform Performing the VDM

Let us consider point B1 moving in the yz-plane and the geometric center P of the moving-
platform. The paths followed by those two points are obtained by setting u = −π

2 . . . π
2 by

using the transformation matrix T defined in Eq. (8).
It appears that those two paths are different as shown in Fig. 3. Point P moves along a

straight line denoted as τP , whereas point B1 moves along a planar ellipse that is parallel to
the yz-plane (τB1 ).

Let us take all segments joining point B1 to any point of segment B2B3 and plot the paths
of all points on those segments. All those paths are planar ellipses, except the path followed
by point P. Accordingly, the set of all paths forms a ruled surface called Right-conoid, which
is illustrated in yellow in Fig. 4.

This type of ruled surfaces is generated by moving a straight line such that it intersects
perpendicularly a fixed straight line, called the axis of the Right-conoid. The fixed straight
line followed by point P is the axis of the Right-conoid.
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Fig. 4 Right-conoid of the VDM

6 Axodes of the Manipulator Performing the VDM

Having the parametrization of the VDM performed by the 3-RPS Cube parallel manipulator
in terms of Study-parameters, it is relatively easy to compute the ISA. The possible poses of
the manipulator for each instant in this special motion will only allow the orientations that are
given by one parameter u. The ISA are obtained from the entries of the velocity operator:

A = Ṫ T−1 (9)

By setting u = t, matrix A becomes:

A =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0
8
3 c(t) s(t) 0 −2

3
√
3 2

3
√
3

8
3 c(t) s(t) 2

3
√
3 0 −2

3
√
3

8
3 c(t) s(t) −2

3
√
3 2

3
√
3 0

⎤
⎥⎥⎥⎥⎥⎦

(10)

The instantaneous screw axis of the moving-platform is obtained from the components of
matrix A after normalization:

ISA =
[

1√
3
,

1√
3
,

1√
3
, 4
3 c(t)s(t), 4

3 c(t)s(t), 4
3 c(t)s(t)

]T
(11)

All twists of the manipulator are collinear. As a consequence, the fixed axode generated
by the ISA is a straight line of unit vector [1/√3, 1/

√
3, 1/

√
3]T . In the moving coordinate

frame, the moving axode corresponding to this motion is congruent with the fixed axode as
depicted in Fig. 4. However, the moving axode does not appear clearly as it is congruent with
the fixed axode. Indeed, the moving axode internally slides and rolls onto the fixed axode.



Motion Capability of the 3-RPS Cube Parallel Manipulator 535

7 Conclusions

The analysis of the motion capability of the 3-RPS Cube parallel manipulator was carried out
by parametrizing the generalmotion. Itwas shown that themoving-platformof themanipulator
is capable of all orientations parametrized by the set u, v, w. The 3-dof motion was shown to be
already discussed by Darboux in 1897 and in very detail by Bottema and Roth. A special one
parameter submotion is the Vertical DarbouxMotion (VDM), which is obtained by keeping all
leg parameters the same. In this VDM themoving-platform rotates about an axis and translates
along the same direction. The paths followed by all points belonging to the moving-platform,
except its geometric center, are ellipses that form a ruled surface called Right-conoid. The
geometric center of the platform moves along a straight line. Finally, since the 3-RPS Cube
parallel manipulator has only one operation mode, the general motion and the VDM occur
inside the same operation mode. The effect of changes in the geometric parameters will be
the subject of future work.
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Coupling of Trajectories for Human–Robot
Cooperative Tasks

Andrej Gams, Bojan Nemec, Tadej Petrič and Aleš Ude

Abstract Since human motion is not completely repeatable, the synthesis of robot
trajectories for human–robot cooperation must allow for easy modulation. This
should take place by taking into account the external sensory feedback that enables
interpretation of the person’s intentions. In this chapter we present a method for cou-
pling of robot trajectories to the measured force feedback arising from the interaction
with the environment, where the environment can be an object, a robot, or a person.
The algorithm is based on Dynamic Movement Primitives, a kinematic representation
of robot trajectories. In the chapter we show how to consider the measured external
forces and torques within the kinematic DMP framework. We further develop the
approach by introducing iterative learning control in order to anticipate the behavior
and achieve minimal errors of motion for stationary conditions. The usefulness of
the proposed approach was demonstrated on two KUKA LWR robots performing a
bimanual human–robot collaborative task.
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1 Introduction

A robotic household assistant acting in an uncontrolled and cluttered environment,
such as the kitchen [8], will use its sensors and previously programmed or even
attained knowledge to synthesize trajectories to execute given tasks. Known algo-
rithms, for example generalization from existing knowledge, and modifying trajecto-
ries online [3], might not result in sufficiently accurate executions of trajectories for
desired manipulation tasks. The trajectories will have to be adapted through learning
and autonomous exploration, and modulated accordingly.

Modulating predefined trajectories—in the sense of being pre-calculated by an
algorithm—greatly depends on the means of encoding the trajectory. Complete time-
position series might be less suitable, as the means of modulation in order to achieve
a smooth trajectory might be complicated [5]. On the other hand, splines define
the complete trajectory with a small set of points, but complete re-calculation of
the parameters is required for modulation. In the chapter we rely on the framework
of dynamic movement primitives (DMPs) [6, 7], a kinematic representation which
combines differential equations and Gaussian-like kernel functions. They allow easy
and smooth modulation by adapting only a few parameters to change their attractor
landscape. The latter can be beneficially used in reinforcement learning [9, 14, 15],
generalization [16] and for combining of separate trajectories.

DMPs allow modulation both in the canonical as well as in the transformation
systems. By combining the former with force or vision feedback, we can execute
complex periodic tasks [13]. The latter can be used, for example, for obstacle avoid-
ance [6]. In this chapter we propose a novel approach to modify the transformation
system with feedback. We propose recording the sensory information as the robot
executes a given trajectory and then using said feedback to improve performance the
next time it moves down the exact same trajectory. To do so we propose learning of
a so-called coupling term, which we plug into the differential equation of the DMP
at both the velocity and acceleration levels. The coupling term is composed of an
on-line force/torque feedback and a learned feed-forward signal. The latter is learned
in several executions of the same trajectory using iterative learning control (ILC) [1].

ILC incorporates information rich signals from previous attempts at a trajectory
in the latest iteration. As ILC only adapts the control input, the amount of training
required is low. ILC is also known for converging fast [1]. The contribution of this
chapter is in combining the DMP framework with the ILC in a single, robust, and
adaptive system capable of coupling trajectories for human–robot cooperative tasks.
The introduction of force feedback also expands the kinematic domain of the DMPs
to dynamic behavior.

In Sect. 2 of the chapter we give a short introduction on the DMP framework,
followed by the proposed coupling approach for cooperative tasks in Sect. 3. Exper-
imental results are presented in Sect. 4 and concluding remarks and discussion in
Sect. 5.
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2 Dynamic Movement Primitives

The DMP framework was first introduced by Ijspeert et al. [7] and has since been
thoroughly discussed and applied throughout the robotics community [6, 16]. In the
following we provide a basic introduction for a single degree of freedom (DOF) based
on [16]. A DOF is denoted by y, and can either a joint- or a task-space coordinate.
In our case it is one of the task-space coordinates. A system of nonlinear differential
equations

τ ż = αz(βz(g − y) − z) + f (x), (1)

τ ẏ = z. (2)

defines a DMP. The term f (x) is linearly combined from nonlinear radial basis
functions as

f (x) =
∑N

i=1 wiΨi (x)
∑N

i=1 Ψi (x)
x, (3)

Ψi (x) = exp
(
−hi (x − ci )

2
)

. (4)

Here ci are the centers of radial basis functions distributed along the trajectory and
hi > 0 their widths. If parameters αz, βz, τ > 0 and αz = 4βz , the linear part
of the system (1)–(2) is critically damped, resulting in a unique attractor point at
y = g, z = 0. In (1), (3) and (4) a phase variable x is used, which removes direct
dependency of f on time. Its dynamics is defined by a canonical system given by

τ ẋ = −αx x, (5)

with initial value x(0) = 1. αx is a positive constant.
The weights wi define the actual shape of the encoded trajectory. See [7] and [16]

for the learning of the weights. To realize multiple DOFs, separate sets of (1)–(4) are
used and a single canonical system synchronizes them.

3 Coupling of Trajectories

In this section we first show how to couple DMPs, followed by the combination with
iterative learning control.
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Fig. 1 The difference of coupling with C = C f b at the velocity level (blue), velocity and accel-
eration level (red), with the green area highlighting the difference. Acceleration level modulation
results of a DMP are in black dotted

3.1 Coupling for Cooperative Tasks

The framework of DMPs allows online modulation, for example including a virtual
repulsive force to prevent from moving beyond defined limits [5]. Such a force is
defined by changing (2) into

τ ẏ = z + h(y), (6)

with h(y) a predefined function of the position, while leaving (1) in the original form.
We propose modifying this type of modulation at the velocity level to include

a coupling term C composed of (1) a feedback term C f b on the real, measured
force, which occurs upon contact with the environment; and (2) a feed-forward term
C f f , which includes information from a previous trial. Note that the environment is
everything that is not the robot itself, i.e. a static obstacle, another robot, a person.
Furthermore, to reduce the overshoot of forces upon contact, we propose adding a
derivative of C to the acceleration level. Therefore, a DMP is modified from (1, 2)
into

τ ż = αz(βz(g − y) − z) + f (x) + c2Ċ, (7)

τ ẏ = z + C, (8)

C = C f b + C f f , (9)

where c2 is a positive constant. Figure 1 shows the simulated results of using the
proposed approach with C = C f b only. The plot shows the resulting forces of
contact when a predefined trajectory is coupled to a static object. The red line shows
the force using velocity and acceleration modulation with c2 = 30, determined
empirically. The blue line shows the result of only velocity modulation, with the
green area highlighting the difference. The black dotted line shows only acceleration
level modulation. The latter results in larger oscillations, reducing the effectiveness
of learning the feed-forward term.
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3.2 Learning the Feed-Forward Term

Minimizing the error of force upon contact with the environment can be achieved
with augmenting the coupling term with a feed-forward term C f f . It can be learned
through a few executions of the exact same trajectory using the iterative learning
control. Thus, there is no need to accurately model the dynamics of the robot and the
environment. A thorough review by Bristow et al. [1] gives details on ILC.

To learn C f f , the task needs to allow several repetitions with exactly the same
initial conditions. Each time, the sensors register the resulting force and update the
term. The learning update is then defined for both the feedback and feed-forward
terms as suggested by the ILC theory [1]

Ci = C f b + C f f = c ei + Fc,i , (10)

Fc,i = Q(Fc,i−1 + L c ėi−1), (11)

ei = Fd − Fi . (12)

Here index i denotes the i-th epoch and c is the force gain. The coupling force error
ei is calculated from the difference of the desired contact force Fd and the measured
force Fi . Fc,i is the learned feed-forward term and Q and L are positive scalars.
The coupling term given by (10) is known as current iteration learning control, since
it incorporates instantaneous feedback in the first term and learning update in the
second term. The tunable parameters are Q, L and c and we used Q = 0.99, L = 1
and c = 0.5 in our experiments.

3.3 Bimanual Tasks

While well defined approaches for controlling bimanual tasks with centralized con-
troller exist [2, 11], for coupling of two robots with decentralized controllers, their
trajectories of motion in the form of DMPs can be coupled into cooperative DMPs
with

τ ż1 = αz(βz(g1 − y1) − z1) + f1(x) + c2Ċ1,2, (13)

τ ẏ1 = z1 + C1,2, (14)

τ ż2 = αz(βz(g2 − y2) − z2) + f2(x) + c2Ċ2,1, (15)

τ ẏ2 = z2 + C2,1, (16)

following constrains apply to (13–16):

F1,2 = Fd − (F1 − F2), (17)

F2,1 = −F1,2 = −k(dd − da), (18)
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where Fi is the force measured at each end effector and Fd the desired force. In
simulation the force is a function of the positions with k the stiffness of a virtual
spring between the robots and dd , da the desired and actual distances, respectively.
Due to constraint (18), only one feed-forward term needs to be learned.

The numerical stability of both the coupling of DMPs and the learning algorithm
can be analytically proven, but are beyond the scope of this chapter.

4 Experimental Evaluation

We conducted a real-world experiment where we coupled two independently con-
trolled KUKA LWR robots holding a bar at the end of a box-lid. The other side
was held by a person, thus combining the task of mutual coupling of the robots to
each-other with adaptation to external, human interference. The latter is not fully
repeatable and is subject to considerable noise due to the human in the loop. The task
demanded that the robots—together with the human—place a lid with a very tight
fit on a wooden box.

First, the initial DMP trajectories for cooperative closing of the lid were learned
by demonstration. Then, the box was moved backward 12 cm (−px direction) and
right 7 cm (pydirection) from the demonstrated position. The proposed coupling
approach was used to correct for the new position of the box in eight epochs. px

and py directions were corrected, while pz (up–down) was not. The approach was
applied to minimize the exerted force between the robots and towards the human,
i.e., Fd,x,y = 0 for both robots. The resulting forces and positions of both robots are
shown in Fig. 2.

The force plots in Fig. 2 show that the person had to push during the first three
epochs (see Fy plots). Additionally, the left Fz plot shows that the lid did not fit in the
first four epochs. Once it did, the forces were reduced to desired values at 0 N. Note
that a Fz value represents the force the human is exerting on the lid, while positive
values indicate simply the weight of the lid. Figure 3 shows the box and the lid after
the demonstration and also after the first five epochs. Other consecutive epochs show
minimal positional difference.

5 Discussion and Conclusion

Dynamic movement primitives with force feedbacks were considered in different
scenarios. For example, [4] has shown how it can be applied for learning of periodic
tasks.

For discrete tasks, as is the case presented in this chapter, it was applied by Pastor
et al. [12]. In their approach, the authors first execute a trajectory and then apply a
force-based feedback coupling to control the behavior of the robot under changed
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Fig. 2 Results of adaptation of forces for both robots. The legend denotes the colors of separate
epochs for all six plots. The first is marked with blue the dotted line and the last with the red dotted

Fig. 3 The position of the box, lid, and the robots in the demonstration in the leftmost picture.
Positions after each epoch, with epoch number increasing towards the left. Only five epochs are
shown because the pictures of the final position after epoch five are practically identical

external conditions. As the approach relies only on feedback, some of the error is
always present. Their approach utilizes purely acceleration-level coupling.

The approach by Kulvicius et al. [10], based on time-dependent DMP formula-
tion proposes a similar feedback based coupling. The coupling, i.e. feedback gains
are learned in several executions using hebbian-type learning. Similarly to [12], a
feedback only approach does not ensure complete minimization of the error.
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In this chapter we have shown how to couple the DMPs to the environment on
both the velocity and acceleration levels. We have also shown that the combination
with iterative learning control can effectively be utilized to achieve the desired force
contact behavior. The robot learns to anticipate when a contact will occur, and pre-
pares appropriately. The sensory feedback is always present in the system and assures
that the robot gradually adapts to a different configuration, if needed. The system
is robust enough to cope with noisy and un-repeatable human intervention during
repetitions as we have shown in our experiment, where we coupled two robots and
the operator to successfully execute the task of closing a wooden box.
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Dynamic Analysis of 4 Degrees of Freedom
Redundant Parallel Manipulator

Samah Shayya, Sébastien Krut, Olivier Company, Cédric Baradat
and François Pierrot

Abstract The chapter introduces the dynamic analysis of an actuatedly redundant
parallel manipulator, called ARROW V1, with 4 Degrees of Freedom (DoF) pro-
viding three translations and one rotation (3T-1R). The dynamic measure used is of
solid physical significance and applicable to all types of robots: the isotropic linear
acceleration.

Keywords Parallel mechanism · Actuation redundancy · 4 DoFs robot · 3T-1R ·
Dynamic measure

1 Introduction

In recent decades, a noticeable trend towards the synthesis of lower-mobility par-
allel manipulators has been noticed, as to reply to the real industrial needs. In fact,
regarding some tasks, 4 DoFs (3T-1R) parallel manipulators are sufficient. In others,
where extra rotational dof is needed, it can be supplied by a turntable or an additional
actuator on the platform. As a matter of fact, literature is very rich with such (3T-1R)
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parallel manipulators; among them we mention for instance: Delta robot [3] (with
the additional R-U-P-U1 chain), the Kanuk [11], the SMG in [1], the H4 in [9], the I4
in [7] and the Par4 in [8] with its industrialized version Adept Quattro [10] (fastest
industrial pick-and-place robot). Another interesting family of robots is that of [5]
presenting fully-isotropic parallel 4 dofs (3T-1R) manipulators, in addition to the
decoupled ones.

This was just a sample, but still many others exist; an interested reader may refer
to [5] and citations therein for elaborate details regarding the state-of-art matter.

Unfortunately, these and other existing manipulators are not without their own
drawbacks that can be briefly summarized as: limitedworkspace, limited tilting capa-
bility, presence of singularities, design complexity, the use of transmission systems
and articulated platforms impacting accuracy, poor rigidity (e.g. in [5] despite their
interesting isotropic property due to not having all the kinematic chains counteract-
ing the load), etc… So, to overcome the aforementioned limitations, the ARROW
V1 (Accurate and Rapid Robot with large Operational Workspace Version 1), has
been recently introduced in [12] with its inverse and direct geometric models as well
as its kinematic and singularity analysis.

In this chapter, we complement [12] by providing the performance evaluation of
ARROWV1 relative to dynamics. The performance measure used here is physically
significant, comprehensible, and most importantly can be validated experimentally.
The chapter recalls the architecture of ARROW V1 in Sect. 2 with some needed
models. Then, Sect. 3 presents the performance analysis. The chapter ends in Sect. 4
with conclusions and perspectives for future works.

2 The ARROW V1 Robot

The graph diagram and CAD drawing of the ARROW V1 robot are presented in
Fig. 1.2 As for the main geometric parameters, they are clarified in Fig. 2.

The robot is capable of performing translational motion (along x , y, and z) and
rotational motion about z-axis, with the x-motion being independent of the other
motions thanks to having all the sliders along the same x-direction. This enlarges
the workspace and allows carrying any performance analysis considering only y,
z, and θz (rotation about z-axis). The robot is actuatedly redundant having 2 extra
actuators; this redundancy aids in the elimination of singularities, homogenizing
performances, improving accuracy and precision, increasing rigidity and allowing
for elevated dynamic capabilities [4]… For more detailed information regarding
robot’smodels or singularity analysis, refer to [12]. However, it is worth recalling that
there are no singularities of any type within the geometrically accessible workspace

1 R: Revolute, U: Universal, P: Prismatic.
2 In Fig. 1, P and S stand for prismatic and spherical joints resp. Gray boxes stands for actuated
joints and underlined for measured position.
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Fig. 1 ARROW V1 robot. a Graph diagram. b CAD drawing

Fig. 2 The main geometric parameters of the robot and the points labelling. a Robot front view. b
Moving platform side view

excluding its boundary (where we might have series-type singularities or parallel-
type singularities confounded with series-type ones).

The inverse geometric model (IGM) is given by:

qi = xbi −
√

L2
i − (ybi − yi )2 − (zbi − zi )2 (1)
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where subscript i ∈ {1 . . . 6} (used along all this chapter). Ai = (qi yi zi )
T and

Bi = (
xbi ybi zbi

)T are the coordinates of Ai and Bi in the base frame. Li is the i th
arm length (parallelogram arms are of length L P and simple arms are of length L S).

Finally, note that knowing the pose x = (
PT θz

)T = (x y z θz)
T and Bm

i the
coordinates of Bi in platform frame (of origin P ≡ T C P), we can get Bi via:

Bi = Pi + RBm
i (2)

with R = Rot(ez, θz). The inverse Jacobian matrix Jm (where q̇ = Jm ẋ) is given
by: ⎧

⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Jm = J−1
q Jx

Jq = di ag(A1BT
1 ex · · · A6BT

6 ex)

Jx =
⎛
⎜⎝

A1BT
1 −A1BT

1 (P B1 × ez)
...

...

A6BT
6 −A6BT

6 (P B6 × ez)

⎞
⎟⎠

(3)

Another model needed for our study is the Dynamic Model (DM). Here, we are
going to do some simplifications to facilitate the analysis: we neglect both friction
and damping and also we estimate the arms motion by considering each arm to be
formed of two pointmasses (each of half-mass of the arm) at its extremities connected
by massless rod. In other words, the effect of rod is estimated by dividing its mass
in half and putting one half on the corresponding slider, while the other half mass is
added to the platform at the corresponding articulation point.

Then, we arrive at the following DM (details are omitted due to space limitation,
but can be simply obtained by deriving the equations of motion for the sliders and
for the platform. We update the inertia parameters for sliders and platform including
the half masses of the arms as previously explained, similar to [4]):

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẍ = Hτ − Λẋ + aoffset
g

H = (MP + J T
m Ma Jm)−1 J T

m

Λ = H Ma J̇m + (M p + J T
m Ma Jm)−1Λc

aoffset
g = (MP + J T

m Ma Jm)−1MP g

(4)

where Ma = di ag
(

mas mas map map mas mas
)
is the actuator’s inertia matrix,

MP is the platform’s inertia matrix and Λc is the matrix of Coriolis and centrifugal
forces. The expressions of the latter two matrices are as follows:

M p =

⎡
⎢⎢⎣

m p 0 0 −bm p sin(θz)

0 m p 0 bm p cos(θz)

0 0 m p 0
−bm p sin(θz) bm p cos(θz) 0 Ipzz

⎤
⎥⎥⎦
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and

Λc =

⎡
⎢⎢⎣

0 0 0 −bm p θ̈z cos(θz)

0 0 0 bm p θ̈z sin(θz)

0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ .

Note that b is the x-component of the center of gravity of the platform’s frame
(the other y and z components are null) and g = (0 0 − G 0)T is the gravitational
acceleration with G = 10ms−2. We do not consider any external loads (except
gravity), as we are interested in dynamics in absence of load (transition phase or in
case of contactless application such as laser cutting). This is practically valid as in
contactless application there would be no external load. As for contact machining
phase, the situation is rather quasi-static.

3 Performance Analysis

For dynamic analysis, there are several performance measures for example: dynamic
manipulability [13], acceleration radius [6], motion isotropy hypersurface [2] (inter-
ested reader may refer to the cited references and therein for more information)…
However, each performance measure has its own drawbacks and limitations (espe-
cially when it comes to redundant robots), which is not our concern here. Actually,
in our case, we have decided to choose a performance measure that has clear signif-
icance, and that can be directly validated by experimentation.

Our dynamic study will consider only the dynamic performance starting from rest
(i.e. for ẋ = 0) and the isotropic linear acceleration (ILA) will be derived at each
pose (considering angular acceleration θ̈z = 0); meaning that we will calculate the
largest value of linear acceleration that can be attained by the robot in all directions
assuming θ̈z = 0. So, to calculate ILA, let us first derive the actuators forces vector
in terms of the end-effector acceleration which is given by:

τ = C(ẍ + Λẋ − aoffset
g ) + [null(H)] σ (5)

where C = H∗ is the pseudo-inverse of H , σ ∈ R2 is arbitrary and |τi | ≤ τmaxi .
As it is clear from (5), due to actuation redundancy, there is no unique vector

τ for a given end-effector acceleration. However, in our situation, we choose the
minimum norm solution, meaning we choose σ = 0 (i.e. τ is perpendicular to the
null space of H). This can be obtained practically by control means. Additionally, it
is worth emphasizing the fact that null(H) = null(J T

m ) since H = S−1 J T
m with

S−1 = (MP + J T
m Ma Jm)−1 a square non-singular matrix. Finally, based on the

above argument and considering the case of zero velocity, Eq. (5) can be rewritten
as:

τ + Caoffset
g = Cẍ (6)
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Table 1 Geometric
parameters (in m)

Parameter Ls L p L y Lz a d tp b

Value 0.93 0.93 0.5 0.41 0.164 0.12 0.18 -0.16

Table 2 Inertial parameters
(mass in kg and inertias in
kgm2)

Parameter mas map m p Ipzz

Value 8.77 9.45 12.57 0.43

ILA is defined as the largest linear acceleration the robot can achieve regardless
of direction and for θ̈z = 0 , thus it is geometrically the largest sphere included in
the linear acceleration zonotope. Then, mathematically we can write:

I L A = min
i

(
τ new

maxi

‖cpri ‖
)

(7)

where cpri is the i th row vector of matrix C p (translational part of C), τ new
maxi

=
min

(∣∣∣−τmaxi + to f f
i

∣∣∣ ,
∣∣∣τmaxi + to f f

i

∣∣∣
)
(with |τi | ≤ τmaxi ), t

o f f
i is the i th component

of tof f = Caof f
g (total offset).

The proof of (7) is very similar to that in [4], except that here we have included
gravitation and also we have mixed dofs. Now, that we have clarified ILA, we can
proceed by presenting the performance analysis for the set of geometric parameters
of Table 1.

As for the actuators, they are all identical and with maximal force capacity being
τmax = 2500 N (motor type: ETEL Ironless Linear Motor ILM12-060). The inertia
parameters are given in Table 2.

The geometric and inertia parameters in Tables 1 and 2 have been chosen in such
a way as to allow accessibility to the pre-specified desired workspace centered at the
origin with 0.3 m length along y and 0.3 m length along z axes with ±45◦ rotational
capability, and based on a dimensional synthesis procedure involving dynamics as
one of its criteria in addition to precision related criterion; this dimensional syn-
thesis is not our concern here. The workspace dynamic analysis for θz = 0◦ and
for −45◦ ≤ θz ≤ 45◦ are presented in Figs. 3 and 4 respectively. In these figures,
black dotted box is the yz projection of robot’s frame, the red-solid box is boundary
that should not be exceeded by robot’s TCP to avoid colliding with robot’s frame,
and the magenta coloured box represents the pre-specified desired workspace. It
is important to mention that the robot can do ±90◦ rotation, but for our intended
application ±45◦ is sufficient. Also, in the case of −45◦ ≤ θz ≤ 45◦ analysis, we
have calculated the value of ILA for several angles—namely ±45◦, ±30◦, and 0◦ (as
they are frequently used angles and to reduce computation time)—and we associ-
ated the worst value of ILA (smallest value) to the corresponding (y, z) point. The
figures show large workspaces and homogenized performance with large isotropic
linear acceleration capabilities, in which the robot can achieve ILA ≥ 8.5G over the
whole desired workspace, which is quite interesting considering the inertia values
we are dealing with—having a PKM (parallel kinematic machine tool) as compared
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Fig. 3 ILA in terms of G’s (G = 10ms−2) in case of zero rotation

to light-weight robots for pick-and-place applications. Moreover, we have calculated
peak linear acceleration PLA (the largest linear acceleration attainable regardless of
angular acceleration θ̈z) starting from rest (i.e. ẋ = 0 ) defined mathematically by:

PLA = max
τ

(√
ẍ2 + ÿ2 + z̈2

)
(8)

with [null(H)]T τ = 0 (i.e. based on minimum norm solution for τ ), and |τi | ≤
τmaxi . We have noticed that PLA ranges between 22.5 and 24.5Gs over the desired
workspace, which is quite intriguing (note that the detailed plots for peak linear
acceleration as function of y, z, and θz are not shown due to space limitation)…
Hence, based on the results presented above, the PKM at hand is very promising
regarding the expected dynamic performance.
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Fig. 4 ILA in terms of G’s (G = 10ms−2) in case of rotation between ±45◦

4 Conclusion and Perspectives

In brief, in this chapter we have recalled a recently introduced robot in [12], and
presented its dynamic performance; the results of which are quite interesting. In fact,
the robot in addition to having the capability to achieve 8.5Gs in all directions over
the desired workspace, its performance is rather homogeneous.

Moreover, peak linear acceleration PLA on the desired workspace is undoubtedly
intriguing as it is expected to be between 22.5 and 24.5Gs over the desiredworkspace;
all of this while having large inertia dealing with a machine tool as opposed to light-
weight pick-and-place parallelmanipulators. Regarding futurework, the dimensional
synthesis, precision related performance and other detailed kinetostatic performances
have been done for this PKM and are very promising; these might be the subject for
future publication.
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