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Digital Image Processing for Medical Applications

The influence and impact of digital images on modern society is tremendous, and image
processing is now a critical component in science and technology. The rapid progress in
computerized medical image reconstruction, and the associated developments in analysis
methods and computer-aided diagnosis, has propelled medical imaging into one of the
most important sub-fields in scientific imaging.

This text is intended for use in a first course in image processing and analysis for
final-year undergraduate or first-year graduate students. It takes its motivation from
medical applications and uses real medical images and situations to clarify concepts
and to build intuition and understanding. Designed for readers who will become end
users of digital image processing, the effective use of image processing tools is empha-
sized. An overview of the fundamentals of the most important clinical imaging modalities
in use is included to provide a context, and to illustrate how the images are produced and
acquired. Through using this text, students will understand why they are undertaking
particular operations, and practical computer-based activities will enable them to see in
real time how operations affect real images.

Geoff Dougherty is Professor of Applied Physics and Medical Imaging at California State
University, Channel Islands, where he teaches both undergraduate and graduate courses
in image processing, medical imaging and pattern recognition. He has been conducting
research in the applications of image processing and analysis to medical images for over
15 years, and is the author of more than 60 publications. He is a Senior Member of the
IEEE, a Fellow of the IET and a Member of the American Association of Physicists in
Medicine (AAPM).





Digital Image Processing for
Medical Applications

GEOFF DOUGHERTY
California State University, Channel Islands



CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press

The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13    978-0-521-86085-7

ISBN-13 978-0-511-53343-3

© G. Dougherty 2009

2009

Information on this title: www.cambridge.org/9780521860857

This publication is in copyright. Subject to statutory exception and to the 

provision of relevant collective licensing agreements, no reproduction of any part

may take place without the written permission of Cambridge University Press.

Cambridge University Press has no responsibility for the persistence or accuracy 

of urls for external or third-party internet websites referred to in this publication, 

and does not guarantee that any content on such websites is, or will remain, 

accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

eBook (EBL)

hardback

http://www.cambridge.org
http://www.cambridge.org/9780521860857


Contents

Preface page ix
Acknowledgements xiii

Part I Introduction to image processing 1

1 Introduction 3

1.1 Imaging systems 3
1.2 Objects and images 7
1.3 The digital image processing system 10
1.4 Applications of digital image processing 13
Exercises 15

2 Imaging systems 16

2.1 The human visual pathway 16
2.2 Photographic film 20
2.3 Other sensors 26
2.4 Digitizing an image 27
2.5 The quality of a digital image 34
2.6 Color images 40
Computer-based activities 43
Exercises 45

3 Medical images obtained with ionizing radiation 47

3.1 Medical imaging modalities 47
3.2 Images from x-rays 48
3.3 Images from γ-rays 77
3.4 Dose and risk 84
Computer-based activities 86
Exercises 87



4 Medical images obtained with non-ionizing radiation 90

4.1 Ultrasound imaging 91
4.2 Magnetic resonance imaging 100
4.3 Picture archiving and communication systems (PACS) 115
Computer-based activities 118
Exercises 120

Part II Fundamental concepts of image processing 121

5 Fundamentals of digital image processing 123

5.1 The gray-level histogram 123
5.2 Histogram transformations and look-up tables 135
Computer-based activities 148
Exercises 151

6 Image enhancement in the spatial domain 155

6.1 Algebraic operations 156
6.2 Logical (Boolean) operations 159
6.3 Geometric operations 162
6.4 Convolution-based operations 170
Computer-based activities 189
Exercises 191

7 Image enhancement in the frequency domain 194

7.1 The Fourier domain 195
7.2 The Fourier transform 198
7.3 Properties of the Fourier transform 205
7.4 Sampling 207
7.5 Cross-correlation and autocorrelation 217
7.6 Imaging systems – point spread function and optical transfer function 219
7.7 Frequency domain filters 223
7.8 Tomographic reconstruction 231
Computer-based activities 237
Exercises 243

8 Image restoration 246

8.1 Image degradation 246
8.2 Noise 247
8.3 Noise-reduction filters 252
8.4 Blurring 258

vi Contents



8.5 Modeling image degradation 260
8.6 Geometric degradations 263
Computer-based activities 268
Exercises 269

Part III Image analysis 271

9 Morphological image processing 273

9.1 Mathematical morphology 273
9.2 Morphological operators 275
9.3 Extension to grayscale images 295
Computer-based activities 301
Exercises 305

10 Image segmentation 309

10.1 What is segmentation? 309
10.2 Thresholding 311
10.3 Region-based methods 321
10.4 Boundary-based methods 324
10.5 Other methods 326
Computer-based activities 335
Exercises 338

11 Feature recognition and classification 339

11.1 Object recognition and classification 340
11.2 Connected components labeling 340
11.3 Features 342
11.4 Object recognition and classification 348
11.5 Statistical classification 351
11.6 Structural/syntactic classification 364
11.7 Applications in medical image analysis 364
Computer-based activities 367
Exercises 367

12 Three-dimensional visualization 369

12.1 Image visualization 369
12.2 Surface rendering 370
12.3 Volume rendering 374
12.4 Virtual reality 376
Computer-based activities 377
Exercises 377

Contents vii



Part IV Medical applications and ongoing developments 379

13 Medical applications of imaging 381

13.1 Computer-aided diagnosis in mammography 381
13.2 Tumor imaging and treatment 385
13.3 Angiography 386
13.4 Bone strength and osteoporosis 388
13.5 Tortuosity 389

14 Frontiers of image processing in medicine 395

14.1 Trends 395
14.2 The last word 398

Appendix A The Fourier series and Fourier transform 399
Appendix B Set theory and probability 405
Appendix C Shape and texture 423
Bibliography 432
Index 440

The color plates are situated between pages 178 and 179.

viii Contents



Preface

The influence and impact of digital images on modern society, science, technology and
art are tremendous. Image processing has become such a critical component in contem-
porary science and technology that many tasks would not be attempted without it. It is a
truly interdisciplinary subject that draws from synergistic developments involving many
disciplines and is used in medical imaging, microscopy, astronomy, computer vision,
geology and many other fields.

The rapid and continuing progress in computerizedmedical image reconstruction, and the
associated developments in analysis methods and computer-aided diagnosis, have propelled
medical imaging into one of the most important sub-fields in scientific imaging. This book
takes its motivation from medical applications and uses real medical images and situa-
tions to clarify and consolidate concepts and to build intuition, insight and understanding.
An overview of the fundamentals of the most important clinical imaging modalities in use is
included to provide a context, and to illustrate how the images are produced and acquired.

This is a text for use in a first practical course in image processing and analysis, for
final-year undergraduate or first-year graduate students with a background in biomedical
engineering, computer science, radiologic sciences or physics. Designed for readers whowill
become “end users” of digital image processing in the biomedical sciences, it emphasizes the
conceptual framework and the effective use of image processing tools and uses mathematics
as a tool, minimizing the advanced mathematical development of other textbooks.

Discussions of the major medical imaging modalities enable students to understand the
diagnostic tasks for which images are needed and the typical distortions and artifacts
associated with each modality. This knowledge then motivates the presentation of the
techniques needed to reverse distortions, minimize artifacts and enhance important
features. Students understand why they are undertaking particular operations, and the
practical activities enable them to see in real time how operations affect real images.
Image processing is a hands-on discipline, and the best way to learn is by doing. Theory
and practice are linked, each reinforcing the other.

The key distinguishing features of the book are as follows.

� Its pedagogical approach combines intuition with problem-solving, and emphasizes
conceptual learning, i.e. understanding the “big picture,” rather than getting over-
whelmed with the details.

� Overviews summarize the essential purpose of the material covered in each chapter.
� Learning objectives list the specific knowledge and skills to be acquired.



� Practical computer-based activities, referred to in each chapter, build intuition, skills
and confidence. They can be used by the instructor for class demonstrations and/or by
the students as hands-on activities.

� Accessible end-of-chapter problems reinforce and consolidate understanding.
� Only a modest background in mathematics and science, at the level of College/
University entry, is assumed.

Courses supported and organization of the text

The text is based on courses in image analysis, pattern recognition and medical imaging
that I teach at California State University, Channel Islands, and have taught previously at
the Health Sciences Center, Kuwait University. The material is more than can comfor-
tably be covered in a single-semester course, and can be fine-tuned to specific courses
and audiences. The book can be used to support several different courses, by emphasiz-
ing different chapters and skimming or avoiding others altogether. For example, a course
for biomedical engineers or radiologic science students would include all the material
from Chapters 3 and 4, and might skim through Chapters 10 and 11. It would benefit from
an early visit to a local hospital or imaging center to view image acquisition and analysis
in a clinical setting. A few invited talks from medical professionals, such as radiologists,
pathologists or oncologists, could be included to add to the clinical perspective. A course
in image analysis for computer scientists or physicists would probably downplay
Chapters 3–4, omit Chapters 13 and 14, skim through Chapter 11, and ensure that all
the activities and end-of-chapter problems were attempted. And a course in pattern
recognition, or a graduate course, would concentrate on Chapters 9–12 and the material
in the appendices.

Each chapter starts with an overview of its contents and a list of its objectives.
Concepts, techniques and algorithms are introduced and then applied to typical medical
imaging problems. The material is integrated with a number of practical computer-based
activities, arranged at the end of each chapter, and supplemented by exercises, mostly
numerical, for the reader to verify his/her understanding. Worked examples are included
in separate boxed sections.

The book comprises four parts. Part I is an introduction to image processing. It provides
an overview of the field and its many applications (Chapter 1), explains how digital
images are acquired and discusses their characteristics (Chapter 2). It explains how
medical images are produced, using both ionizing (Chapter 3) and non-ionizing radiation
(Chapter 4), and discusses the most important clinical imaging modalities.

Part II explains the fundamental concepts of image processing. Gray-level histograms
are introduced, and display look-up tables (LUTs) discussed in terms of changing image
appearance (Chapter 5). Image enhancement in both the spatial and frequency domains is
addressed in Chapters 6 and 7, respectively. Chapter 8 discusses techniques which aim to
restore a degraded image to its original condition.

Part III deals with image analysis and visualization. Morphology is introduced as an
image analysis tool in Chapter 9, illustrating its applicability to medical imaging problems.
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Segmentation techniques are discussed in Chapter 10, which leads into feature extraction
and classification in Chapter 11. Chapter 12 discusses how the three-dimensional structure
of internal organs can be visualized and displayed convincingly on a two-dimensional
computer monitor.

Part IV discusses a number of specific applications in medicine, indicating the image
analysis techniques that are being used (Chapter 13), and considers the trends and
ongoing developments in medical imaging (Chapter 14).

Three appendices provide further details (on the Fourier transform, set theory and
probability, and shape and texture) relevant to the techniques explored.

Computer-based activities

ImageJ is a very popular public domain (http://rsb.info.nih.gov/ij/) Java image proces-
sing and analysis program that was developed at the National Institutes of Health. It has a
convenient and intuitive graphical user interface (GUI), and has been chosen for its ease
of use for the computer-based imaging activities which are integrated within the book. Its
source code is freely available, so that users have complete freedom to run, copy,
distribute, study, change and improve the software (see www.gnu.org/philosophy/free-
sw.html). At a more basic level it allows users to collect imaging operations together in
macros, which are stored as text files and are easy to write, edit and debug.

However, most of the exercises can be easily duplicated to run in an alternative
environment, such as Matlab if the Matlab Toolbox/GUI, DipImage (available as a free
download to non-commercial use at www.diplib.org/home2224) is used; without
DipImage, the necessary programming in MatLab can be tedious and distract from
learning the imaging fundamentals.

The ImageJ homepage contains links to documentation and downloads. ImageJ
runs on any computer with a Java 1.1 or later virtual machine, but in order to be able
to compile additional “plugins” (optional extras) and manage memory more efficiently, it
is recommended that it be downloaded together with the full Java runtime environment.
The examples in this book use an expansion of ImageJ version 1.37v with Java 1.5.0
(a total download of about 20 MB). Additional plugins can be downloaded from the
ImageJ site or others, and comprise compiled java files (named *.class) which need to be
placed in the “Plugins” sub-folder of the ImageJ folder.

It is recommended that you download the latest version of ImageJ bundled with
Java 1.5.0 from http://rsb.info.nih.gov/ij/download.html. Once unzipped and installed
in a directory called ImageJ, a shortcut will be installed on your desktop and in your Start/
All Programs menu. The ImageJ core program (ij.jar) is frequently upgraded. You should
visit the ImageJ website (http://rsb.info.nih.gov/ij/) routinely to check for upgrades,
download the upgraded *.zip file and use the extracted ij.jar to replace the current ij.jar
file. (You can find your current version by opening ImageJ and going to Help, About
ImageJ; close ImageJ before replacing the ij.jar file with an upgrade.)

A collection of plugins has been collated, comprising some freely available from the
Plugins download site (http://rsb.info.nih.gov/ij/plugins/index.html) and others written
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specifically for this text. They are available at the book website in folders with names
such as Ch.5 Plugins (to facilitate the computer activities in Chapter 5); copy them into
the ImageJ folder called “Plugins” on your computer. These additional plugins become
available in the Plugins menu when ImageJ is next run. Most of the computer activities
require images for processing; these can be found at the book website in folders with
names such as Ch.5 Activities, and should be copied to the ImageJ directory in your
computer for easy access. After first opening ImageJ, go to Edit, Options, Memory and
change the memory allocated to ImageJ to equal 75% of your computer’s RAM, which
you can find from My Computer, View System Properties, Hardware.

The computer-based activities are referred to within the text and are collected at the
end of each chapter. The required images are referred to in bold Courier New font,
e.g. lena, and the ImageJ menu functions are referred to in bold Arial, e.g. Image/
Process/Threshold … There are also some computer activities which use other
resources, including video files and Excel spreadsheets.
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Part I

Introduction to image processing





1 Introduction

Overview

Imaging systems construct an (output) image in response to (input) signals from diverse
types of objects. They can be classified in a number of ways, e.g. according to the
radiation or field used, the property being investigated, or whether the images are formed
directly or indirectly. Medical imaging systems, for example, take input signals which
arise from various properties of the body of a patient, such as its attenuation of x-rays or
reflection of ultrasound. The resulting images can be continuous, i.e. analog, or discrete,
i.e. digital; the former can be converted into the latter by digitization. The challenge is to
obtain an output image that is an accurate representation of the input signal, and then to
analyze it and extract as much diagnostic information from the image as possible.

Learning objectives

After reading this chapter you will be able to:

� appreciate the breadth and scope of digital image processing;

� classify imaging systems according to different criteria;
� distinguish between analog, sampled and digital images;
� identify the advantages of digital imaging;
� describe the components of a generic digital image processing system;
� outline the operations involved in the various fundamental classes of image processing;
� list examples of digital image processing applications within a variety of fields.

1.1 Imaging systems

Of the five senses – sight, hearing, touch, smell and taste –which humans use to perceive
their environment, sight is the most powerful. Receiving and analyzing images forms a
large part of the routine cerebral activity of human beings throughout their waking lives.
In fact, more than 99% of the activity of the human brain is involved in processing images
from the visual cortex. Avisual image is rich in information. Confucius said, “Apicture is
worth a thousand words,” and we shall see that that is an underestimate.



On a more sophisticated level, humans generate, record and transmit images. Since the
early days of science, researchers have tried to record their observations and even their
conceptions pictorially. Leonardo da Vinci was the primary exponent of the visual image
of his time: he gave absolute precedence to illustration over the written word (Fig. 1.1).

More recently, technology has tremendously extended the possibilities for visual
observation. Photography makes it possible to record images objectively, preserving
scenes for later, repeated, and perhaps more careful, examination. Telescopes and micro-
scopes greatly extend the human visual range, permitting the visualization of objects of
vastly differing scales. Technology can even compensate for inherent limitations of the
human eye. The human eye is receptive to only a very narrow range of frequencies within
the electromagnetic spectrum (Fig. 1.2). Nowadays there are sensors capable of detecting
electromagnetic radiation outside this narrow range of “visible” frequencies, ranging from
γ-rays and x-rays, through ultraviolet and infrared, to radio waves.

Images can be formed from many kinds of objects using differing mechanisms of
formation, and, consequently, imaging systems can be classified according to several
different criteria. Table 1.1 classifies systems according to the type of radiation or field
used to form an image. Electromagnetic radiation is used most often in imaging systems.
The radiofrequency band is used in astronomy and in magnetic resonance imaging (MRI).
Microwaves are used in radar imaging, since they can penetrate clouds and other atmo-
spheric conditions that interfere with imaging using visible light. A vast number of
systems use visible light and infrared radiation, including microscopy, remote sensing
and industrial inspection. Ultraviolet radiation is used in fluorescence microscopy, for
example, and x-rays are used in medical diagnostic work, in industrial imaging, to detect

Figure 1.1 Leonardo da Vinci’s concept for a helicopter.
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manufacturing flaws and in astronomy. The more energetic the electromagnetic radia-
tion, such as higher-energy (hard) x-rays and γ-rays, the shorter its wavelength and the
better it can reveal small details. We often think of electrons as particles, but they have
wave-like properties too. Their wavelength is very much smaller than that of visible light,
enabling electron microscopes to “see” much smaller details and achieve much larger
magnifications, on the order of 10000 or more, whereas light microscopes have a theore-
tical limit of about 1000 or so. Low frequency (~100 Hz) sound waves are used in seismic
imaging to detect oil and gas deposits and high-frequency (~MHz) ultrasound is used in
medical imaging, especially in obstetrics to determine the health of the fetus (Fig. 1.3).

Even static or nearly static (quasistatic) fields can be used in imaging. In electric
impedance tomographic imaging, electric fields set upwithin the body, as a result of applying
voltages to an array of electrodes on the surface, allow imaging of the internal organs.

Another way of classifying imaging systems is according to the property of the object
that is being exploited (Table 1.2). For example, light entering the human visual pathway
originates either from a self-luminous object or from light reflected by, or transmitted
through, an object. An astronomical image is an emission image, related to the spectral
energy distribution of the light emitted by the object over different frequencies. In other
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Figure 1.2 The electromagnetic spectrum arranged according to the energy of the photons, or the frequency
of the waves. See also color plate.

Table 1.1 Classification of imaging systems by type of radiation or field used.

Type of radiation or field Examples

Electromagnetic waves Radio, microwaves, infrared, visible light, ultraviolet, (soft) x-rays
Other waves Water, sonar, seismic, ultrasound, gravity
Particles Neutrons, protons, electrons, heavy ions, (hard) x-rays, γ-rays
Quasistatic fields Geomagnetic, biomagnetic, bioelectric, electrical impedance
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cases, the light entering the eye represents the spectral energy distribution of the light
reflected from the scene, which is related to the product of the illumination and the optical
reflectance of the objects in the scene. For objects that transmit light, the observed
spectral energy distribution depends on the product of the illumination and the transmit-
tance of the objects. Radiopharmaceutical substances injected into, or ingested by, the
body in nuclear medicine imaging emit γ-rays that characterize the concentration of the
source and its location. Radar imaging and medical ultrasound are based on reflectance
properties. And x-ray imaging produces radiographs that depend on the transmittance of
x-rays through an object. Other properties can also be exploited to produce images. For
example, phase-contrast microscopy uses the refractive properties of an object and
weather radar uses scattering properties.

Another distinction that can be made is between direct and indirect imaging systems
(Table 1.3). In direct imaging the acquired data is a recognizable image, whereas in
indirect imaging a data processing or reconstruction step is required before the image is
available for observation.

Direct imaging can be subdivided further, depending on whether the image is acquired
as a whole, parallel acquisition, or in parts, serial acquisition. Indirect imaging includes
the image stored in the emulsion of a photographic film, which is rendered observable by
chemical development of the film; the image consisting of valence electrons stored in the
high-energy traps of a photostimulable phosphor image plate as used in computed
radiography (CR), rendered observable by stimulating the image plate with laser light
and digitizing the resulting image; and tomographic imaging, from the Greek tomos, a
slice, which requires extensive processing of the raw data to produce a slice image.

Figure 1.3 Fetal ultrasound image.
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Tomographic imaging includes x-ray computed tomography (CT) (Fig. 1.4), emission
tomography, such as single-photon emission computed tomography (SPECT) and
positron emission tomography (PET), magnetic resonance imaging (MRI) and three-
dimensional (3-D) ultrasound.

The disadvantages of indirect imaging are the time delay between capturing the data
and obtaining the observable image, and the possible degradation, which may occur
during this time, e.g. due to heat, humidity or light leakage affecting the photographic
emulsion, or the thermal leakage of electrons out of the traps in an image plate. An
advantage of indirect imaging is that the final image is often digital.

1.2 Objects and images

Real objects can be regarded as functions of one or more continuous variables. For
example, the position of a star in the sky can be specified by two angles, so that the star
is a two-dimensional function. In nuclear medicine the object of interest is the three-
dimensional distribution of a radiopharmaceutical substance, i.e. it can be described
by a three-dimensional function. If its distribution changes with time, a four-dimensional
function would be needed: three spatial dimensions plus time.

Table 1.2 Classification of imaging systems by property of object.

Property Examples

Source strength Astronomical imaging, fluorescence microscopy
Concentration Nuclear medicine, MRI (spin density)
Wave amplitude Seismology
Field strength Biomagnetic and geomagnetic imaging
Optical reflectance Photography, remote sensing
Microwave reflectance Radar
Acoustic reflectance Medical ultrasound, sonar
Attenuation Transmission x-ray, film densitometry
Refractive index Phase-contrast microscopy
Scattering properties Medical ultrasound, weather radar
Electric/magnetic properties Impedance tomography, MRI (magnetization and spin relaxation)
Surface height Laser ranging, topography

Table 1.3 Classification of imaging systems into direct or indirect systems.

Examples

Direct imaging Parallel acquisition Human eye, electronic (i.e. digital) camera, optical
microscope, optical telescope, scintillation camera

Serial acquisition Scanning microdensitometer, (confocal) scanning
microscope, medical γ-camera

Indirect imaging Film camera, x-ray CT, SPECT and PET, MRI,
holography, synthetic aperture radar (SAR)

1.2 Objects and images 7



An imaging system senses or responds to an input signal, such as reflected or
transmitted electromagnetic radiation from an object, and produces an output signal or
image. When this radiation is focused and then sensed by a photographic film, for
example, it gives rise to an image that is recognized as analog, comprising continuously
varying shades or colors. A grayscale photographic image is a two-dimensional function
of optical density or brightness with position; if the object can move, the image is an
average over the exposure time. A color image is represented by three two-dimensional
functions, each corresponding to the density of one of the three color emulsions, red,
green and blue, on the film. It might be argued that these images are not continuous (i.e.,
analog) at the level of the silver halide particles of the photographic emulsion, which are
the sensors; but the scale of these is considerably below the level of perception of the
human eye.

More recently, with the advent of small solid-state electronic detectors in digital still and
video cameras, the option exists to capture the radiation using sensors organized in a two-
dimensional array. This sensor array, placed at the focal plane, produces outputs propor-
tional to the integral of the radiation received at each sensor during the exposure time, and
these values become the terms in a two-dimensional matrix, which represents the scene;
this is called a sampled image. It is not yet a digital image. The physical disposition of
sensors facilitates the collection of data into an array, but the values themselves are still
integrals and hence continuous; they need to be quantized to a discrete scale before the
image is a digital image. Digital images can be represented by an array of discrete values,
which makes them amenable to storage and manipulation within a computer.

Figure 1.4 Abdominal CT image at the level of the kidneys, reconstructed from several hundred individual
one-dimensional projections.
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An imaging system can either be a continuous-to-continuous system, responding to a
continuous input signal and producing a continuous or analog output image, or it can be a
continuous-to-discrete system, responding to the continuous input signal by producing
a discrete, digital output image. Tomographic images are reconstructed from many, one-
dimensional, views or projections collected over the exposure time. X-ray computed
tomography (CT) imaging is an example of a continuous-to-discrete imaging system,
using computer reconstruction to produce a digital image from a set of projection data
collected by discrete sensors.

The advent of computers has opened up vast new possibilities for the quantitative
processing and analysis of images, as long as these can be represented by arrays of
discrete values, rather than continuous functions. In the case of analog images, they can
be converted into digital images by a two-step process known as digitization. This
involves scanning the image in a raster fashion (Fig. 1.5), i.e. from top left, in rows, to
bottom right. The image is sampled (i.e. readings of the amount of light reflected, or
transmitted, are taken at equally spaced positions, which defines the size of the resulting
pixels), and these readings are quantized, i.e. assigned to one of a finite set of pixel values
(Fig. 1.6). The image is now digital.

Many digital images contain 256 possible gray levels, running from black to white.
This is the number of levels that can be labeled with 8 bits (i.e. 1 byte) in a binary
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Figure 1.5 Scanning an analog image in a raster fashion. (Adapted from Wolbarst, 1993, p. 207.)
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numbering system. It is convenient to allocate a byte of computer memory to store the
brightness (gray) level, and to allocate 0000 0000 to black and 1111 1111 (decimal 255)
to white, giving 256 gray levels in total; the resulting images are said to be 8 bits deep.

Larger units of storage include:

� kilobyte (KB) = decimal 1024 (or 210 bytes);
� megabyte (MB) = 1024KB (or 220 bytes);
� gigabyte (GB) = 1024MB (or 230bytes);
� terabyte (TB) = 1024GB (or 240 bytes).

A standard CD ROM has about 700MB of storage; double-sided double-layered DVDs
have about 17GB, while HD-DVDs and Blu-ray disks have about 50GB; and computer
hard disks typically have hundreds of GB of storage.

The ability to process and analyze images is a major advantage in having digital
images; they can also be copied an infinite number of times, with appropriate error-
checking to ensure perfect copies. Additional advantages include: the ease with which
they can be displayed on computer monitors, and their appearance modified at will; the
ease with which they can be stored on, for example, CD-ROM or DVD; the ability to
send them between computers, via the Internet or via satellite; the option to compress
them to save on storage space or reduce communication times. Many of these advantages
are particularly relevant to medical imaging. The saving in physical space in not having
to store bulky x-ray film is a distinct advantage, and the move towards film-less imaging
has saved on chemical processing costs. Increasingly, hospitals are networking their
digital imaging systems into either so-called PACS (picture and archiving systems) or
RIS/HIS (radiological/ hospital information systems), which include patient diagnoses
and billing details along with the images.

1.3 The digital image processing system

A complete digital image processing system (Fig. 1.7) is a collection of hardware
(equipment) and software (computer programs) that can:

(i) acquire an image, using appropriate sensors to detect the radiation or field
(Table 1.1) and capture the features of interest from the object in the best possible
way. If the detected image is continuous, i.e. analog, it will need to be digitized by an
analog-to-digital converter (ADC);

(ii) store the image, either temporarily in a working image store using read/write memory
devices known as random access memory (RAM) or, more permanently, using
magnetic media (e.g. floppy disks or the computer hard disk memory), optical media
(e.g. CD-ROMs or DVDs) or semiconductor technology (e.g. flash memory devices);

(iii) manipulate, i.e. process, the image; and
(iv) display the image, ideally on a television or computer monitor, which comprises

lines of continuously varying, i.e. analog, intensity. This requires the production of
an analog video display signal by a digital-to-analog converter (DAC).

10 Introduction



In this book we shall be interested predominantly in the manipulation or processing
operations. These can be grouped, broadly, into five fundamental classes: image enhance-
ment, restoration, analysis, compression and synthesis (Table 1.4). Each class contains
certain representative operations.

Image enhancement results in an image which either looks better to an observer, a
subjective phenomenon, or which performs better in a subsequent processing class.
Enhancement might involve adjusting the brightness of the image, if it were too dark
or too bright, or its contrast, if for example it comprised only a few shades of gray, giving
it a washed-out appearance. Alternatively, it might involve smoothing an image that
contains a lot of noise or speckle, or sharpening an image so that edges within it are more
easily seen.

Images are often significantly degraded in the imaging system, and image restoration
is used to reverse this degradation. This would include reversing the effects of: uneven
illumination, non-linear detectors which produce an output (response) that is not propor-
tional to the input (stimulus), distortion, e.g. “pincushion” and “barrel” distortions caused
by poorly focusing lenses or electron optics (Fig. 1.8), movement of the object during
acquisition, and unwanted noise (Fig. 1.9). The key to image restoration is to model the
degradation and then to use an inverse operation to reverse it.

Table 1.4 Digital image processing classes and examples of the operations within them.

Classes Examples of operations

Image enhancement Brightness adjustment, contrast enhancement, image averaging,
convolution, frequency domain filtering, edge enhancement

Image restoration Photometric correction, inverse filtering
Image analysis Segmentation, feature extraction, object classification
Image compression Lossless and lossy compression
Image synthesis Tomographic imaging, 3-D reconstruction

Image Sensors ADC Image
Memory

DAC

Network

Host
Computer

Display

Permanent
Storage
(Archive)

Image
Processing
Software

Figure 1.7 A digital image processing system.
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(i) (ii)

Figure 1.8 Image of a square object showing (i) pincushion and (ii) barrel distortion.

(i) (ii)

Figure 1.9 (i) A noisy fluoroscopic image and (ii) the restored image with much of the noise removed.
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Image analysis involves taking measurements of objects within an image, preferably
automatically, and assigning them to groups or classes. Generally, the process begins
with isolating the objects of interest from the rest (known as segmentation of the image),
measuring a number of features such as size, shape and texture, and then classifying the
objects into groups according to these features. This permits the categorization of a new
object as either belonging to a particular group or not belonging, depending on whether
its features fall inside or outside the tolerance of that group, respectively. This latter
process is classification or pattern recognition, and is used for example in classifying
lesions as benign or malignant and in recognizing suspicious clusters of microcalcifica-
tions in images of the breast.

Image compression reduces the amount of data needed to describe the image. Images
require large file sizes, e.g. those comprising 512×512 pixels require about 1/4 MB of
space, comparable to a document comprising 40 pages of text. Compression reduces the
file size so that the image can be more efficiently stored or transported electronically, via
telephony for example, in a shorter time. Compression is possible because images tend to
contain redundant or repetitive information. Alternative storage schemes can store the
information more effectively, i.e. in smaller files, and decompression algorithms can be
used to retrieve the original image data. If all the data are preserved in the compressed
file, albeit with different coding, the compression is lossless; this is mandatory for
medical images. Smaller image files (i.e. greater compression) can be obtained with
lossy compression techniques, which do not preserve all of the data of the original image,
but nevertheless maintain an image of acceptable quality.

Image synthesis creates new images from other images or non-image data. The prime
example of this is the reconstruction of axial, or “slice,” tomographic images from
projection data, as in x-ray computed tomography.

Image processing is not a single-step process. Generally a number of steps will need to be
performed one after the other in order to extract the data of interest from the observed scene,
and a hierarchy in the processing steps will be evident, e.g. enhancement will precede
restoration, which will precede analysis. Often these are performed sequentially, but more
sophisticated tasks will require feedback; i.e., advanced processing steps will pass para-
meters back to preceding steps so that the processing includes a number of iterative loops.

Image processing and computer graphics use the same knowledge base. Image
processing manipulates images acquired by certain sensors to obtain information on
shape and structure. Computer graphics does the reverse: it attempts to create photo-
realistic images from a knowledge of shape and structure. In the future, with the
increasing importance of multimedia, we can expect the two areas to move close together.
Visual computing, the name given to this confluence, will let us interact with and control
images by manipulating visual objects.

1.4 Applications of digital image processing

Digital image processing is cross disciplinary in nature. It uses ideas and techniques from
optics, solid-state physics, electronics, computer architecture, software design, algebra,
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Table 1.5 Examples of image processing applications within various fields.

Field Examples

Medical diagnostic imaging Projection radiography and x-ray computed tomography (CT) using
transmission of x-rays through the body; digital subtraction angiography
(DSA) produces enhanced images of the blood vessels by subtracting
“pre-contrast” and “post-contrast” images; and mammography produces
images of the soft tissue in the breast

Nuclear medicine using emission of gamma rays from radiotracers injected
into the body; includes planar scintigraphy and emission computed
tomography (SPECT and PET)

Ultrasound imaging using reflection of ultrasonic waves within the body
Magnetic resonance imaging (MRI) using the precession of spin systems in
a large magnetic field; including functional MRI (fMRI)

Registration of multi-modal images
Biological imaging Analysis, classification and matching of 3-D genome topology

Automatic counting and classification of cell types and morphology
Growth rate measurements using time-lapse image sequences
Motility assay for motion analysis of motor proteins

Human-machine interface Gesture and sign language recognition
Forensic medicine and law
enforcement

Image enhancement, automated pattern recognition and classification used
for fingerprint analysis, face recognition, signature verification

Databases to organize “mugshots” and evidence
DNA matching
Automated reading of license plates

Automation and robotics Vision systems for automatic part recognition, quality inspection and
process monitoring

Virtual and augmented reality
Document processing Scanning, archiving, compression and transmission in order to store

documents in large, relational, databases
Optical character recognition (OCR) to convert scanned documents, e.g.
bank cheques, into editable text files

Defense/military Image enhancement and pattern recognition for automatic interpretation of
reconnaissance images, e.g. troop movements, missile deployments

Tracking targets for missile-guidance systems
Bomb damage assessment

Materials research Automatic counting and classification of components and impurities using
features such as texture

Surface and structural rendering to create three-dimensional images for
heightened perception

Photography/cinematography Image enhancement, compositing and special effects, such as warping and
morphing, and the fabrication of synthetic scenes

Video archiving and transmission
Publishing Facilitates desktop publishing with more efficient layout

Improved color separation and printing
Remote sensing Land cover analysis of multi-spectral images to analyze crop yields and

assess environmental damage
Weather observation and prediction using images taken in the visible and
infrared bands of the spectrum

Communications File compression
Teleconferencing, image phones

Space exploration Terrain rendering, based on satellite and space rover imagery
Astronomy Image enhancement and restoration, e.g. of distorted images from the

Hubble telescope
Automatic detection of solar flares and other cosmic phenomena



statistics, graph theory and more, and applies them to images from every field of the
natural sciences and the technical disciplines. Knowledge of the application area, not
only knowledge of image processing techniques, is required to obtain the best solution to
a particular problem.

The applications are many and constantly increasing. Table 1.5 shows numerous
examples but is not exhaustive. They illustrate that image processing enables complex
phenomena to be investigated, which could not be adequately accessed using conven-
tional measurements. Although the techniques for processing and analyzing images are
universal, we will be applying them mainly to medical images obtained from medical
imaging systems or modalities. This application provides ways to look inside the human
body and diagnose disease non-invasively without having to cut the body open through
surgery, or put something into it such as an optical fiber or endoscope.

Exercises

1.1 List four advantages of digital images over analog images.
1.2 What property of the object is exploited in creating the following images:

� medical ultrasound images,
� CT images,
� MRI images,
� nuclear medicine images,
� impedance tomography images?

1.3 To what class of image processing operations do the following examples belong:
� tomographic reconstruction,

� removing distortion,
� pattern recognition,

� edge enhancement,
� noise removal,
� brightness adjustment?

1.4 Distinguish between direct and indirect imaging systems, giving examples to illus-
trate each system.

1.5 How many images, each with 512×512 pixels and each pixel requiring one byte of
storage, can be stored on (i) a 3 1/2" floppy disk with a capacity of 1.4MB, (ii) a
standard CD ROM with a capacity of 700MB, (iii) a DVD-ROM with a capacity of
4.7GB?

1.6 How many different shades of gray can be present in an image that is (i) 8 bits deep,
(ii) 12 bits deep, (iii) 16 bits deep?

1.7 Explain the differences between spatial resolution and brightness (gray scale)
resolution in a digitized image.
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2 Imaging systems

Overview

Analogies are often drawn between the human visual pathway and computer imaging
systems, so it is important to realize both the utility and the limitations of this
approach. Since computers can process only digital images, they must be manipulated
in order to render them readable; this process is called digitization. It is important to
understand the steps in this process and their implications for the quality of the
resulting image.

Learning objectives

After reading this chapter you will be able to:

� describe the human visual pathway and outline its characteristics;
� compare the performance of the human visual pathway with that of film and semi-
conductor sensors;

� explain the two processes involved in digitizing an image;

� recognize the problem of undersampling;
� identify the characteristics of a digital image;
� outline the factors affecting the quality of a digital image;
� interpret how the point spread function (PSF) and the modulation transfer function
(MTF) characterize an imaging system;

� describe the sources of noise in an imaging system;
� measure the signal-to-noise ratio of an image;

� distinguish between true color and indexed color images;
� identify an imaging application which uses pseudocolor.

2.1 The human visual pathway

In order to design efficient image processing systems it is important to have an under-
standing of the human visual pathway, which comprises the eye, its associated nerves and
portions of the brain.



The eye is almost spherical in shape, with an average diameter of about 40mm
(Fig. 2.1). It converts information entering through the pupil as visible light into electrical
impulses, which are transmitted along the optic nerve to the brain, for interpretation.
Visible light is refracted by the cornea and enters the pupil, after which it is again
refracted, by the lens, to form an inverted image on the innermost membrane of the
eye, the retina. The retina is composed of several layers, and one of these, the retinal
pigment epithelium, contains the photoreceptors that sense the light and convert it to
electrical impulses which are taken by the optic nerve to the brain. There are two types of
photoreceptor, rods and cones (Fig. 2.2). The rods are more numerous, with about
100 million distributed throughout the entire layer; they are more sensitive to light than
the cones. There are fewer cones, about 6–7 million, and they are highly concentrated,
approximately 180000mm−2, in a circular region near the center of the retina,
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Figure 2.1 Cross-section through a typical human eye.
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Figure 2.2 Structure of the photoreceptors of the human eye.
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about 1.5 mm in diameter: the fovea. Complicated cross-linking of cells facilitates some
basic processing even before the information leaves the retina. There is a region, devoid
of photoreceptors, where the optic nerve leaves the retina: it is known as the optic disk
and accounts for the blind spot in the visual field.

Rods are sensitive to blue-green light, with peak sensitivity at a wavelength of around
498nm, but they cannot detect color, only light intensity. Several rods are connected to a
single nerve, and this makes them unable to discern fine detail. They can function in
situations of low light intensity and are vital for night vision. There are three types of
cones, which together permit color vision: their sensitivity overlaps with L-cones (red or
Long-wavelength), having peak sensitivity around 564nm, M-cones (green or Medium
wavelength), with peak sensitivity around 533nm, and S-cones (blue or Short wave-
length), with peak sensitivity around 437nm (Fig. 2.3).

2.1.1 Brightness response of the eye

The rods in the retina respond to low intensity levels (scotopic or dim-light vision) and
the cones to higher intensity levels (photopic or bright-light vision); between them they
can adapt to a huge range of light intensities, on the order of 1010, known as the dynamic
range. Their combined sensitivity produces a logarithmic response curve (Fig. 2.4), with
the perceived brightness varying roughly as the log of the light intensity incident on the
eye, measured in milli-lambert (mL).

Although the eye has a huge dynamic range, it cannot simultaneously distinguish all
these intensity levels; instead, it adapts to regions within the total dynamic range by a
process known as brightness adaptation or accommodation. For example, when the eye is
adapted to a brightness level of B1 (Fig. 2.4), the range of subjective brightness levels that
it can perceive is given by the short dashed curve in the figure.

The human visual response is limited to detecting brightness changes of about 2–3%,
so that typically it can distinguish only around 25–30 brightness levels in a scene. Thus, if
the range between black and white were divided into more than 30 equal levels of
brightness, the eye would be unable to distinguish between adjacent levels. Human
vision does not measure absolute brightness, but relies on local comparisons to determine
if a region or an object is brighter than another. Its sensitivity to percentage changes in
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Figure 2.3 Spectral sensitivity of the rods and cones. (Note that each curve has been normalized to the
same peak height.)
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brightness, rather than absolute changes, is a direct consequence of its logarithmic
response to light intensity.

2.1.2 Spatial resolution of the eye

The eye cannot distinguish two objects as separate unless the light from them falls on two
different cones; i.e., objects can just be differentiated if they subtend an angle at the eye
which is related to the angle subtended within the eye by two adjacent cones (Fig. 2.5).
Diffraction effects and lens aberrations, together with limits in neural processing, further
limit the resolution of the human visual pathway. In practice, objects can be detected only
if they subtend an angle of about 1 minute of arc, and this value is taken as the visual
acuity or spatial resolution of a normal eye.

The human visual system is extremely powerful at recognizing objects. Not all of the
information from the rods and cones is used directly: lateral neural connections are used to
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Figure 2.4 Response of the eye to light intensity. (Courtesy of NASA.)
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Figure 2.5 Spatial resolution of the human eye.

2.1 The human visual pathway 19



enhance edges or boundaries; hierarchical filter techniques select information based on
local orientation and texture; and scenes are interpreted in terms of familiar shapes and
structures. The visual system is not, however, well suited to measure accurately intensities,
distances and areas, which can be done relatively easily with computer visioning systems.

2.2 Photographic film

In imaging systems, incoming signals emitted from, transmitted through or reflected
from a three-dimensional (3-D) object are mapped onto a two-dimensional (2-D) surface,
and different physical attributes of the object are represented by different shades of gray
or color in the image.Many imaging systems act like a camera, which is itself modeled on
the human eye. The incoming radiation is focused onto a film, which detects the
radiation, taking the place of the retina, and stores the resulting image. Photographic
film has been the principal medium for acquiring and storing medical images for more
than a century, although more recently it is being replaced by other sensors which can be
integrated into digital imaging systems.

Radiographic film is a specialized form of photographic film comprising a thin sheet of
inert plastic, the base, coated on both sides with emulsion. The film emulsion contains
sub-micron sized microcrystals of silver halide in a gelatin base. The microcrystals are
the photodetectors: they are activated when exposed to x-rays or light and store a “latent
image,” which is not evident until the film is developed. The development process
reduces the microcrystals to a dark silver deposit, the activated crystals being reduced
at a much faster rate. The non-activated crystals are then removed by fixation with a
thiosulfate solution, which binds tightly to them to form a soluble complex that is easily
washed off the film base.

Radiographic film is relatively sensitive to x-ray photons, and is usually sandwiched
between two fluorescent intensifying screens within a film cassette. The intensifying
screens fluoresce on exposure to x-ray photons, producing many more visible light
photons which then interact efficiently with the film. The intensifying screens produce
an amplifying effect, and consequently the x-ray exposure can be reduced, resulting in a
smaller patient dose, and adequate film darkening still obtained.

2.2.1 Response of film to light

Optical density is a measure of the amount of light transmitted through an object, and
therefore it determines the brightness of the object. If the light intensity incident on it is I0
and the light intensity transmitted through it is IT, then the transmittance of the object is
IT/I0 and its optical density is given by

OD ¼ log10ð1=TÞ ¼ logðI0=ITÞ (2:1)

For instance, if the object is totally transparent and 100% of the incident light passes
through it, its optical density is 0; if 10% of the incident light passes through it, its optical
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density is 1; if 1% of the light passes through it, its optical density is 2; and if 0.1% of the
light passes through, its optical density is 3. Note that the optical density is a relative
measure; it is a number only and has no units. Objects which pass less light have higher
optical densities and appear darker with the same amount of illuminating light. The
logarithmic scale is useful to approximate the logarithmic response of the human eye to
light intensity.

Figure 2.6 shows the characteristic response of a film emulsion to light: optical density,
OD, is plotted against the logarithm of the exposure. The higher the exposure (to light or
x-rays), the darker the film becomes. The exposure is the total amount of incident
radiation, and is expressed as the product of its intensity and the exposure time, for
exposure times from milliseconds to seconds. At exposure times outside this range, the
emulsion is less sensitive to the total incident light, an effect known as reciprocity failure.
Film darkens slowly with time, even without exposure to light or x-rays. The combina-
tion of this effect, and the optical density of the film base itself, comprises the fog and
base level, which results in a residual optical density of about 0.20 in the absence of
exposure and gives a non-linear toe to the graph.

Over a relatively long range, known as the film latitude, the optical density has an
approximately linear relationship with exposure (Fig. 2.6), and this is the normal working
range of the emulsion. For many x-ray films, it corresponds to a range of optical densities
from about 0.25 to about 2.25. The gradient of this region is called the gamma (γ) of
the film, and represents the contrast of the film, i.e. the change in optical density caused
by a change in exposure. Typically, an x-ray film has a γ value of around 2.0, measured
at an optical density of around 1.2–1.25, the center of its approximately linear range.
The speed of a film is a measure of the ease with which useful optical density is
reached; it is defined as the inverse of the exposure that achieves an optical density
value of 1.0 above the fog and base level. Thus a high-speed film requires little
exposure to reach this level of darkening, whereas a low-speed film requires more
exposure to reach the same level. Beyond the linear region, there is a shoulder before
saturation, which corresponds to all the microcrystals being activated, and then a
region of solarization, not normally reached, where increased exposure actually results
in a reduction of optical density.
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Figure 2.6 Characteristic response curve for film.
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The images captured on film are continuous-tone images and eventually need to be
digitized, using a film scanner or a digital camera, before they can be manipulated by a
computer. Photographic film is able to distinguish about 4000 measurable intensity
variations between the darkest and brightest recorded levels, corresponding to an optical
density range of about 3.6 (log10 4000). X-ray film emulsion contains a higher concen-
tration of silver halide, and so can capture larger optical density differences, up to an
optical density of about 4.2. Photographic prints, on the other hand, can reproduce only
about 20 different intensity levels.

2.2.2 Spatial resolution of film

The characteristic curve represents the sensitivity of the film emulsion to electromagnetic
radiation, but provides no information about the spatial resolution of the film, i.e. its
ability to differentiate two objects that are close together. This may be illustrated as
follows.

(i) Consider how an image of a point in an object is obtained. No imaging system is
perfect, so the point is inevitably blurred to some degree during the imaging process;
the better the imaging system, the less the blurring. The image of a point object is
called the point spread function, PSF. Since all objects can be considered to com-
prised a series of points, the point spread function of an imaging system provides a
complete, quantitative description of its resolution and directly characterizes the
image degradation within the system, apart from effects due to noise. In projection
radiography it can be obtained, conveniently and directly, from a pinhole radiograph
of the x-ray source.

Figure 2.7(i) shows the two-dimensional point spread function of a typical x-ray
projection radiography system, obtained directly using a pinhole camera to obtain
the image of the focal spot in the image plane. Figure 2.7(ii) shows the film density
plotted vertically: for suitable film and exposure conditions, it is directly proportional
to the x-ray intensity of the source. The bimodal shape is a consequence of the shape
of the helical filament which heats the cathode in the x-ray tube, causing x-rays to be
emitted.

The width of the point spread function characterizes the blurring of the imaging
system and corresponds to its spatial resolution; i.e., two small objects (points) within
this distance are blurred to such an extent that they cannot be resolved as two separate
entities. The width of the point spread function depends on the quality of the system,
which comprises the source of the illumination, the focusing elements and the
detectors. Each of these components contributes to the overall blurring, i.e. each
has its own characteristic point spread function, and the overall system point spread
function is a combination of the component point spread functions. For a linear
system comprising three components, each with its characteristic point spread func-
tion, i.e. PSF1, PSF2 and PSF3, the system point spread function is given by

PSF ¼ PSF1
� PSF2� PSF3 (2:2)
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where the * indicates a process known as convolution. The point spread function of
film, often used as the final detection stage in analog radiographic systems, depends
to a large extent on the concentration and size of the light-sensitive particles in the
film emulsion: if they are made larger to increase the sensitivity, or speed, of the film,
then the point spread function is wider, i.e. the spatial resolution is poorer.

(ii) Alternatively, consider the ability of an imaging system to form an accurate image of a
sinusoidal pattern. The pattern is characterized by its repeat distance or wavelength, or
equivalently, by its spatial frequency, f, which is the inverse of the repeat distance, or
wavelength, of the pattern. Thus, spatial frequency has dimensions of length−1, and
its units are variously given as mm−1, cycles mm−1 or, especially in medical imaging,
lpmm−1 where lp indicates a line-pair, i.e. a pair of lines, one black and one white.

Consider a film emulsion exposed to a spatially sinusoidal pattern (Fig. 2.8) of
light intensity, given by

log E ¼ log E0 þ A sinð2pfxÞ (2:3a)

where E0 falls around the center of the linear portion of the characteristic curve and A
is small enough to keep the response within the linear portion. The resulting optical
density of the developed film depends on the contrast of the film and is expected to
take the following form:

DðxÞ ¼ D0 þ � A sinð2pfxÞ (2:3b)

where D(x) fluctuates about a central value D0 (Fig. 2.9(i)) and γ is the slope of the
characteristic curve, i.e. the gamma or contrast of the film.

(i) (ii)

Figure 2.7 (i) The two-dimensional point spread function from a typical x-ray tube (GE Advantx RFX)
and (ii) its functional plot, with the film density plotted vertically.
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However, at high spatial frequencies, i.e. small repeat distances in the pattern,
limitations within the film emulsion, such as microcrystal size, and scatter of the
radiation reduce the emulsion’s ability to detect the high-frequency variations and the
observed density is then given by

DðxÞ ¼ D0 þ � Mð f ÞA sinð2pfxÞ with 0 � MðfÞ � 1 (2:4)

where M(f ) is known as the modulation transfer function, MTF, and represents the
loss of image contrast as a function of spatial frequency (Fig. 2.9(ii)).

(i) (ii)

(iii)

Figure 2.8 Sinusoidal patterns with (i) low, (ii) medium and (iii) high spatial frequency in the horizontal
direction.
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The modulation transfer function of an imaging system depends on the modulation
transfer function of the components that comprise it. For a system comprising three
components, each with its characteristic modulation transfer function, MTF1, MTF2
and MTF3, the system modulation transfer function is given by their product:

MTF ¼ MTF1 �MTF2 �MTF3 (2:5)

which is a much simpler operation than convolution. The spatial frequency at which
the system modulation transfer function falls to 0.1 is often taken as its spatial
frequency, fL. It is effectively the highest spatial frequency that the imaging system
can reasonably record, and is known as the limiting spatial resolution of the system.
Analog radiographic systems often use a fluorescent screen in combination with film
as the detector, in order to increase the blackening of the film. The modulation
transfer functions associated with blur due to the finite size of the radiation-sensitive
particles in the screen/film, patient movement and the finite size of the x-ray source
(focal spot size) in a typical system are plotted in Figure 2.10, along with the
composite, total systemmodulation transfer function, which is equal to their product.
The modulation transfer functions become smaller at high spatial frequencies,
representing the poorer quality images obtained from smaller objects. The resolution
of this imaging system is about 2 cycles mm−1. The inverse of the limiting frequency
gives the limiting, i.e. the smallest, repeat wavelength that can be resolved by the
system. Since a wavelength is composed of two parts, the upper portion and the
lower portion, its length represents twice the size of the smallest resolvable object.

Worked example
What is the spatial resolution of a film that has a limiting spatial frequency of
70 cycles mm−1?

This spatial frequency corresponds to a wavelength of 0.014mm or 14μm. The
smallest object that can be resolved is half of this, i.e. 7μm.

(i) (ii)
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Figure 2.9 (i) The optical density produced from a sinusoidal pattern of exposure, for a film with a
characteristic slope of �. (ii) The observed optical density profile from a pattern of increasing
spatial frequencies, showing the reduced response at higher spatial frequencies.
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The point spread function and the modulation transfer function both contain equiva-
lent information on the spatial resolution of an imaging system, the former in terms
of the smallest distance that the system can resolve and the latter in terms of the
highest frequency that the system can properly record.

2.3 Other sensors

There are other radiation sensors besides photographic film. X-ray and γ-ray photons can
be detected by converting them to visible light photons using a scintillator, and then
converting the light into an electric signal using a semiconductor photodiode. Such
detection systems include the photostimulable phosphors used in the image plates of
computed radiography, image intensifier tubes as used in fluoroscopy, and ionization
chambers and scintillation detectors used in computed tomography (CT) scanners. The
semiconductor photodiodes are based on silicon technology, which limits their size
because of the difficulty and expense involved in manufacturing large crystals free of
defects. More recently, detectors have been developed using amorphous selenium, which
can be readily manufactured into large flat panels, to convert x-ray photons directly into
electric charge. Elimination of the intermediate visible light stage results in higher-
resolution images with less noise.

The output from semiconductor detectors is linear with incoming intensity, rather than
logarithmic, as with film and human vision. This results in a much smaller dynamic range
than that of the human visual system, and images of scenes that have a high dynamic
range appear inferior to what is seen directly. Some imaging systems use a non-linear
amplifier, after the semiconductor detector array, to produce a logarithmic output. This
converts the signal intensity, I, from the detector into an output gray level,O, according to

O ¼ I � (2:6)
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Figure 2.10 The modulation transfer function, MTF, of a radiographic imaging system as the product of
the modulation transfer functions of its component parts. (Note the logarithmic scaling of this plot.)
(After Wolbarst, 1993, p. 214.)

26 Imaging systems



where the exponent is called the gamma value, and is typically about 0.4. With such a
conversion, the logarithmic response of the human visual system can be approximated.

Semiconductor sensors have a very different sensitivity to the wavelength of electro-
magnetic radiation than the eye or photographic film (Fig. 2.11). They cover a much
broader range, extending far into the infrared, and require some adjustment to make them
useful at mimicking human vision. Most of them incorporate an infrared blocking filter to
prevent infrared radiation from reaching the sensor.

2.4 Digitizing an image

We have discussed some of the advantages of digital images, including easy storage and
post-processing. If an image is analog, for example a film radiograph, it can be digitized
to obtain a digital image; the same considerations apply in mapping a real object directly
to a digital image. There are two steps involved: spatial quantization and intensity
quantization. The term quantization means that a variable is not allowed to take any
value, but can only take certain allowable (quantized) values; for example, only integer
values but not the non-integer values between them.

2.4.1 Spatial quantization

Digitization is conveniently explained in terms of a single-sensor, flat-bed scanner.
Laser light is swept across the original analog image in a raster pattern, and the reflected
light (if the image is a photographic print) or transmitted light (if it is a photographic
negative or an x-ray film) is detected by the photodiode. The photodiode records values at
equally spaced positions along the raster, and these values are saved as a two-dimensional
array. This recording is called sampling or spatial quantization. The more frequently the
samples are taken, the more accurately the “scene” will be captured; this results in more
readings and therefore more storage space in a computer. The rate at which samples are

with IR cut-off filter
1.0

0.8

0.6

0.4

0.2

0
400 500 600 700 800

Wavelength (nm)

N
o

rm
al

iz
ed

 S
p

ec
tr

al
 S

en
si

ti
vi

ty

900 1000 1100 1200

without IR cut-off filter

Figure 2.11 Spectral sensitivity of a typical semiconductor sensor. (Dashed line shows response with an
infrared blocking filter.)
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taken is the sampling rate or sampling frequency, fs, and is expressed as the number
of samples taken per unit distance, in units of samples per centimeter or dots (samples)
per inch, (dpi). The distance between samples, d, is the inverse of the sampling frequency.
The sampled values can be considered as samples of the continuous profile, although in
practice they are not quite sampled points but have some finite physical size, albeit
small, depending on the sensor size and imperfections in the optics. These values are
stored until a new sample, whose position is determined by a chosen mechanical
increment, is taken. The process is thus one of “sample and hold,” and the recorded
profile has a step-like appearance (Fig. 2.12), approximating the continuous profile it is
sensing.

Usually the sampling frequency is the same in both directions, and the small, square,
area around each position, with sides equal to the distance between samples, d, make up a
single pixel in the digitized image. The sampling frequency determines the distance
between samples, and this distance becomes the linear pixel size.

Each pixel represents not a point in the image, but rather an elementary cell of the grid
with its own individual brightness; the image has become spatially quantized. Distance
along the x and y directions is no longer continuous; instead it proceeds in discrete
increments, each given by the size of a pixel. With large pixel sizes, not only is the
spatial resolution poor, since there is no detail within a pixel, but the gray-level disconti-
nuities at the edges of the pixels (pixelation) become distracting. With small pixels
the spatial resolution improves, until there is the impression of a spatially continuous
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Figure 2.12 Digitization of a one-dimensional profile. (Analog) profile through a section of film (top); after
digitization (bottom), comprising spatial and intensity quantization. (After Wolbarst, 1993, p. 304.)
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image; this occurs when the pixels are smaller than the spatial resolution of the human
visual system at that particular observation distance.

How small should the distance between samples be, in order to capture accurately the
detail in the analog image during digitization for later reconstruction of the analog image?
Or, in the case of a two-dimensional sensor array, how small should the detectors be, in order
to capture the detail from the input signal? All images contain a mixture of details, some at a
fine scale and some at a coarse scale. The Frenchmathematician Fourier recognized that any
repetitive pattern can be made up from a number of sinusoidal patterns of differing spatial
frequencies. The high frequencies contain the information about the small details and sharp
edges in an image, while the low frequencies contain the information on larger features
within the image. In order to capture adequately the fine detail information, the image needs
to be sampled at a sampling frequency, fs, that is at least twice that of the highest frequency
(fmax) contained in it; this is known as the Nyquist–Shannon sampling theorem:

fs � 2� fmax (2:7a)

This is necessary because at least two samples per cycle of a sine wave are needed in
order to capture both halves of the oscillation (Fig. 2.13). If fewer than two samples per
cycle are sampled, reconstruction results in a wave of lower frequency (Fig. 2.13 (i)); at
least two samples per cycle are required to reconstruct the original wave with its proper
frequency (Fig. 2.13 (ii)).

The Nyquist frequency, fN, is one-half of the sampling frequency, fs; thus, the Nyquist–
Shannon sampling theorem can be expressed as:

fN � fmax (2:7b)

original wave

period
(i)

(ii)

reconstructed wave

Figure 2.13 Sampling a sine wave at (i) 1.5 times and (ii) twice its frequency.

2.4 Digitizing an image 29



If a sampled image contains frequencies above the Nyquist frequency, they are under-
sampled and appear as lower frequencies in the image reconstructed from these samples.
This is known as aliasing, and the false, lower frequency, or aliasing frequency (falias),
appears as far below the Nyquist frequency as it actually was above it, i.e. the frequency
which is too high to be properly sampled is “folded back” around the sampling frequency
until it appears in the image at a frequency less than fN:

falias ¼ fN � ðf� fNÞ (2:8)

For example, if the sampling frequency is 10mm−1, i.e. 10 samples taken per millimeter,
then the Nyquist frequency, fN, is 5mm−1. A spatial frequency of 7mm−1 cannot be
sampled properly, because it is above fN; instead, it appears aliased at 3mm−1. Very high
frequencies are repeatedly folded back around multiples of the sampling frequency until
the aliased frequency appears at a frequency less than fN.

In a complex image, comprising a range of spatial frequencies, high-frequency
detail is not captured properly, and appears aliased at lower frequencies in the sampled
image if the sampling frequency is not high enough to capture the high frequencies
(Fig. 2.14).

Interestingly, telecommunications pioneer Harry Nyquist’s name is itself an alias. His
family name was Jonsson, but Harry’s father, Lars, changed it, because another Lars
Jonsson lived just down the road, and mail delivery became a real problem!

Figure 2.14 Some high spatial frequencies at the top left of the image are not reproduced properly, instead
being aliased and appearing at a lower frequency.
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Worked example
In a system with 200μm pixels, the sampling frequency is 5mm−1, and the highest
(spatial) frequency possible, the Nyquist frequency, is 2.5mm−1. Any frequency
higher than that in the pre-sampled image appears at a lower frequency in the
sampled image: its actual position is mirrored around the Nyquist frequency or
multiples thereof until it appears at a frequency less than the Nyquist frequency
(Fig. 2.15). For example, a frequency of 3mm−1 in the pre-sampled image appears
as a frequency of 2mm−1 in the sampled image, i.e. it masquerades, or “takes the alias
of,” another frequency. A frequency of 6mm−1 in the pre-sampled image appears as a
frequency of 1mm−1 in the sampled image; mirrored about 5mm−1 (twice the Nyquist
frequency) it would appear at 4mm−1, which is then mirrored about 2.5mm−1 to give
1mm−1.

The sampling theorem can be expressed equivalently in terms of distances rather than
spatial frequencies; the sampling distance, d (the pixel size), must be less than, or equal
to, half of the inverse of the maximum spatial frequency in the image, fmax. Thus, it must
be less than, or equal to, half of the size of the smallest detail in the image (Lmin) in order
to digitize the image accurately. That is,

d � 1=ð2� fmaxÞ (2:9a)

or

d � Lmin=2 (2:9b)

f2 alias f1 alias

fs (=2fN)fN

f1

0 1 2 3 4 5 6

spatial frequency (mm–1)

f2

Figure 2.15 The aliasing of higher frequencies by mirroring around multiples of the Nyquist
frequency.
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Worked example
A chest radiograph is 14 inches by 17 inches (36cm×43cm). If we want to preserve
all the detail in the image, to a spatial resolution of 5 cycles mm−1, how many pixels
would be required?

To preserve the spatial resolution of 5 cyclesmm−1, we need to sample 10 pixels mm−1

(i.e. 2 pixels per cycle) resulting in pixels of size 0.1mm. This would require
3600×4300 pixels to cover the radiograph. If each pixel is 8 bits deep (i.e. 1 byte
per pixel) this would require a file of size 14.8MB; if we required more gray levels,
and used 16 bits per pixel, the file size would be twice as big.

In practice, almost all digital systems are undersampled to some degree in order to save
on design constraints, e.g. size of detectors or size of image file. A slightly coarser pixel
size than optimum is chosen, whereby the pre-sampled modulation transfer function
extends a little beyond the Nyquist frequency. This allows the majority of the frequency
content to be recorded with adequate fidelity but permits a degree of aliasing at the higher
frequencies.

The worst aliasing artifacts occur when fine repetitive patterns are undersampled;
these can result in distractingMoiré patterns in the digitized image. Smoothing the analog
image, so as to remove higher spatial frequency components, prior to digitization can
reduce the effect, but the only effective strategy is to re-sample at a higher sampling
frequency. If the analog image is not available, the digital image can be smoothed
(Fig. 2.16), but re-sampling is the preferred option.

2.4.2 Intensity quantization

The discrete pixels formed around the sampled locations comprise the spatially
quantized image, but the values within the pixels are still the sampled values measured
from the original analog (i.e. continuous) image. In order to form a digital image, these
values need to be assigned to a finite set of discrete values. This is the second step in
the process of digitizing an analog image, and is known as intensity (or brightness)
quantization.

Many digital images are 8 bits deep, i.e. they allocate 8 bits to each pixel, resulting
in 256 possible gray levels spanning black to white. In general, allocating n bits per pixel
gives 2n shades of gray. (Using 12 bits per pixel gives 4096 more finely spaced gray
levels.) Each sampled value needs to be placed on the nearest available gray level. This
gives rise to an approximation error known as the quantization error, whose effect is
minimized by the use of greater numbers of finely spaced gray levels but at the cost of
larger image files.

The result of digitization, i.e. spatial and brightness quantization, is an n-dimensional
array of numbers (a matrix), representing a digital image. Each number represents image
brightness within a small discrete area (a pixel) in a two-dimensional (M×M pixels) grid
representing a two-dimensional image, or within a small discrete volume (a voxel) in a
three-dimensional (M×M×M voxels) grid representing a three-dimensional image. The
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length of a side of the pixel, or voxel, can be related to real distance in a scene by
dividing the field of view (FoV) of the scene, that is the real distance spanned in the scene
and represented in the digital image, by the number of pixels along that side of the image:

pixel size ðor voxel sizeÞ ¼ FoV=M (2:10)

When the image is to be displayed, on a computer monitor for example, the brightness
level at any location is generally taken as being directly proportional to the value stored in
the corresponding pixel.

(i) (ii)

Figure 2.16 (i) A Moiré pattern in a computed radiography image and (ii) the result of smoothing it.
The preferred option would be to re-scan the image at a higher sampling frequency.
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2.5 The quality of a digital image

Any imaging systemmust be judged on the quality of the images it produces. For medical
imaging systems the images must be diagnostically useful, that is capable of leading to
the detection and identification of an abnormality and its interpretation so as to determine
its cause, and obtained at an acceptable dose to the patient. An image is a spatial pattern of
intensities. Fundamentally, the quality of a digital image depends on the size of the pixels,
relative to the size of the image, and the number of available values of gray tone that are
accessible to describe the intensity range between black and white: image quality is
highest for small pixels and a large number of available gray tones.

2.5.1 Spatial resolution and pixel size

Spatial resolution is a measure of the ability of the image to show fine detail. It can be
reported as the minimum separation of small features in the object that can just barely be
distinguished as separate in the image. The spatial resolution of a digital image depends
on the resolution of the imaging system that produced it, characterized by its point spread
function, PSF, or equivalently by its modulation transfer function, MTF, and the size of
the pixels used to represent the digitized image. This latter is determined, either by the
sampling frequency used in digitization or by the size and separation of the detectors in a
two-dimensional detector array. Figure 2.17 shows an image and the effect of increasing
pixel sizes after acquisition. The larger the pixel sizes, the less detail can be seen. In fact
the pixel size determines the smallest detail which can be seen, since pixels are shaded
a uniform gray and there is no detail within them. Increasing the pixel size reduces
the spatial resolution, since it reduces the ability to see fine detail within the image.
Activity 2.1 explores this relationship.

The point spread function of an imaging system is the image that results from a point
object, and thus its width determines the size of the smallest observable detail in an
analog image. Figure 2.18 shows the point spread function of a two-dimensional digital
imaging system, with different-sized pixel grids superimposed on it. The smaller the
pixels of the grid the more detail can potentially be displayed. Taking into account the
sampling theorem we might choose the pixels to be about half the width of the point
spread function to adequately sample it (Fig. 2.18 (i)). There is nothing to be gained from
using much smaller pixels than this, since there is no additional detail within the point
spread function (Fig. 2.18 (ii)); at best it may produce a cosmetically more appealing
image with less evident pixelation, but at the cost of a larger file size. On the other hand,
using a larger pixel size would be detrimental to image quality, since the point spread
function would spread to occupy a single large pixel (Fig. 2.18 (iii)).

There is an argument for reducing the pixel size a little further than one-half of the
width of the point spread function, since the point spread function of the underlying,
analog, imaging system does not have a brick-wall shape. If the point spread function is
taken as Gaussian in shape, which is appropriate for most systems, and its width is taken
as the full width at half maximum height (FWHM) of its point spread function, then the
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(i) (ii)

(iii) (iv)

Figure 2.17 (i) Image using original pixels and with pixels which are (ii) 2×2 times larger, (iii) 4×4 times
larger and (iv) 8×8 times larger.



sampling distance, i.e. pixel size, should be about one-third of the FWHM to avoid
significant loss of spatial resolution, thus:

d � FWHM=3 (2:11)

This represents a somewhat tighter restriction on pixel size than Equation (2.9b), and is
widely used as the rule-of-thumb in nuclear medicine imaging.

2.5.2 Brightness resolution

Different features in an image are displayed as different shades of gray. In medical
images these differences are determined in part by the properties of the tissues, such
as their thickness, density and chemical composition, and by aspects of the imaging
process that are controllable, such as the energy of the x-ray photons. It is crucial to
be able to distinguish parts of the body that differ anatomically or physiologically
only a little from each other. This requires a sufficient number of different gray
values so parts which we want to be able to distinguish are assigned different gray
values.

The number of gray values available in an image depends on the number of bits
used during quantization: using n bits per pixel results in 2n shades of gray. Digitization
with an 8-bit analog-to-digital converter, resulting in 256 possible shades of gray, is
more than adequate for most visual purposes, since our visual system can distinguish
only about 30 shades of gray, and most computer monitors have been manufactured to
reproduce 256 gray levels. Images displayed with an insufficient number of shades of
gray, i.e. fewer than about 32, suffer from false contouring or posterization, an effect
mimicking topographic contours, which is most noticeable in areas of constant gray
level (Fig. 2.19). Activity 2.2 explores the relationship between pixel depth and false
contouring.

(i) (ii) (iii)

Figure 2.18 Grids of various sizes superimposed on the point spread function image. (i) The optimal pixel
size. (ii) Smaller pixels offer little advantage since there is no detail within the point spread
function. (iii) Larger pixels are not recommended since the analog point spread function would
spread (not shown) to occupy a single pixel.
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Some images require higher brightness resolution if quantitative analysis of image
properties are to be made accurately. For example, the pixels in x-ray CT images have
12-bit depth and therefore can have 4096 (212) possible values.

2.5.3 Noise content

Noise is the unwanted, random (stochastic) fluctuations in an image. The principal
sources of noise in a digital imaging system are photon (or quantum) noise, which
arises from the discrete nature of electromagnetic radiation and its interactions with
matter, and electronic noise in detectors or amplifiers. If a film-screen cassette is used to
acquire the image, individual grains within the film and fluorescent screen produce
random variations in the film density: the noise contribution from the screen (structure
mottle) is larger than that from the film (film granularity). The process of digitization is
also responsible for adding noise (quantization noise) to an image. Photon (or quantum)
noise usually obeys the Poisson distribution function, and electronic noise is almost
always Gaussian.

These unwanted stochastic variations can be quantified most easily in a region of the
image that is expected to have a constant brightness. The noise power (PN) can be taken
as the variance, i.e. the square of the standard deviation, of the pixel values in such a
region. To understand its significance, the noise should be compared to the average
power or intensity of the signal (PS), which is given by the average value of the pixels
in the image. The signal-to-noise ratio (SNR or S/N) is the ratio of the intensity of the
signal to the noise power; it is often expressed in decibels (dB) by taking ten times the
logarithm, to the base 10, of the ratio. Thus:

(i) (ii)

Figure 2.19 An image displayed using (i) 64 and (ii) 8 shades of gray, with significant false contouring
(posterization) visible in the latter image.
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SNRðin dBÞ ¼ 10 log10ðPS=PNÞ (2:12)

This describes the noise adequately if it is spatially uncorrelated, that is the amount of
noise at one position in the object is not related to the amount of noise at any other
position. Figure 2.20 shows one-dimensional profiles with the same variance but greatly
differing appearances. The noise in Figure 2.20 (i) is almost spatially uncorrelated or,
to be more precise, it is correlated only over a very short distance; while the noise in
Figure 2.20 (ii) is correlated over a longer distance, such that values are similar for
positions which are close to each other. The extent of spatial correlation can be char-
acterized by the autocorrelation function. Examples of noise that exhibit different
characteristic correlations include Gaussian noise and uniform noise, and the colorfully
named “white” noise, “pink” noise and “brown” noise.

The noise produced within an imaging system is a combination of several noise
sources, and it may not be possible to identify them separately. The image produced by
a uniform gray scene, which should result in a uniform brightness, has a distribution of
gray tones around an average value; the width of the distribution is a measure of the noise
content of the image.

In medical x-ray and γ-ray imaging systems, the number of photons emitted per unit
time from the source varies and so too do its interactions with the patient’s body. The
result of both these factors is that the image has a spatial and temporal randomness. This
source of noise, often referred to as quantum noise, is a fundamental and unavoidable
noise source in medical imaging. In a good medical imaging system, quantum noise,
which is unavoidable, is the dominant source of random fluctuation. Quantum noise is
characterized by Poisson statistics, which is used to describe independent counting
events, especially when the events are comparatively infrequent. An important charac-
teristic of the Poisson distribution is that the standard deviation in the number of counts is
numerically equal to the square root of the mean of the counts (SD = √N, where N is the
number of photons carrying the signal). The relative width of the distribution decreases as
the mean grows larger; thus,
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Figure 2.20 One-dimensional profiles with the same noise variance but differing correlation distances.
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relative variation ¼ p
N=N ¼ 1=

p
N (2:13a)

or, conversely, the signal-to-noise ratio is given by

SNR ¼ N=
p
N ¼ p

N (2:13b)

sinceN is a measure of the signal strength. The signal-to-noise ratio increases as the mean
gets larger: thus, the greater the number of x-ray or γ-ray photons that can be detected, the
higher the image signal-to-noise ratio and the less noisy it appears.

The presence of noise in an image affects the ability to detect small objects of low
contrast, i.e. with a brightness level only marginally different from their surroundings
(Fig. 2.21). Reducing the relative noise in the final image, equivalent to increasing its
signal-to-noise ratio, requires an increase in the number of photons detected. This can be
achieved by increasing the intensity of the x-ray beam, or γ-ray source, or by increasing
the exposure time; it can also be achieved by averaging several images. However, in each
case, the patient is exposed to a higher dose of ionizing radiation. A more acceptable
option is to improve the quantum efficiency of the detectors, i.e. the probability that the
incoming photon interacts with, and thus is detected by, the detectors. Alternatively, with
a digital system, the pixel size can be increased by combining several of the original
pixels to form new, larger pixels, which then contain larger values, resulting in a higher
signal-to-noise ratio. However, in this case, the improvement in signal-to-noise ratio is
obtained at the expense of poorer spatial resolution; this is a useful strategy for detecting
large objects of low contrast in an image, but does not help in the detection of small
objects. This illustrates a fundamental trade-off between image quality and dose; i.e., for
any imaging procedure using ionizing radiation it is necessary to compromise on
exposure in order to obtain an adequate image without posing undue risk to the patient.
It also demonstrates that there is a trade-off between the different parameters of image
quality, namely spatial resolution, contrast and noise.

The situation can be complicated since different characteristics may be more important
in different diagnostic situations. When looking for hairline cracks, spatial resolution
is of paramount importance, and the huge contrast between bone and soft tissue could
be sacrificed for it. In the search for soft tissue lesions of the brain using computed
tomography (CT), contrast is of primary importance and noise needs to be minimized

noise

contrast

(i)

noise

contrast

(ii)

Figure 2.21 Profiles to show the effect of noise on detectabilty. (i) A low contrast object with relatively low
noise is detectable. (ii) A low contrast object with high levels of noise is not detectable.

2.5 The quality of a digital image 39



even by sacrificing some spatial resolution. Fluoroscopic examinations tend to be lengthy,
so doses need to be kept as low as possible, even though this results in high noise and
makes it difficult to visualize small blood vessels even when they are filled with a contrast
agent to increase their contrast relative to the surrounding tissue.

During image digitization, the process of intensity quantization potentially adds noise
to the digitized image since it involves an approximation in placing a sampled value on
one of the finite number of available levels, of which there are 2n in an n-bit deep image.
It is important to choose an appropriate image depth, by using an appropriate analog-to-
digital converter (ADC), such that this source of noise remains insignificant compared to
the quantum noise of the system and does not contribute any further image degradation.

2.6 Color images

The human visual pathway uses three types of cones, trichromacy, to discern and
discriminate many thousands of different colors, whereas it can only distinguish about
thirty different levels of brightness. This expands our ability to recognize and identify
objects in a scene. While photographs replicate the colors seen by our eye, diagnostic
medical images do not record color, only brightness; the brightness indicating, for
example, the attenuation of x-rays or the scattering of ultrasound. Under some circum-
stances, it may be advantageous to add color to an image in order to better discern
features in the image; the added color is false color, or pseudocolor, added to improve our
visualization of the image, not to attempt to replicate the true colors of the features in the
image.

There are different systems or models used to characterize and specify true color. Each
comprises a coordinate system, within which each color is represented by a point. The
RGB (red, green, blue) model is widely used in acquiring, processing and displaying
digital images, for example with color video cameras and color monitors, although it is
not the only model. Most colors can be created by mixing the three primary colors, taken
to be red, green and blue by analogy with the response of the cones of the human retina.
The RGB color space is a unit cube, with each axis representing one of the primary colors
(Fig. 2.22). The origin is the absence of all colors and represents black, while the opposite
vertex is a mix of all three primary colors and represents white. The other vertices
represent the secondary colors cyan, magenta and yellow, each resulting from adding
two primary colors (Activity 2.3).

In this model, all other colors are points within the cube specified by three components,
each specifying the amount of primary color needed to add together to obtain the required
color. Each of these components is usually specified by a single byte (giving a range of
0 to 255). Bright red would be (255, 0, 0), and bright yellowwould be (255, 255, 0). Since
red, green and blue can be chosen independently, this gives a total of 2563 (16×220, or
16M) possible colors. The image file can be organized into three separate images or
planes, one for each primary color. Since each pixel is represented by 3 bytes, the image
file has a depth of 24 bits and is about three times larger than a grayscale image file with
the same number of pixels. These images are referred to as 24-bit or “true color” images.
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Although the RGB model seems to match the physiology of the eye with its cones
sensitive to three different colors, application of processing methods to RGB pictures
frequently causes unwanted results. Some grayscale image processing algorithms can be
used directly for RGB images, by applying them separately to each of the three color
planes; some cannot be used directly; and for some algorithms there is a computational
advantage to processing in a different color space. Edge enhancement, for example, is
more efficiently applied in a color space that separates lightness, or pixel intensity, from
chrominance, color information. Chrominance is determined by the hue, the frequency of
the dominant color, and the saturation, the purity of the color, i.e. the amount of white
light mixed in with a spectral color. For example, white light mixed in with red (saturated)
gives pink (less saturated). In such a color space, e.g. HSV (hue, saturation, value) or
HSB (hue, saturation, brightness), only the value/brightness component (i.e. intensity)
needs to be processed for edge-enhancement and for spatial smoothing. Applying
sharpening and smoothing algorithms in RGB space can cause color shifts. The eye is
particularly sensitive to changes in hue or color and finds even small color shifts such as
caused by sharpening or smoothing algorithms in RGB space noticeable, and frequently
objectionable, while it tolerates changes in intensity or saturation much more readily.
Linear transformations applied to each of the RGB planes are usually acceptable, but
non-linear operations such as histogram equalization (Section 5.2.2) and median filtering
(Section 6.4.1) should generally not be attempted. If non-linear operations are required,
then the RGB image should be converted to an HSVor HSB image, and the operations
applied to just the value or brightness plane, and possibly to the saturation plane. The hue
plane should almost always be left alone.

There are standard algorithms and transforms to convert RGB values into other
color spaces, and then to return the results of the various image processing algorithms
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Figure 2.22 Schematic of red–green–blue (RGB) color space.
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to RGB space, prior to display. Figure 2.23 shows a color both in RGB space and in
HSV space. Activities 2.4 and 2.5 involve changing between RGB and other color
spaces.

An alternative to these systems is the storage of the image as indexed color, using a
palette of only 256 colors optimized for the particular image (Fig. 2.24). Each pixel
contains a pixel value described by a single byte. These values are used as indices or
addresses into a color look-up table, LUT, or palette, which stores the 256 usable
colors. Since each pixel is described by a single byte the file size of an indexed color
image is similar to that of a grayscale image, apart from the space required to store the
color palette, typically 256 bytes. These images are often referred to as 8-bit color
images.

It is possible to colorize grayscale images by applying a color look-up table rather than
a grayscale look-up table (Activity 2.7). The 256 pixel values are used as addresses in a
color palette to get colors which are used to paint the pixels on the monitor, rather
than using shades of gray. The resulting colors are false, in that they have been added
arbitrarily and bear no relationship to the true colors of the original objects, but never-
theless they can lead to a clearer visualization of structures in the image. Pseudocolor is
added to Doppler ultrasound images to colorize blood flow in shades of red if it coming
towards the sensor or blue if it is moving away from it; the faster the flow the brighter the
false color used.

(i) (ii)

Figure 2.23 (i) A color (bottom) and its position in RGB space, shown by the gray ball at red = 240, green = 160,
blue = 140 and (ii) the same color (bottom) and its position in HSV space, with hue = 0.02,
saturation = 0.40 and value = 0.93; in the hexagonal cone, the hue is the angle from the red axis,
the distance to the center is the saturation, and the position up the vertical axis is the value. See also
color plate.
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Computer-based activities

Activity 2.1 Spatial resolution
Open the image Xray in the program ImageJ (see the Preface). The size of this image

is 320×240 pixels.
In Plugins/Ch.2Plugins/Spatial resolution, choose “160×120 pixels” from the

dialog box and click “OK,” and “OK” again in the next box. Does the image
change? To get the original image back, go to File on the toolbar, and clickRevert
or Edit/Undo: you will need to do this often. Try the other “Spatial resolution”
settings. Which images show pixelation, i.e. in which images do the pixel bound-
aries become noticeable? Why does this happen? And under what circumstances
does it happen?

Activity 2.2 Brightness resolution
Start ImageJ and open the image Xray.
Go to Plugins/Ch.2 Plugins/Brightness resolution. Go down the “Menu”:

7, 6, 5, 4, 3, 2, 1 bit, restoring the original image before each new choice, using
File/Revert. At what stage do you see a noticeable degradation, false contouring,
of the image? Can you explain this degradation, and why it occurs where it does?

Howmany gray levels are there when you select (a) 1 bit per pixel (the resulting image is
known as a binary (or binarized) image) or (b) 2 bits per pixel?What is the connection
between the number of bits per pixel and the number of gray (brightness) levels?

(i) (ii)

Figure 2.24 (i) An indexed color image and (ii) its color palette, comprising 256 colors with indices running
from 0 at top left to 255 at bottom right. See also color plate.
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Activity 2.3 RGB color space
Open the folder Colors and click on TabbedcolorBox.html (courtesy: Phillip

Dukes, University of Texas at Brownsville); choose “Mixing Lights.” The three
squares contain the primary colors for color addition: red (R), green (G) and blue
(B). The squares can be moved (drag and drop) using the mouse; the overlap areas
show the result of adding the colors. Move the three squares so that they overlap to
some degree. What is the result of (i) R + G, (ii) G + B, (iii) B + R, (iv) R + G + B?

Activity 2.4 Color spaces and conversions
Open the folder Color conversions and click on CSC.html (courtesy: Eugene

Vishnevsky, Spectronic Instruments Inc.); you may have to manually allow blocked
content if your Web browser restricts the running of scripts. Choose “RGB”: the
RGB frame contains the wire-frame RGB cube with colored vertices. The gray ball
represents the current position. Move the Red, Green and Blue sliders and watch the
current position in RGB space and the resulting color in the bottomwindow. The two
windows shown above the current color represent the blue-magenta-red-black and
green-yellow-red-black sides of the RGB cube, and the current color can be changed
by using the mouse to drag the current position within them.

Select the HSV model to see the current color in terms of its hue, saturation and value
(intensity). The HSV color space is defined inside a hexcone (six-sided pyramid
turned upside down). The vertical position defines value/brightness, the angular
position gives the hue (color), and the radial position gives the saturation. As the
hue is diluted with white light, and moves to the central axis of the hexcone, the
saturation decreases. Saturation ranges from 0 to 1, and specifies the relative
position from the vertical axis to the side of the hexcone. The colored hexagon
on the left is a horizontal slice of the hexcone, shown on the right as a light-gray
plane. The white cross indicates the current H and S values.

The frames are synchronized, to show each color’s representation in different color
spaces simultaneously.

Activity 2.5 RGB and HSB stacks
Open the image prostate, which is an RGB image, in ImageJ. Choose Image/

Type/RGBStack to see the individual RGB planes: pull the slider at the bottom
to move from Red to Green to Blue. Alternatively you can go to Image/Stacks
and use Next Slice and Previous Slice to navigate between the planes. Go to
MakeMontage to see all three images side-by-side.

Open the original image prostate again, and choose Image/Type/HSB Stack
and then Make Montage to see the image split into Hue, Saturation and
Brightness planes. Compare this with the original image and the HSB montage.

Activity 2.6 Indexed color and color LUTs
Open the image prostate in ImageJ, make a duplicate (Image/Duplicate…) and

click on Image/Type/8bitColor to change it from an RGB to an indexed color
image. Did you notice much of a change? Compare it with the original image. With
the indexed color as the current image, go to Image/Color/Edit LUT to see the
256 colors used in this image as a 16×16 LUTor palette, with the colors indexed to
the pixel values of the image. Pixel value = 0 is at the top left and value 255 is at the
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bottom right. Click Invert to see the effect of inverting the order, and Invert again
to return to the original LUT. Go to Image/Color/ ShowLUT to see the LUTas a
set of colors from left to right, and their relationship to various mixtures of RG and
B (click List to see this more clearly). Save the indexed color version as prostate1.tif
and compare its file size with the RGB prostate file. What do you find?

Activity 2.7 Pseudocolor
Open arteriogram, a grayscale image of the blood vessels in the neck and upper

chest. Go to Image/Color/Edit LUT to see its grayscale LUT. Make a duplicate
image, and add pseudocolor to it using Image/Lookup Tables. There are a
number of built-in tables to use: choose Spectrum. Then go to Image/Color/
Show LUT to see the LUT as a band of colors, and to see how it was obtained
from a combination of R, G and B. Go to Image/Color/EditLUT to see the 256
colors used in the image as a palette running from 0 to 255. Look at some of the
other LUTs, including Fire. Note that the pixel values are not changed, just used as
addresses within different color look-up tables. Do you think false color is effective
at enhancing the appearance of the image?

Exercises

2.1 If the concentration of cones in the human fovea is 180000 mm−2, how far apart are
they? What angle is subtended at the lens by adjacent cones?

2.2 The total MTF of an imaging system at 2 lpmm−1 is 0.25. Assuming three serial
components contribute to system blurring, and that two are identical with an MTF
value of 0.75 each at 2 lpmm−1, calculate the MTF value of the third component at
that frequency.

2.3 Figure E2.1 shows the MTF curves for four different imaging systems, A–D. Which
is the best overall system? Which is the best for imaging small details, less than
0.125 mm in size?
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2.4 What is the size of the smallest object that the imaging system, whose MTF is
shown in Figure 2.12, can resolve?

2.5 Figure 2.12 shows the digitization of an analog profile. What is the size of the
resulting pixels? To what sampling frequency (in dpi) does this correspond?

2.6 If a particular x-ray film has an optical density range of 4.2, howmany bits should a
digitizer have in order to quantize the gray levels, without loss of quality?

2.7 High-definition television (HDTV) in the United States has adopted a standard of
1125 lines per frame (of which 1080 are active) and an aspect ratio of 16:9. If these
images were captured as digital images, to what size of digital image (M ×N) would
they correspond? These images are transmitted 30 times a second; how much
memory would be required to store a 2-hour HDTV program as a series of
uncompressed images?

2.8 A laser beam, 100μm in diameter, is used to digitize a 35cm×42cm radiograph. If
each pixel is to have dimensions comparable to that of the laser beam, of howmany
pixels is the digitized image composed?

2.9 The FWHM of the PSF of a certain CT imaging system is 2mm. How small should
the pixels be? If the field of view (FoV) is 25cm, how many pixels are there along
each side of the image?

2.10 Consider two different x-ray films: a fast film, A, comprising larger, coarser silver
bromide crystals, and a slow film, B, with smaller, finer crystals. Why is film A
faster, and what advantage does that confer? Which of the two films produces the
sharper image?

2.11 You are looking at a red light reflected off a wall. The lighting configuration that
would give rise to this sensation is
(i) a red light source is reflected off a black wall;
(ii) a blue light source is reflected off a red wall;
(iii) a yellow light source is reflected off a magenta wall;
(iv) a magenta light source is reflected off of a cyan wall.
You may like to experiment further with the applet in Colors (Activity 2.3) to
assist with this question; try both “Mixing Lights” (color addition) and “Mixing
Pigments” (color subtraction).

2.12 Which of the three colors in RGB space below is the most saturated? (Use the Color
conversions applet of Activity 2.4.)
(i) (0.3, 0.5, 0.2);
(ii) (0.7, 0.9, 0.7);
(iii) (0, 0.2, 0);
(iv) (0.5, 0.5, 0.1).
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3 Medical images obtained with
ionizing radiation

Overview

The introduction of advanced imaging modalities has significantly improved the diag-
nostic information available to physicians. Computer technology has enabled tomo-
graphic and three-dimensional reconstruction of images, illustrating both anatomical
features (using x-rays) and physiological functioning (using γ-rays emitted from ingested
or injected radioactive tracers), free from overlying structures. Since both x-rays and
γ-rays are forms of ionizing radiation, they must be used prudently in order to minimize
damage to the body and its genetic material.

Learning objectives

After reading this chapter you will be able to:

� explain the basis of imaging using x-rays and γ-rays;
� outline the physical factors involved in imaging modalities using ionizing radiation;
� identify the factors that affect image quality in imaging systems that use ionizing
radiation;

� explain the advantages of computed radiography over film radiography;
� describe the specific challenges in mammography and explain how they are addressed;
� describe the imaging pathway in fluoroscopy;
� explain the advantages and limitations of digital subtraction angiography;
� distinguish planar imaging from topographic imaging;
� reconstruct a simple x-ray tomographic image using backprojection;

� explain how the production of a tomographic image in single-photon emission
tomography (SPECT) differs from that in x-ray computed tomography (CT);

� identify the organs and tissues most sensitive to damage by ionizing radiation.

3.1 Medical imaging modalities

Medical imaging systems detect different physical signals arising from a patient and
produce images. An imaging modality is an imaging system which uses a particular



technique. Some of these modalities use ionizing radiation, radiation with sufficient
energy to ionize atoms and molecules within the body, and others use non-ionizing
radiation. Ionizing radiation in medical imaging comprises x-rays and γ-rays, both of
which need to be used prudently to avoid causing serious damage to the body and to its
genetic material. Non-ionizing radiation, on the other hand, does not have the potential to
damage the body directly and the risks associated with its use are considered to be very
low. Examples of such radiation are ultrasound, i.e. high-frequency sound, and radio
frequency waves.

The modalities which use ionizing radiation, and the issues involved, have been
grouped in this chapter, while the modalities which use non-ionizing radiation are dealt
with in the next chapter. Our treatment of the imaging modalities is not exhaustive, and
concentrates on the images and the issues encountered in obtaining them rather than the
technical details of the imaging equipment.

3.2 Images from x-rays

X-ray imaging has been used in clinical diagnosis almost from the time of Roentgen’s
discovery of x-rays. X-rays are generated in an x-ray tube, which consists of an evacuated
tube with a cathode and an anode (Fig. 3.1(i)). Heating a tungsten filament within the
cathode releases electrons by thermal excitation. The filament is located within a
depression or cup having sharp contoured edges which electrostatically focus the elec-
tron beam (Fig. 3.1(ii)). Increasingly negative voltages applied to the cathode cup can
focus the electrons into a narrow beam or even switch off the beam entirely. The electrons
are accelerated towards the positive (50–120 kV) anode, where they strike an embedded
tungsten target, producing x-rays. The tube is evacuated so that the electrons pass to the
anode in a straight path, and are not scattered by other particles in the tube. The majority
of x-ray tubes, apart from those in low output dental and small mobile x-ray units, employ
rotating anodes so that the electrons strike a larger area around the rim of the anode and
do not over-heat the target. The region on the target from which x-rays are produced is
called the focal spot, and its diameter is known as the focal spot size.

The electrons acquire a large kinetic energy during their acceleration in the electric
field. When an electron is accelerated through an electric potential of 60 kV, for example,
it acquires an energy of 60 keV, where the electron-volt (eV) is a small unit of energy
(1 eV= 1.6 × 10−19 J). The electrons lose this energy when they are decelerated at the
target. About 99% of the energy lost by the electrons goes into heat and the remaining 1%
is converted into x-rays. The maximum energy of each x-ray photon produced in these
collisions is 60 keV; many have less energy, if the electron does not come to a complete
stop. Usually most of the x-rays produced are part of a continuous spectrum (bremm-
strahlung x-rays) with energies up to the energy of the accelerated electrons (Fig. 3.2(i)),
although there are some x-rays (characteristic x-rays) with discrete energies produced as
a result of electrons being ejected from the innermost (K) shell of the atoms of the target,
and other electrons falling into the vacancies left behind, giving up their excess energy in
forming a characteristic x-ray (Fig. 3.2(ii)).
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Figure 3.1 (i) A standard x-ray tube; (ii) focusing the electron beam using a negative voltage to the
cathode cup. (Part (ii) after Dowsett et al., 2006, p. 76. Reproduced by permission of Edward
Arnold (Publishers) Ltd.)
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Figure 3.2 Production of (i) bremstrahlung x-rays, when electrons are deflected by a heavy nucleus, and
(ii) characteristic x-rays, resulting from the excess energy of an electron falling into the vacancy
caused by an ejected inner shell electron. (Part (ii) after Wolbarst (1993), p. 57.)
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Characteristic x-rays are characteristic of the target material, since they depend on
the energy level differences of the atoms of the target. In regular radiography, using
a tungsten target, most of the x-ray energy produced is bremmstrahlung radiation
(Fig. 3.3); whereas in mammography, using a molybdenum target, most of the x-rays
produced are (molybdenum) characteristic x-rays, with precise energies.

The high voltage to the anode is switched on for only a fraction of a second to produce
a pulse of x-rays, which exit through a glass window in the metal housing of the x-ray
tube. The x-rays are filtered by a thin sheet of aluminum to remove low-energy x-rays
which would be unable to penetrate body parts. If these were not filtered out, they would
be absorbed by the body and increase the dose to the patient.

The radiographer can control the exposure in two ways. Changing the voltage (kV)
across the tube changes the energy of the electrons, and hence the maximum energy of the
x-ray photons and their penetrating ability. Changing the filament current (mA) changes
the number of electrons produced, and therefore the number of x-ray photons, i.e. the
intensity of the x-ray beam.

X-rays and visible light are both part of the electromagnetic spectrum (Fig. 1.2), and,
as such, have both wave and particle properties. As particles, the energy of a single
photon, E, is given by

E ¼ hf (3:1)

where h is Planck’s constant (6.626 × 10−34 J s) and f is the frequency of the correspond-
ing wave. For a 60 keV x-ray photon, the frequency of the x-ray wave is 1.45 × 1019Hz.

All waves obey the following relationship:

f l ¼ c (3:2)
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Figure 3.3 Spectrum of x-rays from an x-ray tube, with a tungsten target, operating at 100 kVp. The
high-energy cut-off is determined by the electron energy, which in turn is determined by the kVp
across the tube; the low-energy cut-off is determined by the thickness of an aluminum window
on the tube, which stops very low energy x-rays. Characteristic K-shell radiation is shown
superimposed on the bremmstrahlung spectrum. (Copyright (1999). From Physics for
Diagnostic Radiology, 2nd Edition, by Dendy & Heaton. Reproduced by permission of Taylor
and Francis Group, LLC, a division of Informa plc.)
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where λ and c are the wavelength and speed of the wave, respectively. For electromagnetic
waves in air the speed is 3 × 108m s−1. Thus, a 60 keV x-ray photon has a wavelength of
about 0.02 nm. By comparison, the wavelength of visible light varies between about
400 nm (red) and about 750 nm (blue), corresponding to photon energies of 3–6 eV.
X-ray photons have much greater energy than visible light photons, which is why they
can penetrate the body and cause damage if they are absorbed.

X-rays interact with the body either by (photoelectric) absorption (Fig. 3.3(i)), where
the x-ray photon is absorbed in the course of liberating an electron from the inner shell of
an atom, or by (Compton) scattering (Fig. 3.3(ii)), where only part of the x-ray photon
energy is used to liberate an electron from an outer shell and the photon changes direction
(Fig. 3.4). The former contributes to radiation dose (absorbed energy per unit mass) and
consequently to the risk of biological damage to the patient; the latter results in a loss of
image quality.

The consequence of these interactions is that the intensity of the beam, which is
proportional to the number of x-ray photons in it, is reduced. Different tissues affect
the beam by differing amounts, depending on their thickness (t) and the attenuation
coefficient (μ) of the material. The intensity, I, of an x-ray beam after passing through a
material of thickness, t, is related exponentially to its initial intensity, I0, by

I ¼ I0e
��t (3:3)

Photoelectric absorption depends on the effective atomic number of the material, Zeff,
and the x-ray energy, E, roughly as Zeff

3/E3; and Compton scattering depends on the
electron density of the material, ρelect, which varies roughly as Zeff, and the x-ray energy,
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Figure 3.4 (i) X-ray interaction with the body by photoelectric absorption; the x-ray photon gives up most
of its energy to liberate a K-shell electron, with any excess given to the (photo) electron as kinetic
energy. (ii) Compton scattering, where only part of the x-ray photon energy is used to liberate an
electron from an outer shell and the photon changes direction.
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as ρelect/E. Thus materials such as bone have a higher value of attenuation coefficient
and attenuate x-rays more than soft tissues, as a consequence of their larger Zeff, and
(photoelectric) absorption is the dominant interaction. Materials with a high effective
atomic number, such as iodine (Zeff = 53) or barium (Zeff = 56), can be used to increase
attenuation. They can be injected or swallowed to change the attenuation of soft tissues
filled with the material compared to other soft tissues, and are known as contrast agents.
For higher-energy x-rays, the overall attenuation is smaller with very much smaller
photoelectric absorption and Compton scattering becoming dominant.

In projection or planar x-ray radiography the image is a simple two-dimensional
projection or shadowgram of a three-dimensional object, the part of the patient in the
field of view (Fig. 3.5); x-ray film is the detector. Projection radiography includes

� film-screen radiography, including chest radiography, abdominal radiography, angio-
graphy (studies of blood vessels) and mammography (Activity 3.1 has examples of the
resulting radiographs and their visualization);

� fluoroscopy, in which images are produced in real time using an image intensifier tube
to detect the x-rays;

� computed radiography, in which a re-usable imaging plate containing storage phos-
phors replaces the film as the detector;

� digital radiography, which uses semiconductor sensors.

Images of the human body can be acquired or displayed in three main orientations
(Fig. 3.6). The coronal plane divides the body into front and back. This is the orientation
displayed in the common posterior–anterior (PA) chest radiograph, where the x-rays
enter from the patient’s back (posterior) and are collected by a film placed at his
front (anterior). The acquired image is a superposition of many coronal images at
different depths within the body. The sagittal plane is a side view, dividing the body
into right and left, and the transverse plane, sometimes referred to as the axial or trans-
axial plane, is a plane perpendicular to the long axis of the body, dividing it into top and
bottom planes.
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X-ray
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Optical density (OD)
of developed film

0 1

Detection
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Image

2

Figure 3.5 Basic components of x-ray imaging. Fewer x-rays pass through the ribs, due to their high
attenuation, resulting in less blackening of the film, i.e. the ribs appear whiter. (After Wolbarst
(1993), p. 16.)
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3.2.1 Plain (film-screen) radiography

A typical normal posterior–anterior (PA) chest radiograph is shown in Figure 3.7(i). The
exposure settings for chest radiographs are chosen so that the visualization of the lungs is
favored: the heart can also be seen, with the left ventricle and the aortic arch giving rise to
more prominent shadows on the left side of the patient’s spine. The radiograph is always
viewed so that you seem to be facing the patient, so that the patient’s left is on the right
hand side of the image. Figure 3.7(ii) shows a patient with tuberculosis, with patchy
opacities noticeable in the upper parts of the lungs. Activity 3.2 is an exercise in
measuring the average width of a rib from a chest radiograph.

Unsharpness
In order to obtain as sharp an image as possible, the x-ray machine should produce a
narrow beam of x-rays, while the patient should be close to the detectors and far away
from the x-ray tube (Fig. 3.8).

From the geometry of the image formation (e.g. the similar triangles ABP and CDP),
the blurring effect due to geometric unsharpness, UG (equal to CD) is given by

YZ

XZ

XY

Sagitta
l

plane
Coronalplane

Transverse
plane

Figure 3.6 The three main imaging orientations for the human body: the coronal, sagittal and transverse
planes. (After NASA RP-1024, Anthropometric Source Book.)
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(i) (ii)

Figure 3.7 Posterior–anterior chest radiographs of (i) a normal patient and (ii) a patient suffering from
tuberculosis.
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Figure 3.8 Blurring at the detector plane results from the x-ray focal spot size and placement of the patient.
The closer the patient is to the detectors, the smaller the blurring.
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UG ¼ focal spot sizeðsÞ � object--image distance

focus--object distance
(3:4)

In order to minimize blurring and to keep the image as sharp as possible, the focal spot
size of the x-ray generator should be small and the patient placed close to the detector to
keep the object–image distance small and the focus–object distance large.

The sensitivity of photographic film to x-rays is so low that it would require a large
number of x-ray photons, and hence a large dose of radiation to the patient, to produce an
image. Only about 2% of incoming x-ray photons are captured by film and result in an
image; the percentage of detected photons, or probability that a single photon is detected, is
called the quantum efficiency (QE). In order to circumvent this problem, a fluorescent
intensifying screen containing phosphor particles is used to convert x-rays into visible
light, to which the film is more sensitive. Moreover, each x-ray photon is converted into
thousands of visible light photons, which is possible because x-ray photons have much
greater energy than light photons. Generally, two screens are used, either side of a
double-emulsion film, so that most of the light produced is utilized (Fig. 3.9). The overall
effect is to increase the quantum efficiency of the film-screen combination to about
25% permitting a consequent reduction in the x-ray photon numbers, which minimizes
the x-ray dose to the patient. Shorter exposure times reduce the image unsharpness that
occurs because of patient motion, UM, which may be a combination of voluntary and
involuntary motion.

The thicker screen absorbs more of the x-rays, and this improves the signal-to-noise
ratio, SNR, of the image. However, the light photons produced within the screen diverge
before they reach the film, resulting in an additional contribution to the overall unsharp-
ness, which becomes more significant with thicker screens (Fig. 3.10). In addition, faster
screens comprising large phosphor particles, which are more sensitive to incoming x-rays,
contribute more to unsharpness (Fig. 3.11). The contribution of all the effects contributing
to unsharpness as a result of the detector is known as the detector unsharpness, UD.

The total blurring or unsharpness of a system comprising a combination of contribut-
ing sources is given by the full width at half maximum, FWHM, of its total point spread
function, PSF, which is obtained by convolving the contributing point spread functions
(Equation (2.2)). Rather than using convolution, which is a somewhat complicated
operation, the contributions can be added in quadrature, i.e. as the square root of the
squares, to a close approximation, i.e.

UTOT � pðUG
2 þUM

2 þUD
2 þUI

2Þ (3:5)

where UG, UM, UD and UI are, respectively, the contributions to unsharpness from the
geometric positioning effect, the effect of patient motion, the effect of the detector, and
what is known as the intrinsic unsharpness, which is determined by the shape of the
object being imaged. In such a situation the contribution with the largest unsharpness
dominates. The total unsharpness of the system is essentially its spatial resolution, the
size of the smallest detectable feature or the minimum resolvable separation of features in
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Figure 3.9 Film-screen combination, comprising two fluorescent screens either side of a film to increase
sensitivity.
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Figure 3.10 Increase in the unsharpness of the image due to light spreading within the screen. The thicker
screen results in more unsharpness.
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Figure 3.11 Increased unsharpness resulting from a fast screen, comprising large phosphor particles, shown
at right, compared with a reduced unsharpness resulting from a slow screen, which comprises
small phosphor particles, shown at left.
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the object. Typical values for the spatial resolution of various medical imaging systems
are given in Table 3.1.

Contrast
X-rays interact with a patient’s body in various ways (Fig. 3.12). They can penetrate the
body, moving in a straight line from source to detector; these are the primary x-rays that
produce a faithful shadowgram. Some x-rays are absorbed within the body by the
photoelectric effect; these x-rays do not contribute to producing an image, and instead
increase the dose, and therefore the risk, to the patient. Others undergo (Compton)
scattering within the patient, producing scattered or secondary x-rays, some of which
reach the detector; they produce random blackening over the film. If the subject
contrast is defined as log10 (I1/I2), where I1, I2 are the transmitted x-ray intensities

Table 3.1 Typical spatial resolution of medical imaging modalities.

Modality Spatial resolution (mm)

Film-screen radiography �0.05
Computed radiography 0.1–0.2
Computed tomography (CT) 0.25–0.5
Fluoroscopy �0.5
Magnetic resonance imaging (MRI) 0.5–1.0
Ultrasound 1.0–5.0
Nuclear medicine (NM) 3.0–10.0

Absorption
Patient

Secondary x-rays

Detector

Scattering

Primary x-rays

Figure 3.12 Interaction of x-rays with a patient’s body.
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passing through the soft tissue and bone, respectively (Fig. 3.13(i)), the effect of scatter
is to produce a roughly constant background intensity, IS, superimposed on the real
image and consequently to reduce the contrast to log10 ((I1 + IS)/(I2 + IS)) (Fig. 3.13(ii)).
This ratio of the contrast in the presence of scatter to the contrast if there was no
scatter is termed the scatter degradation factor, SDF; it is a value less than unity, with
smaller values indicating a greater reduction in contrast due to scatter. The scatter
degradation factor is related to the ratio of the total scattered to primary radiation
intensities, S/P, by

SDF ¼ P=ðPþ SÞ ¼ ð1þ S=PÞ�1 (3:6)

The amount of scatter increases with the volume of the body part irradiated (i.e. both a
larger field of view, FoV, and a larger thickness result in additional scattering) and with
increasing kVp (since the ratio of Compton scattering to photoelectric events increases
with kVp). Mammography uses lower-energy x-rays and compression of the breast
(to decrease the overall tissue thickness) to reduce the scatter-to-primary ratio (to
�0.4−1.5), resulting in a higher scatter degradation factor (of 0.71–0.4) and less degra-
dation of the subject contrast by scatter.

Another way of minimizing scatter degradation is to place an anti-scatter grid
between the patient and the detector (Fig. 3.14(i)). This grid consists of thin strips
of lead foil interspersed with highly transmissive interspace material, such as aluminum
or carbon fiber, as a support, with the strips orientated parallel to the direction of the
primary radiation. Most of the primary x-rays pass between the lead strips, whereas
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Figure 3.13 Formation of a radiographic image (i) without scatter and (ii) with scatter.
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the scattered x-rays enter the grid at an oblique angle and are absorbed by the lead strips.
The grid ratio, h/D, where h is the height of the lead strips and D is their separation,
determines that angle and is the primary determinant of the effectiveness of a grid in
removing scattered radiation. Grid ratios vary between about 6:1 and 16:1 in routine
radiographic systems, with less scattered radiation reaching the image receptor for large
grid ratios. Since scatter depends on the thickness of the body part, lower grid ratios, or no
grid at all, can be used with thin body parts (e.g. extremities, such as the hand or foot) but
larger grid ratios are used for thick body parts (e.g. abdomen or chest). In mammographic
systems the grid ratio can be as low as 2:1. The simple linear grid has now been largely
replaced by the focused linear grid, where the lead strips are progressively angled on
moving away from the central axis (Fig. 3.14(ii)). This eliminates the problem of “cut-
off” at the periphery of the grid but requires careful placement of the grid so that the
angles of the strips match the divergence of the x-rays. In order that the lead strips do not
cast a shadow on the image, the grid is usually placed in a special holder (“Bucky”) which
moves the grid during the exposure to blur this effect.

There is a price to be paid for using grids to reduce scatter in order to preserve contrast
in the image. Some primary radiation strikes the lead strips head-on and is absorbed. In
order to compensate for this loss, the x-ray tube current needs to be increased somewhat,
which increases the radiation dose to the patient. This is part of a general underlying
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Figure 3.14 (i) A parallel grid, shown end on; the lead strips are of height h and separated by a distance D.
(ii) A focused grid matches the divergence of the x-ray beam to allow more primary x-rays to
pass through. (After Wolbarst, 1993, p. 175.)
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principle: the better the quality of image required, the more radiation is needed. In
x-ray imaging, a compromise between patient radiation dose and image quality must
be sought.

3.2.2 Computed radiography

Computed radiography (CR) is fast superseding plain (film-screen) radiography. It uses a
photostimulable phosphor plate (PSP) or imaging plate (IP) to replace the standard
intensifying screen/x-ray film combination in a cassette. The imaging plate comprises
a screen coated with a storage phosphor. When the imaging plate is exposed to x-rays,
electrons absorbed by the phosphor are excited to higher energy levels and are trapped
there, typically for several days, resulting in a latent (or hidden) image. Reading the latent
image in the imaging plate involves scanning the plate in a raster pattern with a
well-focused laser beam. The laser light stimulates the release of the trapped
electrons, accompanied by the release of blue light, which is converted to a voltage by
a photomultiplier; the voltage signal is digitized and stored in a computer (Fig. 3.15).
This process avoids the chemical processing required with traditional film, and,
after scanning, the imaging plate can be erased by exposure to intense visible light, for
subsequent re-use.

The imaging plate has a further advantage over film-screen because its response to
x-rays is linear, unlike the sigmoidal response of film (Fig. 3.16). With film the exposure
needs to be adjusted so that all objects of interest fall on the approximately linear part of
the curve, in order to avoid under- or over-exposure; this is very difficult when, for
example, imaging bone and soft tissue together. The linear response of the imaging plate
results in a much wider useful exposure range with the exposure being much less critical.
Since the images are now stored digitally, they can be manipulated at will to adjust, for
example, their brightness and/or contrast. In theory, a reduction in the exposure, and
hence dose to the patient, is possible; however, reduced exposure of the imaging plate
would result in a lower signal-to-noise ratio, so that in practice similar exposure factors to
film-screen systems are generally used.

The spatial resolution of computed radiography depends on the sampling rate at read-
out, which depends on the optics. For typical sampling rates of 5–10mm−1, the spatial
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Figure 3.15 Reading of an imaging plate in computed radiography.
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resolution is 2.5–5.0 lpmm−1. Although not as high as film-screen radiography, this is
certainly adequate for most diagnostic radiography.

3.2.3 Mammography

X-ray mammography is one of the most challenging areas in medical imaging. It is used
to distinguish subtle differences in tissue type and detect very small objects, while
minimizing the absorbed dose to the breast. Since the various tissues comprising the
breast are radiologically similar, the dynamic range of mammograms is low. Special
x-ray tubes capable of operating at low tube voltages (�25–30 kV) are used, because the
attenuation of x-rays by matter is greater and predominantly by photoelectric absorption
at small x-ray energies, resulting in a larger difference in attenuation between similar soft
tissues and, therefore, better subject contrast. However, the choice of x-ray energy is a
compromise: too low an energy results in insufficient penetration with more of the
photons being absorbed in the breast, resulting in a higher dose to the patient. Most
modern x-ray units use molybdenum targets, instead of the usual tungsten targets, to
obtain an x-ray output with the majority of photons in the 15–20 keV range.

In order to detect microcalcifications, with diameters that can be less than 0.1mm, the
spatial resolution of the imaging system needs to be optimized. The target within the
x-ray tube is angled so as to produce a small focal spot size (0.1–0.3mm), and large focal
spot-to-film distances (45–80 cm) reduce the effects of geometric unsharpness.
Compression of the breast, normally to about 4 cm in thickness, reduces x-ray scatter
and ensures a more uniform exposure. Immobilization allows a shorter exposure time
which minimizes motion blurring. In film mammography, single-emulsion film, without
an intensifier screen, is used to minimize the detector contribution to unsharpness, even
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Figure 3.16 Response curves of film and imaging plates (1024 gray levels are shown, corresponding to a
12-bit system).

3.2 Images from x-rays 61



though this necessitates the use of higher x-ray doses: in digital mammography, the film
is replaced by semiconductor sensors.

Currently, most mammograms are visually examined by humans in search of subtle
and complicated indicators of breast cancer (Fig. 3.17). Clusters of microcalcifications,
tiny calcium deposits, are diagnostic of early stage breast cancer. Ill-defined masses with
strands of tissue (spiculations) radiating out from them, and producing a stellate appear-
ance, are a diagnostic feature of malignancy. Reading mammograms can be a tedious and
time-consuming task: computer-assisted diagnosis software is able to highlight suspi-
cious areas in digital mammograms automatically for checking by a human expert.

Other imaging approaches, which obviate the need for ionizing radiation, have been
used to diagnose early breast cancer. The most notable of these are ultrasound, magnetic
resonance imaging (MRI), electrical impedance tomography and thermography.
Ultrasound has been shown to complement x-ray mammography, since it is capable of
differentiating solid tumors from cystic lesions. Magnetic resonance imaging is useful in
imaging dense breast tissue, which is often found in younger women. Electrical impe-
dance scanning devices are being used to detect breast tumors, which have much lower
electrical impedance than normal breast tissue. Pre-cancerous and cancerous masses need
an abundant supply of nutrients to maintain their growth. In order to provide this they
increase circulation to their cells and create new blood vessels; this process results in an

(i) (ii)

Figure 3.17 (i) Normal breast. (ii) Dense opacity and spiculations (in the outlined area) indicative of a
malignant lesion.
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increase in regional surface temperatures of the breast. Breast thermography uses ultra-
sensitive infrared cameras to produce high-resolution images of these temperature and
vascular changes (Fig. 3.18).

3.2.4 Fluoroscopy and digital subtraction angiography

X-ray fluoroscopy is a continuous or dynamic imaging technique, where moving images
of the patient can be seen in real time. The resultant x-ray dose can be very high, since the
procedure can last for tens of minutes. In an attempt to limit the dose, a lower x-ray
tube current is used. As a result of the reduced numbers of x-ray photons per unit time, the
signal-to-noise ratios of the images are inherently low.

The film detector is replaced by an image intensifier (I I) tube (Fig. 3.19). Incoming
x-ray photons strike a fluorescent tube producing visible photons, which liberate (photo)
electrons at a photocathode; these electrons are focused and accelerated towards an
output fluorescent screen, where they produce visible photons. The number of light
photons produced within the tube is amplified, typically by a factor of several thousand.
This is known as the brightness gain of the I I tube, and results in images bright enough to
be captured by a video camera and displayed on a monitor, even when relatively low
x-ray intensities are used. In digital fluoroscopy the video signal is digitized and the
image stored in a computer.

The spatial resolution of fluoroscopic images is determined by the size of the detectors
at the input (fluorescent) screen, which are small needle-shaped crystals of cesium iodide
typically about 0.1mm in diameter. This corresponds to a spatial frequency of about
5 line-pairs (lp) mm−1, which is inferior to that of x-ray film-screen radiography. The
combination of factors leading to loss of spatial resolution is best seen in the frequency
domain using modulation transfer functions, MTFs (Fig. 3.20). The total modulation
transfer function is the product of the component modulation transfer functions
(Equation (2.5)). The modulation transfer function of the monitor is the smallest and
reduces the total modulation transfer function of the fluoroscopic imaging system to give

(i) (ii)

Figure 3.18 Breast thermograms of (i) normal breasts and (ii) breasts showing a suspicious difference in
temperatures. See also color plate.
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a limiting spatial frequency, measured at MTF= 0.1, of about 1 lpmm−1. Thus the
smallest detectable object is 0.5mm.

Solid-state flat-panel detectors are an alternative to image intensifiers. They offer increased
sensitivity to x-rays, and therefore have the potential to reduce patient radiation dose. Their
temporal resolution is better than that of image intensifiers, reducing motion blurring. Flat-
panel detectors have a linear response over a very wide latitude of x-ray intensity, and can
therefore deliver images of greater contrast. Their spatial resolution is similar to that of image
intensifier tubes, and they are free of the pin-cushion distortion and uneven illumination
(vignetting) that plagues image intensifiers. However, flat-panel detectors are considerably
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Figure 3.19 Image intensifier tube. (After Wolbarst, 1993, p. 233.)
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more expensive than image intensifier tubes, so that their uptake is primarily in specialties
that require high-speed imaging, e.g. vascular imaging and cardiac catheterization.

The contrast of the fluoroscopic image is limited by x-ray scatter in the patient, which
can be minimized by using smaller fields of view to limit the volume involved and by
using anti-scatter grids. If the fluoroscopic images are digitized, or if a CCD video camera
is used, then contrast can be adjusted within the computer system.

The acquisition of digital fluoroscopic images can be combined with injection of
contrast material and real-time subtraction of pre- and post-contrast images to perform
examinations that are generally referred to as digital subtraction angiography, DSA
(Fig. 3.21). The result is an image of only the contrast material-filled vessels (Fig. 3.22).
Since the images were formed by detection of x-rays that had been attenuated exponen-
tially in the body, subtraction of pre- and post-contrast images must take this exponential
attenuation into account by subtracting, pixel by pixel, the logarithm of the respective
images: hence the log amplifier in Figure 3.21.

The process of subtracting two images has the unfortunate consequence of producing a
noisier subtracted image. Consider subtracting two corresponding pixels: one from the
mask (pre-contrast) image, resulting from a signal of 10 000 (±100) photons, and one
from the live (post-contrast) image, resulting from a signal of 9900 (±100) photons. The
subtracted image has a pixel value corresponding to 100 ± 141 photons, i.e. the pixels are
subtracted, but the noise adds as the square root of the sum of the squares of the
amplitudes. The initial two images with signal-to-noise ratios of 100 and 99, respectively,
result in a subtracted image with a signal-to-noise ratio of only 0.7! In the normal course
of events this would be unacceptable. However, subtracted angiographic images,
although noisy, are useful because they make the small differences between the two
original images, pre- and post-contrast, very noticeable or conspicuous and the small
contrast-laden vessels are easily seen. They are said to have high conspicuity, rather like
the spot-the-difference pictures in popular magazines.

Frame averaging can be used to decrease displayed image noise. The current image or
frame can be averaged with one or more previous frames, since averaging reduces
random, uncorrelated noise according to the square root of the number of frames

Figure 3.21 Schematic digital x-ray fluoroscopic imaging system as used for digital subtraction angiography.
(After Wolbarst, 1993, p. 312.)
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averaged. Frame averaging may work well for static images, at the cost of increased
radiation exposure to the patient, but the increased image lag may be unacceptable for
producing images of a dynamic process. The signal-to-noise ratio is also directly
proportional to the concentration of the contrast medium, but increasing its concentration
involves increased risk to the patient also.

The patient should be immobile between the acquisition of the mask and live images,
otherwise the images will not be registered properly and motion artifacts, in the form of
whitish streaks, will be visible in the subtracted image. The solution is to shift the mask

(i) (ii)

(iii)

Figure 3.22 (i) Mask or pre-contrast image; (ii) live or post-contrast images; (iii) the subtracted image
(live-mask), clearly showing the blood vessels.
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image by a few pixels, to obviate the motion, before subtraction (Fig. 3.23). This pixel-
shifting tends to be a trial-and-error process, involving a combination of shifts in different
directions and by differing amounts. Motion artifacts can be a significant problem in
cardiac studies, resulting from the involuntary motion of the soft tissues.

3.2.5 Computed tomography

Conventional radiographic procedures, those which we have described so far, produce
planar images that are projections of three-dimensional objects onto two-dimensional
planes. This results in a considerable loss of information. The superpositioning of over-
lying organs complicates their identification, unequal magnification effects cause distor-
tion, and x-ray scattering can result in poor dynamic range. Tomographic imaging, of
which x-ray computed tomography (CT) is an example, is a technique that was developed
for producing transverse images, by scanning a slice of tissue from multiple directions
using a narrow fan-shaped beam. The data from each direction comprise a one-dimen-
sional projection of the object, and a transverse image can be retrospectively recon-
structed from multiple projections. The body can be compared to a loaf of sliced bread,
and a transverse image can be produced as if it were a selected slice viewed face-on
(Fig. 3.24). The slice thickness can be reduced to 1mm or so, so that very little super-
positioning occurs. Indeed, if many transverse images are obtained, the data can be
presented as an image in any plane, or even as a three-dimensional composite image.

A computed tomography (CT) scanner looks like a big, square doughnut. The patient
is placed within the aperture of the rotating frame or gantry (Fig. 3.25(i)). The geometry
of scanning has been changing with time, with each major step forward being called a

(i) (ii)

Figure 3.23 (i) Motion artifacts appearing as white streaks in the image. (ii) Minimization of motion artifacts
by pixel-shifting.
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new generation. In the third-generation scanners, an x-ray tube mounted on the gantry
revolves around the patient, a tightly collimated fan-beam of x-rays enters the patient,
and an arc of detectors on the opposite side, and rotating synchronously with the x-ray
tube, records the intensity of emerging radiation (Fig. 3.25(ii)). The x-ray tube is always
on, and readings from the detectors are taken about a thousand times during the rotation.

The first-generation CT scanner, used for scans of the head, illustrates many of the
principles of the method, and is easier to visualize (Fig. 3.26). A tightly collimated beam
minimizes scatter and radiation dose to adjacent tissue. The beam is swept linearly across
the patient’s head, and a single detector, moving synchronously with it, measures the
transmitted radiation at regular intervals; this is known as a scan. The tube is turned off,

Figure 3.24 The body as a loaf of sliced bread; a transverse image is a slice of bread viewed end on.

(i) (ii)

Figure 3.25 (i) Outside view of third-generation CT scanner showing the patient table and gantry aperture.
(ii) When the cover is removed, the x-ray tube and the arc of detectors can be seen. The gantry
holding the x-ray tube and detector rotate around the patient as the data are gathered.
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the gantry rotated by a small angle (�1°), and another scan performed. This is repeated to
give scans covering 180°. The sampling interval and the angle of rotation determine the
pixel size in the reconstructed transverse image, and the collimator width determines the
slice thickness. The motion is known as translate-rotate.

A transverse slice of the body is schematically divided into many small volume
elements or voxels (Fig. 3.27). They are displayed on a monitor as an array of pixels,
where the third dimension, the slice thickness, has been flattened. Using the first-
generation scanning as the model, the measured x-ray intensity depends on the sum of
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Figure 3.26 Operation of a first-generation CTscanner. (i) Translatemotion comprising a single scan. (ii) Different
scans are taken after a rotation of the beam and detector. (After Wolbarst, 1993, p. 322.)
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Figure 3.27 Matrix of voxels comprising the patient, with x-rays shown entering and leaving at
differing angles.
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the attenuation coefficients (μi,j) for each of the voxels in that particular path. Substituting
the sum of the attenuation coefficients along a line of voxels (μi,j) into Equation (3.3) and
taking the natural logarithm gives the ray sum, p, along this particular path:

p ¼ �lnðI0=IÞ ¼ �� i;jt (3:7)

The reference intensity, I0, is measured for each detector in a calibration step. A complete
set of ray sums at a particular gantry angle comprises a projection or profile.
Measurements of the x-ray beam intensity after penetrating the patient, I, are recorded;
since the output of the x-ray tube, I0, and the size of the voxels, t, are known, the sum of
the attenuation coefficients (∑ μi,j) along particular paths can be calculated. These values
are calculated for many different directions. The task of x-ray computed tomography
image reconstruction is to solve for the individual attenuation coefficients of each voxel,
and to assign a value depending on the attenuation coefficients to each pixel in a two-
dimensional array which then describes the transverse image.

Several correction factors need to be implemented prior to the calculation. The
x-ray beam is not mono-energetic and attenuation is known to depend on x-ray energy.
The effective energy of the x-ray beam increases as it passes through the patient due
to the greater attenuation of lower-energy x-rays, an effect known as beam hardening. This
results in the effective attenuation coefficients of a voxel containing a particular material
decreasing with its distance into the patient; correction algorithms typically estimate the
distance traveled by the x-rays to each voxel. A further complication is that x-ray beams at
an angle to the voxel grid traverse different path lengths through different voxels.

The individual attenuation coefficients for each voxel can be obtained exactly, by
using simultaneous equations, essentially by matrix inversion. However, for a matrix size
of 512 × 512, at least 262144 simultaneous equations would be needed to ensure that
they were independent, and more would be required to account for noise and patient
motion. Matrix inversion is being used in industrial applications where limited rotation
angles are possible. In medical imaging a number of alternative algorithms, such as
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Figure 3.28 An object comprising four voxels and its projections.
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backprojection, filtered backprojection and direct Fourier reconstruction, are routinely
used. They will be considered in detail in a later chapter (Chapter 7).

The idea behind backprojection (i.e. the linear superposition of backprojections) is
straightforward. Projections are acquired at a number of different directions. Taking each
projection in turn, the values in the projection are projected back through the matrix,
giving each voxel the full value rather than attempting to split it between the different
voxels along the path. Values are added from the different directions. In a final stage they
are adjusted to obtain the correct attenuation values, which are then scaled to give gray
values for displaying the reconstructed image.

Figure 3.28 shows a simple example of an object comprising four voxels, with
projections acquired for four different directions. Taking each projection in turn, the
values in the projection are back projected, giving each voxel the full value. For example,
back projecting P1 gives

3 3

4 4

Back projecting P2, and adding to the values already in the pixel positions, gives

8 5

9 6

Repeating this procedure for P3, and adding to the values already in the pixel positions, gives

9 7

13 7

and back projecting P4, and adding to the values already in the pixel positions, gives

10 13

19 7

These values are too high since we have not attempted to split projection values between
voxels, and have added together the values from different projections. To counter these
effects, the sum of the values in any of the projections (7, in this example) should be
subtracted from every voxel to give

3 6

12 0
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The values should then be normalized by dividing by the highest common factor (3, in
this example), which gives

1 2

4 0

These are indeed the attenuation values which result in the measured projection values of
Figure 3.28.

Backprojection can be considered schematically (Fig. 3.29). Several scans are taken
from different directions, each providing information on the total attenuation along that
path. These are then back projected, giving the total attenuation to all voxels in the path.
Note however that there is a typical star artifact around the image; the more scans, at
many varying angles, which are collected, the less noticeable is this blurring. This is a
limitation of the algorithm since projections at an angle to the image grid intersect
incomplete pixels. To minimize this effect, filtered backprojection is required; this
involves filtering the projections prior to back projecting them.

The problem of reconstructing a two-dimensional (transverse) image from a series of
one-dimensional projections is common to a number of imaging modalities. The radia-
tion can be transmitted through the object such as in x-ray computed tomography or
emitted from internal radiation sources as in nuclear medicine scans (SPECT and PET);
or the radiation involved can be non-ionizing radiofrequency pulses, as used in magnetic
resonance imaging, MRI.

X-rays

X-raysX-rays

Projection Backprojection

(i) (ii)

Figure 3.29 A schematic representation of backprojection. Three projections are (i) collected and then
(ii) back projected. (After Wolbarst, 1993.)
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With x-ray computed tomography, instead of using the attenuation coefficients, μi.j,
directly as the gray values of the pixels in the reconstructed image, CT numbers
or Hounsfield units (HU) are used. These are defined relative to the attenuation of
water as follows:

CT number ðor HUÞ ¼ 1000�
ð�� �H2OÞ

�H2O
(3:8)

This definition minimizes the dependence of the reconstructed image on the energy of the
x-ray beam used and produces unit-less pixel values, which are essentially integral.
Using this equation the CT number of water, which constitutes 80–90% of soft tissue, is
conveniently defined as zero, and that of air as −1000. Other materials have either
positive CT numbers, if they attenuate x-rays more than water does, or negative CT
numbers if they are less attenuating than water. Table 3.2 shows the typical CT numbers
of various tissues. Very dense bone has a CT number of �3000, so that the range of CT
numbers is from –1000 to �3000. This range, of about 4000, requires 12-bit pixels to
describe them adequately, since that provides 4096 levels (212 = 4096).

A range of 4096 pixel values in a computed tomography image is useful for quanti-
tative processing. However, all of these values cannot be displayed separately on a
computer monitor, which can only display 256 shades of gray. This mismatch requires
either that blocks of 16 (i.e. 4096/256) CT numbers be displayed with the same shade of
gray, in which case values within each group cannot be distinguished in the image, or that
only a restricted range orwindow of CT numbers be visualized and used to span the range
from black to white (Fig. 3.30). In this latter case, the range of CT numbers is known as
the window width, WW, and the middle of the range is known as the window level, WL.

Table 3.2 CT numbers of various tissues.

Tissue CT number (HU)

Bone 1000 +
Hemorrhage 60−110
Liver 50–80
Muscle 44–59
Blood 42–58
Gray matter 32–44
White matter 24–36
Heart �24
Cerebrospinal fluid 0–22
Water 0
Fat − 20 to −100
Lung −300
Air −1000

From Webster (1988).
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For example, for visualizing brain tissue it would be appropriate to choose a window
level at 40HU and a window width of 128. Thus the window would span CT numbers
from −24 to 103HU. These 128 CT numbers would be mapped to the 256 available gray
levels on the monitor, such that every other gray level would be used by a particular CT
number. This results in an image of greater contrast than if blocks of CT numbers were
displayed with the same shade of gray, but only objects with CT numbers falling within
the window width are properly displayed: values below the bottom of the window, i.e.
< −24HU, appear black, and those above the top of the window, > 103HU, appear white.
Even greater contrast can be obtained if the window width is reduced further. Such
windowing can be easily implemented with an appropriate display look-up table, LUT
(Chapter 5).

The spatial resolution in a computed tomography image depends mainly on the size of
the focal spot of the x-ray tube, the size of the detector element and the collimation, and
the shape of the reconstruction filter. It can be equivalently described in terms of the
smallest sized object that can be seen in the image, which is given by the width (FWHM)
of the point spread function, or by the highest spatial frequency which can be properly
imaged, in which case the modulation transfer function is used. Typically, the in-plane
resolution of a CT image is about 0.5mm, corresponding to about 1 lpmm−1. This is not
as good as film-screen radiography (�0.05mm or �10 lpmm−1) or mammography
(�0.025mm or �20 lpmm−1). However, the small slice thickness (�0.5mm) used in
computed tomography imaging results in a clear image, free of the superpositioning of
structures present in projection radiography.

The main contributor to CT image noise is quantum noise as a result of the statistical
nature of x-ray emission. The random fluctuation in the number of detected x-ray quanta
per pixel, N, is given approximately by √N, so that the signal-to-noise ratio increases
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Figure 3.30 Windowing: a range of CT numbers is chosen to span the range of 256 shades of gray (from
black to white) on a display monitor. The width of this range is the window width, and the
mid-point is the window level.
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as √N. Increasing the number of emitted quanta or the scan time would increase the dose
to the patient; more useful would be to increase the quantum efficiency of the detectors. If
the voxel size is increased, then signal-to-noise ratio would improve but at the expense of
reduced spatial resolution, either in-plane or axially. Using a reconstruction algorithm
that incorporates smoothing would also improve the signal-to-noise ratio at the expense
of spatial resolution.

Because CT images are digital their contrast can be easily manipulated by the display
look-up table used after image reconstruction. This makes noise the major limitation in
detecting low-contrast details. Typically computed tomography can distinguish differ-
ences of ≤ 0.5%, i.e. ≤ 5HU, which is better than film-screen radiography which needs
about a 10% difference.

If the patient moves during the acquisition time, characteristic streaks appear in the
image. Ring artifacts occur if the detectors are poorly calibrated or if several fail
(Fig. 3.31(i)). Beam-hardening artifacts can occur if the necessary pre-processing correc-
tions were not accurate. Partial volume effects result when voxels are partially filled by
highly attenuating materials; the weighted average attenuation can be close to the full
value for that material, resulting in narrow, highly attenuating objects, such as the bony
skull, appearing wider than they should be. Streak artifacts (Fig. 3.31(ii)) are common
around metal objects, such as dental fillings, and are due to a combination of effects
including partial voluming, scatter and incomplete beam-hardening correction.

In conventional CT scanners only a single slice is acquired at a time, with the patient
table stationary. The gantry would spin 360° in one direction and enough readings would

(i) (ii)

Figure 3.31 CT artifacts: (i) ring artifacts; (ii) streak artifacts.
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be acquired to reconstruct a single slice; then it would spin 360° back in the other
direction to make a second slice. In between each slice, the gantry would come to a
complete stop and reverse directions while the patient table would be moved forward by
an increment equal to the slice thickness. In the 1980s an innovation known as the slip
ring was developed that allowed electric power to be transferred onto a continuously
rotating gantry, so that scanners could rotate continuously without having to slow
down to stop and start again. This resulted in spiral or helical computed tomography,
where data are acquired while the patient is moved continuously through the scanner
(Fig. 3.32). The trajectory of the x-ray beam, through the patient, traces out a helix: hence
the name. The backprojection reconstruction algorithm has to be modified to accom-
modate the helical shape of the resulting section. The efficiency of spiral CT can be
increased by incorporating multiple detector arrays in the direction of the patient
motion: so-called multi-slice spiral CT. Multiple slices of data can be collected in
�100ms, and images in any plane, or volumetric (three-dimensional) images, can be
reconstructed in less than a second. The faster acquisition times result in significantly
reduced motion artifacts.

CT imaging is the primary digital technique for imaging the chest, lungs, abdomen and
bones due to its ability to combine fast data acquisition and high resolution, and is ideally
suited to three-dimensional reconstruction. It is particularly useful in the detection of
pulmonary (i.e. lung) disease, because the lungs are difficult to image using ultrasound
and MRI. It is often used to diagnose diffuse diseases of the lung such as emphysema,
which involves a sticky build-up of mucus in the lungs, and cystic fibrosis, which leads to
irreversible dilation of the airways (Fig. 3.33).

Figure 3.32 Schematic to illustrate spiral CT.
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Activity 3.3 uses a “stack” of images of a brain showing hydrocephalus, in which
excessive accumulation of cerebrospinal fluid CSF results in an abnormal dilation of the
ventricles (spaces) in the brain, causing potentially harmful pressure on the brain tissues.
The user can move through the stack to identify the slices which show enlarged
ventricles.

3.3 Images from γ-rays

Nuclear medicine (NM) imaging uses the γ-rays emitted from radioactive isotopes
attached to pharmaceutical tracers that are specific to certain physiological, metabolic
and pathological activities, e.g. cerebral perfusion, myocardial perfusion, cancer. These
radio-labeled pharmaceutical tracers are ingested or injected into the body where they are
circulated and/or metabolized. The γ-rays which they emit during radioactive decay pass
out of the body and are collected by detectors (gamma cameras) placed around the
patient; these measure the distribution of the tracer within the body, and produce images
which show the functional or metabolic activity in the relevant organs.

The ideal radioisotope should release only monochromatic, i.e. single-energy, γ-rays
and not α and β particles; γ-ray photons with energy in the range of about 70–500 keVare
ideal since they are able to penetrate out of the body and be detected. The half-life of the
radioisotope, T½, i.e. the time taken for half of it to decay, should be several hours,
allowing time for uptake and distribution of the radiopharmaceutical tracer and subse-
quent imaging, while ensuring that the radioisotope does not continue emitting radiation
for longer than necessary, since that would increase the dose of radiation to the patient.
By far the most widely used radioisotope in nuclear medicine imaging is the metastable,
excited form of technicium-99 (99mTc), which emits 140 keV γ-rays and has a half-life of
6 hours.

(i) (ii)

Figure 3.33 CT image of a patient with (i) emphysema, showing damage to both lungs, and (ii) cystic
fibrosis, showing dilated airways and the presence of small, opaque areas filled with mucus
(arrows).
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The essential characteristic of the pharmaceutical tracer is that it be organ specific,
preferably with a differential uptake between normal and pathological tissues. 99mTc-
labeled sestamibi, a large synthetic molecule which is passively absorbed through cell
membranes, is the agent of choice for myocardial perfusion. As it moves through
the heart muscle, it is absorbed by areas that have good blood flow. Areas of poor
absorption indicate that the blood flow is reduced, ischemia, which may be due to arterial
blockage.

There are three basic imaging modalities in nuclear medicine. Projection studies,
called planar scintigraphy, are analogous to projection radiography; all depth informa-
tion is lost. A single gamma camera, or a dual-head gamma camera to take anterior and
posterior images simultaneously, is used to detect the emitted γ-rays. Tomographic
imaging, called single-photon emission computed tomography (SPECT), uses a rotating
gamma camera to obtain projection images from multiple angles, which are used to
reconstruct cross-sectional images. And positron emission tomography (PET) detects
pairs of 511 keV gamma photons, emitted when positrons are annihilated.

3.3.1 Planar scintigraphy

γ-rays are emitted in all directions and pass through the body much like x-rays. In order to
locate the source of the γ-rays, a collimator is placed between the patient and the detector
(Fig. 3.34). The detector, the gamma camera, comprises a single, large scintillation
crystal to convert the γ-rays into light photons; the most commonly used scintillation
crystal is sodium iodide, doped with thallium, NaI (Tl). The light photons are subse-
quently detected by a hexagonal array of photomultiplier tubes (PMTs), which convert
the light into an electrical signal and amplify it. For every 7–10 light photons incident on
the photocathode of the photomultiplier tube, a single electron is released by the photo-
electric effect. It is accelerated and produces 3–4 secondary electrons by collision with
electrodes, known as dynodes; the process is repeated and, after 10–14 successive stages,
about 106–108 electrons reach the output anode. This current pulse is amplified to
provide a voltage pulse with a peak voltage, its pulse height, which depends on the
energy of the γ-photon.

The collimator is a 2.5–5 cm thick slab of lead of the same cross-sectional size as the
scintillation crystal, and with a geometric array of holes in it. Its purpose is only to allow
γ-photons incident on it almost perpendicularly to pass through; photons from other
directions are absorbed by the lead, as with secondary radiation grids in radiography.
However, unlike in radiography, the source of the photons in nuclear medicine is not
known; they come from a spatial distribution rather than a point source. The purpose of
the collimator is to impose spatial information on them.

When a γ-photon interacts with the scintillation crystal, thousands of light photons are
produced and pass through the collimator to be detected by the photomultiplier tubes.
The gamma camera determines the position and energy of the original γ-photon interac-
tion from the weighted average of the positions and outputs of several photomultiplier
tubes (Fig. 3.35). The position (x, y) and the energy (z, proportional to the pulse height) of
each interaction in the crystal is recorded and used to form an image of the distribution of
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radioactivity. The collimator only allows γ-photons traveling in a certain range of
directions to interact with the scintillation crystal, so that the site of origin of
the radioactive event in the patient can be found. However, (Compton) scattering within
the patient results in some scattered γ-photons entering the field of view and degrading the
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Figure 3.34 Schematic diagram for obtaining a planar nuclear medicine image, using a gamma camera. (After
Webb, 2003, p. 58.)
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Figure 3.35 Position encoding within the gamma camera.
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contrast of the image. These scattered photons have less energy than the direct photons, and
can be removed by only counting those pulses which fall within an energy window around
the known energy of the γ-photons emitted by the particular radioactive source (Fig. 3.36).
In an ideal detector the photopeak would correspond to this energy, but in practice it is
broadened by the statistical nature of the light emission and the finite energy resolution of
the pulse height analyzer. Typically the energy resolution, defined as (FWHM/energy of
emitted photon× 100) is 8–14%.

Planar scintigraphy images (and SPECT images (Section 3.3.2)) have poor spatial
resolution (�4mm) and signal-to-noise ratio, but are very sensitive, being able to detect
tiny amounts of radioactivity. The poor spatial resolution results in images comprising a
few pixels, typically 64 × 64 for a field of view of 25 cm. The spatial resolution is related
to (i) the intrinsic resolution of the gamma camera, as a result of imprecision in
determining the positions (x, y) and the degree of scattering within the patient, (ii) the
collimator resolution, due to its geometry, which is generally the dominating factor, and
(iii) the use of filtering after data acquisition, particularly in SPECT. Since factors (i) and
(ii) depend on the depth of the targeted organ within the body, the spatial resolution of the
imaging system depends on the depth, becoming worse for deeper organs. The signal-
to-noise ratio of the images depends on the square root of the number of detected γ-ray
photons, and is larger for less deep organs.

Whole-body bone scans, using 99mTc-methylenediphosphonate (MDP) or a similar
agent, can be used to detect bone tumors and soft-tissue tumors in which bone remodel-
ing is taking place. Such agents bind to the metabolically active bone mineral hydro-
xyapatite, whose formation is often increased at, or near, the site of a tumor (Fig. 3 37).
The patient bed is slowly translated past a gamma camera. The spine is more visible in the
posterior image, on the right, due to reduced attenuation. This patient shows increased
uptake of the radiotracer around the right knee.
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Figure 3.36 Pulse height spectrum for 99mTc, showing a 14% energy resolution.
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3.3.2 SPECT imaging

In single-photon emission computed tomography, SPECT, a rotating gamma camera,
with one, two or three detector heads, rotates around and as closely as possible to the
patient because spatial resolution decreases with the distance from the collimator.
Sensitivity increases and acquisition time decreases with more detector heads.

The different acquired projections are used to reconstruct cross-sectional or three-
dimensional images by filtered backprojection. Reconstruction computations are more
complicated than with x-ray computed tomography because the detected signals depend
upon both the spatial distribution of the radioisotopes and the attenuation properties of
the voxels. As with x-ray computed tomography imaging, the main advantage of SPECT

Figure 3.37 Whole-body bone scan, using 99mTc-MDP. The anterior view is on the left, and the posterior
view is on the right. Increased uptake of the tracer around the right knee indicates the presence
of a tumor.
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over planar imaging is the absence of superpositioning of overlying and underlying
signals. A time-sequence of sequential SPECT images of the heart can easily be viewed
as an animated sequence (Activity 3.4).

SPECT studies of the brain are used to diagnose a large range of diseases that cause
altered blood perfusion (Fig. 3.38(i)). SPECT scans can be used to measure cardiac wall
thickness (Fig. 3.38(ii)). Pseudocolor is often added to the images to increase clarity.

3.3.3 PET imaging

Positron emission tomography, PET, is the most recent nuclear medicine imaging
technique: in common with the others, it measures physiological function (e.g. perfusion,
metabolism), rather than gross anatomy. A small, positron-emitting radioisotope with a
short half-life (such as carbon-11, 11C (about 20min), nitrogen-13, 13N (about 10min),
oxygen-15, 15O (about 2min), and fluorine-18, 18F (about 110min)) is incorporated into
a metabolically active molecule (such as glucose, water or ammonia), and injected into
the patient. Such labeled compounds are known as radiotracers. When a positron, i.e. a
positively charged electron, is emitted within a patient, it travels up to several millimeters
while losing its kinetic energy. When the slowly moving positron encounters an electron,
they spontaneously disappear and their rest masses are converted into two 511 keV
annihilation (gamma ray) photons, which propagate away from the annihilation site in

(i) (ii)

Figure 3.38 SPECT images showing (i) a brain tumor (in white), using 99mTc-GH (glucoheptinate), and
(ii) thinning of the cardiac wall (reduced intensity), using 99mTc-sestamibi. See also color plate.
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opposite directions. The patient is surrounded by multiple rings of gamma photon
detectors, so that no detector rotation is required.

Positron emission tomography, PET, is distinct from single-photon emission computed
tomography, SPECT, in that two γ-ray photons are produced at the same time. The output
of detectors on opposite sides of the PET scanner is analyzed by a coincidence detector,
which only counts events that are simultaneous to within a user-set time window
(�2–20 ns); this ensures that only the 511 keV photons are counted. Simultaneous
triggering reveals the line of sight of the two photons, and the original positron-emitting
radiopharmaceutical must be somewhere along that line. The intersection of many such
lines delineates the distribution of the pharmaceutical.

PET images (Fig. 3.39) have higher signal-to-noise ratio and better spatial resolution
(�2mm) than planar scintigraphy and SPECT images. However, PET systems are much
more expensive. Cyclotrons are required to produce the short-lived positron-emitting
isotopes, due to their short half-lives. Few hospitals and universities are capable of
maintaining such systems, and most clinical PET is supported by third-party suppliers of
radiotracers which can supply many sites simultaneously. This limitation restricts clinical
PET primarily to the use of radiotracers labeled with fluorine-18 (T½≈ 110minutes), which
can be transported a reasonable distance before use, or to rubidium-82 (T½≈ 75 seconds),
which can be created in a portable generator and is used for myocardial perfusion studies.

To facilitate the process of correlating structural and functional information, scanners
that combine x-ray CT and radionuclide imaging, either SPECT or PET, have been
developed. These dual-modality systems use separate detectors for x-ray and radio-
nuclide imaging, with the detectors integrated on a common gantry. Because the two
scans can be performed in immediate sequence during the same session, with the patient
not changing position between the two types of scans, the two sets of images are more
precisely registered. In the fused image the radionuclide distribution can be displayed in

Figure 3.39 A realistic heart phantom imaged along three axes by SPECTwith 99mTc (top row) and PET
with 18F-fluorodeoxyglucose (bottom row). See also color plate.
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color on a gray-scale CT image to co-register the anatomical and physiological features
and thereby improve evaluation of disease.

3.4 Dose and risk

X-ray and γ-ray photons have sufficient energy to ionize atoms and molecules within the
body, causing serious and lasting biological damage. The absorbed dose, D, is equal to
the radiation energy absorbed per unit mass of body; it is measured in units of grays (Gy),
where 1 gray is the dose when 1 joule of energy is absorbed per kilogram of irradiated
material. However, the absorbed dose gives little indication of the risk to the patient; the
biological damage caused also depends on the type of radiation. To take this into account,
the absorbed dose is multiplied by a radiation weighting factor to give the equivalent dose
in sieverts (Sv). The quality factors range from 1 for x-rays to 20 for alpha-particles.

The damage caused also depends on the irradiated organ. The effective dose to the
patient is the sum of the doses delivered to the specific organs, weighted by a tissue
weighting factor, which characterizes the relative radiosensitivity of that organ, with
respect to cancer and genetic risks. Table 3.3 shows the radiosensitivity, or tissue
weighting factors, of various organs; the most radiosensitive organs are those that involve
rapid cell division, such as the gonads.

Typical effective dose equivalents for various diagnostic x-ray procedures are given in
Table 3.4; note the high doses for CT scans due to the large number of individual scans
taken in each procedure.

More than 80% of the annual effective dose (�3mSv) to an individual comes from
natural background radiation, a combination of cosmic rays and radionuclides in the
body and in the environment. Medical exposure, the majority of it from diagnostic
radiology, contributes a further 15% or so. Since background radiation is unavoidable
and therefore considered an acceptable dose, radiation doses can be rated according to the
time required to obtain the same effective dose from background radiation; this is known
as the Background Equivalent Radiation Time (BERT). For example, a chest radiograph
with a dose equivalent of 30 µSv would have a Background Equivalent Radiation Time
of about 3.5 days (one-hundredth of a year), i.e. we get the same radiation dose from a
chest radiograph as wewould accumulate from background radiation in 3.5 days; thus the
dose from a single chest radiograph would be considered fairly insignificant. A whole-
body x-ray CT scan of 10mSv, obtained within a few minutes, has a Background
Equivalent Radiation Time of 3.3 years and is not insignificant!

Much of the data on cancer induction and genetic damage caused by radiation has
been obtained after high exposures, for example on people exposed to the atomic bomb
explosions in Japan, to fallout from nuclear weapons’ tests and during radiation acci-
dents. The risks for low doses, such as diagnostic doses, in radiology, are more difficult to
assess. However, to err on the side of safety, it is assumed that the relationship between
risk, or effect, and dose is “linear, no-threshold,” with a gradient (risk/dose) of 5 × 10−5

mSv−1 for fatal cancer, and values of 0.8 × 10−5 mSv−1 for non-fatal cancer, and
1.3 × 10−5 mSv−1 for hereditary effects (International Commission on Radiological
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Protection (ICRP), 1991)). Using the figure for fatal cancer, if 100 000 people were to
receive uniform whole-body doses of 1mSv each, then about five of them would die
prematurely of radiation-induced cancer.

When a medical exposure is made, there should always be the expectation that
some benefit will come of it, and that the dose to everyone involved, patient and staff,
should be as low as reasonably achievable, the so-called ALARA principle. Minimizing
exposure time, maximizing the distance from the radiation source, and establishing

Table 3.4 Typical effective dose equivalents for various
diagnostic procedures.

Examination Range (µSv)

Dental x-ray 10–20
Chest 10–50
Skull 100–200
Pelvis 700–1400
Abdomen 600–1700
Mammogram (each image) 1000–2000
Lumbar Spine 1300–2700
Barium meal 1900–4800
IVU (intra-venous urography) 2500–5100
Head CT scan 2000–4000
Body CT scan 5000–15 000
Nuclear medicine 2000–10 000

Table 3.3 Relative radiosensitivity of the organs of the human
body.

Organ/tissue Relative radiosensitivity

Gonads 0.20
Bone marrow (red) 0.12
Colon 0.12
Lung 0.12
Stomach 0.12
Bladder 0.12
Breast 0.05
Liver 0.05
Esophagus 0.05
Thyroid 0.05
Skin 0.01
Bone surface 0.01
Other organs 0.05

Based on the International Commission on Radiological
Protection (1991).
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proper shielding, e.g. using leaded walls and lead-glass windows, and wearing lead
aprons, are the primary ways to limit radiation exposure, both to the patient and to
medical personnel.

Computer-based activities

Activity 3.1 Radiographs
Open chest1 in ImageJ, which is a radiograph of the chest. Adjust the brightness

and contrast of the image and note which structures become more visible. This
patient complained of pain in the left chest and shortness of breath. Are there any
visible features which might explain these symptoms?

Open barium, which is an image of the colon filled with a barium-containing
contrast material to increase the contrast. This patient complained of pain in the
lower left quadrant of the abdomen; are there any features of the colon that might
explain these symptoms?

Open arteriogram, which is an image showing the blood vessels of the neck and
upper chest. Apply psuedocolor to see whether the vessels can be better visualized.

Activity 3.2 Measurement of size
Open the image x-ray in ImageJ. Choose the straight line selection from the Tools

bar, and draw a line perpendicular to several ribs. Draw a profile (Analyze/
Profile) along that line; the lighter ribs appear higher on a (sloping) background.
Move the cursor horizontally within the profile image to get an average value of the
width of a rib (in inches). Try to reduce the slope of the background using
Process/ Subtract Background and an appropriate value for the “rolling
ball radius” to make the measurement of the width of the ribs easier.

Activity 3.3 X-ray CT image stacks
Open the file Hydro022, a stack of images of a brain showing hydrocephalus, in

ImageJ. Manually move through the stack, and then go to Image/Stacks/Start
Animation to move through the images automatically. The images are shown
at reduced size; you can see them at full size, and read the annotation, if you
set Edit, Options and click Open images at 100% prior to opening. An
alternative is to use Image/Stacks/MakeMontage after opening and specify
the magnification.

In CT images, the white matter of the brain, which appears centrally in the hemi-
spheres, appears slightly less dense (i.e. blacker) than the peripheral gray matter,
because the white matter contains more fatty tissue. The cerebrospinal fluid (CSF)
in the ventricles appears even blacker. In hydrocephalus the cerebrospinal fluid
builds up often due to an obstruction in the normal circulation, enlarging the
ventricles. Which figures in the stack show the enlarged ventricles? (Note the
numbers at top left of the window.) Use Z Project, with Average Intensity, to
see through all the slices at once.

The standard treatment for hydrocephalus is surgery, to divert and drain excess
cerebrospinal fluid through a surgically implanted shunt. Open the image stack
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Shunt022. Which images show the shunt? How effective has the treatment been
in this case?

Activity 3.4 SPECT images of the heart
Start ezDicom, then File/Open Dicom and open the file NM0001. (The file can

also be opened in ImageJ, but with limited functionality.) Use the Video icon to
animate the sequence; after viewing the animated sequence, move Video to O (still)
and use the slider to view the images sequentially. How many images (frames) are
there?What is the size, in pixels, of each frame? Check the details by looking at the
DICOM header.

Exercises

3.1 What determines the highest energy of x-ray photons emitted from an x-ray
tube? What determines the energy spectrum of the x-ray photons? Why are
low-energy x-ray photons removed from the x-ray beam before they reach the
human body?

3.2 Why is it preferable to use a screen, rather than let the x-ray photons strike the film
directly? Can you think of any disadvantage to using a screen?

3.3 An x-ray photon with energy of 60 keV produces visible light photons of wave-
length 420 nm in an intensifying screen. If the energy conversion efficiency is 20%,
how many visible light photons are produced for each incident x-ray photon?
(1eV = 1.6 × 10−19 J; Planck’s constant, h= 6.63 × 10−34 J s.)

3.4 Which, bone or soft tissue, is imaged as a darker shade of gray on the radiograph?
Why?

3.5 What is (i) an advantage and (ii) a disadvantage of using two intensifying screens,
one either side of a film, compared with using only a single intensifying screen?

3.6 If 80% of x-ray photons of a certain energy pass through a slab of material, what
percentage passes through a slab of the material which is twice as thick as the
original slab?

3.7 The linear attenuation coefficient of a phosphor used for detection of x-rays is
550 cm−1 for an x-ray energy of 150 keV. What percentages of x-rays are detected
by phosphor layers of 100, 250 and 500 µm thickness, respectively? What are the
effects on spatial resolution?

3.8 Why are barium and iodine salts used to improve the contrast of certain images?
What is their particular property that is so useful? In what procedures are they
typically used?

3.9 In a typical chest x-ray set-up, how close should the patient be to the film to obtain
the sharpest image possible? Should the patient face the x-ray tube or not?
(Consider which organs are of most interest.)

3.10 In a certain exposure, the contribution to the unsharpness due to geometric posi-
tioning (UG) is 0.25mm, the detector unsharpness (UD) is 0.2mm, the motion
unsharpness (UM) is 0.5mm and the intrinsic unsharpness (UI) is 0.15mm. What is
the resolution of the system? How could it be improved?
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3.11 For the following changes in an x-ray imaging system indicate the effect on subject
contrast (i.e. increase, decrease or no effect):
� increase in patient thickness,

� increase in kVp,
� reduction in quantum efficiency of the detector,

� reduction in field of view,
� use of a high atomic number contrast medium.

3.12 Comment on how compression of the breast in mammography affects (i) the spatial
resolution, (ii) the contrast and (iii) the signal-to-noise ratio of the image.

3.13 (i) List three ways in which the contrast is maximized in mammography, with a
short explanation of the principles behind each. (ii) List two factors that help
achieve high spatial resolution in mammography. (iii) Why should noise be mini-
mized in mammograms? How can it be minimized?

3.14 In digital subtraction angiography (DSA), what is the effect of doubling the x-ray
intensity on the signal-to-noise ratio of the image? What would be the effect of
doubling the dose of contrast agent on the signal-to-noise ratio of the image?

3.15 How could the contrast of a displayed x-ray computed tomography image be
increased? Explain.

3.16 What are the factors which determine the in-plane (x–y) spatial resolution of a
computed tomography scanner? What is the effect of choosing thinner slices?

3.17 If the standard deviation of pixel values in the CT image of a uniform phantom is
5 HU, what percentage of pixels have values more than 5 HU above the mean
value?

3.18 In a nuclear medicine scan using 99mTc, the signal-to-noise ratio for a 30-minute
scan was 50:1 using a certain injected radiation dose immediately prior to imaging.
(i) If the injected dose were doubled, what would the signal-to-noise ratio be for a

30-minute scan?
(ii) If the dose were kept the same, but the scan time doubled, what would be the

signal-to-noise ratio of the acquired image?
3.19 In a SPECT brain scan, each image is formed from, typically, 500 000 counts.

Myocardial SPECT has a lower number of counts, typically 100 000 per image. If
the brain images were to be collected on a 128 × 128matrix, what matrix size would
be appropriate for the myocardial image to achieve a similar signal-to-noise ratio?

3.20 In a 128 × 128 SPECT image, how many total counts are necessary for a signal-to-
noise ratio of 50?

3.21 What is the typical dose from (i) a mammogram, (ii) a head CT scan? What is the
Background Equivalent Radiation Time for each?What are the corresponding risks
of getting cancer?

3.22 If one million people were to receive a uniform exposure of 1mSv each, how many
fatal cancers would be this likely induce, assuming the linear, no-threshold dose-
exposure relationship? Howmany of these will be stomach cancers given the organ
weighting factors in Table E3.1?
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Table E3.1 Tissue weighting factors.

Organ or tissue WT

Gonads 0.20
Red bone marrow 0.12
Colon 0.12
Lung 0.12
Stomach 0.12
Bladder 0.05
Breast 0.05
Liver 0.05
Esophagus 0.05
Thyroid 0.05
Skin 0.01
Bone surface 0.01
Remainder 0.05

Based on the International Commission on Radiological Protection (1991).

3.23 In 1980 (!), the collective dose to patients from diagnostic medical x-ray examina-
tions in the United States was 92 000 Sv. How many fatalities from radiogenic
cancers would be expected to result from these procedures?
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4 Medical images obtained with
non-ionizing radiation

Overview

Diagnostic medical ultrasound uses high-frequency sound and a simple pulse–echo
technique. When an ultrasound beam is swept across a volume of interest, a cross-
sectional image can be formed from a mapping of echo intensities. Current medical
ultrasound imaging systems are based on envelope detection, and therefore only display
intensity information. Despite this shortcoming, ultrasound imaging has become an
important and widely accepted modality for non-invasive imaging of the human body
because of its ability to produce real-time images, its low cost and its low risk to the
patient. Magnetic resonance imaging (MRI) uses the phenomenon of nuclear magnetic
resonance (NMR): unpaired nucleons, such as protons, orientate themselves in a mag-
netic field, and radiofrequency pulses can be used to change the balance of the orienta-
tions. When the system returns to equilibrium it produces signals that can be used to
produce an image, which is characterized by its high contrast for soft tissues. MRI images
map function, as well as structure. Digital images from any imaging modality can be
compared or combined, after image registration, using a networking system.

Learning objectives

After reading this chapter you will be able to:

� explain the basis of imaging using non-ionizing radiation, specifically ultrasound and
radiofrequency (RF) radiation with a strong magnetic field;

� outline the physical factors involved in these imaging modalities;
� describe the factors which determine the speed of ultrasound waves in a material;
� explain the purpose of time gain compensation and describe how it is implemented;
� summarize the steps involved in the reconstruction of B-mode ultrasound images;
� identify the factors that affect image quality and artifacts in ultrasound imaging;
� describe the phenomenon of nuclear magnetic resonance (NMR);

� explain how MRI images can be constructed from NMR spectra;
� describe the use of magnetic field gradients to add spatial information to MRI images;

� summarize the changes that occur to the spins using the spin echo pulse sequence;
� identify the factors that affect image quality and artifacts in MRI imaging;



� describe how functional information can be obtained from MRI imaging;
� summarize the advantages of a picture, archiving and communications system
(PACS);

� outline the factors involved in the co-registration of images from different modalities.

4.1 Ultrasound imaging

Ultrasonic imaging uses high-frequency (~1–10MHz) sound waves and their echoes to
produce images that can demonstrate organ movement in real time. Unlike electromag-
netic waves, such as x-rays and γ-rays, ultrasound is non-ionizing and, as such, is
considered safe at the intensities used in clinical imaging systems. Ultrasound images
are constructed by calculating the time taken for ultrasound pulses to travel into the body
and return, after reflection off a tissue surface.

Ultrasound pulses, generally 1–5 μs long, are generated from an ultrasound transducer
comprising a piezoelectric crystal, such as lead zirconate titanate (PZT), sandwiched
between a pair of electrodes. A small sinusoidal voltage applied to the crystal causes it to
resonate, producing sound waves as its surfaces move backwards and forwards; the
crystal also detects ultrasound waves by producing a varying electrical signal. A typical
pulse, just over 1 μs in duration with a frequency of 5MHz, contains 5 cycles of the wave
(Fig. 4.1). Pulses might be separated by perhaps 1ms, resulting in a pulse repetition rate
of 1000Hz; they travel through soft tissue at a speed of about 1540m s−1 compared with
the speed of sound in air of about 330m s−1.

Worked example
A standing wave can be established in a piezoelectric crystal when its wavelength is
twice the thickness of the crystal. Each face of the crystal is oscillating with maximum
amplitude and the center is at rest; this corresponds to the first harmonic. (Higher
harmonics are also produced, but the first harmonic predominates.) What thickness of
crystal is required to generate a 1.5MHz ultrasound wave?

The resonance condition is that

lres ¼ 2t (4:1)

where t is the required crystal thickness and λres is related to the frequency, f, and the
velocity, v, of the ultrasound wave in the crystal, by the basic equation for waves,
namely

v ¼ fl (4:2)

Using v = 4000m s−1 for the speed of sound in PZTand f = 1.5MHz gives a value for
the wavelength of 2.7mm; thus, the required crystal thickness is 1.3(5)mm.

There are also some resonant frequencies produced at the odd harmonics, namely 4.5,
7.5, 10.5MHz etc.
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Sound waves are longitudinal waves, i.e. the particles of the material move back and
forth in the same direction that the wave is traveling. The speed of sound in a material, v,
is characteristic of that material and depends on the density of the material, ρ, and its
compressibility, К. The easier it is to compress a material, the higher is its compressi-
bility. Thus:

v ¼ 1ffiffiffiffiffiffi
Кr

p (4:3)

We can compare bone with soft tissue. Although bone has a larger density, it has a much
smaller compressibility than soft tissue. The product Кρ is smaller for bone than soft
tissue, resulting in a larger velocity for sound waves through bone.

A pulse of ultrasound, which is what is often used in medical ultrasound rather than a
continuous wave, actually comprises a range of frequencies: the shorter the pulse the
larger the range of frequencies comprising it. Luckily, the velocity of sound in a medium
is nearly independent of frequency or wavelength, otherwise the pulse would spread out
as it traveled leading to pulse blurring. This behavior is different from that of light: the
speed of light in a medium depends on wavelength, which is why prisms split sunlight
into its constituent colors.

When an ultrasound wave encounters a tissue surface, separating tissues with different
acoustical properties, a fraction of the wave is backscattered and detected by the
transducer on its return. Generally, only those waves that reflect back through about
180° can contribute to an ultrasound image. By measuring the delay between pulse
transmission and pulse reception, and knowing the speed of propagation, the depth of the
feature can be calculated. For example, if the time delay is 160 μs and the pulse is passing
through soft tissue with a speed of 1540m s−1, the round-trip path is 24.6 cm and the
tissue depth is 12.3 cm.

The intensity of the echo is used to determine the brightness of the image at the
reflecting tissue surface (Fig. 4.2). The intensity reflection coefficient, R, at a boundary

Skin

Transducer

pulse duration

1–10 MHz
sound frequency

Sound Velocity
1540 m s–1

(in soft tissue)

Pulse repetition time: 1 ms

Pulse repetition rate:
1000 Hz

1 μs

Figure 4.1 Schematic diagram of a typical clinical ultrasound beam. (After Wolbarst, 1993, p. 408.)
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which is smooth compared to the ultrasound wavelength and perpendicular to the
direction of wave propagation, is given by

R ¼ Z1 � Z2ð Þ2
Z1 þ Z2ð Þ2 (4:4)

where Z1, Z2 are the acoustic impedances of the materials to either side of the surface.
Acoustic impedance is a constant for a specific material (Table 4.1) and is analogous to
electrical impedance: as impedance increases it inhibits velocity (current) for a given
pressure (voltage). Acoustic impedance is given by

Z ¼ rv ¼
ffiffiffiffi
r
К

r
(4:5)

The SI unit of acoustic impedance is the rayl (kg m−2 s−1).
There is little reflection if the materials are acoustically similar and a lot of reflection

when there is a mis-match of acoustic impedances. For example, at an interface between
soft tissue and bone a very large reflected signal or echo results, comprising about 40% of
the incident intensity. This greatly attenuates the transmitted beam and makes the
imaging of structures deeper-lying than bone extremely difficult. At a soft tissue/gas
interface, around 99% of the beam intensity is reflected, making it impossible to scan
distal structures deeper than the lungs or gas-containing bowel.

Even when the beam is traveling through biological tissue, it loses intensity continu-
ously as a result of scattering and absorption (Fig. 4.2). Although the mechanisms are
complicated, the overall effect is that the beam energy decreases more or less exponen-
tially as it penetrates the tissue, similar to the attenuation of x-ray intensity. Thus, the
ultrasound beam intensity, I, decreases with propagation distance, x, from its starting
value at x = 0, I0, according to

IðxÞ ¼ I0e
ð�mxÞ (4:6)

Tissue 1 Tissue 2

Attenuation

Attenuation

Some reflection,
some transmission

Attenuation

Figure 4.2 The returning echo pulse suffers continuous attenuation along its path, and an abrupt change in
intensity on reflection at the interface. (After Wolbarst, 1993, p. 408.)
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where the attenuation coefficient, μ, is often expressed in dB cm−1 rather than cm−1, as
with x-rays. Thus:

m dB cm�1
� � ¼ � 1

x

� �
10 log

IðxÞ
I0

� �
¼ 4:343m cm�1

� �
(4:7)

The attenuation coefficient is characteristic of the material (Table 4.1) and is approxi-
mately proportional to frequency for most tissues. At 1MHz, the attenuation coefficient
for soft tissue is about 1 dB cm−1; for air and bone, at the same frequency, it is much
higher: 45 dB cm−1 and 8.7 dB cm−1, respectively. Increasing the ultrasound frequency
increases spatial resolution but decreases penetration. This trade-off between resolution
and attenuation, and therefore range, is the fundamental design limitation in ultrasonic
imaging. The basic rule is to use the highest frequency that reaches the required depth to
display the anatomical structures of interest.

In order not to confuse this continuous attenuation with the attenuation occurring at the
reflection of a surface, which is used to characterize the brightness of the image at that
location, the former can be circumvented by using time gain compensation (TGC). This
amplifies the echo signal as a function of time of travel, so as to compensate for
continuous attenuation along the line of travel. There are limits to such compensation,
since amplifying small echoes results in noisy signals.

Using the echoes to find the depths of tissue boundaries is the basis of A (amplitude)-
mode ultrasound. A-mode ultrasound has been used, for example, in detecting eye tumors,
liver cirrhosis and myocardial infarction.

Table 4.1 Acoustic properties of various materials.

Material Speed of sound, v (m s−1)
Acoustic impedance Z= pc
(106 kg m−2 s−1)

Attenuation coefficient
at 1MHz (dB cm−1)

Blood 1575 ± 11 1.62 ± 0.02 0.15 ± 0.04
Bone 3180–3500 4.8–7.8 14.2–25.2
Brain 1565 ± 10 1.54 ± 0.05 0.75 ± 0.17
Breast 1430–1570 0.3–0.6
Fat 1450 1.38 0.63
Peritoneal 1490 2.1
Subcutaneous 1478 ± 9 0.6
Heart 1571 ± 19 1.64 2.0 ± 0.4
Liver 1604 ± 14 1.63–1.75 1.2
Lung 40
Muscle 1581 1.70 0.96 ± 0.35
Soft tissue (mean) 1540 1.63 1
Air 331 0.0004 45
Castor oil 1500 1.4 0.95
PZT (lead zirconate
titanate)

4000 30

Water 1498 1.50 0.0022

Data from A. B. Wolbarst, Physics of Radiology. Appleton and Lange, 1993.
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B (brightness)-mode ultrasound is more common, and is used to produce a two-
dimensional tomographic or slice image of anatomical structure by sweeping the
beam repeatedly back and forth through the patient’s body. Each sweep is used to
form a single vertical line of the B-mode image comprising a series of bright dots. The
brightness of the dots is determined by the intensity of the reflected echoes, after
correcting for attenuation along the path by time gain compensation. The sweeping is
achieved either mechanically, using a rocking or rotating transducer, or electronically
by using an array of piezoelectric elements, rather than a single crystal, and delaying
the voltage pulse to each element of the array relative to its neighbor (Fig. 4.3). Activity
4.1 shows an animated simulation of beam-steering. After all the echoes have been
produced along a particular beam direction, the beam direction is changed electron-
ically by introducing time delays to the piezoelectric elements of the transducer, and a
second line of data is acquired. By sweeping the beam, further lines, typically 128 to
256 per image, can be used to build up a sector-shaped image (Fig. 4.4). The time

Element
array Wave-front

Steered beam
wave-front

Delay

0

1

2

3

4

Figure 4.3 Schematic of a swept array as used in B-mode scanning.

Figure 4.4 A B-mode image of a gall bladder, showing the presence of polyps.
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required to acquire the echoes along a single line is of the order of 100 μs, so that a
single image can be acquired in tens of milliseconds, and continuous sweeping of the
beam allows the image to be updated in real time.

Worked example
A 5MHz transducer has 128 elements and is required to give a 12 cm image depth.
What time is taken to collect a single image?

At a speed of 1540m s−1 the returning echo from 12 cm depth takes 156 μs. A
single image takes 128 × 156 μs, i.e. 20ms.

Three-dimensional ultrasound images can be obtained by adding additional rows of
crystal elements to permit sweeping in a direction perpendicular to the plane of the
B-mode scan. If a small number of rows is added, typically 3–10, only limited
sweeping in this direction can be achieved. If a large number of rows is added,
comparable to the number of elements in each row, then the geometry of the array is
truly two-dimensional and sweeping gives three-dimensional imaging (Fig. 4.5).
Applications include the study of fetal and uterine malformations, and the detection
of various tumors.

4.1.1 Image quality

The spatial resolution along the direction of propagation of the ultrasound wave is known
as the axial resolution. It is defined as the closest separation of two surfaces in
that direction which results in distinguishable backscattered signals, and is equal to
half the spatial pulse length. The shorter the pulse, the better is the axial resolution of
the image.

Figure 4.5 Rendered three-dimensional image of a 12-week old fetus.
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Worked example
What is the axial resolution in soft tissue of a 5MHz ultrasound transducer that
produces pulses 5 cycles long?

The wavelength of the ultrasound is 0.308mm (using Equation (4.2)). The spatial
pulse length is therefore 1.54mm; and the axial resolution is 0.77mm.

Resolution in the plane perpendicular to the direction of propagation is known as the
lateral resolution. It is determined by diffraction of the ultrasound beam from its initial
cross-sectional size. Diffraction causes the beam to diverge by an angle of about sin−1

(1.2λ/w), where w is the diameter of the transducer. Diffraction also results in side lobes
which remove energy from the main beam and can introduce artifacts into an image.
Because a single crystal transducer typically has a diameter of 1–5 cm, the lateral resolution
is intrinsically very poor. It can be improved by focusing the beam, for example by
manufacturing the face of the crystal itself concave rather than plane.

The signal-to-noise ratio (SNR) of the backscattered signal depends on the intensity
and bandwidth of the ultrasound pulse, the degree of transducer damping and the amount
of focusing used. If the speckle from small inhomogeneities is included then the signal-
to-noise ratio typically drops to around 2.0, which is very low compared with other
modalities. Contrast can be improved using ultrasound contrast agents, usually consist-
ing of small gas-filled microspheres or microbubbles with a diameter less than 10 μm
injected directly into the blood stream. The microspheres increase the backscattered echo
signal from the blood.

Image artifacts can result from a variety of effects. Because bone has a high attenuation
coefficient, transmission of ultrasound through bone is minimal; however, reverberations
can occur from very strong reflectors, such as bone or air, giving rise to a characteristic
series of equidistant bright lines in an image. Acoustic shadowing occurs when either a
strong reflector such as a gas/tissue boundary or a highly attenuating structure hides or
“shadows” a deeper-lying organ.

4.1.2 Doppler imaging

Blood velocity measurements are essential in calculating cardiac output and diagnosing
stenosis, narrowing, of the arteries. The Doppler effect can be used to determine blood
velocity and interlace this information with B-mode scanning, as a so-called duplex scan.

The Doppler effect is familiar in the form of the increased frequency of a moving
sound source, such as a train whistle or police siren, as it approaches, and the reduced
frequency, as it passes by. The relative change in frequency, Δ f/f, depends on the velocity
of the sound emitter, v, relative to the speed of sound in air, vs. Thus:

�f

f
¼ � v

vs
(4:8)

where the ± refers to the sound source traveling towards (+) or away from (−) the receiver.
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Red blood cells (RBCs) traveling towards an ultrasound transducer receive pulses at
higher frequency because of their velocity, and then they act as moving sources them-
selves when they scatter the ultrasound in all directions. The backscattered signal is thus
Doppler shifted twice, and the overall frequency shift of the echo received at the
transducer is given by

�f ¼ 2fv cos �ð Þ
vs

(4:9)

where θ is the angle that the ultrasound beam makes with the direction of blood flow
(Fig. 4.6). For f = 5MHz, θ= 45° and v = 50m s− 1, the Doppler shift is 2.26 kHz, which is
within the audible range. The received signal can be amplified and mixed with the
original signal, and the resulting difference (beat) signal sent to a speaker so that it can
be heard. If a spectrum analyzer is used to measure the Doppler shift, then the blood
velocity can be obtained, if the direction is known. The angle θ is usually estimated from
simultaneously acquired B-mode scans, and the Doppler flow measurements interlaced
with the anatomical B-mode images to form duplex images, also known as color Doppler
or color flow (CF) images.

The flow information is used to color the appropriate pixels. Common mapping
formats are BART (Blue Away, Red Towards, i.e. velocity away from the transducer is
colored blue, towards it is colored red), and enhanced or variance flow maps, where
saturation and intensity are used to indicate higher velocities and turbulence or accelera-
tion, respectively. A color look-up table (LUT), indicating how velocity is mapped into
the displayed colors, is usually included beside the image for reference (Fig. 4.7).
Activity 4.2 shows ultrasound images of the heart with color Doppler information
added to show blood flow.

In continuous wave (CW) Doppler imaging two crystals are used, one as the trans-
mitter and the other as the receiver, both usually embedded in the same transducer.
Instead of the pulse–echo principle, the oscillator used to transmit the ultrasound wave is
used to “demodulate” the received signal. The mixed signal is filtered, amplified and
digitized; and its frequency spectrum is used to obtain the range of blood velocities. CW

Transducer

Skin

Volume element
of blood

vblood

Figure 4.6 Continuous wave (CW) method of measuring blood velocity. (After Wolbarst, 1993, p. 437.)

98 Medical images obtained with non-ionizing radiation



Doppler measurements are usually displayed as a time series of spectral Doppler plots
(Fig. 4.8); there is no spatial (i.e. depth) information.

4.1.3 Clinical applications of ultrasound

There are a wide range of applications of ultrasound imaging as a result of its non-invasive,
non-ionizing nature, and its ability to form real-time axial and three-dimensional images.
The tissues of interest need to reflect sufficient ultrasound energy; this limits the method to
soft tissues, fluids and small calcifications preferably close to the surface of the body and
unobstructed by bony structures.

Ultrasound is most commonly employed in examinations of the abdomen and pelvis.
In obstetrics, fetal head size and fetal length are used as measures of fetal maturity and
health, while spinal morphology can be used to detect the presence of abnormalities such
as spina bifida. Doppler imaging can be used to measure fetal blood velocity and cardiac
function.

Figure 4.7 Color Doppler duplex image. The color look-up table is related directly to the blood velocity.
See also color plate.
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Figure 4.8 Two-dimensional display of spectral Doppler plots as a function of time over several cardiac cycles.
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Ultrasound imaging can be used to complement x-ray mammography in the diagnosis
of breast cancer (Fig. 4.9). It can help determine whether a lump is a fluid-filled cyst or a
solid mass, and is particularly useful in women with dense breast tissue and with young
women, because their tissue is relatively opaque to x-rays.

4.2 Magnetic resonance imaging

Magnetic resonance imaging (MRI) is a non-ionizing technique that uses radiofrequency
(200MHz–2 GHz) electromagnetic radiation and large magnetic fields (around 1–2 tesla
(T), compared with the Earth’s magnetic field of about 0.5 × 10–4 T). The large magnetic
fields are produced by superconducting magnets, in which current is passed through coils
of superconducting wire whose electrical resistance is virtually zero.

MRI images provide anatomical and physiological details, i.e. structure and function,
with full three-dimensional capabilities, excellent soft tissue visualization, and high
spatial resolution (~1mm). Like x-ray CT, it is a tomographic imaging modality. Image
reconstruction, while conceptually equivalent to that in CT, is obtained from the raw
signals collected in frequency space. With sufficient slice images, the image data is
practically three-dimensional and it is possible to reconstruct the data in different
two-dimensional planes at will (see Activity 4.3). Scans last several minutes, rather
than a few seconds as in x-ray CT, so that patient motion can be a problem.
Furthermore, MRI scanners are several times as costly as a CT scanner because of the
expensive superconducting magnet required.

4.2.1 Nuclear magnetic resonance

MRI imaging is based on nuclear magnetic resonance (NMR). Nuclei are composed of
nucleons, either neutrons or protons. Nuclei with unpaired nucleons behave like small
magnets, with an associated magnetic moment. The hydrogen nucleus, a single proton, is
of particular importance in MRI imaging because of its abundance in biological tissue,
and all current MRI scanners use the proton signal.

(i) (ii)

Figure 4.9 Ultrasound images of the breast showing (i) a fluid-filled cyst and (ii) lobular carcinoma.
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Normally the direction of these magnetic moments is random. However, in an external
magnetic field, they line up along the direction of the field, and precess around it
(Fig. 4.10) like a gyroscope in a gravitational field. The precessional frequency, known
as the Larmor frequency, is proportional to the strength of the external field, B0. The
magnetic moments can either line up in the same direction, parallel, as the magnetic field,
which is the lower energy state, or opposite to the field direction, anti-parallel, which is a
higher energy state (Fig. 4.10).

This is a small energy difference compared with thermal energies at room tempe-
rature, even for large magnetic fields. The protons are continually flipping back and
forth between the two states but at any given instant there will be a slight majority
aligned parallel to the field, so as to minimize the overall energy. The larger the external
field B0, the greater the difference in energy levels and the larger the excess number
aligned parallel to the field. At 1.5 T, for example, for every 2 million protons there is an
excess of 9 protons aligned with the field than against it. (For a 2 × 2 × 5mm voxel of
water in a 1.5 T magnetic field, the number of excess protons is about 6 × 1015.) Higher
field MRI scanners produce images with a higher signal-to-noise ratio because it is
essentially the number of excess protons which determines the strength of the MRI
signal.

In order for the energy difference to be detected it is necessary to apply first a short
pulse of electromagnetic radiation. If the energy of this radiation is exactly equal to the
energy difference between the two distinct states, it causes some of the parallel spins to
jump to the higher energy anti-parallel direction. The frequency of the radiation required
to cause these jumps is equal to the Larmor frequency. No other frequency stimulates
these transitions, so that this particular frequency is an example of resonance. The
resonant (Larmor) frequency for hydrogen nuclei in a field of 1–2 T corresponds to
radiofrequencies (RF). Such jumps would reduce the number of excess protons aligned
parallel to the external field, denoted the z direction, and would result in the net
magnetization, M0, spiraling down towards the x–y plane or below it, depending on the
strength and duration of the pulse (Fig. 4.11(i)). This is the view from the so-called
laboratory frame of reference; from the viewpoint of the rotating magnetization vector,
the so-called rotating frame of reference, visualization is simpler with M0 smoothly
tipping down (Fig. 4.11(ii)), with a tip angle, α, that is a function of the strength and
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Figure 4.10 The precession of the nuclear magnetic moments of a hydrogen nucleus about an external magnetic
field giving rise to two distinct states, parallel and anti-parallel.
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duration of the RF pulse. The magnetic field of the RF pulse is denoted B1; it oscillates at
the Larmor frequency, and is arranged to be at right angles to the direction of B0. It is the
interaction of B1, which is much smaller in magnitude than B0, with M0 that causes the
latter to tip towards the x–y plane.

When the pulse length is such as to produce a tip angle of 90° the pulse is termed a 90°
pulse, and the maximum magnetization in the x–y plane is produced. For a pulse twice as
long, termed a 180° pulse, the magnetization is tipped to the –z direction and no transverse
magnetization is produced.

Once the RF 90° pulse is switched off, the rotating M0 induces a current in the
RF coil that produced the initial pulse, and relaxes slowly back to its original orienta-
tion along the z axis. This induced signal is known as the free induction decay (FID)
signal. The time that it takes to return back to its original (equilibrium) position along
the z axis reveals important information about the dynamics of the molecules in the
sample.

One of the relaxation processes, known as longitudinal, T1, or spin-lattice relaxation,
causes the net magnetization vector to grow back to M0 in the z direction (T1 recovery).
Physically, this is the result of interactions between the nuclear spins and the lattice, i.e.
the surrounding molecules. The process can be described by

Mz ¼ M0 1� e�t=T1

� �
(4:10)

with a characteristic time of T1 (Fig. 4 12(i)), which depends considerably on the tissue
type; T1 is about 100ms for fat and about 2000ms for water.

At the same time, the transverse magnetization decays to zero because the individual
spins rotate at slightly different frequencies and get out of phase with each other. This
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Figure 4.11 The effect of a radiofrequency pulse, at the Larmor frequency, on the net magnetization as seen
from (i) the laboratory frame and (ii) the rotating frame of reference.
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process is known as transverse, T2, or spin-spin relaxation, and results from spins
interacting with each other. The process can be described by

Mx;y ¼ M0e
�t=T2 (4:11)

where T2 is the characteristic time (Fig. 4.12(ii)). Although these two processes occur
together, T2 decay almost always occurs more rapidly than the re-growth of longitudinal
magnetization; thus, T2 is always shorter than T1 for a particular tissue type.

This signal, produced by the decay of transverse magnetization, is called free induction
decay (FID). It is a decaying harmonic oscillation at the Larmor frequency (Fig. 4.13),
since the transverse magnetization is rotating in the laboratory frame; the envelope
decays with a time constant of T2. In practice, de-phasing also occurs due to local
variations in magnetic field and non-uniformities within the tissue so that T2 needs to
be replaced by T�

2, where

1

T�
2

¼ 1

T2
þ 1

T 0
2

(4:12)

and T 0
2 characterizes these local variations, and can be 10–100 times shorter than T2. A

so-called spin echo technique is often used to record the true T2 decay rather than the
faster T�

2 decay.
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Figure 4.12 (i) Spin-lattice relaxation resulting in Mz increasing to M0 with a time constant of T1.
(ii) Spin-spin relaxation resulting in Mx,y dropping to zero with a time constant of T2.
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Figure 4.13 The FID signal and its Fourier transform. (After Bushong, 1996, p. 15.)
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To summarize, nuclear spins in the presence of an external magnetic field, B0,
align either with or opposed to the magnetic field. The parallel and anti-parallel spins
almost cancel each other out, leaving a relatively small number of excess spins aligned
parallel with the main magnetic field. If a radiofrequency signal is applied at the
Larmor frequency, the individual spins resonate, absorbing the applied energy, and
precess in phase. Depending on the magnetic field of the applied pulse and its length,
the protons flip towards the x–y plane producing transverse magnetization. The
transverse magnetization induces a voltage in an antenna or receiver coil in the x–y
plane, often the same coil used to transmit the radiofrequency excitation pulse; this induced
signal eventually becomes the MR signal. When the radiofrequency pulse is turned off, the
protons de-phase as they try to realign with B0. Two phenomena occur simultaneously.
Transverse magnetization decreases (T2 decay), while longitudinal magnetization increases
(T1 recovery).

Because all the spins are not in identical chemical and magnetic environments, they
do not all precess at exactly the same frequency and the FID signal detected is a
superposition of all of the individual FID signals. The Fourier transform, FT, of the
FID signal gives the information directly in terms of frequencies, the NMR spectrum
(Fig. 4.13). Each exponentially decaying sinusoid produces a Lorentzian line shape
(i.e. of the form a/(a2 + (f − fL)

2), where a is the half-width) at the frequency of the
sinusoid, its Larmor frequency. Essentially, the positions of the peaks within the
Fourier spectrum provide a map of the proton density in the patient, and the fine
structure is related to the relaxation times, which are related to the configurations of
the protons in the patient.

4.2.2 Magnetic resonance imaging (MRI)

The question remains as to how anMRI imagemight be obtained from the NMR spectrum,
since if the same tissue were in two different positions, the NMR spectrum would still
produce only a single peak (Fig. 4.14). Inspection of the spectrum would reveal the
presence of protons, but not their location.

If, in addition to the strong static magnetic field produced by a superconducting
electromagnet at low temperature, using liquid helium (bp 4.2K), a linear magnetic
field gradient, Bx, using electromagnetic gradient coils to produce small gradients on the
order of a few millitesla per meter (mT m−1), were applied, then the total magnetic field
would increase across the patient. Since the Larmor frequency is proportional to the
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Figure 4.14 The NMR spectrum of a patient with protons at two different positions. (After Bushong, 1996, p. 16.)
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applied magnetic field, it is different for the same tissue located at different positions and
the FID signal would be considerably more complicated. For the case of two voxels at
two different locations, the Fourier transform of the FID signal would have two peaks at
different frequencies, one from each voxel (Fig. 4.15). Thus the two peaks now carry
spatial information, and the resulting spectrum can be considered a projection, similar to
x-ray CT. Unlike B0, which is always on, the magnetic field gradient is normally only
applied transiently during data collection. If multiple projections are obtained around a
patient, then an axial image can be reconstructed.

Slice selection is accomplished by using a frequency-selecting RF pulse applied
simultaneously with one of the magnetic field gradients. The choice of field gradient,
x, y or z, allows us to select the orientation, sagittal, coronal or axial, of the image; if an
oblique slice is required, then two gradients are applied, at suitably weighted strengths,
simultaneously with the frequency-selecting pulse. From this point on we will consider
how an axial image is acquired (i.e. a cross-section perpendicular to the main magnetic
field direction). In this case we perform slice selection along the z direction: a gradient in
this direction is turned on such that it acts symmetrically about the center of the scanner
(the isocenter). In this way the resonant frequency is smaller towards the patient’s feet,
unchanged at the isocenter, and greater towards the head. By simultaneously using a
shaped radiofrequency (RF) pulse containing a finite bandwidth, only a section of spins
either side of the isocenter is excited into the transverse plane. The slice thickness or
position can be varied by using different gradient strengths or RF bandwidths. There is a
limit to how thin the slices can be; small values of bandwidth and large magnetic field
gradients are technically difficult to generate, and a very thin slice would contain only a
few spins and thus have a small signal-to-noise ratio. By changing the center frequency of
the frequency-selecting radiofrequency pulse, the slice can be moved to different posi-
tions within the patient.

Having selected a slice, the remaining two in-plane dimensions need to be encoded (in
this case the “x” and “y” directions) to produce a two-dimensional image. One of the
directions is encoded by changes of frequency during acquisition. Another gradient is
turned on in (say) the x direction. Once again the center of the slice remains unaltered, but
to the left of this point the field and therefore the resonant frequency is smaller, and to the
right it is larger. Columns of pixels from left to right are therefore discriminated in terms
of frequency differences. This is known as frequency-encoding.

It can be shown that a gradient applied in the y direction to change frequency in this
dimension would not be sufficient to ascribe frequency uniquely to each column and row

RF transmit RF signal

B0

Bx

FT

FID

NMR spectrum

Figure 4.15 The NMR spectrum of two spatially separated clusters of protons when a magnetic field
gradient is used. (After Bushong, 1996, p. 16.)
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of pixels. For the last dimension the signal is encoded in terms of phase. This is not easy
to understand: suffice it to say that a number of gradients are needed to create phase
changes from row to row prior to acquisition so that the FT is provided with enough
information to encode fully the final image. This is known as phase-encoding.

Three separate gradient coils are required to encode the three spatial dimensions
unambiguously. Multiple projections can be obtained by electronically rotating the
magnetic field gradients around the patient. The Fourier transform of the echo signals
received produce what are effectively projections of the object along certain directions.
These one-dimensional projections can be assembled to give the two-dimensional
Fourier transform of the object, which can then be inverse Fourier transformed to give
an axial image; this is the direct Fourier reconstruction (DFR) technique (Section 7.8.2),
which is almost universally used in MRI reconstruction.

The basic components of a MRI scanner are shown in Figure 4.16. The primary
magnet polarizes the protons in the patient. It can either be an electromagnet using
superconducting coils, which require cooling to very low temperatures, and which
resembles the gantry of a CT scanner; or it can be a permanent magnet constructed of
rare-earth alloys, in which case it has a more open structure. The gradient coils produce
linear variations on the magnetic field, so that the proton resonant frequencies within the
patient are spatially dependent; they are fixed permanently within the primary magnet.
The RF coil produces the oscillating magnetic field necessary for creating phase coher-
ence between protons, and receives the FID signal by magnetic induction; it is placed
around the body part of the patient to be imaged, with a geometry optimized for that
specific part.
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Figure 4.16 Basic components of a MRI scanner.
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4.2.3 Pulse sequences

The spin echo pulse sequence is the mainstay of clinical MRI, because of its simplicity
and flexibility in allowing the user to acquire images whose contrast is dominated either
by T1 or by T2. A 90° RF pulse moves the net magnetization into the transverse plane, and
is followed by a 180° RF re-phasing pulse.When the 90° pulse is turned off, the phases of
the contributing spins begin to change due to local variations and this phase dispersal
results in T�

2 decay. However, if a 180° re-phasing pulse is applied before the transverse
component dies away, the spins are flipped and then start to move back into focus before
beginning to de-phase again (Fig. 4.17). A new echo, called the spin echo, evolves as the
spins re-phase. A train of 180° pulses causes successive re-phasing by repeatedly
changing the direction of the individual rotating spins.

The maximum value of the spin echo following each 180° pulse constitutes a point on
the exponential decay describing spin–spin relaxation (Fig. 4.18). Thus, a 90° pulse
followed by a carefully timed train of 180° pulses gives an envelope of the T2 decay in the
presence of T�

2 decay, from which T2 can be measured. The time from the center of the
90° pulse to the center of the spin echo is known as the echo time, TE; TE/2 is the time
from the center of the 90° pulse to the center of the 180° re-phasing pulse. The pulse
sequence is applied multiple times depending on the image size and the required signal-
to-noise ratio. The repetition time, TR, is defined as the time from the center of the 90°
pulse to the center of the next 90° pulse.

90° 180°

τ τ

Time

z ′

y ′

x ′

M
y

exp (–t/T2  )

exp (–t/T2)

*exp (–t/T2  )*

Figure 4.17 The 90° pulse tips the magnetization into the x–y plane; after it finishes, de-phasing begins; the
180° pulse flips the individual spins by 180° in the x–y plane, so that they start moving into
phase again.
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Figure 4.19 is a spin echo sequence diagram. The bottom line illustrates the evolution
of the MR signal (the FID immediately after the 90° pulse and the echo at time TE). Note
that the repetition time is also labeled. Gradients are illustrated by rectangular blocks, the
area of which represents the amplitude and the sign (i.e. positive or negative) dictated by
the position above or below the “time” axis. In this example the phase encoding is in the y
direction and the phase encoding gradient (Gy) is drawn as multiple lines to illustrate that
the amplitude of this changes each time the sequence is repeated. In contrast, frequency
encoding (Gx) is performed all at once at the time of signal detection. A de-phasing lobe
(negative half of area) compensates for changes in phase, such that at the time of the echo
only a frequency change is exhibited. Lastly, the slice-selection gradient (Gz) has to be
applied at the time of both RF pulses so that only the spins within the slice of interest are
excited and refocused. It also uses a de-phasing lobe.

The acquisition time for the spin echo sequence is given by the product of the TR of the
pulse sequence and the number of phase encoding steps (the number of pixels in the
phase direction). If multiple acquisitions were done to improve the signal-to-noise ratio
(SNR) then the total acquisition time would be multiplied by this factor. By recording the
echo more than once the coherent signal is additive but the incoherent noise cancels out.

RF pulses

T2 decay

*T2 decay

90° 180° 180° 180° 180°

Figure 4.18 A spin echo pulse sequence, comprising a 90° pulse followed by carefully timed 180° pulses
produces a series of spin echoes of decreasing amplitudes. Although each individual echo decays as
T �
2 , the envelope decays as T2.
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Figure 4.19 Pulse sequence for spin echo imaging.
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In fact, the signal-to-noise ratio improves only as the square root of the number of
averages, i.e. taking two acquisitions increases the scan time by a factor of two, but
improves the signal-to-noise ratio by only 1.4 (see Activity 4.4). In practice, patient
movement and total imaging time limit the number of acquisitions to 6–8.

Multi-slice imaging is achieved by making use of the time between the end of echo
collection and the next 90° excitation pulse (TR−TE), referred to as dead time. In this
period the next slice can be selected and excited; it is possible to acquire 20–30
independent slices during TR. Another consideration is the cross-talk (or more correctly
“cross-excitation”) which occurs between adjacent slices due to imperfect slice profiles.
This is accounted for by leaving gaps or interleaving slices, so that even slices are excited
first followed by the odd slices.

In order to overcome the relatively long imaging times needed for spin echo imaging,
another pulse sequence, known as gradient echo (Fig. 4.20), was introduced. In this
sequence no 180° pulses are used so that the imaging time is faster. However, the images
are influenced byT�

2 rather than T2, and are therefore prone to susceptibility artifacts. The
use of gradient echo imaging is primarily for rapid (short TR) T1-weighted scans. The use
of such short TRs makes it prudent to use partial (non-90°) flip angles. A sequence of
pulses, with flip angles usually between 20° and 60°, are used; the particular spin angle
can be used to influence the contrast in the final image.

There are very many different pulse sequences, but the majority of them are variants of
spin echo or gradient echo imaging. Inversion recovery (IR) imaging was introduced as
an approach to enhance the T1-weighted contrast in conventional spin echo imaging. A
valuable application of inversion recovery for some clinical applications is the nulling of
signal from tissues having a specific T1 relaxation time such as fat (Fig. 4.21); these
sequences are known as short time inversion recovery (STIR) sequences. A variant of
gradient echo imaging is fast low-angle shot imaging (FLASH), which uses a lower flip
angle. Look at the images of the beating heart in Activity 4.5.

Echo planar imaging (EPI) is an extremely fast method of obtaining a magnetic
resonance image. To appreciate fully the utility of EPI we must first consider k-space,
which is an array of numbers whose Fourier transform (Chapter 7) gives the magnetic
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Figure 4.20 Pulse sequence for gradient echo imaging.
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resonance image. Each row in k-space corresponds to the echo data collected with each
application of the phase-encoding gradient. The cells in k-space do not equate one-
to-one with the pixels in the image; in fact each cell contains information about every
image pixel. Rows near to the center of k-space correspond to low-frequency detail
obtained from small-amplitude phase-encoding steps; while the edges of k-space corres-
pond to higher-frequency detail obtained using large-amplitude gradient steps. To image
an object fully data in the whole of k-space must be collected. By acquiring only part of
k-space (or fewer “lines”) the scan is much faster but image quality is compromised.
The central image in Figure 4.22 was acquired with full k-space, while for the

left-hand image only the outer edges of k-space were collected and as a result only the
edges or detail are present in the image. Conversely by acquiring only the central portion

(i) (ii)

Figure 4.21 Axial breast images (i) pre and (ii) post fat suppression.

Figure 4.22 Images acquired with full and partial k-space (see text).
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of k-space (right image) more of the signal is produced but the detail is missing. In normal
imaging one line of k-space is collected and the sequence is repeated with an increment of
the phase-encoding gradient in order to acquire the next line “up” and so on. In echo
planar imaging, the gradients are played out so that all lines of k-space are acquired in one
TR (single-shot technique). This means that the sequence is extremely fast, typically
acquiring a slice every 50ms. Usually fewer phase-encoding steps are collected com-
pared to a normal sequence (e.g. 64 instead of 256) so the images are not of the same
quality. Being so gradient intensive, echo planar imaging is also prone to artifacts.
Nevertheless, it is useful for pediatric studies or functional MRI where speed is essential.

4.2.4 T1- and T2-weighted images

A magnetic resonance image is a map of the relative strengths of the NMR signals
originating from different voxels. It depends on the proton density and on the values of T1
and T2, which are a consequence of the neighborhoods of the protons. Various protocols,
e.g. spin echo, gradient echo, inversion recovery, etc., using pulse sequences of different
lengths and separations, can be used to improve the contrast resolution of the image.
Images produced in such a way as to reflect differences primarily in tissue T1 are said to
be “T1-weighted”; other images might be “T2-weighted,” “proton density weighted,” etc.

To achieve T1-weighting, a spin echo sequence needs to reduce the contributions due
to T2 and spin density; thus both TR and TE should be short (≤500–600ms and ≤20ms,
respectively). The short TR ensures that there are maximum differences in the long-
itudinal recovery between tissues with different T1 relaxation times; and the short TE
ensures that transverse magnetization does not de-phase appreciably and lose these
differences.

T1-weighted images look like CT images and are more focused than other MRI image
types. They allow for the overall visualization of structures in the body and can be further
enhanced using a contrast medium which renders blood vessels white. In T1-weighted
images of the head, fat tissue appears bright and cerebral spinal fluid (CSF) dark (Fig. 4.23).

In T2-weighted imaging, TR is long (2000–4000ms) to reduce T1 effects, and TE is
long (80–150ms) to produce contrast differences that depend on the T2 values. In
T2-weighted images, both CSF and areas that have abnormally high water content
(those affected by tumor, infection or stroke) appear bright (Fig. 4.24). A problem with
T2-weighted images is that if TE is extended excessively image contrast improves, but the
signal-to-noise ratio decreases.

In many MRI imaging situations there is sufficient contrast to distinguish pathological
from healthy tissue. When there is not, contrast agents, often based on gadolinium, which
is paramagnetic, are used. Magnetic resonance angiography (MRA) is fast replacing
x-ray angiography as the preferred diagnostic tool for the detection of plaques and
blockages (stenoses) in the blood vessels, because it is less invasive and significantly
less time consuming. MRI is also developing a tremendous potential not only for
showing the structure or anatomy of the body, but also the function or physiology of
the body. Functional MRI (fMRI) can be used to show the function of the cardiac muscle
and even glimpse at the neural activity of the brain itself, for example using pattern
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recognition studies. New applications are being discovered all the time: MRI has been
used to show atrophy changes of the brain common in Alzheimer’s disease, and it can
detect tumors at earlier stages than most other forms of medical imaging.

4.2.5 Image characteristics

The most important parameter affecting the signal-to-noise ratio (SNR) is the strength of
the magnetic field, B0. A larger B0 results in more spins participating and consequently a
larger net magnetization. The improvement in signal-to-noise ratio scales approximately
linearly with increases in B0; thus, other things being equal, a 1.5 T system produces
images with a signal-to-noise ratio three times higher than images from a 0.5 T system.
However, this is partially offset by increased T1 times and increased artifacts. Increasing
the voxel size, by increasing the field of view, the slice thickness or the coarseness of the
matrix, increases the number of protons contributing to each voxel value and hence the
signal-to-noise ratio, but at the price of reduced spatial resolution.

Spatial resolution is determined by the number of frequency-encoded proje-
ctions and phase-encoded projections for a given field of view (FOV). An increase

Figure 4.23 T1-weighted spin echo image of the head.
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in spatial resolution along the phase-encoded axis requires an increase in the number of
phase-encoded projections, N, each with a different strength of the phase-encoding
gradient. This increases the acquisition time. The penalty for increasing spatial resolu-
tion along the frequency-encoded axis is that there are fewer protons in the smaller
voxels, which decreases the signal-to-noise ratio. In conventional clinical MRI ima-
ging, the overall spatial resolution is similar to that obtained with CT imaging, i.e.
0.5–1.0mm.

Contrast in MRI images is a complex function of many different factors, including T1
and T2 and the proton density of the tissues, the pulse sequence, and flow and diffusion
effects. Regardless of the details, however, MRI is capable of delivering outstanding soft
tissue contrast and the ability to image flow effects.

Artifacts are usually attributable to instrumentation defects, such as field and gradient
non-uniformities and non-linear coil response, or to the patient, such as movement during
signal acquisition. Especially problematic with regard to patient-related artifacts are
pulse sequences which require long acquisition times, over many heart beats or respira-
tory cycles. The use of cardiac gating to acquire signals in synchrony with the cardiac

Figure 4.24 T2-weighted spin echo image of the head.
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cycle reduces cardiac-related motion and artifacts due to chest motion. Ringing artifacts
are often seen at bright edges, such as at the edge of the brain–fatty scalp boundary in a
transverse image of the head. Partial volume effects can result when a voxel contains a
mixture of very different tissues. Other artifacts can arise due to the presence of
ferromagnetic materials (Fig. 4.25), or due to finite sampling (Section 7.4.2).

Since magnetic resonance imaging does not use ionizing radiation, it is considered
safe. There are safety aspects concerned with the high static magnetic field and
large field gradients. Due to the adverse effect of large magnetic fields on electrical
circuitry, patients with pace-makers or similar devices cannot be examined by magnetic
resonance imaging. Those with surgical clips or ferrous metallic implants are also
excluded. Although there is little evidence to suggest any problem, pregnant women,
especially in the first trimester, are also usually excluded. Peripheral nerve stimulation
can occur at field gradients above 60 T s−1, which although harmless may be painful.
The repetitive use of radiofrequency pulses deposits energy which in turn causes
heating in the patient. For fields up to 3.0 T, the heating is proportional to the square

Figure 4.25 T1-weighted spin echo image showing distortion along the scalp, due to the presence of
ferromagnetic material (small metal fragments embedded in the hair or scalp) causing distortion of
the local magnetic field.
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of the field but at high fields the body becomes increasingly conductive necessitating
the use of increased radiofrequency power. On rare occasions minor patient burns can
result. The scans themselves can be quite noisy. The forces acting on the gradient coils
due to current passing through them in the presence of the main field causes them to
vibrate. These mechanical vibrations are transmitted through to the patient as acoustic
noise. As a consequence patients often wear earplugs or head phones while being
scanned.

4.3 Picture archiving and communication systems (PACS)

A picture archiving and communication system (PACS) is essentially a network system
(Fig. 4.26) that allows digital or digitized images from any modality to be retrieved,
viewed and analyzed by a relevant expert, or by an appropriate expert system, at different
workstations. These images may be held in archives, i.e. be stored “permanently” on
DVD, and/or be transmitted to/from remote sites, “teleradiology.” The Digital Imaging
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Imaging
modalities
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Figure 4.26 A PACS system.
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and Communications in Medicine (DICOM) format allows images, and cine-loop
images, with associated patient information and reports, including voice notes, to be
stored and exchanged readily over the network. PACS systems can be integrated into
radiological/hospital information systems (RIS/HIS), with the inclusion of administra-
tive information such as billing and inventory.

Most modalities, including mammography, are now becoming digital. Increasingly,
plain-film radiography is being replaced by computed radiography or by direct digital
radiography. The advantages of PACS systems include:

(i) film-less radiology (no darkroom required, no chemical developers to purchase, no
bulky storage rooms);

(ii) easy access to images, including those from remote sites;
(iii) easy image processing/enhancement;
(iv) easy registration of images from different modalities;
(v) compression of images for quicker communication.

Major disadvantages are the large capital cost of setting it up and training personnel,
and the inevitable difficulties of phasing it in. Nevertheless, it is the obvious way to
proceed, and a large number of hospitals have implemented or are implementing PACS
systems.

4.3.1 Multimodal registration

Different medical imaging techniques may provide scans with complementary and
occasionally conflicting information. The combination of images can often lead to
additional clinical information not apparent in the separate images. When images are
available from a number of different modalities it becomes possible to combine the
information, for example from an anatomical image such as from CT or MRI with a
functional image from, say, SPECT, PET or fMRI, as long as the images are properly
aligned or registered with each other. In a functional image, for example, there is often
not sufficient anatomic detail to determine the position of a tumor or other lesion.
Figure 4.27 shows a co-registered SPECT–MRI image, where the SPECT image was
pasted in “opaque” mode on the top of the black-and-white MRI image, which provided
an anatomical template.

The registration can be

� intra-subject registration, i.e. different views of the same subject;
� inter-subject registration, i.e. different subjects (e.g. to assess the variability of struc-
tures over different individuals); or

� serial registration, i.e. to monitor changes within an individual over time.

The initial stage involves addressing differences in the acquisition parameters (different
pixel/voxel size, different matrix size and different orientations). When registering SPECT
images, which are generally 64× 64 pixels, with MRI or CT images the SPECT image
needs to be expanded to, say, a 512 × 512 matrix; in order to preserve the quality of images
enlarged to this extent, some form of interpolation needs to be used.
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The process of registration is based on a transformation that transforms an image from
one modality to the image of the other modality. Each point in one image should map on
to the corresponding point in the second image. The process is simplified if external
markers can be attached to the patient, but this is often time-consuming and invasive;
using internal anatomic markers, e.g. the rib cage, ventricles, bone surfaces, is more
frequently used. The registration could be done interactively by a radiologist, assisted by
software that gives feedback on the quality of the alignment, but automatic registration
is generally preferred. The simplest situation is inter-subject registration where there is
no distortion; and then just two rotations and two translations are required for
two-dimensional images (Fig. 4.28). If distortion is present in one or both of the images
non-rigid registration involving affine transformations (Section 6.3) that include the
effect of shear need to be applied.

Medical image registration has also been utilized in radiotherapy, mostly for brain
tumors, and by cranio-facial surgeons to prepare for and simulate complex surgical
procedures. Radiologists often have difficulty locating and accurately identifying cancer
tissue, even with the aid of structural information such as CTandMRI because of the low
contrast between the cancer and the surrounding tissues in CT and MRI images. Using
SPECT and radioactively labeled monoclonal antibodies it is possible to obtain high-
contrast images of the concentration of antibodies in tumors. Registration of both
structural and functional images can significantly aid in the early detection of tumors
and other diseases, and help in improving the accuracy of diagnosis.

Figure 4.27 Co-registered SPECT–MRI image through the head. (Courtesy of Dr. Karin Knesaurek,
Mt. Sinai Medical Center.) See also color plate.
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Computer-based activities

Activity 4.1 Beam steering
Double-click beamsteering.html, and then click on Beamsteering. An array

transducer comprising seven elements is shown. Element #1 receives a voltage
pulse first, and emits an ultrasound pulse; and then each of the other elements
receives a voltage pulse, delayed by a fixed amount relative to its neighbor on the
left. The resulting ultrasound beam wavefront is almost linear, and travels at an
angle which depends on the constant time delay between voltage pulses.

Activity 4.2 Echocardiogram image sequences
Start ezDicom, then File/OpenDicom and open the file US0001. This is a series of

eight images of the heart (i.e. echocardiography) with color Doppler added,
showing the action of the heart after exercise, i.e. post-stress. Use the Video
icon to animate the sequence; different speeds are available, 1 through 5. After
viewing the animated sequence, move Video to 0 (still) and use the slider to view
the eight images sequentially. Can you see the four chambers of the heart? Can you
visualize the direction of the blood flow through the heart, using BART (Blue
Away, Red Towards)? Look at Image/View Image Information to view the
DICOM header with details of the procedure.

What is an advantage of the echocardiogram over other imaging techniques?

Figure 4.28 MRI (upper right) and SPECT (lower center) head sagittal slices of the same patient and the
co-registered (MRI + SPECT) image (upper left). The lesion on the top of the skull is more
prominent in the composite image, although it can be visualized in both modalities. See also color
plate.
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Activity 4.3 MRI images of the head
Using ImageJ, open HeadMRI to get a stack of 55 MRI images of the human head.

From what plane are you viewing these images? Go to Image/Stacks/Start
Animation to animate the stack. Stop the animation and browse through the
stack using the slider under the image.

Use Image/Stacks/Z Project . . . Max intensity to see the slices superimposed.
This image data is virtually three-dimensional, although the spacing between stacks is

larger than the pixel size. It is possible to reconstruct the data in a different plane.
Use the straight line selector in the toolbar to draw a horizontal line (hold down the
shift key) in slice number 30, at about the level of the nose. Go to Stacks/
Reslice, and choose 2.2 for the input and output Z spacing and 55 for the slice
count. The new image appears compressed, and you should scale the x direction by
about 20 (you may need to assign more memory in Edit/Options/Memory) to
see a more accurate view.

Activity 4.4 Noise in MRI images
In order to reduce noise in MRI images, the acquisition is repeated several times, and

the resulting frames are averaged. The result is an improved signal-to-noise ratio
(SNR). Open the six images liver_n, where n = 1,…,6, in ImageJ.

Determine the signal-to-noise ratio in liver_1 using Plugins/Ch.5 Plugins/
SNR, which requires you to select a region of constant grayness in the image
(e.g. a rectangle from about (109 186) to (171 303)). Now add the six images: you
do this by adding two (Process/ImageCalculator and get a 32-bit result each
time), then adding a third to the result, then a fourth, and so on. Finally divide the
final result by six (Process/Math) to obtain the average of the six images. Determine
the signal-to-noise ratio of this image. How do you expect it to have changed? Do
your results confirm this?

Activity 4.5 The beating heart
Play the movie of the beating heart, heart.avi. (Double-clicking the file starts it

playing in Windows Media Player.) Also look at the individual frames. Note the
aorta in the lower right corner of the image and the clear definition of the heart’s
four chambers.

Start ezDicom, then File/OpenDicom and open the file MR0001. This is a series of
sixteen images of the heart; use the Video icon to animate the sequence. Can you
see the four chambers of the heart? Look at Image/ViewImageInformation to
view the DICOM header with details of the procedure. How does this sequence
compare with the avi sequence?

Activity 4.6 Rigid registration using points
Start Scion PC; strangely I have not been able to find a straightforward plugin for

ImageJ that registers images with selected fiducial points. Open (File/Open) the
four images HeadMRI01, HeadMRI 02, HeadMRI 03 and HeadMRI 04. (If
you have trouble reading the images (“unable to open the selected file”), copy them
into the Images subdirectory within the Scion Image directory.) Look for corre-
sponding salient anatomical points (landmarks) in the images, e.g. points in the
orbits, positions of the ears, identifiable points on the base of the skull. Three
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landmarks or fiducial points, preferably well-separated, should be identified. They
are used to scale, translate and rotate the second, third and fourth images into
alignment with the first image, by optimizing the distances between the corre-
sponding points in each image.

Combine the images into a stack (Stacks/Windows to Stack) and navigate
through the stack using the slider bar. Click Stacks/Register, and check
“Select fiducial points on screen.” Now click on the three corresponding
fiducial points in the same order for each image of the stack, double-clicking on the
third point in each case (which automatically advances to the next image). Be
careful with the order of points in image 04! Click on “Register.” Observe the
registered stack to check how well individual images have been registered.

Exercises

4.1 Why is the low megahertz range used in ultrasound imaging?
4.2 Do you expect sound to travel faster in soft tissue or bone? Why?
4.3 How much energy is reflected back when an ultrasound pulse passes from muscle

to bone? How much is transmitted? (Use values for Z from Table 4.1.)
4.4 An ultrasound pulse passes through soft tissue and reflects off an interface, produ-

cing an echo 0.1ms later. How deep is the reflecting interface?
4.5 If the delay between successive ultrasound pulses is 0.5ms, what is the maximum

range over which the system can successfully produce images, assuming the speed
of the pulses in soft tissue is 1540m s−1. Note: The echo from one pulse should be
received before the transmission of the next.

4.6 The intensity of an ultrasound beam falls by a factor of 100 in passing through a
material. Express this drop in decibels.

4.7 Calculate the distance at which the intensity of a 1 MHz ultrasound pulse is
reduced by half while traveling through (i) air, (ii) bone and (iii) muscle. (The
attenuation coefficients for bone, air and muscle are 45, 8.7 and 1 dB cm−1 MHz−1,
respectively.)

4.8 What is the axial resolution of an ultrasound imaging system that uses 5MHz
pulses which are three wavelengths in length?

4.9 What is the velocity of the blood if a 3 kHz beat signal is heard with a 5MHz
Doppler ultrasound system?

4.10 What is meant by the term “resonance” in magnetic resonance imaging?
4.11 In a magnetic resonance imaging system, the signal is coherent and the noise is

random. What is the effect on the signal-to-noise ratio of signal averaging four
observations from each voxel?

4.12 What is the purpose of the radiofrequency transmit and receive coils in magnetic
resonance imaging?

4.13 What is meant by the free induction decay signal in magnetic resonance imaging?
4.14 You wish to produce an image of hydrogen nuclei in the z–x plane. What directions

should the slice-, phase- and frequency-encoding gradients be applied in?
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5 Fundamentals of digital image
processing

Overview

Images can be usefully characterized by their gray-level histograms, from which global
qualities, such as brightness, contrast, entropy and signal-to-noise ratio, can be determined.
Histograms are simple to calculate, and are the basis for a number of real-time image
processing techniques. Display look-up tables allow grayscale transformations to be made,
so that the visual appearance of an image is changed without altering the pixel values
comprising it. The histogram of an image can be used to determine the parameters for
look-up tables which implement various effects.

Learning objectives

After reading this chapter you will be able to:

� describe the basis of the gray-level histogram as a probability density function;

� distinguish between the brightness and the contrast of an image;
� explain the relationship between dynamic range and contrast;

� interpret the concept of entropy applied to an image;
� compute the compression ratio of an image file from the entropy of the image;
� estimate the signal-to-noise ratio (SNR) of an image;
� describe the use of a look-up table (LUT) as a mapping function;
� explain the effects of histogram stretch and histogram equalization, and distinguish
between them;

� illustrate the effect of power-law and logarithmic histogram transforms;

� choose an appropriate look-up table to best display a particular image;
� distinguish between global and adaptive processing.

5.1 The gray-level histogram

The gray-level histogram is a concise initial characterization of an image, which can be
used to assess its overall qualities and determine the appropriate processing steps
required to enhance it. The histogram is a plot showing the number of pixels, anywhere



in the image, that displays each of the possible discrete pixel values, ai. Each pixel value,
plotted along the horizontal axis, is represented by a histogram bin whose height
represents the number of image pixels with that particular value. A more accurate
name for the gray-level histogram is the pixel value histogram, since pixel values and
gray levels are not synonymous. We can change the displayed gray levels in an image
without changing the pixel values by using a look-up table (LUT).

Figure 5.1(i) is an 8-bit deep MRI image of a head through the sagittal plane, and
Figure 5.1(ii) is its gray-level histogram, with pixel values, ai, from 0 to 255 along the
horizontal axis. The bin heights are scaled relative to the largest bin height, which occurs at a
pixel value of�50 for this image and corresponds to the dark gray background surrounding
the head. The process of constructing the gray-level histogram involves scanning the image
in a raster fashion, for each of the possible pixel values, and filling the corresponding bin as

(i) (ii)
0 255

(iii)

1

0 255

Figure 5.1 (i) Sagittal MRI image of a head, (ii) its gray-level histogram and (iii) its cumulative
distribution function.
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each pixel value is found. The histogram shows the number of pixels that have each pixel
value, but it does not record where those pixels are located in the image. Thus, spatial
information is discarded. The histogram is unique for a particular image, but different images
could have the same histogram. Nevertheless, it does succinctly display some useful proper-
ties of the original image.

The sum of all the bin heights in the histogram equals the total number of pixels in the
image. A normalized histogram may be obtained by dividing the bin heights by this
number, so that the sum of the bin heights equals unity. In statistical terms, the normalized
histogram is the probability density function (PDF) of the digital image, and indicates the
probability, on a scale of 0 to 1, of observing a particular pixel value in the image. The
integral of the normalized histogram/PDF is the distribution function or cumulative
distribution function, CDF, of intensity in the image (Fig. 5.1(iii)), and indicates the
probability of a pixel having a value equal to or less than a given value. The cumulative
distribution function increases monotonically from 0 to 1 because the probability density
function values are all positive. The cumulative distribution function value for a parti-
cular pixel value is obtained by adding the probability density function values for all
the pixel values from zero up to the particular pixel value of interest. The minimum
and maximum pixel values within the image can easily be obtained, either from the
histogram/probability density function plot or from the cumulative distribution func-
tion plot; the median pixel value can be conveniently obtained from the cumulative
distribution function plot by finding the pixel value corresponding to a cumulative
probability of 0.5.

The gray-level histogram shows whether an image is overall dark or light (Fig. 5.2).
The mean pixel value, ā, can be obtained from the histogram by adding the products of
pixel value and corresponding bin heights, and dividing by the total number of pixels. A
mean pixel value close to half of the maximum possible value, i.e. 127 or 128 for an
8-bit (256 gray levels) image, indicates optimum brightness. Avalue significantly below
or above this indicates that the image is overall dark or bright, respectively, and by how
much pixel values need to be changed in order to correct this. Activity 5.1 illustrates these
concepts.

5.1.1 Dynamic range and contrast

The range of pixel values, defined as the difference between the maximum (amax) and the
minimum (amin) pixel values found in the image, ignoring any obvious outliers, is known
as the dynamic range of the image. It can be expressed either as the difference in pixel
values or (in decibels (dB)) as

dynamic range of image ¼ 20 log10 ðamax � aminÞ (5:1)

Thus a 12-bit deep CT image, spanning the full range of pixel values (or CT numbers!)
available to it (i.e. 4096, from −1000 to +3095), has a dynamic range of 72 dB, while a
typical 10-bit deep fluoroscopy image spanning its full range (i.e. 1024, from 0 to 1023)
has a dynamic range of 60 dB.
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Ideally, the dynamic range of the radiation from the scene being imaged should be
close to the available dynamic range of the detector in the imaging system (2n for an n-bit
system). In this case all the shades of gray in the scene are captured by the detector and
represented in the image (Fig. 5.3(i)). If the dynamic range of the radiation from the scene
is larger than the dynamic range of the detector, the image histogram has its low and/or
high end cut off (Fig. 5.3(ii)). Pixel values underflow or overflow into the values that
mark the available limits, and information is irretrievably lost. Even if such underflow or

(i)

(ii)

0 255

0 255

Figure 5.2 (i) An overall dark image with its gray-level histogram, and (ii) an overall bright image with its
gray-level histogram.
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overflow occurs at only one extreme of the histogram (Fig. 5.3(iii)), and the pixel values
are subsequently shifted away from that extreme, the information lost cannot be recov-
ered. A more favorable situation is when the dynamic range of the object is smaller than
the dynamic range of the detector (Fig. 5.3(iv)). In this case, the dynamic range can be
stretched to cover the whole range available (see Activity 5.2), although the number of
bins in the original histogram is maintained. The dynamic range of the detector and the
display should also be matched. If they are not, for example a camera or scanner
digitizing to 7 bits (128 levels) and the image displayed on an 8-bit display (256 levels),
the recorded levels are spread out over the available display levels and the image
histogram shows 128 levels each separated by an empty level. Thus the histogram
often serves as an indicator to ensure the best image quality at the image acquisition
stage.

A closely related concept to dynamic range is contrast. When the dynamic range of an
image covers the available range of the imaging system (2n for an n-bit system), the
image exhibits high contrast. Conversely, when the dynamic range is low, i.e. only a
small range of closely spaced gray levels are present in the image, the image has low
contrast and looks dull and washed out. Look at the series of images in Figure 5.4. Which
images have the lowest contrast and which have the highest contrast? The relationship

(i)

0 255 0 255

0 255 0 255

(ii)

(iii) (iv)

Figure 5.3 Gray-level histograms which indicate: (i) the full dynamic range of the scene is optimally
captured by the detector; (ii) the dynamic range of the scene is larger than the dynamic range
of the detector, resulting in overflow at the top end of the histogram and underflow at the bottom
end of the histogram; (iii) the dynamic ranges of the scene and the detector are matched, but
incorrect exposure has resulted in the recorded pixel values being too large and overflowing at
the top end of the histogram; (iv) the dynamic range of the scene is lower than the dynamic range
of the detector.
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between dynamic range and contrast is explored further in Activity 5.2. Activity 5.3
illustrates the use of macros in ImageJ to record a series of processing operations.

Contrast and dynamic range are not synonymous. While the contrast does depend on
the dynamic range, it is also related to the bin heights and to the average separation of
pixel values in the image. For example, an image with a bimodal histogram (Fig. 5.5(i)),
i.e. having two peaks, generally exhibits a higher contrast than an image with a unimodal
histogram (Fig. 5.5(ii)), i.e. having a single peak.

(i) (ii) (iii) (iv)

(v) (vi) (vii) (viii)

Figure 5.4 A series of images showing different contrasts. (The lowest contrast image is (i), and
the highest contrast image is (viii).)

(i)

0 255

(ii)

0 255

Figure 5.5 (i) A bimodal gray-level histogram. (ii) A unimodal gray-level histogram.

128 Fundamentals of digital image processing



The histogram of an image with a low dynamic range, and low contrast as a
consequence, is shown in Figure 5.6(i). An image with the maximum dynamic contrast
available (256 for an image with 8-bit pixels) is shown in Figure 5.6(ii); it has
significantly higher contrast. Although the dynamic range cannot be increased further,
the contrast can be increased. Figure 5.6(iii) shows the histogram of such an image;
the full dynamic range, combined with an increased separation of pixel values as
a result of missing intermediate values, results in an image of higher contrast.
Contrast can be increased further by continuing to increase the separation of pixel
values, up to the limit where the only pixel values present are 0 and 255; this
so-called binary image has the maximum possible contrast. However, as the number
of pixel values in an image is reduced, false contouring or posterization becomes
increasingly evident. This process of increasing the dynamic range to the maximum
available, and then increasing the separation of the pixel values to increase contrast
further, produced the series of images in Figure 5.4, culminating in the binary image of
Figure 5.4(viii).

5.1.2 Entropy

Entropy is a measure of the amount of disorder or randomness in a system. An organized,
highly ordered system has low entropy, whereas a less ordered system has higher entropy.
One way of understanding entropy is to consider the spread of states which a system
can adopt: a low-entropy system occupies a small number of such states, while a high-
entropy system occupies a large number of states.

In the case of an image, these states correspond to the gray levels which the individual
pixels can adopt. For example, in an 8-bit pixel there are 256 such states. If all such states
are equally occupied, as they are in the case of an image with a uniformly distributed
gray-level histogram, the spread of states has the maximum possible value. On the
other hand, if the image has only two states occupied, i.e. all the pixels are either black
or white, the entropy is low. And if all of the pixels have the same value, the entropy of the
image is zero. Note that as the entropy of the image is decreased, so is its information
content.

No. of
pixels

2550 Pixel value
(i)

2550 Pixel value
(ii)

No. of
pixels

2550 Pixel value
(iii)

No.  of
pixels

Figure 5.6 Histograms showing (i) low dynamic range and low contrast, (ii) maximum dynamic range and
high contrast and (iii) maximum dynamic range and even higher contrast.
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Entropy measures the average global information content of the image in bits per pixel.
The concept of entropy comes from information theory, where information can be
thought of as the reduction of uncertainty. The information content of a single message
state in units of information is given by

IðEÞ ¼ logð1=PðEÞÞ ¼ � logPðEÞ (5:2)

where P(E) is the prior probability of occurrence of the message. Intuitively, the amount
of information carried by a message is inversely related to the probability of its occur-
rence. Messages with a high probability of occurring carry little information, and
conversely, messages that are least expected carry most information. Data and informa-
tion are different. We all have received long emails (data), many of which contain little
information because they tell us what we already know; only when they tell us something
unexpected do they carry real information.

If only two events are possible (0 and 1) the base of the logarithm in Equation (5.2) is 2,
and the resulting unit of information is the bit. if the two events are equally likely
(P1(E) =P2(E) = 1/2) then I(E1) = I(E2) =−log2(1/2) = 1 bit, i.e. 1 bit of information is
conveyed when one of two possible equally likely events occurs. However, if the two
possible events are not equally likely (for example, P1(E) = 1/4 and P2(E) = 3/4) then the
information conveyed by the less common event (I(E1) =−log2(1/4) = 2) is greater than
that conveyed by the more common event (I(E2) =−log2(3/4) = 0.415).

In an image, the pixel values, ai, occur with probabilities P(ai), which are given by the
bin heights of the normalized histogram; the available pixel values run from 0 to 2n–1.
First-order statistics assume that the statistical properties of the pixels do not depend on
neighboring pixels. A first-order estimate of the entropy, H, of an image is given by the
sum of the information content of each pixel:

H ¼
2n�1
�
X
i ¼ 0

PðaiÞ IðaiÞ ¼
2n�1
�
X
i ¼ 0

PðaiÞ log2 PðaiÞ (5:3)

Differentiating the function in this equation with respect to P(ai), it can be shown that the
maximum possible entropy occurs when all the gray levels occur with the same prob-
ability. In an n-bit deep image, if all the (2n) bins are occupied and with the same
probability, i.e. the gray-level histogram is uniformly distributed, the image is said to
be histogram equalized (Section 5.2.2). In such a case, P(ai) is constant and equal to 1/2

n

and the entropy is n bits pixel−1:

H ¼
2n�1
�
X
i ¼ 0

PðaiÞ log2PðaiÞ ¼ ��ð1=2nÞ � log2ð1=2nÞ ¼ þ�ð1=2nÞ � n ¼ n (5:4)

Thus, maximum entropy is achieved when all the bins are occupied and with equal
probabilities.
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For an 8-bit deep image, entropy approaching 8 bits pixel−1 indicates an information-
rich, complex image using all the available pixel values. Such an image tends to
have fine details, although first-order entropy only depends on the gray-level histo-
gram, which does not contain information on spatial pattern. Pixel values in the
angiogram shown in Fig. 5.7(i) cover a wide dynamic range and the entropy of
the image is correspondingly high, although not the maximum achievable value because
the histogram does not cover the full range and is not an equalized histogram. Nuclear
medicine images tend to have a limited dynamic range and less detail (Fig. 5.7(ii));

2550

(i)

2550

(ii)

Figure 5.7 Images and their histograms. The corresponding entropies are (i) 7.50 and (ii) 4.95 bits pixel−1.
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their entropy is consequently low. In general, the more occupied bins and the smaller the
variation in bin heights the higher the entropy. This can be seen with the images in
Activity 5.3.

An image with high entropy has many different pixel values, all occurring at about the
same frequency, which is evident from a surface plot, i.e. plotting the pixel values as a
function of pixel position (Fig. 5.8). Entropy can characterize the texture of regions,
whether rough or smooth, within an image because it provides information about the
local variability of the pixel values. Texture can be used to distinguish normal from
pathological tissue, and has been used with breast tissue to predict malignant versus
benign outcomes.

If the histogram shows that some pixel values occur more frequently than others, a
more efficient coding system than natural binary coding can be used for the image.
Instead of using the same coding length, 8 bits for example, for each pixel value,
the pixel values that occur more frequently can be assigned shorter codes, and those
that occur less frequently assigned longer codes. The result is that the average
code-length can be reduced without loss of information, resulting in lossless or error-
free file compression. This is the basis of variable-length coding systems, such as
Huffman coding. Entropy is indicative of how much lossless compression can be
achieved for a particular image. Images with high entropy cannot be compressed
significantly.

255

0

495 pixels

470 pixels

Figure 5.8 A surface plot of the angiogram image shown in Fig. 5.7(i).
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Consider an image containing only 4 pixel values (0, 1, 2 and 3), with normalized
histogram values of 0.5, 0.25, 0.125 and 0.125, respectively. Sketch the histogram!
The average information per symbol, or entropy, is given by

H ¼ �ð0:5 log2ð0:5Þ þ 0:25 log2ð0:25Þ þ 0:125 log2 ð0:125Þ
þ 0:125 log2 ð0:125ÞÞ

¼ �ð�0:5� 0:5� 0:375� 0:375Þ ¼ 1:75

This is less than the 2 bits pixel−1 that are required using fixed-length binary coding
(00, 01, 10 and 11), indicating that the image could be compressed using appro-
priate coding. If the codes 0, 10, 110 and 111 were used, the average codeword
length, L, would be:

L ¼ ð0:5� 1Þ þ ð0:25� 2Þ þ ð0:125� 3Þ þ ð0:125� 3Þ ¼ 1:75

which is equal to the entropy; this is the condition for the best possible code, and
this is therefore an optimal code.

Using this code results in a file compression ratio, C, the ratio of the size of the
original file to that of the compressed file, of 2:1.75, i.e. 1.14:1, although there is a
small overhead in having to attach the code table to the image. With so few pixel
values, the saving in file space due to using a variable-length coding system is not
great, but as the number of pixel values increases, so do the potential savings.

The entropy of the image defines the limit of compressibility by variable-length
coding. An image with an equalized histogram, for example, cannot be compressed
in this way.

5.1.3 Signal-to-noise ratio

The signal-to-noise ratio (SNR) of an image can often be estimated from the image itself,
in a straightforward way. The signal, or mean intensity, of the image is characterized by
the square of the mean pixel value of the entire image, ā 2. Noise is characterized by the
variance of pixel values, σa

2, but needs to be measured in a region within the image which
is expected to have constant gray values and is large enough so that all significant
variations are included in the noise measurement. This is required so as not to confuse
variations of pixel values due to local information, i.e. features, with variations due to
noise. Alternatively, the noise could be measured in a second, completely uniform
image acquired under the same conditions as the first image, if such an image is
available. In radiography it can be obtained by imaging, for example, a block of acrylic
or a uniform water “phantom,” or even doing an “air scan” with only air in the beam. In
each case the noise in the second image can be calculated, so long as it contains only
random statistical fluctuations and no correlated noise, and assumed to be applicable to
the first image.
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The SNR of an image, in decibels (dB), is:

SNR ¼ 10 log10ða 2=� 2
a Þ ¼ 20 log10ða=�aÞ (5:5)

which is obtained from Equation (2.13), where the signal power is determined from the
square of the average pixel value in the entire image and the noise power is determined
from the variance within a region of interest (ROI) containing no features. Practice in
finding the signal-to-noise ratio of images is given in Activity 5.4.

In many images, the goal is to distinguish a foreground structure from the background,
for example a tumor from surrounding normal tissue. In such cases it is the contrast-
to-noise ratio, CNR, rather than the signal-to-noise ratio, SNR, which is more useful:

CNR ¼ 20 log10ððaforeground � abackgroundÞ=�aÞ (5:6)

where the signal, or average pixel value for the whole image, is replaced by the contrast,
or difference in the average pixel values of the foreground and background. The contrast-
to-noise ratio is equal to the difference in signal-to-noise ratios for the foreground and
background, respectively, since the noise is similar whether measured using the fore-
ground or background pixels.

5.1.4 Other histogram features

Spatial moments are a very simple and powerful way to describe the spatial distribution of
values within a distribution provided that there is a sufficiently strong central tendency, i.e. a
tendency to cluster around a modal value. They can be applied either to a one-dimensional
distribution, such as the gray-level histogram, or to a higher-dimensional distribution, such
as the image itself.

Applied to a one-dimensional discrete distribution with N possible values, xi, the nth
moment is defined by

mn ðxÞ ¼
XN
i¼0

PðxiÞ � xni (5:7a)

Central moments are defined relative to the mean, �x; thus the nth central moment is
defined by

�n ðxÞ ¼
XN
i¼0

PðxiÞ � ðxi � xÞn (5:7b)

The first moment of the histogram gives the average pixel value,

m1 ¼
X255
i¼0

PðaiÞ � ai ¼ a (5:8a)
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and its second central moment gives the variance,

�1 ¼
X255
i¼0

PðaiÞ � ðai � aÞ2 ¼ �2
a (5:8b)

where the summation over i = 0 to 255 applies to an 8-bit deep image. The third central
moment gives the skewness of the distribution. If it is numerically equal to zero, the
histogram is symmetric. A negative value for the skewness indicates that the histogram
is asymmetric to the left (i.e. its tail extends left of the center or average value); a
positive value indicates that it is asymmetric to the right (i.e. its tail extends right of the
center or average value). The fourth central moment gives the kurtosis, which is a
measure of how close it is to a normal or Gaussian shape. A kurtosis of zero indicates it
is Gaussian, while a negative/positive value indicates that it is flatter/more peaked than
Gaussian.

5.2 Histogram transformations and look-up tables

We have seen that an image is stored as a matrix (array) of pixels, with pixel values in
the range 0 to 255 if 8 bits (one byte) are used to store each pixel value. These pixel
values determine the brightness of the displayed image via a display look-up table
(LUT). The pixel values are addresses in the look-up table and are used to “look up”
the brightness information (gray level) for that pixel (Fig. 5.9(i)), which is sent to the
monitor and used to “paint” that pixel on the screen. In the identity or default
look-up table pixel values give the gray level directly, i.e. pixel value 0 gives the 0th
gray level (black), pixel value 255 gives the 255th gray level (white), pixel value 127
gives the 127th gray level (mid-gray) and so on (Fig. 5.9(ii)). The look-up table may be
represented either graphically as a plot of input pixel value along the x axis against output
gray level (running from black up to white) on the y axis, or as a vertical window of gray
levels (Fig. 5.9(iii)).

The look-up table maps pixel values to gray values and can be used to display an image
differently, by changing the distribution of pixel values into a differing distribution of
gray values without changing the stored pixel values. The process can be described with
the mapping function

g ¼ MðaÞ (5:9)

where a and g are, respectively, the stored pixel values and the displayed gray levels. The
form of the mapping function M determines the effect of the operation. Image transfor-
mation using a look-up table is an example of a point operation, where the output pixel
value depends only on its corresponding input value.

The brightness of an image can be changed by either adding a fixed value to all
the pixel values to brighten the image, or subtracting a fixed value from all the pixels
to darken the image. However, this changes the pixel values in the image file. An
alternative way to change the brightness of a displayed image, which preserves the
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original pixel values, is to use a display look-up table in which pixel values are looked up
to give lighter (or darker) grays than those using the default look-up table. This could be
achieved by using a look-up table that is parallel to the default look-up table, but above
(or below) it.

The contrast of a displayed image can also be changed by using an appropriate
look-up table, rather than multiplying or dividing pixel values by a fixed value. The
contrast could be increased (or reduced) by using a look-up table with a gradient
greater (or less) than the default look-up table. These changes are illustrated in
Activity 5.5.

In many vision applications, it is useful to be able to separate out or segment the
regions of the image corresponding to objects in which we are interested, from the
regions of the image that correspond to background. Thresholding often provides an
easy and convenient way to perform this segmentation on the basis of the different
intensities or colors in the foreground and background regions of an image. The input to a
thresholding operation is typically a grayscale image and the output is a binary image,
comprising black and white pixels only, representing the segmentation. Usually black
pixels correspond to background and white pixels correspond to foreground, although
this can be reversed. In simple implementations, the segmentation is determined by a
single parameter known as the intensity threshold. Each pixel in the image is compared
with this threshold. If its value is higher than the threshold, the pixel is set to white in the
output; if it is less than or equal to the threshold, it is set to black. The use of a
step-function look-up table enables us to display the result of the thresholding, without
actually changing the stored pixel values.

For more sophisticated applications, multiple thresholds can be specified, so that a
band of pixel values in an image can be set to white while everything else is set to
black, or various bands can be assigned different false colors. Identifying multiple
bands is referred to as density slicing. For color images, it may be useful to set
different thresholds for each color channel. Another common variant is to set to black
all those pixels corresponding to background, but leave foreground pixels at their
original intensity (as opposed to forcing them to white), so that that information is
not lost.

5.2.1 Histogram stretch

An image with a dynamic range lower than the full dynamic range available (2n) can be
displayed with the full dynamic range if its histogram is stretched. The simplest
solution would be a linear stretch, without otherwise changing the shape of the
histogram (Fig. 5.10(i)). The operation is referred to as histogram stretch or contrast
stretch. It can be implemented by a specific look-up table which leaves the pixel values
unchanged but maps them to gray values covering the full range from black to white.
This new look-up table maps the minimum pixel value in the image, amin, to black, the
maximum pixel value in the image, amax, to white and all intermediate pixel values
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linearly to gray values; thus the transform from pixel values, ai, to gray values, gi, is
given by

gi ¼ 2n � 1

amax � amin
� ai (5:10)

The required look-up table is shown in Fig. 5.10(ii). The range of values that is stretched,
in this case (amax – amin), is known as the window width (WW), and the midpoint of the
window is known as thewindow level (WL). The look-up table transforms each pixel value
to its own gray level value, i.e. it is a one-to-one transform, so that the number of bins in the
histogram remains the same. Since they are spread further apart by the histogram stretch,
there are intervening empty bins. This can be seen in Fig. 5.11. This form of look-up table is
used to implement windowing in computed tomography. A value of window level is
chosen from the range {−1000 3095}, together with a value of window width, both
depending on the anatomy of interest; the bottom of the window is mapped to black, and
the top of the window to white.

For some images the majority of pixels may fall within a narrow range but there may
be a few outlier pixels with values near the extremes of black or white. If these outlier
pixels are included the window may span almost the full dynamic range possible, and
very little stretching is possible. A more robust approach is to choose the window such
that a certain percentage, say p%, of the pixel values is ignored. This has the effect of
saturating the tails of the histogram of the modified image, by forcing p/2% of the pixels
into the black bins, and p/2% into the white bins. (This can be Process/Enhance
Contrast, selecting Normalize and entering the percentage of saturated pixels, p.)

For an RGB color space digital image, histogram stretching can be accomplished by
converting the image to a hue, saturation, intensity (HSI) color space representation of the
image and applying the brightness mapping operation to the intensity information alone.

No. of
pixels

0 amin amax 255

Pixel values

Output
gray level, gi

WW

White (255)

Mid-gray (127)

Black (0)
amaxamin WL0

(i) (ii)

255
Input pixel value, ai

Figure 5.10 (i) The concept of linearly stretching a histogram. (ii) The look-up table required to implement a
linear histogram stretch.
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In floating-point images the pixel values are represented by signed floating-point (FP)
numbers, i.e. real numbers rather than integers, in scientific notation with a sign, a number
and an exponent. In (single-precision) 32-bit numbers, the first bit is the sign bit, “S,” the
next eight bits are the exponent bits, “E,” and the final 23 bits are the fraction, “F”:

S EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFFF

0 1 8 9 31

0

(i)

255

0

(ii)

255

Figure 5.11 (i) An image of limited dynamic range and its gray-level histogram. (ii) The image after a linear
histogram stretch, with its gray-level histogram.
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This allows a huge range of values, useful when the pixel values represent some physical
quantity. When converting floating-point pixel values to 8-bit integer pixel values, the
range is first normalized to 0–255 before conversion to 8-bit integers. This can be done
with a mapping function similar to the look-up table for histogram stretch, such as

gi ¼ round
ð2n � 1Þ � FPi

ðFPmaxÞ � ðFPminÞ
� �

(5:11)

where round indicates quantization on to the 256 available levels. Obviously some
information is lost in the normalization process, but the relative intensities of the pixels
are preserved. Double-precision floating-point numbers assign 64 bits to a number to
encompass an even bigger range: one bit for the sign, “S,” 11 bits for the exponent, “E,”
and 52 bits for the fraction, “F.”

5.2.2 Histogram equalization

When it is necessary to compare several images, which may have been acquired under
differing conditions, on a specific basis, such as for quantitative texture measurement, it
is usual to try to standardize their histograms. The most common standardization
technique is histogram equalization, where one attempts to change the histogram into a
flat, uniform or equalized histogram, in which every pixel value occurs equally fre-
quently. The expectation is that this maximizes the information conveyed in the image
and that the transformed image has an enhanced appearance.

Consider an “input” image, A, with a normalized histogram or probability density
function (PDF), p(x). A transfer function, y = T(x) (Fig. 5.12), will map its probability

y = T(x)

p (x)

p (y)dy = p (x)dx

0

0

p
 (y

)

p
 (y

)d
y

d
y

1

y

dx 1

x

x

p (x)dx

Figure 5.12 The transfer function, y =T(x), determines how the probability density function p(x) is transformed
into the probability density function p(y).
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density function into an alternative probability density function, p(y), describing the
intensity levels of an “output” image, B. Since the number of pixels mapped from x to y is
unchanged,

pðyÞdy ¼ pðxÞdx (5:12)

If we want the “output” image to have a flat, equalized probability density function
then p(y) should be constant (and equal to 1/255 for an 8-bit image). Thus

dy ¼ pðxÞdx (5:13a)

or

dy=dx ¼ pðxÞ (5:13b)

The mapping function, y= T(x), for histogram equalization is therefore

Aðx; yÞ ¼ CDFB� 1fCDFAðAðx; yÞÞg (5:14)

where

TðxÞ ¼
ðx

0

pðuÞdu; Tð0Þ ¼ 0 (5:15)

Intuitively, we can see that

� if p(x) is high, T(x) has a steep slope, dy will be wide, causing p(y) to be low to keep
p(y)dy = p(x)dx;

� if p(x) is low, T(x) has a shallow slope, dy will be narrow, causing p(y) to be high.

For discrete gray levels, the gray level of the input image, x, takes one of the discrete values,
x={0, 1, 2,…, 255}, and the continuous integral transfer function becomes discrete

TðxÞ ¼
Xx
i¼0

pi (5:16)

and is the cumulative distribution function (CDF) of the input image. Thus the transfer
function, or look-up table, required to achieve histogram equalization is the cumulative
distribution function (CDF), suitably scaled to the range 0 < y ≤ 255, which is obtained
by integrating the pixel value histogram of the image (Section 5.1). Each image
requires its own specific look-up table, obtained from its histogram (Fig. 5.13(i)). It
is monotonic and, in general, non-linear, unlike the linear look-up table used in
histogram stretching.

In the discrete implementation, the output image will not necessarily be fully equal-
ized. The scaled look-up table may yield values that are not equal to the available
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quantized gray levels, and the values will have to be quantized to the nearest available
levels. Indeed transformed values may be quantized to the same level, even though they
were different in the original image; this renders the (discrete) histogram equalization
technique non-unique and irreversible, and the entropy of the transformed image lower,
rather than higher, than the original image. There will generally be gaps (i.e. unused

0

(i)

255

0

(ii)

255

Figure 5.13 (i) An image of limited dynamic range (same as Fig. 5.10(i)) and its gray-level histogram with
superimposed cumulative distribution function. (ii) The image after histogram equalization, using
the cumulative distribution function of the original image as a look-up table, and its gray-level
histogram. Compare the resulting histogram with that of the histogram stretched image of
Fig. 5.11(ii).
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intensity levels) in the histogram of the output image, because pixels of the same gray
level in the input histogram cannot be separated to satisfy a completely constant
distribution in the output histogram. This results in only an approximately flat histogram
(Fig. 5.13(ii)). These effects decrease as the number of pixels and intensity quantization
levels in the input image are increased. Despite these drawbacks, histogram equalization
remains a popular method for image enhancement.

In Figure 5.14, the histogram (PDF) and cumulative distribution function (CDF) of an
“input” image in Figure 5.14(i) is shown in Figure 5.14(ii). The cumulative distribution
function is used as the transfer function (or look-up table) to produce an “output” image
(Fig. 5.14(iii)). Although the histogram of the “output” image is not completely flat/
equalized (Fig. 5.14(iv)), it is considerably flatter than that of the “input” image; and the
cumulative distribution function of the histogram of the “output” image is close to a
linear ramp (as expected for a flat histogram).

The use of the cumulative distribution function as a look-up table to implement
histogram equalization is illustrated in Activity 5.6. An advantage of histogram equaliza-
tion is that it is fully automatic; i.e., given an image, we can extract its gray-level histogram

(i) (ii)

(iii) (iv)

Figure 5.14 (i) “Input” image. (ii) Histogram with cumulative distribution function (CDF) overlaid.
(iii) Histogram-equalized “output” image, using the scaled cumulative distribution function
of the “input” image as the look-up table. (iv) The histogram and cumulative distribution function
of image (iii).
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and then obtain its cumulative distribution function, which after scaling is used as the
look-up table, without the need for specifying any parameters. The computation is simple
since it only involves repeated additions of the histogram values.

However, the use of a global transform and the consequent merging of gray levels
that had low probabilities of occurrence in the original image can be a significant
problem in medical images. Attempts have been made to address this issue by applying
histogram equalization on a local basis, so-called local-area histogram equalization.
The histogram of the pixels within a sliding rectangular window, centered on the current
pixel being processed, is applied only to that pixel and the process repeated for
every pixel in the image. The method is computationally expensive and can introduce
artifacts due to the artificial rectangular shape of the moving window. Adaptive
local-area histogram equalization has also been used, where the window used for a
particular pixel is not constrained to a particular shape or size but can adapt to its
environment.

5.2.3 Histogram matching

Sometimes it may be useful to transform an image so that its histogram has a certain
shape or matches that of another image. Histogram matching, in general, requires
non-linear and non-monotonic look-up tables to map between pixel values in the input
and output images.

Suppose we wish to transform an image, A, so that its histogrammatches that of image
B. This can be achieved in a two-step process. First, the image is transformed so that it has
an equalized histogram using its cumulative density function, CDFA, as the LUT. Now
the cumulative distribution function of image B, CDFB, can be used to histogram-
equalize image C. Conversely, the inverse of that cumulative distribution function
could be used to transform an image with a flat histogram into an image with the
histogram of B; that is what is required for the second stage of the transformation of
image A. Thus

A0ðx; yÞ ¼ CDF�1
B fCDFAðAðx; yÞg (5:17)

transforms image A into an image A0, having a histogram that matches image B.
This can be used in photometric calibration, by transforming an image produced by a

digitizer with photometric non-linearity (i.e. its output gray level has a non-linear
relationship with input film density) to what it would have been using an ideal, linear
digitizer.

5.2.4 Local histogram transformations

The histogram transformations discussed above are global in that they apply a transform
or look-up table whose form is based on the gray-level distribution of an entire image.
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Although this method can enhance the overall contrast and dynamic range of an image,
there are cases in which enhancement of details over small areas is desired. The solution
in these cases is to derive a look-up table based upon the gray-level distribution in the
local neighborhood of every pixel in the image.

The procedure involves defining a neighborhood around each pixel and, using the
histogram characteristics of this neighborhood, deriving a look-up table which maps that
pixel into an output intensity level. This is performed for each pixel in the image. Since
moving across rows or down columns only adds several new pixels to the local histo-
gram, updating the histogram from the previous calculation is possible.

5.2.5 Other histogram transformations

There are a number of other commonly used gray-level histogram transformations that
can be implemented by display look-up tables (Fig. 5.15). The linear or identity line is the
default value. A line of negative slope transforms an image into its complement or
inverse, i.e. the equivalent of its photographic negative. This transformation is sometimes
made when looking at bones or mammographic images (Fig. 5.16). The logarithmic and
square root transformations expand the displayed brightness at the dark end of the scale,
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Figure 5.15 Examples of look-up tables used for enhancing images.
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and compress them at the bright end. This type of relationship can be used to convert an
image from a camera with a linear response curve to the logarithmic brightness curve of
the human visual system. It is also used to compress the dynamic range of images, such as
astronomical images. The effects of the log look-up and the inverse log look-up tables is
illustrated in Activity 5.7.

Power-law transformations have the general form:

output gray level ¼ factor�ðinput pixel valueÞ� (5:18)

where the exponent is known as the gamma of the transformation, e.g. γ= 1/2 for the
square root transformation and γ = 2 for the square transformation. Pixel values are
“raised to the power” of the gamma value, and the output values are scaled to 8 bits
(0–255). Faint objects can be made brighter without saturating bright objects by using
γ< 1, or bright objects can be dimmed without losing less bright objects by using γ> 1.
Rather than directly computing the transformation for each pixel in an image, which

(i) (ii)

Figure 5.16 (i) Original mammographic image and (ii) its complement.
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would be very computer intensive, the output values are pre-calculated for the 256
possible input values and stored in a look-up table. Gamma correction can be important
when using computer monitors, which generally have a power-law response function with
an exponent close to 2. In order to display an image accurately on a monitor with an
exponent of 2.5, for example, the image should be pre-processed using a power-law
look-up table with a gamma of (2.5)−1 = 0.4.

In most imaging systems, look-up tables are implemented in hardware on a
frame-grabber board (Fig. 5.17). An input look-up table may be located between the
analog-to-digital converter (ADC) and the frame or image memory. Its use is generally
limited to the situation where the digitization precision is higher than the storage
precision, or for compressing a large dynamic range using a non-linear look-up table.
The output or display look-up table, located between the image memory and the digital-
to-analog converter (DAC), is much more versatile since it does not change the stored
pixel values. Figure 5.17 shows how the frame-grabber board interfaces with the host
computer, which performs the image processing tasks using its central processor unit
(CPU). Display look-up tables can also be used to convert a grayscale image into a
pseudocolor or false color image, thus enhancing the visibility of particular structures in
an image; this is frequently the case with ultrasound images. Three look-up tables are
required, one for each of the three digital-to-analog converters used for the primary colors
red, green and blue.

Digital medical imaging systems have a suite of transforms, stored in memory
as look-up tables, which can be selected by the operator to modify the appearance of a
stored image. The image can be displayed using various look-up tables until the operator
judges that the features of most interest are best shown. Computed radiography (CR)
systems, for example, allow the user to display the image using the linear look-up table
applicable to the image plate (IP) detector or to use a sigmoidal display look-up table that
mimics the shape of a film characteristic curve. Many imaging systems allow the user to
custom-build a look-up table interactively using the mouse. The effect of using different
look-up tables to view an image is explored in Activity 5.8.
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Figure 5.17 Schematic of frame-grabber board containing input and output LUTs.

5.2 Histogram transformations and look-up tables 147



Computer-based activities

Activity 5.1 Image brightness
Open the image mri in ImageJ. Note that it is rather dark. Display its gray-level

histogram (Analyze/Histogram), and note its mean pixel value. Note that
although the vertical scaling of the bin heights is not displayed, any individual
bin height can be found by moving the cursor within the histogram; the pixel
value is shown as “Value,” and the bin height as “Count.” Click on the mri

image, to ensure that it is the current image, and go to Image/Adjust/...
Brightness/Contrast. Move the Brightness slider to lighten the image.
Once you are satisfied with the setting, click Apply, and then look at the
histogram of the lightened image (Analyze/Histogram). Note its shape and
mean pixel value. How does it compare with the histogram of the original
image?

Do the same for the image dsa stent, which has been acquired byDigital Subtraction
Angiography (DSA) and which shows the pelvis of a patient who has had a kidney
transplant and a stent placement. Note that there is significant pixelation.

Activity 5.2 Contrast and dynamic range
Open the image MRIhead in ImageJ. Go to Analyze/Histogram to see the histo-

gram of pixel values. Note the minimum and maximum pixel values (amin and amax);
the difference between them is the dynamic range. Click the menu bar of MRIhead
again. Move the contrast slider (in Image/Adjust... Brightness/Contrast) to
the left (for lower contrast) and to the right (for higher contrast), watching the image
as you do this. The contrast of the image changes, as does the look-up table in
the “B&C” box (but the histogram does not change). Move the slider as far to the
right as you think is needed to obtain an image of acceptable contrast, and click
Apply to see the histogram update in the “B&C” box. Note that the original
histogram has been stretched; the “new” image has a higher dynamic range and a
better contrast. The pixel values have been spread out, but there are the same number
of bins, so that gaps or missing values appear in the histogram. You can see these
more clearly if you close the “histogram” window and then re-open it, so that it is
updated too. What happens to the histogram as you continue to increase the contrast
of the image?

Lower the contrast of the image with the contrast slider, and note that the number of
pixel values is reduced so that periodically the pixel values pile up and produce
higher spikes.

Activity 5.3 Entropy
Open image noise in ImageJ and obtain its gray-level histogram (Analyze/

Histogram). Use the entropy plugin (Plugins/Ch.5 Plugins/Entropy) to
obtain its entropy in bits pixel−1. Repeat using the following images: histeq,
16 gray-bands, 8 gray-bands, 4 gray-bands and 2 gray-bands.
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Comment on the entropy values obtained and their relationship to the gray-level
histograms referencing Equation (5.3).

Open image dsa stent; how does its entropy relate to its gray-level histogram?
Adjust the contrast of the image using histogram stretch (Process/Enhance
Contrast and check “Normalize,” with saturated pixels set to 0%) and save the
image using a different name: view its histogram and record its entropy. Now
histogram-equalize the original dsa stent image (Process/Enhance
Contrast and check “Equalize Histogram”) and save this image using another
name: view its histogram and record its entropy. Compare the entropies of the three
images. Note that the number of bins in each of the three histograms is the same.
The bin heights stayed the same as the original with histogram stretch, they just
moved further apart; whereas in histogram equalization the bin heights changed
and became more equal.

Repeat the exercise with the broken foot and thermography images.
Look at the surface plots of the three original images (Analyze/Surface Plot and

check “Draw Wireframe”). Is there a connection between the shape of the surface
plots and the entropy of the images?

Activity 5.4 Signal-to-noise ratio
Open the angiogram image in ImageJ. View its histogram using the Live

Histogram Plugin (in Plugins/Ch.5 Plugins). Select as large a region as
possible with constant gray values, using the polygon selection tool. Find the
signal-to-noise ratio, as both a ratio and in decibels (dB), using the SNR plugin in
Plugins/Ch.5 Plugins.

Smooth the image (Process/Smooth). How does this affect the shape of the
histogram? How do the mean and standard deviation change? Try several iterations
of smoothing to see the trend clearly. Now sharpen the original image (Process/
Sharpen). How does this affect the shape of the histogram? How do the mean
and standard deviation (and dynamic range) change? Again, try several iterations
to see the trend clearly. Explain the changes.

Add Gaussian noise (Process/Noise/Add Specified Noise) with a standard
deviation of 10 to the original angiogram image. Compare the updated histo-
gram with the histogram of the original image, in terms of its overall shape, its
standard deviation and its dynamic range. Estimate the signal-to-noise ratio of the
noisy image. Repeat after adding noise of standard deviation 20 to the original
image. How does the signal-to-noise ratio change with added noise?

Activity 5.5 Look-up tables
Open up image normal mri in ImageJ, and display its histogram (Analyze/

Histogram). Click on the image, and go to Image/ Adjust/…Brightness/
Contrast; the histogram of pixel values is shown again, with the identity
look-up table overlaid on it. The displayed image changes interactively as the
brightness slider is moved, first to the left of center, and then to the right: the
image becomes darker, then brighter. Watch what happens to the display
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look-up table. The darker display is caused by the look-up table moving to the right
but remaining parallel to the default look-up table; a pixel value from the image file is
looked up on this shifted look-up table to give a smaller (darker) gray-level value.
The brighter display image is a consequence of the look-up table shifting to the left
but remaining parallel to the default look-up table, causing pixel values to be looked
up as higher gray-level values. Pressing the “Reset” button returns the display
look-up table to its default values, namely the identity look-up table. (Note that the
histogram shown is the histogram of pixel values and does not change, unless the
“Apply” button is pressed.)

Click “Reset” to return to the original look-up table. Now move the contrast slider
first to the left and then to the right. Note how the displayed image changes,
and how the look-up table changes to produce these effects. The gradient or
slope of the look-up table changes to modify the displayed contrast; a look-up
table with a higher gradient produces a higher contrast displayed image, and vice
versa. If these changes are made permanent, by pressing the “Apply” button, the
histogram changes: a high-contrast histogram corresponds to one with a large
dynamic range.

The contrast can be continuously increased by dragging the slider to the right, which
increases the slope of the look-up table, to the extreme when the look-up table
approaches a step function with a very steep slope at a particular pixel value. This
pixel value is known as the threshold and the look-up table implements thresholding
by displaying all pixels up to and including that value as black, and those above it as
white. The resulting image has the maximum possible contrast, comprising just
black and white pixels. A look-up table with an increasingly shallow slope produces
a displayed image of low contrast; the extreme in this direction is obtained when the
look-up table becomes horizontal, resulting in all pixels being displayed as
mid-gray and the image having no contrast at all.

Activity 5.6 Histogram equalization
Open the dsa stent image in ImageJ and apply the Live Histogram Plugin.

Make a duplicate of the image, apply histogram equalization (Process/
EnhanceContrast and check Equalize (the saturated pixels are ignored)) and
save the result. What effect does histogram equalization have on the appearance of
the image? How has the shape of its histogram changed?

Using the original image, go to Image/Color/ShowLUT to see the default (identity)
LUT. Click “List” to see a text listing, comprising four columns; the first column
contains the pixel values 1–155, and the next three columns contain the
looked-up values of red, green and blue; because this is a gray-scale LUT each
of these three columns is identical. (The LUT can be viewed as a 16 × 16 array of
grayscales with Image/Color/Edit LUT.)

Click on dsa stent and start the CDF plugin (in Ch.5Plugins). Awindow opens,
containing the histogram and the cumulative density function (CDF) superimposed
in gray, as well as a results box containing the pixel values and the cumulative bin
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counts. The cumulative density function values are written to a file CDF_LUT.
txt in the form of a LUT recognized by ImageJ. Import this text file into ImageJ,
using File/Import/LUT. This look-up table immediately applies to the image
dsa stent, which is now histogram-equalized: you can view the look-up table
using Image/Color/ShowLUT.

The same result can be obtained using ImageJ’s built-in histogram equalization
(Process/EnhanceContrast/HistogramEqualization).

Activity 5.7 Log and inverse log look-up tables
Open dsa stent in ImageJ, and check that the display look-up table is the identity

look-up table, using Image/Color/ShowLUT.
Make a duplicate of the stent image. Using File/Import/LUT… import the text file

logLUT.txt. The imported log look-up table is immediately applied to the
duplicate image. Note the difference in appearance. Observe the log
look-up table using Image/Color/ShowLUT.

Make another duplicate of the original stent image. Using File/Import/LUT…
import the text file invlogLUT.txt. The imported inverse log look-up table
is immediately applied to the duplicate image. This particular image becomes very
dark! Observe the inverse log look-up table using Image/Color/ShowLUT.

A number of transforms can be applied directly to images in ImageJ using Process/
Math and selecting the appropriate look-up table from the list.

Activity 5.8 Applying different look-up tables
Open up chest radiograph, and display its LUT using Image/Color/Show

LUT. Make a duplicate of the radiograph. Go to File/Import/LUT and choose
s-curve LUT.txt. Note the changed appearance of the image. Display
its look-up table, which is sigmoidal in shape like the characteristic curve of
film. Thus the original image data may have been collected by computed radio-
graphy (CR) and viewed with the identity look-up table; the duplicate is viewed
with a sigmoidal look-up table which is one of several available on most
computed radiography systems, and shows how the image would appear if
captured on film.

Exercises

5.1 Suppose that you had a scene of three objects of different distinct intensities against
an extremely bright background. What would the histogram of the corresponding
image look like?

5.2 Draw annotated sketches of the histograms of the following types of images:
(i) a collection of objects of the same gray level placed on a uniform background of

another gray level;
(ii) a collection of relatively dark objects on a relatively bright background, both

having a spread of gray levels;
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(iii) an under-exposed radiograph;
(iv) an over-exposed radiograph.

5.3 Draw the look-up tables that would display the following:
(i) a band of pixels, between Thr1 and Thr2, as white (foreground) and all other

pixels as black (background);
(ii) a band of pixels, between Thr1 and Thr2, as their “normal” (default) shades of

gray, and all other pixels as black (background).
Suggest a possible application for each of these look-up tables.

5.4 Imagine you have an image taken in low light and which, as a result, has low
contrast. What are the advantages of using contrast stretching to improve the contrast
rather than simply scaling the image by a constant factor (i.e. multiplying all the
pixel values by the constant factor)?

5.5 Explain the advantage of using a logarithmic look-up table to view astronomy
images.

5.6 Sketch the corresponding cumulative distribution functions, CDFs, for the prob-
ability density functions, PDFs, shown in Figure E5.1.

5.7 Table E5.1 gives the number of pixels at each of the gray levels in a 4-bit deep
(i.e. 16 gray levels) image. Draw the gray-level histogram, perform histogram
equalization and draw the resulting histogram. What is the objective of histogram
equalization?

0

(i)

255 255

(ii)

0

0

(iii)

255 0

(iv)

255

Figure E5.1

152 Fundamentals of digital image processing



Gray level Number of pixels

0 20
1 40
2 60
3 75
4 80
5 75
6 65
7 55
8 50
9 45
10 40
11 35
12 30
13 25
14 20
15 30

5.8 Suppose that you histogram-equalize a digital image. Explain why histogram-
equalizing the result does not lead to any significant change.

5.9 Perform histogram equalization on the image of a cell colony (Fig. E5.2), and
describe the resulting image. Can you obtain a better result by using histogram
stretch and parameters of your choosing? (In what way do you think the image is
better?) When the contrast is improved, it becomes more apparent that the illumina-
tion of the field of view was uneven. Can you think of a way to improve this
unevenness?

Figure E5.2
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5.10 What is the dynamic range of the image shown in Figure E5.3? Use whichever
method you consider gives the best improvement in contrast, and comment on the
resulting image.

Figure E5.3
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6 Image enhancement in the
spatial domain

Overview

Image enhancement is the processing of images to improve their appearance to human
viewers, in terms of better contrast and visibility of features of interest, or to enhance their
performance in subsequent computer-aided analysis and diagnosis. Because the objec-
tive of image enhancement is dependent on the application context and is often poorly
defined, and the criteria are often subjective, image enhancement techniques tend to be ad
hoc. Enhancement techniques include point operations, where the output pixel value
depends only on its corresponding input value, and local or neighborhood operations,
where the eventual output pixel value depends on the neighborhood of input pixel values.
These latter operations include convolution, which uses appropriate masks or kernels to
produce smoothing or sharpening of an image.

Learning objectives

After reading this chapter you will be able to:

� describe the effect on the signal-to-noise ratio (SNR) of averaging noisy images;
� remove uneven background in an image;
� outline applications of image multiplication and division;
� describe the applications of logical and geometric operations;
� explain the process of convolution and the role of the point spread function (PSF) in
imaging;

� recognize the benefits of using a variety of masks, including the median and Gaussian
masks, for smoothing;

� distinguish between convolution masks used for smoothing and those used for
sharpening an image;

� separate two-dimensional masks into one-dimensional masks where possible;

� choose appropriate techniques to sharpen an image, including an image with signifi-
cant noise;

� compare the use of first and second derivative masks in finding edges.



6.1 Algebraic operations

Algebraic operations produce an output image which is the pixel-by-pixel sum, differ-
ence, product or quotient of two or more input images.

6.1.1 Averaging

A noisy image contains random fluctuations above and below the image data. Figure 6.1
shows two x-ray computed tomography (CT) images taken of a water phantom, a
container of water used as a homogeneous subject for scanning, under identical condi-
tions. Profiles along corresponding lines in the images indicate that the pixel values in
each profile fluctuate randomly around the mean gray value, which corresponds to a CT
number of zero. The profiles are not identical because the fluctuations are random.
However, if the two profiles are averaged, then the resulting profile fluctuates by a lesser
amount.

In some imaging systems, it is possible to obtain multiple images of the same object
each differing only in the amount of random noise which has been added during the
imaging process. For example, we may haveM images in which the essential part of the
image is unchanged, but each has a random noise pattern superimposed, i.e.

Diðx; yÞ ¼ Sðx; yÞ þNiðx; yÞ ð6:1Þ

where S(x, y) is the unchanged feature that is being imaged, and Ni (x, y) is the additive
noise. The latter is either quantum (or statistical) noise arising from the discrete nature of
electromagnetic radiation, or it is electronic noise introduced by the imaging system. We
saw in Section 2.5.3 that most medical images are quantum limited, i.e. the quantum
noise component is dominant, and quantum noise follows Poissonian statistics with a
signal-to-noise ratio (SNR) given by the square root of the signal strength. Electronic
noise follows Gaussian statistics, resulting in a bell-shaped distribution curve. Both are
examples of uncorrelated noise. If the M images are averaged, each pixel value in
the resulting image is formed by adding M pixels from corresponding positions in
each image and dividing the sum by M. During addition the signal values add, but
the noise pattern builds up more slowly since the squares of the noise add rather than
the noise values themselves. As a consequence, the stationary component of the

Gray
value

Figure 6.1 Noisy CT images of a water phantom, with a profile from each (solid lines) and the mean
of the two profiles (thick solid line).
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image remains constant and the noise is reduced by √M to give an increased signal-
to-noise ratio (SNR).

Averaging images to increase the signal-to-noise ratio of the resulting image can be
implemented in a number of medical imaging systems. It is frequently done in nuclear
medicine imaging (Section 3.2), for example, either by adding M sequentially acquired
images pixel-by-pixel or by acquiring a final image over a time M times longer than
initially planned. Both methods result in an increased dose of radiation to the patient, and
therefore should only be used if there is no alternative to acquire an image of diagnostic
quality. Averaging can be performed in magnetic resonance imaging (MRI) by recon-
structing the image from the average of a number of measurements (Fig. 6.2).

Given the finite range of gray values (say, [0, 255]), it is very important to ensure
that the addition step does not result in overflow and subsequent clipping of the pixel
values. This can be avoided if the pixel values are added into a temporary matrix which
is stored with a greater depth (say, 12 or 16 bits per pixel) prior to division and
re-scaling to [0, 255].

6.1.2 Image subtraction

If an image is contaminated by an uneven background shading pattern, caused by uneven
illumination of the scene or variations in detector sensitivity, it can be improved by
subtracting the background image from it. If the background image cannot be acquired
independently, it can often be synthesized by blurring the original image to such an extent

(i) (ii)

Figure 6.2 MRI images reconstructed from (i) one and (ii) eight measurements.
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that the features within it are spread out so much as to be no longer identifiable and only
the underlying shading remains (Fig. 6.3). Practice in applying the appropriate blurring to
obtain a background is provided in Activity 6.1.

Subtraction can lead to an underflow, i.e. pixel values less than zero. Again, to avoid
clipping, a temporary storage matrix with a greater depth (say, 12 or 16 bits per pixel) or
the use of signed floating-point numbers (i.e. numbers which are non-integral and can be
positive or negative) is needed to store the differences prior to re-scaling to [0, 255].

In digital subtraction angiography (DSA), images taken immediately before (the mask
or pre-contrast image) and just after (the live or post-contrast image) an injected bolus of
iodinated contrast material reaches the region of interest are subtracted, ideally leaving an
image of just the iodinated blood (Fig. 3.23). In practice, it is the logarithm of the images
that are subtracted, equivalent to division of the original images.

In practical computer vision, motion analysis requires the storage and manipulation of
image sequences rather than single images. Each image in a sequence is often called a
frame, and the time which elapses between each frame being digitized is called the frame
interval. The inverse of the frame interval, the number of frames per second, is the frame
rate. For many applications, such as automatic control, the ideal is to process each
frame as it arrives, i.e. in real time or online. Image subtraction of two images, sequen-
tially acquired from a stationary detector, can be used to detect relative motion of objects
if the two images are accurately registered, i.e. they record exactly the same region. A
problem with this technique is that the gray level changes both where the object was in
the previous frame and where it is in the current frame to give a kind of double view of
each object. Both this effect and the residual edges caused if registration is not perfect can
be minimized if the difference image is subsequently thresholded.

6.1.3 Multiplication and division

Subtraction of a background image to correct for uneven illumination rests on the
assumption that image features are additively superimposed on the scene background.
However, in a non-linear system this is not the case, and the intensity associated with a

(i) (ii) (ii)

Figure 6.3 (i) An image and (ii) its background, obtained by blurring it with a Gaussian mask. (iii) The result
of subtracting the background (ii) from the original image (i) and stretching the contrast.
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feature is in fact proportional to the background intensity in that part of the image. In such
cases, division of the image by a scaled version of its background, rather than subtraction,
removes the uneven background. (You can explore this in Activity 6.2.) Division of
images is a problem if the divisor image contains a pixel value of zero. This is usually
avoided by adding a 1 to the entire pixel values of the background image so that they run
from 1 to 256, and then re-scaling after division. The division process also removes
artifacts that are caused by variations in the pixel-to-pixel sensitivity of the detector and/
or by distortions in the optical path. The process is often referred to as “flat-fielding,”
since it seeks to produce a “flat” or uniform background in an image. It is a standard
calibration procedure in everything from pocket digital cameras to giant telescopes.

Image division is also used when processing images are collected in different spectral
bands; the ratio of the images is an effective way of generating an image at an inter-
mediate spectral band.

Multiplication of images can be used for superposition of texture on to an image, or for
masking portions of an image. A potential difficulty with multiplication is that an
extreme range of pixel values may be generated. Even with automatic re-scaling a
significant loss of precision can result for some values.

6.2 Logical (Boolean) operations

Logical operations also operate on a pixel-by-pixel basis. They often use binarized
images as their input. All logical operations can be implemented from a combination
of three basic operations, AND, OR and NOT. The effect of each of these is given by a
truth table (Fig. 6.4). Bit “1” is associated with “true” (or “ON”) and bit “0” with “false”
(or “OFF”). The AND operator produces an output that is 1 (true) if both inputs A and B

INPUTS

(i) AND

A

0 0 0
0 0 0
1 0 0
1 1 1

B output

(iii) NOT

INPUT

0
1

1
0

A output

INPUTS

(ii) OR

A

0 0 0
0 1 1
1 0 1
1 1 1

B output

INPUTS

(iv) XOR

A

0 0 0
0 1 1
1 0 1
1 1 0

B output

Figure 6.4 Truth tables for (i) AND, (ii) OR, (iii) NOT and (iv) XOR.
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are 1 (true); otherwise it produces a 0 (false). The OR operator produces an output that
is 1 (true) if either inputs A or B (or both) are 1 (true); otherwise it produces a 0 (false).
And the NOT operator produces an output that is not equal to the (single) input.

The operator, XOR (exclusive OR), produces an output that is 1 (true) if either inputs A
or B (but not both) are 1 (true); otherwise it produces a 0 (false).

The most obvious application of AND is to compute the intersection of two images,
highlighting all ON (1) pixels common to two input images. The OR operation computes
the union of the images, highlighting all pixels which represent an object either in the first
or in the second image. And the XOR operation is used to find positions whose pixel
values in the two images differ.

The logical operators can be applied to grayscale images, in which case they are
applied bit-wise to the corresponding bits from the pixel values of the input images. For
example, for two 8-bit pixels 00100100 and 00100001 from images A and B, the XOR
operation produces

A 0 0 1 0 0 1 0 0
B 0 0 1 0 0 0 0 1
XOR 0 0 0 0 0 1 0 1

The NOToperation is used for obtaining the inverse or complement of an image. The AND,
OR and XOR operations are used for masking, i.e. selecting sub-images within an image,
often referred to as region of interest (ROI) processing. You define a region of interest by
creating a binary mask, which is a binary image that is the same size as the image youwant to
process. For the ANDmask the pixels that define the region of interest are set to white (1111
1111) and all other pixels set to black (0000 0000), and it is logically ANDedwith the image.
The pixels in the region of interest within the image remain the same, while the pixels outside
the region of interest become black (Fig. 6.5). A similar result can be obtained by logically
ORing the image with a mask where the pixels defining the region of interest are set to black.

The AND operation can also be used to perform so called bit-slicing of an image to give
bit-planes. To determine the influence of one particular bit on an 8-bit image, the image is
ANDed in a bitwise fashion with a constant number, where the relevant bit is set to 1 and

(i) (ii) (iii)

Figure 6.5 (i) Original image; (ii) AND mask; (iii) result of ANDing (i) with (ii).
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(i) (ii) (iii)

(iv) (v) (vi)

(vii) (viii) (ix)

Figure 6.6 (i) A mammography image and its bit planes: (ii) bit-plane 0, (iii) bit-plane 1, (iv) bit-plane 2,
(v) bit-plane 3, (vi) bit-plane 4, (vii) bit-plane 5, (viii) bit-plane 6, (ix) bit-plane 7.

the remaining 7 bits are set to 0. For example, to obtain bit-plane 7 (bp7, corresponding to
themost significant bit) the image isANDedwith 128 (10000000 binary); bit-plane 4 (bp4)
is obtained by ANDing with 16 (00010000 binary). Figure 6.6 shows a mammography
image and its constituent bit-planes. Note that the least significant bit-plane (bp0) is
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essentially random noise, and the most significant bit-plane (bp7) is actually a threshold of
the image at level 127. Activity 6.3 involves finding the bit-planes of an image.

The original image, I, can be obtained from the bit-planes by combining them as a
weighted sum, i.e.

I ¼ ð2�ð2�ð2�ð2�ð2�ð2�ð2�bp7þ bp6Þ þ bp5Þ þ bp4Þ
þ bp3Þ þ bp2Þ þ bp1Þ þ bp0Þ ð6:2Þ

Operations on grayscale images can be problematic. For example, it is not guaranteed
that ANDing two high pixel values in a bitwise fashion yields a high output value (for
example, 128 AND 127 yields 0). A problem with ORing grayscale images is that the
output can fluctuate wildly with a small change in one of the input pixel values. For
example, 127 ORed with 128 gives 255, whereas 127 ORed with 126 gives 127. To avoid
these problems, it is best to operate on binarized images.

Logical operations are used frequently in morphological processing (Chapter 9).

6.3 Geometric operations

It is often necessary to perform elementary geometric operations or transformations on an
image such as scaling (zooming), translation, reflection, rotation and shear. Two separate
algorithms are required for a geometric operation. First, there is the spatial transformation
itself. Then there is an algorithm for gray-level interpolation, since in general integer
(x, y) positions in the input image maps to non-integral positions in the output image.

A geometric spatial operation maps pixel values at each pixel location (x, y) in an input
image to another location (x′, y′) in an output image. The basic operations are described
by first-order polynomials which take the following form:

x0

y0

� �
¼ A

x
y

� �
þ B ð6:3Þ

where A is a 2 × 2 matrix and B is a 2 × 1 column vector. Translation can be accom-
plished by specifying values for the matrix B, while scaling, rotation and reflection use
the matrix A.

With homogeneous coordinates, where the x–y plane is considered to be the z= 1 plane
of three-dimensional x, y, z space, all the transformations can be done by matrix multi-
plication. The general (affine) transform is

x0

y0

1

2
4

3
5 ¼

axx axy bx
ayx ayy by
0 0 1

2
4

3
5 x

y
1

2
4

3
5 ð6:4Þ

It is often used in applications, e.g. remote sensing, where we wish to correct for
geometric distortions in the image.
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Scaling expands/zooms or compresses/shrinks an image along the coordinate direc-
tions. An image (or a RoI within an image) can be zoomed either through pixel replica-
tion or interpolation. Figure 6.7 shows how pixel replication simply replaces each
original image pixel by a group of pixels of the same value, where the group size is
determined by an integral scaling factor. Alternatively, interpolation of the values of
neighboring pixels in the original image can be performed in order to replace each pixel
with an expanded group of pixels. For non-integral scaling factors, (x′, y′) maps into
non-integral locations and gray-level interpolation is necessary. Using homogeneous
coordinates, scaling is described as

x0

y0

1

2
4

3
5 ¼

sx 0 0
0 sy 0
0 0 1

2
4

3
5 x

y
1

2
4

3
5 ð6:5Þ

Nearest-neighbor (or zero-order) interpolation involves assigning the gray value of
the nearest integral neighbor. Bilinear interpolation uses the weighted average of the four
nearest (integral) neighbors, and gives a more pleasing result. The weighting is proportional
to the distance or pixel overlap of the nearby projections. Higher-order (polynomial)
interpolation or spline-based interpolation can be used, but at a higher computational cost
that is often not justified.

Worked example
Suppose we have a (one-dimensional) set of four pixel values, a profile f (x) = {100,
150, 75, 125}, that we want to scale to eight values, x′. The four values of x are evenly
spaced, as are the eight values of x′. We could represent them as in Figure 6.8, where
only the first and last points coincide. We need to estimate the values f (x′i), based on
the nearby values of f (xi).

3 3 6 6

3 3 6 6
3 3 6 6

3 3

3

InterpolationReplication

6

3 6

6 6

3 4 5 6

3 4 5 6

3 4 5 6

3 4 5 6

3 3 6 6

3 3 6 6
3 3 6 6

3 3

3

InterpolationReplication

6

3 6

6 6

3 4 5 6

3 4 5 6

3 4 5 6

3 4 5 6

Figure 6.7 Methods of zooming: (i) replication of a single pixel value and (ii) interpolation.
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One way of doing this is to assign the closer value of f (xi) to each f (x′i). Thus, f (x1)
(i.e. 100) would be assigned to f (x′2), f (x2) (i.e. 150) would be assigned to both f (x′3)
and f (x′4), and so on. This is nearest-neighbor interpolation, and would result in
f (x′) = {100, 100, 150, 150, 75, 75, 125, 125}. Another way would be to assign
intermediate values to f (x′), which are a combination of two values of f (x) spanning it,
combined as a linear weighted average depending on the two relative distances. For
example, f (x′2) would get a value between f (x1) (i.e. 100) and f (x2) (150); and it would
be closer to f (x1) than f (x2), reflecting its closer proximity. Thus

fðx02Þ ¼ ð4=7Þ�100þ ð3=7Þ�150 ¼ 121

if values are limited to integers between 0 and 255. Continuing in this way, the new
values f (x′) would be {100, 121, 143, 129, 96, 82, 104, 125}. This is linear
interpolation.

These methods can be applied to images. Figure 6.9 shows how a 4 × 4 image
would be interpolated to give an 8 × 8 image. For nearest-neighbor interpolation the
new values take on the values of the closest original points. But for bilinear inter-
polation, interpolation (i.e. linear weighted averaging) is required in two dimensions.
First, linear interpolation can be applied along all the rows, and then these values can
be interpolated along the resulting columns. (The same method would be used if we
were scaling down from a large image to a smaller image.)

Let us calculate the value of the interpolated pixel at position X in Figure 6.10.
Using linear interpolation along the rows gives values of 30 and 70 for the middle
pixels along the top and bottom rows, respectively. Then interpolating up the middle
column would give us a value of 40 for the pixel marked X, taking into account the
relative distances.

Now we might expect this to be equivalent to taking a weighted average of the four
values at the vertices, weighted according to relative distances to the vertices. The
relative distances are √5 and √13, using Pythagoras’ distances, i.e.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. These

are used to weight the bottom and top pixels, respectively. Thus the weighted mean
reduces to (60√13 + 140√5))/(2√13 + 2√5), which is 45 to the nearest integer. Thus the
two-step linear interpolation (or weighted averaging) is not equivalent to a
one-step interpolation/weighted averaging, using the Pythagorean distances. Further,
if we try a one-step averaging of the four pixel values using the Manhattan or taxicab
distances (where we add the distances in the x and y directions, i.e. (|x| + |y|) of 3 and 6,
we find an interpolated value of 43 to the nearest integer. We might wonder why we
are getting different values, and which one should we use!

1x ′

x 1

2
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3

3

4

4

5 6 7 8

Figure 6.8 Interpolation in one dimension.
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The key idea of our first method of bilinear interpolation is to perform linear
interpolation first in one direction, and then in the other direction. Linear interpolation
in the x direction (Fig. 6.11) gives

R1¼ x2 � x

x2 � x1

� �
Q11 þ x � x1

x2 � x1

� �
Q21 ð6:6aÞ

20

60

40

80

Figure 6.10 Interpolation in two dimensions. We wish to find the pixel value at X, given the four values at
the vertex positions.

Figure 6.9 Interpolation in two dimensions. The open circles indicate the positions of the original values,
and the filled circles indicate the positions of the new values.
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and

R2¼ x2 � x

x2 � x1

� �
Q12 þ x � x1

x2 � x1

� �
Q22 ð6:6bÞ

and interpolation in the y direction gives

P ¼ y2 � y

y2�y1

� �
R1 þ y � y1

y2 � y1

� �
R2 ð6:6cÞ

Substituting from Equations (6.6a) and (6.6b) into Equation (6.6c) gives

P ¼ y2 � y

y2 � y1

� �
x2 � x

x2 � x1

� �
Q11 þ x � x1

x2 � x1

� �
Q21

� �

þ y � y1
y2 � y1

� �
x2 � x

x2 � x1

� �
Q12 þ x � x1

x2 � x1

� �
Q22

� �

If we choose a coordinate system in which the four points where the pixel values
are known are (0, 0), (0, 1), (1, 0), and (1, 1), then the interpolation formula
simplifies to

P ¼ ð1� xÞð1� yÞQ11 þ xð1� yÞQ21 þ ð1� xÞy Q12 þ xy Q22 ð6:7Þ

Contrary to what the name suggests, this interpolant is not linear. It is the product of
two linear interpolants, and is of the form b1 + b2x + b3y + b4xy. The interpolant is
linear along lines parallel to either the x or the y direction, but along any other
direction it is quadratic. The result of this bilinear interpolation is independent of the

x1

y1

Q11 Q21R1

Q12 Q22R2

P

y2

y

x2x

Figure 6.11 The red pixel values are given, and we want to know the value at P, which we get by linearly
interpolating along the rows to get values at R1 and R2 and then linearly interpolating down the
column. See also color plate.
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order of interpolation. If the interpolation is performed first in the x direction and
then in the y direction, the result would be the same. The loci of points at various
distances from the four vertices are shown as contours in Figure 6.12(i); the
contours are hyperbolic.

If we measure distance using Pythagoras’ theorem in a Euclidean world, the loci of
equal distances from a point are circles; although as we travel further away from the
vertices they become hyberbolic (Fig. 6.12(ii)). If we use the Manhattan distance,
the loci of equal distances from a point are diamonds; but they become hyberbolic as
we travel further away from the vertices (Fig. 6.12(iii)). So, while distance in a
one-dimensional world, which results in the weights needed for linear interpolation,
is very specific, in two dimensions distance can be defined in various ways giving rise
to different weights for two-dimensional interpolation and different contours for
equidistance. Caveat emptor … let the buyer (or user) beware!

Shrinking an image, commonly known as sub-sampling, is performed by replace-
ment of a group of pixels either by a pixel from within this group or by interpolating
between pixel values in a local neighborhood. Figure 6.13 illustrates these two methods
of sub-sampling. In the first, one pixel value within a local neighborhood is chosen to
be representative of its surroundings. The second method interpolates between pixel
values within a neighborhood by taking a statistical sample (such as the mean) of the
values. For non-integral sub-sampling, either nearest-neighbor or bilinear interpolation
is used.

Translation by a distance (bx, by) is given by

x0

y0

1

2
4

3
5 ¼

1 0 bx
0 1 by
0 0 1

2
4

3
5 x

y
1

2
4

3
5 ð6:8Þ
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Figure 6.12 Contours of equal distance from four vertices using (i) two-stage linear interpolation, (ii) Euclidean
distance and (iii) Manhattan distance. See also color plate.
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The rotation operator maps the position (x, y) of a pixel in an input image on to a position
(x′, y′) in an output image by rotating it through an angle θ about the origin. The spatial
transformation is given by

x0

y0

1

2
4

3
5 ¼

cos � �sin � 0
sin � cos � 0
0 0 1

2
4

3
5 x

y
1

2
4

3
5 ð6:9Þ

Rotation about an arbitrary point can be obtained by combining translation with rotation.
The general affine transformation (Equation (6.4)) is defined by six independent

parameters: two parameters to align the origins, two parameters for the scaling of the
two axes, and two parameters describing the change in angle of each axis. Thus, it is
possible to define this transformation completely by specifying the new output image
locations of any three input image coordinate pairs.

For most image processing applications, the spatial transform is not amenable to
analytic expressions. Instead measurements of at least three corresponding points (con-
trol or fiducial points) in two images are taken and a least squares method is used to find
the best fitting transform (see Activity 4.5). In the case of distortion in an imaging system
an undistorted image and its distorted counterpart can be used to find the best transform,
and the inverse of this transform used to correct subsequent distorted images. Another
widely used application is the registering of images acquired from different imaging
modalities.

6.3.1 The log-polar transformation

The log-polar transformation is a simple operation that changes the coordinate system of an
image from Cartesian to log-polar (Fig. 6.14). It emulates how images appear on the back
of the human retina. (The brain then transforms the images back to the Cartesian-like way
we perceive them.) The log-polar transformation is a conformal mapping (i.e. it preserves

4 4 4 4

8 8 8 8

4 4 4 4

8 8

4 4
4 4

6

Interpolation
Single
pixel
selection

6
6 6

8 8

Figure 6.13 Methods of sub-sampling: (i) replacement with upper left pixel and (ii) interpolation using the
mean value.
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angles and orientations) from the points on the Cartesian plane (x, y) to points in the
log-polar plane (ζ, η):

& ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
ð6:10aÞ

� ¼ tan�1ðy=xÞ ð6:10bÞ

The log-polar transformation converts an image to a form that is rotation and scale
invariant, which can be very helpful for object detection, pattern recognition and image
registration. Another advantage of log-polar image sampling is data reduction; resolution
in the center of the image (i.e. at the fovea of the retina) is high, but at the periphery it is
low. For example, 256 × 256 Cartesian images transform to 128 × 64 log-polar images
achieving an eight times increase in efficiency in both storage and speed (Fig. 6.15). This

x

y η

ζ
(i) (ii)

Figure 6.14 Log-polar transformation from (i) points on the Cartesian plane (x, y) to (ii) points in the
log-polar plane (ζ, η).

(i) (ii) (iii)

Figure 6.15 (i) A 256 × 256 image; (ii) its 64 × 32 log-polar transformation; (iii) retinal representation. See also
color plate.
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is useful for tracking in artificial vision systems; objects occupying the central high-
resolution part of the visual field become dominant over coarsely sampled background
elements in the image periphery. This embeds an implicit focus of attention in the center
of the visual field where the target is expected to be most of the time.

6.4 Convolution-based operations

Discrete (digital) convolution in the spatial domain is a fundamental process in image
processing, and is used either to smooth or sharpen an image. It comprises a “sum-of-
products” and a “shift” operation. The basic concept is that amask or kernel, essentially a
small image or matrix of k × k elements, is rotated through 180° and moved in a raster
pattern across an input image of M×M pixels; k is usually an odd integer, much smaller
than the linear size of the image. Each pixel of the output image is the weighted sum of
the input pixels within a region defined by the mask, with the elements of the mask
defining the weights. If the input image is F (of sizeM ×M) and the convolution mask is
H (size k× k), the output image G is given by

G ¼ F � H ð6:11Þ

Each pixel in the output image is given by

g i; jð Þ ¼
Xa
m¼�a

Xa
n¼�a

f m; nð Þh i�m; j� nð Þ ð6:12Þ

where a= (k− 1)/2.
The mathematics can seem daunting, but the process is illustrated in Figure 6.16.

The mask is rotated through 180° and placed on top of the input image, starting at the
top left position. The mask elements are multiplied by the corresponding pixel values in
the image below, and the products are summed and suitably normalized to form a
weighted response which is then the value of the output pixel at the position corre-
sponding to the center of the mask. With most masks k is chosen to be odd, so that the
center of the mask is readily apparent. The mask is then moved one position to the right,
the sum of products re-calculated and normalized to give the next pixel value in the
output image. This process is repeated as the mask is moved across the input image in a
raster scan.

In practice, the “sum-of-products” formulation often leads to overflow. Normalization,
by dividing by the sum of the elements in the mask, produces a weighted response that
remains within the original range of pixel values in the input image. The resulting output
image pixels often have non-integral values, so that working with floating-point numbers
is necessary in order to avoid “round-off” errors.

The initial rotation of the mask by 180° is not apparent if the mask is circularly
symmetric, as it is for many common masks used in smoothing and sharpening.
However, this is not always the case, e.g. the masks used in locating horizontal and vertical
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edges in an image. This prior rotation is what distinguishes convolution from correlation:
cross-correlation involves two images (usually of rather similar sizes) where the sum-
of-products, replacement and scanning operations take place without the initial 180°
rotation. The resulting cross-correlation function is used primarily for locating the features
of one image that appear in another, and can be used for aligning or registering images.

Pixels around the borders of the input image lack a full set of neighbors. For convolu-
tion with a 3 × 3 mask this involves pixels in a border one pixel wide around the input
image, whereas for convolution with a 5 × 5 mask, the border is two pixels wide, and so
on. This is not a significant problem if k is much smaller than M. It can be mitigated by
extending image A by padding it out with zeroes or by repeating its border pixels, or
considering that the input image wraps around in both the horizontal and vertical
directions (cyclic convolution). However, none of these methods is perfect and a more
prudent approach is to ensure that the input image contains no important information
within a border of (k− 1)/2 from its edges.

The computational complexity for convolution of an image of M×M pixels with a
mask of size k× k is of the order of k 2 per pixel, based on the number of multiply-
and-adds (MADDs). This becomes a significant problem for large masks, such that
ernative approach to convolution using computation within the spatial frequency domain
(Chapter 7) is advantageous.

A linear imaging system obeys linear superpositioning, i.e. it produces an output
image from a composite input image that is a linear superposition of what it would
produce for the component parts. If it is also shift-invariant, it produces an output whose
features are independent of the position in the input image, i.e. if a feature in the input
image is shifted, the corresponding feature in the output image is shifted by the same
amount, but not otherwise changed. Many imaging systems exhibit, at least
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Figure 6.16 Digital convolution: the mask is placed over the source image, mask elements are multiplied by
pixel values, and the results added to form an output pixel.
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approximately, both these properties and are known as linear, shift-invariant (LSI)
systems. Note that this implies a zero output for a zero input, and a magnification of
unity.

If an impulse point of light δ(x, y) passes through an imaging system the image
produced is called the point spread function (PSF), h(x, y). Any discrete image is
composed of individual points or pixels. If the system is a linear, shift-invariant (LSI)
system, linearity allows the application of an operator to each impulse separately and the
addition of the responses; shift invariance allows the use of one response for all the other
impulses if the appropriate shifts are made. Thus, if the response to a point image (i.e. the
point spread function) is known, the response to any image can be computed. The output
image, g(x, y), resulting from an input, f (x, y), is a sum-of-products, described by the
convolution of the input with the point spread function (Fig. 6.17), that is

gðx; yÞ ¼ fðx; yÞ � hðx; yÞ ð6:13Þ

and the point spread function is described by a convolution mask that completely char-
acterizes the imaging system, and describes its blurring properties due to, for example,
imperfect optics, sensors, recorders and displays. Convolution with different-sized point
spread functions can be seen in Activity 6.4.

The technique of undoing the effect of these degradations in quality caused by the
imaging system would be an inverse process, known as deconvolution.

6.4.1 Smoothing masks

The simplest smoothing operation is that of neighborhood averaging, i.e. each pixel in the
output image is formed from the average of the pixel values in a neighborhood surround-
ing the pixel in the input image at that position. The mask that implements this is a k× k
mask, with all coefficients equal to unity (Figs. 6.18(i) and (ii)) and a constant pre-multiplier
of 1/k 2; it is called an averaging or box mask. The averaging process reduces the abrupt
variations in local pixel values, smoothing the input image by reducing its noise. A reduced
smoothing effect can be obtained by using a weighted-average mask (Fig. 6.18(iii)).

Figure 6.17 Convolution of a sharp MRI image of a human brain (left) with a Gaussian PSF function (center) to
give a blurred image (right).
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Smoothing an image reduces its signal-to-noise ratio and changes its gray-level histogram
(Activity 6.5).

One use of such a mask is to smooth out the false contours that occur in images
acquired with an insufficient number of gray levels. Another use is to blur out features
smaller than the mask. This would be useful as a pre-cursor to segmentation, where an
image is divided into areas of interest. The rule of thumb is that the size of the mask, k,
should be greater than or equal to 2w + 1 if features of diameter w are to be blurred out; k
should be lower or equal to 2w − 1 if such features are to be retained, while reducing the
overall noise.

The masks in Figure 6.18 are examples of separable masks. Each two-dimensional
mask can be separated into two one-dimensional masks, which can be used succ-
essively on an image to produce the same effect but with less computation.
For example the two-dimensional mask in Figure 6.17 (i) could be replaced by a one-
dimensional horizontal mask, [ 1 1 1 ], and its transpose, a one-dimensional vertical

mask,
1
1
1

2
4

3
5; since convolving these two masks gives the original two-dimensional mask.

Two-dimensional convolution can then be replaced by two one-dimensional convolution
operations, the second operating on the result of the first. The order is not important since
convolution with linear shift-invariant operators is commutative. This reduces the num-
ber of multiplications from k 2 to 2k per pixel. The convolution mask can be written as a
matrix h and, if it is separable, h can be written as

h½ � ¼ hcol½ � hrow½ �T ð6:14Þ

where “T” indicates the transpose of a matrix, with rows being substituted for columns.
Averaging masks are subject to a particular effect known as ringing as a result of their

brick wall profile with its discontinuities; we will discuss this drawback in terms of spatial
frequencies in Chapter 7. An imaging system that is not well focused can be modeled by a
point spread function shaped like a “pill box,” that is an averaging mask which is circularly
symmetric. The effect on a test pattern is shown in Figure 6.19. Not only is the defocused
image smoothed and its edges blurred, but dark radial bands turn to light, and vice versa.
This is clearly an unwanted property of masks with sharp discontinuities.

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

(ii)

1 2 1

2 4 2

1 2 1

(iii)(i)

1 1 1

1 1 1

1 1 1

Figure 6.18 Convolution masks: (i) 3 × 3 averaging mask; (ii) 5 × 5 averaging mask; (iii) 3 × 3 weighted-average
mask.
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Gaussian masks have a bell-shaped profile, with a high value element in the center and
symmetrical tapering to either side. They produce a response somewhat similar to the
weighted average mask, but with even less ringing because of the gradual tapering of
their profile. The mask elements are given by

h i; jð Þ ¼ Aexp �1=2ð Þ d=�ð Þ2
h i

ð6:15Þ

where A is a scaling factor, d is the distance of a pixel from the center of the mask
ðd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 þ y2Þ

p
Þ and σ determines the width of the mask (Fig. 6.20). The rule of thumb

is to set σ = (2w + 1)/2, wherew is the size of the feature to be blurred out. Gaussian masks
are separable, so that they can be implemented by using a one-dimensional horizontal
Gaussian, followed by a one-dimensional vertical Gaussian. The Gaussian is in fact the
only completely circularly symmetric operator which can be decomposed in such a way.

The Central Limit Theorem in statistics shows that all distribution shapes tend to a
Gaussian when they are combined. The underlying process is convolution. Thus when
two averaging masks are convolved the result is triangular, corresponding to the linearly
weighted average mask; as more masks are convolved together, the resulting shape
approaches a Gaussian. Many imaging systems can be modeled using a Gaussian mask
to represent their point spread function (PSF).

The Gaussian mask can be built approximately from one-dimensional binomial masks
(Fig. 6.21), whose elements are the coefficients of the binomial expansion (1 + x)n, i.e. the
discrete binomial distribution given by Pascal’s triangle. The odd-sized masks are of
more interest. When a horizontal (e.g. b2) and a vertical binomial mask (e.g. its transpose,

(i) (ii)

Figure 6.19 Test pattern convolved with a circularly symmetric averaging mask to model defocusing: (i) test
pattern, (ii) defocused image.

174 Image enhancement in the spatial domain



bT2) are convolved, they form a two-dimensional mask (in this case, B2). As the number
of terms becomes bigger, the binomial distribution better approximates a Gaussian. The
mask B4, for example, is already a good approximation and can be used as an
integer-based Gaussian mask.

d
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lit
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e
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95%

y = A exp[(–1/2)(d/σ)2]

68%

(i) (ii)

Figure 6.20 (i) Gaussian profile (one-dimensional) and (ii) wireframe image of a two-dimensional
Gaussian.
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Figure 6.21 One-dimensional binomial masks, b1 to b8, and Gaussian masks, B2 and B4.
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Amajor disadvantage of the averagingmask is that it blurs edges in an image.An edge in
an image is a sharp transition between gray levels. Figure 6.22(i) shows a one-dimensional
profile perpendicular to an edge: the variation in pixel values on either side of the edge
indicates the presence of random noise. The result of convolving the edge profile with a
(one-dimensional) averaging mask, five elements long, is shown in Figure 6.22(ii). The
mask moves along the profile, and a running average is calculated over five pixels and
used to replace the center pixel at each position.When the mask samples only low or high
pixel values to either side of the edge, averaging reduces the random noise. However,
when the mask includes both low and high values it produces averages that are neither
low nor high and the profile of the output image becomes a ramp from low to high values
rather than a sharp edge. The longer the mask, the longer the ramp, and the more blurred
the edge becomes. Aweighted average has a similar, though less severe, effect.

An alternative mask, which smoothes noise but does not blur edges, is the median
mask. It is a non-linear mask, which returns the median or middle value of the pixels
within it. It is an example of a rank-order (or order-statistic) mask, other examples being
the “maximum” and “minimum”masks which return the largest and smallest pixel values,
respectively, from the neighborhood. The median mask smoothes an image, since it
returns a value in the middle of a range of values thereby reducing local fluctuations. It
selects one of the existing pixel values, namely the median, rather than calculating the
mean or average; no round-off errors are involved if we want to work exclusively with

(i) (ii)

–5 0 5
n

–5 0 5
n

(iii)
–5 0 5

n

Figure 6.22 Effect of a one-dimensional five-element mask on an edge (i) using (ii) an averaging mask and
(iii) a median mask.
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integer pixel values. Consider the operation of a one-dimensional median mask on the
noisy edge profile of Figure 6.22(i). As the median mask moves into the edge, it contains
some low and some high pixel values. However, depending on which predominates, the
median is always either a low value or a high value, and never an intermediate value. Thus,
the edge remains sharp (Fig. 6.22(iii)) and is not degraded into a ramp; the
one-dimensional median filter is edge-preserving. It should be noted that the square
two-dimensional median mask is a non-separable mask. Since edges play an important
part in our perception of images, their preservation in processing can be an important asset.

(i) (ii)

(iii) (iv)

Figure 6.23 (i) Coronal MRI image of the head. After convolution with (ii) 5 × 5 averaging mask,
(iii) 5 × 5 square median mask and (iv) diamond-shaped 5 × 5 median mask.
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Figure 6.23(i) shows a 256 × 256MRI image, a coronal section of a head. The effect of
averaging with a 5 × 5 mask is shown in Figure 6.23(ii): the image is noticeably
smoother, but its edges are blurred. A square 5 × 5 median mask convolved with the
original produced the image of Figure 6.23(iii), which has been smoothed but has
significantly less blurring of horizontal and vertical edges. Finally, Figure 6.23(iv)
shows the effect of a median mask with a diamond shape and a height and width of 5
pixels. The image has been smoothed, but this time all the edges, including those in a
diagonal direction, remain essentially free from blurring.

Median masks are particularly good at removing impulse or salt-and-pepper noise
from an image. This type of noise involves isolated pixels being either turned on (white,
hence salt) or off (black, or pepper), as a result of data drop-out often caused by errors in
data transmission. Figure 6.24(i) shows a profile though an image where two pixels have
suffered from impulse noise. The result of convolving the profile with a (one-dimensional)
averaging mask, five elements long, is shown in Figure 6.24(ii): the impulse noise is
reduced in intensity but is blurred out over more pixels. With a median mask, the majority
of the pixels covered by the mask as it moves through the image profile are of low
intensity so that the resulting pixels are not affected by the impulse pixels. Thus in
two-dimensional images, isolated clusters of salt or pepper pixels with areas less than half
that of the mask are removed (Fig. 6.24 (iii)). The median mask is not as good at
smoothing other types of noise as the averaging mask (Activity 6.6); since its output
values are always constrained to values already present, it cannot produce new values
that might be better matched to produce smoothing.

(i)
–5 0 5

n n

(ii)

–5 0 5

n

(iii)
–5 0 5

Figure 6.24 Effect of a one-dimensional five-element mask on a profile contaminated by impulse noise
(i) using (ii) an averaging mask and (iii) a median mask.
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Plate 1 The electromagnetic spectrum arranged according to the energy of the photons, or the
frequency of the waves.

(i) (ii)

Plate 2 (i) A color (bottom) and its position in RGB space, shown by the gray ball at red = 240, green = 160,
blue = 140 and (ii) the same color (bottom) and its position in HSV space, with hue = 0.02,
saturation = 0.40 and value = 0.93; in the hexagonal cone, the hue is the angle from the red axis,
the distance to the center is the saturation, and the position up the vertical axis is the value.



(ii)(i)

Plate 3 (i) An indexed color image and (ii) its color palette, comprising 256 colors with indices running
from 0 at top left to 255 at bottom right.

(i) (ii)

Plate 4 Breast thermograms of (i) normal breasts and (ii) breasts showing a suspicious difference in
temperatures.

(i) (ii)

Plate 5 SPECT images showing (i) a brain tumor (in white), using 99mTc-GH (glucoheptinate), and
(ii) thinning of the cardiac wall (reduced intensity), using 99mTc-sestamibi.



Plate 6 A realistic heart phantom imaged along three axes by SPECTwith 99mTc (top row) and PET
with 18F-fluorodeoxyglucose (bottom row).

Plate 7 Color Doppler duplex image. The color
look-up table is related directly to the blood
velocity.

Plate 8 Co-registered SPECT–MRI image through
the head. (Courtesy of Dr. Karin
Knesaurek, Mt. Sinai Medical Center.)

Plate 9 MRI (upper right) and SPECT
(lower center) head sagittal slices
of the same patient and the
co-registered (MRI + SPECT)
image (upper left). The lesion on
the top of the skull is more
prominent in the composite
image, although it can be
visualized in both modalities.
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Plate 11 Contours of equal distance from four vertices using (i) two-stage linear interpolation,
(ii) Euclidean distance and (iii) Manhattan distance.

(i) (ii) (iii)

Plate 12 (i) A 256 × 256 image, (ii) its 64 × 32 log-polar transformation, (iii) retinal representation.
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Plate 10 The red pixel values are given, and we want to know the value at P, which we get by linearly
interpolating along the rows to get values at R1 and R2 and then linearly interpolating down the
column.



(i) (ii)

(iii) (iv)

(v) (vi)

Plate 13 (i) Original (noiseless) 256 × 256 image and (ii) its contours. Results of gradient edge detection
using (iii) Roberts, (iv) Prewitt, (v) Sobel, and (vi) Frei–Chen operators.
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Plate 14 (i) Profiles of several commonly used window functions and (ii) their Fourier transforms.

(i) (ii) (iii)

Plate 15 The direct Fourier reconstruction method used for two-dimensional image reconstruction from
projections.



(i) (ii)

Plate 16 (i) An image taken with a wide-angle lens showing barrel distortion and (ii) an image taken
with a telephoto lens showing slight pincushion distortion.

(ii)(i) (iii)

(iv) (v)

Plate 17 (i) Original image; (ii) after thresholding; (iii) after 4 erosions; (iv) after 12 conditional dilations
(the small objects have been removed); (v) after labeling and displaying each object in a
different color.



Plate 18 A feature enclosed by its convex hull
(shown in red).

Plate 19 The Voronoi diagram of a set of points,
showing the polygons of influence.

(i) (ii)

Plate 20 (i) A set of points (in red) with their Delaunay triangulation and circumscribed circles.
(ii) Connecting the centers of the circumscribed points produces the Voronoi diagram (in red).

Plate 21 A characteristic shading has been added to the brain following segmentation. The three images
show (from left to right) axial, coronal and saggital planes. A common point is marked in each
image.



(i) (ii)

Plate 22 (i) Axial slice of MRI brain image and (ii) automatic segmentation into five classes, including
a tumor. The segmentation was done in three dimensions. (Courtesy: Prof. Guido Gerig,
Department of Computer Science, University of North Carolina at Chapel Hill).

Plate 23 Segmentation of a three-dimensional MRI image by region growing. The white and gray matter
regions were combined before three-dimensional rendering (Chapter 12).



Plate 24 Twenty iterations of a snake (red), starting from an outer contour, moving under an internal
elastic function. The trajectories of the control points are shown in green.

Plate 25 Twenty iterations of a snake (red), starting from an outer contour, moving under an external
energy function given by Equation (10.13). The trajectories of the control points are shown
in green.

(i) (ii) (iii)

Plate 26 (i) Initial contour; (ii) intermediate contour in yellow (initial contour in green); (iii) final contour.



Plate 27 Contours (top row) and their relationship to the level set function, φ.

(i) (ii)

Plate 28 Segmentation of (i) CT and (ii) MRI images of the heart using level sets. Each of these images
is part of a time series. The snake is shown in red in (i) and in green in (ii). (Courtesy: Dr. Rene
Vidal, Biomedical Engineering, Johns Hopkins University.)

(i) (ii)

Plate 29 (i) Binary image with overlapping features and (ii) watershed lines (in red) overlaid on the original
image.



(i)

(iii)

(ii)

(iv)

Plate 30 (i) Original image. (ii) gradient image and (iii) Watershed lines overlaid on the gradient image.
(iv) Watershed lines overlaid on the original image.

(i) (ii)

Plate 31 (i) Image of electrophoresis gel. (ii) Watershed transform of the gradient image.

(i) (ii)

Plate 32 (i)Markers of theblobs andof thebackgroundand (ii)marker-controlledwatershedof thegradient image.



(i) (ii) (iii)

(iv) (v) (vi)

(vii)

Plate 33 (i) Original image; (ii) background (from blurring (i)); (iii) improved image (= (i) – (ii));
(iv) segmented image (Otsu threshold of (iii)); (v) partial objects removed from (iv); (vi) labeled
components image; (vii) color-coded labeled components image.



(i) (ii)

Plate 34 (i) Image and (ii) its skeleton (red), with its branch points (white) and end points (green) circled.
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Plate 35 The data set is optimally separated (as shown by the histograms) along a line, the first
principal component direction, which is a linear combination of the original features.
(After Russ 2002).



(i) (ii) (iii)

(iv) (v) (vi)

Plate 36 (i) Original image; (ii) after thresholding; (ii) after subsequent skeletonization; (iv) after
conditionally dilating the branch pixels from (iii); (v) after logically combining (ii) and (iv);
(v) color coding the nuts and bolts.
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Plate 37 (i) Segmented, labeled image (using Fig. 11.5(i)); (ii) one-dimensional feature space showing
the areas of the features; (iii) the features “painted” with their measured areas; (iv) after
thresholding image (iii) at a value of 800.



(iii) (iv)

Plate 37 (Cont.)

Plate 38 Objects have been classified into three classes of fruit, and outlines superimposed on the
original image.
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Plate 39 The image at left has to be classified into one of the classes defined by the training set images.
A good classifier will assign it to class 3.

(i) (ii) (iii)

Plate 40 (i) Iris setosa, (ii) Iris versicolor and (iii) Iris virginica.
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Plate 41 Scatter plot matrix of Fisher’s iris data. (The features from Iris setosa are plotted in red, those
from Iris versicolor are plotted in green, and those from Iris virginica are plotted in blue;
the elliptical contours enclose 95% of the features in each plot.)

(i) (ii) (iii)

Plate 42 Spinning plots: (i) x, y and z are petal length, sepal length and sepal width, respectively;
(ii) the principal components, P1, P2 and P3, are shown overlaid; (iii) a projection in the plane of
P1 and P2. (The features from Iris setosa are plotted in red, those from Iris versicolor are plotted
in green, and those from Iris virginica are plotted in blue.)
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Plate 43 Canonical plot for the Fisher data. The three features that are misclassified (see Table 11.3)
using this classifier are marked with colored arrows; the black arrow shows an additional
feature that is misclassified if cross-validation is used. (The small colored circles are 95%
confidence limits for the positions of the means; and the larger colored circles contain 50%
of the features for that class.)

Plate 44 Dendrogram and scree plot obtained by hierarchical of the canonical data from the Fisher iris
database. The number of classes can be chosen by drawing a vertical line down the dendrogram
at a particular position. The scree plot helps determine this position: as shown it is placed to
identify six clusters (shown colorized), although the scree plot suggests just three clusters.
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Plate 46 Canonical plot of data from retinal vessels. Data from the ground truth conditions are indicated
by separate symbols (▪ vasculitis; * normal; × diabetes; + retinitis). The directions of the features,M
andK, are shown in the canonical space by the labeled rays. The size of each circle corresponds to a
95% confidence limit for the mean (marked with +) of that group; groups with significantly
different values of tortuosity have non-intersecting circles. The small arrows indicate misclassified
data points.
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Plate 47 Throwing two dice.
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Plate 45 Scatter plots of Fisher’s canonicals with data colorized according to the number of clusters
chosen in the dendrogram obtained by hierarchical clustering: (i) 6 clusters, (ii) 4 clusters and
(iii) 3 clusters.
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6.4.2 Sharpening and edge-detecting masks

Sharpening is used to produce a crisper image with sharper edges in order to highlight
fine detail. One way of sharpening an image is by unsharp masking. The original image is
blurred, i.e. unsharpened, and a fraction of it is subtracted from the original. The resulting
image, g(x, y), is given by

gðx; yÞ ¼ fðx; yÞ � c fSðx; yÞ ð6:16Þ

where fS(x, y), the smoothed image, is obtained using an averaging mask and c is a
constant. In terms of masks, the unsharp masking operation, UM, is given by

UM ¼
0 0 0
0 1 0
0 0 0

������
�������

c

9

� 	 1 1 1
1 1 1
1 1 1

������
������ ð6:17Þ

The value of the constant can be varied to give different degrees of sharpening; in the case
of c= 0.9 the resulting mask would be

UM0 ¼ 1

10

� � �1 �1 �1
�1 9 �1
�1 �1 �1

������
������ ð6:18Þ

where the elements add to unity, preserving the average intensity of the original image in
the processed image. However this does not guarantee that the pixels in the resulting
image remain in the range 0 to 255, so that re-scaling is necessary. A sharpening mask
typically has a large positive element in the center, surrounded by small negative
elements, whereas there are no negative elements in a smoothing mask.

Unsharp masking is illustrated in Figure 6.25. The original image in Figure 6.25(i) was
smoothed by Gaussian blurring (Fig. 6.25(ii)). When the two images are subtracted, a
sharper image results (Fig. 6.25(iii)).

Figure 6.26 illustrates schematically the consequences of unsharp masking on a
one-dimensional profile.

Sharpening is the reverse operation to smoothing. Since smoothing is achieved by
averaging, which is essentially integration, intuition suggests that sharpening should be
achieved by subtraction or differentiation. Consider a horizontal line of pixels within the
image on the left in Figure 6.27. If repeated subtractions of neighboring pixels along each
line were executed, the resultant image would be that shown on the right. The only
significantly non-zero pixels result from subtractions across the edges, where low values
are subtracted from high values, or vice versa. In areas of constant gray levels, whether
low or high, the processed pixels are all low, i.e. close to black. The only exception to this
would be if there was significant noise in the initial image; in which case subtraction
would accentuate its importance.
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(i) (ii) (iii)

Figure 6.25 (i) Original image; (ii) smoothed image; (iii) difference image (2*(i) – (ii)).

Original signal

(i) (ii)

Lowpass signal

(iii)

Highpass signal

(iv)

Sharpened signal

Figure 6.26 (i) Original profile; (ii) profile after smoothing; (iii) smoothed profile subtracted from original
profile; (iv) smoothed profile subtracted from twice the original profile.

Figure 6.27 Repeated subtractions performed on the pixels of the image on the left result in the image on
the right.
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Differentiation is essentially subtraction of two values and division by the step
separating them; if the step is unity, the division is redundant. It could be argued that
since a digital image is not a continuous function of the spatial variables, it is not
differentiable. However, since the original analog image was continuous and therefore
differentiable, and since subtracting the pixels of the digitized image is an approximation
of the derivative of the analog image, it is therefore legitimate.

A first derivative of an image f (x, y) in the x direction is

@f

@x
¼ f xþ 1; yð Þ � f x; yð Þ ð6:19aÞ

and in the y direction it is

@f

@y
¼ f x; yþ 1ð Þ � f x; yð Þ ð6:19bÞ

The first derivative in two dimensions, rf, or grad f, could be taken as the sum of the
magnitudes of the one-dimensional derivatives so that

rf � fðxþ 1; yÞ þ fðx; yþ 1Þ � 2fðx; yÞ ð6:20Þ

which could be implemented by using the two masks

�1 1
0 0

� �
and

�1 0
1 0

� �

and adding the two resulting images. A more symmetrical pair of masks can be obtained
by rotating these masks by 45°, i.e.

�1 0
0 1

� �
and

0 �1
1 0

� �

These are known as theRobert’s cross-gradient operators. They could be combined to give

�1 �1
1 1

� �

This is a very simple algorithm to compute, but the small mask makes it sensitive to noise
and it produces very weak responses to genuine edges unless they are very sharp.

Masks of even size are awkward to implement because they do not have a well-defined
central term. Instead, the differencing could be implemented by 3 × 3 masks such as

@

@x
¼

�1 0 1
�1 0 1
�1 0 1

2
4

3
5 and

@

@y
¼

�1 �1 �1
0 0 0
1 1 1

2
4

3
5 ð6:21Þ
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which are called the Prewitt operators. These compute the derivatives in the x and y
directions, respectively, which are then combined to give the total derivative of the image.
Each is essentially an edge detector for the horizontal and vertical directions, with both
results adding to give all the edges. Each operator is separable, into a derivative and an
averaging operator, so that the computation can be implemented with greater efficiency by
performing consecutive passes with one-dimensional convolution masks. It is prudent to
incorporate some smoothing into the process, since differentiation is so susceptible to noise.

Each of the Sobel operators

Gx ¼
�1 0 1
�2 0 2
�1 0 1

2
4

3
5 and Gy ¼

�1 �2 �1
0 0 0
1 2 1

2
4

3
5 ð6:22Þ

takes the derivative in one direction, horizontal or vertical, while smoothing by weighted
averaging in the orthogonal direction. The Sobel operators are better at suppressing noise
than the Prewitt operators. The terms in all these masks add to zero, indicating that they
would give a response of zero in an area of constant gray values as expected from a
derivative operator. Note that sharpening increases the signal-to-noise ratio of an image
and changes its gray-level histogram (Activity 6.7).

The resulting x and y component edge images from convolution with the Sobel operators
(or the Prewitt operators) should be combined, pixel by pixel, as the square root of the sum
of the squares of the pixel values

�
i:e:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP2

x þ P2
yÞ

q
, where Px and Py are the corresponding

pixel values in the x and y component edge images) to give a “magnitude-of-the-edges”
image, although for computational efficiency sometimes the magnitudes of the two images
are simply added. The easiest way to identify those pixels corresponding to an edge is to
threshold the gradient image, assuming that all pixels having a local gradient above a
certain threshold must represent an edge. Natural edges in images often lead to lines in the
output image that are several pixels wide due to the smoothing effect of the Sobel operator.
Some thinning (Section 9.2.4) may be desirable to counter this effect.

Output values from the Sobel (or Prewitt) operators can easily overflow the maximum
allowed pixel value if integer pixel values are used; this problem can be avoided by using
an image type that supports pixel values with a larger range.

The direction of an edge, α, is the angle subtended by the edge and the horizontal axis.
It can be determined from the x and y component edge images, and a Sobel “phase-of-
the-edges” image constructed using tan−1(Py /Px). Activity 6.8 shows how these steps can
be implemented.

Some form of thresholding of the “magnitude-of-the-edges” image is generally used to
eliminate spurious responses to noise, although this often results in breaks in the
contours. To remedy this, edge linking is needed to assemble the edge pixels into
meaningful boundaries. A simple approach would be to compare the magnitude and
phase of potential edge points, and link them if their differences were less than particular
threshold values, which could be varied interactively.

The Kirsch (edge) operator comprises eight convolution masks based on first deriva-
tives, each responding optimally to an edge in a particular direction of the compass
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(Fig. 6.28). The resulting edge image is taken from the maximum pixel values of the eight
convolved intermediate images.

The Frei–Chen (edge) detector is another first-order operator. Edge detection using the
Frei–Chen masks is implemented by mapping the intensity vector using a linear trans-
formation and then detecting edges based on the angle between the intensity vector and
its projection on to the edge subspace. The 3 × 3 image area is represented by a weighted
sum of nine Frei–Chen masks, which comprise all of the basis vectors. The image is
convolved with each of the nine masks (Fig. 6.29), and then an inner product of the
convolution results of each mask is performed. The first four masks are used for edges,
the next four for lines, and the last mask is used to compute averages. For edge detection,
the appropriate masks are chosen and the image is projected on to it.

The Canny operator was designed to be an optimal edge detector. It works in a multi-
stage process. The first step is to filter out any noise in the original image before trying to
locate and detect any edges. The input image is smoothed by convolution with a Gaussian
mask; the larger the width of the Gaussian mask, the lower is the detector’s sensitivity to
noise. The localization error in the detected edges also increases slightly as the Gaussian
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Figure 6.28 Masks making up the Kirsch edge detector.
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Figure 6.29 Masks making up the Frei–Chen edge detector.
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width is increased. The next step is to find the strength and direction of the edges, using,
for example, the Prewitt operators. Edges give rise to ridges in the gradient magnitude
image. The algorithm then tracks along the top of these ridges and sets to zero (i.e.
suppresses) all pixels that are not actually on the ridge top so as to give a thin line in the
output, a process known as non-maximal suppression. Finally, hysteresis is used as a
method of preventing the edge contour breaking up due to fluctuations around a single
threshold. Instead, two thresholds, T1 and T2 with T1 > T2, are used. Tracking begins at all
points on a ridge higher than T1, and continues in both directions until the height of the
ridge falls below T2. This hysteresis helps to ensure that noisy edges are not broken up
into multiple edge fragments. Usually, the upper tracking threshold can be set quite high,
and the lower threshold quite low for good results. Setting the lower threshold too high
causes noisy edges to break up; setting the upper threshold too low increases the number
of spurious and undesirable edge fragments appearing in the output.

Most of the edge detectors work well with noiseless images (Fig. 6.30), although the
Prewitt and Sobel operators are superior to the Roberts operator. The more complicated
Frei–Chen operator produces the best results. Edge detection operators perform less well
on noisy images. The Frei–Chen edge operator is the most successful at enhancing edges
within noisy images, and the Laplacian of a Gaussian is fairly successful. The Sobel
operator is a little better than the Prewitt operator, which in turn is better than the Roberts
operator.

Detecting edges is an essential step in object detection or recognition systems. Edge-
detection algorithms are used, for example, to delineate better the edges of coronary
arteries in x-ray angiograms. Narrowing of the coronary arteries, which supply blood to
the cardiac muscle, results in a compromised supply and possible damage to the muscle.
The severity of the resulting condition, coronary heart disease, can be evaluated by
comparing the cross-sectional areas in the regions of stenoses (narrowings) with the
cross-sectional areas in normal regions of the artery.More accurate determinations can be
made if the vessel edges are clearly delineated prior to measurement.

6.4.3 Second-derivative masks

The objective of edge-detecting algorithms is to locate regions where the grayscale
intensity is changing rapidly. This corresponds to a gradient or first derivative, larger
than some threshold value. An alternative would be to look for a zero crossing of the
second derivative, since this corresponds to a local maximum of the gradient (Fig. 6.31).
The second derivative is the difference between two first derivatives, taken at a small
distance apart, so that the second derivatives in the x and y directions could be written as

@2f

@2x
¼ f xþ 1; yð Þ � 2f x; yð Þ þ fðx�1; yÞ ð6:23aÞ

@2f

@2y
¼ f x; yþ 1ð Þ � 2f x; yð Þ þ fðx; y�1Þ ð6:23bÞ
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(i) (ii)

(iii) (iv)

(v) (vi)

Figure 6.30 (i) Original (noiseless) 256 × 256 image and (ii) its contours. Results of gradient edge detection
using (iii) Roberts, (iv) Prewitt, (v) Sobel, and (vi) Frei–Chen operators. See also color plate.
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Combining these two, and writing them as a mask, gives

r2f ¼
0 1 0
1�4 1
0 1 0

2
4

3
5 ð6:24aÞ

This mask, or its complement, is known as the Laplacian mask. Such a formulation is
isotropic for rotations of 90°. For rotations isotropic about 45° it would be

r2f ¼
1 1 1
1�8 1
1 1 1

2
4

3
5 ð6:24bÞ

or its complement. Note this is identical in form to the unsharp mask of Equation (6.17),
but without the normalizing factor.

f (x )

f ″(x )

f ′(x )

x

x

x

x0

x0

x0

Figure 6.31 (i) Profile across an edge, (ii) its first derivative and (iii) its second derivative.
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The Laplacian operation is seldom used in practice because it produces double edges
and, as a second derivative, it is unacceptably sensitive to noise. However, its location of
edges using its zero-crossing property is useful if it is combined with some smoothing to
minimize its sensitivity to noise. This can be done by convolving it with a Gaussian mask
to give the Laplacian of a Gaussian, the LoG operator, which is sometimes referred to as
the Mexican hat operator because of its shape. The two-dimensional Laplacian of a
Gaussian function centered on zero and with Gaussian standard deviation, σ, has the
following form:

LoG ¼ � r2 � �2

�4

� �
exp r2=2�2


 � ð6:25Þ

where r2 = x2 + y2, and σ determines the degree of smoothing; its form is shown in
Figure 6.32. Hence, σ can be set to remove unwanted detail, or noise, as desired. All
edges detected by the zero crossing detector are in the form of closed curves, except
where the curve goes off the edge of the image (Activity 6.9).

A discrete mask that approximates the Laplacian of a Gaussian function (for a Gaussian
width of 1.4) is shown in Figure 6.33. Note that as the Gaussian is made increasingly
narrow, the Laplacian of a Gaussianmask becomes the same as the simple Laplacian mask.
This is because smoothing with a very narrow Gaussian (σ < 0.5 pixels) on a discrete grid
has no effect.

Gradient (first-derivative) operation is an effective detector for sharp edges where the
pixel gray levels change over space very rapidly. But when the gray levels change slowly
from dark to bright, the gradient operation will produce a very wide edge. It is helpful in
this case to consider using the (second-derivative) Laplace operation. The second-order
derivative of the wide edge will have a zero crossing in the middle of edge. Figure 6.34
shows the result of edge detection using the Laplacian of a Gaussian (LoG) operator,
which is superior to the first-derivative operators.

The Laplacian and the Laplacian of a Gaussian operator are the basis of zero crossing
detection. The simplest scheme is simply to threshold the Laplacian of a Gaussian
output at zero, to produce a binary image where the boundaries between foreground and
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Figure 6.32 The two-dimensional Laplacian of a Gaussian (LoG) function. The x and y axes are marked in
standard deviations.
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background regions represent the locations of zero crossing points. A better technique
is to consider points on both sides of the threshold boundary, and choose the one with
the lower absolute magnitude of the Laplacian, which is hopefully closer to the zero
crossing.

It is possible to approximate the Laplacian of a Gaussian mask with a mask that is
merely the difference of two differently sized Gaussians, known as a Difference of
Gaussians (DoG) mask (Fig. 6.35). This corresponds to the subtraction of one smoothed
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Figure 6.33 Discrete approximation to Laplacian of a Gaussian function with a Gaussian width of 1.4.

(i) (ii)

Figure 6.34 (i) Original (noiseless) image and (ii) result of Laplacian of a Gaussian operation.
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version of an image from another having a different degree of smoothness, and is
a generalization of the unsharp masking technique. It has been suggested that
Difference of Gaussians masks are similar to the way that the human visual system locates
boundaries.

Computer-based activities

Activity 6.1 Background subtraction
Open the rice image in ImageJ and observe its gray-level histogram. The image

contains an uneven background, which is darker at the bottom and left-hand side of
the image. Blur duplicates of the image using Process/ Filters/ GaussianBlur
and choosing different amounts of blurring (using the Radius value). Increase the
amount of blurring until the rice grains themselves cannot be seen, but do not
continue with too much blur otherwise the background itself gets averaged across
the image. Save the optimally blurred image as background.tif; subtract it
from the original image (using Process/ImageCalculator… Subtract), and
observe the histogram of the new image. The uneven background has been
removed, and the histogram shows a narrow spread of pixel values on a uniform,
light background. The image can be seen more clearly if its contrast is stretched
(Process/EnhanceContrast … Normalize).

Try the same procedure for uneven background removal on the images uneven and
sonnet.

Activity 6.2 Division of images
Divide the rice image by its background, as found in Activity 6.1, usingProcess/

ImageCalculator… Divide, with a 32-bit result. Compare the resulting image
(after histogram stretch) with the image obtained in Activity 6.1 using subtraction.
Which worked better, subtraction or division, at removing the uneven background?
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Figure 6.35 The Difference of Gaussians operator in one dimension. Two Gaussian curves with different
standard deviations, and their difference.

Computer-based activities 189



Remove the uneven backgrounds in uneven and sonnet by division with their
respective background images, and compare the results to the use of subtraction in
removing uneven backgrounds.

Activity 6.3 Bit-planes
Open mandrill in ImageJ, and obtain bit-plane 7 by logically ANDing (Process/

Math/AND …) the image with binary 10000000. Enhance the contrast of the
result. Now look at the other bit-planes. Which planes contain the most image
information, and which contain the finer details and noise?

Can you see how this procedure could be applied to image compression, by retaining the
bit-planes with the most information and compressing those with less information?

Activity 6.4 Convolution
Open up testpattern and the Gaussian PSF images, gauss2, gauss4 and

gauss8, in ImageJ. Verify that these latter three images are Gaussian using
Analyze/Surface Plot … with Draw Wireframe checked. Convolve test-
pattern with each Gaussian PSF in turn using Process/Filters/Convolve
and choosing the corresponding text file. Note the increased degradation as the
width of the Gaussian PSF increases.

Repeat with testpattern2.
Activity 6.5 Averaging/smoothing
Open testpattern in ImageJ, and observe the effects of (i) 3 × 3 averaging,

(ii) 5 × 5 averaging and (iii) 3 × 3 weighted averaging (using the masks 3 × 3
average.txt, 5 × 5 average.txt and 3 × 3 weighted average.
txt) on (a) the histogram (using the live histogram plugin) and (b) the SNR
(remember to choose a region of constant gray value before using the SNR
plugin). Which produces the most smoothing (and blurring of edges), and
which the least?

Import the 3 × 3 weighted average mask as a text image (using File/Import/Text
Image), scale it to a reasonable size using Image/Scale (without interpola-
tion), and display its surface plot with the wire frame drawn (using Analyze/
Surface Plots: check Draw Wireframe, Shade, Draw Axis). Is this what
you expect?

Activity 6.6 Noise removal
Open up noisyS&Pskull, which is a radiograph of a skull contaminated by salt-

and-pepper noise. Use the live histogram plugin to display its gray-level histo-
gram: note the large spikes at 0 and 255. Apply a 5 × 5 average mask using
Process/ Filters…Mean with a radius of 2. Note how the histogram changes.
Compare the result with that of using a 5 × 5 median mask (Process/ Filters…

Median with a radius of 2 on the original noisy image. Which is more successful
at removing this kind of noise? How do the histograms of the resulting images
differ? (Hint: Look at the “valley” in each histogram.)

Repeat using noisyGskull, which is contaminated with Gaussian noise. Observe
the shape of the gray-level histogram of the original image, and how it changes
with each mask. Which mask is more successful at removing Gaussian noise? Do
you notice much difference in the histograms of the two resulting images?
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Activity 6.7 Sharpening
Open angiogram in ImageJ and observe the effects of sharpening on (a) its

histogram (using the live histogram plugin) and (b) its signal-to-noise ratio
(remember to choose a region of constant gray value before using theSNR plugin).
To sharpen use (i) Process/Filters/Convolve… and the mask sharpen.txt
(check its contents) and (ii) Process/FindEdges, which implements the Sobel
masks.

Repeat with the chest radiograph image, asthma.
Activity 6.8 Finding edges using the Sobel operators
Open brainpathology, and convert it to a 32-bit image (Image/Type/32-bit) to

avoid overflow in the subsequent operations. Use Process/Filters/Convolve…

to convolve it in turn with the two Sobel masks (Gx.txt and Gy.txt) to get the
horizontal and vertical edge images. Go to Plugins/Macros/Install and open
ApplyFunctiontoImage.txt. This makes available several functions when
Plugins/Macros is next used. Find the square root of the sum of the squares of
these two edge images using the (Sqr) and Square Root (Sqrt) functions within
Plugins/Macros and the Add from Process/Image Calculator. The final
result can be changed to 8-bit and contrast-stretched, using Process/Enhance
Contrast/Normalize. It is the Sobel “magnitude-of-the-images” image, showing
all the edges in the original image. The result is similar to the result obtained directly
from Process/FindEdges.

Divide the 32-bit Sobel vertical edge by the Sobel horizontal edge image, using
Process/Image Calculator. Use the Atan function under Plugins/Macros
to take the inverse tan of this image, which gives the Sobel “phase-of-the-edges”
image. This image is useful in linking any broken edges in the “magnitude-of-the-
edges” image.

Activity 6.9 The Laplacian of a Gaussian operator
The effect of the Laplacian of a Gaussian operation is to highlight edges in an image.

Open smooth in ImageJ, and change it into a 32-bit image (Image/Type/32-
bit) since the Laplacian of a Gaussian operator produces negative pixel values.
Convolve it with the Laplacian of a Gaussian mask (using Process/Filters/
Convolve … and using LoG.txt) to see the edges of the image. Verify that
the pixel values include negative values, by running the mouse over the image. The
contrast of this image can be improved (Process/EnhanceContrast and check
Normalize) with, for example, 10% saturated pixels.

Exercises

6.1 Tracking moving objects is an important problem in computer vision. When the
camera is not moving, the problem is often solvable if we know the background, i.e.
what the scene looks like when no moving objects are present. Once the background
is known, we can find moving objects by finding regions of the current image
that are different from the background image. (In practice, this approach is not
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entirely successful since the background itself usually changes over time due to
lighting, camera motion, or other factors. Sophisticated algorithms exist for dealing
with these problems. However, we ignore those complexities for this exercise.)

Consider the sequence of images mall<n>.tif, where hni= 1, 2, 3,… , 19.
The images are of the same scene. However, none is a background image since
every image contains people in motion. Using all the images together, determine the
best background image, using all of the images, and then remove the background
(i.e. the stationary scene) from the 19 given images.

6.2 Show, using truth tables, that A XOR B is equivalent to (A OR B) AND (NOT(A)
OR NOT(B)).

6.3 Show that ANDing an image with a value N is equivalent to thresholding the image
at that value.

6.4 Enlarge the profile 1 4 7 4 3 6 to lengths of (i) 9, (ii) 11 and (iii) 15 pixels, using (a)
nearest-neighbor and (b) linear interpolation.

6.5 Enlarge the image
8 8 13 9
1 13 1 15
5 4 7 7
5 10 3 7

to sizes (i) 7 × 7, (ii) 8 × 8 and (iii) 10 × 10, by hand, using (a) nearest-neighbor and
(b) bilinear interpolation.

6.6 Suppose an image is scaled upwards in size by a factor k, and the result is then scaled
downwards in size by the same factor. Is the final result exactly the same as the
original image? If not, why not? What if the image is reduced in size first, and the
result enlarged?

6.7 Suppose an image is rotated and then the result rotated back by the same amount
(using either (i) nearest-neighbor or (ii) bilinear interpolation). Is the resulting image
exactly the same as the original? If not, why not?

6.8 What is the result of convolving the following (symmetric) one-dimensional masks?
(In each case you should slide one (M1) past the other (M2), doing a sum-
of-products, replacing the center term (pixel) of M2, and then shifting M1 by a
single term (pixel).)

(i) 1 1 1½ � � 1 1 1½ �;

(ii) 1 1 1½ � �
1
1
1

2
4

3
5;

(iii) 1 2 1½ � �
1
2
1

2
4

3
5;

(iv) 1 1 1½ � �
�1
0
1

2
4

3
5;
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(v) �1 0 1½ � �
1
1
1

2
4

3
5;

(vi) �1 0 1½ � �
1
2
1

2
4

3
5;

(vii) 1 2 1½ � �
�1
0
1

2
4

3
5:

(Note: the results of (iv) and (v) give the Prewitt operators, and the results of (vi)
and (vii) give the Sobel operators.)

6.9 Applying a 3 × 3 averaging mask twice does not produce the same result as
applying a 5 × 5 averaging mask once. To what is it equivalent?

6.10 Is the 3 × 3 median mask separable (i.e. can it be implemented by a 3 × 1 mask
followed by a 1 × 3 mask)? Explain your answer.

6.11 Can unsharp masking be used to reverse the effect of blurring? Choose an image
and apply an unsharp mask after a 3 × 3 averaging mask. Describe the result.

6.12 An averaging mask is applied to an image to reduce noise, and then a Laplacian
mask is applied to the result to enhance small details. Would the result be the same
if the order of these operations were reversed? Explain.

6.13 What 3 × 3 mask performs unsharp masking in a single pass through an image?
6.14 What effect does increasing the Gaussian kernel size within the Canny operator

have on the magnitudes of the gradient maxima at edges? What change does this
imply has to be made to the tracker thresholds when the kernel size is increased?

6.15 Under what situations might you choose to use the Canny operator rather than the
Roberts cross-gradient or Sobel operators? Inwhat situationswould you not choose it?
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7 Image enhancement in the
frequency domain

Overview

A number of mathematical transformations can be applied to images to obtain informa-
tion that is not readily available in the raw image. The Fourier transform is the most
popular although other transforms, such as wavelets and the Gabor transform, are being
increasingly used. The Fourier transform converts the spatial domain representation of an
image into an alternative representation in the Fourier domain, in terms of spatial
frequencies. Convolution of the input data with the point spread function of an imaging
system results in the formation of an image. The convolution operation in the spatial
domain is equivalent to multiplication in the Fourier domain, which is a more efficient
method of performing smoothing or sharpening of an image.

Learning objectives

After reading this chapter you will be able to:

� describe how periodic waveforms consist of a linear superposition of sinusoids;
� explain how the Fourier transform is derived from the Fourier series;

� illustrate the concept of the discrete Fourier transform in two dimensions, with its
dependence on sample and hold;

� describe the phenomenon of aliasing and apply appropriate procedures to elim-
inate it;

� outline the properties of the Fourier transform;
� use cross-correlation to perform template matching;
� obtain the spatial resolution of an imaging system both from its point spread function
(PSF) and from its modulation transfer function (MTF), and show that they are
equivalent;

� use frequency domain filters to smooth or sharpen an image while avoiding ringing
artifacts;

� explain the need for filters in filtered backprojection and summarize the filtered
backprojection algorithm;

� outline the properties of the Radon transform;
� describe the process of direct Fourier reconstruction.



7.1 The Fourier domain

Although the convolution process provides a model for the formation of an image from
input signals by a (linear shift-invariant) imaging system, there exists an alternative and
equivalent way of modeling the process in terms of the spatial frequency content of the
image. Spatial frequency is a measure of how frequently gray values change over
distance. High spatial frequencies are characterized by small repeat distances; the gray
value changes from dark to bright to dark over small distances, such as occurs for fine
details like edges or noise in an image. Low spatial frequencies are characterized by large
repeat distances; the gray value changes little with distance, such as occurs for large
objects or background in an image.

Just as a sinusoid that varies with time has a frequency (in hertz), which is inversely
proportional to the repeat time, the period T (in seconds), so a sinusoid that varies with
distance has a spatial frequency, which is inversely proportional to the repeat distance,
the wavelength λ (in, say, centimeters). The spatial frequency (or wave number), k, is
related to the wavelength of the sinusoid, which is the spatial equivalent to the period, by

k ¼ 1

l
(7:1)

and has units of cm−1 forwavelengthsmeasured in centimeters. In two-dimensional images,
the spatial frequency k is related to its components, denoted u and v, corresponding to
repeat distances in the x and y directions, respectively, by

k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2ð Þ

q
(7:2)

Figure 7.1 shows sinusoidal patterns of intensity; those that repeat over a short distance
have a high spatial frequency (Fig. 7.1(i)), while those that repeat over a long distance
have a lower spatial frequency (Fig. 7.1(ii)).

Continuous, periodic waveforms can always be expressed as a series of appropriately
weighted sums of sinusoids (sines and cosines), which are integral multiples of a
fundamental frequency; the series is known as the Fourier series (Appendix A).
Sinusoids are the basis functions, comprising a single frequency, from which a more
complex, periodic waveform, f (x), can be constructed. They are particularly useful
because they are mutually independent or orthonormal.

fðxÞ ¼ 1

2
a0 þ

X1
n¼1

an cosðnxÞ þ
X1
n¼1

bn sinðnxÞ (7:3)

The zero-frequency term, 1
2 a0, if present, constitutes a constant or zero-frequency

term, often referred to as the d.c. term borrowing a notation from electrical engineering.
The fundamental frequency or first harmonic, the term with harmonic number n equal
to 1, describes the rate at which the whole pattern repeats itself. Higher harmonics
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are denoted by higher values of n, e.g. the second harmonic by n= 2, the third harmonic
by n= 3, etc.

Figure 7.2 shows two examples of periodic one-dimensional profiles, and indicates
how they can be constructed from sinusoids. Note that sharp edges require high spatial
frequencies. The process of decomposing a periodic function into its constituent sine or
cosine waves is called Fourier analysis. The reverse process, that of combining a series
of sines or cosines to give a more complicated function, is known as Fourier synthesis.

(i) (ii)

Figure 7.1 Sinusoidal shapes which repeat along the x axis: (i) high spatial frequency and (ii) low spatial
frequency.
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Figure 7.2 Harmonic analysis of (i) square wave and (ii) sawtooth wave. Each comprises a fundamental,
i.e. a sinusoid of the same repeat distance (labeled 1) and higher harmonics (labeled 2, 3, 4).
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The notation can be simplified using complex exponential functions

fðxÞ ¼
Xn¼1

n¼�1
Cn expðj � 2pnx=LÞ (7:4)

where the Fourier coefficients, Cn, are complex numbers with a magnitude and phase,
which can be displayed as the Fourier spectrum (see Activity 7.1).

Since a sine wave comprises just a single sinusoidal term, its Fourier spectrum
comprises just a single magnitude term (Fig. 7.3(i)). A sawtooth wave comprises a
sum of harmonics, with the magnitude of their coefficients decreasing as 1/n, that is 1,
1/2, 1/3, 1/4,… The phases alternate between 90° and −90°, determining whether the
term is a sine or a cosine (Fig. 7.3(ii)). A square wave is composed of odd harmonics only,
with Fourier coefficients that go as 1/n (Fig. 7.3(iii)). The high-frequency terms con-
tribute to the sharp edges of the square wave. It is not possible to build up a sharp edge or
discontinuity exactly; even with an infinite number of terms there are always some
residual oscillations, known as ringing.

Magnitudes

Phases Phases

Phases

Magnitudes

Magnitudes

(i) (ii)

(iii)

Figure 7.3 The waveform and Fourier spectra (magnitude and phase) of (i) a sine wave, (ii) a sawtooth
wave and (iii) a square wave.
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7.2 The Fourier transform

When a waveform is not periodic, its repeat distance is effectively infinite. The waveform
can still be synthesized from sinusoids, but a continuous range of frequencies is required
rather than only integral multiples of a fundamental frequency. This continuous mix of
frequencies is known as the Fourier transform (FT). The Fourier transform is a complex
quantity, with real and imaginary parts; it is often more helpful intuitively to combine
these parts into an amplitude and a phase (Appendix A). The amplitude spectrum shows
the relative amounts of different frequencies in the original waveform, while the phase
spectrum shows their relative positions. Thus, the Fourier transform converts the original
spatial domain representation of a waveform or profile, in terms of grayscale intensities,
into an alternative frequency domain representation, in terms of spatial frequencies.

Figure 7.4 illustrates a number of one-dimensional profiles with their corresponding
Fourier amplitude spectra. The rectangular pulse or rect function (Fig. 7.4(i)) transforms
into a sinc (that is, sin θ/θ) shape known as the sampling function. Note that it is a
continuous function, indicating that all frequencies, not just the harmonics, are present.
There are side lobes, separated by zero crossings at ± 1/a, ± 2/a,… and so on. The
envelope of the Fourier spectra falls as 1/n, just like the Fourier series of a periodic
rectangular pulse train.

For all pulse shapes, the width of the pulse in the spatial domain (Δx) is inversely
proportional to the width of its transform in the frequency domain (Δk); the relationship is

DxDk � 2p (7:5)

A Gaussian pulse achieves the minimum product due to its smooth shape in both
domains; the Fourier transform of a Gaussian pulse is another Gaussian (Fig. 7.4(ii)).

A delta or impulse function, δ(x), has zero value except at position x= 0, and encloses
an area of unity (Fig. 7.4(iii)). Its Fourier spectrum has constant amplitude and phase and
extends from u= −∞ to +∞.

Higher-dimensional signals can be treated by a straightforward generalization of the
one-dimensional Fourier transform. The Fourier transform of a two-dimensional image,
for example, can be displayed as two separate (two-dimensional) images, amagnitude (or
amplitude) image and a phase image. The spatial frequency, k, increases radially from
zero (d.c.) at the center of the images. The frequencies at the horizontal and vertical
edges correspond to the highest frequencies or smallest resolvable lengths, namely two
pixels, in the spatial domain signal (Fig. 7.5). Some software displays both the magnitude
and the phase images, while other software displays only the square of the complex
Fourier transform, the power (or power spectral density, PSD) image. Since the
high-frequency components of an image are frequently very small, the power image is
frequently displayed using a logarithmic look-up table.

Figure 7.6(i) shows two (spatial domain) images, a horizontal sinusoid and a vertical
sinusoid, and their Fourier transform (power spectral density) images. Each transform
image contains a spot at the center of the image, the zero-frequency term, which contains
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information on the average brightness of the spatial domain image, and two spots
symmetrically placed about the center. One of these spots is redundant (which one?)
and is present because of the symmetry of the Fourier transform operation. The distance
of the spots from the center indicates the frequency of the original sinusoid, and the

Transform
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N
(pixels)
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Figure 7.5 Relationship of parameters in the spatial and spatial frequency domains.
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Figure 7.4 Examples of one-dimensional profiles and their Fourier transforms.
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brightness of the spots indicates the intensity of the sinusoid. The sinusoid on the top
left of Figure 7.6(i) is of low frequency and runs in the horizontal direction; the spots in
its Fourier transform image are on the horizontal (u) axis and close to the central
zero-frequency spot. The sinusoid on the top right of Figure 7.6(i) is of higher frequency
and runs in the vertical direction; its Fourier transform spots lie on the vertical axis,
further from the central, zero-frequency spot. If the original images are rotated, their
Fourier transforms are rotated by the same angles (Fig. 7.6(ii)).

Figure 7.7 shows two images, each of which comprises a mixture of a horizontal and a
vertical sinusoid. Each component contributes spots to the Fourier transform image,
depending on their frequencies and relative strengths. You can experiment with similar
images and their Fourier transforms by working through Activity 7.2.

Figure 7.8 shows several images on the left with their corresponding (power)
Fourier transforms on the right. The rectangular/square objects (Figs. 7.8(i), (iii), (v),
(vii)) result in images with a sinc nature (Figs. 7.8(ii), (iv), (vi), (viii)), whose widths
are inversely proportional to the lengths of the objects in that direction. Thus, the smaller
the object, the greater the energy content at higher spatial frequencies. Rotating an
object (Fig. 7.8(vii)) causes its Fourier transform image to rotate by the same amount
(Fig. 7.8(viii)). A circular object (Fig. 7.8(ix)) results in a circularly symmetric Fourier
image (Fig. 7.8(x)).

Most images are more complicated than sinusoids, blocks and circles and comprise a
mixture of many spatial frequencies. However, their Fourier transform images can still be
understood in terms of the basic concepts. The strong periodic pattern in the image of
the bricks (Fig. 7.9), especially in the vertical direction, results in prominent spots along
the vertical axis of the Fourier transform image. In the Fourier transform image of the

(i) (ii)

Figure 7.6 (i) Two sinusoidal images and their Fourier transform (power) images. (ii) The two sinusoidal
images of (i) are rotated, causing their Fourier transform images to rotate.
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building blocks (Fig. 7.9), bright lines indicating a collection of frequencies appear
perpendicular to the strong edges of the spatial image.

The letters in Figure 7.10 have quite different Fourier transforms, especially at the
lower frequencies. Bright lines in the Fourier transform images appear in directions
perpendicular to edges in the spatial domain. Note that parallel edges do not introduce
any new features since translation in a spatial image has no effect on the Fourier trans-
form. If the letter has circular segments, then so does its Fourier transform.

The concentric ring structure in the Fourier transform of the pellets in Figure 7.11
is due to each individual pellet. The information about the whereabouts of each
pellet is contained mostly in the Fourier phase image. The coffee beans (Fig. 7.11)
have less symmetry and are more variably colored so they do not show a strong ring
structure.

Most images have less repetitive structure and therefore less prominent spots in their
Fourier transform (Fig. 7.12). In the Fourier transform image of the young woman, the
line from top left to bottom right is due to the edge between her hat and her hair.
The Fourier transform of the mandrill image shows more high-frequency power, due to
the fine hair. The Fourier transform of the chest radiograph show a broad range of spatial
frequencies, with significant vertical and horizontal features, as might be expected from
the horizontal ribs and vertical vertebral column in the radiograph.

Figure 7.7 Two mixed sinusoidal images and their Fourier transform (power) images.
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(i) (ii)

(iii) (iv)

(v) (vi)

(vii) (viii)

(ix) (x)

Figure 7.8 All images are 256 × 256 pixels. (i) Image with a white square of size 64 × 64. (ii) Fourier transform
of the image in (i). (iii) Image with a white square of size 16 × 16. (iv) Fourier transform of the
image in (iii). (v) Image with a white rectangle of size 64 × 16. (vi) Fourier transform of the image in
(v). (vii) Image (v) rotated 45° clockwise. (viii) Fourier transform of the image in (vii). (ix) Image
with circle of diameter 16 pixels. (x) Fourier transform of the image in (ix).



Figure 7.9 Bricks and building blocks (top), and their Fourier transform (power) images (bottom).

Figure 7.10 Letters and their Fourier transforms.



Figure 7.11 Pellets and coffee beans (top), and their Fourier transform (power) images (bottom).

Figure 7.12 Young woman, mandrill and chest radiograph (top), and their Fourier transform (power)
images (bottom).
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7.3 Properties of the Fourier transform

The Fourier transform has a number of interesting properties, some of which we have
discussed already. They can be summarized as follows.

(i) Separability The two-dimensional discrete Fourier transform (DFT) of a matrix
(i.e. an image comprising pixel values) can be implemented as two consecutive
one-dimensional discrete Fourier transforms, one operating on the rows and the
other on the columns. We first calculate the (one-dimensional) discrete Fourier
transform of all the rows, and then calculate the (one-dimensional) discrete Fourier
transform of all the columns of the result (Fig. 7.13). Since a product is independent
of the order, we could equally well calculate the two-dimensional discrete Fourier
transform by calculating the (one-dimensional) discrete Fourier transform of all the
columns first, and then calculating the (one-dimensional) discrete Fourier transform
of all the rows of the result.

(ii) Linearity or linear superposition If the Fourier transforms of two signals f (x, y)
and g(x, y) are F(u, v) and G(u, v), respectively, then

Fða fðx; yÞ þ bgðx; yÞÞ ¼ aFðu; vÞ þ bGðu; vÞ (7:6)

(iii) Translation or shifting The discrete Fourier transform of a shifted function is
unaltered except for a linearly varying phase factor. Translating the original image
by (x0, y0) does not change the magnitude spectrum of the discrete Fourier trans-
form, just its phase spectrum.

(iv) Periodicity and symmetry The discrete Fourier transform and inverse discrete
Fourier transform are periodic with period N, and if f (x, y) is real, the Fourier
magnitude image has two-fold symmetry.

(v) Rotation If an image is rotated, then its Fourier transform rotates an equal
amount.

(vi) Scaling This property is best summarized by “a contraction in one domain
produces corresponding expansion in the other domain.” Thus a wide Gaussian
image transforms to a narrow Gaussian in the frequency domain, and vice versa.

(vii) Convolution Convolution in the spatial domain corresponds tomultiplication in the
frequency domain, and vice versa. This is represented by Equations (7.7a) and (7.7b):

(i) (ii) (iii)

Figure 7.13 Calculating a two-dimensional discrete Fourier transform (DFT). (i) Original image. (ii) Discrete
Fourier transform of each row of (i). (iii) Discrete Fourier transform of each column of (ii).
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f x; yð Þ � hðx; yÞ $ Fðu; vÞHðu; vÞ (7:7a)

and

fðx; yÞhðx; yÞ $ Fðu; vÞ �Hðu; vÞ (7:7b)

Instead of processing an image by convolving it with a mask or kernel, for
smoothing or sharpening, the Fourier transform of the image can be multiplied
by the corresponding filter in the frequency domain and the inverse Fourier trans-
form taken (Fig. 7.14) to give the same result. Although the latter pathway
comprises more steps, it is usually more computationally efficient because the
speed of the algorithms used to compute the Fourier transform and inverse Fourier
transform more than compensate for the complexity of convolution.

Fast Fourier transform (FFT) algorithms are efficient implementations of the
discrete Fourier transform, and have proven essential in its development as a
practical tool for the analysis of digital images. One of the most common fast
Fourier transform algorithms recursively subdivides an image into smaller images,
which are transformed and subsequently recombined. If the image is divided into
smaller images of size N/2 at each step, the algorithm is limited in application to
square images whose sides are integral powers of two; for images that do not meet
this requirement, either a square, power-of-two sized region can be selected, or the
image can be extended by padding out with zero values to the next square, power-
of-two size. There are however many other algorithms that are not limited to
square, power-of-two size images. The gain in computational efficiency in using a
fast Fourier transform algorithm is considerable; for an image of length N (=2n) the
saving in time over direct computation of the discrete Fourier transform is of the
order of 2n/n. Activity 7.3 explores the accuracy of a fast Fourier transform algo-
rithm by taking a Fourier transform and then its inverse, and comparing the result
with the original image.

(viii) Projection The one-dimensional Fourier transform of a projection of a
two-dimensional function at an angle φ forms a line in the two-dimensional
Fourier space of the image at the same angle. This is known as the Central Slice
Theorem, and is the basis of the Radon Transform used in the reconstruction of
tomographic images by backprojection.

FT FT IFT IFT

f (x,y)

F (u,v) G(u,v)

g (x,y)
*h(x,y)

* H (u,v)

Figure 7.14
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(ix) Energy The energy of an image is given by the sum of the squares of its pixels.
Since the frequency domain images, both magnitude and phase, are an equivalent
representation, the energy can also be found by taking the square of the magnitude
of the Fourier coefficients in reciprocal space. This is referred to as Rayleigh’s
Energy theorem or Parseval’s theorem:

P u; vð Þ ¼
X

f x; yð Þj j2¼
X

F u; vð Þj j2 (7:8)

where the summation is over all pixels. The power terms are obtained by multi-
plying the respective complex amplitude and its complex conjugate.

Activity 7.4 explores some of the properties of the discrete Fourier transform.

7.4 Sampling

Figure 7.15(i) illustrates a one-dimensional analog waveform and its (analog) Fourier
amplitude spectrum. Digitizing an analog signal involves sampling it at a number of
equally spaced positions, and quantizing those values to form discrete pixel values. The
distance between samples constitutes the pixel size and determines the smallest detail that
can be seen in the digitized image, i.e. the spatial resolution. Intensity quantization limits
the number of gray values in the digital image, e.g. using 8 bits for each pixel value limits
the number of gray levels resolution to 256.

The regularly spaced samples are obtained by multiplying the analog image by a comb
function or infinite impulse train, III(x), composed of an infinite grid of infinitely narrow
and infinitely tall spikes (impulses or δ-functions), the area underneath each being unity
and their separation, Δx, being equal to the linear pixel size (Fig. 7.15(ii)). This represents
the ideal sampling process. The result of the multiplication is that the spikes are scaled by
the sample values (Fig. 7.15(iii)). It is interesting to consider the effect of sampling in the
frequency domain. Sincemultiplication in one domain, spatial or frequency, is equivalent to
convolution in the other, the spectral shape of the analog signal in the frequency domain is
convolved with another comb function (recall that the Fourier transform of a comb function
is another comb function (Fig. 7.4), whose separations are inversely related to the separa-
tions in the spatial domain); this gives rise to a periodic replication of the spectral shapes
centered on frequencies of ± n/Δx, where Δx is the sample spacing in the spatial domain
(Fig. 7.15(iii)). The inverse of the sample spacing, 1/Δx, can be identified as the sampling
frequency, fs. For example if the samples were taken 0.002 inches apart, the sampling
frequency would be 500 samples per inch, often denoted as 500 dpi (dots per inch).

In fact the sampling comb function is infinite. In order to make it finite, we need to
truncate it by multiplying it by a rectangular or box-car function, rect(x) (Fig. 7.15(iv)),
whose length is equal to the linear size, L, of the waveform, which is an integral number of
pixels, NΔx. The rect function in the spatial domain is a “do nothing” window, in that it
truncates the spatial data to the physical size of the waveform but does not modify the
data values within the waveform. However it modifies the frequency spectrum somewhat
(Fig. 7.15(v)) due to convolution with its Fourier transform, a narrow sinc function, sinc( f ).
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Figure 7.15 The process of image digitization shown in the spatial and frequency domains: (i) the analog image;
(ii) comb function for sampling in the spatial domain; (iii) effect of sampling; (iv) truncation
function; (v) effect of truncation; (vi) comb function for sampling in the frequency domain;
(vii) effect of sampling in the frequency domain – the discrete Fourier transform.
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The holding of the values in the spatial domain between samples can be represented by
convolving the sampled points with a narrow rectangular function, whose width equals the
distance between sampling points, i.e. the pixel size. This is equivalent to multiplication in
the frequency domain of the replicated spectrum by a wide sinc function, which is the
Fourier transform of the rectangular hold function. This suppresses the Fourier magnitudes
of the replicated spectrum at higher spatial frequencies, resulting in a blurring of the
sampled function and is the cause of the partial volume effect in computed tomography
(CT) and other digital modalities. We have not shown this additional effect in Figure 7.15.

Computation of the Fourier transform requires evaluation at discrete frequencies, the
discrete Fourier transform (DFT). These frequencies are chosen to beN values sampled at
equal intervals over the periodicity of the frequency domain (Fig. 7.15(vi)). Thus,

4f ¼ 1=ðN4xÞ ¼ 1=L (7:9)

The process of multiplying the Fourier transform by this comb function, II( f ), is to
convolve its spatial domain equivalent by a wide comb function to give a periodic,
discrete spatial function (Fig. 7.15(vii)). Thus calculating the discrete Fourier transform
implies that the spatial domain image itself is periodic.

For real data, the discrete Fourier transform produces N complex values, whose real
parts are an even function of frequency and whose imaginary parts are an odd function of
frequency. This results in the amplitude image having even symmetry and the phase
image having odd symmetry.

In a practical digital system, the heights of the digitized samples (i.e. pixel value) are also
quantized; they are limited to a discrete set of 2n values for n-bit quantization. If the sampled
height falls between two of these discrete values it is approximated to the closer of the
values. This results in an approximation known as quantization error (see Section 2.4.2).

7.4.1 Window functions

Due to the periodic assumption implicit in the discrete Fourier transform of an image, the
image frame wraps from its right edge around to its left edge, and from its bottom edge
around to its top edge (Fig. 7.16). If there are significant differences between the right and
left edges, or between the top and bottom edges, the Fourier transform sees abrupt spatial

Wrap-around images

Spatial discontinuities

Original image

Figure 7.16 The Fourier transform sees the original image as though it were periodic. This introduces spatial
discontinuities at the edges of the original image which the Fourier transform tries to model,
causing erroneous frequency components to be introduced.
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discontinuities in the image which it attempts to model. When the frequency image is
transformed back to the spatial domain, it contains spatial distortion artifacts because of
the attempt to model discontinuities that did not really exist in the original image.

Let us consider this in more detail. In the frequency domain the actual image can
be extracted from the infinitely repeating image by multiplying the latter by a
two-dimensional rect (or box-car) function. However, the inverse Fourier transform of
this product introduces ringing in the spatial domain because of convolution with the
lobes of the sinc function, which is the Fourier transform of the rect function. Both the
ringing and the wrap-around effect can be minimized by pre-multiplying the sampled
image in the frequency domain by a tapering window function, which rolls off smoothly
from unity in the center to zero at both ends (Fig. 7.17(i)). The narrowest windows in the
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Figure 7.17 (i) Profiles of several commonly used window functions and (ii) their Fourier transforms.
See also color plate.
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frequency domain will have the widest main lobes in the time domain, and vice versa
(Fig. 7.17(ii)). In general, window functions can be applied either in the spatial or
frequency domains. Selecting the best window is not a simple task, since each is a
compromise between having a narrow main lobe (for good resolution) and having small
secondary side lobes (to minimize ringing). The four-term Blackman–Harris window
function is a good general purpose window, having a moderately narrow main lobe and a
side lobe rejection of about 100 dB.

The discrete Fourier transforms of both an image and a windowed version of the same
image are shown in Figure 7.18. Clearly the streaking of the spots in the Fourier trans-
form is significantly reduced by windowing.

7.4.2 Aliasing

The sampling process can introduce aliasing, which results in false low-frequency
signals, if the sampling frequency is not sufficiently high, i.e. the pixel size is not
sufficiently small. It is possible for adjacent copies, or aliases, of the replicated signal,
which are separated by 1/Δx, to overlap in the frequency domain if they contain

Figure 7.18 Image and windowed version of image (top), and their respective Fourier (power) images
(bottom).
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frequencies greater than 1/2Δx. This overlap can be seen to happen in Figure 7.15(iii).
The frequency at which aliasing begins is known as the Nyquist frequency, fN (=1/2Δx),
and is equal to one-half of the sampling frequency, fS (=1/Δx). To avoid aliasing,
samples must be taken such that the Nyquist frequency is equal to, or greater than,
the highest frequency within the signal (or, equivalently, the sampling frequency must
be greater than twice the maximum frequency within the signal). This is known as the
Nyquist–Shannon sampling criterion (see Chapter 2.4.1). Failure to meet this condition
results in corruption of the sampled signal, such that the original analog signal cannot
be exactly recovered by an inverse transform. Instead of disappearing, frequencies
higher than the Nyquist frequency reappear at lower frequencies mirrored about the
Nyquist frequency and then add to the frequencies already there. Figure 7.19(i) shows
the real frequency spectrum of a waveform sampled at a sampling frequency higher
than twice the maximum frequency in the signal (the Nyquist–Shannon sampling
criterion). Figure 7.19(ii) illustrates the effect of sampling when the sampling fre-
quency does not meet this condition. The effect is to mirror the power above the
Nyquist frequency, fN, down into the Nyquist range, irreversibly corrupting the shape
of the observed spectrum.

In order to avoid aliasing, the highest frequencies in the analog signal should be
removed by a low-pass filter prior to sampling. This necessarily limits the bandwidth of
the digitized image, but it ensures that the digitized image is not corrupted by mirrored
frequencies.

Insufficient sampling of the high spatial frequencies adjacent to borders of abrupt
intensity change can produce aliasing artifacts in the form of lower-frequency lines that

Real spectrum

(i)

fmax

Observed spectrum

Observed spectrum

Frequencies
higher than
Nyquist

Mirrored
frequencies

(ii)

fmaxfN

Figure 7.19 (i) Real frequency spectrum of a waveform. (ii) Observed spectrum after aliasing.
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run parallel and adjacent to the borders. Figure 7.20 shows axial images of a phantom
containing water, surrounded by air. The artifacts are related to the finite number of
samples used to reconstruct an image; the more samples during reconstruction, the less
intense and narrower the artifacts.

Awrap-around artifact in MRI can occur when the field of view (FoV) is smaller than
the object being imaged (Fig. 7.21). Parts of the object that lie beyond the field of view
are seen at the edge of the image, as if folded back into the image, or wrapped around the
entire image to appear on the opposite side of the image. The wrap-around artifact occurs
primarily in the phase-encoding direction, and is caused by the circularity of phase space.
Oversampling in Fourier space (i.e. using a sampling rate significantly higher than twice
the highest frequency of any details in the image) can obviate the effect, although there is
a time penalty for doing this since acquisition time is proportional to the number of phase-
encoding steps). Many newer MR imaging systems employ a combination of over-
sampling, digital filtering, and decimation (i.e. reduction of data – the opposite of
interpolation) to eliminate the wrap-around artifact. Oversampling creates a larger field
of view, but generates too much data to be conveniently stored. Digital filtering elim-
inates the high-frequency components from the data, and decimation reduces the size of
the data set.

7.4.3 Sub-sampling

Sub-sampling (or down-sampling) an image can result in aliasing. Figure 7.22(i) shows a
256 × 256 axial image of the brain acquired byMRI, whose Fourier transform is shown in
Figure 7.22(ii). If the spatial image is sub-sampled by multiplying it by a comb function

(i) (ii)

Figure 7.20 MRI image of a water phantom using (i) 128 samples in the horizontal direction and 256
samples in the vertical direction and (ii) 256 samples in both directions.
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(Fig. 7.22(iii)), which samples every eighth pixel in either direction, the result is a very
sparse copy of the image (Fig. 7.22(iv)). The Fourier transform of this image comprises
many small regions, each 32 × 32 pixels and containing what seems to be the Fourier
transform of the original image (Fig. 7.22(v)). By increasing the sample spacing in the
spatial domain, the periodicity of the frequency image was reduced. Unfortunately,
however, the Fourier transform of the original image extends to higher frequencies
than are available in these small regions, and aliasing of the spectra occurred as they
were folded back into the regions resulting in very severe corruption of the data. This can
be seen if one of these small regions is isolated (Fig. 7.22(vi)), and its inverse Fourier
transform taken (Fig. 7.22(vii)). Aliasing has severely corrupted the resulting spatial
image. This effect is very different from low-pass filtering the original image (Fig. 7.22
(viii)). The visual appearance of aliasing artifacts depends on the original image, but
generally results in new patterns where none should exist. The way to avoid such aliasing
would have been to filter out the high frequencies in the original image prior to sub-
sampling.

Activity 7.5 has examples of images which exhibit aliasing when sub-sampled.

7.4.4 Reconstruction from samples

Once the analog image has been sampled, the information between sampled points has
been lost. A very practical question then arises as to whether the original analog image
can be recovered completely and exactly from the sampled points, for example when we

(i) (ii)

Figure 7.21 Axial images of the brain showing (i) wrap-around of the back of the head on to the front of
the head and (ii) reduced wrap-around due to oversampling.
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want to display a digital image, after processing perhaps, on an analog computer monitor
or print it on film or paper. Reconstruction requires a suitable interpolation of the sampled
points.

Consider the situation in the frequency domain in one dimension, using the
right-hand half of Figure 7.23. In the absence of aliasing, multiplying the sampled
spectrum (Fig. 7.23(i), right) with a rectangular function that is non-zero for

(i) (ii)

(iii) (iv)

Figure 7.22 Sub-sampling. (i) MRI image; (ii) Fourier transform of (i); (iii) comb (sampling) function;
(iv) sub-sampled image.
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−1/(2Δx) ≤ u ≤ 1/(2Δx) (Fig. 7.23(ii), right), where Δx is the spacing between
samples, isolates the original analog spectrum (Fig. 7.23(iii), right) from its replicas.
This is equivalent to convolution of the sampled points in the spatial domain
(Fig. 7.23(i), left) with a sinc function (Fig. 7.23(ii), left), sometimes referred to as
sinc interpolation. The resulting profile in the spatial domain (Fig. 7.23(iii), left) is an
analog signal, equal to the original analog profile filtered by an ideal low-pass filter
(Section 7.7.1).

(v) (vi)

(vii) (viii)

Figure 7.22 Sub-sampling (cont.). (v) Fourier transform of (iv); (vi) a 32 × 32 region of (v); (vii) inverse
Fourier transform of (vi); (viii) low-pass filtered version of image (i).
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7.5 Cross-correlation and autocorrelation

Cross-correlation is a standard method of estimating the degree to which two sets of
numbers are related. One set, often referred to as a mask, is slid past a reference set
and a sum-of-products calculated at each position; high output values indicate where
the two sets are similar, and low values where they are dissimilar. The process is
similar to convolution, except that the mask is not rotated by 180° prior to calculating
the sum-of-products; indeed if the mask is symmetric, then both processes are
identical. For two images, f and h, each output pixel of the cross-correlation image
is given by

g i; jð Þ ¼
Xa
m¼�a

Xa
n¼�a

f m; nð Þh m�i; n�jð Þ (7:10)

where a = (k− 1)/2. This equation should be compared with Equation (6.12), the defining
equation for convolution. We can express this cross-correlation function (CCF) in terms
of the convolution operation as

CCF ¼ fðx; yÞ�h�ðx; yÞ (7:11)
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Figure 7.23 Sinc interpolation: the analog signal is recovered by convolving the sampled values (i) by
scaled sinc functions (ii), as indicated by the dashed lines in (iii), as shown in the sketches
on the left-hand side. The equivalent frequency domain sketches are shown on the
right-hand side.
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where h*(x, y) is the complex conjugate of h(x, y), formed by rotating it by 180° or
equivalently by flipping its rows and columns.

When the two functions (images) are identical, the term autocorrelation function,
ACF, is used. The ACF indicates how the values of an image at a particular spatial
location are statistically related to the values of the same image at other shifted locations,
and can be used to detect periodicities in the image. Since the product of two quantities in
one domain is equal to the Fourier transform of their convolution product in the other,
then the Fourier transform of the autocorrelation function of an image is equal to its
power spectrum

FT½ f x; yð Þ � f � x; yð Þ� ¼ F u; vð ÞF � u; vð Þ ¼ F u; vð Þj j2¼ P u; vð Þ (7:12)

or, equivalently, the Fourier transform of the power spectrum is the autocorrelation
function. More succinctly, the power spectrum and the autocorrelation function are
Fourier transform pairs. This is known as the Weiner–Khinchin relationship. Because
of the efficiency of fast Fourier transform algorithms, it is generally quicker to obtain the
power spectrum of an image and then compute its Fourier transform than calculate the
autocorrelation function directly in the spatial domain.

When the images are different, i.e. cross-correlation, the following relationship
holds:

FT½ f x; yð Þ � g� x; yð Þ� ¼ F u; vð ÞG� u; vð Þ (7:13)

Cross-correlation in the spatial domain can be obtained from the (inverse) Fourier
transform of F(u, v) G*(u, v), the cross power, where G*(u, v) is the complex conjugate
of G(u, v).

Cross-correlation can be used for template matching (i.e. finding whether an image
contains an object or template) and in spatially registering similar images (e.g. from
different imaging modalities). In both cases, the peak of the cross-correlation function is
sought. In practice, the images may need to be normalized to the same intensity range to
avoid an uneven background in the correlation image, and the computation performed in
the frequency domain.

In Figure 7.24, the normalized cross-correlation function of a template and a reference
image is displayed as a surface plot. The peak indicates where the two images are best
correlated, and its location indicates the offset or translation between them. A problem
that affects the matching, whether it is implemented in the spatial or frequency domain, is
that correlation is neither rotation- nor scale-invariant; the process does not work well
unless the template is the same size as the feature in the reference image, and is similarly
oriented.

Cross-correlation by itself works poorly as a template matcher. The mask and
reference images need to be pre-processed to remove low frequencies and to
enhance features such as edges. Activity 7.6 explores a practical example of template
matching.
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7.6 Imaging systems – point spread function and optical transfer function

A linear, shift-invariant (LSI) imaging system is characterized by a point spread
function (PSF) or impulse response function, h(x, y), which describes how it blurs a
point (Section 2.2.2). The full width at half maximum height, FWHM, of the point
spread function is taken as a measure of its width and therefore of the resolution of
the system. The point spread function of most imaging systems can often be approxi-
mated by a radially symmetric Gaussian shape. The imaging process comprises the input
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Figure 7.24 (i) Template and reference images and (ii) their cross-correlation function.
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or object being convolved with the point spread function to give the output or image
(Section 6.4).

Large features in the object experience some blurring of their edges. For features of a
size similar to or smaller than the FWHM of the point spread function, the contrast of the
corresponding images progressively decreases with the object size, and the image size
retains the size of the point spread function (Fig. 7.25). The convolution process ensures
that features smaller than the FWHM of the point spread function never appear in the
image. Instead, they appear as wide as the FWHM, but with reduced contrast because
convolution preserves the area under a profile. Thus, the point spread function, char-
acterized by its FWHM, determines the size of the smallest feature seen by the system.
The loss of contrast becomes progressively worse for smaller features, i.e. higher spatial
frequencies.

Limited spatial resolution causes difficulties in the measurement of the thickness and
brightness of thin structures. Convolution by the point spread function causes the image
to be wider and less bright than the object, and the effect is increasingly significant for
object sizes smaller than about twice the FWHM of the point spread function. The
phenomenon is exacerbated in digital systems due to the inherent finite sampling,
especially when a coarse raster is used such as in nuclear medicine imaging. The resulting
overestimation of thickness and underestimation of density can be modeled by convolu-
tion with a Gaussian point spread function (Fig. 7.26). Accurate estimates of thickness,
for example cardiac wall thickness in SPECT images, can be obtained by deconvolving
the image with the point spread function of the imaging system.

Since convolution in one domain is equivalent to multiplication in the other, convolu-
tional blurring can also be described by the multiplication of the Fourier transform of the
image by the Fourier transform of the point spread function. The Fourier transform of the
point spread function is known as the (optical) transfer function, OTF, of the imaging
system. The optical transfer function is a complex function which determines the
amplitude and phase of the output relative to the input. Imaging can therefore be

f  (x, y)

g (x, y)

h (x, y)
FWHM

*

Figure 7.25 The effects of imaging sharp-edged features of various sizes. For large features the image
contrast is unchanged but the edges are rendered unsharp. When the features are small their
contrast is reduced, but their size remains fixed at the FWHM of the point spread function.
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considered using two equivalent methods, according to the schema of Figure 7.14, where
h(x, y) and H(u, v) are identified as the point spread function and the optical transfer
function, respectively, of the imaging system rather than specific processing masks or
filters. Thus, the point spread function and the optical transfer functions are equivalent
characterizations of the imaging system response. A good imaging system has a narrow
point spread function, i.e. it adds little spatial blurring, which gives rise to a wide optical
transfer function in the Fourier domain, indicating that it produces a faithful image up to
high spatial frequencies.

In general, the optical transfer function, OTF, can be described as

OTF ¼ MTF ei’ (7:14)

where its modulus (magnitude) is the modulation transfer function, MTF (i.e. the
frequency response of the imaging system) and the phase term (eiφ) is the phase transfer
function, PTF (i.e. the phase response of the imaging system). A perfect imaging system
would have a modulation transfer function of unity and a phase transfer function of zero
at all spatial frequencies.

In general, the modulation transfer function alone is not a complete descriptor of the
imaging system because it excludes phase information. However, if the point spread
function, h(x, y), is real and symmetrical, which is generally true for x-ray imaging
systems, then the optical transfer function is real rather than complex, and the modulation
transfer function can be used interchangeably with it.

Figure 7.27 illustrates the relationship between the point spread function and the modula-
tion transfer function. They are Fourier transform pairs. A perfect x-ray imaging system
would have a point spread function of zero width, and a modulation transfer function of
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Figure 7.26 Image profiles from rectangular object features of widths 64, 32, 16, 8, 4 and 2 pixels after
convolution with a Gaussian point spread function (FWHM=8.8 pixels).
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unity at all spatial frequencies. The FWHM of the point spread function, taken as the
spatial resolution of the system, corresponds to a width on the modulation transfer
function plot that defines the highest frequency that is resolvable and is the frequency
where the modulation transfer function is approximately 0.1 (i.e. 10%). This contrast
level broadly corresponds to the minimum threshold of visibility. (Indeed a modulation
transfer function of 9% is implied in the definition of the Rayleigh criterion for the
resolution of two diffraction-limited point sources.)

If a sinusoidal test pattern is imaged, then the ratio of the amplitude of the image profile
to the amplitude of the object profile gives the value of the modulation transfer function at
the spatial frequency of the grating. For a sinusoidal test pattern whose spatial frequency
changes continuously across it (Fig. 7.28), the modulation transfer function can be
computed directly at different spatial frequencies (Fig. 7.29). The MTF at low frequen-
cies is close to unity, but decreases at higher spatial frequencies indicating the increased
difficulty of accurately imaging small objects.
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Figure 7.27 The relationship between (i) the point spread function, PSF, and (ii) the modulation transfer
function, MTF.
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The modulation transfer function is such a convenient descriptor of system perfor-
mance because the total modulation transfer function of a system is the product of the
modulation transfer functions of all its constituent stages. On the other hand, the total
point spread function of a system is the convolution product of all the constituent point
spread functions which is a much more complicated relationship.

7.7 Frequency domain filters

Convolution with a linear mask in the spatial domain can be equivalently performed by
multiplication with a filter, the Fourier transform of the mask, in the frequency domain
(Fig. 7.14). However this does not apply to non-linear masks, such as the median mask,
which cannot be transformed directly into filters in the frequency domain.

7.7.1 Low-pass or smoothing filters

The ideal low-pass filter is a “brick-wall” filter which passes all frequencies up to a
certain cut-off, k0, and removes all frequencies beyond that. It is described by

HðkÞ ¼ 1 if k � k0

¼ 0 if k4k0
(7:15)
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Figure 7.28 (Top) A sinusoidal test pattern of uniform contrast with spatial frequencies from 2 to 200 lp mm−1

and (bottom) the image formed by a certain imaging system. The modulation transfer function of
the system drops to 0.5 (50%) at 	42 lp mm−1 and to 0.1 (10%) at 	126 lp mm−1.
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Figure 7.29 Modulation transfer function (MTF) as a function of the spatial frequencies being imaged.
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and is shown in Figure 7.30(i). Multiplying the transform of an image, F(u, v) or F(k), by
such a filter preserves the low frequencies and removes the high frequencies, which
contain information on the sharp edges, thus producing a smoothing effect.

The Fourier transform of an MRI image of the brain (Fig. 7.31(i)) has a Fourier
transform extending to high spatial frequencies (Fig. 7.32(ii)). When the latter is multi-
plied by a low-pass brick-wall filter, frequencies beyond the cut-off frequency of the filter
are removed (Fig. 7.31(iii)). After an inverse Fourier transform, the recovered image
(Fig. 7.31(iv)) is blurred due to the loss of high frequencies and there are ringing artifacts
around sharp edges in the recovered image. These result from the sharp discontinuities
in the “brick-wall” filter. Its Fourier transform is a sinc function mask (not shown), whose
side lobes produce the ringing artifact along intensity edges. The narrower the filter, the
more severe is the resulting blurring and ringing.

Filters with a Gaussian, or near Gaussian, profile have a gradual roll-off in both
domains (Fig. 7.32) and no discontinuities. They do not produce ringing artifacts, and
therefore are preferred for smoothing noisy images. The standard deviation of the
Gaussian in the frequency domain is the inverse of the standard deviation of the mask
in the spatial domain, and vice versa. The mask profile is that of a weighted average.

Another example of a filter with a gradually tapering shape is the low-pass Butterworth
filter, whose shape is given by

H kð Þ ¼ 1

1þ k=k0ð Þ2n (7:16)

where n is the order of the filter and k0 is the cut-off frequency, at which the value of the
transfer function falls to 0.5 (Fig. 7.33). As n increases the filter becomes sharper, with
increased ringing in the spatial domain as a consequence. A filter with n= 1 produces no
ringing, and ringing is generally imperceptible with n = 2, but it becomes significant for
higher orders.

Low-pass filtering is used to reduce noise and produce a smoother image. This can
make it easier to recognize features in an image by blurring small gaps and grayscale
variations within them.
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Figure 7.30 (i) Low-pass “brick wall” filter and (ii) its Fourier transform.
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7.7.2 High-pass or sharpening filters

The ideal high-pass filter is a “brick-wall” filter which passes all frequencies higher than
a certain cut-off frequency, k0, and removes all frequencies below that. It is described by

HðkÞ ¼ 0 if k � k0

¼ 1 if k4k0
(7:17)

Again, because of its sharp discontinuity, it produces unwanted ringing.

(i) (iv)

(ii) (iii)

Figure 7.31 (i) Axial brain MRI image (512 × 512 pixels). (ii) Fourier transform of (i). (iii) Image (ii)
multiplied by a low-pass brick-wall filter of radius 64 pixels. (iv) Inverse Fourier transform of (iii).
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When the Fourier transform of an image (Fig. 7.34(ii)) is multiplied by a high-pass
brick-wall filter, frequencies below the cut-off frequency of the filter are removed
(Fig. 7.34(iii)). After an inverse Fourier transform, the recovered image (Fig. 7.34(iv))
shows only the edges of the original image, and these edges are corrupted by ringing
artifacts, which are severe in this example. Since a high-pass filter eliminates the
zero-frequency (d.c.) component in an image, the average background of the filtered
image is near black, but it is generally raised to mid-gray by adding an offset. The
resulting image generally has poor contrast. A useful strategy to combat this is to add
the result of the high-pass filtering to a portion of the original image, using higher
bit-bit arithmetic to avoid overflow. This approach, known as high-boost filtering, is a
generalization of unsharp masking (Section 6.4.2). The image is similar to the result of
Sobel masking in the spatial domain. In general, (spatial) masks are more commonly
used for edge detection while (frequency) filters are more often used for high-
frequency boosting.

A high-pass Butterworth filter with a gradually tapering shape has a transfer function
given by

H kð Þ ¼ 1

1þ k0=kð Þ2n (7:18)
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Figure 7.32 Gaussian filter and its Fourier transform, the Gaussian mask.
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Figure 7.33 Radial profiles through a low-pass Butterworth filter, for values of order n of 1, 4 and 16.
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and is shown in Figure 7.35. The order determines the sharpness of the cut-off and the
amount of ringing.

Figure 7.36 shows a typical high-pass filter and its Fourier transform mask, which
characteristically has a large positive term in the center surrounded by smaller negative
terms. There are a number of computer exercises involving various filters in Activity 7.7.

7.7.3 Band-pass and band-reject filters

Band-pass filters are a combination of both low-pass and high-pass filters. They attenuate
all frequencies smaller than a frequency klow and higher than a frequency khigh, while the

(i) (iv)

(ii) (iii)

Figure 7.34 (i) Axial brain MRI image (512 × 512 pixels). (ii) Fourier transform of (i). (iii) Image (ii)
multiplied by a high-pass brick-wall filter of radius 64 pixels. (iv) Inverse Fourier transform of (iii).
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frequencies in a pass band between the two cut-offs remain in the resulting output image
(Fig. 7.37). They can be constructed by multiplying a low-pass and a high-pass filter in
the frequency domain, where the cut-off frequency of the low-pass filter is higher than
that of the high-pass filter.

The difference of Gaussians (DoG) mask (Fig. 6.23) is equivalent to a band-pass filter.
It involves the subtraction of one blurred version of an original grayscale image from
another, less blurred version of the original. In the frequency domain the blurred images
are obtained by multiplying the original grayscale image with low-pass Gaussian filters
of differing widths. Subtracting one image from the other preserves spatial information
that lies between the ranges of frequencies that are preserved in the two blurred images. It
is useful for enhancing edges in noisy images.

A filter with an inverse frequency response to the band-pass filter is the band-reject
filter. If the reject band is narrow, the filter is known as a notch filter. It is useful in
removing a periodic signal of clearly defined frequency, such as interference patterns
that can arise from pick-up of mains frequency in electronic components. The notch
filter multiplies that particular frequency by zero, eliminating it in the Fourier
domain; the inverse Fourier transformed image no longer contains the interfering
pattern, but legitimate spatial details at that frequency are also removed which may
cause some slight visual degradation. Figure 7.38(i) shows a chest radiograph con-
taminated by a periodic diagonal stripe. Its Fourier transform (Fig. 7.38(ii)) shows the
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Figure 7.35 Radial profiles through a high-pass Butterworth filter, for values of order n of 1, 4 and 16.
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Figure 7.36 High-pass filter and its Fourier transform.
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frequency of the stripe, which can be removed (Fig. 7.38(iii)) by a notch filter. The
inverse Fourier transform (Fig. 7.38(iv)) contains the major features of the radiograph
without the contaminating stripe. Activity 7.8 considers both band-pass and notch
filters.

(i) (ii)

Figure 7.37 (i) Band-pass filtered Fourier transform (of the image in Fig. 7.31(i)). (ii) Inverse Fourier
transform of (i).

(i) (ii)

Figure 7.38 (i) Chest radiograph contaminated by periodic diagonal stripe and (ii) its Fourier transform.
(iii) Result of multiplying by a notch filter and (iv) inverse Fourier transform of (iii).
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7.7.4 Homomorphic filters

Homomorphic filtering (Fig. 7.39) is a generalized technique for improving the appear-
ance of an image by simultaneously normalizing its brightness and increasing its contrast.
An image, f(x, y), can be expressed as the product of illumination, i(x, y), and reflectance,
r(x, y) components:

fðx; yÞ ¼ iðx; yÞ � rðx; yÞ (7:19)

but these are not separable in the Fourier domain. However if the pixel-by-pixel
logarithm of the image is taken, then this new image is separable in the Fourier
domain:

Fðzðx; yÞÞ ¼ Fðln fðx; yÞÞ
¼ Fðln iðx; yÞ þ ln rðx; yÞÞ (7:20)

This separates the illumination and reflectance components, and a filter function H(u, v)
can now operate on them separately. The illumination component is characterized by
slow spatial variations and hence low frequencies; while the reflectance component tends
to change abruptly at edges and is characterized by high frequencies. A filter function can
be chosen to attenuate the low frequencies, compressing the dynamic range, and amplify
the high frequencies, enhancing the contrast.

Homomorphic filtering has been used to reduce tissue intensity variation in MRI
images due to inhomogeneity of the radiofrequency pulses.

(iii) (iv)

Figure 7.38 (cont.)
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7.7.5 Spatial masks vs. frequency filters

Equivalent results can be obtained by processing an image in the spatial domain using
convolution masks, or by Fourier transformation and multiplication in the frequency
domain using the corresponding filters, but there are computational trade-offs. Generally,
for small masks of size up to about 9 × 9, which are typical, convolution masking is
efficient, but for larger masks it becomes more computationally advantageous to filter in
the frequency domain.

7.8 Tomographic reconstruction

An important application of Fourier transforms in medical imaging is in the reconstruc-
tion of tomographic images. Computed tomography, as used in x-ray CT, MRI, SPECT
and PET, creates two-dimensional images of the human body in different planes by
recording projections at many angles around it. Fourier theory gives us an insight into the
means of reconstructing images from the acquired projections.

There are a number of algorithms which can be used to reconstruct images from
projections. The two most common, backprojection (and filtered backprojection) in
x-ray CT and PET and SPECT, and direct Fourier reconstruction in MRI, can be under-
stood using Fourier techniques.

7.8.1 Backprojection

Backprojection is the classical image reconstruction method. One-dimensional projec-
tions are collected along various directions, each providing information on the total
attenuation along those paths, and these are projected back (i.e. back projected) and
added to reconstruct the original image (Fig. 3.29).

Figure 7.40 shows a two-dimensional slice of an object, illuminated by a uniform
beam of x-rays, at an angle θ to a reference coordinate system (x, y); the measured
projection is denoted p (r, θ), and projections are acquired at different values of θ from 0°
to 360°.

The Radon transform describes a function in terms of its projections. The mapping
from the function to the projections is the Radon transform, and the reconstruction of
the function from the projections is the inverse Radon transform. The Radon transform,
R{ f (x, y)}, of an object function f (x, y) in the spatial domain is defined by the projection
p(r, θ) in the polar coordinate system (r, θ) as

pðr; �Þ ¼ Rf fðx; yÞg ¼ Ð
L fðx; yÞdl (7:21)

In DFT H (u, v) g (x, y)f (x, y) DFT 
–1 exp

Figure 7.39 Schematic for homomorphic filtering. (DFT −1indicates the inverse discrete Fourier transform.)

7.8 Tomographic reconstruction 231



where the line integral ∫L is taken along a line in the x–y plane given by

x cos �þ y sin � ¼ r (7:22)

This is the equation of a line in polar coordinates, where r is the perpendicular distance
from the origin and θ is the angle with the normal (Fig. 7.41). Figure 7.40 shows the line
integral projection p(r, θ) of the Radon transform. A set of projections can be obtained for
different angles θ, and comprises the (two-dimensional) Radon transform.
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θ

Figure 7.40 A line integral projection, p(r, θ), obtained at an angle θ.
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Figure 7.41 A straight line expressed in polar coordinates.
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Projections are measured as a collection of line integrals of the linear attenuation
coefficient, μ(x, y, z), within a transverse cross-section. Given a set of projections at
different angles θ, i.e. the Radon transform of the cross-section, the problem is to
reconstruct the cross-section itself in terms of the attenuation coefficients, which is the
transverse image. This is achieved by taking the inverse Radon transform, equivalent to
backprojection, of the set of projections.

A line in the (x, y) plane maps to a point in (r, θ) space. A particular point (x1, y1) has
many lines that can pass through it, each of which results in a point in (r, θ) space and
satisfies Equation (7.22) with x1 and y1 as constants. The locus of all such points is a
sinusoid, so that a point in (x, y) space corresponds to a sinusoid in (r, θ) space, i.e. in the
projection or Radon domain. A real object, comprising a collection of points in the spatial
domain, appears as a superposition of sinusoids with different amplitudes and phases in
the projection domain. If the one-dimensional projections are stacked on top of each
other, so that r and θ are displayed as rectilinear or Cartesian coordinates, they appear as a
collection of overlapping sinusoids called a sinogram. A CT image of a head phantom,
and its corresponding sinogram, is shown in Figure 7.42. The bottom row of the sinogram
corresponds to the projection of the object at θ= 0°, and the top row to the projection just
short of 180°. Beyond that the sinogram is periodic in θ.

It is possible to visualize this reconstruction simply as backprojection and
superpositioning of the acquired projections, formally known as the Linear
Superpositioning of Back Projections (LSBP) but frequently referred to as (simple)
backprojection. This corresponds to a direct implementation of the inverse Radon
transform. The projections are projected back along the directions from which they
came, giving each pixel in the path the full value of each point in the projection,
instead of trying to partition it between the pixels; the values are then summed to give
pixel intensities, f(x, y):

(i) (ii)

θ
π

0 r
0

Figure 7.42 (i) A head phantom and (ii) its corresponding (parallel-beam) sinogram.
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fðx; yÞ ¼
Xn
j¼1

pðr; �jÞ (7:23)

and reduced in a final step.
Simple backprojection gives an approximate reconstruction of the original object,

with the approximation improving as the number of projections is increased. However,
even with an infinite number of projections, there is residual blurring of the recon-
structed image (Fig. 3.29). The blurring is an artifact of the backprojection algorithm,
often referred to as the star artifact, and is essentially the point spread function of
the backprojection or inverse Radon transform algorithm (Fig. 7.43). It shows
how the blurring is symmetric about the x and y directions, and how it reduces as the
number of scans is increased; because of its characteristic shape, the blurring is also
known as “1/r” blurring. A more sophisticated algorithm, filtered backprojection, is
required to reduce this effect; it consists of applying a filter to each projection before
backprojection.

The acquired projections, pa(x, y), suffer blurring during simple backprojection.
They can be related to a notional “ideal” projection, p(x, y), that would not suffer
blurring, convolved with the PSF of the backprojection algorithm, the 1/r blurring
function. Thus,

paðx; yÞ¼pðx; yÞ � sðrÞ (7:24)

where s(r) = 1/r, the blurring function. Transforming this relationship to the frequency
domain simplifies the convolution operation to a multiply operation

Paðu; vÞ¼Pðu; vÞ 
 SðkÞ (7:25)
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Figure 7.43 The “1/r” blurring function, i.e. the PSF of the simple back projection algorithm.
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where capitalization indicates the Fourier transform, and u and v are the components of
the spatial frequency, k.

Rearranging,

Pðu; vÞ ¼ Paðu; vÞ
SðkÞ (7:26)

The Fourier transform of 1/r is 1/k, so that this becomes

Pðu; vÞ ¼ Paðu; vÞ 
 k (7:27)

i.e. the Fourier transform of the acquired projection should be filtered bymultiplying with
a filter which is proportional to frequency, a ramp filter, in order to give the Fourier
transform of the “ideal” projection. The “ideal” projections are then back projected and
superposed to give an image of the original object with little or no blurring. The ramp
filter does not need to be implemented beyond the Nyquist frequency, 1/2a, where “a” is
the sampling distance, i.e. the distance between the centers of adjacent detectors. Indeed
it is advantageous not to continue beyond this frequency, since only noise will be
amplified. The ramp filter amplifies the high spatial frequencies in the image, resulting
in a sharper, but noisier, final image, counteracting the “1/r” blurring. In order to reduce
ringing artifacts and improve the noise performance of the filter, the amplification of high
spatial frequencies can be reduced somewhat by using a filter such as the Shepp–Logan,
low-pass cosine, or Hamming instead (Fig. 7.44). CT scanners allow the user to select
from a menu of such filters during reconstruction; the most appropriate filter to use
depends on the anatomy being displayed. “Smooth” or “soft tissue” filters are more
rounded, with some loss of spatial resolution from residual blurring. “Sharp” or “bone”
filters are close to the truncated ramp, providing more enhancement of the edges but also
a noisier image.

0

(i)

(ii)

(iii)

(iv)

ω

H (ω)

Figure 7.44 Common filters used in filtered backprojection: (i) ramp, (ii) Shepp–Logan, (iii) cosine,
(iv) Hamming.
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Figure 7.45 shows an example of an acquired sinogram, its appearance after filtering,
and the reconstructed image using the filtered sinogram. There are computer exercises on
filtered backprojection in Activity 7.9. The backprojection process is depicted in the
mpeg movie filtback in the accompanying material for Chapter 7; it can be viewed
with Windows Media Player.

(i) (ii)

(iii)

Figure 7.45 The direct Fourier reconstruction method used for two-dimensional image reconstruction from
projections. See also color plate.
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7.8.2 Direct Fourier reconstruction

The Central Slice theorem establishes the connection between the slice and its projec-
tions. It shows that the one-dimensional Fourier transforms of the projections are
equivalent to the values of the two-dimensional Fourier transform of the image,
measured on lines through the origin of frequency space at the same angles as the
original projections were acquired (Fig. 7.46). Thus, a two-dimensional Fourier trans-
form in polar co-ordinates can be assembled from the one-dimensional Fourier trans-
forms of many projections. After a polar to Cartesian interpolation, an inverse
two-dimensional Fourier transform gives the image reconstruction of the axial (i.e.
cross-sectional) slice in the spatial domain. Interpolation of the data on to a rectangular
grid prior to taking the inverse transform is necessary. The two-dimensional interpola-
tion is computer intensive unless a large number of projections are acquired, and this
limits the utility of the method for x-ray CT. In MRI imaging, however, where the
measured data are already obtained in terms of frequencies, the direct Fourier recon-
struction technique is more attractive.

Computer-based activities

Activity 7.1 Fourier spectra
Open the Fourier applet by opening Fourier applet/Fourier.htm. Click the

sine box at the top right to see a sine wave at the top, and Fourier “magnitude” and

Projection
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Frequency
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2-D  FT

1-D  FT
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Figure 7.46 The direct Fourier reconstruction method used for two-dimensional image reconstruction from
projections.
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“phase” spectra below. The sine wave consists of a single magnitude term, the n= 1
term. Click the next box down to see a triangular wave. Its magnitude components
are labeled from the left, n= 0, 1, 2, 3,… The zero-frequency, n= 0, term has zero
magnitude. Position the mouse on the n= 1 magnitude term to see its contribution.
The second harmonic, n = 2, term is also zero, indicating that it is not present in the
triangular wave. The third harmonic, n = 3, term is present but its contribution,
given by its height in the Fourier magnitude spectrum, is much smaller than the
first harmonic term. All the odd harmonics, n= 1, 3, 5, 7,…, are present; but all the
even harmonics, n = 2, 4, 6, 8, 10,… , are absent. Because the triangular wave is so
similar to a sinusoid, the first harmonic predominates and the higher, odd harmo-
nics just moderate the shape of the sinusoid slightly. The triangular wave is
composed of a linear sum of odd harmonics, with weights given by the heights
in the Fourier magnitude spectrum. The weights, or Fourier coefficients, decrease
with increasing harmonics as 1/n2, that is, 1, 1/9, 1/25,…

Look at the sawtooth shape. It is composed of a sum of all harmonics, both odd and
even; and the Fourier coefficients go as 1/n, that is 1, 1/2, 1/3, 1/4, … The phases
alternate between 90° and −90°, determining whether the term is a sine or a cosine.

Look at the square wave. It is composed of odd harmonics only, with Fourier
coefficients that go as 1/n. Reduce the number of terms shown using the slider,
and then increase them slowly to see how the additional terms contribute to the
shape of the square.

The noise button shows the randomness of white noise, which comprises a random
mixture of magnitudes and phases. Each time it is pressed a different random
mixture is shown. Unlike the other shapes, the Fourier coefficients do not become
smaller at higher frequencies. Instead they fluctuate about a constant value.

Explore the effects of rectifying and full-wave rectifying a sinusoid. Note the constant
zero-frequency term in each case. For full-wave rectification the first harmonic
term is absent and the second harmonic is the dominant term, so that the process
essentially doubles the frequency of the original signal.

Activity 7.2 Fourier transforms of images
Open in ImageJ the images horiz stripe<n> and vert stripe<n>, where

<n> is 2, 4, 8, 16, 32 and 64, and indicates the number of pixels per wavelength in
the image. Choose the straight line selection and plot a profile through each image
(Analyze/PlotProfile) to check that the stripes have sinusoidal profiles; using a
short line may be advantageous. Take the Fourier transform of each image
(Process/FFT/FFT). Horiz stripe2 has a wavelength of 2 pixels. This
corresponds to the narrowest stripes and the highest frequency. In the Fourier
image, the two spots are at the edge of the image corresponding to the Nyquist
frequency.

Fourier magnitude spectra have very large dynamic ranges (≥106). With a linear LUT
the brightest pixels would dominate, and the lower values would not be seen. Most
software, ImageJ included, scales the pixel values by applying a log transformation
prior to displaying the transform. This reduces the dynamic range, and allows more
details to be displayed. However, if we want just to see the bright details we could
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reverse this transformation by applying an inverse log LUT to the image. Import
the inverse LUT (File/Import/LUT… and choose invlogLUT.txt) to view
the transform of stripe 45. All that remains visible is the strong center compo-
nent and the very strong spots at 45°.

Add two images, for example vert stripe16 and horiz stripe4, using
Process/Image Calculator … Add. Create the sum of the images in a new
window, and make it 32-bit to avoid overflow. Obtain the Fourier magnitude
image, and use the inverse log LUT to view the strong spots.

Open horiz stripe16, and threshold it (Image/Adjust/Threshold…) at pixel
value 128 to form an image with a square profile. Take its Fourier magnitude
transform and note the additional spots. Are their positions where you expect them
to be, given the Fourier series of a square wave?

Take horiz stripe32 and subtract 128 from all its pixels (using Process/Math/
Subtract …), and then multiply its pixels by two (using Process/Math/
Multiply). What is the shape of the horizontal profile through this image? It
should be half-wave rectified (have a look at the image rectified). Take its
Fourier magnitude transform; is this what you expect?

Make a horizontal stripe pattern with a profile showing full wave rectification. (Invert
horiz stripe32, subtract 128 and multiply by 2, and then add the result to the
half-wave rectified image from the last paragraph.) Does the Fourier magnitude
transform show spots where you expect?

Take the Fourier magnitude transform of house, and explain the origin of the various
spots.

Activity 7.3 Accuracy of the fast Fourier transform (FFT) algorithm
Apply the Fourier transform to the house image using the FFTDirect plugin in

ImageJ, obtaining both magnitude and phase images. Use these images and the
FFTInverse plugin to reconstruct the original image. The (direct) FFTand inverse
FFT algorithms use 32-bit floating-point arithmetic to provide the necessary
accuracy. The reconstructed image looks identical to the original image to the
human eye, but compute the difference image between them using Process/
Image Calculator and obtain a 32-bit difference image. The pixels in the
image are small but not completely zero. Use Analyze/Set Measurements
and check Mean Gray Value and Standard Deviation to six decimal places, then
Analyze/Measure. The sizes of these parameters indicate the level of the errors
involved in the FFT and inverse FFT calculations.

Activity 7.4 Properties of the Fourier transform
Find the Fourier magnitude images of car1 and car1 translated using the

FFTDirect plugin in ImageJ (in Plugins/Ch.7 Plugins), and compare them.
What property of the Fourier transform can you deduce from the result? Which
features in the transform images arise from the cars, and which from the textured
surface below them? Find the Fourier magnitude images of car2 and car2
rotated using FFTDirect, and compare them. What property of the Fourier
transform can you deduce from this result?
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Open fourier, and use the FFTDirect plugin, selecting Magnitude, to get the
Fourier amplitude image, and select Phase, to get the Fourier phase image. You
can use these two transform images in FFTInverse to recover the original image.
Instead use the amplitude image only (enter it both as the magnitude and phase
image), and observe the result of the inverse Fourier transform. Then use the phase
image only and observe the result of the inverse Fourier transform. You may have
to adjust the brightness and contrast of the resulting images. What does this suggest
about the relative importance of the Fourier amplitude (magnitude) and phase
images?

Open lena and obtain the Fourier amplitude and phase images. Reconstruct a new
spatial image using FFTInverse (in Plugins/Ch.7 Plugins) to combine the
amplitude image from the fourier image with the phase image from lena.
Then combine the phase image from fourier with the amplitude image from
lena. What do you conclude?

The crucial importance of the phase information is not intuitively obvious. While the
amplitude spectrum specifies how much of each frequency component is present,
the phase spectrum specifies where each component resides in the image.
Evidently, as long as the components are kept in position, their amplitudes appear
to be less critical to the integrity of the image. For this reason, most practical filters
operating in the frequency domain are designed to affect the amplitude only, and
preserve the phase information. They are known as zero phase filters and introduce
no phase distortion.

Take the Fourier transform of grid. Note how the closely spaced pattern along the
x axis is transformed to widely separated spots, and how the widely spaced pattern
along the y axis is transformed to closely separated spots.

Activity 7.5 Aliasing
Open radial lines and use Image/Scale… and a scale of 0.5 to sub-sample,

then a scale of 2.0 to re-sample the image. Uncheck Interpolate each time. Note
the loss of high frequencies in the re-sampled image. Repeat using radial

resolution and the video test pattern, test pattern; note the characteristic
Moiré pattern.

Do the same with diagonal; the aliasing effect is manifested as “jaggies” on the
diagonal stripes, which are more prominent the larger the sub-sampling.

Activity 7.6 Template matching
Open the images mask and reference in ImageJ. The task is to find all locations

of mask, the letter X, within the reference image. Go to Process/FFT/FD
Math, enter the image names in the boxes, choose Correlate and check Do
Inverse Transform. The two images are cross-correlated. Threshold the
image (Image/Adjust/Threshold …) to find the highest pixel values,
which indicate the locations in the image which match the mask well. The
location of X in the reference image is identified, although there is also a
fairly good match at the similarly shaped letters K and N. Note that the final
image suffered a fixed shift from the original reference image. The shift

240 Image enhancement in the frequency domain



between the position of the letter in the original and its response in the processed
image results from changing the phase during the multiplication of the two
complex images.

Activity 7.7 Frequency domain filtering
Open axialbrainMRI and the low-pass “brick-wall” filter, low-pass filter,

in ImageJ. Highlight axialbrainMRI, go to Process/FFT/CustomFilter…
and choose low-pass filter as the filter. The resulting filtered image has less
noise, but is somewhat blurred. Its contrast can be increased by stretching
(Process/EnhanceContrast… Normalize). Note the ringing around promi-
nent edges. Open Gaussian lp filter and use it to filter the original image;
observe that the filtered image has reduced the noise, and that there is no visible
ringing artifact.

Use the high-pass “brick-wall” filter, high-pass filter, to filter the original
axialbrainMRI image. As a result of blocking the low frequencies, areas of
constant intensity in the original image become zero. The edges, containing the
high frequencies, have positive and negative intensity values in the filtered
image. In order to display the image on the screen, an offset is added to the
output in the spatial domain and the image intensities are scaled. This results in a
middle gray value for low-frequency areas and dark and light values for the edges.
Note the ringing artifact. Open Gaussian hp filter and use it to filter
axialbrainMRI. Compare the result. Try low- and high-pass filtering with the
skull image.

Add the result of the Gaussian high-pass filtering to the original image, using
32-bit arithmetic (using Process/ImageCalculator and checking Create New
Window and 32-bit Result), and enhance its contrast (Process/Enhance
Contrast/Normalize, with 5% saturated pixels). This image has sharper
edges, and the process is known as high-boost filtering. Compare the result with
Sobel masking (use Process/Sharpen) in the spatial domain.

Activity 7.8 Band-pass and notch filters
Band-pass filters can be obtained using Process/FFT/Bandpass Filter… Both

the low and high frequencies defining the pass band need to be specified, but start
with the default values. Band-pass filter axialbrainMRI, after converting it to a
32-bit image; use various pass bands. CheckDisplayFilter to see the filter used in
each case.

Open striped lena, and take the fast Fourier transform – both magnitude and
phase (Plugins/Ch.7 Plugins/FFTDirect). Using the Paintbrush from the
Tools menu, paint the two diagonal spots in the magnitude image that correspond
to the diagonal stripes to black, and take the inverse transform (Plugins/Ch.7
Plugins/ FFTInverse). Note how most of the stripes have been removed from
the spatial image. There are still remnants close to the periphery of the picture.
Remove these by painting out the streaks that pass through the diagonal spots in the
Fourier transform magnitude image. Take the inverse Fourier transform and con-
firm the removal of the remnants.
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Activity 7.9 Simulating filtered backprojection
CTSim is an open-source computer program (© 1983–2001 Kevin M. Rosenberg,

MD) that simulates the process of transmitting x-rays through phantom objects.
(V.3.0.3 operates directly in Windows XP, or it can be run on a Mac computer
using the Leopard OS. A separate download is available for Unix/Linux.) It
reconstructs the original phantom image from the projections using filtered back-
projection; it also has a wide array of image analysis and image processing
functions.

It is available at http://ctsim.org/download.html. Alternatively, a copy is available for
download from the textbook site. Double-click ctsim-installer-win32-3.0.3.
exe and follow the instructions to install it in your computer.

The fastest way to put CTSim through its basic operation is as follows.

(1) File – Create Phantom …

This creates a window with the geometric phantom. Choose the Herman head
phantom.

(2) Process – Rasterize …
This creates an image file of the phantom by converting it from a geometric

definition into a rasterized image. Use the defaults shown in the dialog box.
(3) View – Display Scale Auto …

Use this command on the new rasterized image window. This optimizes the
intensity scale for viewing the soft-tissue details of the phantom. Select the median
center and a standard deviation factor of 0.1.

(4) Process Projections …
Use this command on the geometric phantomwindow. This simulates the collection

of x-ray data. Use the defaults shown in the dialog box. Turn on Trace Level –
Projections to watch the x-ray data being simulated, and then collected to form a
sinogram. Note that you can pause the simulations, and then step through them slowly.

(5) Reconstruction – Filtered Backprojection …

Use this command on the projection window. This reconstructs an image from
the projections. Use the defaults shown in the dialog box, except switch the Trace
Level to Full to see the backprojections building up to the final reconstructed
image. Again, you can pause this process and then step through each (filtered)
backprojection individually.

(6) View Auto …

Use this command on the new, reconstructed image window. This optimizes the
intensity scale for viewing the soft-tissue details of the reconstruction. Select the
median center and a standard deviation factor of 0.1.

(7) Analyze – Compare Images …
Use this command on the rasterized phantom image window. This will bring up

a dialog box asking for the comparison image. Select the reconstruction image that
you have just made and also select the “Make difference image” check box. Youwill
then see the image distance measurements and also a new window, with the
difference between the rasterized phantom and the reconstruction.
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By varying the parameters of the rasterization, projection and reconstructions you can
perform endless computed tomography experiments.

Vary the number of acquisition views used in projection (starting from the default
value of 320, then 160, and then 80). Keep all other parameters fixed at the default
values. Describe the differences in the quality of the reconstructed images in these
three cases.

Save the Herman head phantom as herman.phm, and open it withWordpad to see its
contents. Each line in the text file describes an element of the phantom. You can see
the form of each line at www.ctsim.org/manual/ctsim7.html#phantomfile and can
then build up a phantom of your own design.

Activity 7.10 Filtered backprojection
Open phantom in ImageJ. Choose Ch.7 Plugins/RadonTransform and click

Calculate to open the corresponding set of projection data or sinogram. With the
“ramp” filter selected, click Reconstruct to do filtered backprojection. Repeat the
reconstruction step using the Shepp–Logan, cosine and Hamming filters in turn.
Compare the results to the original phantom image in terms of image quality.

From the RadonTransform plugin, click Import Data and import SLsinogram2
(whose data bins are stored in columns); this is a sinogram of the same phantom
image but with fewer projections taken (30, instead of 180). Reconstruct a phantom
image from this sinogram image using the four different filters as before. Compare
the results with the previous reconstructions.

Exercises

7.1 What are the typical units for the variables (x, y) and (u, v) used in representing
images in the spatial and frequency domains?

7.2 Show that the Fourier transform and its inverse are linear processes.
7.3 Draw schematic diagrams of the Fourier spectra of the following images:

(i) a rectangle with horizontal side twice the length of the vertical side;
(ii) the rectangle in (i) rotated 45° clockwise;
(iii) the rectangle in (i) scaled down by a factor of two.

7.4 What is the Fourier transform of the one-dimensional rect function

rectðxÞ ¼ 1; for jxj � 1

2
;

¼ 0; for jxj4 1

2
? ðrequires integrationÞ

7.5 Consider an image that is black except for a single pixel wide stripe from the top
left to the bottom right (Fig. E7.1, top left). Can you explain its Fourier transform
(Fig. E7.1, bottom left)? Also, consider an image of noise (Fig. E7.1, top right), i.e.
every pixel has a random value, independent of all other pixels. Can you explain its
Fourier transform (Fig. E7.1, bottom right)? What does the bright spot in the middle

Exercises 243



of the noise Fourier transform image represent? Why does the Fourier transform of
the noise appear dark gray?

7.6 What is the result of performing a Fourier transform on the Fourier transform of an
image? Try it out. Can you explain the result?

7.7 What increase in speed can be expected in using a fast Fourier transform algorithm
rather than direct arithmetic to compute the Fourier transform of an image of size
1024 × 1024?

7.8 During digitization samples are taken a distance Δx apart. What is the highest
frequency allowed in the image to avoid aliasing?

7.9 A medical imaging system takes samples at intervals of Δx in both the x and y
directions. What is the highest frequency permitted in the images so that the
sampling is free of aliasing?

7.10 What sampling frequency should be used to avoid aliasing if the full width at half
maximum, FWHM, of the point spread function is 5mm?

7.11 A computed tomography imaging system has a point spread function with a full
width at half maximum, FWHM, of 2mm. How small do the image pixels have to
be to avoid aliasing problems? For a field of view of 50 cm how many pixels are
required along each side of the image?

Figure E7.1 Stripe and noise, and their Fourier transforms.
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7.12 How can an analog image be recovered from its sampled (digitized) version?
Describe the operations required in (i) the spatial domain and (ii) the frequency domain.
Comment on the conditions to be met for accurate recovery of the analog image.

7.13 Explain the relationship between convolution and correlation. Under what circum-
stances are they identical?

7.14 Using the equation of a Gaussian, show that its full width at half maximum,
FWHM, is 2.36 times its width parameter, σ, or standard deviation.

7.15 The point spread function of a medical imaging system is given by

hðx; yÞ ¼ e�ðjxjþjyjÞ

Is the point spread function separable? Is it circularly symmetric? What is the
modulation transfer function, MTF, of the system?

7.16 Why are smoothing and sharpening of images important operations in medical
image processing and analysis? Give some specific examples to illustrate your
answer.

7.17 How would filtering with an averaging mask affect the output of a Fourier trans-
form? Choose an image, and compare its Fourier transform with that of the image
after filtering with a 5 × 5 averaging mask. Explain the result. What is the effect of
increasing the size of the averaging mask?

7.18 How does a set of projections at different viewing angles relate to the Fourier
transform of an object?

7.19 Why is there a need for filtering when reconstructing an image using backprojec-
tion? What are the necessary properties of such a filter? Compare three different
filters and indicate for which anatomies they may be most effective.

7.20 Describe a direct Fourier reconstruction method using the Central Slice theorem.
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8 Image restoration

Overview

An image is never an exact representation of the object under observation; it is always
corrupted by degradations during acquisition and within the imaging system
itself. These include noise, blurring and distortion. Image restoration removes
or reduces these degradations. The point spread function (PSF) or the modulation
transfer function (MTF) provides a complete, quantitative description of an imaging
system and directly characterizes the image degradation within the system and can
be used to restore the fine detail in images. The problem is more complicated if
the image is also degraded by significant amounts of noise. Restoration techniques
attempt to model the degradation and apply the inverse process to recover the original
image. They are most effective when the point spread function or modulation tran-
sfer function is known and the nature of the blurring and noise are well understood.
Geometric distortions can be reversed using inverse bilinear equations and gray-level
interpolation.

Learning objectives

After reading this chapter you will be able to:

� identify the main sources of image noise and discuss their characteristics;

� choose appropriate general strategies for minimizing the effects of noise;
� discuss the advantages of adaptive filtering;
� model image degradation comprising blur and additive noise;
� employ suitable values to Wiener filter a noisy, blurred image;
� compare the performance of inverse filtering with Wiener filtering;
� explain how distortion can be removed from images.

8.1 Image degradation

Images can be degraded by a number of different mechanisms, including noise, blurring
and distortion. Noise is present because any imaging device must use a finite exposure



(or integration) time, which introduces stochastic noise from the random arrival of
photons. Optical imperfections and instrumentation noise (for example, thermal
noise in CCD devices) result in more noise. Sampling causes noise due to aliasing of
high-frequency signal components, and digitization produces quantization errors.
Further noise can be introduced by communication errors and compression. Blurring
is present in any imaging system which uses electromagnetic radiation (for example,
visible light and x-rays). Diffraction limits the resolution of an imaging device to
features on the order of the illuminating wavelength. Scattering of light between
the target object and imaging system (for example, by the atmosphere) intro-
duces additional blurring. Lenses and mirrors cause blurring because they have limited
spatial extent and optical imperfections. Discretization results in yet more blurring
because devices such as CCDs average illumination over regions rather than sampling
it at discrete points. Distortion arises from unequal magnification within the field
of view.

The goal of image restoration is to reconstruct the original image from its degraded
version. It is essentially an inverse problem, where we apply the inverse of the transfor-
mation that caused the degradation. The better we can model the degradation, the better
we are able to find its inverse. In many cases, however, we will only have limited
statistical knowledge of the degradation, and the inverse transform will be correspond-
ingly ill-conditioned.

8.2 Noise

Noise is unwanted fluctuation in the pixel values of an image. It results in a degradation
of the image quality. Since it is a random or stochastic process it is not possible
to predict its values precisely, but it is possible to determine its statistical properties.
Figure 8.1 shows part of a profile through a noisy (analog) image. Although it is not
possible to write a mathematical expression to describe the complete profile, it is possible
to quantify the noise in terms of various average properties such as its mean value, its
mean square value and its probability density function.

The simplest way of characterizing a random variable is in terms of its expected value
and variance. The expected value of a variable is the long-run average value of that
variable. If a is a random variable the expected value (expectation or mean) of a is
denoted as either μa or E{a}. It represents the (probability-weighted) average value for
the random variable.

If a is taken to be the pixel value (or pixel amplitude) in an image, its mean value, a,
can be obtained either by integrating the profile (i.e. finding the area under it) and
dividing by the distance in that direction, L, where the distance L should be long,
preferably infinitely long,

a ¼ lim
L!1

1=L

ðL

0

aðxÞdx ð8:1aÞ
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or, if the probability density function, p(a), of the noise (the probability of having a
particular value a) is known, by using

Efag ¼ a ¼
ð1

�1
apðaÞda ð8:1bÞ

Both methods are equivalent and are illustrated in Figure 8.2.
Figure 8.3 shows two profiles, each of which has random noise with a mean of zero. In

order to distinguish them, their mean square value could be taken, using either

a2 ¼ 1=L

ð
a2ðxÞdx ð8:2aÞ

or

Efa2g ¼ a2 ¼
ð
a2pðaÞda ð8:2bÞ

The link between a and a2 is provided by the variance, σ2, defined as

�2 ¼
ð
ða� aÞ2pðaÞda

¼ Efj�aj2g ¼ E ja� Efagj2
n

¼ E½a2 � 2aEfag þ E2fag� ¼ Efa2g � jEfagj2

¼ a2 � ðaÞ2 ð8:3Þ
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Figure 8.1 Part of a profile through a noisy (analog) image.
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In terms of an image with an additive noise component, the mean total power, the mean
square amplitude (a2 orEfa2g), is given by the sum of the d.c. power in the signal, the
square of the mean amplitude (ða2Þ or jEfa2gj), and the mean power in the noise, the
variance or σ2.

The signal-to-noise ratio, SNR, of the image, is given by

SNR ¼ jEfagj2=�2 ð8:4Þ

Noise in imaging systems can be either independent of the signal (i.e. the image pixels),
and can often be described as additive,

gðx; yÞ ¼ fðx; yÞ � hðx; yÞ þ nðx; yÞ ð8:5Þ

Time, t Time, t

x

x (t)

x

x (t)

(i) (ii)

Figure 8.3 Two different profiles both with zero mean noise components.

Average over all
time intervals δt

Time, t

(i)

x(t )

δt

Time, t

Identify samples in range δx, then average over all
ranges using a knowledge of p(x)

(ii)

x(t)

δx

Figure 8.2 Alternative methods of finding the mean value of noise.
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or it can be dependent noise, a function of the signal strength or pixel value, in which case
it is simulated using a more complicated multiplicative model:

gðx; yÞ ¼ ½fðx; yÞ þ nðx; yÞ � fðx; yÞ� � hðx; yÞ
¼ ½fðx; yÞ þ ð1þ nðx; yÞÞ� � hðx; yÞ
� ½fðx; yÞ � nðx; yÞ� � hðx; yÞ ð8:6Þ

Quantum noise and film grain noise are actually multiplicative, whereas electronic
noise is additive. For most image restoration processes the noise is considered to be
additive.

8.2.1 Types of noise

Noise is always present in images to some extent. Different types of noise can be
identified according to their origin. Any imaging device must use a finite exposure (or
integration) time, which introduces stochastic noise from the random arrival of
photons. Optical imperfections and instrumentation noise (for example, thermal
noise in semiconductor devices) can result in further noise. Sampling causes noise
due to aliasing of high-frequency signal components, and digitization produces quan-
tization errors. Additional noise can be introduced by communication errors and
compression.

White noise
This is noise with a constant power spectrum, i.e. its power spectral density, often referred
to as its noise power spectrum (NPS), is constant with frequency. Theoretically, the
spectrum would extend to infinite frequency and therefore the total noise power would
be infinite; in practice, the spectrum of any naturally occurring white noise falls off at
sufficiently high frequencies. The terminology is derived from an analogy with white light,
which contains nearly all the frequencies in the visible spectrum in equal proportions.

White noise is totally uncorrelated, i.e. each pixel value is unrelated to neighboring
pixel values. This implies that its autocorrelation function is zero. However, being
uncorrelated does not restrict the values a signal can take; any distribution of values is
possible. For example, a binary signal which can only take on the values 1 or 0 is “white”
if the sequence of zeros and ones is statistically uncorrelated. Noise having a continuous
distribution, such as a normal distribution, can also be white.

Colored noise
Pink noise, 1/f noise or flicker noise has a power spectral density that is proportional to
the reciprocal of the frequency. Over an octave, a doubling of frequency, it drops to half
power, i.e. it drops off at 3 dB per octave. Brown noise, Brownian noise or red noise has a
power spectral density that is proportional to the reciprocal of the square of the frequency.
Over an octave it drops to one-quarter of its power, i.e. it drops off at 6 dB per octave.
Graphically, Brown noise mimics Brownian motion, the random movement of particles
suspended in a fluid. Brown noise can be produced by integrating white noise.
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Periodic noise
This arises typically from electrical interference, especially in the presence of a strong
mains power signal during image acquisition. It is spatially dependent and generally
sinusoidal at multiples of a specific frequency. It is recognizable as pairs of conjugate
spots in the frequency domain, and can be conveniently removed either manually or by
using a notch (narrow band reject) filter.

Gaussian noise
Gaussian noise has a probability density function, or normalized histogram, given by

pðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=2p�2Þ

q
expð�ða� �Þ2=2�2Þ ð8:7Þ

where a is the gray value, μ is the average gray value and σ is its standard deviation.
Approximately 70% of its pixel values are in the range [(μ− σ), (μ+ σ)]. It is a particularly
attractive model since it can be analytically integrated, which may explain its over-use. It
also conveniently has the same spectral shape in the frequency domain. Gaussian noise
comes from many natural sources, such as the thermal vibrations of atoms in antennas
(referred to as thermal noise or Johnson noise) and black body radiation fromwarm objects.

It is often incorrectly assumed that Gaussian noise is necessarily white noise.
However, neither property implies the other. Being Gaussian refers to the way gray
values are distributed, while the term “white” refers to the lack of correlation between
pixel values, and this randomness results in all frequencies being present in the same
amounts, i.e. a flat power spectrum. Gaussian white noise is a good approximation of
many real-world situations and generates mathematically tractable models.

Impulse (or salt-and-pepper) noise
Another common form of noise is data drop-out noise, commonly referred to as impulse
noise or salt-and-pepper noise. Here, the noise is caused by errors in data transmission.
Corrupted pixels are either set to the maximum value or to zero, giving the image a “salt
and pepper” like appearance. Unaffected pixels remain unchanged. The noise is usually
quantified by the percentage of pixels which are corrupted.

Quantization noise
Quantization noise is inherent in the amplitude quantization process and occurs in the
analog-to-digital converter, ADC, when sampled values are fitted to a finite number of
levels. The noise is additive and independent of the signal when the number of bits n ≥ 4.

For a digitized signal that is boundedwith a minimum and maximum pixel value, amin

and amax, respectively, the signal-to-noise ratio, SNR, is given by

SNR ¼ 20 log10ðamax � aminÞ=�n ð8:8Þ
where σn is the standard deviation of the noise. When the input signal is a full-amplitude
sine wave it can be shown (see Exercise 8.1) that the SNR becomes

SNR ¼ 6nþ 1:76 dB ð8:9Þ
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Quantization noise can usually be ignored as the total signal-to-noise ratio of a complete
system is typically dominated by the smallest signal-to-noise ratio of a component of the
system, i.e. the largest noise. In semiconductor detectors this is photon noise.

Photon noise (also called quantum noise or shot noise)
Photon noise results from the statistical nature of electromagnetic waves, which include
visible light, x-rays and γ-rays: all are emitted as packets of energy, photons, with a
probability distribution that is a Poisson distribution. Its average level is √N, where N is
the signal average, so that it is not independent of the signal nor is it additive. However,
when N is large Poisson statistics become binomial, or Gaussian if we have so many bins
that the distribution is essentially continuous: this is the Central Limit theorem.

Speckle (or multiplicative) noise
Although Gaussian noise and speckle noise can appear superficially similar in an image,
they are a result of different processes and require different approaches for their removal.
Whereas Gaussian noise can be modeled by random values added to the pixel values of
an image, speckle noise is modeled by random values which are multiplied by the pixel
values. Speckle noise is a major problem in some radar applications.

8.3 Noise-reduction filters

If the only degradation present in an image, g(x, y), is additive noise then

gðx; yÞ ¼ fðx; yÞ þ nðx; yÞ ð8:10Þ
where f(x, y) is the original, undegraded image and n(x, y) is the noise; and in the
frequency domain

Gðu; vÞ ¼ Fðu; vÞ þNðu; vÞ ð8:11Þ
In the case of periodic noise, which gives rise to particular frequencies in the Fourier
domain, it can be readily removed using a narrow band-reject filter known as a notch
filter (see Activity 7.8). Figure 8.4(i) shows an image degraded by periodic noise. This
noise can be mostly removed by filtering out the relevant spots in the Fourier domain
(Fig. 8.4(ii)), and taking the inverse Fourier transform (Fig. 8.4(iii)).

Noise is more commonly present over a range of frequencies, whereas frequently an
image has the majority of its energy at low and mid frequencies. Thus, low-pass filters
(Section 6.4.1) that reduce the amplitude of high-frequency components can be used to
reduce the noise, although in practice it is difficult to achieve much noise reduction
without blurring the edges in an image. Sometimes these operations are best implemented
in the frequency domain, as filters, and sometimes more conveniently in the spatial
domain, as masks. Global averaging masks, whether uniform or weighted, produce
significant blurring of edges, but median masks, which are non-linear in operation,
preserve edges and do not blur them. Median masks are particularly efficient at remo-
ving impulse or salt-and-pepper noise. Figure 8.5(i) shows an image degraded by
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salt-and-pepper noise. A median mask successfully removes this type of noise (Fig. 8.5(ii)).
An averagingmaskof the same size blurs thenoise but also theunderlying image (Fig. 8.5(iii);
a larger averaging mask reduces the appearance of the salt-and-pepper noise but blurs the
underlying image even more (Fig. 8.5(iv)).

Figure 8.6 illustrates how neither a median nor an averaging mask is able to remove
Gaussian noise successfully.

When an image, f (x, y), is contaminated by multiplicative or speckle noise

gðx; yÞ ¼ fðx; yÞ � nðx; yÞ ð8:12Þ
then homomorphic filtering can be used. This comprises taking the logarithm of the
image to yield an additive linear result

logfgðx; yÞg ¼ logffðx; yÞg þ logfnðx; yÞg ð8:13Þ
followed by conventional linear filtering to reduce the log noise component, and then
taking the exponential after filtering.

8.3.1 Adaptive filters

Adaptive masks are a class of masks which change their behavior based on the statistics
of the pixels within a defined local neighborhood for each pixel. They are inherently non-
linear masks. Their performance in reducing noise is superior to that of global masks, but
there is an increase in filter complexity.

Consider the case of additive, Gaussian noise where the variance of the noise corrupt-
ing an image f(x, y) to form the noisy image g(x, y) is σN

2, and can be estimated from the
noisy image. Once a neighborhood size is chosen, the mean,mL, and variance, σL

2, of the
pixels within each neighborhood can be calculated. An adaptive mask would then
produce an estimate, f̂ (x, y), of the original image pixels using

f̂ ðx; yÞ ¼ gðx; yÞ � ð�N 2=�L
2Þðgðx; yÞÞ �mL ð8:14Þ

(i) (ii) (iii)

Figure 8.4 (i) An image degraded by periodic noise. (ii) Removal of the corresponding frequencies in the
Fourier transform. (iii) Inverse Fourier transform of (ii).
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This produces an output close to g(x, y) if the local variance is high; this is appropriate
because high variance implies changes such as edges, which should be preserved.
Conversely, if the local variance is low (i.e. approaching σN

2), such as in background
areas of the image, the output will be close to the local mean value, mL. This reduces
noise while preserving edges. This particular mask is known as the minimum mean
square error (MMSE) mask.

Another example of an adaptive mask is where the neighborhood size changes to meet
some criterion. An example of this type of mask is the Kuwahara mask. Although it can

(i) (ii)

(iv)(iii)

Figure 8.5 (i) A 256 × 256 image with salt-and-pepper noise and the effect of convolution with (ii) a 3 × 3
median mask, (iii) a 3 × 3 averaging mask and (iv) a 5 × 5 averaging mask.
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be implemented for a variety of different neighborhood shapes, we will describe it for a
square neighborhood of size J=K = 4L+ 1, where L is an integer. The window is parti-
tioned into four overlapping sub-neighborhoods (i= 1, 2, 3, 4) as shown in Figure 8.7.
The mean brightness, mi, and the variance, σi

2, are measured in each of the four regions.
The output value of the center pixel in the window is then set to the mean value of the

(iii) (iv)

Figure 8.6 (i) An image degraded by Gaussian noise (σ = 40) and the effect of convolution with
(ii) a 3 × 3 median mask, (iii) a 5 × 5 median mask, (iv) a 3 × 3 averaging mask and (v) a 5 × 5
averaging mask.

(i) (ii)
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sub-neighborhood which has the smallest variance. Thus the noise is reduced, while the
edges are enhanced (Fig. 8.8).

An adaptive median mask can be constructed for improved performance in removing
salt-and-pepper noise. One way would be to detect pixels that differ from those in the
chosen neighborhood window by more than a given multiple of the neighborhood’s
standard deviation, and to replace only these pixels by the median value of the

(v)

Figure 8.6 (cont.)

Sub-neighborhood 2

Sub-neighborhood 4

Sub-neighborhood 3

Sub-neighborhood 1

Center pixel
g(x,y)

Figure 8.7 Four square regions defined for the Kuwahara filter. In this example L = 1 and thus J =K = 5.
Each region is [(J + 1)/2] × [(K + 1)/2]. (After Young, Gerbrands and van Vliet, 1998, fig. 29.)
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neighborhood. The principle behind this mask is that if adequate sampling was chosen
upon acquisition, no such outlying (extreme value) pixels should be found. Figure 8.9
shows the effect of such a filter on an image contaminated with salt-and-pepper noise.
The result (Fig. 8.9(ii)) should be compared with the result of applying a global 3 × 3
median mask (Fig. 8.6(ii)). The difference between these two results (Fig. 8.9(iii)) is not
great, but it is real. Activity 8.1 provides practice with this type of adaptive median mask.

(iii) (iv)

Figure 8.8 (i) A noisy image and the effect of convolution with (ii) a 5 × 5 median mask, (iii) a 5 × 5 averaging
mask and (iv) a 5 × 5 Kuwahara mask.

(i) (ii)
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Another type of adaptive median mask would be one where the actual size of the
neighborhood changes (increases from a nominal value) during operation depending on
the statistics of the pixel values in the neighborhood of the pixel under consideration. For
example, the neighborhood size could be increased if the range of pixel values is lower
than a certain chosen level; the neighborhood size would then be reset prior to consider-
ing the next pixel.

8.4 Blurring

Blurring is characterized by the point spread function, PSF, or impulse response of the
system, which is the output of the imaging system for an input point source. Most blurring
processes can be considered as linear and can therefore be described by convolution using a
spatially invariant point spread function. It is as if there is an internal blurring mask within
the system that blurs the incoming signals. This internal mask, or point spread function, is
often represented by a Gaussian. The blurring produced by gamma cameras in nuclear
medicine imaging is notably different; it is non-linear, although it is often simulated
assuming a symmetric, stationary tomographic point spread function.

Equivalent to convolution in the spatial domain, blurring can also be described by
multiplication with the (optical) transfer function, OTF, of the blurring process or its
magnitude, the modulation transfer function, MTF, in the frequency domain (Fig. 8.10).

With visible light diffraction limits the resolution of an imaging device to features on
the order of the illuminating wavelength, scattering introduces additional blurring, and
lenses and mirrors have optical imperfections. In simple projection x-ray systems the
focal spot intensity distribution and beam-limiting apertures result in a finite point spread
function. In x-ray fluoroscopy the finite size of the iodide crystals in the input fluorescent
screen and shortcomings in the focusing of electrons within the image intensifier (I I) tube
contribute to the point spread function. In direct or digital radiography, the size of the

(i) (ii) (iii)

Figure 8.9 (i) A 256 × 256 image with salt-and-pepper noise (identical to Fig. 8.2(i)). (ii) The effect of
convolution with an adaptive median filter (using a multiple (see text) of 1.0). (iii) The difference
between the image in (ii) and the image in Fig. 8.2(ii).
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semiconductor-based detectors introduces blurring because they average illumination
over regions rather than sampling it at discrete points.

8.4.1 Deblurring

It is possible to recover an image that has been blurred by an imaging system bymodeling
the blurring and applying the inverse process to recover the original image. The output or
blurred image, g(x, y), is obtained by convolving the input image, f(x, y), which may be
the object scene or an intermediate image of it, with the point spread function, h(x, y), of
the imaging system:

gðx; yÞ ¼ fðx; yÞ � hðx; yÞ ð8:15Þ
In principle, if the point spread function of the system, h(x, y), is known, then the original
input image can be easily recovered from the blurred image by inverse filtering or
deconvolution. The equivalent frequency domain representation of the degradation
process is

Gðu; vÞ ¼ Fðu; vÞ �Hðu; vÞ ð8:16Þ
where G, F and H are the Fourier transforms of f, g and h, respectively. (H(u, v) is the
modulation transfer function of the imaging system.) Division in the frequency domain
gives F(u, v),

Fðu; vÞ ¼ Gðu; vÞ=Hðu; vÞ ð8:17Þ

from which the original image can be obtained by inverse Fourier transform; thus
deconvolution achieves deblurring by division of the blurred image by the modulation
transfer function of the imaging system.

The result of deconvolution is usually disappointing (Fig. 8.11), even for Gaussian
point spread functions. Small values in the modulation transfer function produce very
large values during division, which then dominate the deconvolved image. This effect
can be seen in Activity 8.2.

In practice, the image is also degraded by noise as well as blurring. Image restoration
in the presence of noise is difficult since it is an ill-posed inverse problem: there is not
enough information in the degraded image to determine the original image unambiguously.

FT FT IFT IFT

*PSF (h (x,y))

× OTF(H (u,v))

f (x,y)

F (u,v) G (u,v)

g (x,y)

Figure 8.10 Imaging by an imperfect imaging system involves convolution with the system PSF or,
alternatively, multiplication in the frequency domain by its MTF.
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8.5 Modeling image degradation

If the noise is additive (Fig. 8.12), then the degraded image from a linear, space-invariant
(LSI) imaging system is given by

gðx; yÞ ¼ fðx; yÞ � hðx; yÞ þ nðx; yÞ
which is Equation (8.5).

(iii) (iv)

Figure 8.11 (i) An image. (ii) A Gaussian blurring or point spread function. (iii) The result of convolving (i)
with (ii). (iv) The result of deconvolving (iii) with (ii).

(i) (ii)
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Taking the Fourier transform of this yields

Gðu; vÞ ¼ Fðu; vÞ �Hðu; vÞ þNðu; vÞ ð8:18Þ
which can be re-arranged to give

Fðu; vÞ ¼ Gðu; vÞ=Hðu; vÞ �Nðu; vÞ=Hðu; vÞ ð8:19Þ
from which the original undegraded image could be recovered, in theory at least, by
inverse Fourier transform.

This process of removing both the noise and the blurring is known as (direct) inverse
filtering. However, the term involving the noise is problematic; noise is random
and generally broadband, while the modulation transfer function of the imaging system,
H(u, v), falls to zero beyond its cut-off frequency. The outcome is that the noise
dominates the restoration for spatial frequencies beyond the system cut-off, even when
the noise power is small, and numerical overflow results from divisions by zero. In
practice this results in very poor performance.

8.5.1 Wiener filters

The classic remedy is to employ Wiener filtering in the frequency domain, to remove
those frequencies which would be dominated by noise. The Wiener filter is an optimal
filter in the sense that it delivers the best estimate of the original, undegraded image in a
least squares sense for additive Gaussian noise, i.e. it finds an estimate, f̂ (x, y), of the
uncorrupted image, f(x, y), such that the mean square error between them is minimized. It
is in fact the adaptive mask we introduced in Section 8.2.1, the minimum mean square
error (MMSE) mask. This error measure is given by

e2 ¼ Efðfðx; yÞ � f̂ ðx; yÞÞ2g ð8:20Þ
where E{.} is the expected value of the argument. However, in order to realize the
minimum mean square error estimate strictly the signal-to-noise ratio needs to be known
precisely at every frequency:

F̂ðu; vÞ ¼ 1

½Hðu; vÞ� �
½jHðu; vÞj2�

½jHðu; vÞj2 þ ðjNðu; vÞj2=jFðu; vÞj2Þ� � Gðu; vÞ ð8:21Þ

h(x,y)

f (x,y)
* +

+

n(x,y)

g(x,y)

G(u,v)

N(u,v)

F(u,v)

H(u,v)

×

Figure 8.12 Imaging by an imperfect, but linear, imaging system which adds noise as well as blurring, as
seen in both the spatial (top) and frequency (bottom) domains.
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where jN(u, v)j2, jF(u, v)j2 are the power spectra of the noise and the undegraded
image, respectively. (Comparison of Equations (8.20) and (8.19) shows that the former
does not blow up to infinity unless both H(u, v) and jN(u, v)j2 are zero for the same
value(s) of u and v.) Fortunately, even crude approximations often work extremely well:
for example

Fðu; vÞ ¼ 1

½Hðu; vÞ� �
½jHðu; vÞj2�

½jHðu; vÞj2 þ K� � Gðu; vÞ ð8:22Þ

where K is the inverse of the signal-to-noise ratio of the image averaged over all frequen-
cies. More conveniently, K can be considered as an adjustable empirical parameter chosen
to balance sharpness against noise. The restored images using Wiener filtering are much
superior to those using direct inverse filtering.

Wiener filtering can be used to restore projection radiographs of vertebral bone, using
the pinhole image of the focal spot in the image plane as the point spread function, PSF
(Fig. 8.13). Activity 8.3 provides exercises in Wiener filtering.

Wiener filtering is a rather conservative process, emphasizing noise reduction over
image reconstruction. This is a by-product of it minimizing mean square error. Classical
Wiener deconvolution can only handle linear, spatially invariant systems with additive
noise, although this may be a reasonable approximation for many types of degradation.
Spatially variant processes, on the other hand, including motion blur that involves
rotation, and processes such as coma, astigmatism and curvature of field, are even
more challenging.

Another problem is that most images are highly non-stationary, i.e. the signal varies
considerably throughout the image. In some regions of the image there are details and
edges and therefore high-frequency components; in other regions there are relatively
constant gray values and therefore low-frequency components. The noise content, too,may
be non-stationary. The net result is that there is not a global signal-to-noise ratio applicable

(i) (ii) (iii)

Figure 8.13 (i) Image of a transverse section of vertebral bone. (ii) Plot of the point spread function of the
x-ray imaging system, showing the intensity of a pinhole image of the x-ray source. (iii) The
restored image using Wiener filtering, with K= 10. (With permission, from Radiography, 2001,
7, 255–62.)
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throughout the image, as assumed in Equation (8.23), and this confounds the Wiener
filter. If the restoring point spread function is relatively small compared to the size of the
image, which is generally the case, then signal-to-noise ratios may be obtained for
various regions of the image and used to restore those regions only. However, the
computational expense of such a scheme is relatively high. An alternative method is
constrained least squares filtering, in which an attempt is made to control the noise
sensitivity problem by imposing a constraint on the smoothness of the restored image.
However, despite the more rigorous mathematical basis, the results of constrained least
squares filtering are not always visually superior to classical Wiener filtering with a
manual adjustment of the parameter K.

8.5.2 Other filters

Wiener filtering can be generalized somewhat to give the geometric mean filter

F̂ðu; vÞ ¼ ½H�ðu; vÞ��
½jHðu; vÞj2� �

½H�ðu; vÞ�1��

½jHðu; vÞj2 þ �ðjNðu; vÞj2=jFðu; vÞj2Þ� � Gðu; vÞ ð8:23Þ

where α and β are two positive, real constants. This represents a family of filters.

� When α = 1 this reduces to the inverse filter.
� When α = 0 it becomes the parametric Wiener filter, which reduces to the standard
Wiener filter when β= 1.

� When α = 1/2 and β = 1 it is commonly called the spectrum equalization filter.

Various iterative deconvolution methods perform even better than the Wiener filters and
their variants with images of low signal-to-noise ratio, but they cannot readily be imple-
mented using standard imaging software without custom programming.

8.5.3 Blind image restoration

Most image restoration methods are based on knowledge of the imaging system, e.g. its
point spread function, and the noise power spectrum. If these are not known, and
information on the degradation must be extracted from the observed image itself, then
the task is known as blind image restoration. The system point spread function can be
estimated by isolating a small object in the image, suspected to have arisen from a point
source, or a suspected sharp edge. The noise covariance function can be estimated by
measuring the image covariance over a region of relatively constant background, and its
Fourier transform (FT) taken to give the noise power spectrum.

8.6 Geometric degradations

An image can be geometrically distorted within an imaging system, due to unequal
magnification within the field of view. If the magnification is smaller off-axis than along
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the axes, barrel distortion results; if it is greater off-axis than along the axes, pincushion
distortion results (Fig. 8.14).

The amount of distortion can be expressed as

ðpercentageÞdistortion ¼ ððD2=ðnD1ÞÞ � 1Þ � 100% ð8:24Þ
where D1 is the length of the diagonal of the small central square in the image, D2 is the
length of the diagonal of the largest square in the image, and n is the ratio of their sizes in
the object.

Pincushion distortion is often evident in fluoroscopic images (Fig. 8.15). Off-axis
electrons tend to flare out from their ideal course, resulting in larger off-axis magnifica-
tion of the image.

By convention, in still photography, the normal lens for a particular format has a focal
length approximately equal to the length of the diagonal of the image frame or digital
photosensor. For a full-frame 35mm camera with a 36mm by 24mm format, the
diagonal measures 43.3mm, and by custom the normal lens adopted by most manufac-
turers is 50mm. Wide-angle lenses have shorter focal lengths, and many produce a more
or less rectilinear image at the film plane, although often with some degree of barrel
distortion where the image appears to be mapped around all or part of a spherical object
(Fig. 8.16 (i)). Extreme wide-angle lenses that do not produce a rectilinear image are
called fish-eye lenses (Fig. 8.17), and produce very significant barrel distortion. There are
two types of fish-eye lens. The first has a 180° field of view in all directions and results in
a circular image on 35mm film; these lenses typically have a focal length around 8mm.
The second, more common, type of fish-eye lens is known as a “full frame fish-eye” and

(i)

h
h′

h′

(ii) (iii)

Figure 8.14 (i) Original object; (ii) image showing barrel distortion; and (iii) image showing pincushion
distortion.
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Figure 8.15 Images subject to pincushion distortion; the image on the left has sustained more distortion than the
image on the right.

(i) (ii)

Figure 8.16 (i) An image taken with a wide-angle lens showing barrel distortion and (ii) an image taken
with a telephoto lens showing slight pincushion distortion. See also color plate.

Light in

Figure 8.17 Showing the light rays entering the bottom half of a fish-eye lens.
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it has a 180° diagonal field of view. (Typically, horizontal coverage is about 140° and
vertical coverage is about 90°, and they have a focal length of about 16mm.) Fish-eye
lenses are often installed as security devices inside the front door of a house to show a
wide field of view. On the other hand, long focal length or telephoto lenses tend to exhibit
pincushion distortion (Fig. 8.16(ii)).

Barrel and pincushion distortions are the inverse of each other. We could correct the
barrel distortion in an image by viewing it or projecting it with a lens that introduced an
equal amount of pincushion distortion.

The general affine transformation can be used to model simple spatial transformations
such as scaling, rotation and translation (Section 6.3), combinations of which can
produce an image-shearing operation (Fig. 8.18(ii)). Parallel lines remain parallel, and
straight lines remain straight, but angles and shapes are not preserved. The general affine
transform
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5 ð8:25Þ

describes the transform of points (x, y) into (x′, y′) using a matrix A. To recover the
original points (x, y) from (x′, y′) it is necessary to find the inverse of the matrix, A−1. The
geometric transform can be specified by using a few selected control points, whose
location in the distorted and undistorted images is known. For the affine transform three
pairs of corresponding points are sufficient to find the six coefficients.

The general affine transform can be extended to projective transforms (where straight
lines remain straight, but parallel lines do not remain parallel) as in map projections
(Fig. 8.18(iii)). Further generalization provides non-linear spatial warping of an image,
where the transformmay be described by a polynomial (Fig. 8.18 (iv)). In the case where the

(i) (ii) (iii)

(iv) (v) (vi)

Figure 8.18 (i) Original image; (ii) affine transform; (iii) projective transform; (iv) second-order polynomial
transform; (v) barrel transform; and (vi) pincushion transform.
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distortion/warping process within the region bounded by the control points can bemodeled
by a pair of bilinear equations

x0 ¼ c0 þ c1xþ c2yþ c3xy ð8:26Þ
and

y0 ¼ d0 þ d1xþ d2yþ d3xy ð8:27Þ
the coefficients can be calculated if four corresponding control points in each image are
known. The coefficients can then be used to transform all the pixels within the quad-
rilateral bounded by the control points and recover the corrected (undistorted) image.
Second-order polynomial warping is described by

x0 ¼ c0 þ c1xþ c2yþ c3xyþ c4x
2 þ c5y

2 ð8:28Þ
y0 ¼ d0 þ d1xþ d2yþ d3xyþ d4x

2 þ d5y
2 ð8:29Þ

A cubic term is involved in barrel (Fig. 8.18(v)) and pincushion (Fig. 8.18(vi)) distortion.
Reverse address computation usually results in non-integer values for x′ and y′, and

gray-level interpolation (Section 6.3) is required to find the pixel values at integer
coordinate locations for the corrected image. The simplest solution would be to adopt
the pixel value of the nearest reverse address to the integral locations, nearest-neighbor
or zero-order interpolation. While computationally simple, it has the disadvantage of
producing undesirable artifacts such as the distortion of straight edges in high-resolution
images. This error can be significantly reduced by using bilinear interpolation, where the
values at the integer positions are computed from a weighted average of the four nearest
non-integer positions obtained from the reverse transform. More sophisticated techni-
ques, such as bicubic or cubic B-spline interpolation, can be used at significantly higher
computational cost.

Correcting for geometric distortion, unwarping, is often used as a prequel to register-
ing images obtained from different imaging modalities. Figure 8.19 shows the result of
unwarping and registering an image that had been subject to pincushion distortion.

(i) (ii) (iii)

Figure 8.19 (i) A target image used to define the unwarping. (ii) The warped (source) image, with calculated
distortion lines. (iii) The result of unwarping image (ii).
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Computer-based activities

Activity 8.1 Adaptive median mask
Open imagesalt-and-pepper1 in ImageJ, and use a 3×3medianmask (Process/

Filter/ Median … with a radius of 1 pixel) to reduce its salt-and-pepper noise.
Now use an adaptive median mask (Plugins/ Ch.8Plugins/ Adaptive_____Median,
set k1, k2 and k3 all equal to zero, check onSalt-and-PepperNoiseremoval, and
enter 1.0 as the multiple for standard deviation) on the original image. Compare the
two results and see whether a different multiple might result in a superior result for the
adaptive median mask.

Repeat with image salt-and-pepper 2.
Activity 8.2 Deconvolution
Open axialbrainMRI in ImageJ. We can simulate a poor imaging system by

convolving this with a Gaussian point spread function. Open Gaussian5x5.
txt, which is a 5 × 5 Gaussian with σ = 0.625, and view its terms. Gaussian
blur is an image with these terms embedded in the center; open it in ImageJ and
observe it with Analyze/Surface Plot …, checking Draw Wireframe. Use
Process/FFT/FD Math …, choose axialbrainMRI and Gaussian
blur,Convolve as the operation, and check Do Inverse Transform. The resulting
image, Result, is a noticeably blurred image.

We can attempt to recover the original image by using deconvolution. Using
Process/FFT/FD Math …, choose Result and Gaussian blur as the
images, Deconvolve as the operation, check Do Inverse Transform and call the
result Result2. Compare Result2 with the original image, by subtracting
32-bit versions of them (Image/Type/32-bit, then Process/Image calcula-
tor and subtract).

Repeat the exercise using bigGaussian, which has a wider point spread function,
to obtain Result3. Compare the result of deconvolution with the original image.
Is the process more or less successful than with Gaussian blur? Why?
Compare the Fourier transforms of the original image, axialbrainMRI, and
Result3; what is the difference?

Activity 8.3 Wiener filtering
Open blurred in ImageJ. The image is (motion) blurred; we will try to restore it so

as to try to read the license plate. Let’s model the blurring as a radially symmetric
uniform averaging filter of radius 7 pixels: open pillbox. Try to recover the
original image by using deconvolution using Process/FFT/FDMath, and con-
firm that it is not successful.

Instead we will use Wiener filtering. Use the SNR plugin (in Ch.5 Plugins) to
estimate the value of the SNR of the blurred image, and hence its inverse, K.
Click Plugins/ Ch.8Plugins/ Wiener_____filter, and specify the images, the output
precision (32-bit) and the complex number precision (double precision). Choose a
value for the inverse of the SNR, K (called the Regularization parameter in this
plugin) and click OK. If too small a value of K is used the effect of the Wiener filter
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is too small, and if too large a value is used the noise is sharpened. Try various
values of K to find which allows you to read the license plate most clearly. You
may have to enhance the contrast of the resulting image. Note that it is the K value
that primarily determines the noise reduction, and the size of the blurring function
that determines the amount of deblurring.

The ringing pattern around the edges of the resulting image is due to the sharp
discontinuity in the de-blurring PSF, i.e. the pillbox image. TryWiener filtering
with bigGaussian, which does not have sharp discontinuities. The result may
be disappointing, indicating that it does not model the original blurring well.

Images brainGB2 and boneGB2 have both been subject to Gaussian blur with a
radius of 2 pixels. Construct a suitable PSF to model this blur and use Wiener
filtering to remove it.

Activity 8.4 Unwarping and registering
Open the distorted (and rotated) image distortbrain and the original image

axialbrainMRI. The plugin UnwarpJ (Biomedical Imaging Group, Swiss
Federal Institute of Technology, Lausanne (Sorzano et al., 2005)) uses cubic
B-spline interpolation to unwarp a “source” image and register it to a “target”
image. It runs in fully automatic mode without relying on control points chosen by
the operator. In Plugins/ Ch.8Plugins/ UnwarpJ choose the distorted image as
the source and the undistorted image as the target. Click “Done” and observe,
during the registration process, the current difference image and a mapping of the
grid from the target image on to the source image. When the unwarping and
registration is complete, the result is a stack of three images comprising (i) the
source image unwarped and registered to fit the target image, (ii) the target image
and (iii) the source mask with the same deformation as the source image.

Repeat using the distorted image distortbarium and the original image
barium.

Exercises

8.1 The array below represents a small grayscale image. Calculate the 4 × 4 image that
would result if the middle 16 pixels were transformed using (i) a 3 × 3 averaging
mask and (ii) a 3 × 3 median mask.

17 51 97 125 34 23
35 96 228 245 85 47
56 128 205 245 118 58
85 230 254 202 186 86

188 240 210 150 122 96
96 105 204 88 56 11

8.2 The signal-to-noise ratio due to quantization, SNRq, is generally calculated using a
sinusoidal input spanning the full range of the analog-to-digital converter (ADC).
The error involved in placing a sampled value on the nearest available level, the
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quantization error, can be anywhere between zero, when the sampled value just
happens to correspond to one of the levels, and a maximum size of ± q/2, when the
sampled value falls mid-way between two levels, separated by q. Find the SNR (in
dB) as a function of the number of bits of the ADC, and identify SNRq. (Hints: The
mean square signal is A2/2, where A is the amplitude of the sinusoid. The mean
square noise is q2/12 (draw the distribution of errors, square it, and find the mean).)

8.3 An amateur photographer chances upon a bank robbery. As the robbers’ van speeds
past him he takes a photograph of the side of the van. Unfortunately the photograph
is blurred because he forgot to “pan” with the moving van, and the sign on the van
cannot be read. Suggest a method for restoring the image. What blurring function
should be used? Can it be estimated from the image itself?

8.4 Consider the problem of image blurring due to uniform acceleration in the
x direction. If the image is at rest at position x0 at time t= 0 and accelerates with a
uniform acceleration a, then its position at time t= T is given by x= x0 + (1/2) aT

2.
Find the blurring function. (Assume that the shutter opening and closing times are
negligible.)

8.5 You are working with a noisy video camera and digitizer, and observe that the
standard deviation of the noise is about twelve gray levels. You have detail in the
image which requires better than five gray levels of precision to be sure of resolving
it. How many images would you need to average to see this detail?
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Part III

Image analysis





9 Morphological image processing

Overview

Morphological image processing is a tool for extracting or modifying information on the
shape and structure of objects within an image. Morphological operators, such as
dilation, erosion and skeletonization, are particularly useful for the analysis of binary
images, although they can be extended for use with grayscale images. Morphological
operators are non-linear, and common usages include filtering, edge detection, feature
detection, counting objects in an image, image segmentation, noise reduction and finding
the mid-line of an object.

Learning objectives

After reading this chapter you will be able to:

� describe three different ways to define distance in a digital image;
� outline the algorithms for the main morphological operators;

� choose the appropriate morphological operator, or series of operators, to perform
certain processing tasks, such as noise reduction and object separation;

� use the appropriate structuring elements in a hit-or-miss transform to detect simple
shapes;

� distinguish between skeletonization and the medial axis transform;
� discuss the applications of morphological processing to grayscale images;
� implement the appropriate morphological operations for various processing tasks.

9.1 Mathematical morphology

The field of mathematical morphology contributes a wide range of operators to image
processing, all based around a few simple mathematical concepts from set theory and, in
the case of binary images, (Boolean) logic operations such as “AND,” “OR,” “XOR”
(exclusive OR) and “NOT.” The “union” operation, A[B, for example, is equivalent to
the “OR” operation for binary images; and the “intersection” operator, A∩B, is equiva-
lent to the “AND” operation for binary images (Appendix B).



9.1.1 Connectivity

In binary images an object is defined as a connected set of pixels. With two-dimensional
images connectivity can be either 4-connectivity or 8-connectivity (Fig. 9.1). In
4-connectivity, each pixel (P) has four connected neighbors (N) – top, bottom, right
and left: the diagonally touching pixels are not considered to be connected. In
8-connectivity, each pixel (P) has eight connected neighbors (N) – including the diagonally
touching pixels. For three-dimensional images neighborhoods can be 6-connected,
18-connected or 26-connected.

This leads to different ideas of distance. In a 4-connected neighborhood, N4, the
distance is known as the city-block, taxicab or Manhattan distance by analogy with a
city based on an orthogonal grid of roads. It is the distance a taxicab would drive in
Manhattan (if there were no one-way streets!). The distance in a 4-connected neighbor-
hood is given by

d4ðx; yÞ ¼ x1 � x2j j þ y1 � y2j j (9:1)

A diagonal step has a distance of two since it requires a horizontal and a vertical step.
Equal distances from a certain position would form diamonds centered on it. In an
8-connected neighborhood, N8, the distance is known as the Chebyshev or chessboard
distance, by analogy with the moves available to a king in chess. The distance in an
8-connected neighborhood is given by

d8ðx; yÞ ¼ max x1 � x2j j; y1 � y2j jgf (9:2)

A diagonal step has a distance of one, the same as a horizontal or vertical step. Equal
distances from a certain position would form squares centered on it. Neither is the same
as Euclidean distance, which is given by

dðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x2Þ2 þ ðy1 � y2Þ2

q
(9:3)

A diagonal step is given by a distance of 1/√2, and equal distances from a certain position
form circles centered on it. In physical space the Euclidean distance is the most natural

P

(i)

P

(ii)

Figure 9.1 Connectivity in two-dimensional images. (i) 4-connectivity – each pixel (P) has four connected
neighbors (•). (ii) 8-connectivity – each pixel (P) has eight connected neighbors (•).
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distance, because the length of a rigid body does not change with rotation. Alternating the
two metrics (N4–N8 or N8–N4) is an approximation to Euclidean distance.

9.2 Morphological operators

There are a number of morphological operators, but the twomost fundamental operations
are dilation and erosion; all other morphological operations are built from a combination
of these two.

9.2.1 Dilation and erosion

In binary images dilation is an operation that increases the size of foreground objects,
generally taken as white pixels, although in some implementations this convention is
reversed. It can be defined in terms of set theory, although we will use a more intuitive
algorithm. The connectivity needs to be established prior to operation, or a structuring
element defined (Fig. 9.2).

The algorithm is as follows: superimpose the structuring element on top of each pixel
of the input image so that the center of the structuring element coincides with the input
pixel position. If at least one pixel in the structuring element coincides with a foreground
pixel in the image underneath, including the pixel being tested, then set the output pixel in
a new image to the foreground value. Thus, some of the background pixels in the input
image become foreground pixels in the output image; those that were foreground pixels
in the input image remain foreground pixels in the output image. In the case of
8-connectivity, if a background pixel has at least one foreground (white) neighbor then
it becomes white: otherwise, it remains unchanged. The pixels which change from
background to foreground are pixels which lie at the edges of foreground regions in
the input image, so the consequence is that foreground regions grow in size, and fore-
ground features tend to connect or merge (Fig. 9.3). Background features or holes inside a
foreground region shrink due to the growth of the foreground, and sharp corners are
smoothed (Fig. 9.4). Repeated dilation results in further growth of the foreground regions

1
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(i) (ii)
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Figure 9.2 Structuring elements corresponding to (i) 4-connectivity and (ii) 8-connectivity.
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(Fig. 9.5). The pattern of growth depends on the structuring element used, as can be seen
in Activity 9.1.

The structuring element can be considered analogous to a convolution mask, and the
dilation process analogous to convolution, although dilation is based on set operations
whereas convolution is based on arithmetic operations. After being reflected about its
own origin, it slides over an image, pushing out the boundaries of the image where it
overlaps with the image by at least one element. This growing effect is similar to the
smearing or blurring effect of an averaging mask. One of the basic applications of dilation
is to bridge gaps and connect objects: dilation with a 3 × 3 structuring element is able to
bridge gaps of up to two pixels in length.

Dilation can be used to create the outline of features in an image (Fig. 9.6). If a
binarized image is dilated once, and the original image subtracted pixel-by-pixel from
the dilated image, the result is a one-pixel wide outline of the features in the original

Figure 9.3 The effect of dilation in connecting foreground features, using a structuring element
corresponding to 8-connectivity.

Figure 9.4 The effect of repeated dilation in shrinking background features and smoothing sharp corners,
using a structuring element corresponding to 8-connectivity.
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image. This operation tends to be more robust than most edge enhancement operations in
the presence of image noise. The outline can be used in subsequent feature extraction
operations to measure size, shape and orientation, for example, and these derived
measurements can be used in feature classification (Chapter 11).

In contradistinction, erosion is an operation that increases the size of background
objects (and shrinks the foreground objects) in binary images. In this case the structuring
element is superimposed on each pixel of the input image, and if at least one pixel in the
structuring element coincides with a background pixel in the image underneath, then the
output pixel is set to the background value. Thus, some of the foreground pixels in
the input image become background pixels in the output image; those that were back-
ground pixels in the input image remain background pixels in the output image. In the
case of 8-connectivity, if a foreground pixel has at least one background (black) neighbor
then it becomes black: otherwise, it remains unchanged. The pixels which change from
foreground to background are pixels at the edges of background regions in the input
image, so the consequence is that background regions grow in size, and foreground
features tend to disconnect or further separate (Fig. 9.7). Background features or holes
inside a foreground region grow, and corners are sharpened (Fig. 9.8). Further erosion
results in further growth of the background, or shrinking of the foreground (Fig. 9.9).

(i) (ii) (iii)

Figure 9.5 (i) Original image; (ii) after a single dilation; (iii) after several dilations.

(i) (ii) (iii)

Figure 9.6 Outlining features in an image. (i) Original image; (ii) image dilated (once); (iii) result of
subtracting image (i) from image (ii).
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Figure 9.7 The effect of erosion in further separating foreground features, using a structuring element
corresponding to 8-connectivity.

Figure 9.8 The effect of erosion in growing background features and sharpening corners, using a
structuring element corresponding to 8-connectivity.

(i) (ii) (iii)

Figure 9.9 (i) Original image; (ii) after a single erosion; (iii) after two erosions.
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Again erosion can be considered analogous to convolution. As the structuring element
moves inside the image, the boundaries of the image are moved inwards because image
foreground pixels in the image are changed to background pixels wherever the structur-
ing element overlaps the background region by at least one element. One of the basic
applications of erosion is to eliminate irrelevant detail, below a certain size, in an image.
A structuring element eliminates detail smaller than about its own size. Erosion can be
also used to create a one-pixel wide outline of the features in an image by subtracting the
eroded image from the original image.

Erosion is the dual of dilation, i.e. eroding foreground pixels is equivalent to dilating
background pixels. However, erosion of an image followed by dilation of the result, or
vice versa, does not produce the original image; isolated foreground pixels removed
during erosion, for example, are not re-instated during dilation.

Erosion can help in the counting of features which touch or overlap in an image
(Fig. 9.10). The first stage in counting the features is to segment the image, i.e. simplify it
by reducing it to black and white (see Chapter 10). If the features still touch each other,
they can be separated by erosion (Activity 9.2).

It is possible to do a constrained or conditional dilation. An image, known as the seed
image, is dilated but not allowed to dilate outside of a supplied mask image, i.e. the
resulting features are never larger than the features in the mask image. This is illustrated
in Activity 9.3. This can be a useful function in feature extraction and recognition
(Chapter 11). An image (Fig. 9.11(i)) could be thresholded to give the mask image
(Fig. 9.11(ii)), and then further processed to isolate parts of a certain sub-set of features
(say, only those larger than a certain size) in a seed image (Fig. 9.11(iii)). The features can
then be grown back to their original shape using the mask image to constrain the dilation
(Fig. 9.11(iv)).

In a binary image, each feature is considered to be a connected set of pixels (either
4-connected or 8-connected). Before we can measure the properties of these features (for
example, their areas), we need to label them. Labeling involves finding a foreground
pixel in the image, giving it a label, and recursively giving the same label to all pixels that
are connected to it or to its neighbors. This process is repeated until all the foreground
pixels have been assigned to a feature and have a label; the label can be used to colorize

(i) (ii) (iii)

Figure 9.10 (i) Grayscale image with features that touch each other; (ii) the image after segmentation;
(iii) erosion of image (ii).
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(i) (ii)

(iii) (iv)

(v)

Figure 9.11 (i) Original image; (ii) after thresholding; (iii) after 4 erosions; (iv) after 12 conditional dilations
(the small objects have been removed); (v) after labeling and displaying each object in a different
color. See also color plate.



the features (Fig. 9.11(v)). Labeling can be done in a two-pass process. The image is
examined in raster order. When a foreground (ON) pixel is found, neighboring pixels are
examined. (In 4-connectedness, it is sufficient to examine the pixel to the left and the
pixel above it; in 8-connectedness the pixel on the top left diagonal should also be
examined.) Four situations can occur. If none of these neighbors is ON, the current pixel
is given a new label; if one of the neighbors is ON, the current pixel is given the same
label; if more than one pixel is ON, and they are labeled similarly, the current pixel is
given that same label; and if more than one pixel is ON, but they are labeled differently,
the current pixel is given one of those labels and these labels are merged to a single label
since they are connected and belong to the same feature. In the second pass the labels are
reassigned sequentially. The properties of each individual feature can now be measured.
For example, the area of a feature is the number of foreground pixels that have that
particular label; when all the features are measured, their size distribution can be
displayed.

9.2.2 Opening and closing

All the other mathematical morphology operators can be defined in terms of combinations
of erosion and dilation along with set operators such as intersection and union. Some of the
more important of these other operators are opening, closing and skeletonization.

Opening is defined as erosion followed by dilation using the same structuring element
for both operations. The erosion part of it removes some foreground (bright) pixels from
the edges of regions of foreground pixels, while the dilation part adds foreground pixels.
The foreground features remain about the same size, but their contours are smoother. As
with erosion itself, narrow isthmuses are broken and thin protrusions eliminated.

The effect of opening on a binary image depends on the shape of the structuring
element: opening preserves foreground regions that have a similar shape to the structur-
ing element, or that can completely contain the structuring element, while it tends to
eliminate foreground regions of dissimilar shape. Thus binary opening can be used as a
powerful shape detector to preserve certain shapes and eliminate others. The image in
Figure 9.12(i) comprises a mixture of lines and circles, with the diameter of the circles
being greater than the width of the lines. If a circular structuring element with a diameter
just smaller than the diameter of the smallest circles is used to open this image, the
resulting image (Fig. 9.12(ii)) contains just the circles and the lines have been eliminated.
Activity 9.4 contains examples of opening used as a shape detector.

This is how to think of opening. Take the structuring element and slide it around inside
each foreground object. Pixels which can be covered by the structuring element with it
remaining entirely within the object are preserved. Foreground pixels which cannot be
reached by the structuring element without it protruding outside the object are eroded
away. When the structuring element is a circle, or a sphere in three dimensions, this
operation is known as a rolling ball, and is useful for subtracting an uneven background
from grayscale images.

Closing is defined as dilation followed by erosion using the same structuring element
for both operations. Closing smoothes the contours of foreground objects but, in
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contradistinction to opening, it merges narrow breaks or gaps and eliminates small holes.
Figure 9.13 illustrates how closing can be used to eliminate the smaller holes in the
image. A circular structural element of size mid-way between the diameter of the two sets
of holes was used to close the image in Figure 9.13(i); the resulting image (Fig. 9.13(ii))
contains only the larger holes, since only they allow the structuring element to move
freely inside them without protruding outside.

(i) (ii)

Figure 9.12 Binary opening used as a shape detector. (i) An image comprising both lines and circles. (ii) The
result after opening (i) with a circular structuring element.

(i) (ii)

Figure 9.13 (i) An image containing holes of two different sizes and (ii) the result of closing (i) with a
circular structuring element mid-way in size between the two sets of holes.
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Opening and closing are frequently used to clean up artifacts in a segmented image
prior to further analysis (Fig. 9.14). The choice of whether to use opening or closing, or a
sequence of erosions and dilations, depends on the image and the objective. For example,
opening is used when the image has foreground noise or when we want to eliminate long,
thin features: it is not used when there is a chance that the initial erosion operation might
disconnect regions. Closing is used when a region has become disconnected and we want
to restore connectivity: it is not used when different regions are located closely such that
the first iteration might connect them. Usually a compromise is determined between
noise reduction and feature retention by testing representative images. You can practice
using these operations in Activity 9.5.

As in the case of erosion and dilation, opening and closing are the duals of each other,
i.e. opening the foreground pixels with a particular structuring element is equivalent to
closing the background pixels with the same element. Opening and closing are also
idempotent operations, i.e. repeated application of either of them has no further effect on
an image.

9.2.3 Hit-or-miss transform

The hit-or-miss transform is a basic tool for shape detection or pattern recognition.
Indeed almost all the other morphological operations can be derived from it.

The structuring element is an extension of those we have used before which contained
only 1s and 0s: in this case it contains a pattern of 1s (foreground pixels), 0s (background
pixels) and x’s (“don’t cares”). An example, used for finding a bottom left right-angle
corner point, is shown in Figure 9.15.

The hit-or-miss operation is performed by translating the center of the structuring
element to all points in the image, and then comparing the pixels of the structuring
element with the underlying image pixels. If the pixels in the structuring element exactly
match the pixels in the image, then the image pixel underneath the center of the
structuring element is set to the foreground color, indicating a “hit.” If the pixels do
not match, then that pixel is set to the background color, indicating a “miss.” The x’s or
“don’t care” elements in the structuring element match with either 0s or 1s. When the

(ii)(i) (iii)

Figure 9.14 (i) Original grayscale image; (ii) segmented image showing various artifacts; (iii) the result of
closing (ii) with a circular structuring element.

9.2 Morphological operators 283



structuring element overlaps the edge of an image, this would also generally be con-
sidered as a “miss.” Look at the white pixel at the bottom left-hand corner of the feature in
Figure 9.16, and imagine the structuring element of Figure 9.15 placed on it. This is
recognized as a bottom left corner of the object because of the pattern of three 1s in the
foreground, and the pattern of three 0s describing the background, which are matched in
the structuring element. The other three neighboring pixels can be either 0s or 1s and this
central pixel remains a corner point; hence they are designated x’s (don’t cares) in the
structuring element.

In order to find all the corners in a binary image we need to run the hit-or-miss
transform four times with four different structuring elements representing the four
kinds of right-angle corners found in binary images (Fig. 9.17), and then combine the
four results, using a logical “OR,” to get the final result showing the locations of all
right-angle corners in any orientation. Figure 9.16 shows the final result of locating all the
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X
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X
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Figure 9.15 Example of the extended type of structuring element used in hit-or-miss operations.

(i) (ii)

Figure 9.16 (i) Image of a white feature and (ii) the final result, locating all the right-angle corners of the feature
by combining the results of using the hit-or-miss transform with the four structuring elements
of Figure 9.15.
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right-angle corners of a feature. Activity 9.6 illustrates other practical examples of using
the hit-or-miss transform.

Different structuring elements can be used for locating other features within a binary
image, for example isolated points in an image, or end points and junction points in a
binary skeleton.

9.2.4 Thinning and skeletonization

Thinning is a morphological operation that successively erodes away foreground pixels
from the boundary of binary images while preserving the end points of line segments.
Thickening is the dual of thinning, i.e. thickening the foreground is equivalent to thinning
the background.

The thinning operation is related to the hit-and-miss transform and can be expressed
quite simply in terms of it. The thinning of an image I by a structuring element J is:

thinðI; JÞ ¼ I� hit-or-missðI; JÞ (9:4)

where the subtraction is a logical subtraction defined by X – Y=X∩NOT Y.
For example, the structuring element of Figure 9.18(i), and the three rotations of it by

90°, are essentially line detectors. If a hit-or-miss transform is applied to the rectangle of
Figure 9.18(ii) using this structuring element, a pixel-wide line from the top surface of
the rectangle is produced, which is one pixel short at both right and left ends. If the line is
subtracted from the original image, the original rectangle is thinned slightly. Repeated
thinning produces the image shown in Figure 9.18(iii). If this is continued, together with
thinning by the other three rotations of the structuring element, the skeleton shown in
Figure 9.18(iv) is produced.

Repeated thinning can be used to obtain a single-pixel wide skeleton or center line of
an object. One of the most common uses of skeletonization is to reduce the thresholded
output of an edge detector such as the Sobel operator to lines of a single pixel thickness.
Skeletonization needs to be implemented as a two-step process that does not break
the objects. The first step is normal thinning, but it is conditional; that is, pixels are
marked as candidates for removal, but are not actually eliminated. In the second pass,
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Figure 9.17 The four structuring elements used for finding corners in a binary image using the hit-or-miss
transform. The leftmost one detects bottom left corners (as we saw in Fig. 9.15), and the others are
derived from it with various rotations to detect the bottom right, top right and top left corners,
respectively.
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those candidates which can be removed without destroying connectivity are eliminated,
while those that cannot are retained. The process is then repeated several times until no
further change occurs, i.e. until convergence, and the skeleton is obtained. Skeletonization
preserves the topology, i.e. the extent and connectivity, of an object. The skeleton should
be minimally 8-connected, i.e. the resulting line segments should always contain the
minimal number of pixels that maintain 8-connectness: and the approximate end-line
locations should be maintained. Various implementations have been proposed; the algo-
rithm of Zhang and Suen (Zhang and Suen, 1984) is probably the most widely used
realization.

The skeleton is useful because it provides a simple and compact representation of the
shape of an object. Thus, for instance, we can get a rough idea of the length of an object
by finding the maximally separated pair of end points on the skeleton. Similarly, we can
distinguish many qualitatively different shapes from one another on the basis of how
many junction points there are, i.e. points where at least three branches of the skeleton
meet. Although skeletonization can be applied to binary images containing regions of
any shape, it is most suitable for elongated (Fig. 9.19), as opposed to convex or

(ii)(i)
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(iii) (iv)

Figure 9.18 (i) Structural element for line detection; (ii) image of rectangle; (iii) image of rectangle after 12
iterations of thinning with the structural element of (i); (iv) thinning to convergence using the
structural element of (i) and its three 90° rotations.
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blob-like, shapes. For example, it is useful for visualizing the center line of blood vessels
in an angiogram and in automated recognition of hand-written characters.

Skeletons produced by this method tend to leave parasitic components or spurs as a
result of small irregularities in the boundary of the original object. These spurs can be
removed by a process called pruning, which is in fact just another form of thinning. The
structuring element for this pruning operation is shown in Figure 9.20. Pruning is
normally carried out for only a limited number of iterations to remove short spurs,
since pruning until convergence actually removes all pixels except those that form closed
loops (Activity 9.7).

Skeletonization can be understood in terms of the prairie fire analogy. Imagine that the
foreground region in a binary image is made of some uniform slow-burning material such
as dry grass on a bare dirt background. If fires were to be started simultaneously at all
points along the boundary of the region, the fire would proceed to burn inwards towards

(i) (ii)

Figure 9.19 Skeletonization by morphological thinning. (i) Binary image showing an elongated white
foreground object and (ii) its skeleton.
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Figure 9.20 Structural elements used for pruning. At each iteration, each element must be used in each of
its four 90° rotations.
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the center of the region until all the grass was consumed. At points where the fire
traveling from two different boundaries meets itself, the fire extinguishes itself and the
points at which this happens form the so-called quench line. This line is the skeleton.
Another way to think about the skeleton is as the loci of centers of bi-tangent circles that
fit entirely within the foreground region being considered. Figure 9.21 illustrates this for
a rectangular shape.

9.2.5 The medial axis transform and skeletonization

The terms medial axis transform (MAT) and skeletonization are often used interchange-
ably but they are different. Skeletonization produces a binary image showing the simple
skeleton. The medial axis transform, on the other hand, produces a grayscale image where
each point on the skeleton has an intensity which represents its distance to a boundary in the
original object. Thus the medial axis transform (but not the skeleton) can be used to
reconstruct the original shape exactly, which makes it useful for lossless image compres-
sion, by constructing circles of radius equal to the pixel value around each pixel. The
skeleton is the medial axis transform, thresholded such that only the center pixels, one
pixel in width, are above the threshold.

The medial axis transform is closely linked to the distance transform, which is the
result of performing multiple successive erosions with a structuring element that depends
on which distance metric has been chosen, until all foreground regions of the image have
been eroded away, and labeling each pixel with the number of erosions that had to be
performed before it disappeared (Fig. 9.22). The distance transform can also be used to
derive various other symmetries from binary shapes. Although there are many different
implementations the medial axis transform is essentially the locus of slope discontinuities
(i.e. the ridges) in the distance transform; if the distance transform is displayed as a
three-dimensional surface plot with the third dimension representing the gray value, the
medial axis transform can be imagined as the ridges on the three-dimensional surface.

The skeletons and the medial axial transforms, obtained from the distance transforms,
of a number of images are compared in Figure 9.23.

Figure 9.21 The skeleton of a rectangle defined in terms of bi-tangent circles.
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Figure 9.22 Schematics of (i) a binary image of a rectangle and (ii) its distance transform image (note we are
using the N8 distance metric).

(i) (ii) (iii) (iv)

Figure 9.23 (i) Original images; (ii) their skeletons; (iii) their Euclidean distance transforms (after contrast
enhancement); and (iv) their medial axis transforms.
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Both the skeleton and the medial axis transform are sensitive to small changes in the
boundary of the object, which can produce artifactually more complex skeletons (Fig. 9.24;
compare with Fig. 9.23(ii), top). The skeletonized image in Figure 9.25 shows the very
complex skeleton produced by skeletonizing a thresholded image of a telephone receiver
and the less complex skeleton, more representative of the true shape of the telephone
receiver, produced when the thresholded image is closed prior to skeletonization. The
skeleton can be further improved by pruning insignificant spur features. These examples
indicate that additional processing may often be required prior to skeletonization.

Both skeletonization and the medial axis transform are also very sensitive to noise. If
some “pepper noise” is added to the image of a white rectangle (Fig. 9.26(i)), the
resulting skeleton (Fig. 9.26(ii)) connects each noise point to the skeleton obtained
from the noise free image (see Fig. 9.23(ii), top).

Just as the skeleton of objects or features in an image can be determined, it is also
possible to skeletonize the background. This gives the so-called “skiz” (skeleton of
influence zone) image (Figs. 9.27 and 9.28). This effectively divides the image into
regions or zones of influence around each feature. Discontinuous lines can be easily
removed; starting at each end point (points with a single neighbor), connected pixels are
eliminated until a node (a point with more than two neighbors) is reached. The skiz is
actually the generalized Voronoi diagram (see Section 9.2.6).

9.2.6 The convex hull

The convex hull of a binary feature can be visualized quite easily by imagining stretching
an elastic band around the feature. The elastic band follows the convex contours of the

(i) (ii)

Figure 9.24 (i) An image of a rectangle with a small change in its boundary; (ii) the result of skeletonizing
image (i).

290 Morphological image processing



(v) (vi)

Figure 9.25 (i) Grayscale image of a telephone receiver; (ii) after thresholding image (i); (iii) after skeletonizing
image (ii); (iv) after closing image (ii) with a circular structural element; (v) after skeletonizing
image (iv); (vi) after pruning image (v).

(i) (ii)

(iii) (iv)
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(i) (ii)

Figure 9.26 (i) Image containing “pepper” noise and (ii) the resulting skeleton.

(i) (ii) (iii)

Figure 9.27 (i) Image containing features; (ii) the skeleton of the background (or skiz); (iii) skiz
superimposed on original image to show zones of influence.

(i) (ii) (iii)

Figure 9.28 (i) Image containing features; (ii) the skeleton of the background, or skiz (note that there are
some discontinuous lines which should be eliminated); (iii) skiz superimposed on original image
to show zones of influence.
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feature, but “bridges” the concave contours. The resulting shape has no concavities and
contains the original feature (Fig. 9.29). Where an image contains multiple discon-
nected features, the convex hull algorithm determines the convex hull of each of them,
but does not connect disconnected features, unless their convex hulls happen to
overlap.

The convex hull is the smallest convex polygon that contains the object in an
image. Its simple shape often suffices to perform matching or recognition, and it
delineates the area of influence of an object or region; if another region or its convex
hull overlaps this convex hull, then it is said to encroach on the first region’s area of
influence.

An approximate convex hull can be computed using thickening with the struc-
turing elements shown in Figure 9.30. The convex hull computed using this method
is actually a “45° convex hull” approximation, in which the boundaries of the convex
hull must have orientations that are multiples of 45°. Note that this computation can be
very slow.

Figure 9.31(i) shows an image containing a number of cross-shaped binary objects.
The 45° convex hull algorithm described above results in convex hulls which depend on

Figure 9.29 A feature enclosed by its convex hull (shown in red). See also color plate.
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Figure 9.30 Structuring elements for determining the approximate convex hull using thickening. During each
iteration, each structuring element should be used in turn, and then in each of their 90° rotations,
giving eight effective structuring elements in total. The thickening is continued until no further
changes occur.
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the orientation of the individual cross-shaped objects in the original image (Fig. 9.31(ii)).
The process took a considerable amount of time – over one hundred thickening passes
with each of the eight structuring elements!

Other more exact implementations of the complex hull exist, for example using
angular sorting of the corners of an object (Graham scan), but they are beyond the scope
of this text.

(i) (ii)

Figure 9.31 (i) An image and (ii) its approximate (45°) convex hull.

Figure 9.32 The Voronoi diagram of a set of points, showing the polygons of influence. See also color
plate.
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For a set of points, the Voronoi diagram and its dual, the Delaunay triangulation, are
mathematically related to the convex hull. The Voronoi diagram is obtained by drawing
bisectors of the lines between points and connecting them to form convex polygons.
These polygons are then the polygons of influence around the points (Fig. 9.32); they are
not as general as the skiz where the zones of influence are not constrained to be polygons.
The Delaunay triangulation is a set of triangles with the points as vertices, such that no
point is inside the circumcircle of any of the triangles (Fig. 9.33). (Delaunay triangula-
tions are often used to build meshes for the finite element method.) The outer boundary of
the Voronoi diagram is the convex hull of all the points. Voronoi cells can also be defined
by measuring distances to features that are not points. The Voronoi diagram with these
cells is the medial axis.

9.3 Extension to grayscale images

The basic binary morphological operations can be extended to use with grayscale images;
the results of such operations are grayscale images.

In grayscale dilation, for example, the structuring element is defined by a pattern of
1s and is superimposed on top of each pixel of the input image in turn. Only those
pixels with a 1 on top of them are considered, and the output pixel, which replaces the
central image pixel, is the maximum of the pixel values under consideration. For
grayscale erosion, the image pixel is replaced by the minimum of the pixels considered
by the structuring element. Thus dilation brightens and expands brighter areas of an
image, and darkens and shrinks darker areas: erosion is the dual, and has the opposite
effect.

(i) (ii)

Figure 9.33 (i) A set of points (in red) with their Delaunay triangulation and circumscribed circles.
(ii) Connecting the centers of the circumscribed points produces the Voronoi diagram (in red).
See also color plate.

9.3 Extension to grayscale images 295



Grayscale dilation and erosion are thus seen to be identical to convolution with the
maximum and minimum rank masks, which operate like the median mask. The neighbor-
hood around each pixel and the pixels are ordered by rank. If the center pixel is replaced
by the maximum value in the neighborhood, grayscale dilation occurs. If the center pixel
is replaced by the minimum value in the neighborhood, grayscale erosion occurs. And if
the center pixel is replaced by the median value in the neighborhood, median filtering
occurs (Fig. 9.34).

Grayscale opening and closing have the same form as their binary counterparts, i.e.
grayscale opening is grayscale erosion followed by grayscale dilation, and grayscale
closing is grayscale dilation followed by grayscale erosion:

Open ¼ MaxðMinðImageÞÞ (9:5a)

Close ¼ MinðMaxðImageÞÞ (9:5b)

Opening a grayscale image with a circular structuring element can be viewed as having
the structuring roll under the profile of the image pushing up on the underside: the result
of the opening is the surface of the highest points reached by any part of this rolling ball
(Fig. 9.35). Conversely, grayscale erosion can be viewed as the rolling ball traversing the
image profile and pressing down on it, with the result being the surface of the lowest
points reached by any part of the rolling ball.

Properties such as duality and idempotence also apply to the grayscale operators.

9.3.1 Applications of grayscale morphological processing

Non-linear processing is often used to remove noise without blurring the edges in
the image: recall how the median mask out-performed the linear averaging mask in
removing salt-and-pepper noise. Morphological processing is often used because of its
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Figure 9.34 Schematic showing pixels in a 3 × 3 neighborhood being ranked, as a prelude to replacing the
center pixel by the maximum, median or minimum value. Each option corresponds to grayscale
dilation, median filtering and grayscale erosion, respectively.

296 Morphological image processing



ability to distinguish objects based on their size, shape or contrast, namely whether they
are lighter or darker than the background. It can remove certain objects and leave others
intact, making it more sophisticated at image interpretation than most other image
processing tools.

Grayscale opening smoothes an image from above the brightness surface, while
grayscale closing smoothes it from below. They remove small local maxima or minima
without affecting the gray values of larger objects. Grayscale opening can be used to
select and preserve particular intensity patterns while attenuating others. Figure 9.36
illustrates the effect of grayscale opening with a flat 5 × 5 square structuring element.
Bright features smaller than the structuring element are greatly reduced in intensity,
while larger features remainmore or less unchanged in intensity. Thus the fine-grained hair
and whiskers in the original image are much reduced in intensity, while the nose region is
still at much the same intensity as in the original. Note that the opened image does have a

(i)

(ii)

(iii)

(iv)

(v)

Figure 9.35 (i) A grayscale image profile; (ii) positions of rolling ball for opening; (iii) result of opening;
(iv) positions of rolling ball for closing; (v) result of closing. (After Gonzalez and Woods
(2002).)
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more matt appearance than before since the opening has eliminated small fluctuations in
texture.

Similarly, opening can be used to remove “salt noise” in grayscale images. Figure 9.37
shows an image containing salt noise, and the result of opening with a 3 × 3 square

(i) (ii)

Figure 9.37 (i) Original image with “salt” noise and (ii) after grayscale opening with a flat 3 × 3 square
structuring element.

(i) (ii)

Figure 9.36 (i) Original image and (ii) after grayscale opening with a flat 5 × 5 square structuring element
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structuring element. The noise has been entirely removed with relatively little degrada-
tion of the underlying image.

A sequential combination of these two operations (open–close or close–open) is
referred to as morphological smoothing and can be used to remove “salt-and-pepper”
noise (see Activity 9.8).

In images with a variable background it is often difficult to separate features from the
background. Adaptive processing is a possible solution. An alternative solution is
so-called morphological thresholding, in which a morphologically smoothed image is
used to produce an image of the variable background which can then be subtracted from
the original image. The process is illustrated in Figure 9.38. Activity 9.9 contains several
practice images.

Morphological sharpening can be implemented by the morphological gradient, MG,
operation:

MG ¼ 1

2
ðMaxðImageÞ �MinðImageÞÞ (9:6)

The effect of the morphological gradient on a one-dimensional gray-level profile is
shown in Figure 9.39. The edges of the original image are replaced by peaks.

If a symmetrical structuring element is used, such sharpening is less dependent on edge
directionality than using sharpening masks such as the Sobel masks.

The morphological top hat transformation, TH, is defined by

TH ¼ Image� OpenðImageÞ (9:7)

(i) (ii)

(iii)

Figure 9.38 (i) Image of text on variable background; (ii) morphological thresholding produces variable
background; (iii) subtraction of (ii) from (i) to separate text.
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It is the analog of unsharp masking, and is useful for enhancing detail in the presence
of shading.

In local contrast stretching the amount of stretching that is applied in a neighborhood
is controlled by the original contrast in that neighborhood. It is implemented by

G ¼ A�MinðAÞ
MaxðAÞ �MinðAÞ � scale (9:8)

The Max (dilate) and Min (erode) operations are taken over the structuring element:
“scale” is a small number. This operation is an extended version of the point operation for
contrast stretching presented in Equation (5.10).

(i)

(ii)

(iii)

Pixel
value

Distance

(iv)

Figure 9.39 (i) Profile of gray-level image; (ii) profile of dilated image; (iii) profile of eroded image;
(iv) profile of morphological gradient. (After Baxes, 1994.)
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Granulometry is the name given to the determination of the size distribution of
features within an image, particularly when they are predominantly circular in shape.
Opening operations with structuring elements of increasing size can be used to cons-
truct a histogram of feature size, even when they overlap and are too cluttered to enable
detection of individual features. The difference between the original image and its
opening is computed after each pass. At the end of the process, these differences are
normalized and used to construct a histogram of feature-size distribution. The
resulting histogram is often referred to as the pattern spectrum of the image (Fig. 9.40
and Activity 9.10).

Computer-based activities

Activity 9.1 Neighborhood shapes
Open the image deltaim, which has a single white (“ON”) pixel in the center of a

2562 image, in ImageJ. Using Plugins/Ch.9Plugins/Morpho plugin, set the
operation to Max (equivalent to dilation), the number of iterations to 1 and the
connectivity to 8. Repeat the dilation on the result, and then dilate again, and
again. Observe how the point is dilated to show the neighborhood, using chess-
board distances. Repeat with connectivity set to 4: observe how the 4-connected
neighborhood is built up from city-block distances. The neighborhood shapes
represent PSFs of different widths. Starting from deltaim, dilate using
4-connectivity, then 8-connectivity, then 4-connectivity, and so on. Note the
shape of the neighborhood. What shape would result from Euclidean distances
if it were possible to implement such a scheme? Which of the three schemes
tested is closest to Euclidean?
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Figure 9.40 (i) Image containing features of different size and (ii) the histogram of feature-size distribution.
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Activity 9.2 Applications
Open box in ImageJ. Dilate the image using Process/Binary/Dilate, and subtract

the original image (using Process/ImageCalculator) from the result to obtain
a one-pixel wide outline. You can also get edges by subtracting an eroded image
from the original: the edges in both these images are one pixel shifted from each
other. Repeat the outlining process using mri.

Open objects and threshold the image (Image/Adjust/Threshold…). Note the
gray-level histogram. A threshold between ~50 and ~80 separates the darker
objects from the lighter background, but the objects remain connected in the
thresholded image. Note that reducing the threshold value does not disconnect
the objects: instead some of the objects begin to disappear. Why is this? It is often
useful to smooth an object with a small (e.g. 3 × 3) median mask, which avoids
blurring the edges, prior to thresholding. After choosing the threshold, apply it to
the image (Process/Binary/MakeBinary) to obtain a binary image (check its
histogram usingAnalyze/Histogram). The objects in the resulting binary image
can be disconnected using erosion (Plugins/Binary/Erode). The objects them-
selves are reduced in size, and you might then consider increasing them to their
former size approximately by dilating them by the same number of iterations which
it took to separate them.

Try to separate the individual cells in the image cells. Threshold and binarize as
before. The cells are black on a white foreground: invert the image (Edit/Invert)
to change to the more conventional situation of white (foreground) objects on a
black background. Use erosions to disconnect the cells, but note that they become
smaller and that the internal holes grow. You need to try to balance the erosions
with dilations in an order that optimally disconnects the cells but preserves as much
of their shape as possible. Determine whether 4-connectivity or 8-connectivity is
better for this particular image.

Now try to separate the individual spots in the image spots.
Activity 9.3 Constrained/conditional dilation
Open cermet in ImageJ, smooth it slightly (Process/Filters/Mean… and use a

radius = 1), threshold it (Image/Adjust/Threshold) and save the result as
mask. Make a duplicate (Image/Duplicate …) of this image, erode it four
times (Process/Binary/Options, set to 4 iterations, then Process/Binary/
Erode) and save the new result as seed. Make a duplicate of seed and dilate
it ten times (Process/Binary/Options, set to 10 iterations, then Process/
Binary/Dilate). Note how the objects in the resulting image have grown much
larger than those in the original thresholded image, mask.

Conditionally dilate (Plugins/Ch.9 Plugins/BinaryConditionalDilate) the
seed image ten times with seed as the seed image and the thresholded image,
mask, as the mask image, and the number of iterations set to 10. Compare the
result with the earlier result using (unconditional) dilation: the objects in the
(conditionally) dilated image are not allowed to grow bigger than their size in
the mask image.
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Delete all the open images and record all the previous steps in a macro. (UsePlugins/
Macros/Record…, name the macro ConDilate, and proceed to work through
the processing steps as before. Observe how they are recorded. When you have
finished, click “Create.”) The macro can be re-run at any time by Plugins/
Macros/Run… and choosing CondDilate.txt.

Activity 9.4 Opening as a shape detector
Open shapes in ImageJ, and use the cursor to find the diameter of the circles. Open

Plugins/Ch.9Plugins/TeacherOpen and choose “Disk” as the type of struc-
turing element, and a size just smaller than the diameter of the smallest circles.
(“Square” uses an N8 neighborhood, “Cross” uses N4 and “Disk” uses a structuring
element as close to a circle as you can get using a square matrix.) Observe that the
resulting image contains just the circles, i.e. you have used binary opening as a
shape detector.

Open mixed cells. The image contains two kinds of cell: small black ones and
larger gray ones. Threshold the image (Image/Adjust/Threshold …) to sepa-
rate the cells from the background. Use a circular structuring element (Plugins/
Ch.9 Plugins /Teacher Open) to remove the small cells and retain the larger
cells. You should be able to do this fairly successfully by choosing an appropriate
size of structuring element. (Note that it is not possible to isolate the small cells
directly using this method.)

Activity 9.5 Applications of closing and opening
Open holes in ImageJ. Find the diameter of both the small holes and the large holes

in the image using the cursor. Use Plugins/Ch.9Plugins/TeacherClose with
an appropriate structural element to eliminate the smaller holes.

Open telephone and threshold it (Image/Adjust/Threshold …). The gray-
level histogram is bimodal, showing two regions: the region with the lower pixel
values roughly corresponds to the (dark) telephone receiver, and the other region
corresponds to the background. Set the left-hand threshold to zero and the
right-hand threshold to mid-way between the two regions. Note that the resulting
thresholded image includes the dark shadows under the telephone, and that some
pixels within the telephone appear white because they reflected more of the
illuminating light. You can vary the right-hand threshold to minimize these
effects. If you increase the threshold value the white area shrinks but the shadow
area expands, and vice versa if you reduce the threshold value. Choose a value
just below the mid-way value to minimize the shadow effect somewhat, and click
“Apply.” Since we consider the dark telephone as the object of interest, we do an
opening to try to clean it up; remember that opening and closing are duals of each
other. Use Plugins/Ch.9 Plugins/Teacher Open with a circular structuring
element of size 9 pixels. Observe the result. Try to improve on it by using other
sizes, or by using the “cross” structuring element (shaped like a “plus” sign) and
various sizes.

Activity 9.6 Hit-or-miss transform
Open rectangle in ImageJ and use the hit-or-miss transform (Plugins/Ch.9

Plugins/BinaryHitorMiss) with a suitable structuring element (e.g.
212
011
002
, where
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0 indicates black, 1 is white and 2 is used to denote “don’t care”) to detect corners
in the image. Choose 90° rotations and check white foreground. The result should
be the four vertices of the rectangle.

Open binaorta, and use the hit-or-miss transform with a structuring element of
000
111
111

and no rotations. Observe the result, which shows the positions at which this
pattern was matched.

We would like to be able to detect junction points, either bifurcations (splittings)
or vessel crossings, at all orientations in this image. Experiment with diff-
erent structuring elements to try to achieve this, making use of the 45° rotation
feature in the plugin. A limitation is that the plugin only uses 3 × 3 structuring
elements.

Activity 9.7 Thinning and skeletonization
Open rectangle in ImageJ. The built-in skeletonization within ImageJ is not very

reliable: invert the original image (Edit/Invert) and skeletonize it (Process/
Binary/Skeletonize).

Instead use a macro that makes use of an alternative binary thinning plugin. Open
rectangle and run (Plugins/Macros/Run) the macro skeleton1.txt:
the result is the 8-connected skeleton. Repeat with the macro skeleton3.txt
to obtain the 4-connected skeleton. Repeat using shape1, shape2 and
box2.

Open telephone and smooth it (Process/Smooth) to reduce noise, which can
confound successful thresholding. Threshold it (Image/Adjust/Threshold),
minimizing the shadows; binarize the result (Process/Binary/Make Binary)
and invert it (Edit/Invert). Open it (Process/Binary/Open) to remove the
black holes in the white object, and then run (Plugins/Macros/Run) the macro
skeleton1.txt. Prune the spurs in the resulting skeleton by stages using
Plugins/Macros/Run and the macro Prune1.txt as often as required, or
run PruneAll.txt to prune until convergence.

Skeletonization can be used to find the center line of blood vessels. Open angio1, an
angiogram, and angio2, the image after thresholding. Binarize angio2
(Process/Binary/Make Binary) and invert it (Edit/Invert). Run the
8-connectivity skeletonization macro (skeleton1.txt), followed by the
stage-by-stage pruning (Prune1.txt). Compare your result with angio3.

Activity 9.8 Morphological smoothing
Open salt and pepper in ImageJ, and perform a grayscale opening (Plugins/

Ch.9 Plugins/Teacher Open) with a disk-shaped (circular) structural element
of size 3 pixels. Note how the “salt” is removed from the image. Close this
resulting image (Plugins/Ch.9Plugins/TeacherClose) with a circular struc-
tural element to remove the “pepper.” Compare the final result with mri, the
original image before salt-and-pepper noise was added.

Activity 9.9 Morphological thresholding
Open image in ImageJ. The generally darker text appears on a lighter, but variable,

background. However, simple thresholding (Image/Adjust/Threshold …) is
unable to separate the text from the background: try it!

304 Morphological image processing



Adaptive processing is a possible solution. Use Plugins/Ch.9 Plugins/
Adaptive Threshold and try different parameters. (A neighborhood/mask
size of 11, constant of 3, and mean thresholding gives a reasonable result.) The
text is separated from the variable background but the grid lines remain. They can
be removed by opening Process/Binary/Make Binary then Process/
Binary/Open.

Morphological thresholding is an alternative solution. Use a sufficiently large struc-
turing element and a close–open (Plugins/Ch.9 Plugins/Teacher Close fol-
lowed by Plugins/Ch.9Plugins/TeacherOpen and a circular disk of size 15,
say) to smooth out both the dark and light objects in the image, and produce an
image of the variable background which can then be subtracted (Process/Image
Calculator … using “Subtract’ and “32-bit Result”) from the original image.
This is similar to the effect of Process/Subtract Background; try different
parameter values.

Use these different techniques on yeast, uneven, sonnet and the two mammo-
graphic images lcc (a left cranio-caudal view) and rcc (a right cranio-caudal
view).

Activity 9.10 Granulometry
Open cermet in ImageJ, and start Plugins/Ch.9 Plugins/Granulometry.

Choose the minimum and maximum radii as 0 and 20 pixels, respectively, and the
step size as 1 pixel; check “yes” to view intermediate images. The density distribu-
tion or pattern spectrum takes a few iterations before it appears. What is the radius of
the predominant particles within this image?

Exercises

9.1 Find the length of the shortest path from (a) (1, 1) to (5, 3) and (b) (1, 6) to (3, 1) using
(i) 4-connectivity and (ii) 8-connectivity.

9.2 What is the difference between the result of opening performed once and twice?
What is idempotency?

9.3 Sketch the structuring elements required for the hit-or-miss transform to locate (i)
isolated points in an image, (ii) end points in a binary skeleton and (iii) junction
points in a binary skeleton. Several structuring elements may be needed in some
cases to locate all possible orientations.

9.4 How can the hit-or-miss transform be used to perform erosion? How can the hit-
and-miss transform, together with the NOT (or inverse) operation, be used to per-
form dilation?

9.5 If an edge detector has produced long lines in its output that are approximately x
pixels thick, what is the longest length spurious spur (prune) that you could expect
to see after thinning to a single pixel thickness? Test your estimate on some real
images. Hence, approximately how many iterations of pruning should be applied
to remove spurious spurs from lines that were thinned down from a thickness of x
pixels?
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9.6 Sketch the skeleton of (i) a square, (ii) an equilateral triangle and (iii) a circle.
9.7 How can the medial axis transform be used to reconstruct the original shape of the

region it was derived from?
9.8 What shape and size of structuring element would you need to use in order to detect

just the horizontal lines in Figure E9.1?

9.9 The features in the image shown in Figure E9.2(i) are flawed by small gaps, which
have been removed in the image shown in Figure E9.2(ii). What processing opera-
tion would achieve this result? What size and shape of structuring element is
required?

Figure E9.1
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9.10 What is (i) the skeleton and (ii) the medial transform of Figure E9.3?

9.11 Which distance metric is used to obtain the distance transform in Figure 9.22?
9.12 Grayscale dilation and erosion are generalizations of binary dilation and erosion.

Describe how they are implemented.

Figure E9.3

(i) (ii)

Figure E9.2
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9.13 What is the top hat transformation and when is it used? Explain how the top hat
transformation can help to segment dark characters on a light, but variable, back-
ground. Draw a one-dimensional profile through an image to illustrate your
explanation.

9.14 Why is finding the approximate convex hull using thickening so slow?
9.15 What would be an effective way to remove “pepper” noise in a grayscale image?

Explain.
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10 Image segmentation

Overview

Image segmentation is a broad and active field, not only in medical imaging, but also in
computer vision and satellite imagery. Its purpose is to divide an image into regions
which are meaningful for a particular task. Various methods and approaches are used; the
choice of a particular method depends on the characteristics of the problem to be solved
and its place in a wider image analysis strategy. Segmentation is an essential step prior to
the description, recognition or classification of an image or its constituents. There are two
major approaches – region-based methods, in which similarities are detected, and
boundary-based methods, in which discontinuities (edges) are detected and linked to
form boundaries around regions. In order to develop robust interpretation systems, it is
important to use as much relevant a priori information as possible during segmentation.

Learning objectives

After reading this chapter you will be able to:

� identify the main techniques used in region-based and boundary-based image
segmentation;

� discuss the advantages and disadvantages of the different techniques;
� choose the most appropriate technique for a particular image;
� explain the basis for optimal segmentation;
� distinguish between bottom-up and top-down approaches;
� describe the algorithms for boundary-based segmentation;

� outline how the motion of an active contour (snake) is determined by an energy
function, and distinguish between internal and external energy;

� illustrate the use of the morphological watershed.

10.1 What is segmentation?

Segmentation is the partitioning of an image into meaningful regions, most frequently
to distinguish objects or regions of interest (“foreground”) from everything else



(“background”). In the simplest cases, there would be only these two classes (foreground
and background) and the segmented image would be a binary image. Segmentation is used,
for example: for the detection of organs, such as the brain, heart, lungs or liver in CTorMR
images; to distinguish pathological tissue, such as a tumor, from normal tissue; and in
treatment planning. Psuedocolor can be added to the original image based on the extent of
the segmented regions (Fig. 10.1). The most basic attribute used in defining the regions is
image gray level or brightness, but other properties such as color or texture (Appendix C)
can be used. Segmentation is often the first stage in pattern recognition systems; once the
objects of interest are isolated from the rest of the image, certain characterizing measure-
ments could be made (feature extraction), and this could be used to classify the objects into
particular groups or classes.

There are many segmentation approaches, and they can be classified according to
both the features and the technique used. The features include gray values (bright-
ness), texture and gradient magnitudes. Segmentation techniques can be classified as
either contextual or non-contextual. Non-contextual techniques ignore the relation-
ships that exist between features in an image; pixels are simply grouped together on
the basis of some global attribute, such as gray level. Intensity-based thresholding,
where each pixel is assigned to a particular region based on its gray value, is a
non-contextual technique. Contextual techniques additionally exploit the relation-
ships between image features. Thus, a contextual technique might group together
pixels that have similar gray levels and are close to one another or have similar
gradient values. Contextual techniques include: region-based techniques, such as
region growing, where connected regions are found based on some similarity of the
pixels within them; boundary-based techniques, where edge-based methods are used
to delineate the boundaries between regions; and other methods, such as active contours
and watershed segmentation.

Figure 10.1 A characteristic shading has been added to the brain following segmentation. The three images
show (from left to right) axial, coronal and saggital planes. A common point is marked in each
image. See also color plate.
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10.2 Thresholding

Thresholding according to intensity/brightness is a simple technique for images which
contain solid objects on a background of different, but uniform, brightness. Each pixel is
compared to the threshold: if its value is higher than the threshold, the pixel is considered
to be “foreground” and is set to white, and if it is less than or equal to the threshold it is
considered “background” and set to black. The success of thresholding depends critically
on the selection of an appropriate threshold (Fig. 10.2).

In the ideal case the gray-level histogram comprises two separate distributions,
representing “foreground” objects and “background,” with no overlap, and a single global

(i) (ii)
0 255

(iii) (iv) (v)

Figure 10.2 (i) An image, (ii) its histogram, and the image thresholded with a threshold that is (iii) too high,
(iv) too low and (v) just right.
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threshold, T, can be taken anywhere on the valley floor separating them. However, real
images generally have a bi-modal gray-level histogram (Fig. 10.3) resulting from the
overlapping of the two underlying distributions. Taking a value for the threshold at the
bottom of the valley between the peaks or modes (between T1 and T2) is the “conven-
tional” threshold, which minimizes the sensitivity to small errors in selecting the
threshold.

A number of conditions can conspire to make global thresholding difficult. Poor
image contrast can make it difficult to resolve foreground from background, resulting
in overlapping peaks. A background of varying intensity can make it difficult or
impossible to choose a single threshold that works well for the entire image. Poor spatial
resolution, variable illumination and objects with varying levels of brightness can add to
the difficulty. The variety of conditions under which segmentation is to be performed
requires different approaches, some of which are described below, but often the decision
on which approach is best can only be made by experimentation with the specific image.

10.2.1 Optimal thresholding

The bottom of the valley between peaks in the gray-level histogram is not the optimal
threshold. Optimal thresholding considers the histogram of an image to be a weighted
sum of two (or more) probability densities. The threshold is then set as the gray level
which results in the smallest number of pixels being misclassified, i.e. background
pixels being classified as foreground and vice versa. This corresponds to the intersec-
tion of the two normal distributions, and is not identical to the bottom of the valley
between the two peaks, which is the conventional threshold (Fig. 10.4). (It is identical
to the situation in diagnostic testing, when both normal and diseased patients produce a
range of normally distributed test scores which overlap to some degree (Appendix B,
Fig. B.8).)

Figure 10.5(i) shows a noisy image. The optimal threshold and conventional threshold are
marked on its histogram (Fig. 10.5(ii)). Thresholding at the optimal threshold (Fig. 10.5(iii))
produces a better result than thresholding at the conventional threshold (Fig. 10.5(iv)),

pixel values
T1 T2

A

number
of

pixels

Figure 10.3 A bi-modal histogram showing the minimum sensitivity to threshold placement (between T1
and T2) at the valley between the peaks. The pixels in A, above the threshold (either T1 and
T2) comprise the “foreground.”
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i.e. one with fewer pixels misclassified, than thresholding at the conventional (bottom
of the valley) threshold. Subsequent erosion (Fig. 10.5(v)) and dilation (Fig. 10.5(vi))
can be used to clean up the thresholded image.

Since noise can result in a misclassification of pixels by shifting them to the
“wrong” side of a threshold, images are often smoothed using an averaging or median
mask prior to thresholding to mitigate this effect. Figure 10.6(i) shows the effect of
smoothing the image from Figure 10.5(i) using a median mask. Its resulting histogram
(Fig. 10.6(ii)) is much more separable. In this case a threshold can be chosen anywhere
on the valley floor to give a segmented image (Fig. 10.6(iii)) with very few misclassi-
fied pixels.

There are a number of approaches to implementing optimal thresholding. The general
methodology is to consider the pixels, foreground and background, as belonging to two
classes or clusters. The goal is to pick a threshold such that each pixel on each side of the
threshold is closer in value to the mean of the pixels on that side of the threshold than the
mean of the pixels on the other side of the threshold. The algorithms proceed automa-
tically, without user intervention, and are said to be unsupervised.

The Otsu method describes the gray-level histogram of an image as a probability
distribution, so that

pi ¼ ni=N (10:1)

where ni is the number of pixels with gray value i andN is the total number of pixels in the
image, so that pi is the probability of a pixel having gray value i. If we threshold at level k,
we can define

!ðkÞ ¼
Xk
i¼0

pi (10:2a)

(i)

Optimal
threshold

Optimal
threshold

Optimal

Optimal

Conventional

Conventional
???

Conventional
threshold

Optimal Optimal

(ii)

Figure 10.4 (i) Gray-level histograms approximated by two normal distributions, where the intersection
represents the optimal threshold. (ii) The resulting optimal and conventional thresholds in the
combined histogram. (From SONKA/HLAVAC/BOYLE. Image Processing, Analysis, and
Machine Vision, 3E. © 2008 Brooks/Cole, a part of Cengage Learning, Inc. Reproduced by
permission. www.cengage.com/permissions.)
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(iii) (iv)

(v) (vi)

Figure 10.5 (i) An 8-bit image and (ii) its histogram with optimal threshold (121) and conventional threshold
(137) marked. (iii) After thresholding using the optimal threshold (121); (iv) after thresholding
using the conventional threshold (137); (v) after eroding the image in (iii); (vi) after dilating
the image in (v).

(i) (ii)
121 137
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�ðkÞ ¼
XL�1

i¼kþ1

pi (10:2b)

where L is the number of gray levels (e.g. 256, for an 8-bit image). By definition

!ðkÞ þ �ðkÞ ¼
XL�1

i¼0

pi ¼ 1 (10:3)

We would like to find k to maximize the difference between ω(k) and μ(k). This can be
done by first defining the image average as

�T ¼
XL�1

i¼0

ipi (10:4)

124
(ii)(i)

(iii)

Figure 10.6 (i) Smoothed image; (ii) its histogram; (iii) after thresholding (at 124).
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and then finding the value of k which maximizes

ð�T!ðkÞ � �ðkÞÞ2
!ðkÞ�ðkÞ (10:5)

which effectively maximizes the between-class variance (or minimizes the within-class
variance). Thus k is chosen to maximize the separation of two classes (“foreground” and
“background”), or alternatively minimize their spread, so that their overlap is minimized.
(Appendix B, Section B.4, has further details.) The method is quite general and can be
applied to features other than the brightness. The optimal threshold which it finds is
stable, based as it is on integration of the gray-level histogram (a global property) rather
than its differentiation (a local property such as the valley). The between-class variance
is always smooth and unimodal, which makes it easy to find the maximum. When the
distributions are constrained to be normal (i.e. Gaussian) the method is equivalent to
mixture modeling.

Maximum entropy thresholding is very similar to Otsu’s method except rather than
maximizing the between-class variance, it maximizes the between-class entropy. Entropy
is a measure of the uncertainty of an event taking place (Section 5.1.2), and can be
derived from the gray-level histogram.

Optimal thresholding can be implemented iteratively by the isodata (iterative self-
organizing data analysis technique algorithm) method. The steps are as follows:

(i) threshold the image using the mean of the two peaks or the mean pixel value, T0;
(ii) calculate the mean value of the pixels below this threshold, μ1, and the mean of the

pixels above this threshold, μ2;
(iii) threshold the image at a new threshold, Ti= (μ1 + μ2)/2;
(iv) repeat steps (ii)–(iii) until Ti – Ti−1 ≤Δ (where the change, Δ, can be defined in

several different ways, either by measuring the relative change in threshold value or
by the percentage of pixels that change sides (foreground to background or vice
versa) between iterations).

The isodata algorithm is essentially the k-means clustering algorithm used in pattern
recognition (Section 11.2.4) applied to two clusters. From a statistical point of view, the
cluster means obtained by k-means clustering or by the isodata variant can be interpreted
as the Maximum Likelihood Estimates (MLE) if each cluster comes from a normal
distribution with different means but identical variance and zero covariance (Section
11.2.2). Indeed the algorithms work well if the spreads of the individual distributions are
approximately equal, but they do not perform well where the distributions have differing
variances or are far from normal in shape.

Figure 10.7 shows the results of different optimal thresholding algorithms: since the
results depend on the individual histograms, the choice of the most appropriate algorithm
differs with each particular image. Activity 10.1 illustrates the use of the different
thresholding algorithms.
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Multi-thresholding or classification (Chapter 11) refers to problems where there are
more than two classes and several thresholds are required. This is typically used when
multiple images of the same scene are available, e.g. T1-weighted, T2-weighted and
proton-density-weighted MRI images of the same subject. Multiple features (e.g.
brightness, texture, gradient) can be measured in each image. Figure 10.8 shows an
MRI image of the brain segmented automatically into five different classes, corre-
sponding to known anatomical regions (white matter, gray matter, cerebral spinal
fluid, edema (swelling due to excess fluid) and tumor) using multi-channel input.
Typically psuedocolor would be added to the multi-thresholded result in order to

(i) (ii)

Figure 10.7 (i) An MR angiography image showing the aorta and other blood vessels: segmented using
(ii) mixture modeling, (iii) Otsu thresholding, (iv) isodata and (v) maximum entropy.
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distinguish the regions more readily. The Otsu method can be extended easily to
multi-thresholding.

Multi-spectral or vector images refers to images in which a number of separate
measurements are available for each pixel in the image. Each pixel is thus “vector
valued.” Examples of vector images are: colored images, for which each pixel has red,
green and blue components in an RGB image or hue, saturation and intensity in an HSI
image; dual-energy x-ray images, which have two different values for each pixel as a
result of different attenuations at the different x-ray energies used; and MRI images,
where T1, T2 and proton density values at the same pixel can be obtained. Additionally, a
CT image and an MRI image which have been registered can be treated as a fused vector

(iii) (iv)

Figure 10.7 (cont.)
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image. Such images are very powerful because multiple features (e.g. brightness, texture,
gradient) can be measured in each of the individual channels or bands.

10.2.2 Adaptive thresholding

Sometimes it is not possible to segment an image with a single global threshold. This
might happen in an image with a varying background, such as the image in Figure 10.9,
where the background is darker at the bottom and left-hand side of the image. A profile
along the dark central line in Figure 10.9(i) shows that the background varies consider-
ably (Fig. 10.9(ii)). No single threshold (e.g. T1 or T2) can successfully separate the

(v)

Figure 10.7 (cont.)
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objects from the varying background. One way around this problem would be to subtract
(or divide) the image by an image of the background alone, either obtained independently
or obtained from the image itself by blurring it (Section 6.1.2). Alternatively adaptive
thresholding could be used.

(i) (ii)

Figure 10.8 (i) Axial slice of MRI brain image and (ii) automatic segmentation into five classes, including
a tumor. The segmentation was done in three dimensions. (Courtesy: Professor Guido Gerig,
Department of Computer Science, University of North Carolina at Chapel Hill.) See also
color plate.

Distance (pixels)

2550

T1

T2

Gray
value

(i) (ii)

Figure 10.9 (i) An image and (ii) a profile taken along the dark vertical line drawn on the image; global
thresholds such as T1 or T2 are not able to separate objects (foreground) from background.
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Instead of applying a single global threshold to all pixels in the image, adaptive
thresholding changes the threshold dynamically over the image. In local adaptive thresh-
olding, each pixel is considered to have an n× n neighborhood around it from which a
threshold value is calculated (from the mean or median of these values) and the pixel set
to black or white, according to whether it is below or above this local threshold, TL. The
size of the neighborhood, n, has to be large enough to cover sufficient foreground and
background pixels so that the effect of noise is minimal, but not too large that uneven
illumination becomes noticeable within the neighborhood. Often the technique is even
more successful when the local threshold, TL, is chosen as

TL ¼ fmean or mediang � C (10:6)

where C is a constant. The method is not unsupervised since values for the parameters
n and C must be chosen. Figure 10.10 compares the performance of local adaptive
thresholding and Otsu thresholding on an image with a variable background.

Adaptive thresholding is an alternative to subtracting out the background (Activity 6.1)
or using morphological thresholding (Activity 9.10). You can practice the method in
Activity 10.2.

10.3 Region-based methods

Region-based methods find connected regions based on some similarity of the pixels
within them. The objective is to produce connected regions that are as large as possible

(i) (ii)

0 255

Figure 10.10 (i) Original (256 × 256) image and (ii) its histogram; (iii) segmented image of (i) using
local adaptive thresholding (with n= 45, C= 3); (iv) segmented image of (i) using Otsu
thresholding.
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(i.e. produce as few regions as possible), allowing for some flexibility within each region.
However, if we require that the pixels in a region be too similar, we may over-segment
the image, and if we allow too much flexibility we may merge what should be separate
objects. The goal is to find regions that correspond to objects as a person sees them,
which is not an easy goal.

Region growing is a bottom-up procedure that starts with “seed” pixels, and then
grows regions by adding neighboring pixels that have similar properties (e.g. bright-
ness, color, texture, gradient, geometric properties) to the seed. Connectivity (4- or 8- )
is used to define which are neighboring pixels. We can specify a variance for the
property; region growing stops when a pixel is encountered that is not within this
variance. The seeds can be chosen interactively (Activity 10.3), although automatic
segmentation is preferable. Figure 10.11 shows a region growing from a single seed
point.

Starting with a particular seed pixel and letting this region grow completely before
trying other seeds biases the segmentation in favor of the regions which are segmented
first. This can have several undesirable effects: the current region dominates the growth
process and ambiguities around the edges of adjacent regions may not be resolved
correctly, different choices of seeds may give different segmentation results and
problems can occur if the (arbitrarily chosen) seed point lies on an edge. One way to
counter these problems is to scatter seed points randomly around the image and grow
from several seed points simultaneously. It is usually necessary to follow up with a
merge process to merge regions with different seed points but similar properties,
otherwise the segmentation result is highly dependent on the random location of the
seed points.

(iii) (iv)

Figure 10.10 (cont.)
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Figure 10.12 shows the segmentation of a three-dimensional MRI image. The image
was segmented using seven seed points placed in different anatomical regions (white
matter, gray matter, skull, left eye, left lens, right eye and right lens).

Region growing techniques are generally better in noisy images where edges are
extremely difficult to detect. They are particularly useful with images which have
multi-modal histograms.

Figure 10.12 Segmentation of a three-dimensional MRI image by region growing. The white and gray matter
regions were combined before three-dimensional rendering (Chapter 12). See also color plate.

(i) (ii) (iii) (iv) (v)

Figure 10.11 (i) Image with seed point marked within aortic arch at top center of image; (ii)–(v) region growing
from seed (to connected pixels with values different by 50, 100, 150 and 200).
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10.4 Boundary-based methods

Boundary-based methods are based on finding pixel differences rather than pixel simila-
rities. The goal is to determine a closed boundary such that an inside (the object or
foreground) and an outside (the background) can be defined.

10.4.1 Edge detection and linking

Edges in an image are detected by using a gradient operator such as the Sobel operator
(Section 6.4.2), and then thresholding the magnitude of the gradient image. The strongest
edges are distinct, but some weaker edges appear broken (Fig. 10.13); noisy images
compound the problem, resulting in spurious edges (Fig. 10.11). Smoothing the noisy
image reduces the spurious edges, but also widens the edges and removes some weak
edges completely (Fig. 10.12).

Some linking of the edges to form a connected boundary is needed. Adjacent edge
pixels could be linked if they have similar properties, e.g. a similar gradient magnitude
and orientation based on the Sobel results:

(i) (ii) (iii)

Figure 10.13 (i) Original image of retinal vessels; (ii) result of Sobel operator; (iii) after thresholding.

(i) (ii) (iii)

Figure 10.14 (i) Original noisy image of retinal vessels; (ii) result of Sobel operator; (iii) after thresholding.
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rfðx; yÞkkj � rðx0; y0Þkk �j T for some magnitude threshold T (10:7)

�j ðrfðx; yÞÞ � �ðrfðx0; y0ÞÞ j � A for some angular threshold A (10:8)

Once the links are established, the linked edges become the borders. The linked pixels
need to be constrained by, for example, scanning along rows or columns, otherwise
clusters of linked pixels are formed rather than long single-pixel thick chains. Edge
linking is usually followed by post-processing to find sets of linked pixels separated by
small gaps, which can then be filled in.

10.4.2 Boundary tracking

Boundary tracking may be applied to a gradient image or any other image containing
only boundary information. Once a single point on the boundary has been identified,
simply by locating a gray-level maximum, the analysis proceeds by following or tracking
the boundary, assuming it to be a closed shape, with the aim of finding all other pixels
on that specific boundary, and ultimately returning to the starting point before investigat-
ing other possible boundaries. In one implementation, the search for the highest gray-
level pixels continues in broadly the same direction as in the previous step, with
deviations of one pixel to either side permitted, to accommodate curvature of the
boundary (Fig. 10.16).

This simple method is liable to fail under conditions of high noise, when the boundary
makes seemingly random and abrupt changes of direction which cannot successfully be
tracked in this way. Substantial low-pass filtering is needed beforehand to reduce noise,
unless the algorithm used is refined or assisted manually.

Simultaneously tracking both sides of a long, thin object, such as a blood vessel,
requires each tracking to continuously check the other border and becomes difficult when
the object branches or crosses other objects (Sonka et al., 1999). The extension of
boundary tracking to surfaces is complicated.

(i) (ii) (iii)

Figure 10.15 (i) Noisy image of retinal vessels smoothed with a Butterworth filter; (ii) result of Sobel operator;
(iii) after thresholding.
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10.5 Other methods

10.5.1 Active contours

Segmentation of medical images is a difficult task complicated by noise and sampling
artifacts. Often we are looking for an object in an image which is smooth and has a closed
boundary. An active contour or snake is a controlled continuity contour which elastically
snaps around and encloses a target object by locking on to its edges. It is possible to
control the snake through a function called the energy by analogy with physical systems.
The snake is active because it is continuously evolving so as to reduce its energy. By
specifying an appropriate energy function we can make a snake that evolves to have
particular properties such as smoothness. The method can easily be extended to dynamic
image data and three-dimensional image data.

The energy function for a snake is in two parts, the internal and external energies. Thus

Esnake ¼ Einternal þ Eexternal (10:9)

The internal energy depends on the intrinsic properties of the snake, such as its length or
curvature. The external energy depends on factors such as image structure and particular
constraints the user has imposed.

The physical analogy can be extended, and the motion of the snake can be regarded as
being due to simulated forces acting on it to make it reduce its total energy. To design a
snake with specified properties it is normal to work out a suitable energy function and
then calculate the forces needed to reduce it.

If we want the snake to shrink like an elastic band, we need to define an internal energy
that increases with its length. User-defined control points, approximately equally spaced,
specify the starting position of the snake, which should be a reasonable approximation
to its desired position; the internal energy function can be taken as the sum of the
squares of the distances between adjacent control points, to simulate springs which obey

1

2

Figure 10.16 Boundary tracking: find boundary pixel (1); search eight neighbors to find next pixel (2); search
in same direction allowing deviation of one pixel either side; repeat final step until end of
boundary.
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Hooke’s Law connecting the control points. The sum is multiplied by an adjustable
constant, K, corresponding to the strength of the springs. Thus

Einternal ¼ Eelastic ¼ K
XN
i¼1

ðdi;1�1Þ2 (10:10)

where i is the index of the control point with coordinates (xi, yi). Because the snake is a
loop, control point 0 is the same as control point N. The corresponding forces on the ith
control point, obtained by differentiating the energy function, are given by

FiðxÞ ¼ 2Kððxiþ1 � xiÞ � ðxi � xi�1ÞÞ (10:11a)

FiðyÞ ¼ 2Kððyiþ1 � yiÞ � ðyi � yi�1ÞÞ (10:11b)

Such forces pull a control point towards its two nearest neighbors. Geometrically, the
force is towards the average position of the neighbors. Such forces applied to every
control point will pull the snake inwards and will pull the control points into line with one
another, smoothing the snake.

Now we know what forces act on each control point, we have to use them to adjust the
position of the snake. We can implement the dynamics of the snake by moving each
control point by an amount proportional to the force acting on it at each time step. Thus,
the updating equations are given by

xi þ CFiðxÞ ! xi (10:12a)

yi þ CFiðyÞ ! yi (10:12b)

whereC is another user-defined constant, which determines how far the point moves for a
given force. In practice, we calculate the new coordinates for all the points before
updating any of them, i.e. we use the old value of xi, not the new one, to find the shift
in xi+1. Figure 10.17 shows a snake obeying this equation. The elastic force rapidly pulls
the snake into a smooth oval, which keeps contracting. The most outlying points get
pulled in fastest. One or two points start moving outwards because they are pulled into
line with their neighbors before the overall contraction gets to them. After a few iterations
you can also see the trajectories of the control points, which move to be equidistant from

Figure 10.17 Twenty iterations of a snake (red), starting from an outer contour, moving under an internal elastic
function. The trajectories of the control points are shown in green. See also color plate.
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each other. We have simulated a physical system in order to give a computational
structure a desired property.

Other terms could be added, for example to favor a particular shape. Alternatively, if
we wanted the snake to behave like a thin metal strip rather than like an elastic band, i.e. it
should try to be a smooth curve or straight line but should not contract, the energy
function should be defined as the sum of the squared curvatures of the snake measured at
the control points.

Now consider the external energy of the snake, which determines its relationship to the
image. Suppose we want a snake to latch on to bright structures in the image. Then the
external energy function is minus the sum of the gray levels of the pixels covered by
the snake. Reducing this energy function (i.e. making it more negative) will move the
snake towards brighter parts of the image. Thus

Eexternal ¼ Eimage ¼ �k
XN
i¼1

Pi (10:13)

where Pi is the pixel value of the ith pixel and the constant k is user-selected. In this
implementation, the energy is actually only calculated for the pixels which lie under
control points, not under the lines between them. The force that this produces has a rather
simple approximation:

FiðxÞ ¼ k

2
ðPxiþ1;yi þ Pxi�1;yiÞ (10:14a)

FiðyÞ ¼ k

2
ðPx;yiþ1

þ Px;yi�1
Þ (10:14b)

That is, if the pixel in the direction of increasing x is brighter than the pixel in the direction
of decreasing x, then the control point is pulled in the positive x direction, and likewise
for y. In short, the force on the control point is in the direction of the gray-level gradient.
We can demonstrate the effect of this by placing an initial snake in a ramp image
(Fig. 10.18). The snake stays the same shape but wanders in the direction of the brighter
part of the image. To avoid the effects of very local structure, more useful snakes use
a more sophisticated estimate of the gray-level gradient, which averages over more
pixels.

The external energy can have contributions other than the image energy. A constraint
energy, Econstraint, is often included which is determined by constraints applied by the
user. For instance the snake might be attracted to lines or edges or pulled to particular
points as if by springs, or might be repelled by a particular point.

A snake used for image analysis attempts to minimize its total energy, which is the sum
of the internal and external energies. When energies are added their associated forces add
too. Snakes start with a closed curve and minimize the total energy function to deform
until they reach their optimal state (Activity 10.4). In general, the initial contour should
be fairly close to the final contour but does not have to follow its shape in detail: the active
contour/snake method is semi-automatic since it requires the user to mark an initial
contour. The initial contour in Figure 10.19 was well chosen, so the final contour
converged quickly (in about 25 iterations).
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The main advantage of the active contour method is that it results in closed coherent
areas with smooth boundaries, whereas in other methods the edge is not guaranteed to be
continuous or closed. However, conventional snake model algorithms suffer from the
inability to mold a contour to severe concavities in an object and they often generate
unwanted contour loops; more recent loop-free snake algorithms have been developed to
prevent these problems.

Level sets can be used to track changes in a contour as we iterate towards a final
contour, and lets us track contours within a series of images. It describes a contour, C(s),
as an implicit three-dimensional level-set function φ(x, y, t), where the third dimension
is the “level” of φ. The connection between f and C(s) is defined by the additional
requirement that f happens to be identical to C(s) on the 0 level:

Figure 10.18 Twenty iterations of a snake (red), starting from an outer contour, moving under an external
energy function given by Equation (10.13). The trajectories of the control points are shown in
green. See also color plate.

(i) (ii) (iii)

Figure 10.19 (i) Initial contour; (ii) intermediate contour in yellow (initial contour in green); (iii) final contour.
See also color plate.
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φðx; y; 0Þ ¼ CðsÞ (10:15)

Figure 10.20 (top left) shows the shape of a well-behaved boundary contour. Below it,
the red surface is the graph of a level set function φ determining this shape, and the flat
blue region represents the x–y plane. The boundary of the shape is then the zero level set
of φ, while the shape itself is the set of points in the plane for which φ is positive or zero.

In the top row of Figure 10.20 we see a shape changing topology by splitting in two.
It would be difficult to describe this transformation numerically by parameterizing the
contour and following its evolution. On the other hand, if we look at the bottom row, we
see that the level set function merely translates downward. If the zero level set moves in
the normal direction to itself with a speed v, this movement, φt, can be represented by
means of a so-called Hamilton–Jacobi equation for the level set function:

φt ¼ v r�j j (10:16)

This is a partial differential equation which can be solved numerically. Fast Marching
algorithms are used to compute the evolving curve most efficiently.

The level sets model frees us from the need to handle each and every special case of
joining and separating contour lines as we iterate through different contours towards
the final one. It overcomes all the topological hazards because now all contours are
always connected in the third dimension and thus they are continuous functions.
Furthermore, using the level set model we can easily take care of breaking and merging
of contours within a series of images, such as seen in a time sequence of CT or MRI
images (Fig. 10.21).

Figure 10.20 Contours (top row) and their relationship to the level set function, φ. See also color plate.
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10.5.2 Watershed segmentation

Watershed segmentation is a way of automatically separating or cutting apart particles
that touch in a segmented (binary) image when, for example, they need to be counted.

The distance map (Section 9.2.5) of the initial segmented image containing over-
lapping objects (Fig. 10.22(i)) is obtained. It is a grayscale image (Fig. 10.22(ii)),
which is then thresholded at a value high enough to produce objects which are not
touching (Fig. 10.22(iii)) in the final binary output image. The distance transform can be
considered as a three-dimensional image with the gray level representing height.
Thresholding can be then be thought of as a flooding of the topographic surface to a
level that separates the original objects which had become hills in the distance transform.
Watershed segmentation works best for smooth convex objects which do not overlap too
much (Activity 10.5).

A gray-level image can be considered as a topographic surface by considering the pixel
values as heights, and watershed segmentation can be applied directly to it helping to
separate objects that are close together. The tomographic surface is often complemented
initially so that peaks become valleys. We imagine that this surface is then pierced at the
regional minima, and that we immerse the surface slowly in water (Fig. 10.23). Water
starts filling the distinct catchment basins, and dams are built to prevent the merging of
water from adjacent catchment basins. Once the surface is totally immersed in water, the
dams form the watershed lines, which mark the boundaries of the catchment basins and
segment the image into the desired regions.

(i) (ii)

Figure 10.21 Segmentation of (i) CT and (ii) MRI images of the heart using level sets. Each of these images
is part of a time series. The snake is shown in red in (i) and in green in (ii). (Courtesy: Dr. Rene
Vidal, Biomedical Engineering, Johns Hopkins University.) See also color plate.
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Figure 10.24 demonstrates the process. An image (Fig. 10.24(i)) is segmented by
Otsu thresholding to produce an image (Fig. 10.24(ii)) in which several overlapping
features appear as single features. This image is then inverted (Fig. 10.24(iii)), and its
distance transform taken (Fig. 10.24(iv)). The resulting image, considered as a
three-dimensional topology, is then “flooded” to give the watershed lines which are
overlaid on the previously segmented image (Fig. 10.24(v)) to separate the overlapped
features.

(i)

(ii)

(iii)

Figure 10.22 (i) Binary image containing overlapping (touching) objects. (ii) The distance transform. (iii)
Choosing a threshold to produce objects above the threshold which are not touching. (After
Castleman (1996).)
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(i)

(ii)

(iii)

(iv)
Distance

Pixel
value

Figure 10.23 (i) Water begins to fill the complemented image profile. (ii) When two catchment basins meet a
dam is built to separate them. (iii) As the water level rises further dams are built between
catchment basins. (iv) These dams form the watershed lines separating objects from their
neighbors. (After Baxes, 1994.)

(i) (ii) (iii)

Figure 10.24 (i) Original image; (ii) after Otsu thresholding; (iii) after inversion; (iv) after distance transform;
(v) watershed lines overlaid on image (ii).
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Figure 10.25 shows the result of using the watershed transform on a binary image,
which contained some overlapping features. Note that the watershed lines for a binary
image correspond to the “skiz” (skeleton of influence zone) (Section 9.2.5).

Often it is preferable to segment the morphological gradient of an image (Section 9.3.1)
rather than the image itself. Each object is now a low-level depression bounded by peaks
that were the original edges (Fig. 9.39). As water fills the surface, it meets at these peaks,
which are then marked as the watershed lines (Fig. 10.26).

In practice, watershed segmentation often produces over-segmentation due to noise or
local irregularities in the input image (Fig. 10.27). To reduce this it is common to apply
some form of smoothing operation to the input image to reduce the number of local
minima. Even so, objects are often segmented into many pieces, whichmust be merged in
a post-processing step based on similarity (e.g. variance of the pixels of both segments
together).

A major enhancement of the process consists in flooding the topographic
surface from a previously defined set of markers. This prevents over-segmentation
(Fig. 10.28).

(i) (ii)

Figure 10.25 (i) Binary image with overlapping features and (ii) watershed lines (in red) overlaid on the original
image. See also color plate.

(iv) (v)

Figure 10.24 (cont.)
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Computer-based activities

Activity 10.1 Thresholding – comparison of optimal methods
Open angiogram in ImageJ, andmake four duplicate images (Image/Duplicate…).

Threshold each in turn into two classes using the four different optimal algorithms
(Plugins/Ch.10Plugins/Multithresholder). Note the position of the (automati-
cally derived) threshold in each case.

(i) (ii)

(iii) (iv)

Figure 10.26 (i) Original image and (ii) gradient image. (iii) Watershed lines overlaid on the gradient image.
(iv) Watershed lines overlaid on the original image. See also color plate.
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Activity 10.2 Local adaptive thresholding
Open the rice image in ImageJ and observe its gray-level histogram (using

Plugins/Ch.10 Plugins/Live Histogram). The image contains an uneven
background. Use adaptive thresholding (Plugins/Ch.10 Plugins/Adaptive
threshold and choose to display the mean image), trying different values of the
neighborhood size, n, and the constant, C, to obtain an image which separates the

(i) (ii)

Figure 10.27 (i) Image of electrophoresis gel. (ii) Watershed transform of the gradient image. See also color
plate.

(i) (ii)

Figure 10.28 (i) Markers of the blobs and of the background and (ii) marker-controlled watershed of the
gradient image. See also color plate.
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rice grains from the uneven background. (Note: n needs to be at least the size of a
rice grain. Start with n = 45 andC = 3.) Note the separability of the histogram of the
new image, which can be easily segmented with a single global threshold (Image/
Adjust/ Threshold…).

Repeat with the images uneven and sonnet.
Activity 10.3 Region growing
Open mra (which is identical to Fig. 10.5(i)) in ImageJ and invert it (Edit/Invert).

Move the cursor around inside the aortic arch, the curved portion of the large blood
vessel at the top center of the image, and find the (x, y) coordinates of a black pixel
(pixel value = 0) within it to use as a seed, e.g. x = 140, y = 60. Open the region
growing plugin (Plugins/3D Toolkit/Connected Threshold Grower …),
enter the (x, y) coordinates of the chosen seed point, and set the threshold limits
as 0 and 50. This allows the region to grow out to connected points having pixel
values up to 50. Press “OK” to see the region grown from the seed point under
these conditions. Repeat on the original image using an upper threshold of 100,
then 150, and then 200. Note the growth of the region.

Activity 10.4 Snakes
Open mri in ImageJ, and using the freehand tool draw a closed contour around the

brain. Start the snake plugin (Plugins/Ch.10 Plugins/SnakeD); accept the
default values and click “OK” to start. Watch the red snake adjust during each
iteration to close in on the brain, and observe the resulting segmented image.
Repeat, adjusting the parameters, to see whether you can achieve a more accurate
result. Note that the final segmentation depends to some extent on your initial
contour.

Repeat the exercise, drawing your initial contour inside the brain, and watch the snake
iterate outwards.Which produces the better segmentation of this image, the outside
or inside starting contour?

Activity 10.5 Distance transform and morphological watershed
Open circular objects in ImageJ, and threshold it using the Otsu method

(Plugins/Ch.10 Plugins/Multithresholder, choosing “Otsu”). Note that
many of the objects in the image touch each other, which would confound counting
them. Make a duplicate of this image.

Find the distance transform (Process/Binary/DistanceMap) of the thresholded
image, and adjust its contrast (Process/Enhance Contrast, and check
“Normalize”). Show the surface plot (Analyze/Surface Plot, check “Shade”)
to see the surface that fills with water: imagine how the dams are constructed
between catchment basins.

Enable debugging in Edit/Options/Misc … Apply watershed segmentation
(Process/Binary/Watershed) to the thresholded image. The watershed com-
mand creates an animation that shows how the watershed algorithm works. Move
through the frames of the animation and note how the watershed lines have
separated the objects.

Open cermet, and threshold it using the Otsu method (Plugins/Multithresholder,
choosing “Otsu”). Note how several of the objects are elongated as a result of pairs of
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nearly circular objects overlapping. Apply watershed segmentation (Process/
Binary/Watershed) to the thresholded image, and note that most of these coa-
lesced objects have been separated.

Exercises

10.1 What is image segmentation and why might one want to segment an image?
Describe an image segmentation algorithm and explain its advantages and
disadvantages.

10.2 Explain the basis for optimal segmentation using the Otsu method.
10.3 Explain the difference between contextual and non-contextual segmentation

methods.
10.4 What segmentation method is particularly useful for segmenting images that

contain a variable background? Explain the basis of the method and why it works.
10.5 Distinguish between automatic and semi-automatic methods of segmentation,

giving examples of each.
10.6 Design an energy term for a snake to track lines of constant gray value.
10.7 Illustrate the use of the distance transform and morphological watershed for

separating objects that touch each other.
10.8 Explain why the watershed lines of a binary image correspond to the “skiz” lines.
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11 Feature recognition and classification

Overview

Classification involves sorting objects in an image into separate classes, and is often the
final step in a general image analysis process. Automated classification is fundamental to
computer-assisted diagnosis in medical imaging and many other applications, such as
robotic vision and speech recognition. Often the information available to make a decision
is imprecise and frequently the decision procedures are statistical in nature. In such cases
statistical approaches are used and the diagnostic accuracy of classification can be
measured by receiver-operating characteristic (ROC) curves. However, if the fundamen-
tal information is provided by the object structure then structural or syntactic methods are
more appropriate. Recent methods, such as neural networks and genetic algorithms,
borrow from both approaches.

Learning objectives

After reading this chapter you will be able to:

� distinguish between feature recognition and classification;

� identify the sequence of operations in a general classification system;
� recognize features which are robust, discriminating, reliable and independent;
� discuss the function of a training set of images and the difference between supervised
and unsupervised learning;

� outline how the performance of a classifier can be measured;
� explain the concepts of Bayesian classification and the use of discriminant
functions;

� describe non-parametric methods in statistical classification;
� illustrate how Principal Components Analysis (PCA) can be used to provide a more
informative set of features;

� discuss how maximal separability of classes can be obtained using the Fisher
criterion;

� explain how a dendrogram and scree plot are used in hierarchical clustering;
� outline the use of a decision tree in structural classification;
� discuss the applications of classification schemes to diagnostic imaging.



11.1 Object recognition and classification

Classification is often the final step in a general diagnostic process (Fig. 11.1). It involves
sorting objects in an image (or images) into separate classes. Typically the image is
segmented to isolate different objects from each other and from the background, and the
different objects are labeled. A feature extraction step reduces the data by measuring
certain properties or features of the labeled objects. These features (or, more precisely, the
values of these features) are then passed to a classifier that evaluates the evidence
presented and makes a decision as to the class each object should be assigned.

The quality of the acquired image depends on the resolution, sensitivity, bandwidth
and signal-to-noise ratio of the imaging system. Pre-processing such as low-pass filtering
may be required prior to segmentation, which is often a challenging process. The
measured features can be transformed or mapped into an alternative feature space, to
produce better features, before being sent to the classifier.

Humans are adept at recognizing objects, using size, shape, color and other visual clues.
The goal of recognition is to recognize or detect an object and make a (yes/no) decision,
e.g. does this mammogram show a lesion or not? Classification goes a step further by
sorting objects into one of several groups or classes, e.g. is this lesion benign or malignant?

Classification techniques can be divided into two broad areas: statistical or structural
(or syntactic) techniques, with a third area that borrows from both, sometimes called
cognitive methods, which include neural networks and genetic algorithms. The first area
deals with objects or patterns that have an underlying and quantifiable statistical basis for
their generation and are described by quantitative features such as length, area and
texture. The second area deals with objects best described by qualitative features
describing structural or syntactic relationships inherent in the object. Statistical classifi-
cation methods are more popular than structural methods; hybrid, cognitive methods
have gained popularity over the last decade or so, but are beyond the scope of this book.

11.2 Connected components labeling

Segmentation provides a simplified, binary image that separates objects of interest
(foreground) from the background, while retaining their shape and size for later measure-
ment. The foreground pixels are set to “1,” and the background pixels set to “0.”
Connected components labeling scans the segmented, binary image and groups its pixels
into components based on pixel connectivity, i.e. all pixels in a connected component

Input
source Sensing

Feature
Extraction

Classification
or recognition

System
Response

Segmentation and labeling

Figure 11.1 A general diagnostic system.
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share similar pixel values and are in some way connected with each other. Once all
groups have been determined, each pixel is labeled with a number (1, 2, 3,… ), according
to the component to which it was assigned, and these numbers can be looked up as gray
levels or colors for display (Fig 11.2). The labeling of connected components in an image
is central to many automated image analysis applications.

(i) (ii) (iii)

(iv) (v) (vi)

(vii)

Figure 11.2 (i) Original image; (ii) background (from blurring (i)); (iii) improved image (= (i) – (ii));
(iv) segmented image (Otsu threshold of (iii)); (v) partial objects removed from (iv); (vi) labeled
components image; (vii) color-coded labeled components image. See also color plate.
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We have noted previously that segmentation is often preceded by pre-processing such
as smoothing/blurring of the image to reduce noise, but that was not necessary for the
image in Figure 11.2. Post-processing of the segmented image can be used to

� remove partial objects by using a criterion that tests connectivity to the extremities of
an image (Fig. 11.2(v)),

� remove objects smaller or larger than certain limits, and
� fill in holes in objects or background by opening or closing.

When a labeled component image comprising a number of components is color-coded, it
is often advisable to re-use a palette of colors that are easily distinguishable (Fig. 11.2(vii))
rather than use different colors that are barely distinguishable.

The two-pass algorithm for labeling connected components comprises three distinct
phases. The first phase involves scanning the image in a raster pattern. It moves along a
row until it comes to a pixel pwhose pixel value is “1.” It then examines the neighbors of
p that have already been encountered in the scan (i.e. generally the neighbors (i) to the
left of p, (ii) above it, and (iii) and (iv) the two upper diagonal terms). Based on this
information, provisional labeling of p occurs as follows:

� if all four neighbors have pixel values of “0,” assign a new provisional label to p, else

� if only one neighbor has a pixel value of “1,” assign its provisional label to p, else
� if more than one of the neighbors have pixel values of “1,” assign one of the provisional
labels to p and make a note of the equivalences.

After completing the scan, the equivalent label pairs are sorted into equivalence classes
and a unique label is assigned to each class. In the final phase, a second scan is made
through the image, during which each label is replaced by the label assigned to its
equivalence classes.

One obvious result of connected components labeling is that the objects in an image can
be readily counted. More generally, the labeled binary objects can be used to mask the
original image to isolate each (grayscale) object but retain its original pixel values so that its
properties or features can be measured separately. Masking can be performed in several
different ways. The binary mask can be used in an overlay, or alpha channel, in the display
hardware to prevent pixels from being displayed. It is also possible to use the mask to
modify the stored image. This can be achieved either by multiplying the grayscale image
by the binary mask or by bit-wise ANDing the original image with the binary mask.
(A binary mask image can be used to combine portions of two (or more) grayscale (or
color) images; this is the compositing process used in graphic arts and in the movie
industry, where the mask image is known as a digital matte.) Isolating features which
can then be measured independently is the basis of region-of-interest (RoI) processing.

11.3 Features

It is necessary to reduce the dimensionality ( an 8-bit deep image of size 256 × 256 pixels
has 25665 536 ≈ 10157 826 possible realizations!) of the classification task by measuring
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essential properties or features of the objects. The features are higher-level representa-
tions of structure and shape, and should be chosen to preserve the information that is
important to the particular task at hand. Examples of features include those describing the
contents of the objects and those describing their shape. The first category includes
features such as

� features obtainable from the histogram of an object using region-of-interest proces-
sing, such as the mean pixel value (grayness or color) and its standard deviation, the
contrast, and the entropy; and

� the texture of an object, using statistical moments of the gray-level histogram of the
object or its fractal dimension (Appendix C.3).

The second category includes features such as

� the size or area, A, of an object, obtained directly from the number of pixels comprising
each object, and its perimeter, P (Appendix C.1);

� the circularity, 4πA/P2;
� the skeleton or medial axis transform (Section 9.2.5) or points within it such as branch
points and end points, which can be obtained by counting the number of neighboring
pixels on the skeleton (3 and 1, respectively) (Fig. 11.3);

� the Euler number: the number of connected components (i.e. objects) minus the
number of holes in the image (Fig. C.2); and

� statistical moments of the boundary or area (Appendix C.1).

Activity 11.1 illustrates the measurement of some of these features.
The choice of appropriate features depends on the particular image and the application

at hand. However, they should be

(i) (ii)

Figure 11.3 (i) Image and (ii) its skeleton (red), with its branch points (white) and end points (green) circled.
See also color plate.
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� Robust; i.e., they should normally be invariant to translation, orientation, scale and
illumination, andwell-designed featureswill be at least partially invariant to the presence
of noise and artifacts; this may require some pre-processing of the image (e.g.
low-pass filtering to reduce noise, and variable background removal and histogram
equalization to ensure illumination invariance) before measurement of the features.

� Discriminating (i.e. the range of values for objects in different classes should be
different and preferably be well separated and non-overlapping).

� Reliable (i.e. all objects of the same class should have similar values).
� Independent (i.e. uncorrelated; as a counter-example, length and area are correlated
and it would be wasteful to consider both as separate features).

It is also helpful if the features incorporate lessons from human perception; in medical
imaging, the clinical user’s experience with the images will often suggest a qualitative
expression of relevant features, which can then be converted into quantitative and
repeatable measures. In some cases models of how the patterns are formed can be
determined and used to indicate the necessary features, but often this is not the case
and features are chosen on a more-or-less ad hoc basis and then tested to find out which
are best for the particular task.

For screening, i.e. detection of a disease performed on large numbers of patients with the
intent of following up suspicious findings, the features should be simple to extract, require
minimal user intervention and contribute to the sensitivity (Appendix B.3) of the proce-
dure. Examples of images used in screening include x-ray mammograms for breast cancer,
retinal images for eye diseases and visible or x-ray images for childhood scoliosis
(curvature of the spine). Diagnosis involves classifying features into specific classes, e.g.
is a suspicious region in the breast a fibroadenoma, a cyst or a carcinoma? Treatment
planning in radiation therapy extracts features to identify treatment areas and boundaries.
Multi-modality registration of images, in the absence of external fiducials (Section 4.3),
extracts and compares features from each modality in order to recognize correspondence
between equivalent structures.

A feature vector or pattern vector, x, is a vector containing the measured features,
x1, x2,…, xn:

x ¼ x1

x2

..

.

xn

(11:1)

for a particular object or region. The feature vectors can be plotted as points in feature space
(Fig. 11.4). For n features, the feature space is n-dimensional with each feature constituting
a dimension. Objects from the same class should cluster together in feature space (relia-
bility) and be well separated from different classes (discriminating). In classification, our
goal is to assign each feature vector to one of a set of classes {ωi}.

The more features that are measured, the higher dimensional will be the feature space
and the more parameters will have to be estimated for classification. For a limited number
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of objects, it is difficult to estimate a large number of parameters well. A solution is to
decrease the number of features per object. This involves either (i) feature selection –

choosing the most informative subset of features, and not using the others, or (ii) feature
extraction – combining the existing features set into a smaller set of new, more informa-
tive features. Ultimately the classifier performance is the criterion for which are the best
or most informative features.

A problem in feature selection is that sometimes the two best features are not the best
two features. To find the best two features we can use brute force and try all possible
combinations, but this is very expensive computationally: to extract k features from a
total set of d features involves d!=k!ðd� kÞ! possibilities, so that exhaustive evaluation is
often impossible. What we need is a criterion to evaluate the informativity of a set of
features and an efficient search routine which finds the most promising feature sets.
When we want to extract just a few features from a large set of features, we can use
forward selection: this starts with the best individual feature and keeps adding the
subsequent best feature until the final number of desired features is reached. When we
expect to use most of the features we can use backward selection: here we start with the
whole set of features, and remove the worst features one by one. Both methods are
sub-optimal: it is better to use a hybrid (branch-and-bound) feature selection process,
where the number of features is increased and decreased several times.

In feature extraction we compute a smaller set of new features which are more informa-
tive. The most well known feature extraction method is Principal Component Analysis
(PCA). This is a mapping where the new features, y, are a linear combination of the original
features, x, and are uncorrelated. The new features can be thought of as arising from a
rotation of the old features to provide new features which are ranked or ordered in terms
of the amount of variation of the original data for which they account. Since they are
ranked, it is possible just to retain the first few new features. Figure 11.5 shows how a
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Figure 11.4 Three-dimensional feature space containing two classes of features, class 1 (in gray) and class 2
(in black).

11.3 Features 345



two-dimensional data set can be reduced to a single principal component, which optimally
separates the data, by rotation.

The covariance matrix of the feature vector, Σ or cov(x), is a generalization of the
concept of variance to higher dimensions. The matrix is symmetric, and its terms are
measures of how pairs of features vary together (i.e. co-vary) so that the diagonal terms
are in fact variances. For a feature vector x, the covariance matrix is given by

� ðor covðxÞÞ ¼
varðx1Þ ::: covðx1; xnÞ

::: ::: :::
covðxn; x1Þ ::: varðxnÞ

2
4

3
5 ¼ ðx� mÞTðx� mÞ (11:2)

The covariance terms can be expressed as

�i;j ¼ �i;j �i�j (11:3)

where ρi,j is called the correlation coefficient between xi and xj, and σi is the standard
deviation of xi. If xi and xj tend to increase together then Σi,j > 0; if xi tends to decrease
when xj increases then Σi,j < 0; and if xi and xj are uncorrelated then Σi,j = 0 (Fig. 11.6).
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Figure 11.5 The data set is optimally separated (as shown by the histograms) along a line, the first principal
component direction, which is a linear combination of the original features. (After Russ 2002
Copyright (2007). From The Image Processing Handbook, 5th Edition, by Russ. Reproduced by
permission of Taylor and Francis Group, LLC, a division of Informa plc.). See also color plate.
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Worked example
Consider the following feature vector:

x ¼

4:0 2:0 0:60
4:2 2:1 0:59
3:9 2:0 0:58
4:3 2:1 0:62
4:1 2:2 0:63

2
66664

3
77775

representing a set of five measurements of three features (from left to right – length,
width and height of an object). Each row is another measurement of the three features.

The mean is given by

� ¼ ½4:10 2:08 0:604�
and the covariance matrix is given by

S ¼
0:025 0:0075 0:00175
0:0075 0:007 0:00135
0:00175 0:00135 0:00043

2
4

3
5

obtained using Equation (11.2).
Thus, 0.025 is the variance of the length, 0.0075 is the covariance between the

length and the width, 0.00175 is the covariance between the length and the height,
0.007 is the variance of the width, 0.00135 is the covariance between the width and
height and 0.00043 is the variance of the height.

The principal components are actually the eigenvectors of the covariance matrix of the
feature vector. Principal component analysis is a mapping where the principal compo-
nents are a linear combination of the original features, and are uncorrelated. The new
features can be thought of as arising from a rotation of the old features to provide new
features which are ranked or ordered in terms of the amount of variation of the original
data for which they account. Since they are ranked, then it is possible just to retain the
first few new features. Figure 11.5 shows how an example data set where two features can

Σ = –σ1σ2

ρ1,2 = –1 ρ1,2 = 0 ρ1,2 = +0.5 ρ1,2 = +1ρ1,2 = –0.5

Σ = –0.5σ1σ2 Σ = +σ1σ2Σ = +0.5σ1σ2Σ = 0

x2

x1

Figure 11.6 The values of covariance and correlation coefficient for various data sets.
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be reduced by rotation to a single best feature, the principal component, which optimally
separates the data. In the two-dimensional case the principal component lies along the
regression line of the original data.

11.4 Object recognition and classification

Figure 11.7(i) is an image containing both bolts and nuts, some of which lie on their sides
and present a different shape. Indeed we can distinguish between them on the basis of
their shape. The bolts are long, with an end piece, and the nuts either have a hole in them
(the “face-on” nuts) or are short and linear (the “end-on” nuts). Segmentation, in this case
by global thresholding, produces a simplified, binary image (Fig. 11.7(ii)). The skeleton
of this image shows the essential shape differences between the bolts and the two types of
nut (Fig. 11.7(iii)). Branch pixels can be extracted from this image (not shown), on the
basis of connectivity. If they are used as a seed image, and conditionally dilated under
the condition that the seed image is constrained to remain within the bounds of a mask
image (the original binary image, Fig. 11.7(ii)), this results in an image of the nuts alone

(i) (ii) (iii)

(iv) (v) (vi)

Figure 11.7 (i) Original image; (ii) after thresholding; (iii) after subsequent skeletonization; (iv) after
conditionally dilating the branch pixels from (iii); (v) after logically combining (ii) and (iv);
(v) color coding the nuts and bolts. See also color plate.
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(Fig. 11.7(iv)). The bolts can now be obtained (Fig. 11.7(v)) by logically combining this
figure with the original binary figure (using [Fig. 11.7(ii) AND (NOT Fig. 11.7(iv))]).
The nuts and bolts can then be joined in a color-coded image (Fig. 11.7(vi)), which
illustrates that nuts and bolts have been recognized differently.

An alternative approach to separating the nuts and bolts involves measuring
different object (feature) properties, such as the area, perimeter or length. If we
measure the area of the labeled objects in the segmented image (Fig. 11.8(i)) by

200
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(iii) (iv)

Figure 11.8 (i) Segmented, labeled image (using Fig. 11.5(i)); (ii) one-dimensional feature space showing
the areas of the features; (iii) the features “painted” with their measured areas; (iv) after
thresholding image (iii) at a value of 800. See also color plate.
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counting the pixels belonging to each label and plot these values in one dimension
(Fig. 11.8(ii)), we can see that the nuts and bolts are well discriminated on the basis of
area, with the bolts having larger areas. There are three clusters, comprising the nuts
with the highest areas, followed by the face-on bolts with intermediate areas, and the
edge-on bolts with the lowest areas. If the objects are then re-labeled with their area
values (Fig. 11.8(iii)), that image can be thresholded at a value of 800 (i.e. an area of
800 pixels) to show just the bolts. The nuts can then be found by logically combining
this image with the segmented nuts-and-bolts image as before. Only one feature (area)
is required to discriminate the two classes, so that feature space (Fig. 11.8(ii)) is one-
dimensional.

Similar techniques have been used to classify the fruit in Figure 11.9 into three
different classes. Think about the features that would be most discriminating in this
case (circularity, size, perhaps texture?). The single-pixel outlines of the fruit can be
obtained from subtracting the segmented image from a dilated version of itself. (See
Activity 11.2.)

A typical classification problem comprises the following task: given example images
typical of a number of classes (the training set), classify another image into one of these
classes. The training set images should cover a variety of objects belonging to each class.
Features need to be identified such that the in-class variabilities are less than the
between-class variabilties. For the example shown in Figure 11.10, color and texture
are probably good candidates, even though textured materials often have very different
appearances with variations in illumination and camera position.

Figure 11.9 Objects have been classified into three classes of fruit, and outlines superimposed on the
original image. See also color plate.
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11.4.1 Classification

In any effort at designing a classifier it is essential to have a training set of images. Either
the classes to which the images belong are known (supervised learning) or they are
unknown (unsupervised learning), in which case the most appropriate classes must be
found.

The process of using data to determine the best set of features for a classifier is known
as training the classifier. The most effective methods for training classifiers involve
learning from examples. A performance metric for a set of features, based on the
classification errors it produces, should be calculated in order to evaluate the usefulness
of the features. Learning refers to some form of algorithm for reducing the classification
error on a set of training data.

11.5 Statistical classification

There are two general approaches to statistical classification, parametric and non-
parametric methods. Parametric methods require probability distributions and estimate
parameters derived from them such as the mean and standard deviation to provide
a compact representation of the classes. Examples include discriminant analysis
(Fig. 11.11(i)), a parametric method based on functions which separate the classes, and
clustering (Fig. 11.11(ii)), a non-parametric method which finds natural groups of samples
in unlabeled data. Parametric methods tend to be slow at training, but once trained are fast
at classifying test data. Non-parametric methods, on the other hand, either estimate the
probability distributions (non-parametric estimation) or bypass the probabilities and go
directly to decision functions (non-parametric classification).

Class 1
(leaves)

Class 3
(grass)

Class 2
(wood)

Class 4
(foil)

New image to
be classified

Training set

Class 5
(velvet)

Class 6
(straw)

Figure 11.10 The image at left has to be classified into one of the classes defined by the training set images.
A good classifier will assign it to class 3. See also color plate.
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11.5.1 Parametric methods

Probability theory (Appendix B.3) is a solid basis for classifier design. Consider the case
where there are just two classes – class 1 (ω1) and class 2 (ω2), and a single feature, x. We
have a training set, i.e. representative examples from both classes, so that we can measure
the feature for both classes and construct probability distributions for each (Fig. 11.12).
These are formally known as the probability density functions or class-conditional
probabilities (Appendix B.3), p(x|ω1) and p(x|ω2), i.e. the probabilities of measuring
the value x, given that the feature is in class 1 or class 2, respectively. If we have a large
number of examples in each class, then the probability density functions will be Gaussian
in shape (the Central Limit Theorem).

The classification problem is: given another feature measurement, x, to which class
does this feature belong? If the two distribution functions overlap, then this cannot be

(i) (ii)

Figure 11.11 Outline of (i) discriminant analysis and (ii) clustering, in two-dimensional feature space.
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Figure 11.12 Probability density functions for two classes, 1 and 2; often they will be Gaussian in shape.
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answered definitively, only statistically. The probability is known as the posterior prob-
ability, P(ωi|x), i.e. the probability that given a feature value of x, the feature belongs to
class ωi. Probability theory, and specifically Bayes’ Rule, relates the posterior probabil-
ities to the class-conditional probabilities or likelihoods (the derivation is given in
Appendix B.3):

Pð!ijxÞ ¼ pðxj!1Þ � Pð!iÞ=pðxÞ (11:4)

where P(ωi) is the a priori or prior probability (i.e. the probability of being in class ω1 or
ω2 based on the relative numbers of those classes in the population, prior to taking the
test) and p(x) is often considered a mere scaling factor (the evidence) that guarantees that
the posterior probabilities sum to unity. (Uppercase P is used to denote a probability mass
function, and lowercase p to denote a probability density function.) In words, Bayes’ rule
is often paraphrased as

posterior ðprobabilityÞ ¼ likelihood� prior ðprobabilityÞ
evidence

(11:5)

This enables us to find the posterior probability in terms of the measured probability
density functions of the training set (training) and the measured or estimated prior
probability (prior knowledge). We want to maximize the posterior probability, P(ωi|x)
(which is the same as maximizing p(x|ω1) .P(ωi)).

Bayes’ decision rule is:

decide !1 if Pð!1jxÞ4Pð!2jxÞ; otherwise decide !2: (11:6)

Worked example
Suppose that the class-conditional probability functions for ω1 and ω2 are Gaussians
with (μi, σi) of (4, 2) and (10, 2), and that they have equal prior probabilities
(P1 =P2 = 1/2). What is the optimal decision threshold?

The problem can be solved by finding the intersection of the two (scaled)
Gaussians. This is equivalent to finding the value of x which makes the posterior
probabilities equal. Thus

exp � 1

2
ðx� 4Þ2

� �
=exp � 1

2
ðx� 10Þ2

� �
¼ 1

Taking natural logs and simplifying,

ðx� 4Þ2 � ðx� 10Þ2 ¼ 1

from which x= 7, which is intuitively obvious.
If the priors are changed to P1 = 2/3 and P2 = 1/3 (i.e. before a feature is measured,

there is twice the probability of being in class 1 than class 2), the decision threshold
can be found by scaling the Gaussian forω2 so that it has half the area as the Gaussian
for ω1. This is equivalent to solving

11.5 Statistical classification 353



exp � 1

2
ðx� 4Þ2

� �
=exp � 1

2
ðx� 10Þ2

� �
¼ 1

2

which gives

ðx� 4Þ2 � ðx� 10Þ2 ¼ 2 ln 2 ¼ 1:40

from which x= 7.12, larger than the earlier value, which agrees with intuition.

If there is more than one feature, x = {x1, x2,…}, the classification is performed in multi-
dimensional feature space, where each class is characterized by a multi-dimensional
(Gaussian) probability distribution function (Fig. 11.13).

It can be shown that instead of considering the full expression for the posterior
probability, it is sufficient to consider the “distance” (Fig. 11.14) from the feature x to

x3

x2

x1

x2

x1

(i) (ii)

Figure 11.13 Multi-variate normal distributions for (i) two features and (ii) three features. (Note that in these
examples, the principal axes are parallel to the feature axes.)

x

x1

x2

µ

class 1

Figure 11.14 The Mahalanobis distance between a feature and the mean of a class; the features x1 and x2 have
been standardized prior to plotting.
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the mean of the class, µ, and assign (classify) it to the class with the minimal “distance”
(Appendix B.3). (The appropriate “distance” is the Mahalanobis distance, which is a
generalization of the usual Euclidean distance that uses standardized features to take into
account the different dimensions and variances of the original features.)

A feature could be a numerical score on a test for a particular disease, and might be
based on the size or number of objects (lesions?) within an image. Class 1 (ω1) might be
patients free of the disease and class 2 (ω1) patients who have the disease. We want to
know the probability of that having scored x a patient has the disease or is disease-free.

In medical diagnosis the consequences of missing a true case of disease (false
negatives) are different from those of falsely indicating the disease (false positives).
These costs can be factored into the classification task by introducing a loss function, λ,
which indicates the cost of each possible decision (αi), and allows us to convert from a
probability into a decision (Appendix B.3). The loss function acts as a multiplier on the
posterior probabilities, so that Bayes’ decision rule for deciding on ω1 becomes

decide !1 if l21Pð!1jxÞ4l12 Pð!2jxÞ; otherwise decide !2 (11:7)

where λij is used as shorthand for λ(αi |ωj), the loss incurred for deciding ωi when the
true class is ωj (relative to λij = λji = 1). The effect of the loss function is illustrated in
Activity 11.3.

Discriminant analysis is a type of classification that partitions feature space by
specifying decision boundaries between classes. These boundaries, described by dis-
criminant functions, are obtained from the classifier (e.g. the Bayes’ classifier). A classic
example of discriminant analysis uses Fisher’s iris data (Fisher, 1936), comprising fifty
samples from each of three species (setosa, virginica and versicolor) of iris flowers
(Fig. 11.15): four features (the length and width of the sepal and petal, in centimeters)
were measured from each sample. The task is to classify the flowers into three classes,
which should correspond with the three different species, on the basis of these features.

Although the features were measured manually from physical flowers, they could be
measured from suitable RGB images. Petals and sepals would need to be visible, and it
would be easier if the flowers were pressed into two dimensions before image acquisi-
tion. It may be possible to distinguish the brightly colored petals from the green sepals by
looking at the red, green and blue channels separately; the sepals should predominate in

(i) (ii) (iii)

Figure 11.15 (i) Iris setosa, (ii) Iris versicolor and (iii) Iris virginica. See also color plate.
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the green channel. Background removal and smoothing would be performed on the
appropriate channels before automated segmentation. Segmentation will deliver the
shapes, which can be used to mask the appropriate channels so that the features can be
measured conveniently.

A scatter plot matrix of the features is useful to see whether any of the features are
correlated, i.e. whether they are connected to some degree within the data set (Fig. 11.16).
The correlation coefficients from the scatter plot matrix form a correlation matrix (Table
11.1).

The petal length is highly correlated with the petal width, and somewhat less correlated
with the sepal length and the sepal width. Because of the high correlation, the petal width
is not providing much information that is not already provided by the petal length, and we
could consider dropping it as a discriminant feature in order to reduce the task to
three-dimensional feature space. The data can then be presented as a three-dimensional
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Figure 11.16 Scatter plot matrix of Fisher’s iris data. (The features from Iris setosa are plotted in red, those from
Iris versicolor are plotted in green, and those from Iris virginica are plotted in blue; the elliptical
contours enclose 95% of the features in each plot.) See also color plate.
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spinning plot (Fig. 11.17), which can be rotated to show the most prominent directions of
the data.

As the spinning plot is rotated, some directions will show more variation in the data
than others. The direction in which the features have the most variance is known as the
first principal component, P1, and is a linear combination of the standardized (i.e. values
divided by their standard deviations) original features. Each subsequent principal com-
ponent (P2, then P3) is the linear combination of the standardized original features that
has the greatest possible variance and is uncorrelated with all previously defined princi-
pal components (and is therefore orthogonal to them). The set of principal components
has the same total variation and structure as the original features. The restriction that each
successive component be uncorrelated (orthogonal) with the previous components
ensures that each new component will have a lower variance than its predecessor. It
follows that the first few principal components often capture most of the sample
variation.

Formally, the principal components are eigenvectors of the diagonalized covariance
matrix, which describes the variance of all the features (Appendix B.3). The eigenvalues
show howmuch variance of the data is explained by each principal component (Table 11.2),
so that principal components analysis can be used to determine the relative importance of

Table 11.1 Correlation matrix, showing the correlation coefficients corresponding
to the scatter plot matrix of Figure 11.16.

Sepal length Sepal width Petal length Petal width

Sepal length 1 − 0.118 0.872 0.818
Sepal width − 0.118 1 − 0.428 − 0.366
Petal length 0.872 − 0.428 1 0.963
Petal width 0.818 − 0.366 0.963 1

(i) (ii) (iii)

Figure 11.17 Spinning plots: (i) x, y and z are petal length, sepal length and sepal width, respectively; (ii) the
principal components, P1, P2 and P3, are shown overlaid; (iii) a projection in the plane of P1 and P2.
(The features from Iris setosa are plotted in red, those from Iris versicolor are plotted in green,
and those from Iris virginica are plotted in blue.) See also color plate.

11.5 Statistical classification 357



the components in explaining the variance and may prompt a reduction in the dimension-
ality of a classification problem. In this case P1 and P2 between them account for about
97.6% of the total variance in the data.

Therefore, for this data set, the (two-dimensional) projection of the spinning plot
(Fig. 11.17(iii)) contains almost all the variance in the data set, and a set of discriminant
functions (not shown) could be superimposed on it to show the decision boundaries. In
general these decision boundaries will be quadratic, i.e. second-order, and give rise to
ellipses, hyperbolas or parabolas in two-dimensional feature space. If the covariance
matrices for both classes, ω1 and ω2, are equal, then the decision boundary reduces to a
linear boundary and the classifier is called a linear classifier.

While the principal components transformation identifies the directions of maximal
variance, it does not guarantee maximal separability. Another transformation, the Fisher
transformation, specifically optimizes class separability. The basis vectors of this trans-
formation, known as canonicals (which are also linear combinations of the original
features), are found by maximizing the Fisher criterion, F, which for two-class problems
is given by

F ¼ ð�1 � �2Þ2
�2
1 þ �2

2

(11:8)

That is, the mean classifier outputs for the two classes should be as well separated as
possible and their variances should be as small as possible. This is equivalent to theOtsu
method of segmentation (Appendix B.4), which finds the threshold that makes each
distribution of gray values as tight as possible, which in turn minimizes their overlap.

For multi-class data the canonical plot is normally presented for only the two most
significant canonicals, and shows the data in the directions that best separate the classes.
Figure 11.18 is the canonical plot for the Fisher data. For this data the first canonical
explains 99.1% of the variance in the data, and the second canonical explains the
remaining 0.9%. Each multi-variate mean is surrounded by confidence ellipses which
are circular in canonical space, and the discriminant functions (not shown) are linear.
Iris setosa is well separated from the other two species.

Table 11.2 The eigenvalues show how much of the total variance is explained by
each principal component; the eigenvectors are a linear combination of the
original features, with the coefficients above.

The coefficients do not add to unity for each principal component because the
features need to be standardized.

P1 P2 P3

Eigenvalue 2.021 0.907 0.071
percent 67.38 30.24 2.37

Eigenvectors
Petal length 0.688 0.075 0.721
Sepal length 0.629 0.433 −0.645
Sepal width −0.361 0.898 0.251
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Features are assigned to the class whose multi-variate mean is closest. (Since different
features have different scales, and likely have different dimensions, the appropriate
distances to calculate are the Mahalanobis distances rather than Euclidean distances.) For
this data, the three featuresmarked in Figure 11.18will bemisclassified, i.e. assigned to the
wrong classes. Two features from Iris versicolorwill be misclassified as class 3 (which we
were hoping to identify as Iris virginica), because they are closer to the mean of class 3, and
one feature from an Iris virginica will be assigned to class 2 (which we were hoping to
identify as Iris versicolor) because it is closer to the mean of class 2. The final classifica-
tions can be tallied in a confusion matrix (Table 11.3), which is a contingency table in
which the actual and the predicted classes of the data (or vice versa in some implementa-
tions) are presented. Entries on the diagonal of thematrix are the correct classifications; and
entries off the diagonal are the misclassifications. The confusion matrix shows the perfor-
mance of the classifier. In this case, three features were misclassified and appear as
off-diagonal entries, representing a total misclassification rate of 2% (i.e. 3 out of 150).

Cross-validation shows the prediction for a given observation if it is left out of the
estimation sample (a re-sampling technique known as jack-knifing (or leave-one-out)). In
this case an additional feature is misclassified (Fig. 11.18). The cross-validation matrix is
displayed in Table 11.4.

The performance of a classifier can also be specified in terms of its receiver-operating
characteristic (ROC) curve (Appendix B.3). It represents a plot of the classifier’s true
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Figure 11.18 Canonical plot for the Fisher data. The three features that are misclassified (see Table 11.3) using this
classifier are marked with colored arrows; the black arrow shows an additional feature that is
misclassified if cross-validation is used. (The small colored circles are 95% confidence limits for the
positions of the means; and the larger colored circles contain 50% of the features for that class.)
See also color plate.

Table 11.3 Confusion matrix showing the results of discriminant analysis
used to distinguish three species of iris flower.

Actual

Predicted setosa versicolor virginica

Class 1 (setosa) 50 0 0
Class 2 (versicolor) 0 48 1
Class 3 (virginica) 0 2 49
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positive detection rate (correctly classifying a target object as belonging to the target
class) versus its false positive rate (incorrectly classifying a non-target object as belong-
ing to the target class). In discriminant analysis, moving the decision values either side of
their optimal values (i.e. the values giving the minimum total misclassifications, given by
the intersections of the multi-variate Gaussian distributions) changes the sensitivity (true
positive fraction) and specificity (true negative fraction) of the classifier and generates
data for the ROC plot. The area under the ROC curve (AUC) is an indicator of classifier
performance; a value of 0.5 indicates performance at the level of guessing, and a value of
1.0 indicates perfect performance.

11.5.2 Non-parametric techniques

A common approach is the k-nearest-neighbor (k-NN) classifier. The number of nearest
neighbors, k, is chosen by the user, and is generally between 0 and 5. In the 1-NN
classifier the distances from a new feature to all the features in the training set are
computed, and the new feature is assigned the label of the nearest feature in the training
set. (In three-dimensional feature space, using Euclidean distances will result in spheres
and using Mahalanobis distances will result in ellipsoids.) For the k-NN classifier the
nearest k features are considered, and the new feature is assigned the label of the most
frequently occurring label in the k nearest neighbors (Fig. 11.19). The value of k should
be odd to avoid a tie. The method can be computationally expensive for larger values of k
in a high-dimensional feature space.

Table 11.4 Cross-validation matrix.

Actual

Predicted setosa versicolor virginica

Class 1 (setosa) 50 0 0
Class 2 (versicolor) 0 47 1
Class 3 (virginica) 0 3 49

2 2

2

2 2

x2
1

1

1
1

11

1
1

x1

x2

Figure 11.19 3-NN classifier; in this case, the new feature is assigned to class 2.
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For new features close to a decision boundary, 1-NN classification produces irregular
boundaries that are not robust (Fig. 11.20).

When distinguishing normal and abnormal classes in, for example, tumor detection, it
is more useful to modify the criterion to assign a new vector to a particular class if at least
l of the k nearest neighbors are in that particular class. This is useful when (i) the penalty
for misclassifying one class (e.g. abnormal as normal – false negatives) is much greater
than the penalty for misclassifying the other class (e.g. normal as abnormal – false
positives) and (ii) when there is an unbalanced training set, with many more samples in
one class than the other.

11.5.3 Unsupervised methods

With unsupervised classification, the class labels are unknown, and the data are plotted
to see whether they cluster naturally. The clusters may or may not correspond with human
perception of similarity.

k-means clustering
In k-means clustering each cluster is represented by one prototype object, and a
new data sample is assigned to the nearest prototype and therefore to that cluster.
The training consists of a very simple iterative scheme to adjust the placing of the
prototypes:

x2

x1

Figure 11.20 1-NN classification produces very irregular boundaries.
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(i) randomly choose k objects from the training set, which become the prototypes;
(ii) assign all the other objects to the nearest prototype;
(iii) calculate the new prototype of the class as themean of all objects having the same label;
(iv) if the prototypes have changed significantly, return to step (ii).

Figure 11.21 Dendrogram and scree plot obtained by hierarchical of the canonical data from the Fisher iris
database. The number of classes can be chosen by drawing a vertical line down the dendrogram at a
particular position. The scree plot helps determine this position: as shown it is placed to identify
six clusters (shown colorized), although the scree plot suggests just three clusters. See also color plate.
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The k-means approach is a special case of a general approach called the Expectation
Maximization (EM) algorithm. It is intended for use with larger data tables, from
approximately 200 to 100 000 observations. With smaller data tables, the results can be
highly sensitive to the order of the observations in the data table.

Hierarchical clustering
In hierarchical clustering each feature starts off as its own cluster, and is subsequently
joined to the “nearest” feature to form a new cluster. At each step of the clustering, larger
clusters are obtained. The algorithm is

(i) find the two features that are “closest” in multi-variate space;
(ii) replace them with a single feature at their mean;
(iii) repeat with the next two closest features, and continue until all the features are

subsumed into one cluster.

The result is a dendrogram (Fig. 11.21), a visual tree-like representation of the clustering
process. Branches that merge on the left were joined earlier in the iterative algorithm.
A vertical line drawn through the dendrogram determines the number of clusters in the
model. Although there is no standard criterion for the optimal number of clusters, the scree
plot offers some guidance. It gets its name from the rubble that accumulates at the bottom
of steep cliffs. The place where the scree plot changes from a sharp downward slope to a
more level slope, not always obvious, is an indication of the optimal number of clusters.

Figure 11.22 shows how the classification changes as the number of clusters is changed.
Three clusters (Fig. 11.22(iii)) is a satisfyingly simple classification, and corresponds to
the leveling off of the scree plot. (It is also desirable to have three classes, corresponding
closely (one hopes!) to the three species of iris.)

There are a number of data points in the bottom right side of the plot which originate
from Iris virginica and are mistakenly classified as Iris versicolor, and several other
points which originate from Iris versicolor and are mistakenly classified as Iris virginica.
These points are enclosed within the black lines overlaid on Fig. 11.22(iii). The resulting
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(iii) 3 clusters. See also color plate.
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confusion matrix is given in Table 11.5. The misclassification rate of 14.7% is signifi-
cantly worse than the 2% achieved using discriminant analysis on the same data set.

11.6 Structural/syntactic classification

In some applications the relevant information is not available in the form of continuous
data (i.e. measured numerical values), but rather as categorical data (i.e. labels or
attributes) which may be ordered (ordinal data) or unordered (nominal data). Nominal
data, for example, might comprise a list of attributes describing the structure or shape
of objects (Fig. 11.23(i)).

It is natural and intuitive to classify a pattern through a sequence of questions, in which
the next question depends on the answer to the current question. Such an approach is
particularly useful for non-metric classification, and leads to a decision tree (Fig. 11.23(ii)).
Such a system is referred to as an expert system or rule-based system, since it relies on
questions based on rules for the class boundaries that have been drawn up with prior
knowledge from human experts. The order in which the questions are asked is important
for an efficient implementation. An advantage of such a scheme is that the categories are
easily interpretable; a disadvantage is that if another category (class) is added the rules may
have to be completely re-shuffled or even changed. Training can help discover the most
efficient paths.

Syntactic methods are used when the patterns can be represented as ordered sequences
or strings of discrete symbols (e.g. the bases in a deoxyribonucleic acid (DNA) sequence
such as “ATCGGAACTA”), and the strings are generated from certain rules which can be
described by an underlying grammar. Parsing is the task of determining whether the
string is a member of the language generated by this grammar.

11.7 Applications in medical image analysis

Classification techniques play an important role in medical imaging, especially in the
detection and classification of tumors. After segmenting a suspicious region, a feature

Table 11.5 Confusion matrix showing the results of hierarchical clustering
used to distinguish three species of iris flower.

Actual

Predicted setosa versicolor virginica

Class 1 (setosa) 50 0 0
Class 2 (versicolor) 0 46 18
Class 3 (virginica) 0 4 32
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extraction and selection scheme is performed in order to extract the relevant information
from the region; and a classification technique is chosen so that the best results are
achieved, based on the available features and the tumor classes.

A very important application is the detection of breast cancer. Among the most
frequent and distinctive signs indicative of cancer are clustered microcalcifications and
spiculated lesions. Microcalcifications are tiny calcium deposits, whose size ranges from
smaller than 0.1mm to 5mm in diameter. A cluster is typically defined as including three
to five microcalcifications within a 1 cm2 region. Spiculated lesions have a star-shaped
appearance with blurred boundaries, and are far more difficult to detect. Their distinct
shape (Fig. 11.24) is the result of radially oriented spicules extending from the tumor
center into the surrounding breast tissue; they are always malignant. Their gray-level
gradient provides a contour, whose shape and orientation can be important features for
classifying such lesions.

Typically many features, such as size, brightness, contrast, shape and texture as
features (Karssemeijer, 1993), are extracted from microcalcification clusters and spicula-
tions in an attempt to match the radiologist’s technique, and these are used as input to a

Holes = 2?

Holes = 1?

N
?

?

? ?

N

N N

CED A

Y

YB

Circularity > 0.4? Eccentricity > 1.32?
Y Y

(i) (ii)

Figure 11.23 Expert system to classify (i) the letters A to E, using (ii) rules based on shape factors that
are invariant to size, orientation, position and font. (After Russ, 2002.)
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k-NN or Bayes’ classifier (Kegelmeyer, Pruned and Bourland 1994; Karssemeijer and
te Brake, 1996). Texture features based on artificial neural networks (Sahiner et al., 1996;
Li et al., 2001), designed to emulate the processing abilities of biological neural systems,
have been used in the continuing quest for automatic classification and computer-aided
diagnosis (CAD).

The extraction of tumor boundaries in 3-D images poses a challenging problem.
Several attempts have been made to apply neural network architecture to MRI brain
images (e.g., Zhu and Yan, 1997). Fuzzy cluster analysis and principal component
analysis have both been applied to functional MRI images (Baumgartner et al., 2000).

Acoustic neuromas are benign tumors which generally grow near the acoustic nerve
and can be detected in MRI images. Features such as the mean and standard deviation
(representing texture) of the gray level, shape (especially circularity), position relative to
the acoustic nerve and the symmetry in position of clusters of neuromas are typical
features for characterization.

Structural/syntactic classification has been used in diagnosing heart disease from the
stenoses (narrowings) of images of the coronary artery (Ogiela and Tadeusiewicz, 2002).
After segmentation and skeletonization of the artery, the external contour was straigh-
tened by a straightening transformation. All the potential shape elements characterizing
both concentric and eccentric stenoses were defined and an attributed grammar proposed.
A recognition rate of 93% was obtained in determining the correct location of a stenosis
and its type.

Discriminant analysis of tortuosity features is being used to classify the skeletons of
retinal blood vessels, in an attempt to distinguish between normal and pathological
vessels (Section 13.5).

(i) (ii)

Figure 11.24 (i) A spiculated lesion and (ii) its gray-level gradient.
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Computer-based activities

Activity 11.1 Shape measurements and particle analysis
Open mri in ImageJ, and outline the brain using the Freehand Selections tool.
Under Analyze/SetMeasurements …, check Area, Mean Gray Value, Standard

Deviation, Centroid, Skewness and Kurtosis. Choose Analyze/Measure to
obtain a Results box with the measurements.

Open cermet and threshold using Plugins/Ch.10Plugins/Multithreshold, and
choose the isodata algorithm. Under Analyze/Set Measurements …, check
Area and Centroid. Choose Analyze/Analyze Particles …; change pixel size
to “50 – Infinity” and choose Show Outlines. Study the resulting drawing and data.

Activity 11.2 Object recognition and classification
Open fruit, and classify the objects into three classes (bananas, oranges and

apples), using features of your choosing. Superimpose outlines of the objects
onto the original image.

Activity 11.3 Loss function
Open discriminant.xls and look at formulation I, which assumes that both distribu-

tions are Gaussian. Enter the healthy, non-diseased distribution as mean μ = 4 and
standard deviation σ = 2, and the diseased distribution as μ = 10, σ = 2 (with the
priors each equal to 0.5, and the loss factors both equal to 1). The program finds
the optimal decision threshold by finding the intersection of the two Gaussians,
suitably scaled by the priors and the loss factors. The four mutually exclusive
events can be found, from which the sensitivity (true positive fraction – the
proportion of target objects that are correctly classified as belonging to the target
class) and specificity (true negative fraction – the proportion of non-target objects
incorrectly classified as belonging to the target class) can be calculated and the
contingency tables and the posterior probabilities calculated.

The performance of a classifier can also be specified in terms of the area under its
receiver-operating characteristic (ROC) curve, known as the area-under-the-curve,
AUC (Appendix B.3), which can take a value between 0.5 (the performance is
equivalent to guessing) and 1.0 (perfect performance). Scroll down to see the ROC
curve, and note the value of the AUC. The second page of the Excel file shows the
distributions drawn to scale, and you can verify the intersection.

Now change the loss factors to 2 and 10, and check how this affects the decision
threshold and the posterior probabilities, and the value of the AUC.

Exercises

11.1 Discuss the invariance of shape features to translation, rotation, scaling, noise and
illumination. Illustrate your answer with specific examples of features.

11.2 Explain the following terms: (i) pattern, (ii) class, (iii) classifier, (iv) feature space,
(v) decision rule, (vi) discriminant function.
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11.3 What is a training set? How is it chosen? What influences its desired size?
11.4 Consider the following feature vector:

x ¼

7 4 3

4 1 8

6 3 5

8 6 1

8 5 7

7 2 9

8 2 2

7 4 5

9 5 8

5 3 3

2
6666666666666664

3
7777777777777775

representing a set of ten observations of three features of an object. Calculate the
covariance matrix.

11.5 Suppose that the class-conditional probability functions for ω1 and ω2 are Gaussians
with (μi, σi) of (4, 2) and (10, 1), and that they have equal prior probabilities
(P1 =P2 = 1/2). What is the optimal decision threshold?

11.6 Describe the conceptual differences between supervised and unsupervised
learning.

11.7 You are given the followed labeled samples, (x1, x2):

Class 1: (2.491, 2.176), (0.550, 4.202), (1.063, 0.766), (5.793, 3.452),
(2.054, −1.476)

Class 2: (− 2.138, − 2.474), (4.219, − 2.076), (−1.795, − 2.838),
(−1.165, − 2.992), (− 1.795, − 2.838)

Class 3: (−3.711, 4.3630, (−4.476, 2.298), (−2.521, 0.483), (−1.165, 3.162),
(−13.438, 2.414)

Classify each of the following feature vectors, using (i) 1-NN and (ii) 3-NN
classification: (−7.427, 2.328), (−4.797, −1.408), (1.079, −1.754), (4.821, 2.435),
(2.545, 0.065).

11.8 Consider the recognition of the character ‘E’ in different sizes, orientations and
both handwritten and in various printed fonts. What features would you extract to
achieve recognition invariance under these conditions?

11.9 Describe an application of structural classification in medical diagnosis.
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12 Three-dimensional visualization

Overview

The advent of multi-modality three-dimensional and four-dimensional imaging has
fueled developments in multi-dimensional visualization. There are numerous techniques
for viewing such data sets on two-dimensional monitors, but the three main classes are
multi-planar viewing, surface rendering and volume rendering. The rendering technique
can play a dominant role in determining which information is displayed to the user. The
optimal choice of rendering technique is generally determined by the clinical application.

Learning objectives

After reading this chapter you will be able to:

� explain the importance of three-dimensional visualization in medical imaging;
� discuss the different techniques used in three-dimensional visualization;

� outline the differences between surface and volume rendering;
� choose an appropriate rendering technique for a specific application;

� describe the applications of virtual reality systems.

12.1 Image visualization

Medical images have a number of different dimensionalities: (i) two-dimensional, such as a
digital radiograph, a fluoroscopic image or a tomographic (US/CT/MRI/PET/SPECT) slice;
(ii) three-dimensional, either a stack of tomographic (2-D) slices or direct three-dimensional
volumetric data (e.g. from spiral CTorMRI); and (iii) four-dimensional, a time sequence of
three-dimensional images. The focus of this chapter is on three-dimensional visualization.
The three-dimensional data can be considered as an image stack, either from a single
modality or a mix of modalities, where the two-dimensional slices have been registered
(Sections 4.3.1 and 6.3) and may have been pre-processed, e.g. to remove noise or enhance
contrast. The visualizations are displayed on a two-dimensional computer monitor,
although three-dimensional holographic displays and head-mounted displays, as used in
virtual reality systems, are being developed.



A typical stack might comprise up to about 50 parallel slices, each with a resolution of
512 × 512 × 12 bits. Each slice is a reconstruction of a plane with a slice thickness of
about 1mm, which avoids the superpositioning of objects in the z direction that occurs in
planar imaging. The slices are usually contiguous or separated by a few millimeters, but
may be overlapping. An immediate advantage is that the data can be viewed from any
view point. Reformatting of the data to show orthogonal orientations is particularly
simple, although with appropriate interpolation oblique sections can also be chosen.
This is known as multi-planar viewing (see Activity 4.3). The operator selects single or
multiple planes, and can often view them singly or simultaneously, either as intersecting
planes or as cubic volumes, and maneuver them interactively (Fig. 12.1).

Visualization of three-dimensional biomedical images is typically performed by either
surface rendering or volume rendering techniques. Each has its own advantages and
disadvantages, and the choice between them depends on the nature of the images and the
desired result.

12.2 Surface rendering

With surface rendering techniques the surfaces of structures or organs are first extracted.
This requires a segmentation and classification step, in which each voxel is classified
according to the structure to which it belongs. The classification step searches for voxels
that lie on edges and are connected. Once the structures have been classified and their

(i) (ii)

Figure 12.1 Orthogonal sections of a three-dimensional volume image as (i) intersecting orthogonal planes
and (ii) a cubic volume. (After Robb, 2000.)
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boundaries identified, the boundaries can be represented by a wire-frame or triangular
mesh. The tiling problem, i.e. how to join the triangles (tiles) to form a surface, can be
solved by using Delaunay triangulation or more heuristically. For example, in Figure 12.2,
tile C2 would be chosen rather than C1 either because it has the smaller area or because it
has the smaller span. Figure 12.3 shows a tiled face.

Surfaces with the same value of a property, such as brightness, gradient or texture,
so-called iso-surfaces, can also be generated directly from the voxel data by an algorithm
such as the marching cube algorithm (Lorensen and Cline, 1987). The basic idea is that
we can define a cube (voxel) by the pixel values at its vertices. If one or more of these
values is less than the user-specified iso-value, and one or more have values greater than
this value, then the voxel must contribute some component of the iso-surface. By
determining which edges of the cube are intersected by the iso-surface, we can create
triangular patches which divide the cube between regions within the iso-surface and
regions outside. By connecting the patches from all cubes on the iso-surface boundary,
we get a surface representation.

Once the surface is obtained, by whichever algorithm, a viewing direction and
projection is chosen. Perspective is a strong cue for depth (Fig. 12.4): closer
items appear larger than more distant items. However, in some situations, it is
helpful to have perspective-free images: it is computationally simpler and allows a
region to remain a constant size in different views. Perspective-free viewing is gen-
erally chosen for view-points outside a structure, and perspective viewing when inside
a structure.

The surface is rendered visible with shading and using hidden surface removal so that
both topography and three-dimensional geometry are more easily understood (Fig. 12.5).
The shading value depends on the angle between the viewing direction and the normal
to the tile or patch, and the distance to the viewer. There are a variety of algorithms
used to perform hidden surface removal. When viewing a three-dimensional object, we
only observe surfaces facing the viewer: a simple way to remove hidden surfaces is
backface culling. For convex bodies all back-facing polygons are removed: a polygon is

P

C2

C1

A

BQ

Right span for tile A
(left span for tile B)

Qi

Qi +1

Pj +1Pj n  – 1

m  – 1

Figure 12.2 Tiling parallel contours.
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(i) (ii)

Figure 12.4 (i) Perspective and (ii) perspective-free projections.

Figure 12.3 Human face tiled with a triangular mesh.

372 Three-dimensional visualization



backfacing if its normal N is facing away from the viewing direction V, i.e. if
N.V= cos(α) > 0 (Fig. 12.6). For the perspective-free projection we can direct V along
the z axis. The value of cos(α) is used to determine the shading. The backface culling
algorithm has a huge speed advantage since the test is cheap and we expect that at least
half the polygons will be discarded. If objects are not convex, the algorithm is more
complex. Usually it is performed in conjunction with a more complete hidden surface
algorithm. Additional three-dimensional cues can be provided by techniques such as
stereoscopic display, rotation and shadowing.

The benefit of surface rendering is that it is generally very fast, since only the points on
the surface need to be re-computed following, for example, a rotation rather than every
single voxel in the image if volume rendering is used. The contour-based surface
descriptors can be used with computer-aided manufacturing (CAM) to control milling
machines that can create exact models of the structure. Surface rendering has several
disadvantages. The surface brightness does not depend on underlying tissue, and to

Figure 12.5 Surface-rendered image of a skull.
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obtain sharp edges soft tissue is typically eroded. Since the decision on which surface will
be visualized has been made during contour extraction, there can be no interactive,
dynamic determination of which surface to render. Another disadvantage is that the
technique is prone to sampling and aliasing errors, due to the discrete nature of the
placement of the triangular mesh. Activity 12.1 shows a surface rendered display.

12.3 Volume rendering

Volume rendering presents a display of the entire three-dimensional image after it has
been projected on to a two-dimensional plane. The most common approach is based
on ray casting techniques, which are a generalization of ray tracing, in which a
two-dimensional array of rays is projected through the three-dimensional image. Each
ray intersects the three-dimensional image along a series of voxels, and these voxels are
weighted to achieve the desired rendering. If the structures in the three-dimensional
image have been segmented and classified, the voxels can be weighted accordingly to
achieve a translucent representation (Fig. 12.7(i)). An alternative approach is to display
only the voxels with the maximum intensity along each ray, the so-called maximum
intensity projection, MIP (Fig. 12.7(ii)), which does not require any segmentation. The
result is a flat looking image that looks like a planar image. This technique is typically a
poor choice for most three-dimensional data sets. The exception is some three-dimensional
CTscans and angiograms, where theMIP is able to identify bright objects embedded inside
another object.

The voxels along each ray are weighted according to

Cout ¼ Cinð1� �ðiÞÞ þ cðiÞ�ðiÞ (12:1)

where Cout is the value of the ray as it exits the ith voxel, and Cin is the value as it enters
the ith voxel. There are two values associates with each voxel: c(i), a shading or

View Vectors
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Figure 12.6 Backface culling: if the dot product of view vector and normal is positive then the polygon is
visible; otherwise it is not visible.
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luminance value, which can be based on the voxel value or calculated from a reflection
model using the local gradient, and �(i), an opacity derived from the tissue type. For
example, if �(i) = 0, then the ray passes through the ith voxel as if it were transparent;
if �(i) = 1, then the voxel is opaque or luminescent depending on the value of c(i). The
values of �(i) are added along each ray andCout is displayed when the sum reaches 1. It is
possible to interpolate from the vertex values of the voxel which the ray passes through,
but it is better to consider the neighboring voxels (8 or 26) and trilinearly interpolate. This
yields values that lie exactly along the ray.

The values of � and c can be changed during the projection process to produce effects
“on-the-fly,” such as changing the degrees of transparency/opacity or selecting different
segmented surfaces. Depth shading can also be incorporated by adding a function of
distance from the viewer into the display value. Hidden surface removal is implemented
by having any ray stop at the first voxel encountered along its path that satisfies a
threshold criterion.

Splatting is an alternative to ray casting. Every voxel is thrown or splatted, like a
snowball, on to the image plane, leaving footprints on the image which are then rendered.
The technique trades quality for speed.

Volume rendering is computer-intensive, requiring a large number of rays to be used to
generate satisfactory results, although modern computers are sufficiently rapid to allow
real-time exploration, editing and measurement. Figure 12.8 shows two examples of
volume-rendered CT images. The approach is best suited to simple scenes with little
clutter: it allows the user to section and mask pixels interactively to reveal underlying
voxels from the raw data and manipulate them as in virtual surgery.

Activity 12.2 involves rendering a stack of MRI images.

(i) (ii)

Figure 12.7 (i) Volume-rendered image using the voxel gradient and (ii) maximum intensity projection
image.
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12.4 Virtual reality

Medicine is starting to use virtual reality (VR) systems, which use very fast, usually
stereoscopic, three-dimensional visualization and specialized, intuitive input devices.
They are being used in training and education, therapy planning and surgery assistance
(Activity 12.3). They range from (i) desktop VR systems with fast rendering capabilities
through (ii) immersive systems, where the user typically wears a head-mounted display,
and feels immersed in a synthetic three-dimensional environment that includes visual and
auditory stimuli and sometimes tactile and force sensations, to (iii) augmented or
enhanced reality systems where the user sees the real world, with virtual objects super-
imposed on it. Head-tracking and eye-tracking information can be used to navigate
through a three-dimensional scene.

In virtual endoscopy, the three-dimensional environment is constructed from data
obtained from helical CT scanning (Section 3.2.5). Virtual colonoscopy, examination
of the colon, is an important clinical application since cancer of the colon is one of the
biggest causes of death from cancer. Virtual colonoscopy is faster than conventional
colonoscopy, is minimally invasive and does not involve sedation. The radiation expo-
sure incurred during a virtual colonoscopy examination is currently equivalent to that of
two plain abdominal films and will probably decrease with continued software and
hardware developments.

Virtual reality systems can also be used to improve the way surgeons plan procedures
using simulations. And augmented reality surgery can be used for minimally invasive
surgery, with the overlay of pre-calculated images on to the patient.

(i) (ii)

Figure 12.8 Volume-rendered CT images of (i) the skull and (ii) the heart.
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Computer-based activities

Activity 12.1 Surface-rendered display
Open the mpg file cfairway.mpg, the surface display of the airways of a patient

with mild cystic fibrosis (courtesy of Division of Physiologic Imaging, Department
of Radiology, University of Iowa). Note the bronchiectasis (ballooning) of the
upper lobe airways. This is characteristic of patients with cystic fibrosis.

Activity 12.2 Volume rendering
Open the sample stack of MRI images of the head (File/OpenSamples and choose

MRI Stack). Open the plugin VolumeJ, and accept all the default parameters
except those in bold following: Rotate 100, 20, 0; Scale 1.0; Aspect 1, 1, 5;
Classifier: Gradient no index (this makes the voxels more opaque the closer their
intensity is to the threshold (128.0) and the higher their surface gradient (set by the
deviation, 2.0)); Interpolation: trilinear; Light 1,1,10. Choose the “raytrace render-
ing algorithm,” and click “Render” to view the rendered result.

Activity 12.3 Visualizations
Run the mpg files ventricles.mpg and brain.mpg. Which is three-dimensional

visualization and which is a simulated file?

Exercises

12.1 Explain the importance of three-dimensional visualization in medical imaging.
12.2 Discuss the maximum intensity projection (MIP) technique used in three-dimensional

visualization. What are its advantages and disadvantages?
12.3 Explain the differences between surface and volume rendering. Which approach is

preferable for brain imaging?
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13 Medical applications of imaging

Overview

Imaging science visualizes an object and quantitatively characterizes its structure and/or
function. Biomedical imaging applies imaging science to the presentation of and inter-
action with multi-modality biomedical images with a view to using them productively to
examine and diagnose disease in human patients. This chapter discusses a number of
specific applications in medicine that illustrate many of the concepts introduced in this
book. The examples have been chosen to demonstrate a wide range of algorithms and
approaches; none represent complete solutions, but are rather examples of continuing
research.

Learning objectives

After reading this chapter you will be able to:

� appreciate the complexity and problems associated with imaging tasks;

� recognize broad schemes for approaching image analysis;
� analyze the component parts in an imaging problem;
� select potential strategies for analyzing images from a variety of applications.

13.1 Computer-aided diagnosis in mammography

Mammography (Section 3.2.3) is the single most important technique in the investigation
of breast cancer, the most commonmalignancy in women. It can detect disease at an early
stage when therapy or surgery is most effective. However the interpretation of screening
mammograms is a repetitive task involving subtle signs, and suffers from a high rate of
false negatives (10–30% of women with breast cancer are falsely told that they are free of
the disease on the basis of their mammograms (Martin, Moskowitz andMilbrath, 1979)),
and false positives (only 10–20% of masses referred for surgical biopsy are actually
malignant (Kopans, 1992)). Computer-aided diagnosis (CAD) aims to increase the
predictive value of the technique by pre-reading mammograms to indicate the locations
of suspicious abnormalities, and analyze their characteristics, as an aid to the radiologist.



About 90% of breast cancers arise in the cells lining the milk ducts of the breast, and
are known as ductal carcinoma in situ (DCIS). Once the tumor extends beyond the lining
of the ducts it is termed invasive, and can spread (metastasize) to other sites in the body.
Radiographic indications fall mainly into two categories, microcalcifications and lesions
(Section 3.2.3). Microcalcifications are the primary means of detecting in situ carcino-
mas; they are typically on the order of several hundred microns or smaller in diameter,
comprise calcified dead cells, and tend to occur in clusters (Fig. 13.1). Most lesions are
invasive cancers; they are ill-defined in shape, often with tissue strands or spiculations
radiating out from them, and similar in radio-opacity to the surrounding normal tissue
(Fig. 13.2). The imaging requirements in mammography are stringent, both in terms of
spatial and contrast resolution.

Computer-assisted diagnosis of mammograms involves image processing, segmenta-
tion and feature extraction. Segmentation of the breast region serves to limit the search
area for lesions and microcalcifications. Background subtraction may be necessary to
compensate for a varying background optical density in the anode–cathode direction of
the mammography system, known as the heel effect: simple subtraction of the low-pass
filtered image from the original image can be effective (Dougherty, 1998). It is useful to
adjust the gray values of the image to compensate for varying tissue thickness: one way
to do this is to add gray values according to the Euclidian distance map (Section 9.2.5),
mapping distances to the skin line in a smoothed version of the mammogram (Bick
et al., 1996). Noise in the image can be reduced by median filtering, although this
can disturb the shape and/or contrast of small structures. An improved technique

(i) (ii)

Figure 13.1 (i) A mammogram showing a cluster of microcalcifications and (ii) computer-estimated margin
around a cluster of microcalcifications.
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(Nishikawa et al., 1993a) combines the result of morphological erosion and dilation
using multiple structuring elements.

Lesions can be extracted using a region-growing technique (Section 10.3.1) with a
stopping criterion based on size or circularity (Huo et al., 1995). Features which are
useful for characterizing mass lesions include their degree of spiculation, shape and
texture. Spiculation features commonly involve the calculation of image gradient using,
for example, the Sobel masks (Section 6.4.2). The cumulative edge gradient (Appendix
C.3.1), from the Sobel magnitude-of-edges image, can be plotted as a histogram of the
radial angle, from the Sobel phase-of-edges image, to determine the degree of spiculation
(Giger et al., 1990; Huo et al., 1998). The FWHM (full width at half maximum) of
the gradient is able to distinguish spiculated masses from smooth masses. Others have
used multi-scale oriented line detectors to detect and measure spiculated masses
(Karssemeijer, 1994; Goto et al., 1998; Parr et al., 1998.) The centers of mass lesions
tend to be circular so that specific filters can be used (Kobatake and Murakami, 1996).
The boundary of the lesion can be unwrapped, and its difference from a smoothed version
used to characterize the degree of spiculation (Giger et al., 1994). Other relevant features
include asymmetry, which would include automatic registration of left and right breast

(i) (ii)

Figure 13.2 (i) A mammogram showing a stellate lesion and (ii) a magnified image of the lesion.
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images (Yin et al., 1994), and changes with time (Sallam and Bowyer, 1996). Most
researchers extract several features and use principal component analysis (Section 11.3)
to identify the most successful combinations. Different methods can be evaluated by
receiver operating characteristic (ROC) analysis (Fig. 13.3), but cannot be compared
with each other unless the same image databases were used (Appendix B.3).

Microcalcifications can be described by the morphology (shape, area, brightness, etc.)
of individual calcifications and the spatial distribution and heterogeneity of individual
calcifications within a cluster. They can be enhanced by spatially filtering the mammo-
gram twice, once to enhance the signal-to-noise ratio and a second time to suppress it, and
taking the difference of both images (Nishikawa et al., 1990). An alternative is to
threshold the image, and morphologically open it using a structuring element to eliminate
very small objects while preserving the size and shape of the calcifications (Dougherty,
1998). Isolated calcifications have little clinical significance, so that many investigators
have incorporated a clustering algorithm into the classification system, in which only
clusters that contain more than a selected number of microcalcifications within a region
of chosen size are retained (Nishikawa et al., 1993b). Such schemes are easily imple-
mented using the k-nearest-neighbor (k-NN) algorithm (Section 11.5.2). Both spatial
distribution and heterogeneity of the features within a cluster can be used qualitatively to
correlate with a radiologist’s criterion, and a classifier such as a neural network used to
estimate the likelihood of malignancy (Jiang et al., 1999). Bayesian methods (Bankman
et al., 1993), discriminant analysis (Swets et al., 1991), rule-based methods (Chang et al.,
1998) and genetic algorithms (Zheng et al., 1999) have also been used in classification.
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Figure 13.3 Receiver operating characteristic (ROC) curves illustrating the performances of a computer
classification method and radiologists in the task of distinguishing between malignant and
benign lesions. ANN indicates an artificial neural network using cumulative edge gradient
features, and the hybrid system used several features. (Reprinted from Huo et al., 1998, with
permission from Elsevier.)
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Computer-assisted diagnosis (CAD) systems do not have to be perfect since they are
used with a radiologist and not alone. Since the cost of a missed cancer is much greater
than the misclassification of benign findings, they should be developed to reduce false
negatives (i.e. have a high sensitivity) even at the cost of some acceptable number of false
positives (i.e. reasonable specificity).

13.2 Tumor imaging and treatment

Multi-modality imaging is essential in the diagnosis and treatment of cancer (Fig. 4.23).
In diagnosis it is used to detect, localize and characterize the “tumor burden” (Dougherty,
1995). Once a tumor is characterized, imaging is used in guiding surgical resection
and radiation treatment planning (RTP) and assessment of treatment. Each imaging
modality – radiography, CT, SPECT, MRI, PET and others – provides complementary
information to understand better the structure and function of the tumor and adjacent organs.
Progress in imaging systems has enabled the acquisition of volumetric data sets from which
the tumor can be visualized with appropriate rendering (Sections 12.2 and 12.3).

Dynamic imaging uses a tracer material injected into the circulatory system, the
kinetics of the tracer distribution providing functional information. The tracer or contrast
material is administered as a bolus that propagates through the circulatory system and is
detectable by the imaging modality. Different tracer materials have been developed for
specific imaging modalities. The functional nuclear medicine modalities rely on the
uptake and/or metabolism of a radioactive tracer to identify and characterize high-grade
recurrent tumors: the poor spatial resolution of these modalities precludes their use for
detecting small (<0.5 cm diameter) tumors.

It is important to be able to distinguish benign from malignant tumors, and this can be
achieved by studying the microcirculation and/or oxygenation status. High tumor perfu-
sion is indicative of a high blood and oxygen supply to the tumor, which are key elements
in its growth. Perfusion imaging is done using contrast-enhanced computed tomography
or magnetic resonance imaging, as well as with nuclear medicine methods and ultra-
sonography. Perfusion, the flow rate per unit volume, is computed pixel-by-pixel using a
series of dynamic images (Miles, 1999). Often multi-modalities, PET with CT or MRI,
can be used to study the same tumor (Schaefer et al., 1997), and image registration
techniques can be used to register images from existing CT and MR systems.
Combination CT/PET scanners are now available commercially: the PET scan picks up
the metabolic signal of actively growing cancer cells in the body, and the CT scan
provides a detailed picture of the internal anatomy that reveals the size and shape of
abnormal cancerous growths. When the two images are fused together they provide
accurate information on both tumor location and metabolism.

The goal of three-dimensional radiation therapy planning is to deliver a lethal dose to
cancer cells without damaging surrounding healthy tissue, some of which (e.g. the brain
stem and optic nerve)may be extremely sensitive to ionizing radiation, in order tominimize
side effects. Figure 13.4 shows a fused CT/PET image of a slice through the head of a
patient with a tumor in the nasal cavity in front of the brain. The lines represent incremental
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levels of radiation dose, encircling the tumor, computed by a three-dimensional conformal
treatment plan. The brain, eyes and lenses receive only minimal doses of radiation, about
10% of the tumor dose.

13.3 Angiography

Coronary artery disease is the leading cause of death worldwide. It occurs when the
coronary arteries that supply blood to the heart muscle become hardened and narrowed
due to the build-up of plaque (fat deposits) on their inner walls, termed atherosclerosis.
As the plaque increases in size, the interior of the arteries, the lumen, gets narrower
(stenoses) and less blood can flow through them. Eventually, blood flow is reduced
and the heart muscle does not receive sufficient oxygen. This can result in a myocardial
infarction (heart attack) when a blood clot develops at the site of the plaque and suddenly
cuts off most or all of the blood supply causing permanent damage to the heart muscle.

Figure 13.4 Fused CT/PET image showing radiation iso-dose lines around a nasal tumor. (Photo courtesy of Varian
Medical Systems of Palo Alto, California. Copyright © Varian Medical Systems. All rights reserved.)
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Once the lumen becomes impaired it can be studied by x-ray arteriography using a
radio-opaque contrast agent injected into each artery with a small tube-like device, a
catheter, under fluoroscopic guidance. X-ray arteriography is a two-dimensional projec-
tion technique, with biplane (preferably orthogonal) measurements often taken to char-
acterize the stenosis under the assumption of an elliptic cross-section (Morton et al.,
1995). The percentage area stenosis, S, is given by

S ¼ A1 � A2

A1
� 100 (13:1)

where A1 and A2 are the reference (normal) and stenosed cross-sectional areas, respec-
tively. However, the densitometric (gray) values within a single arteriogram can be used
to estimate the thickness in the perpendicular direction (Dougherty and Kawaf, 2001);
this is preferable for the very irregular lumens obtained following balloon angioplasty, a
therapeutic procedure to remove the obstructions in the arteries. Densitometry can be
inaccurate in the presence of significant beam hardening (Section 3.2.5) if the vessel is
not oriented close to perpendicular to the x-ray beam and if branches from other vessels
lie close-by and interfere with the background correction. Helical CTangiography (CTA)
delivers a three-dimensional image of the arteries directly, from which the area stenosis
and the degree of calcification of the lesion (Breen et al., 1992; Dougherty, 1997) can be
readily calculated, but it is not used routinely.

Commercial packages for assessing morphology and stenosis, quantitative coronary
arteriography (QCA), use a minimum cost analysis (MCA) algorithm to detect the outline
of the vessels and calculate the stenosis assuming circular cross-sections. The user
defines the start and end point of an arterial segment interactively, and the software
finds the medial axis (Section 9.2.5) automatically. The contours of the vessel are found
in two iterations. First, scanlines are drawn perpendicular to the medial axis along the
length of the segment. The edge strength of each pixel along the scanlines is computed,
and these are stored in a rectangular “cost” matrix after geometric warping and inter-
polation. The minimum cost algorithm iteratively searches for optimal contour paths in
the cost matrices, using information in the position of each border to help identify the
position of the other (Sonka et al., 1995). Geometric corrections for pincushion distortion
can be attempted if necessary (Hoffman et al., 1996). Enhancement of vessel edges for
better visualization can be easily realized in real time using unsharp masking (Section
6.4.2), but it increases the errors in the measured diameters in quantitative coronary
arteriography and is not recommended (Van der Zwet and Reiber, 1995). The reconstruc-
tion of three-dimensional space from two-dimensional projections is ambiguous.
However, on-line three-dimensional reconstruction of the coronary arterial tree, based
on two views acquired from routine angiograms at arbitrary orientation and using gantry
angulations, has been used to give multiple projection images, from which a set of views
with minimal vessel overlap are chosen (Chen and Carroll, 1998).

Intravascular ultrasound imaging (IVUS), a catheter-based technique which provides
real-time high-resolution tomographic images of both the lumen and the arterial wall, is
complementary to x-ray angiography. An array of miniaturized solid-state transducers in
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a cylindrical pattern acquire cross-sectional images. The catheter is navigated using the
three-dimensional path from the biplane images, and the local coronary artery
cross-section reconstructed from the IVUS data. Segmentation of these images to show
lumen and plaque is made easier by using multi-frequency transducers. The lumen can
then be reconstructed and rendered in three dimensions, with each cross-section regis-
tered to it for visualizing the extent of the plaque and precise measurement of the stenosis
(Fig. 13.5). Such an image-guided system can be used to diagnose the disease, deliver
radiation of topical chemicals to the plaque, or position a rigid support tube, a stent.

Magnetic resonance angiography (MRA) has a similar spatial resolution to computed
tomography angiography. It also potentially allows the assessment of myocardial func-
tion, perfusion and metabolism in the same acquisition session, making it a very
attractive and powerful technique. However it offers a bewildering array of data acquisi-
tion protocols, each providing somewhat different angiographic information: its greatest
challenge is in selecting the optimal protocol for producing the most diagnostic images in
the shortest scan time.

13.4 Bone strength and osteoporosis

Osteoporosis is a prevalent bone disease characterized by a loss of bone strength and
consequent fracture risk. Because it tends to be asymptomatic until fractures occur,
diagnosis is often retrospective and relatively few people are diagnosed in time for

Figure 13.5 Three-dimensional visualization of coronary artery (top) reconstructed from sequence of
intravascular ultrasound images (see example at bottom left). The lumen is shown as dark gray
and the plaque as lighter gray. (From Robb, 2000. Reprinted with permission of John Wiley and
sons, Inc.)
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effective therapy to be administered. Clinically, bone mineral density, BMD, is widely used
to diagnose and assess osteoporosis, and changes in bone mass are commonly used as a
surrogate for fracture risk. Although bone mineral density is correlated with bone strength,
it has been increasingly realized that internal bone architecture is also an important
determinant of the mechanical strength of bone and can lead to an earlier and more accurate
diagnosis of osteoporosis (Goldstein, Goulet and McCubbrey, 1993). The relative contribu-
tions of trabecular and cortical bone to overall bone strength are unclear, but most studies
have concentrated on trabecular bone since it is the metabolically more active. The limited
resolution of commercial CT scanners precludes proper resolution of the trabecular struc-
ture; however, CT images retain some of this architectural information (Dougherty, 2001),
albeit degraded by the inadequate modulation transfer function (MTF) of the imaging
system, and this is referred to as texture (Appendix C.2). Fractal analysis (Appendix C.3)
of trabecular bone in such images enables the characterization of the microarchitecture
(Fazzalari and Parkinson, 1996) and hence bone strength (Millard et al., 1998).

For natural texture images fractalness is limited to a range of scales, and the fractal
dimension as a function of spatial frequency within the image presents as a fractal
signature (Fig. 13.6(i)) which can distinguish different architectures (Dougherty and
Henebry, 2001). Lacunarity measures the distribution of gap sizes in data and contains
significant information on the spatial structure of the trabeculae (channels) in the
trabecular bone (Fig 13.6(ii)). Both metrics are sufficiently sensitive to distinguish a
range of bone conditions (Dougherty and Henebry, 2002) and are potentially useful in
monitoring bone strength and predicting future fracture risk using CT or MRI images
(Dougherty, 2001).

13.5 Tortuosity

The clinical recognition of elevated tortuosity or integrated curvature is important in the
diagnosis of many diseases. Increased vascular tortuosity, for example, affects the flow
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Figure 13.6 (i) Fractal signatures and (ii) normalized lacunarity plots of a typical series of CT images (slice
thicknesses: × 1mm, � 3mm, + 5mm) and the corresponding projection image (Δ).
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hemodynamics and can lead to aneurysm (rupture of the blood vessels), and the tortuosity
of retinal blood vessels can be an early indicator of systemic diseases.

Several possible metrics of tortuosity have been proposed, but none has gained
universal acceptance. Vessel tortuosity does not have a formal clinical definition but
there are clearly some intuitive properties which a reasonable index must satisfy in order
for it to correlate with the qualitative assessment of an expert observer. The measure
should be invariant to affine transformations of a vessel: translation, rotation and scaling.
Most clinicians consider that an ideal tortuosity measure should be additive, i.e. the
tortuosity of a composite vessel, comprising several portions, should equal the sum of the
tortuosities of those portions. Some of the line integral measures (Hart et al., 1999) and
the second difference index (Dougherty and Varro, 2000) satisfy these conditions.
However, in their implementations, they are highly sensitive to noise, both from artifacts
introduced during vessel extraction to obtain the vessel mid-line, and to digitization
errors due to limited image resolution. The latter are compounded because of the use of
small groups of consecutive, closely separated, discretely sampled data points to com-
pute local curvatures. Various low-pass filters have been applied to vessel mid-lines to
mitigate digitization errors (Smedby et al., 1993; Hart et al., 1999; Dougherty and Varro,
2000), but these are ultimately arbitrary and affect the value of tortuosity obtained: the
more severe the filtering, the smoother the mid-line and the lower the measured tortuosity.
The use of cubic smoothing splines to filter noisy data (Grisan, Forrachia and Ruggeri,
2003) relies on an arbitrary weighting parameter and does not address the length of data
sub-segment required.

A recent paper proposes the use of tortuosity metrics related to the curvature of a unit
speed curve, obtained by approximating polynomial spline fitting to the discrete data
points representing the mid-line of the vessel (Johnson and Dougherty, 2006). The fitted
curve is not required to pass through each mid-line data point, but rather to approach it to
within a distance related to the radius of the local blood vessel, and it is not restricted to
the discrete pixel grid so that it can more closely correspond to the actual blood vessel.
Approximating polynomial spline fitting captures the essential tortuosity of the vessels
without having to place undue reliance on the accuracy of each extracted mid-line point,
or employ arbitrary smoothing methods. The analysis is construed directly in three
dimensions (3-D) so that it can be applied to three-dimensional data sets, which are
becoming increasingly available due to the thin, contiguous images now obtainable with
helical computed tomography and magnetic resonance angiography.

For real (i.e. noisy) data there exists a unique shortest path which passes through “data
balls” of radius ri, centered on the points xi, defining the mid-line; this shortest path is a
unit speed piece-wise linear function, f. The radii of the data balls can be specified
in terms of the local radius of the vessel, Ri. This “shortest path,” f1, between the data balls
is used to define the mean curvature, M(f). Once this is obtained, an algorithm is used to
find the “smoothest path,” f2, connecting these data balls (Fig. 13.7) and hence to
calculate the root-mean-square curvature, K(f). The putative tortuosity metrics were
tested on a simulated two-dimensional blood vessel and synthesized three-dimensional
helices, and were shown to be scale invariant and additive, insensitive to digitization
errors and largely independent of the resolution of the imaging system.
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The clinical validity of the metrics has been established (Dougherty and Johnson,
2008a) by applying them to a number of clinical vascular systems, including both
two-dimensional (standard angiograms) and three-dimensional data sets (from computed
tomography angiography, CTA (Fig. 13.8) and magnetic resonance angiography, MRA).
Accurate tortuosity values greatly benefit the treatment and successful outcome of
vascular surgery, for example in the endovascular repair of occlusions and aneurysms
by endovascular stent insertion (Wolf et al., 2001).

The appearance of the retinal blood vessels is an important diagnostic indicator for
many systemic pathologies, including diabetes mellitus, hypertension and atherosclerosis
(Hoover, Kouznetsova and Goldbaum, 2000). Normal retinal blood vessels are straight
or gently curved, but they became dilated and tortuous in a number of disease conditions
(Fig. 13.9), including high blood flow, angiogenesis and blood vessel congestion (Hart
et al., 1999). In addition, disease associated with retinopathy of prematurity (ROP), for
example, is known to be defined both by increased diameter and tortuosity of retinal blood
vessels in the posterior pole, with tortuosity tracking the disease better than dilation
(Capowski, Kylstra and Freedman 1995). Tortuosity metrics based on the approximating
polynomial spline fits are able to distinguish between normal vessels and some retinal
pathologies in retinal fundus images (Dougherty and Johnson, 2008b).

Discriminant analysis allows us to investigate the utility of using both tortuosity
metrics to test for the three chosen pathologies (retinitis pigmentosa, diabetic retinopathy
and vasculitis) simultaneously. The canonical plot in Figure 13.10 shows the linear combi-
nations of the tortuosity features (M and K) in the two dimensions that best separate the
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Figure 13.7 The smoothest path (solid line) through a synthesized blood vessel (dashed lines) using a data
ball size equal to the local radius of the vessel.
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groups. Ideally the directions ofM and K would be orthogonal to each other in canonical
space, indicating that they are independent. Clearly they are not orthogonal and are
therefore dependent to some extent, as would be expected based on their definitions.
However, they are not collinear, indicating that they are not measuring exactly the same
properties. The prevalences (i.e. likelihoods) of the abnormal conditions are very low in the
general population (retinitis, 0.025%; diabetic retinopathy, 2.8%; vasculitis, 0.002%), and
their values affect the classification. Taking these into account results in 14 of the 35 vessels
(40%) being misclassified. In addition, 3 (out of 8) of the retinitis results are misclassified
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Figure 13.8 The shortest (dashed) and smoothest (solid) paths through computed tomography angiography
(CTA) data of the right iliac artery showing the ellipses that were fitted to the outline of the
vessel in each slice.

(i) (ii)

Figure 13.9 Selected blood vessel (in gray) in an image of (i) normal blood vessel and (ii) blood vessel in a
patient with retinitis pigmentosa.
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as diabetes; 6 (out of 11) of the diabetic results are misclassified as normals; and all the
vasculitis results are misclassified as normals.

Such a high misclassification rate precludes the use of this method for screening for all
of these conditions simultaneously in the general population. However, a more likely
application would be as a test for a single condition, most likely a diagnostic test in
referred patients already suspected of being at risk. In the case of retinitis, assuming that
the prevalence of the condition in the referred patients is 50%, all cases would be
classified correctly. (Even if the prevalence of the general population was used, all the
normals would be classified correctly as would 7 out of the 8 retinitis cases – a total
misclassification of 5.2%.) These groups are easy to distinguish because the tortuosity in
retinitis is significantly larger than normal. In the case of diabetes, again assuming a 50%
prevalence in the referred patients, 1 (out of 11) of the normal patients would be classified
as diabetic (a false positive), and 2 (out of 11) diabetic retinopathy cases would be
misclassified as normals 9 (a false negative). This corresponds to a total misclassification
rate of 13.6%. In the case of vasculitis, assuming a 50% prevalence in the referred
patients, 2 (out of 11) of the normals would be misclassified as vasculitis (false
positives), but all (5) vasculitis cases would be correctly classified; a total misclassi-
fication rate of 12.5%. False positives are not considered as serious as false negatives,
since further testing should identify them correctly; false negatives are unlikely to be
tested further.

Clearly tortuosity is a valuable feature in distinguishing any of these three conditions
from normal vessels. However, classification would be even more successful if other
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Figure 13.10 Canonical plot of data from retinal vessels. Data from the ground truth conditions are indicated
by separate symbols (▪ vasculitis; * normal; × diabetes; + retinitis). The directions of the
features, M and K, are shown in the canonical space by the labeled rays. The size of each circle
corresponds to a 95% confidence limit for the mean (marked with +) of that group; groups with
significantly different values of tortuosity have non-intersecting circles. The small arrows indicate
misclassified data points. See also color plate.
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independent and discriminating features could be identified. In diabetic retinopathy, it
would be useful to add features that would quantify the presence of hemorrhaging and
microaneurysms.

Scoliosis is a complicated condition characterized by a lateral curvature of the spine
and accompanied by rotation of the vertebrae about its axis. Despite the risks associated
with repeated exposure to ionizing radiation (Nash et al., 1979), radiography remains the
most accurate method of assessing the scoliotic curvature. A scoliotic angle, quantifying
the extent of lateral curvature within the affected region of the spine, is routinely used to
clinically characterize the curvature (Diab et al., 1995). However, since the curvature
occurs in three dimensions it may be characterized more accurately by a tortuosity index
if three-dimensional images of the spine are available (Dougherty and Johnson, 2008c).
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14 Frontiers of image processing
in medicine

Overview

The recent rapid advances in medical imaging and automated image analysis will
continue and allow us to make significant advances in our understanding of life and
disease processes, and our ability to deliver quality healthcare. A few of the synergistic
developments involving a number of disciplines are highlighted.

Learning objectives

After reading this chapter you will be able to:

� recognize the limitations of current imaging technology;
� appreciate the trends and ongoing developments in medical imaging.

14.1 Trends

“A picture is worth a thousand words.”

The rapid advances of the last two or three decades in medical imaging technology, which
have delivered high-resolution, three-dimensional anatomical and physiological images, is
continuing apace, enabling ever more powerful advances in diagnosis and intervention.
Improved, miniature detectors are pushing spatial resolution below 1mm,whichwill require
large computer memories and storage capacities and improved software capabilities to
visualize the larger data sets interactively. Advances in post-processing, especially in
automated registration, segmentation, classification and rendering, will be required (Van
Leemput et al., 1999; Huber and Hebert, 2003; Way et al., 2006). The availability ofmulti-
modality imaging, such as combined CT/PET scanners, is increasing, along with the means
to share such images around the clinical setting and remotely, fueling improvements in
PACS and telemedicine systems (Section 4.3).

14.1.1 The inverse problem

A basic aspect of most imaging modalities is to reconstruct an image based on minimally
invasive measurements from a number of sensors. The inverse problem determines the



properties of the unknown system from the observed measurements. The goal of the
reconstruction can be either structural information, such as the anatomy that comes from
CT or MRI imaging, or functional information from nuclear medicine imaging or
electrical impedance tomography (EIT). An important key feature of inverse problems
is their ill-posedness, i.e. they do not fulfil classical requirements of existence, unique-
ness and stability under data perturbations. The last aspect is especially important since
in the real world measurements always contain noise; approximation methods for
solving inverse problems with minimal sensitivity to noise, so-called regularization
methods, are being studied. Electrical impedance tomography is an example of a severely
ill-posed inverse problem because very small noise content is typically translated into
unpredictable and huge variations in the image, unless proper care is taken during the
reconstruction process. Powerful numerical methods, such as finite element methods for
approximating partial differential equations and the level set method for handling topo-
logical changes are being developed.

14.1.2 Functional magnetic resonance imaging (fMRI)

Functional MRI (fMRI) provides functional (i.e. physiological) as well as anatomical
information by following changes in the flow of fluid, essentially water (or blood) in
the body. A major topic of recent interest in the area of model-based image analysis is
functional neuroimaging, which involves the use of functional MRI to map the activity
of the brain to millimeter spatial resolution when it is challenged with sensory stimula-
tion or mental processing tasks. Changes in blood flow and blood oxygenation in the
brain are closely linked to neural activity. When nerve cells are active they consume
oxygen carried by the hemoglobin in red blood cells circulating in local capillaries. The
local response to this oxygen utilization is an increase in blood flow to regions of
increased neural activity (occurring after a delay of 1–5 s), leading to local changes in
the relative concentration of oxyhemoglobin and deoxyhemoglobin. Hemoglobin is
diamagnetic when oxygenated but paramagnetic when deoxygenated; the magnetic
resonance signal of blood is therefore slightly different depending on the level of
oxygenation. These differential signals can be detected using an appropriate MRI
pulse sequence such as blood-oxygen-level-contrast (BOLD) contrast. Higher BOLD
signal intensities arise from decreases in the concentration of deoxygenated hemoglo-
bin since the blood magnetic susceptibility now more closely matches the tissue
magnetic susceptibility.

However, the slow response time limits its usefulness to characterizing where, rather
than how, the brain performs its tasks. Neuron activity can elevate electromagnetic signal
changes as well as the hemodynamic and metabolic changes observed with functional
MRI. These rapid changes can be measured by electroencephalography (EEG) and
magneto-encephalography (MEG) using sensors placed around the head. (EEG has a
much higher temporal resolution but rather poor spatial resolution, whereas MEG has a
much higher temporal resolution and similar spatial resolution.) The integration of
fMRI and EEG/MEG provides high-resolution spatiotemporal multi-modal neuroima-
ging (Liu, Ding and He, 2006).
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Diffusion tensor imaging (DTI) is a related use of magnetic resonance to measure the
diffusion of molecules, typically water molecules, in tissue. Two aspects of diffusion
tensor imaging render the modality very powerful. First, the microscopic length scale of
water diffusion in tissue gives it microscopic spatial sensitivity. Second, in fibrous
tissues, the anisotropic nature of the diffusion reflects the gross arrangement of the
fiber bundles themselves. The method has been used to probe illnesses such as multiple
sclerosis that disrupt the normal organization or integrity of cerebral white matter
(Ciccarelli et al., 2003), and the underlying changes in cartilage structure during osteoar-
thritis (Meder et al., 2006).

Functional imaging methods are also being used to evaluate the appropriateness and
efficacy of therapies in, for example, disorders such as Parkinson’s disease, depression,
schizophrenia, and Alzheimer’s disease and for controlling metabolic disorders such as
osteoporosis and atherosclerosis.

14.1.3 Molecular imaging

Molecular imaging is the in vivo, non-invasive investigation of molecular cellular events
involved in normal and pathological processes. It combines molecular agents with
powerful new imaging tools, such as PET, to capture pictures of specific molecular
pathways in the body, particularly those that are key targets in disease processes.
Molecular imaging has the unique ability simultaneously to find, diagnose and treat
disease inside the body, as well as to assess the impact of particular therapies. In the
future, molecular imaging is expected to aid in identifying the presence of drug-resistant
genes that will enable clinicians to pre-determine which treatment regimens will be most
effective. Researchers are working to integrate molecular imaging with nanotechnolo-
gies (using molecular-size (≤ 100nm) structures or sensors) to detect the precise location
of disease and deliver drug therapies directly to diseased cells. Quantum dots (qdots) are
fluorescent nanoparticles of semiconductor material that can be designed to detect the
biochemical markers of cancer (Carts-Powell, 2006).

Nanotechnologies are being designed to self-assemble at the appropriate time and to
implant themselves to repair bones or tears and even grow new blood vessels or tissue
such as heart muscle. During all of these processes, imaging technologies will monitor
the process and monitor the results.

14.1.4 Other imaging modalities

There are a number of other emerging imaging modalities with the potential to
contribute significantly to diagnostic imaging (Dhawan, 2003). They include: multi-
spectral optical imaging, which has been used to study skin lesions and image the
breast; electrical impedance tomography, based on the naturally varying conductivity
of the body; and microwave imaging, based on differences in the dielectric properties
at microwave frequencies of, for example, breast carcinomas and normal breast
tissue.

14.1 Trends 397



14.1.5 Surgical interventions

Medical images are used not only for diagnosis, but also in surgical interventions. In
robotic surgery a surgeon uses a joystick to control a robot, which is armed with surgical
tools and a camera. It is used for minimally invasive procedures, such as repairing
blockages between the kidney and the ureter or to remove the prostate. The surgeon
also receives haptic (tactile) feedback through small servo motors in the robotic arms.
Visual input is stereoscopic and three-dimensional (3-D), with the surgeon wearing
optically treated 3-D glasses. Gross movements are scaled to control much finer move-
ments at the remote instrument tip so that they can be manipulated to tolerances far
beyond the physiologic capability of unaided human hand-eye kinetics.

Telemedicine currently offers a wide range of remote medical diagnostics and con-
sultations. Increasingly telesurgery will expand to offer robotic surgical operations over a
telemedicine network. Sufficient bandwidth will be required to avoid lag time in the
audio-visual and haptic data which can lead to “simulator sickness” involving dizziness,
nausea or headaches. Virtual reality surgical simulators will doubtless become more
common in educational and training environments, to study anatomy from a new
three-dimensional perspective or practice surgical procedures with a scalpel and clamps
(Robb, 2000; Suetens, 2002).

14.2 The last word

Physics, mathematics, computer sciences, engineering and the life sciences are all
contributing to a remarkable synergy of efforts to achieve dynamic, quantitative imaging
of the body using minimally invasive, non-invasive or even virtual methods. The
structural and functional relationships between the cells, tissues, organs and organ
systems of the body are being advanced by molecular imaging, and laboratory imaging
techniques such as confocal microscopy for cellular imaging and micro-array genomic
imaging to probe gene function. With continuing evolutionary progress in biomedical
imaging, visualization and analysis, we can fully expect to benefit from new knowledge
about life and disease processes, and from new methods of diagnosis and therapy.

Imagination is more important than knowledge. For knowledge is limited, whereas imagination
embraces the entire world, stimulating progress, giving birth to evolution.

Albert Einstein, 1879–1955
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Appendix A The Fourier series and Fourier transform

Any periodic function, f(x), can be expressed in terms of an infinite, weighted sum of
sines and cosines, namely its Fourier series:

fðxÞ ¼ 1

2
a0 þ

X1
n¼1

an cosðnxÞ þ
X1
n¼1

bn sinðnxÞ (A:1)

where n is an integer, x is an angle that runs from 0 to 2π, and an and bn are the weights or
Fourier coefficients. Cosines are even functions (cos(–nx) = cos(nx)) and sines are odd
functions (sin(–nx) = –sin(nx)).

The computation of the Fourier series is known as Fourier analysis, and it is extremely
useful as a way to break down an arbitrary periodic function into a linear combination of
elementary functions. In the Fourier series, sinusoids (i.e. sines and cosines) are taken as
these elementary or basis functions: they are naturally occurring waveforms related to
uniform circular motion (Fig. A.1). Sinusoids are traced out by rotating phasors (see
phasor1 and phasor2). The reverse process, Fourier synthesis, allows a periodic
function to be built up from a set of elementary functions.

The Fourier series has widespread applications. For example, since the superposition
principle holds for solutions of a linear homogeneous ordinary differential equation, if
such an equation can be solved in the case of a single sinusoid, the solution for an
arbitrary function is immediately available by expressing the original function as a
Fourier series.

It is more useful in imaging to let x traverse a distance, say − L/2 to + L/2, rather than an
angle, in which case the Fourier series can be written as

fðxÞ ¼ 1

2
a0 þ

X1
n¼1

an cosð2pnx=LÞ þ
X1
n¼1

bn sinð2pnx=LÞ (A:2)

where the Fourier coefficients are given by

an ¼ 2

L

ðL=2

�L=2

fðxÞ cosð2pnx=LÞdx (A:3a)

bn ¼ 2

L

ðL=2

�L=2

fðxÞ sinð2pnx=LÞdx (A:3b)



The Fourier coefficients can be conveniently obtained because the various sine and
cosine functions are mutually independent or orthonormal, so that the coefficients can
be calculated separately.

Figure A.2(i) shows how a periodic square wave can be built up from sinusoids. Near
points of discontinuity, an overshoot or “ringing,” known as the Gibbs phenomenon,
occurs. The Fourier coefficients for this shape, comprising its Fourier spectrum, are
shown in Figure A.2(ii): they occur at multiples of a fundamental frequency, f. Note that
the negative frequency coefficients are redundant.

The notion of a Fourier series can be extended to a sum of complex exponential
functions, with j = √(− 1), and complex coefficients, Cn,

fðxÞ ¼
Xn¼1

n¼�1
Cn expð j:2pnx=LÞ (A:4)

since sines and cosines can be expressed as complex exponentials using Euler’s formula,

ej� ¼ cos �þ j sin � (A:5)
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Figure A.2 (i) Harmonic analysis of a periodic square waveform and (ii) its Fourier spectrum.
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Figure A.1 The projection of a phasor, a vector rotating counter-clockwise at uniform speed, on to a line
gives a sinusoid with time: a sine when the projection is on to the vertical, a cosine when the
projection is on to the horizontal.
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from which we obtain

sinj�j ¼ ðej� � e�j�Þ=2j (A:6a)

cosj�j ¼ ðej�þe�j�Þ=2 (A:6b)

The complex Fourier coefficients, Cn, are given by

Cn ¼ 1

L

ð1

�1
fðxÞ expð�j:2pnx=LÞdx (A:7)

and have both a magnitude (or amplitude) and a phase (Fig. A.3).
The analysis can be extended to non-periodic shapes by considering that the period

continues to infinity. In this case the coefficients become continuous rather than discrete,
and the summation becomes an integral:

fðxÞ ¼
ð1

�1
FðkÞ expðj:2pkxÞdk (A:8a)

where

FðkÞ ¼
ð1

�1
fðxÞ expð�j:2pkxÞdx (A:8b)

and where k is introduced as the spatial frequency: just as a waveform that varies with
time has a frequency, which is inversely proportional to the repeat time, so a waveform
which varies with distance has a spatial frequency, which is inversely proportional to the
repeat distance.

F(k) is identified as the Fourier transform of f (x) (Equation (A.8b)) and, for a
non-periodic shape, it replaces the Fourier coefficients of the periodic shape. It is a

Im
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|C |2
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 a 
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Figure A.3 A complex number, C, has both real (Re) and imaginary (Im) components. Its length is its
magnitude, |C|, and the angle, θ, it makes with the positive real axis is its phase.
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continuous function, i.e. all frequencies are present for a non-periodic shape (Fig. A.4(ii)),
not just the discrete harmonics that are present in a periodic shape (Fig. A.4(i)).
Equation (A.8b) is known as the Fourier transform, and Equation (A.8a) as the inverse
Fourier transform; together they form the Fourier transform pair. They are essentially the
same, apart from the sign of the exponent.

The Fourier transform is a complex quantity, with real and imaginary parts, Re(F(k))
and Im(F(k)). It is often more useful to consider its magnitude and phase given by

jFðkÞj ¼ ½Re2ðFðkÞÞ þ Im2ðFðkÞÞ�1=2 (A:9a)

� ¼ tan�1½ImðFðkÞÞ=ReðFðkÞÞ� (A:9b)
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Figure A.4 Various forms of the Fourier transform. (i) The Fourier series: the waveform is continuous and
periodic over a distance L in the spatial domain and discrete (i.e. harmonics only) in the spatial
frequency domain. (ii) The Fourier transform: the waveform is continuous and non-periodic in the
spatial domain and in the frequency domain. (iii) The Fourier transform of a sampled waveform is
discrete in the spatial domain and continuous and periodic in the frequency domain: fs is the
sampling frequency. (iv) The discrete Fourier transform, where the waveform in both the spatial
and frequency domains is discrete and periodic. (After Randall, 1987, Fig. 2.6.)
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The equations can be generalized into two, or more, dimensions, where u and v are the
components of the spatial frequency in the x and y directions, with k ¼ ðu2 þ v2Þ1=2.

The Fourier transform of f (x, y) always exists if it is a physical quantity, such as image
brightness. The Fourier magnitude and phase images provide a picture of the frequency
composition of the image and the relative shifts between the components, respectively.
The Fourier intensity image, │F(k)│2 =Re2(F(k)) + Im2(F(k)), known as the power
spectrum or power spectral density image, does not contain phase information.
Although we often concentrate on the intensity image, there is very significant informa-
tion in the phase image.

The transform can also be applied to a sampled or digital image comprising M ×N
pixels, in which case it is known as the discrete Fourier transform, DFT:

Fðu; vÞ ¼ 1

MN

XM�1

x¼0

XN�1

y¼0

f ðx; yÞ expð�j:2pððux=MÞ þ ðvy=NÞÞÞ (A:10a)

with

fðx; yÞ ¼
ð1

�1

ð1

�1
Fðu; vÞ expð j:2pððux=MÞ þ ðvy=NÞÞÞdu dv (A:10b)

This situation is illustrated in Figure A.4(iii), and is the reverse of the Fourier series case
shown in Figure A.4(i). Because of the symmetry of the Fourier transform pair, a
continuous periodic waveform in one domain becomes discrete with equally spaced
components in the other domain. In the Fourier series, a periodic and continuous spatial
waveform gives rise to a discrete frequency spectrum of equally spaced harmonics; in the
case of a non-periodic waveform, sampled at a fixed rate, the frequency spectrum is
continuous and periodic.

In practice the frequency domain will also be sampled (Fig. A.4(iv)), and thus the
spatial waveform will be rendered periodic. That is, the discrete Fourier transform (DFT)
of an image will implicitly assume that the image is repetitive beyond its boundaries. The
DFT transform pair is given by

Fðu; vÞ ¼ 1

MN

XM�1

x¼0

XN�1

y¼0

fðx; yÞ expð�j:2pððux=MÞ þ ðvy=NÞÞÞ (A:11a)

and

fðx; yÞ ¼
XM�1

u¼0

XN�1

v¼0

Fðu; vÞ expðj:2pððux=MÞ þ ðvy=NÞÞÞ (A:11b)

Because the integrals have been replaced by finite sums, the discrete Fourier transform is
computationally tractable. Even so, to obtain N frequency components from N spatial
samples requires N2 complex multiplications. Fast Fourier transform (FFT) algorithms
are able to obtain the same result with a reduced number, typically N log2 N, of complex
multiplications.
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There are a number of symmetry combinations for Fourier transform pairs. For
example, in the case of a real image in the spatial domain, the real part of its complex
Fourier transform will have even symmetry (and so will its amplitude) while the
imaginary part will have odd symmetry (as will the phase). Such a function is known
as a Hermitian. Any real image is a combination of components with real and odd
symmetries; it is the even symmetries in the real image that give rise to the real, even part
of the transform, and the odd symmetries that give rise to the imaginary, odd part of the
transform.

The Fourier transform of the point spread function (PSF), h(x, y), of an imaging system
is its optical transfer function (OTF), H(u, v). By examining the magnitude of the optical
transform function, |H(u, v)| – known as the modulation transfer function (MTF) – it can
quickly be determined which spatial frequency components are passed or attenuated by
the imaging system.

As an example, consider an imaging system whose point spread function can be
modeled by a 3 × 3 weighted-average mask which describes small amounts of blurring:
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Figure A.5 shows a plot of the magnitude of its discrete Fourier transform, which is
the modulation transfer function, |H(u, v)|, of the imaging system. Near (u, v) ≈ (0, 0), the
modulation transfer function has a value close to 1, indicating that low-frequency
components are passed without being changed. Near the perimeter of the plot, the
modulation transfer function is close to zero, indicating that high-frequency components
are completely blocked, which accounts for the blurring effect.
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Figure A.5 |H(u, v)| for a 3 × 3 smoothing mask, with N =M = 33.
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Appendix B Set theory and probability

B.1 Concepts from set theory

Set theory is used to indicate membership of elements in a set, and is used in probability
theory. If set A contains the elements a1, a2, … , an, then

A ¼ fa1; a2; � � �; ang (B:1)

Note that a1 is an element of A, thus

a1 2 A (B:2)

but b1 is not an element of A, thus

b1 =2 A (B:3)

An empty or null set is denoted by

� ¼ fg (B:4)

If set A is a subset of a larger set D, then

A � D (B:5)

Sets can be represented in a Venn diagram, where everything is traditionally placed
inside a large rectangle that represents the universal set U. Subsets ofU appear inside the
rectangle as quasi-circles. The complement of a set A is given by that portion of the
rectangle outside of A and is denoted AC. The notation

AC ¼ fwjw =2Ag (B:6)

reads as “AC is a set of elements, w, such that w’s elements are not elements of A.”
The union of two sets A and B is the set of all elements belonging to either A or B, or

both, and is denoted by

C ¼ A [ B (B:7)

and is shown in Figure B.1(i). The intersection of two sets A and B is the set of all
elements belonging to both A and B, and is denoted by

D ¼ A \ B (B:8)

and is shown in Figure B.1(ii).



Morphological operators such as dilate and erode can be defined in terms of set theory
(Gonzalez and Woods, 2008), where A is an image and B is a structuring element. For
example, the dilation of A by B can be written as

A� B ¼ fz j ½ðB̂Þz \ A� � Ag (B:9)

where B̂ is the reflection of B, defined as

B̂ ¼ fwjw ¼ �b; for b 2 Bg (B:10)

and (B)z indicates a translation by z, such that

ðBÞz ¼ fwjw ¼ bþ z; for b 2 Bg (B:11)

Equation (B.9) is based on reflecting the structuring element B and shifting it by z, and
then finding the set of all displacements, z, such that B̂ and A overlap by at least one
element. This is analogous to convolution except that we are using logic operations in
place of arithmetic operations. In practice, however, we will use a more intuitive definition
of dilation and the other morphological operators (Chapter 9).

B.2 Boolean algebra/logic operations

Boolean algebra captures the essential properties of both set and logic operations.
Specifically, it deals with the set operations of intersection, union and complement and the
logic operations of AND, OR and NOT. Logic operations are very useful when dealing with
binary images, and provides a powerful tool when implementing morphological operations
(Chapter 9). They are used in the design of integrated circuits (ICs) in electronics, where an
output voltage depends on one or more input voltages. The two states 0 and 1 represent low
and high voltage, although more generally in logic they represent “false” and “true.” Logic
operations are described by logic gates and their corresponding truth tables.

The output of the logical AND operation is “true” (1) only when both inputs are
“true” (1); i.e., the output is true if input A and input B are true (Fig. B.2). The AND
operation is written as A AND B (or as A·B). The output of the OR operation is “true” (1)
when either inputA or input B, or both, is “true” (1) (Fig. B.2); it is denoted byAOR B (or as

(i) (ii)

A

B

A

B

Figure B.1 (i) Union and (ii) intersection of sets A and B, shown as light gray regions.
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A+B). An exclusive OR operator (XOR) exists, whose output is “true” (1) when either input
A or input B, but not both, is “true” (1). The NOToperation produces the complement of the
(single) input, and can be incorporated into other gates to produce the NAND and NOR
operations (Fig. B.2). In fact it can be shown that all operations can be built from NAND
operations, or alternatively from NOR operations. When used with binary images these
operations operate on the images on a pixel-by-pixel basis, taking a pixel from an image A
with a correspondingly positioned pixel from image B to produce a pixel in an output image.

The logic operations have a one-to-one correspondence with set operations, except
that the former operate only on binary variables. For example, the intersection operation
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Figure B.2 Logic operators and truth tables.
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(∩) in set theory reduces to the AND operation for binary variables and the union ([)
reduces to the OR operation for binary variables.

B.3 Probability

In probability a random experiment is the process of observing the outcome of a chance
event. The elementary outcomes are all the possible results of the experiment, and they
comprise the sample space, S. As examples, the sample space for the single toss of a coin is

S= {H, T}, where H is heads and T is tails;
for two tosses of a coin it is

S= {(H, H), (H, T), (T, H), (T, T)};
for the throw of a single die it is

S= {1, 2, 3, 4, 5, 6}.
An event consists of one or more possible outcomes of the experiment: the probability or
likelihood of an event occurring is the proportion of its occurrence in a large number of
experiments. For example, if there is a finite number of outcomes, N, and each is equally
likely, then the probability of each outcome, P, is 1/N; and the probability of an event
consisting ofM outcomes isM/N. A probability of 0 indicates that an event is impossible;
and a probability of 1 indicates that it is certain.

Thus for an event A

0 � PðAÞ � 1 (B:12)

PðSÞ ¼ 1 (B:13)

PðACÞ ¼ 1� PðAÞ (B:14)

Worked example Throwing two dice
Throw two dice, a white die and a black die. What is the probability of event A, that
the black die shows a 6? What is the probability of event B, that the numbers on the
dice add to 4?

The sample space, S, is shown in Fig. B.3. Event A comprises the six elements with
the black die showing 6, so that the probability of event A is 6/36, i.e. 1/6. Event B
comprises the three outcomes where the numbers on the two dice add to 4, so that its
probability is 3/36, i.e. 1/12.

P = { (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
(3,1) (3,2)    . .                   (3,6)

(6,1) (6,2)    . .                    (6,6) } 

(4,1)    . .       . .
(5,1)    . .                

Event B

White Black
Elementary outcome

Event A

Figure B.3 Throwing two dice. See also color plate.
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Events A and B are independent if

PðAANDBÞ ¼ PðAÞ � PðBÞ (B:15)

This would be true, for example, in the throwing of two dice; the score on the second is
independent of the throw on the first.

Worked example
What is the probability of event E, getting at least one 6 in four rolls of a single die?

This type of problem is best solved by finding the probability of not getting any 6s,
and then taking the complement. The probability of not getting any 6s on four rolls is
(5/6 × 5/6 × 5/6 × 5/6), i.e. 0.432. The complement of this, the probability of getting at
least one 6, is 0.518.

The sample space, S, for throwing three dice comprises outcomes such as (1, 1, 1),
(1, 2, 1), etc., and can be considered as a three-dimensional sample space, comprising six
slices. The first slice sets die #3 to show 1, and comprises the 36 outcomes of die #1 and
die #2; the second slice sets die #3 to show 2, and comprises the 36 outcomes of die #1
and die #2; and so on.

The general addition rule is illustrated in Figure B.4:

PðAORBÞ ¼ PðAÞ þ PðBÞ � PðAANDBÞ (B:16a)

or, equivalently,

PðA [ BÞ ¼ PðAÞ þ PðBÞ � PðA \ BÞ (B:16b)

where the third term on the right-hand side has to be subtracted because it has already
been included twice (Fig. B.4).

Mutually exclusive events are those that cannot occur in the same experiment, e.g.
throw a die and get A = number is even and B= number is 5. If events A, B, C,… are
mutually exclusive, they do not overlap (Fig. B.5) and the addition rule reduces to

PðAORBORCÞ ¼ PðAÞ þ PðBÞ þ PðCÞ (B:17)

= P(A OR B)

= P(A AND B)

A

B

Figure B.4 The general addition rule.
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A contingency table (Fig. B.6) is used to record and analyze the relationship between
two or more variables, usually nominal or categorical variables, i.e. variables which are
classifying labels, such as sex, race, birthplace, etc. The numbers in the right-hand
column and the bottom row are called marginal totals and the figure in the bottom
right-hand corner (200) is the grand total.

Provided the entries in the table represent a random sample from the population,
probabilities of various events can be read from it or calculated. For example, the
probability of selecting a male, P(M), is 120/200, i.e. 0.6; the probability of selecting a
person under 30 years old, P(U), is 100/200, i.e. 0.5; and the probability of selecting a
person who is female and under 30 years old, P(FANDU) or P(F∩U), is 40/200, i.e. 0.2:
this is often called the joint probability. (Note that the events F and U are independent of
each other, so that the joint probability is equal to the product of the individual prob-
abilities, 0.4 × 0.5.) The probability of selecting a person who is male or under 30 years
old, P(M OR U) or P(M[U), is 160/20, i.e. 0.8.
Conditional probability is the probability of some event A, given the occurrence

of some other event B. Conditional probability is written P(A|B), and is read as “the
probability of A, given that B is true.” Conditional probability can be explained using the
Venn diagram shown in Figure B.7. The probability that B is true is P(B), and the area
within Bwhere A is true is P(AAND B), so that the conditional probability of A given that
B is true is

PðAjBÞ ¼ PðAANDBÞ=PðBÞ (B:18a)

A

B

C

Figure B.5 Mutually exclusive events.

Age (years)

<30 >4530–45
(B) (O) Total(U)Sex

20 40 120Male (M) 60

30 10 80Female (F) 40

20050 50Total 100

Figure B.6 A contingency table.
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Note that the conditional probability of event B, given A, is

PðBjAÞ ¼ PðAANDBÞ=PðAÞ (B:18b)

(If the events A and B are independent, Equation (B.18a) would reduce to

PðAjBÞ ¼ PðAÞ (B:19a)

and

PðBjAÞ ¼ PðBÞ (B:19b)

which can be used as an alternative to Equation (B.15) as a test for independence.)
The general conditional probability definition, Equation (B.18), can be cross-multiplied

to give the so-called multiplicative rule

PðAANDBÞ ¼ PðAjBÞ � PðBÞ
¼ PðBjAÞ � PðAÞ (B:20)

Manipulating this further, equating the equivalent two terms on the right and re-arranging
gives Bayes’ Rule:

PðAjBÞ ¼ PðBjAÞ � PðAÞ
PðBÞ (B:21)

where P(A|B) is known as the posterior probability.
Bayes’ theorem has many applications, one of which is in diagnostic testing. Diagnostic

testing of a person for a disease typically delivers a score, e.g. a red blood cell count, which
is compared with the range of scores that random samples from normal and abnormal
(diseased) populations obtain on the test. The situation is shown in Figure B.8, where the
ranges of scores for the normal and abnormal population samples are shown as Gaussian
distributions: we would like to have a decision threshold, below which a person tested
would be diagnosed disease-free and above which the person would be diagnosed as
having the disease. The complication is that the two ranges of scores overlap, and the
degree of overlap will affect the goodness of our diagnosis of the tested patient; i.e., the
more the overlap, the less likely that our diagnosis will be definitive.

= P(B)

= P(A AND B)A

B

Figure B.7 Conditional probability.
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The decision threshold should be in the region of overlap, i.e. between max 1 and min
2. It distinguishes between those who will receive a negative diagnosis (test negative)
from those who will receive a positive diagnosis (test positive). The distribution of the
scores from the normal population (1) is split into two regions, “d” (below the threshold)
and “c” (above the threshold), and the distribution of the scores from the abnormal or
diseased population (2) is split into “b” (below the threshold) and “a” (above the
threshold).

The sample space thus can be arranged in a contingency table (Fig. B.9), showing
event A (actually having the disease) and event B (having a positive result that indicates
having the disease). Thus a person may or may not have the disease, and the test may or
may not indicate that he/she has the disease: there are four mutually exclusive events.
A person from region “a” tests positive and actually has the disease, and is known as a
true positive (TP). A person from region “b” tests negative although he/she actually has
the disease, and is known as a false negative (FN). A person from region “c” tests positive
but does not have the disease, and is known as a false positive (FP). And a person from
region “d” tests negative and does not have the disease, and is known as a true negative
(TN). A good test would have a large TP and TN, and a small FP and FN, i.e. little overlap
of the two distributions.

Figure B.8 Diagnostic test score distributions for normal (1) and abnormal (2) population samples.

Figure B.9 Contingency table for a diagnostic test. The regions a, b, c and d are shown in Figure B.8.
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The corresponding Venn diagram is shown in Figure B.10, although the areas are not
drawn to scale.

The traditional measures of the diagnostic value of a test are its sensitivity (the (condi-
tional) probability of the test identifying those with the disease given that they have the
disease) and its specificity (the (conditional) probability of the test identifying those free of
the disease given that they do not have the disease). With reference to Figures B.8 and B.9

sensitivity; PðBjAÞ ¼ TP=ðTPþ FNÞ ¼ a=ðaþ bÞ (B:22)

specificity; Pð �Bj �AÞ ¼ TN=ðTNþ FPÞ ¼ d=ðdþ cÞ (B:23)

where a, b, c and d are the areas of the labeled regions in Figure B.8. However, sensitivity
and specificity do not answer the more clinically relevant questions: If the test is positive,
how likely is it that an individual has the disease? Or, if the test is negative, how likely is it
that an individual does not have the disease? The answers to these questions require the
posterior probabilities from Bayes’ rule (Equation (B.21)), which can be paraphrased as:

posterior probability ¼ likelihood� prior probability

evidence
(B:24)

where the posterior probability is the probability of having the disease, after having tested
positive, i.e. the predictive value of a positive test (P+), P(A|B); the likelihood is the
probability of testing positive, given that you have the disease, i.e. the sensitivity, P(B|A);
the prior probability is the occurrence of the disease in the population, P(A); and the
evidence is the probability of testing positive, i.e. P(B).
The posterior probabilities are sometimes referred to as the predictive values of a

test:

predictive value of a positive test ðPþÞ;PðAjBÞ ¼ TP=ðTPþ FPÞ ¼ a=ðaþ cÞ
(B:25)

predictive value of a negative test ðP�Þ;Pð �Aj �BÞ ¼ TN=ðTNþ FNÞ ¼ d=ðdþ bÞ
(B:26)

A

FN

TP

FP

TN

B

Figure B.10 Venn diagram for diagnostic testing.
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The sensitivity and specificity do not take into account the prevalence of the disease in
the general population, the so-called prior probability (which is the probability of an
individual having the disease prior to being tested), while the posterior probabilities (or
predictive values) do incorporate the prior probability (see Activity B.1).

Worked example
Suppose a rare disease affects 1 out of every 1000 people in a population, i.e. the prior
probability is 1/1000. And suppose that there is a good, but not perfect, test for the
disease: for a person who has the disease, the test comes back positive 99% of the time
(sensitivity = 0.99) and for a person who does not have the disease the test is negative
98% of the time (specificity = 0.98). You have just tested positive: what are your
chances of having the disease?

Youmay expect it to be rather high, but you need to take into account the rarity of the
disease. In this example, the prior,P(A), is 0.001 and the sensitivity, P(B/A), is 0.99. The
specificity, Pð �B= �AÞ, is 0.98; and therefore Pð �B= �AÞ =1− 0.98= 0.02. The prior, P(A),
gives the marginal total for the left-hand column of the contingency table (Fig. B.11),
and since the grand total is 1.0, the marginal total of the right-hand column must be
0.99. The top-left event within the contingency table has a probability P(A AND B),
equal to P(A|B).P(B) fromEquation (B.18b), and is therefore 0.99× 0.001, i.e. 0.00099.
This gives the term below, P(A AND B̂), by subtraction. The top-left event has
probability P(Â AND B), which is equal to P(A|B).P(B), and is therefore 0.02 ×0.999,
i.e. 0.01998; subtraction gives the term below, and addition horizontally gives the
marginal totals for the rows. With this information, the positive predictive value of the
test, P(A|B), the probability of having the disease given that you have tested positive, is
0.472 (using either Equation (B.18a) or Equation (B.21)). This is not as bad as you may
have thought given the large values of sensitivity and specificity of the test. Since the
probability of having the disease after having tested positive is low, 4.72% in this
example, this is sometimes known as the False Positive Paradox. The reason for this
low probability is because the disease is so rare. Although your probability of having the
disease is small despite having tested positive, the test has been useful: by testing
positive, your probability of having this disease has increased from the prior probability
of 0.001 to the posterior probability of 0.472. It is now time for further testing! The
posterior probability, or positive predictive value, P(A|B), is seen to be a more useful
parameter than the sensitivity of the test.

Figure B.11 Contingency table for a particular diagnostic test.
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Bayes’ Rule can be formulated in terms of the posterior probability of a score x
indicating whether that patient belongs to class 1 (normals) or class 2 (diseased). If the
class-conditional probability density functions, p(x |ωi), and the prior probabilities,
P(ωi), for the normal (i= 1) and diseased (i= 2) classes are known (Fig. B.12), then the
posterior probabilities can be calculated (Fig. B.13). We will conclude that x belongs to
class 1 if the posterior probability P(ω1 | x) is greater than P(ω2 | x), otherwise we will
conclude that it belongs to class 2. To justify this decision, we note that whenever we
observe a particular value of x, the probability of making an error in our classification
is given by

0.4

p (x | ωi)

0.3

ω2

ω1

0.2

0.1

1110 12 13 14 15
x

9

Figure B.12 Hypothetical class-conditional probabilities of measuring x for two classes ω1 and ω2. (From
Duda et al. (2001) with permission.)

1

P (ωi | x)

0.8
ω1

ω2

0.2

1110 12 13 14 159

0.6

0.4

Figure B.13 Posterior probabilities for the classes shown in Figure B.12, for prior probabilities of P(ω1) = 2/3
and P(ω2) = 1/3. Normalization by the “evidence” term keeps the sum of the posteriors equal to
unity. (From Duda et al. (2001) with permission.)
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PðerrorjxÞ ¼ Pð!1jxÞ if we decide !2

¼ Pð!2jxÞ if we decide !1
(B:27)

The average probability of error is

PðerrorÞ ¼
ð1

�1
pðerror; xÞdx ¼

ð1

�1
pðerror; xÞpðxÞdx (B:28)

If for every x we ensure that P(error|x) is as small as possible, then the integral will be as
small as possible, and we have justified Bayes decision rule, i.e.

decide !1 if Pð!1jxÞ4Pð!2jxÞ; otherwise decide !2 (B:29)

This results in minimizing the average probability of error,

PðerrorjxÞ ¼ min½pð!1jxÞ;Pð!2jxÞ� (B:30)

The four mutually exclusive events (TP, FP, TN and FN) can be found, from which the
sensitivity and specificity can be calculated and the contingency tables and predictive
values found. If the “cost” involved in false positives is greater than that involved in false
negatives, it may be preferable to shift the decision threshold upwards from the optimal
value so as to minimize the FPs, although this will involve increasing the number of FNs:
this can be incorporated into the scheme by using a cost factor, sometimes called a
loss factor, λ, by which the distributions can be scaled. Re-scaling them relative to each
other will result in a different intersection and hence a different decision threshold, which
will give rise to different sensitivities and specificities: a re-scaling which shifts the
decision threshold upwards will decrease the sensitivity (and P+) and increase the
specificity (and P−).

One problem with threshold-dependent measures is their failure to use all of the
information provided by a classifier. Some tests may not be as straightforward as
reading numbers. They could, for example, involve several observers reading features
from a noisy image. The different observers may use different criteria or decision
thresholds to decide whether or not a feature is present: some may tend to over-read,
others to under-read. Moving the decision threshold changes the classification.
For example, moving the threshold from low to high reduces the number of false
positives, but unfortunately it also reduces the number of true positives (Fig. B.14).
Taking the decision threshold at the intercept of the distributions minimizes the total
errors (FPF + FNF), and is considered the optimal threshold (in the absence of a loss
function).

It is useful to measure the performance of a test over a range of decision thresholds,
using so-called Receiver Operating Characteristic (ROC) plots. The term refers to the
performance (the “operating characteristic”) of a human or mechanical observer (the
“receiver”) engaged in assigning cases into two classes. An ROC plot is obtained by
plotting all sensitivity values (true positive fraction) against their corresponding (1 −
specificity) values (false positive fraction) for a range of decision thresholds (Fig. B.14).
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The optimal threshold, using the intersection of the distributions, corresponds to a point
on the corresponding ROC curve closest to (0, 1). If the threshold is very high, then there
will be almost no false positives (but few true positives also). Both TPF and FPF will be
close to zero, corresponding to a point at the bottom left of the ROC curve. As the
threshold is moved lower, the number of true positives increases (rather dramatically at
first, so the ROC curve moves steeply up). At threshold values much lower than the
optimal threshold, there is a sharp increase in false positives and the ROC curve levels
off. An interesting property of the ROC plot is that the threshold used to obtain a point on
the curve is equal to the slope of the curve at that point. ROC plots do not take into
account the prior probability.

The area under the ROC curve, denoted AUC or AZ, indicates the overall performance
of the test/system, since it is independent of any particular threshold. The greater the
overlap of the two curves, the smaller the area under the ROC curve (Fig. B.15). Values of
AUC span the range 0.5 and 1.0. A value of 0.5, corresponding to the forward diagonal,
indicates complete overlap of the distributions; no classification is possible. Higher
values indicate less overlapping distributions and a better test. When the distributions

(i)

(ii)

0

TPF

1
TPF

0.782
FPF

0.201

TNF

0.798

FNF

0.217

TPF

0.636
FPF

0.102

TNF

0.897

FNF

0.363

FPF
ROC curve

1

0

TPF

1

FPF
ROC curve

1

Figure B.14 Overlapping distributions. Decision threshold at (i) intercept of distributions and (ii) higher value
than (i). The corresponding points on the ROC plot are shown. See also color plate.
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are completely separate, the classification test is perfect and the value of AUC reaches
1.0. Avalue of 0.8 for AUC means that for 80% of the cases a random selection from the
positive group will have a score greater than a random selection from the negative class.

For each decision threshold a point on the ROC curve is plotted using values in the
corresponding contingency table, which only depend on whether samples are above or
below the threshold and not by howmuch they are above or below. As a consequence the
area under the ROC curve is not significantly affected by the shapes of the underlying
distributions, which is a welcome simplification.

The AUC for training data is usually higher than that for test data (Fig. B.16), since
most classifiers will perform best on the data used to generate the classification rule (the
training data), and less well on new (test) data. Each curve corresponds to a particular
value of the discriminability, d 0, where

d 0 ¼ j�2 � �1j=� (B:31)
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(ii)
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1
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1

TPF
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FPF
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TNF
0.553

FNF
0.436
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ROC curve

ROC curve

1

FPF 1

AUC ~ 0.585

AUC ~ 0.985

Figure B.15 Distributions with (i) a large and (ii) a small overlap. The corresponding values of AUC are
shown with the ROC plots. (The AUC value for the distributions shown in Figure B.14 is
0.859.) See also color plate.
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B.4 Image segmentation

Segmentation of an image into two classes or clusters (Section 10.2.1), using its
gray-level histogram, is similar to finding the optimal decision threshold in diagnostic
testing. In this case, we are searching for the optimal threshold to partition the pixels into
foreground and background.

If the range of pixels is [0, L− 1], and the histogram is bimodal, there are two classes of
pixels, class 0 (the background) with values [0, k] and class 1 (the foreground) with
values [k + 1, L − 1], where k is the value of the threshold.
The class probabilities are

PðC0Þ ¼
Xk
i¼0

PðiÞ ¼ !0ðkÞ ¼ !ðkÞ (B:32)

PðC1Þ ¼
XL�1

i¼kþ1

PðiÞ ¼ !1ðkÞ ¼ 1� !ðkÞ (B:33)

the class means are

�0ðkÞ ¼
Xk
i¼0

iPðijC0Þ ¼ 1

!0ðkÞ
Xk
i¼0

iPðiÞ (B:34)

�1ðkÞ ¼
XL�1

i¼kþ1

iPðijC1Þ ¼ 1

!1ðkÞ
XL�1

i¼kþ1

iPðiÞ (B:35)
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Figure B.16 Typical receiver-operating characteristic (ROC) curves.
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and the individual class variances are

�0
2ðkÞ ¼ 1

!0ðkÞ
Xk
i¼0

½i� �0ðkÞ�2PðiÞ (B:36)

�1
2ðkÞ ¼ 1

!1ðkÞ
XL�1

i¼kþ1

½i� �1ðkÞ�2PðiÞ (B:37)

We can define thewithin-class variance as the weighted sum of the variances of each class:

�2
WðkÞ ¼ !0ðkÞ�0

2ðkÞ þ !1ðkÞ�1
2ðkÞ (B:38)

The Otsu method finds the threshold k that minimizes the within-class variance, so as to
make each cluster as tight as possible, which will in turn minimize their overlap. We
could actually stop at this point; all we need to do is run through the full range of k values
and pick the value that minimizes σW

2 (k). However, it is possible to develop a recursion
relation that leads to a much faster calculation. The total variance of the combined
distribution, σT

2 , is given by

�2
T ¼

XL�1

i¼0

½i� �T�2 � PðiÞ (B:39)

where

�T ¼
XL�1

i¼0

iPðiÞ (B:40)

Subtracting Equation (B.38) from Equation (B.39) gives the between-class variance, σB
2 ,

the sum of the weighted squared distances between class means and grand mean, i.e.

�2
B ¼ �2

T � �2
W ¼ !ðkÞ � ð�0ðkÞ � �TÞ2 � ð1� !ðkÞÞ � ð�1ðkÞ � �TÞ2

¼ !ðkÞ � ð1� !ðkÞÞ � ½�0ðkÞ � �1ðkÞ�2
(B:41)

Since the total variance, σ2T, is constant and independent of k, the effect of changing
the threshold is merely to move the contributions between σW

2 and σB
2. Thus minimizing

the within-class variance is equivalent to maximizing the between-class variance. The
advantage of doing the latter is that we can compute the quantities in σB

2 recursively as we
run through the k values. Initializing gives

!ð1Þ ¼ Pð1Þ; �0ð0Þ ¼ 0 (B:42)

Then the recursive relation is

!ðkþ 1Þ ¼ !ðkÞ þ Pðkþ 1Þ (B:43a)

�0ðkþ 1Þ ¼ ð!ðkÞ � �0ðkÞ þ ðkþ 1Þ � Pðkþ 1ÞÞ=ð!ðkþ 1ÞÞ (B:43b)

�1ðkþ 1Þ ¼ ð�� !ðkþ 1Þ � �0ðkþ 1ÞÞ=ð1� !ðkþ 1ÞÞ (B:43c)
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This allows us to update σB
2, and look for the maximum, as we successively move through

each threshold: σB
2 is always smooth and unimodal, which makes it easy to find the

maximum.

Computer-based activities

Activity B.1 The positive predictive value
Open discriminant.xls, an Excel file. Look at formulation II and fill in the

sensitivity, the specificity and the prior probability (denoted πD) as the values in the
worked example above. The contingency table updates immediately, showing
the joint and marginal probabilities. Below that the conditional probabilities
(Predicted | Actual), with the sensitivity and specificity highlighted in red, and
(Actual | Predicted), with the positive and negative predictive probabilities high-
lighted in blue, are shown. Below that is a graph showing how the positive
predictive value, variously referred to as PPV, P+ or P(A|B), changes with the
prior probability.

Change the prior probability to 0.001 and observe the changes. Note especially that
the PPV (or P(A|B)) changes from 4.7% to 33.3%, even though the test has not
changed, i.e. the sensitivity and specificity have remained the same.

Activity B.2 ROC plots
Open discriminant.xls and look at formulation I: it assumes that both distribu-

tions are Gaussian, which is often the case in practice since many random
factors are involved and the Central Limit Theorem is appropriate. Each can
then be characterized by a mean and a standard deviation, and an area which
corresponds to the prior probabilities, the fractions of the population which are
either normal or diseased. Enter the healthy, non-diseased distribution as
mean μ = 4 and standard deviation σ = 2, and the diseased distribution as μ = 10,
σ = 2 (with the priors each equal to 0.5 and the loss factors both equal to 1).
The program finds the optimal decision threshold by finding the intersection
of the two suitably scaled Gaussians. The four mutually exclusive events can
be found from the corresponding areas, from which the sensitivity and speci-
ficity and the posterior probabilities can be calculated. Note the optimal
decision threshold of 7, which is intuitively reasonable, and the specificity,
sensitivity and posterior probabilities (predictive values). The second page of
the Excel file shows the distributions drawn to scale, and you can verify the
intersection.

Change the standard deviation of the diseased distribution to 1. Note that the decision
threshold increases to 7.8 (check the distributions drawn to scale), and observe how
this affects the posterior probabilities. A range of thresholds above and below the
optimal threshold can be taken and an ROC curve plotted. Scroll down to see the
ROC curve, and note the value of AUC in cell E59.
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Exercises

B.1 What is the truth table for the XOR operation?
B.2 What is the probability, when throwing two dice, of event C, that the white die

should show a 1? What is the probability of event D, that the numbers on the dice
add to 7?

B.3 Three coins are tossed simultaneously. What is the probability of them showing
exactly two heads?

B.4 What is the probability of getting at least one double-6 in 24 throws of a pair of dice?
B.5 If three dice are thrown, what is the probability of event of getting at least one 6?

(Hint: you can do this by looking at the complement. It is also instructive to imagine
the sample space, as six slices, and pick out those outcomes with at least one 6 from
each slice.)

B.6 Consider a family with two children. Given that one of the children is a boy, what is
the probability that both children are boys?

B.7 Suppose that we have two envelopes in front of us, and that one contains twice the
amount of money as the other. We are given one of the envelopes, and then asked if
we would like to switch. Should we? (Mathematics Magazine, 1995.)

B.8 Suppose that 1% of the women of a certain age who participate in routine breast
screening have breast cancer, 80% of those with breast cancer test positive
(i.e. sensitivity = 0.8), and 9.6% of those without breast cancer test positive (note:
P(BjA) = 0.096). If a woman receives a positive result from the test, what is the
probability that she has breast cancer?

B.9 Use discrimination.xls with values for the distributions of 2 ± 3 and 6 ± 2.
View the Gaussians, the contingency table and probabilities, and the ROC curve,
and note the value of AUC. How good is this test?
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Appendix C Shape and texture

Objects within an image have both shape and texture, the latter describing their
contents. The properties can be described by descriptors or features, which can be used
to aid segmentation and, after segmentation, to distinguish different objects and
classify them.

C.1 Shape

Shape features include the following.

Area, A: the number of pixels in the object.
Perimeter, P: the number of pixels in the boundary of the object. This can be obtained
easily from the chain code of an object (Fig. C.1), as

P ¼ ð#even codesÞ þ p
2ð#odd codesÞ (C:1)

(The curvature and binding energy can also be extracted from the chain code).
Maximum Feret’s diameter: the line between two points on the perimeter that are furthest
apart, i.e. the longest dimension.
Eccentricity: the ratio of the maximum Feret’s diameter to the maximum length per-
pendicular to it.
Circularity:

circularity ¼ 4pA=P2 (C:2)

and takes the maximum value of 1 for a circle.
Euler number: the number of connected components (i.e. objects) minus the number of
holes in the image (Fig. C.2).
Fourier descriptors: the discrete Fourier transform (Chapter 7) of the (x, y) coordinates of
the boundary. Often only a few low-order coefficients are sufficient to capture the gross
shape.
Medial axis transform (Section 9.2.5) or points within it, such as branch points and end
points.
Convex hull (Section 9.2.6)



Another way to describe shape uses properties called statistical moments.
The nth moment, mn, of a 1-D discrete function, f (x), such as a boundary, where x= 1, 2,
3, … , N, is defined by

mn ¼
XN
x¼1

xnfðxÞ (C:3)

where the first moment, m1, is the mean, μ.
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Figure C.1 Eight-connectivity chain code of a boundary, starting at X. Each digit represents the direction
to the next pixel on the boundary, with 0 indicating east, 1 indicating north-east, 2 indicating
north, and so on, until 7, which indicates south-east. The path is generally traversed counter-
clockwise.

(i) (ii)

Figure C.2 Objects with Euler numbers of (i) 0 (i.e. 1–1) and (ii) −1 (i.e. 1–2).
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The moments can be taken about the mean, in which case they are known as central
moments, defined by

�n ¼
XN
x¼1

ðx� �ÞnfðxÞ (C:4)

The first central moment is zero, and the second central moment is the variance, the square
root of which is the standard deviation, σ, which measures the spread of the function.

The central moments are commonly normalized by dividing by σn to give the normal-
ized central moments, ηn. The (normalized) third central moment is the skewness, which
measures asymmetry (a symmetric function has a skewness of 0), and the (normalized)
fourth central moment is the kurtosis, which measures whether the function is peaked or
flat relative to a normal distribution (which has a kurtosis of 3).

Moments can be extended to a 2-D discrete function, f(x, y), such as a digital image
with M×N pixels; the (m, n)th moment is defined as

mmn ¼
XM
x¼1

XN
y¼1

xmynfðx; yÞ (C:5)

where m00 is the sum of the pixels of an image: for a binary image it is equal to its area.
The centroid, or center of gravity, of the image, (μx, μy), is given by (m10/m00, m01/m00).
The central moments are given by

�mn ¼
XM
x¼1

XN
y¼1

ðx� �xÞmðy� �yÞnfðx; yÞ (C:6)

where μ20 and μ02 are the variances of x and y, respectively, and μ02 is the covariance
between x and y. The covariance matrix, Σ or cov(x, y), is

� ¼ �20 �11

�11 �02

� �
(C:7)

fromwhich shape features can be computed. (The ratio of the eigenvalues of the covariance
matrix gives the eccentricity, and the direction of the eigenvector gives the orientation.) The
sequence of moments is analogous to the coefficients of a Fourier series: the first few give
the general shape and the later terms fill in the details.

The central moments can be normalized to yield the normalized central moments:

�mn ¼ �mn=�Y
00 (C:8)

where

Y ¼ ðmþ nÞ=2þ 1 (C:9)

The matrix formed from the normalized central moment terms, analogous to the covar-
iance matrix, is known as the correlation matrix.

Shape features which are invariant to translation, rotation and scale can be constructed
from the normalized central moments and are the most useful for object recognition.
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C.2 Fractals

Fractals are self-similar and independent of scale. They are complex shapes which are
space-filling, and are characterized by a fractal dimension which is non-integral and
larger than the topological dimension; the larger the fractal dimension, the more space-
filling is the shape.

Iteration of a very simple rule can produce seemingly complex shapes with some
highly unusual properties. One of the earliest mathematical fractals to be studied was the
Koch curve (Fig. C.3). It is constructed using an iterative or recursive procedure: divide a
simple line segment into thirds, and replace the middle segment by two equal segments
forming part of an equilateral triangle. In the next stage, replace each of the four segments
by four new segments with length one-third of their parent according to the original
curve. Repeat this over and over again.

Unlike Euclidean shapes, this curve has detail on all length scales. Indeed, the closer
you look the more detail you find. The curve possesses exact self-similarity, i.e. each
small portion, when magnified, is the exact shape of a larger portion: the curve is said to
be invariant under changes of scale. At each stage of its construction the length of the
curve increases by 4/3. Thus, the limiting curve crams an infinite length into a finite area
of the plane without intersecting itself. At successive iterations (i.e. successive magnifi-
cation), one finds new detail and increasing length. And although it is easily computed,
there is no algebraic formula that specifies the points of the curve.

A line segment of N identical parts can be scaled down by the ratio r = 1/N from the
whole. Similarly a square area can be divided into N self-similar parts each of which is
scaled down by a factor r = 1/√N. A cube can be scaled down into N small cubes each of
which is scaled down by a ratio r = 3√N. In general, a D-dimensional self-similar object
can be divided into N smaller copies of itself, each of which is scaled down by D√N, or

N ¼ 1=rD (C:10)

Or, conversely, if we have a self-similar object of N parts scaled down by a ratio r from
the whole, its fractal dimension, or Hausdorff dimension, is given by

D ¼ logN= logð1=rÞ (C:11)

So what is the fractal dimension of the Koch curve? Each segment comprises four
sub-segments, each scaled down by 1/3 from its parent, so that

Figure C.3 The Koch curve.
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D ¼ logðNÞ= logðrÞD ¼ logð4Þ= logð3Þ ¼ 1:26 (C:12)

Coastlines have a fractal property. Their measured lengths become larger as smaller scale
rulers are used, since they are able to follow the irregularities better. Richardson
(Mandelbrot, 1977) first noted the logarithmic relationship between the length of national
boundaries, L, and scale size, s (Fig. C.4). The fractal dimension,D, of the boundary line
can be obtained from the gradient, S, of the Richardson plot using

D ¼ 1:0� S (C:13)

The coastline of South Africa is very smooth with D = 1.04: the “rougher” the line, the
steeper the slope, and the larger is the fractal dimension. The fractal dimension of a line
can vary between 1.0 (smooth) and 2.5 (random noise); and for a surface from 2.0
(smooth) to 4.0 (random noise).

Fractal models have long been considered appropriate for modeling texture in medical
images, with fractal dimension commonly used as a compact descriptor. The fractal
dimension describes how an object occupies space and is related to the complexity of its
structure: it gives a numerical measure of the degree of boundary irregularity when
applied to a line, or surface roughness when applied to a surface. Fractals have attractive
properties, such as invariance to scale and projection, but real images of natural objects
are not exactly self-similar like mathematical fractals, and fractalness is present only in a
statistical sense and only over a limited range of scales.

C.3 Texture

The simplest features of an object or region based on its contents describe its general
intensity properties, such as its mean gray value and the standard deviation of the mean.
However these features depend on the gain of the imaging system, and change if the
brightness or contrast of the image is changed. Texture is independent of gain. It
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Figure C.4 Richardson plot.
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describes roughness or smoothness, regularity (and hence, pattern) or irregularity. There
are three principal approaches to describing the texture of a region in an image: (i)
statistical, (ii) structural and (iii) spectral.

C.3.1 Statistical approaches

Since textures have some degree of order/disorder or regularity/irregularity, they can be
described by their statistical properties. One of the simplest ways is to use statistical
moments of the gray-level histogram (i.e. probability density function) of the region, i.e.
use pixel values rather than pixel coordinates as usedwith shape. The nthmoment is given by

mn ¼
XL�1

k¼0

knPðkÞ (C:14)

and the nth central moment is given by

�n ¼
XL�1

k¼0

ðk� �ÞnPðkÞ (C:15)

which are identical to Equations (C.3) and (C.4), except that we are using the normalized
histogram, P(k), and the gray value k, which takes values 0, 1, 2, … , L−1, and μ is the
mean gray value rather than the mean position. Thus the first moment is the mean gray
level or average brightness of the region, and the first central moment is zero. The second
central moment is the variance of the gray values, and the normalized variance has been
used as a simple measure of texture (Dougherty, 1996). Normalizing the variance ensures
that it is independent of brightness.

Another statistical way to describe texture is by statistically sampling the occurrence of
certain gray levels in relation to other gray levels. For a position operator p, we can define
a matrix Pij that counts the number of times a pixel with gray level i occurs at a position p
from a pixel with gray level j. For example, if we have three distinct gray levels 0, 1 and 3,
and the position operator is “lower right,” then an image

0 0 0 1 2

1 1 0 1 1

2 2 1 0 0

1 1 0 2 0

0 0 1 0 1

(C:16)

will give a counts matrix, P

P ¼
P00 P01 P02

P10 P11 P12

P20 P21 P22

2
4

3
5 ¼

4 2 1
2 3 2
0 2 0

2
4

3
5 (C:17)

If we normalize P by dividing each element by the total number of pixels, we get the
gray-level co-occurrence matrix, C, where each term, Cij, is between 0 and 1.

We can obtain various descriptors from the co-occurrence matrix including the
maximum probability,
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max
i;j

ðCijÞ (C:18)

the element difference moment of order k,
X
i

X
j

ði� jÞkCij (C:19)

the inverse element difference moment of order k,X
i

X
j

Cij=ði� jÞk (C:20)

entropy, X
i

X
j

Cij log2 Cij (C:21)

and uniformity, X
i

X
j

Cij
2 (C:22)

Certain combinations of these moments are invariant to translation, rotation and scale
(i.e. contrast) change, and can be used as texture descriptors.

Another approach applies the Sobel edge detectionmask (Section 6.4.2) to the pixels in a
region. Both the resulting “magnitude-of-the-edges” image and the “phase-of-the-edges”
image are thresholded, and then a histogram of the “magnitude-of-the-edges” compiled for
the various phase angles. Edgeness is akin to texture, and such plots have been used to
visualize the directional texture in vertebral bone images (Caldwell et al., 1995).

C.3.2 Structural approaches

The basic scheme is to build a grammar for the texture and then parse the texture to see if
it matches the grammar. This involves defining texture primitives, simple patterns from
which more complicated ones can be built.

C.3.3 Spectral approaches

Since texture has some degree of regularity, it can be described in terms of spatial
frequencies. If the Fourier transform of an image f (x, y) is expressed in polar coordinates,
S(r, θ), one-dimensional functions can be obtained by summing over all directions to give
S(r), and all radii to give S(θ). The coordinate S(r) gives the distribution of frequencies
across all angles, and S(θ) gives the frequency content in specific directions. The mean
and variance of these distributions are useful descriptors of texture.

A classical means of measuring the smoothness of a function f(x) involves the Fourier
transform. Thus the radial Fourier power spectrum, a plot of SðrÞj j2 against r , of rough
(2-D) images will tend to fall as 1/r2, showing a gradient of −2 on a log–log plot; whilst
smooth (2-D) images will fall as 1/r4 with a gradient of −4. At very low frequencies,
corresponding to the bulk features of an object, the power spectrummay be fairly constant;
at very high frequencies, approaching the Nyquist frequency, system noise will dominate
and the power spectrum will become constant again. These general shapes have been
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reported in the power spectrum ofMRI images of various organs (Fuderer, 1988). It should
be noted that small images will give fewer data points and be subject to lack of resolution
and quantization errors, and the power spectrum will be correspondingly jagged.

Natural textures can be considered as statistical fractals (Section C.2), whose fractal
dimension can be used as a texture descriptor. There are many different models to describe
fractals, and many ways to measure the fractal dimension of an image or a region within
it. One of the most useful models for medical images is fractional Brownian motion,
FBM, which is a generalization of the more familiar Brownian motion used to describe
a random walk. (In Brownian motion, the mean square displacement, Δl2, is proportional
to the actual distance traveled, Δx, while in FBM Δl2 is proportional to Δx2H, where H is
known as the Hurst parameter; FBM reduces to Brownian motion when H= 1/2.)

It has been shown (Stein and Hartt, 1988) that the scaling behavior of a statistically
self-affine fractal results in a fractal dimension, D, given by

D ¼ Eþ 1�H (C:23)

where E is the topological (Euclidean) dimension of the fractal (i.e. E= 2 for a fractal
surface or 2-D image, E = 1 for a boundary line).

Since there is a simple relationship between the Hurst parameter,H, and the magnitude
of the slope of the Fourier power spectrum, β, i.e.

� ¼ 2Hþ E (C:24)

then the fractal dimension of an image can be obtained from this slope using

D ¼ 3E=2þ 1� �=2 (C:25)

in general, or

D ¼ 4� �=2 (C:26)
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Figure C.5 Ideal radial power spectral density plots, and the relationship between the theoretical indices
underpinning them.
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in the case of a two-dimensional image (E= 2), where D will be constrained to be
between 2 (smooth) and 3 (rough). The relationships between the various indices are
shown in Figure C.5, for the case of a 2-D image, E = 2.

Thus the gradient of the radial power spectrum of the Fourier transform of an image or
region within an image can be used to obtain its fractal dimension. Image blurring
progressively filters out the higher spatial frequencies, resulting in a steeper power spectrum
and a consequent underestimate of the fractal dimension; its effect would need to be
reversed, using for example Wiener filtering (Section 8.4.1), prior to taking the Fourier
transform of the image. If the radial power spectrum is not linear, then a fractal signature
plotting fractal dimension against spatial frequency, rather than a global fractal dimension,
will be obtained and can be used to distinguish regions (Dougherty and Henebry, 2001).

Although H was formally restricted to [0, 1], its range may be extended by taking the
derivative of the FBMwithH=0 to givewhite (Gaussian) noisewithH=−1 (corresponding
to a slope, β, of zero and a fractal dimension,D, of 4). Thus the range of values for the fractal
dimension of a two-dimensional image normally extends from 2 (smooth) to 3 (rough), but
can reach 4 (for white noise). And the fractal dimension of a one-dimensional boundary line
normally ranges from 1 (smooth) to 2 (rough), but can reach 2.5 (for white noise).

Computer-based activities

Activity C.1 Fractal dimension and texture
Open mri in ImageJ and find its Fourier power spectrum (Process/FFT). Select the

whole power spectrum image (Edit/Selection/SelectAll) and obtain the radial
power plot (Plugins/App.CPlugins/RadialProfile). Save the coordinates as a
text file, radial_plot.txt. Open the file as a tab delimited file in Microsoft
Excel to see the (x, y) coordinates listed as columns. Take the logarithms of these
columns and plot them: find the gradient of the best-fitting straight line (using
Regression in the Data Analysis Toolpack, under Tools/Data Analysis …).
Ignore the first few low-frequency points which are due to the dark frame around
the head in the original image. Use the gradient to obtain the fractal dimension,
which is a measure of the overall texture of the image. The image mri contains a
variety of different textures: isolate several regions of different texture and find
their fractal dimension. The regions chosen should be square and of size 2n (e.g.
32 × 32) so that the FFT algorithm will work.

Exercises

C.1 Show that the central moments (Equation (C.6)) are translation invariant and the
normalized central moments (Equations (C.8) and (C.9)) are both translation and
scale invariant.

C.2 Open the standard texture images grass and bubbles, and find their fractal
dimensions using the radial power spectrum.
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A (amplitude) mode ultrasound 94
absorption, see photoelectric absorption
accommodation 18–19
acoustic impedance 93
acoustic shadowing 97
active contours, see segmentation, active contours
adaptive masks 253–8, 305
adaptive median 256, 268
Kuwahara 254
minimum mean-square error (MMSE) 254, 261

adaptive thresholding 319–21
local 321, 336–7

affine transformations 117, 162, 168, 266–7
ALARA (as low as reasonably achievable) 85
algebraic operations 156–9
aliasing 30, 211–13, 214, 240, 250
alpha channel 342
analog-to-digital converter (ADC) 10, 40, 147, 251
aneurysm 390
anger camera, see gamma camera
angiography, see medical image analysis, angiography
annihilation photons 82
anti-scatter grid 58–60, 65
grid ratio 59

apodization function, see Window functions
attenuation coefficient 51, 70, 73, 94
autocorrelation function (ACF) 218
averaging 156–7, 190
averaging mask 172, 176, 178, 252, 296
weighted 172, 224, 404

B (brightness) mode ultrasound 95
Background Equivalent Radiation Time (BERT) 84
background radiation 84
background subtraction 189
backprojection 71–2, 231–6
Filtered 234–6

barrel distortion 264, 266, 267
BART (blue away, red towards) 98
basis functions 195, 399
orthonormal 400

beam hardening 70, 75
binary mask 160

bit 130
bit-planes 160–, 190
bit-slicing 160
Blackman–Harris window function 211
blind spot 18
blurring 258–9
1/r, see star artifact

bone mineral density 389
see also osteoporosis

bone scan 80
Boolean operations, see logical operations
breast cancer 365–6
ductal carcinoma in situ (DCIS) 382
see also mammography

brightness resolution 36–7, 43, 148
Brownian motion 430
Bucky 59
Butterworth filters, see filters, Butterworth

Canny operator 183
canonicals, see classification, canonicals
central limit theorem 174, 252, 352, 421
central slice theorem 206, 237
Chebyshev distance, see chessboard distance
chessboard distance 274
chrominance 41
circularity 423
city-block distance, see Manhattan distance
classification 339–67
Bayes’ rule, see also probability, Bayes’ rule 353–4,

366
canonicals 358, 391
classes 313
classifier 340
clustering 350, 351
fuzzy cluster analysis 366
cognitive 340
confusion matrix 359, 363
cross-validation 359
decision boundaries 355
decision tree 364
dendrogram 363
discriminant analysis 351, 355–8, 366, 391



expectation maximization (EM) 363
expert system 364
Fisher transformation 358
grammar 364
hierarchical clustering 363
jack-knifing (leave-one-out) 359
k-means clustering 316, 351, 361–3
k-nearest-neighbor 360, 365
linear 358
loss function 355, 367
misclassify 359, 361, 364, 392–3
maximum likelihood estimate (MLE) 316
multi-thresholding 317–18
non-parametric methods 351, 360–1
parametric methods 351, 352–60
parsing 364
rule-based system 364
scree plot 363
statistical 340, 351–64
structural (syntactic) 340, 364
supervised 351
training set 350, 351, 353, 361
unsupervised 351, 361–4

co-occurrence matrix 428
coincidence detector 83
color 40–2
false (pseudocolor) 40, 42, 45, 147
HSB 41, 44
HSI 138
HSV 41, 44
indexed 42, 44–5
primary 40
RGB 40–2, 44, 138, 355
secondary 40

collimator 78
compression ratio 133
Compton scattering 51, 57, 79
computed radiography, see radiography, computed
computed tomography (CT) 9, 39, 67–77, 231
angiography (CTA) 391
CT numbers 73
CTwindow 73
helical (spiral) 76, 387
image stacks 86–7

computer-aided manufacturing (CAM) 373
confusion matrix, see classification, confusion matrix
connected components, see labeling, connected components
connectivity 274–5
conspicuity 65
contrast 57–60, 75, 113, 127–9, 137, 148
subject 57

contrast agent 52
contrast stretch, see histogram stretch
contrast-to-noise ratio 134
control point, see fiducial point and segmentation, active

contour
convergence 286

convex hull 290–5
convolution 155, 170–2, 190, 194, 205, 217, 220, 276

cyclic 171
correlation 171
correlation coefficient 346
correlation matrix 356, 425
counts matrix 428
covariance matrix 346–7, 425

eigenvectors 357
cross-correlation 171, 217–18
cumulative distribution function (CDF) 125, 141, 143, 144

data
categorical 364
continuous 364
nominal 364
ordinal 361–3

dead time 109
deblurring 259
decision tree, see classification, decision tree
deconvolution 172, 259, 261, 268
Delaunay triangulation 295, 371
delta function 198
dendrogram, see classification, dendrogram
densitometry 387
density slicing 137
diagnosis 344, 411
DICOM format 116
difference of Gaussians (DoG) 188, 228
differentiation 181–2
diffraction 97, 258
diffusion tensor imaging (DTI) 397
digital subtraction angiography (DSA) 65–7, 158
digital-to-analog converter (DAC) 10, 147
digitization 3, 9, 16, 27, 40
dimensionality 342
direct Fourier reconstruction (DFR) 106, 237
discrete Fourier transform, see Fourier transform, discrete
distance transform 288, 331, 337
distortion 264
Doppler imaging 97–9
dose

absorbed 84
effective 84
equivalent 84

duality, see morphological operators, dual
duplex scan 97
dynamic range 18, 125–9, 147, 148

echo planar imaging (EPI) 109
echo time 107
echocardiogram 118
electrical impedance tomography (EIT) 62, 397
electroencephalography (EEG) 396

see also magneto-electroencephalography
electromagnetic spectrum 50
entropy 129–33, 148–9, 429
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Euclidean distance 274, 359
map 382

Euler number 343, 423
expert system, see classification, expert system

false color, see color, false
false contouring 36, 129, 173
feature recognition, see pattern recognition
feature 342–8
extraction 345
selection 345–6
space 344
vector 344

Feret’s diameter 423
fiducial point 168, 266, 344
file compression ratio, see compression ratio
film
characteristic 21, 22
contrast 21
fog and base level 21
gamma 21, 23
latitude 21
reciprocity failure 21
solarization 21
speed 21

filtered backprojection 72, 81, 242–3
filters, frequency domain 223–31
band-pass 227–8, 241
band-reject 228–9, 252
Butterworth 224, 226
constrained least squares 263
cosine 243
geometric mean 263
Hamming 235, 243
high-boost 226
high-pass 225–7
homomorphic 230, 253
low-pass 223–4, 252
notch 228, 241, 251, 252
parametric Wiener 263
Shepp–Logan 235, 243
spectrum equalization 263
Wiener 261–3, 268–9, 431

finite element analysis 396
first-order statistics 130
Fisher transformation, see classification, Fisher

transformation
flat-fielding 159
fluoroscopy 52, 63–5, 258
modulation transfer function 63

focal spot size 25, 48
fast Fourier transform (FFT) 206, 218, 403
accuracy 239

Fourier analysis 196, 399
Fourier domain 195–7
Fourier harmonics 195
Fourier series 399–401

coefficients 399
complex 400

Fourier spectrum 197, 237–8
Fourier synthesis 196, 399
Fourier transform 105, 106, 194, 201, 224, 226, 231, 238–9,

261, 401–4, 429
discrete (DFT) 209, 403, 404
linearity 205
power spectrum 198, 403
properties 205–7, 239–40
radial power spectrum 429, 431
separability 205
translation (shifting) 205

fractals 426–7
dimension 389, 426, 430–1
Haussdorf dimension 426
Hurst parameter 430
Koch curve 426
Richardson plot 427
signature 431

fractional Brownian motion (FBM) 430
frame 158
frame averaging 65
free induction decay 103
Frei–Chen edge detector 183, 184
frequency encoding 105
frequency domain
filtering 241
see also Fourier domain

functional MRI (fMRI), see magnetic resonance imaging

gamma camera 77, 78, 81, 258
gamma value 27, 146
geometric image degradation, see image degradation,

geometric
geometric operations 162
Gibbs phenomenon, see ringing
gradient coils 104, 106
gradient echo 109
granulometry 301, 305, 367
pattern spectrum 301

gray-level histogram, see histogram, gray-level
Gaussian mask 174

Hermitian 404
histogram, gray-level 123–47
histogram equalization 130, 133, 140–4, 150–1
adaptive 144
local-area 144–5

histogram matching 144
histogram stretch 137–40
hit-or-miss transform, see morphological operators,

hit-or-miss transform
homogeneous coordinates 162
homomorphic filters, see filters, homomorphic
Hounsfield units 73
hue 41
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Huffman coding 132
human visual pathway 16
Hurst parameter 430
hysteresis 184

idempotent operations 283, 296
image
analysis 13
classification 13
color 40–2
complement 145, 160
compression 13

file compression ratio 133
lossless 13, 132
lossy 13

contrast 39
dynamic 66, 385
8 bits deep 10, 32, 157
floating-point 139, 158, 170
four-dimensional 369
fused 83
inverse 145, 160
multi-spectral (vector) 318–19
non-stationary 262
stack 370
three-dimensional 369–77
translation 162, 164

image degradation 246–7, 260–1
geometric 263–7

image enhancement 11, 155–89
Image intensifier (2 cap. I’s) tube 63
brightness gain 63

image multiplication and division 158–9, 189
image plate, see imaging plate
image restoration 11, 246–67
blind 263

image subtraction 157–8, 189
image synthesis 13
imaging
continuous-to-continuous 9
continuous-to-discrete 9
direct and indirect 6–7
dynamic 63
linear 171
modalities
molecular 397

imaging plate 60, 147
impulse function, see delta function
impulse noise, see noise, salt-and-pepper
impulse response function, see point spread

function
information content 130
intensifying screen 20, 55
interpolation 163, 215, 267
bicubic 267
bilinear 163, 164, 165–7, 267
cubic B-spline 267

nearest-neighbor 163, 164, 267
sinc 216

intersection 160
inverse filtering, see deconvolution
inverse problem 247, 259, 395–6
inversion recovery (IR) imaging 109
ionizing radiation 48
isodata see segmentation, isodata
iso-surfaces, see three-dimensional visualization,

iso-surfacing

junction points 286

k-means clustering, see classification, k-means clustering
k-nearest-neighbor, see classification, k-nearest-neighbor
k-space 109–11
kernel, see masks
Kirsch operator 182
kurtosis 135, 425

labeling, connected components 279–81, 340–2
lacunarity 389
Larmor frequency 100, 101
Laplacian, see second-derivative masks, Laplacian
Laplacian of a Gaussian (LoG) 187–8, 191
level sets 329–30, 396
linear imaging, see imaging; linear
linear, no-threshold model 84
linear, shift invariant (LSI) system 172, 219
linear transformations 41
live image 65, 158
local (neighborhood) operation 155

local contrast stretching 300
log–polar transformation 168–70
logical operations 159–62, 273, 406

logic gates 406
logical subtraction 285
truth tables 406–7

longitudinal (spin-lattice) relaxation 102
look-up table 42, 98, 123, 135–7, 143, 146, 147, 149–50, 151
loss function 353, 355

magnetic resonance angiography (MRA) 111, 388, 391
magnetic resonance imaging (MRI) 62, 90, 91–100, 101,

104–15, 119–20
diffusion tensor imaging (DTI) 397
functional (fMRI) 111, 396–7
noise 119

magneto-electroencephalography (MEG) 58, 61–3
mammography 303, 367

computer-aided diagnosis 381–5
x-ray tubes 61

Mahalanobis distance 353, 355, 359
Manhattan distance 167, 274, 301
mapping function 135, 141
marching cube algorithm, see three-dimensional visualization
mask image 65, 158, 279, 342
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masks, spatial domain 170, 172–8, 231, 276
maximum 296
minimum 296

medial axis transform 288–90, 343, 423
median mask, see also noninear mask, median 176–7,

178, 252, 296
adaptive 256

medical applications of imaging, see medical
image analysis

medical image analysis 364–6, 381–94
acoustic neuromas 366
angiography 386–8
atherosclerosis 386, 397
breast cancer 365–6
heart disease 366
perfusion 385
quantitative coronary arteriography (QCA)
plus disease 391
radiation therapy 385
retinal blood vessels 366
scoliosis 394
stenosis 387, 388
tumor 385–6

microwave imaging 397
minimum threshold of visibility 222
modulation transfer function (MTF) 24–5, 26, 34, 63,

221–3, 246, 258, 404
molecular imaging, see Imaging, molecular
moments 134, 424–5, 428
central 134, 425, 428
centroid 425
normalized central 425

monochromatic 77
morphological operators
closing 281–3, 303
constrained (or conditional) dilation 279,

302–3, 348
dilation 275–7, 406
dual 279, 296
erosion 277–9, 406
gradient 300, 334
grayscale 295–301
hit-or-miss transform 283–5,

303–4
mask image 279
opening 281
seed image 279
skeletonization 285–90, 304, 366
smoothing 299
structuring element 275, 295
thinning 182, 285, 304
thresholding 299, 304, 335
top hat 299
watershed 337–8

morphological processing 162, 273–301
multi-dimensional Gaussian 353, 354
multiply-and-add (MADD) 171

nanotechnologies 397
noise 37–40, 246, 247–52
additive 249, 251, 260
brown 250
electronic 37, 156
film granularity 37
Gaussian 251, 253
multiplicative 250
pepper 290
periodic 251
photon (quantum, statistical, shot) 37, 38, 156, 252
pink (1/f flicker) 250
power spectrum 250
probability density function 248
quantization noise 37, 209, 250, 251–2
salt 298
salt-and-pepper (impulse, data drop-out) 178, 251, 299
speckle 252
structure mottle 37
uncorrelated 156, 250
white 250

noise-reduction filters 252–3
band-reject 252
low-pass 252
notch 252

noise removal 190
non-linear mask 176, 296
maximum 176, 296
median 176–7, 178, 296
minimum 176, 296

non-linear operators 273
nuclear magnetic resonance (NMR) 90, 100–4
nuclear medicine (NM) imaging 77–84
planar scintigraphy 78

Nyquist frequency 29, 31, 32, 212, 235
Nyquist–Shannon sampling, see sampling theorem,

Nyquist–Shannon

object recognition, see pattern recognition
optical density 20
optical transfer function (OTF) 220–1, 258, 404
optimal code 133
osteoporosis 388–9, 397
Otsu method, see segmentation, Otsu method
overlay 342
oversampling 213

Parseval’s theorem 207
partial objects 341
partial volume effect 75, 209
particle analysis, see granulometry
Pascal’s triangle 174
pattern recognition 310, 348–50
feature extraction 310, 340
feature recognition 339
see also classification

pattern spectrum, see granulometry, pattern spectrum
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phantom 133, 156, 212
phase-encoding 106
phase transfer function (PTF) 221
phasors 399
photoelectric absorption 51, 57
photometric calibration 144
photopeak 80
Picture Archiving and Communication Systems (PACS) 10,

115–16, 395
pincushion distortion 64, 264, 266, 267, 387
pixel-shifting 67
pixelation 28, 43
planes
axial 52
coronal 52
sagittal 52

point operation 135, 155
point spread function (PSF) 22–3, 26, 34, 55, 172, 219–23,

246, 258, 404
Poisson distribution function 37
positron emission tomography (PET) 78, 82–4
posterization 36, 129
power spectral density (PSD) 198, 403
Prewitt operators 182, 184
principal component analysis (PCA) 345, 347–8,

357–8, 366
probability 408–18
addition rule 409
average probability of error 416
Bayes’ Rule 411, 413, 415
class-conditional 352, 415
conditional 410–11, 421
contingency table 410, 412
cost factor 416
decision threshold 412, 416
elementary outcome 408
event 408
false positive paradox 414
independent event 409, 411
joint 410
likelihood (prevalence) 353, 354, 392
loss factor 416
multiplicative rule 411
mutually exclusive 409
optimal threshold 312–19, 416
posterior 353, 411, 414, 415
predictive value 413–14, 421
prior 353, 355, 414, 421
random 408
sample space 408, 412

probability density function (PDF) 125, 141,
143, 352

noise 248
projection 206, 233
pruning 287, 290
pseudocolor, see color, false
pulse height 78

pulse repetition rate 91
pulse sequences 107–11

quantization error
intensity 27, 32–3
spatial 27–32

quantum dots 397
quantum efficiency 39, 55, 75
quasistatic fields 5

radiation dose 51
radiograph 86
radiography

Computed 52, 60–1, 116, 151
imaging plate 60

digital 52, 116, 258
projection (planar, plain) 52, 53–60

Radiological/Hospital Information Systems (RIS/HIS) 10, 116
radon transform 206, 231–4
ramp filter 235
rank-order mask, see non-linear mask
Rayleigh criterion 222
Rayleigh’s energy theorem, see Parseval’s theorem
real time 158
re-phasing pulse 107
receiver operating characteristic (ROC) 339, 359–60, 367,

416–18, 421
area under the curve (AUC) 417
discriminability 418
sensitivity 360, 413, 414–14, 416, 421
specificity 360, 413, 414–14, 416, 421
true negative 412
true positive 412

reconstruction 214–16
reflection coefficient 92
region of interest (ROI) 134, 160

processing 342, 343
registration of images 116–17, 158, 168, 344
regression line 348
repetition time 107
rendering, see three-dimensional visualization
resonance 101
RGB, see color, RGB
ring artifact 75, 114
ringing 173, 197, 210, 400
Robert’s cross-gradient operator 181, 184
rods and cones 18

salt-and-pepper noise, see noise, salt-and-pepper
sampling 207–16, 247, 250
sampling frequency (sampling rate) 28
sampling function 198, 207
sampling theorem, Nyquist–Shannon 29, 212
sampled image 8
saturation 41
scatter degradation factor 58
scatter plot matrix 356
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scattering, light 258
scree plot, see classification, scree plot
screening 344
second-derivative masks 184–9
Laplacian 186

segmentation 20, 173, 309–38, 366, 419–21
active contours (snake) 310, 326–30, 337
adaptive thresholding 319–21
boundary-based 309, 324–5
boundary tracking 325
class variance 420
contextual techniques 310
edge detection and linking 324–5
isodata 316
maximum entropy 316
non-contextual techniques 310
Otsu method 313–16, 332, 337, 358, 420–1
region-based 309, 310, 321–3
region-growing 322–3, 337, 383
thresholding 311–21
watershed 310, 331–4

self-similarity 426
separable masks 173
set theory 273, 405–6
intersection 405, 407
union 405, 408
Venn diagram 405, 410, 413

shape 423–5
shape detector
sharpening 179–82, 191, 225–7
short time inversion recovery (STIR) 109
signal-to-noise ratio 37, 55, 66, 74, 97, 108, 112, 133–4, 149,

156, 173, 249, 251, 261
single-photon emission computed tomography (SPECT) 78,

81–2, 87
sinogram 233
skeletonization, see also morphological operators,

skeletonization
quench line 288
branch points 343
prairie fire analogy 287

skewness 135, 425
skiz (skeleton of influence zone) 290, 334
smoothing 172–8
snake, see also segmentation, active contours 326–30, 337
internal and external energies 326–9
level sets 329–30

Sobel operators 182, 184, 191, 383, 429
spatial frequency 23, 195, 401, 404
spatial resolution 34–6, 43, 220, 395, 396
computed radiography 60
computed tomography 74
eye 19–20, 169
fluoroscopy 63
MRI 112
planar scintigraphy 80
ultrasound 96, 97

spin echo 103, 107, 108
spinning plot 356–8
spurs 287, 290
star artifact 72, 234
stenosis 184
streak artifact 75
sub-sampling 164, 213–14
sum-of-products 170, 172
surgical interventions 398

T1-weighted image 109, 111
T2-weighted image 111
taxicab distance, see Manhattan distance
telemedicine 398
template matching 218, 240–1
texture 159, 298, 343, 423, 427–31
co-occurrence matrix 428
spectral 429–31
statistical 428–9
structural 429

thermography 62
thinning, see morphological operators,

thinning
three-dimensional visualization 369–77
backface culling 371
hidden surface 371
iso-surfacing 371
marching cube algorithm 371
maximum intensity projection (MIP) 374
multi-planar 369, 370
perspective 371
ray casting 374
shading 371
splatting 375
surface rendering 369, 370–4, 377
tiling 371
volume rendering 369, 370,

373, 377
thresholding 137, 182, 311–21
optimal 312–19, 416
see also segmentation, thresholding

time gain compensation (TGC) 94, 95
tomographic reconstruction 231–7
top hat, see morphological operators, top hat
tortuosity 366, 389–94
spline fitting 390

transverse (spin-spin) relaxation 103

ultrasound 62, 90
axial resolution 96
beam steering 95, 118
intravascular ultrasound imaging (IVUS) 387
lateral resolution 97
sweeping 95, 96, 118

underflow 158
undersampled 30
uniformity 429
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union 160
unsharp masking 179
unsharpness 53–7
detector 55
geometric 53
intrinsic 55

unwarping 267, 269

vignetting 64
virtual reality 376
virtual surgery 375
visual acuity 19
visual computing 13
Voronoi diagram 290, 295
voxel 32, 374

watershed segmentation, see segmentation, watershed
wave number 195
weighted-average mask, see averaging mask, weighted
weighting factor

radiation 84
tissue 84

Weiner–Khinchin relationship 218
Wiener filter, see filters,

Wiener
white noise, see noise, white
window

width 138
level 138

window functions 209–11
wrap-around artifact 213

x-ray tube 48–50
x-rays

bremmstrahlung 48–50
characteristic 48–50
primary 57
secondary 57

zero crossing detection 187
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