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Foreword 
The Fourth International Conference on Fracture, or ICF4 as it came to be known, was 
planned over a period of about four years. The Conference was intended as a state-of-the-art 
summary of our understanding of fracture in a wide variety of materials. In this respect 
ICF4 was very successful, and the presence of approximately 750 participants from 38 
countries attested to the drawing power of the subject. 

If we compare the present Conference with those preceding, several long-range trends may 
be deduced. There is now less concern with micromechanisms of the cleavage of iron, but 
there is more emphasis on effects of the environment. There is a growing realization that 
fracture of real materials may be dominated by the presence of inclusions and chemical 
segregates. We now have more work on polymers and ceramics and the beginnings of some 
efforts on biological materials. There is a vast range of subject matter in these papers, which 
will become a primary reference for workers in the field.* 

ICF4 had features which were absent in the earlier conferences. First was the emphasis on 
fracture in large structures. This has become exceedingly important with the proliferation of 
big ships, big aircraft, big nuclear reactors, big pipelines, big bridges and big buildings, where 
fractures can become major catastrophes. It was interesting to observe the different 
concerns of those who deal with large structures and those who are accustomed to working 
on a laboratory scale. The interaction was useful, and we must find ways of making it 
better. 

Other innovations were the sessions on Fracture, Education and Society and on Fracture, 
Politics and Society. Public attention is now being directed towards questions of safety and 
of the environmental consequences of failures in large structures. These public concerns are 
being translated into legislation, regulation and lawsuits. We are thus being propelled, willy 
nilly, into one side or the other of questions of public policy, and few of us are adequately 
prepared to cope with this situation. If we shirk this responsibility, other more legal minds 
will assume this role, and we will lose the opportunity to make an important contribution to 
society. Our discussions in this area probe only the outer bounds of the problem and we 
must now learn how to become more effective in matters where the public is directly 
involved. 

All ICF meetings are sponsored by the parent organization, The International Congress on 
Fracture, and the growth of these Conferences is a tribute to the vision of the 
Founder-President, Professor Takeo Yokobori of Tohoku University. ICF4 was organized by 
Professor D.M.R. Taplin of the University of Waterloo with the assistance of a Canadian 
Organizing Committee. Professor Taplin was also the Editor-in-Chief of the Editorial Board. 
The success of the Conference and the excellence of the Proceedings are the consequence of 
their hard work, and I would like to express my personal appreciation as well as the thanks 
of the International Congress on Fracture. 

B. L. Averbach 
President (1973-77) 
International Congress on Fracture 

June 24, 1977 
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Foreword 
My first duty as the new President of the International Congress on Fracture turns out to be 
one of the most pleasant — to write this short message for the permanent record of the 1977 
Waterloo Conference, ICF4. A pleasant task because ICF4 was such a pleasant and 
successful conference, due in the main to the dedication and hard work shown by Professor 
David Taplin and all his co-workers. The pattern of the meeting, with its effective plenary 
lectures each morning and the several workshop sessions running in parallel later in the day, 
allowed one at the same conference to obtain both the detailed discussion of a particular 
interest and the general overview of many fracture disciplines which is so much a feature of 
the concept of ICF. 

The siting together of almost all of the delegates on the beautiful and comfortable campus, 
together with the alternating afternoon and evening free period, actively encouraged free 
and informal technical discussions. Anyone who looked into the Village Bar or the Faculty 
Club any evening will have seen the strange paradox of the bringing together of many people 
whose main technical interest is that of separation. 

It would be invidious, and indeed virtually impossible, for me to single out particular 
technical contributions for praise, but important technical contributions there were, and I 
am sure these volumes will be the reference works on Fracture for some years to come. In 
addition to the more usual form of technical papers, I commend the two panel discussions 
on education and on the relationship of fracture to politics and society, both of which 
contain much hard sense and emphasise the important role that this Congress can play in the 
improvement of the standards of life. In this respect it is worth adding that Waterloo also 
provided the opportunity for a number of meetings of the ICF Council and Executive, in 
which discussions took place which will encourage various activities in these areas. If any 
readers have ideas, please be sure that your Council and I would be pleased to hear from 
you. 

But to return to the pleasures of ICF4, one of the features that contributed so greatly to 
this will not be found explicitly in these volumes. The friendliness of our Canadian hosts, 
the effectiveness of their social arrangements, the high standard of the catering and domestic 
arrangements and the major contributions made by the wives of the organising team, were 
all factors that made this meeting one that will be long remembered as a happy occasion. 

So I will close by thanking all those concerned with making ICF4 such a success that we all 
look forward with pleasant anticipation to meeting in France at ICF5 in 1981. 

Roy W. Nichols 
President (1977-1981) 
International Congress on Fracture 

June 28, 1977 
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Preface 
Preface to the Conference Edition 
The International Congress on Fracture was founded by Professor Takeo Yokobori at the 
First International Conference on Fracture held at Sendai, Japan in 1965. This was followed 
by the Second Conference in Brighton, England, 1969, and the Third Conference in Munich, 
West Germany, 1973. The purpose of the Congress is to foster research in the mechanics and 
mechanisms of fracture, fatigue and strength of materials; to promote international 
cooperation among scientists and engineers covering the many disciplines involved in 
fracture research; and to assist in making available the results of research and development. 
To this end ICF decided to hold an international conference on fracture at least once every 
four years and the ICF Executive suggested that the Fourth Conference in the series be held 
in Canada. 

The Canadian Fracture Committee was thus established with industrial, government and 
university representatives and it was decided to hold ICF4 under the auspices of the Faculty 
of Engineering of the University of Waterloo. Waterloo was chosen as the location for ICF4, 
being a convenient and compact setting which would provide a forum for the formal 
proceedings and an intimate campus environment to promote extensive and informal 
discussions between delegates. Waterloo is also one of the principal centres of fracture 
research in Canada. The date was chosen to ensure pleasant weather and to mesh with other 
major conferences in North America. The Canadian Fracture Committee has been 
incorporated and after ICF4 will continue to be the national arm of ICF in Canada. A 
National Fracture Conference is envisaged for the periods between international con
ferences. 

The structure of the conference programme consists of: Plenary Sessions each morning 
where 40 invited papers are to be presented (published in Volume 1 of the Proceedings); 
Workshop Sessions alternately during afternoons and evenings where 325 contributed 
research papers are to be presented (published in Volumes 2 and 3 of the Proceedings); and 
Panel Discussions. An International Editorial Board was established to review the 
contributed papers. This was based mainly on scientists resident in North America. 
Refereeing has been rigorous and extended over the period from April 1976 when the first 
paper was submitted to March 1977 when the last paper was received and later accepted. 
The workshop papers were classified into 7 parts: 

Part 

I Physical Metallurgy 
II Voids, Cavities, Forming 

III Fatigue: Micromechanisms 
IV Fatigue: Mechanics 
V Analysis and Mechanics 

VI Applications 
VII Non-Metals 

No. of Papers 

43 
42 
40 
45 
64 
42 
49 

Parts I-IV make up Volume 2 of the Proceedings and Parts V-VII, Volume 3. More than 700 
scientists were involved in the writing and refereeing of these papers. In all, some 38 
countries were represented in this process including: 

Argentina Brazil Denmark 
Australia Canada England 
Austria Cuba Finland 
Belgium Czechoslovakia France 
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East Germany 
West Germany 
Hong Kong 
Hungary 
India 
Israel 
Italy 
Jamaica 
Japan 

Luxembourg 
Mexico 
Netherlands 
Norway 
People's Republic of 

China 
Poland 
Romania 
Scotland 

South Africa 
Spain 
Sweden 
Switzerland 
Turkey 
U.A.R. 
U.S.A. 
U.S.S.R. 
Wales 

The Conference is certainly international in character and representatives and delegates are 
surely welcome at ICF4 from any country in the world. 

To ensure a high level of effective spoken interaction and communication at the conference 
at least half the time has been allotted in each Workshop Session for an extended period of 
vigorous, directed discussion led by a Workshop Foreman. Workshop Papers themselves will 
be presented in outline only in groups of 5-7 related papers. Authors will be strictly limited 
to a maximum of seven minutes and about five slides for their address. Speakers should 
assume that those present have studied the written text of the papers since a major feature 
of ICF4 is that the whole proceedings will be prepublished one month prior to the 
conference. Focus at the conference itself can therefore be upon the latest developments, 
outstanding problems and spoken communication. The aim is to integrate written and 
spoken communication, minimizing some of the problems associated with such a large-scale 
conference. 

On the Wednesday afternoon a panel discussion on the Teaching of Fracture has been 
organized to study the task of the educator in developing an understanding of the failure of 
materials under stress. On the final afternoon of the conference, following the broad review 
paper by Professor Bruce Bilby, a closing panel discussion has been scheduled to examine 
the topic Fracture, Politics and Society. Professor Max Saltsman MP will give the 
introductory address, followed by a commentary by Dr. John Knott on the interview with 
Sir Alan Cottrell FRS entitled Fracture and Society. This final plenary session is designed to 
provide a vigorous and integrated conclusion to the conference giving a basis for a full 
appreciation of fracture problems in relation to wider social issues. 

Notwithstanding the rather overwhelming number and range of papers, the overall objective 
has been to search for strong unifying themes and connections. Conceptual links between 
the different types of fracture have been especially sought along with the development of 
the interface between the mechanics and the micromechanistic approaches. An important 
focus for the conference has been the application of fracture research to large scale 
structures, covering, for example, nuclear reactors, ships, pipelines, aircraft, and risk 
analysis. 

It is hoped that these proceedings will provide a sound basis for further progress and spoken 
interchange at the conference itself. The proceedings are destined to become the essential 
primary archive reference for fracture research, at least until ICF5. 

April 8, 1977 

Preface to the General Edition 
This General Edition of the Proceedings of the Fourth International Conference on Fracture 
differs in content and format from the Conference Edition, Fracture 1977, which was 
published prior to the Conference for the registered delegates. The expanded title, Fracture 
1977 - Advances in Research on the Strength and Fracture of Materials, was used to ensure 
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a clear distinction between this edition and its antecedent. The General Edition incorporates 
a full Subject Index, in addition to the Author Index, plus corrections of textual and 
typographical errors. Where possible, Overviews of the individual Parts of the Workshop 
Programme have been incorporated and these appear in Volume 4. Messages from the 
incoming and outgoing Presidents of ICF are also included in a Foreword, plus certain 
crucial papers and documents received after publication of the Conference Edition. 

In order to produce books of more manageable size, the General Edition of the Proceedings 
appears in six volumes, the original page numbering being retained; thus the content of these 
six volumes as follows: 

Volume 1, An Overview, comprises all the invited Plenary papers received when the 
Conference Edition went to press, and is thus similar in content in the two editions. The 
same page numbering and citation index for the plenary papers is retained and the full 
Author Index has been added. 

Volume 2 A, The Physical Metallurgy of Fracture, consists of the papers presented in Parts I 
and II of the Workshop Programme, which appeared in the first half of Fracture 1977, 
Volume 2; hence it contains pages 1 through 678 of this Volume. The full Author Index is 
also included. 

Volume 2B, Fatigue, consists of the papers presented in Parts III and IV of the Workshop 
Programme, which appeared in the second half of Fracture 1977, Volume 2; hence it 
contains pages 679 through 1392 of this Volume, which includes the full Author Index. 

Volume 3A, Analysis and Mechanics, consists of the papers presented in Part V of the 
Workshop Programme, which appeared in the first half of Fracture 1977, Volume 3; hence 
it contains pages 1 through 522 of this Volume. This volume also includes the full Author 
Index. 

Volume 3B, Applications and Non-Metals, consists of the papers presented in Parts VI and 
VII of the Workshop Programme, which appeared in the second half of Fracture 1977; 
hence it contains pages 523 through 1232 of this Volume. Volume 3B contains a full 
Subject Index to the Proceedings in addition to the Author Index and Citation Index. 

Volume 4, Fracture and Society, contains the papers issued in a softbound supplementary 
volume, published a few hours before the Conference began, plus the edited transcript of 
the two Plenary Panel Discussions Fracture, Education and Society and Fracture, Politics 
and Society held under this general title. Included are the ICF4 Interview with Sir Alan 
Cottrell FRS, the paper Political and Social Decision Making in Relation to Fracture, 
Failure, Risk Analysis and Safe Design, by Max Saltsman MP and the full text of the general 
survey paper Fracture, presented at the conclusion of the Plenary Programme by Professor 
Bruce Bilby FRS. Also included are the crucial plenary and workshop papers received too 
late for publication in the earlier volumes. Volume 4 will contain both the full Subject 
Index and a Citation Index to the complete Proceedings. 

A further book, Conference Theory and Practice, will also be published. This will be a full 
report of the Waterloo Conference, also providing some general guidelines for the planning 
of large-scale Technical Conferences. 

It is recommended that references to papers in the volumes be cited in the following way: 

Reference to the General Edition — 

King, J.E., Smith, R.F. and Knott, J.F., "Fracture 1977 - Advances in Research on the 
Strength and Fracture of Materials," ed. D.M.R. Taplin, Vol. 2A, Pergamon Press, New 
York, 1977, page 279 (Conference Edition, University of Waterloo Press). 
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Reference to the Conference Edition -

Rabotnov, Yu. N. and Polilov, A.N., "Fracture 1977," ed. D.M.R. Taplin, Vol. 3, University 
of Waterloo Press, 1977, page 1059 (General Edition, Pergamon Press, New York). 

These Proceedings will serve as a very substantial physical reminder of the large and 
significant technical content of ICF4. It is hoped that the memory of other aspects of the 
Conference, the friends and acquaintances made and renewed, the formal and informal 
technical discussions, the planned and impromptu social activities, will prove equally 
enduring and valuable to the 750 participants from some 40 countries who assembled in 
Waterloo. 

A final innovation at ICF4 was the distribution of a detailed questionnaire inviting criticism 
and comment on the organisation of the Conference, to aid the planning of ICF5 and other 
similar conferences. Responses were generally complimentary about the technical pro
gramme and many kind comments were received on the quality of the hospitality and 
accommodation offered and on the beauty and compactness of the facilities available on the 
Waterloo Campus. The structure of the Workshop Sessions came under some criticism, 
perhaps not surprisingly in view of its innovative nature. Some authors seemed unable or 
unwilling to describe the main points of their work brought up to date (June 1977) in the 
eight minutes allotted, preferring to attempt a full formal presentation delivered at a gallop. 
Problems seemed to arise only where speakers did not study the very full instructions 
provided. This is a common failing of us all. However, this aspect of the Conference also 
gained many very positive comments and most speakers came 'extremely well prepared. 
Certainly this approach merits repetition in a similar form at ICF5. 

The Plenary Sessions were positively received — indeed plenary speakers came extremely 
well prepared and chairmen were strict in control of the sessions. The essence of each paper 
was presented as required under the instructions, with full up-dating of the work to June 
1977, such that it was possible to cover virtually the whole field of fracture in an up-to-date 
way at the highest possible level. To have had fewer Plenary papers with more time for each 
presentation, as suggested by some respondents to the questionnaire, would have left 
significant gaps and failed in this purpose. Plenary speakers are surely to be highly 
complimented on the unusually commanding quality of the presentations. The fact that 
little time was available for immediate discussion in Plenary Sessions, a criticism of others, 
is, frankly, hardly avoidable. With an audience of about 750, controlled and effective 
discussion is impossible. Discussion of Plenary papers, in fact, occurred in the appropriate 
Workshops. It should be recorded that these Workshop Discussions were often extremely 
lively and effective and many positive comments to this effect were received. Two other 
points seem worth mentioning. It would certainly have been beneficial to have scheduled 
the Plenary Panel Discussions earlier in the Conference — perhaps even on the first two days. 
Also, earlier and stronger measures could perhaps have been taken to involve the national 
and international media, and thereby the public at large, in the problems of fracture and 
failure in our advanced technological society. This suggestion in fact came from Mr. Robert 
Maxwell, the Publisher of this General Edition and it was also emphasised in the comments 
of Max Saltsman MP. These items are worthy of consideration for ICF5. 

A point mentioned in Dr. Nichols' Foreword is worth re-emphasis here. The names of all the 
new Executive Officers of ICF (1977-1981 term) are listed in each Volume of these 
Proceedings. Any of these would certainly welcome suggestions on the organisation of 
further Conferences and any other activities which ICF might usefully initiate or 
co-ordinate, particularly in regard to Publications. The success of ICF4 derived from the 
whole-hearted participation of many people. ICF wishes to serve all those around the world 
working on Fracture Problems. This purpose can be achieved effectively only by the further 
active involvement of us all and the continuing recognition of ICF as the appropriate world 
organisation and "umbrella" for coordinating work on fracture. 

July 19, 1977 
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Standard Nomenclature List 
In order to minimize unnecessary confusion, a standard nomenclature for 
commonly used quantities has been adopted for ICF4. This coincides closely 
with other developing nomenclatures in the field of fracture and it is hoped 
that this notation will become widely used. SI units have been used through
out the Proceedings with fracture toughness reported as MPam1'2. It was 
originally thought that this quantity might be designated the "griffith". 
Whilst we surely wished to honour the father of the science of fracture in 
this way, we thought better of taking any unilateral action at this time. 
Thus only informal use of the griffith is recommended at ICF4. 

Area of Cross-Section of a Specimen 

Area of Cross-Section of a Specimen at the Start 
of Testing 

Area of Cross-Section of a Specimen at Fracture 

Crack Length - One-Half the Total Length of an Internal 
Crack or Depth of a Surface Crack 

Original Crack Length - One-Half of Total Length of an 
Internal Crack at the Start of a Fracture Toughness Test, 
or Depth of a Surface Crack at the Start of a Fracture 
Toughness Test 

Measured Crack Length - One-Half the Total Length of an 
Internal Crack or Depth of a Surface Crack as Measured by 
Physical Methods 

Effective Crack Length - One-Half the Effective Total 
Length of an Internal Crack or Effective Depth of a 
Surface Crack (Adjusted for the Influences of a Crack-Tip 
Plastic Zone) 

Crack Growth Increment 

Rate of Fatigue Crack Propagation 

Test Piece Thickness 

Atomic Interval (Burgers Vectors Magnitude) 

Average Grain Diameter 

Lattice Diffusion Rate 

Grain Boundary Diffusion Rate 

Surface Diffusion Rate 

Young's Modulus of Elasticity 

Exponential Base of Natural Logarithms 
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Nomenclature 

Strain Energy Release Rate with Crack Extension per unit 
length of Crack Border of Crack Extension Force 

Crack Extension Forces for Various Modes of Crack Opening 

Planck's Constant 

Moment of Inertia 

Path-Independent Integral Characterizing Elastic/Plastic 
Deformation Field Intensity at Crack Tip; also, Energy 
Release Rate for Non-Linear Elastic Material 

Stress Intensity Factor - A Measure of the Stress-Field 
Intensity near the Tip of a Perfect Crack in a Linear-
Elastic Solid 

Fracture Toughness - The Largest Value of the Stress-
Intensity Factor that exists prior to the Onset of 
Rapid Fracture 

Maximum Stress-Intensity Factor 

Minimum Stress-Intensity Factor 

Threshold Stress Intensity Factor Below which Fatigue 
Crack Growth Will Not Occur 

Opening Mode Stress Intensity Factor 

Plane-Strain Fracture Toughness as Defined by ASTM 
Standard Designation E 399-74 

Elastic Stress-Intensity Factor at the Start of a 
Sustained-Load Flaw-Growth Test 

Plane-Strain Kj Threshold Above Which Sustained-Load 
Flaw-Growth Occurs 

Edge-Sliding Mode Stress Intensity Factor 

Tearing Mode Stress Intensity Factor 

Rate of Change of Stress-Intensity Factor with Time 

Stress Intensity Range 

Boltzmann Constant 

Parameter that Determines Grain-Size Dependence of 
Yield Strength 

Gauge Length 

Natural Logarithm 

Common Logarithm 
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Nomenclature 

Strain-Rate Sensitivity Exponent 

Number of Cycles to Failure 

Strain Hardening Exponent 

Force 

Maximum Force 

Pressure 

Activation Energy 

Activation Energy for Crack Growth 

Activation Energy for Creep 

Activation Energy for Self Diffusion 

Temperature 

Absolute Melting Temperature 

Brittleness Transition Temperature 

Time 

Time at the Onset of a Test 

Fracture Time 

Potential Energy 

Thickness of Grain Boundary Layer 

True Surface Energy 

Grain Boundary Surface Energy 

Effective Surface Energy of Plastic Layer 

Value of Crack Opening Displacement 

Critical Crack Opening Displacement, Being One of the 
Following: 
(1) Crack Opening Displacement at Fracture 
(2) Crack Opening Displacement at First Instability 

or Discontinuity 
(3) Crack Opening Displacement at Which an Amount of 

Crack Growth Commences 

Crack Opening Displacement at First Attainment of Maximum 
Force 

Normal Strain 

xxviii 
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Nomenclature 

Normal Strain, Elastic 

Normal Strain, Plastic 

Normal Strain, Total 

Normal Strain, at Maximum Tensile Load 

Engineering Normal Strain 

Normal Strain, Critical Value at Fracture 

Principal Strains (i = 1, 2, 3) 

Principal Strains, Plastic 

Cartesian Strain Components . 

Strain Tensor 

Strain Rate 

Strain Rate, Elastic 

Strain Rate, Plastic 

Strain Rate, Initial Value 

Strain Range 

Plastic Strain Range 

Poissonfs Ratio 

Normal Stress 

Yield Stress Under Uniaxial Tension 

Principal Normal Stresses 

Fatigue Strength, Endurance Limit 

Fracture Stress 

Maximum Stress 

Cartesian Components of Normal Stress 

Stress Rate 

Shear Stress 

Critical Shear Stress 

Principal Shear Stresses 

Shear Stresses, Maximum Value 
Atomic Volume 
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Conversion Units 

To Convert From 

inch 
pound force 
kilogram force 
kilogram force/meter2 

pound mass 
ksi 
ksi /u\ 
ton 
torr 
angstrom 
calorie 
foot-pound 
degree Celsius 

To 

meter (m) 
newton (N) 
newton (N) 
pascal (Pa) 
kilogram mass(kg) 
pascal (Pa) 
MPam1/2 (Gr) 
pascal (Pa) 
pascal (Pa) 
meter (m) 
joule (J) 
joule (J) 
kelvin (K) 

Multiply By 

2.54 x 10*2 

4.448 
9.807 
9.807 

4.536 x 10"1 

6.895 x 106 

1.099 
1.333 x 102 

1 x 1 0 s 

I x 10"10 

4.184 
1.356 

TK = Tc + 273.15 

Important Multiples 

Multiplication Factor 

10"12 

10"9 

10"6 

10"3 

103 
106 
109 

Prefix 

pico 
nano 
micro 
milli 
kilo 
mega 
giga 

Symbol 
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A NUMERICAL APPROACH FOR STABLE CRACK-GROWTH AND FRACTURE CRITERIA 

G. Rousselier* 

I. INTRODUCTION 

The behaviour of a cracked body in large-scale yielding conditions has been 
intensively studied in the past years. The well-known crack-tip parameters 
like J-integral or C.O.D. are generally computed and the influence of plas
ticity studied. However the computations are made for a stationary crack 
and give no information about stable crack-growth and corresponding frac
ture criteria. 

Stable crack-growth has been studied by Andersson [1] by performing suc
cessive relaxation of crack-tip nodal forces in a finite-element programme. 
In this paper we attempt to refine this approach by introducing on the 
extension of the crack-line special finite-elements modelling the behaviour 
of the end-region and allowing the elimination of stress and strain singu
larities. Stable and unstable crack-growth will be connected to the frac
ture properties of the material submitted to complex loading. 

II. FRACTURE CRITERION FOR AN ELASTIC BODY 

The usual boundary conditions on the crack-line, mode I: u 2 = 0, 0*12 = 0, 
(0*2 = o*12 = 0 on the crack faces), lead to infinite stresses and strains at 
the crack-tip. Finite stresses and strains are obtained with the boundary 
condition 0"2 = f (u2) instead of u2 = 0, as in the Barenblatt's model [2] 
and also in the Dugdalefs model [3]. The main difficulty lies in the 
interpretation of the normal displacement U2 in B. continuum model. In this 
paper u2 is interpreted from the strain e2 = u2/h of a strip with height 
2 h located on the extension of the crack line, in a way similar to the 
rigid-plastic strip model introduced by Rice [4]. Dugdale's model is based 
on the Tresca criterion, which gives a2 = f (u2) = a for an elastic-per-
fectly plastic material in plane stress conditions. In this paper a state 
of plane deformation is assumed; the relation a2 = f (u2) = g (£2) repre
sents the local stress-strain curve in the strip and is related to the 
flow rule of the material. 

The geometry of the crack-tip is modified by the insertion of the strip. 
But such a model is perhaps more realistic in this highly strained region 
than the usual reference to the initial geometry of a cut with zero crack-
tip radius. 

In this way, for an infinite linear-elastic medium (plane strain), the 
problem is reduced to the one-dimensional integral equation: 

* Laboratoire de Mecanique des Solides, Ecole Polytechnique, 91120 -
PALAISEAU, France and E.d.F., Etudes Materiaux, Les Renardieres, 
77250 - MORET SUR LOING, France 
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+00 

u2 (x) = [2 (1-V 2 ) /TTE] / a2 (tO In )t>x| dt . (1) 
-00 

Andersson and Bergkvist [5] have resolved numerically this equation with 
a law 02 - f (112) linearly increasing than decreasing; in this paper we 
consider a more general law. The non-linear part of f (U2) will be used 
to define the length of a "plastic zone" limited to the strip. 

The model gives an interesting possibility to connect the global criterion 
of fracture with a local criterion at the crack-tip, defined by a 2 = Of 
or £2 = £f. We show numerically that in small-scale yielding the local 
criterion defined above yields the global criterion Kj = KJQ with a good 
accuracy. We obtain KJQ = k Sf, where Sf is the area under the curve 
o = g (e) up to the limiting strain Gf for which the stress vanishes. 

The J-integral is found to be path-independent outside the "plastic zone". 
For a remote path, at the onset of fracture, its value is 
Jc = [(l-v2)/E] KJQ, while for a path along the boundary of the "plastic 
zone" Jc = 2h Sf. This latter result is the same as given by Rice [6] but 
is based on a different model. So the constant k should be equal to 
2hE/(l-v2). This is verified numerically with a good accuracy. 

III. ELASTIC-PLASTIC BODY. STABLE CRACK-GROWTH 

A finite-element approach is convenient in the case of an elastic plastic 
body. The incremental plastic deformation, in plane strain conditions, is 
taken according to the Prandtl-Reuss flow-rule along with the von Mises 
criterion. An "implicit" algorithm recently given by Nguyen, Q. S. [7] is 
used. The implicit algorithm eliminates all the numerical and systematic 
errors usually found in the "explicit" method. Furthermore loading, un
loading and reloading can be easily done. 

The elastic-plastic constants are: E = 200,000 MPa, V = 0.3, ay = 700 MPa, 
linear hardening with a 1,000 MPa modulus. The law a = g (e) in the strip 
is not the conventional curve obtained in the tension test, but a deduced 
curve corresponding to uniaxial strain. It is chosen to represent the 
complex stress state at the crack-tip. The fracture of each element occurs 
at a critical stress o2 = o"f = g (£f); for e > £f the curve g (e) drops 
to zero. During crack growth, the crack-tip nodal force is relaxed in 
five equal steps. 

We study a three-point bend specimen (width W, span S = 4 W, thickness B, 
initial crack-length a0, b = W-a 0). In order to avoid the effect of element 
size the elements adjacent to the uncracked ligament near the crack-tip have 
the same dimension, and remain unchanged for specimens of different sizes. 
The side s of these triangular elements is taken equal to 0.1 mm for a 
width W from 5 to 200 mm. The strip height h is no longer the characteris
tic length of the process of fracture as it was the case for an elastic 
body. In fact h may be related to the crack-tip radius, and the results 
are independent of h if it is sufficiently small (here for h < 0.01 mm). 
It is s which is the characteristic length: fracture occurs when 
a2 (mean) > o*f over a distance s from the crack-tip. 
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Part V - Analysis and Mechanics 

The load-deflection curves P (d) for On = 2,300 MPa are given in Figure 1 
along with the crack-growth curves P (Aa) for W = 20 and 5 mm. The points 
of crack-growth initiation and unstable crack-growth depend on the size of 
the specimen. Moreover the second one depends on the loading conditions. 
With load-control the instability occurs after a few steps of crack-growth. 
With displacement-control the crack-growth is stable; it goes on under a 
quasi-constant, than decreasing load (curve 5a); the maximum load can be 
somewhat greater than that obtained with load-control (curve 3a). 

IV. FRACTURE CRITERIA 

Figure 2 shows different critical values of the stress-intensity factor Kj 
as function of specimen size. These values are deduced from Figure 1 as 
follows: K m a x is the value of Kj at maximum load; K{Jax at the load obtained 
by extrapolation of the linear part of the P - d curve up to the displace
ment at maximum load; KQ at the load defined by the intersection with 
"5%-secant"; Kg is computed according to the equivalent energy concept 
introduced by Witt [8]; Kj^ is deduced from the J-integral at the onset 
of stable crack-growth. KQ and K m a x decrease for b < 1 to 1.5 (Kjc/Gy)2 
as it is verified with medium-strength steels if the thickness is suffi
cient. K{|ax and Kg are more constant and bracket the value of KJQ; these 
two values give a good estimate of the fracture toughness KJQ with "medium-
size" specimens [between 0.25 and 1.5 (KIC/ay)2]. With smaller specimens 
K^ax and Kg are no longer well-defined for trie computed value of the dis
placement at maximum load is not accurate. 

The J-integral is computed for two cases: Of = 2,300 MPa and 3,200 MPa. 
V = -(1/B)[dU/dald and V* = -(2/B)(U*/b) are also computed1. The obtained 
values are converted into Kj, Ky and Ky by the usual plane strain formula 
j = [(l-v2)/E]K2. They fit well together, at least until full plasticity, 
which justifies the experimental determination of J (see Figure 3). 

Kj at the initiation of crack-growth, i.e., Kj^, is practically independent 
of the specimen size and depends only of the material considered: 
KJ:L - 54 MPa-m172 for Of = 2,300 MPa (see Figure 2), KJi - 100 MPa-m1/2 for 
Of = 3,200 MPa (for W = 20 mm, a0/W = 0.5, 0.6, 0.7 - for W = 50, 100 and 
200 mm, a0/W = 0.5). The J-integral gives a good criterion for the initia
tion of stable crack-growth. However, since Kj deviates very little from 
the linear curve, Kj (Figure 3) is a more simple, but approximate, criterion 
for the initiation. 

For the two cases investigated Kj^ is notably smaller than Kj^, about 30% 
for the weaker material (Of = 2,300 MPa) and 70% for the tougher one 
(o*f = 3,200 MPa: in that case it was not possible to reach the point of 
instability, because of computer limitations; Kj£ is greater than 300 MPa^m^2; 
this shows the high dependence of Kj£ with Of). It does not seem that the 
value of the J-integral at the onset of stable crack-growth allows the 
direct determination of fracture toughness on small specimens. 

V. FURTHER DEVELOPMENTS 

The magnitude orders of the computed values Kj^ and Kj^ are quite good. 
However the model will be refined in the following ways. 

1 These two values are given by the well-known relations used for the 
experimental determination of J, the former with a few specimens, the 
latter with a single deep-cracked specimen (a/W >̂  0.6) [9]. 

3 



Fracture 1977, Volume 3 

First, the uniaxial strain hypothesis will no longer be imposed to the 
special crack-elements. The algorithm for the finite-elements in plasticity 
will be used also for the special crack-elements, that is to say the incre
ments of stresses will be given as functions of actual stresses, hardening 
parameter and increments of strains Aei = Aui/Axi, Ae2 = Au2/h, Ae 1 2 = 0. 

Second, instead of a critical stress Of, a local criterion F (o"i, G2, 0*3) = 0 
will be used. It will be related to tests on notched - but not cracked-
specimens of a given material. 

With these improvements an agreement is hoped between numerical and experi
mental values of Kjr for the given material. Moreover theoretical and 
experimental results in large-scale yielding conditions will be compared. 
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Figure 1 Computed Dimensionless P versus d Curves with Of = 2,300 MPa for 
Different Specimen Sizes (1 : W = 200 mm, 2 : 50 mm, 3 : 20 mm, 
4 : 10 mm, 5 : 5 mm; a0/W = 0.5) with Load Control (Curves 1 to 5) 
or Displacement Control (Curves 3a and 5a). Points of Crack-
Growth Initiation are Shown on Each Curve by Roman Numerals 
(I to V). Curve 6 is for a Stationary Crack. Load P versus 
Crack-Growth Aa Curves are Shown for W = 20 mm and 5 mm. 
P/BW oy = 0.093 is the Limit Load from the Slip-Line Field Theory 
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Figure 2 Computed Critical Values of Kx and Kj for Of = 2,300 MPa as Func
tion of Specimen Size (W = 200, 100, 50, 20, 10 and 5 mm; 
0.5 and 0.7). Symbols are Defined in the Main Text 
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no crack 
growth 

Figure 3 Computed K versus d Curves with Of = 3,200 MPa for a W = 20 mm, 
a0/W =0.6 Specimen ( Kj, Kj for a Stationary Crack, 

Ky? Ky-*). Symbols are Defined in the Main 
Text 
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ON THE APPLICATION OF CTD TO THE FRACTURE MECHANICS 

Y. Mitani* and H. Miyamoto** 

INTRODUCTION 

The purpose of this paper is to combine the continuum theory of dislocations 
and conventional fracture mechanics, in order to clarify the physical aspects 
of deformation to seek a criterion of fracture from a microscopical point 
of view. These ideas were firstly realized by the BCS-Model [1], where one 
dimensional distribution of dislocations is assumed and the elastic-plastic 
-- problem is replaced by the problem of finding out an equilibrium distri
bution of dislocation under some suitable boundary conditions. Further 
progress has been made by Yokobori et al [2] and Lardner [3]. These direct 
applications of the BCS type solution, however, complicate the mathematical 
treatment, and seem to be inconvenient to the general plane problems. In 
this analysis the concept of dislocation theory is incorporated with Finite 
Element Method (FEM) to find out the equilibrium distribution of disloca
tions which satisfies the boundary conditions. It is noted that the esti
mation of the internal stress field due to the dislocation density is made 
fictitiously after Eshelby by self-consistent method [4] with the assumption 
that uniform plastic strain is produced by dislocation migration, if the 
dislocation were not confined in the elastic domain. The numerical analysis 
based on these fundamental concepts, (termed CTD hereafter) is carried out 
for monotonic loading condition, and the compatibility of the plastic deform
ation is examined for a centrally cracked plate. 

THEORETICAL FUNDAMENTALS AND NUMERICAL PROCEDURES 

The equilibrium equation of BCS model may be rewritten, associated with a 
slip plane as: 

T + T. _ = T , (1) 
a int c 

in the plastic zone whose dimension appears as the integral limit of inter
nal stress term x^nt as an unknown as well as the dislocation density -
function. Here, xa, Tc denote the shear stress due to the external force 
and the frictional stress, respectively. The limitation of assuming the 
one-dimensional dislocation distribution will be overcome by properly 
estimating the internal stress field due to the dislocation and by examining 
the equation (1) in iterative fashion. 

We assume the following mechanism for the calculation of the internal 
stress. 

* National Institute of Technology, Mexico, D.F., Mexico. 
** University of Tokyo, Tokyo, Japan. 
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(a) The plastic zone with uniform ep in the elastic domain is repre
sented by the surface forces after Esheloy 

T. = n. • c. ., . • eP kl , (2) 
l j ljkl v J 

which are expressed by the nodal forces in FEM. 

(b) The uniform plastic strain associated with the slip plane yP is 
related with the excess dislocation density N with burgers vector b as 

yP = (l/2)Nb , (3) 

where N is derived from the number of the equilibrium dislocation of BCS 
type solution for one-side pile-up [5] with a plane correction factor n* 

= 7T(l-v)n*d . T m 
ub eff ' l4j 

and 

eff w a int' c v J 

where Tj_nt vanishes for the initial stage. 

Then we obtain the hardening ratio for uni-axial tension H' by considering 
2 T C = ay 

H« = *2_ = 1-tL J _ (^ 
, P 7T 1-V n**d * W 

der 

which shows the inverse proportional relation to the average grain diameter 
d. In this way we equivalently assumed the simple bilinear material char
acteristics by excess dislocation, and further discussions of dislocation 
distribution focus on the "geometrically necessary dislocation" after 
Ashby's terminology [6], 

(c) Taking the irreversibility of plastic deformation into account, 
we obtain the internal stress field with free boundary condition for the 
specimenconfiguration. Hence the internal stress field.is the sum of the 
stress due to the dislocation T^ and its image stress xj m 

im ._. T. . = T, + T, . (7) int d d K J 

Hence, for each external stress increment, equation (7) is calculated by 
using relations (4), (3) and (2). Then equation (1) is examined until it 
holds. In the case of isotropic material, the slip plane is determined 
equal to the maximum shear plane of each incremental step. 

The material constants used in this analysis are E = 2.058X101xPa, 
Tc = 9.80 MPa, V = 0.333, b = 1.0 A and d = 10"6 m. 
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Part V - Analysis and Mechanics 

The specimen configuration is half width W/2 = 100, thickness B = 1.0 
and half crack length a = 10 mm, respectively. The dislocation density 
VD and the total number of dislocation TND are defined in a yielded element 
as VD = N/d and TND = NA/d, respectively, where A is the area of the element 
in which stress and strain are defined as constant by FEM. 

RESULTS AND DISCUSSIONS 

The typical feature obtained by this analysis is the bursting phenomena 
which depends highly on the plastic characteristics expressed by n*, that 
is, in the course of examination of equation (1), such loading stage appears 
where no convergence is obtained. It is seen in the divergence of TND in 
Figure 1, which implies that the compatible state can not exist and, hence 
the assumed condition (a) doesn't hold any more. Then it can be inferred 
that the excess dislocation which violate the compatibility might be emitted 
from the crack surface at this loading point, in order to recover the com
patibility by the geometric change of the crack surface [7]. Since the 
effect of the internal stress field is highly localized near the crack tip, 
crack opening displacement increases non-linearly as shown in Figure 2, 
corresponding to the tendency of TND, where COD is plotted for the nearest 
joint of the crack tip. 

These localized effect of the internal stress field influences also the 
spread of the plastic zone, and the resultant effects with the dislocation 
mobility show clearly the differences between the materials which have 
different n* as shown in Figures 3 and 4. It is noted that the bursting 
phenomena occur indifferent to the plastic zone size, instead, those 
materials which have n* smaller than 1.5, so far as this analysis is con
cerned, recover the stress singularity characteristics at the crack tip 
element is yielded before bursting occurs. This result implies the transi
tion of fracture conditions according to the plastic property of the material 
from brittle to ductile. Figure 6 shows an example of stress singularity 
recovery after its relaxation. 

Comparison is made in Figure 5 on plastic zone size. The discrepancy 
between the small scale yielding solution and the present analysis after 
the loading level around 0.4 presumably stems from the ignorance of the 
internal response due to the plastic deformation in s.s.y. analysis [8], 
The difference to the BCS solution is due to the difference of the plastic 
zone dimension. The change of the internal state in terms of dislocation 
density distribution is clearly seen in Figure 7 which shows the difference 
of the equilibrium distributions not only by the amount but also by the 
position of the peak, where numbers in the Figure 7 denote those of the 
nearest elements around the crack tip from the front to the back. 

From these facts we can conclude that s.s.y. concept is applicable to 
those materials which recover the stress singularity without violating 
the compatibility conditions and does not always mean the geometrical 
amount ratio to the other dimensions. The greater the n* is, the more 
easily the compatibility conditions is violated. Hence, for those materials 
which have smaller n* the conventional fracture criterion as the stress 
intensity factor might be applicable. In Table 1 the results are summarized, 
where NELM denotes the element number which has the maximum dislocation den
sity just before the bursting occurs, and from which the excess dislocation 
might be emitted to the crack surface. 
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CONCLUSIONS 

The application of CTD to the elastic-plastic analysis is useful for dis
cussing fracture phenomena for the following reasons: 

(a) It analyses the compatibility of the plastic deformation which 
is responsible for the fracture in the case of nonhomogeneous deformation. 

(b) The internal responses of the material or mechanisms can be dis
cussed by the introduction of the concept of dislocation distribution which 
is ignored in the conventional fracture mechanics (especially in LFM). 

The blunting phenomenon is explained by the emission of dislocations which 
violate the compatibility condition. 
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Table 1 Bursting Stresses by Monotonic Loading for Different Correction 
Factor 

n* 

1.0 
1.5 

2.0 

2.5 
1 i 

Burst. 
Stress 

-
0.315 

0.239 

0.163 

TND 

-
6767.83 

3634.25 

340.09 

VD max. 
x 10* 

-
74.76 

24.68 

4.85 

NELM 

-
1 

1 

5 

6 
x 10'4 

-
0.9208 

0.8297 

0.3914 

1.0 2'.0 
TND 16 ii(P 

Figure 1 Variation of Total Number of Dislocation for Different 
Correction Factor 
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Figure 2 Variation of Crack Opening Displacement for Different 
Correction Factor 

n* = 1.0 

CRACK 

Figure 3 Spread of Plastic Zone for n* = 1.0 
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n* = 2.0 

CRACK 

Figure 4 Spread of Plastic Zone for n* = 2.0 
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Figure 6 Variation of Stress Distribution Ahead of the Crack Tip for 
Different Loading Level 
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Figure 7 Variation of Dislocation Density Around the Crack Tip for 
n* = 1.5 
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DETERMINATION OF CRACK GROWTH IN A MIXED MODE LOADING SYSTEM 

A. de S. Jayatilaka, I. J. Jenkins and S. V. Prasad* 

INTRODUCTION 

Studies on the propagation of cracks under an applied load are not readily 
analyzed when the cracks are not lying perpendicular to the applied stress. 
When a crack is orientated at some angle to the applied field, the mode of 
fracture is not a simple Mode 1 or Mode 2 but a combination of both. 

Griffith [1] considered crack propagation to be primarily an energetic pro
cess and that the crack extends in a plane coincident to the plane con
taining the original crack. In reality the application of a load to a 
system containing a crack rarely leads to a discrete mode of fracture, 
usually two or three Modes act simultaneously at the crack front. Erdogan 
and Sih [2] considered the problem of mixed mode fracture by studying the 
initial direction of crack growth in a combined stress field. Further 
studies on mixed mode cracking were made by Sih [3] who showed that the 
condition for the direction of initial crack growth is given when strain 
energy density, S, attains a minimum value. 

In this paper a new theory is proposed for the direction of crack initiation 
on the basis of the distortion strain energy. A 'failure curve' for a 
biaxial loading system is also suggested. 

THEORY 

To compute the strain energy around a crack tip, consider a sharp slit 
approximation and an element distance, r, away at an angle 0 to the crack. 
The solutions of the stresses are given below for the combined Modes 1 
and 2 in terms of the coordinate system given in Figure 1. 

xy 

= KJ/^TTT) 1/2 

cos0/2(l-sin0/2sin30/2) 

cos0/2(l+sin0/2sin30/2) 

sin0/2cos0/2COs30/2 

+ KH/(2TTr) 1/2 
-sin0/2(2+cos0/2cos30/2) 

sin0/2cos0/2cos30/2 

cos0/2(l-sin0/2sin30/2) 

(1) 

* Materials Division, School of Engineering and Applied Sciences, University 
of Sussex, Brighton BN1 9QT, England 
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o = v(a + o ) (plane strain) 

T = T = 0 
xz zy 
E = 2(1 + v)u , where u is the shear modulus. 

The total elastic strain energy, dWf, stored in an element dV = dx.dy.dz 
under three dimensional stress system is given by 

dWT = „ (a 2+a 2+o 2) -=(00+00+00) + — (T 2 + T 2 + T 2) 2E v x y z ' E v x y y z z x' 2u xy xz zy J dV .(2) 

The total strain energy, dWT, consists of the sum of the strain energy due 
to change in volume, dWy, and the strain energy due to distortion, dW^. 

dWT = dWy + dWd . (3) 

The strain energies due to volumetric change (hydrostatic component) and 
due to distortion are given below. 

dwv = * m ^ fa 2+° Z+a 2 + 2 ( a o+oo+oo)] dV (4) 
V 6 E x y z v x y y z z x M v J 

dW, = ^— \o 2+o 2+o 2 - ( a 0+00+00 )+3(x 2 + T 2+x 2) dV.(5) d 3 E x y z v x y y z z x ^ ^ x y xz z y ^ K J 

Upon the substitution of equation (1) into equations (2, 4, 5), the total, 
hydrostatic and distortion strain energy densities may be written in the 
form given below. 

dWT dW dW 
dV " r b' dV " r V dV " r bd ' W 

Here S, Sy and Sj are independent of r but depend on the elastic constants, 
Kj, K-r-r and the angle, 9. 

It should be noted that the strain energy densities tend to infinity as r 
tends to zero. As a result, a cut off point of r > 0 has to be introduced 
to allow for the discontinuity of strain energy density at the crack tip. 

THE DIRECTION OF CRACK INITIATION AND PROPAGATION 

In a mixed mode system, the strain energy density comprises of that due to 
a volume change and that due to a distortion effect as shown in Figure 2. 
A crack in an elastic material in pure hydrostatic tension will extend 
along a line coincident with the axis, A A', of the crack as shown in 
Figure 3. It appears that the direction of crack growth takes place along 
the direction where the distortion strain energy is minimum. 

dS d2S 
^ = 0 at 9 = 6 o a n d ^ > 0 . (7) 
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The resistance to crack growth is determined by the total strain energy 
density which reaches a critical value, S1,,^^, at 0 crit* o' 

crit V + S d' at 6 = 0 (8) 

UNIAXIAL TENSION 

For a crack extending in a mixed mode system, 
following expressions. 

Kj and KJJ are given by the 

o/nai K II = oVira sin (9) 

Figure 4 shows the variation of 0O as a function of 3- Table 1 is a com
parison of theoretical results of 0O due to Sih [3], the authors and the 
experimental results of Erdogan and Sih [2]. The experimental work was 
performed on plexiglass of dimensions 9" x 18" x 3/16" with a central crack 
of 2 in. The values of 0O at v = 0.0 and 0.33 have been considered to give 
a meaningful comparison of experimental data with the theoretical values. 
The reason for this is that the dimensions of the samples tested would not 
give rise to a pure plane strain behaviour but a combination of plane 
strain and plane stress. When the normalized strain energy density term is 
plotted for different values of 3, the resulting curves are similar to 
that of Sih. Hence these curves are omitted in this paper. 

UNIAXIAL COMPRESSION 

In this case, the values of 0O for varying angles of 3 are shown in 
Figure 5. To determine the failure strength as a function of 3, in com
pression, experiments have been carried out by the authors on "perspex" 
specimens of 100 x 100 x 6 mm dimensions. Cracks of 35 mm long were 
introduced using a circular saw of 0.2 mm thickness. These preslotted 
specimens were tested in uniaxial compression using an Instron machine 
at a cross head speed of 10 mm/min. Buckling of the samples was avoided 
by using a special jig. The results given in Figure 6 show an excellent 
agreement with the theory. 

PURE SHEAR 

Figure 7 shows the case of plane shear. 
given by the following expressions. 

Kj and KJJ for this system are 

Kj = 0 , K H = T(7ra)j (10) 

The values of 0O are computed as for previous cases and are given in 
Table 2 along with those due to Sih [3]. The classical theory due to 
Griffith postulates that a crack subjected to a pure shear stress is 
assumed to extend along the plane of the axis of the crack. As evident 
from the values of Sih and those due to authors, the crack extends in a 
line which is not coincident with the axis of the initial crack. 
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BIAXIAL LOADING SYSTEM 

The theory described for the determination of crack growth in a uniaxial 
loading system can also be extended to biaxial loading systems. Such a 
system is shown in Figure 8 where the applied stress can be either both 
compressive or tensile or a combination of both. For this system Kj and 
KjT are given by the following expressions. 

Kj = a2(7Ta)°'5U^ sin23 + cos23 (11) 

K = a2(7Ta)0'5 P - - 1 sin3 cos 3 . (12) 

For a known ratio of ai/o"2, the minimum value of a2 crit m a y be obtained 
similarly to the previous cases. Figure 9 shows a 'failure diagram' which 
is drawn on the assumption that the critical flaw size in a material lies 
in the direction in which a2 crit is minimum. 

DISCUSSION 

A method for the determination of crack initiation has been put forward on 
the basis that the direction of initiation is given when S^ reaches a mini
mum value. It is evident from the results that the proposed theory is 
different to that of Sih. His work showed that 0O takes lower values for 
lower values of v when compared with the authors. However, the resistance 
to crack growth which determines the failure stress shows a good agreement 
with the work of Sih. 

An important outcome of this work and also that due to Sih's studies is 
that it confirms that the use of the expression, given below, for the 
strain energy release rate, G, for mixed mode systems, needs to be revised. 

G = K ^ U - v V E + Kn
2(l-V2)/E + K m

2(l+V)/E (13) 
(plane strain) 

It is important to note that the ratio of compression to tensile strength 
is not easily evaluated for a real material, due to the random distribu
tion of flaw sizes and their orientations within a material. This argu
ment may also be applied to the biaxial system. The application of statis
tical methods to determine the strength of brittle materials for both 
uniaxial and biaxial systems is under progress. 
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Table 1 A Comparison of Theoretical and Experimental Values of 0O 

3 

3 

2 

Authors 

30 

-48.0 

-63.5 

-62.4+2.1 

-64 

-69.5 

40 

-39.0 

-56.7 

-55.6+1.2 

-56 

-62 

50 

-32 

-49.5 

-51.6+0.8 

-49 

-53.5 

60 

-23 

-41.5 

-43.1+1.0 

-42 

-45.0 

70 

-15 

-31.8 

-30.7+0.8 

-32 

-33 

80 

-10 

-18.5 

-17.3+0.7 

-19 

-19 

V 

0.0 

0.333 

0.333 

0.00 , 

0.333 

Table 2 Theoretical Values of |B01 for Pure Shear 

V 

e0 

e0 

0 

84° 

70.5 

0.1 

86° 

75.6 

0.2 

88° 

79.3 

0.3 

89° 

83.3 

0.4 

90° 

87.2 

0.5 

90.0 

Authors 

3 

slit 

T*3 

Figure 1 Crack Tip Stresses, Showing Rectangular Components 
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j6 Crack angle — » -

Figure 5 Crack Angle Versus Fracture Angle for the Compression Case 
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2 0 0 

180 

160 

140 

60 

4 0 

20 

COMPRESSION CASE 

PLANE STRAIN 
V = 0-333 

20 4 0 60 80 
—*- j6 Crack angle 

Figure 6 Stress to Failure Versus Crack Angle for Plane Strain Conditions 
in Compressive Loading. The Theoretical Curve was Drawn with its 
Minimum Point Having the Same Value of o~crit of the Experimental 
Curve at the Same Angle. Solid Line Indicates the Theoretical 
Curve 

Figure 7 A Line Crack in Shear Figure 8 An Inclined Crack in a 
Biaxial Stress System 
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Figure 9 A Biaxial Failure Diagram, Where ^ c r^ t is the Stress to Failure 
for Mode 1. 'v = 0.3' 
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A CONTRIBUTION TO THE ANALYSIS OF QUASI STATIC 
CRACK GROWTH IN SHEET MATERIALS 

A. U. de Koning* 

INTRODUCTION 

In general, aircraft structures have to satisfy conditions with respect to 
strength, stiffness and weight. These requirements have led to the 
application of thin walled stiffened structures made of high strength 
aluminium alloys. The linear elastic behaviour of these structures can 
be described accurately by the simple mathematical models from the 
linear theory of elasticity, and in combination with the finite element 
technique the stiffness of complex aircraft structures can be analysed 
accurately for general loading cases. 

With respect to the analysis of strength the situation is much more com
plicated. Non-linear effects such as buckling and plastic deformation 
have a pronounced influence on the load level that can be applied to the 
structure. Another important aspect that frequently has to be considered 
is the sensitivity of structural strength to fatigue damage. As a result 
of increasing lifetimes and the character of the loading conditions, 
initiation of fatigue cracks cannot always be prevented. In this situ
ation it is important that the rate of crack growth is limited, and also 
that the strength of the weakened structure is not reduced in such a way 
that its reliability is endangered. 

In the present investigation the behaviour of cracked structures subjec
ted to high peak loading conditions is considered. Using the Finite 
Element Method the phenomenon of slow stable crack growth can be analysed. 
In this way detailed information is obtained about the behaviour during 
crack growth of well known crack growth parameters such as the value of 
the path-independent J integral, the crack extension force G and the 
crack opening displacement. It is thought that for an analysis of 
residual strength of structures such information can be very useful. 

Of course, the occurrence of a peak loading situation also affects the 
subsequent crack growth behaviour under fatigue loading conditions. Now
adays, it is known that the crack growth rate is strongly affected by 
peak loads. In the present paper some aspects of crack growth retar
dation and acceleration are considered. 

For both studies the Finite Element Method is applied intensively. The 
results obtained are verified by a comparison with experimental data. 

SCOPE OF THE PRESENT STUDY 

Plasticity effects and the complex changes of boundary conditions associ
ated with crack growth, crack opening and crack closure can be treated by 

*National Aerospace Laboratory NLR, Amsterdam, The Netherlands. 
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the Finite Element Method. At the NLR laboratory a FEM computer program 
was developed specifically to deal with these situations. In the present 
investigation crack growth is realised by disconnecting finite elements. 
In view of the incremental description of plasticity effects this proc
edure has to be executed in small steps. In section 3 it is shown that 
application of the disconnecting procedure has consequences with regard 
to the energy dissipation in the crack tip zone. These consequences are 
analysed. 

In the study of slow stable crack growth the decision whether elements 
must be disconnected or not is taken in such a way that the load versus 
crack length curve that was measured for the specimen under consideration 
is realised also in the FEM analysis of that particular specimen. Using 
this procedure experimental results can be analysed in detail. The 
method is applied in an analysis of the crack growth behaviour in two 
different sheet specimens weakened by central fatigue cracks of lengths 
respectively 61 and 123 mm. The results are presented in section 4. In 
the same section it is concluded that soon after initiation of crack 
growth the angle between the crack surfaces near the crack tip seems to 
be constant. This result provides a ground for the assumption that after 
initiation of crack growth the severity of the crack tip situation can be 
characterised by the crack tip opening angle CTOA. The critical value of 
the CTOA can also be measured accurately using an optical microscope, a 
fact that is an important advantage with regard to other crack growth 
parameters. 

In the analysis of peak loading effects on fatigue crack growth, three 
aspects are considered. Firstly, a peak load is applied to a structure 
weakened by a flat central initial fatigue crack. At the maximum load 
level the elastic-plastic deformations and the crack opening displacements 
are computed. Then the loading forces are decreased. During this part 
of the loading trajectory the crack closure behaviour and the reversed 
plastic flow near the crack tip are studied. It will be shown in section 
4 that both effects depend strongly on the geometry of the deformed 
crack surfaces in the maximum peak load situation. The results show the 
important influences of the peak load level and the geometry of the 
deformed crack on the stress distribution in the crack tip zone. Finally, 
subsequent fatigue crack growth through the plastic zone is analysed. 
In the finite element model the crack length can be increased by a simple 
procedure. In this way the effect of a relatively large plastic zone, 
located at a fixed position near the initial crack tip, on the crack 
extension force was computed for different actual crack lengths. From 
this computation it can be concluded that in terms of the distance bet
ween initial and actual crack tip, the effect of a simple overload is 
limited. Nevertheless, it is thought that the results obtained justify 
further effort to improve the methods used here and to arrive at a more 
complete model of fracture. 

DISCRETIZATION OF CRACK GROWTH 

In an application of the Finite Element Method crack growth can be rea
lised in different ways. In this investigation a nodal force relaxation 
technique was applied. Adopting this method the forces connecting two 
finite elements are relaxed in a stepwise manner. For reasons of sim
plicity, in this analysis linear displacement finite elements (trim 3) 
were used. During relaxation of a nodal force the crack length cannot 
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be defined in an unambiguous manner, but after complete relaxation the 
crack length has increased by the length of one element side. 

It is noted that, in an analysis of energy dissipation near the crack tip, 
the work rate associated with the relaxation of nodal forces has to be 
considered. To estimate the significance of this complication, during 
relaxation a linear relation is assumed between the connecting force p and 
the displacement u at a node. Denoting the work rate by AR/Aa, it follows 
that 

AR/Aa = jZ^Pi ua+Aa/Aa (1) 

where Aa is identified with the discrete increment of crack growth (= the 
element size). Further, p| and u|+ denote respectively the connecting 
forces before and the displacements after completion of the relaxation 
procedure. In the present 2D-analysis the crack line is the axis of 
symmetry. Thus, in p| two components of equal magnitude are significant. 
Therefore, in equation (1) the subscript i will be dropped. In the case 
of purely elastic material behaviour it is clear that AR/Aa equals -G, 
where G denotes the crack extension force. In the case of ideal plastic 
material behaviour the value of AR/Aa is estimated. It will be assumed 
that 

p a = - 3 a Aa , u a + A a = a Aa/2 (2) 

In these formulas 3 is a constraint fractor and av is the uniaxial yield 
limit. The scalar a stands for the crack tip opening angle CTOA. In 
section 4 the value of a is identified as a material constant. Then 
after substitution of the formulas from (2) into equation (1), for one 
crack tip, it follows that 

AR/Aa = - a 3 o Aa/2 (3) 

From this consideration it appears that the work rate AR/Aa varies in 
proportion to the element size selected at the crack tip, and approaches 
zero if Aa tends to zero. As sho.wn in Figure 1 for the real material 
behaviour a similar relation was found from the result of the FEM comput
ations. This, in fact, invalidates a computation of the energy dissip
ation in the crack tip zone. However, the apparent error can be made 
arbitrarily small by proper choice of the element size. In the present 
investigation the element size was chosen in such a way that value of 
AR/Aa is small when compared with the plastic energy dissipation. 

ANALYSES AND RESULTS 

In the present analysis of slow stable crack growth the behaviour of two 
different sheet specimens weakened by central fatigue cracks of lengths 
respectively 61 and 123 mm is studied. The specimens were cut from 
2024-T3 aluminium. The sheet thickness was 2 mm and the width of the 
specimens 600 mm. 

From the FEB solutions obtained, the value of the J-integral was computed 
along two different contours through the purely elastic part of the 
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specimen. Path independence was verified. The values of J are presented 
in Figure 2. The initial crack lengths are indicated. It is seen that 
the value of J depends on the amount of crack growth a-a0. Further, the 
significant terms in the balance between rates of deformation energy 
quantities and the work rate associated with the external loading forces 
were computed. The balance was verified. From the results it follows 
that the elastic deformation energy is not strongly affected by plasticity 
effects: at the onset of unstable crack growth a difference of about 
5 per cent was found between the FEM result and the value computed using 
an analytical formula that is based on purely elastic material behaviour. 
However, the rate of plastic energy dissipation and thus also the work 
rate associated with the external loading forces was much larger than 
predicted by certain analytical formulas. Moreover, the rate of energy 
dissipation seems to depend on (a-a0)/a0, instead of a-a as frequently 
suggested in the R-curve approach. In Figure 3 the values of AW/Aa are 
plotted in relation to (a-a0)/a0. The present results raise some 
questions regarding the validity of the R-curve approach in its current 
formulation. 

At different load levels the crack opening displacements were computed. 
These displacements determine the actual shape of the crack. The results 
are given in Figure 4. It is concluded that soon after initiation of 
crack growth the angle between the crack surfaces near the tip is cons
tant. This angle will be called the Crack Tip Opening Angle CTOA. It 
was also observed that this angle is nearly independent of the element 
size applied in the crack tip region. The computed values of the CTOA 
are given in Figure 5. The crack opening displacements were also 
measured using an optical microscope. In Figure 6 the measuring result 
is indicated. It is seen that the CTOA value obtained from the tangent 
modulus of this curve is in agreement with the computational result. 
These results provide grounds for the assumption that after initiation of 
crack growth the severity of the crack tip situation can be characterised 
by the CTOA. In this circumstance it seems logical to assume that the 
crack grows when the value of the CTOA exceeds some critical value. Thus, 
a deformation type of crack growth criterion is obtained. It is to be 
noted that the critical value of the CTOA can be obtained by direct 
measurement. Hence, adopting the CTOA as crack growth parameter, some 
important sources of inaccuracy associated with the determination of 
values for the usual crack growth parameters can be eliminated. 

From the displacement pattern shown in Figure 4 an important conclusion 
can be drawn: for load levels below the level for initiation of stable 
crack growth the crack tip is blunted, while for higher peak load levels 
a sharp crack tip is observed. To analyse the effect of the geometry 
of the crack on the subsequent crack closure behaviour the loading 
forces are reduced. From the FEM solutions obtained at different 
load levels during this unloading procedure, it follows that the sharp 
crack tip immediately starts closing. Subtracting the "elliptic" elastic 
solution from the linear pattern from Figure 4 this behaviour can be 
verified. Further, it is concluded that the compressive stresses acting 
at the closed crack surfaces considerably delay reversed plastic flow 
and, thus preserve the plastic strain field produced as result of the 
peak load. 

The FEM solutions obtained for a crack with blunted tips show a complet
ely different behaviour. It was found that reversed plastic flow is im
mediately initiated, while crack closure is first observed at about zero 

28 



Part V - Analysis and Mechanics 

load level midway between the crack tips. From there on crack closure 
proceeds towards the tips. However, all FEM results obtained for a 
blunted crack tip show that the tip itself remains open, even after 
application of compressive loading forces of the same order of magnitude 
as the original tensile peak load. From these observations it is con
cluded that stable crack growth has a tremendous effect on the deformation 
fields in the crack tip zone. Although, in general, the load level for 
initiation of stable crack growth is not sharply defined, it is thought 
that insight into the extreme situations discussed here will help to 
explain the effect of peak loads on the subsequent fatigue crack growth 
behaviour. 

Analysing subsequent fatigue crack growth, it is recognised that the 
crack grows through the relatively large plastic zone associated with the 
peak load. Then, after a certain amount of fatigue crack growth, the 
plastic zone is situated behind the crack tip and the distance between 
plastic zone and crack tip is increasing. As a result of this increasing 
distance the effect of the peak load on the actual crack tip situation 
will diminish. Simulating fatigue crack growth by the nodal force 
relaxation model applied at a relatively low load level this effect can 
be analysed by the FEM. The method was applied and after completion of 
each nodal force relaxation the elastic deformation energy in the 
structure was computed. From this array values of the crack extension 
force G were obtained for different distances between plastic zone and 
actual crack tip. From the results it follows that after an amount of 
crack growth of the same order of magnitude as the plastic zone size the 
effect of the peak load on G has damped out. So, in terms of crack 
length the effect of a single peak load on G is limited. 

CONCLUSIONS 
1) The value of the J integral seems to be a useful parameter to predict 

initiation of stable crack growth in centrally cracked sheets. 
2) During stable crack growth the crack tip opening angle CTOA is nearly 

constant and independent of the element size applied to discretize 
the crack tip zone. 

3) The R curve concept needs revision. 
4) After initiation of stable crack growth the CTOA seems to be an 

attractive parameter to describe .stable crack growth. 
5) The effect of peak loads on subsequent fatigue crack growth can be 

analysed by the Finite Element Method. 
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Figure 6 Shape of the crack as measured after 40 percent crack growth 
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SELF-SIMILAR PRESSURE PROFILES IN THE SYMMETRICALLY EXTENDING PLANE CRACK 

Finn Ouchterlony* 

INTRODUCTION 

Much of the author's recent work has involved Fracture Mechanics analysis 
of rock destruction. In one case, the different stages of the breaking 
process in rock blasting were modelled by various static radial crack 
systems in [1]. Another case, which prompted the work in [2], is the 
splitting of plane rectangular slabs of rock or concrete by wedging tools. 
A static analysis of mechanically induced rock fractures may be adequate 
but in rock blasting it is sure to leave out vital parts such as stress 
wave effects, crack branching phenomena, and the crack propagation speed. 
This note concerns the latter part. It is based on the author's report [3] 
and illustrates the effects of gas penetration on the energy release rates 
at the tips of a symmetrically extending plane crack. 

Since the advent of Broberg's analysis [4] many papers on self-similarly 
extending cracks in elastic media have appeared, see for example [5 - 12] 
for in-plane situations. The papers by Willis [7] and Norwood [9 - 10] 
outline general solution procedures but we prefer to base our analysis 
on the papers by Craggs [5] and Cherepanov and Afanas'ev [8]. It is re
stricted to symmetric crack extension even though Norwood [10] and Brock 
[11 - 12] recently have treated some non-symmetric cases and it leads to 
a Green's function for the stress intensity factor which is analogous to 
the static one derived by Sih et al [13]. A numerical integration gives 
results for any symmetric self-similar pressure profile. 

PROBLEM FORMULATION AND SOLUTION 

Consider the following conditions in plane linear elastodynamics: At 
t = 0 a crack is somehow initiated at the origin of a polar coordinate 
system (r, 6) in an undisturbed homogeneous medium described by the Young's 
modulus E and the Poisson'a ratio v. It's tips propagate in opposite 
directions along the x-axis with the same constant velocity v which is less 
than the Rayleigh wave velocity CR and thus they lie inside the shear wave 
front at r = C2t, see Figure 1. The crack faces are opened by two pairs 
of concentrated line loads of magnitude F = pvt which are moving in oppo
site directions with the velocity vF < v. The disturbed medium is encom
passed by the longitudinal wavefront at r = cit. The boundary conditions 
along the x-axis are 

vfl = 0 when |x| > vt and 1 
(1) 

°Q = pvt[6(x+vpt) + 6(x-Vpt)]H(t) when |x| < vt . ) 

* Swedish Detonic Research Foundation, P. 0. Box 32058, S-12611 Stockholm, 
Sweden 
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Here S(t) denotes the delta function and H(t) the unit step function. 

The problem consists of solving the governing wave equations with the 
appropriate initial and boundary conditions. The method of solution follows 
in the vein of Craggs [14, 5] and Cherepanov and Afanas'ev [8]. The self-
similarity of the problem reduces the independent variables to r/t and 8. 
The semi-circular regions above the x-axis and inside the respective wave 
fronts c^t and c2t are mapped on the upper halves of the £i and £^ planes 
respectively with 

£. = ̂  [c.t cos9 + i/(c.t)2 - r^ sin0] and j = 1, 2 . (2) 

The whole problem then reduces to a Keldysh-Sedov problem for one analytic 
function in the half-plane ImCi > 0. 

The details of the solution are found in [3]. For both tips, the resulting 
expression for the stress intensity factor becomes 

K f v t s ) = ^ . f ( s v ) . F C V > S ) m 
V V , t , S J j - — f(v) n—r- * 1<6J 

/TTVt ■ ( v ) / T ^ 

Here s = vp/v denotes the relative speed of the loading points, f(v) 
denotes a universal function of the crack speed given by 

f(v) = /l-MiV(l-v)R(v) where (4) 

R(v) = -[(2-M2
2)2- 4/(l-M12)(l-M22)]/M22 (5) 

denotes the Rayleigh function with Mi = v/ci, and M2 = v/c2 being Mach 
numbers and m the ratio ci/c2, and F(v,s) denotes the expression 

F^s) = |-[Sfe&+ TA] ' woo " L ^ + 4J(v,s)] + 

* 8 N(v,s)j(l-s2)/L(v) . (6) 

The function F(v,s) contains in turn the following functional expressions: 
First there is P(v,s) given by 

P(v si - (2-s2M22) (e-SsW+s^ 2) 2s2M,2l J S k i m 
p(v,s) - 4(l-s2M12) (3 2 s " 2 } \l-S2M22 • U) 

Then we have the well known Broberg function [4] 

^ - [ ( MIM? 2 ) 2 + 4 M^] K> " [ ^ ^ + 4] E- < * 2 * + 8E2 • W 
where Ki and Ei denote complete elliptic integrals of the first and second 
kind respectively with the modulus /l-Mi2 and the definition of index 2 
follows in analogy. For details see Byrd and Friedmann [15]. Next, 
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«»> - "■*[! * "W1] * - [f Cl*.')-4(1*») . ^ ] B 
- ^ M 2

2 K 2 + | ( 8 - M 2
2 ) E 2 . (9) 

The functions J(v,s) and N(v,s), finally, both contain complete elliptic 
integrals of the third kind. T\\ has the same modulus as Ki and Ei and the 
parameter m 2 = (1-Mi2)/(l-s2Mi2). TT2 is found by switching the indici. 
The expressions read 

J(V'S) = " [ftl-sS^) Mi2^i-Ei] /s2 + [(2+2M1
2-3M2

2)E1-M1
2K1l /3 

+ (M 2
2TT 2-E 2)/S 2 - [~(2-M22)E2-M22K2 1 /3 and (10) 

2M r y (2-s2M2
2)(2+s2M2

2-4s2M!2) w ? C ru ? _ , szN(v,s) = -̂  4(i-g2M12) M l 7Ti-Ei-(M2 T T 2 - E 2 ) 

+ (lls'!!'2)2 [d-s2M1
2-n1

2)TT1-E1 + s2M1
2K1J /8(l-s2) 

- r(l-s2M2
2-n2

2)7T2-E2+s2M2
2K2l /2(l-s2) . (11) 

In the quasi-static limit equation (3) yields the same result as would 
Sih et al [13] for a symmetric loading. 

The case when the forces act at the origin is contained in equation (3). 
Setting v = s = 0 we obtain 

K (v,t,0) = - ^ - • [M(v)/L(v)-l]/f(v). (12) 
/iTVt 

Somewhat surprisingly, this impli'es that the stress intensity factor, and 
hence the energy release rate, will become zero at a crack speed v m a x 
which is less than the Rayleigh wave speed. See Figure 2 for details. 

ENERGY RELEASE RATES CAUSED BY SELF-SIMILAR PRESSURE PROFILES 
Our purpose is to study the effects of gas penetration on the energy 
release rate at various crack speeds. More specifically, we choose a 
one parameter family of binomial type pressure profiles given by 

p(s,q) = po(l+q)(l-|s|)q when - 1 < S < 1 . (13) 

Here p Q is some reference pressure and the parameter q is a measure of 
the peakedness or, equivalently, the gas penetration. All pressure pro
files exert the same opening force on the crack faces due to the factor 
(1+q). The stress intensity factor is obtained from an integration of 
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equation (3) with p(s,q) as a weight functions as 

Kj(v,t,q) = / Kj(v,t,s) p(s,q)ds . (14) 
1 
/ 
o 

The energy release rate in turn is given by the universal relation 

Gj(v,t,q) = (l-V2)K].2(v,t,q)f(v)/E , (15) 

see Freund and Clifton [16] for example. Plane strain conditions are 
assumed. 

We prefer to present normalized values g of the energy release rates with 
the static Broberg crack taken as the reference state. Thus 

g(v,q) = GI(v,t,q)/G][o where GJo = 7T(l-v2)p02a/E , (16) 

and a = vt is the instantaneous crack length. Hereby g(v,q) becomes inde
pendent of a. With the aid of equations (3), and (13 - 16), we may write 

r ^ r ^ r2(l-V)(l+q)L(v) \ „ .q£, , F(v,s) , 1 2 „ n . 
g(v,q) = g(v,0) • -* ^ m ^J ^ J I (l-s)Hf(sv) ^ J ds , (17) 

L o /1-s2 J 
where g(v,0) is the normalized energy release rate of the Broberg crack 
which is given by 

g(v,0) = m2M!VL2(v)f(v) . (18) 

The squared factor in equation (17) is denoted I(v,q) and must be evaluated 
numerically. For the Broberg crack a weighted Gauss-Chebyshev formula 
with ten sampling points yields l2(v,0) = 1.000 and that confirms equation 
(3). 
It is also possible to deduce other limiting forms for g(v,q). From 
equation (12) there follows that for an infinitely peaked pressure dis
tribution the normalized energy release rate is given by 

lim g(v,q) = ̂  [M(v)/L(v)-l]2/f(v) . (19) 
q-*» 

For a s t a t i c crack the r e s u l t s of Sih et al [13] y ie ld the formula 

[ oo -. 2 

Cq+1) Z ( - l ) k ( l / 2 ) k / ( q + l / 2 ) k + 1 , (20) 
where the expression ( ) ^ denotes the Pochhammer's symbol. 
The results of the calculations are plotted in Figure 3 where g(v,q) is 
shown as a function of crack speed for V = 1/3 and with q as a parameter. 
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The exact limiting forms for q = 0 and q = °°, given by equations (18) and 
(19) respectively, are represented by full lines. For intermediate values 
of q, where a numerical evaluation of I(v,q) is necessary, the results are 
indicated by broken lines. The static limit given by equation (20) is 
drawn as circles on the vertical axis and the limiting speed on the hori
zontal one. 

We observe that the extent of gas penetration has a profound effect on 
the energy release rate. At one extreme, total gas penetration is modelled 
by q = 0 and the curve g(v,0) may be regarded as an upper limit to possi
ble values of the energy release rate. Even a slight decrease in the gas 
penetration will lower it markedly. For a linearly decreasing gas pressure 
for example, when q = 1, the available energy is reduced to about half or 
less. For a more realistic pressure profile we would expect it to drop 
even more and to approximately correspond to the other extreme value which 
is no gas penetration and modelled by q ■> °°. Based on these curves we also 
expect that the theoretical limiting velocity may be lower than the Rayleigh 
wave velocity in a situation where the gas doesn't entirely fill a propaga
ting crack. 

The results presented above can only form a qualitative basis for the equa
tion of motion of a pressurized crack in a blasting situation. If they are 
supplemented by an expansion law for the gaseous detonation products, an 
expression for the crack surface displacement, and measurements of the 
effective fracture surface energy yp as a function of the crack velocity 
then one may perhaps hope to use Gi = 2yp as an equation of motion for 
crack growth, much in the same way as Bergkvist [17] has done for a central 
crack in an infinite sheet of PMMA. 
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A CRACK GROWTH GAGE FOR ASSESSING FLAW GROWTH POTENTIAL 
IN STRUCTURAL COMPONENTS 

A. F. Grandt, Jr.*, R. L. Crane* and J. P. Gallagher** 

INTRODUCTION 

The objective of this paper is to describe an approach for monitoring 
operational service of individual structures or components for potential 
crack extension. Although much prior effort has gone into development of 
techniques and procedures for estimating remaining useful structural life 
[1 - 5], the current emphasis on increased requirements for tracking crack 
growth potential during service (e.g. references [6 and 7]) remains a 
formidable challenge. 

The approach suggested here consists of mounting a precracked specimen or 
"gage" onto a load bearing member as shown schematically in Figure 1. 
Linear elastic fracture mechanics analyses are employed to relate crack 
growth in the gage with extension of a real or assumed initial flaw 
located in the structure. Crack growth in the gage can then be monitored 
during service for an indication of corresponding extension of the assumed 
structural defect. Moreover, as shown schematically in Figure 2, this 
relationship permits allowable maximums for the structural crack size 
(based on safety criteria or repair economics) to specify corresponding 
gage limits. 

Derivation of the analytical relation between the two crack lengths is 
described below and demonstrated with sample calculations for various 
flaw geometries. Experimental verification of a portion of the mathe
matical model is also presented, followed by a summary discussion of the 
crack gage concept for tracking structural damage. 

ANALYSIS 

Considering Figure 1, assume that a small precracked coupon (crack length 
= ag) is fixed along its ends to a large structural component containing 
a crack of length as. The problem here is to correlate growth of as 
with extension of ag. In all subsequent discussion, it will be assumed 
that linear elastic fracture mechanics conditions are satisfied in both 
the gage and structure during service loading. In addition, the gage is 
sufficiently small that its attachment does not change the stresses in 
the structure. 

Relation Between Gage and Structural Loads 

The objective here is to determine the gage load P caused by application 
of the uniform structural stress as shown in Figure 1. Since the gage 
endpoints are fixed to the structure, the total displacement 6 along the 

*Air Force Materials Laboratory, WPAFB, Ohio, U.S.A. 
**Air Force Flight Dynamics Laboratory, WPAFB, Ohio, U.S.A. 
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gage length L equals that of the attached structure and is given by 

6 = 1 e_dL = T^- (1) 
a L / ^ L = f / s E o s 

Here es is the uniform strain over L, and E s is the modulus of elasticity 
for the structure. Similarly, the gage has a component of displacement 6' 
given by 

6' = PL 
BWE (2) 

where B, W, and Eg are, respectively, the thickness, width, and elastic 
modulus of the gage. 

The gage also has another component of displacement 6" due to the presence 
of the flaw. Using the compliance concept outlined in reference [8], this 
additional deflection is given by 

6" = P X (3) 

where X is the crack compliance related to the strain energy release rate 
G, and the stress intensity factor Kg of the gage by the plane strain re
lationship 

P2 dX 
2B 3a H I K 2 (4) 

Here V is Poisson's ratio for the gage. For plane stress equation (4) is 
given by G = K 2/E . Expressing the stress intensity factor in the form 

P K = W^3 (5) 

where 3 is a dimensionless geometry factor which can depend on crack length, 
equations (4) and (5) reduce to 

2(l-vz) 
E BW2 V 8 a B 2 da (6) 

Thus, the displacement of the gage is given by 

PL °sL 

g s 
(7) 

which when solved for gage load with equation (6) becomes 

E 
P = 0 BW . _ s \ E _£ 

L + 2(1 -v
2) r 

W J 
'a6 zda 

a BW f s (8) 
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Thus the load in the cracked gage is directly related to the uniform gross 
stress in the structure. This uniform stress is the same stress that in
fluences the crack growth behaviour at the structural detail of interest. 
It now remains to describe how the crack growth behaviour of the detail 
is related to that in the gage; i.e. to provide the transfer function. 

Gage and Structural Crack Relation 

The structural crack length as will now be found as a function of gage 
crack length ag. Assume that the fatigue crack growth rate in each member 
can be expressed in the form [9] 

§-CKm (9) 

where da/dF is the average crack extension per block of service usage 
(e.g. an aircraft flight) and C and m are empirical constants. The para
meter K is a stress intensity factor that senses^ the influence of stress 
history on the crack growth process. As such, K is normally_obtained by 
multiplying a stress history characterizing parameter (e.g. a = rms stress 
range) by the stress intensity factor coefficient for the geometry of in
terest. For the structure, K would be 

» ■ 

as\K (10) 

For brevity, assume that the gage and structure are made from the same 
material and have the same C and m in equation (9). Using the fact that 
both gage and structure see the same number of loading blocks F, inte
grating equation (9) for a fixed number of flights with equations (5) and 
(10) yields 

a »s r —** . r 
a 
OS 

Cia /i?a~ 3 f J r / P JZZ a \m 

i s s » a C<—r /ira 3 > 
og (BW HgJ 

d a (11) 

which reduces by employing equation (8) and cancelling like quantities to 

a a r^-f' d a (12) 
'a J3 S^f â j f 3 f^f 

OS t S ). Og I g » 

Note that equation (12) is independent of stress history (explicitly), so 
the as versus ag response is also anticipated to be independent of stress 
history. This is a first order assumption that might have to be modified 
when sufficient data become available. 
A numerical integration scheme was employed here to solve equation (12) 
for as as a function of ag. First, the integration of the right-hand 
side of equation (12) was carried out with the trapezoidal rule together 
with Romberg's extrapolation method. The upper bound of the absolute 
error for this procedure was specified to be less than 1 x 10 5. Next, 
an upper limit for the left hand side of equation (12) was chosen and 
the integration performed as before. Depending on the agreement of the 
left hand value with the previously determined right hand side, an 
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adjustment was made in the upper limit (as) of the left integral and the 
process repeated until the values of the two integrals agreed to within 
0.02%. 

EXAMPLE RESULTS 

Solving equation (12) by the numerical procedure described above, the 
relation between structural and gage flaw lengths was found for several 
geometric configurations. Results from two sample cases are briefly 
described below. In both examples, the structure and gage had the same 
C, E, and m, while Poisson's ratio for the gage was 0.333. 

Consider an edge cracked coupon (50 mm long by 25 mm wide) attached to a 
large plate containing a 6.4 mm diameter radially cracked hole (length 
= 1.3 mm) as shown in Figure 3. Numerical results from equation (12) for 
m = 4 (a constant amplitude fatigue crack growth rate exponent typical of 
many structural materials) are shown in Figure 3 for various initial gage 
flaw sizes (a0g = 1.3, 1.9, 2.5, and 3.8 mm).' Note that the results show 
a strong dependence on initial crack size, varying from a fast growing 
structural crack (a0g = aos = 1.3 mm) to a response where gage crack growth 
significantly amplifies corresponding extension of the structural flaw 
(aos = 1.3 mm and a0g = 3.8 mm). Thus, varying the initial crack size 
provides one means for designing a gage for various degrees of amplification 
of structural crack growth. 

If the gage flaw is located in the structural component rather than in an 
attached coupon and sees the same remote stress, f = 1 in equation (12). 
Experimental data [10] for this special case, provided a means of checking 
equations (9) and (12) of the model. Briefly, the experimental set-up was 
as follows. Long specimens of 7075-T651 aluminum (width = 150 mm, thick
ness = 12.7 mm) containing both a radially cracked hole and a centre crack 
in series as shown in Figure 4, were subjected to complex variable ampli
tude loading representative of an aircraft stress history. Since the crack 
growth exponent m would not be known a priori, computations were made for 
m = 3, 4, and 5, a range encompassing expected values for this material. 
Note in Figure 4 that these analytical predictions closely bound the test 
data. Thus, this excellent agreement between experiment and analysis 
lends credence to equation (9), and subsequent development of equation 
(12). Again it should be emphasized here that the numerical calculations 
required no knowledge of the actual load history applied to the test 
specimen. 

CONCLUDING DISCUSSION 

A concept for monitoring potential flaw growth in structural components 
with a flawed gage has been presented, along with a mathematical model 
for the relation between the structural and gage flaw sizes. This re
lationship, given by equation (12), and demonstrated in Figures 3 - 4 , 
provides the means for designing a simple crack growth gage capable of 
"tail number" tracking a fleet of structures for extension of potential 
or known flaws. The proposed gage would have no moving or electronic 
components to malfunction, need only minimum instrumentation, and could 
be designed for various degrees of amplification between structural and 
gage crack lengths (i.e. see Figure 3). 
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Since equation (12) relates the gage crack length with the assumed struc
tural flaw size and depends only on geometric factors and material prop
erties, extensive records of service loads would not be required to esti
mate flaw growth. Indeed, the gage provides a direct measure of crack 
growth, acting as an analog computer which collects, stores, and analyzes 
the severity of the input loads, and then responds with the appropriate 
flaw extension. Thus, the loading conditions which affect flaw growth 
(i.e. stress level, overloads, temperature, environment, etc.) should be 
integrated in the gage prediction of structural crack length on a real 
time basis. Although extensive experimental testing of this gage capa
bility remains for future work, it is encouraging that the data shown in 
Figure 4 provide a preliminary verification of the transfer function model 
described in equation (12). 

The authors believe that the crack gage described here can be used by 
logistics management for maintenance decisions in both of the following 
two ways: (1) as a simple "go/no go" measure of the necessity for in
specting or modifying any given structure, or (2) in conjunction with a 
Normalized Crack Growth Curve [9]. The crack gage-structural crack 
transfer function (equation (12)) and the Normalized Crack Growth Curve 
associated with the structural crack would collectively provide a direct 
indication of structural crack size and an estimation of remaining useful 
service life. This second decision making concept is explored more fully 
in reference [10]. 
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ENDS FIXED TO STRUCTURE . 

Figure 1 Schematic View of Crack Growth Gage Attached to Flawed Structural 
Component 

OQ fg 

GAGE CRACK LENGTH a 

Figure 2 Schematic Representation of Relationship Between Crack Length in 
Gage (ag) and Corresponding Structural Flaw Size (as) 
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ag MILLIMETERS 

o-o 0 1 o a o a o-4 o 5 o • o ? o-t o • io 

Figure 3 Analytical Results Showing Effect of Initial Gage Flaw Size on 
a Typical Gage/Structural Crack Relationship 

•EXPERIMENT 

i i i i i i 

GAGE CRACK SIZE ofl .INCHES 

Figure 4 Comparison of Experimental Data with Analytical Prediction for 
the Relationship Between Two Different Flaw Geometries in the 
Same Specimen (f = 1 in equation (12)) 
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CRACK PROPAGATION INITIATION IN DUCTILE STRUCTURES 

J. Lebey and R. Roche* 

INTRODUCTION 

Linear Elastic Fracture Mechanics is now well established. The determination 
of Kj is a simple mathematical problem, and the methods for determining its 
critical value are well known. LEFM can only be applied in cases where 
inelastic strain (plasticity, creep) is strictly localized. In actual 
practice, fractures of mechanical parts are preceded by significant plastic 
strains. In such cases, LEFM is incapable of clarifying the fracture con
ditions [1] [2] [3]. Initiation of the propagation of an existing crack 
occurs at loads lower than those specified by LEFM. This is especially 
true for ductile metallic materials such as standard structural steels. 

This points to a pressing need for the development of Post Yield Fracture 
Mechanics, for a better knowledge and prediction of fracture conditions 
governing a large number of structures. In this area, a number of criteria 
have already been proposed. The best known are the Crack Opening Displace
ment and the J integral [4] [5] [6]. However, it is always difficult to 
substantiate the validity of a criterion, and the latter, like many others, 
have been subject to debate. Hence it appears indispensable to increase 
the number of experimental results which can help to define the field of 
application of any specific criterion. It is with this in mind that the 
Research Centre at Saclay undertook a programme concerned with thin struc
tures of structural elements, in which crack propagation initiation occurs 
with substantial plastic strain. This paper gives the results obtained 
with two types of structures: 

(a) centre cracked plates from a single steel previously subjected to 
various degrees of strain hardening, 

(b) spheres of different dimensions. 

CENTRE CRACKED PLATES 

The plates, tne dimensions of which are given in Figure 1, were machined 
from XC10 steel' 8 mm thick. After measurement of the mechanical prop
erties of the metal as received, a number of rough test pieces were cold 
worked before final machining. 

The cold working process involved elongation of the metal by longitudinal 
tension (previous elongation PE). 

The initial elongation obtained is expressed as a percentage of the prop
ortional elongation Ap at maximum load of the metal as received. 

*Centre d'Etudes Nucleaires de Saclay, France. 
^Composition : C 0.10; Mn 0.40; Si 0.25; S + P < 0.035 
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Three previous elongations were adopted : 20%, 50% and 80% of A-. 

With the non cold worked metal (as received), this provided four different 
groups of mechanical properties, as shown in Table 1. 

The initial length 2a0 of the notches ranged from 5 to 50 mm; the end 
radius of the notch, obtained by electro-erosion, was 0.5 mm, with fatigue 
pre-cracks. 

During the tests, the stress and displacement at the centre of the notch 
were recorded on an XY recorder. The crack initiation at the notch end 
was observed visually by means of a binocular microscope. 

The results given in Table 2 are concerned exclusively with crack initiation 
conditions, in which : 

load at initiation a. net -i (W-2a ) x thickness 
load at initiation a. gross = — n ^ • , l ° W x thickness 

A . = variation in central opening at initiation 

J = critical value of the J integral, measured by the method 
indicated in [7]. 

The recordings obtained did not enable the measurement of Jj c in cases of 
previous elongation 50% and 80%. 

The different results are presented in graphic form in Figures 2, 3, 4 and 
5. 

Figure 2 shows that, in all cases, the yield stress must be reached on 
the remaining ligament for crack initiation to occur; no embrittlement 
occurs due to strain hardening. In all cases, the cracks were subsequently 
propagated in a stable manner. 
Figure 4 shows that the critical value of the central opening depends on 
the state of strain hardening of the metal. 
The determination of Jj c is complicated by the need to derive the exper
imental results. The results obtained do not make it possible to confirm 
that the criterion is adequately substantiated for a ductile material in 
the probable case of plane stresses. 

SPHERES 
Tests were performed on manganese-molybdenum steel spheres of three dif
ferent dimensions : 

5 spheres diameter D 363 mm thick e 3 mm J theoretical 
2 spheres diameter D 918 mm thick e 7 mm } ,. _ 0. „^ rr -, ^^ ^ i o ™ ^i-i AT \ dimensions 
3 spheres diameter D 1800mm thick e 15mm ) 
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The spheres featured thru notches terminated by radii of about 0.1 mm, 
with fatigue pre-crack. 

The experimental method is described in previous publications [8] [9] [10], 
together with part of the results, obtained previously. 

The mechanical properties and test results are given in Tables 3 and 4, in 
which the stresses indicated as 0^ and ap are respectively : 

o. crack initiation stress I 

o unstable crack propagation stress 

Two crack propagation modes were observed, depending on the test; they are 
illustrated by the R curves in Figure 6 concerning 1800 mm diameter spheres. 

(a) stable propagation from the initiation stress o± to the unstable 
propagation stress o~p, at which the crack propagates rapidly at con
stant pressure. This type of fracture was observed in all tests on 
spheres 363 and 918 mm in diameter, and with the 1800 mm diameter 
No. 3, it corresponds to ductile tears. 

(b) sudden fracture without stable propagation period; in this case, o*i 
and Qp coincide; this fracture mode was observed with 1800 mm diameter 
spheres, Nos. 1 and 2. 

These results highlight the effect of the scale factor, already investi
gated elsewhere [11], on the strength of cracked vessels. The initiation 
stress values, related to the yield stress of the metal, are indicated in 
Figure 7 as a function of the relative length of the initial notch. Fig
ure 8 shows the appearance of sphere No. 2 after sudden fracture. 

In view of the thin dimensions, it proved impossible to take valid measure
ments of toughness (Kic) by standard methods [12]. However, an estimate 
of toughness can be made by using the method of equivalent energy (Kjcci) 
[13] or by measuring Jj c experimentally by two different methods [7], [14], 
and by calculating Kjc with the values thus obtained. This enables cal
culation of the theoretical crack initiation stresses, for comparison with 
the experimental values. Table 5 shows a number of these comparisons drawn 
up by calculating the initiation stresses from toughness measurements taken 
with CT specimens taken from spheres (and of substantially identical thick
ness to that of the spheres). The o*i values calculated were obtained as 
follows : 

column A : o". 

column B : a. 
I 

column C : a. 
I 

led 
a/Fa 

V J - - E 
^— with JT = ^ [14] I A L J 

V J—E 
with JT = - -r— [7] 

I da L J a/TTa 
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V ^ where : a = *Wl + -^ (Folias) 

with R = radius of sphere 
e = thickness of sphere 

CONCLUSIONS 

The results obtained are only applicable to a limited area; however, it 
nevertheless appears clear that it is not possible to exceed the genera
lized plasticity load without this resulting at least in stable propagation 
of existing cracks. In most cases stable propagation occurs before reaching 
generalized plasticity, but it seems possible, by using criteria of the 
equivalent energy or Jj , to predict with reasonable accuracy the load 
which causes propagation initiation [15]. Note that in all cases the thick
nesses were too low for a valid measurement of KT . While one cannot draw 
a general conclusion from the foregoing, it appears in the present case that 
propagation initiation occurs at the lower of the two following loads : 

(a) limit loading 

(b) loading calculated by means of a criterion of the J integral or equiv
alent energy type. 
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Table 1 Center Cracked Plates. Mechanical Characteristics 

Previous 
Elongation 

(P.E.) 
As received 

20% 
50% 
80% 

Yield Strength 
a 0,2 (hb) 
y 

28,5 
38 
48 
53 

U.T.S. 
aR (hb) 

42 
46 
51 
54 

% Elongation 
at Maximum 

Load 

23 
10 
5,5 
3 

% Elongation 
at Failure 

40 
20 
16 
13 

Strain 
Hardening 
Exponent 

0,20 
0,095 
0,053 
0,029 

Table 2 Center Cracked Plates. Test Results at Initiation 

Specimen 
n° 

16 
9 
10 
11 
13 
14 
12 
15 

7 
8 

5 
6 

2 
3 
4 

2a 
0 

(mm) 
5 
10 
20 
30 
40 
40 
50 
50 

10 
50 

10 
50 

10 
10 
50 

Thickness 
(mm) 

3 
3 
3 
3 
3 
6 
3 
6 

3 
3 
3 
3 

3 
3 
3 

Previous 
Elongation 

As 
received 

20% 

50% 

80% 

0. Net 
(hb) 

37,1 
31 
31,2 
31,1 
31,5 
33,4 
32,2 
32,6 

41,5 
43,4 

49,5 
51 

54,4 
1 54,5 
54,5 

a. Gross i 
(hb) 

35,5 
28,4 
26 
23,3 
21 
22,2 
18,8 
19 

38 
25,3 

45,3 
29,8 

j 49,8 
50 

i 31,9 

Ali 
(mm) 

1,44 
1,60 
1,10 
1,35 
1,12 
1,6 
1,7 
1,54 

1 
1,18 

0,40 

1 0,16 

(J/mm2) 

0,22 
0,27 
0,23 l 

0,31 
0,33 
0,30 

0,17 
0,206 
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Table 3 Spheres. Mechanical Characteristics and Test Results 

D 
(mm) 

363 

Sphere 
n° 

9 

10 

13 

15 

19 

Mechanical 
Characteristics 

o 0,2 
y 
(hb) 

36,2 

36,2 

39,7 

36,4 

(hb) 

51,8 

52,5 

52,5 

52 

e 
(mm) 

2,45 
2,25 
2,20 

2,70 

2,70 

2,15 
2,35 
2,50 
2,52 

2,50 
2,20 
2,10 
2,20 
2,35 

2,17 

2,12 

2,45 
2,80 

2,55 
2,80 

2a 
(mm) 

35 
70 
105 

40 

59 

35 
50 
65 
72 

80 
95 
102 
110 
125 

15 

25 

56 
61 

75 
99 

P (bars) 

P. 
l 

90 
51 
32 

95 

60 

80 
66 
60 
50 

46 
32 
29 
28 
26 

88 

99 

55 
63 

52 
35 

P P 

98 
63 
42 

99 

68 

84 
76 
72 
65 

56 

37 
33 

86 

92 

76 
73 

63 
50 

(hb) 

0. 
I 

33 
20,5 
13,2 

31,8 

20 

33,6 
25,4 
21,7 
18 

16,6 
13,2 
12,5 
11,5 
10 

36,8 

36,8 

20,3 
20,4 

18,5 
11,3 

0 
p 

36,2 
25,5 
17,3 

33,2 

22,8 

36,2 
29,2 
26 
23,6 

20,5 

15,4 
12,7 

41,5 

39,5 

28 
23,5 

22,5 
15,5 

Table 4 Spheres. Mechanical Characteristics and Test Results 

D 
(mm) 

1800 

Sphere 
n° 

1 

2 

1 

2 

3 

Mechanical 
Characteristics 

a 0,2 
y (hb) 

28 

27,1 

50,5 

50 

50 

°R 
(hb) 

48,5 

48,8 

65,7 

68 

69,5 

e 
(mm) 

4,70 
4,75 
4,90 
4,70 
5 
4,75 
4,90 

4,65 

14 

14 

14 

2a 
(mm) 

110 
140 
170 
205 
230 
260 
318 

173 

400 

300 

550 

P (bars) 

P. 
l 

50 
38 
33 
25 
24 
22 
16 

32 

32 

48 

19 

P P 

56 
50 
46 
37 
38 
33 
30 

41 

32 

48 

40 

(hb) 1 

a. 
I 

24 
18,3 
15,6 
12 
11 
10,2 
7,5 

15,5 

10,4 

15,2 

6 

0 P 

27 
23,8 
21,6 
18,1 
17,5 
16 
13,8 

20,3 

10,4 

15,2 

12,8 

52 
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Table 5 Spheres. Calculated and Experimental Stress o*i for Initiation 
of Crack 

D 
(mm) 

363 

1800 

Sphere 
n° 

13 

2 
1 

3 

2ao/D 

from 0,090 

to 0,345 

0,167 
0,222 

0,305 

o. calculated (hb) 
(A) 

54,6 

10,6 

11 
8,1 

5,4 

(B) 

13,6 

5,9 

(C) 

12,4 

5,69 

a. 
Experimental 

(hb) 

33,6 

10 

15,2 
10,4 

6 

Propagation 

Stable 

Unstable 
Unstable 

Stable 

I 

§ 

I 

8 
T~ 

CM 

i_ 
' 

[ 

r 
L 

2 
j7 

f 
^ 

> 

120f 

a° 
L 

y-

. 155 . 

5 . 

2a0 

at 

8 

Thickness = 3 and 6 mm 
5 <2ao<50mm 

Figure 1 Center Cracked Plates Dimensions 
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Qi (net) 
oy0y2 

u 

1 

©As received thickness 3mm 
•As received thickness 6mm 
*PE20% 
oRE50% 
oPE.80% 

As rpreivedond PE20% 

PE.50% 

PE.80% 

0 5 10 20 30 40 

or Q2 Q3 

2a0(mm) 
. ^ 2a0/W 

0A 

Figure 2 Center Cracked Plates. Relation Between the Net Initiation 
Stress and the Crack Length 

oAs received thickness 3 mm 
•As received thickness 6mm 
A P E . 2 0 % 
o PE.50% 
o P E 8 0 % 

0 ty Q2 Q3 QA Q5 
"t~4—2b & k—Sr 

]2Q0(mm) 
120 

Figure 3 Center Cracked P l a t e s . Relat ion Between the Gross I n i t i a t i o n 
S t ress and the Crack Length 
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oAs received thickness 3 mm 
• As received thickness 6 mm 
*RE. 20% 

. 

> 

1 

fAL(i) 
mm 

o 
o 

RE 50% 
o 

oRE. 
ORE. 

- . 

50% 
80% 

— 

• 
RE. 

R E 8 0 % _ 

i ..i 

o 

20% * 

- 0 -
2a0(mn 

5 10 20 30 40 50 

Figure 4 Center Cracked Plates. Relation Between the Central Opening 
and the Crack Length 

rinr 
0,3 

0,25 

0,2 

0,15 

i 

• 

s ° 
o / 

1 1 1 1 

*Y 

• 

, 2a0(mm) ^ 
10 20 30 40 50 2a0/W 
0,1 0,2 • Q3 W 

Figure 5 Center Cracked Plates. Relation Between JJQ and the Crack 
Length 
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SPHERES * 1800 mm 

300 350 400 450 500 550 600 650 

Figure 6 Spheres 0 1800. Curves R 

CRACK INITIATION 

1h 

0.9 L 
0.8 k 

0.7 k 

0.6^ 

o.sk 
0.4 k 
0.3 k 

0.2 L 

0.1h 

oy 
a i * Stress for crack initiation 
oy-Yield strength 0 .2% • 5 Spheres 0 363 thickness s 2.5 mm 

o 2 Spheres 0 918 thickness 4.8 mm 
O 3 Spheres 0 1800 thickness U mm [tests SEMT 

t°~15°C 
Steel Mn.Mo 

3 Spheres Z 670 thickness 6.12.5.18 mm 
6 Spheres 0U7O thickness 12.5 mm 

Op. 

. • • • • 

/ ^ - . 

Is. 
D 

PROPAGATION/ 

h 
Tests BURDEKIN 
t°~80°C 
Steel BS 1501.161 

2a 
i D 

Figure 7 Spheres. Relation Between the Initiation Stress and the Crack 
Length 
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Figure 8 Sphere 0 1800 (n° 2) after Failure 
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INITIAL STAGES OF CRACK EXTENSION IN TIME-DEPENDENT 
AND/OR DUCTILE SOLIDS 

M. P. Wnuk* 

Failure of a volume element located on the prospective path of the crack 
front is linked to the incremental work dissipated within the process zone 
just prior to the collapse of this zone. If t denotes the instant at 
which the control volume element breaks down, then the incremental accumu
lation of damage occurs within the time interval t-6t<T<t, where the in
crement 6t (= A/a) corresponds to the time used by the crack front to 
traverse its own process zone. Size of such hypothetical zone, over which 
an intensive straining occurs before the crack may advance, is character
ized by the length A which is assumed to be a structural constant. In 
metals A is determined by metallurgical parameters (A is supposed here to 
be much smaller than the plastic zone extent, and may for example be 
thought of to correspond to the distance from the tip at which strongly 
localized deformation sets in because of tunnelling or necking). 

The rate of damage accumulation is given by the product of stress restrain
ing separation of new surfaces, S, and the rate u at which these surfaces 
are being separated at a certain fixed control point P. The integral of 
this product taken over the time interval 6t represents the damage accumu
lated in the material element adjacent to the crack tip while it undergoes 
tne final stages of straining preceding failure. Thereby it is shown that 
the incremental criterion for crack extension. 

/ S x ,T u x ,T dx = material property (1) 

can be reduced to a form containing the entities well-known in linear 
elastic fracture mechanics, such as COD or J-integral. From equation (1) 
for the small scale yielding range we obtain the following non-linear dif
ferential equations of the first'order governing the slow crack growth 
process: 

(a) in terms of the tip opening displacement, 

(¥)• A f * f ^ m • «* <«) ■ 5„ « 
(b) in terms of J-integral, 

feJ) AS + K s log(A^-J)+6f W) = J0 ™ 

*Mechanical Engineering Department, South Dakota State University, Brookings, 
South Dakota, U. S. A. 57006 
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The material constants 60 and J0, appearing on the right hand sides of 
the equations above can be related to the experimentally determined slope 
of either 6-curve or J-curve as follows 

6Q = (d6/da) i n i A + | {log(236.ni/A) -1} 
cr A (4) 

J = (dJ/da). . A + - ^ - {log(23J. ./a A) -1} o lni 3 &v m i ys 
Symbol OyS denotes the yield stress encountered at the crack front, while 
the coefficient 3 relates the extent of plastic zone R preceding the crack 
tip and tne tip opening 6, namely R = (3/2)6. For the line-plasticity 
model and within tne small scale yielding range 3 = T[E/4oys. The other 
material property introduced here is the dimensionless compliance function 

* ^ = D c r e e p W / D W 

characterizing the time-dependent behaviour of a solid (Dcreep denotes the 
creep compliance as defined in rheology). The increment 0$ corresponds to 
the change of ij>(t) during the time interval 6t; therefore 

6y = ̂ (0)6t 

Both equations (2) ana (3) have been derived on the basis of line-plasticity 
model (although the form of the criterion (1) is suitable for a continuum 
mechanical approach). One should also emphasize that the validity of the 
results discussed here is restricted to the small scale yielding range. 
Two limiting cases are investigated, namely 

Case I. Inviscid ductile solid in which the material moduli are time-
independent, ana thus 6\\) = 0. Then the equations (3) and (4) reduce 
correspondingly 

d6_ 
da = i l 0 g (6max/6)' 6 = 6 ^ & 

( j m a x / j ) , J = J(Aa) (6) dJ ys . 

a * log 
These equations allow theoretical predictions of the resistance curves 
(either 6 or J-curves) for quasi-brittle solids. The R-curves can be 
obtained through a numerical integration of equations (5) and (6) if the 
initial values of 6 and J (at the onset of failure) are known. When the 
maximum attainable J does not differ greatly from the initial threshold 
("flat" R-curve), but the foregoing equations can be integrated in a 
closed form, yielding these solutions. 

W-^jl-f-^Uf-l-)! CSa) 
I \ max / \ max /; 
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M' J [ A a ) = J m a x ^ " I1 - ^ i ^ l - f l ^ r )? C6a) 

Symbol Aa is used to denote the amount of slow growth, Aa = a - a0. 
Equations (Sa) and (6a) give a fair correlation with the experimental data 
reviewed recently by Mai, Atkins and Caddell [3] 

Case II. For a linear viscoelastic solid (with no plastic flow accounted 
for) one may show that the dominant terms in the governing equations (2) 
and (3) are the first and the last on the right hand side. They can be 
combined to yield equations of motion for a crack traversing a visco
elastic matrix, i.e. 

(1 + 6iJ06 = So 

(7) 
(1 + 6«J = JQ 

♦ (fit) 6 = 6 
(8) 

<K<5t)J = JQ 

These equations imply tne following "equivalent" viscoelastic entities 

J = Jel i|,(A/a) 

G = Gel *CA/a) (9) 

K = Kel /KZ75T 
in where the subscript "el" emphasizes the fact that the quantity in 
question is obtained from the theory of elasticity. The last two forms 
above are identical to those suggested by the equations of motion for 
cracks in linear viscoelastic media, as derived by Knauss and Dietmann 
[1] and Wnuk [4]. From equations (9) it becomes evident that "effective" 
or "equivalent" energy release rate for a viscoelastic solid is a function 
of crack growth rate. The viscoelastic R-curves of the type G vs a or 
J vs a are, therefore, analogous to the resistance curves suggested for 
ductile solids by McClintock and Irwin [2]. An experimental verification 
of these equations is briefly discussed. 

The second part of this work is concerned with the study of structure of 
an integral equation which describes path-dependent failure of an element 
adjacent to the tip of a crack propagating through an elastic-plastic or 
a viscoelastic-plastic isotropic solid capable of large deformation. In 
such a case the integrand of equation (1) has to be studied in a greater 
detail. Preliminary investigation indicates that the form 

s [vT] " [vT]d T 
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is not an exact differential but a Pfaffian and thus the integral appear
ing in equation (1) is path-dependent. Therefore, failure of an element 
adjacent to the crack tip depends on the previous states of this element. 
In this way the dependence of the final state on the loading path (so 
called "history dependence") is accounted for in the theory developed on 
the basis of the incremental criterion of failure. 

Effects of the rate of loading and time-sensitivity of the material response 
on fracture propagation are incorporated in the theory through the Crochet 
constitutive equations involving time-dependent yielding, i.e. 

a ft) = A + Bexp (- C) 

| ( ^ ) ( ^ ) ! 
1/2 

e.. = e.. + (l/3)e6.. , a.. = s.. + (1/3)0. .6.. ij ij ij ij ij kk IJ 

e v e v e. . = e . . + e . . , e = e + e , e = e,, ,5=0*,, ij ij IJ ' kk ' kk 

t 9s.. (X,T) 
e (x,t) = / Ji(t - T) ^ " di 

* -00 

t 3S(X,T) 
e(x,t) = / J2(t - T ) — r ^ dx 

- di 
_oo 

Here A, B, C are material constants (for example A = 55.2 MPa, B = 15.5 MPa, 
C = .0771 for polycarbonate) while x is a function of the strain state. 
Tne last two equations shown above are valid for the "linear" regions in 
which the effective stress reduced from the multiaxial stress state accord
ing to Tresca criterion is below the yield point. Summation is implied by 
repeated indices; the superscripts v and e denote the viscoelastic and 
purely (short-time) elastic components of the strain. For strains in
creasing with time first of the foregoing equations assents that faster 
loading corresponds to a higher yield stress, while under constant stress 
it implies that yield occurs at a time which is longer the lower the 
stress. For initially elastic response under rapid loading e^j = e^j 
and o y s (0) = A + B, while the minimum yield value is given by o y s (°°) = A, 
provided e^A - e^i is sufficiently large as may be the case for visco
elastic soft polymers. 
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ON CONSTITUTIVE PROPERTIES AT SINGULAR CRACK BORDERS 

H. C. Strifors* 

INTRODUCTION 

Is the tip of a sharp notch always a crack tip? Or, more precisely, is the 
singular field of stress and/or strain at the border of a crack-like sur
face in a body always modelling a crack border, which implies that this 
border line is able, under specific conditions, to propagate in the body? 
If not, this singular line simply constitutes a localization of stress 
and/or a strain concentration and does not deserve attention from the frac
ture mechanics point of view. 

Linearly elastic materials possess features that can be interpreted within 
a theory of fracture. The first crack problems solved were also formulated 
for Hookean materials and the stress intensity factors were interpreted as 
measures of stress at singular crack borders. During the last decades 
attention has turned considerably to materials capable of plastic deforma
tion. Much effort has been made to describe fracture properties by formal 
mathematical generalization to infinite strain of constitutive equations 
which have proven useful for a description of plastic behaviour at small 
and moderate strains. One main problem discussed in this regard is which 
measure of stress intensity in plastic materials should replace the stress 
intensity factors for elastic materials in a fracture criterion. However, 
the still more important question of whether the resulting theories also 
fit into a sound fracture theory has not been properly considered. 

In this paper, consequences for constitutive properties of materials con
taining cracks bounded by singular lines will be discussed. For this 
purpose the general thermomechanical theory of fracture in simple solids 
developed by Strifors [1] is employed. For convenience the discussion 
will be based on the fracture theory resting upon use of the linearized 
strain tensor, e^A, and the stress tensor, o^i, which is symmetric by 
definition. Both tensors are referred to the undeformed configuration 
according to classical fracture mechanics theory. The qualitative results 
of the discussion, however, remain valid also within the physically more 
reasonable theory that duly accounts for large strain. 

SURFACE ENERGY 

The observation that energy is required to fracture real bodies is accounted 
for by introduction of the concept of surface energy. The rate of change 
of surface energy at a propagating singular crack border can be derived by 
consideration of the energy flow through a control volume in the shape of 
a narrow tube surrounding the crack border and moving with the same propaga
tion velocity. The net supply of energy through the tube in the limit when 
the diameter of the tube approaches zero is defined as the rate of change 

* The Royal Institute of Technology, S-100 44 Stockholm 70, Sweden 
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of surface energy. Recently, using a similar technique Freund [2] con
sidered a special case of crack extension in elastic materials. 

Without going into mathematical details we formulate the equation for the 
energy balance at a smooth singular line modelling a propagating crack 
border. The rate of change of surface energy per unit length of the border 
line at a particle instantaneously located at a point on that line is 
given by 

y = lim & <(W + — P u ,. u.,. w-1 w 1 w1 - w1 u ,. o\ 1 - hl\ nx dc , (1) d+o'(d)l\ 2 ̂  j i k / ' i k | 

where W is the internal energy per unit volume, p is the mass density, u_ 
is the displacement field and h_ is the heat flux. The integration path, 
Q, is a closed curve surrounding the singular line in the normal plane 
of the line in which the outward unit normal n_ and the propagation velocity w_ 
of the crack border are also situated, and d denotes an upper bound for the 
distance between points on the integration path and the singular line. 

Since heat, as well as mechanical work, may contribute to the surface ener
gy, it is necessary to be able to specify the heat content in the surface 
energy in a consistent thermomechanical theory. Analogous to the case of 
internal energy, surface entropy is introduced as the heat specifying para
meter for the surface energy. By consideration of the entropy flow through 
a narrow tube surrounding the crack border it can be shown that the speci
fic production of surface entropy, 3, per unit length of the crack border 
is given by 

r . /h1 i\ A lim $ I p- - p n w I n. dc 
d-H) cfdA0 / 1 3 = £ + lim $ (̂  - p n w ] n, dc , (2) 
d-K) c?(d)y 

where £ is the surface entropy, r] the internal entropy, i.e., the heat 
specifying parameter for the internal entropy, and 0 is the temperature. 

The equations given should be considered as definitions of y and 3. Then 
the question arises as to whether the defining intergrals exist and are 
unique. 
If a circular cylindrical coordinate system (r, cj), z) is introduced in 
such a way that the z-axis is directed along the tangent of the border 
line, it is readily shown that the integrands must be of the order of 
r"1 to give non-trivial and bounded contributions to the integrals. As 
regards established fracture mechanics one apparently non-trivial general 
conclusion follows. The existence of (1) implies that a stronger singu
larity than that of x~vl is impossible in the displacement gradient, or, 
equivalently, in the strain tensor. 

From here on we will consider the consequences of the requirement of 
uniqueness of the given definitions. Uniqueness means that the integrals 
must yield the same value independent of the shape of the curve surrounding 
the crack tip. The integrals must in a specified sense be path-independent 
in the singular region, i.e., in the region where the functions can be 
approximated by the leading terms of their series expansions. The most 
far-reaching consequence arising from this requirement combined with the 
dissipation principle is that the production of internal entropy, 
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(i.e., the rate of change of internal entropy that is not due to radiation 
or conduction of heat), must be of inferior order to r"2, while the rates 
of change of internal energy and internal entropy are of the order of r"2. 
When the quantities under consideration are confined to a small enough 
region close to the crack border it is apparent that internal entropy pro
duction can be disregarded. This means that the material must be non-dis-
sipative in the singular region. In other words, the material must respond 
thermo-elastically in the singular region, or elastically if thermal effects 
are neglected at the crack border. 

Viscoelastic constitutive equations with instantaneous elastic response 
automatically satisfy the condition of non-dissipation at singular crack 
borders, since such materials respond elastically at unbounded strain-
rates which occur in the singular region during deformation whether the 
crack is extending or not. 

ELASTIC-PLASTIC MATERIALS 
For plastic or elastic-plastic materials the condition of non-dissipation 
in the singular region at crack borders implies restrictions on ordinary 
constitutive equations. 

A first attempt to take the condition of non-dissipation into account may 
be made as follows. For the sake of simplicity the discussion is confined 
to a constitutive equation of the Prandtl-Reuss type. Accordingly, the 
strain tensor is written as the sum of the elastic and plastic strain 
tensors, 

e.. = ee. + e?. . (3) 
ij IJ IJ 

Here, e • . is given by Hooke's law, for instance, and e^i i-s given by 

*?, = < (4) 
X df/do J during loading 

J ( 0 during neutral loading and unloading , 
where the parameter X depends on the yield function, f, and the current 
stress-rate. 

By introduction of an effective plastic strain, £gff, being a functional of 
the plastic strain history, loading conditions satisfying fracture 
mechanics requirements can be specified. Besides the usual conditions for 
loading that the stress tensor shall be situated on the yield surface and 
X be positive we impose the additional condition that the effective plastic 
strain shall be less than some limit value eP. . 

lim 
Other theories for plastic behaviour may be restricted in a similar way. 
In this regard it is important that the constitutive equations employed 
allow for elastic strain superposed on the completed plastic strain. 
The properties of the elastic-plastic constitutive theories necessary to 
render a fracture theory meaningful may be given a satisfactory physical 
basis in terms of crystal lattices and dislocations. 
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To make a rough sketch of a process of initiation of crack growth that is 
consistent with the theory discussed let us consider a body with a crystal 
structure. At low stress atom layers in the crystal lattices will respond 
by a small displacement which may be interpreted as elastic deformation. 
When the stress reaches the yield limit, the deformation is accomplished 
by dislocation movements on a large scale. If such deformation continues, 
unlimited plastic deformation would result and the material would conse
quently never fracture by formation of new boundary surfaces. 

If, on the other hand, dislocation movements are prevented, only a further 
(elastic) displacement of lattice atoms remains possible until the separa
tion of atom layers reaches such a magnitude that the material finally 
fractures. Thus, from the viewpoint of this kind of model it seems rea
sonable that plastic deformation must reach a limit before fracture can 
occur. The process of plastic flow must turn into a process of fracture. 

CONCLUSIONS 

Consideration of the energy supply through a control surface surrounding 
a singular crack border leads to a natural definition of the rate of 
change of surface energy at such a crack border. An analogous treatment of 
entropy makes it possible to describe the quality.of the surface energy in 
accordance with classical thermodynamics. Then, the requirement of the 
uniqueness of the definitions together with the dissipation principle lead 
to the consequence that the material response in singular regions must be 
thermo-elastic, or elastic in isothermal theories. 

From this viewpoint elastic-plastic materials are discussed and a simple 
elastic-plastic theory is proposed as a first attempt at meeting fracture 
mechanics requirements. Although no reference is made to any specific 
micro-mechanism of crack extension, it turns out that plastic flow and 
fracture are two distinct physical phenomena which may be interpreted within 
traditional dislocation theories. 
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THE CONCEPT OF MATERIAL DIVAGATION AND ITS 
APPLICATION TO FRACTURE 

D. C. Stouffer and A. M. Strauss* 

INTRODUCTION 

Material Divagation is an expression used to describe processes or mat
erial behaviour that are characterized by changes or "wandering" of the 
material functionals that are used to characterize the mechanical prop
erties of the material in the reference configuration. 

The most applicable aspect of the theory of material divagation lies in 
the interpretation of material divagation as damage. The formalism of 
the theory provides the machinery necessary for understanding and pred
icting the (macroscopic) failure of materials. 

Measures of time-to-failure and cycles-to-failure are the most popular 
methods used to predict the failure of materials [1]. The relationship 
between these measures and the mechanical behaviour of a material has 
never been adequately established. Thus the use of these measures as a 
fundamental criterion is not based on rational mechanical principles. 
Mechanics researchers have taken note of this and have started to work on 
the problem [2-7]. 

THE CONCEPT 

The basic concept underlying the theory of divagation can be presented by 
a simple experiment. Consider two test samples that are physically and 
chemically identical in every aspect. Subject one sample to a cyclic de
formation process so that after the process is complete the sample is in 
the original geometric configuration but with an altered microstructure. 
At this point subject both samples to identical deformation histories. 
The observed response of the test samples would, in general, be different. 
This difference reflects the change in the material properties induced by 
the cyclic deformation history applied to the first test sample. This 
observed divagation of the material response properties is identified as 
the mechanical damage or enhancement due to deformation. 

The measure of divagation is developed directly from the constitutive 
equation that characterizes the response of the material as a functional 
of the history of the deformation. To this end, let us assume that the 
first Piola-Kirchhoff Stress Tensor, [8] S(x,t), at position x and time t 
is given by a functional, Q, of the history~of the deformation gradient, 
Ft(s) = F(t-S); ie, 

*Department of Engineering Analysis, University of Cincinnati, Cincinnati, 
Ohio 45221. 
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for S in (0,°°). 

To measure the divagation of the material properties using §, it is 
necessary to separate the direct effect of the deformation from the in
trinsic material properties characterized by the functional Q. To 
accomplish this, let FI(T) represent some reference deformation gradient 
history applied at time T=0 with the properties that FI(T) = I for T in 
(-°°,0) and FI(T) f I for T in (0,t). The stress Sx at time t~resulting 
from Fi(S) is determined from (1) as 

§ixx,tj = atg^csj] (2) 
Denote a second deformation gradient F 2 ( T ) with the property that F 2 ( T ) 
is arbitrary for T in (-°°,0) and such that the stress 

§2(t) = a[F2
t(S)] = 0 for t > 0. (3) 

Further we require that full recovery occurs by time T=0, that is 
F2(0) = F(t) and is constant for all T in (0,t). 

Define a deformation history {^(S) resulting from the composition of 
Fit(S) with the 'preworking' deformation history F2

t(S) that is adjusted 
to 0 at time t; that is, let 

F^CS) = F^CS) + Fd2
t(S) (4) 

for all s in (0,°°). The quantity Fd2^(S) = F2
t(S) - F2(t) is the dif

ference history and represents a measure of the deformation relative to 
the current configuration; ie, F^2(t) = 0 for t >̂  0. 

The stress Sc(t) due to the deformation history Fct(S) can be determined 
from (1) as 

§c(t) = y[Fc\s)] (5) 

for t in (0,t). In general, S c is different from the stress §i(t) due to 
the prior deformation history F^2

t(S). The difference in the response as 
observed by Sc(t) and §i(t) for t > 0 the MATERIAL DIVAGATION TENSOR V(t); 
ie, 

yet) = §cct) - gut) = SK^cs) + F ^ C S ) ] = QtF^cs)] (6) 

The tensor V(t) is a measure of the relative change in the material prop
erties due to the predeformation F d 2

t(S). Observe that the deformation 
Fd2t(S) does not contribute directly to the divagation V(t) (since 
§2(t) = 0 for T > 0) but only through history effects which are mani
fested by changes in the material microstructure. It should be noted 
that the material divagation V is a tensor valued functional. This 
reflects the fact, for example, that plastic tensile and shear deform
ations would induce different microstructure changes in the material. 
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REPRESENTATIONS 

A representation for Y(t) can be written down immediately by direct 
application of Taylor's theorem to functionals [11]. However, the 
Frechet derivative, 6g, of the functional Q with respect to the norm 
llEd2C ) | | h is given by 

QtE^CS) + Fd2
t(S)] = Q[F1

t(S}] + 6 QtF^CS)] 

\l^^ ^CllF^Oll^ (7) 

where 6g is linear in E r U ^ ^ anc* continuous in both hostories [9,10]. 
An alternative formulation for the divagation tensor, V(t), can be dev
eloped by observing for any time t > 0 that 

yet) =f ^vmdT 

/
t 

«9[E C
T (S) EC

T(S)] = 6Q[F1
T(S) FiT(S)]}dT (8) 

o 

since V(0) = 0 and 0(1 IF t( )|I) vanishes by definition. ~ ~ ~d2 h 

RESULTS 
The above definition and representation of the divagation tensor V is used 
to demonstrate the following: 

1) A material is designated as ideal if V(T) = 0 for all T in (0,t). The 
consequences of this statement are sufficient to show that any vis-
coelastic constitutive equations, with integral kernel functions that 
depend only on time, cannot predict material divagation. 

2) For an isothermal cyclic process the observed change in dissipation 
due to the 'preworking1 deformation history F t , is linear in the 
material divagation tensor V(t). 

3) If the constitutive functional Q is extended to include an arbitrary 
number (i) of independent histories N.^(S), then the material damage 
or enhancement due to a particular history N t(S) will vanish if N 
vanishes for all t in (-00,00). However, the constant value of N 
does remain coupled to the response. 

4) If the response S of the functional § is related to a second para
meter M by M = f^S), where f is a constitutive function. The div
agation in M, denoted by V^, is related to the divagation in S, 
denoted by Vg, by 

o 
where V is a generalized gradient operator. 
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5) Finally, the divagation tensor can be used as a method of developing 
the constitutive functional g, since previous history effects are 
included through the Frechet derivative of g. 
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SUDDEN TWISTING OF A PENNY-SHAPED CRACK 
IN A FINITE ELASTIC CYLINDER 

E. P. Chen* 

INTRODUCTION 

In the field of fracture dynamics, much of the previous investigation have 
been concerned with the determination of the nature of the dynamic stresses 
near a crack in a body of infinite extent. For axisymmetric geometry, a 
number of papers [1-5] have discussed the inertia effect on the dynamic 
stress intensity factors. However, due to the mathematical complexities 
involved, the interaction between scattered waves by a penny-shaped crack 
and reflected waves from finite boundaries has not been considered. 

In this paper, the torsional impact response of a penny-shaped crack in a 
finite elastic cylinder is considered. Application of the Laplace and 
Hankel transforms reduces the problem to the solution of a pair of dual 
integral equations. These equations are solved by using an integral trans
form technique and the result is expressed in terms of a Fredholm integral 
equation of the second kind. The time dependence is recovered by applying 
the Laplace inversion theorem. Numerical solutions are obtained for the 
amplitude of the local stress field near the crack; that is, the dynamic 
stress intensity factor. The influence of the interaction between scatter
ed waves by the crack and reflected waves from the boundaries are discussed. 
Although only stress-free cylinder surface condition is considered, other 
boundary conditions can be treated in a similar manner without additional 
difficulties. 

PROBLEM FORMULATION 

Let the axis of an elastic cylinder coincide with the z axis of a cylin
drical polar coordinate system (r,0,z). The cylinder is made of a homo
geneous and isotropic material .and its radius is denoted b. A penny-
shaped crack of radius a is lying on the plane z=0 with its center at the 
origin of the coordinate axes. The geometry of the problem is shown in 
Figure 1. 

The displacements in the r, 0 and z directions are denoted, respectively, 
by ur, u@ and uz. The cylinder is under the action of a rapidly applied 
torque such that the material particles experience only an angular dis
placement. Hence, u r and u z vanish throughout the body and from symmetry 
considerations, u~ is a function of r, z and time t only. The displace
ment field can thus be written as 

ur = Uz = ° ' u9 = "e^'2'1) W 

*Lehigh University, Bethlehem, Pennsylvania, U.S.A. 
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Corresponding to equations (1), all stress components except Trn and TQZ 
vanish and the shear stresses are given by the following expressions: 

3ufi ufl 
Tre(r,z,t) = y ( ^ - / ) (2) 

3ue 
Tez(r,z,t) = W ^ - (3) 

in which u is the shear modulus of elasticity. Substituting equations (2) 
and (3) into the equations of motion of elasticity, it follows that two of 
them are identically satisfied and the remaining one renders 

32ue 9uQ ue 32u9 32uQ 
+ + = (4) 

3r2 r 3r r2 3z2 c| 3t2 

The shear wave velocity cz is given by C2 = (u/p) with p being the mass 
density of the material. 

The cylinder is assumed to be initially at rest. A torque T of magnitude 
T = Trb̂ T /(2a), with T having the dimension of stress, is suddenly applied 
to the elastic body generating torsional waves normally incident on the 
crack. By the principle of superposition, the equivalent boundary con
ditions for which the wave passes across the crack plane at t=0 can be 
written as 

T0z(r,o,t) = - TQ(|)H(t), 0<r<a (5) 

uQ(r,o,t) = 0 , r>a (6) 

In addition, the traction-free condition at the cylinder surface requires 

Tr6(b,z,t) = 0 (7) 

Equation (4) is to be solved under the constraint of equations (5), (6) 
and (7). 

Applying a Laplace transform pair 
oo 

f*(p) = / f(t)e"ptdt, f(t) = JL- / f*(p)eptdp (8) 
o Br 

to equation (4) yields 

92u* 3u* u* 32u* 2 

° + i -1 - -i+
 b- = E_ u* (9) 

3r2 r 3r r2 3z2 c| ° 

For a finite cylinder, the solution to (9) may be written as 
00 OO 

u* = / A(s,p,Ji(rs)e"YZds + / B(s,p)Ij(yr)sin(sz)ds (10) 
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where J and I are, respectively, the nth order Bessel and modified Bessel 
function of the first kind. The function y is given by 

=v^+ 
c| 

(ID 

Making use of equations (2), (10) and the Laplace transform of equations 
(5) and (6) renders a pair of dual integral equations: 

oo oo T r 
/ yA(s,p)J1(rs)ds = / sB(s,p)I1(yr)ds + ° r<a (12) 
o o p 

/ A(s,p)J!(rs)ds = 0, r>a (13) 
o 

The relationship between A(s,p) and B(s,p) is found, by taking Laplace 
and Fourier sine transforms on equation (7), as 

oo nA(n,p)J2(bri) 
yB(s,P)l2(yb) = £ s / dn (14) 

71 o n2+y2 
A solution to equations (12) and (13) satisfying equation (14) may be ob
tained by a procedure described in [5] and the result is 

V*^ 2V 2 i „r 
A(s,p) =liS5. _ S L - / ̂ n $*(n,p)J32(san)dn (15) 

where the function $*(n.p) is governed by a Fredholm integral equation of 
the second kind: 

**(5,P) + { K(C,n,p)$*(n,p)dn = £2 (16) 

The symmetric kernel K(£,1,p) is defined by 

K(5,n,p) = V ^ { { (Y,-s)J3/2(Cs)J3/2(ns)ds 

2 » s2 M y |) 
-^•/fl- — l3fi(5Y')Iw(nY')ds} (17) 0

 T r 1 t>-> 

I2(Y' j) 

in which 2„2 
f. = Vs^T E^.-Y' = lfS" + *-=- (18) 

c2 

and K2 is the second order modified Bessel function of the second kind. 
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NUMERICAL RESULTS AND DISCUSSION 

Following the same procedures as in [3], the stresses local to the penny-
shaped crack in the Laplace transform domain may be obtained as 

TjeCrxA.p) = - ip XQ VI- ZSLiL - ± - sin !l ♦ 0(r°) (19) 

T§z(ri,e l fP) = |- xo y r **ti,p) ^_ cos _i + 0 ( r o } (20) 
wzr i 

where rx and 81 are the polar coordinates centered at the crack border in 
the plane z=0. Applying the Laplace inversion theorem to equations (19) 
and (20) renders 

K3(t) 1 *, o, Tre(ri,6i,p) = - — — sin — + 0(r ) (21) 
^2ri 

K3(t) 9 
Tez(ri,6i,p) = - — cos -f- + 0(r°) (22) 

The dynamic stress intensity factor k3(t) is defined as 

-M-fc'.V^^.P'* (23, 
In order to obtain numerical values of k3(t), the Fredholm integral equa
tion (16) is first solved on an electronic computer. Once $* is determined, 
the dynamic stress intensity factor may be obtained by a numerical Laplace 
inversion scheme described in [3]. 

Note that by letting p-K), the solution presented here reduces to that for 
the corresponding static case of the same geometry. Figure 2 depicts the 
variation of the normalized static stress intensity factor k3 = k3/(4T0V^7 
3TT) versus the radius ratio a/b. It can be seen that as the ratio a/b is 
increased, the stress intensity factor also becomes higher. The rate of 
increase is very small when a/b is less than 0.5 and becomes significantly 
larger when a/b exceeds 0.5. This suggests that the effect of finite 
boundaries is serious only when the radius of the cylinder is less than 
two times of that of the penny-shaped crack. 

The normalized dynamic stress intensity factor k3(t) is plotted in Figure 
3 against the time variable C2t/a for various b/a ratios. The dynamic 
stress intensity factor increases quickly, reaching a peak, and then de
creases in magnitude oscillating about the corresponding static value. 
This type of time dependence has also been observed in [3] for an infinite 
geometry problem. As b/a decreases, the peak value of k3 becomes larger 
and occurs at a later time. For b/a = 1.1, the interaction between inertia 
and finite geometry can increase the dynamic stress intensity factor by 65% 
over its corresponding static value in an infinite medium. Hence, it is 
obvious that this interaction effect is quite significant and cannot be 
ignored. 

74 



Part V - Analysis and Meohanios 

In summary, the interaction effect between scattered waves by a penny-
shaped crack and reflected waves from finite boundaries on a cylinder 
under torsional impact has been determined. The dynamic stress intensity 
is found to be a function of time and the geometrical parameter b/a. The 
dynamic stress intensity factor reaches a peak very quickly and then de
creases in magnitude oscillating about its corresponding static value. 
The peak value of the amplitude of the dynamic stresses is higher when 
the ratio b/a is reduced. 
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Figure 1 Finite cylinder containing a penny-shaped crack 
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Figure 2 Normalized static stress intensity factor versus a/b 
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Figure 3 Normalized dynamic stress intensity factor versus time 
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DYNAMIC FINITE ELEMENT AND DYNAMIC PHOTOELASTIC ANALYSES 
OF AN IMPACTED PRETENSIONED PLATE 

A. S. Kobayashi, S. Mall and A. F. Emery* 

INTRODUCTION 

Two popular test specimens used in studying crack arrest potential of 
structure steel are the ESSO and Robertson specimens [1,2] in which dy
namic crack propagation is initiated through impacting a wedge in the 
crack of a subcritically loaded single-edged notch tension plate. Crack 
arrest is achieved by regions of either higher fracture toughness generated 
by higher local temperature in low carbon steel specimen and/or lower 
stress intensity factors generated by lower local stress field. 

Dynamic photoelastic analysis of ESSO type test specimens modeled by 
Homalite-100 plates [3] show that the dynamic effects of the propagating 
crack combined with that of the impacting projectile have considerable 
effect on the dynamic stress intensity factor and hence on crack propa
gation. Unfortunately, these results neither provide a unique relation 
between the crack velocities and dynamic fracture toughness nor a defini
tive conclusion regarding the basic mechanism of crack arrest. In addition, 
the results are not in complete agreement with the more recent experimental 
results obtained on thicker Homalite-100 plates [4,5]. 

In order to verify, by an independent procedure, some of the controversial 
results obtained during our past seven-year efforts in fracture dynamics, 
the authors have used a relatively simple dynamic finite element code to 
duplicate- some of their past work in dynamic photoelasticity [6,7,8]. 
Encouraged by the reasonable agreements between the numerical and experi
mental results obtained through this series of studies involving single-
edged notch specimens loaded to criticality, the same dynamic finite 
element code was used to analyze the previous dynamic photoelastic results 
on the ESSO type test specimens [3]. 

DYNAMIC PHOTOELASTIC ANALYSIS 

The dynamic photoelastic experiments in this paper involve subcritically 
loaded single-edged notch tension specimens where crack propagation was 
initiated by an impacted flat-nosed projectile or a 65° wedge. The test 
specimens consisted of a 9.53mm thick Homalite-100 plate with a 0.254 x 
0.254m test section loaded in a fixed gripped condition with uniform grip 
displacement, and with a single-edged starter crack approximately 9.53mm 
in length. The dynamic properties of Homalite-100 were obtained following 
the procedure of Clark and Sanford [9], which yielded an average dynamic 
modulus of elasticity, Poisson's ratio and stress optic coefficient of 
4.65 GPa, 0.345 and 27.15 MPa-mm/fringe, respectively. The averaged 
static fracture toughness, which was obtained through separate tests 
using SEN specimens, was 0.64 MPa-m1'2. 

*University of Washington, Department of Mechanical Engineering, 
Seattle, Washington 98195, U.S.A. 
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Dynamic stress intensity factors, KQ, were determined by Bradleyjs two 
parameter procedure [10] and the dynamic energy release rate, S ^ D , was 
computed using Freund's equation [11] from the dynamic stress intensity 
factors. Further details of these data reduction schemes can be found in 
references [6] and [8]. 

DYNAMIC FINITE ELEMENT ANALYSIS 

The dynamic finite element code, Hondo [12], used in this investigation is 
based on an explicit time integration scheme and constant strain quadri
lateral elements. The crack tip motion was modeled by discontinuous jumps 
where crack tip moved from one finite element node to another at discrete 
time intervals. This discrete propagation of the crack tip generated sig
nificant oscillations in the states of stress and displacement surrounding 
the crack tip. The numerical noise was filtered by computing directly the 
dynamic energy released by the discrete crack tip advancement from the time 
averaged normal stress ahead of the advancing crack tip and the corre
sponding time-averaged crack opening displacement after crack advance. 
Details of this numerical procedure as well as an accuracy check of the 
procedure are described in reference [6]. 

Figure 1 shows the finite element breakdown involving a total of 532 ele
ments and 585 nodes used in this analysis. Impacted wedge-loading was sim
ulated by two simultaneously applied vertical and horizontal forces at the 
crack mouth without the wedge-shape and the impact forces for the flat nose 
projectile and 65° wedge were assumed to vary with impact duration. Large 
plastic deformations at the impact sites were assumed to dissipate about 
66 percent and 43 percent of the impact energies for the flat nose and 65° 
wedge impacts, respectively. Estimates of these energy losses as well as 
impact durations were made by comparing the calculated dynamic maximum 
shear stress patterns of a given impulse with the associated dynamic iso-
chromatic patterns as shown in Figure 2. 

PRETENSIONED SINGLE-EDGED NOTCH PLATE IMPACTED BY FLAT NOSE PROJECTILE 

In the series of dynamic photoelastic experiments reported in reference 
[3], the crack propagated in some pretensioned single-edged notch plates 
while it did not run in others. These stop-or-go results potentially 
provided information for estimating the static fracture toughness under 
stress-wave loadings but unfortunately the dynamic photoelastic patterns 
prior to crack propagation were not recorded in these experiments. A 
combination of dynamic finite element analysis and dynamic photoelasticity 
results provided a procedure in which the dynamic state prior to triggering 
of the dynamic polariscope could be estimated by some trial and error. 
Table 1 shows such maximum dynamic stress intensity factors due to impact 
for the stationary crack in Test No. W012172 and prior to crack propag
ation in Test Nos. W020672 and W090711. 

It is interesting to note that this combined dynamic photoelastic-dynamic 
finite element analysis results in Table 1 indicate that the dynamic 
fracture toughness, Kc, under this combined static and stress wave load
ings is close to, within experimental scatters, the static fracture tough
ness of Kc = 0.64 MPa-m1'2. Perhaps such coincidence may be expected in 
view of the recent work by G. C. Smith [13] who found that the variations 
in fracture toughness of 4.76mm thick Homalite-100 plates is approximately 
equal to the static fracture toughness for the time interval to failure 
of 20 microseconds. The 30-50 percent increase in stress intensity 
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factor due to impulse loading falls within the rapidly changing dynamic 
fracture toughness at this time interval to failure. 

PRETENSIONED SINGLE-EDGED NOTCH PLATE IMPACTED BY A 65° WEDGE 

The dynamic photoelasticity record of Test No. W012472 was analyzed then 
by the dynamic finite element method using the idealized crack velocity 
shown in Figure 3. Figure 4 shows a comparison of the dynamic energy 
release rates due to static preload on the specimen. The rapid fluctua
tions in the FEM results at an approximate crack length of a/b = 0.15 is 
due to the momentary drop in crack velocities at this location. Otherwise 
good agreement between the measured and computed dynamic energy release 
rate are noted. 

DISCUSSION 

Our conclusion that fracture toughness, which did not differ with its 
static counterpart, under the combined static and impulse loadings is in 
agreement with that discussed in reference [7] involving simulated dynamic 
tear tests. As mentioned previously, these findings are in agreement with 
those in reference [13] because of the relatively low strain rate effects 
in these tests. 

The dynamic energy release rate at crack arrest was much lower than those 
measured in non-impact experiments [7] which again reinforces our postu
late that T / D at crack arrest is not a material property. The average 
dynamic energy release rate, which is obtained by dividing the sum of the 
total dynamic energy release rates by the newlv created crack surface by 
crack propagation, for Test W012472, yielded Tyolave/ < v c = 2.33 and 
2.28 from the dynamic photoelasticy and dynamic FEM analysis, respectively. 
The large ^ o l a v e generated by elastic analysis for a prescribed crack 
propagation history probably indicates the larger dissipation in dynamic 
energy due to viscous damping and at the flexible edge grips under high 
impact loading. 
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Table 1 Dynamic Stress Intensity Factor Prior to Crack 
Propagation in an Impacted Pretensioned Plate 

Test No. 

W012172 

W020672 

W090771 

Prescribed 
Displace
ment 
utop 
ubottom 
0.0572 mm 
0.0572 mm 

0.0254 mm 
0.0762 mm 

0.0889 mm 
0.0889 mm 

Projectile 
Velocity 
Flatnose, 
12.34 gm 
24 m/sec 

Flatnose, 
12.34 gm 
46 m/sec 

Flatnose, 
12.34 gm 
26 m/sec 

Stress 
Intensity 
Factor 
Due to 
Pre-loading 
0.30 
MPa-m1'2 

0.40 
MPa-m112 

0.47 
MPa-m1'2 

Dynamic 
Stress 
Intensity 
Factor 
Due to 
Impact at 
20 usec* 
6.41 
MPa-m1'2 

0.40 
MPa-mlfe 

0.40 
MPa-m1'2 

Resultant 
Stress 
Intensity 
Factor 
0.70 
MPa-m1'2 

0.80 
MPa-m1'2 

0.87 
MPa-m1'2 

Remarks 

Crack 
did not 
run 

Crack 
ran 

Crack 
ran 

Kc = 0.64 MPa-m1'2 

*Dynamic S.I.F. for same impact pulse, regardless of differences in muzzle 
velocity. 
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A FINITE-ELEMENT ANALYSIS OF AN IMPACT TEST 

J. A. Aberson, J. M. Anderson and W. W. King* 

INTRODUCTION 

In 1974 Madison and Irwin [1] published results of a fracture test pro
gramme begun at Lehigh in 1966. The purpose of the programme was to 
determine fracture toughness (Kc) values for structural steels at tem
peratures and loading rates representative of service conditions. The 
tests employed precracked three-point-bend specimens measuring 76 mm deep, 
30 mm long and 25 mm thick. The supported span was 250 mm, and the fatigue 
crack length, including a starter notch, was approximately 25 mm. Fracture 
toughness values were computed using the observed maximum load and the 
initial crack length adjusted to account for plastic-zone size. Loading 
times as brief as 0.50 ms were judged by Madison and Irwin to be "...small 
enough for evaluation of minimum dynamic toughness and long enough to 
permit static stress anslysis of the specimen." It is with this contention 
that the present paper takes issue. 

For a simply supported beam of flexural stiffness El, mass M and span S, 
the fundamental frequency of vibration u) is given (see, for example, [2] 
p.331) by 

o> = ^ 2 J ^ (1) 
1 MS3 

For steel of dimensions appropriate to the test specimen (1) yields a 
fundamental period of about 0.37 ms -- a figure much too near the least 
loading period to warrant neglecting inertia effects. The elementary 
modal analysis producing (1) neglects shear deformation and rotary inertia, 
beam overhang and the presence of the crack. But since these are all 
effects tending to increase the computed fundamental period, a static 
analysis seems all the more suspect. This suspicion is later confirmed 
by employing a finite-element model having over 300 degrees of freedom 
and capable of representing the neglected effects mentioned above. 

MADISON-IRWIN PROCEDURE FOR DETERMINING Kc 

In the Madison-Irwin exerpiments, the specimen was loaded by an instru
mented striking tup mounted in a freely falling weight. The instrument
ation provided an oscilloscope trace of the applied load. Two-peak load 
histories were reported for some of the tests, which Madison and Irwin 
attributed to obscuring inertia effects. They associated the first peak 
with inertia effects, while the second peak was judged to be the signifi
cant specimen-load record. By placing loading cushions between the spec
imen and the striking tup, Madison and Irwin obtained a load record with 
a single peak. This was accepted as evidence that inertia effects had 

*Georgia Institute of Technology, Atlanta, Georgia, U.S.A. 
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been eliminated, and they supposed in their calculations that the peak 
recorded load was the specimen load at the onset of crack propagation. 
Figure 1 shows a best-estimate reproduction of a published oscilloscope 
trace recorded in a -40°C test of a 25 mm thick specimen. The load 
history depicted in Figure 1 is the type deemed acceptable by Madison and 
Irwin for static analysis of the problem. 

Madison and Irwin used a slightly modified Gross-Srawley [3] formula in 
conjunction with the peak load from the specimen-load record to obtain a 
first-estimate value of Kc. Their formula, 

''=5r [i.»-»-« 5-».'{5}'-»->{5}'*»■•&}>' 
gives Kj in MPav̂ m for P in MN with beam span S, thickness B, depth W and 
crack length a all m. For the peak load (55.6 KN) obtained from Figure 1, 
(2) yields a first-estimate Kc of 43.7 MPaVm. 

Such figures were subsequently revised upward by adjusting for plastic-
zone size. Briefly this amounted to increasing the fatigue crack length 
by the plastic-zone radius 

^-kltf' w 1 \ K_ 
3Y 

in which ay is the yield stress. Equations (2) and (3) were then used 
repeatedly until the iteration scheme produced practically constant 
values for ry and Kc. Since the thrust of the present paper has to do 
with assessing inertia effects rather than plasticity effects, we shall 
make no plasticity adjustments to either our results or those of Madison 
and Irwin. 

FINITE-ELEMENT ANALYSIS OF A MADISON-IRWIN TEST 

Figure 2 shows a finite-element representation of a Madison-Irwin test 
specimen. Due to symmetry about the plane of the crack, only the left 
half of the specimen is modelled. The model consists of 163 nodes, 273 
constant-strain triangles and 1 eight-node crack-tip singularity element. 
The singularity element ABCDE is required to accurately represent the 
locally severe stress gradients in the neighbourhood of the fatigue-crack 
tip at D. Consistent with symmetry requirements, nodes along the crack's 
prolongation DG are restrained against horizontal displacement. A 
vertical force equal to half the specimen load is applied at G. A vertical 
restraint at H simulates the specimen support. The fatigue-crack starter 
notch was not represented, and the two-dimensional idealization of the 
problem was taken to be the one corresponding to plane stress. 

The singularity element used to numerically characterize the near-tip 
stress field has been successfully employed in many and varied static 
applications [4] and has performed satisfactorily in a number of problems 
involving transient stresses near the tip of a stationary crack [5, 6]. 
These problems generally represent more severe tests of the finite-element 
analysis than does the present problem. Details of the singularity ele
ment's formulation are given in these references. Briefly, it incorporates 
as generalized coordinates for stiffness and inertial characterization the 
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first thirteen symmetric Williams1 [7] eigenf unctions and the three para
meters associated with plane rigid-body motion. The Newmark - 3 method 
with 3 = 1/4 is the time-integration scheme used for dynamic applications. 

Figure 3 shows the time dependence of the stress-intensity factor Ki for 
three different numerical representations of a Madison-Irwin experiment. 
The solid line indicates the quasi-static response of the model shown in 
Figure 2; i.e. Ki(t) appropriate to a massless specimen subjected to the 
load as taken from the oscilloscope trace (Figure 1). The computed value 
of Ki at peak load (42 MPai/in) is in reasonable agreement with the Madison-
Irwin estimate (43.7 MPav'm) obtained using (2), but based on the results 
of previous confirmed static applications, the 4% discrepancy is somewhat 
more than can be attributed to the numerical method. Notwithstanding the 
small difference, the quasi-static response shown in Figure 3 is used as 
a basis for assessing inertia effects in the two companion dynamic ex
ecutions . 

The locus of empty circles in Figure 3 is Kx(t) for a model with inertia 
characteristics corresponding to steel and subjected to the time-dependent 
load of Figure 1. The integration time step was 10"2 ms and Ki was 
computed at each time step. This is the order of the transit time of 
longitudinal waves through the depth of the specimen and consequently the 
transmission and reflection of individual stress waves is not represented. 
However, the interest here is in the response over a relatively longer 
time during which the lower modes of vibration dominate. The shape of 
the response confirms the expected dominance of the first mode and the 
earlier estimate of its period. The considerable difference between the 
dynamic and quasi-static responses is exclusively the result of specimen 
inertia. When specimen inertia is included, the peak stress-intensity 
factor is elevated by more than 8% above the maximum quasi-static value. 
More importantly, the peaks occur at different times. So, for the 
particular geometry and loading rate under consideration, the dynamic 
result is in clear conflict with an assumption that the crack begins to 
propagate &X the peak load registered by the oscilloscope. Such a con
clusion, of course, rests on the tacit assumption that the oscilloscope 
trace is in fact an accurate time record of the contact force between the 
specimen and striking tup. 

To illustrate the importance of hammer-tup mass and stiffness, the finite-
element programme was executed for the model in Figure 2 with a lumped 
mass of 45.4 kg attached at G. The lumped mass was given an initial 
velocity corresponding to a free-fall drop of 0.152 m. It is not clear 
from a reading of the Madison-Irwin paper that these values for mass and 
drop height are appropriate for the oscilloscope trace in Figure 1, but 
the paper does imply that these are probably minimum values for the test 
programme. The solid circles in Figure 3 indicate computed values of Ki 
for this representation. These stress-intensity factors are unrealisti-
cally high as might be anticipated from the use of such a model in a time 
span in which non-rigid motions of the hammer are likely to be significant. 

CONCLUSIONS 

The writers do not claim a successful prediction of time-dependent stress-
intensity factors for the impact test that has been discussed. Rather 
the analyses which have been presented call attention to the danger of 
ignoring specimen inertia or of an oversimplified model of the hammer. 
It is the writers1 opinion that for relatively high-velocity impact, 

87 



Fracture 1977, Volume 3 

involving a hammer and specimen of similar materials, an analytical model 
which accounts for the elastodynamics of the specimen and at least that 
portion of the hammer tup between the specimen and the load transducer is 
required. 
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STRESS AND CRACK-DISPLACEMENT INTENSITY FACTORS IN ELASTODYNAMICS 

H. D. Bui* 

This paper deals with several remarks concerning stress-intensity factors 
in elastodynamics, for the steady-state and the transient problems of a 
moving crack with a constant velocity V. It discusses the equivalence 
between dynamic fracture criterions and introduces the new J-integral for 
moving crack. The present paper will bring out the same importance of the 
stress-intensity factor and the crack-displacement intensity factor, in 
the presentation of fracture criterions. 

In the plane strain condition, the components of the displacement fields 
u,v, with respect to the fixed cartesian axes Oxy, can be expressed in 
terms of two scalar functions (j)(x,y,t) and ijj(x,y,t) which satisfy respec
tively the two-dimensional wave equations with velocities c^j={ (A+2u)/p}1'2 
and c^iy/p}1'2 where A,u are the elastic Lame's constants and p is the 
mass density. Expressions of the displacement and the stress fields in 
terms of <p and ty or their well known complex representations can be found 
in [1]. We introduce the velocity parameters: 

•W --ft)* 
THE STEADY-STATE PROBLEM 
The steady-state problem of a moving crack with constant length has solu
tions which can be found in [1]. The load is assumed to be symmetric with 
respect to the crack line Ox. In the moving axes x!=x-Vt, y'=y with 
polar coordinates, r,6 the displacement and stress fields near the crack-
tip are known. We report here only the expressions for v and a y y with a 
change on notations from those given in [1]: 

KT / V 2 

V = y ( §F ) I mi-23i(l+32)(cos6+i3isine) 
1/2 

+ 43i(cose+i32sin6)1/2 } { 43i32-(l+32) } _ 1 (1) 

43i32 ) 
a 

KT ( (1+32)2 
— i Re ) 
27rr)1'2 ( (cos0+i3isir yy ^Trr)1'2 I Ccose+i3isin9)1/2 (cos0+i32sine)V2 

| 43i32-(l+3i)2 } ' 1 (2) 
*Electricite de France and Ecole Polytechnique, 91120 Palaiseau, France. 
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Equations (1) and (2) are Yoffe's work [2]. Instead of Kj, introduce the 
notations K*J for the dynamic stress-intensity factor. It is defined as in 
the static case by the asymptotic expression of the normal stress a (9=0): 

K°r = lim a (r,o)(2TTr)112 (3) 
1 r-̂ o yx J 

If we represent the crack-opening displacement v(r,ir) by similar formula 
known from the plane strain static case, we must introduce a crack-
displacement factor: 

i /2TTV1 2 , , KI = iis S r 1 ^ ' v(r,u) (4) 

where K = (A+3U)/(A+U)=3-4V (v = Poisson ratio). From (l)-(4) it results: 

< / K° = -V (5) 
1 X *+1 4fJ1e2-d+Bi)2 

This ratio varies monotonically from unit, at V=0, to infinity at the 
Rayleigh velocity c^ (defined by the vanishing of the denominator of (5)). 

A TRANSIENT PROBLEM 

Let us consider the particular problem of a small cut which extends sym
metrically with the velocity V. The crack tip's coordinates in the fixed 
axes are x=Vt, y=0 (and x=-Vt, y=0). The crack is subject to opposite 
normal impulses o"yy=6(x)6(t) . This problem is solved by Afanasev and 
Cherepanov [3] who gave the stress-intensity factor, as defined by equa
tion (3) in the following form: 

4 ( t ) = - s d / v j v 1 ' 2 ^ 2 - ^ ) " 1 ' 2 ^ ; 2 - ^ 2 ) - 1 — L — (6) 
I L T L 2t3 , 2Tr1 '2 

where: 

SCO = ( C ~ 2 - 2 T 2 ) 2 + 4 T 2 ( C ^ 2 - T 2 ) 1 , 2 ( C ^ 2 - T 2 ) 1 ' 2 

Here, the Rayleigh velocity is defined by the root of the equation 
S(1/V)=0. Afanasev and Cherepanov did not calculate the crack displace
ment factor. But from their solution, we may obtain the latter quantity 
as: 

From (6) and (7) the ratio K^/Kj is found to be the same as in the steady-
state case. This agrees with the general result obtained by Achenbach 
and Bazant [4] who stated that the near-tip fields are of the same form 
for steady-state and transient crack-propagations. The result (5) can be 
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found in many works. Here, we only introduce new notations and terminol
ogies in order to make more distinction between the two intensity factors. 
Remark that for V=CR, the stress-intensity factor (6) vanishes, while the 
crack-displacement factor (7) does not. So, the latter factor has some 
importance on the characterization of the crack-tip just when the notion 
of stress-intensity factor falls. 

SOME REMARKS ON FRACTURE CR1TERI0NS IN SYMMETRIC LOADING 

In the static case, the usual criterions can be reduced to the K^ crit
erion. Whatever is chosen as a criterion, the stress criterion, the COD 
criterion, the G-theory and the J-integral are equivalent. Let us state 
that the equivalence between two criterions means that the relationship 
between their critical values involves only the material's properties, 
not the velocity dependence. For example, the equation Jjc=(l-v2)K|c/E 
(E: Young modulus) establishes the equivalence between the J-integral and 
the Kj criterion, for opening mode in static case. In dynamic crack-
propagation, we can see that the Kj criterion has no equivalence with the 
usual other criterions. As a first example, suppose that the critical 
value K^c is a material constant independent of the velocity, then 
the value Kj c computed from Kj c through equation (5) is not, and vice 
versa. Thus, the criterions K^ and Kj are not equivalent in the sense 
stated above. 

Let us consider other parameters. 
The G-parameter is defined by the Griffith's energy balance (See Erdogan 
[5] and Achenbach [6]): 

G6a = -6W . + SW,. - 6Vi, . = 2D6a (8) 
elas F k m 

where 6a=V6t, 6Welas is the elastic energy variation, SW^ is the work done 
by given external forces, 6Wkin the kinetic energy variation, and D the 
dissipative energy rate in fracture. For brittle material: D=ys (Specific 
surface energy). The computation of the left side of equation (8) requires 
the knowledge of the dynamic fields in the whole body. If G has a 
representation by mean of some path-independent integral, the computation 
would be possible with the near-tip fields. If not, the direct computation 
of G is not easy. Nevertheless, the relationship between G and Kj is 
expected to involve the velocity dependence. 

The G1-parameter is the crack-closure energy (See [5] and [6]): 

G' = lim -z~- 1 o (a) v(a+6a) ds (9) 
6a+o 2 6 a J YY 

crack 

This parameter is obviously easy to compute once the near-tip fields (1) 
and (2) are known. It may be obtained as: 

G'(t) = ^ K j C t ) K ^ ( t ) (10) 
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With different notations, equation (10) can be found in Atkinson and 
Eshelby [7], in Freund [8] and also in [4]. The interpretation of (9) as 
the dissipative energy rate is given in [5]. (See in the latter reference 
the comparison between G1 and the strain energy release rate Ge= -dWeias/da; 
in dynamic crack-propagation G'^Ge). We remark again that the fracture 
criterions based upon G,G' or any other parameter derived by the energy's 
consideration are not equivalent to the stress criterion, due to the 
velocity dependence. For example, if the critical value G' is independent 
of the velocity, the value Kj c computed from G£ through equation (1) is 
not.+ 

In what follows, we consider another parameter given by a path-independent 
integral. 

THE J-INTEGRAL FOR MOVING CRACK 

Let us consider the fixed axes OXJ[ (xi=x, X2=y, ui=u, U2=v). The con
servation law given by Fletcher [10] is: 

8 , . 
3 U 3 . i > + ^ ^ ^ til) 

where W is the elastic energy density, Ui=9u^/8t. Consider a contour Ty 
joining two points on opposite sides of the crack's surface while going 
around the tip, and moving with the velocity V, and let A(T) be the area 
within the contour Ty. The Rice's J-integral [11] is extended to moving 
crack in transient loading as follows: 

= / Viki -a.. n. u. - 7T pu, uun, >ds + -=— / pu. u. 
/ ( I j k k j , i 2 K h h i / d t l K J J , i 

- / pu. u. Vn 
J ^ j l 1 

ds (12) 

3A 

where n^ is the unit outward normal to the contour and d/dt is the time 
derivative of integral over moving domain A(T). The J-integral is not a 
line integral, due to the second term. However, it results from (11) that 
J is independent of the path. The value of the J-integral may be obtained 
by a contour flattened on the crack line. It is easy to see that only the 
second singular term in the first integral contributes to J. Thus, it is 
sufficient to consider the near-tip fields (1) and (2) for the computation. 
For the steady-state case, we find a very simple formula: 

J = ^ K° K* (13) 

*̂ In fact, for some material, the experimental value of Kj c depends on the 
velocity [9]. This raises the question as to the validity of the Ki 
criterion in such a case. Perhaps, a better choice would be some para
meter X such that the theoretical ratio X/Ki multiplied by Kic(V) has a 
nearly constant value. 
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Equation (13) is the generalization of that obtained by Rice for his J-
integral in the static opening mode. It has the same form as equation (10). 
Consequently, there is equivalence between the G' and the J criterions. 
The result (13) is exactly the flux of energy into the crack tip, as 
discussed in [6], [7] and [8]. 

It should be noted that equation (13) can be extended to transient crack-
propagation by the use of the near-tip fields obtained by Achenbach and 
Bazant. Another proof of the above extension to transient loading can be 
found in [12]. 
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ELASTODYNAMIC EFFECTS ON CRACK BRANCHING 

J. D. Achenbach* 

INTRODUCTION 

If a homogeneous, isotropic, linearly elastic solid containing a plane 
crack is loaded so that the analytically computed singular parts of the 
near-tip stresses are symmetric relative to the plane of the crack, one 
might perhaps expect the crack to propagate in its own plane, when the 
pertinent stress intensity factor reaches a critical value. Experimental 
evidence often shows, however, the phenomena of skew crack propagation 
and crack bifurcation, especially for rapidly propagating cracks. Al
though it has been suggested by several authors that elastodynamic effects 
play an important role in crack branching, analytical investigations have 
only recently become available for antiplane strain, see references [1] 
and [2]. The computation of the elastodynamic fields has presented the 
principal obstacle. 
The general nature of elastodynamic near-tip fields for the case that the 
tip of a crack propagates rapidly along a rather arbitrary but smooth 
trajectory in a two-dimensional geometry, was discussed by Achenbach and 
Bazant [3], Let a crack be propagating in its own plane with speed v(t), 
and let a system of moving polar coordinates be affixed to the moving 
crack tip. For symmetric opening up of the crack (Mode I) we have in 
the vicinity of the crack tip. 

6 (2TT) m r 1 / 2 I 9 

In equation (1), T^(0,v) = 1, and kj(t,v) is the elastodynamic stress 
intensity factor. The function T^(0,v), which is complicated, is shown 
in Figure 1. It is of note that the maximum value of TQ(0,V) bifurcates 
out of the plane 0 = 0 (the plane of crack propagation) as v(t) increases 
beyond a certain value. 

The curves of Figure 1 could be used to suggest an explanation for crack 
bifurcation, if it is assumed that a crack tip follows the maximum value 
of the stress intensity factor. If this would happen, bifurcation should 
be expected at a crack tip speed somewhat higher than 0.6 Cj. One then 
would expect the crack branches to curve gradually out of the original 
plane, since the maximums gradually move out of 0 = 0. Experimental re
sults do, however, not substantiate this explanation. They show that the 
experimentally observed pre-bifurcation speed is lower than 0.6 Cj, and 
that bifurcation happens with a specific half-angle, in between 10 and 20° 
Thus, the results of Figure 1 do not offer a direct explanation of crack 
bifurcation, and further study is necessary. Such further study is the 
topic of this paper. 

*Northwestern University, Evanston, Illinois, USA. 
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APPROACH 

In the work presented here we take the view that branching of a running 
crack is an instability phenomenon, and that a necessary condition for 
branching can be determined by comparing states prior to branching and 
after branching has taken place. The comparison requires expressions for 
the elastodynamic fields near the tips of the branches. An analytical 
study of skew crack propagation or crack bifurcation thus consists of two 
parts. In the first part an expression is derived for the elastodynamic 
stress intensity factor for the pertinent geometry. In the second part a 
necessary condition for the particular type of crack propagation is estab
lished on the basis of the fracture criterion of the balance of rates of 
energies. 

Details can best be explained by the relatively simple case of deformation 
in antiplane strain. Let us consider a semi-infinite crack propagating 
at velocity v(t). The near-tip elastodynamic stress is of the form 

where T Q Z (0,V) = 1. For a semi-infinite crack we have 

kIH(t,v) = (1 - v/cT)1/2 K m ( t ) (3) 

where Kjjj(t) is the stress intensity factor for the corresponding quasi-
static problem. Equation (3) is also valid for a crack of finite length, 
but only for very small times after crack propagation has started. It is 
noted that knj(t,v) "** ° as v "*" CT> i» e*> as t n e speed of crack propaga
tion approaches the velocity of transverse waves. 
A propagating crack tip acts as an energy sink. It is quite simple to 
compute the flux of energy into the crack tip. For Mode III fracture the 
result is 

F = —? — [k
in(t,v)l2 (4) 2ji[i - (v/ap2]1'2 

The energy release rate G and the flux of energy into the crack tip, F, 
are related by F = Gv. The balance of rates of energies provides the 
following necessary condition for fracture 

F = 2 r v (5) 

where T is the specific energy of crack extension, i.e., the energy re
quired to produce one unit of fracture surface. Equation (5) is not only 
a necessary condition for fracture, but it also provides an equation for 
the computation of v. 
At time t = tb the crack branches. This process is thought of as the 
arrest of the primary crack, instantaneously followed by the emanation of 
the branch or branches. If the branches propagate with velocities v < cT, 
they propagate into fields that have already received signals from the 
arrest of the primary crack, since the latter propagate with velocity cT. 
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The singular part of the stress field radiating from the arresting crack 
is obtained from equation (2) by setting v = 0: 

^^(i)hu(\)^-h) Tez~ ^ 7 - ^ - ^ C 0 S l T | K T T T l t K | Hi t-tK I (6) 

This stress field must be removed from the surfaces of the branches, to 
render the branches free of shear stresses. Note that here we are inter
ested only in very small times after branching, so that additional terms 
in equation (6) do not enter. 

The computation of the stress-singularities at the tips of the branches is 
complicated. If the loading conditions are of a special type, the elasto
dynamic fields for skew crack propagation or crack bifurcation of a semi-
infinite crack are, however, self-similar. These fields can then be 
analyzed in a relatively simple manner. Elastodynamic fields that are not 
self-similar can subsequently be obtained by approximate superposition 
considerations, see reference [2]. 

SOME RESULTS 

The elastodynamic field which is generated when a branch emanates assym-
metrically from the tip of a stationary semi-infinite crack, when the 
surfaces of the crack are subjected to shear tractions TQZ = - TQH(t) is 
first investigated. The shear tractions give rise to plane waves and a 
cylindrical diffracted wave centred at the original crack tip. The semi-
infinite crack propagates at an angle XTT and with velocity v, where 
v < cj, at the instant that the surface tractions are applied. At time 
t > 0 the crack tip is located at point D, see Figure 2. For this problem 
the particle velocity is self-similar. For a similar problem, details 
can be found in reference [1]. Relative to the system of moving coordin
ates shown in Figure 2 we find near the tip 

(270"' T" 

where 
km( t ,v,*) = 2 TT112 A - x iy 'V iy 2

K ( x ) (8) 

The function K(x) follows from equation (3.8) of reference [1] by setting 
a = 0 and W0 = T Q C T / U . 

The results obtained above can now be used to analyze the conditions for 
the emanation of a single branch from a running crack. After branching 
of the running crack, the shear stress near the branch tip is of the 
general form 

where t = t - t^. We have found that the near tip stress field for in
stantaneous skew crack propagation upon the application of equal and uni-
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form antiplane shear tractions to the two semi-infinite surfaces of a 
stationary crack is given by equation (7). If for that case the crack 
does not branch, nor propagate in its own plane, the near tip stress 
field is 

T0z (27T) 
^ cos( |j H(t), where B = 2 {^j T Q (10) 

1/2 -1/2 

Clearly, the result (7) can be regarded as being the consequence of re
moving stresses of the form (10) from the crack branches. Thus, we now 
have a known stress (7) due to the removal of the known distribution of 
surface tractions (10), and an unknown stress (9) due to the removal of 
the known distribution (6). Apart from constants the difference between 
equations (6) and (10) is, however, only in the time dependence; equation 
(6) contains a step time dependence, while in equation (10) the dependence 
on time is as t^2. These results then suggest that at least for small 
times kjjj and k̂ j-j are related by superposition considerations as 

t 

O 

This equation can easily be solved for k|jj as 

The corresponding flux of energy into the crack tip can be computed by 
employing equation (4). The noteworthy result is that the rate of energy 
flux into a propagating crack tip shows a maximum at x = 0 only for 
values of v/cy which are smaller than approximately v/c-p = 0.27. Appar
ently the rate of energy flux into a crack tip can be higher for skew 
crack propagation than for a crack propagating in its own plane. 

The tendency towards skew crack propagation can be examined on the basis 
of the balance of rates of energies. This fracture criterion is stated 
by equation (5). For essentially brittle fracture T is the specific 
surface energy, which is independent of x. In a plot of F vs. x and 2IV 
vs. x for specific v/cj, the term 2IV is then represented by a horizontal 
line. In accordance with the balance of rates of energies, the values 
of v and x are determined by a point of intersection of the curves for F 
and 2Tv. Since both v and x are as yet unknown an additional condition 
is required. Such an additional condition is that only an intersection 
where 2IV is tangent to F (i.e., F is a maximum with respect to x) de
fines a case of stable crack propagation relative to variations of *. 
Thus, in Figure 3, the maximums of F with respect to x have been re-
plotted versus v/cj, and values of x at which the maximums of F are 
reached have been indicated. In this figure 2IV is a straight line 
through the origin. The intersection of 2IV and F defines a case of 
crack propagation and the pertinent values of v and x follow from the 
point of intersection in Figure 3. The foregoing discussion defines V 
as the principal quantity controlling skew crack propagation. For large 
enough T, 2IV is tangential to F at x = 0, and thus V/CT will be relat-
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ively small and the crack will propagate in its own plane. For small 
values of V the relevant intersection is at x > 0, i.e. skew crack prop
agation can be expected. 

An analogous analysis for crack bifurcation in antiplane strain was pre
sented in reference [2]. 

THE IN-PLANE PROBLEM 

Computations of deformations in antiplane strain (Mode III), though im
portant for geophysical situations, are of minor practical significance 
for engineering problems. Solutions of antiplane problems do, however, 
frequently suggest the proper steps for the attack on in-plane problems. 
There are, however, some important differences in the basic fracture 
mechanics of the antiplane and inplane cases, and these should be kept in 
mind. For example, for inplane deformation the branches of a primary 
crack are subjected to both Mode-I and Mode-II fracture conditions. Mixed 
fracture conditions do not occur for crack bifurcation in antiplane strain. 
Thus it is necessary to analyze the inplane problem separately. 

The case of inplane strain is, of course, must more complicated. In the 
physical plane the region in which the stress field must be analyzed con
sists of wedge-shaped segments which are connected ahead of the propag
ating crack tip(s). For inplane deformations there are two wave equations 
governing the displacement potentials. By taking advantage of self-
similarity, these wave equations can be reduced to Laplace's equations in 
half-planes. The solutions to these equations are, however, coupled along 
the real axes by conditions which stem from the conditions along the crack 
surfaces and along the wavefronts. The coupling conditions give rise to 
singular integral equations for the displacement potentials. A numerical 
scheme based on series expansions in terms of Chebyshev polynomials has 
been developed to obtain numerical solutions. Results are forthcoming. 

ACKNOWLEDGEMENTS 

The work reported here was carried out in the course of research sponsored 
by the Office of Naval Research under Contract ONR N00014-76-C-0063. 

REFERENCES 

1. ACHENBACH, J. D. and VARATHARAJULU, V. K., Quart. Appl. Match, XXXII, 
1974, 123. 

2. ACHENBACH, J. D., Int. J. Solids and Structures. 11, 1975, 1301. 
3. ACHENBACH, J. D. and BAZANT, Z. P., J. Appl. Mech., 42^ 1975, 183. 

101 



Fracture 1977 3 Volume 3 

1.5 -

i.o 

0.5 h-

[^(e,iT) 
1" / 

r N S ^ \ 

[ 0.4^s 

: 1 * , ° ' 
1 

0.257T 

" 

\ v 

VT" 
^0.6 \ 

i 

0.5 IT 

V -

0.8 

e 

0.3 

^ 0 ^ 

\ 0 . 6 
0.8 

/T7\ 

Figure 1 Function TQ (9,v) versus G for Various Values 
of v/cT. 

Figure 2 Pattern of Wavefronts and 
Position of Crack Tip for 
Crack Branching Under the 
Influence of a Suddenly 
Applied Antiplane Shear 
Traction 

0.7 

0.6 

(F*)max 

0.5 

0.4 

0 3 

0.2 

0.1 

/ 
K-0.42 / / / / / 

K = 0.3 / / * 

1 / 
1/ 

1/ 
K--O.Z y 

/K--0A5 

f K --0 K: 0 -A 

Figure 3 Maximums of F with Respect to 
x, Plotted vs. v/cT; 
F* = 4uF/c T[K m(t b)] 2 

102 



Fracture 1977, Volume 3, ICF4, Waterloo, Canada, June 19 - 24, 1977 

CRACK-TIP STRESS ANALYSIS FROM FIELD VALUES 
OF THE DISPLACEMENTS USING COMPLEMENTARY ENERGY 

J. L. Swedlow1, M. E. Karabin, Jr.1 and G. E. Maddux2 

A variety of techniques is now available for crack-tip stress analysis, 
and the need for further development along these lines may not at first 
be evident. For some circumstances, however, none of the present methods 
is especially applicable so that we have been moved to develop another 
approach. Concern here derives from having an experimental determination 
of displacements at points surrounding a crack's tip at the outset; the 
objective is to find the corresponding stress intensity factor(s). Such 
measurements are conveniently made at modest distances (a few cm) from 
the crack's tip; in the tip's immediate vicinity, however, experimental 
accuracy may be impeded by localized plastic flow^ surface roughening, 
and dimpling. Objections to use of established analytical/numerical 
methods arise owing to indeterminacy of loads or overall structural 
complexity. We seek therefore to determine stress intensity factor(s) 
from in situ displacement data at points along a path or surface that 
surrounds the crack's tip but interior to the structure in which the crack 
is found. 

To this end, in situ displacement data are taken to pertain to the dif
ference between two excitation levels, one nominally at rest and the 
other at load. This pairing is required by whatever experimental method 
is employed; the analysis proceeds in terms of the net difference and 
gives either increment(s) in stress intensity factor (s) or total value(s) 
where the at-rest state is wholly unloaded. 

The primary ingredients required are the theorem of minimum complementary 
energy and a stress function pertinent to a crack. The theorem states 
that, of all equilibrated stress fields which satisfy prescribed traction 
boundary conditions (here, the crack's flanks are stress free), the 
"actual" one is distinguished by a stationary (here, minimum) value of 
the complementary energy V*, where 

V* = / W*|o\ . )dD - / u.t.dS (1) 
y ' u 

In (1), integration proceeds over the domain D and that part S u of its 
total boundary S where displacements are prescribed; ui are, the prescribed 
displacements and ti the corresponding tractions, ajj is the stress 
tensor, and W* is the complementary energy density given by 

w * ( ° i j ) = K ° k k ) 2 + ( i + v ) a ^ ° j i ] / 2 E (2) 

Carnegie-Mellon University, Pittsburgh, Pennsylvania, USA. 
2Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio, USA. 
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for isotropic, Hookean material. (The usual indicial conventions are 
employed.) Anisotropic, elastic material is treated by suitable alter
ation of (2) and (3), below. While a fuller account of this theorem may 
be found in a good text, e.g., [1], our purpose is satisfied by the 
variational requirement 6V* = 0. 

The appropriate stress function for isotropic planar bodies is due to 
Williams [2] and is written as 

X(r,6) = X/(-l)m-1a2m_1r,n+1/2[-cos(m-3/2)e + 2 ^ cos(m+i/2)e] 

(3) 

+ C-l)m~it>2m 1 r m + 1 / 2 [ s i n (n i -3 /2 )6 - sin(m+l/2)6] 

+ ( - l ) m a 2 m r m + 1 [ -cos (m- l )e + cos(m+l)6] 

♦ C - l A 2 m r m + 1 [ - s i n ( m - l ) e + ^s in(m + l )e ]} 

where (r,8) are coordinates centred at the crack's tip in the usual manner. 
X(r,6) satisfies equilibrium by definition and the traction conditions on 
the crack's flanks by construction. The stresses are 

o n - Qr = (l/r) X > r + a/*2)XjQe o22 -> oQ = X^ r r 

o 1 2 - T r 0 = -[(l/r)Xf9],r
 a * 3 " T 6 z = ° C4) 

Oi3 ■* T r z = 0 a 3 3 ■*- a z 

and az is either null or given by v(ar + OQ) in isotropic plane stress or 
plane strain, respectively. The stresses of interest are assembled in the 
form 

a r 
ae \ = {a} = [S(r,6)]{a} 

Tr9] 
where [S] is a matrix whose entries depend solely on position as found by 
inserting (3) into (4), and 

{a}T = ■ja1b1a2b2a3b3a^b^..a2m_1b2m_1a2mb 2m-1 2m-1 2m 2m/ 

Thus the entries in {a} appear in sets of four so that truncation of (3) 
at m = M gives 4M coefficients to be found. 

Using G for the shear modulus and K for the usual function of Poisson's 
ratio in planar isotropic elasticity, the compliance matrix [C] is 
written 
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8G[C] = 
K + 1 K - 3 0 
K - 3 K + 1 0 
. 0 0 8 

and (2) is put into the familiar quadratic form 

W* = (l/2){a}T[S]T[C][S]{a} 

Typically, the displacement data u^ will be resolved in orthogonal dir
ections pertinent to the overall structure, or to the crack's position. 
Tractions ti must be resolved in the same manner as ui. Denoting these 
directions as (£,r|) we write 

M'J* {t} = |T(r,6) L |{a} and {u} 

Note that {tl is computed from (3) and (4) via Cauchy's formula and, per
haps, Mohr's circle, and that [T] is evaluated along S u only. 

With the foregoing representations (1) becomes 

V* = (l/2){a}T[X]{a} - {Y}T{a} 

in which 

W = J [S]T[C][S]dD, {Y}T = J {{i}T[T]dS 
D S 

(5) 

(6) 

Minimization of V* leads to 

[X]{a} = {Y} (7) 

as the algebraic problem statement*!*. Note that the problem's size is 4M 
irrespective of the number of data points on Su. We must, however, carry 
through the quadratures in (6). 

Code for this purpose has been devised. For a number of test problems 
considered, it was observed that {u} does not vary rapidly along S u but 
that the entries in [T] can. Hence a limited amount of data in {u} is 
interpolated so that {Y} is determined by a large number of points using 
Simpson's one-third rule. To determine [x], however, a more elaborate 
tactic is needed. The interval -ir < 0 < TT is divided into a dozen 
sectors, and Gaussian quadrature (using ten points radially and circum-
ferentially) is employed in each sector. Size of the sectors is not 
necessarily uniform; we have dealt with rectangular paths S u and let the 
corners and mid-points determine actual positions, as in Figure 1. 

Accuracy of the quadrature used to find {Y} is essential so that any rigid 
motion in {u} does not affect the result. We have observed that, by 
adding an arbitrary (and large) rigid motion to a given set of "active" 

tThis is the complement to the approach outlined in [3] for which traction 
boundary conditions on S are appropriate. 
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data {u}, a small change in {Y} could be produced. For this reason, an 
intuitive scheme has been devised whereby this effect is made negligible. 
Letting £ = r cos 6, n = r sin 0, we construct a new set of displacements, 

iL + u - OJTI 

u + v +0)^ ri o ^ 

and the quantity 

v' = -u' sin 9 + u' cos 9 

= v - u sin 9 + v cos 9 + car o o 

Summing the data along S u and setting Zur = Su^ = Zv = 0 to approximate 
the notion of no crack-tip movement gives three equations whose solution 
is an estimate of u0, v0, and OJ. The original {u} is then recovered. It 
was found that, where rigid motion is large relative to the active dis
placements, this scheme virtually negates the rigid motion. For rigid 
motion of the same magnitude as the active displacements, however, the 
scheme loses some accuracy. Owing to the care involved in quadrature 
along Su, the net effect is negligible in terms of the solution {a}. 
Hence, while we cannot rigorously account for rigid motion, we have found 
means for negating its influence. 

Some of our test problems give a sense of performance. We have determined, 
first, that S u is best taken as approximately equilateral and, second, 
that the crack's tip should be near the middle of the domain. Under 
these conditions, two additional test problems were solved. In the first, 
S u was rectangular and oriented such that its edges were parallel and 
normal to the crack's plane; {u} was determined by computing displacements 
from the series [3], having assumed that 

a. = -1.0 x 101"1 i = 1,8 (8) 

and that all other coefficients are null. In the second problem, a sim
ilar path S u was rotated clockwise 45 deg and the non-zero coefficients 
were taken to be 

a. = -1.0 x 101'1 b. = 1.0 x 101"1 i = 1,8 (9) 
l l 

(except that+ bz = 0), to obtain a more complicated set of displacements. 
Using these two data sets at 121 points along Su, as input, solutions to 
(7) were obtained as shown in Tables 1 and 2. These coefficients were 
then used to compute displacements and stresses on Su; agreement with 
values derived from (8) and (9) was within 0.013 percent of their re
spective maximum values. 

tClose examination of the bz term in (1) shows that it does not affect 
stress. In fact, b2 is proportional to a rigid rotation, just as s^ and 
b 0 - were they to appear - denote rigid translations. The code automat
ically sets bz to zero. 

uc = 
un 
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Other problems used to test the procedure were taken from earlier finite 
element results (in the elastic range) where stress intensity was known 
to within a few percent. That is, although highly reliable displacement 
data could be obtained, there is a modest uncertainty in the value of 
stress intensity based on the finite element data itself. Nonetheless 
the present method determined values of stress intensity within the un
certainty band (nominally 5 percent). It should be noted, however, that 
we found it advisable to interpolate the initial values of {u} to provide 
data at 120 to 160 nearly equispaced points on Su, and that M = 7 was 
required to achieve this result. The associated CPU time (1108, Exec 2) 
was about twenty seconds per case, with only modest storage requirements. 
Thus the procedure appears to be workable and to meet the needs stated 
at the outset. Moreover, this procedure provides vastly more resolution 
in the stress and displacement variation near the crack's tip than is 
usually obtained from finite element analyses. 

With this procedure in hand, it is useful to employ speckle photography to 
measure the displacement data {u}. This procedure has been developed 
[4,5] specifically to make in situ observations and may briefly be out
lined. The diffuse surface of an object and its associated speckle pat
tern caused by the illuminating laser is imaged onto a sensitized film 
plate. The result is a recording of a random variation of bright and dark 
spots whose size depend upon the characteristics of the optical recording 
system and are usually on the order of a thousand spots per millimeter. 
If the object is deformed, a new random variation can be recorded which, 
if superimposed upon the variation corresponding to the undeformed con
dition will result in a set of "speckle pairs" that can be related to the 
vector displacement field describing the deformation. If an unexpanded 
beam from a laser is passed through the developed image in the plate, a 
circular halo of light with a pattern of parallel fringes similar to 
Young's Fringes is observed. The distance between these fringes can be 
related to the displacement which occurred on the test specimen. By 
moving the laser beam around the image, a displacement field can be cal
culated.^ 

At this point, the coupling of the two techniques is in progress, and 
additional results should be reported soon. It is clear from preliminary 
work, however, that the effort is highly interactive: refinement of the 
computational procedure has been stimulated by the character of actual 
displacement data, and the orientation and shape of the path followed by 
the interrogating laser have been adjusted to meet computational require
ments. On this basis an overall procedure for extracting stress intensity 
value(s) from in situ observations is established. 
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Table 1 Known Coefficients and Computed Values 

i 

1 
2 
3 
4 
5 
6 
7 
8 

a. (known) 

-1.0 
-0.1 
-0.01 
-0.001 
-0.0001 
-0.00001 
-0.000001 
-0.0000001 

a. (computed) 

-0.99999422 
-0.10004858 
-0.00995341 
-0.00100015 
-0.00009944 
-0.00001922 
0.00000893 
0.00000250 

b. (known) 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

b. (computed) 

0.00000002 
0.0 
0.00000010 
0.00000005 
0.00000014 
-0.00000019 
-0.00000005 
0.00000001 
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Table 2 Known Coefficients and Computed Values (Crack at 45 Deg) 

i 

1 
2 
3 
4 
5 
6 
7 
8 

a. (known) 

-1.0 
-0.1 
-0.01 
-0.001 
-0.0001 
-0.00001 
-0.000001 
-0.0000001 

a. (computed) 

-0.99998467 
-0.10008076 
-0.00987082 
-0.00098246 
-0.00004756 
0.00003787 
-0.00003930 
-0.00000196 

b. (known) 

1.0 
0.0 
0.01 
0.001 
0.0001 
0.00001 
0.000001 
0.0000001 

b. (computed) 

0.99999324 
0.0 
0.00999148 
0.00100222 
-0.00008448 
-0.00001321 
-0.00002506 
0.00002333 

Figure 1 Geometry, Showing Data Path S u and Interior Quadrature Regions 
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ANALYTICAL DETERMINATION OF STRESS INTENSITY FACTORS OF 
ECCENTRIC CRACKS BY VARIATIONAL METHOD 

H. Kitagawa and H. Ishikawa* 

INTRODUCTION 

A direct application of variational methods to the analysis of a crack has 
not been found, except for analysis by finite element methods. A series 
of researches [1 - 4] has shown that a variational method can serve as a 
useful tool in the following cases: 
(1) Analyses of a cracked finite plate with good accuracy and rapid con

vergence [1, 2]. 
(2) Analyses of a cracked plate with complicated or unknown boundary con-

conditions, being combined with experimental stress analysis tech
niques [3, 4]. 

Previously the authors proposed an analytical method for determination of 
the stress intensity factors of a crack in a finite plate by a variational 
method [1, 2]. In these papers an analytical solution for a crack in an 
infinite plate was applied to the analysis of a crack in a finite plate. 
In the previous papers [1, 2], a rectangular plate with an edge crack was 
analysed by means of a stress function for a semi-infinite crack [5, 6] 
and the principle of minimum potential energy as a variational principle; 
accurate numerical results were obtained. However, there is a possibility 
that some reduction of accuracy might occur when the method is applied to 
such cases as internally cracked plates or mixed boundary value problems; 
some improvements or developments of the method may therefore be required. 

In this paper, the formulation of the variational principle is improved 
and extended into a general form more convenient for the analysis of 
various crack problems. To examine the accuracy of results and the 
applicability of the present method, two types of rectangular plates with 
an internal and eccentric crack, that is, a plate pulled by uniaxial uni
form tension and a plate pulled by rigid clamped ends (i.e. uniform dis
placement at the ends), are analysed. In the former case, the numerical 
results are directly compared with the results obtained by a collocation 
technique. The latter is analysed for the purpose of clarifying the fol
lowing phenomenon with regard to the behaviour of an eccentric crack, 
which has become of general interest and has remained unsolved. The 
phenomenon is that a slightly eccentric crack in a plate grows in such a 
fashion that this eccentricity is decreased. In this paper, it is found 
that the phenomenon is well explained by the concept of stress intensity 
factors. 

By two numerical examples described above, the availability of the new 
method proposed in this paper is thought to be assured. 

Moreover, the new method can effectively be applied to the edge crack 
problems analysed in the previous paper [1]. 

*Institute of Industrial Science, University of Tokyo, Tokyo, Japan. 
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FORMULATION OF VARIATIONAL PRINCIPLE 

Consider a mixed boundary value problem with prescribed boundary traction 
T^ over the boundary T0> and prescribed displacement u-̂  over the boundary 
Tu. For effective application of the variational principle to the analysis 
of mixed boundary value problems, the Hellinger-Reissner formulation [7, 8] 
is chosen. The functional IIR of the Hellinger-Reissner formulation is 
given by 

nD = A: \ \ a- -Cu- -+u- 0-B(a..)-F.u.ldS-/r f.u.dr 

-/r T.c^-u^dr CD 
u 

where o*-jj is stress; u^ is displacement; B(a.jj) is_the complementary 
energy function expressed in terms of the stress; F^ is prescribed body 
force; S is the area of the cracked plate; and T is the outer boundary of 
S, composed of T0 and Tu; T^ is the traction force. Equation (2) is the 
definition of the traction force. 

T. = a..n. (2) 
I ij j J 

where nj is the direction cosine of the unit normal drawn outwards on T. 
The Euler equations for equation (1) are 

K . j ^ j , ^ =Sijkl°kl 13) 

a.j;j+F. = 0 C4) 

where S^^^ a r e the compliance coefficients. In equation (1), o^i, T^ and 
u-̂  can be assumed to be independent of each other. However, in the case 
of crack problems, they have to be chosen so that the Euler equations 
(equations (3) and (4)) are exactly satisfied, by means of the analytical 
solution which satisfies the stress free condition along the crack sur
faces. 

In this paper, the body forces F^ in equation (1) are assumed equal to 
zero. Applying Gauss' theorem to equation (1) and substituting equation 
(4) into it, 

nR " K Tiuidr" iJr V i ^ r u iV r + / r V i d r <5> a u a u 

or, in matrix form, 

nR = JfT ITHdr- \fv -T^dr";r HTl d r + /
r lTH.dr (6) 

o u o" u 

where the superscript T is the transpose of a matrix or a vector. It is 
noted that this modified form of the Hellinger-Reissner formulation can be 
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conveniently employed for various classes of crack problems, since one can 
avoid the area integral in S that includes the region of the high gradient 
of stress near a crack tip, thus avoiding the problems of accuracy 
associated with numerical integration in such regions. Instead, it is 
sufficient to carry out the line integrals on T using equation (5) or (6), 
which is expected to be comparatively simple and accurate. 

PROCEDURES OF ANALYSIS 

To illustrate the method, the results of analytical calculation for two 
types of internally and eccentrically cracked rectangular plates will be 
shown. One is pulled under uniform tension (shown in Figures 1 and 2) 
and the other is pulled under uniform displacement (at its clamped ends) 
(shown in Figure 3). 

Since the former problem has been solved by Terada and Isida [9] with the 
collocation method, the accuracy of the results obtained by the varia-
tional method can be examined by comparison with their results. 

Analytical Solution for an Internally Cracked Plate 

In the theory of two-dimensional isotropic elasticity, the stresses (ax, 
°y> Txy) anc* the displacements (ux, uv) are generally expressed in terms 
of two analytical functions ())(z) and fi(z) of the variable z = x + iy. 
They are 

o +o = 2[<Kz)+<Kz)] (7) 
A y 

-a +a +2ix = 2[(7-z)<t>'(z)-<Kz)+fi(z)] (8) 
A y x.y 

2y(u +iu ) = n/<Kz)dz-/ft(z)dz+(z-z)(J)(z) (9) 
x y 

where i is the imaginary number; n = (3-v)/(l+v) for plane stress and 
n = 3-4v for plane strain; u = E/2(l+v); E and V are Young1s modulus and 
Poisson's ratio, respectively; ( ) or ( )' denotes conjugation or dif
ferentiation, respectively, with respect to z. 
When <|>(z) and ft(z) satisfy the conditions of traction free crack surfaces, 
they are expressed [10, 11] as 

9 A n N n L~ A z N £r> A z M ,r -, n=0 n £ D n nr . n=0 n ~ D n rin. *(z) = ♦ n g 0 Bnz flCz) = - n|0 Bnz (10) 
V z2-a2 V z2-a2 

where A n and B n are unknown complex coefficients; N is a finite integer; 
2a is crack length; and the coordinates are shown in Figures 1, 2 and 3. 
Moreover, (J)(z) and ft(z) have to satisfy the conditions of single-valuedness 
of the displacements, that is, the following equation has to be satisfied 
for an arbitrary closed curve L around the crack. 

n/L<t>(z)dz-/Lft(7)dz" = 0 (11) 
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Application of Variational Principle 

Rectangular plates with an eccentric crack, as shown in Figures 1, 2 and 
3, are analysed. On account of the symmetry of the problem with respect 
to the x-axis, the unknown complex coefficients (An and Bn) in equation 
(10) have the property that An and Bn (n = 0,1,2,...,N) are real. From 
the condition of single-valuedness of the displacements, equation (11), 
the following relation between unknown coefficients is obtained. 

nil A2N M ^ 0 (12) 

where M(2n) = (2n-l)a2M(2n-2)/(2n) 

M(0) = 1 

Then, from equations (2), (7), (8), (9), (10),,and (12), the traction 
forces T_ and displacements u_ are given in a matrix form by 

T = 

where 

= R a 
a — 

U a a — 
y 

R = 
a 

h1. x 
h1 . 

L y 

■v^-vi 
k-
k 

N N+1 
•gxgx ' 
N N+1 

•gygy • 

2N 1 
■'
g
x 
2N 

••gy J 
iN,N+l .h h x x 

.iAN+1. 
y y 

2N n x 
2N 

(13) 

(14) 

(15) 

(16) 

(17) 

and all of gm, gm, h m and h m (m = 1,2,...,2N) are the functions of z. 
x y x y 

[Example 1] "A rectangular plate with an eccentric crack under uniform 
tension" 

In this case, the terms including Tu vanish in equation (5) or (6). 
Furthermore, only the case for which the body force F̂  is equal to zero is 
addressed. Then, substituting equations (13) and (14) into equation (5) 
or (6), 

II 1 T „ T _ — a U 0̂  - ot £ (19) 

where i /P(RT U + UT R )dT 2 Tv a a a aJ 

Iv UT T dT 
(20) 
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From the stationary condition of equation (19) with respect to a,, we have 

a = H"1 ^ (21) 

Then, from equation (21), all of coefficients in equation (15) are obtained. 

When the coordinates are given as shown in Figures 1, 2 and 3, stress in
tensity factors are defined by 

KT. - iKTT. = 2 ̂211 Urn U T T T c H z ) ! (z) (z . = ±a) (22) 

Therefore, stress intensity factors are given by equations (21) and (22). 
Figures 1 and 2 show the numerical results of dimensionless stress inten
sity factors, FJA and FIB> a t t n e tips A and B of the crack, respectively. 
These present results by the variational method coincide with the results 
[9] by a collocation technique up to three or four figures, as shown in 
Table 1. 

Next, to check the accuracy, the variations of F ^ and Fjg with increase 
of the number of terms 2N in equation (10) are examined. Table 1 shows 
a typical example for the cracked plate with e/w = 0.3 and X = 0.3 (see 
Figure 1). The numerical convergence is quite excellent and the errors 
are less than one per cent when 2N is more than 6. 

[Example 2] "A rectangular plate with an eccentric crack under uniform 
displacement (clamped ends)" 

Also, in this case, the body forces F̂  are assumed equal to zero. Sub
stituting equations (13) and (14) into equation (5) or (6), we have 

n„ 1 T „ 1 T „ T „ T „ 
a H a - T a H a - a G + a G 2 - 2 - (23) 

where H = i f (RT u + UT R )dr 
_a 2 T v_a _a _a or 

H = i T (RT U + UT R )dr 

— u — 

(24) 

From the stationary condition of equation (23) with respect to ex, 

(H - H ) v a u (G G ) (25) 

And then, stress intensity factors are obtained from equations (22) and 
(25). 
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Numerical results are shown in Figure 3. It is found that under the 
appropriate condition of crack length and eccentricity of the crack, the 
stress intensity factor Kjg at crack tip B (with smaller distance from 
the centre of this plate) can be slightly greater than the stress intensity 
factor KjA at crack tip A. 

The uniform displacement condition given to an asymmetrically cracked 
plate causes a negative in-plane bending moment which acts so that the 
crack tip A closes. An unsolved phenomenon, that a slightly eccentric 
crack in a plate grows such that the eccentricity decreases, can be ex
plained by a difference of the stress intensity factors. A similar argu
ment can probably be applied to a double edge cracked plate with clamped 
ends or a pin-loaded eccentric plate. 

CONCLUDING REMARKS 

Based on a variational principle, a new analytical method for determination 
of the stress intensity factors of a crack in a finite plate is proposed. 
By means of a modified Hellinger-Reissner formulation as presented above, 
mixed boundary crack problems can be solved. The numerical results indi
cate that by the present method an accurate evaluation of the stress 
intensity factors can easily be done with rapid convergency. 

A phenomenon, that a slightly eccentric crack in a plate pulled by cyclic 
loads at the clamped ends grows so that the eccentricity decreases, is 
well explained by the stress intensity factors obtained by the present 
method. 
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Table 1 Convergence and Comparison of Dimensionless Stress Intensity 
Factors of an Eccentric Crack in a Square Plate under Uniform 
Tension 

e/w=0.3, A=0.3 
2N 1 

6 
8 

12 

16 I 
20 

24 

26 

28 

30 

32 

collocation 
method* 

FIA 

1.056 

1.059 

1.060 

1.063 

1.064 

1.065 

1.065 

1.065 

1.065 

1.065 

1.066 

FIB 
1.054 
1.055 

1.057 
1.060 

1.061 

1.061 

1.062 

1.062 

1.062 

1.062 

*reference [9] 
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

Figure 1 Dimensionless Stress Intensity Factor (FIA) of the Tip (A) of 
an Eccentric Crack in a Plate Under Uniform Tension 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

Figure 2 Dimensionless Stress Intensity Factor (FIB) of the Tip (B) of 
an Eccentric Crack in a Plate Under Uniform Tension 
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*wb.O 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

Figure 3 Dimensionless Stress Intensity Factors (FJA and Fjg) of an 
Eccentric Crack in a Plate Under Uniform Displacement 
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A FINITE ELEMENT ANALYSIS FOR DETERMINING 
DUGDALE MODEL SOLUTIONS OF CRACKED BODIES 

K. J. Lau* and C. L. Chow** 

INTRODUCTION 

In recent papers [1,2,3], the authors have introduced a conic-section sim
ulation method of finding the stress intensity factor; the displacements 
on the crack surface calculated by the finite element analysis are used 
to match each segment on the crack surface with a segment on an equivalent 
ellipse corresponding to an opening crack in an infinite sheet under 
uniform tension [4]. That segment on the crack surface is then taken to 
provide an estimate for the stress intensity factor as quantified by the 
infinite sheet configuration. Mathematically, this may be expressed as 

where p1 = uniform pressure in infinite sheet containing 
the simulating crack 

a ' = half-crack length of the simulating crack 

The matching can be effected either (i) by direct fitting of the displace
ments onto an elliptic curve with the crack tip as an apex [1,2], or (ii) 
by first fitting these displacements onto another conic-section (parabola 
or hyperbola) and then determining an equivalent ellipse which provides 
the same value for K through a relation between crack surface displacements 
and the strain energy release rate as described by Key [3,5], The method 
has been proved to be of acceptable accuracy even when a relatively coarse 
finite element mesh and the simple constant-strain triangular elements are 
used in the finite element analysis. 

Also based on the same infinite sheet crack configuration is the Dugdale 
strip yield model [6] characterized by the crack opening displacement [7]. 
In this model (Figure 1) an ideal elastic-plastic material is considered 
and the crack is assumed to deform elastically under the action of ex
ternally applied uniform tension p 0 with a tensile stress a y acting over 
a hypothetical extension of length s at each end of the crack. ay can be 
identified with the yield stress of the material. By superposition of 
the two stress fields and consideration of the finiteness of the stresses 
at the location of the hypothetical crack tip, it can be shown that the 
load/yield-stress ratio is given by [6] 

o 4 . - i / s V 2 2 -i a f0, — = — sin I ~ 1 = — cos — (2) 7T 1 2 a J TT a K J 

y \ e/ e 

*Hong Kong Polytechnic, Hung Horn, Hong Kong. 
**University of Hong Kong, Pokfulam Road, Hong Kong. 
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(sec * v ) 

and the COD is given by 

where £y is the elastic yield strain. By the relation between £y and the 
overall strain on a given gauge length, critical COD-values can oe applied 
to real structures for which the overall strains are easily measurable. 

The present paper deals with the determination of the COD in cracks of 
arbitrary shape using the ellipse parameters in the K-determination 
through the conic-section approach. The advantage of the method is that 
both models have been built on the same Griffith crack geometry so that 
correspondence between p! and p 0, ae' with ae in equations (1) and (2) 
makes the determination of COD just a convenient extension of the K-
finding process. 

NUMERICAL DETERMINATION OF DUGDALE MODEL SOLUTION 

In the original Dugdale model a crack in an infinite sheet was considered 
and the load/yield-stress ratio was obtained through the finiteness of 
the stresses at the hypothetical crack-tip region, which is equivalent to 
a cancellation effect between the elastic stress intensity factors due to 
the two stress fields p Q and Oy. In a cracked body of arbitrary shape, 
the same principle can be applied. Thus if the stress intensity factor 
Kjp due to the uniform pressure p 0 is expressed as 

KT = p a 1|2 kT (4) 
Ip *o e Ip v J 

and the stress intensity factor Kjy due to a crack opening Oy at the crack 
tip region is expressed as 

KT = a a 1/2 kT (5) 
Iy y e Iy 

where kjp and kjy are geometrical correction factors such that 

■ * « . ( ■ . ) 

(a> aeV 
IP 

and kT = k, Iy Iy 

then according to the Dugdale's theory 

KT - KT = 0 , Ip Iy 

or, from (4) and (5), 

P kT 
a kT y Ip 
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The crack opening displacement can be found by superposition of the dis
placements obtained from the two finite element analyses, involving p 0 and 
Oy as 

k 
6 * = 6 * *2. _ $ * (7) 
d P kip y 

where 6p* and 6y* are the crack surface separations due to unit magnitude 
of p 0 and Gv respectively, while 6j*, the superposed value, is the overall 
COD corresponding to unit magnitude of ay. 

The above method of analysis was carried out by Hayes and Williams [8] 
using Bueckner's formulation [9] in the treatment of finite element 
analysis results, which is essentially an energy approach requiring at 
least two sets of finite element calculations for each loading system so 
that the Dugdale model solution for one particular combination of a and 
ae values necessitates four sets of finite element calculations. On the 
other hand, using the conic-section simulation approach, only two finite 
element analyses are necessary for any particular combination of geometry 
and loading system. Furthermore since both the Dugdale model and the 
conic-section analysis methods are built on the Griffith crack geometry, 
it is possible that closed-form solutions can be applied to reduce the 
amount of the finite element calculations. Specifically if the solution 
for the externally applied load for a particular value of ae is obtained, 
then the values of COD for different values of s can be calculated through 
the modifications of equations (2) and (3) so that no finite element 
calculation involving the a v geometry is necessary. This is described in 
the following section. 

DUGDALE MODEL SOLUTIONS FROM SIMULATION ELLIPSE PARAMETERS 
Three ways of implementing the ellipse parameters approach for the finding 
of COD are considered: 
Method A: In the conic-section analysis applied to the displacements of 
two nearby points on the crack surface, the segment between these two 
points is matched with a segment on the Griffith crack opened by uniform 
pressure and having the same stress intensity factor K (Figure 2). The 
actual value of the surface displacement at the middle of the segment is 
preserved in the resulting simulation ellipse. Within this ellipse model, 
the superposition of a uniform tensile stress over a length s on the crack 
surface adjacent to the crack tip to produce zero value of resultant K 
can be quantified according to (2) as 

Tip ' s 0 . 2 o ro>. 
FT = 2 s i n 40-T W 
e y 

while the corresponding COD produced is given by (3) as 

« - i £•■>■>.£ m 

where various terms in the above equations are defined in Figure 2. Re
turning to the actual crack under consideration, the necessary value of 
the stress a v in the region s to produce the stress intensity factor will 
be different from Oy*, but the value of the COD should remain the same, 
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subject to the validity of two assumptions; firstly, the displacements of 
the points Pi and P2 (Figure 2) must be truly representative of the crack 
tip stress intensity factor; secondly, the crack shape produced by uniform 
stress o*v in region s in the real crack system should be functionally 
similar to that produced by a uniform stress av

! in the region s of the 
model system. 

Method B: Each simulation ellipse corresponding to a segment on the actual 
crack surface is considered in turn with respect to a given value of s. 
The effective change in crack surface separation at r = s produced by ay' 
over the length s is calculated as 

4p'a ' / ,2 \ 1 E „ a ' a • 

where the first term on the right hand side is the separation due to p0' 
alone and the second term is the COD as given by equation (3). An average 
is taken of the 6v-values from all the simulating ellipses and the crack 
opening displacement is then evaluated as the difference between the crack 
surface separation produced by the actual load applied as calculated by 
the finite element analysis, (interpolated if necessary) and the average 
6V-value. This method is in principle the same as method A except that 
tne effective stress intensity factor is now taken as the average value 
represented by the whole crack profile. Furthermore this method is more 
convenient for treating values of s that do not match with the nodal 
positions of the finite element mesh used. There is however one minor 
restriction in that the aef-values of the simulation ellipses at points 
close to the hypothetical crack tip may sometimes fall short of s so that 
in some extreme cases, sufficient 6y-values may not be available to give a 
good average value. 

Method C: Both methods A and B are subject to the assumption that 
equation (10) governs the change in crack surface separation due to oy on 
the actual crack surface. To check whether this equation based on the 
original Dugdale model adequately represents the crack profile produced, 
a more practical assumption is considered - that the ratio of the displace
ments due to the two sets of loadings in the actual system remains the 
same as that in the model system. Since the displacements are to be pro
duced by the loading systems giving the stress intensity factors of equal 
magnitude as reflected in an opening displacement, the effects of finite 
width, etc., on these representative displacements should be equal. Hence 
in this third method, a ratio of displacements is obtained as 

6 
JL = i ™ *: ( in 
P n-^ 

whence the COD can be found as the product of (1 - Sv/6p) and the actual 
displacement 6p obtained by the finite element analysis. 

In the above methods the COD-values are found with no reference made to 
the load/yield-stress ratio in the actual system. An approximation pro
cess is now used to transfer the value of 0yf in the model system to that 
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of 0y in the actual system by using the correction factors of some stan
dard configurations. Thus o*y is estimated as 

f - = ki (s, W - a) (12) 
y 

where ki corresponds to the mode I correction factor function k:(ae, W) 
of the fully loaded crack in a plate of finite width 2W. 

DISCUSSIONS AND CONCLUSIONS 

Due to the space restriction in this presentation, only the results ob
tained for a centrally cracked finite-width plate geometry are presented. 
Results for other configurations can be found in [10] and the COD-values 
by the methods A and B are compared in Figure 3 in dimensionless form as 

6* = iTw 6 W 
It can be seen that remarkable agreement in the computed results has been 
achieved except for the combinations of the high ae/W and s/ae values. 
The reason for the disparities is probably that finite-width effect in 
these cases renders the displacements of the points remote from the crack 
tip inadequate in the representation of the crack-tip stress intensity 
factors. Method B is expected to produce more reliable results in these 
cases provided that sufficient 6y-values are made available for the aver
aging process. This provision is found to have been largely satisfied 
except for only a few extreme cases. The results from method C are found 
to be practically co-incident with those from method B for most cases so 
that, for clarity of the plotting, they are not shown in the same graph, 
but are given in Table 1 together with those of method B and the results 
from reference [8]. Also shown in the table are the estimated values of 
the load/yield-stress ratio. Since satisfactory agreement can be observed 
between the results of the present method and that of Hayes and Williams 
[8], it may be inferred that conceptually similar processes have been ex
ecuted in relating the stress ratio to the plastic zone size through 
equating the magnitudes of the K-values from the two stress systems. 
Comparison of the COD values reveals that appreciable disagreement between 
the methods B and C exists only at the high s/ae values and a/s = 0.1 or 
0.2, i.e. when the plastic zone length is much larger than that of the 
actual crack length. This establishes the validity of equation (10) as 
mentioned earlier. Comparison with the COD-values given by Hayes and 
Williams show rather disappointing discrepancies. One major problem in 
both approaches is that the COD is seldom a large fraction of the dis
placement due to the external applied stress system so that small per
centage error in the displacement calculations may become magnified in 
the COD-values. From the nature of the finite element mesh used by Hayes 
and Williams, which consists of coarse grids with constant element width 
along the line of the crack length, underestimates of the displacements 
are expected. This probably explains the discrepancies between the COD-
values for the central crack case. Nevertheless agreement in the results 
may be considered as satisfactory when the plastic zone size is not too 
large as compared with the actual crack size while the accuracy of each 
method depends heavily on the accuracy of the displacements obtained. 
The present methods via the conic-section analysis follow closely 
the original idea of representing a crack-tip strain field by an opening 
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displacement. Agreement among the three methods of implementation lends 
credibility to the principle used and the practically constant values of 
Qy! and 6y from different simulation ellipses for different sections of 
the crack surface in practically all cases under consideration, as exem
plified by Table 2, further confirm the validity of the method. 
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Table 1 COD for Centrally Cracked Plate in Uniform Tension, H/W =3.5 
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Table 2 a' and 6 * Values Obtained from Method B 

r/a e 

0.1667 
0.2250 
0.3000 
0.3917 
0.4958 
0.6083-
0.7500 
0.9167 

a »/a e e 

2.4593 
1.3611 
1.1268 
1.0401 
1.0066 
0.9841 
0.9720 
0.9761 

o 7p y ro 

1.6960 
1.6933 
1.6967 
1.7018 
1.7061 
1.7111 
1.7152 
1.7130 

6 * 
y 

1.581 
1.656 
1.704 
1.734 
1.751 
1.764 
1.773 
1.769 

s/a = 1.4, a /W = 0.6, 6 * = 2.700 

Figure 1 Geometry of Slit and Equivalent System for Dugdale Model 
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(a) 
ACTUAL SYSTEM 
WITH P0 OVER 
ENTIRE CRACK 
SURFACE 

(b) _. 
MODEL SYSTEM 
WITH PQ OVER 
ENTIRE CRACK 
SURFACE 

Figure 2 Actual Crack Shape and Simulation Model System 

Figure 3 COD for Central Crack Under Uniform Tension, H/W =3.5 
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ANALYSIS FOR THE PROBLEM OF MISFITTING INCLUCION 
AND CIRCULAR ARC CRACKS IN A SHEET 

Ram Narayan*, R. K. Pandey** and B. N. Ganguli*** 

INTRODUCTION 

Tamate [1] combined together the inclusion and straight crack problem and 
obtained the solution of the problem in series form. An effort of com
bining together the misfitting inclusion of different materials and cir
cular arc crack problems forms the subject matter of the present paper. 
Analytical solution of the problem is given in series form and complex 
variable approach of Muskhelishvili [2] is used throughout. 

BASIC EQUATIONS AND STATEMENT OF PROBLEM 

Let the region S be the entire plane, cut along the arc LS(S=1> 2) of a 
circle of radius R with the centre at the origin of z=x+iy=r exp(i8). 
The arc Ls is assumed to lie symmetrically on the x-axis and subtend an 
angle 2a at the centre. By using the complex potentials (|>(z), ̂ (z) which 
are defined in S, we define a new function W(z) in the following manner: 

W(z) = *(R2/z)-(R2/z)*'CR2/z)-CR2/z2)*(R2/z) (1) 

Whence iKz) can be expressed in terms of c()(z) and W(z) as 

*(z) = CR2/z2)(j>(z)-(R2/z2)W(R2/z)-CR2/z)(()'(z) (2) 

where the bar denotes the complex conjugate. 

In the absence of body forces, the stress components in polar coordinates 
ar, 00, Tr0 and the displacement components Ur, UQ for the elastic sheet 
occupying the regions S are expressed in terms of cj)(z) and ̂ (z) as 

Ox+oQ = 2[<|>(z)+<Kz)] (3) 

ViTr6 = <Kz)+<Kz)-z<l>f(z)-(z/z)iKz) W 

2y fe {(V iue)exp(ie}f = i z [M>(z)-<f)(z) 

+ z cj)'(z) + (z/z) iKz)] (5) 

* Department of Mathematics, Bararas Hindu University, India. 
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where y is the shear modulus and K=3-4V for plane deformation, K= ( 3 - V ) / 
(l+v) for generalised plane stress, v being Poisson's ratio. The subscript 
following a comma stands for partial differentiation. Equations (4) and 
(5) one may write as follows: 

}2 /-•>! - r 7 / n 2 ViTr6 = *Cz)+WCRVz)+z(z/Rz-l/z)^(z) (6) 

2 y f e | ( V i U 0 ) e x p ( i e ) } = i^[K<l>(z)-W(R2/^)-'i'U/R2-l/z)^ir)](7) 

Let an infinite elastic plate, isotropic and homogeneous, occupy the afore
mentioned regions S and be cut out by a circular hole of radius c with 
its centre at any point M(M may be complex). An inclusion of different 
elastic material of radius (c+n), (r\ is of the order of displacements 
admissible in elasticity theory) is supposed to be inserted and bonded to 
the hole. Further it will be assumed that the stresses vanish at infinity 
and the edges of the crack are free from external tractions. The crack 
and the hole do not overlap. 

The boundary condition of the problem can be expressed as follows: 
(i) At infinity, 

<|)(z) = 0(z"2), iKz) = °(z~2) (8) 

whence at the origin, 

W(z) = 0(1) (9) 
+ + 

(ii) on the rims of the crack L , o~+ir = o; 
s' r r$ 

<f>+(£)+W~(£) = 0,<f>"a)+W+(Q = o (10) 

where £ is the coordinate of the point on the cut Ls and superscripts 
+ and - refer to the boundary values of the functions as z approaches from 
the inside and the outside of the arc Ls respectively. 
(iii) On the common circle r=c, when origin is considered as M, 

(a +ix Q) = (a +ix Q ) . (11) 

^ r vdJ v r rG I 

(ur+iue)-(ur+iu0)i = n (12) 

where the subscript i refers to the inclusion. 
COMPLEX POTENTIALS FOR THE PLATE AND FOR THE INCLUSION 
Since the equation (10) are dual homogeneous Hilbert problems for two 
functions <f>(z) and W(z), which are analytic in the entire plane cut along 
Ls we can readily construct the complex potentials cf)(z) and W(z) for the 
infinite plate which satisfy the conditions in (8 - 10) by the use of 
Muskhelishvili's technique. Taking into account the fact that cj)(z) and 
W(z) could have poles of various orders at z=M, we can write them as 
follows: 
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where 

!8}-**v-jUi}**i v-M)j 
' J=2 J=o J 

I H {Af} + I H (z-M)J (13) 
j= l J l j=o J J 

X(z) = [z-R exp( - ia ) ] " l / 2 [z -R exp( ia ) ] ~n [z+R exp( ia ) ] " 1 / 2 

[z+R e x p t - i a ) ] " ^ 2 (14) 

means the branch, ana ly t i c in the e n t i r e plane cut along Ls such tha t 
A and H . 

O ±3 
X(z) -> (1/z2) for |z| -*- °°. The coefficients F+j and H.^ are to be deter
mined. 

The origin of the coordinate system is now shifted to M. The functions 
{(j)(z), ̂ (z)} transform to new functions {(J)i(zi), ̂ i(zi)}. We drop the 
suffix 1 for the convenience but remember these are the potentials obtained 
after shifting the origin to M. By the conditions (8) and (9), we get 

F . = J L H ,. , (j > 2), 
"J s=o S - ^ + s ) "" 

oo 

F. = - I L H. (j > o), (15) J L. -S 1 + S W — J ' K J 
J s=l J 

oo oo 

Y L H , ., = o, 7 L H = o L s -(s+1) L. -s s-1 s=o v J s=l 

where the constants L±s are known quantities determined from the relation, 

[z+m-R exp(-ia)]_lj2[z+M-R exp (ia) ]" 1 / 2 [z+M+R exp(ia)]~1/2 

[z+M+R exp(-ia)]_1/2 = \ L. zJ, 
j=o 3 

L-(2j+l) = L2j+1 = °' L-(2j+2) = " L2j' (j > o ) ( 1 6 ) 

The function (j)(z) in (13) and the corresponding function i[>(z), obtained 
from (2) can be expressed in the following Laurent series in the region 
c < izl < R: 

Kz) =112 J C z \ i|;(z) =1/2 J D z3 (17) 
-j = _ o o ^ i = _oo J 
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C-i = o, 
oo C . = F . + I L H , . s ( j > 2 ) , 

~3 ~3 s t 0
 s - ( J + S ) U ~ J' 

00 

C. = F . + I L H. ( j > o ) , 
3 3 s = 0

 s 3 " s ~ 

D_i = o 

D , = ( j - l )C f, - 0 - 2 ) s ^ -s j + s - 2 ^ - 2 ) , 

D J - F - 0 * 2 } - 0 + 1)C. 0 - I L H ,. _ , ( j > o) J+2 s ^ - s - Q - s + 2 ) ^ - J 

(18) 

(19) 

Thus the form of the function cj>(z) and ip (z) are determined for the infinite 
elastic sheet which satisfy the condition at infinity as well as along the 
rims of the crack L . 

The potentials <(>• (z) and \\>- (z) for inclusion are analytic functions for 
the region |z| <̂  c, hence can be written as 

|> (z) = I Y. z3, ̂ (z) = I S z \ 
j=0 J j=0 J 

(20) 

where the coefficients Y^ and S^ have to be determined by the conditions 
(11 - 12). J J 

By the conditions (11) and (12), one may obtain 

C +C -D-2c * = Y +Y , 
0 0 O O 

[(KCo-Co)-D.2c'2](ui/u) = KYo-YQ+4nyi/c 

C.c^ + U + l J C ^ c ^ - D ^ ^ c " ^ 2 = Y., (j 1 1) 

[KCjcj-(j+l}-C-jc"j+D_j-2c";i'2](yi/u.) = K± Y. 

C^ c ^ - U - D C . c ^ D . ^ c ^ " 2 = (l-j)Y.-S._2, (j > 2) 

[ K C ^ . c - ^ a - D C . c ^ D . ^ c ^ 2 ] ^ ^ ) = (j-l)Yj+S._2 J 

When (21 - 23) are solved, the following expressions are obtained 

(21) 

(22) 

(23) 
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KU./y+l u , / u - l 
Y- = "T^Ti c C. - - ^ — r - ( j + l ) c J - C . - c J D . 0 

3 K + 1 3 K^+l L J -3 -3-2 J 

4U, 

( V ^ ' o J U - 0 ) ' 

- j - 4 
- j - 4 " j 

: i D . - ( j + 2 ) 2 c " : i " 2 C S, = ( j + l ) c J "D , / 1 + c J D . - ( j + 2 ) 2 c J "C . 9 ( j > _ o ) , j - 2 " -

(24a) 

(24b) 

C • = - i , „, [ ( j - l ) c 2 j C.+c2 j*2D. J ( j > 2 ) , 

8 y i c K y i / y - K i - u i / y + l _ 
D - 2 = 2 U . / U + K . - 1 2 y . / y + K . - l ^ V ^ ' 

KU./u-K. 
D . = ( j + l ) c 2 C . 7 — - — c J C . ( j > 1 ) , (25) 

where 6 . is Kronecker delta. 

Equations (18), (19) and (25) give the following sets of infinite linear 
equations of H. and H .: 

T L H , . . = o , L s - ( s + 1 ) ' (26a) 

I K H _ n + o = 1'2 ^ T T T I 0 - 1 ) ( l - c 2 ) | I K H s - ( j + s ) Ky 
/ y - i r 

s - ( j - s ) 

c» i oo oo - i 

y L H . [ + y L H f. . - y L H t. J < 
5=1 " S 3+S\ S = l ^ " ( J - S ) S=0 S - ( : , + S ) J 

, 2 j -2 

0 > 2) , (26b) 

y L H . = o L - - s s - 1 s = l 
(27a) 

_ 4 c n y . ( °° °° ) 
y L H = - •=—T—v +1/2] y L H - y L H L - s s 2 y . / y + K . - l ) L s - s 1 - s si V K 1 (s=o s = l ) s = l 

hl/2 
K y . / y - K . - y . - y . / y + l ( °° 1 1 1 1 y L H - y L H 2 y . / y + K . - l I u s - s ^n - s s 

K r H 1 Cs=o s = l 

y L H - y L H f, L s -s z-1 -s s i s=o s= l 
(27b) 
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I L H. (j+l)(l-c2) T L H ,. , L, -s j+s KJ J K J L s -h+s) s=l J s=o KJ J 

Ky./y-K. ( °° °° ) o- o 
+ «* - 4 I L H. " I L H. c2j+2 

^i/y+Ki ls=o S J"S s=l "S H 
(j > 1), (27c) 

The constants HJL and H_j are determined from the equations (26) and (27) 
by assigning values to yi/y, K, Ki, a, c, R. The values of F+j are deter
mined from (15) using the values of H+j determined earlier. Thus the 
potentials {<|>(z), ̂ (z)} a r e completely known. The coefficients Yj and Sj 
are determined by (24) with the help of the values of H±j and F+j deter
mined previously. Hence (<|>i(z), ̂ i(z)} for inclusion is also known. The 
stress field for matrix and inclusion can now be determined with the help 
of (3-5). 

STRESS INTENSITY FACTORS 

By using the definition given by Sin, Paris and Erdogan [3], the stress 
intensity factors at the crack-tip for the case when the inclusion and 
crack are concentric can be expressed as K = (Ki-iK2). 

H^lcos ja x cosa -JH^ + I < H ^ + H ^ H 

cos ja - £ <H: -H . >sin ja [ sin ja , 

CO 

+ I in^WVicos ja 

00 OO 

H (J r )
 + I { ^ W f } cos ja - I {HJ^-H^H 

sin ja | cos a . 
Numerical results for the stress intensity factors have been calculated 
under plane deformation for the following values: a=10°, yi=y=5.60xl01l 

gm/cm2, vi=V=.339, c=(l+e), R=l.5(.25)2.5. The results are given in 
table form. 
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It is clear from Table 1 that stress intensity factor numerically decreases 
as radius of the cracks increases. 
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Table 1 

R = Radius of the 
Crack 

1.5 
1.75 

| 2.00 
2.25 

Symmetric Stress 
Intensity Factor 

1011 x n 

-1.00150 
-0.79525 
-0.65105 
-0.54567 

Skew Symmetric 
Stress Intensity 
Factor 

K2 = 
IO 1 1 x n 
-0.04382 
-0.03474 
-0.02843 
-0.02383 
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GREEN'S FUNCTION FOR THRU-CRACK 
EMANATING FROM FASTENER HOLES 

T. M. Hsu* and J. L. Rudd** 

INTRODUCTION 

The application of fracture mechanics to fatigue crack growth and residual 
strength analyses has resulted in much progress during the last decade. 
Yet the presence of cracks in engineering structures still poses many 
serious research problems which remain to be solved. One such problem is 
a crack emanating from an inelastic field near a fastener hole, such as 
produced by an interference-fit fastener or a cold-worked hole. 

Fatigue cracks usually originate in the regions of high stress concentra
tion, which exist notwithstanding careful detail-design procedures. 
Hardly any assembled structure is free of geometric discontinuities, such 
as fastener holes and access holes. Since a hole is a source of stress 
concentration, and since there may be many holes involved in any one 
structure, it can be anticipated that fatigue cracks will start at some 
of these holes during its service life. A review of U.S. Air Force air
craft structural failures [1] revealed that cracks emanating from fastener 
holes represent the most common origin of these failures. 

The stress-intensity factor, which generally depends upon crack length, 
remote loading and structural geometry, has been employed to characterize 
the severity of the crack-tip stress field. To date, there has been much 
useful work done on the problem of determining reliable stress-intensity 
factors for cracks emanating from fastener holes. Almost all of these 
analytical determinations are based upon modifications of a solution 
obtained by Bowie [2] for cracks emanating from a circular hole in an 
infinite elastic sheet. For cracks emanating from an inelastic field 
near a fastener hole, the stress intensity factors could be estimated by 
using the weight function approadi as discussed by Bueckner [3 - 6] or the 
reciprocal theorem proposed by Rice [7]. Both techniques require a 
knowledge of the unflawed stress distribution in the region of the hole. 
Paris et al [8] has combined these techniques with the finite-element 
method to develop a weight function for the single edge cracked strip. 

The closed form expressions for the weight function for edge cracks [4, 9], 
centre cracks [10] and collinear cracks [6] in a wide panel are available. 
But, the closed form weight function for cracks emanating from a fastener 
hole is not available. Development of such a function will be very dif
ficult, if not impossible. Therefore, the weight function for a straight 
crack has sometimes been used to estimate the stress-intensity factor for 
radial cracks emanating from a circular hole, [11 - 13]. For a large 
crack, where the influence of a fastener hole on the stress intensity 
factor is small, such an approximation gives good results. However, for 
the case of a small crack, say a/r S 1*0, such an approximation could be 

*Lockheed-Georgia Company, Marietta, Georgia, U.S.A. 
**Air Force Flight Dynamics Laboratory, Wright-Patterson AFB, Ohio, U.S.A. 
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significantly in error. Grandt [14] used the reciprocal theorem due to 
Rice [7] to develop the following equation which estimates the Mode I 
stress intensity factor, Kj, for cracks emanating from any type of circular 
fastener hole: 

^ = f P.h dr = |_ C p(x) gl_ dx (1) 
r B o 

where p is the stress vector on the boundary; h is the weight function; 
r) is the y-component of the crack surface displacements; KB is the Bowie 
solution for the stress intensity factor; and H is an appropriate elastic 
modulus: it is E/l - V2 for plane strain and E for generalized plane 
stress. Since the closed form expression for r| as a function of the crack 
length a is not available, it was determined by fitting an equation to 
the discrete displacements computed using the finite-element method for a 
series of crack lengths ranging from a/r = 0.4 to a/r = 2.8. The stresses 
and strains computed using the conventional finite-element method may be 
fairly accurate. But the differentiation of an approximate expression 
obtained by curve fitting finite-element results may not be warranted. 

Two high order singularity elements have been developed at Lockheed-
Georgia. One takes only the symmetric terms in the Williams' series and, 
hence, is applicable only to symmetric problems (Kn = 0); the other makes 
use of both symmetric and antisymmetric terms and is applicable to un-
symmetric or mixed mode (Kj and K n ) problems. The efficiency and accuracy 
of these elements has been demonstrated in reference [15]. In order to 
obtain more accurate solutions for cracks emanating from a hole, the high 
order singularity element for symmetric problems was used to compute the 
Mode I stress intensity factor for a double-radial crack emanating from 
an open hole and subjected to concentrated loads on and perpendicular to 
the crack surface. The computed stress intensity factor was used to 
develop the Green's function (equivalent to the nondimensional stress-
intensity factor) for a double-radial crack emanating from a circular hole. 
In the case of mixed mode conditions, the corresponding Green's function 
analogy to the symmetric case can be developed from the stress intensity 
factor computed using the unsymmetric crack element for the same cracked 
hole subjected to a pair of concentrated forces (equal and opposite in 
direction) on and parallel to the crack surface. However, in this paper, 
only the symmetric problem will be considered. Once the Green's functions 
are available, the Mode I stress-intensity factors for cracks emanating 
from any type of fastener hole can be calculated from a knowledge of the 
unflawed stress distribution in the region of the hole. 

DEVELOPMENT OF THE GREEN'S FUNCTION 

Figure 1 shows the scheme of the linear superposition method. The stress 
intensity factor of problem la is equivalent to the sum of that of 
problems lb and lc. Since problem lb is crack free, the stress-intensity 
factor of problem la is equivalent to that of problem lc. By idealizing 
the stress in problem lc as N discrete loads, Pi,..., PN, then the stress-
intensity factor, for a given crack length a, can be computed from the 
following equation: 

N 
£ Ki ■ 
i = l 

N 

= £ 
i = l 

<[x. ,a\P fx I K(a) = £ K. = 2. k. x.,aWx. 1 ^ 
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th where k^(x^,a) is the normalized stress-intensity factor due to the i 
load, P^, applied at location x^. For arbitrary distributed stress, a, 
instead of discrete forces, P •, equation (20) becomes 

K(a) = f k(x,a) . a(x) dx 
o 

(3) 

By defining G = k(a/ir)1/2 and £ = x/a and substituting them into equation 
(3), one obtains 

K(a) = Go ^l J a(5) G(a,£) . d? (4) 

o/o0 is the normalized 
unflawed stress distribution on the prospective crack surface. 

For a straight crack subjected to two pairs of concentrated forces on the 
crack surface as shown in Figure 2, the corresponding Green's function, 
G, is 

<-5)-K^" =[HB*M)'"> (5) 

The Green's function G, for a double-radial crack emanating from a cir
cular hole and subjected to two pairs of concentrated forces on the frac
ture surface, as shown in Figure 3a, can be obtained from the computed 
stress-intensity factor using finite-element analysis with inclusion of 
the singularity element for various crack lengths a/r and b/a ratios as 
follows: 

3(f * y = p V * (6) 

Due to the limitation of finite element methodology, when the concentrated 
forces were applied close to the crack tip, say b/a > 0.9, the corres
ponding Green's function was obtained using the central crack solution by 
idealizing the hole as a portion of a straight crack as shown in Figure 
3b. The Green's function corresponding to this case is 

4 ■ $ LA 
HH,?)J 

1/2 

/TT (6a) 

The computed Green's functions were then tabulated as a function of a/r 
and b/a. For any a/r ratio different from those tabulated values, an 
interpolation or extrapolation technique was used to obtain the corres
ponding Green's functions. 

With a knowledge of the Green's functions, G, and the stress, a, on the 
prospective crack surface with the crack absent, one can compute from 
equation (4) the corresponding stress-intensity factor for any radial 
crack from a hole. 
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When crack face overlapping occurs or the applied force P^ is in compres
sion, the computed Ki in equation (2) will become negative. Physically, 
it means the crack surfaces are closed and react against each other. 
Occurrences of such cases are illustrated in examples 3 and 4, where the 
computed negative Ki were set equal to zero. 

For a case where there is only one crack emanating from a hole, instead of 
redeveloping the associated Green's function, it was found that the fol
lowing equation will give a good estimation of the stress-intensity factor: 

K i 
Bi 

one crack 

(7) 

two cracks 

where &i and B2 are Bowie's factors for single and double cracks, respec
tively. 

EXAMPLE PROBLEMS 

1. Open Holes 

To check the validity and accuracy of the present solution, Bowie's [2] 
solution for a double radial crack emanating from an open hole in an 
infinite plate was employed. By approximating the unflawed stress 
distribution as 

the computed non-dimensional stress-intensity factors using equation (5) 
for a crack emanating from an open hole subjected to uniaxial and biaxial 
uniform far-field loading are presented in Figure 4. The corresponding 
Bowie's solutions are also included in the figure. As can be seen, the 
current results are within 2 percent of Bowie. 

2. Neat-Fit Hole with Fastener Load Transfer 

The normalized unflawed tangential stress distributions along the plane 
perpendicular to the load-line in the hole of a 7075-T6 aluminum plate 
fitted with a Ti-6A£-4V titanium fastener are given in Figure 5 for 
various percentages of fastener load transfer. The non-dimensional stress-
intensity factors computed using those unflawed stresses and equation (4) 
for a double crack emanating from the neat-fit hole are presented in 
Figure 6. From this figure, one can see that the stress-intensity factor 
for a neat-fit hole without fastener load transfer is lower than that of 
an open hole (shown as dotted line). However, when the amount of fastener 
load transfer increases the stress-intensity factor increases rapidly, 
especially for short crack lengths. The computed non-dimensional stress-
intensity factor at the edge of the hole is approximately equal to 1.12 
times the normalized unflawed stress at that location. This agrees very 
well with the edge crack solution. When the crack length is larger than 
2^2 times the hole radius, the effect of fastener load transfer becomes 
negligible. 
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3. Interference-Fit Fastener Holes 

The Green's function approach is also used to compute the stress-intensity 
factor for a double radial crack emanating from an interference-fit 
fastener hole. Figure 7 shows the unflawed stress distributions for an 
aluminum plate with a steel interference-fit fastener caused by 0.010 
centimeters interference and subsequent edge loading and unloading [16]. 
The computed stress-intensity factors are shown in Figure 8. From this 
figure, one sees that for a/r < 0.5, when the far-field loading (172 MN/m2) 
is removed, the computed K is less than zero. Physically, it means that 
the fracture surfaces are completely closed and compress each other. The 
effective stress-intensity factor range equals the difference between 
curves 2 and 3. For a similar plate with an open hole subjected to 
172 MN/m2 far-field loading, the corresponding K (also AK) is plotted in 
the same figure as dotted lines for comparison purposes. For small crack 
lengths, the computed AK is much smaller for an interference-fit fastener 
hole than an open hole. This explains why the crack emanating from an 
interference-fit fastener hole grows much slower than the corresponding 
crack in an open hole when the crack length is small. When the crack 
length is longer than 3 times the radius of fastener hole, the growth 
rates are about the same, since the effective stress-intensity factor 
ranges are about the same. This indicates that the influence of the 
interference-fit fastener is negligible when a/r > 3. 

4. Cold-Worked Holes 

Figure 9 shows the unflawed stress distributions in the region of a 4.4% 
cold-worked hole in a 7075-T6 plate caused by 110 MN/m2 edge loading and 
subsequent unloading [17]. After the edge loading is removed, a residual 
compressive tangential stress remains at the edge of the hole (a/r < 1). 
The computed stress intensity factors using the current approach is 
presented in Figure 10 as dotted lines. Curve A is the computed K m a x 
corresponding to 110 MN/m2 edge loading while Curve B is the stress-
intensity factor range Kmax - Kmin. K mi n was computed using the unflawed 
stress corresponding to 5.5 MN/m edge loading. For the same level of 
cold-working (4.4%) and edge loadings (amax = H O MN/m2, Omin = 3.5 MN/m2), 
the stress-intensity factors obtained from crack growth tests reported 
in references [18] and [19] and the one predicted using the linear super
position method [18] are also included in the figure. As can be seen, 
the current analysis gives an excellent correlation with the experimental 
data. 

CONCLUSIONS 

The Green's function for a double-radial crack emanating from a fastener 
hole was developed from the computed stress-intensity factor for such a 
crack loaded with concentrated forces by using the finite element method 
with the inclusion of a high-order singularity element. The stress-
intensity factors for cracks emanating from any type of fastener hole were 
able to be computed from a knowledge of the unflawed stress distributions 
in the region of the hole and the developed Green's function. Stress-
intensity factors computed using this approach agree very well with known 
solutions for open holes and neat-fit holes and correlate excellently 
with data generated using cold-worked hole specimens. The approach can 
also be used to estimate the stress-intensity factors for cracks emanating 
from interference-fit fastener holes. 
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ELASTIC PLASTIC FRACTURE ANALYSIS OF A CRACKED THICK WALLED CYLINDER 
UNDER DISPLACEMENT CONTROLLED LOADING 

A. Muscati* 

INTRODUCTION 

Many engineering components are subjected to high thermal and residual 
stresses that are strain or displacement controlled. Under extreme oper
ating conditions, it is sometimes necessary to show that a large level of 
plastic deformation is tolerable. For cases where plasticity is limited to 
a small zone at the crack tip, linear elastic fracture mechanics (L.E.F.M.) 
can be used to assess the fracture risk in such components; the method is 
applicable to load, displacement and strain controlled loading. However, 
as the plastic zone spreads through the structure, the validity of L.E.F.M. 
becomes questionable and the behaviour of load and displacement controlled 
problems can vary considerably. There are two main methods of analysis 
for yielding fracture mechanics problems, the J contour integral [1] and 
the crack opening displacement [2]. The applicability and limitations of 
these methods have been discussed in the literature [3] and are beyond the 
scope of this paper. 

Whilst, in principle, elastic-plastic stress analysis is possible using 
advanced finite element computer programmes, such computations require a 
large amount of computer time and it is often impracticable to obtain an 
accurate solution for real engineering problems. In such cases, a pseudo-
elastic approximation with some correction for the effect of plasticity 
may be used as an empirical alternative. For load controlled problems, 
pseudo-elastic fracture analysis, with no plasticity correction, predicts 
higher fracture loads compared with an elastic-plastic model such as J 
[4 and 5]. This suggests that pseudo-elastic analysis is unconservative 
and could lead to unsafe predictions of failure load [6]. 

In the present computations, elastic-plastic finite element programmes 
were used to determine the behaviour of a cracked thick walled cylinder 
subjected to axial loading resulting in a large level of plasticity with 
both load and displacement controlled boundary conditions. By using the 
J contour integral as a fracture criterion, a comparison is made between 
the pseudo-elastic and elastic-plastic computations for both cases. Ob
viously, the application of an elastic analysis to problems involving net 
section yielding cannot be justified on theoretical grounds, but as one 
is often restricted to an elastic analysis, such a comparison is useful 
to quantify the error. For strain controlled problems, there are compu
tational difficulties in evaluating the J contour integral as its path 
independence becomes more questionable [7]. 

*Central Electricity Generating Board, South West Region, England, U.K. 
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THE COMPUTATION MODEL 

The model was a thick walled cylinder with an axisymmetric crack extending 
from the bore at mid-axial position. The dimensions were as follows: 

inner diameter 254mm, outer diameter 508mm, axial length 
= 1.270m and the radial crack depth was 25.4mm. 

An elastic-plastic finite element programm (BERSAFE) was used in the 
present computations [8]. The plasticity part of the programme [9] is 
based on the incremental theory using the initial stress method for num
erical iterations. As the crack is in a plane of symmetry, only half the 
structure was modelled in the mesh. The crack was simulated by restraining 
the axial movement of all nodes at the crack plane, ahead of the crack, 
leaving those at the crack surface free from constraint. The mesh con
sisted of one hundred (10 x 10) quadrilateral axisymmetric elements with 
midside nodes as shown in Figure 1. 

Both load and displacement controlled boundary conditions were considered. 
In the load controlled case, a uniformly distributed axial load was applied 
at the end, whilst for the displacement controlled case both axial and 
radial displacements were applied at the same position. The radial dis
placements were small compared with the axial ones (about 10%), they were 
applied to reproduce the same displacement field created by uniform axial 
loading. 

The J contour integral was calculated by the same computer programme for 
both elastic and elastic-plastic computations, the path used to determine 
the integral is shown in Figure 1. 

The material data used for these calculations were as follows: 

Yield stress = 138 MPa 
Youngs modulus = 207 GPa 

and Poisson's ratio (elastic) =0.3 

A small amount of work hardening was introduced for the plasticity com
putations corresponding to a power hardening coefficient of about 0.04. 

RESULTS AND DISCUSSION 

The results are presented using the non dimensional ratio of J ^ J ^ , where 
Jx is the contour integral for the opening mode based on the elastic-
plastic computations whilst Jie is the corresponding integral based on 
pseudo-elastic analysis for the same applied load and displacement. 

For the load controlled case the ratio of Ji/Jie is plotted against P/Pe 
in Figure 2, whilst it is plotted against 6/6e in Figure 3 for the dis
placement controlled case, where Pe and 6e are the load and displacement 
which cause yielding at any point in the structure for the first time. 
These parameters (Pe and 6e) have no fundamental value and are dependent 
on the mesh size; they were used as a convenient method of presentation. 
In theory, there is always a small plastic zone at the crack tip and hence 
there is no first yield event. 

For the load controlled case, it was not practicable to obtain a solution 
beyond P/Pe = 1.71, which corresponds to net section yielding, due to the 
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slow speed of convergence. For the displacement controlled case, there 
was no convergence problem and a solution was obtained well beyond net 
section yielding. The plastic zone contours for different displacements 
are shown in Figure 1 and it is interesting to note that once plasticity 
spreads through the section, a further increase in the displacement would 
not have a large effect on the size of the plastic region but would in
crease the level of plastic strains. As the assumed level of work-hardening 
is small, the corresponding increase in load beyond net section yielding 
is also small. Table 1 gives the relation between load and displacement 
increments for the load controlled case. It can be seen that until the 
plasticity level approaches net section yielding, the non dimensional 
displacement and load increments are approximately the same but the ratio 
of displacement to load increments rises rapidly at net section yielding. 

As plasticity spreads across the section, the load controlled case will 
approach the unstable plastic collapse condition. A small increase in 
load could lead to large displacements and a rapid increase in Jx with 
load, but the pseudo-elastic calculations predict a small change in Jie 
and the ratio of Ji/Jie would increase rapidly as shown in Figure 2. In 
the displacement controlled case, the situation is different as the un
stable plastic collapse condition is unattainable. The present results 
show that, beyond net section yielding, the increase in Jle with displace
ment can be faster than the increase in J and the ratio of Jx/Jie decreases 
after reaching a maximum value as shown in Figure 3. 

For any particular load and displacement, the value of J1} as determined 
from elastic-plastic calculations, would be the same whether it is dis
placement or load controlled, but the value of the elastic Jle could vary 
considerably. In an elastic analysis the load is proportional to the 
displacement and for the case of widespread plasticity, the analysis will 
underestimate the displacement in the load controlled case, whilst it will 
overestimate the load in the displacement controlled case, which explains 
the effect shown in Figures 2 and 3. As strain controlled problems are 
similar, in terms of plastic collapse, to displacement controlled loading, 
they are expected to show a similar behaviour to that shown in Figure 3. 

CONCLUSIONS 

Elastic-plastic finite element computations were carried out on a cracked 
thick walled cylinder under axial loading. When using the J contour 
integral as a fracture criterion, the error involved in pseudo-elastic 
analysis has been quantified under different levels of plasticity and for 
both load and displacement controlled cases. In the load controlled case 
the elastic analysis underestimated J and the error increased with the 
increase in plasticity level, but for the displacement controlled case 
the apparent error was reduced after reaching a maximum value. It is 
suggested that these results could be used in a qualitative manner to 
estimate the errors in using elastic fracture analysis for cases of wide
spread plasticity. 
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Table 1 Load and Displacement Increments for the Load Controlled Case 

1 Inc. 
No. 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Load 
Inc. 
AP/P e 

1 
.051 
.051 
.051 
.051 
.051 
.051 
.051 
.051 
.051 
.051 

Displacement 
Inc. 
A6/6 

<3 

1 
.051 
.051 
.051 
.051 
.051 
.051 
.052 
.052 
.052 
.052 

Inc. 
No. 

12 
13 
14 
15 
16* 
17 
18 
19 
20 
21 
22 

Load 
Inc. 
AP/P e 

.027 

.028 

.027 

.028 

.032 

.004 

.005 

.004 

.005 

.004 

.005 

Displacement 
Inc. 
A6/6 

.029 

.029 

.030 

.032 

.050 

.010 

.010 

.012 

.013 

.014 

.015 

*net section yielding. 
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THE EVALUATION OF THE RESISTANCE AGAINST 
DUCTILE CRACK EXTENSION 

H. C. van Elst, H. Wildschut, M. A. Lont and F. H. Toneman* 

INTRODUCTION 

Single edge notched specimens were torn to complete fracture in a ductile 
way by excentrical pin loading under constant displacement speed; 3-points 
bend notched specimens were fractured in the ductile region by impact 
loading. The load P/deflection f-diagram was recorded and the cracklength 
a simultaneously filmed. 

The resistance R against crack extension was evaluated, using an energy 
balance analysis, which appears applicable in the elastic, elastic-plastic 
and fully plastic situation. The importance of a distinction between 
energy dissipated for crack extension and energy dissipated in an 
accompanying but alternative way as determined by the test and specimen 
conditions for indicating the actual crack resistance of the material is 
argued. 

The influences of initial crack tip radius, finiteness of ligament length 
(w-a) and height h of the specimens are briefly discussed to account for 
the observed anomalous R-curve behaviour. 

This investigation was performed with special reference to the ductile 
shear fracture as can unstably occur in steel gas pipes if work is per
formed by- the gas on the fracturing vessel wall and aimed at evaluation 
of the resistance against large scale crack extension as far as determined 
by the material properties. For the relevant case of sufficiently low 
crack velocity the displacement speed controlled tests allow to determine 
R after "unstability" in a quasi static way. 

If work A is done on a precracked specimen, as in a "constant displacement 
speed" controlled experiment, instability of the crack implies that the 
rate of work can decrease for its further extension. For a sufficiently 
slow crack velocity a the load P can quasi-statically adjust itself to 
the compliance change and thus decreases. As a consequence the generation 
of kinetic energy V is then negligible. The energy absorbed during 
fracture (the fracture energy) contains (recoverable) elastic energy U and 
dissipated energy W. The latter can for a part Wa be connected to the 
effective surface energy, mostly consumed to propagate the plastic zone 
size at the crack tip. However a dissipation of energy W^ can also occur 
by processes not to be linked directly with the actual crack extension, 
but occurring where the stress is raised above yield by other influences 
than the crack tip field (below general yield this is revealed by non
coherent plastic regions possibly involving compressed ones). For this 
situation the 1 e f m approach including plastic zone corrections will 
not be amenable. The total resistance against fracture: 

*Metal Research Institute TNO, Apeldoorn, Netherlands. 
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dW dWa dWd 
da da da a d v J 

then contains besides the crack resistance Ra or the effective surface 
energy (this being the material property of primary interest), also a 
term R^. 

Obviously, R can only be a constant, if Rj = 0 or constant, conditioning 
validness of J j c = Ra at first physical crack growth, when Jj is evalu
ated from an integration of the load/deflection diagram. 

Assumedly Ra will be dependent on a and possibly on a, while as elaborated 
below there will be an influence of the finite specimen dimensions on Ra. 
This is contrary to current (1 e f m) material concepts, which claim that 
a suitable geometrical correction factor in the corresponding mechanical 
fracture mechanics concepts, allows for a critical fracture mechanics 
material value not dependent on dimensions or geometry. However, the 
anticipation that a Ra-value only dependent on a can be indicated, 
characterizing the material for suitably chosen large dimensions with 
absence of free surface influences, can be considered an instigation to 
this investigation. 

THEORETICAL 
In the following an evaluation of fracture resistance during large scale 
extension - thus not restricted to the quasi static crack growth after 
first physical crack propagation up to instability, but also for the state 
thereafter - is suggested from an energy balance analysis. 

For the deflection of a loaded specimen one can write: 

f = £ +f ; f = f(a,P) (2) 
e p 

f is the reversible, fp is the irreversible part of f. 

CP = C P+C P ; C = C (a) ; C = C (a,P) (3) 
e p e ev J y p p v J K J 

dC /9C \ /3C \ 
V p + p ^ A a + p W 7 Aa+PV^7AP (4) Af = Af +Af = C AP 

e p e r _ v - / p v- /a 

C = compliance; index e refers to elastic, index p to pl-astic. 

The energy balance will read: 

Pdf = dA = dQ+dW+dU+dV = TdS+Rda+dU+dV (5) 

T = absolute temperature, S = entropy. 
For the case of interest here, dV = 0 as elaborated above. It will more
over be understood that TdS is incorporated in R, or rather with the 
right proportion in Ra and Rj. 
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Pdf - }PC e + PC p + P^) a } g da+{p> £ + P > ( ^ ) p } da (6) 

and also for unit thickness: 

Note I: 

/ C e p 2 \ / dP P2 d Ce \ 
Pdf = dW+dU = Rda+dl-y- J = Rda+ \ C P ^L + 1_ _ E ? d a (7) 

i- ffi-cpf.i^ m da e da 2 da 

P* dCe 
• # ) P 

2° If P = constant, R = y- ̂ ~- + P l ^ ] D (10) 

3° If 1 e f m applies, i.e. 
P2 df 

C = 0 ; C = C andR = V" TT1 CH) 
p ' e e 2 da ' 

4° R = R +R (12) 
e p J 

5° dA = Pdf = dU+R da+R da (13) 
e p 

R has only to be interpreted as Ra, when W^ = 0 of dWj/da = 0. Recordings 
of a load/displacement curve for a specimen of interest e.g. an excentrical 
pin loaded single edge notched (e p 1 s e n) specimen, while unloading 
and reloading again for certain cracklengths obtained by increasing crack 
extension, allow to estimate Ce = Ce(a). This can be compared with a 
numerically evaluated Ce = Ce(a) using finite element method technique. 
If the agreement is satisfactorily verified the latter can substitute the 
former (cf. however Results). R can now be correspondingly determined. 

Note II: 
If no kinetic energy is generated, i.e. the load adjusts itself to the 
compliance at each moment: 

A = Pf = R + ^ a (14) 

For dU/da « R this implies: 
• _ A 
a " R +R^ a d 

(15) 
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EXPERIMENTAL 

Single edge machine notched specimens were torn to complete fracture by 
excentrical pin tensile loading, sometimes wedge loading, using a 250 tons 
MTS-closed loop system equipment in a displacement speed controlled way. 
The crack proceeded in a ductile way at velocities, which were so small 
(10 cm/sec) that at each moment the load could adjust itself to the in
creasing compliance in a quasi static way. 

Three line pipe steels, with properties as indicated in Table 1, were 
tested in 3-fold, using e p 1 s e n-specimens at displacement speeds of 
9 and 25 mm/sec; one material was moreover tested in 3-fold using wedge 
loaded single edge notched (w 1 s e n) specimens at the same displacement 
speeds. The load-deflection diagram was recorded; the extending crack was 
filmed. 

As the w i s e n-specimen showed a severe liability to buckling, all 
specimens were adapted with stiffener beams, bolted at both sides of the 
specimen and meeting as a hinge just outside the specimen opposite the 
advancing crack tip. The applied specimen dimensions are shown in Figure 
1. Initial machined notches of mostly 60, also 100 and 140 mm were intro
duced. For each material one extra specimen was used for finding the 
elastic compliance as a function of cracklength. This proceeded by un
loading after some crack extension, then loading again, and repeating this 
after some additional crack extensions, several times, till the ligament 
was completely torn. 

A small hysteresis was observed by unloading and reloading, slightly 
increasing with increasing cracklength. 

This did not interfere with a sufficiently accurate estimate of the elastic 
compliance Ce as a function of a. The dependence of the elastic compliance 
on cracklength both with and without stiffeners to the specimen as observed 
was compared with a numerical evaluation using the finite element method, 
applying a substructuring technique. The relevant elements division is 
illustrated in Figure 2. 

This allows in principle to interpret the cracklength as observed at the 
surface in a for the compliance effective one, in this way taking into 
account the protruding of the crack tip in the core of the plate specimen. 

Single edge machine notched specimen (with a height of 100 mm and initial 
notch length of 15 mm; cf. Figure lc) were dynamically tested in 3-points 
bending by a falling weight of 280 kg mass from a height of 2.60 m. The 
striker was straingauge instrumented, allowing to record load in time. 
The crack propagation was filmed (using a Dynafax camera). 

RESULTS 

For the e p 1 s e n specimens R/a-curves as inferred from the load/ 
deflection diagram and corresponding a/a and R/a curves are shown in 
Figures 3a, 3b, 3c respectively. The low a and its small variations in 
these experiments obviously did not influence R. After a preambulary 
phase the R-curves appear rather independent of a0, the initial notch 
length. A recording for determining the elastic compliance dependence on 
a is shown in Figure.4a. The deduced Ce(a)-curve (cf. Figure 4b) did not 
quite agree with the numerically evaluated one using the finite element 
method for the stiffened specimens. The dissipated energy W to accomplish 
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a certain crack extension was determined from the load/deflection diagram 
as well, duly taking into account the elastic energy correction. Cf. 
Figure 5. The W/a curve was polynomium fitted as: 

W = Wo + WiCa-ao) + W2(a-a0)2 + W3(a-a0)3 + W4(a-ao)4 (16) 

with ao = initial notch length. 

The R-value at a = a^ for which d3W/da3 = 0, was taken as R-reference for 
the material (cf. Discussion). For these and other data of the investi
gated line pipe steels cf. Table 1. Results of R/a, a/a and R/a-curves 
for the striker instrumented drop weight tear tests are given in Figure 6. 

DISCUSSION 

The start of physical crack extension as observed at the surface will lag 
behind to that actual according in the core of the material thickness. If 
the protruding of the crack tip still increases, the real crack extension 
will be underestimated by a surface crack observation, implying an over
estimate of R. Recordings of crack extension by an electrical potential 
method can overcome this difficulty, but due to influences of the plastic 
development on the electrical resistance the physical crack extension 
effect tends to get blurred. If the initial notch is machined as in most 
of these experiments one might expect that the finite tip radius will 
cause first physical crack extension to occur for a Ra substantially 
larger than Jj c. The development of a possible sharper crack tip after 
some crack extension will have a corresponding lowering effect on R. 
However, experiments on fatigue cracked specimens showed only a minor 
decreasing effect for the initial R-values as compared to those occurring 
for the machine notched specimens. 

A dissipation of energy WJ not connected with the crack extension will be 
more pronounced in the first phase of the experiment as well, when dealing 
with a high load. It is due to bending of the separated parts, deforma
tion of the bolt holes etc. 

When general yield occurs, possibly already at the onset of real crack 
growth, less plastic work will be dissipated pro cm crack extension the 
more the ligament decreases, thus decreasing R with increasing a. The 
deformation has to comply with the displacements as enforced by the 
stiffeners, implying at each moment a displacement, where these are local
ized, linearly approaching zero with the distance to the hinge. The 
resulting constraint on plastic development will progressively decrease R 
the more the crack tip has penetrated through the ligament. 

The above mentioned effects all contribute to the anomalous R-curve be
haviour showing instead of the initial increase, merging into a rather 
constant level, a decrease with an inflexion point, i.e. with a dR/da < 0 
showing a maximum, for which thus d3W/da3 = 0 (and di*W/dal+ < 0). 

If the disturbing influence of the initial phase at real crack extension 
implying an overestimate of R, overlaps the region of influence of the 
terminal phase for which R tends to get underestimated, an anticipated 
constant R-level will be obscured, but still introduces this inflexion 
point in the R/a-curve. This was used to approximate the undisturbed 
R-level. The impact test results obtained until now suggested that a 

159 



Fracture 1977, Volume 3 

rather constant R-level might become realized in the advanced phase of 
crack extension, cf. Figure 6a. The small differences between the line 
pipe materials could be revealed by separation of the R/a-curves for the 
e p 1 s e n-specimens in a significant way. Cf. Figure 7. 

The influence of dimensions on estimated R-values is yet not quite clear. 
Besides the finite ligament width also the height of the specimen might 
exercise constraining influences on the plastic flow development connected 
with the crack extension. 

Instead of aiming at a plastic flow development as free as possible by 
increase of dimensions, one could also try to achieve a high constraint. 
Therefore sidegrooving along the anticipated crack path was introduced. 
These experiments are still in progress. While in general can be referred 
to [1], as recently appeared related work can be mentioned [2], [3] and [4]. 

CONCLUSION 

Contrary to Jjc-evaluations, requiring the detection of the onset of first 
physical crack growth and rejecting (large scale) crack extension, the 
R/a-determination can proceed in a quasi static way for large scale 
ductile crack extension with velocities up to 1-100 m/sec. The only 
restriction appears a possible dissipation of energy not to be identified 
with that required for crack extension. (This will unfavourably interfere 
with all other fracture mechanics determinations). Estimates of Gj c or 
Jlc from small specimens, using the R/a-determination appear quite 
feasible, (extrapolation from small crack extensions to zero offering) the 
Jjc-values, showing only slight discrepancies with R. As the irrevers-
ibility of the deflection is incorporated in the analysis for determining 
R there is no need to discuss "pseudo potential energy". 
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Table 1 

line pipe 
steels 
cast 

4338 
7898 
8380 

yield 
strength 

[MN/m2] 

427 
460 
420 

ultimate 
tensile 
strength 
[MN/m2] 

524 
564 
502 

area reduction 
in tensile 

test 
[%] 

69.0 
72.0 
76.5 

2/3 Charpy V 
at 0°C 

[MN/m] 

1.09 
1.71 
2.12 

R 

[MN/m] 

2.5 
3.5 
4.5 

a R j 
[mm] 

144 
130 
125 

Figure la Eplsen - Specimen, Provided with Stiffeners Hinge 
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continued 
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Figure lc Three-Points Bend Sen-Specimen for Impact Testing 
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[ y i y l y i y i y^^ 

Figure 2 Elements Distribution for Numerical Evaluation of Dependence of 
Elastic Compliance on Cracklength, Using the Finite Element 
Method with a Substructuring Technique 

Material cast nr 8380 

Displacement (mm) 

Figure 3a Recordings of Load/Deflection Diagram for Eplsen-Specimen at 
Repeated Unloading and Loading After Subsequent Crack Extension 
for Evaluation of Dependence of Elastic Compliance on Cracklength 
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Figure 3b Elastic Compliance Dependence on Cracklength According to 
Recordings Shown in Figure 3a 
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dW 

da 

tMN/m] 

12 
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2 
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-

* Material ■. cast nr 7898 

Rate of displacement of grips: 25mm/s 
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* ♦ ♦ spec. 23 
o ♦ 

• 
o ♦* 

Of 

v̂ 
60 80 100 120 140 160 180 

crack length (mm) 

Figure 4a Fracture Resistance Dependence on Cracklength in Tested Eplsen-
Specimens at Displacement Speed of 25 mm/sec 
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Figure 4b Fracture Velocity Dependence on Cracklength in Tested Eplsen-
Specimens at Displacement Speed of 25 mm/sec 
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continued 
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Figure 4c Fracture Resistance Dependence on Crack Velocity in Tested 
Eplsen-Specimens at Displacement Speed of 25 mm/sec 
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Figure 5 Energy Absorbed as a Function of Cracklength for Extending 
Crack in Eplsen-Specimens at Displacement Speed of 25 mm/sec 
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dW 
da 

(MN/m) 

cast 4338 

Q I i i i 1 1 i i i » » 
0 20 40 60 80 100 

crack length a (mm) 

Figure 6a Fracture Resistance Dependence on Cracklength in Impact Tested 
Three-Points Bend Sen-Specimen 
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Figure 6b Fracture Velocity Dependence on Cracklength in Impact Tested 
Three-Points Bend Sen-Specimen 
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continued 
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Figure 6c Fracture Resistance Dependence on Crackspeed in Impact Tested 
Three-Points Bend Sen-Specimen 
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Figure 7 Average R/a Curves for Three Line Pipe Steels, According to 
Testing of Eplsen Specimens 
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A DESCRIPTION OF THE DEPENDENCE OF FRACTURE RESISTANCE ON CRACKLENGTH 

H. C. van Elst1 

INTRODUCTION 

By evaluation of the absorbed plastic energy at the cracktip up to the 
moment of instability an expression for the fracture resistance in critical 
cracklength, critical gross stress and average reciprocal modulus over the 
plastic zone proves possible. Taking into account some conditions relevant 
for instability (like e.g. the Orowan conditions) and using the relevant 
expression for the energy release rate the fracture resistance curve 
appears from a small number of instability tests. 
It is assumed according to Kraaft [1] that the absorbed energy pro cm crack 
extension at stable crack growth does not depend on initial crack-length, 
but only on the increase of cracklength a. By observing the stable crack 
extension at any time one can find dU/da = elastic energy rate and for an 
infinite plate of unit thickness, uniaxially loaded transversal to a crack 
a up to a gross stress a0 for the elastic case with E = Young's modulus: 

dW = dlJ 
da da 

2TTQo2a 
(1.1a) 

For a finite plate R = H2ao2w2(dC/da) with w = width and C = compliance, 
and for the infinite plate C = 1/EwB + 27ra2/Ew2B with B = thickness, 
yielding (1.1a). 

When the increasing 27TO"o a/E for increasing a and a0 can be no longer 
matched by an increase of R = dW/da of the material, instability occurs 
and (cf. Figure 1, Orowan [2]): 

\ ■ m 2T\O 2 a ( , 2 w ) 2TTO" \ * " u o c a c . . . d2W ^"u oc 
fc88—1 ' whlle 77 =~1— (1*lb) 

da 2 )c 

The R-curve can thus be obtained by a series of tests revealing insta
bility at some cracklengths. If a reliable R vs. a description proves 
possible, the number of required instability tests might be greatly 
reduced. 

CRITICAL ENERGY EVALUATION NEAR CRACKTIP AT INSTABILITY 

For the absorbed energy W (cf. Figure 2) is written: 
w * R(Q) e*{r(0)} 

-TT 
? - f dQ f r(0)dr(0) fc Y[e*{r(0)}] de*{r(©)} (2.1) 
^ _ 0 0*2 

2Metal Research Institute TNO, Apeldoorn, Netherlands. 
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with: r(0) = radius from notchtip to considered point in 
plastic zone 

0 = angle between notch direction and radius 
R(0) = elastic-plastic boundary at instability 
e{r(0)} = effective deformation in r(0) 
c = index referring to instability 
Y[e*{r(0)}] = uniaxial yield stress for effective deformation 

Take: Y[£*{r(0)}] = a0 f(s), with 

a = £[£*{r(0)}]o"o = gross s t r e s s , when in r(G) the e f fec t ive 
deformation i s £*{r(0)} 

0 < C < 1 

£ ■> 1 for £ * - > £ * and a -> o~ 
* c o oc 
f(s) = 2 W ^ [ s k [£*{r(0)>] - S j [ e * { r ( 0 ) } ] l 2 

k, j = 1, 2, 3 ; k j£ j 

sk[e*{r(G)}] 5 [e*{r(0)}] a^ = ak [£*{r(G)}] 

k = 1, 2, 3 

a, = p r inc ipa l s t r e s s 

If: E* = E*[e*{r(0)}] = local modulus of the Y vs . e* curve 

W_ TT R(9) e *{r(0)} , £ f , v 
2 a 2 f dQ f r(0)dr(G) fc £f ( s ^ i ^ j p - V (2.2a) 

oc o o ( £ ; -TT 

C f d C 'd£* (2.2b) 

| = a 2 / d0 / r (0 )dr (0 ) / C k 2 / — - ± — 4 § ) 
2 0C -TT ° ° L *E* E*2 df / 

E* d£*J 

Taking: *& * {r(6)}l , K ^ f c * {*- - £— ^ - \ ^ -
L c J ° L l E* E*2 d£ Jde* 

-1 
d£ J 

^ - ^ 2 - «d£* ( 2 . 3 ) 

TT R(0) r -, 
^ = a 2 / dO / r (0 )dr (0 ) i/z3 £ *{r(0)} (2.4a) 
1 o c .-jr ° L c J 

170 



Part V - Analysis and Mechanics 

~ = 1/23 a 2 c oc 
2/ £|§Jl d9 - H2f a 2 " P(0)2 d0 (2.4b) 

THE EVALUATION OF R FROM WQ IN THE ELASTIC CASE 

In the case that the plastic zone is sufficiently small an easy calcul
ation of the plastic zone boundary can proceed from the goniometric 
Sneddon approximations of Westergaard's description of the stresses near 
the cracktip in the elastic case. 

Then one has, using reduced stresses s = o/o : 

5x = \ 2 F C ° S f I1' . 0 . 30 sin y sin y 

laT 0 j. . 0 . 30) 
s = Yy- cos y < 1+sm — sin — l T) 

\\ with as principal reduced 
* stresses:_ 

U , 2 = V ^ c o s | | l + s i n | } ; 

Is3 = 0 for plane s t r e s s (3.1) 
fsT 0 

mcos 2 
Combining this with the Von Mises-Hencky yield criterion: 

/a . 0 0 30 t = */— sin TT cos — cos — xy !2r 2 2 2 a 0 2v %1-^rr cos y for plane strain 

2Y0 (a: - a 2 ) 2 + (a! - a 3 ) 2 + (a2 - a 3 ) 2 (3.2) 

one arrives at: 

R(0) = 
2rY 

2 0 j 1 7 - 2 0 ) 
cos* y <1 + 3 sin* 2" - P; (3.3) 

p = 0 for plane stress; p = 4v (1 - v) for plane strain with K referring 
to the mathematical cracklength ae. 

a = a + a e r 
2TTY' 

a = 1 for plane stress; a = 1/3 for plane strain. 

At plane stress: 

(3.4) 

PC©) R(6) 
a 

V 2 j , aoc2) 2 e L . 2 0 
~~2-i1+^T7[C0S 2 j ' 1 + 3 s i n 2 2Y0 2Y0 

(3.5) 

and ^ 2 2 v » * w = 3 a 2 a2^_jl+ 
C °C 4Y0't I 2Y0

2 2 ) 1+sinZ If2 r 4 0 1 , . 2 J COS — ' ! — - z d0 (3.6) 

3 a 2 a2 
c oc 

to 
~6~ 16 I ̂ T " CYo a 3cFo (3.7) 
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on_ , „ „ _ f0
b f0

B fo 6 r 8 r 10 
' O r 1237T "L° ° ° 

with: f0 = jf ; C = iff = 6.038 ; F0 = — + — + - ^ 

cF0a2/fo2 obviously represents the surface (volume) of the plastic zone 
(cf. Table 1). 

3 = "plastic zone averaged" reciprocal modulus. 

3* Y2f0
2 = 3* a 2 s(3.8) c c oc *- J 

represents the average energy density. 

At instability 

R. ■ © < - £ - \% - | 0 L - « — <*> <•■•> 
It is moreover assumed that for the critical stress a o c at instability: 

da dfo dFo 
- ^ - 0, implying _ = 0 and ̂  = 0 (3.10) 

Then: 

Ra = © c = C a F o Y o 2 H + a I } C3.11J 

For an infinite plate this equals: 

|^Yo2fo2a (3.12) 

while 

Then: 

2 1-K J . o „ _ C A „ 2 ...C.! 2 T r „ 2 , 2 2CF0YoZ j 3C + 2a ̂  + az — p j = |^ Y0
2f(/ (3.13) 

da 

d3„ (_ d3^ d23„ 
da2 ^ c + a d i £ = 2 j ^ c + 2 a d ^ + a 2 ^ (3'14) 

d23 /dS ? d3 d23 , 
c /—?■ - -2- - — £ = Aa"3'2; £. = - 4 Aa"5'2 (3.15) , 2 / da 2a da ' , 2 2 daz ' da^ 

3 = - 2Aa~1'2 + 3o (3.16) 
c 

(A and 3o constants) 
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It might be noted that for: 

a0 R 

Aa0 (dR m - 1 

Aa0 

R = cF 0 a(23o - 3Aa~1/2) 

dR a 
da = 2cF 0 (3o - 3/2 Aa" l / 2 ) 

* * * / 
dR a 
da 

For a cracked i n f i n i t e p l a t e in the e l a s t i c case: 

f l ° ° 2 ER ) dU 2 T O ° 2 & 

Y 0
2 2^aY0

2 I d a E 

( f o 2 ) 3 ( f o 2 ) 4 ( f o 2 ) 5 

Fo 16 = iK 
ER 

2TraY0 

+ i M -
ER 

(2TTaYo2 

1 ER 
1 6 j 2 ^ a Y 0

2 

Thus : 

R = CaF0Yo^ ]2g + a -j—( = C h'0Y0"a (̂ Po - 3Aa *'-) 

R = l K C Y o ^ ^ o - S A a - 1 ' 2 ) \ ER / 3
t f ER /** ( ER ]5 

[2TTaY0
2i <27TaY0

2j /27raY0
2 n 

EC 
8TT 

= (23o-3Aa _ 1 ' 2 ) ER ) 2 ( ER / 3 , ( ER i V 
1 +1/W-

2iraYo2) (27TaY0
2 /2TTaY0

2 
= 1 (3 

I n c o r p o r a t i n g t h e g e o m e t r i c a l c o r r e c t i o n f a c t o r f o r t h e f i n i t e p l a t e , 
one h a s : 

dU _ 2(|)2q2a 2 a 2 a dcfr 
da E E * da 

ER 

w i t h 
av'a 

ER 

|2(j)2a+2a2cj) g | Y 0
2 *fo2\+2\2<p ^ \ 

= J ^ 
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( f o 2 ) 3 ( f o 2 ) 4 ( f o 2 ) 5 

1 6 = *&V l+^+~t-l (3.26) 

R = ih CY 0
2a(23o-3Aa' l /^)^^ / U + J ^ T + (3.27) 

With that a description of R in a, and in adaptable material parameters 
(30, A, Y, E (and width w) appears possible. 

For further references cf. [3]. 
[6]. 

Related ideas were developed in [4], [5], 
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Table 1 

CO 
f 0 = v~~ 

0 
0 
0.1 
0.2 
0.3 
0.4 
0.5 

1 0.6 
0.7 
0.8 
0.9 

| 1.0 

Fo fo4 fo6 fo8 

f7 = 4~ + 6" + T6 
0 
0.00002525 
0.000416 
0.00221 
0.007465 
0.0198 
0.0451 
0.0930 
0.178 
0.324 
0.5625 

r_ 2 123TT Fo CFo/fo - -gj- j ^ 

0 
0.0001525 
0.00251 
0.01335 
0.04505 
0.1194 
0.2724 
0.5618 
1.0777 
1.955 
3.396 
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'02 

* 0 2 ' 4£fiL id 
C<7«f "01c "02C 

dW Figure 1 a) Assumed increase of R = -=— with Aa matched 
by -7— up to instability. 

b) Assumed gross stress and cracklength behaviour 
before and after instability 
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I t ! I ! I t t 

2a R(ei) 
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Figure 2 Plastic zone at crack tip in loaded plate, absorbing energy 
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THE STRESS INTENSITY FACTORS FOR X-FORMED ARRAYS OF CRACKS 

0 . Aksogan* 

INTRODUCTION 

In the present study, the interaction of arbitrary arrays of cracks loca
ted along two intersecting infinite straight lines is considered. The 
method of analysis is similar to the one used by the author for V-formed 
arrays of cracks [1], The new feature of a branched crack at the centre 
is treated by a special procedure during, the application of the numerical 
method. 

The analytical method used in this work consists of the joint use of the 
Mellin transform and the Green's function technique. The system of sin
gular integral equations, thus obtained, is solved by a special application 
of an effective numerical method [2]. 

FORMULATION OF THE PROBLEM 

In polar coordinates, in the absence of body forces, the stresses and the 
displacements in plane elasticity can be given as follows: 

r ~ r2 362 + r 8r ' 

3r \r 36/ ' 
(1) 

where the Airy stress function, $, and the displacement function, ty, 
satisfy the equations 

V $ = 0 , V2* = 0 , f^r |j)= V*$ . (2) 

In (1) and (2), X = v/(1+v) for plane stress and X = v for plain strain, 
u is the shear modulus and V2 is the harmonic operator. 

*Middle East Technical University, Ankara, Turkey. 

3r2 r6 

2yu 3r «-»* If 
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The Mellin transform of a function f(r), defined and suitably regular 
in (0 < r < °°), and its inverse are defined by 

°° Q _ I i c+ i ° ° ^ 
f (s) = / f W r " 1 dr , £(r) = -±r / f (s)r"S ds , (3) 

o ^ i r i c-i°° 
where c is such that rc_1f(r) is absolutely integrable in (0,°°). The 
transforms of the derivatives can be found by using the relation 

7 rj dJfgL r»"l d r = (.xjJ ^ f(s) , (4) 
o drJ 

provided 
&-1 

r S + £ _ 1 ~ ri^~ "*" ° as r * (°>^ > lsl»'~>i • C5) 
d r 

In plane elasticity problems, in which polar coordinates are used, the 
solution of (2) for each infinite wedge gives:* 

$(s,e)=Ziexp(is6)+Z1exp(-ise)+Z2exp[i(s+2)e]+Z2exp[-i(s+2)e], 

(r2R)=2i(s+l){ZiS exp(is6)+Z2 (s+l)exp[i(s+2)e]-Z2exp[-i ts+2)6] } , 

(r2V)= - -^-{Zis exp(is0)+Z2(s+l)exp[i(s+2)e]+KZ2exp[-i(s+2)e]} 

(6) 

where 

(7) 

and Zi and Z2, with their complex conjugates Zi and Z2, are independent 
of 0. 

In the present work, the isotropic homogeneous infinite plane is separated 
into four infinite wedges along the four lines of cracks (see Figure 1). 
Let the union of all the straight line segments representing the cracks 
along one radial line be called L and the remainder Lf, the former being 
finite and the latter infinite. The singular part of the solution may be 
formulated with the following boundary conditions:** 

R = Tr6 + i a 6 

V = tT+1 W 

i 

> 

u = u + iu, 
r I 

K = 3 - 4A 

* The complex notation used here is only for convenience. 
**The crack surface tractions, considered here, are the reversed self-
equilibrating stresses along the crack lines for the medium without the 
cracks under the actual loading. 
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Ri(r,0) = Ri»(r,2Tr) on L1+L1 

Vi(r,0) = V^Cr^ir) on Li 

Ri(r,0) = W!(r) on Li 

R. .(r,6.) = R.(r,9.) on L.+Ll 
3-1 3 3 3 3 3 

V. -(r,6.) = V.(r,G.) on L! 
3-1 3 J 3 3 J 3 

R. (r,6.) = w.(r) on L. 
3 3 J 3 J 3 

(8) 

3=2,3,4 

where the subscripts show the region or the boundary to which a certain 
quantity pertains. Needless to say, w^(r) are the complex tractions on 
the surfaces of the cracks. 

Making use of the Mellin transform and the Green's function technique fol
lowing the method used in [1], the stress expressions for the wedge-
shaped domains are found in the following form: 

R0(r,9)= I f H1.(r,6,p.)dp.+ Z / H_,(r,6,p,)dp.,£=1...,4 
3 = 1 L 13 i j j=*+l L. 2j 3 3' 

3 (9) 

where 
c+i°° /p.\s+2i r ~i r 

H . ( r , 6 , p . ) = - / — f
 U ^w Q n M - 13a"1exp i s ( 6 - 9 . ) - s g . ( p . ) 0̂ 3 3 ' TT c_ i o o p j (K+l ) (3 - l ) \ r / f F[_ ^ Jl lL 3 3 

+ i C s + 2 ) f j l p j ) l H s + l ) 3 a " 1 e x p r i ( s + 2 ) ( e - 0 j ) | | g . ^ 

+ 3 2 " % x p | - i ( s + 2 ) C e - e j ) j | ^ g j ( p j ) + i f j ( p j ) | , a = l , 2 , j = l , . . . , 4 
(10) 

in which ft = exp(2isTr) and* 

g i ( r ) + i f i ( r ) = Vi(r ,+0) - V4(r,2ir-0) , r on LI + L [ , 

g j W + i f j C r ) = V . ( r , 9 j + 0 ) - V ( r , e . . -0 ) f r on L j + L. , j = 2 , 3 , 4 . 

(11) 

Applying the stress expressions (9) to the third and sixth of equations 
(8), the integral equations of the problem are found as 

*The unknown functions, f and g, are the densities of the dislocations of 
opening and edge-sliding modes, respectively. 
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SL 4 
Z / H ( r ,6 p )dp.+ Z / H ( r ,6 p )dp = w ( r ) , 

j = l L, 1J ^ J J j = £ + 1 L s
 2J *> 3 J * 

J J 

r on L,, £ = 1 , . . . , 4 . (12) 

For continuity of the displacements, from the second and fifth of equations 
(8): 

j* / rgj(pj)+ifj(pj)Jdpj = 0 , j=l,...,4 , *,= !,...,n.. , (13) 
"jA 

wnere n.: are the numbers of the cracks on the corresponding radial lines 
(see Figure 1 for the integration limits). 

During tne solution of (12), the kernels Ĥ -:, H2-: are evaluated making use 
of the residue tneory by a special procedure (see reference [1]). After 
lengthy but straightforward computations, (12) takes the following form, 
in terms of real variables: 

+ ^ - H2 ( - J - , 0 . ) f . ( p . H d p . = ^ q (r) ' 2p. z \ r ajj 3^3 j WJ 2u MoT J (14) 

wnere 

w (r) = q (r) + i p^(r ) , 

a j 
8 = 2M . TT/N . , 

r on L , a= 1 , . . . , 4 , 
a 

a , j = l , . . . , 4 

and hL (X,2MTT/N), & = 1 , . . . , 4 , a re defined in the Appendix. 
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NUMERICAL RESULTS 

A special application [1] of an effective numerical method [2] is used for 
the solution of (14) subject to the continuity conditions (13). The nodal 
points for collocation are chosen at the zeros of the Chebyshev polynomials, 
in the ranges pertaining to each and every crack in the medium (see ref
erence [1] for details). It must be noted that, when two or more cracks 
meet at the origin, the continuity conditions (13) do not apply to them 
separately. In that case, if there is a central symmetry in the crack 
setting and a central symmetry or antisymmetry in the loading (crack sur
face tractions), the consequent central symmetry or antisymmetry in the 
unknown functions renders the application of the numerical technique pos
sible. What needs to be done, in that case, is to choose the collocation 
points as if each crack, terminating at the origin, is extended to the 
other side of the origin by a reflection. 

Although the numerical solution yields the values for any elasto-mechanic 
quantity, we will be concerned with the stress intensity factor only. 
Besides the closed form solutions for two and three collinear cracks, com
parisons of the numerical results of the present work were also made with 
the graphical presentations of Isida [3] for other arrays of isolated 
cracks. The results matched perfectly. Surprisingly enough, even the 
cases of parallel cracks have been treated (the results matching with those 
°f [3])> just by taking the angle between the cracks small enough. (It 
must be noted that, the origin being at infinity, the case of exactly 
parallel cracks cannot be treated by the present method). 

The special case of four symmetrically situated radial cracks under con
stant internal pressure was also treated and the results were in good 
agreement with those of Tweed and Rooke [4]. 

The results of the present work for cross-shaped cracks with two pairs of 
unequal arms, loaded with unequal constant normal tractions were compared 
with those given by Sneddon and Das [5]. The results obtained for the case 
of nonuniform internal pressure for a cross-shaped crack with equal arms 
were compared with the results of Stallybrass [6]. There was a mismatch 
of about 0.1 per cent for both cases when 20 points of collocation were 
taken along each branch. 

Some other cases, which cannot be found in the literature, have been con
sidered. Choosing a suitable parameter for each case, the two types of 
stress intensity factors at all crack tips were presented in graphical 
form (Figures 2 - 4). For these computations sixteen collocation points 
were taken along each isolated crack and each branch of the X-shaped crack. 
The results for the limiting cases of single and two or three collinear 
cracks were observed to coincide with those in the literature [3]. Because 
of limited space, loadings which cause partial closures could not be in
cluded here, although a number of such cases were treated, making use of 
the procedure in references [7, 8]. For the same reason an X-formed array 
of cracks with an X-shaped crack at the centre, having a central symmetry 
or antisymmetry could not be exposed here. 
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APPENDIX 

H I ( X , 2 M T T / N ) = ( x 2 - l ) d + x COS(2MTT/N) , 

H2(X,2MTT/N) = ( x 2 - l ) S i - x 2 S 2 + x sin(2Mu/N) , 

hU(x,2M7T/N) = ( x 2 - l ) S ! - S 2 - x sin(2M7T/N) , 

H*(X,2MTT/N) = ( l - x 2 ) C i + (x 2 + l ) C 2 - x COS(2MTT/N) + 2 

where 

Hlfatrf^ffl™ , j=l,2 . 
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Figure 1 The Geometry and Notation 
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Figure 2 (a) Opening Mode Stress Intensity Factors for 3 and 4 Radial 
Cracks Under Uniform All-Round Tension, o~o 

(b) Edge-Sliding Mode Stress Intensity Factors for 3 and 4 Radial 
Cracks Under Uniform All-Round Tension, ao 
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THE MODIFIED WESTERGAARD EQUATIONS* 

R. de Wit** 

INTRODUCTION 

Sih [1] and Eftis and Liebowitz [2] have pointed out that the Westergaard 
method, which applies to a certain class of plane problems in linear 
elasticity and is most frequently used in fracture mechanics [3], suffers 
from a restriction. The restriction is essentially the following: In 
symmetric problems (mode I), the Westergaard function allows only-a hydro
static tension for the remote state of stress. This means, for example, 
that the simple case of uniaxial tension is excluded from this formulation 
(with or without cracks). 

The above authors corrected this shortcoming by appending constant terms 
to Westergaard's stress equations. They did this by appealing to the 
Goursat-Kolosov and MacGregor complex formulations of the problem. The 
present note shows how those additions to the Westergaard functions can 
be made in a more straightforward way without reference to the more sophis
ticated representations. It is done by simply adding the real part of a 
term in z2 to the Airy stress function of Westergaard. 

WESTERGAARD'S FUNCTION 

The classical problem of plane isotropic elasticity is set up in terms of 
the Airy stress function $, which satisfies the biharmonic equation [3, 4] 

V2(V2d>) = 0 (1) 

and from which the stresses can be derived as follows 

n = 3f£ n = i 2! rf = 82$ m 
xx 8y2 ' °yy dx* ' xy " 3x3y ' l J 

For mode I Westergaard then gave the Airy stress function in terms of the 
analytic function Zj (z) of the complex variable z = x+iy as follows: 

<£> = Re Zj + y Im ~Z , (3) 

where dZ/dz = Z and dZ/dz = Z. For mode II he gave it in terms of another 
analytic function ZTT(z) as follows: 

* Contribution of U. S. National Bureau of Standards, not subject to copyright. 
**National Bureau of Standards, Metallurgy Division, Washington, D. C. 

20234, U. S. A. 
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$ = - y Re Z n . (4) 

Most of the classical results in fracture mechanics have been derived 
from these equations by suitable choices of Westergaard1s analytic func
tions Z. 

THE MODIFICATION 

Muskhelishvili [4] has shown that it is possible and also convenient to 
write the Airy stress function as the real part of a complex but not ne
cessarily analytic function, as follows: 

<£> = Re jz*(|>(z) + X(z)| > (5) 

where the Goursat functions cj)(z) and x(z) a r e analytic. Now, if the func
tion x(z) includes a term in the analytic function z2, then we see from 
(2) that this would add at most constant terms to the stresses. Hence, 
this provides a very simple way of making the correction proposed by Sih 
and by Eftis and Liebowitz. 

If we write the Goursat functions in terms of the Westergaard functions 
as follows: 

* 4 (z! -* zn) • 
* = ! i - i ( z i - i z " n ) z - i ( A + iB)z2 • 

then the resulting Airy stress function is by (5) 

(6a) 

(6b) 

$ = ReZj + ylmZ - yReZ - -| A(x2-y2)+Bxy . (7) 

The first two terms in this expression are the same as (3), the third is 
(4), and the fifth and sixth are the correction terms. The stresses 
follow from (2) 

a = ReZT - ylmZl + 2ImZTT + yReZ' + A , (8a) 
xx I J I II II 
a = ReZj + ylmZJ - yReZj^ - A , (8b) 

a = -yReZ! + ReZTT - ylmZ' - B . (8c) 
x y ' I I I ' I I 

The displacements in plane-strain can be shown to be 
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2yu = (l-2v) ReZ" - ylmZj + Ax + 2(l-v) ImZ + yReZ n - By , (9a) 

2uv = 2(l-v) ImZ" - yReZ - Ay - (l-2v) ReZ~n - yImZ n - Bx , (9b) 

where u is the shear modulus and v Poisson's ratio. Equations (8) and (9) 
are the basic results of Sih and Eftis and Liebowitz. 

The rotation of the medium is given by 

(10) I (^y_ ^H i 
2 bx " dyl ' 

By (9) the rotation is then easily expressed in terms of the Westergaard 
functions as follows 

yu> = (1-v) (ImZj-ReZjj) . (11) 

APPLICATIONS 

(a) Constant Stress Without Cracks 

We obtain case of a constant stress field in the medium by taking constant 
(complex) values for the Westergaard functions 

Z = C + iD , (12a) 

Z = E + iH . (12b) 

The values of the constants C, D, E and H are determined by the boundary 
conditions. Then the stresses are from (8): 

a = C + 2H + A , (13a) 

Oyy = C - A , (13b) 

°xy = E - B . (13c) 

We see that there are now enough constants available to obtain any arbitrary 
set of stresses. 

However, for mode I, E = H = 0, without the correction terms, A = B = 0, 
only hydrostatic tension is possible, o"xx = o* = C, a x y = 0. This is 
the nature of the restriction on Westergaard1s original equations, as we 
mentioned in the Introduction. The correction term A makes it possible 

187 



Fracture 1977, Volume 3 

in mode I to have a x x differ from o*yy. The simple case of uniaxial tension 
is then given by A = - C. 

We note, however, that the correction terms are not strictly necessary for 
a completely arbitrary choice of stresses, if modes I and II are combined, 
for the term H in (13a), which comes from mode II in (12b), also allows 
us to choose a x x different from a in an arbitrary way. 

The constant D in (12a) does not play a role in the stresses (13). It is 
related to the rotation of the medium, together with the constant E, as can 
easily be deduced by substituting (12) into (11): 

uco = (1-v) (D-E) . (14) 

(b) Small Crack 

This is the classical case of an infinite medium with a central crack 
of length 2a along the x-axis. The solution to this problem is given by 
the Westergaard functions 

1/2 
ZT = a(l-a2/z2)~ + C + iD , (15a) 

Z = T(l-a2/z2)" + E + iH , (15b) 

where the values of the constants a, T, C, D, E and H are determined by the 
boundary conditions. 

One set of boundary conditions is that the crack surface is stress free 

a = a = 0 for y = 0, x < a . (16) 
yy xy J ' ' K J 

From (15) and (8) this leads to the relations 

C = A, E = B . (17) 

Another set of boundary conditions is given by the asymptotic behaviour 
of the stresses at remote distances from the crack. From (17), (15) and (8) 
we find at I z I = °° 

a = a + 2(A+H) , (18a) 
xx 

a = a , (18b) 
yy 
a = x . (18c) 
xy 
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We see therefore that a and x in (15) represent the remote normal tensile 
and shear stress applied to the cracked medium. From (18a), we see that 
the remote tensile stress parallel to the crack can be arbitrarily adjusted 
to any desired value, either by fixing C (= A) in mode I or H in mode II. 
This does not affect the first terms in equations (15), which contain the 
essence of the crack field. 

The constants E (= B) and D play no role in the stress field of the cracked 
medium. From (11) it can easily be shown that they are related to the ro
tation of the medium. It fact, for |z| = °° we find 

uco = (1-v) [D-E-x] . (19) 

Our result that B does not appear in (18) contradicts a conclusion by Sih, 
who stated that B cannot vanish for a non-trivial solution. The reason 
for this is that Sih made the unnecessary assumption that E = - x in his 
equation (14), which corresponds to our equation (15b). 

CONCLUSION 

We have shown that a correction, proposed by Sih and by Eftis and Liebowitz, 
to remove a restriction on Westergaard's equations, can be made in a very 
simple way by adding an elementary term to the Airy stress function. 

The result is illustrated by two very simple examples. However, applica
tions to more complex problems, such as those discussed by Eftis and 
Liebowitz, can of course be made in a similar straightforward manner. 
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AN EQUIVALENT INCLUSION METHOD FOR A THREE-DIMENSIONAL 
LENS-SHAPED CRACK IN ANISOTROPIC MEDIA 

T. Mura and P. C. Cheng* 

INTRODUCTION 

Micro cracks in materials sometimes take a three-dimensional lens-shape. 
In tnis paper crack opening displacements, crack extension forces, stress 
concentration factors for a3 ^ 0 and stress intensity factors for a3 = 0 
are developed through the use of the equivalent inclusion method for an 
isolated three-dimensional lens-shaped crack under simple tension and pure 
shear, where a3 is the smallest principal axis of the ellipsoid. 

CRACK OPENING DISPLACEMENT 

A three-dimensional lens-shaped crack is given by Figure 1 or by 

ft: xf/a? + xi/a| + xl/ai <_ 1 (1) 

where a3 is smaller in comparison to ai, a2. The elastic constants of 
domain ft are zero. An applied stress (Q|J at infinity) becomes a ^ + a ^ 
in the neighbourhood of ft. Tne stress disturbance a^j is equivalent to 
the stress caused by eigenstrains £*.: (phase transformation strains) de
fined in ft, assuming the elastic constants of ft to be the same as those 
of the matrix (denoted by C?-jir£)- £*• are determined from 

°ij + °ij ■ °> aij - chu{\,i - e u) i n °- (2) 

where u^ i s the displacement f i e ld due to e*.:. We found by Green's func
t ion technique [1] t h a t when £*• are constant and a3 « a i , a 2 , 

u. , * (1/4TT)C° 0 £* (VrrG. . , 0 (0 ,0 ,1) - a3H. . , ] (3) 
i , k v J j£mn mn |_ i j k£ v ' J ijk£j K J 

G . . M C l i . 5 2 , 5 S ) =N. j C?)C k 5 £ /D( | ) 

/
a l a 2 5 3 a - -

(a?cos 2 e + a!s in 2 6) * ( l - £ S ) * 3?3 ±jU ~ ~ 

5i = (i-^)1/2cos e, l2 = (i-|!)1/2sin e, ds(C) = d0dc3. 

*Materials Research Centre, Northwestern University, 111., U.S.A. 
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Nij (I)> D(C) are tne cofactor and the determinant of matrix (Cipjnlpln) 
respectively and S2 is the unit sphere t±K± ~ 1« Equation (3) "is linear 
with respect to a3. 

When a£j =033 (simple tension) and the crystalline directions are parallel 
to the principal axes direction of ft, equation (2) gives a non-zero com
ponent of e|. as 

a e* = 47ra0 /C° C° II (5) 
3 33 3 3 3 3mn pq3 3 mpnq v J 

When a|j = o\\ (pure shear) and the crystalline directions are parallel to 
the principal axes directions of ft, a non-zero component of £*• is obtained 
as 

a e* = 2Tra° /C° C° II (6) 
3 3i 3i' 3imn pq3i mpnq. v J 

From the dislocation theory [2], the crack opening displacements u3 for 
(5) and ui for (6) (displacements on ft) are given by £|-;h, where h is the 
half thickness of ft in the X3 direction: 

h = a3(l - x2/a2 - xl/ai)1'2. (7) 

Since the right hand sides in (5) and (6) do not contain a3, e*. -> °° for 
a3 -> 0. J 

CRACK EXTENSION FORCES 
The interaction energy between a?■ and the crack is given by 

AU = - T TTa1a2a3e*.o?. . (8) 
3 z IJ 13 

When the crack is expanding in the X2 direction, keeping ai, a3 constant, 
the crack extension force G is given by G = -9(AU)/3a2. For the simple 
tension it becomes 

G = 87T2a1(a033)2(f/g)/C° C° n (9) 
u i6J K ' SJ/ 33mn pq33 mpnq J 

where 

alsin26 ds(£) 
C33ik-j£33^ (i.||)iP(a|3 -ijk*v-') (a?cos2e+aIsin2e)5'2 

S 2 

(10) 

3 ( a ) dsC5) c° / 
3ik j5,3 3 7 'asik jAss^ (1-|l)i'2(3|3 ^ j (a 2cos 2e +a 2sin 29)^ 

and f/g -> 1 for ai -*- °°. 
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A similar calculation can be done for the pure shear case. 

The above result can be applied to a flat ellipsoidal crack (a3 •> 0) since 
(9) does not contain a3. For the slit-like crack (ai -* °°), G agrees with 
that given by Barnett and Asaro [3]. 

STRESS CONCENTRATION FACTORS 
The stress concentration factor is defined by 

K = (Qij + aijCout)Va°. (11) 

where o^i + a^j (out) is defined immediately outside the crack, a ^ (out) 
can be determined by o^i in Q, (denoted by a-jj(in)). The stress jump on Q, 
[â -:] = a-̂-: (out) - ajL-j(m), can be written as (see [4] - [7]), 

[a..] = C° 0|-C° e* G. 0(n) + e* I (12) 
[ ljj ijk£( pqmn mn kpq£ ~ kif ^ J 

where n is the outward normal vector of the boundary of ft. Since 
aii + Oji(in) = 0, (11) is written as 

K -taK (13) 

where ê -j are given by (5) and (6) for the two types of applied stress and 
are inversely proportional to a3. K at $ = TT/2 (see Figure 1) is shown in 
Figures 2 and 3 with respect to ai/a2 for various crystals. a3 is ex
pressed in terms of pn from geometry, 

a3 = (Pna!a2)1/2(a!cos23 + a2sin23)~1,1+ (14) 

where pn is the root radius of the curve which is an intersection of Q and 
the plane containing n and the line parallel to the x3 axis (see Figure 1). 
The values of K/(a2/Pn)1/2 converge to constant values which agree with the 
values expected from Lekhnitiskii [8] for simple tension in the plane 
strain case. 

STRESS INTENSITY FACTORS 
The stress intensity factor is defined when a3 -* 0 by 

K = lim S2$ (G° + a ) (15) 
p-K) \ 1J 1J/ 

where p is the distance from the boundary of the crack. 
When a! is fixed and a2 is changed by 6a2 (small variation), the work 
done by the tension on the new crack surface 6A is 

2(K//2p)e*3h6A = 2Ke*3a3 (x2/a} + x2/a2)1/1+ TTai6a2 (16) 
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where x 2 / a 2 + x 2 / a 2 = 1 and (1 - x i / a f - x i / a i ) 1 ' 2 i s approximated as 
/ 2 p ( x i / a i + x 2 / a 2 ) . Equation (16) must be equal to G6a2 which can be 
wr i t t en from (5) as 

G6a2 = 27raioi3a3e33(f/g)<5a2. (17) 

Comparing (16) and (17), we have 

K = a°3 3(x!/ai + x l /a^)" 1 , l t ( f /g) (18) 

For the slit-like crack (ax -* °°), f/g = 1 and therefore K is independent 
of the elastic constants. The value of K agrees with Barnett and Asaro [3] 
for the siit-like crack. Similar discussion can be done for the pure 
shear case. 

CONCLUSION 

We have shown that the equivalent inclusion method can provide the crack 
opening displacements, crack extension forces, the stress concentration 
factor when a3 f 0, and the stress intensity factor when a3 = 0. It is 
also found that some difficulties are involved in deriving the stress 
intensity factors from the stress concentration factors through a limiting 
process. The two concepts of stress intensity and concentration factors 
appear to belong to separate categories. 

In this paper we considered uniform applied stress fields at infinity. 
However, a similar calculation can be done for a linearly changing applied 
stress at infinity. Similarly the present method can be applied to any 
orientation of crystals and any anisotropic material. Comparison with 
other results about the stress intensity factors obtained by Kassir and 
Sih [9] and Willis [10] will be possible only numerically and will be 
reported in this conference. 

ACKNOWLEDGEMENT 
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APPENDIX 
For isotropic materials 

c° c° n = —4TTy E 
3 3mn pq3 3 mpnq a 2 1-v 

C° C° II = — 4TTulri- — (F(k)-E(k)) + k ^ / H M . - F(k)U 3imn pq3i mpnq a2
 HU-V k2 k2 \^xi JU 

where u, v are the snear modulus and Poisson's ratio, respectively, and 
k2 = 1 - al/a2, a! > a2, k'2 = 1 - k2. F(k), E(k) are the complete 
elliptic integrals of the first and second kinds respectively. 
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Figure 1 Configuration of a Flat Ellipsoid or a Crack 
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Figure 2 Tensile Stress on the Boundary of an Elliptical Crack at 
3 = 90° for Various Ratio of ai/a2 

Figure 3 Shear Stress on the Boundary of an Elliptical Crack at 3 = 90° 
for Various Ratio of ai/a2 
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STRESS INTENSITY FACTORS AT THE TIPS OF KINKED AND FORKED CRACKS 

B. A. Bilby, G. E. Cardew and I. C. Howard* 

INTRODUCTION 

Amongst the fundamental problems that form the theoretical basis for studies 
of the paths of crack propagation and of the stability of cracks are the 
problems of the elastic fields around a long or semi-infinite crack with 
either a single kink or a fork at its tip (to discuss the onset of deviation 
or branching, the case where the main crack is long is of most interest). 
We present here briefly some of our computations of the relevant stress 
intensity factors for these two problems. A number of workers have con
sidered problems of this kind; for some references, see [1 - 10]. In 
making available our own results, which sometimes differ from those pre
viously published by other workers, we hope to contribute to an ultimate 
consensus of agreement, for these problems have a considerable history of 
published error, some of which has been acknowledged. In the text we give 
some indications of why we think this has come about. 

THE KINKED CRACK 

We image that a semi-infinite crack has, at its tip, a kink of unit length 
making an angle a with the main crack (Figure 1). The loading is specified 
by the stress intensity factors Ki and K2 of the main crack without the 
kink. The analysis of [14] enables the stress intensity factors ki and k2 
at the tip of the kink to be computed in terms of Ki and K2 by quadratures. 
We find [1]: 

ki = Kn(a) Kx + K12(a) K2 , (1) 

k2 = K21(a) Kx + K22(a) K2 , (2) 

where the functions K-jj (a) are displayed in Figure 1. (A table of K ^ (a) 
allowing interpolation to within 1% accuracy is available upon request 
to the authors). We have checked the accuracy of the numerical procedures 
whereby K-jj (a) are computed, and we believe that the results upon which 
Figure 1 is based are an accurate solution to the problem. Where compari
sons can be made, we agree with the results of Chatterjee [5], but disagree 
slightly with [2]. The appropriate curves in our Figure 1 and the Figure 4 
of [2] look very much the same, but our results differ from those of [2] by 
as much as 20%. We are unable to explain this difference on the basis of 
an error in our calculation, and suggest that the method of conformal 
transformation used in [2] may be less reliable than is usually supposed. 
This supposition is partly born out by the difficulties we experienced in 
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attempting to make a related method work for the problem of the forked 
crack. 

THE FORKED CRACK 

We have solved this problem by two methods. 

(a) Firstly, we used a method of conformal transformation which maps a 
finite crack with a forked tip into the unit circle. The appropriate 
stress functions are found by inverting an infinite system of algebraic 
equations, and we found that the simplest formulation of the problem was that 
of [9]. Although the method produced results which agree qualitatively 
with those of [2] we had to do very large amounts of computation to achieve 
them, and we suspect that the rate of convergence of the method was slow 
enough for simple numerical rates of convergence to be misleading. 

(b) Secondly, we represented the cracks by continuous distributions of 
dislocations and we solved the resulting singular integral equations by a 
method similar to that reported in [11]. All our attempts to represent a 
semi-infinite crack by a continuous distribution of dislocations were 
unsatisfactory, and so we performed the computations for a finite, but long, 
main crack. Figure 2 shows the normalized stress intensity factors ki/Ki, 
k2/Ki at the tip of the upper fork when the main crack is 40 times as long 
as the kink. Ki is the stress intensity factor at the tip of the main crack 
without the kink. Our method is numerically unstable for small a, and we 
have no reliable results, as yet, for 0° < a < 5°. 

The most important feature of Figure 2 is the zero of k2 at about 18°, 
slightly larger than the value read from Figure 14 of [2]. The existence 
of this zero is used in theories of the crack forking which occurs both 
with fast moving cracks [12], and in stress corrosion [2]. This zero 
appears to arise because of the presence of the fork, and the computations 
of Kalthoff [12] for a fork without a main crack clearly show its presence. 
A recent paper [10] reports the results of computations on a forked crack 
where the main crack is four times the length of a fork; k2 has no zero. 
We have repeated out computations for this particular geoemtry and clearly 
discern a zero somewhere between 10° and 20 . Finally, we note that our 
Figure 2 disagrees with the results of [4]. We believe that this is be
cause the formulation of the problem given in [4] is incorrect. We find 
that proper application of the boundary conditions leads to a coupled 
pair of Wiener-Hopf equations, rather than the separated equations of the 
authors. The point is a subtle one and has not been noticed by a recent 
reviewer [13]. 
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ANALYSIS OF BRANCHED CRACKS UNDER BIAXIAL STRESSES 

H. Kitagawa and R. Yuuki* 

INTRODUCTION 

Branched cracks are often observed in brittle fracture and also in stress 
corrosion cracking. The reasons for these crack branching phenomena in 
brittle fracture have been explained on the basis of dynamic effects [1]. 
However, there are many characteristics common to both crack branching 
behaviour in brittle fracture and in stress corrosion cracking. In order 
to discuss these phenomena, it seems important to analyse the static 
stress intensity factors for the branched crack model. However, few 
solutions for such a crack have been obtained. In another report, a 
general method analysing some kinds of the branched cracks was form
ulated using a conformal mapping function. The numerical values of stress 
intensity factors for a branched crack under uniaxial stress were reported 
in references [2 - 5]. 

In this paper, taking into consideration that most engineering structures 
are often subjected to biaxial loading, the numerical solutions for the 
stress intensity factors of some kinds of branched cracks under biaxial 
stress are presented. Moreover, using the results obtained, crack ex
tension behaviour under biaxial stresses is discussed. 

ANALYSIS 

Conformal mapping functions have been applied to the analyses of crack 
problems by Muskhelishvili [6], Bowie [7] and others. Muskhelishvili and 
Savin [8] analysed various shaped holes with the method of polynomial 
mapping approximation. Bowie applied this method to the analysis of a 
crack emanating from a circular hole. We applied this method, with 
various improvements, to the analysis of a branched crack. 

In the analysis of a branched crack, due to the complicated crack geo
metry, the polynomial approximation of the mapping function does not con
verge easily. Moreoever, the first and second mode stress intensity 
factors coexist and the crack has dual crack tips at which the stress 
intensity factors are different. This increases the difficulties of the 
analysis. 

The authors have overcome these difficulties and were able to develop a 
general method of analysis of branched cracks. In other papers [2 - 5], 
we analysed a branched crack with one or two branches on one side of the 
main crack in a uniaxial stress field, utilizing the mapping functions 
which were used by Andersson [9]. In this paper, we analyse a doubly 
symmetric branched crack, utilizing the mapping function introduced by 
the Schwartz-Christoffel transformation with several devices in calculation. 

*Institute of Industrial Science, University of Tokyo, Tokyo, Japan. 
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As a result of the high symmetry of the crack geometry, we obtained more 
accurate solutions than the solutions of the forked crack obtained in 
another paper. The outline of our method is described below. 
Mapping Function 

A doubly symmetric branched crack as shown in Figure 1 is considered. A 
conformal mapping function which maps the crack into a unit circle is 
given by a Schwartz-Christoffel transformation. As a result of the sym
metry, the conformal mapping function is given by equation (1). 

Z = 0)(O = A/ CH(0 (1-2 cos 23 C"2+C_4)dC (1) 

c M < c 2 ) i ^ 

Where the parameters a, 3 correspond to the branching points and the crack 
tips respectively as shown in Figure 1 and A is a real constant. The 
mapping function u>(£) must be expanded in a series, because of the deter
mination of the parameters a, 3 and the stress function as stated in the 
next section. The function H(£) in equation (1) can be expanded in a 
binomial series as shown in equation (3). 

H(0 = 1 + n I x hn s"2n (3) 

Subs t i tu t ing equation (3) in to equation (1) and in t eg ra t ing equation (1) , 
we get the following equation: 

[ a> l -2nT 

5 + n i l Bn 5 J 
(4) 

For practical reasons the number of terms in equation (4) must be kept 
finite. If the terms of the polynomial mapping function are truncated at 
a finite number, the tip of the crack is rounded off. In the analysis of 
crack problems, the truncation of terms needs some devices to preserve the 
crack tip geometry without disturbing the overall crack configuration. 
Referring to Bowie's truncation plan [8], the polynomial mapping function 
0)(O of equation (4) is truncated at a finite term to satisfy the fol
lowing conditions at the crack tips. 

co'(ei3) = 0, co"(el3) = Q (5) 

Where Q is the exact second derivative of the mapping function of equation 
(1) at the crack tip and is given by equations (6) and (7). 

Q = w"(ei3) = -4A H(el3)(e~2i3 - 2 cos 23)e"3lf3 (6) 

— 1 - ~( IT 1 
H(ei3) = \ |sin e h " |sin(a+3) sin(a-3)|" "{e1 (9+P" l)} (7) 
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To satisfy the above conditions, we add the two correction coefficients 
to the function u)(£) which is expanded in series and truncated at the Nth 
term. Thus we obtain the following mapping function. 

T N + 2 l-2nl wCO = A[c + n Z 1 B* c1 ZnJ (8) 

Next, the parameters a and 3 must be determined. The parameters follow 
the relations. 

0 £ 3 < a <_ TT/2 (9) 

For a given value of 3: 

Z = w(0 = 0, on e i a < c, < elt7r"a) (10) 

The value of a for a given value of 3 is numerically determined to satisfy 
the above relation. Thus we obtain the mapping function and its poly
nomial approximation for the doubly symmetric branched crack. 

Stress Function and Stress Intensity Factors 

The Muskhelishvili complex stress functions $(£)> *KO are used in our 
analysis. Taking the polynomial mapping function o)(C) obtained by equa
tion (8) into consideration, the stress functions can be defined as 
follows, when the crack is subjected to uniform uniaxial tension a in the 
direction <|>o as shown in Figure 2. 

["<: N + 2 l-2nl 

<KO = Aa 
f e^<Po N+2 1_ 2 nl 
I 2 ^ nil fn ̂  J ^12) 

Where dn and fn are the coefficients of the stress functions and they have 
to be determined so that the stress-free condition is satisfied on the 
crack edge. This condition is given by equation (13). 

*(1/C) + wCl/O^'CO/w'CC) + *(C) = 0, on |c| = 1 (13) 

Substituting equations (11), (12) and (8) into equation (13), and equating 
the coefficients of all positive powers of £ to zero, a set of linear 
simultaneous equations with respect to the unknown coefficient dn can be 
given. Solving these equations, the stress function <(>(£) to satisfy the 
boundary conditions is obtained. By means of the function (J>(£) obtained 
above and equations (6) and (7), the stress intensity factors of the 
branched crack can be calculated by the following equation. 

K = Kl - iK2 = * r**'% l g> (14) 
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Where 0 is the branching angle as shown in Figure 1. The value of the 
stress intensity factors for the branched crack under given biaxial 
stresses can be obtained by the summation of these kinds of solutions. 

NUMERICAL RESULTS 

Doubly Symmetric Branched Crack 

By means of the method mentioned above, the values of the stress intensity 
factors of the branched crack were calculated. The accuracy is within 1%. 
They are normalized by the stress intensity factors of the straight crack 
length 2c as shown in Figure 3. Figure 3 shows the non-dimensional stress 
intensity factors (Fi, F2) of the branched crack, subjected to uniform 
tension along the y axis and Figure 4 along the x axis, respectively. The 
solutions for the branched crack under arbitrary biaxial stresses can be 
calculated by simply superimposing the solutions for the cracks under uni-
axial stress. Figure 5 shows the stress intensity factors of the branched 
crack for b/a =0.1 under various biaxial stresses. A is the ratio of the 
tensile stress in the x direction to that in the y direction. 

It is well known that in brittle fracture or in stress corrosion cracking, 
crack branching has often been observed. In such a fracture process, the 
stable crack branching angle can be considered. Figure 5 shows that for 
various values of A, the F2 (or K2) value changes sign and becomes zero 
at a chracteristic branching angle. A branched crack with such a branching 
angle will grow along the extension line of the branch. If we take a 
criterion such that each branch can grow only in the direction F2 (or K2) 
= 0 [3], the stable branching angles 20 for the various value of A are 
determined by Figure 5. They are about 25°, 33°, 41°, 52° for X = -1, 0, 
0.5, 1, respectively. Thus the branching angle increases with increases 
of the value of A. For the case of uniaxial stress (A = 0), it is well 
known that the average macro branching angle observed in experiments is 
almost 30° - 40°. In this discussion, the results for b/a =0.1 are used. 
If the b/a value increases, the branching angle decreases slightly. This 
corresponds to the phenomenon that the branched crack changes direction 
with the growth of the branches. We can obtain stable branching angles 
under various biaxial stress states. If a branched crack is observed in 
a structure, it is possible to infer the stress state to which the branched 
crack was subjected using these results. 

Bent Crack 

We also analysed a bent crack, as shown in Figure 6, as a limiting kind of 
branched crack. In this case, the mapping function and the method of 
analysis are slightly different from those mentioned above. They have 
been reported in reference [2]. This bent-crack crack-model is very use
ful when the extension direction of a crack under a mixed mode stress 
state is discussed [11]. Several authors have tried to analyse the same 
crack model as used here [12 - 13]. Only numerical results are presented 
here in order to discuss crack extension behaviour under biaxial stresses. 
Figure 6 shows the stress intensity factors at the tip of the bent crack 
with a branch (b/a =0.1) subjected to various biaxial stress states. It 
is a very difficult problem to consider the stability of crack extension. 
However, if the model of the bent crack can be used and the stress inten
sity factors of this crack are known, it seems that the stability of crack 
extension can be supposed to some extent. We can deduce that for the 
case of A = 0, -1, the crack is very stable because the nondimensional 
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stress intensity factors at the bent crack tip F-̂ g, ¥2^ vary rapidly at 
the vicinity of the point X = 0. This means that a small deviation in 
the direction of crack extension from the original direction induces a 
rapid return to the original direction. On the other hand, for the case 
of A = 2, the crack seems to be unstable and cannot grow in a straight 
line. Figure 7 shows the directions of crack extension from the tip of 
a bent crack which are calculated by the theory of maximum circumferential 
stress proposed by Sih, et al. [10]. For the case of X = 0, -1, if the 
crack is bent for some reason, it will be bent again towards the direction 
of the extension line of the initial crack. On the other hand, for the 
case of X = 2, the crack grows in the direction of the extension line of 
the bent branch. Thus the crack has different stability for each biaxial 
stress state. We suppose that this affects the crack path and crack 
growth law found in biaxial fatigue tests. 

SUMMARY 

We constructed a general method for analysis of a branched crack in a 
given biaxial stress state by means of a conformal mapping function and 
its series expansion. The calculated values of stress intensity factor 
of a doubly symmetric branched crack and a bent crack under various bi
axial stresses are presented. On the basis of these results, the crack 
extension behaviour under biaxial stresses is discussed from our crack 
morphological view-point. Some of the interesting points are as follows: 
1) In a fracture process such that a symmetric branched crack can grow, 

there is a stable branching angle particular to a given biaxial stress 
state, which increases with increase of the lateral biaxial tensile 
stress. 

2) Using the solutions for the bent crack, we discussed the stability of 
the crack under various biaxial stresses. The crack has a particular 
stability, which may affect a crack extension behaviour. 
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Figure 3 The stress intensity factors of the doubly symmetric 
branched crack subjected to uniaxial tension in the 
y-axial direction 
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Figure 4 The stress intensity factors of the doubly symmetric 
branched crack subjected to uniaxial tension in the 
x-axial direction 
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Figure 5 The stress intensity factors of the doubly symmetric 
branched crack for b/a=0.1 subjected to biaxial 
stresses 
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Figure 6 The stress intensity factors of a bent crack for 
b/a=0.1 subjected to a biaxial stress state 
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A SIMPLE ANALYTICAL MODEL FOR THE THICKNESS DEPENDENT TRANSITION 
FROM PLANE STRESS TO PLANE STRAIN IN BODIES WITH A CRACK 

G. Prantl* 

INTRODUCTION 

From experimental work an influence of the dimensions of specimens con
taining cracks on their fracture behaviour is apparent. While there is 
a large amount of data on size effects, and there are empirically derived 
criteria for the dimensions' of laboratory test specimens used to obtain 
results applicable to full scale structures, the quantitative understanding 
of the problem and of the effect of the various parameters is not yet 
perfect. A possible consequence of increasing the dimensions from small speci
mens to large structures is a transition from a plane stress to a plane 
strain state of deformation in the critical region of the material and a 
connected transition in fracture mode. 

The purpose of the present paper is to construct a simple analytical model, 
using continuum mechanics principles, which is able to describe the influ
ence of specimen thickness on the stress state in the neighbourhood of a 
crack, assuming linear elastic material. For the more important practical 
case of elastic plastic material behaviour, where yield zones develop, 
some limited conclusions can be drawn on the basis of an analogy between 
the elastic and the elastic plastic distribution of the in-plane stresses 
in front of the crack. 

Although it is possible to calculate the stresses and strains in a body 
of finite dimensions using three dimensional finite element techniques, 
the present work is justified, because it allows the effect of the various 
parameters of the problem (e.g., thickness, external load, Poisson's con
stant, crack length) to be estimated in a direct closed form. 

DEVELOPMENT OF AN ELASTIC MODEL 

The work described here is restricted to the following class of problems: 
A disc, made of linear elastic material, contains a crack penetrating 
through the thickness. The dimensions of the disc in its main plane are 
large compared to the length of the crack, 2c. The thickness 2t can take 
any value between zero and infinity. The body is loaded by uniformly 
distributed tensile stresses, a^, perpendicular to the plane of the crack. 
Figure 1 explains the coordinates used, as well as the notation of the 
stresses. 

In the vicinity of the crack tip, there is a concentration of the stresses 
ar and Ox, which is known from the solution of the respective plane problem 
(1), if t/c is either approaching zero or infinity. In the first case 
Gz = 0, in the second case az = (ar+o~A). In real bodies az is within 

* Swiss Federal Institute for Reactor Research, CH-5303 Wiirenlingen, 
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these limits. 

It is assumed for the sake of argument, that the disc is divided into two 
zones, as shown in Figure 2. The inner zone I contains the material under 
relatively high stresses, while the ringshaped outer zone II includes the 
rest of the body within the region of the stress concentration. In each of 
the two zones the sum of the stresses c^+o*^ is averaged. 

If the zones were free to deform laterally, each would suffer a contraction, 
caused by the average stresses in it. This individual deformation of each 
zone results in a misfit at their common boundary. Before they are reas
sembled, the difference in lateral contraction must be cancelled. This can 
be done by the application of shear stresses Tj JJ with the proper magni
tude and distribution to the common boundary otthe zones. Still con
sidering the separated zones, it is noticed that these shear stresses, 
which are necessary to maintain the continuity of the whole body, induce 
tensile stresses o~z in zone I and compressive stresses in zone II. It is 
assumed in the model, that the stresses o*z are uniformly distributed over 
the cross section of the respective zone. 

The calculated stresses o"jz and O"TT are mean values over the cross section 
of the respective zone, and therefore depend on the zone size chosen. For 
the mathematical formulation of this idea, the following conditions are 
used: 

- Equilibrium of forces in direction z on zone I alone. 
- Equilibrium of forces in direction z on zone I and zone II together. 
- A compatibility relation at the common boundary of the two zones, 
formulated with a series expansion with respect to r of the displace
ment in direction z. 

- Hooke's law. 
- Boundary conditions for az at the median plane and at the surfaces 
of the disc. 

In order to simplify the treatment of the problem, the cross sections of 
the zones are assumed to be circular. The radius of inner zone I is 'a', 
the radius of outer zone II is fb f, (see Figure 2). 

Using the conditions listed leads to a differential equation for the 
average stress a I z in zone I: 

alz" - X2°lz ■ - A2 B ( Z ) • (1) 

The double prime denotes the second derivative of a I z with respect to z. 
The parameter X contains the dimensions of the zones and Poisson's con
stant v: 

4 2(1+V) ̂ a(b-a) (2) 

B(z) is a function, which consists of the difference of the stresses ar 
and cu between the zones, and a term that depends on the radial deformation 
at the common boundary of the zones. While the first part can be deter
mined from the distribution of the stresses ar and cty, the second part 
remains unknown. 

214 

X 



Part V - Analysis and Mechanics 

The boundary conditions are: 

aIz'(0) = 0 , aIz(t) = 0 , -aIz'(t) = 0 . (3) 

The prime denotes the first derivative of Qj z with respect to z. The 
solution of equation (1), using the first two boundary conditions (3), is: 

Qlz 
t t 

- / B(z)sinh Xz dz + tangh At / B(z)cosh Xz dz|cosh Xz -
z . 0 

z 
- sinh Xz / B(z)cosh Xz dz} . (4) 

0 

Equation (4) does not satisfy the third boundary condition. The reason 
is that equation (1), which results from the simplified one dimensional 
analysis, is of the second order. 

The complete solution, accounting for the radial stresses at the borders 
of the zones too, would be a differential equation of the fourth order. 

In order to introduce the retroaction of az on the stresses ar and GA, 
a specific function is proposed for B(z), which makes it possible, to 
satisfy this boundary condition too: 

B(z)=aIz (1 2_cosh_X^_, (S) 
max \ cosh Xt + . , , 

Here, o"iZmax is the greatest possible value of Qj z for the problem under 
consideration, namely: 

K) a = v(Aar + Aaj •(! - £5-1 • W 
max 

The differences of the stresses between the two zones, Aar and AQA, can 
be determined from the respective stress distribution. The form of 
equation (5) is indicated by still unpublished photoelastic measurements, 
made by the author. Further, it is based on the assumption, that the z-
distribution of the in-plane stresses and deformations is also governed 
by the parameter X. 

Inserting equation (5) into equation (4) results in the final equation 
for Qj z, the average stress in zone I: 

Iz _ 1 _ (Xt cosh Xt+sinh Xt)cosh Xz-Xz sinh Xt sinh Xz r?. 
aT sinh Xt cosh Xt + Xt ' ^ J Iz max 

From equation (7) the average stress in zone II, Cj I z , and the shear stress 
Tj ii at the common boundary can easily be deduced, if necessary. 
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If the thickness of the disc is large compared to the dimension b, it is 
also large compared to the half crack length c, because b and c are of the 
same order of magnitude. In this special case equation (7) reduces to: 

— = 1 - (1+AQ e'X? . (8) 

In this equation the distance £ from the surface is used instead of z, 
where E, = t-z. 

APPLICATION OF THE ELASTIC MODEL 

Before the stresses can be calculated, the input data must be derived 
from the distribution of the in-plane stresses. The parameter X, 
equation (2) and the stress aIzmax> equation (6) are determined using the 
two dimensional solution of the crack problem (1). The results are pre
sented in Figure 3 as a function of the relative zone size a/b. 

The mean stresses within the two zones and the parameter X are strongly 
influenced by a/b. The dimension fb', according to the model, defines 
that part of the body which is able to constrain the material in zone I. 
It is specific to the particular problem treated and it can be estimated 
from the distribution of the in-plane stresses. It is reasonable to assume 
'b' proportional to the fading distance of the perturbation of the stress 
field. In this work, b = 0.5 c is used. This is an arbitrary choice, 
suited to the application of Sneddon's elastic solution. The dimension 
fa f, which fixes the size of zone I, is varied in the numerical analysis. 
If 'a' approaches zero, then o"jz becomes infinitely large and the ratio 
aIz/v(ar+a()))l approaches unity. With this data, equation (8) is evaluated. 
It yields the distribution of Qj z over the thickness coordinate £, according 
to Figure 4. 

Figure 5 illustrates the influence of the choice of 'a', with 'bf kept 
constant, as determined by the distribution of ar and Ox. The condition 
of equilibrium of the forces in direction z, formulated on zone I and 
zone II together, requires that the integral of az over any cross section 
of the two zones must vanish. Therefore tension in zone I causes com-
pressive stresses in zone II. Finally, Figure 6, derived from equation 
(7), gives an example of the rise of the out-of-plane stress o"jz in the 
mid plane with increasing relative thickness t/c. 

TREATMENT OF PROBLEMS WITH PLASTIC ZONES 

When real materials are considered, plastic zones are found ahead of the 
crack tip, even at very small loads. According to the crack model of 
Dugdale [2] for instance, perfect plastic behaviour of the material con
fines the stress within the yield zone to the uniaxial yield stress ' sf. 
As this crack model gives no information on the magnitude of the stresses 
o~r and cu within the plastic zone except at the y-axis ahead of the crack 
tip, evaluation of the input data, needed to calculate o~jz analogous to the 
elastic case, is not possible. 

But, setting the radius 'a' of zone I equal to the length of the yield 
zone according to the Dugdale model enables some conclusions to be drawn 
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concerning the effect of the external load on o"jz. To our present know
ledge, the length of the plastic zone varies through the thickness of the 
body. The same should reasonably be assumed for the dimension fa f, but 
the model can deal only with a constant 'a1. As long as the radius 'a' 
is smaller than or equal to the radius of the plastic zone, it has a very 
small influence on the stress difference (Acfp+Aa^), because the stress 
is constant within the plastic zone. Therefore the effect of the external 
load on a given body, which determines the plastic zone size, can be inves
tigated separately from the choice of the radius 'a1. 

Figure 7 compares X. and (Aa-p+Acu) with the respective values of the elastic 
case. The term Xt/t/c /3/2(1+vj is the ratio between the effective thick
ness and the geometrical thickness of the body. The smaller this term, the 
smaller is aIz. The term (s-1,20^/a^ is the analogue of the elastic stress 
difference (Aar+Aa(|))aoo. The smaller its value, the smaller is the maximum 
stress, o"xzmax> t n a t c a n ^ e achieved with a sufficiently large thickness. 
Using this data, Figure 8 finally demonstrates the fall off of Qj z with 
rising external load, when the dimensions of the body remain constant. 

It should be pointed out again, that this kind of treatment of elastic-
plastic problems cannot be expected to give absolute values of the stress 
o~iz. It only indicates the effect of external load on the stress az in a 
specimen of given dimensions. 
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ENERGY CONSIDERATIONS IN DYNAMIC CRACK PROPAGATION AND ARREST 

T. Kanazawa* and S. Machida* 

INTRODUCTION 

Since the ship building industry has experienced a number of casualties 
due to brittle fracture, most naval architects have been forced to be in
terested in the brittle behavior of low and medium strength structural 
steels. While linear-elastic fracture mechanics was originated and applied 
to ultra high strength steels and other special alloys in space engineering 
in the United States, Japanese research groups were trying to use fracture 
mechanics to interpret the results of brittle fracture propagation arrest 
tests using wide plate specimens. 

Within the limit of a relatively short arrested crack, a static approxima
tion using either a linear fracture mechanics concept or an arrest tough
ness concept has yielded useful results for both the theoretical inter
pretation and the design application of currently used brittle fracture 
propagation arrest tests [1]. Later experimental investigations using 
very wide specimens (1,300 and 2,500 mm wide plates) have revealed that the 
above simple interpretation is inconsistent with results for long arrested 
cracks [2-4]. 

In order to seek a more reasonable theory of fast fracture and crack arrest 
and to study how neglect of dynamic aspects affects the interpretation of 
results of unstable, fast crack propagation arrest tests and the philosophy 
of crack design, the authors have started with a dynamic fracture mechanics 
analysis of crack propagation and arrest with the use of a finite-difference 
method. TJie results of the analysis were compared with previous data on 
structural steels and experiments using PMMA specimens, and are discussed 
in terms of dynamic fracture mechanics analysis. 

BRITTLE CRACK PROPAGATION ARREST TEST USING VERY WIDE PLATE SPECIMENS 

A simple fracture mechanics concept has been successfully applied to the 
analysis of the experimental results of several kinds of brittle crack 
arresters using medium size specimens (500 mm wide) [1]. This analysis is 
based on the arrest toughness concept and the assumption that the dynamic 
component of the stress intensity factor or strain energy release rate can 
be neglected, in so far as the crack length is relatively small, and a 
crack just before arrest or running at a speed near to the lower critical 
velocity of a brittle crack (200 ~ 400 m/sec[5]) is considered. 

In the case of large welded steel constructions such as ships, the occurr
ence of a very large brittle crack is to be presumed. When a brittle 
crack extends to a very large-scale crack, however, it is questionable 
whether the above simple approach is valid or not. In relation to this 

*University of Tokyo, Tokyo, Japan. 
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problem, extensive experimental research projects have been conducted in 
Japan, using very wide (max. 2,400 mm) plate specimens (gradient temperature 
type and hybrid type crack arrest tests) [2-4]. 

Figure 1 shows an example of test results for a gradient temperature type 
ESSO test plotted as log Kc vs. 1/T, where Kc is the nominal arrest tough
ness or static K value at the arrest point and T is absolute temperature. 
The solid circles denoted as DG are the data obtained from the standard 
double tension test (500 mm wide specimen, temperature gradient type crack 
arrest test), and they are considered to represent the material toughness 
against propagation which can be handled on the basis of a linear fracture 
mechanics criterion. Effect of load drop is taken into consideration in 
the sense of statics [6]. Figure 2 shows examples of crack speed measured 
in various types of arrest tests. It is to be noted that crack speed in 
the wide plate specimen is much higher than DG specimen for most^ of the 
propagation period. 

The considerable discrepancy between Kc values obtained from wide specimens 
and those from standard specimens (DG specimens), as seen in Figure 1 suggests 
that estimation of K values (parameter characterizing crack driving force) 
on the basis of a simple static approximation is invalid, possibly due to 
disregard of dynamic features involved in extensive propagation of brittle 
crack such as is observed in the wide specimens. 

DYNAMIC ANALYSIS USING FINITE DIFFERENCE METHOD 

For the analysis of a dynamic crack in a plate, the following two-dimensional 
equations of motion in an elastic medium were used 

ifu = c? ^ + (C? - C|) ^ - + Ci ^ (1) 
9t2 9x2 9x9y 9y2 

92v _ 2 92v 2 r 2 , 92u r 2 92v 
C2 + (Ci - C2J + Ci (2) 

9t2 9x2 9x9y 9y2 

where Ci and C2 are the dilatational and shear wave speed, respectively. 
u and v are the displacements in the x and y directions, respectively. 
Taking the x-axis as the crack line, dynamic analysis of a crack in a plate 
was made by solving equation (2) with relevant boundary and initial con
ditions using the finite-difference method. 

The time increment At was chosen so as to meet the stability condition of 
the numerical solution [7]: 

CiAt 
-}j— = 0.5 (3) 

where h is mesh spacing. 

As a preliminary to examining the validity of the present method of analysis, 
several illustrative problems were solved. The width and length of the 
cracked plates analyzed were 50 ~ lOOh. One of the illustrative problems 
solved was a crack extending in a plate (B=70h, H=70h) at constant speed 
from an initial crack length of 2a = 2 x 5.5h. The stress distribution 

224 



Part V - Analysis and Mechanics 

along the crack line is shown in Figure 3 compared with the analytical 
solution obtained by Broberg [8]. On other aspects such as deformation 
and energy flow, the numerical results compared well with the analytical 
solution except for the region close to the crack tip, which would be in
evitable in using the finite difference method. Thus the present finite-
difference method was shown to be useful for analysis of dynamic crack 
propagation, especially for higher crack speeds which necessitate that 
the dynamic effect be properly included. 

NUMERICAL EXPERIMENT 

Several numerical experiments were carried out on a plate (B=70h, H=70h) with 
an initial crack 2a = 2 x 5.5.h long, using a simple crack growth criter
ion which specifies the critical breaking stress ayc at a fixed distance 
from the crack tip (point A in Figure 4). Examples of the crack speed 
obtained are shown in Figure 4. Figure 4(a) shows a result for a crack 
running through the field of uniform material resistance or constant 
critical stress for crack growth: o"yc (A)=3.0T. The crack is accelerated 
to a terminal speed and this agrees with many experimental observations so 
far reported. Figure 4(b) shows an example for a crack traversing a field 
of linearly increasing material resistance such as is the case with a tem
perature gradient type crack arrest test, the crack will be decelerated 
and finally be arrested in this case, and this compares qualitatively with 
experimental observations such as are shown in Figure 2. Figure 4(c) is a 
result for the case of decreasing applied stress with time, which simulates 
a crack subjected to a load drop effect and/or a crack running into a de
creasing stress field such as occurs in a crack arrest test using a bending 
or wedge opening specimen with fixed grips. 

DISCUSSION ON EXPERIMENTAL RESULTS 

Experiment on PMMA 

Using 10 mm thick PMMA, a series of crack arrest tests were conducted. The 
specimens used were single-edge-notched 300 mm wide and 280 mm long plates. 
The mean velocity of the crack was measured by crack detector gages mounted 
along the crack propagation line and the load drop was dynamically recorded. 
The measured crack speeds ranged from 120 to 540 m/sec, that is, relative 
speeds with respect to a dilatational wave (2.15 x 103 m/sec for the PMMA 
used) were 0.06 to 0.25. The experimental results were analyzed by the 
numerical method using the experimentally obtained crack speed and load 
as the time dependent boundary conditions. Figure 5 shows an example of 
the variation of the energy components with crack length i.e., work done 
by external load, W, kinetic energy, K, strain energy, U and dissipated 
energy, D. 

The dissipated energy D, which is interpreted as material fracture energy, 
is obtained from law of conservation of energy given by 

D = W - U - K (4) 

where W, U and K are computed from experimentally obtained a vs. t and 
(load) vs. t relations. Dynamic fracture toughness K^, which is defined 
by 

1/2 
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was computed taking several points on D vs. a and a vs. a curves, and a 
values are plotted against K^, as shown in Figure 6, compared with the data 
obtained by Green et al [9]. With the limited experimental results it is 
hard to determine whether the material property associated with dynamic 
crack propagation is completely defined by an a vs. K^ relation. The in
creasing trend in toughness with crack speed seems to support the experi
mental observation that the roughness of fractured surfaces increases with 
crack speed. 

Experiment on ship steel 

A similar analysis was made on the previously mentioned experimental result 
using a 2,400 mm wide steel plate specimen. An example of the energies 
calculated using experimental crack speed data is shown in Figure 7. This 
was a temperature gradient type ESSO crack arrest test with an arrested 
crack about 1,450 mm. The experimental observations showed that the fixed 
grip condition was approximately realized in this case. Figure 8 shows the 
variation of the Kd value calculated from the, D curve with crack length 
compared with the static stress intensity factor K. The increasing trend 
in Kd with crack length is probably due to the same factors. It is to be 
noted that the K^ value is smaller than the nominal K value at the arrest 
point. The Kj value at the arrest point is nearly equal to the Kc value 
obtained from the small size arrest test (DG) on a static basis (Figure 1). 
However, the numerical evaluation of dD/da may involve considerable error, 
and further accumulation of data is needed in order to determine whether 
the present analysis is full enough to expalin such a discrepancy as is 
shown in Figure 4. 

CONCLUSIONS 

It is shown that dynamic analysis, using the finite-difference method, 
applied to the equation of motion in an elastic medium will provide a useful 
tool for investigation of the dynamic aspects of fast fracture and crack 
arrest. The preliminary study reported in this paper has shown that con
siderable refinement is needed in current theories of crack propagation 
and arrest. One of the main concerns is whether or not crack arrest is 
defined only by an energy condition. 
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THE FRACTURE MECHANISM OF MATERIALS HAVING 
A HETEROGENEOUS STRUCTURE 

V. P. Tamuzh, P. V. Tikhomirov and S. P. Yushanov* 

INTRODUCTION 

Mathematical modelling of the behaviour of a material subjected to loading 
is commonly based on two main assumptions - on homogeneity of the material 
on the one hand and on continuity of the medium on the other. 

Basically there are hardly any objections to the bringing of these hypo
theses into the study of deformation characteristics of a material, although 
we find a number of articles [1, 2] operating with non-homogeneity of the 
material in modelling these characteristics. However, after a careful 
examination of processes of scattered fracture, that is the fracture pro
cesses developing more or less uniformly all over the bulk of the material 
it is believed that the hypothesis of homogeneity is hardly admissible in 
this case. There is no better proof for such a statement than the fact 
that almost all processes associated with the accumulation of damage are 
qualitatively like those expressed by creep curves (with the upward bend 
of the curve close to fracture not necessarily taking place). To illus
trate this one might point out the change of the Young's modulus in cyclic 
loading [3], the accumulation of submicrocracks and free radicals in poly
mer materials [4], and the like. An explanation of such processes is easy 
to find in the simple fact that at the start of testing there is rather 
rapid fracture of weak bonds followed by slowing down of the process until 
a more or less constant rate of accumulation of damage is reached. 

Concerning the other assumption, in our subsequent discussion we speak of 
the structure as consisting of elements, i.e., of polycrystalline grains, 
and by elementary fracture process we mean the fracture of the grain face. 

The introduction of inhomogeneity of the material in the mathematical 
model directly involves a statistical approach to the process of fracture. 
But since the classical statistical theories of brittle fracture include 
no time variable in the fracture process they also exclude the description 
of the long-term and fatigue strength of the material. This is the reason 
we chose a statistical kinetic model for study of the fracture mechanism. 
An analogous approach is used in references [5 - 9] which examine the 
fracture of a homogeneous material consisting of discrete elements, and 
also in references [10, 11] which discuss the fracture of a homogeneous 
medium. 

* Institute of Polymer Mechanics, Latvian SSR Academy of Sciences, 
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DISCUSSION OF MODEL 

As stated above, the material is composed of grains, and fracture occurs 
only between their faces. The stresses are calculated as for isotropic 
elastic bodies and are averaged at the grain faces. It is assumed that 
the fracture of the grain face is a random process which is defined by the 
mean time of expectation x 

T = To exP [-KT-
where 

T = constant that equals to 10"13 - 10"12 sec, 
u = activation energy for the fracture process, 
y = overstress factor, 
a = mean normal stress acting on the grain face. 

Inhomogeneity of the structure is represented by the distribution function 
ty of the factor y [12]. 

For simplicity of calculation we further deal only with the fracture of 
oriented structures, the external loading force a 0 being applied parallel 
to the axis of orientation. 

We introduce a definition [5]. If the fracture affects a number of adjacent 
faces, j, the defect obtained we call a j-defect and its area is equal to 
jF, where F stands for the average area of the grain face. By analogy, the 
non-fractured grain face assumes the name of 0-defect. In order to calcu
late the stress concentration round the defect we regard its form as a 
spheroid with radius 

« = # 
and with height H, see Figure 1. It should be noted that we neglect inter
actions between defects and their coalescence. Now, having assumed that 
fracture is caused by the mean stress acting on the grain face we have to 
find the mean stress acting within a ring, the width of which is the aver
age diameter of the grain face, i.e., 

'£■ 
On the basis of precise solutions from the theory of elasticity dealing with 
cavities of radial spheroid form [13], we infer the mean stress values ex
pressed as elementary functions. Table I lists the values of <|>j = a : 0~o 
for two values of r. It should be observed that for 1-defects with 
r = 0.0012 R we obtain H = 0.05 R, and r = 0.86 R corresponds to H = 0.99 R. 
Column I gives the values of (J)j for the faces directly surrounding the 
defect and column II shows the values for the faces of the next row. 
Poisson's ratio is assumed to be 0.3. From Table I we may conclude that: 

a) the value of (f>- is scarcely dependent on the value of r, and as we 
are not quite certain about the nature of the latter it is assumed in fur
ther discussion that r equals 0, that is, we regard defects as penny-shaped 
cracks; 
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b) the mean stresses acting upon the grain faces of the second row 
are considerably smaller than those acting upon the grain faces of the 
first row, and consequently, it is reasonable that the stress concentra
tion upon the grains of the second row be neglected. 

Now let us consider the kinetics of the accumulation of defects. Through 
a linear transformation of the random variable y from equation (1) and 
the distribution function \p of the factor y we come to the distribution of 
lgeT for a definite a : 

u 
[(Jinx - im + ^)KT~| f (tax) = £ 4* I 2 _ E L _ I . (2) a 

The fracture probability of the grain face with definite T at constant a 
is, by analogy with radioactive decay, as follows 

W(t) = 1 - exp (- t) . (3) 

However, in the case where the value of f(lgT) has a distribution, by 
generalizing equation (3) we have, 

W(t) = _/ {l-exp - [ e x p ( L ) ] f ^ n T ^ d t o T • W 
Further we determine the probability density of the transition of a j -
defect into a (j+1) - defect. If j-defects are surrounded with n 0-defects, 
the probability of transition from a j-defect into a (j+1) - defect is 
[1-W(t)]n, and correspondingly the probability of transition from a 
j-defect into a (j+1) - defect is equal to 

1 - [1-W(t)f . (5) 

The probability density of a transition from a j-defect into a (j+1) -
defect may be derived from equations (4) and (5), 

P ^ V ) = d { 1"[ 1-^ t)] } = n[l-W(t)]n_1 / exp[-x-texp(-x)]f(x)dx . (6) 
J
 dt

 _oo 

We introduce a definition - the value of Wj(t) is the probability that an 
0 - defect nucleates a defect having size >_ j . Then the value of Wi (t) 
is computed from equation (4) whereas the value of f(x) is calculated for 
o = aQ. The expression W. (j >_ 2) may be obtained from equation 

t 
W (t) = / W. jWPij (t-x)dx , 
J o 

where the value of f(x) of equation (6) is calculated for a = o"Q(j)- p 
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The probability of emergence of at least one defect having size >_ j in 
the specimen with N-faces may be determined from the equation analogous 
to equation (5) W n = 1-[-1-Wj(t)]n. When the number of grain faces (N) is 
considerable then 

Wn = 1 - exp(-W.N) . (7) 

RESULTS OF CALCULATION AND DISCUSSION 

As reported in [14] highly-oriented capron is characterized by 
u 0 = 26.7.10"20J, y = 14.8.10~20mm3. In calculations T is assumed to be 
293K. We chose the Weibull distribution for overstresses IKY) 

*(Y) = 0 Y < y 

with the following parameters u = 6.5.10"20, s = 10"29, n = 0.07. See 
Figure 2. 

Results of calculations are given in Figures 3 - 6 . Figure 3 shows the 
probability of the transition of a (j-1) - defect into a j - defect. It 
is apparent that with growth of j the curve tends to the right and that 
considerable growth of j results in an almost immediate enlargement of 
the defect. This means that the limit curve, as shown in Figure 4, shows 
the probability that the grain face will nucleate a defect which causes 
the ultimate fracture of the specimen. We define this probability as Wf, 
and similarly W^ stands for the probability of emergence of a critical 
defect in a specimen having N-faces. 

The mean size of the structural element of oriented capron is 10 - 25 mm 
[15]. By assuming the grain face to be 20 mm, a specimen with a volume 
of 103mm3 will possess 1.25.1017 faces exposed perpendicular to the 
applied force. The fracture probability of the whole specimen is assumed 
to be w| = 0.5. Then from equation (7) we determine the probability that 
any grain face will nucleate a critical defect, i.e., lgW£ = -17.3. Figure 3 
allows us to derive the logarithm of the fracture time as given in Figure 6. 
The value of UQ resulting from Figure 6, U = 25.5.10"20 J, closely approxi
mates to that obtained experimentally, U0 = 26.7.10'20 J. As noted in [16] 
the value of U0 agrees well with the value of activation energy for the 
thermodestructive process and might be easily determined from independent 
physical tests. This means that only constants of distribution, iKY) > 
remain undefined. Figure 5 depicts the curves that show accumulation of 
defects at different stresses. As it stands, the concentration of 1 -
defects is approximately 106 higher than the concentration of 4 - defects 
and hence the difficulty arises of revealing large defects. 

As seen from graphs of Figure 5 the probability of emergence of critical 
defects in the wide region of probability might be well characterized by 
a straight line in W£ = m&nt + B that corresponds to Wf = exp(b)tm. By 
replacing Wf in equation (7) we come to the Weibull distribution 
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W^ = 1 - exp [-expCb)^] 

for the fracture time. The above formula and Figure 4 give the size 
effect. 

In conclusion it should be mentioned that the model discussed embraces 
the whole fracture process and presents a natural transition from the 
process of scattered fracture to the process of propagation of the macro-
crack. 
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Table I 

j 

1 

4 

9 

16 

25 

36 

49 

64 

81 

100 

r = 0 . 0 0 1 2 ^ 7 ^ 

I 

1.21 

1.51 

1.80 

2 .07 

2 .31 

2 .55 

2 .77 

2 .97 

3 .17 

3 .36 

I I 

1.01 

1.03 

1.07 

1.12 

1.17 

1.22 

1.27 

1.32 

1.38 

1.43 

r = 0.86>/F7i" 

I 

1.21 

1.48 

1.74 

1.98 

2 .20 

2 .41 

2 . 6 0 

2 .78 

2 . 9 5 

3 .11 

I I 

1.01 

1.04 

1.09 

1.15 

1.21 

1.28 

1.34 

1.41 

1.47 | 

1.53 

i.oV 
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Figure 1 Stress Distribution at 
the Model Defect 

Figure 2 Distribution of Factor y 
as Assumed in Calculation 
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THE EFFECT OF LOAD BIAXIALITY ON THE 
FRACTURE TOUGHNESS PARAMETERS J AND GA 

A. P. Kfouri and K. J. Miller* 

INTRODUCTION 

It is well known that biaxiality of loading has no effect on the resistance 
to fracture of an ideal linear elastic material containing a flat sharp 
crack. Thus, in a centre-cracked plate of linear elastic material loaded 
in plane strain as shown in Figure 1, the critical stress intensity factor 
KJC is independent of O"Q. According to the Griffith fracture criterion, 
the energy release rate, G, at fracture is equal to the cohesive strength 
Gc of the material and 

KT2f (1-v2) 
Gc - - ^ (1) 

Further, for elastic materials Rice's path independent integral J is iden
tical to G. 

In elastic-plastic materials, crack tip plasticity plays an important role 
in enhancing the fracture toughness, i.e. the applied stress, o>> required 
to cause the fracture of a ductile material with a sizeable crack tip 
plastic zone, is greater than the applied stress required to cause the 
fracture of a brittle material with similar values of E, v and G , but having 
such a high yield stress that the crack tip plastic zone size at fracture 
is minimal. For an ideal, unyielding elastic material, with similar 
elastic properties, Qp at fracture is approximately equal to that for the 
brittle materials. 

With elastic-plastic materials, it is not possible to use either J or G 
as crack propagation or fracture instability parameters [1], although J 
can act as a characterizing parameter. Thus G, given by the right hand 
side of equation (1) with Ki replacing KJC, can only pertain to an unyield
ing elastic material. However, a Griffith type criterion can be used for 
quasi-brittle materials in terms of the crack separation energy rate GA 

associated with a small finite growth step Aa where Aa is assumed to be a 
characteristic property of the material. This approach is described in 
references [2, 3] and in a paper presented at this conference [4], The 
crack separation energy rate G is defined as AW/Aa where AW is the work 
absorbed at constant applied stress during the proportional quasi-static 
release of the stresses holding the surfaces together at Aa. For small 
scale yielding, the ratio of Aa over the crack tip plastic zone size is 
given by 

r = kCcyKj)-2 Aa (2) 

^Department of Engineering, University of Cambridge, Cambridge, England, 
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where k is a constant which depends on the mode of loading and av is the 
yield stress in uniaxial tension. 

By combining elastic-plastic finite element analyses on quadrant 1 of Fig
ure 1 with a crack tip release technique, it was possible to calculate GA 
for different values of r. Material properties used were E = 207 GN m"2 
V = 0.3, ay = 310 MN m~2 and a linear strain hardening tangent modulus of 
4830 MN m . The results show that when r is greater than three, G^ is 
approximately equal to J (or G for the unyielding elastic material). As r 
tends to zero at constant applied stress aD, also tends to zero, thus 
confirming Rice's conclusions [1] already cited. Between these two values 
of r there is a strong dependence of GA on r. 

EFFECT OF BIAXIALITY OF LOADING ON GA 

It has been known for some time that the sizes of the crack tip plastic 
zones and the resistance to fracture of elastic-plastic materials depend 
on the biaxiality of the mode of loading [5, 6, 7, 8]. Using the load 
biaxiality parameter X = Oq/a-p, X takes the values -1, 0 and 1 for the 
shear uniaxial and equibiaxial modes, respectively, with ov, always positive, 
i.e. in tension 

Figure 2 shows plastic zone sizes for different values of X obtained by 
finite element analyses at approximately the same values of o~p. The com
puter drawn crack profile is that for the shear mode with displacements 
being exaggerated by a factor of 50. It will be noted that the zone size 
corresponding to the shear mode is much the largest with the equibiaxial 
mode being the smallest. The respective ratios of the three zone sizes are 
approximately 6:1.5:1 corresponding to X = -1, 0 and 1. 

Figure 3 shows the principal stress, o~i, perpendicular to the crack surface, 
and ahead of the crack tip, normalized with respect to Op for the loads 
given in Figure 2. The stress patterns differ appreciably with loading 
mode. The combined effects of hydrostatic tension and the elastic sing
ularity are most pronounced in the equibiaxial loading mode, for which the 
plastic zone size is smallest, and are almost totally absent in the shear 
mode corresponding to the largest plastic zone. 

Figure 4 summarizes the results of this study. For all loading modes the 
value of GA decreases with increasing crack tip ductility. This effect 
can be attributed mainly to the increasing plastic work of deformation 
required to extend the plastic zone as the crack advances, with little or 
no recovery of energy from the wake region, in spite of the unloading which 
has occurred in the material now in the wake. Hence, at the same value of 
o~p, GA must be least when X = -1 and the plastic zone is largest. By the 
same token G will be greatest when X = 1 corresponding to the smallest 
plastic zone. The abscissa G/G0 of Figure 4 represents a normalized applied 
load. Here G0 is the value of G at incipient yielding under uniaxial 
loading of the plate of Figure 1. The value of G0 therefore depends on 
Qy2 Aa since Aa is the length of the side of the leading element at the 
crack tip. Hence G/G0 is also a measure of the plastic zone size at the 
crack tip, i.e. the ductility of the material. The ordinates give, in the 
case of the top three curves, the normalized values J/G for the three 
modes and in the case of the lower three curves, G^/G. When G/G0 = 1, 
i.e. the truly brittle state, G, J and GA are all equal since they corr
espond to an elastic solution. As G/G0 increases and becomes large, GA/G 
tends to zero in all cases, but the paths are different for the three 
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loading modes*. 

In view of the increasing use of the path independent contour integral J 
as a characterizing parameter it is interesting to note in Figure 4 the 
values G/G0 at which J begins to diverge significantly from G and which 
indicate states in which small scale yielding assumptions are no longer 
justified. In the present study J was calculated along a path always run
ning through elastic material. 
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J. of Fracture, jLÔ , No. 3, 1974, 393-404. 

7. LARSSON, S. G. and CARLSSON, A. J., "Influence of Non-Singular Stress 
Terms and Specimen Geometry on Small Scale Yielding at Crack Tips in 
Elastic-Plastic Materials", J. Mech. Phys. Solids, 2\_, 1973, 263-277. 

8. RICE, J. R., "Limitations to the Small Scale Yielding Approximation 
for Crack Tip Plasticity", J. Mech. Phys. Solids, 22_, 1974, 17-26. 

*G/GQ and G /GQ are related to the $, ty parameters of reference [3] by 
equations 

G/Gn = * 
GA/G, o 

243 



Fracture 1977, Volume 3 

1 1 1 1 1 

a 

ill 1 1 i 

V QUADRANT 

2a JN. 
(508mm) 0 1 2 7 m m 

? ? ? ? T T ? ? ? ? ? ? T T ? T 

E 

4Q-6mm (2L) 

Figure 1 Centre-Cracked Plate in Plane Strain 

X = 
X-
x = 

= o, 
= 1, o r

P = 

- a Q = l 5 5 I O M N m " 2 

166-65 MNm"2, c r Q =0 
aQ =176-27 MNm"2 

Figure 2 Crack Tip Plastic Zone Sizes for Different Biaxial Modes of 
Loading 

244 



Part V - Analysis and Mechanics 

5.4-0 

CO 
UJ 
a. 30 

< 
a O 20 2 

IO 

01 0-2 0-3 0-4 0-5 0-6 0 7 
DISTANCE AHEAD OF CRACK TIP mm 

Figure 3 Normal Principal Stresses Ahead of the Crack Tip for Different 
Biaxial Modes of Loading 

O 
-> 

IOO 

o 

0-50 

*< 

EQUIBIAXIAL LOADING MODE 

UNIAXIAL LOADING MODE 

SHEAR LOADING MODE 

_J_ J _ _1_ 
5-00 G/G„ 1000 1500 2 0 0 0 

Figure 4 The Effect of Various Biaxial Modes of Loading on the Fracture 
Toughness Parameters J and G^ 

245 



Fracture 1977, Volume 3, ICF4, Waterloo, Canada, June 19 - 24, 1977 

USE OF THE CALCULATION OF INTEGRAL J1 

R. L. Roche* 

INTRODUCTION 

The method of finite elements applied to the analysis of stresses and 
strains is of major interest in fracture mechanics. In particular, cal
culation of the integral Jx or similar integrals by these methods leads 
to useful applications. Two types of application are presented here, one 
for the fast, relatively low cost determination of KT in linear elastic 
fracture mechanics, and the second for the examination of certain condi
tions of validity of initiation criteria based of J for an elastic plastic 
material. These applications are illustrated for a number of calculation 
results obtained by means of the CEASEMT system developed at Saclay [1-2]. 

DETERMINATION OF Kj IN LEFM 

A number of different methods are available to determine Kj by means of 
a calculation program by finite elements [3-4]. Most of these involve 
determination of certain values (displacement, stress, etc..) as a function 
of distance from the crack front (polar radius). Hence these are actually 
derivation methods. Consequently, they require a fine mesh and are there
fore costly. This explains why they are rarely employed for industrial 
calculations. 

Methods possessing an integration character are far more preferable. 
Furthermore, the method of finite elements gives better results on over
all values such as energy, than on the detailed distriubtion of strains 
or stresses. The integral Ji hence appears more suitable for the determin
ation of KT since it is a curvilinear integral resulting from an integra
tion in the entire plane region enclosed by the integration path. 

Calculations performed with the CEASEMT system showed that this method is, 
technically, fairly accurate and inexpensive. The PASTEL module enables 
calculation of Jj simultaneously on several contours. 

A simple example is provided by the results obtained for a square plate 
exhibiting a crack whose length 2a is 1/4 of the side, subjected to a 
uniform tensile stress S on the sides parallel to the crack. The table 
one gives the reduced value F of Kj = FS/ifa, the deviation in relation 
to known values [5] and the total cost of the calculation expressed in 
equivalent seconds of an IBM 360/91 computer for the different meshes 
employed. For reasons of symmetry, the calculation only covers a quarter 
of the plate. Some of these meshes are shown in Figure 1. 

*DEMT, CEN Saclay, 91190 GIF, France. 
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It can be seen that satisfactory accuracy (2%) is achieved for low calcula
tion cost. Moreover, the mesh is obtained automatically and requires very 
little labor. 

This method is obviously limited to the area of validity of J (homogeneity 
of the material, flatness of the crack). However, it is suitable for deal
ing with certain interesting cases, such as pseudo-cracks without sharp 
fronts. 

As an example, a pseudo-crack with a thickness of 0.1 mm located at the 
center of a beam bent at three points was subjected to calculations (Figure 
2). By definition, the reduced stress intensity factor is equal to: 

W EJ 
(1 - v2) TT a 

(1) 

Where S is the reference stress (in this case equal to the maximum bending 
stress of the uncracked part) and J is calculated on four contours surround
ing the entire crack front. 

a (mm) 
FJ 

0.2 
1.046 

0.5 
1.016 

1 
0.998 

2 
0.959 

The standard deviation on the four contours is always less than 0.010. As 
for the calculation cost, it is less than 50 equivalent seconds for each 
case. 

This method may be extended to three-dimensional cases, by calculation of 
the vectorial integral J on different surfaces enclosing the elements of 
the crack tip. Another development under way at Cadarache deals with 
thin shells, using both the integral J and the integral L of Knowles and 
Sternberg [6]. 

VALIDITY CONDITIONS OF THE CRITERION J 

The integral J is employed as a crack propagation initiation criterion [7]. 
Two arguments may be employed to justify this view. The first relates to 
the energy available during crack propagation. The second is based on the 
property of independence of the contour, making J a characteristic of the 
crack front (like Kj in LEMF). For both arguments, it is necessary for J 
to be path-independent. 

It has been shown that J is independent of the contour for non-linear 
elastic materials. It was suggested to extend this property to plastic 
materials by using the "strain energy" W, namely, the density of work 
received [8]. However, the validity of this extension is debatable. 

A necessary condition for J to be independent of the contour may be written 
[9]. A defect vector Wk* is defined, with a volume density of: 

= W,, a..e. . i 13 ij> 
(2) 
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Where: 

W = / a..de.. 
J« il il 'o ^ ^ 

(W,^ is the derivative with respect to x^). 

The surface and linear densities are similarly defined. This vector is 
null when the spatial variation in "strain energy" dW is equal to that 
which would result from the spatial variation in "strain", in other words: 

dw = a..de.. iJ iJ 

Applied to the surface of the body are the surface defect vectors W** 
which, when no loads are applied, are equal to Wn (n normal to the surface). 
It can easily be shown that the overall defect vectors applied have a null 
resultant (Figure 3). 

It is easy to show that integrals Ji and Li are the resultants of the de
fect vectors located in the volume V bounded by the integration surface: 

J = J W*dv (3) 

L = J (OM A W*) dv (4) 
The conditions of independence of J and L are hence reduced to W*^ = 0. 

In the plane case of a plane crack parallel to axis Ox (tip perpendicular 
to Oxy), the condition for Ji(component of J along x) to be independent of 
the contour is hence W*i = 0, or: 

35T = °ij to (5) 

This condition does not require the use of the constitutive equation of 
the material. 

A sufficient but not necessary condition may be suggested for materials 
with potential mechanical energy W. It is sufficient for W not to depend 
explicitly on the point in question, but only on the state of strain e-y 
(the material must be homogeneous). 

This condition may be applied to non-linear elastic materials. It may 
also be applied to materials exhibiting deformation type plasticity. In 
effect, if unloading were not to occur, a relationship would exist in 
finite terms between strains and stresses, introducing a mechanical poten
tial. 

Unfortunately, the plastic behavior of materials is raLher of the incre
mental type, and no mechanical energy potential exists. Consequently, it 
is not certain that J is independent of the contour, and that a criterion 
based on J is entirely valid [10]. 
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NUMERICAL STUDIES OF THE INDEPENDENCE OF J 

Calculation results obtained with the method of finite elements, employ
ing an incremental plasticity model, can serve to evaluate the independence 
of J. Consequently, in the special cases calculated, it is possible to 
appreciate the validity of a criterion based on the value of J. Such cal
culations have been performed [11] in a number of cases. It does not appear 
that highly significant variations of J with the contour occur. Moreover, 
it is difficult to establish whether the variations observed are real or 
due to numerical appearances. However, some authors [12] believe that 
J is not path-dependent when the path crosses plastic zones. 

A number of calculations of this type were performed with the CEASEMT 
system. The plasticity model employed was that of Von Mises normal flow 
and law (Prandtl-Reuss equations) [13]. 

The above plate (2 x 2 mm square with crack 2a = 0.5 mm) was analyzed 
(plane strain) (E = 206,800 MPa - V = o.3 - °y = 310 Pa). The load S 
consisted of a tensile force applied progressively to the sides parallel 
to the crack. The quarter plate mesh is represented in Figure 4. Figure 
5 shows the variation of Fj with S for a material without strain hardening, 
and a material of which the tangent modulus is 1/10 of the Young's modulus. 

For each of the 15 increasing values of stress S, over 20 contours, J was 
calculated, together with the portion due to elastic energy Je, that due 
to plastic energy Jp and that due to the forces on the integration contour 
Jp. Table 2 gives, as an example, the results obtained for S = 260 MPa. 
It may be noted that J depends only slightly on the contour (unit N/m) 
despite a very broad plastic zone. 

It should be observed that in all the cases dealt with, the loading was 
radial, in other words, all the forces applied increased proportionally. 
This procedure makes it possible to consider the behavior of the test 
sample like that of a material with deformation type plasticity. It is 
also interesting to analyse other types of loading and to compare them 
with the foregoing results. In effect, significant changes in strain 
may occur at certain points, and possibly local recovery in the elastic 
strain region. Analyses of this type are under way at Saclay on the 
plate previously investigated. Instead of increasing the applied stress 
S uniformly, it is progressively established at a selected value SQ, 
starting, for example, with the corners and moving towards the center of 
the side (Figure 6). Initial results obtained appear to differ from those 
obtained for radial loading up to SQ. 

Consequently, calculations of J by the method of finite elements can serve 
to clarify the independence of the latter for material behavior which is 
not of deformation type plasticity, but incremental plasticity and visco-
plasticity. They also make it possible to evaluate the effect of the load
ing procedure which, in actual structures, is not always of the radial 
type, but may be more complex. 
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Table I 

Mesh 

A 
B 
C 
D 
E 

nodes 

25 
81 
137 
289 
1089 

elements 

32 
128 
232 
512 
2048 

F 

0.855 
0.962 
0.974 
1.009 
1.034 

deviation 

- 17% 
- 8% 
- 5% 
- 2% 
+ 0.3% 

cost 

53 
61 
71 
354 

Table II 

PATH 

El 
E2 
E3 
E4 
E5 
E6 
E7 
E8 
E9 
E10 
Ell 
E12 
E13 
E14 
E15 
E16 
E17 
E18 
E19 
E20 

JE 

26 
64 
72, 
79, 
87 
94 
100 
105 
111 
140, 
171 
187, 
203, 
229 
236 
233, 
206, 
155, 
127, 
120 

► 33 
16 
76 
89 
,70 
,06 
► 09 
82 
► 39 
33 
,86 
65 
93 
70 
29 
83 
94 
23 
17 
51 

JP 

235, 
254, 
308, 
344, 
300, 
323, 
336, 
341, 
341, 
304, 
271, 
239, 
179, 
121, 
69, 
27, 
0 
0 
0 
0 

57 
82 
19 
34 
01 
14 
24 
10 
10 
81 
49 
72 
33 
94 
80 
37 

JF 

249 
164 
108, 
67 
102 
74, 
56, 
46, 
41, 
49 
53, 
70, 
116 
149 
196, 
242, 
296, 
348, 
375, 
382, 

► 42 
► 28 
31 
84 
69 
53 
41 
45 
26 
72 
25 
52 
81 
89 
16 
47 
11 
01 
99 
58 

J 

511, 
483, 
489, 
492, 
490, 
491, 
492, 
493, 
493, 
494, 
496, 
497, 
500, 
501, 
502, 
502, 
503, 
503, 
503, 
503, 

32 
27 
27 
08 
40 
74 
76 
38 
77 
87 
61 
90 
08 
55 
26 
68 
06 
24 
16 
10 

"̂1 
1,479 
1,438 
1,447 
1,451 
1,448 
1,450 
1,452 
1,453 
1,453 
1,455 
1,458 
1,459 
1,463 
1,465 
1,466 
1,466 
1,467 
1,467 
1,467 
1,467 

J unit N/m 
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Figure 1 Meshs used in KT computation 

Figure 2 Open crack in a beam 
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Figure 3 Defect vectors along a crack 
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Figure 4 Mesh used for plastic computation 
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A PATH INDEPENDENT INTEGRAL FOR SYMMETRIC STRESS-DIFFUSION 
FIELDS SURROUNDING LINE CRACKS 

E. C. Aifantis* and W. W. Gerberich** 

INTRODUCTION 

A careful thermomechanical analysis of crack propagation in continuous 
media led Cherepanov [1] to propose an integral form as a general fracture 
criterion. For slow crack growth, and in the absence of heat flux and body 
forces, this integral form is identified as the J-integral. This was inde
pendently discovered and popularized by Rice [2] as an outgrowth of the 
work of Eshelby [3], for calculating the path-independent fracture toughness 
of cracked metal sheets subjected to an elasto-plastic stress field. Knowles 
and Sternberg [4] discovered two more path independent integrals by applying 
Noether's theorem to the theory of linear elastostatics. Aifantis [5] exten
ded the above results to generate conservation laws for linear isotropic 
stress fields in the presence of body forces derived from harmonic potentials. 

The results of the present investigation may be considered as a partial 
answer to the question: Do path independent integrals exist when, in addi
tion to the stress field, a diffusion field is present? 

At first glance, it appears natural to attack the problem by modelling 
microscopically the change of the energetics of the solid-matrix, due to 
the motion of the diffusing species. But the uncertainty involved in 
specifying the details of the elastic interaction energy, suggests a con
tinuum mechanics treatment. Thus, diffusion effects are taken into account 
by postulating the existence of an internal diffusion force which is pro
perly introduced into the equation of motion to describe the exchange of 
momentum between the solute and solvent atoms. A steady state diffusion 
is considered and a simplified model for the diffusion force is adopted. 
The kinematics of the diffusing species are restricted by the principles 
of mass and momentum balance and their mechanical response is modelled with 
a constitutive law [6] for an elastic fluid. The mechanical response of 
the solid is determined within the theory of linear isotropic elastostatics. 

We consider symmetric configurations for both the stress and solute density 
fields surrounding the line crack. The conservation law that we discover 
is independent of symmetry considerations but the path-independence is 
particularly sensitive to symmetry arguments. 

Thus, for the cases under consideration, we derive a path-independent 
integral which includes terms due to diffusion. If we assume that the 
diffusion effects are negligible at infinity, then the first component 
of this integral, evaluated at infinity, is reduced to the familiar 
J-integral [2]. 

* Assistant Professor of Theoretical and Applied Mechanics, University of 
Illinois at Urbana-Champaign, Illinois, U. S. A. 

** Professor of Materials Science, University of Minnesota, Minneapolis, 
Minnesota, U. S. A. 
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DIFFUSION MODELLING 

We imagine a central crack in an infinite linear elastic isotropic medium, 
subjected to a symmetric tensile stress field at infinity, as shown in 
Figure 1. The crack tip serves as a source of solute atoms (e.g., disso
ciated hydrogen ions) which diffuse in the elastic medium symmetrically 
with respect to y-axis. The cloud of diffusing species is modelled to 
behave as a perfect fluid obeying the mechanical principles of mass and 
momentum balance. These principles, in local form, are expressed by the 
differential equations [6], 

|£+ div(pv) = 0 (1) 

and 

divS + pip = v (2) 

respectively. 

In the field equation (1) and (2), p, v, v and S stand for the density, the 
velocity, the acceleration and the stress tensor of the gas and ty represents 
the diffusive force vector. 

The following simple constitutive model is adopted for the stress tensor 
T and diffusion force \p: 

S = -Apl ; IJJ = Bv (3) 

where A and B are constants, and 1 represents the unit tensor. The above 
model is a special case of a general constitutive structure proposed in 
[6]. 
Next, we insert (3) into (2) and neglect the acceleration v in order to 
conform with classical diffusion theories [8]. The result is 

pv = - | Vp . (4) 

Introducing (4) into (1) we obtain 

3P A „2 rr^ 
at B v p ' (5) 

which is the classical diffusion equation, if A/B is identified with the 
diffusivity D. We are interested in steady-state situations and in these 
cases (5) is reduced to 

V2p = 0 . (6) 
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STATIC EQUILIBRIUM OF THE SOLID 

The infinite medium is modelled to behave as a linear elastic isotropic 
solid, obeying the familiar constitutive law 

X trel + 2\ie (7) 

where T and g are the stress and strain tensors of the solid correspondingly; 
X and u are the Lame constants; and trg represents the trace of g. The 
strain tensor e is defined in the usual way by 

\ yt+ ^ \ (8) 

where u is the displacement vector of the solid, the symbol "T" denotes 
transposition and V is the gradient operator either for vector or scalar 
fields. The strain energy, W, of the solid is also given by the familiar 
relationship 

W = i tr(Te) . (9) 

The solid is considered to be in static equilibrium, in the presence of the 
diffusive force field, -pi);, which acts as a body force. Thus the equili
brium equations, in vector form, are given by 

div T - pip = 0 . (10) 

Using (3)£ and (4) we can write (10) in the form 

div T + AVp = 0 . (11) 

From now on we will consider the constant A to be given. 

Substitution of (7) into (11) yields 

dive = - |j Vp - ̂ j V tre . (12) 

Operating with the divergence in (12) and using a direct consequence of 
compatibility [8], we obtain 

(X + 2y)V2tre = -AV2p . (13) 

We are interested in steady-state diffusion processes. Then, in light of 
(6), equation (13) results to 

V2tre = 0 . (14) 
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Another relationship that will be useful in the subsequent analysis is the 
solution of (7) with respect to strain tensor e. This solution is well 
known [9] and may be written as 

e - i - i v - r - J o l (15) 

where v and E are the Poisson's ratio and the modulus of elasticity and 
o is the trace of the stress tensor of the solid, i.e., 

tr T . (16) 

A CONSERVATION LAW 

In this section, we establish a conservation law holding for any sub-region, 
free from singularities, of the infinite isotropic linear elastic medium 
under consideration. Towards this aim we prove the following theorem. 

Theorem: If an isotropic linear elastic domain supports a diffusive force 
field, of the form f = AVp, exerted by diffusing species of concentration 
p, then the following conservation law holds: 

q[ W + fc(p*2 + 2T*p* + feT*2) 2p*e+T*Vu-ujaV (p*+T*) - (Vu) J nWA = 0 

(17) 
for every surface C that is the boundary of a finite regular closed sub-
region of the elastic domain, provided n is the unit outward normal vector 
of C. In the case of zero diffusion, i.e., Vp = 0, it may be shown that 

I Wn-(Vu)TTn c J*Vp=0 = « Wn-CVu^Tnldfl, = 0 (18) 

which is the familiar conservation law discussed in [4]. The scalar fields 
p* and T* in (17) are defined by 

p* = Ap ; T* = X tre . (19) 

Proof: For convenience we use the familiar indicial notation to define a 
vector J by its components as 

Ji %£ (w«i - *j V i)d£ ' (20) 

where n is the outward normal of the surface 3P that is the boundary of the 
finite regular closed subregion V; and t is the traction vector defined by 

t. = T..n. . (21) 
1 iJ J 
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The divergence theorem [10], the chain rule and the definitions (8), (9) 
and (21) allow for successive transformations of (20), as follows: 

J. =/JW...U)TT1. ]dv = 4^Le . .-(u .T .V) 

= fCT .£ . .-U . 
J m j mj,! m, I 

dv 

T .-u .T . .}dv = - / u .T . .dv (22) 
3 mj m,i mj,jj p m,i mj,;j 

where the identity 

T .e . . = i T .u .. + i T .u. . = i T .u .. + ̂  T. u. . = T .u .. mj mj,i 2 mj m,ji 2 mj j,mi 2 mj m,ji 2 jm j,mi mj m,ji 
(23) 

was used. 

Upon substitution of (11) into (22) we obtain 

J. = A / u .p, . (24) 
i £ m,i m v J 

With the aid of definition (8) and a trivial algebraic manipulation the 
last equation is written, in direct notation, as 

J = 2A / e Vp dv - A / (Vu)Vp dv . (25) 
V ~ V ~ 

It is convenient to introduce the definitions 

Ji = / (Vu)Vp dv ; J2 = / eVp dv . (26) 

Then using the easily shown identity, 

div(uiaVp) = (Vu)Vp + u div(Vp) , (27) 

when the symbol "a" denotes the dyadic, we obtain 

J2 = / div(u »Vp)dv - / u V2pdv , (28) 
V V ~ 

which with the aid of (6) and the divergence theorem [10], gives 

Ji = / (u a Vp)n d£ . (29) 
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The divergence theorem and the identity 

div(pe) = eVp + p div e (30) 

serve to write (26)2 in the following form 

J2 = / pendJl - / p div e dv . (31) 
dV ~~ V 

Our efforts will be directed next in transforming the second term of the 
right hand side of (31) to a surface integral. Thus, the equilibrium 
equations (12) are used to write 

/ p div e dv = - ~ / Vp2dv - ̂ - / V(p tr e)dv + ̂ - / tre Vp dv , (32) 

which after the use of the divergence theorem is reduced to 

/ p div e dv = - 7- / p2nd£ - ~- / p tre n d£ + y- / tre Vp dv .(33) 

Defining a new integral 

J3 = / tre Vp dv , (34) 
V ~ 

and expressing the equilibrium equations in terms of the displacement [9] 
we obtain 

j 3 = _ M / t r e v2
 u - ̂  / (tre)Vtre dv . (35) 

Next, we use the identity 

/ tre V2 u = / [tre(Vu)n - (UH V tre)n]d£ , (36) 

a proof of which is given in [5]. Thus, with the aid of the divergence 
theorem again to transform the second term of the left hand side of (36) 
to a surface integral, equation (35) may be written as 

J3 = - x f [tre(Vu)n - (UH V tre)n]d£ - ̂ - / (tre)2d£ . (37) 
A dv ZA dv 

Combination of (33), (34) and (37) yields 

fp divedv = - 977 / 
V ~ y dV 

A 2 . ^ A (A' — p^+Xp tre + —̂ ~-̂ -(tre) 2 n + ̂  [treVu-usVtre]n[ 2A 
(38) 
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and this way the following expression for J2 is derived 

J 2 \~ f M pe +tr£Vu-UHVtre n + f P2+Xptre + X ̂ *y) (tre)2 n [ . (39) 

Defining new scalar fields p* and T* as in (19) and combining (25), (26), 
(29) and (39) we finally obtain 

J = / ][2p*e+T*Vu-uHV(p*+T*)]n + ~-(p*2+2p*x* + ̂ x* 2)n[d£ . (40) 

Also equation (20) may be written in direct notation as 

J = / Wn-(Vu)TTn d£ . (41) 
~ dv L ~ ~ ~~J 

The results (40) and (41) establish the validity of the conservation law. 
(17), if the boundary dV is identifying with the closed surface C. 
It is easily seen from (41) that the first component of the vector J is 
the well-known J-integral. Equation (40) indicates that the value of J 
integral along a closed path is not zero when diffusion is considered. 
The appropriate form which replaces the J-integral, in the cases under 
consideration, is provided by the first component of the vector J* in 
equation (17). 

It is natural to expect that the vector J* is identified to the vector 
J when diffusion effects are neglected. In this case the density of the 
diffusing species is uniform, i.e., 

Vp* = 0 ; p* = p* . (42) 

Under these conditions, equation (17) combined with (41) gives 

T* = J+ J" I2p* e + i- p* 2 + - p* x*|nd£+ 7(x*Vu-uisVT*)ndJl + 

First observe that use of the divergence theorem and (19)2 yields 

/ [2p* e + i- p* 2 + ip* x*|nd£ = / (2p* d dive+p* - V tre 1 dv = 0. (44) 
3'p I w~ t̂"1 w M u / ~ f)l ° ~ O U -■ ■ 

This is true because the integrand in (44)2 has a zero value, as it is 
easily seen by combining equations (12) and (42)j. Next, we use the 
definition (19)2> the identity (36) and the divergence theorem, to write 
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f (T*Vu-uVT*)nd£ + - L - / T*2nd£ = X f ( tre)V2u + ^ . ( t r e ) V t r e l d v . (45) 
at? V ~ ~ /~ 4yv dv ~ v L ~ ~ y ~ ~J 
But the equilibrium equations (12) are expressed in terms of the displace
ment vector in the form 

V 2 U + An! vtre = . A 

which when is combined with (42)i and (45) results into 

(46) 

/ (T*Vu-uVT*)nd£ + -i- / x*2nd& = 0 
dV 4yv dV 

(47) 

Then combination of (41), (43), (44) and (47) yields 

J*p=0 = 0 Wn-tVu^Tn d£ = 0 (48) 

and this way the result (18) is established. 

A PATH INDEPENDENT INTEGRAL 
In the case without diffusion, it is shown [2] that the first component 
of vector J has the same value for any closed curve surrounding the singu
larity. 

In the present investigation diffusion effects are introduced and we derive 
results analogous to those contained in [2], We confine attention to a 
two dimensional symmetric configuration. Thus, we consider an infinite plate 
loaded symmetrically under plane strain conditions (Mode I) and containing 
a central crack acting as source of diffusing species symmetrically distri
buted with respect to x-axis. The scheme under examination is shown in 
Figure 1. 
The objective is to show that the J* integral, defined in (17), has the 
same value for all paths surrounding the line crack. Towards this aim we 
consider the closed curve, C^+r++C+T", as indicated in Figure 1. Then 
the conservation law (17) insures path independence if we show that 

/ _;[2p*£+T*Vu-uaV(p*+T*)] 
r++r" 

n + ̂  |> + 2p*T* + l- x* j nd£ = 0 (49) 

Employing symmetry arguments, as well as traction free boundary condition, 
we deduce the following relations holding on the crack surface. 

T = T = Txy = 0 ; u = 0 ; u xx yy J x Y n+ = -u y = 0 y 

o*I + = o* - * —±— P y = 0 P y=0 ' 3y y- <f 3y 
9T* 

y = 0' ' 3y 

(50) 
_ f!H 

y = 0+ 3y y=0 
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Then T* vanishes on the crack surface and condition (49) is equivalent to 

/ i[2p*e-uaV(p*+T*)]n + — p*2nld£ = 0 . (51) 
r++r-( ~ ~ ^y J 

With the aid of (15) we obtain 

J 2p*end£ = J 2p*f"^ t - ̂  anld£ = 0 (52) 
r++r" - r++r" L E ~ E ~J 

since t and a vanish on the crack surface. If ly is the base vector in the 
y-direction then 

/ \ - p*2nd£ = ly j - I f p*2dx + / p*2dxl = 0 (53) 
r +r~ y y {v r" ' 

since the integrand p*2 has the same value as it is integrated over the 
same interval in opposite directions. Also, 

/ [uiaV(p*+T*)]nd£ = / u[n-V(p*+T*)]d£ = 
r +r" ~ ~ r + r — (54) 
^ , rap* 8T*1 , ; , Tap* 3T*1 
L / U TT— + TN dx + 1 J U —— + T: 

x r + + r - xL^y 9y J yr++r" yldy 3y 

dx 

But u x = 0 on the crack surface and the integrand u v ■—— + ̂ — has the 
same value, because of the last two relations of (50), as it is integrated 
over T+ and V. Thus 

/ [usV(p*+T*)]n di = 0 . (55) 
r +r" ̂  

The results (51), (52) and (55) establish the validity of condition (49), 
and therefore the path independence of J* integral. 

It has been shown that when Jx* is integrated over paths away from the 
crack tip where the diffusion effects are neglected, then it has the same 
value as the familiar J-integral. This furnishes approximate knowledge of 
the value of Jx* for these configurations in which the J-integral has been 
already evaluated. Then approximate estimates for the stress-diffusion 
field in the neighbourhood of the singularity may be attempted. 
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SPECIMEN SIZE EFFECT ON J-INTEGRAL FRACTURE TOUGHNESS 

D. Sunamoto, M. Satoh, T. Funada and M. Tomimatsu* 

INTRODUCTION 

In order to analyze quantitatively the safety of a structure against 
brittle fracture, current engineering level requires to measure the plane 
strain fracture toughness KJQ of the structural steel and to analyze con
servatively with linear elastic fracture mechanics. This Kj£ needs to 
satisfy ASTM E399 and requires very thick specimens. Kjp at room temper
ature, sometimes, requires a ten-inch thick specimen. Therefore it is 
not allowed to be taken as a routine work to measure a KIC by ASTM E399. 
This specimen size requirement is a bottleneck in fracture safe analysis. 

Today, J-integral developed by Rice is extended to elastic-plastic region 
and admitted as an acceptable measure of fracture analysis. With J-integral 
method, relatively small specimen can result in valid Kj^ which, by ASTM 
E399, can be measured from very large specimens. There are many researches 
on J-integral test analysis (typical method listed in Table 1). The 
authors studied specimen size effect on J-integral fracture toughness Kj 
(fracture toughness measured by J-integral method) and defined valid 
specimen size experimentally. 

TEST 

240 mm thick A533 Gr.BC&.l steel was used. Chemical compositions and 
mechanicaj. properties were shown in Table 2. Plane strain fracture 
toughness KIC of the test material which met ASTM E399 requirements were 
shown in Figure 1. They used a 240 mm thick compact tension specimen to 
get valid KIC at -20°C and 4TCT specimen at -50°C. 

First, they applied J-integral method to valid KIC test data. They used 
Rice (1) method shown in Table 1. In plane strain fracture toughness test, 
notch root displacement was measured. They converted notch root displace
ment to load point displacement and measured JQ and J-integral fracture 
toughness Kj as shown in Figure 3 and equation (1). 

Kj = /EJC/(1-V2) (1) 

Where, E is Young's modulus, v is Poisson's ratio, Jc is critical J-integral 
value. In Figure 3 rotational factor r of 1/3 was used considering the 
reports by Ingham [1] and Liebowitz [2], As shown in Figure 3, Kj were 
almost equal to KJQ in elastic region and ASTM E399 requirements were 
satisfactory to J-mtegral method. 

*Mitsubishi heavy Industries, Limited, Takasago, Japan. 
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Next, they used 1/2TCT, ITCT and 2TCT specimens with various crack length 
ratios shown in Figure 3 and conducted fracture test at -20°C and -50°C. 
They recorded load-displacement curves on a X-Y recorder and applied 
4 J-integral methods shown in Table 1. At this time also notch root dis
placement was converted to load point displacement as before. Typical 
load-displacement curves at -20°C were shown in Figure 4. As shown in 
Figure 4, load-displacement curve of 1/2TCT specimen was not linear and 
indicated large plastic deformation. But the nonlinearity decreased as 
specimen size increased. The load-displacement curve of 2TCT specimen was 
almost linear and the curve of 240 mm specimen was linear. 

Almost all specimens suffered from fibrous crack. Photograph 1 showed 
an example of fibrous crack and stretched zone of a ITCT specimen (X 300). 
But this time, they didn't discuss on these micro-behaviour at crack tip. 
These matter will be reported at other chance. 

Test results were listed in Table 4. Example of the comparison between 
4 J-integral methods was shown in Figure 5. It was known that 4 methods 
gave almost same Kj. 

The relation between Kj and specimen thickness was shown in Figure 6. 
Kj from 1/2TCT specimen varied very large. Kj data of ITCT specimen varied 
less than 1/2TCT specimen and many of ITCT specimens and all of 2TCT speci
mens, which number was limited, were almost equal to Kj^ value. In Figure 6 
also, Kj£ estimated by another method were shown, such as Equivalent 
Energy (EE) method and COD. Fracture toughness by COD were greater than 
Kj£ and those by EE method gave almost same value as Kj. 

Considering the matter described above, they inquired the specimen size 
by which valid KIC could be obtained. Necessary specimen size parameter 
a was shown in Figure 7. a was calculated by equation (2) 

a = min (a, B, W-a)-E«a -/(l-v2)-KT2 . (2) 

Contrary to Begley's [7] and Griffis's [8] reports that required a to be 
greater than 50 and 100 respectively, a needed to be greater than 40 in 
order to get Kj as KIC. 

Figure 8 showed crack length ratio dependence of Kj, and it is known that 
crack length ratio should be greater than 0.4. 

CONCLUSION 

The authors conducted fracture test to a steel which plane strain fracture 
toughness was known and applied J-integral analysis. They obtained the 
following results. 

1) No significant difference was recognized between J-integral methods. 
2) Specimen size parameter a was to be greater than 40. 
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Table 1 Jf Method with Single Specimen 
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Table 2 Test Material Table 3 Correlation Between Kj£ and 
Kj by Rice (1) Method Obtained 
from Plane Strain Specimen 

1) Chemical compositions 

Cheok 
1 analysis 

C 

0.19 

Si 

0.23 

Mn 

1.40 

P S 

00080.007 

Ni 

0.63 

(%) 
Mo 

0.55 

2) Mechanical properties 

Tensile properties 

o-y 

(MPa) 

483 

(MPa) 

607 

8 

25.0 

9 

47.0 

Charpy 
transition 

temperature 
JrE 
CO 

-5 

JrS 
Co 
- 5 

Drop 
weight 
test 
NOT 
Co 
- 2 0 

Temperature 
(°C) 

-125 

-100 

- 7 5 

- 2 0 

Specimen 

2TCT 

4TCT 

240mmCT 

Kic 
(MPam"

2
) 

74.4 

70.1 

67.0 

98.6 

151.0 

(MPam"
2
) 

73.2 

70.4 

66.0 

101.4 

143.5 

Table 4 Test Results 

Temp. 

Lici_ 

-20°C 

[--

o 
- 5 0 C 

|S p e cj Specimen size max. 
-meni

 No
 ] I I load 

a 

(mm) 

B W a/W D r
max 

(mm)l(mm) (KN) 
~
r
~ J H - I 91 128 

- 2 10.4 
- 3 10.9 
- 4 14.1 

l^TCT - 5 10.8 2
 - 6 16.2 

128 
12.7 
12.8 
12.7 
128 

- 7 16.3'12.7 
- 8 177,128 
- 9 177 

JO - 1 15.7 
- 2 20.9 
- 3 20.7 
- 4 25.9 

1 TCT - 5 25.8 
- 6 30.0 
- 7 30.1 
- 8 38.1 

1 - 9 41.1 
9 T rT | J T - I 53.3 
2 TCT _ 2 52.2 

12.7 
254 
25.4 
25.4 
25.4 
25.4 
25.4 
25.4 
25.4 
25.4 
50.8 
50.8 

J H - I I 8.5.12.7 
-12 8.7 127 

25.6:0.36 36.4 
25.6 
25.4 
25.6 
25.4 
25.6 
25.4 
25.6 
25.4 
50.8 
50.8 
50.8 
50.8 
50.8 
50.8 
50.8 
50.8 
50.8 
101.6 
101.6 
25.4 
25.4 

-13 10.5:12.7 125.4 
-14 I0.9'|I2.7 25.4 

, / T r_ -15 10.3 127 25.4 

0.41 24.0 
0.43 27.3 
0.55 17.9 
0.42 17.3 
0.63 M l 
0.64 10.5 
0.69 6.0 
0.70 7 6 
0.31 142 
0.41 93.2 
0.41 93.7 
0.51 71.3 
0.51 62.4 
0.59 42.8 
0.59 49.4 
0.75 16.5 
0.81 9.6 
0.52 202 
0.51 204 
0.33 31.0 
0.34 32.8 
0.41 27.2 
0.43 24.5 
0.41 17.7 l /

2
1

^ ' -16 I I . I | 12.7125.4 0.44 15.1 
-17 I6.6J 127 25.4|065

 69 
! -18 15.8 I2.7|25.4,0.62 10.7 

-19 18.2; 12.7 j 25.410.72 5.3 
, -20] 18.4 j 127 25.4 0.72 5.0 
| T r_ ~ JO -21 26.1 25.4150.8|0.51 56.9 

"
U
 -22|25.9i25.4|50.8i0.5l 52.6 

^ T r- ^ J T - 2 I 52TjBb.8l6l .6b.52 182 
2TCT -2253.2i50.8 101.6 0.52 131 

Fracture toughness 

Kmax K j *
1
* 

(Rice 1) 

K /
2
> 

Xonazo«a 

117 326 275 
87.1 i 122 ! 121 

106 241 ' 2 0 6 
98 .9 
66.7 
84.0 
83.7 
59.9 
78.8 

148 

291 
277 
2 9 9 
252 

84 
259 
313 

2 3 8 
221 
2 3 5 
258 

78 
215 
2 8 3 

123 157 j 162 
122 156 160 
123 162 129 
107 ! 147 127 
97.4 ! 120 122 

114 | 193 172 
80.6 155 135 
6 6 . 4 ; 157 _; 126 

129 I 140 "* 148 
126 137 

* 96.1 ' 155 
142 
182 

103 , 195 180 
102 184 166 
95.5 134 130 
64.8 116 114 
60.2 ! 125 115 
58.0 65 6 8 
78.1 155 133 
61.7 136 114 
60.2 8 2 77 
99.5 113 119 
90.9 97 104 

114 117 127 
83 7 84 _ _ 9 I _ 

( M P a m
l / 2

) 

! K J
( 3) 

K j
( 4) 

>(Rice 2)(Merkle)| 

_ 
| 122 

| -
! 227 
1 

-
-
-
-

162 
160 
-

136 
129 
-

152 
, 144 

148 
142 
-
-

1 -
137 

-
I I 1 
72 
-
-
8 7 

121 
114 
125 
87 

3 5 7 
135 
262 
3 1 0 
3 0 0 
316 
272 

8 9 
272 
3 4 4 
174 
172 
173 1 
159 
130 
2 0 6 
162 
163 
153 
150 
174 
214 
2 0 0 
147 
128 
136 
72 

165 
143 
8 6 

124 
107 
129 

_ 9 2 
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temperature t (°C) 

v
g _ Z4Q»r(W-a) 
b, ' a*r(W-a) 

load point displacement, Bz 

Figure 1 Plane Strain Fracture 
Toughness KIC of Test 
Material 

Figure 2 Experimental J-Integral 
Value 

detochoble 
knife edges 

ifeTCT 

I T C T 

2TCT 

B 

12.7 

2 5 4 

50.8 

Wl 

31.8 

63.5 

1270 

2H 

30.4 

61.0 

122.0 

W 

25.4 

5Q8 

101.6 

a/W 

0.3 

"b.8 

sQ50l 

(mm) 

Q02 Q04 0.06 0.08 0.10 0.12 
normalized clip gage displacement, 8/B 

Figure 3 Compact Tension Specimen Figure 4 Typical Load-Displacement 
Curves (-20°C, a/w ~ 0.5) 
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THE J-INTEGRAL EVALUATION FOR CT SPECIMEN 

T. Miyoshi* and M. Shiratori** 

INTRODUCTION 

Rice's method for the J-integral evaluation [1] is convenient for its 
simpleness, but the accuracy of Rice's method is not investigated suffici
ently. The J-integral evaluation by Rice's method is compared to the one 
by the finite element method for the standard bend bar specimen (a/W=0.5). 
The result is that Rice's method gives the higher value than the finite 
element method by about 10%. For the compact tension specimen, Rice's 
method must be investigated on its accuracy, because it pays no consider
ation to the effect of axial force. In this paper, the J-integral for 
the compact tension specimen is evaluated by the finite element method 
and the accuracy of Rice's method is investigated based on the result by 
the finite element method. 

RICE'S EQUATION AND MERKLE'S EQUATION [2] 
Consider Rice's and Merkle's equations for the evaluation of J-integral. 
According to Rice's method, the J-integral is calculated by equation (1) 
based on the load-displacement curve as shown in Figure 1: 

J = f w 

where b is the ligament length of the specimen. 

Merkle et al. propose the equation which considers the axial force as 
well as the bending force. Considering that the axial force shifts the 
stress reversal point by ac as shown in Figure 2, they obtain equation (2) 
for the J-integral evaluation for CT specimen: 

J = \ C (2) 

where A is the strain energy, C is the complementary energy of the spec
imen and 

n = iii+sl = 2a(l-2ct+a»? 
A (1+a2) c (W)2 

V$ ,+2§ <* = ■%/© + 2 < 3 + 2 - (f +1) (4) 

* University of Tokyo, Tokyo, Japan. 
**Yokohama National University, Yokohama, Japan. 
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J-INTEGRAL EVALUATION BY FINITE ELEMENT METHOD 

The J-integral evaluation is carried out for CT specimen shown in Figure 
3. The mechanical properties of the material are represented in Table 1. 
The concentrated load is applied at the top of the loading pin hole shown 
in Figure 4, and the 318 elements and 194 nodes are used for the calcul
ation of plane strain. 

There are three ways to evaluate the J-integral based on the result by 
the finite element method: 
1) J-integral is evaluated by equation (1) using the strain energy 

obtained by the finite element method. 
2) J-integral is evaluated by equation (2) using the strain energy A and 

the complementary energy C obtained by the finite element method. 
3) J-integral is evaluated by calculating the difference of the strain 

energy AU, as J-integral is given by equation (5): 

3U U(a+Aa)-U(a) _ AU . 
J "" " 9a Aa Aa lbJ 

J-integrals given by the methods (1), (2), and (3) are hereinafter refer
red to as JR, Jft, and JE, respectively. 

As shown in the bend bar specimen, J and Kj are related by equation (6) 
for the elastic state. Therefore, Kj can be evaluated from J-integral of 
the elastic state: 

1-v2 J = -~— K* (for plane strain) (6) 

In Table 2, the values of Kj obtained from JE are compared to the analy
tical values, and the good coincidence is obtained. The values calcul
ated from JR and J£ do not agree with the analytical ones. This is 
because of the accuracy of JR and J^ is getting worse when the deformation 
is small. The fact that Kj values calculated from JE coincide with the 
analytical solutions is just one of the bases which take account of the 
validity of the J-integral evaluation by equation (5). 

Numerical results of JR, J{[, and JE based on both the incremental theory 
and the deformation theory of the plasticity are presented in Table 3. 
It is shown from this table: 
1) JR, not taking account of the axial force effect, underestimates the 

J-integral value. 
2) J^ is about 10% higher than Jg for the wide range of 6. 

CONCLUSIONS 

Rice's method, paying no consideration for the axial force effect, gives 
lower estimation for CT specimen. Therefore, when we evaluate the J-
integral value by this type of equation, it is desirable to use Merkle's 
equation. 

Rice's equation for the bend bar specimen and Merkle's equation for CT 
specimen seem to give higher values than equation (5) which, in the 
authors1 opinion, gives most accurate values of J-integral. The depen
dence of Jj C values on the specimen geometry [3] seems to be based on 
the evaluation method of J-integral, partially. 
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Table 1 Mechanical Properties of A533B Steel 

Young's 
j Modulus 

(MPa) 

205800 

Poisson's 
Ratio 

0.3 

Yield 
Stress 
(MPa) 

480 

Hardening 
Rate 
(MPa) 

2060 

Table 2 K 2B2W/P2 for CT Specimen 

a/W 

0.50 
0.52 
0.54 

Analysis 

92.16 
104.24 
118.59 

F.E.M. 

91.59 
102.47 
117.31 

Table 3 J-integral for CT Specimen (a/W=0.52) 

Disp. 

6 

0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 

Incremental Theory 

JE 

3.09 
5.36 
7.85 
14.81 
20.33 
28.55 
37.26 
46.71 
56.98 

JR 

1.93 
4.99 
8.34 
12.83 
18.60 
25.40 
33.26 
42.20 

! 51.94 

JR 

2.43 
6.12 
10.32 
15.92 
23.01 
32.59 
40.95 
51.81 

\ 63.59 

Deformation Theory 

JE 

3.09 
5.36 
7.85 
14.76 
20.40 
28.36 
37.01 
46.43 
56.88 

JR 

1.93 
4.99 
8.34 
12.71 
18.46 
25.29 
33.17 
42.07 
51.80 

JR- 1 
2.43 
6.12 
10.32 
15.79 
22.86 
31.22 
40.84 
51.64 

1 63.39 

(6:mm, J:kPa»m) 
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THE USE OF THE J INTEGRAL TO MEASURE THE RESISTANCE OF 
MILD STEEL TO SLOW STABLE CRACK GROWTH 

S. J. Garwood and C. E. Turner* 

INTRODUCTION 

The development of yielding fracture mechanics allows the extension of the 
resistance (R) curve concept [1] to situations involving large scale plasti 
city. There are thee main advantages in this: firstly the possibility 
arises of predicting R curves for large structures from small specimens: 
secondly, an improvement in the accuracy of resistance curve measurements 
is attainable (since the build up of resistance is accompanied by an in
crease in plastic zone size, linear elastic fracture mechanics is inade
quate) : and finally, the measurements of "plane strain" R curves for low 
strength materials becomes feasible despite extensive yielding. 

It is the purpose of this paper to examine the use of the J contour inte
gral [2] as a measure of the resistance of mild steel to slow stable crack 
growth. 

THEORY 

From Rice [3] the area AUp in Figure 1 can be related to J, for non-linear 
elastic material, by 

AUp - Jx_2 BAa (1) 

where opq represents the load deflection curve for an initial crack length 
ai and orq for a longer crack a2 = ai + Aa. All the energy released is 
available to propagate the crack. Ji_2 ^s t n e average value of J between 
the two crack lengths, and B is thickness. Begley and Landes [4] and 
Bucci et al [5] have extended this concept to elastic/plastic materials as 
a means of evaluating J, although the simple energetic meaning of energy 
available to drive the crack is not then maintained. 

A technique for developing a J resistance (Jr) curve was derived for three 
point bending in [6], in which the three parameters of load, deflection 
and final crack length are all matched in the derivation of J. The basis 
of the method is the construction of a series of non-linear elastic curves 
to describe the history of the specimen as the crack extends (such as orq 
in Figure 1). This technique avoids the criticism that irreversible stress 
relaxation at the crack tip invalidates the J concept. Due, however, to 
the irreversible nature of plastic deformation the curves such as orq 
(Figure 1) are purely notional. Assuming a linear variation of the R 
curve for the increment of crack extension, and using the relationship 
between J and work done (U), as developed by Sumpter and Turner [7] for the 
three point bend geometry, the value of J at the new crack position can be 

* Imperial College of Science and Technology, London, England. 
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found without the precise form of orq (Figure 1) being known. The expres
sion is 

rut ^
 2 A U

J T - T CW-a2) , d (^ 
32 ' Jl (w^TT + B(w-ai) (2) 

where AU^ is the extra energy put into the specimen as the crack grows 
from ax to a2 (see Figure 1) and W is the width of the specimen (Figure 2). 
This equation can be applied for subsequent increments of crack growth to 
give the general form: 

(W-a ) 2(U -U J 
Jn J(n-1) (W-a(n_n)) B f W - a ^ ) <« 

Similar expressions may be obtained for all geometries where J : U estimates 
can be determined. 

EXPERIMENTAL PROCEDURE 

All tests were conducted at room temperature (~ 21°C). The properties of 
the mild steel (En32) used are listed in Table 1. Specimens were tested 
in three point bending. Both side grooved and plain types were used 
(Figure 2). All specimens were fatigue cracked at loads less than half 
the yield value. Initial crack lengths and subsequent amounts of crack 
growth were measured at ten points along the crack front and averaged to 
give mean values. Loading rate was constant at lmm/min. A transducer 
was used to obtain load point displacement. As the technique relies on 
the load-displacement record, a correlation was made for the extraneous 
displacement due to roller indentation. 

The three parameter technique is best suited to a one specimen test where 
crack extension is monitored together with load point displacement. How
ever, due to the inadequacies of current techniques for detecting slow 
growth in the presence of large scale plasticity, a multi-specimen programme 
was adopted. Ten or so specimens were bent to give gradually increasing 
amounts of crack growth. Care was taken to ensure at least one specimen 
had crack growth <_ 0.1mm. The specimens were then fractured in liquid 
nitrogen to facilitate measurement of the ductile crack extension. Crack 
growth determinations were made ignoring the stretch zone width (typically 
<X 0.1mm). Thus the initiation value of J(J-[) is given by the intersection 
of the resistance curve with the Aa (the amount of slow growth measured) 
= 0 axis. Load-displacement areas were measured with a planimeter. The 
use of the formula: 

o B(W-aQ) l4J 

shown by Sumpter and Turner to be valid for a0/W ranging from 0.4 to 0.7 
precludes the need to subtract the energy attributable to the uncracked 
body recommended by Rice et al [8]. To begin with specimens of identical 
initial crack lengths were prepared but in later tests it was found suffi
cient to compensate for slight variations by making adjustments to the 
energy values. 
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The test method devised by Landes and Begley [9] was used to plot the 
J0 : Aa curves (J0 is calculated using the initial crack length regardless 
of the amount of crack growth) in Figure 3. For larger increments of crack 
growth these curves overestimate the true J resistance (Jr) curve, but for 
small amounts the curves converge to give the same value for J^. The 
J0 : Aa curve was used as a check for any specimen behaving extraordinarily 
(due to blunted notch, preloading of bifurcation, for example). Any such 
point was omitted from the Jr calculation using the three parameter tech
nique as it was found to affect subsequent points in the analysis. The 
first point on the J0 curve was taken at the Jx value in equation (2) and 
the J curve was generated as in equation (3). 

RESULTS 

The effect of remaining ligament depth on the J0 curve for specimens with 
a side groove ratio (S.R. is defined in Figure 2) of 0.56 is shown in 
Figure 3. The variation of JQ with initial crack length translated into 
a Jr curve (Figure 4) which is independent of the remaining ligament for 
the values chosen. As expected J0 and Jr curves diverge after ~ 1mm 
crack growth. Both curves extrapolate to give a J^ for the material of 
0.12 Jmm"2 (120 Nmm"1). This value of J^ was found to be constant for all 
configurations of bend specimens tested. The side groove ratio of 0.56 
was chosen to eliminate 3 mm deep shear lips present in the plain specimens. 
However when specimens of double the dimensions but with the same side 
groove depth were tested a steeper Jr curve was found (Figure 5). Essen
tially the same curve is produced for differing value of W. The curve 
for the smaller W however reaches a plateau as the crack moves into the 
plastic region of the loading roller. Figure 6 indicates that it is the 
S.R. ratio which is the over-riding factor, rather than the removal of 
shear lips, in the production of a lowest bound or "plane strain" resistance 
curve. The ratio of 0.56 appears sufficient to provide this curve whereas 
0.25 is not. 

Plain sided specimens (S.R. = 0) of varying thicknesses with constant W 
(Figure 7) show the expected dependence, i.e., the greater the amount of 
shear to flat rupture, the steeper the resistance curve. 

Shear lip size was found to vary with specimen thickness and width in a 
rather complicated manner which is reflected in the resistance curves. 
Altering W with B constant gives very different Jr curves (Figure 8) attri
butable entirely to the variation of shear lip size in the two cases. 
Maintaining the W/B ratio constant (Figure 9) produces identical results. 

CONCLUSIONS 

By use of the three parameter technique, Jr curves of form similar to Kr 
curves are found. Jr curves are greatly affected by the presence of shear 
lips. Shear lip size is geometry dependent. This is reflected in the 
resistance curves of non side grooved specimens. It is not sufficient merely 
to eliminate the shear lips to produce the lowest bound curve. It would 
appear that the side groove ratio is itself a governing factor of the Jr 
curve obtained but by choice of a side groove ratio S.R. = 0.56 a "plane 
strain" curve is produced that is independent of initial crack length in 
three point-bending over the range of sizes tested. 

281 



Fracture 1977, Volume 3 

REFERENCES 

1. ASTM, STP 527, 1973. 
2. RICE, J. R., J. Appl. Mech., 35_, 1968, 379. 
3. RICE, J. R., "Fracture", edited by H. Leibowitz, Vol. 2, 1968, 191. 
4. BEGLEY, J. A. and LANDES, J. D., ASTM, STP 514, 1972, 7. 
5. BUCCI, R. J., PARIS, P. C , LANDES, J. D. and RICE, J. R., ASTM, STP 

514, 1972, 40. 
6. GARWOOD, S. J., ROBINSON, J. N. and TURNER, C. E., Int. J. Fracture, 

H., 1975, 528. 
7. SUMPTER, J. D. G. and TURNER, C. E., ASTM, STP 601, 1976, 3. 
8. RICE, J. R., PARIS, P. C. and MERKLE, J. G., ASTM, STP 536, 1973, 231. 
9. LANDES, J. D. and BEGLEY, J. A., ASTM, STP 560, 1974, 115. 

load 

o p - loading curve 
crack length a^ 

p q - crack propagation 
Aa to 02 

o r q - nonlinear elastic 
unloading curve 

crack length 02 
AREAopqr = AUp 
AREApqtsr= AUd 

displacement 

Figure 1 

PLAN B n o m f B 

ELEVATION W 

S=AW 
4SS. I' Oo 

SR=Bnom-Bact 
Bnom. 

Figure 2 

282 



Part V - Analysis and Mechanics 
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THE EFFECT OF GEOMETRY ON CRACK FORMATION 

Terance V. Duggan and Peter Sabin 

INTRODUCTION 

In many components subjected to mechanical or thermal cycling it is fre
quently the case that, at a critical region, the maximum localized stress 
exceeds the yield strength. If continued cycling does not produce any 
further macroplasticity, the material will thereafter behave elastically 
although yielding on the first half cycle would establish a mean stress. 
In assessing the fatigue integrity of components, the local material behav
iour must be understood, both from the point of view of the number of cycles 
required to initiate a crack (the crack formation life), and the subsequent 
crack growth whilst the crack is still within the influence of the geometry 
of a stress concentrator. A fundamental approach necessitates the ability 
to determine precisely the division between nucleation and Stages I and II 
crack propagation [1]. Whilst for a limited number of situations it might 
be possible from a diagnostic viewpoint to use such an approach, the prog
nostic situation is much more difficult, and the use of electron microscopy 
as a diagnostic tool is of only limited value to the designer. Consequently, 
efforts have been made to develop methods which enable crack formation in 
components to be predicted from data obtained from simple test pieces. An 
engineering crack is defined as one which can be detected using low power 
magnification (say X 25), and for a typical surface crack will be in the 
region of about 0.5mm long and 0.15mm deep. 

FATIGUE LIFE OF PLAIN SPECIMENS 

In order to estimate the crack formation life of a component it is necessary 
to relate the conditions at the critical region to known material behaviour 
and allow for influencing factors. If it is assumed that the conditions in 
a component can be represented by tests on plain specimens of the type used 
in obtaining fatigue data, this may provide the basis for assessing crack 
formation life. 

There is considerable experimental support [2] to suggest that both the 
elastic and plastic strain range components, when plotted against cycles 
to failure, give approximately straight lines on logarithmic co-ordinates. 
Expressed mathematically, 

AeT = Aep + Aee = Cp N f
 a' + Cg N £

 a* (1) 
where ai and a2 represent the slopes of the plastic and elastic lines 
respectively on logarithmic co-ordinates, and Cp and Ce represent the 
strain range corresponding to the plastic and elastic intercept for one 
cycle. Equation (1) is based upon completely reversed strain cycling with 
zero mean stress. To allow for the effect of a mean strain the Sach's 
modification [3, 4, 5] is introduced into the plastic strain component, i.e., 

1. Reader in Mechanical Engineering, Portsmouth Polytechnic, England. 
2. Research Engineer, Rolls-Royce (1971), Limited, Derby, England. 
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Ae = (e ' - e )N- a i (2) 
p ^ £ mJ f K J 

where ef' (= Cp) is defined as the fatigue ductility coefficient. If the 
elastic strain range corresponding to zero mean stress is Ae e o, then 

Ae = C N~ a2 (3) 
eo e f ** J 

To allow for the effect of a mean stress the Goodman relationship is used, 
i.e., in terms of strain range 

a 
Ae = Ae (1 - — ) (4) e eo K o J ^ J 

u 

where am is the mean stress and au is the ultimate tensile strength. Com
bining equations (3) and (4) and substituting into equation (1), 

If an endurance limit exists for the material, say A e ^ at Ne cycles, then 

Ce = A£Lo Ne " ^ <6> 

where A e ^ is the strain range equivalent of the endurance limit, for 
zero mean stress, i.e., 

2a 
A£Lo " I T (7) 

Now it will be observed that, using an iterative procedure, equation (5) 
enables an estimate of crack formation life in a component to be predicted, 
if the conditions at the crack region can be determined. 

STRAIN DISTRIBUTION IN A COMPONENT 

In most practical designs the local plastic strains will usually be suf
ficiently contained to limit the plastic zone to only a small region. The 
local behaviour will be dependent upon a number of factors, such as the 
relative magnitude of the plastically to elastically strained material, the 
strain distribution, the materials cyclic strain hardening or softening 
characteristics, and the effect of environment. Further even though the 
component may be subjected to constant amplitude cyclic loading, the material 
in the vicinity of the concentration feature and which is locally plastic, 
will experience a variation of strain range with cycles [6]. It is the 
behaviour of this local material which governs crack formation. 

Excluding finite element methods, two possible avenues are currently avail
able for evaluating the strain at a concentration feature, namely the 
Neuber [7] and the Hardrath-Ohman or modified Stowell [8] methods. The 
total strain at a concentration feature can be estimated using an analysis 
suggested by Zwicky [9]. Based on the modified Stowell method: 

m Aa (K - l)Aa 
A £T = E(Aa - mAao) ( 8 ) 
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where Kt is the theoretical stress concentration factor; Aa0 is the nominal 
stress range; ho is the local stress range and m is a factor which relates 
the effective stress to the principal stress. Using the Neuber method: 

m g K 2 Aa 2 

*r ■ L ° °0 
where g is a factor which relates the effective strain to the principal 
strain. 

For plane stress, 

m = 1, g = 1. 

For plane strain, 

m = (1 - v' + v f 2 ) 1 / 2 (10) 

* = rrVr (11) 

where v1 is defined as the pseudo-Poisson's ratio, obtained from 

V = 0.5 - (0.5 - v')(Es/E) (12) 

and E is the secant modulus defining the local material behaviour. 

Accepting the assumptions inherent in the derivation of equations (8) 
and (9) either the modified Stowell or the Neuber rule may be used to 
estimate the total strain range at a critical section in a component. 

ESTIMATING CRACK FORMATION 

If the bjehaviour of the material at a critical region in a component can 
be predicted from smooth specimen behaviour, then we have a ready method 
for assessing crack formation life. This consists essentially of using 
the known material cyclic behaviour, as expressed by equation (5) with 
the total strain range. The total strain range can be determined using 
an iterative procedure with either the modified Stowell or Neuber method, 
applied first to the loading half-cycle and then to the unloading half 
cycle. It would seem reasonable to assume, for the first half cycle, that 
the material will follow the monotonic stress-stress curve. On unloading 
various possibilities are likely, depending upon the magnitude of strain 
attained on the loading half cycle and the overall stress ratio. Thus the 
local material behaviour may be such that either (i) yielding in compres
sion occurs; (ii) no yielding in compression but residual compressive 
stress is obtained; or (iii) residual tensile stress is achieved due to 
high normal stress ratio. In any real component the strain distribution 
will be such that strain gradients exist and the volume of plastically 
strained material and the strain exponent may be significantly different 
from that of the plain test piece where the strain gradient will usually 
be essentially zero. A recent study by Leiss et at [10], suggests that 
the theoretical stress concentration factor Kt, should be replaced by an 
experimentally determined value for Kf (termed the "fatigue notch factor"). 
Investigations conducted by the present authors suggest that if Kt is 
replaced by Kf in the relationship for estimating strain range, then closer 
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predictions to crack formation lives are obtained. However, the values 
for Kf were obtained using the usual definition involving notch sensitivity 
index q, i.e., 

Kf = 1 + q (Kt - 1) (13) 

has been used to replace Kt in the method for calculating total strain 
range, and q was expressed in terms of the Neuber material constant [6]. 
Once this local material behaviour has been established, the mean strain 
may be determined from 

£
m = r̂ (1 + V (14) 

where r£ is the local strain ratio. To extend the crack formation model 
to include the effect of bulk stress ratios, the nominal stress range in 
equations (8) and (9) has been modified by including the stress ratio for 
the unloading half cycle. Thus if o"0 is the nominal stress amplitude 
attained on the loading half cycle, then for the unloading half cycle 

Aa = a (1 - R) (15) 
o o 

where R is the bulk stress ratio. This allowance for bulk stress ratio 
would not be expected to be applicable if time dependent influences, such 
as creep or stress relaxation are involved, without some modification. 

CORRELATION OF EXPERIMENTAL DATA WITH MODEL 

To investigate the validity of the proposed model, experimental data for 
fatigue crack formation has been obtained for a variety of materials, 
geometries, bulk stress ratios and elevated temperature. Laboratory fatigue 
tests were conducted on SEN bend specimens having different notch configura
tions and tension plates with central holes; the onset of fatigue crack 
propagation was located using the electric potential method [2]. Aero
engine model discs were tested by cyclic spinning, and the cracks detected 
by NDT methods. Values for Kt varied from less than 2 up to about 14. 
Table 1 summarizes the material properties, and for identification purposes 
the materials are designated, A, B and C. Predictions for crack formation 
life have been made using the model representated by equation (5). The 
total strain range Ae^ has been calculated using both the modified Stowell 
and the Neuber methods. For each situation it is necessary to know the 
service conditions (Kt and Aa0) and the appropriate material properties 
obtained from monotonic tests and fully reversed strain cycling fatigue 
tests on plain specimens (G U, E, v, £ff, ai and (X2). The material behaviour 
may also be predicted from a deformation model as suggested by Proctor 
and Ayers [11]. The iterative procedure required to solve equations (5) 
(8) and (9) make a computer solution desirable, and a suitable programme 
has been developed to facilitate the analysis. Strain measurements made 
using miniature electrical resistance strain gauges indicated good corre
lation with the predicted strains, except that for large plastic strains, 
(in excess of 1%) the assumption that the material behaviour during the 
unloading half cycle is similar to the loading half cycle was found to 
lead to an overestimate of the residual strain. The accuracy of the 
Neuber and modified Stowell methods is found to depend upon the shape of 
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the cyclic stress strain curve and the degree of plastic strain. Strain 
conditions are dependent upon geometry and specimen or component dimensions, 
and strictly speaking a three dimensional finite element analysis is 
required to establish the precise conditions. If complete restraint exists 
at the notch plane strain will be obtained, and this condition is approached 
if the ratio of notch radius (p) to specimen on component thickness (B) is 
small. As (p/B) increases, so the conditions approached are those of plane 
stress. Figure 1 indicates a restraint factor (F), allowing for notch 
configuration, to be applied to the total strain range calculated on the 
basis of a plane stress analysis. Figure 2 shows the correlation between 
experimental and predicted results for crack formation lives obtained on 
the above basis, using the modified Stowell method of calculating local 
material behaviour. For the majority of results the scatter is within the 
tolerance band of + 25%, thus suggesting that the predictive method pre
sented has a most acceptable accuracy. Both Neuber and the modified 
Stowell methods were found to overestimate actual strain range but, Stowell 
method was generally more accurate. Further studies are continuing to 
extend the work to include creep-fatigue interactions. 
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Table 1 Summary of Mechanical Properties of Materials Studied 

Material 

Temp °C 

0 MN/m2 u 
a MN/m2 
y 

0 MN/m2 

E GN/m2 

oil 

e f 

a2 

e 

A 

RT 

1095 

919 

600 
214 

-0.616 

1.046 

-0.134 

0.0214 

500 

817 

645 

-
173.9 

-0.617 

1.138 

-0.138 

0.0207 

B 

RT 

900 

768 

464 

205.4 

-0.610 

1.127 

-0.138 

0.0194 

450 

693 

535 

-
182.0 

-0.596 

1.076 

-0.137 

0.0167 

C 

RT 

1175 

860 

310 

179.6 

-0.461 

0.214 

-0.092 

0.0169 

500 

1027 

769 

277 

166.2 

-0.439 

0.194 

-0.092 

0.016 
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THE K-COD RELATIONSHIP FOR PIN LOADED 
SINGLE EDGE NOTCHED TENSION SPECIMENS 

S. A. Paranjpe* and S. Banerjee* 

INTRODUCTION 

The validity and usefulness of any fracture mechanics parameter as a suit
able fracture criterion depends on the ease with which it can be calculated 
(like K or J), the ease and reproducibility of its measurement and its 
compatibility with K in the linear elastic range. The parameter can be 
the basis of a valid fracture criterion provided it is independent of 
specimen geometry and configuration. In this paper the well known K-6 
(COD) relationships are examined for different widths, W and aspect ratios, 
a/W. 

Well's analysis [1] and Burdekin et al [2] results based on Dugdales model 
indicate that K2-6 relationship is linear. 

K2 6 - h- ^ 
y 

However, Begley and Lande's [3] results and those of Anderson's [4] results 
indicate a parabolic relationship between K2/E (i.e. J) and 6 in the linear 
elastic range 

6 a^Ja K (2) 
Apparently equations (1) and (2) do not agree in the linear range. Finite 
element observations [5] indicate a linear P (load)-6 relationship in the 
linear elastic range. Thus 

P a 6 (3) 
Y P a 1/2 and K = - ^ (4) 

(5) 

where Y = f (a/W), B = thickness and a = crack length. 
B W K B K\W or P = = ? 

Y a1/2 Y(a/W)1/2 

Substituting equation (3) into (5) gives 
6 a B J ^ (6) 

Y(a/W)1/2 

Equation (6) indicates a linear K-6 relationship which is similar to that 
in equation (2). This equation implies that for a given K and a/W ratio, 

Department of Metallurgical Engineering, Indian Institute of Technology, 
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higher widths will give higher displacement. Similarly at a given W and 
K higher a/W ratio should give a lower displacement. However, Well's 
Dugdale type K-5 relationship does not include the effect of specimen geo
metry and configuragion where 6 is only function of K, av and E. Equation 
(1) has been used to support COD as a fracture criterion [6] indicating 
that as K -> KIC, <$ + 6C and thus 6C is a fracture characterizing parameter 
(for a given thickness of plate) which is independent of the width of the 
plate [7]. 

In steels, it is possible that low triaxiality induces fibrous fracture (a 
tough fracture and consequently a higher 6C) while high triaxiality induces 
cleavage. Triaxiality is a function of specimen dimensions and therefore 
6C measurements on small specimens may not correspond to the 6C at which 
crack initiates in a large structure (unless the constraints in the speci
men and the structure are identical). 

It is expected that the state of stress at the crack tip will depend on the 
extent of deformation at the tip and its proximity to unnotched free edge. 
Thus the state of stress at the crack tip will continuously change from 
plane strain to plane stress as loading progresses and the crack tip deforma
tion increases. Though this phenomenon is appreciated, the continuous 
change of state of stress (which can be represented by the value of con
straint) is not considered in any reported calculations. Instead, it is a 
common practice to assume a constant state of stress throughout the loading 
history. It has been suggested by Hayes and Turner [5] and Egan [6] that 
6 in a given state of stress can be obtained using 

mEa v J 

Y 

where m is a measure of constraint at the crack tip [8]. It is further 
suggested [5, 6, 9] that a value of m = 2 represents plane strain situation 
and is equal to 1 in case of plane stress. In this paper the results of a 
simple analysis developed which takes into account the continuous change of 
the value of m is reported. Using this analysis COD values are computed and 
the various K-6 relationships are examined. 

THEORETICAL CALCULATION OF COD 

Dixon [10] has shown that a pin loaded SENT specimen can be represented by 
an axial force applied at the midpoint of a ligament and a bending moment. 
Richard and Ewing [11] using a similar representation have calculated yield 
point loads of SENT specimen, while Merkle et al [12] have used it for 
compact tension (CT) specimens. Dixonfs work is limited to the elastic 
solution while the latter works do not refer to crack tip behaviour and 
strain hardening characteristics of the material. They assume a linear 
stress or strain distribution over the ligament. Liu et al [13, 14] have 
shown that the strain distribution ahead of the crack tip is of l//r type 
even in presence of considerable yielding. Use is made of this fact and 
a composite distribution comprising of l//r near the crack tip and linear 
strain distribution far away from the crack tip is assumed. For a smooth 
and continuous change over from the 1//F to a -r type strain distribution, 
the magnitudes and slopes of the two strain distributions are matched at the 
change over point. The material is assumed to exhibit a linear strain 
hardening response. Figure 1 shows the general nature of strain distribu
tion in the uncracked ligament with the various parameters used in the cal-
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culations. Applied axial load and moment (generated because of unsymmetric 
loading) was balanced with the reactive axial load and moment (generated 
because of the assumed strain distribution). The load and moment balance 
equations were simultaneously solved (using Newton-Raphsons iterative 
procedure) for various loads and specimen sizes. The output of this solu
tion is R, the apparent plastic zone size ahead of the crack tip (which is 
defined as a point at which strain e y y is equal to e y), and X2, the point 
at which strain e y y is zero, the rotation axis position. 

The apparent plastic zone size was represented in the Irwin-McClintock [15] 
type of representation, i.e., 

R = _ i . UT (8) 
TT m' a K J 

m1 calculated from equation (8) is a measure of the constraint. It indi
cates the average increase of local a y y stress at which yield occurs. 

Three different 6 values are calculated the procedures for which are indi
cated below. 

(a) Compute 6 using equation (1). This is termed as 6^. 
(b) Compute 6 from V, the crack mouth opening displacement, using 

Boyles et al [9] 6-V relationship for SENT specimen. This is termed as 6W. 
(c) Compute 6 at crack tip when V is joined linearly to the point of 

strain reversal (Figure 1). This is termed as 6. 

V used in the calculation of 6^ is obtained according to the following 
steps. On the other hand, V used for calculation of 6 is obtained as 
reported in [3]. 

(1) Compute K using equation (4), for a given specimen W, a/W and P 
[16]. 

(2) Compute R and ry through load and moment balance equations. 
(3) Compute aeff/W = (a+ry)/W. 
(4) Compute the value of EVB/P for the aeff/W [16]. 
(5) Compute V using the results of previous step and the values of E, 

B and P. 

RESULTS AND DISCUSSION 

Figure 2 shows the plot of m' versus K. The figure has two important 
features. Firstly, mf drops as K increases (i.e., loading and hence 
deformation at the crack tip progresses). Secondly, as the specimen width 
increases the m' decreases at a slower rate. This means that wider speci
mens maintain a higher constraint value than a narrower specimen of same 
a/W ratio at a given K possibly because of wider ligament. The same trends 
are exhibited by m1' which is obtained by dividing 6Q by 6^. Even the two 
constraint values m' and m!' which are obtained independently compare quite 
well in magnitude. 

Figure 3 shows K-6^ plots for various widths. The figure shows an inter
esting trend that as W decreases 6^ value increases for a given K. This 
trend does not agree with equation (6), because the constraint decreases 
more rapidly in specimens with lower widths (Figure 2). The constraint 
dependence of 6^ is further evident from Table 1, in which 6^ was calcu
lated for a constant constraint m' = 2 in equation (8). It is observed 
that for all widths studied, the 6 is almost constant for a given K value 

295 



Fracture 1977 3 Volume 3 

if m1 is constant. 

The constraint dependence of 6W probably originates from the definition of 
6W. 6W has been defined as the resultant displacement at the crack tip when 
crack profiles are extended into the ligament. In this definition we 
approach from the crack mouth side and the overall stress-strain distribution 
in the ligament is not taken into account. Since the stress strain distri
bution in the ligament is ignored and the constraint value depends on these 
distributions, 6W becomes a function of the constraint or specimen width. 

Secondly, it is assumed in the definition that the crack faces open by a 
simple hinge mechanism about an apparent axis of rotation. The position 
of this rotation axis is assumed to be the intersection of the extrapolated 
crack profile with X axis. However, the "neutral axis" position (represented 
here as the point of strain reversal) determined in the present investiga
tion for SENT and CT specimens, as well as Merkle's analysis for CT speci
mens [12] are quite different from the rotation axis positions as suggested 
by Wells and others [17, 18]. According to the theory of bending it seems 
unlikely that the specimen will rotate at the apparent rotation axis posi
tion where a finite positive (tensile) strain is present. The most likely 
position of rotation axis is expected to be the strain reversal point. 

Moreover, the different formulae for V-6 conversion (based on crack profile 
extension technique) given in DD 19 [19] have been analytically and experi
mentally verified only for SEN bend and CT specimens and no comment is made 
upon its usefulness to SEN, centre notched and double edge notched tension 
specimens. In fact it has been pointed out [5, 9] that the crack profile 
extrapolation technique is not suitable for SENT specimens. 

Taking all these observations into account it was decided to define the 
crack tip opening displacement by an alternative method. 

AN ALTERNATIVE DEFINITION OF COD 

The COD is defined as the resultant displacement at the crack tip when the 
crack mouth opening displacement is joined to the neutral axis. The 
results of the present investigation with this definition of 6 are given 
below. 

The 6E/WOy versus VE/Way relationship for various a/W ratios follow a trend 
similar to that indicated in experimental calibration given in CODA [19] 
and other equations [20]. However the 6E/Way - VE/Way plot in the present 
study is a linear relationship while the finite element calculations report 
a nonlinear relationship at lower loads. Secondly for a given value of V, 
6 obtained here is more than the FEM 6 [9] reported for SENT specimens. Thii 
is expected since the definition of the two 6s are different. Secondly, 
the FEM results reported are valid for a constraint value of m = 2 where 
as m decreases continuously in the present results. 

Figure 4 shows the K-6 relationship obtained in the present investigation. 
It is observed that K-6 obeys a linear relationship and is a strong func
tion of specimen width and a/W ratio. Higher widths give higher 6 values 
for a given K and a/W ratio. Similarly lower a/W ratios give higher 6 
values for a given K and W. These results naturally do not agree with the 
trends exhibited by 6^ as shown in Figure 3 but they are in agreement with 
the observations made in equation (6). Similar results are obtained for 
the CT specimens. 
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If the present definition of COD is adequate then according to equation (6) 
the plot of K and 6v̂ a/W should yield a straight line independent of a/W and 
W. Figure 5 shows the plot of K versus 6^a/W. It is observed that it does 
yield a unique straight line for all a/W ratios and widths studied. This 
implies that the present way of defining 6 is in agreement with the proven 
relationships and observations of fracture mechanics. It must also be 
noted that this type of representation makes 6 values independent of con
straint. 

SUMMARY 

An alternative definition of COD is given based on strain reversal point 
as the rotation axis. The proposed parameter 6/a/W appears to be an unique 
function of K for the widths, a/W ratios and the constraints studied in 
linear elastic and small scale yielding situations for the SENT and CT 
specimens. However the applicability of this parameter needs to be examined 
for other specimen geometries where rotation axis may lie outside the 
specimen and also in the case of large scale yielding situations where the 
COD application is most appropriate. 
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Table 1 6 Obtained a t Constant Constraint mf = 2 using FEM V-6 Relat ionship 
for a/W = 0 . 5 [9] 

Width 
mms 

15.0 
30.0 
60.0 
120.0 
240.0 

K 
MPa-m1/2 

24.5 
25.0 
25.05 
25.20 
24.90 

6 
mms 

0.00432 
0.00410 
0.00393 
0.00389 
0.00376 

w 

-yy 

eyy= i{/xpx] 

-PAPPL. 

W, 72 
6yy = f ( "X ) 

X^ IS STRAIN 
DISTRIBUTION CHANGE
OVER POINT 

LOAD B A L A N C E EQUATION: 

PAPPL = PNP ♦ PNE ♦ PLET - PLEC 

MOMENT BALANCE EQUATION: 

PAPPL ( A ♦ X 2 - W / 2 ) = SUM OF MOMENTS DUE TO 
PNP.PNE , P L E T AND PLEC ABOUT 
STRAIN REVERSAL POINT 

Figure 1 S t ra in Dis t r ibu t ion in the Ligament of a SEN Tension Specimen 
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0.01 0-02 0.03 0.04 
Oyy mms »» 

Figure 3 K versus 6 Plo ts for SENT Specimens [9]a/W = 0 . 5 
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40 h 

o / w = 0.4 
Q/W = ° « 5 
a / w -- 0.6 

W = 60 mm 

W = 120mm 

W = 240mm 

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 Q 1 

COD ( 6 ) mrms • -

Figure 4 K versus 6 Plot SEN Tension Specimen for W = 60,120,240 mm 
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Figure 5 K ^- P lots for SENT Specimens with a/W = 0.4 , 0.5 and 0.6 
and W = 60, 120 and 240 mm 
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THE RELATION BETWEEN CRACK OPENING DISPLACEMENT AND FLOW STRESS 

M. R. Piggott* 

INTRODUCTION 

The width of a crack in a material about to fracture, and in a material in 
which fracture is taking place is an important parameter in fracture analy
sis; in particular the change in width as the applied stress is raised from 
zero to the critical stress for fracture is related to the crack extension 
force (or fracture toughness) of the material [1]. Crack width has been 
estimated indirectly in the case of very brittle materials [2, 3] but the 
analysis of the results needs further clarification [4]. Crack opening 
displacement has been calculated using numerical techniques for an aluminum 
alloy [5], and has been measured for a number of steels [6]; however, care 
is required in the detailed interpretation of the results according to the 
position on the crack where the measurement is made [7]. 

It has been suggested that only limited flow at a crack tip (and hence 
limited widening of the crack) can take place without fracture being pre
vented altogether. Two approaches taking this into account have led to 
criteria to brittleness [8, 9] which depend in a simple way on the flow 
stress of the material. From these theories it follows that crack width 
should depend on flow stress, and indeed Wells obtained a relation between 
crack opening displacement and flow stress of the form [1] 

na2a 

y 

for the C.O.D. occurring during the initial deformation of a material under 
an applied stress ac, with a flow stress ay, modulus E, and having a crack 
length 2a at its centre. Two materials were chosen to investigate this 
relation, a carbon steel which work hardness to a limited extent, and a 
brass which work hardness very considerably. Thin sheets of the material 
were used (i.e., plane stress conditions were maintained). 

EXPERIMENTAL DETAILS 

The steel used was a high carbon spring steel (SAE-1090). It was tested 
after various heat treatments to obtain different hardnesses. The brass was 
70/30 alloy (SAE 70) and was work hardened and annealed to obtain the dif
ferent hardnesses. The materials were in the form of strip 50 mm wide, and 
0.38 mm thick in the case of the steel, and 0.50 mm thick in the case of 
the brass. 

A crack 10 mm long and about 0.17 mm wide was formed in the strip by spark 
machining. In order to reduce the risk of micro cracks induced by the spark 

* Department of Chemical Engineering, Centre for the Study of Materials, 
University of Toronto, Toronto, Ontario, Canada 

303 MS41 



Fracture 1977 s Volume 3 

machining, to retain a fine finish on the crack surfaces, and to minimize 
the thickness of the disturbed layer at the crack surface, a very low cutting 
rate was used. No microcracks were observed on the test specimens. 

The specimens were tested on a Hounsfield Tensometer, the crack tip was 
observed using a microscope, and the crack size was recorded on film by a 
35 mm camera attached to the microscope. C.O.D. was determined from prints 
of the photographs obtained, by measuring the distance between easily recog
nizable features on either side of the crack tip within 0.1 mm of the tip. 
The estimated error of the measurement was +_ 1 micron (two prints of each 
photograph were made, and agreement between measurements on them was better 
than ± 1 micron). The applied stress was increased in steps of 53 MPa»m1/2 
(100 kg) in the case of the steel, and 10 MPa*m1/2 (25 kg) in the case of the 
brass. The time at a given stress was kept as near to 30 s as possible, 
and the rate of applying stress was kept as constant as possible. 

EXPERIMENTAL RESULTS 

It was possible to obtain hardnesses ranging from about 150 to 250 VHN in 
samples of the steel by heat treatment. Stress-strain curves for the ma
terial are shown in Figure 1. C.O.D. is plotted as a function of stress 
for a number of hardnesses in Figure 2. The value of C.O.D. is given as 
a percentage of the undeformed crack length. There is a nearly linear 
region in the curves for all hardnesses; this ended at about 80% of the 
stress at which unstable propagation of the crack occurred. The results 
for hardnesses of 175, 200 and 250 VHN were not significantly different 
in the linear region. 

In the case of the brass it was possible to vary the hardness over the 
range 40 to 100 VHN by rolling and annealing. Stress-strain curves for 
the material are shown in Figure 3. The observed C.O.D.s were much larger 
and more variable than in the case of the steel. Three specimens of each 
hardness were therefore tested and a typical set of results is shown in 
Figure 4. The mean results for each hardness were used for the plot shown 
in Figure 5. The curves relating C.O.D. to stress have two regions, an 
approximately linear one at low stress, and an approximately quadratic 
curve (C.O.D. « (stress)2) at high stress. 

DISCUSSION 

C.O.D. in the steel and brass used in this investigation does not appear 
to depend on the square of stress at low stress as required by equation (1). 
(The effect of the finite specimen width [10] is neglected, since it is 
small (3%) compared with experimental error.) The relation appears to be 
much closer to a direct proportionality between C.O.D. and stress. This 
type of behaviour would be expected if the material were behaving elasti-
cally. However, the C.O.D. for the hardest brass and steel used is more 
than an order of magnitude greater than the elastic displacement at the 
region of the crack tip where the measurements were made. In addition, 
the dependence of C.O.D. on flow stress indicates that some plastic flow 
is taking place. 

The linear dependence of 6 on 0Q is in agreement with one of the theories 
for a brittleness criterion [9]. In the examples discussed in that paper, 
the crack opening displacement increases with stress, and is given by 
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ao a2 

6 = 3aa -7T0- 2a/E+2y ^2} 
y c ' 

where a and 3 are dimensionless constants, and y is the surface energy of 
the material. The surface energy can be neglected compared with i\oQ a/E 
for moderate stresses, with crack lengths of 10 mm, so that curves exhibit 
the behaviour expected, i.e., a linear function of ac at low stresses, and 
a nonlinear deviation, above the line, at higher stresses. 

At low stresses the expression reduced to 
ao 
3a 
ao a 

^ = o ^ (3) 
y 

The experimental results only agree with this equation if a/3 a (E/av)2. 
Figure 6 shows the slopes, S, of the linear regions in Figure 2 and 4, 
plotted as a function of hardness. We assume hardness is proportional to 
flow stress, after Tabor [11]. The ordinate is (S/E2)1/3 and the abscissa 
is (VHN)"1. The points for both steel and brass are reasonably close to 
a straight line going through the origin. Thus 

6 = ClaacE2/ay
3 (4) 

where Ci is a dimensionless constant. Thus, comparing equations (3) and (4) 

a/3 = cx(E/ay)2 (5) 

This suggests that the work in the plastic zone at the tip of a crack is a 
function of the yield strain. The theory attempted to separate the elastic 
and plastic components of the work at a crack tip. Equation (5) suggests 
that this may not be possible. However, the result is not at variance with 
the conclusion that metals obey a brittleness criterion of the form: flow 
stress/modulus > 7 x 10"3. 

CONCLUSION 

Crack opening displacement does not appear to behave as indicated by simple 
theory. With relatively small plastic zones at the crack tip it obeys an 
expression of the form 6 = ciO"cE2/a 3 where ci has the same value for both 
brass and steel. At higher stresses, where the plastic zones is a signifi
cant fraction of the specimen width, the crack opening displacement increases 
more rapidly with applied stress. 
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AN EXPERIMENTAL AND FEM STUDY ON CRACK OPENING DISPLACEMENT 

Albert S. Kuo and H. W. Liu* 

INTRODUCTION 

Wells [1] proposed crack tip opening displacement, 6-̂ , as a ductile frac
ture criterion at and beyond general yielding, and he verified the criterion 
experimentally with mild steel specimens. Recently, Green and Knott [2] 
have shown that 6t, at the initiation of fibrous fracture, is a constant. 
McClintock [3] also proposed that fatigue crack growth per cycle is equal 
to half of the crack tip opening displacement. Ke and Liu [4] proposed 
near tip strain as a fracture criterion for ductile and tough materials, 
and they found a linear relationship between near tip strain and near tip 
crack opening displacement, 6. 6t is related to the stress intensity 
factor K, in the case of small scale yielding, according to the strip 
yielding model [5 - 9]. Subsequently, it has been shown that 6 is related 
to crack tip stresses and strains [10, 11]. All of these studies are two 
dimensional analyses which do not take into account the thickness consid
eration. In this study, the effect of thickness on crack opening displace
ment is studied experimentally. The results are further analyzed with the 
aid of the two-dimensional FEM calculations. 

EXPERIMENTS AND RESULTS 

Aluminum alloys, Al 2024-0, Al 2024-T3, and Al 2024-T351, were used in this 
study. The tensile yield strengths of these alloys were 53.8, 310, and 
386 MPa, respectively. The specimens were 10.16 cm wide, with central 
cracks or central slots, 2a - 1.78 cm. All the specimens were centrally 
slotted, with the exception of specimens 4 and 5 which were centrally 
slotted with a jeweler's saw and then fatigue pre-cracked. The width of 
the slots was approximately 0.023 cm. Specimens of two different thick
nesses, namely 0.041 cm and 0.625 cm, were tested. 

Crack opening displacements, 6, between the upper and lower crack surfaces 
under static tensile load were measured with the moire method. The speci
men surface was polished, cleaned, dried, and coated with photo-resist. 
A moire grille, of line density 5275 lines/cm, was printed onto the speci
men surface with its grille lines perpendicular to the loading direction. 
The moire pattern was obtained by double exposures before and after deforma
tion. A more detailed description of moire method was given by Schaefer, 
Liu and Ke [12]. The applied load and plate thickness were chosen to give 
a large plastic zone relative to plate thickness ([K/o"y]2/t. - 18), and a 
small plastic zone relative to plate thickness ([K/ay] /t - 1.12). 

The measured crack opening displacements will be compared with those calcu
lated using the Dugdale model, the elastic model, and the elastic-plastic 
model. The crack opening displacements of an elastic crack in an infinite 
plate is given by Ang and Williams [13] as: 

* Syracuse University, Syracuse, New York, 13210, U. S. A. 
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/ 6 = 4 a (a 2 -x 2 ) V 2 /E plane s t r e s s 
(1) 

6 = 4 a (1-v2) (a2-x2)1/2/E plane strain, 

where 2a is the length of the crack laying along the x-axis with its tips 
at x = + a. v, a, and E are the Poisson's ratio, applied tensile stress, 
and Young's modulus, respectively. Goodier and Field [6] used the Dugdale 
model to calculate crack opening displacement, 6. For plane stress case, 

2ay (a+lQ Sin2(62-9) Q . (Sin92+Sin9)2 ,_ 
6 = — i i [C0S6 ln Sin2(62+9) + COS02 ln (Sin92-Sin9)2 (2) 

where o*y is the tensile yield strength, £ is the length of the strip 
yielding zone and & = a(sec92-l), 92 = TTG/2 oy, cos0 = x/(a+£) for |x| < (a+£), 
and - TT < 9 < 7T. Similar results, using the continuous dislocation model, 
were obtained by Bilby, Cottrell, and Swinden [9]. 

Specimens 1 and 2 were made of the aluminum alloy, Al 2024-0, and both were 
loaded to the same K-value, 4.53 MPa*mi/2. Both specimens were slotted, but 
were of different thicknesses: 0.041 cm and 0.625 cm, respectively. The 
values of the quantity, (K/aY)2/t, were 17.5 and 1.12 for these two speci
mens, where t was specimen thickness. The results of the measurements 
are shown in Figure 1. 

In Figures 1, 2, and 3, the solid lines indicate the elastic calculation, 
equation (1), and the dashed lines indicate the Dugdale calculation, equa
tion (2). The dash-dotted line in Figure lb indicates the elastic-plastic 
FEM calculation, which agrees well with the elastic calculation in the 
region r > 7.6 x 10"2 cm. Figure 1 indicates that the measurements of 
specimen 1 agreed with the plane stress Dugdale calculation, but the mea
surements of specimen 2 agreed with the plane strain elastic calculation. 
It should be noted that, in the region of measurements, the results of the 
FEM elastic-plastic calculation coincided with those of the elastic calcu
lation. Unfortunately, no measurements were made in the region closer to 
the crack tip. 
Specimens 3 and 4 were made of Al 2024-T3, and their thicknesses: 0.041 cm 
and 0.038 cm were nearly the same. Specimen 3 was slotted, and specimen 4 
was fatigue pre-cracked. The applied K-values of these two specimens 26.2 
and 28.2 MPa-m1/2. The values of (K/ay)2/t for these two specimens were 
17.5 and 18.8 respectively. The results in Figure 2 show that the measure
ments of both specimens agreed well with the plane stress Dugdale calcula
tion in spite of the slot in specimen 3. 

Specimens 5 and 6 were made of Al 2024-T351 and were of same thickness, 
0.625 cm. Specimen 5 was fatigue pre-cracked, and specimen 6 was slotted. 
These two specimens were loaded to the nearly same K-values, 20.4 and 20.9 
MPa*m1'2. The values of (K/ay)2/t for these two specimens were 0.45 and 
0.46, respectively. The results in Figure 3 show that the cracked speci
men agreed well with the plane strain elastic calculation, but the slotted 
specimen fell in between the Dugdale and the elastic calculations. At the 
applied load level, the Dugdale and the elastic crack opening displacements 
were very close of each other. A thicker specimen loaded to a higher stress 
level was needed to make a distinction between these two models. 
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In an earlier work [12], crack opening displacements were measured in a 
very thin steel specimen, (K/Oy) /t =48. In the thin specimen, extensive 
crack tip deformation caused localized crack tip strip necking. The strip 
necking zone was embedded in a diffused plastic zone which, in turn was 
embedded in the massive elastic plate as shown schematically in Figure 4. 
The crack opening displacement measurements in the steel specimen agreed 
well with the Dugdale calculation as shown in Figure 5. Even the opening 
displacements in the strip yielding zone agreed reasonably well with the 
Dugdale calculation. 

Figure 6 is a picture of the typical moire patterns near a crack tip. It 
was taken from specimen 4 which was only 0.038 cm thick, and was loaded 
to K = 28.2 MPa*m1/2. The heavily deformed plastic region appeared to be 
diffused. However, there was a slight indication in the picture that the 
plastic zone had the tendency to become strip-necked. The measurements of 
specimen 4 agreed with the Dugdale model as was mentioned earlier, even 
without a strip necking zone. 

CALCULATION OF 6 WITH THE FEM 

Crack opening displacements were calculated with the finite element method 
under the conditions of plane strain and small scale yielding. In a 
region, re, near a crack tip, the elastic stresses are [15, 16]: 

a.. = [K/(2 77 r) 0- 5]^.^) (3) 

where r and 0 are the polar coordinates with the origin at the crack tip. 
The crack line lies along the negative x-axis. K is the mode I stress 
intensity factor. In the case of small scale yielding, a small plastic 
zone, rp, is embedded in the elastic crack tip stress field. If rp « re, 
according to Saint Venant's principle, it could be shown that a relaxation 
of the stresses in the plastic zone would not significantly change the 
stresses on the boundary of re. Therefore, for the case of small scale 
yielding, the crack tip deformation could be obtained from the calculation 
on a semi-circular region with the boundary stresses given by equation (3), 
[17]. 

The configuration of the elements is shown in Figure 7. There are 372 
elements and 213 nodes. The smallest element at the crack tip is 5.33 x 
10"3 cm with a crack length of 2.54 cm. Plane-strain and constant-strain 
elements are used. The computer programme is based on the elastic-plastic 
constitutive matrix obtained by Yamada and Yoshimura [18]. The values of 
yield strength, Young's modulus, strain-hardening exponent, and Poisson's 
ratio are 53.8 Pa, 68.9 x 103 Pa, 0.307, and 0.3, respectively. 

The calculated crack opening displacements are shown in Figure 8. The 
different symbols in the figure denote the calculated values at different 
K-values. Close to the crack tip, 6 could be expressed as, 

6/rp = 3 (r/rp)'" , @ = (6/r p) r = r . (4) 

The value of the slope, m, is 0.37. The value of m from HRR singularity 
analysis [10, 11] is 0.23. 3 is the value of 6/rp at r = rp; its value is 
3.5 x 10 found from Figure 8. rp is the plastic zone size, along the 
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6 = 60° line, and it is related to K, 

rp = a (K/ay)2 = 0.112 (K/ay)2 . (5) 

The value of a, 0.157, was obtained by Levy et al [17] using the FEM for 
a non-hardening material, along the line 6 = 70°, where rp is maximum. 

Combining equation (4) and equation (5), one has the following relation for 
6 

6 = 3 a1"m(K/ay)2(1"m)r,n = 8.74 x 10"" (K/ay)* ' 2 V 37 . (6) 

A comparison of the 6 calculated by using the Dugdale model, the elastic 
model, and the elastic-plastic model by the FEM is shown in Figure 9. It is 
evident from the figure that near the crack tip, the Dugdale model gives a 
much higher value of 6 than either the elastic model or the elastic-plastic 
model. 

In the region r/(K/ay)2 < 0.13, the values given by FEM elastic-plastic 
calculation and the elastic results diverge as r approaches the crack tip. 
In the region r/(K/ay)2 > 0.13, the elastic-plastic calculation coincides 
with the elastic solution. This is also shown in Figure lb. The moire 
measurements fell into the range where the FEM calculations and the elastic 
results coincide. In order to see the difference between the elastic and 
the elastic-plastic models, the measurements would have to be made in the 
region closer to the crack tip. 

The Dugdale model is based on the physical model of strip yielding. In the 
experimental moire study, no strip yielding has been observed. The quan
tity (K/aY)2/t is a measure of the size of plastic zone relative to thick
ness, and it is also an index of the deviation from the plane strain condi
tion. When a specimen is very thin, for example, for the thin steel speci
men at (K/ay)2/t = 48, strip necking takes place. The strip necking zone 
is embedded in a diffused plastic zone. In this case, the Dugdale calcu
lation agrees well with the measurements. As the specimen thickness is 
increased, the strip necking zone disappears. However, the Dugdale model 
for the calculation of 6 is still applicable in the region (K/o"y)2/t > 18, 
even without a strip necking zone. As the plate thickness is further in
creased, and the applied K-value is reduced to the point (K/ay)2/t < 1, 
the Dugdale model 6 differs considerably from the moire measurement. In 
this region, the measurements agree well with the elastic solution. In 
the region of measurements, the elastic solution coincides with the 
elastic-plastic FEM calculation. It is expected that in the region closer 
to a crack tip, the measurements would agree with the elastic-plastic 
calculation. 

CRACK TIP OPENING DISPLACEMENT, 6 , AND THE UNZIPPING MODEL 

Based on the empirical results shown earlier, it is expected that 6t cal
culated with the Dugdale model, is an appropriate measure of crack tip 
deformation only for thin specimens loaded to high K-values. The calcu
lated 6t with the Dugdale model by Goodier and Field [6] is 

6 t = ^8 °Y a//7rE^ l n [ s ^ C 1 7 0 / 2 a y ) ] ' (?) 
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Based on the Dugdale model, in the case of small scale yielding, Rice 
obtained [7], 

6t = K2/E ay . (8) 

Subsequently, 6 was calculated by Levy et al using the FEM [17], 

6 = 0.425 K2/E ay . (9) 

6^ given by these models could be used to characterize crack tip deforma
tions and stresses in the analyses of brittle and ductile fractures. 

McClintock and Pelloux [3, 19] suggested that fatigue crack growth rate, 
da/dN, is related to 6^, for the decohesion plane inclined 45° to the 
crack plane. Recently, Kuo and Liu [21] made a calculation of the crack 
tip opening displacement and the crack tip advancing based on the unzipping 
model of shear decohesion taking place on two conjugate decohesion planes 
as shown schematically in Figure 10. As the applied stress on a cracked 
solid is increases, the decohesion processes take place along slip lines, 
a, b, $, c, y> and d successively; while the "slabs' between the neighbouring 
slip lines move like the teeth of a zipper during the unzipping process, 
causing crack tip opening and advancing. The unzipping model separates 
the crack tip opening which contributes to crack tip advancing from those 
which cause crack tip blunting. Crack growth rate is related to 6t, 
which in turn is related to AK. The final result is 

da/dN = 0.019 (1-v2) K2/E ay (10) 

where 0"Y(C1 ^S t n e c v cli c yield strength. If the ratio of the cyclic yield 
strength to the Young's modulus is 1/400, the agreement between the pre
dicted crack growth rates and the empirical rates given by Barsom [22], 
Hahn et al [23] and Bates and Clark [24], is within a factor of 2; while 
the calculated growth rates, according to the classic Dugdale model, are 
more than 10 times higher than the empirical rates. 

It can be concluded that the Dugdale model is applicable for analyzing 
6 and 6t only in thin specimens loaded to high K-values. For a thick 
specimen at a low K-value, the general contour to the crack tip is, perhaps, 
better described by the elastic-plastic FEM calculations, such as those 
given by Levy et al. The crack tip opening which contributed to crack tip 
advancing is more realistically given by the unzipping model. 
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Figure 6 Moire Pattern at Crack Tip 

Figure 7 FEM Element Configuration 
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STUDIES OF CRACK TIPS IN STEEL AND ALUMINUM ALLOYS 

C. K. Clarke* 

INTRODUCTION 

This paper presents results of two studies: the nature and mechanism of 
formation of the stretched zone in steel and aluminum, and COD behaviour 
in aluminum as a function of specimen size and geometry. Some comparisons 
of COD and fractographically measured crack tip displacements were made in 
the second project. 

Considerable interest has been shown in dimensional changes at crack tips 
for the past several years. Some of this interest has been in the area of 
fracture testing where investigators have attempted to relate fracture 
toughness in tough materials to crack tip dimensional changes in terms of 
Crack Opening Displacements (COD). Wells [1] postulated that a finite 
opening at the tip of a crack, 6, was developed as a consequence of the 
formation of the plastic zone at the crack tip. This should be on the 
order of: 

6 = — = COD (1) 
°y 

where av = yield stress, G = strain energy release rate. A critical 6C simi
lar to Gc and Kc was expected because of the relationship between Gc and 6 . 

COD has been observed to predict well nonplane-strain fracture in steels. 
(Reference [2] provides references in this area.) COD and crack tip strains 
measured at the onset of ductile tearing were observed to be material con
stants. Fractographic studies [3] of crack tips and finite element models 
[4, 5] of crack tips have provided a physical basis for Well's concept of 
a critical COD for fracture. 

Fractographic studies of crack tips were initiated after the COD concept 
was established. A feature called the stretched zone was discovered at 
crack tips in fracture specimens. The size of this feature was observed 
to be proportional to the fracture toughness of the specimen. Reference 
[3] provides a review of stretch zone studies and efforts to explain its 
formation. 

PROCEDURE 

A 302D steel was tested in the form of standard ASTM 50.8 mm thick compact 
tension specimens at different temperatures [3]. Aluminum specimens of 
conventional and high toughness 7075-T651 alloy were tested at room tem
perature with compact tension and three-point bend specimens. Three point 
bend specimens had a B/W (thickness to width) ratio of 0.25 for specimens 

* Department of Mechanical Engineering, University of South Alabama, 
Mobile, Alabama, U. S. A. 
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cut from 12.7 mm thick plate and a B/W ratio of 0.5 for specimens cut from 
25.4 mm thick plate. All specimens were machined in the T-L orientation 
(crack propagation direction parallel to the rolling direction). 

COD measurements were made on the aluminum specimens with crack mouth com
pliance gages using a technique described in Reference [6]. COD measure
ments were made at the first indication of crack instability or growth as 
determined from electric potential observations during testing. 

All fractographic observations of the crack tip were performed using 
scanning electron microscopes (SEM's). Stereo pairs of matching fracture 
surfaces were used extensively in morphological studies of the actual 
crack tip blunting. Fractographic measurements of the amount of blunting 
or Crack Tip Opening Displacement (CTOD) were made using a technique in 
Reference [7]. This technique permitted crack tips to be measured in situ 
relative to the overall specimen geometry. Matching surfaces at the crack 
tip were measured to accurately determine CT6D as shown in Figure 1. 
(CTOD will refer to fractographically determined crack tip dimensions 
while COD will refer to mechanically derived crack tip dimensions). 

RESULTS 

Figures 2 and 3 are typical results for the steel specimens which fractured 
in a brittle fashion but displayed plasticity in terms of nonlinear load 
vs. deflection curves. An SEM picture of the steel crack tip is shown in 
Figure 2 with a cross section for orientation. The ripple marks at the 
crack tip are considered to be caused by alternating slip. 

The metallographic cross section shown in Figure 3 shows the severity and 
localized nature of the crack tip deformation in the steel specimens. 
Fractographic examination of this specimen did not reveal evidence of duc
tile fracture before mounting for sectioning and polishing. 

Blunted crack tips were observed only in steel specimens that displayed 
nonlinearity in load vs. deflection curves produced during the fracture 
test. Specimens which did not display nonlinearity in the load vs. deflec
tion curves exhibited only localized crack tip deformation. 

The aluminum specimens also exhibited crack tip blunting but in a fashion 
generally similar to the sharp crack tips predicted by Pelloux [8]. A 
complete crack tip similar to that predicted by Pelloux is preserved on 
one surface of a fracture specimen as shown in Figure 4. The included 
angle at the crack tip in this picture is approximately 70°. This feature 
was observed in several aluminum fracture specimens studied. Other varia
tions on this morphology were observed in individual grains depending on 
the crystallographic orientation of the grain to the principal stress 
axis. 

Several aluminum fracture specimens were tested to determine COD and CTOD. 
Results of the COD tests given in Figure 5 indicate that COD in 7075-T651 
is affected by specimen geometry and the type of specimen used. Crack 
tips were fractographically measured in two aluminum specimens and CTOD 
results were observed to be approximately an order of magnitude smaller 
than COD results for the same specimen. 
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DISCUSSION 

The fractographic study of the crack tips in steel and aluminum fracture 
specimens revealed that the stretch zone was the result of crack tip defor
mation. This crack tip deformation produced blunted crack tips in the 
steel and aluminum specimens and provides a physical basis for the COD 
approach to fracture. 

Careful study of the blunt crack tips provides several clues to the nature 
of crack tip deformation: 

a) Severe crack tip deformation in the steel specimens produced 
elongated grains at the crack tip (Figure 3). 

b) Equiaxed cleavage facets were observed right up to the crack tip 
in the steel specimen. 

c) The very sharp crack tip in the aluminum specimens which did not 
produce fracture suggests that linear elastic fracture mechanics cannot 
be used to describe the stress state at the crack tip. 

These clues show that simple plastic slip line analyses can be applied to 
describe crack tip behaviour in tough materials. The ideal plastic slip 
line solution for a single edge notched tension specimen [8], or the solu
tion for an edge notched specimen in bending [9] predicts finite constant 
stresses ahead of the crack tip. These solutions predict that plastic 
deformation can only occur on two mathematical shear planes emanating from 
the crack tip. This leaves the region ahead of the crack tip distortion 
free in agreement with the microstructures observed in the steel specimens. 

The elongated grain structure at the crack tip in the steel specimens in 
combination with equiaxed cleavage facets fit the slip line description of 
the crack tip. In fact the highly deformed grains at the crack tip can be 
qualitatively reproduced by simulating Pelloux!s proposed simultaneous 
slip on both shear planes (taking into account strain hardening). Finally, 
the sharp-crack tips occasionally found remaining on the aluminum speci
mens support the concept of constant, finite stresses ahead of the crack 
tip. 

The difference in COD measured in the two types of aluminum specimens pro
bably reflects basic differences in the two specimen types. Compact tension 
specimens with both tension and moment forces present probably have dif
ferent rotational factors whereas one factor was used for both specimen 
types in these tests to calculate COD. Other unpublished work at Boeing 
suggests that crack mouth displacements from compact tension specimens 
also contain a displacement component due to bending of the two loading 
arms (cantilever beams). 

The disagreement between CTOD and COD measurements is not surprising when 
the empirical nature of the method of Elliott, Walker, and May [6] is 
considered. They assumed the specimen to rotate about a hinge point in 
the remaining ligament in a fashion predicted by the slip line solution 
for an edge notched bend specimen. The experimental determination of the 
location of the hinge point is essential to this analysis. Neither this 
approach or Well's analytical approach address whether crack tips actually 
deform. 

This work reveals that crack tips do deform or blunt and single slip line 
plastic analysis can describe the blunting mechanism. This crack tip 
blunting process in fracture is also the mechanism by which cracks grow in 
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fatigue. If CTOD critical for fracture can be analytically predicted, a 
method is available to determine fracture toughness in low strength, high 
toughness materials. A fatigue crack growth analysis would be available 
if CTOD per cycle could be predicted as a function of previous load history. 

CONCLUSIONS 

1. Blunted crack tips were observed in steel and aluminum alloys. 
2. The occurrence and behaviour of the blunted crack tips are explained 

with simple plastic slip line fields. 
3. COD was a function of the specimen type and geometry. 
4. CTOD measurements made with scanning electron microscope techniques 

were about an order of magnitude smaller than corresponding COD mea
surements . 
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CTOD = a + b 

Figure 1 Fractographic Measurements of CTOD were made 
from Matching Fracture Surfaces 

10um| 

40° tilt 

Figure 2A An SEM Picture of a Blunted Crack Tip 
(Stretch Zone) in a Steel Specimen 
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Figure 2B A Schematic Sketch of the Cross Section is 
Shown in this Figure to Provide Specimen 
Orientation in Figure 2A 

20um 

Figure 3 Metallographic Cross Sections of Steel Specimens 
Revealed Elongated Grains at the Crack Tip 
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MEASUREMENT OF STRETCH ZONE WIDTH AND &± 

IN A LOW ALLOY NAVAL STEEL 

P. Hopkins and G. Jolley* 

INTRODUCTION 

The development of the low alloy high yield strength naval steels has 
taken place with great emphasis on the need for cleanliness and toughness. 
These steels sustain extensive plastic deformation before the onset of 
stable fracture at service temperatures and unstable fast fracture is not 
considered to be a problem in the thicknesses used in practice. From a 
design or material selection point of view the linear elastic fracture 
mechanics approach is therefore inapplicable and a greater interest has 
been shown in general yielding fracture mechanics parameters in particular 
the C.O.D. (crack opening displacement) concept. Safe defect size pre
dictions for service components may be made on the basis of critical C.O.D. 
at the onset of fast fracture, (Sc), measured on laboratory specimens [1], 
The correlation is only accurate, however if fracture occurs before ex
tensive plasticity [2]. Until recently when unstable fracture does not 
occur in the test, the critical C.O.D. has been taken to be the maximum 
load point on the load/C.O.D. curve (i.e. 6 m a x ) . This value has been 
shown to vary with specimen size and has proved difficult to use in the 
prediction of acceptable defect sizes in actual components. 

Harrison and Fearnehough [3] have shown that the C.O.D. at which ductile 
crack initiation occurs, S±f is lower but gives a much more constant value 
of C.O.D. than 6max over a range of specimen sizes. Work is taking place 
at several research establishments to quantify this parameter and establish 
its potential use in design. This paper describes the results to date of 
an ongoing project at Salford University to investigate the effects of 
metallurgical variables on 6i in Ql(N) a low alloy high yield strength 
steel. The particular metallurgical variables investigated were testing 
temperature and orientation of the test specimens to the rolling direction 
of the plate. 

EXPERIMENTAL 

The material used was a 25mm thick Ql(N) steel the chemical composition of 
which is given in Table 1. The steel was in the 'as received condition' 
i.e. water quenched at 1203 K and tempered at 913 K for 1 1/2 hours. The 
microstructure of the material is shown in Figure 1. 

The fracture toughness specimens used in the investigation were 10mm x 
20mm x 100mm the dimensions conforming with recommended procedure [4]. 
The specimens were machine notched initially by milling and then by a 
rubber bonded slitting wheel to a depth of 7.7mm. The cracks were then 
extended to 10mm by fatigue pre-cracking. The test pieces were loaded in 

^Department of Aeronautical and Mechanical Engineering, University of 
Salford, Salford M5 4WT, England. 
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3 point bending over a load span of 80mm at a loading rate of the order 
of 50MRa m1/2s_1 (cross head velocity of 8 x 10~5 ms" 1). Double cantilever 
beam clip gauges were used to measure the crack face displacement. The 
positive location of the clip gauge over the crack openings was achieved 
by the use of saddle type knife edges, clamped to the test piece by means 
of grub screws. 

A number of techniques have been developed to detect the onset of slow 
crack growth during a fracture toughness test including potential drop 
(p.d.) techniques [5], acoustic emission [6] and ultrasonics [7]. In the 
present investigation a potential drop technique was used. The method 
monitors the potential change around the crack tip against the crack 
opening displacement at the tip. This is done by connecting a constant 
current supply (in this case capable of producing 50A) to the ends of the 
specimen and measuring the potential change around the crack tip as it 
opens and grows. Copper probes spot welded at either side of the crack 
measure this change while the C.O.D. is obtained by attaching a clip gauge 
above the crack. Both these readings can be monitored on an autographic 
XY plotter and a curve of the type shown in Figure 2 is obtained where 6^ 
is the value of C.O.D. at the point of gradient change on the graph. The 
curve in Figure 2 is idealised and in the present work it was often very 
difficult to detect the change in slope possibly because of the relatively 
small specimens used. To overcome this problem the potential change at 
the crack tip was plotted as a function of the applied load rather than 
C.O.D. Also by using an XYY plotter it was possible to monitor C.O.D. 
versus load simultaneously (load being the common abscissa). The potential 
change versus load curve shows a gradient change at a load Y between loads 
of X and Z (see Figure 3a), the two portions of the curve XY and YZ being 
linear. These three loads can be related to C.O.D. by referring to the 
C.O.D. versus load curve obtained simultaneously (Figure 3b). It will be 
shown later that XY represents the growth of the stretch zone and the 
point Y represents 6^. 

RESULTS 

Fracture Mode 

In general, a reasonably tough material after a C.O.D. test will have a 
fracture surface containing a region of fibrous crack growth at the base 
of the fatigue crack followed by a brittle cleavage fracture if the 
specimen has been broken open in liquid nitrogen. In a ductile material 
such as Ql(N) there is a stretch zone between the fatigue crack base and 
the beginning of the fibrous crack (Figure 4). This is due to conditions 
in the volume of material immediately ahead of the crack tip (i.e. the 
plastic zone) being such as to promote a 45° shear type mechanism of 
crack extension. As the C.O.D. test progesses the microcrack extension 
within the stretch zone is followed by macroscopic fibrous crack growth 
(microvoid coalescence) which continues until plastic collapse. The 
presence of stretch zones on the fracture surface of fracture toughness 
specimens has been the topic of several recent investigations [8 - 13] 
and correlation between fracture toughness parameters and the width of 
the zone have been suggested in all these investigations. It is now well 
established that the stretch zone is a result of blunting of the crack 
tip [14, 15]; strain and localised yielding at the crack tip enabling the 
stretch zone to form by alternating shear along slip bands originating 
from the tip. 
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Attempts to relate stretch zone width (S.Z.W.) to fracture toughness 
parameters have not yet produced a completely unified approach. Spitzig 
[17], proposed that S.Z.W. was equal to the critical crack tip opening 
displacement which was disputed by Gerberich and Hemmings [11], who con
cluded that the region was controlled by the fatigue pre-crack operation. 
Bates et al [10], have shown for both steels and aluminum alloys that the 
S.Z.W. can be correlated with the ratio of stress intensity to yield stress 
(Ki/oy) giving the relationship 

s.z.w. = io"3 {f^}1'6 CD 

This was substantiated by Brothers et al [12] who showed additionally that 
the S.Z.W. could be numerically correlated with C.O.D. However the scatter 
in all the data is considerable, [12], and there are differences of 
opinion on many points, the most common being the definition of S.Z.W. and 
the angle of inclination of the zone to the fatigue crack plane, [18, 19]. 
Since the width of the zone varies along its length past workers have 
assumed a mean value between the maximum and minimum width. 

Figure 5 shows the stretch zone length plotted against C.O.D. for the mat
erial used in the investigation. This figure was compiled from specimens 
loaded to increasing C.O.D. values and broken in liquid N2. The length of 
the stretch zone was measured using a scanning electron microscope. It 
can be seen from Figure 5 that stretch zone formation does not commence 
upon initial loading. No stretch zone was evident on the fracture surface 
until a C.O.D. of .09mm was reached. Between C.O.D.s of .09mm and .17mm 
the length of the stretch zone increased from zero to .12mm. At C.O.D.s 
greater than .17mm fibrous crack growth was observed along the crack front, 
the amount of which increased with C.O.D. 

Previous attempts to measure the angle of inclination of the stretch zone 
to the fatigue crack plane have involved stereo viewing of crack profile 
replicas, [14], which can be tedious. In these present investigations two 
further techniques have been used. The first employed the tilt stage of 
a scanning electron microscope. The fracture surface was placed on the 
stage in a horizontal position and any particular point on the stretch 
zone was chosen and tilted until its maximum length was realised. The 
angle through which it had been tilted was then the angle of inclination. 
The stretch zone formed in Q1(N) is very large and this technique might 
not be so successful in less ductile materials. Furthermore location of 
the corresponding point on the mating fracture surface can be difficult. 
The second method adopted was to trace the crack profile using a Talysurf 
which produced a trace similar to that shown in Figure 6. Where the 
stretch zone deviated from the crack plane is very clear enabling its 
angle of inclination to be measured very easily but it was impossible to 
identify the demarkation between the stretch zone and the initiation of 
fibrous fracture. The Talysurf instrument leaves a scratch along the 
crack profile which can be viewed using a scanning electron microscope 
where the stretch zone width can be measured and the information transferred 
to the Talysurf trace. Using the above techniques the angle of the 
stretch zone in Q1(N) was found to lie within the range 21 - 23°. 

C.O.D. Results 

Since the potential drop equipment used for this work had not been used 
on any previous investigations it was decided to calibrate the technique 
with the more laborious procedure of measuring fibrous crack growth on 
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specimens tested to various values of C.O.D., the specimens being then 
broken in liquid nitrogen, and producing plots of fibrous crack growth 
versus C.O.D. [20]. Every specimen tested was also simultaneously tested 
by the p.d. method. Figure 7 shows the results obtained in this way for 
specimens tested at room temperature and at 193 K. Up to point A on the 
curve only a stretch zone was evident on the fracture surface and so the 
increase in crack length is solely due to the formation of the stretch 
zone. After point A fibrous crack growth is evident on the fracture sur
face along with the stretch zone. It can be seen from Figure 7 that the 
6^ value of 0.17mm is the same for both testing temperatures. This value 
was also obtained by the potential drop technique when the point Y (Figure 
3) gave a consistent value of 0.17mm in all specimens tested. The vertical 
line B in Figure 7 relates to point Z on the p.d. curves (Figure 3) and 
from scanning electron microscopy this point is the point at which the 
whole of the crack front moves by fibrous crack growth only. At levels 
beneath this figure there were still some regions of the crack front which 
were advancing solely by stretching. Both the points Y and Z on the p.d. 
curves gave consistent values of 0.17 and 0.31 respectively. 

Tne effect of orientation to the plate rolling direction was examined on 
specimens machined 0°, 22i/2°, 45°, 77i/2° and 90° to the rolling direction. 
Table 2 gives the details of inclusion counts on sample specimens at each 
orientation which were obtained on a scanning X-ray image analyser. 
Figure 8 shows the room temperature values obtained for the specimens 
macnined at 0° and 90° to the rolling direction which shows that 6^ is 
only slightly lowered by a change in specimen orientation in the rolling 
direction plane. Figure 9 shows details for all the orientations tested and 
also gives 6max and charpy upper shelf figures. Further details of the charpy 
tests are given in Figure 10. The differences in 6^ although small were con
sistently obtained by both methods used and the differences in fracture char
acteristics are further emphasised by the charpy and 6max results. 

DISCUSSION 

The work reported in this paper deals with the development of techniques 
with which to study and determine the stretch zone width and 6j_ values in 
Ql (N) as well as the effects of metallurgical variables on these values. 
It is felt that the combination of the scanning electron microscope and 
the Talysurf instruments described earlier offers a very good technique 
for studying the width and angle of inclination of stretch zones and will 
be used in the further work which is to be carried out. This technique 
as was previously mentioned, should be beneficial in other plastic mat
erials. 

Some problems were found with the p.d. equipment using the standard tech
nique of plotting C.O.D. versus potential change at the crack tip, possibly 
because the samples were small compared with other published work but the 
revised technique described earlier does give consistent results which 
were much easier to interpret on the specimen tested. 

The C.O.D. tests showed that stretch zone width and 6^ were unaffected by 
changes in temperature from 293K to 193K. Since the matrix flow stress 
of Q1(N) will undoubtedly increase with lower temperatures one might 
expect some difference in tne strain to failure at inclusion/matrix inter
faces. This change is obviously too small to be detected by the testing 
technique adopted. 
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The effect of rolling direction on 6j_ was also rather small. As was 
mentioned earlier the plate material has been developed to have high clean
liness and therefore high ductility. The plate had also been cross-rolled 
to furtner remove orientation effects. The results in Table 2 show that 
the inclusion area etc. was not significantly affected by the change in 
orientation although tne 90° sample did seem to possess an increased 
inclusion area. It can be seen that the testing technique consistently 
showed that this orientation had a lower value of 6^ than the other orien
tations which is substantiated by the 6 m a x and impact data. This was very 
reassuring and the tecnnique can be used with confidence in future investi
gations. It is difficult to comment constructively on the higher values 
obtained for the 22i/2° orientation which were nevertheless consistently 
obtained. Furtner work will perhaps bring clarification on this point. 

Further work is in progress using the techniques described in this paper, 
to further investigate the effects of metallurgical and geometric variables 
on 6^ in tnis material. 
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Table 1 Chemical Composition of Materials Used 

Element 

% Composition 

C 

0.17 

S i 

0 .31 

Mn 

0 .31 

S 

0.005 

P 

0.010 

Ni 

2.80 

Cr 

1.47 

Mo 

0.39 

Cu 

0.09 

V 

<0.01 

Al 

0.061 

Table 2 Inclusion Counts on Material Used 

Angle of 
specimen t o 
r o l l i n g d i r e c t i o n 

0 ° 

22^° 

4 5 ° 

77*,° 

9 0 ° 

No. of inclusions/mm2 

>3v 

9 . 3 

9 . 2 

8 . 0 

9 . 5 

8 . 7 

>8y 

1 . 1 

0 . 9 

0 . 8 

0 . 9 

1 . 1 

>15y 

0.13 

-

-

0 . 1 

0 . 1 

Average area 
% 

0.0216 

0.0218 

0.0223 

0.0223 

0.0245 
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Figure 1 Microstructure of as received material xl60. 

© 

CRACK OPENING DISPLACEMENT 

Figure 2 Ideal plot obtained by potential drop technique. 
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© 

X Y Z LOAD 

© 

LOAD 

Figure 3 XY plots obtained using modified potential drop technique. 
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? . • ■:*?£& 
^ , - i - ? ^ < - - . 

Figure 4 Presence of stretch zone on fractured specimen 

I 12 2 
STRETCH ZONE LENGTH 

Figure 5 C.O.D. vs stretch zone length. 
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Figure 6 Talysurf trace across fracture initiation region 
on a broken specimen. 
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Ol U I U I I I I I I I L 
•IA -2 -3B -4 -5 -6 -7 -8 -9 1-0 M 

FIBROUS CRACK LENGTH mm 

Figure 7 Effect of temperature on C.O.D. vs. fibrous crack 
growth 
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X ROLLING DIRECTION 

D 90° TO ROLLING DIRECTION 

_L -L JL -L J - J -
•|A 2 -3B -4 -5 -6 -7 -8 -9 

FIBROUS CRACK LENGTH mm 
1-0 l-l 

Figure 8 Effect of orientation to the rolling direction on 
C.O.D. vs. fibrous crack growth. 
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Figure 9 Effect of orientation to the rolling direction on 
fracture characteristics. 
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1 1 1 1 r 

Figure 10 Effect of orientation to the rolling direction on 
charpy impact values 
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BLUNTING EFFECTS ON FRACTURE TOUGHNESS 
OF LOW STRENGTH STEELS 

R. K. Pandey* and S. Banerjee** 

INTRODUCTION 

The fracture toughness of low strength steel decreases considerably with 
decreasing temperature and increasing strain rate since the fracture micro-
mechanism changes progressively from microvoid coalescence to cleavage. It 
is proposed [1] that crack initiation by cleavage occurs when ayyinax stress 
at some distance ahead of the crack tip reaches o~f, the cleavage strength 
of the material at the crack tip. It is shown [2] that Of changes little 
with temperature and thus the temperature influences KJC mainly due to the 
variation of av with temperature wherein the crack tip radius p0 remains 
unchanged [1]. However, Kj (KJQ) is an inadequate fracture mechanics para
meter when elastic plastic or fully plastic loading situations are encount
ered such as in low strength steel specimens fractured at higher test tem
peratures and in such situations the parameter J(JJC) should be used more 
appropriately. Accordingly KJQ calculated, from the experimentally measured 
JjC (or Jn, which is Jcr measured from specimens which do not satisfy re
quirements of valid JJQ measurements) value, is termed as KJQ (J) and is 
obtained from [3,4]. 

In the above loading situations, considerable crack tip blunting occurs. 
It is observed that [5] calculated KJC values based on the achievable 
Oyymax/o value [6,7] in the plastic zone ahead of a sharp crack are sig
nificantly lower than the experimental KJC (J) values. In addition the 
achievable aVymax/ay values were higher than Of/Oy even at room temperature 
where cleavage micromechanism does not operate as confirmed by fractographic 
observation [5]. These observations support the contention [8] that the 
crack tip undergoes blunting. In fact the blunting of the crack tip is 
physically confirmed and supported by SZW measurement [9,10], COD measure
ments [11,12] and the results of crack tip profile measurements and ob
servations [9,11,12,13]. 

RKR [14] used the stress distribution ahead of a crack [8] in conjunction 
with a two grain model [14] to calculate the KJQ values which were compared 
with the experimental KJC values. However, the change in o*v/E and n values 
with change in temperature and strain rate were not taken into account in 
their calculation. 

The present investigation correlates the various elastic-plastic fracture 
toughness such as 6C [15], JJQ [16,17] and GJC, the non-linear energy para
meter proposed by Liebowitz and Eftis [18] of two different class of low 
strength steels in the temperature range -196°C to 28°C and crosshead 

*Indian Institute of Technology, Delhi 110 029, India 
**Indian Institute of Technology, Bombay 400 076, India 
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speed range 0.5 to 200 mm/minute. In particular the effect of crack tip 
blunting on KJC (J) is assessed by an examination of the experimental data 
in the light of the well known theoretical results [6,7,8]. 

EXPERIMENTAL 

The chemical analysis and the other details of the 12.5 mm thick plate 
materials are reported in Table 1. Three point bend fracture toughness 
specimens 12.5 x 15 x 75 mm cut with the long axis along the rolling 
direction were prepared as per ASTM E 399-72. The tests at low temperatures 
were carried out with the specimens immersed in a low temperature bath. 
The load, load line displacement and the crack opening displacement were 
measured as a function of time. Companion tensile test specimens of the 
two steels were pulled at various temperatures and strain rates. 

The load-displacement [16,21] plots were suitably analysed to obtain 6C 
[13,19,20], Jjc [16,21] and Gj^ [18]. A measure of the crack tip strain 
rates was obtained, taking into account the tensile yield strength varia
tion with temperature and strain rate [19,20]. The tensile test data were 
processed to obtain the n and ay/E values at various strain rates and tem
peratures. 

RESULTS AND DISCUSSION 

Correlation of the Fracture Mechanics Parameters 

COD and J relation is given by 

COD = .. J ^ 
M • a 

y 
where M takes into account the elevation of the local a y y stress at which 
yield occurs at the crack tip. The values of M have been theoretically 
determined to be 1.63 from deformation theory of plasticity [3], 2.32 
using an incremental plasticity theory [24], 2 by finite element analysis 
[19,25]. Experimental values of M have been reported [26] for three point 
bend specimens and lie in the range of 0.83 to 1.75 depending upon a/W and 
W values. 
Figure 1 shows the correlation between Jcr, 6C and ay for the various test 
temperatures and crack tip strain rates for the two steels. The value of 
M is about 1.52 and is not unreasonable. It is interesting to note that M 
has a constant value in spite of the differing amounts of plasticity pre-
ceeding fracture in the specimens tested. 

Figure 2 shows the relation between JJQ and GIC for the whole range of 
small scale to extensive yielding situations. The correspondence between 
the two is reasonable up to the limits of valid Jj^ measurements as 
specified in reference [16]. 

Stress Induced Fracture - Contribution of Progressive Crack Tip Blunting 

An examination [5] of the KJQ (J) values in the light of Tetelman and 
Malkin's [1] anlaysis showed that sharp crack tip radius p0 of their 
analysis depends on temperature and strain rate and increases with in
creasing 6C. It has also been shown by earlier investigators that consider
able stretching occurs at the crack tip which indicates that crack tip 
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undergoes blunting and the stretched zone width directly relates to 6C. 

It is now proposed that the crack tip undergoes progressive blunting with 
loading and the radius reaches a critical value p^ at the point of crack 
initiation and that 

PL = 0.5 6c (2) 

Thus the effect of temperature and strain rate on Kj^ is reflected in two 
ways - firstly by virtue of their effect on yield strength and secondly 
through their effect on P. 

The stress distribution ahead of a blunt crack [8] could not be used to 
examine experimental results since it is available only for a few ay/E 
values. On the other hand o~y/E values change continuously in the experi
mental data obtained. The crack tip blunting effect is therefore assessed 
in an indirect manner. 

The experimentally determined KJC (J) values are suitably processed to 
calculate hypothetical KJC (J) values as would be obtained if the crack tip 
were sharp. These hypothetical values are termed as Kj^ (H). The KJQ (H) 
values are then compared with KJC (NB), the fracture toughness values based 
on sharp crack stress distribution [6,7] and the two grain model [14]. At 
low Oy/E values fracture of three grains is assumed to lead to fracture. 

Calculation of KjJE) : 

In the case of a blunt crack the stress oyy reaches a maximum value a y y 
at an approximate distance X = 1.9 6-̂  [8]. 

It has been shown [8] that crack opening displacement at the tip can be 
represented by 

v2 
(3) 

K2 

6. = 0.717 ^ — t E 0 
y 

Therefore 

(X)Q _ max = 1.9 6 
yy yy 

It is shown [27] 

(X)a _ Q max = p 
yy yy 

exp 

= 1.362 

max /o 
( yy 
\ y 

K2 
E a 

' )■ 

(4) 

(5) 

At crack initiation ay y
m a x -*■ af, p -> pL and correspondingly Kj -*• KIC (p) 

Combining equations (2), (4) and (5) 

•GH-" E a 6 
KIC ( P ) = 2.724 

1/2 
(6) 

Where KjC(p) is the calculated fracture toughness for the different values 
of PL and PL value changes with strain rate and temperature. 

Kjc(p) can be calculated at various temperatures and strain rates since 
the experimental 6C and ay are known and 0*f is calculated from the general 
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yield and fracture initiation load as per a procedure reported in reference 
[1]. The calculated Kj^(p) is plotted against the experimental KJQ(J) values 
at various temperatures and strain rates in Figure 3. The experimental KJC 
(J) values as reported in Figure 3 are obtained from equation (1). The 
Kic(J) values at intermediate strain rates and temperatures are obtained 
by graphical interpolation. The higher Kjc(p) values could not be accommo
dated in the figure but they clearly obey the trend shown in the graph. 

Figure 3 shows that Kic(p) = KIC(J) up to KiC(J) = 60 MPam1/2 for the Mn-V 
steel and 50 MPam1/2 for the ship building steel. Above these, the experi
mental KJC(J) changes linearly with Kjc(p) and obeys an equation of the 
form 

KIC(J) = A+B • KIC(p) (7) 

where the constants A and B can be evaluated from Figure 3. 

If PL for a sharp crack is known, Kjc(p) values for a sharp crack can be 
calculated from equation (6). In these calculations PL corresponding to 
a sharp crack is assumed to be 2.7 urn since the fatigue crack width and the 
minimum 6C value (at -196°C) is 5 to 6 urn. Once Kjc(p) for a sharp crack 
is known the corresponding KJQ(J) values for a sharp crack can be calcula
ted from equation (7) and these KJC(J) values are termed as KJC ( H ) , the 
hypothetical Kic(J) value for a sharp crack. The Kic(H) values calculated 
in this manner are plotted in Figure 4. These Kic(H) values can be compared 
with Kic(NB) values calculated at the different temperatures and strain rates 
since both these parameters refer to a sharp crack. 

It should be noted that equation (6) and Figure 3 are not based on any micro-
structural features such as grain size. The change in slope of the lines 
at various points occur due to various reasons such as: 1) the crack tip 
becomes too blunt (of the order of the grain size) at higher KJC(J) values, 
to obey equation (3); 2) the fracture micromechanism changes from a stress 
induced to a strain induced one; 3) the higher Kj^(J) values (>66 MPam^2 
for Mn-V steel and >45 MPam1/2 for ship building steel) are not derived 
from valid JJQ values and 4) there is a progressive loss of constraint at 
higher temperatures (i.e. higher Kj^(J) values) and lower strain rates. 
It is interesting however to note that in spite of the above factors, 
the relation between Kj^(J) and KJC(P) obeys a linear relationship as given 
by equation (7). 

Calculation of KIC(NB): 

The stress distribution ahead of the crack is influenced by n [8]. The 
result of the previous investigators [28,29] that n depends only on Qy 
irrespective of temperature and strain rate was confirmed and the relations 
between ay and n for the two steels investigated were found out [5]. It 
was also confirmed from the examination [5] of the unnotched and notched 
tensile test data reported in reference [30,31] that n values are not 
significantly influenced by triaxiality. Thus n values of the material at 
the crack tip can be calculated from the av value at a given temperature 
and crack tip strain rate. 

Figure 4 in reference [8] plots oyy/Oy versus X/(K/av)2 in case of a sharp 
crack for n values 0, 0.1 and 0.2. An approximate plot for n = 0.15 was 
generated by graphical interpolation. According to the two grain model 
[14], X = 2 grain diameter. With Of/Oy and n values known for a given 
temperature and crack tip strain rate, the value of X/(KIC/ay)2 is known 
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from the above figure. Since X is known the corresponding KJC can be cal
culated. This KJC is KIC(NB). The Kic(NB) values are also plotted in 
Figure 4. 

It may be noted that at higher temperatures when av values are low, Of is 
not reached in the very first grain near the crack tip. In these cases 
based on Rmax quantity, a value of X=3 grain diameter is assumed and KJC(NB) 
values are computed. 

Comparison of KjJH) and Kj. (NB): 

The Kic(NB) values exhibit a somewhat irregular trend since the inter
mediate n values are appropriately approximated to either 0, 0.1, 0.15 or 
0.2 in the calculations. If one were to ignore this irregularity, KJC(NB) 
values fall reasonably close to Kic(H) values up to a temperature where 
cleavage mode of fracture operates for a hypothetical sharp crack. The 
agreement between KJC(NB) and Kic(H) has an interesting consequence. The 
experimental Kj^(J) values contain a contribution due to the crack tip 
blunting in addition to the contribution due to yield strength. It may be 
written as 

KIC(Blunting) = KIC(J) - KIC(H) 

where KIC(H) = KI(](NB). 

CONCLUSIONS 

1. In the specimen geometry investigated, the critical COD is observed 
to relate to Jcr by the relation 

^ cr C0D = 133 V 
2. Experimental JJC values show a reasonably good agreement with GJC as 

long as JJC measurements are valid. 

3. Significant amount of crack tip blunting occurs during elastic-plastic 
loading situation and this contributes considerably to the toughness. 
The contribution can be evaluated from a relation of the type 

K I C(Blunting) = K I C ( J ) - A - B V P S E Oy exp f ^ - l j - 1 

where the value of ps corresponds to the critical crack tip radius 
at. the initiation of a sharp crack and A and B are numerical constants. 
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Table 1 Chemical Analyses, Tensile Properties and Grain Size of Steels 
Investigated 

Steel 

Mn-V (TISCO) 

Ship Building 
(Lloyds Grade A) 

C 

0.20 

0.16 

Si 

0.235 

0.03 

P 

0.032 

0.009 

S 

0.027 

0.019 

Mn 

1.60 

0.80 

V 

0.12 

_ 

YS 
MPa 

434 
234 

UTS 
MPa 

600 
365 

E% 

38 
36 

Average 
Grain Size 
in ym 

18 
27 
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COD (/xm) 

Figure 1 Relation Between Critical COD and Jcr/ay 
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1.75 17.5 175 
Jcr EXPERIMENTAL, K j / m 2 

Figure 2 Comparison Between Experimental J c r Values and G^ Values of 
Liebowitz and Eftis 
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VARIATIONAL BOUNDS AND QUALITATIVE 
METHODS IN FRACTURE MECHANICS 

V. M. Entov* and R. V. Goldstein* 

INTRODUCTION 

According to modern fracture mechanics, to determine the conditions of 
subsequent growth of a crack of given geometry, it is necessary to know 
the stress intensity factor in the points of the initial crack contour as 
well as in the points of all the subsequent positions of the crack contour. 
This is of minor importance in plane and axisymmetrical problems but gives 
rise to great difficulties in three-dimensional problems such as the problem 
of growth of an opening mode crack in the plane of symmetry of an elastic 
body. 

The paper is concerned with some methods of determination of conditions 
sufficient for a crack to be dangerous or safe in the principal three-
dimensional case mentioned above. The key to the problem is the notion of 
positivity which is introduced here. The problem is said to be positive 
if the application of arbitrary positive (wedging) tractions to crack sur
faces gives rise to positive normal displacements of the surfaces and 
positive normal stresses in the plane of symmetry outside the crack. For 
positive problems there is the following comparison principle: the stress 
intensity factor at a given point of the crack contour grows as the crack 
extends outside some arbitrary small region around the point. The stress 
intensity factor grows also if the additional wedging forces are applied 
to the crack surfaces. It follows that for positive problems a given 
crack is more dangerous (i.e., gives rise to fracture during a shorter 
period of time) than any crack it contains and is less dangerous than any 
crack that contains it. This makes it possible to take into consideration 
the conditions of growth of cracks with comparatively simple ("standard") 
contours only. 

DISCUSSION 

The principle of comparison makes it possible to construct a two-sided 
estimate of the stress intensity factor at a given point on the arbitrary 
smooth contour of a crack considering contours of simpler form enveloping 
the given crack and enveloped by it and having a common tangent in the 
point under consideration. 

It has been shown [1] that the problem of a plane crack in an infinite 
three-dimensional body is positive. In [1] it was demonstrated for the 
example of an elliptical crack in an infinite elastic body that the com
parison principle is a highly efficient means of construction of two-sided 
estimates of stress-intensity factors. The theorem may be extended to 
include the case of an opening mode crack in a bounded body as soon as 

institute of Mechanical Problems USSR Academy of Science, Moscow, USSR. 
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the boundary is sufficiently far from the crack. It has been proved that 
the problem of an opening - mode crack situated in the central plane of an 
elastic layer with traction-free faces is positive as soon as (d/h) < 0.7, 
d - being the diameter of the plane domain occupied by the crack, 2h - the 
thickness of the layer. The crack opening and stress intensity factor at 
any point of the crack contour diminish as the thickness of the layer grows, 
the crack goemetry and tractions on its surfaces being fixed. 

The stress intensity factor is a local differential quantity, so that its 
evaluation involves enormous difficulties. Nevertheless, the load dis
tribution being prescribed there exists a family of specific so-called 
"extremal" contours with the following two properties: 1) The stress in
tensity factor is constant along the crack contour. 2) The elastic energy 
of a body with a crack of given area attains its maximum value for cracks 
with contours which belong to the family of extremal contours. The res
pective values of energy and stress intensity factor are functions of area 
bounded by extremal contours, so the stress intensity factor may be express
ed through the derivative of the elastic energy on the crack area. The 
extremal contours may be used as "barriers" for crack growth in the sense 
of the introduction. As a result it becomes possible to express the notion 
of a dangerous or a safe crack in terms of integral quantities such as the 
crack area and elastic energy of the body with a crack. If the comparison 
principle is valid for the body under consideration and there is an extre
mal contour such that the corresponding stress intensity factor is equal 
to its critical value, then all the cracks contained inside the contour 
are safe and all the cracks containing the contour are dangerous. Consider 
an extremal contour T which bounds a domain G of area S. It is assumed 
that there is a supporting domain G0 of area S0, G0 < G. Then the extremal 
contour generally has two parts one of which T" = rn3GQ and the second Tf 
is free, i.e. lies outside G0. The stress intensity factor on the free 
part of T is expressed through the corresponding values of elastic energy 
W as a function of area S: W = W(S) by the formula 

N 'P (l-V)TT dS U j 

The true displacements in the points of the surface of a crack with a con
tour of given form minimize the elastic energy W of the cracked body. So 
through the definition of an extremal contour is devised a solution of a 
"maximin" problem: 

W = max min W r?. 
mes G = S G l J 

Consider an example of an extremal contour. Let a crack occupy a domain 
G0 in the plane X3 = 0 in elastic space with surfaces act normal tractions 
acting on its surfaces: 

o"3 3 = -p(l+£Xj) , p=const , e=const (3) 

The constant e is assumed to be small. If £= 0 the extremal contour is 
evidently a circle containing G0. For small e and with symmetry assumed 
it seems reasonable to seek the extremal contour as an elliptical contour 
of form: 

xi = aicos§, X2 = bicos0, ai = a(l+6i), bi = aCl+62), <$i,2«l 
(4) 
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The unknown 61,2 may be determined using the condition N=const along the 
contour. Some algebra gives: 

61 = ea2 jjg , 62 = - ea2 -jyj (5) 

Now the equations (4), (5) give a family of extremal contours corresponding 
to load of form (2), a being a parameter. The family may be used to esti
mate the conditions of limiting equilibrium of plane cracks of arbitrary 
geometry under loading of form (2) as outlined before. 

To apply the approach presented here we must have some effective solutions 
of three-dimensional crack problems for cracks bounded by etalon contours. 
Such solutions may be constructed by straightforward use of variational 
and variational-difference methods. Some numerical results are presented. 
The results may be obtained using medium range digital computers. 

The conditions for a crack to be dangerous or safe having been expressed 
in terms of an energy criterion there is a possibility of further simpli
fication of the elasticity problem under consideration. The simplification^ 
is based on the following statement. Let the external loads dn = r(x) be 
prescribed on a part S' of the surface S of an elastic body D, on the rest 
of S being prescribed the displacements, u = g(x). The elastic constants 
of the material are considered to be functions of coordinates: X = A(x), 
u = u(x). The quantity Q: 

Q = // ? 2 d a - //gl! an g d a (6) 
may be considered as a functional of X and u; Q = Q(A,u). It may be shown 
that the functional is monotonic: Af (x) >̂  X(x), u' (x) _> u(x), V x eD, then 
Q' = Q(A',uT) <_ Q(A,y). In particular, for f=0 (the part S" of S is clamped) 
Q is equal to the work done by the external loads. So it follows that the 
work increases as the material rigidity in some subdomain of S decreases 
and vice versa. Thus it is possible to estimate strain energy for a given 
cracked body in terms of the energies of bodies of simpler geometry with 
cracks bounded by extremal (at the prescribed crack area) contours. Con
sider, for example, infinite space with a crack under uniform tension 
normal to the crack plane. Now the free extremal contours are, evidently, 
circles; the elastic energy is equal to half the crack volume multiplied 
by the applied stress. This assumes that the volume V of a plane crack of 
arbitrary geometry and area S, under internal pressure P is not greater 
than the volume of a penny-shaped crack of the same area, so: 

V < P "(l-V2) s3* (7) 
~ E 3TT3'2 

The inequality is an analogue of a well-known inequality for the capacity 
of a plane domain [2]« 

In certain cases the energetic bounds may be applied directly to estimate 
the stress intensity factors. For example, consider a circular crack of 
radius £ around a spherical cavity of radius p. The crack and the cavity 
are under an internal pressure P. The potential energy is, by using 
linearity and dimensional arguments: 
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(j) being a dimensionless function. Through the statements of this section 
we have <|>f _> 0. Thus: 

W. - 5 P ^ 2 JP\ £!AP A. M < 3PH2 / p \ _ 3W(p,£) 3W(£,£) 
3* ~ y ^ y " ]i 9 I £ J - y Hll I - ~l 

It implies, using Irwin's formula: 

N2 i N2 = ^ ^ y (10) 

For v = 0.25, N £ 0.56 P/F. For a penny-shaped crack of radius 

P/2r"~ 
r , N = ~ o.45 P / F \ 

O ' 7T O 

So a crack of radius £ surrounding a spherical cavity of radius p is less 
dangerous than a penny-shaped crack of radius 

reff = 8(1^0 ( f ° r V = °*25, reff = 2"}-
In elastic contact problems this makes it possible to construct bounds 
for the displacement of a die and/or the force acting on the die, with 
the complex geometries of contact areas and elastic body and various types 
of contact (sliding contact, frictional contact, etc.), on the basis of a 
solution of the respective problems for dies and/or bodies of simple geo
metries. 
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AN APPROXIMATE THREE-DIMENSIONAL STATE OF STRESS 
IN THE VICINITY OF A CRACK 

Yu Chen* 

INTRODUCTION 

The classical linear fracture mechanics solutions of the crack-tip stresses 
are based on two-dimensional formulation of the stress field under either 
plane stress or plane strain conditions. For contained plasticity the 
slip-line field is not enough for predicting the plastic zone size. Besides 
numerical treatment, several papers presented asymptotic analysis of the 
stress singularity at the crack tip [1, 2, 3]. Three-dimensional solutions 
are difficult and not available at the present time. The object of this 
paper is to study the effect of the plate thickness on the stress distribu
tion in the plastic zone of a through crack with the assumption of an 
ideally plastic material. 

MATHEMATICAL ANALYSIS 

Consider the stress function defined by 

F = \ r2f(6) . (1) 

The stress components defined by equation (1) are [4] 

r r 3r r* 86* 2 ' 

6 8r2 

Tr6 " drdd $ ■ - * ' • 

If one specifies that the octahedral shearing stress T defined by [4] 

9 T Q
2 = (0-1-CJ2)2 + (o2-o3)2 + (0-3-aO2 (3) 

to be constant, one will get the classical solution of the plastic stress 
field at the crack tip. In the above expression 0*1, a2, 0*3 are principal. 

To construct an approximate solution in three dimensions let us assume a 
set of two Maxwell function [5] 

Department of Mechanics and Materials Science, Rutgers University, 
The State University of New Jersey, New Brunswick, New Jersey, U.S.A. 08903 
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X = Y = xpH and Z = <|>F (4) 

where H and F are functions of x and y only, ijj and <j> are functions of x, 
y and z except that these functions vary so slowly with x and y that their 
derivatives with respect to x and y can be ignored. The resulting stress 
components are given by the following: 

a = <|>F + ip"H , T = -ij;1 H 
x yy yz y 

a = (|>F + i|;"H , T = -ipf H ) (5) 
y T x x T z x r x ' v ' 

a = i|A72H , T = -(() F 
z r ' xy Y xy 

where the subscripts represent partial differentiation and the primes 
denote differentiations with respect to z. 

If we further introduce the assumption that the functions F and H are 
identical, then the above stress components will be reduced to four re
maining components; namely, 

o = (b o . o = (b a 
x x y y 
a = \b(o + a ) , T = d> T z n x yJ ' xy Y xy 

(6) 

where a = F , a = F , a = -F . (7) 
x yy y xx xy xy v J 

It is important to note that the above set of stresses do not satisfy 
the equations of equilibrium exactly, but the quantities neglected will be 
small by assumption. 
The task now is to suggest a function F that will yield a fan-shaped plas
tic region in the xy-plane. In this region the octahedral stress T 0 will 
be constant. This function F can be taken to be the same classical solu
tion that solves the plane-strain case in the region 0 <̂  |0| <̂  TT/4 and a 
new solution outside the region. (See Figure). 

Thus, for 0 < lei < \ , 

f (6) = ̂  - ^ cos 26 (8) 

and for 0 £ |a| <_ 

f (a) = Zj* - ̂  cos ±y + *-f- cos 2a (9) 

where p and q are the stresses at 0 = 0. 
It can be verified that these solutions satisfy all the boundary conditions 
and at 0 = TT/4 all the stress conditions are matched. 

< 3 1 
- 4 ' 

2 

(a = iT-0) 

. 3£ c o s 2a + Pl2R 
4 3 4 
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By using equation (6) we can calculate T as 

9xo
2 = ( a ^ ) 2 + (o2-o3)2 + {Os-d)2 = \ (cf)-2ij02 (ax+ay)2 + | c()2 V (10) 

where V is defined by 

V = (a -a ) 2 + 4 T 2. (11) v x y' xy 

For the case of plane strain § = 2ip, we have 

9 T Q
2 = I <)>2 V (<f> = 1) , (12) 

and for plane s t r e s s , lp = 0, thus 

9T 2 = 2c()2 ( a 2 - a a + a 2 + 3? 2) . (13) 
o x x y y xy 

If we denote the value of cf> at z = 0 by (|>m and that at z = + c by <|>s and 
equate the two T0 values, we obtain from equations (12) and (13) the ratio 
of the two c()-values as 

p/q (14) \^sJ 3 ^ (1-p/q)2 

The ^-function is further restricted by 

c 
/ $ dz = 2c (15) 
-c 

The ^-variation can also be estimated based on the condition T 0 being 
constant. The more specific form of § and \\) can be suggested based on 
experimental results available in the literature, but will not be the sub
ject of this paper. 

CONCLUSION 

An approximate three-dimensional solution of the state of stress in the 
vicinity of a crack has been suggested. Although these stresses do not 
satisfy the equilibrium equations exactly, the error is expected to be 
small for moderately thick plate. Variations of the stresses in the 
thickness are defined by two functions which can be estimated. 
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ON THE THREE DIMENSIONAL THEORIES OF CRACKED PLATES 

S. K. Bhandari*, B. Barrachin** and J. L. Picou* 

INTRODUCTION 

It is well known since the beginning of Fracture Mechanics that the Strain-
Energy-Release-Rate G c depends on the thickness B of the specimen used; 
the value of G c at smaller thicknesses could sometimes be seven times that 
for very thick specimens ((see for example Figure 3.36) in reference [1]). 
It is evident that the plasticity correction used after Irwin and based on 
plane-stress plane-strain argument could not help account for this varia
tion and it was generally believed that a three-dimensional theory was 
needed to explain the triaxiality effect. A three-dimensional elasto-
plastic theory is beyond the present reach. Even in the elastic domain, 
the problem seems to be extremely complicated. Nevertheless, recently 
two theories of elastic cracked plates have been proposed which reveal 
the variation of the stress-intensity factor K in the thickness direction. 
One would therefore be tempted to explain at least partially the thickness 
effect noting that G and K are related through material constants. 

The aim of the present communication is: 
1) to discuss two theories: one due to Hartranft and Sih [2] (we shall 

call it H-S theory) which starts with a certain proposed variation 
of stresses through the thickness, the other due to Folias using a 
certain integral representation for the displacements; 

2) to present some numerical results obtained on a cracked plate of mod
erate thickness. These will be critically examined to evaluate the 
available theories; 

3) finally, to look into some of the fundamental hypotheses of the pre
sent day fracture theory in the light of available 3-D fracture re
sults. 

THEORY PROPOSED BY HARTRANFT AND SIH 

In a series of papers [2,3,4], Hartranft and Sih have developed an approx
imate 3-D theory of plates as applied to crack problems. In [3], they 
have shown that the singular part of the normal stress o*yy, for the case 
of a plate subjected to uniform stress o 0 (Figure 1) can be written as 

V z ) e /. . e . 3e\ 
a = cos T 1 + sin -^ . sin -z- 1 

where the stress-intensity factor is 

ks(z) = g(p) 4>(1) o^fc f"(0 

*G.A.A.A., 20 Avenue Edouward Herriot, Le Plessis Robinson, 92350-France. 
**D.S.N., C.E.N.-Saclay, C.E.A., Gif-sur-Yvette, 92150-France. 
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where C = z/B, g(p) is a function of a constant parameter p and (f)(1) is 
given as a function of the parameter p and the ratio B/a (Figure 2). 
The mean value of ks(z) *s* 

+B 
K = ̂ T / k (z) dz = - rosin P , (j)(l) a /a~ s 2B y sv ' p (2p+sm2p) r^ J o -B 

which using p = 0,4 as suggested in [4] becomes 

K = (f)(1) a v̂ a s YV ^ o 

It is interesting to note that Ks varies with B/a through (f)(1), a varia
tion similar to the one implied by the experimental data. Thus one might 
expect to account for a partial thickness effect with the help of this 
theory. 

THEORY PROPOSED BY FOLIAS [5] 

Folias has treated the same problem using the method of Lure [6]. The 
analysis is sufficiently complex. The final result for the stress a v v in 
the crack-tip vicinity is 

c = A F(Q - 2 — cos % (1 + sin % . sin ̂ -J, 0 < C < 1, 
XX /2r" 2 \ 2 2 / 

which leads to the stress-intensity factor 

and A = A(B/a) is shown in Figure 3 for v = 1/3. 

The average value of kF(z) is given by 
A a Ssi 

I -

Mu-^ 

F (l-2v)(2)2V 

It should be noted that the mean value of Kp is greater than the two-
dimensional value except for v = 0 when the plane-stress result is re
covered. Moreover, one finds that contrary to the results of H-S theory, 
Folias1 theory indicates an increase of stresses as z/B is varied from 0 
to the value of 1. On the other hand, the variation in the mean value 
of Kp (V^O) with respect to B/a (Figure 3) is of the order of 11% and one 
would tend to believe that a 3-D elastic theory would not give even a 
partial answer to the experimental variation in Gc with respect to thick
ness. 

NUMERICAL RESULTS [7] 
We have carried out certain numerical computations for the value of K in 
a moderately thick centrally through the thickness cracked plate. 
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The configuration used is that of Figure 1 with a width of 60 mm and two 
values for the thickness and for the crack length to obtain finally three 
different values of B/a (1.0, 0.75 and 0.25). The computations were per
formed using two different methods: 

The Finite Element Method 

We shall denote 

K = _ /2r a (using stress data) a r+0 yy 
E U 

K _ £im y (using displacement data and plane 
r-K) 2 7y— ,, 2^ strain assumption) u 

Note that, although both Ka and Ku values are given in the text, Ku is 
the solution to be compared because the computer codes we used assure the 
displacement compatibility as most of the F.E. computer programmes. This 
point has already been stressed in the literature [8] and we shall not go 
into more details: 
The F.E. programmes used are: 
1) SAFE 2D for a two dimensional analysis in order to compare with the 

three-dimensional analysis 
2) SAP IV for the analysis of the finitely thick plate. In this case 

16-node brick elements were used. The mesh is shown in Figure 4 for 
l/8th of the plate considered. We have used 336 elements. Two 
values of B/a =0.75 (Case I) and B/a =0.25 (Case II) were run with 
a uniform tensile stress of 147 MPa applied at the edges of the plate 
parallel to the crack. 

The results concerning o"Vy- distribution through the thickness for the 
plane y = 0 are shown in Figure 5. The computed mean K-values are given 
in Table 1-. These results will be discussed later. 

The Boundary Integral Equation Method 

This method has been developed due to the efforts of Cruse [9], Lachat 
and Watson [10] and others. The results we present here were obtained 
with a EITD programme developed at CETIM, using a surface discretisation 
shown on Figure 6. This programme gives the value of the J-integral for 
any given closed contour around the crack-tip. We calculated the J-
value using three contours in order to verify that this value is indeed 
independent of the contour. The Kj value is 

Kj = U-v2)J (cf. Table 1) 

Note that the stress distribution obtained with the EITD programme was 
practically identical to the one calculated with SAP programme. 
Before comparing the different K values, we would like to discuss the 
precision on numerical results. Firstly, before carrying out the costly 
3-D analysis, we check that the mesh used was sufficiently refined com
paring 2-D calculations with available theoretical value. (K-p̂  = 
a a /a, a being the finite-width-correction factor (11)). The comparison 

363 



Fracture 1977, Volume 3 

was extremely good (cf. Table 1). After this step, we proceed to 3-D 
calculations. The use of two different methods (F.E. and B.I.E.M.) gives 
us another cross-check on 3-D results. The comparison was once again 
extremely good (cf. Table 1). This confirms our confidence in the results 
and we feel that their precision is certainly better than 10%. 

COMPARISON BETWEEN THEORETICAL AND NUMERICAL RESULTS 

Stress Distribution 

From Figure 5 we note that the numerically calculated stress oVy falls 
down as we go from the centre of the plate towards the free surfaces. 
This result is in contradiction to Folias' theory. The H-S theory, though 
shows the same tendencies as the numerical results, predicts that the 
stress distribution for different values of B/a should be sufficiently 
different. For example, the ratio of stress in cases I and II (same 
crack-length), in the vicinity of crack-tip 

instead of nearly 1 as given by the numerical analysis. 

K-Values 

From Table 1, for the 3-D geometry, we shall make two remarks on the mean 
value of K: 
- firstly, concerning the values of K: we find that the 3-D numerical 
results (Ku) are close to 2-D values while the predictions of the H-S 
theory are very much lower and that of Folias very much higher. 

- secondly, concerning the variation in K-values with respect to thickness: 
The numerical results indicate that there is hardly any effect of thick
ness on the K-values. This result is similar to that given by Folias' 
theory whereas the H-S theory predicts a variation of 42% in going from 
Case I to Case II. 

It might be of interest to point out here that the analysis of Sternberg 
and Sadowsky [12], though for the case of a circular hole in a plate of 
arbitrary thickness, also showed little dependence of the stress distri
bution on the thickness of the plate. 

Figure 7, indicating the distribution of the S.I.F. along the crack front 
for Cases I and II, was drawn to visualize still better the comparison 
between different methods. Note that the H-S theory predicts that for 
moderately thick plates, the results are quite different from the plane 
solutions, which does not seem to be the case. The Folias' theory though 
predicts that the thickness effect is about 10%, gives a K-distribution 
along the crack front through the thickness which is entirely different 
from that of numerical results. Moreover, the mean value of K from the 
Folias' theory (Kp), even for large thicknesses is much higher than the 
theoretical 2-D plane-strain solution. 

CONCLUSION 

It is evident that the three dimensional problem of cracked plates is not 
yet fully resolved even in the linear elastic domain. But the important 
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conclusion to which the present study leads us is that one would be in
capable to predict the experimentally observed variation of Gc with re
spect to thickness, even through an exact 3-D elastic theory. This comes 
from the fact that the 3-D numerical results are close to the 2-D ones. 

On the other hand, looking at the parameter Gc as obtained through the 
Griffith-Irwin theory, we find that its value remains nearly the same 
for the cases of plane-stress and plane-strain, although the plastic flow 
at the crack tip is entirely different in both the cases. This leads us 
to believe that certain hypothesis of this theory in formulating Gc may 
have to be re-examined. 

In particular, the plastic energy dissipation rate, considered constant 
in this theory was shown to vary with the geometry and the applied loading 
(see [13] and the references given there). This result might be of sig
nificance in formulating a realistic fracture governing parameter. 
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Table 1 Mean Value of S.I.F. as Given by Different Methods (MPa. /m) 

CRACK LENGTH (a,mm) 

1 RATIO B/a 
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Q PJ 
i -4 < 
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1 HJ < to > 

FINITE 
ELEMENTS 

THEORY* 

FINITE 
ELEMENTS 

INTEGRAL 
EQUATIONS 

H-S THEORY 

FOLIAS THEORY 

(V 
K u 
KTh 

<V 
K" 
u 

KJ 
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CASE I 

10.0 

0.75 

CASE II 

10.0 

0.25 

18.2 

15.65 

15.55 

18.44 

15.52 

15.53 

13.21 

23.64 

18.35 

15.52 

16.2 

9.27 

23.13 

CASE III 

7.5 

1.0 

13.11 

12.83 

12.11 

18.78 

*KTh = a ch/a 

Figure 1 Plate with a Central Crack 
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Figure 2 j9 (1) as a Function of B/a and p 
(from reference [1]) 

1.0 

0.5 

0 2 4 6 8 

Figure 3 A as a Function of a/B 
(from reference [5]) 
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Figure 5 Normal Stress Distribution Through the 
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Figure 6 Surface Discretisation for Integral-Equations 
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Figure 7 Distribution of Stress-Intensity Factors 
for Cases I and II 
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GENERAL NUMERICAL METHOD FOR THREE-DIMENSIONAL 
SINGULARITIES IN CRACKED OR NOTCHED ELASTIC SOLIDS 

Z. P. Bazant* and L. F. Estenssoro** 

INTRODUCTION 

The objective of this paper is to report preliminary results of a numerical 
finite element study concerned with the elastic deformation field near the 
point where a crack front edge intersects the surface of an elastic body. 
The crack plane as well as the front edge are assumed to be normal to the 
surface. However, the numerical method, briefly outlined herein, has a 
general applicability to three-dimensional elastic singularities involving 
singular points located on stress singularity lines, such as crack edges, 
corners, notches, inclusion edges, etc. 

The problem is of fundamental interest for the propagation of cracks inter
secting a surface, and a solution is needed to assess the effect of thick
ness of thin sheets, plates and layers upon crack propagation. A solution 
of this problem has been attempted many times without success. Recently, 
Benthem [1] presented an analytical solution. 

Problems of similar type also arise in potential theory, where they are, 
of course, much easier to treat. Very accurate analytical solutions of 
certain three-dimensional singularities in potential theory have been 
recently obtained by Morrison and Lewis [2], and by Keer and Parihar [3]. 

A general numerical method which is capable of handling any three-dimen
sional singularity in potential theory has been developed in reference [4]. 
The basic ideas of the present solution, involving the separation of 
variables postulated here in equations (1) and (11), and the use of finite 
difference or finite element method to formulate and solve a large non
linear generalized eigenvalue problem (equation (17) in the sequel), are 
the same as those in reference [4]. 

VARIATIONAL EQUATION FOR THE EIGENSTATES 

Consider a singular point, 0, located at a smooth singularity line 00' 
which terminates at point 0 (e.g., Figure 1). Let r, 0, c|> be a spherical 
coordinate system centred at point 0, such that ray 6 = 0 coincides with 
the singularity line. It will be assumed that in the vicinity of point 0 
the displacement in r, 0 and cf> directions can be expressed in the form 

u = rAE(0,(t)) (la) 

* Professor, Technological Institute, Northwestern University, Evanston, 
111., USA. 

**Graduate Research Assistant, Northwestern University, Evanston, 111., USA. 
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v = rAG(6,<10 (lb) 

w = rAH(0,cfO (lc) 

Substituting these expressions into the well-known differential equations 
of equilibrium in terms of u, v, w, it is found that the radius coordinate, 
r, cancels out of the equations, and the following differential equations 
of equilibrium in r, 6, (J) directions in terms of functions F, G, H result: 

Xr = CQ*2)CA-1)[XF+F+Ge+G cot 9 + - ^ HJ- [(^DGQ-FJ 

- cot e[cx+i)G-Fe] + - ^ [ ^ VVAHJ = ° C2a) 

XQ = W+2)[XF +2F e +G e e +G e cot 6 - - A - G ♦ - i — H - ^ A H 1 
L s in 0 s in G Y s in 0 YJ 

r i - ^ |HfiA+H, cot 0 r-^-5- G. . + A (A+1)G-FQ = 0 (2b) 
s in 0 [_ 0<|> <l> s in 9 <J><|> J L J 0J K J 

XA = •* Q(Q+2)|XF.+ 2F.+ Ga.+G. cot 0 + } Q H. .1 
(j) s in 0VX |̂_ cj) $ 0<|) (j) s m 0 <|)<J>J 

- X | — — F.-H-XH + Hnn+H. cot 0 — H + S2±A G 
Lsm 0 Y J L sin 0 sin 0 

' "^ GeJ = ° (2c) 
s m 0 Y-J 

where V = Poisson ratio, Q = 2v(l-2v), and subscripts of F, G, and H denote 
partial derivatives; e.g., FQQ = 32F/302. Furthermore, substituting equa
tions (la - c) into the well-known expressions for spherical stress com
ponents arQ,...,a^A terms of u, v, w, it is found that 

sre = —XT °re = AG " G + F e <3a> 
2Gr 

XT! %Q - Q[AF+2F+Ge+G cot 6 ♦ ^ H J ♦ 2(G6+F) (3b) 
9 6 GrA 

se« = ~x^I °e* = He"H co t e + lETe S (3c) 

GrX 
T-T a ^ = Q XF+2F+GQ+G cot 0 + .* H 
X-l # XL 0 s in 0 cf)J 

+ 2\ - 1
 Q H. + G cot 0 + F (3e) 

Lsm 0 <t> J 
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in which G = elastic shear modulus. 

Point 0 is assumed to lie at the surface of the body. Expressions (3a - e) 
may then be used to express surface conditions at surfaces consisting of 
radial rays emanating from point 0. Let n = (ng,^) represent the unit 
normal to the surface of the body when plotted in the (0,<(>)-plane, with 0 
and (j) being regarded as the cartesian coordinates in such a fictitious 
plane; thus, n ~ (d<f>/ds,-d0/ds) where s = length of boundary curve, or 
no/ru = -dcj)/d0 where d(j), d0 are increments along the boundary. The boun
dary condition of a free surface may be written in the (0,<t>)-plane in the 
form 

Pr = srQne sin 6 + sr(jn^ = 0 (4a) 

Pe = seene sin 6 + s ^ = 0 (4b) 

P* = se$ne s i n e + s<t4n$ = ° ( 4 c ) 

The differential equations (2a - c) together with the boundary conditions 
(4a - c) may be combined to form the following variational statement 

f f h 6F+X 6G+X 6H~|sin0 d0d<|> -/Tp 6F+p 6G+p 6H|ds = 0 (5) 
A s 

in which s = length of the boundary of the region in the (9,<f>)-plane; 
ds2 = d02+d<()2; A = area of this region; and variations 6F, 6G, 6H are 
arbitrary continuous functions of 0 and c|> which have piece-wise continuous 
derivatives and satisfy all displacement boundary conditions (if any). 
Conversely from the fact that equation (5) must hold for any kinematically 
admissible functions 6F, 6G, 6H it follows that equations (2) and (4) must 
be satisfied. Thus, equation (S) is equivalent to equations (2) and (4). 

Equation (5) involves second derivatives of F, G, H (which are contained 
in the expressions for STQ,...,SAA). To be able to apply the finite 
element method, it is necessary to transform equation (5) to a form which 
involves no higher than first-order derivatives of F, G, H and of 6F, 6G, 
6H. At the same time, it is necessary that during this transformation the 
boundary integral in equation (5) be eliminated (or else natural boundary 
conditions would not be automatically satisfied when the finite element 
technique is used). Indeed, a transformation by Green's integral theorem, 
applied in the Cartesian (0,<J))-plane, has been found, such that both 
objectives are reached simultaneously. The resulting variational equation 
is 

m F « F ^ 6Fe+* 6F#+*G6G+* 6Ge+# 6G + ^6H 

A 
+ $ u $H0+$.. 6hL~lsin0 d0d(f) = 0 (6) 

H0 6 % *J 
in which the following notations are made 
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*F = [Q(l-A)+2] [(A+2)F+Ge+G cot 6 + - 4 — H J - 2 A ( A + 2 ) 

% ■ ^ G + I v \ = isr t i ih- V(X"1)H] 
*G = j (^ + 2) [ (A+2)F + G e +G c o t 6 + -^A-g. H J - 2 ( G e + F ) - 2 A F | c o t 6 

-2 (F e -G) -A(A+l )G-AF e 

\ - Q[C^2)F+Ge+G cot 9 + - ^ H J ^ C G Q . F ) 

% = i i^[ H e- H c o t e + n^ G J C7) 

$ H = - { [ H 6 - H c o t e ^ G j c o t 9 + 2 \ ± ^ F ^ - H ] + X ( X + 1 ) H 

A F s i n 6 .} 
<PU = HA-H c o t 6 + l G. Hu 0 s i n 0 cfc 

H, s i n T ^ < Q (A+2)F+G0+G c o t 0 + l
 Q H. +2 . 1

 Q H. 
i n 8 [ X L 0 s i n 0 <f>J L sm 0 $ 

+ G cot 0 + FJ I 

Alternatively, it is possible to derive equation (6) from equation (5) by 
means of Stokes theorem applied on a unit sphere r = 1, domain A being 
considered as a domain on a unit sphere. It has been checked that this 
gives the same result. It may be also checked that equation (6) can be 
transformed by means of Green's theorem (or Stokes theorem) back to equa
tion (5) . 

The variational statement of the problem is: Functions F, G and H are the 
solution of the problem if and only if they satisfy equation (6) for any 
kinematically admissible variations 6F, 6G, 6H. 

Existence of variational equation (6) which contains no boundary integral 
indicates that natural boundary conditions (4) will be automatically ful
filled when the finite element method is used. 

It is particularly noteworthy that the integrand of equation (6"J is non-
symmetric (and that <Pp,.. ., ̂ HA are not partial derivatives of some function 
$). This means that the variational principle cannot be written in the 
form of a stationary principle, 6W = 0 (or minimum principle, W = min.). 
At first this might seem surprising for an elastic material. However, a 
deeper analysis indicates that it must be so. To clarify it, assume that 
the integrand of equation (6) is symmetric with regard to F, G, H. Then 
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the discrete eigenvalue problem for A resulting from equation (6) as indi
cated in the sequel would have a symmetric matrix, and this would imply 
that all roots A would have to be real. This is not possible because the 
same variational equation (equation (6)) must hold also for problems with 
two-material interfaces, which are known to exhibit oscillating singular
ities for which A is complex. Hence, equation (6) cannot be symmetric. 
This contrasts with the analogous potential theory problem, for which a 
minimum variational principle in the (0><j>)-plane does exist (see reference 
[4]), with the consequence that in potential theory the eigenvalues X are 
always real. 

The basic variational equation (equation (6)) can be also derived from the 
principle of strain energy, in a similar way as a minimum principle has 
been derived for the potential theory (equation (18) of reference [4]). 
The derivation is more direct but it involves certain steps which are 
difficult to justify without recourse to the derivation just presented. 
These steps involve the facts that the factor r* must be treated at first 
as an unknown function, R(r), even though r* is known in advance to satisfy 
all governing equations, and that the integral must be integrated by parts 
with respect to dr, leaving the question of the meaning of the boundary 
terms arising from integration by parts when actually no boundary inter
secting the radial rays is specified in the eigenstate problem. 

FINITE ELEMENT FORMULATION IN (0,(j)) PLANE 

Compared to finite difference solutions, a finite element solution of the 
variational equations (6) - (7) has the tremendous advantage that stress 
boundary conditions are automatically implied whenever a free boundary is 
considered. Therefore, the finite element technique has been selected to 
approach the problem. 

Functions F, G and H must exhibit gradient singularities at the point where 
they intersect the gradient singularity line (crack edge) emanating from 
point 0. Such functions are not suitable for numerical solution, since 
it is known that the rate of convergence of the finite element method with 
piece-wise polynomial distribution functions is 0(i/h) when there is crack-
type singularity, while without singularity it is 0(h2), h being the maxi
mum element size. This difficulty could be avoided, e.g., by using sing
ular finite elements near the singularity line. But a more convenient 
method has been proposed and used with success in reference [4]. In this 
method the displacements in r, 6, (j) directions are expressed as 

u = fnr? f(6,40 = r V £(6,4)} (8a) 

v = rnr? g(6,(f>) = rApP g(6,(j)) (8b) 

w = rnr^ h(9,4>) = rXpP h(6,(j)) (8c) 

in which p = exponent for the field near the singularity line; A = n+p; 
ri = rp; p = any chosen smooth continuous function of 0 and (j> which is 
non-zero everywhere except on the singularity ray 6 = 0 and in the vici
nity of this ray (i.e., for 0 -*- 0) represents the distance from the ray 
measured on a unit sphere. Possible choices are p = 0 or p = sin 0. The 
latter choice will be made here, and p will then represent the exact 
distance from the ray not only for 0 -*■ 0 but everywhere in the domain. 
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(It must be noted, however, that p = sin 9 cannot be used when 0 = ir is 
part of the domain and no line of singularity exists at 0 = IT.) For crack 
edge, p = 1/2, which has been considered in all calculations presented 
here. (However, exponents p = 0,1,... are also possible [1]. It will be 
convenient to introduce the notations: 

F(9,<|0 = pP f(0,(j>) [pP = (sin 0)P] (9a) 

G(0,4>) = PP g(0,<)>) (9b) 

H(6,<» = PP h(0,(j>) (9c) 

If the field near the singularity line varies as p1'2 and p is set equal to 
i|2, functions f, g, h may not exhibit any singularity at 0 = 0. This would 
make the convergence rate quadratic, 0(h). On the other hand, if compon
ents of types p and p° (possibly with components of other exponents) 
were both present in the solution, as is indicated by Benthem's solution 
[1], the rate of convergence would not be quadratic, but slower than 
quadratic. 

Choosing a finite element grid in (0,(f>)-plane, functions F, G, H within 
each finite element may be represented as 

F = l± XiF1, F1 = p V (10a) 

G = l± X.G1, G1 = pPgX (10b) 

H = l± X..H1, H1 = p V (10c) 

in which X (i = 1,2,...,M) are the nodal values of f, g and h such that 
fk = f3k-2 = X3k_2, gk = g 3 k - 1 = x3k-l> hk = h 3 k = x3k> k being the mode 
number; and fi, gi, hi are the corresponding distribution functions within 
the finite elements, normally chosen as polynomials in 0 and (f>. The vari
ations of functions F, G, H and their derivatives may now be expressed as 
follows: 

6F = 7 . F J S X . , 

6F Q = y . F ^ 6 X . , 
0 J 0 3 

6 F . = I. F ^ 6 X . , 

6G = y . G J 6 X . , 

6 G e = I . G j 6 X . , 

6 G . = y . G - J 6 X . , 

6H = Y. H 3 6X. L* 3 

6HQ = y . H^6X. 
0 3 0 3 

6H. = y. HUX-

(Ha) 

(lib) 

(lie) 

Substituting equations (10a - c) and (11a - c) into equation (7), it 
follows that 

1 0 1 0 <t> 1 <p 

i n w h i c h 

376 



Tart V - Analysis and Mechanics 

^ = [QCl-A)+2][(X+2)pPf1
+CPP)0g1+PPgQ+PPg1 cot 6 

P ~| • • 
+ iCTh;w^ppf\ ^ .... ... 

*HA
 = n M [ Q ( A + 2 ) p P £ i + C P \ g i + p % i + p P ^ cot 9 

Finally, substitution of equations (11) - (13) into variational (6) yields 
a discrete variational equation of the form 

M r M "I 
y I y k . . x . 6x . = o 
M 

r-
in which k̂ -, are stiffness coefficients expressed as follows 

( 1 4 ) 

k = / / Sft1 F-'+Q1 F-Uft1 F ^ + 0 1 G-^+d)1 G-J+$1 G-J+<|)1 H** ij J J \ * FQ © F 6 * G G e
b6 G,b(() *H H 

A 9 <P 

+$£ H^+$i H*jjsin 6 d9d(j) (15) 

Note that the stiffness matrix [k^] is non-symmetric; i.e., k̂ -; ? kj^ in 
general. The variational equation (14) must hold for any choice of oX^ 
(i = 1,...,M), and this requires that 

M 
I k..X. = 0 (i = 1,...,M). (16) 
i=l 13 3 

This is a system of M linear homogeneous algebraic equations, representing 
an eigenvalue problem. All stiffness coeficients k^j, not just the dia
gonal ones, depend on singularity exponent A, and so the eigenvalue problem 
is of tne generalized type. Furthermore, it is easy to see that kjj are 
polynomials in A, as well as in Poisson ratio v (when multiplied by l-2v); 

So, the generalized eigenvalue problem is a non-linear one. Various me
thods of numerical solution of this problem have been discussed in detail 
in reference [4], and method B from page 230 of reference [4] has been 
used here to search for the root A. The root of smallest value (or of 
smallest Re(A), in case of complex root) is of main practical interest. 
A method of solution when root A is complex has been described in more 
detail in reference [5] in connection with another problem. 
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NUMERICAL RESULTS FOR CRACK EDGE TERMINATING PERPENDICULARLY AT SURFACE 

The method of solution just outlined has been programmed in FORTRAN IV. 
The finite elements were chosen as simple four-node quadrilaterals (with 
12 degrees of freedom), obtained by the mapping of a rectangle on a 
general quadrilateral in the (0,<J>)-plane. The distribution functions for 
F, G and H on the original rectangle have been considered as bilinear in 0 
and ()), i.e., as a+b0+c<j>+d8(|). The stiffness coefficients k-n were calculated 
by Gaussian numerical integration, using 9 integration points. 

The programme is general and capable of handling various situations, such 
as intersections of crack edge with body surface of any orientation at 
an arbitrary angle, corners of any angle on the crack edge, intersection 
of a line notch with a surface, pyramidal notches, possibly intersecting 
with cracks, etc. However, so far only the case when A is a real number 
has been programmed. The programme will be also capable of handling cases 
when complex A must be expected, such as intersections of crack edges with 
two-material interfaces. But this would require conversion of the FORTRAN 
programme to complex arithmetic and a generalization of the root search 
subroutine; this has not yet been done. The results presented in the 
sequel are all obtained under the restriction that root A is real. 

The correctness of the programme has been checked by a number of cases of 
known solution. First, elementary solutions of various special cases for 
the domain 0 <_ 0 <_ TT/2, 0 <_ $ £ TT have been substituted in equation (16). 
These were: (a) three rigid body rotation fields, for which A = 1, p = 0; 
(b) the field of homogeneous uniaxial stress in the direction 0 = TT/2, 
(j) = 0, for which A = p = 0; (c) the near tip plane strain field for a mode 
I crack with v = U (A = p = 112); and (d) the same for mode II crack 
(A = p = 1/2). In all cases the right-hand sides of equations (16) for all 
i were negligibly small (compared to £i|kij||Xj|). Also substituted were: 
(e) homogeneous strain fields, with any of the six strain components being 
constant (A = 1, p = 0); (f) plane strain mode I and mode II near tip 
fields for various v (A = p = 1/2); (g) antiplane mode III near-tip field 
(A = p = 112); these fields cannot satisfy equations (16) for the nodes on 
the body surface, but they must satisfy them for all other nodes, and this 
was found to be true. 

The programme was then applied to analyzing the field near the terminal 
point 0 of a crack whose plane and edge are normal to halfspace surface. 
Because of symmetry, it is sufficient to consider the domain 0 <_ 8 £ TT/2, 
0 <_ (j) <_ IT (Figure 1), which has a rectangular shape in the (0,(()) plane. 
The stress boundary conditions on crack surface ((j) = 0) and on half-space 
surface (0 = TT/2) are automatically satisfied, the boundary condition at 
0 = 0 (pole) are irrelevant and were considered also as a free boundary, 
and tne boundary conditions on the side $ = TT (symmetry plane) must ensure 
a statically determinate support of the body and at the same time properly 
reflect the symmetry and antisymmetry properties of displacement field in 
the plane <f) = 0 that is normal to crack front edge. These conditions are 
achieved, in case of mode I crack, by imposing at the nodes with 0 = IT the 
condition w = 0 or h = 0, and only this case has been considered thus far 
in the solution of non-trivial cases. In case of mode II crack, anti
symmetry of displacements in the plane § = 0 with respect to crack front 
edge requires that u sin 0 = v cos 0 = 0 for £ sin 6 = g cos 6 = 0 at 
(() = IT; and in case of mode III crack, antisymmetry of displacements in the 
plane (j) = 0 with respect to the ray 0 = § = TT/2 requires that u cos 0 -
v sin 0 = 0 or f cos 0 - g sin 0 = 0 at 0 = TT. 
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To obtain a picture of accuracy and convergence, root X was first solved 
for v = 0, in which case the solution is known to be X = 0.5. Grids of 
increasing numbers of finite elements, with N = 18, 32, 72 and 128 elements 
(and 84, 135, 273 and 459 degrees of freedom), were used. In the ( B i 
plane all elements were rectangular and identical; the subdivisions of the 
region in the 6- and (^-directions were 3 x 6 , 4 x 8 , 6 x 1 2 , and 8 x 16. 
The results of these calculations are given in Figure 3; see line V = 0. 
For the finest grid used (128 elements, 459 simultaneous equations), the 
computed value of the root was 0.5097, which is still 1.9% in error. This 
indicates that for accurate calculation of X a finer grid and more compli
cated finite elements will be required. Work in this direction is in 
progress. 

Nevertheless, even from the results for the relatively crude grids used 
thus far, interesting results can be extracted if the practical convergence 
is studied more carefully. It is well known that ordinary finite element 
method exhibits quadratic convergence, i.e., it has error of the order 
0(h2), h being the maximum size of the finite element, provided that there 
are no singularities within the domain. Functions f, g, h and their 
gradients are nonsingular, and so the convergence should be also quadratic 
in the present case. Noting that h2 ~ 1/N, it follows that error ~ k/N 
where k = constant and N = number of finite elements. This relation should 
hold accurately when N is sufficiently large. Hence, log(error) = 
log (A - 0.5) = log k - log N = log k - 2 logV̂ N, which indicates that the 
plot of log (error) versus logi/N must become a straight line of slope -2 
when N is sufficiently large. This plot is shown for V = 0 in Figure 2, 
and it is seen that the plot is indeed a straight line, and that the slope 
of this line is exactly -2.0. Thus, for v = 0 the present formulation 
seems to follow a systematic pattern of quadratic convergence already for 
rather crude grids. This can be used to advantage in extrapolating the 
convergence pattern and estimating the results for N -* °°. 

Thus, expecting that X - A e x a c t = k/N, the numerical results for various 
values of v obtained with various numbers of finite elements may be used 
to construct a plot of X versus 1000/N (Figure 3). Again, for quadratic 
convergence these plots would have to be straight lines for a sufficiently 
large N. According to Figure 3 this seems indeed to be true. Therefore, 
straight lines (regression lines) have been passed in Figure 3 to obtain 
estimates of the values for N -»■ °°, i.e., estimates of the exact solution. 
In case of v = 0, the point N -* °° falls exactly in 0.5. However, calcul
ations with much finer grids will be required to make definite conclusions 
about the values for N ■> °°. Especially, caution is necessary in view of 
the fact that the estimates for N •+ °° significantly deviate from Benthem's 
solution [1] (Figure 3). According to Benthem, the field in equation (8) 
with p = 1/2 is not the complete solution, unless v = 0, and components of 
the form of equation (8) but with p = 0 and p = 1 also significantly 
participate in the exact solution. If this were indeed true, the conver
gence of the present method could not be quadratic, 0(h2), but slower; 
then, for high N the points in Figure 3 would have to begin deviating from 
a straight line. Based on the crude grids used thus far, this possibility 
cannot be discounted. If p were set equal to 0 rather than 1/2, the con
vergence rate would then be 0(>4i); accordingly, the results would have to 
give a straight line in a plot of X versus N , regardless of whether 
components with p >̂  1 are present. This case must be examined when results 
for very fine grids become available. 

The solutions of X for N -* °° obtained in this manner for various V are 
shown in Figure 4, along with the results for various grids. Also shown 
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in Figure 4 is the recent approximate analytical solution by Benthem [1]. 

For values of v which exceed 0.4, the root search subroutine converged 
poorly or not at all. In this regard, it is noteworthy that the lines for 
a chosen number N of elements turn sharply upwards as v exceeds 0.4. The 
search for root X may be gometrically interpreted as intersection of the 
line of solution for constant N with the vertical line V = const. For 
V > 0.4 either the intersections occur at very small angles or (for low N) 
no intersection seems to exist. To circumvent this difficulty, equation 
(16) may be considered as an eigenvalue problem for v at a fixed X. Then 
the solution represents an intersection of the line of constant N with the 
horizontal line X = const. This intersection is at large angle and appears 
to exist for v-values well over 0.4. So, the convergence should be rapid 
and, indeed, this was found to be the case. The convergence should again 
be quadratic, and so the plots of v versus 1000/N at constant X should 
be straight lines. Numerical results have confirmed it. Passing straight 
regression lines, similarly to Figure 3 (but for X = const.), the extra
polated values for N -*- °° have been determined. These values are also 
plotted in Figure 4, and the solution is extended to v-values beyond 0.4. 
However, when V becomes very close to 0.5, the present formulation breaks 
down because the value of Q increases without bounds. A special programme 
would have to be written for v close to 0.5. 

However, in view of the Benthem's solution, the same cautious view as ex
pressed earlier must be adopted with regard to extrapolations to °°. It 
may also be noted that the line for N -*• °° in Figure 4 seems to be aiming 
into the point X = 1 and v = 0.5. Although this point has been given by 
Benthem [1] as a point of exact solution, this would mean that there would 
be no singularity for v = 0.5, and this would be in disagreement with 
Benthem1s experimental study which indicated that for v = 0.5 the singu
larity exponent X should be much less than 1 and closer to 0.5. 

CONCLUSION 

A general numerical method for determination of three-dimensional singular 
fields in elasticity has been presented and verified. However, it would 
be premature to make conclusions on the basis of the numerical examples 
presented here. 
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APPENDIX - NOTE ON THE ANGLE OF PROPAGATING CRACK 

From the practical point of view, the case of a propagating crack is of 
main interest. There is no reason why the angle 3 of the crack front edge 
with the surface should have the value of TT/2 which has been considered in 
the preceding analysis. 

Tnere exist certain simple physical restrictions for the solution of a 
propagating crack: (a) the flux E0 of energy into the moving crack front 
edge per unit length of edge must be finite and non-zero because the sur
face energy y is finite and non-zero, and (b) the flux Ei of energy into 
any point on crack front, including the surface point 0, must be zero, be
cause the trace of the surface point 0 as it moves is a line, and a line 
can be associated only with a negligible amount of additional surface 
energy. 

The first condition requires that Eo = $ L O^ (8û /8x)rid(j) where n , <|> is a 
polar coordinate system in a plane normal to crack front edge, L is a 
circle of radius ri in this plane centred around the edge, x is the dir
ection of crack propagation, a ^ is the cartesian stress tensor and u^ 
are cartesian displacements. Noting that UJ ~ r^, 8UJ/3X ~ r^~ , 
0"^ ~ rP~ it follows that Eo ~ r^ > and for this to be finite as ri -»■ 0, 
it is necessary that 2 Re(p) - 1 = 0 or Re(p) = 1/2, as is well known. 

The second condition (b) requires that Ei = fcfft aij(3u-j/9x)dft = 0 where 
o~ij = cartesian stress tensor, UJ = cartesian displacements, x = coordinate 
in the direction of crack extension, ft = surface of a sufficiently small 
sphere with centre at point 0. Noting that uj ~ rA, 3UJ/8X ~ rA~l, 
a±j ~ rA-1 and dft = r2sin 0 d9d<|>, it follows that Ei ~ r2A, and for this 
to be zero as r -*- 0 it is necessary that 

Re(A) > 0. (18) 

Furthermore, consider condition (a) and assume that the value of surface 
energy of crack extension, y, is constant. Then the value of the stress 
intensity factor, K, must be also constant along the crack front edge, 
0 = 0 . Factor K is proportional to the displacements at a chosen fixed 
distance ri from the edge 0 = 0; i.e., K - u ~ r "^ r^ f(0,(j>). Along the 
edge 0 = 0 , only the value of r varies while Xi and f do not. Thus, a 
constancy of K along the crack front edge requires that X - p = 0 
(Re(p) = 1/2). So, it has to be concluded that 

Re(A) = 1/2 (19) 

must hold for the terminal surface point of a crack that propagates. 

In consequence, the most relevant problem is to determine the value of 
angle 3 which the crack front edge must form with the surface in order to 
yield X = 1/2. This should be the main objective of further investigations. 
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ADDENDUM 

In subsequent work, the question of the proper value of the exponent p of 
distance p = sin 8 from the singularity line has been studied more care
fully. Let (rp)P be the term of lowest exponent in the field near the 
singularity line (p = 0 = 0). For crack edge singularity, the lowest p 
corresponding to deformed states is p = 1/2. However, for rigid body 
rotations in the neighborhood of the singularity line, one has p = 0. For 
p = 0, the term (rp)P does not cause any singularity as p -*■ 0 (or 0->0) at 
finite fixed r. However, this may cause gradient singularity of the type 
0P~l or 6"1 for r-H), which is more severe than the singularity 0~^2 associ
ated with the planar near tip field of a crack. That terms of 6"1 should 
indeed be present is indicated by Benthem's solution [1]. 

Therefore, all finite element solutions were rerun with p = 0. The result
ing values of X were plotted versus 1000/N111̂  for various chosen values of 
m, and the convergence rate exponent m which gives the best straight-line 
fit, as indicated by the sum of square deviations, was selected. This ex
ponent varied between m = 1.7 and m = 1.9 for all v. Furthermore, plotting 
log (A - 0.5) versus logy^Tfor v = 0 (and p = 0), the convergence rate was 
obtained as m = 1.9. Obviously, the convergence should not have been quad
ratic (m ^ 2) (since the gradients of F, G and H exhibit singularities at 
0 = 0 ) , but it is of interest that the exponent m is so close to 2, giving 
still quite a rapid convergence. Using the plots of X versus lOOO/N™*2 
for the optimum value of m, the X-values have been extrapolated for N-*». 
In these plots the points fell on straight lines just about as closely as 
the points in Figure 3, but the lines were more steeply inclined than those 
in Figure 3. The extrapolated values for N-*» values agreed within about 
0.4% with Benthem's values for all v between 0 and 0.48. This confirms the 

Benthem's solution as well as the present one as sufficiently accurate. 

The choice p = 1/2 in previous computations (Figures 2-4) was motivated by 
the fact that the term (p0) lf2 is dominant at 0-K) and finite r. However, 
the results just reported show the choice p = 1/2 was inappropriate. This 
can be also deduced as follows. Let iyvr̂  0P F(0,<J>) be the term of lowest p 
present at r-K) for the exact solution (p = sin0«0), and assume that a 
different exponent p* ^ p, is considered instead of p for the numerical 
solution i.e., u~r* 0P* F*(6,(f>). Then, for the stress components, o^i ~ 
8u/90~rA 0P"1 F(0,<|)) for the exact solution and 0±i ~rX0P ^Ff©,*) for 
the numerical solution. Equating these two expressions for O^A , one has 

F*(0,<|>) = 0P~P* F(0,(f>). (20) 

In previous computations (Figures 2-4), p*=l/2 while p = 0 exists, giving 
F*(0,(J)) = 01/2 F(©,(j)). Obviously, F*(0,(J)) ■* « as 0-K), and so F*(0,(j)) can 
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in no way be adequately represented numerically. If p* = 0, then p*-p = 0 
for the term which prevails at 0-K), giving F*(6,cf)) = F(0,(f>) which ought to 
be a bounded smooth function that can be adequately represented numerically. 

A less severe singular term with p = 1/2 is always present at the same time, 
of course. For this term, F*(0,(f)) = 61/2 F(8,<t>); F*(6,(j)) is still bounded 
and acceptable for numerical representation, but because 9F*(0,(j))/9© tends 
to infinity as 0-K), the accuracy of representation will be worse, causing 
the convergence rate to become less than quadratic. 

Therefore, a quadratic convergence cannot be achieved with the present 
method of analysis. 

Because the slope of F*(0,(j)) in the 0 direction tends to infinity as 0-K), 
it seems appropriate to refine the grid step A0 as 0 decreases. Irregular 
rectangular networks in which A<|> was constant and in which A0 was refined 
so as to keep A0 roughly equal (sin 0) A<f>, have been tried, using same 
numbers of divisions in both 0 and <f> directions. Curiously, however, the 
results were not any better than those for regular grids; the plots of X 
versus lOOO/N^ had about the same inclination. But the extrapolated 
X-values for N-*» agreed again with simple check cases and with Benthem's 
solution within a 0.4% error (N=121 being the finest grid used). 

As an additional check, the case of a right-angle corner on the front edge 
of a plane crack was solved. The solution for this case was obtained in 
equation (39) of reference [4] as X = 0.296 for any v and more accurately 
as X = 0.2966 in references [2] and [3]. The extrapolated value of X for 
N-*» agreed with this within 0.2% error for v = 0 and V = 0.3, using N = 
128 as the finest grid. 

Presently, computations of X are in progress for cracks whose plane is 
normal to the half-space surface but the front edge forms angle 3 i TT/2 
with the surface. Preliminary results indicate that X decreases (below 
Benthem's values for 3 = TT/2) as 3 exceeds TT/2. The practically most im
portant case X = 1/2 is obtained for about 3 = 101° if V = 0.3. This 
solution will be reported separately. 
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Figure 1 Geometry of the Crack Intersecting a Surface, in Spherical 
Coordinates 
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EXTRAPOLATION OF 
NUMERICAL RESULTS 
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Figure 4 Singularity Exponent X for Various Values of Poisson Ratio 
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NONLINEAR LATTICE THEORY OF FRACTURE* 

E. R. Fuller, Jr. and R. Thomson** 

INTRODUCTION 

In recent theoretical literature [1, 2, 3] regarding fracture in atomic 
lattices some questions have arisen regarding the fundamental role of the 
surface energy in brittle fracture. This paper represents an attempt to 
clarify some of these basic ideas. Hsieh and Thomson [1] have shown that 
in a two-dimensional lattice containing a crack there is a range of applied 
stress for which the crack is mechanically stable, and accordingly, is 
"trapped" by the lattice. This lattice trapping regime is bounded by a 
regime of fast fracture for stresses larger than an upper critical stress, 
a+, and by a spontaneous crack healing regime for stresses smaller than a 
lower stress, a_. These stress boundaries were found to vary as the inverse 
square root of the crack length, a, 

c± = v^7I , (1) 

in precisely the same manner as in the continuum theory of Griffith [4]. 
Y is a constant of proportionality. The effective surface energy densi
ties, y+ and y_, in this Griffith-like expression define the limits of the 
lattice trapping regime. When the macroscopic surface energy, y0, as 
defined by one-half the area under the cohesive force law curve, is compared 
with y+ and y_, it is found that y0 lies between these two limits. This 
result is then used as a basis for constructing a theory of subcritical 
crack growth, or healing, when the stress is either above, or below, the 
Griffith stress o*0 = Ay 0/a . These general ideas have been picked up and 
expanded by Lawn [2] in a self-consistent and straightforward manner to 
form a basis for subcritical crack growth in the presence of an external 
atmosphere. 

However, a recent paper by Esterling [3] has indicated that when a more 
realistic cohesive force law is used in a lattice theory, the macroscopic 
surface energy, as defined above, no longer lies within the lattice regime. 
A Griffith thermodynamic surface energy can be defined by the condition 
where thermal fluctuations cause a crack to advance and recede at equal 
rates. If this definition of surface energy corresponds to y0, the sub-
critical crack growth theory loses its basis since thermodynamic equilibrium 
occurs in a regime where the crack is mechanically unstable towards spon
taneous healing. Since these ideas are considered to be basic to the 
fracture process in general, and to subcritical crack growth in particular, 
this paper will reinvestigate the relationship between the surface energy 
and fracture with particular attention to the subcritical crack growth 
regime. 

* Contribution of U. S. National Bureau of Standards, not subject to 
copyright. 

** Physical Properties Section, National Bureau of Standards, Washington, 
D. C. 20234, U. S. A. 

387 MS280 



Fracture 1977 , Volume 3 

ONE-DIMENSIONAL LATTICE MODEL 

The quasi-one-dimensional lattice model of a crack to be considered here 
is similar to that of Thomson et al [5]. The model consists of two semi-
infinite chains of atoms that are bonded with two types of interactions, 
Figure 1. These interactions are modeled as bendable (horizontal) spring 
elements and stretchable (transverse) spring elements. The free ends of 
the chains are subjected to equal and opposite vertical opening forces P at 
the zeroth atoms. All displacements are assumed to be vertical with the 
displacement of the jth atom from its equilibrium separation, c, being 
denoted by u.:. The stretchable elements up to the nth atom are considered 
to be stretched beyond their range of interaction, or "broken", thus 
forming a crack of finite length. 

The total potential energy of this system consists of three contributions: 
the change in potential energy of the external loading system (the negative 
of the work done by the external force); the strain energy of the bendable 
bonds; and the strain and/or surface energy of the stretchable bonds across 
the crack plane. The potential energy of the external loading system is 
given simply by U e x t = -W e x t = -2 P u0. The interaction of the bendable 
spring element is modeled as a second-neighbour interaction between atoms 
at j-1 and j'+l that resists flexure about their common nearest neighbour at 
j. The strain energy of this interaction about atom j is given by 

2 6 [Cu._ru.)-(u.-u. + 1 ) ] ^ = i g [u.^-aiyu.^] 2 , (2) 

where $ is the spring constant for this interaction. The total strain 
energy of the bendable spring elements, U^encj, is twice the summation of 
these contributions for atoms j = 1, 2, ... (one contribution for each 
side of the crack). The strain energy contained in the interaction of the 
jth stretchable spring element across the crack plane can be written as 
2y(uj)c, where y(uj) is defined as the density of the surface energy assigned 
to each surface of the chains of atoms [6]. This surface energy per unit 
length of surface is given by 

1 u. 
y(u,) = ±- [2 P f.(u)du] , (3) 

J zc 0 J 

where f.: (UJ ) is the cohesive force of the jth stretchable bond which has 
been extended a distance 2 u-; from its equilibrium separation. A finite 
range of interaction is assumed for this nonlinear cohesive force, so that 
elements which are stretched beyond a critical separation, c + 2 u are 
taken to be "broken". The surface energy for the "broken" spring element 
(j = 0 to n - 1) is given by one-half the area under the cohesive force 
law curve, y c. The strain (and/or surface) energy contained in the non
linear element at the "crack tip" is 2y(un)c, and represents the non
linear elastic energy of that bond. All stretchable elements beyond j = n 
are assumed to be linear elastic, f.(uj) = a(2 u-) for j = n + 1, ... . 
The spring constant, a, is the linear part of the nonlinear force law, 
a = [dfj/d(2 U J ) ] at UJ = 0. The total energy of the stretchable bond 
elements, Ug-j-pg-̂ h, is given by the summation of these contributions for 
j = 0, 1, ... . 

Combining these potential energy terms, the total potential energy of the 
system is given by 
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U = -2Pu +3 Z (u. T-2U.+U. J +2y nc+2y(u )c+2a Z u.2. (4) 
j=l J J J J=n+1 J 

For a given applied force P and crack length a = nc, necessary conditions 
for equilibrium configurations of the crack are (3U/3u-) = 0, for 
j = 0, 1, ... . These equations of stability give an infinite set of 
fourth-order difference equations which can be solved analytically for the 
displacements u^. The solutions for j = 0, 1, ..., n - 1 are 

Uj = [£+(n-j)c]un/5 + P(n-j)[2n2+3n(?/c) + l-j(j+n)]/63 (5) 

and for j = n + l , n + 2 , ... (i = 1, 2, ...) are 

u . = [u cos(ni)-(Pn/2$sinhA) s*nCni) ]e"Xl (6) 
n+i L n v ' J y J sm(n) 

where 

cosh (A) = l/cos(n) = /l+(a/83) + /a/83 

and £ is a length defined by the spring constant ratio, 3/a, according to 
£ = c/tanh(A), or equivalently, (23/a) = £2 (C2-c2)/clf. The displacement of 
the nth atoms, which interact through the nonlinear cohesive force f(un), 
is determined from the nonlinear coupling equation, (3U/8un) = 0 

2aucC nJ a(2uc) m 
The solution for un, from which the other displacements can be determined 
by equations (5) and (6), can be illustrated graphically. Consider an 
idealized nonlinear atomic force law and its corresponding surface energy 
density, as plotted in Figures 2a and 2b, respectively. A graphic solution 
of equation (7) for this nonlinear stretchable force law is shown in 
Figure 3 for three ratios of bendable to stretchable force constants, 3/ot. 
For given elastic properties (i.e., 3/ot) and a given position of the non
linear, stretchable spring element (i.e., n), there exist a range of 
applied loads P, over which equation (7) has three solutions for un. The 
first and third solutions, denoted on the figure by u n (1) and u n (3), 
respectively, correspond to stable equilibrium configurations for cracks 
of length a = nc and a = (n+l)c, respectively. For the first solution, 
the crack-tip bond is just beginning to see the influence of the nonlinear 
elastic region; whereas, for the third solution, the crack-tip bond is 
linear elastic by assumption, and the last broken bond has started to heal 
nonlinearly. Viewed in multi-dimensional configuration space, the total 
potential energy as a function of displacements, U = U[n, u0, ui, ... u•, 
. . . ] , has a relative minimum at configurations corresponding to both 
u n (1) and u n (3). Topological arguments require that at least one saddle 
point exists between these two minima. Since the configuration corres
ponding to u n (2) is the only possible candidate for an extremum, this 
configuration is the required saddle point. 
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Unstable bond rupture occurs when the applied force P is increased to a 
critical value P+, so that solutions u n (1) and u n (2) coalesce to give 
¥+ = y[u (1)] = ̂ [un (2)]. Spontaneous bond healing occurs when the 
applied force is decreased to a critical value P_ so that solutions u n (2) 
and u n (3) coalesce. In the intermediate regime of applied force, 
P_ < P < P+, the crack is lattice trapped. As noted by Thomson et al [5], 
increasing the ratio of 3/oc (that is, "stiffer" bendable spring elements 
and/or "softer" stretchable spring elements) results in a decrease in the 
lattice trapping regime. In constast to their model, however, lattice 
trapping will vanish for some critical finite ratio of spring constants, 
3/a (the upper curve in Figure 3). Thus, the existence of lattice trapping 
depends on the elastic properties of the solid. In general, the nonlinear 
nature of the crack-tip bond tends to decrease the range of lattice trapping 
in comparison to their "bond-snapping" model. 

ONE-DIMENSIONAL CONTINUUM MODEL 
In order to compare these results with the macroscopic surface energy y 0 > 
it is necessary to obtain a continuum model for the same type of crack. 
The simplest approach is to take the linear-elastic continuum limit of the 
total potential energy of the system, and use the Griffith approach. The 
potential energy of the system can be calculated by substitution of 
equations (5) and (6) into equation (4). The energy contained in the 
bendable and stretchable bonds is given by 

U, , + U ^ , = Pu +2y nc+[2y(u )c-u f(u )] . (8) 
bend stretch o 'o L 'v nJ n ^ n > J K J 

For linear elasticity, the term in square brackets vanishes, yielding the 
usual fracture mechanics relationship that the strain energy in the bendable 
and unbroken stretchable bonds is equal to one-half the work done by the 
external force, w t / 2 , or -U e x t/2. 

To obtain the one-dimensional continuum model, the limits as n ■> °° and 
c -* 0 is taken in such a manner that nc -> a, and 3c3 and a/c remain con
stant. [The bendable spring constant 3 must scale as c"3 (stiffen) in 
order to maintain a finite displacement at the zeroth atom for an infinite 
number of small spring elements. For this stiffening, the stretchable 
elements must soften proportional to c to maintain a non-zero crack-tip 
displacement.] Taking this limit and setting (3U/3a) = 0, gives the 
continuum relationship, 

P(a+£) = / 2 3 C 3 Y Q , (9) 

which is analogous to the force-crack length relationship for the double 
cantilever beam. Since equation (7) has the same form as equation (9), 
effective surface energy densities y+ can be defined from equation (7) for 
the discrete lattics model, analogous to equation (1). 

DISCUSSION 
When a crack is lattice trapped, thermally activated subcritical crack 
propagation, or crack healing, is possible [1, 2, 7]. Previous treatments 
used a modified continuum model to predict the character of the thermally 
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activated crack growth. Since the present model predicts the configuration 
of the saddle point, it is possible to calculate the forward and backward 
activation energy barriers within the framework of the model. The forward 
activation barrier is given by AU+ = U[...un (2)...] - U[...un (1) . . . ] ; 
and the backward barrier is given by AU_ = U[...un (2)...] - U[...un (3)...]. 
When the applied force is P+, the forward barrier vanishes and catastrophic 
rapid fracture ensues. Similarily, spontaneous crack healing occurs at 
P_. The equilibrium thermodynamic (Griffith) condition corresponds to an 
applied force PQ at which the forward and backward energy barriers are 
equal. Since P^ is always bounded by P+ and P_, the Griffith thermodynamic 
condition must always lie within the rapid fracture and spontaneous healing 
limits. The regime of applied forces for thermally activated subcritical 
crack growth is between ?Q and P+, where rapid fracture occurs. 

The result obtained by Esterling [3], y0 < y_, implies, therefore, that 
the macroscopic thermodynamic surface energy, y0, is not related to the 
microscopic thermodynamic surface energy, YQ. This apparent "paradox" 
is best illustrated by two examples: for the cohesive force law plotted 
in Figure 2, f(un) = a(2 i^) (l-un/uc)2, equation (7) with E, = 3c/2 
(or $/a = 45/32) gives the central curve of Figure 3. The lattice trapping 
regime is given by 

Y+/Y = 6/5 > 1 and yjy = 250/243 > 1 . 

Thus, for this choice of nonlinear cohesive force law the macroscopic 
surface energy density Y 0 ^s n o t bounded by the lattice trapping limits 
Y+ and y_, similar to the findings of Esterling [3]. However, the present 
model is not self-consistent for this force law and choice of elastic 
constants. This inconsistency is easily seen from Figure 3. As previously 
mentioned, u n (3) is the solution for the displacement of the nonlinear 
atom at n which is one atomic spacing behind the crack tip at n + 1. Using 
u n (3) the crack-tip displacement can be calculated from equation (6). For 
self-consistency this displacement should correspond to solution 1 of 
equation (7), u n +^ (1), when the nonlinear spring element is assumed to be 
at n + 1. This is not possible in general, since there is no "weakly 
interacting" nonlinear spring element one lattice spacing behind the non
linear atom at n + 1. That spring element has been assumed to be "broken". 
In order to reduce this inconsistency for an arbitrary nonlinear cohesive 
force law, additional nonlinear interactions must be included (i.e., a 
larger crack-tip cohesive region). The feasibility of this extension is 
presently under investigation. 

A second example more clearly illustrates that this inconsistency in the 
present model is the probable cause of the macroscopic surface energy 
density lying outside the lattice trapping regime. A cohesive force law 
(see Figure 4) is chosen so that the conditions previously mentioned are 
self-consistent. For this nonlinear cohesive force law, 

P/P = v / Jnr 

where 
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Thus, 

Y+/Y = y+/y_ > 1 and y_/y = V_/V+ < 1 . 

For a given nonlinear bond at n, calculation of the applied force PQ when 
the forward and backward activation barrier are equal gives Y G / Y 0

 = 

(PG/P0)2 = 1. Thus, in this case, not only does Y 0 lie within the lattice 
trapping range, but it is also equal to Yrj« 

CONCLUSIONS 

It appears that the result obtained by Esterling, Yo < Y- £ YG — Y+> ^ o r 

some nonlinear cohesive forces might be due to an assumed linearity of 
atomic interactions beyond the crack-tip bond, which is not necessarily a 
self-consistent assumption. In one case where the assumption of linearity 
was forced to be satisfied in the present model, not only was the macro
scopic surface energy density bounded by the lattice trapping limits, but 
it also was equal to the Griffith thermodynamic value. This explanation, 
however, requires further investigation, since the possibility exists that 
the microscopic and macroscopic thermodynamic surface energies are not 
equivalent. 

It is interesting to note that the model is self-consistent as a stress 
corrosion model. A two step process is required to advance the crack by 
one atomic spacing. The crack-tip bond is first broken by a thermally 
activated process. The activation energy barrier for this process, AU+, 
is easily calculated within the framework of the present model. Now, the 
strong linear bond which was originally one lattice spacing ahead of 
crack-tip is partially exposed to the corrosion environment and can be 
corroded by a chemical activation process to return the crack-tip status 
to its original configuration with the crack length advanced by one lattice 
spacing. 
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Figure 1 Quasi-One-Dimensional Lattice Model of a Crack 

Figure 2 (a) Idealized Atomic Force Law 
(b) Corresponding Surface Energy Density 

Also Plotted are the Linear Elastic Relations 
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Figure 3 Graphic Solution of equation (7) for the Cohesive 
Force Law in Figure 2. The Three Ratios of $/a Vary 
Between Strong and Vanishing Lattice Trapping 

Figure 4 (a) Cohesive Force Law 
(b) Corresponding Surface Energy Density 
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ON ENERGY RELEASE RATES IN AXISYMMETRICAL PROBLEMS 

M. A. Astiz, M. Elices and V. Sanchez Galvez* 

INTRODUCTION 

The problem of calculating energy release rates from a given stress and 
strain field in an elastic cracked body has been solved by means of the 
J integral [1]. This integral has been extensively applied to plane stress 
and plane strain problems. In three dimensional problems such a powerful 
tool does not exist. Three kinds of energy release rates have been defined 
[2, 3] corresponding to a movement of translation, rotation or expansion 
of the crack border, but it seems very difficult to find an energy release 
rate which will be adequate to describe the real movement of the crack 
border. In axisymmetrical problems this question seems easier to solve 
because a crack has only one degree of freedom. 

INTEGRAL EXPRESSIONS OF THE ENERGY RELEASE RATE 

Statement of the Problem 
We will consider an axisymmetrical homogeneous and elastic solid with an 
internal circular crack, as shown in Figure 1 (the solid has not necessarily 
to be a cylinder). The problem of an external circular crack can be treated 
in the same way. The purpose of this paper is to find an integral expression 
for the energy release rate during crack extension. 

To solve this problem we will make use of the integrals [2, 3]: 

J, = - ̂  = / (w n, - T. u. , ) dS (1) k dx, c
 v k I i,kJ K J 

k S 

M = - l ^ = / ( w x . n. -T. u. . x. - \ T. u.) dS (2) 81 s
 v l l j 3,1 l 2 I a/ v J 

where w is the energy density, S is a closed surface surrounding the crack 
border, n_ is the outer normal, T̂  is the stress vector acting on the outer 
side of S, u_ is the displacement vector and 1 is any characteristic length 
of the crack. 

We will now evaluate these integrals in an axisymmetrical problem. 

Escuela de Ingenieros de Caminos, Universidad Politecnica de Madrid, 
Ciudad Universitaria - Madrid 3, Spain 
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M. Integral 
The surface S will be axisymmetric, as shown in Figure 1. Since the 
integrand is a scalar quantity, it is independent of the angular cylindri
cal coordinate, 6. This integrand can be evaluated on the plane 
9 = 0(x2 = 0). Considering that the element of area is: 

dS = p d6 dl (3) 

where dl is the element of arc length of the curve C, which is the section 
of S by the plane 6 = 0 , the M integral can be expressed as: 

M = 2TT / p(wx. n. - T.u. .x. - ̂  T. u.) dl . i,j = 1,2,3 (4) 
f ^ i i J J , I I 2 l i' >J y ' K J 

But along the curve C we have x2 = u2 = 0; then the indexes i and j of 
equation (4) may have only the values 1 and 3. 

M is the energy release rate with respect to relative scale change da/a, 
then: 

u du 2TT a 2 dU 0<n. o2 r , n M = - — = - j - = 2TT a^ G . (5) da 2TT a da v J 

a 

As a consequence the energy release rate with respect to cracked area 
becomes: 

G = Kr f p(wx.n. - T. u. .x. - \ T. u.) dl . i,j = 1,3 (6) a2 K V ii 3 j,i 1 2 1 1 ^ ,J y y J 

This expression is valid only for linear elastic materials as in equation 
(2) [4]. 

Integral 
The application of the M integral to an axisymmetrical problem has been 
easy because the symmetric movement of the crack is an expansion equiva
lent to a relative scale change. It is more difficult to apply the J 
integral to this problem because this integral is the energy release rate 
with respect to a translation movement of the crack border. 

To circumvent this problem it will be necessary to consider a sector of 
angular amplitude d6, as shown in Figure 2, because we are dealing with 
an axisymmetrical problem and the energy release rate is computed per unit 
of crack area. The movement of the element of crack border inside this 
sector can be considered as a translation parallel to the xi axis. The 
hypothesis can be justified by considering that the energy release caused 
by an increment da of the crack radius will be Ga da d6 and the difference 
between this energy release and the actual energy release would be G da2 d0, 
which can be neglected. The surface of integration is composed of a surface 
of revolution, Si, and two bases, S2 and S3. 
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To perform the integration over Si it must be taken into account that the 
components of all the vectorial quantities, y_, of equation (1) (y_ can be 
the normal, the displacement vector or the stress vector) are: 

Vi = v cos a 
P 

v2 = v sin a (7) 
v3 = v 

where vQ and vz are the components of v_ in the cylindrical system, and 6 
is the angular coordinate as shown in Figure 3 and varies between 

de . de 
- y- and — . 

It can also be shown [5] that the derivatives of the displacement vector 
are: 

3u u 
u = cos2 a -—- + sin2 a — (8) 
1,1 9p P 

/9u u \ 
u = (——- -I sina cosa (9) 

2,1 \ 3p py 
9u 

u = 1& (10) 
3,1 op . 

The integral over Si can be expressed as a sum of integrals of the type 
de 

f f(p,z)g(a)pda dl = / z g(a)da / f (p,z)pdl . (11) 
Si _ d6_ C 

2 
This integral must be proportional to d9 because the higher order terms 
(dG2, de3, etc.) would not be significant to the integration in 0. Then 
only the zero order term will be taken, into account in the function g(a). 
This is equivalent to supposing that: 

sin a - 0 , 
(12) 

cos a - 1 . 

Applying equations (7, 8, 9, 10, 11, 12) to equation (1) we obtain: 

9u 3u 
(wn! - T. u. . )dS = de / (wn - T -^- - T -^-Jp dl (13) 
\ i 1,1/ c \ P P 3p Z 8p/ 

Along the surfaces S2 and S3 only the component TQ of the stress vector 
and the component nQ of the normal will be non-zero. After having neglected 
again the terms of higher order in d6 the Ji integral over S2 and S3 becomes: 
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f
S2(™> - T i u i , i ) d s = f i ^ ( - w + T e i ) d S ' <14> 

^ (wn, - T. u i ( 1 ) dS = f- f^ (-w + Te ^ ) d S . (15) 

Then the Ji integral will be: 

3u 3u 
J ( dU du \ / U \ 

w n. " T. " ^ " T ^T-)P dl - / ( w - Tfl -2.) dS . (16) P P ap z 9 P ; s V e P; 
The energy release rate per unit angle would be Ji/d0 and, considering the 
whole solid, the energy release rate with respect to an increment of the 
crack radius in axisymmetrical problems, Ĵ , will be: 

( 3u 3u \ WV Tp *T " Tz WJP dl - 2 " i J W"T« ̂  )dS (17) 

and the energy release rate, G, will become: 

( - * . * ) ■ 

i / ^u ^u \ I / u \ - / (wn -T 3-B- - T ^ J p dl - - / ( w-TQ -£) dS . (18) a c \ P P 3p z 9p / a s \ p / 
JA , / 3u 3u 

G = — 
2iTa a 

A condensed expression for J. can be obtained by applying Green's theorem: 

( rv U \ / 3U 3U \ 

p|^.+ T _£) dS - 2TT / [T ^ - + T ^-Jp dl . (19) 
3p e P / c V P 3p z dp ^ 

These expressions are valid for nonlinear elastic materials as is equation 
CD [4]. 
The relation between J^ and G can also be found by performing the integra
tion (17) along a circle centred at the tip of the crack with a very small 
radius (5), and by supposing the stress and strain fields are the same as 
in a plane strain problem [6]. 

CONCLUSIONS 
Two integral expressions have been derived for energy release rate in axi
symmetrical problems. Expression (6) is valid for linear elastic materials 
and expression (17) is valid for nonlinear elastic materials. Then this 
expression can be applied to plasticity problems if one can suppose that 
the deformation theory of plasticity with no unloading gives a good des
cription of the behaviour of this material. Then one can repeat the rea
soning of Rice and Rosengren [7] to show that the energy density exhibits 
a 1/r singularity at the crack tip. For a strain hardening material the 
stress, strain and displacement field associated with the near-tip dominant 
singularity must have the form [7, 8] 
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1_ 
a. . = K r" n + 1 2 . . ( 9 ) 

1 3 cr 1 3 

n 
e?J = Ke '" ^ V 0 ) (20) 

where n is the strain hardening exponent and 0". •, e^4 and u-̂  are a dimen
sional functions of 6 as in [8]. 
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STATISTICAL CONSIDERATION ON INHOMOGENEITY OF 
MECHANICAL PROPERTIES OF MATERIALS 

Y. Kishino* 

INTRODUCTION 

Recently, various theories of continuum mechanics have been published to 
take the microscopical inhomogeneity of materials into account [1 - 4]. 
Mechanical quantities appearing in such theories are macroscopic usually 
and they are considered as averages of the actual quantities distributed 
inhomogeneously in materials. However, it does not seem that the deriving 
processes of such average quantities are sufficiently discussed. This 
paper is concerned with a fundamental consideration of the principle for 
averaging the inhomogeneous mechanical quantities distributed sta
tistically in materials. A method to obtain mean quantities is introduced 
by using the internal work done by the inhomogeneous stress acting upon a 
closed surface of a small region in the material body. Some properties of 
mechanical quantities derived through the above process are discussed, and 
it is attempted to argue the relation between the inhomogeneity of stress 
and the yielding of materials. It is assumed here that the statistical 
characteristics of distribution of mechanical inhomogeneity are uniform 
at any place in a material and that the material is considered homogeneous 
from the macroscopic viewpoint. 

AVERAGING OF MECHANICAL QUANTITIES 
Stress and strain in continuum mechanics are regarded as mean quantities 
determined (explicitly or implicitly) through certain averaging processes, 
as is indicated by their definitions. A mean field quantity is averaged 
over a certain region in the material body. As far as the mean quantity is 
expected to be expressed in tensorial form, the averaging process is to be 
such that it maintains tensorial significance. It is known that this re
quirement is satisfied when the averaging is carried out isotropically.1 
In this paper, the sphere R with a radius p (surface area: A, volume: V) 
is adopted for the region upon which the mechanical quantities are averaged. 

The increment of the internal work per unit volume of R due to the incre
ment of the displacement Dia is given by 

1 ? 
D w = Tf § tn • Du da (1) 

8R 
where tn is the stress acting on a surface element of dR with unit normal 

* Tohoku University, Sendai, Japan 
1. It is considered that averaging of a tensor over open surface which 

appears in [1, 2] does not fully satisfy this requirement. 
2. In this paper the body force is ignored for brevity. 
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_n. Quantities t_n and Dia are generally regarded as inhomogeneous microscopi
cally. In terms of the stress tensor £ and the increment of the strain 
tensor (including the rotation) D;y, quantities tn and Du_ are given respec
tively by 

tn = n • £ + Atn (2) 

Du = r_ • Dy + A(Du) (3) 

where quantities to which the symbol A is attached denote residuals from 
mean values and r_ is the position vector from the center of R. Now the 
mean quantities £ and Dy_ are regarded as constant in the following averaging 
process. It is considered that the expected values of the components of 
£ and fry are obtained at the vicinity of the center of R when the work done 
by the residual parts 

A(Dw) = i $ Atn • A(Du)da (4) 
3R 

is not dependent on the mean quantities £ and Dy_. This equation is trans
formed as 

A(Dw) = - cf (tn-n • £) • (Du-r_ • Dy)da , (5) 
V 3R 

using equations (2) and (3). By differentiating the right hand side of 
equation (5) with respect to each component of £ and D^, and by equating 
these expressions to zero, we obtain 

£ = 7 / r ^ n d a (6) 
V 8R 

D I = hf n D u d a (7) 
V 3R 

where products of two vectors without intermediate symbol denote dyad. 
In the derivation of the above two equations, the following relation is 
used: 

£ n r_ da = VI_ (8) 
3R 

where I_ is the unit tensor. Equations (6) and (7) are also obtained by 
the least squares method applied for vectors tn and Du_. Namely, £ and D;y 
expressed by these equations give the minimum values of 

I = / Atn • Atn da (9) 
8R 

and 
I = / A(Du) • A(Du)da (10) 
U 3R 

respectively. Furthermore, for these quantities the equation 
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Dw = a •• DY + A(Dw) (11) 

holds, where the symbol •• denotes the double inner product. Equation (11) 
represents the independence of the work done by the mean quantities and the 
work done by the residuals. 

The magnitude of A(Dw) is affected by the size of R. As it is assumed that 
statistical characteristics of inhomogeneous distribution of tn and Du_ are 
uniform at any place in material, the value of integral 

/ Atn • A(Du)da = A(Dw) V (12) 
BR 

may be regarded as proportional to A in the case where the distributions 
of the stress and the strain are macroscopically uniform. Thus the magni
tude of A(Dw) is inversely proportional to p. On the other hand, when the 
macroscopic fields of stress and strain have gradients in the material body, 
the errors involved in the approximations for tn and Du in terms of linear 
coefficients o_ and D;y increase as the size of R increases. From the above 
consideration, the most reasonable tensor quantities maybe obtained by use 
of a sphere with a certain radius and regarded as the macroscopic quantities 
at the center of the sphere. In the following, p is assumed to be constant 
throughout the material body. 

FIELDS OF MECHANICAL QUANTITIES 

If a stress field is given by microscopically differentiable continuous 
stress tensor £* and the equilibrium condition 

V • o_* = 0_ (13) 

is fulfilled, equation (6) is transformed as 

£ = \f -f iSJL ' £*)da 3R 

R R 
dv 

= i / a* dv . (14) 
V R 

Thus it is seen that £ is a volume average of a*. Then o_ becomes a tensor 
which satisfies the equilibrium condition as shown below. 

1 • £ = 1 * (h f £* dv) = h f 1 ' £* dv = 5- • (15)3 
V R V R 

If Du is differentiable and continuous, equation (7) is transformed as 
D l = Tj f n Du da = i / V Du dv = V(^ f Du dv) . (16)3 

V 3R R R 
commutability of the nabla V_ and the averaging operator y f dv is 
ared because the region R should be considered to move togetner wit? 

3. The _ 
assured because the region R should be considered to move togetRer with 
the concerning material point while the shape of R itself is kept con
stant for all points. 
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This equation indicates that Dy_ is regarded as the strain tensor derived 
by differentiation of a displacement vector which is obtained as a volume 
average of Du_. Thus D̂y satisfies the following compatibility equation^: 

V x Dy = 0 . (17) 

Even if the mean quantities satisfy the macroscopic field equations as 
stated above, the residual part of work 

A(Dw) = Dw - £ •• Dy (18) 

takes a finite value generally, and it may be said that the work done by 
microdeformations defined in the generalized continuum theories [4] is 
corresponding to this part of internal work. 

Now let a plastic deformation takes place in a material body in which mag
nitude and direction of the stress vector acting on each point of the 
spherical surface are assumed as constant. Then the following moment is 
produced: 

Dm = — $ tn x Du da 
3R 

= £ ' x Dy + A(Dm) (19) 

where 

A (Dm) = ~f A tn x A(Du)da . (20) 
9R 

As Din is the total moment acting on R, it can be equated to zero and we 
obtain 

£ • x DY = - A(Dm) . (21) 

The above equation indicates that the moment related to mean quantities 
does not vanish unless the residual part of moment equals to zero. This 
conclusion seems to be significant, because the plastic deformation of 
an inhomogeneous material needs not to satisfy the St. Venant's assumption 
stating that principal directions of stress tensor and increment of strain 
tensor coinside. It may be possible to consider that A(Dm) is produced 
by the couple stress [4]. Using such a theoretical model we can derive 
and eigen equation [6] which is very similar to the equation appearing in 
the Kondo's theory of yielding [3] in which the yielding is analyzed as 
analogus phenomenon to the buckling of plates. 

It is noted that A(Dw) and A(Dm)are; given respectively, by the trace and 
the antisymmetric part of the following tensor 

When differentiability (and/or continuity) of Du. is not guaranteed, 
Dy_ does not generally satisfy equation (17), and a material space 
after such an incompatible deformation becomes a material manifold 
with the teleparallelism [5]. 
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T = \ f Atn A(Du)da . (22) 
8R 

This tensor denotes covariances between random variables in the statistical 
terminology. 

INFLUENCE OF INHOMOGENEITY ON YIELD CRITERION 

Let us begin with the consideration on von Mises' yield criterion 

£' •• £' = k2 (23) 

where k2 is a constant and £' is the stress deviation defined in terms of 
the mean stress p and unit tensor 1_ as 

£f = £ " P I • (24) 
The expression £' •• £' is considered as a measure of variation from the 
mean stress. This measure may be acceptable particularly when the dis
tribution of stress is assumed to be homogeneous. However, when the in-
homogeneity of stress distribution is taken into account, the extended 
yield criterion may be written as 

\ f (t̂ n - pn) • (tn - pn)da = K2 (25) 
A 8R 

where K2 is a constant. The intensity of stress in yield criteria is 
usually given in terms of relative values to the initial state where the 
external forces are absent, and further it is generally considered that 
the initial stress exists in inhomogeneous materials. Thus tn given by 
equation (2) and the mean stress p are expressed as 

tn = n_ • (£o + £) + Atn0 + Atn (26) 

P = j l •* (£o + £) (27) 

where quantities to which a suffix o is added represent initial quantities. 
Substitution of equations (26) and (27) into equation (25) gives 

0 1 
K̂  = — (£'o " £'o +2£j •• £' + £» •• £') + 

+ - f (Atn0 • Atn0 + 2Atn0 • Atn + Atn • Atn)da. (28) 
A 3R 

Equation (28) is generalized yield criterion in which the initial stress 
and the microscopical inhomogeneity of stress are taken into account. 

Now a simple case where £' o is zero while Atno is not equal to zero is 
considered. Further the following two assumptions may be laid down from 
the physical consideration. 
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(Assumption 1) Statistically, the residual stress Atn acts in such a way 
that the inhomogeneity of initial stress increases when p > 0 (tensile 
state) and decreases when p < 0 (compressive state). 

(Assumption 2) Mean value of the inner produce Atn • Atn increases together 
with o •• o. 

For brevity, replacing these assumptions by linear relations as 

T f Aln° * A-n da = CjP (29) 
A 9R 

\ f Atn • Atn da = c2 o •• o . (30) 
A 3R 

Then we obtain 

a' •• a' = d - C2 p - C3 p 2 (31) 

where 
7 . 1 

Atn0 da) 
(32) 

Cl = l+3c2 ' ~* l+3c2 

These coefficients are considered as material constants determined by 
the initial stress distribution. It is noticed that Ci takes the smaller 
value as the amount of inhomogeneous initial stress increases. If we 
put as C2 = C3 = 0, we get von Mises' equation (23), and on the other hand, 
equation (31) reduces to Griffith type equation for two axial stress state 
in the case where C3 = 0. 

CONCLUDING REMARKS 

The macroscopic field quantities appearing in ordinary continuum mechanics 
are considered to be derived through such an averaging process as stated 
here. In this paper, the examples of measures of deviation from these 
mean quantities are given in the forms of the right hand sides of equa
tions (9), (10), (22) and (28). As indicated in the preceding sections, 
such quantities seem particularly important to explain nonelastic behaviours 
of materials. 
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STABILITY CONSIDERATIONS IN THE GENERALIZED THREE DIMENSIONAL 
'WORK OF FRACTURE' SPECIMEN 

J. I. Bluhm* 

INTRODUCTION 

The determination of fracture toughness in brittle metals is generally ac
complished by the mechanical testing of pre-cracked specimens. In these 
tests the load, at spontaneous fracture, and the associated crack length 
are recorded and fed into appropriate energy release rate relations to 
determine the critical energy release rate. This latter value is the 
fracture toughness. Essential to the adequacy of the test is the pre
sumption of a sharp crack. In metallic specimens this 'crack' is obtained 
artificially by cyclically loading a specimen with a machined starter 
notch until a crack of adequate length has grown from the base of the 
machined (and generally relatively blunt) notch. 

However, in extremely brittle materials such as ceramics for example, the 
techniques for introducing the sharp crack are not so simple. In the 
usual situation a ceramic specimen containing an initial blunt starter 
notch will, when loaded, sustain an inordinately high load and then fail 
catastrophically. Attempts to introduce a sharp crack by fatiguing are 
generally not successful. Either loads are so small as to not initiate or 
propagate a crack or attempts to increase the fatigue load merely lead 
again to inordinately large loads at which spontaneous fracture then 
occurs. If this load at which fracture actually occurs is fed into the 
energy release rate relations a fictitiously high fracture toughness is 
obtained. 

One promising alternative approach which provided the motivation of the 
present study is based upon the use by Tattersall and Tappin [1] of a 
relatively simple 3-point beam bending specimen having a nominally square 
cross section and inclined notches such that the remaining ligament is an 
isosceles triangle with the apex on the tension side. Those authors 
suggested that that specimen (with an initially blunt machined notch) 
tended to behave in a stable fashion during crack initiation and extension. 
The area under the load-deformation curve (i.e., the work) can then be 
related to the fracture toughness. This specimen has become identified as 
the 'work of fracture' (WOF) specimen. 

The initial optimism with respect to the potential of the WOF specimen 
has been somewhat dampened in light of the observations that its stability 
appeared to be dependent upon crack depth and other unspecified geometric 
parameters. Therefore it seemed appropriate to analytically explore the 
stability characteristics of such a specimen with the eventual objective 
of identifying and optimizing a specimen configuration which might be 
stable throughout the possible ranges of crack depth. 

*Army Materials § Mechanics Research Center, Watertown, MA, U.S.A. 
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PRIOR ANALYSIS 

In an earlier paper, Bluhm [2] using a slice synthesis technique developed 
the essential compliance relations to a generalized form of the WOF spec
imen. In the present paper, the form of the shear transfer coefficient 
which is used to compensate for the three-dimensional effects of the 
specimen is more fully determined; stability criteria are formulated in 
dimensionless form; and these stability criteria are used in a parametric 
optimization study. 

Figure 1 shows the generalized notch/crack specimen configuration treated 
in the prior analysis. Figure 2 provides additional nomenclature. Note 
the heavy line outlining the notch/crack front. 

Use of this generalized configuration permits ease of applicability to 
other specimen types. The original Tattersall-Tappin specimen configur
ation for example can be approximated from this generalized form by 
letting the central span 1 2 ■+ 0 (3 pt. vs. 4 pt. loading)*, setting C 0 = 0 
and a) = W. On the other hand by letting C 0 be arbitrary and u) = W the 
Simpson [3] specimen configuration is obtained. Additionally by letting 
C 0 = a) < W, the conventional 'straight through1 crack specimen configur
ation is obtained. 

In the earlier work by Bluhm, the specimen compliance X s of this genera
lized work of fracture specimen was developed. The reader is referred to 
that paper for the form of X s and the related definition of terms. 

THE SHEAR TRANSFER FUNCTION, kC4>i 0)/W) 

In the earlier representation of the shear transfer function [Bluhm 2] 
it was recognized that k was in fact potentially a function of both <|>, and 
OJ/W; nevertheless because of limited experimental data it was tentatively 
presumed to be a function only of <j>. That data (for co/W = 1) is shown as 
the circled points in Figure 3. However subsequently data for OJ/W = 0.4 
was obtained and is indicated by the circled crosses 0 . It is immed
iately obvious from the data that the influence of the ratio o)/W is sig
nificant indeed. In order to provide a guide for formulating a more 
general form of k = k (<(>i w/W) additional data were then obtained at 
<f> = 22.5° (0.39 rad). That data is shown as circled 0 f s . Although 
some experimental error is obvious, the trends are quite clear and it was 
possible to describe the significant effects of both $ and o)/W in the 
following form. 

1 + (u)/W)3-12l £ A J n ] 0 < <f> < 1 

k(<j>,o)/W) 
,n=l 

4 

nT 

1 + 0/W)3-12( £ AnJ 1 < * < tan"1!-^) (1) 

*In the previous compliance derivation by Bluhm, only conditions of 4-pt. 
loading are generally valid since state-of-the-art analysis of cracked 
specimens do not yet provide satisfactory treatment of the interaction 
of the crack tip with the bearing load. For 3-pt. loading with deep 
cracks, this interaction effect may be significant. 
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\ 
t 

= X 
s 

+ X 
m 

= X 
s 

+ n X 
so 

where the following constants are for <(> expressed in radians. 

where A2 = +2.263, A2 = -4.744, A3 = +4.699, kh = - 1.774. 

The solid lines of Figure 3 represent the prediction of k using this rela
tion. It is obvious that reasonable correlation with experiment is thus 
enforced. 

STABILITY CONSIDERATIONS 

The energy release rate G for a loaded specimen containing a crack is 
given by the familiar relation 

G = \ P2 d At / d A ' (2) 

where P is the applied load, A is the crack area and Xt is the total 
system compliance, i.e. that of the testing machine Xm as well as that of 
the specimen Xs; then if for convenience the machine compliance Xm is ex
pressed as a factor n times the uncracked specimen compliance, one may 
write 

(3) 

where X s o is the compliance of the notched but uncracked specimens. 

Stability of crack extension is presumed if 

dG/dA <_ dG r/dA (4) 

i.e. if the rate of energy release rate available for propagation is equal 
or less than the required energy absorption rate. In the present paper 
where the emphasis is principally on very brittle materials and where 
growth of shear lips is not a factor, it is assumed that the fracture 
toughness is independent of crack growth, i.e. 

dGcr/dA = 0 (5) 

Hence, equation 4 becomes merely 

dG/dA <_ 0 (6) 

It is anticipated however that stability may alternatively be dictated not 
merely by the criteria that dG/dA be negative, i.e. equation 6, but more 
resolutely by the condition that dG/dA be sufficiently negative parti
cularly if the initial 'crack' does not in fact simulate a theoretically 
sharp crack. Under this latter condition the overload to initiate crack 
propagation supplies a surplus of available energy which accelerates the 
crack after initiation. Hence only by an excessively negative value of 
dG/dA can one ever hope to stabilize such a specimen. Accordingly, in 
the present paper we assume a theoretical crack and utilize a dimension-
less form of dG/dA, S's as defined later. 
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Inserting now equation 2 into equation 6, we obtain 

<£ = I [p2 ̂ t + 2p dP d_\] < 
dA 2 [̂  ^ 2 dA dA J - U U J 

If crack extension occurs under a constant critical load Pcr condition, 
this reduces to 

A = A cr 
where Gcr is the critical value of G (determined by equation 2) at which 
crack propagation starts and A c r is the corresponding value of A. On the 
other hand, if crack extension occurs under fixed grip or constant defl
ection conditions, then equation 7 reduces (in lieu of the definition of 
compliance), i.e. At = 6t/P to 

cr 

When expressed in terms of the dimensionless crack length a = a/W, equa
tions 8 and 9 can be reduced to the following forms respectively. 

- S = d(G /G )/d(A/A ) = p v p cry ^ o' 

not defined . . . . 0<a<C /W 

roo/W - C /W-. (d2A /da 2-[ l / (a - C0/W)]dAt/da 
L a - co/W J j dAt/da Co/W<c^W 

(d2A t/da2)/(dX /da) u)/W<a<l 

(10) 

not defined . . . 0<a<C /W — -- o 
, r co /W - C /W-. 

h - S + C2/Xt}(dXt/da) { [ a . c J w J Co/W<a<a)/W (11) 

1 u>/W<a<l 

where S = - G / ^ w = - dCA/^ and the subscript P or 6 on the S" 
implies constant load and displacement conditions respectively. 

On the other hand for the constant deflection condition of equation 11 
when one replaces At therein by its equivalent form, the presence of the 
At term in a non-derivative term implies a machine compliance effect. 
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Hence in equation 11 the A^'s can be replaced by As only in the derivative 
terms and as would then be expected the machine compliance plays a sig
nificant role in the stability of a constant deflection test condition. 

PARAMETRIC STUDIES 

Reference to A as defined in Bluhm [2] and to equations 10 and 11 herein 
suggest the following dimensionless parameters as defining the stability 
characteristics of those specimens falling within the scope of the 
generalized configuration of Figures 1 and 2: 

A1/A2, £i/W, C /W, w/W, W/H and V 

The stability characteristics S of any given specimen are then determined 
by these parameters. However, if the compliance A per se or energy rate 
G per se is desired then in addition, the value of Young's modulus, E and 
one dimension must also be specified. 

A limited parametric study was undertaken to explore the potential of de
fining a stable specimen. 

Crack depths a were taken in increments a = 0.05; it was evident early in 
the evaluation of the S p data (constant load case) that satisfactory con
figurations were highly unlikely under this condition. 

SUMMARY AND CONCLUSIONS 

1) Representative stability curves for specific cases are indicated_ 
schematically in Figure 4. Typical computer outputs for Sp and Sg 
are shown in Figures 5 and 6 respectively. It was noted that in no 
instance was the constant load stability tendency Sp positive through
out the range of a's. Stability was indicated only for short crack 
lengths. (See Figures 5 and 6). (Note H is given in inches and E in 
pounds/inch2). 

2) On the other hand as anticipated a somewhat greater tendency for 
stability was indicated using the S5 criteria. Figure 6 shows typical 
outputs. It was also evident early in the evaluation of parametric 
studies that the ratio W/H did not significantly influence the re
sults; this was subsequently substantiated by re-examination of equa
tions 10 and 11 in which it was evident that the ratio W/H shows up 
only in its influence on the shear transfer factor k. Figure 7 shows 
more clearly the effects of the machine compliance Am = nAso, i.e., 
equation 3. Note that for n = 0, i.e., a very stiff machine, the 
system tends to be stable but as n increases the tendency is toward 
instability (corresponding to a constant load system). 

3) Based upon the analysis and typical computational results of the 
present paper, it appears that even with sharply cracked notches the 
derivative forms of the Tattersall-Tappin 'Work of Fracture' specimen 
are incapable of providing, under constant load conditions, the slow 
stable growth necessary for a valid determination of fracture tough
ness. 

4) On the other hand, for constant deflection conditions our parametric 
study suggests several modifications of the WOF specimen which do 
tend to be stable. The deeply notched Simpson [3] type of specimen 
as well as the deeply notched through crack specimen for example do 
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5) 

tend to be stable PROVIDED of course that the initial blunt starter 
notch does not lead to such an excessive over load that castastrophic 
failure occurs directly from the blunt notch. 
Critical experimental verification of the utility of such modified 
WOF specimens is now called for. 
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Figure 4 Schematic Showing Stability Tendency As a 
Function of Crack Length for Various Notch/Crack 
Configurations and Load Conditions 

408-

300-H 
B 200-
A 
R 

iee-

- 1 0 0 -
0 . 0 

<* 

M 

DATE 7 - 2 4 - 75 . 

CONSTANT LOAD 

L1'L2 = 2 . 0 8 
Ll/W = 1.00 
C0/M = .00 
OMEGA/W = 1 . 0 0 
W/H = .50 

H = .58 
NU = .40 
E = 40+08 

0 . 2 0 . 4 0 . 6 
ALPHA 

0 . 8 1 0 

Figure 5 Typical Computer Output Showing S t a b i l i t y Factor vs . Crack 
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ASSESSMENT OF FAILURES BEYOND THE LINEAR ELASTIC REGIME 

I. Milne* 

INTRODUCTION 

The failure of a flawed structure has been shown to be bounded by two 
limits, the linear elastic one and the plastic collapse one [1]. Both of 
these regimes are now well understood for most geometries. The most 
difficult regime to assess is the intervening regime, where fast brittle 
fracture follows plasticity. This situation is met where sections are 
relatively thin and the material is relatively ductile, or where stress 
are elevated locally beyond yield due to geometric constraint. Here the 
adoption of either of the two limits can lead to an overestimate of the 
defect tolerance of a structure so that resort has to be made to some 
form of "post-yield" assessment. The following is an attempt to define 
and validate one of these post yield routes, and to show that even after 
appreciable plasticity, brittle fracture can still be described by the 
linear elastic failure parameter, KIQ. 

THE MODEL 

Tne model chosen is based upon the Bilby Cottrell Swinden [2] theory of 
yielding ahead of a crack. This is a crack opening displacement approach 
to fracture which can be reinterpreted in terms of Kic following the 
suggestions of Heald Spink and Worthington [3]. Because of its theore
tical basis this approach can be treated analytically [4] making it very 
versatile. In this way it has distinct advantages over empirical crack 
opening displacement approaches which are not universally applicable. 

The basic equation can be generalised in terms of the failure stress, Of 

2 ^ i C 2 
of = - ox cos * exp (1) 

8Y2aax
2 

where Y is the linear elastic compliance of the cracked body, and takes 
crack shape into account, and Qi is the collapse stress of the cracked 
body. The value of Oi must take into account the geometric constraint 
local to the crack. It can be obtained from conventional limit analysis, 
from slip line field theory, from finite element analysis or from the 
testing of scale models, whichever is the most appropriate. This has 
advantages over the J integral approach in that small scale tests can be 
used to confirm the predictions and avoid over-reliance on finite element 
techniques. 

Following Harrison Loosemore and Milne [6] equation (1) can be plotted as 
a universal function in terms of the ratios Kr = Ki/Kic and Sr = Of/Oi, 
Figure 1, where Ki is calculated elastically at Of. It should be noted 

*Central Electricity Research Laboratories, CEGB, Leatherhead, England. 
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that the stress ratio, S r could equally be written in terms of loads or 
pressures, and need not be converted to stresses. 

VALIDATION 

For the model to be generally applicable it must be capable of describing 
failure in any geometry. Over the previous 10 years a whole fund of test 
data has become available on structural geometries, such as cylinders and 
spheres. Much of this data suffers from the lack of relevant materials 
data, particularly fracture toughness and so a direct comparison with the 
assessment line in Figure 1 is not possible. However, using this assess
ment line it is possible to obtain the ratio Kr and hence predict a Kic-
This should be constant with varying geometry and compare favourably with 
the expected values of Kio 

Cylinder tests of Nichols Irvine Quirk and Bevitt [7] 

These tests were performed on a variety of steel cylinders of varying 
diameters. Collapse can be expected in these geometries when Ma = a, where 
a is a flow stress and M is the stress magnification factor due to bulging 
[8], There is some speculation as to the actual value of the flow stress; 
the value adopted here is 112 {Oy+ou). 

Table 1 groups the results obtained from these tests on .36 C steel, in 
order of temperature. It is apparent that failure occurred mainly at 
stresses well below the collapse limit. The predicted values for Ki£ are 
reasonably constant at a given temperature and increase with temperature. 

HSST 3 inch vessels of Derby [9] 

Data on these tests are again not very complete. Failure was after con
siderable plastic bulging at the higher temperatures; thus the pressure at 
these temperatures was taken as the limit pressure. Consequently three of 
the tests failed with S r < 1, as indicated in Table 2. (au was assumed 
independent of temperature over this temperature range). Values for Ki 
were difficult to predict, since there are no standard solutions for ex
ternal part penetrating longitudinal cracks in pipe geometries, but they 
were obtained by applying a bulging factor to the solutions of Merkle et 
al [10]. The predicted values for Kic are within the limits expected. 

HSST large test vessels 

For these vessels Oi was taken from the solutions of Duffy et al [8] for 
part penetrating defects, i.e. 

01 =5[t%a-~l/Mj' 
where t is the thickness of the vessel. 

a was again taken as i|2(av+au), and Ki was obtained using the ASME XI 
procedures. The predicted values of Kic are within the range expected, 
Table 3. 
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Spherical vessel tests of Lebey and Roche [11] 

Here different sized vessels made of different thicknesses of AMMO steel 
were tested with varying crack lengths. o*i was taken as 0.8 au, since 
this is approximately the limit stress for the shorter cracks. Table 4 
lists the predictions for these tests using the initiation of crack growth 
as the failure point. For a given sphere the variation in the predicted 
values of Kic are within the range normally experienced in steels of this 
nature. 

3-point bend specimens of Lubahn and Yukawa [12] 

Here the specimen size was varied, so that the collapse stress could be 
taken as the failure stress in the smallest specimen. The predicted 
values for Kic were very constant and of the value expected of a Ni-Mo-V 
steel, Table 5. 

CKS specimen tests of Begley and Landes [13] 

In this case o"i was obtained by the curve fitting technique of Chell and 
Milne [14]. This is important at high values of Sr (for the smaller 
series of tests S r -»■ 1) in order to obtain precision in the region where 
the curve becomes asymptotic to Sr = 1, and the predictions were obtained 
using equation (1) rather than Figure 1. Nevertheless these predicted 
values of Kic are in full agreement with those of Begley and Landes and 
the data obtained from large scale tests (Table 6). 

DISCUSSION AND CONCLUSIONS 

In the simplified form of Figure 1 equation (1) has been shown to predict 
consistent values for Kic in both the linear elastic and the large scale 
yielding regimes. Hence it is proposed as a means for assessing the 
integrity of a structure regardless of the operational stress level. It 
is not evident from the foregoing, however, that an infinite value for 
Kic is predicted at Sr = 1. This is consistent with the known behaviour 
that plastic collapse is independent of Kic* Thus an increasing uncert
ainty occurs in the predicted Kic as the Assessment Line in Figure 1 
becomes asymptotic to S r = 1. In this region Oi needs to be known very 
accurately for adequate predictions of Kic> as was required for the CKS 
specimen tests. This is no disadvantage however, especially for assess
ment purposes where it is prudent to ensure pessimism by using upper 
bound criteria for S r and Kr. 

The advantages of the above approach using the assessment line of Figure 1 
are manifold: 
1) Any appropriate analytical technique can be used to obtain the para

meters Ki and a1# Thus the approach is as versatile and sophisticated 
as our knowledge of stress analysis. 

2) Where an analysis is suspect, or inadequately defined, resort can be 
made to model testing for the evaluation of Ci. 

3) The effect of secondary stresses can be easily studied; e.g. if it can 
be demonstrated that a secondary stress influences only the linear 
elastic regime it is easy to allow for this without being unduly 
pessimistic. 

43 The influence of various factors of safety on the final assessment can 
be readily explored; e.g. the effect of using factors in a, or mat-
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erials data, or in defect size etc. 
5) The most likely regime of failure is immediately apparent. 
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Table 1 

Test 

V7T1 
V13T1 
V1T2 
V8T2 
V14T2 
V2T1 
V5XT1 
V12T3 
V4T4 
V4T1 
V3T1 
V6T1 
V12T1 
V14T1 
V5T1 
V3XT1 

Temp. 
(°C) 

1 
10 
12 
13 
17 
29 
45 
50 
51 
62 
62 
77 
79 
80 
84 
88 

2a 
(mm) 

628.6 
304.8 
152.4 
304.8 
304.8 
304.8 
152.4 
304.8 
304.8 
152.4 
609.6 
304.8 
304.8 
304.8 
304.8 
609.6 

°f 

66.4 
95.75 
190 
123.5 
139 
130 
222 
120.4 
145 
227 
88 
177.6 
161.4 
187 
183.8 
105 

Kl 

166.3 
115.5 
105.6 
128.7 
124.3 
134.2 
124.3 
146.3 
150.7 
126.5 
215.6 
182.6 
195.8 
166.1 
190.3 
108.9 

S r 

.47 

.43 

.62 

.52 

.46 

.55 

.707 

.55 

.62 

.73 

.57 

.77 

.73 

.62 

.77 

.407 

K r 

.96 

.97 

.92 

.95 

.97 

.94 

.88 

.94 

.92 

.86 

.94 

.84 

.86 

.92 

.84 

.97 

K1C 1 
Predicted 

173 
119 
115 
135 
128 
143 
141 
156 
164 
147 
229 
217 
227 
180 
226 
112 

Table 2 

Temp. 
(°C) 

-45 
-18 
-3 
+16 
+54 

pf 

20.7 
20.7 
21.4 
23.4 
23.4 

Kl 

40.7 
40.7 
42.1 

S r 

.885 

.885 

.914 
1.0 
1.0 

K r 

.75 

.75 

.72 

K1C 1 
Predicted 

54 
54 
58.5 

Table 3 

Vessel 

1 
2 
3 
4 
6 

Temp. 
(°C) 

54 
0 
54 
24 
88 

a 
(mm) 

65 
64.25 
53.6 
76.2 
47.5 

' 2C 
(mm) 

209.5 
210.8 
215.9 
209.5 
133.4 

Gf 

365.4 
355.8 
397.1 
337.8 
406.8 

Kl 

194.7 
171.6 
183.7 
176.0 
215.6 

S r 

.686 

.61 

.74 

.706 

.74 

K r 

.89 

.92 

.86 

.88 

.86 

K1C I 
Predicted 

219 
186 
213 
200 
279 
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Table 4 

1 Sphere No. 

9 

10 

13 

15 j 

10 

2a 
(mm) 

35 
70 
105 
40 
59 
35 
50 
65 
72 
80 
95 
102 
110 
125 
15 
25 
56 
61 
75 
99 

°f 

330 
205 
132 
318 
200 
336 
254 
217 
180 
166 
132 
125 
115 
100 
368 
368 
203 
204 
185 

! 113 

Kl 

116 
177 
203.6 
127.5 
101 
126 
139 
161.5 
153 
163.5 
173 
197 
186 
190.4 
63.25 
94.5 
152 
132.5 
165 
142 

S r 

.77 

.48 

.31 

.74 

.46 

.78 

.59 

.5 

.42 

.39 

.31 

.29 

.27 

.23 

.86 

.86 

.47 

.47 

.43 

.26 

K r 

.84 

.95 

.98 

.86 

.95 

.82 

.92 

.94 

.96 

.97 

.98 

.984 

.99 

.99 

.77 

.77 

.95 

.95 

.96 

.99 

K1C 1 
predicted 

138 
186 
207 
151 
106 
153 
151 
171 
159 
168 
177 
199 
188 
192 
82 
123 
160 
139 
172 
143 

Table 5 

1 Specimen 
size 
(mm) 

5 
10 
18 
40 
100 
240 

°f 

1379 
1206 
1103 
724 
414 
276 

1 Kl 

74.8 
93.5 
112.2 
112.2 
101.2 
103.4 

S r 

.93 

.814 

.744 

.49 

.28 

.19 

K r 

.69 

.81 

.855 

.96 

.99 

.995 1 

! K i c 1 
Predicted 

108. 
115.5 
127.6 
117.7 
102.3 
103.4 
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Table 6 

Specimen 
size 
(mm) 

1 25.4 
25.4 
25.4 
50.8 
50.8 
50.8 
50.8 

a/ w 

.604 

.573 

.547 

.576 

.552 

.526 

.5 

°f 

31.7 
37.2 
41.4 
41.7 
39.8 
44.8 
49.1 

Kl 

98.5 
102.5 
104 
140.8 
144.1 
148.7 
150.5 

S r 

.99 

.995 

.995 

.91 

.9 

.9 

.86 

K 
r 

.54 

.49 

.49 

.72 

.73 

.73 

.77 

K1C 
predicted 

182 
208 
212 
195 
198 
204 
196 

Kic 1 
predicted 
from Begley 
& Landes (13) 

) 
> 194 
) 
\ 
[ 202 ' 1 
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ELASTIC CONTACT PROBLEMS IN FRACTURE MECHANICS 

B. Billy E. Fredriksson* 

INTRODUCTION 

During a load cycle an existing crack may partially close causing the 
fractured surfaces to make contact. This would of course influence the 
stress field. The frictional forces arising at the contact surface could 
be expected to influence the direction of crack propagation. Contact 
problems in fracture mechanics have been studied by some authors. Aksogan 
[1] presents a solution to the elastic problem of a closing Griffith crack. 
Paris and Tada [2] studies a closing elastic single edge crack loaded in 
mode I. Newman [3] studies the effects of closing cracks in fatigue crack 
propagation. Erdogan and Gupta [4] studies contact and crack problems of 
elastic wedges. All of these solutions are restricted to specific types 
of geometries and loadings and do not include friction. In the present 
paper an attempt is made to do a unified approach to elastic contact pro
blems taking frictional effects into account. 

In order to obtain a solution which takes the frictional effects into ac
count a general slip criterion with associated slip rule is introduced. 
As a special case of the general one a Coulomb type of slip criterion is 
used in the numerical calculations. The incremental governing equations 
for elastostatic contact problems with friction are solved by means of the 
finite element method. Attention is focused on an existing crack that may 
partially close during a load cycle. Considering a virtual crack growth 
the crack extension work is derived by applying the principle of virtual 
work. The energy dissipation due to friction at the contacting surfaces 
is obtained. 

A finite element computer programme for two-dimensional elastic, plane and 
axisymmetric, problems has been developed. Stress intensity factors are 
calculated and the effect of crack closure is shown. Crack extension work 
for different virtual propagation directions is calculated and the effects 
of crack closure and frictional properties are shown. 

STATEMENT OF THE PROBLEM 

Consider a body containing a crack which might have closed due to the 
loading (Figure 1). The problem is studied in the orthogonal cartesian 
coordinate system xi, xz, X3. In order to facilitate the study of oblique 
or curved cracks, a local coordinate system ru, ^2, H3 is introduced. m > 
TI2 defines the tangent plane to the crack surface. We indicate the material 
on one side of the crack with A and the other with B (Figure 1). n3 is 
then defined as the outward normal vector from B. Temperature effects and 
dynamic terms are omitted. The body is assumed to be loaded by surface 
loads q^ on Tq and volume loads X^ in V. The displacements are assumed to 

* Department of Mechanical Engineering, Institute of Technology, 
Linkoping University, 581 83 Linkoping, Sweden 
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be prescribed on ru. The crack surfaces are assumed to be in contact on 
Tc. On T c r the cracked surfaces are not in contact and are unloaded. 

THE CONTACT PROBLEM 

Bodies generally contact each other through small irregularities in their 
surfaces. The applied normal load forces the summits of irregularities to 
flow plastically and/or to crush down until their cross sections are suf
ficient to support the applied load. It is easy to understand that the 
type of contact is different at different summits. At some there may be 
cold welding and micro-seizure and at other summits we have merely elastic 
contact. When shear forces arise the joint surfaces are displaced. The 
displacement ceases when the micro-seizure points within the real contact 
area have reached sufficient numbers to be able to offset the applied tan
gential load. When a stable condition is attained some of the summits are 
in adhesion or a welded state and others are in a state of elastic contact. 
It may be reasonable to assume that elastic and small plastic deformations 
appear at the adhesion points and that relative displacements appear at the 
elastic contact points. As a consequence of these assumptions it can be 
understood that a micro-slip appears even though the applied tangential 
load is smaller than the sliding force as determined by using the macro
scopic coefficient of friction. Based upon these ideas a general contact 
constitutive relation will be introduced. The contact surface is assumed 
to be ideal and free from the above mentioned irregularities. The consti
tutive relation relating the contact stresses and the slip will however 
be derived in order to satisfy the real case. The derivation is analogous 
to the derivation of the flow rule in the theory of plasticity. 

Consider the cartesian coordinate system ru, ri2> H3 at a contact point given 
on Tc. The contact stress increment vector is written 

dpi = (dpi, dp2, dp3) on 1^ . (1) 

In the following, when the indices a, 3, Y, <5 occur, they are assumed to 
range from 1 to 2 and refer to the local coordinate system rii, TI2* TI3. 
A detailed derivation of the slip rule is given by Fredriksson [5]. The 
derivation of the slip rule is based upon two basic assumptions. 

1) The slip increment dva is linearly dependent on the contact stress 
increment. That is, 

dv = du - du = h a dp0 (2) 
a a a ot3 3 

2) There exists a slip surface g(Pi) = 0 in the contact stress space 
on which slip will occur. At each state of the slip no further slip will 
occur unless 

fj- dp. > 0 . (3) 

The first assumption implies that the slip has the same direction as the 
outward normal vector to the locus generated from the intersection between 
the surface and the plane p3 = constant. 
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For slip hardening we obtain 

! Og/3paH3g/3pg) s 
d va = L C3g/3p,)Og/9p.) d p3 ° n Fc ( 4 ) 

when 
g = 0> Ifr d p i > °' P3 < ° • 

s Tc is the part of Tc, where the slip criterion is satisfied. In the part 
T^ of Tc where the slip criterion is not satisfied there is no slip incre
ment and the displacement increment must satisfy 

dv = duA - duB = 0 on Ta . (5) 
a a a c 

If we assume ideal slip (4) is replaced by the slip rule 

dv = X |£- on TS (6) 
a dp c J 

X > 0 when g = 0 and -^— dp. = 0, p 3 < 0 
— c?p i l 

X = 0 when g < 0 or , -^— dp. < 0, p 3 < 0 

^ — dp. > 0 does not exist in ideal slip. In ideal slip the slip surface 
is fixed. 

The functions g and L depend on properties of the contact surface, for 
instance type of material and surface roughness. In the case of ideal 
slip the parameter X is indeterminate. 

Assuming Coulomb isotropio slip criterion [5] we obtain 

g ( p i } = y (papa)1/2 + P3' P3 < ° (7) 

and the associated slip rule for hardening slip 
1 P a P 6 

d v = f - ^ dpQ (8) a L p 6 p 6
 F 3 l J 

u is the coefficient of friction. 

For ideal slip we obtain 
p dp 

dv = x f
 a " . (9) 

Introducing the effective contact stress 

Pe^cA)1'2 ^ 
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and the effective slip 

v = / dv ; dv = (dv dv )1 / 2 (11) 
e e e v a or K J 

it can be shown [5] that for slip hardening 

dy(v ) 
L = "Pe - A T " ' (12) 

e 
Thus, the single curve y = y(ve) yields both the shear stress necessary to 
obtain slip and the function L, which might be called the slip modulus. 
For ideal slip L is zero and equation (9) has to be used. The parameter X 
is indeterminate and the stiffness properties of the contacting bodies 
must be used to obtain the slip increment. 
Furthermore, the displacement increment perpendicular to the contact sur
face must satisfy the kinematical condition 

du^ - dus = 0 on T . (13) 

CRACK EXTENSION WORK IN CRACK CLOSURE PROBLEMS 

Consider a virtual quasistatic crack growth. It is assumed that macro
scopic (continuum mechanics) theory is applicable [6]. The virtual quasi-
static crack growth generates a new crack surface r£r with a corresponding 
fracture area AS. The work done on the fracture process zone per unit of 
fracture area [7] during this virtual growth from state 1 to state 2 is 
the crack extension work G [7] 

G = ~Asio^/+ I' ̂  d u ^ * (14) \S /+ (/ q du.Jc 
Tcr \l X 7 

-q^ is, by definition, the stress vector acting from the continuum on the 
fracture process zone. 
By applying the principle of virtual work the crack extension work can 
alternatively be expressed in global terms. Assume an infinitesimal virtual 
crack growth with corresponding displacements du^. Applying the principle 
of virtual work to the total stress field we obtain 

/ a. . de. . dV + / p dv dT = / X. du. dV + 
v IJ IJ r *a a v I I 

c 
+ , q. du. dr + / q. du. dY f Hi i r +

 Hi l 
Tq cr 

where it is assumed that du^ = 0 on Tu. The strain increment de^j and 
the slip increment dva are both compatible with the displacement incre
ment. 

(15) 
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Integrating equation (15) from state 1 to state 2 and introducing the total 
potential energy increment 

An 

we obtain 

- An 

/ ( / o . . d£.. - / x ^ u . ^ d v - ; ( / ^du^dr (16) 

" [ ({ Pa d v a ) d = " {+ ({ <*i dui) dF • ^ 

Assume that the process is described using the fracture area S as a para
meter [7]. Dividing equation (17) by the finite increment AS we obtain 
in the limit 

- II1 - C1 = G (18) 

where 

in T An 
II1 = lim -r̂ -

AS+0 A b 
is the change in total potential energy per unit of fracture area and 

Is fc [{ Pa d v a ) c C» = l i m ^ / J / p„ dvjdr (19) 
AS+0 

is the dissipated energy due to friction at the contact surface. Thus the 
sum of G and C expresses the total energy dissipation. 

From equation (18) it can immediately be concluded that the frictional 
properties influence the crack extension work G. When there is no friction 
present C vanishes. Although C vanishes the closure of the crack still 
influences G since the stress field is influenced and thereby the potential 
n. 

APPLICATIONS 

The incremental governing equations for the contact problem are solved by 
means of the finite element method [8]. In the computer programme Coulomb 
slip criterion with associated ideal and hardening slip is included. The 
surfaces of the existing crack (or cracks) are defined as contact surfaces 
and the nodes in the finite element model are defined as contact nodes. 
The contact nodes at the crack tip may be allowed for cohesional forces. 
The external nodes are next applied and the contact nodes are checked for 
closure. When closure occurs iterations are performed until the slip rule 
is satisfied and convergence is achieved. By releasing the pair of con
tact nodes at the crack tip the crack extension work for a finite crack 
growth may be calculated. Relaxation must generally be performed incre
mentally because of the nonlinearity at the contact surface. This method 
of relaxation was first suggested by Andersson [9] and is also used by 
Hellan [7]. 
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Stress Intensity Factor Calculations 

In terms of the stress intensity factors the crack extension work for 
coplanar extension is written 

' - ¥ f r (Ki+ K n ) + Kin] • tie) 
Kj, KJJ and K J H are the stress intensity factors in mode I, II and III 
respectively [7]. For plane strain K = 3 - 4v and for plane stress 
K = (3-v)/(l+v). 

The present method has been tested on a plate of unit thickness in a state 
of plane strain with a single edge crack subjected to tension and moment 
loads in mode I. In Figure 2a the stress intensity factor in pure tension 
is shown as function of the crack length and compared with the solution by 
Gross [10] for an infinite strip with a single edge crack. Next a moment 
load was applied and the stress intensity factor calculated. The result 
is shown in Figure 2b. As the moment is applied the stress intensity 
factor decreases linearly until the crack starts to close. The linear 
decrease in the stress intensity factor then ceases. When the crack is 
closing the problem becomes nonlinear. The stress intensity factor is 
almost constant after crack closure. This is in agreement with the result 
presented by Paris and Tada (a/W = 0.55). Due to conditions of symmetry 
the frictional properties do not influence the result. 

Crack Extension Work in Crack Closure Problems 

The crack extension work for the single edge crack previously studied was 
computed for different types of loading (Figure 3a). Different virtual 
crack propagation directions (J) were studied and the crack extension work 
was calculated. Applying the criterion of maximum crack extension work 
[7] the crack propagation direction may be predicted. 

The plate was first assumed to be loaded in pure tension 00 and in pure 
tension plus antisymmetric shear F, M. The normalized crack extension work 
as a function of (j) is plotted in Figure 3a. At this loading no contact 
forces arise. Computations were done for nine virtual propagation angles 
(J) from -90° to +90°. G m a x is the maximum crack extension work in tension 
plus antisymmetric shear loading. From the pure tension curve it is seen 
that G has a maximum at (J) = 0 and that coplanar extension is predicted. 
This result is in agreement with previous findings. Some discretization 
errors are observed. In the case of tension plus antisymmetric shear the 
maximum G appears at (j) - -40°. If the critical G was reached the angle 
of propagation is predicted to -40°, that is, the crack tends to propagate 
downwards in a combined mode. 

The plate was next simultaneously loaded in tension, in antisymmetric shear 
and in compression. The crack then partially closes. The influence of the 
frictional properties on the crack extension work G was studied. G was 
calculated for five different directions of virtual crack extension, from 
0 to -90°. In view of the first example it is evident that the G has 
maximum for <j> between 0° and -90°. In Figure 3b the normalized crack 
extension work for the frictionless case is compared with the case of 
friction. An ideal Coulomb model with u = 1 was assumed. G m a x is the 
maximum crack extension work for frictionless case. From these results 
it could be concluded that the crack extension force is decreasing when 
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taking frictional effects into account. Energy is dissipating at the sur
face of contact. This effect of course decreases the risk for crack pro
pagation and gives a less dangerous situation. As the present loading 
conditions the crack surfaces starts to make contact at the left and the 
contact developes inwards. When the antisymmetric shear is applied slip 
takes place over the whole surface of contact. When the crack is virtually 
extended downwards the contact continues to develop inwards and the slip 
is increasing. 

CONCLUDING REMARKS 

A method of taking contact and frictional effects in crack closure problems 
into account was presented. Stress intensity factors was calculated from 
the crack extension work and compared with known solutions. It was also 
shown how the stress intensity factor is affected by a partial crack clo
sure. By studying the crack extension work for virtual crack extensions 
at different angles the crack propagation direction was predicted. When 
studying cracks in combined modes it was shown how the present method 
could be used to study effects of frictional properties when the crack is 
closing. 
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Figure 1 An Elastic Body Containing a Partially 
Closed Crack 

•tŷ v**" KyfcO/fi* 

*•* M/flfctW* 

Figure 2 Single Edge Crack. FEM-Model: 178 Constant Strain Elements, 
268 Degrees of Freedom. Stress Intensity Factors in 
a) Pure Tension 
b) Tension and Bending 
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Figure 3 Single Edge Crack. Normalized Crack Extension Work in 
a) Tension and Antisymmetric Shear 
b) Tension, Compression and Antisymmetric Shear 
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UNSTABLE FRACTURE CRITERIA UNDER LARGE PLASTIC DEFORMATION 

Tatsu Fujita, Atsuo Mizuta and Osamu Tsuda* 

INTRODUCTION 

So far the ductile fracture of metals has been discussed mainly on the 
following three aspects: (a) the effect of some defects contained in the 
material on ductility of material through a continuum mechanics approach 
[1, 2]; (b) the development of linear fracture mechanics in reference to 
the stress and strain distribution near a crack tip after yielding [3, 4, 
5]; (c) the generalization of ductile fracture criteria by studying failures 
in different kinds of material tests [6, 7, 8]. It seems, however, that 
ductile fracture has not yet been sufficiently studied in the aspect of the 
relation between a critical strain and a crack length, which might well be 
the most fruitful approach to the interpretation of the ductile fracture. 
The description of the relation is also very useful to resolve the various 
failure problems of engineering materials under large plastic deformation 
such as that in metal working, and could implicate the Kc concept in linear 
fracture mechanics in its extreme case. 

UNSTABLE DUCTILE FRACTURE 

If fracture occurs between the yield point and the load predicted by the 
ultimate tensile strength, then the linear fracture mechanics is no longer 
applicable, nor any other conventional fracture criteria. The present 
investigation is concerned with unstable ductile fracture criteria, which 
would complete a whole fracture concept along with linear fracture mechanics. 
In this study a crack length is limited to be (a) not so large as the plas
tic region does not cover entirely the test piece, and (b) not so small as 
a local necking takes place, providing a unfirom uniaxial plastic condition. 
The model for investigating the unstable fracture criterion is proposed and 
schematically shown in Figure 1. A curve OABC means the load-displacement 
relation of the specimen with an initial crack length a, and ODEF with an 
initial crack length a+Aa, respectively. The path C -*■ F indicates that 
the state of C goes to a certain state F when a crack grows by Aa. 

The following assumptions, designated KOBE-model, are postulated. (a) The 
state of F is independent of path. That is, the point F is also on the 
load-displacement curve of the specimen with initial crack length a+Aa. 
(b) The ratio of a load Pi on the curve OABC to a load P2 on the curve 
ODEF at any displacement is constant. Then, the load P-displacement X 
relationship for the specimen with crack length a can be given by 

P = F(a)-f(A) (1) 

* Central Research Laboratory, Kobe Steel, Ltd., Kobe, Japan 
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and the function F(a) is the same as that in the elastic range where it is 
well known. The validity of (b) has been assured by the finite element 
analyses as mentioned in the later section. 

According to the general theory conservation law, the following equation 
is written at the onset of crack extension: 

W = U + f + K , (2) 

where W is the external work, U the internal strain energy, T the effective 
fracture surface energy, K the kinetic energy, and the dot denotes differ
entiation with respect to time. From equation (2) and the first assumption 
(a), a criterion for crack extension is given by 

ar _ 3(w-u) m 
8a 8a * ^ J 

Recently, the J integral [9] and the COD (crack opening displacement) are 
used for the estimation of the fracture toughness of notched specimens, but 
it is difficult to find their exact values by experiments or by calcula
tions. Equation (3) is more useful than other procedures if the loading 
displacement relation is given analytically as equation (1). So equation 
(3) is applied to derive the unstable ductile fracture criterion in our 
study. 

THEORETICAL ANALYSIS 

Though the criterion could be induced from equation (3) for any load-
displacement relationship, here we study a typical one described by a 
power strain hardening law such as 

o = k*e , (4) 

where a, e, n and k are the true stress, the true strain, the strain 
hardening exponent and the material constant, respectively. According 
to the KOBE-model, the load P-displacement X relationship for the specimen 
of such material with crack length a is represented by 

P = F(a)-[ln(l+X/l0)]n/(l+A/l0) (5) 

and from the linear fracture mechanics and the equation (1) 

F(a) = Ao'k-(l-27Ta2/w0lo) , (6) 

where Ao is the initial area of cross-section of the specimen, lo the ini
tial gauge length and w0 the initial width. 

The internal strain energy U can be given from (5) and (6) by 

U = / P-dX = ̂ iok . (i-27Ta2/w0lo)-[ln(l+A/lo)]1+n . (7) 
0 
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When a crack grows by Aa, the change of the strain energy AU becomes 

And in that process, the external work is also given by AW = P*AA. 

Putting (7), (8) and AW into (3), the criterion equation can be obtained: 

9l = TTJT # C^Cl+X/lo)] • (9) 

A crack growth occurs when the left-hand term in equation (9) reaches a 
constant value Gc, which is defined as the critical strain energy release 
rate. The unstable ductile fracture criterion is finally reduced to the 
form 

' l+'ri 1+n (l+n)-G 1 * c 
2«7T-k = constant , (10) 

where e = ln(l+A/l0), and £f denotes a uniform strain enough away from 
notches at failure. The relationship (10) implicates the well known rela
tions in linear fracture mechanics as its particular case, n = 1 , 

= \E-v V a l / 2 = 1^1 = constant ( l la) 
or, 

tfpC^a) = K = constant , (lib) 

where E is the Young's modulus. 

EVALUATION OF THE THEORY BY NUMERICAL ANALYSIS 

The purposes of the numerical analysis are to examine the assumption (b) 
in the previous section and to calculate the values of the J integral and 
the COD. The finite element method based on the infinitesimal incremental 
theory by Y. Yamada [10] was used for this analysis. The specimen is 
divided into about 300 finite elements and the ratio of crack length to 
width varied from 0.01 to 0.1. Calculations were conducted for the double 
edge notched plates under plane stress condition. The maximum increment 
at each step was limited below 0.2% for strain increment or 0.1 times yield 
stress for stress increment. A uniform displacement was sequentially 
applied on both ends of the plate. The stress-strain behaviour of material 
was assumed to be a = E»e below the yield stress ay, and a = k*e over a . 

The values of -(d ln£f/d In a) obtained by these analyses on n = 0.2635 
material are compared, that is, a theoretical prediction 1/1+n = 0.7915, 
while 0.86 by the J integral, 0.85 by the COD criterion and 0.75 by the 
G criterion [11]. The theoretical value falls among three calculated 
values and seems reasonable taking account of cumulative errors of numeri
cal analysis. It is also confirmed in course of calculation that the slope 
of the ln£f-ln a curve is almost equal to -1/2 in the elastic range, which 
corresponds to the theoretical value of linear fracture mechanics. 
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EXPERIMENTATION AND EXPERIMENTAL RESULTS 

The uniaxial tensile tests of 0.2 mm thick saw cut notched specimens of 
normalized 0.80% C steel were conducted. The test pieces were 46 mm wide, 
7 mm thick and 100 mm wide, 6 mm thick, and the notch depths at both edges 
of the specimens were 0.2 mm to 32 mm. The variation of hardness through
out the thickness of a specimen was within Hv 10. The mechanical properties 
of non-notched specimen were as follows; ultimate tensile strength 91.9 
kg/mm2, elongation 12.9%, yield stress 44.5 kg/mm2 and reduction of area 
20.7%. The Young's modulus of the material is 20500 kg/mm2 and the strain 
hardening exponent n is about 0.31 on true stress-true strain basis. Three 
quantities were measured in the test; first one is a uniform uniaxial strain 
away from notches by a plastic strain gauge, second one, an elongation of 
the gauge length 220 mm and third one, an applied load. 

The experimental results are shown in Figure 2. Below about 0.2%, i.e., 
before overall yielding, the slope of ln£f-ln a relationship is -1/2, 
while the slope is about -1.0 over 0.2% strain possibly due to unstable 
excess yield strain and the effect of the ratio of crack length to speci
men width. On the other hand, in the range beyond 5% uniform strain, the 
slope tends to be flat due to the local necking of specimen. Between 0.2 
mm and 1.0 mm in crack length, stable uniform strain conditions are satis
fied, where the ln£f-ln a curve has the slope of about -0.76 predicted by 
the present theory for n = 0.31 of 0.80% C steel. The agreement indicates 
that the fracture criterion represented by equation (10) is appreciably 
reasonable in case of unstable ductile fracture, so long as uniformity is 
kept and materials obey a power strain hardening law. 

DISCUSSION AND IMPLICATION 

(1) In order to get a better fit for various engineering materials, other 
expression of a stress-strain relation will be applied: 

a = Y + H • e n ?, (12) 
P 

where Y and n* are material constants and £p is the plastic strain. In 
this case, by the same procedures as in the former, the following represen
tations are obtained: 

P = Ao(l-27ra2/wolo)(Y+Hen,)(l-Hn'enf"1/E)/(l+X/l0) (13) 

r ,x, H n' H n1 ,„ H n' -. ^ ,,„. 
a* [£f(Y + ITn^ ef J " E" ef ( 2 f )] = c o n s t a n t (14) 

or approximately 1 
1+n1 ef • a = constant. (15) 

Putting the value of each parameter into (14) and (15), the relationship 
£f-a is obtained for 0.80% C steel as shown in Figure 3. The former 
theoretical result and the experimental result are also shown. There is 
little difference among them and there comes a more simple conclusion that 
since the strain hardening exponents of most metals are usually between 
0.25 and 0.35, the product of a critical strain and the 0.75 ~ 0.8th power 
of a crack length is almost constant, whichever representation is used for 
the stress-strain relationship. 
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(2) The present theory has the close relation with the Griffith criterion, 
and also throws light on the physical meaning of reduction of area in con
ventional tensile test, the historical basic ductility measure. If a 
material shows an ideal power strain hardening characteristics and a speci
men has infinite width, an ideal lnef-ln a diagram will be drawn as Figure 
4. Obviously, the unstable ductile fracture criterion is rewritten with 
reference to the conventional K value, 

1 a TK 2 -| 1 
L+n _ _y Ic 1+n 

= E [ir-<yj Val+n =-eH^^r™ • (16) 
While the true fracture strain e derived from reduction of area in con
ventional tensile testing is plausibly given by 

1 
l+n ^ /1-^ e »a. = constant, (17) n I K J 

where ai is the effective inclusion size of a particular material. Though 
the lnef-ln a relation over maximum uniform strain e u is somewhat ambi
guous due to necking of specimen, for 0.80% C steel en is about 0.19 as 
shown in Figure 2 and corresponding a^ is estimated about 0.04 mm which is 
reasonable value as the size of inclusions in the steel. So a whole physi
cal interpretation is obtained throughout ductility by tensile test, i.e., 
unstable ductile fracture and brittle fracture. Another engineering appli
cation to estimate the Kc value from e n of tensile test is available on 
these lines. The relationship should be 

r ~l+n l+n 1-n. 1/2 ,,0̂  
Kc = ( 7 T - ai* E *e

n *°y ' ' (18) 

CONCLUSION 
1) A fracture criterion for unstable fracture under uniaxial tension of 
notched plates is proposed. The criterion for a power strain hardening 
material is represented by: 

1 
l+n + „ e »a = constant. 

2) The theory has been approved by means of two procedures; the numerical 
analysis by the finite element method and the experiments with notched 
plates. 
3) The present criterion is identical with that of linear fracture mechanics 
for n = 1, elastic body. In view of this theory, one can have better under
standing about the reduction of area in conventional tensile test. 
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ON THE APPLICATION OF CONTINUUM THEORY OF DISLOCATIONS 
TO THE MECHANICAL BEHAVIOURS OF MULTI-PHASE MATERIALS 

Hiroshi Miyamoto* and Masanori Kikuchi* 

1. INTRODUCTION 

The phase-boundary behaviour of multi-phase materials is an important 
problem. For example, pile-ups of dislocations occur at grain boundaries 
of metal polycrystals, and the internal stress field by these performs an 
important role for the mechanical behaviours of polycrystals. These in
ternal stress fields are considered, from the view point of the continuum 
theory, due to the incompatibilities at the phase-boundary. So, it is 
useful to discuss the compatibility conditions. For this purpose, the 
method of continuum theory of dislocation (CTD) is introduced. The basic 
idea of this theory is established firstly by Eshelby [1], and Kroner [2] 
and Mura [3] extended his ideas to many problems. 

In this method of CTD, a plastic deformation is considered to occur due 
to emissions and motions of dislocations. So, an elasto-plastic problem 
becomes to find out the equilibrium dislocation density, â .:, which satis
fies the boundary conditions. This is carried out by using three dimen
sional elasticity theory. Therefore, an elasto-plastic analysis becomes 
no other than an elastic analysis. In this paper, analyses are carried 
out by using finite element method (FEM). If a ^ is determined, the in
ternal stress field of these dislocations is determined and the role of 
the incompatibilities is able to be evaluated. 

On the other hand, many studies are carried out for the mechanical behav
iours of multi-phase materials by using FEM. In general, a (Dp) matrix 
method, used for elasto-plastic analyses by FEM, assumes that compatibil
ity conditions are satisfied, so this method is not suitable for the dis
cussion of incompatibilities. 

In this paper, two examples of multi-phase materials are analyzed. One 
is bi-crystal of metal and the other is spherical cast iron. Results 
are compared with those by a [Vp] matrix method. 

2. NUMERICAL PROCEDURE 

Assumption is needed for the creation and motion of dislocations which 
correspond to the plastic deformation. This is made by reference of dis
location theory. Once this is made, distribution of a.. is determined 
corresponding to a stress field given by elastic analyses by FEM. 

*Department of Precision Machinery Engineering, Faculty of Engineering, 
University of Tokyo. 
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The determination of equilibrium distribution of O H is carried out as 
follows: 

(i) By Kroner, relationship between otji and 3?- > the plastic distortion 
tensor, is given as 

aij = e i U ^ j , k ' W 

where, ê -:̂  is the unit permutation tensor. 

(ii) The plastic strain, £jjj , is given from plastic distortion tensor 
as 

£ij = <<j + V / 2 ■ ^ 

(iii) Owen [4] obtained the internal stress assuming that e ^ is equiva
lent to pre-strain in elastic domain. By FEM, this is carried out 
by substituting e|-j into the following equation. 

{ Fin } = ' /[B]T[D]{e*}d(vol) (3) 

where {Finl is equivalent nodal force. By {F^n}, internal stress 
and strain are determined. This consistent to the method of the 
self-consistent model by Eshelby. 

(iv) Examination is performed whether the internal stress is in equili
brium to the dislocation density or not. If it is not, a^i is re-
determined by the sum of applied stress and the internal stress and 
process (iii) is repeated until it reaches the converging value. 

(v) In the next stage, load is increased and repeated from procedure 
(iii). 

3. APPLICATION TO THE MECHANICAL BEHAVIOURS OF F.C.C. METAL CRYSTALS 

3.1 Assumption 

(i) Emission of dislocations occurs when xa, the applied shear stress, 
reaches xc, the critical shear stress, until the back stress by 
emitted dislocations becomes equal to Ta - T C. Therefore, T C on the 
slipped plane increases to Ta. 

(ii) Relations between the increment of stress, strain and number of dis
locations are given by Seeger [5]: 

de/dn = 9b/16x , (4) 

da = Gbdn/2IIL , (5) 

where da, de, dn denote the incremental value of stress, strain and 
number of dislocations, respectively. L is slip line length and x 
is slip line spacing. 
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3.2 Single crystal analyses 

Figure 1 shows equivalent nodal force obtained by equation (3). Tensile 
axis is parallel to z-axis. At the free surface, nodal force becomes zero 
as the free surface condition o*̂ -jnj = 0 must be satisfied. Evidently, 
surface integral of F^, nodal force, becomes zero. 

By the existence of this internal force, the crystal rotates and the de
formation of single crystal is not equal all over the area. Figure 2 
shows strain distriubtion of single crystals. By [D*5] matrix method, 
this effect of rotation is not described clearly. 

On the other hand, in early stages of deformation of f.c.c. single crystal, 
many experiments show that only one slip system becomes active. But in 
this analyses three or four slip systems become active in early stage of 
deformation. This means that the internal stress of dislocations on pri
mary slip system performs an important role to prevent the activation of 
other slip systems. Perhaps this occurs at the tip of pile-ups of slip 
lines as shown in Figure 3(a). But in this analysis, dislocations are 
assumed to distribute uniformly as in Figure 3(b), therefore, it is diffi
cult to describe these microstructures by this method. 

3.3 Bi-crystal analysis 

In analyses of bi-crystal, an additional assumption is added that only one 
ship system among 12 ones is able to be active on which the shear stress 
(which is the sum of the applied shear stress and the internal shear stress) 
is the maximum. 

Three bi-crystals are analyzed and the tensile axes of which are shown in 
Figure 4. Figure 5 shows the strain distribution near grain boundaries 
obtained by a [D™] matrix method for type C. Strain near grain boundaries 
varies continuously and smoothly. But the results by CTD varies from 
Figure 5. Figure 6(a)-(c) show the results obtained by this method. 
Strain distribution is not smooth near grain boundary. A common feature 
of the three examples is that the strain parallel to the tensile axis 
decreases near boundary. In experiments, the decrease of strain near 
boundary is sometimes observed and these results agree with them, while 
the result by a [D*5] matrix method is not able to describe this phenomenon. 

Moreover, for every type A, B and C the active slip system near boundary 
is difficult from that far from boundary where the primary slip system is 
active. At grain boundaries, the phenomena that second slip system becomes 
active at first is observed. By Chalmers [6] the internal stress field 
by dislocation pile-ups in one side of bi-crystal provokes slip activations 
in adjacent crystal. The slip system activated is the one on which sum 
of the applies stress and the internal stress is the maximum. It is ob
vious that the method of CTD is able to treat these proceudres analytically, 
which, by a [Dp] matrix method, is difficult. The state of the variation 
of shear stresses on first and second slip systems are shown in Table 1 
for type C. 

4. APPLICATION TO THE MECHANICAL BEHAVIOURS OF SPHERICAL CAST IRON 

4.1 Assumption 

Emission of dislocations occurs on the plane of the maximum shear stress 
when T , the maximum shear stress, exceeds T . The number of dislocations a c 
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emitted is estimated from the solution by BCS model [7] as 
n(i -vu 0

 r ^ T
o-f^ ' (

6
) ub Leff 

The plastic strain corresponding to the emitted dislocations is determin
ed as follows, 

Y = \ nb , (7) 

where £Q is the average diameter of crystals and Te£f is Ta - T Q. 

Two dimensional analyses are carried out. Figure 7 shows the mesh division 
for analysis. The black part shows graphite. Volume ratio of graphite 
(Vg) is 17.1%. Table 2 shows the material constants. The yield stress 
is employed three kinds of combination, nR, the ratio of the two is 
determined as TJ?/x£e, where T§ and x£e denote the yield stress of graphite 
and ferrite, respectively. 

4.2 Results and discussion 

Figure 8(a)-(c) show the propagation states of plastic regions. Black and 
white region means the plastic region of ferrite and graphite, respective
ly, and serial numbers of figures express the load stages. The final 
figurations of plastic zones in ferrite matrix is the same for three nR 
values, while they are different distinctly in graphite. 

Miyamoto and Oda [8] analyzed the same problem for nR = 0.04 using a [Dp] 
matrix method. The result is that yield does not occur in graphite. In 
this analysis, the internal stress of dislocations piled up at the phase 
boundary is added to the applied stress. Therefore the plastic region 
of graphite is mainly due to the internal stress fields by the incompat
ibilities at the phase-boundary. In addition, the direction of propagation 
of the plastic region in graphite is along the phase-boundary. This 
corresponds to the result of SEM observation of the fracture surface. 

Barnby [9] proposes a model that the fracture of the carbides in an aus-
tenitic stainless steel occurs due to the dislocation pile-up at the 
phase-boundary. The number of dislocations is obtained by one dimensional 
analysis. In this method, the same considerations are able to be perform
ed. The result for nR = 0.081 is shown in Figure 9. The region of 
oblique lines shows the region in which dislocations are emitted. Inclin
ations of lines indicate the slip planes. Dislocation density becomes 
maximum value (2.8 x 106/cm2) at point a and becomes minimum (2.0 x lOVcm2) 
at point b. In Figure 10(a) and (b), the equivalent nodal force is re
presented for nR = 0.04 and 0.081. Comparing the two cases, it is noticed 
that the equivalent nodal forces for nR = 0.04 are smaller than those for 
nR = 0.081. It is reasonable that for nR = 0.04 yielding occurs in 
graphite, while for nR = 0.081 it is not observed until final stage of 
analyses. That is, for nR = 0.04, stresses of dislocations are released 
at phase-boundary. 

4. DISCUSSION 

By Ashby [10], dislocations in non-homogeneous materials are divided into 
two parts, one is statistically-stored dislocations, ps, which corresponds 
to a general, uniform deformation and the other is geometrically-stored 
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dislocations, pg, which corresponds to a local, non-uniform deformation. 
In this paper, p~ is mainly considered, and the results show that the method 
of CTD is useful to discuss the effect of pg. But about ps, it is diffi
cult to describe the actual physical phenomenon accurately (see equations 
(4) and (6)). The difficulties occurred in single crystal analyses are due 
to this fact. So, it is necessary to develop this method combining with 
the experimental studies. 

5. SUMMARY 

(i) The method of CTD is intorudced to discuss the effect of incompat
ibilities at the phase-boundary. By this method an elasto-plastic 
analysis becomes an elastic analysis. 

(ii) Mechanical behaviours of f.c.c. metal crystals are analysed by 
CTD. The effect of dislocation pile-ups is able to be evaluated, 
while it is difficult by a [Dp] matrix method. 

(iii) Spherical cast iron is also analyzed., Considerations similar to 
that of Barnby is carried out two-dimensionally. 

(iv) It becomes obvious that this method is very useful to know about 
Pa, but about ps, many experimental studies are needed. 
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Table 1 Comparison of shear stress for type C 

SHEAR STRESS (MPa) 

LOAD 
STAGE 

1 
2 

1 3 
4 
5 
6 

PRIMARY SLIP SYSTEM 
(in) [no] 

-2.26 
-2.49 
-2.56 
-2.58 
-2.59 
-2.60 

SECONDARY SLIP SYSTEM 
(111) [oil] 

2.19 
2.42 
2.54 
2.63 
2.71 
2.80 

Table 2 Material constants 

FERITE GRAPHITE 

E (MPa) 

V 

T (MPa) 

nR = 0.04 

nR = 0.06 

nR = 0.081 

205800.0 

0.29 

490.0 

490.0 

362.6 

4900.0 j 

0.16 

19.6 

29.4 

29.4 

450 



Part V - Analysis and Mechanics 

< £ = 8 . 7 1 

T 
19.6 N 

.1 Ul 

v 

t^T 

Figure 1 

xid* 

2 o 

-2 

-3r 

-* ^zx 

. &yz 

, eyy 

oi= 8 . 7 1 MPa 

Figure 2 Strain distribution of single crystal 

451 



Fracture 1977, Volume 3 
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Figure 7 Mesh division of spheroidal cast iron 
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STRESS ANALYSIS OF CRACKS IN ELASTO-PLASTIC RANGE 

S. N. Atluri and M. Nakagaki* 

INTRODUCTION 

The structure of the dominant singularity in strains and stresses near a 
crack-tip in plane problems, for hardening materials (e ~ o~n), has been 
studied by Hutchinson [1] and Rice and Rosengren [2]. The amplitude of 
the above singularity for pure mode problems, within the limitation of a 
small-strain, J2-deformation plasticity theory, is related to the well 
known J-integral. Begley and Landes [3, 4] have used the J-integral as an 
elastic-plastic fracture criterion in the presence of large-scale yielding, 
with considerable success, in a recent series of experiments. Attention 
has also been focused recently on other concepts such as the crack-tip 
opening displacement, nonlinear energy release rate, etc., to deal with 
the problems of nonlinear fracture mechanics. In the present paper we 
present a rigorous computational (finite element) method to analyse general 
in-service situations of ductile-fracture. As an example, analysis of an 
actual fracture test-specimen is presented, and particular attention is 
paid to the details of crack-tip stress-strain field, J-integral, COD, 
and their correlation. 

METHOD OF APPROACH 

A finite deformation, embedded singularity, elasto-plastic, finite element 
incremental method [5, 6] using J2-flow plasticity theory has been devel
oped. Strain and stress singularities of the type given in [1, 2] are em
bedded in elements near the crack-tip, and finite geometry changes near 
the crack-tip have been accounted for. A hybrid-displacement finite ele
ment model [7] is employed to enforce the conditions of displacement-con
tinuity and traction-equilibrium between the near-tip elements and the far 
field elements. The incremental finite element method employed is of the 
"tangent-modulus" type (wherein, the stiffness matrix is up-dated at each 
step to account for finite-deformation effects as well as plastic flow 
effects) with a Newton-Raphson type corrective iteration in each step. 

The example problem discussed here, is of a 3-pt bend fracture test speci
men, of inplane dimensions shown in Figure 3, for which elastic-plastic 
experimental data for thicknesses of 10 and 20 mm, and uniaxial stress-
strain data for the material is reported in [3]. For the present compu
tational purposes, this data was fitted to a Ramberg-Osgood form: 
e = (o/E) + (0/B)n where E = 20.7 x 1010 Pa, v = 0.3, B = 1.26 x 109 Pa, 
and n = 22.2. 

*School of Engineering Science and Mechanics, Georgia Institute of Tech
nology, Atlanta, Georgia 30332, U.S.A. 
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CRACK-TIP STRESS AND STRAIN VARIATIONS 

The 6-variation of the dominant singularity was determined in [1] from a 
numerical solution of a nonlinear, fourth order, ordinary differential 
equation for each value of hardening exponent, n. In the present compu
tations, the r-dependence of the singular solution (i.e., r _ n/ n +^ in 
strains) is correctly built into the near-tip elements. However, 6-varia
tion is approximated in the usual sense of the finite-element method, by 
using sector-shaped near-tip elements and assuming a polynomial 0-varia-
tion of singular solution in each sector. The computed 9-variation of 
stresses at a loading stage when the near-tip elements have yielded, is 
shown in Figure 1. These variations for n = 22.2 are in excellent qualit
ative agreement with those reported in [1] for n = 13. The r-dependence 
of the computed strains and stresses is shown in Figure 2, and it can be 
seen that in the elastic range both the stress and strain singularities 
are of l//v type, whereas under fully-developed plasticity the strain 
singularity is of form r °'96 and the stress singularity is of form r ~ ° ' 0 l + 

COMPLIANCE DATA AND J-INTEGRAL RESULTS 

The computed load versus load-point displacement and crack-mouth-opening 
displacement curves are shown in Figure 3. At the non-dimensional load of 
0.28, almost the entire net section ligament was found to have yielded. 
The linear portion of the P vs. UL curve has the slope, P/UL = 1.33 x 105 

N/mm, (corresponding to Kj/P = 3137 m 3'2) both of which are found to agree 
excellently with the independent linear-elastic results of [8]. The J-
integral (based on the definition as applicable to the case of finite de
formations, given by Knowles and Sternberg [9]) is computed on four dif
ferent paths (see insert, Figure 3). The variation of the value of J 
between different paths was ±1.4%. The average J is plotted as a function 
of load-point displacement, and as a function of crack-mouth-opening in 
Figure 4. The experimentally determined variation of J with load point 
displacement from [3] is also shown in Figure 4, for identical specimens 
of two different thicknesses. The excellent correlation of the experi
mental results for J with the presently computed values based on a station
ary crack model, for all load-point displacement levels (including the 
critical level at fracture, as determined in the experiments) suggests 
that there may have been no appreciable stable crack growth prior to 
fracture in the particular experiments. However it has been found that 
for some cases [6] involving compact-tension, and centre-cracked speci
mens, the computed critical J was higher than the experimental value, 
thus pointing to the effect of stable crack growth prior to fracture in 
small test specimens. Since J-criterion is strictly valid to define only 
crack growth initiation, it appears that more experimental as well as 
analytical studies are necessary, firstly to precisely define the Jj^ 
measurement point in the experiments, and secondly to analyze the con
tinuum mechanics problem of stable crack growth. The authors are cur
rently completing work on finite element modelling of crack growth, in
volving translation of the singularity field, to obtain information on 
energy balances during crack growth, and, more interestingly, during the 
terminal loss of stability. 

A detailed comparison of the present finite-deformation analysis results, 
for the load-point displacement, stresses and strains near the crack-tip, 
plastic-yield-zones near the crack-tip, and crack-surface deformation 
profiles, at various load levels, with those obtained using only an 
infinitesimal deformation theory, is presented in [5]. One interesting 
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observation in this comparison in [5] is that, at load levels correspon
ding to large-scale plastic yielding, and when there is noticeable crack-
tip blunting, path-independence of the computed J (with ±1.5%) was noticed 
even for paths closest to the crack-tip, when the appropriate definition 
of J [9] applicable to the finite deformations is used. However, at the 
same load levels, when the well-known Rice's definition of J, applicable 
only in the case of infinitesimal deformations, was used, the computed J 
for the path closest to the crack-tip was substantially lower (by about 
16%) than that computed from paths in the far-field. 

CORRELATION OF J WITH COD 

In the literature, there appears to be no precise definition of COD as 
essentially a near-tip quantity. However, for test specimens such as the 
present, calibration relations between COD and CGD (clip gauge or crack-
mouth-opening displacement) have been given. For instance, Wells [10] 
gives a nonlinear relation between COD and CGD in the small scale yielding 
range, and a linear relation in the large scale yielding range, in agree
ment with theoretical considerations. Using this definition for COD, the 
relation between COD and J in the present computations, is shown in Figure 
5, which shows that J ~ 1.44 'COD • ay. This result appears to be in 
agreement with the slip-line theory analysis of Rice and Johnson [11], who 
also account for finite geometry changes. A similar relation was found 
to hold for other test specimens also [6]. However, efforts to correlate 
the above calibration values for COD with essentially near-tip-geometrical 
quantities, such as the diameter of a circle inscribed near the crack-tip, 
etc. were not successful. 

CLOSURE 

A computational procedure to analyze elastic-plastic fracture situations 
is presented. From a computational viewpoint, the J-criteria appears to 
be the most attractive. However, further analytical framework to analyze 
stable crack growth is necessary to enhance the scope of computational 
methods to predict not only ductile fracture initiation, but also terminal 
loss of stability of crack growth. 
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FRACTURE MECHANICS OF VISCOELASTIC SYSTEMS 

V. N. Poturaev* and V. I. Dyrda* 

INTRODUCTION 

Consideration is being given to viscoelastic systems of inherited type. 
These systems, under cyclic load, display notable dissipative warming-up 
and their mechanical behaviour varies with time and depends upon environ
mental conditions in the form of radiation flows or chemically active 
agents. Local fracture theory is applied to analyze the fracture processes 
of such systems. All the relations outlining this process have been ob
tained on the basis of methods of thermodynamics of irreversible processes. 
An experimental procedure is presented which makes it possible to appraise 
characteristic properties and life time prior to fracture, based on the 
available present level of information on the physical, chemical and mech
anical states of the system. 

A set of equations is under consideration for calculation of real visco
elastic constructions. This set of equations included: 1) state para
meters, 2) deformation equilibrium and coincidence equations, 3) rheological 
relations, 4) heat equation with internal heat sources, 5) fracture criter
ion equations. 

Deformation equilibrium and coincidence equations are adopted with allowance 
made for particular system geometrical shape and its loading conditions. 
Rheological relations are selected with regard to system mechanical be
haviour. Valter operators with a Rabotnov - type (relaxation with rational) 
exponential nucleus have been used in this specific case. 

FRACTURE CRITERIA 

Two fracture criteria have been utilized in this research: 

1. An entropy criterion postulating the following: system fracture takes 
place at the moment when entropy increment density reaches a certain crit
ical level ASf(T) i.e. material behaviour at a given temperature. After 
integration this criterion appears as [1]: 

/ S(t)dt = ASr(T) = S(tf) - S(tQ) , (1) 
o 

f where S(t) = entropy density; AS (T) = entropy density at a critical level 
of material behaviour, serving as a temperature function. 

Let us consider fracture in a real viscoelastic system and take as a system 
a prismatic rubber element loaded in accordance with the law of harmonics 

*Ukrainian Academy of Science, Institute of Geotechnical Mechanics, 
Dniepropetrovsk, 1, U.S.S.R. 
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e = £0sina)t. We take {T^,T,G} as a complete set of thermodynamic parameters 
applicable to a 'special' one which on the one hand is sufficiently small 
to be considered as a continuous medium point and on the other hand --
sufficiently large to exhibit all the properties of this medium. By apply
ing the first law of thermodynamics U = T a • T£ +_ q, the available energy 
density definition f = U - TS, and the condition f = f(T^, T,G) we derive 
the following expression for the rate of change of entropy density: 

S = ^ T -TH -MMT--i$ 9f G + 8G ~ - (2) 

where U = internal energy density, G = shear modulus, q * heat flow, To 
stress tensor, Tg = 
(reversible part) 

strain tensor (irreversible part), T - strain tensor 

Substituting (2) into (1) and taking into account equalities [2]: 

3f _ 
3T 

derive: 

ASf = 

- s , i f 
e 

/fi TJTP 
o e 

To> 

3 f r . 1 
- 8G G ± « J 

dt (3) 

Disregarding material ageing (G = 0), and assuming the temperature field 
to be steady, this expression may be written as: 

T AS f (T) = / f TJ? dt - / f q dt (4) 

A negative q indicates dissipation of heat in the system. The first in
tegral in (7) represents strain energy density, irreversibly dispersed in 
[t0,tf] time; the second thermal energy density, released in the sample at 
the same time. For a closed strain path: 

{/ v£dt - { / T A d t > (5) 

which results from the condition that: work done by stress in elastic 
deformation equals zero in this case. With regard to (5) equation (4) 
assumes the form: 

tf • tf • 
TAS = / TaT£dt - / q dt 

t t 
o o 

(6) 

Supposing that rubber adheres to viscoelasticity linear inherited theory 
and that its properites do not vary in the process of loading, we may 
specify stress-strain bond as: 

Ta(t) = 3Go[Te(t) - xAct-f) T£ (t')dt'l (7) 

where k(t-t') is a nucleus of relaxation expressed as a Rabotnov rational -
exponential function, x = rheological parameter, GQ = instantaneous shear 
modulus. With regard to (7) expression (6) assumes a final form: 
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' 3o) 

<8TT
2 TASf a l 7 7 * G o e o q ) zf ™ 

Here ijj = material dissipation coefficient; ASf occurred in the course of 
experimental studies of sample endurance, the samples being in the form of 
double-sided blades and was independent when investigating endurance of 
full-scale rubber structures in the form of a prismatic shear element. The 
heat flow q for the sample's most loaded point has been determined when 
solving a heat conduction equation of thermal conduction with an internal 
heat source. 

For the sandwich-type rubber-metallic element with the following parameters 
G0 = 1,76 MPa, £p = 0,1, T = 320 K, GO = 12Hz, \p = 0,31, ASf = 2,03 109J/m2 
deg, q = 5,31.10 J/m3 sec estimated with regard to (8) time tf = 4800 hours, 
time resulting from the experiment for the lot of 36 full-scale articles 
constitutes (4 to 5).103 hours. Agreement, as seen, is quite satisfactory. 

2. The range under consideration as the second' criterion of fracture is 
the process of achieving by the system a critical level of damage, when 
the system converts into labile state. A criterion equation for the shear 
element loaded by the law of harmonics has been obtained as follows: 

% -* - iWT ' (9) 

and time-period prior to 'special' volume fracture: 
Pkp exp (Q/kT) 

*£ = C kQ IQ (YT/kT) ( 1 0 ) 

where P ^ = critical concentration of stored defects; kQ constant of action; 
c = material behaviour, depending upon initial components concentration and 
forms of the elementary reactions; y = specific energy of defect formation; 
I0 = Bessel function. 

Expressions (9) and (10) are obtained for the case where thermo-conductancy 
equation is represented as: 

3t \3x2 8x1 3x1/ 
W 
CiP 

and the revolution equation of material damage has been recorded due to the 
fact that damage concentration rate change is related to the intensity of 
physical-chemical processes as: 

p =. C ko exp I"- i_ (Q . N o T . Ni |T . N2 . Te)J 
Here a = thermo-conductance coefficients; N°, N1, N2 - tensors of the null, 
first and second valency correspondingly; cx = specific heat capacity; 
p = density. 

A number of problems have been solved estimating a period of time prior to 
local fracture of viscoelastic systems in the form of silent-blocks and 
sandwich-type shear elements under cyclic load. If material constants 
have been determined correctly then (10) shows a satisfactory agreement 
with practice. 
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Material damage in the process of continuous loading may also be disclosed 
in the course of direct physical experiments. In the general case for 
rubber, concentration of damage obeys the relation: 

Ap(t) = Pkp [l-exp(-nt)], (11) 

where AP^ = damage storage from the moment of system loading till its 
failure; ft = constant. For CKH - 3 based rubber P^p = 5,3 (in terms of per 
unit value) and n = 0,0016. This concept has been confirmed in independent 
experimental studies wherein material damage (concentration of rupture with 
time up to system failure) has been determined on models by infrared spec-
troscopy. 

We may derive pre-fracture time from (11) if Ap(t) is known over the wide 
range of stress and temperature variations. Promising results have been 
obtained for thin films, as well as good agreement between theory and ex
periment . 
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FINITE ELEMENT ANALYSIS OF CRACK PROBLEMS IN 
HIGHLY ELASTIC MATERIALS 

Neng-Ming Wang* and Hilario L. Oh* 

1. INTRODUCTION 

It is well recognized [1,2] that the Rivlin-Thomas criterion [3] for the 
tearing of rubber vulcanizates can be stated in terms of the J integral [4]: 
A cut (or crack) in a rubber vulcanizate sheet will spread if J reaches a 
critical value of an energy characteristic of the material. Thus, using 
the above criterion and a plane stress finite element procedure, the crit
ical load that causes a crack to grow in uniaxial stretching of nicked 
rubber vulcanizate sheets was calculated in [2] and found to agree closely 
with existing experimental data. In [5], the tearing energy of two rubber 
test pieces was computed by using the J integral in conjunction with finite 
element calculations. The calculated results were again shown to agree with 
experimental data. It was from the recognition of the equivalence of J with 
the tearing energy that an experimental technique for measuring the tearing 
energy of rubber was developed in [6]. 

The purpose of this paper is to extend the computational procedure used in 
[2] to calculate J for two other "plane" crack problems. These are the 
plane strain stretching of a thick strip with an edge cut by a stress a 
(Figure la) and the generalized out-of-plane shear of the same geometry 
by a shear stress T (Figure lb). By generalized out-of-plane shear, we 
mean that while the dominating displacement component may be in the out-of-
plane direction, the components in the plane need not be vanishingly small. 
This is therefore in variance with the so-called anti-plane shear for which 
the displacement components in the plane are identically zero. 

The organization of the paper is as follows: In Section 2, we list the 
basic equations for a class of two-dimensional finite deformations which 
contain the plane strain and anti-plane shear as special cases. The 
materials are assumed to be highly elastic and incompressible. Based on 
a virtual velocity equation, a finite element procedure is developed. 
Since formulations of finite element procedures for nonlinear elastic 
materials have been well documented in the literature [7], only a brief 
discussion of the present procedure is given. In Section 3, an expression 
for the J integral pertinent to the problems considered in this paper is 
derived, while its path independent property is illustrated by direct eval
uation. It should be noted that this result is essentially contained in 
[1,8,9]. In Section 4, we report numerical results obtained for the two 
crack problems for Mooney materials. The values of J have been computed 
and plotted in several figures which depict the relationship between J and 
the applied load (a0 or T Q ) . For the plane strain stretching problem, a 
comparison is made of the computed J values with those of the correspond
ing plane stress case. It is found that the J values in the plane strain 
case normalized by the strain energy density corresponding of o'o (without 

*Research Laboratories, General Motors Corporation, General Motors 
Technical Center, Warren, Michigan. 
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a crack) are almost the same as those in the plane stress case. For the 
generalized out-of-plane shear problem, the J values are compared to the 
corresponding anti-plane shear solutions. 

2. BASIC EQUATIONS FOR COMBINED EXTENSION AND SHEAR DEFORMATIONS 

Consider in a cartesian coordinate system (x , i = 1,2,3) a body whose 
cross section at any x3 occupies a plane domain D which is the same for 
all x3 (Figure 2). The class of deformation to be considered is such that 
the displacement components u^ (i = 1,2,3) satisfy 

u± = u ^ x 1 ^ 2 ) . (2.1) 

We call (2.1) the combined extension and shear deformations which contain 
obviously the plane strain (u3 = 0) and the anti-plane shear (ui = u2 = 0) 
as special cases. For deformations characterized by (2.1) the deformed 
metric tensors Gjj and the strain tensors e±j are defined as follows: 

and 

G.. = 6.. + 2 e.. , (2.2) 
IJ 13 13 J 

eaS = T (ua,B + 1W + \ \a uk,3 ' (2*3) 
£a3 2 U3,a ' £33 U ' 

where 6̂ -; denotes the Kronecker delta and a comma preceding an index de
notes partial differentiation. Here we have used the convention that Greek 
indices range from 1 to 2 and Roman indices, from 1 to 3. The contravariant 
metric tensors G1^ are defined by the usual relations: 

G1] Gjk = 6* . (2.4) 

Let S be the Kirchhoff stress tensors onconvected coordinates initially 
coincide with the cartesian coordinates (x1) and F1 be the surface loadings. 
Then, the well known virtual velocity equation (e.g., [10]) in its time-
derivative form may be written as 

fS1^ 6e.. dV + /S1;jS f^u k. u, .1 dV = /F16 u. dS , (2.5) ij l_2 ,i k,jj l 
where the dot over a symbol denotes the rate of change versus "time", or 
increment. The volume and surface integrals are referred to the undeformed 
configuration. (For simplicity body forces were omitted in (2.5)). We 
assume that the material is incompressible and, hence, the variations of 
the displacements in (2.5) must be required to satisfy 

Glj 6e.. = 0 . (2.6) 

Expressions (2.5) and (2.6) are valid for arbitrary domains. For the con
figuration shown in Figure 2 and for deformations characterized by (2.1), 
these expressions can be written as 
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\sah I 
L o 

+ *"' * J dA + D7 ̂ ( l % % 3]dA " £ ^6"idS (2-7) 
G 6 ea3 + 2G 6 £a3 (2.8) 

where 9D is the boundary of the plane domain D. 

Finally, we assume that the material of the body is elastic and that.there 
exists a strain energy function W such that the Kirchhoff stresses S1^ 
satisfy 

n 8W 9W ^ 3e. "iJ 3e. ~Ji 
PG iJ (2.9) 

where p is a scalar quantity representing the hydrostatic pressure. The 
stress increments Ŝ O can be derived from (2.9) by simply differentiating 
with respect to "time" to give 

3 I dw .! ^13 S1J P G (2.10) 

A finite element procedure 

Based on the virtual velocity equation (2.7), the incompressibility con
dition (2.8) and the stress-strain relations (2.9) and (2.10), a finite 
element procedure has been developed. The details of the procedure appear
ed elsewhere [11]. Since the general formulations of finite element pro
cedures for large strain and large displacement are well established (e.g., 
[7,12]), only a brief outline of the present procedure will be given in 
Appendix A. In the present procedure, the elements are quadrilaterals in 
the plane domain D. The incompressibility condition (2.8) is satisfied 
only in an approximate way, namely the sum of the integrand in (2.8) over 
all integration points is zero. This approximation appears to have allev
iated the difficulties encountered when triangular elements were used [13, 
14]. Accordingly, elemental hydrostatic pressure and stresses are likewise 
represented by their average values. By doing so, the quadrilateral element 
is essentially a constant stress element. 

The incremental element-stiffness matrix equations assume the following 
form: 

K C e 

where the matrices K 

(2.11) 

.. , C and the vectors ju, p and jf are defined in Appendix 
A. We note that the elemental stiffness matrix equations (2.11) are de
rived for the combined extension and shear deformations (2.1) for which 
u^ £ 0, (i = 1,2,3). For plane strain deformations (U3 = 0) and for anti-
plane shear deformations (ui = U2 = 0), the dimensions of the matrix equa
tions (2.11) will accordingly be reduced. In fact, for anti-plane shear 
deformations, the incompressibility condition (2.8) satisfies automatically 
so that the matrix C vanishes identically. 
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For specific problems, the elemental stiffness matrix as given by (2.11) 
is assembled to form a master stiffness matrix. The area integrals in (A.11) 
and (A.12) may be computed by using any appropriate numerical quadrature. 
In the present work we have used a four-point Gaussian quadrature with the 
four integration points located at s = +_ 0.57735 and t = +_ 0.57735 in the 
para-metric s-t domain. The master stiffness matrix equations are then 
solved by a standard Gaussian elimination technique. For a prescribed 
load increment, the solution of the equations gives the corresponding in
cremental displacements and elemental pressure. The master stiffness matrix 
has the same form as in (2.11), which is apparently not banded. In order 
to reduce computing time, a reordering of the components of the vectors u 
and p has been made so that the resulting master stiffness matrix is banded. 

3. THE PATH-INDEPENDENT J INTEGRAL 

We now proceed to derive an appropriate expression for the J integral for 
the combined extension and shear deformations as described in (2.1). We 
assume that the elastic body has a crack, the crack face being perpendicular 
to the x2 direction (see Figure 3). The J integral was defined originally 
in [4] by 

r 3Ji i 
J = / Wdx2 - T • d s , (3.1) 

rL ~ dx1 J 

where W denotes the strain energy density, £ and u. denote traction and dis
placement vectors, respectively. The integral assumes the same value for 
any path T which surrounds the tip of the crack. For deformations described 
by (2.1), the J integral may be written in the following form: 

J = /[wdx2 - S a k (6^ + uj,) v — i d si , (3.2) 
r L K ,K a 3xj j 

where va denotes the exterior normal of the contour V defined in the unde-
formed geometry. The path-independent property of (3.2) is shown in Appen
dix B. 

4. TWO CRACK PROBLEMS 

In this section, we report the numerical results for the two crack problems 
shown in Figure 1. We assume that the materials are of the Monney kind and 
the strain energy function can be expressed by 

W = Ci [(Ii - 3) + a(I2 - 3) (4.1) 

where Ci, a are material constants and Ii, I2 are strain invariants de
fined by 

Ii = G11 + G22 + G33 , 

I2 = G11 + G22 + G33 . (4.2) 

The finite element procedure discussed in Section 2 is employed to calculate 
the stresses and deformation in the strip. Expression (3.2) is used to cal
culate the J integral. 

The finite element grid which is used in both crack problems is shown in 
Figure 4, where by symmetry only half of the region needs to be analyzed. 
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The crack geometry is specified by c/b =0.1. To test the accuracy of the 
grid, a linear elastic plane strain calculation is first made for a uniform 
tension in the x2 direction. The J integral is evaluated along the contour 
r which consists of line segments (shown dotted in Figure 4) that join the 
mid points of two prescribed sides of an element. Using appropriate values 
of Young's modulus E and Poisson's ratio v, the stress intensity factor K 
is determined from the computed J value and the relation 

K = [EJ/(1 - V2)] 1/2 

and found to be 2.05 o0/c. This compares well with the known numerical 
value of 2.15 a0i/c" reported in [15]. 

We now proceed to discuss our numerical results for the plane-strain 
stretching problem and for the generalized out-of-plane shear problem. 

(a) Plain-strain stretching: For a = 0.0, 0.5 and 1.0, incremental calcula
tions for the stresses and deformation in the strip as functions of the 
applied load oQ have been made. As in the case of plane-stress uniaxial 
stretching stretching [2], it is found that an increment of 0.2 for o0/Ci 
is satisfactory. Figure 5 shows the computed J values plotted against the 
nominal extension ratio X. For comparison purposes, the corresponding plane 
stress results from [2] have also been plotted in Figure 5. We see that 
for the same amount of stretching, the J values in plane strain are larger 
than those in plane stress. 

When the J values in Figure 5 are normalized by the quantity 2W0c, all 
curves coincide into one for X > 1.1 (see Figure 6). Here W0 is the elastic 
energy density corresponding to o0 (without the crack) given by I ? i 

ci [(^2 + T " 3) + a(T2- + 2^ ~ 3)]» f° r plane stress 
1 

Ci (1 + a) (X2 + — j - 2) , for plane strain. 
A (4.3) 

That the quantity (J/2WQc), or equivalently (tearing energy/2W0c), is 
dependent mainly on stretch ratio X was postulated by Rivlin and Thomas 
[3] for the stretching of rubber sheets with an edge cut (plane stress). 
This was verified experimentally by Greensmith [16] who showed that it 
holds true for c/b < 0.2. Thus for plane stress, results shown in Figure 
6 are but a confirmation of results in [3,16]. However, that the quantity 
(J/2W0c) in plane strain should also be independent of the material con
stant a and that it coincides with values in plane stress for X > 1.1 are 
new results. Although results shown in Figures 5 and 6 are obtained for a 
specific crack geometry with ratio c/b = 0.1, they are expected to be valid 
also for nearby ratios, e.g., 0 < c/b < 0.2, based on similar arguments 
advanced in [3]. 
(b) Generalized out-of-plane shear: For a = 0.0, 0.5 and 1.0, the computed 
J values are plotted against x0/Ci in Figure 7. The dotted curve represents 
the results for the corresponding anti-plane shear problem (ui = U2 = 0). 
For the latter problem, the governing differential equations are linear 
(Green and Adkins [10], p. 86) and, hence, the J integral can be explicitly 
expressed as 

4Ci (1+a) 
by using the elastic results in [17]. 

[i «■ ®] • (4.4) 
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For a = 0, the calculated displacements ui and u 2 are found to be identi
cally zero, which means that the assumption underlying the anti-plane shear 
deformation has precisely been met. Moreover, the calculated pressure is 
found to remain constant for all stages of incremental loading. This is 
in complete agreement with the analytical relation 

[p + 2(l+2<x)]/Ci ■2a (4.5) 

derived in [10] for anti-plane shear deformations. For a ^ 0, uj and u 2 
do not vanish in general. The anti-plane shear assumption is therefore 
no longer valid as indicated by the J results in Figure 7. To elucidate 
this further, we have computed the quantity [p + 2(l+2a)]/Ci for a = 1 using 
the following procedures: 

(i) the present finite element procedure without assuming 
ui = U2 = 0; 

(ii) the same finite element procedure assuming Ui = u 2 = 0; and 
(iii) the analytical solution corresponding to anti-plane shear 

(using c/b = ~ 0 for simplicity). 

These results have been plotted in Figure 8 for T 0/CI =4.2. It can be 
seen that the results of (ii) agree well with those of (iii) as expected, 
but are significantly different from those of (i). 

Finally, we compute the quantity J/2W0c where W0 denotes the strain energy 
density in the strip (without the crack) caused by the shear T 0 at x2 = +_ b. 
Let X be the extension ratio of an initial length in the x2 direction, then 
the strain energy density Wo can be written as 

W = Ci (1+a) (X2 1) (4.6) 

The computed values of (J/2W0c) for a = 0, 0.5 and 1.0 are plotted in 
Figure 9. The dotted line corresponds to the anti-plane shear result which 
assumes a constant value of 1.58. From this figure it is seen that the 
dependence of the quantity J/2W0c on both the material parameter a and the 
extension ratio X is rather small. Hence, for practical purposes, it will 
be sufficient to use the exact anti-plane shear solution (4.4) or, equi-
valently, 

— tan W (4.7) 

to calculate J. 
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APPENDIX A 

A finite element procedure 

Let the domain D shown in Figure 2 be divided into an assemblage of quad
rilateral elements. For each element the initial cartesian coordinates 

1 2 * 
(x ,x ) and the displacements u are mapped bilinearly onto a square s-t 
domain for se[-l,l] and te[-l,l] by 

n 

<*00" 
(n) qn (s,t), (A.l) 

where 

= (1+s) (l-t)/4, 

= (1+s) (l+t)/4, (A. 2) 

and the index n (n = 1,2,3,4) refers to the node number of the four nodes 
of the quadrilateral. 
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Denoting 

U - (Ui , U2 , U3 , Ui , ..., U 3 J , 

| T = (En, E 2 2, 2E12, 2E13, 2E23) , 
and making use of the strain-displacement relations (2.3), we obtain a 
matrix representation for the incremental strain-displacement relations, 

E = (H + I|IB) u . 
The matrices H, \j> and B in (A. 3) are defined as follows: 

(A.3) 

bi 0 0 b 2 0 0 b 5 0 0 b 6 0 0 

b 3 0 0 b^ 0 0 b 7 0 0 b 8 0 0 

0 bi 0 0 b 2 0 0 b 5 0 0 b 6 0 

0 b 3 0 0 bh 0 0 b 7 0 0 b 8 0 

0 0 bi 0 0 b 2 0 0 b 5 0 0 b 6 

0 0 b 3 0 0 bk 0 0 b7 0 0 b8 

(A.4) 

0 0 0 0 
0 0 

0 0 
0 0 

0 0 

0 
0 

1 

0 

0 
0 

0 

1 

(A. 5) 

3u 
3x 
0 

3u 
dy 

0 

0 

0 

dy 

du 
dx 

0 

0 

dx 

0 

dv 
dy 

0 

0 

0 
3v 
dy 

3v 
dx 

0 

0 

8w 
3x 
0 

3w 
3y 

0 

0 

0 
3w 
3y 
3w 
3x 
0 

0 

Here the coefficients b. are given by 

( b l ) = I* s xd-t) - tx(lJs)]/4, 
>> b 2 ' 

(A. 6) 
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( b s) = [+ sy(l-t) - ty(l+s)]/4, 

( b 5 ) = [- sxC1+t) + V1^174' 
( b 7 ) = tt S

y U + t ) + ty(l+S)]/4, 

with 

and 

x 9t7 
9Xy 

y "St7 x 8s7 
8x y 

-y 3s' 

7 - 1* ̂ Z 9x 3y 
3s 3t 3t Bs * 

In the above expressions, notation (x,y) stands for (xx,x2). Similarly, 
notation (u,v,w) stands for (ui,u2,u3). 

Making use of the variational equation (2.7) and letting 

GT = (G11, G22, G12, G13, G 2 3 ) , 

S T = (S11, S22, S12, S13, S 2 3 ) , 

Y 0 0 
0 y 0 
0 0 Y 

where 

S 1 2 S2 

we obtain the following elemental equilibrium equations: 

/(H + ^ B ) T S dA + /BT ¥ B u dA = f , (A.7) 
where the integral is defined over the initial elemental#area and ̂f denotes 
the vector of incremental nodal forces corresponding to 11. The displace
ments u must also satisfy the incompressibility condition (2.8) which is 
equivalent to 

/G (H + I)JB) u dA = 0 

by assuming a uniform p inside the element. 
(A.8) 

We now write the incremental stress-strain relations (2.10) in the matrix 
form 

£ = Q jE + p G, , (A. 9) 
where the dimension of the matrix Q is 5 x 5. Substituting (A.9) into 
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(A.7) and combining the resulting equations with (A.8) gives the elemental 
stiffness equations: 

w h e r e 

K 
e 

C 

Tl 
<: 

0 

"• "" 
u 
— 

PJ 

K = f[(H + TpB)T Q (H + I/JB) + B T <C B]dA , 

C = /G (H + i|/B)dA 

(A.10) 

(A.11) 

(A.12) 

Matrix Q for Mooney Materials 

For Mooney materials (4.1) and for deformations characterized by (2.1) the 
stress-strain relations (2.9) are 

5 1 1 = Ci[2 + 4a(l+E22) + p G11] , 

5 2 2 = Ci[2 + 4a(l + En) + p G22] , 

5 1 2 = Ci[-4a Ei2 + p G12] , 

5 1 3 = Ci[-4a Ei3 + P G13] , 

5 2 3 = Ci[-4a E 2 3 + P G23] . 

Using (2.10), the matrix Q in (A.9) is then given by 

Q = Cia 

0 4 0 0 0 
0 0 0 0 

-2 0 0 
-2 0 

symmetrical -2 

-Cip 

^ ( G 1 1 ) 2 2(G 1 2) 2 2GX1G12 

(A.13) 

2 Gn Gi3 2G12G13 

2(G 2 2) 2 2G12G22 2G12G2a 2G22G23 

(G11G22+G12G12) (G11G23+G12G13) (G12G23+G13G22) 

(G11G23+G12G13) (G12G33+G13G23) 

Lsymmetrical (G22G33+G23G23)J 

(A.14) 
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APPENDIX B 

To show that (3.2) is path independent, we begin with the volume integral 
(over the undeformed geometry) 

Iff 8W 
V 8x 

dxxdx2dx3 Iff 1 8W 
lk 

9W 
ki 

de., lk 
dx1 

dxMx2dx3 (B.l) 

where V is an arbitrary volume in the undeformed state. 

Adding Iff p G1K — — dx*dx2dx3 
dx1 

which is identically zero for incompressible materials, to the right hand 
side of (B.l) and making use of (2.3) and (2.9) results in 

3u. 
R.H.S. of (B.l) = J 7 y ( s l k ( 6 J + Jj —J-J dx*dx2dx 

X dx1 
, i 
3u. 

= SIS - X [sik(6J + uj,) - ^ - I d x W d x 
V 3X1 L k 'k 9x J 

- / / / S i k(6, j + u j , - ^ - dxMx'dx 3 v L k , k J , i ax1 

The last term in the above expression vanishes because 

[Sik (6J + ujJ] ,k^J,i 0 

are the equilibrium equations for finite deformation. Applying the diver
gence theorem to the remaining term and equating to the left hand side of 
(B.l) gives 

/// 8W 
3u. 

V dx1 
dx:dx2dx3 = // slk(6^ + u\) v. — i dxxdx2dx3 , 

av >k i ax1 (B.2) 

where 9V denotes the surface which encloses V. The path independent pro
perty of (3.2) follows immediately by integrating (B.2) over a volume which 
is of unit length in the x3 direction. 
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T0 

© 

I I I I I 
(a) (b) 

Figure 1 (a) Plane strain stretching and (b) generalized out-of-plane 
shear of a thick strip with a crack. 

Figure 2 Domain and coordinate system. 
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* X 

Figure 3 Notation for defining the J integral 

Figure 4 Finite element grid for half of strip for c/b = 0.1. Dotted 
contour indicates the path for calculating the J integral. 
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(£) ■• 

- Plane Strain 
Plane Stress 

Figure 5 Calculated J values vs. nominal extension ratio A for plane 
strain and plane stress stretching. 
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\ 

Plane strain 

Plane stress 

1.5 

Figure 6 Calculated J/2W0c values vs. nominal extension ratio 
X for plane strain and plane stress stretching. 
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FEM RESULTS 
EXACT (ANTI-PLANE SHEAR) 
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0; 
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X/c 
Figure 7 Calculated J values vs. shear stress T for generalized 

out-of-plane shear. 
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xVc 

Figure 8 Distributions of normal stresses in the x3 direction along 
x2 = 0 calculated by different procedures. 
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CN 

a = l 

1 FEM RESULTS 
EXACT (ANTI-PLANE SHEAR) 

1.5 

Figure 9 Calculated J/2W0c vs. nominal extension ratio X for generalized 
out-of-plane shear. 
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A FINITE ELEMENT METHOD ANALYSIS OF AN ELASTIC-PLASTIC SOLID 
CONTAINING HOLES IN THE VICINITY OF A CRACK TIP 

Kjell Eriksson* 

INTRODUCTION 

Inclusions can sometimes reduce fracture toughness strongly i.e., in alloys 
where fracture is accompanied by extremely limited plastic flow. This 
feature is characteristic of modern high strength steels with, often unin
tentionally, a high inclusion content of sulphides and oxides. The reduc
tion of fracture toughness due to inclusions must be a result of their 
influence upon the stress and strain distributions in a body, especially 
in the vicinity of the crack tip. The most accurate description of these 
distributions in an elastic-plastic body is today obtained by means of the 
finite element method. 

The path independent J-integral is a function of stress and strain along a 
path enclosing the crack tip which characterizes the state at the crack tip 
and which can be used as a fracture criterion for both elastic and elastic-
plastic conditions, as suggested by Rice [1]. In this work an attempt is 
made to estimate the reduction of fracture toughness due to inclusions by 
calculating the J-integral for equivalent paths around domains with and 
without inclusions. 

According to a discussion in a previous paper [2] inclusions such as oxides 
and sulphides shall be considered as holes already from zero load. The 
results of this work is compared to experimental results given in the above 
previous paper. 

THE FINITE ELEMENT PROGRAMME 

The finite element programme used in this work was originally developed by 
Harkeg&rd and Larsson [3]. They adopted a principle according to Yamada 
et al [4], based on the von Mises yield criterion and the Prandtl-Reuss 
equations, permitting an incremental treatment of elastic-plastic problems. 
The programme has subsequently been extended by Markstrom to include rou
tines for calculations of path-independent integrals. Markstrom and 
Carlsson [5] have later studied, among other things, the effect of element 
size on the value of the J-integral and also the effect of different 
orientations of the integration path. One important result is that if 
the integration path intersects plasticized domains, then path independence 
is preserved only if the calculation includes the total elastic-plastic work. 
With their results in mind, it has been possible to choose an optimal ele
ment size and permissible integration paths. 

The present problem is attacked by using the 'boundary layer1 approach, 
that is, by assuming that the boundary stresses a-jj of an elastic-plastic 

* Department of Strength of Materials and Solid Mechanics, The Royal 
Institute of Technology, Stockholm, Sweden 
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domain around the crack tip are given by the singular term in the elastic 
stress solution: 

a. . = - £ — f.. (6) , (1) 
^ /2iR 1J 

where K is the stress intensity factor, R the radius of the domain considered 
and f-jj (0) are given by the elastic solution. 

The domain around the crack tip is divided into approximately 300 elements. 
Triangular constant strain elements are used. The element size at the 
crack tip is approximately 0.03 times the crack length. The load is 
applied at the boundary nodal points and the load distribution is determined 
according to equation (1) and to the principle of virtual work. For each 
load increment at most one element is plasticized. 

Three geometries containing holes are studied. The first one comprises 
one hole, symmetrically situated in the elastic domain between the two 
branches of the plane strain plastic zone, and the second one also one 
hole asymmetrically situated with its centre on a line through the crack 
tip and the point of maximum extent of the plastic zone. The third one 
is a combination of the former two geometries, and is shown in Figure 1. 
As a reference a geometry without holes is used. The proportions of the 
geometry at the crack tip are chosen according to observations of the 
fracture surfaces of a real material. 

COMPUTATION OF THE J-INTEGRAL 

A necessary condition for path independence of the J-integral is that the 
domain inside the integration path is simply connected. In order to check 
if the presence of holes there implies any restriction of the path indepen
dence, the J-intregral was computed for paths either including or excluding 
the hole(s) in all geometries. All such integration paths coincide except 
in a neighbourhood of the hole(s), where for a given geometry one path is 
traced so as to include the hole(s) and the other so as to exclude it 
(them). For any pair of integration paths the corresponding difference in 
J is smaller than 1% for any value of J. Thus the presence of holes in the 
domain inside an integration path does not imply any restriction of the 
path-independence of the J-integral. 

RESULTS AND DISCUSSION 

The values of the J-integral of the geometries containing holes are given 
as functions of that of a massive material, in Figure 2 for 'small loads', 
that is, up to loads for which the crack tip plastic zone encloses all 
holes, and in Figure 3 for the whole load range investigated, where i = 1 
refers to the two-hole model, i = 2 to one hole assymmetrically situated 
and i = 3 to one hole symmetrically situated. 

In the whole load range the presence of holes implies increased stress and 
strain in every element of the hole-geometries. It may be concluded that 
the larger J-value of the hole-geometries correspond not only to a larger 
volume of plasticized material, but also, especially at the crack tip, to 
a more intense stress and strain distribution. Therefore, considering 
equally tough matrix materials, the larger value of the J-integral of the 
hole-geometries compared to that of a massive material is likely to cor-
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respond to a lower apparent fracture toughness of an inclusion material. 

If this assumption is correct the results from all geometries indicate that 
the reduction of fracture toughness due to inclusions increases as the 
fracture toughness of the matrix material increases. 

In Figure 4 the reduction of fracture toughness according to the model is 
compared to experimental results. In spite of its simplicity the model 
yields reliable results. Under plane strain conditions the model predicts 
accurately the reduction of fracture toughness and yields conservative, safe, 
values when extrapolated to mixed plane stress-plane strain conditions. 
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Figure 1 The 'Two Hole Model' 
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FINITE ELEMENT ANALYSIS OF CRACK PROPAGATION UNDER COMPRESSION 

H. Miyamoto*, S. Fukuda** and K. Kageyama* 

INTRODUCTION 

The behaviour of brittle materials under compression has been studied by, 
e.g., Hoek and Bieniawski [1] and Brace and Bombolakis [2]. Their experi
mental results can be summarized as follows: 

1) Under compression, cracks propagate stably and further propagation 
of crack requires an increase of the applied stress. 

2) Branching cracks emanate from the initial crack, deviate from the 
initial direction and gradually become aligned with the axis of the major 
compressive load. 

As the stress at final catastrophic fracture is much greater than that at 
fracture initiation, as stated in (1), analysis of the propagation stage 
is quite important for the prediction of fracture under compression. 
Therefore, the authors paid their chief attention to the successive analy
sis of the change of stress states with crack propagation. Since the 
shape of cracks and stress states are quite complicated in the case of 
crack propagation under compression, they can be analysed only by finite 
element methods, and these must be more accurate finite elements than are 
conventionally used. Therefore, a 10 node, 20 degrees of freedom, triangu
lar element, which makes it possible to adopt coarser meshes without the 
loss of high accuracy, was used in this analysis. A new finite element 
programme was developed, which can calculate the elastic contact stresses 
of crack surfaces at closure, in view of the fact that cracks might close 
under compression. The calculated results were closely comparable with 
'the experimental results, and it was made clear that the fracture strength 
of brittle materials under compression cannot be evaluated without due 
consideration of the process of stable crack propagation. 

THE 10 NODE 20 DEGREES OF FREEDOM TRIANGULAR FINITE ELEMENT 

A triangular element of which the shape function is a complete cubic 
polynomial was used. This element possesses 10 nodes which correspond 
to the undetermined coefficients of the polynomial. The advantage of the 
use of a higher order shape function is that coarser mesh divisioning is 
possible without loss of high accuracy. Another advantage is that the 
value of stress and strain can be given by the node value. 

* Department of Precision Machinery Engineering, Faculty of Engineering, 
University of Tokyo, Tokyo, Japan 

** Department of Precision Machinery Engineering, Faculty of Engineering, 
University of Tokyo, (presently with Welding Research Institute, Osaka 
University, Osaka, Japan) 
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CONTACT PROBLEM OF CRACK SURFACES AT CLOSURE 

Miyamoto and Shiratori [3] calculated contact stresses of crack surfaces 
at closure in order to study the opening and closure behaviour of fatigue 
cracks, but their analysis was limited to the case where the boundary 
condition of stress will be satisfied automatically due to symmetry if 
the boundary condition of displacement is satisfied on the contact surfaces. 
In the case of inclined cracks and their branching cracks which are to be 
studied in this analysis, the mere satisfaction of the boundary condition 
of displacement does not necessarily satisfy the boundary condition of 
stress on the closed crack surfaces. 

Our newly developed finite element programme can deal with the contact 
problem on the closed crack surfaces where the state of contact cannot be 
assumed geometrically. In this finite element analysis, the boundary 
conditions of stress and displacement on the crack surfaces are replaced 
by those of the nodal force and nodal displacement on the crack surfaces. 
Let the node on the upper crack surface be i and the node on the lower 
surface be j, then the boundary conditions of closed crack surfaces are: 

fYi ♦ £Yj = o CD 

Y. - Y. + dY. - dY. = 0 (2) 

where fy^, dy^ are respectively the force on and the displacement of node 
i in the Y direction. When there is no friction between the crack sur
faces, the nodal forces in the X direction are equal to zero: 

fXi = fxj = 0 . (3) 

The effect of friction is ignored in the following analysis for simplicity. 
As the area of contact of crack surfaces is generally not self-evident, 
the contact of crack surfaces is determined by the following conditons. 

(1) If node i and node j contact each other, then fy. > 0. 

(2) If node i and node j do not contact, Y.+ dw. > Y. + d.... v J J l Yi 3 Yj 
The correct solution satisfying the boundary condition of crack surfaces 
is obtained by repeating the same procedure, correcting successively the 
error of the boundary condition. This procedure is automatically carried 
out by the computer. 

FRACTURE CRITERIA 

As the stress state near the tip of a propagating crack is in the mixed 
mode I - II condition, the strain energy density criterion proposed by 
Sih [4] and the maximum stress criterion proposed by Erdogan and Sih [5], 
which are applicable to mixed mode fracture, were adopted in this analysis. 
The strain energy density criterion is based on the local density of the 
energy field in the crack tip region. For two-dimensional problems the 
strain energy density factor S is given by the quadratic form: 
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S = a i lK* + 2a 1 2K IK n + a 2 2K^ , (4) 

where Kj and KJJ are the stress intensity factors of mode I and mode II, 
respectively, and a ^ are the coefficients which are functions of Young's 
modulus, Poisson's ratio and the polar angle 0. The fracture criterion 
can be expressed mathematically for two dimensional problems in the 
following simple forms: 

8S/90 = 0, 82S/802 > 0, 9 = 6 (5) 

S . = S(0 ) = S (6) 
m m v o cr 

where 0 is the fracture angle. 

The maximum stress criterion postulates that the crack will open up in the 
plane normal to the direction of maximum stress and that crack propagation 
will occur when the maximum TITTTOQ value reaches KJQ. These conditions 
can be expressed as 

KTsin0 + KTT (3cos0 - 1) = 0 (7) 
I o II ** o K J 

~ KT(1 + cos0 ) - 3KTTsin0 = KT_ . 2 1 o II oj IC j cos Y~ |KT(1 + cos0J - 3KTTsin0^| = KTr . (8) 

SIMULATION PROCEDURE 

The procedure for simulating crack propagation under compression was as 
follows. At each stage of propagation, the direction of the crack and the 
applied stress were determined by the above fracture criteria, using the 
stress intensity factor values calculated by the finite element method. 
The increments of crack growth were taken to be about 1/10 of the initial 
crack length, considering the experimental results [1], [2]. The width 
of the propagating crack was assumed to be infinitesimally small. The 
initial crack analyzed was of an elliptical form, but the crack growth 
increment Aa was about one hundred times greater than the radius p of the 
crack tip. Thus, it was considered that there was no effect of the finite-
ness of radius p on the direction and the stress of fracture initiation. 
Analysis was made in plane strain and the stress intensity factors were 
calculated by the displacement method. The simulation was carried out 
until complete failure of the whole specimen. 

TEST SPECIMEN ANALYZED 

The geometry and the mechanical properties of the test specimen analyzed 
were chosen so as to be the same as those of the glass specimen used by 
Hoek and Bieniawski [1] (see Figure 1). The mechanical properties of the 
glass specimen are given in Table 1. 
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SIMULATION RESULTS 

1. Crack Path 

The branching paths obtained are shown in Figure 2. The path shown in the 
upper right is obtained assuming the strain energy density criterion and 
the path shown in the lower left is obtained assuming the maximum stress 
criterion. If Aa is taken to be a/10, cracks propagate without increase 
of the applied stress after Dl and D2. In order to find the critical point 
Aa is taken to be a/20 after Dl and D2, then cracks propagate stably to Fl 
and E2. As the branching cracks become aligned with the axis of the com
pressive load, the cracks propagate in a zigzag manner. On the whole the 
crack path thus predicted agrees quite well with the experimentally obtained 
crack path. Meshes near the branching crack are shown in Figures 6 and 7. 

2. Change of Stress Intensity Factors with Crack Propagation 

The values of Kj and K-Q at the tip of initial crack, calculated by the 
finite element method are: 

Kj/Zrfaa = 0.228 ; K^/Faa = 0.397 . 

Although the finite element values are respectively, 8.8% and 8.3% smaller 
than the theoretical values of Kj and KJJ, the accuracy of the prediction 
of the crack path is expected to be high because the error in KJJ/KJ, which 
determines the direction of the crack path, is only 0.53%. The initial 
crack closes when the applied stress, Pc, reaches 6400 MPa. This is about 
200 times greater than the crack initiation stress, and the crack does not 
close at crack initiation. The relationship between the branching crack 
length and normalized stress intensity factors is shown in Figure 3. It 
should be noted that, even under compression, Kj is positive, and the 
extending "crack does not close during the stable process of propagation. 
No appreciable difference between the strain energy density criterion and 
the maximum stress criterion is observed. 

3. Change of the Compressive Stress Pcr with Crack Propagation 

The change in the compressive stress Pcr required for further crack extension 
with crack propagation is shown in Figure 4, together with the experimental 
data of Hoek and Bieniawski [1]. In the case of brittle materials, cracks, 
once initiated, will immediately lead to catastrophic failure if the applied 
stress is tensile. Therefore, the criterion for initiation can be regarded 
as the fracture criterion for total failure under tensile loading. Under 
compression cracks propagate stably and the "fracture hardening" phenomenon, 
which means that the applied stress must be increased in proportion to further 
propagate cracks, is observed; in the case of the strain energy density 
criterion, cracks do not propagate catastrophically until the L/2a value 
reaches 0.4. Therefore, quantitatively good agreement between experiment 
and simulation is found in the relation of Pcr to normalized crack length. 
Moreover, there is no appreciable difference between the maximum stress cri
terion and the strain energy density criterion. A great difference is 
observed, however, between simulation and experiment in terms of the fracture 
stress, but if we note the ratio of fracture stress/crack initiation stress, 
good agreement is found between simulation and experiment. 
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DISCUSSION 

In this paper, the effect of friction was ignored for simplicity. This 
assumption can be regarded as appropriate, at least for this simulation, 
since the cracks did not close during the stable process of propagation. 
When the roughness of the crack surfaces becomes greater than the opening 
width of the crack, the crack surfaces are expected to contact. As the 
frictional force decreases the KJJ value, the fracture stress will be 
increased if friction exists, and it is thought that this is one reason 
why the agreement between predicted and observed ultimate failure loads is 
so far off. 

Several fracture criteria have been proposed for mixed mode problems, but 
they are originally derived for crack initiation and not for crack propa
gation. As cracks propagate stably under compression, a fracture criterion 
for crack propagation is required for analysis. In this paper, the strain 
energy density criterion and the maximum stress criterion are extended to 
crack propagation. From a continuum mechanics point of view, the ideal 
crack path can be mathematically expressed as a smooth differentiable curve. 
Because, when a finite change of angle occurs with an infinitesimal incre
ment of crack growth, it is probable that the crack path depends on the 
crack growth increment Aa. Therefore, the fracture criterion for crack 
propagation should be compatible with the differentiability of the crack 
path curve. Many experimental results [4], [5] show that cracks change 
their direction in a zigzag manner if KJJ is not zero. It follows from 
this that the fracture criterion for crack propagation must satisfy 
the condition that the KJJ value be zero. Otherwise the differentiability 
of the crack path curve is not satisfied. Kitagawa and Yuuki [8] also 
suggested a "KJJ = 0" criterion. 

Nuismer [9] derived the following stress intensity factors for deflecting 
cracks when the crack growth increment converges to zero. 

KT = \ cos | rKI(l+cos0)-3KIIsinel (9) I 2 

K n = j cos | (KjSine+KjjCScose-l)"] (10) 

where Kj and KJJ are the_ stress intensity factors at point 0, and Kj and 
KJJ are those at point 0 respectively. Figure 5 shows the comparison of 
Nuismer's results and Kitagawa and Yuuki's results. Here, 3 = arc tan 
(KJ/KJJ), and 6 is taken positive in the clockwise direction. Good agree
ment between the two results can be observed. If Nuismerfs solution is 
correct, then the "KJJ = 0" criterion is no other than the maximum stress 
criterion. But Kitagawa and Yuuki's results show that the effect of the 
crack growth increment being finite is not negligible, and that, in the 
case of a finite crack growth increment the "KJJ = 0" criterion and the 
maximum stress criterion agree only approximately. Oscillating solutions 
of KJJ, as seen in Figure 3, can be explained by this KJJ decreasing effect, 
and the zigzag crack path in Figure 2 could be made smooth if we let the 
crack growth increment converge to zero. 
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CONCLUSIONS 

(1) Fracture behaviour in compression can be well explained by a finite 
element simulation in which special attention is paid to crack propagation. 

(2) Even under compression, Kj was positive, and cracks propagated in the 
opening mode in this simulation after the first crack growth increment. 

(3) It was made clear that the fracture criterion for crack propagation 
must contain a "KJJ = 0" condition, from the continuum mechanics point of 
view. 
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Table 1 The Mechanical Properties of the Glass Specimens 

E (MPa) 

73550 

V 

0.25 

Kc (MPa-m1/2) 

1.47 

Scr (MPa*m) 

2 .91 
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ON VIRTUAL CRACK EXTENSION METHODS FOR COMBINED 
TENSILE AND SHEAR LOADING 

M. L. Vanderglas and R. J. Pick* 

INTRODUCTION 

The virtual crack extension methods described by Parks [1] and Hellen [2] 
have been shown to have advantage over other methods of applying finite 
element techniques of Linear Elastic Fracture Mechanics [3]. The methods 
of Parks and Hellen are both designed to compute the energy release rate 
(G) from (i) the displacement field before crack growth predicted by the 
finite element or other method, (ii) and the change of stiffness during 
growth, as described in equation (1), 

« - - U - - i w , J g l M * < « i , J S L tD 
where a is the crack length, u the displacements, [K], the finite element 
stiffness and f the loads. If the loads remain constant during crack 
extension then 

Parks [1] computes this expression by summing the contributions to this 
equation from each element of a contour surrounding the crack. In contrast 
Hellen [2] bases his calculations on the assembled global stiffness matrix. 
In both methods, stiffness derivative terms are approximated by 

Stiffness terms depend on the nodal coordinates and the difference A[K] 
is due to the alteration of the coordinates of some nodes by an amount Aa. 
A complication arises in combined tensile and shear loading because the 
calculated value of G depends on the direction (angle 9) in which the crack 
is assumed to extend. Most finite element techniques for the estimation 
of stress intensities (Kj, KJJ) do not consider the variation of calculated 
values with the assumed (instanteous) propagation direction. It has been 
proposed that a crack will propagate in a direction favouring maximum 
energy release (G m a x). If only to provide the most conservative value, the 
magnitude and direction of the maximum energy release (or equivalently, 
stress intensity) are desirable from an analysis point of view. 

Department of Mechanical Engineering, University of Waterloo, Waterloo, 
Ontario, Canada, N2L 3G1 
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VARIATION OF Kj, K n , Jlf J2 WITH 9 

Defining W as the strain energy density, u-̂  the displacement vector, Tj_ 
the traction vector and s as the distance and n^ as the normal along a 
contour, Eshelby [4] has defined 

K 
3u. 

Jv = /<Wn - T K li d \ 
ds (4) 

taken over any open contour starting at the lower crack face, surrounding 
the crack tip and ending at the upper face. He proves that JK gives the 
energy release rate if the crack were to extend in the xj( direction (the 
crack is initially aligned with the xK axis). Rice [5] shows further, that, 
by choosing a convenient contour the energy release rate can be calculated 
even when local crack-tip yielding is modelled. 

Hellen and Blackburn [6] have shown that in two dimensional elasticity 
problems with combined tensile and shear loading, the stress intensity 
factors Kj, KJJ are related to the Ji and J2 integrals by 

_ (l-v)QK) 2 2 Jl 4E (KI KII3 

_ -Qv)(l + K) 
j 2 2E KI KII 

(5) 

(6) 

where K-QJ and J3 are assumed to be zero and v is Poisson's Ratio, E, 
Young's Modulus and K = (3-4V) for plane strain. 

VARIATION OF G WITH Jlf J2 AND 0 

The value of G is simply Jx for a tensile mode (I) of fracture however 
for tensile and shear loading (I, II) the calculated value of G depends 
on the value of 6. The virtual crack extension methods can be used to 
calculate 

Ji = - 3V 
3a 6=0 

{u}J mi 
a a 

{u} 
9=0 

(7) 

I - *L 
0=7T/2 2 9a (8) 

It is therefore desirable to have a relationship between Ji, J2, 9 and G. 
Hellen has predicted the trajectory of a two dimensional crack by calcu
lating G for several value of 9 and assuming growth in the direction of 
maximum G. Upon plotting the results of a test case, Hellen discovered 
a sinusodial variation of G with 9. Similar results can be obtained inde
pendent of the mesh size suggesting the relation between G and 9. 

By studying the effect of A a on the element stiffness matrix it can be 
shown that G at any angle 9 is defined by 
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G(9) = Jxcose + J2sin9 . (9) 

Furthermore it becomes apparent that this sinusodial behaviour of G(6) is 
a consequence of the assumed linear material behaviour (strain energy is 
a quadratic form of the nodal displacements). It may be expected that 
formulations of the problem which include (nonlinear) plastic behaviour 
or based on plate theories will not exhibit this behaviour. 

Considering relation (9) the maximum energy release rate occurs at 

2 K i K n 
9 = arc tan | - v ,.„—5-] = arc tan 

KI KII W 
and has the value 

(H-vHl+x) „ 2 2 „ ,£ 
max 4E I I I I I I ' 

The relationship between G and 0 is shown graphically in Figure 1 and 
illustrates the following: 

1) a polar plot of G(8) versus 6 gives a circle which intersects 
the origin, 

2) if Kj i 0, K n = 0 or if Kj = 0, KJJ + 0, the circle is centered 
on the x-axis, 

3) if Kj ± 0 and KJJ i 0, the centre of the circle will not lie on 
the x-axis, 

4) the minimum and maximum values are the same in absolute value 
and are oppositely directed, 

5) the maximum value of G(0) is the same as the vector sum of Ji and 
J2. 

In three dimensional applications, similar results are obtained except 
that, instead of a circle, a sphere is obtained: 

G = G(0, (j)) = Jicos9sin(j) + J2sin9sin(j) + J3COS(J 

where 0, <\> are angles shown in Figure 2 and G varies along the crack 
front. 

If the crack lies on a plane of symmetry and boundary conditions are sym
metrical with this plane, the component J^ normal to this plane must be 
zero. The parts of the contour contained in symmetric parts of the body 
are non-zero but opposite in sign. Thus, mixed mode crack problems can
not be analyzed using symmetry unless other information is available for 
the calculation of J2. 
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EXAMPLE OF A CIRCULAR CRACK IN A HALF-SPACE 

As an example, a circular crack in a half-space was analyzed under the 
action of 10,000 psi applied perpendicular to the crack face (Figure 3). 
Although this problem could be analyzed using an appropriate two-dimensional 
finite element formulation, a 90° segment was analyzed as an example of 
a crack problem giving rise to the two components Jx, J2. A modified form 
of the stiffness derivative technique was used to predict the values of 
Ji and J2 for four points along the crack front. The displacement field 
was obtained using a variety of constant and linear isoparametric wedge 
and cube-like elements. Elements bordering the crack front were modified 
for singular behaviour. 

The results of the analysis give the tabulated values of Ji, J2 shown in 
Table 1. Because of symmetry the crack remains in its plane when growing 
and therefore J3 is zero. 

CONCLUSIONS 

The method of virtual crack extension can be used to predict Ji, J2, J3 
the energy release rates for crack growth in three mutually perpendicular 
directions. It has been shown that this can be related to the energy 
release rate G(9, <|>) for crack growth in the directions described by 0 and (j> 
at any point along the crack front. G(9, <()) can therefore be considered 
a vector having both magnitude and direction. Prediction of the vector 
with maximum amplitude G m a x is obtained from the vector sum of Jj, J2, J3. 
Since Ji, J2, J3 can be related to Kj, KJJ and KJJJ which may be related 
to crack growth rate and direction, the value of G or G m a x should also be 
indicative of crack growth rate and direction. There remains however the 
question as to the relation between G and the crack behaviour. 
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Table 1 Ji and J2 for a Circular Crack in a Half-Space 

[ * 
11.25° 

33.75° 

56.25° 

78.75° 

Ji 

34.77 

29.48 

19.70 

6.92 

J2 
6.92 

19.70 

29.48 

34.77 

Gmax = (J?+Ji)l/2 

35.45 

35.46 

35.46 

35.35 

Derivations by Sneddon [7] show that Gm has a constant value along the 
crack front of 34.76. The combination of the calculated values of Ji and 
J2 give a value of 35.46 within 2% of the theoretical value. 
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A FINITE ELEMENT ANALYSIS OF A CIRCUMFERENTIALLY 
NOTCHED TENSILE SPECIMEN 

D. K. Brown* and R. M. McMeeking** 

INTRODUCTION 

Over the past few years much research has been carried out at the Univer
sity of Glasgow into ductile fracture. Much of the experimental work has 
involved the use of circumferentially notched tensile specimens [1]. By 
varying the ratio of minimum cross-section radius a0 to notch radius R, 
Figure 1, the constraint in the centre of the specimen can be varied. A 
series of tests on different materials using five different specimen 
geometries allowed failure curves to be drawn. The initial ratios (a0/R) 
varied from 1 (A-notch) to 3 (D-notch). Forming the axes of such graphs 
are the parameters mean to effective stress ratio, om/o, and strain to 
failure, ef, both evaluated at the centre of_ the bar. In terms of 
principal stresses, o^ = (ai + a2 + a3)/3, a = 7 = {^[oi - 02)* + (a2 - a-j) 
+ (a3 - ai)2]}1'2 and £f is defined in [1] as the average value of effective 
plastic strain across the minimum section at failure initiation, which is 
detected by a significant drop in load bearing capacity. Combining the 
failure curves with a material size parameter and the approximate ex
pression [2], 6 = 0.6K2/Eav enabled prediction of C.O.D. and critical 
defect size. These latter parameters were determined using small scale 
circumferentially notched specimens, with obvious economic advantages. 

In determining the stress ratio and strain from the tests use was made of 
the work of Bridgman [3], which dealt with naturally necking bars. Con
firmation of the accuracy of applying Bridgman's analysis to pre-notched 
bars is obviously advisable and two approaches were made. The first 
approach [4] was experimental and involved the analysis of deformation in 
the mid-section of banded steel specimens. Three geometries were analysed, 
the results indicating much better agreement with Bridgman for the A-notch 
than for the D-notch. Comparison was also made to the results of 
Clausing [5] who also used banded specimens of different geometry. 
Clausing compared his results with a modified form of the Bridgman analysis. 

The results from the second approach are presented below, they being de
rived from a finite element solution of the A-notch. A finite element 
solution was also used by Argon, Im and Needleman [6], but this was for a 
naturally necking bar. 

PROGRAMME 

The results were generated using an early version of the MARC finite el
ement programme which was subsequently modified by Rice and Tracey [7]. 
The programme has a finite strain capability [8] and uses an incremental 
determination of the solution [7]. The elements used were isoparametric 
quadrilaterals over which uniform dilation was enforced [9]. 
*University of Glasgow, Scotland. 
**Brown University, Providence, R.I., U.S.A. 
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Only a symmetrical quarter of the specimen cross-section need be considered 
and the finite element grid, Figure 1, was chosen to concentrate elements 
in areas of high stress and strain gradients. The shape of the elements 
on or near the section BC was chosen such that even after large deform
ations, element aspect ratios were kept to a minimum. The power law 
stress-strain curve used, can be defined by 

(r o 3GE9 ~ a f or =-- > 1 0 0 O 
y y y 

where a v is the uniaxial yield stress. Two values of index n = 0.1, 0.2 
were selected and the elastic perfectly plastic case was also solved. The 
grid was 'loaded1 by application of uniform displacement along boundary 
AE, the displacement to cause initial yielding at C being denoted by 100%. 
24 graded increments of uniform displacement produced a final 'load' of 
990%. 

RESULTS 

The results presented here are for the case of n = 0.2 power hardening, 
this material response being closest to the ENIA low carbon steel used in 
the experiments of Earl and Brown [4]. Comparison is made between these 
latter results, the computer results, and the Bridgman approximation, bas
ed on the specimen shapes and computed by finite elements. 

(1) Profiles and Plastic Zone shapes. Figure 2 illustrates the profile 
of the A notch, when elastic, and after deformation of 990%. In 
order to calculate the current radius of curvature, R, of the notch 
at C (Figure 1) the displacements of point 1 , 2 , 3 were considered. 
With the reduced cross-section radius, a, the ratio (a/R) can be 
determined and three values are shown on Figure 2. The initial value 
of ratio is 1.0 and, as plasticity develops, the value drops to 
0.932 at 310% before returning to 1.0 when a significant proportion 
of the notch is flowing plastically. The increasing plastic zone is 
illustrated in Figure 3. 

As the power hardening index drops there is a noticeable drop in 
plastic zone size* at the same boundary displacement of 990% but 
with a corresponding increase in plastic strain and deformation on 
the mid-section BC. The ratios (a/R) at 990% for n = 0.1 and the 
perfectly plastic case are 1.14 and 1.29 respectively. 

(2) Radial Displacement U on BC. It is of interest to plot the ratio 
U/Uc (where Uc is the radial displacement of C) against radius 
across BC. Bridgman assumes a straight line and, as can be seen 
from Figure 4, the trend from the elastic to the plastic (990%) 
distribution is towards this straight line. 

(3) Distribution of Effective Plastic Strain. Figure 5 shows the distri
bution of effective plastic strain FP along the boundaries ABCD 
(Figure 1) for 990% where eV can be defined, in principal strains, 
as 

iP = M a e / - ds2PJ2
 + /de2P - dE3

PV ♦ (de3
p - < ^ P ) T 
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Across the neck Bridgman assumed a uniform value of effective plastic 
strain, this best being considered an average value, which is given 
by 

?P = 2 In ave GO 
At 990%, e^ave is 21.1% and this value is shown on Figure 5. Values 
of £P a v e for n = 0.1 and the perfectly plastic case are 26.1% and 
30.7% respectively for 990%, reflecting equally well the higher mean 
values of the eP distribution for the corresponding finite element 
solutions. As power hardening drops the peak value_of eP moves from 
C to B. In Earl and Brown [4] the A4 specimen has ePave = 27.7% and 
cannot be compared exactly but the trend of eP is similar to Figure 
5. 

Stresses a r aft az. On Figure 6 are plotted the normal stress distri
butions down <£_AB and across the mid-section BC, for both the elastic 
(100%) and plastic (990%) conditions. From equilibrium, a r and a A 
are always equal along AB and a r always drops to zero at C. However 
on BC at 990% ar, a9 follow almost a common curve down to zero at 
C a trend predicted by Bridgman. Quantitatively, however, for the 
A-notch, the distributions are not as accurate. They are calculated 
using assumed stress flow lines, from 

a = an = a In r 0 m-m 
Using the (a/R) ratio from Figure 2 the Bridgman approximation is 
drawn on Figure 5. Similarly the curve for a z is calculated from 

a = a 11 + In n)HM 
The value for a used above comes from the stress/strain curve at the 
value corresponding to ePave. 

At 990%, as the power hardening drops to the perfectly plastic case, 
the peak value of oT/Oy, OQ/Oy at B vary very little although the 
Bridgman value drops to 0.5. However the peak values of oz/Oy drop 
to around 2.25 and the Bridgman values to around 1.5. Comparison 
with the Earl and Brown A4 specimen at ePaVe = 27.7% indicates peak 
values of oz/Oy and OQ/Oy, oT/Oy at B of 2.2 and 0.5 respectively, 
the differences reflecting the experimental difficulty of determining 
mean stress. 

Distribution of o^/o. The distributions of this stress ratio, which 
indicates the severity of stress state are shown on Figure 7 for the 
elastic (100%) and plastic (990%) conditions. Little variation is 
detected with load and a favourable comparison can be made with the 
Bridgman approximation, which is calculated from 

H-[*« + 1 (r/R)2 

2(a/R) 
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At 990% and lower work-hardening the Bridgman curves vary very little 
while the finite element solutions show the peak at B rising to over 
1.5. 

CONCLUSIONS 

The results quoted are perforce a short summary of all the results gen
erated and it is hoped in the near future to publish a more comprehensive 
comparison of the results of several notch shapes, such as the D-notch [1] 
and the notch used by Clausing [5]. From the comparisons made herein, it 
can be seen that the approximate Bridgman results are remarkably good for 
this pre-notched geometry and bear witness to his remarkable insight. 
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A TRANSIENT FINITE ELEMENT ANALYSIS OF 
UNSTABLE CRACK PROPAGATION IN SOME 2-DIMENSIONAL GEOMETRIES 

P. N. R. Keegstra*, J. L. Head** and C. E. Turner*** 

INTRODUCTION 

Analytical solutions have been obtained to the problem of unstable crack 
propagation in an infinite plate by Freund [1] and in an infinite strip 
by Nilsson et al [2, 3, 4]. An extensive review of this work has been 
presented by Erdogan [5]. Recently, interest has extended to the problem 
of the analysis of crack propagation and arrest in finite geometries. 
There is interest in the analysis for standard 2-dimensional test piece 
geometries for which dynamic toughness data are known with some confidence. 
Also, there is interest in the modelling of crack propagation in real 
components, having more complex 2-dimensional, or, eventually, 3-dimens
ional geometries and for which the relevent toughness data are known. 
This paper describes, in outline, a 2-dimensional dynamic linear elastic 
finite element programme, based on triangular linear displacement plane 
strain elements, suitable for either purpose. Applications described 
here are restricted to test piece geometries. 

It was thought convenient to use double cantilever beam (DCB) geometries, 
under fixed grip loading conditions, for the validation of the programme. 
For this geometry, there is a large volume of experimental data, assembled 
by Hahn et al [6, 7, 8]. The present paper gives the results of analyses 
for DCB geometry and a comparison with the published experimental results 
of Hahn et al. The paper also describes the application of the programme 
to finite strip geometries, also under fixed grip conditions. In con
ventional tests on metals, the problem is circuitous. Without a dynamic 
analysis of the test piece, the dynamic toughness (which is, in general, 
a function of crack speed) cannot be derived. On the other hand, the 
programme can be run only if the dynamic toughness data are input. The 
dynamic toughness can be measured however, without the use of a dynamic 
stress analysis, by the thermal wave technique [9], dynamic photoelasticity 
[10] or the shadow optical method [11]. 

The dynamic energy release rate, GD, in a specimen under fixed-grip con
ditions, is [5] 

«»■-(£•§) '" 
where S = kinetic energy 

* Royal Netherlands Navy, seconded to Imperial College, London, England. 
** Department of Mechanical Engineering, Imperial College of Science and 

Technology, Exhibition Road, London, SW7 2BX, London, England. 
***Imperial College, London, seconded to National Physical Laboratory, 

Teddington, England. 

515 MS346 



Fraoture 1977, Volume 3 

(other symbols conform to the standard nomenclature list.) In the analyses 
described in the paper, it was assumed that energy is dissipated only at 
the crack front. There may be damping losses, either internally and/or 
at boundaries. The inclusion of these losses in the analysis would, in 
principle, present no difficulty, although the assessment of a reasonable 
magnitude would not be easy. The nature of energy dissipation at the 
crack front is not discussed in the paper, but dissipation is, by impli
cation, taken into account by use of a generalised surface energy of the 
Irwin-Orowan type. The method by which this is included in the analysis 
is described in the paper. The energy balance equation is then 

GD = R(v) (2) 

where R(v) = dynamic fracture toughness, which in general 
is a function of the crack speed v. 

DYNAMIC ANALYSIS 

The finite element discretisation of a continuum leads to the well-known 
matrix form of the equation of motion [12]. 

K u + C u + Mii = F(t) (3) 

where jC = stiffness matrix 
C_ = viscosity matrix 
M = mass matrix 
u. = displacement vector 
_F(t) = force vector 

and the dot indicates the derivative with respect to time. In the analyses 
described in the paper, the mass of each element was assumed to be con
centrated at the nodes, thus diagonalising the mass matrix and reducing 
the .computing time by up to 80% with an acceptable loss of accuracy 
(about 4%). Equation (3) is integrated stepwise in time in a manner 
similar to that described by Hitchins and Dance [13]. A second order 
Lagrangian polynomial is assumed to relate the accelerations at sequential 
time points, thus the displacements and velocities at time t + A are 
related to those at t and t - A by the following equation (see Keegstra 
[14]). 

I AI 

0 I u — o/ 

£_ T SAL Al T 
24 - 12 - 8 -

12 
2A 
3 I **I - 12 - < 

r \ 
ij_ 1 

— of 

u 1 — +1 

(4) 

The subscripts +,o,- denote the values at times t + A, t, t - A respec
tively. 1̂  denotes unit matrix and A is the time interval. The predicted 
accelerations ii are used with equation (4) to obtain a first estimate 
of the velocities u. and displacements u_ , which are then substituted 
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into equation (3) to obtain improved values of the accelerations u. . The 
iteration is continued until adequate convergence is obtained. The solu
tion is then advanced by a further time step. The length of the time step 
is taken to be 

A < s/5CL (5) 

where s = smallest finite element side length 
Cy = speed of dilatational wave 

CRACK EXTENSION CRITERION 

At the present stage of the development of the programme, the crack path 
must be known. In DCB and strip geometries, the crack path may reasonably 
be assumed to be the plane of symmetry and only one half of the specimen 
is modelled. Figure 1 shows the DCB geometry for which the present analyses 
were made. The finite element mesh comprised 250 elements and 157 nodes. 
Nodes on the plane of symmetry are restrained against displacement normal 
to the crack plane until the crack front has passed, after which they are 
released. The forces on the restrained nodes are monitored. 

It has been shown by Keegstra [14] that, for a given mesh, the force on 
the crack tip node is proportional to the stress intensity factor K and 
may, therefore, be used as a crack extension criterion. In the execution 
of the programme, the crack tip node is released when the restraining 
force reaches a prescribed value Fc, which depends on the mesh size and 
on the dynamic toughness KD. The crack speed is calculated from the 
intervals between the release times of adjacent nodes. The crack is 
assumed to have arrested if the force on the crack tip nodes does not 
reach Fc within a reasonable period measured from the time at which the 
previous node is released. This time period is chosen, arbitrarily, to 
correspond to a crack speed of 0.01 CL. 

When the force on the crack tip node reaches Fc and the node is released, 
the force is not reduced instantaneously to zero but is reduced linearly 
with nodal displacement, according to the equation. 

Fb = Fc(l - u/uc) (6) 

where t* 

u - f HM dt (7) 
o 

and u c = reference displacement 
u(t) = nodal displacement 
t* = current time 

Thus u is a time-averaged displacement. The node therefore does work 
against the "holding-back" force F^. This provides an energy sink which, 
by making an appropriate choice of the reference displacement u , re
presents the generalised surface energy. It has been shown [14] that the 
appropriate value of u c is given by 
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where Kn is the stiffness of the node. This method of providing an energy 
sink is illustrated in Figure 2. 

DCB ANALYSES 

A force was applied to the node representing the loading pin, such that 
the initial stress intensity factor KQ reached a value which exceeded 
K1C by a factor chosen to characterise the bluntness of the initial crack. 
The dynamic calculation was initiated by releasing the crack tip node. 
Throughout the analysis, the displacement of the loading pin was held 
constant, equal to the initial value, modelling fixed-grip conditions. 

To enable a comparison with the experimental results of Kobayashi and 
Mall (see [7]) and the analytical results of Hahn et al [7], the material 
properties used by those authors, which relate to Homalite-100, were used 
in the present analyses. Also, the same value of KQ was used, although 
this was necessarily inferred from the quoted value of the initial strain 
energy. Figure 3 shows the assumed relationship between KQ/K^Q and crack 
speed v [7]. Figure 4 shows the relationship between the computed crack 
speed and crack length. For comparison, the figure also shows the ana
lytical results of Hahn et al and the experimental results of Kobayashi 
and Mall. Figure 5 shows the variation with time and/or crack length of 
the various energy terms including the potential energy of the loading pin. 

FINITE STRIP ANALYSES 

The geometry for which these analyses were made is shown in Figure 6. The 
specimen was assumed to be of steel. As for the DCB analyses, fixed grip 
loading conditions were assumed. In each of these analyses, however, the 
crack tip nodes were released at prescribed time intervals, regardless of 
the magnitude of the force on the node. In other words, the specimens 
were assumed to be "sliced" at constant speed. The act of slicing at a 
given speed implies a certain ratio of static and dynamic energy release 
rates (GSTAT/^D)• The analyses covered a range of constant slicing speeds 
from 0.18 CR to 1.8 CR where CR is the Rayleigh wave speed. Figure 7 
shows the crack face displacement profile at a sequence of time values, 
for a single slicing speed (2917 m/s = 0.98 C R ) . From the figure it may 
be seen that, for this slicing speed, the crack front propagates at a 
speed which is lower than the slicing speed. For slicing speeds below 
about 0.7 CR, the crack front speed was found to be equal to the slicing 
speed. For slicing speeds above this value, the crack front speed was 
always lower than the slicing speed and approached assymptotically the 
Rayleigh wave speed as the slicing speed was increased. The relationship 
between the crack front speed and the slicing speed is shown in Figure 8. 

For each value of slicing speed, Gp was calculated (using equation (1)) 
for a sequence of values of crack length. For this geometry, these values 
were nearly constant over the range of crack length. An average value of 
GD was calculated for each slicing speed. The ratio g(v) = G D/G$TAT i s 

shown plotted against the ratio V/CR in Figure 9. The figure shows the 
analytical results of Nilsson [2] for an infinite strip. The figure also 
shows results of similar slicing runs on the DCB geometry shown in Figure 
1 and the analytical results of Freund [1] for an infinite plate. 
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DISCUSSION AND CONCLUSIONS 

The close agreement between the predicted and measured crack speeds in the 
DCB geometry, see Figure 4, gives some confidence in the validity of the 
computer programme and in the method of modelling the energy sink at the 
crack tip. Further evidence of the validity of the programme is provided 
by Figure 3, which shows, in addition to the input relationship between 
KD/K1C and v, values of KD/K1C obtained from the output values of G using 
the relationship 

GD = KD
2 f(v)/E (9) 

The function f(v), given by Nilsson [2], depends on the crack speed, shear 
wave speed, longitudinal wave speed and Poisson's ratio. 

The potential energy of the loading pin, shown in Figure 5, exhibits 
fluctuations which are due to the arrival of stress waves at the loading 
pin. The propagation of stress waves, and reflections from the boundaries 
of the specimen, are clearly seen in various forms of graphical output 
which have been generated, also in a film which has been made from these 
outputs. 

For the finite strip, Figure 9 shows the marked dependence of g(v) on the 
geometry of the strip. Additional results, obtained for longer strips, 
show that, as the strip length is increased, g(v) approaches Nilsson's 
result for an infinite strip. For the finite strip geometry, instantaneous 
values of G[) never exceeded GsTAT by more than a few percent. (Recall that 
Figure 9 shows the average value of g(v) for each crack speed). By contrast, 
in the DCB geometry, instantaneous values of GQ exceeded GsTAT by up to 
50%. In other words, in a DCB specimen under fixed grip loading, kinetic 
energy plays a greater role in the mechanics of crack propagation. 

The form of Figure 8 is not yet fully understood by the authors. One 
possible explanation of the non-linearity, for crack speeds above about 
0.7 CR, is the compressive stress which according to Baker [15] develops 
ahead of the crack at high crack speeds. Some evidence of this compressive 
stress was seen in the computer outputs, despite the coarse meshes which 
were necessarily used. 

In conclusion, the results so far obtained give confidence in the validity 
of the programme. The results presented in the paper provide additional 
knowledge and understanding of crack propagation in DCB and finite strip 
geometries. The programme is now being used in the analysis of experi
mental results for these and other geometries. 
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